
Report

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Forty-first Monthly Environmental Monitoring & Audit (EM&A) Report

18 April 2017

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Ref.: HYDHZMBEEM00_0_5265L.17

18 April 2017

AECOM

By Fax (2293 6300) and By Post

Supervising Officer Representative's Office No.8 Mong Fat Street, Tuen Mun, New Territories, Hong Kong

Attention: Messrs. Andy Westmoreland / Roger Man

Dear Sirs,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing
Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/08 TM-CLKL Northern Connection Sub-sea Tunnel Section 41st Monthly EM&A Report for March 2017 (EP-354/2009/D)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (March 2017) (ET's ref.: "0212330_41st Monthly EM&A_20170418.doc" dated 18 April 2017) certified by the ET Leader and provided to us via e-mail on 18 April 2017.

Please be informed that we have no adverse comments on the captioned Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/D.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun - Chek Lap Kok Link

C.C.

HyD - Mr. Stephen Chan (By Fax: 3188 6614) HyD - Mr. Vico Cheung (By Fax: 3188 6614)

AECOM - Mr. Conrad Ng (By Fax: 3922 9797) ERM - Mr. Jovy Tam (By Fax: 2723 5660)

Dragages – Bouygues JV - Mr. C. F. Kwong (By Fax: 2293 7499)

Internal: DY, YH, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_5265L.17.docx

Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section

Forty-first Monthly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0212330_41st Monthly EM&A_20170418.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project N	0:				
DBJV		021233	0				
Summary		Date: 18 April Approved					
This document presents the Forty-first Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section.							
		Mr Crai	g Reid				
		Partner Certified	h. e				
		Certified	e.				
		Mr Jovy ET Leade					
	41 st Monthly EM&A Report	VAR	JT	CAR	18/04/17		
Revision	Description	Ву	Checked	Approved	Date		
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.							
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.			Public Confidential ISO 9001: 2008 Certificate No. PS 32515				

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1	INTRODUCTION	4
1.1	BACKGROUND	4
1.2	SCOPE OF REPORT	5
1.3	ORGANIZATION STRUCTURE	5
1.4	SUMMARY OF CONSTRUCTION WORKS	6
2	EM&A RESULTS	8
2.1	AIR QUALITY	8
2.2	WATER QUALITY MONITORING	10
2.3	DOLPHIN MONITORING	11
2.4	EM&A SITE INSPECTION	16
2.5	Waste Management Status	17
2.6	ENVIRONMENTAL LICENSES AND PERMITS	18
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	21
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	NCE
	LIMIT	21
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	21
3	FUTURE KEY ISSUES	22
3.1	CONSTRUCTION ACTIVITIES FOR THE COMING MONTH	22
3.2	KEY ISSUES FOR THE COMING MONTH	22
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	22
4	CONCLUSIONS AND RECOMMENDATIONS	23
4.1	CONCLUSIONS	23

APPENDIX A PROJECT ORGANIZATION FOR ENVIRONMENTAL

WORKS

APPENDIX B CONSTRUCTION PROGRAMME

APPENDIX C ENVIRONMENTAL MITIGATION AND

ENHANCEMENT MEASURE IMPLEMENTATION

SCHEDULES (EMIS)

APPENDIX D SUMMARY OF ACTION AND LIMIT LEVELS

APPENDIX E COPIES OF CALIBRATION CERTIFICATE FOR AIR

QUALITY MONITORING

APPENDIX F EM&A MONITORING SCHEDULES

APPENDIX G IMPACT AIR QUALITY MONITORING RESULTS

APPENDIX H METEOROLOGICAL DATA

APPENDIX I WQM DATA

APPENDIX J IMPACT DOLPHIN MONITORING SURVEY

APPENDIX K EVENT AND ACTION PLAN

APPENDIX L CUMULATIVE STATISTICS ON EXCEEDANCE,

COMPLAINTS, NOTIFICATIONS OF SUMMONS AND

SUCCESSFUL PROSECUTIONS

APPENDIX M WASTE FLOW TABLE

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET) in accordance with *Environmental Permit No. EP-354/2009/A*. Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO). Subsequent applications for variation of environmental permits (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The construction phase of the Project commenced on 1 November 2013 and will tentatively be completed by the end of 2018. The impact monitoring of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

This is the Forty-first Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 March 2017 for the *Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section* (the "Project") in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Corbel Construction TBM Tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Marine-based Works

- Construction of Vertical Seawall at Portion N-A; and
- Band drains and Filling works at Portion N-A

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 11 sessions

1-hour TSP Monitoring 11 sessions

Water Quality Monitoring 13 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 5 sessions

Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in March 2017 during the exclusion zone monitoring.

Summary of Breaches of Action/Limit Levels

Breaches of Action and Limit Levels for Air Quality

No Action Level or Limit Level of air quality exceedances were recorded in the air quality monitoring of this reporting month.

Breaches of Action and Limit Levels for Water Quality

No Action Level or Limit Level of water quality exceedances were recorded in the water quality monitoring of this reporting month.

Environmental Complaints, Non-compliance & Summons

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the construction of this Contract was recorded in this reporting period.

One (1) environmental complaint case regarding muddy water discharge at the site area near Ho Yeung Street was referred by EPD on 14 February 2017. The complaint investigation report is provided in Appendix L.

One (1) environmental complaint case regarding noise nuisance and water pollution at the site near HKBCF of HZMB was referred by IEC on 28 March 2017. The environmental complaint case is under investigation. The complete investigation findings will be provided in the Forty-second Monthly EM&A Report.

No environmental summons was received in this reporting period.

Summary of Marine Travel Route record

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the marine travel route record of this Contract was recorded in January, February and March.

Reporting Change

There was no reporting change required in the reporting period.

Upcoming Works for the Next Reporting Month

Works to be undertaken in the next monitoring period of April 2017 include the following:

Marine-based Works

- Construction of Vertical Seawall at Portion N-A; and
- Filling works at Portion N-A

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Corbel Construction TBM Tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- CSM Ground Treatment and Bulk excavation Portion S-A.

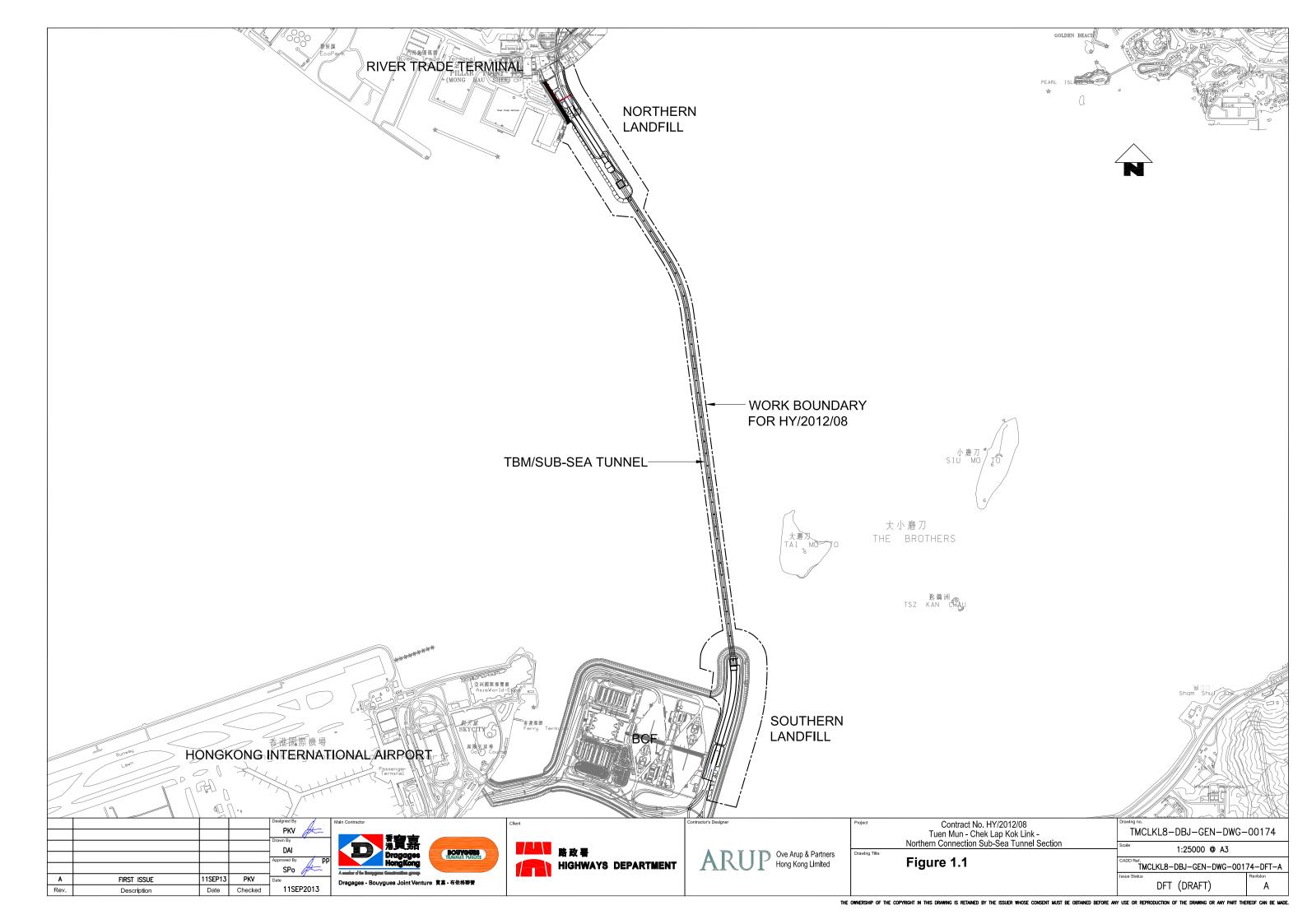
Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of April 2017 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

INTRODUCTION

1.1 BACKGROUND

1


According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (EP-354/2009) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (VEP) (EP-354/2009/A) was issued on 8 December 2010. Subsequent applications for variation of environmental permits (VEPs), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

Under *Contract No. HY/2012/08*, Dragages – Bouygues Joint Venture (DBJV) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Northern Connection Sub-sea Tunnel Section of TM-CLKL while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO).

Layout of the Contract components is presented in *Figure 1.1*.

The construction phase of the Contract commenced on 1 November 2013 and will tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, water quality, marine ecological monitoring and environmental site inspections, were commenced on 1 November 2013.

1.2 Scope of Report

This is the Forty-first Monthly EM&A Report under the *Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link – Northern Connection Sub-sea Tunnel Section.* This report presents a summary of the environmental monitoring and audit works in March 2017.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Highways Department	Engr 16/HZMB	Kenneth Lee	2762 4996	3188 6614
SOR (AECOM Asia Company	Chief Resident Engineer	Roger Man	2293 6388	2293 6300
Limited)	8	Andrew Westmoreland	2293 6360	2293 6300
ENPO / IEC (Ramboll Environ Hong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Kong Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Dragages – Bouygues Joint Venture)	Environmental Manager	C.F. Kwong	2293 7322	2293 7499
,	Environmental Officer	Bryan Lee	2293 7323	2293 7499
	Environmental Officer	David Ho	6628 8684	2293 7499
	24-hour complaint hotline	Rachel Lam	2293 7330	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

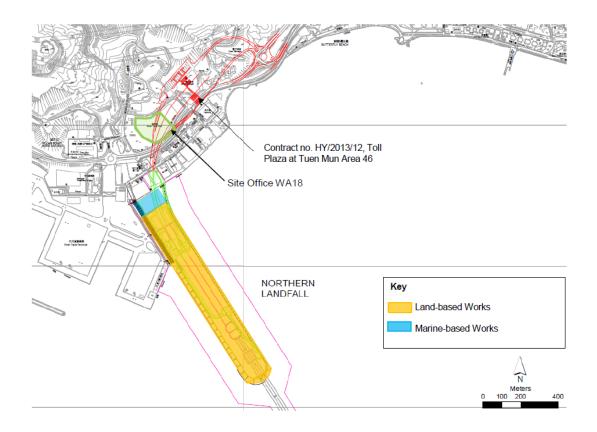
The construction phase of this Contract was commenced on 1 November 2013. The construction programme is shown in *Appendix B*.

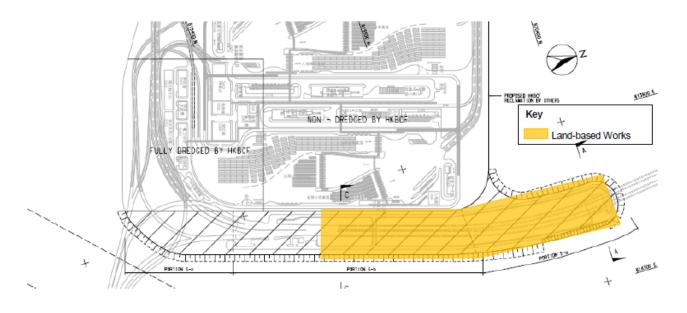
As per DBJV's information, details of major construction works carried out in this reporting period are summarized in *Table 1.2*.

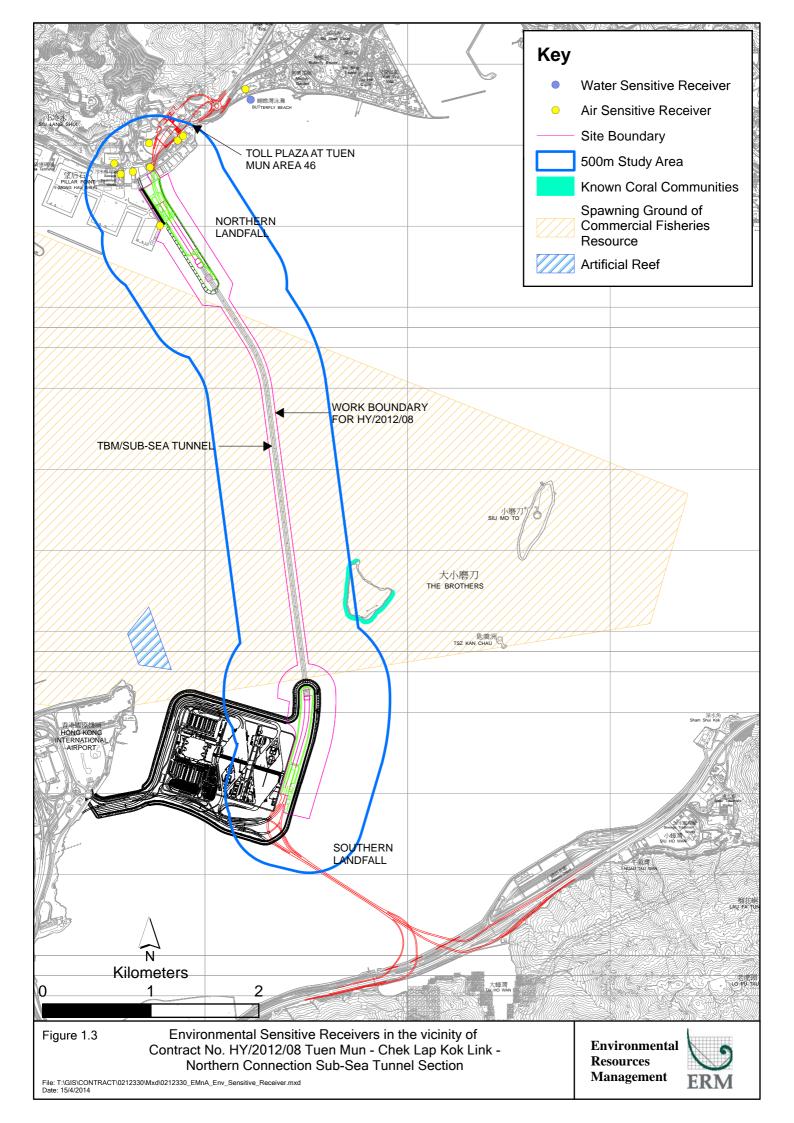
The general layout plan of the site showing the detailed works areas is shown in *Figure 1.2*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.3*.

The implementation schedule of environmental mitigation measures is presented in *Appendix C*.

Table 1.2 Summary of Construction Activities Undertaken during the Reporting Period


Construction Activities Undertaken


Land-based Works


- Box Culvert Extension at Works Area Portion N-A;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Corbel Construction TBM Tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction Portion S-A.

Marine-based Works

- Construction of Vertical Seawall at Portion N-A; and
- Band drains and Filling works at Portion N-A

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual and the Enhanced TSP Monitoring Plan, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. 1-hr and 24-hr TSP monitoring frequency was increased to three times per day every three days and daily every three days, respectively, as excavation works for launching shaft commenced on 24 October 2014.

High volume samplers (HVSs) were used to carry out the 1-hour and 24-hour TSP monitoring on 1, 4, 7, 10, 13, 16, 19, 22, 25, 28 and 31 March 2017 at the five (5) air quality monitoring stations in accordance with the requirements stipulated in the Updated EM&A Manual (*Figure 2.1*; *Table 2.1*). Wind meter was installed at the rooftop of ASR5 for logging wind speed and wind direction. Details of the equipment deployed are provided in *Table 2.2*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station	Monitoring Dates	Location	Description	Parameters & Frequency
ASR1	1, 4, 7, 10, 13, 16, 19,	Tuen Mun	Office	TSP monitoring
	22, 25, 28 and 31	Fireboat Station		 1-hour Total Suspended
	March 2017			Particulates (1-hour TSP,
ASR5		Pillar Point Fire	Office	μ g/m³), 3 times in every 6 days
		Station		 24-hour Total Suspended
				Particulates (24-hour TSP,
AQMS1		Previous River	Bare ground	μ g/m³), daily for 24-hour in
		Trade Golf		every 6 days
				Enhanced TSP monitoring
ASR6		Butterfly Beach	Office	(commenced on 24 October 2014)
		Laundry		 1-hour Total Suspended
				Particulates (1-hour TSP,
ASR10		Butterfly Beach	Recreational	$\mu g/m^3$), 3 times in every 3 days
		Park	uses	 24-hour Total Suspended
				Particulates (24-hour TSP,
				$\mu g/m^3$), daily for 24-hour in
				every 3 days

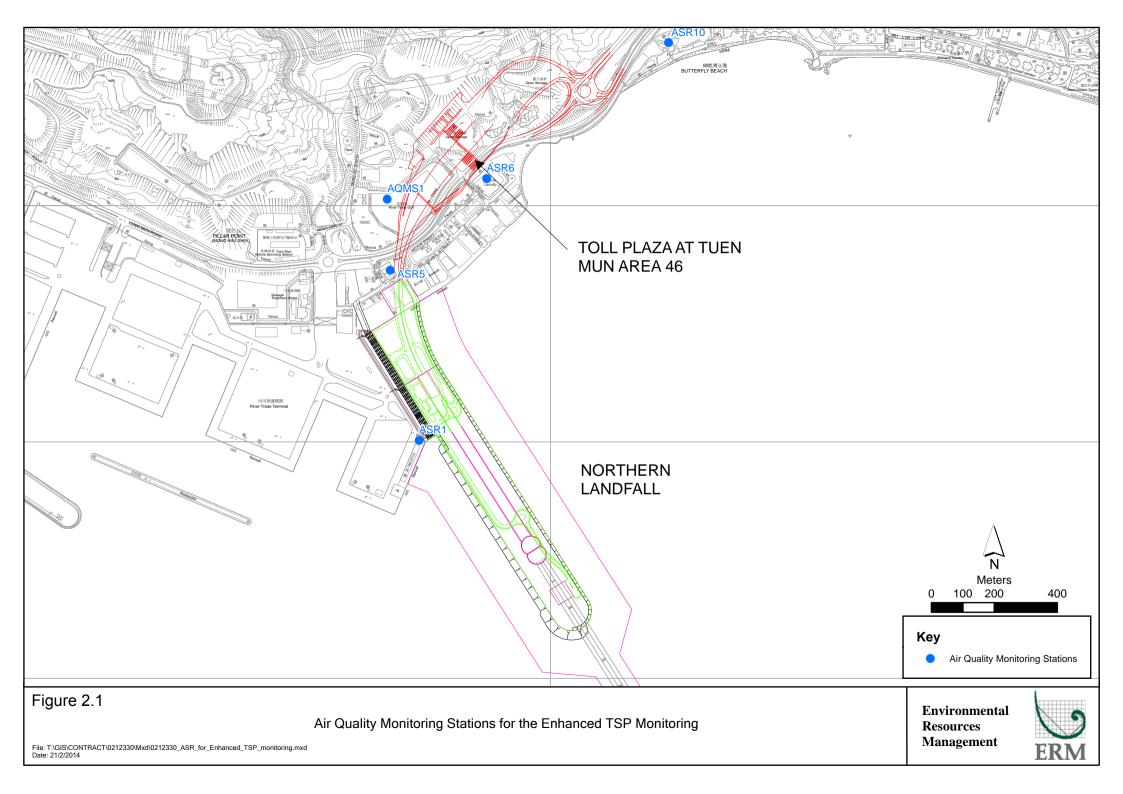


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler (1-hour TSP and 24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Sampler (Model No. TE-5170)
Wind Meter	Davis (Model: Vantage Pro 2 (S/N: AS160104014)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.1.3 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in March 2017 is provided in *Appendix F*.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4*, respectively. Detailed impact air quality monitoring results and graphical presentations are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (µg/m³)	Action Level	Limit Level
			(μg/m³)	$(\mu g/m^3)$
ASR1	154	54 - 242	331	500
ASR5	177	50 - 284	340	500
AQMS1	121	42 - 240	335	500
ASR6	145	51 - 218	338	500
ASR10	77	38 - 136	337	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Station	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR1	92	63 - 128	213	260
ASR5	98	58 - 126	238	260
AQMS1	75	44 - 107	213	260
ASR6	87	49 - 102	238	260
ASR10	58	45 - 75	214	260

The weather condition during the monitoring period varied from sunny to cloudy. The major dust sources in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

A total of 11 monitoring events were undertaken in which no Action or Limit Level exceedances of 1-hr TSP were recorded in this reporting month. No Action or Limit Level exceedances for 24-hr TSP were record.

Meteorological information collected at the ASR5, including wind speed and wind direction, is provided in *Appendix H*.

2.2 WATER QUALITY MONITORING

2.2.1 Monitoring Requirements & Equipment

In accordance with the Updated EM&A Manual, impact water quality monitoring was carried out three days per week during the construction period at nine (9) water quality monitoring stations (*Figure 2.2*; *Table 2.5*).

Table 2.5 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coordinates		*Parameters, unit	Depth	Frequency
	•	Easting	Northing	_		
IS12	Impact Station	813218	823681	• Temperature(°C)	3 water depths: 1m	Impact
IS13	Impact Station	813667	824325	 pH(pH unit) 	below sea surface,	monitoring: 3
IS14	Impact Station	812592	824172	• Turbidity (NTU)	mid-depth and 1m	days per week,
IS15	Impact Station	813356	825008	• Water depth (m)	above sea bed. If	at mid-flood
CS4	Control / Far	810025	824004	 Salinity (ppt) 	the water depth is	and mid-ebb
	Field Station			 DO (mg/L and 	less than 3m, mid-	tides during the
CS6	Control / Far	817028	823992	% of	depth sampling	construction
	Field Station			saturation)	only. If water	period of the
SR8	Sensitive	816306	825715	• SS (mg/L)	depth less than 6m,	Contract.
	receiver				mid-depth may be	
	(Gazettal				omitted.	
	beaches in					
	Tuen Mun)					
SR9	Sensitive	813601	825858			
	receiver					
	(Butterfly					
	Beach)					
SR10A	Sensitive	823741	823495			
	receiver					
	(Ma Wan					
	FCZ)					

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Table 2.6 summarizes the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

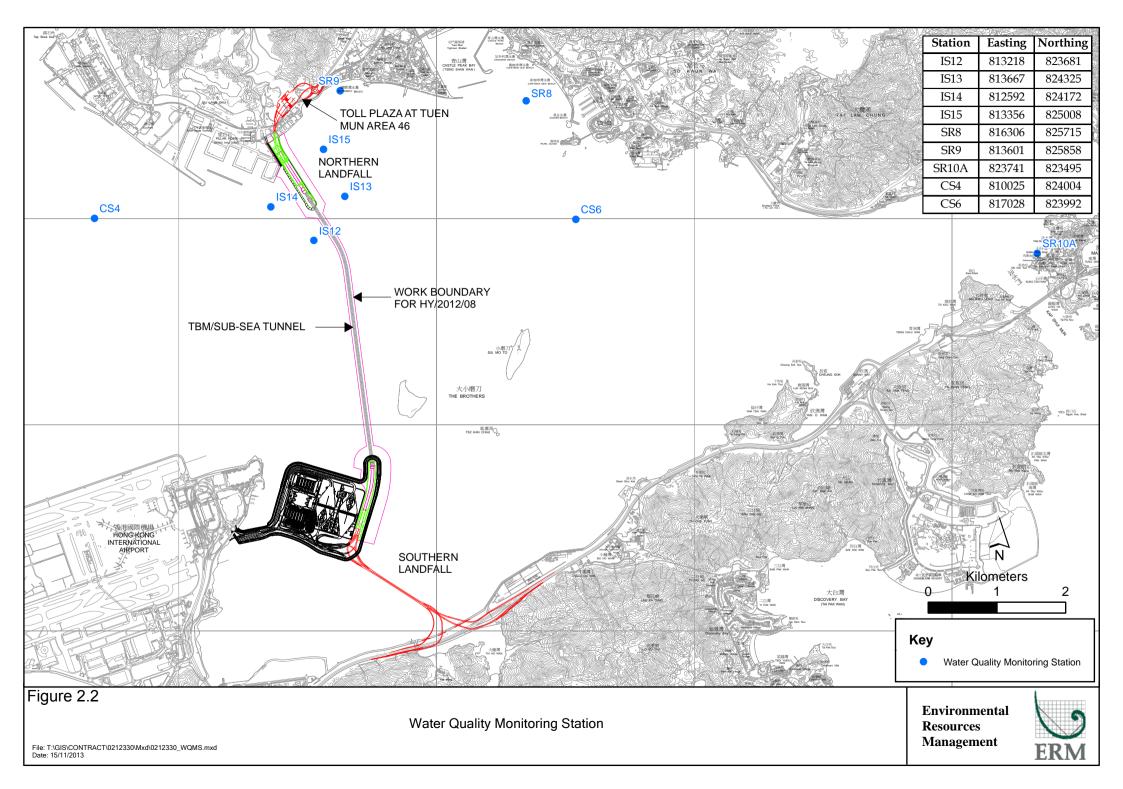


Table 2.6 Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water-Bottle Model 135DW 150
Dissolved Oxygen Meter	YSI Pro 2030
pH Meter	HANNA HI 9125
Turbidity Meter	HACH 2100Q
Monitoring Position	"Magellan" Handheld GPS Model explorist GC
Equipment	DGPS Koden KGP913MK2 (1)

2.2.2 Action & Limit Levels

The Action and Limit levels of water quality impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.2.3 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in March 2017 is provided in *Appendix F*.

2.2.4 Results and Observations

Impact water quality monitoring was conducted at all designated monitoring stations in the reporting month. Results and graphical presentations of impact water quality monitoring are presented in *Appendix I*.

Since marine works for Phase 2 reclamation commenced on 27 December 2016, impact water quality monitoring resumed on 27 December 2016. In this reporting period, a total of thirteen (13) monitoring events were undertaken in which no Action Level or Limit Levels of exceedances for impact water quality monitoring was recorded.

2.3 DOLPHIN MONITORING

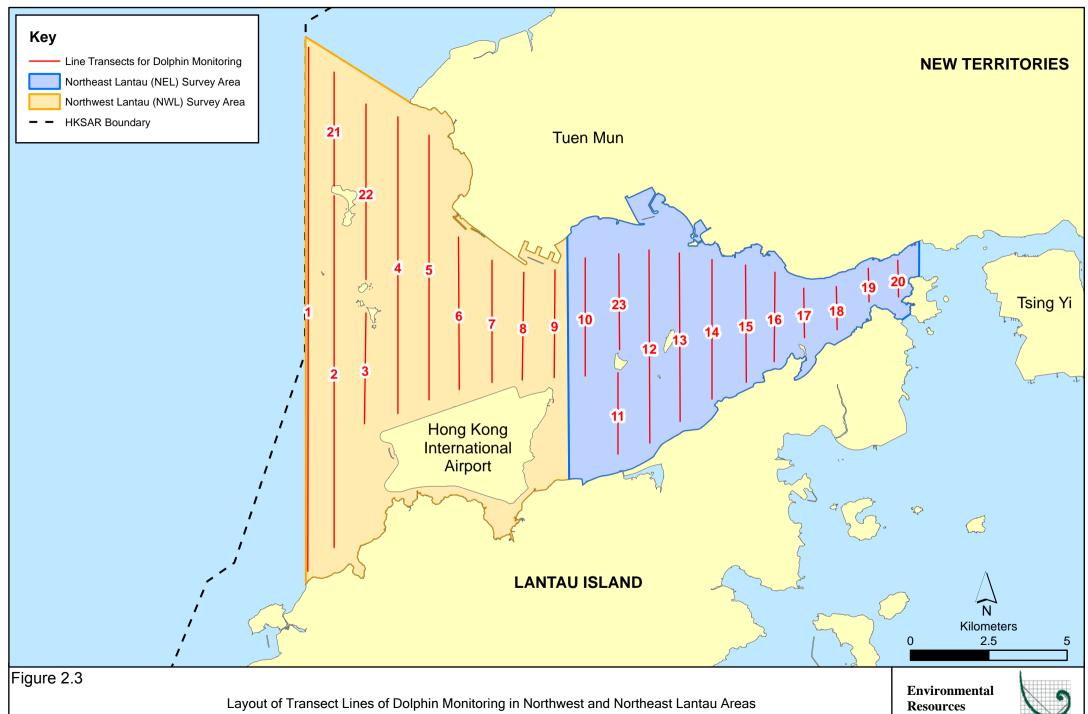
2.3.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge.* Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities on the monthly basis is adopted to avoid duplicates of survey effort.

2.3.2 Monitoring Equipment

Table 2.7 summarises the equipment used for the impact dolphin monitoring.

Table 2.7 Dolphin Monitoring Equipment


Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus
	Nikon D90 20-300m zoom lens
Laser Binocular	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level

2.3.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.3.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.3*. The co-ordinates of all transect lines are shown in *Table 2.8* below.

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 29/11/2013

Management

 Table 2.8
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805475	815913	14	Start Point	817537	820220
2	End Point	805477	826654	14	End Point	817537	824613
3	Start Point	806464	819435	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	819771	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	820220	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	820466	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	820880	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	820872	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807				
12	End Point	815542	824882				

2.3.5 Action & Limit Levels

The Action and Limit levels of impact dolphin monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix K*.

2.3.6 *Monitoring Schedule for the Reporting Month*

Dolphin monitoring was carried out on 2, 7, 16 and 28 of March 2017. The dolphin monitoring schedule for the reporting month is shown in *Appendix F*.

2.3.7 Results & Observations

A total of 283.50 km of survey effort was collected, with 82.9% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) in March 2017. Among the two areas, 119.20 km and 164.30 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 204.80 km and 78.70 km respectively. The survey efforts are summarized in *Appendix J*.

A total of two groups of 20 Chinese White Dolphins sightings were recorded on one survey in March 2017. All two dolphin sightings were made in NWL, while none was sighted in NEL. Both dolphin sightings were made during on-effort search, while one of the two on-effort sightings were made on primary lines. One of the two dolphin groups was associated with an operating fishing vessel at the east of Sha Chau.

None of the dolphin sightings was made in the proximity of the TM-CLKL alignment. The distribution of dolphin sightings during the reporting month is shown in *Figure 2.4*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in March 2017 with the results present in *Tables 2.9* and *2.10*.

 Table 2.9
 Individual Survey Event Encounter Rates

		Encounter rate (STG)	Encounter rate (ANI)
		(no. of on-effort dolphin	(no. of dolphins from all on-
		sightings per 100 km of	effort sightings per 100 km of
		survey effort)	survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: March 2 nd / 7 th	0.0	0.0
NLL	Set 2: March 16th / 28th	0.0	0.0
NWL	Set 1: March 2 nd / 7 th	0.0	0.0
INVVL	Set 2: March 16th / 28th	2.0	24.4

Note: Dolphin Encounter Rates are deduced from the Two Sets of Surveys (Two Surveys in Each Set) in March 2017 in Northeast (NEL) and Northwest Lantau (NWL)

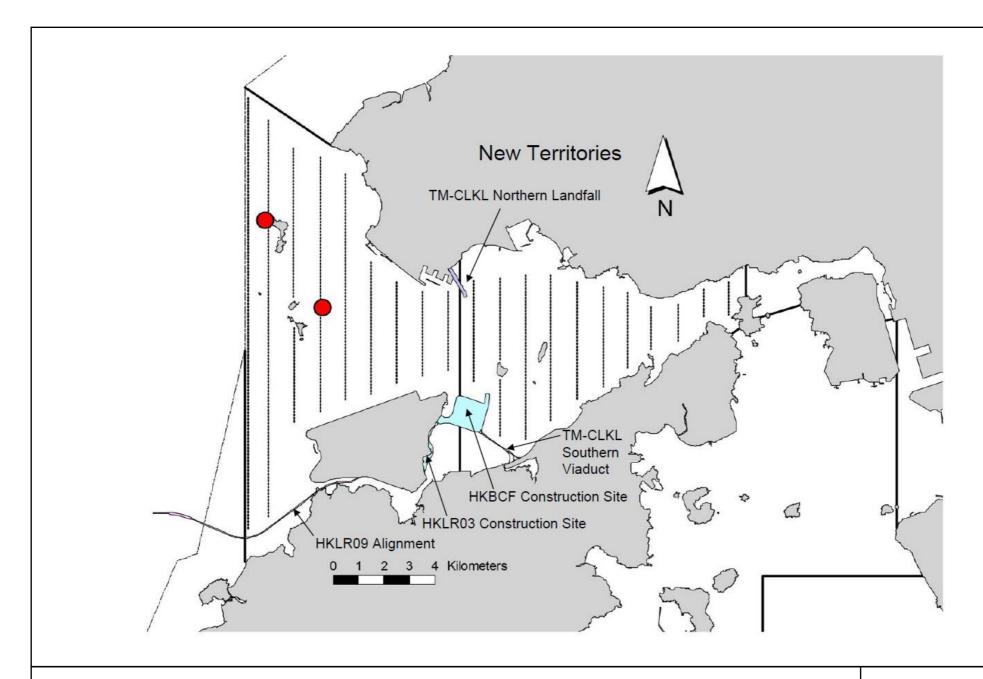


Figure 2.4

Table 2.10 Monthly Average Encounter Rates

	(no. of on-ef	rate (STG) fort dolphin 00 km of survey ort)	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)		
	Primary Lines Only	Both Primary and Secondary Lines	Primary Both Primary Lines Only and Secondary Lines		
Northeast Lantau	0.0	0.0	0.0	0.0	
Northwest Lantau	1.0	1.5	11.6	15.1	

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in March 2017 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau.

Due to monthly variation in dolphin occurrence within the survey area, it would be more appropriate to draw conclusion on whether any unacceptable impacts on dolphins have been detected in relation to the construction activities of this Project in the quarterly EM&A reports, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.3.8 Implementation of Marine Mammal Exclusion Zone

Daily marine mammal exclusion zone was in effect during the period of dredging, reclamation or marine sheet piling works in open waters under this Contract. Passive Acoustic Monitoring (PAM) was also implemented for the detection of marine mammal when dredging, reclamation or marine sheet piling works were carried out outside the daylight hours under this Contract. No sighting of the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was recorded in March 2017 during the exclusion zone monitoring

2.4 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, five (5) site inspections were carried out on 1, 8, 15, 22 and 29 March 2017.

Key observations and recommendations during the site inspections in this reporting period are summarized in *Table 2.11*.

Table 2.11 Specific Observations and Recommendations during the Weekly Site Inspection in this Reporting Month

Inspection Date	Observations	Recommendations/ Remarks
1 March 2017	 Works Area - Portion N-A Drip tray and chemical labels should be provided to the chemicals. Works Area - Portion S-B Accumulated waste at the pedestrian walkway should be removed. Muddy surface runoff should be avoided. 	 Works Area - Portion N-A The Contractor was reminded to provide drip tray and chemical labels to the chemicals. Works Area - Portion S-B The Contractor was reminded to remove the accumulated waste at the pedestrian walkway. The Contractor was reminded to avoid muddy surface runoff.
8 March 2017	 Works Area - Portion N-A Drip tray and chemical labels should be provided to the chemicals. Broken chemical containers should be removed. Works Area - Portion N-C Muddy substances at the haul road should be removed. Works Area - Portion S-C The Contractor was reminded to provide drip tray to the chemicals containers. Drip tray should be provided to the chemicals containers. 	 Works Area - Portion N-A The Contractor was reminded to provide drip tray and chemical labels to the chemicals. The Contractor was reminded to remove the broken chemical containers. Works Area - Portion N-C The Contractor was reminded to remove the muddy substances at the haul road. Works Area - Portion S-C Drip tray should be provided to the chemicals containers. The Contractor was reminded to provide drip tray to the chemicals containers.
15 March 2017	 Works Area - TBM tunnel Drip tray should be provided to the chemicals containers. Cement bags should be covered with tarpaulin sheets. The grouting facilities should be enclosed on top and 3 sides by tarpaulin sheets. Works Area - Portion S-C Drip tray should be provided to the chemicals containers. 	 Works Area - TBM tunnel The Contractor was reminded to provide drip tray to the chemicals. The Contractor was reminded to cover the cement bags with tarpaulin sheets. The Contractor was reminded to enclose the grouting facilities on top and 3 sides by tarpaulin sheets. Works Area - Portion S-C The Contractor was reminded to provide drip tray to the chemicals containers.

Inspection Date	Observations	Recommendations/ Remarks
22 March 2017	 Works Area - Portion N-C Accumulated rubbish should be removed. Works Area - Portion N-A Muddy water should be properly treated before discharge. Works Area - Portion S-C Drip tray should be provided to the chemicals containers. The rock breaker should be wrapped to prevent spread of dust. 	 Works Area - Portion N-C The Contractor was reminded to remove the accumulated rubbish. Works Area - Portion N-A The Contractor was reminded to treat the muddy water properly before discharge. Works Area - Portion S-C The Contractor was reminded to provide drip tray to the chemicals containers. The Contractor was reminded to wrap the rock breaker to prevent spread of dust.
29 March 2017	 Works Area - Portion N-C Empty cement bags should be removed. Accumulated rubbish should be removed. 	 Works Area - Portion N-C The Contractor was reminded to remove the empty cement bags. The Contractor was reminded to remove the accumulated rubbish.

The Contractor has rectified all of the observations as identified during environmental site inspections in the reporting month.

2.5 WASTE MANAGEMENT STATUS

The Contractor had submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period included mainly construction wastes (inert and non-inert) and chemical waste. Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.12*.

Table 2.12 Quantities of Different Waste Generated in the Reporting Month

Month/Year		Imported Fill (tonnes)	Inert Construction	Non-inert Construction	Recyclable Materials (c)	Chemical Wastes	Marine Sediment (m³)	
	Waste (a) (tonnes)		Waste Re- used (tonnes)	Waste (b) (tonnes)	(kg)	(kg)	Category L	Category M (M _p & M _f)
March 2017	7,508	0	0	286	0	6100	0	0

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.

2.6 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.13* below.

 Table 2.13
 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	
Environmental Permit	EP-354/2009/D	13 March 2015	Throughout the Contract	HyD	Application for VEP on 3 March 2015 to supersede EP-354/2009/C
Construction Dust Notification	363510	19 August 2013	Throughout the Contract	DBJV	Northern Landfall
Construction Dust Notification	403620	10 June 2016	Throughout the Contract	DBJV	Southern Landfall
Chemical Waste Registration	5213-422-D2516-01	10 September 2013	Throughout the Contract	DBJV	Northern Landfall
Chemical Waste Registration	5213-422-D2516-02	18 January 2017	Throughout the Contract	DBJV	Northern Landfall
Chemical Waste Registration	5213-951-D2591-01	25 May 2016	Throughout the Contract	DBJV	Southern Landfall
Construction Waste Disposal Account	7018108	28 August 2013	Throughout the Contract	DBJV	Waste disposal in Contract No. HY/2012/08
Construction Waste Disposal Account	7021715	12 January 2017	12 April 2017	DBJV	Vessel disposal
Waste Water Discharge License	WT00017707-2013	18 November 2013	30 November 2018	DBJV	For site WA18
Waste Water Discharge License	WT00019248-2014	5 June 2014	30 June 2019	DBJV	For site Portion N6 and Reclamation Area E
Waste Water Discharge License	WT00025944-2016	15 December 2016	31 December 2021	DBJV	Southern Landfall
Marine Dumping Permit Construction Noise Permit	EP/MD/17-103 GW-RW0644-16	16 December 2016 30 November 2016	13 June 2017 29 May 2017	DBJV DBJV	Northern Landfall For Urmston Road in front of Pillar Point
Construction Noise Permit	GW-RW0666-16	13 December 2016	12 June 2017	DBJV	For site WA23A+B
Construction Noise Permit	GW-RW0143-17	29 March 2017	28 September 2017	DBJV	For Portion N6

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/Permit Holder	Remarks	
Construction Noise Permit	GW-RS0121-17	25 February 2017	24 August 2017	DBJV	For Southern Landfall	
Notes:						
HyD = Highways Department						
DBJV = Dragages - Bouygues Joint Venture						
VEP = Variation of Environmental Permit						

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

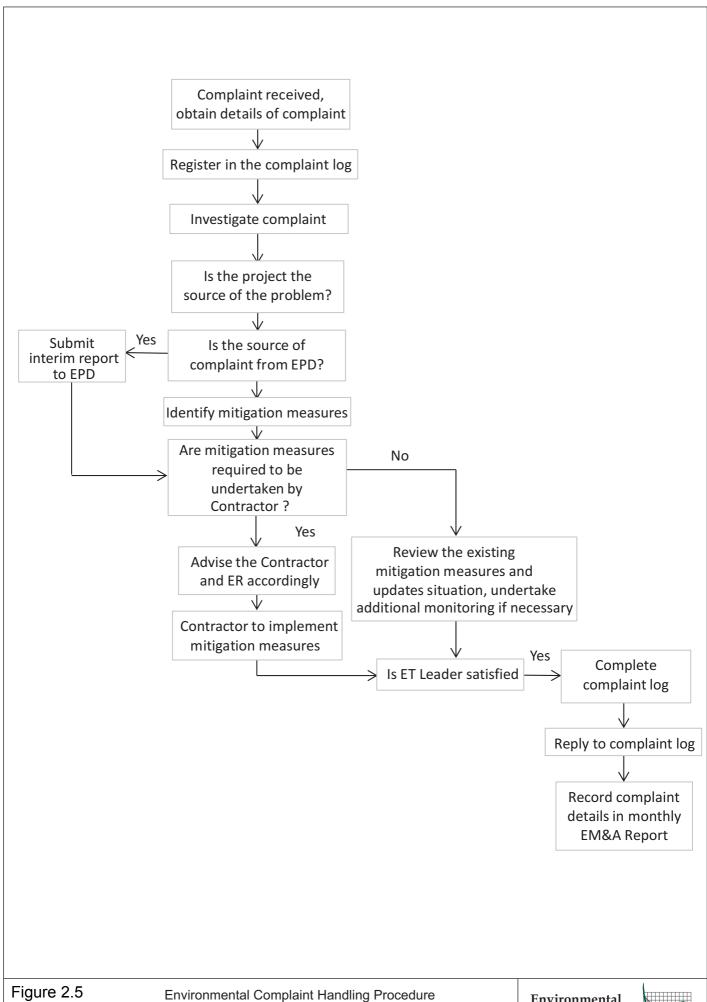
In response to the site audit findings, the Contractors carried out all corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures relevant to this Contract were implemented properly.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

Cumulative statistics are provided in *Appendix L*.


2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

One (1) environmental complaint case regarding noise nuisance and water pollution at the site near HKBCF of HZMB was referred by IEC on 28 March 2017. The environmental complaint case is under investigation. The complete investigation findings will be provided in the Forty-second Monthly EM&A Report.

No notification of summons and prosecution were received in the reporting period.

Statistics on complaints, notifications of summons and successful prosecutions are summarized in *Appendix L*.

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING MONTH

As informed by the Contractor, the major works for the Project in April 2017 are summarized in *Table 3.1*.

Table 3.1 Construction Works to Be Undertaken in the Coming Month

Works to be undertaken

Marine-based Works

- Construction of Vertical Seawall at Portion N-A; and
- Filling works at Portion N-A

Land-based Works

- Box Culvert Extension at Works Area Portion N-A;
- Construction of North Ventilation Building Portion N-C;
- Construction of Cross Passage Tympanum TBM tunnel;
- Cross Passage Lining Installation TBM Tunnel;
- Excavation of Sub-sea Tunnel TBM tunnel;
- Corbel Construction TBM Tunnel;
- Sub-sea Tunnel Gallery Installation TBM tunnel;
- CSM Ground Treatment and Bulk excavation Portion S-A.

•

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of April 2017 are mainly associated with dust, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedule for environmental monitoring in April 2017 is provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

This Forty-first Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 31 March 2017, in accordance with the Updated EM&A Manual and the requirements of EP-354/2009/D.

Air quality (including 1-hour TSP and 24-hour TSP), marine water quality and dolphin monitoring were carried out in this reporting month. No Action Level or Limit Level exceedances were recorded in the air quality monitoring of this reporting month.

No Action Level or Limit Level exceedances were recorded in the water quality monitoring of this reporting month.

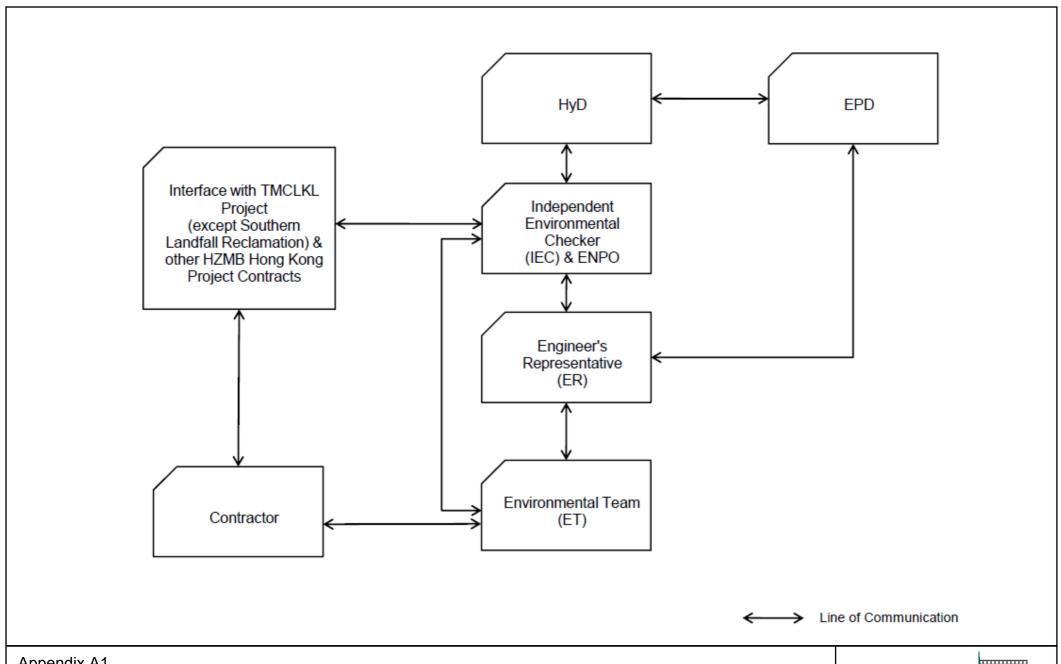
A total of two groups of 20 Chinese White Dolphins sightings were recorded on one survey in March 2017. All two dolphin sightings were made in NWL, while none was sighted in NEL. Both dolphin sightings were made during on-effort search, while one of the two on-effort sightings were made on primary lines. One of the two dolphin groups was associated with an operating fishing vessel at the east of Sha Chau.

Environmental site inspection was carried out five (5) times in March 2017. Remedial actions recommended for the deficiencies identified during the site audits were properly implemented by the Contractor.

No non-compliance event was recorded during the reporting period.

One (1) environmental complaint case regarding muddy water discharge at the site area near Ho Yeung Street was referred by EPD on 14 February 2017. The complaint investigation report is provided in Appendix L.

One (1) environmental complaint case regarding noise nuisance and water pollution at the site near HKBCF of HZMB was referred by IEC on 28 March 2017. The environmental complaint case is under investigation. The complete investigation findings will be provided in the Forty-second Monthly EM&A Report.


No summons/ prosecution was received during the reporting period.

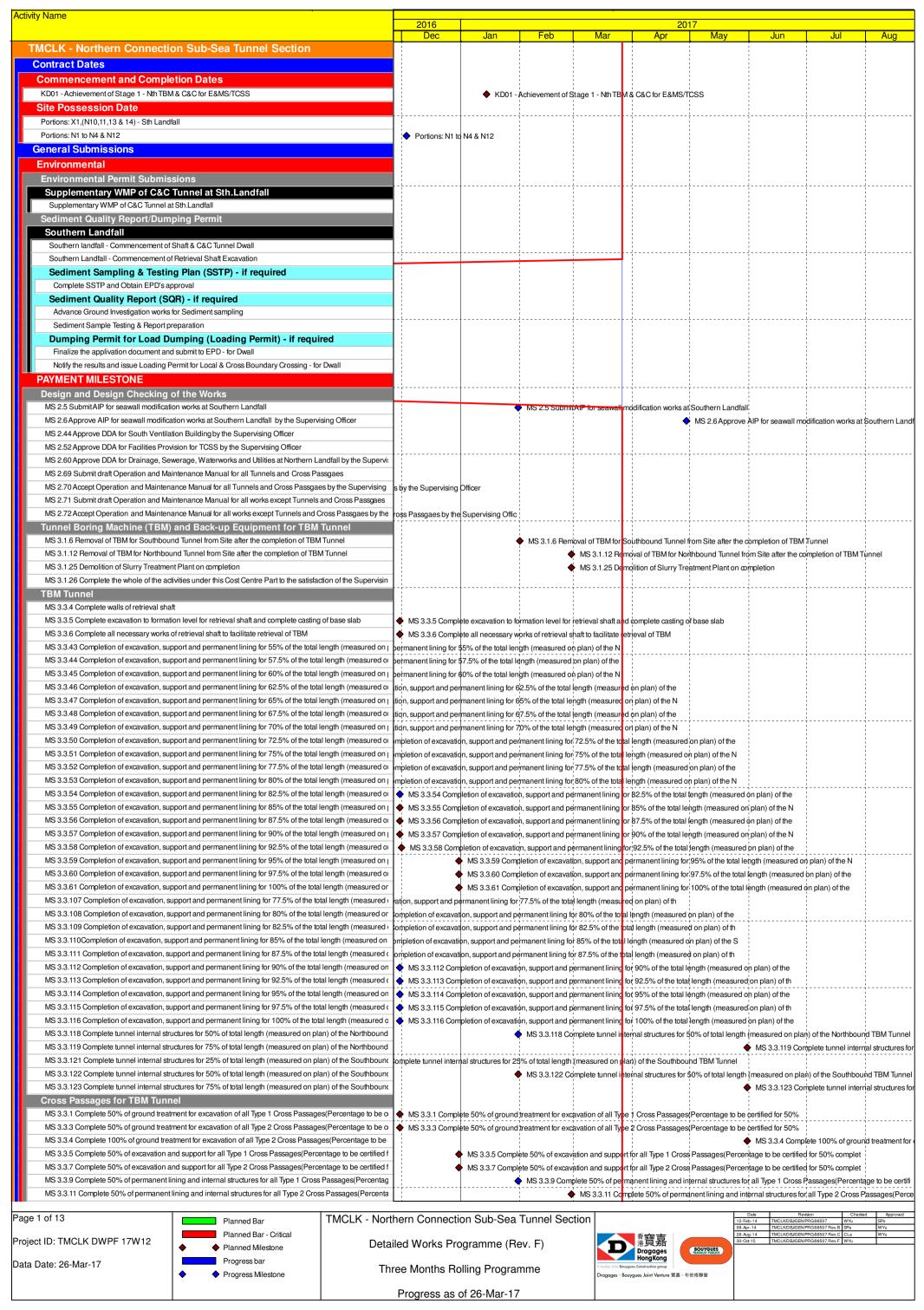
No non-compliance with EIA recommendations, EP conditions and other requirements associated with the marine travel route record of this Contract was recorded in January, February and March.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

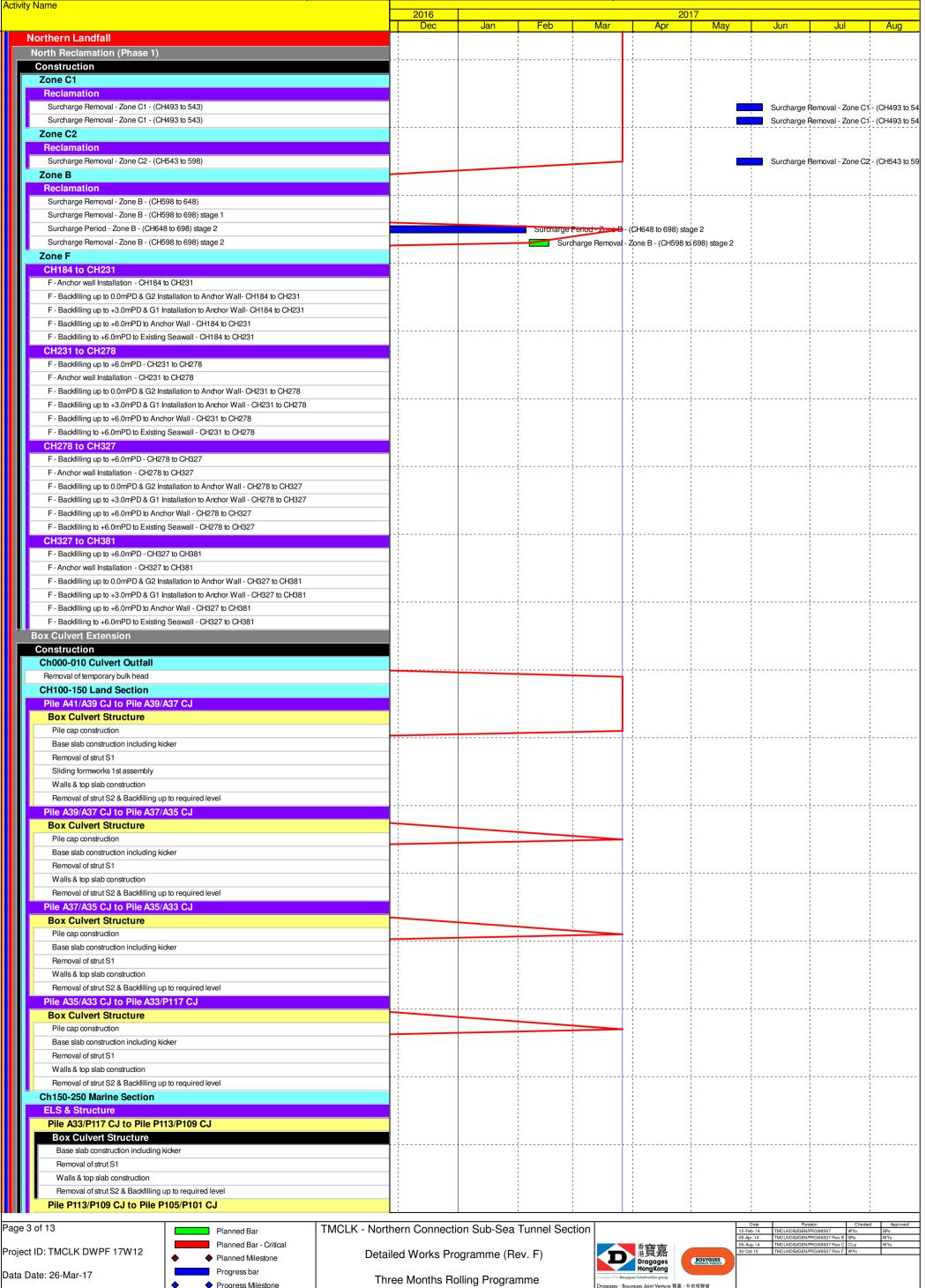
Appendix A

Project Organization for Environmental Works

Appendix A1

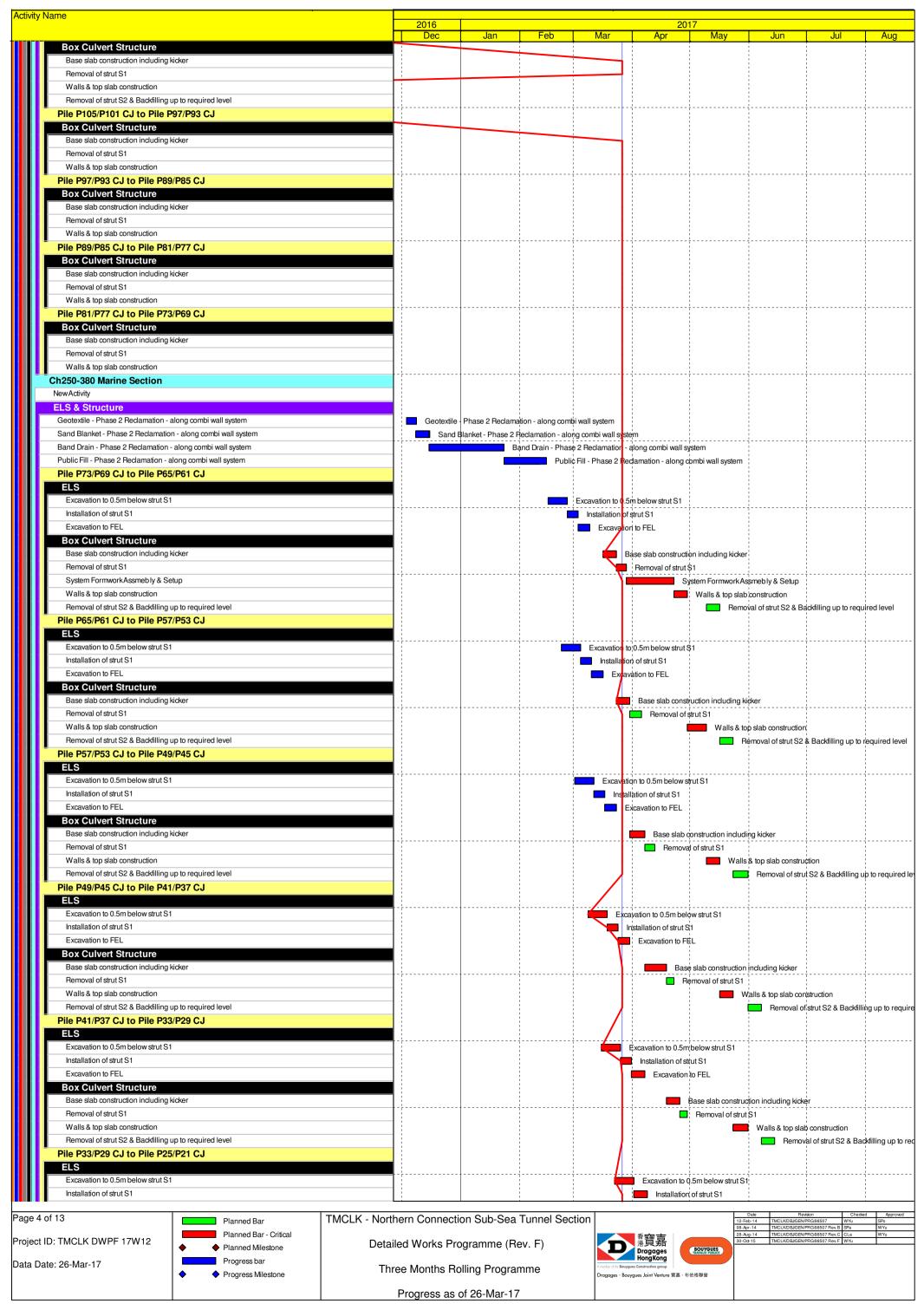

Contract No. HY/2012/08 Northern Connection Sub-sea Tunnel Section **Project Organization**

Environmental Resources Management

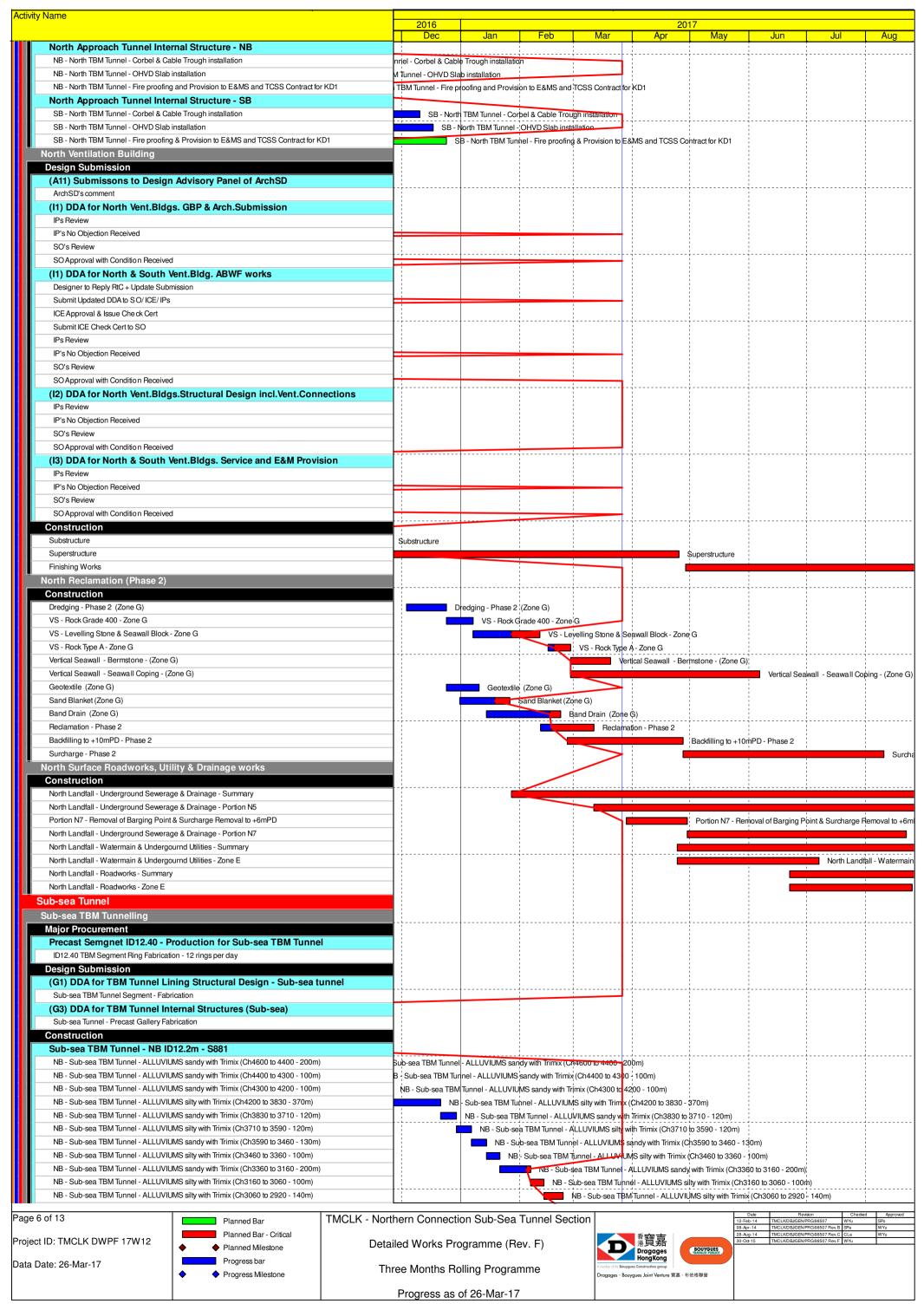


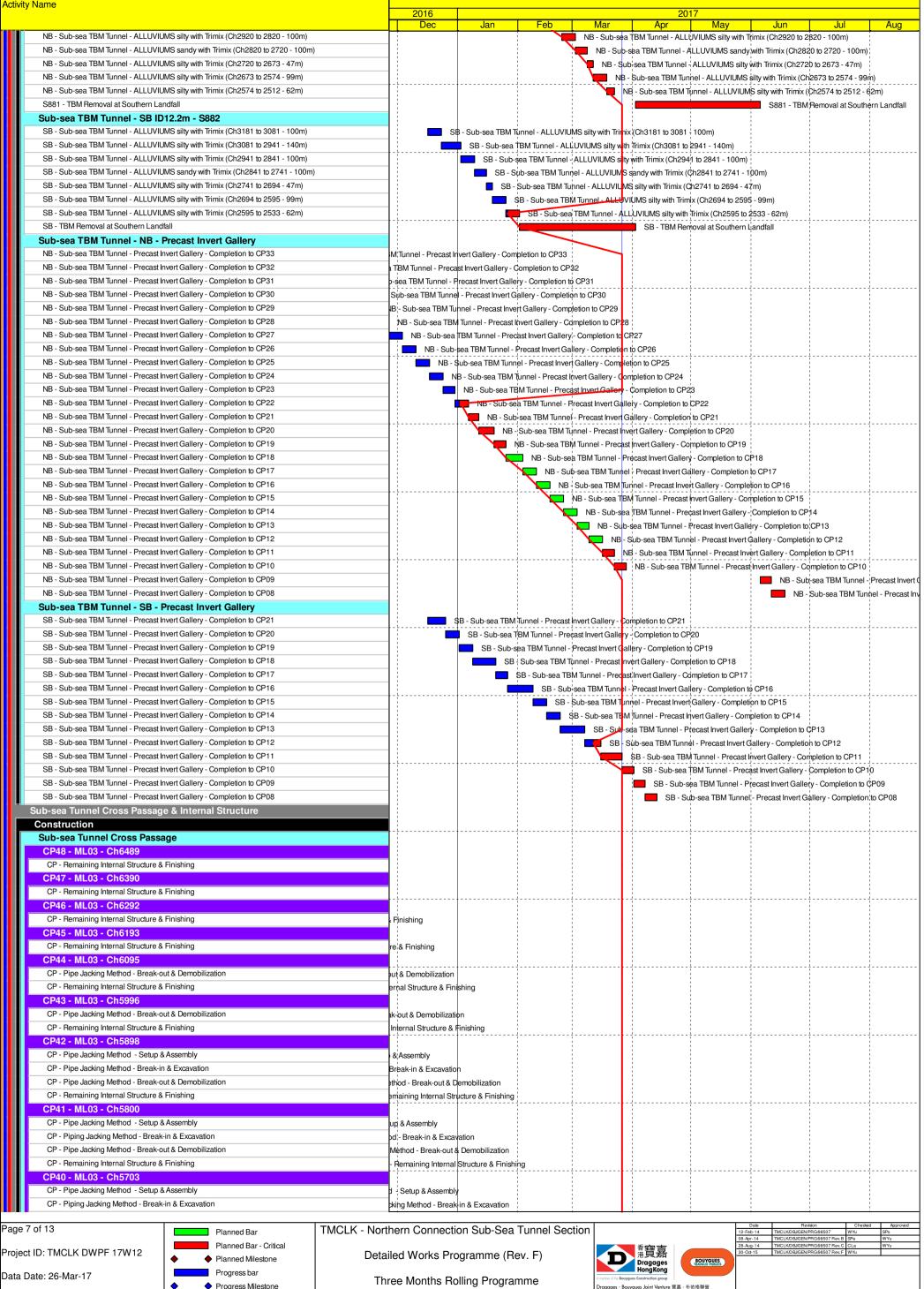
Appendix B

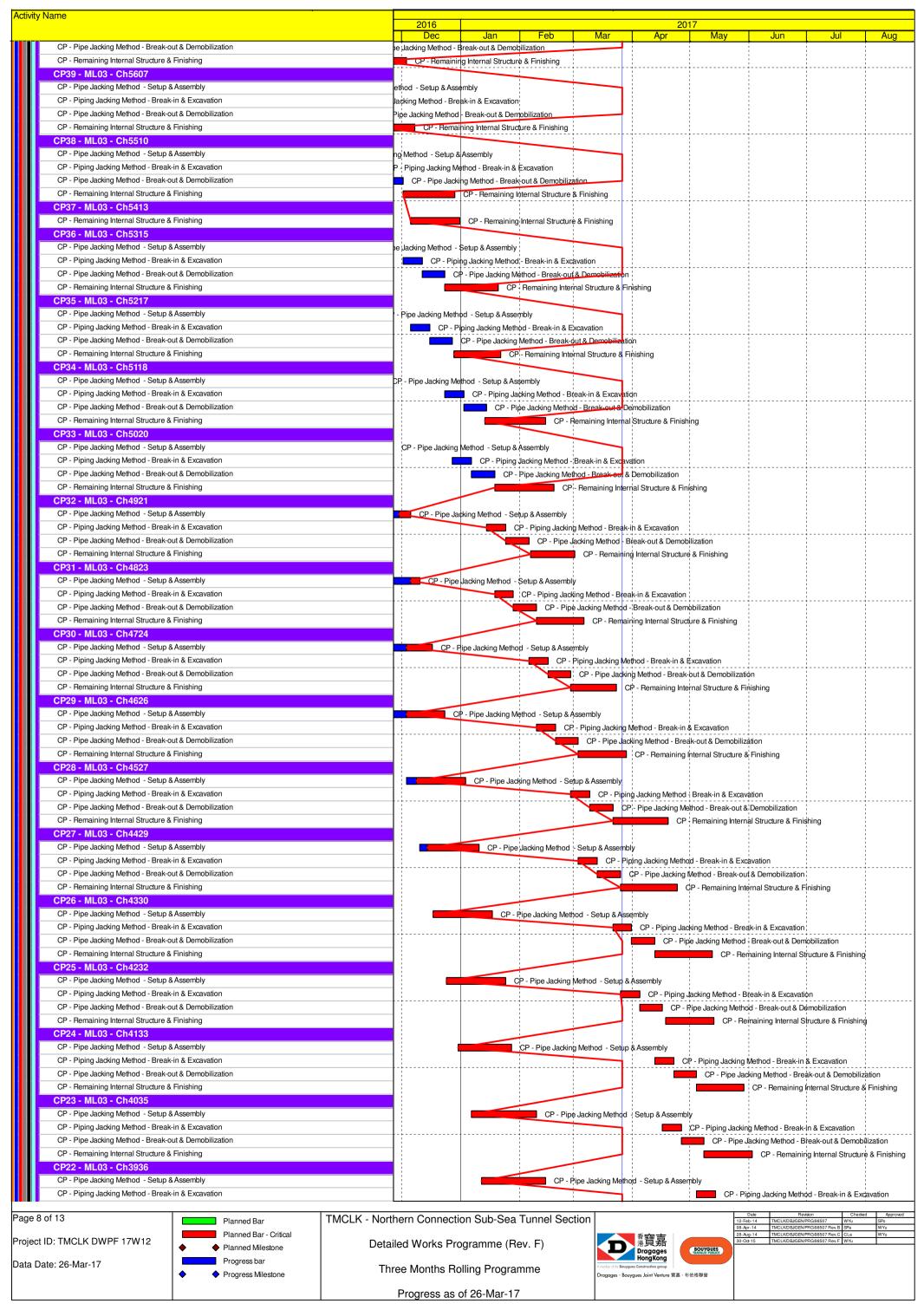
Construction Programme

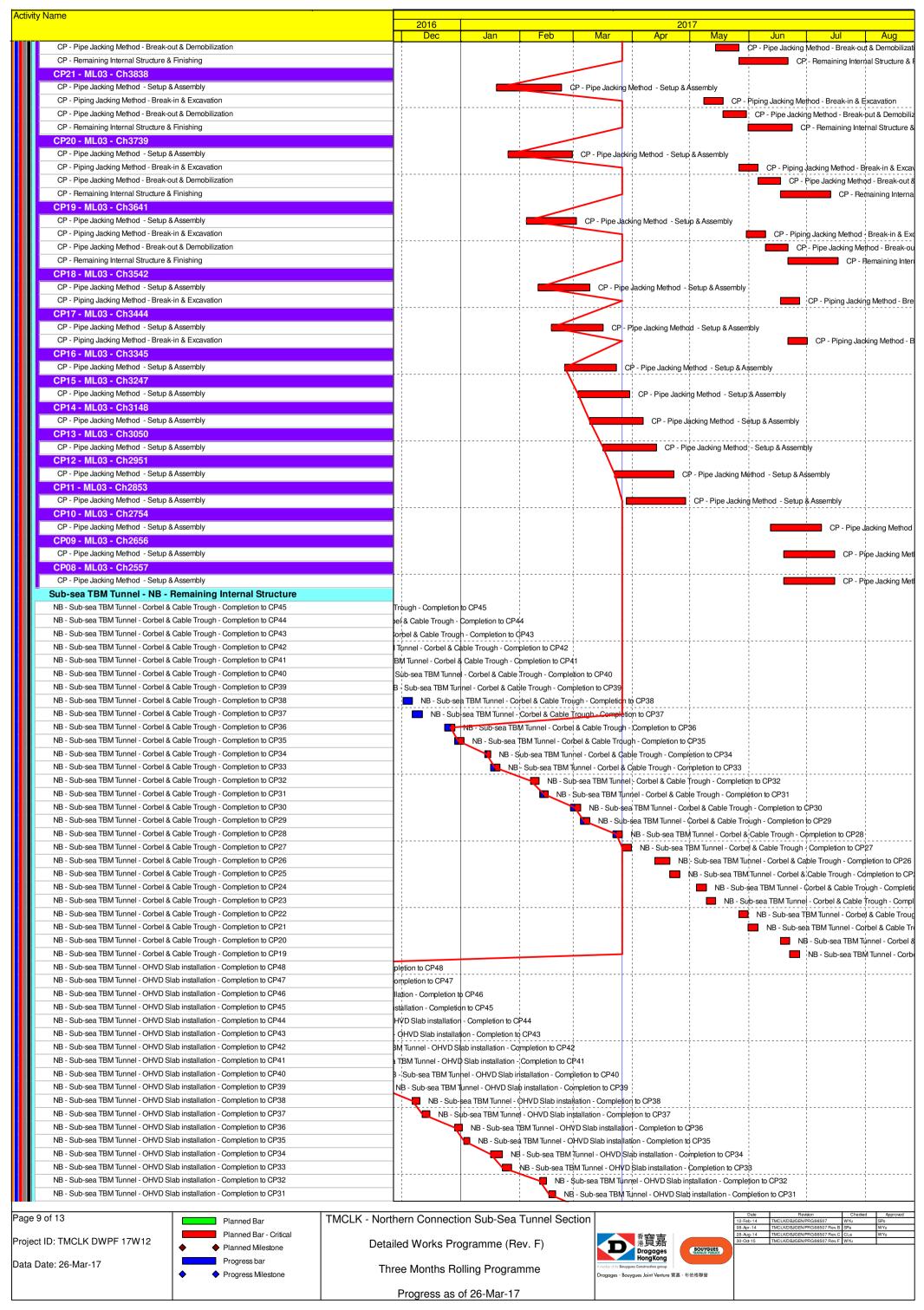


Activity Name		0040					200	17			
		2016 Dec	Jan	Feb	Mar		Apr	May	Jun	Jul	Aug
Cut-and-cover Tunnels at Southern Landfalls MS 4.1.1 Complete 10% of total length (measured on plan) of temporary retaining walls for e	vcavation of Cut-	 						, 			
MS 4.1.1 Complete 10% of total length (measured on plan) of temporary retaining wails for ex		 								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MS 4.1.3 Complete 30% of total length (measured on plan) of temporary retaining walls for e		 		 				 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MS 4.1.4 Complete 40% of total length (measured on plan) of temporary retaining walls for e		 		 	 			 	 	 	
MS 4.1.5 Complete 50% of total length (measured on plan) of temporary retaining walls for e MS 4.1.6 Complete 60% of total length (measured on plan) of temporary retaining walls for e		 			1			 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	
MS 4.1.7 Complete 70% of total length (measured on plan) of temporary retaining walls for e		 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	
MS 4.1.8 Complete 80% of total length (measured on plan) of temporary retaining walls for e	excavation of Cut-	 - -		 	 			! ! !	 	! ! !	}
MS 4.1.9 Complete 90% of total length (measured on plan) of temporary retaining walls for e				-				†		1	
MS 4.1.10 Complete 100% of total length (measured on plan) of temporary retaining walls fo MS 4.1.11	r excavation of C	1		1	1			 		1	
MS 4.1.12 Complete 40% of excavation for Cut-and-cover tunnel		d-cover tunnel						i 			
MS 4.1.13 Complete 60% of excavation for Cut-and-cover tunnel		mplete 60% of excav	ation for Cut-and	over tunnel							
MS 4.1.14 Complete 80% of excavation for Cut-and-cover tunnel		•	MS 4.1.14 Com	plete 80% of exca	avation for Cut	-and-	over tunnel	 	!		
MS 4.1.15 Complete 100% of excavation for Cut-and-cover tunnel) (Q : 1			•	MS 4.1.15	Comp	lete 100% of exca	vation for Cut-and	cover tunnel		
MS 4.1.16 Complete permanent tunnel structure for 10% of the total length (measured on pla MS 4.1.17 Complete permanent tunnel structure for 20% of the total length (measured on pla		ngth (measured on p r 20% of the total len		1	hover Tuppel			 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MS 4.1.18 Complete permanent tunnel structure for 30% of the total length (measured on pla		tunnel structure for 3	Γ .	1	!	ard-d	over Tunnel	 		1 1 1	
MS 4.1.19 Complete permanent tunnel structure for 40% of the total length (measured on pla	·	tunnel structure for 4		. 3	+			 			
MS 4.1.20 Complete permanent tunnel structure for 50% of the total length (measured on pla	an) of Cut-and-cc	mplete permanent tu	nnel structure for	50% of the total le	ngth (measur	ed on	plan) of Cut-and-	cover Tunnel			
MS 4.1.21 Complete permanent tunnel structure for 60% of the total length (measured on pla			,	1	.1	- 1		1	1	n plan) of Cut-and	
MS 4.1.22 Complete permanent tunnel structure for 70% of the total length (measured on pla MS 4.1.23 Complete permanent tunnel structure for 80% of the total length (measured on pla				1	1	10		1	!	gath (measured on	9 1
MS 4.1.24 Complete permanent tunnel structure for 90% of the total length (measured on pla					4.1.23 (!		gth (measured on 90% of the total ler	3
MS 4.1.26 Complete excavation for 50% of total length (measured on plan) of all Cross Pass	•	! ! !						1			
MS 4.1.27 Complete excavation for 100% of total length (measured on plan) of all Cross Pas		 		 	1			 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	
MS 4.1.29 Complete pavement for 50% of the total length (measured on plan) of Cut-and-co	ver Tunnel	•	MS 4.1.29 Com	plete pavement fo	or 50% of the t	otal le	ngth (measured o	n plan) of Cut-and	d-cover Tunnel	1 1 1 1	
Cut-and-cover Tunnel at Northern Landfall MS 4.2.22 Complete tunnel internal structure for 50% of NB Northern Landfall TBM Tunnel		00/ of NIR North	andfall TDM T	- - -	<u> </u>			 		1	ļ
MS 4.2.24 Complete tunnel internal structure for 50% of NB Northern Landfall TBM Tunnel MS 4.2.24 Complete tunnel internal structure for 50% of SB Northern Landfall TBM Tunnel)% of NB Northern La molete tunnel interna		1	Landfall TRM	Tunne	el				
MS 4.2.25 Complete tunnel internal structure for 100% of SB Northern Landfall TBM Tunnel				i	i	- 1		hel			
MS 4.2.29 Complete 100% of permanent lining and internal structures for all Northern Landf	all Cross Passag	mplete 100% of perr	nanent lining and	internal structures	s for all Northe	rn La	ndfall Cross Passa	ages	1	 	
MS 4.2.30 Complete Permanent tunnel structure for 25% of Cut and Cover Tunnel		r 25% of Cut and Co		<u>-</u>	<u> </u>			<u> </u> 		<u> </u>	ļ
MS 4.2.31 Complete Permanent tunnel structure for 50% of Cut and Cover Tunnel MS 4.2.32 Complete Permanent tunnel structure for 75% of Cut and Cover Tunnel		tunnel structure for 5 MS 4.2.32 Comp			75% of Cut or	oo Ca	or Tunnal	 			
MS 4.2.34 Complete Permanent junction structure at interface between Cut-and-cover and T	BM Tunnel	n Cut-and-cover and		urinei structure for	75% of Cut at	no Co	ver lunner				
Approach Ramp Structures to Cut-and-cover Tunnel at Southern La		in par and sever and	12.11.10.11.01					! ! !			
MS 5.1.2 Complete 40% of excavation for approach ramp structures		[<u> </u>			 			<u>.</u>
MS 5.1.3 Complete 60% of excavation for approach ramp structures				1	!			 	1	 	
MS 5.1.4 Complete 80% of excavation for approach ramp structures				 	1			 			
MS 5.1.5 Complete 100% of excavation for approach ramp structures MS 5.1.6 Complete retaining wall foundation for 10% of the total length (measured on plan) of the total length (measured on plan) of the total length (measured on plan) or the total len	of approach rami			1				 			
MS 5.1.7 Complete retaining wall foundation for 20% of the total length (measured on plan) of											
MS 5.1.8 Complete retaining wall foundation for 30% of the total length (measured on plan) of	of approach ram				†			; ; ;	:		:
MS 5.1.9 Complete retaining wall foundation for 40% of the total length (measured on plan) of				1				 			
MS 5.1.10 Complete retaining wall foundation for 50% of the total length (measured on plan) MS 5.1.11 Complete retaining wall foundation for 60% of the total length (measured on plan)				1	!			 		 	
MS 5.1.12 Complete retaining wall foundation for 70% of the total length (measured on plan)					1			 			
MS 5.1.13 Complete retaining wall foundation for 80% of the total length (measured on plan)					ļ						
MS 5.1.14 Complete retaining wall foundation for 90% of the total length (measured on plan)) of approach rar										
MS 5.1.15 Complete retaining wall foundation for 100% of the total length (measured on plan	, , , ,							 			
MS 5.1.16 Complete retaining wall structure for 10% of the total length (measured on plan) o MS 5.1.17 Complete retaining wall structure for 20% of the total length (measured on plan) o									1	plete retaining wal	: 1
At grade Roads at Northern Landfall	парргоасттаттр			-					WIS 5.1.17 COIT	pplete retaining wal	Structure for 20
MS 6.2.13 Complete drainage installation of 20% length of total length (measured on plan) of	of drainage pipes			1	!	•	MS 6.2.13 Com	; plete drainage ins	¦ tallation of 20% lei	; ngth of total length	; (measured on pl
MS 6.2.17 Complete sewerage installation of 20% length of total length (measured on plan)	of sewerage pipe			1	!	•	MS 6.2.17 Com	plete sewerage ins	stallation of 20% le	ក់gth of total length	measured on p
MS 6.2.21 Complete watermains installation of 20% length of total length (measured on plan) of watermains			1	!			•	MS 6.2.21 Com	nblete watermains i	nstallation of 20°
South Ventilation Buildings MS 7.1.1 Complete 100% of cofferdam for excavation		erdam for excavation			!			<u> </u> 		<u> </u>	
MS 7.1.2 Complete 100% of excavation to the formation level		avation to the formati		!	1			 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	
MS 7.1.3 Complete 100% of foundation for the ventilation building		; ! !			1			1 1 1 1	1	1 1 1 1	
MS 7.1.4 Complete concreting works of 25% area of the total construction floor area for the ve		1						1	1		
MS 7.1.5 Complete concreting works of 50% area of the total construction floor area for the ve MS 7.1.6 Complete concreting works of 75% area of the total construction floor area for the ve			MS 7.1.5 Comp		1			<u> </u>	he ventilation build	ļ	wortlets by
MS 7.1.6 Complete concreting works of 75% area of the total construction floor area for the vision MS 7.1.7 Complete concreting works of 100% area of the total construction floor area for the	·			•	₩ IVIO 7.1.6 C	11.0	•	i	i	on floor area for the	: 1
North Ventilation Buildings							55p			3558.00	
MS 7.2.4 Complete concreting works of 25% area of the total construction floor area for the ve		!		9				1 1 1 1		! ! !	
MS 7.2.5 Complete concreting works of 50% area of the total construction floor area for the ve		plete concreting wor			÷			+			
MS 7.2.6 Complete concreting works of 75% area of the total construction floor area for the volume MS 7.2.7 Complete concreting works of 100% area of the total construction floor area for the	·	•	MS 7.2.6 Comp	lete concreting wo	orks of 75% ar			1	rks of 100% area	ling of the total construc	tion floor area fo
Facilities Provision for E&M Works for TBM Tunnel, Cut & Cover Tur		1			1		IVIO 1.2.1 COMP	to concreting wo	ipo oi ioo% area (une ioiai construc	upir iloor area to
MS 9.1.1 Complete 25% of bonding terminal, opening and accessories, etc.		ding terminal, openin	g and accessories	s, etc.						: ! !	
MS 9.1.2 Complete 25% of plinth, hoisting facilities and accessories, etc.		n, hoisting facilities ar		1	1			! ! ! !	1 1 1	1	
MS 9.1.3 Complete 50% of bonding terminal, opening and accessories, etc.				-i	i	1		ng and accessorie	i		
MS 9.1.4 Complete 50% of plinth, hoisting facilities and accessories, etc. MS 9.1.5 Complete 75% of bonding terminal, opening and accessories, etc.		1 1 1	'	MS 9.1.4 Com	nplete 50% of p	olinth,		and accessories, e	i	d torminal	d and access
MS 9.1.6 Complete 75% of bonding terminal, opening and accessories, etc. MS 9.1.6 Complete 75% of plinth, hoisting facilities and accessories, etc.		 		1	1 1 1			1	1	g terminal, opening hoisting facilities ar	1
Facilities Provision for E&M Works for South Ventilation Building							· · · · · ·			1	
MS 9.4.1 Complete 25% of bonding terminal, main earth mat, clean earth mat, earth pit, light	ning pit, conceal				1				1	lete 25% of bondir	î l
MS 9.4.2 Complete 25% of plinth, hoisting facilities, louver, wire mesh and accessories, etc.		1			1			•	j.	ete 25% of plinth,	
MS 9.4.3 Complete 25% of floor drain, water tank and accessories, etc. Facilities Provision for E&M Works for North Ventilation Building		1						•	MS 9.4.3 Comp	lete 25% of floor d	rain, water tank a
MS 9.5.1 Complete 25% of bonding terminal, main earth mat, clean earth mat, earth pit, light	ning pit, conceal	1 1 1		1	1 1 1 1		•	MS 9.5.1 Compl	te 25% of bondin	g terminal, main ea	arth mat, clean ea
MS 9.5.2 Complete 25% of plinth, hoisting facilities, louver, wire mesh and accessories, etc.	· · · · · · · · · · · · · · · · · · ·	- L		1	†			†i-		hoisting facilities, lo	4
MS 9.5.3 Complete 25% of floor drain, water tank and accessories, etc.		1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	ain, water tank and	i 1
Construction		1 1 1		1 1 1	1 1 1			1 1 1	1 1 1	1 1 1	
Page 2 of 13 Planned Bar TN	MCI K - North	nern Connecti	on Sub-Sea	Tunnel Sec	ction				Date Re	vision Check	ed Approved
Planned Bar - Critical	INUILI	.s somistil	Jub 0 6 0				香辛士	08-A 28-A	pr-14 TMCLKDBJGEN ug-14 TMCLKDBJGEN	/PRG/98507 Rev. B SPa //PRG/98507 Rev. C CLa	SPo WYu WYu
Project ID: TMCLK DWPF 17W12 ♦ Planned Milestone	Detai	led Works Pro	gramme (R	ev. F)	I	D	^香 寶嘉 Dragages			/PRG/98507 Rev.F WYu	
Data Date: 26-Mar-17 Progress bar	Th.	ee Months Ro	Ilina Proces	mme	A member of t	he Bouygue	Hong Kong Construction group				
◆ Progress Milestone	1111	CO MOUNTIS FIC	aming Frogra		Dragage	s - Bouyg	ues Joint Venture 寶嘉 - 布	依格聯營			



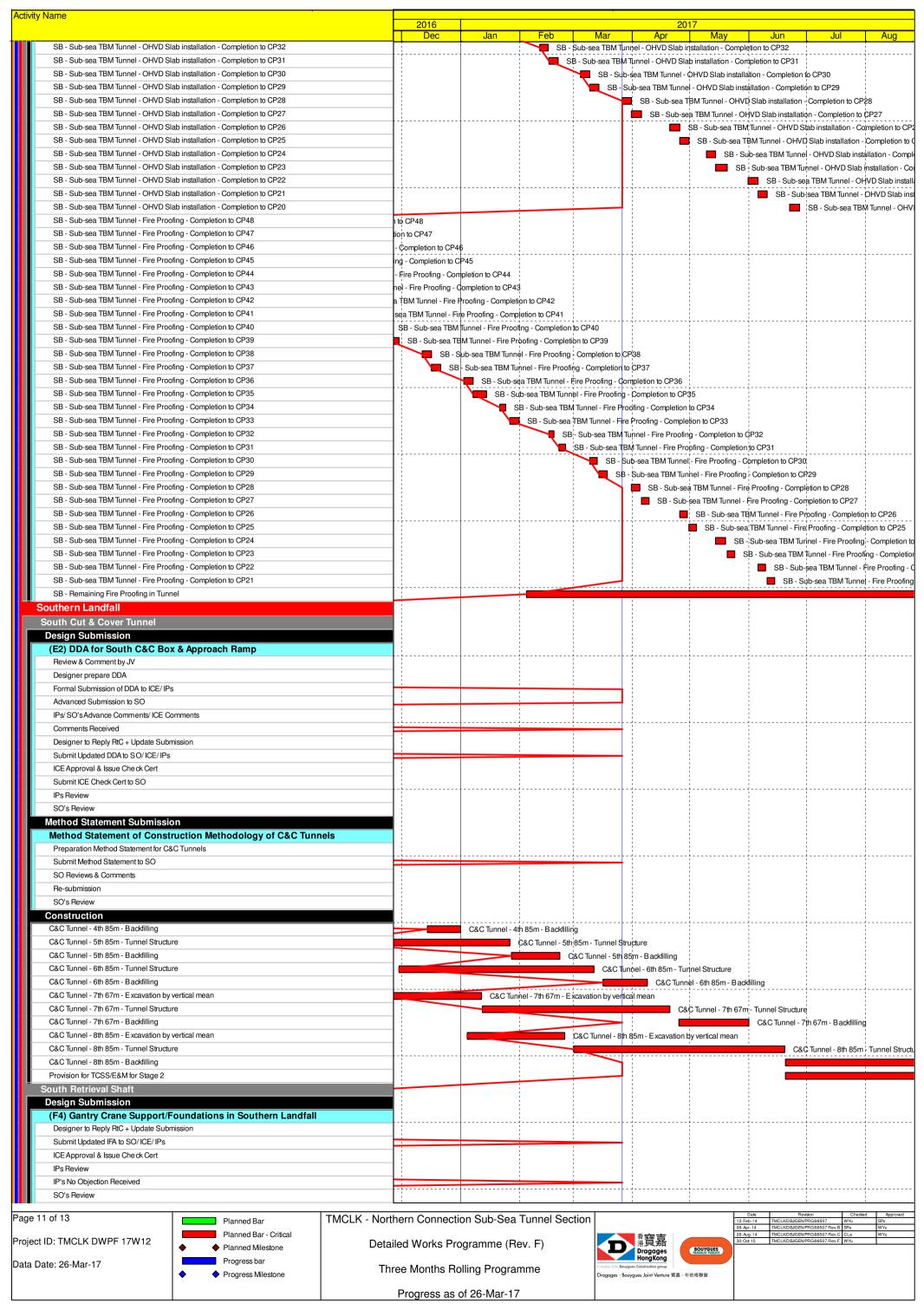

Progress Milestone

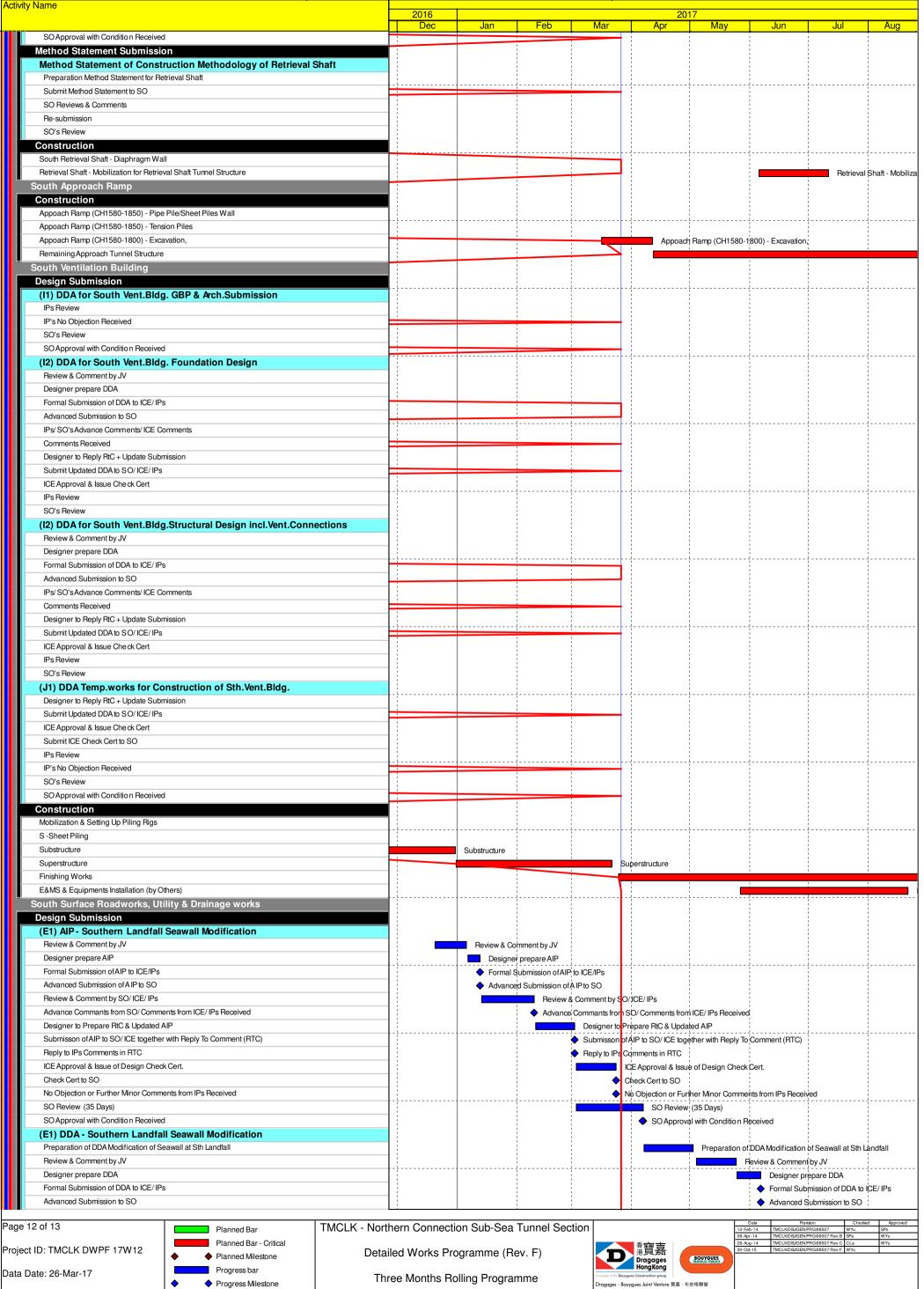




Progress Milestone

Progress Milestone


Three Months Rolling Programme


Progress as of 26-Mar-17

ure 寶嘉 - 布依格聯營

12-Feb-14	TMCLK/DBJ/GEN/PRG/98507	WYu	SPo
08-Apr-14	TMCLK/DBJ/GEN/PRG/98507 Rev. B	SPa	WYu
28-Aug-14	TMCLK/DBJ/GEN/PRG/98507 Rev. C	CLa	WYu
30-Od-15	TMCLK/DBJ/GEN/PRG/98507 Rev. F	WYu	

ivity Name	2016					2017			
	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
IPs/SO's Advance Comments/ ICE Comments				7	#				dvance Comme
IPs Review	·		1			1	1		_
IP's No Objection Received		1	1	1			1		1
SO's Review	.		 						
SO Approval with Condition Received				<u> </u>	+				
Method Statement Submission			1						
Method Statement of Ground Treatment for TBMs Passing under Southern La	.			1					
Preparation Method Statement for Ground Improvement in South Landfall	.		!	ļ		+	1		1
Submit Method Statement to SO			<u> </u>	 	+				!
SO Reviews & Comments	.								
Re-submission									
SO's Review	.					1			
SO's Approval			+	<u> </u>	+		1		1
Construction	.]								
Temporary Platform for Ground Treatment for TBM passing under Southern Seawall	.								
Grouting Treatment for TBM passing under Southern Seawall	Grouting Treatmen	nt for TBM passing	, under Southern '	Seawall					
South Landfall - Underground Sewerage & Drainage	, †				+	1			
Testing & Commissioning/Inspection & Handover	. !		1				!	!	!
Final Inspection & Handover									
Design Submission	.			1		1			
(A12) Maintenance Matrix	.			1					
Prepare Re-submission	.		 	1			!		
2nd Submission				<u>†</u>	+				
SO's Condition Approval	.								
(A13) Operation & Maintenance Manual	.			1					
Preparation of Operation and Maintenance Manual	. !		1	1			!		
1st Submission	<u>; </u>				+				
SO's Comments for 1st Submission									1
Prepare Re-submission	·			1		1	1		
(A14) As-built & As-fabricated Drawings	.			1					
Preparation of As-built and As-fabricated Drawings	.								
1st Submission				<u> </u>	+				
SO's Comments for 1st Submission	.								1
(A15) Health & Safety File incl.As-built Dwgs & Records, Maintenance Schedul	.								
Preparation of Health and Safety File including as-built drawings and records, maintenance schedules, or	.			1			1		
1st Submission					+				
SO's Comments for 1st Submission			- ! - !	1					

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	tion	Status *	
	Reference					D	C	О	
Air Quality									
4.8.1	3.8	An effective watering programme of twice daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;		Contractor	TMEIA Avoid smoke impacts and disturbance		Υ		√
4.8.1	3.8	Watering of the construction sites in Lantau for 8 times/day and in Tuen Mun for 12 times/day to reduce dust emissions by 87.5% and 91.7% respectively and shall be undertaken.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.		Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.		Contractor	TMEIA Avoid dust generation		Y		→

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imj	olementa Stages	tion	Status *
	Reference					D	C	O	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	construction period	Contractor	TMEIA Avoid dust generation		Y		\(\)
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.		Contractor	TMEIA Avoid dust		Y		✓
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		√
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit.	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		√
WATER QUAI	ITY								
Marine Works (See	<i>quence A)</i>								
6.1	Annex A	Construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. The protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2a and detailed in Appendix D6a. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	backfilling works	Contractor	TM-EIAO		Y		•
Figure 6.2a Appendix D6a		- TM-CLKL northern reclamation;							
6.1	-	a maximum of 50% public fill to be used for all seawall filling below +2.5mPD for TM-CLKL southern and northern landfalls.	TM-CLKL seawall filling	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status *
	Reference					D	C	О	
6.1	-	a maximum of 30% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL southern landfall	TM-CLKL southern landfall reclamation filling	Contractor	TM-EIAO		Y		N/A
6.1	-	a maximum of 100% public fill to be used for reclamation filling below +2.5mPD for TM-CLKL northern landfall	TM-CLKL northern landfall reclamation filling	Contractor	TM-EIAO		Y		√
6.1	-	Use of cage type silt curtains round allgrab dredgers during the HKBCF, HKLR and TM-CLKL southern reclamation works.	All areas dredging works	Contractor	TM-EIAO		Y		✓
	Figure 1.1 of Annex C	A layer of floating type silt curtain will be applied when dredging and reclamation works are being undertaken at Portion N-a as shown in Figure 1.1 of Annex C of the EM&A Manual.		Contractor	TM-EIAO		Y		✓
6.1	-	Trailer suction hopper dredgers shall not allow mud to overflow.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.1	-	The use of Lean Material Overboard (LMOB) systems shall be prohibited.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	C	О	
6.1	Annex A	For other parts of the reclamation works construction of seawalls to be advanced by at least 200m before the main reclamation dredging and filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities and the stage when such protection could be realised is illustrated in Figure 6.2b and detailed in Appendices D6b. The part of the works where such measures can be undertaken for the majority of the time includes the following locations:	Portion D of HKBCF and HKLR	Contractor	TM-EIAO		Y		•
Figure 6.2b Appendix D6b		 TM-CLKL northern reclamation; Reclamation filling for Portion D of HKBCF; Reclamation filling for FSD berth of HKBCF; and 							
		 Reclamation dredging and filling for Portion 1 of HKLR; 							
6.1	-	The filling material for the other parts of the works are the same as Sequence A;	All other areas/backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	5. <i>7</i>	Cage type silt curtain (with steel enclosure) shall be used for grab dredgers working in the site of HKBCF and TM- CLKL southern reclamation. Cage type silt curtains will be applied round all grab dredgers at other works area.	grab dredging	Contractor	TM-EIAO		Y		✓
6.1	Annex A	A layer of floating type silt curtain will be applied around all works as defined in Appendix D6b.	All areas/ through out marine works	Contractor	TM-EIAO		Y		√
6.1	-	TM-CLKL northern landfall: - Reclamation filling shall not proceed until at least 200m section of leading seawall at both the east and west sides of the reclamation are formed above +2.5 mPD, except for 100m gaps for marine access;		Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	tion	Status *	
	Reference					D	С	0	
General Marine W	orks								
6.1	-	Use of TBM for the construction of the submarine tunnel.	Tunnel works / Construction phase	Contractor	TM-EIAO		Y		N/A
6.1	-	Export dredged spoils from NWWCZ.	All areas as much as possible / dredging activities	Contractor	DASO Permit conditions		Y		✓
6.1	-	Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25%	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Where sand fill is proposed for filling below +2.5mPD, the fine content in the sand fill will be controlled to 5%.	All areas/ backfilling works	Contractor	TM-EIAO		Y		N/A
6.1	-	Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit		Y		√
6.1	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	conditions. Marine Fill Committee Guidelines. DASO permit conditions.		Y		*
6.1	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*
6.1	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
6.1	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.1	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		N/A
6.1	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	o o	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		√
6.1	5.2	Silt curtain shall have proved effectiveness from the producer and shall be fully maintained throughout the works by the contractor.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	The daily maximum production rates shall not exceed those assumed in the water quality assessment.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	The dredging and filling works shall be scheduled to spread the works evenly over a working day.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	tion	Status *	
	Reference					D	С	0	
Land Works									
6.1	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.1	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	construction period	Contractor	TM-EIAO		Y		~
6.1	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		❖
6.1	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.		Contractor	TM-EIAO		Y		~
6.1	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.		Contractor	TM-EIAO		Y		✓
6.1	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.		Contractor	TM-EIAO		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	tion	Status *	
	Kererence					D	C	О	
6.1	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	, construction period	Contractor	TM-EIAO		Y		*
6.1	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	. 0	Contractor	TM-EIAO		Y		✓
6.1	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	l construction period	Contractor	TM-EIAO		Y		√
6.1	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.1	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		√
6.1	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for off site disposal.	construction period	Contractor	TM-EIAO		Y		N/A
6.1	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.		Contractor	TM-EIAO		Y		√
6.1	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	, All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status *	
	Reference					D	C	O	
6.1		All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	construction period	Contractor	TM-EIAO		Y		✓
6.1		Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		*

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	or Requirement Stages			tion		
6.1	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.		Design Consultant/ Contractor	TM-EIAO	Y Y	С	Y	-	
6.1	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		√	
Water Quality Mon	iitoring							-		
6.1	Section 5	Water quality monitoring shall be undertaken for suspended solids turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline backfilling and post construction period. One year operation phase water quality monitoring at designated stations.	sas defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality	Contractor	EM&A Manual		Y	Y	*	
ECOLOGY										
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	√	
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All dredging and reclamation areas/Detailed Design/during all reclamation and dredging works	Design Consultant/ Contractor	TMEIA	Y	Y		√	
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600m2 in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/TM- CLKL/ HKBCF Contractor	TMEIA	Y		Y	N/A. To be implemente d by AFCD.	
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		√	

Legend: D=Design, C=Construction, O=Operation

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing Implementa Agent	-	Relevant Standard or Requirement	Implementation Stages			Status *
	Kererence					D	C	О	
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for dredging and reclamation works	All areas/ Detailed Design/during dredging and reclamation works	Design Consultant/ Contractor	TMEIA	Y	Y		√
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.5	Audit coral translocation success	Post translocation	Contractor	TMEIA		Y		✓
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		N/A
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE A	AND VISUAI								
10.9	7.6	The colour and shape of the toll control buildings, ventilation building and administration building shall adopt a design which could blend it into the vicinity elements, and the details will be developed in detailed design stage (DM2)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			N/A
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun – Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	O	
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		√
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non- reflective) as regard to the form, material and finishes shall be incorporated to all buildings, engineering structures and associated infrastructure facilities (OM5)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (OM6)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	N/A
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		√
12.6		The Contractor shall prepare and implement a Waster Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waster generated, recycled and disposed (locations) should be established.		Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		•

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imj	olementa Stages	tion	Status *
	Kererence					D	С	О	
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		*
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.		Contractor	TMEIA		Y		√
12.6	8.1	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.		Contractor	TMEIA		Y		✓
12.6	8.1	The surplus surcharge should be transferred to a fill bank	Reclamation areas / after surcharge works	Contractor	TMEIA		Y		N/A
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			✓
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	construction period	Contractor	TMEIA		Y		✓

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual		Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status *
	Kererence					D	C	O	
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Dredged marine mud shall be disposed of in a gazetted marine disposal ground under the requirements of the Dumping at Seas Ordinance.		Contractor	TMEIA		Y		√
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should avoid over-ordering and wastage.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	construction period	Contractor	TMEIA		Y		√
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		√

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imj	olementa Stages	tion	Status *
	Kererence					D	С	O	
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: <i>f</i> suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; <i>f</i> Having a capacity of <450L unless the specifications have been approved by the EPD; and w Chinese according to the instructions prescribed in Schedule 2 of the Regulations. <i>f</i> Clearly labelled and used solely for the storage of chemical wastes; <i>f</i> Enclosed with at least 3 sides; <i>f</i> Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest; <i>f</i> Adequate ventilation; <i>f</i> Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and <i>f</i> Incompatible materials are adequately separated.	construction period	Contractor	TMEIA		Y		\(\phi\)
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on- site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.		Contractor	TMEIA		Y		√
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		N/A

Legend: D=Design, C=Construction, O=Operation

Tuen Mun - Chek Lap Kok Link

Northern Connection Sub-sea Tunnel Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	olementa Stages	tion	Status *
	Reference					D	С	О	
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	construction period	Contractor	TMEIA		Y		<>
12.6	8.1	All waste containers shall be in a secure area on hardstanding;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	- C	Contractor	TMEIA		Y		√
12.6	8.1	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	construction period	Contractor	TMEIA		Y		*
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.		Contractor	EM&A Manual		Y		√
CULTURAL H	ERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		N/A

* Remarks:

✓ Compliance of Mitigation Measures

Compliance of Mitigation but need improvement

x Non-compliance of Mitigation Measures

▲ Non-compliance of Mitigation Measures but rectified by Contractor

Δ Deficiency of Mitigation Measures but rectified by Contractor

N/A Not Applicable in Reporting Period

Legend: D=Design, C=Construction, O=Operation

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action Lim			
24 Hour TSP Level in μg/m ³	ASR1 = 213	260		
	ASR5 = 238			
	AQMS1 = 213			
	ASR6 = 238			
	ASR10 = 214			
1 Hour TSP Level in μg /m ³	ASR1 = 331	500		
C .	ASR5 = 340			
	AQMS1 = 335			
	ASR6 = 338			
	ASR10 = 337			

Table D2 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline
	23.5 mg/L	data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary
- (e) The 1%-ile of baseline data for surface and middle DO is 4.2 mg/L, whilst for bottom DO is 3.6 mg/L.

Table D3 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	STG < 70% of baseline &	STG < 70% of baseline &		
	ANI < 70% of baseline	ANI < 70% of baseline		
Limit Level	[STG < 40% of baselir	ne & ANI < 40% of baseline]		
and				
	STG < 40% of baselir	ne & ANI < 40% of baseline		

Notes:

- STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in NEL and 9.85 in NWL during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D4 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau	u Social Cluster	
	NEL	NWL	
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3	
Limit Level	NEL = [STG <	< 2.4 & ANI <8.9]	
	and		
	NWL = [STG < 3.9 & ANI < 17.9]		

Appendix E

Copies of Calibration Certificates for Air Quality Monitoring

Location : ASR 5
Calibrated by : P.F.Yeung
Date : 11/02/2017

Sampler

Model : TE-5170 Serial Number : S/N 0816

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2016

 Slope (m)
 :
 2.10326

 Intercept (b)
 :
 -0.06696

 Correlation Coefficient(r)
 :
 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 287

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.2	3.427	1.661	55	56.32
2	13 holes	9	3.072	1.492	50	51.20
3	10 holes	6.7	2.651	1.292	43	44.03
4	7 holes	4.3	2.123	1.041	36	36.86
5	5 holes	2.7	1.683	0.832	29	29.70

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):32.008 Intercept(b):3.172 Correlation Coefficient(r): 0.9995

Location : ASR10
Calibrated by : P.F.Yeung
Date : 11/02/2017

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 8162

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 14 Mar 2016

 Slope (m)
 :
 2.10326

 Intercept (b)
 :
 -0.06696

 Correlation Coefficient(r)
 :
 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 287

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.2	3.577	1.732	54	55.30
2	13 holes	9.8	3.206	1.556	48	49.15
3	10 holes	7.2	2.748	1.338	42	43.01
4	7 holes	4.6	2.196	1.076	34	34.82
5	5 holes	2.5	1.619	0.802	25	25.60

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.500 Intercept(b): 0.598 Correlation Coefficient(r): 0.9996

Location : AQMS1
Calibrated by : P.F.Yeung
Date : 11/02/2017

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 1253

Calibration Orfice and Standard Calibration Relationship

 Serial Number
 : 2454

 Service Date
 : 14 Mar 2016

 Slope (m)
 : 2.10326

 Intercept (b)
 : -0.06696

 Correlation Coefficient(r)
 : 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 287

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.488	1.690	57	58.37
2	13 holes	9.4	3.140	1.525	51	52.22
3	10 holes	6.7	2.651	1.292	44	45.06
4	7 holes	4.5	2.172	1.065	37	37.89
5	5 holes	2.8	1.713	0.847	29	29.70

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):33.356 Intercept(b):1.832 Correlation Coefficient(r): 0.9993

Location : ASR 1
Calibrated by : P.F.Yeung
Date : 11/02/2017

Sampler

Model : TE-5170 Serial Number : S/N 0146

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2016

 Slope (m)
 : 2.10326

 Intercept (b)
 : -0.06696

 Correlation Coefficient(r)
 : 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 287

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.5	3.473	1.683	56	57.34
2	13 holes	9.0	3.072	1.492	50	51.20
3	10 holes	7.0	2.709	1.320	44	45.06
4	7 holes	4.6	2.196	1.076	35	35.84
5	5 holes	2.8	1.713	0.847	28	28.67

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):34.810 Intercept(b): -1.058 correlation Coefficient(r): 0.9995

Location : ASR 6
Calibrated by : P.F.Yeung
Date : 11/02/2017

Sampler

Model : TE-5170 Serial Number : S/N 3957

Calibration Orfice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 14 Mar 2016

 Slope (m)
 : 2.10326

 Intercept (b)
 : -0.06696

 Correlation Coefficient(r)
 : 0.99989

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1023 Ta(K) : 287

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	12.0	3.547	1.718	54	55.30
2	13 holes	9.4	3.140	1.525	49	50.18
3	10 holes	6.8	2.670	1.301	43	44.03
4	7 holes	4.5	2.172	1.065	36	36.86
5	5 holes	2.6	1.651	0.817	30	30.72

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b \ , Y(Corrected \ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 27.603 Intercept(b): 7.943 Correlation Coefficient(r): 0.9996

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration :	1 November 2016	
Brand of Test Meter:	Davis	
Model:	Vantage Pro 2 (s/n: AS160104014)	
Location:	ASR5	
Procedures:		
1. Wind Still Test:	The wind speed sensor was hold by hand until	til it keep still
2. Wind Speed Test:	The wind meter was on-site calibrated against	st the Anemometer
3. Wind Direction Test:	The wind meter was on-site calibrated against	st the marine compass at four directions
Results:		
Wind Still Test		
	Wind Speed (m/s)	
	0.00	
Wind Speed Test		
	Davis (m/s)	Anemomete (m/s)
	1.2	1.3
	2.5	2.8
	3.3	3.6
Wind Direction Test		

Davis (o)	Marine Compass (o)
271	270
1	0
91	90
179	180

Calibrated by:	Fai	Checked by: Fat			
	Yeung Ping Fai	Ho Kam Fat			
	(Technical Officer)	(Senior Technical Office			

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C165934

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-2438)

Date of Receipt / 收件日期: 26 October 2016

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號 Serial No. / 編號

AM-4201 AF.27513

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規節

Calibration check

DATE OF TEST / 測試日期

27 October 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

T L Shek Assistant Engineer

Certified By

核證

H C Chan

Date of Issue

28 October 2016

簽發日期

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

C165934

證書編號

Certificate No.:

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement - of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

Test procedure: MA130N. 4.

5. Results:

Air Velocity

Applied	UUT	Measured Correction					
Value	Reading	Value	Value Measurement Uncertainty				
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor			
2.0	1.8	+0.2	0.2	2.0			
4.0	3.8	+0.2	0.2	2.0			
6.0	5.8	+0.2	0.3	2.0			
8.1	8.0	+0.1	0.3	2.0			
10.0	10.0	0.0	0.4	2.0			

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Tel/電話: 2927 2606

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Website/網址: www.suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Fax/傳真: 2744 8986

	'Form E/CE/L/15/Issue 2 (1/1) [04/15]
Internal Calibration & Performan	ice Check of pH Meter
Equipment Ref. No. : ET/EW007/008 Manufactu	rer : <u>HANNA</u>
Model No. : HI9125 Serial No.	: H0040409
Date of Calibration : 27/02/2017 Calibration	Due Date : 26/03/2017
Liquid Junction Error	003/5.2/002/09 (20℃)
Primary Standard Solution Used: Phosphate Ref No.	. of Primary Solution: 003/5.2/002/08 (25℃)
Temperature of Solution: 25.0 / 20.0	$\Delta pH_{\frac{1}{2}} = 0.080 / 0.080$
WELDO-DAMAGNAMINATURA TURNING PROPERTY AND A THE PR	pH (S) = 6.865 / 6.881
	(Observed Deviation)
$\Delta pH = pH(S) - pH$ of diluted buffer = 0.105 / 0.089 Liquid Junction Error (ΔpH_i) = $\Delta pH - \Delta pH_{\frac{1}{2}}$ = 0.02 /	0.01
Elquid Juniction Entri (April) - April - April - April - April - 4	0.01
Shift on Stirring	
pH of buffer solution (with stirring), pH _s = $\frac{6.90}{}$	6.90
Shift on stirring, $\Delta pH_s = pH_s - pH(S) - \Delta pH_j = 0.01$	0.01
Noise	
Noise, $\Delta pH_n = difference$ between max and min reading:	0.01 / 0.01
Moise, Δprin – difference between max and min reading.	
Verification of ATC	
Definite of reference thermometer wood:	T/0521/018 / ET/0521/019
Ref. No. of reference thermometer used: E ⁻ Temperature record from the reference thermometer (T _R):	25.0 / 20.0 °C
Temperature record from the ATC (T _{ATC}):	24.9 / 19.9 °C
Temperature Difference, T _R - T _{ATC}	0.1 / 0.1 °C
Correction	+0.1 / +0.1 °C
Acceptance Criteria	
Performance Characteristic	Acceptable Range
Liquid Junction Error ΔpHj	≤0.05
Shift on Stirring ΔpHs	≤0.02
Noise ΔpHn	≤0.02
Verifcation of ATC Temperature Difference	≤0.5°C
Vollidation of the second of t	
The pH meter complies * / does not comply * with the specific	ed requirements and is deemed
acceptable * / unacceptable * for use. Measurements are trace	
* Delete as appropriate	
Calibrated by	hecked by :
Calibrated by: Supplement Cl	necked by .

Form E/CE/L/15/Issue 2 (1/1) [04/15]

Internal Calibration & Performanc	e Check of pH Meter						
Equipment Ref. No.:ET/EW007/007ManufacturerModel No.:HI 8314Serial No.Date of Calibration:07/03/2017Calibration Description	: 08500489						
Liquid Junction Error							
Temperature of Solution : $25.0 / 20.0$ pH value of diluted buffer : $6.99 / 7.00$ Δ pH = pH(S) - pH of diluted buffer = $0.125 / 0.119$ (C	$003/5.2/002/09 (20^{\circ})$ Primary Solution: $003/5.2/002/09 (25^{\circ})$ $\Delta pH_{\frac{1}{2}} = 0.080 / 0.080$ $pH (S) = 6.865 / 6.881$ Observed Deviation) 0.039						
Shift on Stirring							
	0.000						
Noise							
	0.01 / 0.01						
Verification of ATC							
Ref. No. of reference thermometer used:							
Acceptance Criteria							
Calibrated by: Chec	ked by :						

Form E/CE/L/15/Issue 2 (1/1) [04/15]

Internal	Calibration &	Dorforman	co Choc	kofn			1ssue 2 (1/1) [04/15]
	, ampration &	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE			00000000000000000000000000000000000000	7 (I	was now and the second of the
Equipment Ref. No. : E	ET/EW007/008	Manufactu	rer		HANNA	30430450293045046	nementation of the second of t
Model No. : <u>I</u>	HI9125	Serial No.		:	H0040409)	yyydyddigdigdigdigdigdigdigdigdigdigdigdigdig
Date of Calibration : 3	30/03/2017	Calibration	Due Date	:	29/04/201	7	
Liquid Junction Error				tropo essuadoses ha el Marsia, inspecia de como con información de como con in	erie drugen de proposition de la company	MINISTER SERVICE CONTRACTOR CONTR	managan da
					003/5.2/00	2/09	(20℃)
Primary Standard Solution	Used : Phospha	ate Ref No.	of Primary S	Solution:	003/5.2/00	2/10	(25℃)
Temperature of Solution:	25.0	/ 20.0	ı	ΔpH ½ =	0.080		0.080
pH value of diluted buffer	6.98	/ 6.99	р	H (S) =	6.865	1	6.881
Δ pH = pH(S) - pH of diluted	buffer = 0.115	/ 0.109	(Observed [Deviation	1)		
Liquid Junction Error (ΔpH_j)	$= \Delta pH - \Delta pH_{\frac{1}{2}} =$	0.04 /	0.03	•			
Shift on Stirring	на мененальная вышення се обержава (по в доста в доста в доста в доста в пода в доста в пода в пода в пода в п				ANNO PARAMETER AND	ausonauson Educate Astrónico	Z CONTROL DE PROPERTOR PORTE ÉSTICA DE PROPERTOR DE CONTROL DE PROPERTOR DE CONTROL DE PROPERTOR DE CONTROL DE
nH of huffor colution (with a	tirring) pH -	6.91 /	6.92				
pH of buffer solution (with s	to a	200000000000000000000000000000000000000	0.92				
Shift on stirring, $\Delta pH_s = pH_s$	- pH(S) - ΔpH _j = _	0.01 /	U.U I				
Noise			4-100-14-14-14-14-14-14-14-14-14-14-14-14-14-			**************************************	
Noise, ΔpH_n = difference be	etween max and mi	in reading :	0.01 /	0.01			
Verification of ATC		acestances acestance is explicit and the property of the whole was property in the constitution of the con	NUMBER OF THE PROPERTY OF THE				
Ref. No. of reference therm	ometer used:	ΕΊ	7/0521/018 / E	T/0521/0	19		
Temperature record from th		ometer (T _R):	25.0 /	20.0	оС		
Temperature record from th	ne ATC (T _{ATC}):		24.9 /	19.9	оС		
Temperature Difference,	T _R - T _{ATC}		0.1 /		οС		
Correction			+0.1 /	+0.1	оС		
Acceptance Criteria			assantassaksususususususususususususususususus		OU UP OF THE PROPERTY OF THE P	KKKINGO POSEON CISTANO PERM	***************************************
Performanc	e Characteristic		Acceptable	Range			
Liquid Junction Error	\pHj		≤0.0	5			
Shift on Stirring	\pHs		≤0.02	2			
Noise A	\pHn		≤0.02	2			
Verifcation of ATC T	Temperature Differe	ence	≤0.5°	С			
The pH meter complies * / e acceptable * / unacceptable * Delete as appropriate						essacrative de la la constitución de la constitució	
Calibrated by:	<u>k</u>	Cr	necked by:	CE		9	

Performance Check of Turbidity Meter

Equipment Ref. No. : <u>ET/0505/016</u> Manufacturer : <u>HACH</u>

Model No. : <u>2100Q</u> Serial No. : <u>16030C048473</u>

Date of Calibration : <u>26/01/17</u> Due Date : <u>25/04/2017</u>

Theoretical Value of Turbidity Standard (NTU)	Measured Value (NTU)	Difference % *
20	20.8	4.0
100	99.1	-0.9
800	779	-2.6

(*) Difference = (Measured Value – Theoretical Value) / Theoretical Value x 100

Acceptance Criteria

Difference: -5 % to 5 %

The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Prepared by: ______ Checked by: _____

Form E/CE/R/12 Issue 8 (1/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Equipment Ref. No. : ET/EW/008/008 Manufacturer : YSI

Model No. : <u>Pro 2030</u> Serial No. : <u>14M101489</u>

Date of Calibration : 19/01/2017 Calibration Due Date : 18/04/2017

Temperature Verification

Ref. No. of Reference Thermometer: ET/0521/017

Ref. No. of Water Bath:

	Temperature (°C)				
Reference Thermometer reading	Measured	20.3	Corrected	19.8	
DO Meter reading	Measured	19.8	Difference	0.0	

Standardization of sodium thiosulphate (Na 2 S 2 O 3) solution

Reagent No. of Na ₂ S ₂ O ₃ titrant CPE/012/4.5/001/15		Reagent No. of 0.025N K ₂ Cr ₂ O ₇	CPE/012/4.4/002/16	
		Trial 1	Trial 2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)		0.00	10.35	
Final Vol. of Na ₂ S ₂ O ₃ (ml)		10.35	20.70	
Vol. of Na ₂ S ₂ O ₃ used (ml)		10.35	10.35	
Normality of $Na_2S_2O_3$ solution (N)		0.02415	0.02415	
Average Normality (N) of Na ₂ S ₂ O ₃ s	olution (N)	0.02415		
Acceptance criteria, Deviation		Less than ± 0.	001N	

Calculation:

Normality of $Na_2S_2O_3$, $N = 0.25 / ml Na_2S_2O_3$ used

Lineality Checking

Determination of dissolved oxygen content by Winkler Titration *

Purging Time (min)		2		5		10	
Trial	1	2	1	2	1	2	
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	11.40	23.00	0.00	6.10	9.90	
Final Vol. of Na ₂ S ₂ O ₃ (ml)	11.40	23.00	29.60	6.10	9.90	13.80	
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	11.40	11.60	6.60	6.10	3.80	3.90	
Dissolved Oxygen (DO), mg/L	7.39	7.52	4.28	3.95	2.46	2.53	
Acceptance criteria, Deviation	Less tha	Less than + 0.3mg/L		Less than + 0.3mg/L		Less than + 0.3mg/L	

Calculation:

DO (mg/L) = $V \times N \times 8000/298$

Purging time, min	DO meter reading, mg/L			Winkle	Titration res	Difference (%) of DO	
i arging time, tim	1	2	Average	1	2	Average	Content
2	7.39	7.48	7.44	7.39	7.52	7.46	0.27
5	4.19	4.14	4.17	4.28	3.95	4.12	1.21
10	2.39	2.42	2.41	2.46	2.53	2.50	3.67
Linear regression coefficient						0.9993	

Form E/CE/R/12 Issue 8 (2/2) [05/13]

Internal Calibration Report of Dissolved Oxygen Meter

Zero Point Checking

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DO meter reading, mg/L	0.00

#### Salinity Checking

<del>}************************************</del>			
1			
Decree No. of No. Cl. (10 - 4)	CDE /010 /4 7/002/22	n (N) CNI CNI (20 A)	CDE /010/4 0/003/33
[Reagent No. of NaCl (10ppt)	ICPE/012/4.7/003/33	Reagent No. of NaCl (30ppt)	ICPE/012/4.8/003/33
L		[	

#### Determination of dissolved oxygen content by Winkler Titration **

Salinity (ppt)	10	)		30		
Trial	1	2	1	2		
Initial Vol. of Na ₂ S ₂ O ₃ (ml)	0.00	10.90	21.80	31.20		
Final Vol. of Na ₂ S ₂ O ₃ (ml)	10.90	21.80	31.20	40.60		
Vol. (V) of Na ₂ S ₂ O ₃ used (ml)	10.90	10.90	9.40	9.40		
Dissolved Oxygen ( <b>DO</b> ), mg/L	7.07	7.07	6.09	6.09		
Acceptance criteria, Deviation	Less than + 0.3mg/L		Less than + 0.3mg/L			

Calculation:

DO  $(mg/L) = V \times N \times 8000/298$ 

Salinity (ppt)	DO meter reading, mg/L			Winkler	Titration resul	Difference (%) of DO	
Sammty (ppt)		2	Average	1	2	Average	Content
10	7.12	7.07	7.1	7.07	7.07	7.07	0.42
30	6.14	6.17	6.16	6.09	6.09	6.09	1.14

#### Acceptance Criteria

- (1) Differenc between temperature readings from temperature sensor of DO probe and reference thermometer : < 0.5 °C
- (2) Linear regression coefficient: >0.99
- (3) Zero checking: 0.0mg/L
- (4) Difference (%) of DO content from the meter reading and by winkler titration : within  $\pm\,5\%$

The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable # for use.

" Delete as appropriate

Calibrated by

Brann

Approved by:

CEP/012/W



Performance	Check	of	Salinity	Meter
-------------	-------	----	----------	-------

Equipment Ref. No. : ET/EW/008/008 Manufacturer : YSI

Model No. : <u>Pro 2030</u> Serial No. : 14M101489

Ref. No. of Salinity Standard used (30ppt) S/001/9

Salinity Standard Value (ppt)	Measured Salinity (ppt)	Difference * (%)
30.0	30.3	1.00

(*) Difference (%) = (Measured Salinity – Salinity Standard value) / Salinity Standard value x 100

Acceptance Criteria

Difference: -10 % to 10 %

The salinity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards.

Checked by: Brank Approved by: 1

## Appendix F

# EM&A Monitoring Schedules

#### HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Air Quality Impact Monitoring Schedule - March 2017

Air quality monitoring stations: ASR1, ASR5, ASR6, ASR10, AQMS1

All quality monitoring static	ons: ASR1, ASR5, ASR6, A	SKTU, AQIMST				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Mar	2-Mar	3-Mar	4-Mar
			1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time
			Impact AQM			Impact AQM
5-Mar	6-Mar	7-Mar 1-hour TSP - 3 times 24-hour TSP - 1 time	8-Mar	9-Mar	10-Mar 1-hour TSP - 3 times 24-hour TSP - 1 time	11-Mar
		Impact AQM			Impact AQM	
12-Mar		14-Mar	15-Mar		17-Mar	18-Mai
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
19-Mar 1-hour TSP - 3 times 24-hour TSP - 1 time	20-Mar	21-Mar	22-Mar 1-hour TSP - 3 times 24-hour TSP - 1 time	23-Mar	24-Mar	25-Mar 1-hour TSP - 3 times 24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
26-Mar	27-Mar		29-Mar	30-Mar		
		1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time	
		Impact AQM			Impact AQM	

#### HY/2012/08 - Tuen Mun - Chek Lap Kok Link **Northern Connection Sub-sea Tunnel Section Tentative Air Quality Impact Monitoring Schedule - April 2017**

All quality monitoring static	ons: ASR1, ASR5, ASR6, A	SKTU, AQIMST				
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Ap
2-Apr	3-Apr	4-Apr	5-Apr	- 6-Apr	7-Apr	8-Ap
	1-hour TSP - 3 times 24-hour TSP - 1 time	,	,	1-hour TSP - 3 times 24-hour TSP - 1 time	,	·
	Impact AQM			Impact AQM		
9-Apr		11-Apr	12-Apr		14-Apr	15-Ap
1-hour TSP - 3 times		r	1-hour TSP - 3 times			1-hour TSP - 3 times
24-hour TSP - 1 time			24-hour TSP - 1 time			24-hour TSP - 1 time
Impact AQM			Impact AQM			Impact AQM
16-Apr	17-Apr			. 20-Apr	21-Apr	
		1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time	
		Impact AQM			Impact AQM	
23-Apr	24-Apr		26-Apr	27-Apr	28-Apr	29-Ap
	1-hour TSP - 3 times 24-hour TSP - 1 time			1-hour TSP - 3 times 24-hour TSP - 1 time		
	Impact AQM			Impact AQM		
30-Apr	The second second			p. a. a. r. var		
1-hour TSP - 3 times 24-hour TSP - 1 time						
Impact AQM						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (March 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturda	
			01-Mar		-Mar 03-Mar		04-Mar
				WQM		WQM	
				Mid-Flood		Mid-Flood	
				9:22		10:33	
				(07:37 - 11:07)		(08:48 - 12:18)	
				Mid-Ebb		Mid-Ebb	
				15:31 (13:46 - 17:16)		17:16 (15:31 - 19:01)	
05-Mar	06-Mar	07-Mar	08-Mar		-Mar 10-Mar		11-Mar
U5-IVIAI	U6-IVIAI	WQM		WQM	-iviai 10-iviai	WQM	i i-iviai
		Mid-Ebb		Mid-Ebb		Mid-Ebb	
		8:29		11:08		12:31	
		(07:10 - 09:45)		(09:23 - 12:53)		(10:46 - 14:16)	
		Mid-Flood		Mid-Flood		Mid-Flood	
		13:36		16:24		18:11	
		(11:51 - 15:21)		(14:39 - 18:09)		(16:26 - 19:56)	
12-Mar	13-Mar		15-Mar		-Mar 17-Mar		18-Mar
		WQM		WQM		WQM	
		Mid-Flood		Mid-Flood		Mid-Flood	
		8:13		9:00		9:52	
		(06:28 - 09:58)		(07:15 - 10:45)		(08:07 - 11:37)	
		Mid-Ebb		Mid-Ebb		Mid-Ebb	
		14:04		15:07		16:22	
		(12:19 - 15:49)		(13:22 - 16:52)		(14:37 - 18:07)	
19-Mar	20-Mar		22-Mar		-Mar 24-Mar		25-Mar
		WQM Mid-Flood		<b>WQM</b> Mid-Ebb		<b>WQM</b> Mid-Ebb	
		6:44		10:12		11:37	
		(04:59 - 08:29)		(08:45 - 11:40)		(09:52 - 13:22)	
		(04.39 - 06.29) Mid-Ebb		Mid-Flood		Mid-Flood	
		19:42		14:50		16:57	
		(17:57 - 21:27)		(13:05 - 16:35)		(15:12 - 18:42)	
26-Mar	27-Mar		29-Mar		-Mar 31-Mar		
		WQM		WQM			
		Mid-Ebb		Mid-Flood			
		13:15		8:14			
		(11:30 - 15:00)		(06:29 - 09:59)			
		Mid-Flood		Mid-Ebb			
		19:18		14:31			
		(17:33 - 21:03)		(12:46 - 16:16)			

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link - Northern Connection Sub-sea Tunnel Section Impact Marine Water Quality Monitoring (WQM) Schedule (April 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	/
26-Mar	27-Mar	28-Mar	29-Mar	30-Mar	31-Mar	Outurua	01-Apr
20-Mai	Z7 Ivial	20 Ividi	20 With	30 Mai		<b>WQM</b> Mid-Flood 9:21 (07:36 - 11:06) Mid-Ebb	σι-Αρι
						16:03 (14:18 - 17:48)	
02-Apr	03-Apr	04-Apr	05-Apr	06-Apr	07-Apr		08-Apr
		WQM Mid-Flood 11:46 (10:01 - 13:31) Mid-Ebb 19:23 (17:38 - 21:08)		WQM Mid-Ebb 10:09 (08:24 - 11:54) Mid-Flood 15:15 (13:30 - 17:00)		WQM Mid-Ebb 11:38 (09:53 - 13:23) Mid-Flood 17:20 (15:35 - 19:05)	
09-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr		15-Apr
		WQM Mid-Ebb 13:11 (11:26 - 14:56) Mid-Flood 19:29 (17:44 - 21:14)		WQM Mid-Flood 7:53 (06:08 - 09:38) Mid-Ebb 14:11 (12:26 - 15:56)		WQM Mid-Flood 8:44 (06:59 - 10:29) Mid-Ebb 15:17 (13:32 - 17:02)	
16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr		22-Apr
		WQM Mid-Flood 10:02 (08:17 - 11:47) Mid-Ebb 17:27 (15:42 - 19:12)		WQM Mid-Flood 7:12 (05:27 - 08:57) Mid-Ebb 19:50 (18:05 - 21:35)		WQM Mid-Ebb 10:30 (08:45 - 12:15) Mid-Flood 15:38 (13:53 - 17:23)	
23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr	14014	29-Apr
20 Apr		WQM Mid-Ebb 12:16 (10:31 - 14:01) Mid-Flood 18:22 (16:37 - 20:07)		WQM Mid-Ebb 13:34 (11:49 - 15:19) Mid-Flood 20:04 (18:19 - 21:49)		WQM Mid-Flood 8:18 (06:33 - 10:03) Mid-Ebb 15:04 (13:19 - 16:49)	
30-Apr							

## HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Impact Dolphin Monitoring Survey Monitoring Schedule - March 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Mar		3-Mar	4-Mar
				Impact Dolphin Monitoring		
5-Mar	6-Mar	7-Mar	8-Mar	9-Mar	10-Mar	11-Mar
		Impact Dolphin Monitoring				
12-Mar	13-Mar	14-Mar	15-Mar	16-Mar	17-Mar	18-Mar
				Impact Dolphin Monitoring		
19-Mar	20-Mar	21-Mar	22-Mar	23-Mar	24-Mar	25-Mar
26-Mar	27-Mar		29-Mar	30-Mar	31-Mar	
		Impact Dolphin Monitoring				

#### HY/2012/08 - Tuen Mun - Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section Tentative Impact Dolphin Monitoring Survey Monitoring Schedule - April 2017

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Apr
2-A ₁	or 3-Apr	4-Apr	5-Apr	6-Apr	7-Apr	8-Apr
9-A ₁	or 10-Apr	11-Apr	12-Apr Impact Dolphin	13-Apr	14-Apr	15-Apr
			Monitoring			
16-A _j	or 17-Apr	18-Apr	19-Apr	20-Apr	21-Apr	22-Apr
				Impact Dolphin Monitoring		
23-A _j	or 24-Apr	25-Apr	26-Apr		28-Apr	29-Apr
	Impact Dolphin Monitoring			Impact Dolphin Monitoring		
30-A ₁	or					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

## Appendix G

Impact Air Quality Monitoring Results

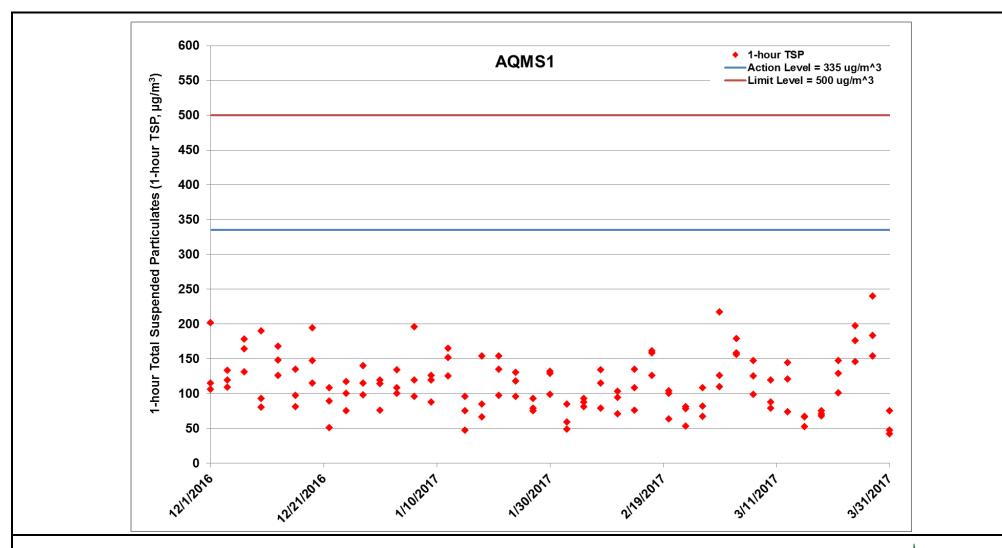



Figure G.1 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



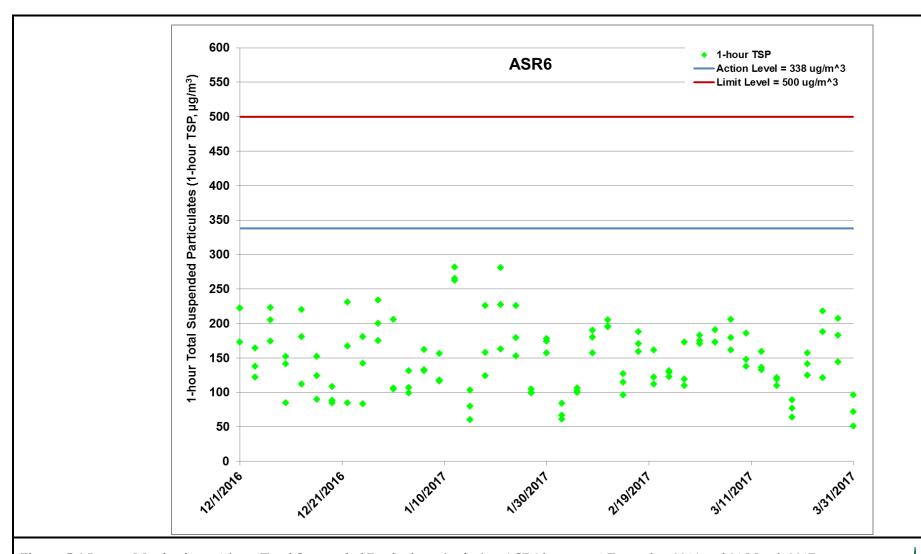



Figure G.2 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



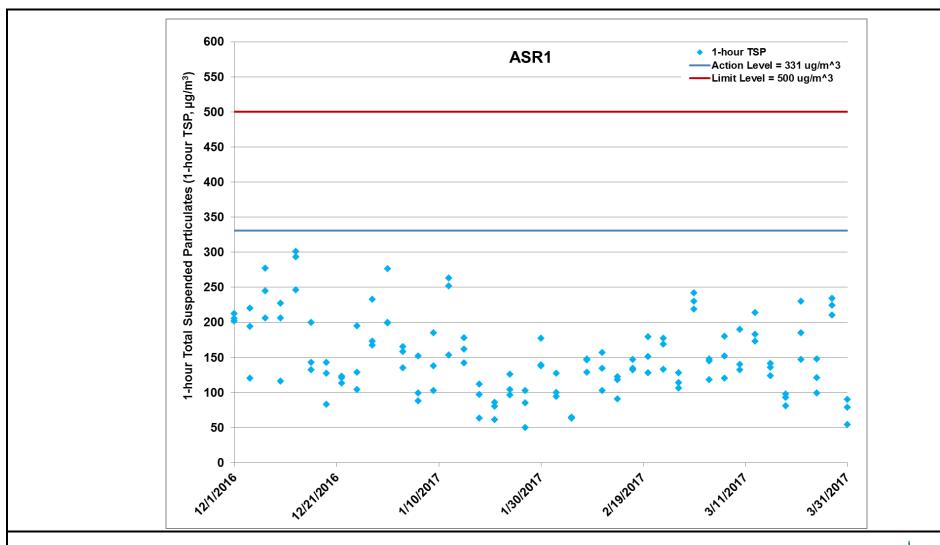



Figure G.3 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



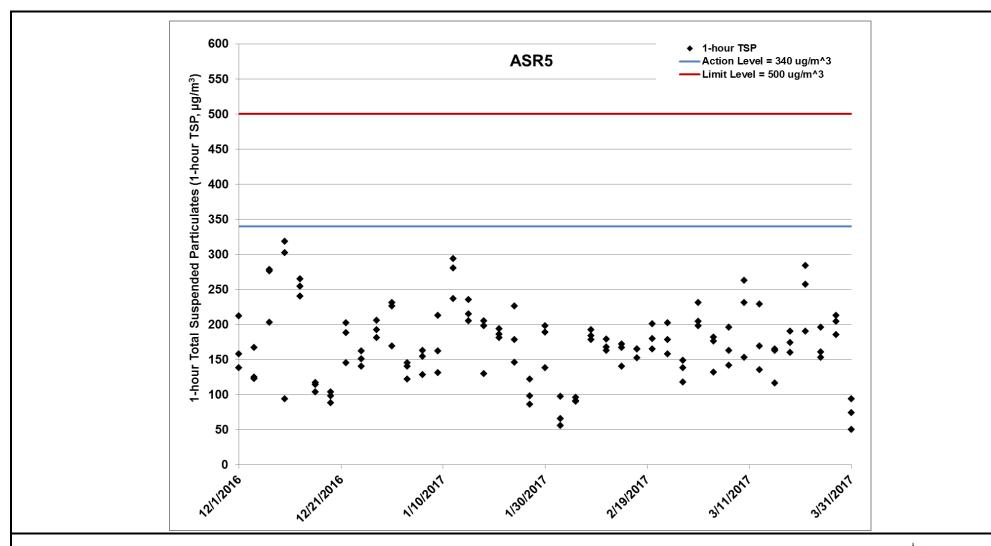



Figure G.4 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



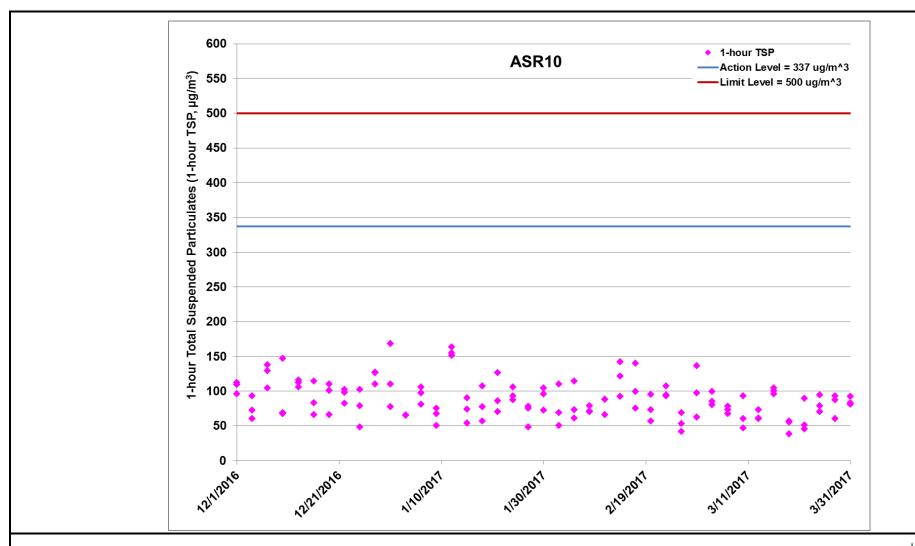



Figure G.5 Impact Monitoring – 1-hour Total Suspended Particulates (μg/m³) at ASR10 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



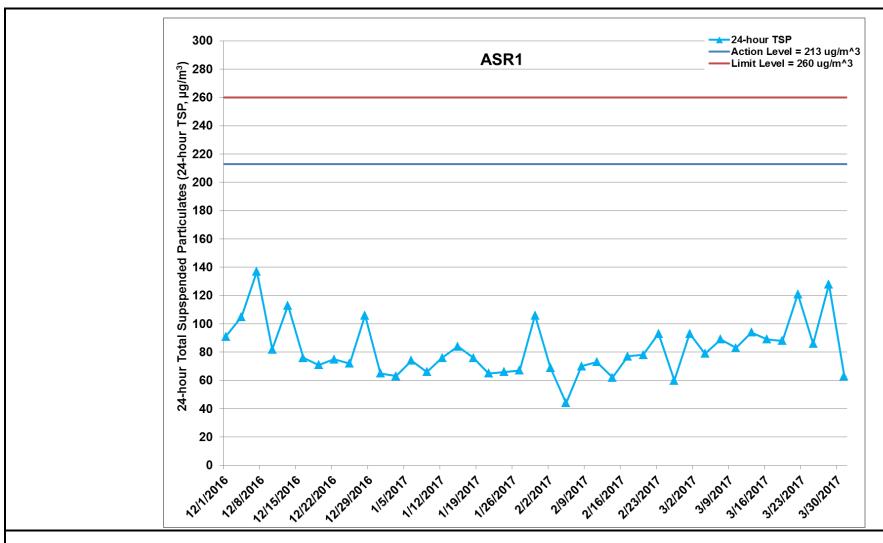



Figure G.6 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR1 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref.* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



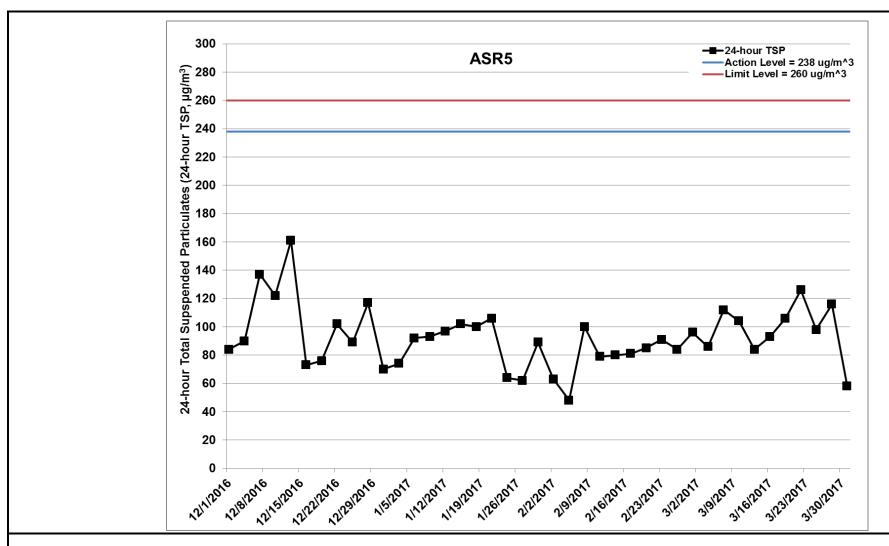



Figure G.7 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR5 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref.* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



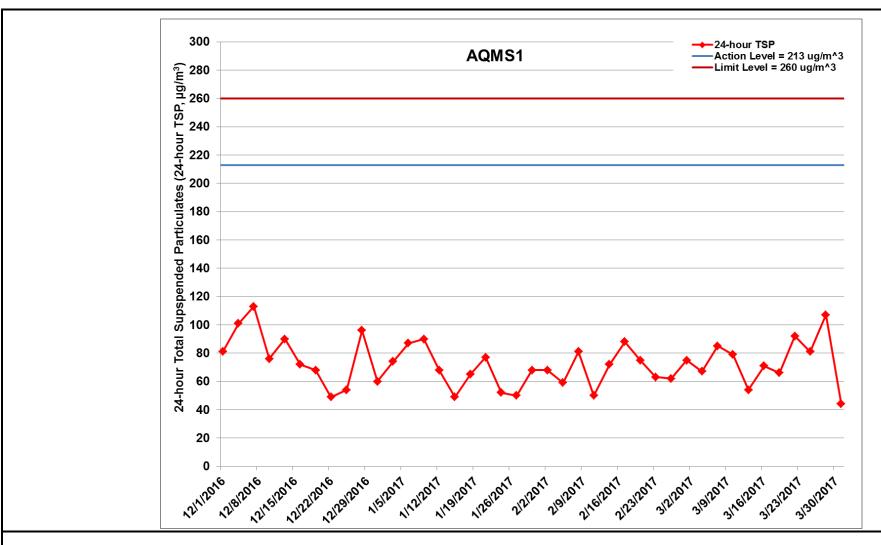



Figure G.8 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at AQMS1 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref.* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



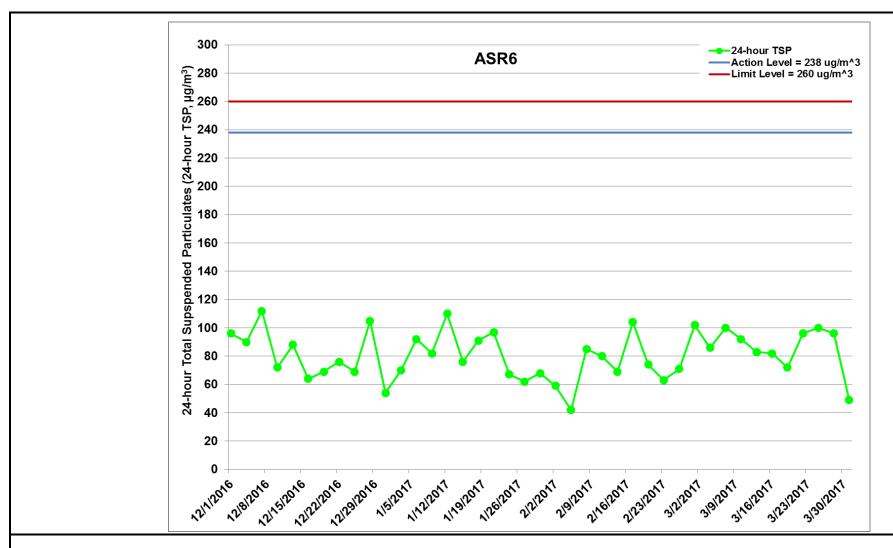



Figure G.9 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR6 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref:* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



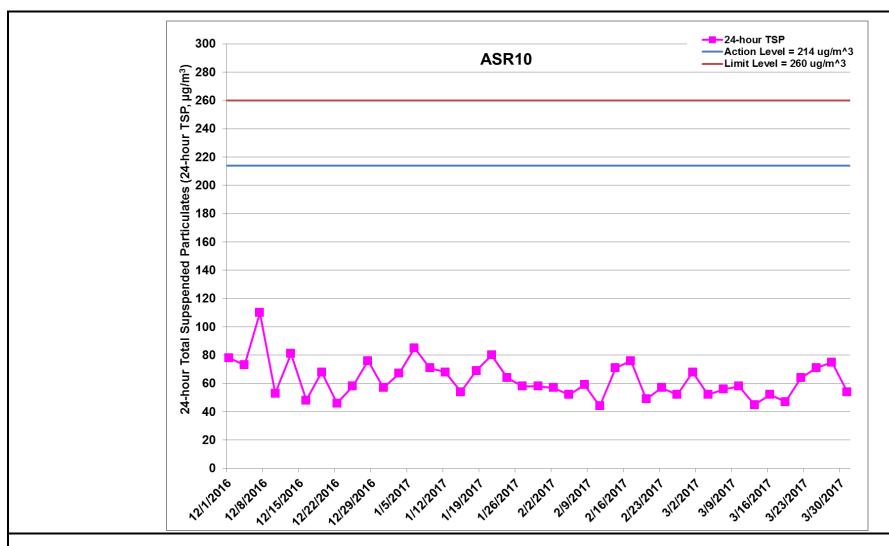



Figure G.10 Impact Monitoring – 24-hour Total Suspended Particulates (μg/m³) at ASR10 between 1 December 2016 and 31 March 2017 during impact monitoring period. The weather conditions during the monitoring period varied from sunny to cloudy. Major land-based construction activities included: Jet Grouting, CSM Ground Treatment and Diaphragm Wall Construction (1/12/2016 – 31/3/2017) and Box Culvert Extension (1/12/2016 – 31/3/2017). *Ref.* 0212330_Impact AQM graphs_March 2017_REV a.xlsx



Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-01	AQMS1	Sunny	13:55	1-hour TSP	110	ug/m3
TMCLKL	HY/2012/08	2017-03-01	AQMS1	Sunny	14:57	1-hour TSP	217	ug/m3
TMCLKL	HY/2012/08	2017-03-01	AQMS1	Sunny	15:59	1-hour TSP	126	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR1	Sunny	13:44	1-hour TSP	219	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR1	Sunny	14:46	1-hour TSP	230	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR1	Sunny	15:48	1-hour TSP	242	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR10	Sunny	13:13	1-hour TSP	62	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR10	Sunny	14:15	1-hour TSP	97	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR10	Sunny	15:17	1-hour TSP	136	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR5	Sunny	13:33	1-hour TSP	198	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR5	Sunny	14:35	1-hour TSP	204	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR5	Sunny	15:37	1-hour TSP	231	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR6	Sunny	13:23	1-hour TSP	175	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR6	Sunny	14:25	1-hour TSP	183	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR6	Sunny	15:27	1-hour TSP	171	ug/m3
TMCLKL	HY/2012/08	2017-03-04	AQMS1	Sunny	09:16	1-hour TSP	158	ug/m3
TMCLKL	HY/2012/08	2017-03-04	AQMS1	Sunny	10:18	1-hour TSP	179	ug/m3
TMCLKL	HY/2012/08	2017-03-04	AQMS1	Sunny	11:20	1-hour TSP	156	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR1	Sunny	09:05	1-hour TSP	145	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR1	Sunny	10:07	1-hour TSP	148	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR1	Sunny	11:09	1-hour TSP	118	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR10	Sunny	08:33	1-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR10	Sunny	09:35	1-hour TSP	80	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR10	Sunny	10:37	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR5	Sunny	08:54	1-hour TSP	182	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR5	Sunny	09:56	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR5	Sunny	10:58	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR6	Sunny	08:43	1-hour TSP	173	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR6	Sunny	09:45	1-hour TSP	191	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR6	Sunny	10:47	1-hour TSP	173	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-07	AQMS1	Cloudy	13:51	1-hour TSP	147	ug/m3
TMCLKL	HY/2012/08	2017-03-07	AQMS1	Cloudy	14:53	1-hour TSP	125	ug/m3
TMCLKL	HY/2012/08	2017-03-07	AQMS1	Cloudy	15:55	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR1	Cloudy	13:40	1-hour TSP	120	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR1	Cloudy	14:42	1-hour TSP	152	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR1	Cloudy	15:44	1-hour TSP	180	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR10	Cloudy	13:08	1-hour TSP	73	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR10	Cloudy	14:10	1-hour TSP	78	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR10	Cloudy	15:12	1-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR5	Cloudy	13:29	1-hour TSP	196	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR5	Cloudy	14:31	1-hour TSP	142	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR5	Cloudy	15:33	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR6	Cloudy	13:19	1-hour TSP	206	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR6	Cloudy	14:21	1-hour TSP	161	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR6	Cloudy	15:23	1-hour TSP	179	ug/m3
TMCLKL	HY/2012/08	2017-03-10	AQMS1	Cloudy	13:24	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-03-10	AQMS1	Cloudy	14:26	1-hour TSP	88	ug/m3
TMCLKL	HY/2012/08	2017-03-10	AQMS1	Cloudy	15:28	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR1	Cloudy	13:14	1-hour TSP	190	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR1	Cloudy	14:16	1-hour TSP	140	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR1	Cloudy	15:18	1-hour TSP	132	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR10	Cloudy	12:41	1-hour TSP	47	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR10	Cloudy	13:43	1-hour TSP	60	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR10	Cloudy	14:45	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR5	Cloudy	13:03	1-hour TSP	231	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR5	Cloudy	14:05	1-hour TSP	263	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR5	Cloudy	15:07	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR6	Cloudy	12:32	1-hour TSP	138	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR6	Cloudy	13:54	1-hour TSP	148	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR6	Cloudy	14:56	1-hour TSP	186	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-13	AQMS1	Sunny	13:35	1-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-03-13	AQMS1	Sunny	14:37	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2017-03-13	AQMS1	Sunny	15:39	1-hour TSP	144	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR1	Sunny	13:25	1-hour TSP	214	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR1	Sunny	14:27	1-hour TSP	173	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR1	Sunny	15:29	1-hour TSP	183	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR10	Sunny	12:52	1-hour TSP	73	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR10	Sunny	13:54	1-hour TSP	60	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR10	Sunny	14:56	1-hour TSP	61	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR5	Sunny	13:13	1-hour TSP	229	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR5	Sunny	14:15	1-hour TSP	169	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR5	Sunny	15:17	1-hour TSP	135	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR6	Sunny	13:03	1-hour TSP	159	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR6	Sunny	14:05	1-hour TSP	133	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR6	Sunny	15:07	1-hour TSP	136	ug/m3
TMCLKL	HY/2012/08	2017-03-16	AQMS1	Cloudy	13:18	1-hour TSP	52	ug/m3
TMCLKL	HY/2012/08	2017-03-16	AQMS1	Cloudy	14:20	1-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2017-03-16	AQMS1	Cloudy	15:22	1-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR1	Cloudy	13:49	1-hour TSP	136	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR1	Cloudy	14:51	1-hour TSP	124	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR1	Cloudy	15:53	1-hour TSP	141	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR10	Cloudy	14:00	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR10	Cloudy	15:02	1-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR10	Cloudy	16:04	1-hour TSP	100	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR5	Cloudy	13:39	1-hour TSP	165	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR5	Cloudy	14:41	1-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR5	Cloudy	15:43	1-hour TSP	163	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR6	Cloudy	13:29	1-hour TSP	110	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR6	Cloudy	14:31	1-hour TSP	119	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR6	Cloudy	15:33	1-hour TSP	121	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-19	AQMS1	Rainy	09:28	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-03-19	AQMS1	Rainy	10:30	1-hour TSP	68	ug/m3
TMCLKL	HY/2012/08	2017-03-19	AQMS1	Rainy	11:32	1-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR1	Rainy	09:17	1-hour TSP	98	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR1	Rainy	10:19	1-hour TSP	81	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR1	Rainy	11:21	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR10	Rainy	08:45	1-hour TSP	57	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR10	Rainy	09:47	1-hour TSP	38	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR10	Rainy	10:49	1-hour TSP	55	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR5	Rainy	09:06	1-hour TSP	174	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR5	Rainy	10:08	1-hour TSP	160	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR5	Rainy	11:10	1-hour TSP	190	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR6	Rainy	08:55	1-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR6	Rainy	09:57	1-hour TSP	77	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR6	Rainy	10:59	1-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2017-03-22	AQMS1	Cloudy	13:35	1-hour TSP	147	ug/m3
TMCLKL	HY/2012/08	2017-03-22	AQMS1	Cloudy	14:37	1-hour TSP	129	ug/m3
TMCLKL	HY/2012/08	2017-03-22	AQMS1	Cloudy	15:39	1-hour TSP	101	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR1	Cloudy	13:24	1-hour TSP	147	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR1	Cloudy	14:26	1-hour TSP	185	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR1	Cloudy	15:28	1-hour TSP	230	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR10	Cloudy	12:52	1-hour TSP	51	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR10	Cloudy	13:54	1-hour TSP	45	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR10	Cloudy	14:56	1-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR5	Cloudy	13:13	1-hour TSP	284	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR5	Cloudy	14:15	1-hour TSP	257	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR5	Cloudy	15:17	1-hour TSP	190	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR6	Cloudy	13:03	1-hour TSP	125	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR6	Cloudy	14:05	1-hour TSP	141	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR6	Cloudy	15:07	1-hour TSP	157	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-25	AQMS1	Sunny	08:44	1-hour TSP	146	ug/m3
TMCLKL	HY/2012/08	2017-03-25	AQMS1	Sunny	09:46	1-hour TSP	176	ug/m3
TMCLKL	HY/2012/08	2017-03-25	AQMS1	Sunny	10:48	1-hour TSP	197	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR1	Sunny	08:33	1-hour TSP	99	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR1	Sunny	09:35	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR1	Sunny	10:37	1-hour TSP	148	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR10	Sunny	08:00	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR10	Sunny	09:02	1-hour TSP	70	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR10	Sunny	10:04	1-hour TSP	94	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR5	Sunny	08:22	1-hour TSP	161	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR5	Sunny	09:24	1-hour TSP	196	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR5	Sunny	10:26	1-hour TSP	153	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR6	Sunny	08:10	1-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR6	Sunny	09:12	1-hour TSP	218	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR6	Sunny	10:14	1-hour TSP	188	ug/m3
TMCLKL	HY/2012/08	2017-03-28	AQMS1	Sunny	14:01	1-hour TSP	154	ug/m3
TMCLKL	HY/2012/08	2017-03-28	AQMS1	Sunny	15:03	1-hour TSP	240	ug/m3
TMCLKL	HY/2012/08	2017-03-28	AQMS1	Sunny	16:05	1-hour TSP	183	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR1	Sunny	13:50	1-hour TSP	224	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR1	Sunny	14:52	1-hour TSP	210	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR1	Sunny	15:54	1-hour TSP	234	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR10	Sunny	13:18	1-hour TSP	87	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR10	Sunny	14:20	1-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR10	Sunny	15:22	1-hour TSP	60	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR5	Sunny	13:40	1-hour TSP	204	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR5	Sunny	14:42	1-hour TSP	185	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR5	Sunny	15:44	1-hour TSP	213	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR6	Sunny	13:29	1-hour TSP	207	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR6	Sunny	14:31	1-hour TSP	183	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR6	Sunny	15:33	1-hour TSP	144	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-31	AQMS1	Rainy	09:56	1-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-03-31	AQMS1	Rainy	10:58	1-hour TSP	47	ug/m3
TMCLKL	HY/2012/08	2017-03-31	AQMS1	Rainy	12:00	1-hour TSP	42	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR1	Rainy	09:45	1-hour TSP	90	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR1	Rainy	10:47	1-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR1	Rainy	11:49	1-hour TSP	54	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR10	Rainy	09:13	1-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR10	Rainy	10:15	1-hour TSP	83	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR10	Rainy	11:17	1-hour TSP	81	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR5	Rainy	09:35	1-hour TSP	74	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR5	Rainy	10:37	1-hour TSP	94	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR5	Rainy	11:39	1-hour TSP	50	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR6	Rainy	09:24	1-hour TSP	72	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR6	Rainy	10:26	1-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR6	Rainy	11:28	1-hour TSP	51	ug/m3
TMCLKL	HY/2012/08	2017-03-01	AQMS1	Sunny	17:01	24-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR1	Sunny	16:50	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR10	Sunny	16:19	24-hour TSP	68	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR5	Sunny	16:39	24-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-03-01	ASR6	Sunny	16:29	24-hour TSP	102	ug/m3
TMCLKL	HY/2012/08	2017-03-04	AQMS1	Sunny	12:22	24-hour TSP	67	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR1	Sunny	12:11	24-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR10	Sunny	11:39	24-hour TSP	52	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR5	Sunny	12:00	24-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-03-04	ASR6	Sunny	11:49	24-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-03-07	AQMS1	Cloudy	16:57	24-hour TSP	85	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR1	Cloudy	16:46	24-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR10	Cloudy	16:14	24-hour TSP	56	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR5	Cloudy	16:35	24-hour TSP	112	ug/m3
TMCLKL	HY/2012/08	2017-03-07	ASR6	Cloudy	16:25	24-hour TSP	100	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-10	AQMS1	Cloudy	16:30	24-hour TSP	79	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR1	Cloudy	16:20	24-hour TSP	83	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR10	Cloudy	15:47	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR5	Cloudy	16:09	24-hour TSP	104	ug/m3
TMCLKL	HY/2012/08	2017-03-10	ASR6	Cloudy	15:58	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2017-03-13	AQMS1	Sunny	16:41	24-hour TSP	54	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR1	Sunny	16:31	24-hour TSP	94	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR10	Sunny	15:58	24-hour TSP	45	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR5	Sunny	16:19	24-hour TSP	84	ug/m3
TMCLKL	HY/2012/08	2017-03-13	ASR6	Sunny	16:09	24-hour TSP	83	ug/m3
TMCLKL	HY/2012/08	2017-03-16	AQMS1	Cloudy	17:06	24-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR1	Cloudy	16:55	24-hour TSP	89	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR10	Cloudy	16:24	24-hour TSP	52	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR5	Cloudy	16:45	24-hour TSP	93	ug/m3
TMCLKL	HY/2012/08	2017-03-16	ASR6	Cloudy	16:35	24-hour TSP	82	ug/m3
TMCLKL	HY/2012/08	2017-03-19	AQMS1	Rainy	12:34	24-hour TSP	66	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR1	Rainy	12:23	24-hour TSP	88	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR10	Rainy	11:51	24-hour TSP	47	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR5	Rainy	12:12	24-hour TSP	106	ug/m3
TMCLKL	HY/2012/08	2017-03-19	ASR6	Rainy	12:01	24-hour TSP	72	ug/m3
TMCLKL	HY/2012/08	2017-03-22	AQMS1	Cloudy	16:41	24-hour TSP	92	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR1	Cloudy	16:30	24-hour TSP	121	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR10	Cloudy	15:58	24-hour TSP	64	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR5	Cloudy	16:19	24-hour TSP	126	ug/m3
TMCLKL	HY/2012/08	2017-03-22	ASR6	Cloudy	16:09	24-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-03-25	AQMS1	Sunny	11:50	24-hour TSP	81	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR1	Sunny	11:39	24-hour TSP	86	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR10	Sunny	11:06	24-hour TSP	71	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR5	Sunny	11:28	24-hour TSP	98	ug/m3
TMCLKL	HY/2012/08	2017-03-25	ASR6	Sunny	11:16	24-hour TSP	100	ug/m3

Project	Works	Date	Station	Weather	Start time	Parameters	Results	units
TMCLKL	HY/2012/08	2017-03-28	AQMS1	Sunny	17:07	24-hour TSP	107	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR1	Sunny	16:56	24-hour TSP	128	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR10	Sunny	16:24	24-hour TSP	75	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR5	Sunny	16:46	24-hour TSP	116	ug/m3
TMCLKL	HY/2012/08	2017-03-28	ASR6	Sunny	16:35	24-hour TSP	96	ug/m3
TMCLKL	HY/2012/08	2017-03-31	AQMS1	Rainy	13:02	24-hour TSP	44	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR1	Rainy	12:51	24-hour TSP	63	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR10	Rainy	12:19	24-hour TSP	54	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR5	Rainy	12:41	24-hour TSP	58	ug/m3
TMCLKL	HY/2012/08	2017-03-31	ASR6	Rainy	12:30	24-hour TSP	49	ug/m3

## Appendix H

## Meteorological Data

	Meteoro	logical Data for Impact Monitoring in tl	he reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
1/3/2017	0:00	0.9	95
1/3/2017	1:00	1.8	352
1/3/2017	2:00	1.8	301
1/3/2017	3:00	1.8	284
1/3/2017	4:00	1.8	290
1/3/2017	5:00	1.8	271
1/3/2017	6:00	2.7	288
1/3/2017	7:00	2.7	311
1/3/2017	8:00	1.3	303
1/3/2017	9:00	0.9	321
1/3/2017	10:00	1.3	315
1/3/2017		1.3	326
1/3/2017		0.9	349
1/3/2017		0.4	319
1/3/2017		0.4	62
1/3/2017		0.4	131
1/3/2017		0.4	129
1/3/2017		0.4	310
1/3/2017		0.4	304
1/3/2017		0.9	325
1/3/2017		0.4	313
1/3/2017		1.3	314
1/3/2017		4.5	358
1/3/2017		4.5	1
2/3/2017		4.9	356
2/3/2017		5.4	12
2/3/2017		4.9	49
2/3/2017		3.6	53
2/3/2017		2.7	40
2/3/2017		2.7	42
2/3/2017		2.2	48
2/3/2017		1.8	51
2/3/2017		1.8	40
2/3/2017		0.9	226
2/3/2017		0.4	120
2/3/2017		0.4	15
2/3/2017 2/3/2017		0.4 1.3	63 71
2/3/2017		1.3	93
2/3/2017		1.3	67
2/3/2017		1.3	115
2/3/2017		1.3	104
2/3/2017		1.8	103
2/3/2017		1.8	82
2/3/2017		2.2	103
2/3/2017		1.8	100
2/3/2017		2.7	84
2/3/2017		3.1	96
4/3/2017		2.7	87
4/3/2017		2.2	100
4/3/2017		1.8	91
4/3/2017		2.2	106
4/3/2017		3.6	82
4/3/2017		3.1	86
4/3/2017		3.1	100
+/ J/ ZU1 /	0.00	J.1	100

	Meteoro	ological Data for Impact Monitoring in	n the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
4/3/2017	7:00	3.1	89
4/3/2017	8:00	2.7	84
4/3/2017	9:00	2.7	88
4/3/2017	10:00	3.1	103
4/3/2017	11:00	2.7	95
4/3/2017	12:00	3.1	97
4/3/2017		3.1	119
4/3/2017		2.7	84
4/3/2017		2.7	103
4/3/2017		2.7	108
4/3/2017	†	2.2	93
4/3/2017		2.2	94
4/3/2017		1.8	99
4/3/2017		1.3	81
4/3/2017		1.3	99
4/3/2017		0.9	74
4/3/2017		2.2	103
5/3/2017		1.8	89
5/3/2017		2.2	94
5/3/2017		1.3	114
5/3/2017		0.9	93
5/3/2017	i	1.3	79
5/3/2017		1.3	92
5/3/2017		1.3	104
5/3/2017		0.9	172
5/3/2017		0.9	128
5/3/2017		0.9	134
5/3/2017		0.9	131
5/3/2017		0.9	129
5/3/2017		0.4	65
5/3/2017	13:00	0	-
5/3/2017	14:00	0	-
5/3/2017	15:00	0.9	77
5/3/2017	16:00	0	-
5/3/2017	17:00	0	-
5/3/2017	18:00	0	-
5/3/2017	19:00	0	-
5/3/2017	20:00	0	-
5/3/2017		0	-
5/3/2017	i	0	-
5/3/2017		0	-
7/3/2017		2.2	73
7/3/2017	i e	3.6	96
7/3/2017		2.2	122
7/3/2017		1.3	105
7/3/2017	i e	1.8	171
7/3/2017		1.8	144
7/3/2017		1.3	129
7/3/2017		1.8	141
7/3/2017		1.8	106
7/3/2017		1.3	118
7/3/2017		2.2	121
7/3/2017		2.7	106
7/3/2017		1.3	111
7/3/2017	13:00	1.3	47

	Meteoro	ological Data for Impact Monitoring in	the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
7/3/2017	14:00	1.3	50
7/3/2017	15:00	1.3	39
7/3/2017	16:00	0.9	48
7/3/2017	17:00	0.9	44
7/3/2017	18:00	0.9	357
7/3/2017	19:00	2.7	339
7/3/2017		2.2	44
7/3/2017		2.7	45
7/3/2017		2.2	37
7/3/2017		1.3	36
8/3/2017		0.9	49
8/3/2017		1.8	2
8/3/2017		1.3	16
8/3/2017		2.2	51
8/3/2017		2.2	53
8/3/2017		1.8	54
8/3/2017		1.3	49
8/3/2017		1.3	52
8/3/2017		0.9	351
8/3/2017		0.9	354
8/3/2017		0.9	3
8/3/2017		0.9	354
8/3/2017		0.9	322
8/3/2017		0.9	52
8/3/2017		0.9	63
8/3/2017		0.9	61
8/3/2017		1.3	100
8/3/2017		0.4	62
8/3/2017		0.4	57
8/3/2017		0.9	101
8/3/2017		1.3	87
8/3/2017		1.3	60
8/3/2017		0.9	93
8/3/2017		0.9	19
10/3/2017		3.6	101
		2.7	
10/3/2017			68
10/3/2017		2.2	94
10/3/2017		2.2	105
10/3/2017		1.8	74
10/3/2017		1.8	81
10/3/2017		1.8	77
10/3/2017		1.8	68
10/3/2017		1.8	65
10/3/2017		1.3	72
10/3/2017		1.8	93
10/3/2017		1.3	80
10/3/2017		1.3	93
10/3/2017		1.8	107
10/3/2017		3.1	103
10/3/2017		3.6	100
10/3/2017		4	112
10/3/2017		4	120
10/3/2017		4.5	117
10/3/2017		4.9	113
10/3/2017	20:00	4.5	106

	Meteoro	ological Data for Impact Monitoring in	the reporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
10/3/2017	` ´	4.9	108
10/3/2017		5.4	104
11/3/2017	23:00	5.4	119
11/3/2017		4.9	107
11/3/2017		3.6	92
11/3/2017		3.6	101
11/3/2017		3.6	115
11/3/2017		3.1	98
11/3/2017		1.8	100
11/3/2017		2.7	106
11/3/2017	<b>†</b>	1.8	117
11/3/2017		2.2	115
11/3/2017		2.2	92
11/3/2017		2.2	111
11/3/2017		3.1	108
11/3/2017		2.7	88
11/3/2017		4	115
11/3/2017		3.1	104
11/3/2017		2.7	102
11/3/2017		3.1	89
11/3/2017		3.6	102
11/3/2017		3.6	113
11/3/2017	i	3.1	107
11/3/2017		3.6	114
11/3/2017		3.6	106
11/3/2017		5.4	121
11/3/2017		4.5	109
13/3/2017		1.3	102
13/3/2017		1.8	85
13/3/2017		1.3	71
13/3/2017		1.8	94
13/3/2017		1.3	62
13/3/2017		1.3	71
13/3/2017		1.3	58
13/3/2017		1.3	74
13/3/2017		1.3	93
13/3/2017		1.3	62
13/3/2017		1.8	71
13/3/2017	i e	0.9	75
13/3/2017		0.9	88
13/3/2017		0.9	91
13/3/2017	i	0.9	90
13/3/2017	<b>†</b>	0.9	74
13/3/2017		0.9	81
13/3/2017		0.9	76
13/3/2017		0.9	72
13/3/2017		0.4	69
13/3/2017		0.4	73
13/3/2017	i e		1/3
		0	16
13/3/2017		0.4	46
13/3/2017		0.4	103
14/3/2017		0.9	99
14/3/2017		0.9	107
14/3/2017		1.8	92
14/3/2017	3:00	4.9	104

	Meteoro	logical Data for Impact Monitoring in the re	enorting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
14/3/2017	` ´	4	110
14/3/2017		4.5	109
14/3/2017		3.1	107
14/3/2017		2.2	100
14/3/2017		1.3	94
14/3/2017		1.3	358
14/3/2017		1.8	346
14/3/2017		1.3	39
14/3/2017		1.3	42
14/3/2017		1.3	48
14/3/2017		0.9	43
14/3/2017		1.3	44
14/3/2017		0.4	19
14/3/2017	17:00	0.9	48
14/3/2017	18:00	0.9	38
14/3/2017	19:00	0.9	50
14/3/2017	20:00	1.3	47
14/3/2017	21:00	3.1	41
14/3/2017	22:00	2.7	51
14/3/2017		3.1	39
16/3/2017		2.5	132
16/3/2017		2.2	116
16/3/2017		1.8	142
16/3/2017		1.8	137
16/3/2017		1.3	171
16/3/2017		1.3	113
16/3/2017		1.8	132
16/3/2017		1.8	104
16/3/2017		1.3	112
16/3/2017		1.3	111
16/3/2017		0.9	109
16/3/2017		1.3	141
16/3/2017		2.2	105
16/3/2017		3.1	106
16/3/2017		2.7	92
16/3/2017		2.7	85
16/3/2017		2.7	81
16/3/2017		2.7	79
16/3/2017		2.7	93
16/3/2017		3.1	98
16/3/2017		3.1	101
16/3/2017		3.1	103
16/3/2017		3.6	108
16/3/2017		4	111
17/3/2017		4.5	120
17/3/2017		3.1	93
17/3/2017		2.7	103
17/3/2017		3.1	118
17/3/2017		4	116
17/3/2017		2.7	104
17/3/2017		3.1	107
17/3/2017		3.1	109
17/3/2017	8:00	0.9	118
17/3/2017		1.8	96
17/3/2017		4	104
17/3/2017	11:00	4	113

		logical Data for Impact Monitoring in	
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
17/3/2017	12:00	4	101
17/3/2017	13:00	4	98
17/3/2017	14:00	4.5	85
17/3/2017	15:00	4.5	92
17/3/2017	16:00	4.5	100
17/3/2017	17:00	4	81
17/3/2017	18:00	3.6	105
17/3/2017	19:00	3.6	111
17/3/2017	20:00	3.6	106
17/3/2017	21:00	2.7	114
17/3/2017	22:00	2.7	114
17/3/2017	23:00	2.7	124
19/3/2017	0:00	2.7	131
19/3/2017		3.1	125
19/3/2017		0.9	88
19/3/2017		0.4	244
19/3/2017		0	-
19/3/2017		0.9	95
19/3/2017		3.1	81
19/3/2017		3.1	93
19/3/2017		2.7	81
19/3/2017		2.7	70
19/3/2017		2.7	85
19/3/2017		3.1	101
19/3/2017		2.2	107
19/3/2017		2.7	112
19/3/2017		3.1	104
19/3/2017		3.1	108
19/3/2017		3.1	92
19/3/2017		3.1	95
19/3/2017		2.2	104
19/3/2017		1.8	111
19/3/2017		1.8	107
19/3/2017		1.8	104
19/3/2017		1.8	100
19/3/2017		2.2	84
20/3/2017		1.8	83
20/3/2017		1.8	88
20/3/2017		2.2	89
20/3/2017		2.2	75
20/3/2017		2.2	74
20/3/2017		2.2	78
20/3/2017		2.2	93
20/3/2017		1.3	261
20/3/2017		2.2	223
20/3/2017	9:00	0.9	241
20/3/2017	10:00	0.9	105
20/3/2017	11:00	0.9	93
20/3/2017	12:00	0.9	94
20/3/2017	13:00	2.2	99
20/3/2017		2.7	75
20/3/2017		1.8	71
20/3/2017		0.9	73
20/3/2017		0.4	81
20/3/2017		0.4	76
20/3/2017		0.9	69
20/3/2017		1.3	64

	Meteoro	logical Data for Impact Monitoring in the re	eporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
20/3/2017		1.3	96
20/3/2017	22:00	0.4	100
20/3/2017		0	-
22/3/2017	0:00	3.6	79
22/3/2017	1:00	3.1	102
22/3/2017	2:00	3.1	84
22/3/2017		3.1	78
22/3/2017	4:00	3.6	84
22/3/2017	5:00	4	81
22/3/2017	6:00	3.1	102
22/3/2017	7:00	4.5	121
22/3/2017	8:00	4.5	115
22/3/2017	9:00	3.1	93
22/3/2017	10:00	1.3	85
22/3/2017	11:00	1.8	80
22/3/2017	12:00	1.8	87
22/3/2017	13:00	1.3	96
22/3/2017	14:00	0.9	98
22/3/2017	15:00	0.9	99
22/3/2017	16:00	1.8	103
22/3/2017	17:00	1.8	82
22/3/2017	18:00	1.8	85
22/3/2017	19:00	0.4	94
22/3/2017	20:00	0.9	104
22/3/2017	21:00	2.2	101
22/3/2017	22:00	1.8	84
22/3/2017	23:00	1.3	86
23/3/2017		1.3	88
23/3/2017	1:00	1.3	105
23/3/2017	2:00	1.3	145
23/3/2017		1.3	122
23/3/2017	t	0.9	171
23/3/2017		2.2	205
23/3/2017		0.9	231
23/3/2017		1.3	62
23/3/2017		1.8	93
23/3/2017	t	1.8	85
23/3/2017		2.2	74
23/3/2017		1.8	102
23/3/2017	1	2.2	85
23/3/2017		1.3	122
23/3/2017		1.3	119
23/3/2017		1.3	105
23/3/2017		0.9	117
23/3/2017	1	1.3	82
23/3/2017		1.3	93
23/3/2017		2.2	84
23/3/2017		3.1	98
23/3/2017		2.2	105
23/3/2017		3.1	84
23/3/2017		3.6	100
25/3/2017		0.4	171
25/3/2017		0.9	149
25/3/2017	t	1.3	251
25/3/2017	i	1.8	299
25/3/2017		1.8	315
25/3/2017	5:00	1.8	322

	Meteoro	logical Data for Impact Monitoring in the re	eporting period
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)
25/3/2017	6:00	1.8	50
25/3/2017	7:00	2.2	351
25/3/2017	8:00	1.3	327
25/3/2017	9:00	1.3	300
25/3/2017	10:00	1.3	5
25/3/2017	11:00	1.8	49
25/3/2017	12:00	1.3	52
25/3/2017	13:00	1.8	311
25/3/2017	14:00	1.3	356
25/3/2017	15:00	1.3	355
25/3/2017	16:00	0.9	279
25/3/2017	17:00	0.9	265
25/3/2017	18:00	0.9	294
25/3/2017	19:00	0.9	289
25/3/2017	20:00	1.3	293
25/3/2017		0.9	309
25/3/2017		1.3	312
25/3/2017		1.3	358
26/3/2017	0:00	2.2	51
26/3/2017		1.3	355
26/3/2017	2:00	2.2	63
26/3/2017	3:00	1.3	49
26/3/2017	4:00	1.8	51
26/3/2017	5:00	2.2	58
26/3/2017		1.3	47
26/3/2017		1.3	348
26/3/2017		1.3	62
26/3/2017		0.9	31
26/3/2017		1.3	15
26/3/2017		1.3	38
26/3/2017		1.3	50
26/3/2017		1.3	44
26/3/2017		1.3	70
26/3/2017		0.9	38
26/3/2017		0.9	40
26/3/2017		0.9	52
26/3/2017		0.9	46
26/3/2017		0.9	84
26/3/2017		1.8	39
26/3/2017		1.3	45
26/3/2017		0.4	96
26/3/2017		0	102
28/3/2017		4	103
28/3/2017		4	88
28/3/2017		4	112
28/3/2017		4	104
28/3/2017		4	95
28/3/2017		4.5	83
28/3/2017		4	100
28/3/2017		4	101
28/3/2017		4.5	84
28/3/2017		4	79
28/3/2017		4	93
28/3/2017		3.6	85
28/3/2017		3.6	102
28/3/2017		4	84
28/3/2017	14:00	4	93

	Meteorological Data for Impact Monitoring in the reporting period				
Date (yy-mm-dd)	Time (24hrs)	Average of Wind Speed (m/s)	Average of Wind Direction(degree)		
28/3/2017	15:00	3.6	91		
28/3/2017	16:00	3.6	97		
28/3/2017	17:00	2.2	82		
28/3/2017	18:00	1.8	94		
28/3/2017	19:00	1.3	102		
28/3/2017	20:00	0.9	94		
28/3/2017	21:00	0.4	119		
28/3/2017	22:00	1.3	127		
28/3/2017	23:00	1.8	93		
29/3/2017	0:00	2.2	84		
29/3/2017	1:00	1.8	82		
29/3/2017	2:00	1.8	105		
29/3/2017	3:00	3.1	100		
29/3/2017	4:00	4	79		
29/3/2017	5:00	4.5	85		
29/3/2017		4.5	91		
29/3/2017		4	84		
29/3/2017		3.1	80		
29/3/2017		2.7	115		
29/3/2017	10:00	2.7	109		
29/3/2017	11:00	3.6	93		
29/3/2017	12:00	3.6	101		
29/3/2017	13:00	3.1	88		
29/3/2017	14:00	3.1	64		
29/3/2017		3.6	102		
29/3/2017	i e	2.7	98		
29/3/2017		2.7	100		
29/3/2017		3.1	84		
29/3/2017		3.1	77		
29/3/2017		1.8	73		
29/3/2017		3.1	96		
29/3/2017	t	2.7	85		
29/3/2017		2.7	91		
31/3/2017	<del>                                     </del>	1.8	115		
31/3/2017		1.3	348		
31/3/2017	1	0.4	267		
31/3/2017		0.4	298		
31/3/2017		0.9	285		
31/3/2017		0.9	303		
31/3/2017		1.8	318		
31/3/2017		3.6	321		
31/3/2017	t	3.1	351		
31/3/2017		2.2	349		
31/3/2017		2.2	355		
31/3/2017		1.8	62		
31/3/2017		2.2	54		
31/3/2017		1.3	58		
31/3/2017		3.1	5		
31/3/2017		2.2	52		
31/3/2017		2.2	63		
31/3/2017		1.3	48		
31/3/2017		0.9	61		
31/3/2017		1.3	74		
31/3/2017		2.2	52		
31/3/2017		2.7	21		
31/3/2017		3.1	358		
31/3/2017	23:00	2.7	346		

## Appendix I

## Impact Water Quality Monitoring Results

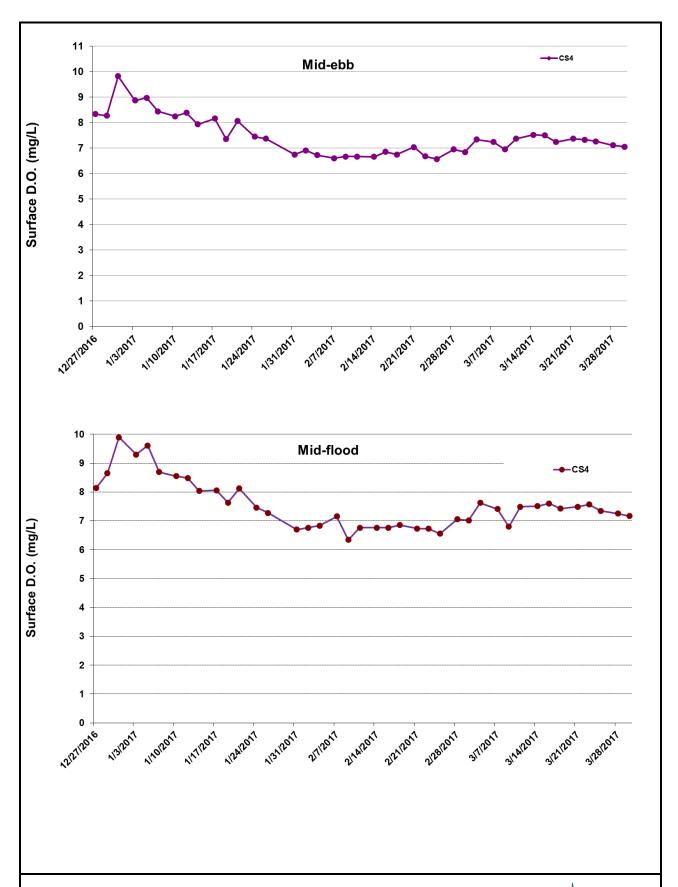



Figure I1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



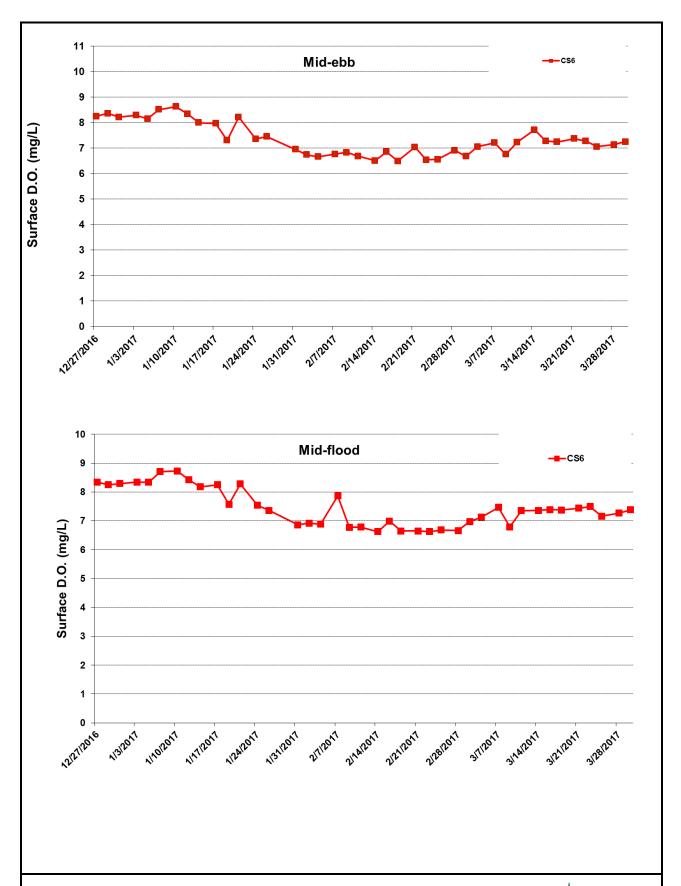



Figure I2 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



0212330_Impact-WQM_March2017_graphs_Rev a.xls

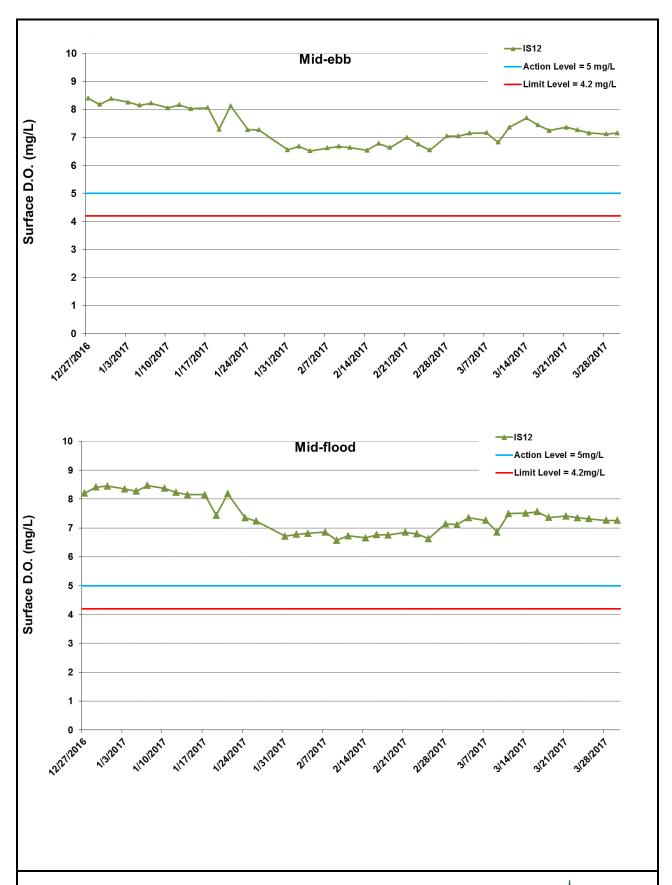



Figure I3 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



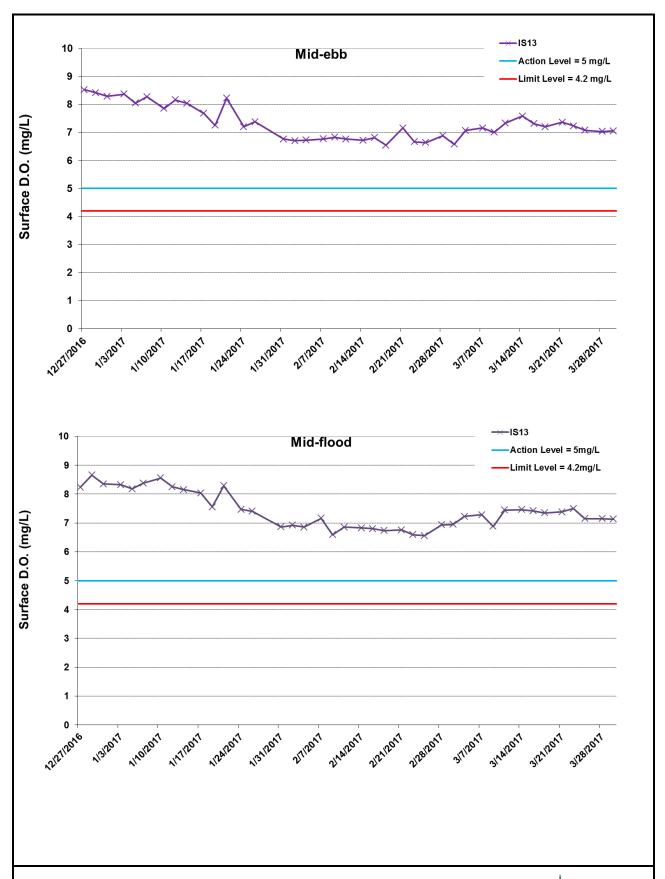



Figure I4 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



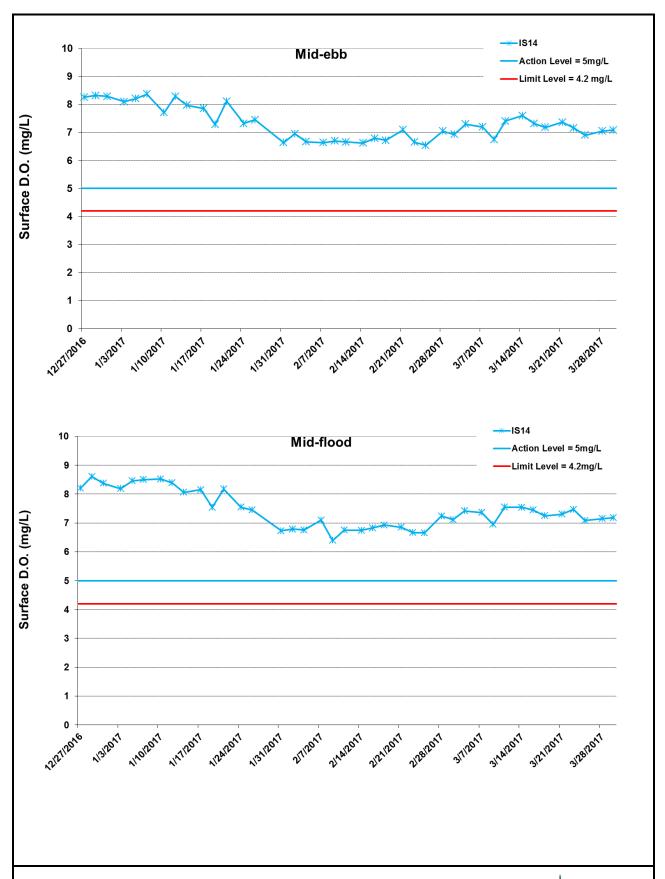



Figure I5 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



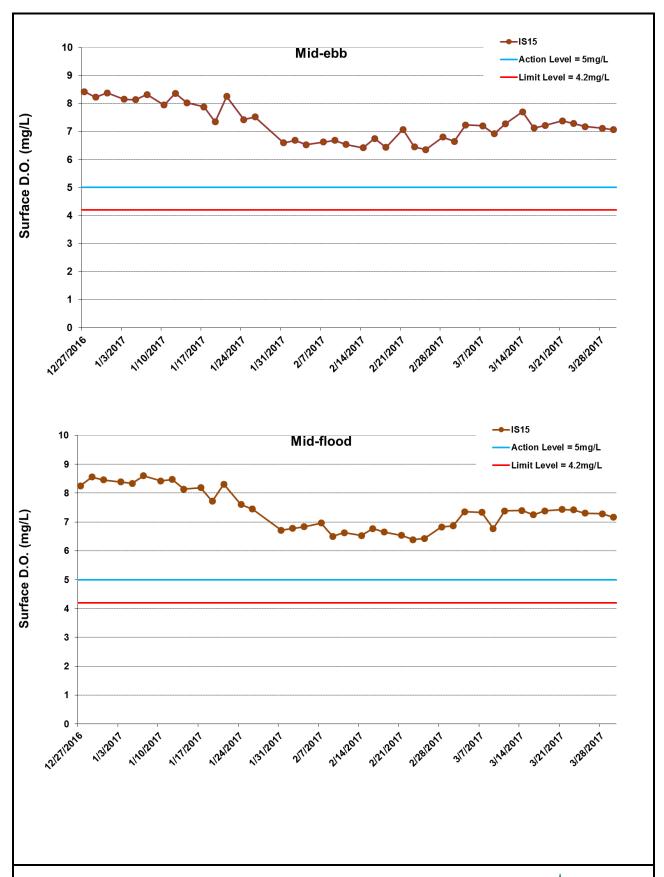



Figure I6 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



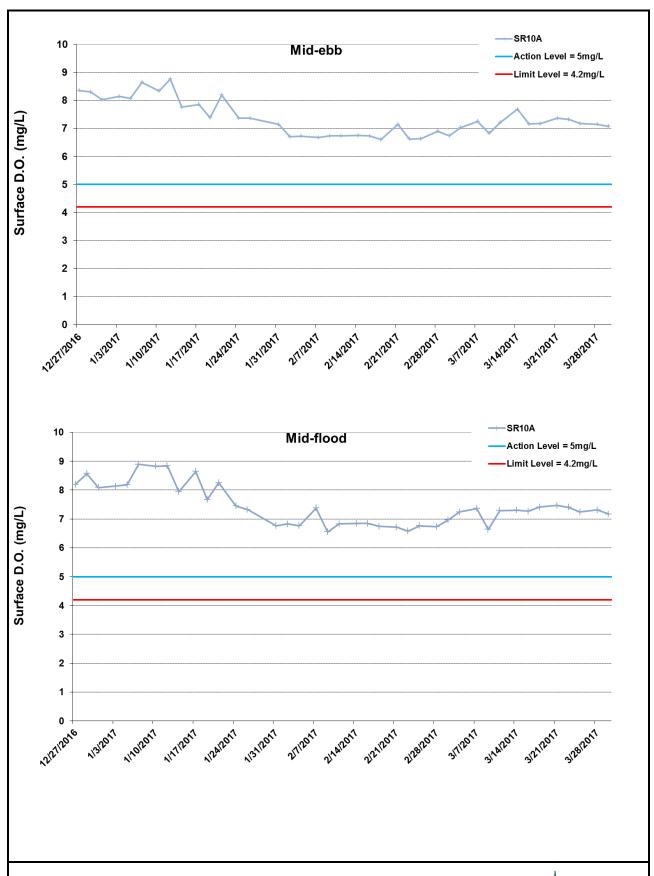



Figure I7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



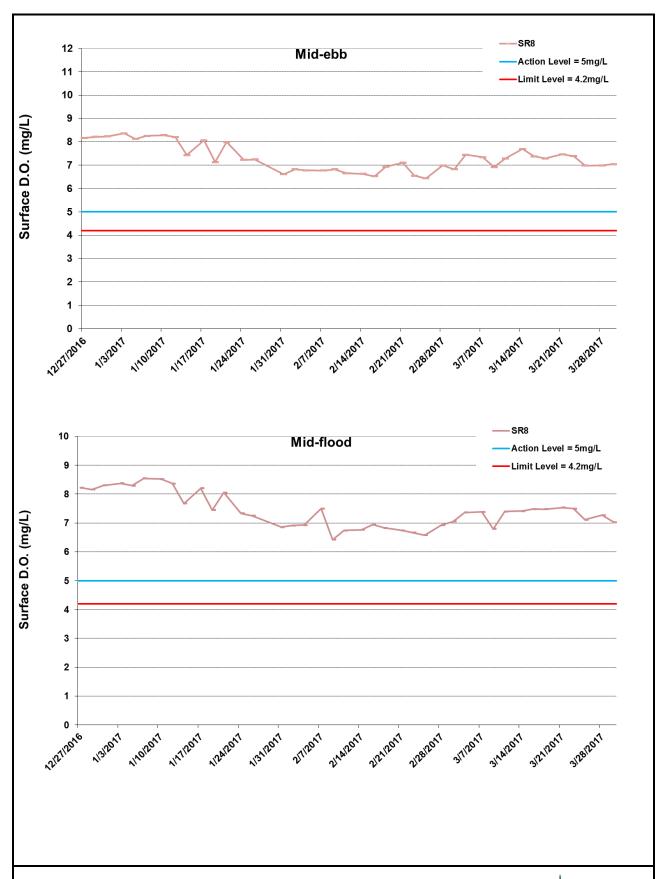



Figure I8 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



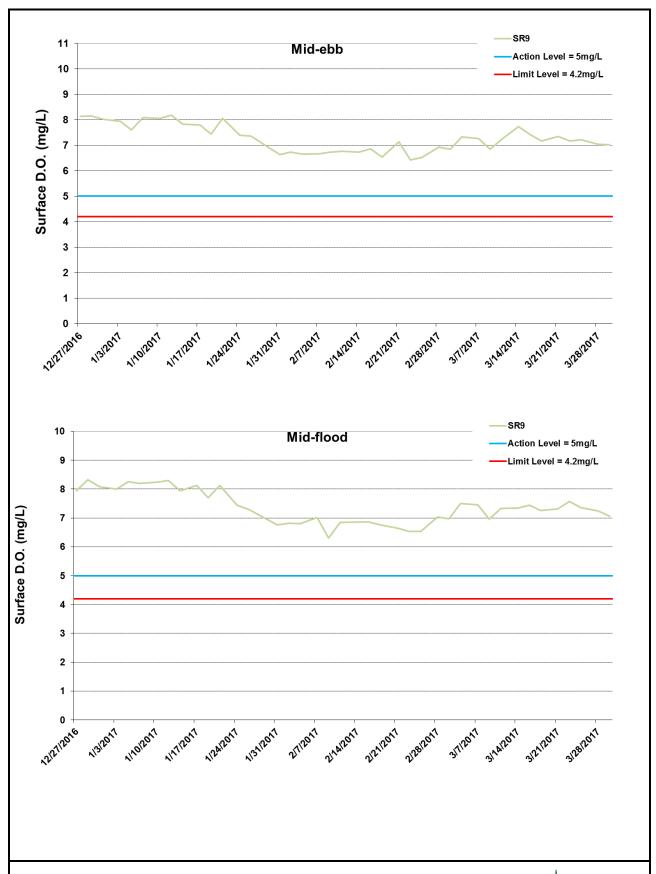



Figure I9 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters between 27 December 2016 and 31 March 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



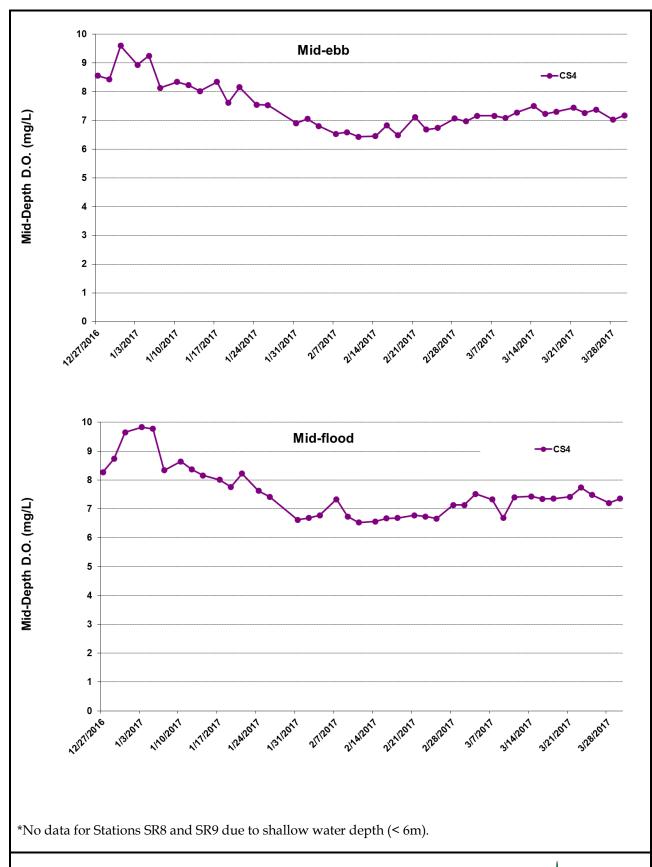



Figure I10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



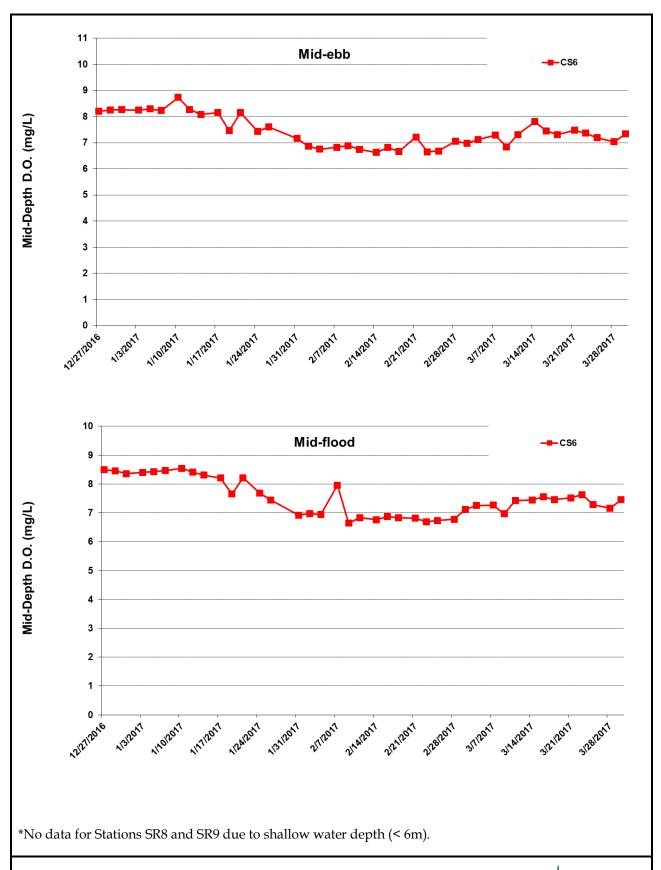



Figure I11 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



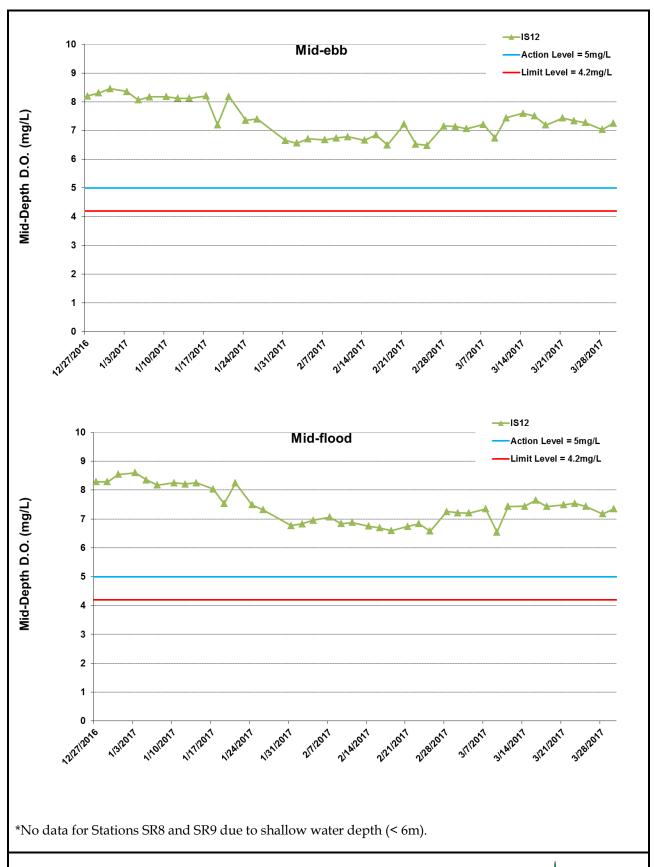



Figure I12 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



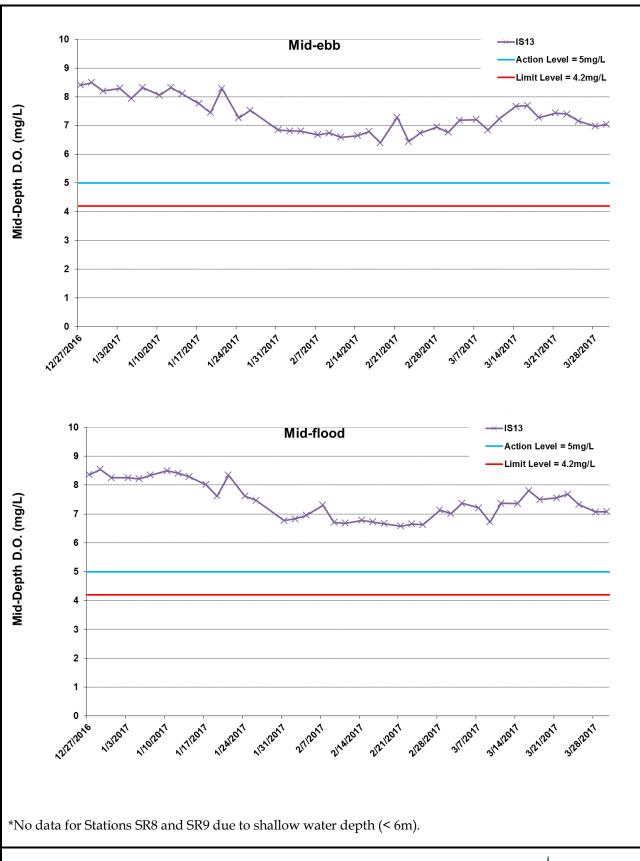



Figure I13 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



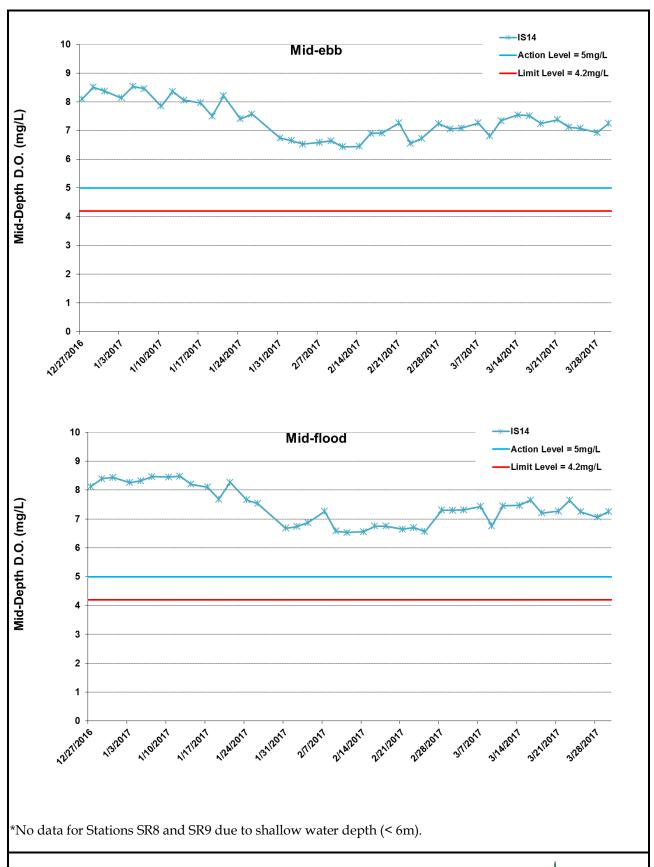



Figure I14 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



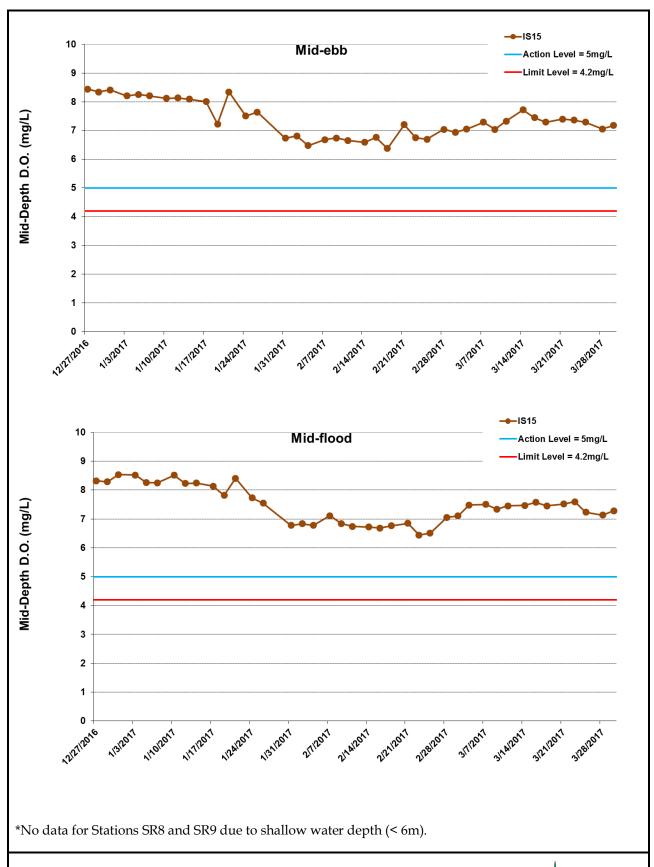



Figure I15 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



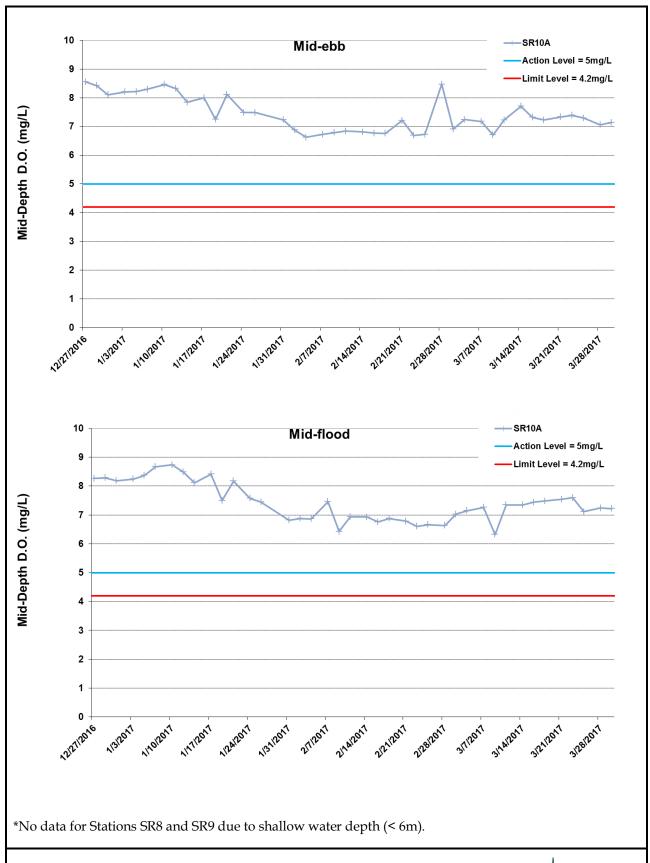



Figure I16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in middepth waters between 27 December 2016 and 31 March 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



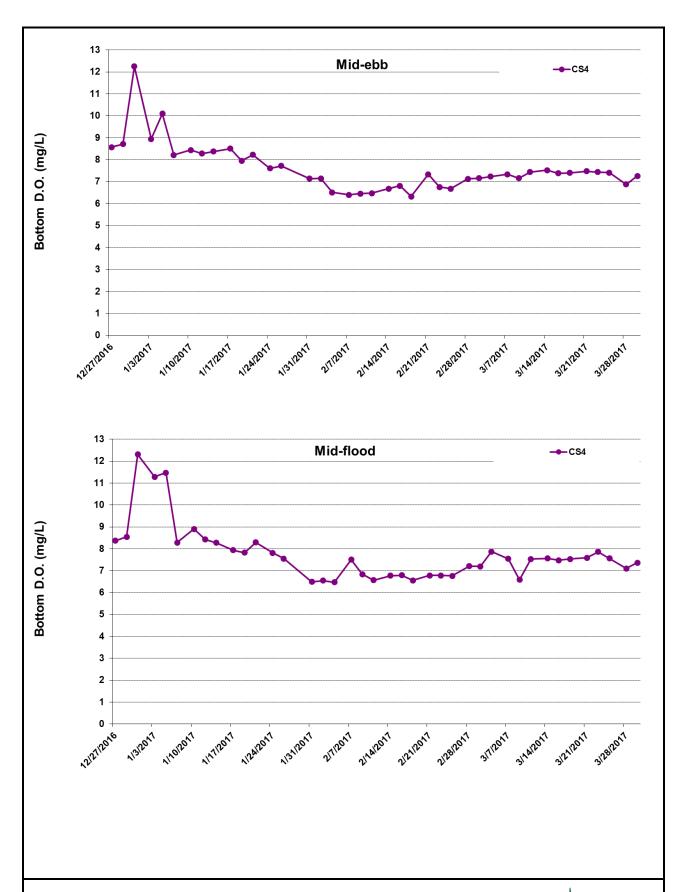



Figure I17 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



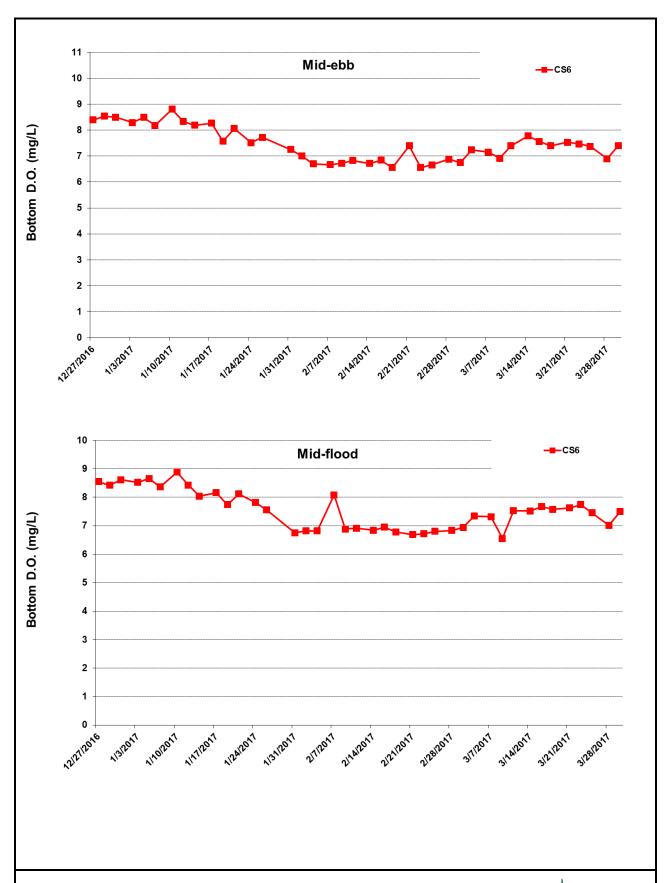



Figure I18 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



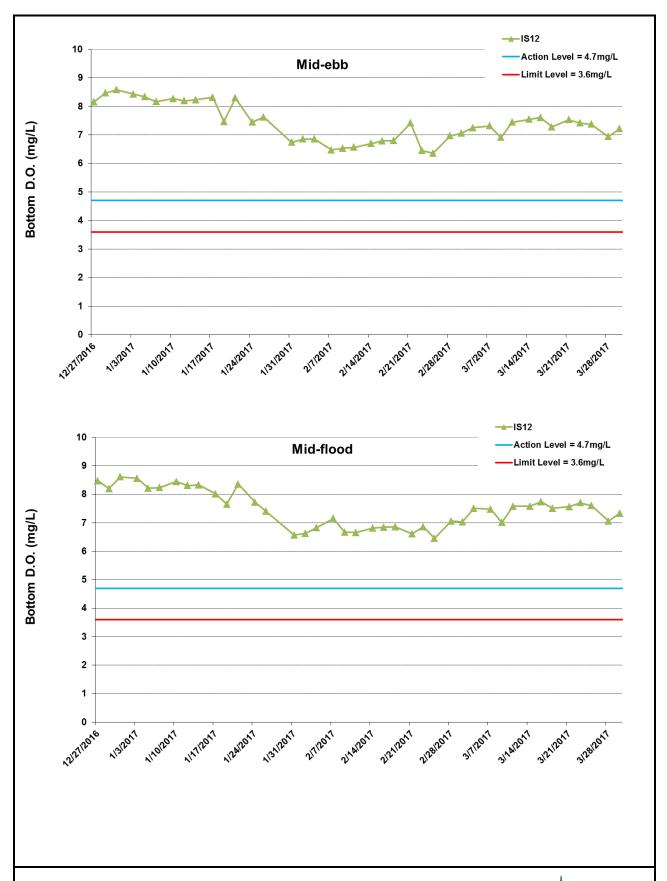



Figure I19 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



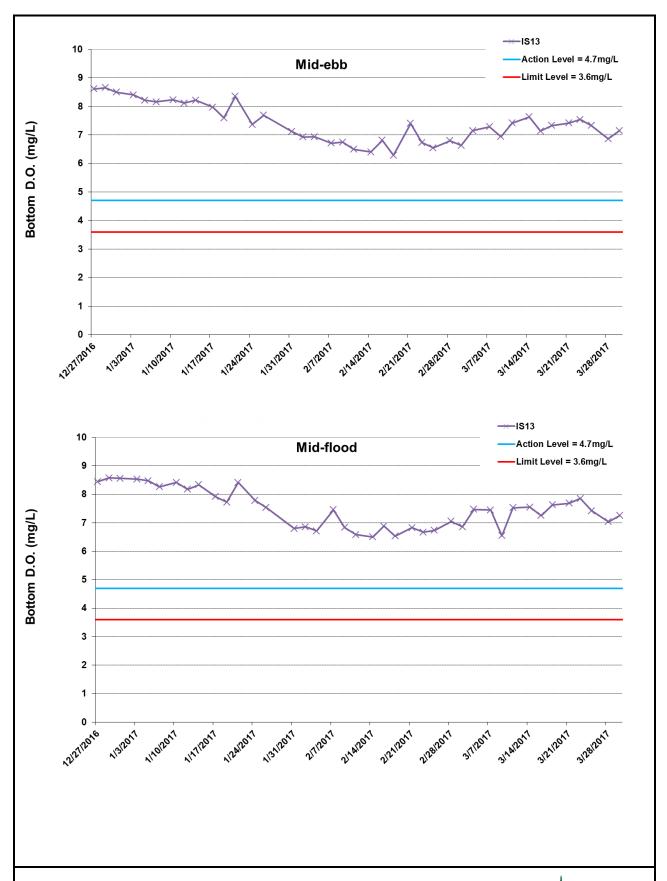



Figure I20 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



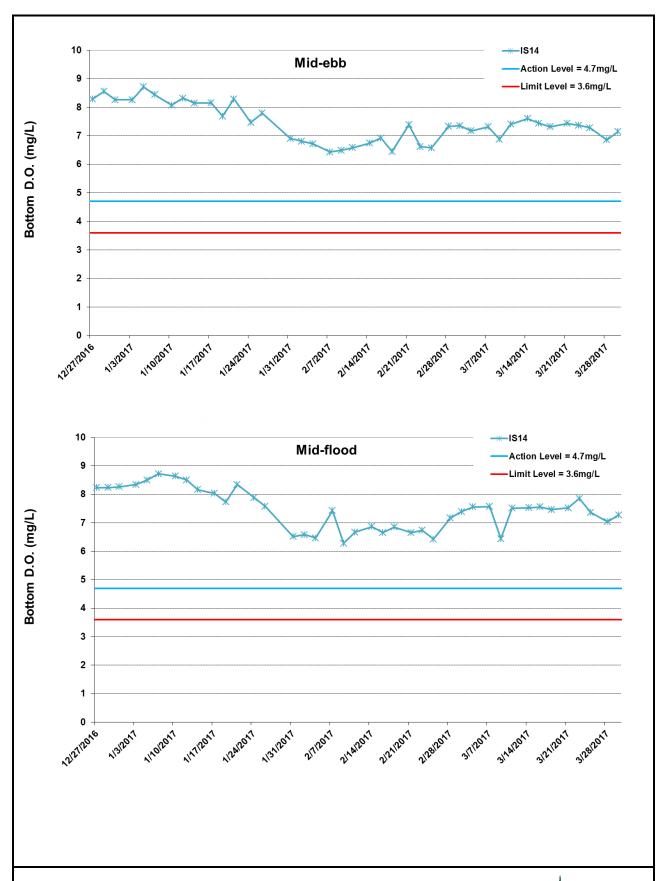



Figure I21 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



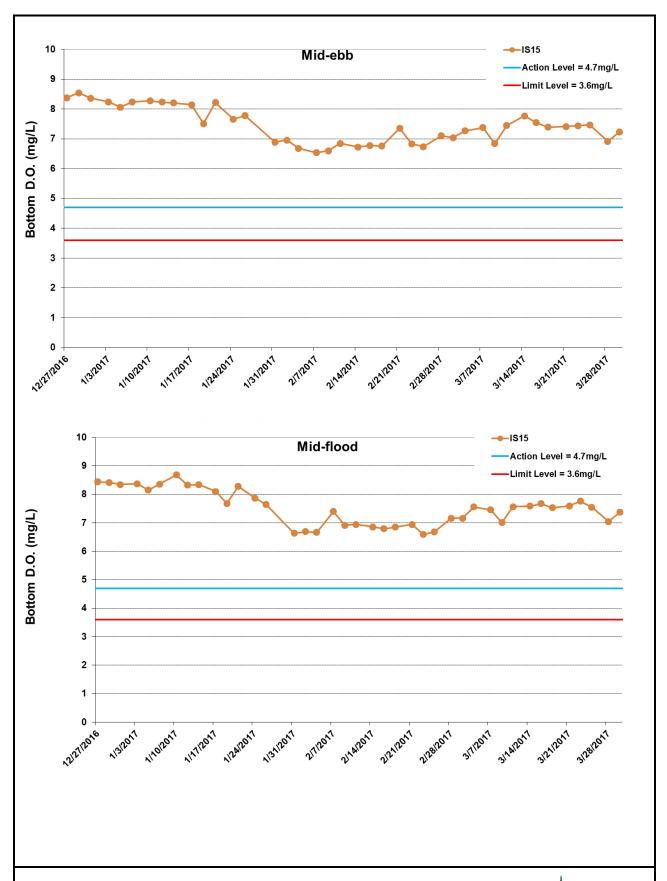



Figure I22 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



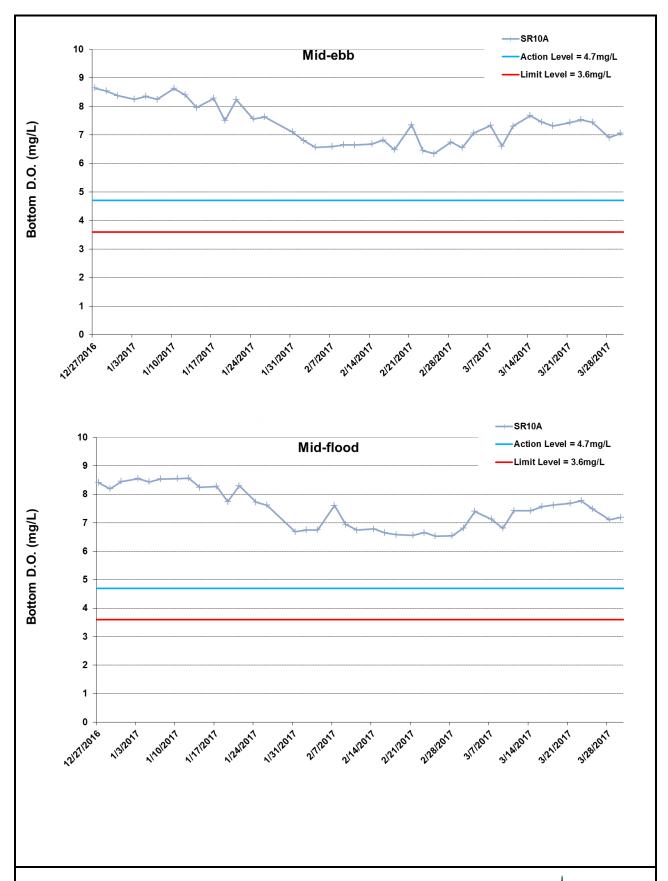



Figure I23 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



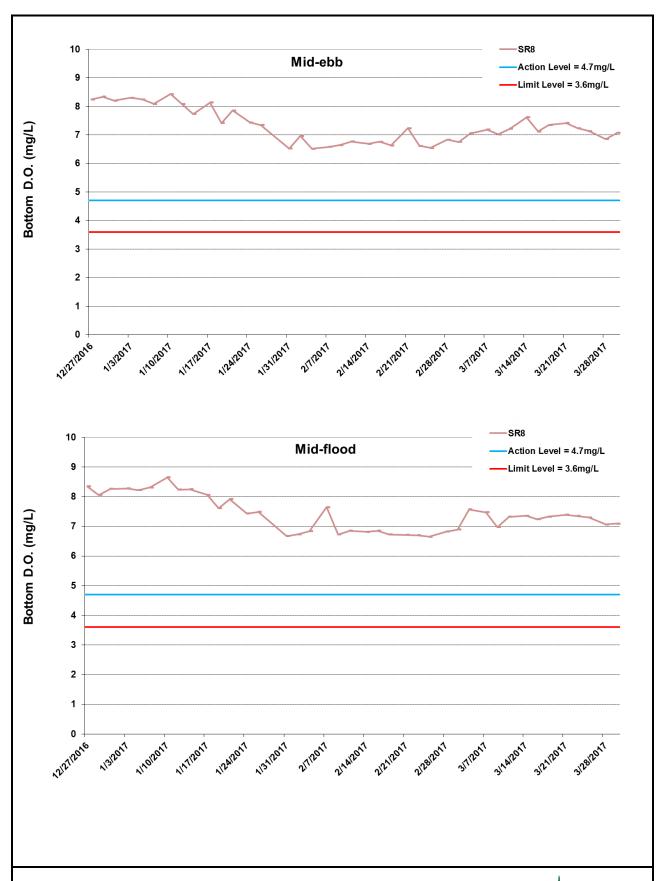



Figure I24 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



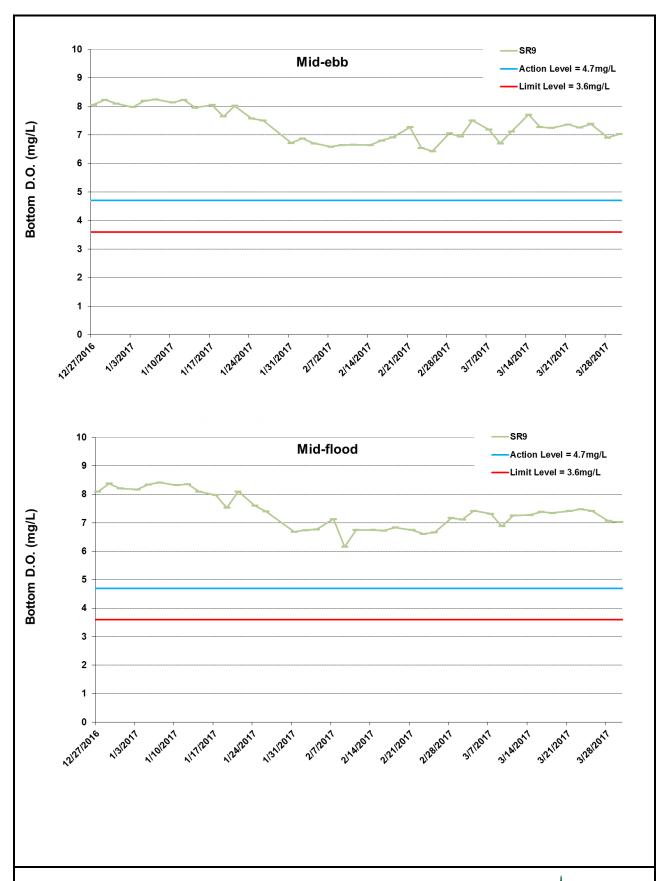



Figure I25 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom water between 27 December 2016 and 31 March 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



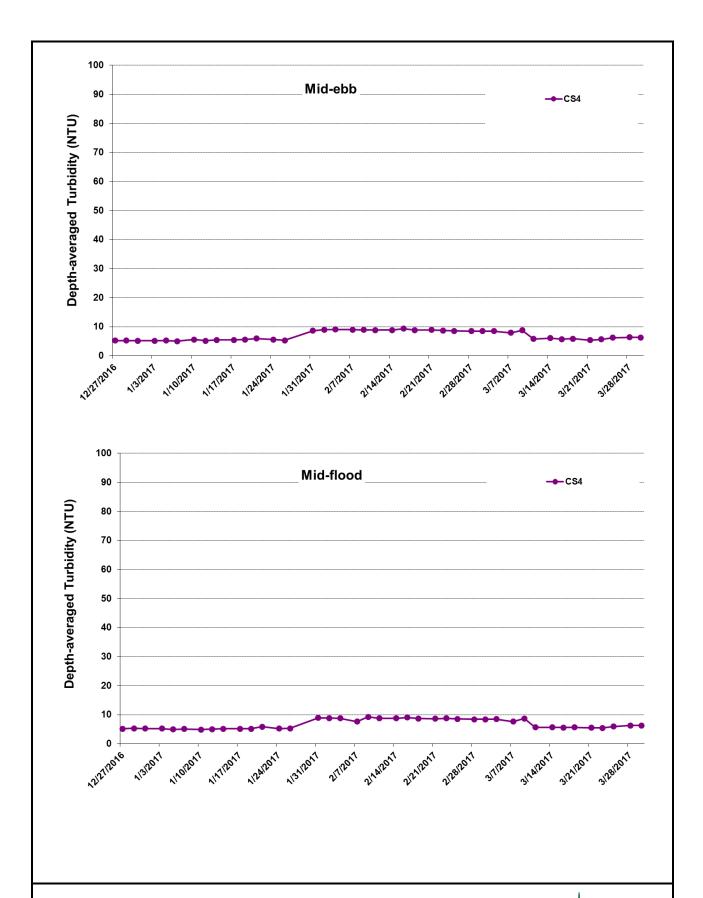



Figure I26 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



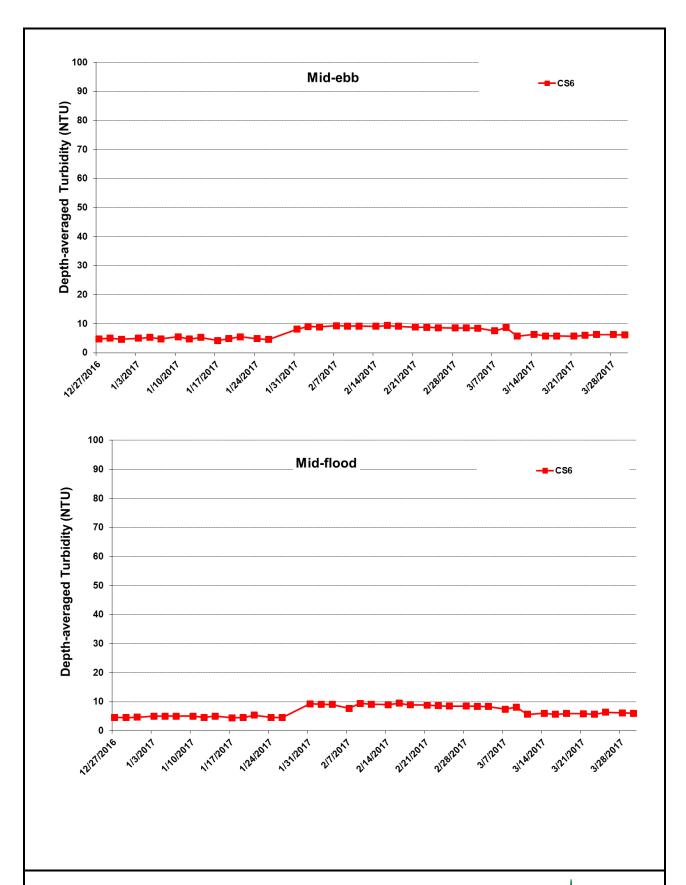



Figure I27 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



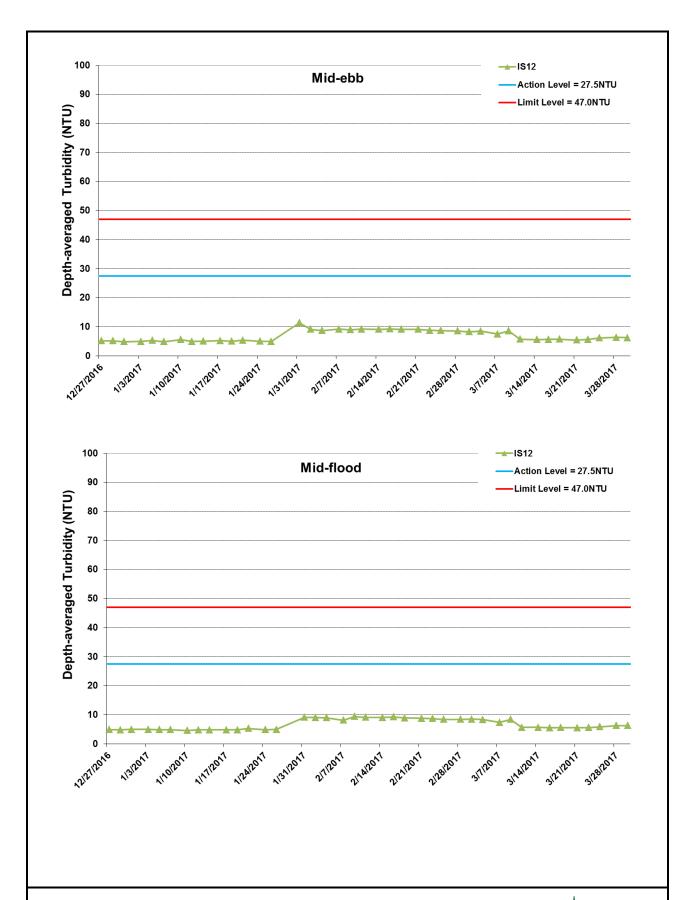



Figure I28 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



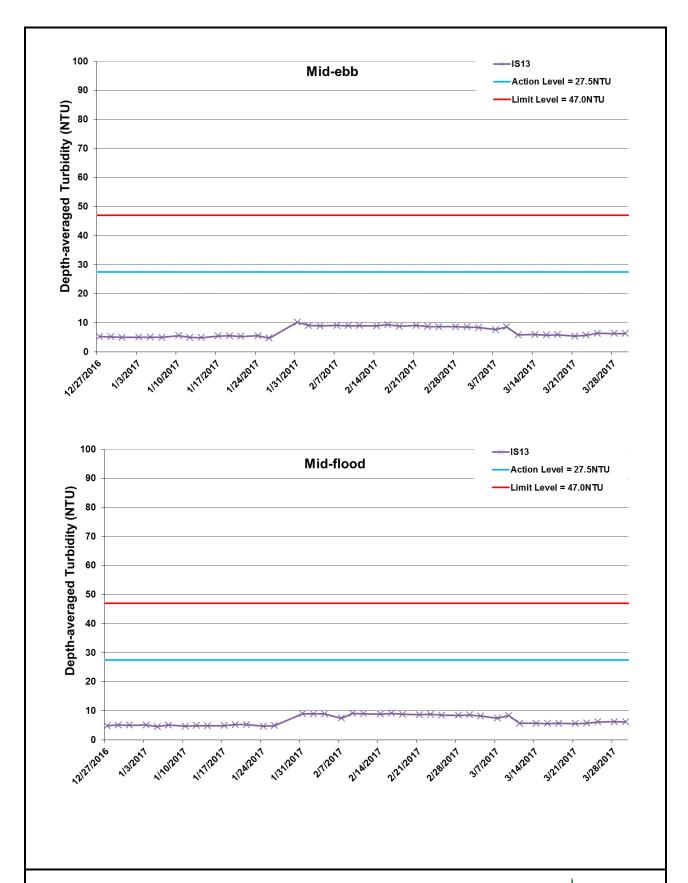



Figure I29 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



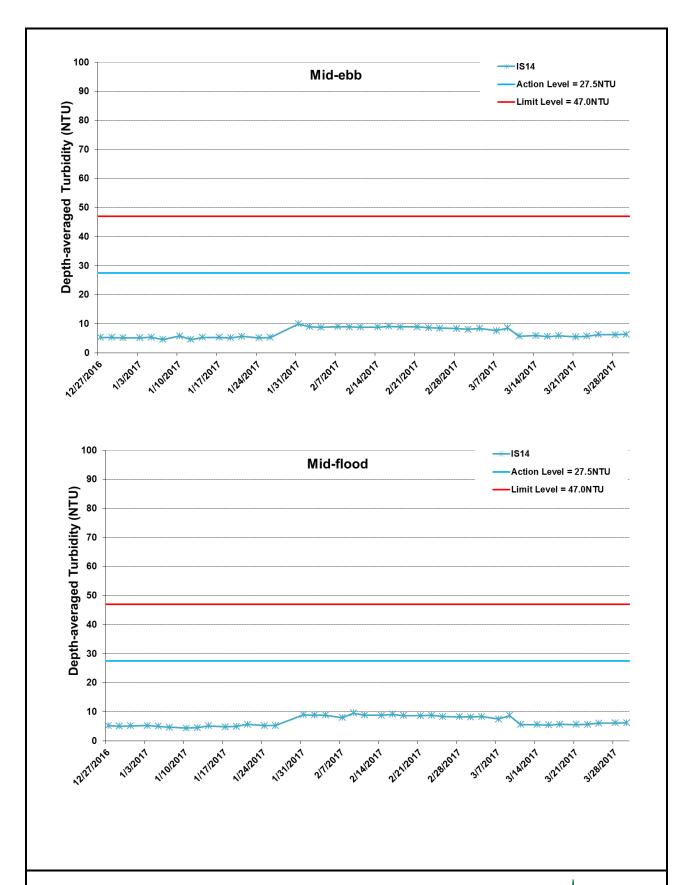



Figure I30 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



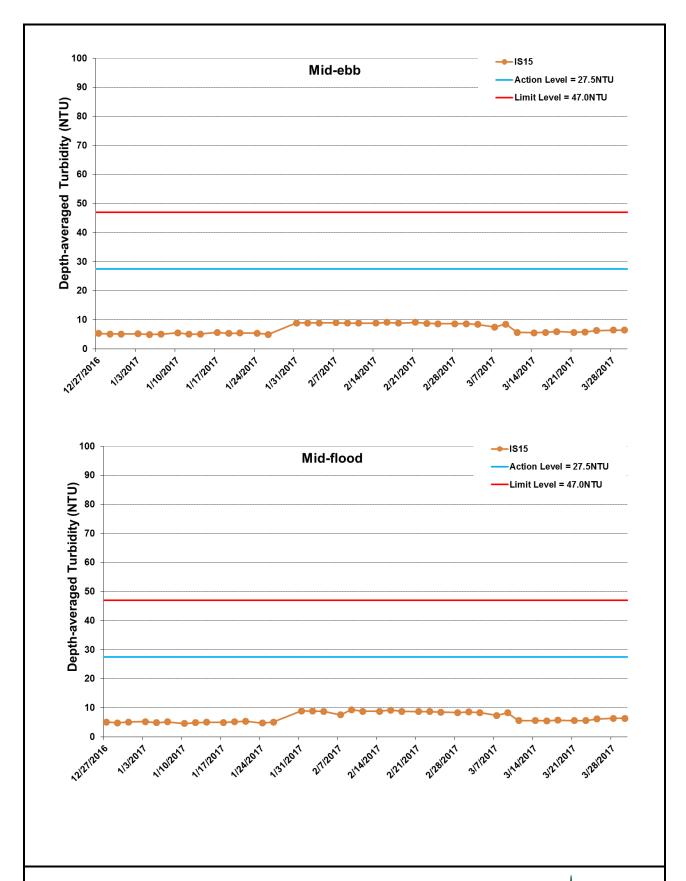



Figure I31 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



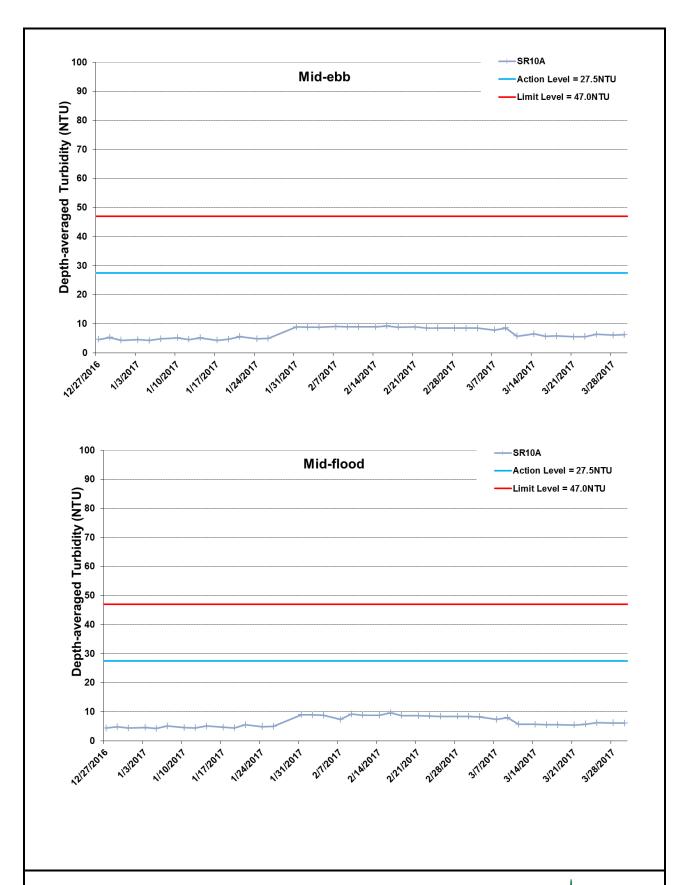



Figure I32 Impact Monitoring – Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



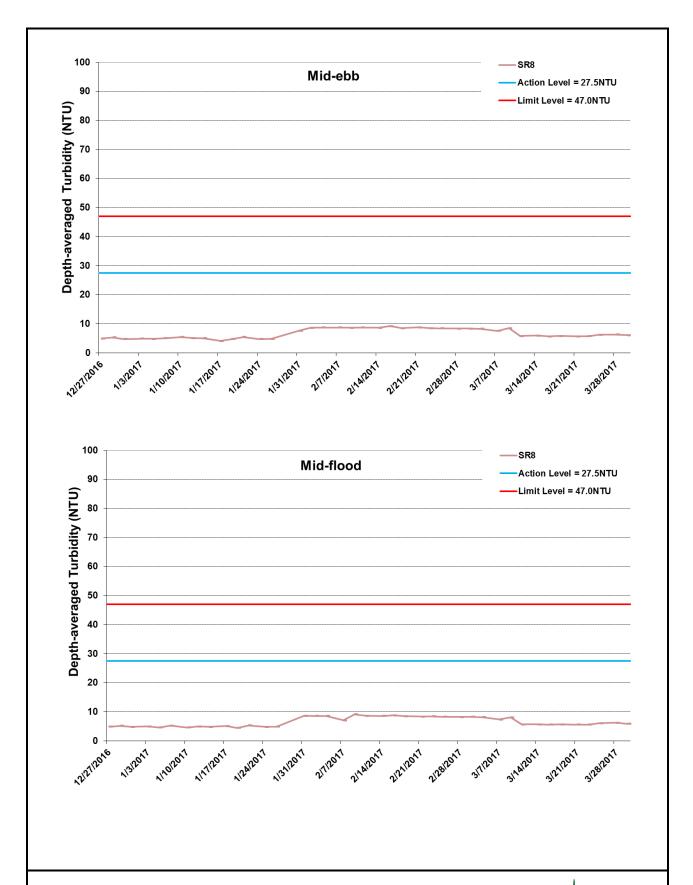



Figure I33 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



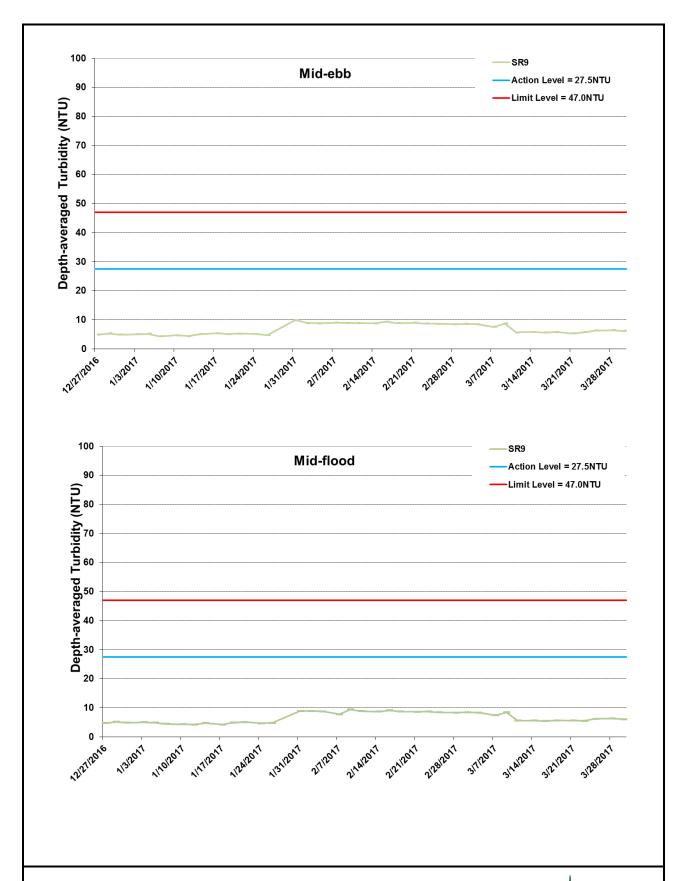



Figure I34 Impact Monitoring - Mean Depth-averaged Level of Turbidity (NTU) between 27 December 2016 and 31 March 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



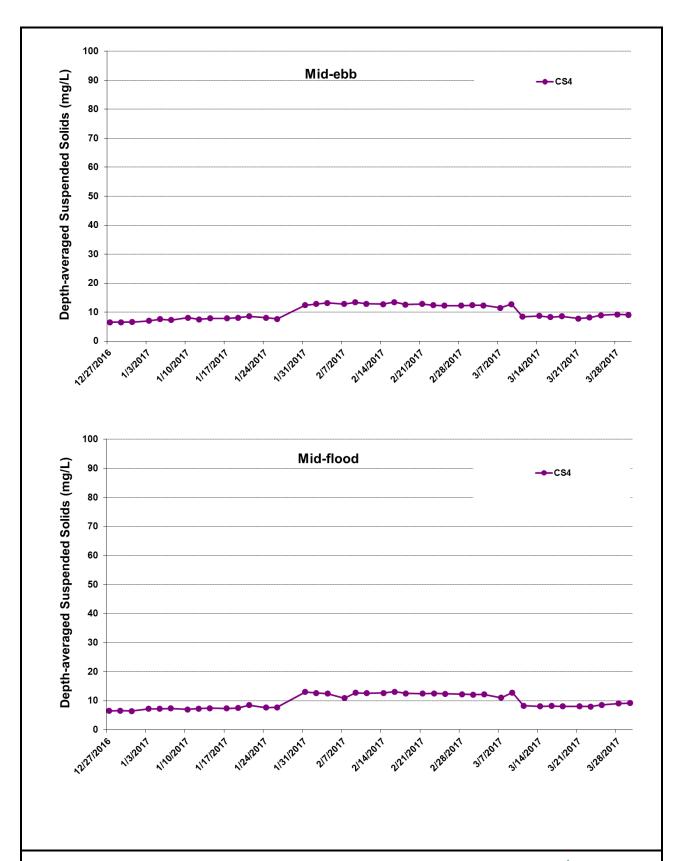



Figure I35 Impact Monitoring - Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at CS4. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 - 31/3/2017). WQM was resumed on 27/12/2016.



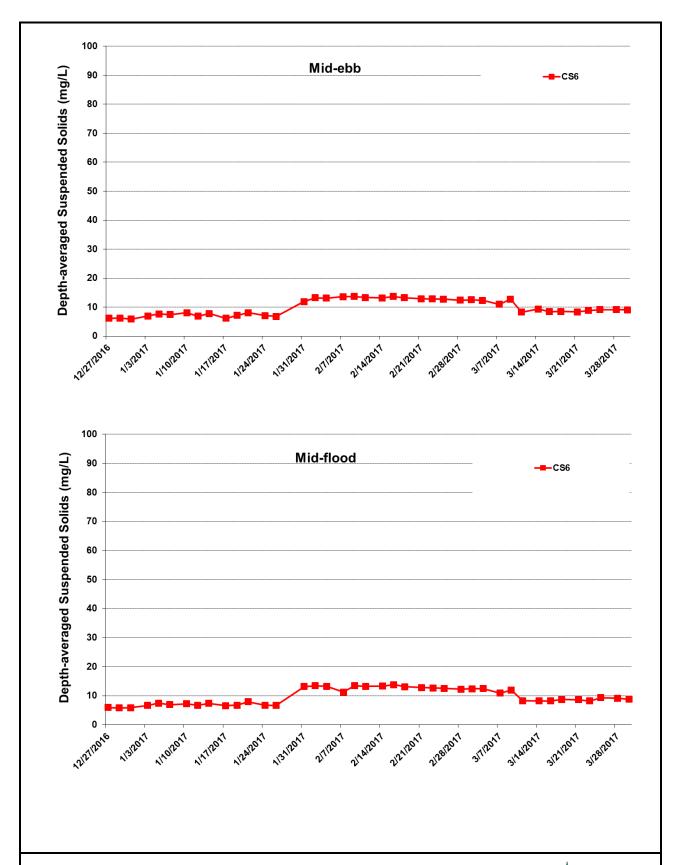



Figure I36 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at CS6. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



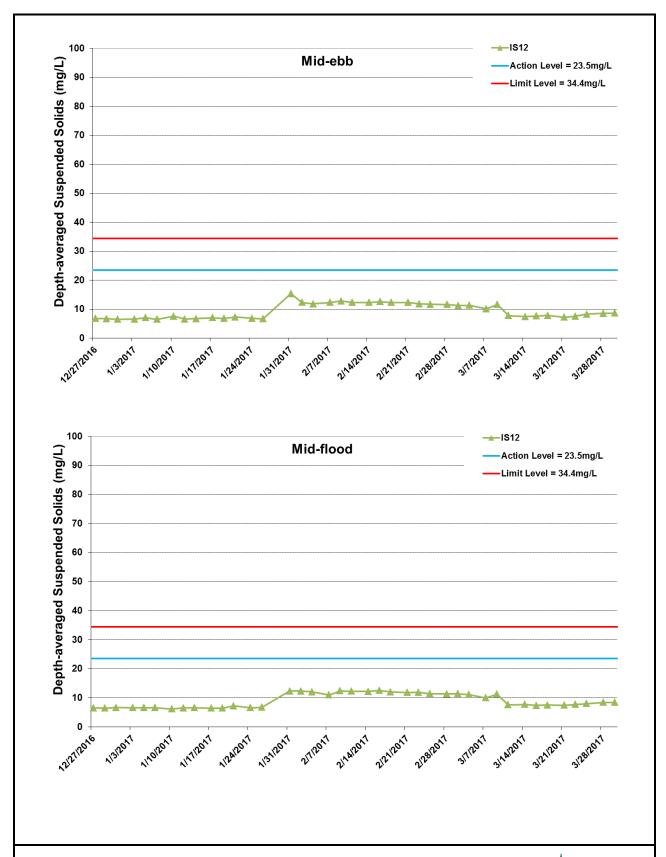



Figure I37 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at IS12. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



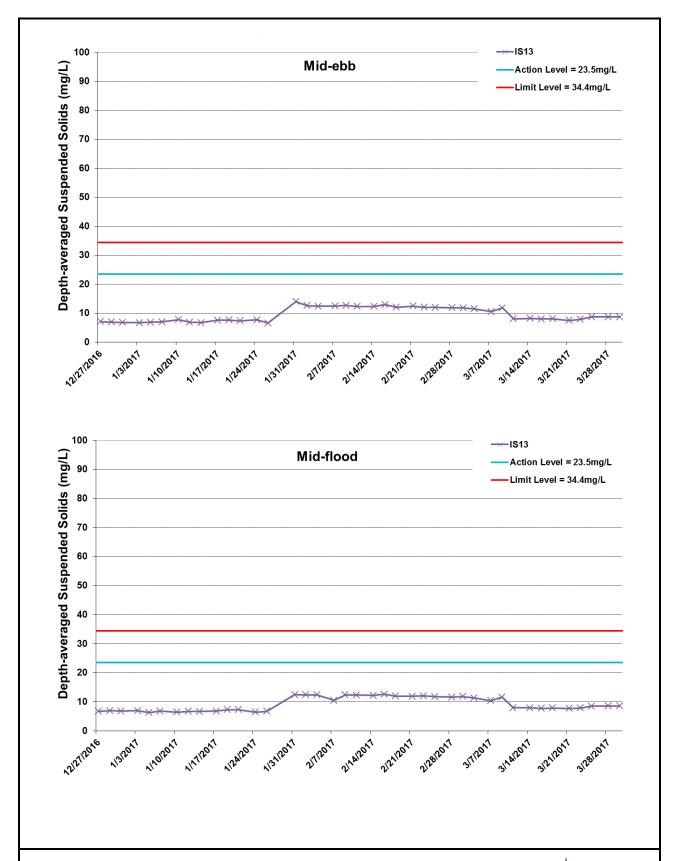



Figure I38 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at IS13. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



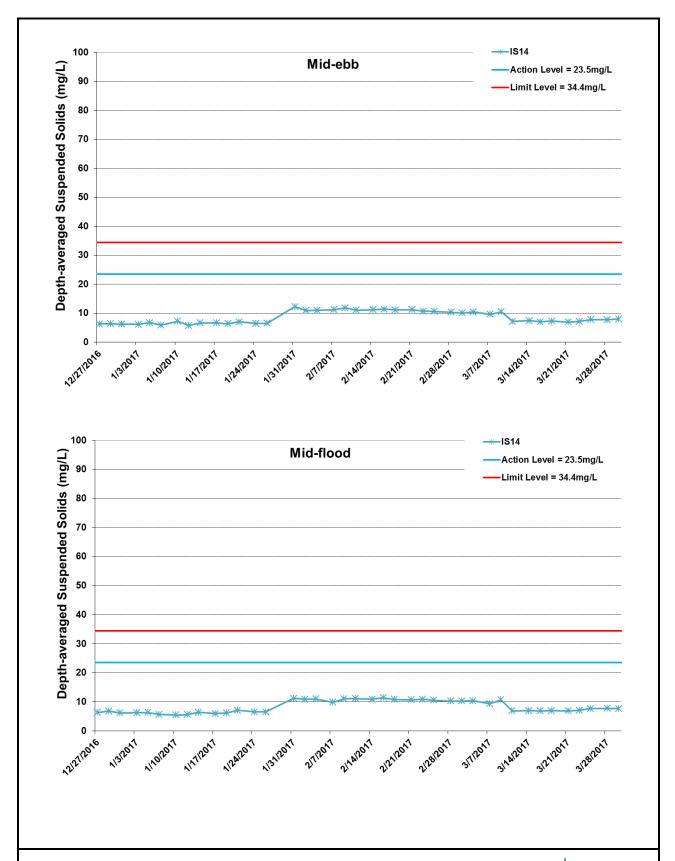



Figure I39 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at IS14. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



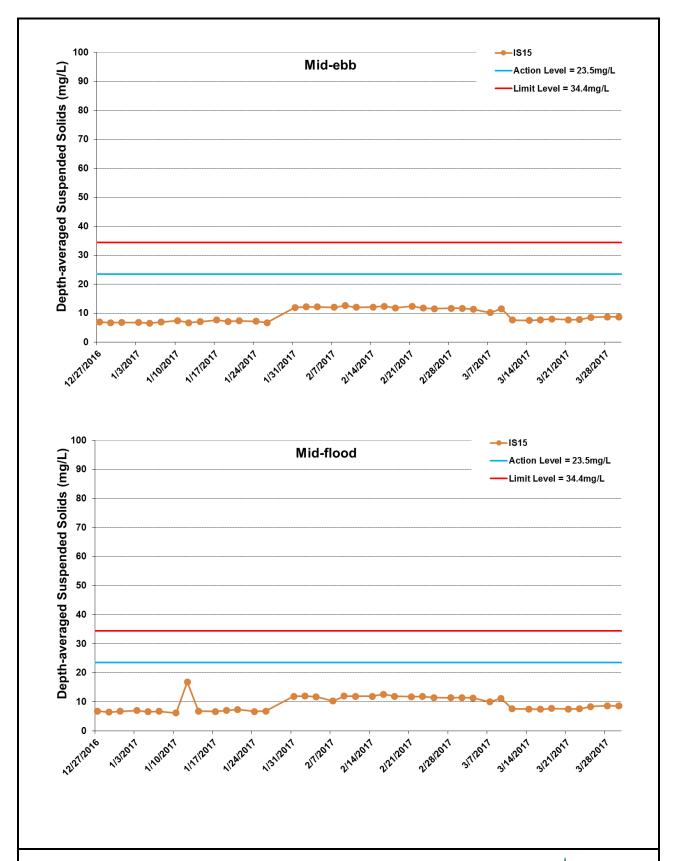



Figure I40 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at IS15. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



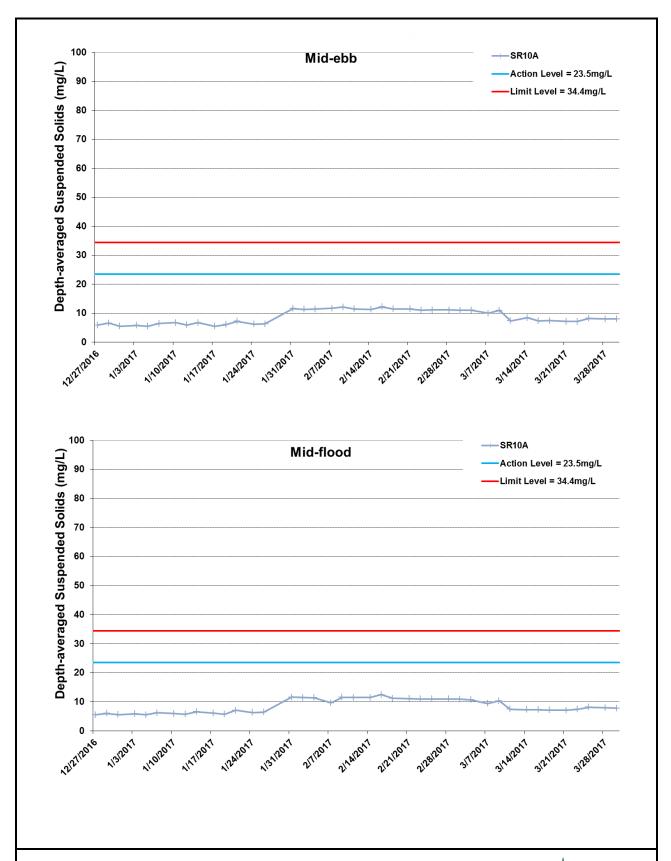



Figure I41 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at SR10A. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



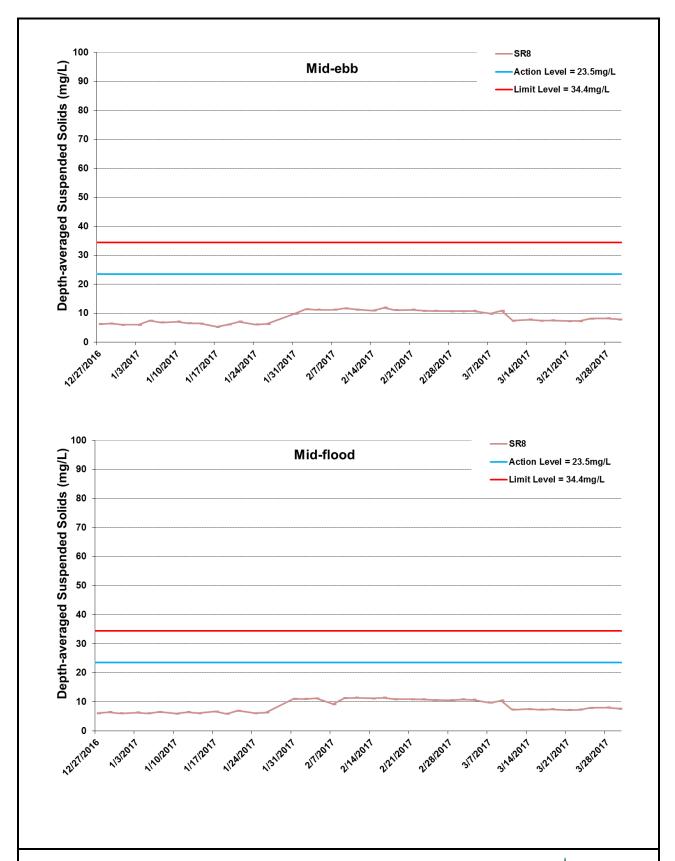



Figure I42 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at SR8. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



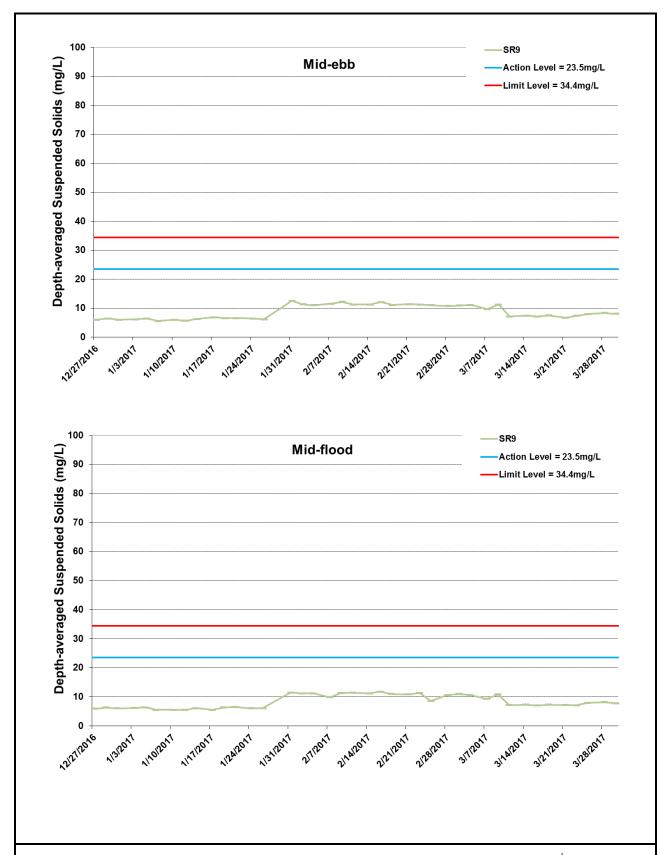



Figure I43 Impact Monitoring – Mean Depth-averaged Level of Suspended Solids (mg/L) between 27 December 2016 and 31 March 2017 at SR9. The weather conditions during the monitoring period varied mostly from sunny to cloudy. Major marine works included: Band drains and Filling works at Portion N-A (1/3/2017 – 31/3/2017). WQM was resumed on 27/12/2016.



Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	1	10:55	17.3	7.64	27.6	7	8.55	12.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	2	10:55	17.4	7.6	27.5	7.03	8.58	12.4
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Middle	8.8	2	1	10:55	17.6	7.68	27.7	7.11	8.25	11.7
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Middle	8.8	2	2	10:55	17.5	7.72	27.8	7.15	8.22	12.2
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.6	3	1	10:55	17.7	7.85	27.9	7.17	8.31	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.6	3	2	10:55	17.8	7.87	28	7.22	8.36	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	1	08:37	17.1	7.81	27.5	6.96	8.21	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	08:37	17.2	7.85	27.6	6.99	8.24	12.2
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.7	2	1	08:37	17.4	7.68	27.6	7.11	8.36	12.2
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.7	2	2	08:37	17.3	7.72	27.7	7.13	8.31	12.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.4	3	1	08:37	17.4	7.89	27.8	6.92	8.78	12.6
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.4	3	2	08:37	17.5	7.93	27.7	6.96	8.73	12.8
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood		Small wave	IS12	Surface	1	1	1	10:26	17.4		27.5	7.13	8.36	11.3
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood			IS12	Surface	1	1	2	10:26	17.5		27.6	7.09	8.38	11
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood					6.3	2	1	10:26	17.7		27.7	7.2	8.44	11.2
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood					6.3	2	2	10:26	17.6		27.6	7.23	8.49	11.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	- i				11.6	3	1	10:26	17.8	_		7.01	8.67	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy				11.6	3	2	10:26	17.9		27.9	7.05	8.62	11.4
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood	Cloudy			Surface	1	1	1	10:09	17.2	7.61		6.93	8.55	11.6
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood				Surface	1	1	2	10:09	17.1		27.4	6.96	8.57	12.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood					5.4	2	1	10:09	17.3	_	27.6	6.99	8.33	11.8
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood					5.4	2	2	10:09	17.4			7.03	8.38	11.7
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood					9.8	3	1	10:09	17.5		27.7	6.84	8.68	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood			1		9.8	3	2	10:09	17.6	_		6.88	8.71	11.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood				Surface	1	1	1	10:40	17.3	7.63	27.5	7.09	8.44	10.7
TMCLKL	HY/2012/08	2017-03-02	Mid-Flood			1	Surface	1	1	2	10:40	17.2	_	27.4	7.13	8.46	10.4
		2017-03-02		- i		<b>-</b>		5.7	2	1		17.3	7.83		7.27	8.28	10.1
	HY/2012/08		Mid-Flood	Cloudy				5.7	2	2		17.4		27.6	7.33	8.24	10.4
			Mid-Flood					10.4	3	1	•	17.5	7.92		7.42	8	9.6
	HY/2012/08		Mid-Flood					10.4	3	2		17.6	7.96		7.36	8.02	10.3
TMCLKL	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1	•	17.2			6.84	8.47	11.5
	HY/2012/08		Mid-Flood				Surface	1	1	2		17.3	7.85		6.88	8.42	11.3
	HY/2012/08		Mid-Flood					4.7	2	1	•	17.4	_		7.08	8.65	11.6
	HY/2012/08		Mid-Flood					4.7	2	2	•	17.5			7.13	8.61	11.8
	HY/2012/08		Mid-Flood					8.4	2	1	•	17.5			7.15	8.57	11.3
	HY/2012/08		Mid-Flood	Cloudy				8.4	3	2	1	17.4			7.13	8.51	11.2
	HY/2012/08		Mid-Flood				Surface	1	1	1		17.4		27.4	7.17	8.14	10.8
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2		17.3	_	27.3	7.03	8.18	10.0
	HY/2012/08		Mid-Flood	Cloudy			Middle		2	1	09:18	17.3	7.07	21.3	7.03	0.10	10.9
			Mid-Flood				Middle		2	2	09:18	<del> </del>	-			+	+
	HY/2012/08 HY/2012/08		Mid-Flood					1 1	2	1		17.5	7.69	27.4	6.92	8.38	10.7
	HY/2012/08		Mid-Flood				Bottom Bottom	4.4 4.4	2	2					6.87	8.31	10.7
	HY/2012/08 HY/2012/08							4.4	ا ا	1		17.6			6.97	8.31	10.8
			Mid-Flood	Cloudy			Surface	1	1	2		17.4	7.58				11
	HY/2012/08		Mid-Flood				Surface	<u> </u>	2	1	•	17.5	7.61	27.5	6.99	8.38	+''
	HY/2012/08		Mid-Flood				Middle		2	1	09:35	1	-				+
	HY/2012/08		Mid-Flood			<b>-</b>	Middle	2.0	2	4	09:35	17.4	7.04	27.6	7.4	0.5	111
TMCLKL	HY/2012/08		Mid-Flood					3.6	ა ი	1	•	17.4		27.6	7.1	8.5	11
	HY/2012/08		Mid-Flood					3.6	<u>ا</u>	4		17.3			7.14	8.56	11
	HY/2012/08		Mid-Flood				Surface	1	1	1		17.2	7.75		6.94	8.24	10.6
	HY/2012/08		Mid-Flood				Surface	7	1	2	•	17.3			6.98	8.27	10.6
	HY/2012/08		Mid-Flood	i i				6.3	2	1		17.4	7.58		7.01	8.55	10.8
	HY/2012/08		Mid-Flood			<b>-</b>		6.3	2	2		17.5	7.63		7.05	8.6	11.3
	HY/2012/08		Mid-Flood	Cloudy		<b>-</b>		11.6	3	1	•	17.7	7.79		6.79	8.48	10.8
			Mid-Flood					11.6	3	2		17.7			6.83	8.51	11.1
		2017-03-02					Surface		1	1		17.4	7.75		6.83	8.73	12.9
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	<b>[</b> 1	2	13:46	17.3	7.79	27.5	6.87	8.7	12.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.6	2	1	13:46	17.4	7.81	27.5	6.95	8.3	12.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.6	2	2	13:46	17.5	7.86	27.6	6.99	8.36	12.3
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.2	3	1	13:46	17.6	7.94	27.7	7.13	8.47	12.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.2	3	2	13:46	17.7	7.97	27.8	7.19	8.5	12
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	15:55	17.5	7.94	27.5	6.66	8.35	12.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	2	15:55	17.6	7.97	27.5	6.69	8.4	12.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.5	2	1	15:55	17.7	7.5	27.6	6.95	8.41	12.6
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.5	2	2	15:55	17.8	7.55	27.6	6.99	8.45	12.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12	3	1	15:55	17.8	7.81	27.6	6.72	8.89	13.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12	3	2	15:55	17.9	7.87	27.7	6.78	8.81	12.6
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	14:19	17.4	7.64	27.5	7.02	8.11	11.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	14:19	17.5	7.66	27.6	7.08	8.15	10.8
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb		Small wave	IS12	Middle	6.1	2	1	14:19	17.6		27.6	7.13	8.28	11.3
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb			IS12	Middle	6.1	2	2	14:19	17.7	7.9	27.6	7.16	8.24	11.4
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb			•		11.2	3	1	14:19	17.8	7.51	27.7	7.03	8.5	11.5
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy		•		11.2	3	2	14:19	17.8		27.8	7.08	8.54	11.4
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	- i			Surface	1	1	1	14:36	17.4	•	27.5	6.56	8.61	12.2
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy			Surface	1	1	2	14:36	17.5		27.6	6.6	8.65	11.7
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	Cloudy				5.2	2	1	14:36	17.5		27.6	6.74	8.4	11.6
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb			IS13		5.2	2	2	14:36	17.6		27.7	6.78	8.44	11.4
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb					9.3	3	1	14:36	17.7	7.9	27.7	6.62	8.73	12
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb					9.3	3	2	14:36	17.8	7.94	27.7	6.65	8.77	12.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb				Surface	1	1	1	14:02	17.4	_	27.4	6.91	8.21	10.3
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb				Surface	1	1	2	14:02	17.4	7.96	27.5	6.95	8.27	10.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb			IS14		5.6	2	1	14:02	17.4	7.54	27.5	7.04	8.03	10.1
TMCLKL	HY/2012/08	2017-03-02	Mid-Ebb	<del> </del>				5.6	2	2	14:02	17.5	_	27.6	7.07	8.1	10.2
		2017-03-02						10.1	3	1	14:02		7.63		7.34	7.9	9.8
	HY/2012/08		Mid-Ebb					10.1	3	2		17.7	_	27.5	7.37	7.97	10
			Mid-Ebb				Surface	1	1	1	•	17.5	_	27.5	6.62	8.56	11.4
	HY/2012/08		Mid-Ebb			•	Surface	1	1	2		17.6		27.6	6.67	8.59	11.8
	HY/2012/08		Mid-Ebb	Cloudy		•		4.5	2	1		17.6		27.6	6.93	8.74	11.9
	HY/2012/08		Mid-Ebb			•		4.5	2	2		17.6		27.7	6.96	8.78	11.7
	HY/2012/08		Mid-Ebb	Cloudy		•		7.9	3	1		17.7	_	27.8	7.01	8.66	11.5
	HY/2012/08		Mid-Ebb					7.9	3	2	•	17.8		27.9	7.07	8.69	11.8
	HY/2012/08		Mid-Ebb			•	Surface	1	1	1	•	17.4		27.5	6.8	8.2	10.7
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2		17.4	7.88		6.84	8.24	10.4
	HY/2012/08		Mid-Ebb			SR8	Middle	<u> </u>	2	1	15:22	17.4	7.00	21.0	0.04	0.24	10.4
	HY/2012/08		Mid-Ebb	Cloudy			Middle		2	2	15:22						+
	HY/2012/08		Mid-Ebb	Cloudy		•	Bottom	1	2	1	15:22	17.5	7.95	27.6	6.74	8.45	11
	HY/2012/08		Mid-Ebb				Bottom	4	3	2	•	17.6		27.8	6.77	8.48	10.6
								4	1	1					6.88		10.6
	HY/2012/08 HY/2012/08		Mid-Ebb Mid-Ebb				Surface Surface	1	1	2		17.5 17.6		27.6 27.7	6.82	8.45 8.48	11
	HY/2012/08 HY/2012/08							<u> </u>	2	1	-	17.0	7.00	<u> </u>	0.0∠	0.40	+''
			Mid-Ebb	Cloudy		•	Middle Middle	-	2	2	15:07	+		1	<del> </del>	+	+
	HY/2012/08		Mid-Ebb				Middle	2.1	2	1	15:07	17.6	7 75	27.0	6.02	0.60	10.0
	HY/2012/08		Mid-Ebb					3.1	<u>ာ</u>	1		17.6		27.8	6.93	8.68	10.9
	HY/2012/08		Mid-Ebb					3.1	3	4	•	17.7		27.9	6.95	8.7	11.1
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1		17.5		27.5	6.77	8.33	10.6
	HY/2012/08		Mid-Ebb			•	Surface	6.0	1	4	•	17.6		27.4	6.71	8.37	10.8
	HY/2012/08		Mid-Ebb					6.2	2	1	•	17.7		27.6	6.89	8.67	11
	HY/2012/08		Mid-Ebb					6.2	2	4	•	17.8		27.7	6.93	8.69	11.5
	HY/2012/08		Mid-Ebb	i i				11.3	3	1		17.8			6.54	8.53	11.1
	HY/2012/08		Mid-Ebb					11.3	3	2		17.9		27.9	6.57	8.57	11.1
	HY/2012/08		Mid-Flood	Cloudy		•	Surface	1	1	1				27.6	7.61	8.25	11.9
			Mid-Flood				Surface	1	1	2		17.4		27.5	7.63	8.33	12.2
		2017-03-04					Middle		2	1			7.67		7.53	8.4	12
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS4	Middle	8.8	2	2	11:50	17.7	7.65	27.6	7.51	8.45	12.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.6	3	1	11:50	17.9	7.8	27.9	7.86	8.61	12.4
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.6	3	2	11:50	17.8	7.82	27.8	7.89	8.69	12.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	1	09:48	17.4	7.81	27.7	7.12	8.28	12
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	09:48	17.5	7.8	27.6	7.13	8.36	12.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.4	2	1	09:48	17.6	7.73	27.8	7.24	8.47	12.2
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.4	2	2	09:48	17.5	7.7	27.7	7.27	8.41	12.4
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	1	09:48	17.7	7.76	27.9	7.33	8.66	12.8
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	2	09:48	17.6	7.79	27.8	7.35	7.73	13.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	11:21	17.6		27.4	7.35	8.26	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	i i	Small wave	IS12	Surface	1	1	2	11:21	17.5		27.5	7.36	8.29	10.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy		IS12		6.5	2	1	11:21	17.7		27.6	7.21	8.41	11.2
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy		IS12		6.5	2	2	11:21	17.6		27.6	7.2	8.48	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood		Small wave	IS12		11.9	3	1	11:21	17.7		27.8	7.49	8.35	11
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood		Small wave			11.9	3	2	11:21	17.6	7.7	27.7	7.52	8.26	11
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	<u> </u>	Small wave	IS13	Surface	1	1	1	11:05	17.5		27.6	7.21	8.09	11.5
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave		Surface	1	1	2	11:05	17.6		27.5	7.24	8.01	11
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy		IS13		5.4	2	1	11:05	17.7		27.7	7.38	8.32	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	IS13		5.4	2	2	11:05	17.6	7.7	27.6	7.35	8.37	11.5
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	IS13		9.8	3	1	11:05	17.7	7.84	27.8	7.45	8.26	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood		Small wave	IS13		9.8	3	2	11:05	17.8		27.7	7.45	8.17	11.3
TMCLKL	HY/2012/08	2017-03-04		i i		IS13	Surface	J.O 1	1	1	•	17.4	_		7.49	8.31	10.1
			Mid-Flood		Small wave	•		1	   4	1	11:36		_	27.5			
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood			IS14	Surface	T 0	2	4	11:36	17.4		27.6	7.43	8.35	10.5
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	<u> </u>	Small wave	IS14		5.9	2	1	11:36	17.5	_	27.7	7.32	8.23	10.2
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood			IS14		5.9	2	2	11:36	17.4	7.66	27.6	7.3	8.29	10.4
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood			IS14		10.7	3	1	11:36	17.7		27.8	7.55	8.46	10.6
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood		Small wave		Bottom	10.7	3	2	11:36	17.8		27.7	7.57	8.52	10.3
			Mid-Flood	i i			Surface	1	1	1	•	17.4	7.72		7.35	8.37	11.5
	HY/2012/08		Mid-Flood	Cloudy		IS15	Surface	1	1	2	•	17.5	7.75		7.36	8.32	11.1
	HY/2012/08		Mid-Flood					4.9	2	1	•	17.5		27.6	7.47	8.25	11
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	IS15	Middle	4.9	2	2	10:48	17.5	7.87	27.5	7.49	8.18	11.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.7	3	1	10:48	17.6	7.8	27.7	7.54	8.57	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.7	3	2	10:48	17.5	7.81	27.8	7.57	8.61	11.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	10:20	17.4	7.69	27.7	7.34	8.06	10.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	10:20	17.5	7.72	27.6	7.38	8.13	10.8
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	10:20						
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	10:20						
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.6	3	1	10:20	17.4	7.76	27.7	7.56	8.23	10.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Flood	Cloudy		SR8	Bottom	4.6	3	2	10:20	17.3	7.75	27.7	7.59	8.29	11
	HY/2012/08		Mid-Flood	Cloudy		SR9	Surface	1	1	1	•	17.4		27.5	7.51	8.26	10.3
	HY/2012/08		Mid-Flood	<u> </u>		SR9	Surface	1	1	2	10:34	17.4	7.69		7.48	8.19	10.4
			Mid-Flood			SR9	Middle	1	2	1	10:34				<u> </u>		1
	HY/2012/08		Mid-Flood	<u> </u>		SR9	Middle		2	2	10:34						+
	HY/2012/08		Mid-Flood	Cloudy	Small wave	SR9		3.7	3	<u>-</u> 1	-	17.5	7.74	27.7	7.41	8.46	11
	HY/2012/08		Mid-Flood	<u> </u>		SR9		3.7	3	2	•	17.4		27.6	7.43	8.41	10.8
	HY/2012/08		Mid-Flood		Small wave		Surface	1	1	1	-	17.4	_	27.6	7.25	8.16	10.7
	HY/2012/08		Mid-Flood		Small wave	•	Surface	1	1	2	•	17.4		27.5	7.23	8.1	10.7
TMCLKL	HY/2012/08		Mid-Flood			•		6.4	2	1	•	17.4		27.7	7.23 7.16	8.28	10.8
	HY/2012/08	2017-03-04	Mid-Flood	Cloudy	Small wave	•		6.4	2	2	-	17.5		27.7	7.16	8.22	10.8
				<u> </u>	Small wave				2	1	-				7.14	8.34	11
	HY/2012/08		Mid-Flood		Small wave	•		11.8	<u>ာ</u>	2	-	17.6		27.8			
	HY/2012/08		Mid-Flood					11.8	<u>ا</u>	4	•	17.5	7.79		7.42	8.41	10.8
	HY/2012/08		Mid-Ebb				Surface	1	14	1	-	17.6	7.63		7.33	8.35	12.2
	HY/2012/08		Mid-Ebb			CS4	Surface	7	1	2	•	17.7		27.5	7.35	8.37	12.3
	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy		CS4		8.55	2	1	•	17.7		27.6	7.14	8.54	12
			Mid-Ebb			CS4		8.55	2	2	15:31	17.7		27.6	7.19	8.5	12.6
			Mid-Ebb					16.1	3	1		17.8		27.7	7.2	8.66	12.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.1	3	2	15:31	17.9	7.97	27.8	7.26	8.69	12.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	17:39	17.5	7.77	27.5	7.04	8.37	12.4
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	2	17:39	17.5	7.71	27.6	7.07	8.41	12.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.7	2	1	17:39	17.5	7.52	27.7	7.11	8.27	11.8
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.7	2	2	17:39	17.6	7.57	27.7	7.14	8.2	11.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.4	3	1	17:39	17.6	7.67	27.8	7.25	8.69	12.7
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.4	3	2	17:39	17.6	7.64	27.9	7.22	8.74	13.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	16:04	17.6	7.76	27.5	7.12	8.36	11.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	16:04	17.7	7.74	27.6	7.18	8.39	11.6
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.1	2	1	16:04	17.8	7.52	27.7	7.03	8.54	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.1	2	2	16:04	17.7	7.54	27.8	7.09	8.57	11.5
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	11.2	3	1	16:04	17.9	7.68	27.7	7.27	8.48	11.2
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	11.2	3	2	16:04	17.9	7.66	27.9	7.23	8.53	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb		Small wave	IS13	Surface	1	1	1	16:20	17.5		27.5	7.06	8.25	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb		Small wave	IS13	Surface	1	1	2	16:20	17.6		27.5	7.08	8.27	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb					5.2	2	1	16:20	17.7	7.9	27.6	7.2	8.43	11.7
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy				5.2	2	2	16:20	17.8		27.7	7.17	8.48	11.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy				9.2	3	1	16:20	17.9			7.13	8.33	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy				9.2	3	2	16:20	17.9	•	27.9	7.17	8.3	11.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy			Surface	1	1	1	15:47	17.6	7.81	27.5	7.32	8.44	10.6
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb				Surface	1	1	2	15:47	17.6		27.6	7.28	8.47	10.3
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb					5.65	2	1	15:47	17.7	-	27.6	7.07	8.3	10.2
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb					5.65	2	2	15:47	17.8		27.7	7.1	8.34	10.1
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb					10.3	3	1	15:47	17.8	•	27.7	7.16	8.58	10.6
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb					10.3	3	2	15:47	17.9	7.58		7.19	8.6	10.9
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb				Surface	1	1	1	16:36	17.6	•	27.4	7.21	8.38	11
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	<del> </del>			Surface	1	1	2	16:36	17.6	_	27.3	7.25	8.42	11.3
								4.7	2	1		17.7	7.84		7.08	8.27	10.9
	HY/2012/08		Mid-Ebb					4.7	2	2		17.8	7.88		7.02	8.3	11.1
	HY/2012/08		Mid-Ebb					8.3	3	1	•	17.9	_		7.24	8.62	11.9
			Mid-Ebb					8.3	3	2		17.8	•	27.7	7.29	8.66	11.8
TMCLKL	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy			Surface	1	1	1	•	17.5	-	27.4	7.48	8.24	10.5
	HY/2012/08		Mid-Ebb				Surface	1	1	2		17.4	•	27.5	7.42	8.29	10.8
	HY/2012/08		Mid-Ebb				Middle	<del> </del>	2	1	17:10	17.4	1.02	21.0	7.42	0.23	10.0
	HY/2012/08		Mid-Ebb				Middle		2	2	17:10						+
	HY/2012/08		Mid-Ebb					4.1	2	1	1	17.6	7.9	27.6	7.03	8.33	11
	HY/2012/08		Mid-Ebb	Cloudy				4.1	3	2	1	17.6	-	27.6	7.08	8.35	10.8
	HY/2012/08		Mid-Ebb				Surface	1	1	1		17.5	•	27.4	7.00	8.37	11
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2	•	17.6	7.73		7.37	8.46	11.1
	HY/2012/08		Mid-Ebb	Cloudy			Middle		2	1	16:53	17.0	1.13	21.4	1.31	0.40	111.1
	HY/2012/08		Mid-Ebb				Middle		2	2	16:53	1	<del>                                     </del>	1			+
								2.2	2	1		17.6	7.53	27.5	7.48	8.55	11.2
	HY/2012/08 HY/2012/08		Mid-Ebb Mid-Ebb				Bottom Bottom	3.2	2	2		17.6	•	27.5 27.4	7.48 7.54	8.59	11.1
	HY/2012/08 HY/2012/08		Mid-Ebb					ა.∠ 1	ا ا	1		17.6			7.54 7.01	8.39	10.9
				Cloudy			Surface	1	1	2	1	17.5	-			-	
	HY/2012/08		Mid-Ebb				Surface	6.2	1	1	•	17.6			7.05	8.44	11.2
	HY/2012/08		Mid-Ebb					6.3	2	1		17.6		27.8	7.22	8.57	11.3
	HY/2012/08		Mid-Ebb					6.3	2	4	•	17.7		27.9	7.27	8.5	11
TMCLKL			Mid-Ebb					11.5	ა ი	1		17.8		27.7	7.08	8.46	10.7
	HY/2012/08	2017-03-04	Mid-Ebb	Cloudy				11.5	<u>ی</u> ا	4		17.7			7.05	8.49	11.1
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1		17.2	7.88		7.4	7.45	10.9
	HY/2012/08		Mid-Flood				Surface	1	1	4	•	17.1	7.85		7.42	7.39	10.4
	HY/2012/08		Mid-Flood					8.9	2	1		17.4		28.2	7.34	7.59	11
	HY/2012/08		Mid-Flood					8.9	2	2		17.3	-	28.3	7.31	7.52	11.1
	HY/2012/08	2017-03-07	Mid-Flood	Cloudy				16.7	3	1		17.5			7.54	7.84	11.4
			Mid-Flood					16.7	3	2		17.4		28.3	7.55	7.88	11.5
		2017-03-07	Mid-Flood	ž – ž			Surface		1	1			8.04		7.46	7.68	11
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	11:51	17.2	8.05	28.1	7.47	7.6	11.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	1	11:51	17.3	7.95	28.2	7.28	7.34	10.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	2	11:51	17.3	7.92	28.1	7.26	7.43	10.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.9	3	1	11:51	17.4	8.02	28.3	7.33	7.29	10.5
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.9	3	2	11:51	17.3	8	28.2	7.31	7.36	11
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	13:21	17.2	7.86	28.2	7.25	7.27	9.9
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	13:21	17.1	7.89	28.1	7.28	7.22	9.8
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.6	2	1	13:21	17.3	7.72	28.3	7.33	7.36	10
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.6	2	2	13:21	17.2	7.74	28.2	7.36	7.43	9.9
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.1	3	1	13:21	17.4	7.91	28.3	7.46	7.52	10.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS12	Bottom	12.1	3	2	13:21	17.4	7.92	28.4	7.49	7.58	10.2
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	13:06	17.1	7.95	28.1	7.29	7.48	10.4
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	13:06	17	7.91	28.1	7.27	7.41	10
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave		Middle	5.7	2	1	13:06	17.2	8.07	28.2	7.23	7.57	10.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave	IS13	Middle	5.7	2	2	13:06	17.2		28.1	7.2	7.52	10.5
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave	•		10.4	3	1	13:06	17.3	8.01	28.3	7.46	7.32	10.2
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	•	Bottom	10.4	3	2	13:06	17.4	8.03	28.2	7.43	7.38	10.5
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy			Surface	1	1	1	13:48	17.1	7.94	28.2	7.34	7.3	9.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy			Surface	1	1	2	13:48	17.1		28.3	7.38	7.36	9.3
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave			5.8	2	1	13:48	17.2	_	28.4	7.42	7.43	9.3
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave	IS14		5.8	2	2	13:48	17.2	8.01	28.3	7.44	7.38	9.3
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave			10.5	3	1	13:48	17.4	_	28.5	7.56	7.67	9.4
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood					10.5	3	2	13:48	17.3	7.9	28.4	7.58	7.75	9.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave		Surface	1	1	1	12:51	17.1		28.1	7.32	7.21	9.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave		Surface	1	1	2	12:51	17.2	_	28	7.34	7.27	9.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood		Small wave			4.9	2	1	12:51	17.2	7.96	28.1	7.5	7.34	9.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	<del> </del>	Small wave			4.9	2	2	12:51	17.2	_	28.1	7.51	7.38	9.9
			Mid-Flood	- i		•	Bottom		3	1		17.3	_		7.46	7.55	10.4
	HY/2012/08		Mid-Flood	Cloudy				8.8	3	2		17.2		28.2	7.45	7.62	10.5
	HY/2012/08		Mid-Flood			•	Surface	1	1	1	•	17.1		27.9	7.37	7.32	9.2
	HY/2012/08		Mid-Flood			•	Surface	1	1	2	1	17			7.39	7.25	9.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Flood	Cloudy	Small wave	SR8	Middle	<del> </del>	2	1	12:22	1''	7.04	27.0	7.00	7.20	- 0.0
	HY/2012/08		Mid-Flood	Cloudy		•	Middle		2	2	12:22	1					+
	HY/2012/08		Mid-Flood	Cloudy				4.8	3	1		17.2	7.88	27.0	7.46	7.48	9.9
	HY/2012/08		Mid-Flood					4.8	3	2	•	17.1	_	28	7.49	7.53	10
	HY/2012/08		Mid-Flood			•	Surface	1	1	1	•	17.1	7.93		7.47	7.38	9.2
	HY/2012/08		Mid-Flood	Cloudy		•	Surface	1	1	2	•	17.2	7.96		7.45	7.32	9.2
	HY/2012/08		Mid-Flood	· · · · · · · · · · · · · · · · · · ·		SR9	Middle	<u> </u>	2	1	12:35	17.2	7.90	20	7.43	1.52	9.2
	HY/2012/08		Mid-Flood	Cloudy			Middle		2	2	12:35						+
	HY/2012/08		Mid-Flood	Cloudy				3.6	3	1	•	17.2	7.98	28.1	7.34	7.46	9.3
	HY/2012/08		Mid-Flood		Small wave			3.6	3	2	12:35	17.2	_	28.1	7.34	7.51	9.3
	HY/2012/08		Mid-Flood			•	Surface	J.U 1	1	1	12:07	17.1	7.96		7.35	7.59	9.4
	HY/2012/08		Mid-Flood		Small wave			1	1	2	1	17.1	7.96		7.35	7.59 7.52	9.8
	HY/2012/08 HY/2012/08		Mid-Flood		Small wave		Surface Middle	7 1	2	1					7.25	7.52 7.18	9.5
				Cloudy	Small wave			7.1	2	2		17.2		28.2			
	HY/2012/08		Mid-Flood		Small wave	•		7.1	2	1	•	17.1		28.1	7.28	7.24	9.1
	HY/2012/08		Mid-Flood		Small wave			13.1	<u>ာ</u>	1		17.3	8.06		7.14	7.31	9.4
	HY/2012/08		Mid-Flood		Small wave			13.1	<u>ی</u> ا	4	•	17.2		28.2	7.11	7.34	9.5
TMCLKL			Mid-Ebb				Surface	1	1	1	•	17.1		27.9	7.26	7.84	11.6
	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy			Surface	0.7	1	4		17.1	7.99		7.23	7.92	11.6
	HY/2012/08		Mid-Ebb	Cloudy				8.7	2	1		17.2	8.03		7.18	7.59	11.2
	HY/2012/08		Mid-Ebb					8.7	2	4	•	17.2		28.2	7.14	7.63	10.8
	HY/2012/08		Mid-Ebb	i i				16.4	3	1		17.3		28.3	7.32	8.12	11.8
	HY/2012/08		Mid-Ebb					16.4	3	2		17.2	7.95		7.35	8.23	11.8
	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy		•	Surface	1	1	1		17.2	7.98		7.23	7.69	11.3
			Mid-Ebb				Surface	1	1	2	09:35	17.2		28.1	7.19	7.72	11.3
			Mid-Ebb				Middle		2	1			8.04		7.27	7.44	11.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.7	2	2	09:35	17.2	8.07	28.1	7.3	7.5	10.8

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.4	3	1	09:35	17.2	7.99	28.2	7.17	7.38	10.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.4	3	2	09:35	17.3	8.01	28.2	7.14	7.42	10.8
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	08:34	17.1	7.93	28	7.16	7.47	10
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	08:34	17.1	7.98	27.9	7.17	7.53	10.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.4	2	1	08:34	17.1	7.95	28.1	7.2	7.22	9.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.4	2	2	08:34	17.2	7.99	28	7.23	7.27	10.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	11.7	3	1	08:34	17.2	7.86	28.2	7.29	7.8	10.5
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	11.7	3	2	08:34	17.2	7.89	28.2	7.34	7.67	10.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	08:43	17.2	8.03	28	7.17	7.66	10.4
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	2	08:43	17.1	7.98	28	7.14	7.71	10.8
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.5	2	1	08:43	17.2	7.93	28	7.19	7.45	10
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.5	2	2	08:43	17.2	7.99	28.1	7.22	7.4	10.2
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10	3	1	08:43	17.2	8.01	28.2	7.3	7.8	10.8
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10	3	2	08:43	17.3	7.97	28.2	7.27	7.89	11
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	08:23	17.1	8.02	28	7.21	7.68	9.6
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	2	08:23	17.2	8	28	7.18	7.72	9.9
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy			Middle	5.5	2	1	08:23	17.2	7.94	28	7.26	7.28	9.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy				5.5	2	2	08:23	17.3		28.1	7.27	7.34	9.4
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy			Bottom	10	3	1	08:23	17.3	_	28.2	7.31	7.93	9.7
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb				Bottom	10	3	2	08:23	17.3		28.3	7.33	7.99	10.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb				Surface	1	1	1	08:54	17.2	_	28	7.22	7.47	9.9
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb				Surface	1	1	2	08:54	17.2	_	28	7.18	7.52	10.3
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb			•		4.7	2	1	08:54	17.2		28	7.28	7.36	10.1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb					4.7	2	2	08:54	17.2	7.9	28.1	7.31	7.4	9.9
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb			•		8.4	3	1	08:54	17.2	7.93	28.2	7.37	7.71	10.4
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	<del> </del>				8.4	3	2	08:54	17.3	_	28.2	7.39	7.78	10.6
							Surface		1	1		17.2	7.89		7.36	7.66	9.9
	HY/2012/08		Mid-Ebb				Surface	1	1	2		17.2	7.98		7.32	7.71	9.9
			Mid-Ebb			•	Middle		2	1	09:21	1	1.00				
	HY/2012/08		Mid-Ebb				Middle		2	2	09:21						1
TMCLKL	HY/2012/08	2017-03-07	Mid-Ebb	Cloudy				4.4	3	1	-	17.2	7.97	28	7.21	7.45	9.9
	HY/2012/08		Mid-Ebb			•		4.4	3	2		17.2		28	7.16	7.51	9.8
	HY/2012/08		Mid-Ebb				Surface	1	1	1		17.2	8.02		7.28	7.58	10
	HY/2012/08		Mid-Ebb				Surface	1	1	2	•	17.2	8.04		7.25	7.5	9.4
	HY/2012/08		Mid-Ebb				Middle		2	1	09:05	1	0.0.		0	1.0	
	HY/2012/08		Mid-Ebb	Cloudy			Middle		2	2	09:05						
	HY/2012/08		Mid-Ebb			•		3.2	3	1		17.2	8.01	28	7.2	7.7	9.6
	HY/2012/08		Mid-Ebb	Cloudy				3.2	3	2		17.2	8.05		7.17	7.63	9.9
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	1		17.2		27.9	7.27	7.85	10.1
	HY/2012/08		Mid-Ebb				Surface	1	1	2	•	17.1	7.94		7.23	7.8	10.1
			Mid-Ebb	Cloudy				6.8	2	1		17.2	7.95		7.16	7.62	9.8
	HY/2012/08		Mid-Ebb					6.8	2	2		17.2	7.91		7.10	7.67	9.7
			Mid-Ebb	Cloudy	Small wave	•		12.6	3	1	-	17.2			7.36	7.98	10.1
	HY/2012/08		Mid-Ebb	Cloudy				12.6	3	2		17.3		28.2	7.31	8.04	10.1
	HY/2012/08		Mid-Flood				Surface	1	1	1	•	18	8.08		6.8	8.84	12.9
	HY/2012/08		Mid-Flood				Surface	1	1	2			8.02		6.79	8.81	12.7
TMCLKL			Mid-Flood			•		8.9	2	1	-	17.9	8.04		6.67	8.53	12.7
	HY/2012/08		Mid-Flood	Cloudy		•		8.9	2	2		17.9	8.03		6.69	8.59	12.6
	HY/2012/08		Mid-Flood			1		16.7	3	1		18.1	7.97		6.58	8.78	12.0
	HY/2012/08		Mid-Flood					16.7	ე ვ	2	•	18.1	7.97		6.59	8.77	13
								10.7	3	1	•				6.78		11.4
			Mid-Flood				Surface	1		2		17.6				7.99	
	HY/2012/08		Mid-Flood				Surface	6.0		1		17.6		27.9	6.8	7.98	11.6
			Mid-Flood	Cloudy				6.9		1		17.6		27.9	6.98	8.13	12.1
			Mid-Flood					6.9		1		17.7	7.89		6.96	8.12	11.9
		2017-03-09						12.7		1	14:39		7.53		6.54	8.24	12.3
TMCLKL	HY/2012/08	2017-03-09	IVIIa-Flood	Cloudy	Small wave	US6	Bottom	12./		2	14:39	17.8	7.56	28	6.56	8.26	12.2

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	16:25	17.9	7.83	27.9	6.83	8.26	11.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	16:25	17.9	7.82	28	6.88	8.25	11
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.3	2	1	16:25	18	7.93	28.1	6.53	8.35	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave	IS12	Middle	6.3	2	2	16:25	18.1	7.94	28.1	6.56	8.34	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11.2	3	1	16:25	18.1	7.55	28.2	6.99	8.64	11.5
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave			11.2	3	2	16:25	18.2		28.2	7.02	8.65	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave		Surface	1	1	1	16:11	17.8		28	6.88	8.03	11.2
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood				Surface	1	1	2	16:11	17.8		27.9	6.87	8.02	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave			5.2	2	1	16:11	17.8		28	6.71	8.43	11.6
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	i – –				5.2	2	2	16:11	17.9		27.9	6.73	8.42	11.9
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood					9.4	3	1	16:11	17.9		27.8	6.56	8.56	11.9
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy		•		9.4	3	2	16:11	18		27.7	6.53	8.58	12
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood				Surface	1	1	1	16:39	18	7.9	28.1	6.94	8.64	10.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave	•	Surface	1	1	2	16:39	18.1		28	6.95	8.65	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave			5.8	2	1	16:39	18.1		28.2	6.75	8.43	10.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave		-	5.8	2	2	16:39	18.1		28.2	6.76	8.42	10.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy		•		10.6	3	1	16:39	18.1	_	28.3	6.43	8.95	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy				10.6	3	2	16:39	18.1	7.09	28.2	6.45	8.97	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave		Surface	10.0	1	1	15:57	17.7	_	27.9	6.78	8.16	11.3
TMCLKL	HY/2012/08	2017-03-09					Surface	1	1	2	15:57	17.8	7.86	27.8	6.76	8.15	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave Small wave			1 1 0	2	1	15:57	17.8		28.1	7.32	8.52	11.4
			Mid-Flood					4.8	2	1	•						
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood				-	4.8	2	4		17.8	7.97	28.1	7.36	8.53	11.6
	HY/2012/08	2017-03-09	Mid-Flood		Small wave			8.5	3	1	15:57	17.8	_	27.8	6.99	8.12	11
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave			8.5	3	2	15:57	17.9		27.8	7.03	8.13	10.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave		Surface	1	1	1	15:35	17.7	7.5	28.1	6.8	7.93	10
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood		Small wave		Surface	1	1	2	15:35	17.7	7.53	28.1	6.78	7.94	10.2
			Mid-Flood	i i		•	Middle		2	1	15:35						
	HY/2012/08		Mid-Flood	Cloudy			Middle		2	2	15:35						
	HY/2012/08		Mid-Flood			-		4.8	3	1		17.8		28.2	6.97	8.25	10.9
	HY/2012/08		Mid-Flood		Small wave			4.8	3	2	15:35	17.9		28.2	6.98	8.27	10.4
	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave		Surface	1	1	1	15:47	17.6		27.9	6.95	8.33	10.7
TMCLKL	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	15:47	17.7	7.81	27.9	6.97	8.34	10.9
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy		-	Middle		2	1	15:47						
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	15:47						
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.8	3	1	15:47	17.8	7.93	28.1	6.88	8.51	10.6
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.8	3	2	15:47	17.8	7.91	28.1	6.87	8.5	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	15:06	17.7	7.63	28	6.63	7.82	10
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	15:06	17.7	7.64	28.1	6.64	7.86	10.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.3	2	1	15:06	17.7	7.77	28	6.33	7.9	10.5
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.3	2	2	15:06	17.7	7.78	28	6.32	7.92	10.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	11.5	3	1	15:06	17.8	7.81	27.9	6.81	8.15	10.6
TMCLKL	HY/2012/08	2017-03-09	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	11.5	3	2	15:06	17.8	7.83	27.8	6.8	8.16	10.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	1	10:23	17.6	7.78	27.7	6.95	8.74	12.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	10:23	17.6	7.76	27.6	6.96	8.78	13
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.7	2	1	10:23	17.5	7.84	27.8	7.08	8.86	13.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.7	2	2	10:23	17.4	7.85		7.09	8.95	13.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.4	3	1	10:23	17.8	7.72	27.9	7.17	8.52	12.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy		CS4	Bottom	16.4	3	2		17.8	7.75		7.14	8.59	12.5
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	12:26	17.4		27.7	6.75	8.45	12.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Surface	1	1	2	12:26	17.3		27.8	6.77	8.49	12.1
	HY/2012/08		Mid-Ebb					6.7	2	1	•	17.5		27.9	6.83	8.67	13
	HY/2012/08		Mid-Ebb					6.7	2	2	12:26	17.4		27.8	6.85	8.72	12.8
	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy				12.3	3	1	12:26	17.7	7.86		6.91	8.88	13
	HY/2012/08		Mid-Ebb	i i				12.3	3	2	12:26	17.7		27.9	6.92	8.93	13
		2017-03-09					Surface	1	1	1				27.6	6.84	8.35	11.1
					Small wave		Surface				10:56				6.81	8.43	11.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.1	2	1	10:56	17.6	7.86	27.7	6.74	8.61	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.1	2	2	10:56	17.5	7.85	27.6	6.75	8.67	11.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	11.2	3	1	10:56	17.7	7.83	27.8	6.91	8.72	11.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb			IS12	Bottom	11.1	3	2	10:56	17.6	7.8	27.7	6.92	8.81	12.2
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	11:11	17.5	7.73	27.7	7.01	8.47	11.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Surface	1	1	2	11:11	17.6		27.6	7	8.41	11.9
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Middle	5.1	2	1	11:11	17.6		27.8	6.82	8.63	11.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb					5.1	2	2	11:11	17.5		27.7	6.86	8.56	11.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy				9.1	3	1	11:11	17.7		27.9	6.93	8.7	12
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb			1		9.1	3	2	11:11	17.6		27.8	6.96	8.74	12.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Surface	1	1	1	10:40	17.6		27.7	6.74	8.51	10.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy		1	Surface	1	1	2	10:40	17.5	_		6.76	8.57	10.6
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb					5.5	2	1	10:40	17.7		27.7	6.8	8.42	10.2
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb			1		5.5	2	2	10:40	17.6		27.7	6.81	8.38	10.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Bottom	10	3	<u>-</u> 1	10:40	17.7		27.8	6.87	8.69	10.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb				Bottom	10	3	2		17.7		27.7	6.88	8.63	10.5
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy			Surface	1	1	1	11:26	17.5			6.93	8.31	11.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy			Surface	1	1	2	11:26	17.4		27.5	6.9	8.35	11.4
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy		<b>-</b>		8.6	2	1	11:26	17.4	7.73	27.7	7.03	8.72	11.9
									2	2	•						
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb			IS15		8.6	2	4	11:26	17.6	7.83	27.8	7.05	8.78	11.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb					8.1	3	1	11:26	17.8		27.9	6.85	8.46	11.2
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb					8.1	3	2	11:26	17.7		27.8	6.83	8.39	11.6
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb		Small wave		Surface	1	1	1	11:55	17.4		27.7	6.91	8.54	10.8
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb		Small wave		Surface	1	1	2	11:55	17.5	7.78	27.6	6.92	8.61	11.1
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb		Small wave	SR8	Middle		2	1	11:55						<del></del>
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb		Small wave		Middle		2	2	11:55						
		2017-03-09					Bottom		3	1		17.5	7.84		7.01	8.44	10.8
	HY/2012/08		Mid-Ebb			<b>-</b>		4.3	3	2	•	17.6	7.86		7.04	8.49	10.8
			Mid-Ebb				Surface	1	1	1	•	17.4		27.7	6.84	8.69	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy			Surface	1	1	2	11:41	17.4	7.72	27.7	6.85	8.62	11.2
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	1	11:41						
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	2	11:41						
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	1	11:41	17.5	7.74	27.7	6.71	8.84	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	2	11:41	17.4	7.77	27.8	6.7	8.78	11.3
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	12:09	17.3	7.84	27.6	6.82	8.36	10.7
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	12:09	17.3	7.88	27.7	6.84	8.42	11
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.1	2	1	12:09	17.5	7.91	27.6	6.71	8.59	11
TMCLKL	HY/2012/08	2017-03-09	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.1	2	2	12:09	17.4	7.92	27.7	6.7	8.52	10.7
	HY/2012/08		Mid-Ebb	Cloudy				11.2	3	1	•	17.6		27.8	6.59	8.63	11.4
	HY/2012/08		Mid-Ebb					11.2	3	2	1	17.7	7.78		6.62	8.69	11.1
	HY/2012/08		Mid-Flood				Surface	1	1	1		18	7.76		7.47	5.36	7.7
	HY/2012/08		Mid-Flood				Surface	1	1	2		18	7.72		7.5	5.42	8
	HY/2012/08		Mid-Flood	Cloudy				8.9	2	1	•	18		28.1	7.42	5.67	8.2
			Mid-Flood					8.9	2	2	•	17.9		28.1	7.38	5.72	8.2
	HY/2012/08		Mid-Flood	Cloudy				16.8	3	1		18.1	_	28.2	7.56	5.93	8.8
	HY/2012/08		Mid-Flood					16.8	3	2	•	18.1		28.2	7.51	5.99	8.8
TMCLKL			Mid-Flood				Surface	1	1	1	•	17.9		27.8	7.37	5.28	7.9
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	16:26	18		27.9	7.34	5.36	7.8
	HY/2012/08		Mid-Flood	Cloudy				6.9	2	1	16:26	18.1		27.9	7.41	5.67	8.4
	HY/2012/08		Mid-Flood					6.9	2	2	16:26	18		27.9	7.41	5.74	8.4
									2	1	•			28	7. <del>44</del> 7.51	5.74	8.4
	HY/2012/08		Mid-Flood	i i				12.8	<u>၂</u>	2	•	18.1					
	HY/2012/08		Mid-Flood			<b>-</b>		12.8	<u>ا</u>	1	16:26	18.1		28	7.54	5.98	8.6
	HY/2012/08		Mid-Flood			1	Surface	4	1	1		17.9		27.8	7.48	5.38	7.3
			Mid-Flood				Surface	0.5	1	4		17.9		27.9	7.51	5.44	7.3
			Mid-Flood				Middle		2	1	17:49		7.78		7.46	5.63	7.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	1812	Middle	6.5	2	2	17:49	18	7.81	28	7.4	5.7	7.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11.9	3	1	17:49	18.1	7.76	28.1	7.56	5.9	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11.9	3	2	17:49	18.1	7.79	28.1	7.59	5.82	7.8
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	17:34	18	7.73	27.9	7.46	5.51	7.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	17:34	18	7.69	28	7.44	5.57	7.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.8	2	1	17:34	18	7.63	28	7.38	5.66	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.8	2	2	17:34	18	7.66	28	7.35	5.6	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.6	3	1	17:34	18.1	7.59	28.1	7.51	5.83	8.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.6	3	2	17:34	18.1	7.63	28.1	7.54	5.89	8.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	18:03	18	7.74	27.9	7.56	5.4	6.5
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	18:03	17.9	7.76	28	7.53	5.47	6.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.8	2	1	18:03	18	7.7	28	7.47	5.56	6.8
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.8	2	2	18:03	18	7.73	28	7.44	5.61	6.8
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.6	3	1	18:03	18.1	7.74	28.1	7.5	5.76	7.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.6	3	2	18:03	18.1	7.77	28.1	7.53	5.83	7.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	17:19	18	7.69	27.9	7.37	5.62	7.4
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	17:19	18	7.72	27.8	7.4	5.55	7.7
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	Cloudy			Middle	5	2	1	17:19	18	_	27.9	7.44	5.41	7.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood				Middle	5	2	2	17:19	18	7.6	27.9	7.47	5.35	7.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	<u> </u>				9	3	1	17:19	18.1	_	28	7.55	5.76	7.7
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood				Bottom	9	3	2	17:19	18.1		28	7.58	5.81	8
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood		Small wave		Surface	1	1	1	17:02	18	_	27.8	7.41	5.58	7.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	<u> </u>			Surface	1	1	2	17:02	18	7.8	27.9	7.38	5.63	7.4
	HY/2012/08	2017-03-11	Mid-Flood		Small wave		Middle		2	1	17:02						
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	<u> </u>			Middle		2	2	17:02						
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood		Small wave			4.8	3	1	17:02	18	7.77	27.9	7.35	5.77	7.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Flood	† – <u>*</u> – – – –	Small wave			4.8	3	2	17:02	18	7.8	27.9	7.3	5.82	7.4
			Mid-Flood				Surface		1	1	17:10	•	7.76		7.35	5.43	7
	HY/2012/08		Mid-Flood				Surface	1	1	2		17.9		27.9	7.32	5.51	7
	HY/2012/08		Mid-Flood				Middle		2	1	17:10	1					
			Mid-Flood				Middle		2	2	17:10						
	HY/2012/08	2017-03-11	Mid-Flood	Cloudy				3.8	3	1		18	7.73	27.9	7.27	5.66	7.4
	HY/2012/08	2017-03-11	Mid-Flood					3.8	3	2		18		28	7.24	5.72	7.2
	HY/2012/08	2017-03-11	Mid-Flood	<u> </u>			Surface	1	1	1		17.9	•	27.8	7.27	5.48	7.2
	HY/2012/08		Mid-Flood				Surface	1	1	2	•	17.9		27.8	7.31	5.51	7.3
			Mid-Flood	Cloudy				6.8	2	1	•	17.9		27.8	7.33	5.59	7.3
	HY/2012/08	2017-03-11	Mid-Flood	Cloudy				6.8	2	2		18		27.9	7.36	5.64	7.2
	HY/2012/08	2017-03-11	Mid-Flood					12.6	3	1	•	18.1		27.9	7.42	5.86	7.7
	HY/2012/08		Mid-Flood	Cloudy				12.6	3	2		18	_	28	7.43	5.91	7.8
	HY/2012/08		Mid-Ebb	Cloudy			Surface	12.0	1	1		17.8		28.1	7.39	5.56	8.1
	HY/2012/08	2017-03-11	Mid-Ebb	<u> </u>			Surface	1	1	2	•	17.7	_	28.2	7.35	5.5	8
			Mid-Ebb					8.7	2	1		17.8		28.2	7.26	5.87	8.4
	HY/2012/08		Mid-Ebb					8.7	2	2		17.8		28.2	7.3	5.8	8.6
	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy				16.4	3	1		17.9		28.3	7.45	6.09	8.7
			Mid-Ebb	<u> </u>				16.4	3	2	•	17.9		28.2	7.43	6.04	8.8
	HY/2012/08		Mid-Ebb				Surface	1	1	1		17.7	_	27.9	7.42	5.48	8
	HY/2012/08		Mid-Ebb				Surface	1	1	2		17.7		27.9	7.25	5.41	8
		2017-03-11	Mid-Ebb					6.8	2	1	•	17.8		28	7.25	5.78	8.2
	HY/2012/08 HY/2012/08	2017-03-11	Mid-Ebb	Cloudy				6.8	2	2		17.7		27.9	7.32	5.73	8.3
			Mid-Ebb	Cloudy		1		12.5	2	1		17.8	7.74		7.41	6.08	8.7
	HY/2012/08 HY/2012/08		Mid-Ebb					12.5	ა ვ	2		17.8	7.76		7.41	6.01	8.6
								14.U 1	1	1	•				7.35		7.2
	HY/2012/08		Mid-Ebb				Surface	1	1	2		17.7		28		5.48	
	HY/2012/08		Mid-Ebb				Surface	6.0	1	1	•	17.7		27.9	7.37	5.53	7.3
	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy				6.2	2	1		17.8		28.1	7.46	5.82	7.9
			Mid-Ebb					6.2	2	4		17.7		28.1	7.43	5.89	7.9
			Mid-Ebb				Bottom		3	1	12:24			28.2	7.46	5.92	8.2
LMCLKL	HY/2012/08	2017-03-11	MIG-Fpp	Cloudy	Small wave	1812	Bottom	11.4	3	2	12:24	17.8	7.77	28.2	7.44	5.99	8.2

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	12:43	17.7	7.7	27.9	7.32	5.68	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	2	12:43	17.7	7.73	28	7.35	5.62	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.6	2	1	12:43	17.8	7.63	28	7.22	5.79	8.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.6	2	2	12:43	17.7	7.65	28	7.24	5.73	7.7
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.2	3	1	12:43	17.8	7.64	28.1	7.4	5.99	8.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.2	3	2	12:43	17.8	7.6	28.1	7.43	5.92	8.4
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	12:05	17.7	7.73	28	7.42	5.53	7
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	2	12:05	17.7	7.76	28	7.4	5.59	7.2
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.7	2	1	12:05	17.8	7.71	28.1	7.36	5.66	7.1
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.7	2	2	12:05	17.7	7.73	28	7.33	5.7	7
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.3	3	1	12:05	17.8	7.75	28.2	7.39	5.85	7.1
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.3	3	2	12:05	17.8	7.78	28.1	7.41	5.91	7.4
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	13:02	17.7	7.74	27.9	7.29	5.66	7.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	13:02	17.7	7.7	27.9	7.26	5.72	7.6
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave	IS15	Middle	4.8	2	1	13:02	17.7	7.61	28	7.32	5.55	7.5
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy				4.8	2	2	13:02	17.8		28	7.34	5.48	7.5
	HY/2012/08		Mid-Ebb	Cloudy				8.6	3	1	13:02	17.8	_	28.1	7.46	5.92	7.9
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy				8.6	3	2	13:02	17.8		28	7.43	5.87	8
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb		Small wave		Surface	1	1	1	13:32	17.7	_	27.9	7.27	5.75	7.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb		Small wave		Surface	1	1	2	13:32	17.7		27.9	7.3	5.71	7.3
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave		Middle		2	1	13:32						
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	2	13:32			1	i	1	1
	HY/2012/08	2017-03-11	Mid-Ebb		Small wave			4.5	3	1	13:32	17.7	7.81	28	7.2	5.95	7.7
	HY/2012/08	2017-03-11	Mid-Ebb					4.5	3	2	13:32	17.8	_	28	7.23	5.9	7.4
TMCLKL	HY/2012/08	2017-03-11	Mid-Ebb				Surface	1	1	1	13:19	17.7		28	7.24	5.53	7.2
	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	13:19	17.7	_	27.9	7.22	5.5	6.9
							Middle		2	1	13:19						
	HY/2012/08		Mid-Ebb	Cloudy			Middle		2	2	13:19						
	HY/2012/08		Mid-Ebb					3.5	3	1	-	17.8	7.75	28	7.14	5.8	7.2
			Mid-Ebb					3.5	3	2		17.7		28	7.11	5.74	7.4
	HY/2012/08	2017-03-11	Mid-Ebb	Cloudy			Surface	1	1	1		17.7		27.9	7.2	5.64	7.1
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2		17.7		27.9	7.23	5.59	7.1
	HY/2012/08		Mid-Ebb	Cloudy				6.6	2	1		17.7	7.72		7.24	5.72	7.2
	HY/2012/08		Mid-Ebb					6.6	2	2	•	17.8		27.9	7.21	5.67	7.5
			Mid-Ebb					12.2	3	1	•	17.8	7.73		7.3	5.97	7.7
			Mid-Ebb	Cloudy				12.2	3	2		17.8		28.1	7.32	6.02	7.6
	HY/2012/08		Mid-Flood				Surface	1	1	1	•	19		28	7.49	5.4	7.7
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2		18.9	_	27.9	7.53	5.34	7.7
	HY/2012/08		Mid-Flood				-	9	2	<u>-</u> 1	•	19.1	_	28.1	7.44	5.66	8.1
	HY/2012/08		Mid-Flood					9	2	2	09:46	19.1	_	28.1	7.42	5.71	8
	HY/2012/08		Mid-Flood					17	3	<u>-</u> 1	09:46	19.2		28.2	7.58	5.98	8.6
	HY/2012/08		Mid-Flood					17	3	2	09:46	19.2		28.1	7.54	5.92	8.4
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	<u>-</u> 1	•	18.9		27.8	7.35	5.35	7.6
			Mid-Flood				Surface	1	1	2	07:58	18.9	_	27.8	7.37	5.31	7.5
	HY/2012/08		Mid-Flood	Cloudy			Middle	7	2	1	•	19	_	27.9	7.46	5.7	8.3
	HY/2012/08		Mid-Flood				Middle	7	2	2		19.1		27.8	7.43	5.75	8.5
	HY/2012/08		Mid-Flood					12.9	3	1	07:58	19.1		28	7.53	7.92	8.5
	HY/2012/08		Mid-Flood	Cloudy				12.9	3	2	07:58	19.1	7.73		7.51	5.99	8.6
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1		18.9		27.9	7.5	5.36	7.3
	HY/2012/08		Mid-Flood				Surface	1	1	2	-	18.9		27.9	7.52	5.41	7.4
	HY/2012/08		Mid-Flood					6.5	2	1	•	19.1	7.82		7.43	5.71	7.9
	HY/2012/08		Mid-Flood					6.5	2	2		19.1		27.9	7.45	5.65	7.5
			Mid-Flood	Cloudy				11.9	3	1		19.2		28.1	7.45	5.84	8
			Mid-Flood	i i				11.9	3	2		19.2		28.1	7.56	5.92	8.2
		2017-03-14					Surface	1	1	1	-			27.9	7.48	5.52	7.7
		<b>■</b> ∠∪ 1 <i>1</i> -UJ- 14	IIVIIU-I IUUU	Cidudy	Small wave		Juliace	1	[ ¹	<u> </u>	09:03			27.9	7 . <del>7</del> 0	5.56	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.8	2	1	09:03	19	7.61	28	7.34	5.59	7.9
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.8	2	2	09:03	19	7.65	28.1	7.37	5.64	7.8
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.6	3	1	09:03	19.1	7.58	28.1	7.56	5.9	8.3
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.6	3	2	09:03	19.1	7.61	28.1	7.54	5.86	8.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	09:31	19	7.75	27.9	7.52	5.49	6.6
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	09:31	18.9	7.78	27.9	7.56	5.43	6.8
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.9	2	1	09:31	19.1	7.74	28	7.48	5.57	6.8
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.9	2	2	09:31	19	7.72	27.9	7.46	5.62	7
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	1	09:31	19.1	7.73	28	7.51	5.77	7.1
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	2	09:31	19.1	7.77	28.1	7.54	5.82	7.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	08:48	18.9	7.7	27.9	7.39	5.54	7.5
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	08:48	19	7.74	27.9	7.41	5.59	7.8
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy			Middle	5.1	2	1	08:48	19.1	7.66	27.9	7.49	5.37	7.1
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood		Small wave	IS15	Middle	5.1	2	2	08:48	19	7.63	28	7.45	5.42	7.3
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood					9.2	3	1	08:48	19.1		28	7.6	5.74	7.7
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy				9.2	3	2	08:48	19.1		28.1	7.57	5.79	7.8
	HY/2012/08		Mid-Flood				Surface	1	1	1	08:26	18.9	7.84	27.9	7.42	5.61	7.4
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood		Small wave		Surface	1	1	2	08:26	19	7.81	27.8	7.4	5.57	7.4
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood				Middle		2	1	08:26	1	1	1			1
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood		Small wave		Middle		2	2	08:26						
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood	Cloudy	Small wave			4.8	3	1	08:26	19	7.79	27.9	7.37	5.75	7.5
TMCLKL	HY/2012/08		Mid-Flood					4.8	3	2	08:26	19	7.83	27.9	7.34	5.8	7.7
	HY/2012/08	2017-03-14	Mid-Flood		Small wave		Surface	1	1	1	08:37	18.9	_	27.9	7.33	5.53	7.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood				Surface	1	1	2	08:37	18.9	-	27.9	7.37	5.46	7.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Flood				Middle	<u> </u>	2	1	08:37	10.0	7	27.0	7.07	0.10	1
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave		Middle		2	2	08:37						
			Mid-Flood	i i			Bottom	3.8	3	1		19	7.71	27.9	7.29	5.64	7.3
	HY/2012/08		Mid-Flood	Cloudy				3.8	3	2		19		27.9	7.26	5.7	7.5
	HY/2012/08		Mid-Flood				Surface	1	1	1	08:12		-	27.8	7.32	5.47	7.1
	HY/2012/08		Mid-Flood				Surface	1	1	2	•	18.9	-	27.8	7.29	5.52	7.1
	HY/2012/08		Mid-Flood	Cloudy				6.8	2	1		19	-	27.9	7.34	5.65	7.2
	HY/2012/08		Mid-Flood					6.8	2	2	•	19		27.9	7.36	5.61	7.3
	HY/2012/08		Mid-Flood	Cloudy				12.6	3	1	+	19.1	7.75		7.4	5.85	7.6
	HY/2012/08		Mid-Flood					12.6	3	2	1		_	27.9	7.44	5.92	7.6
	HY/2012/08		Mid-Ebb				Surface	12.0	1	1	•	18.9		28	7.52	5.96	8.7
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2	12:19	19	7.83		7.53	5.97	8.7
	HY/2012/08		Mid-Ebb					8.8	2	1	•	18.9		28.2	7.5	5.86	8.4
	HY/2012/08		Mid-Ebb	Cloudy				8.8	2	2	12:19	18.9	•		7.49	5.87	8.3
	HY/2012/08		Mid-Ebb					16.6	3	1	•	19	7.88 7.84	28.2	7.49	6.31	9.1
	HY/2012/08		Mid-Ebb					16.6	3	2	•	19.1	-	28.2	7.51	6.32	8.9
	HY/2012/08 HY/2012/08		Mid-Ebb				Surface	10.0	1	1		19.1	ι.οວ g	27.9	7.54	6.23	9.2
	HY/2012/08 HY/2012/08		Mid-Ebb				Surface	1	1	2		19	7.99	27.9	7.73	6.24	9.2
	HY/2012/08 HY/2012/08							6.0	2	1	•				7.73	6.37	9.2
			Mid-Ebb					6.8	2	2	15:15	18.9		27.9			
	HY/2012/08		Mid-Ebb					6.8	2	1	15:15	18.9	•	28	7.81	6.39	9.4
	HY/2012/08		Mid-Ebb	Cloudy				12.5	ა ი	1	•	19	7.72		7.79	6.4	9.5
	HY/2012/08		Mid-Ebb					12.5	3	4	•	19.1	_	28.1	7.76	6.39	9.5
	HY/2012/08		Mid-Ebb				Surface	1	1	1	13:03	18.9		27.9	7.7	5.49	7.5
	HY/2012/08		Mid-Ebb	Cloudy			Surface	6.0	1	4	13:03	18.8	7.88		7.68	5.47	7.3
			Mid-Ebb	Cloudy				6.3	2	1	13:03	18.9		28.1	7.59	5.54	7.3
	HY/2012/08		Mid-Ebb	Cloudy				6.3	2	2	13:03	19	7.85		7.61	5.54	7.3
	HY/2012/08		Mid-Ebb					11.6	3	1	•	19		28.2	7.53	5.77	7.8
	HY/2012/08		Mid-Ebb					11.6	3	2	13:03	19	_	28.1	7.56	5.76	7.6
	HY/2012/08		Mid-Ebb	Cloudy		1	Surface	1	1	1	13:25	19	•	28	7.59	5.91	8
			Mid-Ebb				Surface	1	1	2	13:25	18.9	_	28	7.58	5.93	8.3
		2017-03-14					Middle		2	1				27.9	7.69	6.01	8.3
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.6	2	2	13:25	19.1	7.79	28	7.66	6.03	8.5

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.1	3	1	13:25	19	7.63	28.1	7.65	5.86	8
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	IS13	Bottom	10.1	3	2	13:25	19.1	7.65	28	7.62	5.88	8.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	12:42	18.9	7.53	28	7.61	5.67	7.1
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy			Surface	1	1	2	12:42	18.8	7.54	27.9	7.59	5.69	6.9
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.7	2	1	12:42	18.9	7.61	28.1	7.55	6.12	7.5
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb			IS14	Middle	5.7	2	2	12:42	18.9		28.1	7.53	6.1	7.8
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb		Small wave	IS14	Bottom	10.4	3	1	12:42	19	7.7	28.1	7.6	5.99	7.6
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					10.4	3	2	12:42	18.9	7.68	28.2	7.61	5.98	7.6
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy			Surface	1	1	1	13:47	19		27.9	7.69	5.21	7.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb				Surface	1	1	2	13:47	19		28	7.71	5.24	7.1
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					4.9	2	1	13:47	19		28.1	7.72	5.61	7.7
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy				4.9	2	2	13:47	19.1	7.8	28	7.73	5.59	7.6
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					8.7	3	1	13:47	19.2		28.1	7.76	5.71	7.5
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					8.7	3	2	13:47	19.2		28.1	7.78	5.73	7.9
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb			SR8	Surface	1	1	1	14:31	19		27.9	7.7	6.03	8
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	14:31	19.1		27.9	7.69	6.02	7.9
	HY/2012/08		Mid-Ebb				Middle	<u> </u>	2	1	14:31	10.1	7.00	£1.J	7.00	0.02	11.5
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb		Small wave		Middle	<del>                                     </del>	2	2	14:31	1	$\vdash$		<del> </del>	+	+
								12	2	1	+	10.1	7.7	20	7.62	5 96	7 0
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					4.3	ა 2	2	14:31	19.1		28	7.63	5.86	7.8
TMCLKL	HY/2012/08	2017-03-14			Small wave			4.3	ა 4	4	14:31	19.2	7.71	28.1	7.61	5.87	7.4
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb		Small wave		Surface	1	1	1	14:09	18.9	_	28	7.73	5.89	7.7
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	2	14:09	19	7.53	27.9	7.75	5.87	7.4
	HY/2012/08	2017-03-14	Mid-Ebb		Small wave		Middle		2	1	14:09	ļ					<del></del>
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb				Middle		2	2	14:09						
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb					3.3	3	1	14:09	19.1	7.49	27.9	7.72	5.72	7.1
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb		Small wave			3.3	3	2	14:09	19.1	_	28	7.71	5.73	7.5
		2017-03-14				SR10A		1	1	1	14:53		7.59		7.69	6.05	7.7
			Mid-Ebb				Surface	1	1	2	•	19.1	7.61		7.68	6.07	7.9
			Mid-Ebb					6.6	2	1	•	19	7.73		7.7	7.01	9.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.6	2	2	14:53	19	7.76	28.1	7.71	7	9.2
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.2	3	1	14:53	19.2	7.83	28.1	7.68	6.57	8.4
TMCLKL	HY/2012/08	2017-03-14	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.2	3	2	14:53	19.1	7.81	28	7.67	6.58	8.4
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	1	10:31	17.8	7.88	27.8	7.58	5.34	7.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	2	10:31	17.9	7.86	27.9	7.62	5.37	7.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	CS4	Middle	9.1	2	1	10:31	18	7.52	28	7.31	5.61	8
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	CS4	Middle	9.1	2	2	10:31	18	7.55	28.1	7.38	5.67	8.4
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	CS4	Bottom	17.2	3	1	10:31	18.1	7.63		7.46	5.83	8.6
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy		CS4		17.2	3	2	10:31	18.2		28.2	7.5	5.8	8.6
		2017-03-16		Cloudy			Surface	1	1	1	•	17.8	7.58		7.37	5.44	7.9
	HY/2012/08		Mid-Flood				Surface	1	1	2	•	17.9	_	27.8	7.4	5.48	7.9
	HY/2012/08		Mid-Flood					6.9	2	1	08:15			27.9	7.54	5.61	8.1
	HY/2012/08		Mid-Flood					6.9	2	2	08:15		7.63		7.57	5.66	8.3
	HY/2012/08		Mid-Flood	Cloudy				12.7	3	<u>-</u> 1		17.9		28.1	7.68	5.85	8.3
	HY/2012/08		Mid-Flood					12.7	3	2	•	17.9		28	7.66	5.89	8.5
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1		17.7	_	27.9	7.54	5.26	7.1
	HY/2012/08		Mid-Flood				Surface	1	1	2		17.6		27.9	7.58	5.22	7.1
			Mid-Flood					6.3	2	1	1	17.8		27.9	7.63	5.57	7.3
	HY/2012/08 HY/2012/08		Mid-Flood	Cloudy				6.3	2	2			7.55		7.66	5.61	7.4
									2	1		17.8			7.76	5.7	7.4
	HY/2012/08		Mid-Flood					11.6	ა ი	2		17.9		28.1		-	
	HY/2012/08		Mid-Flood	Cloudy				11.6	ა 4	4	•	18		28.2	7.72	5.77	7.6
			Mid-Flood	i i			Surface	[] [4	1	1		17.9		27.9	7.44	5.61	7.8
	HY/2012/08		Mid-Flood				Surface	[1   c =	1	<u> </u>	•	18		27.8	7.4	5.66	7.8
			Mid-Flood					5.7	2	1		17.9	7.93		7.79	5.35	7.5
			Mid-Flood					5.7	2	2		17.9		27.9	7.83	5.37	7.4
		2017-03-16						10.3	3	1		18.1	7.62		7.22	5.81	8
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.3	3	2	09:40	18.2	7.66	28.1	7.28	5.85	7.9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	10:14	17.8	7.57	27.8	7.46	5.3	6.6
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	10:14	17.8	7.55	27.8	7.44	5.33	6.8
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.7	2	1	10:14	17.9	7.9	27.9	7.68	5.45	6.8
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.7	2	2	10:14	17.8	7.94	28	7.62	5.48	6.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.4	3	1	10:14	18.1	7.67	27.9	7.54	5.66	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.4	3	2	10:14	18.1	7.66	27.9	7.57	5.69	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	09:23	17.8	7.77	27.9	7.27	5.45	7.5
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	09:23	17.9	7.75	27.9	7.22	5.48	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.3	2	1	09:23	18	7.62	28	7.56	5.3	7.2
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.3	2	2	09:23	18	7.64	27.9	7.59	5.36	7.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9.5	3	1	09:23	17.9	7.53	28.1	7.66	5.82	7.8
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9.5	3	2	09:23	18.1	7.56	28.2	7.68	5.87	7.7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	08:49	17.8	7.46	27.9	7.47	5.45	7.2
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	08:49	17.9	7.49	28	7.5	5.48	7.2
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	08:49						
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	08:49						
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.6	3	1	08:49	17.9	7.7	27.7	7.22	5.69	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.6	3	2	08:49	18	7.73	27.8	7.26	5.66	7.4
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	09:06	17.7	7.52	27.8	7.43	5.36	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	09:06	17.8	7.55	27.9	7.46	5.4	7.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	09:06						
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	09:06						
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.4	3	1	09:06	17.9	7.61	28	7.37	5.52	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.4	3	2	09:06	18	7.67	28.1	7.39	5.58	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	08:32	17.8	7.92	27.7	7.26	5.36	7
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	08:32	17.7	7.95	27.8	7.28	5.38	7.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1		17.7	7.61		7.42	5.53	7.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	2	08:32	17.7	7.64	28	7.46	5.57	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood			SR10A	Bottom	12.8	3	1	08:32	17.9	7.54	28	7.59	5.68	7.6
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.8	3	2	08:32	17.9	7.56	28.1	7.55	5.71	7.5
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	1	13:22	17.9		27.9	7.49	5.45	7.9
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2		17.9		27.9	7.51	5.47	7.8
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy		CS4	Middle	8.9	2	1	13:22	18.1	_	28.1	7.21	5.81	8.2
		2017-03-16						8.9	2	2	13:22		7.54		7.25	5.76	8.2
			Mid-Ebb					16.8	3	1	13:22	18.2		28.2	7.39	5.96	8.8
	HY/2012/08		Mid-Ebb	Cloudy				16.8	3	2	1	18.2		28.2	7.37	5.91	8.7
	HY/2012/08		Mid-Ebb				Surface	1	1	1		17.9		27.9	7.29	5.6	8
	HY/2012/08		Mid-Ebb	Cloudy		•	Surface	1	1	2	•	17.9		27.8	7.27	5.55	8.2
		2017-03-16		Cloudy				6.7	2	1		18	7.63		7.46	5.78	8.2
	HY/2012/08		Mid-Ebb					6.7	2	2	•	17.9		27.9	7.44	5.75	8.6
	HY/2012/08		Mid-Ebb					12.3	3	1		17.9	7.88		7.55	5.94	8.8
	HY/2012/08		Mid-Ebb					12.3	3	2		18	7.84		7.58	5.99	8.6
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	1	•	17.8	7.84		7.46	5.38	7.1
			Mid-Ebb				Surface	1	1	2	•	17.8		27.9	7.43	5.34	7.3
	HY/2012/08		Mid-Ebb	Cloudy				6.1	2	1	•	17.9	7.52		7.5	5.68	7.6
	HY/2012/08		Mid-Ebb	Cloudy				6.1	2	2		17.8	7.56		7.52	5.74	8
	HY/2012/08		Mid-Ebb					11.2	3	1	•	18.1		28.2	7.6	5.9	7.8
	HY/2012/08		Mid-Ebb	Cloudy				11.2	3	2	•	18	7.66		7.62	5.82	8
			Mid-Ebb	Cloudy		•	Surface	1	1	1		17.9		27.9	7.3	5.74	8.1
	HY/2012/08		Mid-Ebb	Cloudy		•	Surface	1	1	2	•	17.9		27.9	7.32	5.78	7.8
			Mid-Ebb					5.5	2	1	•		7.94		7.71	5.48	7.4
	HY/2012/08		Mid-Ebb	i i		-		5.5	2	2		18		27.9	7.68	5.51	7.8
	HY/2012/08		Mid-Ebb			•		10	3	1	•	18.1	7.68		7.16	5.97	8.5
			Mid-Ebb	- i		1		10	3	2	•	18.1		28.2	7.12	5.93	8.4
		2017-03-16				•	Surface		1	1	13:44			27.9	7.31	5.41	6.8
		2017-03-16			Small wave		Surface		<del>Li</del>	2	13:44				7.33	5.45	6.6

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.6	2	1	13:44	17.9	7.91	28	7.5	5.62	7.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.6	2	2	13:44	17.9	7.93	27.9	7.53	5.56	6.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.1	3	1	13:44	18.1	7.65	28.1	7.43	5.8	7.2
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.1	3	2	13:44	18.1	7.66	28	7.45	5.75	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	14:36	17.9	7.73	27.8	7.11	5.6	7.8
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	14:36	17.8	7.76	27.9	7.14	5.57	7.7
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Middle	5.1	2	1	14:36	18	7.63	28	7.46	5.41	7.5
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Middle	5.1	2	2	14:36	17.9	7.65	28	7.44	5.47	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	9.2	3	1	14:36	18.1	7.55	28.2	7.56	5.98	8.1
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	9.2	3	2	14:36	18	7.51	28.2	7.53	5.92	8
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	1	15:06	17.9	7.48	27.9	7.39	5.6	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	2	15:06	17.9	7.45	27.9	7.36	5.54	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb		Small wave	SR8	Middle		2	1	15:06						
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb		Small wave	SR8	Middle		2	2	15:06						
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb				Bottom	4.2	3	1	15:06	17.9	7.71	27.9	7.14	5.79	7.7
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave			4.2	3	2	15:06	18		28	7.11	5.82	7.6
TMCLKL	HY/2012/08		Mid-Ebb				Surface	1	1	1	14:53	17.9		27.9	7.41	5.52	6.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb		Small wave		Surface	1	1	2	14:53	17.9		27.9	7.44	5.47	6.9
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb				Middle		2	1	14:53	1	Ī	1			1
TMCLKL	HY/2012/08		Mid-Ebb		Small wave		Middle	1	2	2	14:53	1		1			1
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb	Cloudy	Small wave			3.2	3	1	14:53	18	7.63	28	7.27	5.65	7.4
TMCLKL	HY/2012/08		Mid-Ebb					3.2	3	2	14:53	18		27.9	7.29	5.72	7.5
	HY/2012/08	2017-03-16	Mid-Ebb		Small wave		Surface	1	1	1	15:19	17.8		27.8	7.15	5.48	7.3
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb		Small wave		Surface	1	1	2	15:19	17.9	7.94	27.8	7.17	5.52	7.4
TMCLKL	HY/2012/08	2017-03-16	Mid-Ebb		Small wave			6.8	2	1	15:19	17.8		28	7.31	5.65	7.5
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy				6.8	2	2	15:19	17.9	_	27.9	7.33	5.69	7.4
		2017-03-16		- i			Bottom		3	1	15:19				7.46	5.81	7.4
			Mid-Ebb					12.5	3	2	15:19			28.1	7.45	5.79	7.4
			Mid-Flood				Surface	1	1	1	11:12		_	27.9	7.41	5.33	7.7
			Mid-Flood				Surface	1	1	2		17.9		27.9	7.44	5.41	7.9
	HY/2012/08		Mid-Flood	Cloudy				8.9	2	1	•	18.1	7.82		7.35	5.72	8.2
	HY/2012/08		Mid-Flood					8.9	2	2		18		28	7.36	5.64	8.1
	HY/2012/08		Mid-Flood	Cloudy				16.8	3	1		18.2		28.3	7.52	5.86	8.3
			Mid-Flood					16.8	3	2	•	18.1	_	28.2	7.54	5.78	8.1
			Mid-Flood				Surface	10.0	1	1	•	17.8	7.64		7.38	5.81	8.4
			Mid-Flood	Cloudy			Surface	1	1	2	1	17.9		27.9	7.37	5.89	8.5
	HY/2012/08		Mid-Flood					6.9	2	1		18	7.73		7.45	6.03	8.9
			Mid-Flood	Cloudy				6.9	2	2		17.9		28	7.47	6.09	9
		2017-03-18		Cloudy				12.8	2	1	•	18.1	_	28.2	7.58	5.96	8.8
									2	2		18	_		7.57	5.99	8.7
	HY/2012/08 HY/2012/08		Mid-Flood Mid-Flood				Surface	12.8	1	1		17.8	7.69	28.2	7.34	5.42	7.2
	HY/2012/08 HY/2012/08		Mid-Flood				Surface	1	1	2		17.7		27.9	7.34	5.42	7.4
								6 1	2	1	•				7.42	5.49	7.4
	HY/2012/08		Mid-Flood					6.1	2	2	•	17.9		28.1		-	7.4
			Mid-Flood					6.1	2	1	•	17.8	•	28	7.44	5.65	
	HY/2012/08		Mid-Flood	Cloudy				11.1	<u>ာ</u>	1	•	18	7.64		7.5	5.74	7.5
	HY/2012/08		Mid-Flood					11.1	<u>ا</u>	4	•	18.1		28.2	7.51	5.78	7.9
			Mid-Flood				Surface	1	1	1	+	18		27.9	7.33	5.48	7.7
	HY/2012/08		Mid-Flood	Cloudy			Surface		1	4	•	17.9	7.78		7.36	5.53	7.5
	HY/2012/08		Mid-Flood					5.8	2	1	•	18	•		7.5	5.62	7.9
	HY/2012/08		Mid-Flood					5.8	2	2	•	18.1	7.69		7.49	5.66	7.9
			Mid-Flood	i i				10.6	3	1		18.2		28.1	7.62	5.88	8.1
	HY/2012/08		Mid-Flood					10.6	3	2	10:24	18.1		28.2	7.64	5.81	8
			Mid-Flood				Surface	11	11	1		17.7		27.9	7.24	5.61	10.0
			Mid-Flood				Surface	1	1	2		17.6	7.67		7.25	5.67	6.8
		2017-03-18					Middle		2	1	10:55		7.78		7.2	5.52	6.7
IMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.8	2	2	10:55	17.8	7.75	28.1	7.21	5.59	6.8

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.6	3	1	10:55	17.9	7.69	28.2	7.44	5.66	7
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.6	3	2	10:55	17.8	7.68	28.1	7.48	5.8	7.2
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	10:08	17.9	7.63	28	7.39	5.76	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	10:08	17.8	7.61	27.9	7.38	5.71	7.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Middle	4.9	2	1	10:08	17.9	7.69	27.9	7.44	5.64	7.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Middle	4.9	2	2	10:08	17.9	7.68	27.9	7.47	5.59	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.8	3	1	10:08	18	7.75	28.1	7.52	5.82	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.8	3	2	10:08	18	7.7	28	7.54	5.77	7.6
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	09:39	18	7.69	27.9	7.46	5.69	7.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	09:39	18.1	7.73	27.8	7.49	5.62	7.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	09:39						
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	09:39						
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.7	3	1	09:39	18	7.75	28	7.31	5.68	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.7	3	2	09:39	18	7.78	27.9	7.35	5.74	7.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	09:53	17.7	7.72	27.9	7.25	5.58	7.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	09:53	17.8	7.75	28	7.27	5.51	7.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	09:53						
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	09:53						
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	1	09:53	17.9	7.8	28	7.34	5.74	7.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	2	09:53	17.9	7.78	28	7.36	5.82	7.4
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	09:24	17.9	7.73	28	7.4	5.46	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	09:24	17.8	7.75	27.9	7.42	5.49	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1	09:24	18	7.82	28.1	7.49	5.33	6.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	2	09:24	18	7.8	28	7.47	5.39	6.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.9	3	1	09:24	18	7.76	28.2	7.64	5.72	7.4
TMCLKL	HY/2012/08	2017-03-18	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.9	3	2	09:24	18.1		28.3	7.61	5.81	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	•	Surface	1	1	1		17.8	7.76		7.26	5.72	8.2
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	14:37	17.9	7.73	27.9	7.23	5.69	8.4
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.8	2	1	14:37	17.9	7.75	28	7.29	5.93	8.4
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.8	2	2	14:37			28	7.32	5.88	8.6
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.5	3	1	14:37	18.1	7.74	28.2	7.39	6.07	8.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS4		16.5	3	2	14:37	18.1		28.1	7.41	6.01	8.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	1	16:45	18		27.8	7.26	5.74	8.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	2	16:45	17.9	7.63		7.23	5.81	8.6
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.8	2	1	16:45	18	7.67	27.8	7.3	5.63	8.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Middle	6.8	2	2	16:45	18		27.9	7.33	5.69	8.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.5	3	1	16:45	18.1		28.1	7.38	5.87	8.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	CS6	Bottom	12.5	3	2	16:45	18.1	7.71	28.1	7.41	5.96	8.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	1	15:08	17.9	7.73		7.26	5.68	7.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS12	Surface	1	1	2	15:08	17.9	7.74	27.7	7.23	5.59	7.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Middle	6.3	2	1	15:08			27.8	7.21	5.72	7.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS12	Middle	6.3	2	2	15:08	18		27.9	7.17	5.79	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS12		11.6	3	1	15:08		_	28	7.27	5.88	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS12		11.6	3	2	15:08	18.1		28	7.29	5.94	8.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	15:23	17.9	7.64	27.9	7.18	5.8	8.2
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	15:23			27.8	7.23	5.88	8.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.6	2	1	15:23		_	27.9	7.27	5.69	7.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.6	2	2	15:23	17.9	7.66		7.29	5.73	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Bottom	10.1	3	1	15:23	18	7.68		7.35	5.94	8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave			10.1	3	2	15:23		7.63		7.31	6.03	8.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Surface	1	1	1			7.69		7.17	5.83	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	•	Surface	1	1	2	14:53			27.8	7.19	5.76	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS14	Middle	5.6	2	1	14:53			27.8	7.23	5.8	7.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS14		5.6	2	2	14:53			27.9	7.26	5.72	7
			Mid-Ebb	Cloudy				10.2	3	1	14:53		7.68		7.3	5.97	7.6
		2017-03-18		Cloudy	Small wave		Bottom		3	2	14:53		7.71		7.33	6.02	7.4

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	1	15:39	17.9	7.66	27.9	7.24	5.96	8.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Surface	1	1	2	15:39	18	7.63	27.9	7.2	5.89	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Middle	4.7	2	1	15:39	18	7.68	27.8	7.31	5.77	7.9
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Middle	4.7	2	2	15:39	18	7.64	27.9	7.27	5.74	7.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	8.4	3	1	15:39	18	7.69	27.9	7.38	6.06	8.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	8.4	3	2	15:39	18		28	7.4	6.14	8.1
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	1	16:07	17.9	7.63	27.8	7.27	5.83	7.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	2	16:07	18	7.65	27.8	7.31	5.76	7.4
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Middle		2	1	16:07						
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	2	16:07						
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb			SR8	Bottom	4.4	3	1	16:07	18	7.6	27.8	7.34	5.9	7.4
TMCLKL	HY/2012/08		Mid-Ebb					4.4	3	2	16:07	18	_	27.9	7.37	5.84	7.6
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb		Small wave		Surface	1	1	1	15:54	18		27.9	7.18	5.78	7.3
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb		Small wave		Surface	1	1	2	15:54	18	_	27.9	7.17	5.7	7.3
TMCLKL	HY/2012/08		Mid-Ebb				Middle		2	1	15:54						
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave		Middle		2	2	15:54						
	HY/2012/08		Mid-Ebb					3.3	3	1	15:54	17.9	7.63	27.9	7.23	5.91	7.8
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb		Small wave			3.3	3	2	15:54	18		27.9	7.26	5.84	7.7
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb		Small wave		Surface	1	1	1	16:22	18	_	27.8	7.18	5.89	7.5
TMCLKL	HY/2012/08		Mid-Ebb		Small wave		Surface	1	1	2	16:22	18		27.8	7.16	5.96	7.6
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb	Cloudy	Small wave			6.7	2	1	16:22	18		27.8	7.21	5.57	7.2
TMCLKL	HY/2012/08		Mid-Ebb		Small wave			6.7	2	2	•	17.9		27.9	7.24	5.63	7.2
	HY/2012/08	2017-03-18	Mid-Ebb		Small wave			12.4	2	1	16:22	18.1	_	28	7.3	5.96	7.5
TMCLKL	HY/2012/08	2017-03-18	Mid-Ebb		Small wave			12.4	3	2	16:22	18.1	_	28	7.33	6.04	7.6
TMCLKL	HY/2012/08	2017-03-16	Mid-Flood		Small wave		Surface	12.4	1	1	08:22	18		28.1	7.47	5.24	7.7
	HY/2012/08	2017-03-21		Cloudy				1	1	2	08:22	17.9		28.2	7.47	5.32	7.7
TMCLKL TMCLKL			Mid-Flood				Surface Middle	9.1	2	1	•			28.3	7.41	5.63	8.2
			Mid-Flood	<del> </del>					2	2		18.1	_		7.41		
	HY/2012/08		Mid-Flood Mid-Flood	Cloudy				9.1	2	1	•	18.2		28.4	7.42	5.33	7.9 8.3
	HY/2012/08		Mid-Flood					17.2	ა ი	1		18.2 18.3		28.4	7.56	5.82 5.74	8.3
								17.2	ى م	4	08:22		_	28.5			
	HY/2012/08	2017-03-21	Mid-Flood	Cloudy			Surface	1	1	1	07:25	18		28.1	7.44	5.7	8.5
	HY/2012/08		Mid-Flood	Cloudy			Surface	7.4	1	4		17.9	7.69		7.43	5.8	8.6
	HY/2012/08		Mid-Flood					7.1	2	1	07:25	18	7.79		7.51	5.94	8.5
	HY/2012/08		Mid-Flood					7.1	2	2	•	18.1		28.2	7.53	5 07	8.8
			Mid-Flood					13.2	3	1	07:25	18.1		28.2	7.62	5.87	8.6
	HY/2012/08		Mid-Flood	Cloudy				13.2	3	2	07:25	18.2		28.3	7.64	5.9	8.6
	HY/2012/08		Mid-Flood				Surface	1	1	1	•	17.9	7.84		7.38	5.33	7.2
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2		17.8	7.82		7.44	5.4	7.1
	HY/2012/08		Mid-Flood					6.2	2	1	•	17.9		28	7.48	5.52	7.6
	HY/2012/08		Mid-Flood					6.2	2	2		18		28.1	7.5	5.56	7.7
	HY/2012/08		Mid-Flood	Cloudy				11.4	3	1		18.1		28.3	7.56	5.65	7.7
	HY/2012/08		Mid-Flood					11.4	3	2	•	18		28.4	7.57	5.69	7.5
	HY/2012/08	2017-03-21	Mid-Flood				Surface	1	1	1		18	_	28.1	7.39	5.39	7.4
	HY/2012/08		Mid-Flood				Surface	1	1	2	08:00	18.1		28	7.37	5.44	7.5
	HY/2012/08		Mid-Flood	Cloudy				5.9	2	1		18.2		28.2	7.56	5.53	7.8
	HY/2012/08		Mid-Flood					5.9	2	2		18.1		28.3	7.55	5.57	7.8
TMCLKL	HY/2012/08		Mid-Flood					10.8	3	1	08:00	18.3		28.5	7.68	5.79	8.1
	HY/2012/08		Mid-Flood	Cloudy				10.8	3	2		18.2		28.4	7.7	5.72	7.8
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	1	•	17.7		27.9	7.3	5.52	6.7
	HY/2012/08		Mid-Flood	Cloudy			Surface	1	1	2	•	17.8	7.73		7.31	5.58	6.8
TMCLKL	HY/2012/08		Mid-Flood					5.9	2	1		17.9		28.1	7.26	5.43	6.8
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.9	2	2	08:14	17.9	7.81	28	7.28	5.5	6.8
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	1	08:14	17.9	7.75	28.1	7.5	5.77	7.1
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	2	08:14	18	7.74	28.2	7.54	5.71	7
TMCLKL		2017-03-21					Surface		1	1	07:53			28.2	7.45	5.67	7.7
TMOLK	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	19:02	18	7.67	28.1	7.42	5.62	7.4

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.1	2	1	19:02	18	7.75	28.3	7.5	5.55	7.5
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS15	Middle	5.1	2	2	19:02	18.1	7.74	28.2	7.53	5.5	7.2
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9.2	3	1	19:02	18.1	7.81	28.3	7.58	5.73	7.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	IS15	Bottom	9.2	3	2	19:02	18.2	7.76	28.4	7.6	5.68	7.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	07:39	17.7	7.75	27.9	7.52	5.6	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	07:39	17.8		27.8	7.55	5.53	7
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	07:39						
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	07:39						
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.8	3	1	07:39	17.8	7.81	27.9	7.37	5.59	7.4
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood					4.8	3	2	07:39	17.9	7.84	28	7.41	5.65	7.4
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood		Small wave	SR9	Surface	1	1	1	07:46	17.9	7.78	28	7.31	5.49	7.2
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood				Surface	1	1	2	07:46	17.9		28.1	7.33	5.42	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood		Small wave		Middle		2	1	07:46						
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave		Middle		2	2	07:46						
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy				3.8	3	1	07:46	17.9	7.86	28.2	7.4	5.65	7.1
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave			3.8	3	2	07:46	18		28.1	7.42	5.73	7.3
	HY/2012/08	2017-03-21	Mid-Flood	<u> </u>	Small wave		Surface	1	1	1	07:32	17.8	•	28	7.46	5.37	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood		Small wave		Surface	1	1	2	07:32	17.9		27.9	7.48	5.4	7
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave		Middle	7	2	1	07:32	18		28	7.55	5.24	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood		Small wave		Middle	7	2	2	07:32	17.9		28.1	7.53	5.3	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Flood	Cloudy	Small wave			13	3	1	07:32	18	_	28.1	7.7	5.63	7.5
TMCLKL	HY/2012/08		Mid-Flood	Cloudy				13	3	2	07:32	18.1		28.2	7.67	5.72	7.3
	HY/2012/08	2017-03-21	Mid-Ebb				Surface	1	1	1	17:57	18.1		28.2	7.35	5.34	7.7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb				Surface	1	<u>'</u>   1	2	17:57	18.1		28.2	7.4	5.3	7.8
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb					8.8	2	1	17:57	18.1		28.3	7.42	5.36	7.8
									2	2							
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy				8.8	2	4	17:57	18.1		28.3	7.46	5.42	7.8
								16.6	ა ი	1		18.1	•	28.2	7.46	5.39	7.9
	HY/2012/08		Mid-Ebb					16.6	3	4	-	18	_	28.2	7.5	5.46	7.7
	HY/2012/08		Mid-Ebb				Surface	1	1	1		18.5	7.75		7.36	5.45	7.9
	HY/2012/08		Mid-Ebb				Surface	0.0	1	4	19:56	18.8		28.5	7.39	5.6	8.2
	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy				6.8	2	1	19:56	18.6		28.3	7.46	5.68	8.3
	HY/2012/08		Mid-Ebb	Cloudy				6.8	2	2	19:56	18.7		28.3	7.5	5.74	8.6
	HY/2012/08		Mid-Ebb	Cloudy				12.6	3	1	19:56	18.7	_	28.3	7.51	5.89	8.7
	HY/2012/08		Mid-Ebb		•			12.6	3	2		18.7		28.3	7.56	5.96	8.6
	HY/2012/08		Mid-Ebb				Surface	1	1	1		18.1	7.79		7.34	5.27	6.9
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2	18:31	18.2		28.2	7.39	5.34	7.1
	HY/2012/08		Mid-Ebb				Middle	6	2	1	18:31	18.2		28.3	7.42	5.37	7.3
	HY/2012/08		Mid-Ebb	Cloudy	•		Middle	6	2	2	18:31	18.2		28.3	7.45	5.46	7.3
	HY/2012/08		Mid-Ebb				Bottom	1	3	1	1	18.2		28.3	7.51	5.53	7.4
	HY/2012/08		Mid-Ebb				Bottom	1	3	2	18:31	18.2		28.3	7.56	5.6	7.5
	HY/2012/08		Mid-Ebb				Surface	1	1	1	18:47	18.4		28.3	7.35	5.38	7.4
	HY/2012/08		Mid-Ebb				Surface	1	1	2	18:47	18.4		28.3	7.38	5.32	7.5
	HY/2012/08		Mid-Ebb	Cloudy				5.6	2	1	18:47	18.5		28.3	7.42	5.39	7.3
	HY/2012/08		Mid-Ebb					5.6	2	2	18:47	18.5		28.3	7.45	5.46	7.6
	HY/2012/08		Mid-Ebb	Cloudy				10.2	3	1	18:47	18.4		28.3	7.39	5.45	7.5
TMCLKL	HY/2012/08		Mid-Ebb				Bottom	10.2	3	2	18:47	18.4		28.3	7.44	5.5	7.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	1	18:15	18.2	7.74	28.2	7.34	5.56	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS14	Surface	1	1	2	18:15	18.2	7.78	28.2	7.38	5.6	6.8
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS14	Middle	6.7	2	1	18:15	18.2	7.78	28.2	7.36	5.46	7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS14	Middle	6.7	2	2	18:15	18.2	7.74	28.3	7.39	5.53	7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS14	Bottom	10.4	3	1	18:15	18.2	7.79	28.2	7.42	5.52	6.7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb			IS14	Bottom	10.4	3	2	18:15	18.2		28.2	7.45	5.57	7.1
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	1	19:02	18.5	7.76		7.39	5.57	7.8
			Mid-Ebb				Surface	1	1	2	19:02	18.4		28.3	7.36	5.66	7.8
			Mid-Ebb				Middle	4.8	2	1	19:02			28.4	7.38	5.65	7.5
		2017-03-21			Small wave		Middle		<del>                                     </del>	2	19:02			28.4	7.42	5.74	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	8.6	3	1	19:02	18.4	7.79	28.3	7.39	5.71	7.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	IS15	Bottom	8.6	3	2	19:02	18.4	7.81	28.3	7.43	5.76	7.7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	SR8	Surface	1	1	1	19:28	18.6	7.14	28.2	7.45	5.53	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave	SR8	Surface	1	1	2	19:28	18.7	7.15	28.3	7.47	5.66	7.1
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	1	19:28						
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave		Middle		2	2	19:28						
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave		Bottom	4.2	3	1	19:28	18.5	7.74	28.2	7.39	5.71	7.4
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			4.2	3	2	19:28	18.6		28.3	7.44	5.8	7.7
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	•	Surface	1	1	1	19:26	18.4		28.3	7.32	5.22	6.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave		Surface	1	1	2	19:26	18.5		28.4	7.36	5.25	6.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave		Middle		2	1	19:26	10.0				1	1
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave	•	Middle		2	2	19:26						
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			3.4	3	1	19:26	18.5	7.8	28.3	7.35	5.31	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			3.4	3	2	19:26	18.4	7.81	28.4	7.39	5.36	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave	•	Surface	1	1	1	19:40	18.6		28.2	7.34	5.25	6.9
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave	•	Surface	1	1	2	19:40	18.7		28.2	7.38	5.34	6.8
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb	Cloudy	Small wave			6.7	2	1	19:40	18.7	_	28.2	7.32	5.47	7.3
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			6.7	2	2	19:40	18.7	7.74	28.2	7.35	5.56	7.1
									2	1	1						
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			12.4	ა ი	1	19:40	18.6		28.2	7.42	5.72	7.6
TMCLKL	HY/2012/08	2017-03-21	Mid-Ebb		Small wave			12.4	3	4	19:40	18.6		28.2	7.45	5.79	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave		Surface	1	1	1	15:15	19		27.7	7.6	5.43	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood				Surface	1	1	2	15:15	18.9		27.7	7.54	5.49	8.1
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			8.9	5	1	15:15	19	_	27.8	7.71	5.22	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			8.9	2	2	15:15	19.1		27.8	7.76	5.27	7.7
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave	•		16.7	3	1	15:15	19.1	7.88	27.9	7.83	5.63	8.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	•		16.7	3	2	15:15	19.2	_	28	7.9	5.68	8.4
		2017-03-23	Mid-Flood				Surface	1	1	1	13:05	18.7	7.85		7.47	5.61	8
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	13:05	18.7	7.83	28	7.52	5.67	8.4
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	1	13:05	18.7		28.1	7.6	5.47	8.1
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	2	13:05	18.8	7.87	28	7.66	5.4	7.7
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	1	13:05	19	7.95	28.2	7.77	5.78	8.6
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	2	13:05	18.9	7.97	28.1	7.71	5.82	8.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	14:39	18.9	7.85	27.8	7.32	5.65	7.6
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	14:39	18.9	7.82	27.7	7.39	5.71	7.7
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS12	Middle	6	2	1	14:39	18.9	7.79	27.8	7.51	5.4	7.5
TMCLKL	HY/2012/08		Mid-Flood	Cloudy	Small wave	IS12	Middle	6	2	2	14:39	19	7.83	27.9	7.57	5.36	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11	3	1	14:39	19.1	7.91	27.9	7.72	5.85	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11	3	2	14:39	19.1	7.95	28	7.68	5.78	8
	HY/2012/08		Mid-Flood	Cloudy		•	Surface	1	1	1	•	18.8		27.8	7.47	5.65	7.9
	HY/2012/08		Mid-Flood				Surface	1	1	2	14:21	18.8	_	27.8	7.53	5.6	7.6
TMCLKL	HY/2012/08		Mid-Flood					5.9	2	1	14:21	18.9		27.9	7.66	5.74	7.7
	HY/2012/08		Mid-Flood			•		5.9	2	2	14:21	18.8		27.8	7.71	5.79	7.8
	HY/2012/08		Mid-Flood	Cloudy				10.7	3	1	14:21	18.9		27.9	7.82	5.88	8
	HY/2012/08		Mid-Flood					10.7	3	2	14:21	18.9	7.94		7.89	5.93	8.2
	HY/2012/08		Mid-Flood	Cloudy		•	Surface	1	1	1	-	18.9	7.91		7.44	5.5	6.8
	HY/2012/08		Mid-Flood			•	Surface	1	1	2	-	18.9		27.7	7.5	5.57	6.9
TMCLKL	HY/2012/08		Mid-Flood			•		5.7	2	1	•	19		27.8	7.62	5.7	6.9
	HY/2012/08		Mid-Flood	Cloudy				5.7 5.7	2	2	14:57	19		27.8	7.67	5.67	7.2
	HY/2012/08					•		10.4	2	1	14.57	•		27.8	7.83	5.81	7.3
			Mid-Flood	Cloudy					ა ი	2	-	19.2					
	HY/2012/08		Mid-Flood	Cloudy				10.4	<u>ا</u>	4	•	19.1	7.83		7.88	5.87	7.2
	HY/2012/08		Mid-Flood	i i			Surface	[] [4	1	1	-	18.8		27.8	7.4	5.6	7.7
	HY/2012/08		Mid-Flood				Surface	[]	1	2	14:03	18.9		27.8	7.44	5.54	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood					5	2	1	14:03	18.9		27.9	7.56	5.41	7.5
			Mid-Flood			•		5	2	2	14:03	18.9		27.8	7.63	5.36	7.2
		2017-03-23		_			Bottom		3	1		19		27.9	7.79	5.75	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.9	3	2	14:03	19.1	7.92	27.9	7.73	5.81	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	13:41	18.7	7.94	27.9	7.53	5.48	6.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	2	13:41	18.8	7.9	27.9	7.47	5.51	7.2
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	1	13:41						
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	13:41						
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.5	3	1	13:41	18.9	7.88	27.9	7.38	5.7	7.5
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			4.5	3	2	13:41	18.8		28	7.32	5.75	7.6
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave		Surface	1	1	1	13:52	18.8		27.9	7.6	5.42	7.1
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood				Surface	1	1	2	13:52	18.8		27.8	7.54	5.47	6.8
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	13:52						1
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood				Middle		2	2	13:52	ì			i		1
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood					3.4	3	1	13:52	18.9	7.85	28	7.45	5.68	7.2
	HY/2012/08	2017-03-23	Mid-Flood					3.4	3	2	13:52	18.9	_	28	7.51	5.61	7.2
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave		Surface	1	1	1	13:29	18.7		28	7.43	5.54	7
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave		Surface	1	1	2	13:29	18.7		27.9	7.38	5.6	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			6.9	2	1	13:29	18.8		28.1	7.56	5.69	7.5
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			6.9	2	2	13:29	18.8	7.8	28.1	7.63	5.74	7.6
	HY/2012/08	2017-03-23	Mid-Flood		Small wave			12.8	3	1	13:29	18.9	7.87	28.1	7.75	5.81	7.7
TMCLKL	HY/2012/08	2017-03-23	Mid-Flood		Small wave			12.8	3	2	13:29	18.8		28.2	7.73	5.87	7.5
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb		Small wave		Surface	12.0	1	1	09:45	17.7		28	7.32	5.39	7.8
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb				Surface	1	1	2	09:45	17.8		27.9	7.35	5.47	7.8
	HY/2012/08 HY/2012/08	2017-03-23	Mid-Ebb					0 0	2	1	09:45	17.8		28	7.35		8.5
TMCLKL								8.8	2	1	-					5.78	
TMCLKL	HY/2012/08		Mid-Ebb					8.8	2	4	09:45	17.9		28.1	7.27	5.7	8.2
	HY/2012/08	2017-03-23	Mid-Ebb					16.6	3	1	09:45	17.9		28	7.43	5.92	8.4
	HY/2012/08	2017-03-23	Mid-Ebb					16.6	3	2	09:45	18	7.8	28.1	7.45	5.84	8.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb		Small wave		Surface	1	1	1	11:25	17.9		28.2	7.29	5.87	8.7
	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy			Surface	1	1	2	11:25	18		28.3	7.28	5.75	8.6
		2017-03-23						6.7	2	1		18.1	7.85		7.36	6.09	9.1
	HY/2012/08		Mid-Ebb					6.7	2	2	11:25	18.2	7.82		7.38	6.15	9.1
	HY/2012/08		Mid-Ebb					12.4	3	1	11:25	18.4		28.5	7.46	6.02	8.9
	HY/2012/08		Mid-Ebb					12.4	3	2	11:25	18.3		28.6	7.48	6.05	8.6
	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy			Surface	1	1	1	10:04	17.8		28.1	7.25	5.48	7.2
	HY/2012/08		Mid-Ebb				Surface	1	1	2		17.9	7.82		7.29	5.55	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS12	Middle	5.9	2	1	10:04	18	7.77	28.2	7.33	5.67	7.5
TMCLKL	HY/2012/08		Mid-Ebb	Cloudy	Small wave	IS12	Middle	5.9	2	2	10:04	17.9	7.76	28.3	7.35	5.71	7.5
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	10.8	3	1	10:04	18	7.7	28.4	7.41	5.8	7.8
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS12	Bottom	10.8	3	2	10:04	18.1	7.71	28.3	7.42	5.84	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	1	10:17	18.1	7.86	28.2	7.24	5.54	7.6
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS13	Surface	1	1	2	10:17	18.2	7.9	28.1	7.22	5.59	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.7	2	1	10:17	18.2	7.79	28.3	7.41	5.68	8
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	IS13	Middle	5.7	2	2	10:17	18.3	7.81	28.4	7.39	5.72	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb			IS13	Bottom	10.4	3	1	10:17	18.4		28.4	7.53	5.94	8.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb			IS13		10.4	3	2	10:17	18.4	7.93		7.55	5.87	7.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb			IS14	Surface	1	1	1	-	17.9	7.76		7.15	5.57	6.8
	HY/2012/08		Mid-Ebb				Surface	1	1	2	09:58	18		28.1	7.16	5.73	7.2
	HY/2012/08		Mid-Ebb	Cloudy				5.6	2	1	09:58	18.1	_	28.2	7.11	5.58	7
	HY/2012/08		Mid-Ebb	Cloudy				5.6	2	2	09:58	18.2		28.1	7.13	5.65	7.2
	HY/2012/08		Mid-Ebb					10.2	3	1	09:58	18.2		28.2	7.35	5.92	7.2
	HY/2012/08		Mid-Ebb	Cloudy				10.2	3	2	09:58	18.1		28.3	7.39	5.86	7.5
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	1	10:30	18.1	7.75		7.3	5.82	7.9
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	1	2	10:30	18	7.73		7.27	5.77	7.7
	HY/2012/08		Mid-Ebb					4.8	2	<del> -</del>	-	18.1		28.2	7.35	5.7	7.8
	HY/2012/08		Mid-Ebb					4.8	2	2	10:30	18.2		28.1	7.38	5.65	7.7
	HY/2012/08		Mid-Ebb	Cloudy				8.6	3	1	10:30	18.2	_	28.2	7.43	5.88	7.7
			Mid-Ebb			1		8.6	3	2	10:30	18.3	7.82		7.45	5.83	7.7
		2017-03-23							1	1	-	18.2	7.82		7.45	5.75	7.5
				_			Surface		1	2							
INICLKL	HY/2012/08	2017-03-23	IVIIU-⊏DD	Cloudy	Small wave	SKØ	Surface	I	1	2	10:56	10.3	7.85	∠ŏ. I	7.4	5.68	7.2

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	1	10:56						
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	2	10:56						
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR8	Bottom	4.2	3	1	10:56	18.3	7.87	28.1	7.22	5.74	7.2
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR8	Bottom	4.2	3	2	10:56	18.2	7.9	28.2	7.26	5.8	7.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	1	10:43	17.9	7.84	28	7.16	5.64	7.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	2	10:43	18	7.87	27.9	7.18	5.57	7.1
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	1	10:43						
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	2	10:43						
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.2	3	1	10:43	17.8	7.92	28.1	7.25	5.8	7.6
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.2	3	2	10:43	17.9	7.9	28.1	7.27	5.88	7.4
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	11:09	18.1	7.85	28.2	7.31	5.52	7
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	11:09	18.2	7.87	28.1	7.33	5.55	7
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.8	2	1	11:09	18.2	7.88	28.2	7.4	5.39	6.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.8	2	2	11:09	18.3	7.86	28.3	7.38	5.45	6.9
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.6	3	1	11:09	18.3	7.82	28.3	7.55	5.78	7.3
TMCLKL	HY/2012/08	2017-03-23	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.6	3	2	11:09	18.4	7.85	28.4	7.52	5.87	7.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	1	17:16	18.8	7.88	28	7.36	5.75	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	2	17:16	18.7	7.84	28.1	7.33	5.81	8.6
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Middle	8.9	2	1	17:16	18.9	7.92	28.3	7.49	5.96	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Middle	8.9	2	2	17:16	18.9	7.93	28.2	7.47	5.9	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.8	3	1	17:16	19.1	8.05	28.4	7.55	6.12	8.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS4	Bottom	16.8	3	2	17:16	19	8.07	28.3	7.58	6.04	8.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	1	15:12	18.7	8.05	28.1	7.14	6.22	9.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Surface	1	1	2	15:12	18.8	8.03	28	7.18	6.28	9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	1	15:12	18.9	6.95	28.3	7.27	6.31	9.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Middle	6.9	2	2	15:12	18.8	6.92	28.2	7.29	6.36	9.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	1	15:12	19	8.11	28.4	7.44	6.42	9.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	CS6	Bottom	12.7	3	2	15:12	19	8.14	28.5	7.46	6.48	9.5
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	1	16:44	18.6	7.74	28	7.31	5.72	7.6
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Surface	1	1	2	16:44	18.7	7.71	28.1	7.33	5.78	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.1	2	1	16:44	18.8	7.86	28.2	7.45	6.05	8.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Middle	6.1	2	2	16:44	18.8	7.88	28.1	7.42	6.09	8.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11.2	3	1	16:44	18.9	7.91	28.3	7.61	5.82	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS12	Bottom	11.2	3	2	16:44	18.8	7.93	28.2	7.59	5.89	8.1
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	1	16:29	18.9	7.96	27.9	7.14	6.22	8.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Surface	1	1	2	16:29	19	7.99	28	7.15	6.17	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.9	2	1	16:29	19.1	8.1	28.1	7.32	6.12	8.5
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Middle	5.9	2	2	16:29	19.1	8.11	28	7.33	6.19	8.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.9	3	1	16:29	19.2	8.18	28.2	7.4	6.02	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS13	Bottom	10.9	3	2	16:29	19.1	8.16	28.1	7.44	6.07	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	1	17:00	18.7	7.89	27.9	7.1	5.99	7.6
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Surface	1	1	2	17:00	18.8	7.74	28	7.07	5.91	7.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.9	2	1	17:00	18.9	7.83	28.1	7.23	6.11	7.6
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Middle	5.9	2	2	17:00	18.8	7.84	28	7.26	6.03	7.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	1	17:00	19	7.89	28.2	7.34	6.18	7.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS14	Bottom	10.8	3	2	17:00	18.9	7.9	28.3	7.38	6.25	8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	1	16:14	18.8	7.95	28.1	7.3	6.17	8.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS15	Surface	1	1	2	16:14	18.9	7.97	28	7.31	6.14	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS15	Middle	5	2	1	16:14	19	8.12	28.2	7.22	6.03	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS15	Middle	5	2	2	16:14	19	8.1	28.1	7.24	6.09	8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	IS15	Bottom	8.9	3	1	16:14	19.1	8.08	28.3	7.56	6.24	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy				8.9	3	2	16:14	19		28.4	7.54	6.28	8.5
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR8	Surface	1	1	1	15:44	18.9	7.92	28	7.12	6.02	7.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy		SR8	Surface	1	1	2	15:44	18.9		27.9	7.1	6.08	8
			Mid-Flood	Cloudy			Middle		2	1	15:44						
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR8	Middle		2	2	15:44						

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.4	3	1	15:44	19	7.99	28.1	7.32	6.18	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR8	Bottom	4.4	3	2	15:44	18.9	8.05	28	7.29	6.11	8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	1	16:00	18.8	8.01	28	7.34	6.09	7.6
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	16:00	18.9	8.04	28.1	7.38	6.13	7.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	16:00						
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	16:00						
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	1	16:00	19	8.12	28.1	7.43	6.35	8.1
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	2	16:00	18.9	8.16	28.1	7.41	6.29	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	15:28	18.8	7.95	27.9	7.25	6.1	7.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	15:28	18.7	7.97	28	7.23	6.15	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1	15:28	18.9	7.82	28.1	7.1	6.34	8.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	2	15:28	18.9	7.8	28.2	7.13	6.29	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood		Small wave		Bottom	12.7	3	1	15:28	19.1	8.03	28.3	7.48	6.38	8.5
TMCLKL	HY/2012/08	2017-03-25	Mid-Flood		Small wave	SR10A	Bottom	12.7	3	2	15:28	19		28.2	7.49	6.3	8.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb				Surface	1	1	1	10:52	18.7		27.9	7.25	6.07	8.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy			Surface	1	1	2	10:52	18.7		27.9	7.28	6.05	8.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					8.8	2	1	10:52		_	28	7.36	6.14	8.7
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					8.8	2	2	10:52		8.09	28.1	7.39	6.17	8.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					16.5	3	1	10:52	19		28.2	7.42	6.39	9.1
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					16.5	3	2	10:52	19.1		28.3	7.4	6.37	9.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb				Surface	1	1	1	13:12			28.1	7.05	6.17	8.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb				Surface	1	1	2	13:12			28.2	7.07	6.19	9.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					6.7	2	1	13:12			28.3	7.18	6.24	9.2
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb		Small wave			6.7	2	2	13:12	18.9	_	28.4	7.21	6.27	9.3
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb					12.3	3	1	13:12	19		28.5	7.36	6.35	9
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	i – -				12.3	3	2	13:12	19.1	_	28.5	7.39	6.39	9.1
		2017-03-25					Surface		1	1			7.86		7.14	5.97	9.1
	HY/2012/08		Mid-Ebb				Surface	1	1	2	11:35	18.8	7.88		7.17	5.99	8.1
			Mid-Ebb					5.9	2	1	-		8.04		7.17	6.13	8.2
	HY/2012/08		Mid-Ebb					5.9	2	2	11:35	19		28.1	7.27	6.15	8.5
	HY/2012/08		Mid-Ebb	Cloudy				10.7	2	1	11:35	19.1	_	28.2	7.36	6.27	8.3
								10.7	ა ი	2				28.3	7.39	6.3	8.5
	HY/2012/08		Mid-Ebb					10.7	<u>ي</u> ا	4	11:35	19.2	_				
	HY/2012/08		Mid-Ebb				Surface	1	1	1	12:00	18.7		27.8	7.09	6.25	8.4
			Mid-Ebb				Surface	ΓO	1	4		18.8		27.9	7.07	6.27	8.6
	HY/2012/08		Mid-Ebb					5.8	2	1	12:00	18.9	7.92		7.14	6.39	8.9
	HY/2012/08		Mid-Ebb	Cloudy				5.8	2	4	12:00	18.9	7.95		7.17	6.37	9
	HY/2012/08		Mid-Ebb					10.5	3	1	1	19		28.2	7.32	6.43	8.6
	HY/2012/08		Mid-Ebb	Cloudy				10.5	3	2	12:00		8.09		7.34	6.45	9
			Mid-Ebb	Cloudy			Surface	1	1	1	1		_	27.8	6.89	6.13	7.6
	HY/2012/08		Mid-Ebb				Surface	7	1	2	11:13			27.9	6.92	6.15	7.7
	HY/2012/08		Mid-Ebb					5.7	2	1				28	7.07	6.28	8
	HY/2012/08		Mid-Ebb					5.7	2	4		19	8.09		7.09	6.31	7.8
	HY/2012/08		Mid-Ebb	Cloudy				10.4	3	1	11:13	19.1		28.2	7.27	6.4	7.8
			Mid-Ebb					10.4	3	2	11:13	19.2		28.2	7.29	6.43	7.8
	HY/2012/08		Mid-Ebb	Cloudy			Surface	1	11	1	-		8.04		7.16	6.13	8.4
			Mid-Ebb				Surface	1	1	2	12:18		8.07		7.18	6.15	8.4
	HY/2012/08		Mid-Ebb					4.8	2	1	12:18		8.15		7.3	6.28	8.5
	HY/2012/08		Mid-Ebb					4.8	2	2	12:18	18.9		28.2	7.28	6.3	8.7
	HY/2012/08		Mid-Ebb					8.5	3	1		19		28.3	7.45	6.37	8.5
	HY/2012/08		Mid-Ebb					8.5	3	2	12:18	19.1	7.95		7.48	6.39	8.8
			Mid-Ebb	i i			Surface	1	1	1			8.06		6.97	6.13	7.9
	HY/2012/08		Mid-Ebb				Surface	1	1	2	12:48	18.8	8.09	28	6.99	6.15	8.1
	HY/2012/08		Mid-Ebb	Cloudy			Middle		2	1	12:48			<u> </u>			
TMCLKL			Mid-Ebb	Cloudy	Small wave	SR8	Middle		2	2	12:48						
		2017-03-25					Bottom		3	1	12:48		7.87		7.13	6.29	8.2
TMCLKI	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR8	Bottom	4.1	3	2	12:48	18.9	7.89	28.2	7.15	6.31	8.3

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	1	12:36	18.6	7.93	27.9	7.2	6.25	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Surface	1	1	2	12:36	18.7	7.91	28	7.23	6.27	7.8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	1	12:36						
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Middle		2	2	12:36						
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	1	12:36	18.8	8.06	28.1	7.38	6.38	8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	2	12:36	18.9	8.09	28.2	7.4	6.41	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	13:00	18.6	7.86	27.9	7.16	6.28	7.9
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	13:00	18.7	7.89	28	7.19	6.3	8
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.7	2	1	13:00	18.8	8.04	28.1	7.29	6.36	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.7	2	2	13:00	18.9	8.07	28.2	7.31	6.39	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.4	3	1	13:00	19	8.15	28.3	7.44	6.4	8.4
TMCLKL	HY/2012/08	2017-03-25	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.4	3	2	13:00	19	8.17	28.4	7.46	6.42	8.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood		Small wave		Surface	1	1	1	19:42	18.7		28	7.27	6	8.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood			CS4	Surface	1	1	2	19:42	18.8	7.86	28.1	7.23	6.04	8.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					8.9	2	1	19:42	18.8		28.2	7.18	6.25	8.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					8.9	2	2	19:42	18.9		28.1	7.23	6.27	8.9
	HY/2012/08	2017-03-28	Mid-Flood					16.8	3	1	19:42	19		27.8	7.09	6.53	9.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					16.8	3	2	19:42	19		28	7.11	6.55	9.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood		Small wave		Surface	1	1	1	17:33	18.9		27.9	7.25	6.01	8.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood				Surface	1	1	2	17:33	19		28	7.28	6.04	8.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					6.9	2	1	17:33	19.1	_	28	7.14	6.12	9.2
TMCLKL	HY/2012/08		Mid-Flood					6.9	2	2	17:33	19	_	28	7.18	6.18	9.2
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					12.8	3	1	17:33	19.1		28	7.03	6.33	9.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood					12.8	3	2	17:33	19.2	7.7	28.1	7	6.37	9.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood				Surface	1	1	1	19:10	18.8	7.66	27.9	7.25	6.07	8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	<del> </del>			Surface	1	1	2	19:10	18.7	_	27.9	7.28	6.1	8.2
		2017-03-28						6.6	2	1	•	18.8	7.73		7.16	6.32	8.5
	HY/2012/08		Mid-Flood					6.6	2	2		18.9		28.1	7.19	6.35	8.5
			Mid-Flood					12.2	3	1	•	19	_	28.1	7.04	6.51	8.7
			Mid-Flood			•		12.2	3	2		19		28.2	7.08	6.55	8.8
	HY/2012/08	2017-03-28	Mid-Flood			•	Surface	1	1	1	18:53	18.8		27.8	7.12	6.01	8.2
	HY/2012/08		Mid-Flood				Surface	1	1	2	18:53	18.7		27.8	7.17	6.07	8.2
	HY/2012/08		Mid-Flood			•		5.8	2	1		18.8		27.9	7.05	6.18	8.4
			Mid-Flood			•		5.8	2	2	•	18.9		27.8	7.09	6.13	8.6
			Mid-Flood			•		10.5	3	1	18:53	19		28	7.02	6.45	8.9
	HY/2012/08		Mid-Flood			•		10.5	3	2	18:53	19.1		28.2	7.06	6.49	8.9
	HY/2012/08		Mid-Flood				Surface	10.5	1	1	19:26	18.7		27.9	7.11	6.06	7.7
			Mid-Flood				Surface	1	1	2	19:26	18.7		27.9	7.11	6.09	7.7
	HY/2012/08		Mid-Flood					5.9	2	1	19:26	18.8		27.9	7.16	6.12	7.8
	HY/2012/08		Mid-Flood			•		5.9	2	2	19:26	18.9	7.69		7.08	6.17	7.4
	HY/2012/08 HY/2012/08		Mid-Flood					10.8	2	1		19		28.1	7.08	6.23	7.4
	HY/2012/08 HY/2012/08		Mid-Flood					10.8	3	2	19:26	19		28.1	7.02	6.26	7.8
	HY/2012/08 HY/2012/08		Mid-Flood					10.0	<u>ی</u> 1	1	19:26				7.06	6.1	8.5
						•	Surface	1	1	2	18:37	18.8		27.9		-	
	HY/2012/08		Mid-Flood			•	Surface	   <i>E</i>	2	4	18:37	18.9		28	7.3	6.18	8.5
	HY/2012/08		Mid-Flood					5	2	1		18.9	7.66		7.16	6.33	8.7
	HY/2012/08		Mid-Flood					5	2	4		19		28.2	7.11	6.38	8.4
	HY/2012/08		Mid-Flood					9	ა ი	1	18:37	19.1		28.2	7.02	6.54	8.7
	HY/2012/08		Mid-Flood					9	3	4	18:37	19		28.2	7.07	6.57	9
	HY/2012/08		Mid-Flood				Surface	1	1	1	18:05	18.9	_	27.8	7.26	6.15	7.8
	HY/2012/08		Mid-Flood				Surface	1	1	4	18:05	18.8	7.82	21.ŏ	7.28	6.18	7.9
			Mid-Flood				Middle		2	1	18:05	1	_	-			+
	HY/2012/08		Mid-Flood				Middle	1 -	2	2	18:05	10.0		07.0	7.00		100
			Mid-Flood	Cloudy				4.7	3	1	18:05	18.9		27.9	7.03	6.3	8.2
			Mid-Flood					4.7	3	2	18:05	19		28	7.1	6.38	8.1
		2017-03-28		2			Surface		1	1		18.8	7.72		7.22	6.12	8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	18:21	18.8	7.7	27.9	7.27	6.18	7.9

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	18:21						
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	18:21						
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	1	18:21	18.9	7.57	28	7.04	6.43	8.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.7	3	2	18:21	18.8	7.61	28.1	7.09	6.48	8.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	17:49	18.9	7.88	28	7.29	6.03	7.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	17:49	18.9	7.9	28.2	7.33	6.08	8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	1	17:49	18.9	7.62	27.9	7.23	6.09	7.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.9	2	2	17:49	19	7.66	27.9	7.25	6.11	7.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.7	3	1	17:49	19.1	7.84	28	7.09	6.32	8.1
TMCLKL	HY/2012/08	2017-03-28	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.7	3	2	17:49	19.1	7.87	28.1	7.12	6.3	8.1
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	1	12:30	18.9	7.83	27.9	7.13	6.01	8.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	12:30	18.9	7.79	27.9	7.1	6.08	8.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.7	2	1	12:30	18.9	7.8	28	7.04	6.34	9.1
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.7	2	2	12:30	19	7.84	28.1	7.01	6.42	9.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.4	3	1	12:30	19	7.82	28.3	6.86	6.67	9.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.4	3	2	12:30	19.1	7.85	28.3	6.89	6.73	9.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Surface	1	1	1	14:50	19		28	7.16	6.07	8.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	CS6	Surface	1	1	2	14:50	19	7.82	28	7.12	6.14	8.7
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Middle	6.7	2	1	14:50	19	7.8	28	7.05	6.25	9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Middle	6.7	2	2	14:50	19		28	7.02	6.31	9.1
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Bottom	12.4	3	1	14:50	19		28.1	6.88	6.48	9.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Bottom	12.4	3	2	14:50	19.1		28.1	6.91	6.54	9.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Surface	1	1	1	13:08	18.9		28	7.13	6.23	8.2
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	13:08	18.9		27.9	7.11	6.16	8.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Middle	6.4	2	1	13:08	18.9		28	7.05	6.4	8.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Middle	6.4	2	2	13:08	19	•	28	7.02	6.33	8.4
			Mid-Ebb	Cloudy				11.7	3	1	•	19		28.1	6.96	6.64	8.8
TMCLKL		2017-03-28	Mid-Ebb	Cloudy				11.7	3	2	13:08	19		28.1	6.92	6.6	8.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	1	13:24	18.9	7.76		7.05	6.07	8.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	2	13:24	18.9	_	27.9	7.02	6.14	8.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Middle	5.5	2	1	13:24	18.9		28	7	6.25	8.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				5.5	2	2	13:24	18.9	7.76		6.96	6.3	8.7
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				10	3	1	13:24	19	7.77		6.88	6.61	9.2
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				10	3	2	13:24	19		28.1	6.85	6.56	9.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	1	12:50	18.9		27.9	7.06	6.17	7.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave		Surface	1	1	2	12:50	18.9		27.9	7.03	6.09	7.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Middle	5.7	2	1	12:50	18.9		28	6.95	6.22	7.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Middle	5.7	2	2	12:50	18.9	7.72		6.91	6.16	7.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				10.3	3	1	12:50	19	7.76		6.87	6.38	7.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Bottom	10.3	3	2	12:50	19	7.79		6.84	6.45	7.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	1	13:44	18.9	7.78		7.13	6.25	8.3
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	2	13:44	19	7.74		7.10	6.31	8.7
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				4.8	2	1	13:44	19		28	7.07	6.42	8.7
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				4.8	2	2	13:44	19		28	7.07	6.49	9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				8.6	3	1	13:44	19		28.1	6.93	6.72	8.8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				8.6	3	2	13:44	19.1		28.1	6.9	6.66	0.0
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	1	14:17	18.9		28	7	6.21	8.2
	HY/2012/08 HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				1	1	2		19		28	6.97	6.27	Q. Δ
TMCLKL							Surface Middle	<del>                                     </del>	2	1	14:17	18	1.11	20	0.81	0.21	U
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Middle Middle		2	2	14:17	+	-	<del> </del>	<del> </del>	+	+
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Middle Bottom	4.2	2	1	14:17	10	7 00	20	6 90	6.4	9.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				4.2	ა ი	2	•	19	7.82		6.88	6.4	8.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy				4.2	ა 1	1	14:17	19	7.83		6.84	6.47	8.2
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	1		Surface	1	1	1	14:04	19	7.78		7.06	6.38	8.4
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy			Surface	1	1	4	14:04	19	7.81	28	7.02	6.3	ŏ
			Mid-Ebb	Cloudy			Middle	-	2	1	14:04	<u> </u>			<u> </u>		+
TMCLKL	HY/2012/08	2017-03-28	Mid-Fpp	Cloudy	Small wave	SR9	Middle		2	2	14:04						

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	1	14:04	19	7.8	28	6.93	6.51	8.5
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR9	Bottom	3.4	3	2	14:04	19	7.76	28	6.89	6.6	8.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	1	14:32	19	7.83	28	7.17	6.03	7.6
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	14:32	19	7.79	28	7.13	6.09	7.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.6	2	1	14:32	19	7.76	28	7.08	6.18	8
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.6	2	2	14:32	19	7.8	28	7.04	6.23	7.9
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.2	3	1	14:32	19.1	7.81	28.1	6.93	5.52	8.2
TMCLKL	HY/2012/08	2017-03-28	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.2	3	2	14:32	19.1	7.83	28.2	6.9	6.48	8.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	CS4	Surface	1	1	1	09:50	19.4	7.82	28.2	7.15	6.29	9.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood		Small wave	CS4	Surface	1	1	2	09:50	19.3		28.1	7.18	6.26	9
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Middle	9.2	2	1	09:50	19.4	7.84	28.2	7.34	6.31	9.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Middle	9.2	2	2	09:50	19.5		28.3	7.37	6.26	9.1
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy				17.4	3	1	09:50	19.5		28.3	7.38	6.35	9.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					17.4	3	2	09:50	19.5		28.3	7.35	6.39	9.2
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Surface	1	1	1	08:15	19.4		28	7.37	5.93	8.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy			Surface	1	1	2	08:15	19.3		28	7.39	5.98	8.9
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					6.9	2	1	08:15	19.5		28.1	7.44	5.72	8.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					6.9	2	2	08:15	19.5	7.8	28.1	7.47	5.69	8.5
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave			12.8	3	1	08:15	19.5	7.83	28.1	7.52	6.24	9.2
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Bottom	12.8	3	2	08:15	19.6		28.2	7.48	6.28	9.1
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Surface	1	1	1	09:17	19.4	7.8	28.1	7.28	6.11	8.2
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood				Surface	1	1	2	-	19.4		28	7.24	6.07	8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					5.9	2	1		19.4		28.2	7.36	6.4	8.6
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					5.9	2	2	09:17	19.5		28.1	7.34	6.46	8.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood					10.8	2	1	09:17	19.5	7.83	28.2	7.34	6.36	8.6
	HY/2012/08			<del> </del>				10.8	ა ი	2	09:17	19.5	_		7.35	6.32	8.3
TMCLKL TMCLKL		2017-03-30	Mid-Flood				Bottom Surface		ა 1	1	•		7.82	28.2	7.35 7.15	5.98	8.2
							Surface	1	1	2			7.84		7.15		
			Mid-Flood					F 2	2	1	•	19.3	7.85		7.11	5.95 6.21	8.3 8.7
			Mid-Flood					5.3	2	2	-	19.5			7.06	6.25	8.4
			Mid-Flood					5.3	2	4		19.5		28.1			
	HY/2012/08		Mid-Flood	Cloudy				10.6	ა ი	1	09:06	19.4		28.2	7.24	6.36	8.7
	HY/2012/08		Mid-Flood					10.6	3	4		19.5		28.2	7.27	6.39	8.9
	HY/2012/08		Mid-Flood				Surface	1	1	1		19.4		28.1	7.2	6.08	7.4
			Mid-Flood				Surface	7	1	2		19.4	7.79		7.17	6.12	7.4
			Mid-Flood					5.8	2	1		19.5		28.2	7.27	6.25	7.6
	HY/2012/08		Mid-Flood	Cloudy				5.8	2	2		19.5	7.82		7.24	6.29	7.9
	HY/2012/08		Mid-Flood					10.6	3	1		19.5		28.2	7.29	6.21	7.9
			Mid-Flood	Cloudy				10.6	3	2		19.4	7.86		7.26	6.25	7.7
			Mid-Flood	Cloudy			Surface	1	[1] [4	1			7.87		7.14	6.33	8.4
	HY/2012/08		Mid-Flood				Surface	1	1	2	•	19.4		28.1	7.19	6.37	8.8
	HY/2012/08		Mid-Flood					5.1	2	1		19.5	7.82		7.27	6.47	8.7
	HY/2012/08		Mid-Flood					5.1	2	2	•	19.4		28.2	7.3	6.42	8.7
	HY/2012/08		Mid-Flood	Cloudy				9.2	3	1		19.5		28.2	7.38	6.29	8.4
	HY/2012/08		Mid-Flood	Cloudy				9.2	3	2		19.5		28.2	7.36	6.25	8.3
	HY/2012/08		Mid-Flood				Surface	1	1	1	•	19.3	7.82		7.04	5.82	7.7
			Mid-Flood				Surface	1	1	2	•	19.4	7.83	28	7.01	5.78	7.4
	HY/2012/08		Mid-Flood				Middle		2	1	08:39						
	HY/2012/08		Mid-Flood				Middle		2	2	08:39						
	HY/2012/08		Mid-Flood					4.6	3	1	•	19.4	7.78		7.11	5.93	7.8
	HY/2012/08		Mid-Flood					4.6	3	2	•	19.4	7.76		7.08	5.96	7.8
			Mid-Flood				Surface	1	1	1		19.3	7.85		7.08	6.21	8.1
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR9	Surface	1	1	2	08:47	19.3	7.86	28	7.05	6.25	7.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	1	08:47						
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR9	Middle		2	2	08:47						
		2017-03-30					Bottom		3	1	08:47		7.88		7.04	5.99	7.5
TMOLK	HV/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR9	Bottom	3.8	3	2	08:47	19.3	7.87	28.1	7.01	5.95	7.7

Project	Works	Date	Tide	Weather	Sea Condition	Stat	Level	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	1	08:30	19.3	7.79	28	7.19	6.09	7.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Surface	1	1	2	08:30	19.3	7.8	28	7.15	6.05	7.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.8	2	1	08:30	19.4	7.84	28	7.2	5.87	7.5
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Middle	6.8	2	2	08:30	19.5	7.85	28.1	7.24	5.81	7.4
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.7	3	1	08:30	19.5	7.85	28.1	7.17	6.34	8.2
TMCLKL	HY/2012/08	2017-03-30	Mid-Flood	Cloudy	Small wave	SR10A	Bottom	12.7	3	2	08:30	19.5	7.86	28.1	7.21	6.3	7.9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	1	12:46	19.4	7.87	27.9	7.04	6.16	8.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Surface	1	1	2	12:46	19.5	7.89	28	7.08	6.18	8.8
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.9	2	1	12:46	19.5	7.65	28.1	7.16	6.32	9.3
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Middle	8.9	2	2	12:46	19.6	7.68	28.2	7.19	6.37	9.2
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.8	3	1	12:46	19.7	7.74	28.3	7.25	6.33	9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	CS4	Bottom	16.8	3	2	12:46	19.8	7.77	28.3	7.27	6.35	9.1
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb				Surface	1	1	1	15:02	19.3		28	7.24	6.08	8.9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<del> </del>	Small wave		Surface	1	1	2	15:02	19.4	7.86	27.9	7.26	6.11	9.1
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<del> </del>				6.6	2	1	15:02	19.5		28	7.3	6.03	8.7
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb					6.6	2	2	15:02	19.5	7.7	28.1	7.37	6.07	9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb					12.2	3	1	15:02	19.6	_	28.1	7.38	6.31	9.4
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb					12.2	3	2	15:02	19.7		28.2	7.42	6.36	9.4
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy			Surface	1	1	1	13:20	19.4			7.14	6.26	8.5
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb				Surface	1	1	2	13:20	19.5		28	7.17	6.29	8.4
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<del> </del>				5.6	2	1	13:20	19.5	_	28	7.23	6.54	8.7
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<del> </del>				5.6	2	2	13:20	19.6		28.1	7.28	6.57	9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb					10.2	3	1	13:20	19.6		28.1	7.2	6.44	8.9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<u> </u>				10.2	3	2	13:20	19.6	_	28.2	7.24	5.47	8.6
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	<del> </del>			Surface	1	1	1	13:37	19.5		27.9	7.04	6.15	8.5
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb				Surface	1	1	2	13:37	19.5	•	28	7.07	6.17	8.6
		2017-03-30						5.6	2	1		19.5	7.81		7.01	6.33	8.6
	HY/2012/08		Mid-Ebb	<del> </del>				5.6	2	2	13:37	19.6		28.1	7.08	6.37	8.9
			Mid-Ebb					10.1	3	1	13:37	19.7	_		7.14	6.45	8.9
			Mid-Ebb					10.1	3	2	13:37	19.8	7.98		7.17	6.47	9
	HY/2012/08		Mid-Ebb				Surface	1	1	1	13:03	19.4	7.72		7.07	6.28	7.8
	HY/2012/08		Mid-Ebb				Surface	1	1	2	13:03	19.4	7.77		7.1	6.31	7.7
	HY/2012/08		Mid-Ebb					5.5	2	1	13:03	19.5	7.84		7.22	6.38	8.1
			Mid-Ebb					5.5	2	2	•	19.6	7.88		7.28	6.35	8.1
			Mid-Ebb					10	3	1	13:03	19.4			7.12	6.37	8.1
	HY/2012/08		Mid-Ebb					10	3	2	13:03	19.4			7.17	6.4	8.1
	HY/2012/08						Surface	1	1	1	13:54	19.4		27.8	7.08	6.47	8.6
	HY/2012/08		Mid-Ebb				Surface	1	1	2	13:54	19.5	7.76		7.05	6.4	8.7
	HY/2012/08		Mid-Ebb					4.9	2	1	13:54	19.5	7.76		7.16	6.53	8.9
	HY/2012/08		Mid-Ebb	<del> </del>				4.9	2	2	13:54	19.6	_		7.10	6.56	8.9
			Mid-Ebb					4.9 8.7	3	1	13:54	19.7		28.1	7.19	6.32	8.8
	HY/2012/08		Mid-Ebb					8.7	3	2	13:54	19.7	7.88		7.24	6.38	8.4
	HY/2012/08		Mid-Ebb				Surface	1	1	1	14:28	19.7	7.67		7.02	6.03	8
	HY/2012/08			<u> </u>			Surface	1	1	2	14:28	19.4	7.66		7.02	6.08	7.9
	HY/2012/08		Mid-Ebb				Middle	<u> </u>	2	1	14:28	10.4	7.00	∠U. I	7.00	0.00	1.3
			Mid-Ebb				Middle	<del>                                     </del>	2	2	14:28	1	$\vdash$	1		+	+
	HY/2012/08		Mid-Ebb					4.2	3	1	14:28	19.5	7.82	28.1	7.05	6.05	7.8
	HY/2012/08 HY/2012/08		Mid-Ebb	<del> </del>				4.2 4.2	ა ვ	2	14:28	19.5		28.2	7.05 7.09	6.07	7.8
	HY/2012/08		Mid-Ebb	<del> </del>			Surface	+.∠ 1	1	1	14:11	19.4	7.78		7.09 7.01	6.24	8.2
	HY/2012/08 HY/2012/08		Mid-Ebb				Surface	1	1	2		19.4	7.78		7.01	6.27	8.3
								<del> </del>	2	1		18.0	1.01	<u> </u>	1.00	0.21	0.3
			Mid-Ebb				Middle		2	2	14:11		-				+
	HY/2012/08		Mid-Ebb				Middle	2 2	2	1	14:11	10.5	7.00	20	7	6.00	-
	HY/2012/08		Mid-Ebb				Bottom		ა ი	1	•	19.5	7.92		7.00	6.08	7.0
			Mid-Ebb					3.3	3	4	14:11	19.5		28.1	7.06	6.11	7.9
		2017-03-30					Surface		1	1	•	19.4	7.72		7.06	6.16	8
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	SR10A	Surface	1	1	2	14:45	19.4	7.76	28	7.09	6.19	8.1

Project	Works	Date	Tide	Weather	Sea Condition	Stat	11 01/01	Water Depth	Lev_Cod	Replicate	Time	Temp(°C)	рН	Salinity(ppt)	DO(mg/L)	Turbidity(NTU)	SS(mg/L)
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.7	2	1	14:45	19.4	7.85	28	7.11	6.02	7.6
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	SR10A	Middle	6.7	2	2	14:45	19.5	7.88	28.1	7.18	6.07	7.9
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.3	3	1	14:45	19.5	7.76	28.1	7.04	6.38	8.5
TMCLKL	HY/2012/08	2017-03-30	Mid-Ebb	Cloudy	Small wave	SR10A	Bottom	12.3	3	2	14:45	19.6	7.69	28.2	7.07	6.42	8.1

Appendix J

Impact Dolphin Monitoring Survey

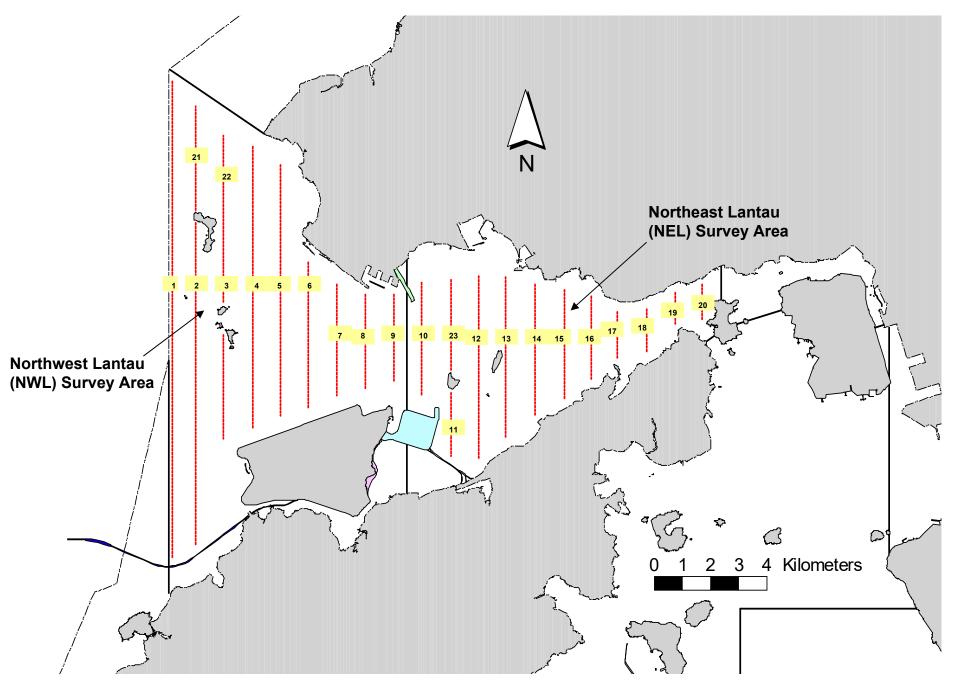



Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

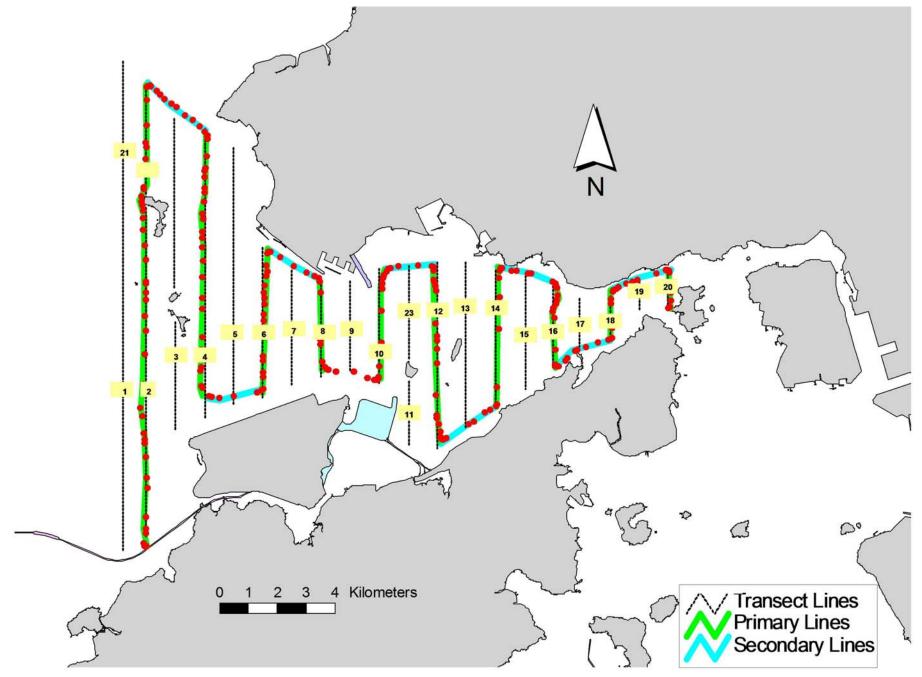



Figure 2. Survey Route on March 2nd, 2017 (from HKLR03 project)

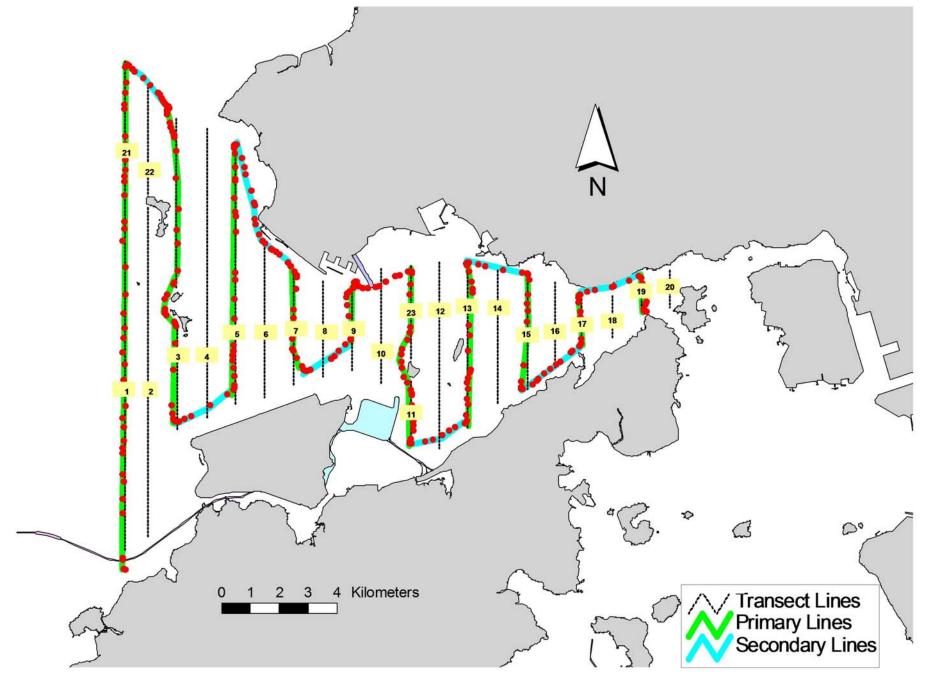



Figure 3. Survey Route on March 7th, 2017 (from HKLR03 project)

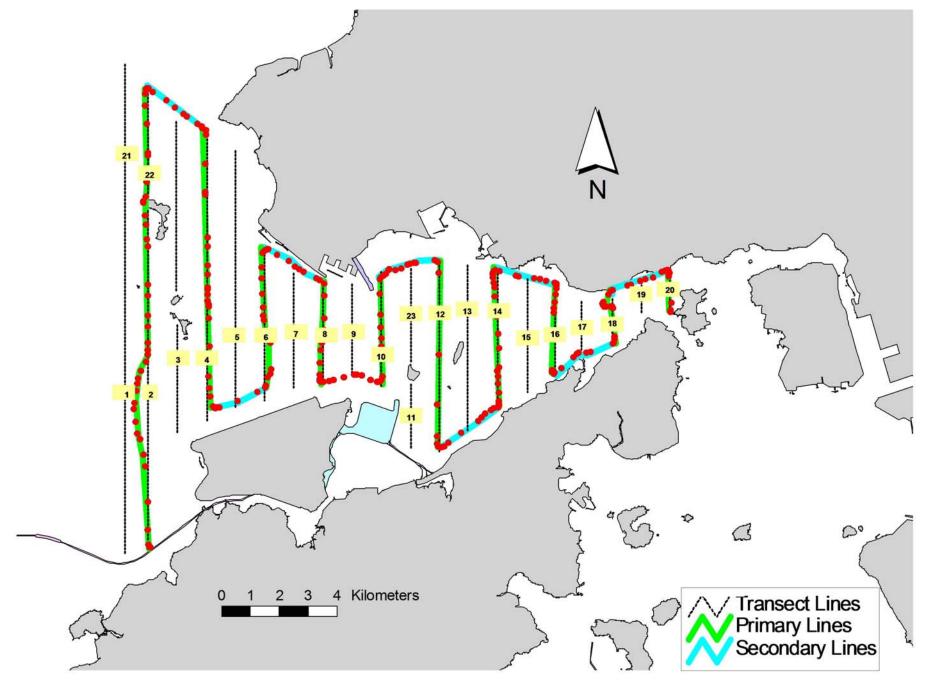



Figure 4. Survey Route on March 16th, 2017 (from HKLR03 project)

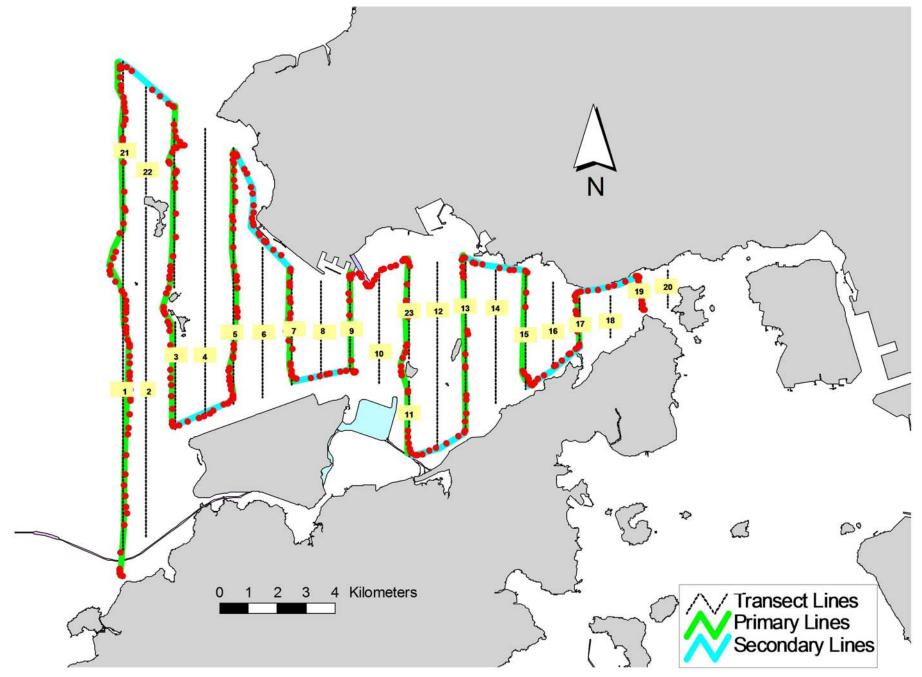



Figure 5. Survey Route on March 28th, 2017 (from HKLR03 project)

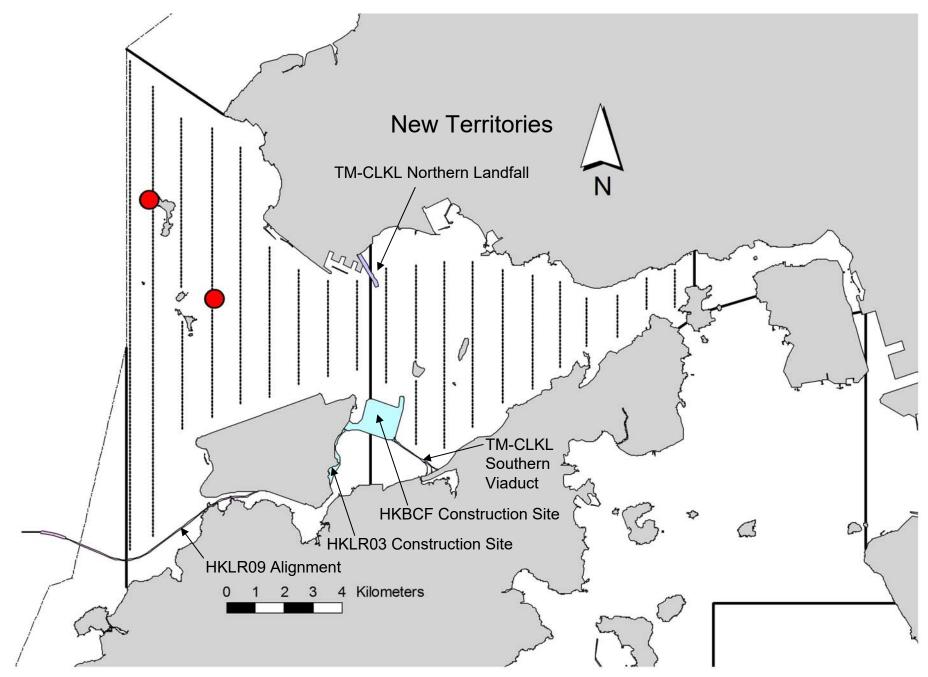



Figure 6. Distribution of Chinese White Dolphin Sightings during March 2017 HKLR03 Monitoring Surveys

## Appendix I. HKLR03 Survey Effort Database (March 2017)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
2-Mar-17	NW LANTAU	2	0.80	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NW LANTAU	3	14.47	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NW LANTAU	4	10.64	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NW LANTAU	5	4.59	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NW LANTAU	2	1.90	SPRING	STANDARD36826	HKLR	S
2-Mar-17	NW LANTAU	3	2.40	SPRING	STANDARD36826	HKLR	S
2-Mar-17	NW LANTAU	4	2.71	SPRING	STANDARD36826	HKLR	S
2-Mar-17	NW LANTAU	5	0.69	SPRING	STANDARD36826	HKLR	S
2-Mar-17	NE LANTAU	2	14.49	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NE LANTAU	3	4.75	SPRING	STANDARD36826	HKLR	Р
2-Mar-17	NE LANTAU	2	10.16	SPRING	STANDARD36826	HKLR	S
7-Mar-17	NE LANTAU	2	16.13	SPRING	STANDARD36826	HKLR	Р
7-Mar-17	NE LANTAU	2	10.67	SPRING	STANDARD36826	HKLR	S
7-Mar-17	<b>NW LANTAU</b>	2	30.59	SPRING	STANDARD36826	HKLR	Р
7-Mar-17	<b>NW LANTAU</b>	3	8.40	SPRING	STANDARD36826	HKLR	Р
7-Mar-17	NW LANTAU	2	12.91	SPRING	STANDARD36826	HKLR	S
16-Mar-17	NE LANTAU	2	20.88	SPRING	STANDARD36826	HKLR	Р
16-Mar-17	NE LANTAU	2	10.92	SPRING	STANDARD36826	HKLR	S
16-Mar-17	NW LANTAU	2	31.93	SPRING	STANDARD36826	HKLR	Р
16-Mar-17	NW LANTAU	2	7.27	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NW LANTAU	2	3.40	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NW LANTAU	3	13.92	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NW LANTAU	4	9.78	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NW LANTAU	2	3.00	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NW LANTAU	3	1.50	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NW LANTAU	4	3.40	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NE LANTAU	2	1.30	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NE LANTAU	3	5.50	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NE LANTAU	4	13.23	SPRING	STANDARD36826	HKLR	Р
28-Mar-17	NE LANTAU	2	1.20	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NE LANTAU	3	6.67	SPRING	STANDARD36826	HKLR	S
28-Mar-17	NE LANTAU	4	3.30	SPRING	STANDARD36826	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (March 2017)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
2-Mar-17	1	1049	8	NW LANTAU	3	60	ON	HKLR	826885	805324	SPRING	NONE	S
16-Mar-17	1	1242	12	NW LANTAU	2	509	ON	HKLR	823647	807563	SPRING	PURSE-SEINE	Р

# Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in March 2017

ID#	DATE	STG#	AREA
NL49	16/03/17	1	NW LANTAU
NL98	02/03/17	1	NW LANTAU
NL104	16/03/17	1	NW LANTAU
NL105	16/03/17	1	NW LANTAU
NL123	02/03/17	1	NW LANTAU
	16/03/17	1	NW LANTAU
NL202	02/03/17	1	NW LANTAU
	16/03/17	1	NW LANTAU
NL226	16/03/17	1	NW LANTAU
NL259	02/03/17	1	NW LANTAU
NL286	02/03/17	1	NW LANTAU
NL301	16/03/17	1	NW LANTAU
NL321	16/03/17	1	NW LANTAU
WL05	02/03/17	1	NW LANTAU
WL17	16/03/17	1	NW LANTAU
WL214	16/03/17	1	NW LANTAU



Appendix IV. Photographs of Identified Individual Dolphins in December 2016 (HKLR03)





Appendix IV. (cont'd)

# Appendix K

# Event and Action Plan

## Event and Action Plan for Impact Air Monitoring

			Action				
	ET (a)		IEC (a)		SOR (a)		Contractor(s)
Action Level Exceedance							
1. 2. 3. 4. 5.	Identify the source. Repeat measurement to confirm finding. If two consecutive measurements exceed Action Level, the exceedance is then confirmed. Inform the IEC and the SOR. Investigate the cause of exceedance and check Contractor's working procedures to determine possible mitigation to be implemented. If the exceedance is confirmed to be Project related after investigation, increase monitoring frequency to daily. Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC	1. 2. 3.	Check monitoring data submitted by the ET. Check the Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures.	1. 2. 3.	Confirm receipt of notification of failure in writing. Notify the Contractor. Ensure remedial measures properly implemented.	1. 2. 3.	Rectify any unacceptable practice Amend working methods if appropriate If the exceedance is confirmed to be Project related, submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals
8.	and the SOR.  If exceedance stops, cease additional monitoring.	5.	Supervise implementation of remedial measures.			5.	Amend proposal if appropriate

			Action			
	ET (a)	]	IEC (a)	SOR (a)		Contractor(s)
Limit Level Exceedance						
1. 2. 3. 4. 5. 6. 7. 8.	working procedures to determine possible mitigation to be implemented.  Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken.  Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP	1. 2. 3. 4.	Check monitoring data submitted by the ET. Check Contractor's working method. If the exceedance is confirmed to be Project related after investigation, discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures.	Confirm receipt of notification of failure in writing. Notify the Contractor. If the exceedance is confirmed to be Project related after investigation, in consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	1. 2. 3. 4. 5.	Take immediate action to avoid further exceedance. If the exceedance is confirmed to be Project related after investigation, submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. Stop the relevant activity of works as determined by the SOR until the exceedance is abated.
9.	remedial actions and keep the IEC, the DEP and the SOR informed of the results. If exceedance stops, cease additional monitoring.			abated.		abated.

Note: (a) ET – Environmental Team; IEC – Independent Environmental Checker; SOR – Supervising Officer's Representative

# Event & Action Plan for Impact Water Quality Monitoring

Event	ET Leader	IE	EC	SOR	Contractor
Action level being exceeded by one sampling day	<ol> <li>Repeat <i>in situ</i> measure day of exceedance to c findings;</li> <li>Identify source(s) of ir</li> <li>Inform IEC, contractor</li> <li>Check monitoring dat equipment and Contramethods.</li> </ol>	onfirm  mpact; r and SOR; a, all plant,	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of noncompliance in writing;      Notify Contractor.	<ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Amend working methods if appropriate.</li> </ol>
Action level being exceeded by two or more consecutive sampling days	<ol> <li>Repeat measurement of exceedance to confirm</li> <li>Identify source(s) of in</li> <li>Inform IEC, Contractor EPD;</li> <li>Check monitoring dat equipment and Contractor methods;</li> <li>Discuss mitigation mediate, SOR and Contractor</li> </ol>	a findings; mpact; or, SOR and 2. a, all plant, actor's working 2. easures with etor;	Check monitoring data submitted by ET and Contractor's working method;  Discuss with ET and Contractor on possible remedial actions;  Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;  Supervise the	<ol> <li>Discuss with IEC on the proposed mitigation measures;</li> <li>Ensure mitigation measures are properly implemented;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> </ol>	Rectify unacceptable practice;     Check all plant and equipment and consider changes of working methods;      Submit proposal of
	<ul><li>6. Ensure mitigation me implemented;</li><li>7. Increase the monitorin daily until no exceeda level;</li></ul>	ng frequency to nce of Action	implementation of mitigation measures.		additional mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;  5. Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1. Repeat measurement exceedance to confirm		Check monitoring data submitted by ET and	1. Confirm receipt of notification of failure in	1. Inform the SOR and confirm notification of the

Event	ET Leader	IEC	SOR	Contractor
	<ol> <li>Identify source(s) of impact;</li> <li>Inform IEC, Contractor, SOR and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, SOR and Contractor;</li> </ol>	2. Discuss with ET and Contractor on possible remedial actions;	writing;  2. Discuss with IEC, ET and Contractor on the proposed mitigation measures;  3. Request Contractor to review the working methods.	non-compliance in writing;  2. Rectify unacceptable practice;  3. Check all plant and equipment and consider changes of working methods;  4. Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive sampling days	<ol> <li>Repeat measurement on next day of exceedance to confirm findings;</li> <li>Identify source(s) of impact;</li> <li>Inform IEC, contractor, SOR and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, SOR and Contractor;</li> <li>Ensure mitigation measures are implemented;</li> <li>Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;</li> </ol>	submitted by ET and Contractor's working method;  2. Discuss with ET and Contractor on possible remedial actions;  3. Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SOR accordingly;  4. Supervise the implementation of mitigation measures.	<ol> <li>Discuss with IEC, ET and Contractor on the proposed mitigation measures;</li> <li>Request Contractor to critically review the working methods;</li> <li>Make agreement on the mitigation measures to be implemented;</li> <li>Ensure mitigation measures are properly implemented;</li> <li>Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR;</li> <li>Implement the agreed mitigation measures;</li> <li>Resubmit proposals of mitigation measures if problem still not under control;</li> <li>As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.</li> </ol>

Note: ET - Environmental Team, IEC - Independent Environmental Checker, SOR - Supervising Officer's Representative

## $Event/Action\,Plan\,for\,Impact\,Dolphin\,Monitoring$

EVENT		ACTION		
	ET	IEC	SOR	Contractor
Action Level	<ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor;</li> <li>Check monitoring data.</li> <li>Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> </ol>	<ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and finding with the ET and the Contractor.</li> </ol>	<ol> <li>Discuss monitoring with the IEC and any other measures proposed by the ET;</li> <li>If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be implemented.</li> </ol>	<ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Discuss with the ET and the IEC and propose measures to the IEC and the SOR;</li> <li>Implement the agreed measures.</li> </ol>
Limit Level	<ol> <li>Repeat statistical data analysis to confirm findings;</li> <li>Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&amp;A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;</li> </ol>	<ol> <li>Check monitoring data submitted by ET and Contractor;</li> <li>Discuss monitoring results and findings with the ET and the Contractor;</li> <li>Attend the meeting to discuss with ET, SOR and</li> </ol>	<ol> <li>Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.</li> <li>If SOR is satisfied with the</li> </ol>	<ol> <li>Inform the SOR and confirm notification of the non-compliance in writing;</li> <li>Attend the meeting to discuss with ET, IEC and SOR the necessity of additional dolphin monitoring and any other</li> </ol>

EVENT		ACTION		
	ET	IEC	SOR	Contractor
	<ol> <li>Identify source(s) of impact;</li> <li>Inform the IEC, SOR and Contractor of findings;</li> <li>Check monitoring data;</li> <li>Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.</li> <li>If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.</li> </ol>	Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures.  4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise SOR of the results and findings accordingly.  5. Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise SOR the results and findings accordingly.	proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, SOR to signify the agreement in writing on such proposals and any other mitigation measures.  3. Supervise the implementation of additional monitoring and/or any other mitigation measures.	potential mitigation measures.  3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary.  4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Note: ET - Environmental Team, IEC - Independent Environmental Checker, SOR - Supervising Officer's Representative

## Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

 Table L1
 Cumulative Statistics on Exceedances

Parameters	Level of Exceedance	Total No. recorded in this reporting month	Total No. recorded since project commencement
1-hr TSP	Action	0	30
	Limit	0	2
24-hr TSP	Action	0	5
	Limit	0	1
Water Quality	Action	0	6
	Limit	0	1
Impact Dolphin	Action	0	9
Monitoring	Limit	0	8

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics		
_	Complaints	Notifications of	Successful
		Summons	Prosecutions
This Reporting Month (March 2017)	1(1)	0	0
Total No. received since project commencement	14	0	0

⁽¹⁾  $^{(1)}$  Environmental complaint case regarding noise nuisance and water pollution at the the site near HKBCF of HZMB on 28 March 2017 is under investigation and no investigation report is available yet.

#### Contract No. HY/2012/08 Tuen Mun - Chek Lap Kok Link -Northern Connection Sub-sea Tunnel Section



#### ENVIRONMENTAL COMPLAINT/ENQUIRY INVESTIGATION REPORT

Our Reference: 0212330_Complaint LOG_20170214_12

Basic Information of Complaint/Enquiry

Busic Information of Computing Enquiry		
Reference Number:	EP/RW/0000358212	
Date of Complaint/Enquiry Received	6 February 2017	
Location of Complaint/Enquiry	Site area near Ho Yeung Street	
Nature of Complaint/Enquiry	Muddy water discharge	
Complaint/Enquiry Received by	EPD	
Via	Fax	
Complainant/Enquirer	Not disclosed	

#### Details of Complaint/Enquiry

On 6 February 2017, a complaint case was received by EPD regarding muddy water discharge from the site near Ho Yeung Street from 12:00am on 31 January 2017 to 4:00am on 1 February 2017. The IEC, the Environmental Team (ET) and the Project Proponent received the complaint notification from EPD on 14 February 2017. The ET was informed that the case is categorized as complaint in nature upon the investigation, discussion and agreement between relevant parties (i.e. the Contractor (DBJV), SOR and IEC).

#### **Investigation Report**

Upon receiving the case notification from EPD on 14 February 2017, the Contractor had promptly checked the construction programme of January and February 2017.

According to the construction programme provided by the Contractor, no construction works were carried out at the site near Ho Yeung Street during January and February 2017. No improper discharge was recorded. Two wetseps were set up at the site near Ho Yeung Street to treat the wastewater directed from the Slurry Treatment Plant during the incident period. Treated wastewater was discharged to the designated discharge point specified in the Water Discharge License. Site drainage plan of N6 is provided in Annex A.

Moreover, according to the inspection record of DBJV at midnight on 31 January and 1 February, the wastewater was properly treated by the wetsep before discharge. No improper discharge was observed during inspection. Photos taken by DBJV during the incident period were provided in Annex B.

ET has conducted an interview with the site foreman who was responsible for the wastewater treatment and management of wetsep of N6 during the incident period. It was confirmed that there was no improper discharge at N6 site area during the incident period. Maintenance record of the N6 wetsep during the incident period is provided in Annex C.

In addition, ET has conducted a joint site inspection with IEC, SOR and DBJV on 21 February 2017. No improper discharge was observed at the site near Ho Yeung Street. Two wetseps were operating to treat the wastewater from STP. No leakage of water pipes or malfunction of the wetseps was observed during the inspection. No water pipes were found on the seaside. Photos showing the site conditions are provided in Annex B.

Based on the above, there is no evidence to prove that the complaint case is related to this Contract.

#### Mitigation Measures and Follow-Up Actions Recommended to/Undertaken by Contractor

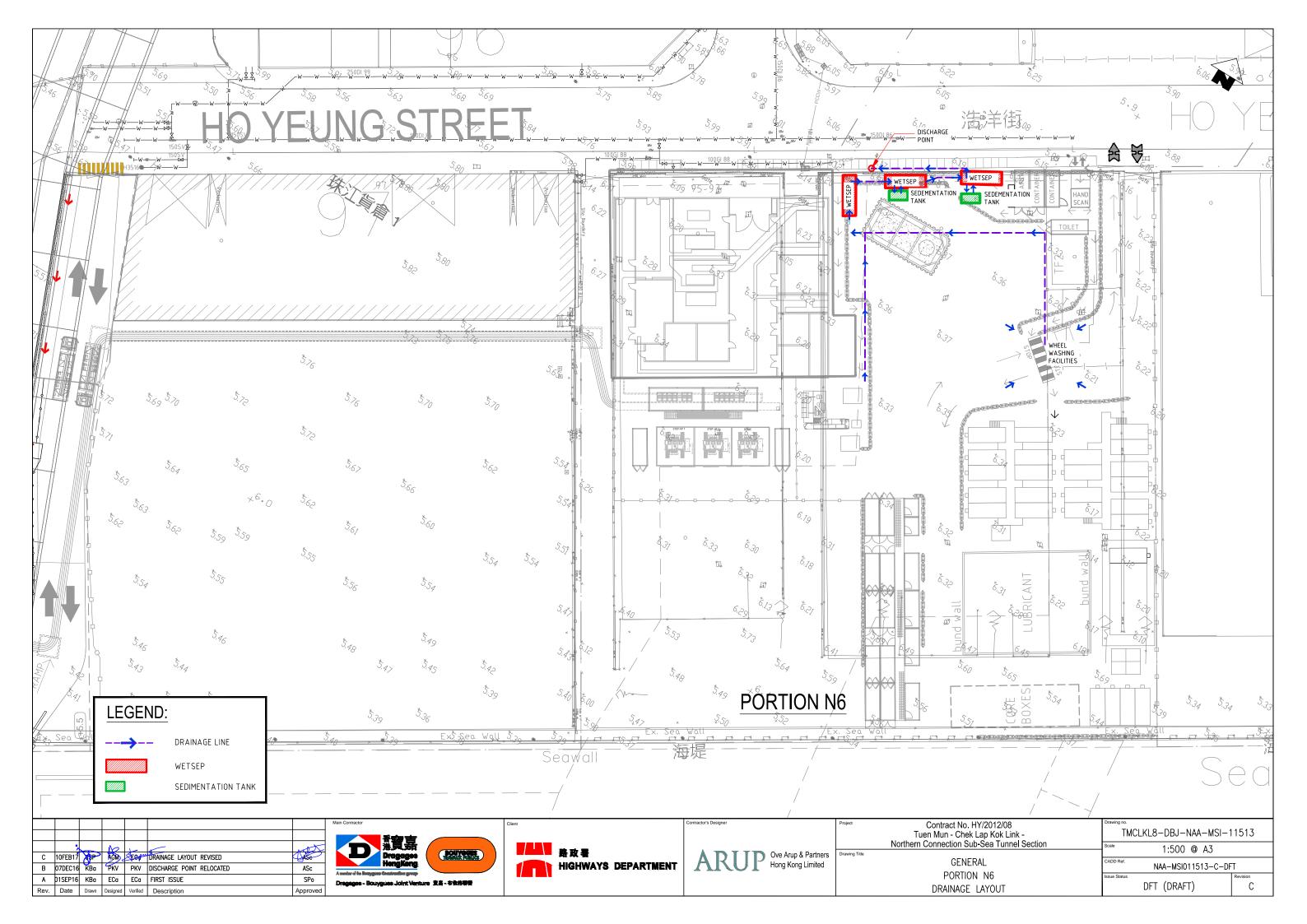
There is no evidence to prove that the complaint case is related to this Contract.

The Contractor was reminded to review and enhance the current mitigation measures to avoid similar situation.

The Contractor has been reminded to adhere strictly to implement all relevant mitigation measures of water quality impact recommended or specified in the EP (EP-354/2009/D), the approved EIA, Updated EM&A Manual and the Water Discharge License of this Project to avoid causing water pollution. The Contractor shall also fully comply with the conditions in the approved water discharge license to carry out construction works under the Contract.

Date of File Closed: 21 March 2017

____


(Jovy Tam, ET Leader)

Date: 21 March 2017

Approved and Filed by:

### Annex A

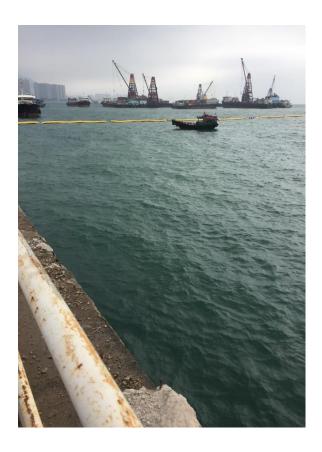
# Site Drainage Management Plan



#### Annex B

## Photo Record



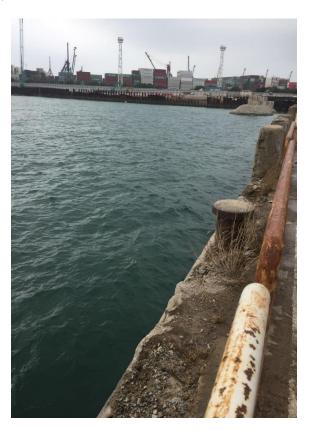

## Annex B Photo Records taken during Site Investigation

*Note: Photos taken on 21/2/2017



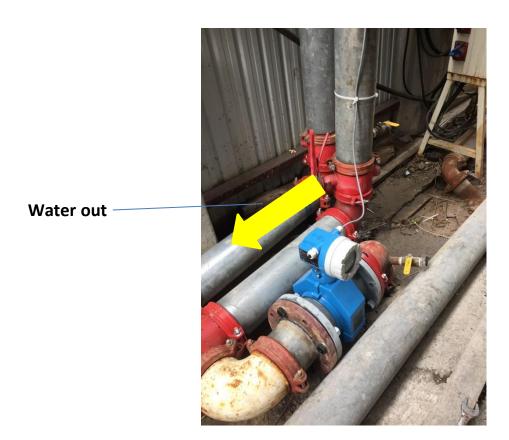
Wastewater was treated in the Wetsep before discharge.

*Note: Photos taken on 21/2/2017




No improper discharge was observed on the seaside.




## Annex B Photo Records taken during Site Investigation

*Note: Photos taken on 21/2/2017



No improper discharge was observed on the seaside.

*Note: Photos taken on 21/2/2017



Treated wasterwater was directed to the designated discharge point.



## Annex B Photo Records taken by DBJV

*Note: Photos taken on 1/2/2017



Wastewater was functioning properly.

*Note: Photos taken on 1/2/2017



Water sample was taken for checking.

### Annex C

Maintenance Record of Wetsep



# Contract No. HY/2012/08 Tuen Mun – Chek Lap Kok Link Northern Connection Sub-sea Tunnel Section

# WETSEP Checking Record 污水處理機檢查記錄

WETSEP Location	污水處理機位置:	1/2	
Date	日期:		5-2-17

	= □ <del>26</del> 3•						,	
		Monday 星期一	Tuesday 星期二	Wednesday 星期三	Thursday 星期四	Friday 星期五	Saturday 星期六	Sunday 星期日
1.	WETSEP In Normal Operation? 處理機是否正常運作?	V	V	V	V			
2.	pH Value 酸鹼度 (6.0 – 9.0)	7-4	6.1	6.7	6.0	7.3	6.7	7.5
3.	Electrical Supply OK? 電力供應正常?	V	V	V	V	V	V	V
4.	Outlet Abnormal? 出水口有否異常?	X	X	X	X	X	X	X
5.	Potion Enough? 藥水是否足夠?		レ	V	V	V	V	V
6.	Clean the Sedimentation Tank? 有否清理隔沙缸?	V	V	V	V	V	V	v
7.	Clean the De-silt Basin? 有否清理蓄泥池?	V	V	V	V		V	V
8.	Are the Cleansing Records of Sedimentation Tank/ De-silt Basin Stored Properly? 清理蓄泥池記錄是否妥善 儲存?	/		V	V	V	V	6
9.	Refill of Flocculants? pH Neutralization agent? 補充凝紮劑/酸鹼調節劑?	V	V	V	V	V	V	V
10	Flow rate of the discharge 排放流量	正常	正常	正学	王常	正常	正常	正常
11	Nature and Composition of the discharge 廢水排放的性質及成份	无色	无色	无色	无色	无色	无色	无色
12	Proper Desludging operation and disposal 正確清除及處理淤泥		V		V	V	V	
13	Others 其他情況							
	Verified by Site Foreman/Supervisor 地盤管工/監督簽署確認	like	Cek	Cerk	ak	Cik	Cik	Lik

*Please -

tick ( $\sqrt{\ }$ ) in the box if the condition is normal.

*若情况正常,請於方格內加上剔號(水)。

cross (X) in the box if the condition is abnormal, and write down the non-conformance.

*若情況不尋常,請於方格內加上交叉(X),並寫下不尋常狀況。

#### Remarks:

(1) Please keep the record and send to environmental department in monthly basis. 備註:

(1) 請將記錄妥善保存,並每月將記錄交回環保部。

### Appendix M

## Waste Flow Table



**Monthly Summary Waste Flow Table** 

Name of Department: <u>HyD</u> Contract No. / Works Order No.: <u>HY/2012/08</u>

**Monthly Summary Waste Flow Table for** March 2017 [to be submitted not later than the 15th day of each month following reporting month] (All quantities shall be rounded off to 3 decimal places.)

	Monthly Break-down of <u>Inert</u> Construction & Demolition Materials (i.e. Public Fill Materials)							
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Hard Rock and Large Broken Concrete	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill			
	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)	(in '000 ton)			
Sub-total	1097.465	0.000	0.000	0.000	1097.465			
Jan-2017	60.781	0.000	0.000	0.000	60.781			
Feb-2017	17.367	0.000	0.000	0.000	17.367			
Mar-2017	7.508	0.000	0.000	0.000	7.508			
Apr-2017								
May-2017								
Jun-2017								
Half Year Sub-total								
Jul-2017								
Aug-2017								
Sep-2017								
Oct-2017								
Nov-2017								
Dec-2017								
Project Total Quantities	1183.121	0.000	0.000	0.000	1183.121			

	Actual Quantities of Non-inert Construction Waste Generated Monthly								
Month	Metals		Paper/ cardboard packaging		Plastics (see Note 3)		Chemical Waste		Others, e.g. General Refuse disposed at Landfill
	(in '000kg)		(in '000kg)		(in '000kg)		(in '000kg)		(in '000ton)
	generated	recycled	generated	recycled	generated	recycled	generated	Disposed	generated
Sub-total	1.850	1.850	3.150	3.150	6.870	6.870	9.450	9.450	4.935
Jan-2017	0.000	0.000	0.000	0.000	0.000	0.000	3.400	3.400	0.257
Feb-2017	0.000	0.000	0.200	0.200	0.000	0.000	0.000	0.000	0.340
Mar-2017	0.000	0.000	0.000	0.000	0.000	0.000	6.100	6.100	0.286
Apr-2017									
May-2017									
Jun-2017									
Half Year Sub-total									
Jul-2017									
Aug-2017									
Sep-2017									
Oct-2017									
Nov-2017									
Dec-2017									
Project Total Quantities	1.850	1.850	3.350	3.350	6.870	6.870	18.950	18.950	5.818



Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*							
Total Quantity Generated	Total Quantity Generated Hard Rock and Large Broken Concrete Reused in the Contract Reused in other Projects Disposed of as Public Fill						
(in '000 ton) (in '000 ton) (in '00		(in '000 ton)	(in '000 ton)	(in '000 ton)			
20.000	0.000	0.000	0.000	20.000			

Forecast of Total Quantities of Construction and Demolition Materials to be Generated from the Contract*							
Metals	Paper/ cardboard packaging  Plastics (see Note 3)  Chemical Waste  General Refuse disposed of at Landfill						
(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 ton)			
0.000	0.000	0.000	0.000	0.100			

Notes:

- (1) The performance targets are given in the **ER Appendix 8J Clause 14** and the EM & A Manual(s).
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).