
REPORT

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Forty-Seventh Monthly EM&A Report

12 October 2017

Environmental Resources Management 16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000

Facsimile 2723 5660

www.erm.com

Ref.: HYDHZMBEEM00 0 5895L.17

16 October 2017

AECOM

By Fax (3691 2899) and By Post

Supervising Officer's Representative's Office 780 Cheung Tung Road, Lantau, N.T.

Attention: Mr. Daniel Ip

Dear Mr. Ip,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing

Facilities, and Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2012/07 TM-CLKL Southern Connection Viaduct Section

47th Monthly EM&A Report for September 2017 (EP-354/2009/D)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (Sep. 2017) (ET's ref.: "0215660_47th Monthly EM&A_201701012.doc" dated 12 Oct. 2017) certified by the ET Leader and provided to us via e-mail on 16 Oct. 2017.

Please be informed that we have no adverse comments on the captioned Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/D. Please be reminded that our verification of this report does not release any obligations of the ET to comply with the EM&A Manual or the approved monitoring methodologies.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

F. C. Tsang

Independent Environmental Checker

Tuen Mun - Chek Lap Kok Link

c.c.

HyD - Mr. Stephen Chan (By Fax: 3188 6614) HyD - Mr. Vico Cheung (By Fax: 3188 6614) AECOM - Mr. Conrad Ng (By Fax: 3922 9797) ERM - Mr. Jovy Tam (By Fax: 2723 5660) Gammon - Mr. Roy Leung (By Fax: 3520 0486)

Internal: DY, YH, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\2017\HYDHZMBEEM00_0_5895L.17.docx

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Forty-Seventh Monthly EM&A Report

Document Code: 0215660_47th Monthly EM&A_20171012.doc

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project N	0:					
Gammo	Gammon			0215660				
Summary	:	Date:						
•		12 Octo	ber 2017					
		Approved	l by:					
This document presents the Forty-Seventh Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.			2.1					
		Mr Crai	g Reid					
		Partner	,					
		Certified I	by:					
		Ja	2					
		Mr Jovy	7 Tam					
		ET Leade	er					
	Forty-Seventh Monthly EM&A Report	VAR	JT	CAR	12/10/17			
Revision	Description	Ву	Checked	Approved	Date			
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		☐ Pul	ernal	Certificate	S 18001:2007 No. OHS 515956 BSI ~ 0001:2008 e No. FS 32515			

TABLE OF CONTENTS

	EXECUTIVE SUMMARY	I
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	Organization Structure	2
1.4	SUMMARY OF CONSTRUCTION WORKS	3
2	EM&A RESULTS	6
2.1	AIR QUALITY	6
2.2	NOISE MONITORING	8
2.3	WATER QUALITY MONITORING	9
2.4	DOLPHIN MONITORING	11
2.5	EM&A SITE INSPECTION	15
2.6	WASTE MANAGEMENT STATUS	16
2.7	ENVIRONMENTAL LICENSES AND PERMITS	17
2.8	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	19
2.9	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	
	LIMIT	19
2.10	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	19
3	FUTURE KEY ISSUES	20
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTH	20
3.2	KEY ISSUES FOR THE COMING MONTH	20
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	20
4	CONCLUSIONS AND RECOMMENDATIONS	21
4.1	CONCLUSIONS	21

<u>List of Appendices</u>

Appendix A	Project Organization for Environmental Works
Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and Graphical Presentation
Appendix H	Meteorological Data for the Reporting Month
Appendix I	Impact Noise Monitoring Results and Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and Graphical Presentation
Appendix K	Impact Dolphin Monitoring Survey Results
Appendix L	Event Action Plan
Appendix M	Monthly Summary of Waste Flow Table
Appendix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Environ Hong Kong Ltd. was employed by the HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2018. The impact monitoring of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well as environmental site inspections, commenced on 31 October 2013.

This is the Forty-seventh Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 30 September 2017 for the Southern Connection Viaduct Section in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;

- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring 5 sessions

1-hour TSP Monitoring 5 sessions

Water Quality Monitoring 12 sessions

Noise Monitoring 5 sessions

Impact Dolphin Monitoring 2 sessions

Joint Environmental Site Inspection 4 sessions

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting month.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting month.

Breaches of Action and Limit Levels for Water Quality

Eighty-six (86) Action Level of Dissolved Oxygen (DO) exceedances, four (4) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting month.

Impact Dolphin Monitoring

During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Daily marine mammal exclusion zone monitoring was undertaken during the period of marine works under this Contract. No sighting of the Chinese White Dolphin was recorded in September 2017 during the exclusion zone monitoring.

Environmental Complaints, Non-compliance & Summons

There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

Summary of Marine Travel Route record

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the marine travel route record of this Contract was recorded in August. Summary of marine travel route record for this reporting period will be provided in next reporting period.

Reporting Change

There was no reporting change in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the next monitoring period of October 2017 include the following:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of October 2017 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

1.1 BACKGROUND

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

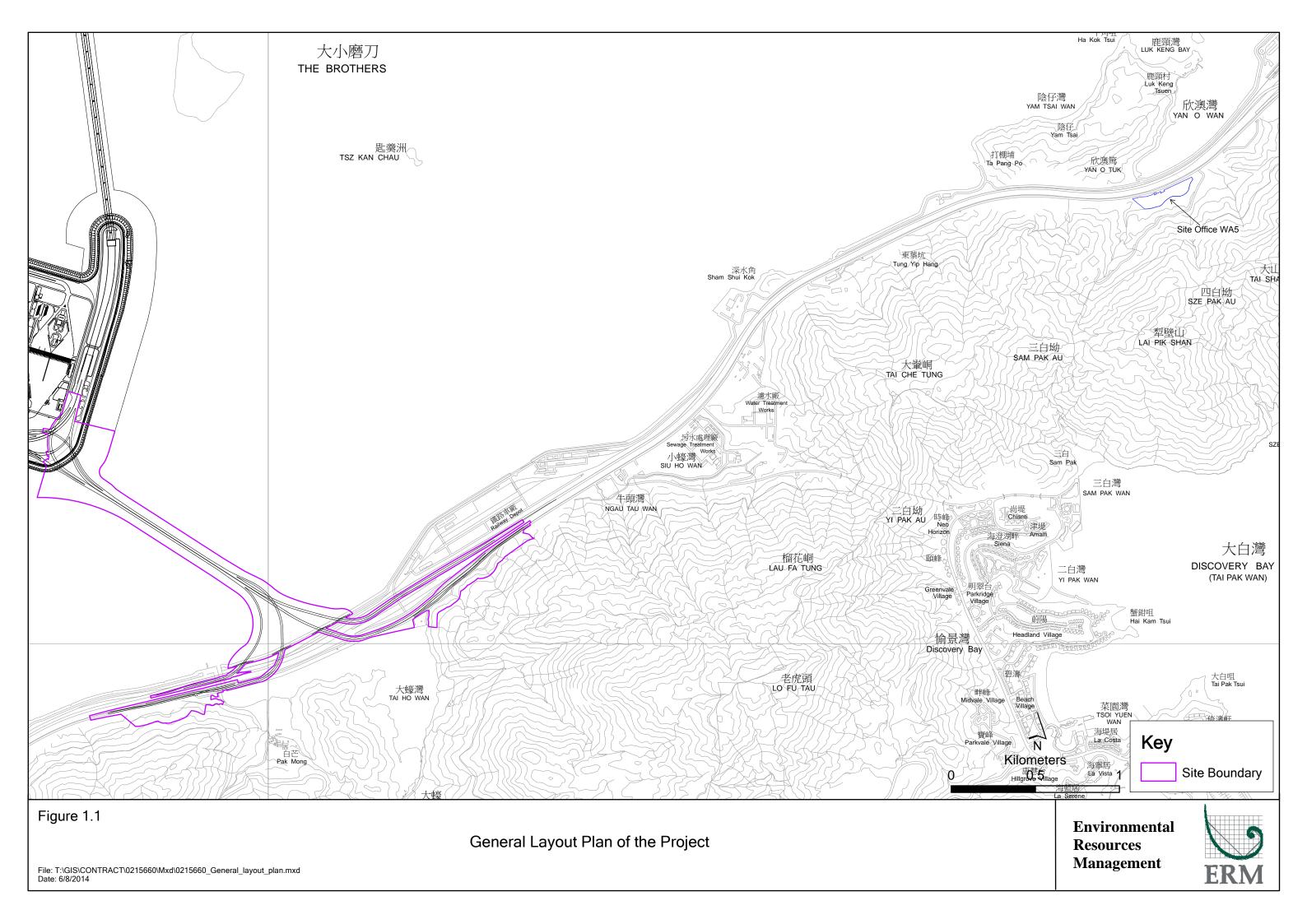
An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (*EP-354/2009*) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (*EP-354/2009/A*) was issued on 8 December 2010.

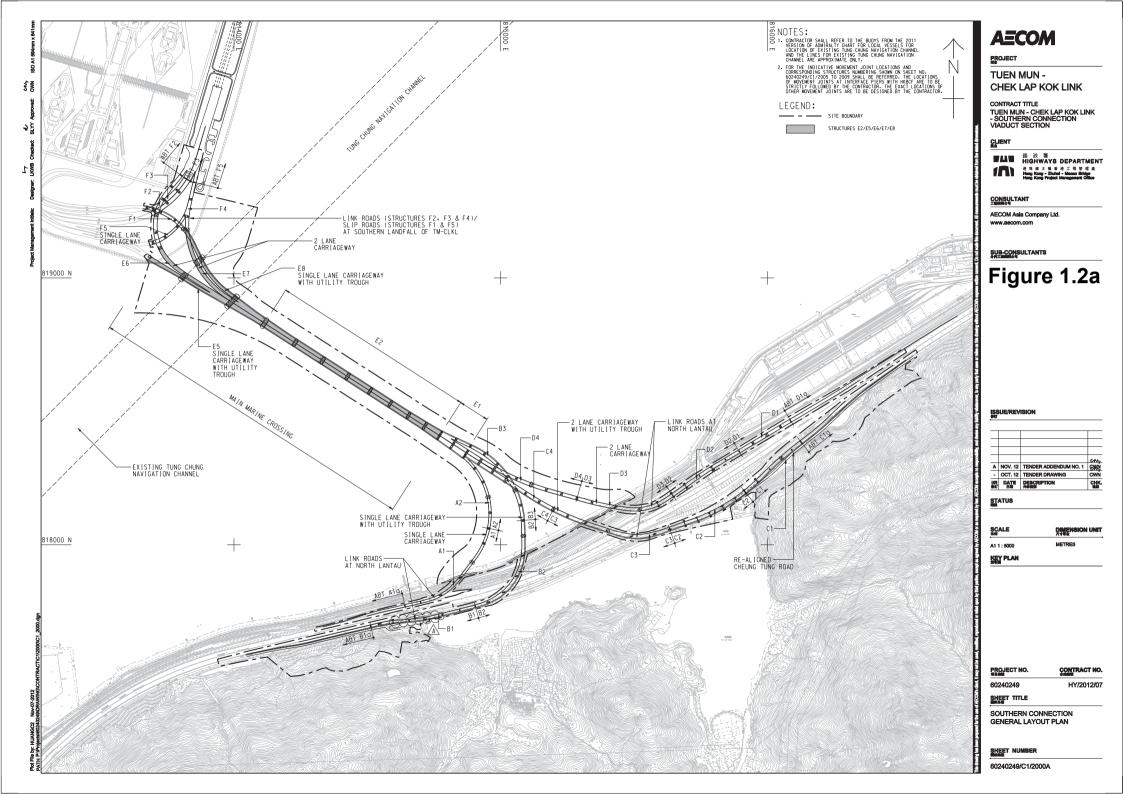
Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Environ Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

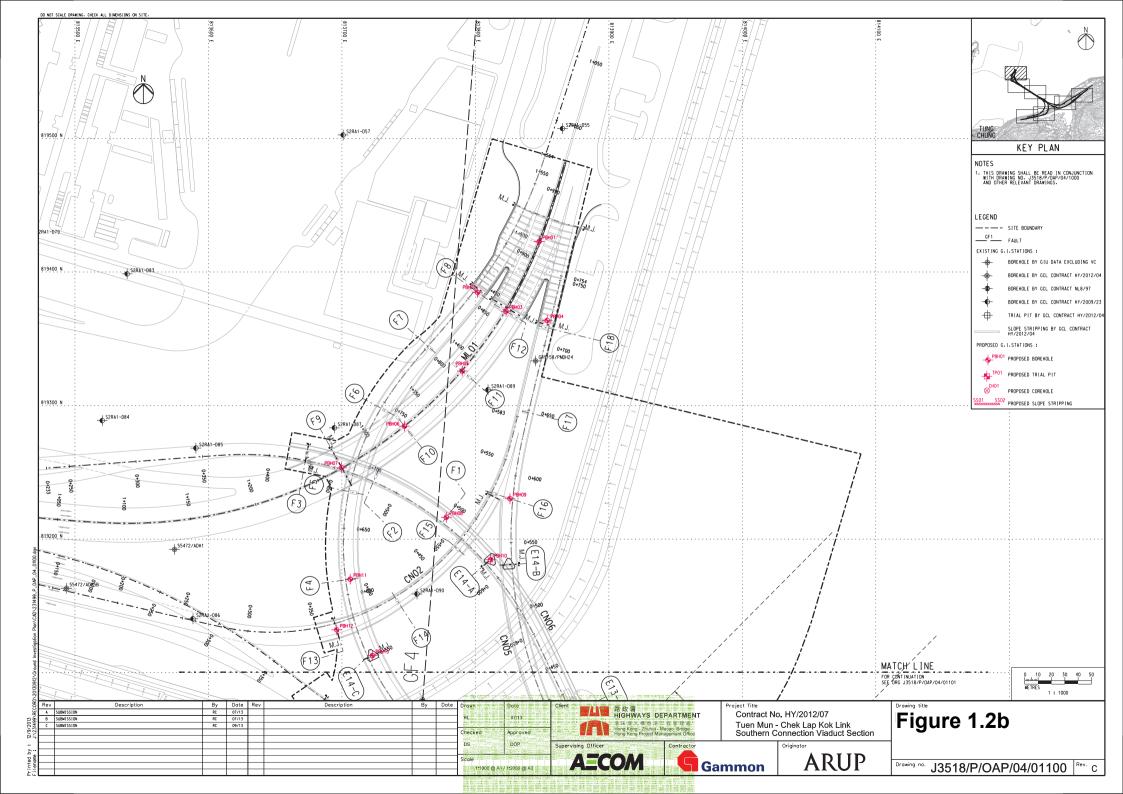
The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the

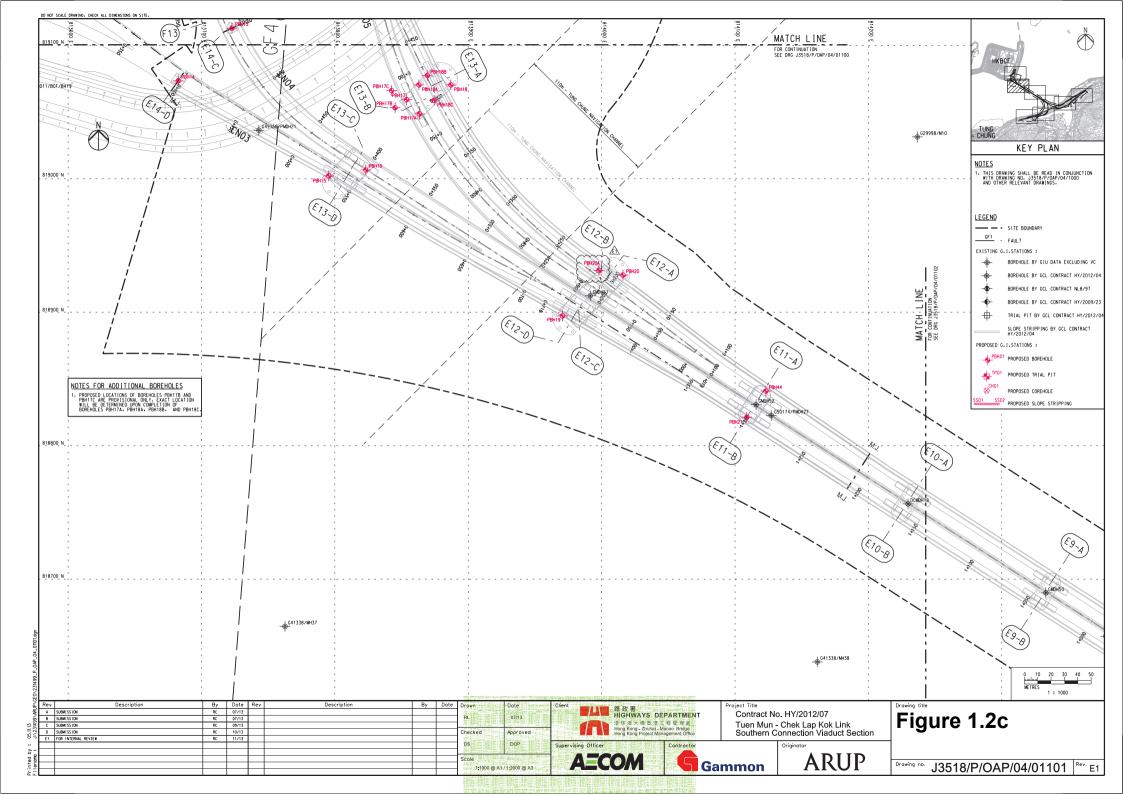
southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

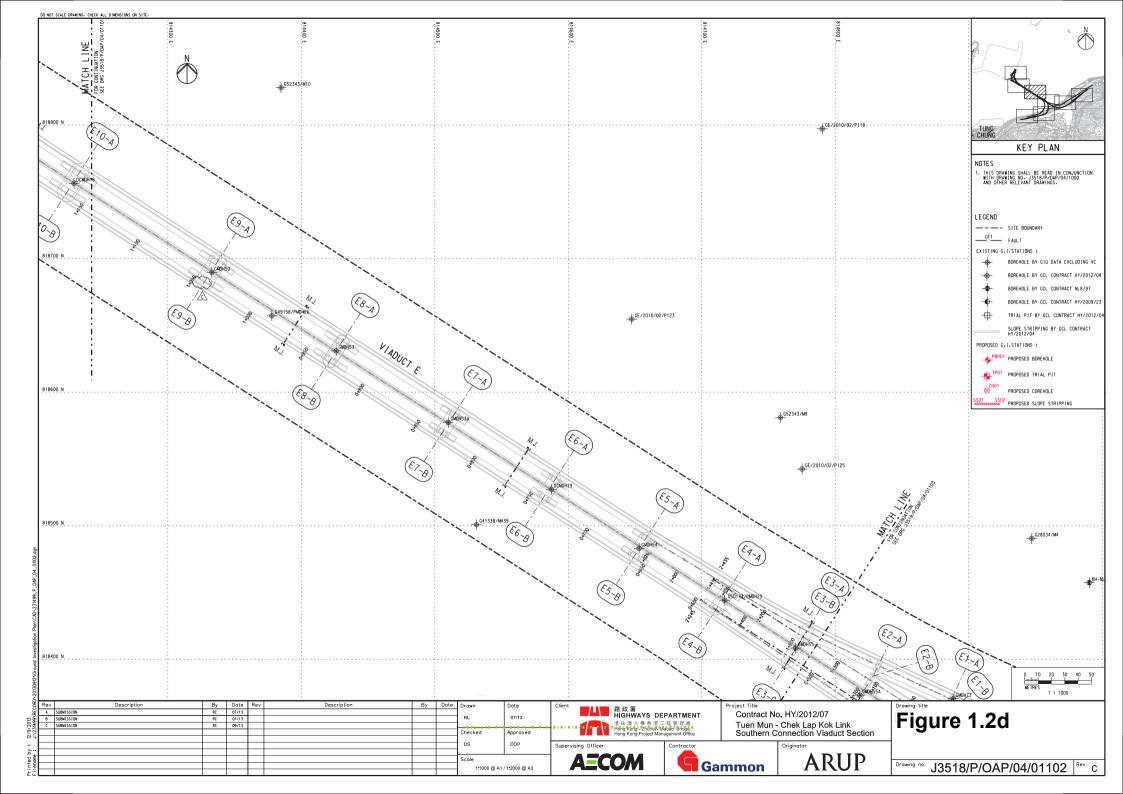
The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well environmental site inspections, commenced on 31 October 2013.

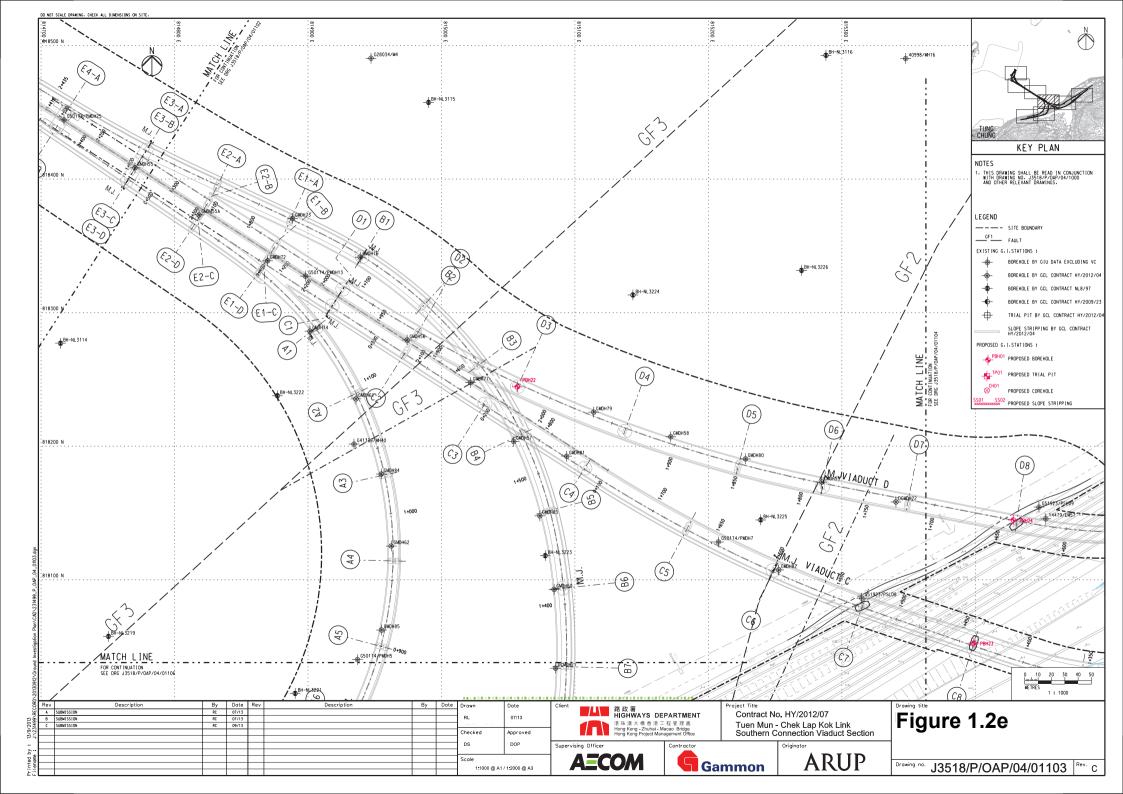

The general layout plan of the Contract components is presented in *Figures 1.1* & 1.2a to 1.

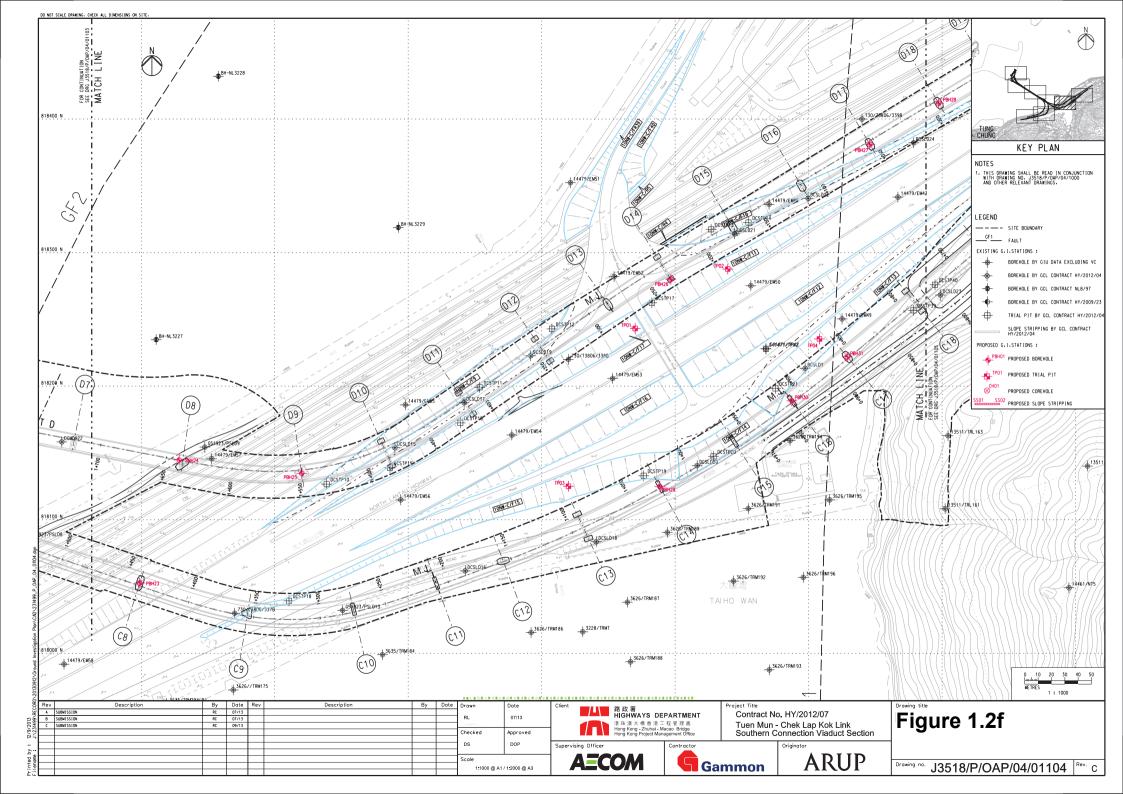

1.2 SCOPE OF REPORT

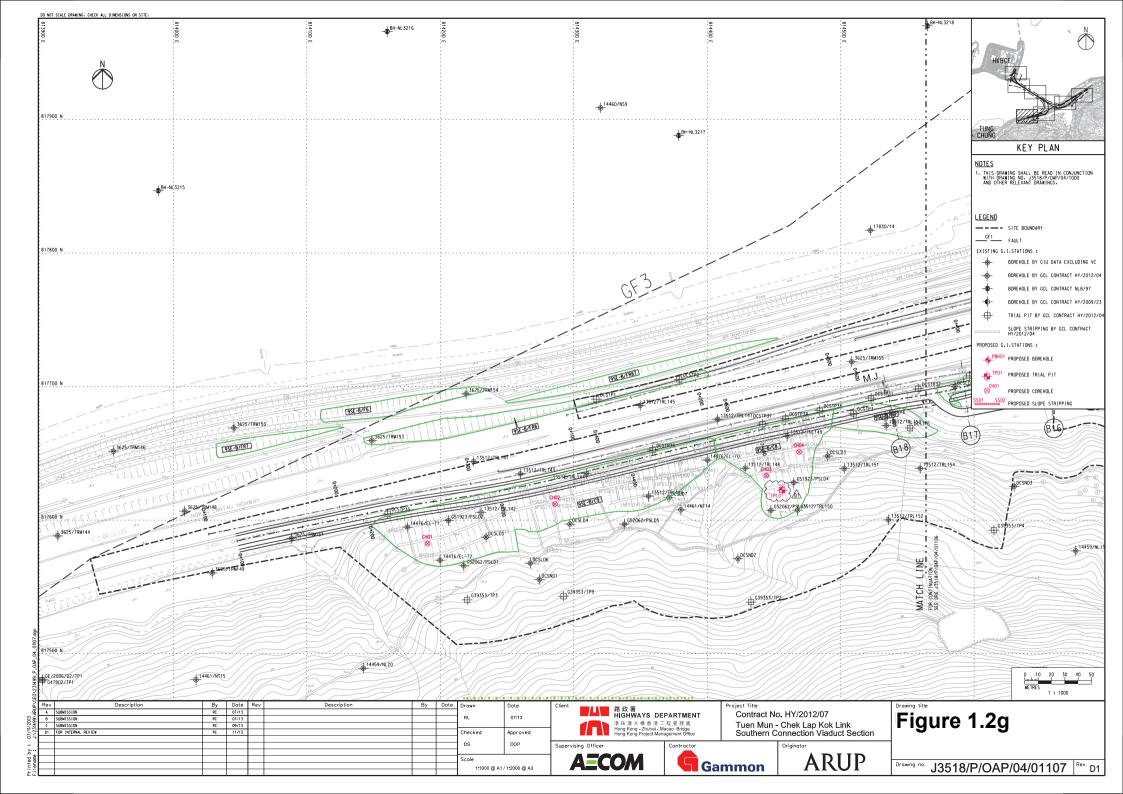

This is the Forty-seventh Monthly EM&A Report under the *Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.* This report presents a summary of the environmental monitoring and audit works in September 2017.

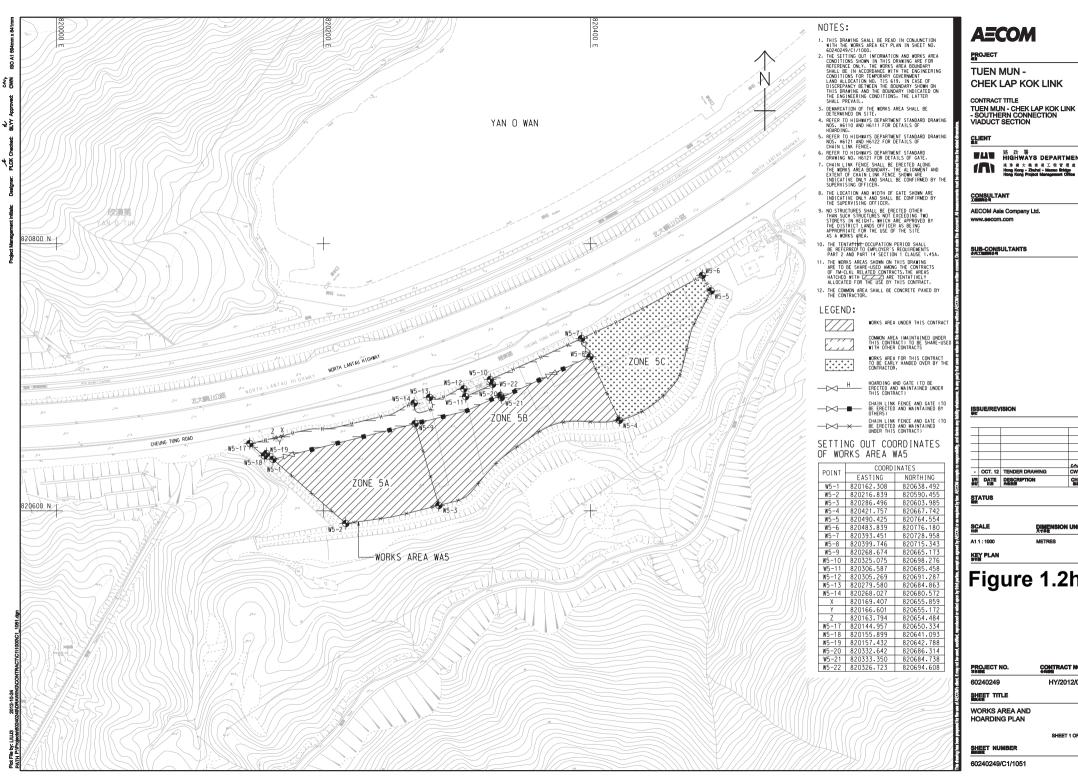

1.3 ORGANIZATION STRUCTURE


The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.









AECOM

TUEN MUN -CHEK LAP KOK LINK

CONTRACT TITLE

■ B 政 署 HIGHWAYS DEPARTMENT

CONSULTANT

AECOM Asia Company Ltd.

SUB-CONSULTANTS

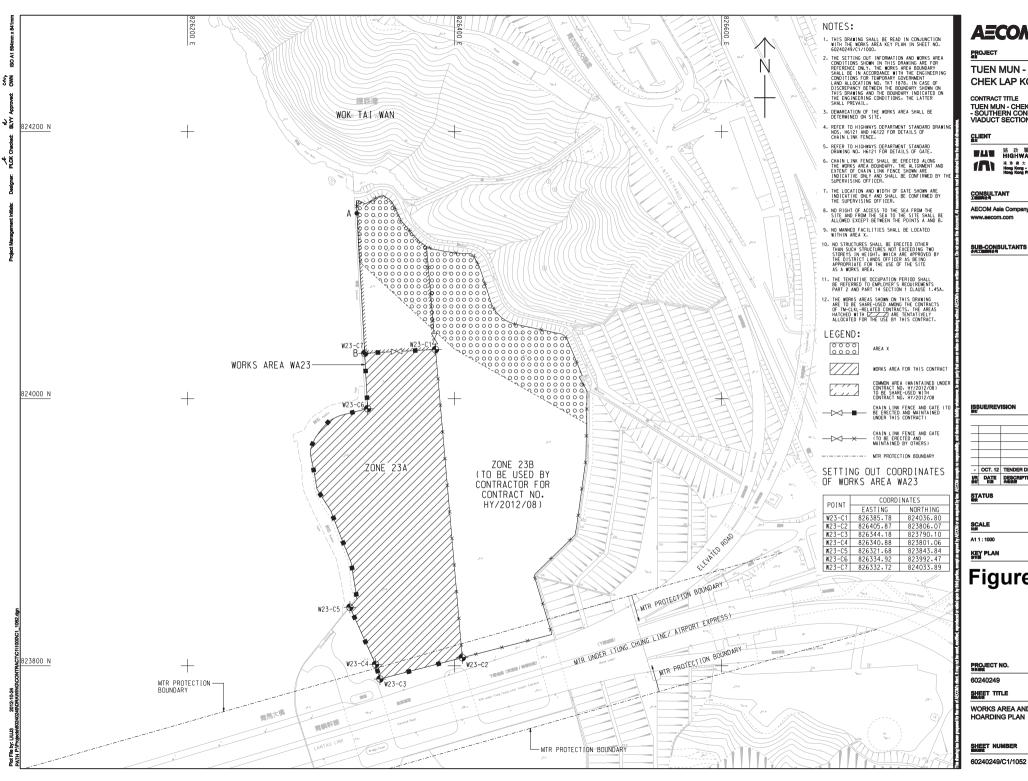
ISSUE/REVISION

CWN - OCT. 12 TENDER DRAWING VR DATE DESCRIPTION œK.

Figure 1.2h

PROJECT NO.

CONTRACT NO. HY/2012/07


SHEET TITLE

WORKS AREA AND HOARDING PLAN

SHEET 1 OF 2

SHEET NUMBER

60240249/C1/1051

AECOM

TUEN MUN -CHEK LAP KOK LINK

CONTRACT TITLE TUEN MUN - CHEK LAP KOK LINK - SOUTHERN CONNECTION VIADUCT SECTION

■ B 政 署 HIGHWAYS DEPARTMENT 送取 表大 集 香 港 工 程 管 理 意 Hong Kong - Zhahal - Macano Bridge

AECOM Asia Company Ltd.

SUB-CONSULTANTS

SSUE/REVISION

			CWN
-	OCT. 12	TENDER DRAWING	CWN
松	DATE	DESCRIPTION 内容無限	CHIC

Figure 1.2i

CONTRACT NO. HY/2012/07

SHEET TITLE

WORKS AREA AND HOARDING PLAN

SHEET 2 OF 2

SHEET NUMBER

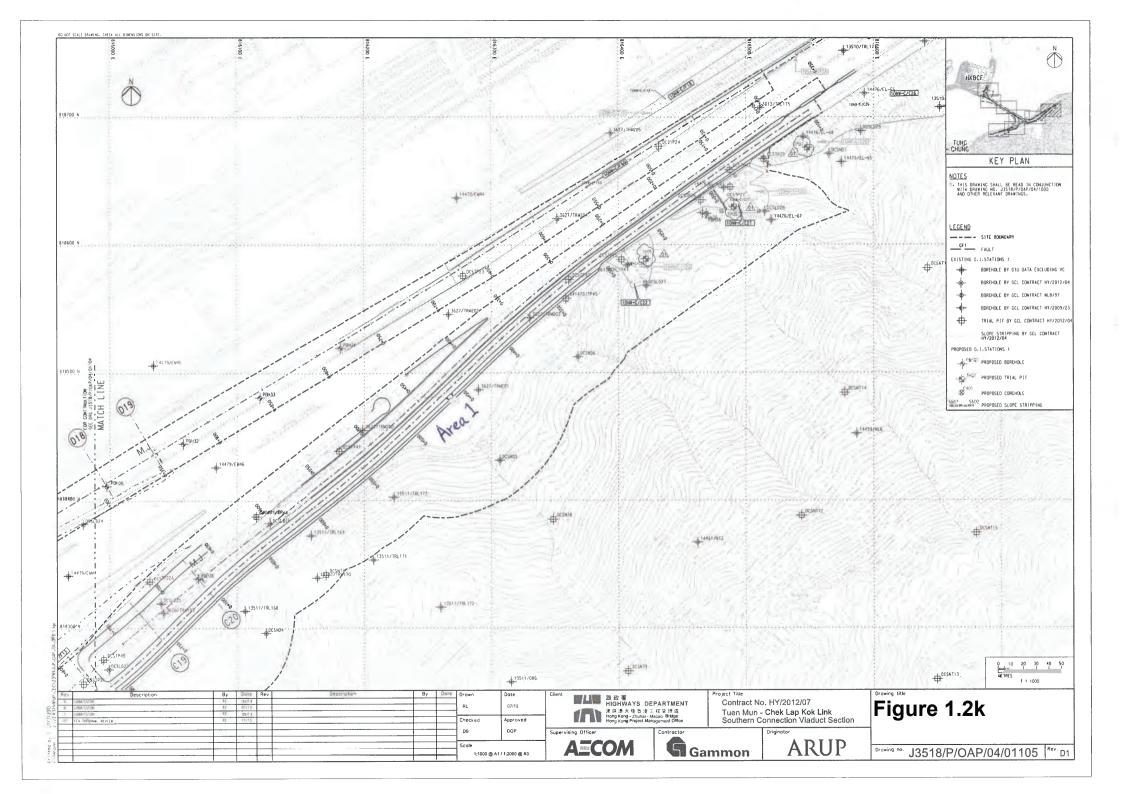



Figure 1.2j

	DATE	DESCRIPTION	OUN
-	NOV. 12	TENDER ADDENDUM NO. 1	CWN
			CNy

HY/2012/07

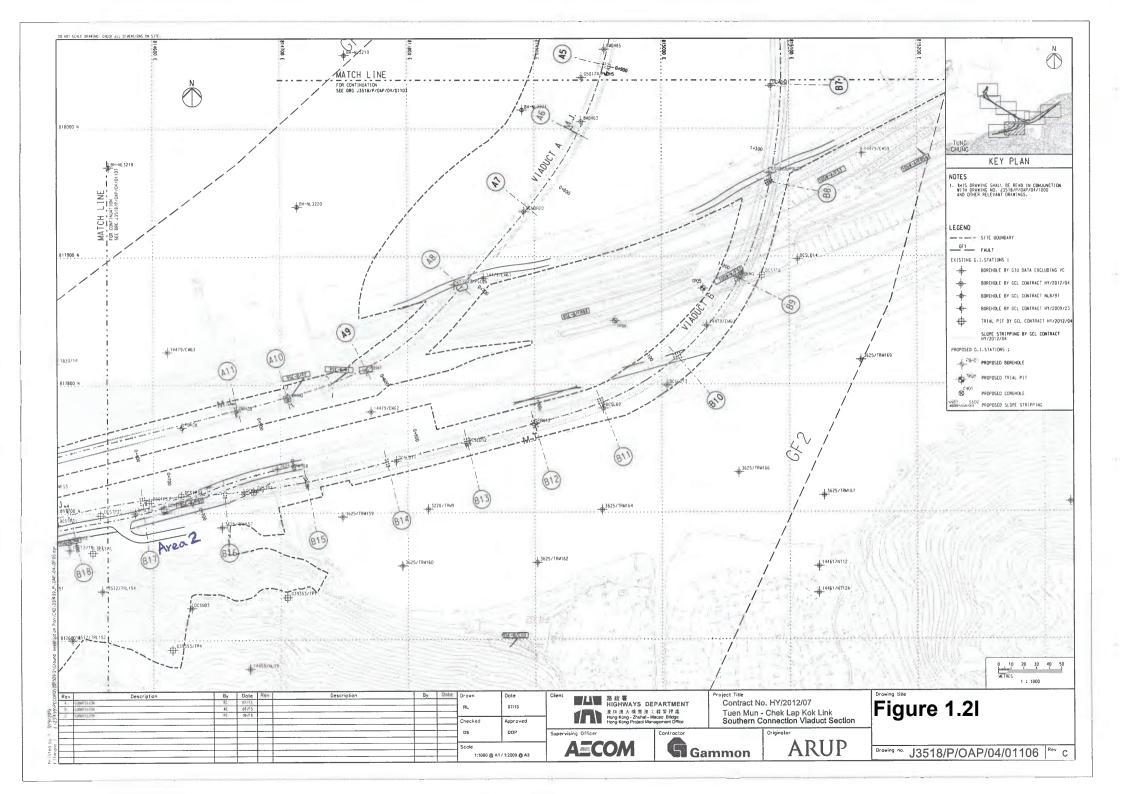


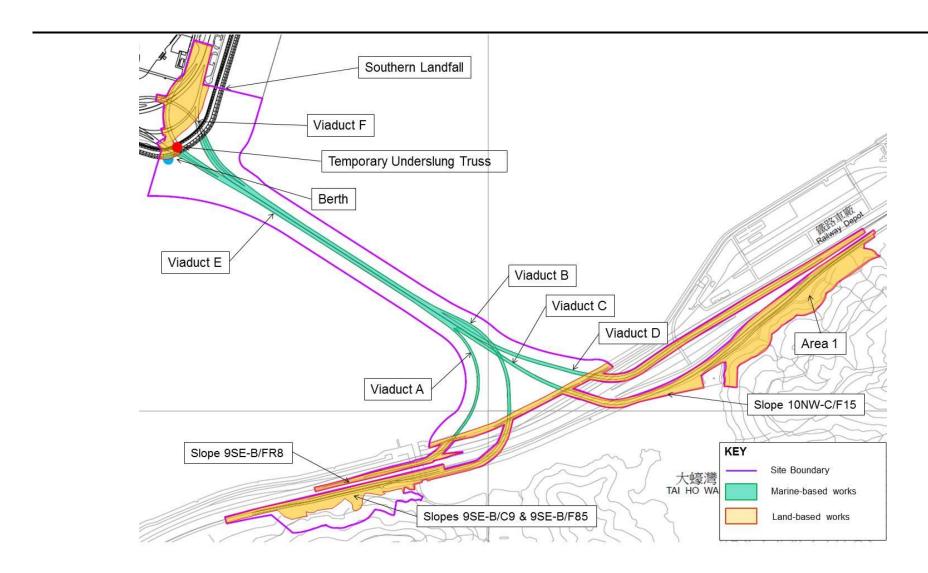
Table 1.1 Contact Information of Key Personnel

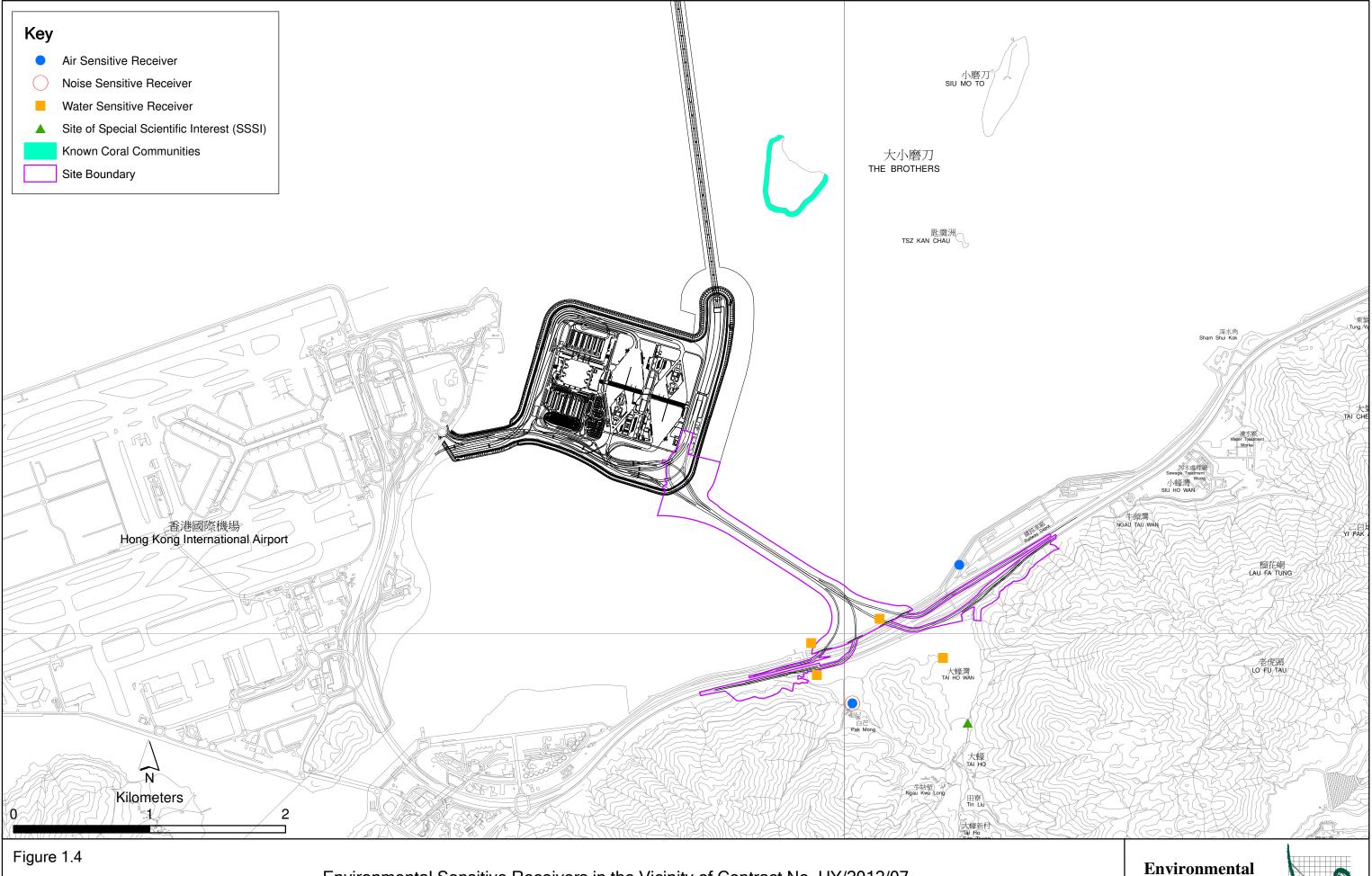
Party	Position	Name	Telephone	Fax
HyD (Highways Department)	Project Coordinator	Stanley Chan	2762 3406	3188 6614
• /	Senior Engineer	Steven Shum	2762 4133	3188 6614
SOR (AECOM Asia Company Limited)	Chief Resident Engineer	Daniel Ip	3553 3800	2492 2057
	Resident Engineer	Kingman Chan	3691 3950	3691 2899
ENPO / IEC (Ramboll Environ	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Hong Kong Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Gammon Construction Limited)	Environmental Manager	Brian Kam	3520 0387	3520 0486
,	Environmental Officer	Roy Leung	3520 0387	3520 0486
	24-hour Complaint Hotline		9738 4332	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

The construction phase of the Contract commenced on 31 October 2013. The three-month rolling construction programme is shown in Appendix B.

As informed by the Contractor, details of the major works carried out in this reporting month are listed below:


Land-based Works


- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation;
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

The locations of the construction activities are shown in *Figure 1.3*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.4*.

The environment in <i>Appendix C</i> .	The environmental mitigation measures implementation schedule is presented in <i>Appendix C</i> .					

Figure 1.3 Locations of Major Construction Activities in the Reporting Month

File: T:\GIS\CONTRACT\0215660\Mxd\0215660_Environmental_Sensitive_Receiver.mxd Date: 18/5/2015

Environmental Sensitive Receivers in the Vicinity of Contract No. HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section

Environmental Resources Management

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*.

Table 2.1 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description	Monitoring Dates
ASR 9	MTR Depot	On the ground nearby	6, 12, 18, 21 and 27
		MTR Depot Entrance	September 2017
ASR 8A	Area 4	On ground at the works	6, 12, 18, 21 and 27
		area, Area 4	September 2017

High Volume Samplers (HVSs) were used for 1-hour TSP and 24-hour TSP monitoring at ASR8A and ASR9 in accordance with the requirements of the Updated EM&A Manual. The TSP monitoring stations are illustrated in *Figure 2.1* and detailed in *Table 2.1*. Wind meter was deployed at Area 4 for logging wind speed and wind direction. Copies of the calibration certificates for the equipment are presented in *Appendix E*. Details of the deployed equipment are given in *Table 2.2*.

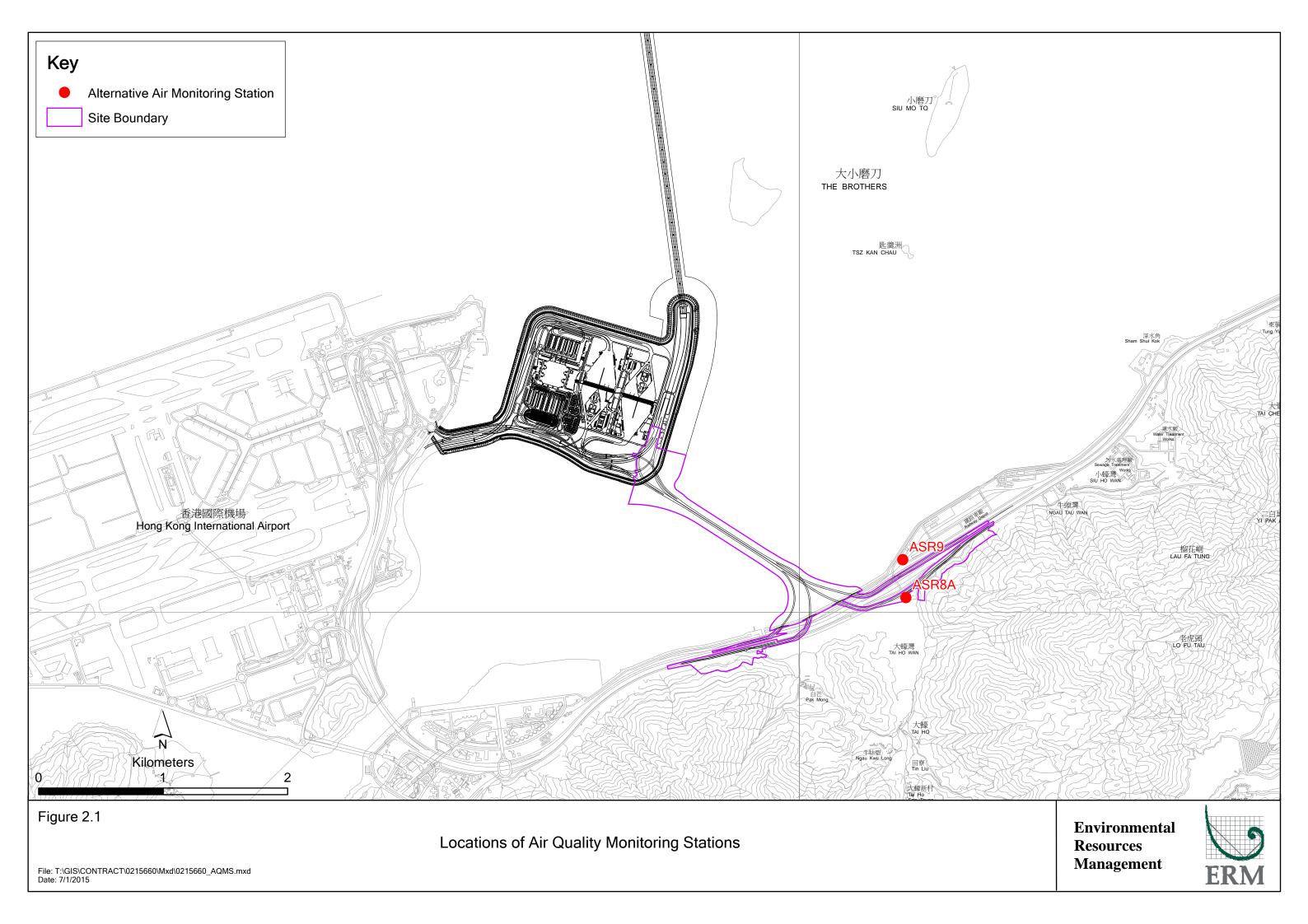


Table 2.2 Air Quality Monitoring Equipment

Equipment	Brand and Model
High Volume Sampler	Tisch Environmental Mass Flow Controlled
(1-hour TSP and 24-hour TSP)	Total Suspended Particulate (TSP) High
	Volume Sampler (Model No. TE-5170)
Wind Sensor	Global Water (Wind Speed Sensor: WE550; Wind Direction Sensor: WE570)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

2.1.2 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in September 2017 is provided in *Appendix F*.

2.1.3 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and 2.4 respectively. Detailed impact air quality monitoring results are presented in *Appendix G*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR 8A	85	22-169	394	500
ASR 9	99	21-206	393	500

Table 2.4 Summary of 24-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
ASR 8A	33	17-50	178	260
ASR 9	37	22-61	178	260

The major dust sources in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

All 1-hour and 24-hour TSP results were below the Action and Limit Levels at all monitoring locations in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Meteorological information collected at ASR8A including wind speed and wind direction is provided in *Appendix H*.

2.2 Noise Monitoring

2.2.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact noise monitoring was conducted once per week during the construction phase of the Contract. The Action and Limit Level of the noise monitoring is provided in *Appendix D*.

Noise monitoring was performed on 6, 12, 18, 21 and 27 September 2017 using sound level meter at the designated monitoring station NSR1A (*Figure 2.2*; *Table 2.5*) in accordance with the requirements stipulated in the Updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.6*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.5 Location of Impact Noise Monitoring Station

Monitoring Station	Location	Description	Parameter	Frequency and Duration	Monitoring Dates
NSR 1A	Pak Mong Village Pavilion	On the ground at the village entrance	30-minute measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week	6, 12, 18, 21 and 27 September 2017

Table 2.6 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-52
Acoustic Calibrator	Rion NC-73

2.2.2 Monitoring Schedule for the Reporting Month

The schedule for construction noise monitoring in the reporting period is provided in *Appendix F*.

2.2.3 Results and Observations

Results for noise monitoring are summarized in *Table 2.7* and the monitoring data is provided in *Appendix I*.

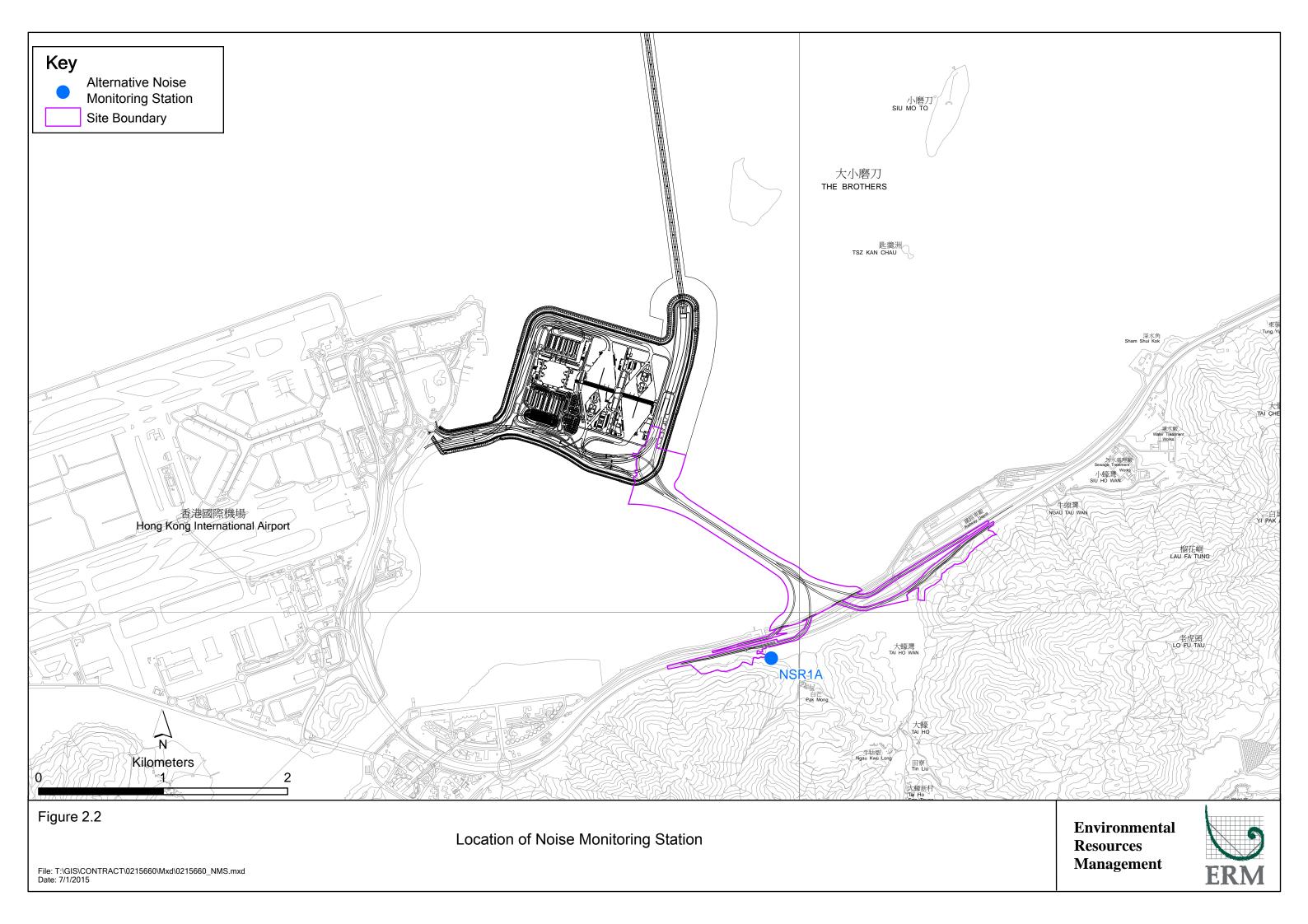


Table 2.7 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),	
	$L_{eq~(30mins)}$	$L_{eq~(30 mins)}$	Leq (30mins)	
NSR 1A	64	62-67	75	

No noise Action or Limit Level exceedance was recorded in the reporting month. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Major noise sources during the noise monitoring included noise from crane operation, concrete work, nearby traffic noise and aircraft noise.

2.3 WATER QUALITY MONITORING

2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week during the construction period in accordance with the Updated EM&A Manual. The Action and Limit Levels of the water quality monitoring are provided in *Appendix D*.

The locations of the monitoring stations under the Contract are shown in *Figure 2.3* and *Table 2.8*.

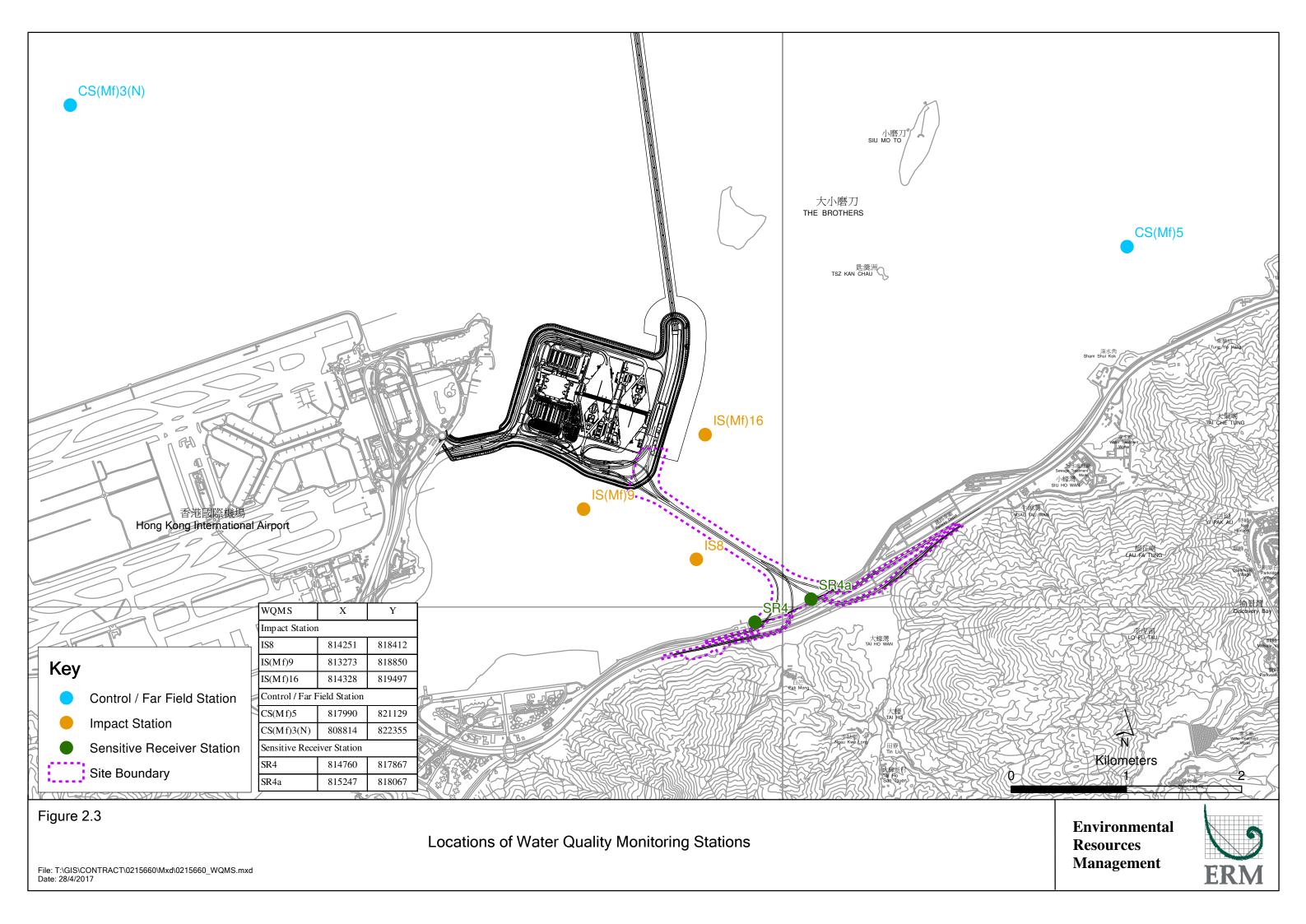


Table 2.8 Locations of Impact Water Quality Monitoring Stations and its Corresponding Monitoring Requirements

Station ID	Type	Coord	linates	*Parameters, unit	Frequency	Depth
		Easting	Northing	•		
IS(Mf)9	Impact Station	813273	818850	• Temperature(°C)	Impact	3 water depths: 1m
	(Close to HKBCF			 pH (pH unit) 	monitoring: 3	below sea surface,
	construction site)			• Turbidity (NTU)	days per	mid-depth and 1m
IS(Mf)16	Impact Station	814328	819497	• Water depth (m)	week, at mid-	above sea bed. If
	(Close to HKBCF			 Salinity (ppt) 	flood and	the water depth is
	construction site)			 Dissolved 	mid-ebb tides	less than 3m, mid-
IS8	Impact Station	814251	818412	Oxygen (DO)	during the	depth sampling
	(Close to HKBCF			(mg/L and % of	construction	only. If water
	construction site)			saturation)	period of the	depth less than 6m,
SR4	Sensitive receiver	814760	817867	• Suspended Solid	Contract	mid-depth may be
	(Tai Ho Inlet)			(SS) (mg/L)		omitted
SR4a	Sensitive receiver	815247	818067	. , , ,		
CS(Mf)3(Control Station	808814	822355			
N)						
CS(Mf)5	Control Station	817990	821129			

^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Water Quality Monitoring Station CS(Mf)3 was relocated to CS(Mf)3(N) since 2 May 2017.

Station SR4a is not covered by HY/2010/02. Data from Station SR4(N) is considered representative of those from SR4a since they are located 50m from each other and coral colonies, which is the SR concerned at SR4a, are also presented along the seawall nearby SR4(N).

Table 2.9 summarises the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

Table 2.9 Water Quality Monitoring Equipment

Equipment	Brand and Model
Multi-parameters	YSI ProDSS / YSI 6920 V2 Sonde
(Dissolved Oxygen, Salinity,	
Turbidity, Temperature, pH)	
Positioning Equipment	Furuno GP-170
Water Depth Detector	Lowrance Mark 5x / Garmin Striker 4
Water Sampler	WildCo Vertical Alpha Bottles 1120-2.2L /1120-3.2L
	Aquatic Research Instrument Vertical/Horizontal
	Point Water Sampler 2.2L / 3.0L

2.3.2 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in September 2017 is provided in *Appendix F*. Water quality monitoring on 4 September 2017 was canceled due to adverse weather.

2.3.3 Results and Observations

In total of 12 monitoring events for impact water quality monitoring were conducted at all designated monitoring stations in the reporting month. Impact water quality monitoring results and graphical presentations are provided in *Appendix J*.

Results of water quality monitoring between 1 June 2017 and 31 July 2017 were adopted from the published EM&A data of *Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works* ⁽¹⁾ ⁽²⁾. The locations of the monitoring stations covered by Contract No. HY/2010/02 are shown in Figure 2.3 and those overlapped with Contract No. HY/2012/07 are presented in Table 2.8.

Eighty-six (86) Action Level of Dissolved Oxygen (DO) exceedances, four (4) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting month. Actions were taken in accordance with the Event Action Plan as presented in Appendix L.

2.4 DOLPHIN MONITORING

2.4.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) from the Contract. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis is adopted to avoid duplicates of survey effort.

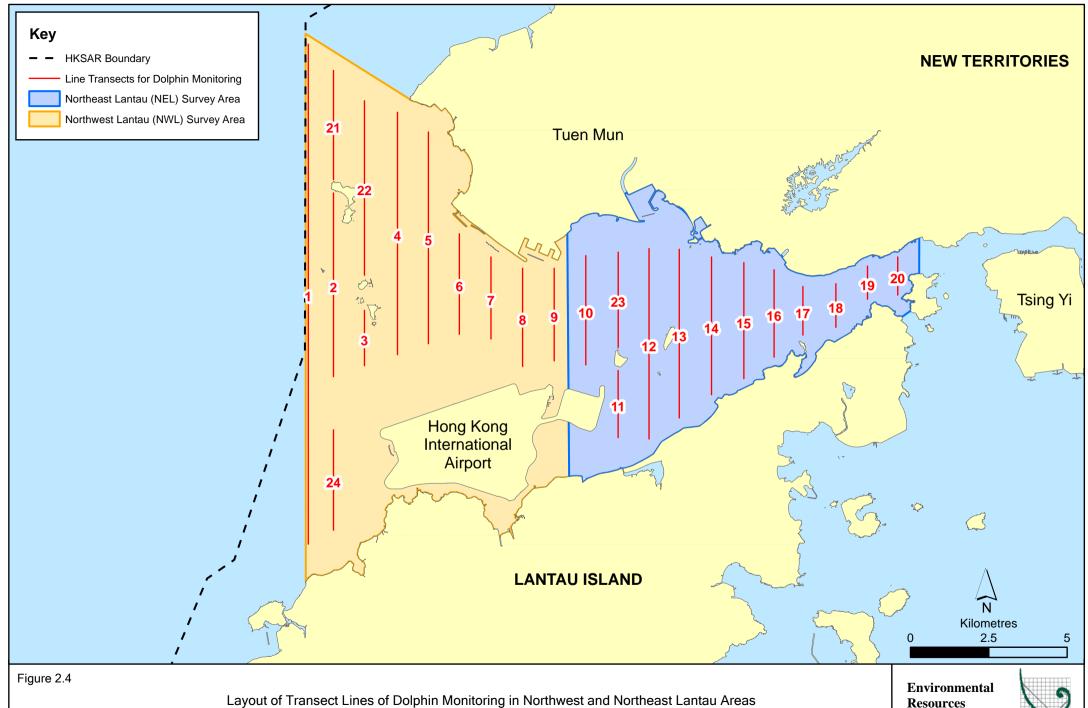
2.4.2 Monitoring Equipment

Table 2.10 summarizes the equipment used for the impact dolphin monitoring.

Published EM&A data for impact water quality monitoring by Contract No. HY/2010/02 are available at: http://www.hzmbenpo.com/

Table 2.10 Dolphin Monitoring Equipment

Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus Nikon D90 20-300m zoom lens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level


2.4.3 Monitoring Parameter, Frequencies and Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.4.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.4*. The co-ordinates of all transect lines are shown in *Table 2.11* below ⁽¹⁾.

Proposal on the changes of transect lines for dolphin monitoring was approved by EPD on 28 July 2017 (Reference number: (19) in EP2/G/A/129 Pt. 8).

File: T:\GIS\CONTRACT\0212330\Mxd\0212330_Transect_of_Dolphin_Monitoring.mxd Date: 21/9/2017

Resources Management

 Table 2.11
 Impact Dolphin Monitoring Line Transect Co-ordinates

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000*	19	9 Start Point 822513		823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

2.4.5 Action & Limit Levels

The Action and Limit levels of dolphin impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix L*.

2.4.6 Monitoring Schedule for the Reporting Month

Dolphin monitoring was carried out on 15, 18, 22 and 29 September 2017 (*Appendix F*).

2.4.7 Results and Observations

A total of 266.33 km of survey effort was collected, with 97.9% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) during the surveys in September 2017. Among the two areas, 96.80 km and 169.53 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 195.67 km and 70.66 km, respectively. The survey efforts are summarized in *Appendix K*.

Three (3) groups of 11 Chinese White Dolphins were sighted during the two sets of monitoring surveys in September 2017. All dolphin sightings were made in NWL, while none was sighted in NEL. During the surveys in September 2017, all sightings were made during on-effort search, while all oneffort sighting were made on primary lines. The dolphin group was not associated with operating fishing vessel and was not sighted in the proximity of the Project's alignment. The distribution of dolphin sighting during the reporting month is shown in *Figure 2.5*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in September 2017 are shown in *Tables 2.12 & 2.13*.

Table 2.12 Individual Survey Event Encounter Rates

		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: Sep 15th / 18th	0.0	0.0
NEL	Set 2: Sep 22 nd / 29 th	0.0	0.0
NWL	Set 1: Sep 15th / 18th	0.0	0.0
INVVL	Set 2: Sep 22 nd / 29 th	3.6	16.3

Note: Dolphin Encounter Rates are deduced from the two sets of surveys (two surveys in each set) in September 2017 in Northeast (NEL) and Northwest Lantau (NWL)

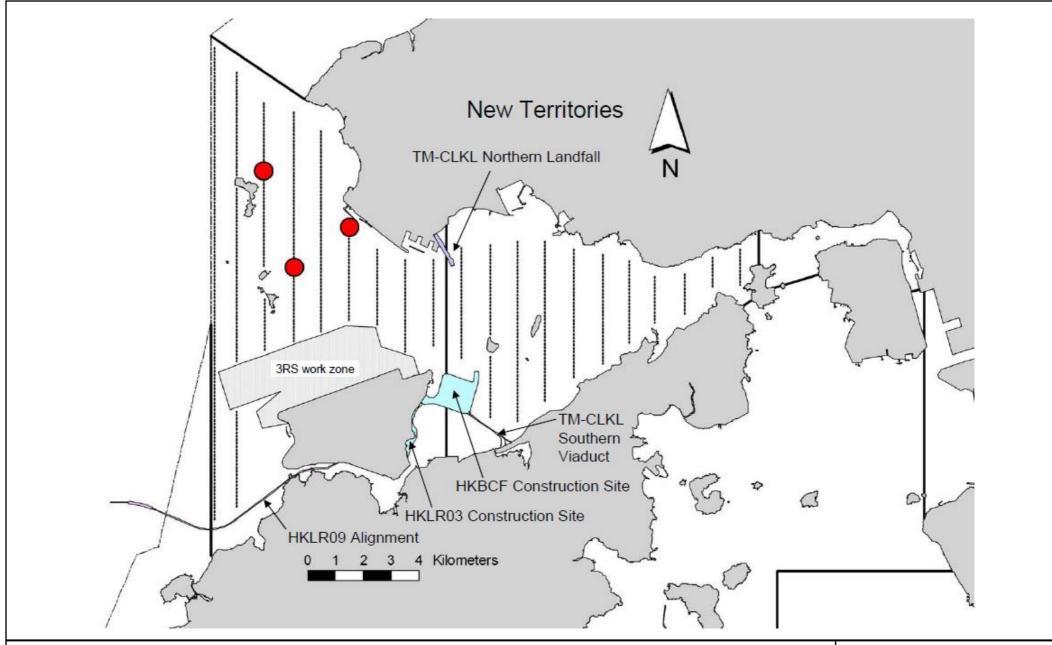


Figure 2.5

HY/2012/07 TM-CLKL Southern Connection Viaduct Section The distribution of dolphin sightings during the reporting period (Source: Adopted from HKLR03 Monitoring Survey in September 2017)

Environmental Resources Management

Table 2.13 Monthly Average Encounter Rates

	`	rate (STG) dolphin sightings survey effort)	(no. of dolphins	rate (ANI) from all on-effort 00 km of survey ort)		
	Primary Lines Only	Both Primary and Secondary	Primary Both Primary			
	Lines Only	Lines	Lines Only and Seconda Lines			
Northeast Lantau	0.0	0.0	0.0	0.0		
Northwest Lantau	1.7	1.2	7.7	5.5		

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in September 2017 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau

During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.4.8 Marine Mammal Exclusion Zone Monitoring

Daily 250 m marine mammal exclusion zone monitoring was undertaken during the period of daytime marine works activities. No sighting of Chinese White Dolphin was recorded in September 2017 during the exclusion zone monitoring.

Passive Acoustic Monitoring (PAM) had been decommissioned as no marine piling works was carried out outside the daylight hours since September 2015.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 6, 13, 20 and 28 September 2017.

Key observations during the site inspections are summarized in *Table 2.14*.

Table 2.14 Specific Observations Identified during the Weekly Site Inspections in this Reporting Month

Inspection Date	Environmental Observations	Recommendations/ Remarks
6 September 2017	Viaduct B (Pier B17)	Viaduct B (Pier B17)
_	 Chemical container was observed not 	 The Contractor was reminded to place
	placed in drip tray.	chemical container in drip tray.
	 General refuse in the skip should be 	 The Contractor was reminded to clear
	cleared.	general refuse in the skip.
13 September 2017	Viaduct E (Pier E10)	Viaduct E (Pier E10)
	 Chemical containers on the deck were 	 The Contractor was reminded to place
	observed not placed in drip tray.	chemical containers in drip tray.
	• Stagnant water was observed in drip tray.	 The Contractor was reminded to clear
	 Tarpaulin should be provided to cover the 	stagnant water in drip tray.
	cement bags (over 20 bags).	 The Contractor was reminded to provide
		tarpaulin and cover cement bags.
20 September 2017	Southern Landfall Portion A	Southern Landfall Portion A
	(HKBCF Portion S-c)	(HKBCF Portion S-c)
	 Chemical containers were observed not 	 The Contractor was reminded to maintain
	placed in drip tray.	watering on exposed road.
	 Watering on exposed road should be 	 The Contractor was reminded to place
	maintained for dust suppression.	chemical containers in drip tray.
28 September 2017	Viaduct E (Pier E13CD)	Viaduct E (Pier E13CD)
	 Oil stain was observed near the generator. 	 The Contractor was reminded to clear oil
	 Stagnant water was observed in drip tray. 	stain near the generator.
	Southern Landfall Portion A	 The Contractor was reminded to clear
	(HKBCF Portion S-c)	stagnant water in drip tray.
	 Watering should be applied during pile 	Southern Landfall Portion A
	head breaking works.	(HKBCF Portion S-c)
		 The Contractor was reminded to apply
		watering during pile head breaking works.

The Contractor has rectified all of the observations identified during environmental site inspections in the reporting month.

2.6 WASTE MANAGEMENT STATUS

The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert) and recyclable materials. Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.15*.

Table 2.15 Quantities of Different Waste Generated in the Reporting Period

Month/	Inert C&D	Imported	Inert	Non-inert	Recyclable	Chemical	Mariı	Marine Sedimen		
Year	Materials (a) (m³)	Fill (m³)	Constructio n Waste Re- used (m³)	Constructio n Waste (b) (kg)	Materials (c) (kg)	Wastes (kg)	Category L	$\begin{array}{c} \text{Category} \\ M \\ (M_p \& \\ M_f) \end{array}$	Category H	
September 2017	3,147	0	0	185,420	18,100	0	1,517	1,047	127	

Notes:

- (a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.
- (b) Non-inert construction wastes include general refuse disposed at landfill.
- (c) Recyclable materials include metals, paper, cardboard, plastics, timber, felled trees and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the *Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes*.

2.7 ENVIRONMENTAL LICENSES AND PERMITS

The status of environmental licensing and permit is summarized in *Table 2.16* below.

Table 2.16 Summary of Environmental Licensing and Permit Status

License/ Permit	License or Permit	Date of Issue	Date of Expiry	License/	Remarks
	No.			Permit Holder	
Environmental Permit	EP-354/2009/D	13 Mar 2015	N/A	HyD	Tuen Mun- Chek Lap Kok Link
Environmental Permit	EP-353/2009/K	11 Apr 2016	N/A	HyD	Hong Kong Boundary Crossing Facilities
Construction Dust Notification	361571	5 Jul 2013	N/A	GCL	
Construction Dust Notification	362093	17 Jul 2013	N/A	GCL	For Area 23
Chemical Waste Registration	5213-961-G2380-13	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No.
<u> </u>					HY/2012/07
					(Area 1 adjacent to Cheng Tung Road, Siu Ho Wan)
Chemical Waste Registration	5213-961-G2380-14	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No.
Chemical waste Registration	3213-701-G2300-1 4	10 Oct 2013	11/11	GCL	HY/2012/07
					(Area 2 adjacent to Cheung Tung Road, Pak Mong
					Village)
Chemical Waste Registration	5213-974-G2588-03	4 Nov 2013	N/A	GCL	Chemical waste produced in Contract No.
Chemical Water Registration	0210 771 02000 00	11101 2010	11/11	GGE	HY/2012/07
					(WA5 adjacent to Cheung Tung Road, Yam O)
Chemical Waste Registration	5213-951-G2380-17	12 Jun 2014	N/A	GCL	Viaducts A, B, C, D & E
Construction Waste Disposal Account	7017735	10 Jul 2013	N/A	GCL	-
Construction Waste Disposal Account	7019470	3 Mar 2014	N/A	GCL	Vessel CHIT Account
Waste Water Discharge License	WT00019017-2014	13 May 2014	31 May 2019	GCL	Discharge for marine portion
Waste Water Discharge License	WT00019018-2014	13 May 2014	31 May 2019	GCL	Discharge for land portion
Construction Noise Permit for night works and	GW-RW0294-17	19 Jun 2017	18 Dec 2017	GCL	General works at WA5
works in general holidays		·			
Construction Noise Permit for night works and	GW-RS0540-17	20 Jun 2017	15 Dec 2017	GCL	Broad Permit for Whole Site Areas
works in general holidays		,			
Construction Noise Permit for night works and	GW-RS0639-17	31 Jul 2017	29 Sep 2017	GCL	Broad Permit for Segment Launching at Land
works in general holidays		,	1		Portion
Construction Noise Permit for night works and	GW-RS0829-17	29 Sep 2017	30 Nov 2017	GCL	Broad Permit for Segment Launching at Land
works in general holidays		1			Portion
Construction Noise Permit for night works and	GW-RS0668-17	7 Aug 2017	6 Feb 2018	GCL	Pre-casted pile cap shell installation at E8-E13
works in general holidays		O			
Construction Noise Permit for percussive piling	PP-RS0010-17	12 Jun 2017	15 Sep 2017	GCL	Percussive piling at Portion A
Marine Dumping Permit	EP/MD/18-031	1 Jul 2017	31 Dec 2017	GCL	For dumping Type I sediment
Marine Dumping Permit	EP/MD/18-061	16 Sep 2017	15 Oct 2017	GCL	For dumping Type I and Type II sediment

2.8 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

In response to the site audit findings, the Contractors carried out corrective actions.

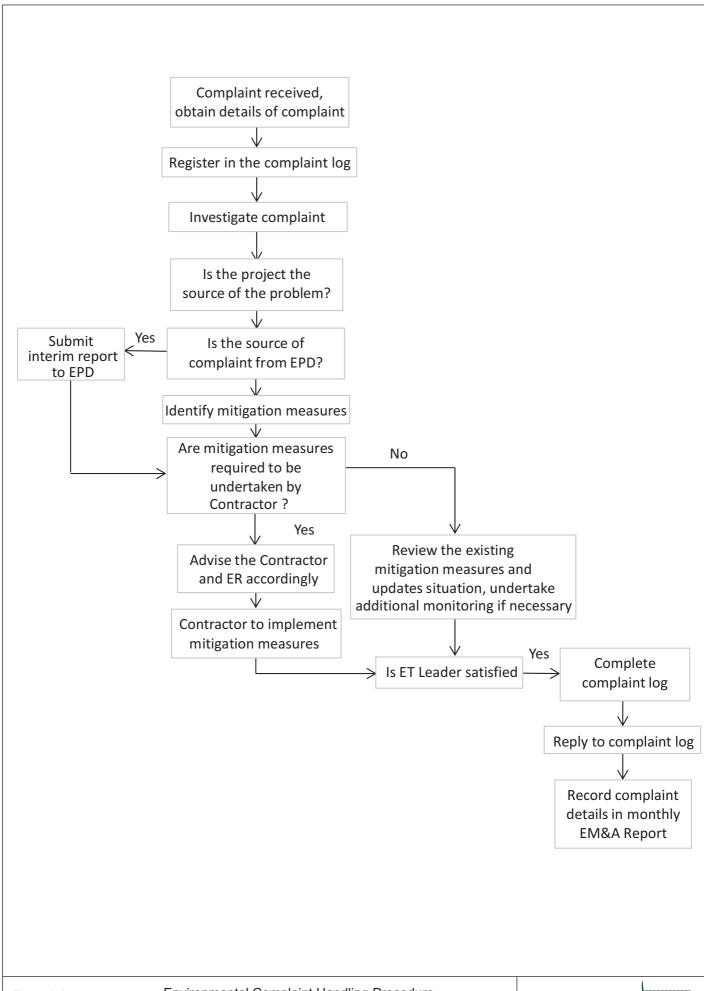
A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures were implemented properly for this Contract.

The landscape and visual (L&V) mitigation measures were also monitored on weekly basis in the reporting period. The monitoring status is summarized in *Appendix C*.

2.9 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

Results for 1-hour TSP, 24-hour TSP and construction noise monitoring complied with the Action/ Limit levels in the reporting period.

Eighty-six (86) Action Level of Dissolved Oxygen (DO) exceedances, four (4) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting month. The exceedances were considered not related to this Contract upon further investigation and the investigation report is presented in *Appendix N*.


Cumulative statistics on exceedances is provided in *Appendix N*.

2.10 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in *Figure 2.6*.

There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

Statistics on complaints, notifications of summons, successful prosecutions are summarized in *Appendix N*.

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTH

As informed by the Contractor, the major works for this Contract in October 2017 will be:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Launching gantry operation;
- Installation of pier head and deck segments; and
- Slope work of Viaducts A, B & C.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of October 2017 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedules for environmental monitoring in October 2017 are provided in *Appendix F*.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

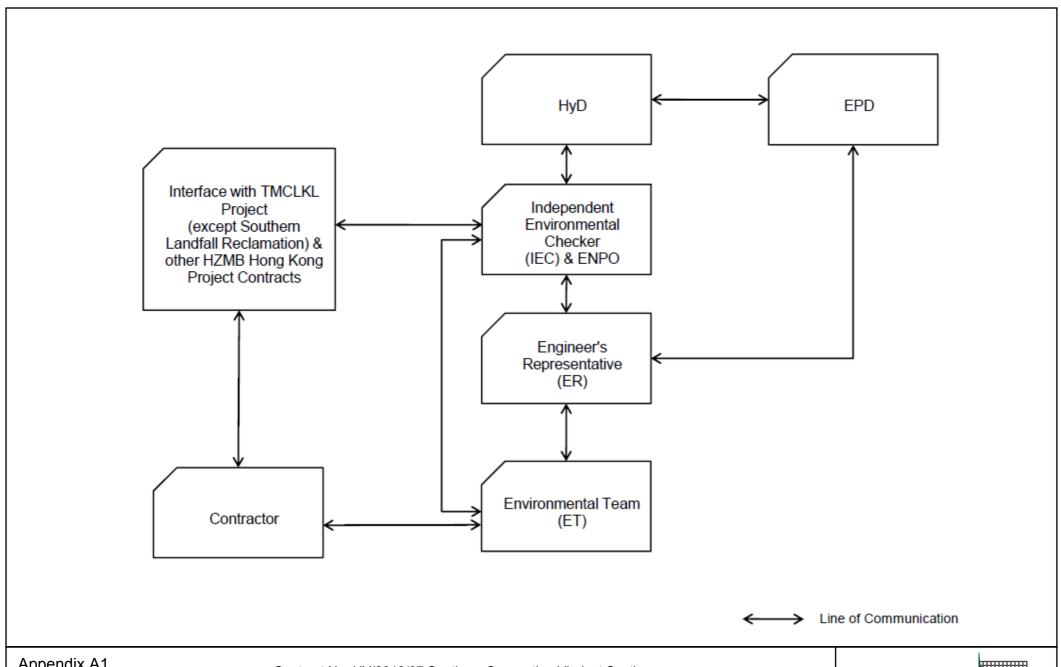
This Forty-seventh Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 30 September 2017 in accordance with the Updated EM&A Manual and the requirements of the Environmental Permits (*EP-354/2009/D* and *EP-353/2009/K*).

Air quality (1-hour TSP and 24-hour TSP), noise, water quality (DO, turbidity and SS) and dolphin monitoring were carried out in the reporting month. Results for air quality and noise monitoring complied with the Action and Limit levels in the reporting period.

Eighty-six (86) Action Level of Dissolved Oxygen (DO) exceedances, four (4) Action Level of Suspended Solids (SS) exceedances and one (1) Limit Level of Turbidity exceedance were recorded for water quality impact monitoring in the reporting month. Investigation findings suggested the observed water quality exceedances were not related to the works under this Contract.

Three (3) groups of 11 Chinese White Dolphins were sighted during the two sets of monitoring surveys in September 2017. During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations.

Environmental site inspection was carried out four (4) times in September 2017. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.


There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

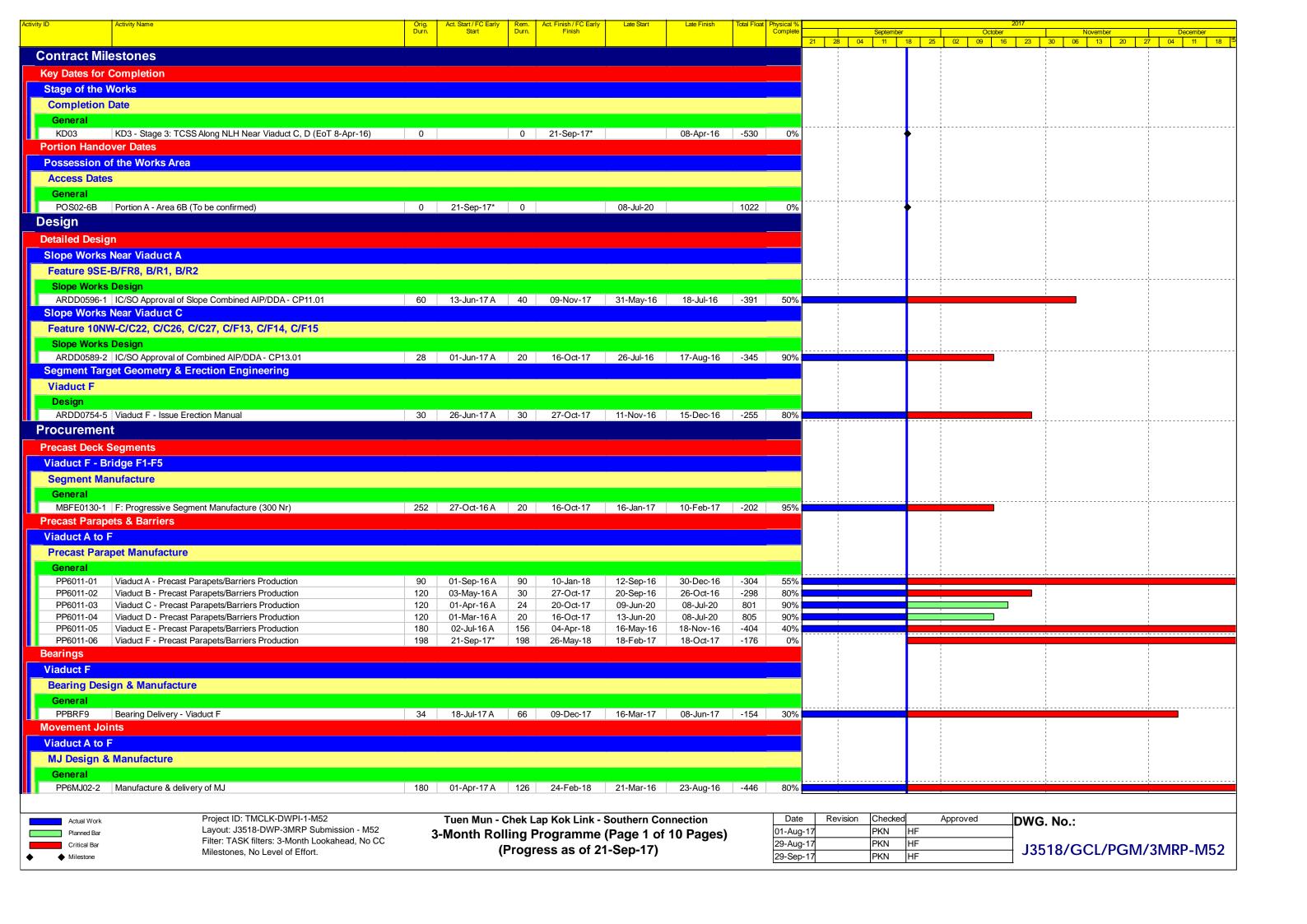
No non-compliance with EIA recommendations, EP conditions and other requirements associated with the marine travel route record of this Contract was recorded in August. Summary of marine travel route record for this reporting period will be provided in next reporting period.

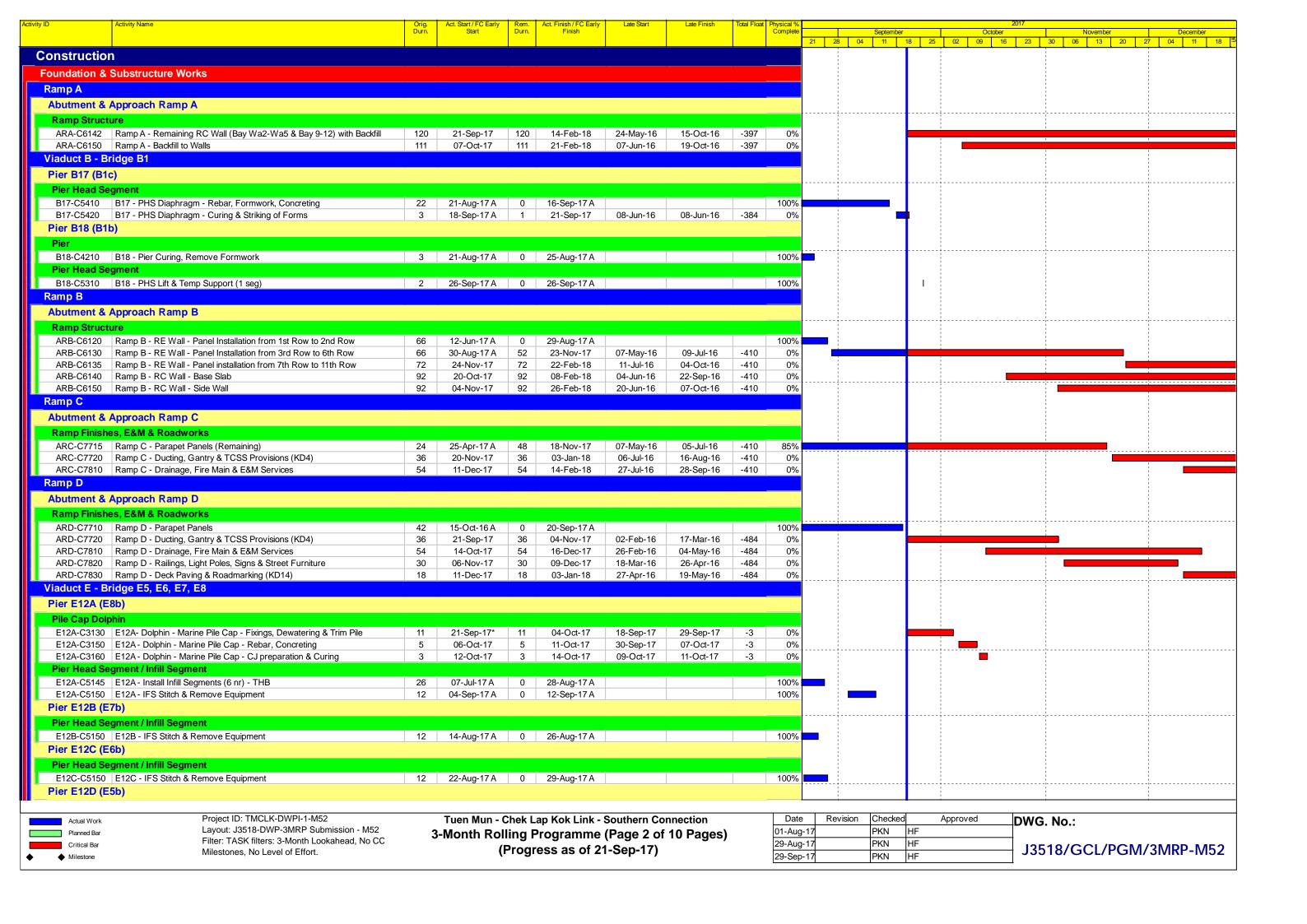
The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

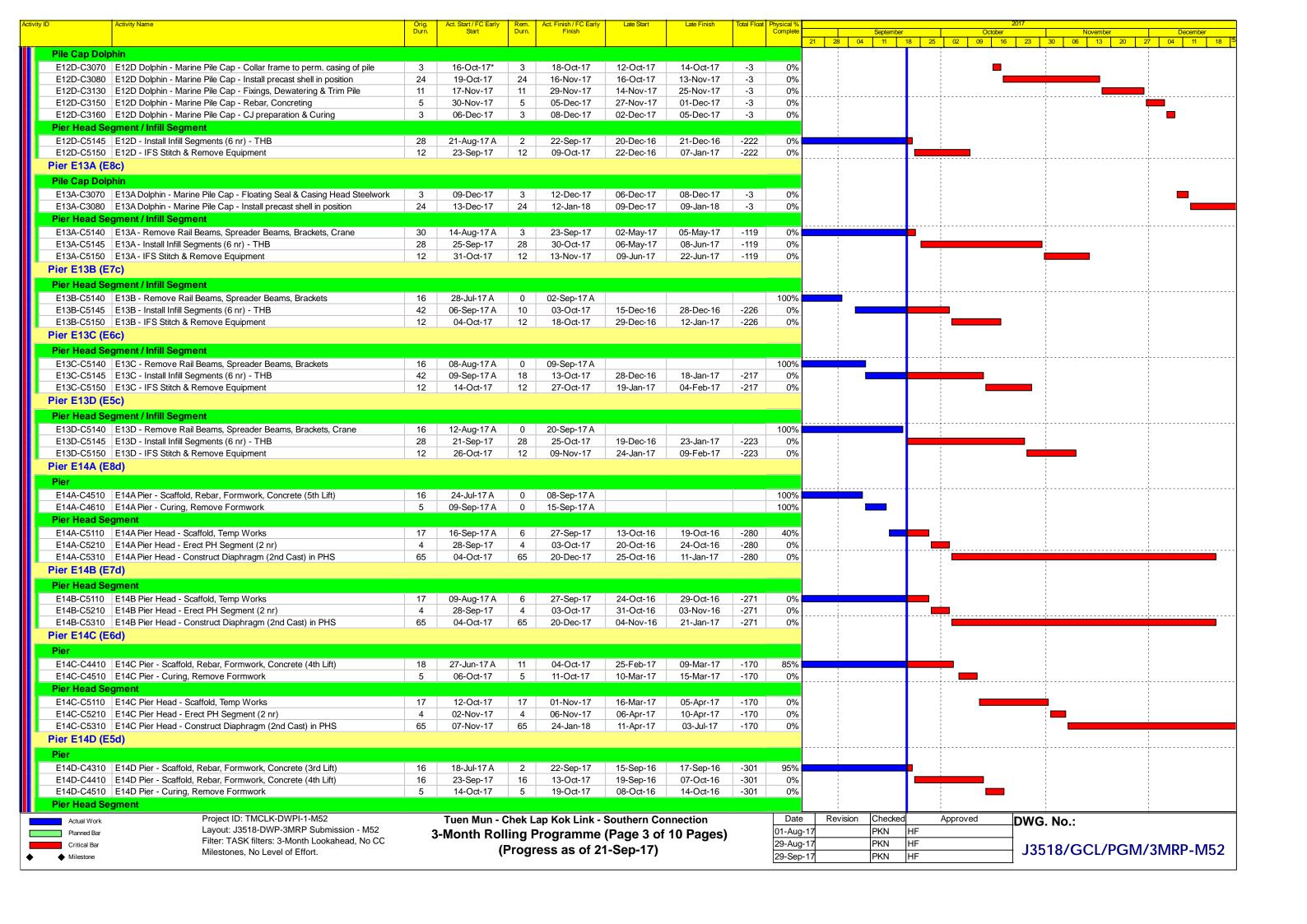
Appendix A

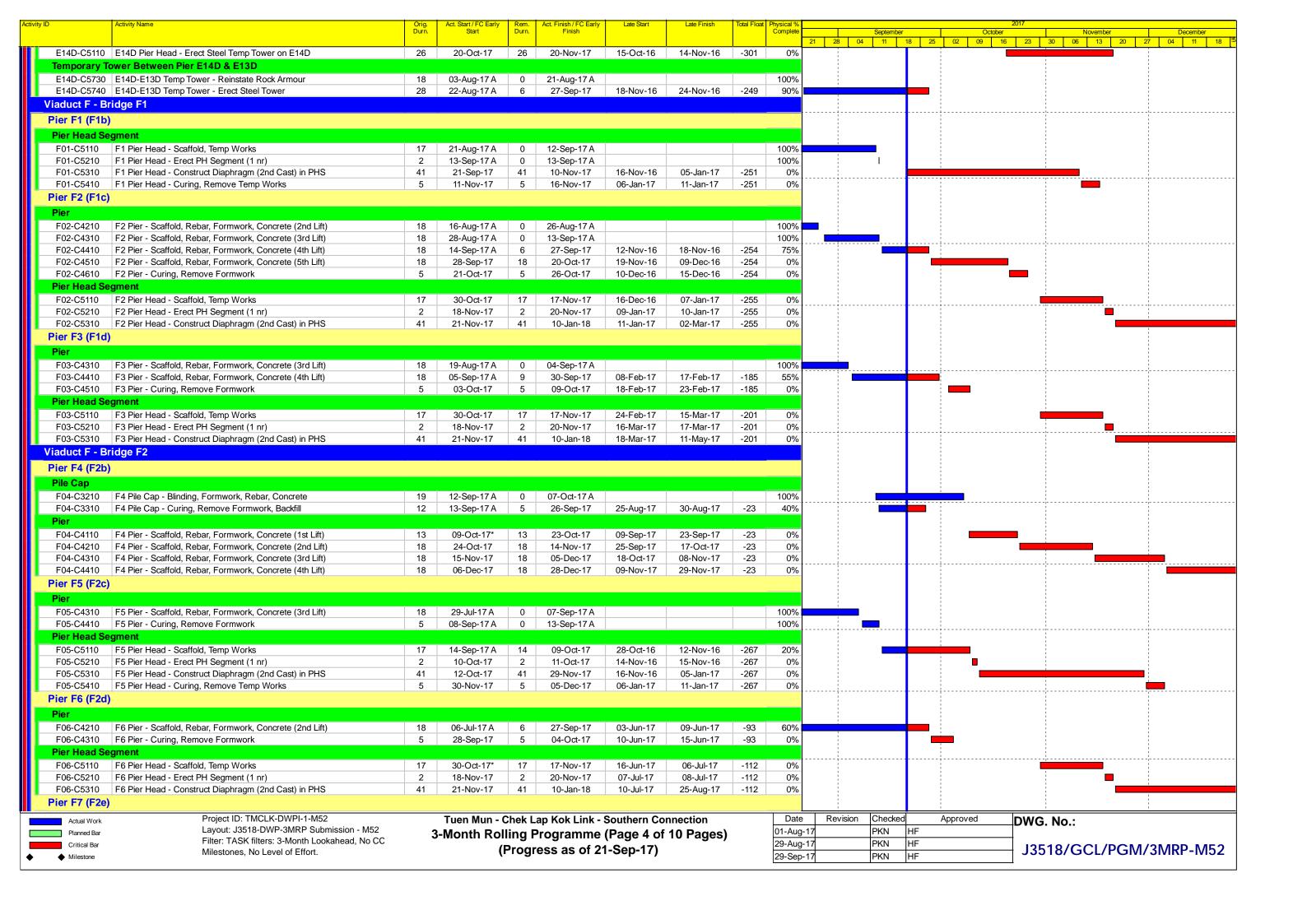
Project Organization for Environmental Works

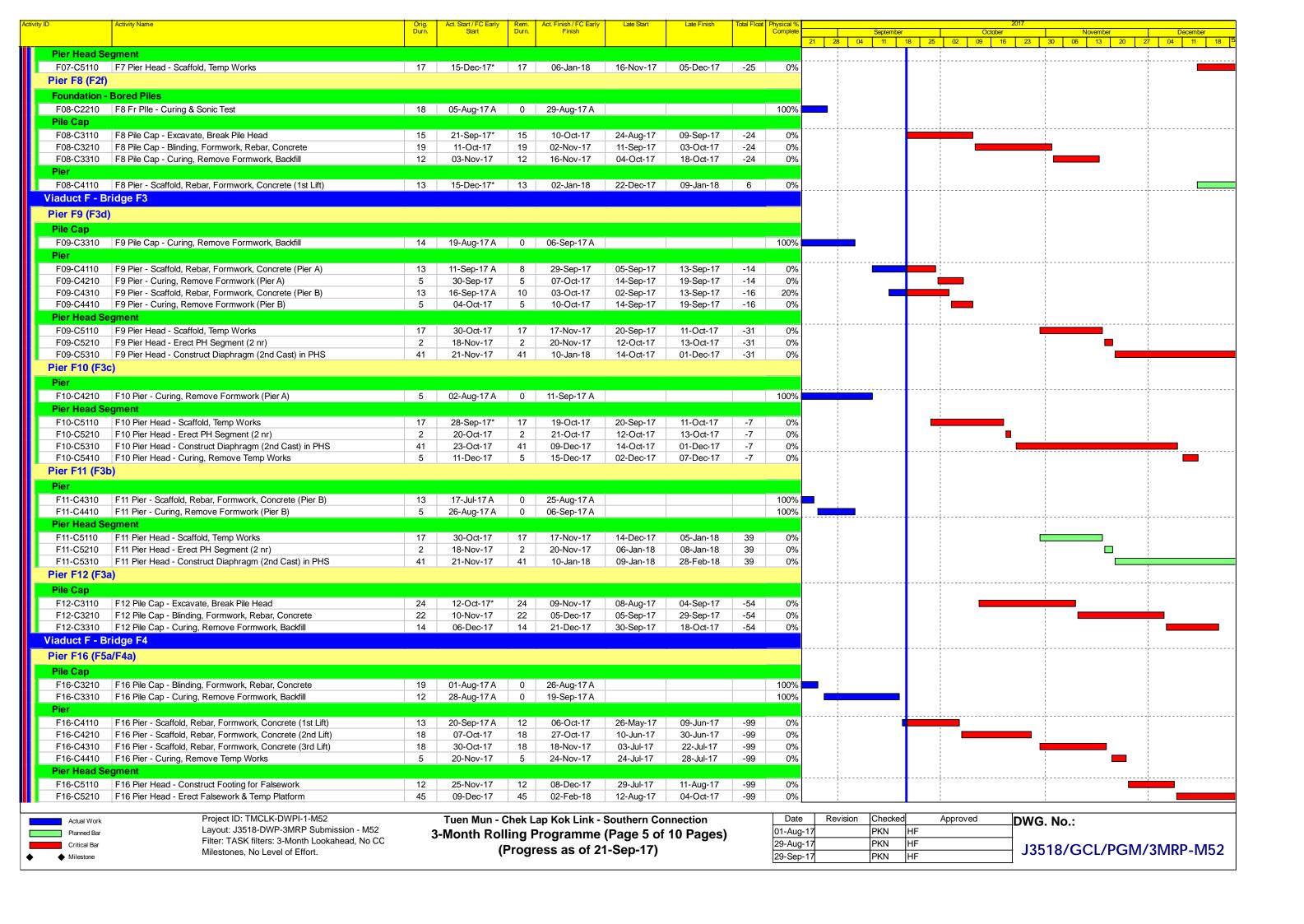
Appendix A1

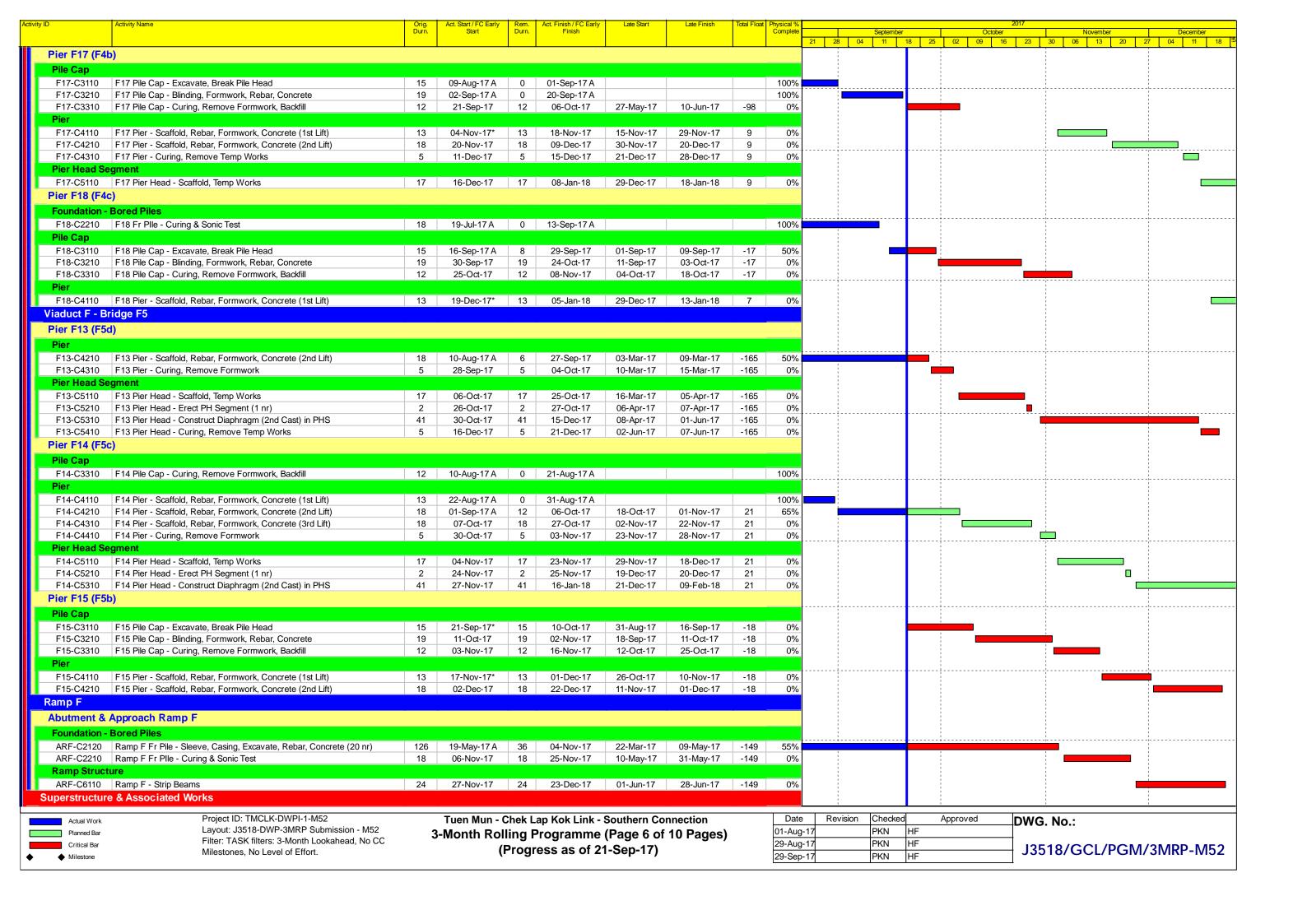

Contract No. HY/2012/07 Southern Connection Viaduct Section **Project Organization**

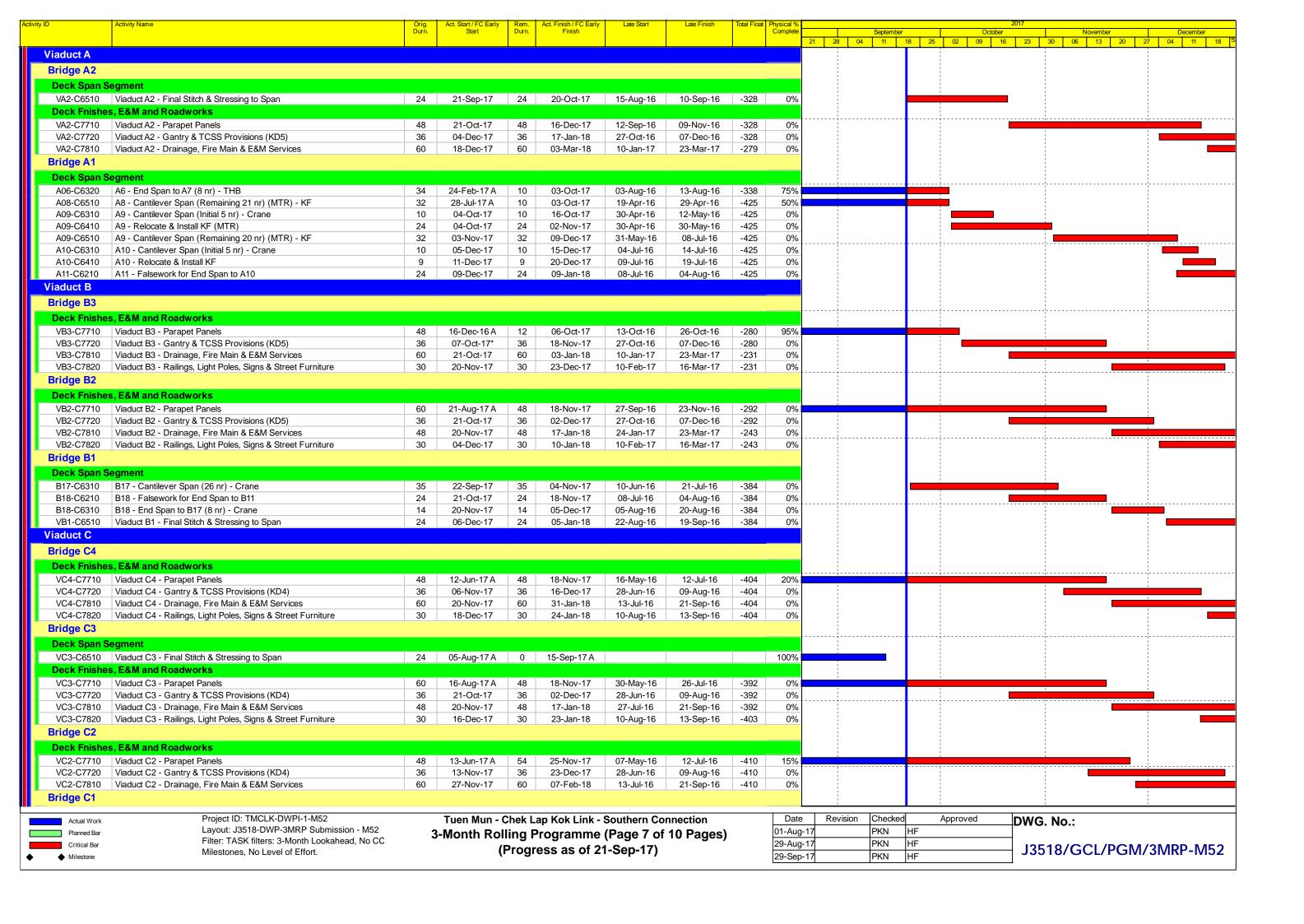

Environmental Resources Management

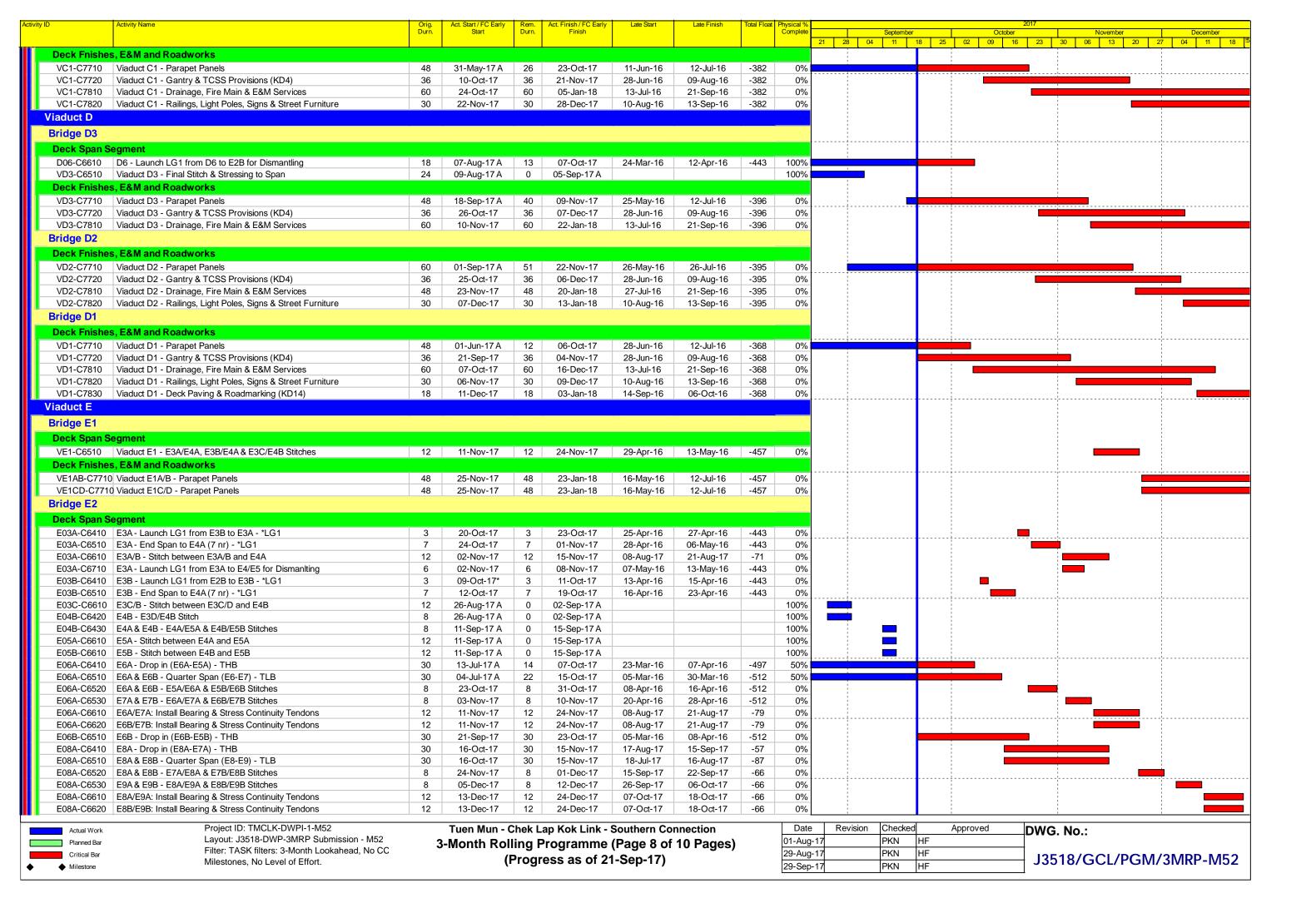


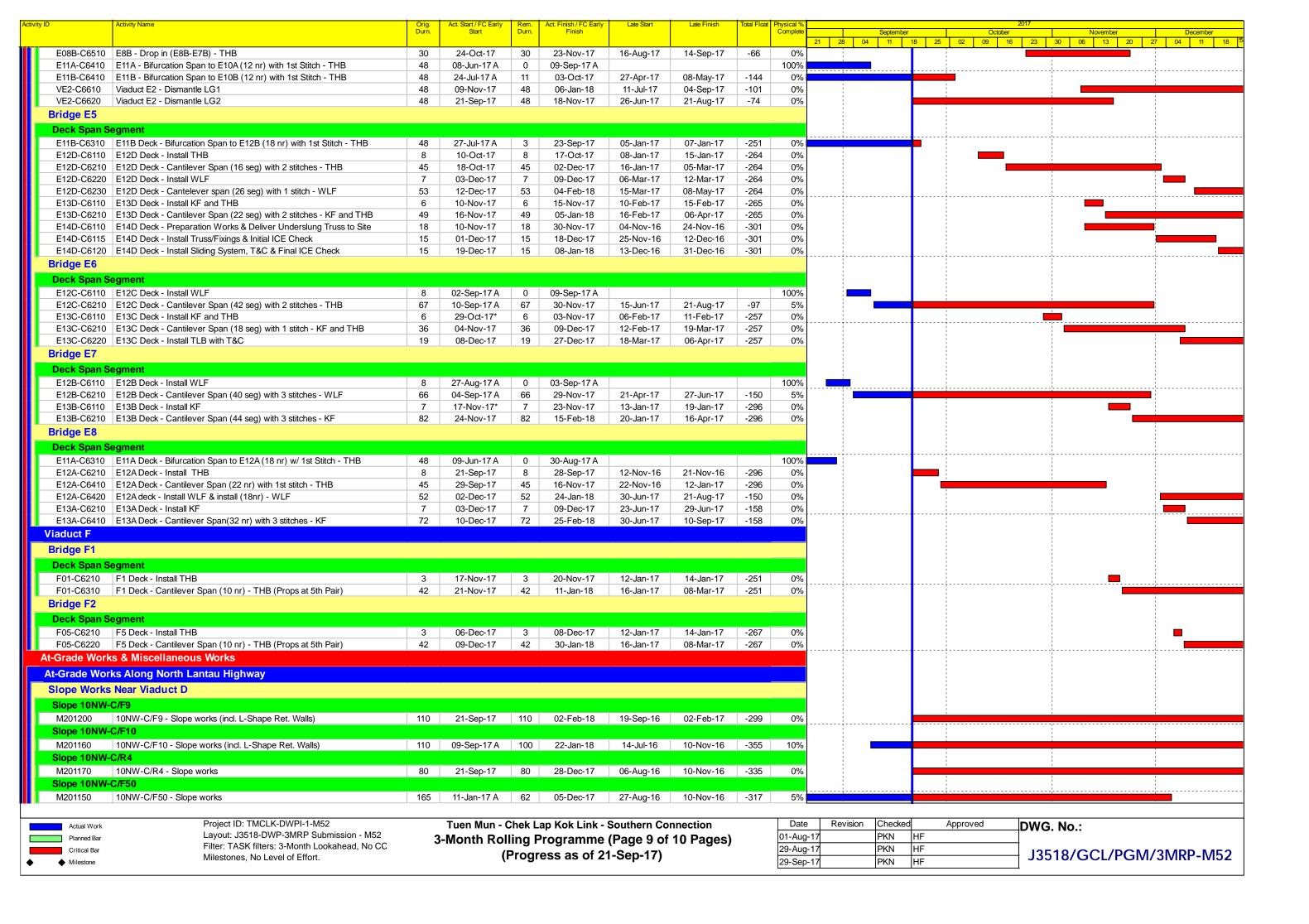

Appendix B

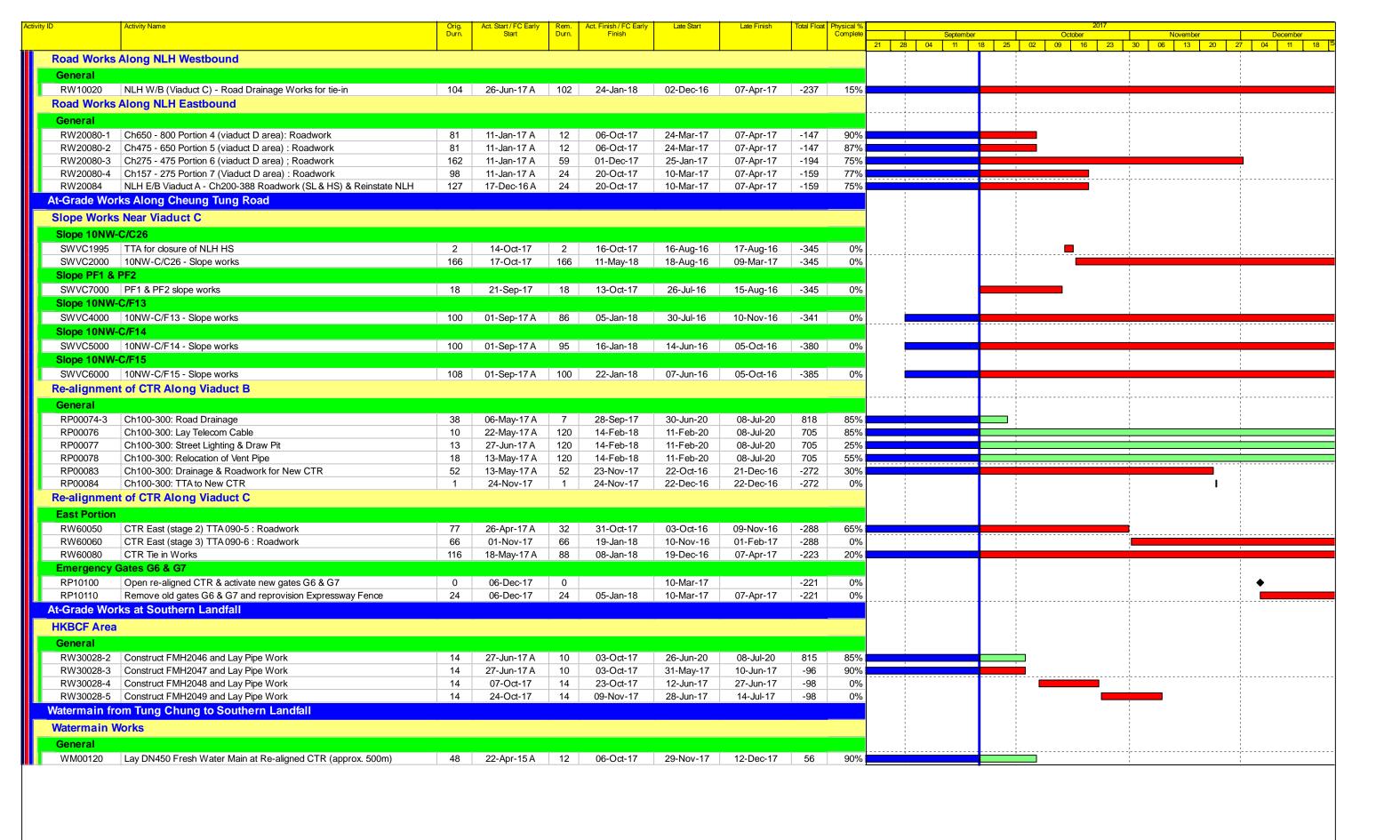

Three-Month Rolling Construction Programme











	Actual Work
	Planned Bar
	Critical Bar
* *	Milestone

Project ID: TMCLK-DWPI-1-M52 Layout: J3518-DWP-3MRP Submission - M52 Filter: TASK filters: 3-Month Lookahead, No CC Milestones, No Level of Effort. Tuen Mun - Chek Lap Kok Link - Southern Connection
3-Month Rolling Programme (Page 10 of 10 Pages)
(Progress as of 21-Sep-17)

Date	Revision	Checked		Approved	D
01-Aug-17		PKN	HF		Γ
29-Aug-17		PKN	HF		Ī
29-Sep-17		PKN	HF		١.

DWG. No.:

J3518/GCL/PGM/3MRP-M52

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

(In reference to CINOTECH (2011) Agreement No. CE35/2011 EP Baseline Environmental Monitoring for Hong Kong-Zhuhai-Macao Bridge Tuen Mun-Chep Lap Kok Link – Investigation. Updated EM&A Manual for Tuen Mun-Chek Lap Kok Link)

Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link Southern Connection Viaduct Section

Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing Implementation Agent		Relevant Standard or Requirement				Status
	Reference					D	С	О	
Air Qualit	Y								
4.8.1	3.8	An effective watering programme of eight daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		<>
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8. 1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		⇔
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8. 1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages					Status
	Reference					D	С	О			
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓		
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Y		✓		
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓		
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		⇔		
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Y		✓		
Noise		<u>I</u>	<u>.i.</u>	<u>i</u>	<u>.i.</u>	i		<u>i</u>			
5.11	Section 4	Noise monitoring	All existing representative sensitive receivers / during North Lantau Viaduct construction	Contractor	EM&A Manual		Y		~		
Water Qua	LITY	ı.	<u>.i</u>	<u>i.</u>	<u>.i.</u>	I	.1	<u>i</u>			
General Mar	rine Works										
6.10	-	Bored piling to be undertaken within a metal casing.	Marine viaducts of TM-CLKL and HKLR/ bored piling	Contractor	TM-EIAO		Y		✓		
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓		

EIA Reference	EM&A Manual	nual	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С		
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		~
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
Temporary S	Staging work	A	ık.		*	4			*
	5.2	Regular inspection for the accumulation of floating refuse and collection of floating refuse if required	During temporary staging works	Contractor			Y		✓
	5.2	Provision of temporary drainage system on the temporary staging for collection of construction site runoff to allow appropriate treatment before discharge into the sea	During temporary staging works	Contractor			Y		<>
	5.2	Wastewater generated from construction works such as bored / drilling water will be collected, treated, neutralized and de-silted through silt trap or sedimentation tank before disposal	During temporary staging works	Contractor			Y		✓
	5.2	One additional water quality monitoring station is	During temporary	Contractor			Y		✓

EIA Reference	EM&A Manual			Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	
		proposed at station SR4a In case elevated SS or turbidity is identified during the water quality monitoring, the source of pollution will be tracked down and be removed as soon as possible. In case depletion of dissolved oxygen is identified, artificial aeration will be arranged at the monitoring station SR4a,	staging works						
Land Works									
6.10	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		✓
6.10	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	. 0	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	О	
6.10	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/ throughout construction period	Contractor	TM-EIAO	***************************************	Y		Y
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		*
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		~
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		✓

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	О	
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Y	✓
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		✓
Water Qual	ity Monitoring	3							
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	Designated monitoring stations as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Y	Y	
Ecology									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3	Specification for bored piling monitoring	Detailed Design	Design Consultant	TMEIA	Y			n/a
8.14	6.3	Implement any recommendations of the bored piling monitoring	Southern marine viaduct/Throughout	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual Reference	Environmental Protection Measures		Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	О	-
			construction during bored piling						
8.14	6.3,6.5	Avoidance of peak CWD calving season in May and June for driving of metal caissons during bored piling works	Southern marine viaduct/ May and	Contractor	TMEIA		Y		n/a
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All marine bored piling and temporary staging works areas/Detailed Design/during all marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Υ		Y
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600 m ² in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	n/a To be enforced by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for marine bored piling and the whole lifespan of temporary staging works.	All areas/ Detailed Design/during marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Tai Ho Wan (donar site) and Yam Tsui Wan (receptor site) / Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.15	6.5	Audit coral translocation success	Yam Tsui Wan (receptor site)/Post translocation	Contractor	TMEIA		Y		Completed in October 2014
7.13	6.5	Undertaken gabion wall works in Stream NL1 in the dry season	North Lantau slope works/dry	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual Reference	Environmental Protection Measures		Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	О	
			season/construction phase						
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA	***************************************	Y		n/a. To be approved by AFCD/LCSD
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE	AND VISUAL	·	.t.					<u>i</u>	
10.9	7.6	Round angle, patterned finishes, and oval shaped pier were considered in the viaduct design, and further details will be developed under ACABAS submission (DM3)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Details of the street furniture will be developed in the detailed design stage (DM4)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Υ		~

EIA Reference	EM&A Manual		. 0	-	Relevant Standard or Requirement	Imp	lemen Stage	Status	
	Reference				D	С	О		
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage) (CM1)							
10.9	7.6	Trees unavoidably affected by the works shall be transplanted where practical. Trees will be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme (CM2)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		Tree transplanted as Contract Specification
10.9	7.6	Hillside and roadside screen planting to proposed roads, associated structures and slope works (CM3).	All areas/detailed design/ during construction/post construction	Design Consultant/	TMEIA	Y	Y		✓
10.9	7.6	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone) (CM4)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		<>
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		Y
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	О	•
10.9	7.6	Recycle/Reuse all felled trees and vegetation, e.g. mulching (CM9)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a No felled trees or vegetation suitable for recycle
10.9	7.6	Compensatory tree planting shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006 (CM10).	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		/
10.9	7.6	Re-vegetation of affected woodland/shrubland with native species (OM1)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by AFCD/HyD/ L CSD
10.9	7.6	Tall buffer screen tree / shrub / climber planting should be incorporated to soften hard engineering structures and facilities (OM2)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a To be implemented by HyD/LCSD
10.9	7.6	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill (OM3)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	n/a. To be implemented by HyD/LCSD
10.9	7.6	Structure, ornamental tree / shrub / climber planting should be provided along roadside amenity strips, central dividers and newly formed slopes to enhance the townscape quality and further greenery enhancement	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage	itation es	Status
	Reference					D	С	О	
		(OM4)							HyD/LCSD
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by HyD
Waste									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		~
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Y		
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		✓
12.6	8.1	The extent of cutting operation should be optimised	All areas / throughout	Contractor	TMEIA		Y		✓
	<u> </u>		1	<u> </u>		<u>.i</u>	<u>i</u>	<u>i</u>	.1

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	С	О	
		where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	construction period						
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			n/a
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Y		
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		~
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction	All areas / throughout construction period	Contractor	TMEIA		Y		~

EIA Reference	EM&A Manual	ıual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage		Status
	Reference					D	С	О	
		materials should avoid over-ordering and wastage.							
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: - suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; - Having a capacity of <450L unless the specifications have been approved by the EPD; and - Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. Clearly labelled and used solely for the storage of chemical wastes; - Enclosed with at least 3 sides; - Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area, whichever is greatest;	All areas / throughout construction period	Contractor	TMEIA		Υ		

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage:		Status
	Reference					D	С	О	
		 Adequate ventilation; Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and Incompatible materials are adequately separated. 							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances Bylaws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	All waste containers shall be in a secure area on hard standing;	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	Office wastes can be reduced by recycling of	Site Offices/	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Location/ Timing Implementation Relevant State Agent or Require		Imp	lement Stages		Status
	Reference					D	С	О	
		paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	throughout construction period						
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		✓
Cultural H	IERITAGE							•	
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		n/a

Notes:

Legend: D=Design, C=Construction, O=Operation

Note: Funding Agent for all mitigation measures will be the Highways Department of the Hong Kong SAR Government

Status:

- ✓ Compliance of Mitigation Measures
- Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Contractor
- Deficiency of Mitigation Measures but rectified by Contractor
- n/a Not Applicable in Reporting Period

Appendix D

Summary of Action and Limit Levels

Table D1 Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in μg/m³	ASR9A/ASR8A = 178 ASR9C/ASR8/ASR9 = 178	260
1 Hour TSP Level in $\mu g / m^3$	ASR9A/ASR8A = 394 ASR9C/ASR8/ ASR9 = 393	500

Table D2 Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)

Table D3 Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L (a)	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	<u>Bottom</u>	<u>Bottom</u>
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depthaveraged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged (b), (c))	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary

Para	meter	Action Level#	Limit Level#
(e)	The 1%-ile of baseline dat	a for surface and mide	lle DO is 4.2 mg/L, whilst for bottom DO
	is 3.6 mg/L.		-

Table D4 Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster		
	NEL	NWL	
Action Level	STG < 70% of baseline &	STG < 70% of baseline &	
	ANI < 70% of baseline	ANI < 70% of baseline	
Limit Level	[STG < 40% of baseling	ne & ANI < 40% of baseline]	
		and	
	STG < 40% of baseling	ne & ANI < 40% of baseline	

Notes:

- 1. STG means quarterly encounter rate of number of dolphin sightings, which is **6.00 in NEL** and **9.85 in NWL** during the baseline monitoring period
- 2. ANI means quarterly encounter rate of total number of dolphins, which is **22.19 in NEL** and **44.66 in NWL** during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D5 Derived Value of Action Level (AL) and Limit Level (LL)

	North Lanta	North Lantau Social Cluster			
	NEL	NWL			
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3			
Limit Level	[STG < 2.4 & ANI <8.9]				
	and				
	[STG < 3.9 & ANI <17.9]				

Appendix E

Calibration Certificates of Monitoring Equipments

Location : ASR8(A)
Calibrated by : P.F.Yeung
Date : 28/07/2017

Sampler

Model : TE-5170 Serial Number : S/N 3956

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 : 20 Mar 2017

 Slope (m)
 : 2.08464

 Intercept (b)
 : -0.03684

 Correlation Coefficient(r)
 : 0.99994

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1013 Ta(K) : 302

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.2	3.324	1.612	53	52.65
2	13 holes	9.0	2.980	1.447	47	46.69
3	10 holes	6.2	2.473	1.204	40	39.73
4	7 holes	4.2	2.036	0.994	34	33.77
5	5 holes	2.5	1.571	0.771	27	26.82

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 30.184 Intercept(b): 3.536 Correlation Coefficient(r): 0.9993

Checked by: Magnum Fan Date: 03/08/2017

Location : ASR9
Calibrated by : P.F.Yeung
Date : 28/07/2017

Sampler

Model : TE-5170 Serial Number : S/N 3958

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 20 Mar 2017

 Slope (m)
 :
 2.08464

 Intercept (b)
 :
 -0.03684

 Correlation Coefficient(r)
 :
 0.99994

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1013 Ta(K) : 302

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.0	3.295	3.295 1.598		53.64
2	13 holes	8.8	2.947	1.431	49	48.67
3	10 holes	6.6	2.552	1.242	42	41.72
4	7 holes	4.4	2.084	1.017	35	34.77
5	5 holes	2.2	1.473	0.724	24	23.84

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):34.112 Intercept(b):-0.493 Correlation Coefficient(r): 0.9993

Checked by: Magnum Fan Date: 03/08/2017

Location : ASR8(A)
Calibrated by : P.F.Yeung
Date : 28/09/2017

Sampler

 Model
 :
 TE-5170

 Serial Number
 :
 S/N 3956

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 20 Mar 2017

 Slope (m)
 :
 2.08464

 Intercept (b)
 :
 -0.03684

 Correlation Coefficient(r)
 :
 0.99994

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1009 Ta(K) : 305

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.2	3.301	1.601	56	55.24
2	13 holes	9.2	2.992	1.453	50	49.33
3	10 holes	6.5	2.515	1.224	44	43.41
4	7 holes	4.4	2.069	1.010	36	35.51
5	5 holes	2.6	1.591	0.781	27	26.64

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, \ X = Z/m-b, Y(Corrected\ Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m): 34.074 Intercept(b): 0.662 Correlation Coefficient(r): 0.9976

Checked by: Magnum Fan Date: 05/10/2017

Location : ASR9
Calibrated by : P.F.Yeung
Date : 28/09/2017

Sampler

Model : TE-5170 Serial Number : S/N 3958

Calibration Orifice and Standard Calibration Relationship

Serial Number : 2454

 Service Date
 :
 20 Mar 2017

 Slope (m)
 :
 2.08464

 Intercept (b)
 :
 -0.03684

 Correlation Coefficient(r)
 :
 0.99994

Standard Condition

Pstd (hpa) : 1013 Tstd (K) : 298.18

Calibration Condition

Pa (hpa) : 1009 Ta(K) : 305

Resistance Plate		dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.360	1.629	54	53.27
2	13 holes	9.2	2.992	1.453	48	47.35
3	10 holes	6.8	2.572	1.252	43	42.42
4	7 holes	4.5	2.093	1.022	35	34.53
5	5 holes	2.5	1.560	0.766	26	25.65

 $Notes: Z = SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X = Z/m-b, Y(Corrected Flow) = IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):31.621 Intercept(b):1.930 Correlation Coefficient(r): 0.9984

Checked by: Magnum Fan Date: 05/10/2017

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I	-	438320 2454	Ta (K) - Pa (mm) -	293 759.46
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4390 1.0240 0.9170 0.8730 0.7200	3.2 6.4 7.9 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0120 1.0078 1.0057 1.0045 0.9992	0.7033 0.9842 1.0967 1.1507 1.3878	1.4257 2.0163 2.2543 2.3643 2.8514		0.9958 0.9916 0.9895 0.9884 0.9831	0.6920 0.9683 1.0791 1.1322 1.3654	0.8784 1.2423 1.3889 1.4567 1.7568
Qstd slop intercept coefficie	(b) =	2.08464 -0.03684 0.99994		Qa slope intercept coefficie	= (b) $=$	1.30 537 -0.02 2 70 0.99994
y axis =	SQRT [H2O (Pa/760)(298/	ra)]	y axis =	SQRT [H20(7	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C171447

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0633)

Date of Receipt / 收件日期: 16 March 2017

Description / 儀器名稱

Sound Level Calibrator

Manufacturer / 製造商 Model No. / 型號 Rion NC-73

Serial No. / 編號

10486660

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2) °C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 : ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

17 March 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By

測試

H T Wong

Technical Officer

Certified By

核證

KOLee

Project Engineer

Date of Issue

23 March 2017

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C171447

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

3. Test equipment:

> Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C163709 PA160023 C161175

4. Test procedure: MA100N.

5. Results:

Sound Level Accuracy

nd Level Accuracy			
UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.6	± 0.5	± 0.2

Frequency Accuracy 5.2

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.987	1 kHz ± 2 %	±1

The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C171100

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0482)

Date of Receipt / 收件日期: 28 February 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商 Model No. / 型號

Rion NL-52

Serial No./編號

01010406

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

2 March 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By

Date of Issue 簽發日期

3 March 2017

核證

K C Lee

Project Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司-校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab(a)suncreation.com

Website/網址: www.suncreation.com

Page 1 of 4

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C171100

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

C170048 PA160023

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	* 96.4	± 1.1

^{*} Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	La	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

Ligan Ution	UU'	T Setting		Applie	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_{A}	A	Fast	94.00 104.00	1	94.0 (Ref.) 104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C171100

證書編號

6.2 Time Weighting

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L_{A}	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1; -3.1)
					12.5 kHz	89.5	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L_{C}	С	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1; -3.1)
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab a suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C171100

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 04870

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

業化驗有限公司

OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG060187

Date of Issue

June 27, 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811. Hin Pui House, Hin Keng Estate, Tai Wai

New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

15M101244

Date of Received

Jun 16, 2017

Date of Calibration

Jun 16, 2017

Date of Next Calibration(a)

Sep 16, 2017

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B APHA 21e 4500-O G

Dissolved Oxygen Conductivity at 25°C

APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.06	+0.06	Satisfactory
7.42	7.49	+0.07	Satisfactory
10.01	10.07	+0.06	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

CHAN Mei-wah Amy Assistant Lab. Manager

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary

業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

AG060187 Report No. : June 27, 2017 Date of Issue

: 2 of 2 Page No.

PART D - CALIBRATION RESULTS (Cont'd)

(2) Temperature

) Temperature			
Reading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
16.1	16.2	+0.1	Satisfactory
16.1	22.6	-0.4	Satisfactory
23.0		-0.5	Satisfactory
37.0	36.5	-0.5	Outlotatio

Tolerance limit of temperature should be less than ±2.0 (°C)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.16	8.13	-0.03	Satisfactory
8.16	3,58	+0.04	Satisfactory
3.54	0.41	-0.04	Satisfactory
0.45	0.41	0.0.	•

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
146.9	146.1	-0.54	Satisfactory
1412	1451	+2.8	Satisfactory
12890	12740	-1.16	Satisfactory
27 U Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	57408	-2.15	Satisfactory
58670	110248	-1.50	Satisfactory
111900	110240	1.50	

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.96	-0.4	Satisfactory
30	20.17	+0.9	Satisfactory
20	29.97	-0.1	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

urbluity	(2)		Dagulto
Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0		Satisfactory
4	3.8	-5.0	Satisfactory
20	21.9	+9.5	Satisfactory
20	98.4	-1.6	Satisfactory
100	15 00000 //	+2.3	Satisfactory
800	818	+2.3	Jansiactor

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG060184

Date of Issue

June 27, 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

16J101716

Date of Received

Jun 16, 2017

Date of Calibration

Jun 16, 2017

Date of Next Calibration(a)

Sep 16, 2017

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B APHA 21e 4500-O G

Dissolved Oxygen Conductivity at 25°C

APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) nH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.94	-0.06	Satisfactory
7.42	7.39	-0.03	Satisfactory
10.01	10.07	+0.06	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
16.1	15.9	-0.2	Satisfactory
23.0	22.6	-0.4	Satisfactory
37.0	36.3	-0.7	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

CHAN Mei-wah Amy Assistant Lab. Manager

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com

Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG060184

Date of Issue

June 27, 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.39	-0.06	Satisfactory
3.54	3.50	-0.04	Satisfactory
8.16	8.19	+0.03	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
146.9	151.8	+3.3	Satisfactory
1412	1430	+1.3	Satisfactory
12890	12545	-2.7	Satisfactory
58670	56934	-3.0	Satisfactory
111900	109362	-2.3	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.91	-0.9	Satisfactory
20	20.12	+0.6	Satisfactory
30	30.18	+0.6	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance(g)(%)	Results
0	0	in m	Satisfactory
4	4.1	+2.5	Satisfactory
20	19.8	-1.0	Satisfactory
100	107	+7.0	Satisfactory
800	782	-2.3	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG060183

Date of Issue

: June 27, 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong

Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

17E102521

Date of Received

Jun 16, 2017 Jun 16, 2017

Date of Calibration

Date of Next Calibration(a)

Sep 16, 2017

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Parameter</u>

Reference Method

pH at 25°C

APHA 21e 4500-H+ B APHA 21e 4500-O G

Dissolved Oxygen Conductivity at 25°C

APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

T (II ii)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
Target (pH unit)	4.04	+0.04	Satisfactory
4.00	7.46	+0.04	Satisfactory
7.42	10.04	+0.03	Satisfactory
10.01	10.04	INCOMPANSED.	

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

eading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
4.5.4	16.1	0.0	Satisfactory
23.0	22.6	-0.6	Satisfactory
	The second secon	-0.5	Satisfactory
37.0	36.5	-0.5	j

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s):
(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

CHAN Mei-wah Amy Assistant Lab. Manager

業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG060183

Date of Issue

: June 27, 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.39	-0.06	Satisfactory
3.54	3.59	+0.05	Satisfactory
8.16	8.20	+0.04	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
146.9	154.1	+2.9	Satisfactory
1412	1397	-1.1	Satisfactory
12890	12810	-0.6	Satisfactory
58670	57937	-1.2	Satisfactory
111900	110884	-0.9	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.68	-1.4	Satisfactory
20	20.51	+2.6	Satisfactory
30	30.81	+2.7	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance(g)(%)	Results
0	0	22 1	Satisfactory
4	3.8	-5.0	Satisfactory
20	20.8	+4.0	Satisfactory
100	95.4	-4.6	Satisfactory
800	832	+4.0	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

Report of Equipment Performance Check/Calibration

Report No.

AG060182

Date of Issue

22 June 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai

New Territories, Hong Kong

Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI 6920 V2 Sonde (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

000109DF

Date of Received

16 Jun, 2017

Date of Calibration

16 Jun, 2017

Date of Calibration

16 San, 2017

Date of Next Calibration(a)

16 Sep, 2017

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H⁺ B APHA 21e 4500-O G

Dissolved Oxygen Conductivity at 25°C

APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.03	+0.03	Satisfactory
7.42	7.43	+0.01	Satisfactory
10.01	10.05	+0.04	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.1	16.0	-0.1	Satisfactory
23.0	23.3	+0.3	Satisfactory
37.0	36.8	-0.2	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(ii) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant interactional standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

Report of Equipment Performance Check/Calibration

Report No.

AG060182

Date of Issue

22 June 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.42	-0.03	Satisfactory
3.54	3.51	-0.03	Satisfactory
8.16	8.11	-0.05	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
146.9	144.0	-2.0	Satisfactory
1412	1338	-5.2	Satisfactory
12890	12462	-3.3	Satisfactory
58670	57332	-2.3	Satisfactory
111900	108004	-3.5	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.94	-0.6	Satisfactory
20	20.02	+0.1	Satisfactory
30	30.09	+0.3	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0		Satisfactory
4	3.8	+5.0	Satisfactory
20	21.2	+6.0	Satisfactory
100	95.4	+4.6	Satisfactory
800	821	+2.6	Satisfactory

Tolerance limit of turbidity should be less than ±10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

Report of Equipment Performance Check/Calibration

Report No.

AG060181

Date of Issue

22 June 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI 6920 V2 Sonde (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number Date of Received 00019CB2

Date of Calibration

16 Jun, 2017 16 Jun, 2017

Date of Next Calibration(a)

16 Sep, 2017

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Reference Method <u>Parameter</u> pH at 25°C APHA 21e 4500-H+ B APHA 21e 4500-O G Dissolved Oxygen APHA 21e 2510 B Conductivity at 25°C APHA 21e 2520 B Salinity APHA 21e 2130 B

Turbidity Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.06	+0.06	Satisfactory
7.42	7.35	-0.07	Satisfactory
10.01	9.98	-0.03	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

~ CONTINUED ON NEXT PAGE ~

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

業化驗有限公司

OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com

Tel: (852) 3956 8717; Fax: (852) 3956 3928

Report of Equipment Performance Check/Calibration

Report No.

AG060181

Date of Issue

22 June 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.1	15.9	-0.2	Satisfactory
23.0	23.4	+0.4	Satisfactory
37.0	36.4	-0.6	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

(3) Dissolved Oxygen

• 0			
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.49	+0.04	Satisfactory
3.54	3.48	-0.06	Satisfactory
8.16	8.12	-0.04	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
146.9	142.4	-3.1	Satisfactory
1412	1392	-1.4	Satisfactory
12890	12382	-3.9	Satisfactory
58670	57432	-2.1	Satisfactory
111900	107938	-3.5	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.91	-0.9	Satisfactory
20	20.11	+0.6	Satisfactory
30	30.14	+0.5	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance(g)(%)	Results
0	0		Satisfactory
4	4.1	+2.5	Satisfactory
20	20.9	+4.5	Satisfactory
100	103	+3.0	Satisfactory
800	824	+3.0	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

Remark(s): -

[~] END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AG090069

Date of Issue

September 13, 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

16J101716

Date of Received

Sep 12, 2017

Date of Calibration

Sep 12, 2017

Date of Next Calibration(a)

Dec 12, 2017

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen

APHA 21e 4500-O G APHA 21e 2510 B

Conductivity at 25°C Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.04	+0.04	Satisfactory
7.42	7.37	-0.05	Satisfactory
10.01	10.04	+0.03	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.5	17.2	+0.7	Satisfactory
25.0	25.3	+0.3	Satisfactory
37.0	36.7	-0.3	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AG090069

Date of Issue

September 13, 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.04	7.98	-0.06	Satisfactory
3.63	3.72	+0.09	Satisfactory
0.01	0.06	+0.05	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
146.9	140.4	-4.4	Satisfactory
1412	1322	-6.4	Satisfactory
12890	12064	-6.4	Satisfactory
58670	57032	-2.8	Satisfactory
111900	107344	-4.1	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.17	+1.7	Satisfactory
20	20.20	+1.0	Satisfactory
30	30.07	+2.3	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance(g)(%)	Results
10	9.7	-3.0	Satisfactory
20	19.0	-5.0	Satisfactory
100	101.1	+1.1	Satisfactory
800	814.6	+1.8	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AG090067

Date of Issue

13 September 2017

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment : YSI ProDSS (Multi-Parameters)

Manufacturer : YSI (a xylem brand)

Serial Number : 17E102521
Date of Received : Sep 12, 2017
Date of Calibration : Sep 12, 2017
Date of Next Calibration^(a) : Dec 12, 2017

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

ParameterReference MethodpH at 25°CAPHA 21e 4500-H* BDissolved OxygenAPHA 21e 4500-O GConductivity at 25°CAPHA 21e 2510 BSalinityAPHA 21e 2520 BTurbidityAPHA 21e 2130 B

Temperature Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results	
4.00	4.09	+0.09	Satisfactory	
7.42	7.38	-0.04	Satisfactory	
10.01	9.94	-0.07	Satisfactory	

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.5	16.9	+0.4	Satisfactory
25.0	25.2	+0.2	Satisfactory
37.0	36.4	-0.6	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

(c) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

CALIBRATION REPORT

Report No.

AG090067

Date of Issue

: 13 September 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.03	7.95	-0.08	Satisfactory
3.76	3.84	+0.08	Satisfactory
0.02	0.12	+0.10	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	151.6	+3.2	Satisfactory
0.01	1,412	1,340	-5.1	Satisfactory
0.1	12,890	12,006	-6.9	Satisfactory
0.5	58,670	57,088	-2.7	Satisfactory
1.0	111,900	105,890	-5.4	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.5	Satisfactory
20	20.30	+1.5	Satisfactory
30	30.31	+1.0	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance(g)(%)	Results
10	9.6	-4.0	Satisfactory
20	19.3	-3.5	Satisfactory
100	98.7	-1.3	Satisfactory
800	781.2	+2.3	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

業化驗有限公司

OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AG090072

Date of Issue

14 September 2017

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI 6920 V2 Sonde (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

000109DF

Date of Received

Sep 12, 2017

Date of Calibration

Sep 12, 2017 to Sep 14, 2017

Date of Next Calibration(a)

Dec 12, 2017

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Parameter</u> Reference Method pH at 25°C APHA 21e 4500-H+ B Dissolved Oxygen APHA 21e 4500-O G Conductivity at 25°C APHA 21e 2510 B Salinity APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.04	+0.04	Satisfactory
7.42	7.45	+0.03	Satisfactory
10.01	10.07	+0.06	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.5	17.0	+0.5	Satisfactory
25.0	25.5	+0.5	Satisfactory
37.0	36.6	-0.4	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

AG090072

Date of Issue

14 September 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.05	8.11	+0.06	Satisfactory
3.96	4.04	+0.08	Satisfactory
0.03	0.18	+0.15	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	152.4	+3.7	Satisfactory
0.01	1,412	1346	-4.7	Satisfactory
0.1	12,890	13382	+3.8	Satisfactory
0.5	58,670	59964	+2.2	Satisfactory
1.0	111,900	108242	-3.3	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.92	-0.8	Satisfactory
20	19.88	-0.6	Satisfactory
30	29.79	-0.7	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity(f)

Expected Reading (NTU)	Displayed Reading(g) (NTU)	Tolerance ^(h) (%)	Results	
10	10.2	+2.0	Satisfactory	
20	20.8	+4.0	Satisfactory	
100	108.4	+8.4	Satisfactory	
800	822.0	+2.8	Satisfactory	

Tolerance limit of turbidity should be less than ±10.0 (%)

~ END OF REPORT ~

Recalibration of specified parameter was conducted on 14 September 2017.

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Report No.

AG090070

Date of Issue

13 September, 2017

Page No.

1 of 2

:

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai

New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI 6920 V2 Sonde (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

00019CB2

Date of Received

Sep 12, 2017

Date of Calibration

Sep 12, 2017 Sep 12, 2017

Date of Next Calibration^(a)

Dec 12, 2017

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen

APHA 21e 4500-O G

Conductivity at 25°C

APHA 21e 2510 B APHA 21e 2520 B

Salinity

APHA 21e 2320 B

Turbidity Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit) Displayed Reading ^(d) (pH Unit)		Tolerance ^(e) (pH Unit)	Results	
4.00	3.94	-0.06	Satisfactory	
7.42	7.37	-0.05	Satisfactory	
10.01	9.98	-0.03	Satisfactory	

Tolerance of pH should be less than ±0.10 (pH unit)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Report No.

AG090070

Date of Issue

13 September, 2017

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
16.5	17.2	+0.7	Satisfactory
25.0	25.3	+0.3	Satisfactory
37.0	36.4	-0.6	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.03	8.09	+0.06	Satisfactory
3.89	3.99	+0.10	Satisfactory
0.02	0.11	+0.09	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (μS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	152.4	+3.7	Satisfactory
0.01	1,412	1,530	+8.4	Satisfactory
0.1	12,890	13,648	+5.9	Satisfactory
0.5	58,670	59,342	+1.1	Satisfactory
1.0	111,900	103,422	-7.6	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.5	Satisfactory
20	19.91	-0.4	Satisfactory
30	29.77	-0.8	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading(f) (NTU)	Tolerance ^(g) (%)	Results	
10	10.9	+9.0	Satisfactory	
20	20.1	+0.5	Satisfactory	
100	108.3	+8.3	Satisfactory	
800	819.4	+2.4	Satisfactory	

Tolerance limit of turbidity should be less than ±10.0 (%)

~ END OF REPORT ~

Remark(s): -

⁽i) "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

⁽g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C165934

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-2438)

Date of Receipt / 收件日期: 26 October 2016

Description / 儀器名稱

Anemometer

Manufacturer / 製造商

Lutron

Model No. / 型號 Serial No. / 編號

AM-4201 AF.27513

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規節

Calibration check

DATE OF TEST / 測試日期

27 October 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- Testo Industrial Services GmbH, Germany

Tested By

測試

T L Shek Assistant Engineer

Certified By

核證

H C Chan

Date of Issue

28 October 2016

簽發日期

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

C165934

證書編號

Certificate No.:

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement - of the test.

2. The results presented are the mean of 10 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL386

Multi-function Measuring Instrument

S12109

Test procedure: MA130N. 4.

5. Results:

Air Velocity

Applied	UUT	Measured Correction			
Value	Reading	Value Measurement Uncertainty			
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor	
2.0	1.8	+0.2	0.2	2.0	
4.0	3.8	+0.2	0.2	2.0	
6.0	5.8	+0.2	0.3	2.0	
8.1	8.0	+0.1	0.3	2.0	
10.0	10.0	0.0	0.4	2.0	

Remarks: - The Measured Corrections are defined as: Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Tel/電話: 2927 2606

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Website/網址: www.suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com

Fax/傳真: 2744 8986

ENVIROTECH SERVICES CO.

Calibration Report of Wind Meter

Date of Calibration: 18 April 2017

Brand of Test Meter: Global Water

Model: Speed Sensor: WE550 (S/N:E1337005099)

Direction Senor: WE570 (S/N:153500564)

Location : Pak Mong, Siu Ho Wan

Procedures:

1. Wind Still Test: The wind speed sensor was hold by hand until it keep still

2. Wind Speed Test: The wind meter was on-site calibrated against the Anemometer

3. Wind Direction Test: The wind meter was on-site calibrated against the marine compass at four directions

Results:

Wind Still Test

Wind Speed (m/s)	
0.00	

Wind Speed Test

Global Wate (m/s)	Anemometer (m/s)
1.65	1.8
1.11	1.3
0.71	0.6

Wind Direction Test

Global Wate (o)	Marine Compass (o)
271.05	270
0.05	0
90.31	90
181.07	180

Calibrated by: Checked by: Fatt

Yeung Ping Fai Ho Kam Fat

(Technical Officer) (Senior Technical Officer)

Appendix F

EM&A Monitoring Schedules

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 30 September 2017)

Alternative Noise Monitoring at Pak Mong Village Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
00 ОСР	0+ ОСР	00 ОСР	Noise Impact Monitoring	07 ОСР	00 000	<u> </u>
			Troide impact monitoring			
10-Sep	11-Sep		13-Sep	14-Sep	15-Sep	16-Sep
		Noise Impact Monitoring				
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
17 000	Noise Impact Monitoring	10 000		Noise Impact	22 Ocp	20 000
	. totoopaotog			Monitoring		
24-Sep	25-Sep			28-Sep	29-Sep	30-Sep
			Noise Impact Monitoring			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 30 September 2017)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
00 000	01000	00 000	1-hr TSP Monitoring	01 COP	33 Cop	00 00
			24-hr TSP Monitoring			
			24-III 13F Morniolling			
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
17-3ер	1-hr TSP Monitoring	19-3ер	20-3ер	1-hr TSP Monitoring	22-3ep	20-06
	24-hr TSP Monitoring			24-hr TSP Monitoring		
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
			1-hr TSP Monitoring			·
			24-hr TSP Monitoring			
			Ŭ			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 31 October 2017)

Alternative Noise Monitoring at Pak Mong Village Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct			04-Oct	05-Oct	06-Oct	07-Oct
		Noise Impact Monitoring				
08-Oct	09-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
	Noise Impact Monitoring			Noise Impact		
	,			Monitoring		
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
15-001	10-001		Noise Impact Monitoring	19-001	20-001	21-000
			Troide impact Memoring			
22-Oct			25-Oct	26-Oct	27-Oct	28-Oct
		Noise Impact Monitoring				
29-Oct		31-Oct				
	Noise Impact Monitoring					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. Additional weekly noise impact monitoring for construction works undertaken between 19:00-07:00 will be supplemented after confirmation of construction schedule.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 31 October 2017)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct	02-Oct		04-Oct	05-Oct	06-Oct	07-Oct
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
08-Oct	09-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
	1-hr TSP Monitoring			1-hr TSP Monitoring		
	24-hr TSP Monitoring			24-hr TSP Monitoring		
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
			1-hr TSP Monitoring			
			24-hr TSP Monitoring			
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
29-Oct	30-Oct	31-Oct				
	1-hr TSP Monitoring					
	24-hr TSP Monitoring					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (September 2017)

Sundav	Monday	Tuesday	Wednesday		Fridav	Saturday
					1-Sep	2-Sep
					ebb tide 7:55 - 11:25 flood tide 15:41 - 19:11	
3-Sep	4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep
	WQM is canceled due to adverse weather		ebb tide 11:20 - 14:50 flood tide 18:00 - 21:30		ebb tide 12:29 - 15:59 flood tide 6:10 - 9:40	
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
	ebb tide 14:31 - 18:01 flood tide 8:39 - 12:09		ebb tide 16:38 - 20:08 flood tide 11:16 - 14:46		ebb tide 6:50 - 10:20 flood tide 14:31 - 18:01	
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
	ebb tide 9:56 - 13:26 flood tide 16:48 - 20:18		ebb tide 11:22 - 14:52 flood tide 17:46 - 21:16		ebb tide 12:35 - 16:05 flood tide 6:19 - 9:49	
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
	ebb tide 14:16 - 17:46 flood tide 8:26 - 11:56		ebb tide 16:09 - 19:28 flood tide 10:48 - 14:18		ebb tide 5:39 - 9:09 flood tide 14:30 - 18:00	

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (October 2017)

Sunday	Monday		Tuesdav	Wednesdav	Thursday	Fridav	Saturday
1/Oct		2/Oct	3/Oct		5/Oct	6/Oct	
		8:50 - 12:20 15:59 - 19:29		ebb tide 10:11 - 13:41 flood tide 16:46 - 20:16		ebb tide 11:27 - 14:57 flood tide 5:18 - 8:48	
8/Oct		9/Oct	10/Oct	11/Oct	12/Oct	13/Oct	14/Oct
		13:33 - 17:03 7:46 - 11:16		ebb tide 15:22 - 18:52 flood tide 10:00 - 13:30		ebb tide 4:48 - 8:18 flood tide 13:10 - 16:40	
15/Oct		16/Oct	17/Oct	18/Oct	19/Oct	20/Oct	21/Oct
		8:48 - 12:18 15:41 - 19:11		ebb tide 10:20 - 13:50 flood tide 16:36 - 20:06		ebb tide 11:36 - 15:06 flood tide 5:34 - 9:04	
22/Oct		23/Oct	24/Oct	25/Oct	26/Oct	27/Oct	28/Oct
		13:18 - 16:48 7:36 - 11:06		ebb tide 14:36 - 18:06 flood tide 9:14 - 12:44		ebb tide 3:24 - 6:54 flood tide 15:49 - 19:19	
29/Oct		30/Oct	31/Oct				
		6:58 - 10:28 14:36 - 18:06					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 30 September 2017)

					Friday	Saturday
					01-Sep	02-Sep
03-Sep	04-Sep	05-Sep	06-Sep	07-Sep	08-Sep	09-Sep
10-Sep	11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep
<u> </u>				·	Impact Dolphin	
					Monitoring	
17-Sep	18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep
·	Impact Dolphin	·	·	·	Impact Dolphin	·
	Monitoring				Monitoring	
24-Sep	25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep
		•	•		Impact Dolphin	<u> </u>
					Monitoring	
					-	

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 31 October 2017)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Oct	02-Oct	03-Oct	04-Oct	05-Oct	06-Oct	07-Oct
			Impact Dolphin Monitoring			
08-Oct	09-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct
			Impact Dolphin Monitoring			
15-Oct	16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct
	Impact Dolphin Monitoring				Impact Dolphin Monitoring	
22-Oct	23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct
29-Oct	30-Oct	31-Oct				

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

Appendix G

Impact Air Quality
Monitoring Results and
Graphical Presentation

1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2017-09-06	ASR8A	8:30	1-hr TSP	51		
TMCLKL	HY/2012/07	2017-09-06	ASR8A	9:32	1-hr TSP	28		
TMCLKL	HY/2012/07	2017-09-06	ASR8A	10:40	1-hr TSP	22		
TMCLKL	HY/2012/07	2017-09-12	ASR8A	8:25	1-hr TSP	97		
TMCLKL	HY/2012/07	2017-09-12	ASR8A	9:35	1-hr TSP	135		
TMCLKL	HY/2012/07	2017-09-12	ASR8A	10:43	1-hr TSP	154		
TMCLKL	HY/2012/07	2017-09-18	ASR8A	8:25	1-hr TSP	169		
TMCLKL	HY/2012/07	2017-09-18	ASR8A	9:30	1-hr TSP	105	394	500
TMCLKL	HY/2012/07	2017-09-18	ASR8A	10:40	1-hr TSP	81		
TMCLKL	HY/2012/07	2017-09-21	ASR8A	8:28	1-hr TSP	55		
TMCLKL	HY/2012/07	2017-09-21	ASR8A	9:32	1-hr TSP	58		
TMCLKL	HY/2012/07	2017-09-21	ASR8A	10:38	1-hr TSP	43		
TMCLKL	HY/2012/07	2017-09-27	ASR8A	8:25	1-hr TSP	73		
TMCLKL	HY/2012/07	2017-09-27	ASR8A	9:27	1-hr TSP	136		
TMCLKL	HY/2012/07	2017-09-27	ASR8A	10:35	1-hr TSP	61		
					Average	85		
					Min.	22		
					Max.	169		

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2017-09-06	ASR9	8:41	1-hr TSP	73		
TMCLKL	HY/2012/07	2017-09-06	ASR9	9:43	1-hr TSP	21		
TMCLKL	HY/2012/07	2017-09-06	ASR9	10:50	1-hr TSP	29		
TMCLKL	HY/2012/07	2017-09-12	ASR9	8:35	1-hr TSP	119		
TMCLKL	HY/2012/07	2017-09-12	ASR9	9:47	1-hr TSP	137		
TMCLKL	HY/2012/07	2017-09-12	ASR9	10:55	1-hr TSP	169		
TMCLKL	HY/2012/07	2017-09-18	ASR9	8:35	1-hr TSP	206		
TMCLKL	HY/2012/07	2017-09-18	ASR9	9:42	1-hr TSP	89	393	500
TMCLKL	HY/2012/07	2017-09-18	ASR9	10:50	1-hr TSP	117		
TMCLKL	HY/2012/07	2017-09-21	ASR9	8:40	1-hr TSP	57		
TMCLKL	HY/2012/07	2017-09-21	ASR9	9:44	1-hr TSP	41		
TMCLKL	HY/2012/07	2017-09-21	ASR9	10:48	1-hr TSP	51		
TMCLKL	HY/2012/07	2017-09-27	ASR9	8:36	1-hr TSP	97		
TMCLKL	HY/2012/07	2017-09-27	ASR9	9:38	1-hr TSP	97		
TMCLKL	HY/2012/07	2017-09-27	ASR9	10:50	1-hr TSP	189		
					Average	99		
					Min.	21		

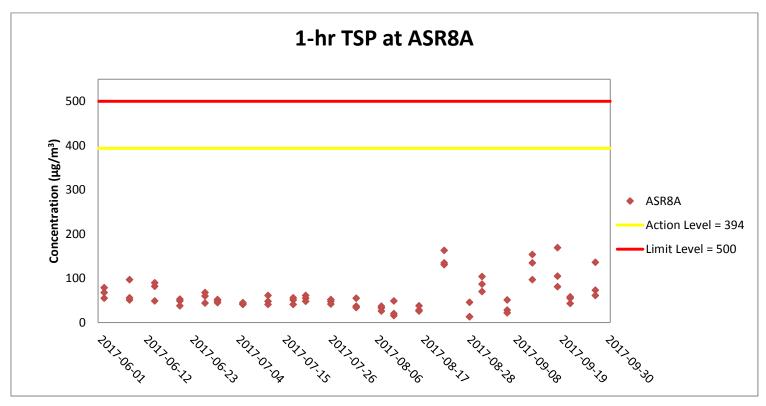
Max.

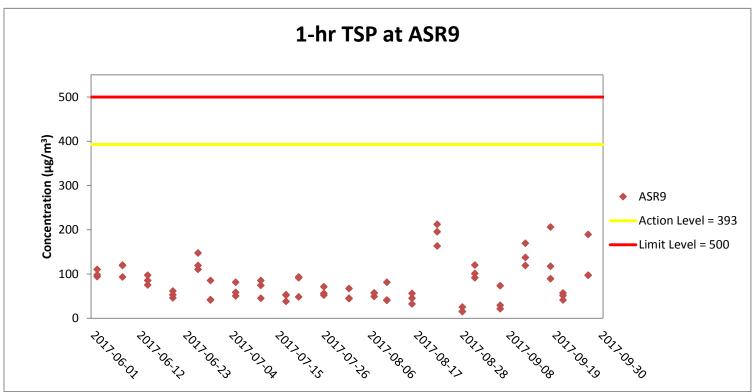
206

24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2017-09-06	ASR8A	11:42	24-hr TSP	17		
TMCLKL	HY/2012/07	2017-09-12	ASR8A	11:45	24-hr TSP	50		
TMCLKL	HY/2012/07	2017-09-18	ASR8A	11:42	24-hr TSP	35	178	260
TMCLKL	HY/2012/07	2017-09-21	ASR8A	11:40	24-hr TSP	21		
TMCLKL	HY/2012/07	2017-09-27	ASR8A	11:37	24-hr TSP	44		
					Average	33		
					Min.	17		
					Max.	50		

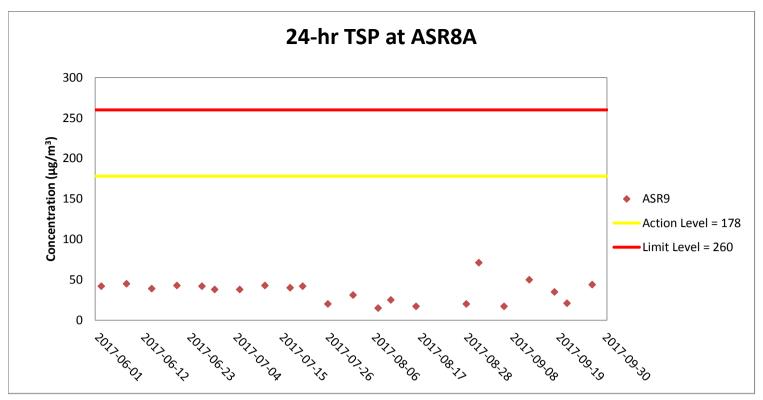
24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9

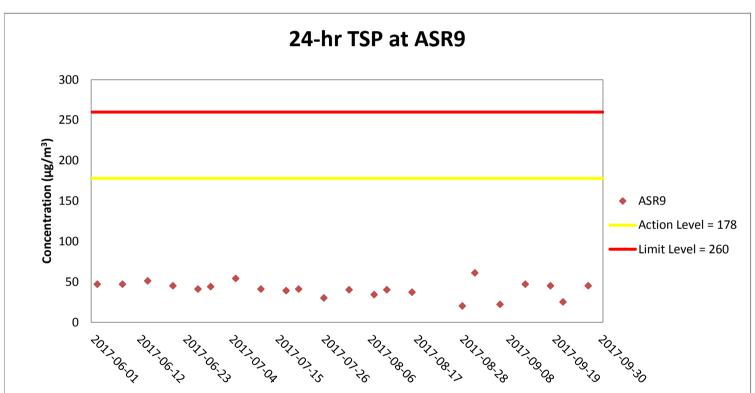

The state of the s												
Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)				
TMCLKL	HY/2012/07	2017-09-06	ASR9	11:52	24-hr TSP	22						
TMCLKL	HY/2012/07	2017-09-12	ASR9	11:57	24-hr TSP	47						
TMCLKL	HY/2012/07	2017-09-18	ASR9	11:52	24-hr TSP	45	178	260				
TMCLKL	HY/2012/07	2017-09-21	ASR9	11:50	24-hr TSP	25						
TMCLKL	HY/2012/07	2017-09-27	ASR9	11:52	24-hr TSP	45						
					Average	37						


Min.

Max.

22


61



Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Launching gantry operation;; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road;
Road works along North Lantau Highway; Launching gantry operation; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

Appendix H

Meteorological Data for the Reporting Month

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2017/9/6	0	0.42	178
2017/9/6	1	1.23	167
2017/9/6	2	1.41	165
2017/9/6	3	1.07	178
2017/9/6	4	0.39	177
2017/9/6	5	0.06	189
2017/9/6	6	0.02	165
2017/9/6	7 8	0.02	127 122
2017/9/6 2017/9/6	9	0.04	24
2017/9/6	10	0.02	273
2017/9/6	11	0.02	213
2017/9/6	12	0.67	177
2017/9/6	13	2.03	175
2017/9/6	14	1.63	177
2017/9/6	15	0.71	173
2017/9/6	16	0.48	160
2017/9/6	17	0.85	152
2017/9/6	18	0.27	176
2017/9/6	19	0.29 1.19	179 157
2017/9/6 2017/9/6	20 21	1.19	166
2017/9/6	22	0.36	170
2017/9/6	23	0.28	175
2017/9/7	0	0.14	186
2017/9/7	1	0.14	174
2017/9/7	2	0.02	159
2017/9/7	3	0.03	183
2017/9/7	4	0.21	165
2017/9/7	5	0.05	154
2017/9/7	6	0.21	167
2017/9/7	7	0.06	169
2017/9/7 2017/9/7	<u> </u>	0.54 1.79	179 165
2017/9/7	10	0.95	172
2017/9/7	11	1.44	178
2017/9/7	12	2.61	161
2017/9/7	13	0.18	223
2017/9/7	14	0.21	253
2017/9/7	15	0.15	182
2017/9/7	16	0.81	175
2017/9/7	17	0.20	163
2017/9/7	18	0.11	178
2017/9/7 2017/9/7	19 20	0.24 0.25	185 187
2017/9/7	20	0.25	185
2017/9/7	22	0.97	177
2017/9/7	23	0.34	179
2017/9/12	0	0.05	192
2017/9/12	1	0.07	195
2017/9/12	2	0.06	191
2017/9/12	3	0.25	191
2017/9/12	4	0.02	187
2017/9/12	5	0.02	187
2017/9/12	6	0.02	136
2017/9/12 2017/9/12		0.02	83 137
2017/9/12	9	0.02	170
2017/9/12	10	0.02	89
2017/9/12	11	0.03	141
2017/9/12	12	0.02	122
2017/9/12	13	0.03	142
2017/9/12	14	0.02	155
2017/9/12	15	0.13	157
2017/9/12	16	0.11	121
2017/9/12	17	0.13	138
2017/9/12	18	0.04	178
2017/9/12	19	0.03	154
2017/9/12 2017/9/12	20 21	0.11	186 176
7111119117	۷۱	0.02	
2017/9/12	22	0.02	207

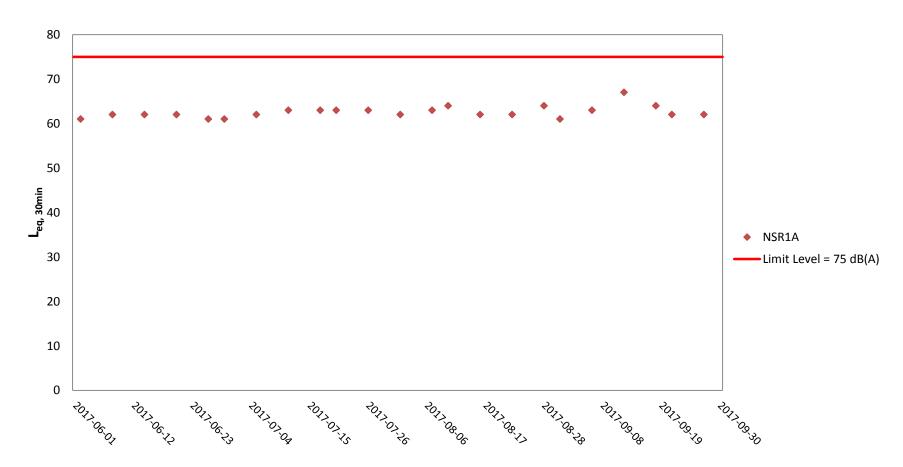
Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2017/9/13	0	0.04	129
2017/9/13	1	0.07	94
2017/9/13	2	0.07	143
2017/9/13	3	0.03	124
2017/9/13	4	0.12	120
2017/9/13	5	0.16	98
2017/9/13	6	0.02	285
2017/9/13	7	0.02	97
2017/9/13	8	0.02	99
2017/9/13	9	0.02	182
2017/9/13	10	0.02	250
2017/9/13	11	0.10	131
2017/9/13	12	0.11	102
2017/9/13	13	0.09	198
2017/9/13	14	0.03	148
2017/9/13	15	1.11	141
2017/9/13	16	2.03	146
2017/9/13	17	2.31	158
2017/9/13	18	1.77	161
2017/9/13	19	0.48	148
2017/9/13	20	0.02	124
2017/9/13	21	0.02	101
2017/9/13 2017/9/13	22	0.02	109 97
	23	0.05	
2017/9/18 2017/9/18	0 1	0.02 0.02	183 180
	2		
2017/9/18 2017/9/18	3	0.07 0.11	179 188
2017/9/18	4	0.11	189
2017/9/18	5	0.02	190
2017/9/18	6	0.02	190
2017/9/18	7	0.02	150
2017/9/18	8	0.23	162
2017/9/18	9	0.52	155
2017/9/18	10	2.47	186
2017/9/18	11	3.61	182
2017/9/18	12	4.03	186
2017/9/18	13	4.36	180
2017/9/18	14	2.98	166
2017/9/18	15	2.00	150
2017/9/18	16	2.22	168
2017/9/18	17	2.30	156
2017/9/18	18	3.91	158
2017/9/18	19	3.65	160
2017/9/18	20	3.48	164
2017/9/18	21	2.23	156
2017/9/18	22	2.70	149
2017/9/18	23	1.56	146
2017/9/19	0	1.37	162
2017/9/19	1	0.24	132
2017/9/19	2	0.04	115
2017/9/19	3	0.02	95
2017/9/19	4	0.02	159
2017/9/19	5	0.13	187
2017/9/19	6	0.02	161
2017/9/19	7	0.36	151
2017/9/19	8	0.83	164
2017/9/19	9	0.96	168
2017/9/19	10	2.60	184
2017/9/19	11	3.46	191
2017/9/19	12	3.54	178
2017/9/19	13	2.36	198
2017/9/19	14	2.64	179
2017/9/19	15	2.85	172
2017/9/19	16	1.83	157
2017/9/19	17	2.50	173
2017/9/19	18	3.66	164
2017/9/19	19	3.20	177
2017/9/19	20	2.64	162
2017/9/19	21	2.57	160
2017/9/19	22	0.57	156
2017/9/19	23	0.25	127

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2017/9/21	0	0.14	144
2017/9/21	1	0.02	105
2017/9/21	2	0.07	99
2017/9/21	3	0.02	101
2017/9/21	4	0.03	184
2017/9/21	5	0.09	186
2017/9/21	6	0.07	184
2017/9/21	7	0.02	197
2017/9/21	8	0.02	104
2017/9/21	9	0.26	169
	10	0.20	188
2017/9/21			
2017/9/21	11	0.01	148
2017/9/21	12	0.07	236
2017/9/21	13	1.87	179
2017/9/21	14	1.03	162
2017/9/21	15	2.50	188
2017/9/21	16	1.72	149
2017/9/21	17	1.08	148
2017/9/21	18	0.28	169
2017/9/21	19	0.14	165
2017/9/21	20	0.17	156
2017/9/21	21	0.18	133
2017/9/21	22	0.32	92
2017/9/21	23	0.23	106
2017/9/22	0	0.10	130
2017/9/22	1	0.02	113
2017/9/22	2	0.02	147
2017/9/22	3	0.11	192
2017/9/22	4	0.02	189
2017/9/22	5	0.02	208
2017/9/22	6	0.09	153
2017/9/22	7	0.02	188
2017/9/22	8	0.02	119
2017/9/22	9	0.02	122
2017/9/22	10	0.02	162
2017/9/22	11	0.18	203
2017/9/22	12	1.86	156
2017/9/22	13	2.17	163
2017/9/22	14	1.20	181
2017/9/22	15	1.04	167
2017/9/22	16	0.82	147
2017/9/22	17	0.30	150
2017/9/22	18	0.05	137
2017/9/22	19	0.05	122
2017/9/22	20	0.04	113
2017/9/22	21	0.04	134
2017/9/22	22	0.03	111
2017/9/22	23	0.02	106
2017/9/27	0	0.05	188
2017/9/27	1	0.21	180
2017/9/27	2	0.33	182
2017/9/27	3	0.07	195
2017/9/27	4	0.04	198
2017/9/27	5	0.11	193
2017/9/27	6	0.02	191
2017/9/27	7	0.02	175
2017/9/27	8	0.01	98
2017/9/27	9	0.00	189
2017/9/27	10	0.00	160
2017/9/27	11	0.02	172
2017/9/27	12	0.00	165
2017/9/27	13	0.04	123
2017/9/27	14	0.06	254
2017/9/27	15	0.06	297
2017/9/27	16	1.23	202
2017/9/27	17	1.51	151
2017/9/27	18	1.76	161
2011/0/21	19	1.43	126
	1.7		
2017/9/27		1 32	152
2017/9/27 2017/9/27	20	1.32 0.86	152 172
2017/9/27		1.32 0.86 0.96	152 172 149

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2017/9/28	0	0.52	181
2017/9/28	1	0.49	163
2017/9/28	2	0.30	172
2017/9/28	3	0.20	181
2017/9/28	4	0.45	192
2017/9/28	5	0.38	195
2017/9/28	6	0.11	199
2017/9/28	7	0.02	198
2017/9/28	8	0.00	215
2017/9/28	9	0.01	260
2017/9/28	10	0.00	198
2017/9/28	11	0.02	264
2017/9/28	12	1.30	195
2017/9/28	13	2.29	184
2017/9/28	14	3.07	182
2017/9/28	15	3.56	176
2017/9/28	16	3.29	180
2017/9/28	17	2.31	163
2017/9/28	18	1.91	165
2017/9/28	19	2.20	144
2017/9/28	20	2.37	158
2017/9/28	21	2.33	155
2017/9/28	22	3.37	161
2017/9/28	23	1.29	167

Appendix I

Impact Noise Monitoring Results and Graphical Presentation


Durings	NA/ l	D-4- (1-0)	04 - 41	Marathan Orandition	The officers (blances OAL com)	Noise L	evel for 30-	min, dB(A)	Limit Level	Wind Speed	Noise Meter	Calibrator
Project	Works	Date (yyyy-mm-dd)	Station	Weather Condition	Time (hh:mm, 24hour)	Leq	L10	L90	dB(A)	(m/s)	Model/ID	Model/ID
TMCLKL	HY/2012/07	2017-09-06	NSR1A	Cloudy	10:03	63	64	59	75	0.2	RION NL52	RION NC73
TIVICERE	H1/2012/07	2017-09-00	INSKIA	Cloudy	10.03	03	04	59	75	0.2	(S/N 01010406)	(S/N 10486660)
TMCLIZI	HY/2012/07	2047.00.42	NCD4A	C	10.01	67	67	64	75	1.0	RION NL52	RION NC73
TMCLKL	H Y/2012/07	2017-09-12	NSR1A	Sunny	10:01	67	67	61	75	1.0	(S/N 01010406)	(S/N 10486660)
TMCLKL	HY/2012/07	2017-09-18	OO 40 NCD4A Current		10:01	64	64	60	75	0.5	RION NL52	RION NC73
TIVICERE	H1/2012/07	2017-09-10	NSR1A	Sunny	10:01	04	04	60	75	0.5	(S/N 01010406)	(S/N 10486660)
TMCLKL	HY/2012/07	2017-09-21	NSR1A	Claudy	10:01	62	64	59	75	0.2	RION NL52	RION NC73
TIVICERE	H1/2012/07	2017-09-21	NOKIA	Cloudy	10:01	02	04	59	75	0.2	(S/N 01010406)	(S/N 10486660)
TMCLKL	HY/2012/07	012/07 2017-09-27 NSR1A Sunny		Cuppy	9:58	62	63	59	75	0.3	RION NL52	RION NC73
TWICERE	H1/2012/07	2017-09-27	NORTA	Sunny	9.56	02	03	59	75	0.3	(S/N 01010407)	(S/N 10486661)
			•		Min.	62						

67 64

Max.

Average

Noise Monitoring Results at NSR 1A ($L_{eq, 30min}$)

Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Launching gantry operation; Installation of pier head and deck segments; and Slope work of Viaducts A, B & C.

Appendix J

Impact Water Quality Monitoring Results and Graphical Presentation

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	8:54	10.2	Surface	1	1	28.2	7.8	18.3	6.4		4.3		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	8:54	10.2	Surface	1	2	28.0	7.8	18.2	6.4	6.1	3.4		4.4	
TMCLKL		1	Mid-Ebb	CS(Mf)5	8:54	10.2	Middle	2	1	27.5	7.9	24.7	5.7	0.1	3.4	3.2	3.2	3.5
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)5	8:54	10.2	Middle	2	2	27.3	7.8	24.7	5.7		2.4	J.Z	3.8	5.5
TMCLKL			Mid-Ebb	CS(Mf)5	8:54	10.2	Bottom	3	1	26.9	7.9	28.6	5.5	5.6	3.3		2.7	
TMCLKL		 	Mid-Ebb	CS(Mf)5	8:54	10.2	Bottom	3	2	26.9	7.8	28.5	5.6	3.0	2.3		3.1	
TMCLKL		1	Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Surface	1	1	28.5	7.6	16.1	5.7		9.1		4.1	
TMCLKL			Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Surface	1	2	28.3	7.6	16.3	5.7	5.2	7.4		3.2	
TMCLKL		1	Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Middle	2	1	26.9	7.6	25.6	4.7	3.2	8.8	9.0	3.6	3.7
TMCLKL		2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Middle	2	2	26.7	7.6	25.6	4.7		7.3	7.0	2.3	5.1
TMCLKL			Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Bottom	3	1	26.4	7.7	27.9	4.6	4.6	11.5		5.0	
TMCLKL		1	Mid-Ebb	CS(Mf)3(N)	10:34	6.8	Bottom	3	2	26.2	7.6	27.9	4.6	1.0	9.7		4.0	
TMCLKL		1	Mid-Ebb	IS(Mf)16	9:31	6.0	Surface	1	1	28.3	8.0	20.3	6.9		5.2		5.0	
TMCLKL		1	Mid-Ebb	IS(Mf)16	9:31	6.0	Surface	1	2	28.1	7.9	20.3	6.9	6.5	5.1		3.8	
TMCLKL		2017-09-01	Mid-Ebb	IS(Mf)16	9:31	6.0	Middle	2	1	28.1	7.9	21.1	6.1	0.5	4.7	5.0	4.4	4.5
TMCLKL			Mid-Ebb	IS(Mf)16	9:31	6.0	Middle	2	2	28.0	7.8	21.0	6.1		4.2	3.0	4.4	1.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	9:31	6.0	Bottom	3	1	27.7	7.9	23.4	5.8	5.8	5.7		4.7	
TMCLKL		2017-09-01	Mid-Ebb	IS(Mf)16	9:31	6.0	Bottom	3	2	27.6	7.8	23.4	5.8	3.0	4.9		4.6	
TMCLKL	+		Mid-Ebb	SR4a	9:41	5.2	Surface	1	1	28.4	8.1	16.7	7.4		6.5		4.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	9:41	5.2	Surface	1	2	28.3	8.0	16.6	7.4	7.4	5.5		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a		5.2	Middle	2	1					7.4		8.1		5.3
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		5.2	Middle	2	2							0.1		5.5
TMCLKL		2017-09-01	Mid-Ebb	SR4a	9:41	5.2	Bottom	3	1	27.2	7.9	25.1	4.7	4.8	10.4		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	9:41	5.2	Bottom	3	2	27.1	7.7	25.1	4.8	4.0	10.0		5.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	9:48	3.8	Surface	1	1	28.5	8.0	16.1	7.2		6.0		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	9:48	3.8	Surface	1	2	28.3	8.0	16.1	7.1	7.2	5.1		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4		3.8	Middle	2	1					7.2		7.6		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4		3.8	Middle	2	2							7.0		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	9:48	3.8	Bottom	3	1	27.9	7.8	21.5	5.0	5.1	9.7		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	9:48	3.8	Bottom	3	2	27.8	7.7	21.4	5.2	5.1	9.5		4.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	9:59	3.4	Surface	1	1	28.6	8.0	19.2	7.1	ļ l	7.3		5.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	9:59	3.4	Surface	1	2	28.4	7.9	19.1	7.1	7.1	6.3		6.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8		3.4	Middle	2	1					/.1		11.1		5.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8		3.4	Middle	2	2							11.1		J.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	9:59	3.4	Bottom	3	1	27.8	7.9	22.5	5.6	5.7	16.0		4.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	9:59	3.4	Bottom	3	2	27.7	7.8	22.6	5.7	3.1	14.6		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	3.4	Surface	1	1	28.5	8.0	20.3	6.1		9.0		3.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	3.4	Surface	1	2	28.3	7.9	20.2	6.1	6.1	8.5		2.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9		3.4	Middle	2	1					6.1		7 /		27
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9		3.4	Middle	2	2					<u> </u>		7.4		3.7
TMCLKL			Mid-Ebb	IS(Mf)9	10:09	3.4	Bottom	3	1	27.6	7.9	24.1	5.1	5.0	6.3		4.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	3.4	Bottom	3	2	27.5	7.8	23.9	5.2	5.2	5.6		4.3	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	12.9	Surface	1	1	28.7	7.9	19.6	7.4		3.9		1.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	12.9	Surface	1	2	28.5	8.0	19.5	7.3	6.1	2.9		1.4	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)5	17:26	12.9	Middle	2	1	26.5	7.8	30.4	4.8	0.1	5.0	4.7	1.8	2.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	12.9	Middle	2	2	26.4	7.9	30.3	4.9		4.7	4.7	2.6	2.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	12.9	Bottom	3	1	26.2	7.8	33.0	5.0	5.2	6.1		3.0	
TMCLKL	-			CS(Mf)5	17:26	12.9	Bottom	3	2	26.1	7.9	32.9	5.3	3.2	5.8		3.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	6.7	Surface	1	1	29.3	7.6	13.4	6.4		10.3		5.3	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	6.7	Surface	1	2	29.5	7.7	13.3	6.4	5.9	12.3		6.1	
TMCLKL		2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	6.7	Middle	2	1	27.9	7.6	19.6	5.5	3.7	12.5	13.2	9.3	14.8
TMCLKL		2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	6.7	Middle	2	2	28.1	7.6	19.4	5.4		14.2	13.2	11.1	14.0
TMCLKL			Mid-Flood	CS(Mf)3(N)	16:28	6.7	Bottom	3	1	27.6	7.6	21.0	5.2	5.2	13.7		29.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	6.7	Bottom	3	2	27.8	7.7	21.0	5.1	J.2	16.1		27.6	
TMCLKL		2017-09-01	Mid-Flood	IS(Mf)16	16:58	6.0	Surface	1	1	28.8	8.0	18.4	8.2		4.8		2.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	<u> </u>	16:58	6.0	Surface	1	2	28.7	8.1	18.4	8.3	7.0	4.2		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	6.0	Middle	2	1	27.8	7.6	22.1	5.7	7.0	8.3	8.4	3.5	3.4
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	6.0	Middle	2	2	27.7	7.8	22.1	5.7		7.7	0.4	2.7	J. 4
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	6.0	Bottom	3	1	27.3	7.6	25.1	5.1	5.2	13.2		3.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	6.0	Bottom	3	2	27.2	7.8	25.2	5.2	5.2	12.2		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	5.3	Surface	1	1	28.5	7.8	19.3	7.6		6.0		21.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	5.3	Surface	1	2	28.4	8.0	19.2	7.6	7.6	5.3		21.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a		5.3	Middle	2	1					7.0		10.4		24.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a		5.3	Middle	2	2							10.4		24.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	5.3	Bottom	3	1	27.5	7.7	24.2	5.7	5.7	16.1		27.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	5.3	Bottom	3	2	27.4	7.8	24.1	5.6	5.7	14.2		26.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	3.8	Surface	1	1	28.8	7.8	18.7	8.2		18.4		10.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	3.8	Surface	1	2	28.7	8.0	18.6	8.2	8.2	18.1		9.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4		3.8	Middle	2	1					0.2		17.7		14.7
TMCLKL		2017-09-01	Mid-Flood			3.8	Middle	2	2							17.7		14.7
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	3.8	Bottom	3	1	28.4	7.7	20.0	7.3	7.1	16.4		19.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	3.8	Bottom	3	2	28.3	7.9	20.0	7.4	7.4	17.8		19.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	3.9	Surface	1	1	28.8	8.0	18.0	8.0]	7.2		4.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	3.9	Surface	1	2	28.7	8.0	18.0	8.0	8.0	6.6		6.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8		3.9	Middle	2	1					0.0		9.6		5.9
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8		3.9	Middle	2	2							y . U		J . 7
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	3.9	Bottom	3	1	28.4	7.9	19.8	7.3	7.4	12.7		6.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	3.9	Bottom	3	2	28.3	7.9	19.8	7.4	/ .'1	11.9		6.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	3.3	Surface	1	1	30.3	8.5	17.3	14.2		7.8		6.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	3.3	Surface	1	2	30.1	8.5	17.3	14.1	14.0	6.6		6.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9		3.3	Middle	2	1					14.2		0.6		6.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9		3.3	Middle	2	2					<u> </u>		9.6		6.9
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	3.3	Bottom	3	1	28.3	8.1	21.2	9.6	0.6	12.8		7.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	3.3	Bottom	3	2	28.2	8.0	21.2	9.5	9.6	11.3		6.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Surface	1	1	27.9	7.7	22.0	5.1		5.5		7.4	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Surface	1	2	28.0	7.5	22.0	5.1	5.0	4.6		7.0	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Middle	2	1	27.2	7.8	25.7	4.8	3.0	10.6	0.2	8.8	0 0
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Middle	2	2	27.3	7.6	25.8	4.8		9.5	9.3	10.0	8.8
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Bottom	3	1	26.8	7.7	30.2	4.5	4.5	13.6		9.9	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)5	12:27	14.1	Bottom	3	2	26.9	7.6	30.3	4.5	4.3	12.0		9.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Surface	1	1	28.9	7.5	17.7	5.5		10.1		4.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Surface	1	2	28.6	7.5	17.9	5.5	5.3	9.2		5.3	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Middle	2	1	27.9	7.6	19.8	5.0	3.3	13.0	12.0	7.3	7.0
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Middle	2	2	27.6	7.6	20.2	5.1		13.4	12.9	6.9	7.9
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Bottom	3	1	27.7	7.7	21.8	5.0	5.0	16.6		11.1	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	CS(Mf)3(N)	13:40	6.9	Bottom	3	2	27.5	7.6	21.8	5.0	5.0	15.1		12.1	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Surface	1	1	27.8	7.8	22.1	5.0		7.2		7.6	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Surface	1	2	27.9	7.6	22.2	5.0	5.0	6.8		8.6	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Middle	2	1	27.5	7.8	23.7	4.9	5.0	7.3	(7	9.5	0.0
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Middle	2	2	27.6	7.6	23.7	4.9	[6.7	6.7	8.9	8.8
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Bottom	3	1	27.3	7.8	24.7	4.8	4.0	6.3		8.9	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS(Mf)16	13:07	6.2	Bottom	3	2	27.4	7.6	24.6	4.9	4.9	6.0		9.3	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a	13:18	5.1	Surface	1	1	27.9	7.7	21.5	5.1		10.9		11.4	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a	13:18	5.1	Surface	1	2	28.0	7.7	21.5	5.1	. 1	9.2		11.2	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a		5.1	Middle	2	1					5.1		1.4.4		15.5
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a		5.1	Middle	2	2					[14.4		15.5
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a	13:18	5.1	Bottom	3	1	27.4	7.8	24.1	5.0	4.0	18.4		20.1	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4a	13:18	5.1	Bottom	3	2	27.5	7.8	24.2	4.8	4.9	19.1		19.4	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4	13:23	4.4	Surface	1	1	28.1	7.7	20.7	5.1		7.2		12.2	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4	13:23	4.4	Surface	1	2	28.2	7.7	20.7	5.1	<i>5</i> 1	6.5		11.5	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4		4.4	Middle	2	1					5.1		11.6		10.5
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4		4.4	Middle	2	2							11.6		12.5
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	SR4	13:23	4.4	Bottom	3	1	27.8	7.7	21.7	5.0	5.0	17.0		13.1	
	HY/2012/07			SR4	13:23	4.4	Bottom	3	2	27.9	7.7	21.7	4.9	5.0	15.6		13.3	
TMCLKL	HY/2012/07	2017-09-06	Mid-Ebb	IS8	13:33	4.4	Surface	1	1	28.9	7.8	20.8	5.5		4.9		7.4	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:33	4.4	Surface	1	2	29.0	7.7	20.9	5.5		4.2		7.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		4.4	Middle	2	1					5.5		0.0		60
TMCLKL	HY/2012/07			IS8		4.4	Middle	2	2					[8.2		6.9
	HY/2012/07			IS8	13:33	4.4	Bottom	3	1	27.9	7.8	21.9	5.2	5.0	12.1		6.4	
TMCLKL	HY/2012/07	†	Mid-Ebb	IS8	13:33	4.4	Bottom	3	2	28.1	7.7	22.0	5.1	5.2	11.5		6.4	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:42	3.6	Surface	1	1	28.0	7.8	21.0	5.2		4.6		5.9	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:42	3.6	Surface	1	2	28.2	7.7	21.1	5.3		4.4		5.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		3.6	Middle	2	1					5.3		7.0	-	0.0
	HY/2012/07	†	Mid-Ebb	IS(Mf)9		3.6	Middle	2	2					j		7.8		8.2
		i	Mid-Ebb	IS(Mf)9	13:42	3.6	Bottom	3	1	27.7	7.7	22.4	4.9	4.0	11.7		11.3	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:42	3.6	Bottom	3	2	27.8	7.7	22.5	4.9	4.9	10.6		10.4	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Surface	1	1	27.6	7.8	23.4	5.1		4.7		5.8	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Surface	1	2	27.7	7.8	23.6	5.1	4.9	4.3		5.8	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Middle	2	1	27.0	7.9	28.4	4.8	4.9	10.3	10.0	11.8	10.6
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Middle	2	2	27.1	7.9	28.5	4.6		9.3	10.8	11.8	10.0
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Bottom	3	1	26.9	7.9	28.8	4.5	4.5	17.2		13.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)5	19:49	13.5	Bottom	3	2	27.0	7.9	28.9	4.5	4.3	18.9		14.5	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Surface	1	1	29.1	7.4	14.1	5.0		12.9		8.8	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Surface	1	2	28.8	7.4	13.6	5.1	5.0	12.1		7.2	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Middle	2	1	28.6	7.5	16.6	4.9	5.0	15.8	15 1	10.6	10.1
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Middle	2	2	28.4	7.4	16.8	5.0		15.5	15.1	11.6	12.1
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Bottom	3	1	28.4	7.5	17.9	4.9	4.0	17.2		16.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	CS(Mf)3(N)	18:23	6.3	Bottom	3	2	28.2	7.5	18.1	4.9	4.9	16.9		17.8	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16	19:09	5.8	Surface	1	1	28.2	7.8	21.4	5.0		13.3		12.1	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16	19:09	5.8	Surface	1	2	28.3	7.8	21.4	5.0	5.0	12.7		13.1	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16		5.8	Middle	2	1					5.0		12.0		177
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16		5.8	Middle	2	2							13.2		17.7
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16	19:09	5.8	Bottom	3	1	28.2	7.8	21.5	5.0	5.0	13.4		23.0	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS(Mf)16	19:09	5.8	Bottom	3	2	28.3	7.8	21.6	5.0	5.0	13.4		22.4	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4a	18:56	5.3	Surface	1	1	28.4	7.7	20.2	5.2		12.3		19.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood		18:56	5.3	Surface	1	2	28.5	7.8	20.3	5.2	5.0	12.0		20.7	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4a		5.3	Middle	2	1					5.2		12.0		20.6
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4a		5.3	Middle	2	2							13.0		20.6
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood		18:56	5.3	Bottom	3	1	28.4	7.7	20.3	5.3	5.2	14.2		21.3	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4a	18:56	5.3	Bottom	3	2	28.5	7.8	20.3	5.3	5.3	13.4		20.6	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4	18:51	3.9	Surface	1	1	28.4	7.7	20.7	5.2		17.0		24.5	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4	18:51	3.9	Surface	1	2	28.5	7.8	20.7	5.2	5.0	15.9		24.4	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4		3.9	Middle	2	1					5.2		20.4		26.2
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	SR4		3.9	Middle	2	2							20.4		26.3
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood		18:51	3.9	Bottom	3	1	28.4	7.7	20.8	5.2	5.0	24.6		27.8	
	HY/2012/07		Mid-Flood		18:51	3.9	Bottom	3	2	28.5	7.8	20.8	5.2	5.2	24.0		28.3	
TMCLKL	HY/2012/07	2017-09-06	Mid-Flood	IS8	18:41	3.2	Surface	1	1	28.3	7.8	20.8	5.2		11.6		21.3	
	HY/2012/07	:	Mid-Flood		18:41	3.2	Surface	1	2	28.4	7.7	20.8	5.2	5.0	11.4		20.7	
	HY/2012/07		Mid-Flood			3.2	Middle	2	1					5.2		17.4		20.6
TMCLKL	HY/2012/07		Mid-Flood			3.2	Middle	2	2							17.4		20.6
	HY/2012/07		Mid-Flood		18:41	3.2	Bottom	3	1	28.3	7.7	21.1	5.3	5.0	22.6		19.8	
	HY/2012/07		Mid-Flood		18:41	3.2	Bottom	3	2	28.4	7.7	21.2	5.2	5.3	23.8		20.7	
	HY/2012/07		Mid-Flood			2.9	Surface	1	1									
	HY/2012/07		Mid-Flood	<u> </u>		2.9	Surface	1	2					5.0				
			Mid-Flood		18:31	2.9	Middle	2	1	28.3	7.8	21.8	5.3	5.3	13.4	10.5	16.5	16.0
	HY/2012/07		Mid-Flood		18:31	2.9	Middle	2	2	28.4	7.8	21.9	5.2		13.6	13.5	16.0	16.3
	HY/2012/07		Mid-Flood		-	2.9	Bottom	3	1			-			-			
	HY/2012/07		Mid-Flood			2.9	Bottom	3	2									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Surface	1	1	28.6	7.7	20.5	4.8		5.7		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Surface	1	2	28.6	7.7	20.4	4.9	4.8	5.8		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Middle	2	1	28.2	7.7	22.1	4.7	4.0	11.2	19.7	19.5	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Middle	2	2	28.1	7.8	22.0	4.7		11.3	19.7	21.2	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Bottom	3	1	27.7	7.8	24.4	4.4	4.4	41.1		36.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	13.4	Bottom	3	2	27.6	7.7	24.3	4.4	4.4	42.9		34.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Surface	1	1	28.3	7.6	19.8	5.0		10.6		7.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Surface	1	2	28.5	7.6	19.6	4.9	4.9	10.6		6.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Middle	2	1	27.9	7.7	22.3	4.8	4.9	18.9	16.0	14.0	13.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Middle	2	2	28.1	7.7	22.1	4.8		18.7	16.0	15.3	13.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Bottom	3	1	27.8	7.7	23.3	4.9	4.9	17.0		17.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	7.0	Bottom	3	2	28.0	7.7	23.1	4.8	4.9	19.9		17.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Surface	1	1	28.3	7.7	21.5	4.9		5.7		8.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Surface	1	2	28.1	7.7	21.5	4.9	47	6.1		7.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Middle	2	1	27.9	7.8	23.0	4.5	4.7	9.5	7.0	14.4	11 /
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Middle	2	2	27.8	7.7	22.9	4.5		10.3	7.0	12.7	11.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Bottom	3	1	27.7	7.8	24.4	4.5	4.5	5.2		13.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	6.7	Bottom	3	2	27.6	7.7	24.3	4.5	4.5	5.4		12.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	5.7	Surface	1	1	28.3	7.6	20.7	4.7		7.5		13.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	5.7	Surface	1	2	28.2	7.7	20.6	4.7	4.7	7.9		12.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a		5.7	Middle	2	1					4.7		10.4		14.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a		5.7	Middle	2	2							12.4		14.8
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	5.7	Bottom	3	1	28.1	7.6	21.9	4.5	4.5	16.6		16.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	5.7	Bottom	3	2	27.9	7.7	21.8	4.5	4.5	17.6		16.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	4.8	Surface	1	1	28.3	7.7	20.3	4.7		8.1		9.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	4.8	Surface	1	2	28.2	7.6	20.2	4.7	4.7	8.6		10.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4		4.8	Middle	2	1					4.7		0.0		11.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4		4.8	Middle	2	2							8.2		11.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	4.8	Bottom	3	1	28.3	7.7	21.0	4.8	4.0	7.7		11.9	
	HY/2012/07			SR4	13:32	4.8	Bottom	3	2	28.1	7.7	20.9	4.9	4.9	8.2		12.5	
TMCLKL	HY/2012/07	i	Mid-Ebb	IS8	13:20	4.8	Surface	1	1	28.9	7.8	20.2	5.2		3.9		7.6	
	HY/2012/07	i	Mid-Ebb	IS8	13:20	4.8	Surface	1	2	28.8	7.7	20.1	5.2	5.0	4.4		9.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		4.8	Middle	2	1					5.2		C 4		10.1
TMCLKL	HY/2012/07			IS8		4.8	Middle	2	2							6.4		10.1
	HY/2012/07			IS8	13:20	4.8	Bottom	3	1	28.3	7.9	21.0	5.0	5.0	8.4		11.4	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:20	4.8	Bottom	3	2	28.2	7.7	20.9	5.0	5.0	8.9		12.4	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:09	4.3	Surface	1	1	29.0	7.9	20.1	5.4		4.3		4.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:09	4.3	Surface	1	2	28.9	7.7	20.0	5.3	, l	4.7		5.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		4.3	Middle	2	1			-		5.4		<i>5</i> 0		7.0
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9		4.3	Middle	2	2							5.0		7.8
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9	13:09	4.3	Bottom	3	1	28.3	7.9	20.7	5.0	~ ·	5.3		11.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:09	4.3	Bottom	3	2	28.2	7.7	20.7	5.1	5.1	5.6		10.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Surface	1	1	28.1	7.8	21.3	4.8		4.2		2.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Surface	1	2	28.0	7.8	21.3	4.8	4.7	4.9		2.4	5.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Middle	2	1	27.7	7.8	24.9	4.5	4.7	4.8	5.0	5.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Middle	2	2	27.6	7.9	25.2	4.5		5.3	3.0	5.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Bottom	3	1	27.6	7.8	26.6	4.5	4.6	5.2		7.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	13.0	Bottom	3	2	27.5	7.9	26.5	4.6	4.0	5.5		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Surface	1	1	28.4	7.5	16.9	4.9		11.1		10.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Surface	1	2	28.2	7.5	17.1	4.9	4.8	11.2		10.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Middle	2	1	28.3	7.6	18.7	4.7	4.0	17.0	16.0	17.0	16.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Middle	2	2	28.1	7.6	18.8	4.8		16.8	16.2	16.4	16.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Bottom	3	1	28.3	7.6	18.9	4.7	4.7	19.8		22.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	7.2	Bottom	3	2	28.0	7.6	19.0	4.7	4.7	21.0		21.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	6.2	Surface	1	1	28.1	7.7	20.8	4.9		2.6		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	6.2	Surface	1	2	28.0	7.8	20.8	4.8	4.0	2.2		2.2	2.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	6.2	Middle	2	1	28.1	7.7	21.1	4.8	4.8	3.2	2.6	2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	6.2	Middle	2	2	28.0	7.8	21.2	4.7]	2.8	3.6	2.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:33	6.2	Bottom	3	1	28.1	7.8	22.2	4.7	4.7	5.8		2.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	6.2	Bottom	3	2	27.9	7.8	22.1	4.7	4.7	5.1		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	4.8	Surface	1	1	28.1	7.8	20.7	4.9		6.0	6.3	10.3	11.1
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	4.8	Surface	1	2	28.0	7.8	20.6	4.9	4.0	5.0		11.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4a		4.8	Middle	2	1					4.9				
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4a		4.8	Middle	2	2]				
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	4.8	Bottom	3	1	28.1	7.8	20.8	5.1	5.0	7.6		11.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4a	7:44	4.8	Bottom	3	2	27.9	7.8	20.7	5.2	5.2	6.6		10.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4	7:49	3.9	Surface	1	1	28.1	7.8	20.8	4.9		7.2		15.0	160
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4	7:49	3.9	Surface	1	2	28.0	7.8	20.7	5.0	5.0	6.5		14.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4		3.9	Middle	2	1					5.0		6.0		
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	SR4		3.9	Middle	2	2							6.9		16.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	3.9	Bottom	3	1	28.1	7.8	20.8	5.1	<i>r</i> 0	7.4		17.2	
	HY/2012/07		Mid-Flood		7:49	3.9	Bottom	3	2	28.0	7.8	20.7	5.2	5.2	6.6		17.5	
	HY/2012/07		Mid-Flood		7:58	3.9	Surface	1	1	28.1	7.8	20.8	4.8		13.8		11.5	
	HY/2012/07		Mid-Flood		7:58	3.9	Surface	1	2	28.0	7.8	20.7	4.8	4.0	14.0		11.6	
	HY/2012/07		Mid-Flood			3.9	Middle	2	1					4.8		17.4		15 4
TMCLKL	HY/2012/07		Mid-Flood			3.9	Middle	2	2]		17.4		15.4
	HY/2012/07		Mid-Flood		7:58	3.9	Bottom	3	1	28.1	7.8	21.0	4.7	4.7	20.8		18.5	
	HY/2012/07		Mid-Flood		7:58	3.9	Bottom	3	2	28.0	7.8	21.0	4.7	4.7	20.9		19.9	
	HY/2012/07		Mid-Flood		8:07	3.8	Surface	1	1	28.1	7.8	21.8	4.8		5.9		6.5	
TMCLKL	HY/2012/07		Mid-Flood	` ′	8:07	3.8	Surface	1	2	28.0	7.8	21.7	4.8	1	5.2		7.5	
	HY/2012/07		Mid-Flood			3.8	Middle	2	1					4.8	-	0.0		0.5
	HY/2012/07		Mid-Flood			3.8	Middle	2	2					†		9.9		8.5
	HY/2012/07		Mid-Flood		8:07	3.8	Bottom	3	1	28.1	7.8	22.6	4.8		14.9		10.1	
	HY/2012/07		Mid-Flood		8:07	3.8	Bottom	3	2	27.9	7.8	22.5	4.8	†	13.4		9.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Surface	1	1	29.3	7.7	18.3	4.7		4.4		6.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Surface	1	2	29.4	7.7	18.4	4.7	4.6	4.0 5.1		5.0	5.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Middle	2	1	28.8	7.7	20.2	4.5	4.0		5.2	4.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Middle	2	2	29.0	7.7	20.3	4.5		4.8	5.3	4.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Bottom	3	1	27.7	7.7	26.5	3.9	3.9	6.8		6.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	9.8	Bottom	3	2	27.9	7.7	26.6	3.9	3.9	6.4		7.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Surface	1	1	29.7	7.4	13.6	4.6		14.1		3.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Surface	1	2	29.5	7.4	13.8	4.7	16	14.4		3.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Middle	2	1	28.7	7.5	19.9	4.4	4.6	17.5	10.5	4.6	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Middle	2	2	28.5	7.6	20.1	4.5		14.1	18.5	4.3	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Bottom	3	1	28.7	7.6	21.1	4.4	1.5	25.8		14.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	7.1	Bottom	3	2	28.4	7.6	21.2	4.5	4.5	25.3		15.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	5.8	Surface	1	1	29.0	7.7	20.1	5.1		5.6		6.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	5.8	Surface	1	2	29.2	7.7	20.2	5.2	5.0	4.9		6.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16		5.8	Middle	2	1					5.2		7.7		6.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16		5.8	Middle	2	2							7.7		
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	5.8	Bottom	3	1	28.1	7.7	23.4	4.3	4.2	10.8		5.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	5.8	Bottom	3	2	28.3	7.7	23.5	4.3	4.3	9.6		5.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	5.2	Surface	1	1	29.0	7.6	18.9	4.7		8.0		12.2	11.8
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	5.2	Surface	1	2	29.2	7.6	19.0	4.8	4.0	7.5	10.1	12.5	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a		5.2	Middle	2	1					4.8				
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a		5.2	Middle	2	2									
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	5.2	Bottom	3	1	28.6	7.6	19.9	4.4	4.4	12.4		10.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	5.2	Bottom	3	2	28.8	7.6	20.0	4.4	4.4	12.3		11.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	3.7	Surface	1	1	28.9	7.6	19.0	4.9		7.5		8.2	0.7
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	3.7	Surface	1	2	29.1	7.6	19.1	4.9	4.0	7.3		9.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4		3.7	Middle	2	1					4.9		0.7		
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4		3.7	Middle	2	2							8.7		9.7
	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	3.7	Bottom	3	1	28.9	7.6	19.8	4.8	4.0	10.2		10.8	
	HY/2012/07			SR4	15:33	3.7	Bottom	3	2	29.0	7.6	19.9	4.8	4.8	9.8		10.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	15:25	3.1	Surface	1	1	29.3	7.7	18.9	5.2		6.7		7.2	
	HY/2012/07	i	Mid-Ebb	IS8	15:25	3.1	Surface	1	2	29.5	7.7	18.9	5.2	5.0	6.3		6.4	
	HY/2012/07		Mid-Ebb	IS8		3.1	Middle	2	1					5.2		7.7		()
TMCLKL	HY/2012/07			IS8		3.1	Middle	2	2							7.7		6.3
	HY/2012/07			IS8	15:25	3.1	Bottom	3	1	28.7	7.7	20.0	5.0	5.0	9.0		5.7	
	HY/2012/07	1	Mid-Ebb	IS8	15:25	3.1	Bottom	3	2	28.9	7.7	20.1	5.0	5.0	8.6		6.0	
			Mid-Ebb	IS(Mf)9	15:16	3.4	Surface	1	1	29.0	7.7	19.1	5.3		5.3		5.1	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	15:16	3.4	Surface	1	2	29.2	7.7	19.2	5.3		4.9		4.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		3.4	Middle	2	1					5.3		<i>5.0</i>		<i>T</i> 0
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9		3.4	Middle	2	2							5.0		5.3
		i 1	Mid-Ebb	IS(Mf)9	15:16	3.4	Bottom	3	1	29.0	7.7	19.4	5.3	5.0	5.0		5.6	
	HY/2012/07		Mid-Ebb	IS(Mf)9	15:16	3.4	Bottom	3	2	29.2	7.7	19.4	5.3	5.3	4.6		6.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	9:37	10.4	Surface	1	1	28.7	7.7	18.6	4.8		2.7		3.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	9:37	10.4	Surface	1	2	28.9	7.7	18.7	4.8	4.6	2.7	6.7	4.4	
TMCLKL	HY/2012/07			CS(Mf)5	9:37	10.4	Middle	2	1	28.3	7.7	21.1	4.4	4.0	3.6		3.5	3.5
TMCLKL	HY/2012/07	2017-09-11			9:37	10.4	Middle	2	2	28.5	7.7	21.2	4.4		3.5	0.7	4.0	
TMCLKL		2017-09-11		CS(Mf)5	9:37	10.4	Bottom	3	1	27.9	7.7	24.6	4.1	4.1	14.2		3.2	
TMCLKL	+		Mid-Flood		9:37	10.4	Bottom	3	2	28.1	7.7	24.7	4.1	4.1	13.3		2.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	7.0	Surface	1	1	29.4	7.4	13.9	4.6		9.6		9.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	7.0	Surface	1	2	29.1	7.5	14.0	4.7	4.6	9.5		9.1	
TMCLKL	-		Mid-Flood	CS(Mf)3(N)	11:04	7.0	Middle	2	1	29.0	7.6	16.8	4.5	4.0	10.1	11.8	14.9	14.8
TMCLKL		2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	7.0	Middle	2	2	28.8	7.6	16.8	4.6		10.5	11.0	14.5	14.0
TMCLKL			Mid-Flood		11:04	7.0	Bottom	3	1	28.9	7.5	18.0	4.5	4.6	15.4		19.7	
TMCLKL	HY/2012/07			CS(Mf)3(N)	11:04	7.0	Bottom	3	2	28.7	7.6	18.0	4.6	7.0	15.7		21.6	
TMCLKL		1	Mid-Flood		10:08	5.8	Surface	1	1	28.8	7.6	18.4	4.7		3.3		2.3	
TMCLKL		1	Mid-Flood		10:08	5.8	Surface	1	2	28.9	7.6	18.4	4.7	4.7	3.1		2.4	
TMCLKL		2017-09-11	Mid-Flood			5.8	Middle	2	1					7.7		7.2		4.9
TMCLKL			Mid-Flood	· /		5.8	Middle	2	2							7.2		
TMCLKL	HY/2012/07	†		IS(Mf)16	10:08	5.8	Bottom	3	1	28.5	7.6	19.6	4.6	4.6	11.4		7.3	
TMCLKL			Mid-Flood		10:08	5.8	Bottom	3	2	28.7	7.6	19.6	4.6	7.0	10.8		7.4	
TMCLKL	+		Mid-Flood		10:17	5.2	Surface	1	1	28.7	7.6	18.5	4.7		13.0	13.5	14.5	
TMCLKL		1	Mid-Flood		10:17	5.2	Surface	1	2	28.9	7.6	18.5	4.7	4.7	13.4		15.2	14.9
TMCLKL			Mid-Flood			5.2	Middle	2	1									
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood			5.2	Middle	2	2									
TMCLKL		2017-09-11	Mid-Flood		10:17	5.2	Bottom	3	1	28.6	7.6	18.9	4.6	4.6	14.2		14.7	
TMCLKL		2017-09-11	Mid-Flood		10:17	5.2	Bottom	3	2	28.8	7.6	18.9	4.6	7.0	13.3		15.0	
TMCLKL			Mid-Flood		10:23	4.0	Surface	1	1	28.8	7.6	18.0	4.8		7.3		15.6	14.6
TMCLKL			Mid-Flood		10:23	4.0	Surface	1	2	29.0	7.6	18.1	4.8	4.8	7.9		13.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood			4.0	Middle	2	1					1.0		8.3		
TMCLKL		2017-09-11	Mid-Flood			4.0	Middle	2	2							0.5		11.0
	HY/2012/07		Mid-Flood		10:23	4.0	Bottom	3	1	28.8	7.6	18.0	4.8	4.8	9.9		14.6	
TMCLKL		2017-09-11	Mid-Flood		10:23	4.0	Bottom	3	2	29.0	7.6	18.1	4.8	T.U	8.1		14.2	
TMCLKL	HY/2012/07		Mid-Flood		10:35	4.0	Surface	1	1	29.0	7.6	18.1	4.8		4.7		6.6	
TMCLKL	HY/2012/07		Mid-Flood		10:35	4.0	Surface	1	2	29.2	7.6	18.2	4.8	4.8	4.5		8.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood			4.0	Middle	2	1					7.0		4.9		8.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood			4.0	Middle	2	2							4.7		0.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood		10:35	4.0	Bottom	3	1	28.8	7.6	18.2	4.8	4.8	5.2		9.0	
TMCLKL		†	Mid-Flood	+	10:35	4.0	Bottom	3	2	29.0	7.6	18.3	4.8	7.0	5.0		9.0	
TMCLKL	HY/2012/07		Mid-Flood		10:47	3.8	Surface	1	1	28.7	7.6	19.3	4.8	ļ l	9.4		9.1	
TMCLKL			Mid-Flood		10:47	3.8	Surface	1	2	28.9	7.6	19.4	4.8	4.8	9.2		9.3	9.2
TMCLKL		1	Mid-Flood			3.8	Middle	2	1					4.0		10.5		
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)9		3.8	Middle	2	2							10.5		7.4
TMCLKL			Mid-Flood		10:47	3.8	Bottom	3	1	28.6	7.7	20.0	4.7	ļ l	12.1		8.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)9	10:47	3.8	Bottom	3	2	28.8	7.7	20.1	4.7		11.3		9.4	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	9.8	Surface	1	1	29.3	7.9	20.9	5.6		1.5		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	9.8	Surface	1	2	29.4	7.9	21.1	5.7	5.2	1.6	1.8	2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	9.8	Middle	2	1	28.3	7.9	26.3	4.7	3.2	1.2		2.9	3.8
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	9.8	Middle	2	2	28.5	7.9	26.5	4.7		1.2	1.0	4.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	9.8	Bottom	3	1	27.7	7.9	28.9	4.1	4.1	2.5		4.1	
TMCLKL	-		Mid-Ebb	CS(Mf)5	19:05	9.8	Bottom	3	2	27.9	7.9	29.3	4.0	4.1	2.7		4.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Surface	1	1	29.3	7.8	18.4	4.8		2.0		6.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Surface	1	2	29.1	7.8	18.6	4.9	4.9	1.9		6.3	
TMCLKL		2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Middle	2	1	29.4	7.9	21.0	4.9	7.7	2.6	2.5	6.5	6.4
TMCLKL		2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Middle	2	2	29.2	7.9	21.1	5.0		2.5	2.5	5.9	0.4
TMCLKL			Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Bottom	3	1	29.2	7.9	21.9	4.7	4.8	3.1		6.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	10.0	Bottom	3	2	28.9	7.9	22.0	4.9	7.0	3.1		7.2	
TMCLKL			Mid-Ebb	IS(Mf)16	18:33	6.1	Surface	1	1	29.6	7.9	19.8	6.2		3.5		7.5	
TMCLKL			Mid-Ebb	IS(Mf)16	18:33	6.1	Surface	1	2	29.8	8.0	20.0	6.3	5.3	3.5		6.2	8.0
TMCLKL		2017-09-13	Mid-Ebb	IS(Mf)16	18:33	6.1	Middle	2	1	28.3	7.9	25.4	4.4	3.5	5.7	4.7	7.8	
TMCLKL			Mid-Ebb	IS(Mf)16	18:33	6.1	Middle	2	2	28.5	7.9	25.7	4.4		5.8		7.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	6.1	Bottom	3	1	28.0	7.9	26.6	4.2	4.2	5.0		9.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	6.1	Bottom	3	2	28.2	7.9	26.8	4.1	7.2	4.9		9.9	
TMCLKL	-		Mid-Ebb	SR4a	18:21	5.2	Surface	1	1	29.3	7.9	20.1	5.6		3.7	8.0	6.8	
TMCLKL			Mid-Ebb	SR4a	18:21	5.2	Surface	1	2	29.4	7.9	20.3	5.6	5.6	3.7		5.0	7.4
TMCLKL			Mid-Ebb	SR4a		5.2	Middle	2	1					5.0				
TMCLKL	HY/2012/07	-	Mid-Ebb	SR4a		5.2	Middle	2	2									
TMCLKL		2017-09-13	Mid-Ebb	SR4a	18:21	5.2	Bottom	3	1	28.9	7.8	21.3	4.6	4.6	12.0		9.5	
TMCLKL		2017-09-13	Mid-Ebb	SR4a	18:21	5.2	Bottom	3	2	29.1	7.8	21.5	4.5	7.0	12.4		8.1	
TMCLKL			Mid-Ebb	SR4	18:16	3.8	Surface	1	1	29.4	7.9	19.9	5.8		3.6		5.3	5.0
TMCLKL			Mid-Ebb	SR4	18:16	3.8	Surface	1	2	29.5	7.9	20.1	5.8	5.8	3.8		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4		3.8	Middle	2	1					3.0		7.1		
TMCLKL		2017-09-13	Mid-Ebb	SR4		3.8	Middle	2	2							7.1		5.0
	HY/2012/07	1		SR4	18:16	3.8	Bottom	3	1	29.0	7.8	21.1	4.6	4.6	10.0		5.3	
TMCLKL		2017-09-13	Mid-Ebb	SR4	18:16	3.8	Bottom	3	2	29.2	7.8	21.3	4.5	1.0	10.8		5.2	
TMCLKL	HY/2012/07	 	Mid-Ebb	IS8	18:09	3.6	Surface	1	1	29.8	7.9	19.5	6.2	ļ l	3.7		6.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	18:09	3.6	Surface	1	2	29.9	8.0	19.7	6.3	6.3	4.1		7.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		3.6	Middle	2	1					0.5		8.0		9.1
TMCLKL		2017-09-13	Mid-Ebb	IS8		3.6	Middle	2	2							0.0		7.1
TMCLKL		 	Mid-Ebb	IS8	18:09	3.6	Bottom	3	1	28.8	7.8	22.0	4.2	4.2	11.8		11.7	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	18:09	3.6	Bottom	3	2	29.0	7.8	22.7	4.1	7.∠	12.2		11.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	18:01	3.6	Surface	1	1	30.1	7.9	19.1	6.8	ļ l	2.9		3.8	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	18:01	3.6	Surface	1	2	30.3	8.0	19.3	6.8	6.8	3.1		2.8	
TMCLKL			Mid-Ebb	IS(Mf)9		3.6	Middle	2	1					0.0		3.8		5.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9		3.6	Middle	2	2							J.0		٠.٥
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	18:01	3.6	Bottom	3	1	29.6	7.9	19.4	6.2	6.2	4.4		7.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	3.6	Bottom	3	2	29.7	7.9	19.6	6.2	0.2	4.8		6.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood		12:12	10.4	Surface	1	1	29.1	7.8	20.0	5.3		1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	10.4	Surface	1	2	29.3	7.9	20.2	5.3	4.6	1.3		4.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	10.4	Middle	2	1	28.2	7.8	25.1	4.0	4.0	2.5	2.9	2.8	3.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	10.4	Middle	2	2	28.3	7.9	25.4	3.9		2.4	2.9	3.2	3.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	10.4	Bottom	3	1	27.7	7.9	28.3	3.7	3.7	4.9		3.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood		12:12	10.4	Bottom	3	2	27.9	7.9	28.6	3.7	5.1	4.9		4.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	6.9	Surface	1	1	29.4	7.7	14.6	4.9		1.4		2.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	6.9	Surface	1	2	29.7	7.7	14.5	4.8	4.9	1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13		CS(Mf)3(N)	13:16	6.9	Middle	2	1	28.9	7.8	18.8	4.9	4.9	5.4	4.5	3.7	4.1
TMCLKL	+	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	6.9	Middle	2	2	29.1	7.8	18.7	4.9		5.4	4.5	3.7	4.1
TMCLKL	HY/2012/07	2017-09-13		CS(Mf)3(N)	13:16	6.9	Bottom	3	1	28.8	7.8	20.4	5.0	5.0	6.5		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	6.9	Bottom	3	2	29.0	7.8	20.4	4.9	5.0	6.6		5.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	5.8	Surface	1	1	29.2	7.8	19.5	5.4		3.4		5.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	5.8	Surface	1	2	29.4	7.9	19.7	5.4	5.4	3.2		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16		5.8	Middle	2	1					3.4		7.0		7.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16		5.8	Middle	2	2							7.0		1.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	5.8	Bottom	3	1	28.6	7.8	22.2	4.2	4.2	10.5		9.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	5.8	Bottom	3	2	28.8	7.8	22.4	4.1	4.2	10.9		9.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	5.1	Surface	1	1	29.0	7.8	20.2	4.9		3.4		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	5.1	Surface	1	2	29.2	7.9	20.3	4.9	4.9	3.5		3.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a		5.1	Middle	2	1					4.9		6.7		5.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a		5.1	Middle	2	2							0.7		3.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	5.1	Bottom	3	1	28.7	7.8	21.8	4.3	4.3	9.8		6.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	5.1	Bottom	3	2	28.9	7.8	22.0	4.2	4.5	9.9		7.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	3.9	Surface	1	1	29.3	7.8	19.6	5.3		2.8		7.7	
TMCLKL	HY/2012/07	-	Mid-Flood		12:59	3.9	Surface	1	2	29.4	7.9	19.8	5.3	5.3	2.7		8.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood			3.9	Middle	2	1					3.5		3.5		9.8
TMCLKL		2017-09-13	Mid-Flood			3.9	Middle	2	2							J . J		7.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood		12:59	3.9	Bottom	3	1	29.0	7.8	20.3	4.9	4.9	4.2		11.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	3.9	Bottom	3	2	29.1	7.8	20.6	4.9	7.7	4.4		11.4	
TMCLKL	HY/2012/07		Mid-Flood		13:14	4.3	Surface	1	1	29.3	7.8	19.7	5.3	ļ [4.0		3.2	
TMCLKL	HY/2012/07		Mid-Flood	1	13:14	4.3	Surface	1	2	29.4	7.9	19.9	5.3	5.3	4.0		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood			4.3	Middle	2	1					J.J		4.7		5.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood			4.3	Middle	2	2							4.1		J.J
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS8	13:14	4.3	Bottom	3	1	28.9	7.8	20.8	4.7	4.7	5.4		8.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS8	13:14	4.3	Bottom	3	2	29.1	7.9	21.0	4.7	' + ./	5.4		7.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	3.8	Surface	1	1	29.6	7.8	19.1	5.6		3.3		3.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	3.8	Surface	1	2	29.8	7.9	19.3	5.7	5.7	3.1		3.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9		3.8	Middle	2	1					3.1		5 1		6.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9		3.8	Middle	2	2							5.1		0.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	3.8	Bottom	3	1	28.9	7.8	21.2	4.6	4.6	6.9		10.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	3.8	Bottom	3	2	29.1	7.8	21.4	4.6	4.0	7.1		8.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)5	7:55	12.8	Surface	1	1	28.6	7.9	21.0	5.2		3.2		2.6	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)5	7:55	12.8	Surface	1	2	28.4	7.9	20.7	5.2	4.9	3.2		2.2	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)5	7:55	12.8	Middle	2	1	28.6	8.0	23.8	4.6	4.7	3.4	4.2	2.3	2.4
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)5	7:55	12.8	Middle	2	2	28.4	7.9	23.5	4.6		3.4	4.2	2.6	Z. 4
TMCLKL			Mid-Ebb	CS(Mf)5	7:55	12.8	Bottom	3	1	27.8	8.0	29.4	3.7	3.8	6.2		2.7	
TMCLKL			Mid-Ebb	CS(Mf)5	7:55	12.8	Bottom	3	2	27.7	7.9	28.9	3.8	J.0	5.5		2.1	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Surface	1	1	28.9	7.9	17.3	5.2		15.3		3.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Surface	1	2	28.6	7.7	17.4	5.3	5.0	14.4		4.2	
TMCLKL			Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Middle	2	1	28.7	8.0	21.8	4.6	. 5.0	17.7	16.9	4.4	4.0
TMCLKL			Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Middle	2	2	28.5	7.9	21.8	4.7		16.8	10.7	4.0	4.0
TMCLKL			Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Bottom	3	1	28.7	8.0	22.6	4.5	4.6	19.0		4.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	CS(Mf)3(N)	9:37	7.1	Bottom	3	2	28.4	7.8	22.6	4.6	4.0	18.1		3.1	
TMCLKL			Mid-Ebb	IS(Mf)16	8:28	4.8	Surface	1	1	28.7	8.1	21.7	6.2		4.8		2.3	
TMCLKL			Mid-Ebb	IS(Mf)16	8:28	4.8	Surface	1	2	28.6	8.0	21.5	6.2	6.2	4.9		2.9	
TMCLKL		2017-09-15	Mid-Ebb	IS(Mf)16		4.8	Middle	2	1					. 0.2		5.1		3.1
TMCLKL			Mid-Ebb	IS(Mf)16		4.8	Middle	2	2							J.1		5.1
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	IS(Mf)16	8:28	4.8	Bottom	3	1	28.7	8.0	23.2	4.9	5.0	5.4		3.6	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	IS(Mf)16	8:28	4.8	Bottom	3	2	28.6	7.9	22.9	5.0	5.0	5.4		3.6	
TMCLKL			Mid-Ebb	SR4a	8:40	5.2	Surface	1	1	28.8	8.0	22.0	5.5		7.8		4.2	
TMCLKL			Mid-Ebb	SR4a	8:40	5.2	Surface	1	2	28.6	7.9	21.7	5.4	5.5	7.3		3.9	
TMCLKL			Mid-Ebb	SR4a		5.2	Middle	2	1					. 5.5		10.1		5.0
TMCLKL	HY/2012/07	-	Mid-Ebb	SR4a		5.2	Middle	2	2							10.1		5.0
TMCLKL		2017-09-15	Mid-Ebb	SR4a	8:40	5.2	Bottom	3	1	28.6	7.9	23.2	4.5	4.6	12.5		6.3	
TMCLKL		2017-09-15	Mid-Ebb	SR4a	8:40	5.2	Bottom	3	2	28.5	7.9	22.9	4.6	4.0	12.7		5.6	
TMCLKL			Mid-Ebb	SR4	8:45	4.1	Surface	1	1	28.8	8.0	21.7	5.4		7.2		6.7	
TMCLKL			Mid-Ebb	SR4	8:45	4.1	Surface	1	2	28.7	7.9	21.5	5.4	5.4	7.1		5.0	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	SR4		4.1	Middle	2	1					. 5.1		8.0		6.4
TMCLKL		2017-09-15	Mid-Ebb	SR4		4.1	Middle	2	2							0.0		0.1
	HY/2012/07			SR4	8:45	4.1	Bottom	3	1	28.9	8.0	21.9	5.2	5.2	9.7		6.8	
TMCLKL		2017-09-15	Mid-Ebb	SR4	8:45	4.1	Bottom	3	2	28.7	7.9	21.6	5.2	J.L	7.9		7.2	
TMCLKL	HY/2012/07	 	Mid-Ebb	IS8	8:56	3.7	Surface	1	1	28.7	8.1	21.5	6.3	ļ [4.4		2.8	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	8:56	3.7	Surface	1	2	28.6	8.0	21.3	6.3	6.3	4.5		2.1	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		3.7	Middle	2	1					0.5		9.6		2.7
TMCLKL		2017-09-15	Mid-Ebb	IS8		3.7	Middle	2	2).U		۷.1
TMCLKL			Mid-Ebb	IS8	8:56	3.7	Bottom	3	1	28.8	8.0	22.2	5.4	5.5	14.9		2.6	
TMCLKL	HY/2012/07	†	Mid-Ebb	IS8	8:56	3.7	Bottom	3	2	28.7	7.9	22.0	5.5	5.5	14.6		3.4	
TMCLKL			Mid-Ebb	IS(Mf)9	9:10	3.3	Surface	1	1	28.7	8.1	21.4	6.6	ļ ,	4.6		3.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	9:10	3.3	Surface	1	2	28.6	8.0	21.2	6.6	6.6	4.6		2.9	
TMCLKL			Mid-Ebb	IS(Mf)9		3.3	Middle	2	1					0.0		4.6		3.0
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		3.3	Middle	2	2							1.0		J.U
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	9:10	3.3	Bottom	3	1	28.8	8.0	21.7	5.9	6.0	4.4		2.2	
TMCLKL	HY/2012/07	2017-09-15	Mid-Ebb	IS(Mf)9	9:10	3.3	Bottom	3	2	28.6	8.0	21.5	6.0	0.0	4.6		3.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Surface	1	1	29.5	7.8	20.9	5.8		4.1		1.6	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Surface	1	2	29.3	7.9	21.1	5.8	5.2	4.3		1.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Middle	2	1	28.2	7.8	26.1	4.6	3.2	7.8	0.2	2.7	2.6
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Middle	2	2	28.1	7.8	26.4	4.6		7.6	9.3	3.4	2.6
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Bottom	3	1	27.8	7.8	28.8	3.7	3.7	15.5		3.5	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)5	16:29	14.0	Bottom	3	2	27.6	7.8	29.0	3.7	5.7	16.7		2.5	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Surface	1	1	30.4	7.6	12.2	5.2		18.4		3.8	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Surface	1	2	30.2	7.5	12.1	5.3	5.2	17.8		4.6	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Middle	2	1	29.7	7.6	15.5	5.2	5.3	16.9	17.0	4.2	A 1
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Middle	2	2	29.4	7.6	15.6	5.3		16.0	17.0	4.8	4.1
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Bottom	3	1	29.5	7.6	16.6	5.1	5.0	16.6		3.2	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	CS(Mf)3(N)	15:09	6.7	Bottom	3	2	29.3	7.6	16.7	5.2	5.2	16.1		3.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood		15:57	6.2	Surface	1	1	29.1	7.8	20.1	6.5		3.0		3.2	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	IS(Mf)16	15:57	6.2	Surface	1	2	28.9	7.9	20.3	6.4	6.2	3.3		2.3	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	IS(Mf)16	15:57	6.2	Middle	2	1	28.9	7.8	21.0	6.1	6.3	3.3	4.0	7.1	5.0
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	IS(Mf)16	15:57	6.2	Middle	2	2	28.8	7.9	21.2	6.0	l l	3.7	4.8	7.4	5.2
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	IS(Mf)16	15:57	6.2	Bottom	3	1	28.6	7.8	22.8	4.8	4.0	7.8		5.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	IS(Mf)16	15:57	6.2	Bottom	3	2	28.5	7.8	22.9	4.9	4.9	7.4		5.7	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood		15:44	5.1	Surface	1	1	29.5	7.8	19.2	6.4		2.0		2.1	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood		15:44	5.1	Surface	1	2	29.3	7.9	19.3	6.4		1.9		2.3	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4a		5.1	Middle	2	1					6.4		2.7		2.5
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4a		5.1	Middle	2	2							3.7		2.5
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood		15:44	5.1	Bottom	3	1	29.2	7.8	19.6	6.2	()	5.5		2.8	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4a	15:44	5.1	Bottom	3	2	29.0	7.9	19.8	6.2	6.2	5.2		2.9	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4	15:39	4.2	Surface	1	1	29.4	7.8	19.5	6.5		2.9		2.2	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4	15:39	4.2	Surface	1	2	29.3	7.9	19.7	6.4		3.1		2.3	
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4		4.2	Middle	2	1					6.5		7.0		2.0
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood	SR4		4.2	Middle	2	2							7.9		2.9
TMCLKL	HY/2012/07	2017-09-15	Mid-Flood		15:39	4.2	Bottom	3	1	29.0	7.8	21.2	5.4	<i></i>	12.4		3.6	
	HY/2012/07		Mid-Flood		15:39	4.2	Bottom	3	2	28.8	7.8	21.4	5.5	5.5	13.2		3.5	
TMCLKL	HY/2012/07		Mid-Flood		15:26	4.1	Surface	1	1	29.4	7.8	19.6	6.5		17.3		6.6	
	HY/2012/07		Mid-Flood		15:26	4.1	Surface	1	2	29.2	7.9	19.8	6.4		16.0		5.3	
TMCLKL	HY/2012/07		Mid-Flood			4.1	Middle	2	1					6.5		77.0		12.6
TMCLKL			Mid-Flood			4.1	Middle	2	2							77.8		13.6
	HY/2012/07		Mid-Flood		15:26	4.1	Bottom	3	1	29.2	7.8	20.2	6.0	6.1	143.7		21.8	
	HY/2012/07		Mid-Flood		15:26	4.1	Bottom	3	2	29.0	7.9	20.4	6.1	6.1	134.0		20.7	
	HY/2012/07		Mid-Flood		15:14	3.7	Surface	1	1	29.4	7.9	21.1	6.6		8.6		8.3	
TMCLKL	HY/2012/07		Mid-Flood	` ′	15:14	3.7	Surface	1	2	29.2	7.9	21.3	6.6		8.7		9.8	
TMCLKL	HY/2012/07		Mid-Flood			3.7	Middle	2	1			-		6.6		14.5		10.2
	HY/2012/07		Mid-Flood	1		3.7	Middle	2	2							14.5		10.3
	HY/2012/07		Mid-Flood	1	15:14	3.7	Bottom	3	1	29.2	7.8	21.8	6.1	6.1	19.8		12.0	
	HY/2012/07		Mid-Flood		15:14	3.7	Bottom	3	2	29.0	7.9	22.0	6.1	6.1	20.9		10.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)5	11:15	10.8	Surface	1	1	29.3	7.9	21.9	5.6		3.1		3.1	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)5	11:15	10.8	Surface	1	2	29.3	7.9	21.9	5.7	5.2	2.9		3.0	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)5	11:15	10.8	Middle	2	1	28.3	7.9	26.1	4.7	5.2	2.7	3.7	3.3	3.5
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)5	11:15	10.8	Middle	2	2	28.4	7.9	25.9	4.7		2.7	3.1	3.6	5.5
TMCLKL			Mid-Ebb	CS(Mf)5	11:15	10.8	Bottom	3	1	27.8	7.9	28.9	4.4	4.4	5.5		4.3	
TMCLKL			Mid-Ebb	CS(Mf)5	11:15	10.8	Bottom	3	2	28.1	7.9	28.6	4.3	7.7	5.2		3.7	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Surface	1	1	29.9	7.8	18.8	5.5		9.3		2.7	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Surface	1	2	30.1	7.8	18.8	5.4	4.9	9.3		2.5	
TMCLKL		2017-09-18	Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Middle	2	1	28.7	7.8	24.3	4.3	4.7	16.8	15.9	2.0	7.4
TMCLKL		2017-09-18	Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Middle	2	2	28.9	7.8	24.3	4.2		16.6	13.7	3.6	7.4
TMCLKL			Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Bottom	3	1	28.8	7.8	25.4	5.1	5.1	21.7		17.4	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	CS(Mf)3(N)	12:36	7.3	Bottom	3	2	29.1	7.8	25.5	5.0	3.1	21.7		16.0	
TMCLKL			Mid-Ebb	IS(Mf)16	11:48	6.2	Surface	1	1	29.3	8.0	21.3	6.3		4.3		4.6	
TMCLKL			Mid-Ebb	IS(Mf)16	11:48	6.2	Surface	1	2	29.4	8.0	21.3	6.3	5.9	4.0		4.8	
TMCLKL		2017-09-18	Mid-Ebb	IS(Mf)16	11:48	6.2	Middle	2	1	29.1	7.9	22.8	5.5	3.7	6.6	5.7	4.2	4.9
TMCLKL			Mid-Ebb	IS(Mf)16	11:48	6.2	Middle	2	2	29.3	7.9	22.5	5.6		6.0	3.1	4.5	т.)
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	IS(Mf)16	11:48	6.2	Bottom	3	1	28.6	7.9	24.5	4.9	4.9	6.7		6.0	
TMCLKL		2017-09-18	Mid-Ebb	IS(Mf)16	11:48	6.2	Bottom	3	2	28.7	7.9	24.4	4.8	7.7	6.4		5.0	
TMCLKL			Mid-Ebb	SR4a	11:58	5.1	Surface	1	1	29.4	8.0	21.0	5.8		4.9		5.1	
TMCLKL			Mid-Ebb	SR4a	11:58	5.1	Surface	1	2	29.6	7.9	20.8	5.9	5.9	4.5		5.5	
TMCLKL			Mid-Ebb	SR4a		5.1	Middle	2	1					3.7		7.0		5.8
TMCLKL	HY/2012/07	-	Mid-Ebb	SR4a		5.1	Middle	2	2							7.0		5.0
TMCLKL			Mid-Ebb	SR4a	11:58	5.1	Bottom	3	1	28.9	7.8	23.1	4.8	4.7	9.9		5.8	
TMCLKL		2017-09-18	Mid-Ebb	SR4a	11:58	5.1	Bottom	3	2	29.1	7.8	22.8	4.6	7.7	8.7		6.8	
TMCLKL			Mid-Ebb	SR4	12:03	4.6	Surface	1	1	29.6	8.0	20.6	6.3		4.5		5.8	
TMCLKL			Mid-Ebb	SR4	12:03	4.6	Surface	1	2	29.7	7.9	20.4	6.4	6.4	4.0		6.6	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	SR4		4.6	Middle	2	1					0.1		7.3		6.1
TMCLKL		2017-09-18	Mid-Ebb	SR4		4.6	Middle	2	2							7.5		0.1
				SR4	12:03	4.6	Bottom	3	1	29.0	7.8	22.7	4.9	4.9	10.7		6.4	
TMCLKL		2017-09-18	Mid-Ebb	SR4	12:03	4.6	Bottom	3	2	29.2	7.8	22.5	4.8	т./	10.0		5.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	12:15	4.1	Surface	1	1	29.8	8.1	20.2	7.8		3.0		3.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	12:15	4.1	Surface	1	2	30.0	8.1	20.0	7.9	7.9	2.5		3.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		4.1	Middle	2	1					,.,		5.9		3.3
TMCLKL		2017-09-18	Mid-Ebb	IS8		4.1	Middle	2	2							3.7		J . J
TMCLKL		 	Mid-Ebb	IS8	12:15	4.1	Bottom	3	1	28.9	7.9	23.5	5.1	5.1	9.5		3.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	12:15	4.1	Bottom	3	2	29.1	7.9	23.3	5.0	5.1	8.7		3.7	
TMCLKL			Mid-Ebb	IS(Mf)9	12:24	3.3	Surface	1	1	29.8	8.1	19.7	7.9		3.1		3.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	3.3	Surface	1	2	29.9	8.1	19.5	8.0	8.0	2.8		2.3	
TMCLKL	+		Mid-Ebb	IS(Mf)9		3.3	Middle	2	1					0.0		3.2		3.3
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		3.3	Middle	2	2							J.L		J.J
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	3.3	Bottom	3	1	29.3	8.0	21.3	7.0	7.0	3.5		3.5	
TMCLKL	HY/2012/07	2017-09-18	Mid-Ebb	IS(Mf)9	12:24	3.3	Bottom	3	2	29.6	7.9	21.1	6.9	7.0	3.2		3.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Surface	1	1	28.8	7.9	24.3	4.9		4.5		4.3	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Surface	1	2	29.0	7.9	24.1	5.0	4.9	4.1		4.5	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Middle	2	1	28.4	7.9	27.1	4.8	4.9	5.8	6.1	4.5	5.5
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Middle	2	2	28.5	7.9	26.9	4.8		5.2	6.4	5.5	3.3
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Bottom	3	1	28.1	7.9	27.9	4.4	4.4	9.5		6.7	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)5	18:38	10.3	Bottom	3	2	28.3	7.9	27.6	4.3	4.4	9.0		7.4	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Surface	1	1	30.1	7.7	16.6	5.7		16.1		8.7	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Surface	1	2	30.4	7.9	16.6	5.7	5.4	16.1		9.0	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Middle	2	1	29.6	7.7	19.3	5.1	3.4	18.8	20.5	8.5	0.5
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Middle	2	2	29.9	7.9	19.3	5.0		18.8	20.3	9.3	8.5
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Bottom	3	1	29.5	7.7	20.1	5.2	5.0	26.6		7.7	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	CS(Mf)3(N)	17:22	6.4	Bottom	3	2	29.7	7.9	20.1	5.1	5.2	26.6		7.5	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood		18:04	5.7	Surface	1	1	29.4	8.1	22.1	7.3		4.1		5.9	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	IS(Mf)16	18:04	5.7	Surface	1	2	29.6	8.0	21.9	7.4	7.4	3.7		5.8	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	IS(Mf)16		5.7	Middle	2	1					7.4		7.0		7.0
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	IS(Mf)16		5.7	Middle	2	2							7.9		7.9
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	IS(Mf)16	18:04	5.7	Bottom	3	1	29.0	7.9	23.4	5.4	5.4	12.2		9.4	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	IS(Mf)16	18:04	5.7	Bottom	3	2	29.2	7.9	23.2	5.4	5.4	11.5		10.5	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4a	17:51	3.3	Surface	1	1	29.3	8.0	22.4	6.1		11.1		13.3	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood		17:51	3.3	Surface	1	2	29.4	7.9	22.2	6.1	C 1	10.5		13.0	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4a		3.3	Middle	2	1					6.1		12.6		15.6
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4a		3.3	Middle	2	2							13.6		15.6
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood		17:51	3.3	Bottom	3	1	29.3	8.0	22.6	6.1	<i>C</i> 1	17.0		18.3	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4a	17:51	3.3	Bottom	3	2	29.4	7.9	22.4	6.0	6.1	15.9		17.8	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4	17:46	3.4	Surface	1	1	29.3	8.0	22.3	6.8		15.6		23.9	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4	17:46	3.4	Surface	1	2	29.4	8.0	22.1	6.7	6.0	14.4		22.6	
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood			3.4	Middle	2	1					6.8		140		22.7
TMCLKL	HY/2012/07	2017-09-18	Mid-Flood	SR4		3.4	Middle	2	2					l l		14.8		23.7
	HY/2012/07		Mid-Flood		17:46	3.4	Bottom	3	1	29.2	8.0	22.4	6.6		14.7		23.4	
	HY/2012/07		Mid-Flood		17:46	3.4	Bottom	3	2	29.4	7.9	22.2	6.6	6.6	14.6		24.7	
	HY/2012/07		Mid-Flood		17:35	3.7	Surface	1	1	29.4	8.0	22.3	6.9		13.7		16.8	
	HY/2012/07		Mid-Flood		17:35	3.7	Surface	1	2	29.5	8.0	22.0	6.9		14.7		17.1	
	HY/2012/07		Mid-Flood			3.7	Middle	2	1	-		-		6.9		15.0		20.2
TMCLKL	HY/2012/07		Mid-Flood			3.7	Middle	2	2							15.3		20.2
	HY/2012/07		Mid-Flood		17:35	3.7	Bottom	3	1	29.3	8.0	22.4	6.8	6.0	17.4		22.6	
	HY/2012/07		Mid-Flood		17:35	3.7	Bottom	3	2	29.5	8.0	22.1	6.8	6.8	15.4		24.1	
	HY/2012/07		Mid-Flood			2.8	Surface	1	1						•			
	HY/2012/07		Mid-Flood	` '		2.8	Surface	1	2					0.6				
	HY/2012/07		Mid-Flood		17:25	2.8	Middle	2	1	29.8	8.1	21.8	8.6	8.6	7.6	7.2	10.2	10.1
	HY/2012/07		Mid-Flood		17:25	2.8	Middle	2	2	29.9	8.1	21.6	8.5	 	6.7	7.2	10.0	10.1
	HY/2012/07		Mid-Flood			2.8	Bottom	3	1	— ·	1							
	HY/2012/07		Mid-Flood			2.8	Bottom	3	2					†				

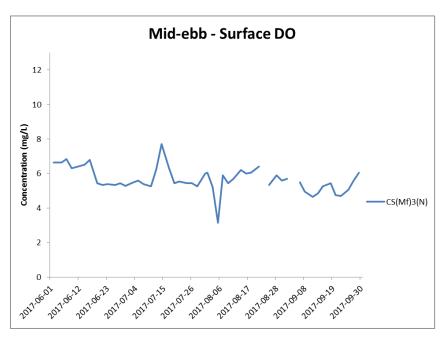
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	11.3	Surface	1	1	29.4	7.9	24.1	5.0		4.2		5.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	11.3	Surface	1	2	29.3	7.9	24.3	5.0	4.9	5.0		6.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	11.3	Middle	2	1	29.0	7.9	24.9	4.7	4.9	6.7	6.3	6.0	6.6
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)5	12:16	11.3	Middle	2	2	28.8	7.9	25.1	4.7		7.3	0.3	7.4	0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	11.3	Bottom	3	1	28.9	7.9	25.0	4.7	4.7	6.9		6.2	
TMCLKL	-	 	Mid-Ebb	CS(Mf)5	12:16	11.3	Bottom	3	2	28.8	7.9	25.2	4.7	4.7	7.6		7.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Surface	1	1	29.7	7.7	20.8	4.7		15.2		5.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Surface	1	2	29.4	7.7	20.8	4.8	4.7	14.1		4.5	
TMCLKL		2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Middle	2	1	29.4	7.8	21.9	4.6	7.7	18.2	19.0	5.2	6.4
TMCLKL		2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Middle	2	2	29.1	7.8	21.8	4.7		17.4	17.0	5.9	0.4
TMCLKL			Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Bottom	3	1	29.3	7.8	23.0	4.7	4.8	24.3		7.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	6.8	Bottom	3	2	29.0	7.8	22.8	4.8	7.0	24.6		9.3	
TMCLKL		1	Mid-Ebb	IS(Mf)16	12:54	6.3	Surface	1	1	29.3	7.9	23.0	5.7		7.7		5.7	
TMCLKL		1	Mid-Ebb	IS(Mf)16	12:54	6.3	Surface	1	2	29.2	7.9	23.2	5.7	5.5	8.3		4.9	
TMCLKL		2017-09-20	Mid-Ebb	IS(Mf)16	12:54	6.3	Middle	2	1	29.1	7.9	23.7	5.2	3.5	9.5	10.1	4.3	5.5
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	6.3	Middle	2	2	29.0	7.9	24.0	5.2		10.3	10.1	5.4	5.5
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	6.3	Bottom	3	1	29.0	7.9	24.9	4.9	5.0	12.0		6.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	6.3	Bottom	3	2	28.8	7.9	25.2	5.0	5.0	12.7		6.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	4.9	Surface	1	1	29.3	7.9	22.8	5.4		12.0		13.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	4.9	Surface	1	2	29.2	7.9	23.1	5.5	5.5	12.4		14.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a		4.9	Middle	2	1					3.5		12.1		14.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a		4.9	Middle	2	2							12.1		14.0
TMCLKL		2017-09-20	Mid-Ebb	SR4a	13:12	4.9	Bottom	3	1	29.3	7.9	22.9	5.4	5.5	11.8		13.4	
TMCLKL		2017-09-20	Mid-Ebb	SR4a	13:12	4.9	Bottom	3	2	29.1	7.9	23.1	5.5	5.5	12.0		14.9	
TMCLKL			Mid-Ebb	SR4	13:18	4.5	Surface	1	1	29.6	7.9	22.4	5.5		6.0		4.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	4.5	Surface	1	2	29.4	7.9	22.6	5.5	5.5	6.4		4.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4		4.5	Middle	2	1					5.5		8.7		5.5
TMCLKL		2017-09-20	Mid-Ebb	SR4		4.5	Middle	2	2							0.7		5.5
TMCLKL	HY/2012/07			SR4	13:18	4.5	Bottom	3	1	29.3	7.9	22.9	5.5	5.6	11.1		6.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	4.5	Bottom	3	2	29.1	7.9	23.2	5.6	5.6	11.1		6.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	3.9	Surface	1	1	29.6	7.9	22.8	5.9	ļ [6.0		6.7	
TMCLKL	HY/2012/07	1	Mid-Ebb	IS8	13:29	3.9	Surface	1	2	29.4	7.9	23.0	6.0	6.0	6.2		5.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8		3.9	Middle	2	1					0.0		7.1		6.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8		3.9	Middle	2	2							/.1		0.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	3.9	Bottom	3	1	29.4	7.9	23.0	5.8	5.9	8.0		7.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	3.9	Bottom	3	2	29.2	7.9	23.2	5.9	5.9	8.1		7.0	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	3.6	Surface	1	1	29.6	7.9	22.8	5.9		4.1		5.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	3.6	Surface	1	2	29.4	7.9	23.0	5.9	5.0	4.5		3.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		3.6	Middle	2	1					5.9		50		60
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		3.6	Middle	2	2							5.8		6.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	3.6	Bottom	3	1	29.4	7.9	23.0	5.9	5.0	7.0		8.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	3.6	Bottom	3	2	29.2	7.9	23.2	5.9	5.9	7.5		6.6	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Surface	1	1	29.4	7.9	23.2	4.9		4.7		6.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Surface	1	2	29.2	7.9	23.4	4.9	4.8	5.1		4.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Middle	2	1	29.0	7.9	25.5	4.6	4.0	10.5	11 1	8.1	0.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Middle	2	2	28.8	7.9	25.8	4.6		11.0	11.1	8.1	9.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Bottom	3	1	28.9	7.9	25.9	4.5	4.5	17.2		14.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	10.6	Bottom	3	2	28.7	7.9	26.2	4.5	4.3	18.2		15.0	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Surface	1	1	29.9	7.6	18.4	4.8		16.2		5.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Surface	1	2	30.1	7.6	18.3	4.7	4.7	17.0		4.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Middle	2	1	29.5	7.7	20.4	4.7	4.7	19.1	10.0	5.2	6.1
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Middle	2	2	29.8	7.7	20.4	4.6		20.0	19.0	5.9	6.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Bottom	3	1	29.4	7.7	21.1	4.6	16	20.5		7.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	6.8	Bottom	3	2	29.7	7.7	21.1	4.5	4.6	21.3		9.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	6.1	Surface	1	1	29.6	7.8	21.7	5.0		6.2		8.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	6.1	Surface	1	2	29.4	7.8	21.9	5.0	. 1	6.8		9.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	6.1	Middle	2	1	29.6	7.9	22.4	5.1	5.1	12.4	10.0	8.7	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	6.1	Middle	2	2	29.4	7.9	22.6	5.2	i i	13.2	10.8	7.9	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood		19:06	6.1	Bottom	3	1	29.6	7.9	22.8	5.3	5.0	12.6		16.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	6.1	Bottom	3	2	29.4	7.9	23.0	5.3	5.3	13.8		13.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	4.0	Surface	1	1	29.7	7.8	21.8	5.3		10.4		10.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood		18:53	4.0	Surface	1	2	29.5	7.9	22.0	5.3	5.0	10.4		8.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a		4.0	Middle	2	1					5.3		10.0		0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood			4.0	Middle	2	2					i i		12.3		9.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood		18:53	4.0	Bottom	3	1	29.7	7.8	22.0	5.3	<i>5.</i> 4	14.2		9.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	4.0	Bottom	3	2	29.5	7.9	22.2	5.4	5.4	14.3		11.0	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	3.6	Surface	1	1	29.6	7.9	22.6	5.3		12.5		13.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood		18:47	3.6	Surface	1	2	29.4	7.9	22.9	5.3	5.0	13.2		15.0	
TMCLKL		2017-09-20	Mid-Flood			3.6	Middle	2	1					5.3		10.0		16.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4		3.6	Middle	2	2					i I		13.0		16.9
	HY/2012/07		Mid-Flood		18:47	3.6	Bottom	3	1	29.5	7.9	22.7	5.3	5.4	13.2		18.9	
	HY/2012/07		Mid-Flood		18:47	3.6	Bottom	3	2	29.4	7.9	22.9	5.4	5.4	13.0		19.9	
	HY/2012/07		Mid-Flood			2.7	Surface	1	1									
	HY/2012/07		Mid-Flood			2.7	Surface	1	2					,				
	HY/2012/07		Mid-Flood		18:30	2.7	Middle	2	1	29.6	7.9	22.8	5.5	5.5	22.3	22.7	19.2	10.7
TMCLKL	HY/2012/07		Mid-Flood		18:30	2.7	Middle	2	2	29.4	7.9	23.0	5.5		25.1	23.7	20.2	19.7
	HY/2012/07		Mid-Flood			2.7	Bottom	3	1				1					
	HY/2012/07		Mid-Flood			2.7	Bottom	3	2									
	HY/2012/07		Mid-Flood			2.6	Surface	1	1									
	HY/2012/07		Mid-Flood	` ′		2.6	Surface	1	2									
	HY/2012/07		Mid-Flood		18:21	2.6	Middle	2.	1	29.7	7.9	23.0	6.1	6.1	12.8	40.	15.8	440
	HY/2012/07		Mid-Flood		18:21	2.6	Middle	2.	2	29.5	8.0	23.2	6.1	†	13.4	13.1	14.0	14.9
	HY/2012/07		Mid-Flood		13.21	2.6	Bottom	3	1	-,	2.0	25.2	5.1		2011		2 110	
	HY/2012/07		Mid-Flood			2.6	Bottom	3	2					†				

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Surface	1	1	30.1	7.9	22.1	5.1		5.9		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Surface	1	2	30.3	7.8	21.9	5.1	4.8	6.2		6.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Middle	2	1	29.2	7.9	24.1	4.5	4.0	9.8	11 7	6.8	0.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Middle	2	2	29.3	7.8	23.9	4.6		10.6	11.7	7.2	8.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Bottom	3	1	29.1	7.9	24.3	4.6	4.6	19.1		13.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	13.2	Bottom	3	2	29.3	7.8	24.0	4.5	4.0	18.6		11.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Surface	1	1	29.6	7.9	21.6	4.7		8.7		5.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Surface	1	2	29.9	7.9	21.5	4.7	47	8.8		4.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Middle	2	1	29.2	8.0	22.7	4.8	4.7	12.0	10.0	7.5	11 /
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Middle	2	2	29.5	7.9	22.6	4.7		12.4	12.8	7.4	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Bottom	3	1	29.1	8.0	24.1	4.8	4.0	17.0		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	6.9	Bottom	3	2	29.4	8.0	24.1	4.7	4.8	17.8		20.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	8.9	Surface	1	1	29.5	7.8	22.8	5.2		6.1		7.0	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	8.9	Surface	1	2	29.7	7.8	22.6	5.3	5.0	6.5		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	8.9	Middle	2	1	29.4	7.8	22.9	5.0	5.2	7.5	7.1	6.6	0.0
TMCLKL	HY/2012/07	1	Mid-Ebb	IS(Mf)16	14:08	8.9	Middle	2	2	29.5	7.8	22.7	5.1		7.8	7.1	5.8	8.0
TMCLKL			Mid-Ebb	IS(Mf)16	14:08	8.9	Bottom	3	1	29.2	7.9	24.0	4.6	1.6	6.9		11.4	
TMCLKL		2017-09-22	Mid-Ebb	IS(Mf)16	14:08	8.9	Bottom	3	2	29.3	7.8	23.7	4.6	4.6	7.7		11.4	
TMCLKL			Mid-Ebb	SR4a	13:51	5.6	Surface	1	1	29.3	7.8	22.7	4.8		8.0		7.3	
TMCLKL		1	Mid-Ebb	SR4a	13:51	5.6	Surface	1	2	29.5	7.8	22.5	4.8	4.0	8.8		6.8	
TMCLKL	HY/2012/07	1	Mid-Ebb	SR4a		5.6	Middle	2	1					4.8		0.2		0.0
TMCLKL	_	2017-09-22	Mid-Ebb	SR4a		5.6	Middle	2	2							9.3		8.0
TMCLKL	_	2017-09-22	Mid-Ebb	SR4a	13:51	5.6	Bottom	3	1	29.3	7.8	23.0	4.8	4.0	10.0		8.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	5.6	Bottom	3	2	29.5	7.8	22.8	4.8	4.8	10.5		9.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	5.5	Surface	1	1	29.4	7.8	22.4	4.8		11.4		6.5	
TMCLKL	HY/2012/07	1	Mid-Ebb	SR4	13:45	5.5	Surface	1	2	29.6	7.8	22.2	4.8	4.0	11.7		7.8	
TMCLKL			Mid-Ebb	SR4		5.5	Middle	2	1					4.8		11.0		10.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4		5.5	Middle	2	2					i i		11.8		10.2
	HY/2012/07		Mid-Ebb		13:45	5.5	Bottom	3	1	29.3	7.8	23.0	4.8	4.0	11.9		12.7	
	HY/2012/07			SR4	13:45	5.5	Bottom	3	2	29.5	7.8	22.8	4.8	4.8	12.3		13.9	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	4.9	Surface	1	1	29.6	7.8	22.5	5.1		6.0		5.3	
	HY/2012/07	i	Mid-Ebb	IS8	13:35	4.9	Surface	1	2	29.8	7.8	22.3	5.2		6.7		5.4	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		4.9	Middle	2	1	- 				5.2		10.0		0.7
TMCLKL	HY/2012/07			IS8		4.9	Middle	2	2							10.8		8.7
	HY/2012/07			IS8	13:35	4.9	Bottom	3	1	29.2	7.8	23.2	5.0		15.0		11.4	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	4.9	Bottom	3	2	29.4	7.8	22.9	5.0	5.0	15.6		12.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	4.7	Surface	1	1	29.8	7.8	22.5	5.3		4.4		4.5	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	4.7	Surface	1	2	30.0	7.8	22.3	5.3	† <u> </u>	5.1		4.0	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12.22	4.7	Middle	2.	1	20.0			2.0	5.3	5.1	5 2		
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9		4.7	Middle	2.	2					†		7.8		4.2
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9	13:22	4.7	Bottom	3	1	29.2	7.8	23.1	5.1		10.8		4.7	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	4.7	Bottom	3	2	29.4	7.8	22.8	5.1	5.1	10.9		3.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Surface	1	1	29.5	7.8	21.5	4.9		5.5		5.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Surface	1	2	29.3	7.8	21.7	4.9	4.8	5.9		5.6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Middle	2	1	29.5	7.9	22.7	4.6	4.0	6.9	0.0	5.8	67
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Middle	2	2	29.3	7.9	22.9	4.6		7.3	9.8	5.1	6.7
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Bottom	3	1	29.4	7.9	23.5	4.5	4.5	15.5		9.6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	7:11	8.7	Bottom	3	2	29.2	7.9	23.8	4.5	4.3	17.5		8.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Surface	1	1	29.3	7.9	19.8	4.7		14.1		5.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Surface	1	2	29.6	7.8	19.7	4.6	47	15.6		4.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Middle	2	1	29.4	7.9	20.5	4.7	4.7	22.2	22.1	7.5	11 /
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Middle	2	2	29.6	7.8	20.5	4.6		22.6	22.1	7.4	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Bottom	3	1	29.4	7.9	20.9	4.7	4.7	29.5		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	8:36	7.1	Bottom	3	2	29.6	7.9	20.9	4.6	4.7	28.7		20.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood		7:58	6.3	Surface	1	1	29.5	7.8	22.2	4.7		7.1		6.1	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	7:58	6.3	Surface	1	2	29.3	7.8	22.4	4.7	4.7	8.0		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	7:58	6.3	Middle	2	1	29.4	7.8	22.4	4.7	4.7	8.3	0.0	8.8	0.0
TMCLKL	HY/2012/07		Mid-Flood		7:58	6.3	Middle	2	2	29.3	7.8	22.7	4.7		8.5	8.0	9.8	8.2
TMCLKL			Mid-Flood		7:58	6.3	Bottom	3	1	29.4	7.8	22.5	4.7	4.7	8.2		8.8	
TMCLKL		2017-09-22	Mid-Flood		7:58	6.3	Bottom	3	2	29.2	7.8	22.7	4.7	4.7	8.0		9.5	
TMCLKL			Mid-Flood		8:11	4.5	Surface	1	1	29.4	7.8	21.5	4.8		6.6		5.9	
TMCLKL			Mid-Flood		8:11	4.5	Surface	1	2	29.2	7.8	21.8	4.8	4.0	7.2		7.5	
TMCLKL	HY/2012/07		Mid-Flood	+		4.5	Middle	2	1					4.8		7.5		6.0
TMCLKL		2017-09-22	Mid-Flood			4.5	Middle	2	2							7.5		6.8
TMCLKL			Mid-Flood		8:11	4.5	Bottom	3	1	29.4	7.8	21.6	4.8	4.0	7.8		7.4	
TMCLKL			Mid-Flood		8:11	4.5	Bottom	3	2	29.3	7.8	21.8	4.8	4.8	8.4		6.4	
TMCLKL			Mid-Flood		8:16	4.4	Surface	1	1	29.4	7.8	21.4	4.9		6.8		7.3	
TMCLKL	HY/2012/07		Mid-Flood		8:16	4.4	Surface	1	2	29.2	7.8	21.6	4.9	4.0	7.2		8.0	
TMCLKL			Mid-Flood			4.4	Middle	2	1					4.9		10.0		7.0
TMCLKL			Mid-Flood	SR4		4.4	Middle	2	2							10.3		7.3
	HY/2012/07		Mid-Flood		8:16	4.4	Bottom	3	1	29.4	7.8	21.8	4.8	4.0	12.7		7.0	
	HY/2012/07		Mid-Flood		8:16	4.4	Bottom	3	2	29.2	7.8	22.1	4.8	4.8	14.5		6.8	
TMCLKL	HY/2012/07		Mid-Flood	i e	8:28	4.1	Surface	1	1	29.4	7.8	22.0	4.7		10.8		7.7	
	HY/2012/07		Mid-Flood		8:28	4.1	Surface	1	2	29.2	7.8	22.2	4.7		11.6		6.5	
TMCLKL	HY/2012/07		Mid-Flood			4.1	Middle	2	1	<u> </u>				4.7		110		
TMCLKL	HY/2012/07		Mid-Flood			4.1	Middle	2	2					 		14.0		8.6
	HY/2012/07		Mid-Flood		8:28	4.1	Bottom	3	1	29.4	7.8	22.5	4.7		16.2		9.9	
	HY/2012/07		Mid-Flood		8:28	4.1	Bottom	3	2	29.2	7.8	22.7	4.7	4.7	17.4		10.2	
	HY/2012/07		Mid-Flood		8:37	4.0	Surface	1	1	29.3	7.8	22.4	4.9		6.2		6.0	
TMCLKL	HY/2012/07		Mid-Flood	` ′	8:37	4.0	Surface	1	2	29.1	7.8	22.6	4.9	1	6.5		6.1	
TMCLKL	HY/2012/07		Mid-Flood		5.57	4.0	Middle	2	1	->			,	4.9	5.5	5 2	5.1	
	HY/2012/07		Mid-Flood			4.0	Middle	2	2					†		7.9		7.0
	HY/2012/07		Mid-Flood	1	8:37	4.0	Bottom	3	1	29.3	7.8	23.2	4.7		9.2		7.8	
	HY/2012/07		Mid-Flood		8:37	4.0	Bottom	3	2.	29.2	7.8	23.4	4.7	4.7	9.8		7.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Surface	1	1	29.9	7.9	23.6	5.7		4.1		5.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Surface	1	2	29.7	7.9	23.8	5.6	5.3	3.9		4.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Middle	2	1	29.2	7.9	25.4	4.9	5.5	2.3	3.7	6.2	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Middle	2	2	29.1	7.9	25.6	4.8		3.3	3.1	7.4	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Bottom	3	1	29.2	7.9	26.5	4.7	4.7	4.3		10.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	10.5	Bottom	3	2	29.0	7.9	26.7	4.7	4.7	4.4		8.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Surface	1	1	29.7	7.8	20.9	5.0		6.3		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Surface	1	2	29.5	7.9	20.8	5.1	5.0	5.9		4.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Middle	2	1	29.6	7.9	22.5	5.2	5.2	7.5	0.0	10.8	0.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Middle	2	2	29.3	8.0	22.5	5.3		6.1	8.0	9.2	9.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Bottom	3	1	29.4	7.9	24.1	5.2	5.2	12.0		15.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	6.8	Bottom	3	2	29.2	8.0	24.1	5.3	5.3	10.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	5.9	Surface	1	1	29.7	7.9	23.5	5.5		6.8		7.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	5.9	Surface	1	2	29.5	7.9	23.8	5.4	5.5	7.0		6.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		5.9	Middle	2	1					5.5		()		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		5.9	Middle	2	2							6.3		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	5.9	Bottom	3	1	29.2	7.9	24.6	4.9	4.0	6.3		8.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	5.9	Bottom	3	2	29.1	7.9	24.8	4.9	4.9	5.2		7.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	5.2	Surface	1	1	29.5	7.9	23.7	5.1		8.3		13.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	5.2	Surface	1	2	29.3	7.9	24.0	5.1	<i>5</i> 1	10.1		14.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		5.2	Middle	2	1					5.1		10.0		10.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		5.2	Middle	2	2							10.8		13.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	5.2	Bottom	3	1	29.5	7.9	23.8	5.0	5.0	11.9		12.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	5.2	Bottom	3	2	29.3	7.9	24.0	5.0	5.0	12.8		13.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	4.1	Surface	1	1	29.7	7.9	23.5	5.3		5.7		13.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	4.1	Surface	1	2	29.5	7.9	23.7	5.2	5.2	6.2		15.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		4.1	Middle	2	1					5.3		0.6		15.0
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		4.1	Middle	2	2							8.6		15.2
	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	4.1	Bottom	3	1	29.4	7.8	23.8	4.8	4.0	10.5		16.2	
	HY/2012/07			SR4	15:13	4.1	Bottom	3	2	29.3	7.8	24.1	4.8	4.8	12.1		15.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	4.1	Surface	1	1	29.7	7.9	23.5	5.6		6.9		10.7	
TMCLKL	HY/2012/07	 	Mid-Ebb	IS8	15:05	4.1	Surface	1	2	29.5	7.9	23.7	5.5		8.3		11.4	
TMCLKL	HY/2012/07		Mid-Ebb	IS8		4.1	Middle	2	1					5.6		0.2		12.0
TMCLKL	HY/2012/07			IS8		4.1	Middle	2	2]		8.3		13.0
	HY/2012/07			IS8	15:05	4.1	Bottom	3	1	29.6	7.9	23.6	5.5	5.7	8.7		15.0	
	HY/2012/07		Mid-Ebb	IS8	15:05	4.1	Bottom	3	2	29.5	7.9	23.8	5.5	5.5	9.2		14.7	
	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	3.9	Surface	1	1	29.8	7.9	23.6	5.8		4.3		12.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	3.9	Surface	1	2	29.6	7.9	23.8	5.7	l	5.0		12.2	
	HY/2012/07		Mid-Ebb	IS(Mf)9		3.9	Middle	2	1			-		5.8	-	C 1		10.0
	HY/2012/07		Mid-Ebb	IS(Mf)9		3.9	Middle	2	2							6.4		12.2
	HY/2012/07	i i	Mid-Ebb	IS(Mf)9	14:56	3.9	Bottom	3	1	29.7	7.9	23.6	5.6	5.6	7.6		11.0	
	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	3.9	Bottom	3	2	29.5	7.9	23.9	5.6	5.6	8.6		12.9	


Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	10.2	Surface	1	1	29.4	7.9	23.2	5.5		4.6		11.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	10.2	Surface	1	2	29.2	7.9	23.4	5.4	5.2	4.4		10.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	10.2	Middle	2	1	29.2	7.9	24.2	5.0	5.2	5.5	6.8	13.2	13.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	10.2	Middle	2	2	29.0	7.9	24.5	5.0		5.3	0.0	12.1	13.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	10.2	Bottom	3	1	29.2	7.9	24.9	4.8	4.8	10.9		17.4	
TMCLKL	HY/2012/07		Mid-Flood		09:35	10.2	Bottom	3	2	29.0	7.9	25.2	4.8	4.0	10.3		17.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	7.1	Surface	1	1	29.9	7.8	19.0	5.2		6.4		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	7.1	Surface	1	2	29.7	7.9	19.0	5.3	5.1	6.1		4.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	7.1	Middle	2	1	29.6	7.8	19.9	4.9	3.1	6.6	7.3	10.8	9.5
TMCLKL	+	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	7.1	Middle	2	2	29.3	7.8	19.9	5.0		5.7	1.5	9.2	9.3
TMCLKL	HY/2012/07			CS(Mf)3(N)	10:51	7.1	Bottom	3	1	29.5	7.8	21.4	4.8	4.9	10.0		15.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	7.1	Bottom	3	2	29.3	7.9	21.3	4.9	4.7	9.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	5.6	Surface	1	1	29.4	7.9	23.3	5.4		5.1		6.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	5.6	Surface	1	2	29.2	7.9	23.5	5.4	5.4	5.0		5.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		5.6	Middle	2	1					3.4		5.5		6.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		5.6	Middle	2	2							J . J		0.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	5.6	Bottom	3	1	29.2	7.9	23.7	5.2	5.2	5.9		6.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	5.6	Bottom	3	2	29.1	7.9	24.0	5.2	5.2	5.9		7.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a	10:14	4.6	Surface	1	1	29.4	7.9	23.3	5.2		11.8		14.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a	10:14	4.6	Surface	1	2	29.2	7.9	23.5	5.2	5.2	11.6		14.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a		4.6	Middle	2	1					3.2		12.0		14.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a		4.6	Middle	2	2							12.0		14.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a	10:14	4.6	Bottom	3	1	29.4	7.9	23.3	5.2	5.2	12.5		14.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4a	10:14	4.6	Bottom	3	2	29.2	7.9	23.6	5.2	5.2	12.1		13.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4	10:19	3.8	Surface	1	1	29.4	7.9	23.7	5.1		15.3		21.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4	10:19	3.8	Surface	1	2	29.2	7.9	23.9	5.0	5.1	15.8		21.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4		3.8	Middle	2	1					5.1		15.0		21.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4		3.8	Middle	2	2							13.0		21.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4	10:19	3.8	Bottom	3	1	29.4	7.9	23.9	5.0	5.0	14.2		21.8	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	SR4	10:19	3.8	Bottom	3	2	29.2	7.9	24.1	5.0	5.0	14.6		21.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS8	10:31	3.8	Surface	1	1	29.3	7.9	23.9	5.0		21.8		20.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS8	10:31	3.8	Surface	1	2	29.1	7.9	24.1	5.0	5.0	22.2		20.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS8		3.8	Middle	2	1					5.0		24.0		22.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS8		3.8	Middle	2	2							24.0		23.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS8	10:31	3.8	Bottom	3	1	29.3	7.9	23.9	5.0	5.0	26.0		26.4	
TMCLKL	HY/2012/07		Mid-Flood		10:31	3.8	Bottom	3	2	29.1	7.9	24.2	5.0	5.0	26.0		27.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)9	10:38	3.2	Surface	1	1	29.3	7.9	23.5	5.6		6.7		10.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)9	10:38	3.2	Surface	1	2	29.1	7.9	23.7	5.6	5.0	6.6		11.7	
TMCLKL	HY/2012/07		Mid-Flood			3.2	Middle	2	1					5.6		75		11 1
TMCLKL	HY/2012/07		Mid-Flood			3.2	Middle	2	2					<u> </u>		7.5		11.1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)9	10:38	3.2	Bottom	3	1	29.3	7.9	23.7	5.5	5.5	8.3		11.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)9	10:38	3.2	Bottom	3	2	29.1	7.9	23.9	5.5	5.5	8.5		10.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Surface	1	1	30.9	7.9	18.0	6.2		3.4		3.0	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Surface	1	2	30.8	7.9	18.2	6.1	5.6	2.9		2.8	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Middle	2	1	30.0	7.9	22.9	5.0	5.0	2.7	2.9	3.1	2.8
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Middle	2	2	29.8	7.9	23.1	5.0		2.7	2.9	2.4	2.0
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Bottom	3	1	29.7	7.9	25.4	5.0	5.0	3.1		2.2	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)5	17:46	10.8	Bottom	3	2	29.5	7.9	25.8	5.0	5.0	2.6		3.3	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Surface	1	1	30.6	7.7	15.1	5.5		7.4		1.2	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Surface	1	2	30.9	7.8	15.2	5.7	5.4	6.9		1.1	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Middle	2	1	29.8	7.7	19.2	5.2	3.4	11.8	12.0	2.9	2.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Middle	2	2	30.1	7.9	19.0	5.3		12.8	13.2	2.1	2.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Bottom	3	1	29.5	7.8	22.0	5.0	5 1	20.4		4.8	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	CS(Mf)3(N)	16:35	7.4	Bottom	3	2	29.8	7.9	22.1	5.2	5.1	19.7		3.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	IS(Mf)16	17:20	5.7	Surface	1	1	31.1	7.9	19.1	6.4		5.4		3.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	IS(Mf)16	17:20	5.7	Surface	1	2	30.9	7.9	19.3	6.3	C 4	5.0		3.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	IS(Mf)16		5.7	Middle	2	1					6.4		7.0		2.0
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	IS(Mf)16		5.7	Middle	2	2					i i		7.8		2.9
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	IS(Mf)16	17:20	5.7	Bottom	3	1	30.4	7.9	21.1	5.5	T. C	10.4		2.1	
TMCLKL	1	2017-09-27	Mid-Ebb	IS(Mf)16	17:20	5.7	Bottom	3	2	30.2	7.9	21.4	5.6	5.6	10.4		2.6	
TMCLKL		2017-09-27	Mid-Ebb	SR4a	17:09	4.9	Surface	1	1	30.7	7.9	19.6	5.5		8.8		6.8	
TMCLKL		1	Mid-Ebb	SR4a	17:09	4.9	Surface	1	2	30.5	7.9	19.8	5.6		8.5		8.1	
TMCLKL	HY/2012/07	1	Mid-Ebb	SR4a		4.9	Middle	2	1					5.6		10.6		7.4
TMCLKL		2017-09-27	Mid-Ebb	SR4a		4.9	Middle	2	2							10.6		7.4
TMCLKL		2017-09-27	Mid-Ebb	SR4a	17:09	4.9	Bottom	3	1	30.1	7.9	21.2	5.0	5.0	12.8		7.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Ebb	SR4a	17:09	4.9	Bottom	3	2	29.9	7.8	21.4	4.9	5.0	12.3		7.0	
TMCLKL			Mid-Ebb	SR4	17:05	4.7	Surface	1	1	30.6	7.9	20.2	5.8		8.1		4.5	
TMCLKL	HY/2012/07	1	Mid-Ebb	SR4	17:05	4.7	Surface	1	2	30.4	7.9	20.4	5.8	5 0	7.8		5.0	
TMCLKL	HY/2012/07		Mid-Ebb	SR4		4.7	Middle	2	1					5.8		0.5		4.5
TMCLKL	1	2017-09-27	Mid-Ebb	SR4		4.7	Middle	2	2							8.5		4.5
	HY/2012/07		Mid-Ebb		17:05	4.7	Bottom	3	1	30.4	7.9	20.6	5.5		9.3		4.2	
	HY/2012/07			SR4	17:05	4.7	Bottom	3	2	30.2	7.9	20.8	5.5	5.5	8.6		4.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	16:55	4.2	Surface	1	1	30.6	7.9	20.0	6.1		6.5		4.6	
	HY/2012/07		Mid-Ebb	IS8	16:55	4.2	Surface	1	2	30.4	7.9	20.2	6.0	i i	6.2		4.3	
TMCLKL	HY/2012/07	· · · · · · · · · · · · · · · · · · ·	Mid-Ebb	IS8	13.00	4.2	Middle	2	1			2012	5.0	6.1	5.2			
TMCLKL	HY/2012/07			IS8		4.2	Middle	2	2					†		10.0		3.8
	HY/2012/07			IS8	16:55	4.2	Bottom	3	1	30.1	7.9	21.6	5.2		13.8		2.9	
TMCLKL	HY/2012/07	· · · · · · · · · · · · · · · · · · ·	Mid-Ebb	IS8	16:55	4.2	Bottom	3	2.	29.9	7.8	21.8	5.2	5.2	13.6		3.3	
	HY/2012/07		Mid-Ebb	IS(Mf)9	16:46	3.9	Surface	1	1	30.9	7.9	20.7	6.4		7.4		3.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	16:46	3.9	Surface	1	2	30.8	7.9	20.1	6.4	† _	7.0		4.9	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	10.10	3.9	Middle	2.	1	50.0	1.0	20.1	0.1	6.4	7.0	_	1.,,	_
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9		3.9	Middle	2	2					† †		8.3		5.0
	HY/2012/07	i 1	Mid-Ebb	IS(Mf)9	16:46	3.9	Bottom	3	1	30.7	7.9	21.6	5.9		9.3		6.6	
	HY/2012/07		Mid-Ebb	IS(Mf)9	16:46	3.9	Bottom	3	2	30.5	7.9	21.9	5.9	5.9	9.6		5.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	8.9	Surface	1	1	30.4	7.9	19.6	5.4		3.5		0.9	0.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	8.9	Surface	1	2	30.3	7.9	19.8	5.4	5.1	3.0	3.7	0.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	8.9	Middle	2	1	29.8	7.9	22.2	4.7	J.1	3.6		0.5	
TMCLKL	HY/2012/07	2017-09-27		CS(Mf)5	11:31	8.9	Middle	2	2	29.6	7.8	22.4	4.7		3.1		0.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	8.9	Bottom	3	1	29.5	7.9	25.0	4.5	4.5	4.6		< 0.5	
TMCLKL	-		Mid-Flood		11:31	8.9	Bottom	3	2	29.3	7.9	25.2	4.5	4.5	4.1		<0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	7.4	Surface	1	1	30.8	7.6	12.0	5.8		6.6	_	2.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	7.4	Surface	1	2	30.8	7.6	12.0	5.8	5.5	6.6		2.4	
TMCLKL			Mid-Flood	CS(Mf)3(N)	13:02	7.4	Middle	2	1	29.9	7.7	17.6	5.1	J.J	12.5	11.6	2.7	3.8
TMCLKL	+	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	7.4	Middle	2	2	29.9	7.7	17.6	5.1		12.5	11.0	2.6	J.0
TMCLKL			Mid-Flood		13:02	7.4	Bottom	3	1	29.7	7.7	20.5	5.1	5.1	15.6		5.7	
TMCLKL	HY/2012/07			CS(Mf)3(N)	13:02	7.4	Bottom	3	2	29.7	7.7	20.5	5.1	5.1	15.8		6.6	
TMCLKL		t	Mid-Flood	· /	11:58	6.8	Surface	1	1	30.2	7.9	19.6	5.3		6.2	10.2	2.6	4.6
TMCLKL		1	Mid-Flood	<u> </u>	11:58	6.8	Surface	1	2	30.0	7.8	19.9	5.3	5.3	5.9		2.9	
TMCLKL		2017-09-27	Mid-Flood		11:58	6.8	Middle	2	1	30.0	7.9	20.3	5.2	. 5.5	9.0		5.2	
TMCLKL	HY/2012/07		Mid-Flood	<u> </u>	11:58	6.8	Middle	2	2	29.9	7.8	20.5	5.2		9.0		4.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	6.8	Bottom	3	1	29.9	7.9	22.6	4.9	4.9	15.6		5.4	
TMCLKL	HY/2012/07		Mid-Flood		11:58	6.8	Bottom	3	2	29.7	7.8	22.8	4.9	4.7	15.3		6.9	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	5.1	Surface	1	1	30.3	7.9	18.2	5.4		8.3	11.6	7.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	5.1	Surface	1	2	30.1	7.8	18.4	5.4	5.4	7.8		8.7	7.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a		5.1	Middle	2	1									
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood			5.1	Middle	2	2									
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	5.1	Bottom	3	1	30.0	7.9	19.8	5.0	5.0	15.5		7.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:09	5.1	Bottom	3	2	29.9	7.8	20.0	5.0	5.0	14.9		7.2	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4	12:13	5.0	Surface	1	1	30.7	7.9	17.5	5.8		4.6		3.0	
TMCLKL	HY/2012/07		Mid-Flood		12:13	5.0	Surface	1	2	30.5	7.8	17.6	5.8	5.8	4.1		2.7	3.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood			5.0	Middle	2	1					. J.O		6.0		
TMCLKL		2017-09-27	Mid-Flood			5.0	Middle	2	2							0.0		J.0
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4	12:13	5.0	Bottom	3	1	30.3	7.9	18.7	5.4	5.4	7.8		4.2	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4	12:13	5.0	Bottom	3	2	30.1	7.8	18.9	5.4	J.4	7.6		4.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS8	12:26	4.5	Surface	1	1	30.6	7.9	18.3	5.6		9.1		6.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS8	12:26	4.5	Surface	1	2	30.4	7.8	18.5	5.5	5.6	8.5		8.1	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS8		4.5	Middle	2	1					J.U		10.6		7.1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood			4.5	Middle	2	2							10.0		7.1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS8	12:26	4.5	Bottom	3	1	30.2	7.9	19.5	5.3	5.3	12.0		6.2	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS8	12:26	4.5	Bottom	3	2	30.0	7.8	19.7	5.3	J.J	12.7		7.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9	12:34	3.3	Surface	1	1	30.5	7.9	19.8	5.6		6.4		5.1	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9	12:34	3.3	Surface	1	2	30.3	7.9	20.0	5.6	5.6	5.9		4.8	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9		3.3	Middle	2	1									15
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9		3.3	Middle	2	2							6.6		4.5
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9	12:34	3.3	Bottom	3	1	30.4	7.9	20.4	5.6	5.6	7.4		4.3	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)9	12:34	3.3	Bottom	3	2	30.2	7.9	20.6	5.6	5.6	6.7		3.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Surface	1	1	30.1	7.8	19.5	5.9		1.8		1.2	1.5
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Surface	1	2	29.8	7.9	19.8	5.8	5.5	1.8		1.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Middle	2	1	30.2	7.8	22.1	5.1] 3.3	1.7	1.7	1.5	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Middle	2	2	29.9	7.9	22.4	5.0		1.7		1.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Bottom	3	1	29.9	7.8	25.3	4.9	4.9	1.7		1.4	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	9.5	Bottom	3	2	29.6	7.9	25.6	4.8	4.9	1.7		1.5	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Surface	1	1	30.2	7.8	16.9	6.0		5.0		3.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Surface	1	2	30.4	7.8	16.9	6.1	57	5.5		2.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Middle	2	1	30.1	7.8	20.5	5.2	5.7	4.7	5.0	3.1	2.5
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Middle	2	2	30.4	7.7	20.3	5.3	ľ	4.7	5.9	3.3	3.5
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Bottom	3	1	29.4	7.8	25.4	4.6	47	7.6		3.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	6.9	Bottom	3	2	29.7	7.8	25.5	4.8	4.7	8.1		5.4	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	5.5	Surface	1	1	30.0	7.8	18.5	6.2		3.2		1.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	5.5	Surface	1	2	29.8	8.0	18.8	6.1		2.8	4.3	1.4	4.7
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16		5.5	Middle	2	1					6.2				
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16		5.5	Middle	2	2					1				
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	5.5	Bottom	3	1	29.9	7.8	23.2	4.8	4.0	5.8		8.0	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	5.5	Bottom	3	2	29.6	7.9	24.0	4.8	4.8	5.2	1	7.7	
TMCLKL	+		Mid-Ebb	SR4a	07:24	5.3	Surface	1	1	30.6	7.8	20.1	6.0		4.1	5.2	2.1	
TMCLKL	+	 	Mid-Ebb	SR4a	07:24	5.3	Surface	1	2	30.3	7.9	20.4	5.9	6.0	3.7		3.7	
TMCLKL	HY/2012/07	†	Mid-Ebb	SR4a		5.3	Middle	2	1					6.0				3.6
TMCLKL		2017-09-29	Mid-Ebb	SR4a		5.3	Middle	2	2									
TMCLKL	+	2017-09-29	Mid-Ebb	SR4a	07:24	5.3	Bottom	3	1	29.9	7.7	23.0	4.0	4.0	6.6		4.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Ebb	SR4a	07:24	5.3	Bottom	3	2	29.6	7.8	23.3	4.0	4.0	6.3		3.9	
TMCLKL			Mid-Ebb	SR4	07:28	4.1	Surface	1	1	30.3	7.7	20.7	5.1		6.2		4.5	3.7
TMCLKL	HY/2012/07	 	Mid-Ebb	SR4	07:28	4.1	Surface	1	2	30.0	7.9	21.0	5.1	7 . 1	5.9	1	2.9	
TMCLKL			Mid-Ebb	SR4		4.1	Middle	2	1					5.1		0.5		
TMCLKL		2017-09-29	Mid-Ebb	SR4		4.1	Middle	2	2					1		9.5		
	HY/2012/07		Mid-Ebb		07:28	4.1	Bottom	3	1	30.1	7.7	22.1	4.6	1.6	12.5	1	3.6	
	HY/2012/07			SR4	07:28	4.1	Bottom	3	2	29.8	7.8	22.4	4.5	4.6	13.5	1	3.8	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	07:41	4.5	Surface	1	1	30.5	7.9	18.7	7.1		2.8		2.1	
	HY/2012/07	:	Mid-Ebb	IS8	07:41	4.5	Surface	1	2	30.2	8.0	18.9	7.0	† ₋ .	2.3	1	2.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	377.12	4.5	Middle	2.	1	0 0.2	0.0	100	7.0	7.1	4.3			
TMCLKL	HY/2012/07			IS8		4.5	Middle	2	2					†		5.6		2.8
	HY/2012/07			IS8	07:41	4.5	Bottom	3	1	30.2	7.7	22.1	4.4	, -	8.7	1	4.1	
	HY/2012/07		Mid-Ebb	IS8	07:41	4.5	Bottom	3	2.	30.0	7.8	22.3	4.5	4.5	8.4		2.6	
	HY/2012/07		Mid-Ebb	IS(Mf)9	07:51	4.3	Surface	1	1	30.2	7.9	18.4	6.9		2.9		2.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	07:51	4.3	Surface	1	2	29.9	8.1	18.6	6.8	† .	2.6	1	2.5	1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	07.51	4.3	Middle	2.	1	27.7	0.1	10.0	0.0	6.9	2.0	6.0	2.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9		4.3	Middle	2	2.				1	†				3.8
	HY/2012/07		Mid-Ebb	IS(Mf)9	07:51	4.3	Bottom	3	1	30.2	7.7	21.3	4.5		9.3	1	5.6	
	HY/2012/07		Mid-Ebb	IS(Mf)9	07:51	4.3	Bottom	3	2	30.0	7.8	21.4	4.7	4.6	9.0	 	4.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	13.7	Surface	1	1	30.0	8.0	24.0	5.6		1.9		2.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	13.7	Surface	1	2	30.2	7.9	23.7	5.7	5.5	1.8	3.5	2.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	13.7	Middle	2	1	29.6	8.0	27.4	5.3	3.3	2.2		3.6	3.3
TMCLKL	HY/2012/07			CS(Mf)5	16:37	13.7	Middle	2	2	29.9	7.9	27.1	5.4		2.1		3.6	3.3
TMCLKL			Mid-Flood		16:37	13.7	Bottom	3	1	29.1	8.0	30.0	4.5	4.5	6.4		4.8	
TMCLKL			Mid-Flood		16:37	13.7	Bottom	3	2	29.4	7.9	29.7	4.5	7.5	6.5		3.2	
TMCLKL				CS(Mf)3(N)	15:00	6.8	Surface	1	1	31.1	7.8	15.2	6.2		6.6		4.6	
TMCLKL				CS(Mf)3(N)	15:00	6.8	Surface	1	2	31.4	7.8	15.2	6.3	5.7	6.8		5.2	
TMCLKL		1		CS(Mf)3(N)	15:00	6.8	Middle	2	1	30.3	7.7	19.7	5.1	5.7	10.4	8.6	4.7	5.1
TMCLKL	+	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	6.8	Middle	2	2	30.5	7.7	19.8	5.2		11.1	0.0	5.4	J.1
TMCLKL				CS(Mf)3(N)	15:00	6.8	Bottom	3	1	30.0	7.7	21.6	4.9	5.0	8.5		6.1	
TMCLKL	<u> </u>			CS(Mf)3(N)	15:00	6.8	Bottom	3	2	30.2	7.7	21.6	5.1	3.0	8.4		4.6	
TMCLKL		1	Mid-Flood	1 ' '	15:56	5.7	Surface	1	1	30.9	8.2	19.9	9.4		2.7	7.3	3.7	
TMCLKL		1	Mid-Flood	<u> </u>	15:56	5.7	Surface	1	2	31.2	8.1	19.7	9.3	9.4	2.7		3.0	3.8
TMCLKL		2017-09-29	Mid-Flood			5.7	Middle	2	1					7.1				
TMCLKL			Mid-Flood	` ′		5.7	Middle	2	2							7.5		3.0
TMCLKL	HY/2012/07	1		IS(Mf)16	15:56	5.7	Bottom	3	1	30.0	7.8	22.6	5.5	5.5	11.8		4.3	
TMCLKL	HY/2012/07		Mid-Flood		15:56	5.7	Bottom	3	2	30.2	7.8	22.4	5.5	5.5	11.8		4.1	
TMCLKL			Mid-Flood		15:41	5.2	Surface	1	1	30.3	7.9	21.4	6.4		5.6	5.3	5.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	5.2	Surface	1	2	30.6	7.9	21.2	6.4	6.4	6.4		4.9	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a		5.2	Middle	2	1					0.4				4.9
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood			5.2	Middle	2	2									
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood		15:41	5.2	Bottom	3	1	30.1	7.9	22.3	5.5	5.5	4.4		4.3	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	5.2	Bottom	3	2	30.3	7.8	22.1	5.5	3.3	4.9		5.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	4.4	Surface	1	1	30.7	8.0	20.9	6.8		14.3		13.6	
TMCLKL	HY/2012/07		Mid-Flood		15:37	4.4	Surface	1	2	31.0	7.9	20.6	7.1	7.0	15.1		12.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4		4.4	Middle	2	1					7.0		14.2		13.1
TMCLKL		2017-09-29	Mid-Flood			4.4	Middle	2	2							14.2		
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	4.4	Bottom	3	1	30.0	7.8	22.5	4.9	5.0	13.8		12.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	4.4	Bottom	3	2	30.3	7.8	22.1	5.0	5.0	13.6		13.3	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS8	15:25	4.2	Surface	1	1	30.7	8.0	20.9	7.3		10.2		8.3	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS8	15:25	4.2	Surface	1	2	31.0	8.0	20.7	7.5	7.4	11.6		7.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS8		4.2	Middle	2	1					7.4		14.2		0.2
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS8		4.2	Middle	2	2							14.2		8.3
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood		15:25	4.2	Bottom	3	1	30.2	7.9	21.8	5.9	5.0	18.9		7.9	
TMCLKL	HY/2012/07		Mid-Flood		15:25	4.2	Bottom	3	2	30.5	7.8	21.6	5.9	5.9	16.0		9.0	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)9	15:13	3.5	Surface	1	1	31.2	8.3	20.0	11.8		7.7		6.9	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)9	15:13	3.5	Surface	1	2	31.4	8.3	19.8	11.7	11.0	9.0	9.5	6.6	
TMCLKL	HY/2012/07		Mid-Flood			3.5	Middle	2	1					11.8				7.0
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)9		3.5	Middle	2	2					<u> </u>				7.8
TMCLKL	HY/2012/07		Mid-Flood		15:13	3.5	Bottom	3	1	31.2	8.2	20.5	9.2	0.2	10.1		9.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)9	15:13	3.5	Bottom	3	2	31.5	8.2	20.3	9.4	9.3	11.2		8.6	

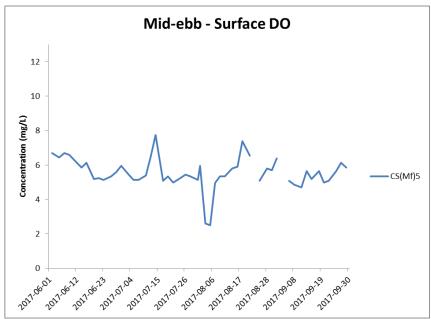
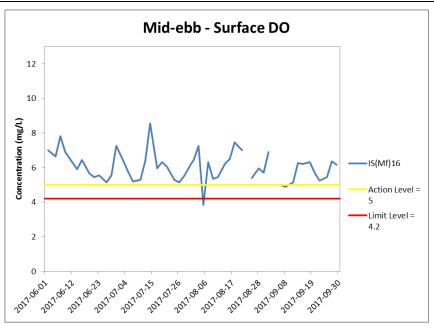



Figure J1 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

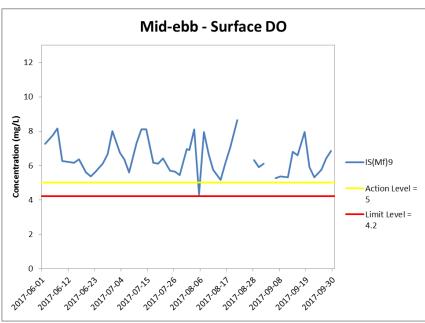
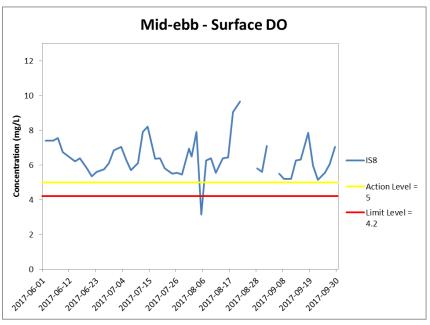



Figure J2 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

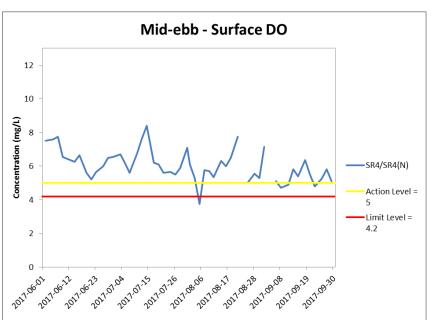
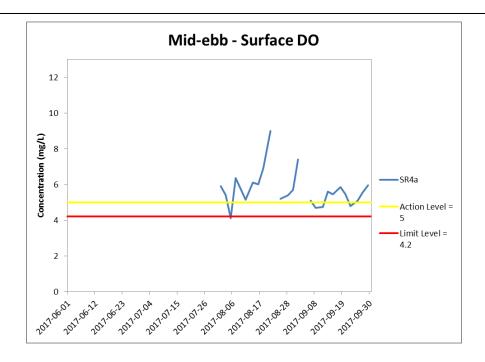



Figure J3 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

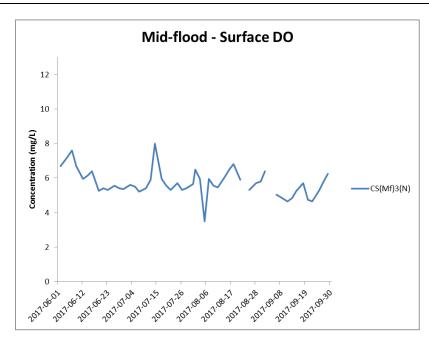


Figure J4 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

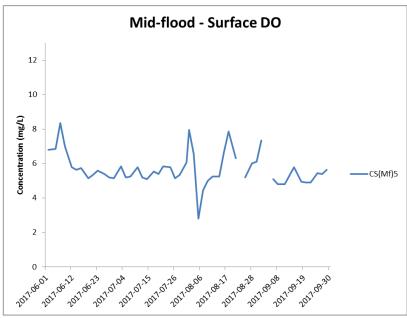


Figure J5 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

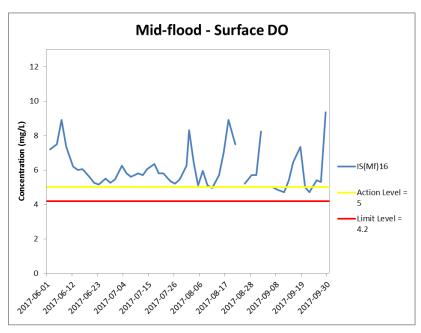
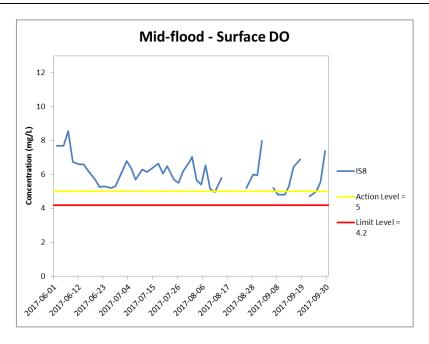



Figure J6 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

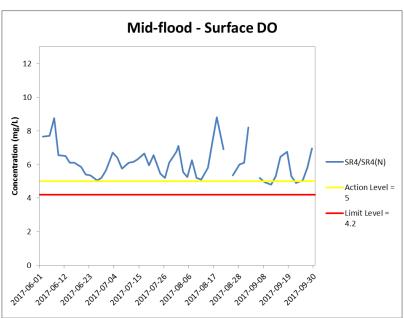


Figure J7 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

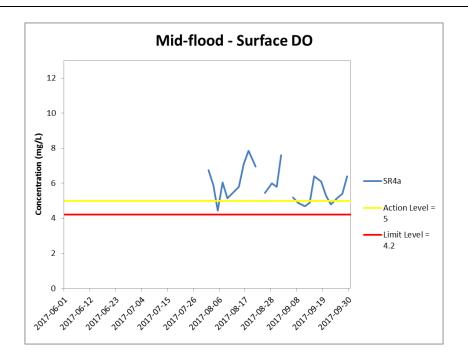
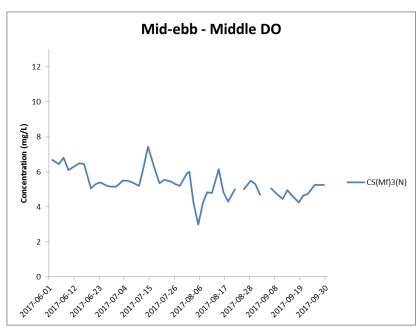



Figure J8 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in surface waters during mid-flood tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

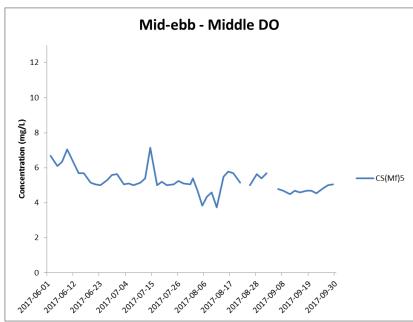


Figure J9 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

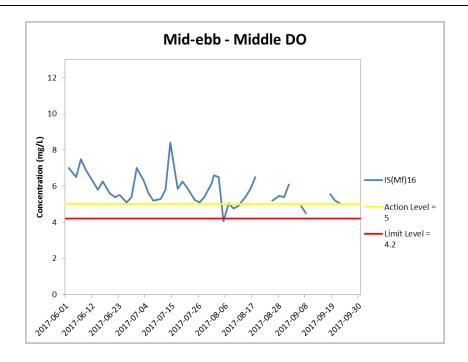
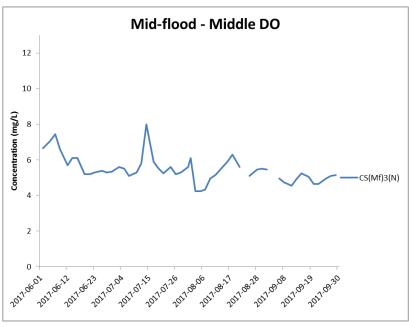



Figure J10 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS(Mf)16.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Results of WQM between 1 June 2017 and 31 July 2017 are sourced from the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

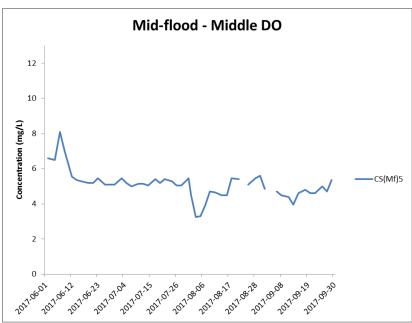
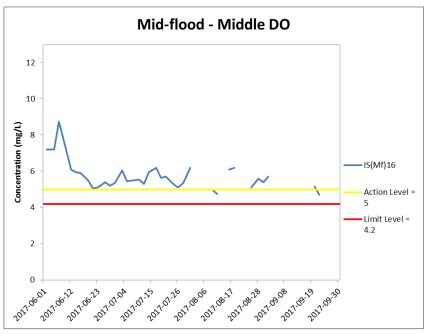



Figure J11 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-flood tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

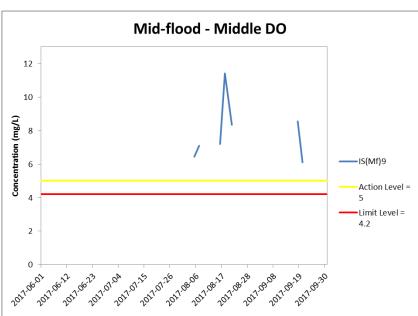
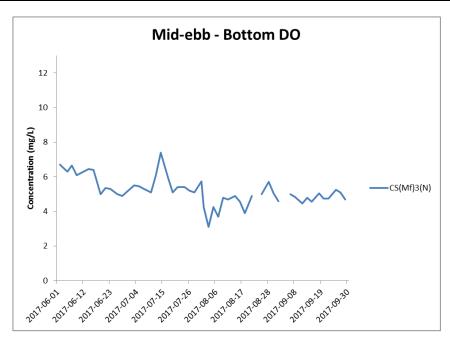



Figure J12 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in mid-depth waters during mid-flood tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

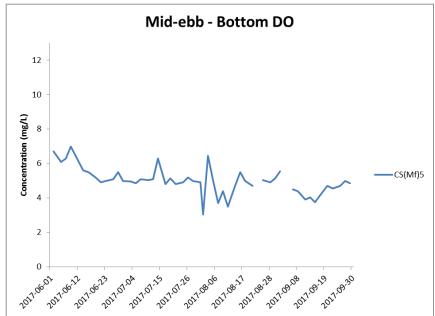
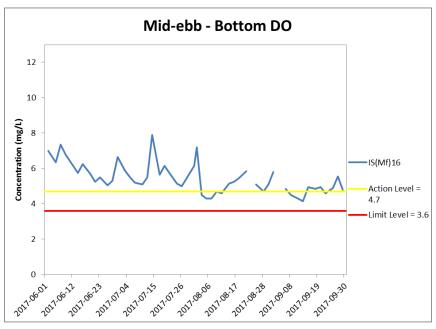



Figure J13 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

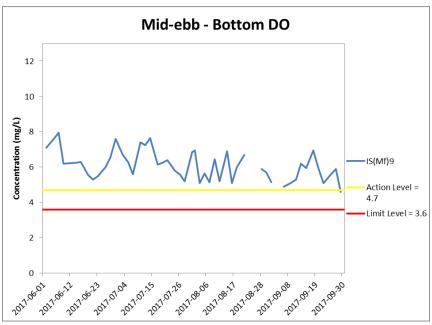
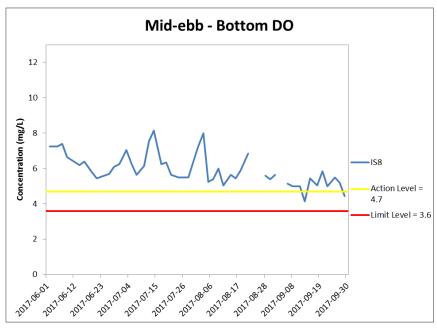



Figure J14 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

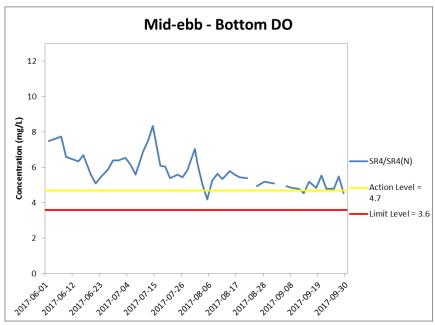


Figure J15 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

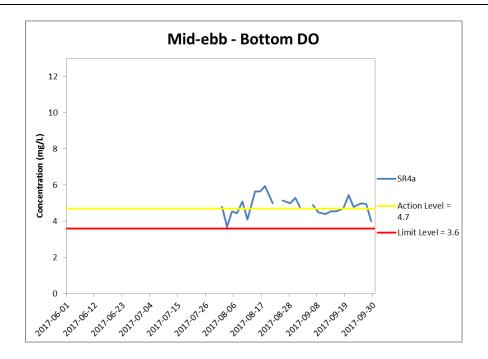
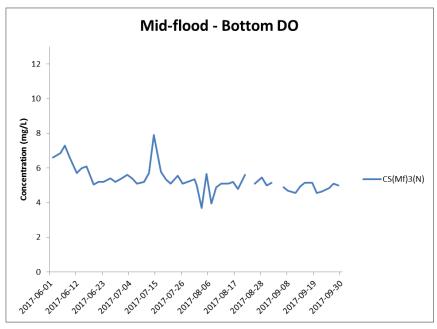



Figure J16 Impact Monitoring - Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-ebb tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

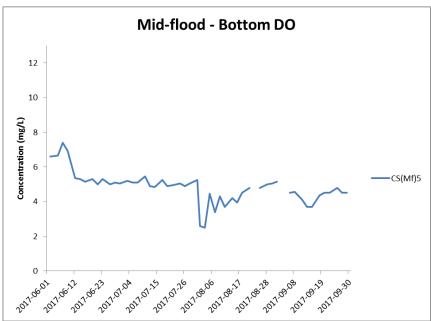
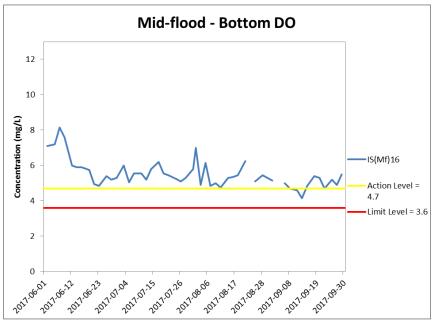



Figure J17 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

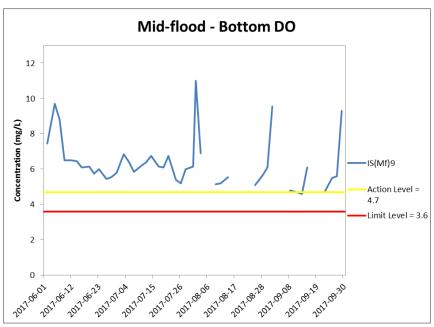


Figure J18 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

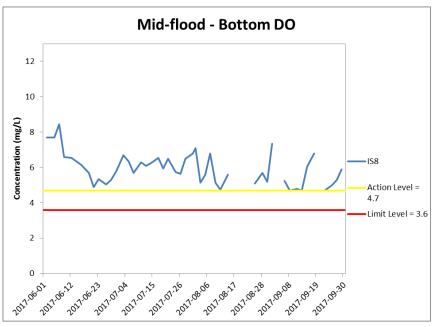


Figure J19 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

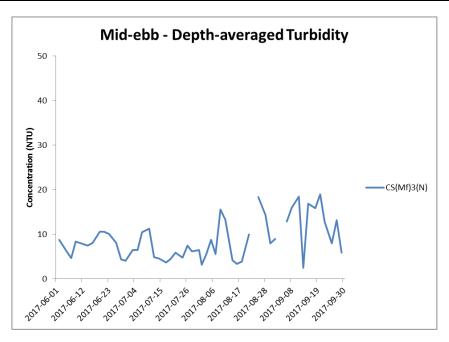



Figure J20 Impact Monitoring – Mean Level of Dissolved Oxygen (mg/L) in bottom waters during mid-flood tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

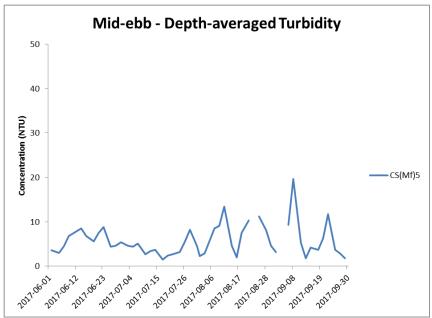
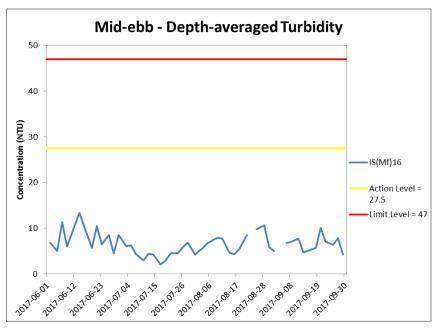



Figure J21 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

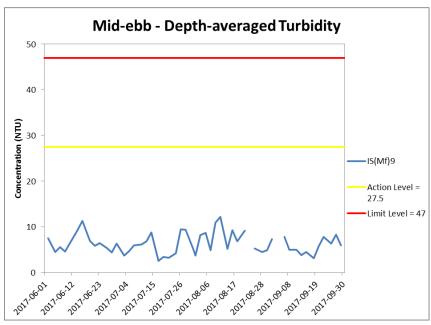
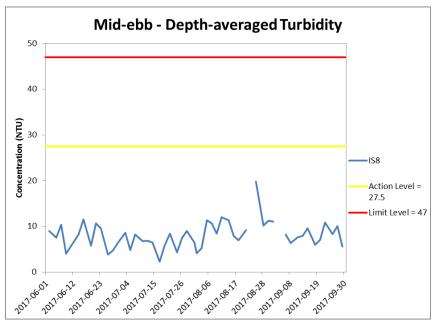



Figure J22 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

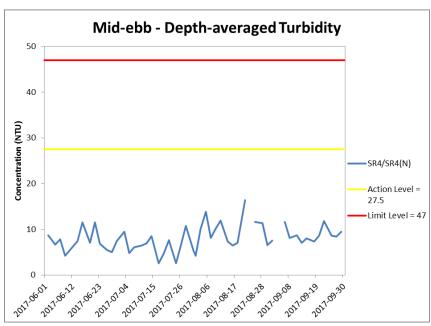


Figure J23 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

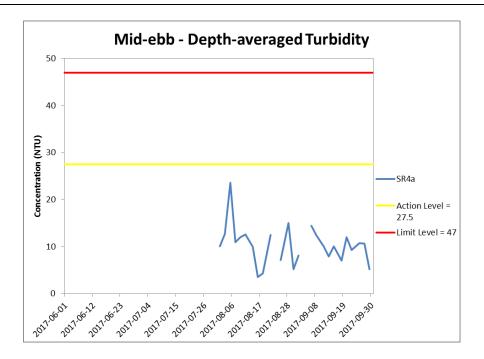
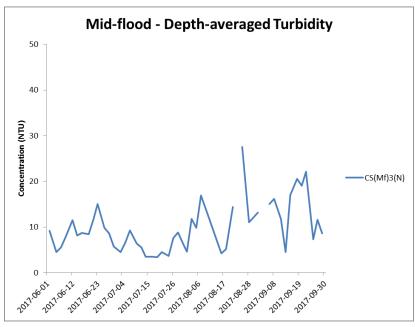



Figure J24 Impact Monitoring - Mean Level of depth-averaged Turbidity (NTU) during mid-ebb tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

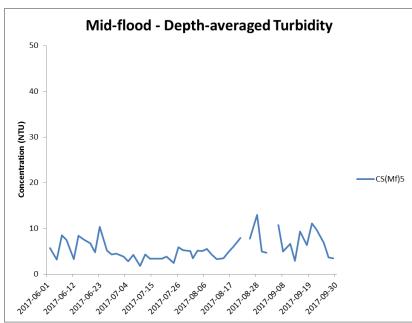
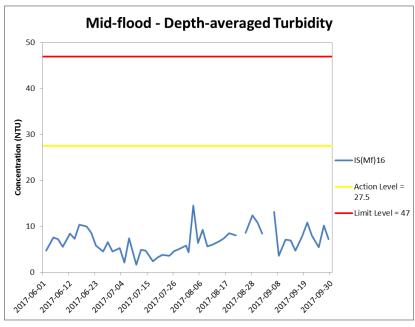



Figure J25 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(MF)5.

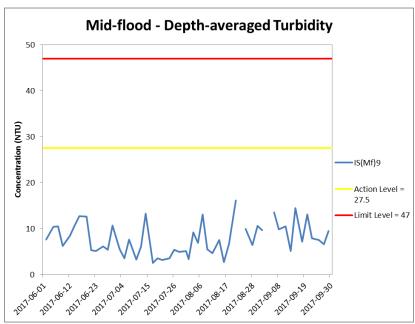
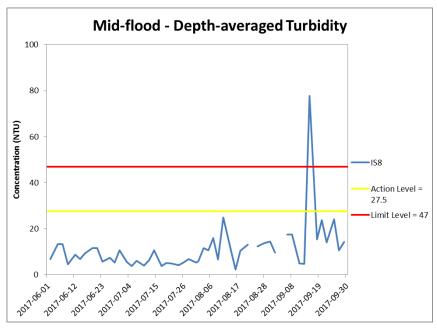



Figure J26 Impact Monitoring - Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

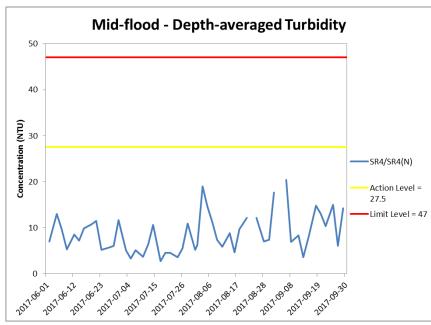


Figure J27 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

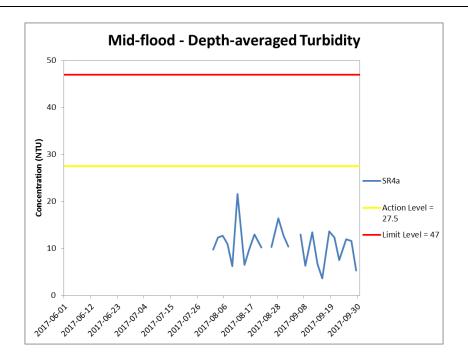
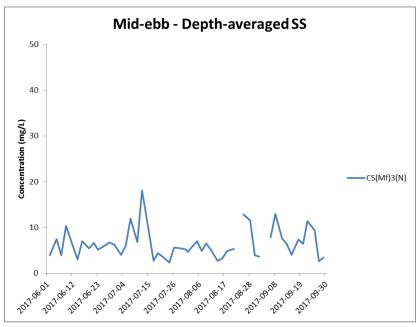



Figure J28 Impact Monitoring – Mean Level of depth-averaged Turbidity (NTU) during mid-flood tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

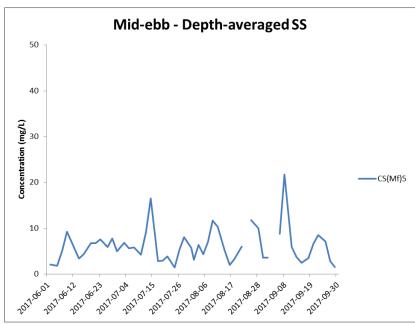
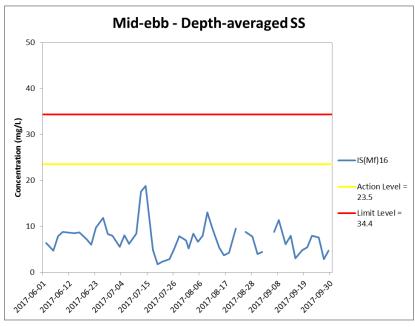



Figure J29 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

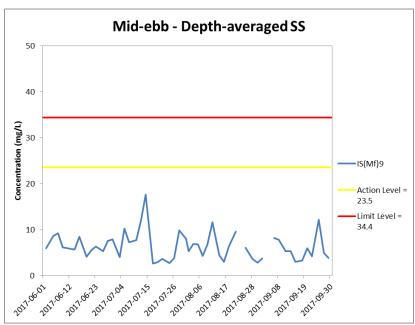
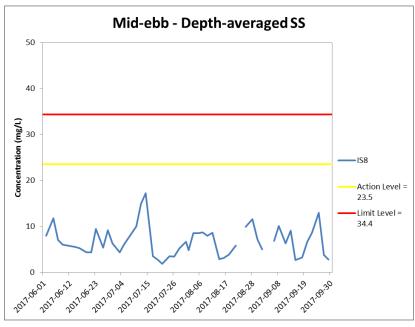



Figure J30 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

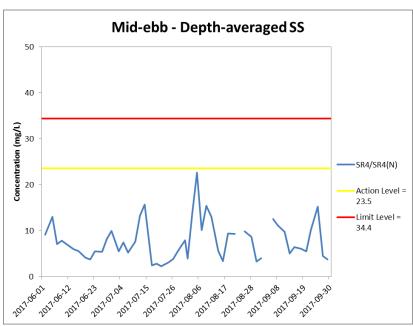


Figure J31 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

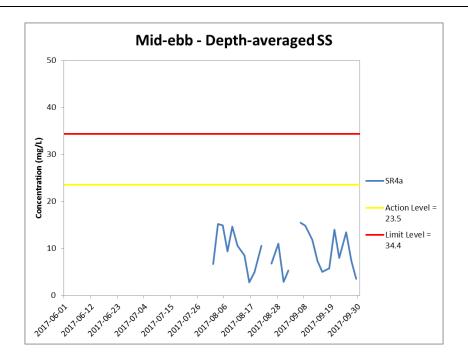


Figure J32 Impact Monitoring – Mean depth-averaged level of Suspended Solids (mg/L) during mid-ebb tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

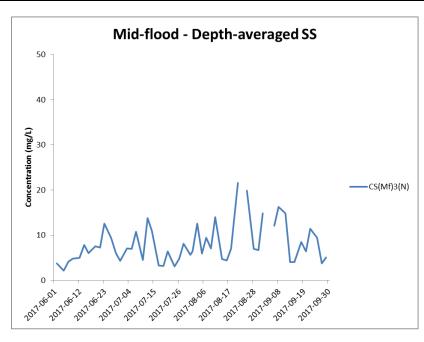
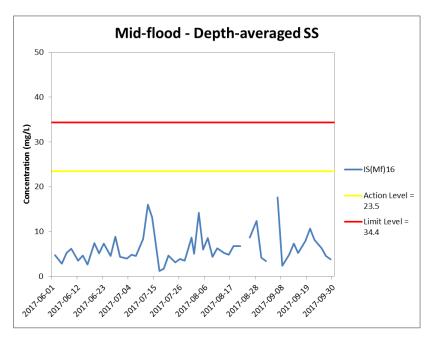



Figure J33 Impact Monitoring - Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 June 2017 and 30 September 2017 at CS(Mf)3(N) and CS(Mf)5.

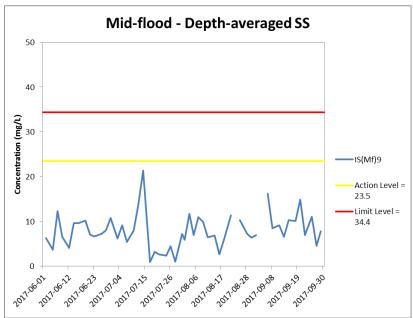
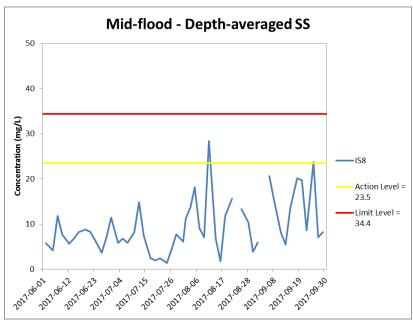



Figure J34 Impact Monitoring - Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 June 2017 and 30 September 2017 at IS(Mf)16 and IS(Mf)9.

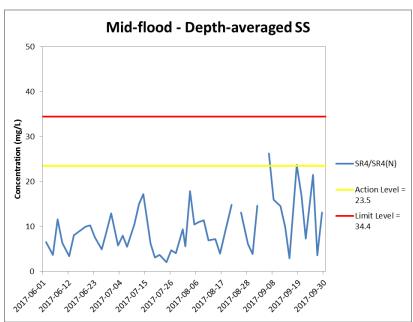


Figure J35 Impact Monitoring - Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 June 2017 and 30 September 2017 at IS8 and SR4.

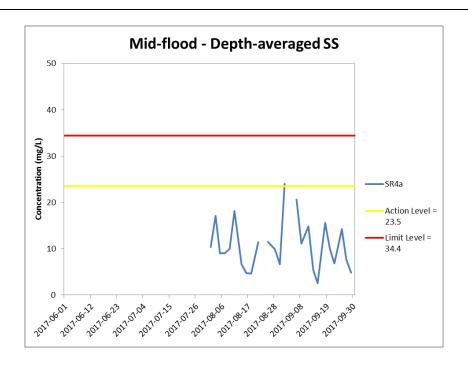


Figure J36 Impact Monitoring - Mean depth-averaged level of Suspended Solids (mg/L) during mid-flood tide between 1 June 2017 and 30 September 2017 at SR4a.

(Weather condition varied between sunny to rainy within the reporting period.) WQM on 4 September 2017 was canceled due to adverse weather. Station SR4a is not covered between 1 June 2017 and 31 July 2017 in the published EM&A data and published EM&A reports of Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. In-situ monitoring is taken according to the requirement specified in the EM&A Manual, i.e. 3 water depth namely 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted.

Appendix K

Impact Dolphin Monitoring Survey Results

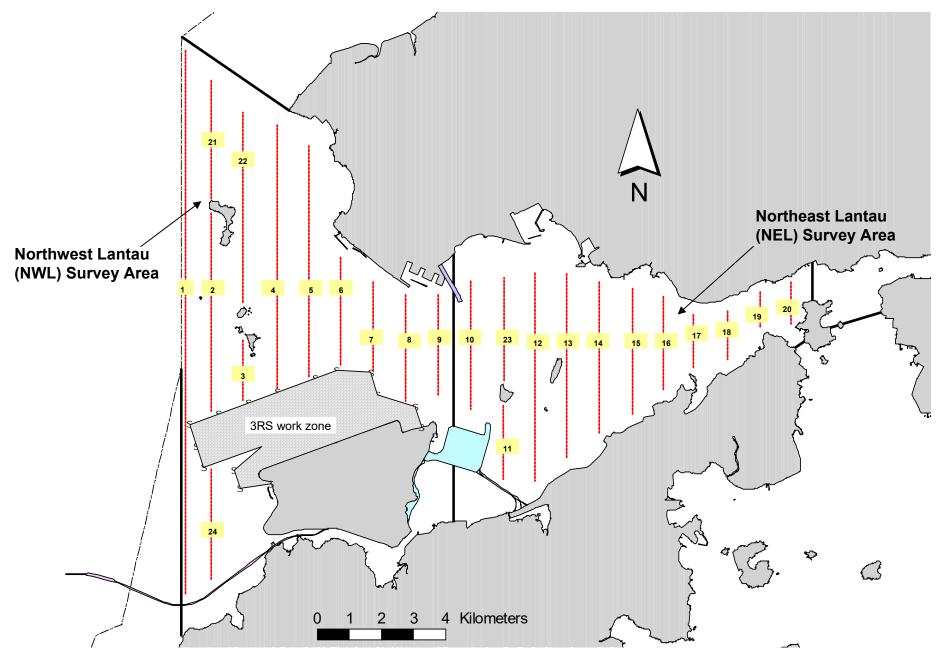


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

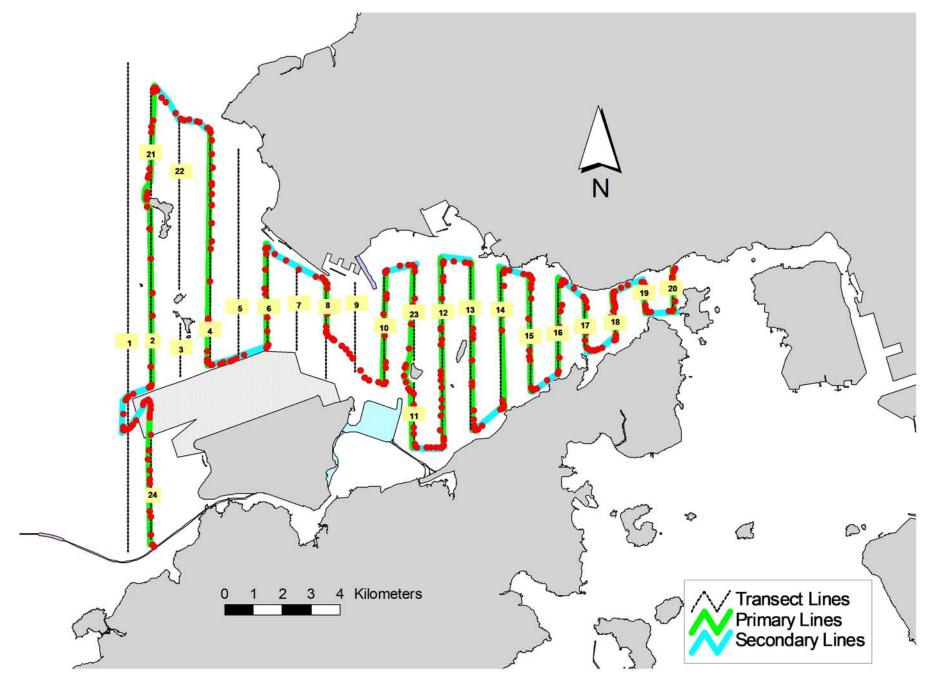


Figure 2. Survey Route on September 15th, 2017 (from HKLR03 project)

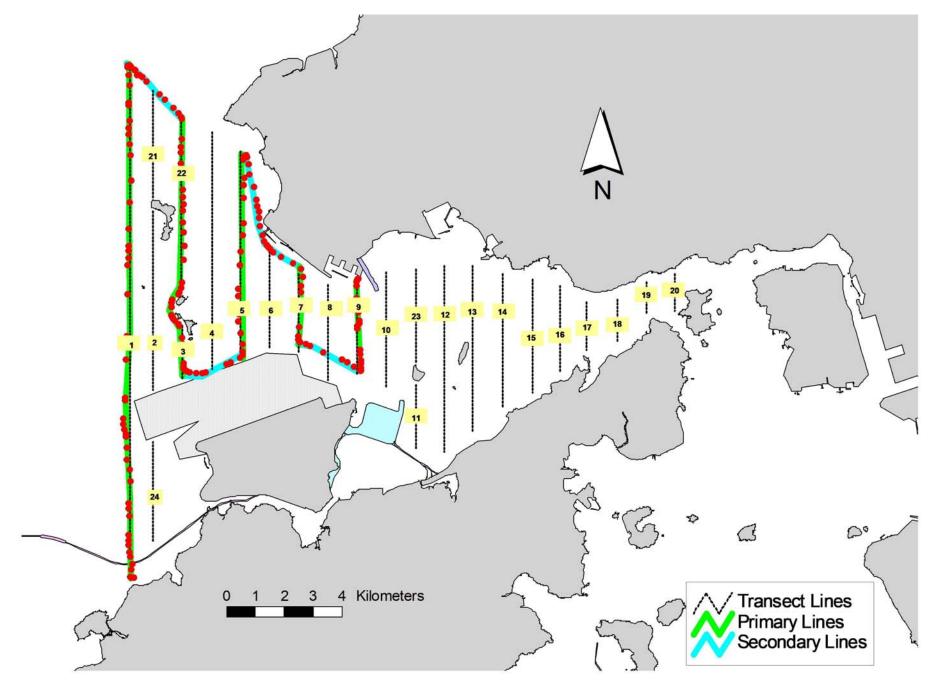


Figure 3. Survey Route on September 18th, 2017 (from HKLR03 project)

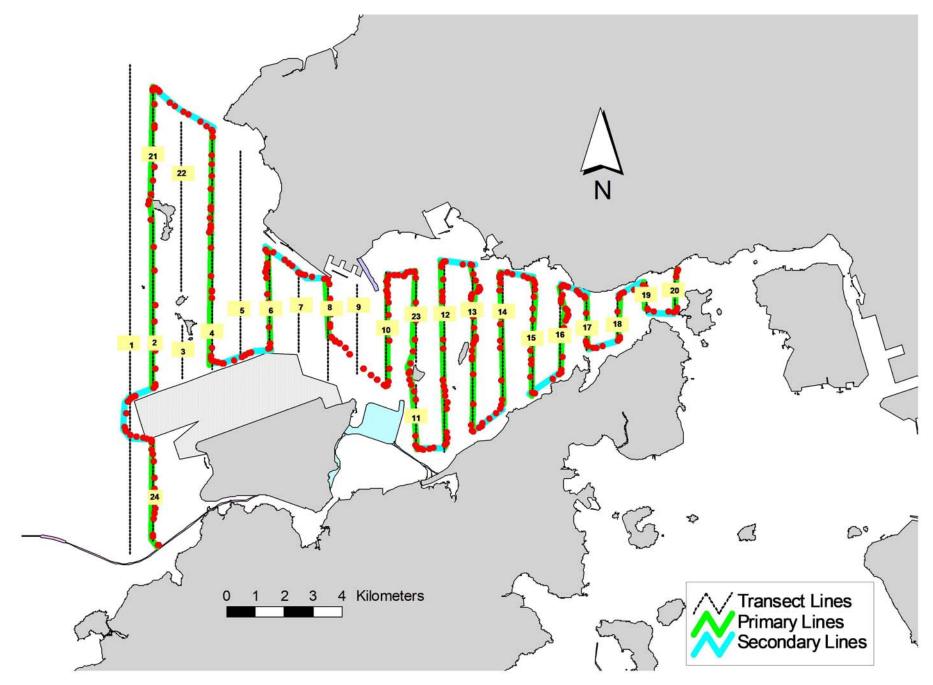


Figure 4. Survey Route on September 22nd, 2017 (from HKLR03 project)

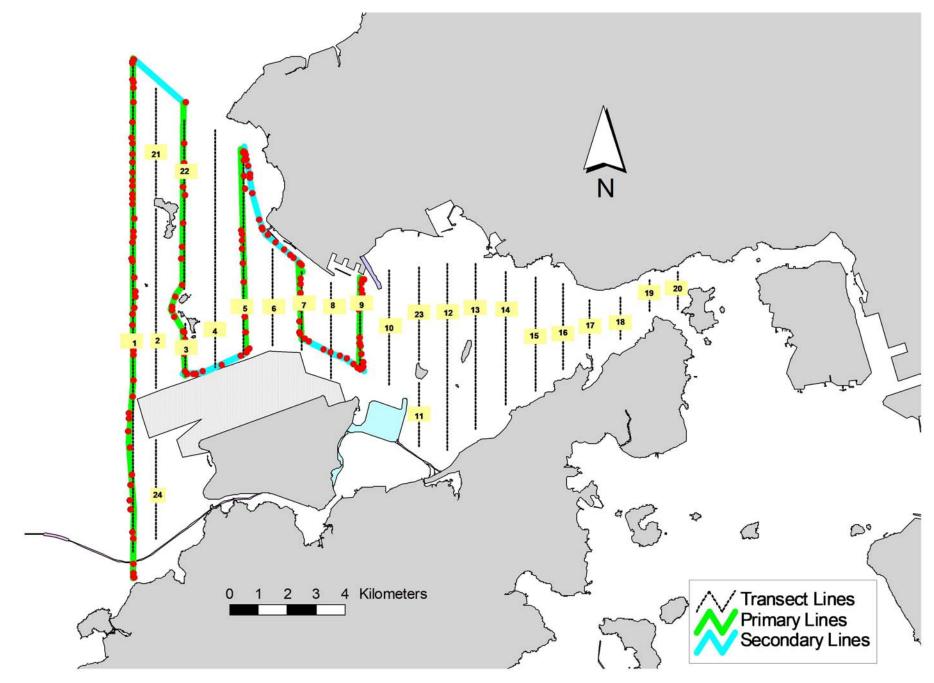


Figure 5. Survey Route on September 29th, 2017 (from HKLR03 project)

Figure 6. Distribution of Chinese White Dolphin Sightings during September 2017 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (September 2017)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
15-Sep-17	NW LANTAU	2	26.51	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17	NW LANTAU	2	10.09	AUTUMN	STANDARD36826	HKLR	S
15-Sep-17	NW LANTAU	3	1.20	AUTUMN	STANDARD36826	HKLR	S
15-Sep-17	NE LANTAU	2	34.49	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17	NE LANTAU	3	2.20	AUTUMN	STANDARD36826	HKLR	Р
15-Sep-17	NE LANTAU	2	12.01	AUTUMN	STANDARD36826	HKLR	S
18-Sep-17	NW LANTAU	2	28.84	AUTUMN	STANDARD36826	HKLR	Р
18-Sep-17	NW LANTAU	3	7.20	AUTUMN	STANDARD36826	HKLR	Р
18-Sep-17	NW LANTAU	2	12.96	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NW LANTAU	1	6.05	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	2	18.48	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	3	0.56	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NW LANTAU	1	1.58	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NW LANTAU	2	9.25	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NE LANTAU	2	4.68	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NE LANTAU	3	31.06	AUTUMN	STANDARD36826	HKLR	Р
22-Sep-17	NE LANTAU	2	3.30	AUTUMN	STANDARD36826	HKLR	S
22-Sep-17	NE LANTAU	3	9.06	AUTUMN	STANDARD36826	HKLR	S
29-Sep-17	NW LANTAU	1	3.40	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	2	13.70	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	3	12.90	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	4	5.60	AUTUMN	STANDARD36826	HKLR	Р
29-Sep-17	NW LANTAU	2	1.15	AUTUMN	STANDARD36826	HKLR	S
29-Sep-17	NW LANTAU	3	10.06	AUTUMN	STANDARD36826	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (September 2017) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association, P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
22-Sep-17	1	1152	6	NW LANTAU	2	320	ON	HKLR	823991	807501	AUTUMN	NONE	Р
22-Sep-17	2	1244	3	NW LANTAU	1	250	ON	HKLR	825349	809502	AUTUMN	NONE	Р
29-Sep-17	1	1309	2	NW LANTAU	4	140	ON	HKLR	827215	806416	AUTUMN	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in September 2017

ID#	DATE	STG#	AREA
NL46	22/09/17	1	NW LANTAU
NL49	22/09/17	1	NW LANTAU
NL123	22/09/17	1	NW LANTAU
NL202	22/09/17	2	NW LANTAU
	29/09/17	1	NW LANTAU
NL242	22/09/17	1	NW LANTAU
NL286	22/09/17	2	NW LANTAU
	29/09/17	1	NW LANTAU
NL296	22/09/17	1	NW LANTAU
WL05	22/09/17	1	NW LANTAU

NL49_20170922_1

NL123_20170922_1

NL46_20170922_1

Appendix IV. Photographs of Identified Individual Dolphins in September 2017 (HKLR03)

Appendix IV. (cont'd)

Appendix L

Event Action Plan

Appendix L1 Event/Action Plan for Air Quality

		AC	ΓΙΟΝ	
EVENT	ET (1)	IEC (1)	SOR ⁽¹⁾	Contractor
Action Level				
1. Exceedance for one sample	 Identify the source. Inform the IEC and the SOR. 	1. Check monitoring data submitted by the ET.	1. Notify Contractor.	 Rectify any unacceptable practice Amend working methods if
	Repeat measurement to confirm finding.	Check Contractor's working method.		appropriate
	Increase monitoring frequency to daily.			
2. Exceedance for two	1. Identify the source.	1. Check monitoring data	1. Confirm receipt of notification of	1. Submit proposals for remedial
or more consecutive	2. Inform the IEC and the SOR.	submitted by the ET.	failure in writing.	actions to IEC within 3 working
samples	3. Repeat measurements to confirm	2. Check the Contractor's working	2. Notify the Contractor.	days of notification
	findings.	method.	3. Ensure remedial measures properly	2. Implement the agreed proposals
	Increase monitoring frequency to daily.	3. Discuss with the ET and the Contractor on possible remedial measures.	implemented.	3. Amend proposal if appropriate
	Discuss with the IEC and the Contractor on remedial actions required.	4. Advise the SOR on the effectiveness of the proposed remedial measures.		
	If exceedance continues, arrange meeting with the IEC and the SOR.	5. Supervisor implementation of remedial measures.		
	If exceedance stops, cease additional monitoring.			

	ACTION										
EVENT	ET ⁽¹⁾	IEC (1)	SOR ⁽¹⁾	Contractor							
Limit Level											
1. Exceedance for one	1. Identify the source.	1. Check monitoring data submitted	1. Confirm receipt of notification of	1. Take immediate action to avoid							
sample	2. Inform the SOR and the DEP.	by the ET.	failure in writing.	further exceedance							
	Repeat measurement to confirm finding.	Check Contractor's working method.	2. Notify the Contractor.3. Ensure remedial measures are	Submit proposals for remedial actions to IEC within 3 working days of notification							
	Increase monitoring frequency to daily.	3. Discuss with the ET and the Contractor on possible remedial measures.	properly implemented.	3. Implement the agreed proposals							
	Assess effectiveness of Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of	4. Advise the SOR on the effectiveness of the proposed remedial measures.		4. Amend proposal if appropriate							
	the results.	5. Supervisor implementation of remedial measures.									
2. Exceedance for two or more consecutive	 Notify the IEC, the SOR, the DEP and the Contractor. 	 Discuss amongst the SOR, ET and the Contractor on the 	 Confirm receipt of notification of failure in writing. 	 Take immediate action to avoid further exceedance. 							
samples	2. Identify the source.	potential remedial actions.	2. Notify the Contractor.	2. Submit proposals for remedial							
	3. Repeat measurements to confirm findings.	2. Review the Contractor's remedial actions whenever	3. In consultation with the IEC, agree with the Contractor on the	actions to IEC within 3 working days of notification.							
	4. Increase monitoring frequency to	necessary to assure their effectiveness and advise the	remedial measures to be	3. Implement the agreed proposals.							
	daily.	SOR accordingly.	implemented.	4. Resubmit proposals if problem still							
	5. Carry out analysis of the	3. Supervise the implementation of	Ensure remedial measures are properly implemented.	not under control.							
	Contractor's working procedures to determine possible mitigation to be implemented.	remedial measures.	5. If exceedance continues, consider what activity of the work is responsible and instruct the	Stop the relevant activity of works as determined by the SOR until the exceedance is abated.							
	Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken.		Contractor to stop that activity of work until the exceedance is abated.								
	7. Assess effectiveness of the Contractor's remedial actions										

and keep the IEC, the DEP and the SOR informed of the results.

8. If the exceedance stops, cease additional monitoring.

Appendix L2 Event/Action Plan for Construction Noise

		ACTION							
EVENT	ET	IEC	SOR	Contractor					
Action Level	 Notify the IEC and the Contractor. Carry out investigation. 	Review the analysed results submitted by the ET.	Confirm receipt of notification of failure in writing.	Submit noise mitigation proposals to IEC					
	 Report the results of investigation to the IEC and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness. 	 Review the proposed remedial measures by the Contractor and advise the SOR accordingly. Supervise the implementation of remedial measures. 	 Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	Implement noise mitigation proposals					
	1. Notify the IEC, the SOR, the DEP and the Contractor.	Discuss amongst the SOR, the ET and the Contractor on the potential	Confirm receipt of notification of failure in writing.	Take immediate action to avoid further exceedance					
	 Identify the source. Repeat measurement to confirm findings. 	remedial actions. 2. Review the Contractor's remedial actions whenever necessary to	 Notify the Contractor. Require the Contractor to propose remedial measures for the analysed 	Submit proposals for remedial actions to IEC within 3 working days of notification					
	 Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine 	assure their effectiveness and advise the SOR accordingly.3. Supervise the implementation of remedial measures.	noise problem. 4. Ensure remedial measures are properly implemented.	3. Implement the agreed proposals4. Resubmit proposals if problem still not under control					
	possible mitigation to be implemented.6. Inform the IEC, the SOR and the DEP the causes & actions taken for the exceedances.7. Assess effectiveness of the	remedial measures.	5. If exceedance continues, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	5. Stop the relevant activity of works as determined by the SOR until the exceedance is abated.					
	Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 8. If exceedance stops, cease additiona monitoring.	I							

Appendix L3 Event/Action Plan for Water Quality

Event	ET	Leader		IEC	S	OR		Contractor	
Action level being exceeded by one sampling day	1.	Repeat in situ measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working methods.	1.	Confirm receipt of notification of non-compliance in writing;	1.	Inform the SOR and confirm notification of the non-compliance in writing;	
	2.	Identify source(s) of impact;			2.	Notify Contractor.	2.	Rectify unacceptable practice;	
	3.	Inform IEC, contractor and SOR;					3.	Amend working methods if appropriate.	
	4.	Check monitoring data, all plant, equipment and Contractor's working methods.						··FI	
Action level being exceeded by two or more consecutive sampling days	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Discuss with IEC on the proposed mitigation measures;	1.	Inform the Supervising Officer and confirm notification of the non-	
	2.	, , ,		2 D: 1 FT 1 C		T to the st		compliance in writing;	
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;	2.	Ensure mitigation measures are properly implemented;	2.	Rectify unacceptable practice;	
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;	3.	Assess the effectiveness of the implemented mitigation measures.	3.	Check all plant and equipment and consider changes of working methods;	
	5.	Discuss mitigation measures with IEC,					4.	Submit proposal of additional	
		SOR and Contractor;	4.	Supervise the implementation of mitigation measures.				mitigation measures to SOR within 3 working days of	
	6.	Ensure mitigation measures are implemented;		mugutori measures.				notification and discuss with ET, IEC and SOR;	
	7.	Increase the monitoring frequency to daily until no exceedance of Action level;					5.	Implement the agreed mitigation measures.	
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Confirm receipt of notification of failure in writing;	1.	Inform the SOR and confirm notification of the non-compliance in writing;	

Event	ΕT	Leader		IEC S	SC	OR		Contractor
	2.	Identify source(s) of impact;		2.	2.	Discuss with IEC, ET and		
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;		Contractor on the proposed mitigation measures;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation 3. measures submitted by Contractor and advise the SOR	3.	Request Contractor to review the working methods.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		accordingly.			4.	Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;		Discuss with IEC, ET and Contractor on the proposed mitigation	1.	Take immediate action to avoid further exceedance;
sampling days	2.	Identify source(s) of impact;				measures;	2.	Submit proposal of mitigation
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;		Request Contractor to critically review the working methods;		measures to SOR within 3 working days of notification and discuss with ET, IEC and
	4.	equipment and Contractor's working	3.	Review the Contractor's mitigation measures whenever		3. Make agreement on the mitigation measures to be	3.	SOR;
	methods; 5. Discuss mitigation measures with IEC, SOR and Contractor;	methods;		necessary to assure their effectiveness and advise the		implemented; 4.		Implement the agreed mitigation measures;
			SOR accordingly;	5. Ensure mitigation measures are properly implemented;		4.	Resubmit proposals of	
		,	4.	Supervise the implementation		6.		mitigation measures if
	6.	Ensure mitigation measures are implemented;		of mitigation measures.		7. Consider and instruct, if necessary, the Contractor to slow down or to stop all		problem still not under control;
	7.	Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;				or part of the construction activities until no exceedance of Limit level.	5.	As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Appendix L4 Implementation of Event-Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including 	Check monitoring data submitted by ET and Contractor;	1. Discuss monitoring with the IEC and any other measures proposed by the ET;	Inform the SOR and confirm notification of the non-compliance in writing;
	raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if	2. Discuss monitoring results and findings with the ET and the	2. If SOR is satisfied with the	2. Discuss with the ET and the
	differences are as a result of natural variation or previously observed seasonal differences;	Contractor.	proposal of any other measures, SOR to signify the agreement in writing on the measures to be	IEC and propose measures to the IEC and the SOR;
	3. Identify source(s) of impact;		implemented.	3. Implement the agreed measures.
	4. Inform the IEC, SOR and Contractor;			
	5. Check monitoring data.			
	Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.			

	EC	SOR	Contractor
parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, ER/SOR and Contractor of findings; 5. Check monitoring data; 6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary; 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with	by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise ER/SOR of the results and findings accordingly; Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly.		 Inform the ER/SOR and confirm notification of the non- compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures; Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary; Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Appendix L5 Event and Action Plan on Dolphin Acoustic Behaviour

	ACTION		
ET Leader	IEC	SO	Contractor
 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.
	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective 	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, SO and Contractor; 5. Check monitoring data; 6. Carry out audit to ensure all dolphin protective measures are implemented fully and additional	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, SO and Contractor; 5. Check monitoring data; 6. Carry out audit to ensure all dolphin protective measures are implemented fully and additional 1. Check monitoring data submitted by ET and Contractor; 2. Discuss monitoring with the ET and the Contractor; 2. Discuss monitoring with the ET; 2. Make agreement on measures to be implemented.

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Limit Level With the numerical values presented in Table 5.7 of Baseline Monitoring Report, when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 40% lower	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural 	Check monitoring data submitted by ET and Contractor; Discuss monitoring with	1. Discuss with the IEC the repeat monitoring and any other measures proposed by the ET;	1. Inform the SO and confirm notification of the non-compliance in writing; 2. Discuss with the ET and
or higher than that recorded in the baseline monitoring (see Table 5.8 of <i>Baseline Monitoring Report</i>), or when there is a difference of 40% in dolphin acoustic signal detection at nighttime at Site C1 only, the limit level should be triggered	variation or seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, SO and Contractor;	,	2. Make agreement on measures to be implemented.	
	construction activity) with the IEC and Contractor.			

Abbreviations: ET - Environmental Team, IEC - Independent Environmental Checker, SO - Supervising Office, DEP - Director of Environmental Protection

Appendix M

Monthly Summary of Waste Flow Table

Contract No.: HY/2012/07

Tuen Mun Chek Lap Kok Link – Southern Connection Viaduct Section

Monthly Summary Waste Flow Table for 2017 (Year)

		Actual Qua	antities of Inert	C&D Materials (Generation			Actua	I Quantities of C	C&D wastes Ger	neration		Actual Quantities of Recyclables Generation			
Month\Material	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills	Imported Fill	Marine Sediment, Cat. L	Marine Sediment, Cat. Mp	Marine Sediment, Cat. Mf	Marine Sediment, Cat. H	Chemical Waste	General Refuse	Metals	Felled trees	Paper/ cardboard packaging	Plastics
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)
Jan	4.591	0.717	0.474	-	4.118	-	-	-	-	-	3.521	99.840	-	-	0.140	-
Feb	5.034	1.585	0.166	-	4.869	-	0.857	-	-	-	-	127.720	-	-	0.091	-
Mar	6.575	0.937	0.498	-	6.077	-	0.771	-	-	-	6.000	87.910	-	-	0.077	-
Apr	5.467	0.791	1.058	-	4.409	-	-	-	-	-	-	130.680	-	5.170	0.063	-
May	4.960	0.537	0.826	-	4.134	-	0.672	-	-	-	-	171.870	-	-	0.056	-
Jun	4.491	0.567	0.098	-	4.394	-	-	-	-	-	-	148.600	-	-	0.063	-
SUB-TOTAL	31.118	5.133	3.118	-	28.000	0.000	2.300	-	-	-	9.521	766.620	-	5.170	0.490	-
Jul	5.618	0.426	0.696	0.002	4.921	-	1.056	-	-	-	0.800	159.980	-	-	0.091	-
Aug	3.897	0.232	-	-	3.897	-	-	-	-	-	-	159.230	-	-	0.056	-
Sep	3.147	0.676	-	-	3.147	-	1.517	1.047	-	0.127	-	185.420	-	18.030	0.070	-
Oct	-	0.000	-	-	-	-	-	-	-	-			-	-		-
Nov	-	0.000	-	-	-	-		-	-	-			-	-		-
Dec	-	0.000	-	-	-	-		-	-	-			-	-		-
TOTAL	43.780	6.467	3.814	0.002	39.964	-	4.873	1.047	-	0.127	10.321	1,271.250	-	23.200	0.707	-

Notes

- 1 The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- 2 Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- 3 Broken concrete for recycling into aggregates.
- 4 Assumed 5 kg per damaged water-filled barrier.
- 5 Disposed as Public Fills includes Hard Rock and Large Broken Concrete.

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix N1 Cumulative Statistics on Exceedances

		Total No. recorded in this reporting month	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	0
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	90	123
	Limit	1	15
Impact Dolphin	Action	0	9
Monitoring	Limit	0	9

Appendix N2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period		Cumulative Statistics	
	Complaints	Notifications of	Successful
		Summons	Prosecutions
This Reporting Month (September 2017)	0	0	0
Total No. received since project commencement	10	0	0

Subject

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

25 Westlands Road

From ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 4 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_1 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

A total of one exceedance was recorded on 1 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

(21.13

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

From ERM- Hong Kong, Limited

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern

Connection Viaduct Coction

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 11 September 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_1 September 2017_ Depth-averaged SS_F_Station SR4a

A total of one SS exceedance was recorded on 1 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.														
	0215660 1 Santa	Action Level Exceedance ember 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)												
		ptember 2017_ Depth-averaged SS_F_Station SR4a												
		[Total No. of Exceedances = 2]												
Date		1 September 2017 (Measured)												
	_	2 September 2017 (In situ results received by ERM)												
	-	8 September 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Bottom-depth Dissolv	ved Oxygen (DO), Depth-averaged Suspended Solids (SS)												
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO													
	Bottom-depth DO	3.6 mg/L												
Action Levels for SS	SS	SS 120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).												
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)												
Measured Levels	Action Level Exceedance 1. Mid-Ebb at CS(Mf)3(N) (Bot 2. Mid-Flood at SR4a (Depth-a	ttom-depth DO = 4.6 mg/L); averaged SS = 24.1 mg/L)												
Works Undertaken (at	No major marine works was und	dertaken under this Contract on 1 September 2017.												
the time of monitoring event)														
Possible Reason for	The exceedances of bottom-dept	h DO at CS(Mf)3(N) and depth-averaged SS at SR4a are unlikely to												
Action or Limit Level	be due to the Project, in view of	the following:												
Exceedance(s)	No marine works was un	dertaken under this Contract on 1 September 2017.												
		km) from the marine works area under this Contract, thus the uld not be affected by the marine works under this Contract and it												
		al fluctuation in water quality.												
	Apart from marginal DO were in compliance with tides on the same day.	exceedance at CS(Mf)3(N), levels of DO at all monitoring stations the Action and Limit Levels during both mid-ebb and mid-flood												
	stations were in compliar flood tides on the same d	•												
	wastes from vessels and vThe depth-averaged turb	per practice in construction works and discharge of construction working platforms was made nearby the monitoring stations. idity at all monitoring stations were in compliance with the Action both mid-ebb and mid-flood tides on the same day.												
Actions Taken / To Be		ed necessary. The ET will monitor for future trends in												
Taken	exceedances.	en necessary. The 21 mm mondor for future defines in												

Remarks	The monitoring results on 1 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 1 September is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Surface	1	28.2	7.8	18.3	6.4		4.3		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Surface	2	28.0	7.8	18.2	6.4	6.1	3.4		4.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Middle	1	27.5	7.9	24.7	5.7	0.1	3.4	3.2	3.2	3.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Middle	2	27.3	7.8	24.7	5.7		2.4	5.2	3.8	5.5
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Bottom	1	26.9	7.9	28.6	5.5	5.6	3.3		2.7	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)5	08:54	Bottom	2	26.9	7.8	28.5	5.6	5.0	2.3		3.1	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Surface	1	28.5	7.6	16.1	5.7	•	9.1		4.1	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Surface	2	28.3	7.6	16.3	5.7	5.2	7.4		3.2	
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Middle	1	26.9	7.6	25.6	4.7	<i>J.L</i>	8.8	9.0	3.6	3.7
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Middle	2	26.7	7.6	25.6	4.7		7.3	7.0	2.3	3.1
	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Bottom	1	26.4	7.7	27.9	4.6	4.6	11.5		5.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	CS(Mf)3(N)	10:34	Bottom	2	26.2	7.6	27.9	4.6	4.0	9.7		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Surface	1	28.3	8.0	20.3	6.9		5.2		5.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Surface	2	28.1	7.9	20.3	6.9	6.5	5.1		3.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Middle	1	28.1	7.9	21.1	6.1	0.5	4.7	5.0	4.4	4.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Middle	2	28.0	7.8	21.0	6.1		4.2	5.0	4.4	4.5
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Bottom	1	27.7	7.9	23.4	5.8	5.8	5.7		4.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)16	09:31	Bottom	2	27.6	7.8	23.4	5.8	J.0	4.9		4.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Surface	1	28.4	8.1	16.7	7.4		6.5		4.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Surface	2	28.3	8.0	16.6	7.4	7.4	5.5		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Middle						7.4		8.1		5.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Middle								0.1		3.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Bottom	1	27.2	7.9	25.1	4.7	4.8	10.4		5.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4a	09:41	Bottom	2	27.1	7.7	25.1	4.8	4.0	10.0		5.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Surface	1	28.5	8.0	16.1	7.2		6.0		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Surface	2	28.3	8.0	16.1	7.1	7.2	5.1		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Middle						1.2		7.6		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Middle								7.6		4.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Bottom	1	27.9	7.8	21.5	5.0	5 1	9.7		3.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	SR4	09:48	Bottom	2	27.8	7.7	21.4	5.2	5.1	9.5		4.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Surface	1	28.6	8.0	19.2	7.1		7.3		5.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Surface	2	28.4	7.9	19.1	7.1	7.1	6.3		6.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Middle						7.1		11 1		5 1
	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Middle								11.1		5.1
	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Bottom	1	27.8	7.9	22.5	5.6	57	16.0		4.4	
	HY/2012/07	2017-09-01	Mid-Ebb	IS8	09:59	Bottom	2	27.7	7.8	22.6	5.7	5.7	14.6		4.0	
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Surface	1	28.5	8.0	20.3	6.1		9.0		3.0	
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Surface	2	28.3	7.9	20.2	6.1	C 1	8.5		2.6	
		2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Middle						6.1		7.4		2.7
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Middle								7.4		3.7
	HY/2012/07	2017-09-01	Mid-Ebb	IS(Mf)9	10:09	Bottom	1	27.6	7.9	24.1	5.1	<i>r</i> 2	6.3		4.9	
	HY/2012/07		Mid-Ebb	IS(Mf)9	10:09	Bottom	2	27.5	7.8	23.9	5.2	5.2	5.6		4.3	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Surface	1	28.7	7.9	19.6	7.4		3.9		1.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Surface	2	28.5	8.0	19.5	7.3	6.1	2.9		1.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Middle	1	26.5	7.8	30.4	4.8	0.1	5.0	4.7	1.8	2.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Middle	2	26.4	7.9	30.3	4.9		4.7	4.7	2.6	2.3
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Bottom	1	26.2	7.8	33.0	5.0	5.2	6.1		3.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)5	17:26	Bottom	2	26.1	7.9	32.9	5.3	J.Z	5.8		3.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Surface	1	29.3	7.6	13.4	6.4		10.3		5.3	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Surface	2	29.5	7.7	13.3	6.4	5.9	12.3		6.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Middle	1	27.9	7.6	19.6	5.5	5.9	12.5	13.2	9.3	14.8
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Middle	2	28.1	7.6	19.4	5.4		14.2	13.2	11.1	14.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Bottom	1	27.6	7.6	21.0	5.2	5.2	13.7		29.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	CS(Mf)3(N)	16:28	Bottom	2	27.8	7.7	21.0	5.1	5.2	16.1		27.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Surface	1	28.8	8.0	18.4	8.2		4.8		2.8	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Surface	2	28.7	8.1	18.4	8.3	7.0	4.2		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Middle	1	27.8	7.6	22.1	5.7	7.0	8.3	8.4	3.5	3.4
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Middle	2	27.7	7.8	22.1	5.7		7.7	0.4	2.7	J.4
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Bottom	1	27.3	7.6	25.1	5.1	5.2	13.2		3.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)16	16:58	Bottom	2	27.2	7.8	25.2	5.2	5.2	12.2		4.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Surface	1	28.5	7.8	19.3	7.6		6.0		21.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Surface	2	28.4	8.0	19.2	7.6	7.6	5.3		21.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Middle						7.0		10.4		24.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Middle								10.4		24.1
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Bottom	1	27.5	7.7	24.2	5.7	5.7	16.1		27.0	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4a	16:45	Bottom	2	27.4	7.8	24.1	5.6	5.7	14.2		26.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Surface	1	28.8	7.8	18.7	8.2		18.4		10.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Surface	2	28.7	8.0	18.6	8.2	8.2	18.1		9.1	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Middle						0.2		17.7		14.7
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Middle								17.7		14.7
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Bottom	1	28.4	7.7	20.0	7.3	7.4	16.4		19.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	SR4	16:40	Bottom	2	28.3	7.9	20.0	7.4	7.4	17.8		19.7	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Surface	1	28.8	8.0	18.0	8.0		7.2		4.6	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Surface	2	28.7	8.0	18.0	8.0	0.0	6.6		6.2	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Middle						8.0		0.6		5.0
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Middle								9.6		5.9
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Bottom	1	28.4	7.9	19.8	7.3	7.4	12.7		6.5	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS8	16:30	Bottom	2	28.3	7.9	19.8	7.4	7.4	11.9		6.4	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	Surface	1	30.3	8.5	17.3	14.2		7.8		6.9	
TMCLKL	HY/2012/07	2017-09-01	Mid-Flood	IS(Mf)9	16:18	Surface	2	30.1	8.5	17.3	14.1	140	6.6		6.5]
TMCLKL	HY/2012/07		Mid-Flood		16:18	Middle						14.2		0.6		
TMCLKL	HY/2012/07		Mid-Flood		16:18	Middle								9.6		6.9
TMCLKL			Mid-Flood		16:18	Bottom	1	28.3	8.1	21.2	9.6	0.7	12.8		7.5	1
TMCLKL	HY/2012/07		Mid-Flood		16:18	Bottom	2.	28.2	8.0	21.2	9.5	9.6	11.3		6.7	1

Note: Indicates Exceedance of Action Level
Indicates Exceedance of Limit Level

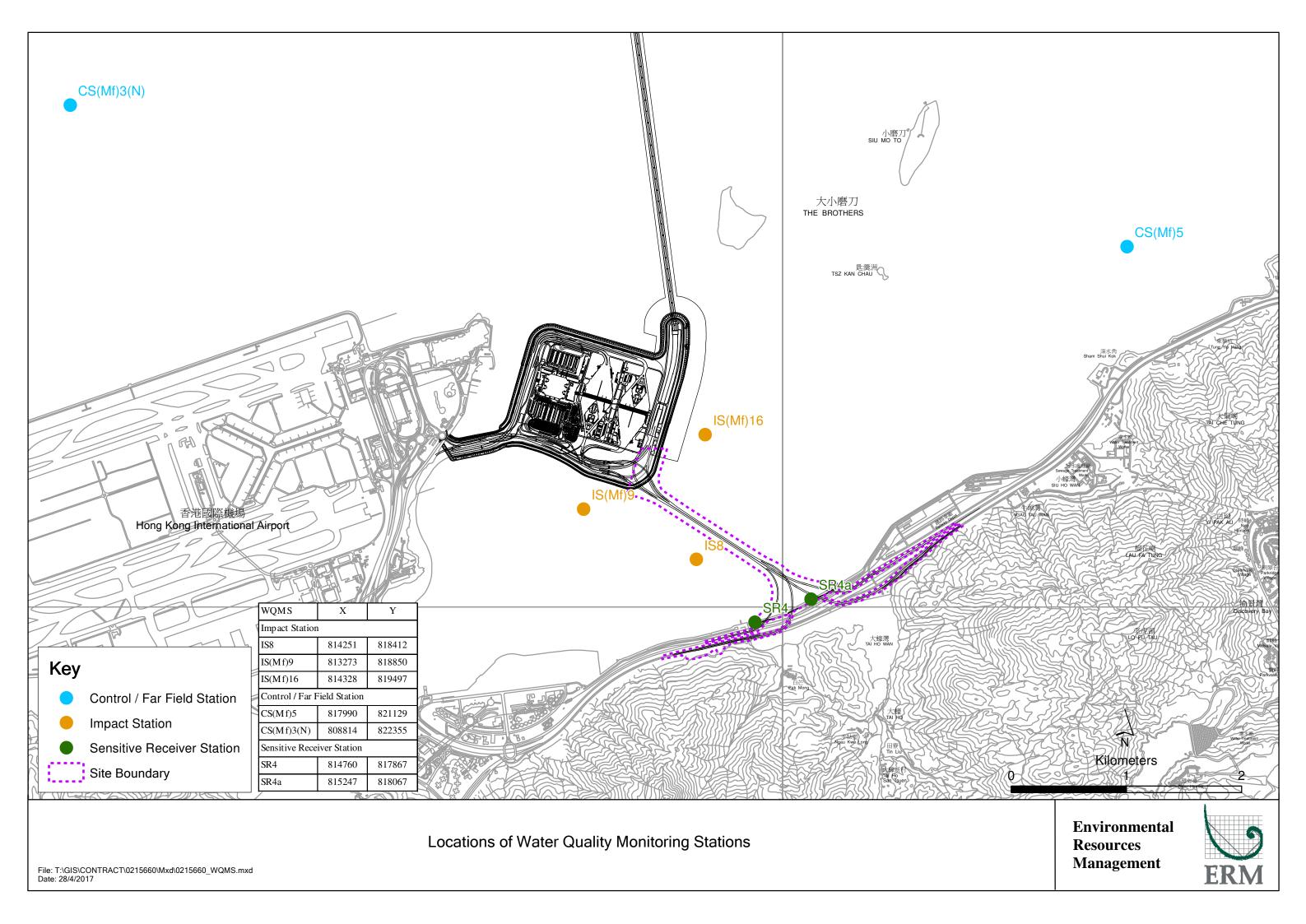
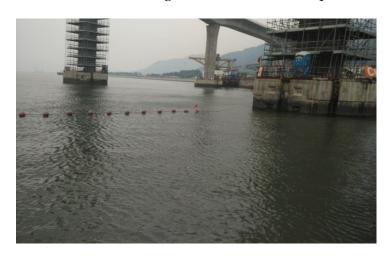



Photo 1 - CS(Mf)3(N) during mid-ebb tide on 1 September 2017

Photo 2 - SR4a during mid-flood tide on 1 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 7 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_6 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

Limit Level Exceedance

0215660_6 September 2017_Bottom-depth DO_E_Station CS(Mf)5 0215660_6 September 2017_Bottom-depth DO_F_Station CS(Mf)5

A total of three exceedances were recorded on 6 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

From ERM- Hong Kong, Limited

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Contract No. HY/2012/07

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 14 September 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_6 September 2017_ Depth-averaged SS_F_Station SR4

A total of three exceedances were recorded on 6 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	0215660_6 Se 0215660_6 Sep	Action Level Exceedance or 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 eptember 2017_ Depth-averaged SS_F_Station SR4 otember 2017_Bottom-depth DO_E_Station CS(Mf)5 otember 2017_Bottom-depth DO_F_Station CS(Mf)5 [Total No. of Exceedances = 4]											
Date	5 0	6 September 2017 (Measured)											
	*	7 September 2017 (In situ results received by ERM)											
Mantiana Ciatian	-	ber 2017 (Laboratory results received by ERM)											
Monitoring Station	· / /	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)											
Parameter(s) with Exceedance(s)		ssolved Oxygen (DO), Bottom-depth Dissolved Oxygen (DO) and bepth-averaged Suspended Solids (SS)											
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L											
	Bottom-depth DO	4.7 mg/L											
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L											
	Bottom-depth DO	3.6 mg/L											
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).											
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)											
Measured Levels	 Mid-Flood at SR4 (depth-av Mid-Ebb at CS(Mf)5 (Botton Mid-Flood at CS(Mf)5 (Botton 	Action Level Exceedance 1. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.9 mg/L); 2. Mid-Flood at SR4 (depth-averaged SS = 26.3 mg/L); 3. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.5 mg/L);											
Works Undertaken (at the time of monitoring	No major marine works was und	dertaken under this Contract on 6 September 2017.											
event)													

Possible Reason for	The exceedances of surface and middle and bottom-depth DO at CS(Mf)5 and depth-averaged SS at
Action or Limit Level	SR4 are unlikely to be due to the Project, in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 6 September 2017.
	Depth-averaged Turbidity levels at all stations were in compliance with the Action and Limit
	Levels during both mid-ebb and mid-flood tides on the same day.
	Apart from SR4, depth-averaged SS levels at all other monitoring stations were in compliance
	with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day.
	Depth-averaged SS levels at SR4 at mid-ebb tides were similar to those at other stations apart
	from the exceedance observed at mid-flood tide.
	All monitored parameters, except DO at CS(Mf)5 and SS at SR4, at all monitoring stations
	were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood
	tides on the same day.
	CS(Mf)5 is distant (>3km) from the marine works area under this Contract, thus the observed
	exceedances should not be affected by the marine works under this Contract and they are
	considered to be natural fluctuation in water quality.
	Apart from DO exceedances at CS(Mf)5, levels of DO at all monitoring stations were in
	compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on
	the same day.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 6 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 6 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Surface	1	27.9	7.7	22.0	5.1		5.5		7.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Surface	2	28.0	7.5	22.0	5.1	5.0	4.6		7.0	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Middle	1	27.2	7.8	25.7	4.8	3.0	10.6	9.3	8.8	0 0
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Middle	2	27.3	7.6	25.8	4.8		9.5	9.3	10.0	8.8
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Bottom	1	26.8	7.7	30.2	4.5	4.5	13.6		9.9	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)5	12:27	Bottom	2	26.9	7.6	30.3	4.5	4.3	12.0		9.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Surface	1	28.9	7.5	17.7	5.5		10.1		4.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Surface	2	28.6	7.5	17.9	5.5	5.3	9.2		5.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Middle	1	27.9	7.6	19.8	5.0	3.3	13.0	12.9	7.3	7.9
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Middle	2	27.6	7.6	20.2	5.1		13.4	12.9	6.9	1.9
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Bottom	1	27.7	7.7	21.8	5.0	5.0	16.6		11.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	CS(Mf)3(N)	13:40	Bottom	2	27.5	7.6	21.8	5.0	3.0	15.1		12.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Surface	1	27.8	7.8	22.1	5.0		7.2		7.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Surface	2	27.9	7.6	22.2	5.0	5.0	6.8		8.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Middle	1	27.5	7.8	23.7	4.9	5.0	7.3	67	9.5	0.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Middle	2	27.6	7.6	23.7	4.9		6.7	6.7	8.9	8.8
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Bottom	1	27.3	7.8	24.7	4.8	4.0	6.3		8.9	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS(Mf)16	13:07	Bottom	2	27.4	7.6	24.6	4.9	4.9	6.0		9.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Surface	1	27.9	7.7	21.5	5.1		10.9		11.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Surface	2	28.0	7.7	21.5	5.1	<i>5</i> 1	9.2		11.2	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Middle						5.1		1 / /		15.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Middle								14.4		15.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Bottom	1	27.4	7.8	24.1	5.0	4.0	18.4		20.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4a	13:18	Bottom	2	27.5	7.8	24.2	4.8	4.9	19.1		19.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Surface	1	28.1	7.7	20.7	5.1		7.2		12.2	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Surface	2	28.2	7.7	20.7	5.1	<i>5</i> 1	6.5		11.5	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Middle						5.1		11.7		10.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Middle								11.6		12.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Bottom	1	27.8	7.7	21.7	5.0	5.0	17.0		13.1	1
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	SR4	13:23	Bottom	2	27.9	7.7	21.7	4.9	5.0	15.6		13.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS8	13:33	Surface	1	28.9	7.8	20.8	5.5		4.9		7.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS8	13:33	Surface	2	29.0	7.7	20.9	5.5	5.5	4.2		7.3	1
TMCLKL			Mid-Ebb	IS8	13:33	Middle						5.5		0.2		60
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS8	13:33	Middle								8.2		6.9
TMCLKL	HY/2012/07	2017/09/06	Mid-Ebb	IS8	13:33	Bottom	1	27.9	7.8	21.9	5.2	5.0	12.1		6.4	1
			Mid-Ebb	IS8	13:33	Bottom	2	28.1	7.7	22.0	5.1	5.2	11.5		6.4]
			Mid-Ebb	IS(Mf)9	13:42	Surface	1	28.0	7.8	21.0	5.2		4.6		5.9	
TMCLKL			Mid-Ebb	IS(Mf)9	13:42	Surface	2	28.2	7.7	21.1	5.3	5.0	4.4		5.0	1
			Mid-Ebb	IS(Mf)9	13:42	Middle						5.3		7.0		0.0
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	13:42	Middle								7.8		8.2
			Mid-Ebb	IS(Mf)9	13:42	Bottom	1	27.7	7.7	22.4	4.9	4.0	11.7		11.3	1
			Mid-Ebb	IS(Mf)9	13:42	Bottom	2	27.8	7.7	22.5	4.9	4.9	10.6		10.4	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Surface	1	27.6	7.8	23.4	5.1		4.7		5.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Surface	2	27.7	7.8	23.6	5.1	4.9	4.3		5.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Middle	1	27.0	7.9	28.4	4.8	4.9	10.3	10.0	11.8	10.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Middle	2	27.1	7.9	28.5	4.6		9.3	10.8	11.8	10.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Bottom	1	26.9	7.9	28.8	4.5	4.5	17.2		13.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)5	19:49	Bottom	2	27.0	7.9	28.9	4.5	4.3	18.9		14.5	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Surface	1	29.1	7.4	14.1	5.0		12.9		8.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Surface	2	28.8	7.4	13.6	5.1	5.0	12.1		7.2	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Middle	1	28.6	7.5	16.6	4.9	5.0	15.8	15.1	10.6	12.1
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Middle	2	28.4	7.4	16.8	5.0		15.5	13.1	11.6	12.1
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Bottom	1	28.4	7.5	17.9	4.9	4.9	17.2		16.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	CS(Mf)3(N)	18:23	Bottom	2	28.2	7.5	18.1	4.9	4.9	16.9		17.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Surface	1	28.2	7.8	21.4	5.0		13.3		12.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Surface	2	28.3	7.8	21.4	5.0	5.0	12.7		13.1	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Middle						5.0		13.2		17.7
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Middle								13.2		17.7
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Bottom	1	28.2	7.8	21.5	5.0	5.0	13.4		23.0	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)16	19:09	Bottom	2	28.3	7.8	21.6	5.0	5.0	13.4		22.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Surface	1	28.4	7.7	20.2	5.2		12.3		19.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Surface	2	28.5	7.8	20.3	5.2	5.2	12.0		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Middle						J.L		13.0		20.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Middle								13.0		20.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Bottom	1	28.4	7.7	20.3	5.3	5.3	14.2		21.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4a	18:56	Bottom	2	28.5	7.8	20.3	5.3	3,3	13.4		20.6	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Surface	1	28.4	7.7	20.7	5.2		17.0		24.5	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Surface	2	28.5	7.8	20.7	5.2	5.2	15.9		24.4	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Middle						J.L		20.4		26.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Middle								20.4		20.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood		18:51	Bottom	1	28.4	7.7	20.8	5.2	5.2	24.6		27.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	SR4	18:51	Bottom	2	28.5	7.8	20.8	5.2	J.L	24.0		28.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Surface	1	28.3	7.8	20.8	5.2		11.6		21.3	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Surface	2	28.4	7.7	20.8	5.2	5.2	11.4		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Middle						J.L		17.4		20.6
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Middle								17.4		20.0
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Bottom	1	28.3	7.7	21.1	5.3	5.3	22.6		19.8	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS8	18:41	Bottom	2	28.4	7.7	21.2	5.2	J . J	23.8		20.7	
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Surface]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Surface						5.3]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Middle	1	28.3	7.8	21.8	5.3	J . J	13.4	13.5	16.5	16.3
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Middle	2	28.4	7.8	21.9	5.2		13.6	13.3	16.0	10.5
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Bottom]
TMCLKL	HY/2012/07	2017/09/06	Mid-Flood	IS(Mf)9	18:31	Bottom									-	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

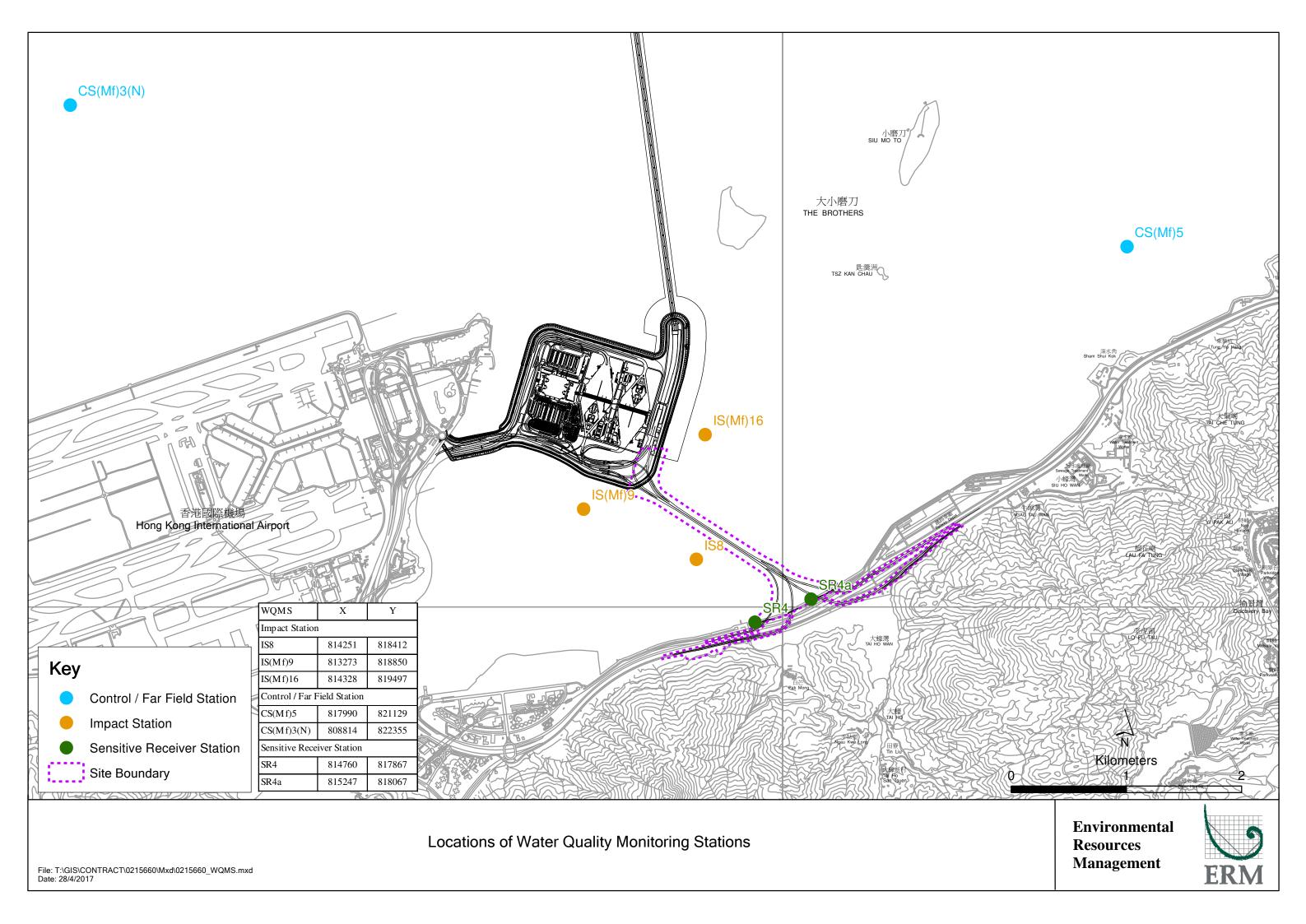


Photo 1 - Mid-Flood at CS(Mf)5 on 6 September 2017

Photo 2 - Mid-Flood at SR4 on 6 September 2017

Photo 3 - Mid-Ebb at CS(Mf)5 on 6 September 2017

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO) 16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 9 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_8 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_8 September 2017_ Surface and Middle-depth DO_E_Station IS(Mf)16

0215660_8 September 2017_ Bottom-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4a

0215660_8 September 2017_Bottom-depth DO_E_Station SR4a
0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4
0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_8 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of fifteen exceedances were recorded on 8 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.										
	Action Level Exceedance 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_8 September 2017_ Bottom-depth DO_E_Station CS(Mf)5 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Bottom-depth DO_E_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4a 0215660_8 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_8 September 2017_ Surface and Middle-depth DO_E_Station SR4 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_8 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station SR4a 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_8 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16									
Date		8 September 2017 (Measured)								
	9 September 2017 (<i>In situ</i> results received by ERM)									
	-	per 2017 (Laboratory results received by ERM)								
Monitoring Station	CS(Mf)5, 9	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Parameter(s) with										
Exceedance(s)	Surface and Middle-depth Dissolved Oxygen (DO), Bottom-depth Dissolved Oxygen (DO)									
Action Levels for DO	Surface and Middle-depth DO 5.0 mg/L									
	Bottom-depth DO	4.7 mg/L								
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L								
	Bottom-depth DO	3.6 mg/L								
Measured Levels	Action Level Exceedance 1. Mid-Ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.8 mg/L); 2. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.4 mg/L); 3. Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9 mg/L); 4. Mid-Ebb at IS(Mf)16 (Surface and Middle-depth DO = 4.7 mg/L); 5. Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.5 mg/L); 6. Mid-Ebb at SR4a (Surface and Middle-depth DO = 4.7 mg/L); 7. Mid-Ebb at SR4a (Bottom-depth DO = 4.5 mg/L); 8. Mid-Ebb at SR4 (Surface and Middle-depth DO = 4.7 mg/L); 9. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.7 mg/L); 10. Mid-Flood at CS(Mf)5 (Bottom-depth DO = 4.6 mg/L); 11. Mid-Flood at IS(Mf)16 (Surface and Middle-depth DO = 4.8 mg/L); 12. Mid-Flood at SR4a (Surface and Middle-depth DO = 4.8 mg/L); 13. Mid-Flood at IS8 (Surface and Middle-depth DO = 4.8 mg/L); 14. Mid-Flood at IS8 (Surface and Middle-depth DO = 4.8 mg/L); 15. Mid-Flood at IS8 (Surface and Middle-depth DO = 4.8 mg/L);									
Works Undertaken (at	No major marine works was und	ertaken under this Contract on 8 September 2017.								
the time of monitoring										
event)										

Possible Reason for	The DO exceedances at the monitoring stations are unlikely to be due to the Project, in view of the
Action or Limit Level	following:
Exceedance(s)	No marine works was undertaken under this Contract on 6 September 2017.
	 CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. DO patterns at IS(Mf)16, SR4a and SR4 during mid-ebb had similar DO pattern as the control station CS(Mf)3(N), in which action level exceedance was observed on the same day and at the same tide. Marginal DO exceedances were observed at the surface and middle-depth at IS(Mf)16, SR4a, IS8 and IS(Mf)9 during mid-flood. The DO patterns at these monitoring stations followed
	similar DO pattern as the control station CS(Mf)5, in which action level exceedance was observed on the same day and at the same tide.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 8 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 8 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Surface	1	28.6	7.7	20.5	4.8		5.7		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Surface	2	28.6	7.7	20.4	4.9	4.8	5.8		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Middle	1	28.2	7.7	22.1	4.7	4.0	11.2	10.7	19.5	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Middle	2	28.1	7.8	22.0	4.7		11.3	19.7	21.2	21.7
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Bottom	1	27.7	7.8	24.4	4.4	4.4	41.1		36.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)5	14:37	Bottom	2	27.6	7.7	24.3	4.4	4.4	42.9		34.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Surface	1	28.3	7.6	19.8	5.0		10.6		7.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Surface	2	28.5	7.6	19.6	4.9	4.0	10.6		6.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Middle	1	27.9	7.7	22.3	4.8	4.9	18.9	160	14.0	12.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Middle	2	28.1	7.7	22.1	4.8		18.7	16.0	15.3	13.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Bottom	1	27.8	7.7	23.3	4.9	4.0	17.0		17.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	CS(Mf)3(N)	12:51	Bottom	2	28.0	7.7	23.1	4.8	4.9	19.9		17.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Surface	1	28.3	7.7	21.5	4.9		5.7		8.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Surface	2	28.1	7.7	21.5	4.9		6.1		7.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16		Middle	1	27.9	7.8	23.0	4.5	4.7	9.5	5 0	14.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Middle	2.	27.8	7.7	22.9	4.5		10.3	7.0	12.7	11.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Bottom	1	27.7	7.8	24.4	4.5		5.2		13.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)16	13:56	Bottom	2	27.6	7.7	24.3	4.5	4.5	5.4		12.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Surface	1	28.3	7.6	20.7	4.7		7.5		13.9	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Surface	2.	28.2	7.7	20.6	4.7		7.9		12.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Middle	1	2012		2010		4.7	,		1211	14.8
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Middle	2.							12.4		
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a	13:38	Bottom	1	28.1	7.6	21.9	4.5		16.6		16.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4a		Bottom	2.	27.9	7.7	21.8	4.5	4.5	17.6		16.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Surface	1	28.3	7.7	20.3	4.7		8.1		9.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Surface	2	28.2	7.6	20.2	4.7		8.6		10.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Middle	1	20.2	7.0	20.2	1.7	4.7	0.0		10.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Middle	2							8.2		11.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	SR4	13:32	Bottom	1	28.3	7.7	21.0	4.8		7.7		11.9	
	HY/2012/07	2017-09-08	Mid-Ebb			Bottom	2	28.1	7.7	20.9	4.9	4.9	8.2		12.5	
	HY/2012/07	2017-09-08	Mid-Ebb			Surface	1	28.9	7.8	20.2	5.2		3.9		7.6	
	HY/2012/07	2017-09-08	Mid-Ebb		+	Surface	2	28.8	7.7	20.1	5.2		4.4		9.0	
	HY/2012/07	2017-09-08	Mid-Ebb			Middle	1	20.0	1.1	20.1	3.2	5.2	4.4		7.0	
	HY/2012/07	2017-09-08	Mid-Ebb			Middle	2			<u> </u>				6.4		10.1
	HY/2012/07	2017-09-08			_	Bottom	1	28.3	7.9	21.0	5.0		8.4		11.4	
	HY/2012/07	2017-09-08		IS8	1	Bottom	2	28.2	7.7	20.9	5.0	5.0	8.9		12.4	
	HY/2012/07	2017-09-08				Surface	1	29.0	7.7	20.9	5.4		4.3		4.0	
	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9	1	Surface	1 2	28.9	7.7	20.1	5.3		4.7		5.6	
	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9		Middle		۷٥,۶	1.1	۷۷.۷	J.J	5.4	4.1		3.0	
	HY/2012/07	2017-09-08		IS(Mf)9		Middle	2			1				5.0		7.8
	HY/2012/07	2017-09-08	Mid-Ebb		13:09	Bottom		28.3	7.9	20.7	5.0		5.2		11.5	
			Mid-Ebb	IS(Mf)9		1	1				5.0	5.1	5.3		11.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Ebb	IS(Mf)9	13:09	Bottom	2	28.2	7.7	20.7	5.1		5.6		10.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Surface	1	28.1	7.8	21.3	4.8		4.2		2.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Surface	2	28.0	7.8	21.3	4.8	4.7	4.9		2.4	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Middle	1	27.7	7.8	24.9	4.5	4.7	4.8	5.0	5.8	5.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Middle	2	27.6	7.9	25.2	4.5		5.3	5.0	5.5	5.4
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Bottom	1	27.6	7.8	26.6	4.5	4.6	5.2		7.5	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)5	7:07	Bottom	2	27.5	7.9	26.5	4.6	4.0	5.5		9.2	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Surface	1	28.4	7.5	16.9	4.9		11.1		10.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Surface	2	28.2	7.5	17.1	4.9	4.0	11.2		10.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Middle	1	28.3	7.6	18.7	4.7	4.8	17.0	160	17.0	16.2
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Middle	2	28.1	7.6	18.8	4.8		16.8	16.2	16.4	16.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		8:22	Bottom	1	28.3	7.6	18.9	4.7	4.77	19.8		22.7	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	CS(Mf)3(N)	8:22	Bottom	2	28.0	7.6	19.0	4.7	4.7	21.0		21.1	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	Surface	1	28.1	7.7	20.8	4.9		2.6		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	IS(Mf)16	7:33	Surface	2	28.0	7.8	20.8	4.8	4.0	2.2		2.2	
TMCLKL	HY/2012/07	2017-09-08		<u> </u>		Middle	1	28.1	7.7	21.1	4.8	4.8	3.2	0.6	2.3	2.0
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Middle	2	28.0	7.8	21.2	4.7		2.8	3.6	2.4	2.3
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Bottom	1	28.1	7.8	22.2	4.7	4.5	5.8		2.4	
	HY/2012/07	2017-09-08	Mid-Flood	<u> </u>	7:33	Bottom	2	27.9	7.8	22.1	4.7	4.7	5.1		2.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood	 ` '	7:44	Surface	1	28.1	7.8	20.7	4.9		6.0		10.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Surface	2	28.0	7.8	20.6	4.9		5.0		11.6	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Middle	1					4.9		6.0		
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Middle	2							6.3		11.1
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:44	Bottom	1	28.1	7.8	20.8	5.1	5.0	7.6		11.8	
	HY/2012/07	2017-09-08	Mid-Flood		7:44	Bottom	2	27.9	7.8	20.7	5.2	5.2	6.6		10.8	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Surface	1	28.1	7.8	20.8	4.9		7.2		15.0	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Surface	2.	28.0	7.8	20.7	5.0	~ 0	6.5		14.3	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Middle	1	2010	,,,,	2011	2.0	5.0			1 110	
TMCLKL	HY/2012/07	2017-09-08	Mid-Flood		7:49	Middle	2.							6.9		16.0
	HY/2012/07	2017-09-08	Mid-Flood		7:49	Bottom	1	28.1	7.8	20.8	5.1		7.4		17.2	
	HY/2012/07		Mid-Flood			Bottom	2.	28.0	7.8	20.7	5.2	5.2	6.6		17.5	
	HY/2012/07	2017-09-08	Mid-Flood			Surface	1	28.1	7.8	20.8	4.8		13.8		11.5	
	HY/2012/07	2017-09-08	Mid-Flood		+	Surface	2	28.0	7.8	20.7	4.8		14.0		11.6	
	HY/2012/07	2017-09-08	Mid-Flood		7:58	Middle	1	20.0	7.0	20.1	1.0	4.8	1110		11.0	
	HY/2012/07	2017-09-08	Mid-Flood			Middle	2							17.4		15.4
	HY/2012/07	2017-09-08	Mid-Flood			Bottom	1	28.1	7.8	21.0	4.7		20.8		18.5	
	HY/2012/07	2017-09-08	Mid-Flood		7:58	Bottom	2	28.0	7.8	21.0	4.7	4.7	20.9		19.9	
	HY/2012/07	2017-09-08	Mid-Flood			Surface	1	28.1	7.8	21.8	4.8		5.9		6.5	
	HY/2012/07	2017-09-08	Mid-Flood		1	Surface	2	28.0	7.8	21.7	4.8		5.2		7.5	
	HY/2012/07	2017-09-08	Mid-Flood		8:07	Middle	1	20.0	7.0	21.1	1.0	4.8	J.L		1.5	
	HY/2012/07	2017-09-08	Mid-Flood	+ ` '		Middle	2			1				9.9		8.5
	HY/2012/07	2017-09-08	Mid-Flood		8:07	Bottom	1	28.1	7.8	22.6	4.8		14.9		10.1	
	HY/2012/07	2017-09-08	Mid-Flood			Bottom	2	27.9	7.8	22.5	4.8	4.8	13.4		9.9	
TIVICLIAL	111/2012/0/	2017-09-00	1V11u-F1000	19(1M1)A	0.07	DUIIUIII	L	41.9	1.0	LL.J	4.0		13.4		7.7	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

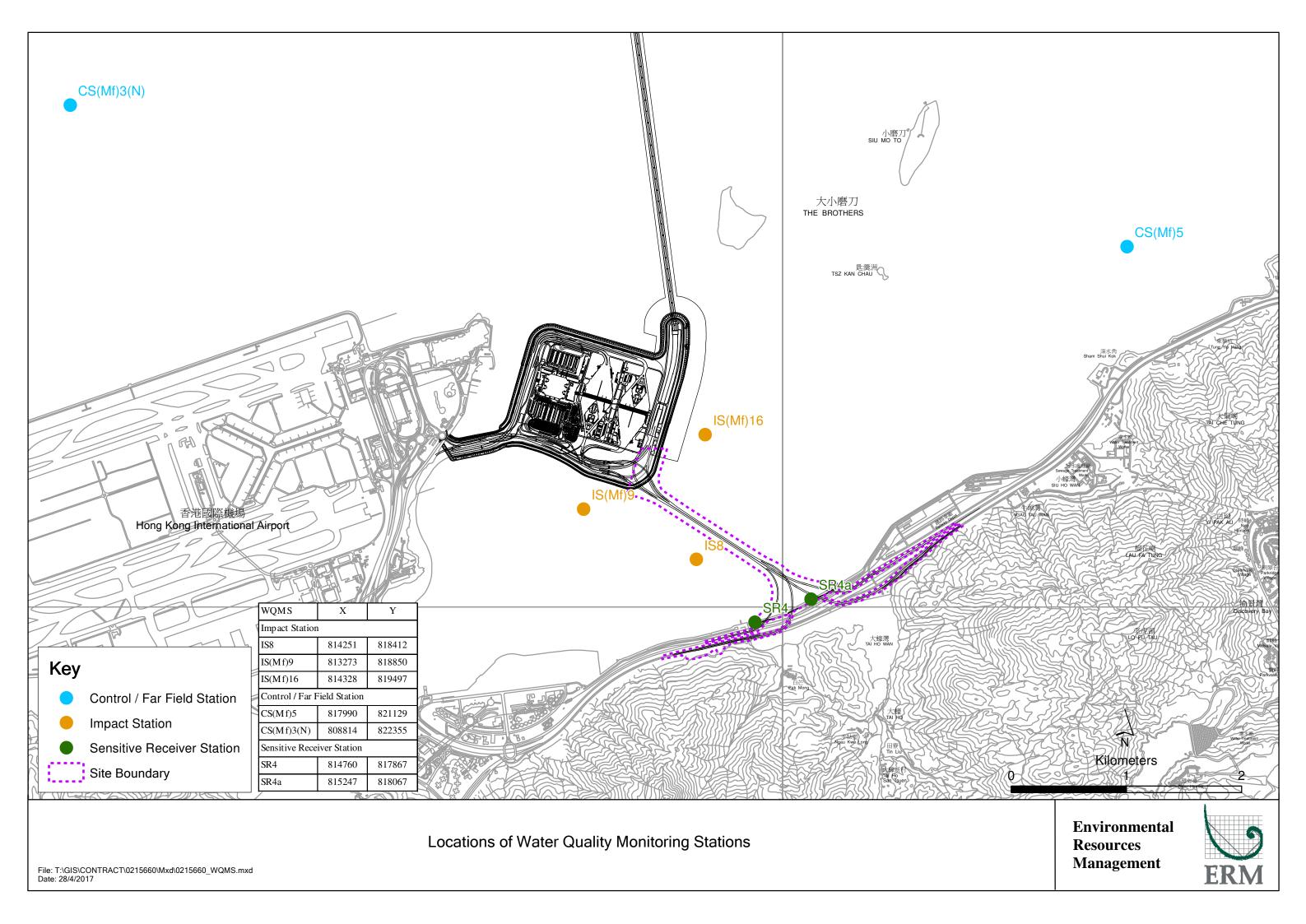


Photo 1 - Mid-Ebb at CS(Mf)5 on 8 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 8 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 8 September 2017

Photo 4 - Mid-Ebb at SR4a on 8 September 2017

Photo 5 - Mid-Ebb at SR4 on 8 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 8 September 2017

Photo 7 - Mid-Flood at CS(Mf)3(N) on 8 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 8 September 2017

Photo 9 - Mid-Flood at SR4a on 8 September 2017

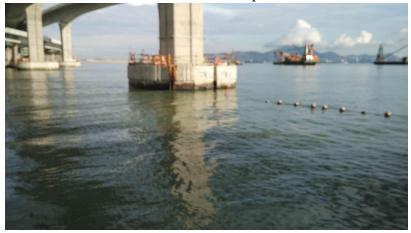


Photo 10 - Mid-Flood at IS8 on 8 September 2017

Photo 11 - Mid-Flood at IS(Mf)9 on 8 September 2017

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO)

From ERM- Hong Kong, Limited 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 12 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_11 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_11 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_11 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_E_Station IS(Mf)16
0215660_11 September 2017_ Surface and Middle-depth DO_E_Station SR4a
0215660_11 September 2017_ Bottom-depth DO_E_Station SR4a
0215660_11 September 2017_ Surface and Middle-depth DO_E_Station SR4

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_11 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_11 September 2017_ Bottom-depth DO_F_Station CS(Mf)3(N)

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16

0215660_11 September 2017_Bottom-depth DO_F_Station IS(Mf)16

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_11 September 2017_Bottom-depth DO_F_Station SR4a

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station SR4

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_11 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of nineteen exceedances were recorded on 11 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

	0215660_11 September 2 0215660_11 September 2 0215660_11 Septem 0215660_11 September 2 0215660_11 September 3 0215660_11 September 3	Action Level Exceedance r 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 tember 2017_ Bottom-depth DO_E_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_E_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_E_Station IS(Mf)16 ver 2017_ Surface and Middle-depth DO_E_Station SR4a ptember 2017_ Bottom-depth DO_E_Station SR4a ptember 2017_ Bottom-depth DO_E_Station SR4a ver 2017_ Surface and Middle-depth DO_E_Station SR4 r 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)3(N) mber 2017_ Bottom-depth DO_F_Station CS(Mf)3(N) 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 tember 2017_Bottom-depth DO_F_Station IS(Mf)16 ver 2017_ Surface and Middle-depth DO_F_Station SR4a exptember 2017_Bottom-depth DO_F_Station SR4a ber 2017_ Surface and Middle-depth DO_F_Station SR4a ber 2017_ Surface and Middle-depth DO_F_Station SR4a ber 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9 [Total No. of Exceedances = 19]								
	11 September 2017 (Measured)									
Date	10.0	1								
Date	_	mber 2017 (In situ results received by ERM)								
Date Monitoring Station	19 Septemb	1 ,								
	19 Septemb CS(Mf)5, S	mber 2017 (<i>In situ</i> results received by ERM) er 2017 (Laboratory results received by ERM)								
Monitoring Station Parameter(s) with	19 Septemb CS(Mf)5, S	mber 2017 (In situ results received by ERM) per 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Monitoring Station Parameter(s) with Exceedance(s)	19 Septemb CS(Mf)5, S Surface and Midd	mber 2017 (In situ results received by ERM) er 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N) le-depth DO, Bottom-depth Dissolved Oxygen (DO)								
Monitoring Station Parameter(s) with Exceedance(s)	19 Septemb CS(Mf)5, S Surface and Middle-Surface and Middle-depth DO	mber 2017 (In situ results received by ERM) er 2017 (Laboratory results received by ERM) ER4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N) le-depth DO, Bottom-depth Dissolved Oxygen (DO) 5.0 mg/L								

Measured Levels	Action Level Exceedance
ivicus area devels	1. Mid-Ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L);
	2. Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 3.9 mg/L);
	3. Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.6 mg/L);
	4. Mid-Ebb at CS(Mf)3(N) (Bottom-depth DO = 4.5 mg/L);
	5. Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.3 mg/L);
	6. Mid-Ebb at SR4a (Surface and Middle-depth DO = 4.8 mg/L);
	7. Mid-Ebb at SR4a (Bottom-depth DO = 4.4 mg/L);
	8. Mid-Ebb at SR4 (Surface and Middle-depth DO = 4.9 mg/L);
	9. Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L);
	10. Mid-Flood at CS(Mf)5 (Bottom-depth DO = 4.1 mg/L);
	11. Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.6 mg/L);
	12. Mid-Flood at CS(Mf)3(N) (Bottom-depth DO = 4.6 mg/L);
	13. Mid-Flood at IS(Mf)16 (Surface and Middle-depth DO = 4.7 mg/L);
	14. Mid-Flood at IS(Mf)16 (Bottom-depth DO = 4.6 mg/L);
	15. Mid-Flood at SR4a (Surface and Middle-depth DO = 4.7 mg/L);
	16. Mid-Flood at SR4a (Bottom-depth DO = 4.6 mg/L);
	17. Mid-Flood at SR4 (Surface and Middle-depth DO = 4.8 mg/L);
	18. Mid-Flood at IS8 (Surface and Middle-depth DO = 4.8 mg/L);
	19. Mid-Flood at IS(Mf)9 (Surface and Middle-depth DO = 4.8 mg/L).
Works Undertaken (at	No major marine works was undertaken under this Contract on 11 September 2017.
the time of monitoring	
event)	
Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 11 September 2017.
	All monitored parameters, except DO, at all monitoring stations were in compliance with the
	Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.
	·
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works
	area under this Contract, thus the observed exceedances should not be affected by the marine
	works under this Contract and they are considered to be natural fluctuation in water quality.
	Marginal DO exceedances were observed at IS(Mf)16, SR4a and SR4 during mid-ebb tide. The
	DO patterns at surface and middle and bottom levels at these stations followed similar DO
	pattern as the upstream control station, CS(Mf)3(N), in which action level exceedances were
	observed during mid-ebb tide. Consequently the observed DO exceedances are considered
	within the natural range and are not considered to be caused by the Project.
	, ,
	DO patterns at IS(Mf)16, IS(Mf)9, IS8, SR4a and SR4 during mid-flood tide followed similar
	DO pattern as the upstream control station, CS(Mf)5, in which action level exceedances were
	observed during the same tide. Therefore, the observed DO exceedances are considered
	within the natural range and are not considered to be caused by the Project.
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 11 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 11 September 2017 is attached.
	10 www.com

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Surface	1	29.3	7.7	18.3	4.7		4.4		6.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Surface	2	29.4	7.7	18.4	4.7	4.6	4.0		5.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Middle	1	28.8	7.7	20.2	4.5	4.0	5.1	5.2	4.7	5.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Middle	2	29.0	7.7	20.3	4.5		4.8	5.3	4.8	5.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Bottom	1	27.7	7.7	26.5	3.9	3.9	6.8		6.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)5	16:17	Bottom	2	27.9	7.7	26.6	3.9	3. 9	6.4		7.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Surface	1	29.7	7.4	13.6	4.6		14.1		3.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Surface	2	29.5	7.4	13.8	4.7	4.6	14.4 17.5 18.5	3.2		
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Middle	1	28.7	7.5	19.9	4.4	4.0		10 5	4.6	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Middle	2	28.5	7.6	20.1	4.5		14.1	10.3	4.3	7.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Bottom	1	28.7	7.6	21.1	4.4	4.5	25.8		14.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	CS(Mf)3(N)	14:56	Bottom	2	28.4	7.6	21.2	4.5	4.3	25.3		15.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Surface	1	29.0	7.7	20.1	5.1		5.6		6.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Surface	2	29.2	7.7	20.2	5.2	5.0	4.9		6.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Middle	1					5.2		7.7		6.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Middle	2							7.7		6.2
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Bottom	1	28.1	7.7	23.4	4.3	4.2	10.8		5.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)16	15:51	Bottom	2	28.3	7.7	23.5	4.3	4.3	9.6		5.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Surface	1	29.0	7.6	18.9	4.7		8.0		12.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Surface	2	29.2	7.6	19.0	4.8	4.0	7.5		12.5	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Middle	1					4.8		10.1		11.8
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Middle	2							10.1		
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Bottom	1	28.6	7.6	19.9	4.4	4.4	12.4		10.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4a	15:37	Bottom	2	28.8	7.6	20.0	4.4	4.4	12.3	1	11.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Surface	1	28.9	7.6	19.0	4.9		7.5		8.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Surface	2	29.1	7.6	19.1	4.9	4.0	7.3		9.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Middle	1					4.9		0.7		0.7
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Middle	2							8.7		9.7
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Bottom	1	28.9	7.6	19.8	4.8	4.0	10.2		10.8	
TMCLKL	HY/2012/07	2017-09-11	Mid-Ebb	SR4	15:33	Bottom	2	29.0	7.6	19.9	4.8	4.8	9.8		10.2	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Surface	1	29.3	7.7	18.9	5.2		6.7		7.2	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Surface	2	29.5	7.7	18.9	5.2	<i>r</i> 0	6.3		6.4	
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Middle	1					5.2		7.7		6.0
	HY/2012/07		Mid-Ebb	IS8	15:25	Middle	2							7.7		6.3
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Bottom	1	28.7	7.7	20.0	5.0	<i>r</i> 0	9.0		5.7	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS8	15:25	Bottom	2	28.9	7.7	20.1	5.0	5.0	8.6		6.0	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Surface	1	29.0	7.7	19.1	5.3		5.3		5.1	
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Surface	2	29.2	7.7	19.2	5.3	<i>T</i> 0	4.9		4.5	1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Middle	1					5.3	-	<i>7</i> 0		1
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Middle	2							5.0		5.3
	HY/2012/07	2017-09-11	Mid-Ebb	IS(Mf)9	15:16	Bottom	1	29.0	7.7	19.4	5.3	<i>r</i> 0	5.0		5.6	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	15:16	Bottom	2	29.2	7.7	19.4	5.3	5.3	4.6		6.0	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Surface	1	28.7	7.7	18.6	4.8		2.7		3.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Surface	2	28.9	7.7	18.7	4.8	4.6	2.7		4.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Middle	1	28.3	7.7	21.1	4.4	4.0	3.6	67	3.5	2.5
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Middle	2	28.5	7.7	21.2	4.4		3.5	6.7	4.0	3.5
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Bottom	1	27.9	7.7	24.6	4.1	4.1	14.2		3.2	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)5	09:37	Bottom	2	28.1	7.7	24.7	4.1	4.1	13.3		2.9	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Surface	1	29.4	7.4	13.9	4.6		9.6		9.0	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Surface	2	29.1	7.5	14.0	4.7	4.6	9.5		9.1	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Middle	1	29.0	7.6	16.8	4.5	4.0	10.1	11.8	14.9	14.8
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Middle	2	28.8	7.6	16.8	4.6		10.5	11.0	14.5	14.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Bottom	1	28.9	7.5	18.0	4.5	1.6	15.4		19.7	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	CS(Mf)3(N)	11:04	Bottom	2	28.7	7.6	18.0	4.6	4.6	15.7		21.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Surface	1	28.8	7.6	18.4	4.7		3.3		2.3	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Surface	2	28.9	7.6	18.4	4.7	4.7	3.1		2.4	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Middle	1					4.7		7.0		4.0
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Middle	2							7.2		4.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Bottom	1	28.5	7.6	19.6	4.6	1.6	11.4		7.3	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)16	10:08	Bottom	2	28.7	7.6	19.6	4.6	4.6	10.8		7.4	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Surface	1	28.7	7.6	18.5	4.7		13.0		14.5	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Surface	2	28.9	7.6	18.5	4.7	4.7	13.4		15.2	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Middle	1					4.7		10.5		140
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Middle	2							13.5		14.9
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Bottom	1	28.6	7.6	18.9	4.6	1.6	14.2		14.7	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4a	10:17	Bottom	2	28.8	7.6	18.9	4.6	4.6	13.3		15.0	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Surface	1	28.8	7.6	18.0	4.8		7.3		15.6	
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Surface	2	29.0	7.6	18.1	4.8	4.0	7.9		13.9	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Middle	1					4.8		0.2		14.6
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Middle	2							8.3		14.6
TMCLKL	HY/2012/07	2017-09-11	i e	SR4	10:23	Bottom	1	28.8	7.6	18.0	4.8	4.0	9.9		14.6	1
TMCLKL	HY/2012/07	2017-09-11	Mid-Flood	SR4	10:23	Bottom	2	29.0	7.6	18.1	4.8	4.8	8.1		14.2	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Surface	1	29.0	7.6	18.1	4.8		4.7		6.6	
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Surface	2	29.2	7.6	18.2	4.8	4.0	4.5		8.1	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Middle	1					4.8		4.0		0.0
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Middle	2							4.9		8.2
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Bottom	1	28.8	7.6	18.2	4.8	4.0	5.2		9.0	1
	HY/2012/07	2017-09-11	Mid-Flood		10:35	Bottom	2	29.0	7.6	18.3	4.8	4.8	5.0		9.0	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Surface	1	28.7	7.6	19.3	4.8		9.4		9.1	
	HY/2012/07	2017-09-11			10:47	Surface	2	28.9	7.6	19.4	4.8	4.0	9.2		9.3	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Middle	1	-	-			4.8		10.5		0.0
	HY/2012/07	2017-09-11	•		10:47	Middle	2							10.5		9.2
	HY/2012/07	2017-09-11	Mid-Flood	IS(Mf)9	10:47	Bottom	1	28.6	7.7	20.0	4.7	4.5	12.1		8.8	1
	HY/2012/07	2017-09-11	Mid-Flood		10:47	Bottom	2	28.8	7.7	20.1	4.7	4.7	11.3		9.4	1

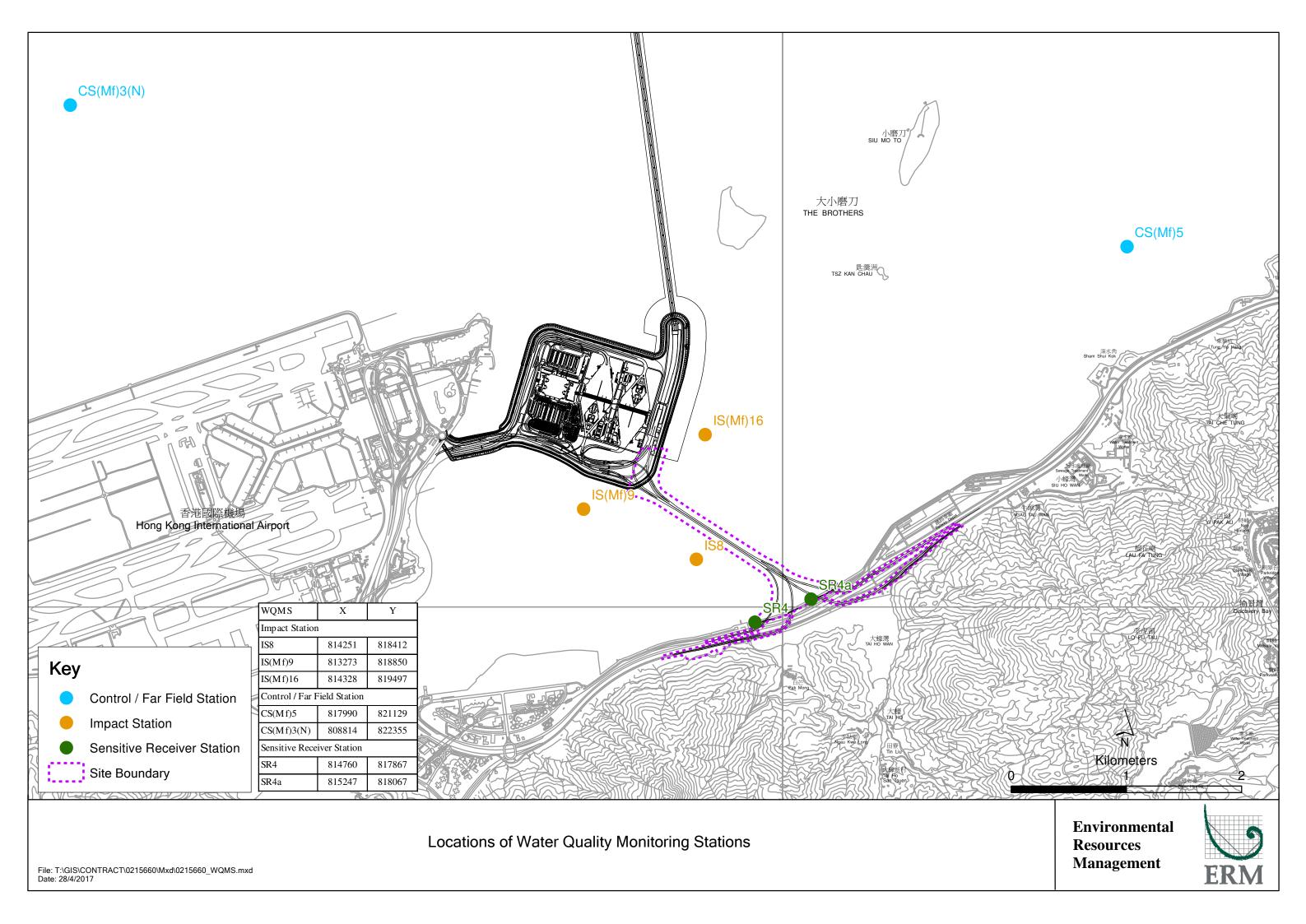


Photo 1 - Mid-Ebb at CS(Mf)5 on 11 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 11 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 11 September 2017

Photo 4 - Mid-Ebb at SR4a on 11 September 2017

Photo 5 - Mid-Ebb at SR4 on 11 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 11 September 2017

Photo 7 - Mid-Flood at CS(Mf)3(N) on 11 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 11 September 2017

Photo 9 - Mid-Flood at SR4 on 11 September 2017

Photo 10 - Mid-Flood at IS8 on 11 September 2017

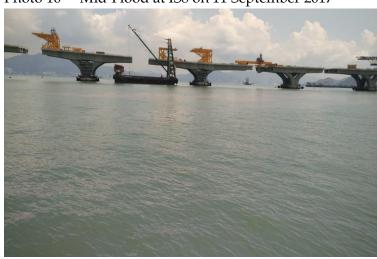


Photo 11 - Mid-Flood at IS(Mf)9 on 11 September 2017

Environmental Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO) 16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 14 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_13 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_13 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_13 September 2017_ Bottom-depth DO_E_Station IS(Mf)16

0215660_13 September 2017_ Bottom-depth DO_E_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_E_Station SR4
0215660_13 September 2017_ Bottom-depth DO_E_Station IS8
0215660_13 September 2017_ Bottom-depth DO_E_Station IS8
0215660_13 September 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5
0215660_13 September 2017_ Bottom-depth DO_F_Station CS(Mf)5
0215660_13 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_13 September 2017_ Bottom-depth DO_F_Station IS(Mf)16

0215660_13 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_F_Station SR4a

0215660_13 September 2017_ Bottom-depth DO_F_Station IS(Mf)9

A total of thirteen exceedances were recorded on 13 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance									
	0215660_13 September :	tember 2017_ Bottom-depth DO_E_Station CS(Mf)5 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) tember 2017_ Bottom-depth DO_E_Station IS(Mf)16 eptember 2017_ Bottom-depth DO_E_Station SR4a eptember 2017_ Bottom-depth DO_E_Station IS8 eptember 2017_ Bottom-depth DO_E_Station IS8 er 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5 tember 2017_ Bottom-depth DO_F_Station CS(Mf)5 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) tember 2017_ Bottom-depth DO_F_Station IS(Mf)16 per 2017_ Surface and Middle-depth DO_F_Station SR4a eptember 2017_ Bottom-depth DO_F_Station SR4a bettember 2017_ Bottom-depth DO_F_Station IS(Mf)9 [Total No. of Exceedances = 13]									
Date		13 September 2017 (Measured)									
	14 Septe	mber 2017 (In situ results received by ERM)									
	19 Septemb	per 2017 (Laboratory results received by ERM)									
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)									
Parameter(s) with Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)									
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Measured Levels	 Mid-Ebb at CS(Mf)3(N) (Sur 3. Mid-Ebb at IS(Mf)16 (Bottom 4. Mid-Ebb at SR4a (Bottom-dep 5. Mid-Ebb at SR4 (Bottom-dep 6. Mid-Ebb at IS8 (Bottom-dep 7. Mid-Flood at CS(Mf)5 (Surfa 8. Mid-Flood at CS(Mf)5 (Bottom 9. Mid-Flood at CS(Mf)16 (Bottom 10. Mid-Flood at IS(Mf)16 (Bottom 11. Mid-Flood at SR4a (Surface 12. Mid-Flood at IS(Mf)9 (Bottom 13. Mid-Flood at IS(Mf)9 (Bottom 13. Mid-Flood at IS(Mf)9 (Bottom 14. Mid-Flood at IS(Mf)9 (Bottom 15. Mid	Action Level Exceedance Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.1 mg/L); Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9 mg/L); Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.2 mg/L); Mid-Ebb at SR4a (Bottom-depth DO = 4.6 mg/L); Mid-Ebb at SR4 (Bottom-depth DO = 4.6 mg/L); Mid-Ebb at IS8 (Bottom-depth DO = 4.2 mg/L); Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.6 mg/L); Mid-Flood at CS(Mf)5 (Bottom-depth DO = 3.7 mg/L); Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9 mg/L); Mid-Flood at SR4a (Surface and Middle-depth DO = 4.9 mg/L); Mid-Flood at SR4a (Surface and Middle-depth DO = 4.9 mg/L); Mid-Flood at SR4a (Bottom-depth DO = 4.3 mg/L);									
Works Undertaken (at the time of monitoring	No major marine works was und	ertaken under this Contract on 13 September 2017.									
event)											

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Action or Limit Level Exceedance(s)	 in view of the following: No marine works was undertaken under this Contract on 13 September 2017. All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. DO levels were generally lower at water quality monitoring stations due to two possible reasons of natural variation: Natural ability for water to hold dissolved oxygen is reduced due to higher water temperature in summer months. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and IS(Mf)16 monitoring stations was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level as the DO
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle and surface levels.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 13 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 13 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Surface	1	29.3	7.9	20.9	5.6		1.5		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Surface	2	29.4	7.9	21.1	5.7	5.2	1.6		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Middle	1	28.3	7.9	26.3	4.7	J . Z	1.2	1 0	2.9	2.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Middle	2	28.5	7.9	26.5	4.7		1.2	1.8	4.2	3.8
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Bottom	1	27.7	7.9	28.9	4.1	4.1	2.5		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)5	19:05	Bottom	2	27.9	7.9	29.3	4.0	4.1	2.7		4.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Surface	1	29.3	7.8	18.4	4.8		2.0		6.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Surface	2	29.1	7.8	18.6	4.9	4.9	1.9		6.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Middle	1	29.4	7.9	21.0	4.9	4.9	2.6	2.5	6.5	6.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Middle	2	29.2	7.9	21.1	5.0		2.5	2.3	5.9	6.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Bottom	1	29.2	7.9	21.9	4.7	4.0	3.1		6.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	CS(Mf)3(N)	17:10	Bottom	2	28.9	7.9	22.0	4.9	4.8	3.1		7.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Surface	1	29.6	7.9	19.8	6.2		3.5		7.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Surface	2	29.8	8.0	20.0	6.3	5.2	3.5		6.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Middle	1	28.3	7.9	25.4	4.4	5.3	5.7	47	7.8	0.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Middle	2	28.5	7.9	25.7	4.4		5.8	4.7	7.0	8.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Bottom	1	28.0	7.9	26.6	4.2	4.0	5.0		9.6]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)16	18:33	Bottom	2	28.2	7.9	26.8	4.1	4.2	4.9		9.9]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Surface	1	29.3	7.9	20.1	5.6		3.7		6.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Surface	2	29.4	7.9	20.3	5.6	5.6	3.7		5.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Middle	1					5.6		0.0		7.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Middle	2							8.0		7.4
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Bottom	1	28.9	7.8	21.3	4.6	4.6	12.0		9.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4a	18:21	Bottom	2	29.1	7.8	21.5	4.5	4.0	12.4		8.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Surface	1	29.4	7.9	19.9	5.8		3.6		5.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Surface	2	29.5	7.9	20.1	5.8	5 0	3.8		4.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Middle	1					5.8		7.1		5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Middle	2							7.1		5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Bottom	1	29.0	7.8	21.1	4.6	4.6	10.0		5.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	SR4	18:16	Bottom	2	29.2	7.8	21.3	4.5	4.0	10.8		5.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Surface	1	29.8	7.9	19.5	6.2		3.7		6.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Surface	2	29.9	8.0	19.7	6.3	6.2	4.1		7.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Middle	1					6.3		0.0		0.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Middle	2							8.0		9.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Bottom	1	28.8	7.8	22.0	4.2	4.0	11.8		11.7]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS8	18:09	Bottom	2	29.0	7.8	22.7	4.1	4.2	12.2		11.0]
TMCLKL	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Surface	1	30.1	7.9	19.1	6.8		2.9		3.8	
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Surface	2	30.3	8.0	19.3	6.8	(0	3.1		2.8]
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Middle	1					6.8		2.0		5.0
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Middle	2							3.8		5.3
	HY/2012/07	2017-09-13	Mid-Ebb	IS(Mf)9	18:01	Bottom	1	29.6	7.9	19.4	6.2	(0	4.4		7.7]
	HY/2012/07		Mid-Ebb	IS(Mf)9	18:01	Bottom	2	29.7	7.9	19.6	6.2	6.2	4.8		6.9]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Surface	1	29.1	7.8	20.0	5.3		1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Surface	2	29.3	7.9	20.2	5.3	4.6	1.3		4.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Middle	1	28.2	7.8	25.1	4.0	4.0	2.5	2.9	2.8	3.5
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Middle	2	28.3	7.9	25.4	3.9		2.4	2.9	3.2	3.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Bottom	1	27.7	7.9	28.3	3.7	3.7	4.9		3.6	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)5	12:12	Bottom	2	27.9	7.9	28.6	3.7	3.1	4.9		4.3	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Surface	1	29.4	7.7	14.6	4.9		1.4		2.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Surface	2	29.7	7.7	14.5	4.8	4.0	1.5		2.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Middle	1	28.9	7.8	18.8	4.9	4.9	5.4	4.5	3.7	4.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Middle	2	29.1	7.8	18.7	4.9		5.4	4.5	3.7	4.1
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Bottom	1	28.8	7.8	20.4	5.0	5.0	6.5		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	CS(Mf)3(N)	13:16	Bottom	2	29.0	7.8	20.4	4.9	5.0	6.6		5.9	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Surface	1	29.2	7.8	19.5	5.4		3.4		5.2	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Surface	2	29.4	7.9	19.7	5.4		3.2		5.5	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Middle	1					5.4				5.0
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Middle	2							7.0		7.3
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Bottom	1	28.6	7.8	22.2	4.2		10.5		9.4	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)16	12:41	Bottom	2	28.8	7.8	22.4	4.1	4.2	10.9		9.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	Surface	1	29.0	7.8	20.2	4.9		3.4		4.1	
TMCLKL	HY/2012/07	2017-09-13		SR4a	12:53	Surface	2	29.2	7.9	20.3	4.9		3.5		3.7	
TMCLKL	HY/2012/07	2017-09-13		SR4a	12:53	Middle	1	2).2	7.5	20.5	1.2	4.9	3.3		3.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4a	12:53	Middle	2							6.7		5.4
TMCLKL	HY/2012/07	2017-09-13			12:53	Bottom	1	28.7	7.8	21.8	4.3		9.8		6.0	
TMCLKL	HY/2012/07	2017-09-13			12:53	Bottom	2	28.9	7.8	22.0	4.2	4.3	9.9		7.8	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Surface	1	29.3	7.8	19.6	5.3		2.8		7.7	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Surface	2	29.4	7.9	19.8	5.3		2.7		8.6	
TMCLKL	HY/2012/07	2017-09-13			12:59	Middle	1	2).٦	1.7	17.0	J.J	5.3	2.1		0.0	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Middle	2							3.5		9.8
	HY/2012/07	2017-09-13	Mid-Flood	SR4	12:59	Bottom	1	29.0	7.8	20.3	4.9		4.2		11.6	
		2017-09-13	Mid-Flood		12:59	Bottom	2	29.1	7.0	20.6	4.9	4.9	4.4		11.4	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Surface	1	29.3	7.8	19.7	5.3		4.0		3.2	
			Mid-Flood	_	13:14	Surface	2	29.4	7.9	19.7	5.3		4.0		2.9	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Middle		29.4	1.9	19.9	3.3	5.3	4.0		2.9	
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Middle	2.							4.7		5.5
	HY/2012/07	2017-09-13	Mid-Flood		13:14		<u>Z</u>	28.9	7.8	20.8	4.7		5.4		8.7	
	1					Bottom	2					4.7				
	HY/2012/07	2017-09-13	Mid-Flood		13:14	Bottom	<u> </u>	29.1	7.9	21.0	4.7		5.4		7.0	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Surface	2	29.6	7.8	19.1	5.6		3.3		3.5	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Surface	2	29.8	7.9	19.3	5.7	5.7	3.1		3.8	
	HY/2012/07	2017-09-13		 ` 	13:23	Middle	1						<u> </u>	5.1	<u> </u>	6.5
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Middle	2	20.0	7.0	21.2	1.5		60		10.1	
	HY/2012/07	2017-09-13	Mid-Flood		13:23	Bottom	1	28.9	7.8	21.2	4.6	4.6	6.9		10.1	
TMCLKL	HY/2012/07	2017-09-13	Mid-Flood	IS(Mf)9	13:23	Bottom	2	29.1	7.8	21.4	4.6		7.1		8.7	

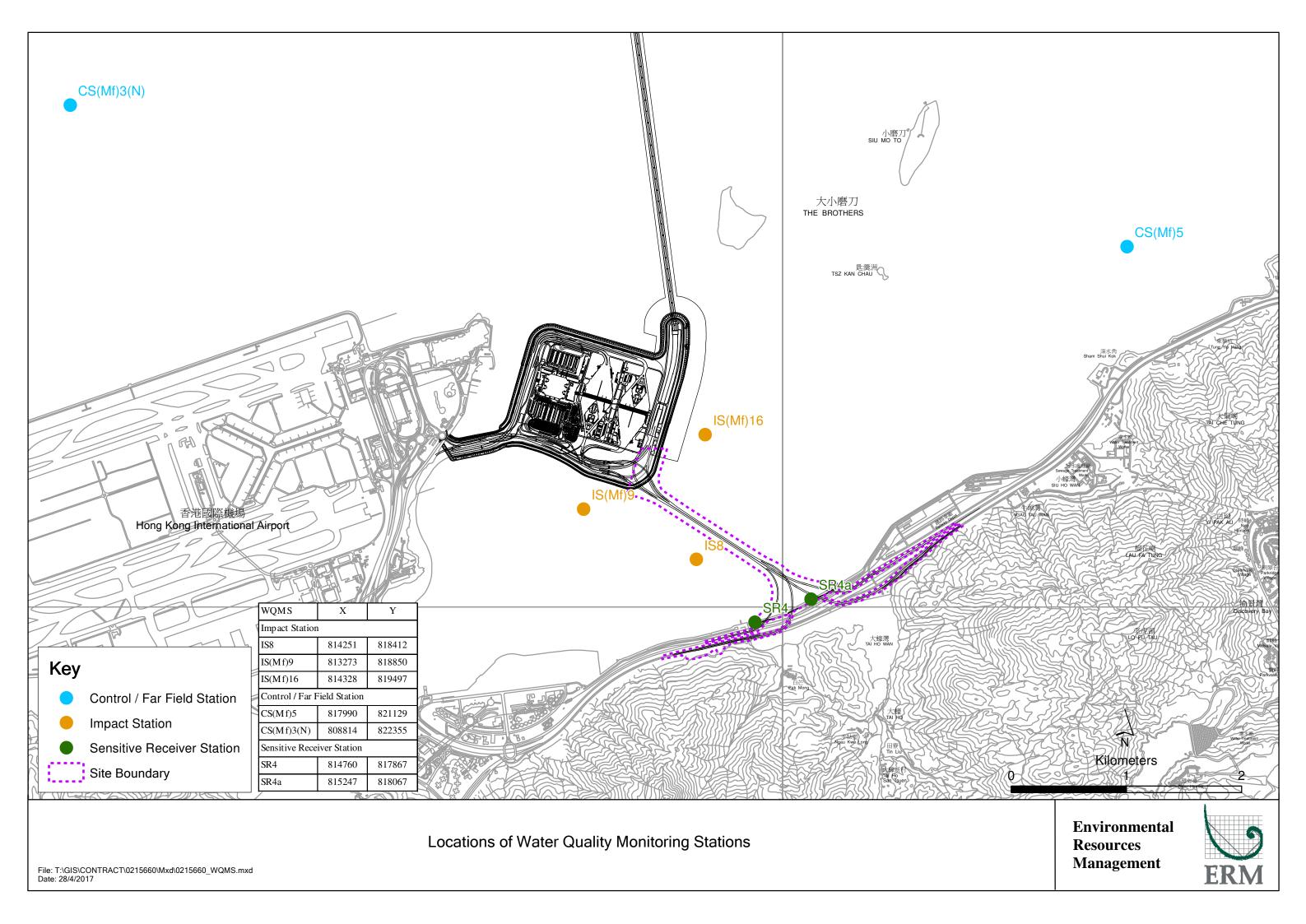


Photo 1 - Mid-Ebb at CS(Mf)5 on 13 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 13 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 13 September 2017

Photo 4 - Mid-Ebb at SR4a on 13 September 2017

Photo 5 - Mid-Ebb at SR4 on 13 September 2017

Photo 6 - Mid-Ebb at IS8 on 13 September 2017

Photo 7 - Mid-Flood at CS(Mf)5 on 13 September 2017

Photo 8 - Mid-Flood at CS(Mf)3(N) on 13 September 2017

Photo 9 - Mid-Flood at IS(Mf)16 on 13 September 2017

Photo 10 - Mid-Flood at SR4a on 13 September 2017

Photo 11 - Mid-Flood at IS(Mf)9 on 13 September 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kon

From ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun – Chek Lap Kok Link – Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 18 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_15 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_15 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_15 September 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)

0215660_15 September 2017_ Bottom-depth DO_E_Station SR4a

0215660_15 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

Limit Level Exceedance

0215660_15 September 2017_ Depth-averaged turbidity_F_Station IS8

A total of six exceedances were recorded on 15 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance												
	0215660_15 Septembe	r 2017_Surface and Middle-depth DO_E_Station CS(Mf)5												
	0215660_15 Sep	tember 2017_ Bottom-depth DO_E_Station CS(Mf)5												
	_	ember 2017_ Bottom-depth DO_E_Station CS(Mf)3(N)												
		eptember 2017_ Bottom-depth DO_E_Station SR4a												
	0215660_15 Sep	0215660_15 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 <u>Limit Level Exceedance</u>												
	0215660_15 Septe	0215660_15 September 2017_ Depth-averaged turbidity_F_Station IS8 [Total No. of Exceedances = 6]												
Date		15 September 2017 (Measured)												
	1	mber 2017 (In situ results received by ERM)												
	25 Septemb	per 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO,	Bottom-depth Dissolved Oxygen (DO), Depth-averaged Turbidity												
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Action Levels for	120% of upstream control station	at the same tide of the same day and 95%-ile of baseline data i.e.												
Turbidity	27.5 NTU													
Limit Levels for	130% of upstream control station	at the same tide of the same day and 99%-ile of baseline data i.e.												
Turbidity	47.0 NTU													
Measured Levels	Action Level Exceedance													
		and Middle-depth DO = 4.9mg/L);												
	 Mid-ebb at CS(Mf)5 (Bottom Mid-ebb at CS(Mf)3(N) (Bottom) 													
	4. Mid-ebb at SR4a (Bottom-de													
	5. Mid-flood at CS(Mf)5 (Botton													
	<u>Limit Level Exceedance</u>	- · ·												
	` *	Mid-flood at IS8 (Depth-averaged turbidity = 77.8mg/L).												
Works Undertaken (at	No major marine works was und	ertaken under this Contract on 15 September 2017.												
the time of monitoring														
event)														

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
	 in view of the following: No marine works was undertaken under this Contract on 15 September 2017. CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality. Marginal exceedance at bottom level at SR4a during mid-ebb tide had a similar DO pattern with the upstream control station, CS(Mf)3(N), in which action level exceedance was observed at the bottom level at the same tide. DO levels were generally lower at water quality monitoring stations due to two possible reasons of natural variation: 1. Natural ability for water to hold dissolved oxygen is reduced due to higher water temperature in summer months. 2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N) monitoring stations was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level as the DO exceedances recorded at the bottom level showed higher levels of Salinity than the middle and surface levels. Levels of depth-averaged Turbidity at all monitoring stations, except Mid-flood at IS8, were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. Levels of depth-averaged Suspended Solids at all monitoring stations were in compliance
	 with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. No construction vessels under this Contract associated with muddy plumes or discharges of muddy waters from platforms.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 15 September 2017 and locations of water quality monitoring stations are attached. Site photo record on 15 September 2017 is attached.

TMCLKL HY					Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
	77/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Surface	1	28.6	7.9	21.0	5.2		3.2		2.6	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Surface	2	28.4	7.9	20.7	5.2	4.9	3.2		2.2	
	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Middle	1	28.6	8.0	23.8	4.6	4.9	3.4	4.2	2.3	2.4
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Middle	2	28.4	7.9	23.5	4.6		3.4	4.2	2.6	2.4
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Bottom	1	27.8	8.0	29.4	3.7	3.8	6.2		2.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)5	7:55	Bottom	2	27.7	7.9	28.9	3.8	3.0	5.5		2.1	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Surface	1	28.9	7.9	17.3	5.2		15.3		3.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Surface	2	28.6	7.7	17.4	5.3	5.0	14.4		4.2	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Middle	1	28.7	8.0	21.8	4.6	5.0	17.7	16.0	4.4	4.0
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Middle	2	28.5	7.9	21.8	4.7		16.8	16.9	4	4.0
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Bottom	1	28.7	8.0	22.6	4.5	4.6	19.0		4.7	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	CS(Mf)3(N)	9:37	Bottom	2	28.4	7.8	22.6	4.6	4.6	18.1		3.1	
	Y/2012/07	2017/09/15	Mid-Ebb	IS(Mf)16	8:28	Surface	1	28.7	8.1	21.7	6.2		4.8		2.3	
TMCLKL HY	Y/2012/07	2017/09/15	Mid-Ebb	IS(Mf)16	8:28	Surface	2	28.6	8.0	21.5	6.2	6.0	4.9		2.9	
			Mid-Ebb	IS(Mf)16	8:28	Middle	1					6.2		<i>r</i> 1		0.1
			Mid-Ebb	IS(Mf)16	8:28	Middle	2							5.1		3.1
			Mid-Ebb	IS(Mf)16	8:28	Bottom	1	28.7	8.0	23.2	4.9	5 0	5.4		3.6	
			Mid-Ebb	IS(Mf)16	8:28	Bottom	2	28.6	7.9	22.9	5.0	5.0	5.4		3.6	
			Mid-Ebb	SR4a	8:40	Surface	1	28.8	8.0	22.0	5.5		7.8		4.2	
			Mid-Ebb	SR4a	8:40	Surface	2	28.6	7.9	21.7	5.4		7.3		3.9	
-			Mid-Ebb	SR4a	8:40	Middle	1					5.5	,,,,	10.1		~ 0
			Mid-Ebb	SR4a	8:40	Middle	2							10.1		5.0
			Mid-Ebb	SR4a	8:40	Bottom	1	28.6	7.9	23.2	4.5	1.6	12.5		6.3	
			Mid-Ebb	SR4a	8:40	Bottom	2	28.5	7.9	22.9	4.6	4.6	12.7		5.6	
			Mid-Ebb	SR4	8:45	Surface	1	28.8	8.0	21.7	5.4		7.2		6.7	
			Mid-Ebb	SR4	8:45	Surface	2	28.7	7.9	21.5	5.4	- ·	7.1		5	
			Mid-Ebb	SR4	8:45	Middle	1					5.4		0.0	_	
			Mid-Ebb	SR4	8:45	Middle	2							8.0		6.4
			Mid-Ebb	SR4	8:45	Bottom	1	28.9	8.0	21.9	5.2		9.7		6.8	
TMCLKL HY			Mid-Ebb		8:45	Bottom	2	28.7	7.9	21.6	5.2	5.2	7.9		7.2	
			Mid-Ebb	IS8	8:56	Surface	1	28.7	8.1	21.5	6.3		4.4		2.8	
			Mid-Ebb	IS8	8:56	Surface	2	28.6	8.0	21.3	6.3		4.5		2.1	
			Mid-Ebb	IS8	8:56	Middle	1	20.0	0.0	21.5	0.5	6.3	1.5		2.1	
			Mid-Ebb	IS8	8:56	Middle	2							9.6		2.7
			Mid-Ebb	IS8	8:56	Bottom	1	28.8	8.0	22.2	5.4		14.9		2.6	
			Mid-Ebb	IS8	8:56	Bottom	2	28.7	7.9	22.0	5.5	5.5	14.6		3.4	
			Mid-Ebb	IS(Mf)9	9:10	Surface	1	28.7	8.1	21.4	6.6		4.6		3.6	
			Mid-Ebb	IS(Mf)9	9:10	Surface	2.	28.6	8.0	21.2	6.6		4.6		2.9	
			Mid-Ebb	IS(Mf)9	9:10	Middle	1	20.0	0.0	21.2	<u> </u>	6.6	1.0		2.7	
			Mid-Ebb	IS(Mf)9	9:10	Middle	2							4.6		3.0
			Mid-Ebb	IS(Mf)9	9:10	Bottom	1	28.8	8.0	21.7	5.9		4.4		2.2	
			Mid-Ebb	IS(Mf)9	9:10	Bottom	7	28.6	8.0	21.7	6.0	6.0	4.6		3.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Surface	1	29.5	7.8	20.9	5.8		4.1		1.6	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Surface	2	29.3	7.9	21.1	5.8	5.2	4.3		1.7]
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Middle	1	28.2	7.8	26.1	4.6	J.Z	7.8	9.3	2.7	2.6
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Middle	2	28.1	7.8	26.4	4.6		7.6	9.3	3.4	2.0
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Bottom	1	27.8	7.8	28.8	3.7	3.7	15.5		3.5	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)5	16:29	Bottom	2	27.6	7.8	29.0	3.7	3.1	16.7		2.5	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Surface	1	30.4	7.6	12.2	5.2		18.4		3.8	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Surface	2	30.2	7.5	12.1	5.3	5.3	17.8		4.6	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Middle	1	29.7	7.6	15.5	5.2	3.3	16.9	17.0	4.2	A 1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Middle	2	29.4	7.6	15.6	5.3		16.0	17.0	4.8	4.1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Bottom	1	29.5	7.6	16.6	5.1	5.0	16.6		3.2	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	CS(Mf)3(N)	15:09	Bottom	2	29.3	7.6	16.7	5.2	5.2	16.1		3.7	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Surface	1	29.1	7.8	20.1	6.5		3.0		3.2	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Surface	2	28.9	7.9	20.3	6.4	(2)	3.3		2.3	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Middle	1	28.9	7.8	21.0	6.1	6.3	3.3	4.0	7.1	5.0
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Middle	2	28.8	7.9	21.2	6.0		3.7	4.8	7.4	5.2
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Bottom	1	28.6	7.8	22.8	4.8	4.0	7.8		5.7	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	IS(Mf)16	15:57	Bottom	2	28.5	7.8	22.9	4.9	4.9	7.4		5.7	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Surface	1	29.5	7.8	19.2	6.4		2.0		2.1	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Surface	2	29.3	7.9	19.3	6.4	6.4	1.9		2.3	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	1	15:44	Middle	1					6.4		2.7		2.5
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4a	15:44	Middle	2							3.7		2.5
TMCLKL	HY/2012/07	2017/09/15		+	15:44	Bottom	1	29.2	7.8	19.6	6.2	(0)	5.5		2.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:44	Bottom	2	29.0	7.9	19.8	6.2	6.2	5.2		2.9	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	SR4	15:39	Surface	1	29.4	7.8	19.5	6.5		2.9		2.2	
TMCLKL	HY/2012/07	2017/09/15		SR4	15:39	Surface	2	29.3	7.9	19.7	6.4		3.1		2.3	1
TMCLKL	HY/2012/07	2017/09/15			15:39	Middle	1					6.5		5 0		1
TMCLKL	HY/2012/07	2017/09/15		1	15:39	Middle	2							7.9		2.9
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:39	Bottom	1	29.0	7.8	21.2	5.4		12.4		3.6	1
		2017/09/15	Mid-Flood		15:39	Bottom	2	28.8	7.8	21.4	5.5	5.5	13.2		3.5	
	HY/2012/07	2017/09/15	Mid-Flood		15:26	Surface	1	29.4	7.8	19.6	6.5		17.3		6.6	
		2017/09/15	Mid-Flood		15:26	Surface	2	29.2	7.9	19.8	6.4		16.0		5.3	1
TMCLKL		2017/09/15	Mid-Flood		15:26	Middle	1	-> ·-		1,10	511	6.5	1000	55 0	0.0	10.6
	HY/2012/07	2017/09/15	Mid-Flood		15:26	Middle	2							77.8		13.6
TMCLKL		2017/09/15	Mid-Flood		15:26	Bottom	1	29.2	7.8	20.2	6.0		143.7		21.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood	+	15:26	Bottom	2	29.0	7.9	20.4	6.1	6.1	134.0		20.7	1
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Surface	1	29.4	7.9	21.1	6.6		8.6		8.3	
		2017/09/15	Mid-Flood		15:14	Surface	2	29.2	7.9	21.3	6.6		8.7		9.8	1
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:14	Middle	1	2,12			2.0	6.6			2.0	
TMCLKL	HY/2012/07	2017/09/15	Mid-Flood		15:14	Middle	2							14.5		10.3
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Bottom	1	29.2	7.8	21.8	6.1		19.8		12	1
	HY/2012/07	2017/09/15	Mid-Flood		15:14	Bottom	2.	29.0	7.9	22.0	6.1	6.1	20.9		10.9	1

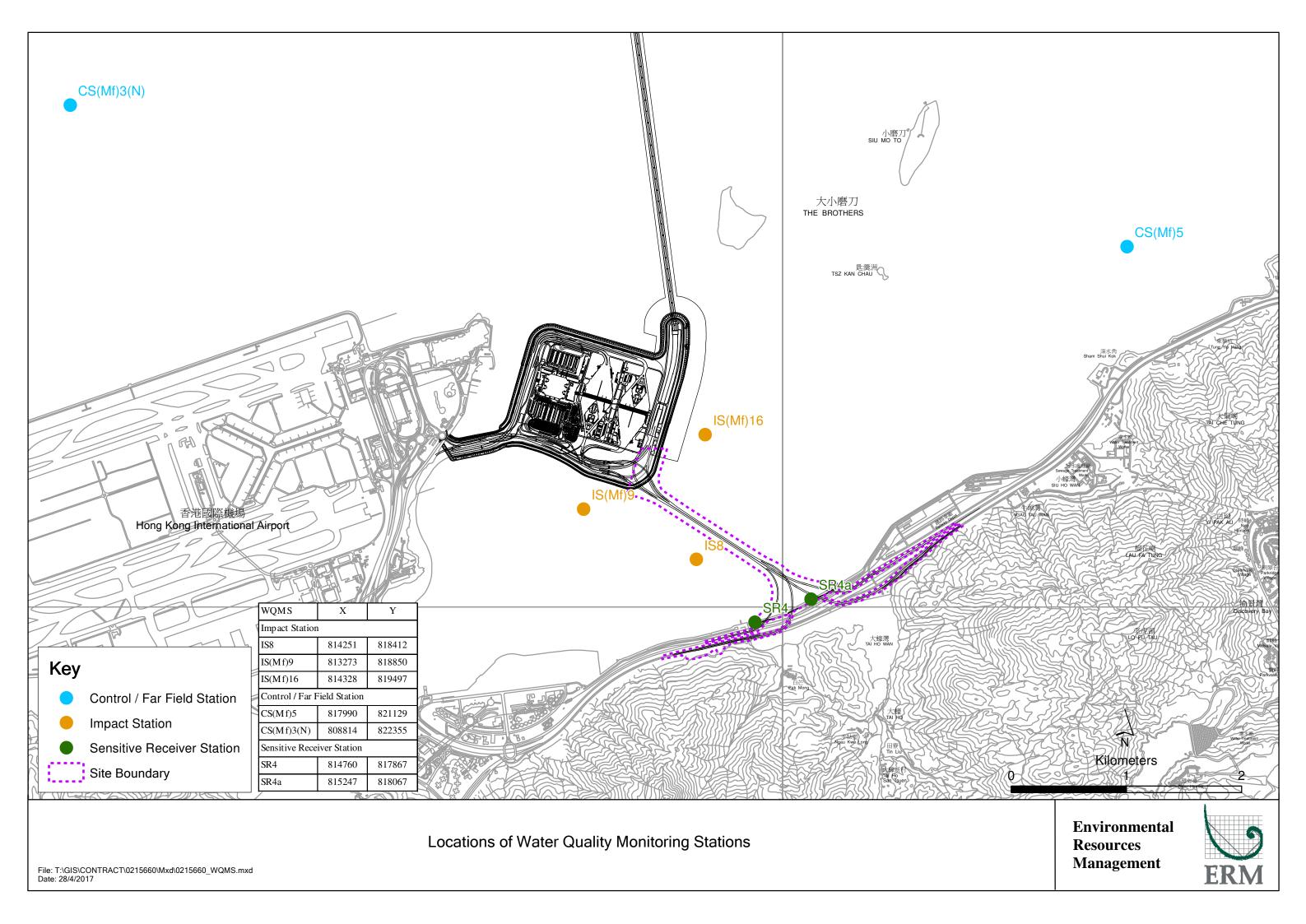


Photo 1 - Mid-Ebb at CS(Mf)5 on 15 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 15 September 2017

Photo 3 - Mid-Ebb at SR4a on 15 September 2017

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N), SR4A AND IS8 ON 15 SEPTEMBER 2017

Photo 4 - Mid-Flood at CS(Mf)5 on 15 September 2017

Photo 5 - Mid-Flood at IS8 on 15 September 2017

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

δ δ, (

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

25 Westlands Road

From ERM- Hong Kong, Limited

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Contract No. HY/2012/07

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 19 September 2017

Dear Sir/ Madam,

Ref/Project number

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_18 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

 $0215660_18\ September\ 2017_Surface\ and\ Middle-depth\ DO_E_Station\ CS(Mf)3(N)$

0215660_18 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5

0215660_18 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of four exceedances were recorded on 18 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 27 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_18 September 2017_ Depth-averaged SS_F_Station SR4

A total of one exceedance was recorded on 18 September 2017.

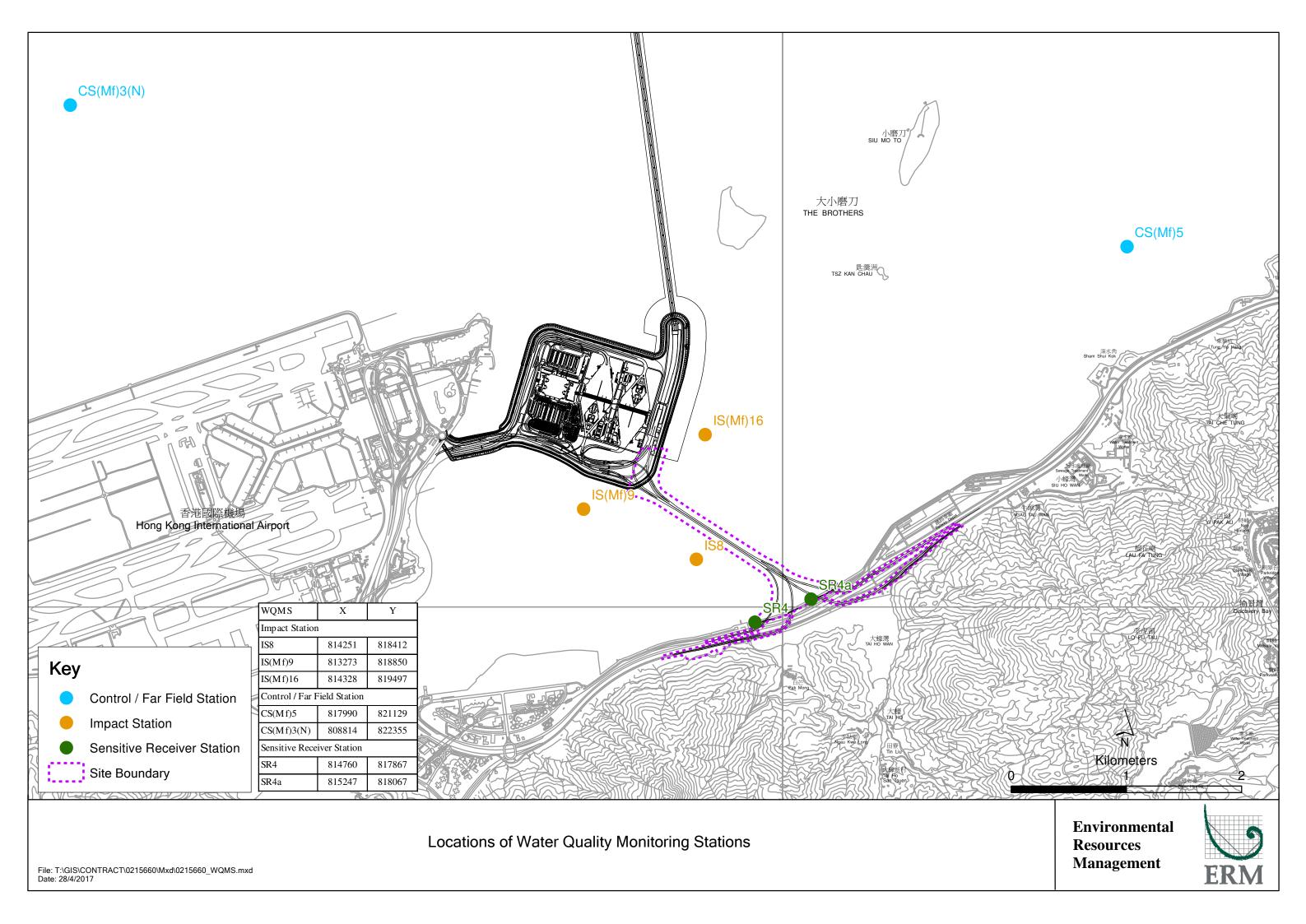
Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION


Marine Water Quality Impact Monitoring

Log No.	0215660_18 September 0215660_18 September 0215660_18 Sep	Action Level Exceedance otember 2017_ Bottom-depth DO_E_Station CS(Mf)5 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) or 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 otember 2017_ Bottom-depth DO_F_Station CS(Mf)5 eptember 2017_ Depth-averaged SS_F_Station SR4 [Total No. of Exceedances = 5]												
Date		18 September 2017 (Measured)												
	-	19 September 2017 (In situ results received by ERM)												
	•	ber 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Surface and Mide	dle-depth DO, Bottom-depth Dissolved Oxygen (DO)												
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Action Levels for SS	SS	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data (i.e., 23.5 mg/L).												
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)												
Measured Levels	 Mid-ebb at CS(Mf)3(N) (Surfa Mid-flood at CS(Mf)5 (Surfa Mid-flood at CS(Mf)5 (Botto 	Action Level Exceedance 1. Mid-ebb at CS(Mf)5 (Bottom-depth DO = 4.4mg/L); 2. Mid-ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.9mg/L); 3. Mid-flood at CS(Mf)5 (Surface and Middle-depth DO = 4.9mg/L); 4. Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.4mg/L).												
Works Undertaken (at the time of monitoring event)		Mid-flood at SR4 (depth-averaged SS = 23.7 mg/L); o major marine works was undertaken under this Contract on 18 September 2017.												

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 18 September 2017.
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works
	area under this Contract, thus the observed exceedances should not be affected by the marine
	works under this Contract and they are considered to be natural fluctuation in water quality.
	Apart from SR4, depth-averaged SS levels at all other monitoring stations were in compliance
	with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day.
	Depth-averaged SS levels at SR4 at mid-ebb tides were similar to those at other stations apart
	from the marginal exceedance observed at mid-flood tide.
	All monitored parameters, except DO at CS(Mf)5, CS(Mf)3(N) and SS at SR4, at all monitoring
	stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-
	flood tides on the same day.
	DO levels were generally lower at water quality monitoring stations due to two possible
	reasons of natural variation:
	1. Natural ability for water to hold dissolved oxygen is reduced due to higher water
	temperature in summer months.
	2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N)
	monitoring stations was possibly caused by the stratification of seawater during summer
	when the freshwater discharged from the Pearl River tended to form a surface layer of
	lower salinity water, which is probably responsible for the lower Salinity recorded at the
	surface and middle levels compared to the higher Salinity recorded at the bottom level of
	the monitoring stations. The stratification of seawater in the water column is likely a
	contributing factor to the results of lower levels of DO at the bottom level as the DO
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle
	and surface levels.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 18 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 18 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Surface	1	29.3	7.9	21.9	5.6		3.1		3.1	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Surface	2	29.3	7.9	21.9	5.7	5.2	2.9		3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Middle	1	28.3	7.9	26.1	4.7	5.2	2.7	2.7	3.3	2.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Middle	2	28.4	7.9	25.9	4.7		2.7	3.7	3.6	3.5
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Bottom	1	27.8	7.9	28.9	4.4	4.4	5.5		4.3	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)5	11:15	Bottom	2	28.1	7.9	28.6	4.3	4.4	5.2		3.7	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Surface	1	29.9	7.8	18.8	5.5		9.3		2.7	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Surface	2	30.1	7.8	18.8	5.4	4.9	9.3		2.5	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Middle	1	28.7	7.8	24.3	4.3	4.9	16.8	15.9	2	7.4
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Middle	2	28.9	7.8	24.3	4.2		16.6	13.9	3.6	7.4
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Bottom	1	28.8	7.8	25.4	5.1	5 1	21.7		17.4	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	CS(Mf)3(N)	12:36	Bottom	2	29.1	7.8	25.5	5.0	5.1	21.7		16	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Surface	1	29.3	8.0	21.3	6.3		4.3		4.6	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Surface	2	29.4	8.0	21.3	6.3	5 0	4.0		4.8	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Middle	1	29.1	7.9	22.8	5.5	5.9	6.6	<i>5</i> 7	4.2	4.0
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Middle	2	29.3	7.9	22.5	5.6		6.0	5.7	4.5	4.9
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Bottom	1	28.6	7.9	24.5	4.9	4.0	6.7		6	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS(Mf)16	11:48	Bottom	2	28.7	7.9	24.4	4.8	4.9	6.4		5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Surface	1	29.4	8.0	21.0	5.8		4.9		5.1	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Surface	2	29.6	7.9	20.8	5.9	5.0	4.5		5.5	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Middle	1					5.9		7.0		5.0
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Middle	2							7.0		5.8
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Bottom	1	28.9	7.8	23.1	4.8	4.7	9.9		5.8	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4a	11:58	Bottom	2	29.1	7.8	22.8	4.6	4.7	8.7		6.8	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Surface	1	29.6	8.0	20.6	6.3		4.5		5.8	
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Surface	2	29.7	7.9	20.4	6.4	()	4.0		6.6	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Middle	1					6.4		7.2		C 1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Middle	2							7.3		6.1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Bottom	1	29.0	7.8	22.7	4.9	4.0	10.7		6.4	1
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	SR4	12:03	Bottom	2	29.2	7.8	22.5	4.8	4.9	10.0		5.5	1
TMCLKL	HY/2012/07		Mid-Ebb	IS8	12:15	Surface	1	29.8	8.1	20.2	7.8		3.0		3.3	
	1	+	Mid-Ebb	IS8	12:15	Surface	2	30.0	8.1	20.0	7.9	7.0	2.5		3	
			Mid-Ebb	IS8	12:15	Middle	1					7.9		7.0		2.2
TMCLKL	HY/2012/07	2017/09/18	Mid-Ebb	IS8	12:15	Middle	2							5.9		3.3
TMCLKL			Mid-Ebb	IS8	12:15	Bottom	1	28.9	7.9	23.5	5.1	T 1	9.5		3.2	
	1		Mid-Ebb	IS8	12:15	Bottom	2	29.1	7.9	23.3	5.0	5.1	8.7		3.7]
	1		Mid-Ebb	IS(Mf)9	12:24	Surface	1	29.8	8.1	19.7	7.9		3.1		3.3	
TMCLKL	1		Mid-Ebb	IS(Mf)9	12:24	Surface	2	29.9	8.1	19.5	8.0	0.0	2.8		2.3]
	1		Mid-Ebb	IS(Mf)9	12:24	Middle	1					8.0		2.2		2.2
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	Middle	2							3.2		3.3
	HY/2012/07		Mid-Ebb	IS(Mf)9	12:24	Bottom	1	29.3	8.0	21.3	7.0	7.0	3.5		3.5	1
	1		Mid-Ebb	IS(Mf)9	12:24	Bottom	2	29.6	7.9	21.1	6.9	7.0	3.2		3.9	1

4.3 4.5 4.5 5.5 6.7 7.4 8.7 9 20.5 8.5 9.3 7.7	5.5 5.7 4 7
6.4 4.5 5.5 6.7 7.4 8.7 9 20.5 8.5 9.3	5.5 7 4 7 8.5
5.5 6.7 7.4 8.7 9 20.5 8.5 9.3	5.5
20.5 5.5 6.7 7.4 8.7 9 8.5 9.3	5 7 4 7 8 5
7.4 8.7 9 20.5 8.5 9.3	5 85
20.5 8.7 9 8.5 9.3	5 85
20.5 9 8.5 9.3	5 85
20.5 8.5 9.3	85
20.5	X
9.3	8.3
7.7	
	7
7.5)
5.9)
5.8	3
7.0	7.0
7.9	7.9
9.4	1
10.5	5
13.3	3
13	
18.3	3
13.6	16.4
18.3	3
17.8	8
23.9	9
22.6	6
14.8	23.7
23.4	4
24.7	
16.8	
17.1	
15.3	20.2
22.6	6
24.1	
2111	
10.2	2.
7.2	10.1
10	
	
	7.9 5.8 7.9 9.4 10. 13. 13.6 17. 18. 17. 23. 22. 14.8 15.3 24. 16. 17. 15.3

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N) AND SR4 ON 18 SEPTEMBER 2017

Photo 1 - Mid-Flood at CS(Mf)5 on 18 September 2017

Photo 2 - Mid-Flood at SR4 on 18 September 2017

Photo 3 - Mid-Ebb at CS(Mf)5 on 18 September 2017

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT CS(MF)5, CS(MF)3(N) AND SR4 ON 18 SEPTEMBER 2017

Photo 4 - Mid-Ebb at CS(Mf)3(N) on 18 September 2017

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 21 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)3(N)

A total of six exceedances were recorded on 20 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	Action Level Exceedance 0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_20 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N) 0215660_20 September 2017_ Bottom-depth DO_F_Station CS(Mf)3(N)		
Date	20 September 2017 (Measured)		
	21 September 2017 (In situ results received by ERM)		
	27 Septemb	ber 2017 (Laboratory results received by ERM)	
Monitoring Station	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)		
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO, Bottom-depth Dissolved Oxygen (DO)		
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L	
	Bottom-depth DO	4.7 mg/L	
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L	
	Bottom-depth DO	3.6 mg/L	
Measured Levels	Action Level Exceedance 1. Mid-ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.9mg/L); 2. Mid-ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7mg/L); 3. Mid-flood at CS(Mf)5 (Surface and Middle-depth DO = 4.8mg/L); 4. Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.5mg/L); 5. Mid-flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7mg/L); 6. Mid-flood at CS(Mf)3(N) (Bottom-depth DO = 4.6mg/L).		
Works Undertaken (at	No major marine works was undertaken under this Contract on 20 September 2017.		
the time of monitoring event)			

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,		
Action or Limit Level	in view of the following:		
Exceedance(s)	No marine works was undertaken under this Contract on 20 September 2017.		
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works area under this Contract, thus the observed exceedances should not be affected by the marine		
	works under this Contract and they are considered to be natural fluctuation in water quality.		
	DO levels were generally lower at water quality monitoring stations due to two possible		
	reasons of natural variation:		
	1. Natural ability for water to hold dissolved oxygen is reduced due to higher water		
	temperature in summer months.		
	2. The higher Salinity recorded at the bottom level of the deeper CS(Mf)5 and CS(Mf)3(N)		
	monitoring stations was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level as the DO		
	exceedances recorded at the bottom level showed higher levels of Salinity than the middle		
	and surface levels.		
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in		
Taken	exceedances.		
Remarks	The monitoring results on 20 September 2017 and locations of water quality monitoring stations are		
	attached. Site photo record on 20 September 2017 is attached.		

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Surface	1	29.4	7.9	24.1	5.0		4.2		5.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Surface	2	29.3	7.9	24.3	5.0	4.9	5.0		6.8	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Middle	1	29.0	7.9	24.9	4.7	4.9	6.7	6.3	6	6.6
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Middle	2	28.8	7.9	25.1	4.7		7.3	0.5	7.4	0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)5	12:16	Bottom	1	28.9	7.9	25.0	4.7	4.7	6.9		6.2	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)5	12:16	Bottom	2	28.8	7.9	25.2	4.7	4.7	7.6		7.5	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Surface	1	29.7	7.7	20.8	4.7		15.2		5.7	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Surface	2	29.4	7.7	20.8	4.8	4.7	14.1		4.5	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Middle	1	29.4	7.8	21.9	4.6	7.7	18.2	19.0	5.2	6.4
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Middle	2	29.1	7.8	21.8	4.7		17.4	17.0	5.9	0.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	CS(Mf)3(N)	14:18	Bottom	1	29.3	7.8	23.0	4.7	4.8	24.3		7.9	
TMCLKL	HY/2012/07		Mid-Ebb	CS(Mf)3(N)	14:18	Bottom	2	29.0	7.8	22.8	4.8	1.0	24.6		9.3	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Surface	1	29.3	7.9	23.0	5.7		7.7		5.7	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Surface	2	29.2	7.9	23.2	5.7	5.5	8.3		4.9	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Middle	1	29.1	7.9	23.7	5.2	3.3	9.5	10.1		5.1
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)16	12:54	Middle	2	29.0	7.9	24.0	5.2		10.3	10.1		5.1
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	Bottom	1	29.0	7.9	24.9	4.9	5.0	12.0		4.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)16	12:54	Bottom	2	28.8	7.9	25.2	5.0	3.0	12.7		5.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Surface	1	29.3	7.9	22.8	5.4		12.0		13.5	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:12	Surface	2	29.2	7.9	23.1	5.5	5.5	12.4		14.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a		Middle	1					3.3		12.1		14.0
TMCLKL	HY/2012/07		Mid-Ebb	SR4a		Middle	2							12.1		17.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Bottom	1	29.3	7.9	22.9	5.4	5.5	11.8		13.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4a	13:12	Bottom	2	29.1	7.9	23.1	5.5	J.J	12.0		14.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Surface	1	29.6	7.9	22.4	5.5		6.0		4.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Surface	2	29.4	7.9	22.6	5.5	5.5	6.4		4.4]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4		Middle	1					3.3		8.7		5.5
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4		Middle	2							0.7] 3.3
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	SR4	13:18	Bottom	1	29.3	7.9	22.9	5.5	5.6	11.1		6.8]
TMCLKL	HY/2012/07		Mid-Ebb	SR4	13:18	Bottom	2	29.1	7.9	23.2	5.6	3.0	11.1		6.1	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Surface	1	29.6	7.9	22.8	5.9		6.0		6.7]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Surface	2	29.4	7.9	23.0	6.0	6.0	6.2		5.7]
TMCLKL	HY/2012/07		Mid-Ebb	IS8		Middle	1					0.0		7.1		6.7
TMCLKL	HY/2012/07		Mid-Ebb	IS8		Middle	2							1.1		0.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS8	13:29	Bottom	1	29.4	7.9	23.0	5.8	5.9	8.0		7.2	
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:29	Bottom	2	29.2	7.9	23.2	5.9	J.7	8.1		7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Surface	1	29.6	7.9	22.8	5.9		4.1		5.3]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Surface	2	29.4	7.9	23.0	5.9	5.9	4.5		3.6]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		Middle	1					J.7		5.8		6.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9		Middle	2							٥.٥		0.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Bottom	1	29.4	7.9	23.0	5.9	5.9	7.0		8.4]
TMCLKL	HY/2012/07	2017-09-20	Mid-Ebb	IS(Mf)9	13:38	Bottom	2	29.2	7.9	23.2	5.9	J . 7	7.5		6.6	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Surface	1	29.4	7.9	23.2	4.9		4.7		6.2	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Surface	2	29.2	7.9	23.4	4.9	4.8	5.1		4.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Middle	1	29.0	7.9	25.5	4.6	4.0	10.5	11.1	8.1	9.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Middle	2	28.8	7.9	25.8	4.6		11.0	11.1	8.1	9.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)5	19:45	Bottom	1	28.9	7.9	25.9	4.5	4.5	17.2		14.2]
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)5	19:45	Bottom	2	28.7	7.9	26.2	4.5	4.0	18.2		15	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Surface	1	29.9	7.6	18.4	4.8		16.2		5.7	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	18:07	Surface	2	30.1	7.6	18.3	4.7	4.7	17.0		4.5	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	18:07	Middle	1	29.5	7.7	20.4	4.7	٦./	19.1	19.0	5.2	6.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Middle	2	29.8	7.7	20.4	4.6		20.0	17.0	5.9	0.4
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Bottom	1	29.4	7.7	21.1	4.6	4.6	20.5		7.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	CS(Mf)3(N)	18:07	Bottom	2	29.7	7.7	21.1	4.5	4.0	21.3		9.3	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	19:06	Surface	1	29.6	7.8	21.7	5.0		6.2		8.2	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	19:06	Surface	2	29.4	7.8	21.9	5.0	5.1	6.8		9.3	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Middle	1	29.6	7.9	22.4	5.1	J.1	12.4	10.8	8.7	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Middle	2	29.4	7.9	22.6	5.2		13.2	10.0	7.9	10.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Bottom	1	29.6	7.9	22.8	5.3	5.3	12.6		16.3]
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)16	19:06	Bottom	2	29.4	7.9	23.0	5.3	3,3	13.8		13.7	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Surface	1	29.7	7.8	21.8	5.3		10.4		10.4	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Surface	2	29.5	7.9	22.0	5.3	5.3	10.4		8.6	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a		Middle	1					J.J		12.3		9.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a		Middle	2							12.3		9.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Bottom	1	29.7	7.8	22.0	5.3	5.4	14.2		9.5	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4a	18:53	Bottom	2	29.5	7.9	22.2	5.4	J. 4	14.3		11	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Surface	1	29.6	7.9	22.6	5.3		12.5		13.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Surface	2	29.4	7.9	22.9	5.3	5.3	13.2		15	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4		Middle	1					5.5		13.0		16.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4		Middle	2							15.0		10.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Bottom	1	29.5	7.9	22.7	5.3	5.4	13.2		18.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	SR4	18:47	Bottom	2	29.4	7.9	22.9	5.4	J. 4	13.0		19.9	
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Surface	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Surface	2					5.5				
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8	18:30	Middle	1	29.6	7.9	22.8	5.5	J . J	22.3	23.7	19.2	19.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8	18:30	Middle	2	29.4	7.9	23.0	5.5		25.1	23.1	20.2	19.7
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Bottom	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS8		Bottom	2									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Surface	1									
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Surface	2					<i>L</i> 1]
TMCLKL	HY/2012/07		Mid-Flood		18:21	Middle	1	29.7	7.9	23.0	6.1	6.1	12.8	12.1	15.8	14.0
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9	18:21	Middle	2	29.5	8.0	23.2	6.1		13.4	13.1	14	14.9
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Bottom	1]
TMCLKL	HY/2012/07	2017-09-20	Mid-Flood	IS(Mf)9		Bottom	2									

Photo 1 - Mid-Ebb at CS(Mf)5 on 20 September 2017

Photo 2 - Mid-Ebb at CS(Mf)3(N) on 20 September 2017

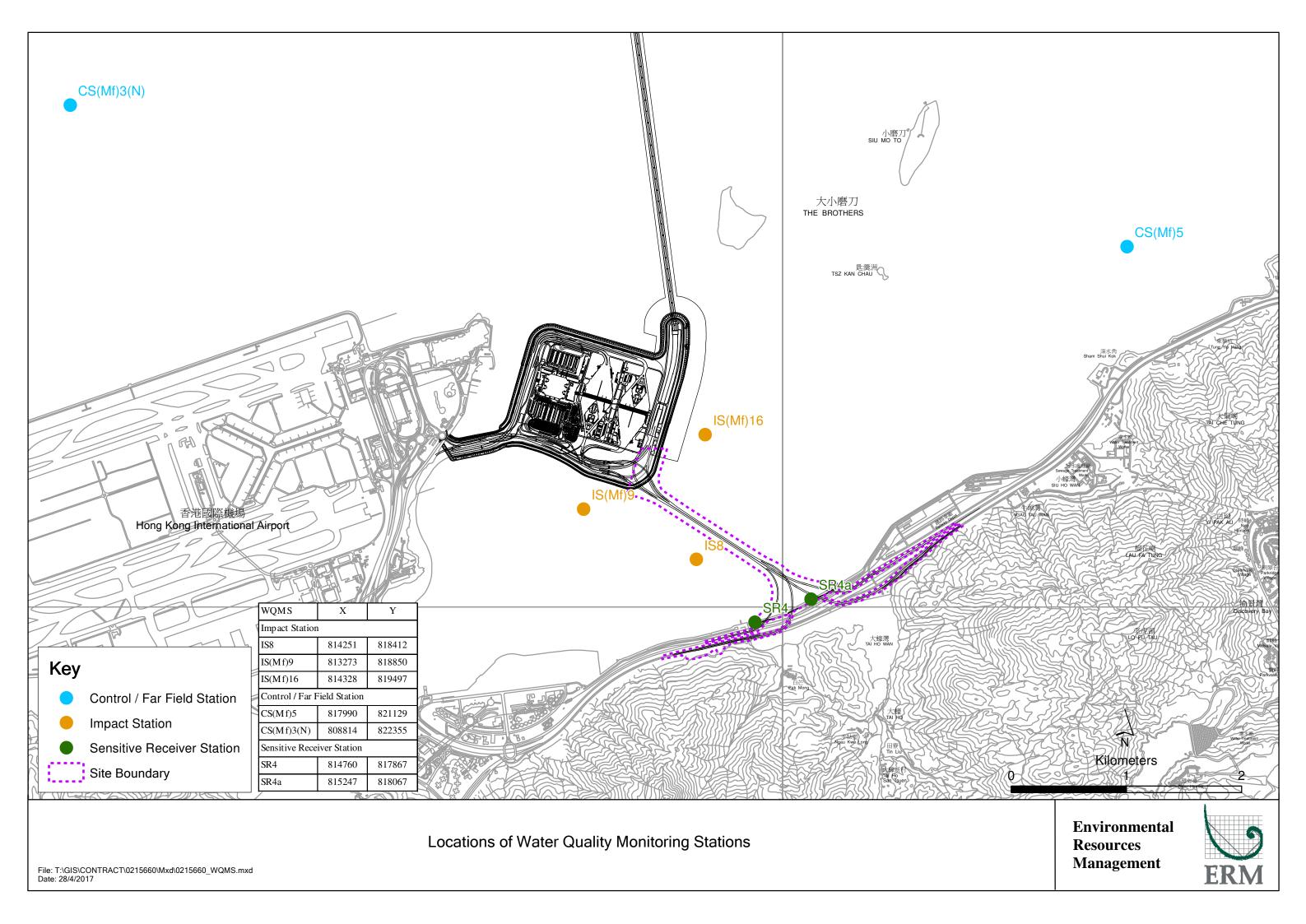


Photo 3 - Mid-Flood at CS(Mf)5 on 20 September 2017

Photo 4 - Mid-Flood at CS(Mf)3(N) on 20 September 2017

Email message **Environmental** Resources Management

To Ramboll Environ - Hong Kong, Limited (ENPO)

From ERM- Hong Kong, Limited 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

16/F Berkshire House,

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 23 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5

0215660_22 September 2017_ Bottom-depth DO_E_Station CS(Mf)5

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N)

0215660_22 September 2017_ Bottom-depth DO_E_Station IS(Mf)16

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4a

0215660_22 September 2017_ Surface and Middle-depth DO_E_Station SR4

0215660_22 September 2017_ Surface and Middle DO-depth_F_Station CS(Mf)5 0215660_22 September 2017_ Bottom-depth DO_F_Station CS(Mf)5 0215660_22 September 2017_ Surface and Middle-depth DO_F_Station CS(Mf)3(N)

0215660_22 September 2017_ Bottom-depth DO_F_Station IS(Mf)16

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4a

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station SR4

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS8

0215660_22 September 2017_ Surface and Middle-depth DO_F_Station IS(Mf)9

A total of fourteen exceedances were recorded on 22 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.														
Log I to.		Action Level Exceedance												
	0215660_22 September 2	er 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 etember 2017_ Bottom-depth DO_E_Station CS(Mf)5 2017_ Surface and Middle-depth DO_E_Station CS(Mf)3(N) etember 2017_ Bottom-depth DO_E_Station IS(Mf)16 eter 2017_ Surface and Middle-depth DO_E_Station SR4 eter 2017_ Surface and Middle-depth DO_E_Station CS(Mf)5 etember 2017_ Bottom-depth DO_F_Station CS(Mf)5 etember 2017_ Bottom-depth DO_F_Station CS(Mf)5 etember 2017_ Surface and Middle-depth DO_F_Station IS(Mf)16 eter 2017_ Surface and Middle-depth DO_F_Station SR4 eter 2017_ Surface and Middle-depth DO_F_Station SR4 eter 2017_ Surface and Middle-depth DO_F_Station IS8												
Date		22 Contombou 2017 (Magazinad)												
Date	22 Santa	22 September 2017 (Measured) 23 September 2017 (In situ results received by ERM)												
	-	,												
Monitoring Station	•	· · · · · · · · · · · · · · · · · · ·												
Parameter(s) with	CS(IVII)3, C	29 September 2017 (Laboratory results received by ERM) CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)												
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L												
	Bottom-depth DO	4.7 mg/L												
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L												
	Bottom-depth DO	3.6 mg/L												
Measured Levels	 Mid-Ebb at CS(Mf)5 (Bottom 3. Mid-Ebb at CS(Mf)3(N) (Sur 4. Mid-Ebb at IS(Mf)16 (Bottom 5. Mid-Ebb at SR4a (Surface and 6. Mid-Ebb at SR4 (Surface and 7. Mid-Flood at CS(Mf)5 (Surfa 8. Mid-Flood at CS(Mf)5 (Bottom 9. Mid-Flood at CS(Mf)3(N) (Surfa 11. Mid-Flood at IS(Mf)16 (Surfa 12. Mid-Flood at SR4a (Surface and 13. Mid-Flood at IS8 (Surface and 14. Mid-Flood at IS(Mf)9 (Surface and 15. Mid-Flo	Action Level Exceedance Mid-Ebb at CS(Mf)5 (Surface and Middle-depth DO = 4.8 mg/L); Mid-Ebb at CS(Mf)5 (Bottom-depth DO = 4.6 mg/L); Mid-Ebb at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7 mg/L); Mid-Ebb at IS(Mf)16 (Bottom-depth DO = 4.6 mg/L); Mid-Ebb at SR4a (Surface and Middle-depth DO = 4.8 mg/L); Mid-Ebb at SR4 (Surface and Middle-depth DO = 4.8 mg/L); Mid-Flood at CS(Mf)5 (Surface and Middle-depth DO = 4.8 mg/L); Mid-Flood at CS(Mf)5 (Bottom-depth DO = 4.5 mg/L); Mid-Flood at CS(Mf)3(N) (Surface and Middle-depth DO = 4.7 mg/L); Mid-Flood at IS(Mf)16 (Surface and Middle-depth DO = 4.7 mg/L); Mid-Flood at SR4a (Surface and Middle-depth DO = 4.9 mg/L); Mid-Flood at SR4a (Surface and Middle-depth DO = 4.9 mg/L); Mid-Flood at IS8 (Surface and Middle-depth DO = 4.7 mg/L);												
Works Undertaken (at	No major marine works was und	lertaken under this Contract on 22 September 2017.												
the time of monitoring														
event)														

Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,
Action or Limit Level	in view of the following:
Exceedance(s)	No marine works was undertaken under this Contract on 22 September 2017.
	All monitored parameters, except DO, at all monitoring stations were in compliance with the
	Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.
	CS(Mf)3(N) and CS(Mf)5 are distant (>5km and >3km respectively) from the marine works
	area under this Contract, thus the observed exceedances should not be affected by the marine
	works under this Contract and they are considered to be natural fluctuation in water quality.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 22 September 2017 and locations of water quality monitoring stations are
	attached. Site photo record on 22 September 2017 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Surface	1	30.1	7.9	22.1	5.1		5.9		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Surface	2	30.3	7.8	21.9	5.1	4.8	6.2		6.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Middle	1	29.2	7.9	24.1	4.5	4.8	9.8	11.7	6.8	0.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Middle	2	29.3	7.8	23.9	4.6		10.6	11.7	7.2	8.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Bottom	1	29.1	7.9	24.3	4.6	16	19.1		13.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)5	14:48	Bottom	2	29.3	7.8	24.0	4.5	4.6	18.6		11.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Surface	1	29.6	7.9	21.6	4.7		8.7		5.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Surface	2	29.9	7.9	21.5	4.7	4.7	8.8		4.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Middle	1	29.2	8.0	22.7	4.8	4.7	12.0	10.0	7.5	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Middle	2	29.5	7.9	22.6	4.7		12.4	12.8	7.4	11.4
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Bottom	1	29.1	8.0	24.1	4.8	4.0	17.0		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	CS(Mf)3(N)	13:01	Bottom	2	29.4	8.0	24.1	4.7	4.8	17.8		20.9]
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Surface	1	29.5	7.8	22.8	5.2		6.1		7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Surface	2	29.7	7.8	22.6	5.3	5.0	6.5		5.9	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Middle	1	29.4	7.8	22.9	5.0	5.2	7.5	7.1	6.6	0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Middle	2	29.5	7.8	22.7	5.1		7.8	7.1	5.8	8.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Bottom	1	29.2	7.9	24.0	4.6	4.6	6.9		11.4	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	IS(Mf)16	14:08	Bottom	2	29.3	7.8	23.7	4.6	4.6	7.7		11.4	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Surface	1	29.3	7.8	22.7	4.8		8.0		7.3	
TMCLKL	HY/2012/07		Mid-Ebb	SR4a	13:51	Surface	2	29.5	7.8	22.5	4.8	4.0	8.8		6.8	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a		Middle	1					4.8		0.2		0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a		Middle	2							9.3		8.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Bottom	1	29.3	7.8	23.0	4.8	4.0	10.0		8.5	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4a	13:51	Bottom	2	29.5	7.8	22.8	4.8	4.8	10.5		9.3	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Surface	1	29.4	7.8	22.4	4.8		11.4		6.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Surface	2	29.6	7.8	22.2	4.8	4.0	11.7		7.8	1
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4		Middle	1					4.8		11.0		10.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4		Middle	2							11.8		10.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Bottom	1	29.3	7.8	23.0	4.8	4.0	11.9		12.7	1
	HY/2012/07	2017-09-22	Mid-Ebb	SR4	13:45	Bottom	2	29.5	7.8	22.8	4.8	4.8	12.3		13.9	1
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	Surface	1	29.6	7.8	22.5	5.1		6.0		5.3	
	HY/2012/07		Mid-Ebb	IS8	13:35	Surface	2	29.8	7.8	22.3	5.2	50	6.7		5.4]
	HY/2012/07		Mid-Ebb	IS8		Middle	1					5.2		10.0		0.7
	HY/2012/07		Mid-Ebb	IS8		Middle	2							10.8		8.7
			Mid-Ebb	IS8	13:35	Bottom	1	29.2	7.8	23.2	5.0	5.0	15.0		11.4	1
TMCLKL	HY/2012/07		Mid-Ebb	IS8	13:35	Bottom	2	29.4	7.8	22.9	5.0	5.0	15.6		12.5	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Surface	1	29.8	7.8	22.5	5.3		4.4		4.5	
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Surface	2	30.0	7.8	22.3	5.3	<i>5</i> 2	5.1		4] [
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	1					5.3		7.0]
	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2							7.8		4.2
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Bottom	1	29.2	7.8	23.1	5.1	r 1	10.8		4.7	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	13:22	Bottom	2	29.4	7.8	22.8	5.1	5.1	10.9		3.7]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Surface	1	29.5	7.8	21.5	4.9		5.5		5.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Surface	2	29.3	7.8	21.7	4.9	4.8	5.9		5.6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Middle	1	29.5	7.9	22.7	4.6	4.0	6.9	9.8	5.8	6.7
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Middle	2	29.3	7.9	22.9	4.6		7.3	7.0	5.1	0.7
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)5	07:11	Bottom	1	29.4	7.9	23.5	4.5	4.5	15.5		9.6	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)5	07:11	Bottom	2	29.2	7.9	23.8	4.5	4.0	17.5		8.7	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Surface	1	29.3	7.9	19.8	4.7		14.1		5.5	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Surface	2	29.6	7.8	19.7	4.6	4.7	15.6		4.8	
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Middle	1	29.4	7.9	20.5	4.7	٦./	22.2	22.1	7.5	11.4
TMCLKL	HY/2012/07		Mid-Flood	CS(Mf)3(N)	08:36	Middle	2	29.6	7.8	20.5	4.6		22.6	22.1	7.4	11
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	08:36	Bottom	1	29.4	7.9	20.9	4.7	4.7	29.5		22.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	CS(Mf)3(N)	08:36	Bottom	2	29.6	7.9	20.9	4.6	т./	28.7		20.9	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	07:58	Surface	1	29.5	7.8	22.2	4.7		7.1		6.1	
TMCLKL	HY/2012/07		Mid-Flood	IS(Mf)16	07:58	Surface	2	29.3	7.8	22.4	4.7	4.7	8.0		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Middle	1	29.4	7.8	22.4	4.7	4.7	8.3	8.0	8.8	8.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Middle	2	29.3	7.8	22.7	4.7		8.5	0.0	9.8	0.2
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Bottom	1	29.4	7.8	22.5	4.7	4.7	8.2		8.8]
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)16	07:58	Bottom	2	29.2	7.8	22.7	4.7	4.7	8.0		9.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Surface	1	29.4	7.8	21.5	4.8		6.6		5.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Surface	2	29.2	7.8	21.8	4.8	4.8	7.2		7.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a		Middle	1					4.0		7.5		6.8
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a		Middle	2							1.5		0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Bottom	1	29.4	7.8	21.6	4.8	4.8	7.8		7.4	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4a	08:11	Bottom	2	29.3	7.8	21.8	4.8	4.0	8.4		6.4	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Surface	1	29.4	7.8	21.4	4.9		6.8		7.3	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Surface	2	29.2	7.8	21.6	4.9	4.9	7.2		8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4		Middle	1					4.9		10.3		7.3
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4		Middle	2							10.3		1.5
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Bottom	1	29.4	7.8	21.8	4.8	4.8	12.7		7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	SR4	08:16	Bottom	2	29.2	7.8	22.1	4.8	4.0	14.5		6.8	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Surface	1	29.4	7.8	22.0	4.7		10.8		7.7	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Surface	2	29.2	7.8	22.2	4.7	4.7	11.6		6.5	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8		Middle	1					4.7		140		8.6
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8		Middle	2							14.0		0.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Bottom	1	29.4	7.8	22.5	4.7	4.7	16.2		9.9	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS8	08:28	Bottom	2	29.2	7.8	22.7	4.7	4.7	17.4		10.2	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Surface	1	29.3	7.8	22.4	4.9		6.2		6	
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Surface	2	29.1	7.8	22.6	4.9	4.0	6.5		6.1]
TMCLKL	HY/2012/07		Mid-Flood			Middle	1					4.9		7.0] 70
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9		Middle	2							7.9		7.0
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Bottom	1	29.3	7.8	23.2	4.7	A 7	9.2		7.8]
TMCLKL	HY/2012/07	2017-09-22	Mid-Flood	IS(Mf)9	08:37	Bottom	2	29.2	7.8	23.4	4.7	4.7	9.8		7.9	

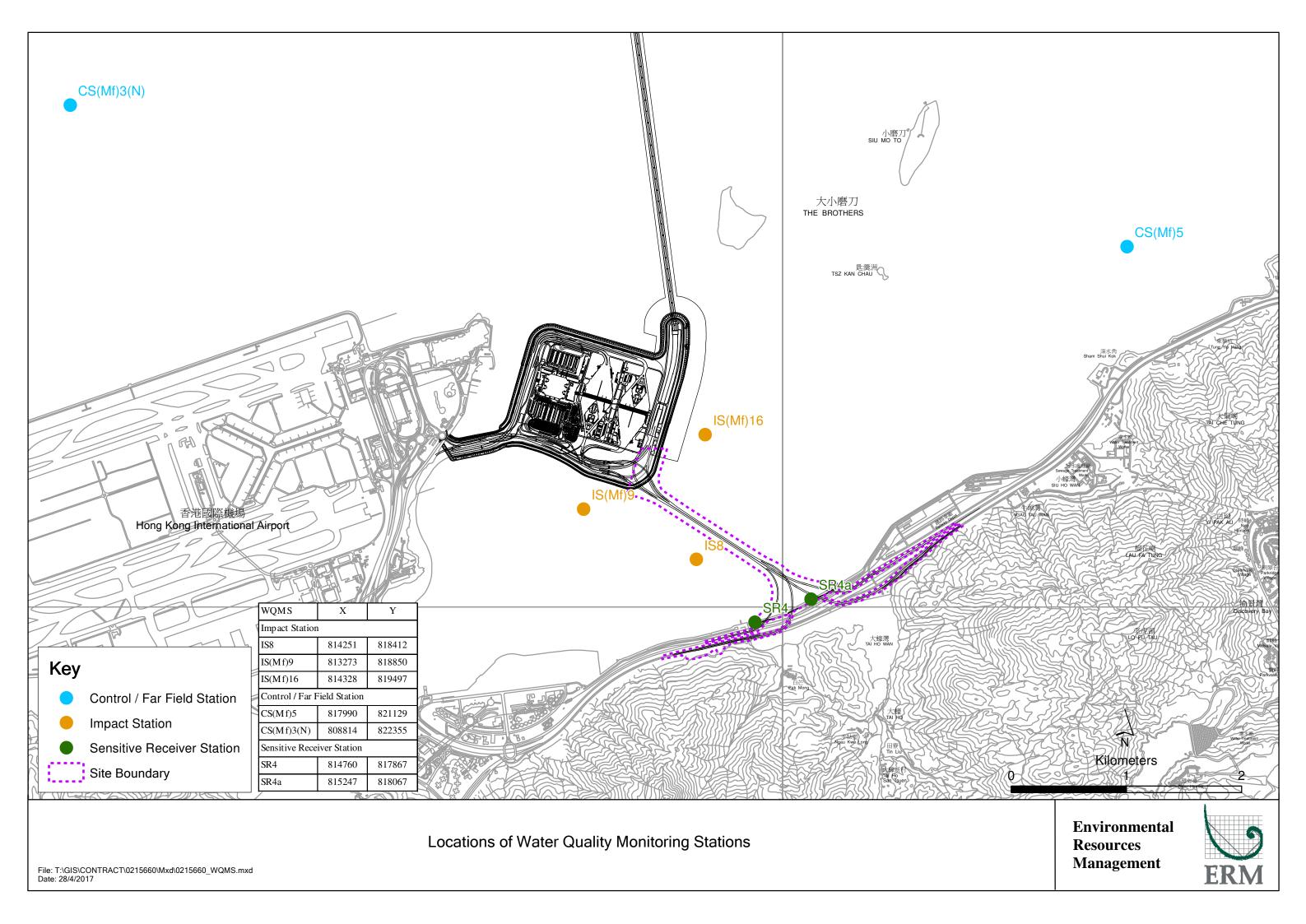


Photo 1 - Mid-Ebb at CS(Mf)5 on 22 September 2017

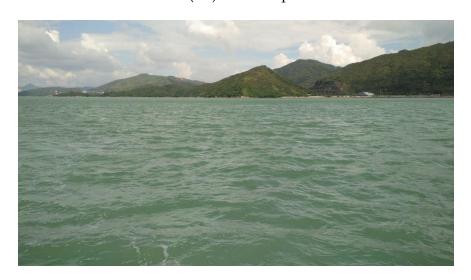


Photo 2 - Mid-Ebb at CS(Mf)3(N) on 22 September 2017

Photo 3 - Mid-Ebb at IS(Mf)16 on 22 September 2017

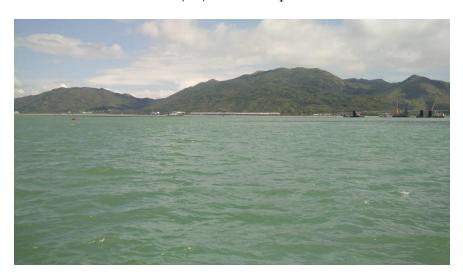


Photo 4 - Mid-Ebb at SR4a on 22 September 2017

Photo 5 - Mid-Ebb at SR4 on 22 September 2017

Photo 6 - Mid-Flood at CS(Mf)5 on 22 September 2017



Photo 7 - Mid-Flood at CS(Mf)3(N) on 22 September 2017

Photo 8 - Mid-Flood at IS(Mf)16 on 22 September 2017

Photo 9 - Mid-Flood at SR4a on 22 September 2017

Photo 10 - Mid-Flood at SR4 on 22 September 2017

Photo 11 - Mid-Flood at IS8 on 22 September 2017

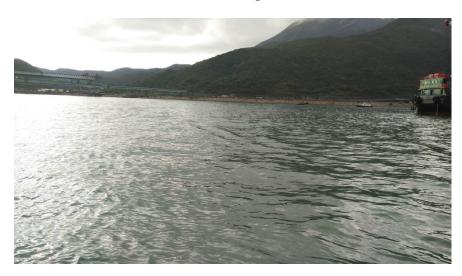


Photo 12 - Mid-Flood at IS(Mf)9 on 22 September 2017

Email message

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number

Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 12 October 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_25 September 2017_ Depth-averaged SS_F_Station IS8

A total of one exceedance was recorded on 25 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.	0215660_25 \$	Action Level Exceedance September 2017_ Depth-averaged SS_F_Station IS8												
		[Total No. of Exceedances = 1]												
Date		25 September 2017 (Measured)												
	•	ember 2017 (In situ results received by ERM)												
	*	ber 2017 (Laboratory results received by ERM)												
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with Exceedance(s)	Г	Depth-averaged Suspended Solids (SS) SS 120% of upstream control station at the same tide of the same day												
Action Levels for SS	SS	and 95%-ile of baseline data (i.e., 23.5 mg/L).												
Limit Levels for SS	SS	SS 130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)												
Measured Levels	Action Level Exceedance 1. Mid-flood at IS8 (Depth-ave													
Works Undertaken (at	No major marine works was un	dertaken under this Contract on 25 September 2017.												
the time of monitoring event)														
Possible Reason for	The exceedance of depth-average	ed SS is unlikely to be due to the Project, in view of the following:												
Action or Limit Level	 No marine works was ur 	ndertaken under this Contract on 25 September 2017.												
Exceedance(s)	 Apart from IS8, depth-av 	reraged SS levels at all other monitoring stations were in compliance												
	with the Action and Limi	t Levels during both mid-flood and mid-ebb tides on the same day.												
		s at IS8 at mid-ebb tides were similar to those at other stations apart												
	O	lance observed at mid-flood tide.												
	-	y levels and average DO levels at all stations were in compliance												
		t Levels during both mid-ebb and mid-flood tides on the same day.												
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in													
Taken	exceedances.													
Remarks	_	ptember 2017 and locations of water quality monitoring stations are												
	attached. Site photo record on	25 September 2017 is attached.												

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Surface	1	29.9	7.9	23.6	5.7		4.1		5.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Surface	2	29.7	7.9	23.8	5.6	5.3	3.9		4.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Middle	1	29.2	7.9	25.4	4.9	3.3	2.3	2.7	6.2	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Middle	2	29.1	7.9	25.6	4.8		3.3	3.7	7.4	7.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Bottom	1	29.2	7.9	26.5	4.7	4.7	4.3		10.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)5	15:58	Bottom	2	29.0	7.9	26.7	4.7	4./	4.4		8.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Surface	1	29.7	7.8	20.9	5.0		6.3		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Surface	2	29.5	7.9	20.8	5.1	5.0	5.9		4.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Middle	1	29.6	7.9	22.5	5.2	5.2	7.5	0.0	10.8	9.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Middle	2	29.3	8.0	22.5	5.3		6.1	8.0	9.2	9.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Bottom	1	29.4	7.9	24.1	5.2	5.2	12.0		15.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	CS(Mf)3(N)	14:35	Bottom	2	29.2	8.0	24.1	5.3	5.3	10.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Surface	1	29.7	7.9	23.5	5.5		6.8		7.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Surface	2	29.5	7.9	23.8	5.4	5.5	7.0		6.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		Middle	1					5.5		6.2		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16		Middle	2							6.3		7.6
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Bottom	1	29.2	7.9	24.6	4.9	4.0	6.3		8.5]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS(Mf)16	15:31	Bottom	2	29.1	7.9	24.8	4.9	4.9	5.2		7.9]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Surface	1	29.5	7.9	23.7	5.1		8.3		13.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Surface	2	29.3	7.9	24.0	5.1	<i>E</i> 1	10.1		14.2]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		Middle	1					5.1		10.0		12.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a		Middle	2							10.8		13.4
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Bottom	1	29.5	7.9	23.8	5.0	5.0	11.9		12.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4a	15:18	Bottom	2	29.3	7.9	24.0	5.0	5.0	12.8		13.5	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Surface	1	29.7	7.9	23.5	5.3		5.7		13.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Surface	2	29.5	7.9	23.7	5.2	5.2	6.2		15.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		Middle	1					5.3		0.6		15.0
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4		Middle	2							8.6		15.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Bottom	1	29.4	7.8	23.8	4.8	4.0	10.5		16.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	SR4	15:13	Bottom	2	29.3	7.8	24.1	4.8	4.8	12.1		15.9	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Surface	1	29.7	7.9	23.5	5.6		6.9		10.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Surface	2	29.5	7.9	23.7	5.5	5.6	8.3		11.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8		Middle	1					5.6		0.2		12.0
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8		Middle	2							8.3		13.0
TMCLKL	HY/2012/07		Mid-Ebb	IS8	15:05	Bottom	1	29.6	7.9	23.6	5.5	5 F	8.7		15.0]
TMCLKL	HY/2012/07	2017-09-25	Mid-Ebb	IS8	15:05	Bottom	2	29.5	7.9	23.8	5.5	5.5	9.2		14.7]
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Surface	1	29.8	7.9	23.6	5.8		4.3		12.6	
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Surface	2	29.6	7.9	23.8	5.7	5 0	5.0		12.2]
			Mid-Ebb	IS(Mf)9		Middle	1					5.8		C A		10.0
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9		Middle	2							6.4		12.2
TMCLKL	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Bottom	1	29.7	7.9	23.6	5.6	5.0	7.6		11.0	1
	HY/2012/07		Mid-Ebb	IS(Mf)9	14:56	Bottom	2	29.5	7.9	23.9	5.6	5.6	8.6		12.9	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Surface	1	29.4	7.9	23.2	5.5		4.6		11.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Surface	2	29.2	7.9	23.4	5.4	5.2	4.4		10.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Middle	1	29.2	7.9	24.2	5.0	J . Z	5.5	6.0	13.2	12.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Middle	2	29.0	7.9	24.5	5.0		5.3	6.8	12.1	13.7
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Bottom	1	29.2	7.9	24.9	4.8	4.0	10.9		17.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)5	09:35	Bottom	2	29.0	7.9	25.2	4.8	4.8	10.3		17.2	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Surface	1	29.9	7.8	19.0	5.2		6.4		3.7	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Surface	2	29.7	7.9	19.0	5.3	<i>5</i> 1	6.1		4.6	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Middle	1	29.6	7.8	19.9	4.9	5.1	6.6	7.2	10.8	0.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Middle	2	29.3	7.8	19.9	5.0		5.7	7.3	9.2	9.5
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Bottom	1	29.5	7.8	21.4	4.8	4.0	10.0		15.1	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	CS(Mf)3(N)	10:51	Bottom	2	29.3	7.9	21.3	4.9	4.9	9.1		13.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Surface	1	29.4	7.9	23.3	5.4		5.1		6.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Surface	2	29.2	7.9	23.5	5.4	- ·	5.0		5.2	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		Middle	1					5.4				
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16		Middle	2							5.5		6.3
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Bottom	1	29.2	7.9	23.7	5.2		5.9		6.6	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	IS(Mf)16	10:04	Bottom	2.	29.1	7.9	24.0	5.2	5.2	5.9		7.2	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Surface	1	29.4	7.9	23.3	5.2		11.8		14.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Surface	2.	29.2	7.9	23.5	5.2		11.6		14.0	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10111	Middle	1	27.12	7.0	2515	3.2	5.2	11.0		1110	
TMCLKL	HY/2012/07	2017-09-25				Middle	2							12.0		14.2
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Bottom	1	29.4	7.9	23.3	5.2		12.5		14.4	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:14	Bottom	2.	29.2	7.9	23.6	5.2	5.2	12.1		13.9	1
TMCLKL	HY/2012/07			SR4	10:19	Surface	1	29.4	7.9	23.7	5.1		15.3		21.0	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:19	Surface	2.	29.2	7.9	23.9	5.0		15.8		21.6	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10.17	Middle	1	27.2	1.5	23.7	3.0	5.1	13.0		21.0	1
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood			Middle	2.							15.0		21.5
TMCLKL	HY/2012/07		Mid-Flood		10:19	Bottom	1	29.4	7.9	23.9	5.0		14.2		21.8	
	HY/2012/07		Mid-Flood			Bottom	2	29.2	7.9	24.1	5.0	5.0	14.6		21.5	
	HY/2012/07		Mid-Flood		10:31	Surface	1	29.3	7.9	23.9	5.0		21.8		20.9	
	HY/2012/07		Mid-Flood		10:31	Surface	2	29.1	7.9	24.1	5.0		22.2		20.1	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10.51	Middle	1	27.1	1.7	27.1	5.0	5.0	<i>LL.L</i>		20.1	
	HY/2012/07	2017-09-25	Mid-Flood			Middle	2				 			24.0		23.7
	HY/2012/07		Mid-Flood		10:31	Bottom	1	29.3	7.9	23.9	5.0		26.0		26.4	
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood		10:31	Bottom	2	29.1	7.9	24.2	5.0		26.0		27.5	
	HY/2012/07		Mid-Flood		10:31	Surface	1	29.3	7.9	23.5	5.6		6.7		10.9	
			Mid-Flood		10:38	Surface	2	29.1	7.9	23.7	5.6		6.6		11.7	
TMCLKL	HY/2012/07		Mid-Flood	 ` '	10.30	Middle	1	<i>ل</i> ۲۶.1	1.9	43.1	3.0	5.6	0.0		11./	
TMCLKL	HY/2012/07		Mid-Flood			Middle	2				 			7.5		11.1
	HY/2012/07	2017-09-25	Mid-Flood		10:38			29.3	7.9	23.7	5.5		Q 2		11.6	
						Bottom	2		1	1			8.3			
TMCLKL	HY/2012/07	2017-09-25	Mid-Flood	119(MI)A	10:38	Bottom	2	29.1	7.9	23.9	5.5		8.5		10.1	

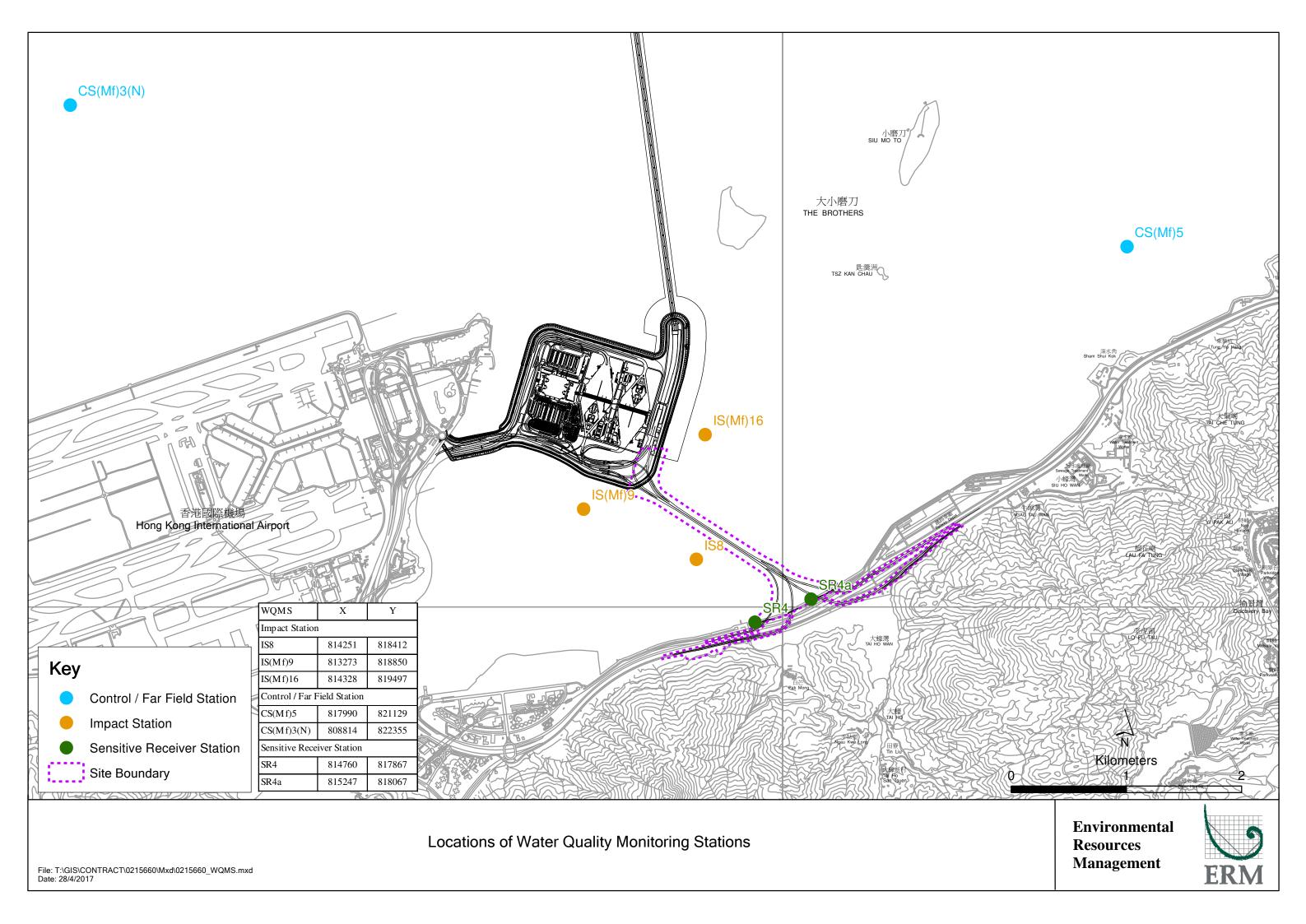


Photo 1 - Mid-Flood at IS8 on 25 September 2017

Email message

From

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

ERM- Hong Kong, Limited

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 28 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_27 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of one exceedance was recorded on 27 September 2017.

Regards,

Mr Jovy Tam

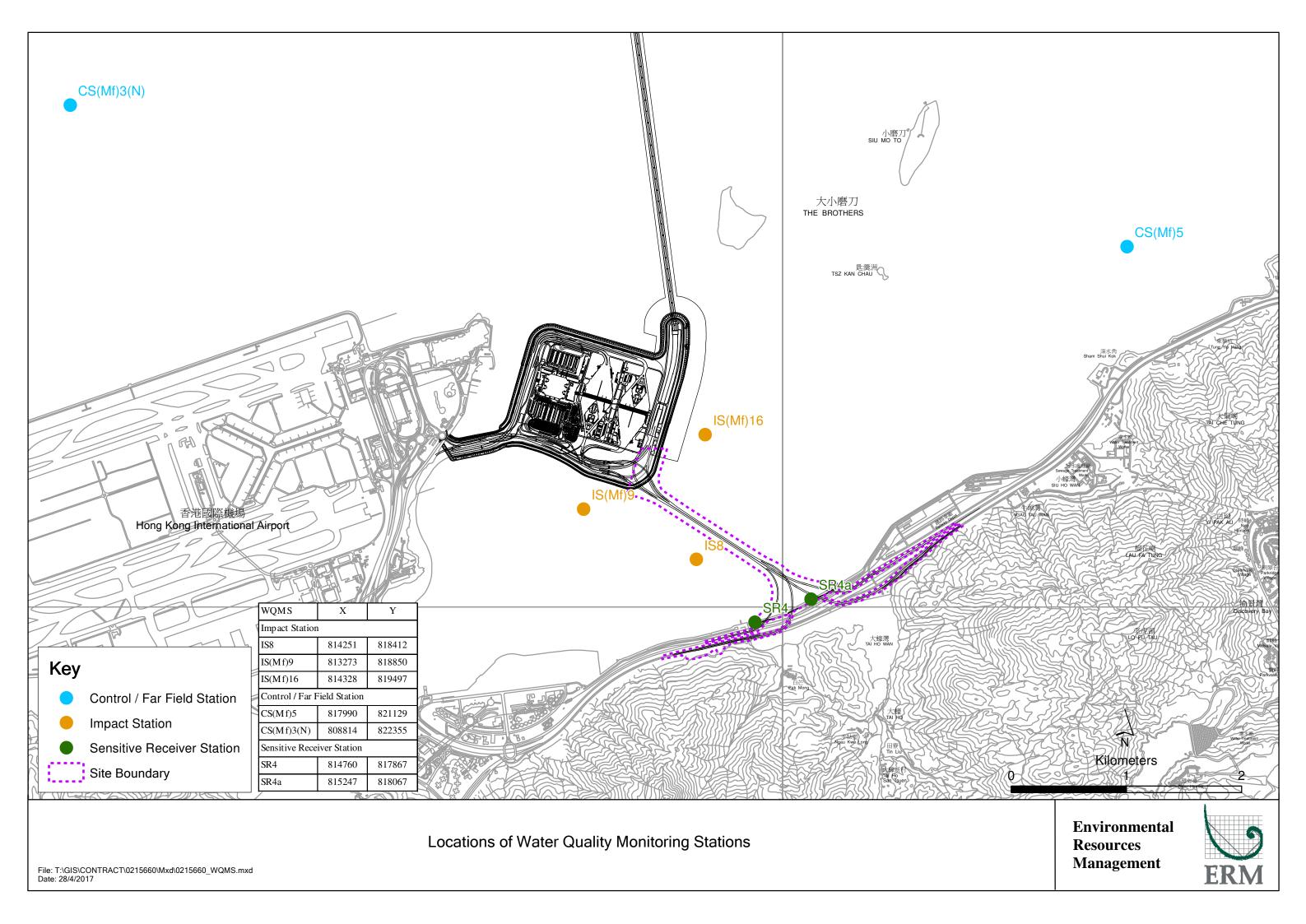
Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring


Log No.	0215660_27 Sep	Action Level Exceedance tember 2017_ Bottom-depth DO_F_Station CS(Mf)5											
		[Total No. of Exceedances = 1]											
Date	9 October	27 September 2017 (Measured) mber 2017 (<i>In situ</i> results received by ERM) r 2017 (Laboratory results received by ERM)											
Monitoring Station	CS(Mf)5, S	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)											
Parameter(s) with Exceedance(s)	Surface and Midd	lle-depth DO, Bottom-depth Dissolved Oxygen (DO)											
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L											
	Bottom-depth DO	4.7 mg/L											
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L											
	Bottom-depth DO	3.6 mg/L											
Measured Levels	Action Level Exceedance	-											
Works Undertaken (at the time of monitoring event) Possible Reason for	·	Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.5mg/L). Lajor marine works was undertaken under this Contract on 27 September 2017. Exceedance of bottom-depth DO is unlikely to be due to the Project, in view of the following:											
Action or Limit Level	_	ertaken under this Contract on 27 September 2017.											
Exceedance(s)	 CS(Mf)5 is distant (>3km rether observed exceedance shathey are considered to be not as they are generally long reasons of natural variations. Natural ability for water temperature in summed temperature in summed. The higher Salinity recovers was possibly caused by discharged from the Perwhich is probably respondered to the stations. The stratification the results of lower lands. 	espectively) from the marine works area under this Contract, thus would not be affected by the marine works under this Contract and atural fluctuation in water quality. Sower at water quality monitoring stations due to two possible at the contract and the contract and atural fluctuation in water quality. The contract is contract, thus area under this Contract, thus are a under this Contract, and a under this Contract											
Actions Taken/To Be	No immediate action is considered	ed necessary. The ET will monitor for future trends in											
Taken	exceedances.												
Remarks	The monitoring results on 27 Sep attached. Site photo record on 2	tember 2017 and locations of water quality monitoring stations are 27 September 2017 is attached.											

3.4			SS
		3.0	
2.7		2.8	
2.7	2.0	3.1	20
2.7	2.9	2.4	2.8
3.1		2.2	
2.6		3.3	
7.4		1.2	
6.9		1.1	1
11.8	12.0	2.9	26
12.8	13.2	2.1	2.6
20.4		4.8	1
19.7	Γ	3.5	1
5.4		3.5	
5.0		3.4	1
	7.0		2.0
	7.8		2.9
10.4	Γ	2.1	1
10.4	Ī	2.6	1
8.8		6.8	
	10.6		7.4
	10.6		7.4
12.8		7.5	
12.3		7.0	
8.1		4.5	
7.8	F	5.0	
	0.5		1
	8.5		4.5
9.3		4.2	1
	F		1
6.5			
			1
	100		1
	10.0		3.8
13.8		2.9	1
			1
	F		1
		,	1 .
	8.3		5.0
9.3	F	6.6	1
			1
	3.1 2.6 7.4 6.9 11.8 12.8 20.4 19.7 5.4 5.0 10.4 10.4 8.8 8.5 12.8 12.3 8.1 7.8	2.7 3.1 2.6 7.4 6.9 11.8 12.8 20.4 19.7 5.4 5.0 7.8 10.4 10.4 10.4 10.4 10.6 12.8 12.3 8.1 7.8 8.5 9.3 8.6 6.5 6.2 10.0 13.8 13.6 7.4 7.0 8.3 9.3	2.7 3.1 2.2 3.1 2.2 2.6 3.3 7.4 1.2 6.9 1.1 11.8 12.9 12.8 2.1 19.7 3.5 5.4 3.5 5.0 3.4 7.8 3.5 10.4 2.1 10.4 2.6 8.8 6.8 8.5 8.1 7.5 7.0 8.1 4.5 7.8 5.0 8.1 4.5 7.8 5.0 8.1 4.5 7.8 4.2 4.5 4.2 4.6 4.3 13.8 2.9 13.6 3.3 7.4 3.2 7.0 4.9 8.3 6.6

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Surface	1.0	30.4	7.9	19.6	5.4		3.5		0.9	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Surface	2.0	30.3	7.9	19.8	5.4	5.1	3.0		0.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Middle	1.0	29.8	7.9	22.2	4.7	J.1	3.6	2.7	0.5	0.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Middle	2.0	29.6	7.8	22.4	4.7		3.1	3.7	0.7	0.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Bottom	1	29.5	7.9	25.0	4.5	4.5	4.6		< 0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)5	11:31	Bottom	2	29.3	7.9	25.2	4.5	4.5	4.1		< 0.5	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Surface	1.0	30.8	7.6	12.0	5.8		6.6		2.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Surface	2.0	30.8	7.6	12.0	5.8	5.5	6.6		2.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Middle	1.0	29.9	7.7	17.6	5.1	3.3	12.5	11.6	2.7	2.0
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Middle	2.0	29.9	7.7	17.6	5.1		12.5	11.6	2.6	3.8
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Bottom	1	29.7	7.7	20.5	5.1	5 1	15.6		5.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	CS(Mf)3(N)	13:02	Bottom	2	29.7	7.7	20.5	5.1	5.1	15.8		6.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Surface	1.0	30.2	7.9	19.6	5.3		6.2		2.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Surface	2.0	30.0	7.8	19.9	5.3	5.2	5.9		2.9	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Middle	1.0	30.0	7.9	20.3	5.2	5.3	9.0	10.0	5.2	4.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Middle	2.0	29.9	7.8	20.5	5.2		9.0	10.2	4.4	4.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Bottom	1	29.9	7.9	22.6	4.9	4.0	15.6		5.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	IS(Mf)16	11:58	Bottom	2	29.7	7.8	22.8	4.9	4.9	15.3		6.9	1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	Surface	1.0	30.3	7.9	18.2	5.4		8.3		7.6	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:09	Surface	2.0	30.1	7.8	18.4	5.4	5.4	7.8		8.7	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a		Middle	1.0					5.4		11.6		7.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a		Middle	2.0							11.6		7.7
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	Bottom	1	30.0	7.9	19.8	5.0	5.0	15.5		7.4	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4a	12:09	Bottom	2	29.9	7.8	20.0	5.0	5.0	14.9		7.2	1
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4	12:13	Surface	1.0	30.7	7.9	17.5	5.8		4.6		3.0	
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4	12:13	Surface	2.0	30.5	7.8	17.6	5.8	7 0	4.1		2.7	
TMCLKL	HY/2012/07			SR4		Middle	1.0					5.8		6.0		2.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood	SR4		Middle	2.0							6.0		3.6
TMCLKL	HY/2012/07	2017-09-27	Mid-Flood		12:13	Bottom	1	30.3	7.9	18.7	5.4	5.4	7.8		4.2	
	HY/2012/07	2017-09-27	Mid-Flood		12:13	Bottom	2	30.1	7.8	18.9	5.4	5.4	7.6		4.6	
TMCLKL			Mid-Flood		12:26	Surface	1.0	30.6	7.9	18.3	5.6		9.1		6.5	
			Mid-Flood		12:26	Surface	2.0	30.4	7.8	18.5	5.5	5 (8.5		8.1	
			Mid-Flood			Middle	1.0					5.6		10.6		
			Mid-Flood			Middle	2.0							10.6		7.1
TMCLKL			Mid-Flood		12:26	Bottom	1	30.2	7.9	19.5	5.3	5.0	12.0		6.2	
			Mid-Flood		12:26	Bottom	2	30.0	7.8	19.7	5.3	5.3	12.7		7.5	1
TMCLKL			Mid-Flood		12:34	Surface	1.0	30.5	7.9	19.8	5.6		6.4		5.1	
			Mid-Flood	· '	12:34	Surface	2.0	30.3	7.9	20.0	5.6	F 2	5.9		4.8	1
			Mid-Flood			Middle	1.0					5.6				
TMCLKL			Mid-Flood			Middle	2.0							6.6		4.5
TMCLKL			Mid-Flood		12:34	Bottom	1	30.4	7.9	20.4	5.6		7.4		4.3	1
	HY/2012/07		Mid-Flood		12:34	Bottom	2	30.2	7.9	20.6	5.6	5.6	6.7		3.9	1

Photo 1 - Mid-Flood at CS(Mf)5 on 27 September 2017

Email message

Environmental Resources Management

To Ramboll Environ – Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong

From ERM- Hong Kong, Limited

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 30 September 2017

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_29 September 2017_ Bottom-depth DO_E_Station IS8 0215660_29 September 2017_ Bottom-depth DO_E_Station IS(Mf)9 0215660_29 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_29 September 2017_ Bottom-depth DO_E_Station SR4 0215660_29 September 2017_ Bottom-depth DO_F_Station CS(Mf)5

A total of five exceedances were recorded on 29 September 2017.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Log No.		Action Level Exceedance									
	0215660_30 September 2017_ Bottom-depth DO_E_Station IS8 0215660_30 September 2017_ Bottom-depth DO_E_Station IS(Mf)9 0215660_30 September 2017_ Bottom-depth DO_E_Station SR4a 0215660_30 September 2017_ Bottom-depth DO_E_Station SR4 0215660_30 September 2017_ Bottom-depth DO_F_Station CS(Mf)5										
	[Total No. of Exceedances = 5]										
Date	29 September 2017 (Measured)										
	30 September 2017 (In situ results received by ERM)										
	11 October 2017 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5, SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with Exceedance(s)	Surface and Middle-depth DO, Bottom-depth Dissolved Oxygen (DO)										
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Measured Levels	Action Level Exceedance 1. Mid-ebb at IS8 (Bottom-depth DO = 4.5mg/L); 2. Mid-ebb at IS(Mf)9 (Bottom-depth DO = 4.6mg/L); 3. Mid-ebb at SR4a (Bottom-depth DO = 4.0mg/L); 4. Mid-ebb at SR4 (Bottom-depth DO = 4.6mg/L); and 5. Mid-flood at CS(Mf)5 (Bottom-depth DO = 4.5mg/L).										
Works Undertaken (at	No major marine works was undertaken under this Contract on 29 September 2017.										
the time of monitoring											
event)											
Possible Reason for	The exceedances of surface and middle and bottom-depth DO are unlikely to be due to the Project,										
Action or Limit Level	in view of the following:										
Exceedance(s)	No marine works was undertaken under this Contract on 29 September 2017.										
	 All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. CS(Mf)5 are distant (>3km respectively) from the marine works area under this Contract, thus 										
	the observed exceedances should not be affected by the marine works under this Contract and they are considered to be natural fluctuation in water quality.										
Actions Taken/To Be	No immediate action is considered necessary. The ET will monitor for future trends in										
Taken	exceedances.										
Remarks	The monitoring results on 29 September 2017 and locations of water quality monitoring stations are										
	attached. Site photo record on 29 September 2017 is attached.										

TMCLKL HY	Y/2012/07			Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
		2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Surface	1	30.1	7.8	19.5	5.9		1.8		1.2	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Surface	2	29.8	7.9	19.8	5.8	5.5	1.8		1.6	
	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Middle	1	30.2	7.8	22.1	5.1	J . J	1.7	1 7	1.5	1.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Middle	2	29.9	7.9	22.4	5.0		1.7	1.7	1.8	1.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Bottom	1	29.9	7.8	25.3	4.9	4.9	1.7		1.4	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)5	06:43	Bottom	2	29.6	7.9	25.6	4.8	4.9	1.7		1.5	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Surface	1	30.2	7.8	16.9	6.0		5.0		3.2	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Surface	2	30.4	7.8	16.9	6.1	57	5.5		2.1	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Middle	1	30.1	7.8	20.5	5.2	5.7	4.7	5.0	3.1	2.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Middle	2	30.4	7.7	20.3	5.3		4.7	5.9	3.3	3.5
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Bottom	1	29.4	7.8	25.4	4.6	4.7	7.6		3.7	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	CS(Mf)3(N)	08:06	Bottom	2	29.7	7.8	25.5	4.8	4.7	8.1		5.4	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Surface	1	30.0	7.8	18.5	6.2		3.2		1.7	
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Surface	2	29.8	8.0	18.8	6.1	(0	2.8		1.4	1
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16		Middle	1					6.2		4.0		4.7
	Y/2012/07		Mid-Ebb	IS(Mf)16		Middle	2							4.3		4.7
TMCLKL HY	Y/2012/07	2017-09-29	Mid-Ebb	IS(Mf)16	07:12	Bottom	1	29.9	7.8	23.2	4.8	4.0	5.8		8.0	
	Y/2012/07	†	Mid-Ebb	IS(Mf)16	07:12	Bottom	2	29.6	7.9	24.0	4.8	4.8	5.2		7.7	1
	Y/2012/07		Mid-Ebb	SR4a	07:24	Surface	1	30.6	7.8	20.1	6.0		4.1		2.1	
	Y/2012/07		Mid-Ebb	SR4a	07:24	Surface	2	30.3	7.9	20.4	5.9		3.7		3.7	1
	Y/2012/07		Mid-Ebb	SR4a		Middle	1					6.0		7 2		1
	Y/2012/07		Mid-Ebb	SR4a		Middle	2							5.2		3.6
	Y/2012/07		Mid-Ebb	SR4a	07:24	Bottom	1	29.9	7.7	23.0	4.0	4.0	6.6		4.6	1
	Y/2012/07		Mid-Ebb	SR4a	07:24	Bottom	2	29.6	7.8	23.3	4.0	4.0	6.3		3.9	1
	Y/2012/07		Mid-Ebb	SR4	07:28	Surface	1	30.3	7.7	20.7	5.1		6.2		4.5	
			Mid-Ebb	SR4	07:28	Surface	2	30.0	7.9	21.0	5.1	5.1	5.9		2.9	
	Y/2012/07		Mid-Ebb	SR4		Middle	1					5.1		0.5		1
	Y/2012/07		Mid-Ebb	SR4		Middle	2							9.5		3.7
		†	Mid-Ebb	SR4	07:28	Bottom	1	30.1	7.7	22.1	4.6	1.6	12.5		3.6	
TMCLKL HY				SR4	07:28	Bottom	2	29.8	7.8	22.4	4.5	4.6	13.5		3.8	
			Mid-Ebb	IS8	07:41	Surface	1	30.5	7.9	18.7	7.1		2.8		2.1	
			Mid-Ebb	IS8	07:41	Surface	2.	30.2	8.0	18.9	7.0		2.3		2.2	
			Mid-Ebb	IS8	57.11	Middle	1	20.2	0.0	10.7	7.0	7.1	2.3		2.2	
			Mid-Ebb	IS8		Middle	2							5.6		2.8
			Mid-Ebb	IS8	07:41	Bottom	1	30.2	7.7	22.1	4.4		8.7		4.1	1
			Mid-Ebb	IS8	07:41	Bottom	2	30.0	7.8	22.3	4.5	4.5	8.4		2.6	1
			Mid-Ebb	IS(Mf)9	07:51	Surface	1	30.2	7.9	18.4	6.9		2.9		2.3	
			Mid-Ebb	IS(Mf)9	07:51	Surface	2.	29.9	8.1	18.6	6.8		2.6		2.5	1
			Mid-Ebb	IS(Mf)9	57.51	Middle	1	<i>27.7</i>	0.1	10.0	0.0	6.9	2.0		2.5	
			Mid-Ebb	IS(Mf)9		Middle	2			1				6.0		3.8
			Mid-Ebb	IS(Mf)9	07:51	Bottom	1	30.2	7.7	21.3	4.5		9.3		5.6	
			Mid-Ebb	IS(Mf)9	07:51	Bottom	7	30.0	7.7	21.4	4.7	4.6	9.0		4.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	pН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Surface	1	30.0	8.0	24.0	5.6		1.9		2.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Surface	2	30.2	7.9	23.7	5.7	5.5	1.8]	2.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Middle	1	29.6	8.0	27.4	5.3	3.3	2.2	2.5	3.6	2.2
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Middle	2	29.9	7.9	27.1	5.4		2.1	3.5	3.6	3.3
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Bottom	1	29.1	8.0	30.0	4.5	4.5	6.4		4.8	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)5	16:37	Bottom	2	29.4	7.9	29.7	4.5	4.3	6.5		3.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Surface	1	31.1	7.8	15.2	6.2		6.6		4.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Surface	2	31.4	7.8	15.2	6.3	57	6.8		5.2	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Middle	1	30.3	7.7	19.7	5.1	5.7	10.4	0.6	4.7	F 1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Middle	2	30.5	7.7	19.8	5.2		11.1	8.6	5.4	5.1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Bottom	1	30.0	7.7	21.6	4.9	5.0	8.5		6.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	CS(Mf)3(N)	15:00	Bottom	2	30.2	7.7	21.6	5.1	5.0	8.4		4.6	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Surface	1	30.9	8.2	19.9	9.4		2.7		3.7	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Surface	2	31.2	8.1	19.7	9.3	0.4	2.7		3.0	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16		Middle	1					9.4		7.0		2.0
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16		Middle	2							7.3		3.8
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Bottom	1	30.0	7.8	22.6	5.5	5.5	11.8		4.3	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	IS(Mf)16	15:56	Bottom	2	30.2	7.8	22.4	5.5	5.5	11.8		4.1	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a	15:41	Surface	1	30.3	7.9	21.4	6.4		5.6		5.1	
TMCLKL	HY/2012/07	2017-09-29		SR4a	15:41	Surface	2	30.6	7.9	21.2	6.4	6.4	6.4		4.9	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a		Middle	1							5 0		4.9
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4a		Middle	2							5.3		
TMCLKL	HY/2012/07	2017-09-29		SR4a	15:41	Bottom	1	30.1	7.9	22.3	5.5		4.4		4.3	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood		15:41	Bottom	2	30.3	7.8	22.1	5.5	5.5	4.9		5.1	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Surface	1	30.7	8.0	20.9	6.8		14.3		13.6	
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Surface	2	31.0	7.9	20.6	7.1	7.0	15.1		12.8	7 l
TMCLKL	HY/2012/07	2017-09-29			10.0.	Middle	1	5110		2010	,,,	7.0	1011	14.2	12.0	1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4		Middle	2									13.1
TMCLKL	HY/2012/07	2017-09-29	Mid-Flood	SR4	15:37	Bottom	1	30.0	7.8	22.5	4.9	5 0	13.8		12.8	1
	HY/2012/07		Mid-Flood		15:37	Bottom	2	30.3	7.8	22.1	5.0	5.0	13.6		13.3	1
		2017-09-29	Mid-Flood		15:25	Surface	1	30.7	8.0	20.9	7.3		10.2		8.3	
	HY/2012/07		Mid-Flood		15:25	Surface	2	31.0	8.0	20.7	7.5	- .	11.6	_	7.8	
		2017-09-29	Mid-Flood		10.20	Middle	1	5110			,	7.4	1110		.,,	
		2017-09-29	Mid-Flood			Middle	2							14.2		8.3
		2017-09-29	Mid-Flood		15:25	Bottom	1	30.2	7.9	21.8	5.9		18.9		7.9	1
	1	2017-09-29	Mid-Flood		15:25	Bottom	2	30.5	7.8	21.6	5.9	5.9	16.0		9.0	1
		2017-09-29	Mid-Flood		15:13	Surface	1	31.2	8.3	20.0	11.8		7.7		6.9	
		2017-09-29	Mid-Flood		15:13	Surface	2	31.4	8.3	19.8	11.7	11.8	9.0		6.6	
		2017-09-29	Mid-Flood	 ` '	10.110	Middle	1	2211	2.2	22.0			7.0	0.7	5.5	
		2017-09-29	Mid-Flood			Middle	2.							9.5		7.8
	HY/2012/07	2017-09-29	Mid-Flood		15:13	Bottom	1	31.2	8.2	20.5	9.2		10.1		9.2	1
		2017-09-29	Mid-Flood	 	15:13	Bottom	2	31.5	8.2	20.3	9.4	9.3	11.2		8.6	1

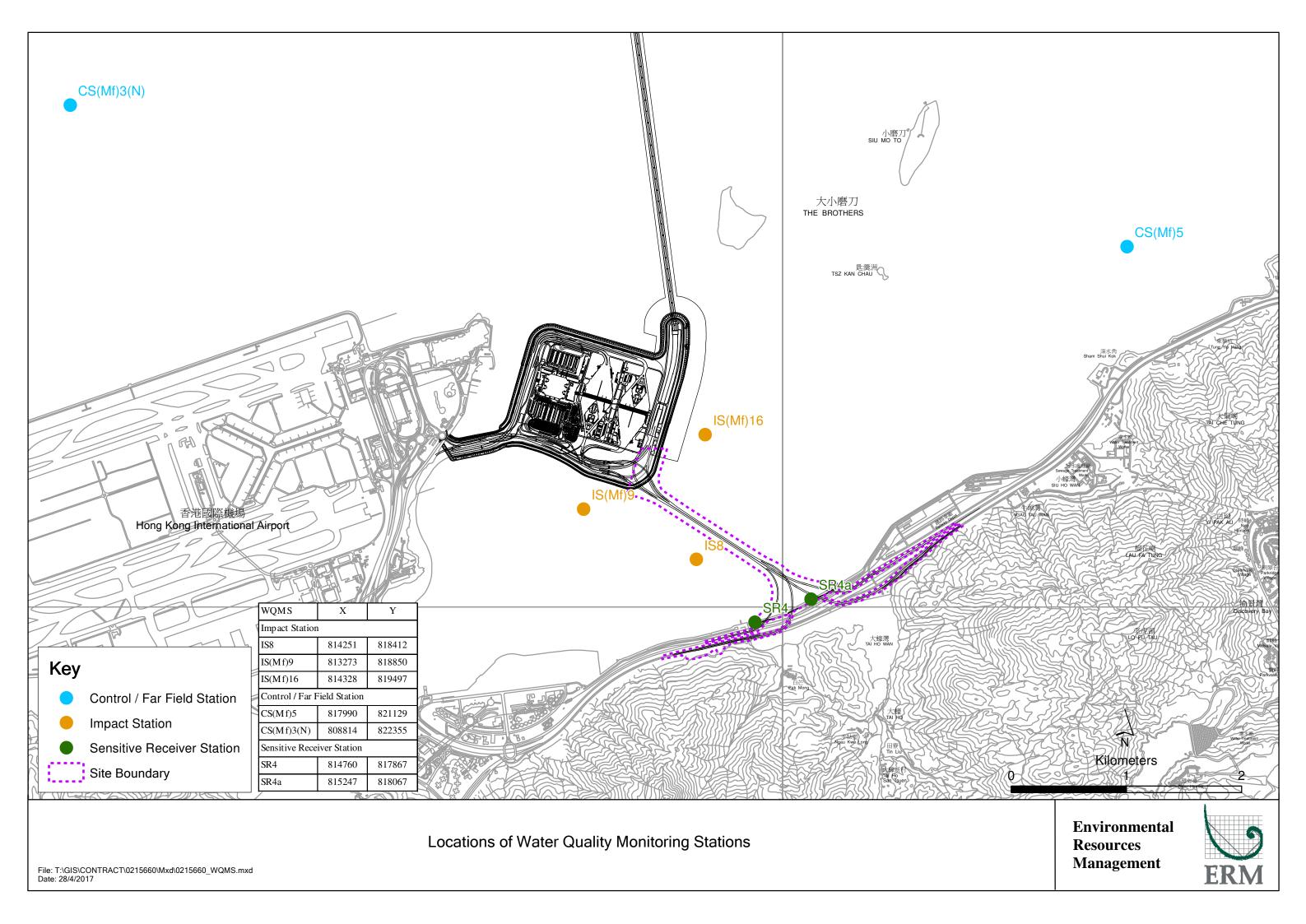


Photo 1 - Mid-Ebb at IS8 on 29 September 2017

Photo 2 - Mid-Ebb at IS(Mf)9 on 29 September 2017

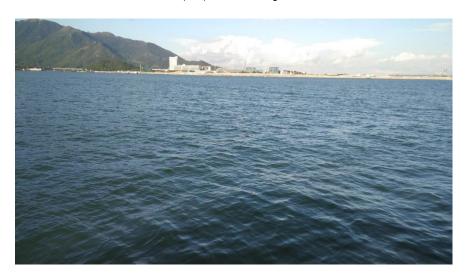
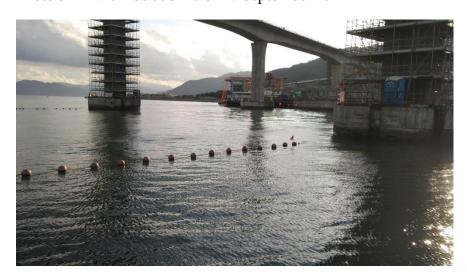



Photo 3 - Mid-Ebb at SR4a on 29 September 2017

CONTRACT NO. HY/2012/07 – WQM SITE PHOTOS AT IS8, IS(MF)9, SR4A, SR4 AND CS(MF)5 ON 29 SEPTEMBER 2017

Photo 4 - Mid-Ebb at SR4 on 29 September 2017

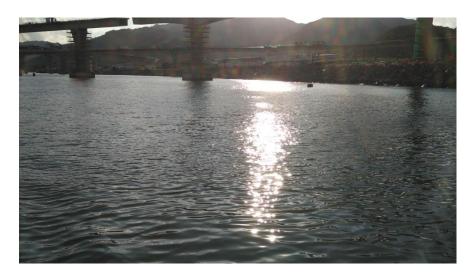


Photo 5 - Mid-Flood at CS(Mf)5 on 29 September 2017

