
Report

Contract No. HY/2012/07 Tuen Mun - Chek Lap Kok Link Southern Connection Viaduct Section

Sixteenth Quarterly Environmental Monitoring & Audit (EM&A) Report

8 May 2018

Environmental Resources Management 16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Sixteenth Quarterly Environmental Monitoring & Audit (EM&A) Report

Document Code: 0215660 16th Qtr EM&A 20180508.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:			0:			
Gammon			0215660			
Summary		Date:				
		8 May 2	2018			
		Approved	l by:			
This document presents the Sixteenth Quarterly EM&A Report for Tuen Mun – Chek Lap Kok Link Southern Connection Viaduct Section.						
		Mr Crai	g Reid			
		Partner				
		Certified by:				
		Jue				
		Mr Jovy Tam				
		ET Leade	er			
	16 th Quarterly EM&A Report	VAR	JT	CAR	08/05/18	
Revision	Description	Ву	Checked	Approved	Date	
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.			Distribution Internal OHSAS 1800 Certificate No. OH			
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.			□ Public □ Public			
				Confidential So 9 Certificate		

Ref.: HYDHZMBEEM00_0_6470L.18

09 May 2018

AECOM

By Fax (3691 2899) and By Post

Supervising Officer's Representative's Office 780 Cheung Tung Road, Lantau, N.T.

Attention: Mr. Daniel Ip

Dear Mr. Ip,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing
Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/07 TM-CLKL Southern Connection Viaduct Section
16th Quarterly EM&A Summary Report (September to November 2017)

Reference is made to the 16th Quarterly Environmental Monitoring and Audit (EM&A) Report (September to November 2017) (ET's ref.: "0215660_16th Qtr EM&A_20180508.doc" dated 8 May 2018) certified by the ET Leader and provided to us via e-mail on 8 May 2018.

Please be informed that we have no adverse comments on the captioned report.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun - Chek Lap Kok Link

c.c.

HyD - Mr. Stephen Chan (By Fax: 3188 6614) HyD - Mr. Vico Cheung (By Fax: 3188 6614) AECOM - Mr. Conrad Ng (By Fax: 3922 9797) ERM - Mr. Jovy Tam (By Fax: 2723 5660) Gammon - Mr. Roy Leung (By Fax: 3520 0486)

Internal: DY, YH, TMC, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\2018\HYDHZMBEEM00_0_6470L.18.docx

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	1
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	3
1.5	SUMMARY OF EM&A PROGRAMME REQUIREMENTS	4
2	EM&A RESULTS	6
2.1	AIR QUALITY	6
2.2	NOISE MONITORING	9
2.3	Water Quality Monitoring	12
2.4	DOLPHIN MONITORING	14
2.5	EM&A SITE INSPECTION	19
2.6	Waste Management Status	21
2.7	ENVIRONMENTAL LICENSES AND PERMITS	22
2.8	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	2 5
2.9	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMAN	NCE
	LIMIT	2 5
2.10	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	26
3	FUTURE KEY ISSUES	27
3.1	CONSTRUCTION ACTIVITIES FOR THE COMING QUARTER	27
3.2	KEY ISSUES FOR THE COMING QUARTER	27
3.3	MONITORING SCHEDULE FOR THE COMING QUARTER	28
4	CONCLUSIONS AND RECOMMENDATIONS	29
41	CONCLUSIONS	20

List of Appendices

Appendix A	Project Organization for Environmental Works
Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	EM&A Monitoring Schedules
Appendix F	Impact Air Quality Monitoring Results and Graphical Presentation
Appendix G	Impact Noise Monitoring Results and Graphical Presentation
Appendix H	Impact Water Quality Monitoring Results and Graphical Presentation
Appendix I	Impact Dolphin Monitoring Survey Results
Appendix J	Event Action Plan
Appendix K	Quarterly Summary of Waste Flow Table
Appendix L	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by the HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2018. The impact monitoring of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well as environmental site inspections, commenced on 31 October 2013.

This is the Sixteenth Quarterly EM&A Report presenting the EM&A works carried out during the period from 1 September 2017 to 30 November 2017 for the Southern Connection Viaduct Section in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

September 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;

- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

October 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

November 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP monitoring 17 sessions

1-hour TSP monitoring 17 sessions

Noise monitoring 17 sessions

Water quality monitoring (1) 38 sessions

Dolphin monitoring 6 sessions

Results of impact water quality monitoring were adopted from the published EM&A data of Contract No. HY/2010/02 HKBCF- Reclamation Works. Available at: http://www.hzmbenpo.com/

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for air quality monitoring in the reporting period.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting period.

Breaches of Action and Limit Levels for Water Quality

Ninety-one (91) Action Level of Dissolved Oxygen (DO) exceedances, eight (8) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting period.

Impact Dolphin Monitoring

One (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between September and November 2017. No unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphins) was noticeable from general observations during the dolphin monitoring in this reporting quarter.

Daily marine mammal exclusion zone monitoring was undertaken during the period of marine works under this Contract. No Passive Acoustic Monitoring (PAM) was implemented as the marine piling works were not carried out outside the daylight hours in this reporting period. No sighting of the Chinese White Dolphin was recorded in the monitoring period during the exclusion zone monitoring.

Environmental Complaints, Non-compliance & Summons

There was one (1) complaint received from EPD on 24 November 2017 regarding construction dust nuisance at Hong Kong Boundary Crossing Facilities of Hong Kong-Zhuhai-Macau Bridge Projects in the reporting period. Upon investigation, there is no evidence to indicate that the complaint case is related to this Contract.

There was no notification of summons or successful prosecution recorded in the reporting period

Reporting Change

There was no reporting change in this reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the coming quarter include the following:

December 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

January 2018

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Sign gantries construction;
- Parapet installation; and
- Slope work of Viaducts A, B, C & D.

February 2018

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Sign gantries construction;

- Parapet installation; and
- Slope work of Viaducts A, B, C & D.

Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the coming quarterly period are mainly associated with air quality, noise, marine water quality, marine ecology and waste management issue.

1.1 BACKGROUND

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. *ESB-175/2007*) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number: *AEIAR-146/2009*), an Environmental Permit (*EP-354/2009*) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (*EP-354/2009A*) was issued on 8 December 2010. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*.

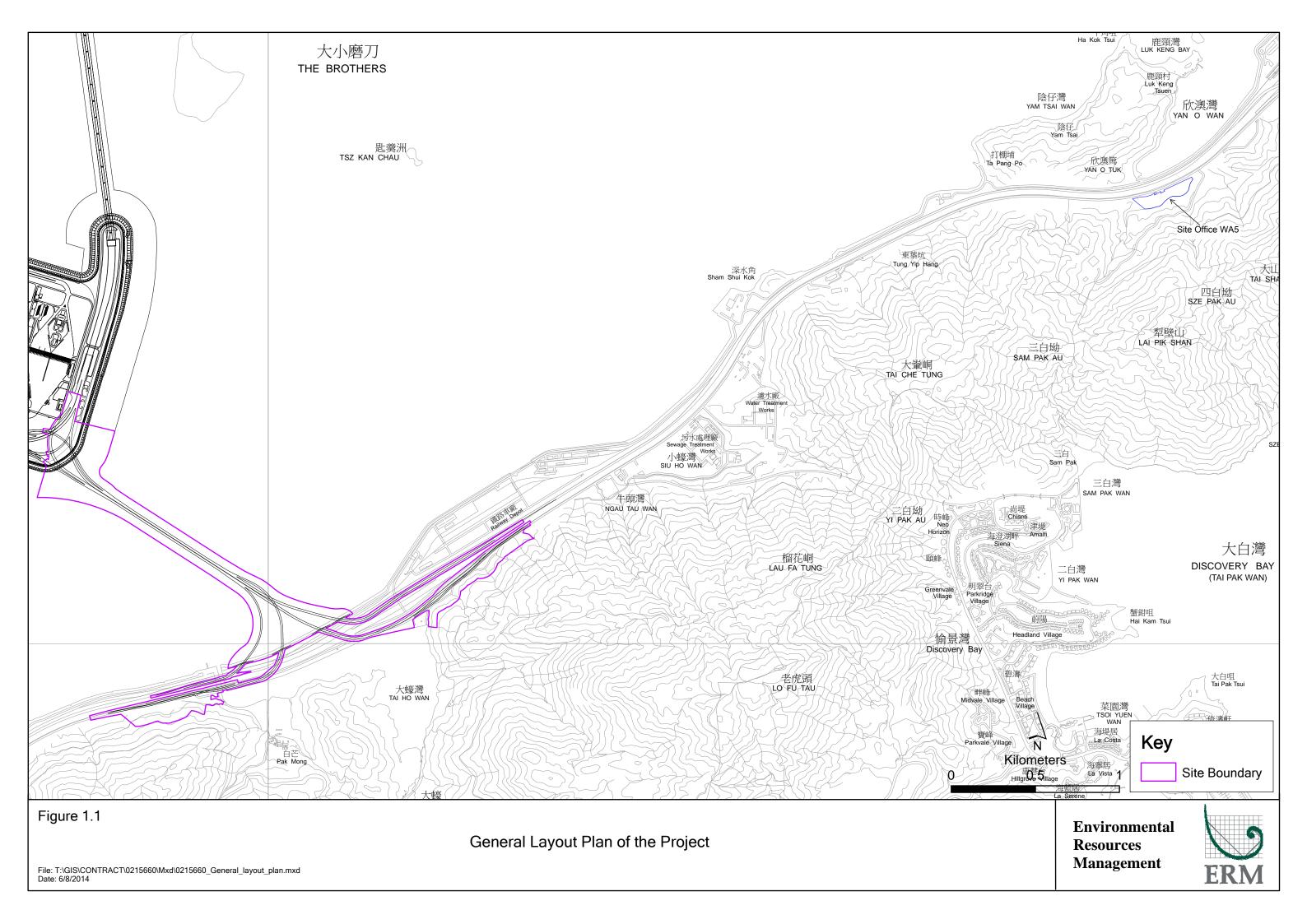
The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the

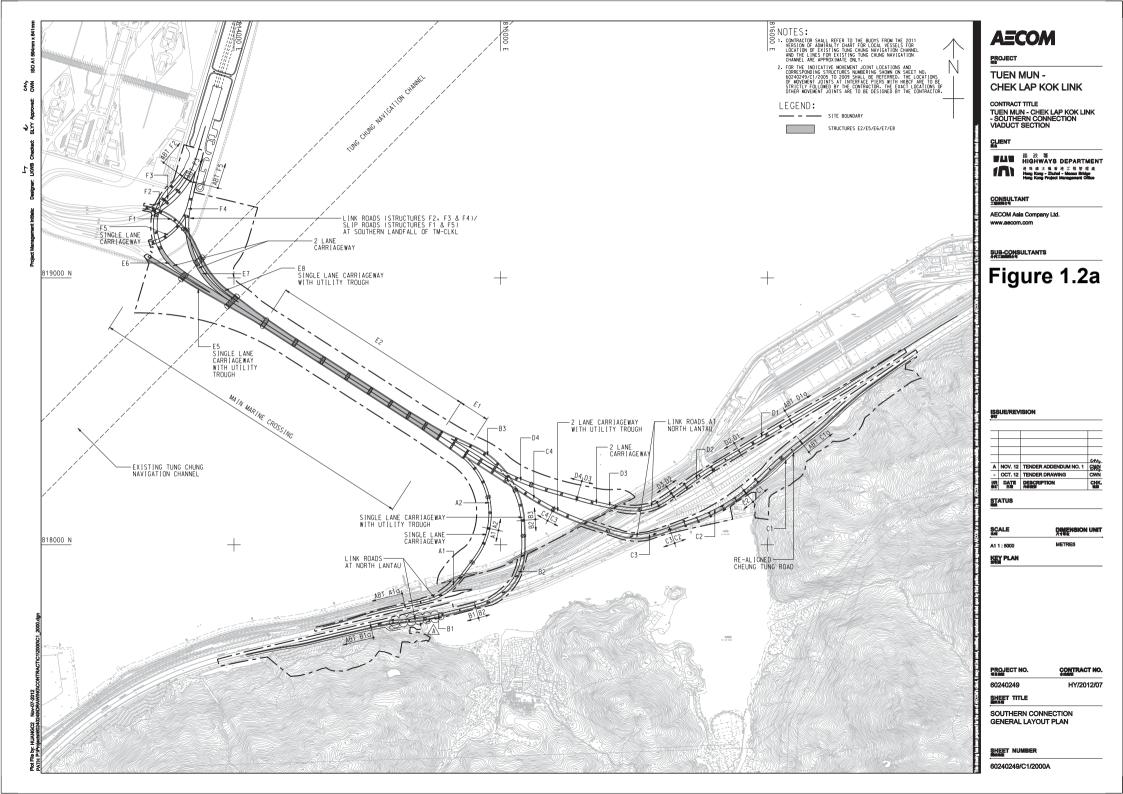
southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

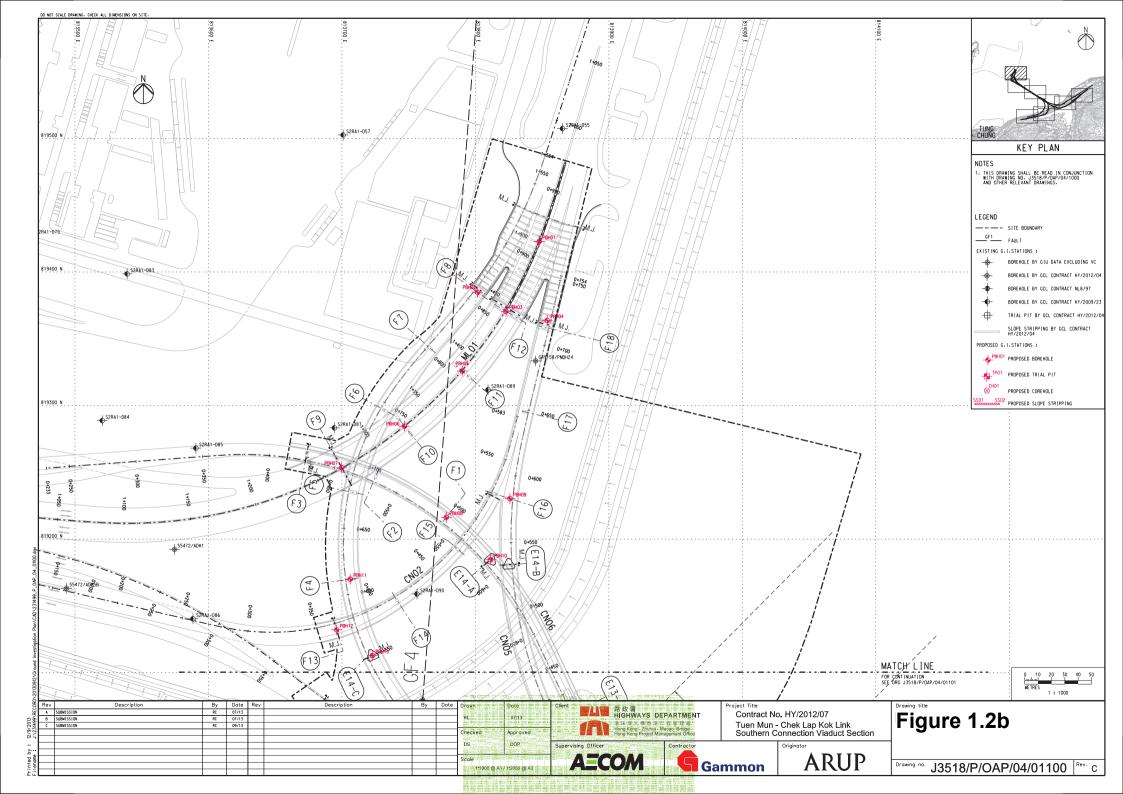
The construction phase of the Contract commenced on 31 October 2013 and will be tentatively be completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well environmental site inspections, commenced on 31 October 2013.

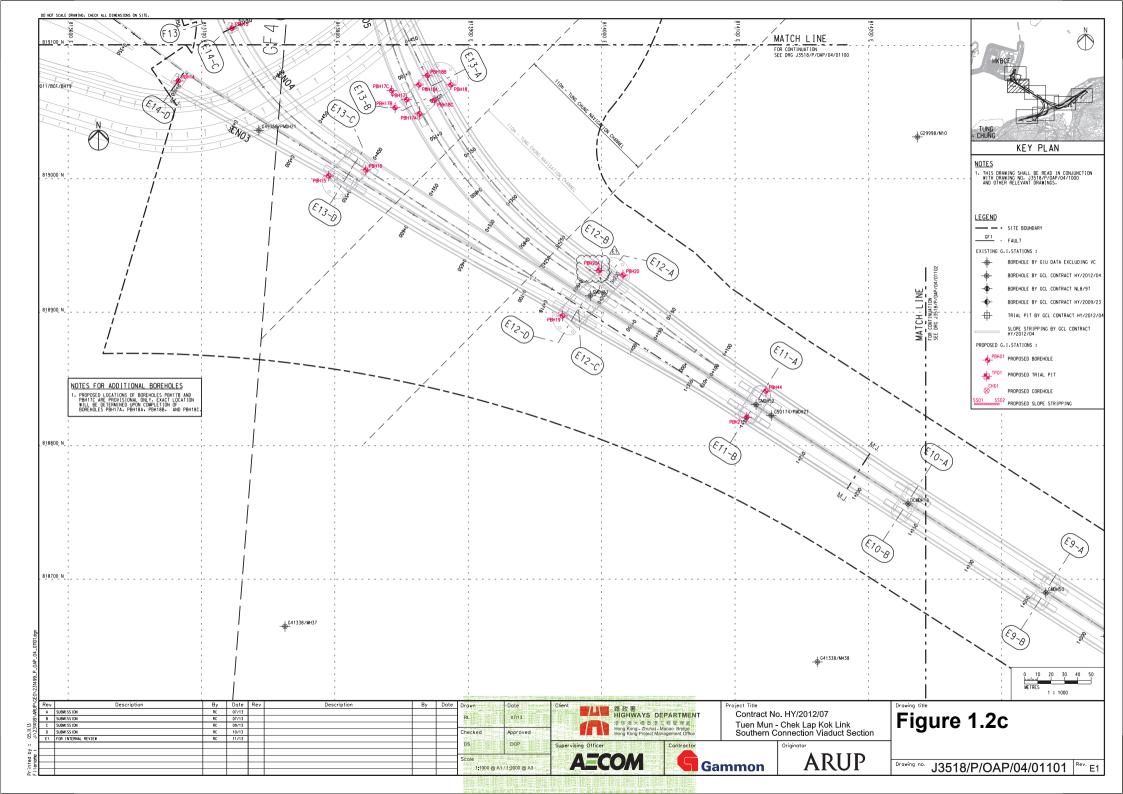
The general layout plan of the Contract components is presented in *Figures 1.1* & 1.2a to 1.

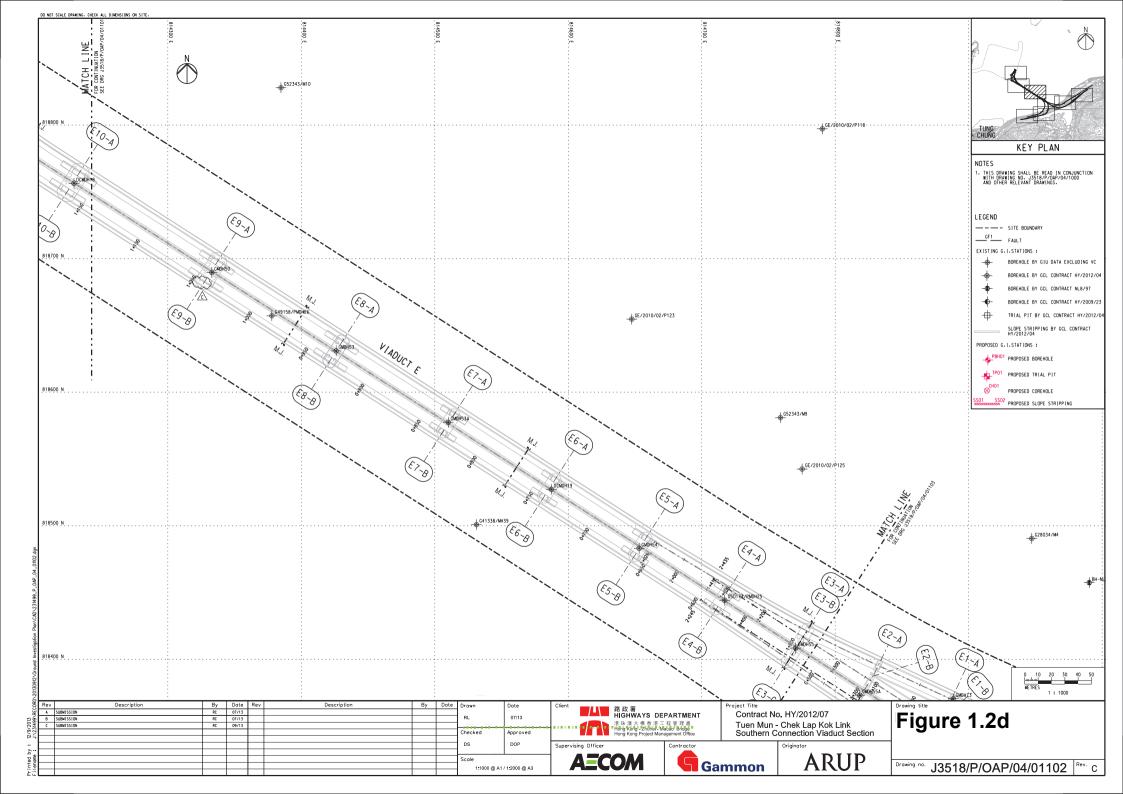
1.2 Scope of Report

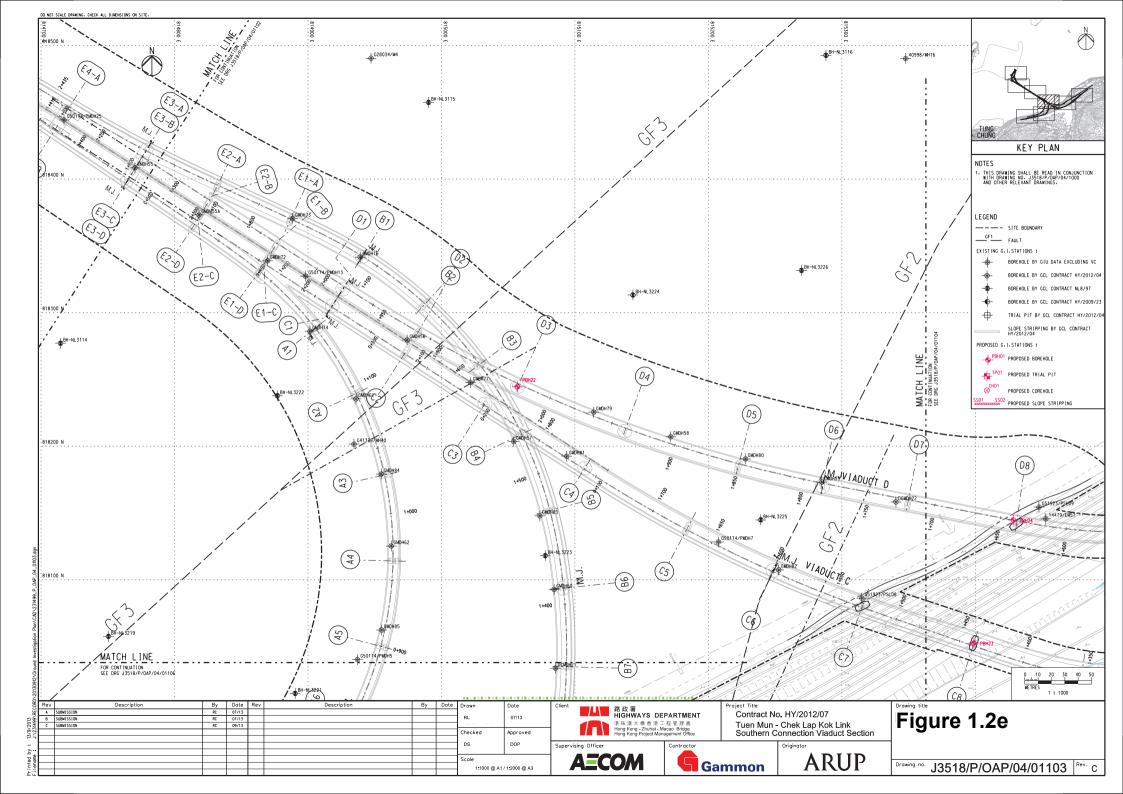

This is the Sixteenth Quarterly EM&A Report under the *Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.* This report presents a summary of the environmental monitoring and audit works from 1 September to 30 November 2017.

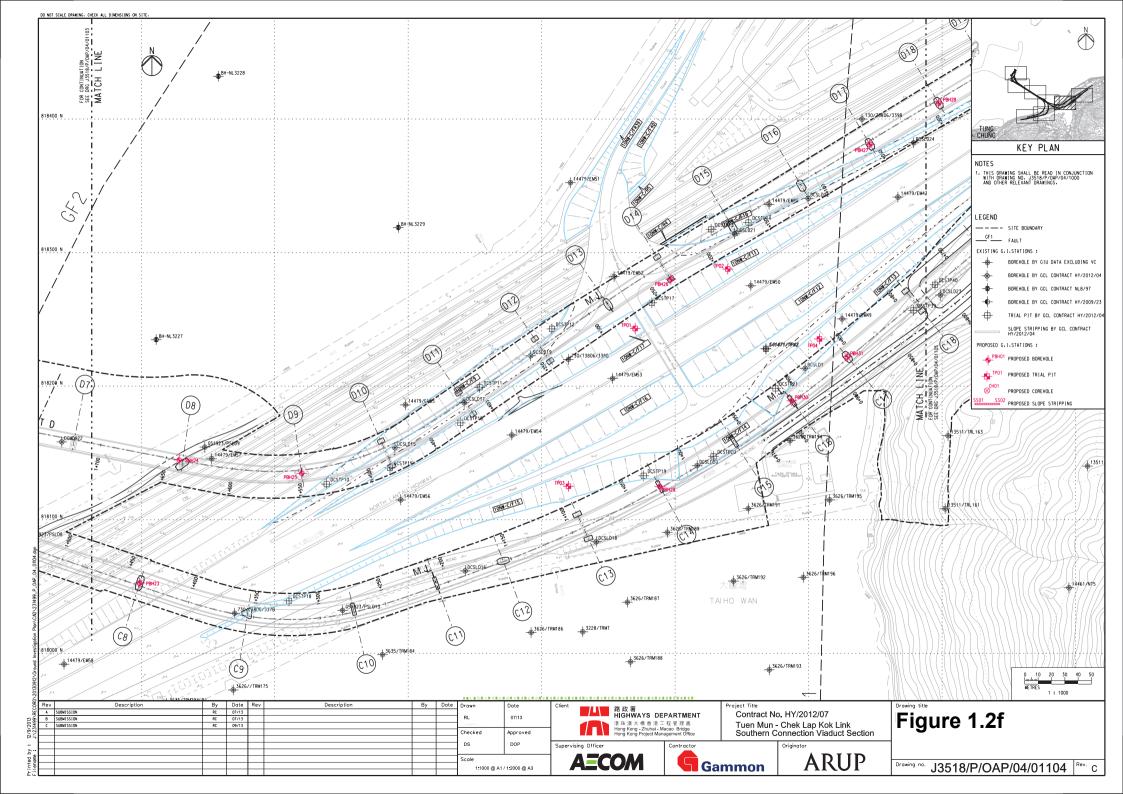

1.3 ORGANIZATION STRUCTURE

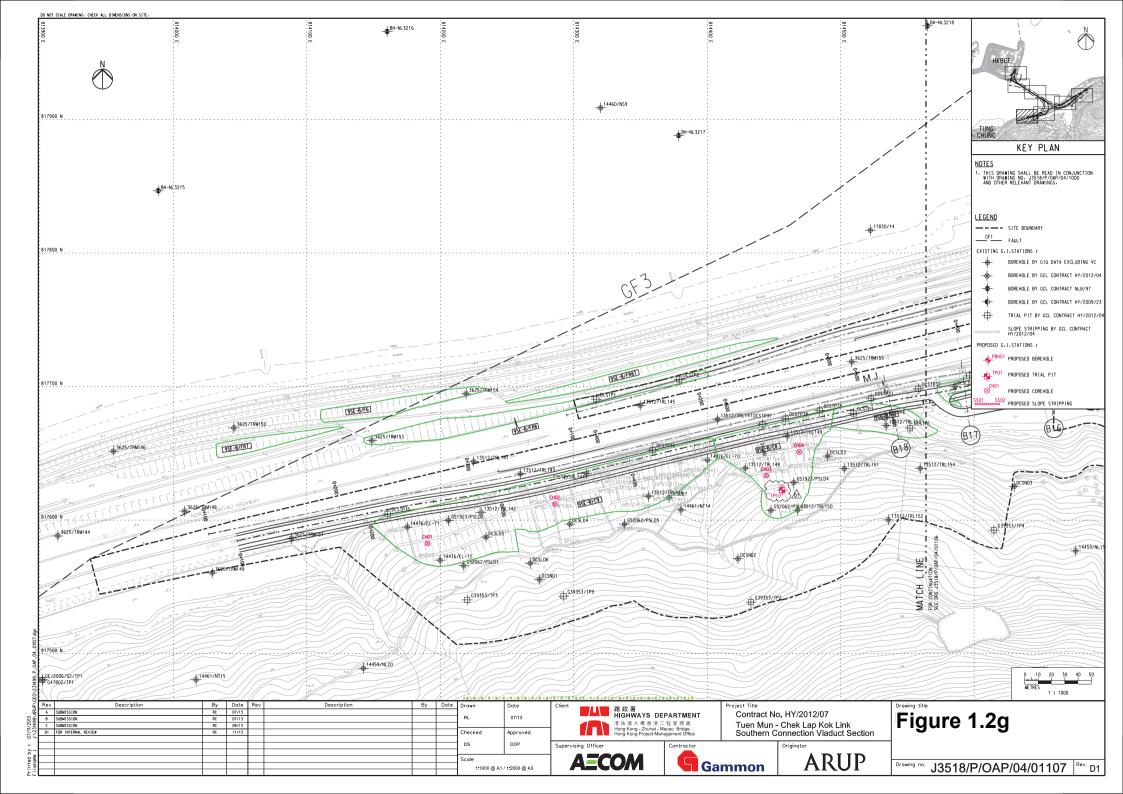

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

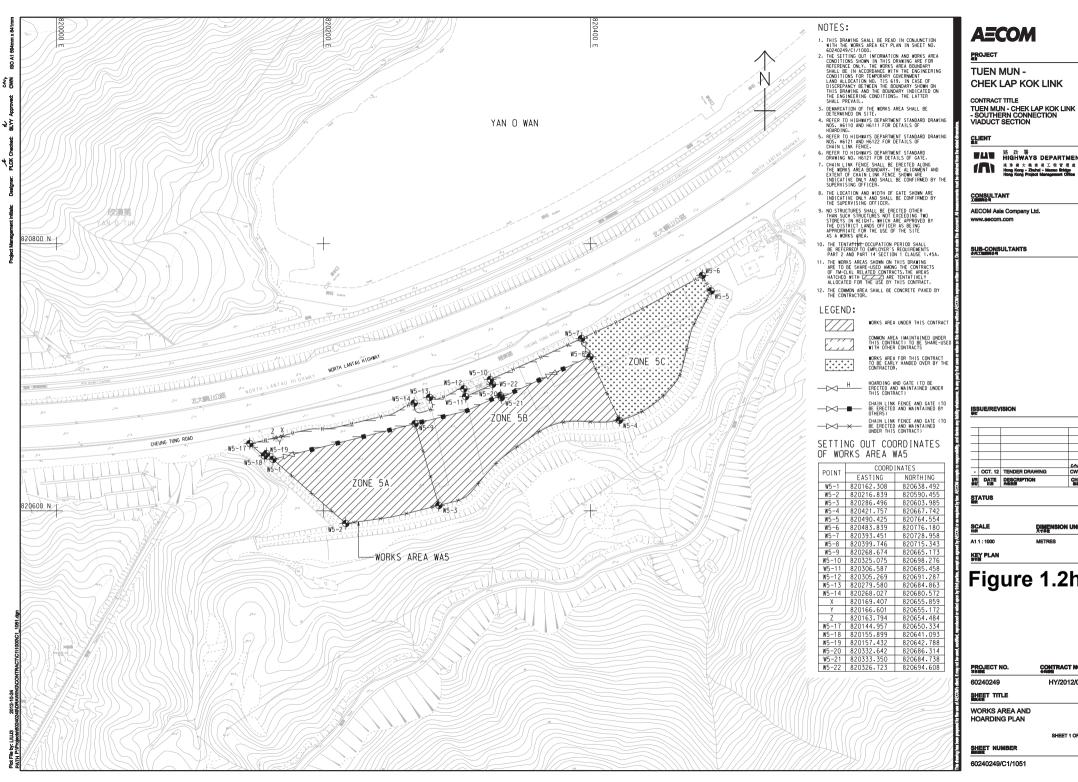

Table 1.1 Contact Information of Key Personnel


Party	Position	Name	Telephone	Fax
HyD (Highways Department)	Project Coordinator	Stanley Chan	2762 3406	3188 6614
- '	Senior Engineer	Steven Shum	2762 4133	3188 6614
SOR (AECOM Asia Company Limited)	Chief Resident Engineer	Daniel Ip	3553 3800	2492 2057
	Resident Engineer	Kingman Chan	3691 3950	3691 2899
ENPO / IEC (Ramboll Hong Kong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Gammon Construction Limited)	Environmental Manager	Brian Kam	3520 0387	3520 0486
,	Environmental Officer	Roy Leung	3520 0387	3520 0486
	24-hour Complaint Hotline		9738 4332	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660









AECOM

TUEN MUN -CHEK LAP KOK LINK

CONTRACT TITLE

■ B 政 署 HIGHWAYS DEPARTMENT

CONSULTANT

AECOM Asia Company Ltd.

SUB-CONSULTANTS

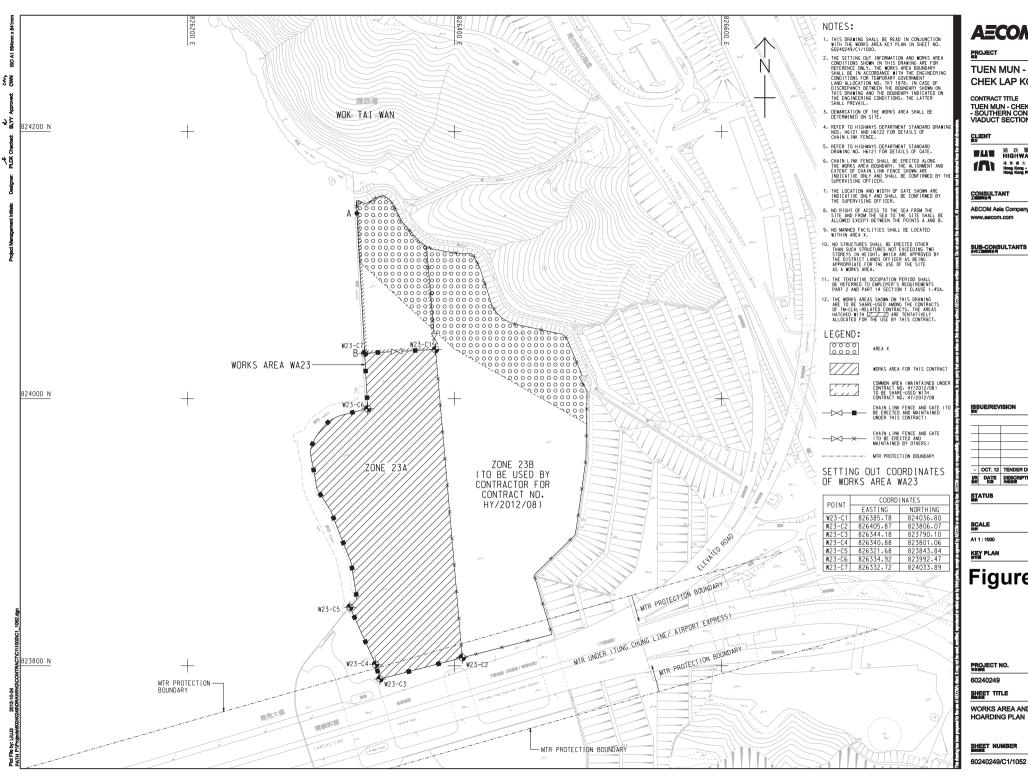
ISSUE/REVISION

CWN - OCT. 12 TENDER DRAWING VR DATE DESCRIPTION œK.

Figure 1.2h

PROJECT NO.

CONTRACT NO. HY/2012/07


SHEET TITLE

WORKS AREA AND HOARDING PLAN

SHEET 1 OF 2

SHEET NUMBER

60240249/C1/1051

AECOM

TUEN MUN -CHEK LAP KOK LINK

CONTRACT TITLE TUEN MUN - CHEK LAP KOK LINK - SOUTHERN CONNECTION VIADUCT SECTION

■ B 政 署 HIGHWAYS DEPARTMENT 送取 表大 集 香 港 工 程 管 理 意 Hong Kong - Zhahal - Macano Bridge

AECOM Asia Company Ltd.

SUB-CONSULTANTS

SSUE/REVISION

			CWN
-	OCT. 12	TENDER DRAWING	CWN
松	DATE	DESCRIPTION 内容無限	CHIC

Figure 1.2i

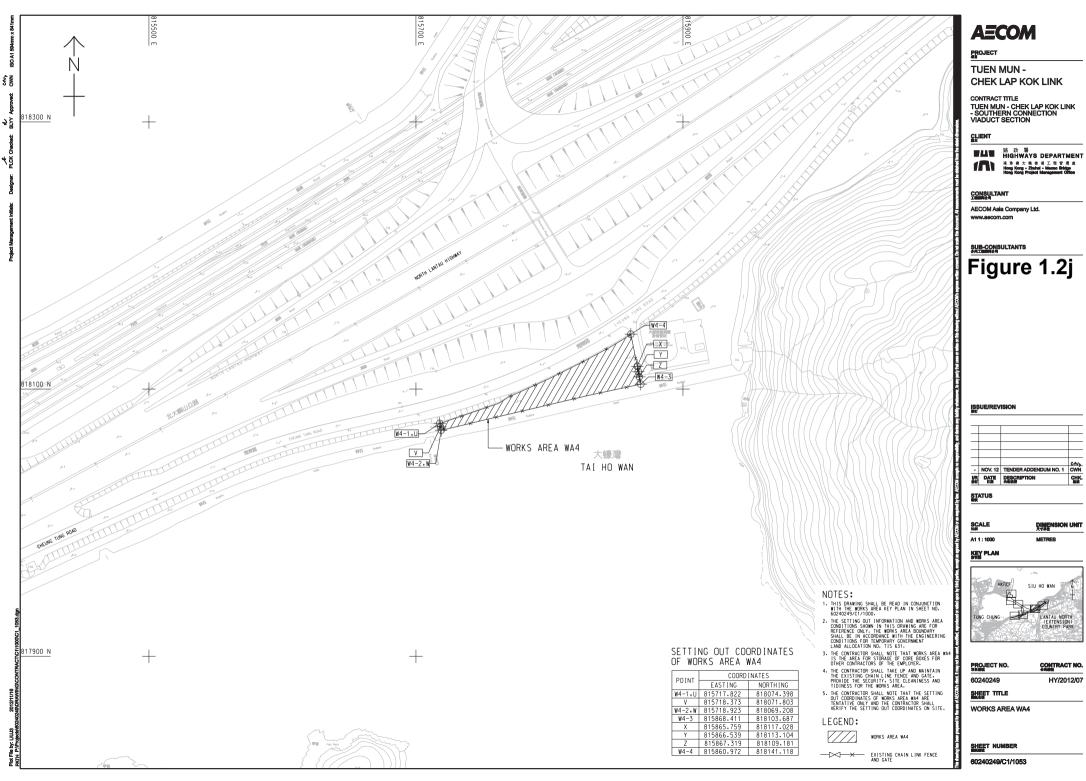
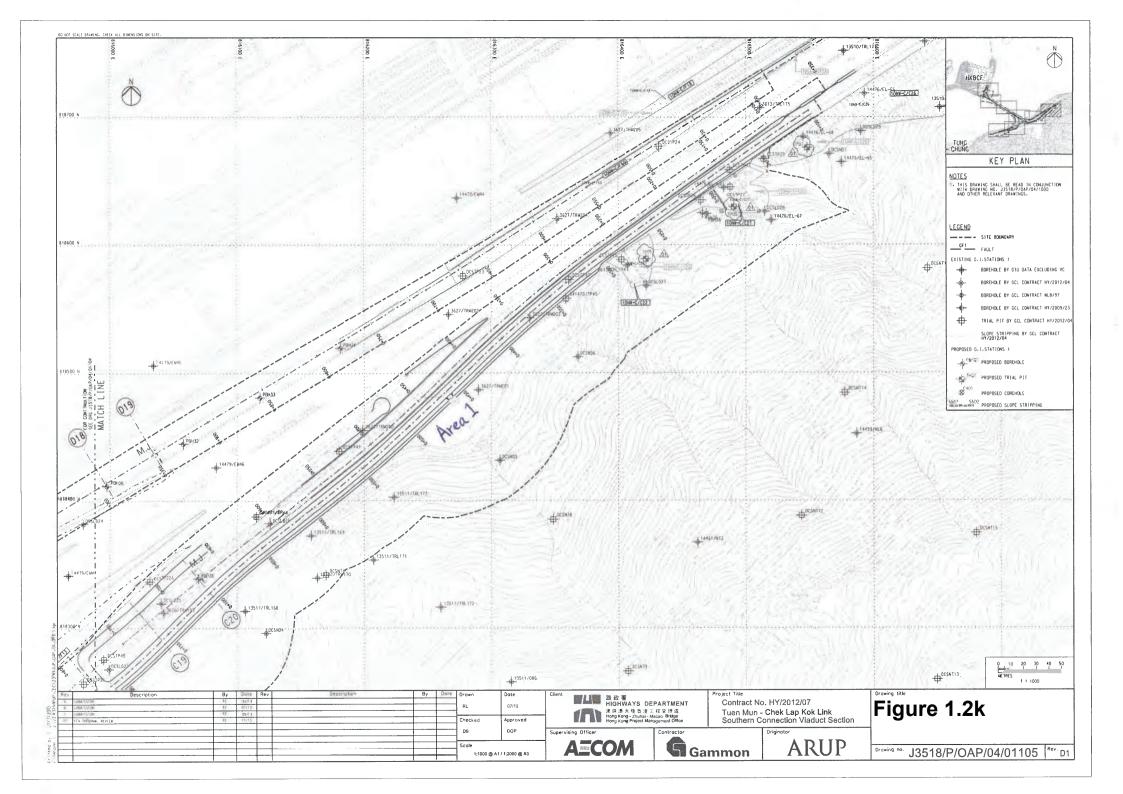
CONTRACT NO. HY/2012/07

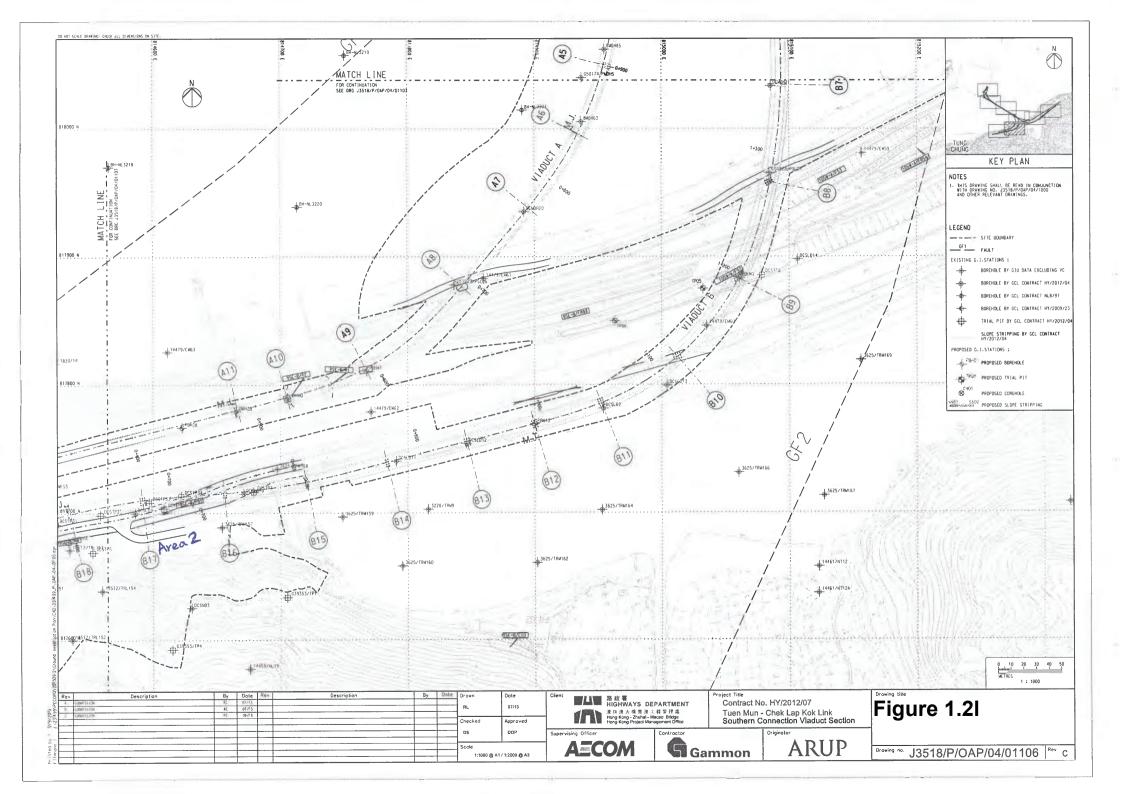
SHEET TITLE

WORKS AREA AND HOARDING PLAN

SHEET 2 OF 2

SHEET NUMBER


Figure 1.2j

	DATE	DESCRIPTION	OUN
-	NOV. 12	TENDER ADDENDUM NO. 1	CWN
			CNy

HY/2012/07

1.4 SUMMARY OF CONSTRUCTION WORKS

The construction phase of the Contract commenced on 31 October 2013. The rolling construction programme for the period of September to November 2017 is shown in *Appendix B*.

As informed by the Contractor, details of the major works carried out in this reporting period are listed below:

September 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

October 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

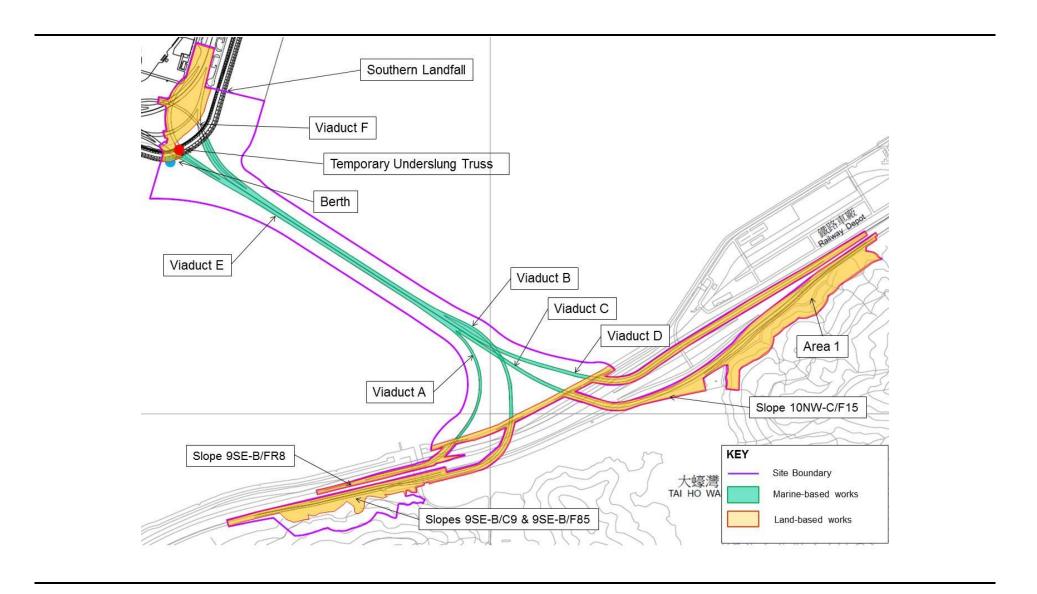
November 2017

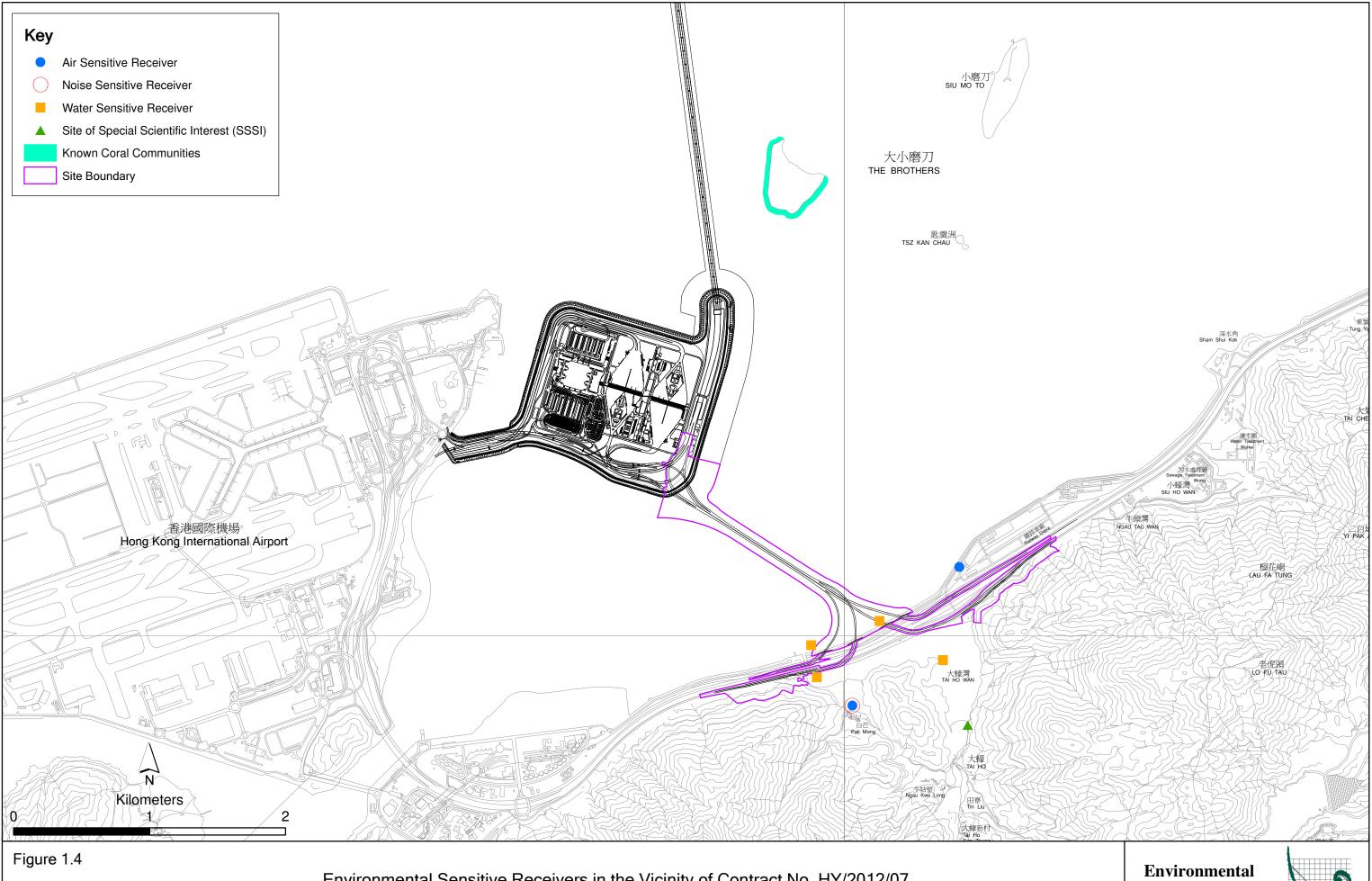
Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and

Slope work of Viaducts A, B & C.

The locations of the construction activities are shown in *Figure 1.3*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.4*.


The environmental mitigation measures implementation schedule is presented in *Appendix C*.


1.5 SUMMARY OF EM&A PROGRAMME REQUIREMENTS

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are described in the following sections, which include:

- Monitoring parameters;
- Monitoring schedules for the reporting months and forthcoming months;
- Action and Limit levels for all environmental parameters;
- Event Action Plan;
- Results and observations;
- Environmental mitigation measures, as recommended in the approved EIA Report; and
- Environmental requirement in contract documents.

Figure 1.3 Locations of Construction Activities in the Reporting Period

File: T:\GIS\CONTRACT\0215660\Mxd\0215660_Environmental_Sensitive_Receiver.mxd Date: 18/5/2015

Environmental Sensitive Receivers in the Vicinity of Contract No. HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section

Environmental Resources
Management

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY

The baseline air quality monitoring undertaken by the HZMB Projects during October 2011 included the two monitoring stations ASR9A and ASR9C for this Project. Thus, the baseline monitoring results and Action/Limit Level presented in HZMB Baseline Monitoring Report (1) are adopted for this Project.

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days while the highest dust impact was expected. Impact 24-hour TSP monitoring was carried out once every six (6) days. The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*.

1-hour TSP and 24-hour TSP monitoring were conducted at 2 alternative air quality monitoring stations, ASR8A (Area 4) and ASR9 (entrance of MTR Depot) during the reporting period in accordance with the requirement of the Updated EM&A Manual. The monitoring stations are indicated in *Figure 2.1* and details are presented in *Table 2.1*.

High Volume Samplers (HVSs) were used for carrying out 1-hour and 24-hour TSP monitoring during the reporting period. The HVSs meets all requirements of the Updated EM&A Manual. Brand and model of the equipment are given in *Table 2.2*.

Wind data monitoring equipment was installed at Area 4 during the reporting period for logging wind speed and wind direction. The wind sensor was setup such that it was clear of obstructions or turbulence caused by building. The wind data monitoring equipment is recalibrated at least once every six months.

⁽¹⁾ Agreement No. CE 35/2011 (EP) Baseline Environmental Monitoring for Hong Kong - Zhuhai - Macao Bridge Hong Kong Projects - Investigation. Baseline Environmental Monitoring Report (Version C). Submitted on 8 March 2012 and subsequently approved by EPD.

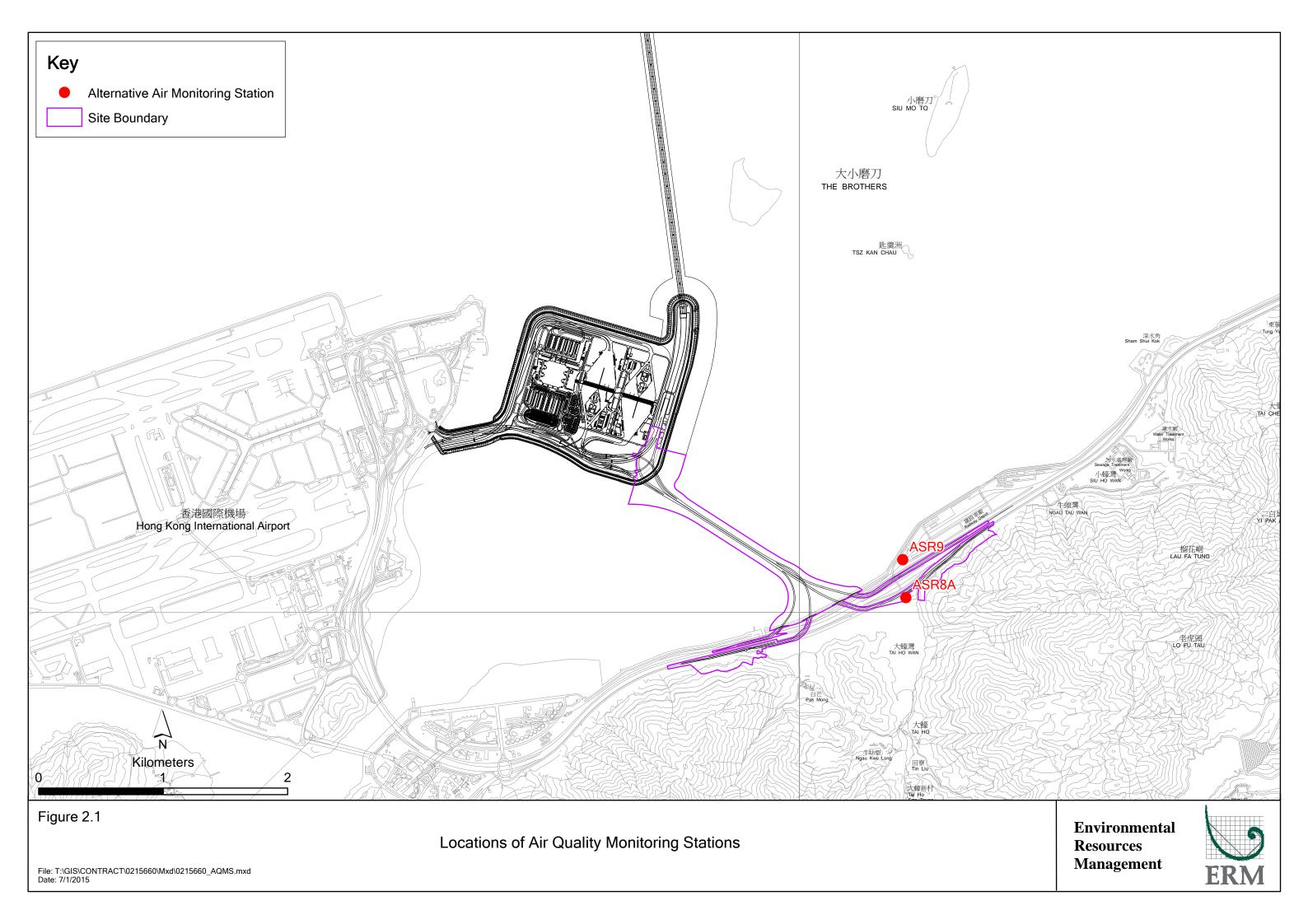


Table 2.1 Locations of Impact Air Quality Monitoring Stations and Monitoring Dates in this Reporting Period

Monitoring Station (1)	Monitoring Period	Location	Description	Parameters & Frequency
ASR8A	6, 12, 18, 21 and 27 September	Area 4	On ground at the works area, Area 4	1-hour Total Suspended Particulates (1-hour TSP,
ASR9	2017 3, 9, 12, 18, 24 and 30 October 2017 2, 8, 14, 20, 23 and 29 November 2017	MTR Depot	On the ground nearby MTR Depot entrance	 μg/m³), 3 times per day every 6 days 24-hour Total Suspended Particulates (24-hour TSP, μg/m³), daily for 24-hour every 6 days

Note:

Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler	Tisch Environmental Mass Flow Controlled
(1-hour TSP and 24-hour TSP)	Total Suspended Particulate (TSP) High
	Volume Sampler (Model No. TE-5170)
Wind Sensor	Global Water (Wind Speed Sensor: WE550; Wind Direction Sensor: WE570)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Action & Limit Levels

The Action and Limit Levels of the air quality monitoring are provided in *Appendix D*. The Event and Action plan is presented in *Appendix J*.

2.1.3 Monitoring Schedule for the Reporting Quarter

The schedules for air quality monitoring in the reporting quarter are provided in *Appendix E*.

2.1.4 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables* 2.3 and 2.4, respectively. Monitoring results are presented graphically in *Appendix F*. Detailed impact air quality monitoring results and meteorological information were reported in the *Forty-seventh* to *Forty-ninth Monthly EM&A Reports*.

⁽¹⁾ Air Quality Monitoring Stations ASR9A and ASR9C at Siu Ho Wan MTRC Depot proposed in accordance with the Updated EM&A were relocated to ASR9 and ASR8A respectively.

Table 2.3 Summary of 1-hour TSP Monitoring Results in this Reporting Period

Month	Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
September 2017	ASR 8A	85	22-169	394	500
	ASR 9	99	21-206	393	500
October 2017	ASR 8A	69	22-156	394	500
	ASR 9	77	28-140	393	500
November 2017	ASR 8A	82	33-165	394	500
	ASR 9	83	35-148	393	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in this Reporting Period

Month	Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
September 2017	ASR 8A	33	17-50	178	260
	ASR 9	37	22-61	178	260
October 2017	ASR 8A	60	21-102	178	260
	ASR 9	59	28-93	178	260
November 2017	ASR 8A	64	30-109	178	260
	ASR 9	59	35-92	178	260

The major dust sources in the reporting period include construction activities under the Contract as well as nearby traffic emissions.

In this reporting period, a total of 17 monitoring events for 1-hour TSP and 24-hour TSP were undertaken within the reporting period, in which no Action or Limit Level exceedance for 1-hour and 24-hour TSP for air quality was recorded during the reporting period.

2.2 Noise Monitoring

The baseline noise monitoring undertaken by the HZMB Projects during the period of 18 October to 1 November 2011 included the monitoring station NSR1 for this Project. Thus, the baseline monitoring results and Action/Limit Level presented in HZMB Baseline Monitoring Report (1) are adopted for this Project.

2.2.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact noise monitoring should be conducted once per week during the construction phase of the Contract.

Noise monitoring was conducted at the alternative noise monitoring station, NSR1A (Pak Mong Village Pavilion) during the reporting period in accordance with the requirement of Updated EM&A Manual. *Figure 2.2* shows the location of the monitoring station. *Table 2.5* describes the details of the monitoring station.

Noise monitoring was performed using sound level meter at the designated monitoring station in the reporting quarter. The deployed sound level meter complies with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meter at a known sound pressure level. Brand and model of the equipment is given in *Table 2.6*.

Agreement No. CE 35/2011 (EP) Baseline Environmental Monitoring for Hong Kong - Zhuhai - Macao Bridge Hong Kong Projects - Investigation. Baseline Environmental Monitoring Report (Version C). Submitted on 8 March 2012 and subsequently approved by EPD.

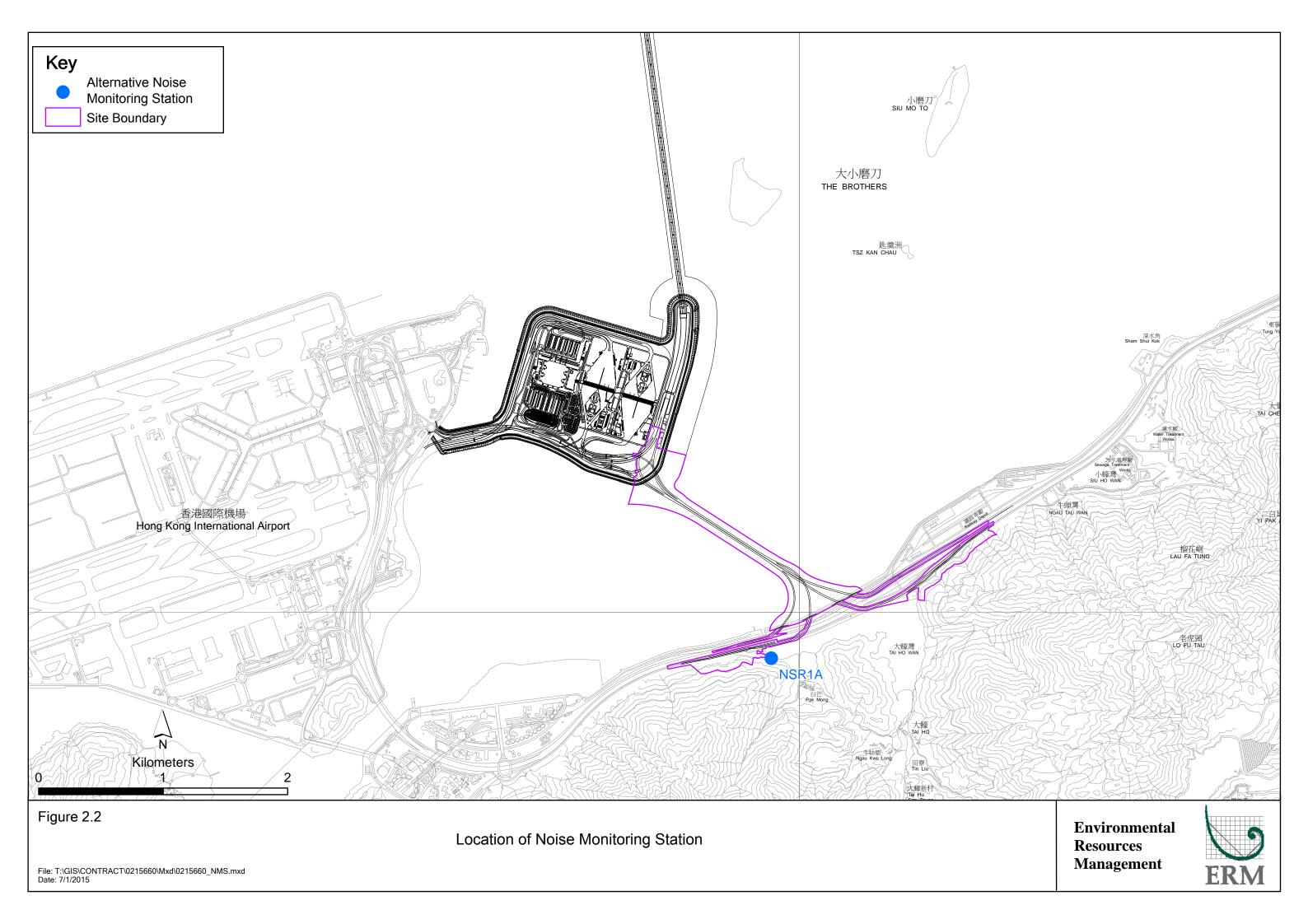


Table 2.5 Location of Impact Noise Monitoring Station and Monitoring Dates in this Reporting Period

Monitoring Station	Monitoring Period	Location	Parameters & Frequency
NSR1A	6, 12, 18, 21 and 27 September 2017 3, 9, 12, 18, 24 and 30 October 2017 2, 8, 14, 20, 23 and 29 November 2017	Pak Mong Village Pavilion	 30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq}, L₁₀ and L₉₀ would be recorded. At least once a week

Note:

Table 2.6 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-52
Acoustic Calibrator	Rion NC-73

2.2.2 Action and Limit Levels

The Action and Limit levels of the noise monitoring are provided in *Appendix D*. The Event and Action plan is presented in *Appendix J*.

2.2.3 Monitoring Schedule for the Reporting Quarter

The schedule for construction noise monitoring in the reporting period is provided in *Appendix F*.

2.2.4 Results and Observations

The monitoring results for noise monitoring are summarized in *Table 2.7*. Monitoring results are presented graphically in *Appendix G* and detailed impact noise monitoring results are reported in the *Forty-seventh* to *Forty-ninth Monthly EM&A Reports*.

Table 2.7 Summary of Construction Noise Monitoring Results at NSR1A in the Reporting Period

Month	Average , dB(A), L _{eq}	Range, dB(A), L _{eq}	Limit Level, dB(A), L _{eq}
	(30mins)	(30mins)	(30mins)
September 2017	64	62-67	75
October 2017	63	62-64	<i>7</i> 5
November 2017	63	62-64	75

A total of 17 monitoring events were undertaken in the reporting period with no Action Level and Limit Level exceedance recorded at the monitoring station in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix J*.

⁽¹⁾ Noise Monitoring Station NSR1 at Pak Mong Village proposed in accordance with the Updated EM&A Manual was relocated to NSR1A.

Major noise sources during the noise monitoring included construction activities, nearby construction works and nearby traffic noise and aircraft noise.

2.3 WATER QUALITY MONITORING

The baseline water quality monitoring undertaken by the HZMB Projects between 6 and 31 October 2011 included all monitoring stations except SR4a for the Project. Thus, the baseline monitoring results except for station SR4a and Action/Limit Level presented in HZMB Baseline Monitoring Report (1) are adopted for this Project. Baseline water quality monitoring was conducted at station SR4a from 29 August to 24 September 2013.

2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week during the construction period at seven water quality monitoring stations in accordance with the Updated EM&A Manual.

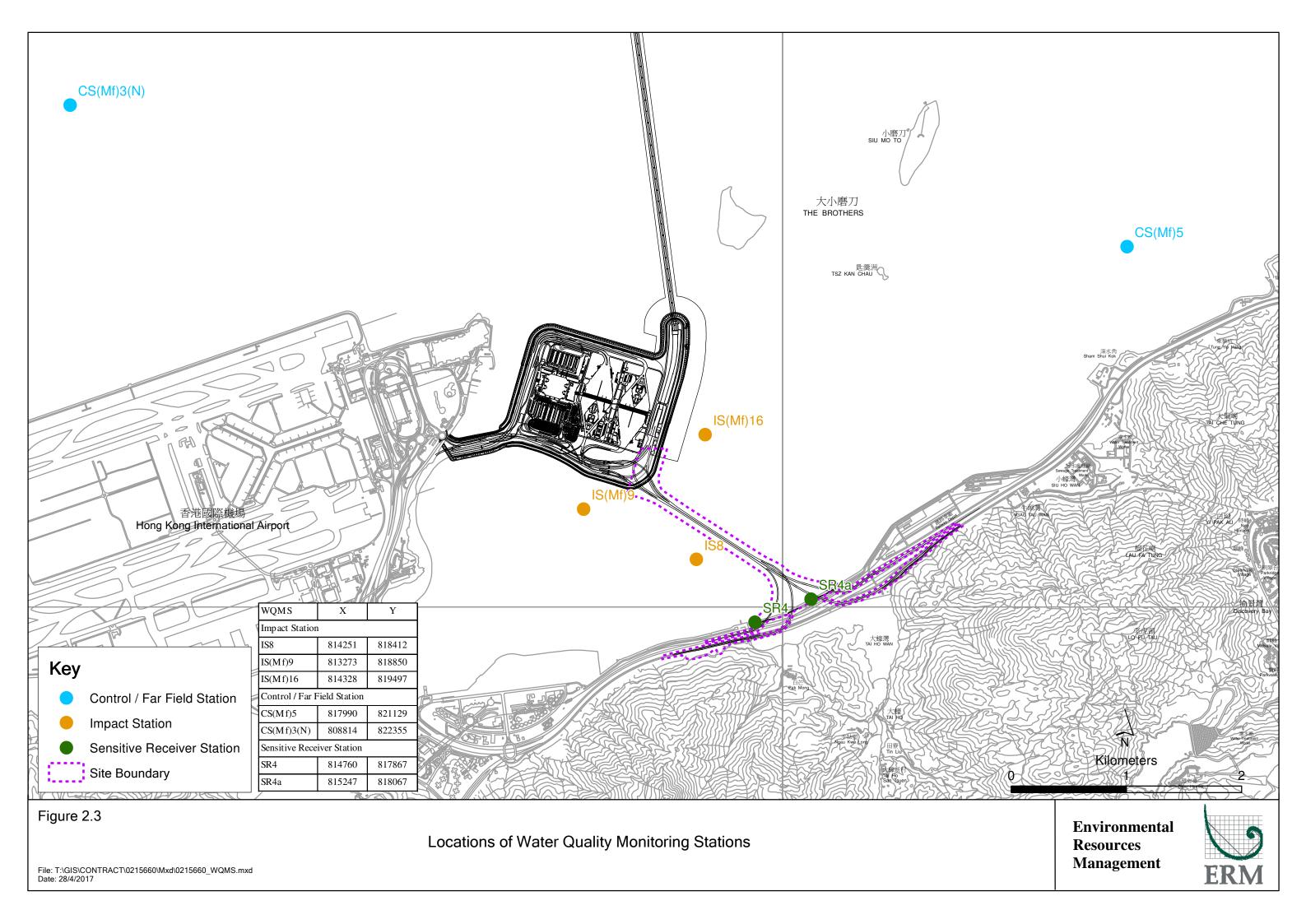

Due to Three-Runway System (3RS) marine construction works, an alternative water quality control station CS(Mf)3(N) was proposed to replace control station CS(Mf)3. The *Proposal of Alternative Water Quality Monitoring Station* (2) was submitted to EPD on 31 March 2017 and granted on 6 April 2017. Water quality monitoring at CS(Mf)3(N) is undertaken since 2 May 2017. The locations of the monitoring stations under the Contract are shown in *Figure 2.3* and *Table 2.8*.

Table 2.8 Locations of Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Station ID	Type	Coor	dinates	*Parameters, unit	Depth	Frequency
		Easting	Northing			
IS(Mf)9	Impact	813273	818850	• Temperature(°C)	3 water	Impact
	Station			 pH(pH unit) 	depths:	monitoring: 3
	(Close to			• Turbidity (NTU)	1m	days per
	HKBCF			• Water depth (m)	below sea	week, at mid-
	construction			 Salinity (ppt) 	surface,	flood and
	site)			 Dissolved 	mid-depth	mid-ebb tides
IS(Mf)16	Impact	814328	819497	Oxygen (DO)	and 1m	during the
	Station			(mg/L and % of	above sea	construction
	(Close to			saturation)	bed. If	period of the
	HKBCF			• Suspended Solid	the water	Contract.
	construction			(SS) (mg/L)	depth is	
	site)				less than	
IS8	Impact	814251	818412		3m, mid-	
	Station(Close				depth	
	to HKBCF				sampling	
	construction				only. If	
	site)				water	

⁽¹) Agreement No. CE 35/2011 (EP) Baseline Environmental Monitoring for Hong Kong - Zhuhai - Macao Bridge Hong Kong Projects - Investigation. Baseline Environmental Monitoring Report (Version C). Submitted on 8 March 2012 and subsequently approved by EPD.

⁽²⁾ The Proposal of Alternative Water Quality Monitoring Station with the verification letter from IEC was submitted to EPD on 31 March 2017, and subsequently replied with no objection on.6 April 2017.

Type	Coor	dinates	*Parameters, unit	Depth	Frequency
	Easting	Northing			
Sensitive	814760	817867		depth less	
receiver (Tai				than 6m,	
Ho Inlet)				mid-depth	
Sensitive	815247	818067		may be	
receiver				omitted.	
Control	808814	822355			
Station					
Control	817990	821129			
Station					
	Sensitive receiver (Tai Ho Inlet) Sensitive receiver Control Station Control	Sensitive receiver (Tai Ho Inlet) Sensitive 815247 receiver Control 808814 Station Control 817990	Easting Northing Sensitive receiver (Tai Ho Inlet) 814760 817867 Sensitive receiver 815247 818067 Feceiver 808814 822355 Station 817990 821129	Easting Northing Sensitive receiver (Tai Ho Inlet) 814760 817867 Sensitive receiver (Tai Ho Inlet) 815247 818067 Sensitive receiver 808814 822355 Station Control 817990 821129	Easting Northing Sensitive receiver (Tai receiver (Tai than 6m, Ho Inlet) 815247 818067 depth less than 6m, mid-depth mid-depth may be receiver Control 808814 822355 822355 Station Control 817990 821129 821129

Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Water Quality Monitoring Station CS(Mf)3 was relocated to CS(Mf)3(N) since 2 May 2017.

Table 2.9 summarizes the equipment used in the impact water quality monitoring programme.

Table 2.9 Water Quality Monitoring Equipment

Equipment	Brand and Model
Multi-parameters	YSI ProDSS / YSI 6920 V2 Sonde
(Dissolved Oxygen, Salinity,	
Turbidity, Temperature, pH)	
Positioning Equipment	Furuno GP-170
Water Depth Detector	Lowrance Mark 5x / Garmin Striker 4
Water Sampler	WildCo Vertical Alpha Bottles 1120-2.2L /1120-3.2L Aquatic Research Instrument Vertical/Horizontal Point Water Sampler 2.2L / 3.0L

2.3.2 Action & Limit Levels

The Action and Limit Levels of the water quality monitoring are provided in *Appendix D*.

2.3.3 Monitoring Schedule for the Reporting Quarter

The schedules for water quality monitoring in the reporting quarter are provided in *Appendix E*. Water quality monitoring on 4 September 2017 was canceled due to adverse weather.

2.3.4 Results and Observations

In this reporting period, a total of 38 monitoring events for impact water quality monitoring were conducted at monitoring stations in the reporting period. Monitoring results are presented graphically in *Appendix H* and detailed impact water quality monitoring results were reported in the *Forty-seventh* to *Forty-ninth Monthly EM&A Reports*.

Ninety-one (91) Action Level of Dissolved Oxygen (DO) exceedances, eight (8) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting period. Actions were taken in accordance with the Event Action Plan as presented in *Appendix J*.

2.4 DOLPHIN MONITORING

2.4.1 Monitoring Requirements

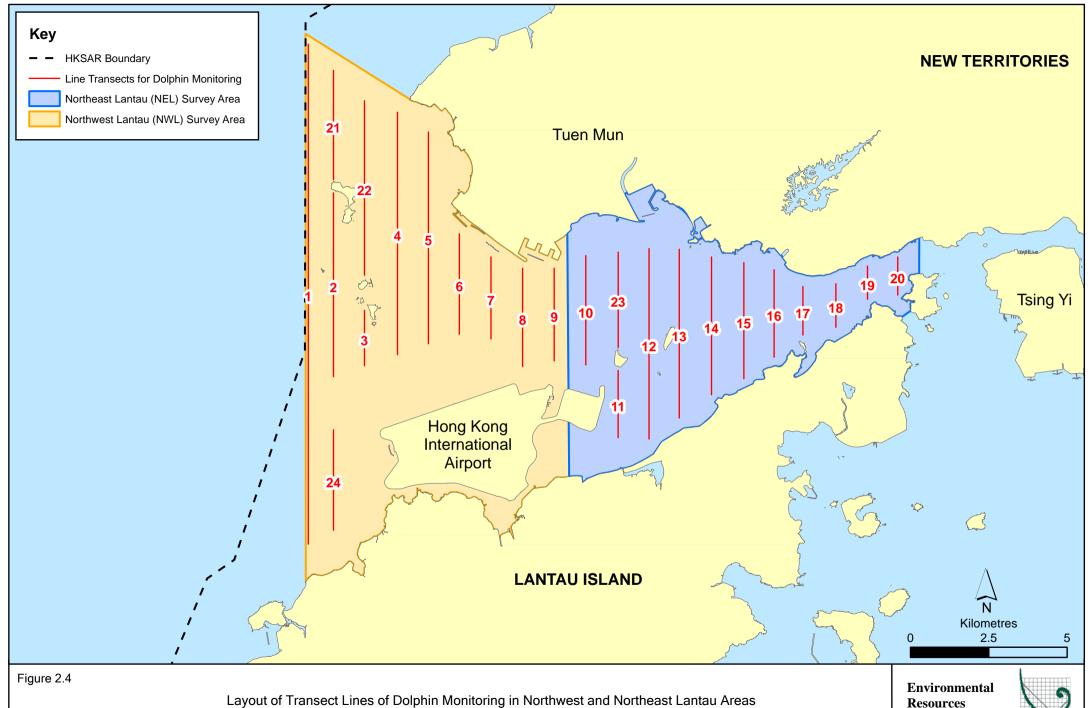
Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) from the Contract. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis is adopted to avoid duplicates of survey effort.

2.4.2 Monitoring Equipment

Table 2.10 summarizes the equipment used for the impact dolphin monitoring.

Table 2.10 Dolphin Monitoring Equipment

Equipment	Model		
Global Positioning System (GPS)	Garmin 18X-PC		
	Geo One Phottix		
Camera	Nikon D90 300m 2.8D fixed focus		
	Nikon D90 20-300m zoom lens		
Laser Binoculars	Infinitor LRF 1000		
Marine Binocular	Bushell 7 x 50 marine binocular with compass		
Vessel for Monitoring	and reticules		
	65 foot single engine motor vessel with		
	viewing platform 4.5m above water level		


2.4.3 Monitoring Parameter, Frequencies & Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.4.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.4*. The co-ordinates of all transect lines are shown in *Table 2.11* below ⁽¹⁾.

(1) Proposal on the changes of transect lines for dolphin monitoring was approved by EPD on 28 July 2017 (Reference number: (19) in EP2/G/A/129 Pt. 8).

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 21/9/2017

Resources Management

 Table 2.11
 Impact Dolphin Monitoring Line Transect Co-ordinates

]	Line No. Easting Northing		Lin	e No.	Easting	Northing	
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000*	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

2.4.5 Action & Limit Levels

The Action and Limit levels of dolphin impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix J*.

2.4.6 Monitoring Schedule for the Reporting Period

The dolphin monitoring schedules for the reporting period are shown in *Appendix E*.

2.4.7 Results & Observations

A total of 802.12 km of survey effort was collected, with 96.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility). Among the two areas,

297.00 km and 505.12 km of survey effort were conducted in NEL and NWL survey areas respectively. The total survey effort conducted on primary lines was 578.16 km, while the effort on secondary lines was 223.96 km. Survey effort conducted on both primary and secondary lines were considered as oneffort survey data. The survey efforts are summarized in *Appendix I*.

During the six sets of monitoring surveys in September to November 2017, a total of thirteen (13) groups of 50 Chinese White Dolphins were sighted. All dolphin sightings were made during on-effort, while twelve of the thirteen oneffort dolphin sightings were made on primary lines. In this quarterly period, all dolphin groups were sighted in NWL, no sighting of dolphin was sighted in NEL. Summary table of the dolphin sightings is shown in *Appendix II of Appendix I*.

Encounter rates of Chinese White Dolphins deduced from the survey effort and on-effort sighting data from the primary transect lines under favourable conditions (Beaufort 3 or below) in the reporting period with the results presented in *Tables 2.12* and 2.13.

Table 2.12 Individual Survey Event Encounter Rates

Survey Area	Survey period	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort) Primary Lines Only	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort) Primary Lines Only	
	Set 1: 15th/ 18th Sep 2017	0.0	0.0	
NEL	Set 2: 22 nd / 29 th Sep 2017	0.0	0.0	
	Set 3: 4th /9th Oct 2017	0.0	0.0	
	Set 4: 18th / 26th Oct 2017	0.0	0.0	
	Set 5: 1st / 8th Nov 2017	0.0	0.0	
	Set 6: 17th / 24th Nov 2017	0.0	0.0	
	Set 1: 15 th / 18 th Sep 2017	0.00	0.00	
	Set 2: 22 nd / 29 th Sep 2017	3.63	16.34	
NWL	Set 3: 4th /9th Oct 2017	1.86	9.30	
	Set 4: 18th / 26th Oct 2017	4.89	4.89	
	Set 5: 1st / 8th Nov 2017	4.99	26.60	
	Set 6: 17th / 24th Nov 2017	3.33	5.00	

Note: Dolphin Encounter Rates are deduced from the six sets of surveys (two surveys in each set) in the reporting period in Northeast (NEL) and Northwest Lantau (NWL)

Table 2.13 Quarterly Average Encounter Rates

Survey Area	Encounter ra (no. of on-effort do per 100 km of su	lphin sightings	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)		
	September - November 2017	September - November 2011	September - November 2017	September - November 2011	
Northeast Lantau	0.0	6.00 ± 5.05	0.0	22.19 ± 26.81	
Northwest Lantau	3.12 ± 1.91 9.85 ± 5.8		10.35 ± 9.66	44.66 ± 29.85	

Note: encounter rates deduced from the baseline monitoring period (September – November 2011) have been recalculated based only on survey effort and on-effort sighting data made along the primary transect lines under favourable conditions

Group size of Chinese White Dolphins ranged from one (1) to twelve (12) individuals per group in North Lantau region during September to November 2017. The average dolphin group sizes from these three months were compared with the ones deduced from the baseline period in September to November 2011, as shown in *Table 2.14*.

Table 2.14 Comparison of Quarterly Average Group Sizes

	Average Dolpl	Average Dolphin Group Size					
	September - November 2017 September - November 2011						
Overall	$3.85 \pm 3.39 \text{ (n = 13)}$ $3.72 \pm 3.13 \text{ (n = 66)}$						
Northeast Lantau	$3.18 \pm 2.16 (n = 17)$						
Northwest Lantau	$3.85 \pm 3.39 \text{ (n = 13)}$ $3.92 \pm 3.40 \text{ (n = 49)}$						

One (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between September and November 2017.

During this quarter of dolphin monitoring, no unacceptable impact from the activities of this Contract on Chinese White Dolphins was noticeable from the general observations.

Although the dolphins infrequently occurred along the alignment of TM-CLKL Southern Connection Viaduct in the past and during the baseline monitoring period, it is apparent that dolphin usage has been significantly reduced in both NEL and NWL, and many individuals have shifted away from the important habitat around the Brothers Islands.

It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters, to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB-related works, and whether suitable mitigation measure can be applied to revert the situation.

2.4.8 Marine Mammal Exclusion Zone Monitoring

Daily marine mammal exclusion zone monitoring was undertaken during the period of marine works under this Contract. No sighting of Chinese White Dolphin was recorded in the monitoring period during the exclusion zone monitoring.

Passive Acoustic Monitoring (PAM) was decommissioned in this reporting period as no marine piling works was carried out outside the daylight hours since September 2015. Daytime marine mammal exclusion zone was still in effect to cater for temporary staging installation and uninstallation works.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. Thirteenth (13) site inspections were carried out in the reporting quarter on 6, 13, 20 and 28 September 2017, 4, 11, 18, 26 and 31 October 2017, and 8, 14, 22 and 30 November 2017.

Key observations during the site inspections in this reporting period are summarized in *Table 2.15*.

Table 2.15 Specific Observations Identified during the Weekly Site Inspection in this Reporting Period

Inspection Date	Location & Environmental Observations	Recommendations/ Remarks			
6 September 2017	Viaduct B (Pier B17)	Viaduct B (Pier B17)			
	 Chemical container was observed not 	 The Contractor was reminded to place 			
	placed in drip tray.	chemical container in drip tray.			
	 General refuse in the skip should be 	 The Contractor was reminded to clear 			
	cleared.	general refuse in the skip.			
13 September	Viaduct E (Pier E10)	Viaduct E (Pier E10)			
2017	 Chemical containers on the deck were 	 The Contractor was reminded to place 			
	observed not placed in drip tray.	chemical containers in drip tray.			
	 Stagnant water was observed in drip tray. 	 The Contractor was reminded to clear 			
	• Tarpaulin should be provided to cover the	stagnant water in drip tray.			
	cement bags (over 20 bags).	 The Contractor was reminded to provide 			
		tarpaulin and cover cement bags.			
20 September	Southern Landfall Portion A	Southern Landfall Portion A			
2017	(HKBCF Portion S-c)	(HKBCF Portion S-c)			
	 Chemical containers were observed not 	 The Contractor was reminded to maintain 			
	placed in drip tray.	watering on exposed road.			
	 Watering on exposed road should be 	 The Contractor was reminded to place 			
	maintained for dust suppression.	chemical containers in drip tray.			
28 September	Viaduct E (Pier E13CD)	Viaduct E (Pier E13CD)			
2017	 Oil stain was observed near the generator. 	 The Contractor was reminded to clear oil 			
	 Stagnant water was observed in drip tray. 	stain near the generator.			
	Southern Landfall Portion A	 The Contractor was reminded to clear 			
	(HKBCF Portion S-c)	stagnant water in drip tray.			
	 Watering should be applied during pile 	Southern Landfall Portion A			
	head breaking works.	(HKBCF Portion S-c)			
		 The Contractor was reminded to apply 			
		watering during pile head breaking works.			

Inspection Date	Location & Environmental Observations	Recommendations/ Remarks
4 October 2017	Viaduct E (Pier E12)	Viaduct B (Pier B17)
	 Oil stain was observed near the generator. 	 The Contractor was reminded to clear the
	•	oil as chemical waste.
11 October 2017	Viaduct B (Pier B18)	Viaduct B (Pier B18)
	Chemical container was observed not	The Contractor was reminded to place
	placed in drip tray.	chemical container in drip tray.
	 EP should be replaced near the site 	 The Contractor was reminded to replace the
	entrance.	•
10.0 -1 -1 2017		missing pages of EP near the site entrance.
18 October 2017	Viaduct E (Pier E13AB)	Viaduct B (Pier B18)
	Oil stain was observed near the drip tray.	The Contractor was reminded to clear oil
	Drip tray was observed not properly	stain near to drip tray.
	plugged.	 The Contractor was reminded to plug the
		drip tray properly.
26 October 2017	Viaduct A (Pier A10)	Viaduct A (Pier A10)
	 Chemical waste should be handled with 	 The Contractor was reminded to handle
	care and disposed of at designated area.	chemical waste with care and disposed
	Viaduct A (Ramp A) (Area A)	them of at designated area.
	Chemical containers were observed not	Viaduct A (Ramp A) (Area A)
	placed in drip tray.	The Contractor was reminded to place
	 General refuse should be cleared. 	chemical container in drip tray.
	 NRMM label was observed not provided on 	
	the excavator.	
		general refuse. The Contractor was reminded to provide
	Viaduct E (Pier E8)	The contractor was reminated to provide
	Drip tray was observed not properly	NRMM label on the excavator.
	plugged.	Viaduct E (Pier E8)
		The Contractor was reminded to plug the
		drip tray.
31 October 2017	Viaduct B (Pier B16)	Viaduct E (Pier E13CD)
	 General refuse near the skip should be 	 The Contractor was reminded to clear
	cleared.	general refuse near the skip.
	 Chemical container was observed not 	 The Contractor was reminded to place
	placed in drip tray.	chemical container in drip tray.
8 November 2017	Viaduct E (Pier E12)	Viaduct E (Pier E12)
	 Accumulated refuse should be cleared. 	The Contractor was reminded to clear
	 Chemical container was observed not 	accumulated refuse.
	placed in drip tray.	The Contractor was reminded to place
	r	chemical container in drip tray.
14 November	Viaduct A (Ramp A) (Area A)	Viaduct A (Ramp A) (Area A)
2017	Accumulated refuse should be cleared.	The Contractor was reminded to clear
2017		
	Chemical Container was observed not	accumulated refuse.
	placed in drip tray.	The Contractor was reminded to place
	• Drip tray should be provided for chemicals	chemical container in drip tray.
	used in wetsep.	 The Contractor was reminded to provide
		drip tray for chemicals used in wetsep.
22 November	Viaduct E (Pier E13AB)	Viaduct E (Pier E13AB)
2017	 NRMM label on the generator should be 	 The Contractor was reminded to replace
	replaced.	NRMM label on the generator.
	Viaduct E (Pier E10)	Viaduct E (Pier E10)
	Stagnant water was observed in the drip	The Contractor was reminded to clear
	tray.	stagnant water in the drip tray.
	 NRMM label on the generator should be 	The Contractor was reminded to replace
	replaced.	NRMM label on the generator.
	TEDIACEU.	ININIVII IADEI UII HIE GEHELAULI.

Inspection Date	Location & Environmental Observations	Recommendations/ Remarks
30 November	Viaduct D (Ramp D) (Area I)	Viaduct D (Ramp D) (Area I)
2017	 Watering should be provided on unpaved 	 The Contractor was reminded to maintain
	road.	watering on unpaved road.
	 Chemical containers were observed not 	 The Contractor was reminded to place
	placed in drip tray.	chemical container in drip tray.
	Viaduct D (Pier D6)	Viaduct D (Pier D6)
	 Chemical containers were observed not 	 The Contractor was reminded to place
	placed in drip tray.	chemical container in drip tray.

The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period.

2.6 WASTE MANAGEMENT STATUS

The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert), recyclable materials, chemical waste and marine sediment. Reference has been made to the waste flow table prepared by the Contractor (*Appendix K*). The quantities of different types of wastes are summarized in *Table 2.16*.

Table 2.16 Quantities of Different Waste Generated in the Reporting Period

Month/	Inert C&D	Imported	Inert	Non-inert	Recyclable	Chemical	Mariı	ne Sedimen	t (m³)
Year	Materials ^(a) (m ³)	Fill (m³)	Constructio n Waste Re- used (m³)	Constructio n Waste (b) (kg)	Materials (c) (kg)	Wastes (kg)	Category L	Category M (M _p & M _f)	Category H
September 2017	3,142	0	0	185,420	18,100	0	1,517	1,047	127
October 2017	3,005	0	0	172,690	63	0	0	0	0
November 2017	3,354	0	0	159,650	5,868	5,400	0	0	0

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber, felled trees and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the *Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes*.

2.7 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.17* below.

Table 2.17 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Environmental Permit	EP-353/2009/K	11-Apr-16	N/A	HyD	Hong Kong Boundary Crossing Facilities
Environmental Permit	EP-354/2009/D	13-Mar-15	N/A	HyD	Tuen Mun- Chek Lap Kok Link
Construction Dust Notification	361571	05-Jul-13	N/A	GCL	
Construction Dust Notification	362093	17-Jul-13	N/A	GCL	For Area 23
Chemical Waste Registration	5213-951-G2380-17	12-Jun-14	N/A	GCL	Viaducts A, B, C, D & E
Chemical Waste Registration	5213-961-G2380-13	10-Oct-13	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07 (Area 1 adjacent to Cheng Tung Road, Siu Ho Wan)
Chemical Waste Registration	5213-961-G2380-14	10-Oct-13	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07 (Area 2 adjacent to Cheung Tung Road, Pak Mong Village)
Chemical Waste Registration	5213-974-G2588-03	04-Nov-13	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07 (WA5 adjacent to Cheung Tung Road, Yam O)
Construction Waste Disposal Account	7017735	10-Jul-13	N/A	GCL	-
Construction Waste Disposal Account	7019470	03-Mar-14	N/A	GCL	Vessel CHIT Account
Waste Water Discharge License	WT00019017-2014	13-May-14	31-May-19	GCL	Discharge for marine portion
Waste Water Discharge License	WT00019018-2014	13-May-14	31-May-19	GCL	Discharge for land portion
Construction Noise Permit for night works and works in general holidays	GW-RW0294-17	19-Jun-17	18-Dec-17	GCL	General works at WA5
Construction Noise Permit for night works and works in general holidays	GW-RS0540-17	20-Jun-17	15-Dec-17	GCL	Broad Permit for Whole Site Areas
Construction Noise Permit for night works and works in general holidays	GW-RS0639-17	31-Jul-17	29-Sep-17	GCL	Broad Permit for Segment Launching at Land Portion
Construction Noise Permit for night works and works in general holidays	GW-RS0829-17	29-Sep-17	30-Nov-17	GCL	Broad Permit for Segment Launching at Land Portion
Construction Noise Permit for night works and works in general holidays	GW-RS0668-17	7-Aug-17	6-Feb-18	GCL	Pre-casted pile cap shell installation at E8-E13
Construction Noise Permit for night works and works in general holidays	GW-RS0954-17	5-Nov-17	30-Nov-17	GCL	Contingency plan for DN800T works at Tung Chung Seafront Road
Construction Noise Permit for percussive piling	PP-RS0010-17	12-Jun-17	15-Sep-17	GCL	Percussive piling at Portion A

ENVIRONMENTAL RESOURCES MANAGEMENT 0215660_16TH QTR EM&A_20180508.DOC

License/ Permit	License or Permit No.	Date of Issue	Date of Expiry	License/ Permit Holder	Remarks
Marine Dumping Permit	EP/MD/18-031	01-Jul-17	31-Dec-17	GCL	For dumping Type I sediment
Marine Dumping Permit	EP/MD/18-061	16-Sep-17	15-Oct-17	GCL	For dumping Type I and Type II sediment

2.8 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractor has carried out corrective actions.

A summary of the Environmental Mitigation and Enhancement Measure Implementation Schedules (EMIS) is presented in *Appendix C*. The necessary mitigation measures were implemented properly for this Contract.

2.9 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

Results for 1-hour TSP, 24-hour TSP and construction noise monitoring complied with the Action/ Limit levels in the reporting period.

Ninety-one (91) Action Level of Dissolved Oxygen (DO) exceedances, eight (8) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting period. The exceedances were considered not related to this Contract upon further investigation and the investigation reports are presented in *Appendix L*.

The construction impact on depth-averaged SS was assessed by comparing the quarterly mean values of depth-averaged SS with the relevant ambient mean values (*Table 2.18*). The monitoring results showed that the quarterly means of depth-averaged SS at all sampling stations during both mid-ebb and mid-flood tides were well below the corresponding ambient means. The depth-averaged SS results suggest that the Project did not cause unacceptable impact on water quality in the reporting period.

Table 2.18 Comparison between Quarterly Mean and Ambient Mean Values of Depthaveraged Suspended Solids

Station	Baselii	ne Mean	Ambient Mean (a)		Quarterly Mean (September to November 2017)		
	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	Mid-ebb	Mid-flood	
CS(Mf)3(N)	9.2	12.8	12.0	16.6	8.8	10.1	
CS(Mf)5	9.2	11.5	11.9	14.9	5.8	6.9	
SR4	10.3	12.3	13.4	16.0	8.3	12.1	
SR4a	9.1	9.8	11.9	12.7	9.3	12.5	
IS8	11.3	13.5	14.6	17.6	8.1	12.5	
IS(Mf)9	10.9	14.3	14.2	18.5	6.8	10.8	
IS(Mf)16	11.4	10.3	14.8	13.4	7.0	8.5	

Notes:

One (1) Limit Level exceedance was recorded for impact dolphin monitoring in this reporting quarter. Following the review of the monitoring data and marine works details as per the procedure stipulated in the Event and Action Plan of the Updated EM&A Manual, no unacceptable impact was associated

⁽a) Ambient mean value is defined as a 30% increase of the baseline mean value

⁽b) Water Quality Monitoring Station CS(Mf)3 was relocated to CS(Mf)3(N) since 2 May 2017.

with the construction works under this Contract that may have affected the dolphin usage in the North Lantau region. Investigation findings were detailed in *Appendix L*.

2.10 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.5*.

There was one (1) complaint received from EPD on 24 November 2017 regarding construction dust nuisance at Hong Kong Boundary Crossing Facilities of Hong Kong-Zhuhai-Macau Bridge Projects in the reporting period. Upon investigation, there is no evidence to indicate that the complaint case is related to this Contract.

There was no notification of summons or successful prosecution recorded in the reporting period.

Statistics on complaint, notification of summons of successful prosecution are summarized in *Appendix L*.

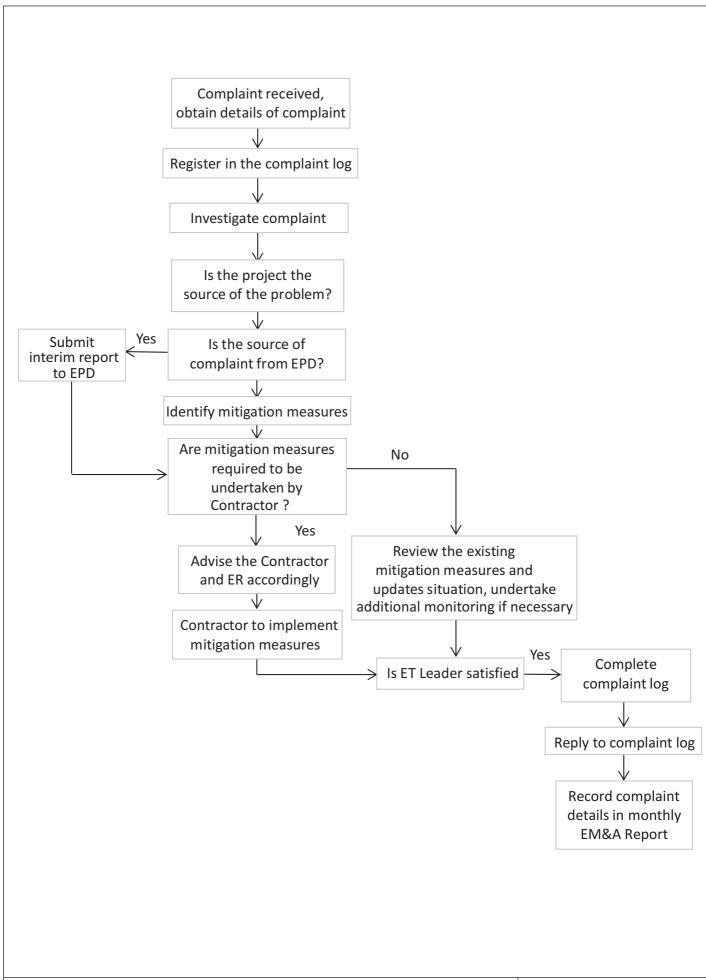


Figure 2.5

Environmental Complaint Handling Procedure

Environmental Resources Management

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION ACTIVITIES FOR THE COMING QUARTER

As informed by the Contractor, the major works for the Contract in the coming quarter are summarized below:

December 2017

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

January 2018

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Sign gantries construction;
- Parapet installation; and
- Slope work of Viaducts A, B, C & D.

February 2018

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;

- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Sign gantries construction;
- Parapet installation; and
- Slope work of Viaducts A, B, C & D.

3.2 KEY ISSUES FOR THE COMING QUARTER

Potential environmental impacts arising from the above upcoming construction activities are mainly associated with air quality, noise, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING QUARTER

Impact monitoring for air quality, noise, marine water quality and dolphin monitoring are scheduled to continue for the next reporting period.

The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

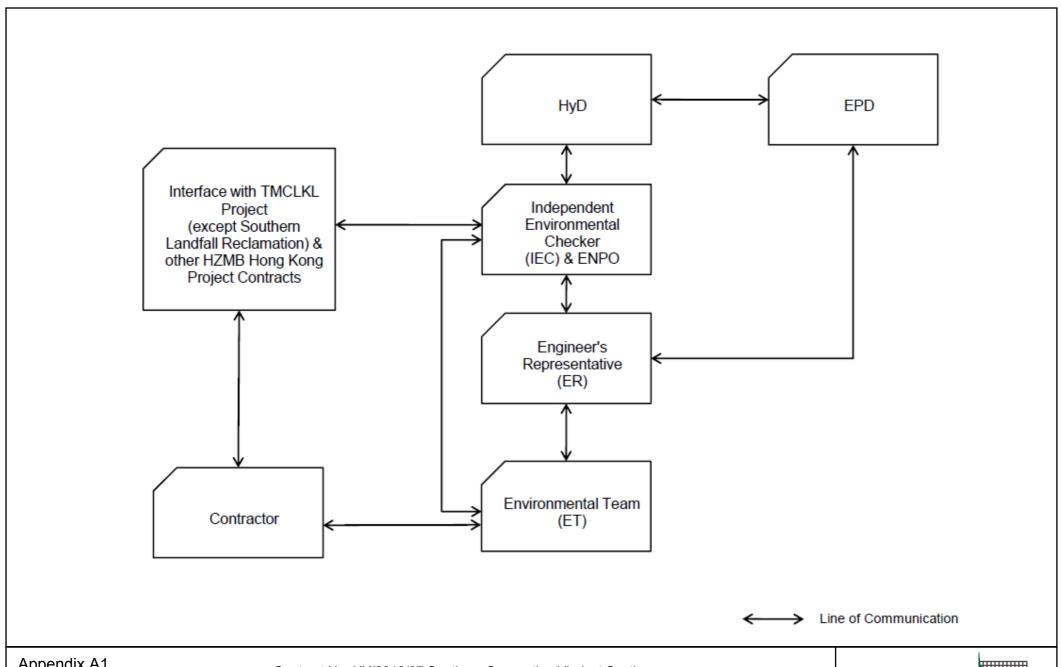
The Sixteenth Quarterly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 September to 30 November 2017, in accordance with the Updated EM&A Manual and the requirements of the *Environmental Permits* (EP-354/2009/D and EP-353/2009/K).

Neither Action Level nor Limit Level exceedances were observed for air quality and noise impact monitoring in this reporting period.

Ninety-one (91) Action Level of Dissolved Oxygen (DO) exceedances, eight (8) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting period.

A total of thirteen (13) groups of fifty (50) Chinese White Dolphins were sighted during the six sets of survey from September to November 2017. One (1) Limit Level exceedance was recorded for the quarterly dolphin monitoring data between September to November 2017, no unacceptable impact from the activities of this Contract on Chinese White Dolphins was noticeable from the general observations. It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters, to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB-related works, and whether suitable mitigation measure can be applied to revert the situation.

Environmental site inspection was carried out 13 times in the reporting period. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.


There was one (1) complaint received from EPD on 24 November 2017 regarding construction dust nuisance at Hong Kong Boundary Crossing Facilities of Hong Kong-Zhuhai-Macau Bridge Projects in the reporting period.

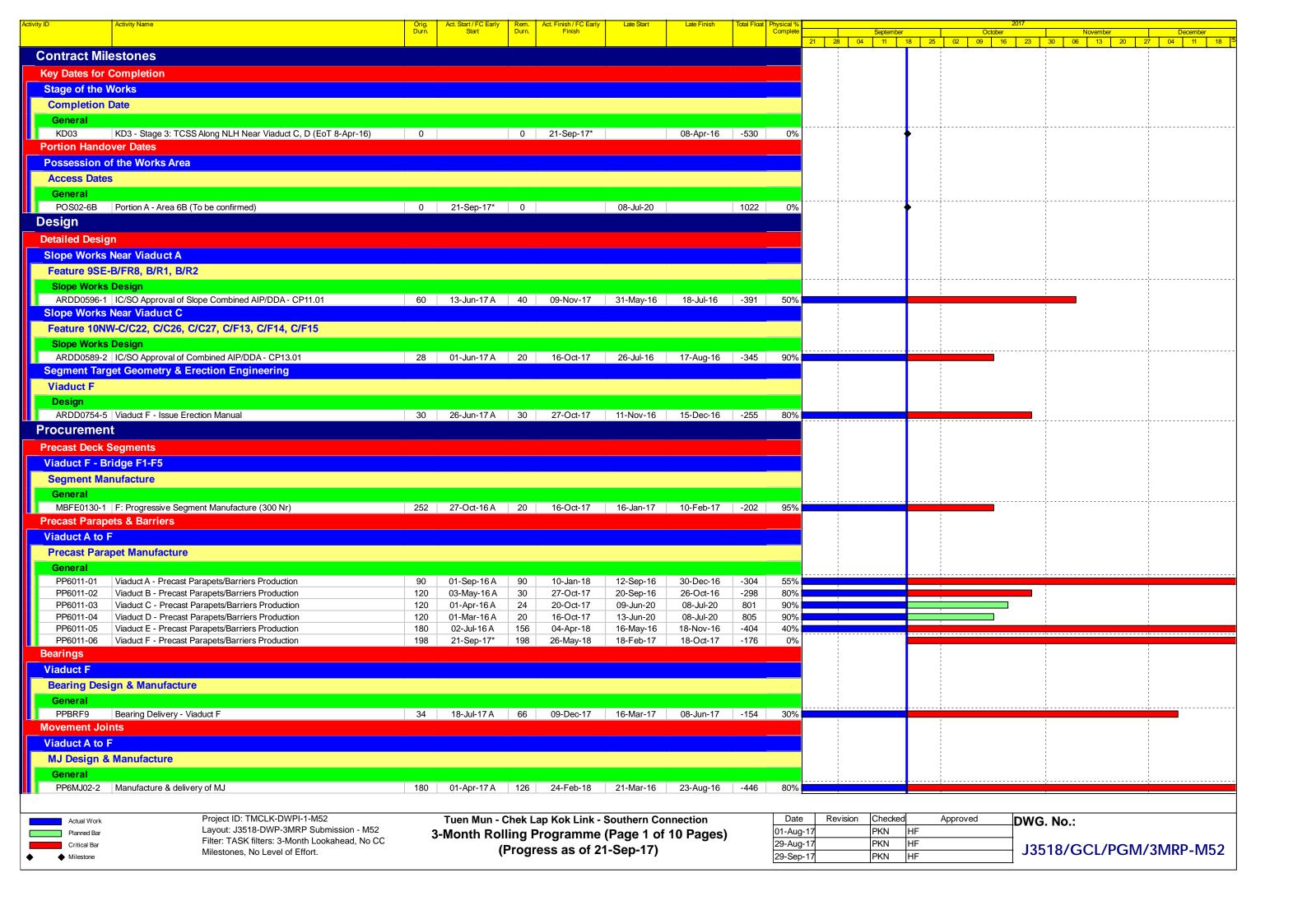
There was no notification of summons or successful prosecution recorded in the reporting period.

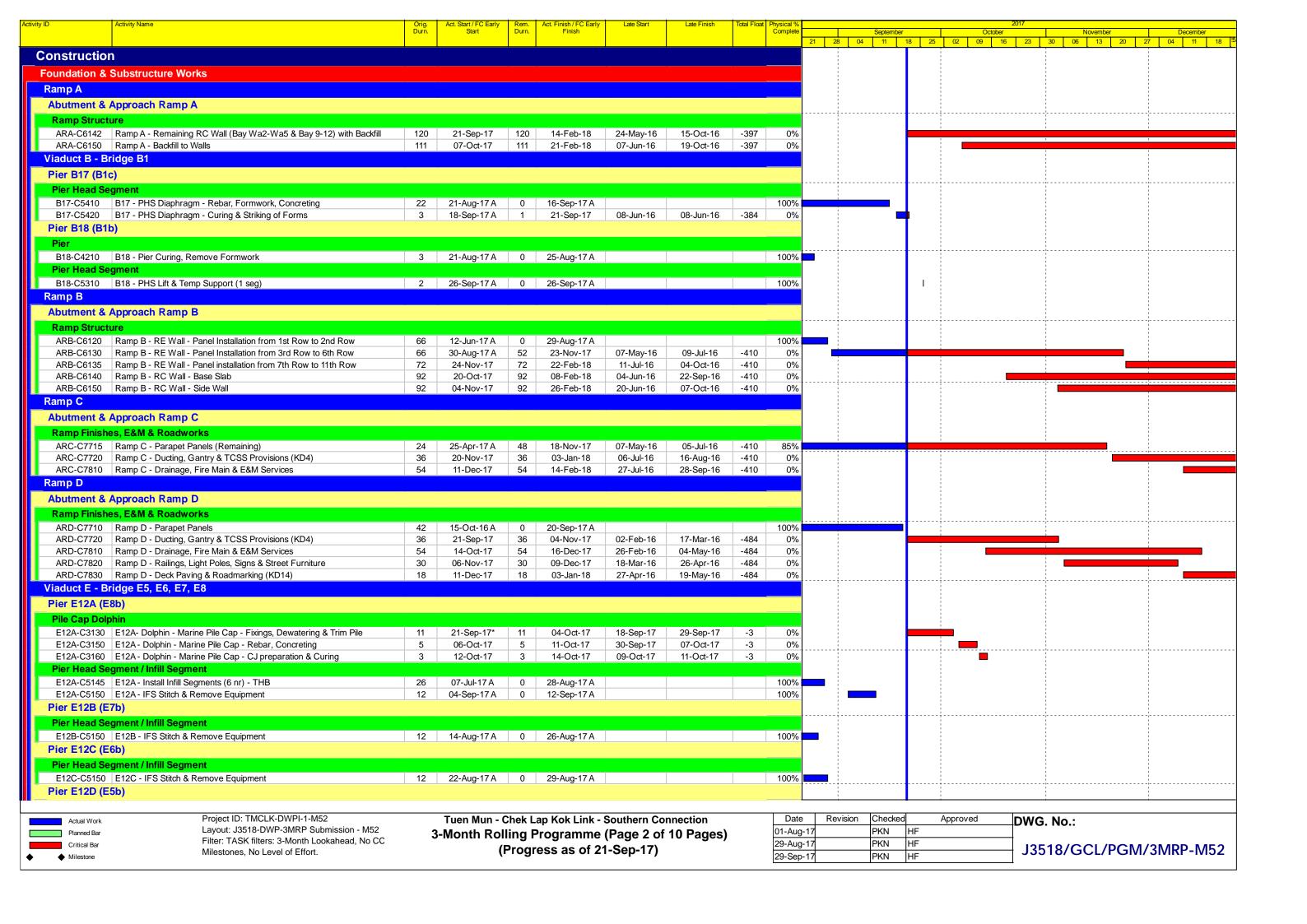
The monitoring programme has been reviewed and was considered as adequate to cater for the nature of works in progress. Change to the monitoring programme was thus not recommended at this stage. The monitoring programme will be evaluated as appropriate in the next reporting period. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

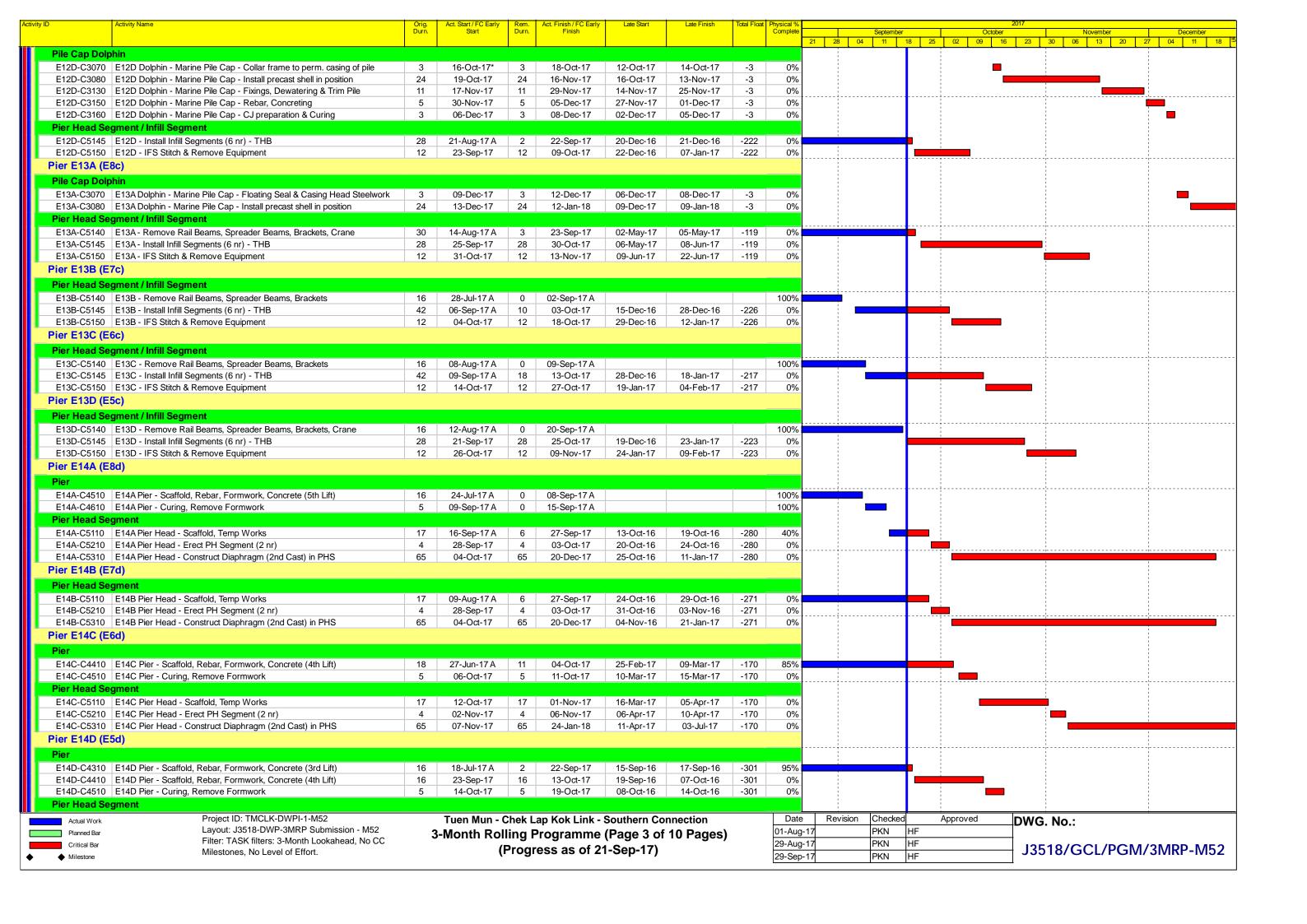
Appendix A

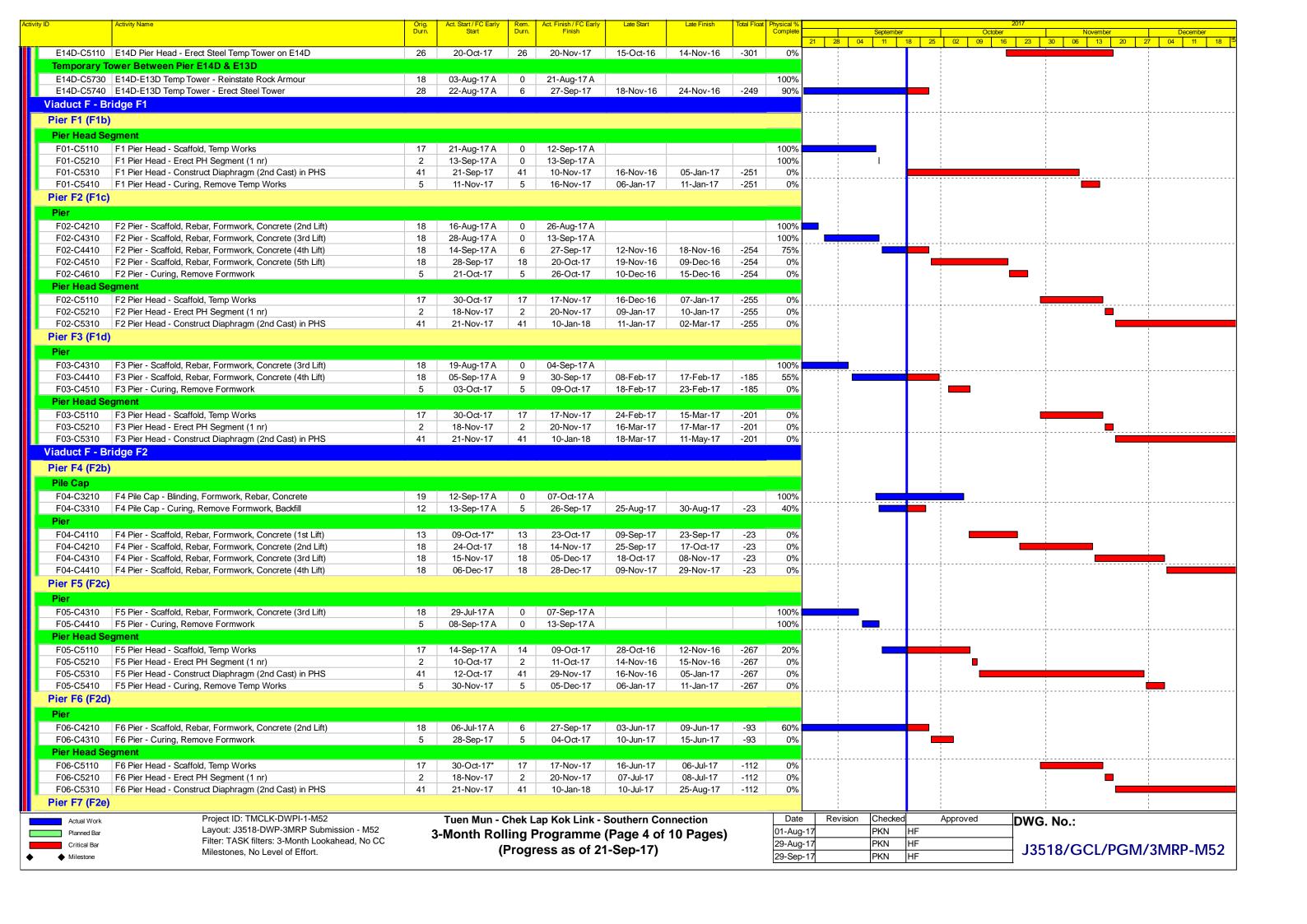
Project Organization for Environmental Works

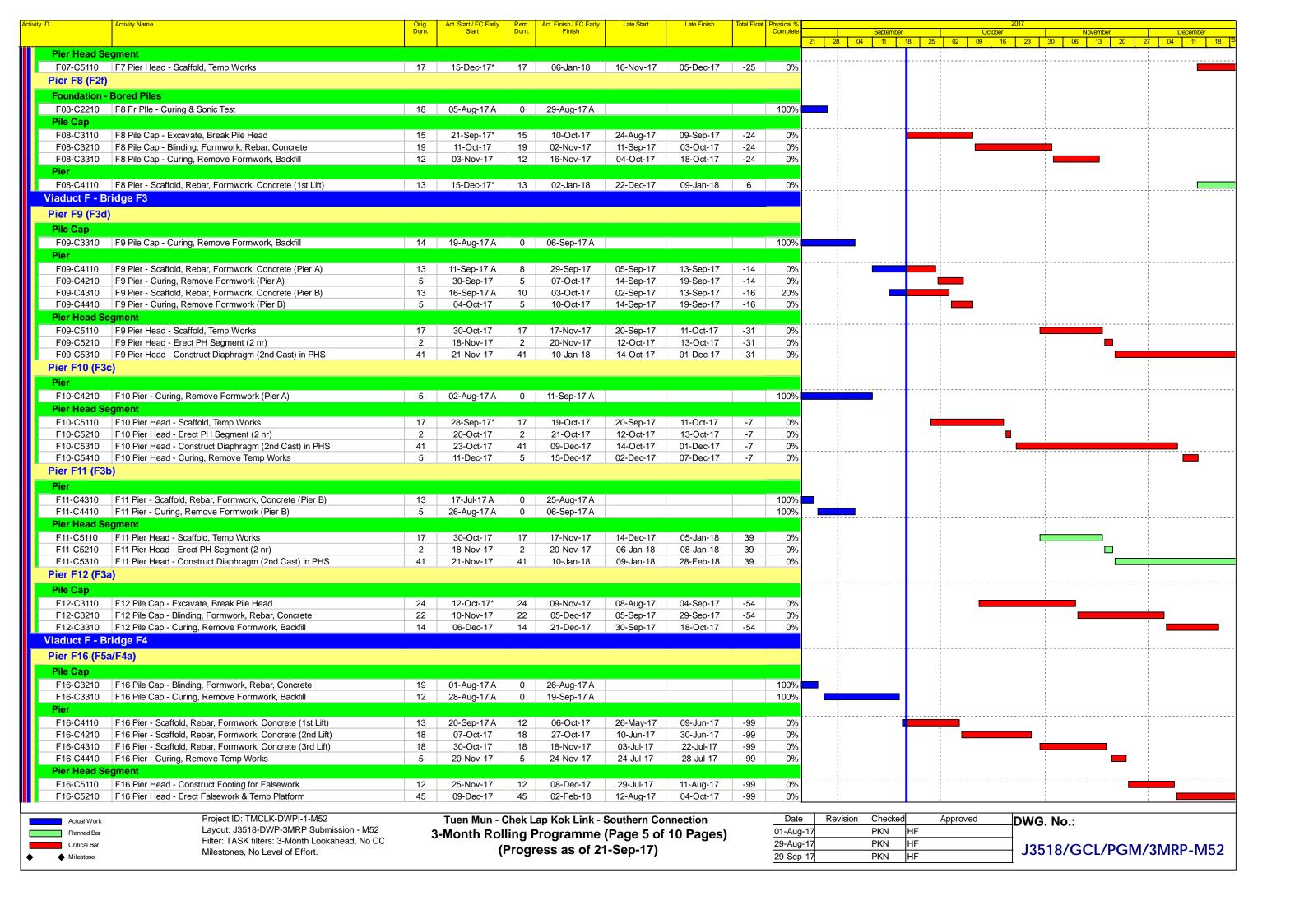
Appendix A1

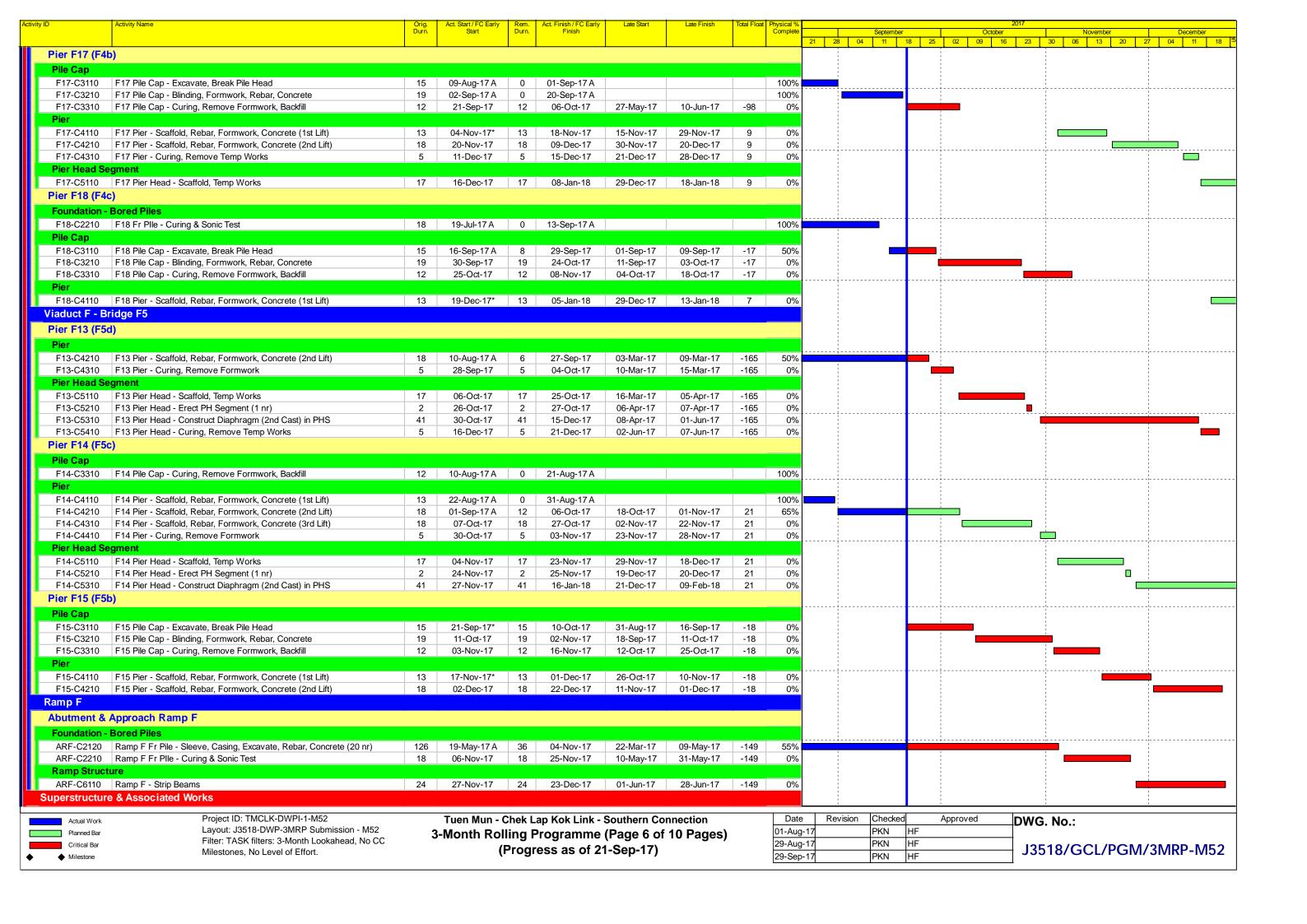

Contract No. HY/2012/07 Southern Connection Viaduct Section **Project Organization**

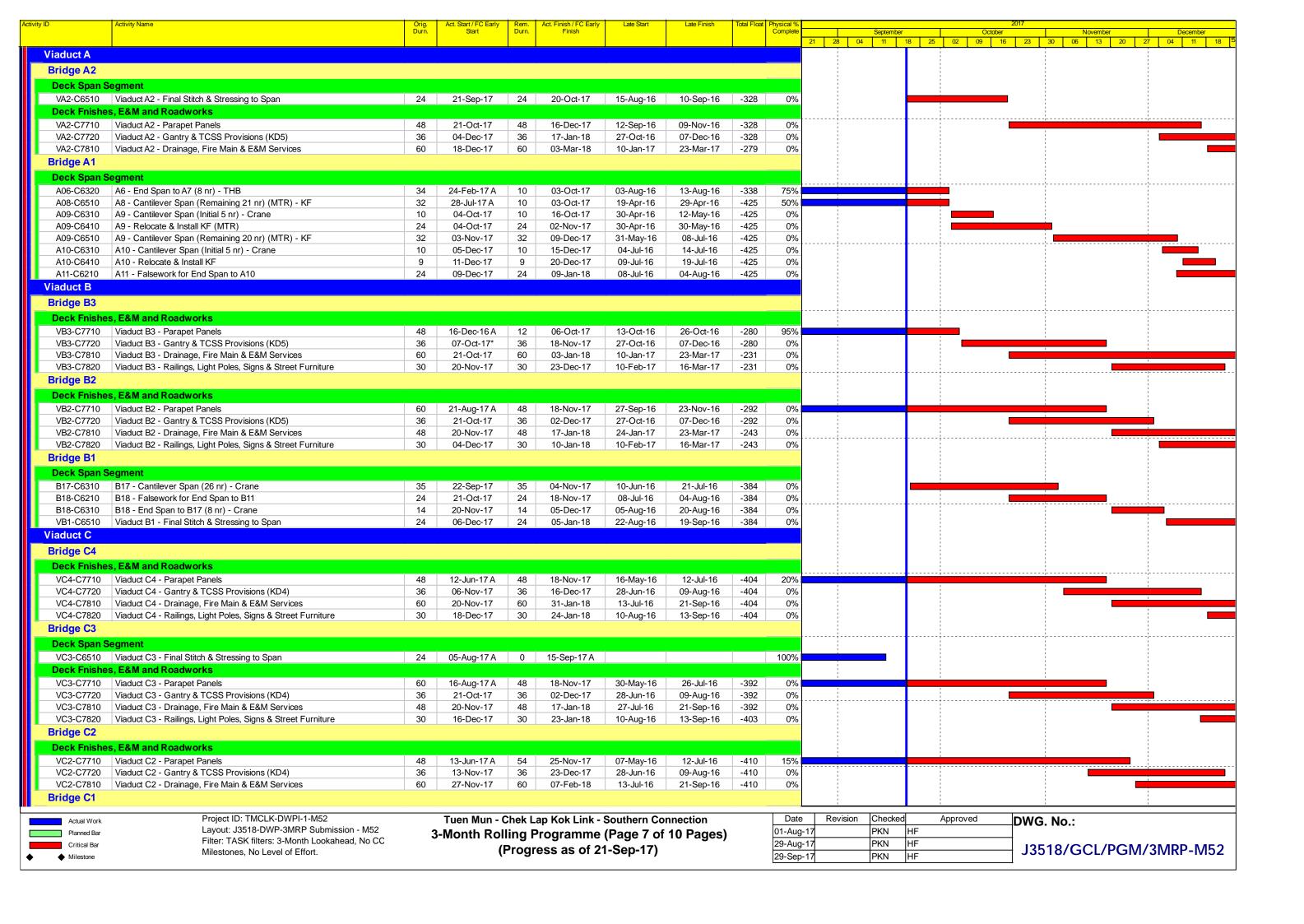

Environmental Resources Management

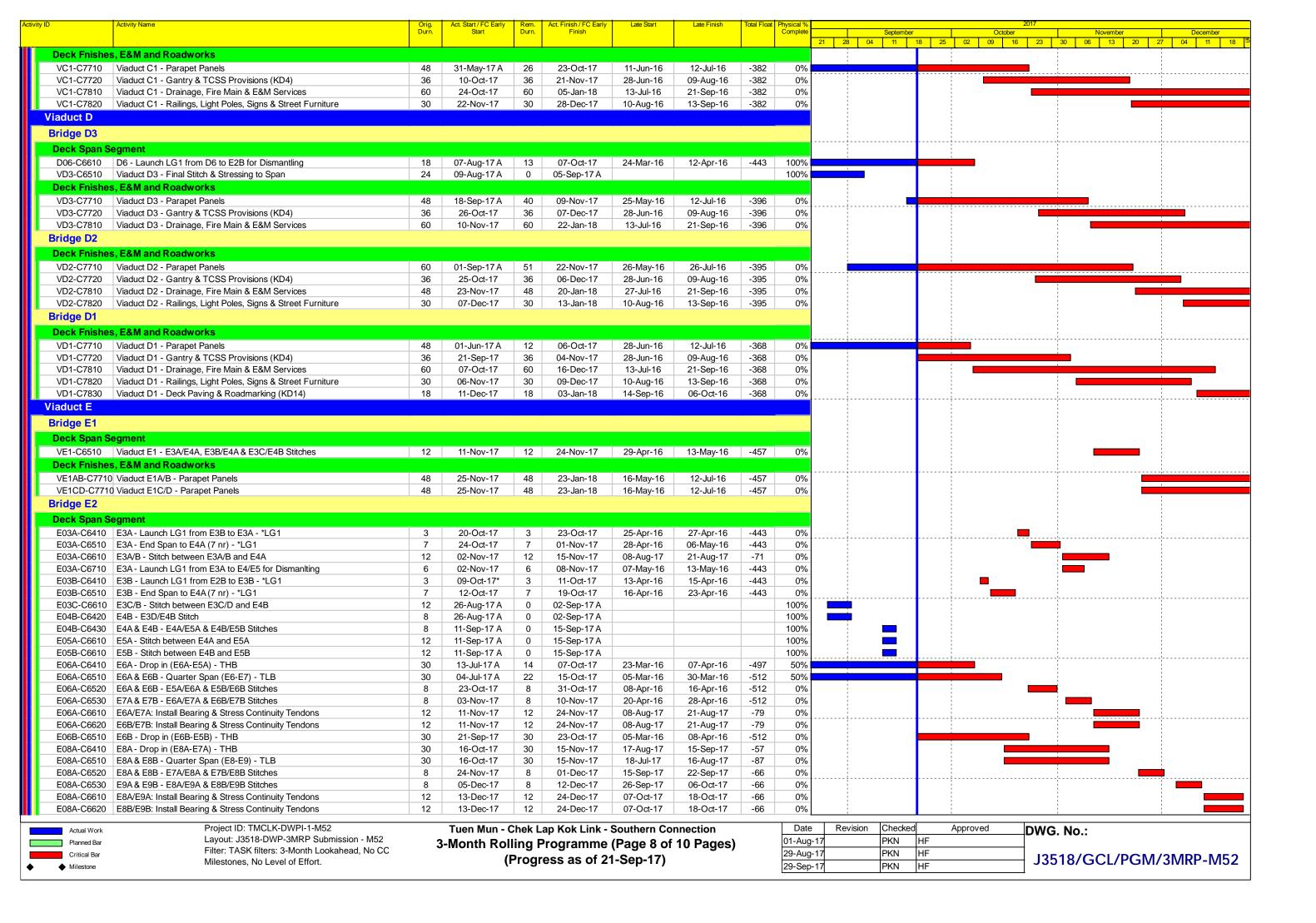


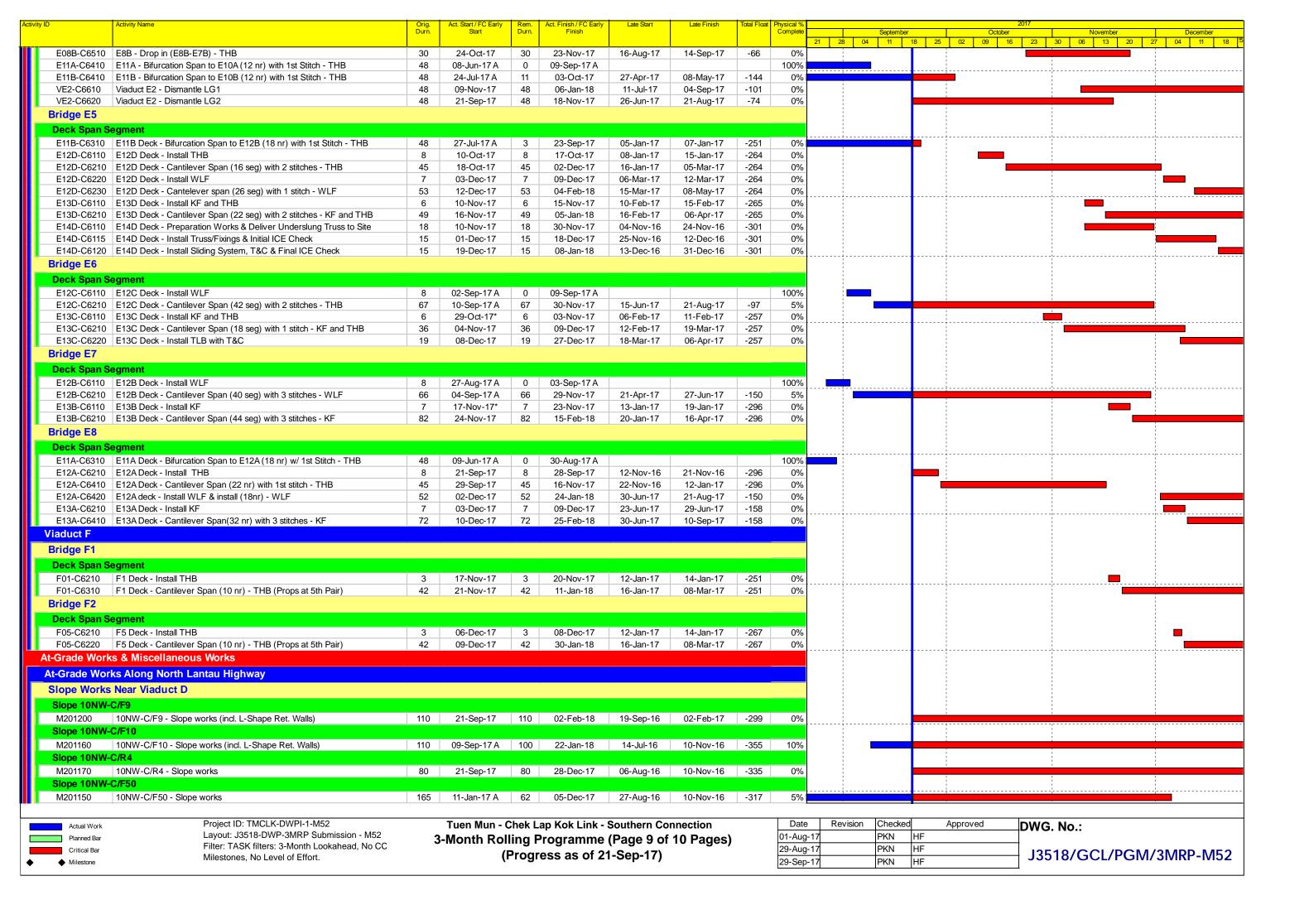

Appendix B

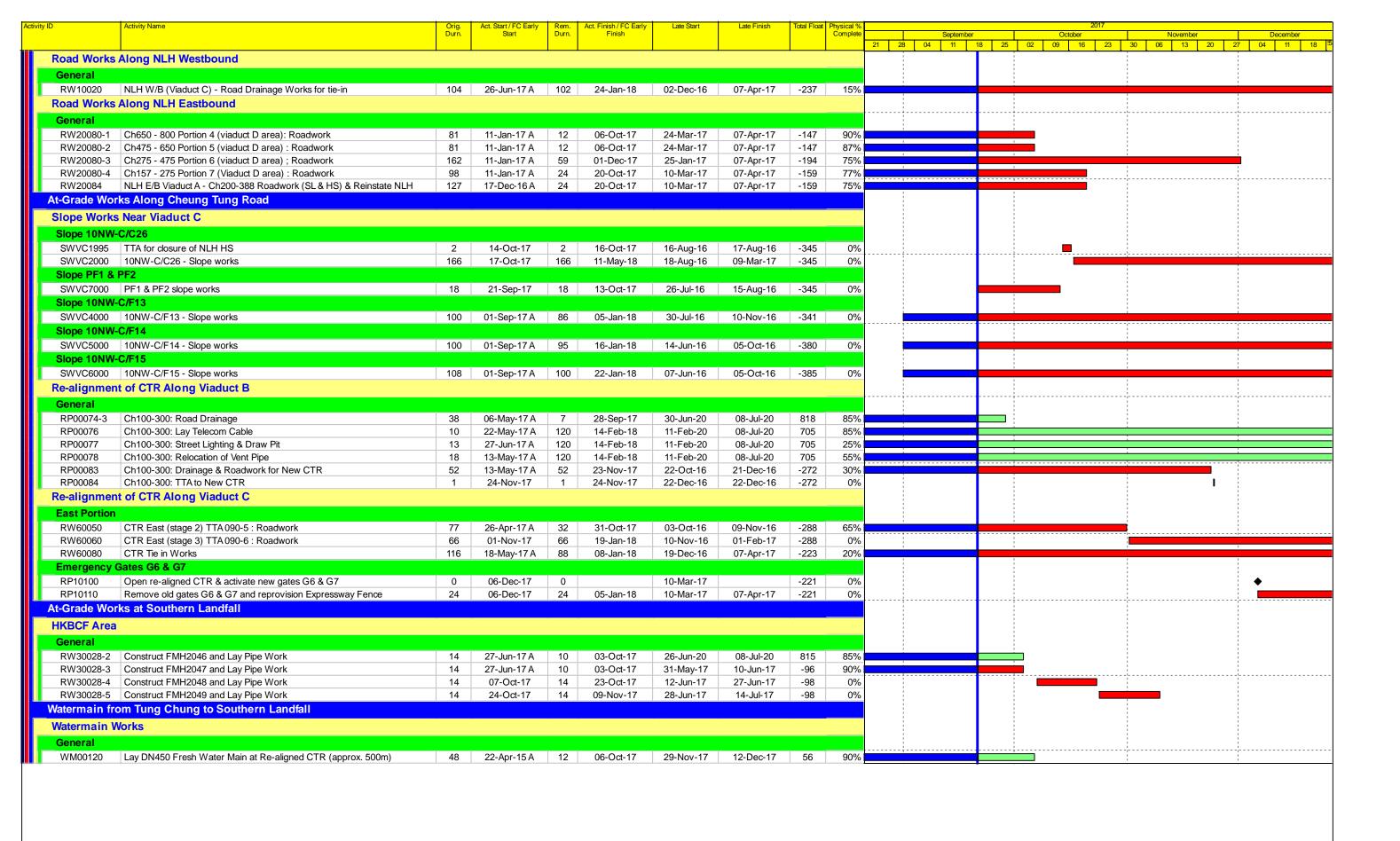

Construction Programme for the Reporting Quarter











Actual Work
Planned Bar
Critical Bar

Milestone

Project ID: TMCLK-DWPI-1-M52 Layout: J3518-DWP-3MRP Submission - M52 Filter: TASK filters: 3-Month Lookahead, No CC Milestones, No Level of Effort. Tuen Mun - Chek Lap Kok Link - Southern Connection
3-Month Rolling Programme (Page 10 of 10 Pages)
(Progress as of 21-Sep-17)

Date	Revision	Checked		Approved	D
01-Aug-17		PKN	HF		
29-Aug-17		PKN	HF		Ī
29-Sep-17		PKN	HF		١

DWG. No.:

J3518/GCL/PGM/3MRP-M52

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

(In reference to CINOTECH (2011) Agreement No. CE35/2011 EP Baseline Environmental Monitoring for Hong Kong-Zhuhai-Macao Bridge Tuen Mun-Chep Lap Kok Link – Investigation. Updated EM&A Manual for Tuen Mun-Chek Lap Kok Link)

Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link Southern Connection Viaduct Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent			Implementation Stages		Status
	Reference					D	С	О	
Air Qualit	Y								
4.8.1	3.8	An effective watering programme of eight daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		<>
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		⇔
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓

EIA Reference	EM&A Manual	vironmental Protection Measures Location/ Timing	Location/ Timing	Implementation Agent	- 1		lement Stages		Status
	Reference					D	С	О	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Y		✓
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		⇔
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		✓
Noise		<u>I</u>	<u>.i.</u>	<u>i</u>	<u>.i.</u>	i		<u>i</u>	
5.11	Section 4	Noise monitoring	All existing representative sensitive receivers / during North Lantau Viaduct construction	Contractor	EM&A Manual		Y		~
Water Qua	LITY	ı.	<u>.i</u>	<u>i.</u>	<u>.i.</u>	I	.1	<u>i</u>	
General Mar	rine Works								
6.10	-	Bored piling to be undertaken within a metal casing.	Marine viaducts of TM-CLKL and HKLR/ bored piling	Contractor	TM-EIAO		Y		✓
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing Implementation Agent	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
Temporary S	Staging work	A	ık.		*	4			*
	5.2	Regular inspection for the accumulation of floating refuse and collection of floating refuse if required	During temporary staging works	Contractor			Y		✓
	5.2	Provision of temporary drainage system on the temporary staging for collection of construction site runoff to allow appropriate treatment before discharge into the sea	During temporary staging works	Contractor			Y		<>
	5.2	Wastewater generated from construction works such as bored / drilling water will be collected, treated, neutralized and de-silted through silt trap or sedimentation tank before disposal	During temporary staging works	Contractor			Y		✓
	5.2	One additional water quality monitoring station is	During temporary	Contractor			Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	ion Relevant Standard or Requirement	Imp	lement Stage:		Status
	Reference					D	С	О	
		proposed at station SR4a In case elevated SS or turbidity is identified during the water quality monitoring, the source of pollution will be tracked down and be removed as soon as possible. In case depletion of dissolved oxygen is identified, artificial aeration will be arranged at the monitoring station SR4a,	staging works						
Land Works									
6.10	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		Y
6.10	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		Y
6.10	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		~
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>

EIA Reference	EM&A Manual		, , , , ,	Relevant Standard or Requirement	Impleme Stag			Status	
	Reference					D	С	О	
6.10	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/ throughout construction period	Contractor	TM-EIAO	***************************************	Y		Y
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		*
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Timing Implementation Relevant Standard Implementation Agent or Requirement Stages			Status		
	Reference					D	С	О	
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		~
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Y	✓
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		✓
Water Qual	ity Monitoring	β							
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	Designated monitoring stations as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Y	Y	•
ECOLOGY									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3	Specification for bored piling monitoring	Detailed Design	Design Consultant	TMEIA	Y			n/a
8.14	6.3	Implement any recommendations of the bored piling monitoring	Southern marine viaduct/Throughout	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	al	Location/ Timing		Relevant Standard or Requirement	Implementation Stages		Status	
	Reference					D	С	О	-
			construction during bored piling						
8.14	6.3,6.5	Avoidance of peak CWD calving season in May and June for driving of metal caissons during bored piling works	Southern marine viaduct/ May and	Contractor	TMEIA		Y		n/a
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All marine bored piling and temporary staging works areas/Detailed Design/during all marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		Y
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600 m ² in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	n/a To be enforced by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for marine bored piling and the whole lifespan of temporary staging works.	All areas/ Detailed Design/during marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Tai Ho Wan (donar site) and Yam Tsui Wan (receptor site) / Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.15	6.5	Audit coral translocation success	Yam Tsui Wan (receptor site)/Post translocation	Contractor	TMEIA		Y		Completed in October 2014
7.13	6.5	Undertaken gabion wall works in Stream NL1 in the dry season	North Lantau slope works/dry	Contractor	TMEIA		Υ		n/a

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	C	О	
			season/construction phase						
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA	***************************************	Y		n/a. To be approved by AFCD/LCSD
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary	All areas / Throughout construction period	Contractor	TMEIA		Y		~
LANDSCAPE	AND VISUAL	·	.t.		. 			<u>i</u>	
10.9	7.6	Round angle, patterned finishes, and oval shaped pier were considered in the viaduct design, and further details will be developed under ACABAS submission (DM3)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Details of the street furniture will be developed in the detailed design stage (DM4)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Υ		✓

EIA Reference	EM&A Manual	nual	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Imp	Implementation Stages		Status
	Reference					D	С	О	
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage) (CM1)							
10.9	7.6	Trees unavoidably affected by the works shall be transplanted where practical. Trees will be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme (CM2)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		Tree transplanted as Contract Specification
10.9	7.6	Hillside and roadside screen planting to proposed roads, associated structures and slope works (CM3).	All areas/detailed design/ during construction/post construction	Design Consultant/	TMEIA	Y	Y		✓
10.9	7.6	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone) (CM4)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		<>
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing Implementat Agent	Implementation Agent	Relevant Standard or Requirement			Status	
	Reference					D	С	О	•
10.9	7.6	Recycle/Reuse all felled trees and vegetation, e.g. mulching (CM9)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a No felled trees or vegetation suitable for recycle
10.9	7.6	Compensatory tree planting shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006 (CM10).	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		/
10.9	7.6	Re-vegetation of affected woodland/shrubland with native species (OM1)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by AFCD/HyD/ L CSD
10.9	7.6	Tall buffer screen tree / shrub / climber planting should be incorporated to soften hard engineering structures and facilities (OM2)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a To be implemented by HyD/LCSD
10.9	7.6	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill (OM3)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	n/a. To be implemented by HyD/LCSD
10.9	7.6	Structure, ornamental tree / shrub / climber planting should be provided along roadside amenity strips, central dividers and newly formed slopes to enhance the townscape quality and further greenery enhancement	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Imp	mplementation Stages		Status
	Reference					D	С	О	
		(OM4)							HyD/LCSD
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by HyD
Waste									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		~
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		✓
12.6	8.1	The extent of cutting operation should be optimised	All areas / throughout	Contractor	TMEIA		Y		✓
	<u> </u>		1	<u> </u>		<u>.i</u>	<u>i</u>	<u>i</u>	.1

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing		Relevant Standard or Requirement	rd Implementation Stages			Status
	Reference					D	С	О	
		where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	construction period						
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			n/a
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		Y
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		-
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction	All areas / throughout construction period	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage		Status
	Reference	Reference				D	С	О	
		materials should avoid over-ordering and wastage.							
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: - suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; - Having a capacity of <450L unless the specifications have been approved by the EPD; and - Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. Clearly labelled and used solely for the storage of chemical wastes; - Enclosed with at least 3 sides; - Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest;	All areas / throughout construction period	Contractor	TMEIA		Υ		

EIA Reference	EM&A Manual	Ianual eference	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages		Status	
	Reference					D	С	О	
		 Adequate ventilation; Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and Incompatible materials are adequately separated. 							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	All areas / throughout construction period	Contractor	TMEIA		Υ		<>
12.6	8.1	All waste containers shall be in a secure area on hard standing;	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Office wastes can be reduced by recycling of	Site Offices/	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	al	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
		paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	throughout construction period						
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		✓
Cultural H	IERITAGE							•	
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		n/a

Notes:

Legend: D=Design, C=Construction, O=Operation

Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Status:

- ✓ Compliance of Mitigation Measures
- Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Contractor
- Δ Deficiency of Mitigation Measures but rectified by Contractor
- n/a Not Applicable in Reporting Period

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m³	ASR9A/ASR8A = 178 ASR9C/ASR8/ASR9 = 178	260
1 Hour TSP Level in $\mu g / m^3$	ASR9A/ASR8A = 394 ASR9C/ASR8/ASR9 = 393	500

Table D2 Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)

Table D3 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	<u>Bottom</u>	<u>Bottom</u>
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary

Parameter		Action Level#	Limit Level#		
(e)	The 1%-ile of baseline data	a for surface and middle DO is 4.	2 mg/L, whilst for bottom DO		
	is 3.6 mg/L.				

Table D4 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster				
	NEL	NWL			
Action Level	STG < 70% of baseline &	STG < 70% of baseline &			
	ANI < 70% of baseline	ANI < 70% of baseline			
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]			
		and			
	STG < 40% of baseling	ne & ANI < 40% of baseline			

Notes:

- 1. STG means quarterly encounter rate of number of dolphin sightings, which is **6.00 in NEL** and **9.85 in NWL** during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D5 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lanta	North Lantau Social Cluster				
	NEL	NWL				
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3				
Limit Level	[STG < 2.4	4 & ANI <8.9]				
		and				
	[STG < 3.9 & ANI <17.9]					

Appendix E

EM&A Monitoring Schedules

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 30 September 2017)

Alternative Noise Monitoring at Pak Mong Village Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
00 ОСР	0+ ОСР	00 ОСР	Noise Impact Monitoring	07 ОСР	00 000	<u> </u>
			Troide impact monitoring			
10-Sep	11-Sep		13-Sep	14-Sep	15-Sep	16-Sep
		Noise Impact Monitoring				
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
17 000	Noise Impact Monitoring	10 000		Noise Impact	22 Ocp	20 000
	. totoopaotog			Monitoring		
24-Sep	25-Sep			28-Sep	29-Sep	30-Sep
			Noise Impact Monitoring			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 30 September 2017)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
00 000	01000	00 000	1-hr TSP Monitoring	01 COP	33 Cop	00 00
			24-hr TSP Monitoring			
			24-III 13F Morntoning			
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
17-3ер	1-hr TSP Monitoring	19-3ер	20-3ер	1-hr TSP Monitoring	22-Sep	20-06
	24-hr TSP Monitoring			24-hr TSP Monitoring		
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
			1-hr TSP Monitoring			·
			24-hr TSP Monitoring			
			Ŭ			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 31 October 2017)

Alternative Noise Monitoring at Pak Mong Village Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct			04-Oct	05-Oct	06-Oct	07-Oct
		Noise Impact Monitoring				
08-Oct	09-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
	Noise Impact Monitoring			Noise Impact		
				Monitoring		
45.0	10.0	47.0.4	40.0	10.0.1	22.0.4	04.0.4
15-Oct	16-Oct		18-Oct Noise Impact Monitoring	19-Oct	20-Oct	21-Oct
			Noise impact wonitoring			
22-Oct			25-Oct	26-Oct	27-Oct	28-Oct
		Noise Impact Monitoring				
29-Oct	30-Oct	31-Oct				
	Noise Impact Monitoring	J. 60.				

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 31 October 2017)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct	02-Oct		04-Oct	05-Oct		07-Oct
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
08-Oct	09-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
	1-hr TSP Monitoring			1-hr TSP Monitoring		
	24-hr TSP Monitoring			24-hr TSP Monitoring		
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
			1-hr TSP Monitoring			
			24-hr TSP Monitoring			
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
22 000	20 00.	1-hr TSP Monitoring	20 000	20 000	21 000	20 00.
		24-hr TSP Monitoring				
		ŭ				
29-Oct	20 Oct	31-Oct				
	30-Oct 1-hr TSP Monitoring	31-001				
	24-hr TSP Monitoring					
	27 III TOI WOULDING					

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 30 November 2017)

Alternative Noise Monitoring at Pak Mong Village Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Nov	2-Nov	3-Nov	4-No
				Noise Impact		
				Monitoring		
				· ·		
5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-No
			Noise Impact Monitoring			
12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov	18-No
		Noise Impact Monitoring				
		, o				
40 No.	00 No.	O4 No.	00 No.	00 No.	O4 Nav	05 N-
19-Nov		21-Nov			24-Nov	25-No
	Noise Impact Monitoring			Noise Impact		
				Monitoring		
26-Nov	27-Nov	28-Nov	29-Nov	30-Nov		
	, , ,		Noise Impact Monitoring	55 1151		
			, ,			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 30 November 2017)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Nov	2-Nov	3-Nov	4-Nov
				1-hr TSP Monitoring		
				24-hr TSP Monitoring		
5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-Nov
			1-hr TSP Monitoring			
			24-hr TSP Monitoring			
40 N.	40 N.	44 N.	4E NI.	40 N	47 N.	40.11
12-Nov	13-Nov		15-Nov	16-Nov	17-Nov	18-Nov
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov	25-Nov
	1-hr TSP Monitoring			1-hr TSP Monitoring		
	24-hr TSP Monitoring			24-hr TSP Monitoring		
26-Nov	27-Nov	28-Nov	29-Nov	30-Nov		
20-1107	27-1100	28-1107	1-hr TSP Monitoring	30-1107		
			24-hr TSP Monitoring			
			24-III I OF WOULDING			

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (September 2017)

Sundav	Monday	Tuesday	Wednesday		Fridav	Saturday
					1-Sep	2-Sep
					ebb tide 7:55 - 11:25 flood tide 15:41 - 19:11	
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
	WQM is canceled due to adverse weather		ebb tide 11:20 - 14:50 flood tide 18:00 - 21:30		ebb tide 12:29 - 15:59 flood tide 6:10 - 9:40	
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
	ebb tide 14:31 - 18:01 flood tide 8:39 - 12:09		ebb tide 16:38 - 20:08 flood tide 11:16 - 14:46		ebb tide 6:50 - 10:20 flood tide 14:31 - 18:01	
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
	ebb tide 9:56 - 13:26 flood tide 16:48 - 20:18		ebb tide 11:22 - 14:52 flood tide 17:46 - 21:16		ebb tide 12:35 - 16:05 flood tide 6:19 - 9:49	
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	ebb tide 14:16 - 17:46 flood tide 8:26 - 11:56		ebb tide 16:09 - 19:28 flood tide 10:48 - 14:18		ebb tide 5:39 - 9:09 flood tide 14:30 - 18:00	

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (October 2017)

Sunday	Monday	•		Wednesday	Thursday	Friday	Saturday
1/Oct		2/Oct			5/Oct		
	ebb tide	8:50 - 12:20 15:59 - 19:29		ebb tide 10:11 - 13:41 flood tide 16:46 - 20:16		ebb tide 11:27 - 14:57 flood tide 5:18 - 8:48	
8/Oct		9/Oct	10/Oct	11/Oct	12/Oct	13/Oct	14/Oct
		13:33 - 17:03 7:46 - 11:16		ebb tide 15:22 - 18:52 flood tide 10:00 - 13:30		ebb tide 4:48 - 8:18 flood tide 13:10 - 16:40	
15/Oct		16/Oct	17/Oct	18/Oct	19/Oct	20/Oct	21/Oct
	ebb tide	8:48 - 12:18 15:41 - 19:11		ebb tide 10:20 - 13:50 flood tide 16:36 - 20:06		ebb tide 11:36 - 15:06 flood tide 5:34 - 9:04	
22/Oct		23/Oct	24/Oct	25/Oct	26/Oct	27/Oct	28/Oct
		13:18 - 16:48 7:36 - 11:06		ebb tide 14:36 - 18:06 flood tide 9:14 - 12:44		ebb tide 3:24 - 6:54 flood tide 15:49 - 19:19	
29/Oct		30/Oct	31/Oct				
		6:58 - 10:28 14:36 - 18:06					

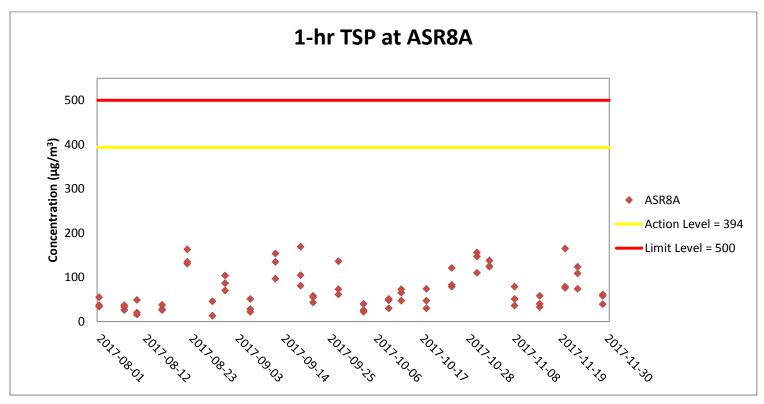
HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (November 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1/Nov			
			ebb tide 8:50 - 12:20 flood tide 15:31 - 19:01		ebb tide 10:19 - 13:49 flood tide 4:21 - 7:51	
5/Nov	6/Nov	7/Nov	8/Nov	9/Nov	10/Nov	11/Nov
	ebb tide 12:36 - 16:06 flood tide 6:55 - 10:25		ebb tide 14:18 - 17:48 flood tide 8:54 - 12:24		ebb tide 16:45 - 19:47 flood tide 11:17 - 14:47	
12/Nov	13/Nov	14/Nov	15/Nov	16/Nov	17/Nov	18/Nov
	ebb tide 7:21 - 10:51 flood tide 14:26 - 17:56		ebb tide 9:13 - 12:43 flood tide 15:27 - 18:57		ebb tide 10:38 - 14:08 flood tide 4:51 - 8:21	
19/Nov	20/Nov	21/Nov	22/Nov	23/Nov	24/Nov	25/Nov
	ebb tide 12:26 - 15:56 flood tide 6:56 - 10:26		ebb tide 13:35 - 17:05 flood tide 8:15 - 11:45		ebb tide 15:16 - 17:59 flood tide 9:52 - 13:22	
26/Nov	27/Nov	28/Nov	29/Nov	30/Nov		
	ebb tide 4:33 - 8:03 flood tide 12:58 - 16:28		ebb tide 7:03 - 10:33 flood tide 14:07 - 17:37			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 30 September 2017)

					Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
·	·			·	·	
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Ser
10 00p	11 305	12 0 0p	10 000		Impact Dolphin	10 00
					Monitoring	
					World	
47.000	40 Can	40 Can	20 Can	04.000	00.000	00 Cor
17-Sep		19-Sep	20-Sep		22-Sep	23-Sep
	Impact Dolphin				Impact Dolphin	
	Monitoring				Monitoring	
24-Sep	25-Sep	26-Sep	27-Sep			30-Sep
					Impact Dolphin	
					Monitoring	

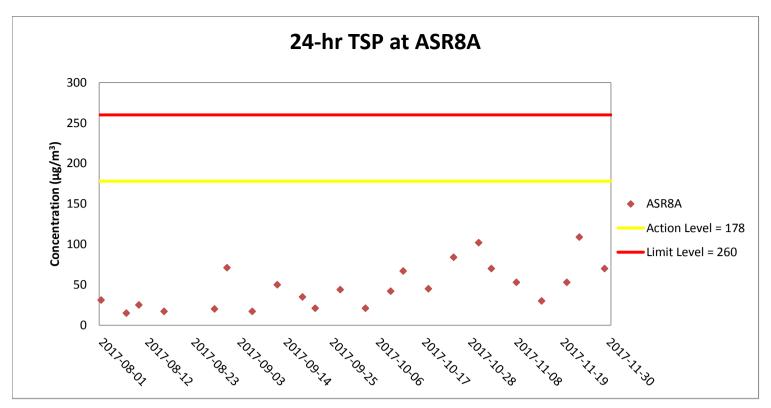
HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 31 October 2017)

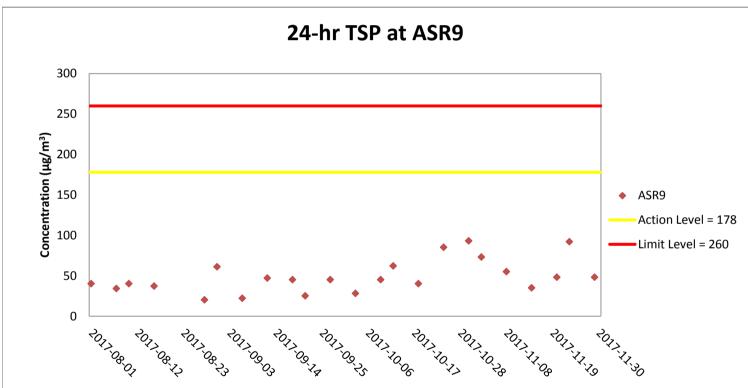

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct	02-Oct	03-Oct	04-Oct	05-Oct	06-Oct	07-Oct
			Impact Dolphin Monitoring			
08-Oct		10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
	Impact Dolphin Monitoring					
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
			Impact Dolphin Monitoring			
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
				Impact Dolphin Monitoring		
29-Oct	30-Oct	31-Oct				

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 30 November 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			01-Nov	02-Nov	03-Nov	04-Nov
			Impact Dolphin			
			Monitoring			
05-Nov	06-Nov	07-Nov	08-Nov	09-Nov	10-Nov	11-Nov
			Impact Dolphin			
			Monitoring			
12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov	18-Nov
					Impact Dolphin	
					Monitoring	
					3	
19-Nov	20-Nov	21-Nov	22-Nov	23-Nov	24-Nov	25-Nov
19-1407	20-1407	21-1107	22-1107	25-1107	Impact Dolphin	29-1107
					Monitoring	
					ivioriitoriiig	
26-Nov	27-Nov	28-Nov	29-Nov	30-Nov		

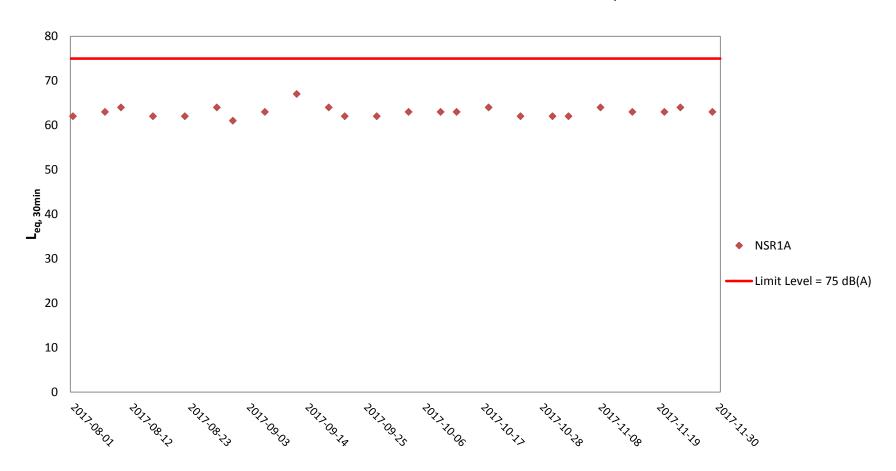
Appendix F


Impact Air Quality
Monitoring Graphical
Presentation



Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Launching gantry operation; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

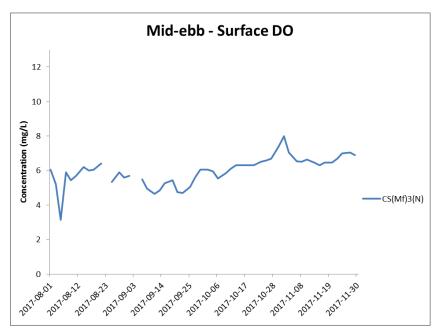

Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Launching gantry operation; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

Appendix G

Impact Noise Monitoring Graphical Presentation

Noise Monitoring Results at NSR 1A ($L_{eq, 30min}$)



Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Launching gantry operation; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

Appendix H

Impact Water Quality Monitoring Graphical Presentation

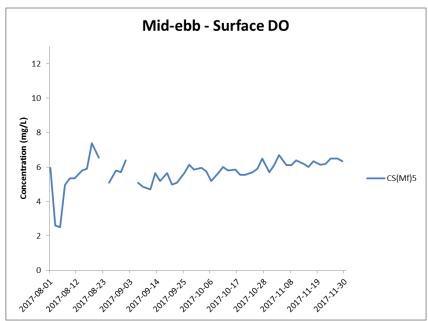
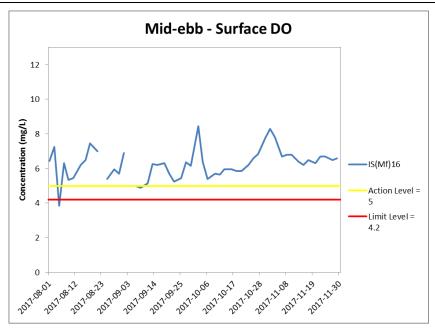



Figure H1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

Environmental Resources Management

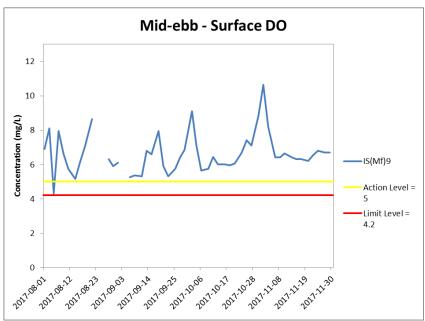
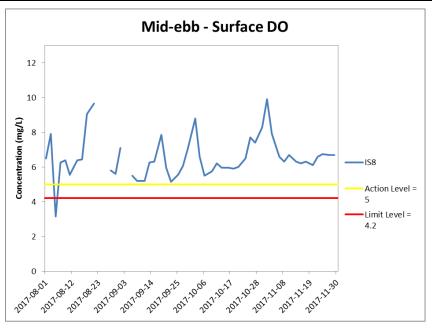



Figure H2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

Environmental Resources Management

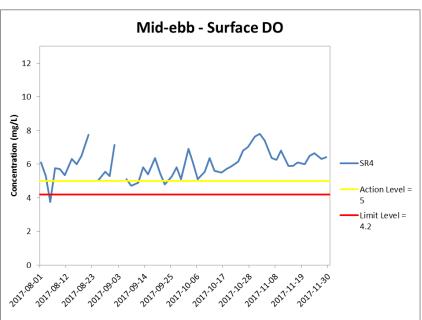


Figure H3 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

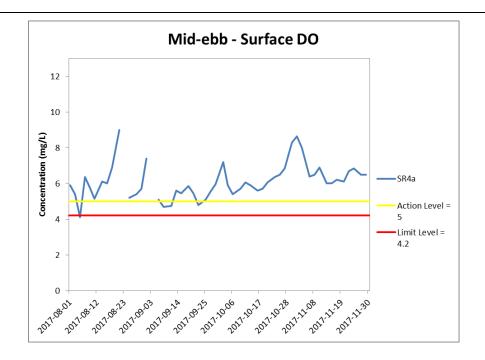
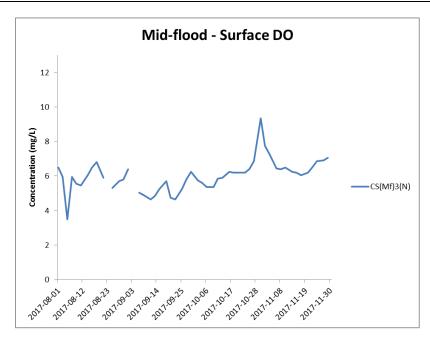



Figure H4 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

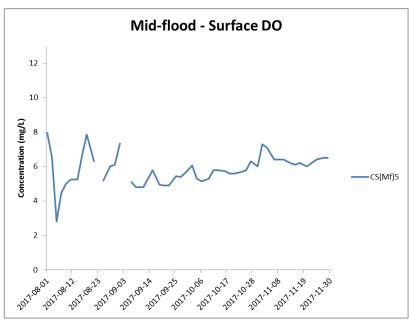
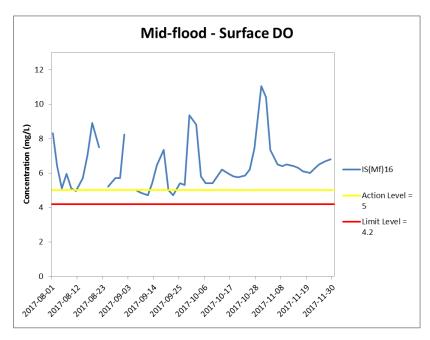



Figure H5 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

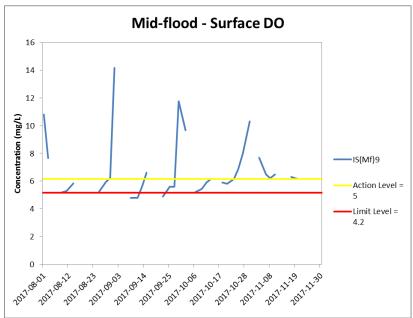
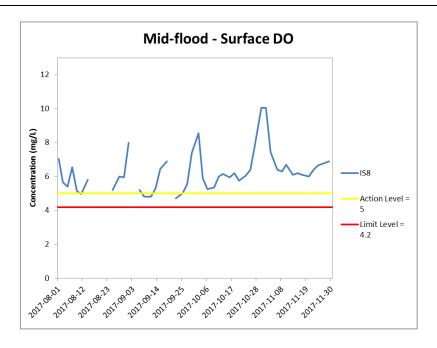



Figure H6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

(Weather condition varied between sunny to rainy within the reporting period.)

WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

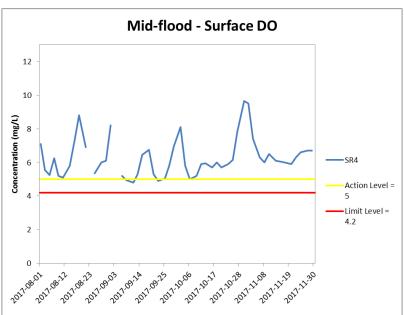


Figure H7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

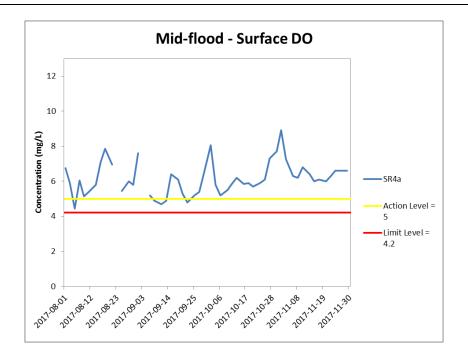
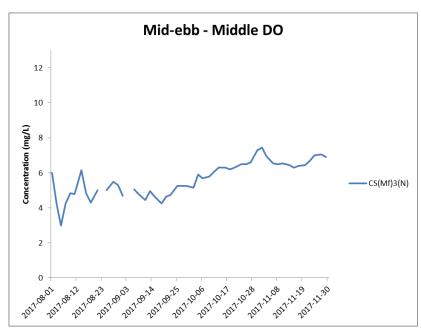



Figure H8 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

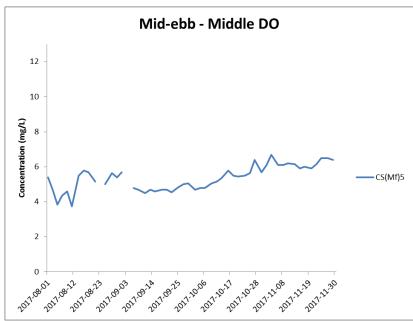


Figure H9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

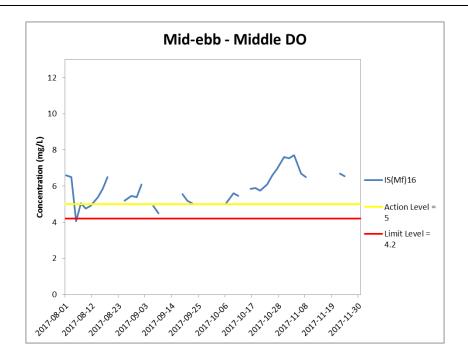
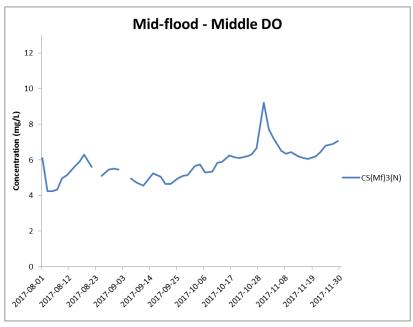



Figure H10 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS(Mf)16.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

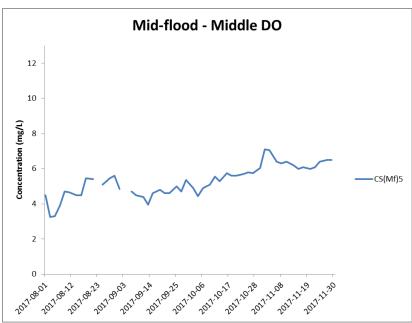


Figure H11 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-flood tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

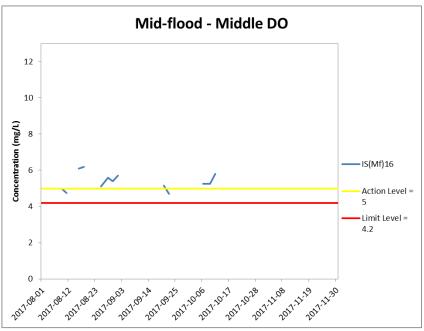
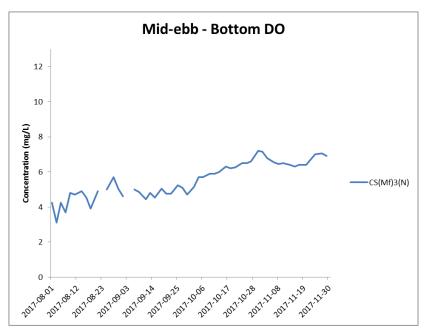



Figure H12 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-flood tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

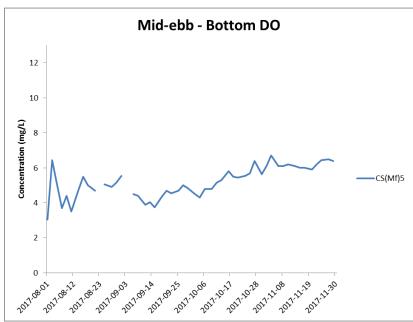
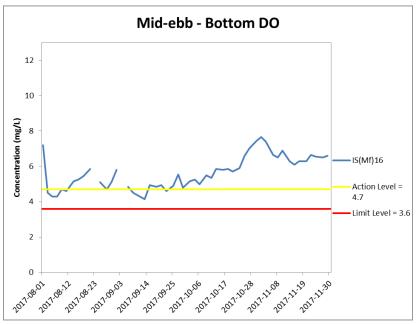



Figure H13 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

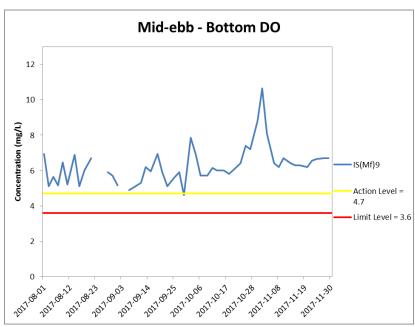
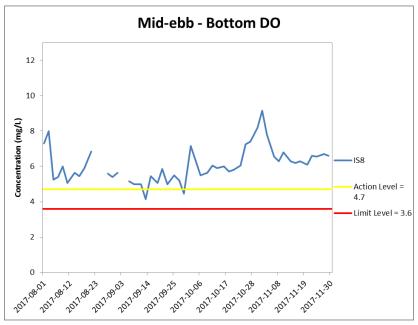



Figure H14 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

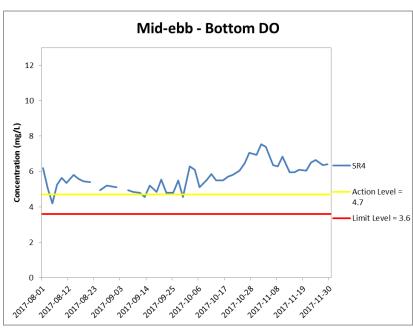


Figure H15 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

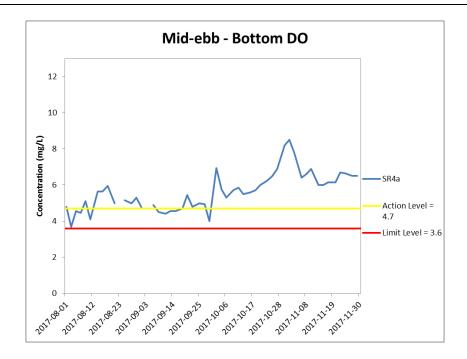
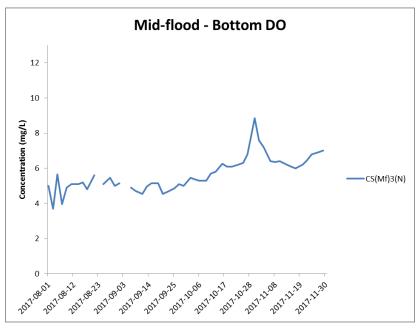



Figure H16 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

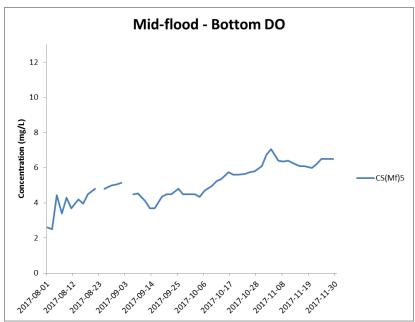
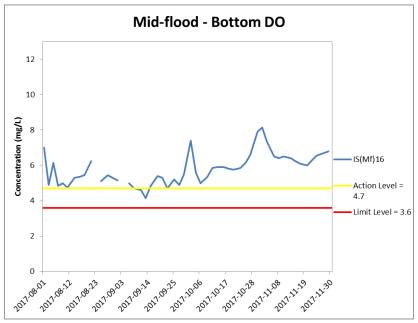



Figure H17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

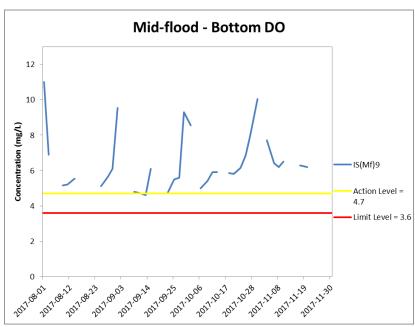
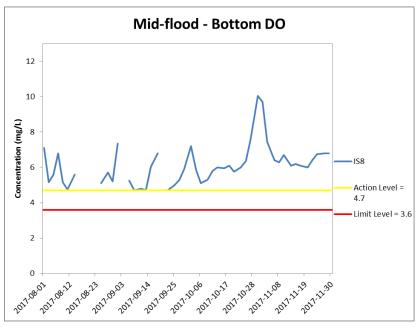



Figure H18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

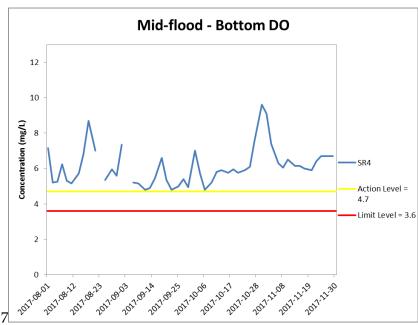


Figure H19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

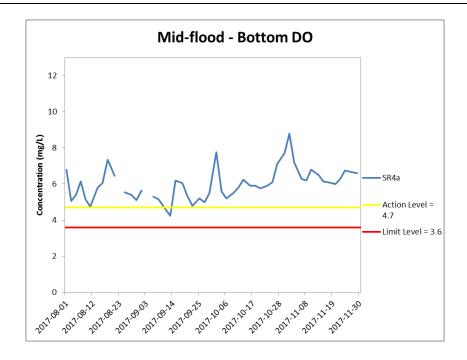
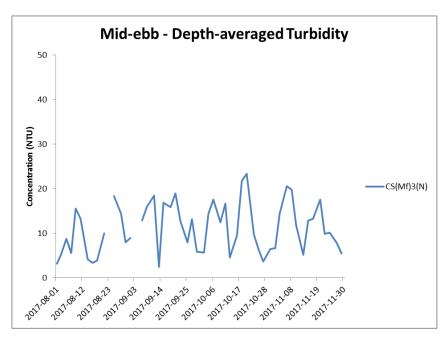



Figure H20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

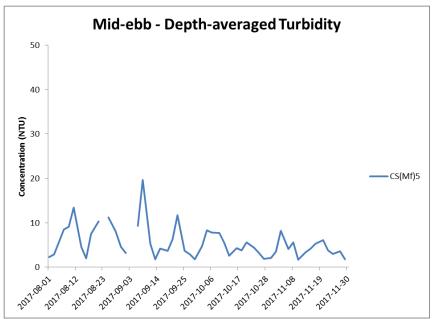
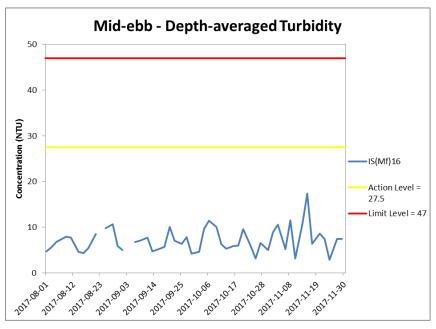



Figure H21 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

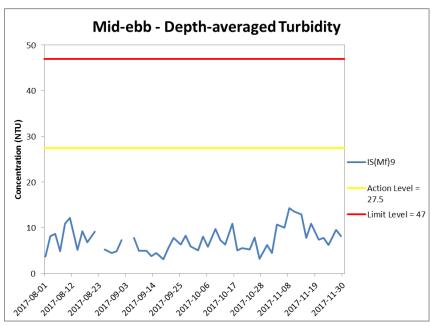
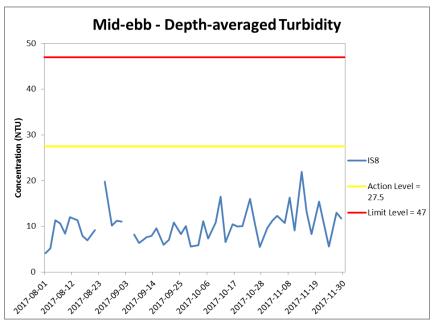



Figure H22 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

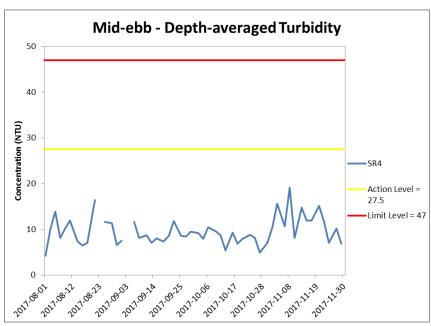


Figure H23 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

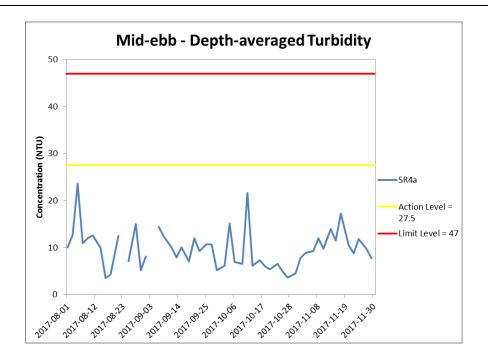
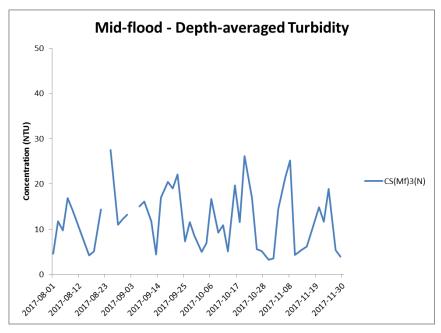



Figure H24 Impact Monitoring - Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

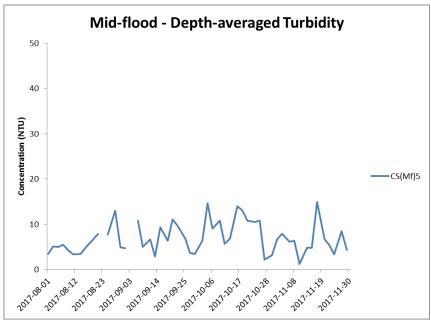
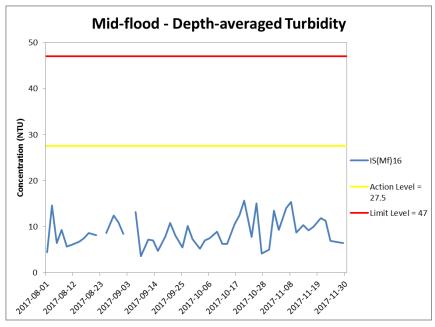



Figure H25 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(MF)5.

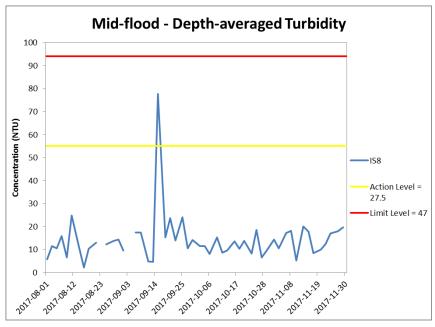
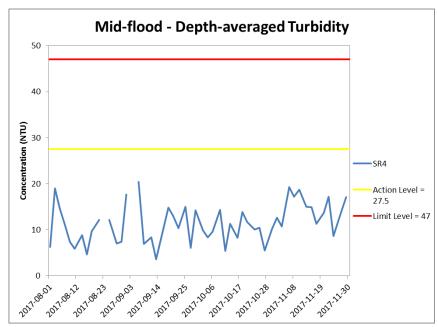




Figure H26 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

`Figure H27 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

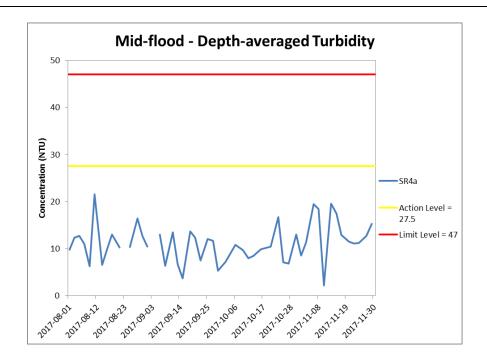
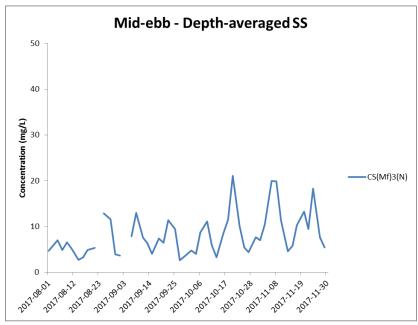



Figure H28 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

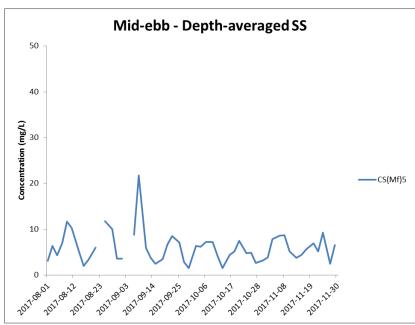
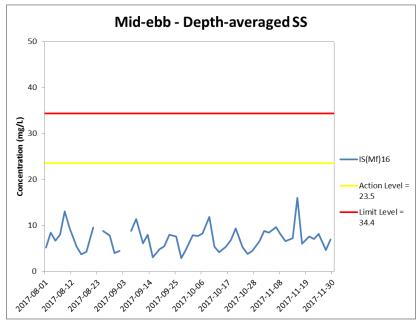



Figure H29 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

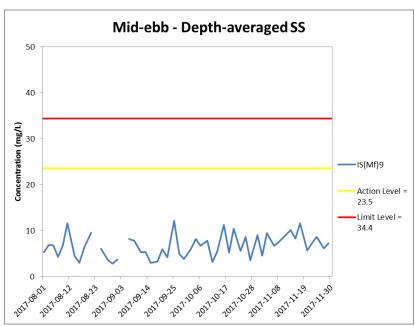
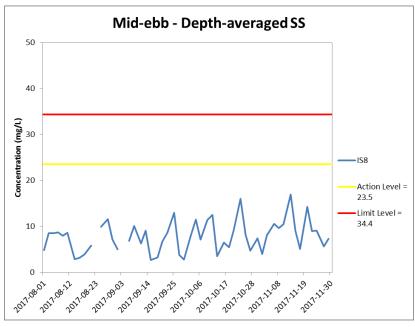



Figure H30 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

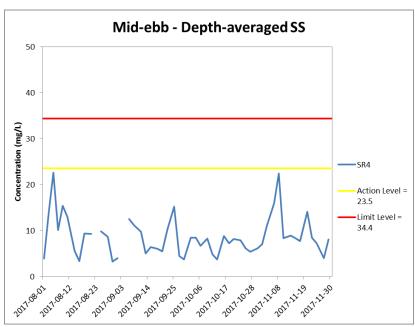


Figure H31 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

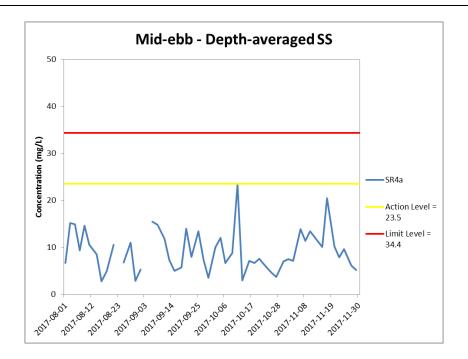
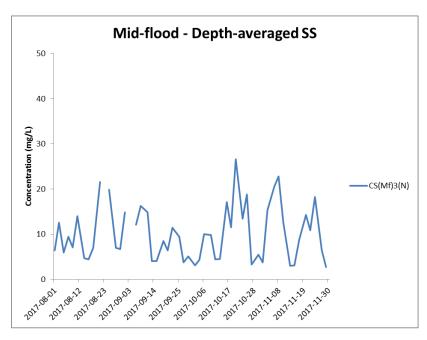



Figure H32 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

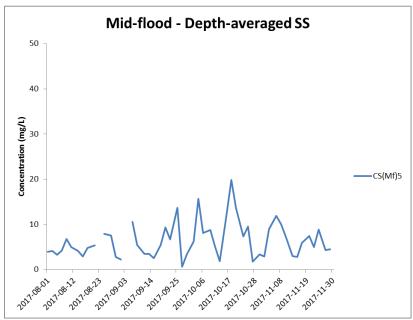
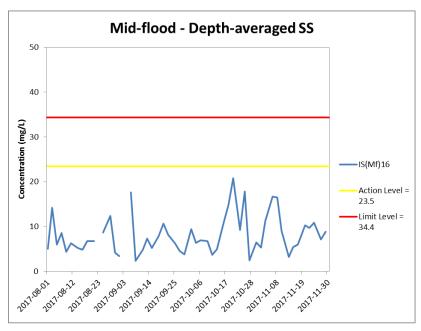



Figure H33 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 August 2017 and 30 November 2017 at CS(Mf)3(N) and CS(Mf)5.

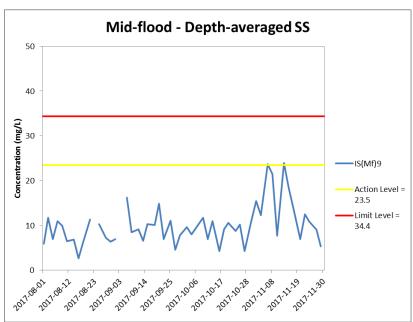
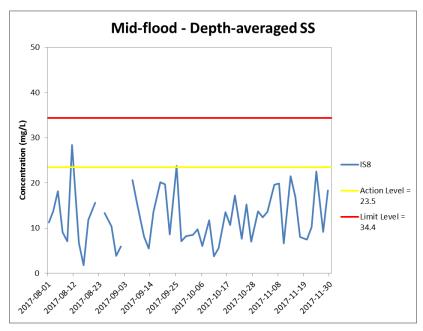



Figure H34 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 August 2017 and 30 November 2017 at IS(Mf)16 and IS(Mf)9.

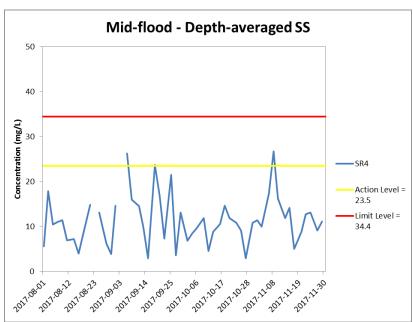


Figure H35 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 August 2017 and 30 November 2017 at IS8 and SR4.

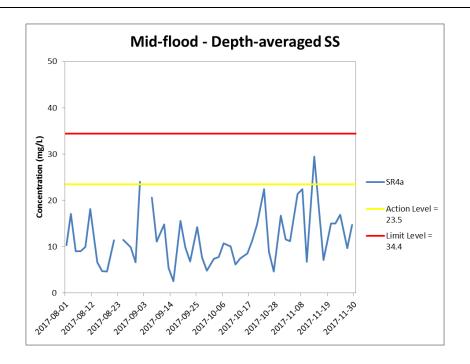


Figure H36 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 August 2017 and 30 November 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

Appendix I

Impact Dolphin Monitoring Survey Results

HK j efacean research project 香港鯨豚研究計劃

HK CETACEAN RESEARCH PROJECT

香港鯨豚研究計劃

CONTRACT NO. HY/2012/07

Hong Kong-Zhuhai-Macao Bridge Tuen Mun – Chek Lap Kok Link (Southern Connection Viaduct Section) Dolphin Quarterly Monitoring

16th Quarterly Progress Report (September-November 2017) submitted to Gammon Construction Limited

Submitted by Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

13 March 2018

1. Introduction

- 1.1. The Tuen Mun-Chek Lap Kok Link (TM-CLKL) comprises a 1.6 km long dual 2-lane viaduct section between the Hong Kong Boundary Crossing Facilities (HKBCF) and the North Lantau Highway and associated roads at Tai Ho. Gammon Construction Limited (hereinafter called the "Contractor") was awarded as the main contractor of "Contract No. HY/2012/07 Hong Kong-Zhuhai-Macao Bridge Tuen Mun-Chek Lap Kok Link Southern Connection Viaduct Section".
- 1.2. According to the updated Environmental Monitoring and Audit (EM&A) Manual (for TM-CLKL), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the Northwest (NWL) and Northeast Lantau (NEL) survey areas as in AFCD annual marine mammal monitoring programme. However, as such surveys have been undertaken by the HKLR03 and HKBCF projects in the same areas (i.e. NWL and NEL), a combined monitoring approach is recommended by the Highways Department, that the TM-CLKL EM&A project can utilize the monitoring data collected by HKLR03 or HKBCF project to avoid any redundancy in monitoring effort. Such exemption for the dolphin monitoring will end upon the completion of the dolphin monitoring carried out by HKLR03 contract as well as the TM-CLKL Northern Connection Sub-Sea Tunnel Section (HY/2012/08).
- 1.3. In November 2013, the Director of Hong Kong Cetacean Research Project (HKCRP), Dr. Samuel Hung, has been appointed by Gammon Construction Limited as the dolphin specialist for the TM-CLKL Southern Viaduct Section EM&A project. He is responsible for the dolphin monitoring study, including the data collection on Chinese White Dolphins during the construction phase (i.e. impact period) of the TM-CLKL project in Northwest Lantau (NWL) and Northeast Lantau (NEL) survey areas.
- 1.4. During the construction period of HKLR, the dolphin specialist would be in charge of

香港鯨豚研究計劃

reviewing and collating information collected by the HKLR03 dolphin monitoring programme to examine any potential impacts of TM-CLKL construction works on the dolphins.


- 1.5. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.
- 1.6. This report is the 16th quarterly progress report under the TM-CLKL construction phase dolphin monitoring programme submitted to the Gammon Construction Limited, summarizing the results of the surveys findings during the period of September to November 2017, utilizing the survey data collected by HKLR03 impact phase monitoring project.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in NEL and NWL survey areas (see Figure 1) twice per month throughout the entire construction period. The co-ordinates of all transect lines are shown in Table 1.

Table 1 Co-ordinates of transect lines conducted by HKLR03 project

	Line No.	Easting	Northing	Line No.		Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402

香港鯨豚研究計劃

8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

- 2.1.2. The HKLR03 survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 20 years of marine mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2017). For each monitoring vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.
- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Fujinon* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, positions (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS (*Garmin eTrex Legend*).
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.

2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as "primary" survey effort, while the survey effort conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in NEL and NWL survey areas. Therefore, both primary and secondary survey effort were presented as on-effort survey effort in this report.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the HKLR03 survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. A professional digital camera (*Canon* EOS 7D model), equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their unique spotting patterns were also used as secondary identifying features (Jefferson 2000).
- 2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

2.3. Data Analysis

- 2.3.1. Distribution Analysis The line-transect survey data was integrated with the Geographic Information System (GIS) in order to visualize and interpret different spatial and temporal patterns of dolphin distribution using sighting positions. Location data of dolphin groups were plotted on map layers of Hong Kong using a desktop GIS (ArcView[©] 3.1) to examine their distribution patterns in details. The dataset was also stratified into different subsets to examine distribution patterns of dolphin groups with different categories of group sizes, young calves and activities.
- 2.3.2. Encounter rate analysis Encounter rates of Chinese white dolphins (number of on-effort

香港鯨豚研究計劃

sightings per 100 km of survey effort, and total number of dolphins sighted on-effort per 100 km of survey effort) were calculated in NEL and NWL survey areas in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collect under Beaufort 3 or below condition would be used for the encounter rate analyses. Dolphin encounter rates were calculated in two ways for comparisons with the HZMB baseline monitoring results as well as to AFCD long-term marine mammal monitoring results.

Firstly, for the comparison with the HZMB baseline monitoring results, the encounter rates were calculated using primary survey effort alone. The average encounter rate of sightings (STG) and average encounter rate of dolphins (ANI) were deduced based on the encounter rates from six events during the present quarter (i.e. six sets of line-transect surveys in North Lantau), which was also compared with the one deduced from the six events during the baseline period (i.e. six sets of line-transect surveys in North Lantau).

Secondly, the encounter rates were calculated using both primary and secondary survey effort collected under Beaufort 3 or below condition as in AFCD long-term monitoring study. The encounter rate of sightings and dolphins were deduced by dividing the total number of on-effort sightings (STG) and total number of dolphins (ANI) by the amount of survey effort for the present quarterly period.

2.3.3. Quantitative grid analysis on habitat use – To conduct quantitative grid analysis of habitat use, positions of on-effort sightings of Chinese White Dolphins collected during the quarterly impact phase monitoring period were plotted onto 1-km² grids among NWL and NEL survey areas on GIS. Sighting densities (number of on-effort sightings per km²) and dolphin densities (total number of dolphins from on-effort sightings per km²) were then calculated for each 1 km by 1 km grid with the aid of GIS. Sighting density grids and dolphin density grids were then further normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid was calculated by examining the survey coverage on each line-transect survey to determine how many times the grid was surveyed during the study period. For example, when the survey boat traversed through a specific grid 50 times, 50 units of survey effort were counted for that grid. With the amount of survey effort calculated for each grid, the sighting density and dolphin density of each grid were then normalized (i.e. divided by the unit of survey effort).

The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual dolphin density was termed DPSE, representing the number of dolphins per 100 units of survey effort. Among the 1-km² grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae were used to estimate SPSE and DPSE in each 1-km² grid within the study area:

SPSE = ((S / E) x 100) / SA% DPSE = ((D / E) x 100) / SA%

where S = total number of on-effort sightings

香港鯨豚研究計劃

D = total number of dolphins from on-effort sightings E = total number of units of survey effort SA% = percentage of sea area

- 2.3.4. Behavioural analysis When dolphins were sighted during vessel surveys, their behaviour was observed. Different activities were categorized (i.e. feeding, socializing, traveling, and milling/resting) and recorded on sighting datasheets. This data was then input into a separate database with sighting information, which can be used to determine the distribution of behavioural data with a desktop GIS. Distribution of sightings of dolphins engaged in different activities and behaviours would then be plotted on GIS and carefully examined to identify important areas for different activities of the dolphins.
- 2.3.5. Ranging pattern analysis Location data of individual dolphins that occurred during the 3-month impact phase monitoring period were obtained from the dolphin sighting database and photo-identification catalogue. To deduce home ranges for individual dolphins using the fixed kernel methods, the program Animal Movement Analyst Extension, was loaded as an extension with ArcView® 3.1 along with another extension Spatial Analyst 2.0. Using the fixed kernel method, the program calculated kernel density estimates based on all sighting positions, and provided an active interface to display kernel density plots. The kernel estimator then calculated and displayed the overall ranging area at 95% UD level.

3. Monitoring Results

- 3.1. Summary of survey effort and dolphin sightings
- 3.1.1. During the period of September to November 2017, six sets of systematic line-transect vessel surveys were conducted under the HKLR03 monitoring works to cover all transect lines in NWL and NEL survey areas twice per month.
- 3.1.2. From these HKLR03 surveys, a total of 802.12 km of survey effort was collected, with 96.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility). Among the two areas, 297.00 km and 505.12 km of survey effort were conducted in NEL and NWL survey areas respectively.
- 3.1.3. The total survey effort conducted on primary lines was 578.16 km, while the effort on secondary lines was 223.96 km. Survey effort conducted on both primary and secondary lines were considered as on-effort survey data. A summary table of the survey effort is shown in Appendix I.
- 3.1.4. During the six sets of HKLR03 monitoring surveys from September to November 2017, 13 groups of 50 Chinese White Dolphins were sighted. All dolphin sightings were made during on-effort search in this quarter, and 12 of the 13 on-effort dolphin sightings were made on primary lines. A summary table of dolphin sightings is shown in Appendix II.

- 3.1.5. In this quarterly period, all dolphin groups were sighted in NWL, and no dolphin was sighted at all in NEL. In fact, since August 2014, only two sightings of two lone dolphins were made respectively in NEL during HKLR03 monitoring surveys.
- 3.2. Distribution
- 3.2.1. Distribution of dolphin sightings made during the HKLR03 monitoring surveys from September to November 2017 is shown in Figure 1. Almost all sightings were made at the northwest portion of the North Lantau region, mainly to the east of Lung Kwu Chau and at the mouth of Deep Bay near Black Point (Figure 1). One dolphin group was also sighted at the southwestern end of NWL survey area, or near the HKLR09 alignment. As consistently recorded in the previous monitoring quarters, the dolphins were completely absent from the central and eastern portions of North Lantau waters (Figure 1).
- 3.2.2. All dolphin sightings were located far away from the alignments of TM-CLKL as well as the HKBCF and HKLR03 reclamation sites (Figure 1). However, one dolphin group was sighted near the alignment of HKLR09 as mentioned above.
- 3.2.3. Sighting distribution of dolphins during the present impact phase monitoring period (September to November 2017) was drastically different from the one during the baseline monitoring period (Figure 1). In the present quarter, dolphins have disappeared from the NEL region, which was in stark contrast to their frequent occurrence around the Brothers Islands, near Shum Shui Kok and in the vicinity of HKBCF reclamation site during the baseline period (Figure 1). The nearly complete abandonment of NEL region by the dolphins has been consistently recorded in the past 18 quarters of HKLR03 monitoring, which has resulted in zero to extremely low dolphin encounter rates in this area.
- 3.2.4. In NWL survey area, dolphin occurrence was also significantly different between the baseline and impact phase periods. During the present impact monitoring period, dolphins were infrequently sighted here, and mainly at the northwestern end of the area, which was in stark contrast with their frequent occurrences throughout the area during the baseline period (Figure 1).
- 3.2.5. Another comparison in dolphin distribution was made between the five quarterly periods of autumn months in 2013-17 (Figure 2). Among the five autumn periods, dolphins were still sighted regularly in NWL waters in 2013 and 2014, but their usage there was progressively reduced in the three subsequent autumn periods, with the only occurrences mostly concentrated at the northwestern portion of the survey area (Figure 2).
- 3.3. Encounter rate
- 3.3.1. During the present quarterly period, the encounter rates of Chinese White Dolphins deduced from the survey effort and on-effort sighting data from the primary transect lines under favourable conditions (Beaufort 3 or below) for each set of the HKLR03 surveys in NEL and NWL are shown in Table 2. The average encounter rates deduced from the six sets of HKLR03 surveys were also compared with the ones deduced from the baseline monitoring period (September November 2011) (Table 3).

香港鯨豚研究計劃

Table 2. Dolphin encounter rates (sightings per 100 km of survey effort) during September-November 2017

SURVEY AREA	DOLPHIN MONITORING DATES	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort) Primary Lines Only	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort) Primary Lines Only	
	Set 1 (15 & 18 Sep 2017)	0.00	0.00	
	Set 2 (22 & 29 Sep 2017)	0.00	0.00	
Northeast	Set 3 (4 & 9 Oct 2017)	0.00	0.00	
Lantau	Set 4 (18 & 26 Oct 2017)	0.00	0.00	
	Set 5 (1 & 8 Nov 2017)	0.00	0.00	
	Set 6 (17 & 24 Nov 2017)	0.00	0.00	
	Set 1 (15 & 18 Sep 2017)	0.00	0.00	
	Set 2 (22 & 29 Sep 2017)	3.63	16.34	
Northwest	Set 3 (4 & 9 Oct 2017)	1.86	9.30	
Lantau	Set 4 (18 & 26 Oct 2017)	4.89	4.89	
	Set 5 (1 & 8 Nov 2017)	4.99	26.60	
•	Set 6 (17 & 24 Nov 2017)	3.33	5.00	

Table 3. Comparison of average dolphin encounter rates from impact monitoring period (September - November 2017) and baseline monitoring period (September – November 2011) (Note: encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on-effort sighting data made along the primary transect lines under favourable conditions; ± denotes the standard deviation of the average encounter rates)

	Encounter I (no. of on-effort dolph km of surve	in sightings per 100	Encounter rate (ANI) (no. of dolphins from all on-effort sightings per 100 km of survey effort)		
	September – November 2017	September – November 2011	September – November 2017	September – November 2011	
Northeast Lantau	0.0 6.00 ± 5.05		0.0	22.19 ± 26.81	
Northwest Lantau	3.12 ± 1.91 9.85 ± 5.85		10.35 ± 9.66	44.66 ± 29.85	

- 3.3.2. To facilitate the comparison with the AFCD long-term monitoring results, the encounter rates were also calculated for the present quarter using both primary and secondary survey effort. The encounter rates of sightings (STG) and dolphins (ANI) in NWL were 2.5 sightings and 9.9 dolphins per 100 km of survey effort respectively, while the encounter rates of sightings (STG) and dolphins (ANI) in NEL were both nil for this quarter.
- 3.3.3. In NEL, the average dolphin encounter rates (both STG and ANI) in the present three-month impact monitoring period were both zero with no on-effort sighting being made, and such extremely low occurrence of dolphins in NEL have been consistently

HK J efacean research project 香港鯨豚研究計劃

HK CETACEAN RESEARCH PROJECT

香港鯨豚研究計劃

recorded in the past 18 quarters of HKLR03 monitoring (Table 4). This is a serious concern as the dolphin occurrence in NEL in the past few years (0.0-1.0 for ER(STG) and 0.0-3.9 for ER(ANI)) have remained exceptionally low when compared to the baseline period (Table 4). Dolphins have been virtually absent from NEL waters since January 2014, with only three groups of six dolphins sighted there since then despite consistent and intensive survey effort being conducted in this survey area.

Table 4. Comparison of average dolphin encounter rates in Northeast Lantau survey area from all quarters of HKLR03 impact monitoring period and baseline monitoring period (September-November 2011) (Note: encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on-effort sighting data made along the primary transect lines under favourable conditions; the encounter rates in **autumn** months were highlighted in **blue**; ± denotes the standard deviation of the average encounter rates)

	Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of	(no. of dolphins from all on-effort sightings per 100
September-November 2011 (Baseline)	survey effort) 6.00 ± 5.05	km of survey effort) 22.19 ± 26.81
December 2012-February 2013 (Impact)	3.14 ± 3.21	6.33 ± 8.64
March-May 2013 (Impact)	0.42 ± 1.03	0.42 ± 1.03
June-August 2013 (Impact)	0.88 ± 1.36	3.91 ± 8.36
September-November 2013 (Impact)	1.01 ± 1.59	3.77 ± 6.49
December 2013-February 2014 (Impact)	0.45 ± 1.10	1.34 ± 3.29
March-May 2014 (Impact)	0.00	0.00
June-August 2014 (Impact)	0.42 ± 1.04	1.69 ± 4.15
September-November 2014 (Impact)	0.00	0.00
December 2014-February 2015 (Impact)	0.00	0.00
March-May 2015 (Impact)	0.00	0.00
June-August 2015 (Impact)	0.44 ± 1.08	0.44 ± 1.08
September-November 2015 (Impact)	0.00	0.00
December 2015-February 2016 (Impact)	0.00	0.00
March-May 2016 (Impact)	0.00	0.00
June-August 2016 (Impact)	0.00	0.00
September-November 2016 (Impact)	0.00	0.00
December 2016-February 2017 (Impact)	0.00	0.00
March-May 2017 (Impact)	0.00	0.00
June-August 2017 (Impact)	0.00	0.00
September-November 2017 (Impact)	0.00	0.00

3.3.4. On the other hand, the average dolphin encounter rates (STG and ANI) in NWL during

香港鯨豚研究計劃

the present impact phase monitoring period (reductions of 68.3% and 76.8% respectively) were only small fractions of the ones recorded during the three-month baseline period, indicating a dramatic decline in dolphin usage of this survey area as well during the present impact phase period (Table 5).

Table 5. Comparison of average dolphin encounter rates in Northwest Lantau survey area from all quarters of HKLR03 impact monitoring period and baseline monitoring period (September-November 2011) (Note: encounter rates deduced from the baseline monitoring period have been recalculated based only on survey effort and on-effort sighting data made along the primary transect lines under favourable conditions; the encounter rates in **autumn** months were highlighted in **blue**; ± denotes the standard deviation of the average encounter rates)

	Encounter rate (STG) (no. of on-effort dolphin	Encounter rate (ANI) (no. of dolphins from all
	sightings per 100 km of	on-effort sightings per 100
	survey effort)	km of survey effort)
September-November 2011 (Baseline)	9.85 ± 5.85	44.66 ± 29.85
December 2012-February 2013 (Impact)	8.36 ± 5.03	35.90 ± 23.10
March-May 2013 (Impact)	7.75 ± 3.96	24.23 ± 18.05
June-August 2013 (Impact)	6.56 ± 3.68	27.00 ± 18.71
September-November 2013 (Impact)	8.04 ± 1.10	32.48 ± 26.51
December 2013-February 2014 (Impact)	8.21 ± 2.21	32.58 ± 11.21
March-May 2014 (Impact)	6.51 ± 3.34	19.14 ± 7.19
June-August 2014 (Impact)	4.74 ± 3.84	17.52 ± 15.12
September-November 2014 (Impact)	5.10 ± 4.40	20.52 ± 15.10
December 2014-February 2015 (Impact)	2.91 ± 2.69	11.27 ± 15.19
March-May 2015 (Impact)	0.47 ± 0.73	2.36 ± 4.07
June-August 2015 (Impact)	2.53 ± 3.20	9.21 ± 11.57
September-November 2015 (Impact)	3.94 ± 1.57	21.05 ± 17.19
December 2015-February 2016 (Impact)	2.64 ± 1.52	10.98 ± 3.81
March-May 2016 (Impact)	0.98 ± 1.10	4.78 ± 6.85
June-August 2016 (Impact)	1.72 ± 2.17	7.48 ± 10.98
September-November 2016 (Impact)	2.86 ± 1.98	10.89 ± 10.98
December 2016-February 2017 (Impact)	3.80 ± 3.79	14.52 ± 17.21
March-May 2017 (Impact)	0.93 ± 1.03	5.25 ± 9.53
June-August 2017 (Impact)	2.20 ± 2.88	6.58 ± 8.12
September-November 2017 (Impact)	3.12 ± 1.91	10.35 ± 9.66

3.3.5. Dolphin encounter rates in NWL during autumn 2017 was similar to the previous autumn period in 2016, but was much lower than the ones in the autumn periods of 2013, 2014 and 2015 (Table 5). Such temporal trend should be closely monitored in the upcoming

monitoring quarters whether the dolphin occurrence would continue to increase as the construction activities of HZMB works have been mostly completed in coming months.

- 3.3.6 As discussed in Hung (2017), the dramatic decline in dolphin usage of NEL waters in the past few years (including the declines in abundance, encounter rate and habitat use in NEL, as well as shifts of individual core areas and ranges away from NEL waters) was possibly related to the HZMB construction works that were commenced since 2012. Apparently such noticeable decline has already extended to NWL waters progressively in the past few years with no sign of recovery, even though the HZMB-related construction activities have well past the peak.
- 3.3.7. A two-way ANOVA with repeated measures and unequal sample size was conducted to examine whether there were any significant differences in the average encounter rates between the baseline and impact monitoring periods. The two variables that were examined included the two periods (baseline and impact phases) and two locations (NEL and NWL).
- 3.3.8. For the comparison between the baseline period and the present quarter (20th quarter of the HKLR03 impact phase being assessed), the p-values for the differences in average dolphin encounter rates of STG and ANI were 0.0057 and 0.0278 respectively. If the alpha value is set at 0.05, significant differences were detected between the baseline and present quarters in both the average dolphin encounter rates of STG and ANI.
- 3.3.9. For the comparison between the baseline period and the cumulative quarters in impact phase (i.e. the first 20 quarters of the HKLR03 impact phase being assessed), the p-values for the differences in average dolphin encounter rates of STG and ANI were 0.000000 and 0.000000 respectively. Even if the alpha value is set at 0.00001, significant differences were still detected in both the average dolphin encounter rates of STG and ANI (i.e. between the two periods and the locations).
- 3.3.10. As indicated in both dolphin distribution patterns and encounter rates, dolphin usage has been significantly reduced in both NEL and NWL survey areas during the present quarterly period, and such low occurrence of dolphins has also been consistently documented in previous quarters of the past few years.
- 3.3.11. The dramatic decline in dolphin usage of North Lantau region raises serious concern, as the timing of the decline in dolphin usage in North Lantau waters coincided well with the construction schedule of the HZMB-related projects (Hung 2017). Apparently there was no sign of recovery of dolphin usage even though almost all marine works associated with the HZMB construction have been completed.
- 3.4. Group size
- 3.4.1. Group size of Chinese White Dolphins ranged from one to 12 individuals per group in North Lantau region during September to November 2017. The average dolphin group sizes from these three months were compared with the ones deduced from the baseline period in September to November 2011, as shown in Table 6.

香港鯨豚研究計劃

3.4.2. The average dolphin group size in NWL waters during September to November 2017 was only slightly higher than the one recorded during the three-month baseline period, but it should also be noted that the sample size of 13 dolphin groups in the present quarter was very small when compared to the 66 groups sighted during the baseline period (Table 6).

Table 6. Comparison of average dolphin group sizes from impact monitoring period (September – November 2017) and baseline monitoring period (September – November 2011) (Note: ± denotes the standard deviation of the average group size)

	Average Dolphin Group Size September – November 2017 September – November 2011							
Overall	$3.85 \pm 3.39 (n = 13)$	3.72 ± 3.13 (n = 66)						
Northeast Lantau		3.18 ± 2.16 (n = 17)						
Northwest Lantau	3.85 ± 3.39 (n = 13)	3.92 ± 3.40 (n = 49)						

- 3.4.3. Notably, 8 of these 14 dolphin groups were composed of 1-3 individuals only, while there were four medium-sized groups with 5-8 dolphins per group, and one large group of 12 dolphins (Appendix II).
- 3.4.4. Distribution of the larger dolphin groups with five individuals or more per group during the present quarter is shown in Figure 3, with comparison to the one in baseline period. The medium-sized group with 5-8 dolphins were scattered at the northwestern portion of the NWL survey area with no particular concentration, while the one large group of 12 dolphins was sighted at the mouth of Deep Bay (Figure 3). Such distribution pattern was very different from the baseline period, when the larger dolphin groups were frequently sighted and evenly distributed in NWL waters, and a few were also sighted in NEL waters (Figure 3).

3.5. Habitat use

- 3.5.1. From September to November 2017, four of the five grids with moderately high to high dolphin densities were located to the north of Lung Kwu Chau, while one grid to the east of Sha Chau also recorded moderately high dolphin density (Figures 4a and 4b). All grids near HKLR03/HKBCF reclamation sites as well as TMCLKL alignment did not record any presence of dolphins at all during on-effort search in the present quarterly period (Figures 4a and 4b).
- 3.5.2. However, it should be emphasized that the amount of survey effort collected in each grid during the three-month period was fairly low (6-12 units of survey effort for most grids), and therefore the habitat use pattern derived from the three-month dataset should be treated with caution. A more complete picture of dolphin habitat use pattern should be examined when more survey effort for each grid will be collected throughout the impact phase monitoring programme.
- 3.5.3. When compared with the habitat use patterns during the baseline period, dolphin usage in NEL and NWL has drastically diminished in both areas during the present impact monitoring period (Figure 5). During the baseline period, many grids between Siu Mo

香港鯨豚研究計劃

To and Shum Shui Kok in NEL recorded moderately high to high dolphin densities, which was in stark contrast to the complete absence of dolphins there during the present impact phase period (Figure 5).

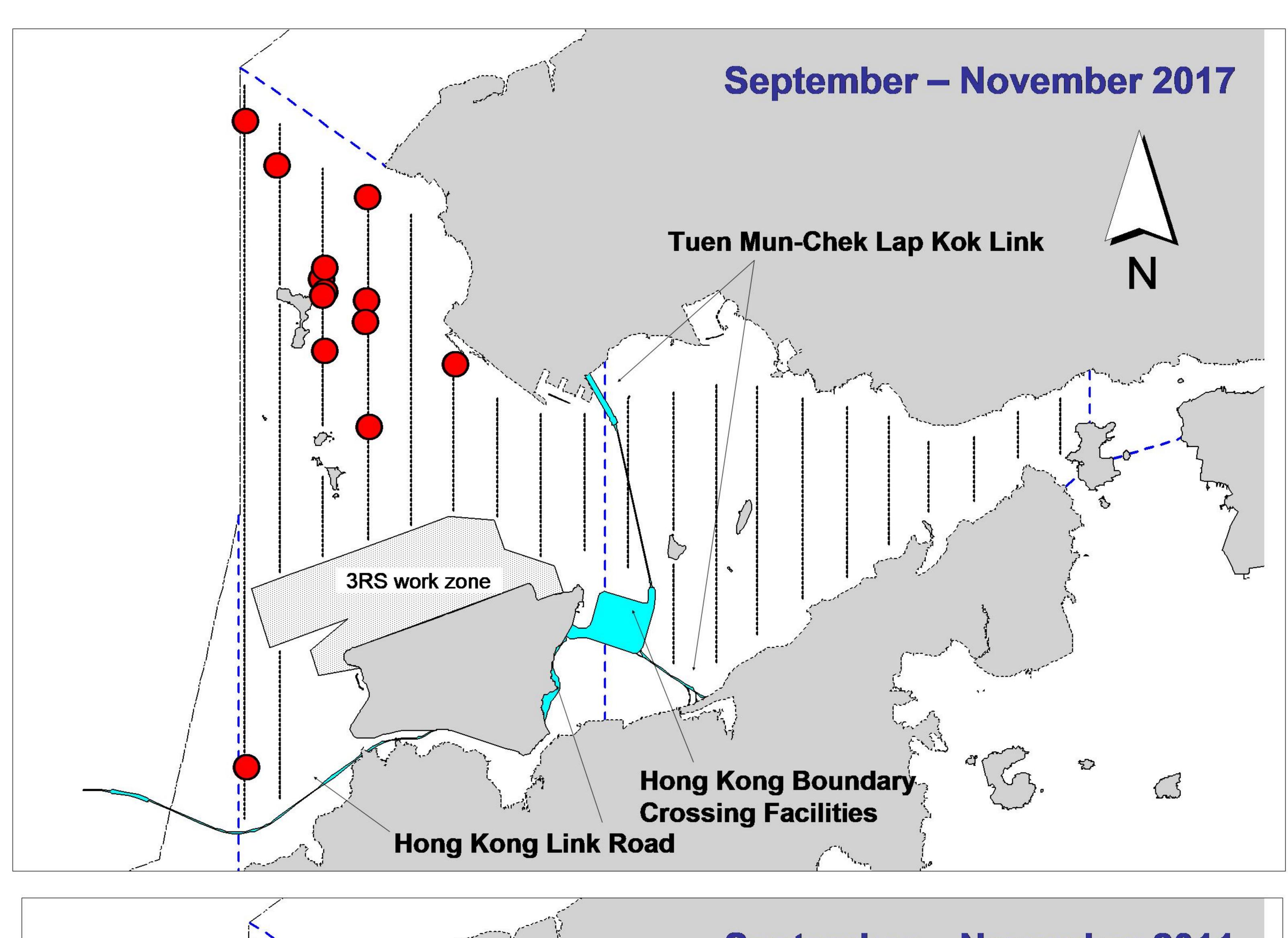
- 3.5.4. The density patterns were also very different in NWL between the baseline and impact phase monitoring periods, with high dolphin usage throughout the area, especially around Sha Chau, near Black Point, to the west of the airport, as well as between Pillar Point and airport platform during the baseline period. In contrast, only several grids with moderately high to high dolphin densities were located near Lung Kwu Chau and Sha Chau during the present impact phase period (Figure 5).
- 3.6. Mother-calf pairs
- 3.6.1. During the present quarterly period, no young calf was sighted at all among the 13 groups of dolphins.
- 3.7. Activities and associations with fishing boats
- 3.7.1. One of the thirteen dolphin groups were engaged in feeding activity, while another two groups were engaged in socializing activity. However, none of them was engaged in traveling or milling/resting activity during the three-month study period.
- 3.7.2. The percentages of sightings associated with feeding activities (7.7%) was lower than the one recorded during the baseline period (11.6%), while the one for socializing activities (15.4%) was much higher than the ones recorded during the baseline period (5.4% respectively). However, it should be noted the sample sizes on total numbers of dolphin sightings were very different between the two periods.
- 3.7.3. Distribution of dolphins engaged in various activities during the present three-month period and baseline period is shown in Figure 6. The one dolphin group engaged in feeding activity was sighted at the southeast corner of Lung Kwu Chau, while the two dolphin groups engaged in socializing activities were both located to the north of Lung Kwu Chau (Figure 6).
- 3.7.4. When compared to the baseline period, distribution of various dolphin activities during the present impact phase monitoring period was drastically different with a much more restricted area of occurrences (Figure 6).
- 3.7.5. Notably, one group of a single dolphin was found to be associated with an operating purse-seiner adjacent to Lung Kwu Chau within the marine park during the present impact phase period.
- *3.8. Summary of photo-identification works*
- 3.8.1. From September to November 2017, over 2,500 digital photographs of Chinese White Dolphins were taken during the impact phase monitoring surveys for the photo-identification work.
- 3.8.2. In total, 23 individuals sighted 42 times altogether were identified (see summary table in Appendix III and photographs of identified individuals in Appendix IV). All of these

re-sightings were made in NWL. Six individuals (i.e. CH34, NL33, NL46, NL49, NL320, NL322, NL328 and WL05) were re-sighted twice, while four other individuals (i.e. NL136, NL182, NL202 and NL286) were re-sighted 3-4 times during the three-month period (Appendix III).

- 3.8.3. Notably, ten of these 23 individuals (i.e. CH34, NL12, NL49, NL104, NL136, NL182, NL202, NL320, NL321 and WL05) were also sighted in Northwest Lantau during the HKBCF monitoring surveys under the same three-month period. Moreover, six individuals (i.e. CH34, NL12, NL49, NL182, NL210 and WL05) were also sighted in West Lantau waters during the HKLR09 monitoring surveys from September to November 2017, showing their extensive individual movements across different survey areas.
- 3.9. Individual range use
- 3.9.1. Ranging patterns of the 23 individuals identified during the three-month study period were determined by fixed kernel method, and are shown in Appendix V.
- 3.9.2. All identified dolphins sighted in the present quarter were utilizing NWL waters only, but have completely avoided NEL waters where many of them have utilized as their core areas in the past (Appendix V). This is in contrary to the extensive movements between NEL and NWL survey areas observed in the earlier impact monitoring quarters as well as the baseline period.
- 3.9.3. On the other hand, three individuals (i.e. NL12, NL182 and NL210) consistently utilized North Lantau waters in the past have extended their range use to WL during the present quarter.
- 3.9.4. In the upcoming quarters, individual range use and movements should be continuously monitored to examine whether there has been any consistent shifts of individual home ranges from North Lantau to West or Southwest Lantau, as such shift could possibly be related to the HZMB-related construction works (see Hung 2017).

4. Conclusion

- 4.1. During this quarter of dolphin monitoring, no adverse impact from the activities of the TMCLKL construction project on Chinese White Dolphins was noticeable from general observations.
- 4.2. Although the dolphins infrequently occurred along the alignment of TMCLKL southern connection viaduct in the past and during the baseline monitoring period, it is apparent that dolphin usage has been significantly reduced in NEL, and many individuals have shifted away from the important habitat around the Brothers Islands.
- 4.3. It is critical to monitor the dolphin usage in North Lantau region in the upcoming quarters, to determine whether the dolphins are continuously affected by the various construction activities in relation to the HZMB-related works, and whether suitable mitigation measure



香港鯨豚研究計劃

can be applied to revert the situation.

5. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.
- Hung, S. K. 2017. Monitoring of marine mammals in Hong Kong waters data collection: final report (2016-17). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 162 pp.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

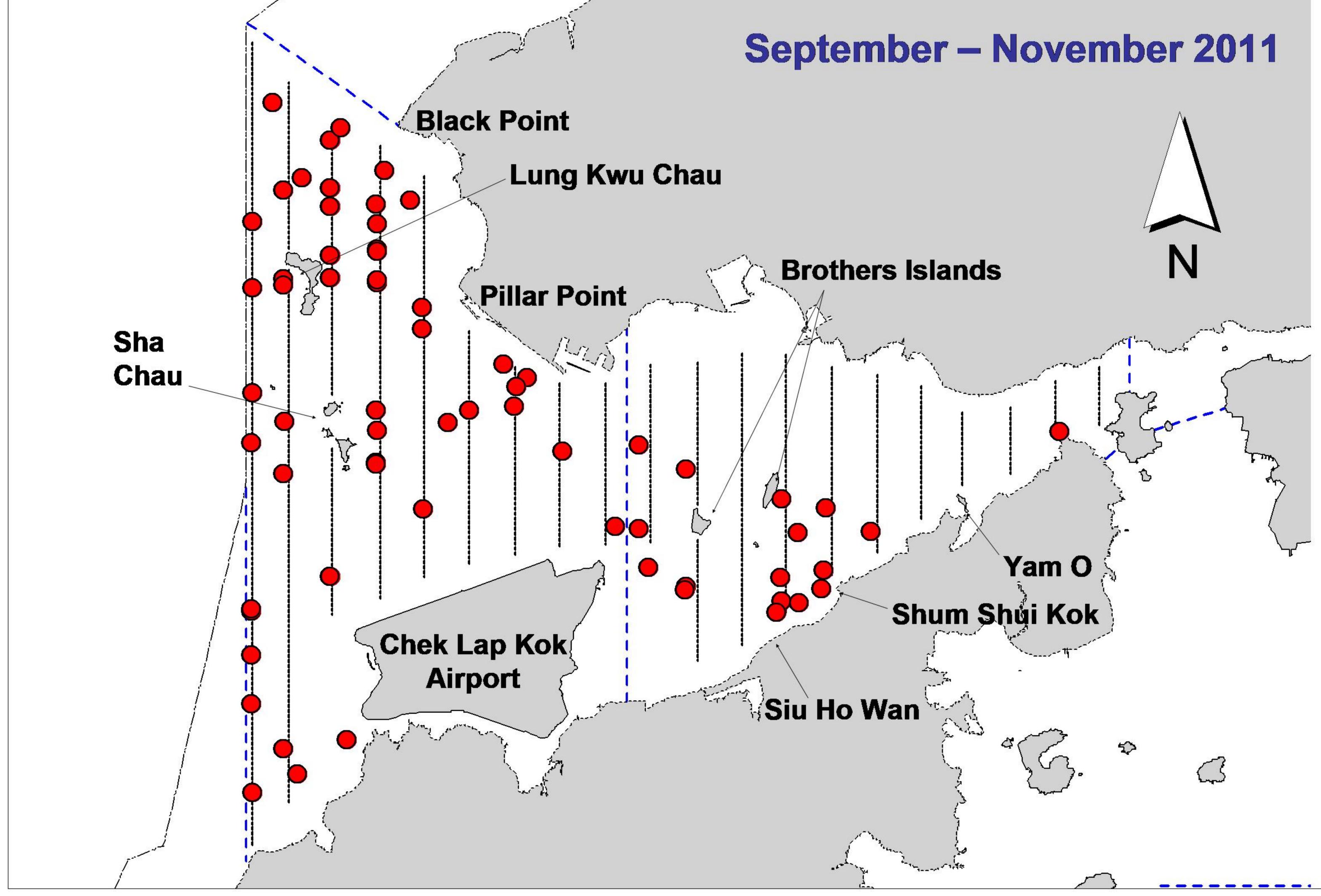


Figure 1. Distribution of Chinese white dolphin sighting in Northwest and Northeast Lantau during HKLR03 impact phase (top) and baseline monitoring surveys (bottom)

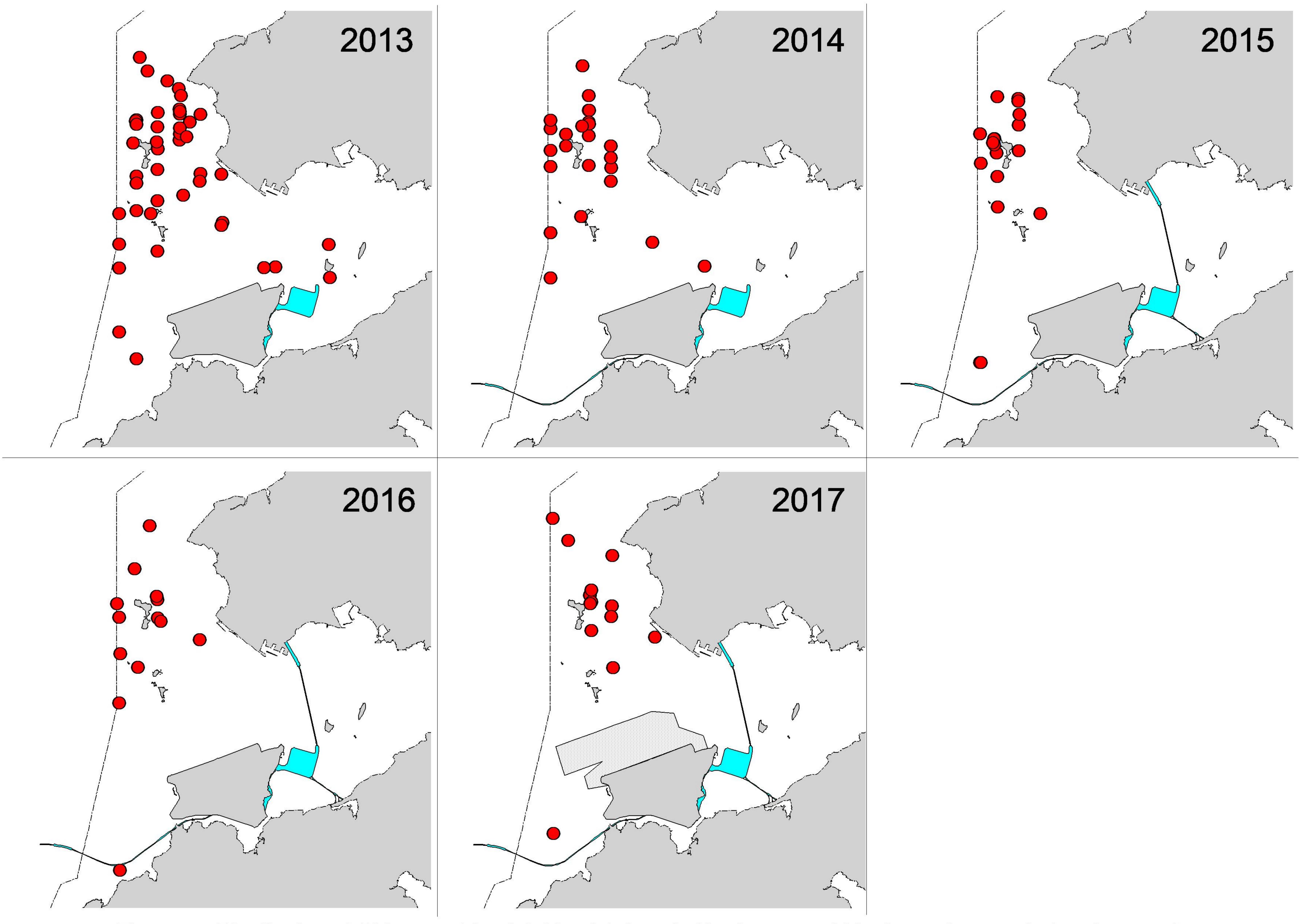


Figure 2. Distribution of Chinese white dolphin sightings in Northwest and Northeast Lantau during the past five autumn quarters (September-November) of HKLR03 impact phase in 2013-17

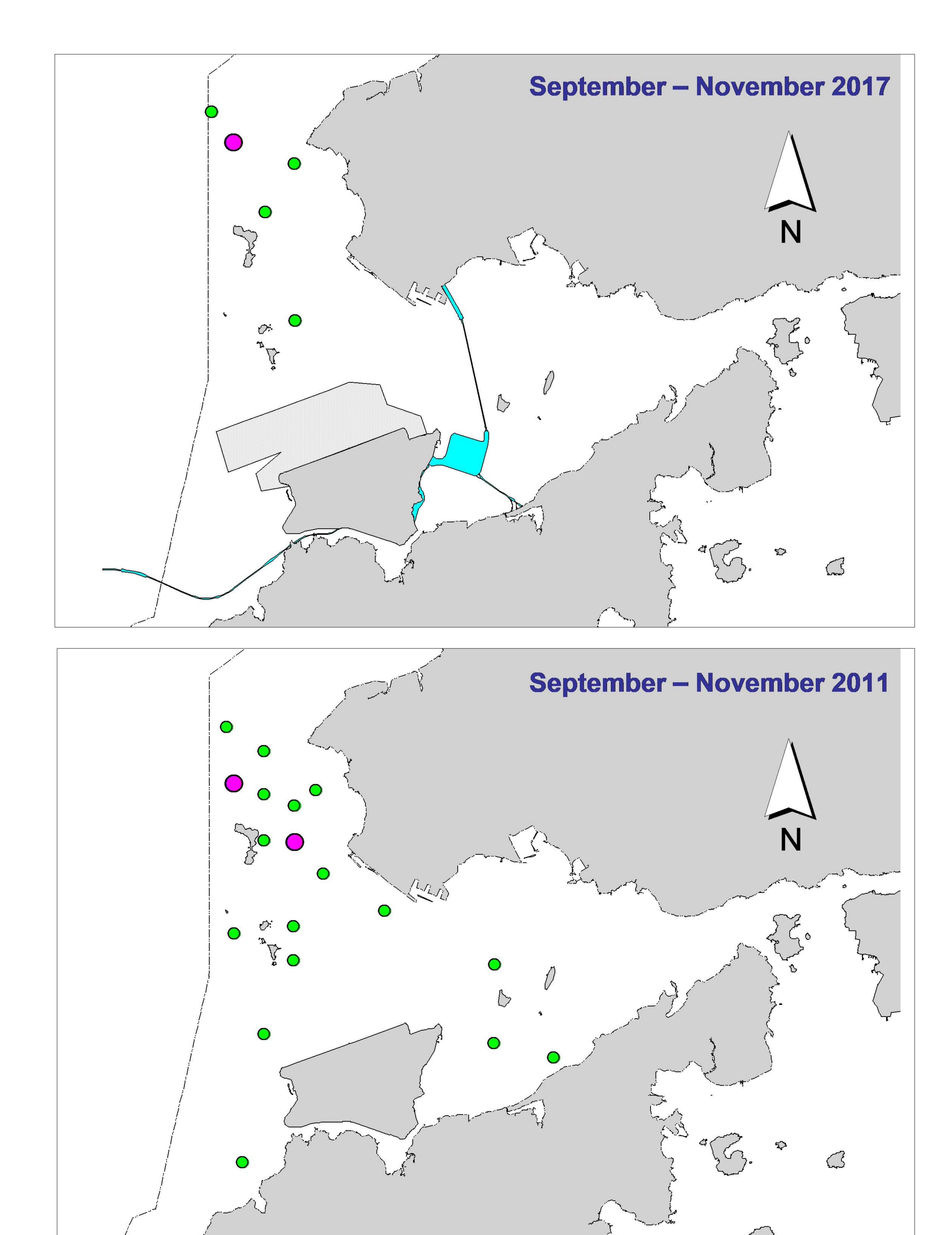


Figure 3. Distribution of Chinese white dolphins with larger group sizes during HKLR03 impact phase (top) and baseline monitoring surveys (bottom) (green dots: group sizes of 5 or more; purple dots: group sizes of 10 or more)

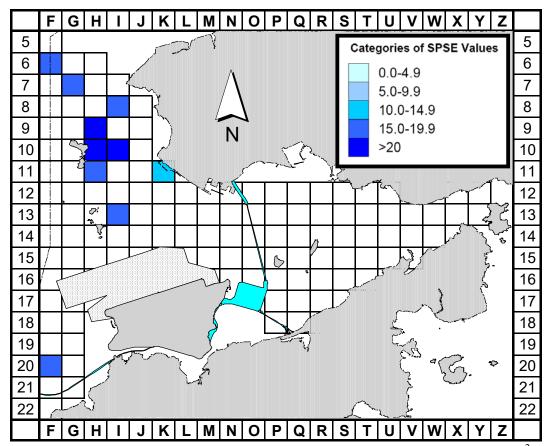


Figure 4a. Sighting density of Chinese white dolphins with corrected survey effort per km² in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period monitoring period (Sep-Nov 17) (SPSE = no. of on-effort sightings per 100 units of survey effort)

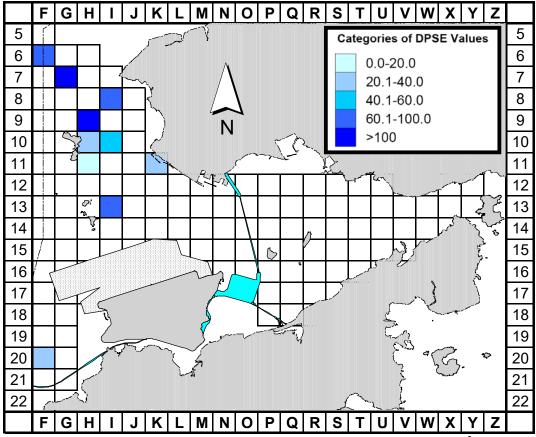


Figure 4b. Density of Chinese white dolphins with corrected survey effort per km² in Northeast and Northwest Lantau survey areas, using data collected during HKLR03 impact monitoring period (Sep-Nov 17) (DPSE = no. of dolphins per 100 units of survey effort)

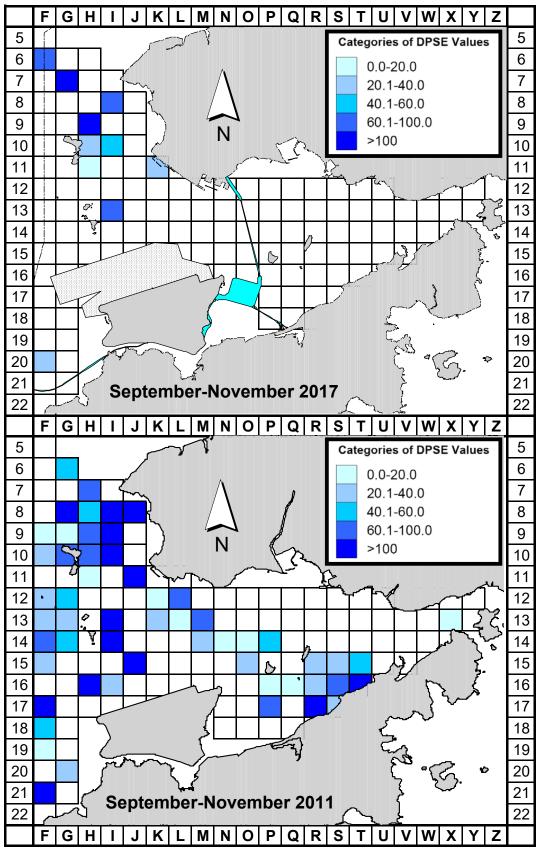


Figure 5. Comparison of density of Chinese white dolphins with corrected survey effort per km² in Northwest and Northeast Lantau survey area between the impact monitoring period (September-November 2017) and baseline monitoring period (September-November 2011) (DPSE = no. of dolphins per 100 units of survey effort)

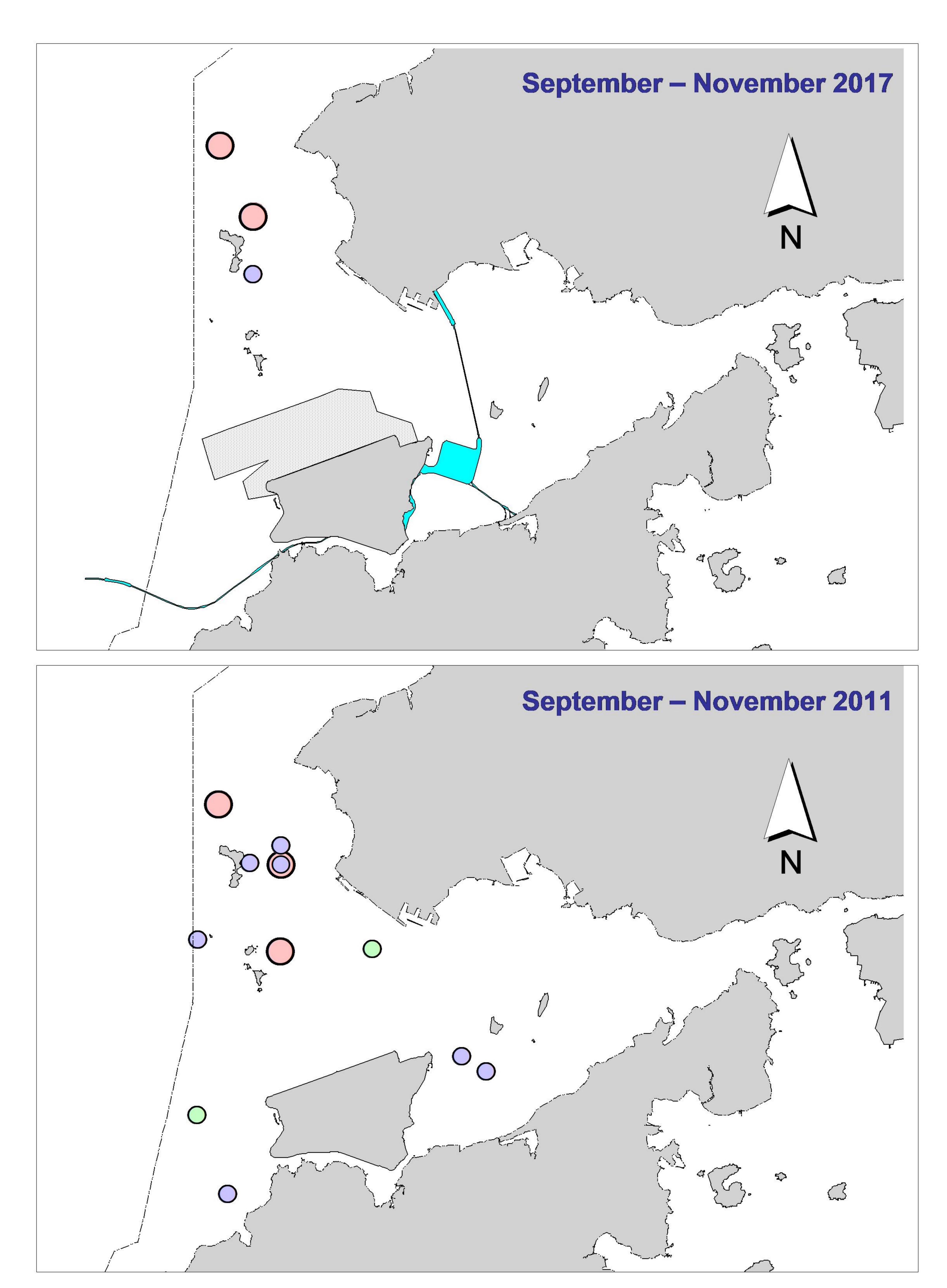


Figure 6. Distribution of Chinese white dolphins engaged in feeding (purple dots), socializing (pink dots) and traveling (green dots) activities during HKLR03 impact phase (top) and baseline monitoring surveys (bottom)

Appendix I. HKLR03 Survey Effort Database (September-November 2017)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

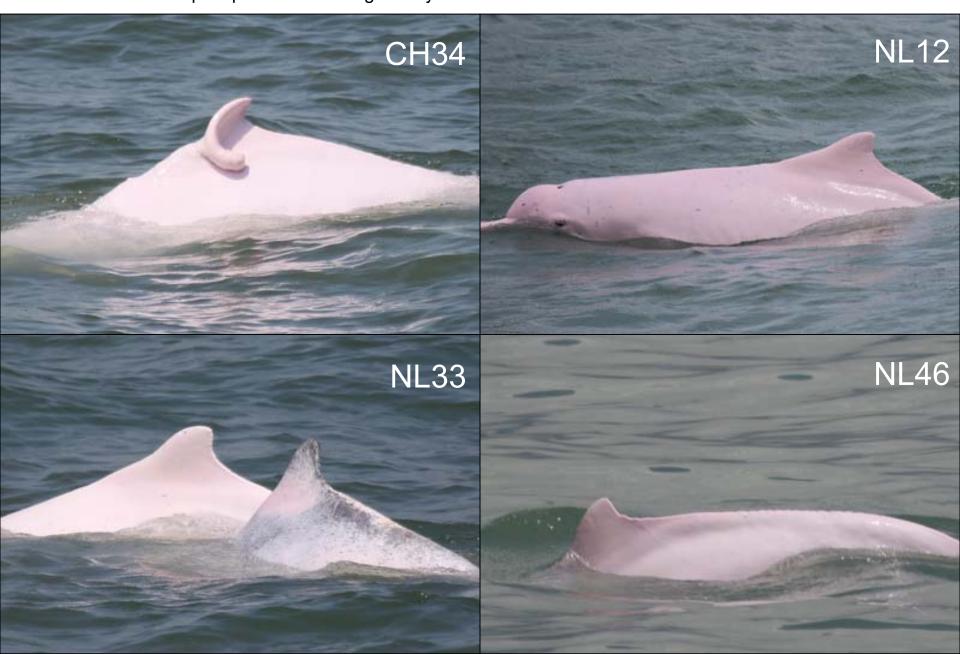
DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
15-Sep-17	NW LANTAU	2	26.51	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17	NW LANTAU	2	10.09	AUTUMN	STANDARD36826	HKLR	S
15-Sep-17	NW LANTAU	3	1.20	AUTUMN	STANDARD36826	HKLR	S
15-Sep-17	NE LANTAU	2	34.49	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17		3	2.20	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17		2	12.01	AUTUMN	STANDARD36826	HKLR	S
18-Sep-17		2	28.84	AUTUMN	STANDARD36826	HKLR	Р
18-Sep-17	NW LANTAU	3	7.20	AUTUMN	STANDARD36826	HKLR	Р
18-Sep-17	NW LANTAU	2	12.96	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17		1	6.05	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17		2	18.48	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17		3	0.56	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	1	1.58	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17		2	9.25	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17		2	4.68	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17		3	31.06	AUTUMN	STANDARD36826	HKLR	P
22-Sep-17		2	3.30	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17		3	9.06	AUTUMN	STANDARD36826	HKLR	S
29-Sep-17		1	3.40	AUTUMN	STANDARD36826	HKLR	P
29-Sep-17		2	13.70	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17		3	12.90	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17		4	5.60	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17		2	1.15	AUTUMN	STANDARD36826	HKLR	S
29-Sep-17	NW LANTAU	3	10.06	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	2	0.88	AUTUMN	STANDARD36826	HKLR	P
4-Oct-17	NW LANTAU	3	20.90	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NW LANTAU	4	2.00	AUTUMN	STANDARD36826	HKLR	Р
4-Oct-17	NW LANTAU	2	3.80	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	3	5.02	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NW LANTAU	4	2.40	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17	NE LANTAU	2	8.22	AUTUMN	STANDARD36826	HKLR	P
4-Oct-17 4-Oct-17	NE LANTAU	3	11.59	AUTUMN	STANDARD36826	HKLR	P
4-Oct-17	NE LANTAU	2	9.49	AUTUMN	STANDARD36826	HKLR	S
4-Oct-17 4-Oct-17	NE LANTAU	3	1.30	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17		2	1.68	AUTUMN	STANDARD36826	HKLR	P
9-Oct-17	NW LANTAU	3	30.32	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NW LANTAU	4	2.50	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NW LANTAU	2	2.30	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NW LANTAU	3	4.90	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NW LANTAU	4	6.70	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NE LANTAU	3	6.99	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NE LANTAU	4	9.93	AUTUMN	STANDARD36826	HKLR	Р
9-Oct-17	NE LANTAU	3	6.79	AUTUMN	STANDARD36826	HKLR	S
9-Oct-17	NE LANTAU	4	3.09	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NW LANTAU	2	11.46	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NW LANTAU	3	20.72	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NW LANTAU	2	8.55	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NW LANTAU	3	2.50	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NE LANTAU	1	2.44	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NE LANTAU	2	27.42	AUTUMN	STANDARD36826	HKLR	Р

Appendix I. (cont'd)

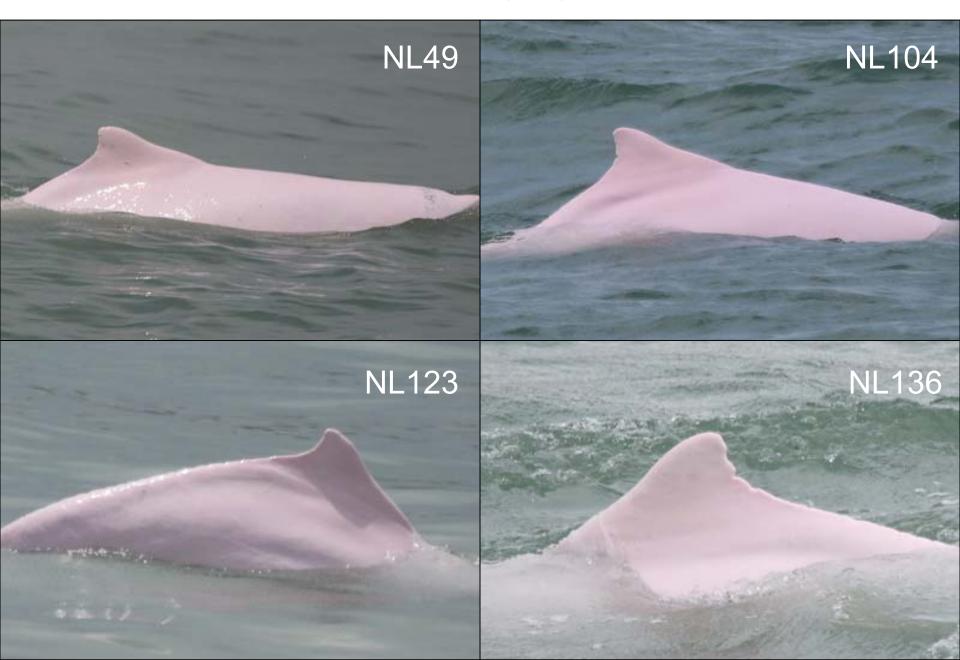
(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
18-Oct-17	NE LANTAU	3	5.50	AUTUMN	STANDARD36826	HKLR	Р
18-Oct-17	NE LANTAU	1	1.70	AUTUMN	STANDARD36826	HKLR	S
18-Oct-17	NE LANTAU	2	11.34	AUTUMN	STANDARD36826	HKLR	S
26-Oct-17	NW LANTAU	2	24.70	AUTUMN	STANDARD36826	HKLR	Р
26-Oct-17	NW LANTAU	3	4.44	AUTUMN	STANDARD36826	HKLR	Р
26-Oct-17	NW LANTAU	2	11.91	AUTUMN	STANDARD36826	HKLR	S
26-Oct-17	NW LANTAU	3	0.85	AUTUMN	STANDARD36826	HKLR	S
1-Nov-17	NW LANTAU	2	17.00	AUTUMN	STANDARD36826	HKLR	Р
1-Nov-17	NW LANTAU	3	15.32	AUTUMN	STANDARD36826	HKLR	Р
1-Nov-17	NW LANTAU	2	8.38	AUTUMN	STANDARD36826	HKLR	S
1-Nov-17	NW LANTAU	3	2.53	AUTUMN	STANDARD36826	HKLR	S
1-Nov-17	NE LANTAU	2	29.72	AUTUMN	STANDARD36826	HKLR	Р
1-Nov-17	NE LANTAU	3	5.10	AUTUMN	STANDARD36826	HKLR	Р
1-Nov-17	NE LANTAU	2	10.07	AUTUMN	STANDARD36826	HKLR	S
1-Nov-17	NE LANTAU	3	2.41	AUTUMN	STANDARD36826	HKLR	S
8-Nov-17	NW LANTAU	2	13.77	AUTUMN	STANDARD36826	HKLR	Р
8-Nov-17	NW LANTAU	3	14.05	AUTUMN	STANDARD36826	HKLR	Р
8-Nov-17	NW LANTAU	2	10.58	AUTUMN	STANDARD36826	HKLR	S
8-Nov-17	NW LANTAU	3	1.80	AUTUMN	STANDARD36826	HKLR	S
17-Nov-17	NW LANTAU	2	8.53	AUTUMN	STANDARD36826	HKLR	Р
17-Nov-17	NW LANTAU	3	18.98	AUTUMN	STANDARD36826	HKLR	Р
17-Nov-17	NW LANTAU	2	9.37	AUTUMN	STANDARD36826	HKLR	S
17-Nov-17	NW LANTAU	3	3.55	AUTUMN	STANDARD36826	HKLR	S
24-Nov-17	NW LANTAU	2	3.81	AUTUMN	STANDARD36826	HKLR	Р
24-Nov-17	NW LANTAU	3	28.72	AUTUMN	STANDARD36826	HKLR	Р
24-Nov-17	NW LANTAU	2	4.40	AUTUMN	STANDARD36826	HKLR	S
24-Nov-17	NW LANTAU	3	6.27	AUTUMN	STANDARD36826	HKLR	S
24-Nov-17	NE LANTAU	2	30.83	AUTUMN	STANDARD36826	HKLR	Р
24-Nov-17	NE LANTAU	3	4.97	AUTUMN	STANDARD36826	HKLR	Р
24-Nov-17	NE LANTAU	1	1.20	AUTUMN	STANDARD36826	HKLR	S
24-Nov-17	NE LANTAU	2	10.10	AUTUMN	STANDARD36826	HKLR	S

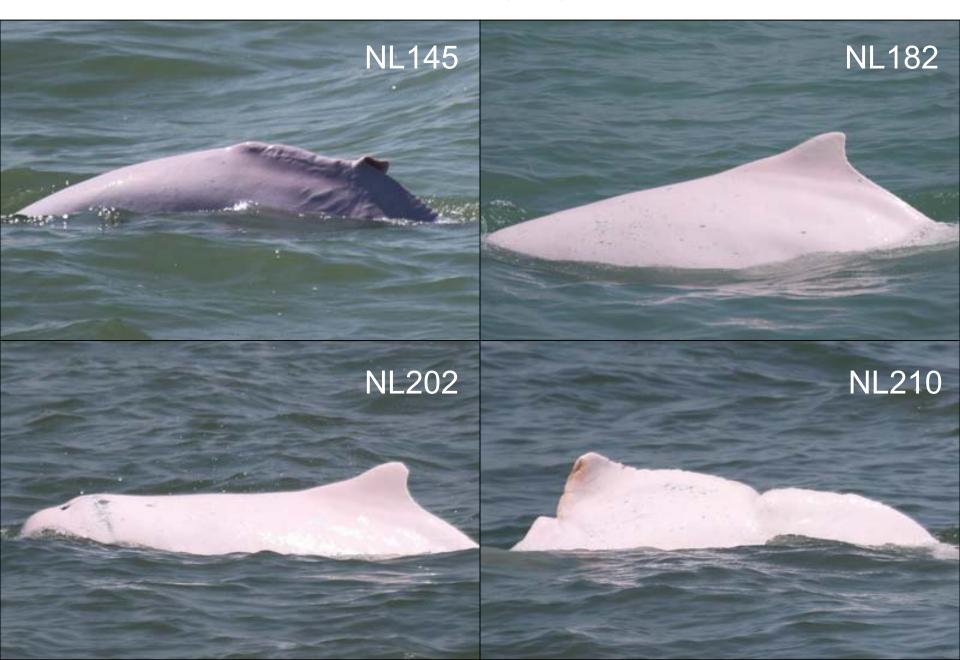
Appendix II. HKLR03 Chinese White Dolphin Sighting Database (September-November 2017)

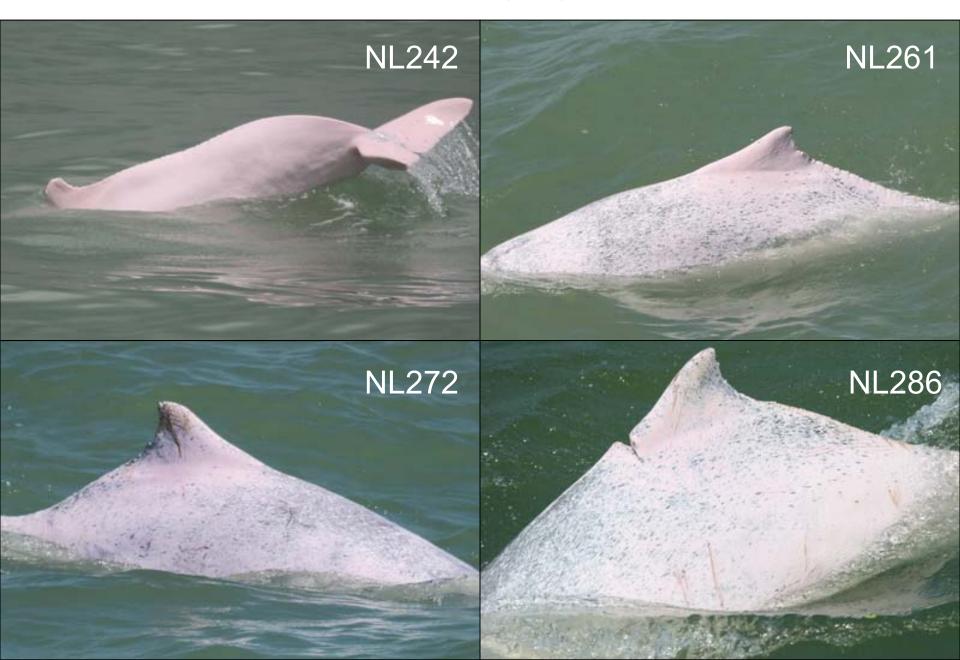

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
22-Sep-17	1	1152	6	NW LANTAU	2	320	ON	HKLR	823991	807501	AUTUMN	NONE	Р
22-Sep-17	2	1244	3	NW LANTAU	1	250	ON	HKLR	825349	809502	AUTUMN	NONE	Р
29-Sep-17	1	1309	2	NW LANTAU	4	140	ON	HKLR	827215	806416	AUTUMN	NONE	Р
4-Oct-17	1	1143	5	NW LANTAU	3	52	ON	HKLR	828985	807490	AUTUMN	NONE	Р
18-Oct-17	1	1149	1	NW LANTAU	2	65	ON	HKLR	826905	806487	AUTUMN	NONE	Р
18-Oct-17	2	1159	1	NW LANTAU	2	264	ON	HKLR	825632	806485	AUTUMN	PURSE-SEINE	Р
26-Oct-17	1	1135	1	NW LANTAU	2	34	ON	HKLR	826737	807455	AUTUMN	NONE	Р
1-Nov-17	1	1126	6	NW LANTAU	3	371	ON	HKLR	830641	804652	AUTUMN	NONE	Р
1-Nov-17	2	1152	8	NW LANTAU	2	529	ON	HKLR	827437	806499	AUTUMN	NONE	Р
8-Nov-17	1	1129	2	NW LANTAU	2	317	ON	HKLR	826272	807434	AUTUMN	NONE	Р
17-Nov-17	1	1155	12	NW LANTAU	2	627	ON	HKLR	829665	805381	AUTUMN	NONE	S
24-Nov-17	1	1023	2	NW LANTAU	3	8	ON	HKLR	816588	804674	AUTUMN	NONE	Р
24-Nov-17	2	1155	1	NW LANTAU	3	0	ON	HKLR	826850	806436	AUTUMN	NONE	Р

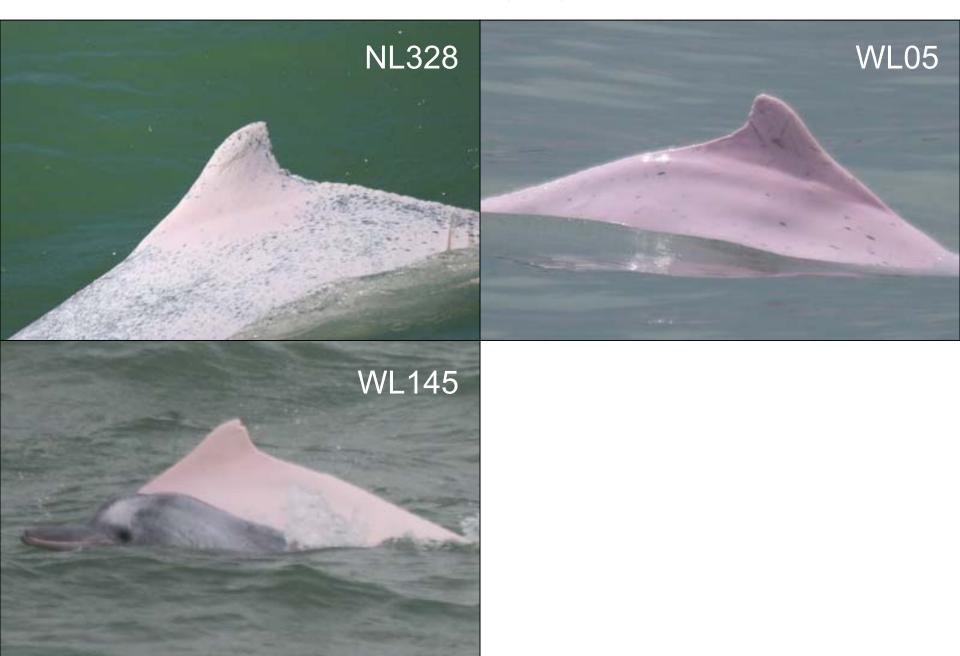

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in September - November 2017

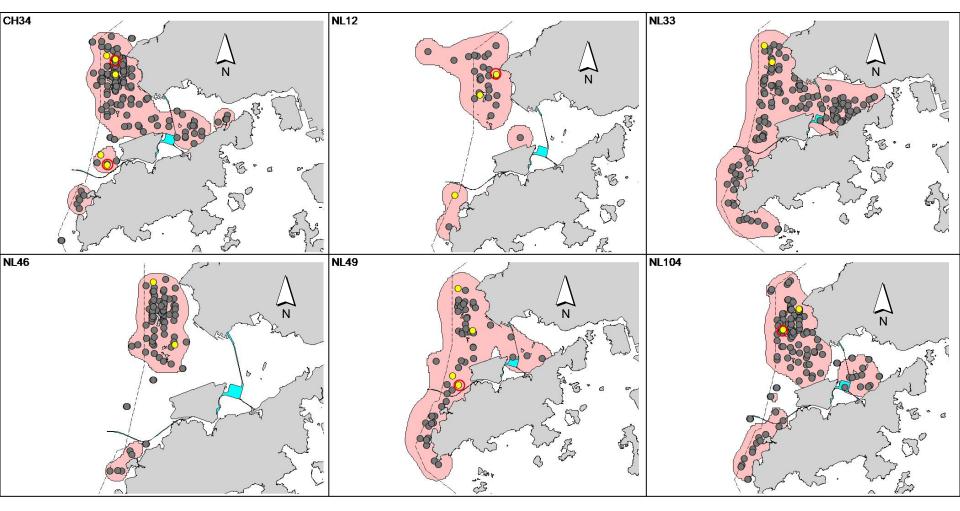
ID#	DATE	STG#	AREA
CH34	01/11/17	2	NW LANTAU
	17/11/17	1	NW LANTAU
NL12	04/10/17	1	NW LANTAU
NL33	01/11/17	2	NW LANTAU
	17/11/17	1	NW LANTAU
NL46	22/09/17	1	NW LANTAU
	17/11/17	1	NW LANTAU
NL49	22/09/17	1	NW LANTAU
	17/11/17	1	NW LANTAU
NL104	04/10/17	1	NW LANTAU
NL123	22/09/17	1	NW LANTAU
NL136	04/10/17	1	NW LANTAU
	18/10/17	2	NW LANTAU
	01/11/17	2	NW LANTAU
	08/11/17	1	NW LANTAU
NL145	17/11/17	1	NW LANTAU
NL182	04/10/17	1	NW LANTAU
	18/10/17	1	NW LANTAU
	01/11/17	2	NW LANTAU
	24/11/17	2	NW LANTAU
NL202	22/09/17	2	NW LANTAU
	29/09/17	1	NW LANTAU
	01/11/17	2	NW LANTAU
NL210	01/11/17	2	NW LANTAU
NL242	22/09/17	1	NW LANTAU
NL261	17/11/17	1	NW LANTAU
NL272	17/11/17	1	NW LANTAU
NL286	22/09/17	2	NW LANTAU
	29/09/17	1	NW LANTAU
	01/11/17	2	NW LANTAU
	17/11/17	1	NW LANTAU
NL296	22/09/17	1	NW LANTAU
NL320	01/11/17	2	NW LANTAU
	17/11/17	1	NW LANTAU
NL321	04/10/17	1	NW LANTAU
NL322	01/11/17	2	NW LANTAU
	17/11/17	1	NW LANTAU
NL328	08/11/17	1	NW LANTAU
	17/11/17	1	NW LANTAU
WL05	22/09/17	1	NW LANTAU
	17/11/17	1	NW LANTAU
WL145	24/11/17	1	NW LANTAU

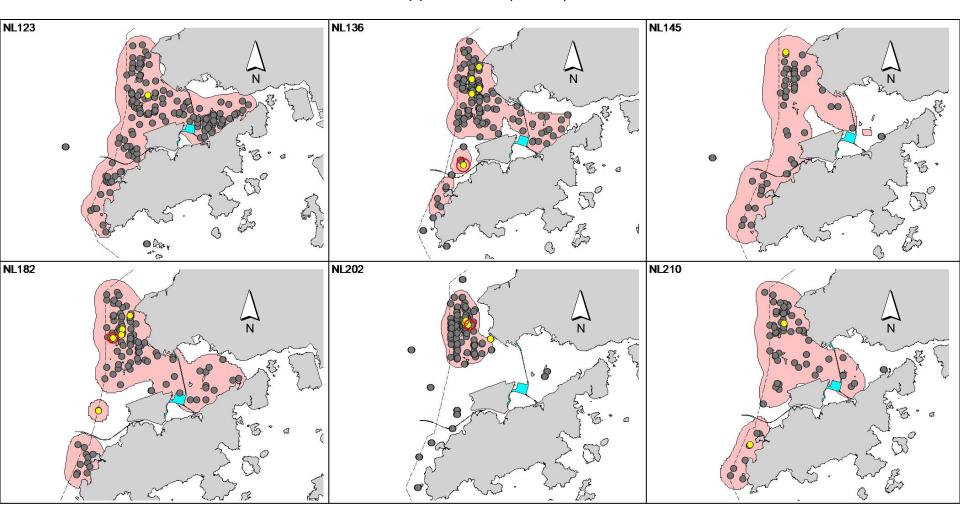

Appendix IV. Twenty-three individual dolphins that were identified during September to November 2017 under HKLR03 impact phase monitoring surveys

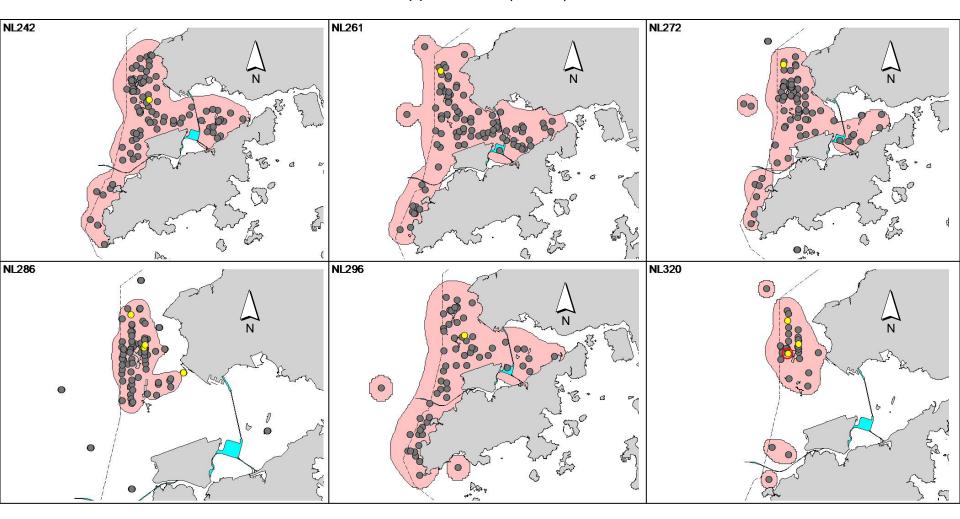

Appendix IV. (cont'd)

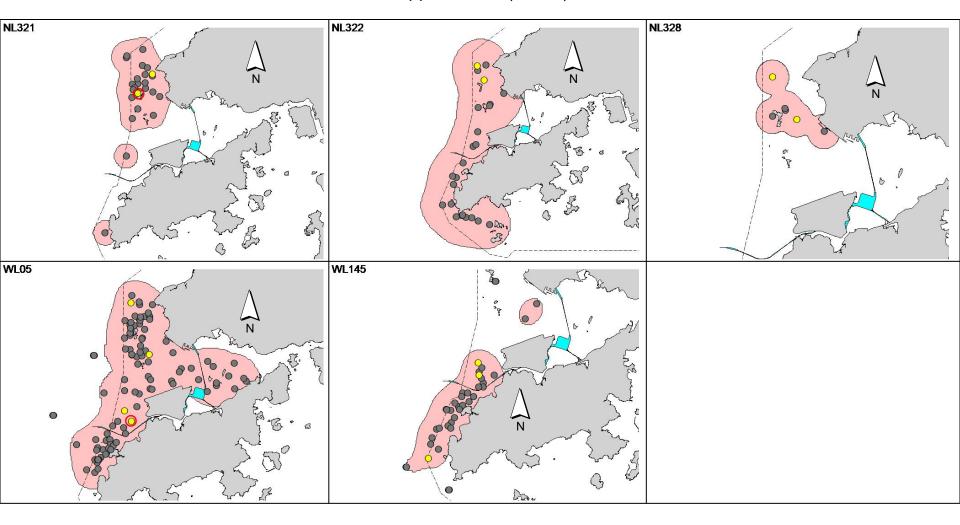
Appendix IV. (cont'd)


Appendix IV. (cont'd)


Appendix IV. (cont'd)


Appendix IV. (cont'd)


Appendix V. Ranging patterns (95% kernel ranges) of 23 individual dolphins that were sighted during HKLR03 impact phase monitoring period (note: yellow dots indicate sightings made in September – November 2017 during HKLR03 and HKLR09 monitoring surveys; the yellow dots with the red circles indicate the ones made during HKBCF monitoring surveys)


Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix V. (cont'd)

Appendix J

Event Action Plan

Appendix J1 Event/Action Plan for Air Quality

		AC	TION	
EVENT	ET ⁽¹⁾	IEC (1)	SOR ⁽¹⁾	Contractor
Action Level				
1. Exceedance for one sample	 Identify the source. Inform the IEC and the SOR. Repeat measurement to confirm finding. Increase monitoring frequency to daily. 	 Check monitoring data submitted by the ET. Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice Amend working methods if appropriate
2. Exceedance for two or more consecutive samples	 Identify the source. Inform the IEC and the SOR. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with the IEC and the Contractor on remedial actions required. If exceedance continues, arrange meeting with the IEC and the SOR. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET. Check the Contractor's working method. Discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify the Contractor. Ensure remedial measures properly implemented. 	 Submit proposals for remedial actions to IEC within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate

	ACTION									
EVENT	ET (1)	IEC (1)	SOR ⁽¹⁾	Contractor						
Limit Level										
1. Exceedance for one sample	 Identify the source. Inform the SOR and the DEP. 	1. Check monitoring data submitted by the ET.	 Confirm receipt of notification of failure in writing. 	Take immediate action to avoid further exceedance						
	 Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 	 Check Contractor's working method. Discuss with the ET and the Contractor on possible remedial measures. Advise the SOR on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	2. Notify the Contractor.3. Ensure remedial measures are properly implemented.	2. Submit proposals for remedial actions to IEC within 3 working days of notification3. Implement the agreed proposals4. Amend proposal if appropriate						
2. Exceedance for two or more consecutive samples	 Notify the IEC, the SOR, the DEP and the Contractor. Identify the source. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures to determine possible mitigation to be implemented. Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken. Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and 	 Discuss amongst the SOR, ET and the Contractor on the potential remedial actions. Review the Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify the Contractor. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant activity of works as determined by the SOR until the exceedance is abated. 						

the SOR informed of the results.

8. If exceedance stops cease additional monitoring.

Appendix J2 Event/Action Plan for Construction Noise

		ACTI	ION	
EVENT	ET	IEC	SOR	Contractor
Action Level	 Notify the IEC and the Contractor. Carry out investigation. 	Review the analysed results submitted by the ET.	Confirm receipt of notification of failure in writing.	Submit noise mitigation proposals to IEC
	 Report the results of investigation to the IEC and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the proposed remedial measures by the Contractor and advise the SOR accordingly. Supervise the implementation of remedial measures. 	 Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	Implement noise mitigation proposals
Limit Level	 Notify the IEC, the SOR, the DEP and the Contractor. 	and the Contractor on the potential	Confirm receipt of notification of failure in writing.	Take immediate action to avoid further exceedance
	 Identify the source. Repeat measurement to confirm findings. 	remedial actions. 2. Review the Contractor's remedial actions whenever necessary to	 Notify the Contractor. Require the Contractor to propose remedial measures for the analysed 	Submit proposals for remedial actions to IEC within 3 working days of notification
	4. Increase monitoring frequency.5. Carry out analysis of Contractor's working procedures to determine	assure their effectiveness and advise the SOR accordingly.3. Supervise the implementation of	noise problem. 4. Ensure remedial measures are properly implemented.	3. Implement the agreed proposals4. Resubmit proposals if problem still not under control
	possible mitigation to be implemented.6. Inform the IEC, the SOR and the DEP the causes & actions taken for the exceedances.	remedial measures.	5. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	5. Stop the relevant activity of works as determined by the SOR until the exceedance is abated.
	 Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 			
	8. If exceedance stops, cease additiona monitoring.	1		

Appendix J3 Event/Action Plan for Water Quality

Event	ET	Leader		IEC	S	OR		Contractor
Action level being exceeded by one sampling day	1.	Repeat in situ measurement on next day of exceedance to confirm	1.	Check monitoring data submitted by ET and	1.	Confirm receipt of notification of non-compliance in	1.	Inform the SOR and confirm notification of the non-
by one sumpling day		findings;		Contractor's working methods.		writing;		compliance in writing;
	2.	Identify source(s) of impact;			2.	Notify Contractor.	2.	Rectify unacceptable practice;
	3.	Inform IEC, contractor and SOR;					3.	Amend working methods if appropriate.
	4.	Check monitoring data, all plant, equipment and Contractor's working methods.						
Action level being exceeded by two or more consecutive sampling days	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Discuss with IEC on the proposed mitigation measures;	1.	Inform the Supervising Officer and confirm notification of the non-
consecutive sumpring unjo	2.	Identify source(s) of impact;		Ç		·		compliance in writing;
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;	2.	Ensure mitigation measures are properly implemented;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;	3.	Assess the effectiveness of the implemented mitigation measures.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;	4.	Supervise the implementation of mitigation measures.			4.	Submit proposal of additional mitigation measures to SOR within 3 working days of
	6.	Ensure mitigation measures are implemented;						notification and discuss with ET, IEC and SOR;
	7.	Increase the monitoring frequency to daily until no exceedance of Action level;					5.	Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Confirm receipt of notification of failure in writing;	1.	Inform the SOR and confirm notification of the non-compliance in writing;
	2.	Identify source(s) of impact;	2	-	2.	Discuss with IEC, ET and	2	-
			2.	Discuss with ET and Contractor		Contractor on the proposed	2.	Rectify unacceptable practice;

Event	ET	Leader		IEC	SC	OR		Contractor
	3.	Inform IEC, contractor, SOR and EPD;		on possible remedial actions;		mitigation measures;	3.	Check all plant and
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and advise the SOR	3.	Request Contractor to review the working methods.	0.	equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		accordingly.			4.	Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;		Discuss with IEC, ET and Contractor on the proposed mitigation	1.	Take immediate action to avoid further exceedance;
sampling days	2.	Identify source(s) of impact;		-		measures;	2.	Submit proposal of mitigation
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;		Request Contractor to critically review the working methods;		measures to SOR within 3 working days of notification and discuss with ET, IEC and
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the Contractor's mitigation measures whenever necessary to assure their		3. Make agreement on the mitigation measures to be implemented;	3.	SOR; Implement the agreed
		neurous,		effectiveness and advise the		4.	٥.	mitigation measures;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;	4	SOR accordingly;		5. Ensure mitigation measures are properly implemented;	4.	Resubmit proposals of
	6.	Ensure mitigation measures are implemented;	4.	Supervise the implementation of mitigation measures.		6.7. Consider and instruct, if necessary, the Contractor to slow down or to stop all		mitigation measures if problem still not under control;
	7.	Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;				or part of the construction activities until no exceedance of Limit level.		As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Appendix J4 Implementation of Event-Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	SC	OR .	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings;	Check monitoring data submitted by ET and Contractor;	l 1.	Discuss monitoring with the IEC and any other measures	1. Inform the SOR and confirm notification of the non-
	2. Review all available and relevant data, including raw data and statistical analysis results of other	2. Discuss monitoring results and		proposed by the ET;	compliance in writing;
	parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences;	findings with the ET and the Contractor.	2.	If SOR is satisfied with the proposal of any other measures, SOR to signify the agreement in writing on the measures to be	2. Discuss with the ET and the IEC and propose measures to the IEC and the SOR;
	3. Identify source(s) of impact;			implemented.	3. Implement the agreed measures.
	4. Inform the IEC, SOR and Contractor;				
	5. Check monitoring data.				
	Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.				

Appendix J5 Event and Action Plan on Dolphin Acoustic Behaviour

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Action Level				
With the numerical values presented in <i>Table 5.7</i> of <i>Baseline Monitoring Report</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 20% lower or higher than that recorded in the baseline monitoring (see <i>Table 5.8</i> of <i>Baseline Monitoring Report</i>), or when there is a difference of 20% in dolphin acoustic signal detection at nighttime period at Site C1 only, the action level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.
	measures are implemented fully and additional measures be proposed if necessary			

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Limit Level With the numerical values presented in Table 5.7 of Baseline Monitoring Report, when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 40% lower	Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences;	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	1. Discuss with the IEC the repeat monitoring and any other measures proposed by the ET;	Inform the SO and confirm notification of the non-compliance in writing;
or higher than that recorded in the baseline monitoring (see <i>Table 5.8</i> of <i>Baseline Monitoring Report</i>), or when there is a difference of 40% in dolphin acoustic signal detection at nighttime at Site C1 only, the limit level should be triggered	3. Identify source(s) of impact;4. Inform the IEC, SO and Contractor;5. Check monitoring data;6. Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary	3. Review proposals for additional monitoring and any other measures submitted by the Contractor and advise ER accordingly.		2. Discuss with the ET and the IEC and propose measures to the IEC and the SO;3. Implement the agreed measures.
	7. Discuss additional dolphin monitoring and any other potential mitigation measures (eg consider to temporarily stop relevant portion of construction activity) with the IEC and Contractor.			

Abbreviations: ET - Environmental Team, IEC - Independent Environmental Checker, SO - Supervising Office, DEP - Director of Environmental Protection

Appendix K

Quarterly Summary of Waste Flow Table Contract No.: HY/2012/07

Tuen Mun Chek Lap Kok Link – Southern Connection Viaduct Section

Monthly Summary Waste Flow Table for 2017 (Year)

		Actual Qua	antities of Inert	C&D Materials 0	Generation			Actua	I Quantities of C	C&D wastes Ger	neration		Actual Quantities of Recyclables Generation			
Month\Material	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills	Imported Fill	Marine Sediment, Cat. L	Marine Sediment, Cat. Mp	Marine Sediment, Cat. Mf	Marine Sediment, Cat. H	Chemical Waste	General Refuse	Metals	Felled trees	Paper/ cardboard packaging	Plastics
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)
Jan	4.591	0.717	0.474	-	4.118	-	-	-	-	-	3.521	99.840	-	-	0.140	-
Feb	5.034	1.585	0.166	-	4.869	-	0.857	-	-	-	-	127.720	-	-	0.091	-
Mar	6.575	0.937	0.498	-	6.077	-	0.771	-	-	-	6.000	87.910	-	-	0.077	-
Apr	5.467	0.791	1.058	-	4.409	-	-	-	-	-	-	130.680	-	5.170	0.063	-
May	4.960	0.537	0.826	-	4.134	-	0.672	-	-	-	-	171.870	-	-	0.056	-
Jun	4.491	0.567	0.098	-	4.394	-	-	-	-	-	-	148.600	-	-	0.063	-
SUB-TOTAL	31.118	5.133	3.118	-	28.000	0.000	2.300	-	-	-	9.521	766.620	-	5.170	0.490	-
Jul	5.618	0.426	0.696	0.002	4.921	-	1.056	-	-	-	0.800	159.980	-	-	0.091	-
Aug	3.897	0.232	-	-	3.897	-	-	-	-	-	-	159.230	-	-	0.056	-
Sep	3.142	0.676	-	-	3.142	-	1.517	1.047	-	0.127	-	185.420	-	18.030	0.070	-
Oct	3.005	0.385	0.325	-	2.680	-	-	-	-	-	-	172.690	-	-	0.063	-
Nov	3.354	0.814	0.023	-	3.331	-	-	-	-	-	5.400	159.650	-	5.840	0.028	-
Dec	-	0.000	-	-	-	-		-	-	-			-	-	0.028	-
TOTAL	50.134	7.667	4.161	0.002	45.971	-	4.873	1.047	-	0.127	15.721	1,603.590	-	29.040	0.826	-

Notes

- 1 The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- 2 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- 3 Broken concrete for recycling into aggregates.
- 4 Assumed 5 kg per damaged water-filled barrier.
- 5 Disposed as Public Fills includes Hard Rock and Large Broken Concrete.

Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix L1 Cumulative Statistics on Exceedances

		Total No. recorded in this quarter	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	0
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	99	132
•	Limit	1	15
Impact Dolphin	Action	0	9
Monitoring	Limit	1	11

Appendix L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics							
_	Complaints	Notifications of	Successful					
		Summons	Prosecutions					
This quarter	1	0	0					
Total No. received since project commencement	11	0	0					

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 4 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_1 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

A total of one exceedance was recorded on 1 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 11 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_1 September 2017_ Depth-averaged SS_F_Station SR4a

A total of one SS exceedance was recorded on 1 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	Action Level Exceedance 0215660_1 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N) 0215660_1 September 2017_ Depth-averaged SS_F_Station SR4a					
		[Total No. of Exceedances = 2]				
Date		1 September 2017 (Measured)				
	-	mber 2017 (In situ results received by ERM)				
	-	per 2017 (Laboratory results received by ERM)				
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)				
Parameter(s) with Exceedance(s)	Bottom-depth Dissolv	ved Oxygen (DO), Depth-averaged Suspended Solids (SS)				
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L				
	Bottom-depth DO	4.7 mg/L				
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L				
	Bottom-depth DO	3.6 mg/L				
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).				
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)				
Measured Levels Works Undertaken (at	Action Level Exceedance 1. Mid-Ebb at CS(Mf)3(N) (Bot 2. Mid-Flood at SR4a (Depth-a					
the time of monitoring event)	no major marme works was und	dertaken under tills Contract on 1 September 2017.				
Possible Reason for Action or Limit Level Exceedance(s)	 The exceedances of bottom-depth DO at CS(Mf)3(N) and depth-averaged SS at SR4a are unlikely to be due to the Project, in view of the following: No marine works was undertaken under this Contract on 1 September 2017. CS(Mf)3(N) is distant (>5km) from the marine works area under this Contract, thus the observed exceedance should not be affected by the marine works under this Contract and it is considered to be natural fluctuation in water quality. Apart from marginal DO exceedance at CS(Mf)3(N), levels of DO at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. Apart from marginal SS exceedance at SR4a, levels of depth-averaged SS at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. No observation on improper practice in construction works and discharge of construction wastes from vessels and working platforms was made nearby the monitoring stations. The depth-averaged turbidity at all monitoring stations were in compliance with the Action 					
Actions Taken / To Be		both mid-ebb and mid-flood tides on the same day. ed necessary. The ET will monitor for future trends in				
Taken	exceedances.	·				

Remarks	The monitoring results on 1 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 1 September is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Surface	1	28.2	7.8	18.3	6.4		4.3		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Surface	2	28.0	7.8	18.2	6.4	6.1	3.4		4.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Middle	1	27.5	7.9	24.7	5.7	0.1	3.4	3.2	3.2	3.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Middle	2	27.3	7.8	24.7	5.7		2.4	5.2	3.8	5.5
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Bottom	1	26.9	7.9	28.6	5.5	5.6	3.3		2.7	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Bottom	2	26.9	7.8	28.5	5.6	5.0	2.3		3.1	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Surface	1	28.5	7.6	16.1	5.7	•	9.1		4.1	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Surface	2	28.3	7.6	16.3	5.7	5.2	7.4		3.2	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Middle	1	26.9	7.6	25.6	4.7	<i>J.L</i>	8.8	9.0	3.6	3.7
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Middle	2	26.7	7.6	25.6	4.7		7.3	7.0	2.3	3.1
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Bottom	1	26.4	7.7	27.9	4.6	4.6	11.5		5.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Bottom	2	26.2	7.6	27.9	4.6	4.0	9.7		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Surface	1	28.3	8.0	20.3	6.9		5.2		5.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Surface	2	28.1	7.9	20.3	6.9	6.5	5.1		3.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Middle	1	28.1	7.9	21.1	6.1	0.5	4.7	5.0	4.4	4.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Middle	2	28.0	7.8	21.0	6.1		4.2	5.0	4.4	4.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Bottom	1	27.7	7.9	23.4	5.8	5.8	5.7		4.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Bottom	2	27.6	7.8	23.4	5.8	3.0	4.9		4.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Surface	1	28.4	8.1	16.7	7.4		6.5		4.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Surface	2	28.3	8.0	16.6	7.4	7.4	5.5		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Middle						7.4		8.1		5.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Middle								0.1		3.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Bottom	1	27.2	7.9	25.1	4.7	4.8	10.4		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Bottom	2	27.1	7.7	25.1	4.8	4.0	10.0		5.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Surface	1	28.5	8.0	16.1	7.2		6.0		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Surface	2	28.3	8.0	16.1	7.1	7.2	5.1		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Middle						1.2		7.6		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Middle								7.0		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Bottom	1	27.9	7.8	21.5	5.0	5 1	9.7		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Bottom	2	27.8	7.7	21.4	5.2	5.1	9.5		4.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Surface	1	28.6	8.0	19.2	7.1		7.3		5.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Surface	2	28.4	7.9	19.1	7.1	7 1	6.3		6.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Middle						7.1		11 1		5 1
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Middle								11.1		5.1
	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Bottom	1	27.8	7.9	22.5	5.6	57	16.0		4.4	
	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Bottom	2	27.7	7.8	22.6	5.7	5.7	14.6		4.0	
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Surface	1	28.5	8.0	20.3	6.1		9.0		3.0	
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Surface	2	28.3	7.9	20.2	6.1	(1	8.5		2.6	
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Middle						6.1		7.4		2.7
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Middle								7.4		3.7
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Bottom	1	27.6	7.9	24.1	5.1	<i>5</i> 0	6.3		4.9	
	HY/2012/07		Mid-Ebb	IS(Mf)9	10:09	Bottom	2	27.5	7.8	23.9	5.2	5.2	5.6		4.3	

MCKLS	Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
Moderate Proprietable Methods Samilla 1.26 Moderate 1 26.5 7.8 30.1 4.8 0.1 3.0 4.7 4.5 4.6 1.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Surface	1	28.7	7.9	19.6	7.4		3.9		1.7	
INSTITUTE 1772-1774 1772-1775 1772	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Surface	2	28.5	8.0	19.5	7.3	6.1	2.9		1.4	
Description Process	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Middle	1	26.5	7.8	30.4	4.8	0.1	5.0	17	1.8	2.3
Marticle Hydrology 2019-09 Mail-Root CSMM/SN 628 Saffee 1 23 7.5 13.4 6.4 10.3 5.5 Mail-Root CSMM/SN 628 Saffee 1 23 7.5 13.4 6.4 10.3 5.5 Mail-Root CSMM/SN 628 Saffee 1 23 7.5 13.4 6.4 10.3 5.5 Mail-Root CSMM/SN 628 Saffee 2 2.5 7.7 13.3 6.4 12.5 12.5 12.5 12.5 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.28 Saffee 2 2.5 7.7 13.3 6.4 12.5 12.5 13.2 12.5 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.28 Mail-Root 2 2.8 1 7.5 19.4 5.4 14.2 13.2 11.1 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.28 Boaton 1 27.6 7.5 19.4 5.4 14.2 13.2 11.1 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.28 Boaton 1 27.5 7.7 21.0 5.1 5.2 16.1 22.6 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.28 Saffee 1 28.8 8.0 18.4 8.2 4.8 2.2 8.1 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Saffee 1 27.8 7.7 21.0 5.1 5.2 16.1 22.6 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Saffee 2 2.8 7.7 2.1 5.7 7.0 4.2 4.0 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Mailer 1 2.7 7.7 7.8 2.2 5.7 7.7 8.1 3.5 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Saffee 2 2.2 2.2 7.8 2.2 5.7 7.7 7.8 2.2 3.5 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Saffee 2 2.2 2.2 4.8 5.9 5.7 5.1 5.2 12.2 4.0 MAILER HYZ01207 2019-09 Mail-Root CSMM/SN 16.58 Saffee 2 2.2 2.2 4.8 5.9 5.7 5.7 5.8 5.2 12.2 5.7 5.8 5.7 5.7 5.8 5.7 5.8 5.7 5.8	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Middle	2	26.4	7.9	30.3	4.9		4.7	4.7	2.6	2.3
	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Bottom	1	26.2	7.8	33.0	5.0	5.2	6.1		3.0	
MCLK.I.	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Bottom	2	26.1	7.9	32.9	5.3	J.Z	5.8		3.2	
PMCLKL PV/20/207 2017-09-01 Mid-Flood CSM/93/N 16/28 Middle 1 27.9 7.6 19.6 5.5 12.5 13.2 1	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Surface	1	29.3	7.6	13.4	6.4		10.3		5.3	
Indical Registry 1965 1975 19	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Surface	2	29.5	7.7	13.3	6.4	5.0	12.3		6.1	
Michael 1972 1973	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Middle	1	27.9	7.6	19.6	5.5	5.9	12.5	13.2	9.3	1 / Q
FMCLKL HY201207 2017-09-01 Mid-Flood SMM38N 16-28 Bottom 2 27.8 7.7 21.0 5.1 5.2 16.1 27.6	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Middle	2	28.1	7.6	19.4	5.4		14.2	13.2	11.1	14.0
Discland 1970 2017-09-01 Mid-Flood SMilh 16-58 Sorfice 2 278 7.7 21.0 5.1 16.1 27.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Bottom	1	27.6	7.6	21.0	5.2	5.2	13.7		29.5	
TMCLK, 197201207 2071-99-01 Msd-Flood IM(M))6 16:58 Surface 2 2.87 8.1 18.4 8.3 7.0 4.2 4.5 7.7 7.0 4.2 7.7 7.0 7.0 7.	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Bottom	2	27.8	7.7	21.0	5.1	5.2	16.1		27.6	
TMCLKI, HY201207 2017-09-01 Mid-Flood SMMI)6 16-58 Middle 1 22.8 7.6 22.1 5.7 7.0 8.3 8.4 3.5 7.5 7.7 7.0 7.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Surface	1	28.8	8.0	18.4	8.2		4.8		2.8	
MCL.K. MY20 2007 2017-09-01 Mid-Plocd SIM016 6:58 Middle 1 218 7.6 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.7 7.8 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.8 22.1 5.7 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Surface	2	28.7	8.1	18.4	8.3	7.0	4.2		4.0	
IMCLKL IHYZ01207 2017-09-01 Mid-Flood SM0H016 16-58 Bottom 1 27:3 7.6 25:1 5:1 5:2 13:2 3:5 IMCLKL IHYZ01207 2017-09-01 Mid-Flood SM0H016 16-58 Bottom 1 27:3 7.6 25:1 5:1 5:2 13:2 3:5 IMCLKL IHYZ01207 2017-09-01 Mid-Flood SR4 16:45 Surface 1 28:5 7.8 19:3 7.6 6:0 21:6 IMCLKL IHYZ01207 2017-09-01 Mid-Flood SR4 16:45 Surface 2 28:4 8:0 19:2 7.6 7.6 7.6 7.6 IMCLKL IHYZ01207 2017-09-01 Mid-Flood SR4 16:45 Surface 2 28:4 8:0 19:2 7.6 7.6 7.6 7.6 7.6 IMCLKL IHYZ01207 2017-09-01 Mid-Flood SR4 16:45 Middle 7.5 7.7 24:2 5:7 7.7 7	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Middle	1	27.8	7.6	22.1	5.7	7.0	8.3	Q A	3.5	2 /
FINCLIK, HYZ01207 2017-09-01 Mid-Flood ISKM)16 16:58 Bottom 2 27:2 7:8 25:2 5:2 3:2 12:2 4.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Middle	2	27.7	7.8	22.1	5.7		7.7	0.4	2.7	5.4
Michigan Michigan	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Bottom	1	27.3	7.6	25.1	5.1	5.2	13.2		3.5	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4a 16:45 Surface 2 28.4 8.0 19.2 7.6 7.6 5.3 10.4	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Bottom	2	27.2	7.8	25.2	5.2	5.2	12.2		4.0	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4a 1645 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Surface	1	28.5	7.8	19.3	7.6		6.0		21.6	
INCLKL HY/2012/07 2017-09-01 Mid-Flood SR4a 16:45 Bottom 1 27.5 7.7 24.2 5.7 5.7 16.1 27.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Surface	2	28.4	8.0	19.2	7.6	7.6	5.3		21.2	
INCLIKE HYZ01207 2017-09-01 Mid-Flood SR4a 16:45 Bottom 1 27.5 7.7 24.2 5.7 5.7 16.1 27.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Middle						7.0		10.4		24.1
TMCLKL HYZ012/07 2017-09-01 Mid-Flood SR4a 16:45 Bottom 2 27.4 7.8 24.1 5.6 5.7 14.2 26.5 TMCLKL HYZ012/07 2017-09-01 Mid-Flood SR4 16:40 Surface 1 28.8 7.8 18.7 8.2 18.4 10.5 TMCLKL HYZ012/07 2017-09-01 Mid-Flood SR4 16:40 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Middle								10.4		24.1
IMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4 16:49 Surface 1 28.8 7.8 18.7 8.2 18.4 10.5	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Bottom	1	27.5	7.7	24.2	5.7	5 7	16.1		27.0	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4 16:40 Surface 2 28.7 8.0 18.6 8.2 8.2 18.1 17.7 14.7	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Bottom	2	27.4	7.8	24.1	5.6	5.7	14.2		26.5	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4 16:40 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Surface	1	28.8	7.8	18.7	8.2		18.4		10.5	
Mid-Flood SR4 16:40 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Surface	2	28.7	8.0	18.6	8.2	0.0	18.1		9.1	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4 16:40 Bottom 1 28.4 7.7 20.0 7.3 7.4 16.4 19.4 19.7 17.8 19.7 19.8 18.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Middle						0.2		177		1.4.7
TMCLKL HY/2012/07 2017-09-01 Mid-Flood SR4 16:40 Bottom 2 28.3 7.9 20.0 7.4 7.4 17.8 19.7	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Middle								17.7		14.7
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Surface 1 28.8 8.0 18.0 8.0 7.2 4.6	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Bottom	1	28.4	7.7	20.0	7.3	7.4	16.4		19.4	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Surface 2 28.7 8.0 18.0 8.0 8.0 8.0	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Bottom	2	28.3	7.9	20.0	7.4	7.4	17.8		19.7	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Surface	1	28.8	8.0	18.0	8.0		7.2		4.6	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Surface	2	28.7	8.0	18.0	8.0	0.0	6.6		6.2	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Middle	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Middle						0.0		0.6		5.0
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Bottom 2 28.3 7.9 19.8 7.4 7.4 11.9 6.4 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Surface 1 30.3 8.5 17.3 14.2 7.8 6.6 6.5 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Surface 2 30.1 8.5 17.3 14.1 14.2 6.6 6.5 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 9.6 6.9 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 9.6 6.9	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Middle								9.0		3.9
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS8 16:30 Bottom 2 28.3 7.9 19.8 7.4 11.9 6.4 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Surface 1 30.3 8.5 17.3 14.2 7.8 6.9 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Surface 2 30.1 8.5 17.3 14.1 14.2 6.6 6.5 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 9.6 6.9	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Bottom	1	28.4	7.9	19.8	7.3	7.4	12.7		6.5	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Surface 2 30.1 8.5 17.3 14.1 14.2 6.6 6.5 6.5 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 9.6 6.9 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 6.9	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Bottom	2	28.3	7.9	19.8	7.4	1.4	11.9		6.4	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 6.9 TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 6.9	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	Surface	1	30.3	8.5	17.3	14.2		7.8		6.9	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle 9.6 6.9	TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	Surface	2	30.1	8.5	17.3	14.1	140	6.6		6.5	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Middle	TMCLKL	HY/2012/07				i	Middle						14.2		0.6		
						i									9.6		6.9
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Bottom 1 28.3 8.1 21.2 9.6 12.8 7.5	TMCLKL					16:18	Bottom	1	28.3	8.1	21.2	9.6	0.7	12.8		7.5	
TMCLKL HY/2012/07 2017-09-01 Mid-Flood IS(Mf)9 16:18 Bottom 2 28.2 8.0 21.2 9.5 9.6 11.3 6.7								2.			 		9.6				

Note: Indicates Exceedance of Action Level
Indicates Exceedance of Limit Level

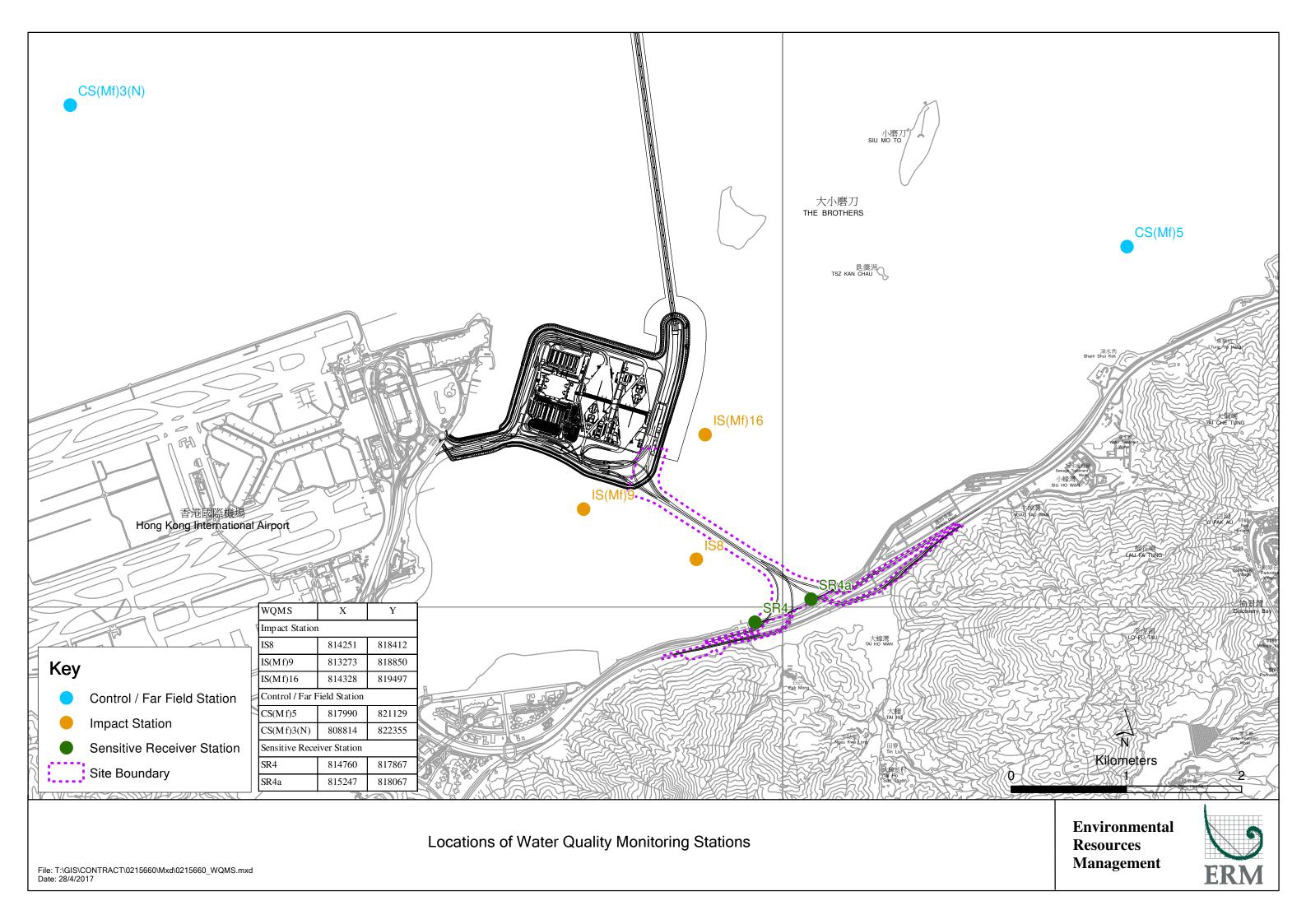


Photo 1 - CS(Mf)3(N) during mid-ebb tide on 1 September 2017

Photo 2 - SR4a during mid-flood tide on 1 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 7 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_6 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

Limit Level Exceedance

0215660_6 September 2017_Bottom-depth DO_E_Station CS(Mf)5 0215660_6 September 2017_Bottom-depth DO_F_Station CS(Mf)5

A total of three exceedances were recorded on 6 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

From ERM- Hong Kong, Limited

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Contract No. HY/2012/07

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 14 September 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_6 September 2017_ Depth-averaged SS_F_Station SR4

A total of three exceedances were recorded on 6 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_6 Se 0215660_6 Sep	Action Level Exceedance or 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 eptember 2017_ Depth-averaged SS_F_Station SR4 otember 2017_Bottom-depth DO_E_Station CS(Mf)5 otember 2017_Bottom-depth DO_F_Station CS(Mf)5 [Total No. of Exceedances = 4]											
Date	5 0	6 September 2017 (Measured)											
	•	mber 2017 (In situ results received by ERM)											
Mantiana Ciatian	-	ber 2017 (Laboratory results received by ERM)											
Monitoring Station	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)		Surface and Middle-depth Dissolved Oxygen (DO), Bottom-depth Dissolved Oxygen (DO) and Depth-averaged Suspended Solids (SS)											
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L											
	Bottom-depth DO	4.7 mg/L											
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L											
	Bottom-depth DO	3.6 mg/L											
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).											
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)											
Measured Levels	 Mid-Flood at SR4 (depth-av Mid-Ebb at CS(Mf)5 (Botton Mid-Flood at CS(Mf)5 (Botton 	ace and Middle-depth DO = 4.9mg/L); veraged SS = 26.3mg/L); n-depth DO = 4.5mg/L); com-depth DO = 4.5mg/L).											
Works Undertaken (at the time of monitoring	No major marine works was und	dertaken under this Contract on 6 September 2017.											
event)													

Possible Reason for	The exceedances of surface and middle and bottom-depth DO at CS(Mf)5 and depth-averaged SS at
Action or Limit Level	SR4 are unlikely to be due to the Project, in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 6 September 2017.
	Depth-averaged Turbidity levels at all stations were in compliance with the Action and Limit
	Levels during both mid-ebb and mid-flood tides on the same day.
	Apart from SR4, depth-averaged SS levels at all other monitoring stations were in compliance
	with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day.
	Depth-averaged SS levels at SR4 at mid-ebb tides were similar to those at other stations apart
	from the exceedance observed at mid-flood tide.
	All monitored parameters, except DO at CS(Mf)5 and SS at SR4, at all monitoring stations
	were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood
	tides on the same day.
	CS(Mf)5 is distant (>3km) from the marine works area under this Contract, thus the observed
	exceedances should not be affected by the marine works under this Contract and they are
	considered to be natural fluctuation in water quality.
	Apart from DO exceedances at CS(Mf)5, levels of DO at all monitoring stations were in
	compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on
	the same day.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 6 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 6 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Surface	1	27.9	7.7	22.0	5.1		5.5		7.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Surface	2	28.0	7.5	22.0	5.1	5.0	4.6		7.0	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Middle	1	27.2	7.8	25.7	4.8	3.0	10.6	9.3	8.8	0 0
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Middle	2	27.3	7.6	25.8	4.8		9.5	9.3	10.0	8.8
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Bottom	1	26.8	7.7	30.2	4.5	4.5	13.6		9.9	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Bottom	2	26.9	7.6	30.3	4.5	4.5	12.0		9.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Surface	1	28.9	7.5	17.7	5.5		10.1		4.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Surface	2	28.6	7.5	17.9	5.5	5.3	9.2		5.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Middle	1	27.9	7.6	19.8	5.0	3.3	13.0	12.9	7.3	7.9
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Middle	2	27.6	7.6	20.2	5.1		13.4	12.9	6.9	1.9
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Bottom	1	27.7	7.7	21.8	5.0	5.0	16.6		11.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Bottom	2	27.5	7.6	21.8	5.0	5.0	15.1		12.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Surface	1	27.8	7.8	22.1	5.0		7.2		7.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Surface	2	27.9	7.6	22.2	5.0	5.0	6.8		8.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Middle	1	27.5	7.8	23.7	4.9	5.0	7.3	(7	9.5	0.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Middle	2	27.6	7.6	23.7	4.9		6.7	6.7	8.9	8.8
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Bottom	1	27.3	7.8	24.7	4.8	4.0	6.3		8.9	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Bottom	2	27.4	7.6	24.6	4.9	4.9	6.0		9.3	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:18	Surface	1	27.9	7.7	21.5	5.1		10.9		11.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Surface	2	28.0	7.7	21.5	5.1	<i>E</i> 1	9.2		11.2	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Middle						5.1		1 / /		15.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Middle								14.4		15.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Bottom	1	27.4	7.8	24.1	5.0	4.0	18.4		20.1	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Bottom	2	27.5	7.8	24.2	4.8	4.9	19.1		19.4	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Surface	1	28.1	7.7	20.7	5.1		7.2		12.2	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Surface	2	28.2	7.7	20.7	5.1	<i>7</i> . 1	6.5		11.5	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Middle						5.1		11.6		10.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Middle								11.6		12.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Bottom	1	27.8	7.7	21.7	5.0	5.0	17.0		13.1	1
	HY/2012/07		Mid-Ebb		13:23	Bottom	2	27.9	7.7	21.7	4.9	5.0	15.6		13.3	1
	1		Mid-Ebb	IS8	13:33	Surface	1	28.9	7.8	20.8	5.5		4.9		7.4	
TMCLKL			Mid-Ebb	IS8	13:33	Surface	2	29.0	7.7	20.9	5.5		4.2		7.3	1
			Mid-Ebb	IS8	13:33	Middle						5.5		0.2		
			Mid-Ebb	IS8	13:33	Middle								8.2		6.9
TMCLKL			Mid-Ebb	IS8	13:33	Bottom	1	27.9	7.8	21.9	5.2	<i>r</i> o	12.1		6.4	1
	1		Mid-Ebb	IS8	13:33	Bottom	2	28.1	7.7	22.0	5.1	5.2	11.5		6.4	1
			Mid-Ebb	IS(Mf)9	13:42	Surface	1	28.0	7.8	21.0	5.2		4.6		5.9	
TMCLKL			Mid-Ebb	IS(Mf)9	13:42	Surface	2	28.2	7.7	21.1	5.3	<i>T</i> 0	4.4		5.0	1
			Mid-Ebb	IS(Mf)9	13:42	Middle						5.3		7 .0		
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:42	Middle								7.8		8.2
			Mid-Ebb	IS(Mf)9	13:42	Bottom	1	27.7	7.7	22.4	4.9	4.0	11.7		11.3	1
		†	Mid-Ebb	IS(Mf)9	13:42	Bottom	2	27.8	7.7	22.5	4.9	4.9	10.6		10.4	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Surface	1	27.6	7.8	23.4	5.1		4.7		5.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Surface	2	27.7	7.8	23.6	5.1	4.9	4.3		5.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Middle	1	27.0	7.9	28.4	4.8	4.9	10.3	10.0	11.8	10.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Middle	2	27.1	7.9	28.5	4.6		9.3	10.8	11.8	10.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Bottom	1	26.9	7.9	28.8	4.5	4.5	17.2		13.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Bottom	2	27.0	7.9	28.9	4.5	4.3	18.9		14.5	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Surface	1	29.1	7.4	14.1	5.0		12.9		8.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Surface	2	28.8	7.4	13.6	5.1	5.0	12.1		7.2	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Middle	1	28.6	7.5	16.6	4.9	5.0	15.8	15.1	10.6	12.1
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Middle	2	28.4	7.4	16.8	5.0		15.5	13.1	11.6	12.1
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Bottom	1	28.4	7.5	17.9	4.9	4.9	17.2		16.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Bottom	2	28.2	7.5	18.1	4.9	4.9	16.9		17.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Surface	1	28.2	7.8	21.4	5.0		13.3		12.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Surface	2	28.3	7.8	21.4	5.0	5.0	12.7		13.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Middle						5.0		13.2		17.7
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Middle								13.2		17.7
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Bottom	1	28.2	7.8	21.5	5.0	5.0	13.4		23.0	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Bottom	2	28.3	7.8	21.6	5.0	5.0	13.4		22.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Surface	1	28.4	7.7	20.2	5.2		12.3		19.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Surface	2	28.5	7.8	20.3	5.2	5.2	12.0		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Middle						J.L		13.0		20.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Middle								13.0		20.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Bottom	1	28.4	7.7	20.3	5.3	5.3	14.2		21.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Bottom	2	28.5	7.8	20.3	5.3	3,3	13.4		20.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Surface	1	28.4	7.7	20.7	5.2		17.0		24.5	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Surface	2	28.5	7.8	20.7	5.2	5.2	15.9		24.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Middle						J.L		20.4		26.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Middle								20.4		20.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood		18:51	Bottom	1	28.4	7.7	20.8	5.2	5.2	24.6		27.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Bottom	2	28.5	7.8	20.8	5.2	J.L	24.0		28.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Surface	1	28.3	7.8	20.8	5.2		11.6		21.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Surface	2	28.4	7.7	20.8	5.2	5.2	11.4		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Middle						J.L		17.4		20.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Middle								17.4		20.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Bottom	1	28.3	7.7	21.1	5.3	5.3	22.6		19.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Bottom	2	28.4	7.7	21.2	5.2	J . J	23.8		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Surface]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Surface						5.3]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Middle	1	28.3	7.8	21.8	5.3	J . J	13.4	13.5	16.5	16.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Middle	2	28.4	7.8	21.9	5.2		13.6	13.3	16.0	10.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Bottom]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Bottom									-	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Flood at CS(Mf)5 on 6 September 2017

Photo 2 - Mid-Flood at SR4 on 6 September 2017

Photo 3 - Mid-Ebb at CS(Mf)5 on 6 September 2017

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO) 16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 9 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_8 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station IS(Mf)16

0215660_8 September 2017_ Bottom-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4a

0215660_8 September 2017_Bottom-depth DO_E_Station SR4a
0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4
0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_8 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of fifteen exceedances were recorded on 8 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.												
	Action Level Exceedance 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_8 September 2017_ Bottom-depth DO_E_Station CS(Mf)5 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Bottom-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4a 0215660_8 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_8 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)99 [Total No. of Exceedances = 15]											
Date	8 September 2017 (Measured)											
	9 Septer	mber 2017 (In situ results received by ERM)										
	-	per 2017 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5, 9	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with	0 (1)(1) 1 1 1	2) 1 10 (D2) D ((1 1 D) 1 10 (D2)										
Exceedance(s)	Surface and Middle-depth I	Dissolved Oxygen (DO), Bottom-depth Dissolved Oxygen (DO)										
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L										
	Bottom-depth DO	4.7 mg/L										
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L										
	Bottom-depth DO	3.6 mg/L										
Measured Levels	 Mid-Ebb at CS(Mf)5 (Bottom 3. Mid-Ebb at CS(Mf)3(N) (Sur 4. Mid-Ebb at IS(Mf)16 (Surface 5. Mid-Ebb at IS(Mf)16 (Bottom 6. Mid-Ebb at SR4a (Surface an 7. Mid-Ebb at SR4a (Bottom-de 8. Mid-Ebb at SR4 (Surface and 9. Mid-Flood at CS(Mf)5 (Surface 10. Mid-Flood at CS(Mf)5 (Bottom 11. Mid-Flood at IS(Mf)16 (Surface 12. Mid-Flood at IS(Mf)16 (Surface 13. Mid-Flood at IS8 (Surface 14. Mid-Flood at IS8 (Surface 15. Mid-Flood at IS8 (Surface 15. Mid-Flood at IS8 (Surface 15. Mid-Flood at IS8 (Surface 16. Mid-Flood at IS8 (Surface 17. M	face and Middle-depth DO = 4.9 mg/L); e and Middle-depth DO = 4.7 mg/L); h-depth DO = 4.5 mg/L); d Middle-depth DO = 4.7 mg/L); epth DO = 4.5 mg/L); d Middle-depth DO = 4.7 mg/L); d Middle-depth DO = 4.7 mg/L); hce and Middle-depth DO = 4.7 mg/L); hce and Middle-depth DO = 4.8 mg/L); hce and Middle-depth DO = 4.8 mg/L); hcand Middle-depth DO = 4.8 mg/L); hd Middle-depth DO = 4.8 mg/L); hd Middle-depth DO = 4.8 mg/L); hce and Middle-depth DO = 4.8 mg/L).										
Works Undertaken (at	No major marine works was und	ertaken under this Contract on 8 September 2017.										
the time of monitoring												
event)												

Possible Reason for	The DO exceedances at the monitoring stations are unlikely to be due to the Project, in view of the
Action or Limit Level	following:
Exceedance(s)	No marine works was undertaken under this Contract on 6 September 2017.
	 CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. DO patterns at IS(Mf)16, SR4a and SR4 during mid-ebb had similar DO pattern as the control station CS(Mf)3(N), in which action level exceedance was observed on the same day and at the same tide. Marginal DO exceedances were observed at the surface and middle-depth at IS(Mf)16, SR4a, IS8 and IS(Mf)9 during mid-flood. The DO patterns at these monitoring stations followed
	similar DO pattern as the control station CS(Mf)5, in which action level exceedance was observed on the same day and at the same tide.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 8 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 8 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Surface	1	28.6	7.7	20.5	4.8		5.7		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Surface	2	28.6	7.7	20.4	4.9	4.8	5.8		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Middle	1	28.2	7.7	22.1	4.7	4.0	11.2	10.7	19.5	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Middle	2	28.1	7.8	22.0	4.7		11.3	19.7	21.2	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Bottom	1	27.7	7.8	24.4	4.4	4.4	41.1		36.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Bottom	2	27.6	7.7	24.3	4.4	4.4	42.9		34.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Surface	1	28.3	7.6	19.8	5.0		10.6		7.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Surface	2	28.5	7.6	19.6	4.9	4.0	10.6		6.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Middle	1	27.9	7.7	22.3	4.8	4.9	18.9	160	14.0	12.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Middle	2	28.1	7.7	22.1	4.8		18.7	16.0	15.3	13.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Bottom	1	27.8	7.7	23.3	4.9	4.0	17.0		17.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Bottom	2	28.0	7.7	23.1	4.8	4.9	19.9		17.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Surface	1	28.3	7.7	21.5	4.9		5.7		8.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Surface	2	28.1	7.7	21.5	4.9		6.1		7.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16		Middle	1	27.9	7.8	23.0	4.5	4.7	9.5	5 0	14.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Middle	2.	27.8	7.7	22.9	4.5		10.3	7.0	12.7	11.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Bottom	1	27.7	7.8	24.4	4.5		5.2		13.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Bottom	2	27.6	7.7	24.3	4.5	4.5	5.4		12.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Surface	1	28.3	7.6	20.7	4.7		7.5		13.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Surface	2.	28.2	7.7	20.6	4.7		7.9		12.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Middle	1	2012		2010		4.7	,		1211	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Middle	2.							12.4		14.8
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Bottom	1	28.1	7.6	21.9	4.5		16.6		16.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a		Bottom	2.	27.9	7.7	21.8	4.5	4.5	17.6		16.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Surface	1	28.3	7.7	20.3	4.7		8.1		9.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Surface	2	28.2	7.6	20.2	4.7		8.6		10.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Middle	1	20.2	7.0	20.2	1.7	4.7	0.0		10.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Middle	2							8.2		11.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Bottom	1	28.3	7.7	21.0	4.8		7.7		11.9	
	HY/2012/07	2017-09-08	Mid-Ebb			Bottom	2	28.1	7.7	20.9	4.9	4.9	8.2		12.5	
	HY/2012/07	2017-09-08	Mid-Ebb			Surface	1	28.9	7.8	20.2	5.2		3.9		7.6	
	HY/2012/07	2017-09-08	Mid-Ebb		+	Surface	2	28.8	7.7	20.1	5.2		4.4		9.0	
	HY/2012/07	2017-09-08	Mid-Ebb			Middle	1	20.0	1.1	20.1	3.2	5.2	4.4		7.0	
	HY/2012/07	2017-09-08	Mid-Ebb			Middle	2			<u> </u>				6.4		10.1
	HY/2012/07	2017-09-08			_	Bottom	1	28.3	7.9	21.0	5.0		8.4		11.4	
	HY/2012/07	2017-09-08		IS8	1	Bottom	2	28.2	7.7	20.9	5.0	5.0	8.9		12.4	
	HY/2012/07	2017-09-08				Surface	1	29.0	7.7	20.9	5.4		4.3		4.0	
	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9	1	Surface	1 2	28.9	7.7	20.1	5.3		4.7		5.6	
	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9		Middle		۷٥,۶	1.1	۷۷.۷	J.J	5.4	4.1		3.0	
	HY/2012/07	2017-09-08		IS(Mf)9		Middle	2			1				5.0		7.8
	HY/2012/07	2017-09-08	Mid-Ebb		13:09	Bottom		28.3	7.9	20.7	5.0		5.2		11.5	
			Mid-Ebb	IS(Mf)9		1	1				5.0	5.1	5.3		11.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9	13:09	Bottom	2	28.2	7.7	20.7	5.1		5.6		10.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Surface	1	28.1	7.8	21.3	4.8		4.2		2.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Surface	2	28.0	7.8	21.3	4.8	4.7	4.9		2.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Middle	1	27.7	7.8	24.9	4.5	4.7	4.8	5.0	5.8	5.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Middle	2	27.6	7.9	25.2	4.5		5.3	5.0	5.5	5.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Bottom	1	27.6	7.8	26.6	4.5	4.6	5.2		7.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Bottom	2	27.5	7.9	26.5	4.6	4.0	5.5		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Surface	1	28.4	7.5	16.9	4.9		11.1		10.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Surface	2	28.2	7.5	17.1	4.9	4.0	11.2		10.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Middle	1	28.3	7.6	18.7	4.7	4.8	17.0	160	17.0	16.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Middle	2	28.1	7.6	18.8	4.8		16.8	16.2	16.4	16.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		8:22	Bottom	1	28.3	7.6	18.9	4.7	4.77	19.8		22.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Bottom	2	28.0	7.6	19.0	4.7	4.7	21.0		21.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	Surface	1	28.1	7.7	20.8	4.9		2.6		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	Surface	2	28.0	7.8	20.8	4.8	4.0	2.2		2.2	
TMCLKL	HY/2012/07	2017-09-08		<u> </u>		Middle	1	28.1	7.7	21.1	4.8	4.8	3.2	0.6	2.3	2.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Middle	2	28.0	7.8	21.2	4.7		2.8	3.6	2.4	2.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Bottom	1	28.1	7.8	22.2	4.7	4.5	5.8		2.4	
	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Bottom	2	27.9	7.8	22.1	4.7	4.7	5.1		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	 ` '	7:44	Surface	1	28.1	7.8	20.7	4.9		6.0		10.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Surface	2	28.0	7.8	20.6	4.9	4.0	5.0		11.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Middle	1					4.9		6.0		44.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Middle	2							6.3		11.1
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Bottom	1	28.1	7.8	20.8	5.1	5.0	7.6		11.8	
	HY/2012/07	2017-09-08	Mid-Flood		7:44	Bottom	2	27.9	7.8	20.7	5.2	5.2	6.6		10.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Surface	1	28.1	7.8	20.8	4.9		7.2		15.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Surface	2.	28.0	7.8	20.7	5.0	~ 0	6.5		14.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Middle	1	2010	,,,,	2011	2.0	5.0			1 110	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Middle	2.							6.9		16.0
	HY/2012/07	2017-09-08	Mid-Flood		7:49	Bottom	1	28.1	7.8	20.8	5.1		7.4		17.2	
	HY/2012/07		Mid-Flood			Bottom	2.	28.0	7.8	20.7	5.2	5.2	6.6		17.5	
	HY/2012/07	2017-09-08	Mid-Flood			Surface	1	28.1	7.8	20.8	4.8		13.8		11.5	
	HY/2012/07	2017-09-08	Mid-Flood		+	Surface	2	28.0	7.8	20.7	4.8		14.0		11.6	
	HY/2012/07	2017-09-08	Mid-Flood		7:58	Middle	1	20.0	7.0	20.1	1.0	4.8	1110		11.0	
	HY/2012/07	2017-09-08	Mid-Flood			Middle	2							17.4		15.4
	HY/2012/07	2017-09-08	Mid-Flood			Bottom	1	28.1	7.8	21.0	4.7		20.8		18.5	
	HY/2012/07	2017-09-08	Mid-Flood		7:58	Bottom	2	28.0	7.8	21.0	4.7	4.7	20.9		19.9	
	HY/2012/07	2017-09-08	Mid-Flood			Surface	1	28.1	7.8	21.8	4.8		5.9		6.5	
	HY/2012/07	2017-09-08	Mid-Flood		1	Surface	2	28.0	7.8	21.7	4.8		5.2		7.5	
	HY/2012/07	2017-09-08	Mid-Flood		8:07	Middle	1	20.0	7.0	21.1	1.0	4.8	J.L		1.5	
	HY/2012/07	2017-09-08	Mid-Flood	+ ` '		Middle	2			1				9.9		8.5
	HY/2012/07	2017-09-08	Mid-Flood		8:07	Bottom	1	28.1	7.8	22.6	4.8		14.9		10.1	
	HY/2012/07	2017-09-08	Mid-Flood			Bottom	2	27.9	7.8	22.5	4.8	4.8	13.4		9.9	
TIVICLIAL	111/2012/0/	2017-09-00	1V11u-F1000	19(1M1)A	0.07	DUIIUIII	L	41.9	1.0	LL.J	4.0		13.4		7.7	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

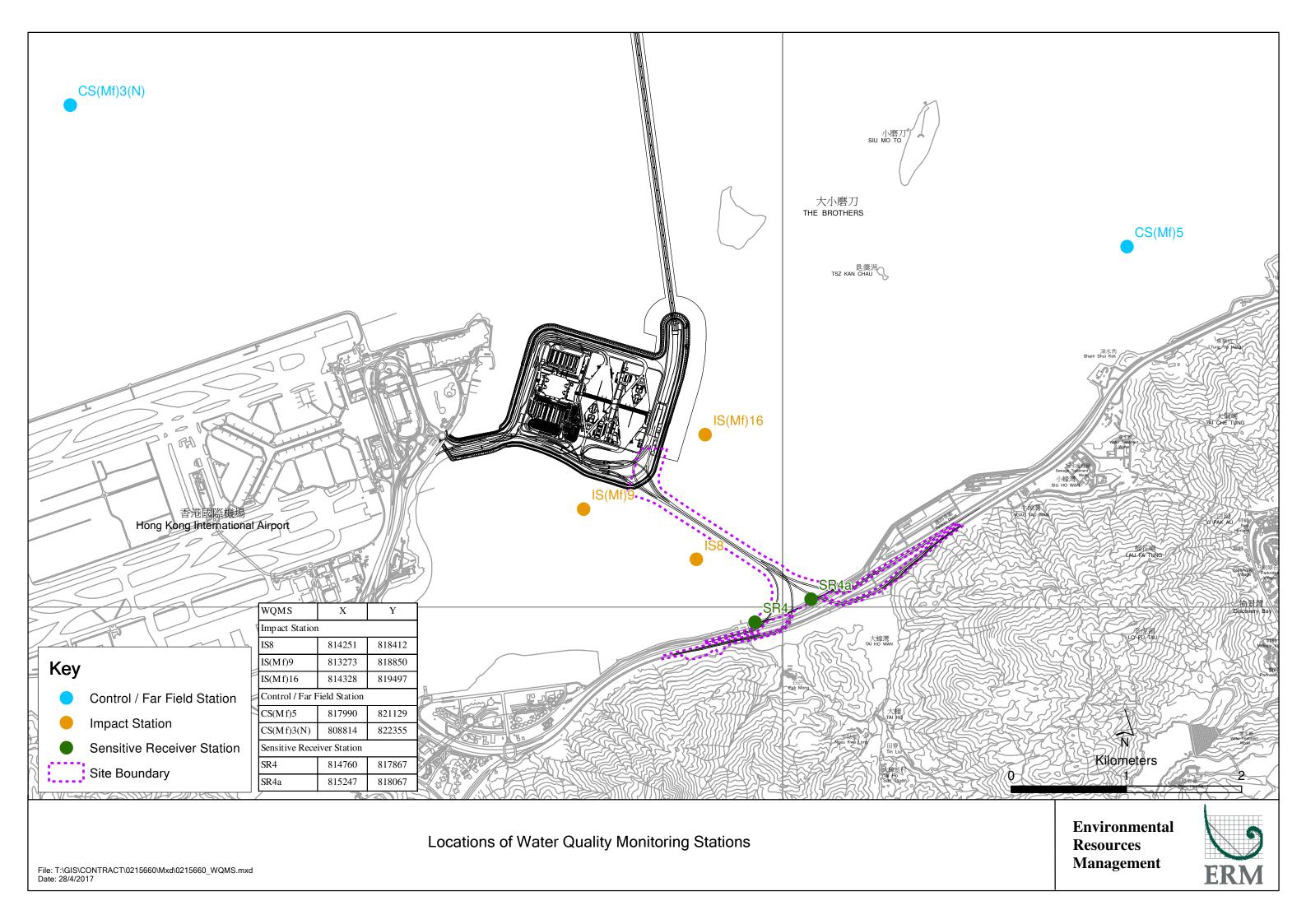


Photo 1 - Mid-Ebb at CS(Mf)5 on 8 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 8 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 8 September 2017

Photo 4 - Mid-Ebb at SR4a on 8 September 2017

Photo 5 - Mid-Ebb at SR4 on 8 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 8 September 2017

Photo 7 - Mid-Flood at CS(Mf)3(N) on 8 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 8 September 2017

Photo 9 - Mid-Flood at SR4a on 8 September 2017



Photo 10 - Mid-Flood at IS8 on 8 September 2017

Photo 11 - Mid-Flood at IS(Mf)9 on 8 September 2017

Email message

From

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 12 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_11 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_11 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_11 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_E_Station IS(Mf)16
0215660_11 September 2017_ Surface and Middle-depth DO_E_Station SR4a
0215660_11 September 2017_ Bottom-depth DO_E_Station SR4a
0215660_11 September 2017_ Surface and Middle-depth DO_E_Station SR4

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_11 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_F_Station CS(Mf)3(N)

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16

0215660_11 September 2017_Bottom-depth DO_F_Station IS(Mf)16

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_11 September 2017_Bottom-depth DO_F_Station SR4a

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station SR4

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of nineteen exceedances were recorded on 11 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

	0215660_11 September 2 0215660_11 September 2 0215660_11 Septem 0215660_11 September 2 0215660_11 September 3 0215660_11 September 3	Action Level Exceedance r 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 tember 2017_ Bottom-depth DO_E_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_E_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_E_Station IS(Mf)16 tember 2017_ Bottom-depth DO_E_Station IS(Mf)16 ter 2017_ Surface and Middle-depth DO_E_Station SR4a ptember 2017_ Bottom-depth DO_E_Station SR4a per 2017_ Surface and Middle-depth DO_E_Station SR4 r 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_F_Station CS(Mf)3(N) 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 tember 2017_Bottom-depth DO_F_Station IS(Mf)16 tember 2017_Bottom-depth DO_F_Station SR4a teptember 2017_Bottom-depth DO_F_Station SR4a teptember 2017_Bottom-depth DO_F_Station SR4a teptember 2017_Bottom-depth DO_F_Station SR4a teptember 2017_Surface and Middle-depth DO_F_Station SR4a teptember 2017_Surface and Middle-depth DO_F_Station IS(Mf)9 [Total No. of Exceedances = 19]								
Date	11 September 2017 (Measured) 12 September 2017 (In situ results received by ERM)									
Date	_	` '								
Date Monitoring Station	19 Septemb	1 ,								
	19 Septemb CS(Mf)5, S	mber 2017 (<i>In situ</i> results received by ERM) er 2017 (Laboratory results received by ERM)								
Monitoring Station Parameter(s) with	19 Septemb CS(Mf)5, S	mber 2017 (In situ results received by ERM) per 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Monitoring Station Parameter(s) with Exceedance(s)	19 Septemb CS(Mf)5, S Surface and Midd	mber 2017 (In situ results received by ERM) er 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N) le-depth DO, Bottom-depth Dissolved Oxygen (DO)								
Monitoring Station Parameter(s) with Exceedance(s)	19 Septemb CS(Mf)5, S Surface and Middle-Surface and Middle-depth DO	mber 2017 (In situ results received by ERM) er 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N) le-depth DO, Bottom-depth Dissolved Oxygen (DO) 5.0 mg/L								

Measured Levels	Action Level Exceedance
ivicus area zevers	1. Mid-Ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L);
	2. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 3.9 mg/L);
	3. Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.6 mg/L);
	4. Mid-Ebb at CS(Mf)3(N) (Bottom-depth DO = 4.5 mg/L);
	5. Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.3 mg/L);
	6. Mid-Ebb at SR4a (Surface and Middle-depth DO = 4.8 mg/L);
	7. Mid-Ebb at SR4a (Bottom-depth DO = 4.4 mg/L);
	8. Mid-Ebb at SR4 (Surface and Middle-depth DO = 4.9 mg/L);
	9. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L);
	10. Mid-Flood at CS(Mf)5 (Bottom-depth DO = 4.1 mg/L);
	11. Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.6 mg/L);
	12. Mid-Flood at CS(Mf)3(N) (Bottom-depth DO = 4.6 mg/L);
	13. Mid-Flood at IS(Mf)16 (Surface and Middle-depth DO = 4.7 mg/L);
	14. Mid-Flood at IS(Mf)16 (Bottom-depth DO = 4.6 mg/L);
	15. Mid-Flood at SR4a (Surface and Middle-depth DO = 4.7 mg/L);
	16. Mid-Flood at SR4a (Bottom-depth DO = 4.6 mg/L);
	17. Mid-Flood at SR4 (Surface and Middle-depth DO = 4.8 mg/L);
	18. Mid-Flood at IS8 (Surface and Middle-depth DO = 4.8 mg/L);
	19. Mid-Flood at IS(Mf)9 (Surface and Middle-depth DO = 4.8 mg/L).
Works Undertaken (at	No major marine works was undertaken under this Contract on 11 September 2017.
the time of monitoring	
event)	
Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 11 September 2017.
	All monitored parameters, except DO, at all monitoring stations were in compliance with the
	Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.
	·
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works
	area under this Contract, thus the observed exceedances should not be affected by the marine
	works under this Contract and they are considered to be natural fluctuation in water quality.
	Marginal DO exceedances were observed at IS(Mf)16, SR4a and SR4 during mid-ebb tide. The
	DO patterns at surface and middle and bottom levels at these stations followed similar DO
	pattern as the upstream control station, CS(Mf)3(N), in which action level exceedances were
	observed during mid-ebb tide. Consequently the observed DO exceedances are considered
	within the natural range and are not considered to be caused by the Project.
	, ,
	DO patterns at IS(Mf)16, IS(Mf)9, IS8, SR4a and SR4 during mid-flood tide followed similar
	DO pattern as the upstream control station, CS(Mf)5, in which action level exceedances were
	observed during the same tide. Therefore, the observed DO exceedances are considered
	within the natural range and are not considered to be caused by the Project.
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 11 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 11 September 2017 is attached.
	10 www.com

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Surface	1	29.3	7.7	18.3	4.7		4.4		6.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Surface	2	29.4	7.7	18.4	4.7	4.6	4.0		5.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Middle	1	28.8	7.7	20.2	4.5	4.0	5.1	5.2	4.7	5.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Middle	2	29.0	7.7	20.3	4.5		4.8	5.3	4.8	5.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Bottom	1	27.7	7.7	26.5	3.9	3.9	6.8		6.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Bottom	2	27.9	7.7	26.6	3.9	3.9	6.4		7.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Surface	1	29.7	7.4	13.6	4.6		14.1		3.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Surface	2	29.5	7.4	13.8	4.7	4.6	14.4		3.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Middle	1	28.7	7.5	19.9	4.4	4.0	17.5	18.5	4.6	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Middle	2	28.5	7.6	20.1	4.5		14.1	10.3	4.3	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Bottom	1	28.7	7.6	21.1	4.4	4.5	25.8		14.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Bottom	2	28.4	7.6	21.2	4.5	4.3	25.3		15.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Surface	1	29.0	7.7	20.1	5.1		5.6		6.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Surface	2	29.2	7.7	20.2	5.2	5.0	4.9		6.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Middle	1					5.2		77		6.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Middle	2							7.7		6.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Bottom	1	28.1	7.7	23.4	4.3	4.2	10.8		5.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Bottom	2	28.3	7.7	23.5	4.3	4.3	9.6		5.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Surface	1	29.0	7.6	18.9	4.7		8.0		12.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Surface	2	29.2	7.6	19.0	4.8	4.0	7.5		12.5	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Middle	1					4.8		10.1		11.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Middle	2							10.1		11.8
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Bottom	1	28.6	7.6	19.9	4.4	4.4	12.4		10.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Bottom	2	28.8	7.6	20.0	4.4	4.4	12.3		11.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Surface	1	28.9	7.6	19.0	4.9		7.5		8.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Surface	2	29.1	7.6	19.1	4.9	4.0	7.3		9.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Middle	1					4.9		0.7		0.7
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Middle	2							8.7		9.7
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Bottom	1	28.9	7.6	19.8	4.8	4.0	10.2		10.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Bottom	2	29.0	7.6	19.9	4.8	4.8	9.8		10.2	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Surface	1	29.3	7.7	18.9	5.2		6.7		7.2	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Surface	2	29.5	7.7	18.9	5.2	<i>5</i> 0	6.3		6.4	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Middle	1					5.2		7.7		6.0
	HY/2012/07		Mid-Ebb	IS8	15:25	Middle	2							7.7		6.3
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Bottom	1	28.7	7.7	20.0	5.0	5.0	9.0		5.7	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Bottom	2	28.9	7.7	20.1	5.0	5.0	8.6		6.0	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Surface	1	29.0	7.7	19.1	5.3		5.3		5.1	
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Surface	2	29.2	7.7	19.2	5.3	<i>r</i> 0	4.9		4.5	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Middle	1					5.3	-	<i>7</i> 0		1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Middle	2							5.0		5.3
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Bottom	1	29.0	7.7	19.4	5.3	<i>r</i> 0	5.0		5.6	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	15:16	Bottom	2	29.2	7.7	19.4	5.3	5.3	4.6		6.0	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Surface	1	28.7	7.7	18.6	4.8		2.7		3.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Surface	2	28.9	7.7	18.7	4.8	4.6	2.7		4.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Middle	1	28.3	7.7	21.1	4.4	4.0	3.6	67	3.5	2.5
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Middle	2	28.5	7.7	21.2	4.4		3.5	6.7	4.0	3.5
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Bottom	1	27.9	7.7	24.6	4.1	4.1	14.2		3.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Bottom	2	28.1	7.7	24.7	4.1	4.1	13.3		2.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Surface	1	29.4	7.4	13.9	4.6		9.6		9.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Surface	2	29.1	7.5	14.0	4.7	4.6	9.5		9.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Middle	1	29.0	7.6	16.8	4.5	4.0	10.1	11.8	14.9	14.8
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Middle	2	28.8	7.6	16.8	4.6		10.5	11.0	14.5	14.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Bottom	1	28.9	7.5	18.0	4.5	1.6	15.4		19.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Bottom	2	28.7	7.6	18.0	4.6	4.6	15.7		21.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Surface	1	28.8	7.6	18.4	4.7		3.3		2.3	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Surface	2	28.9	7.6	18.4	4.7	4.7	3.1		2.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Middle	1					4.7		7.0		4.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Middle	2							7.2		4.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Bottom	1	28.5	7.6	19.6	4.6	4.6	11.4		7.3	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Bottom	2	28.7	7.6	19.6	4.6	4.6	10.8		7.4	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Surface	1	28.7	7.6	18.5	4.7		13.0		14.5	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Surface	2	28.9	7.6	18.5	4.7	4.7	13.4		15.2	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Middle	1					4.7		10.5		140
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Middle	2							13.5		14.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Bottom	1	28.6	7.6	18.9	4.6	1.6	14.2		14.7	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Bottom	2	28.8	7.6	18.9	4.6	4.6	13.3		15.0	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Surface	1	28.8	7.6	18.0	4.8		7.3		15.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Surface	2	29.0	7.6	18.1	4.8	4.0	7.9		13.9	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Middle	1					4.8		0.2		14.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Middle	2							8.3		14.6
TMCLKL	HY/2012/07	2017-09-11	i e	SR4	10:23	Bottom	1	28.8	7.6	18.0	4.8	4.0	9.9		14.6	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Bottom	2	29.0	7.6	18.1	4.8	4.8	8.1		14.2	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Surface	1	29.0	7.6	18.1	4.8		4.7		6.6	
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Surface	2	29.2	7.6	18.2	4.8	4.0	4.5		8.1	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Middle	1					4.8		4.0		0.0
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Middle	2							4.9		8.2
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Bottom	1	28.8	7.6	18.2	4.8	4.0	5.2		9.0	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Bottom	2	29.0	7.6	18.3	4.8	4.8	5.0		9.0	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Surface	1	28.7	7.6	19.3	4.8		9.4		9.1	
	HY/2012/07	2017-09-11			10:47	Surface	2	28.9	7.6	19.4	4.8	4.0	9.2		9.3	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Middle	1	-	-			4.8		10.5		0.0
	HY/2012/07	2017-09-11	•		10:47	Middle	2							10.5		9.2
	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)9	10:47	Bottom	1	28.6	7.7	20.0	4.7	4.5	12.1		8.8	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Bottom	2	28.8	7.7	20.1	4.7	4.7	11.3		9.4	1

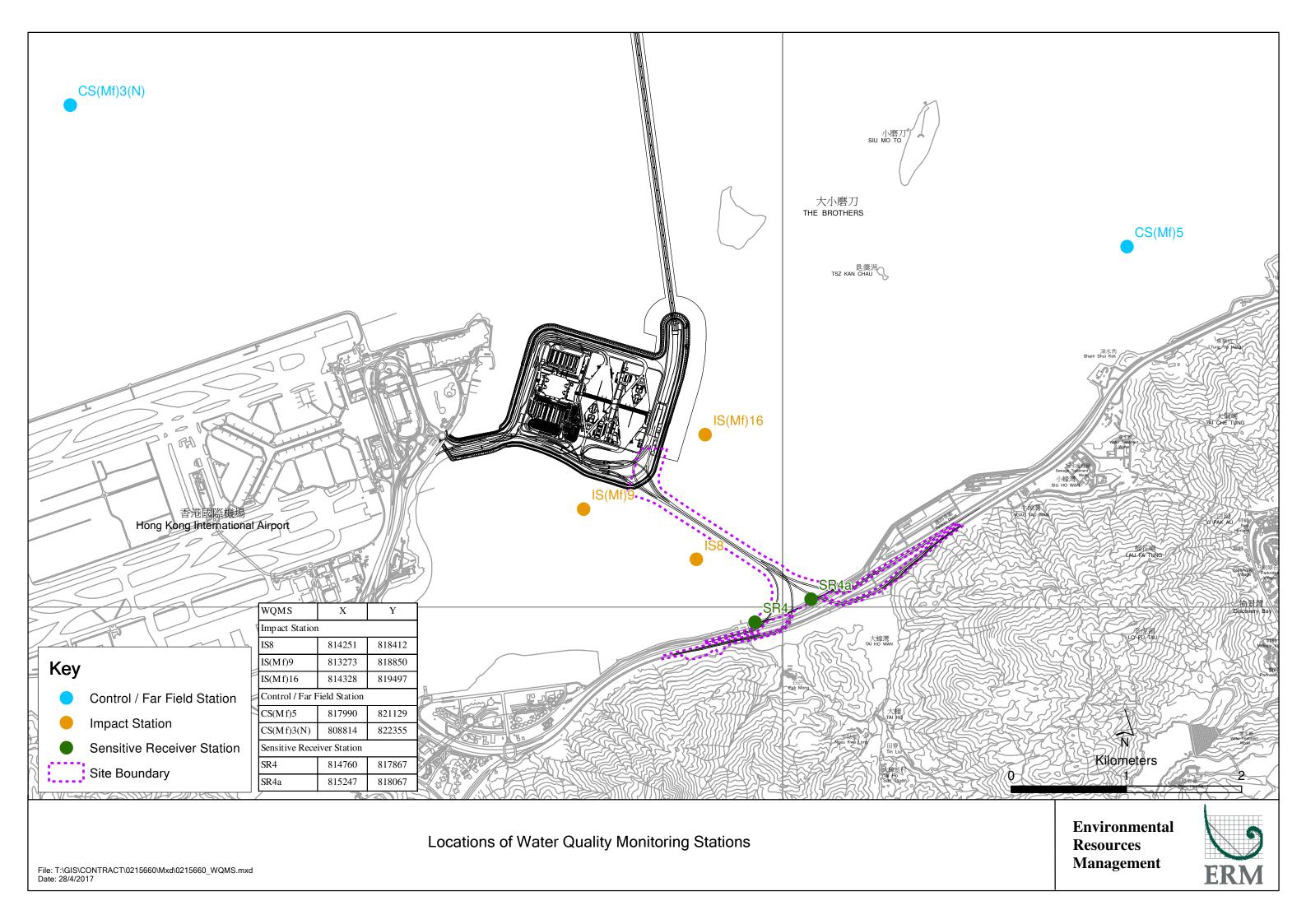


Photo 1 - Mid-Ebb at CS(Mf)5 on 11 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 11 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 11 September 2017

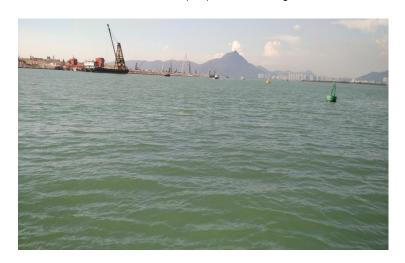


Photo 4 - Mid-Ebb at SR4a on 11 September 2017

Photo 5 - Mid-Ebb at SR4 on 11 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 11 September 2017

Photo 7 - Mid-Flood at CS(Mf)3(N) on 11 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 11 September 2017

Photo 9 - Mid-Flood at SR4 on 11 September 2017

Photo 10 - Mid-Flood at IS8 on 11 September 2017

Photo 11 - Mid-Flood at IS(Mf)9 on 11 September 2017

Email message **Environmental** Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO) 16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 14 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_13 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_13 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_13 September 2017_ Bottom-depth DO_E_Station IS(Mf)16

0215660_13 September 2017_ Bottom-depth DO_E_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_E_Station SR4
0215660_13 September 2017_ Bottom-depth DO_E_Station IS8
0215660_13 September 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5
0215660_13 September 2017_ Bottom-depth DO_F_Station CS(Mf)5
0215660_13 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_13 September 2017_ Bottom-depth DO_F_Station IS(Mf)16

0215660_13 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_F_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_F_Station IS(Mf)9

A total of thirteen exceedances were recorded on 13 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance									
	0215660_13 September :	tember 2017_ Bottom-depth DO_E_Station CS(Mf)5 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) tember 2017_ Bottom-depth DO_E_Station IS(Mf)16 eptember 2017_ Bottom-depth DO_E_Station SR4a eptember 2017_ Bottom-depth DO_E_Station IS8 eptember 2017_ Bottom-depth DO_E_Station IS8 er 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)5 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) tember 2017_ Bottom-depth DO_F_Station IS(Mf)16 per 2017_ Surface and Middle-depth DO_F_Station SR4a eptember 2017_ Bottom-depth DO_F_Station SR4a bettember 2017_ Bottom-depth DO_F_Station IS(Mf)9 [Total No. of Exceedances = 13]									
Date		13 September 2017 (Measured)									
	14 Septe	mber 2017 (In situ results received by ERM)									
	19 Septemb	per 2017 (Laboratory results received by ERM)									
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)									
Parameter(s) with Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)									
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Measured Levels	 Mid-Ebb at CS(Mf)3(N) (Sur 3. Mid-Ebb at IS(Mf)16 (Bottom 4. Mid-Ebb at SR4a (Bottom-dep 5. Mid-Ebb at SR4 (Bottom-dep 6. Mid-Ebb at IS8 (Bottom-dep 7. Mid-Flood at CS(Mf)5 (Surfa 8. Mid-Flood at CS(Mf)5 (Bottom 9. Mid-Flood at CS(Mf)16 (Bottom 10. Mid-Flood at IS(Mf)16 (Bottom 11. Mid-Flood at SR4a (Surface 12. Mid-Flood at IS(Mf)9 (Bottom 13. Mid-Flood at IS(Mf)9 (Bottom 13. Mid-Flood at IS(Mf)9 (Bottom 14. Mid-Flood at IS(Mf)9 (Bottom 15. Mid	Action Level Exceedance 1. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.1 mg/L); 2. Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9 mg/L); 3. Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.2 mg/L); 4. Mid-Ebb at SR4a (Bottom-depth DO = 4.6 mg/L); 5. Mid-Ebb at SR4 (Bottom-depth DO = 4.6 mg/L); 6. Mid-Ebb at IS8 (Bottom-depth DO = 4.2 mg/L); 7. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L); 8. Mid-Flood at CS(Mf)5 (Bottom-depth DO = 3.7 mg/L); 9. Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9 mg/L); 10. Mid-Flood at SR4a (Surface and Middle-depth DO = 4.9 mg/L); 11. Mid-Flood at SR4a (Bottom-depth DO = 4.3 mg/L); 12. Mid-Flood at SR4a (Bottom-depth DO = 4.3 mg/L);									
Works Undertaken (at the time of monitoring	No major marine works was und	ertaken under this Contract on 13 September 2017.									
event)											

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Action or Limit Level Exceedance(s)	 in view of the following: No marine works was undertaken under this Contract on 13 September 2017. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. DO levels were generally lower at water quality monitoring stations due to two possible reasons of natural variation: Natural ability for water to hold dissolved oxygen is reduced due to higher water temperature in summer months. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and IS(Mf)16 monitoring stations was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level as the DO
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle and surface levels.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 13 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 13 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Surface	1	29.3	7.9	20.9	5.6		1.5		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Surface	2	29.4	7.9	21.1	5.7	5.2	1.6		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Middle	1	28.3	7.9	26.3	4.7	J . Z	1.2	1 0	2.9	2.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Middle	2	28.5	7.9	26.5	4.7		1.2	1.8	4.2	3.8
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Bottom	1	27.7	7.9	28.9	4.1	4.1	2.5		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Bottom	2	27.9	7.9	29.3	4.0	4.1	2.7		4.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Surface	1	29.3	7.8	18.4	4.8		2.0		6.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Surface	2	29.1	7.8	18.6	4.9	4.9	1.9		6.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Middle	1	29.4	7.9	21.0	4.9	4.9	2.6	2.5	6.5	6.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Middle	2	29.2	7.9	21.1	5.0		2.5	2.3	5.9	6.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Bottom	1	29.2	7.9	21.9	4.7	4.0	3.1		6.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Bottom	2	28.9	7.9	22.0	4.9	4.8	3.1		7.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Surface	1	29.6	7.9	19.8	6.2		3.5		7.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Surface	2	29.8	8.0	20.0	6.3	5.2	3.5		6.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Middle	1	28.3	7.9	25.4	4.4	5.3	5.7	47	7.8	0.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Middle	2	28.5	7.9	25.7	4.4		5.8	4.7	7.0	8.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Bottom	1	28.0	7.9	26.6	4.2	4.0	5.0		9.6]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Bottom	2	28.2	7.9	26.8	4.1	4.2	4.9		9.9]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Surface	1	29.3	7.9	20.1	5.6		3.7		6.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Surface	2	29.4	7.9	20.3	5.6	5.6	3.7		5.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Middle	1					5.6		0.0		7.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Middle	2							8.0		7.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Bottom	1	28.9	7.8	21.3	4.6	4.6	12.0		9.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Bottom	2	29.1	7.8	21.5	4.5	4.0	12.4		8.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Surface	1	29.4	7.9	19.9	5.8		3.6		5.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Surface	2	29.5	7.9	20.1	5.8	5 0	3.8		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Middle	1					5.8		7.1		5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Middle	2							7.1		5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Bottom	1	29.0	7.8	21.1	4.6	4.6	10.0		5.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Bottom	2	29.2	7.8	21.3	4.5	4.0	10.8		5.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Surface	1	29.8	7.9	19.5	6.2		3.7		6.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Surface	2	29.9	8.0	19.7	6.3	6.2	4.1		7.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Middle	1					6.3		0.0		0.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Middle	2							8.0		9.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Bottom	1	28.8	7.8	22.0	4.2	4.0	11.8		11.7]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Bottom	2	29.0	7.8	22.7	4.1	4.2	12.2		11.0]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Surface	1	30.1	7.9	19.1	6.8		2.9		3.8	
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Surface	2	30.3	8.0	19.3	6.8	(0	3.1		2.8]
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Middle	1					6.8		2.0		5.0
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Middle	2							3.8		5.3
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Bottom	1	29.6	7.9	19.4	6.2	(0	4.4		7.7]
	HY/2012/07		Mid-Ebb	IS(Mf)9	18:01	Bottom	2	29.7	7.9	19.6	6.2	6.2	4.8		6.9]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Surface	1	29.1	7.8	20.0	5.3		1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Surface	2	29.3	7.9	20.2	5.3	4.6	1.3		4.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Middle	1	28.2	7.8	25.1	4.0	4.0	2.5	2.9	2.8	3.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Middle	2	28.3	7.9	25.4	3.9		2.4	2.9	3.2	3.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Bottom	1	27.7	7.9	28.3	3.7	3.7	4.9		3.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Bottom	2	27.9	7.9	28.6	3.7	3.1	4.9		4.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Surface	1	29.4	7.7	14.6	4.9		1.4		2.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Surface	2	29.7	7.7	14.5	4.8	4.0	1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Middle	1	28.9	7.8	18.8	4.9	4.9	5.4	4.5	3.7	4.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Middle	2	29.1	7.8	18.7	4.9		5.4	4.5	3.7	4.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Bottom	1	28.8	7.8	20.4	5.0	5.0	6.5		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Bottom	2	29.0	7.8	20.4	4.9	5.0	6.6		5.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Surface	1	29.2	7.8	19.5	5.4		3.4		5.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Surface	2	29.4	7.9	19.7	5.4		3.2		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Middle	1					5.4				5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Middle	2							7.0		7.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Bottom	1	28.6	7.8	22.2	4.2		10.5		9.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Bottom	2	28.8	7.8	22.4	4.1	4.2	10.9		9.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	Surface	1	29.0	7.8	20.2	4.9		3.4		4.1	
TMCLKL	HY/2012/07	2017-09-13		SR4a	12:53	Surface	2	29.2	7.9	20.3	4.9		3.5		3.7	
TMCLKL	HY/2012/07	2017-09-13		SR4a	12:53	Middle	1	2).2	7.5	20.5	1.2	4.9	3.3		3.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	Middle	2							6.7		5.4
TMCLKL	HY/2012/07	2017-09-13			12:53	Bottom	1	28.7	7.8	21.8	4.3		9.8		6.0	
TMCLKL	HY/2012/07	2017-09-13			12:53	Bottom	2	28.9	7.8	22.0	4.2	4.3	9.9		7.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Surface	1	29.3	7.8	19.6	5.3		2.8		7.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Surface	2	29.4	7.9	19.8	5.3		2.7		8.6	
TMCLKL	HY/2012/07	2017-09-13			12:59	Middle	1	2).٦	1.7	17.0	J.J	5.3	2.1		0.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Middle	2							3.5		9.8
	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Bottom	1	29.0	7.8	20.3	4.9		4.2		11.6	
		2017-09-13	Mid-Flood		12:59	Bottom	2	29.1	7.0	20.6	4.9	4.9	4.4		11.4	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Surface	1	29.3	7.8	19.7	5.3		4.0		3.2	
			Mid-Flood	_	13:14	Surface	2	29.4	7.9	19.7	5.3		4.0		2.9	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Middle		29.4	1.9	19.9	3.3	5.3	4.0		2.9	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Middle	2.							4.7		5.5
	HY/2012/07	2017-09-13	Mid-Flood		13:14		<u>Z</u>	28.9	7.8	20.8	4.7		5.4		8.7	
	1					Bottom	2					4.7				
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Bottom	<u> </u>	29.1	7.9	21.0	4.7		5.4		7.0	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Surface	2	29.6	7.8	19.1	5.6		3.3		3.5	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Surface	2	29.8	7.9	19.3	5.7	5.7	3.1		3.8	
	HY/2012/07	2017-09-13		 ` 	13:23	Middle	1						<u> </u>	5.1	<u> </u>	6.5
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Middle	2	20.0	7.0	21.2	1.5		60		10.1	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Bottom	1	28.9	7.8	21.2	4.6	4.6	6.9		10.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	Bottom	2	29.1	7.8	21.4	4.6		7.1		8.7	

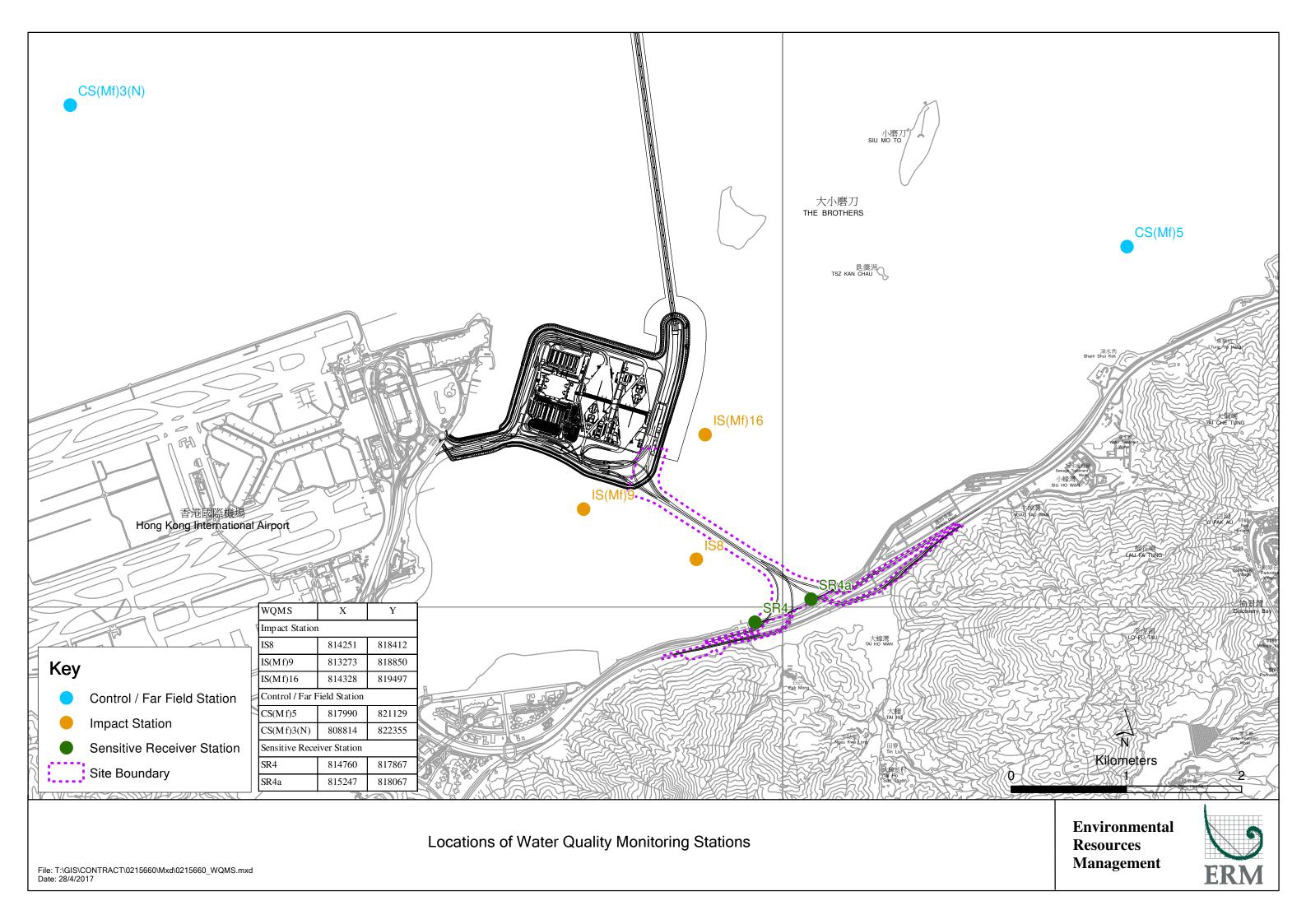


Photo 1 - Mid-Ebb at CS(Mf)5 on 13 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 13 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 13 September 2017

Photo 4 - Mid-Ebb at SR4a on 13 September 2017

Photo 5 - Mid-Ebb at SR4 on 13 September 2017

Photo 6 - Mid-Ebb at IS8 on 13 September 2017

Photo 7 - Mid-Flood at CS(Mf)5 on 13 September 2017

Photo 8 - Mid-Flood at CS(Mf)3(N) on 13 September 2017

Photo 9 - Mid-Flood at IS(Mf)16 on 13 September 2017

Photo 10 - Mid-Flood at SR4a on 13 September 2017

Photo 11 - Mid-Flood at IS(Mf)9 on 13 September 2017

Email message

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kon

From ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link – Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 18 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_15 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_15 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_15 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

0215660_15 September 2017_ Bottom-depth DO_E_Station SR4a

0215660_15 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

Limit Level Exceedance

0215660_15 September 2017_ Depth-averaged turbidity_F_Station IS8

A total of six exceedances were recorded on 15 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance												
	0215660_15 Septembe	r 2017_Surface and Middle-depth DO_E_Station CS(Mf)5												
	0215660_15 Sep	tember 2017_ Bottom-depth DO_E_Station CS(Mf)5												
	_	ember 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)												
		eptember 2017_ Bottom-depth DO_E_Station SR4a												
	0215660_15 Sep	tember 2017_ Bottom-depth DO_F_Station CS(Mf)5												
		<u>Limit Level Exceedance</u>												
	0215660_15 Septe	0215660_15 September 2017_ Depth-averaged turbidity_F_Station IS8 [Total No. of Exceedances = 6]												
Date		15 September 2017 (Measured)												
	1	16 September 2017 (In situ results received by ERM)												
	25 Septemb	per 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO,	Bottom-depth Dissolved Oxygen (DO), Depth-averaged Turbidity												
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Action Levels for	120% of upstream control station	at the same tide of the same day and 95%-ile of baseline data i.e.												
Turbidity	27.5 NTU													
Limit Levels for	130% of upstream control station	at the same tide of the same day and 99%-ile of baseline data i.e.												
Turbidity	47.0 NTU													
Measured Levels	Action Level Exceedance													
		and Middle-depth DO = 4.9mg/L);												
	 Mid-ebb at CS(Mf)5 (Bottom Mid-ebb at CS(Mf)3(N) (Bottom) 													
	4. Mid-ebb at SR4a (Bottom-de													
	5. Mid-flood at CS(Mf)5 (Botton													
	<u>Limit Level Exceedance</u>	- · ·												
	` *													
Works Undertaken (at	No major marine works was und	ertaken under this Contract on 15 September 2017.												
the time of monitoring														
event)														

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
	 in view of the following: No marine works was undertaken under this Contract on 15 September 2017. CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. Marginal exceedance at bottom level at SR4a during mid-ebb tide had a similar DO pattern with the upstream control station, CS(Mf)3(N), in which action level exceedance was observed at the bottom level at the same tide. DO levels were generally lower at water quality monitoring stations due to two possible reasons of natural variation: 1. Natural ability for water to hold dissolved oxygen is reduced due to higher water temperature in summer months. 2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N) monitoring stations was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level as the DO exceedances recorded at the bottom level showed higher levels of Salinity than the middle and surface levels. Levels of depth-averaged Turbidity at all monitoring stations, except Mid-flood at IS8, were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. Levels of depth-averaged Suspended Solids at all monitoring stations were in compliance
	 with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. No construction vessels under this Contract associated with muddy plumes or discharges of muddy waters from platforms.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 15 September 2017 and locations of water quality monitoring stations are attached. Site photo record on 15 September 2017 is attached.

TMCLKL HY					Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
	77/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Surface	1	28.6	7.9	21.0	5.2		3.2		2.6	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Surface	2	28.4	7.9	20.7	5.2	4.9	3.2		2.2	
	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Middle	1	28.6	8.0	23.8	4.6	4.9	3.4	4.2	2.3	2.4
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Middle	2	28.4	7.9	23.5	4.6		3.4	4.2	2.6	2.4
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Bottom	1	27.8	8.0	29.4	3.7	3.8	6.2		2.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Bottom	2	27.7	7.9	28.9	3.8	3.0	5.5		2.1	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Surface	1	28.9	7.9	17.3	5.2		15.3		3.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Surface	2	28.6	7.7	17.4	5.3	5.0	14.4		4.2	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Middle	1	28.7	8.0	21.8	4.6	5.0	17.7	16.0	4.4	4.0
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Middle	2	28.5	7.9	21.8	4.7		16.8	16.9	4	4.0
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Bottom	1	28.7	8.0	22.6	4.5	4.6	19.0		4.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Bottom	2	28.4	7.8	22.6	4.6	4.6	18.1		3.1	
	Y/2012/07	2017/09/15	Mid-Ebb	IS(Mf)16	8:28	Surface	1	28.7	8.1	21.7	6.2		4.8		2.3	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	IS(Mf)16	8:28	Surface	2	28.6	8.0	21.5	6.2	6.0	4.9		2.9	
			Mid-Ebb	IS(Mf)16	8:28	Middle	1					6.2		<i>r</i> 1		0.1
			Mid-Ebb	IS(Mf)16	8:28	Middle	2							5.1		3.1
			Mid-Ebb	IS(Mf)16	8:28	Bottom	1	28.7	8.0	23.2	4.9	5 0	5.4		3.6	
			Mid-Ebb	IS(Mf)16	8:28	Bottom	2	28.6	7.9	22.9	5.0	5.0	5.4		3.6	
			Mid-Ebb	SR4a	8:40	Surface	1	28.8	8.0	22.0	5.5		7.8		4.2	
			Mid-Ebb	SR4a	8:40	Surface	2	28.6	7.9	21.7	5.4		7.3		3.9	
-			Mid-Ebb	SR4a	8:40	Middle	1					5.5	,,,,	10.1		~ 0
			Mid-Ebb	SR4a	8:40	Middle	2							10.1		5.0
			Mid-Ebb	SR4a	8:40	Bottom	1	28.6	7.9	23.2	4.5	1.6	12.5		6.3	
			Mid-Ebb	SR4a	8:40	Bottom	2	28.5	7.9	22.9	4.6	4.6	12.7		5.6	
			Mid-Ebb	SR4	8:45	Surface	1	28.8	8.0	21.7	5.4		7.2		6.7	
			Mid-Ebb	SR4	8:45	Surface	2	28.7	7.9	21.5	5.4	- ·	7.1		5	
			Mid-Ebb	SR4	8:45	Middle	1					5.4		0.0	_	
			Mid-Ebb	SR4	8:45	Middle	2							8.0		6.4
			Mid-Ebb	SR4	8:45	Bottom	1	28.9	8.0	21.9	5.2		9.7		6.8	
TMCLKL HY			Mid-Ebb		8:45	Bottom	2	28.7	7.9	21.6	5.2	5.2	7.9		7.2	
			Mid-Ebb	IS8	8:56	Surface	1	28.7	8.1	21.5	6.3		4.4		2.8	
			Mid-Ebb	IS8	8:56	Surface	2	28.6	8.0	21.3	6.3		4.5		2.1	
			Mid-Ebb	IS8	8:56	Middle	1	20.0	0.0	21.5	0.5	6.3	1.5		2.1	
			Mid-Ebb	IS8	8:56	Middle	2							9.6		2.7
			Mid-Ebb	IS8	8:56	Bottom	1	28.8	8.0	22.2	5.4		14.9		2.6	
			Mid-Ebb	IS8	8:56	Bottom	2	28.7	7.9	22.0	5.5	5.5	14.6		3.4	
			Mid-Ebb	IS(Mf)9	9:10	Surface	1	28.7	8.1	21.4	6.6		4.6		3.6	
			Mid-Ebb	IS(Mf)9	9:10	Surface	2.	28.6	8.0	21.2	6.6		4.6		2.9	
			Mid-Ebb	IS(Mf)9	9:10	Middle	1	20.0	0.0	21.2	<u> </u>	6.6	1.0		2.7	
			Mid-Ebb	IS(Mf)9	9:10	Middle	2							4.6		3.0
			Mid-Ebb	IS(Mf)9	9:10	Bottom	1	28.8	8.0	21.7	5.9		4.4		2.2	
			Mid-Ebb	IS(Mf)9	9:10	Bottom	7	28.6	8.0	21.7	6.0	6.0	4.6		3.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Surface	1	29.5	7.8	20.9	5.8		4.1		1.6	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Surface	2	29.3	7.9	21.1	5.8	5.2	4.3		1.7]
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Middle	1	28.2	7.8	26.1	4.6	J.Z	7.8	9.3	2.7	2.6
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Middle	2	28.1	7.8	26.4	4.6		7.6	9.3	3.4	2.0
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Bottom	1	27.8	7.8	28.8	3.7	3.7	15.5		3.5	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Bottom	2	27.6	7.8	29.0	3.7	3.1	16.7		2.5	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Surface	1	30.4	7.6	12.2	5.2		18.4		3.8	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Surface	2	30.2	7.5	12.1	5.3	5.3	17.8		4.6	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Middle	1	29.7	7.6	15.5	5.2	3.3	16.9	17.0	4.2	A 1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Middle	2	29.4	7.6	15.6	5.3		16.0	17.0	4.8	4.1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Bottom	1	29.5	7.6	16.6	5.1	5.0	16.6		3.2	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Bottom	2	29.3	7.6	16.7	5.2	5.2	16.1		3.7	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Surface	1	29.1	7.8	20.1	6.5		3.0		3.2	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Surface	2	28.9	7.9	20.3	6.4	(2)	3.3		2.3	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Middle	1	28.9	7.8	21.0	6.1	6.3	3.3	4.0	7.1	5.0
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Middle	2	28.8	7.9	21.2	6.0		3.7	4.8	7.4	5.2
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Bottom	1	28.6	7.8	22.8	4.8	4.0	7.8		5.7	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Bottom	2	28.5	7.8	22.9	4.9	4.9	7.4		5.7	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Surface	1	29.5	7.8	19.2	6.4		2.0		2.1	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Surface	2	29.3	7.9	19.3	6.4	6.4	1.9		2.3	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	1	15:44	Middle	1					6.4		2.7		2.5
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Middle	2							3.7		2.5
TMCLKL	HY/2012/07	2017/09/15		+	15:44	Bottom	1	29.2	7.8	19.6	6.2	(0)	5.5		2.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:44	Bottom	2	29.0	7.9	19.8	6.2	6.2	5.2		2.9	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4	15:39	Surface	1	29.4	7.8	19.5	6.5		2.9		2.2	
TMCLKL	HY/2012/07	2017/09/15		SR4	15:39	Surface	2	29.3	7.9	19.7	6.4		3.1		2.3	1
TMCLKL	HY/2012/07	2017/09/15			15:39	Middle	1					6.5		5 0		1
TMCLKL	HY/2012/07	2017/09/15		1	15:39	Middle	2							7.9		2.9
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:39	Bottom	1	29.0	7.8	21.2	5.4		12.4		3.6	1
		2017/09/15	Mid-Flood		15:39	Bottom	2	28.8	7.8	21.4	5.5	5.5	13.2		3.5	
	HY/2012/07	2017/09/15	Mid-Flood		15:26	Surface	1	29.4	7.8	19.6	6.5		17.3		6.6	
		2017/09/15	Mid-Flood		15:26	Surface	2	29.2	7.9	19.8	6.4		16.0		5.3	1
TMCLKL		2017/09/15	Mid-Flood		15:26	Middle	1	-> ·-		1,10	511	6.5	1000	55 0	0.0	10.6
	HY/2012/07	2017/09/15	Mid-Flood		15:26	Middle	2							77.8		13.6
TMCLKL		2017/09/15	Mid-Flood		15:26	Bottom	1	29.2	7.8	20.2	6.0		143.7		21.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	+	15:26	Bottom	2	29.0	7.9	20.4	6.1	6.1	134.0		20.7	1
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Surface	1	29.4	7.9	21.1	6.6		8.6		8.3	
		2017/09/15	Mid-Flood		15:14	Surface	2	29.2	7.9	21.3	6.6		8.7		9.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:14	Middle	1	2,12			2.0	6.6			2.0	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:14	Middle	2							14.5		10.3
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Bottom	1	29.2	7.8	21.8	6.1		19.8		12	1
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Bottom	2.	29.0	7.9	22.0	6.1	6.1	20.9		10.9	1

Photo 1 - Mid-Ebb at CS(Mf)5 on 15 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 15 September 2017

Photo 3 - Mid-Ebb at SR4a on 15 September 2017

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N), SR4A AND IS8 ON 15 SEPTEMBER 2017

Photo 4 - Mid-Flood at CS(Mf)5 on 15 September 2017

Photo 5 - Mid-Flood at IS8 on 15 September 2017

Email message

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

δ δ, (

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

25 Westlands Road

From ERM- Hong Kong, Limited

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Contract No. HY/2012/07

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 19 September 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_18 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

 $0215660_18\ September\ 2017_Surface\ and\ Middle-depth\ DO_E_Station\ CS(Mf)3(N)$

0215660_18 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_18 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of four exceedances were recorded on 18 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

Email message

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 27 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_18 September 2017_ Depth-averaged SS_F_Station SR4

A total of one exceedance was recorded on 18 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	Action Level Exceedance 0215660_18 September 2017_ Bottom-depth DO_E_Station CS(Mf)5 0215660_18 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_18 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_18 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_18 September 2017_ Depth-averaged SS_F_Station SR4 [Total No. of Exceedances = 5]										
Date		18 September 2017 (Measured)									
	-	ember 2017 (In situ results received by ERM)									
	26 September 2017 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO, Bottom-depth Dissolved Oxygen (DO)										
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).									
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)									
Measured Levels	Action Level Exceedance 1. Mid-ebb at CS(Mf)5 (Bottom-depth DO = 4.4mg/L); 2. Mid-ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9mg/L); 3. Mid-flood at CS(Mf)5 (Surface and Middle-depth DO = 4.9mg/L); 4. Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.4mg/L). 5. Mid-flood at SR4 (depth-averaged SS = 23.7 mg/L);										
Works Undertaken (at the time of monitoring event)	No major marine works was undertaken under this Contract on 18 September 2017.										

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,								
Action or Limit Level	in view of the following:								
Exceedance(s)	No marine works was undertaken under this Contract on 18 September 2017.								
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works								
	area under this Contract, thus the observed exceedances should not be affected by the marine								
	works under this Contract and they are considered to be natural fluctuation in water quality.								
	Apart from SR4, depth-averaged SS levels at all other monitoring stations were in compliance								
	with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day.								
	Depth-averaged SS levels at SR4 at mid-ebb tides were similar to those at other stations apa								
	from the marginal exceedance observed at mid-flood tide.								
	All monitored parameters, except DO at CS(Mf)5, CS(Mf)3(N) and SS at SR4, at all monitoring								
	stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-								
	flood tides on the same day.								
	DO levels were generally lower at water quality monitoring stations due to two possible								
	reasons of natural variation:								
	1. Natural ability for water to hold dissolved oxygen is reduced due to higher water								
	temperature in summer months.								
	2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N)								
	monitoring stations was possibly caused by the stratification of seawater during summer								
	when the freshwater discharged from the Pearl River tended to form a surface layer of								
	lower salinity water, which is probably responsible for the lower Salinity recorded at the								
	surface and middle levels compared to the higher Salinity recorded at the bottom level of								
	the monitoring stations. The stratification of seawater in the water column is likely a								
	contributing factor to the results of lower levels of DO at the bottom level as the DO								
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle								
	and surface levels.								
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in								
Taken	exceedances.								
Remarks	The monitoring results on 18 September 2017 and locations of water quality monitoring stations are								
	attached. Site photo record on 18 September 2017 is attached.								

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Surface	1	29.3	7.9	21.9	5.6		3.1		3.1	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Surface	2	29.3	7.9	21.9	5.7	5.2	2.9		3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Middle	1	28.3	7.9	26.1	4.7	3.2	2.7	2.7	3.3	2.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Middle	2	28.4	7.9	25.9	4.7		2.7	3.7	3.6	3.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Bottom	1	27.8	7.9	28.9	4.4	4.4	5.5		4.3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Bottom	2	28.1	7.9	28.6	4.3	4.4	5.2		3.7	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Surface	1	29.9	7.8	18.8	5.5		9.3		2.7	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Surface	2	30.1	7.8	18.8	5.4	4.9	9.3		2.5	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Middle	1	28.7	7.8	24.3	4.3	4.9	16.8	15.9	2	7.4
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Middle	2	28.9	7.8	24.3	4.2		16.6	13.9	3.6	7.4
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Bottom	1	28.8	7.8	25.4	5.1	<i>5</i> 1	21.7		17.4	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Bottom	2	29.1	7.8	25.5	5.0	5.1	21.7		16	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Surface	1	29.3	8.0	21.3	6.3		4.3		4.6	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Surface	2	29.4	8.0	21.3	6.3	5.0	4.0		4.8	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Middle	1	29.1	7.9	22.8	5.5	5.9	6.6	<i>5</i> 7	4.2	4.0
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Middle	2	29.3	7.9	22.5	5.6		6.0	5.7	4.5	4.9
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Bottom	1	28.6	7.9	24.5	4.9	4.0	6.7		6	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Bottom	2	28.7	7.9	24.4	4.8	4.9	6.4		5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Surface	1	29.4	8.0	21.0	5.8		4.9		5.1	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Surface	2	29.6	7.9	20.8	5.9	5.9	4.5		5.5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Middle	1							7.0		5.0
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Middle	2							7.0		5.8
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Bottom	1	28.9	7.8	23.1	4.8	47	9.9		5.8	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Bottom	2	29.1	7.8	22.8	4.6	4.7	8.7		6.8	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Surface	1	29.6	8.0	20.6	6.3		4.5		5.8	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Surface	2	29.7	7.9	20.4	6.4	<i>C A</i>	4.0	1	6.6	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Middle	1					6.4		7.2		<i>C</i> 1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Middle	2							7.3		6.1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Bottom	1	29.0	7.8	22.7	4.9	4.0	10.7		6.4	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Bottom	2	29.2	7.8	22.5	4.8	4.9	10.0		5.5	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Surface	1	29.8	8.1	20.2	7.8		3.0		3.3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Surface	2	30.0	8.1	20.0	7.9	7.0	2.5		3	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Middle	1					7.9		5.0		2.2
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Middle	2							5.9		3.3
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Bottom	1	28.9	7.9	23.5	5.1	<i>T</i> 1	9.5		3.2	1
	1		Mid-Ebb	IS8	12:15	Bottom	2	29.1	7.9	23.3	5.0	5.1	8.7		3.7]
	1		Mid-Ebb	IS(Mf)9	12:24	Surface	1	29.8	8.1	19.7	7.9		3.1		3.3	
TMCLKL	1		Mid-Ebb	IS(Mf)9	12:24	Surface	2	29.9	8.1	19.5	8.0	0.0	2.8	<u> </u>	2.3	1
	1		Mid-Ebb	IS(Mf)9	12:24	Middle	1					8.0		2.2		2.2
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	Middle	2							3.2		3.3
	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	Bottom	1	29.3	8.0	21.3	7.0	7.0	3.5		3.5	1
	1		Mid-Ebb	IS(Mf)9	12:24	Bottom	2	29.6	7.9	21.1	6.9	7.0	3.2		3.9	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Surface	1	28.8	7.9	24.3	4.9		4.5		4.3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Surface	2	29.0	7.9	24.1	5.0	4.9	4.1		4.5]
TMCLKL 1	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Middle	1	28.4	7.9	27.1	4.8	4.9	5.8	6.1	4.5	5.5
TMCLKL 1	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Middle	2	28.5	7.9	26.9	4.8		5.2	6.4	5.5	5.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Bottom	1	28.1	7.9	27.9	4.4	4.4	9.5		6.7	
TMCLKL 1	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)5	18:38	Bottom	2	28.3	7.9	27.6	4.3	4.4	9.0		7.4	
TMCLKL 1	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Surface	1	30.1	7.7	16.6	5.7		16.1		8.7	
TMCLKL 1	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Surface	2	30.4	7.9	16.6	5.7	<i>5</i>	16.1		9	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Middle	1	29.6	7.7	19.3	5.1	5.4	18.8	20.5	8.5	0.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Middle	2	29.9	7.9	19.3	5.0		18.8	20.5	9.3	8.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Bottom	1	29.5	7.7	20.1	5.2	5.0	26.6		7.7	
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	CS(Mf)3(N)	17:22	Bottom	2	29.7	7.9	20.1	5.1	5.2	26.6		7.5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	IS(Mf)16	18:04	Surface	1	29.4	8.1	22.1	7.3		4.1		5.9	
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	IS(Mf)16	18:04	Surface	2	29.6	8.0	21.9	7.4	7.4	3.7		5.8	1
	HY/2012/07	2017/09/18	Mid-Flood	IS(Mf)16	18:04	Middle	1					7.4		7.0		7.0
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	IS(Mf)16	18:04	Middle	2							7.9		7.9
	HY/2012/07	2017/09/18	Mid-Flood	IS(Mf)16	18:04	Bottom	1	29.0	7.9	23.4	5.4	5.4	12.2		9.4	1
	HY/2012/07	2017/09/18		IS(Mf)16	18:04	Bottom	2	29.2	7.9	23.2	5.4	5.4	11.5		10.5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	SR4a	17:51	Surface	1	29.3	8.0	22.4	6.1		11.1		13.3	
	HY/2012/07	2017/09/18		SR4a	17:51	Surface	2	29.4	7.9	22.2	6.1	<u></u>	10.5		13	1
	HY/2012/07	2017/09/18	Mid-Flood		17:51	Middle	1					6.1		10.6	18.3	1 164
TMCLKL	HY/2012/07	2017/09/18	Mid-Flood	SR4a	17:51	Middle	2							13.6	17.8	16.4
	HY/2012/07	2017/09/18	Mid-Flood		17:51	Bottom	1	29.3	8.0	22.6	6.1	<i>c</i> 1	17.0		18.3	1
	HY/2012/07	2017/09/18	Mid-Flood		17:51	Bottom	2	29.4	7.9	22.4	6.0	6.1	15.9		17.8	1
TMCLKL	HY/2012/07	2017/09/18		SR4	17:46	Surface	1	29.3	8.0	22.3	6.8		15.6		23.9	
TMCLKL	HY/2012/07			SR4	17:46	Surface	2	29.4	8.0	22.1	6.7		14.4	1	22.6	
	HY/2012/07	2017/09/18		SR4	17:46	Middle	1					6.8		140		22.5
	HY/2012/07	2017/09/18	Mid-Flood	1	17:46	Middle	2							14.8		23.7
	HY/2012/07	2017/09/18	1	SR4	17:46	Bottom	1	29.2	8.0	22.4	6.6		14.7		23.4	
	HY/2012/07		Mid-Flood		17:46	Bottom	2	29.4	7.9	22.2	6.6	6.6	14.6		24.7	
	HY/2012/07	2017/09/18	Mid-Flood		17:35	Surface	1	29.4	8.0	22.3	6.9		13.7		16.8	
			Mid-Flood		17:35	Surface	2.	29.5	8.0	22.0	6.9		14.7		17.1	1
		2017/09/18	Mid-Flood		17:35	Middle	1	2710	0.0	22.0	0.5	6.9	1117		1711	1
			Mid-Flood		17:35	Middle	2.							15.3		20.2
			Mid-Flood		17:35	Bottom	1	29.3	8.0	22.4	6.8		17.4		22.6	1
		2017/09/18	Mid-Flood		17:35	Bottom	2.	29.5	8.0	22.1	6.8	6.8	15.4		24.1	1
			Mid-Flood		17:25	Surface	1	2710		22.1	0.0		2511		2111	
			Mid-Flood		17:25	Surface	2					<u> </u>		1		1
			Mid-Flood		17:25	Middle	1	29.8	8.1	21.8	8.6	8.6	7.6		10.2	1
	HY/2012/07		Mid-Flood		17:25	Middle	2	29.9	8.1	21.6	8.5		6.7	7.2	10.2	10.1
			Mid-Flood		17:25	Bottom	1	<i>27.7</i>	0.1	21.0	0.5		0.7		10	1
			Mid-Flood		17:25	Bottom	2									1

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N) AND SR4 ON 18 SEPTEMBER 2017

Photo 1 - Mid-Flood at CS(Mf)5 on 18 September 2017

Photo 2 - Mid-Flood at SR4 on 18 September 2017

Photo 3 - Mid-Ebb at CS(Mf)5 on 18 September 2017

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N) AND SR4 ON 18 SEPTEMBER 2017

Photo 4 - Mid-Ebb at CS(Mf)3(N) on 18 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 21 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)3(N)

A total of six exceedances were recorded on 20 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	0215660_20 September 0215660_20 Septembe 0215660_20 Sep 0215660_20 September	Action Level Exceedance or 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) or 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 otember 2017_ Bottom-depth DO_F_Station CS(Mf)5 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) or 2017_ Bottom-depth DO_F_Station CS(Mf)3(N) [Total No. of Exceedances = 6]									
Date		20 September 2017 (Measured)									
	21 Septe	mber 2017 (In situ results received by ERM)									
	27 Septemb	ber 2017 (Laboratory results received by ERM)									
Monitoring Station	CS(Mf)5, 9	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)									
Parameter(s) with Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)									
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Measured Levels	 Mid-ebb at CS(Mf)3(N) (Surfa Mid-flood at CS(Mf)5 (Surfa Mid-flood at CS(Mf)5 (Botto Mid-flood at CS(Mf)3(N) (Surfa Mid-flood at CS(Mf)3(N) (Surfa Mid-flood at CS(Mf)3(N) (Botto 	 Mid-ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.9mg/L); Mid-ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7mg/L); Mid-flood at CS(Mf)5 (Surface and Middle-depth DO = 4.8mg/L); Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.5mg/L); Mid-flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7mg/L); 									
Works Undertaken (at		lertaken under this Contract on 20 September 2017.									
the time of monitoring event)											

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 20 September 2017.
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works
	area under this Contract, thus the observed exceedances should not be affected by the marine
	works under this Contract and they are considered to be natural fluctuation in water quality.
	DO levels were generally lower at water quality monitoring stations due to two possible
	reasons of natural variation:
	1. Natural ability for water to hold dissolved oxygen is reduced due to higher water
	temperature in summer months.
	2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N)
	monitoring stations was possibly caused by the stratification of seawater during summer
	when the freshwater discharged from the Pearl River tended to form a surface layer of
	lower salinity water, which is probably responsible for the lower Salinity recorded at the
	surface and middle levels compared to the higher Salinity recorded at the bottom level of
	the monitoring stations. The stratification of seawater in the water column is likely a
	contributing factor to the results of lower levels of DO at the bottom level as the DO
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle
	and surface levels.
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 20 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 20 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Surface	1	29.4	7.9	24.1	5.0		4.2		5.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Surface	2	29.3	7.9	24.3	5.0	4.9	5.0		6.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Middle	1	29.0	7.9	24.9	4.7	4.9	6.7	6.3	6	6.6
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Middle	2	28.8	7.9	25.1	4.7		7.3	0.5	7.4	0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Bottom	1	28.9	7.9	25.0	4.7	4.7	6.9		6.2	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)5	12:16	Bottom	2	28.8	7.9	25.2	4.7	4.7	7.6		7.5	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Surface	1	29.7	7.7	20.8	4.7		15.2		5.7	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Surface	2	29.4	7.7	20.8	4.8	4.7	14.1		4.5	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Middle	1	29.4	7.8	21.9	4.6	7.7	18.2	19.0	5.2	6.4
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Middle	2	29.1	7.8	21.8	4.7		17.4	17.0	5.9	0.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	Bottom	1	29.3	7.8	23.0	4.7	4.8	24.3		7.9	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Bottom	2	29.0	7.8	22.8	4.8	1.0	24.6		9.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Surface	1	29.3	7.9	23.0	5.7		7.7		5.7	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Surface	2	29.2	7.9	23.2	5.7	5.5	8.3		4.9	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Middle	1	29.1	7.9	23.7	5.2	3.3	9.5	10.1		5.1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Middle	2	29.0	7.9	24.0	5.2		10.3	10.1		5.1
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	Bottom	1	29.0	7.9	24.9	4.9	5.0	12.0		4.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	Bottom	2	28.8	7.9	25.2	5.0	3.0	12.7		5.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Surface	1	29.3	7.9	22.8	5.4		12.0		13.5	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:12	Surface	2	29.2	7.9	23.1	5.5	5.5	12.4		14.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a		Middle	1					3.3		12.1		14.0
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	2							12.1		17.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Bottom	1	29.3	7.9	22.9	5.4	5.5	11.8		13.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Bottom	2	29.1	7.9	23.1	5.5	J.J	12.0		14.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Surface	1	29.6	7.9	22.4	5.5		6.0		4.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Surface	2	29.4	7.9	22.6	5.5	5.5	6.4		4.4]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4		Middle	1					3.3		8.7		5.5
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4		Middle	2							0.7] 3.3
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Bottom	1	29.3	7.9	22.9	5.5	5.6	11.1		6.8]
TMCLKL	HY/2012/07		Mid-Ebb	SR4	13:18	Bottom	2	29.1	7.9	23.2	5.6	3.0	11.1		6.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Surface	1	29.6	7.9	22.8	5.9		6.0		6.7]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Surface	2	29.4	7.9	23.0	6.0	6.0	6.2		5.7]
TMCLKL	HY/2012/07		Mid-Ebb	IS8		Middle	1					0.0		7.1		6.7
TMCLKL	HY/2012/07		Mid-Ebb	IS8		Middle	2							1.1		0.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Bottom	1	29.4	7.9	23.0	5.8	5.9	8.0		7.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:29	Bottom	2	29.2	7.9	23.2	5.9	J.7	8.1		7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Surface	1	29.6	7.9	22.8	5.9		4.1		5.3]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Surface	2	29.4	7.9	23.0	5.9	5.9	4.5		3.6]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		Middle	1					J.7		5.8		6.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		Middle	2							٥.٥		0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Bottom	1	29.4	7.9	23.0	5.9	5.9	7.0		8.4]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Bottom	2	29.2	7.9	23.2	5.9	J . 7	7.5		6.6	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Surface	1	29.4	7.9	23.2	4.9		4.7		6.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Surface	2	29.2	7.9	23.4	4.9	4.8	5.1		4.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Middle	1	29.0	7.9	25.5	4.6	4.0	10.5	11.1	8.1	9.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Middle	2	28.8	7.9	25.8	4.6		11.0	11.1	8.1	9.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Bottom	1	28.9	7.9	25.9	4.5	4.5	17.2		14.2]
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)5	19:45	Bottom	2	28.7	7.9	26.2	4.5	4.0	18.2		15	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Surface	1	29.9	7.6	18.4	4.8		16.2		5.7	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	18:07	Surface	2	30.1	7.6	18.3	4.7	4.7	17.0		4.5	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	18:07	Middle	1	29.5	7.7	20.4	4.7	٦./	19.1	19.0	5.2	6.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Middle	2	29.8	7.7	20.4	4.6		20.0	17.0	5.9	0.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Bottom	1	29.4	7.7	21.1	4.6	4.6	20.5		7.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Bottom	2	29.7	7.7	21.1	4.5	4.0	21.3		9.3	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	19:06	Surface	1	29.6	7.8	21.7	5.0		6.2		8.2	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	19:06	Surface	2	29.4	7.8	21.9	5.0	5.1	6.8		9.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Middle	1	29.6	7.9	22.4	5.1	J.1	12.4	10.8	8.7	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Middle	2	29.4	7.9	22.6	5.2		13.2	10.0	7.9	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Bottom	1	29.6	7.9	22.8	5.3	5.3	12.6		16.3]
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Bottom	2	29.4	7.9	23.0	5.3	3,3	13.8		13.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Surface	1	29.7	7.8	21.8	5.3		10.4		10.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Surface	2	29.5	7.9	22.0	5.3	5.3	10.4		8.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a		Middle	1					J.J		12.3		9.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a		Middle	2							12.3		9.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Bottom	1	29.7	7.8	22.0	5.3	5.4	14.2		9.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Bottom	2	29.5	7.9	22.2	5.4	J. 4	14.3		11	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Surface	1	29.6	7.9	22.6	5.3		12.5		13.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Surface	2	29.4	7.9	22.9	5.3	5.3	13.2		15	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4		Middle	1					5.5		13.0		16.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4		Middle	2							15.0		10.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Bottom	1	29.5	7.9	22.7	5.3	5.4	13.2		18.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Bottom	2	29.4	7.9	22.9	5.4	J. 4	13.0		19.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Surface	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Surface	2					5.5				
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8	18:30	Middle	1	29.6	7.9	22.8	5.5	J . J	22.3	23.7	19.2	19.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8	18:30	Middle	2	29.4	7.9	23.0	5.5		25.1	23.1	20.2	19.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Bottom	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Bottom	2									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Surface	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Surface	2					<i>L</i> 1]
TMCLKL	HY/2012/07		Mid-Flood		18:21	Middle	1	29.7	7.9	23.0	6.1	6.1	12.8	12.1	15.8	14.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9	18:21	Middle	2	29.5	8.0	23.2	6.1		13.4	13.1	14	14.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Bottom	1]
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Bottom	2									

Photo 1 - Mid-Ebb at CS(Mf)5 on 20 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 20 September 2017

Photo 3 - Mid-Flood at CS(Mf)5 on 20 September 2017

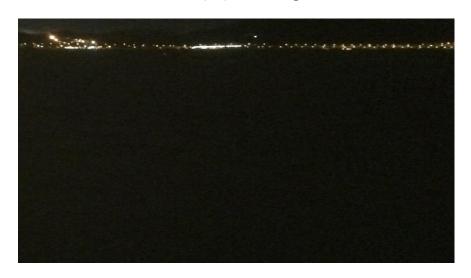
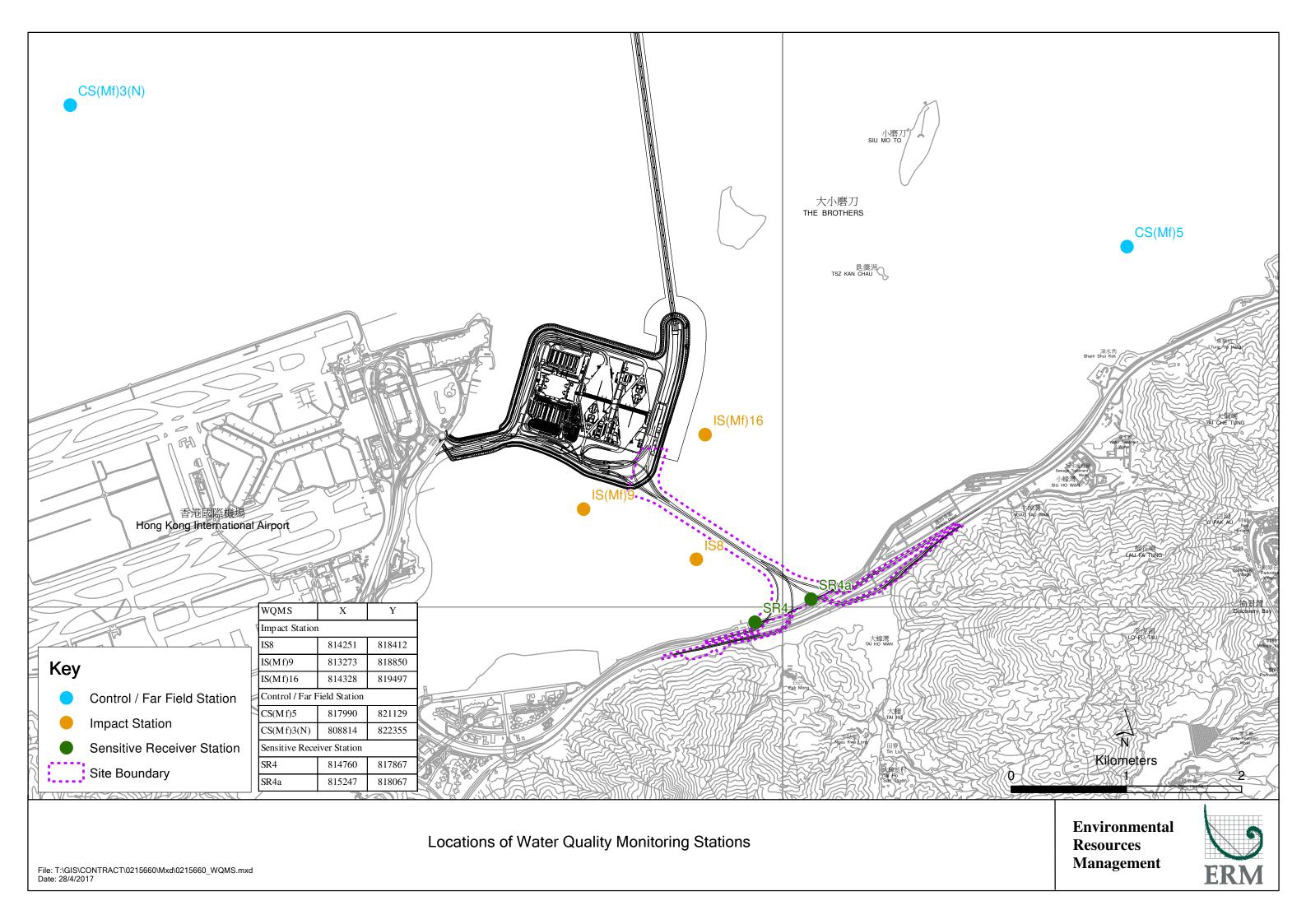



Photo 4 - Mid-Flood at CS(Mf)3(N) on 20 September 2017

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO)

From ERM- Hong Kong, Limited 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 23 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_22 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_22 September 2017_ Bottom-depth DO_E_Station IS(Mf)16

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4a

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4

0215660_22 September 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5 0215660_22 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_22 September 2017_ Bottom-depth DO_F_Station IS(Mf)16

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of fourteen exceedances were recorded on 22 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.												
Log I to.		Action Level Exceedance										
	0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_22 September 2017_ Bottom-depth DO_E_Station CS(Mf)5 0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_22 September 2017_ Bottom-depth DO_E_Station IS(Mf)16 0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4a 0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4 0215660_22 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_22 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4a 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4a 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS8 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9 [Total No. of Exceedances = 14]											
Date		22 Contombou 2017 (Magazinad)										
Date	22 Santa	22 September 2017 (Measured) mber 2017 (<i>In situ</i> results received by ERM)										
	-	per 2017 (In situ results received by ERM)										
Monitoring Station	•	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with	CS(IVII)3, C	5144, 514, 150, 15(1411)10, 15(1411)7, C5(1411)5(14)										
Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)										
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L										
	Bottom-depth DO	4.7 mg/L										
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L										
	Bottom-depth DO	3.6 mg/L										
Measured Levels	Action Level Exceedance 1. Mid-Ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.8 mg/L); 2. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.6 mg/L); 3. Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7 mg/L); 4. Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.6 mg/L); 5. Mid-Ebb at SR4a (Surface and Middle-depth DO = 4.8 mg/L); 6. Mid-Ebb at SR4 (Surface and Middle-depth DO = 4.8 mg/L); 7. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.8 mg/L); 8. Mid-Flood at CS(Mf)5 (Bottom-depth DO = 4.5 mg/L); 9. Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7 mg/L); 10. Mid-Flood at IS(Mf)16 (Surface and Middle-depth DO = 4.7 mg/L); 11. Mid-Flood at SR4a (Surface and Middle-depth DO = 4.8 mg/L); 12. Mid-Flood at ISR4a (Surface and Middle-depth DO = 4.9 mg/L); 13. Mid-Flood at ISR (Surface and Middle-depth DO = 4.7 mg/L); 14. Mid-Flood at IS(Mf)9 (Surface and Middle-depth DO = 4.9 mg/L).											
Works Undertaken (at	No major marine works was und	lertaken under this Contract on 22 September 2017.										
the time of monitoring												
event)												

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,								
Action or Limit Level	view of the following:								
Exceedance(s)	No marine works was undertaken under this Contract on 22 September 2017.								
	All monitored parameters, except DO, at all monitoring stations were in compliance with the								
	Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.								
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works								
	area under this Contract, thus the observed exceedances should not be affected by the marine								
	works under this Contract and they are considered to be natural fluctuation in water quality.								
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in								
Taken	exceedances.								
Remarks	The monitoring results on 22 September 2017 and locations of water quality monitoring stations are								
	attached. Site photo record on 22 September 2017 is attached.								

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Surface	1	30.1	7.9	22.1	5.1		5.9		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Surface	2	30.3	7.8	21.9	5.1	4.8	6.2		6.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Middle	1	29.2	7.9	24.1	4.5	4.8	9.8	11.7	6.8	0.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Middle	2	29.3	7.8	23.9	4.6		10.6	11.7	7.2	8.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Bottom	1	29.1	7.9	24.3	4.6	16	19.1		13.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Bottom	2	29.3	7.8	24.0	4.5	4.6	18.6		11.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Surface	1	29.6	7.9	21.6	4.7		8.7		5.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Surface	2	29.9	7.9	21.5	4.7	4.7	8.8		4.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Middle	1	29.2	8.0	22.7	4.8	4.7	12.0	10.0	7.5	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Middle	2	29.5	7.9	22.6	4.7		12.4	12.8	7.4	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Bottom	1	29.1	8.0	24.1	4.8	4.0	17.0		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Bottom	2	29.4	8.0	24.1	4.7	4.8	17.8		20.9]
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Surface	1	29.5	7.8	22.8	5.2		6.1		7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Surface	2	29.7	7.8	22.6	5.3	5.0	6.5		5.9	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Middle	1	29.4	7.8	22.9	5.0	5.2	7.5	7.1	6.6	0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Middle	2	29.5	7.8	22.7	5.1		7.8	7.1	5.8	8.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Bottom	1	29.2	7.9	24.0	4.6	4.6	6.9		11.4	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Bottom	2	29.3	7.8	23.7	4.6	4.6	7.7		11.4	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Surface	1	29.3	7.8	22.7	4.8		8.0		7.3	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:51	Surface	2	29.5	7.8	22.5	4.8	4.0	8.8		6.8	9.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a		Middle	1					4.8		0.2		
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a		Middle	2							9.3		8.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Bottom	1	29.3	7.8	23.0	4.8	4.0	10.0		8.5	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Bottom	2	29.5	7.8	22.8	4.8	4.8	10.5		9.3	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Surface	1	29.4	7.8	22.4	4.8		11.4		6.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Surface	2	29.6	7.8	22.2	4.8	4.0	11.7		7.8	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4		Middle	1					4.8		11.0		10.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4		Middle	2							11.8		10.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Bottom	1	29.3	7.8	23.0	4.8	4.0	11.9		12.7	1
	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Bottom	2	29.5	7.8	22.8	4.8	4.8	12.3		13.9	1
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	Surface	1	29.6	7.8	22.5	5.1		6.0		5.3	
	HY/2012/07		Mid-Ebb	IS8	13:35	Surface	2	29.8	7.8	22.3	5.2	50	6.7		5.4]
	HY/2012/07		Mid-Ebb	IS8		Middle	1					5.2		10.0		0.7
	HY/2012/07		Mid-Ebb	IS8		Middle	2							10.8		8.7
			Mid-Ebb	IS8	13:35	Bottom	1	29.2	7.8	23.2	5.0	5.0	15.0		11.4	1
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	Bottom	2	29.4	7.8	22.9	5.0	5.0	15.6		12.5	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Surface	1	29.8	7.8	22.5	5.3		4.4		4.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Surface	2	30.0	7.8	22.3	5.3	<i>5</i> 2	5.1		4] [
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	1					5.3		7.0]
	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2							7.8		4.2
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Bottom	1	29.2	7.8	23.1	5.1	r 1	10.8		4.7	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Bottom	2	29.4	7.8	22.8	5.1	5.1	10.9		3.7]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Surface	1	29.5	7.8	21.5	4.9		5.5		5.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Surface	2	29.3	7.8	21.7	4.9	4.8	5.9		5.6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Middle	1	29.5	7.9	22.7	4.6	4.0	6.9	9.8	5.8	6.7
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Middle	2	29.3	7.9	22.9	4.6		7.3	7.0	5.1	0.7
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Bottom	1	29.4	7.9	23.5	4.5	4.5	15.5		9.6	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)5	07:11	Bottom	2	29.2	7.9	23.8	4.5	4.0	17.5		8.7	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Surface	1	29.3	7.9	19.8	4.7		14.1		5.5	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Surface	2	29.6	7.8	19.7	4.6	4.7	15.6		4.8	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Middle	1	29.4	7.9	20.5	4.7	٦./	22.2	22.1	7.5	11.4
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Middle	2	29.6	7.8	20.5	4.6		22.6	22.1	7.4	11
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	08:36	Bottom	1	29.4	7.9	20.9	4.7	4.7	29.5		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	08:36	Bottom	2	29.6	7.9	20.9	4.6	т./	28.7		20.9	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	07:58	Surface	1	29.5	7.8	22.2	4.7		7.1		6.1	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	07:58	Surface	2	29.3	7.8	22.4	4.7	4.7	8.0		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Middle	1	29.4	7.8	22.4	4.7	4.7	8.3	8.0	8.8	8.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Middle	2	29.3	7.8	22.7	4.7		8.5	0.0	9.8	0.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Bottom	1	29.4	7.8	22.5	4.7	4.7	8.2		8.8]
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Bottom	2	29.2	7.8	22.7	4.7	4.7	8.0		9.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Surface	1	29.4	7.8	21.5	4.8		6.6		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Surface	2	29.2	7.8	21.8	4.8	4.8	7.2		7.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a		Middle	1					4.0		7.5		6.8
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a		Middle	2							1.5		0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Bottom	1	29.4	7.8	21.6	4.8	4.8	7.8		7.4	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Bottom	2	29.3	7.8	21.8	4.8	4.0	8.4		6.4	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Surface	1	29.4	7.8	21.4	4.9		6.8		7.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Surface	2	29.2	7.8	21.6	4.9	4.9	7.2		8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4		Middle	1					4.9		10.3		7.3
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4		Middle	2							10.3		1.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Bottom	1	29.4	7.8	21.8	4.8	4.8	12.7		7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Bottom	2	29.2	7.8	22.1	4.8	4.0	14.5		6.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Surface	1	29.4	7.8	22.0	4.7		10.8		7.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Surface	2	29.2	7.8	22.2	4.7	4.7	11.6		6.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8		Middle	1					4.7		140		8.6
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8		Middle	2							14.0		0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Bottom	1	29.4	7.8	22.5	4.7	4.7	16.2		9.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Bottom	2	29.2	7.8	22.7	4.7	4.7	17.4		10.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Surface	1	29.3	7.8	22.4	4.9		6.2		6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Surface	2	29.1	7.8	22.6	4.9	4.0	6.5		6.1]
TMCLKL	HY/2012/07		Mid-Flood			Middle	1					4.9		7.0] 70
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9		Middle	2							7.9		7.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Bottom	1	29.3	7.8	23.2	4.7	<i>A</i> 7	9.2		7.8]
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Bottom	2	29.2	7.8	23.4	4.7	4.7	9.8		7.9	

Photo 1 - Mid-Ebb at CS(Mf)5 on 22 September 2017



Photo 2 - Mid-Ebb at CS(Mf)3(N) on 22 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 22 September 2017



Photo 4 - Mid-Ebb at SR4a on 22 September 2017

Photo 5 - Mid-Ebb at SR4 on 22 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 22 September 2017



Photo 7 - Mid-Flood at CS(Mf)3(N) on 22 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 22 September 2017

Photo 9 - Mid-Flood at SR4a on 22 September 2017

Photo 10 - Mid-Flood at SR4 on 22 September 2017

Photo 11 - Mid-Flood at IS8 on 22 September 2017

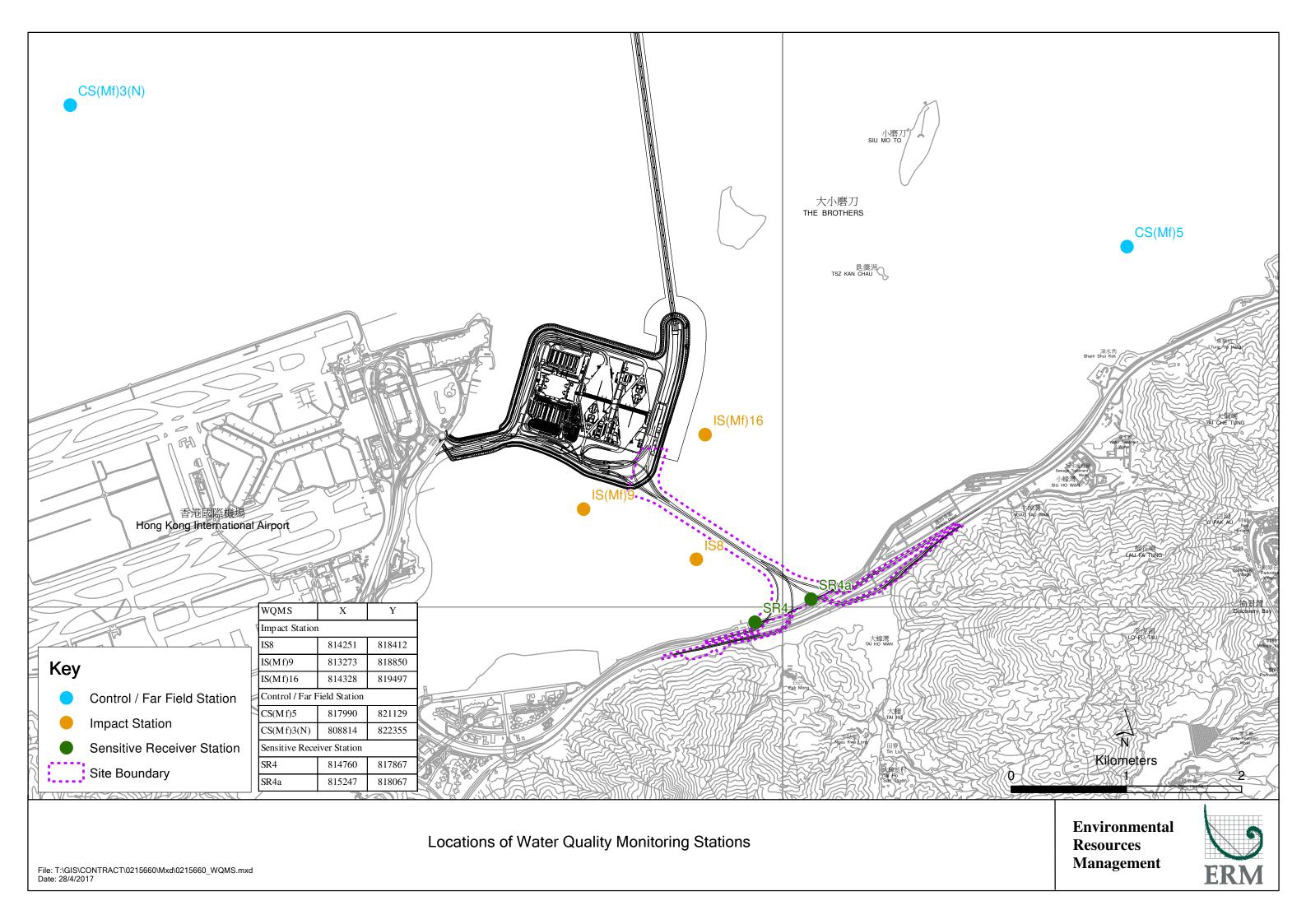



Photo 12 - Mid-Flood at IS(Mf)9 on 22 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number

Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 12 October 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_25 September 2017_ Depth-averaged SS_F_Station IS8

A total of one exceedance was recorded on 25 September 2017.

Regards,

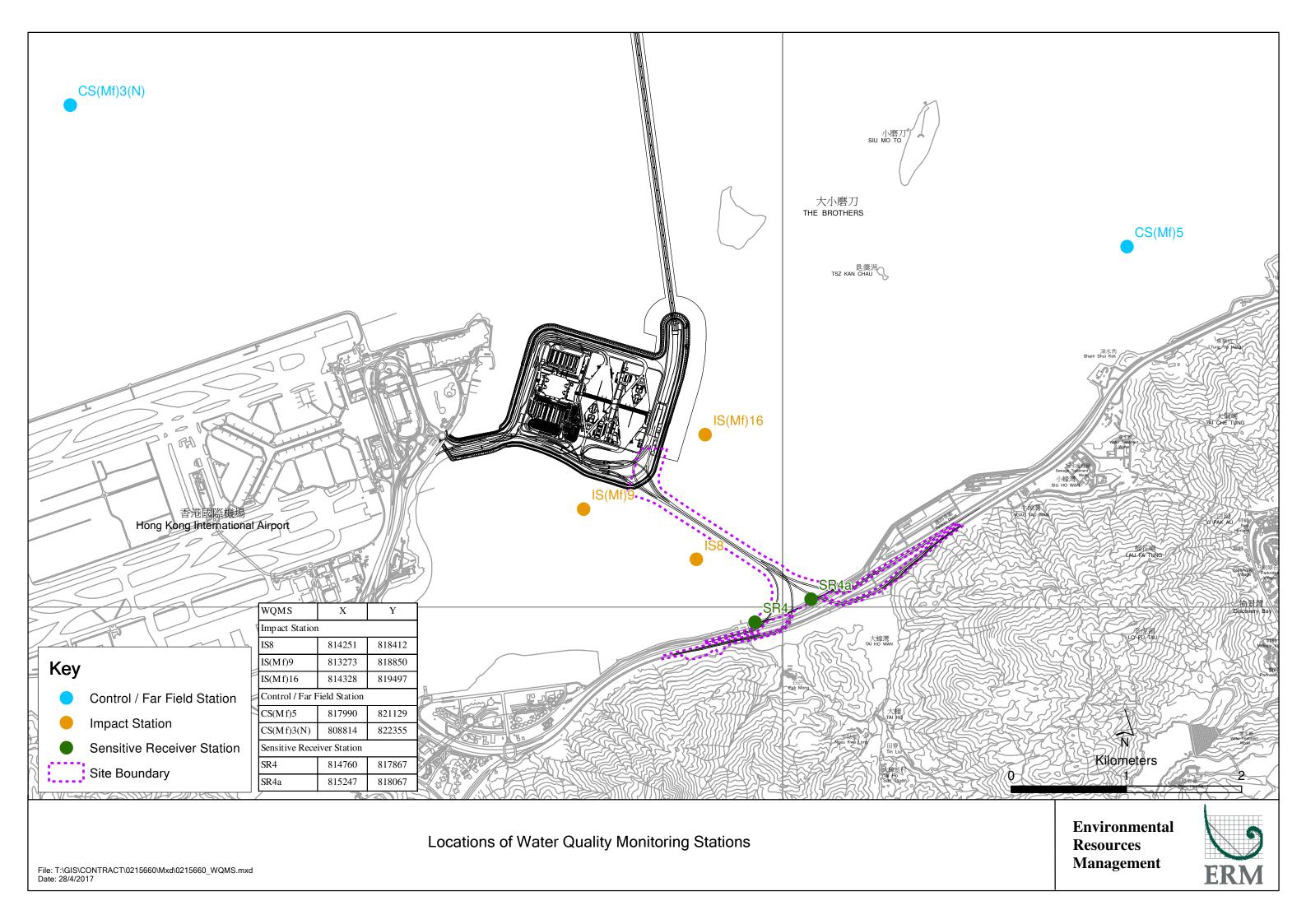
Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring


Log No.	0215660_25 \$	Action Level Exceedance September 2017_ Depth-averaged SS_F_Station IS8									
		[Total No. of Exceedances = 1]									
Date		25 September 2017 (Measured)									
	•	ember 2017 (In situ results received by ERM)									
	*	ber 2017 (Laboratory results received by ERM)									
Monitoring Station	CS(Mf)5,	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)									
Parameter(s) with Exceedance(s)	Г	Depth-averaged Suspended Solids (SS)									
Action Levels for SS	SS 120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).										
Limit Levels for SS	SS 130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)										
Measured Levels	Action Level Exceedance 1. Mid-flood at IS8 (Depth-ave										
Works Undertaken (at	No major marine works was un	dertaken under this Contract on 25 September 2017.									
the time of monitoring event)											
Possible Reason for	The exceedance of depth-average	ed SS is unlikely to be due to the Project, in view of the following:									
Action or Limit Level	 No marine works was ur 	ndertaken under this Contract on 25 September 2017.									
Exceedance(s)	 Apart from IS8, depth-av 	reraged SS levels at all other monitoring stations were in compliance									
	with the Action and Limi	t Levels during both mid-flood and mid-ebb tides on the same day.									
		s at IS8 at mid-ebb tides were similar to those at other stations apart									
	O	lance observed at mid-flood tide.									
	-	y levels and average DO levels at all stations were in compliance									
	with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.										
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in										
Taken	exceedances.										
Remarks	_	ne monitoring results on 25 September 2017 and locations of water quality monitoring stations are									
	attached. Site photo record on	25 September 2017 is attached.									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Surface	1	29.9	7.9	23.6	5.7		4.1		5.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Surface	2	29.7	7.9	23.8	5.6	5.3	3.9		4.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Middle	1	29.2	7.9	25.4	4.9	3.3	2.3	2.7	6.2	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Middle	2	29.1	7.9	25.6	4.8		3.3	3.7	7.4	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Bottom	1	29.2	7.9	26.5	4.7	4.7	4.3		10.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Bottom	2	29.0	7.9	26.7	4.7	4./	4.4		8.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Surface	1	29.7	7.8	20.9	5.0		6.3		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Surface	2	29.5	7.9	20.8	5.1	5.0	5.9		4.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Middle	1	29.6	7.9	22.5	5.2	5.2	7.5	0.0	10.8	9.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Middle	2	29.3	8.0	22.5	5.3		6.1	8.0	9.2	9.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Bottom	1	29.4	7.9	24.1	5.2	5.2	12.0		15.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Bottom	2	29.2	8.0	24.1	5.3	5.3	10.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Surface	1	29.7	7.9	23.5	5.5		6.8		7.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Surface	2	29.5	7.9	23.8	5.4	5.5	7.0		6.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		Middle	1					5.5		6.2		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		Middle	2							6.3		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Bottom	1	29.2	7.9	24.6	4.9	4.0	6.3		8.5]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Bottom	2	29.1	7.9	24.8	4.9	4.9	5.2		7.9]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Surface	1	29.5	7.9	23.7	5.1		8.3		13.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Surface	2	29.3	7.9	24.0	5.1	<i>E</i> 1	10.1]	14.2]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		Middle	1					5.1		10.0	1.12	13.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		Middle	2							10.8		13.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Bottom	1	29.5	7.9	23.8	5.0	5.0	11.9		12.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Bottom	2	29.3	7.9	24.0	5.0	5.0	12.8		13.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Surface	1	29.7	7.9	23.5	5.3		5.7		13.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Surface	2	29.5	7.9	23.7	5.2	5.2	6.2		15.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		Middle	1					5.3		0.6		15.0
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		Middle	2							8.6		15.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Bottom	1	29.4	7.8	23.8	4.8	4.0	10.5		16.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Bottom	2	29.3	7.8	24.1	4.8	4.8	12.1		15.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Surface	1	29.7	7.9	23.5	5.6		6.9		10.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Surface	2	29.5	7.9	23.7	5.5	5.6	8.3		11.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8		Middle	1					5.6		0.2		12.0
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8		Middle	2							8.3		13.0
TMCLKL	HY/2012/07		Mid-Ebb	IS8	15:05	Bottom	1	29.6	7.9	23.6	5.5	5 F	8.7		15.0]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Bottom	2	29.5	7.9	23.8	5.5	5.5	9.2		14.7]
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Surface	1	29.8	7.9	23.6	5.8		4.3		12.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Surface	2	29.6	7.9	23.8	5.7	5 0	5.0		12.2]
			Mid-Ebb	IS(Mf)9		Middle	1					5.8		C A		10.0
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2							6.4		12.2
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Bottom	1	29.7	7.9	23.6	5.6	5.0	7.6		11.0	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Bottom	2	29.5	7.9	23.9	5.6	5.6	8.6		12.9	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Surface	1	29.4	7.9	23.2	5.5		4.6		11.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Surface	2	29.2	7.9	23.4	5.4	5.2	4.4		10.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Middle	1	29.2	7.9	24.2	5.0	J . Z	5.5	6.0	13.2	12.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Middle	2	29.0	7.9	24.5	5.0		5.3	6.8	12.1	13.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Bottom	1	29.2	7.9	24.9	4.8	4.0	10.9		17.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Bottom	2	29.0	7.9	25.2	4.8	4.8	10.3		17.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Surface	1	29.9	7.8	19.0	5.2		6.4		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Surface	2	29.7	7.9	19.0	5.3	<i>5</i> 1	6.1		4.6	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Middle	1	29.6	7.8	19.9	4.9	5.1	6.6	7.2	10.8	0.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Middle	2	29.3	7.8	19.9	5.0		5.7	7.3	9.2	9.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Bottom	1	29.5	7.8	21.4	4.8	4.0	10.0		15.1	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Bottom	2	29.3	7.9	21.3	4.9	4.9	9.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Surface	1	29.4	7.9	23.3	5.4		5.1		6.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Surface	2	29.2	7.9	23.5	5.4	- ·	5.0		5.2	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		Middle	1					5.4				
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		Middle	2							5.5		6.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Bottom	1	29.2	7.9	23.7	5.2		5.9		6.6	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Bottom	2.	29.1	7.9	24.0	5.2	5.2	5.9		7.2	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Surface	1	29.4	7.9	23.3	5.2		11.8		14.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Surface	2.	29.2	7.9	23.5	5.2		11.6		14.0	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10111	Middle	1	27.12	7.0	2515	3.2	5.2	11.0		1110	
TMCLKL	HY/2012/07	2017-09-25				Middle	2							12.0		14.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Bottom	1	29.4	7.9	23.3	5.2		12.5		14.4	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Bottom	2.	29.2	7.9	23.6	5.2	5.2	12.1		13.9	1
TMCLKL	HY/2012/07			SR4	10:19	Surface	1	29.4	7.9	23.7	5.1		15.3		21.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:19	Surface	2.	29.2	7.9	23.9	5.0		15.8		21.6	i
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10.17	Middle	1	27.2	1.5	23.7	3.0	5.1	13.0		21.0	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood			Middle	2.							15.0		21.5
TMCLKL	HY/2012/07		Mid-Flood		10:19	Bottom	1	29.4	7.9	23.9	5.0		14.2		21.8	
	HY/2012/07		Mid-Flood			Bottom	2	29.2	7.9	24.1	5.0	5.0	14.6		21.5	
	HY/2012/07		Mid-Flood		10:31	Surface	1	29.3	7.9	23.9	5.0		21.8		20.9	
	HY/2012/07		Mid-Flood		10:31	Surface	2	29.1	7.9	24.1	5.0		22.2		20.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10.51	Middle	1	27.1	1.7	27.1	5.0	5.0	<i>LL.L</i>		20.1	
	HY/2012/07	2017-09-25	Mid-Flood			Middle	2				 			24.0		23.7
	HY/2012/07		Mid-Flood		10:31	Bottom	1	29.3	7.9	23.9	5.0		26.0		26.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:31	Bottom	2	29.1	7.9	24.2	5.0		26.0		27.5	
	HY/2012/07		Mid-Flood		10:31	Surface	1	29.3	7.9	23.5	5.6		6.7		10.9	
			Mid-Flood		10:38	Surface	2	29.1	7.9	23.7	5.6		6.6		11.7	
TMCLKL	HY/2012/07		Mid-Flood	 ` '	10.30	Middle	1	<i>ل</i> ۲۶.1	1.9	43.1	3.0	5.6	0.0		11./	
TMCLKL	HY/2012/07		Mid-Flood			Middle	2				 			7.5		11.1
	HY/2012/07	2017-09-25	Mid-Flood		10:38			29.3	7.9	23.7	5.5		Q 2		11.6	
						Bottom	2		1	1			8.3			
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	119(MI)A	10:38	Bottom	2	29.1	7.9	23.9	5.5		8.5		10.1	

Photo 1 - Mid-Flood at IS8 on 25 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 28 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_27 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of one exceedance was recorded on 27 September 2017.

Regards,

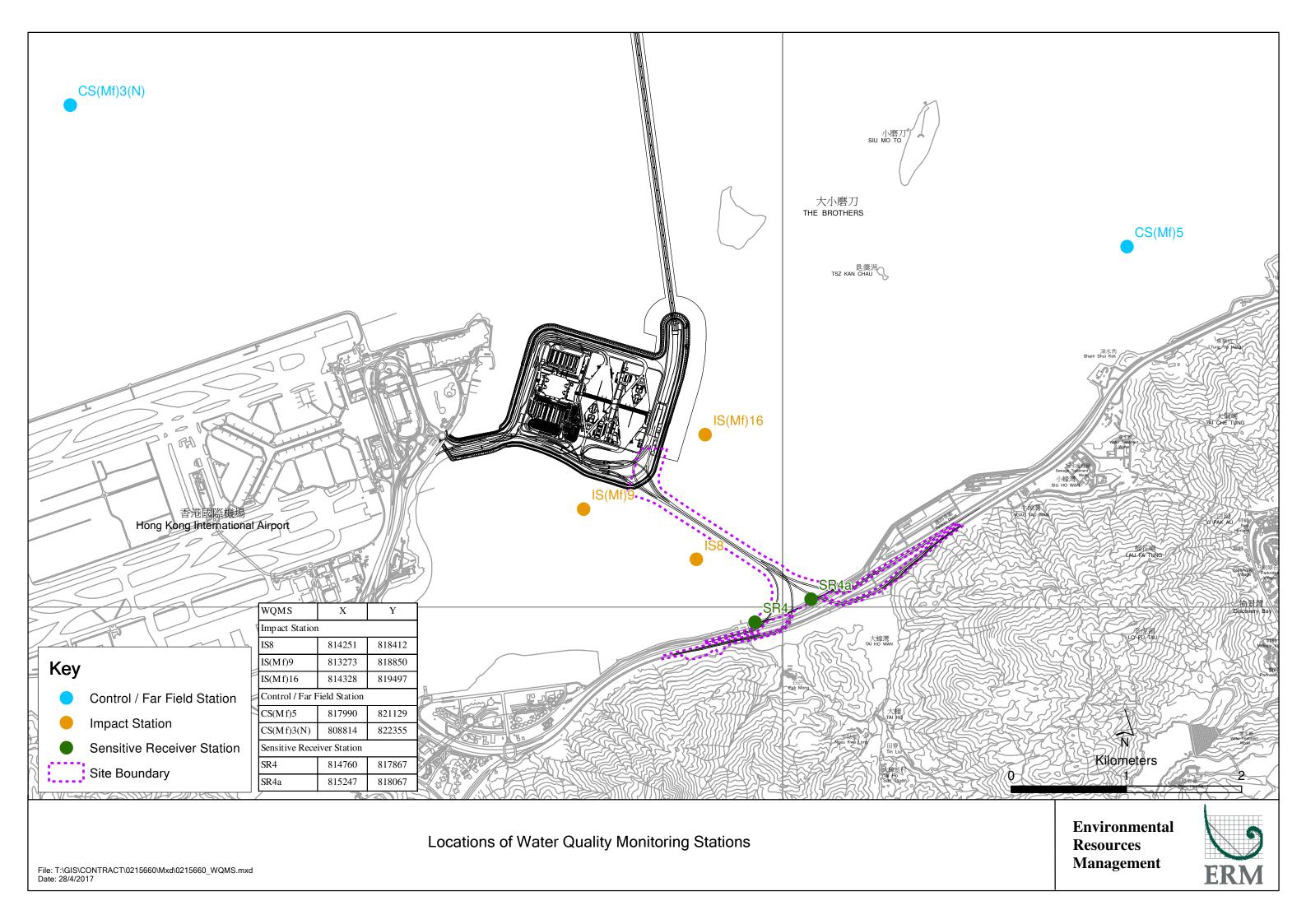
Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring


Log No.	Action Level Exceedance 0215660_27 September 2017_ Bottom-depth DO_F_Station CS(Mf)5											
		[Total No. of Exceedances = 1]										
Date	9 October	27 September 2017 (Measured) 28 September 2017 (In situ results received by ERM) 9 October 2017 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with Exceedance(s)	Surface and Midd	Surface and Middle-depth DO, Bottom-depth Dissolved Oxygen (DO)										
Action Levels for DO	Surface and Middle-depth DO	face and Middle-depth DO 5.0 mg/L										
	Bottom-depth DO	4.7 mg/L										
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L										
	Bottom-depth DO	3.6 mg/L										
Measured Levels	Action Level Exceedance	1										
Works Undertaken (at the time of monitoring event) Possible Reason for	·	ertaken under this Contract on 27 September 2017. DO is unlikely to be due to the Project, in view of the following:										
Action or Limit Level	_	ertaken under this Contract on 27 September 2017.										
Exceedance(s)	 CS(Mf)5 is distant (>3km rether observed exceedance shathey are considered to be not be as a possible of the preasons of natural variation of the preasons of natural variations. The higher Salinity recovers was possibly caused by discharged from the preason of the probably respondered to the stations. The stratification of the presults of lower laws. 	espectively) from the marine works area under this Contract, thus would not be affected by the marine works under this Contract and atural fluctuation in water quality. Sower at water quality monitoring stations due to two possible at the contract and the contract and atural fluctuation in water quality. The contract is contract, thus area under this Contract, thus are a under this Contract, and a under this Contract										
Actions Taken/To Be	No immediate action is considered	ed necessary. The ET will monitor for future trends in										
Taken	exceedances.											
Remarks		e monitoring results on 27 September 2017 and locations of water quality monitoring stations are ached. Site photo record on 27 September 2017 is attached.										

3.4			
		3.0	
0.7		2.8	
2.7	2.0	3.1	2.0
2.7	2.9	2.4	2.8
3.1		2.2	
2.6		3.3	
7.4		1.2	
6.9		1.1]
11.8	12.0	2.9	26
12.8	13.2	2.1	2.6
20.4		4.8]
19.7		3.5	1
5.4		3.5	
5.0		3.4]
	7.0		20
	7.8		2.9
10.4		2.1	1
10.4		2.6	1
8.8		6.8	
			1
	10.6		7.4
	10.6		
12.8	1	7.5	
12.3		7.0	1
8.1		4.5	
7.8		5.0	1
	0.5		4.5
	8.5		4.5
9.3		4.2	1
			1
			1
5.2	10.0		1
	10.0		3.8
13.8		2.9	1
			1
			1
	†		1 [
	8.3		5.0
9.3		6.6	1
			1
	3.1 2.6 7.4 6.9 11.8 12.8 20.4 19.7 5.4 5.0 10.4 10.4 8.8 8.5	2.7 3.1 2.6 7.4 6.9 11.8 12.8 20.4 19.7 5.4 5.0 7.8 10.4 10.4 10.4 10.4 10.6 12.8 12.3 8.1 7.8 8.5 9.3 8.6 6.5 6.2 10.0 13.8 13.6 7.4 7.0 8.3 9.3	2.7 2.4 3.1 2.2 3.3 3.3 7.4 1.2 6.9 1.1 11.8 12.9 12.8 2.1 19.7 3.5 5.4 3.5 5.0 3.4 7.8 3.5 10.4 2.1 10.4 2.6 8.8 6.8 8.5 8.1 7.8 5.0 8.1 4.5 7.8 5.0 8.1 4.5 7.8 5.0 8.6 4.2 6.5 4.6 6.2 4.3 13.6 3.3 7.4 3.2 7.0 4.9 8.3 6.6

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Surface	1.0	30.4	7.9	19.6	5.4		3.5		0.9	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Surface	2.0	30.3	7.9	19.8	5.4	5.1	3.0		0.6	0.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Middle	1.0	29.8	7.9	22.2	4.7	J.1	3.6	3.7	0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Middle	2.0	29.6	7.8	22.4	4.7		3.1		0.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Bottom	1	29.5	7.9	25.0	4.5	4.5	4.6		< 0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Bottom	2	29.3	7.9	25.2	4.5	4.3	4.1		< 0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Surface	1.0	30.8	7.6	12.0	5.8		6.6		2.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Surface	2.0	30.8	7.6	12.0	5.8	5.5	6.6		2.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Middle	1.0	29.9	7.7	17.6	5.1	5.5	12.5	11.6	2.7	2.0
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Middle	2.0	29.9	7.7	17.6	5.1		12.5	11.6	2.6	3.8
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Bottom	1	29.7	7.7	20.5	5.1	<i>E</i> 1	15.6		5.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Bottom	2	29.7	7.7	20.5	5.1	5.1	15.8		6.6	1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Surface	1.0	30.2	7.9	19.6	5.3		6.2		2.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Surface	2.0	30.0	7.8	19.9	5.3	5.0	5.9		2.9	1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Middle	1.0	30.0	7.9	20.3	5.2	5.3	9.0	10.2	5.2	4.6
TMCLKL	HY/2012/07			IS(Mf)16	11:58	Middle	2.0	29.9	7.8	20.5	5.2		9.0		4.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Bottom	1	29.9	7.9	22.6	4.9	4.0	15.6		5.4	
TMCLKL	HY/2012/07	2017-09-27	•	IS(Mf)16	11:58	Bottom	2	29.7	7.8	22.8	4.9	4.9	15.3		6.9	
TMCLKL	HY/2012/07	2017-09-27		SR4a	12:09	Surface	1.0	30.3	7.9	18.2	5.4		8.3		7.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:09	Surface	2.0	30.1	7.8	18.4	5.4	5.4	7.8		8.7	
TMCLKL	HY/2012/07			SR4a		Middle	1.0					5.4		11.6		7.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a		Middle	2.0							11.6		7.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:09	Bottom	1	30.0	7.9	19.8	5.0	5.0	15.5		7.4	
TMCLKL	HY/2012/07			SR4a	12:09	Bottom	2	29.9	7.8	20.0	5.0	5.0	14.9		7.2	
TMCLKL	HY/2012/07	2017-09-27	•	SR4	12:13	Surface	1.0	30.7	7.9	17.5	5.8		4.6		3.0	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:13	Surface	2.0	30.5	7.8	17.6	5.8	7 0	4.1		2.7	1
TMCLKL	HY/2012/07			SR4		Middle	1.0					5.8		6.0		2.6
TMCLKL	HY/2012/07		•	SR4		Middle	2.0							6.0		3.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:13	Bottom	1	30.3	7.9	18.7	5.4	5.4	7.8		4.2	
	HY/2012/07		Mid-Flood		12:13	Bottom	2	30.1	7.8	18.9	5.4	5.4	7.6		4.6	1
TMCLKL			Mid-Flood		12:26	Surface	1.0	30.6	7.9	18.3	5.6		9.1		6.5	
			Mid-Flood		12:26	Surface	2.0	30.4	7.8	18.5	5.5		8.5		8.1	1
			Mid-Flood			Middle	1.0	- 2•••				5.6		10.5		
			Mid-Flood			Middle	2.0							10.6		7.1
TMCLKL			Mid-Flood		12:26	Bottom	1	30.2	7.9	19.5	5.3		12.0	-	6.2	1
			Mid-Flood		12:26	Bottom	2	30.0	7.8	19.7	5.3	5.3	12.7		7.5	1
TMCLKL			Mid-Flood		12:34	Surface	1.0	30.5	7.9	19.8	5.6		6.4		5.1	
			Mid-Flood	· '	12:34	Surface	2.0	30.3	7.9	20.0	5.6		5.9		4.8	1
			Mid-Flood		12.0	Middle	1.0	2 312		20.0	2.0	5.6	2.7			
TMCLKL			Mid-Flood			Middle	2.0							6.6		4.5
TMCLKL			Mid-Flood		12:34	Bottom	1	30.4	7.9	20.4	5.6		7.4		4.3	1
	HY/2012/07		Mid-Flood		12:34	Bottom	2	30.2	7.9	20.6	5.6	5.6	6.7		3.9	1

Photo 1 - Mid-Flood at CS(Mf)5 on 27 September 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 30 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_29 September 2017_ Bottom-depth DO_E_Station IS8 0215660_29 September 2017_ Bottom-depth DO_E_Station IS(Mf)9 0215660_29 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_29 September 2017_ Bottom-depth DO_E_Station SR4 0215660_29 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of five exceedances were recorded on 29 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance												
	0215660_30 Sep 0215660_30 Se 0215660_30 S	0215660_30 September 2017_ Bottom-depth DO_E_Station IS8 0215660_30 September 2017_ Bottom-depth DO_E_Station IS(Mf)9 0215660_30 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_30 September 2017_ Bottom-depth DO_E_Station SR4 0215660_30 September 2017_ Bottom-depth DO_F_Station CS(Mf)5												
	[Total No. of Exceedances = 5]													
Date	29 September 2017 (Measured)													
	30 September 2017 (In situ results received by ERM)													
	11 Octobe	er 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO, Bottom-depth Dissolved Oxygen (DO)													
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Measured Levels	Action Level Exceedance 1. Mid-ebb at IS8 (Bottom-depth DO = 4.5mg/L); 2. Mid-ebb at IS(Mf)9 (Bottom-depth DO = 4.6mg/L); 3. Mid-ebb at SR4a (Bottom-depth DO = 4.0mg/L); 4. Mid-ebb at SR4 (Bottom-depth DO = 4.6mg/L); and 5. Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.5mg/L).													
Works Undertaken (at	No major marine works was und	dertaken under this Contract on 29 September 2017.												
the time of monitoring														
event)														
Possible Reason for		middle and bottom-depth DO are unlikely to be due to the Project,												
Action or Limit Level	in view of the following:													
Exceedance(s)		ertaken under this Contract on 29 September 2017.												
	 All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)5 are distant (>3km respectively) from the marine works area under this Contract, thus 													
	the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality.													
Actions Taken/To Be	No immediate action is considered	ed necessary. The ET will monitor for future trends in												
Taken	exceedances.													
Remarks		otember 2017 and locations of water quality monitoring stations are												
	attached. Site photo record on 2	29 September 2017 is attached.												

TMCLKL HY	Y/2012/07			Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
		2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Surface	1	30.1	7.8	19.5	5.9		1.8		1.2	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Surface	2	29.8	7.9	19.8	5.8	5.5	1.8		1.6]
	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Middle	1	30.2	7.8	22.1	5.1	J . J	1.7	1 7	1.5	1.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Middle	2	29.9	7.9	22.4	5.0		1.7	1.7	1.8	1.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Bottom	1	29.9	7.8	25.3	4.9	4.9	1.7		1.4	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Bottom	2	29.6	7.9	25.6	4.8	4.9	1.7		1.5	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Surface	1	30.2	7.8	16.9	6.0		5.0		3.2	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Surface	2	30.4	7.8	16.9	6.1	57	5.5		2.1	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Middle	1	30.1	7.8	20.5	5.2	5.7	4.7	5.0	3.1	2.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Middle	2	30.4	7.7	20.3	5.3		4.7	5.9	3.3	3.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Bottom	1	29.4	7.8	25.4	4.6	4.7	7.6		3.7	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Bottom	2	29.7	7.8	25.5	4.8	4.7	8.1		5.4	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Surface	1	30.0	7.8	18.5	6.2		3.2		1.7	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Surface	2	29.8	8.0	18.8	6.1	(0	2.8		1.4	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16		Middle	1					6.2		4.0		1 7
	Y/2012/07		Mid-Ebb	IS(Mf)16		Middle	2							4.3		4.7
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Bottom	1	29.9	7.8	23.2	4.8	4.0	5.8		8.0	
	Y/2012/07	†	Mid-Ebb	IS(Mf)16	07:12	Bottom	2	29.6	7.9	24.0	4.8	4.8	5.2		7.7	1
	Y/2012/07		Mid-Ebb	SR4a	07:24	Surface	1	30.6	7.8	20.1	6.0		4.1		2.1	
	Y/2012/07		Mid-Ebb	SR4a	07:24	Surface	2	30.3	7.9	20.4	5.9		3.7		3.7	1
	Y/2012/07		Mid-Ebb	SR4a		Middle	1					6.0		7 2		3.6
	Y/2012/07		Mid-Ebb	SR4a		Middle	2							5.2		
	Y/2012/07		Mid-Ebb	SR4a	07:24	Bottom	1	29.9	7.7	23.0	4.0	4.0	6.6		4.6	1
	Y/2012/07		Mid-Ebb	SR4a	07:24	Bottom	2	29.6	7.8	23.3	4.0	4.0	6.3		3.9	1
	Y/2012/07		Mid-Ebb	SR4	07:28	Surface	1	30.3	7.7	20.7	5.1		6.2		4.5	
			Mid-Ebb	SR4	07:28	Surface	2	30.0	7.9	21.0	5.1	5.1	5.9		2.9	
	Y/2012/07		Mid-Ebb	SR4		Middle	1					5.1		0.5		1
	Y/2012/07		Mid-Ebb	SR4		Middle	2							9.5		3.7
		†	Mid-Ebb	SR4	07:28	Bottom	1	30.1	7.7	22.1	4.6	1.6	12.5		3.6	
TMCLKL HY				SR4	07:28	Bottom	2	29.8	7.8	22.4	4.5	4.6	13.5		3.8	
			Mid-Ebb	IS8	07:41	Surface	1	30.5	7.9	18.7	7.1		2.8		2.1	
			Mid-Ebb	IS8	07:41	Surface	2.	30.2	8.0	18.9	7.0		2.3		2.2	
			Mid-Ebb	IS8	57.11	Middle	1	20.2	0.0	10.7	7.0	7.1	2.3		2.2	
			Mid-Ebb	IS8		Middle	2							5.6		2.8
			Mid-Ebb	IS8	07:41	Bottom	1	30.2	7.7	22.1	4.4		8.7		4.1	1
			Mid-Ebb	IS8	07:41	Bottom	2	30.0	7.8	22.3	4.5	4.5	8.4		2.6	1
			Mid-Ebb	IS(Mf)9	07:51	Surface	1	30.2	7.9	18.4	6.9		2.9		2.3	
			Mid-Ebb	IS(Mf)9	07:51	Surface	2.	29.9	8.1	18.6	6.8		2.6		2.5	1
			Mid-Ebb	IS(Mf)9	57.51	Middle	1	<i>27.7</i>	0.1	10.0	0.0	6.9	2.0		2.5	
			Mid-Ebb	IS(Mf)9		Middle	2			1				6.0		3.8
			Mid-Ebb	IS(Mf)9	07:51	Bottom	1	30.2	7.7	21.3	4.5		9.3		5.6	
			Mid-Ebb	IS(Mf)9	07:51	Bottom	7	30.0	7.7	21.4	4.7	4.6	9.0		4.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Surface	1	30.0	8.0	24.0	5.6		1.9		2.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Surface	2	30.2	7.9	23.7	5.7	5.5	1.8		2.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Middle	1	29.6	8.0	27.4	5.3	3.3	2.2	3.5	3.6	2 2
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Middle	2	29.9	7.9	27.1	5.4		2.1	5.5	3.6	3.3
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Bottom	1	29.1	8.0	30.0	4.5	4.5	6.4		4.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Bottom	2	29.4	7.9	29.7	4.5	4.5	6.5		3.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Surface	1	31.1	7.8	15.2	6.2		6.6		4.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Surface	2	31.4	7.8	15.2	6.3	5.7	6.8		5.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Middle	1	30.3	7.7	19.7	5.1	3.1	10.4 11.1	0 6	4.7	5 1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Middle	2	30.5	7.7	19.8	5.2			8.6	5.4	5.1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Bottom	1	30.0	7.7	21.6	4.9	5.0	8.5		6.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Bottom	2	30.2	7.7	21.6	5.1	5.0	8.4		4.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Surface	1	30.9	8.2	19.9	9.4		2.7		3.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Surface	2	31.2	8.1	19.7	9.3	0.4	2.7		3.0	2.0
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16		Middle	1					9.4		7.2		
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16		Middle	2							7.3		3.8
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Bottom	1	30.0	7.8	22.6	5.5	<i>5 5</i>	11.8		4.3]
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Bottom	2	30.2	7.8	22.4	5.5	5.5	11.8		4.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	Surface	1	30.3	7.9	21.4	6.4		5.6		5.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	Surface	2	30.6	7.9	21.2	6.4	C 1	6.4	5.3	4.9	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a		Middle	1					6.4				4.9
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a		Middle	2									
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	Bottom	1	30.1	7.9	22.3	5.5	5.5	4.4		4.3	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	Bottom	2	30.3	7.8	22.1	5.5	5.5	4.9		5.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Surface	1	30.7	8.0	20.9	6.8		14.3		13.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Surface	2	31.0	7.9	20.6	7.1	7.0	15.1		12.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4		Middle	1					7.0		140		10.1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4		Middle	2							14.2		13.1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Bottom	1	30.0	7.8	22.5	4.9	5.0	13.8		12.8	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Bottom	2	30.3	7.8	22.1	5.0	5.0	13.6		13.3]
	i e	2017-09-29	Mid-Flood		15:25	Surface	1	30.7	8.0	20.9	7.3		10.2		8.3	
		2017-09-29	Mid-Flood		15:25	Surface	2	31.0	8.0	20.7	7.5	7.4	11.6		7.8	
	i e		Mid-Flood			Middle	1					7.4		140		0.0
		2017-09-29	Mid-Flood			Middle	2							14.2		8.3
		2017-09-29	Mid-Flood		15:25	Bottom	1	30.2	7.9	21.8	5.9	<i>F</i> 0	18.9		7.9	1
	i e	2017-09-29	Mid-Flood		15:25	Bottom	2	30.5	7.8	21.6	5.9	5.9	16.0	1	9.0	1
	+	2017-09-29	Mid-Flood		15:13	Surface	1	31.2	8.3	20.0	11.8		7.7	7.7	6.9	
		2017-09-29	Mid-Flood		15:13	Surface	2	31.4	8.3	19.8	11.7	11.0	9.0		6.6]
		2017-09-29	Mid-Flood	 ` 		Middle	1		-			11.8		0.5	-	7.0
	HY/2012/07	2017-09-29	Mid-Flood			Middle	2							9.5		7.8
		2017-09-29	Mid-Flood		15:13	Bottom	1	31.2	8.2	20.5	9.2	0.2	10.1		9.2	1
	HY/2012/07		Mid-Flood		15:13	Bottom	2	31.5	8.2	20.3	9.4	9.3	11.2		8.6	1

Photo 1 - Mid-Ebb at IS8 on 29 September 2017

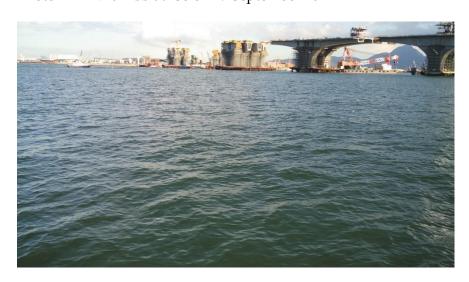
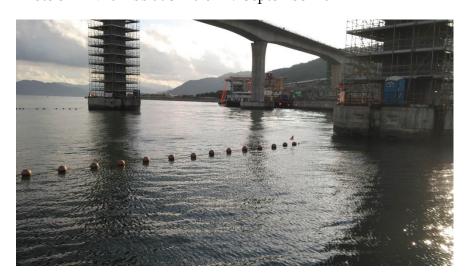



Photo 2 - Mid-Ebb at IS(Mf)9 on 29 September 2017

Photo 3 - Mid-Ebb at SR4a on 29 September 2017

CONTRACT NO. HY/2012/07 – WQM SITE PHOTOS AT IS8, IS(MF)9, SR4A, SR4 AND CS(MF)5 ON 29 SEPTEMBER 2017

Photo 4 - Mid-Ebb at SR4 on 29 September 2017

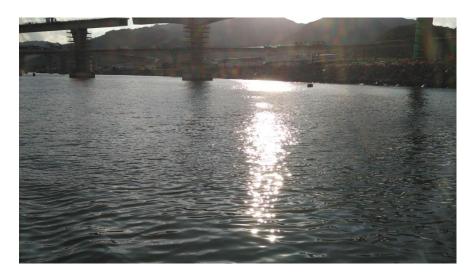
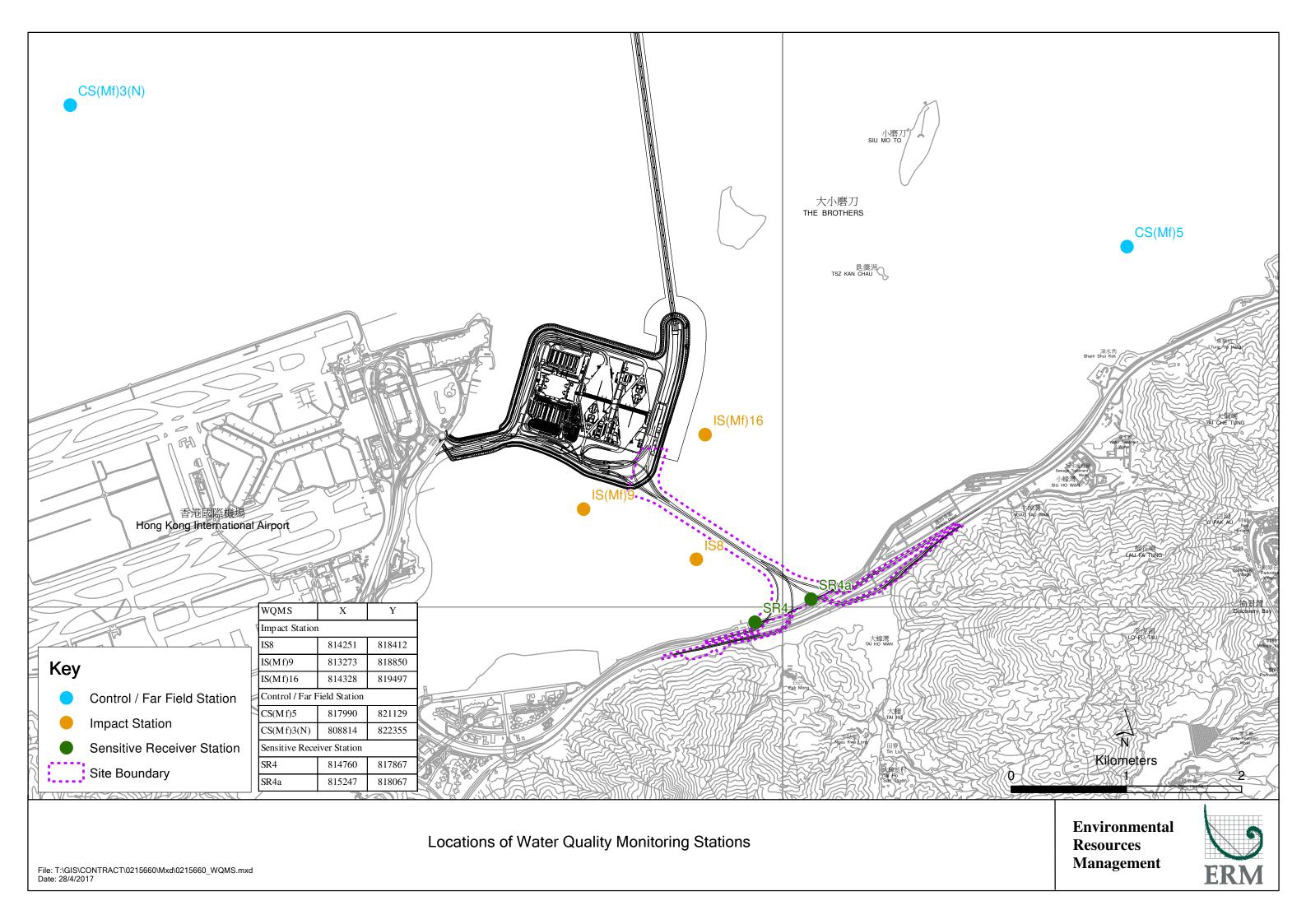



Photo 5 - Mid-Flood at CS(Mf)5 on 29 September 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 311

From ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 2 October 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_2 October 2017_ Bottom-depth DO_E_Station CS(Mf)5 0215660_2 October 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of two exceedances were recorded on 2 October 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance ctober 2017_ Bottom-depth DO_E_Station CS(Mf)5 ctober 2017_ Bottom-depth DO_F_Station CS(Mf)5 [Total No. of Exceedances = 2]											
Date	12 Octobe	2 October 2017 (Measured) ober 2017 (In situ results received by ERM) er 2017 (Laboratory results received by ERM)											
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)											
Parameter(s) with Exceedance(s)	В	Bottom-depth Dissolved Oxygen (DO)											
Action Levels for DO	Bottom-depth DO	Bottom-depth DO 4.7 mg/L											
Limit Levels for DO	Bottom-depth DO	3.6 mg/L											
Measured Levels		Action Level Exceedance Mid-ebb at CS(Mf)5 (Bottom-depth DO = 4.5mg/L);											
Works Undertaken (at the time of monitoring event)		lertaken under this Contract on 2 October 2017.											
Possible Reason for	The exceedances of bottom-dept	h DO are unlikely to be due to the Project, in view of the following:											
Action or Limit Level	 No marine works was und 	ertaken under this Contract on 2 October 2017.											
Exceedance(s)	 No marine works was undertaken under this Contract on 2 October 2017. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)5 are distant (>3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. 												
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in												
Taken	exceedances.												
Remarks	The monitoring results on 2 Octoattached. Site photo record on 2	ober 2017 and locations of water quality monitoring stations are 2 October 2017 is attached.											

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Surface	1	29.9	8.0	23.5	6.0		3.8		6.0	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Surface	2	29.6	8.0	23.7	5.9	5.3	3.8		4.9	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Middle	1	29.5	7.9	27.6	4.7	3.3	4.5	47	5.6	62
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Middle	2	29.3	8.0	27.9	4.7		3.6	4.7	5.3	6.3
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Bottom	1	29.4	7.9	28.5	4.5	4.5	6.7		8.4	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)5	9:56	Bottom	2	29.1	8.0	28.8	4.5	4.3	5.9		7.8	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Surface	1	30.3	7.9	20.2	6.1		2.8		3.6	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Surface	2	30.1	7.9	20.1	6.0	5.6	2.5		4.8	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Middle	1	29.9	7.9	23.7	5.2	5.6	6.1	57	3.9	4.0
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Middle	2	29.7	7.9	23.5	5.1		6.0	5.7	5.4	4.8
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Bottom	1	29.8	7.9	24.6	5.2	5.0	8.9		4.7	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	CS(Mf)3(N)	11:07	Bottom	2	29.5	7.9	24.4	5.1	5.2	7.9		6.3	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	IS(Mf)16	10:35	Surface	1	30.0	8.2	23.4	8.5		6.0		7.4	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	IS(Mf)16	10:35	Surface	2	29.7	8.2	23.7	8.4	0.5	5.1		8.0	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	IS(Mf)16		Middle	1					8.5		4.7		7.0
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	IS(Mf)16		Middle	2							4.7		7.9
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	IS(Mf)16	10:35	Bottom	1	29.6	7.9	26.7	5.1	<i>5.</i> 0	3.8		7.9	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	10:35	Bottom	2	29.3	8.0	27.0	5.2	5.2	3.7		8.1	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4a	10:45	Surface	1	29.8	8.1	23.2	7.2		6.3		8.3	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4a	10:45	Surface	2	29.6	8.1	23.5	7.2	7.0	5.3		9.1	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	1					7.2		6.0		10.0
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4a		Middle	2							6.2		10.0
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4a	10:45	Bottom	1	29.8	8.1	23.3	7.0	7.0	6.9		11.9	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	10:45	Bottom	2	29.6	8.1	23.6	6.9	7.0	6.1		10.7	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4	10:50	Surface	1	29.9	8.0	23.0	6.9		6.2		8.9	
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4	10:50	Surface	2	29.7	8.1	23.3	6.9	6.0	5.7		7.3	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	1					6.9		0.2		1 0.5
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	2							9.2		8.5
TMCLKL	HY/2012/07	2017-10-02	Mid-Ebb	SR4	10:50	Bottom	1	29.9	8.0	23.8	6,3		12.5		9.5	
	HY/2012/07		Mid-Ebb		10:50	Bottom	2	29.6	8.1	24.0	6.3	6.3	12.5		8.1	1
			Mid-Ebb	IS8	11:05	Surface	1	30.0	8.2	23.2	8.8		4.2		7.0	
			Mid-Ebb	IS8	11:05	Surface	2	29.8	8.3	23.4	8.8	0.0	4.3		6.1	1
			Mid-Ebb	IS8	11.05	Middle	1	2,10		23.1		8.8		. .	5.1	
			Mid-Ebb	IS8		Middle	2				 			5.9		8.0
TMCLKL	HY/2012/07		Mid-Ebb	IS8	11:05	Bottom	1	29.9	8.1	23.7	7.1		7.5		9.1	1
			Mid-Ebb	IS8	11:05	Bottom	2	29.6	8.2	24.0	7.2	7.2	7.4		9.7	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	11:16	Surface	1	30.0	8.3	23.2	9.1		4.9		6.4	
TMCLKL			Mid-Ebb	IS(Mf)9	11:16	Surface	2.	29.8	8.3	23.4	9.1	_	4.9		6.2	1
			Mid-Ebb	IS(Mf)9	11.10	Middle	1	27.0	0.5	23.1	7.1	9.1	1.2		0.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2							5.1		6.0
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	11:16	Bottom	1	29.9	8.1	23.5	7.9		5.6		5.4	
	HY/2012/07		Mid-Ebb	IS(Mf)9	11:16	Bottom	7	29.6	8.2	23.8	7.8	7.9	4.8		5.8	

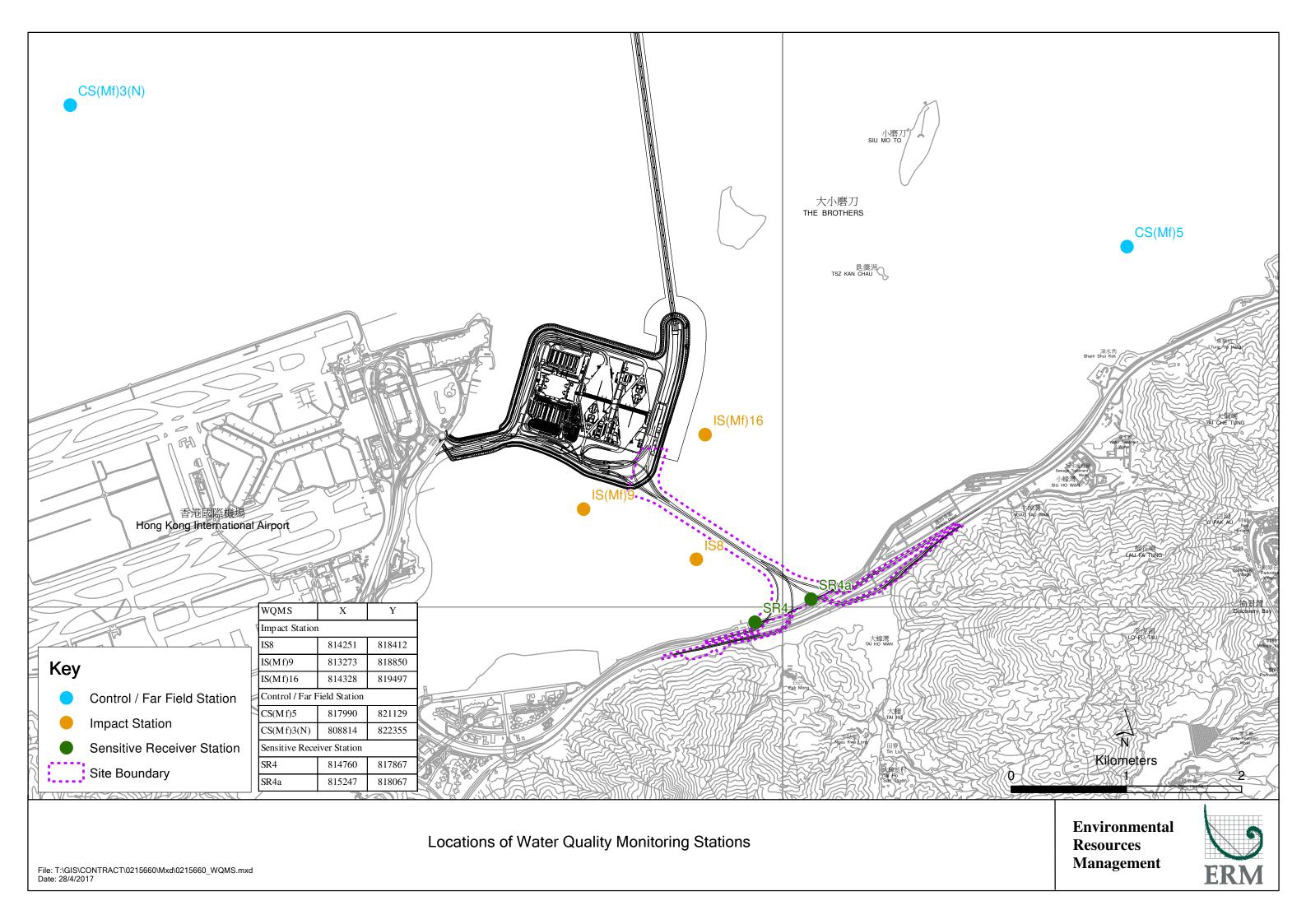

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Surface	1	30.0	8.0	24.8	6.1		3.2		6.1	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Surface	2	29.7	8.0	25.0	6.0	5.5	2.6		7.2	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Middle	1	29.6	7.9	27.2	4.9	3.3	5.6	6.1	6.6	6.2
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Middle	2	29.3	8.0	27.5	4.9		5.3	6.4	6.1	0.2
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Bottom	1	29.5	7.9	28.0	4.5	4.5	10.9		5.2	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)5	18:00	Bottom	2	29.2	8.0	28.3	4.5	4.3	10.5		6.0	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Surface	1	30.7	7.7	17.6	5.8		5.0		2.3	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Surface	2	30.4	7.7	17.4	5.7	<i>c.</i> 7	4.5		2.7	1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Middle	1	30.4	7.8	19.7	5.7	5.7	5.2	7.0	4.4	2.1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Middle	2	30.2	7.8	19.6	5.6		4.8	5.0	3.9	3.1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Bottom	1	30.3	7.8	20.8	5.5		5.4		3.2	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	CS(Mf)3(N)	16:23	Bottom	2	30.0	7.8	20.8	5.4	5.5	5.0		2.3	1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16	17:26	Surface	1	30.5	8.1	22.1	8.8		2.9		6.1	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16	17:26	Surface	2.	30.3	8.2	22.4	8.8		2.4		5.6	1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16	17,20	Middle	1	2012	0.2	22.1	0.0	8.8	2.1		3.0	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16		Middle	2.							5.2		9.4
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16	17:26	Bottom	1	30.2	8.1	23.5	7.4		7.8		13.7	1
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)16	17:26	Bottom	2	29.9	8.1	23.8	7.4	7.4	7.5		12.2	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4a	17:11	Surface	1	30.6	8.1	22.2	8.0		6.4		5.6	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4a	17:11	Surface	2	30.3	8.1	22.4	8.1		5.9		6.3	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood		17.11	Middle	1	50.5	0.1	22.1	0.1	8.1	3.7		0.5	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4a		Middle	2							7.2		7.4
TMCLKL	HY/2012/07	2017-10-02	1	SR4a	17:11	Bottom	1	30.5	8.1	22.5	7.7		8.7		8.6	
TMCLKL	HY/2012/07	2017-10-02		SR4a	17:11	Bottom	2	30.2	8.1	22.7	7.7	7.8	7.8		8.9	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4	17:06	Surface	1	30.7	8.1	22.1	8.1		5.0		6.5	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4	17:06	Surface	2	30.4	8.1	22.3	8.1		4.5		6.2	1
TMCLKL	HY/2012/07	2017-10-02		SR4	17.00	Middle	<u> </u>	30.4	0.1	22.3	0.1	8.1	4.3		0.2	1
TMCLKL	HY/2012/07	2017-10-02		SR4		Middle	2							9.9		6.8
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	SR4	17:06	Bottom	<u> </u>	30.3	8.0	23.8	7.0		15.4		7.3	1
	HY/2012/07		Mid-Flood		17:06		2	30.0	0.1	24.0	7.0	7.0	14.5		7.0	1
		2017-10-02	Mid-Flood		16:55	Bottom Surface	<u>Z</u>	30.5	8.1	22.5	8.6		7.1		6.5	
		2017-10-02	Mid-Flood				2		8.2		8.5				5.8	
		2017-10-02	1		16:55	Surface	<u>Z</u>	30.2	8.2	22.7	8.3	8.6	6.2		3.8	
TMCLKL	i		Mid-Flood		<u> </u>	Middle	2							11.6		8.5
TMCLKL		2017-10-02	Mid-Flood		16.55	Middle	<u> </u>	20.1	0.1	24.0	7.0		160		10.0	-
TMCLKL		2017-10-02	Mid-Flood		16:55	Bottom	1	30.1	8.1	24.0	7.2	7.2	16.9		10.8	-
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood		16:55	Bottom	1	29.8	8.1	24.2	7.2		16.1		10.9	
TMCLKL	i	2017-10-02	Mid-Flood		16:44	Surface	1	30.7	8.2	23.3	9.7		8.2		8.5	
TMCLKL		2017-10-02	Mid-Flood		16:44	Surface	2	30.4	8.3	23.5	9.6	9.7	7.6		8.5	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood		1	Middle	1							11.2		9.6
TMCLKL		2017-10-02	Mid-Flood		1	Middle	2	20.	0.5						10:	
TMCLKL	i	2017-10-02	Mid-Flood		16:44	Bottom	1	30.4	8.2	23.9	8.6	8.6	14.5		10.4	
TMCLKL	HY/2012/07	2017-10-02	Mid-Flood	IS(Mf)9	16:44	Bottom	2	30.1	8.2	24.1	8.5	: :0	14.4		11.1	

Photo 1 - Mid-Ebb at CS(Mf)5 on 2 October 2017

Photo 2 - Mid-Flood at CS(Mf)5 on 2 October 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

)) 25 Westlands Road

From ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 6 October 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_4 October 2017_Bottom-depth DO_E_Station CS(Mf)5

0215660_4 October 2017_Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_4 October 2017_Bottom-depth DO_F_Station CS(Mf)5

A total of three exceedances were recorded on 4 October 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	0215660_4 October 2 0215660_4 Oct	Action Level Exceedance ober 2017_Bottom-depth DO_E_Station CS(Mf)5 017_Surface and Middle-depth DO_F_Station CS(Mf)5 ober 2017_Bottom-depth DO_F_Station CS(Mf)5 [Total No. of Exceedances = 3] 4 October 2017 (Measured)												
		ober 2017 (<i>In situ</i> results received by ERM) er 2017 (Laboratory results received by ERM)												
Monitoring Station		SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with	C5(1VII)5, 1	ONTIN, ONT, 100, 10(1411)10, 10(1411)7, CO(1411)7(14)												
Exceedance(s)	Surface and Mido	tlle-depth DO, Bottom-depth Dissolved Oxygen (DO)												
Action Levels for DO	Surface and Middle-depth DO	•												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	rface and Middle-depth DO 4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Measured Levels	 Mid-ebb at CS(Mf)5 (Bottom Mid-flood at CS(Mf)5 (Surfa Mid-flood at CS(Mf)5 (Bottom 	Action Level Exceedance 1. Mid-ebb at CS(Mf)5 (Bottom-depth DO = 4.3mg/L); 2. Mid-flood at CS(Mf)5 (Surface and Middle-depth DO = 4.9mg/L);												
Works Undertaken (at the time of monitoring event)	,	dertaken under this Contract on 4 October 2017.												
Possible Reason for		middle and bottom-depth DO are unlikely to be due to the Project,												
Action or Limit Level	in view of the following:													
Exceedance(s)	 No marine works was undertaken under this Contract on 4 October 2017. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)5 are distant (>3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. 													
Actions Taken / To Be Taken	No immediate action is considered exceedances.	ed necessary. The ET will monitor for future trends in												
Remarks		ober 2017 and locations of water quality monitoring stations are												
Kemarks	attached. Site photo record on 4	, , , , , , , , , , , , , , , , , , ,												

Project	Works	Date (yyyy-mm-dd	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Surface	1	30.2	8.0	23.9	5.8		5.7		5.0	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Surface	2	30.0	8.0	24.2	5.7	5.3	4.6		5.9	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Middle	1	29.9	8.0	25.7	4.8	3.3	8.7	0.2	4.8	60
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Middle	2	29.6	8.0	26.0	4.8		7.9	8.3	5.0	6.2
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Bottom	1	29.6	7.9	27.7	4.3	4.3	11.9		9.0	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)5	11:32	Bottom	2	29.3	8.0	28.0	4.3	4.5	10.8		7.2	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Surface	1	30.3	7.8	21.5	5.8		7.8		2.6	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Surface	2	30.1	7.9	21.6	6.1	5.0	7.3		3.8]
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Middle	1	30.2	7.9	23.7	5.9	5.9	13.5	1 / /	3.8	4.1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Middle	2	30.0	7.9	22.3	5.9		13.7	14.4	4.1	4.1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Bottom	1	30.1	7.9	25.2	5.6	57	21.8		5.1]
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	CS(Mf)3(N)	13:03	Bottom	2	29.8	7.9	25.3	5.8	5.7	22.1		4.9]
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Surface	1	30.2	8.0	23.7	6.4		7.4		7.9	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Surface	2	29.9	8.1	24.0	6.4	C 1	6.5		6.7]
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Middle	1					6.4		0.6		7.7
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Middle	2							9.6		7.7
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Bottom	1	30.0	8.0	24.9	5.2	5.0	12.9		7.7	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)16	12:05	Bottom	2	29.7	8.0	25.2	5.3	5.3	11.5		8.5	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Surface	1	30.2	8.0	23.7	5.9		12.5		12.3	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Surface	2	29.9	8.0	24.0	5.9	5 0	11.2		12.5	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Middle	1					5.9		15.1		10.1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Middle	2							15.1		12.1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Bottom	1	30.2	8.0	23.9	5.8	<i>r</i> o	18.5		11.9	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4a	12:16	Bottom	2	29.9	8.0	24.1	5.7	5.8	18.2		11.5	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4	12:20	Surface	1	30.3	8.0	23.4	6.1		8.6		8.3	
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4	12:20	Surface	2	30.0	8.0	23.6	6.1	6.1	7.5		8.5	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4	12:20	Middle	1					6.1		0.0		1 04
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4	12:20	Middle	2							8.0		8.4
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	SR4	12:20	Bottom	1	30.3	8.0	23.4	6.1	<i>C</i> 1	8.3		8.0	1
	HY/2012/07		Mid-Ebb		12:20	Bottom	2	30.0	8.0	23.7	6.1	6.1	7.4		8.9	
TMCLKL			Mid-Ebb	IS8	12:31	Surface	1	30.5	8.1	23.8	6.6		10.3		10.8	
TMCLKL			Mid-Ebb	IS8	12:31	Surface	2	30.2	8.1	24.1	6.6		8.9		12.4	1
		2017-10-04	Mid-Ebb	IS8	12:31	Middle	1					6.6		44.0		
			Mid-Ebb	IS8	12:31	Middle	2							11.2		11.5
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS8	12:31	Bottom	1	30.4	8.0	23.8	6.3		13.4		11.5	1
TMCLKL		2017-10-04	Mid-Ebb	IS8	12:31	Bottom	2	30.1	8.1	24.1	6.3	6.3	12.1		11.3	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)9	12:41	Surface	1	30.4	8.1	23.7	7.1		8.2		7.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:41	Surface	2	30.2	8.1	24.0	7.1		7.0		9.5	1
TMCLKL		2017-10-04	Mid-Ebb	IS(Mf)9	12:41	Middle	1	· · -				7.1		0.1		1
TMCLKL	HY/2012/07	2017-10-04	Mid-Ebb	IS(Mf)9	12:41	Middle	2.							8.1		8.2
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:41	Bottom	1	30.4	8.1	23.7	6.9		9.3		7.8	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	12:41	Bottom	2	30.1	8.1	24.0	6.9	6.9	7.8		7.8	1

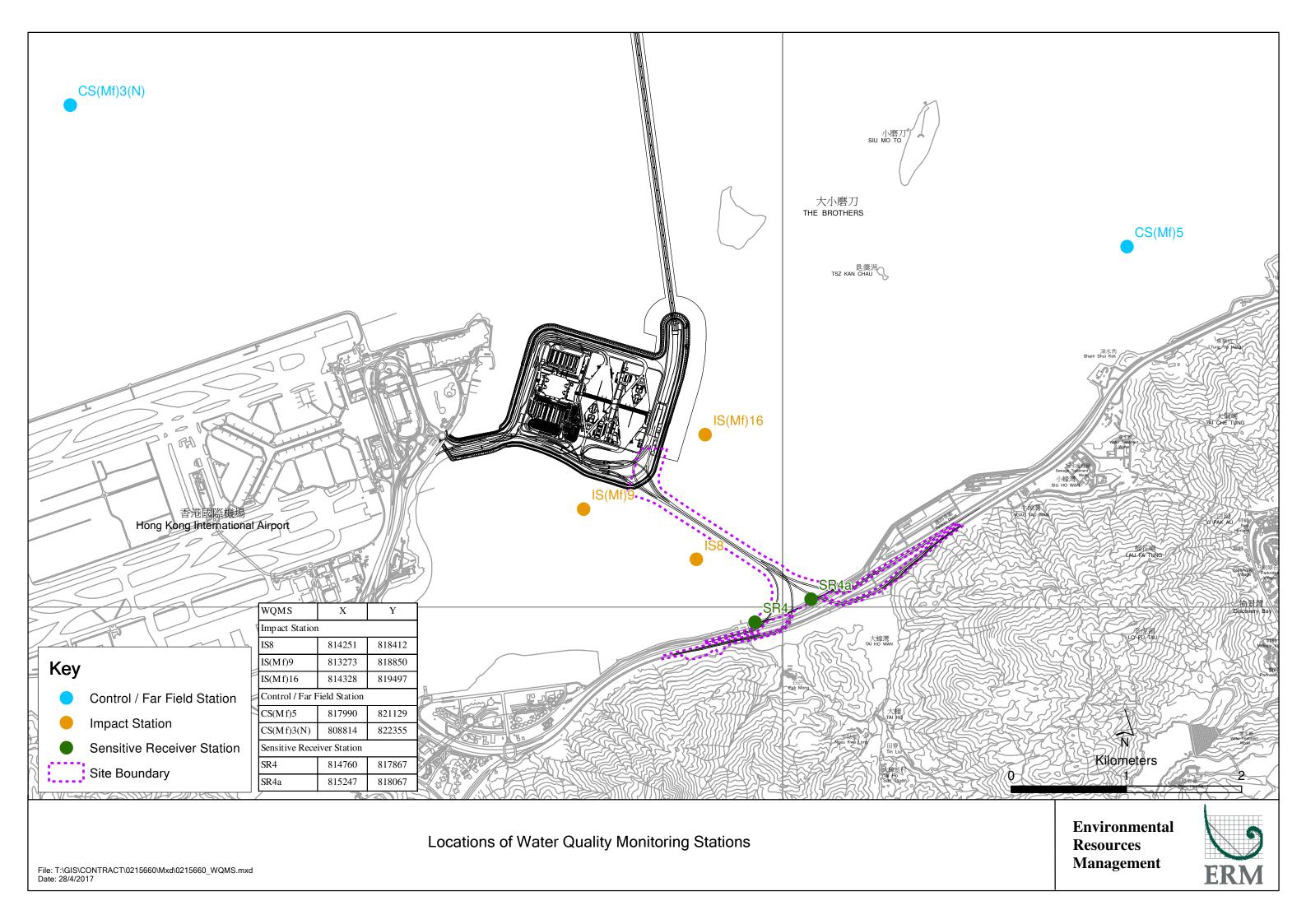

Project	Works	Date (yyyy-mm-dd	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Surface	1	29.8	8.0	25.0	5.3		4.1		6.1	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Surface	2	30.0	7.9	24.8	5.3	4.9	4.1		4.5	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Middle	1	29.4	8.0	27.6	4.4	4.9	13.5	14.6	10.2	15.7
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Middle	2	29.7	7.9	27.3	4.5		13.8	14.0	9.9	15.7
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Bottom	1	29.4	8.0	27.8	4.3	4.4	23.9		30.4	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)5	18:26	Bottom	2	29.6	7.9	27.5	4.4	4.4	28.4		33.0	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Surface	1	30.4	7.8	21.0	5.6		6.2		3.7	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Surface	2	30.2	7.8	21.3	5.6	5.7	6.0		3.9	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Middle	1	30.4	7.8	21.0	5.8	3.7	5.7	7.0	4.7	4.3
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Middle	2	30.2	7.8	21.3	5.7		6.0	7.0	3.2	4.3
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Bottom	1	30.2	7.8	23.3	5.4	<i>5 1</i>	9.6		5.6]
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	CS(Mf)3(N)	17:10	Bottom	2	30.0	7.8	23.5	5.3	5.4	8.3		4.7	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Surface	1	29.9	8.0	24.0	5.8		5.7		5.9	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Surface	2	30.1	8.0	23.7	5.8	5.0	5.6		5.9]
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Middle	1					5.8		7.0		
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Middle	2							7.0		6.4
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Bottom	1	29.8	8.0	24.6	5.6	5.0	8.6		7.2	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	IS(Mf)16	17:53	Bottom	2	30.1	8.0	24.3	5.6	5.6	8.2		6.4	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Surface	1	29.9	8.0	24.0	5.8		7.4		7.8	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Surface	2	30.1	8.0	23.7	5.8	5.0	8.8		7.9	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Middle	1					5.8		0.0		7.0
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Middle	2							9.0		7.8
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Bottom	1	29.8	8.0	24.5	5.6	5.0	9.6		7.9	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4a	17:41	Bottom	2	30.1	8.0	24.3	5.6	5.6	10.1		7.4	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Surface	1	29.9	8.0	24.1	5.8		7.9		8.0	
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Surface	2	30.1	8.0	23.9	5.8	5.0	7.7		7.2	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Middle	1					5.8		0.2		0.4
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Middle	2							8.3		8.4
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Bottom	1	29.8	8.0	24.6	5.7	5.7	8.9		9.9	1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood	SR4	17:36	Bottom	2	30.1	8.0	24.3	5.7	5.7	8.8		8.6	1
		2017-10-04	Mid-Flood		17:28	Surface	1	29.8	8.0	24.2	5.9		10.6		9.6	
		2017-10-04	Mid-Flood		17:28	Surface	2	30.1	8.0	23.9	5.9	<i>5</i> 0	10.5		8.5	1
TMCLKL		2017-10-04	Mid-Flood		17:28	Middle	1					5.9		11.6		0.7
		2017-10-04	Mid-Flood		17:28	Middle	2							11.6		9.7
		2017-10-04	Mid-Flood		17:28	Bottom	1	29.8	8.0	24.3	5.8	5.0	12.4		9.8	1
TMCLKL		2017-10-04	Mid-Flood		17:28	Bottom	2	30.1	8.0	24.1	5.9	5.9	12.7		10.9	1
		2017-10-04	Mid-Flood		17:19	Surface	1									
		2017-10-04	Mid-Flood		17:19	Surface	2									1
TMCLKL	HY/2012/07	2017-10-04	Mid-Flood		17:19	Middle	1	30.0	8.1	24.2	6.6	6.7	8.5	0.5	8.5	1
TMCLKL		2017-10-04	Mid-Flood		17:19	Middle	2	30.2	8.0	23.9	6.7		8.5	8.5	7.5	8.0
		2017-10-04	Mid-Flood		17:19	Bottom	1	50,5	0.0	22.7	5.,		0.0		7.5	1
		2017-10-04	Mid-Flood		17:19	Bottom	2.									1

Photo 1 - Mid-Ebb at CS(Mf)5 on 4 October 2017

Photo 2 - Mid-Flood at CS(Mf)5 on 4 October 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 14 November 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_6 November 2017_Depth-averaged SS_F_Station IS(Mf)9

A total of one (1) exceedance was recorded on 14 November 2017.

Regards,

Mr Jovy Tam

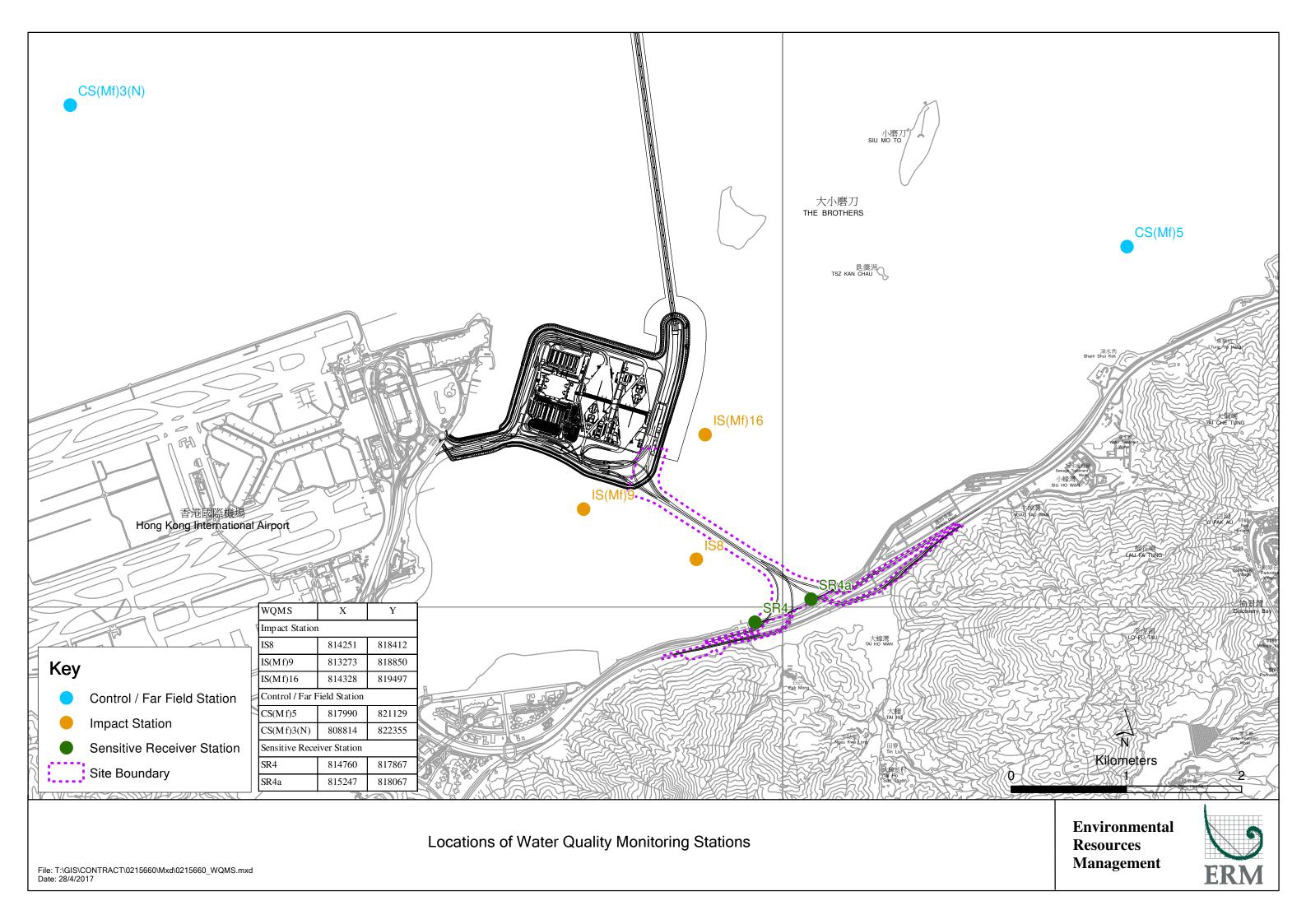
Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	0215660_6 No	Action Level Exceedance vember 2017_Depth-averaged SS_F_Station IS(Mf)9										
		[Total No. of Exceedances = 1]										
Date		6 November 2017 (Measured)										
		mber 2017 (In situ results received by ERM)										
		ber 2017 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with Exceedance(s)	E	Depth-averaged Suspended Solids (SS)										
Action Levels for SS	SS	and 95%-ile of baseline data (i.e., 23.5 mg/L).										
Limit Levels for SS	SS	and 99%-ile of baseline data. (i.e., 34.4 mg/L)										
Measured Levels	Action Level Exceedance 1. Mid-flood at IS(Mf)9 (Dept)											
Works Undertaken (at	No major marine works was un	dertaken under this Contract on 6 November 2017.										
the time of monitoring event)												
Possible Reason for	The exceedance of depth-average	ed SS is unlikely to be due to the Project, in view of the following:										
Action or Limit Level	 No marine works was ur 	ndertaken under this Contract on 6 November 2017.										
Exceedance(s)	 Apart from IS(Mf)9, dept 	h-averaged SS levels at all other monitoring stations were in										
	compliance with the Acti	on and Limit Levels during both mid-flood and mid-ebb tides on										
	· ·	raged SS levels at IS(Mf)9 at mid-ebb tides were similar to those at										
	•	the marginal exceedance observed at mid-flood tide.										
	_	y levels and average DO levels at all stations were in compliance										
	with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.											
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in											
Taken	exceedances.											
Remarks	O .	The monitoring results on 6 November 2017 and locations of water quality monitoring stations are										
	attached. Site photo record on	6 November 2017 is attached.										


Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Surface	1	25.2	8	32.6	6.1		3.5		8.6	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Surface	2	25.4	7.9	32.4	6.1	6.1	3.5		8.5	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Middle	1	25.1	8	32.6	6.1	6.1	4.4	<i>l</i> 1	8.6	8.6
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Middle	2	25.3	7.9	32.4	6.1		4.4	4.1	8.9	0.0
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Bottom	1	25.1	8	32.6	6.1	6.1	4.4		8	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)5	14:01	Bottom	2	25.3	7.9	32.4	6.1	6.1	4.3		9.2	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Surface	1	24.4	8.1	32.4	6.5		19.9		15.7	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Surface	2	24.6	8	32.5	6.6		20.9		16.3	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Middle	1	24.3	8.1	32.4	6.5	6.6	20.9	20.6	21.2	20.0
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Middle	2	24.6	8	32.5	6.6		21.2	20.6	21.5	20.0
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Bottom	1	24.4	8	32.5	6.5	((20.2		22.3	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	CS(Mf)3(N)	12:57	Bottom	2	24.6	8	32.6	6.6	6.6	20.6		22.7	1
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	IS(Mf)16	13:34	Surface	1	24.9	8.1	32.6	6.7		4.8		8.7	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	IS(Mf)16	13:34	Surface	2	25.1	8	32.3	6.7	(7	4.8		9.1	1
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	IS(Mf)16	13:34	Middle	1	24.8	8.1	32.6	6.7	6.7	5.2	<i>5</i> 0	9.6	0.7
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	IS(Mf)16	13:34	Middle	2	25	8	32.3	6.7		5.3	5.2	8.7	9.7
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	13:34	Bottom	1	24.7	8.1	32.6	6.7	67	5.6		11.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	13:34	Bottom	2	24.8	8	32.3	6.6	6.7	5.6		10.4	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4a	13:22	Surface	1	24.9	8	32.5	6.4		9.4		13.1	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4a	13:22	Surface	2	25	7.9	32.3	6.4		9.4		13.4	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	1					6.4		0.0		10.0
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4a		Middle	2							9.3		13.9
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4a	13:22	Bottom	1	24.9	8	32.5	6.4	<i>C</i> 1	9.2		14.5	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:22	Bottom	2	25	7.9	32.3	6.4	6.4	9.2		14.5	
TMCLKL	HY/2012/07		Mid-Ebb	SR4	13:18	Surface	1	24.9	8	32.5	6.4		10.5		15.9	
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4	13:18	Surface	2	25.1	7.9	32.3	6.3		10.5		15.9	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	1					6.4		10.6		160
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	2							10.6		16.0
TMCLKL	HY/2012/07	2017-11-06	Mid-Ebb	SR4	13:18	Bottom	1	24.9	8	32.5	6.4		10.7		16.5	
	HY/2012/07		Mid-Ebb		13:18	Bottom	2	25	7.9	32.3	6.3	6.4	10.7		15.5	1
			Mid-Ebb	IS8	13:11	Surface	1	24.8	8	32.6	6.6		9.7		8.7	
			Mid-Ebb	IS8	13:11	Surface	2	25	7.9	32.3	6.6		9.8		9.7	
			Mid-Ebb	IS8	10.11	Middle	1			52.6	5.0	6.6	7.0	40.0		
			Mid-Ebb	IS8		Middle	2.							10.8		10.6
TMCLKL			Mid-Ebb	IS8	13:11	Bottom	1	24.7	8	32.6	6.6		11.8		11.5	
TMCLKL			Mid-Ebb	IS8	13:11	Bottom	2	24.9	8	32.3	6.5	6.6	11.8		12.4	
	+		Mid-Ebb	IS(Mf)9	13:04	Surface	1	24.5	8	32.5	6.4		10.2		6.5	
TMCLKL			Mid-Ebb	IS(Mf)9	13:04	Surface	2.	24.7	7.9	32.2	6.4		10.1		6.5	1
TMCLKL			Mid-Ebb	IS(Mf)9	15.01	Middle	1	<i>□</i> 1. <i>I</i>	1.7	32.2	0.1	6.4	10.1		0.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2.							10.1		6.7
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:04	Bottom	1	24.5	8	32.5	6.4		10		7.1	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:04	Bottom	2	24.7	7.9	32.3	6.4	6.4	10		6.6	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Surface	1	24.8	8	32.2	6.4		5.4		8.9	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Surface	2	24.6	8	32.5	6.4	6.1	5.3		9	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Middle	1	24.8	7.9	32.2	6.4	6.4	6.2	60	10	11.9
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Middle	2	24.6	8	32.5	6.4		6.2	6.2	9.3	11.9
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Bottom	1	24.8	7.9	32.3	6.4	6.1	6.9		16.4	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)5	8:05	Bottom	2	24.7	8	32.5	6.4	6.4	6.9		17.7	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)3(N)	9:13	Surface	1	24.5	8	31.5	6.5		18.5		18.9	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)3(N)	9:13	Surface	2	24.7	8	31.7	6.4	6.5	19.3		18.4	1
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)3(N)	9:13	Middle	1	24.5	8	31.5	6.4	6.5	20.6	01.5	21.4	20.5
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)3(N)	9:13	Middle	2	24.7	8	31.7	6.6		20.8	21.5	20	20.5
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	CS(Mf)3(N)	9:13	Bottom	1	24.5	8	31.6	6.4	6.1	24.6		21.6	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	9:13	Bottom	2	24.7	8	31.7	6.4	6.4	25.1		22.6	1
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	IS(Mf)16	8:29	Surface	1	24.5	8	32.3	6.5		13.9		15.6	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	8:29	Surface	2	24.4	8	32.5	6.5	. .	13.9		15.3	1
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	31 2)	Middle	1			02.0	5.0	6.5	1017		10.0	1 1
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	IS(Mf)16		Middle	2.							14.1		16.7
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	8:29	Bottom	1	24.5	8	32.3	6.5		14.3		18.1	1
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	8:29	Bottom	2	24.4	8	32.5	6.5	6.5	14.2		17.9	1
TMCLKL	HY/2012/07		Mid-Flood	<u> </u>	8:39	Surface	1	24.8	7.9	32.3	6.3		18.2		20.7	
TMCLKL	HY/2012/07	2017-11-06		SR4a	8:39	Surface	2	24.6	8	32.5	6.3		18.2		22.2	
TMCLKL	HY/2012/07		Mid-Flood		0.37	Middle	1	21.0	0	32.3	0.5	6.3	10.2		22.2	1
TMCLKL	HY/2012/07					Middle	2							19.5		21.4
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood		8:39	Bottom	1	24.8	7.9	32.3	6.3		20.8		21.3	1
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood		8:39	Bottom	2.	24.6	8	32.5	6.3	6.3	20.6		21.2	1
TMCLKL	HY/2012/07			SR4	8:43	Surface	1	24.8	7.9	32.3	6.3		20.6		16.9	
TMCLKL	HY/2012/07		Mid-Flood		8:43	Surface	2	24.6	8	32.5	6.3		20.1		16.4	1
TMCLKL	HY/2012/07		Mid-Flood		0.43	Middle	1	24.0	U	32.3	0.5	6.3	20.1		10.4	1
TMCLKL	HY/2012/07		Mid-Flood			Middle	2							19.3		17.3
TMCLKL	HY/2012/07				8:43	Bottom	<u> </u>	24.8	7.9	32.3	6.3		18.2		17.8	1
	HY/2012/07		Mid-Flood				2	24.6	0	32.5	6.0	6.3	18.2		10.1	1
	HY/2012/07		Mid-Flood		9:00	Bottom Surface	<u>Z</u>	24.8	7.9	32.3	6.3		17		18.1 17.9	
	HY/2012/07		Mid-Flood		9:00	Surface	2	24.6	8	32.6	6.4		17		16.8	1
			Mid-Flood		9.00	Middle	<u>Z</u>	24.0	0	32.0	0.4	6.4	17		10.0	
			Mid-Flood			Middle	2							17.2		19.6
					0.00		<u> </u>	24.0	7.0	22.2	6.1		17.4		22.5	1
	+		Mid-Flood		9:00	Bottom	2	24.8	7.9	32.3	6.4	6.4	17.4		22.5	1
TMCLKL	HY/2012/07		Mid-Flood		9:00	Bottom	<u></u>	24.6	8	32.6	6.4		17.4		21.1	
			Mid-Flood		9:08	Surface	1	24.6	7.9	32.2	6.5		13.9		20.8	
			Mid-Flood		9:08	Surface	2	24.4	8	32.4	6.5	6.5	13.8		21.8	
TMCLKL	HY/2012/07		Mid-Flood			Middle	2				 			15.3		23.7
			Mid-Flood		0.00	Middle	2	24.6	7.0	22.2			167		25.6	
	HY/2012/07		Mid-Flood		9:08	Bottom	1	24.6	7.9	32.2	6.4	6.4	16.7		25.6	
TMCLKL	HY/2012/07	2017-11-06	Mid-Flood	IS(Mt)9	9:08	Bottom	2	24.4	8	32.5	6.4		16.7		26.5	

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT IS(MF)9 ON 6 NOVEMBER 2017

Photo 1 - Mid-Flood at IS(Mf)9 on 6 November 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

Cambon Environ - Hong Rong, Emilied (EN

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

From ERM- Hong Kong, Limited

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Contract No. HY/2012/07

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 16 November 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_8 November 2017_Depth-averaged SS_F_Station SR4

A total of one (1) exceedance was recorded on 8 November 2017.

Regards,

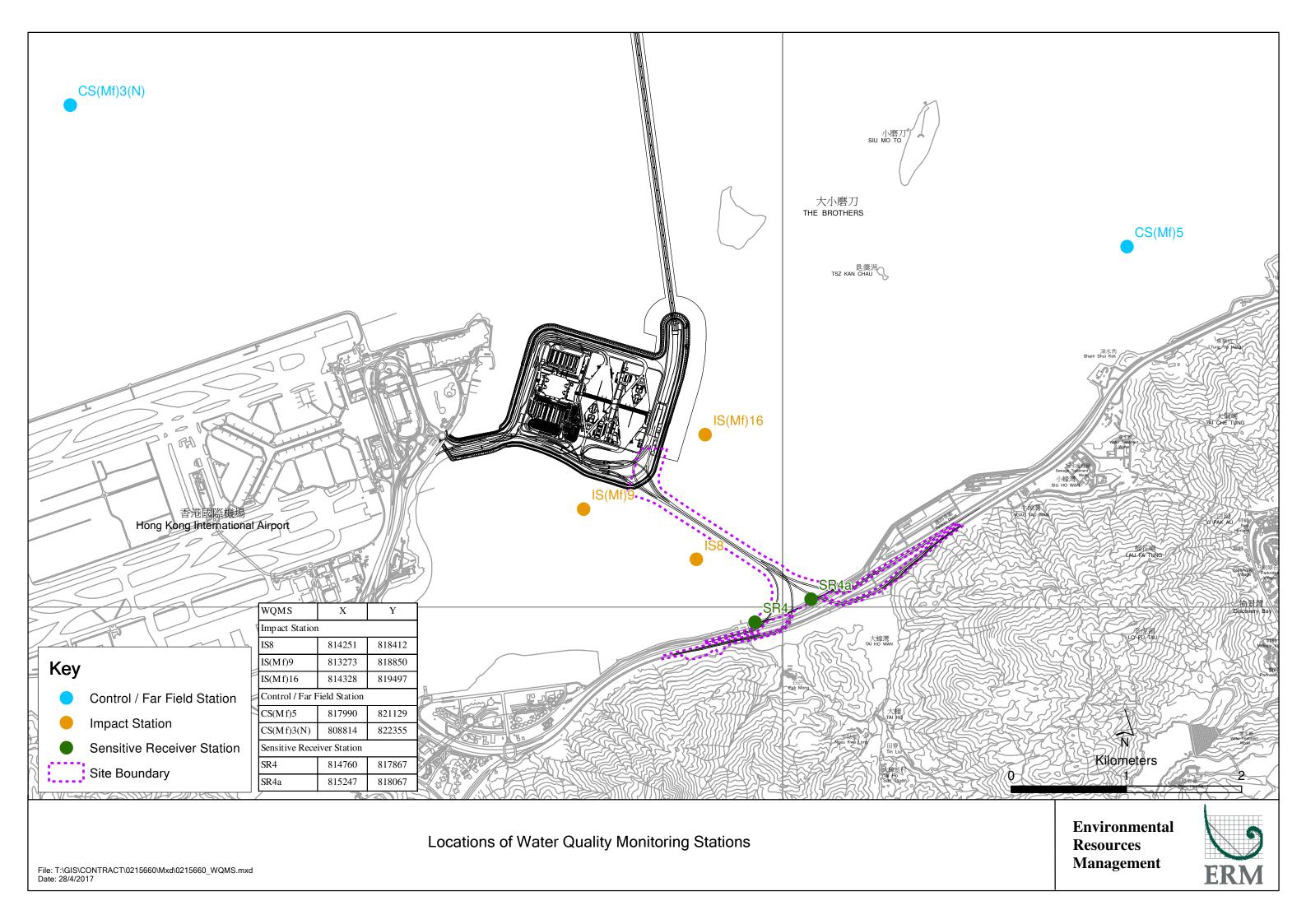
Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring


Log No.	0215660	Action Level Exceedance 0_8 November 2017_Depth-averaged SS_F_Station SR4								
		[Total No. of Exceedances = 1]								
Date		8 November 2017 (Measured)								
		November 2017 (In situ results received by ERM)								
	16 No	ovember 2017 (Laboratory results received by ERM)								
Monitoring Station	CS(N	Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Parameter(s) with Exceedance(s)		Depth-averaged Suspended Solids (SS)								
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).								
Limit Levels for SS	SS 130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)									
Measured Levels	Action Level Exceedance 1. Mid-flood at SR4 (Dep	th-averaged SS = 26.7mg/L).								
Works Undertaken (at the time of monitoring event)	No major marine works wa	s undertaken under this Contract on 8 November 2017.								
Possible Reason for	The exceedance of depth-av	veraged SS is unlikely to be due to the Project, in view of the following:								
Action or Limit Level	 No marine works w 	as undertaken under this Contract on 8 November 2017.								
Exceedance(s)	with the Action and	oth-averaged SS levels at all other monitoring stations were in compliance Limit Levels during both mid-flood and mid-ebb tides on the same day.								
	with the Action and	rbidity levels and average DO levels at all stations were in compliance Limit Levels during both mid-ebb and mid-flood tides on the same day.								
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in									
Taken	exceedances.									
Remarks	- C	8 November 2017 and locations of water quality monitoring stations are d on 8 November 2017 is attached.								

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Surface	1	25.0	8.0	32.2	6.1		5.4		7.8	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Surface	2	24.9	8.0	32.4	6.1	6.1	5.4		7.1	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Middle	1	25.0	8.0	32.3	6.1	6.1	5.7	5.6	10.1	8.7
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Middle	2	24.9	8.0	32.5	6.1		5.7	3.0	8.7	0.7
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Bottom	1	25.0	8.0	32.2	6.1	6.1	5.6		8.8	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)5	15:47	Bottom	2	24.9	8.0	32.5	6.1	6.1	5.6		9.6	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Surface	1	24.5	8.1	32.1	6.5		15.0		15.8	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Surface	2	24.2	8.1	32.2	6.5	(5	14.0		16.1	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Middle	1	24.5	8.1	32.1	6.5	6.5	19.4	10.0	19.6	10.0
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Middle	2	24.2	8.1	32.2	6.5		18.7	19.8	20.8	19.9
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Bottom	1	24.4	8.1	32.1	6.4	(5	25.9		24.0]
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	CS(Mf)3(N)	14:38	Bottom	2	24.2	8.1	32.2	6.5	6.5	25.7		23.0	1
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	IS(Mf)16	15:22	Surface	1	24.8	8.0	32.0	6.8		6.5		8.5	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	IS(Mf)16	15:22	Surface	2	24.7	8.0	32.2	6.8	(7	6.6		7.3	1
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	IS(Mf)16	15:22	Middle	1	24.5	8.0	32.0	6.5	6.7	9.0	11.6	7.7	0.0
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	IS(Mf)16	15:22	Middle	2	24.4	8.0	32.2	6.5		9.0	11.6	7.4	8.0
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	IS(Mf)16	15:22	Bottom	1	24.7	8.0	32.0	6.5	6.5	19.1		8.3	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	15:22	Bottom	2	24.5	8.0	32.2	6.5	6.5	19.1		8.7	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	SR4a	15:11	Surface	1	25.0	7.9	32.0	6.5		11.8		10.8	
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	SR4a	15:11	Surface	2	24.8	8.0	32.2	6.5		11.8		10.8	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	1					6.5		10.0		1 ,,,
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	SR4a		Middle	2							12.0		11.4
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	SR4a	15:11	Bottom	1	25.0	7.9	32.0	6.6		12.1		11.7	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	15:11	Bottom	2	24.8	8.0	32.2	6.6	6.6	12.2		12.3	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4	15:04	Surface	1	24.7	7.9	32.0	6.2		19.0		20.8	
TMCLKL	HY/2012/07		Mid-Ebb	SR4	15:04	Surface	2	24.6	8.0	32.2	6.3	6.0	19.0		22.0	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	1					6.3		10.1		1
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	2							19.1		22.5
TMCLKL	HY/2012/07	2017-11-08	Mid-Ebb	SR4	15:04	Bottom	1	24.7	7.9	32.0	6.3	6.0	19.2		23.0	1
	HY/2012/07			SR4	15:04	Bottom	2	24.6	8.0	32.2	6.3	6.3	19.2		24.0	1
			Mid-Ebb	IS8	14:57	Surface	1	24.8	7.9	32.0	6.3		11.0		9.0	
TMCLKL			Mid-Ebb	IS8	14:57	Surface	2	24.7	8.0	32.2	6.3		11.0		10.1	1
			Mid-Ebb	IS8	11107	Middle	1		010		3,0	6.3	1100	1.6.0	1371	1
TMCLKL			Mid-Ebb	IS8		Middle	2							16.3		9.6
TMCLKL	HY/2012/07		Mid-Ebb	IS8	14:57	Bottom	1	24.7	7.9	32.0	6.3		21.6		10.2	1
TMCLKL			Mid-Ebb	IS8	14:57	Bottom	2	24.5	8.0	32.2	6.3	6.3	21.6		9.2	1
			Mid-Ebb	IS(Mf)9	14:49	Surface	1	24.7	8.0	32.0	6.5		11.7		8.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:49	Surface	2	24.6	8.0	32.2	6.3		11.7		7.1	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	11112	Middle	1	2.10		32.2	5.5	6.4	1111		***	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2.							14.3		7.5
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:49	Bottom	1	24.5	8.0	32.1	6.2		16.9		7.2	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	14:49	Bottom	2.	24.3	8.0	32.3	6.2	6.2	16.9		7.6	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Surface	1	24.5	8.0	31.9	6.4		3.2		9.7	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Surface	2	24.3	8.0	32.1	6.4	6.4	3.2		11.1	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Middle	1	24.5	8.0	32.0	6.3	0.4	8.5	6.1	10.5	10.1
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Middle	2	24.4	8.0	32.2	6.3		8.5	6.4	10.5	10.1
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Bottom	1	24.5	8.0	32.0	6.4	6.4	7.5		9.4	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)5	9:36	Bottom	2	24.4	8.0	32.2	6.3	0.4	7.4		9.6	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Surface	1	24.6	8.0	31.4	6.4		22.1		20.4	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Surface	2	24.3	8.0	31.2	6.4	6.4	22.1		20.2	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Middle	1	24.6	8.0	31.4	6.3	0.4	24.8	25.2	24.3	22.8
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Middle	2	24.3	8.0	31.3	6.4		25.0	23.2	24.6	22.0
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Bottom	1	24.6	8.0	31.5	6.3	6.4	28.7		23.5	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	CS(Mf)3(N)	10:29	Bottom	2	24.3	8.0	31.3	6.4	0.4	28.4		23.5	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	IS(Mf)16	10:03	Surface	1	24.4	8.0	31.9	6.4		16.6		11.9	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	IS(Mf)16	10:03	Surface	2	24.2	8.0	32.2	6.4	6.1	16.6		11.9	
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	IS(Mf)16		Middle	1					6.4		15 /		16.5
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	IS(Mf)16		Middle	2							15.4		16.5
TMCLKL	HY/2012/07	2017-11-08	Mid-Flood	IS(Mf)16	10:03	Bottom	1	24.4	8.0	31.9	6.4	C 1	14.1		21.8	1
TMCLKL	HY/2012/07	2017-11-08		IS(Mf)16	10:03	Bottom	2	24.2	8.0	32.2	6.4	6.4	14.2		20.4	
TMCLKL	HY/2012/07	2017-11-08		SR4a	10:14	Surface	1	24.5	8.0	32.0	6.2		18.3		20.3	
TMCLKL	HY/2012/07	2017-11-08		SR4a	10:14	Surface	2	24.3	8.0	32.2	6.2	6.0	18.2		21.4	
TMCLKL	HY/2012/07		Mid-Flood			Middle	1					6.2		10.4		22.5
TMCLKL	HY/2012/07			SR4a		Middle	2							18.4		22.5
TMCLKL	HY/2012/07		Mid-Flood		10:14	Bottom	1	24.5	8.0	32.0	6.2		18.5		24.0	
TMCLKL	HY/2012/07		Mid-Flood		10:14	Bottom	2	24.3	8.0	32.2	6.2	6.2	18.5		24.2	
TMCLKL	HY/2012/07			SR4	10:18	Surface	1	24.5	7.9	32.0	6.0		14.1		24.7	
TMCLKL	HY/2012/07			SR4	10:18	Surface	2	24.4	8.0	32.2	6.0	6.0	14.1		24.3	
TMCLKL	HY/2012/07		Mid-Flood			Middle	1					6.0		45.0		26.5
TMCLKL	HY/2012/07		Mid-Flood			Middle	2							17.2		26.7
	HY/2012/07			SR4	10:18	Bottom	1	24.5	7.9	32.0	6.0		20.2		28.1	
	HY/2012/07		Mid-Flood		10:18	Bottom	2	24.4	8.0	32.2	6.1	6.1	20.2		29.7	
			Mid-Flood		10:28	Surface	1	24.5	7.9	32.0	6.3		14.4		20.5	
			Mid-Flood		10:28	Surface	2	24.3	8.0	32.2	6.3	- 0	14.3		19.0	
			Mid-Flood		10.20	Middle	1	2113	0.0	32.2	0.0	6.3	1113		17.0	
	HY/2012/07		Mid-Flood			Middle	2							18.1		19.9
			Mid-Flood		10:28	Bottom	1	24.5	7.9	32.0	6.3		21.9		20.8	
	HY/2012/07		Mid-Flood		10:28	Bottom	2	24.3	8.0	32.2	6.3	6.3	21.9		19.3	
			Mid-Flood		10:36	Surface	1	24.4	7.9	32.1	6.2		10.0		19.5	
			Mid-Flood	/	10:36	Surface	2	24.3	8.0	32.3	6.2		10.0		20.0	
	HY/2012/07		Mid-Flood		10.50	Middle	1	21.3	0.0	34.3	0.2	6.2	10.0		20.0	
			Mid-Flood			Middle	2			1				11.1		21.5
	HY/2012/07		Mid-Flood		10:36	Bottom	1	24.4	7.9	32.1	6.2		12.3		24.0	
			Mid-Flood	-	10:36		2		8.0	32.3	6.2	6.2	12.3		22.3	
TMCLKL	HY/2012/0/	2017-11-08	IVIIa-Flood	19(MI)A	10:36	Bottom		24.3	V.8	52.5	0.2		12.2		22.5	

Photo 1 - Mid-Flood at SR4 on 8 November 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From

ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number

Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject

Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date

21 November 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_13 November 2017_Depth-averaged SS_F_Station SR4a 0215660_13 November 2017_Depth-averaged SS_F_Station IS(Mf)9

A total of two (2) exceedances were recorded on 13 November 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.							
	Action Level Exceedance						
	0215660_13 November 2017_Depth-averaged SS_F_Station SR4a						
	0215660_13 November 2017_Depth-averaged SS_F_Station IS(Mf)9						
	[Total No. of Exceedances = 2]						
Date	13 November 2017 (Measured)						
	14 November 2017 (In situ results received by ERM)						
	21 November 2017 (Laboratory results received by ERM)						
Monitoring Station	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)						
Parameter(s) with Exceedance(s)	Depth-averaged Suspended Solids (SS)						
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).					
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)					
Measured Levels	Action Level Exceedance 1. Mid-flood at SR4a (Depth-averaged SS = 29.5mg/L); 2. Mid-flood at IS(Mf)9 (Depth-averaged SS = 23.9mg/L).						
Works Undertaken (at the time of monitoring event)	No major marine works was undertaken under this Contract on 13 November 2017.						
Possible Reason for	The averaged energy of doubth averaged CC are unlikely to be due to the Dreiget in view of the fall-rainer						
Action or Limit Level	The exceedances of depth-averaged SS are unlikely to be due to the Project, in view of the following: • No marine works was undertaken under this Contract on 13 November 2017.						
Exceedance(s)							
2.0000000000000000000000000000000000000	 Apart from SR4a and IS(Mf)9, depth-averaged SS levels at all other monitoring stations were in compliance with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day. 						
	 Depth-averaged Turbidity levels and average DO levels at all stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. 						
Actions Taken/To Be	No immediate action is consider	red necessary. The ET will monitor for future trends in					
Taken	exceedances.						
Remarks	The monitoring results on 13 No	ovember 2017 and locations of water quality monitoring stations are					
	attached. Site photo record on 13 November 2017 is attached.						

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Surface	1	24.5	8.0	31.0	6.2		3.4		4.0	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Surface	2	24.7	8.0	30.8	6.2	60	3.5		3.6	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Middle	1	24.5	8.0	31.0	6.1	6.2	3.4	3.4	4.0	3.8
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Middle	2	24.7	8.0	30.8	6.2		3.4	3. 4	3.5	3.6
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Bottom	1	24.6	8.0	31.1	6.1	6.1	3.2		3.8	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)5	8:31	Bottom	2	24.8	8.0	30.9	6.1	6.1	3.3		3.7	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Surface	1	24.4	7.9	28.7	6.5		3.3		3.8	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Surface	2	24.6	7.9	28.9	6.4	6.5	3.2		4.2	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Middle	1	24.4	7.9	29.4	6.5	6.5	5.2	5.0	3.9	1.6
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Middle	2	24.6	7.9	29.6	6.4		5.3	5.2 4.5 5.9 5.4	4.6	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Bottom	1	24.4	8.0	30.6	6.4	<i>C</i> 1	7.3			
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	CS(Mf)3(N)	9:34	Bottom	2	24.6	8.0	30.9	6.4	6.4	7.1		5.4	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	IS(Mf)16	9:02	Surface	1	24.3	8.0	30.8	6.4		7.5		6.6	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	IS(Mf)16	9:02	Surface	2	24.5	8.0	30.6	6.4	<i>C</i> 1	7.6	10.6	6.5	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	IS(Mf)16		Middle	1					6.4				7.3
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	IS(Mf)16		Middle	2					ı				
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	IS(Mf)16	9:02	Bottom	1	24.3	8.0	30.8	6.3	6.0	13.7		7.9	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	9:02	Bottom	2	24.5	8.0	30.6	6.3	6.3	13.7		8.0	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4a	9:12	Surface	1	24.5	8.0	30.7	6.0		13.3	10.8 11.5	10.8	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4a	9:12	Surface	2	24.7	8.0	30.5	6.0	6.0	13.3		1	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	1							140		1 1
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4a		Middle	2							14.0		11.5
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4a	9:12	Bottom	1	24.5	8.0	30.7	6.0	<i>C</i> 0	14.6		11.1	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	9:12	Bottom	2	24.7	8.0	30.5	6.0	6.0	14.7		12.4	
TMCLKL	HY/2012/07		Mid-Ebb	SR4	9:16	Surface	1	24.5	8.0	30.7	5.9		12.8		7.2	
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4	9:16	Surface	2	24.7	8.0	30.5	5.9	7 0	12.8		8.0	1
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	1					5.9		145		
TMCLKL	HY/2012/07		Mid-Ebb	SR4		Middle	2							14.7		9.0
TMCLKL	HY/2012/07	2017-11-13	Mid-Ebb	SR4	9:16	Bottom	1	24.5	8.0	30.7	6.0		16.6		10.0	
	HY/2012/07			SR4	9:16	Bottom	2	24.7	8.0	30.5	5.9	6.0	16.6		10.6	1
			Mid-Ebb	IS8	9:30	Surface	1	24.4	8.0	30.8	6.3		21.1		16.7	
			Mid-Ebb	IS8	9:30	Surface	2	24.5	8.0	30.6	6.3		21.4		17.8	1
			Mid-Ebb	IS8	7.00	Middle	1	2.10		5 3.3	3.0	6.3		• • •	1770	
			Mid-Ebb	IS8		Middle	2.							21.9		17.0
	HY/2012/07		Mid-Ebb	IS8	9:30	Bottom	1	24.4	8.0	30.8	6.3		22.6		16.0	
	HY/2012/07		Mid-Ebb	IS8	9:30	Bottom	2	24.6	8.0	30.6	6.3	6.3	22.6		17.3	1
			Mid-Ebb	IS(Mf)9	9:39	Surface	1	24.2	8.0	30.8	6.4		12.5		10.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9	9:39	Surface	2.	24.4	8.0	30.5	6.4		12.5		10.0	1
TMCLKL			Mid-Ebb	IS(Mf)9	7.37	Middle	1	21.7	0.0	30.3	5.7	6.4	12.3		10.0	
	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2.							13.0		10.1
	HY/2012/07		Mid-Ebb	IS(Mf)9	9:39	Bottom	1	24.2	8.0	30.8	6.4		13.4		10.6	
			Mid-Ebb	IS(Mf)9	9:39	Bottom	2	24.4	8.0	30.5	6.4	6.4	13.5		9.4	

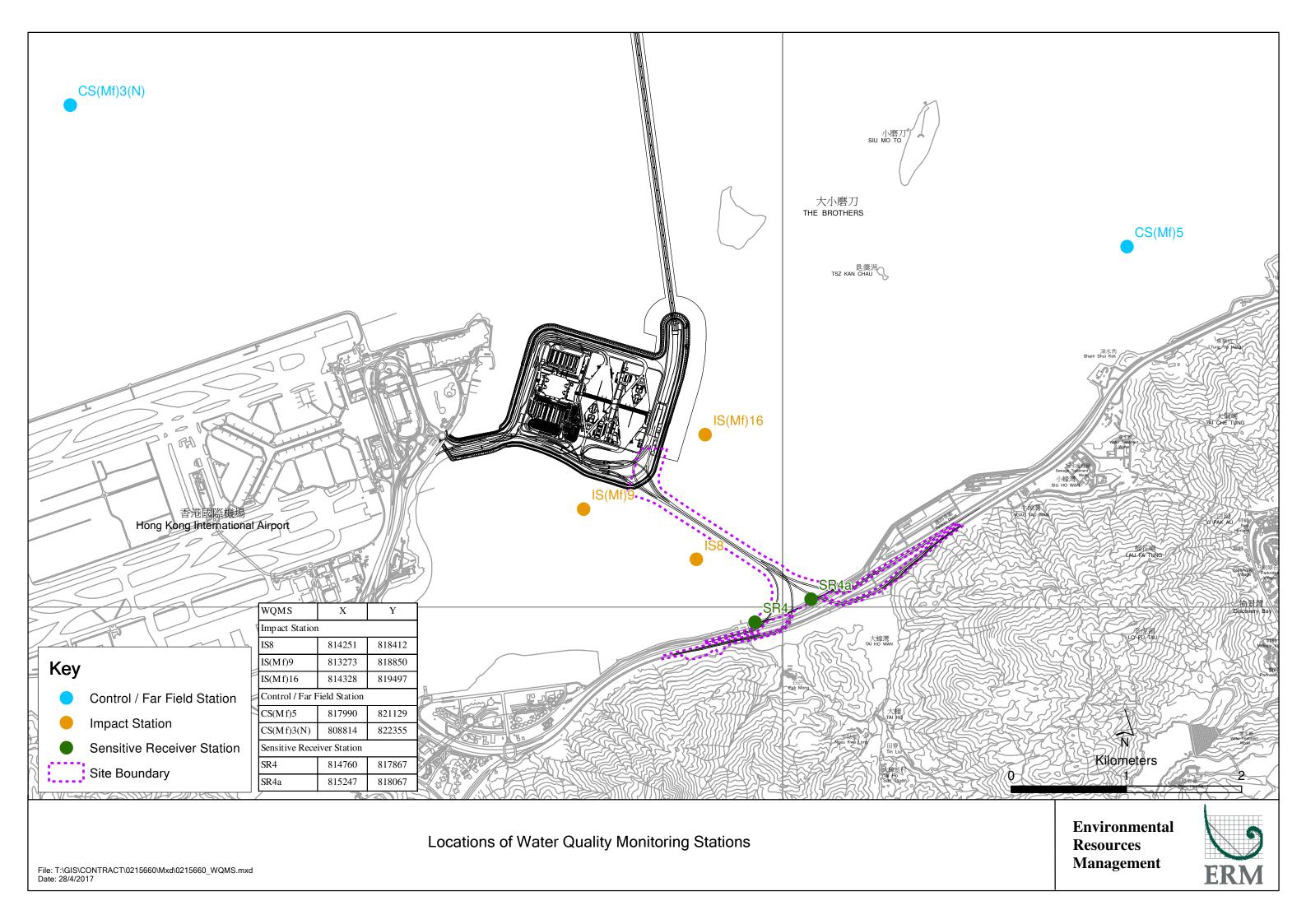

TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)5 16:06 Surface 1 24.6 8.0 30.6 6.2 2.8	2.1 2.5 3.3 3.1 3.4 3.7 2.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)5 16:06 Middle 1 24.6 8.0 30.9 6.2 6.2 6.8	3.3 3.1 3.4 3.7 2.7
Mid-Flood CS(Mf)5 16:06 Middle 1 24.5 8.0 30.7 6.2 6.8	3.1 3.4 3.7 2.7
Mid-Flood CS(Mf)S 16:06 Bottom 1 24:6 8.0 30.7 6.2 4.6	3.1 3.4 3.7 2.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)5 16:06 Bottom 2 24.7 8.0 30.7 6.2 6.2	3.7 2.7
Mid-Flood CS(Mf)S(N) 14:56 Surface 1 24.6 7.9 27.3 6.3 3.1 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Surface 2 24.8 7.8 27.3 6.2 6.2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Middle 1 24.5 7.9 27.7 6.2 6.2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Middle 2 24.8 7.9 27.7 6.2 6.8 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Middle 2 24.8 7.9 27.7 6.2 6.2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Bottom 1 24.5 7.9 27.9 6.2 6.2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)S(N) 14:56 Bottom 2 24.8 7.9 27.7 6.2 6.2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Surface 1 24.4 8.0 30.1 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Surface 2 24.6 8.0 29.9 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 1 24.5 8.0 30.5 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 2 24.6 8.0 30.3 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 2 24.6 8.0 30.3 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 2 24.6 8.0 30.0 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 2 24.6 8.0 30.0 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 I5:40 Bottom 2 24.6 8.0 30.0 6.4 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS	2.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Surface 2 24.8 7.8 27.3 6.2 6.2 6.4	
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Middle 1 24.5 7.9 27.9 6.2 6.2 6.8	0.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Middle 1 24.5 7.9 27.7 6.2 6.8	3.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Bottom 1 24.5 7.9 27.7 6.2 6.2 6.9	2.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Bottom 2 24.8 7.9 27.7 6.2 6.2 6.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Surface 1 24.4 8.0 30.1 6.4 7.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1	2.9
TMCLKL HY/2012/07 2017-11-13 Mid-Flood CS(Mf)3(N) 14:56 Bottom 2 24.8 7.9 27.7 6.2 6.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Surface 1 24.4 8.0 30.1 6.4 7.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1 6.4 6.4 6.4 7.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 2 24.6 8.0 29.9 6.4 6.4 6.4 6.4 7.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 2 24.6 8.0 30.5 6.4 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 6.4 12.7	3.2
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Surface 2 24.6 8.0 29.9 6.4 6.4 7.9 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1 <td< td=""><td>3.0</td></td<>	3.0
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 1 24.5 8.0 30.5 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	3.2
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 1 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 10.3 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 1 24.5 8.0 30.5 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	3.3
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 Middle 2 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 1 24.5 8.0 30.5 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	2.2
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 1 24.5 8.0 30.5 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	3.3
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)16 15:40 Bottom 2 24.6 8.0 30.3 6.4 6.4 12.7 TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	3.5
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 1 24.4 8.0 30.0 6.4 18.7	3.0
	28.6
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Surface 2 24.6 8.0 29.8 6.4 6.4 18.7	28.7
TMCLKI HV/2012/07 2017-11-13 Mid-Flood SR42 Middle 1	
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a Middle 2	29.5
TMCLKI HV/2012/07 2017 11 13 Mid Flood SP/s 15:20 Rottom 1 2/4 80 30.0 65	30.7
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4a 15:29 Bottom 2 24.6 8.0 29.8 6.5 6.5	29.8
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4 15:24 Surface 1 24.5 8.0 30.6 6.1 15.5	9.6
TMCLKL HV/2012/07 2017-11-13 Mid-Flood SR4 15:24 Surface 2 24.7 8.0 30.4 6.1	10.1
TMCLKI HV/2012/07 2017 11 13 Mid Flood SP4 Middle 1	
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4 Middle 2	11.9
TMCLKI HY/2012/07 2017-11-13 Mid-Flood SR4 15:24 Bottom 1 24.5 8.0 30.6 6.2	14.4
TMCLKL HY/2012/07 2017-11-13 Mid-Flood SR4 15:24 Bottom 2 24.7 8.0 30.4 6.1 6.2 14.5	13.5
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS8 15:14 Surface 1 24.4 7.9 30.7 6.1 19.7	20.9
TMCLKI_HV/2012/07_2017-11-13	20.0
TMCLKI HY/2012/07 2017-11-13 Mid-Flood IS8 Middle 1	
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS8 Middle 2 20.1	21.5
TMCLKI HV/2012/07 2017-11-13 Mid-Flood IS8 15:14 Rottom 1 24.4 7.9 30.7 6.1	22.9
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS8 15:14 Bottom 2 24.6 8.0 30.5 6.1 6.1 20.6	22.0
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)9 Surface 1	22.0
TMCLKI HV/2012/07 2017 11 13 Mid Flood IS(Mf)0 Surface 2	
TMCLKI HV/2012/07 2017 11 13 Mid Flood ISOMPO 15:04 Middle 1 244 7.0 30.8 6.3	23.6
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)9 15:04 Middle 2 24.5 8.0 30.6 6.3 20.2	23.9
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)9 Bottom 1	L1.L
TMCLKL HY/2012/07 2017-11-13 Mid-Flood IS(Mf)9 Bottom 2	

Photo 1 - Mid-Flood at SR4a on 13 November 2017

Photo 2 - Mid-Flood at IS(Mf)9 on 13 November 2017

ENVIRONMENTAL COMPLAINT/ ENQUIRY FORM

Complaint/ Enquiry Received*

Date: 24 November 2017

Time: Undisclosed

From: Environmental Protection Department (EPD)

Via: Email

Complainant/ Enquirer*:

Name: Undisclosed
Tel: Undisclosed
Address: Undisclosed

Media: Dust / Noise / Water Quality / Other

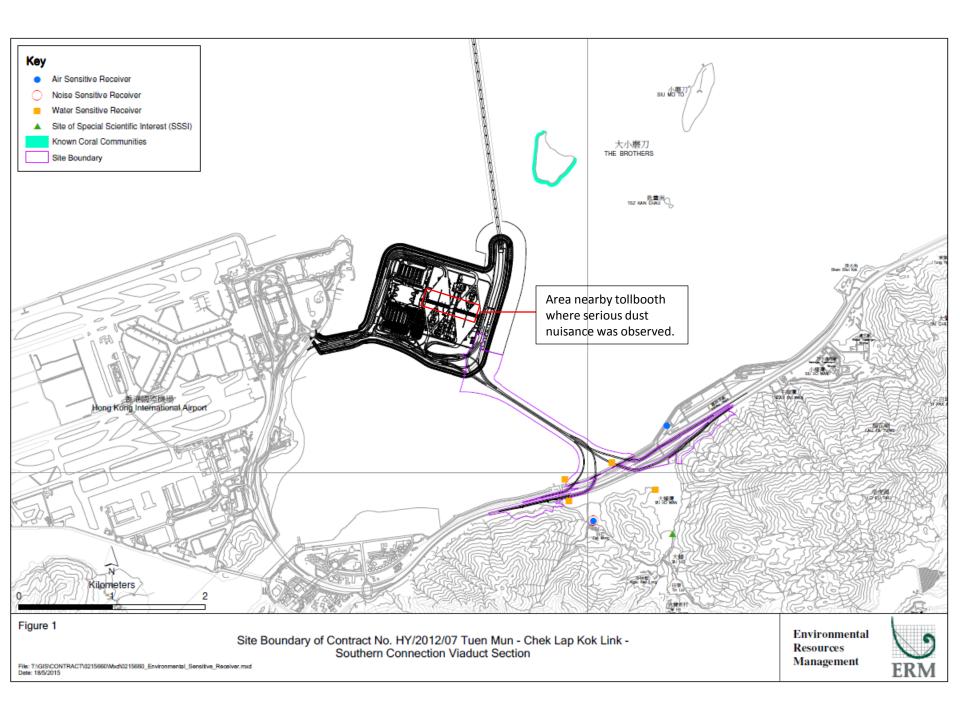
Description: A complaint was received by EPD regarding construction dust nuisance at Hong Kong Boundary Crossing Facilities (HKBCF) of Hong Kong–Zhuhai–Macau Bridge (HZMB) Projects. The complaint reported that dust nuisance was generated at HKBCF due to lack of watering for dust suppression at all unpaved areas. Serious dust nuisance was generated nearby the tollbooth at HKBCF in particular. The Environmental Team (ET) received the complaint notification from the Independent Environmental Checker (IEC) on 24 November 2017.

Investigation Report & Response

Site records and watering records provided by the Contractor were reviewed upon receiving the complaint. Based on the site records, major works under this Contract included segment erection at Southern Landfall. According to the watering records, a programme of 8 times daily watering was maintained between 20 November 2017 and 24 November 2017, which is considered complying with the relevant requirements stipulated in the Environmental Permit and EM&A Manual of the Tuen Mun-Chek Lap Kok Link Project.

Site inspection was carried out on 24 November 2017. During the site inspection, no particular finding was observed. Watering was applied on unpaved roads under this Contract (see *Annex A*). The area nearby the tollbooth was not within the site boundary or the purview of this Contract, thus observations on this area were considered not in relation to this Contract. Construction site boundary under this Contract is shown in *Figure 1*.

Upon investigation, there is no evidence to indicate that the complaint case is related to this Contract.


Mitigation Measures and Follow-Up Actions Recommended to Contractor

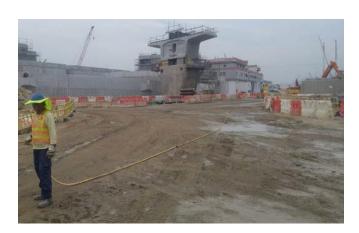
Based on the investigation, there is no evidence to indicate that the complaint case is related to this Contract and thus no further action will be required. The Contractor has been reminded to maintain watering for at least 8 times per day at the construction areas throughout the construction period. Increase in watering frequency should also be considered when necessary.

Date of File Closed: 29 November 2017

Approved and Filed by:

(Jovy Tam, ET Leader) Date: 29 November 2017

Annex A


Photos of site inspection at Southern Landfall on 24 November 2017

ANNEX A - PHOTOS OF SITE INSPECTION AT SOUTHERN LANDFALL ON 24 NOVEMBER 2017

Photo 1 - Watering was maintained on unpaved road at Southern Landfall

Photo 2 - Road surface was in a moist condition

Environmental Resources Management

To Ramboll Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07 Tuen Mun-Chek Lap

Kok Link-Southern Connection Viaduct Section

Subject Notification of Exceedance for Impact Dolphin

Monitoring

Date 15 March 2018

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0215660_Sep2017/Nov2017_dolphin_STG&ANI_NEL&NWL

A total of one limit level exceedance was recorded in the quarterly impact dolphin monitoring data between September and November 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Impact Dolphin Monitoring Notification of Exceedance

Log No.	0215660_Sep2017/Nov2017_dolphin_STG&ANI_NEL&NWL [Total No. of Exceedance = 1]							
Date	September to November 2017 (monitored)							
	13 March 2018 (results received by ERM)							
Monitoring Area	Northeast Lantau (NEL) and Northwest Lantau (NWL)							
Parameter(s) with	Quarterly encounter rate of dolphin sightings (STG)							
Exceedance(s)	Quarterly encounter rate of total number of dolphins (ANI)							
Action Levels		NEL: STG < 4.2 & ANI < 15.5						
		or NWL: STG < 6.9 & ANI < 31.3						
Limit Levels	North Lantau Social cluster	NEL: STG < 2.4 & ANI < 8.9						
Limit Levels		and						
		NWL: STG < 3.9 & ANI < 17.9						
Recorded Levels	NEL	STG = 0 & ANI = 0						
	NWL	STG = 3.12 & ANI = 10.35						
	One Limit Level Exceedance was recorded in the quarterly impact dolphin monitoring at NEL and							
	NWL between September and November 2017. The exceedance was reported in the							
	Forty-ninth Monthly EM&A Report dated 12 December 2017.							
Statistical Analyses	 Further to the review of the available and relevant dolphin monitoring data in the EM&A under this Contract, statistical analyses were conducted as follows: A two-way ANOVA with repeated measures and unequal sample size was conducted using Period (2 levels: baseline vs impact – present impact quarter, September to November 2017) and Location (2 levels: NEL and NWL) as fixed factors to examine whether there were any significant differences in the average encounter rates between the baseline and present impact monitoring quarter. By setting α = 0.05 as the significance level in the statistical tests, significant differences in STG (p = 0.0057) and ANI (p = 0.0278) were detected between Periods. A two-way ANOVA with repeated measures and unequal sample size was conducted using Cumulative Period (2 levels: baseline vs impact – cumulative quarters, December 2012 to November 2017) and Location (2 levels: NEL and NWL) as fixed factors to examine whether there were any significant differences in the average encounter rates between the baseline and cumulative impact monitoring quarter. By setting α = 0.00001 as the significance level in the statistical tests, significant difference in STG (p = 0.000000) and in ANI (p = 0.000000) between Cumulative Period (baseline and impact phases) and Location (NEL and NWL) were detected. * Note: The commencement date under Contract No. HY/2012/07 is 31 October 2013. 							
Works Undertaken (in	In the quarter between September and November 2017, no marine works was undertaken under							
the monitoring	Contract No. HY/2012/07.							
quarter)								

Possible Reason for Action or Limit Level Exceedance(s)

The potential factors that may have contributed to the observed exceedance are reviewed below:

Blocking of CWD travelling corridor:
 The Monitoring of Marine Mammals in Hong Kong Waters (2016 – 17) (1) reported that dolphin usage and traveling activities to the northern side of the airport (dolphin traveling corridor) are affected by frequent high-speed ferry traffic from Sky Pier (not related to this Contract), which

is likely one of the factors resulting in the decrease in dolphin abundances in North Lantau.

Marine works of the Contract:
 As per the findings from the EIA report (Section 8.11.9), the major influences on the Chinese White Dolphin (CWD) Sousa chinensis under this Contract are marine traffics and bored piling works. The Monitoring of Marine Mammals in Hong Kong Waters (2016-2017) also reported that CWD decline were likely influenced by reclamation works, bored piling and intensive marine traffic from construction activities.

Based on these possible reasons, implementation of mitigation measures are reviewed. This Contract does not have any reclamation works, thus no habitat loss was caused by reclamation. In the reporting period, the Contractor implemented the marine traffic control as per the requirements in the *EP-354/2009/D* and the updated *EM&A Manual*. Most of the vessels of this Contract also worked within the site boundary, in which the area is seldom used by CWD. Disturbance from vessels of this Contract is considered minor. All of the marine bored piling works of this Contract was completed in September 2015. Thus, underwater noise emission from this Contract had been substantially reduced. During dolphin monitoring in this quarter, no unacceptable impact on CWD due to the activities under this Contract was observed.

• Impact on water quality: According to the findings in the water quality monitoring results at the impact monitoring stations between September and November 2017, there were ninety-one (91) Action Level of Dissolved Oxygen (DO) exceedances, eight (8) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance for water quality impact monitoring in the reporting period. The exceedances were considered not related to this Contract upon further investigation and the investigation report is presented in *Appendix L*.

In view of the above, marine ecological mitigation measures were considered properly implemented, and thus no unacceptable impact on CWD or its habitat was associated with this Contract in this quarter.

Actions Taken / To Be Taken

With reference to the site inspection records in this quarter, the respective marine ecological mitigation measures have been implemented properly by the Contractor throughout the marine works period, including:

- 1. 250m dolphin exclusion zone;
- 2. Acoustic decoupling plan;
- 3. Training to workers;
- 4. Offsite vessel routing control in accordance with Regular Marine Travel Routes Plan, including routing control within existing marine park boundaries;
- 5. Vessels speed limited at 5 knots and 10 knots within existing marine park boundaries and site boundary respectively;
- 6. Idling and mooring of working vessels within site boundary

The existing mitigation measures are recommended to be continuously implemented. Furthermore, it is also recommended to reduce the vessels for marine works as much as possible. The ET will monitor for future trends in exceedance(s).

A joint team meeting was held on 7 March 2018 for discussion on CWD trend, with attendance of ENPO, Representatives of Resident Site Staff (RSS), Representatives of Environmental Team (ET) for Contract No. HY/2010/02, HY/2011/03, HY/2012/07 and HY/2012/08. The discussion/recommendation as recorded in the minutes of the meeting, which might be relevant to this Contract are summarized below. It was concluded that the HZMB works is one of the contributing factors affecting the dolphins. It was also concluded the contribution of impacts due to the HZMB works as a whole (or individual marine contracts) cannot be quantified or separate from the other stress factors. ENPO presented the interim CWD survey results in mainland waters obtained from Hong Kong-Zhuhai-Macao Bridge Authority that some CWDs that previously more often sighted in Hong Kong waters have expanded their ranges into mainland waters, and some with reduced usage in Hong Kong waters, while they are partially accounted for the local decline. It was reminded that the ETs shall keep reviewing the implementation status of the dolphin related mitigation measures and remind the contractor to ensure the relevant measures are fully implemented. The ETs were also reminded to update the Brothers Marine Park (BMP) boundary in the Regular Marine Travel Route Plan. It was recommended that the marine works of HZMB projects should be completed as soon as possible to reduce the overall duration of impacts and allow the dolphins population to recover as early as possible. The participants were also reminded that the protection measures (e.g. speed limit control) for the BMP shall be implemented so as to provide a better habitat for dolphin recovery. It is noted that even though marine vessels may moor within the mooring site of BMP, commercial activities including loading / unloading / transhipment are not allowed except a permit is obtained. The HZMB works vessels were recommended to avoid the BMP. It was also recommended that the marine works footprint and vessels for the marine works should be reduced as much as possible, and vessels idling / mooring in other part of the North Lantau shall be avoided whenever possible.

Dolphin specialists of the Projects confirmed that the CWD sighting nearby north of Sha Chau and Lung Kwu Chau Marine Park has significantly declined. The reason for the decline was likely related to the re-routing of high-speed ferry from Skypier.

Remarks

The results of impact water quality and impact dolphin monitoring, the status of implemented marine ecological mitigation measures are documented in the approved *Forty-seventh* to *Forty-ninth Monthly EM&A Reports*. Comparison on water quality between impact and baseline periods is elaborated in the *16th Quarterly EM&A Report*.