
Report

Contract No. HY/2012/08
Tuen Mun – Chek Lap Kok Link –
Northern Connection Sub-sea Tunnel
Section

Thirty-ninth Monthly Environmental Monitoring & Audit (EM&A) Report

13 February 2017

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Ref.: HYDHZMBEEM00_0_5050L.17

14 February 2017

AECOM

By Fax (2293 6300) and By Post

Supervising Officer Representative's Office No.8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong

Attention: Messrs. Roger Man / Andy Westmoreland

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing
Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section 39th Monthly EM&A Report for January 2017 (EP-354/2009/D)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (Jan. 2017) (ET's ref.: "0212330_39th Monthly EM&A_20170213.doc" dated 13 Feb. 2017) certified by the ET Leader and provided to us via e-mail on 14 Feb. 2017.

Please be informed that we have no adverse comments on the captioned monthly EM&A report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/D.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun – Chek Lap Kok Link

Frankouf

c.c.

HyD - Mr. Stephen Chan (By Fax: 3188 6614) HyD - Mr. Vico Cheung (By Fax: 3188 6614) AECOM - Mr. Conrad Ng (By Fax: 3922 9797) ERM - Mr. Jovy Tam (By Fax: 2723 5660)

Dragages - Bouygues JV - Mr. C. F. Kwong (By Fax: 2293 7499)

Internal: DY, YH, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_5050L.17.docx

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Thirty-ninth Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_39th Monthly EM&A_20170213.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project N	0:				
DBJV			0212330				
Summary	:	Date: 13 Febr Approved	uary 201	7			
This document presents the thirty-ninth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.							
		Mr Craig Reid Partner					
		Certified I	oy:				
		Mr Jovy ET Leade					
	39 th Monthly EM&A Report	VAR	JT	CAR	13/02/17		
Revision	Description	Ву	Checked	Approved	Date		
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		— ⊠ Pul	ernal	Certificate	3 18001:2007 No. OHS 515956 BSL 001:2008 e No. FS 32515		

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1	INTRODUCTION	4
1.1	BACKGROUND	4
1.2	SCOPE OF REPORT	5
1.3	ORGANIZATION STRUCTURE	5
1.4	SUMMARY OF CONSTRUCTION WORKS	6
2	EM&A RESULTS	8
2.1	AIR QUALITY	8
2.2	WATER QUALITY MONITORING	10
2.3	DOLPHIN MONITORING	11
2.4	EM&A SITE INSPECTION	16
2.5	Waste Management Status	17
2.6	ENVIRONMENTAL LICENSES AND PERMITS	18
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	21
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	21
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	Prosecutions	21
3	FUTURE KEY ISSUES	22
3.1	CONSTRUCTION ACTIVITIES FOR THE COMING MONTH	22
3.2	KEY ISSUES FOR THE COMING MONTH	22
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	22
4	CONCLUSIONS AND RECOMMENDATIONS	23
4.1	CONCLUSIONS	23

APPENDIX A PROJECT ORGANIZATION FOR ENVIRONMENTAL

WORKS

APPENDIX B CONSTRUCTION PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D SUMMARY OF ACTION AND LIMIT LEVELS

APPENDIX E COPIES OF CALIBRATION CERTIFICATE FOR AIR

QUALITY MONITORING

APPENDIX F EM&A MONITORING SCHEDULES

APPENDIX G IMPACT AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WQM DATA

APPENDIX J IMPACT DOLPHIN MONITORING SURVEY

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE,

COMPLAINTS, NOTIFICATIONS OF SUMMONS AND

SUCCESSFUL PROSECUTIONS

APPENDIX M WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Thirty-ninth Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 January 2017 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Shaft Structure and Backfilling Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Marine-based Works

- Dredging Portion N-A;
- Construction of Vertical Seawall at Portion N-A; and
- Band drain installation at Portion N-A

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 10 sessions

1-hour TSP Monitoring 10 sessions

Water Quality Monitoring 12 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in January 2017 during the exclusion zone monitoring.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

No Action Level or Limit Level of air quality exceedances were recorded in the air quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level of water quality exceedances were recorded in the water quality monitoring of this reporting month.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

One (1) environmental complaint case regarding sewage discharge at the east of the artificial island of the Hong Kong – Zhuhai–Macao Bridge was referred by IEC on 16 January 2017. One (1) environmental complaint case regarding trespassing of construction vessels in Brothers Marine Park was referred by IEC on 17 January 2017. After investigation, the environmental complaint case on 17 January 2017 is considered to be not related to this Contract. The environmental complaint case on 16 January 2017 is under investigation. The complete investigation findings will be provided in the *Fortieth Monthly EM&A Report*.

No environmental summons was received in this reporting period.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Month

Works to be undertaken in the next monitoring period of February 2017 include the following:

Marine-based Works

- Construction of Vertical Seawall at Portion N-A;
- Band drain installation at Portion N-A; and
- Filling works at Portion N-A.

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Shaft Structure and Backfilling Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

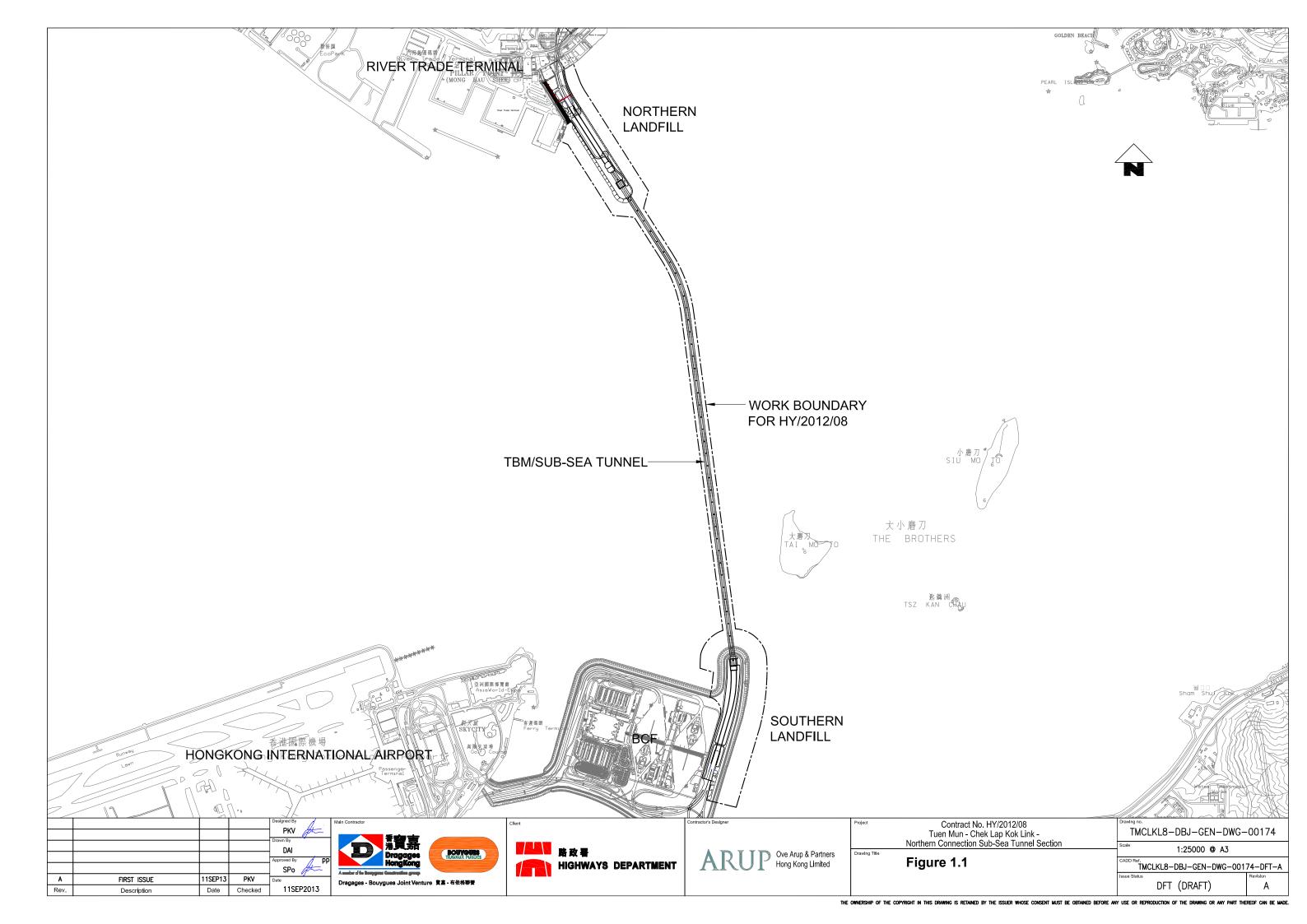
<u>Future Key Issues</u>

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2017 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

INTRODUCTION

1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009/A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEPs), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the Thirty-ninth Monthly EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section.* This report presents a summary of the environmental monitoring and audit works in January 2017.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 16/HZMB	Kenneth Lee	2762 4996	3188 6614
SOR (AECOM Asia Company	Chief Resident Engineer	Edwin Ching	2293 6388	2293 6300
Limited)	0	Andrew Westmoreland	2293 6360	2293 6300
ENPO / IEC (Ramboll Environ Hong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Kong Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Dragages - Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	2293 7322	2293 7499
	Environmental Officer	Bryan Lee	2293 7323	2293 7499
	Environmental Officer	David Ho	6628 8684	2293 7499
	24-hour complaint hotline	Rachel Lam	2293 7330	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

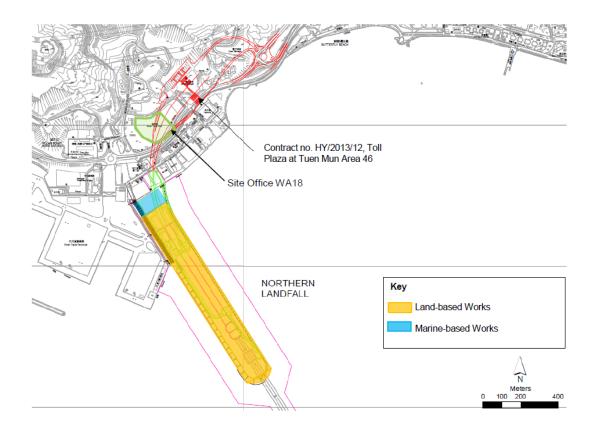
The construction phase of this Contract was commenced on 1 November 2013. The construction programme is shown in *Appendix B*.

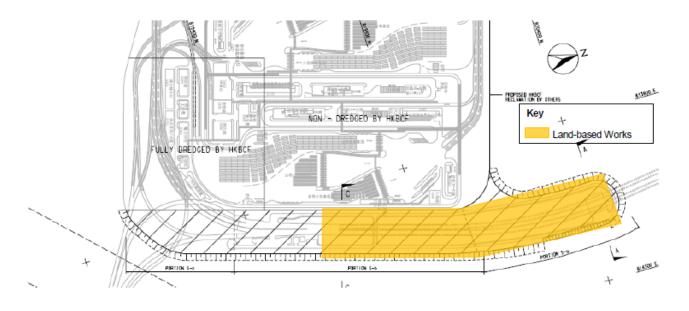
As per DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

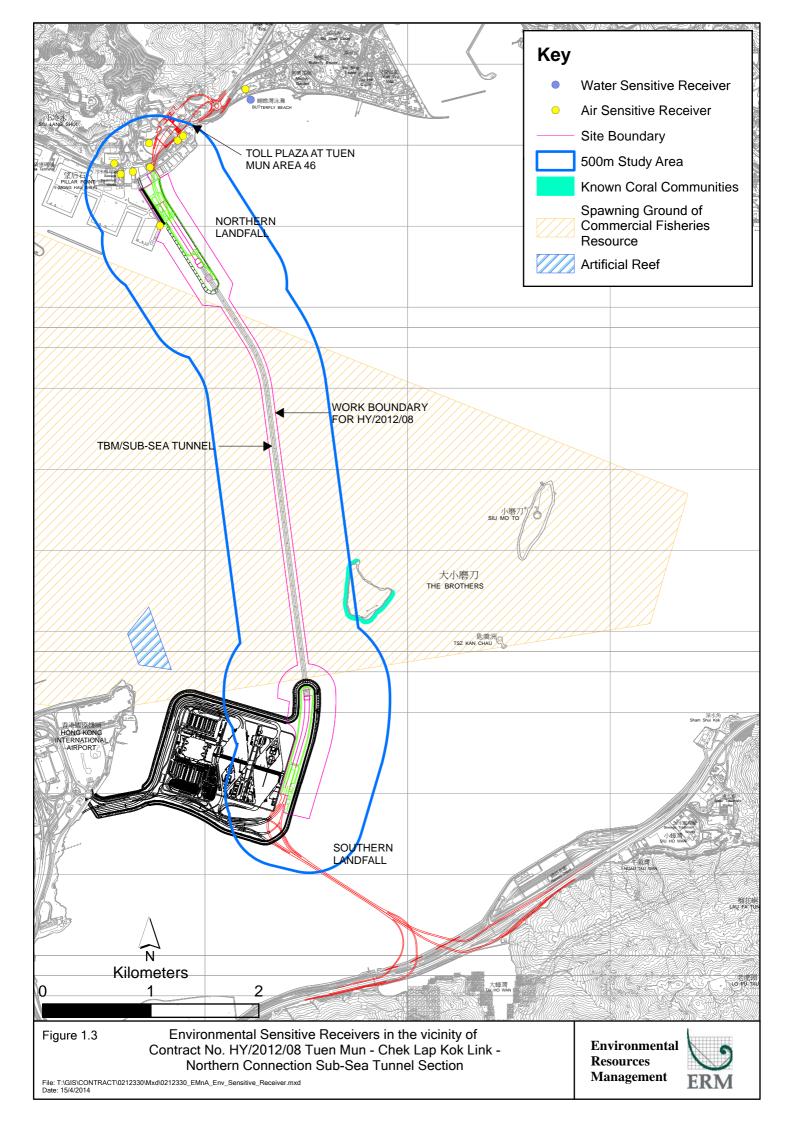
The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.

Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period


Construction Activities Undertaken


Land-based Works


- Box Culvert Extension at Works Area Portion N-A;
- Shaft Structure and Backfilling Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel; and
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Marine-based Works

- Dredging Portion N-A
- Construction of Vertical Seawall at Portion N-A; and
- Band drain installation at Portion N-A;

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days, respectively, as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 January 2017 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind meter was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Monitoring Dates	Location	Description	Parameters & Frequency
ASR1	3, 6, 9, 12, 15, 18, 21,	Tuen Mun	Office	TSP monitoring
	24, 27 and 30 January	Fireboat Station		 1-hour Total Suspended
	2017			Particulates (1-hour TSP,
ASR5		Pillar Point Fire	Office	μ g/m³), 3 times in every 6 days
		Station		 24-hour Total Suspended
				Particulates (24-hour TSP,
AQMS1		Previous River	Bare ground	μ g/m³), daily for 24-hour in
		Trade Golf		every 6 days
				Enhanced TSP monitoring
ASR6		Butterfly Beach	Office	(commenced on 24 October 2014)
		Laundry		 1-hour Total Suspended
				Particulates (1-hour TSP,
ASR10		Butterfly Beach	Recreational	$\mu g/m^3$), 3 times in every 3 days
		Park	uses	 24-hour Total Suspended
				Particulates (24-hour TSP,
				μ g/m³), daily for 24-hour in
				every 3 days
				every 3 days

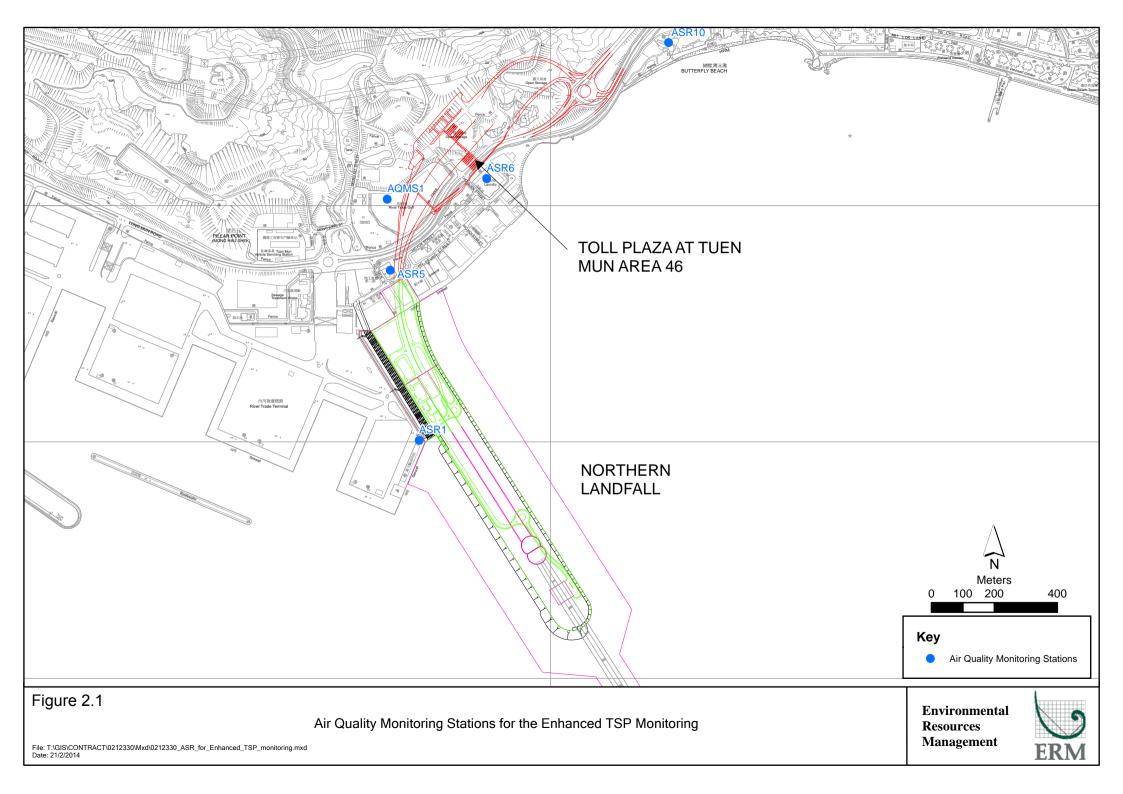


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Vantage Pro 2 (S/N: AS160104014)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in January 2017 is provided in *Appendix F*.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level	Limit Level
			(μg/m³)	$(\mu g/m^3)$
ASR1	130	50 - 263	331	500
ASR5	177	86 - 294	340	500
AQMS1	113	47 - 196	335	500
ASR6	159	60 - 282	338	500
ASR10	88	48 - 163	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR1	74	63 - 106	213	260
ASR5	88	62 - 106	238	260
AQMS1	68	49 - 90	213	260
ASR6	82	62 - 110	238	260
ASR10	67	54 - 85	214	260

The weather condition during the monitoring period varied from sunny to cloudy. The major dust sources in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

A total of 10 monitoring events were undertaken in which no Action or Limit Level exceedances of 1-hr TSP were recorded in this reporting month. No Action or Limit Level exceedances for 24-hr TSP were record.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*.

2.2 WATER QUALITY MONITORING

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2; Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coor	Coordinates *Parameters, unit		Depth	Frequency
	•	Easting	Northing	_		
IS12	Impact Station	813218	823681	• Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	• Turbidity (NTU)	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	• Water depth (m)	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	• SS (mg/L)	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
SR10A	Sensitive	823741	823495			
	receiver					
	(Ma Wan					
	FCZ)					

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.6 summarizes the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

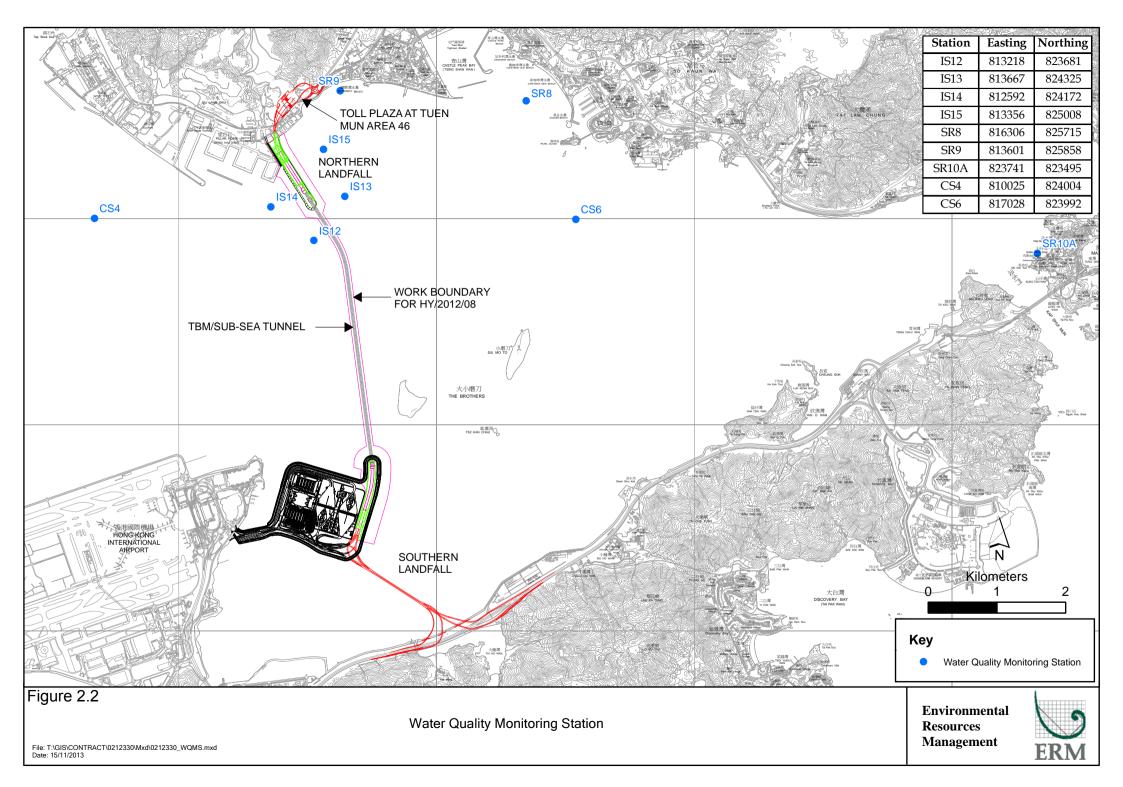


Table 2.6 Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water-Bottle Model 135DW 150
Dissolved Oxygen Meter	YSI Pro 2030
pH Meter	HANNA HI 9125
Turbidity Meter	HACH 2100Q
Monitoring Position	"Magellan" Handheld GPS Model explorist GC
Equipment	DGPS Koden KGP913MK2 (1)

2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in January 2017 is provided in *Appendix F*. Water Quality Monitoring on 28 January 2017 was cancelled since there was no marine works in the period from 28 to 30 January 2017.

2.2.4 Results and Observations

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Results and graphical presentations of impact water quality monitoring are presented in *Appendix I*.

Since marine works for Phase 2 reclamation commenced on 27 December 2016, impact water quality monitoring resumed on 27 December 2016. In this reporting period, a total of twelve (12) monitoring events were undertaken in which no Action Level or Limit Levels of exceedances for impact water quality monitoring was recorded.

2.3 DOLPHIN MONITORING

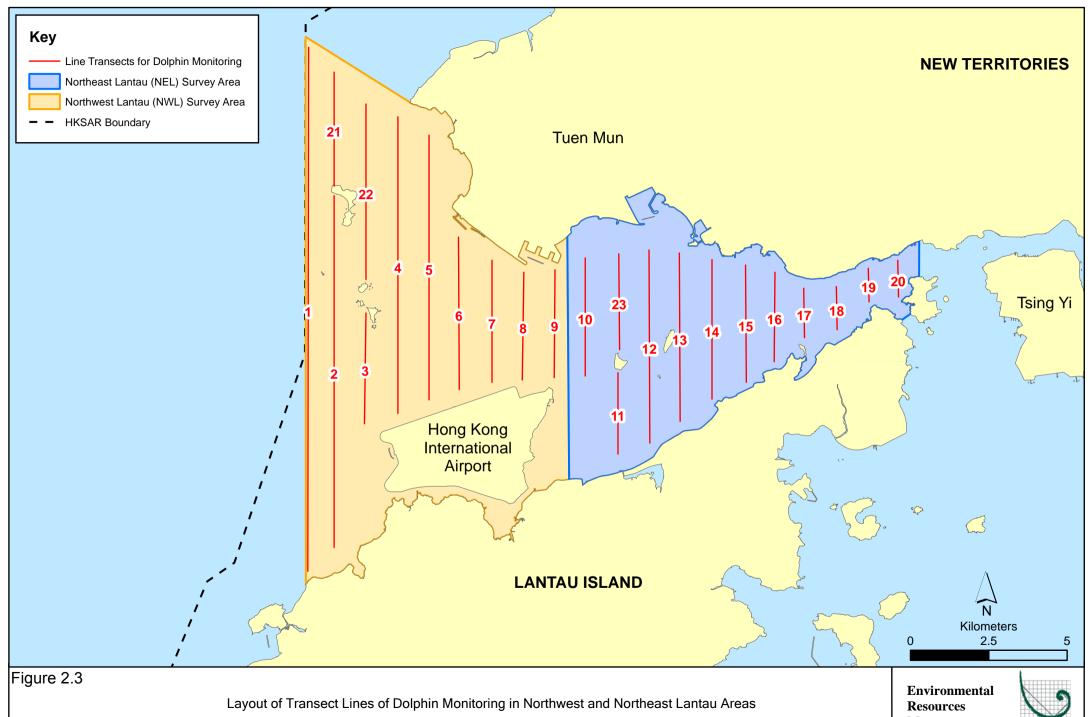
2.3.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 *Monitoring Equipment*

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binocular	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 29/11/2013

Management

 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815913	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action & Limit Levels

The Action and Limit levels of impact dolphin monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 10, 12, 16 and 20 of January 2017. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

2.3.7 Results & Observations

A total of 294.60 km of survey effort was collected, with 97.7% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) in January 2017. Among the two areas, 112.49 km and 182.11 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 211.72 km and 82.88 km respectively. The survey efforts are summarized in *Appendix J*.

A total of four groups of 13 Chinese White Dolphins sightings were recorded on one survey in January 2017. All four dolphin sightings were made in NWL, while none was sighted in NEL. All four dolphin sightings were made on primary lines during on-effort search, and none of these dolphin groups was associated with any operating fishing vessel.

None of the dolphin sightings was made in the proximity of the TM-CLKL alignment. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in January 2017 with the results present in *Tables 2.9* and *2.10*.

 Table 2.9
 Individual Survey Event Encounter Rates

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin	(no. of dolphins from all on-
		sightings per 100 km of	effort sightings per 100 km of
		survey effort)	survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: January 10th / 12th	0.0	0.0
NEL	Set 2: January 16th / 20th	0.0	0.0
NWL	Set 1: January 10th / 12th	0.0	0.0
INVVL	Set 2: January 16th / 20th	6.3	20.4

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in January 2017 in Northeast (NEL) and Northwest Lantau (NWL)

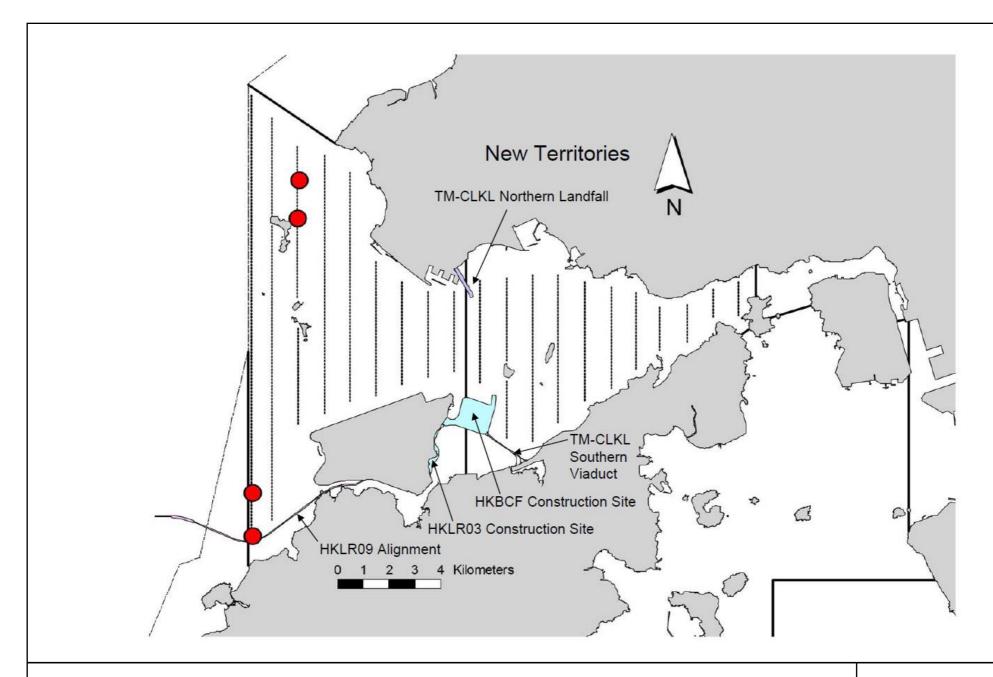


Figure 2.4

HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in January 2017) Environmental Resources Management

Table 2.10 Monthly Average Encounter Rates

	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)		Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)		
	Primary Lines Only	Both Primary and Secondary Lines	Primary Both Primary Lines Only and Secondary Lines		
Northeast Lantau	0.0	0.0	0.0	0.0	
Northwest Lantau	3.0	2.3	9.7	7.4	

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in January 2017 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected in relation to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.3.8 Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in January 2017 during the exclusion zone monitoring

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 4, 11, 18 and 25 January 2017.

Key observations and recommendations during the site inspections in this reporting period are summarized in *Table 2.11*.

Table 2.11 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Month

Inspection Date	Observations	Recommendations/ Remarks
4 January 2017	 Works Area - Portion N-A Chemical labels should be provided to the chemical drums. Works Area - Portion N-B Drip tray and chemical labels should be provided to the chemical drums. Works Area - Portion S-C Concrete sand should be covered by tarpaulin sheet. Water spraying should be applied during dry conditions. 	 Works Area - Portion N-A The Contractor was reminded to provide chemical labels to the chemical drums. Works Area - Portion N-B The Contractor was reminded to provide drip tray and chemical labels to the chemical drums. Works Area - Portion S-C The Contractor was reminded to covere the concrete sand by tarpaulin sheet. The Contractor was reminded to apply water spraying during dry conditions.
11 January 2017	 Works Area - Portion N-C Accumulated waste in the skip should be removed. Works Area - Portion S-B Drip tray should be provided to the chemical drums. 	Works Area - Portion N-C The Contractor was reminded to remove the accumulated waste in the skip. Works Area - Portion S-B The Contractor was reminded to provide drip tray to the chemical drums.
18 January 2017	 Works Area - Portion N-A Earth bund or sand bag barrier should be provided to prevent leakage of muddy substances to the sea. Chemical substances should be removed from the site. Works Area - Portion S-C Drip tray should be provided to the chemicals. Accumulated rubbish bags should be removed. 	 Works Area - Portion N-A The Contractor was reminded to provide earth bund or sand bag barrier to prevent leakage of muddy substances to the sea. The Contractor was reminded to remove chemical substances from the site. Works Area - Portion S-C The Contractor was reminded to provide drip tray to the chemicals. The Contractor was reminded to remove accumulated rubbish bags.

Inspection Date	Observations	Recommendations/ Remarks
25 January 2017	Works Area - Portion N-A	Works Area - Portion N-A
	 Floating rubbish should be cleared. 	 The Contractor was reminded to clear
	Works Area - Portion N-C	the floating rubbish.
	 Drip trays should be provided for the 	Works Area - Portion N-C
	chemical containers.	 The Contractor was reminded to
	Works Area - Portion S-C	provide drip trays for the chemical
	 Water spraying should be applied more 	containers.
	often during dry conditions.	Works Area - Portion S-C
	 Accumulated general refuse should be 	 The Contractor was reminded to apply
	cleared.	water spraying more often during dry conditions.
		 The Contractor was reminded to clear
		the accumulated general refuse.

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting month.

2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period included mainly construction wastes (inert and non-inert) and chemical waste. Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.12*.

Table 2.12 Quantities of Different Waste Generated in the Reporting Month

Month/Year	Inert Construction	Imported Fill (tonnes)	Inert Construction	Non-inert Construction	Recyclable Materials (c)	Chemical Wastes	Marine Se	ediment (m³)
	Waste (a) (tonnes)	Tin (tolines)	Waste Re- used (tonnes)	Waste (b) (tonnes)	(kg)	(kg)	Category L	Category M (M _p & M _f)
January 2017	60,781	0	0	673	0	3,400	0	0

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in $\it Table~2.13$ below.

 Table 2.13
 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-354/2009/D	13 March 2015	Throughout the Contract	HyD	Application for VEP on 3 March 2015 to supersede EP-354/2009/C
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	Northern Landfall
Construction Dust Notification	403620	10 June 2016	Throughout the Contract	DBJV	Southern Landfall
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	Northern Landfall
Chemical Waste Registration	5213-422-D2516-02	18 January 2017	Throughout the Contract	DBJV	Northern Landfall
Chemical Waste Registration	5213-951-D2591-01	25 May 2016	Throughout the Contract	DBJV	Southern Landfall
Construction Waste Disposal Account	7018108	28 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract No. HY/2012/08
Construction Waste Disposal Account	7021715	12 January 2017	12 April 2017	DBJV	Vessel disposal
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For site WA18
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Waste Water Discharge License	WT00025944-2016	15 December 2016	31 December 2021	DBJV	Southern Landfall
Marine Dumping Permit Marine Dumping Permit Marine Dumping Permit Construction Noise Permit	EP/MD/17-103 EP/MD/17-164 EP/MD/17-121 GW-RW0644-16	16 December 2016 16 January 2017 16 December 2016 30 November 2016	13 June 2017 15 February 2017 15 January 2017 29 May 2017	DBJV DBJV DBJV DBJV	Northern Landfall Northern Landfall Northern Landfall For Urmston Road in front of Pillar Point

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Construction Noise Permit	GW-RW0666-16	13 December 2016	12 June 2017	DBJV	For site WA23A+B
Construction Noise Permit	GW-RW0533-16	29 September 2016	28 March 2017	DBJV	For Portion N6
Construction Noise Permit	GW-RS0860-16	25 August 2016	24 February 2017	DBJV	For Southern Landfall
Notes:			· · · · · · · · · · · · · · · · · · ·	-	
II D III I D .					

HyD = Highways Department

DBJV = Dragages - Bouygues Joint Venture VEP = Variation of Environmental Permit

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

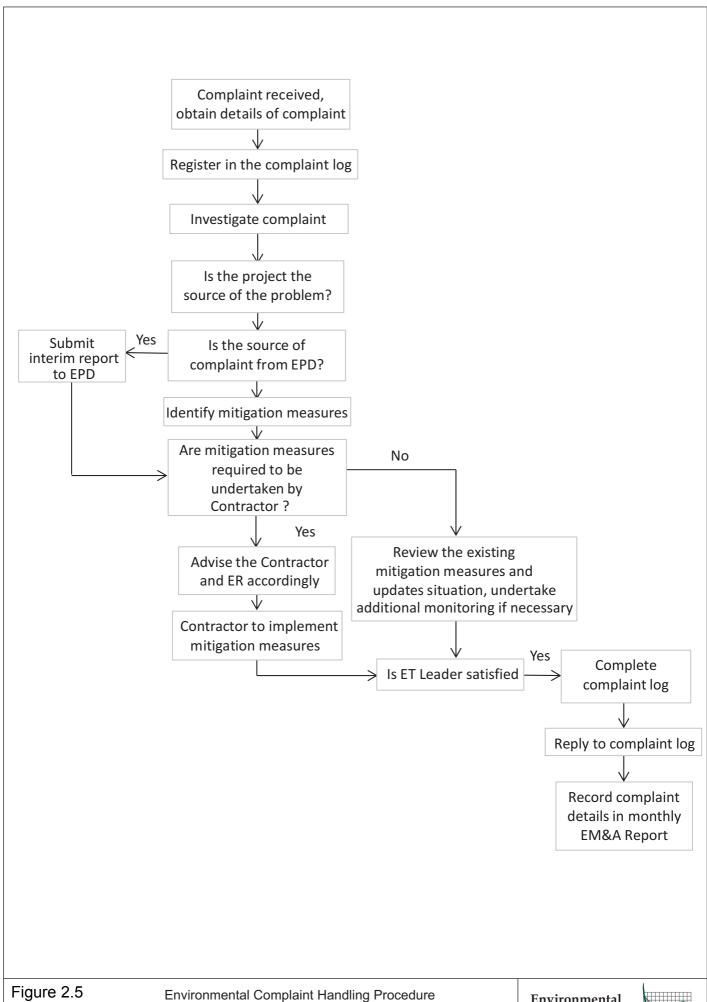
In response to the site audit findings, the Contractors carried out all corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

Cumulative statistics are provided in *Appendix L*.


2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

One (1) environmental complaint case regarding sewage discharge at the east of the artificial island of the Hong Kong – Zhuhai–Macao Bridge was referred by IEC on 16 January 2017. One (1) environmental complaint case regarding trespassing of construction vessels in Brothers Marine Park was referred by IEC on 17 January 2017. After investigation, the environmental complaint case on 17 January 2017 is considered to be not related to this Contract. The environmental complaint case on 16 January 2017 is under investigation. The complete investigation findings will be provided in the *Fortieth Monthly EM&A Report*.

No notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING MONTH

As informed by the Contractor, the major works for the Project in February 2017 are summarized in *Table 3.1*.

Table 3.1 Construction Works to Be Undertaken in the Coming Month

Works to be undertaken

Marine-based Works

- Construction of Vertical Seawall at Portion N-A;
- Band drain installation at Portion N-A; and
- Filling works at Portion N-A.

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Shaft Structure and Backfilling Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Corbel Construction TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of February 2017 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in February 2017 is provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

This Thirty-ninth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 31 January 2017, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/D.

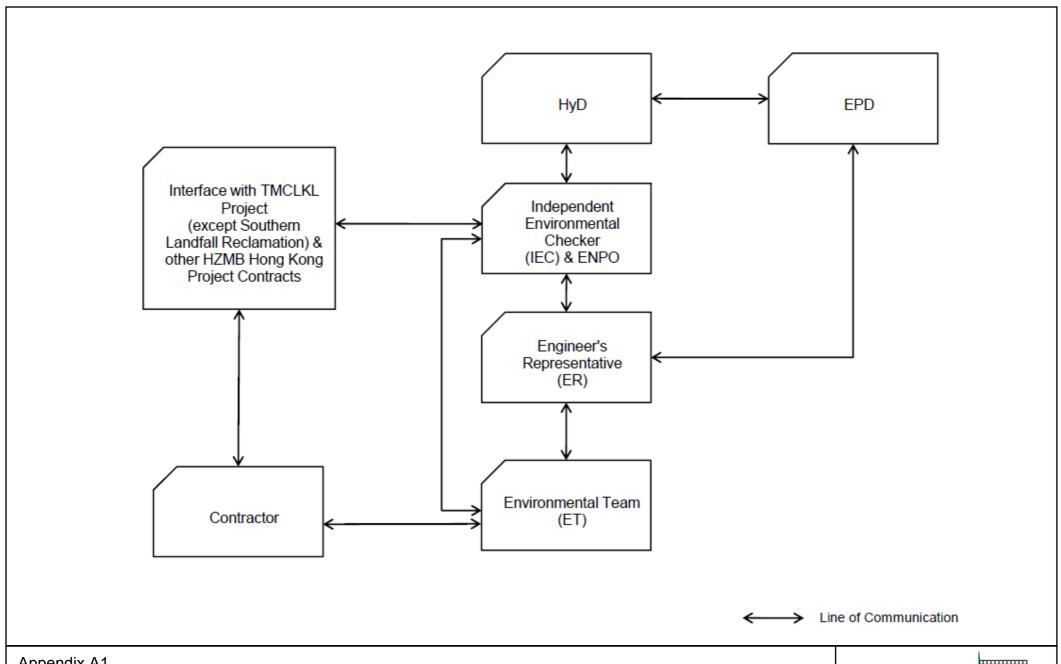
Air quality (including 1-hour TSP and 24-hour TSP), marine water quality and dolphin monitoring were carried out in this reporting month. No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month.

A total of four groups of 13 Chinese White Dolphins sightings were recorded on one survey in January 2017. All four dolphin sightings were made in NWL, while none was sighted in NEL. All four dolphin sightings were made on primary lines during on-effort search, and none of these dolphin groups was associated with any operating fishing vessel.

Environmental site inspection was carried out four (4) times in January 2017. Remedial actions recommended for the deficiencies identified during the site audits were properly implemented by the Contractor.

No non-compliance event was recorded during the reporting period.


One (1) environmental complaint case regarding sewage discharge at the east of the artificial island of the Hong Kong – Zhuhai–Macao Bridge was referred by IEC on 16 January 2017. One (1) environmental complaint case regarding trespassing of construction vessels in Brothers Marine Park was referred by IEC on 17 January 2017. After investigation, the environmental complaint case on 17 January 2017 is considered to be not related to this Contract. The environmental complaint case on 16 January 2017 is under investigation. The complete investigation findings will be provided in the *Fortieth Monthly EM&A Report*.

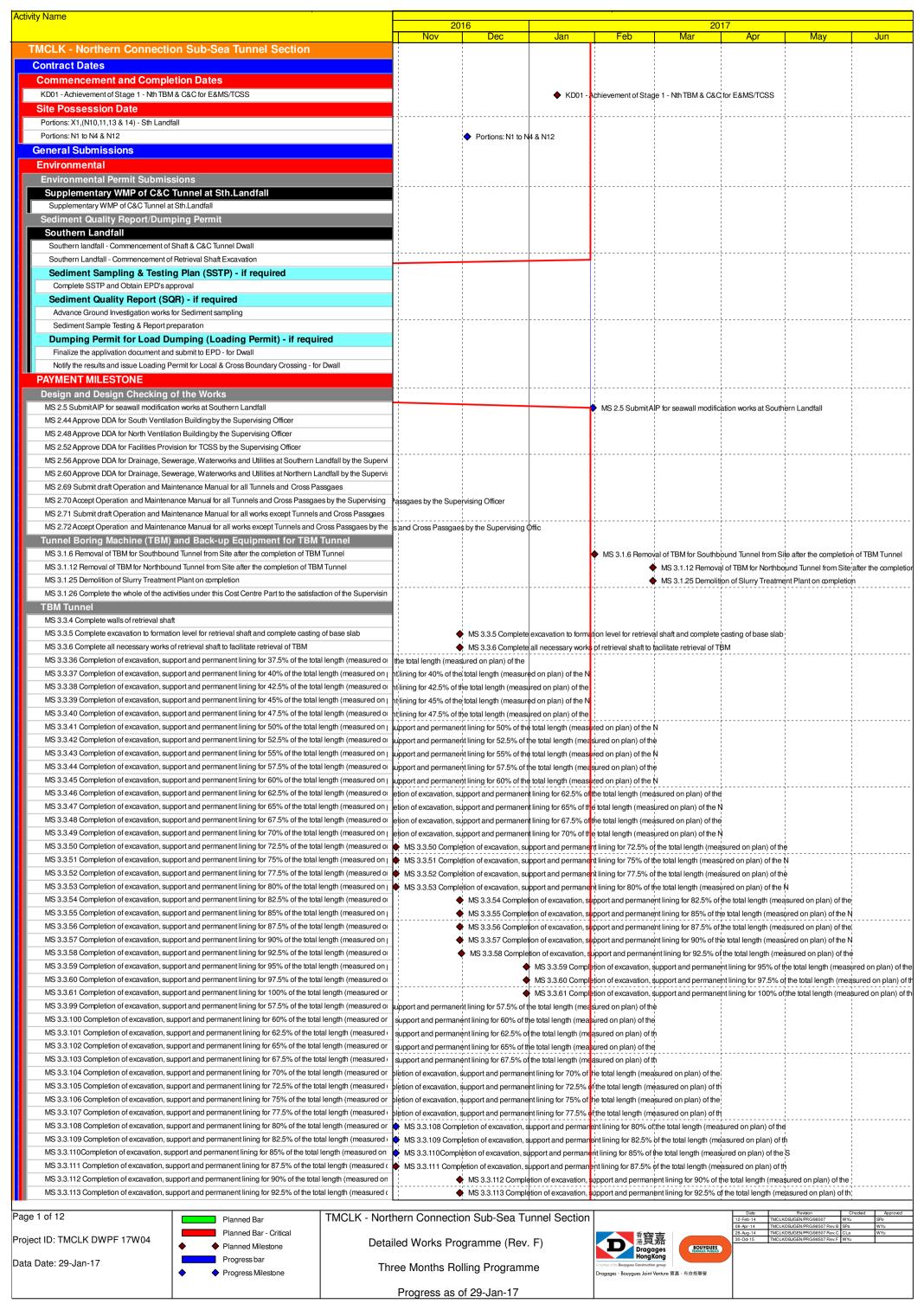
No summons/ prosecution was received during the reporting period.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A

Project Organization for Environmental Works

Appendix A1


Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section **Project Organization**

Environmental Resources Management

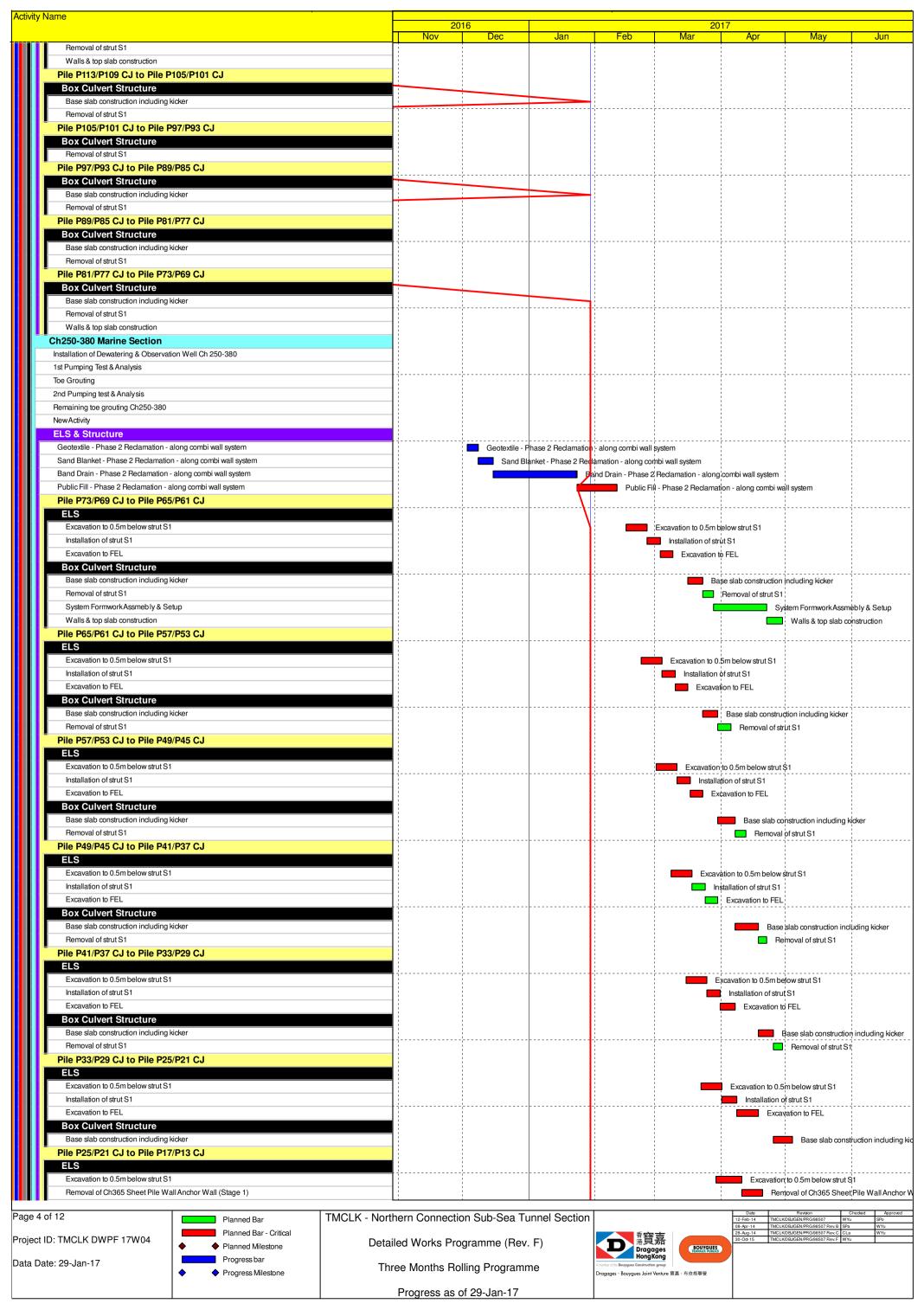
Appendix B

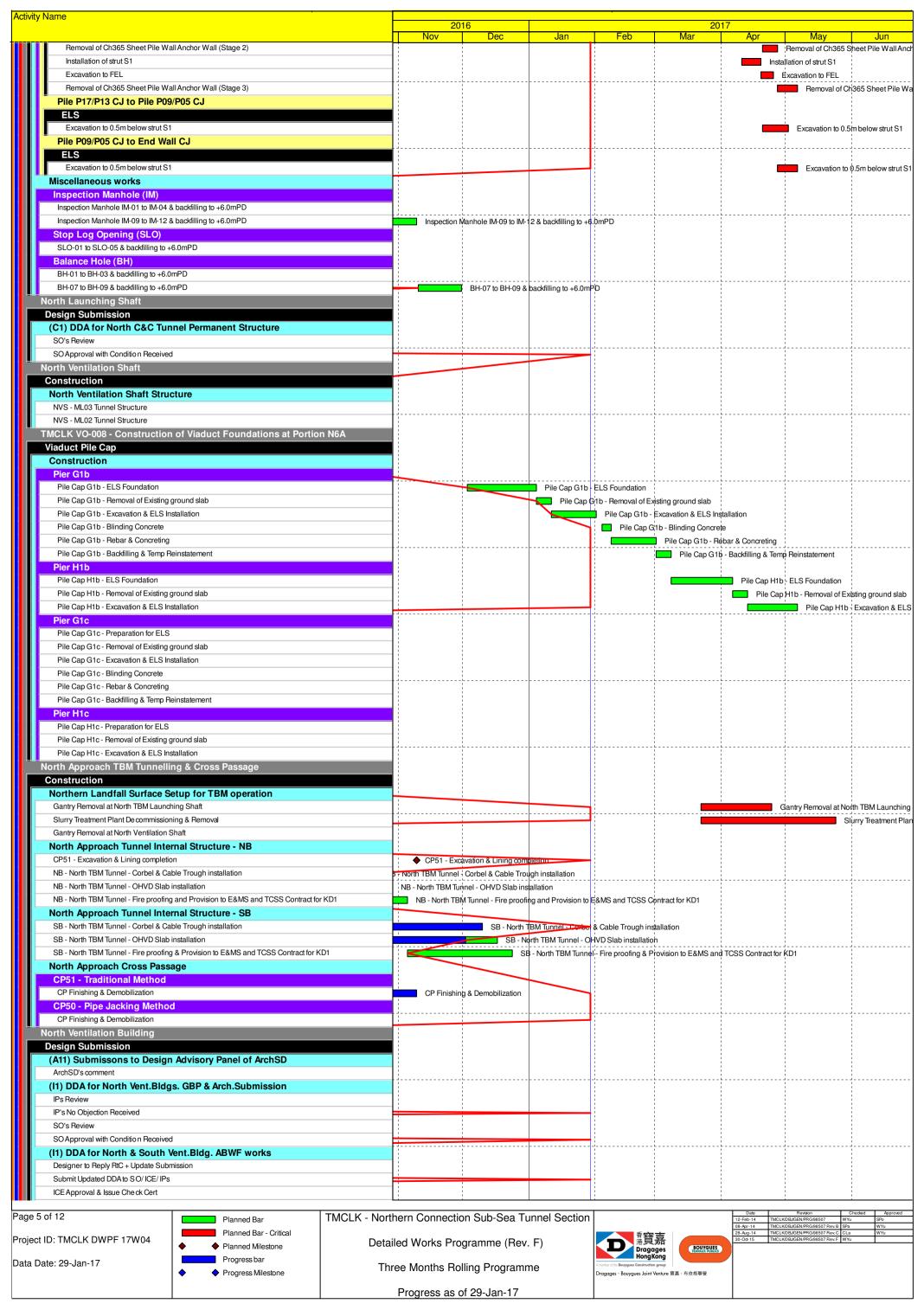
Construction Programme

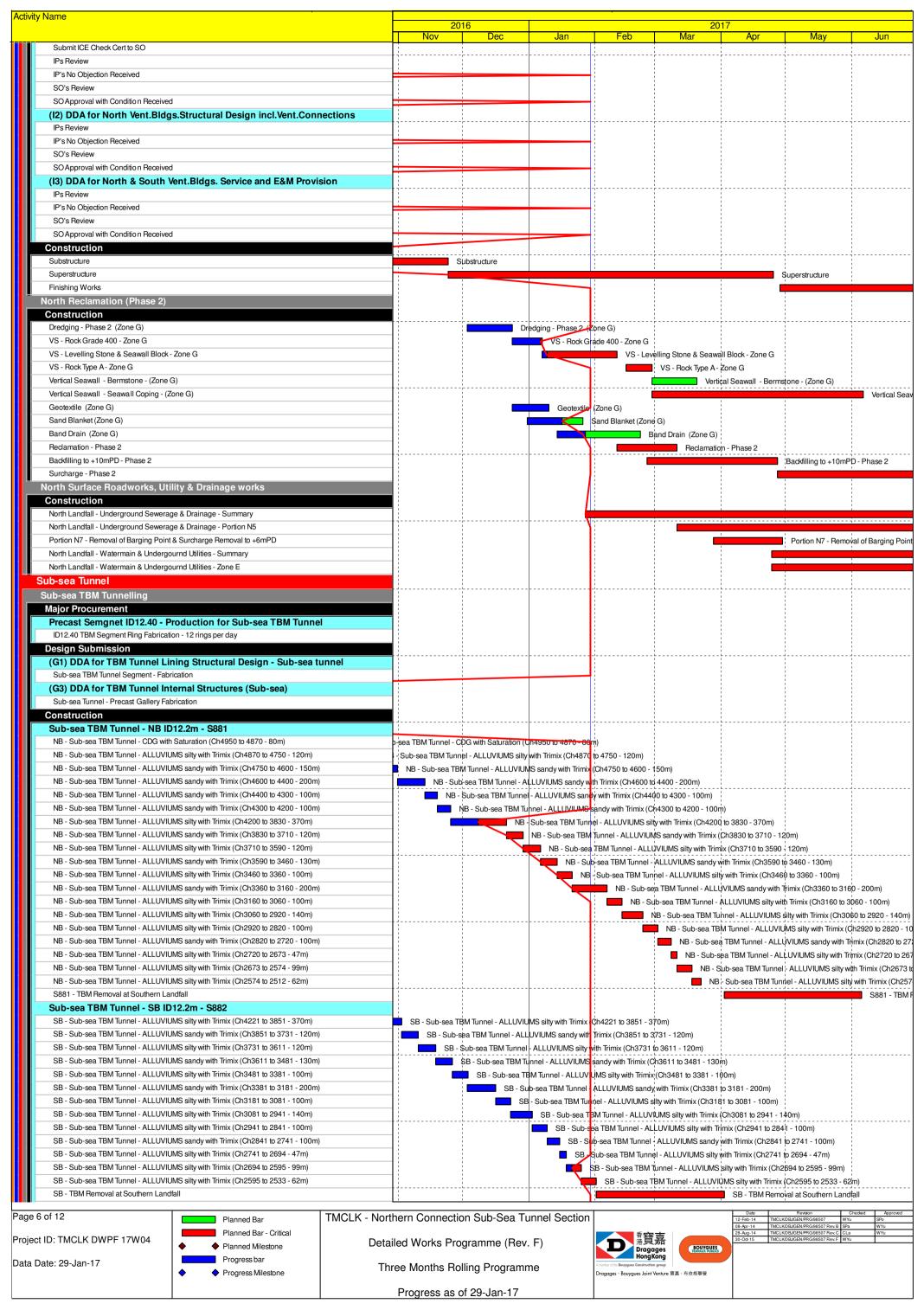
Activity Name							_		
		Nov 20	16 Dec	Jan	Feb	20 ⁻ Mar	17 Apr	Mav I	Jun
MS 3.3.114 Completion of excavation, support and permanent lining f	for 95% of the total length (measured on					ent lining for 95% of the			Juli
MS 3.3.115 Completion of excavation, support and permanent lining f	for 97.5% of the total length (measured c		i i		100	ent lining for 97.5% of		i i	
MS 3.3.116 Completion of excavation, support and permanent lining t			1		1, ,	ent lining for 100% of		1 1	
MS 3.3.117 Complete tunnel internal structures for 25% of total length		MS 3.3.117 Comp	1		1, 1	d on plan) of the Nor	• ,	1 1 1	
MS 3.3.118 Complete tunnel internal structures for 50% of total length	n (measured on plan) of the Northbound	1	1		▶ MS 3.3.118 Com	plete tunnel internal s	tructures for 50% of	total length (measured	on plan) of the No
MS 3.3.121 Complete tunnel internal structures for 25% of total length	n (measured on plan) of the Southbound	MS 3.3.121 Comp	ete tunnel internal st	ructures for 25% of t	otal length (measur	d on plan) of the Sou	thbound TBM Tunn	el	
MS 3.3.122 Complete tunnel internal structures for 50% of total length	n (measured on plan) of the Southbound		, 1 1		MS 3.3.122 Com	plete tunnel internal \$	tructures for 50% of	ftotal length (measured	on plan) of the S
Cross Passages for TBM Tunnel			1 1 1		1				
MS 3.3.1 Complete 50% of ground treatment for excavation of all Type			MS 3.3.1 Complete	50% of ground trea	tment for excavation	of all Type 1 Cross P	assages(Percentage	e to be certified for 50%	,
MS 3.3.3 Complete 50% of ground treatment for excavation of all Type		•	MS 3.3.3 Complete	_	i			e to be certified for 50%	
MS 3.3.5 Complete 50% of excavation and support for all Type 1 Cros			•		i .	i i		es(Percentage to be cer	
MS 3.3.7 Complete 50% of excavation and support for all Type 2 Cros MS 3.3.9 Complete 50% of permanent lining and internal structures for			•	MS 3.3.7 Comple	.1			es(Percentage to be cer	
MS 3.3.11 Complete 50% of permanent lining and internal structures			1		1	1 1	-	structures for all Type 1 It lining and internal stru	- 1
Cut-and-cover Tunnels at Southern Landfalls	ior air Type 2 Gross Fassages(Fercenta					IVIS 3.3.11 Complete	e 50 % of permanen	tilling and internal sud	
MS 4.1.1 Complete 10% of total length (measured on plan) of tempor	rary retaining walls for excavation of Cut-		1 1 1		!				
MS 4.1.2 Complete 20% of total length (measured on plan) of tempora	· · ·		! !						
MS 4.1.3 Complete 30% of total length (measured on plan) of tempor	•		; ! !		İ				
MS 4.1.4 Complete 40% of total length (measured on plan) of tempor	rary retaining walls for excavation of Cut-		1						
MS 4.1.5 Complete 50% of total length (measured on plan) of tempor	rary retaining walls for excavation of Cut-	1	'		<u>-</u>	<u></u>			
MS 4.1.6 Complete 60% of total length (measured on plan) of tempor	ary retaining walls for excavation of Cut-		1 1 1		į	i i			
MS 4.1.7 Complete 70% of total length (measured on plan) of tempor	rary retaining walls for excavation of Cut-		1						
MS 4.1.8 Complete 80% of total length (measured on plan) of tempor	•		 						
MS 4.1.9 Complete 90% of total length (measured on plan) of tempor	•	ļ	ļ			ļi		ļ	
MS 4.1.10 Complete 100% of total length (measured on plan) of temp	porary retaining walls for excavation of C		! ! !						
MS 4.1.11			1						
MS 4.1.12 Complete 40% of excavation for Cut-and-cover tunnel		n for Cut-and-cover to	i		li .				
MS 4.1.13 Complete 60% of excavation for Cut-and-cover tunnel		MS 4.1.13 Comple	te 60% of excavation		1				
MS 4.1.14 Complete 80% of excavation for Cut-and-cover tunnel		ļ <u> </u>	}	MS 4.1.14 Compl		on for Cut-and-cover to			
MS 4.1.15 Complete 100% of excavation for Cut-and-cover tunnel	enath (measured on plan) of Out and	the total law the	lived on alexy and	and cover T		▼ MS 4.1.15 Comple	te 100% of excavation	on for Cut-and-cover tui	nnei
MS 4.1.16 Complete permanent tunnel structure for 10% of the total le		, ,			tland access				
MS 4.1.17 Complete permanent tunnel structure for 20% of the total is MS 4.1.18 Complete permanent tunnel structure for 30% of the total is						t-and-cover Turned			
MS 4.1.18 Complete permanent tunnel structure for 30% of the total is MS 4.1.19 Complete permanent tunnel structure for 40% of the total is									
MS 4.1.19 Complete permanent tunnel structure for 40% of the total to						L L	t-and-cover Times	<u> </u>	
MS 4.1.21 Complete permanent tunnel structure for 60% of the total le		1013 4.1.20 Comple	; ;		.i	i i		of the total length (meas	sured on plan) of (
MS 4.1.22 Complete permanent tunnel structure for 70% of the total le			!		i	i i		structure for 70% of the	
MS 4.1.23 Complete permanent tunnel structure for 80% of the total le	. , , ,				!			structure for 80% of the	
MS 4.1.24 Complete permanent tunnel structure for 90% of the total le	ength (measured on plan) of Cut-and-cc		1		1	!		ete permanent tunnel st	
MS 4.1.26 Complete excavation for 50% of total length (measured on	plan) of all Cross Passages	1	{			<u> </u>			
MS 4.1.27 Complete excavation for 100% of total length (measured o	on plan) of all Cross Passages		i 						
MS 4.1.29 Complete pavement for 50% of the total length (measured	on plan) of Cut-and-cover Tunnel		•	MS 4.1.29 Compl	ete pavement for 50	່ % of the total length (ຖໍ່	neasured on plan) o	of Cut-and-cover Tunne	H.
Cut-and-cover Tunnel at Northern Landfall			!						
MS 4.2.22 Complete tunnel internal structure for 50% of NB Northern	Landfall TBM Tunnel	ructure for 50% of NB	Northern Landfall TE	M Tunnel				jj_	
MS 4.2.23 Complete tunnel internal structure for 100% of NB Norther	n Landfall TBM Tunnel	ete tunnel internal str	ucture for 100% of NE	Northern Landfall	TBM Tunnel				
MS 4.2.24 Complete tunnel internal structure for 50% of SB Northern		MS 4.2.24 Compl	ete tunnel internal str	ucture for 50% of SI	Northern Landfall	TBM Tunnel			
MS 4.2.25 Complete tunnel internal structure for 100% of SB Norther	n Landfall TBM Tunnel		MS 4.2.25 Comple	te tunnel internal str	ucture for 100% of S	B Northern Landfall T	BM Tunnel		
MS 4.2.29 Complete 100% of permanent lining and internal structure	•	!	1		l structures for all No	orthern Landfall Cross	Passages		
MS 4.2.30 Complete Permanent tunnel structure for 25% of Cut and C		el structure for 25% of						¦¦-	
MS 4.2.31 Complete Permanent tunnel structure for 50% of Cut and C		ete Permanent tunne	;		i				
MS 4.2.32 Complete Permanent tunnel structure for 75% of Cut and C		i	i ·		structure for 75% o	f Cut and Cover Tunn	el		
MS 4.2.34 Complete Permanent junction structure at interface between		ce between Cut-and-d	over and TBM Tunne ¦						
Approach Ramp Structures to Cut-and-cover Tunn MS 5.1.2 Complete 40% of excavation for approach ramp structures	ei at Southern Landfall		1		1				
MS 5.1.3 Complete 60% of excavation for approach ramp structures		ł						ł	
MS 5.1.4 Complete 80% of excavation for approach ramp structures			! !						
MS 5.1.5 Complete 100% of excavation for approach ramp structures			1		!				
MS 5.1.6 Complete retaining wall foundation for 10% of the total leng			!						
MS 5.1.7 Complete retaining wall foundation for 20% of the total leng			i 						
MS 5.1.8 Complete retaining wall foundation for 30% of the total leng	. , , , , ,	†							
MS 5.1.9 Complete retaining wall foundation for 40% of the total leng		1	! !		li				
MS 5.1.10 Complete retaining wall foundation for 50% of the total length			1						
MS 5.1.11 Complete retaining wall foundation for 60% of the total leng	gth (measured on plan) of approach ran	11	! !						
MS 5.1.12 Complete retaining wall foundation for 70% of the total len	gth (measured on plan) of approach rar	<u> </u>	!		<u>.</u>]	
MS 5.1.13 Complete retaining wall foundation for 80% of the total len	gth (measured on plan) of approach rar								
MS 5.1.14 Complete retaining wall foundation for 90% of the total len	. , , ,,	ĺ	! !		İ				
MS 5.1.15 Complete retaining wall foundation for 100% of the total le	ngth (measured on plan) of approach ra		1						
At grade Roads at Northern Landfall			! !						
MS 6.2.13 Complete drainage installation of 20% length of total lengt		ļ	i 			} <u>-</u>		ete drainage installation	
MS 6.2.17 Complete sewerage installation of 20% length of total leng	mi (measured on plan) of sewerage pipe		!			•	MS 6.2.17 Comple	ete sewerage installatio	n ot 20% length o
South Ventilation Buildings		td 1000/ -f - "	l l		li				
MS 7.1.1 Complete 100% of cofferdam for excavation		te 100% of cofferdam	i		1				
MS 7.1.2 Complete 100% of excavation to the formation level MS 7.1.3 Complete 100% of foundation for the ventilation building		te 100% of excavation	າ ເວ ເກອ formation leve	71					
MS 7.1.3 Complete 100% of foundation for the ventilation building MS 7.1.4 Complete concreting works of 25% area of the total construc	tion floor area for the ventilation building	MS 714 C		25% area of the total	honotruction 4	area for the ventileties	building		
MS 7.1.5 Complete concreting works of 25% area of the total construction.		IVIS 7.1.4 Complet	i		i	i i		area for the ventilation b	ouilding
MS 7.1.6 Complete concreting works of 75% area of the total construct				7.1.5 Oomple	i .	i i		f,75% area of the total o	-
MS 7.1.7 Complete concreting works of 100% area of the total constru	·	İ	1 1 1		 	1 1	_	te concreting works of 1	
North Ventilation Buildings			! !			Ĭ	· I+··•		
MS 7.2.4 Complete concreting works of 25% area of the total construction	ction floor area for the ventilation building	l construction floor ar	¦ ea for the ventilation b	uilding	- -	;		;	
MS 7.2.5 Complete concreting works of 50% area of the total construction	ction floor area for the ventilation building	MS 7.2.5 Complet	e concreting works of	50% area of the tot	d construction floor	area for the ventilation	building	į į	
MS 7.2.6 Complete concreting works of 75% area of the total construc	ction floor area for the ventilation building		•	MS 7.2.6 Comple	e concreting works	of 75% area of the total	l construction floor a	area for the ventilation b	ouilding
MS 7.2.7 Complete concreting works of 100% area of the total constru		i	1 1		İ	•	MS 7.2.7 Complet	te concreting works of 10	00% area of the to
Facilities Provision for E&M Works for TBM Tunnel.		L <u> </u>	! !		ļ	ļ		ļ	
MS 9.1.1 Complete 25% of bonding terminal, opening and accessorie		te 25% of bonding te							
MS 9.1.2 Complete 25% of plinth, hoisting facilities and accessories, e		te 25% of plinth, hois	ing facilities and acce	ssories, etc.					
MS 9.1.3 Complete 50% of bonding terminal, opening and accessorie	es, etc.	:	1 1 1		MS 9.1.3 Comple	te 50% of bonding te	rminal, opening and	accessories, etc.	
Page 2 of 12	TMOLIZ NI	horn Connect	on Rub Rec T	innol Costina	1		Date	Revision Che	ecked Approved
		hern Connection	אר Sec-unc ווע Bea Il	anner Section			08-Apr-14 TMCLK	KDBJGEN/PRG/98507 WYu KDBJGEN/PRG/98507 Rev.B SPa	SPo WYu
Project ID: TMCLK DWPF 17W04	Dota	iled Works Pro	gramme (Rev	. F)		嘉	20.000.	KDBJGEN/PRG/98507 Rev. C CLa KDBJGEN/PRG/98507 Rev. F WYu	WYu
◆ Planned Mile		22.1.0110110	J (1 10 V	- ,	Drago	iges BOUYGUES TRAVAUX PUBLICS			
Data Date: 29-Jan-17 Progress ba ♦ Progress Mil	l Th	ree Months Ro	lling Programr	ne	A member of the Bouygues Construction	n group			
▼ Frogress Will			-		Dragages - Bouygues Joint	· Gradie 具點 * 印似伯寧宮	Ī		

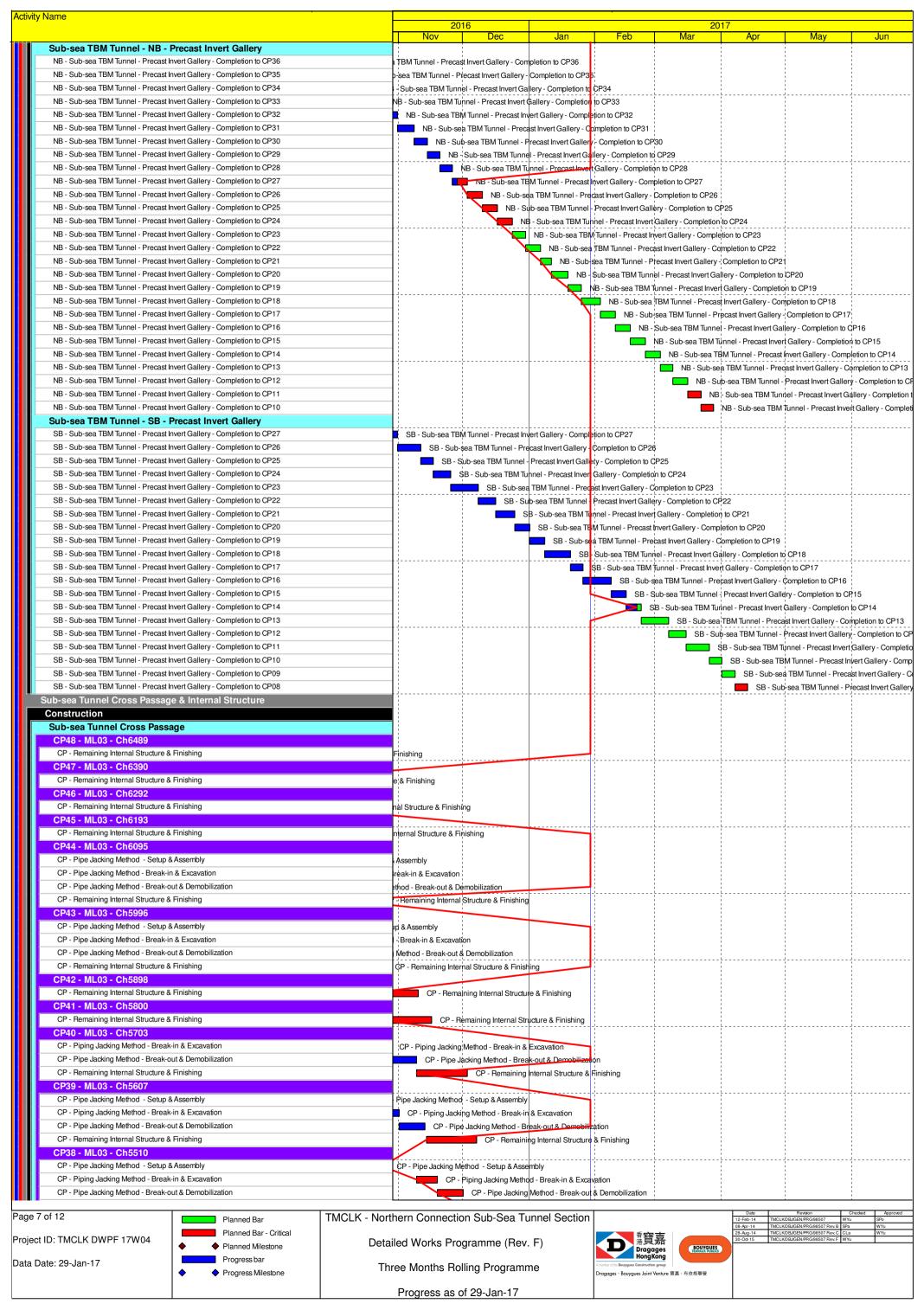
Progress Milestone

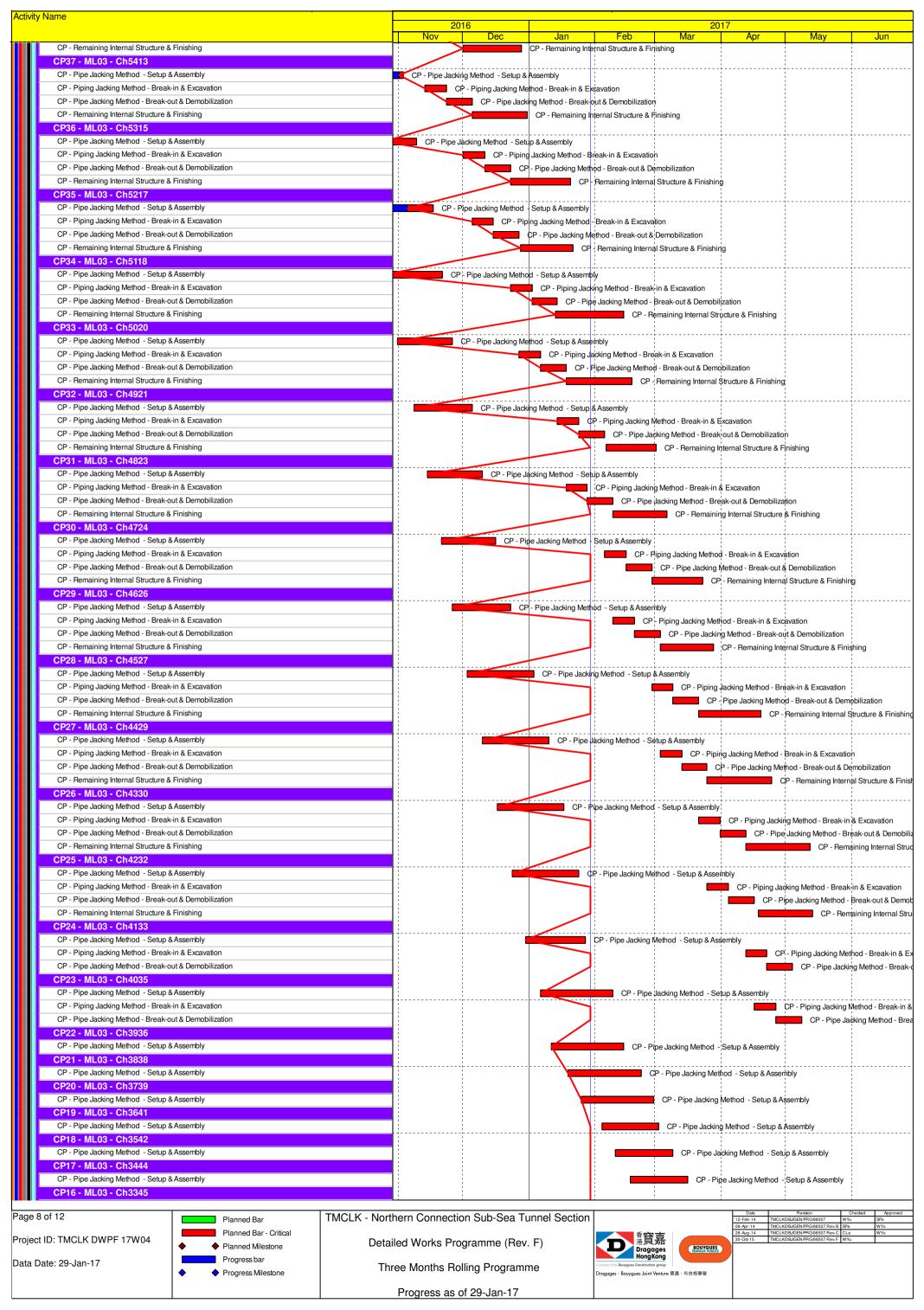
Progress as of 29-Jan-17

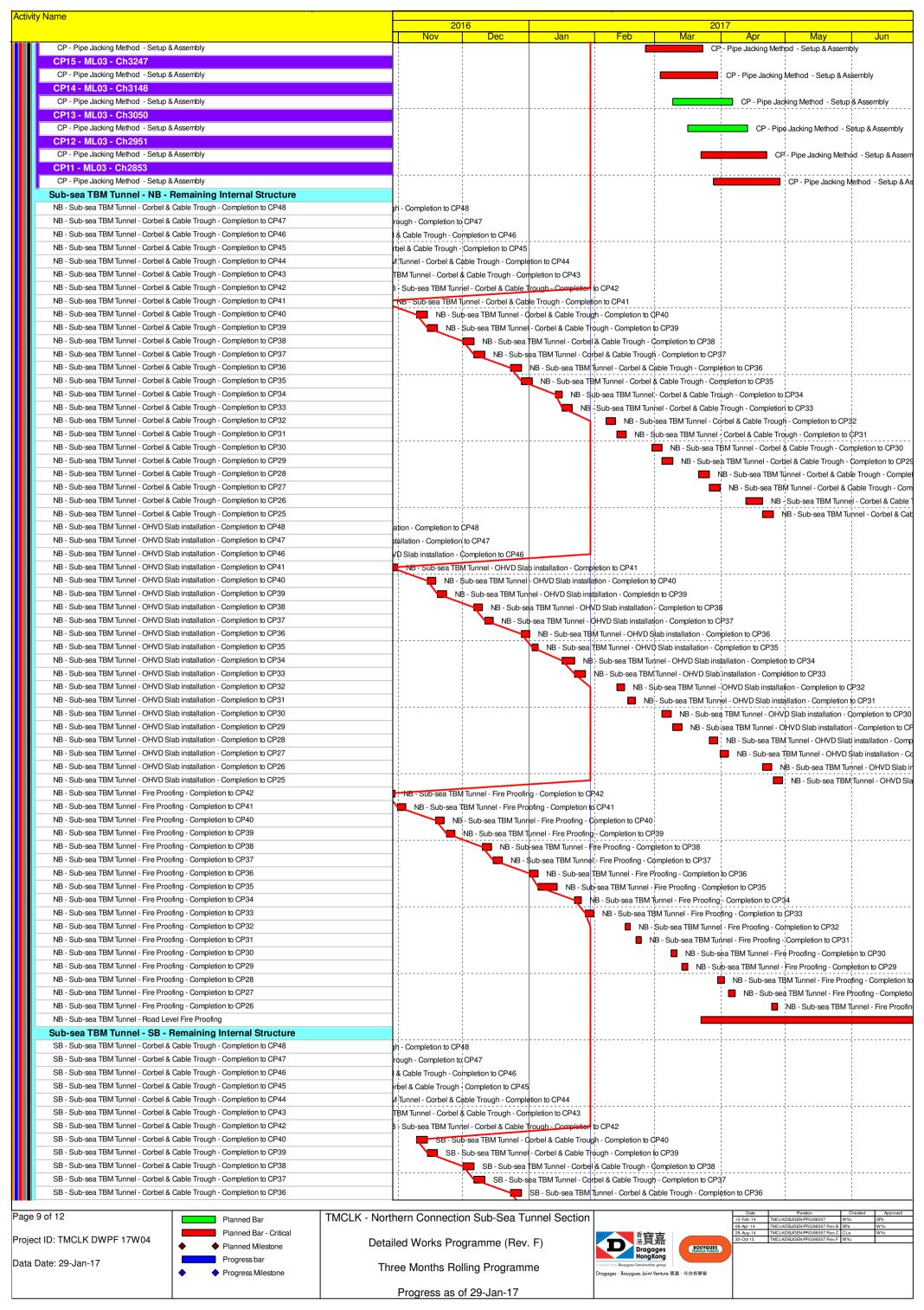

	2016 Nov Dec	Jan	Feb	Mar	Apr	May	Jun
MS 9.1.4 Complete 50% of plinth, hoisting facilities and accessories, etc.			MS 9.1.4 Comple	ete 50% of plinth, hoi	1	i	1
MS 9.1.5 Complete 75% of bonding terminal, opening and accessories, etc.			 - 	; }	F	MS 9.1.5 Complete	4
MS 9.1.6 Complete 75% of plinth, hoisting facilities and accessories, etc.					•	MS 9.1.6 Complete	75% of plin
Facilities Provision for E&M Works for North Ventilation Building MS 9.5.1 Complete 25% of bonding terminal, main earth mat, clean earth mat, earth pit, lightning pit, conceal						MS 9.5.1 Complete	25% of bor
MS 9.5.2 Complete 25% of plinth, hoisting facilities, louver, wire mesh and accessories, etc.			İ			MS 9.5.2 Complete	1
MS 9.5.3 Complete 25% of floor drain, water tank and accessories, etc.				1 1 1	i	MS 9.5.3 Complete	i
nstruction							!
orthern Landfall			i !	1	1 1 1	1 1 1	
North Reclamation (Phase 1)				1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Construction					!		
Zone B				ļ 	; 		
Reclamation					1 1 1		
Surcharge Removal - Zone B - (CH598 to 648) Surcharge Removal - Zone B - (CH598 to 698) stage 1			i !	i !	i 1 1	1	
Surcharge Period - Zone B - (CH648 to 698) stage 2	1		Surcharge Pr	¦ eriod - Zone B - (CH6	48 to 698) stage 2	1	
Surcharge Removal - Zone B - (CH598 to 698) stage 2				harge Removal - Zon	, ,	stage 2	
Zone F							i
CH184 to CH231							
F - Anchor wall Installation - CH184 to CH231					!		
F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH184 to CH231			1		1 1 1	1	
F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall- CH184 to CH231					! ! !		
F - Backfilling up to +6.0mPD to Anchor Wall - CH184 to CH231							1
F - Backfilling to +6.0mPD to Existing Seawall - CH184 to CH231				: ! !	! ! !		1
CH231 to CH278 F - Backfilling up to +6.0mPD - CH231 to CH278				!	 		!
F - Anchor wall Installation - CH231 to CH278				! !		: ! !	í 1 1
F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall- CH231 to CH278					 	1	
F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH231 to CH278	11			: 	: 		1 1 1
F - Backfilling up to +6.0mPD to Anchor Wall - CH231 to CH278				1	1 1 1		!
F - Backfilling to +6.0mPD to Existing Seawall - CH231 to CH278				: 	: 	: 1 1 1	1 1 1
CH278 to CH327							1
F - Backfilling up to +6.0mPD - CH278 to CH327					, 		
F - Anchor wall Installation - CH278 to CH327							
F - Backfilling up to 0.0mPD & G2 Installation to Andror Wall - CH278 to CH327					! !		
F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH278 to CH327					!		
F - Backfilling up to +6.0mPD to Anchor Wall - CH278 to CH327 F - Backfilling to +6.0mPD to Existing Seawall - CH278 to CH327							
CH327 to CH381							
F - Backfilling up to +6.0mPD - CH327 to CH381					; !		-
F - Anchor wall Installation - CH327 to CH381							
F - Backfilling up to 0.0mPD & G2 Installation to Anchor Wall - CH327 to CH381					i !		
F - Backfilling up to +3.0mPD & G1 Installation to Anchor Wall - CH327 to CH381				!	!]
F - Backfilling up to +6.0mPD to Anchor Wall - CH327 to CH381			1		1	1 1 1	
F - Backfilling to +6.0mPD to Existing Seawall - CH327 to CH381					! ! !		
Box Culvert Extension			1	-	1	1 1 1	
Construction Ch000-010 Culvert Outfall							
Removal of temporary bulk head					! !		
CH100-150 Land Section					!		
Pile A41/A39 CJ to Pile A39/A37 CJ			1	1	i ! !	1	
Box Culvert Structure	,						ļ
Pile cap construction			1		1		
Base slab construction including kicker					! !		
Removal of strut S1 Sliding formworks 1st assembly						1	
Walls & top slab construction					! !		
Removal of strut S2 & Backfilling up to required level							
Pile A39/A37 CJ to Pile A37/A35 CJ					1		
Box Culvert Structure			İ	i !	i ! !	1	
Pile cap construction				! !	; 		1
Base slab construction including kicker			1	 	 	1	
Removal of strut S1				,	,		
Walls & top slab construction				!	! !		!
Removal of strut S2 & Backfilling up to required level				: ! !	! ! !		1
Pile A37/A35 CJ to Pile A35/A33 CJ			1	1	i i i	1	
ELS Excavation to FEL							
Box Culvert Structure				i !	i i i	1	
Pile cap construction					1		
Base slab construction including kicker					! ! !		
Removal of strut S1					1	1	
Walls & top slab construction	 			; 			
Removal of strut S2 & Backfilling up to required level			1		1	1	
Pile A35/A33 CJ to Pile A33/P117 CJ					! !		
ELS			1		1	1	
Excavation to FEL					! !	1	ļ
Box Culvert Structure			1		1 1 1	1 1 1	
Pile cap construction				! ! !	! ! !		1
Base slab construction including kicker					, 1 1		
Removal of strut S1				!	! !		!
Walls & top slab construction							
Ch150-250 Marine Section ELS & Structure				! !	1 1 1	; ! !	1
Pile A33/P117 CJ to Pile P113/P109 CJ				!	1 1 1		1
Box Culvert Structure				! !	1 1 1	; ! !	1
Base slab construction including kicker			1	1	1 1 1	1	!
	!		!!	1	Date	Revision	Checked
	hern Connection Sub-Sea	Tunnel Section	1		12-Feb-14 TMCLI	K/DBJGEN/PRG/98507 WY	′u SPo
1.452.24.						K/DBJGEN/PRG/98507 Rev. B SPa	
D: TMCLK DWPF 17W04		ev F)	香音	嘉	28-Aug-14 TMCLI 30-Od-15 TMCLI	KDBJGEN/PRG/98507 Rev. B SPa KDBJGEN/PRG/98507 Rev. C CLa KDBJGEN/PRG/98507 Rev. F WY	a WYu
Planned Bar - Critical	iled Works Programme (F	ev. F)	香籍 港貝 Drago Hongl	ages BOUYGUES TRAVAUX PUBLICS	28-Aug-14 TMCLI 30-Od-15 TMCLI	K/DBJ/GEN/PRG/98507 Rev. C CLa	a WYu

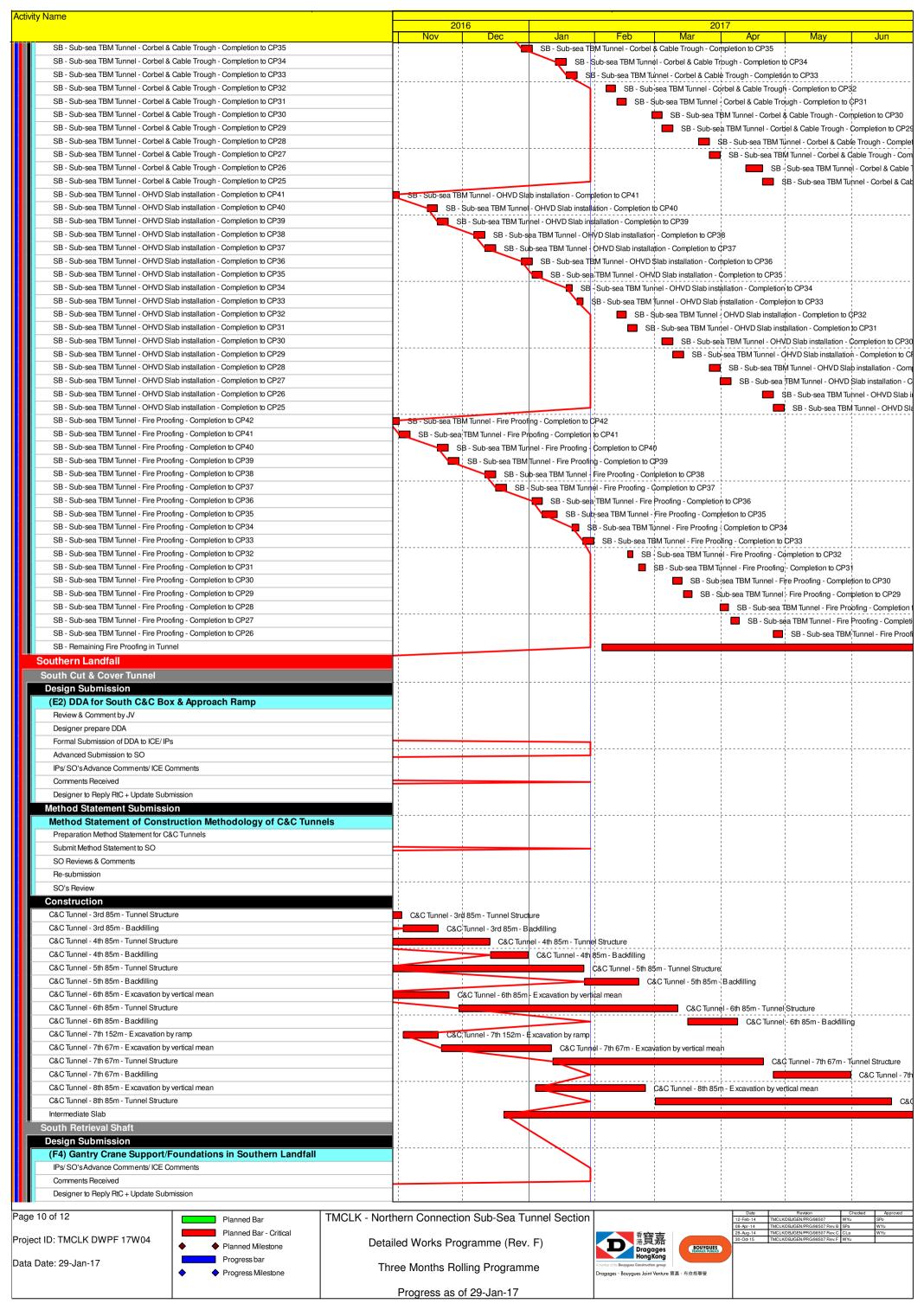


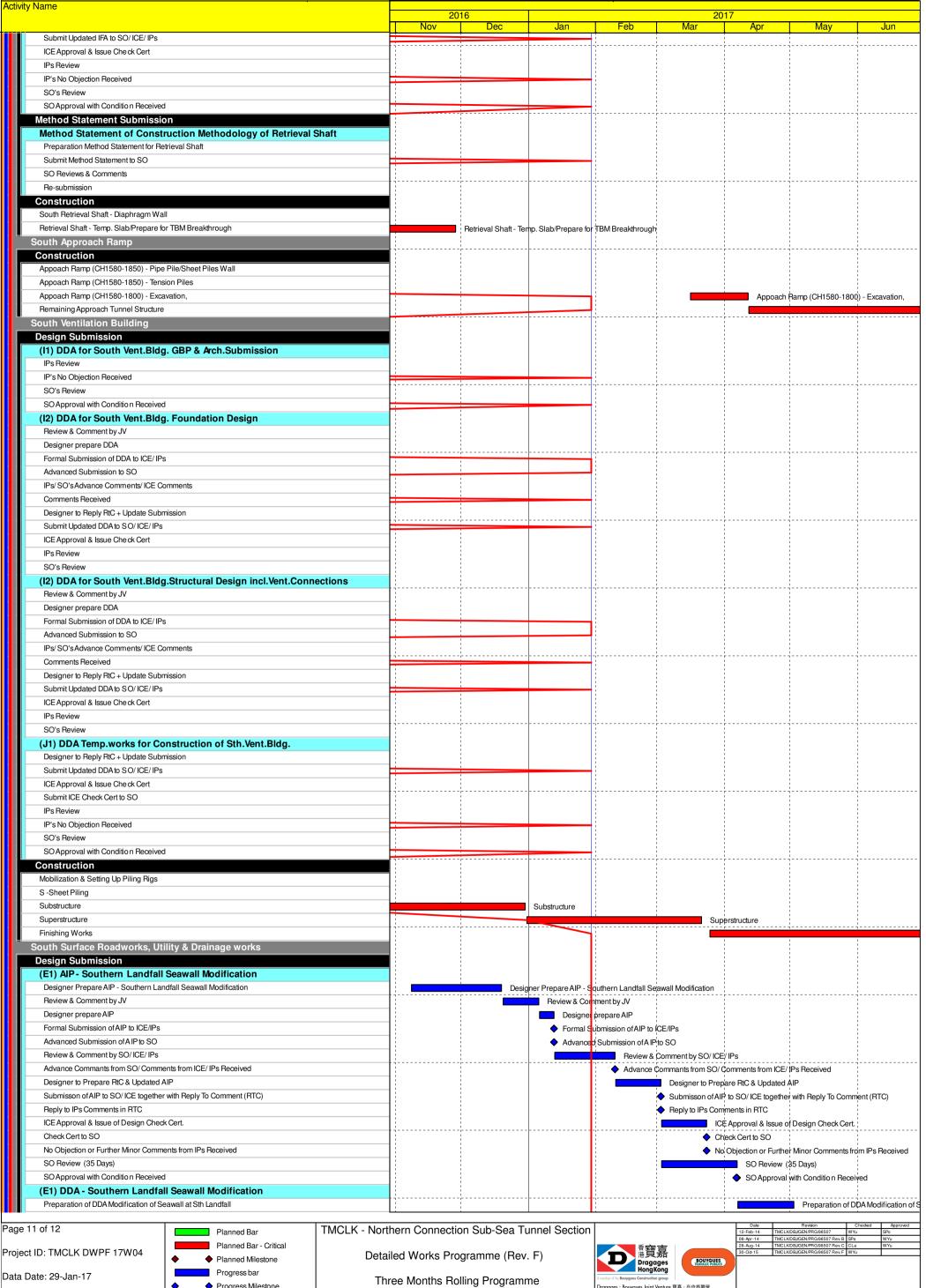

Progress as of 29-Jan-17











Progress as of 29-Jan-17

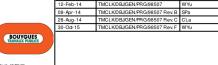
Progress Milestone

y Name								
-	Nov 2	016 Dec	Jan	Feb	Mar 20)17 Apr	May	Jun
Designer to Reply RtC + Update Submission	1400	Dec	Jan	1 eb	Iviai	Αρι	iviay	Juli
Submit Updated DDA to SO/ICE/IPs					1 1 1			
IPs Review	i !					1		
IP's No Objection Received	1							
SO's Review					L		1	
SO Approval with Condition Received	1			1		1	1	
(E3) DDA for Sewerage, Drainage, Waterworks & Utility works for South Landf	1			1		1	1	
IPs Review							1	
IP's No Objection Received							1	
SO's Review								
SO Approval with Condition Received	1	!		!	1 1 1	1	1 1 1	
Method Statement Submission	1				 		1 1 1	
Method Statement of Ground Treatment for TBMs Passing under Southern La	1				1	1	1	
Preparation Method Statement for Ground Improvement in South Landfall	!							
Submit Method Statement to SO					<u>.</u> 			
SO Reviews & Comments	1	1					1	
Re-submission	1	1		!	1 1 1	1	1 1 1 1	
SO's Review					 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SO's Approval					 		1 1 1	
Construction								
Temporary Platform for Ground Treatment for TBM passing under Southern Seawall								
Grouting Treatment for TBM passing under Southern Seawall	į	Grouting Treatment for	TDMi	Courthouse Coorse			1	
	1	routing freatment ic	or row passing unde	; ;	1 1 1	1	1 1 1	
Testing & Commissioning/Inspection & Handover					1 1 1		1 1 1	
Final Inspection & Handover								
Design Submission	!							
(A12) Maintenance Matrix								
Preparation of Maintenance Matrix	1			İ			i 	
Prepare Re-submission	1			-	 	1	1 1 1	
2nd Submission	,							
SO's Condition Approval							1	
(A13) Operation & Maintenance Manual								
Preparation of Operation and Maintenance Manual							1	
1st Submission					 	1	1	
SO's Comments for 1st Submission						ļ		
Prepare Re-submission					 		1	
(A14) As-built & As-fabricated Drawings							1	
Preparation of As-built and As-fabricated Drawings								
1st Submission								
SO's Comments for 1st Submission								
(A15) Health & Safety File incl.As-built Dwgs & Records, Maintenance Schedul	1			1	 			
Preparation of Health and Safety File including as-built drawings and records, maintenance schedules, or	!	}		1	 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1st Submission	1			-	 	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SO's Comments for 1st Submission					1 		1	

Page 12 of 12

Project ID: TMCLK DWPF 17W04

Data Date: 29-Jan-17


TMCLK - Northern Connection Sub-Sea Tunnel Section

Detailed Works Programme (Rev. F)

Three Months Rolling Programme

Progress as of 29-Jan-17

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	nual	Location/ Timing	Implementation Agent	on Relevant Standard or Requirement	Imp	tion	Status *	
	Reference					D	C	О	
Air Quality									
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;		Contractor	TMEIA Avoid smoke impacts and disturbance		Y		~
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		Contractor	TMEIA Avoid dust generation		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement		olementa Stages		Status *
	Reference					D	C	O	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.		Contractor	TMEIA Avoid dust		Y		✓
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit.	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		√
WATER QUAL	ITY								
Marine Works (Sec	<i>јиепсе А)</i>								
6.1	Annex A	Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	backfilling works	Contractor	TM-EIAO		Y		~
Figure 6.2a Appendix D6a		- TM-CLKL northern reclamation;							
6.1	-	a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.	TM-CLKL seawall filling	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lementat Stages	tion	Status *
	Reference					D	C	О	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		√
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		✓
	Figure 1.1 of Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.		Contractor	TM-EIAO		Y		√
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	О	
6.1	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		~
Figure 6.2b Appendix D6b		 TM-CLKL northern reclamation; Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and Reclamation dredging and filling for Portion 1 of HKLR; 							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5.7	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	grab dredging	Contractor	TM-EIAO		Y		*
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		✓
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;		Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Stages		Status *	
	Reference					D	С	0	
General Marine W	orks								
6.1	-	Use of TBM for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		√
6.1	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit		Y		~
					conditions.				
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO		Y		✓
					permit conditions.				
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	_	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		<>
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Stages			Status *
	Reference					D	С	0	
Land Works									
6.1	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	construction period	Contractor	TM-EIAO		Y		*
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.		Contractor	TM-EIAO		Y		<>
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.		Contractor	TM-EIAO		Y		✓
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		*
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.		Contractor	TM-EIAO		Y		V
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.		Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	, construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.		Contractor	TM-EIAO		Y		✓
6.1	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	d construction period	Contractor	TM-EIAO		Y		√
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	l All areas/ throughout e construction period	Contractor	TM-EIAO		Y		√
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petro interceptor in accordance with the requirements of the WPCO of collected for off site disposal.	n construction period I	Contractor	TM-EIAO		Y		N/A
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.		Contractor	TM-EIAO		Y		✓
6.1	-	Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.	, All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	O	
6.1		All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	construction period	Contractor	TM-EIAO		Y		*
6.1		Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Kererence					D	С	O	
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.		Design Consultant/ Contractor	TM-EIAO	Y		Y	✓
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		✓
Water Quality Mo	nitoring								
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations.	sas defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality	Contractor	EM&A Manual		Y	Y	*
ECOLOGY									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	√
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		*
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Im	plementa Stages	tion	Status *
	Kererence					D	C	О	
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		✓
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		√
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE A	AND VISUAI								
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	nual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	plementa Stages	tion	Status *
	Reference					D	С	О	
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non- reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		✓
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		~

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
	Reference					D	С	O	
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		•
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.		Contractor	TMEIA		Y		√
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			✓
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Manual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
						D	C	О	
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.		Contractor	TMEIA		Y		√
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	, 0	Contractor	TMEIA		Y		√
12.6	8.1		All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Stages			Status *
	Reference					D	C	O	
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: <i>f</i> suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; <i>f</i> Having a capacity of <450L unless the specifications have been approved by the EPD; and w Chinese according to the instructions prescribed in Schedule 2 of the Regulations. <i>f</i> Clearly labelled and used solely for the storage of chemical wastes; <i>f</i> Enclosed with at least 3 sides; <i>f</i> Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; <i>f</i> Adequate ventilation; <i>f</i> Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and <i>f</i> Incompatible materials are adequately separated.	construction period	Contractor	TMEIA		Y		*
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Adequate numbers of portable toilets should be provided for on- site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.		Contractor	TMEIA		Y		√
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
	Reference					D	С	О	
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	_	Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	construction period	Contractor	TMEIA		Y		*
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.		Contractor	EM&A Manual		Y		√
CULTURAL H	ERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

▲ Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m ³	ASR1 = 213	260
	ASR5 = 238	
	AQMS1 = 213	
	ASR6 = 238	
	ASR10 = 214	
1 Hour TSP Level in μg /m³	ASR1 = 331	500
-	ASR5 = 340	
	AQMS1 = 335	
	ASR6 = 338	
	ASR10 = 337	

Table D2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
	23.5 mg/L	data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lant	au Social Cluster		
	NEL	NWL		
Action Level	STG < 70% of baseline &	STG < 70% of baseline &		
	ANI < 70% of baseline	ANI < 70% of baseline		
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]		
	and			
	STG < 40% of baselir	ne & ANI < 40% of baseline		

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau	u Social Cluster		
	NEL	NWL		
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3		
Limit Level	NEL = [STG < 2.4 & ANI < 8.9]			
	á á	and		
	NWL = [STG < 3.9 & ANI < 17.9]			

Appendix E

Copies of Calibration Certificates for Air Quality Monitoring

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 11/12/2016

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2016

 Slope (m)
 :
 2.10326

 Intercept (b)
 :
 -0.06696

 Correlation Coefficient(r)
 :
 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1016 Ta(K) : 295

Resi	stance Plate	dH [green liquid]	Z	X=Qstd IC		Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.5	3.413	1.655	55	55.36
2	13 holes	9.4	3.086	1.499	49	49.32
3	10 holes	6.6	2.586	1.261	42	42.28
4	7 holes	4.2	2.063	1.013	34	34.22
5	5 holes	2.6	1.623	0.804	26	26.17

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):33.508 Intercept(b):-0.289 Correlation Coefficient(r): 0.9989

Checked by: Magnum Fan Date: 15/12/2016

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR10
Calibrated by : P.F.Yeung
Date : 11/12/2016

Sampler

Model : TE-5170 Serial Number : S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2016

 Slope (m)
 :
 2.10326

 Intercept (b)
 :
 -0.06696

 Correlation Coefficient(r)
 :
 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1016 Ta(K) : 295

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.8	3.458	1.676	59	59.39
2	13 holes	9.5	3.102	1.507	52	52.34
3	10 holes	6.8	2.625	1.280	45	45.30
4	7 holes	4.4	2.111	1.036	36	36.24
5	5 holes	2.7	1.654	0.818	28	28.18

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): <u>35.873</u> Intercept(b): <u>-1.029</u> Correlation Coefficient(r): <u>0.9994</u>

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 11/12/2016

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2016

 Slope (m)
 : 2.10326

 Intercept (b)
 : -0.06696

 Correlation Coefficient(r)
 : 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1016 Ta(K) : 295

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.4	3.544	1.717	60	60.39
2	13 holes	9.8	3.151	1.530	53	53.35
3	10 holes	7.2	2.701	1.316	45	45.30
4	7 holes	4.6	2.159	1.058	37	37.24
5	5 holes	2.9	1.714	0.847	28	28.18

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):36.351 Intercept(b):-2.131 Correlation Coefficient(r): 0.9990

<u>High-Volume TSP Sampler</u> 5-Point Calibration Record

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 11/12/2016

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2016

 Slope (m)
 : 2.10326

 Intercept (b)
 : -0.06696

 Correlation Coefficient(r)
 : 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1016 Ta(K) : 295

Resi	Resistance Plate dH [green liquid]		Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.428	1.662	54	54.35
2	13 holes	9.1	3.036	1.476	47	47.31
3	10 holes	6.5	2.566	1.252	40	40.27
4	7 holes	4.6	2.159	1.058	34	34.22
5	5 holes	2.4	1.559	0.773	23	23.15

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):34.473 Intercept(b): -3.030 correlation Coefficient(r): 0.9993

<u>High-Volume TSP Sampler</u> <u>5-Point Calibration Record</u>

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 11/12/2016

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2016

 Slope (m)
 :
 2.10326

 Intercept (b)
 :
 -0.06696

 Correlation Coefficient(r)
 :
 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1016 Ta(K) : 295

Resi	sistance Plate dH [green liquid]		Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.0	3.487	1.690	53	53.35
2	13 holes	9.7	3.135	1.522	48	48.31
3	10 holes	7.0	2.663	1.298	42	42.28
4	7 holes	4.5	2.135	1.047	35	35.23
5	5 holes	2.8	1.684	0.833	28	28.18

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 28.959 Intercept(b): 4.462 Correlation Coefficient(r): 0.9993

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration :	1 November 2016	
Brand of Test Meter:	Davis	
Model:	Vantage Pro 2 (s/n: AS160104014)	
Location:	ASR5	
Procedures:		
1. Wind Still Test:	The wind speed sensor was hold by hand unt	til it keep still
2. Wind Speed Test:	The wind meter was on-site calibrated against	st the Anemometer
3. Wind Direction Test:	The wind meter was on-site calibrated against	st the marine compass at four directions
Results:		
Wind Still Test		
	Wind Speed (m/s)	
	0.00	
Wind Speed Test		
	Davis (m/s)	Anemomete (m/s)
	1.2	1.3
	2.5	2.8
	3.3	3.6
Wind Direction Test		

Davis (o)	Marine Compass (o)
271	270
1	0
91	90
179	180

Calibrated by:	Fai	Checked by: Fat
	Yeung Ping Fai	Ho Kam Fat
	(Technical Officer)	(Senior Technical Officer)

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator ======	ar 14, 201 Tisch	6 Rootsmeter Orifice I.1	_	438320 2454 =======	Ta (K) - Pa (mm) -	295 - 745.49
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.4020 1.0060 0.9010 0.8590 0.7090	METER DIFF Hg (mm) 3.2 6.4 7.9 8.8 12.8	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	×	Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9803 0.9792 0.9738	0.7037 0.9765 1.0880 1.1399 1.3735	1.4078 1.9909 2.2259 2.3345 2.8155		0.9957 0.9914 0.9893 0.9882 0.9828	0.7102 0.9855 1.0980 1.1504 1.3862	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd slop intercept coefficie	(b) = nt (r) =	2.10326 -0.06696 0.99989		Qa slope intercept coefficie	(b) =	1.31703 -0.04232 0.99989
y axis = SQRT[H2O(Pa/760)(298/Ta)]				y axis =	SQRT [H2O (T	 a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C165934

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-2438)

Date of Receipt / 收件日期: 26 October 2016

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號 Serial No. / 編號

AM-4201 AF.27513

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規節

Calibration check

DATE OF TEST / 測試日期

27 October 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

T L Shek Assistant Engineer

Certified By

核證

H C Chan

Date of Issue

28 October 2016

簽發日期

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

C165934

證書編號

Certificate No.:

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement - of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

Test procedure: MA130N. 4.

5. Results:

Air Velocity

Applied	UUT	Measured Correction		
Value	Reading	Value Measurement Uncertainty		
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor
2.0	1.8	+0.2	0.2	2.0
4.0	3.8	+0.2	0.2	2.0
6.0	5.8	+0.2	0.3	2.0
8.1	8.0	+0.1	0.3	2.0
10.0	10.0	0.0	0.4	2.0

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Tel/電話: 2927 2606

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Website/網址: www.suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Fax/傳真: 2744 8986

	'Form E/CE/L/15/Issue 2 (1/1) [04/15				
Internal Calibration & Per	rformance Check of pH Meter				
Equipment Ref. No. : ET/EW007/008	Manufacturer : <u>HANNA</u>				
Model No. : HI9125	Serial No. : <u>H0040409</u>				
Date of Calibration : 31/12/2016	Calibration Due Date : 30/01/2017				
Liquid Junction Error					
2.94.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	003/5.2/002/07 (20℃)				
Primary Standard Solution Used: Phosphate	Ref No. of Primary Solution: 003/5.2/002/08 (25℃)				
Temperature of Solution : 25.0 /	20.0 $\Delta pH_{\frac{1}{2}} = 0.080 / 0.080$				
pH value of diluted buffer : 6.98 /	6.99 pH (S) = 6.865 / 6.881				
Δ pH = pH(S) - pH of diluted buffer = <u>0.115</u> /	0.109 (Observed Deviation)				
Liquid Junction Error $(\Delta pH_j) = \Delta pH - \Delta pH_{1/2} = $	0.04 / 0.03				
Shift on Stirring					
pH of buffer solution (with stirring), pH _s = 6	6.91 / 6.92				
Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_j = 0$	0.01 / 0.01				
Noise	***************************************				
Noise, ΔpH_n = difference between max and min real	ading: 0.01 / 0.01				
Verification of ATC					
Ref. No. of reference thermometer used:					
Acceptance Criteria					
Performance Characteristic	Acceptable Range				
Liquid Junction Error ΔpHj	≤0.05				
Shift on Stirring ΔpHs	≤0.02				
Noise ΔpHn	≤0.02				
Verification of ATC Temperature Difference	≤0.5°C				
The pH meter complies * / does not comply * with to acceptable * / unacceptable * for use. Measurement * Delete as appropriate					

Checked by :

Bianno

Calibrated by:

	'Form E/CE/L/15/Issue 2 (1/1) [04/15]			
Internal Calibration & Performar	nce Check of pH Meter			
Equipment Ref. No. : <u>ET/EW007/008</u> Manufactu	rer : <u>HANNA</u>			
Model No. : HI9125 Serial No.	: <u>H0040409</u>			
Date of Calibration : <u>27/01/2017</u> Calibration	Due Date : <u>26/02/2017</u>			
Liquid Junction Error Primary Standard Solution Used : Phosphate Ref No. Temperature of Solution : 25.0 / 20.0	003/5.2/002/07 (20°C) of Primary Solution: $\frac{003/5.2/002/08 (25^{\circ}C)}{\Delta pH_{\frac{1}{2}}} = \frac{0.080}{0.080} / 0.080$			
pH value of diluted buffer : 6.98 / 6.98	pH (S) = 6.865 / 6.881			
$\Delta pH = pH(S)$ - pH of diluted buffer = $\frac{0.115}{0.099}$ Liquid Junction Error (ΔpH_j) = ΔpH - $\Delta pH_{\frac{1}{2}}$ = $\frac{0.04}{0.099}$	(Observed Deviation) 0.02			
Shift on Stirring				
pH of buffer solution (with stirring), $pH_s = 6.91$	6.91			
Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_j = 0.01$ /	0.01			
Noise				
Noise, ΔpH_n = difference between max and min reading :	0.01 / 0.01			
Verification of ATC				
Ref. No. of reference thermometer used:				
Acceptance Criteria				
Performance Characteristic	Acceptable Range			
Liquid Junction Error ∆pHj	≤0.05			
Shift on Stirring ΔpHs	≤0.02			
Noise ΔpHn	≤0.02			
Verifcation of ATC Temperature Difference	≤0.5°C			
The pH meter complies * / does not comply * with the specific acceptable * / unacceptable * for use. Measurements are trace * Delete as appropriate				

Checked by:

Calibrated by:

Performance	Check	of Tu	ırbidity	Meter
-------------	-------	-------	----------	-------

Equipment Ref. No.	: ET/0505/014	Manufacturer	: HACH	
Deloubilion rear 110.	. = 1,0000101.	112002105200005	· IIII	

Model No. : 2100Q Serial No. : 13110C029448

Date of Calibration : <u>25/11/2016</u> Due Date : <u>24/02/2017</u>

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	20.7	3.5
100	98.0	-2.0
800	780	-2.5

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

Acceptance Criteria

Difference: -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Prepared by: _____ Checked by:

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No. :

ET/EW/008/005

Manufacturer

: YSI

Model No.

Pro 2030

Serial No.

12A 100353

Date of Calibration

22/10/2016

Calibration Due Date

21/01/2017

Temperature Verification

Ref. No. of Reference Thermometer:

ET/0521/017

Ref. No. of Water Bath:

Temperature (°C)

		Te	nperature (°C)	
Reference Thermometer reading	Measured	20.0	Corrected	20.1
DO Meter reading	Measured	19.9	Difference	0.2

Standardization of sodium thiosulphate (Na $_2$ S $_2$ O $_3$) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	agent No. of $Na_2S_2O_3$ titrant CPE/012/4.5/001/14		CPE/012/4.4/002/14		
		Trial 1	Trial 2		
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.35		
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.35	20.75		
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.35	10.40		
Normality of Na ₂ S ₂ O ₃ solution (N)		0.02415	0.02404		
Average Normality (N) of Na ₂ S ₂ O ₃ s	olution (N)	0.02410			
Acceptance criteria, Deviation		Less than <u>+</u> 0.001N			

Calculation:

Normality of $Na_2S_2O_3$, N = 0.25 / ml $Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		.0	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.70	23.40	0.00	6.50	10.50	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.70	23.40	30.00	6.50	10.50	14.60	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.70	11.70	6.60	6.50	4.00	4.10	
Dissolved Oxygen (DO), mg/L	7.57	7.57	4.27	4.21	2.59	2.65	
Acceptance criteria, Deviation	Less than	Less than + 0.3mg/L		Less than + 0.3mg/L		Less than + 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO 1	DO meter reading, mg/L		Winkler	Titration res	Difference (%) of DO	
r diging time, min	1	2	Average	1	2	Average	Content
2	7.44	7.51	7.48	7.57	7.57	7.57	1.20
5	4.19	4.19	4.19	4.27	4.21	4.24	1.19
10	2.52	2.54	2.53	2.59	2.65	2.62	3.50
Linea	r regression	coefficient		7		0.9999	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

DO meter reading, mg/L	0.00

Salinity Checking

	1	T TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TOTAL TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	<u> </u>
Reagent No. of NaCl (10ppt)	CPE/012/4.7/003/29	Reagent No. of NaCl (30ppt)	CPE/012/4.8/003/29

Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10		30		
Trial	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	10.90	21.90	31.30	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	10.90	21.90	31.30	40.80	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	10.90	11.00	9.40	9.50	
Dissolved Oxygen (DO), mg/L	7.05	7.12	6.08	6.15	
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than	ı + 0.3mg/L	

Calculation:

DO (mg/L) = $\mathbf{V} \times \mathbf{N} \times 8000/298$

Salinity (ppt)	DO 1	DO meter reading, mg/L		Winkler Titration result**, mg/L		Difference (%) of DO	
Summy (ppv)	1	22	Average	1	2	Average	Content
10	7.11	7.15	7.13	7.05	7.12	7.09	0.56
30	6.08	6.04	6.06	6.08	6.15	6.12	0.99

Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within $\pm\,5\%$

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by	:	Approved by:	1
---------------	---	--------------	---

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No. : ET/EW/008/008 Manufacturer : YSI

Model No. : <u>Pro 2030</u> Serial No. : <u>14M101489</u>

Date of Calibration : 19/01/2017 Calibration Due Date : 18/04/2017

Temperature Verification

Ref. No. of Reference Thermometer: ET/0521/017

Ref. No. of Water Bath:

	Temperature (°C)			
Reference Thermometer reading	Measured	20.3	Corrected	19.8
DO Meter reading	Measured	19.8	Difference	0.0

Standardization of sodium thiosulphate (Na 2 S 2 O 3) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant	CPE/012/4.5/001/15	Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/002/16	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.35	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.35	20.70	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.35	10.35	
Normality of $Na_2S_2O_3$ solution (N)		0.02415	0.02415	
Average Normality (N) of Na ₂ S ₂ O ₃ s	olution (N)	0.02415		
Acceptance criteria, Deviation		Less than ± 0.	001N	

Calculation:

Normality of $Na_2S_2O_3$, $N = 0.25 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.40	23.00	0.00	6.10	9.90	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.40	23.00	29.60	6.10	9.90	13.80	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.40	11.60	6.60	6.10	3.80	3.90	
Dissolved Oxygen (DO), mg/L	7.39	7.52	4.28	3.95	2.46	2.53	
Acceptance criteria, Deviation	Less tha	n + 0.3mg/L	Less than	+ 0.3mg/L	Less than	+ 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L		Winkle	Titration res	Difference (%) of DO		
i arging time, tim	1	2	Average	1	2	Average	Content
2	7.39	7.48	7.44	7.39	7.52	7.46	0.27
5	4.19	4.14	4.17	4.28	3.95	4.12	1.21
10	2.39	2.42	2.41	2.46	2.53	2.50	3.67
Linea	r regression	coefficient				0.9993	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DO meter reading, mg/L	0.00

#### Salinity Checking

<del>}************************************</del>			
1			
Decree No. of No. Cl. (10 - 4)	CDE /010 /4 7/002/22	n (N) CNI CNI (20 A)	CDE /010/4 0/003/33
[Reagent No. of NaCl (10ppt)	ICPE/012/4.7/003/33	Reagent No. of NaCl (30ppt)	ICPE/012/4.8/003/33
L		[	

#### Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10			30		
Trial	1	2	1	2		
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	10.90	21.80	31.20		
Final Vol. of Na ₂ S ₂ O ₃ (ml)	10.90	21.80	31.20	40.60		
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	10.90	10.90	9.40	9.40		
Dissolved Oxygen ( <b>DO</b> ), mg/L	7.07	7.07	6.09	6.09		
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less that	n + 0.3mg/L		

Calculation:

DO  $(mg/L) = V \times N \times 8000/298$ 

Salinity (ppt)	DO meter reading, mg/L		Winkler	Titration resul	Difference (%) of DO		
Summey (ppt)	1	2	Average	1	2	Average	Content
10	7.12	7.07	7.1	7.07	7.07	7.07	0.42
30	6.14	6.17	6.16	6.09	6.09	6.09	1.14

#### Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within  $\pm\,5\%$

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

Brann

Approved by:

CEP/012/W

Performance Check of Salinity Meter						
	W/008/005	Manufacturer : YSI				
Model No. : Pro 20		Serial No. : <u>12A 100353</u>				
Date of Calibration : 22/10	/2016	Due Date : <u>21/01/2017</u>				
Ref. No. of Salinity Standard used (30pp		S/001/5				
Salinity Standard (ppt)	Measured Salinit	Difference * (%)				
30.0	30.6	2.00				
(*) Difference (%) = (Measured	Salinity – Salinity Sta	andard value) / Salinity Standard value x 100				
Acceptance Criteria  Difference : -10 % to 10 %						
		ly * with the specified requirements or use. Measurements are traceable to				
Checked by:	App	proved by :				



Performance	Check	of	Salinity	Meter
-------------	-------	----	----------	-------

Equipment Ref. No. : ET/EW/008/008 Manufacturer : YSI

Model No. : <u>Pro 2030</u> Serial No. : 14M101489

Ref. No. of Salinity Standard used (30ppt) S/001/9

Salinity Standard Value (ppt)	Measured Salinity (ppt)	Difference * (%)
30.0	30.3	1.00

(*) Difference (%) = (Measured Salinity – Salinity Standard value) / Salinity Standard value x 100

Acceptance Criteria

Difference: -10 % to 10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: Brank Approved by: 1

# Appendix F

# EM&A Monitoring Schedules

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - January 2017

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

7 in quanty mornioring ocacio	ons: ASR1, ASR5, ASR6, A	orro, rigino i				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	public holiday 2-Jan		4-Jan	5-Jan		7-Jan
		1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
8-Jan		10-Jan	11-Jan		13-Jan	14-Jan
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
15-Jan		17-Jan			20-Jan	21-Jan
1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
22-Jan		24-Jan 1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	25-Jan	26-Jan	27-Jan 1-hour TSP - 3 times 24-hour TSP - 1 time Impact AQM	public holiday 28-Jan
29-Jan		public holiday 31-Jan				
						,

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - February 2017

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

Air quality monitoring station	DIIS. ASK I, ASKS, ASKO, A	SK 10, AQIVIS I		•	•	
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Feb	2-Feb	3-Feb	4-Feb
				1-hour TSP - 3 times		
				24-hour TSP - 1 time		
				Impact AQM		
5-Feb	6-Feb	7-Feb		9-Feb	10-Feb	
1-hour TSP - 3 times			1-hour TSP - 3 times			1-hour TSP - 3 times
24-hour TSP - 1 time			24-hour TSP - 1 time			24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
12-Feb	13-Feb		15-Feb	16-Feb		18-Feb
		1-hour TSP - 3 times			1-hour TSP - 3 times	
		24-hour TSP - 1 time			24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
19-Feb		21-Feb	22-Feb		24-Feb	25-Feb
	1-hour TSP - 3 times			1-hour TSP - 3 times		
	24-hour TSP - 1 time			24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
26-Feb	27-Feb	28-Feb				
1-hour TSP - 3 times						
24-hour TSP - 1 time						
Impact AQM						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

# 

Sunday	Monday	Tuesdav		Thursday	Fridav	Saturday
01-Jan	02-Jan	03-Jan		05-Jan	06-Jan	
		WQM		WQM		WQM
		Mid-Flood		Mid-Flood		Mid-Ebb
		10:55		12:27		7:22
		(09:10 - 12:40)		(10:42 - 14:12)		(05:37 - 09:07)
		Mid-Ebb		Mid-Ebb		Mid-Flood
		16:31		18:38		14:09
		(14:46 - 18:16)		(16:53 - 20:23)		(12:24 - 15:54)
08-Jan	09-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Ja
		WQM		WQM		WQM
		Mid-Ebb		Mid-Ebb		Mid-Flood
		11:07		12:54		9:03
		(09:22 - 12:52)		(11:09 - 14:39)		(07:18 - 10:48)
		Mid-Flood		Mid-Flood		Mid-Ebb
		16:38		18:12		14:22
		(14:53 - 18:23)		(16:27 - 19:57)		(12:37 - 16:07)
15-Jan	16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	
		WQM		WQM		WQM
		Mid-Flood		Mid-Flood		Mid-Ebb
		10:56		12:09		6:43
		(09:11 - 12:41)		(10:24 - 13:54)		(04:58 - 08:28)
		Mid-Ebb		Mid-Ebb		Mid-Flood
		16:27		18:15		13:33
		(14:42 - 18:12)		(16:30 - 20:00)		(11:48 - 15:18)
22-Jan	23-Jan	24-Jan		26-Jan	27-Jan	28-Ja
		WQM		WQM		
		Mid-Ebb		Mid-Ebb		
		10:51		12:16		
		(09:15 - 12:30)		(10:31 - 14:01)		
		Mid-Flood		Mid-Flood		
		15:56		17:26		
		(14:11 - 17:41)		(15:41 - 19:11)		
29-Jan	30-Jan	31-Jan				
		WQM				
		Mid-Flood				
		9:32				
		(07:47 - 11:17)				
		Mid-Ebb				
		15:15				
	lan 2017 was cancelled due to	(13:30 - 17:00)				

Water quality monitoring on 28 Jan 2017 was cancelled due to suspension of marine works during 28 - 30 Jan 2017.

# HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section HYbhJhj Y'Impact Marine Water Quality Monitoring (WQM) Schedule (February 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			01-Feb	02-Feb	03-Feb	04-Feb
				WQM		WQM
				Mid-Flood		Mid-Flood
				10:42		12:15
				(08:57 - 12:27)		(10:30 - 14:00)
				Mid-Ebb		Mid-Ebb
				16:46 (15:01 - 18:31)		19:08 (17:23 - 20:53)
05-Feb	06-Feb	07-Feb	08-Feb	(15.01 - 16.51) 09-Feb	10-Feb	(17.23 - 20.53) 11-Feb
03-1 eb	00-1 eb	WQM	08-1 eb	WQM	10-1 eb	WQM
		Mid-Ebb		Mid-Ebb		Mid-Flood
		10:00		12:00		7:58
		(08:15 - 11:45)		(10:15 - 13:45)		(06:13 - 09:43)
		Mid-Flood		Mid-Flood		Mid-Ebb
		15:21		17:19		13:25
		(13:36 - 17:06)		(15:34 - 19:04)		(11:40 - 15:10)
12-Feb	13-Feb		15-Feb	16-Feb	17-Feb	
		WQM		WQM		WQM
		Mid-Flood		Mid-Flood		Mid-Flood
		9:27		10:17		11:21
		(07:42 - 11:12)		(08:32 - 12:02)		(09:36 - 13:06)
		Mid-Ebb 15:05		Mid-Ebb 16:17		Mid-Ebb 18:04
		(13:20 - 16:50)		(14:32 - 18:02)		(16:19 - 19:49)
19-Feb	20-Feb		22-Feb	(14.32 - 16.02) 23-Feb	24-Feb	
13-1 60	20-1 60	WQM		WQM		WQM
		Mid-Ebb		Mid-Ebb		Mid-Ebb
		9:37		11:19		12:34
		(08:50 - 10:20)		(09:34 - 13:04)		(10:49 - 14:19)
		Mid-Flood		Mid-Flood		Mid-Flood
		14:02		16:21		17:57
		(12:17 - 15:47)		(14:36 - 18:06)		(16:12 - 19:42)
26-Feb	27-Feb					
		WQM				
		Mid-Flood				
		8:22				
		(06:37 - 10:07)				
		Mid-Ebb 14:13				
		(12:28 - 15:58)				
		(12.20 - 13.30)				

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

# HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - January 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Jan	public holiday 2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan
8-Jan	9-Jan	10-Jan Impact Dolphin	11-Jan	12-Jan Impact Dolphin	13-Jan	14-Jan
		Monitoring		Monitoring		
45 1-1	40 1-2	-			00 1	04 1
15-Jan	16-Jan Impact Dolphin	17-Jan	18-Jan		20-Jan Impact Dolphin	21-Jan
	Monitoring				Monitoring	
22-Jan	23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	public holiday 28-Jan
29-Jan	public holiday 30-Jan	public holiday 31-Jan				

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - February 2017

81	unday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
3	unuay	Worlday	Tuesday				
				1-Feb	2-Feb	3-Feb	4-Feb
	5-Feb	6-F	eb 7-Fel	8-Feb	9-Feb	10-Feb	11-Feb
			Impact Dolphin Monitoring		Impact Dolphin Monitoring		
	12-Feb	13-F	eb 14-Fel	15-Feb	16-Feb	17-Feb	18-Feb
			Impact Dolphin Monitoring				
	19-Feb	20-F	eb 21-Fel	22-Feb	23-Feb	24-Feb	25-Feb
		Impact Dolphin Monitoring					
	26-Feb	27-F	eb 28-Fel				

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

# Appendix G

Impact Air Quality Monitoring Results

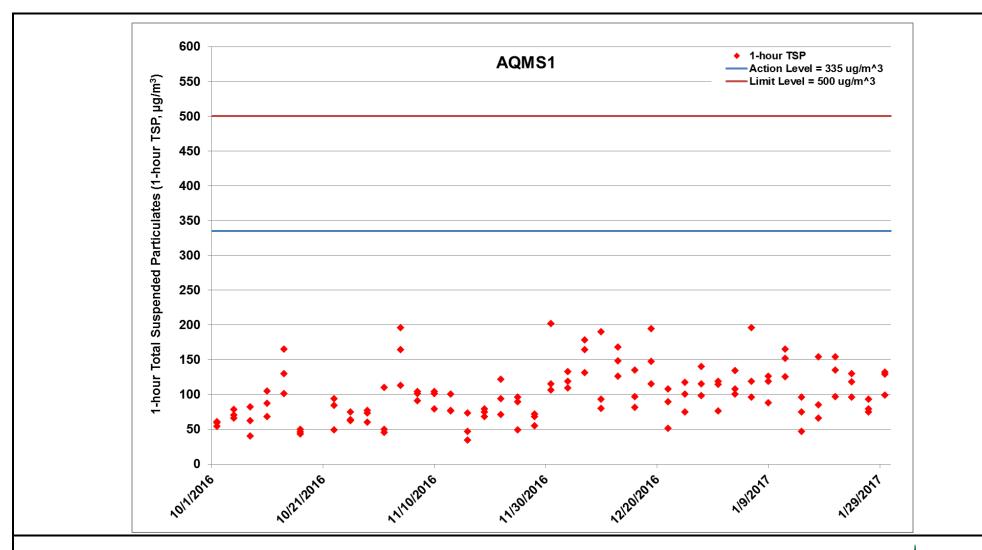



Figure G.1 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



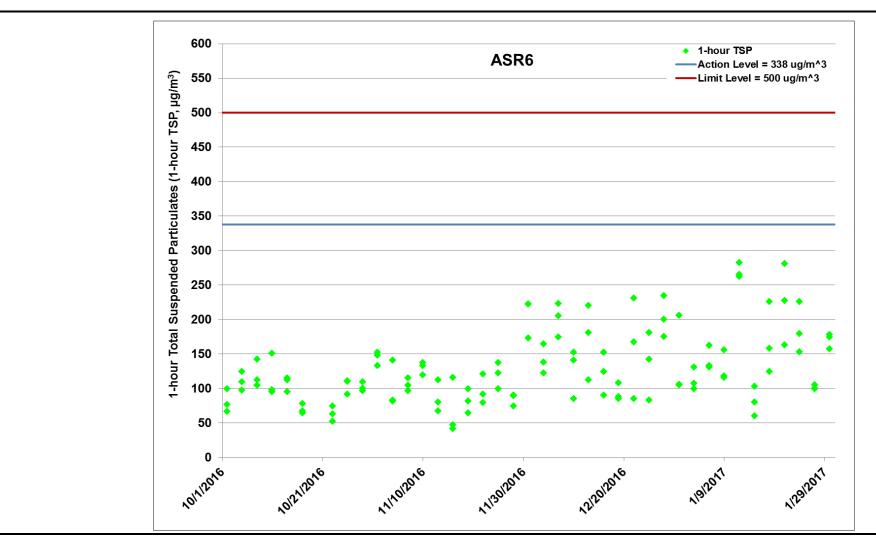



Figure G.2 Impact Monitoring – 1-hour Total Suspended Particulates (µg/m³) at ASR6 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



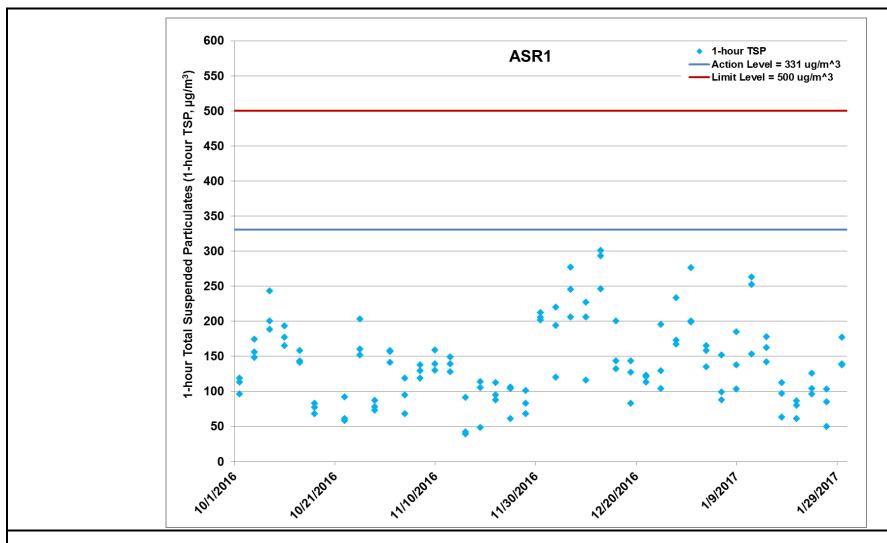



Figure G.3 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



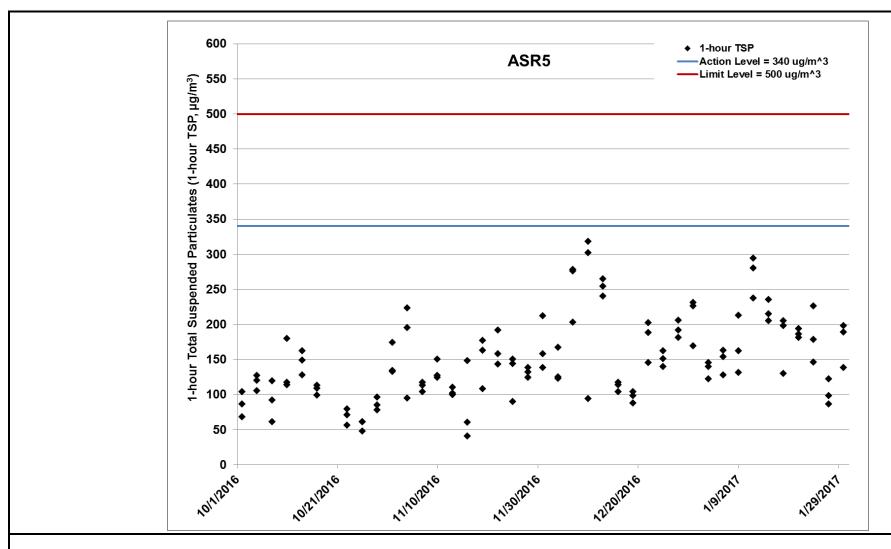



Figure G.4 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



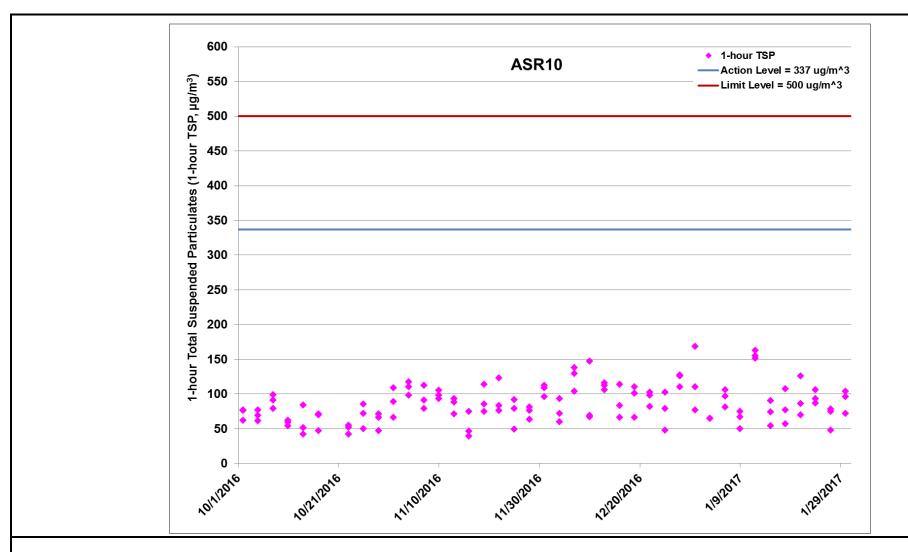



Figure G.5 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR10 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



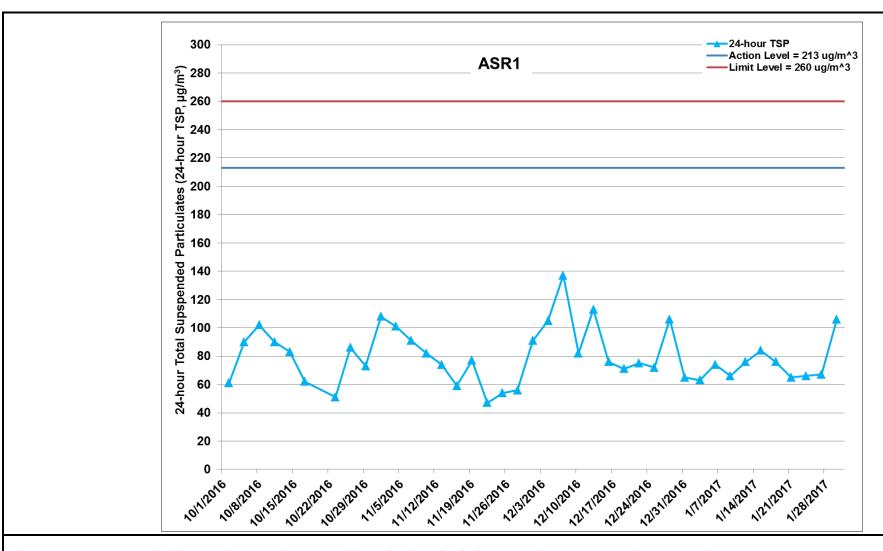



Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



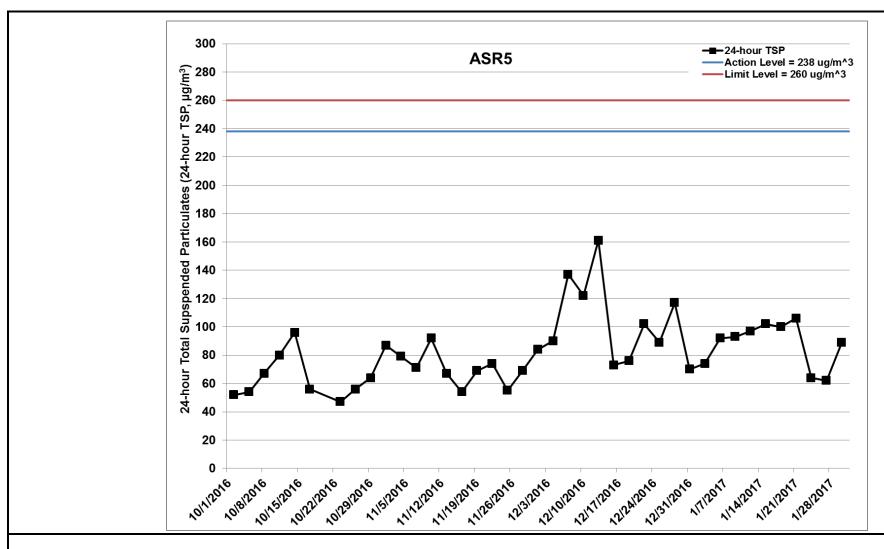



Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



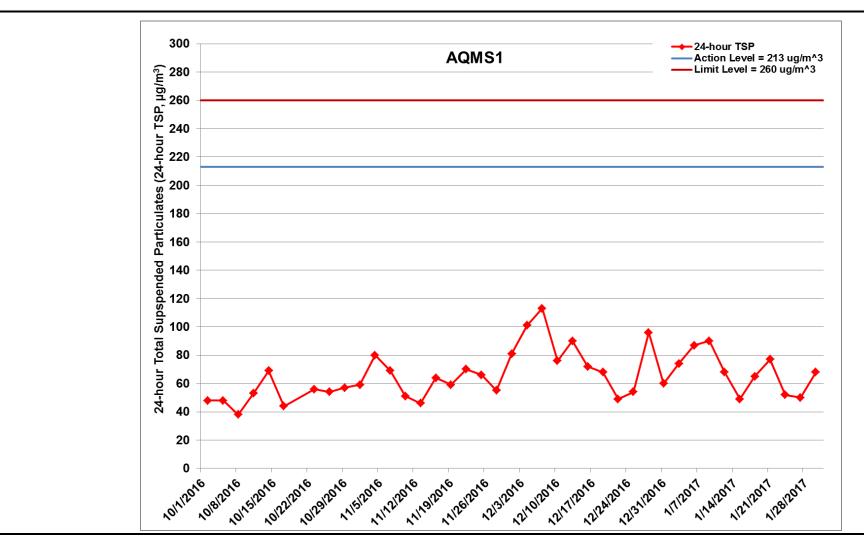



Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



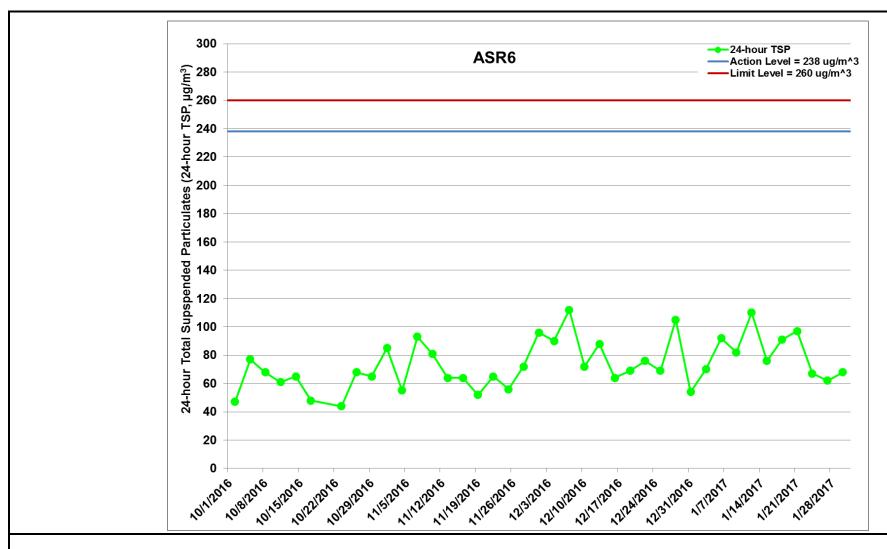



Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). Ref: 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



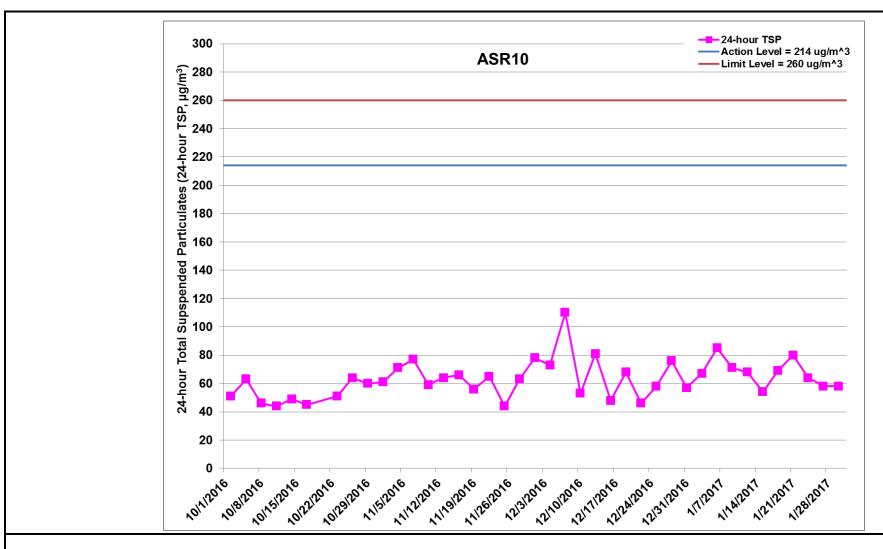



Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR10 between 1 October 2016 and 31 January 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/10/2016 – 31/1/2017) and Box Culvert Extension (1/10/2016 – 31/1/2017). *Ref:* 0212330_Impact AQM graphs_ January 2017_REV a.xlsx



Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-03	AQMS1	Sunny	13:17	1-hour TSP	134	ug/m3
TMCLKL	HY/2012/08	2017-01-03	AQMS1	Sunny	14:19	1-hour TSP	108	ug/m3
TMCLKL	HY/2012/08	2017-01-03	AQMS1	Sunny	15:21	1-hour TSP	100	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR1	Sunny	13:06	1-hour TSP	135	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR1	Sunny	14:08	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR1	Sunny	15:10	1-hour TSP	158	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR10	Sunny	12:33	1-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR10	Sunny	13:35	1-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR10	Sunny	14:37	1-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR5	Sunny	12:55	1-hour TSP	145	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR5	Sunny	13:57	1-hour TSP	122	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR5	Sunny	14:59	1-hour TSP	140	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR6	Sunny	12:44	1-hour TSP	131	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR6	Sunny	13:46	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR6	Sunny	14:48	1-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2017-01-06	AQMS1	Sunny	09:55	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-01-06	AQMS1	Sunny	10:57	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2017-01-06	AQMS1	Sunny	11:59	1-hour TSP	196	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR1	Sunny	09:44	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR1	Sunny	10:46	1-hour TSP	88	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR1	Sunny	11:48	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR10	Sunny	09:12	1-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR10	Sunny	10:14	1-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR10	Sunny	11:16	1-hour TSP	81	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR5	Sunny	09:33	1-hour TSP	154	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR5	Sunny	10:35	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR5	Sunny	11:37	1-hour TSP	128	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR6	Sunny	09:22	1-hour TSP	133	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR6	Sunny	10:24	1-hour TSP	131	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR6	Sunny	11:26	1-hour TSP	162	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-09	AQMS1	Sunny	13:04	1-hour TSP	88	ug/m3
TMCLKL	HY/2012/08	2017-01-09	AQMS1	Sunny	14:06	1-hour TSP	126	ug/m3
TMCLKL	HY/2012/08	2017-01-09	AQMS1	Sunny	15:08	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR1	Sunny	12:53	1-hour TSP	185	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR1	Sunny	13:55	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR1	Sunny	14:57	1-hour TSP	103	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR10	Sunny	12:22	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR10	Sunny	13:24	1-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR10	Sunny	14:26	1-hour TSP	50	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR5	Sunny	12:43	1-hour TSP	213	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR5	Sunny	13:45	1-hour TSP	131	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR5	Sunny	14:47	1-hour TSP	162	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR6	Sunny	12:32	1-hour TSP	156	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR6	Sunny	13:34	1-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR6	Sunny	14:36	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2017-01-12	AQMS1	Cloudy	13:30	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2017-01-12	AQMS1	Cloudy	14:32	1-hour TSP	125	ug/m3
TMCLKL	HY/2012/08	2017-01-12	AQMS1	Cloudy	15:34	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR1	Cloudy	13:19	1-hour TSP	263	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR1	Cloudy	14:21	1-hour TSP	252	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR1	Cloudy	15:23	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR10	Cloudy	12:47	1-hour TSP	155	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR10	Cloudy	13:49	1-hour TSP	151	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR10	Cloudy	14:51	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR5	Cloudy	13:08	1-hour TSP	294	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR5	Cloudy	14:10	1-hour TSP	280	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR5	Cloudy	15:12	1-hour TSP	237	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR6	Cloudy	12:58	1-hour TSP	282	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR6	Cloudy	14:00	1-hour TSP	262	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR6	Cloudy	15:02	1-hour TSP	265	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-15	AQMS1	Cloudy	09:53	1-hour TSP	47	ug/m3
TMCLKL	HY/2012/08	2017-01-15	AQMS1	Cloudy	10:55	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-01-15	AQMS1	Cloudy	11:57	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR1	Cloudy	09:42	1-hour TSP	162	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR1	Cloudy	10:44	1-hour TSP	178	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR1	Cloudy	11:46	1-hour TSP	142	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR10	Cloudy	09:10	1-hour TSP	54	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR10	Cloudy	10:12	1-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR10	Cloudy	11:14	1-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR5	Cloudy	09:31	1-hour TSP	235	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR5	Cloudy	10:33	1-hour TSP	215	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR5	Cloudy	11:35	1-hour TSP	205	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR6	Cloudy	09:20	1-hour TSP	80	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR6	Cloudy	10:22	1-hour TSP	60	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR6	Cloudy	11:24	1-hour TSP	103	ug/m3
TMCLKL	HY/2012/08	2017-01-18	AQMS1	Cloudy	13:35	1-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2017-01-18	AQMS1	Cloudy	14:37	1-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2017-01-18	AQMS1	Cloudy	15:39	1-hour TSP	154	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR1	Cloudy	13:25	1-hour TSP	63	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR1	Cloudy	14:27	1-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR1	Cloudy	15:29	1-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR10	Cloudy	13:03	1-hour TSP	57	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR10	Cloudy	14:05	1-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR10	Cloudy	15:07	1-hour TSP	77	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR5	Cloudy	13:24	1-hour TSP	205	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR5	Cloudy	14:26	1-hour TSP	198	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR5	Cloudy	15:28	1-hour TSP	130	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR6	Cloudy	13:14	1-hour TSP	124	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR6	Cloudy	14:16	1-hour TSP	226	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR6	Cloudy	15:18	1-hour TSP	158	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-21	AQMS1	Sunny	09:37	1-hour TSP	154	ug/m3
TMCLKL	HY/2012/08	2017-01-21	AQMS1	Sunny	10:39	1-hour TSP	135	ug/m3
TMCLKL	HY/2012/08	2017-01-21	AQMS1	Sunny	11:41	1-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR1	Sunny	09:27	1-hour TSP	61	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR1	Sunny	10:29	1-hour TSP	80	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR1	Sunny	11:31	1-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR10	Sunny	08:55	1-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR10	Sunny	09:57	1-hour TSP	126	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR10	Sunny	10:59	1-hour TSP	70	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR5	Sunny	09:16	1-hour TSP	186	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR5	Sunny	10:18	1-hour TSP	181	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR5	Sunny	11:20	1-hour TSP	194	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR6	Sunny	09:05	1-hour TSP	227	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR6	Sunny	10:07	1-hour TSP	281	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR6	Sunny	11:09	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2017-01-24	AQMS1	Sunny	14:15	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-01-24	AQMS1	Sunny	15:17	1-hour TSP	130	ug/m3
TMCLKL	HY/2012/08	2017-01-24	AQMS1	Sunny	16:19	1-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR1	Sunny	14:05	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR1	Sunny	15:07	1-hour TSP	126	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR1	Sunny	16:09	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR10	Sunny	13:32	1-hour TSP	87	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR10	Sunny	14:34	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR10	Sunny	15:36	1-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR5	Sunny	13:54	1-hour TSP	146	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR5	Sunny	14:56	1-hour TSP	178	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR5	Sunny	15:58	1-hour TSP	226	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR6	Sunny	13:43	1-hour TSP	226	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR6	Sunny	14:45	1-hour TSP	179	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR6	Sunny	15:47	1-hour TSP	153	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-27	AQMS1	Sunny	14:14	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-01-27	AQMS1	Sunny	15:16	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-01-27	AQMS1	Sunny	16:18	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR1	Sunny	14:03	1-hour TSP	50	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR1	Sunny	15:05	1-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR1	Sunny	16:07	1-hour TSP	103	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR10	Sunny	13:30	1-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR10	Sunny	14:32	1-hour TSP	48	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR10	Sunny	15:34	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR5	Sunny	13:52	1-hour TSP	122	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR5	Sunny	14:54	1-hour TSP	98	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR5	Sunny	15:56	1-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR6	Sunny	13:40	1-hour TSP	105	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR6	Sunny	14:42	1-hour TSP	100	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR6	Sunny	15:44	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-01-30	AQMS1	Cloudy	09:33	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-01-30	AQMS1	Cloudy	10:35	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2017-01-30	AQMS1	Cloudy	11:37	1-hour TSP	129	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR1	Cloudy	09:22	1-hour TSP	139	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR1	Cloudy	10:24	1-hour TSP	177	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR1	Cloudy	11:26	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR10	Cloudy	08:50	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR10	Cloudy	09:52	1-hour TSP	72	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR10	Cloudy	10:54	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR5	Cloudy	09:10	1-hour TSP	198	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR5	Cloudy	10:12	1-hour TSP	189	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR5	Cloudy	11:14	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR6	Cloudy	09:00	1-hour TSP	174	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR6	Cloudy	10:02	1-hour TSP	157	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR6	Cloudy	11:04	1-hour TSP	178	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-03	AQMS1	Sunny	16:23	24-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR1	Sunny	16:12	24-hour TSP	63	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR10	Sunny	15:39	24-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR5	Sunny	16:01	24-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-01-03	ASR6	Sunny	15:50	24-hour TSP	70	ug/m3
TMCLKL	HY/2012/08	2017-01-06	AQMS1	Sunny	13:01	24-hour TSP	87	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR1	Sunny	12:50	24-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR10	Sunny	12:18	24-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR5	Sunny	12:39	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2017-01-06	ASR6	Sunny	12:28	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2017-01-09	AQMS1	Sunny	16:10	24-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR1	Sunny	15:59	24-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR10	Sunny	15:28	24-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR5	Sunny	15:49	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-01-09	ASR6	Sunny	15:38	24-hour TSP	82	ug/m3
TMCLKL	HY/2012/08	2017-01-12	AQMS1	Cloudy	16:36	24-hour TSP	68	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR1	Cloudy	16:25	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR10	Cloudy	15:53	24-hour TSP	68	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR5	Cloudy	16:14	24-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-01-12	ASR6	Cloudy	16:04	24-hour TSP	110	ug/m3
TMCLKL	HY/2012/08	2017-01-15	AQMS1	Cloudy	12:59	24-hour TSP	49	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR1	Cloudy	12:48	24-hour TSP	84	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR10	Cloudy	12:16	24-hour TSP	54	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR5	Cloudy	12:37	24-hour TSP	102	ug/m3
TMCLKL	HY/2012/08	2017-01-15	ASR6	Cloudy	12:26	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2017-01-18	AQMS1	Cloudy	16:41	24-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR1	Cloudy	16:31	24-hour TSP	76	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR10	Cloudy	16:09	24-hour TSP	69	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR5	Cloudy	16:30	24-hour TSP	100	ug/m3
TMCLKL	HY/2012/08	2017-01-18	ASR6	Cloudy	16:20	24-hour TSP	91	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-01-21	AQMS1	Sunny	12:43	24-hour TSP	77	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR1	Sunny	12:33	24-hour TSP	65	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR10	Sunny	12:01	24-hour TSP	80	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR5	Sunny	12:22	24-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2017-01-21	ASR6	Sunny	12:11	24-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-01-24	AQMS1	Sunny	17:21	24-hour TSP	52	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR1	Sunny	17:11	24-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR10	Sunny	16:38	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR5	Sunny	17:00	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2017-01-24	ASR6	Sunny	16:49	24-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-01-27	AQMS1	Sunny	17:20	24-hour TSP	50	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR1	Sunny	17:09	24-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR10	Sunny	16:36	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR5	Sunny	16:58	24-hour TSP	62	ug/m3
TMCLKL	HY/2012/08	2017-01-27	ASR6	Sunny	16:46	24-hour TSP	62	ug/m3
TMCLKL	HY/2012/08	2017-01-30	AQMS1	Cloudy	12:39	24-hour TSP	68	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR1	Cloudy	12:28	24-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR10	Cloudy	11:56	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR5	Cloudy	12:16	24-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2017-01-30	ASR6	Cloudy	12:06	24-hour TSP	68	ug/m3

## Appendix H

## Meteorological Data

	Meteore	ological Data for Impact Monitoring in	n the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/01/03	0:00	0.4	341
17/01/03	1:00	0.3	330
17/01/03	2:00	0.2	320
17/01/03	3:00	0.5	351
17/01/03	4:00	0.5	336
17/01/03	5:00	0.6	320
17/01/03	6:00	0.4	315
17/01/03	7:00	0.5	156
17/01/03	8:00	1.3	75
17/01/03	9:00	1.8	69
17/01/03	10:00	3.1	71
17/01/03	11:00	3.6	66
17/01/03	12:00	4	115
17/01/03	13:00	3.6	131
17/01/03	14:00	2.2	126
17/01/03	15:00	2.7	13
17/01/03	16:00	1.3	140
17/01/03	17:00	1.8	98
17/01/03	18:00	2.7	111
17/01/03	19:00	2.7	105
17/01/03	20:00	2.7	96
17/01/03	21:00	3.1	87
17/01/03	22:00	3.1	82
17/01/03	23:00	3.1	93
17/01/04	0:00 1:00	3.1	91 99
17/01/04 17/01/04	2:00	3.6	100
17/01/04	3:00	3.6	85
17/01/04	4:00	2.7	96
17/01/04	5:00	2.2	104
17/01/04	6:00	2.7	83
17/01/04	7:00	2.2	94
17/01/04	8:00	3.1	100
17/01/04	9:00	4	102
17/01/04	10:00	4.5	119
17/01/04	11:00	3.6	123
17/01/04	12:00	2.7	138
17/01/04	13:00	3.1	141
17/01/04	14:00	2.7	140
17/01/04	15:00	3.1	152
17/01/04	16:00	1.3	97
17/01/04	17:00	0.9	113
17/01/04	18:00	0.9	88
17/01/04	19:00	0.9	104
17/01/04	20:00	0.4	5
17/01/04	21:00	0	-
17/01/04	22:00	0.4	3
17/01/04	23:00	0.4	6
17/01/06	0:00	0	-
17/01/06	1:00	0.4	69
17/01/06	2:00	0.4	80
17/01/06	3:00	0.4	65
17/01/06	4:00	0.4	46
17/01/06	5:00	0.4	310
17/01/06	6:00	0.9	355

	Meteore	ological Data for Impact Monitoring in	n the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/01/06	7:00	0.4	351
17/01/06	8:00	0	-
17/01/06	9:00	0.4	142
17/01/06	10:00	0.4	171
17/01/06	11:00	0.9	223
17/01/06	12:00	1.3	254
17/01/06	13:00	0.9	204
17/01/06	14:00	0.9	215
17/01/06	15:00	1.3	212
17/01/06	16:00	0.4	207
17/01/06	17:00	0.9	174
17/01/06	18:00	1.3	96
17/01/06	19:00	1.8	85
17/01/06	20:00	1.8	94
17/01/06	21:00	3.1	89
17/01/06	22:00	1.8	82
17/01/06	23:00	2.2	93
17/01/07	0:00	3.1	104
17/01/07	1:00	3.1	99
17/01/07	2:00	3.6	103
17/01/07	3:00	3.6	115
17/01/07	4:00	3.6	107
17/01/07	5:00	3.6	98
17/01/07	6:00	2.7	112
17/01/07	7:00	2.7	84
17/01/07	8:00	2.2	93
17/01/07	9:00	2.7	106
17/01/07	10:00		115
17/01/07	11:00	2.7	124
	12:00	2.2	
17/01/07			117
17/01/07	13:00	2.2	94
17/01/07	14:00	1.3	105
17/01/07	15:00	2.2	223
17/01/07	16:00	0.9	215
17/01/07	17:00	0.4	176
17/01/07	18:00	0.4	165
17/01/07	19:00	0	-
17/01/07	20:00	0.4	93
17/01/07	21:00	0.4	71
17/01/07	22:00	0.4	19
17/01/07	23:00	0	
17/01/09	0:00	1.3	13
17/01/09	1:00	1.8	51
17/01/09	2:00	1.3	42
17/01/09	3:00	0.9	349
17/01/09	4:00	0	-
17/01/09	5:00	1.8	49
17/01/09	6:00	3.1	51
17/01/09	7:00	3.1	44
17/01/09	8:00	2.2	43
17/01/09	9:00	1.3	50
17/01/09	10:00	0.9	94
17/01/09	11:00	2.7	123
17/01/09	12:00	1.3	115
17/01/09	13:00	1.3	103

	Meteore	ological Data for Impact Monitoring i	n the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/01/09	14:00	1.8	114
17/01/09	15:00	1.3	128
17/01/09	16:00	0.9	223
17/01/09	17:00	0.9	214
17/01/09	18:00	0.9	231
17/01/09	19:00	1.3	209
17/01/09	20:00	1.8	85
17/01/09	21:00	1.8	93
17/01/09	22:00	1.8	100
17/01/09	23:00	2.2	115
17/01/10	0:00	2.2	107
17/01/10	1:00	2.2	92
17/01/10	2:00	1.8	84
17/01/10	3:00	1.8	83
17/01/10	4:00	3.6	91
17/01/10	5:00	2.2	105
17/01/10	6:00	2.2	102
17/01/10	7:00	4	87
17/01/10	8:00	2.7	95
17/01/10	9:00	3.1	93
17/01/10	10:00	4	105
17/01/10	11:00	4.5	112
17/01/10	12:00	4	107
17/01/10	13:00	3.6	109
17/01/10	14:00	3.6	117
17/01/10	15:00	3.6	104
17/01/10	16:00	3.1	113
17/01/10	17:00	3.6	116
17/01/10	18:00	3.1	112
17/01/10	19:00	3.1	115
17/01/10	20:00 21:00	2.7	103
17/01/10 17/01/10	22:00	1.8	84
17/01/10	23:00	2.2	83
17/01/10	0:00	0.9	96
17/01/12	1:00	0.9	103
17/01/12	2:00	0.4	21
17/01/12	3:00	1.3	46
17/01/12	4:00	0.4	51
17/01/12	5:00	1.3	49
17/01/12	6:00	1.8	52
17/01/12	7:00	0.9	11
17/01/12	8:00	1.3	93
17/01/12	9:00	0.9	100
17/01/12	10:00	1.3	349
17/01/12	11:00	1.3	55
17/01/12	12:00	1.3	16
17/01/12	13:00	1.8	344
17/01/12	14:00	1.8	358
17/01/12	15:00	1.8	344
17/01/12	16:00	2.2	351
17/01/12	17:00	2.7	346
17/01/12	18:00	2.2	339
17/01/12	19:00	2.7	357
17/01/12	20:00	1.3	302

	Meteore	ological Data for Impact Monitoring in	the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/01/12	21:00	1.3	352
17/01/12	22:00	2.7	16
17/01/12	23:00	1.8	49
17/01/13	0:00	0.4	225
17/01/13	1:00	1.3	52
17/01/13	2:00	0.9	44
17/01/13	3:00	0.9	351
17/01/13	4:00	1.3	301
17/01/13	5:00	1.3	294
17/01/13	6:00	1.3	6
17/01/13	7:00	1.3	12
17/01/13	8:00	1.8	50
17/01/13	9:00	1.8	44
17/01/13	10:00	1.8	46
17/01/13	11:00	0.9	352
17/01/13	12:00	0.9	12
17/01/13	13:00	1.3	49
17/01/13	14:00	0.9	96
17/01/13	15:00	0.9	350
17/01/13	16:00	0.4	2
17/01/13	17:00	0.9	42
17/01/13	18:00	0.9	352
17/01/13	19:00	1.3	53
17/01/13	20:00	1.3	12
17/01/13	21:00	1.3	11
17/01/13	22:00	1.8	44
17/01/13	23:00	1.8	52
17/01/15	0:00	1.3	41
17/01/15	1:00	0.9	43
17/01/15	2:00	1.8	50
17/01/15	3:00	2.2	48
17/01/15	4:00	2.2	60
17/01/15	5:00	1.8	12
17/01/15	6:00	1.3	14
17/01/15	7:00	0.9	10
17/01/15	8:00	1.8	62
17/01/15	9:00	1.8	55
17/01/15	10:00	1.8	41
17/01/15	11:00	1.8	44
17/01/15	12:00	2.2	352
17/01/15	13:00	2.2	16
	14:00		55
17/01/15 17/01/15	15:00	1.8	22
	†		
17/01/15	16:00	2.7	351
17/01/15	17:00	1.8	10
17/01/15	18:00	0.9	9
17/01/15	19:00	1.3	55
17/01/15	20:00	0.9	13
17/01/15	21:00	1.3	55
17/01/15	22:00	1.8	50
17/01/15	23:00	2.2	41
17/01/16	0:00	2.2	38
17/01/16	1:00	2.7	57
17/01/16	2:00	1.8	23
17/01/16	3:00	2.7	52

Date (y-y-man-dd)   Time (24hrs)   Average of Wind Speed (m/s)   Average of Wind Direction(degree)		Meteoro	ological Data for Impact Monitoring in the	reporting period
1701/16	Date (yy-mm-dd)			
1701/16		4:00		
1700116	17/01/16	5:00	2.2	43
1700116	17/01/16			
1701/16   8.00		7:00		
1700116				
1701/16   10:00				
1700116				
1701/16				
170116				
17:01/16				
1701/16				
1701/16				
17:01/16				
1701/16				
1701/16				
1701/16				
17:01/16				
17:01/16				
17/01/16				
17:01/18				
17:01/18				
17/01/18				
17/01/18				
17/01/18				88
17/01/18				-
17/01/18				
17/01/18				93
17/01/18         8:00         0.4         100           17/01/18         9:00         0.9         102           17/01/18         10:00         0.9         105           17/01/18         11:00         1.3         107           17/01/18         12:00         1.3         62           17/01/18         13:00         0.9         54           17/01/18         14:00         0.9         352           17/01/18         15:00         0.4         181           17/01/18         16:00         0.4         179           17/01/18         17:00         0         -           17/01/18         18:00         0.4         169           17/01/18         19:00         0.9         93           17/01/18         20:00         0         -           17/01/18         21:00         0.4         56           17/01/18         21:00         0.4         56           17/01/18         22:00         0.9         62           17/01/19         0:00         0         -           17/01/19         1:00         0.4         13           17/01/19         3:00         0 <td< td=""><td></td><td></td><td></td><td>-</td></td<>				-
17/01/18				
17/01/18				
17/01/18       11:00       1.3       107         17/01/18       12:00       1.3       62         17/01/18       13:00       0.9       54         17/01/18       14:00       0.9       352         17/01/18       15:00       0.4       181         17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       19:00       0.9       93         17/01/18       21:00       0.4       56         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19 <td></td> <td></td> <td></td> <td></td>				
17/01/18       12:00       1.3       62         17/01/18       13:00       0.9       54         17/01/18       14:00       0.9       352         17/01/18       15:00       0.4       181         17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19				
17/01/18       13:00       0.9       54         17/01/18       14:00       0.9       352         17/01/18       15:00       0.4       181         17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       6				
17/01/18       14:00       0.9       352         17/01/18       15:00       0.4       181         17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       99				
17/01/18       15:00       0.4       181         17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       99				
17/01/18       16:00       0.4       179         17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/18       17:00       0       -         17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/18       18:00       0.4       169         17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				179
17/01/18       19:00       0.9       93         17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				100
17/01/18       20:00       0       -         17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       5:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/18       21:00       0.4       56         17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				93
17/01/18       22:00       0.9       62         17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				56
17/01/18       23:00       0.4       5         17/01/19       0:00       0       -         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/19       0:00       0         17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/19       1:00       0.4       13         17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/19       2:00       0.4       15         17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				13
17/01/19       3:00       0       -         17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				
17/01/19       4:00       0.4       20         17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				-
17/01/19       5:00       0       -         17/01/19       6:00       0       -         17/01/19       7:00       0       -         17/01/19       8:00       0.4       99         17/01/19       9:00       0.4       221				20
17/01/19     6:00     0     -       17/01/19     7:00     0     -       17/01/19     8:00     0.4     99       17/01/19     9:00     0.4     221				-
17/01/19     7:00     0     -       17/01/19     8:00     0.4     99       17/01/19     9:00     0.4     221				
17/01/19     8:00     0.4     99       17/01/19     9:00     0.4     221				-
17/01/19 9:00 0.4 221				99
11///1/17 11/17/01 10/9	17/01/19	10:00	0.9	132
17/01/19				

	Meteoro	ological Data for Impact Monitoring in	the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/01/19	12:00	0.9	225
17/01/19	13:00	0.9	231
17/01/19	14:00	0.9	258
17/01/19	15:00	1.3	304
17/01/19	16:00	1.3	312
17/01/19	17:00	1.3	309
17/01/19	18:00	1.8	311
17/01/19	19:00	2.2	321
17/01/19	20:00	2.2	294
17/01/19	21:00	2.2	289
17/01/19	22:00	1.8	295
17/01/19	23:00	1.3	288
17/01/21	0:00	3.6	47
17/01/21	1:00	3.6	52
17/01/21	2:00	4	14
17/01/21	3:00	2.7	52
17/01/21	4:00	2.2	13
17/01/21	5:00	3.1	63
17/01/21	6:00	2.7	11
17/01/21	7:00	2.7	19
17/01/21	8:00	2.2	21
17/01/21	9:00	1.8	50
17/01/21	10:00	1.8	47
17/01/21	11:00	1.3	223
17/01/21	12:00	2.7	287
17/01/21	13:00	2.2	274
17/01/21	14:00	1.8	293
17/01/21	15:00	2.2	288
17/01/21	16:00	2.2	304
17/01/21	17:00	1.8	316
17/01/21	18:00	1.3	348
17/01/21	19:00	1.3	305
17/01/21	20:00	1.3	348
17/01/21	21:00	0.4	326
17/01/21	22:00	0.9	315
17/01/21	23:00	0.4	349
17/01/22	0:00	0.9	12
17/01/22	1:00	1.3	55
17/01/22	2:00	3.1	10
17/01/22	3:00	2.7	26
17/01/22	4:00	1.8	24
17/01/22	5:00	2.7	13
17/01/22	6:00	3.1	63
17/01/22	7:00	2.7	52
17/01/22	8:00	2.7	17
17/01/22	9:00	2.2	50
17/01/22	10:00	2.2	13
17/01/22	11:00	1.8	95
17/01/22	12:00	1.3	223
17/01/22	13:00	1.8	229
17/01/22	14:00	1.3	231
17/01/22	15:00	2.2	239
17/01/22	16:00		228
		1.8 1.3	228
17/01/22	17:00	<del>i</del>	
17/01/22	18:00	0.9	292
17/01/22	19:00	1.3	350
17/01/22	20:00	0.9	347

17/01/22         21:00           17/01/22         22:00           17/01/24         0:00           17/01/24         1:00           17/01/24         1:00           17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         20:00           17/01/24         20:00           17/01/25         0:00           17/01/25         1:00           17/01/25         2:00           17/01/25         5:00	2 (24hrs) Ave 0.9 0.9 0.9 0.4 3.6 3.1 3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 2.2 3.1 3.1 3.1 4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	cal Data for Impact Monitoring in the crage of Wind Speed (m/s)	Average of Wind Direction(degree)  11 47 5 100 102 104 107 74 78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/22         21:00           17/01/22         22:00           17/01/24         0:00           17/01/24         1:00           17/01/24         1:00           17/01/24         1:00           17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         7:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         20:00           17/01/24         20:00           17/01/25         0:00           17/01/25         1:00           17/01/25         2:00           17/01/25         5:00	0.9 0.9 0.9 0.4 3.6 3.1 3.1 3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 2.2 2.2 3.1 3.1 3.1 4.3 3.6 4.3 3.6 4.3 3.6		11 47 5 100 102 104 107 74 78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         0:00           17/01/24         1:00           17/01/24         1:00           17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         5:00           17/01/24         7:00           17/01/24         8:00           17/01/24         10:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         19:00           17/01/24         20:00           17/01/24         20:00           17/01/24         20:00           17/01/24         23:00           17/01/25         1:00           17/01/25         2:00           17/01/25         3:00           17/01/25         5:00	0.4 3.6 3.1 3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		5 100 102 104 107 74 78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         0:00           17/01/24         1:00           17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         2:00           17/01/25         3:00           17/01/25         5:00	3.6 3.1 3.1 3.1 3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 2.2 2.2 3.1 3.1 3.1 4 3.6 4 3.6		100       102       104       107       74       78       66       82       84       93       124       115       231       120       109       111       105       122       115       94       99
17/01/24         1:00           17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         13:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         1:00           17/01/25         1:00           17/01/25         3:00           17/01/25         5:00	3.1 3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		102       104       107       74       78       66       82       84       93       124       115       231       120       109       111       105       122       115       94       99
17/01/24         2:00           17/01/24         3:00           17/01/24         4:00           17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         19:00           17/01/24         20:00           17/01/24         20:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         2:00           17/01/25         3:00           17/01/25         5:00	3.1 2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		104 107 74 78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24       3:00         17/01/24       4:00         17/01/24       5:00         17/01/24       6:00         17/01/24       7:00         17/01/24       8:00         17/01/24       9:00         17/01/24       10:00         17/01/24       11:00         17/01/24       12:00         17/01/24       13:00         17/01/24       14:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       3:00         17/01/25       3:00         17/01/25       5:00	2.2 1.3 0.9 0.9 1.3 2.2 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		107       74       78       66       82       84       93       124       115       231       120       109       111       105       122       115       94       99
17/01/24       4:00         17/01/24       5:00         17/01/24       6:00         17/01/24       7:00         17/01/24       8:00         17/01/24       9:00         17/01/24       10:00         17/01/24       11:00         17/01/24       12:00         17/01/24       13:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       23:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       5:00	1.3 0.9 0.9 1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		74 78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         22:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         3:00           17/01/25         5:00	0.9 0.9 1.3 2.2 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         5:00           17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         15:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         3:00           17/01/25         5:00	0.9 0.9 1.3 2.2 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		78 66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         6:00           17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         14:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         4:00           17/01/25         5:00	0.9 1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		66 82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24         7:00           17/01/24         8:00           17/01/24         9:00           17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         14:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         3:00           17/01/25         5:00	1.3 2.2 2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		82 84 93 124 115 231 120 109 111 105 122 115 94
17/01/24       8:00         17/01/24       9:00         17/01/24       10:00         17/01/24       11:00         17/01/24       12:00         17/01/24       13:00         17/01/24       14:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       3:00         17/01/25       3:00         17/01/25       5:00	2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		84 93 124 115 231 120 109 111 105 122 115 94
17/01/24       9:00         17/01/24       10:00         17/01/24       11:00         17/01/24       12:00         17/01/24       13:00         17/01/24       14:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	2.2 2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		93 124 115 231 120 109 111 105 122 115 94
17/01/24         10:00           17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         14:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         3:00           17/01/25         5:00	2.2 1.3 0.9 1.8 2.7 3.1 2.7 3.1 4 3.6 4 3.6		124 115 231 120 109 111 105 122 115 94
17/01/24         11:00           17/01/24         12:00           17/01/24         13:00           17/01/24         14:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         4:00           17/01/25         5:00	1.3 0.9 1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		115 231 120 109 111 105 122 115 94
17/01/24         12:00           17/01/24         13:00           17/01/24         14:00           17/01/24         15:00           17/01/24         16:00           17/01/24         17:00           17/01/24         18:00           17/01/24         19:00           17/01/24         20:00           17/01/24         21:00           17/01/24         23:00           17/01/25         0:00           17/01/25         1:00           17/01/25         3:00           17/01/25         4:00           17/01/25         5:00	0.9 1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		231 120 109 111 105 122 115 94
17/01/24       13:00         17/01/24       14:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       3:00         17/01/25       3:00         17/01/25       5:00	1.8 2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		120 109 111 105 122 115 94 99
17/01/24       14:00         17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	2.7 3.1 2.7 3.1 3.1 4 3.6 4 3.6		109 111 105 122 115 94
17/01/24       15:00         17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       23:00         17/01/25       1:00         17/01/25       1:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	3.1 2.7 3.1 3.1 4 3.6 4 3.6		111 105 122 115 94 99
17/01/24       16:00         17/01/24       17:00         17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	2.7 3.1 3.1 4 3.6 4 3.6		105 122 115 94 99
17/01/24     17:00       17/01/24     18:00       17/01/24     19:00       17/01/24     20:00       17/01/24     21:00       17/01/24     22:00       17/01/24     23:00       17/01/25     1:00       17/01/25     2:00       17/01/25     3:00       17/01/25     4:00       17/01/25     5:00	3.1 3.1 4 3.6 4 3.6		122 115 94 99
17/01/24       18:00         17/01/24       19:00         17/01/24       20:00         17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	3.1 4 3.6 4 3.6		115 94 99
17/01/24     19:00       17/01/24     20:00       17/01/24     21:00       17/01/24     22:00       17/01/24     23:00       17/01/25     0:00       17/01/25     1:00       17/01/25     3:00       17/01/25     4:00       17/01/25     5:00	4 3.6 4 3.6		94 99
17/01/24       20:00         17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	3.6 4 3.6		99
17/01/24       21:00         17/01/24       22:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	3.6		
17/01/24       22:00         17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00	3.6		1100
17/01/24       23:00         17/01/25       0:00         17/01/25       1:00         17/01/25       2:00         17/01/25       3:00         17/01/25       4:00         17/01/25       5:00			102
17/01/25     0:00       17/01/25     1:00       17/01/25     2:00       17/01/25     3:00       17/01/25     4:00       17/01/25     5:00			93
17/01/25     1:00       17/01/25     2:00       17/01/25     3:00       17/01/25     4:00       17/01/25     5:00			87
17/01/25     2:00       17/01/25     3:00       17/01/25     4:00       17/01/25     5:00	2.7		91
17/01/25     3:00       17/01/25     4:00       17/01/25     5:00	1.3		88
17/01/25     4:00       17/01/25     5:00	1.3		113
17/01/25 5:00	1.8		94
	1.3		95
117/01/05	1.8		104
17/01/25 6:00	0.9		109
17/01/25 7:00	0		-
17/01/25 8:00	0.4		202
17/01/25 9:00	1.3		224
17/01/25 10:00			225
17/01/25 11:00			204
17/01/25 12:00			87
17/01/25 13:00			215
17/01/25 14:00			211
17/01/25 15:00			226
17/01/25 16:00			229
17/01/25 17:00	2.2		105
17/01/25 18:00	3.1		84
17/01/25 19:00	3.6		92
17/01/25 20:00	3.6		100
17/01/25 21:00	2.7		107
17/01/25 22:00	2.2		75
17/01/25 23:00	2.2		91
17/01/27 0:00	2.2		74
17/01/27 1:00	1.3		69
17/01/27 2:00	1.3		72
17/01/27 3:00	1.3		82
17/01/27 4:00			55
17/01/27 5:00	1.3		41

Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)	
17/01/27	6:00	0.4	349	
17/01/27	7:00	1.3	351	
17/01/27	8:00	1.3	20	
17/01/27	9:00	1.8	122	
17/01/27	10:00	2.2	16	
17/01/27	11:00	1.8	223	
17/01/27	12:00	1.3	241	
17/01/27	13:00	1.3	268	
17/01/27	14:00	1.3	254	
17/01/27	15:00	1.3	261	
17/01/27	16:00	1.3	231	
17/01/27	17:00	0.4	239	
17/01/27	18:00	1.8	82	
17/01/27	19:00	0.4	82	
17/01/27	20:00	0.9	74	
17/01/27	21:00	1.3	53	
17/01/27	22:00	1.3	66	
17/01/27	23:00	0.9	58	
17/01/28	0:00	0.9	61	
17/01/28	1:00	1.3	92	
17/01/28	2:00	1.8	101	
17/01/28	3:00	1.8	96	
17/01/28	4:00	1.8	88	
17/01/28	5:00	3.1	99	
17/01/28	6:00	4	100	
17/01/28	7:00	2.7	106	
17/01/28	8:00	2.7	93	
17/01/28	9:00	3.1	103	
17/01/28	10:00	2.7	115	
17/01/28	11:00	2.2	108	
17/01/28	12:00	2.2	124	
17/01/28	13:00	2.2	93	
17/01/28	14:00	3.1	113	
17/01/28	15:00	2.7	108	
17/01/28	16:00	1.8	102	
17/01/28	17:00	1.3	85	
17/01/28	18:00	0.9	96	
17/01/28	19:00	0.4	68	
17/01/28	20:00	1.3	93	
17/01/28	21:00	1.3	104	
17/01/28	22:00	0.9	95	
17/01/28	23:00	2.2	87	

## Appendix I

## Impact Water Quality Monitoring Results

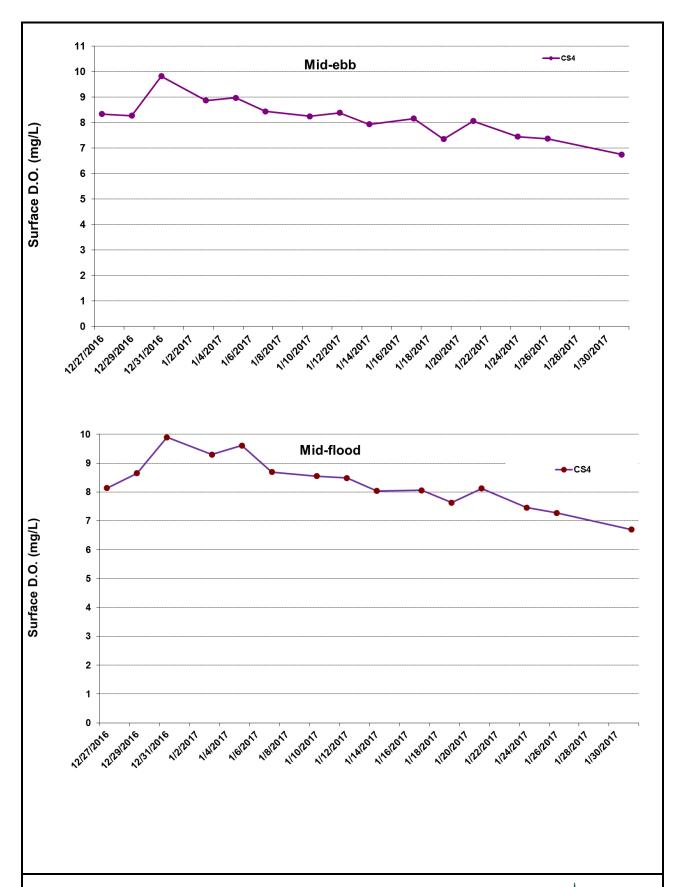



Figure I1 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



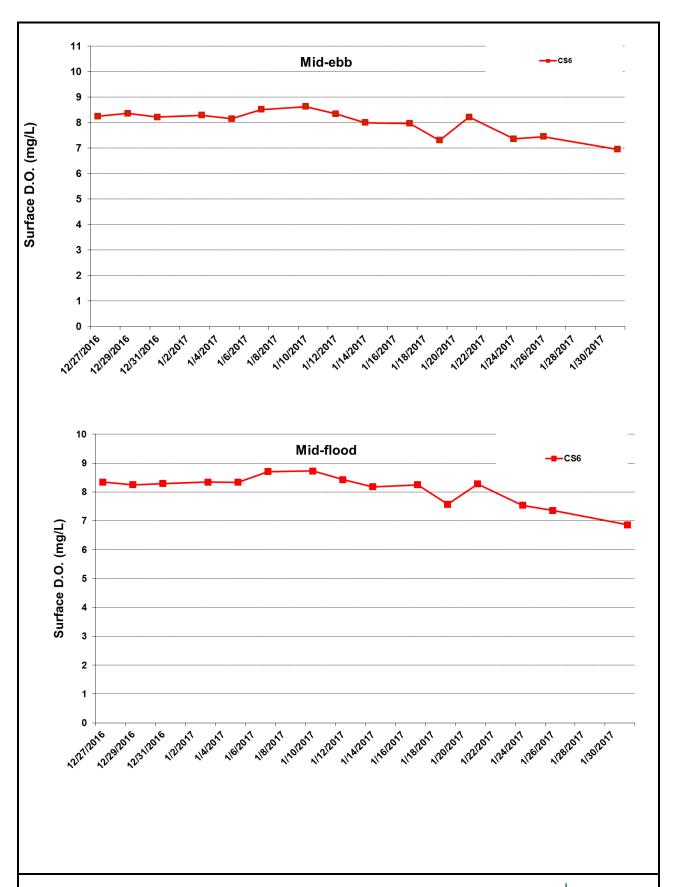



Figure I2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



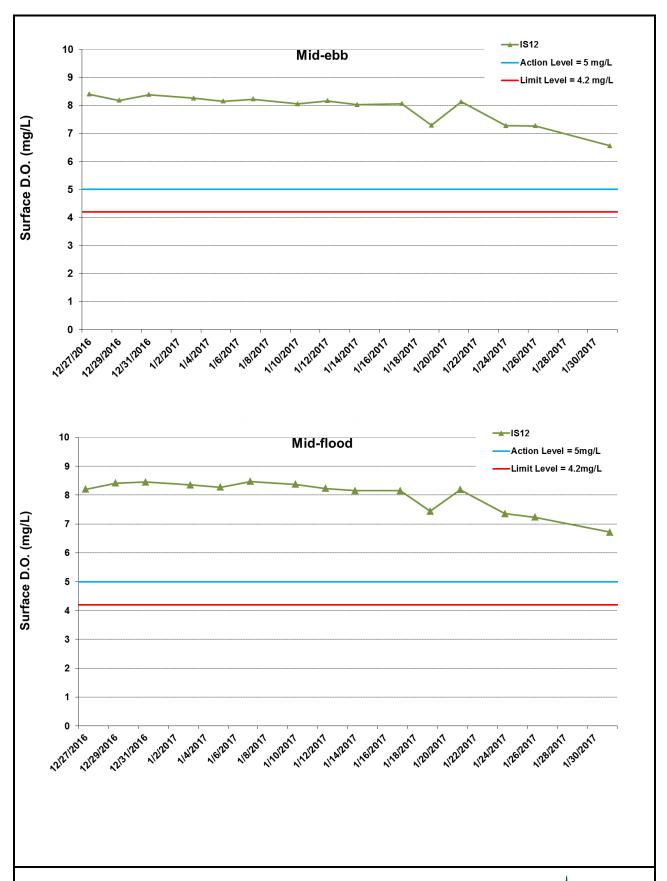



Figure I3 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



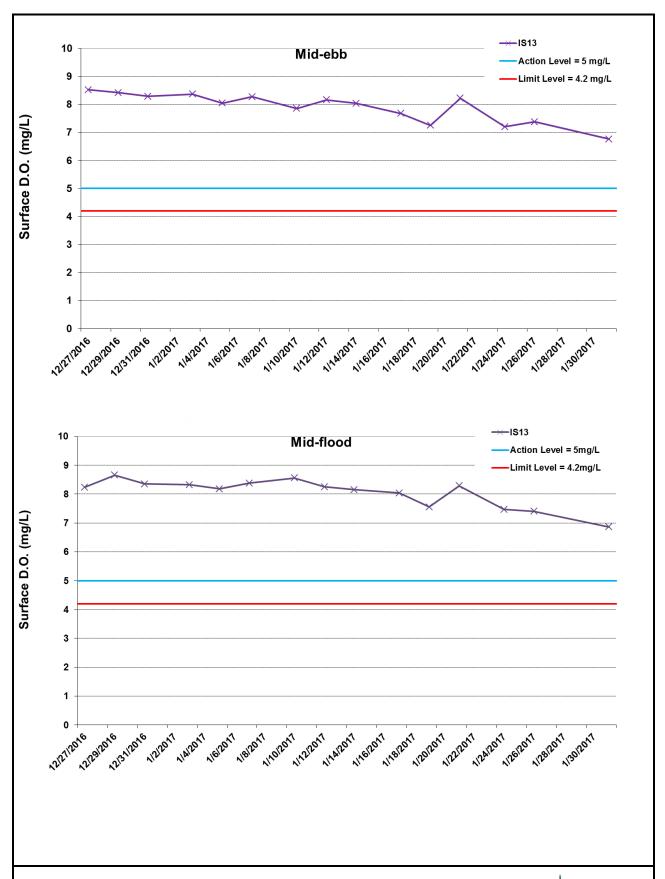



Figure I4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



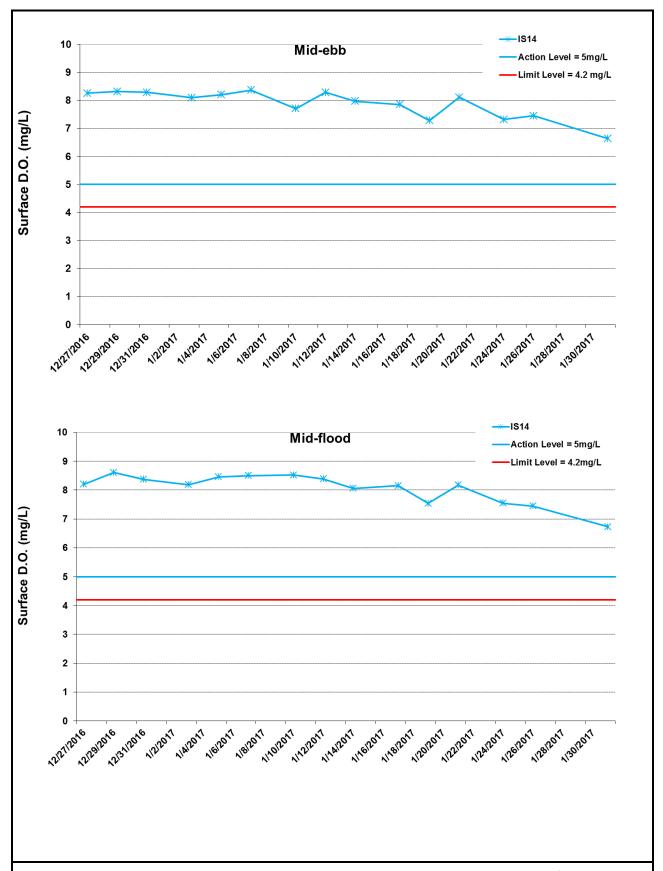



Figure I5 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



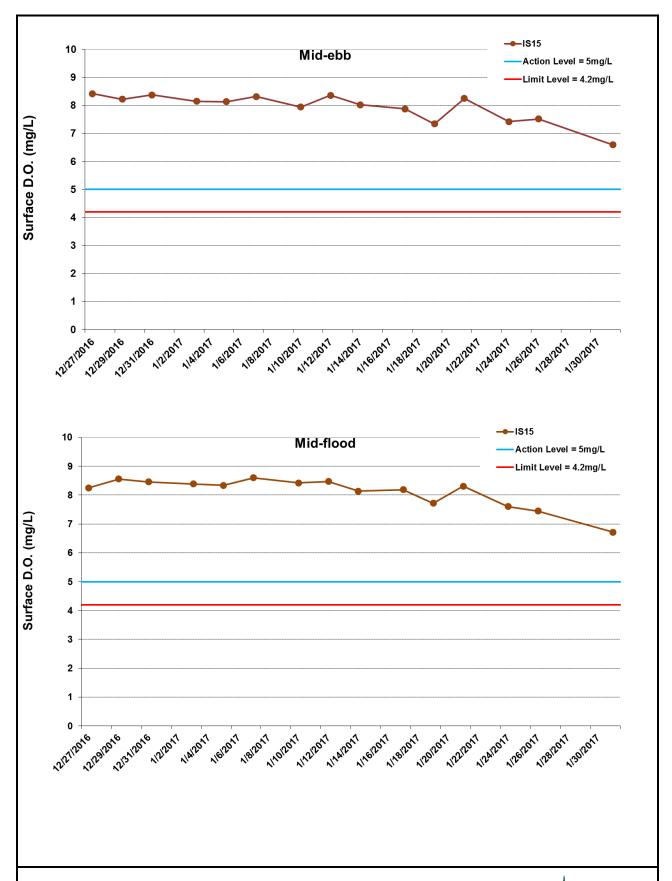



Figure I6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



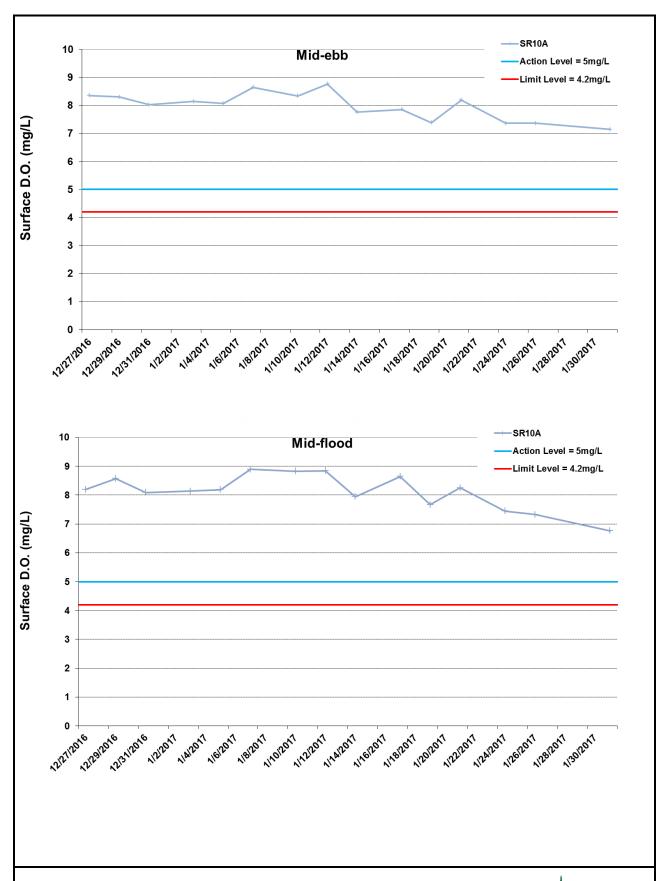



Figure I7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



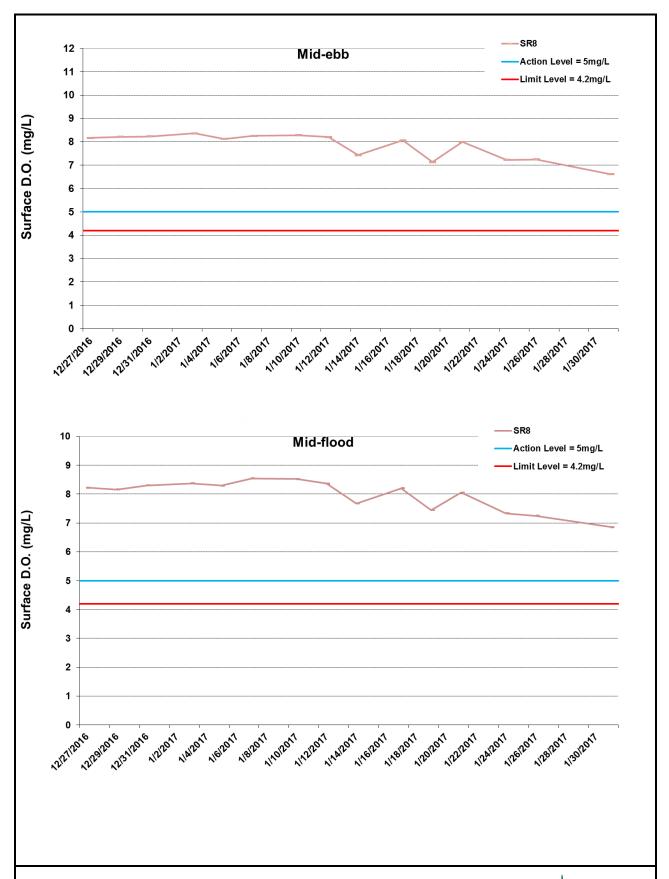



Figure I8 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



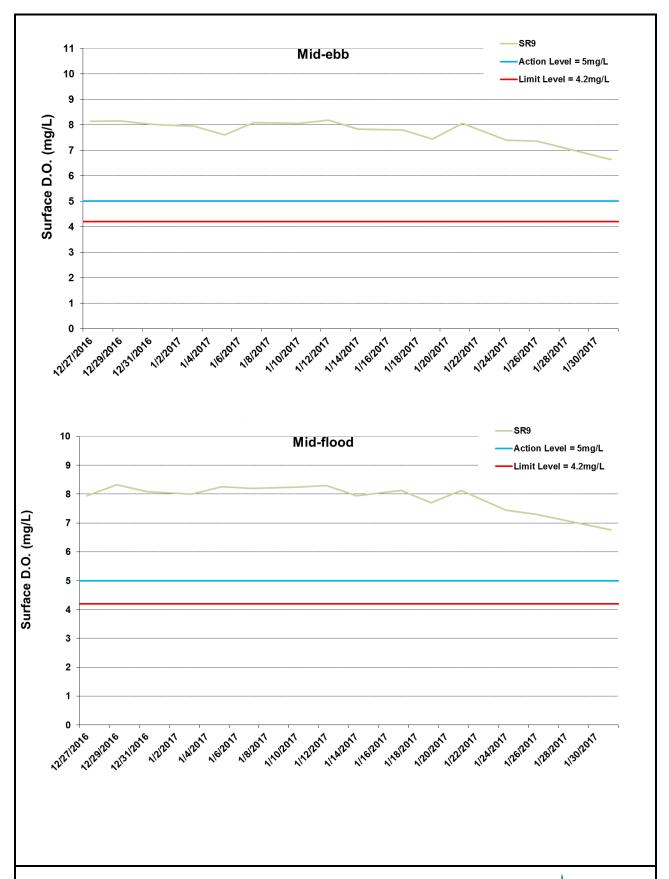



Figure I9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 January 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



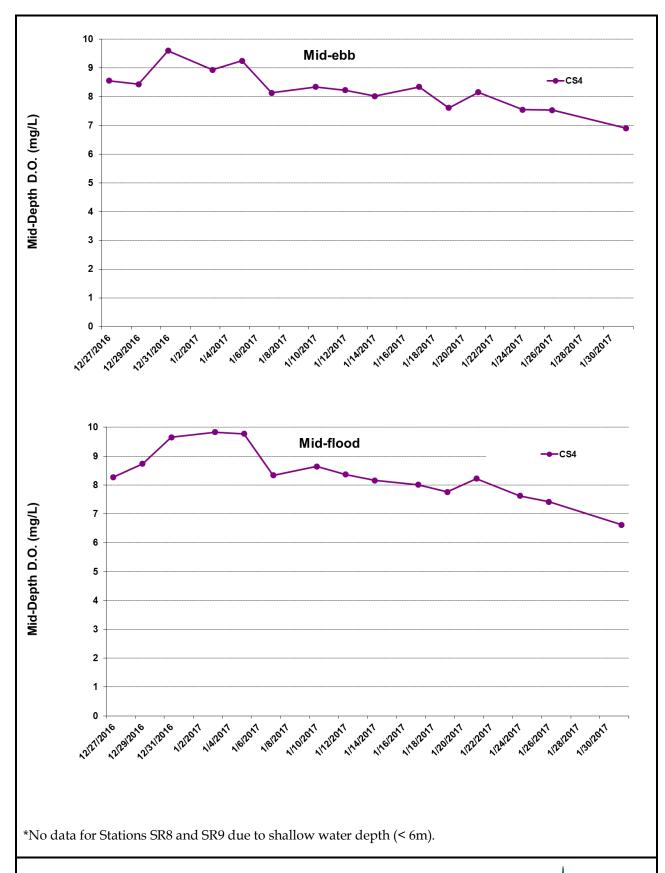



Figure I10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



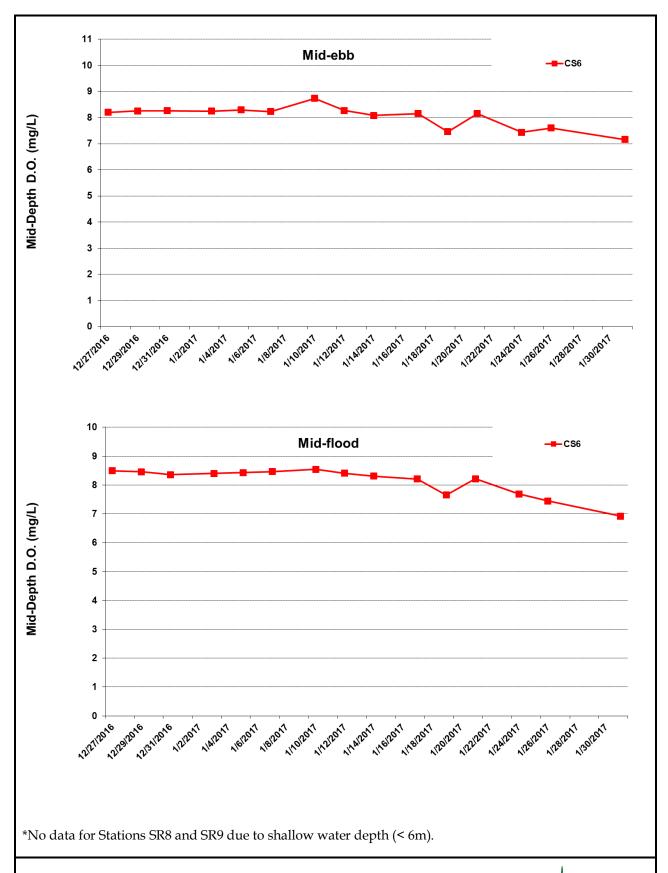



Figure I11 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



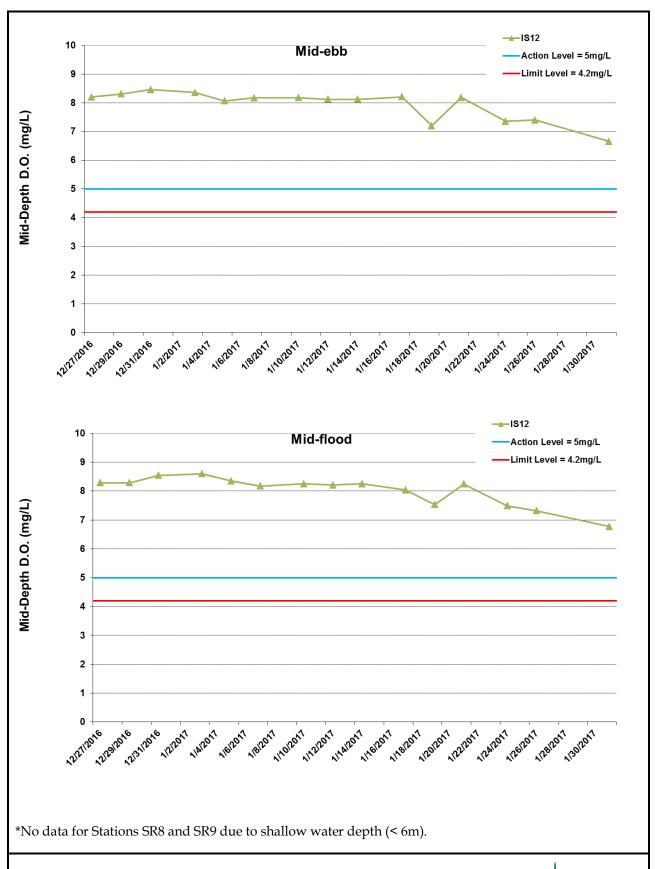



Figure I12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



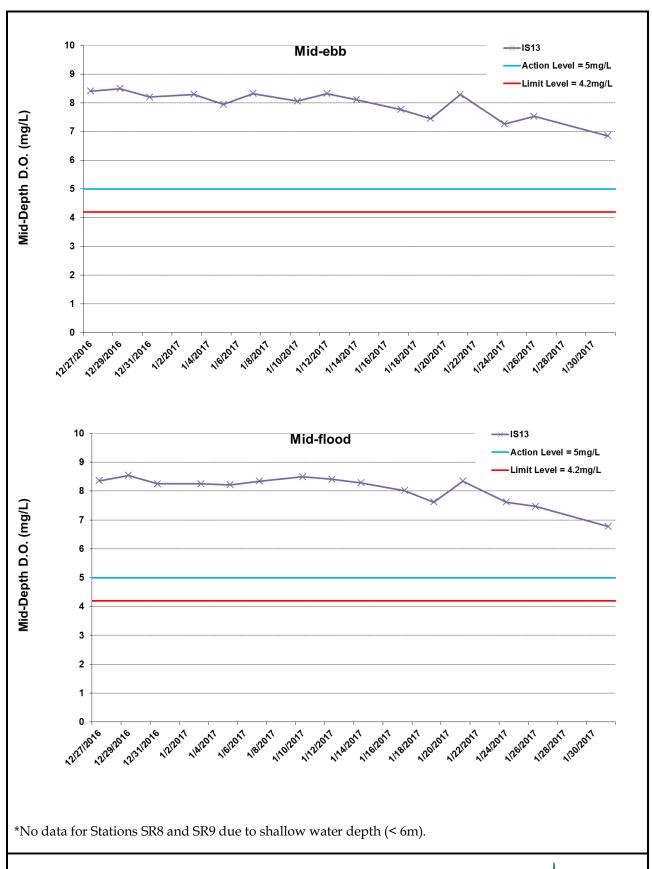



Figure I13 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



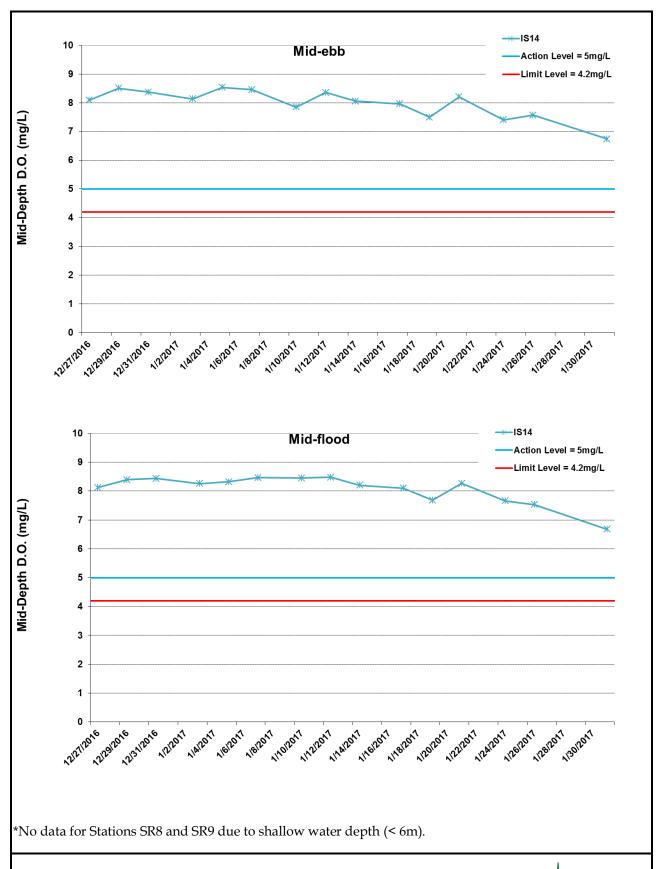



Figure I14 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



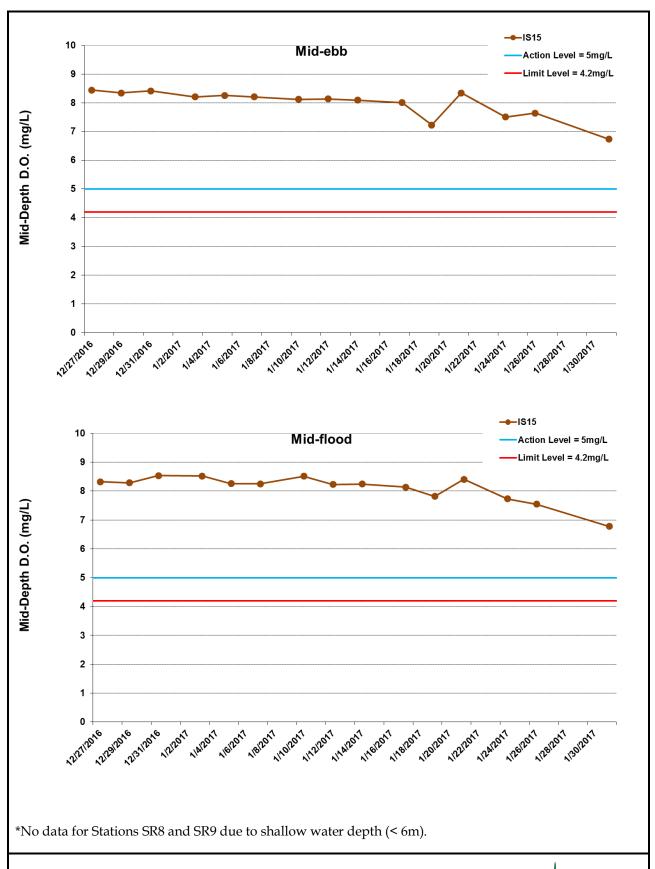



Figure I15 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



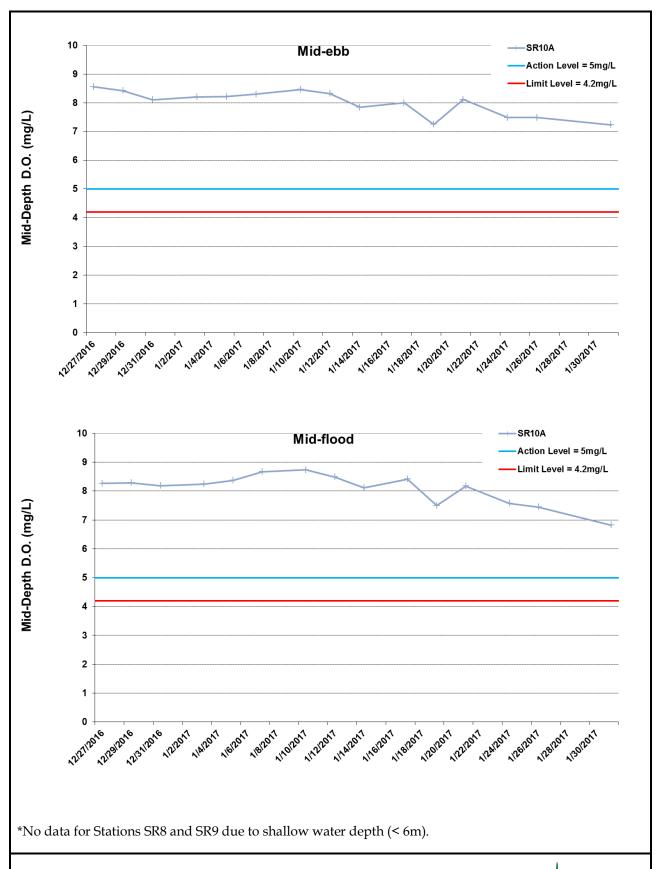



Figure I16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 January 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



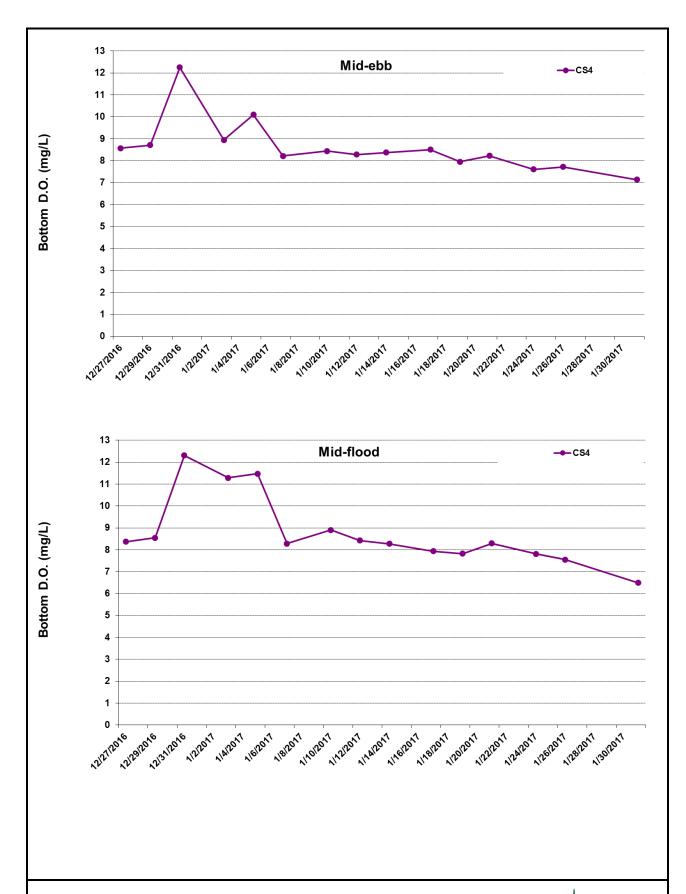



Figure I17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



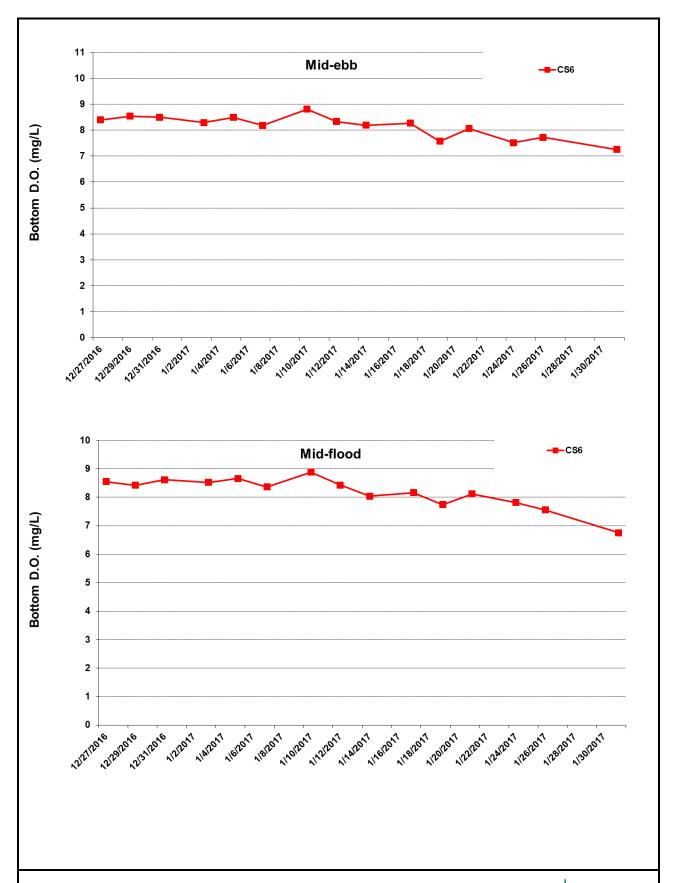



Figure I18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



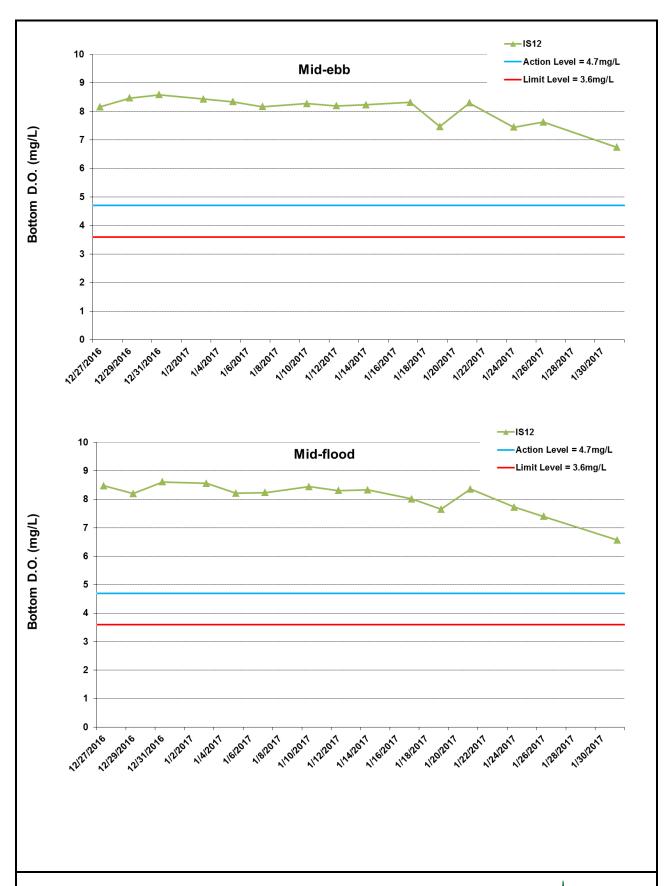



Figure I19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



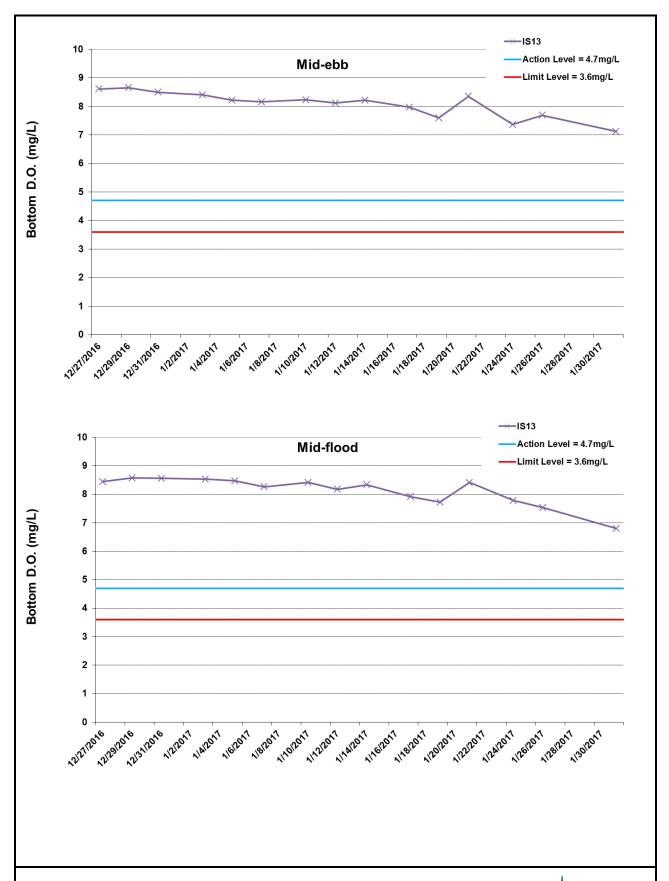



Figure I20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



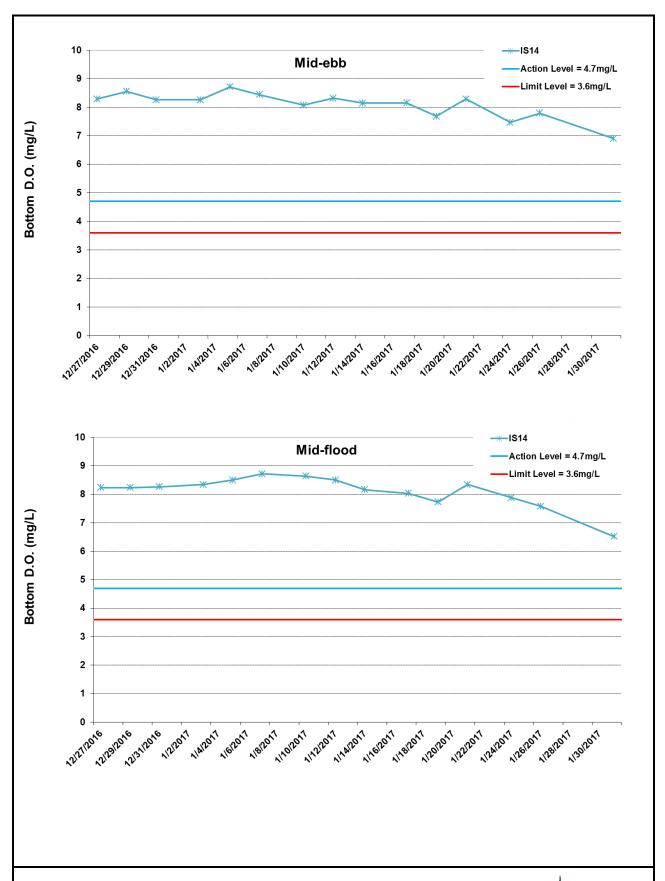



Figure I21 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



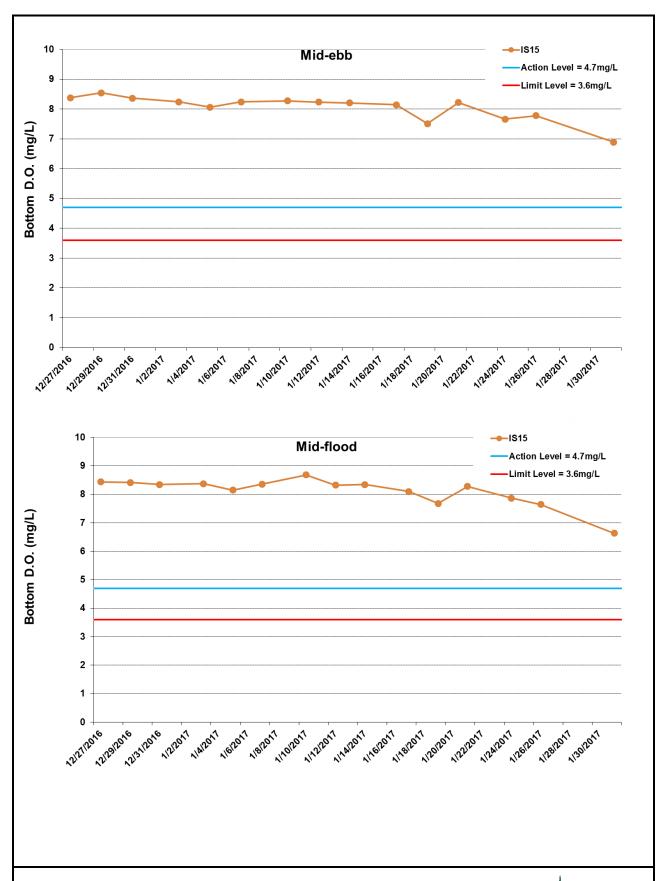



Figure I22 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 - 14/1/2017). WQM was resumed on 27/12/2016.



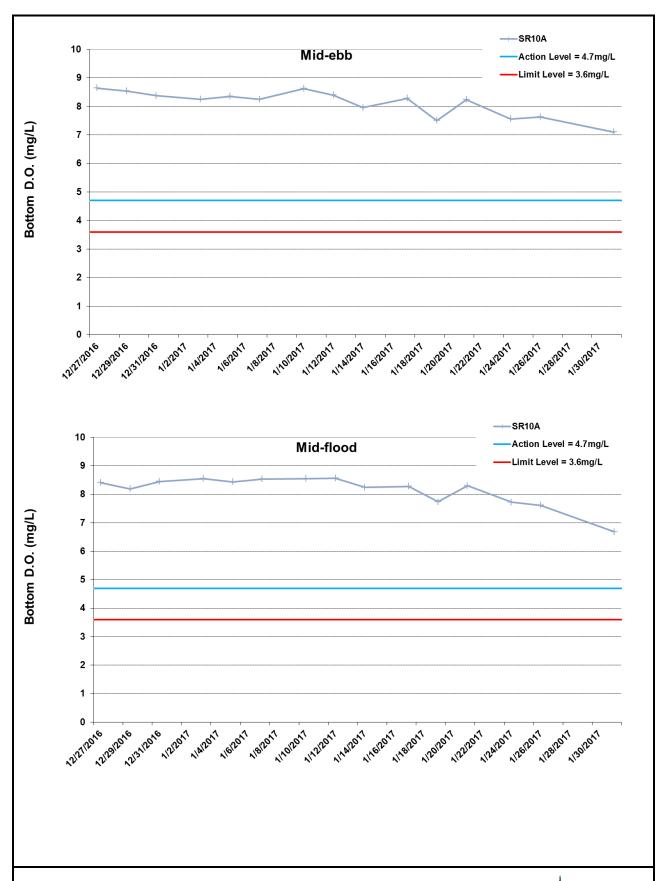



Figure I23 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 - 14/1/2017). WQM was resumed on 27/12/2016.



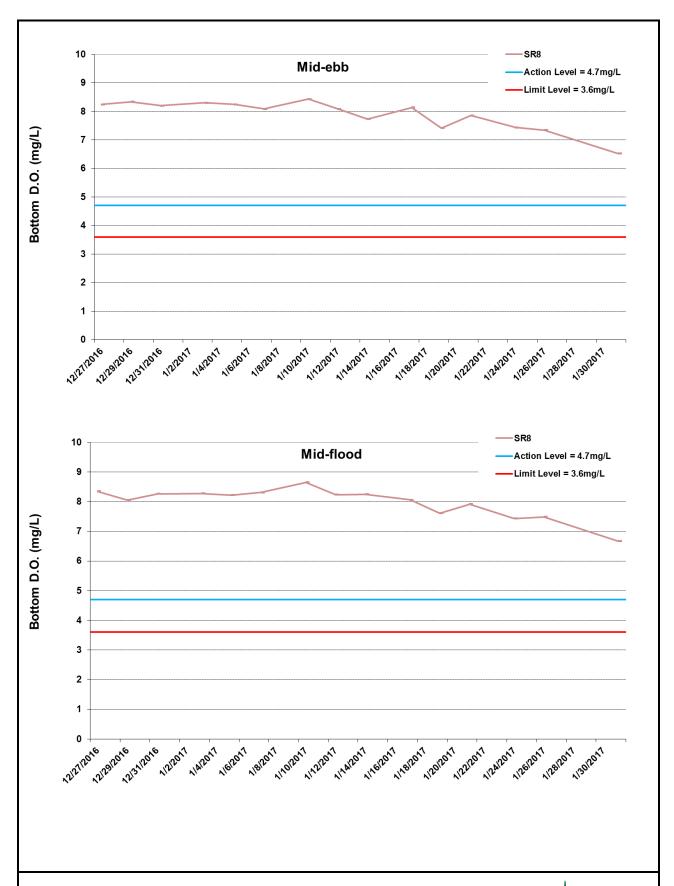



Figure I24 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



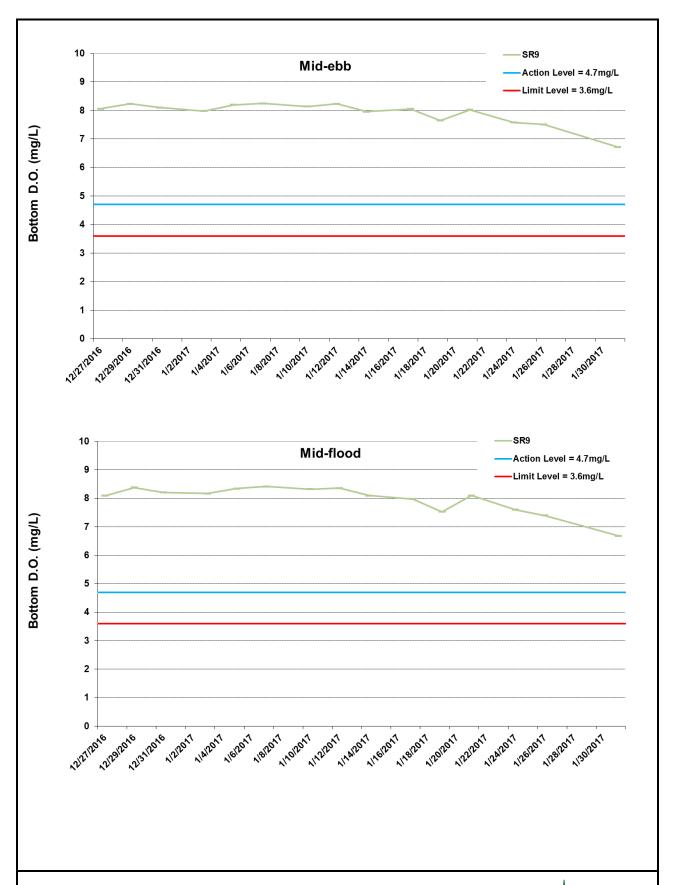



Figure I25 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 January 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



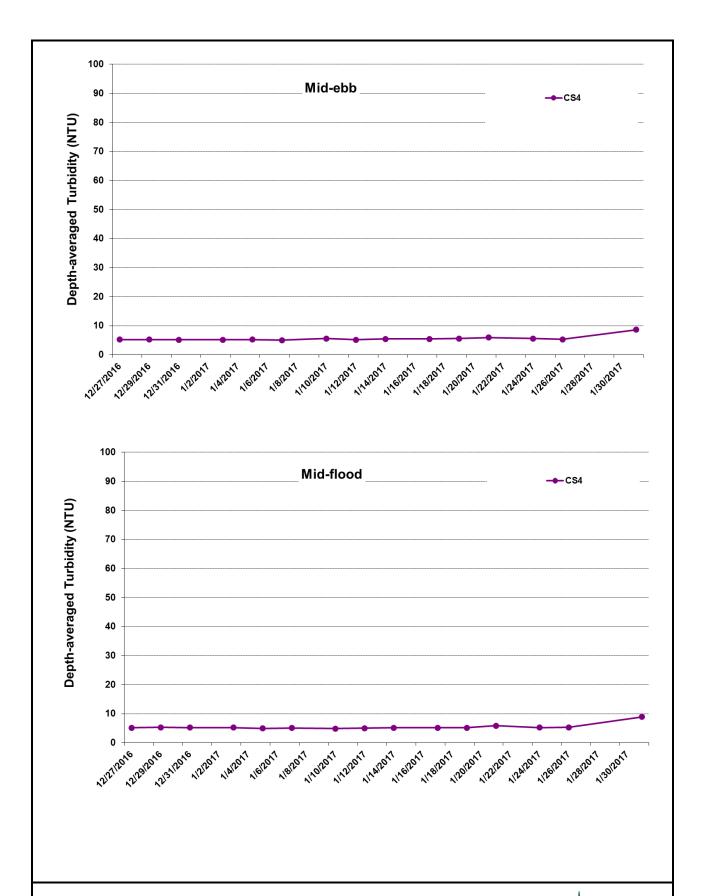



Figure I26 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



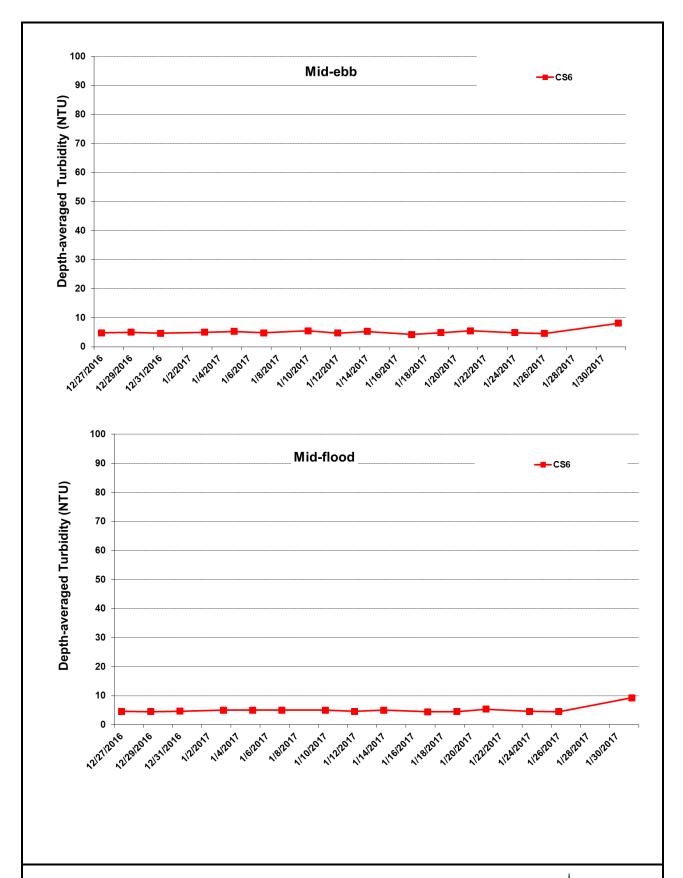



Figure I27 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



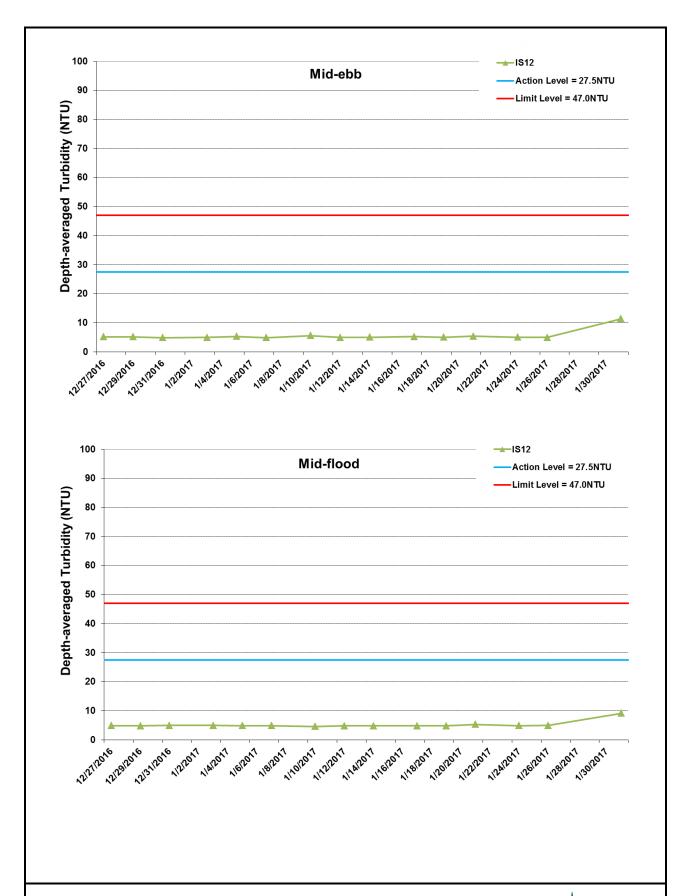



Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 - 14/1/2017). WQM was resumed on 27/12/2016.



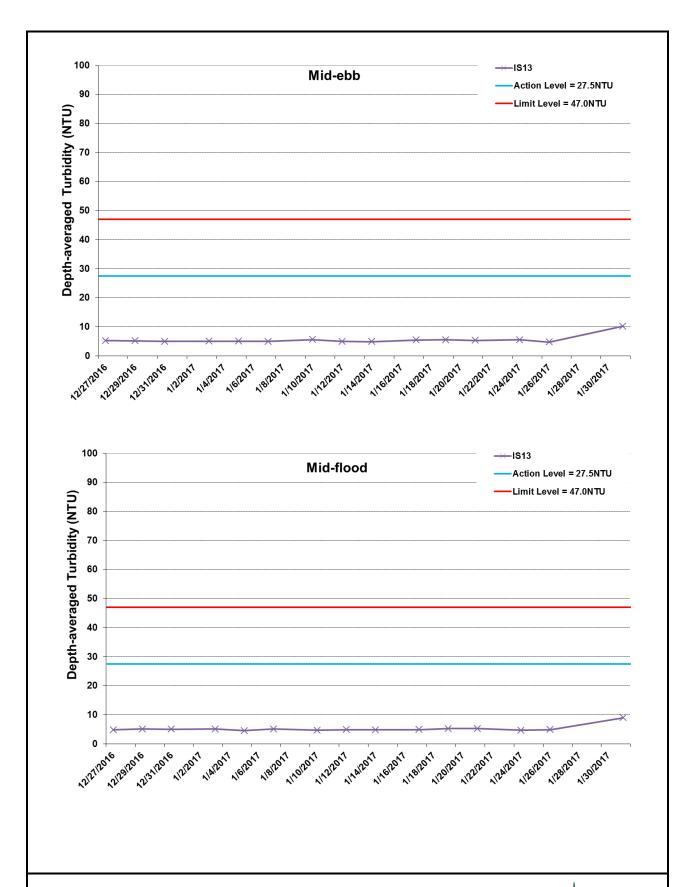



Figure I29 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



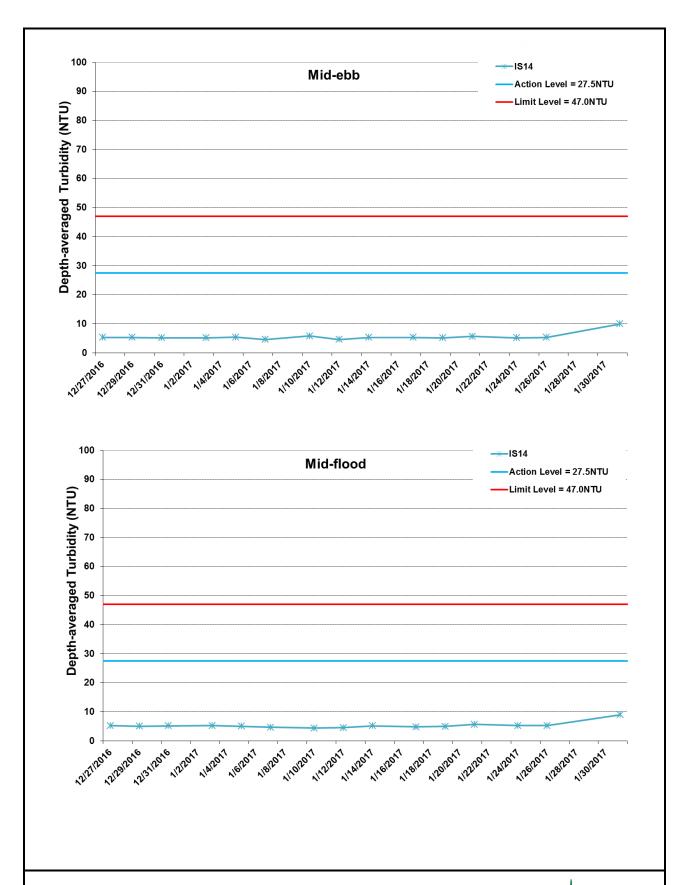



Figure I30 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.





Figure I31 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



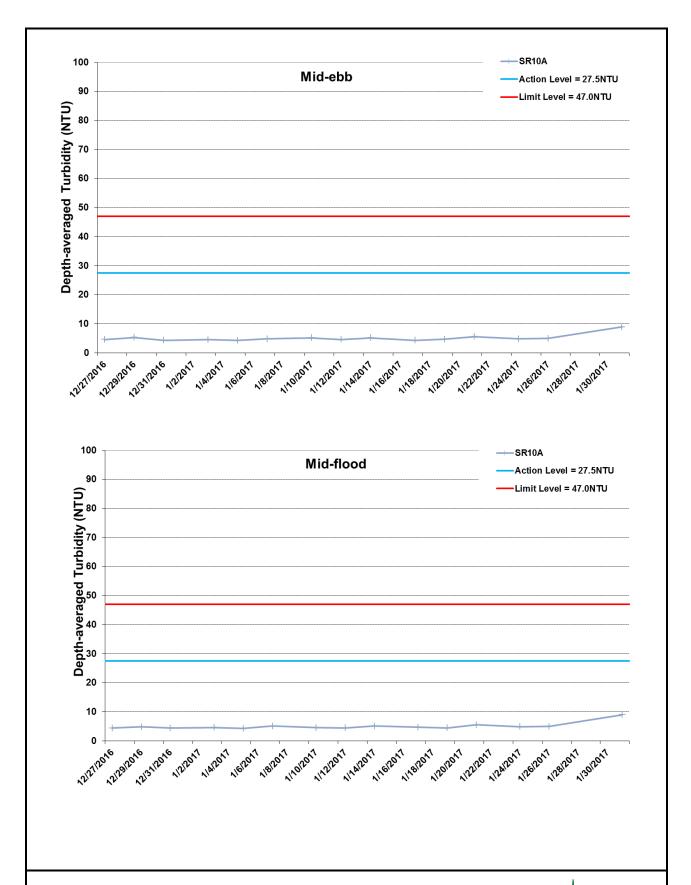



Figure I32 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



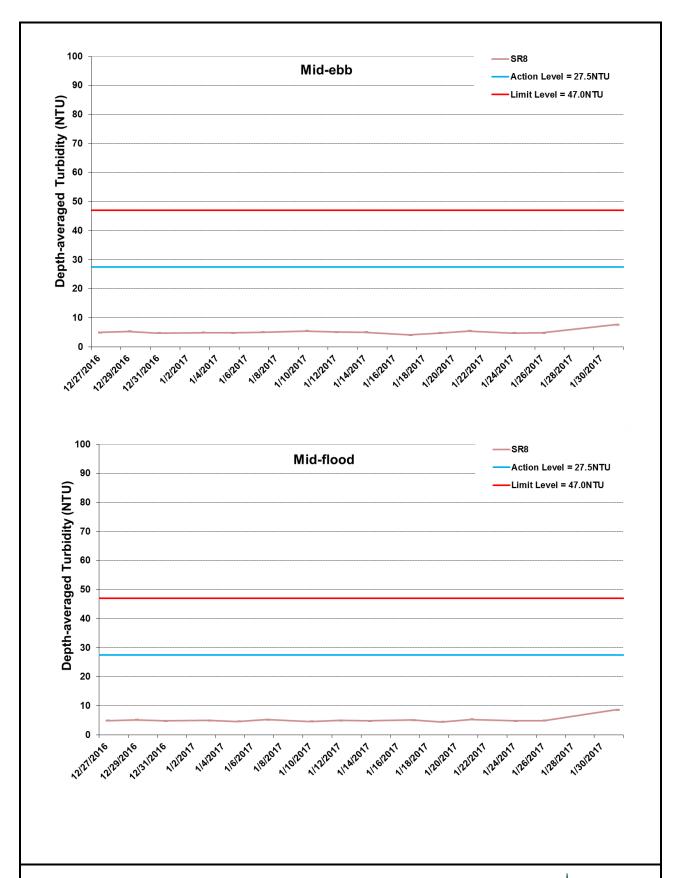



Figure I33 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



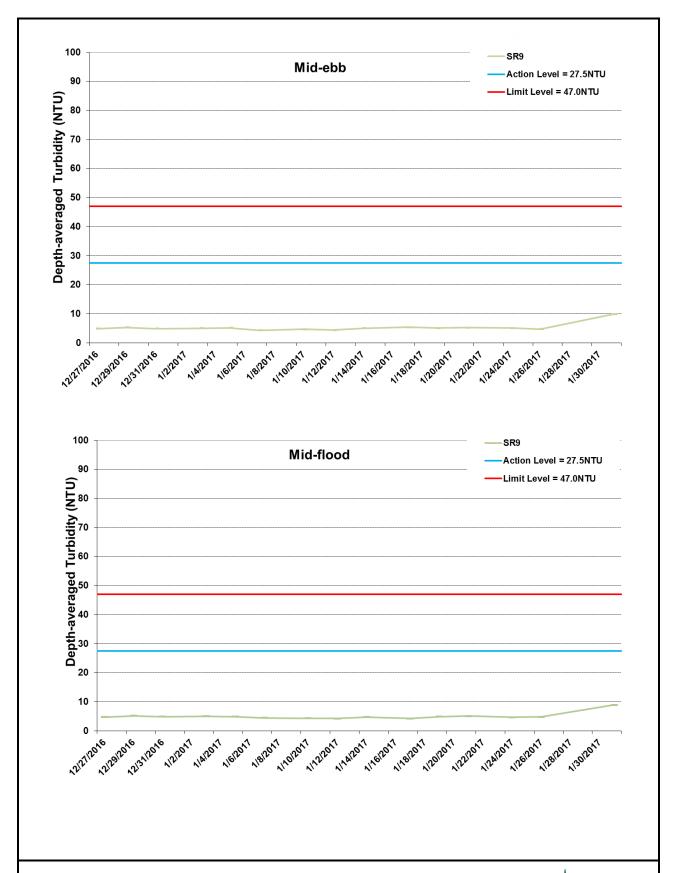



Figure I34 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 January 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



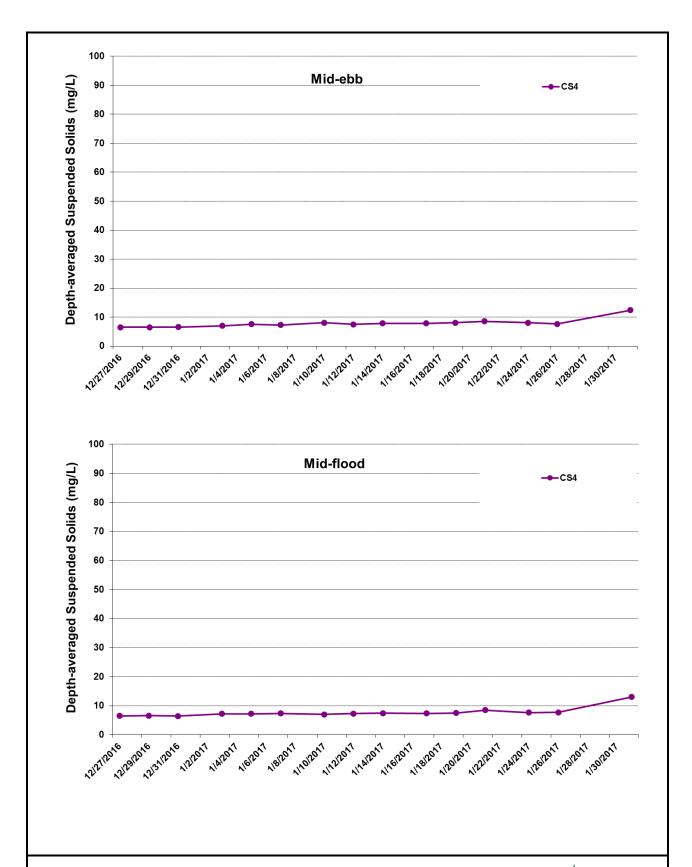



Figure I35 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



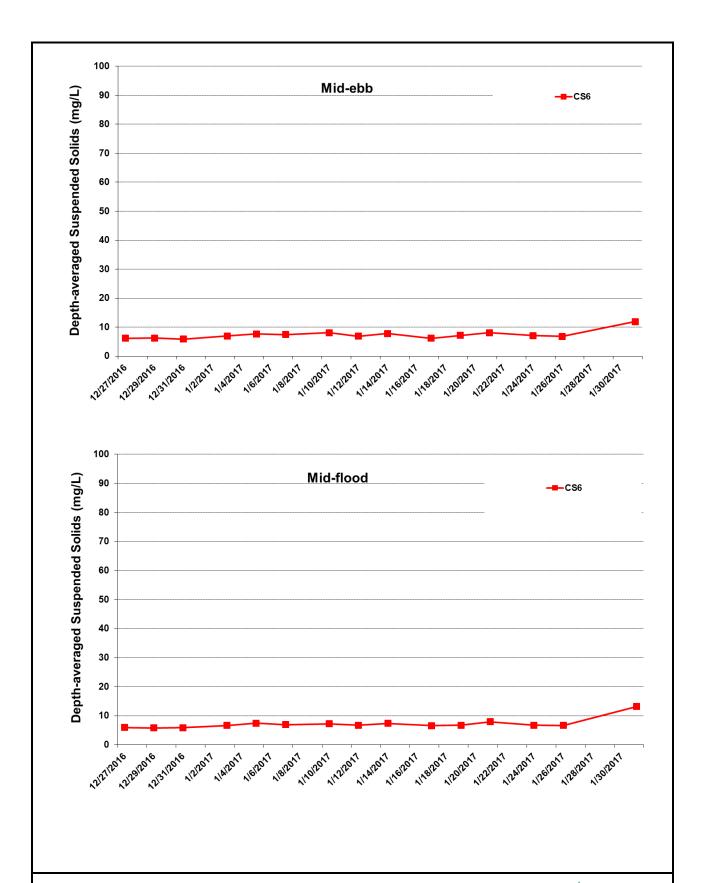



Figure I36 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



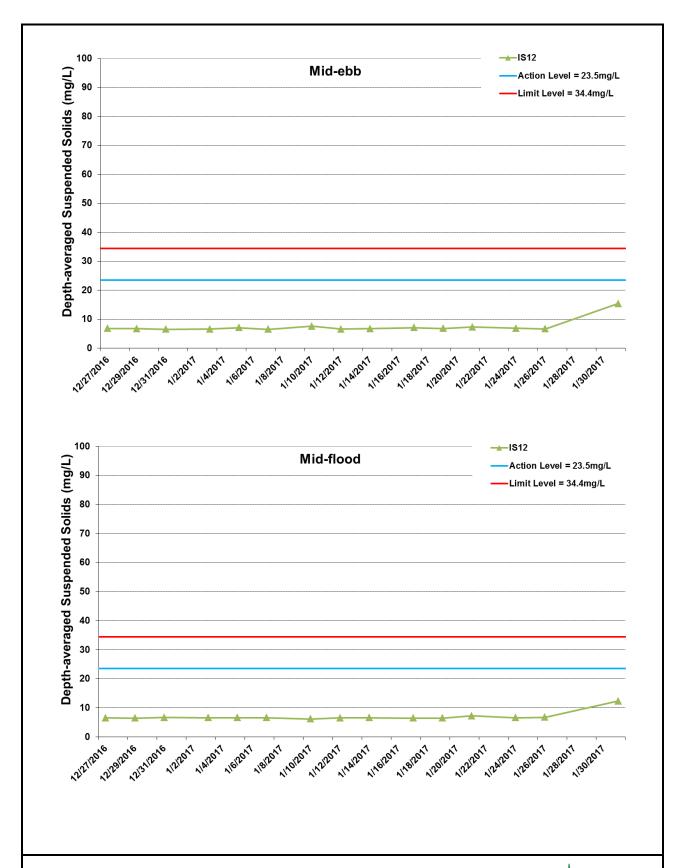



Figure I37 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



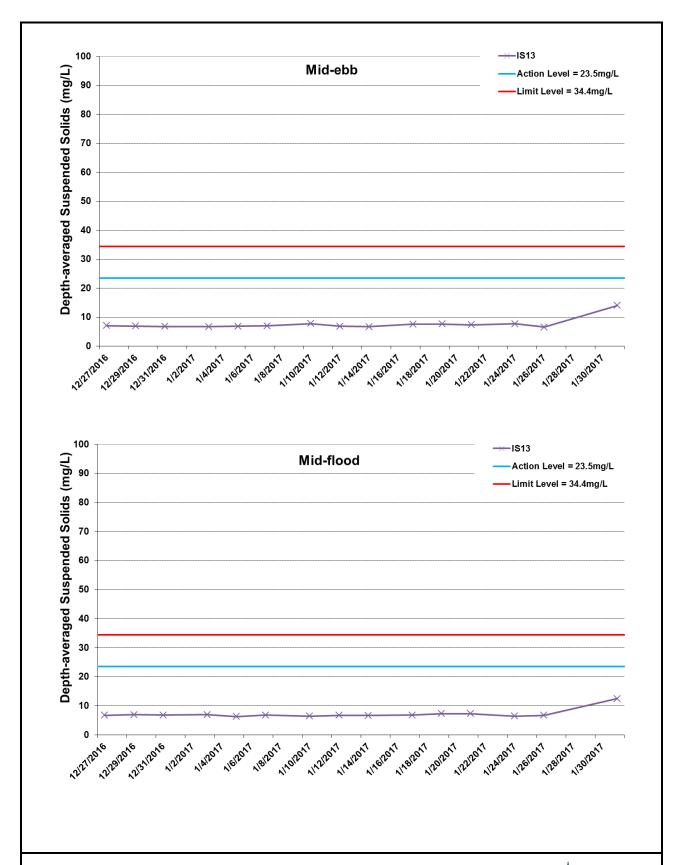



Figure I38 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



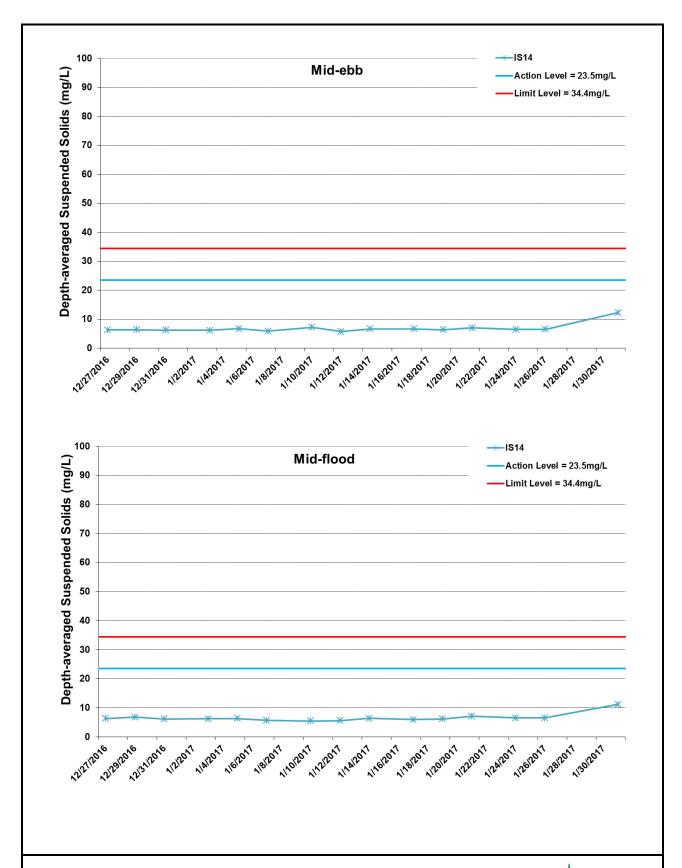



Figure I39 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



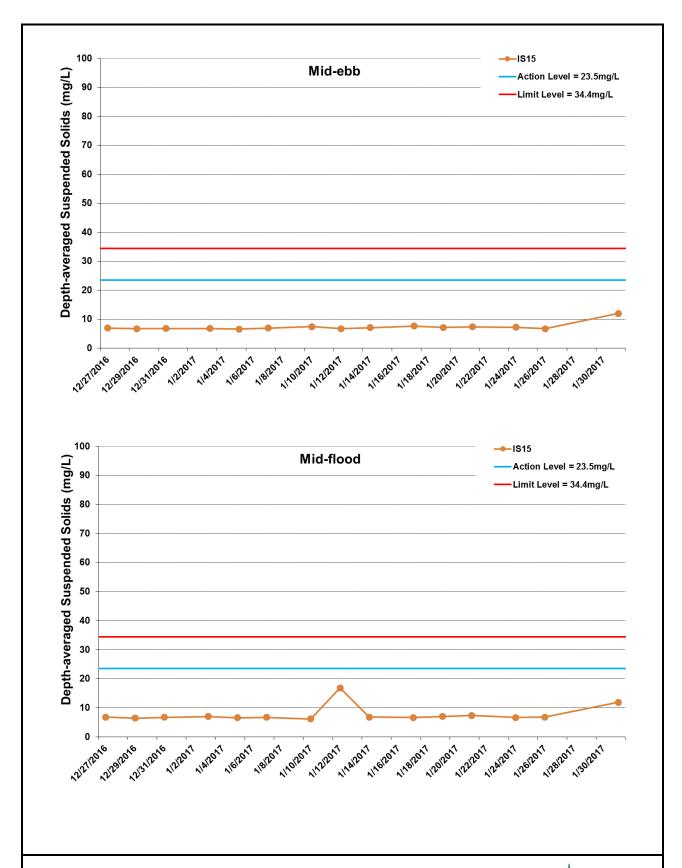



Figure I40 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



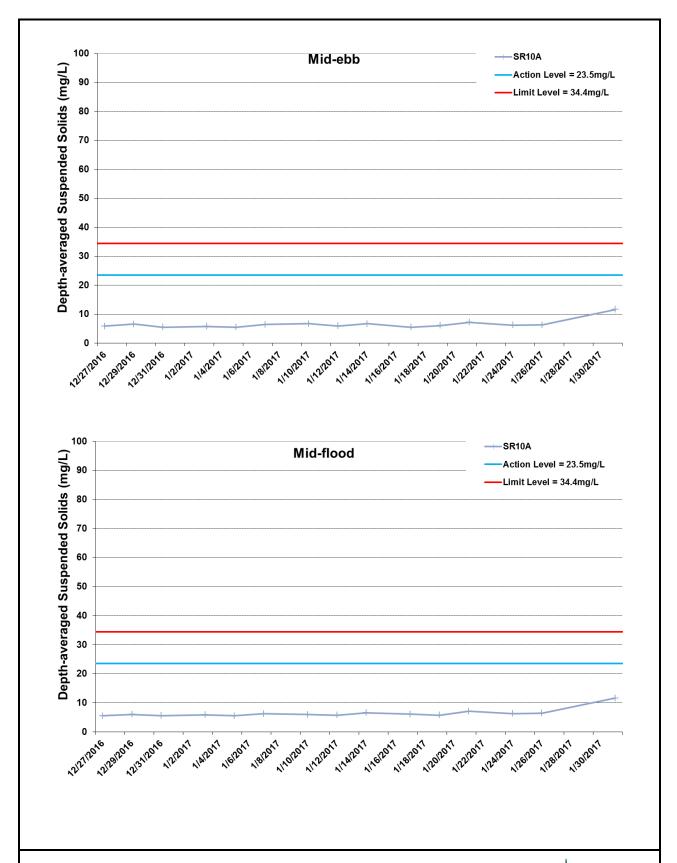



Figure I41 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



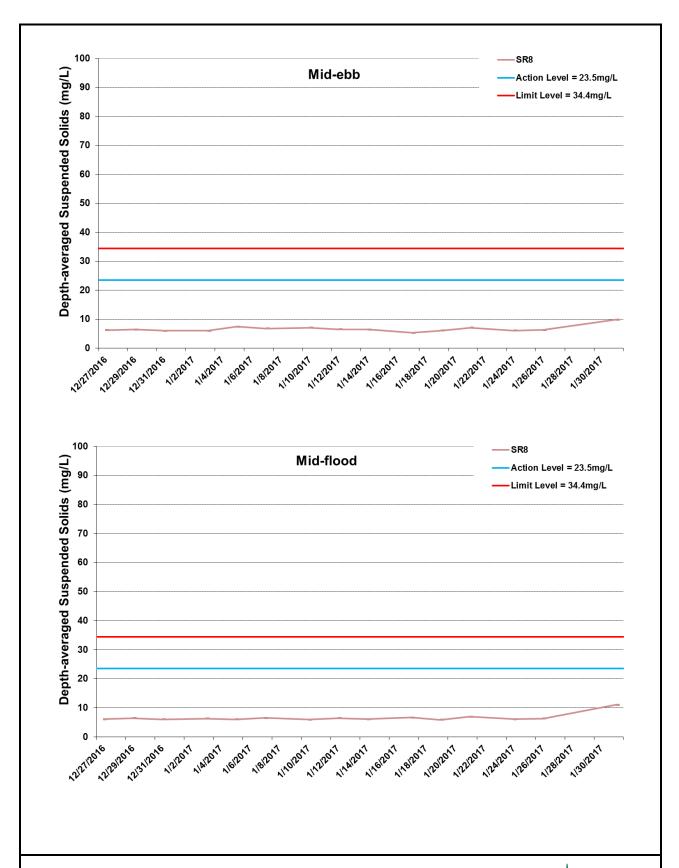



Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



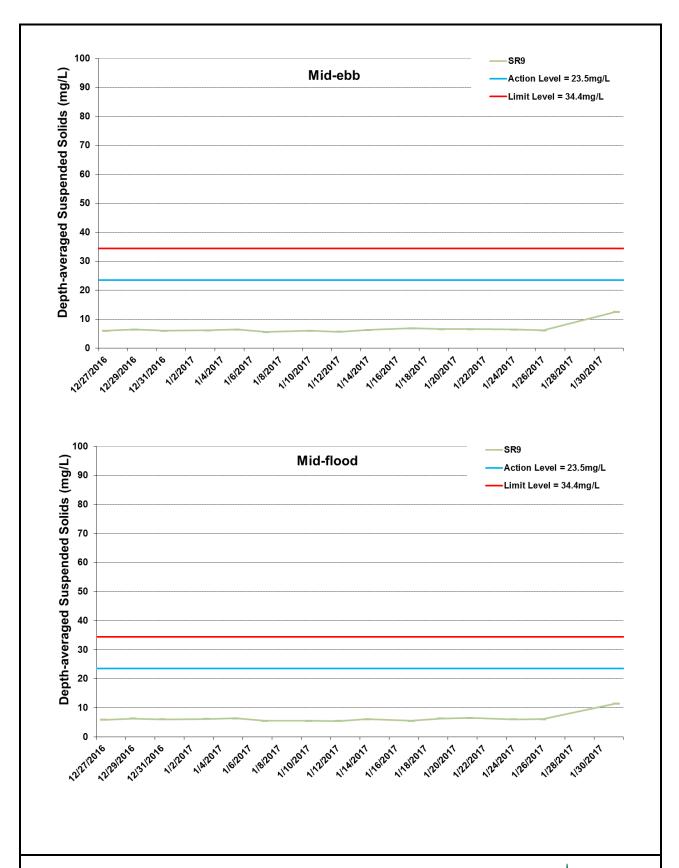



Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 January 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Dredging at Portion N-A (27/12/2016 – 14/1/2017). WQM was resumed on 27/12/2016.



Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Surface	1	1	1	12:23	20.9	8.14	28.1	9.28	5.04	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Surface	1	1	2	12:23	20.9	8.1	28.2	9.32	5.06	7.2
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Middle	9.3	2	1	12:23	21	8.23	28.2	9.82	5.22	7.1
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Middle	9.3	2	2	12:23	21	8.27	28.2	9.84	5.24	7.3
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Bottom	17.6	3	1	12:23	21.1	8.12	28.4	11.32	5.33	7.3
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS4	Bottom	17.6	3	2	12:23	21.1		28.4	11.26	5.36	7.5
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS6	Surface	1	1	1	10:10	21.2	7.99	28	8.34	5.04	6.6
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS6	Surface	1	1	2	10:10	21.2	8.01	28.1	8.35	4.98	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	•		6.8	2	1	10:10	21.2	7.94	28.2	8.38	4.88	6.4
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	CS6	Middle	6.8	2	2	10:10	21.2		28.2	8.42	4.92	6.6
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	•	Bottom	12.5	3	1	10:10	21.2		28.3	8.54	5.14	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	1		12.5	3	2	10:10	21	7.9	28.3	8.5	5.22	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood				Surface	1	1	1	11:49	21		28.1	8.34	4.74	6.4
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave	•	Surface	1	1	2	11:49	21.1		28.2	8.36	4.78	6.4
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	<u> </u>				6.9	2	1	11:49	21.1		28.2	8.58	4.87	6.4
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave			6.9	2	2	11:49	21.1		28.1	8.62	4.84	6.6
	HY/2012/08	2017-01-03	Mid-Flood					12.8	3	1	11:49				8.54	5.22	6.9
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny				12.8	3	2	11:49			28.2	8.58	5.18	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	· · · · · · · · · · · · · · · · · · ·	Small wave	•	Surface	1	1	1	11:30	21		28.2	8.34	4.94	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave		Surface	1	1	2	11:30	21.1		28.1	8.3	5	6.9
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave	•		5.7	2	1	11:30	21.1	_	28.2	8.26	5.08	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood			•		5.7	2	2	11:30		8.1	28.2	8.24	5.04	7
	HY/2012/08	2017-01-03	Mid-Flood		Small wave			10.4	2	1	11:30	21		28.3	8.5	5.23	7.1
	HY/2012/08	2017-01-03	Mid-Flood					10.4	2	2	11:30	21		28.2	8.56	5.28	7.1
TMCLKL		2017-01-03						10.4	ا ا	1			7.93		8.18		6.1
	HY/2012/08		Mid-Flood			•	Surface	1	1	2	12:06	20.9		28.1		5.14	
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave	•	Surface	  C	1	4	12:06	20.9	7.9	28.2	8.2	5.18	6.3
		2017-01-03		<del> </del>		•		6	2	1		21	7.83		8.24	5.27	6.3
	HY/2012/08		Mid-Flood	Sunny		•		6	2	4		20.9		28.2	8.28	5.32	6.3
			Mid-Flood					11	3	1		21.1			8.33	5.2	6
			Mid-Flood	i i		•		11	3	2		21.1		28.4	8.36	5.22	6.4
	HY/2012/08		Mid-Flood	Sunny			Surface	1	1	1		21.1			8.38	5.06	6.8
	HY/2012/08						Surface	1	1	2			8.02		8.4	5.04	6.8
	HY/2012/08		Mid-Flood	Sunny				5.3	2	1				28.1	8.54	5.28	7.1
	HY/2012/08		Mid-Flood					5.3	2	2					8.51	5.24	6.9
			Mid-Flood			•		9.6	3	1				28.2	8.39	5.34	7.2
	HY/2012/08		Mid-Flood	Sunny				9.6	3	2		21.1		28.1	8.36	5.3	7.2
	HY/2012/08		Mid-Flood			•	Surface	1	1	1	•	21.1	7.86		8.38	4.92	6.1
	HY/2012/08		Mid-Flood	Sunny		•	Surface	1	1	2		21	7.88	28.1	8.36	4.99	6.5
	HY/2012/08		Mid-Flood	Sunny		•	Middle		2	1	10:46						
	HY/2012/08		Mid-Flood				Middle		2	2	10:46						<del></del>
	HY/2012/08		Mid-Flood				Bottom		3	1		21			8.3	4.97	6.3
	HY/2012/08		Mid-Flood		Small wave			4.6	3	2		20.9		28.2	8.26	5.02	6.3
	HY/2012/08		Mid-Flood	Sunny	Small wave	•	Surface	1	1	1		21.2	8.03		7.99	4.94	6.2
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR9	Surface	1	1	2	11:00	21.2	8.06	28.1	8.01	4.98	5.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR9	Middle		2	1	11:00						
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR9	Middle		2	2	11:00						
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR9	Bottom	3.8	3	1	11:00	21.1	8.12	28.2	8.18	5.14	6.1
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR9	Bottom	3.8	3	2	11:00	21.1	8.14	28.2	8.16	5.1	6.5
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood	Sunny	Small wave	SR10A	Surface	1	1	1	10:23	21.1	7.89	28.1	8.13	4.34	5.5
TMCLKL	HY/2012/08	2017-01-03	Mid-Flood		Small wave	•	Surface	1	1	2	10:23	21.2	7.91	28	8.14	4.36	5.9
	HY/2012/08		Mid-Flood		Small wave	•		7.5	2	1		21.2	7.82		8.23	4.64	5.9
	HY/2012/08		Mid-Flood	<u> </u>	Small wave			7.5	2	2		21.1	7.84		8.26	4.68	5.9
	HY/2012/08		Mid-Flood		Small wave			14	3	1		21.1	7.94		8.56	4.74	6.3
						•		14	3	2		21		28.2	8.54	4.79	5.9
		2017-01-03		<u> </u>		•	Surface		1	1	14:46		7.92		8.86	5.08	6.8
TMCLKL						CS4		<u> </u>			14:46		7.93			5.11	10.0

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS4	Middle	9.1	2	1	14:46	21.4	7.93	28.5	8.92	5.16	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS4	Middle	9.1	2	2	14:46	21.3	7.93	28.5	8.95	5.19	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS4	Bottom	17.2	3	1	14:46	21.4	7.94	28.6	8.98	5.26	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS4	Bottom	17.2	3	2	14:46	21.4	7.95	28.6	8.92	5.19	7.2
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Surface	1	1	1	16:54	21.4	7.92	28.6	8.27	5.08	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Surface	1	1	2	16:54	21.5	7.95	28.7	8.32	5.14	7.2
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Middle	6.5	2	1	16:54	21.4	7.93	28.7	8.26	4.94	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Middle	6.5	2	2	16:54	21.4	7.95	28.7	8.24	4.9	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Bottom	12	3	1	16:54	21.4	7.92	28.7	8.28	5.06	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	CS6	Bottom	12	3	2	16:54	21.2	7.95	28.7	8.3	5	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	IS12	Surface	1	1	1	15:19	21.4	7.93	28.5	8.29	4.87	6.3
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	IS12	Surface	1	1	2	15:19	21.4	7.95	28.5	8.22	4.82	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine	Small wave	IS12	Middle	6.6	2	1	15:19	21.3			8.34	4.86	6.5
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine		IS12	Middle	6.6	2	2	15:19	21.3			8.38	4.85	6.5
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb					12.2	3	1	15:19	21.2		28.5	8.42	5.11	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine				12.2	3	2		21.3			8.45	5.14	6.9
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb				Surface	1	1	1	15:36	21.5	•		8.39	4.86	6.3
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine			Surface	1	1	2	15:36	21.4		28.6	8.34	4.9	6.7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb	Fine				5.5	2	1	15:36	21.5	_		8.32	5.09	7
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb			IS13		5.5	2	2	15:36	21.5		28.6	8.27	5.02	6.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb				Bottom	10	3	1	15:36	21.5	7.9		8.39	5.11	6.9
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb					10	3	2	15:36	21.4			8.42	5.1	6.9
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb				Surface	1	1	1	15:03	21.4			8.07	5.12	5.8
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb				Surface	1	1	2	15:03	21.4	_		8.12	5.16	6.2
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb					5.7	2	1	15:03	21.4			8.15	5.19	6.3
TMCLKL	HY/2012/08	2017-01-03	Mid-Ebb					5.7	2	2	15:03	21.4	_		8.12	5.14	6.1
		2017-01-03						10.4	3	1	15:03		7.93		8.24	5.2	6.3
			Mid-Ebb	Fine				10.4	3	2	•	21.3	•		8.28	5.15	6.3
			Mid-Ebb				Surface	1	1	1	•	21.5	7.95		8.12	5.11	6.3
			Mid-Ebb				Surface	1	1	2		21.6			8.17	5.09	6.9
	HY/2012/08		Mid-Ebb	Fine				5.1	2	1		21.5			8.19	5.19	6.8
	HY/2012/08		Mid-Ebb	Fine				5.1	2	2		21.4			8.22	5.22	7
	HY/2012/08		Mid-Ebb	Fine				9.2	3	1		21.5			8.26	5.27	6.9
			Mid-Ebb	Fine				9.2	3	2		21.4			8.22	5.22	6.9
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	1		21.4	7.97		8.34	4.86	6
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	2		21.4	7.92		8.38	4.82	6
	HY/2012/08		Mid-Ebb				Middle	'	2	1	16:23	21.4	1.32	20.1	0.30	4.02	+
	HY/2012/08		Mid-Ebb	Fine			Middle		2	2	16:23						+
			Mid-Ebb	Fine				4.2	3	1		21.2	7.82	28 7	8.29	4.86	6
	HY/2012/08		Mid-Ebb					4.2	3	2		21.2	7.86		8.32	4.9	6.2
	HY/2012/08 HY/2012/08		Mid-Ebb				Surface	7.Z	1	1		21.5		28.5	7.96	4.86	5.9
	HY/2012/08 HY/2012/08		Mid-Ebb				Surface	1	1	2					7.96 7.92	4.92	6.3
			Mid-Ebb	Fine			Middle	-	2	1	1	21.4	7.94	28.5	1.84	14.3 <u>4</u>	0.3
	HY/2012/08								2	2	16:10	1		+	<del> </del>	+	+
			Mid-Ebb				Middle	2.6	2	1	16:10	21.5	7.00	20 5	7.07	5 10	6.4
	HY/2012/08		Mid-Ebb				Bottom		<u>ာ</u>	1	16:10			28.5	7.97	5.19	6.4
			Mid-Ebb					3.6	<u>ا</u>	4		21.5			7.99	5.12	6.2
	HY/2012/08		Mid-Ebb				Surface	1	1	1		21.3			8.16	4.44	5.6
	HY/2012/08		Mid-Ebb	Fine			Surface		2	4		21.4			8.12	4.48	6
	HY/2012/08		Mid-Ebb	Fine				7.3	2	1		21.4			8.19	4.59	5.7
	HY/2012/08		Mid-Ebb	Fine				7.3	2	2	•	21.3		28.7	8.22	4.52	5.9
			Mid-Ebb	Fine				13.5	3	1		21.2	7.92		8.26	4.67	5.9
	HY/2012/08		Mid-Ebb	Fine				13.5	3	2		21.2			8.25	4.62	5.9
			Mid-Flood	Cloudy			Surface	11	11	1		20.1	8.08		9.59	4.76	/
			Mid-Flood				Surface	1	1	2	•		8.12		9.63	4.69	6.8
		2017-01-05					Middle		2	1	13:59		8.14		9.78	5.06	7.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS4	Middle	9.3	2	2	13:59	20.2	8.15	28.3	9.77	5.01	7.2

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS4	Bottom	17.5	3	1	13:59	20.3	7.98	28.4	11.48	5.12	7.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS4	Bottom	17.5	3	2	13:59	20.4	8.01	28.5	11.46	5.16	7.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	1	11:42	20.2	7.86	27.9	8.35	4.89	7.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	11:42	20.1	7.85	28	8.32	4.81	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	1	11:42	20.2	7.92	28.1	8.42	5.04	7.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	2	11:42	20.3	7.94	28.2	8.44	5.12	7.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.8	3	1	11:42	20.4	7.8	28.4	8.67	5.23	7.8
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.8	3	2	11:42	20.4	7.83	28.3	8.65	5.19	7.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	13:36	20		28.1	8.29	4.81	6.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	13:36	20.1		28.1	8.26	4.85	6.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.7	2	1	13:36	20.2	7.82	28.3	8.34	5.06	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.7	2	2	13:36	20.2		28.2	8.36	5.11	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.4	3	1	13:36	20.2		28.5	8.23	4.72	6.3
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.4	3	2	13:36	20.3		28.4	8.2	4.66	6.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	13:20	20.1		28	8.17	4.55	6.1
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	13:20	20.2		28.1	8.19	4.61	6.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.7	2	1	13:20	20	-	28.2	8.23	4.32	6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.7	2	2	13:20	20.1		28.1	8.2	4.38	6.1
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.4	3	1	13:20	20.3		28.2	8.48	4.78	6.8
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.4	3	2	13:20	20.2		28.3	8.47	4.73	6.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	13:50	20.2		28.1	8.45	5.12	6.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	13:50	20.1		28.2	8.46	5.19	6.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS14	Middle	6.2	2	1	13:50	20.2		28.3	8.31	5.07	6.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS14	Middle	6.2	2	2	13:50	20.2		28.2	8.34	5.01	6.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS14	Bottom	11.3	2	1	13:50	20.4		28.4	8.49	4.93	6
	HY/2012/08	2017-01-05				IS14			ა ი	2		20.4					6.2
TMCLKL TMCLKL	HY/2012/08		Mid-Flood Mid-Flood	Cloudy Cloudy	Small wave Small wave		Bottom Surface	11.3	ა 1	4	13:50 13:04	20.3		28.3 28.1	8.52 8.36	5.02 4.71	6.3 6.5
				<del> </del>				1	1	2					•		
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy Cloudy	Small wave	IS15	Surface	F 2	2	4	13:04	20		28.2	8.32	4.79 5.03	6.4
TMCLKL TMCLKL	HY/2012/08	2017-01-05	Mid-Flood Mid-Flood	Cloudy	Small wave	IS15 IS15	Middle Middle	5.2 5.2	2	2	13:04 13:04	20.2 20.1		28.3 28.2	8.25 8.27	5.09	6.7 6.8
	HY/2012/08	2017-01-05			Small wave				2	4	-						
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS15		9.4	3	1	13:04	20.4		28.4	8.16	4.88	6.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	IS15		9.4	3	4	13:04	20.3		28.3	8.13	4.84	6.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	12:41	20	7.88		8.31	4.68	6.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2		20.1	7.86	28	8.28	4.75	5.9
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	12:41	<del>                                     </del>	-		<u> </u>		+
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8	Middle	4.0	2	2	12:41	00.0	7.00	00.0	0.00	4.54	
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8		4.9	3	1	12:41	20.2	-	28.2	8.23	4.51	6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR8		4.9	3	2	12:41	20.3		28.1	8.21	4.56	6.1
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	12:54	20.1		28.1	8.25	4.87	6.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	12:54	20.2	7.91	28	8.27	4.82	6.3
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	12:54	<del>                                     </del>	├	<b>.</b>	<b>.</b>		+
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	12:54	100.0	7.00	00.4	0.01	4.00	100
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9		3.7	3	1	12:54	20.2		28.1	8.34	4.96	6.3
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR9		3.7	3	2	12:54	20.2		28.1	8.35	5.02	6.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	12:12	20.1	7.78		8.18	3.96	5.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	12:12	20.2	7.75		8.19	3.89	5
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR10A	Middle	7.5	2	1	12:12	20.3		28.2	8.38	4.38	5.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave	SR10A	Middle	7.5	2	2	12:12	20.4		28.3	8.36	4.31	5.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave		Bottom	13.9	3	1	12:12	20.5		28.3	8.45	4.52	5.8
TMCLKL	HY/2012/08	2017-01-05	Mid-Flood	Cloudy	Small wave			13.9	3	2	12:12	20.4	7.86		8.43	4.47	5.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	1	16:53	20	7.92		8.96	5.18	7.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	16:53	20	7.92	27.8	8.99	5.24	7.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS4	Middle	9.1	2	1	16:53	20.1		28	9.23	5.11	7.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS4	Middle	9.1	2	2	16:53	20.2	7.84	28.1	9.27	5.08	7.5
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Small wave			17.2	3	1		20.2	8.02	28.1	10.07	5.33	7.8
TMCLKI	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS4	Bottom		3	2	16:53	20.2	8.04		10.12	5.36	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	19:16	19.7	7.97	27.8	8.13	5.15	7.3
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	2	19:16	19.7	7.95	27.9	8.18	5.19	7.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.8	2	1	19:16	19.9	7.84	28	8.32	5.32	7.9
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			CS6	Middle	6.8	2	2	19:16	20	7.87	27.9	8.27	5.38	7.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.5	3	1	19:16	20.1	7.91	28.1	8.46	5.44	7.8
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb					12.5	3	2	19:16	20.1	7.94	28.1	8.52	5.47	7.8
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	17:22	20	7.86	28	8.12	5.24	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	17:22	19.9	7.88	28	8.17	5.28	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy		IS12	Middle	6.6	2	1	17:22	20.1	7.92	28.1	8.04	5.39	7.4
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.6	2	2	17:22	20.1	7.93	28.2	8.09	5.3	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb		Small wave	IS12		12.2	3	1	17:22	20.2	7.84	28.3	8.37	5.46	7.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy		•		12.2	3	2	17:22	20.1	7.86	28.3	8.31	5.37	7.1
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb				Surface	1	1	1	17:37	19.9	7.92	27.9	8.02	4.83	6.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			IS13	Surface	1	1	2	17:37	19.8	7.9	28	8.07	4.87	6.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			IS13		5.7	2	1	17:37	20	8.03	28.1	7.97	4.98	6.9
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			IS13		5.7	2	2	17:37	20			7.92	5.03	6.9
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy				10.3	3	1	17:37	20.1	7.93	28.1	8.25	5.14	7.2
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy				10.3	3	2	17:37	20.2	7.91	28.1	8.19	5.17	7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	Cloudy		IS14	Surface	1	1	1	17:07	20	7.94	27.9	8.23	5.35	6.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb				Surface	1	1	2	17:07	20.1	7.96	28	8.18	5.3	6.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			IS14	Middle	6	2	1	17:07	20.1	8.01	28.1	8.51	5.47	7
TMCLKL	HY/2012/08		Mid-Ebb			IS14		6	2	2	17:07	20.1	8.03	28.1	8.57	5.52	6.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb			•		11	3	1	17:07	20.1		28.2	8.69	5.29	6.5
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb				•	11	3	2	17:07	20.2	7.96	28.3	8.74	5.34	6.7
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb				Surface	1	1	1	17:53	19.8	8.07	27.9	8.11	4.92	6.6
TMCLKL	HY/2012/08	2017-01-05	Mid-Ebb	i – i		IS15	Surface	1	1	2	17:53	19.8	-	27.9	8.16	4.97	6.7
		2017-01-05				•		5.1	2	1		19.0	7.89		8.29	4.78	6.3
									2	2					8.22		
	HY/2012/08		Mid-Ebb			IS15		5.1 9.2	2	1	-	20	7.91		8.09	4.73 5.09	6.3 6.8
			Mid-Ebb					9.2 9.2	ა ი	11		20.1 20.1		28.2	8.03	5.14	6.8
			Mid-Ebb			IS15		9.2	ا ا	4			7.95				
	HY/2012/08		Mid-Ebb	Cloudy		SR8	Surface	1	1	1	18:21	19.7		27.9	8.15	4.86	7.5
	HY/2012/08		Mid-Ebb			SR8	Surface		0	4	18:21	19.8	7.97	27.8	8.1	4.81	7.5
	HY/2012/08		Mid-Ebb			SR8	Middle		2	1	18:21		┼				
			Mid-Ebb			SR8	Middle	4.5	2	2	18:21	00	7.00	07.0	0.00	14.74	
	HY/2012/08		Mid-Ebb				Bottom		3	1	-	20	_	27.9	8.22	4.74	7.4
	HY/2012/08		Mid-Ebb	Cloudy		SR8		4.5	3	2		20	7.86		8.27	4.77	7.5
	HY/2012/08		Mid-Ebb			SR9	Surface	1	1	1	18:09	19.8	-	27.9	7.07	5.08	6.3
			Mid-Ebb	Cloudy		SR9	Surface	1	1	2	18:09	19.7	7.97	27.9	8.13	5.14	6.4
			Mid-Ebb	Cloudy		SR9	Middle		2	1	18:09	<del> </del>			-		+
	HY/2012/08		Mid-Ebb			SR9	Middle		2	2	18:09	1.00				1-00	<del>_</del>
	HY/2012/08		Mid-Ebb			SR9	Bottom	-	3	1	18:09	19.9	7.88		8.23	5.23	6.5
	HY/2012/08		Mid-Ebb					3.2	3	2		20		28.1	8.16	5.29	6.7
	HY/2012/08		Mid-Ebb	Cloudy		•	Surface	1	1	1	18:48	19.7		27.9	8.04	4.21	5.5
	HY/2012/08		Mid-Ebb	Cloudy		•	Surface	1	1	2	18:48	19.7		27.9	8.09	4.27	5.6
	HY/2012/08		Mid-Ebb			•		7.3	2	1	18:48	19.9		28.1	8.25	4.33	5.6
	HY/2012/08		Mid-Ebb			•		7.3	2	2	-	19.8	7.94		8.18	4.39	5.5
	HY/2012/08		Mid-Ebb					13.6	3	1		20			8.34	4.29	5.4
	HY/2012/08		Mid-Ebb					13.6	3	2	-	20.1		28.2	8.37	4.23	5.5
	HY/2012/08		Mid-Flood	Fine		CS4	Surface	1	1	1	-	21.1	8	28.2	8.61	5.01	7.2
	HY/2012/08		Mid-Flood	Fine			Surface	1	1	2		21.2			8.77	5.04	7.2
TMCLKL	HY/2012/08		Mid-Flood	Fine				10.5	2	1		21			8.24	5.13	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS4	Middle	10.5	2	2	14:40	21.1	8.04	28.1	8.43	5.16	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS4	Bottom	19.9	3	1	14:40	21.1	7.94	28	8.23	5.2	7.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS4	Bottom	19.9	3	2	14:40	21.1	7.97	28.1	8.34	5.18	7.5
TMCLKL			Mid-Flood	Fine			Surface		1	1	12:24		7.82		8.78	5	6.2
TMCLKI	HY/2012/08	2017-01-07		Fine	Small wave	CS6	Surface	1	1	2	12:24	21.2			8.63	4.96	6.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS6	Middle	6.7	2	1	12:24	21.2	7.93	28.2	8.51	5.13	7.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS6	Middle	6.7	2	2	12:24	21.2	7.94	28.1	8.42	5.15	7.5
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	CS6	Bottom	12.4	3	1	12:24	21.1	7.99	28.2	8.33	5.03	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine		CS6	Bottom	12.4	3	2	12:24	21.1	7.97	28.2	8.4	5.04	7
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS12	Surface	1	1	1	14:10	21	8.03	28	8.51	4.96	6.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS12	Surface	1	1	2	14:10	21.1		28.1	8.43	4.87	6.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS12	Middle	6.8	2	1	14:10	21.1	8.05	28.1	8.2	4.91	6.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS12	Middle	6.8	2	2	14:10	21.1	8.08	28	8.15	4.95	6.9
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine		IS12	Bottom	12.5	3	1	14:10	21.1	8.1	28	8.27	4.78	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS12	Bottom	12.5	3	2	14:10	21.2	8.12	28.1	8.2	4.81	6.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine	Small wave	IS13	Surface	1	1	1	13:56	21.2	8.1	28.1	8.44	4.91	6.5
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine			Surface	1	1	2	13:56	21.1	8.08		8.32	4.96	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood				Middle	6	2	1	13:56			28.2	8.41	5.07	6.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine			Middle	6	2	2	13:56	21		28.2	8.28	5.09	7.1
TMCLKL	HY/2012/08		Mid-Flood			•	Bottom	11	3	1	13:56		8.1	28.2	8.2	5.23	6.9
TMCLKL	HY/2012/08		Mid-Flood	Fine		•		11	3	2	13:56	21.1		28.1	8.33	5.19	7.3
TMCLKL	HY/2012/08		Mid-Flood				Surface	1	1	1	14:24	21	8.06		8.47	4.7	5.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood	Fine			Surface	1	1	2	14:24	21.1		28.2	8.53	4.76	5.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood			•		6.3	2	1	14:24	21.2	_	28.2	8.42	4.45	5.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood			IS14		6.3	2	2	14:24	21.1		28.2	8.51	4.49	5.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood					11.6	3	1	14:24	21.1	•	28.2	8.66	4.88	5.8
TMCLKL	HY/2012/08		Mid-Flood			•		11.6	3	2	14:24	21	8.04		8.78	4.93	5.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood				Surface	1	1	1	13:42			28.2	8.56	5.03	6.6
TMCLKL	HY/2012/08		Mid-Flood			•	Surface	1	1	2	13:42	21	•	28.1	8.64	5.09	6.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Flood					5.7	2	1	13:42	21.2	8	28.2	8.23	5.33	6.9
TMCLKL	HY/2012/08		Mid-Flood					5.7	2	2	1	21.2	_	28.1	8.27	5.4	6.9
			Mid-Flood					10.3	3	1			8.09		8.33	5.01	6.6
	HY/2012/08		Mid-Flood	Fine				10.3	3	2				28.2	8.39	4.97	6.7
	HY/2012/08		Mid-Flood	Fine			Surface	10.0	1	1	•				8.44	5.13	6.6
	HY/2012/08		Mid-Flood				Surface	1	1	2				28.2	8.65	5.16	6.4
	HY/2012/08		Mid-Flood	Fine		SR8	Middle	'	2	1	13:20	Z 1.Z	0.03	20.2	0.03	5.10	0.4
	HY/2012/08		Mid-Flood	Fine			Middle		2	2	13:20						+
	HY/2012/08		Mid-Flood	Fine				4.5	2	1	•	21	8.03	28 1	8.23	5.25	6.5
	HY/2012/08		Mid-Flood					4.5	3	2			_		8.39	5.29	6.7
	HY/2012/08		Mid-Flood	Fine		•	Surface	4.0	3 1	1			8.05		8.23	4.55	5.6
			Mid-Flood	Fine		•		1	1	2	•		8.07		8.17	4.57	5.6
	HY/2012/08		Mid-Flood			SR9	Surface Middle		2	1	13:32	Z I	0.07	20	0.17	4.57	3.0
			Mid-Flood	Fine		•	Middle	-	2	2	•	<del> </del>		1	-		+
	HY/2012/08							2.7	2	1	13:32	24.4	0 15	27.0	0.25	4 24	
	HY/2012/08		Mid-Flood	Fine				3.7	၁ ၁	2			•		8.35	4.31	5.5
	HY/2012/08		Mid-Flood					3.7	ى 1	1				28	8.48	4.29	5.5
	HY/2012/08		Mid-Flood	Fine		•	Surface	1	1	1		21.2		28.1	8.83	4.83	6.1
	HY/2012/08		Mid-Flood				Surface	7	2	1				28.1	8.96	4.86	6 6 F
	HY/2012/08		Mid-Flood	Fine	Small wave	•	Middle	7	2	1		21.1	•	28.2	8.56	5.07	6.5
	HY/2012/08		Mid-Flood	Fine		•	Middle	10.0	2	4				28.2	8.78	5.11	6.2
	HY/2012/08		Mid-Flood					12.9	3	1				28.1	8.45	5.26	6.2
	HY/2012/08		Mid-Flood	Fine				12.9	3	4					8.63	5.29	6.3
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	<u> </u>	1		20.8		27.6	8.43	4.94	7.1
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	2	•	20.8	7.92		8.46	4.9	7.2
	HY/2012/08		Mid-Ebb	Fine				10.3	2	1	•	20.9			8.12	5.07	7.2
	HY/2012/08		Mid-Ebb	Fine				10.3	2	2		20.8	7.95		8.15	5.01	7.5
	HY/2012/08		Mid-Ebb	Fine				19.6	3	1		21	7.95		8.2	5.13	7.5
	HY/2012/08		Mid-Ebb	Fine				19.6	3	2		21	7.95		8.23	5.16	7.3
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	1	•	20.9		27.9	8.53	4.34	7.4
			Mid-Ebb				Surface	1	1	2	•	20.9	•	27.8	8.5	4.38	7.3
			Mid-Ebb				Middle		2	1		20.9	7.98		8.25	5.02	7.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	CS6	Middle	6.6	2	2	08:35	21	7.97	28	8.21	5.06	7.4

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	CS6	Bottom	12.2	3	1	08:35	21	8.01	28.1	8.2	4.96	7.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	CS6	Bottom	12.2	3	2	08:35	21	8.01	28.1	8.17	4.92	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Surface	1	1	1	07:38	20.8	7.95	27.8	8.24	4.82	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Surface	1	1	2	07:38	20.9	7.96	27.8	8.2	4.78	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Middle	6.6	2	1	07:38	20.8	7.97	27.9	8.15	4.94	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Middle	6.6	2	2	07:38	20.9	7.98	28	8.19	4.98	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Bottom	12.2	3	1	07:38	20.9	7.98	28.1	8.19	4.88	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS12	Bottom	12.2	3	2	07:38	21	7.98	28.1	8.15	4.8	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	1	07:52	20.9		27.8	8.25	4.72	6.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	IS13	Surface	1	1	2	07:52	20.8		27.8	8.29	4.76	7
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	5.9	2	1	07:52	21		28	8.3	4.94	6.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	5.9	2	2	07:52	21		28.1	8.34	4.98	7
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	10.8	3	1	07:52	20.9		28.1	8.18	5.11	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	10.8	3	2	07:52	21		28.1	8.14	5.15	7.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	1	07:24	20.8		27.7	8.38	4.64	5.9
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	2	07:24	20.7		27.8	8.35	4.67	6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			6.2	2	1	07:24	20.9	•	28	8.44	4.39	5.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	6.2	2	2	07:24	20.8		28	8.48	4.35	5.5
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	11.4	3	1	07:24	20.9	_	28	8.46	4.78	6.1
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	11.4	3	2	07:24	20.9		28.1	8.42	4.74	6.2
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	11.4	J 1	4	08:05	20.9		27.9	8.3	4.84	6.8
		2017-01-07						1	1	2			_				
TMCLKL	HY/2012/08		Mid-Ebb	Fine	Small wave		Surface	I F C	2	4	08:05	20.8		27.8	8.33	4.8	6.9
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			5.6	2	1	08:05	20.9		28	8.19	5.21	7.2
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	5.6	2	2	08:05	20.8		28	8.23	5.16	7.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	10.2	3	1	08:05	20.9		28.2	8.26	5.03	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Bottom	10.2	3	2	08:05	21		28.1	8.22	5.07	6.9
			Mid-Ebb	Fine			Surface	1	1	1		20.9	7.98		8.24	4.97	6.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	2	08:26	20.9	7.97	28	8.27	4.93	6.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine			Middle		2	1	08:26						
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle		2	2	08:26						
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			4.2	3	1	08:26	20.8			8.11	5.18	6.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			4.2	3	2	08:26	20.9	7.95		8.07	5.12	6.9
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	1	08:17	20.8		27.7	8.07	4.37	5.7
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	2	08:17	20.8	7.98	27.8	8.09	4.31	5.8
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	SR9	Middle		2	1	08:17						
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	SR9	Middle		2	2	08:17						
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.4	3	1	08:17	20.9	7.95	27.9	8.23	4.29	5.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.4	3	2	08:17	20.9	7.96	27.9	8.26	4.21	5.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave	SR10A	Surface	1	1	1	08:57	20.9	7.98		8.67	4.62	6.3
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Surface	1	1	2	08:57	20.8	7.99		8.62	4.7	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	6.7	2	1	08:57	20.8		28.2	8.32	4.94	6.4
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave		Middle	6.7	2	2	08:57	20.9		28.1	8.28	4.9	6.5
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			12.8	3	1	08:57	20.9		28.2	8.26	4.89	6.6
TMCLKL	HY/2012/08	2017-01-07	Mid-Ebb	Fine	Small wave			12.8	3	2	08:57	21		28.2	8.23	4.93	6.7
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	17:04	20.5	7.78		8.54	4.73	6.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	17:04	20.4		28	8.56	4.79	7.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Middle	10.6	2	1	17:04	20.6		28.4	8.62	4.96	7
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Middle	10.6	2	2	17:04	20.7		28.5	8.66	5.02	7.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave			20.2	3	1	17:04	20.8		28.8	8.89	4.87	6.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave			20.2	3	2	17:04	20.7		28.9	8.92	4.94	7
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	14:53	20.4		28.2	8.71	4.85	7
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	14:53	20.4		28.1	8.74	4.89	7.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave			6.9	2	1	14:53	20.6		28.3	8.54	5.11	7.4
	HY/2012/08	2017-01-10		Cloudy				6.9	2	2	_	20.6		28.3		5.18	
TMCLKL			Mid-Flood		Small wave				2	1	14:53				8.55		7.5 7.2
			Mid-Flood	Cloudy				12.8	ა ი	1		20.6		28.5	8.89	5.06	
TIVICLKL	HY/2012/08	2017-01-10	IVIIa-FI00a	Cloudy	Small wave	CS6	Bottom	12.δ	3	2	14:53	2U. <i>1</i>	7.82	∠ర.4	8.87	4.97	7.1

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	16:32	20.4	7.96	28	8.39	4.56	6.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	16:32	20.5	7.92	28.1	8.36	4.49	5.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.9	2	1	16:32	20.6	8.05	28.3	8.24	4.62	6.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.9	2	2	16:32	20.5	8.01	28.2	8.27	4.67	6.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.8	3	1	16:32	20.7	8.09	28.5	8.45	4.75	6.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.8	3	2	16:32	20.6	8.08	28.6	8.44	4.68	6.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	16:16	20.6	7.98	28.1	8.57	4.47	6.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	16:16	20.5	7.95	28.1	8.54	4.58	6.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Middle	6.2	2	1	16:16	20.6	8.03	28.2	8.51	4.62	6.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Middle	6.2	2	2	16:16	20.6	8.06	28.2	8.48	4.71	6.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Bottom	11.3	3	1	16:16	20.7	7.93	28.4	8.42	4.86	6.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS13	Bottom	11.3	3	2	16:16	20.6	7.9	28.3	8.41	4.8	6.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	16:46	20.5	7.83	28.2	8.51	4.22	5.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	16:46	20.6	7.87	28.1	8.53	4.28	5.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Middle	6.5	2	1	16:46	20.7	7.81	28.4	8.46	4.41	5.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Middle	6.5	2	2	16:46	20.6	7.8	28.3	8.44	4.33	5.5
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Bottom	11.9	3	1	16:46	20.7	7.74	28.6	8.63	4.67	5.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS14	Bottom	11.9	3	2	16:46	20.8	7.77	28.5	8.65	4.6	5.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	15:59	20.5	7.86	28.2	8.41	4.53	6
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	15:59	20.5	7.89	28.1	8.44	4.61	6.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.9	2	1	15:59	20.6	7.92	28.2	8.51	4.47	6.2
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.9	2	2	15:59	20.5	7.94	28.3	8.52	4.4	5.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Bottom	10.7	3	1	15:59	20.7	7.98	28.5	8.67	4.78	6.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	IS15	Bottom	10.7	3	2	15:59	20.6	7.97	28.4	8.69	4.83	6.5
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	15:32	20.6		28.2	8.51	4.69	6.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood		Small wave	•	Surface	1	1	2	15:32	20.6		28.1	8.53	4.62	5.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	15:32						
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	15:32						
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.6	3	1	15:32	20.5	7.87	28.2	8.64	4.54	5.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.6	3	2	15:32	20.4	7.85	28.3	8.67	4.65	6.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	15:45	20.5	7.92	28	8.23	4.18	5.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2		20.6	7.95		8.26	4.25	5.7
TMCLKL	HY/2012/08	2017-01-10	Mid-Flood			SR9	Middle		2	1	15:45						
	HY/2012/08		Mid-Flood				Middle		2	2	15:45						
	HY/2012/08		Mid-Flood					3.9	3	1	•	20.7	7.98	28.2	8.31	4.36	5.6
	HY/2012/08		Mid-Flood	Cloudy				3.9	3	2	1	20.6	_	28.1	8.33	4.41	5.5
	HY/2012/08		Mid-Flood		Small wave		Surface	1	1	1		20.5		28.1	8.85	4.41	5.9
			Mid-Flood	Cloudy	Small wave	•	Surface	1	1	2		20.6	7.86		8.81	4.48	5.9
	HY/2012/08		Mid-Flood	Cloudy	Small wave			7.2	2	1		20.4			8.73	4.53	5.8
	HY/2012/08		Mid-Flood		Small wave			7.2	2	2	1	20.5		28.2	8.74	4.59	5.9
	HY/2012/08		Mid-Flood		Small wave			13.4	3	1		20.6			8.54	4.71	6
			Mid-Flood		Small wave			13.4	3	2		20.5		28.5	8.57	4.66	6
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	1		20.5		27.9	8.24	5.39	7.9
			Mid-Ebb	Fine			Surface	1	1	2			8.23		8.26	5.41	7.7
	HY/2012/08		Mid-Ebb					10.5	2	1	•	20.6	7.94		8.33	5.58	8.1
	HY/2012/08		Mid-Ebb					10.5	2	2	•	20.6			8.35	5.61	8.2
	HY/2012/08		Mid-Ebb					19.9	3	1	•	20.7		28.2	8.46	5.77	8.2
	HY/2012/08		Mid-Ebb	Fine				19.9	3	2		20.6		28.3	8.43	5.79	8.3
			Mid-Ebb	Fine		•	Surface	1	1	1		20.3		27.9	8.62	5.29	7.6
	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	2		20.3	7.88		8.64	5.31	7.7
	HY/2012/08		Mid-Ebb	Fine				6.8	2	<u>-</u> 1	•		8.15		8.73	5.48	8.1
	HY/2012/08		Mid-Ebb	Fine				6.8	2	2					8.75	5.51	8.2
			Mid-Ebb	Fine				12.5	3	<u>-</u> 1		20.6		28.3	8.8	5.68	8.5
			Mid-Ebb					12.5	3	2		20.6	8.04		8.82	5.7	8.5
		2017-01-10					Surface		1	<u>-</u> 1	11:02		7.83		8.04	5.4	7.3
	, _ 0 1 _ / 00				Small wave		Surface		ļ <u>'</u>	<del>!</del>	10:42		7.8		8.07	5.43	7.2

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS12	Middle	6.7	2	1	10:42	20.5	8.06	28.1	8.17	5.66	7.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS12	Middle	6.7	2	2	10:42	20.5	8.09	28.2	8.19	5.64	7.7
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS12	Bottom	12.4	3	1	10:42	20.6	8.13	28.3	8.26	5.77	7.6
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS12	Bottom	12.4	3	2	10:42	20.5	8.15	28.4	8.29	5.79	7.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Surface	1	1	1	11:23	20.3	7.68	27.9	7.84	5.4	7.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Surface	1	1	2	11:23	20.4	7.71	28	7.87	5.43	7.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Middle	6	2	1	11:23	20.5	7.84	28.1	8.05	5.68	7.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Middle	6	2	2	11:23	20.4	7.82	28.2	8.07	5.7	8.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Bottom	11	3	1	11:23	20.6	8.06	28.3	8.24	5.73	8.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS13	Bottom	11	3	2	11:23	20.6	8.09	28.3	8.22	5.76	8
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS14	Surface	1	1	1	10:42	20.4	8.13	28.1	7.69	5.63	6.9
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb	Fine	Small wave	IS14	Surface	1	1	2	10:42	20.5	8.15	28.1	7.72	5.66	7.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			IS14	Middle	6.3	2	1	10:42	20.6	8.06	28.2	7.84	5.84	7.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			IS14	Middle	6.3	2	2	10:42	20.6		28.3	7.86	5.86	7.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			•		11.5	3	1	10:42				8.08	5.99	7.6
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			•		11.5	3	2	10:42				8.06	6.01	7.4
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1	11:45	20.4	_		7.93	5.28	7.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb				Surface	1	1	2	11:45	20.5		28	7.96	5.3	7.3
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb					5.7	2	1	11:45		_		8.14	5.47	7.2
TMCLKL	HY/2012/08		Mid-Ebb			IS15		5.7	2	2	11:45	20.7			8.11	5.49	7.4
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			•		10.4	3	1	11:45	20.8			8.26	5.73	7.9
TMCLKL	HY/2012/08		Mid-Ebb					10.4	3	2	11:45		_		8.29	5.71	7.7
	HY/2012/08		Mid-Ebb		Small wave		Surface	1	1	1	12:16	20.4	_	28	8.27	5.36	7.1
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb			•	Surface	1	1	2	12:16	20.5	_		8.3	5.39	6.8
TMCLKL	HY/2012/08	2017-01-10	Mid-Ebb				Middle	<u> </u>	2	1	12:16	20.0	7.07	27.0	0.0	0.00	0.0
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	2	12:16						+
		2017-01-10					Bottom	4 3	3	1		20.7	8.11	28.3	8.44	5.56	7.1
			Mid-Ebb					4.3	3	2			•		8.42	5.59	7.4
			Mid-Ebb				Surface	1	1	1	•		_		8.07	4.63	6.1
	HY/2012/08		Mid-Ebb				Surface	1	1	2					8.05	4.65	5.9
	HY/2012/08		Mid-Ebb			SR9	Middle	<del> </del>	2	1	12:04	20.0	0.1	20	0.00	1.00	- 0.0
	HY/2012/08		Mid-Ebb				Middle		2	2	12:04	<del> </del>				1	+
	HY/2012/08		Mid-Ebb					3.6	3	1		20.6	7.92	28.2	8.13	4.77	6
			Mid-Ebb					3.6	3	2		20.5	_		8.15	4.79	6
	HY/2012/08		Mid-Ebb				Surface	1	1	1			_		8.35	4.97	6.4
	HY/2012/08		Mid-Ebb	Fine		•	Surface	1	1	2	•		8.23		8.33	4.99	6.6
	HY/2012/08		Mid-Ebb			•		7.1	2	1	•	20.6	7.86		8.45	5.16	6.8
			Mid-Ebb			•		7.1	2	2		20.5			8.48	5.18	6.7
			Mid-Ebb					13.1	3	1			7.89 8.04		8.62	5.34	6.9
	HY/2012/08		Mid-Ebb					13.1	3	2	•		_		8.64	5.36	7
			Mid-Flood				Surface	10.1	1	1			8.05		8.47	5.01	7.4
				,			Surface	1	1	2			8.09		8.5	5.04	
	HY/2012/08 HY/2012/08		Mid-Flood			•		10.4	2	1					8.34	4.91	7.4 7.1
			Mid-Flood	,		•		10.4	2	2		20.1	7.97				7
			Mid-Flood			•		10.4	2	1	•	20.3			8.39	4.92	7.4
	HY/2012/08	2017-01-12						19.8	ა ი	1	•		8.02		8.4	5.17	7.4
	HY/2012/08	2017-01-12						19.8	3	4	•				8.44	5.19	7.4
	HY/2012/08		Mid-Flood				Surface	1	1	1		20.3		27.4	8.45	4.11	6
	HY/2012/08		Mid-Flood	<u> </u>			Surface	6.7	1	4		20.4			8.41	4.09	5.9
			Mid-Flood					6.7	2	1		20.4	7.95		8.43	4.88	7.2
	HY/2012/08		Mid-Flood					6.7	2	4	•	20.4	7.99		8.38	4.91	7.1
		2017-01-12		i i				12.4	3	1			8.02		8.41	4.84	1/
	HY/2012/08		Mid-Flood					12.4	3	2	•	20.4	7.99		8.44	4.89	1/
			Mid-Flood	Cloudy			Surface	1	1	1		20.1	7.95		8.21	4.66	6.1
			Mid-Flood			•	Surface	1	1	2	•	20.2		27.6	8.25	4.69	6.5
		2017-01-12					Middle		2	1	12:40		7.89		8.19	4.87	6.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.8	2	2	12:40	20.2	7.92	27.6	8.23	4.91	6.4

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.5	3	1	12:40	20.2	7.99	27.5	8.29	4.96	6.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.5	3	2	12:40	20.3	7.97	27.6	8.32	4.94	6.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	17:59	20.2	7.86	27.4	8.24	4.71	6.4
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	13:05	20.2	7.84	27.3	8.27	4.73	6.4
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Middle	6	2	1	13:05	20.3	7.99	27.4	8.39	4.89	6.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Middle	6	2	2	13:05	20.3	7.98	27.4	8.43	4.94	6.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Bottom	11	3	1	13:05	20.3	7.97	27.5	8.15	5.01	6.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	IS13	Bottom	11	3	2	13:05	20.4	7.98	27.4	8.2	5.02	7
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	<del> </del>		IS14	Surface	1	1	1	18:27	20.2			8.38	4.62	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	<del> </del>	Small wave	IS14	Surface	1	1	2	12:26	20.1			8.4	4.65	5.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood		Small wave	IS14	Middle	6.5	2	1	12:26	20.2			8.46	4.35	5.4
TMCLKL	HY/2012/08		Mid-Flood	Cloudy		•		6.5	2	2	12:26	20.2			8.5	4.33	5.2
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy				11.9	3	1	12:26	20.3			8.49	4.55	5.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	<del> </del>				11.9	3	2	12:26	20.2			8.52	4.59	5.7
TMCLKL	HY/2012/08		Mid-Flood				Surface	1	1	1	17:45	20.2			8.46	4.61	6.1
TMCLKL	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	17:45	20.1			8.49	4.6	6.4
TMCLKL	HY/2012/08		Mid-Flood					5.8	2	1	17:45	20.2			8.21	5.01	6.7
TMCLKL	HY/2012/08		Mid-Flood					5.8	2	2	17:45	20.2		27.5	8.25	5.04	68
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood					10.5	3	1	17:45	20.3			8.3	5.1	6.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood					10.5	3	2	17:45	20.3			8.34	5.14	7.1
TMCLKL	HY/2012/08 HY/2012/08	2017-01-12	Mid-Flood	<del> </del>	Small wave		Surface	10.5	1	1	17:45	20.4	_		8.38		6.4
								1	1	1						4.9	
TMCLKL	HY/2012/08		Mid-Flood				Surface	1	2	4	17:23	20.3	8.07	27.4	8.35	4.93	6.3
	HY/2012/08		Mid-Flood		Small wave		Middle		2	1	17:23	<u> </u>					+
TMCLKL	HY/2012/08		Mid-Flood				Middle		2	2	17:23			- ·		1- 00	<del> </del>
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood					4.4	3	1	17:23	20.4	_	27.4	8.22	5.02	6.6
TMCLKL	HY/2012/08		Mid-Flood					4.4	3	2	17:23	20.4		27.5	8.25	5.05	6.5
		2017-01-12		<del> </del>			Surface	1	1	1	•		8.01		8.29	4.34	5.4
		2017-01-12					Surface	1	1	2	•	20.2	7.97	27.5	8.31	4.31	5.5
		2017-01-12					Middle		2	1	17:35						
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	17:35						
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.6	3	1	17:35	20.3	7.9	27.5	8.34	4.24	5.5
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.6	3	2	17:35	20.3	7.89	27.4	8.37	4.25	5.3
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	16:54	20.4	7.84	27.4	8.83	4.63	5.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	16:54	20.3	7.86	27.4	8.85	4.66	5.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR10A	Middle	7.1	2	1	16:54	20.4	8.02	27.4	8.51	4.24	5.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR10A	Middle	7.1	2	2	16:54	20.4	8.06	27.5	8.47	4.29	5.4
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	13.1	3	1	16:54				8.55	4.54	6
TMCLKL	HY/2012/08	2017-01-12	Mid-Flood	Cloudy		•	Bottom	13.1	3	2			8.02		8.58	4.56	5.8
	HY/2012/08	2017-01-12		Cloudy		•	Surface	1	1	1					8.32	5.1	7.5
	HY/2012/08		Mid-Ebb			•	Surface	1	1	2			8.03		8.45	5.12	7.5
	HY/2012/08		Mid-Ebb			•		10.3	2	1		20.2			8.29	5.03	7.3
	HY/2012/08		Mid-Ebb			•		10.3	2	2		20.2			8.17	5.06	7.5
	HY/2012/08		Mid-Ebb	Cloudy				19.5	3	<u>-</u> 1		20.3			8.26	5.23	7.5
	HY/2012/08		Mid-Ebb					19.5	3	2		20.2			8.31	5.25	7.7
	HY/2012/08		Mid-Ebb			•	Surface	1	1	1		20.2			8.3	4.21	6.2
	HY/2012/08	2017-01-12					Surface	1	1	2	•	20.2			8.4	4.22	6.3
	HY/2012/08		Mid-Ebb			•		6.6	2	1		20.2		27.5	8.23	5	7.1
				<del> </del>		•			2	2	•				8.31	4 00	7.1
	HY/2012/08		Mid-Ebb					6.6	2	1		20.2				4.99	
	HY/2012/08		Mid-Ebb					12.2	ა ი	1		20.2			8.29	4.96	7.2
	HY/2012/08		Mid-Ebb					12.2	3	4	•	20.3			8.38	4.95	7.2
		2017-01-12					Surface	[ ¹ ]	[ ¹	1		20.1			8.13	4.8	6.6
	HY/2012/08		Mid-Ebb				Surface	1	1	2	•	20.1	7.88		8.2	4.81	6.3
	HY/2012/08		Mid-Ebb	Cloudy				6.6	2	1		20.2			8.08	4.98	6.6
			Mid-Ebb					6.6	2	2	•	20.3			8.17	5.01	6.8
		2017-01-12					Bottom		3	1	12:40		7.95		8.17	5.03	6.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	12.2	3	2	12:40	20.3	7.95	27.5	8.22	5.05	6.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	13:05	20.1	7.83	27.4	8.13	4.83	6.5
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	2	13:05	20.2	7.84	27.5	8.2	4.84	6.5
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.9	2	1	13:05	20.2	7.97	27.5	8.28	5	7.1
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.9	2	2	13:05	20.3	7.96	27.6	8.36	4.98	6.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.7	3	1	13:05	20.2	7.96	27.6	8.09	5.13	7.2
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.7	3	2	13:05	20.3	7.95	27.6	8.14	5.12	7.1
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	12:26	20.1	7.88	27.5	8.26	4.75	5.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	2	12:26	20.2	7.86	27.5	8.32	4.77	5.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Middle	6.3	2	1	12:26	20.2	7.97	27.4	8.31	4.48	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Middle	6.3	2	2	12:26	20.2	7.98	27.5	8.41	4.46	5.4
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	11.5	3	1	12:26	20.3	7.92	27.5	8.36	4.67	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	11.5	3	2	12:26	20.3	7.94	27.6	8.28	4.7	5.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	13:18	20.1	7.95	27.5	8.33	4.73	6.4
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	13:18	20.1	7.98	27.5	8.39	4.75	6.3
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Middle	5.6	2	1	13:18	20.2	7.89	27.5	8.1	5.13	6.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Middle	5.6	2	2	13:18	20.2	7.89	27.6	8.17	5.15	6.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	10.2	3	1	13:18	20.2	7.91	27.5	8.19	5.2	7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	10.2	3	2	13:18	20.3	7.93	27.5	8.28	5.21	6.9
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	1	13:39	20.2	8.01	27.5	8.16	5.02	6.3
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	2	13:39	20.2	8.03	27.5	8.25	5.03	6.5
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	1	13:39						
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	2	13:39						
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Bottom	4.2	3	1	13:39	20.3	7.99	27.6	8.06	5.15	6.8
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR8	Bottom	4.2	3	2	13:39	20.3	7.98	27.5	8.12	5.16	6.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	1	13:30	20.2	7.99	27.4	8.16	4.45	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	2	13:30	20.1	7.98	27.5	8.2	4.46	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	1	13:30						
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	2	13:30						
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.2	3	1	13:30	20.2	7.87	27.4	8.21	4.35	5.5
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.2	3	2	13:30	20.2	7.86	27.4	8.26	4.36	5.7
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	14:10	20.2	7.83	27.5	8.72	4.75	6.2
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	14:10	20.2		27.4	8.81	4.76	6.2
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave		Middle	6.9	2	1	14:10	20.2		27.5	8.26	4.36	5.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave			6.9	2	2		20.1		27.5	8.38	4.35	5.6
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave			12.7	3	1	14:10	20.1		27.4	8.43	4.66	6
TMCLKL	HY/2012/08	2017-01-12	Mid-Ebb	Cloudy	Small wave			12.7	3	2	14:10	20.1		27.4	8.37	4.67	6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	10:33	20.4	7.62		8.01	4.96	7.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	10:33	20.5	7.69		8.06	5.03	7.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy			Middle	9	2	1	10:33	20.5			8.14	5.17	7.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy			Middle	9	2	2	10:33	20.6	_	27.9	8.18	5.23	7.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				16.9	3	1	10:33	20.5	7.88		8.25	5.19	7.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave			16.9	3	2	10:33	20.7	7.95		8.29	5.26	7.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	08:18	20.2	7.86		8.16	4.88	7.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	08:18	20.3		27.9	8.2	4.82	7.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave			6.8	2	1	08:18	20.3	7.56		8.29	5.11	7.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave			6.8	2	2		20.3	7.59		8.33	5.15	7.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				12.6	3	1	08:18	20.4	7.92		8.01	5.06	7.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave			12.6	3	2	08:18	20.4		28.1	8.07	5.09	7.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy			Surface	1	1	<u>-</u> 1	10:10	20.3		27.9	8.12	4.59	6.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy			Surface	1	1	2	10:10	20.4	7.85		8.18	4.64	6.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				6.5	2	1	10:10	20.3	7.63		8.23	4.71	6.4
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				6.5	2	2	10:10	20.3	7.66		8.28	4.77	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				11.9	3	1	10:10	20.4		28.1	8.3	5.05	7
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy				11.9	3	2	10:10	20.4		28.2	8.36	5.09	6.9
			Mid-Flood	Cloudy			Surface	1	1	1	•	20.4	7.78		8.16	4.56	6.2
		2017-01-14		Cloudy			Surface	1	1	2	09:53		7.70		8.14	4.61	6.5
TIVICENE	N 1/2012/08	2017-01-14	IVIIU-FIOOU	Gloudy	oman wave	1013	Surface	1	l I	2	U <del>9</del> .53	ZU.3	7.71	21.9	0.14	4.01	C.0

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS13	Middle		2	1	09:53	20.3	7.83	27.9	8.26	4.72	6.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS13	Middle		2	2	09:53	20.4	7.89	28	8.31	4.77	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.1	3	1	09:53	20.5	7.57	28.1	8.32	5.06	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.1	3	2	09:53	20.6	7.62	28	8.35	5.09	7.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	10:22	20.3		27.8	8.04	5.06	6.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	10:22	20.4	7.85	27.8	8.08	5.11	6.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.8	2	1	10:22	20.4	7.74	27.9	8.17	5.14	6.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.8	2	2	10:22	20.5		28	8.24	5.17	6.4
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Bottom	10.6	3	1	10:22	20.5		27.8	8.14	5.21	6.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.6	3	2	10:22	20.6	7.55	27.9	8.19	5.26	6.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1		20.3	7.8	28	8.11	4.89	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	00:00	20.2	7.86	27.9	8.17	4.94	6.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Middle		2	1	00:00	20.3	7.96	27.9	8.22	5.01	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Middle		2	2	00:00	20.4	7.91	28	8.27	5.04	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9	3	1	00:00	20.3	7.74	28.1	8.31	5.09	7
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9	3	2	00:00	20.3	7.76	28.2	8.37	5.16	7
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	09:15	20.2	7.71	27.9	7.66	4.76	6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	09:15	20.3	7.75	27.8	7.69	4.73	6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	09:15						
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	09:15						
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.9	3	1	09:15	20.3	7.92	27.9	8.23	4.83	6.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.9	3	2	09:15	20.4	7.97	28	8.27	4.88	6.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	09:27	20.3	7.84	27.9	7.91	4.71	6.1
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	09:27	20.4	7.88	28	7.96	4.77	6.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	09:27						
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	09:27						
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.3	3	1	09:27	20.4	7.65	28.1	8.07	4.76	6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.3	3	2	09:27	20.5	7.69	28.2	8.12	4.8	6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	08:44	20.2	7.69	27.8	7.97	4.88	6.4
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	08:44	20.2	7.77	27.9	7.92	4.95	6.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1	08:44	20.3	7.42	27.9	8.09	5.16	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave		Middle	6.9	2	2	08:44	20.2	7.48	28	8.14	5.19	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.8	3	1	08:44	20.3	7.53		8.26	5.23	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Flood	Cloudy	Small wave			12.8	3	2	08:44	20.4		28.1	8.22	5.27	7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave		Surface	1	1	1	12:37	20.2	7.48	•	7.95	5.24	7.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	12:37	20.2		27.3	7.92	5.33	7.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS4		8.8	2	1	12:37	20.2	7.43	•	8.03	5.6	8.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS4		8.8	2	2	12:37	20.3	7.47		8.01	5.69	8.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave			16.6	3	1	12:37	20.5	7.58		8.4	5.43	7.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS4		16.6	3	2	12:37	20.5	7.62		8.36	5.5	7.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	14:28	20.2	7.63		7.98	5.07	7.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	14:28	20.1	7.66		8.02	5.16	7.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS6		6.7	2	1	14:28	20.2		27.7	8.07	5.23	7.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	CS6		6.7	2	2	14:28	20.2		27.7	8.1	5.34	7.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave			12.2	3	1	14:28	20.3	7.74		8.21	5.48	8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave			12.2	3	2	14:28	20.4		28	8.17	5.4	8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	13:10	20.2		27.5	8.04	4.89	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	13:10	20.2		27.4	8.01	4.94	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS12		6.3	2	1	13:10	20.2		27.5	8.1	5.01	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave			6.3	2	2	13:10	20.3	7.55		8.14	5.08	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy				11.6	3	<u>-</u> 1	13:10	20.5	7.58		8.22	5.23	6.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS12		11.6	3	2	13:10	20.5	7.62	•	8.25	5.16	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave		Surface	1	1	1	13:27	20.2	•	27.4	8.06	4.83	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	13:27	20.2		27.4	8.02	4.74	6.6
			Mid-Ebb	Cloudy				5.4	2	1		20.1	7.66		8.09	4.98	6.8
		2017-01-14		Cloudy			Middle		2	2	13:27		7.62		8.12	4.89	6.7
TIVICLAL	171/2012/08	2017-01-14	เงแน-⊏มม	Gloudy	oman wave	1013	wiidale	ე.4	<u> </u>	2	13.2/	<b>∠</b> U. <b>∠</b>	7.02	لا. اکا ا	0.12	4.03	U. <i>1</i>

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	9.8	3	1	13:27	20.4	7.53	27.8	8.2	5.01	6.8
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	9.8	3	2	13:27	20.5	7.58	27.9	8.24	5.09	6.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	12:54	20.2	7.55	27.3	7.98	5.18	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	2	12:54	20.1	7.53	27.4	7.96	5.24	6.5
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.6	2	1	12:54	20.2	7.62	27.5	8.08	5.4	6.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.6	2	2	12:54	20.1	7.59	27.6	8.04	5.48	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.2	3	1	12:54	20.4	7.5	27.7	8.16	5.34	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.2	3	2	12:54	20.5	7.54	27.7	8.13	5.29	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	13:44	20.2	7.67	27.4	8.04	4.93	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	13:44	20.2	7.64	27.5	8	4.99	6.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS15	Middle	4.7	2	1	13:44	20.2	7.68	27.6	8.08	5.06	7.7
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	Cloudy	Small wave	IS15	Middle	4.7	2	2	13:44	20.2	7.72	27.5	8.11	5.12	6.9
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb				Bottom	8.4	3	1	13:44	20.2		27.8	8.23	5.34	7.3
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>	Small wave			8.4	3	2	13:44	20.3	7.7	27.8	8.18	5.26	7.2
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>		SR8	Surface	1	1	1	14:14	20.2	7.64	27.7	7.45	4.9	6.4
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	i – -	Small wave		Surface	1	1	2	14:14	20.2	_	27.6	7.41	4.96	6.4
	HY/2012/08		Mid-Ebb	,			Middle		2	1	14:14		Ī		1	1	1
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb		Small wave		Middle		2	2	14:14						1
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>				4.4	3	1	14:14	20.2	7.72	27.7	7.78	5.06	6.4
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb		Small wave			4.4	3	2	14:14	20.2		27.8	7.69	5.12	6.6
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>	Small wave		Surface	1	1	1	14:00	20.2	_	27.5	7.85	4.83	6
TMCLKL	HY/2012/08		Mid-Ebb	<u> </u>			Surface	1	1	2	14:00	20.3		27.5	7.82	4.9	6.3
	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>	Small wave		Middle		2	1	14:00		1				1
	HY/2012/08	2017-01-14	Mid-Ebb	<u> </u>			Middle		2	2	14:00						+
TMCLKL	HY/2012/08	2017-01-14	Mid-Ebb				Bottom	3	3	1	14:00	20.3	7.58	27.6	7.94	5.1	6.4
	HY/2012/08	2017-01-14	Mid-Ebb	i – -	Small wave		Bottom	3	3	2	14:00	20.2	_	27.7	7.98	5.17	6.5
							Surface	1	1	1			7.53		7.78	4.97	6.3
	HY/2012/08		Mid-Ebb	<u> </u>			Surface	1	1	2		20.2	_	27.6	7.74	5.02	6.4
	HY/2012/08		Mid-Ebb					6.8	2	1	•	20.2		27.6	7.83	5.09	6.8
	HY/2012/08		Mid-Ebb					6.8	2	2		20.2		27.7	7.86	5.15	6.5
	HY/2012/08	2017-01-14	Mid-Ebb					12.5	3	1		20.3		27.9	7.93	5.43	7.1
	HY/2012/08		Mid-Ebb	- 1				12.5	3	2		20.4		27.9	7.98	5.49	7.1
	HY/2012/08		Mid-Flood	i – -			Surface	1	1	1	•	20.6	_	26.7	8.04	5.09	7.2
	HY/2012/08		Mid-Flood				Surface	1	1	2		20.6			8.08	5.11	7.2
	HY/2012/08		Mid-Flood					10.6	2	1		20.5	7.89		8.02	5.12	7.3
			Mid-Flood	Fine				10.6	2	2	•	20.5		26.7	8	5.18	7.5
	HY/2012/08		Mid-Flood					20.2	3	1	1	20.5		26.7	7.96	5.19	7.7
	HY/2012/08		Mid-Flood					20.2	3	2		20.5		26.7	7.92	5.22	7.4
	HY/2012/08		Mid-Flood				Surface	1	1	1		20.5		26.8	8.26	4.21	6.1
	HY/2012/08		Mid-Flood				Surface	1	1	2		20.6	_	26.8	8.24	4.26	6.3
	HY/2012/08		Mid-Flood	Fine				6.8	2	1	•	20.5			8.19	4.48	6.6
	HY/2012/08		Mid-Flood					6.8	2	2		20.5		26.8	8.22	4.52	6.7
	HY/2012/08	2017-01-17	Mid-Flood					12.6	3	1		20.4			8.14	4.71	6.7
			Mid-Flood					12.6	3	2		20.4			8.18	4.65	6.9
	HY/2012/08		Mid-Flood				Surface	14.0	1	1	•	20.4	_		8.15	4.77	6.4
	HY/2012/08		Mid-Flood				Surface	1	1	2	•	20.5	7.82		8.16	4.72	6.2
	HY/2012/08		Mid-Flood					6.9	2	1	•	20.6		26.7	8.05	4.86	6.4
		2017-01-17	Mid-Flood					6.9	2	2		20.6		26.7	8.02	4.83	6.5
	HY/2012/08		Mid-Flood			•		12.8	3	1		20.5	7.83		0.02	4.8	6.4
									3	2					8.03	4.82	6.6
	HY/2012/08		Mid-Flood					12.8	<u>ی</u> 1	1	•	20.5			8.06		
	HY/2012/08		Mid-Flood				Surface	1	1	2		20.5				4.76	6.4
	HY/2012/08		Mid-Flood				Surface	I	2	4		20.5			8.02	4.8	6.8
		2017-01-17	Mid-Flood	Fine				6	2	<u>                                     </u>					8.01	4.87	6.8
			Mid-Flood					6	2	4	•	20.5		26.5	8.03	4.92	6.7
			Mid-Flood				Bottom		ა ი	1	11:32			26.5	7.94	5.06	7.1
LINICLKL	HY/2012/08	2017-01-17	IVIIa-Flood	Fine	Small wave	1513	Bottom	11	<b>3</b>	2	11:32	20.4	8.1	26.4	7.9	5	6.9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS14	Surface	1	1	1	12:04	20.5	7.84	26.7	8.16	4.77	6
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS14	Surface	1	1	2	12:04	20.5	7.85	26.7	8.14	4.81	6.1
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS14	Middle	6.5	2	1	12:04	20.5	7.86	26.7	8.09	4.86	6.1
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine		IS14	Middle	6.5	2	2	12:04	20.5	7.89	26.7	8.11	4.83	5.9
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS14	Bottom	11.9	3	1	12:04	20.5	7.86	26.7	8.05	4.82	5.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine			Bottom	11.9	3	2	12:04	20.5		26.7	8.02	4.84	5.9
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS15	Surface	1	1	1	11:15	20.5	7.89	26.5	8.21	4.65	6.5
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS15	Surface	1	1	2	11:15	20.5	7.87	26.5	8.16	4.68	6.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine		IS15	Middle	5.8	2	1	11:15	20.5	7.86	26.5	8.13	5.09	6.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave	IS15	Middle	5.8	2	2	11:15	20.5			8.15	5.06	6.9
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave			10.6	3	1	11:15	20.4		26.5	8.08	5.11	6.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood					10.6	3	2	11:15	20.4			8.11	5.14	6.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave		Surface	1	1	1	10:48	20.5		26.8	8.22	5.11	6.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave		Surface	1	1	2	10:48	20.5	_	26.7	8.19	5.09	6.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood				Middle		2	1	10:48						
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave		Middle	1	2	2	10:48	1	Ī				<del>                                     </del>
TMCLKL	HY/2012/08		Mid-Flood					4.6	3	1	10:48	20.5	7.93	26.7	8.05	5.04	6.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave			4.6	3	2	10:48	20.5		26.7	8.08	5.08	6.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood				Surface	1	1	1	11:01	20.5	_		8.12	4.27	5.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave		Surface	1	1	2	11:01	20.6		26.5	8.14	4.3	5.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave		Middle		2	1	11:01		1102				10.0
TMCLKL	HY/2012/08		Mid-Flood				Middle		2	2	11:01	<del>†</del>		1	<b>-</b>		+
	HY/2012/08	2017-01-17	Mid-Flood		Small wave			3.6	3	1	11:01	20.3	7.83	26.4	8	4.16	5.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave			3.6	3	2	11:01	20.4		26.4	7.95	4.19	5.5
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood		Small wave		Surface	1	1	1	10:33	20.6		26.7	8.65	4.81	6.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Flood	Fine	Small wave		Surface	1	1	2	10:33	20.6		26.7	8.64	4.74	6.1
			Mid-Flood					7.1	2	1		20.6	7.82		8.39	4.64	6.1
	HY/2012/08		Mid-Flood	Fine				7.1	2	2		20.5	7.83		8.44	4.69	6
	HY/2012/08		Mid-Flood	Fine				13.2	3	1	•	20.5	_	26.7	8.26	4.59	5.9
	HY/2012/08		Mid-Flood					13.2	3	2		20.5	7.83		8.29	4.62	6
	HY/2012/08	2017-01-17	Mid-Ebb	Fine			Surface	1	1	1		20		26.9	8.15	5.28	7.6
	HY/2012/08		Mid-Ebb				Surface	1	1	2		20.1	7.89		8.17	5.31	7.6
	HY/2012/08		Mid-Ebb					10.5	2	1	•	20.2	7.92		8.33	5.44	8
	HY/2012/08		Mid-Ebb					10.5	2	2		20.3			8.35	5.47	7.8
	HY/2012/08		Mid-Ebb					19.9	3	1			_	27.3	8.49	5.55	8.1
	HY/2012/08		Mid-Ebb	Fine				19.9	3	2	•		_	27.4	8.52	5.58	7.9
	HY/2012/08		Mid-Ebb	Fine			Surface	19.9	1	1	•	20.1	8.12		7.96	4.09	6
			Mid-Ebb	Fine			Surface	1	1	2	•		8.14		7.98	4.11	6
	HY/2012/08		Mid-Ebb	Fine				6.7	2	1					8.14	4.25	6.3
	HY/2012/08		Mid-Ebb	Fine				6.7	2	2			_		8.17	4.28	6.2
	HY/2012/08 HY/2012/08		Mid-Ebb	Fine				12.3	2	1		20.3		27.3	8.25	4.36	6.3
	HY/2012/08 HY/2012/08		Mid-Ebb					12.3	3	2		•	7.96		8.28	4.39	6.3
	HY/2012/08 HY/2012/08		Mid-Ebb	Fine				14.3	ا ا	1	•	20.4			8.28 8.05	5.09	6.9
							Surface	1	1	2		20	7.96				
			Mid-Ebb	Fine			Surface	6.0	2	1	15:25	19.9	7.98		8.07	5.11	6.9
	HY/2012/08		Mid-Ebb	Fine				6.8	2	1	•	20.1			8.19	5.27	7.2
	HY/2012/08		Mid-Ebb					6.8	2	4				27.2	8.22	5.29	7.2
TMCLKL	HY/2012/08		Mid-Ebb					12.5	ა ი	1	•	20.3		27.3	8.34	5.34	7.3
			Mid-Ebb	Fine				12.5	<u>ي</u> ا	4	•	20.4			8.3	5.37	7.2
	HY/2012/08		Mid-Ebb				Surface	1	1	1	•	20.1		26.9	7.67	5.34	7.5
	HY/2012/08		Mid-Ebb				Surface	7	1	2		20	7.96		7.69	5.32	7.4
	HY/2012/08		Mid-Ebb					5.9	2	1		20.2		27.1	7.75	5.4	7.6
	HY/2012/08		Mid-Ebb					5.9	2	2	•		_	27.2	7.78	5.42	7.7
		2017-01-17	Mid-Ebb	Fine				10.8	3	1	1	20.3		27.3	7.96	5.55	7.5
			Mid-Ebb	Fine				10.8	3	2	•	20.4	7.82		7.98	5.52	7.9
			Mid-Ebb				Surface		1	1			8.06		7.84	5.19	6.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS14	Surface	1	1	2	15:03	20.2	8.08	27.1	7.87	5.21	6.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS14	Middle	6.3	2	1	15:03	20.2	8.15	27.2	7.95	5.33	6.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS14	Middle	6.3	2	2	15:03	20.3	8.13	27.2	7.98	5.36	6.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS14	Bottom	11.6	3	1	15:03	20.4	8	27.3	8.14	5.4	6.8
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS14	Bottom	11.6	3	2	15:03	20.3	7.98	27.4	8.17	5.42	6.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Surface	1	1	1	16:09	20.3	8.12	27.1	7.86	5.48	7.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Surface	1	1	2	16:09	20.3	8.1	27.1	7.89	5.51	7.5
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Middle	5.6	2	1	16:09	20.4	7.96	27.2	8	5.66	7.5
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Middle	5.6	2	2	16:09	20.4	7.93	27.3	8.02	5.64	7.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Bottom	10.2	3	1	16:09	20.5		27.4	8.15	5.77	7.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	IS15	Bottom	10.2	3	2	16:09			27.3	8.13	5.75	8
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave	SR8	Surface	1	1	1	16:34	20.2		27	8.05	3.99	5
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Surface	1	1	2	16:34	-	_	26.9	8.07	4.01	5.1
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Middle		2	1	16:34	1		i	1		
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Middle		2	2	16:34						
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave			4.2	3	1	16:34	20.3	8.15	27.2	8.12	4.28	5.5
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave			4.2	3	2	16:34	-		27.3	8.15	4.3	5.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine			Surface	1	1	1	16:22		•	26.9	7.78	5.24	6.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Surface	1	1	2	16:22			27	7.81	5.27	6.7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Middle		2	1	16:22					0.2.	
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Middle		2	2	16:22	<del>†</del>		<del> </del>	<del> </del>		
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave			3.3	3	1	16:22	20.4	7.84	27.1	8.07	5.56	7.2
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave			3.3	3	2	16:22	-		27.2	8.04	5.55	7
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Surface	1	1	1	16:46			26.8	7.84	4.18	5.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Surface	1	1	2	16:46	-		26.9	7.87	4.2	5.4
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb				Middle	7	2	1				27	7.99		5.6
				Fine	Small wave			7	2	1	16:46	-				4.39	
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine	Small wave		Middle	10.0	2	4	16:46	-		27.1	8.01	4.41	5.6
	HY/2012/08		Mid-Ebb	Fine				12.9	3	0	1				8.27	4.3	5.6
TMCLKL	HY/2012/08	2017-01-17	Mid-Ebb	Fine				12.9	3	2	16:46			27.3	8.29	4.32	5.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	1	13:03			26.4	7.62	5	7.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	2	13:03		7.75		7.64	5.02	7.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave		Middle	10.7	2	1	13:03	19.3	7.82		7.75	5.14	7.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				10.7	2	2	13:03			26.6	7.77	5.17	7.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				20.3	3	1	13:03			26.7	7.84	5.28	7.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				20.3	3	2	13:03			26.8	7.81	5.3	7.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	1	11:24		7.86		7.56	4.46	6.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave		Surface	1	1	2	11:24	19.3		26.5	7.59	4.43	6.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave			6.8	2	1	11:24	-		26.6	7.66	4.64	6.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave		Middle	6.8	2	2	11:24	19.4		26.7	7.64	4.61	6.9
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	CS6	Bottom	12.6	3	1	11:24	19.5	7.69	26.8	7.73	4.56	6.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave			12.6	3	2	11:24			26.7	7.76	4.58	6.9
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	1	13:03			26.4	7.43	4.64	6.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS12	Surface	1	1	2	13:03	19.3	7.69	26.5	7.45	4.67	6.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS12	Middle	6.9	2	1	13:03	19.4	8.13	26.6	7.52	4.59	6.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS12	Middle	6.9	2	2	13:03	19.3	8.1	26.7	7.55	4.56	6.2
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS12	Bottom	12.8	3	1	13:03	19.5	7.84	26.8	7.64	5.13	6.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				12.8	3	2	13:03			26.7	7.66	5.17	7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	1	12:55			26.4	7.54	5.14	7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave		Surface	1	1	2	12:55	-		26.5	7.57	5.11	6.9
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				6.1	2	1	12:55			26.7	7.6	5.26	7.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				6.1	2	2	12:55			26.7	7.63	5.29	7.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				11.1	3	1	12:55			26.8	7.71	5.34	7.5
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine				11.1	3	2	12:55			26.7	7.74	5.37	7.6
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave		Surface	1	1	1	13:21	-		26.3	7.55	4.8	6
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine			Surface	1	1	2	13:21	•		26.4	7.53	4.83	6.1
			Mid-Flood	Fine				6.5	2	1	•		8.14		7.67	4.97	6.3
		2017-01-19		Fine			Middle		2	2	13:21		8.12		7.69	4.99	6.1
LIVICLAL	111/2012/00	2017-01-19	IVIIU-FIUUU	i i ii i c	Small wave	IO 14	iviiuule	ບ.ט	<u> </u> 4	2	IJ.ZI	13.2	0.12	20.0	الان. <i>ب</i>	4.33	U. I

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine		IS14	Bottom	11.9	3	1	13:21	19.4	7.92	26.7	7.74	5.01	6.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS14	Bottom	11.9	3	2	13:21	19.4	7.95	26.7	7.72	5.04	6.2
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Surface	1	1	1	12:35	19.2	7.95	26.4	7.7	5.04	6.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Surface	1	1	2	12:35	19.3	7.98	26.4	7.73	5.07	6.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Middle	5.9	2	1	12:35	19.4	8	26.5	7.81	5.14	7.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Middle	5.9	2	2	12:35	19.4	8.02	26.6	7.83	5.17	7.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Bottom	10.4	3	1	12:35	19.5	7.68	26.7	7.67	5.38	7.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	IS15	Bottom	10.4	3	2	12:35	19.6	7.71	26.8	7.69	5.41	7.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	SR8	Surface	1	1	1	12:07	19.2	7.74	26.2	7.43	4.39	5.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	SR8	Surface	1	1	2	12:07	19.1	7.77	26.3	7.46	4.42	5.6
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	SR8	Middle		2	1	12:07						
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood	Fine	Small wave	SR8	Middle		2	2	12:07						
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood		Small wave			4.4	3	1	12:07	19.3	7.85	26.4	7.6	4.56	6
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood		Small wave			4.4	3	2	12:07	19.4		26.5	7.63	4.59	6.1
TMCLKL	HY/2012/08		Mid-Flood			SR9	Surface	1	1	1	12:20	19.2		26.5	7.69	4.82	6.1
TMCLKL	HY/2012/08		Mid-Flood		Small wave	•	Surface	1	1	2	12:20	19.3		26.5	7.71	4.85	6.2
TMCLKL	HY/2012/08		Mid-Flood				Middle	1	2	1	12:20	1.2.2	† · · · · ·		1		1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood		Small wave		Middle		2	2	12:20		t				1
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood					3.6	3	1	12:20	19.4	7.99	26.6	7.54	4.99	6.5
TMCLKL	HY/2012/08		Mid-Flood		Small wave			3.6	3	2	12:20	19.4		26.7	7.52	5.01	6.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood		Small wave	•	Surface	1	1	1	11:46	19.1	_	26.3	7.65	4.29	5.5
TMCLKL	HY/2012/08		Mid-Flood		Small wave	•	Surface	1	1	2	11:46			26.4	7.68	4.32	5.7
	HY/2012/08		Mid-Flood		Small wave	•		7.1	2	1	11:46			26.5	7.51	4.48	5.9
TMCLKL	HY/2012/08	2017-01-19	Mid-Flood		Small wave			7.1	2	2	11:46			26.5	7.49	4.5	5.7
TMCLKL	HY/2012/08		Mid-Flood		Small wave			13.2	3	1	11:46	19.4		26.7	7.73	4.55	5.8
TMCLKL	HY/2012/08		Mid-Flood		Small wave			13.2	3	2	11:46	19.4	7.9	26.6	7.75	4.57	6
		2017-01-19				•	Surface		1	1	•	19.5	7.85		7.39	5.43	7.9
	HY/2012/08		Mid-Ebb	· · · · · · · · · · · · · · · · · · ·			Surface	1	1	2	16:30	19.6	7.88		7.32	5.37	7.8
	HY/2012/08		Mid-Ebb			•		11.5	2	1	16:30	19.7	_	26.8	7.58	5.56	8
	HY/2012/08		Mid-Ebb					11.5	2	2	16:30	19.7	7.96		7.64	5.49	8
	HY/2012/08		Mid-Ebb					21.9	3	1	16:30	19.8	7.92		7.92	5.72	8.5
	HY/2012/08		Mid-Ebb			•		21.9	3	2	16:30	19.7		27	7.98	5.76	8.4
	HY/2012/08		Mid-Ebb				Surface	1	1	1	18:50	19.4		26.7	7.28	4.71	6.7
	HY/2012/08		Mid-Ebb			•	Surface	1	1	2	•	19.4		26.8	7.33	4.76	6.8
	HY/2012/08		Mid-Ebb	· · · · · · · · · · · · · · · · · · ·				6.5	2	1	16:30	19.5		26.9	7.44	4.86	7.2
						•			2	1	•						7.1
	HY/2012/08 HY/2012/08		Mid-Ebb Mid-Ebb					6.5 11.9	2	1	16:30	19.5 19.6	7.82	26.9	7.49 7.6	4.93 5.04	7.1
				· · · · · · · · · · · · · · · · · · ·		•			ა ი	2	16:30						
	HY/2012/08		Mid-Ebb			•		11.9	ا ا	1	16:30	19.6		26.9	7.54 7.31	5.11	7.6
	HY/2012/08		Mid-Ebb	· · · · · · · · · · · · · · · · · · ·		•	Surface	1	1	1	17:03	19.6	_	26.8		4.82	6.5
	HY/2012/08		Mid-Ebb				Surface	6 0	2	1	17:03	19.5		26.8	7.27	4.86	6.5
	HY/2012/08		Mid-Ebb					6.8	2	1	17:03	19.7		26.8	7.17	4.98	6.8
	HY/2012/08		Mid-Ebb					6.8	2	1	17:03	19.7	7.72		7.23	5.04	6.7
	HY/2012/08		Mid-Ebb					12.5	ა ი	1	17:03	19.7		26.9	7.44	5.16	7.1
	HY/2012/08		Mid-Ebb	· · · · · · · · · · · · · · · · · · ·		•		12.5	3	4	17:03	19.8		26.9	7.49	5.21	7.1
	HY/2012/08		Mid-Ebb				Surface	1	1	1	•	19.4		26.8	7.23	5.4	7.6
	HY/2012/08		Mid-Ebb			•	Surface	T 0	1	4	17:19	19.4		26.7	7.28	5.44	7.4
	HY/2012/08		Mid-Ebb					5.9	2	1	17:19	19.6		26.9	7.49	5.57	7.6
	HY/2012/08		Mid-Ebb					5.9	2	2	17:19	19.5		26.8	7.41	5.52	7.6
	HY/2012/08		Mid-Ebb					10.8	3	1	17:19	19.6		26.9	7.62	5.65	7.8
	HY/2012/08		Mid-Ebb					10.8	3	2	•			26.9	7.57	5.61	7.9
	HY/2012/08		Mid-Ebb	· ·			Surface	1	1	1		19.6		26.7	7.31	5.05	6.2
	HY/2012/08		Mid-Ebb				Surface	1	1	2	16:47	19.6		26.8	7.26	5.11	6.3
	HY/2012/08		Mid-Ebb	Cloudy				6.3	2	1	16:47	19.7		26.9	7.47	5.14	6.2
			Mid-Ebb					6.3	2	2	16:47	19.6	_	26.8	7.53	5.09	6.5
		2017-01-19		ž			Bottom		3	1		19.8		26.9	7.66	5.23	6.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	11.6	3	2	16:47	19.8	7.85	26.9	7.71	5.27	6.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	17:35	19.4	7.68	26.7	7.36	5.29	7
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	17:35	19.5	7.7	26.8	7.32	5.33	7.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave	IS15	Middle	5.6	2	1	17:35	19.5	7.83	26.8	7.2	5.17	6.8
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy		IS15	Middle	5.6	2	2	17:35	19.6	7.85	26.8	7.25	5.12	7.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	10.1	3	1	17:35	19.7	7.94	26.9	7.49	5.45	7.5
TMCLKL	HY/2012/08		Mid-Ebb					10.1	3	2	17:35	19.7		27	7.53	5.48	7.3
TMCLKL	HY/2012/08		Mid-Ebb		Small wave		Surface	1	1	1	18:06	19.4	7.96	26.7	7.14	4.64	5.9
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb				Surface	1	1	2	18:06	19.5	7.93	26.7	7.11	4.7	6.1
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave		Middle		2	1	18:06						
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	2	18:06						
TMCLKL	HY/2012/08		Mid-Ebb					4.1	3	1	18:06	19.6	7.78	26.8	7.39	4.8	6.1
TMCLKL	HY/2012/08		Mid-Ebb					4.1	3	2	18:06	19.6	_	26.8	7.45	4.86	6.2
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb		Small wave		Surface	1	1	1	17:52	19.5		26.8	7.41	5.05	6.4
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb		Small wave		Surface	1	1	2	17:52	19.5	_	26.8	7.48	5.09	6.6
TMCLKL	HY/2012/08		Mid-Ebb				Middle	<del> </del>	2	1	17:52	10.0	7.70	20.0	7.40	0.00	0.0
TMCLKL	HY/2012/08		Mid-Ebb		Small wave		Middle	<del>                                     </del>	2	2	17:52	1	$\vdash$			†	+
TMCLKL	HY/2012/08		Mid-Ebb					3.4	3	1	17:52	19.5	7.7	26.8	7.63	5.18	6.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb		Small wave			3.4	3	2	17:52	19.6		26.9	7.67	5.13	6.7
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb					J. <del>T</del>	1	1	18:31	19.5	_		7.36		5.9
					Small wave		Surface	1	1	2			7.83	26.8 26.8	7.41	4.64	6.1
TMCLKL	HY/2012/08		Mid-Ebb		Small wave		Surface	6.0	2	4	18:50	19.5				4.71	
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb	Cloudy	Small wave			6.9	2	1	18:50	19.6		26.8	7.28	4.52	5.8
TMCLKL	HY/2012/08		Mid-Ebb		Small wave			6.9	2	2	18:50	19.5		26.9	7.22	4.58	6.1
	HY/2012/08	2017-01-19	Mid-Ebb	,	Small wave			12.8	3	1	18:50			27	7.48	4.82	6.3
TMCLKL	HY/2012/08	2017-01-19	Mid-Ebb		Small wave			12.8	3	2	18:50	19.7		27	7.53	4.89	6.2
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	1	13:40	19.3		26.7	8.14	5.69	8.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	2	13:40	19.4		26.8	8.11	5.75	8.4
			Mid-Flood					8.9	2	1	+		7.54		8.2	5.95	8.5
	HY/2012/08		Mid-Flood	Cloudy				8.9	2	2	13:40	19.5	7.58		8.24	5.98	8.6
	HY/2012/08		Mid-Flood	Cloudy				16.8	3	1	13:40	19.6			8.31	5.84	8.3
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Bottom	16.8	3	2	13:40	19.7		27	8.27	5.89	8.7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Surface	1	1	1	11:48	19.5	7.47	26.6	8.3	5.18	7.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Surface	1	1	2	11:48	19.6	7.5	26.7	8.26	5.26	7.7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Middle	6.7	2	1	11:48	19.7	7.49	26.8	8.23	5.37	7.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Middle	6.7	2	2	11:48	19.6	7.54	26.7	8.2	5.31	7.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Bottom	12.4	3	1	11:48	19.7	7.58	26.9	8.14	5.57	8.2
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	CS6	Bottom	12.4	3	2	11:48	19.8	7.55	27	8.1	5.64	8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS12	Surface	1	1	1	13:22	19.4	7.49	26.6	8.17	5.08	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS12	Surface	1	1	2	13:22	19.5	7.53	26.7	8.2	5.15	6.8
TMCLKL	HY/2012/08		Mid-Flood	Cloudy			Middle	6.4	2	1	13:22	19.6		26.7	8.23	5.23	7.2
	HY/2012/08		Mid-Flood	Cloudy				6.4	2	2	13:22	19.7	_	26.8	8.26	5.35	7.3
	HY/2012/08		Mid-Flood	Cloudy				11.8	3	1	13:22	19.7			8.34	5.51	7.4
	HY/2012/08		Mid-Flood	Cloudy				11.8	3	2	13:22	19.6		27	8.38	5.62	7.6
	HY/2012/08	2017-01-21	Mid-Flood	Cloudy			Surface	1	1	1	13:05	19.6		26.7	8.3	4.99	7
			Mid-Flood	Cloudy			Surface	1	1	2	13:05	19.5		26.6	8.27	5.07	7.2
	HY/2012/08		Mid-Flood	Cloudy				5.5	2	1	13:05	19.6		26.8	8.33	5.15	7.2
	HY/2012/08		Mid-Flood	Cloudy				5.5	2	2	13:05	19.6			8.36	5.23	7.2
TMCLKL	HY/2012/08		Mid-Flood	Cloudy				10	3	1	13:05	19.7		26.9	8.39	5.4	7.7
	HY/2012/08	2017-01-21	Mid-Flood	Cloudy				10	3	2	13:05	19.8		27	8.44	5.47	7.4
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1	14:03	19.5			8.19	5.57	7
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	14:03	19.6	_		8.15	5.84	7.5
	HY/2012/08		Mid-Flood	Cloudy				5.8	2	1	14:03	19.0			8.28	5.4	6.9
									2	2					8.25		
	HY/2012/08		Mid-Flood	Cloudy				5.8	2	4	14:03	19.6		26.8		5.46	6.9
	HY/2012/08	2017-01-21	Mid-Flood	Cloudy				10.6	ა ი	1	14:03	19.7		26.8	8.33	5.77	7.4
			Mid-Flood	Cloudy				10.6	3	4	14:03	19.8		26.9	8.36	5.8	7.1
		2017-01-21		Cloudy			Surface	[] [4	[1] [4	1		19.4	7.49		8.33	5.07	1/
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS15	Surface	1	<b>1</b>	2	12:48	19.5	7.53	26.8	8.29	5.15	7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS15	Middle	5.4	2	1	12:48	19.6	7.54	26.7	8.42	5.37	7.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS15	Middle	5.4	2	2	12:48	19.7	7.51	26.8	8.39	5.29	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS15	Bottom	8.8	3	1	12:48	19.7	7.56	26.9	8.25	5.61	7.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	IS15	Bottom	8.8	3	2	12:48	19.6	7.59	26.8	8.3	5.68	7.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm	SR8	Surface	1	1	1	12:22	19.5	7.46	26.6	8.04	5.15	6.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	2	12:22	19.4	7.5	26.7	8.07	5.24	6.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Middle		2	1	12:22						
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Middle		2	2	12:22	ì				1	1
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Bottom	4.8	3	1	12:22	19.5	7.43	26.7	7.93	5.51	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			4.8	3	2	12:22	19.6		26.8	7.9	5.45	7.1
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	1	12:35	19.4		26.6	8.14	4.95	6.2
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	2	12:35	19.3	_		8.1	4.88	6.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood		Calm		Middle		2	1	12:35	10.0				1	
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Middle		2	2	12:35						+
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			3.4	3	1	12:35	19.4	7.54	26.6	8.07	5.29	6.6
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			3.4	3	2	12:35	19.5	7.5	26.7	8.12	5.36	6.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm		Surface	1	1	1	12:05	19.4	_	26.6	8.24	5.35	6.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood		Calm		Surface	1	1	2	12:05	19.5		26.5	8.27	5.29	6.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			6.8	2	1	12:05	19.5		26.7	8.19	5.45	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			6.8	2	2	12:05	19.6	7.47		8.16	5.52	7 1
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy	Calm			12.6	2	1	12:05	19.6	_	26.8	8.32	5.71	7.5
									ა ი	1			_		8.28		7.3
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Calm			12.6	ა 1	1	12:05	19.7		26.9		5.79	
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	  a	1	1	06:28	19.4	_	26.7	8.08	5.78	8.4
	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	2	06:28	19.4	7.56		8.05	5.84	8.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			8.7	2	1	06:28	19.6		26.7	8.14	6.04	8.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			8.7	2	2	06:28	19.5		26.8	8.18	6.07	8.6
								16.4	3	1	•		_		8.25	5.93	8.5
	HY/2012/08		Mid-Ebb	Cloudy				16.4	3	2	06:28	19.7	7.65		8.21	5.98	8.8
	HY/2012/08		Mid-Ebb	Cloudy	Calm		Surface	1	1	1		19.4			8.24	5.27	7.9
	HY/2012/08		Mid-Ebb	Cloudy	Calm		Surface	1	1	2	07:54	19.4		26.6	8.2	5.35	8
	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy				6.6	2	1	07:54	19.4			8.17	5.46	8
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Calm			6.6	2	2	07:54	19.3	7.48		8.14	5.4	7.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy			Bottom	12.2	3	1	07:54	19.5	7.52	26.8	8.08	5.66	8.1
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	CS6	Bottom	12.2	3	2	07:54	19.5	7.49	26.9	8.04	5.73	8.5
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Surface	1	1	1	06:53	19.4	7.43	26.5	8.11	5.17	6.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Surface	1	1	2	06:53	19.4	7.47	26.6	8.14	5.24	7.2
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Middle	6.2	2	1	06:53	19.4	7.5	26.7	8.17	5.32	7.1
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Middle	6.2	2	2	06:53	19.5	7.48	26.7	8.2	5.44	7.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Bottom	11.4	3	1	06:53	19.6	7.57	26.9	8.28	5.6	7.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS12	Bottom	11.4	3	2	06:53	19.6	7.61	26.9	8.32	5.71	7.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy			Surface	1	1	1	07:06	19.4		26.6	8.24	5.08	7
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy		IS13	Surface	1	1	2	07:06	19.5		26.6	8.21	5.16	6.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS13	Middle	5.3	2	1		19.5		26.6	8.27	5.24	7.4
	HY/2012/08		Mid-Ebb	Cloudy				5.3	2	2	07:06	19.5		26.7	8.3	5.32	7.4
	HY/2012/08		Mid-Ebb	Cloudy				9.6	3	1	•	19.5		26.8	8.33	5.49	7.5
	HY/2012/08		Mid-Ebb	Cloudy				9.6	3	2	•	19.6			8.38	5.56	7.9
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	1	16:40	19.4		26.6	8.13	5.66	7
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2	16:40	19.5		26.6	8.09	5.73	7.2
	HY/2012/08		Mid-Ebb	Cloudy				5.7	2	1	16:40	19.5		26.6	8.22	5.49	6.8
	HY/2012/08		Mid-Ebb	Cloudy				5.7	2	2	-	19.5		26.7	8.19	5.55	7
	HY/2012/08		Mid-Ebb	Cloudy				10.3	3	1	•	19.6			8.27	5.86	7.1
	HY/2012/08		Mid-Ebb	Cloudy				10.3	3	2	16:40	19.6			8.3	5.89	7.2
	HY/2012/08		Mid-Ebb	Cloudy			Surface	10.0	1	1	07:19	19.4		26.6	8.27	5.16	6.8
	HY/2012/08							1	1	2				26.6	8.23	5.24	7.1
			Mid-Ebb	Cloudy			Surface Middle	1 1 0	2	1	•	19.4			8.36	5.24 5.46	
			Mid-Ebb	Cloudy					2	2		19.4					7.5
TIVICLKL	HY/2012/08	2017-01-21	ממם-טוועו	Cloudy	Calm	IS15	Middle	4.ŏ			07:19	าษ.๖	7.45	20.7	8.33	5.38	7.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS15	Bottom	8.5	3	1	07:19	19.5	7.5	26.8	8.19	5.7	7.5
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	IS15	Bottom	8.5	3	2	07:19	19.5	7.53	26.9	8.24	5.77	8
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	SR8	Surface	1	1	1	07:41	19.4	7.4	26.5	7.98	5.24	6.9
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	2	07:41	19.4	7.44	26.6	8.01	5.33	7.1
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm	SR8	Middle		2	1	07:41						
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Middle		2	2	07:41						
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Bottom	4.5	3	1	07:41	19.4	7.37	26.6	7.87	5.6	7.1
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			4.5	3	2	07:41	19.4	7.4	26.6	7.84	5.54	7.2
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	1	07:32	19.4		26.5	8.08	5.04	6.3
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	2	07:32	19.5		26.5	8.04	4.97	6.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Middle		2	1	07:32						
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Calm		Middle		2	2	07:32						
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb		Calm			3.2	3	1	07:32	19.4	7.48	26.5	8.01	5.38	6.8
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			3.2	3	2	07:32	19.4		26.6	8.04	5.45	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	1	18:16	19.3		26.4	8.18	5.44	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm		Surface	1	1	2	18:16	19.4		26.5	8.21	5.38	6.9
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Calm			6.7	2	1	18:16	19.4			8.13	5.54	7
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb		Calm			6.7	2	2	18:16	19.4			8.1	5.61	7.4
TMCLKL	HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			12.4	3	1	18:16	19.4	_	26.6	8.26	5.8	7.4
TMCLKL	HY/2012/08 HY/2012/08	2017-01-21	Mid-Ebb	Cloudy	Calm			12.4	ა ვ	2	18:16	19.4		26.7	8.22	5.88	7.5
TMCLKL	HY/2012/08	2017-01-21	Mid-Flood	Cloudy			Surface	12.4	J 1	1	•	19.9	_		7.43	5.24	7.4
								1	1	2	16:01		_	26.4			
TMCLKL	HY/2012/08		Mid-Flood				Surface	10.0	2	4	16:01	19.9		26.4	7.49	5.31	7.6
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood					10.8	2	1	16:01	20		26.6	7.59	5.05	7.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood				Middle	10.8	2	2	16:01	20		26.7	7.66	5.11	7.6
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood					20.6	3	1	1	20		26.7	7.85	5.37	7.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy				20.6	3	2	16:01	20.1		26.8	7.78	5.44	7.8
			Mid-Flood				Surface	1	1	1	•	19.8	7.84		7.5	4.53	6.7
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	14:11	19.8	7.88		7.58	4.56	6.8
	HY/2012/08		Mid-Flood					6.8	2	1	•	19.8	7.92		7.66	4.41	6.6
	HY/2012/08		Mid-Flood					6.8	2	2	14:11	19.9	7.89		7.72	4.47	6.6
	HY/2012/08		Mid-Flood	Cloudy				12.6	3	1	14:11	19.8		26.9	7.78	4.72	6.7
TMCLKL	HY/2012/08		Mid-Flood	Cloudy			Bottom	12.6	3	2	14:11	19.9	7.82		7.85	4.67	6.8
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	15:43	20	7.73	26.4	7.33	4.83	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	15:43	20	7.7	26.5	7.38	4.88	6.7
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Middle	7	2	1	15:43	20.1	7.81	26.5	7.51	4.74	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Middle	7	2	2	15:43	20	7.78	26.6	7.47	4.69	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.9	3	1	15:43	20.1	7.84	26.7	7.69	4.99	6.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.9	3	2	15:43	20.1	7.87	26.7	7.75	5.07	6.8
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	15:26	20.1	7.81	26.4	7.45	4.67	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	15:26	20		26.4	7.49	4.71	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood				Middle	6	2	1	•	20.1	7.92		7.58	4.55	6.1
	HY/2012/08		Mid-Flood					6	2	2	-	20.1		26.5	7.65	4.6	6.4
	HY/2012/08		Mid-Flood	Cloudy				10.9	3	1	15:26	19.9		26.6	7.74	4.81	6.5
			Mid-Flood					10.9	3	2	•	20		26.6	7.82	4.9	6.7
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1	•	20	7.69		7.51	5.12	6.3
	HY/2012/08		Mid-Flood				Surface	1	1	2	16:25		7.73		7.58	5.07	6.3
	HY/2012/08		Mid-Flood					6.5	2	1	-	20.1	7.85		7.63	5.25	6.3
	HY/2012/08		Mid-Flood	Cloudy				6.5	2	2	•	20.1		26.6	7.69	5.2	6.5
			Mid-Flood					12	3	1	•	20	7.75		7.91	5.41	6.9
	HY/2012/08		Mid-Flood	Cloudy				12	3	2	•	20.1	7.78		7.86	5.47	6.8
	HY/2012/08		Mid-Flood				Surface	1	1	1	•	19.9		26.4	7.58	4	6.4
	HY/2012/08		Mid-Flood				Surface	1	1	2	15:09			26.5	7.63	4.84	6.6
			Mid-Flood					5.9	2	1	-	20	7.83		7.7	4.68	6.4
								5.9	2	2	1	•		26.6	7.77	4.73	6.6
			Mid-Flood						2	1		20				4.73 5.05	7
		2017-01-24						10.8	ა ი	1	15:09		7.78		7.83		100
TIVIULKL	HY/2012/08	2017-01-24	IVIIU-FIOOD	Cloudy	Small wave	19.12	Bottom	าบ.ช	3	2	15:09	19.9	7.8	20.7	7.9	5.11	6.9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	14:45	20	7.73	26.5	7.3	4.64	5.8
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	14:45	19.9	7.77	26.5	7.36	4.59	5.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	14:45						
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	14:45						
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.7	3	1	14:45	19.9	7.84	26.7	7.46	4.93	6.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.7	3	2	14:45	19.9	7.8	26.6	7.41	4.98	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	14:57	20	7.82	26.5	7.42	4.52	5.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	14:57	20	7.8	26.5	7.48	4.59	5.7
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	14:57						
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	14:57						
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.8	3	1	14:57	19.9	7.93	26.7	7.57	4.77	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Bottom	3.8	3	2	14:57	19.9		26.6	7.63	4.84	6.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	14:28	19.9		26.6	7.42	4.76	6
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	14:28	19.8		26.5	7.48	4.8	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Middle	6.9	2	1	14:28	20		26.7	7.55	4.89	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Middle	6.9	2	2	14:28	19.9		26.6	7.6	4.83	6.1
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave	1	Bottom	12.8	3	1	14:28	20	_	26.8	7.69	5.04	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Flood	Cloudy	Small wave		Bottom	12.8	3	2	14:28	19.9	7.9	26.8	7.76	4.97	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•	Surface	1	1	1	10:15	19.8		26.8	7.42	5.46	7.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Surface	1	1	2	10:15	19.6	7.8	26.8	7.49	5.49	7.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•	Middle	10.6	2	1	10:15	19.8		26.9	7.57	5.57	8.1
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Middle	10.6	2	2	10:15	19.6		26.9	7.52	5.63	8.1
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Bottom	20.2	3	1	10:15	19.7		26.9	7.62	5.76	8.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Bottom	20.2	3	2	10:15	19.6		26.9	7.6	5.72	8.1
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	CS6	Surface	1	1	1	12:21	19.7		26.9	7.34	4.74	7
	HY/2012/08	2017-01-24	Mid-Ebb					1	1	2		19.7		27	7.34	4.79	6.9
TMCLKL TMCLKL	HY/2012/08		Mid-Ebb	Fine Fine	Small wave Small wave		Surface Middle	6.5	2	1	12:21 12:21	19.6		27	7.39	4.79	0.9
						•			2	2			_				7.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	CS6	Middle	6.5	2	4	12:21	19.7	7.82		7.46	4.84	7.2
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2017-01-24	Mid-Ebb Mid-Ebb	Fine	Small wave	CS6 CS6		12 12	ა ი	2	12:21 12:21	19.7 19.7		27.1 27.1	7.53 7.51	4.93 5.04	7.2 7.3
		2017-01-24		Fine	Small wave	•		12	<u>ي</u> ا	4							
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS12	Surface	1	1	1	10:44	19.7		26.9	7.26	4.89	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•	Surface	0.0	1	4	10:44	19.8		26.9	7.29	4.93	6.8
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave			6.8	2	1	10:44	19.8	7.82		7.34	4.98	6.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Middle	6.8	2	2	10:44	19.8	7.85		7.38	5.06	7
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS12	-	12.6	3	1	10:44	19.7	7.86		7.43	5.17	6.8
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS12		12.6	3	2	10:44	19.6		26.9	7.47	5.23	7.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•	Surface	1	1	1	11:00	19.8		26.9	7.19	5.34	7.6
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•	Surface	1	1	2	11:00	19.6	7.82		7.22	5.39	7.6
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	•		5.8	2	1	11:00	19.7		26.9	7.25	5.52	7.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS13	Middle	5.8	2	2	11:00	19.8		26.9	7.28	5.56	7.7
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave			10.6	3	1	11:00	19.7		26.9	7.34	5.77	7.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS13	Bottom	10.6	3	2	11:00	19.6		26.9	7.39	5.7	8.1
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS14	Surface	1	1	1	10:30	19.7		26.9	7.34	5.02	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Surface	1	1	2	10:30	19.7		26.9	7.3	5.06	6.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave			6.4	2	1	10:30	19.7	7.83		7.39	5.16	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave			6.4	2	2	10:30	19.6	7.86		7.43	5.19	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS14		11.8	3	1	10:30	19.7		26.9	7.48	5.26	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS14	Bottom	11.8	3	2	10:30	19.6	7.82		7.46	5.28	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS15	Surface	1	1	1	11:18	19.7		26.9	7.43	5.19	6.9
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave		Surface	1	1	2	11:18	19.7	7.85		7.42	5.26	7
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS15	Middle	5.7	2	1	11:18	19.7	7.82	26.9	7.52	5.37	7.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS15	Middle	5.7	2	2	11:18	19.6	7.83	26.9	7.49	5.48	7.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS15	Bottom	10.4	3	1	11:18	19.7	7.85	26.9	7.64	5.65	7.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	IS15	Bottom	10.4	3	2	11:18	19.8		26.9	7.68	5.51	7.4
			Mid-Ebb	Fine		•	Surface	1	1	1	-	19.6	7.84		7.21	4.59	6
TMCLKL	111/2012/00							1	-		11:52				_		

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR8	Middle	- 1	2	1	11:52						
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR8	Middle		2	2	11:52						
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR8	Bottom	4.4	3	1	11:52	19.6	7.82	27.1	7.46	4.89	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR8	Bottom	4.4	3	2	11:52	19.6	7.81	27.1	7.42	4.84	6.4
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Surface	1	1	1	11:35	19.6	7.79	26.9	7.38	4.92	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Surface	1	1	2	11:35	19.7	7.78	26.8	7.42	4.99	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Middle		2	1	11:35						
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Middle		2	2	11:35						
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.5	3	1	11:35	19.8	7.82	26.8	7.56	5.17	6.5
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.5	3	2	11:35	19.7	7.85	26.9	7.59	5.23	6.8
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Surface	1	1	1	12:07	19.7	7.84	27.1	7.34	4.77	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Surface	1	1	2	12:07	19.7	7.8	27	7.39	4.7	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Middle	6.8	2	1	12:07	19.6	7.83	27	7.46	4.81	6.3
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Middle	6.8	2	2	12:07	19.6	7.82	27	7.51	4.85	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Bottom	12.6	3	1	12:07	19.6	7.83	27	7.54	4.95	6.2
TMCLKL	HY/2012/08	2017-01-24	Mid-Ebb	Fine	Small wave	SR10A	Bottom	12.6	3	2	12:07	19.6	7.84	27	7.58	4.92	6.3
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	CS4	Surface	1	1	1	17:53	19.6	7.76	26	7.26	5.26	7.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	CS4	Surface	1	1	2	17:53	19.6	_	26	7.29	5.32	7.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	10.9	2	1	17:53	19.5		25.9	7.44	5.23	7.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	10.9	2	2	17:53	19.5	7.8	25.9	7.4	5.17	7.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Bottom	20.8	3	1	17:53	19.5	7.8	25.9	7.53	5.37	7.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Bottom	20.8	3	2	17:53	19.5		25.9	7.57	5.4	7.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	1	15:41	19.6		26.4	7.38	4.48	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	2	15:41	19.7	-	26.3	7.34	4.57	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	6.9	2	1	15:41	19.7		26.3	7.42	4.39	6.6
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	6.9	2	2	15:41	19.7		26.3	7.47	4.44	6.5
			Mid-Flood	Fine	Small wave			12.8	3	1	_	19.6	7.83		7.53	4.6	6.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave			12.8	3	2	15:41	19.6	7.83		7.58	4.66	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine			Surface	1	1	1	17:18	19.5	7.82		7.21	4.92	6.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	2	17:18	19.6	_	26	7.26	4.98	6.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	7.1	2	1	17:18	19.6		25.9	7.3	4.87	6.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine			Middle	7.1	2	2	17:18	19.5		25.9	7.34	4.91	6.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave			13.2	3	1	17:18		7.82		7.41	4.94	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine				13.2	3	2	17:18	19.5		25.9	7.39	4.96	6.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	1	17:00	19.6		25.9	7.42	4.65	6.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	2	17:00	19.6		26	7.39	4.69	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	6.2	2	1	17:00	19.6	•	25.9	7.46	4.82	6.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	6.2	2	2	17:00	19.6	_	25.9	7.48	4.9	6.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine				11.4	3	1	17:00	19.6		25.9	7.52	4.98	7.1
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Bottom	11.4	3	2	17:00	19.6	_	25.9	7.55	5.1	7.1
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	1	17:36	19.6	7.79		7.42	5.04	6.1
TMCLKL	HY/2012/08	2017-01-20	Mid-Flood	Fine	Small wave		Surface	1	1	2	17:36	19.6	7.78		7.48	5.1	6.5
TMCLKL	HY/2012/08	2017-01-20	Mid-Flood	Fine	Small wave			6.5	2	1	17:36	19.5	_	25.9	7.51	5.29	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine				6.5	2	2	17:36	19.5		25.9	7.56	5.24	6.7
TMCLKL	HY/2012/08	2017-01-20	Mid-Flood	Fine				12.4	3	1	17:36	19.5	7.79		7.6	5.37	6.6
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine				12.4	3	2	17:36	19.5	7.78		7.56	5.39	6.6
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	1	16:44	19.6		25.9	7.42	4.89	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Surface	1	1	2	16:44	19.6		25.9	7.42	4.94	6.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine			Middle	5.9	2	1	16:44	19.6		25.9	7.53	5.06	6.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Middle	5.9	2	2	16:44	19.6		25.9	7.56	5.14	6.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine				10.8	3	1	16:44	19.5	-	25.9	7.62	5.14	6.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine			Bottom	10.8	3	2	16:44	19.5		25.9	7.66	5.22	6.9
		2017-01-26	Mid-Flood		Small wave			10.0	<u>J</u>	1	16:16			26.1	7.00		6.5
TMCLKL TMCLKL	HY/2012/08 HY/2012/08	2017-01-26		Fine	Small wave		Surface	1	1	2	16:16	19.6 19.6	_	26.1	7.27	4.86 4.82	6.2
			Mid-Flood	Fine Fine	Small wave		Surface Middle	<del> </del>	2	1		18.0	1.11	ZU. I	1.41	7.04	U.Z
			Mid-Flood					1	2	2	16:16	+	1	<del>                                     </del>	1		+
TIVICLKL	HY/2012/08	2017-01-26	IVIIa-F100d	Fine	Small wave	SR8	Middle			2	16:16						

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR8	Bottom	4.8	3	1	16:16	19.6	7.78	26.1	7.48	4.89	6.1
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR8	Bottom	4.8	3	2	16:16	19.6	7.74	26.1	7.5	4.93	6.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Surface	1	1	1	16:30	19.7	7.84	25.8	7.27	4.63	5.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Surface	1	1	2	16:30	19.6	7.82	26	7.32	4.67	6
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Middle		2	1	16:30						
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Middle		2	2	16:30						
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Bottom	3.8	3	1	16:30	19.5	7.84	25.9	7.36	4.92	6.1
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR9	Bottom	3.8	3	2	16:30	19.5	7.88	25.9	7.43	4.98	6.5
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR10A	Surface	1	1	1	15:59	19.6	7.86	26.2	7.31	4.79	6.2
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR10A	Surface	1	1	2	15:59	19.7	7.86	26.1	7.34	4.83	6.3
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR10A	Middle	7.1	2	1	15:59	19.6	7.89	26.2	7.42	4.94	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave	SR10A	Middle	7.1	2	2	15:59	19.6	7.89	26.2	7.48	5.03	6.3
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood	Fine	Small wave		Bottom	13.2	3	1	15:59	19.6		26.2	7.59	5.12	6.6
TMCLKL	HY/2012/08	2017-01-26	Mid-Flood		Small wave	SR10A	Bottom	13.2	3	2	15:59	19.6		26.2	7.64	5.17	6.8
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1	11:31	19.1		26.5	7.34	5.3	7.5
TMCLKL	HY/2012/08		Mid-Ebb	Fine			Surface	1	1	2	11:31	19.2		26.6	7.4	5.37	7.8
TMCLKL	HY/2012/08		Mid-Ebb					10.6	2	1	11:31	19.3	_	26.7	7.5	5.11	7.3
TMCLKL	HY/2012/08		Mid-Ebb	Fine			Middle	10.6	2	2	11:31	19.2		26.8	7.57	5.17	7.5
TMCLKL	HY/2012/08		Mid-Ebb					20.2	3	1	11:31	19.3		26.9	7.76	5.43	7.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb					20.2	3	2	11:31	19.4		26.8	7.69	5.5	7.8
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb				Surface	1	1	1	13:48	19.7	7.9	27	7.41	4.59	6.8
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	2	13:48	19.8		26.9	7.49	4.62	6.8
TMCLKL	HY/2012/08		Mid-Ebb					6.6	2	1	13:48	19.9	_	27	7.57	4.47	6.5
TMCLKL	HY/2012/08		Mid-Ebb	Fine				6.6	2	2	13:48	20	-	27.1	7.63	4.53	6.7
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb					12.2	3	1	13:48	20		27.2	7.69	4.78	7
TMCLKL	HY/2012/08		Mid-Ebb					12.2	3	2	13:48	19.9		27.3	7.76	4.73	6.9
		2017-01-26					Surface		1	1		19.2	7.79		7.24	4.89	6.5
			Mid-Ebb	Fine			Surface	1	1	2	12:05	19.3	_	26.8	7.29	4.94	6.7
			Mid-Ebb					6.8	2	1	-	19.4	-	26.8	7.42	4.8	6.6
TMCLKL	HY/2012/08		Mid-Ebb					6.8	2	2	12:05	19.3		26.9	7.38	4.75	6.6
TMCLKL	HY/2012/08		Mid-Ebb	Fine				12.6	3	1	12:05	19.5		27	7.6	5.05	6.7
	HY/2012/08		Mid-Ebb	Fine				12.6	3	2	12:05	19.6	7.93		7.66	5.13	6.7
	HY/2012/08		Mid-Ebb	Fine			Surface	12.0	1	1		19.3	-	26.6	7.36	4.73	6.6
			Mid-Ebb				Surface	1	1	2	-	19.4		26.7	7.4	4.77	6.4
	HY/2012/08		Mid-Ebb	Fine				5.9	2	1	12:22	19.4		26.8	7.49	4.61	6.3
	HY/2012/08		Mid-Ebb	Fine				5.9	2	2	12:22	19.6	7.94		7.56	4.66	6.5
	HY/2012/08		Mid-Ebb					10.8	3	1	12:22	19.7		26.8	7.65	4.87	6.8
	HY/2012/08		Mid-Ebb	Fine				10.8	3	2		19.6	-	26.9	7.73	4.96	6.9
			Mid-Ebb				Surface	10.0	ე 1	1			7.75		7.42	5.18	6.4
	HY/2012/08		Mid-Ebb				Surface	1	1	2	11:48	19.3 19.4	_	26.6	7.42	5.13	6.3
	HY/2012/08		Mid-Ebb	Fine				6.3	2	1	11:48	19.4		26.7	7.49	5.31	6.6
			Mid-Ebb					6.3	2	2		19.4		26.8	7.5 <del>4</del> 7.6	5.26	6.3
	HY/2012/08			Fine					2	1	11:48				7.82	5.47	6.8
	HY/2012/08		Mid-Ebb					11.6	ა ი	2	11:48	19.6		26.9			
			Mid-Ebb	Fine				11.6	<u>ی</u> ا	4	11:48	19.7	-	27	7.77	5.53	6.9
	HY/2012/08		Mid-Ebb				Surface	1	1	1	-	19.5		26.5	7.49	4.86	6.6
			Mid-Ebb				Surface	T 0	1	4	12:39	19.4		26.6	7.54	4.9	6.5
TMCLKL	HY/2012/08		Mid-Ebb					5.6	2	10	12:39	19.6	7.89		7.61	4.74	6.4
	HY/2012/08		Mid-Ebb	Fine				5.6	2	4	12:39	19.7		26.6	7.68	4.79	6.6
			Mid-Ebb	Fine				10.2	<u>ა</u>	1	12:39	19.7	7.84		7.74	5.11	7.4
			Mid-Ebb	Fine				10.2	<u>კ</u>	<u> </u>	12:39	19.8		26.8	7.81	5.17	7.1
			Mid-Ebb	Fine			Surface	1	1	1		19.6	7.79		7.21	4.7	6.1
	HY/2012/08		Mid-Ebb				Surface	1	1	2	13:13	19.7	7.83	26.8	7.27	4.65	6.2
TMCLKL	HY/2012/08		Mid-Ebb	Fine			Middle		2	1	13:13	<b>├</b>				1	+
			Mid-Ebb				Middle		2	2	13:13	1	<u> </u>		<u> </u>	1	4
		2017-01-26					Bottom		3	11	13:13			27	7.37	4.99	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR8	Bottom	4.6	3	2	13:13	19.8	7.86	26.9	7.32	5.04	6.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Surface	1	1	1	12:56	19.6	7.88	26.7	7.33	4.58	5.9
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Surface	1	1	2	12:56	19.5	7.86	26.8	7.39	4.65	6
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Middle		2	1	12:56						
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Middle		2	2	12:56						
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.4	3	1	12:56	19.7	7.99	26.8	7.48	4.83	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR9	Bottom	3.4	3	2	12:56	19.7	8.02	26.9	7.54	4.9	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Surface	1	1	1	13:30	19.6	7.89	26.8	7.33	4.82	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Surface	1	1	2	13:30	19.5	7.92	26.9	7.39	4.86	6.1
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Middle	6.7	2	1	13:30	19.8	7.8	27	7.46	4.95	6.3
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Middle	6.7	2	2	13:30	19.8	7.77	26.9	7.51	4.89	6.2
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Bottom	12.4	3	1	13:30	19.9	7.93	27.1	7.6	5.1	6.4
TMCLKL	HY/2012/08	2017-01-26	Mid-Ebb	Fine	Small wave	SR10A	Bottom	12.4	3	2	13:30	20	7.96	27.2	7.67	5.03	6.3
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	11:03	18.9		26.7	6.68	8.85	12.5
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	· · · · · · · · · · · · · · · · · · ·		CS4	Surface	1	1	2	11:03	19	7.77	26.8	6.72	8.92	12.9
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	,				8.9	2	1	11:03	19		26.9	6.64	8.67	12.8
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	,				8.9	2	2	11:03	19		27	6.6	8.74	12.9
TMCLKL	HY/2012/08		Mid-Flood	,				16.8	3	1	11:03	19	_	27.1	6.48	9.09	13.2
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood					16.8	3	2	11:03	19.1	7.7	27.2	6.5	9.16	13.6
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave		Surface	1	1	1	08:47	18.8	-	27.2	6.84	8.94	12.6
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood				Surface	1	1	2	08:47	18.7		27.1	6.88	8.89	12.5
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	· · · · · · · · · · · · · · · · · · ·				6.8	2	1	08:47	18.8	-	27.2	6.93	9.16	13
TMCLKL	HY/2012/08		Mid-Flood	,		•		6.8	2	2	08:47	18.8		27.2	6.9	9.23	13.4
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood					12.6	3	1	08:47	18.9		27.4	6.77	9.54	13.8
TMCLKL	HY/2012/08		Mid-Flood	,				12.6	3	2	08:47	18.9	-	27.4	6.74	9.66	13.7
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood				Surface	1	1	1	10:27	18.9	-	26.8	6.73	9.13	12.3
TMCLKL	HY/2012/08		Mid-Flood				Surface	1	1	2	10:27	18.9		27	6.7	9.07	12.3
			Mid-Flood					6.5	2	1		18.9	7.68		6.75	8.99	12.1
	HY/2012/08		Mid-Flood	i – -				6.5	2	2	10:27	18.8	7.64		6.79	9.03	12.3
	HY/2012/08		Mid-Flood					11.9	3	1		18.9		27.1	6.58	9.34	12.4
	HY/2012/08		Mid-Flood			•		11.9	3	2	10:27	19		27.1	6.55	9.4	12.7
TMCLKL	HY/2012/08		Mid-Flood			•	Surface	1	1	1	10:10	18.9	-	26.8	6.88	9.04	12.8
	HY/2012/08		Mid-Flood			•	Surface	1	1	2	10:10	18.9		26.9	6.84	8.95	12.4
	HY/2012/08		Mid-Flood	- 1		•		5.6	2	1	10:10	18.8	-	26.9	6.79	8.75	11.8
	HY/2012/08		Mid-Flood			•		5.6	2	2			-	26.9	6.75	8.81	12.5
			Mid-Flood			•		10.2	2	1	10:10 10:10	18.9 19	-	27.1	6.79	9.25	12.5
	HY/2012/08					•			ა ი	1	+						
	HY/2012/08 HY/2012/08		Mid-Flood					10.2	ا ا	1	10:10	18.9 18.9		27 26.9	6.81 6.74	9.31 9.03	12.9 11.2
			Mid-Flood				Surface	1	1	2	10:44				6.74	8.95	11.3
	HY/2012/08		Mid-Flood			•	Surface	   7	2	1	10:44	18.9		26.9			
	HY/2012/08		Mid-Flood	,				5.7	2	1	10:44	18.9		26.9	6.69	8.7	10.5
	HY/2012/08		Mid-Flood					5.7	2	1	10:44	19		27	6.66	8.76	11.1
	HY/2012/08		Mid-Flood			•		10.4	ა ი	1	10:44	19		27.1	6.53	9.13	11.3
	HY/2012/08		Mid-Flood					10.4	<u>ح</u>	<u> </u>	10:44	19		27.1	6.51	9.21	11.7
	HY/2012/08		Mid-Flood			•	Surface	1	1	1	09:52	18.8		26.9	6.73	8.94	11.8
			Mid-Flood	<u> </u>		•	Surface	1 0	1	4	09:52	18.9		26.9	6.7	8.87	11.6
	HY/2012/08		Mid-Flood					4.9	2	1	09:52	18.8	7.58		6.76	8.64	11.4
	HY/2012/08		Mid-Flood					4.9	2	4	-	18.8	-	27	6.79	8.7	12
TMCLKL	HY/2012/08		Mid-Flood					8.8	3	1	09:52	18.9		27.2	6.65	9.12	12.5
	HY/2012/08		Mid-Flood	,		•		8.8	3	2	09:52	18.9		27.1	6.61	9.23	12.2
	HY/2012/08		Mid-Flood				Surface	1	11	1	09:25	18.7		26.9	6.87	8.49	11.1
	HY/2012/08		Mid-Flood				Surface	1	1	2	09:25	18.7	7.63	27	6.84	8.55	10.8
	HY/2012/08		Mid-Flood	i i			Middle		2	1	09:25	<u> </u>	<del>                                     </del>				
	HY/2012/08		Mid-Flood				Middle	ļ	2	2	09:25	1	<u> </u>				<del></del>
	HY/2012/08		Mid-Flood	Cloudy				4.6	3	1	09:25	18.7	7.66		6.66	8.76	11
			Mid-Flood					4.6	3	2	09:25	18.7	_	27	6.69	8.84	11.3
		2017-01-31					Surface		1	1		18.8	7.54		6.77	8.74	11.4
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	09:38	18.8	7.6	26.9	6.74	8.85	11.1

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	09:38						
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood			SR9	Middle		2	2	09:38						
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.3	3	1	09:38	18.8	7.63	26.9	6.66	9.04	11.5
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood		Small wave	SR9	Bottom	3.3	3	2	09:38	18.8	7.58	27	6.7	9.12	11.8
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	09:08	18.8	7.69	27	6.75	8.68	11
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	09:08	18.8	7.72	27.1	6.78	8.74	11.3
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1	09:08	18.7	7.7	27.1	6.81	8.92	11.9
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	2	09:08	18.8	7.74	27.2	6.83	8.99	11.4
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.8	3	1	09:08	18.9	7.73	27.4	6.7	9.24	11.7
TMCLKL	HY/2012/08	2017-01-31	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.8	3	2	09:08	18.9		27.4	6.67	9.31	12.2
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb		Small wave		Surface	1	1	1	13:30	18.7		26.8	6.74	8.44	12
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy			Surface	1	1	2	13:30	18.8	7.97	26.9	6.77	8.47	12.6
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy				8.8	2	1	13:30	18.9		27	6.89	8.59	12.3
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					8.8	2	2	13:30	19		27.1	6.92	8.61	12.2
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					16.5	3	1	13:30	19		27.2	7.13	8.74	12.7
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					16.5	3	2	13:30	19.1		27.3	7.15	8.77	12.7
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb				Surface	1	1	1	15:45	18.7	•	26.7	6.94	7.94	11.5
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb				Surface	1	1	2	15:45	18.8		26.8	6.97	7.97	11.7
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave			6.7	2	1	15:45	18.9	_	26.9	7.15	8.15	11.73
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb			CS6		6.7	2	2	15:45	18.9		26.9	7.17	8.17	12
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					12.3	3	1	15:45	19	_	27	7.24	8.34	12.1
TMCLKL	HY/2012/08		Mid-Ebb					12.3	3	2	15:45	19.1		27.1	7.27	8.37	12.4
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb				Surface	1	1	1	14:10	18.8		26.8	6.57	10.5	14
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb				Surface	1	1	2	14:10	18.9		26.7	6.55	10.7	14.2
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					6.3	2	1	14:10	19		26.9	6.64	11.4	15.3
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb					6.3	2	2	14:10	19.1		26.9	6.67	11.7	15.8
		2017-01-31					Bottom		2	1	+		8.03		6.73	12	16.5
	HY/2012/08		Mid-Ebb					11.6	3	2	14:10	19.2		27.1	6.75	12	16.6
	HY/2012/08		Mid-Ebb				Surface	1	1	1	14:30	18.7	7.82		6.77	9.18	13
	HY/2012/08		Mid-Ebb				Surface	1	1	2	14:30	18.7	7.85		6.75	9.10	12.8
	HY/2012/08		Mid-Ebb	Cloudy				5.5	2	1	14:30	18.8	8.12		6.84	10.4	14.1
	HY/2012/08		Mid-Ebb					5.5	2	2	14:30	18.9	_	27.1	6.86	10.4	13.7
									2	1	+		7.92				
	HY/2012/08		Mid-Ebb					9.9	ა ი	1	14:30	19			7.13 7.11	11	15.6 15
	HY/2012/08		Mid-Ebb					9.9	ى م	4	14:30	19.1		27.3	6.62	11.2	11.7
	HY/2012/08		Mid-Ebb				Surface	1	1	1	13:50	18.8		26.8		9.73	
	HY/2012/08		Mid-Ebb	Cloudy			Surface	T	1	4	13:50	18.9		26.9	6.65	9.76	11.7
	HY/2012/08		Mid-Ebb					5.6	2	1	_	19	8.08		6.73	9.88	11.9
			Mid-Ebb	Cloudy				5.6	2	4		19		27.1	6.75	9.91	12.2
	HY/2012/08		Mid-Ebb	Cloudy				10.1	3	1	-	19		27.2	6.89	10.2	12.8
	HY/2012/08		Mid-Ebb					10.1	<u>ح</u>	<u> </u>	13:50	19.1		27.3	6.92	10.5	13.2
	HY/2012/08		Mid-Ebb				Surface	1	1	1	14:50	18.7		26.7	6.58	8.68	11.7
	HY/2012/08						Surface	1	1	2	14:50	18.8	8.16		6.6	8.7	11.8
	HY/2012/08		Mid-Ebb	Cloudy				4.7	2	1	14:50	18.9		26.9	6.72	8.84	11.7
	HY/2012/08		Mid-Ebb					4.7	2	2	14:50	19		27	6.75	8.87	11.8
	HY/2012/08		Mid-Ebb	Cloudy				8.4	3	1	14:50	19.1	7.93		6.88	9.15	12.5
	HY/2012/08		Mid-Ebb					8.4	3	2	14:50	19.2	7.95		6.9	9.17	12.5
	HY/2012/08		Mid-Ebb				Surface	1	1	1	15:18	18.7		26.9	6.62	7.45	9.3
	HY/2012/08		Mid-Ebb				Surface	1	1	2	-	18.7	8.1	26.9	6.6	7.47	9.6
	HY/2012/08		Mid-Ebb				Middle		2	1	15:18		<u> </u>		<u> </u>		<del></del>
	HY/2012/08		Mid-Ebb				Middle	ļ.,	2	2	15:18		<u> </u>				<del></del>
	HY/2012/08		Mid-Ebb					4.2	3	1	-	18.9	7.95		6.54	7.88	10.1
	HY/2012/08		Mid-Ebb					4.2	3	2	15:18	19	7.93		6.51	7.91	10.4
			Mid-Ebb	Cloudy			Surface	1	1	1	15:07	18.8	7.82		6.62	9.17	11.5
TMCLKL			Mid-Ebb		Small wave		Surface	1	1	2	15:07	18.8	7.85	26.8	6.65	9.19	11.5
		2017-01-31		ž – ž			Middle		2	1	15:07						
TMCLKI	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	2	15:07						

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.1	3	1	15:07	18.9	8	26.9	6.71	10.5	13.5
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.1	3	2	15:07	19	8.02	27	6.73	10.7	13.6
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	15:30	18.8	7.94	26.8	7.15	8.64	11.3
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	15:30	18.9	7.92	26.9	7.13	8.66	11.2
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.8	2	1	15:30	19	7.68	27	7.22	8.87	11.8
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.8	2	2	15:30	19.1	7.7	27.1	7.25	8.89	11.8
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.5	3	1	15:30	19.2	7.99	27.1	7.09	9.14	12.1
TMCLKL	HY/2012/08	2017-01-31	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.5	3	2	15:30	19.1	8.01	27.2	7.11	9.16	11.7

Appendix J

Impact Dolphin Monitoring Survey

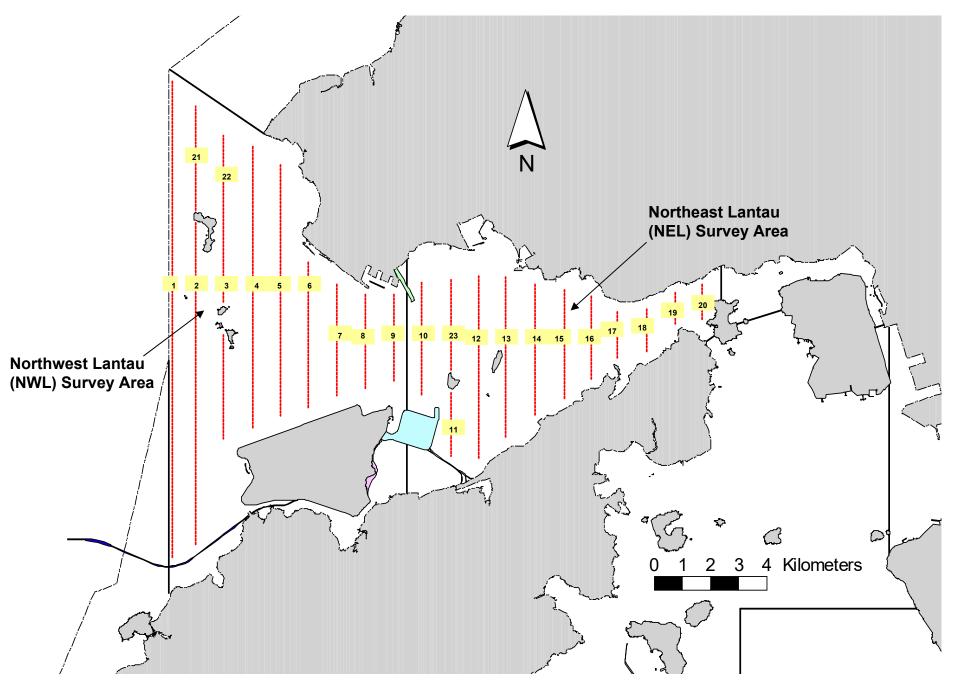



Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

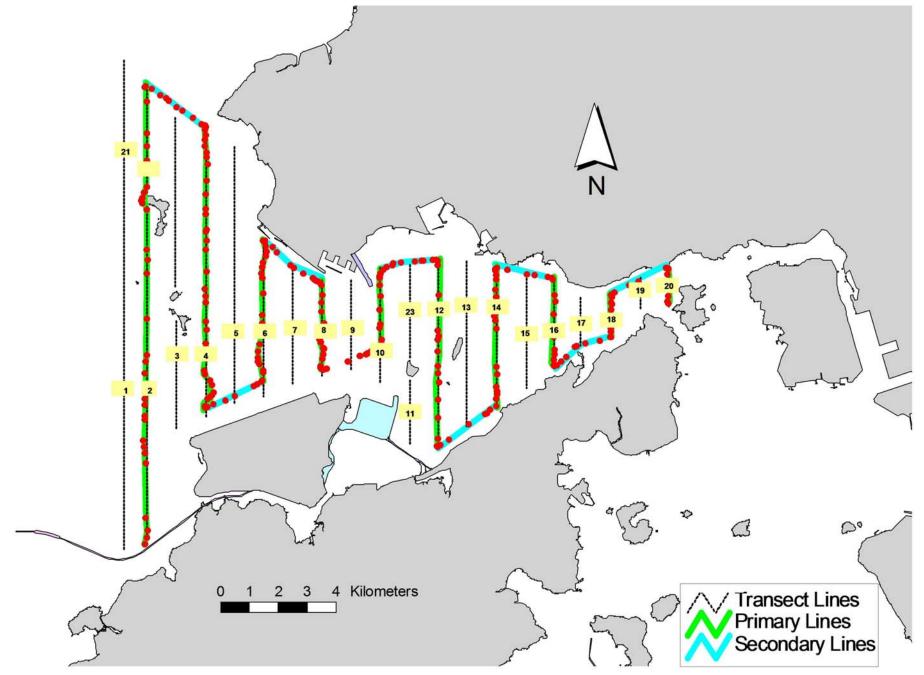



Figure 2. Survey Route on January 10th, 2017 (from HKLR03 project)

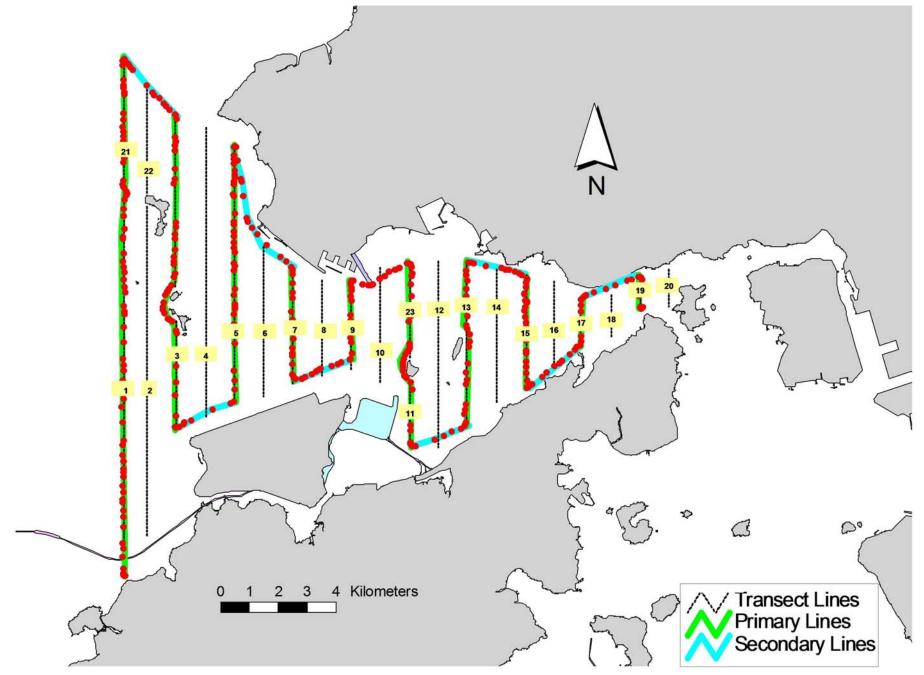



Figure 3. Survey Route on January 12th, 2017 (from HKLR03 project)

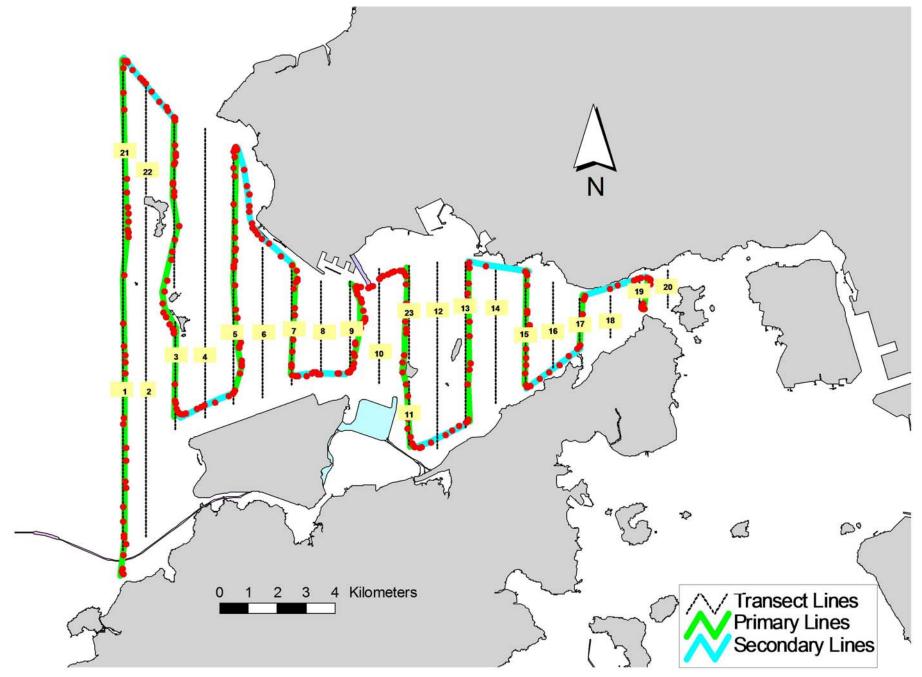



Figure 4. Survey Route on January 16th, 2017 (from HKLR03 project)

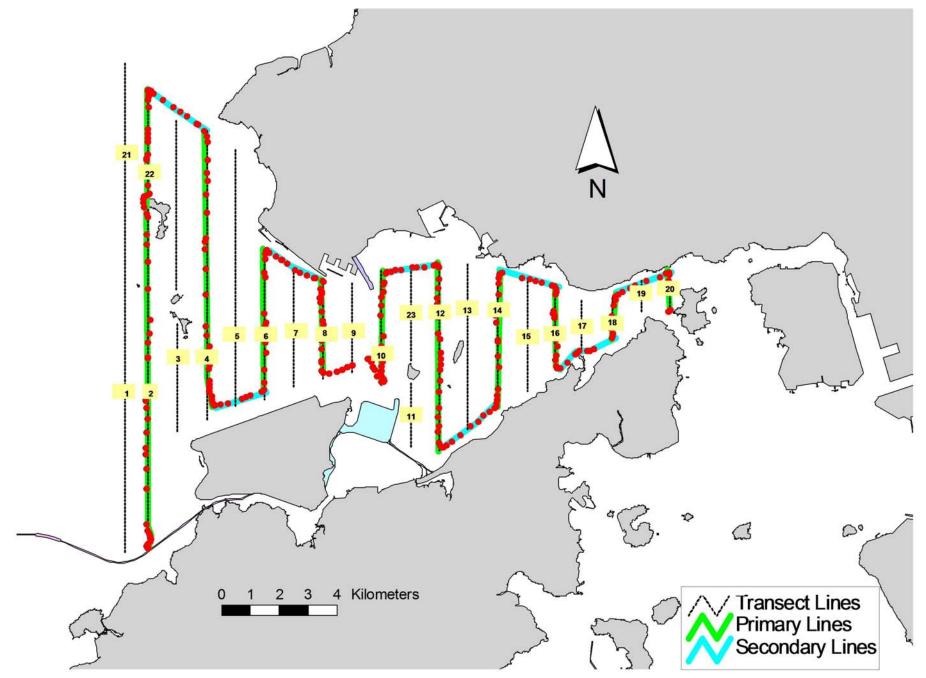



Figure 5. Survey Route on January 20th, 2017 (from HKLR03 project)

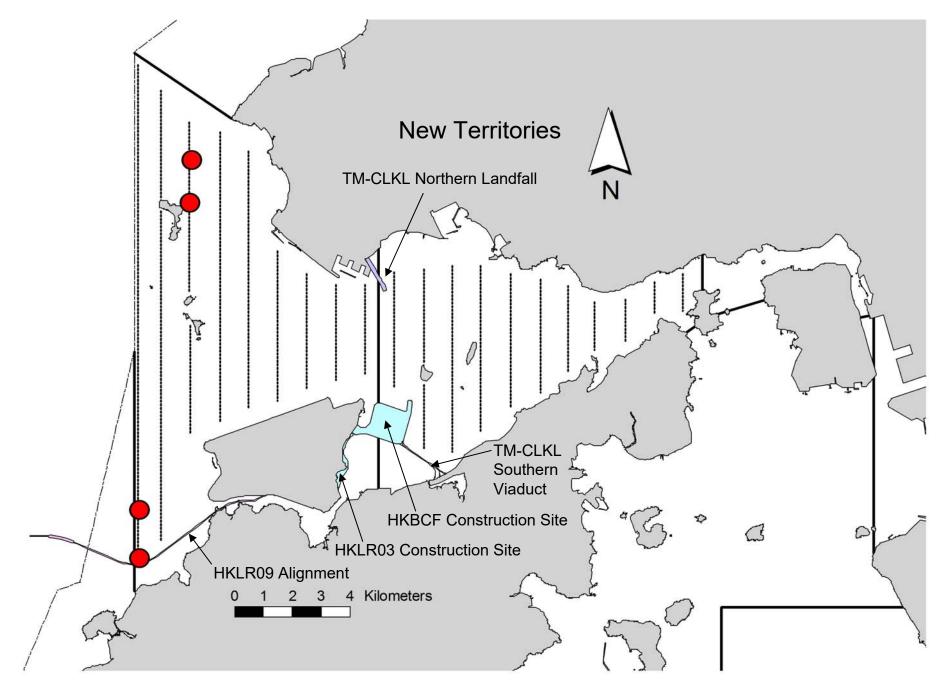
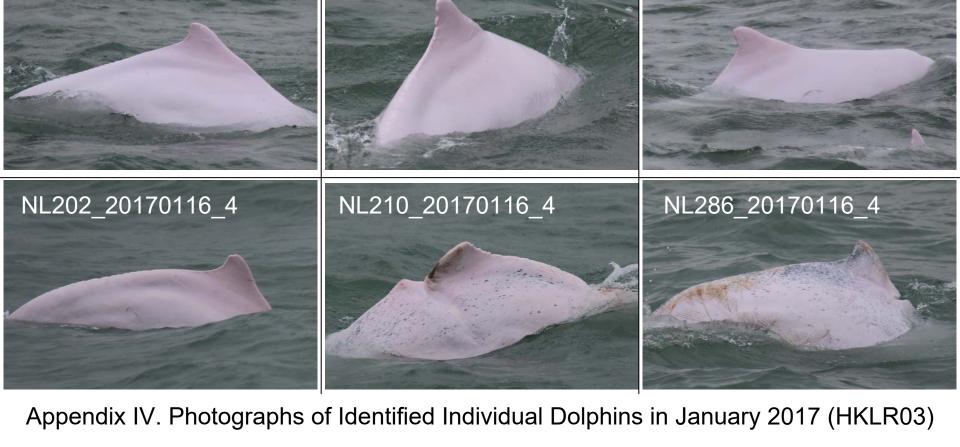



Figure 6. Distribution of Chinese White Dolphin Sightings during January 2017 HKLR03 Monitoring Surveys

### Appendix I. HKLR03 Survey Effort Database (January 2017)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)


DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
10-Jan-17	NE LANTAU	2	4.00	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NE LANTAU	3	14.60	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NE LANTAU	2	8.90	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NE LANTAU	3	2.10	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NW LANTAU	2	0.70	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	3	28.52	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	4	2.10	WINTER	STANDARD36826	HKLR	Р
10-Jan-17	NW LANTAU	2	2.10	WINTER	STANDARD36826	HKLR	S
10-Jan-17	NW LANTAU	3	5.88	WINTER	STANDARD36826	HKLR	S
12-Jan-17	NW LANTAU	2	11.90	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NW LANTAU	3	28.60	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NW LANTAU	2	11.00	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NW LANTAU	3	2.30	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NE LANTAU	2	16.82	WINTER	STANDARD31516	HKLR	Р
12-Jan-17	NE LANTAU	2	8.97	WINTER	STANDARD31516	HKLR	S
12-Jan-17	NE LANTAU	3	1.00	WINTER	STANDARD31516	HKLR	S
16-Jan-17	NW LANTAU	2	17.83	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NW LANTAU	3	19.51	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NW LANTAU	2	10.47	WINTER	STANDARD36826	HKLR	S
16-Jan-17	NW LANTAU	3	2.70	WINTER	STANDARD36826	HKLR	S
16-Jan-17	NE LANTAU	2	10.30	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NE LANTAU	3	6.40	WINTER	STANDARD36826	HKLR	Р
16-Jan-17	NE LANTAU	2	9.60	WINTER	STANDARD36826	HKLR	S
20-Jan-17	NW LANTAU	2	0.70	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NW LANTAU	3	25.76	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NW LANTAU	4	4.64	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NW LANTAU	2	1.20	WINTER	STANDARD31516	HKLR	S
20-Jan-17	NW LANTAU	3	6.20	WINTER	STANDARD31516	HKLR	S
20-Jan-17	NE LANTAU	2	13.65	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NE LANTAU	3	5.69	WINTER	STANDARD31516	HKLR	Р
20-Jan-17	NE LANTAU	2	10.46	WINTER	STANDARD31516	HKLR	S

# Appendix II. HKLR03 Chinese White Dolphin Sighting Database (January 2017) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
16-Jan-17	1	1027	1	NW LANTAU	2	84	ON	HKLR	815336	804713	WINTER	NONE	Р
16-Jan-17	2	1041	5	NW LANTAU	3	22	ON	HKLR	816920	804716	WINTER	NONE	Р
16-Jan-17	3	1211	3	NW LANTAU	3	121	ON	HKLR	828289	806500	WINTER	NONE	Р
16-Jan-17	4	1226	4	NW LANTAU	2	200	ON	HKLR	826916	806446	WINTER	NONE	Р

# Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in January 2017

ID#	DATE	STG#	AREA
NL46	16/01/17	3	NW LANTAU
NL136	16/01/17	3	NW LANTAU
NL202	16/01/17	4	NW LANTAU
NL210	16/01/17	4	NW LANTAU
NL269	16/01/17	2	NW LANTAU
NL286	16/01/17	4	NW LANTAU
WL28	16/01/17	2	NW LANTAU
WL145	16/01/17	2	NW LANTAU
WL234	16/01/17	3	NW LANTAU



WL28_20170116_2

NL136_20170116_3

WL145_20170116_2

WL234_20170116_3

NL269_20170116_2

NL46_20170116_3

## Appendix K

# Event and Action Plan

### Event and Action Plan for Impact Air Monitoring

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level Exceedance							
1. 2. 3. 4. 5.	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the exceedance is then confirmed. Inform the IEC and the SOR. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC	1. 2. 3.	Check monitoring data submitted by the ET. Check the Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures.	1. 2. 3.	Confirm receipt of notification of failure in writing. Notify the Contractor. Ensure remedial measures properly implemented.	1. 2. 3.	Rectify any unacceptable practice Amend working methods if appropriate If the exceedance is confirmed to be Project related, submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals
8.	and the SOR.  If exceedance stops, cease additional monitoring.	5.	Supervise implementation of remedial measures.			5.	Amend proposal if appropriate

			Action			
	ET (a)	]	IEC (a)	SOR (a)		Contractor(s)
Limit Level Exceedance						
1. 2. 3. 4. 5. 6. 7. 8.	working procedures to determine possible mitigation to be implemented.  Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken.  Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP	1. 2. 3. 4.	Check monitoring data submitted by the ET. Check Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify the Contractor. If the exceedance is confirmed to be Project related after investigation, in consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	1. 2. 3. 4. 5.	Take immediate action to avoid further exceedance. If the exceedance is confirmed to be Project related after investigation, submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. Stop the relevant activity of works as determined by the SOR until the exceedance is abated.
9.	remedial actions and keep the IEC, the DEP and the SOR informed of the results. If exceedance stops, cease additional monitoring.			abated.		abated.

Note: (a) ET – Environmental Team; IEC – Independent Environmental Checker; SOR – Supervising Officer's Representative

## Event & Action Plan for Impact Water Quality Monitoring

Event	ET I	Leader	IEC		SO	R	Coı	ntractor
Action level being exceeded by one sampling day	1. 2. 3. 4.	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings;  Identify source(s) of impact;  Inform IEC, contractor and SOR;  Check monitoring data, all plant, equipment and Contractor's working	1.	Check monitoring data submitted by ET and Contractor's working methods.	2.	Confirm receipt of notification of non-compliance in writing;  Notify Contractor.	<ol> <li>2.</li> <li>3.</li> </ol>	Inform the SOR and confirm notification of the non-compliance in writing;  Rectify unacceptable practice;  Amend working methods if appropriate.
Action level being exceeded	1.	methods.  Repeat measurement on next day of	1.	Check monitoring data	1.	Discuss with IEC on the	1.	Inform the Supervising
by two or more consecutive sampling days	2.	exceedance to confirm findings;  Identify source(s) of impact;		submitted by ET and Contractor's working method;		proposed mitigation measures;		Officer and confirm notification of the non- compliance in writing;
	3.	Inform IEC, Contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible	2.	Ensure mitigation measures are properly implemented;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and	3.	Assess the effectiveness of the implemented mitigation measures.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;	4.	advise the SOR accordingly; Supervise the			4.	Submit proposal of additional mitigation
	<ul><li>6.</li><li>7.</li></ul>	Ensure mitigation measures are implemented;  Increase the monitoring frequency to daily until no exceedance of Action		implementation of mitigation measures.				measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;
		level;					5.	Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and	1.	Confirm receipt of notification of failure in	1.	Inform the SOR and confirm notification of the

Event	ET Leader	IEC	SOR	Contractor
	<ol> <li>Identify source(s) of impact;</li> <li>Inform IEC, Contractor, SOR and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, SOR and Contractor;</li> </ol>	2. Discuss with ET and Contractor on possible remedial actions;	writing;  2. Discuss with IEC, ET and Contractor on the proposed mitigation measures;  3. Request Contractor to review the working methods.	non-compliance in writing;  2. Rectify unacceptable practice;  3. Check all plant and equipment and consider changes of working methods;  4. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive sampling days	<ol> <li>Repeat measurement on next day of exceedance to confirm findings;</li> <li>Identify source(s) of impact;</li> <li>Inform IEC, contractor, SOR and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, SOR and Contractor;</li> <li>Ensure mitigation measures are implemented;</li> <li>Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;</li> </ol>	submitted by ET and Contractor's working method;  2. Discuss with ET and Contractor on possible remedial actions;  3. Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SOR accordingly;	<ul><li>are properly implemented;</li><li>Consider and instruct, if necessary, the Contractor to</li></ul>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;</li> <li>Implement the agreed mitigation measures;</li> <li>Resubmit proposals of mitigation measures if problem still not under control;</li> <li>As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.</li> </ol>

Note: ET - Environmental Team, IEC - Independent Environmental Checker, SOR - Supervising Officer's Representative

### $Event/Action\,Plan\,for\,Impact\,Dolphin\,Monitoring$

EVENT		ACTION		
	ET	IEC	SOR	Contractor
Action Level	<ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor;</li> <li>Check monitoring data.</li> <li>Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> </ol>	<ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and finding with the ET and the Contractor.</li> </ol>	<ol> <li>Discuss monitoring with the IEC and any other measures proposed by the ET;</li> <li>If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented.</li> </ol>	<ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Discuss with the ET and the IEC and propose measures to the IEC and the SOR;</li> <li>Implement the agreed measures.</li> </ol>
Limit Level	<ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> </ol>	<ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and findings with the ET and the Contractor;</li> <li>Attend the meeting to discuss with ET, SOR and</li> </ol>	<ol> <li>Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.</li> <li>If SOR is satisfied with the</li> </ol>	<ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other</li> </ol>

EVENT		ACTION		
	ET	IEC	SOR	Contractor
	<ol> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor of findings;</li> <li>Check monitoring data;</li> <li>Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> <li>If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.</li> </ol>	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.  4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly.  5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures.  3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures.  3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary.  4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Note: ET - Environmental Team, IEC - Independent Environmental Checker, SOR - Supervising Officer's Representative

### Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table L1
 Cumulative Statistics on Exceedances

Parameters	Level of Exceedance	Total No. recorded in this reporting month	Total No. recorded since project commencement
1-hr TSP	Action	0	30
	Limit	0	2
24-hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	9
Monitoring	Limit	0	7

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period		Cumulative Statistics	
_	Complaints	Notifications of	Successful
		Summons	Prosecutions
This Reporting Month (January 2017)	2	0	0
Total No. received since project commencement	12	0	0

Contract No. HY/2012/08 Tuen Mun - Chek Lap Kok Link -Northern Connection Sub-sea Tunnel Section



#### ENVIRONMENTAL COMPLAINT/ENQUIRY INVESTIGATION REPORT

Our Reference: 0212330_Complaint LOG_20170117_11

Basic Information of Complaint/Enquiry

Busic Information of Complaint Enquiry						
Reference Number:	Not disclosed					
Date of Complaint/Enquiry Received	13 January 2017					
Location of Complaint/Enquiry	Brothers Marine Park					
Nature of Complaint/Enquiry	Trespassing of construction vessels					
Complaint/Enquiry Received by	Agriculture, Fisheries and Conservation Department (AFCD)					
Via	Email					
Complainant/Enquirer	Not disclosed					

#### Details of Complaint/Enquiry

On 13 January 2017, AFCD was informed by project team of BCF that the Northeaster section of HKBCF perimeter silt curtain was found within the BMP while construction vessels were anchored within the BMP during the inspection on 4 and 5 January 2017(see *Figure 1*). The Contractor, the Environmental Team (ET) and SOR received the enquiry from IEC on 17 January 2017.

#### **Investigation Report**

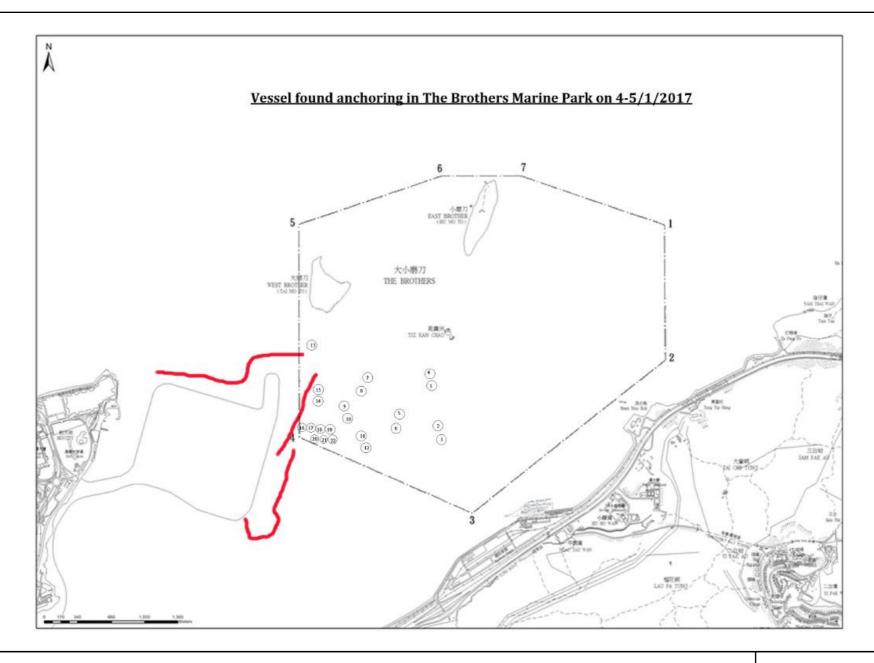
Upon receiving the case notification from IEC on 17 January 2016, the Contractor had promptly checked the construction programme and the vessel operation record of January 2017.

According to the vessel operation record provided by the Contractor, there were no DBJV construction vessels operating within the BMP during the above period. None of the construction vessels in the list provided by AFCD were employed under this Contract. According to the construction programme, major marine works in this month were mainly dredging and construction of vertical seawall at Portion N-A. All Contract-related construction vessels were found working inside the project site boundary. Location map of site area and travel route of marine vessels and barges are provided (see *Figure 2 and Figure 3*).

In addition, silt curtain enclosing the HKBCF was not deployed under this Contract. Therefore, the observation on silt curtain found inside the BMP or in close vicinity of the boundary of BMP was considered not related to this Contract.

Based on the above, the case is considered to be not related to this Contract.

#### Mitigation Measures and Follow-Up Actions Recommended to/Undertaken by Contractor


The case is considered to be not related to this Contract and thus no further action is required. The ET will keep checking the operation of construction vessels.

Date of File Closed: 8 February 2017

Approved and Filed by:

(Jovy Tam, ET Leader) Date: 8 February 2017

1





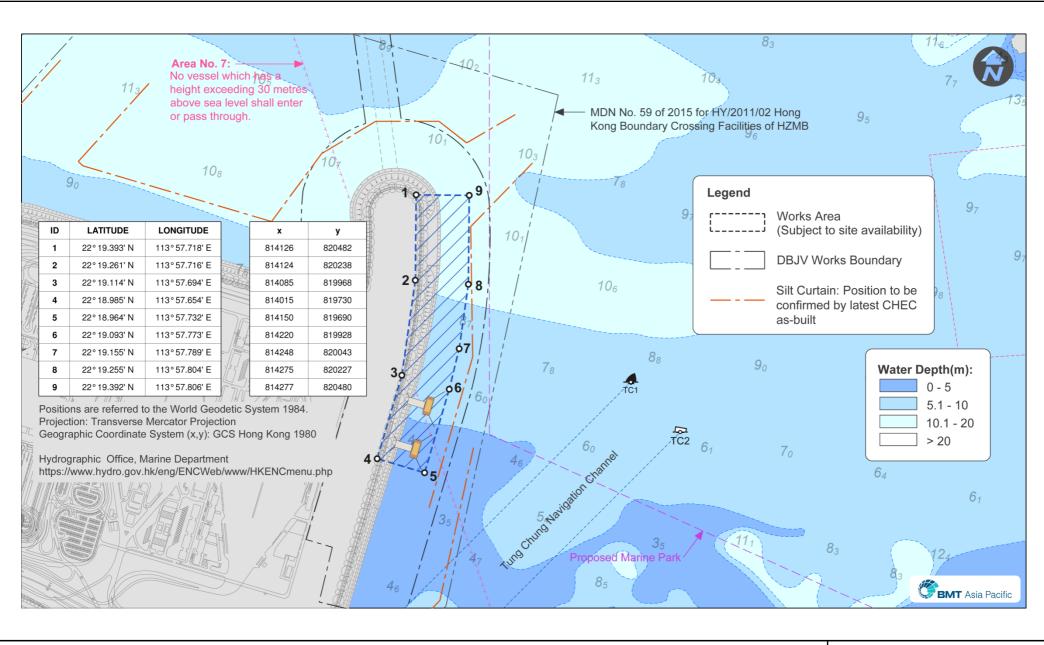
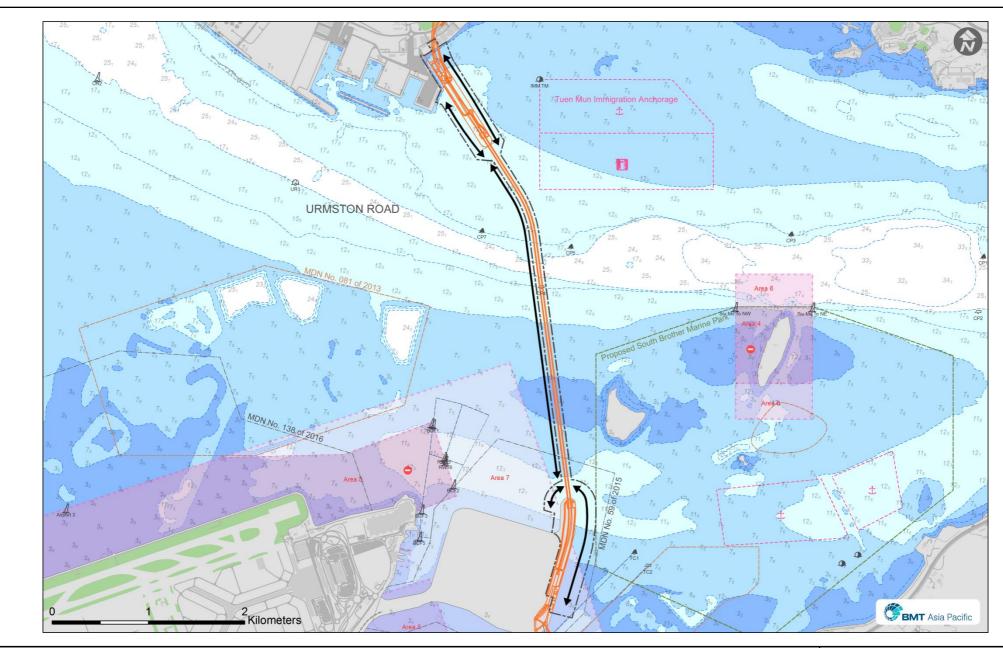
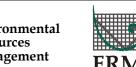



Figure 2 Location Map of site area

Environmental Resources Management







Figure 3(a)
Travel Route of marine vessels and barges

Environmental Resources Management



Plant Type	Vessel Name	船隻名稱	License No.
Dumb Lighter	TB201		B21598V
Dumb Lighter	TB212		B141450
Dumb Lighter	TB223		B21576V
Dumb Lighter	TB225		B21667V
Dumb Lighter	TB233		B21683V
Dumb Lighter	TB236		B21725V
Dumb Lighter	Tuen Mun 2	屯門2	B141646
Dumb Lighter	Gold Sea 26		B21682V
Special Purpose Vessel	Kong Yeung 8	港洋8	BM21463Y
Tug Boat	TB10		B2394

Figure 3(b)
Name of vessels and barges



## Appendix M

# Waste Flow Table



**Monthly Summary Waste Flow Table** 

Name of Department: <u>HyD</u> Contract No. / Works Order No.: <u>HY/2012/08</u>

**Monthly Summary Waste Flow Table for** <u>January 2017</u> [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)								
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill				
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)				
Sub-total	1097.465	0.000	0.000	0.000	1097.465				
Jan-2017	60.781	0.000	0.000	0.000	60.781				
Feb-2017									
Mar-2017									
Apr-2017									
May-2017									
Jun-2017									
Half Year Sub-total									
Jul-2017									
Aug-2017									
Sep-2017									
Oct-2017									
Nov-2017									
Dec-2017									
Project Total Quantities	1158.246	0.000	0.000	0.000	1158.246				

A member of the	Bouygues Cor	structio	n group		
Dragages	- Bouvaues	Joint	Venture	寶嘉	布依格聯

	Actual Quantities of Non-inert Construction Waste Generated Monthly								
Month	Metals (in '000kg)		Paper/ cardboard packaging  (in '000kg)		Plastics (see Note 3) (in '000kg)		Chemical Waste  (in '000kg)		Others, e.g. General Refuse disposed at Landfill (in '000ton)
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub-total	1.850	1.850	3.150	3.150	6.870	6.870	9.450	9.450	4.935
Jan-2017	0.000	0.000	0.000	0.000	0.000	0.000	3.400	3.400	0.673
Feb-2017									
Mar-2017									
Apr-2017									
May-2017									
Jun-2017									
Half Year Sub-total									
Jul-2017									
Aug-2017									
Sep-2017									
Oct-2017									
Nov-2017									
Dec-2017									
Project Total Quantities	1.850	1.850	3.150	3.150	6.870	6.870	12.850	12.850	5.608



Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*						
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill		
(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)		
20.000	0.000	0.000	0.000	20.000		

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*							
Metals	Paper/ cardboard packaging	Plastics (see Note 3) Chemical Waste		General Refuse disposed of at Landfill			
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 ton)			
0.000	0.000	0.000	0.000	0.100			

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (**ER Part 8 Clause 8.8.5 (d)** (ii) refers).