
REPORT

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Fifty-fourth Monthly EM&A Report

11 May 2018

Environmental Resources Management 16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Environmental Resources Management

16/F, Berkshire House 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Fifty-fourth Monthly EM&A Report

Document Code: 0215660_54th Monthly EM&A_20180511.doc

Client:		Project N	0:		
Gammo	n	021566	0		
Summary: This document presents the Fifty-fourth Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.		Date: 11 May 2018 Approved by: <i>Mr Craig Reid</i> <i>Partner</i> Certified by: <i>Mr Jovy Tam</i>			
		ET Leade	er		
	Fifty-fourth Monthly EM&A Report	VAR	JT	CAR	11/05/18
Revision	Description	Ву	Checked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		Pul	ernal	Certificate 1	18001:2007 No. OHS 515956 3001 : 2008 No. FS 32515

Ref.: HYDHZMBEEM00_0_6490L.18

14 May 2018

AECOM Supervising Officer's Representative's Office 780 Cheung Tung Road, Lantau, N.T. By Fax (3691 2899) and By Post

Attention: Mr. Daniel Ip

Dear Mr. Ip,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/07 TM-CLKL Southern Connection Viaduct Section 54th Monthly EM&A Report for April 2018 (EP-354/2009/D)

Reference is made to the Monthly Environmental Monitoring and Audit (EM&A) Report (April 2018) (ET's ref.: "0215660_54th Monthly EM&A_20180511.doc" dated 11 May 2018) certified by the ET Leader and provided to us via e-mail on 11 May 2018.

Please be informed that we have no adverse comments on the captioned Report. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/D.

Thank you for your attention. Please do not hesitate to contact the undersigned or the ENPO Leader Mr. Y. H. Hui should you have any queries.

Yours sincerely,

Haffa Boog

F. C. Tsang Independent Environmental Checker Tuen Mun – Chek Lap Kok Link

c.c.

HyD – Mr. Stephen Chan (By Fax: 3188 6614) HyD – Mr. Vico Cheung (By Fax: 3188 6614) AECOM – Mr. Conrad Ng (By Fax: 3922 9797) ERM – Mr. Jovy Tam (By Fax: 2723 5660) Gammon – Mr. Roy Leung (By Fax: 3520 0486)

Internal: DY, YH, TMC, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\2018\HYDHZMBEEM00_0_6490L.18.docx

Ramboll Hong Kong Limited 英環香港有限公司 21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong Tel: 852.3465 2888 Fax: 852.3465 2899 www.ramboll.com TABLE OF CONTENTS

	EXECUTIVE SUMMARY	Ι
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	3
2	EM&A RESULTS	6
2.1	AIR QUALITY	6
2.2	NOISE MONITORING	8
2.3	WATER QUALITY MONITORING	9
2.4	DOLPHIN MONITORING	11
2.5	EM&A SITE INSPECTION	15
2.6	WASTE MANAGEMENT STATUS	16
2.7	ENVIRONMENTAL LICENSES AND PERMITS	17
2.8	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	19
2.9	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMAN	NCE
	LIMIT	19
2.10	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	19
3	FUTURE KEY ISSUES	20
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTH	20
3.2	Key Issues for the Coming Month	20
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	20
4	CONCLUSIONS AND RECOMMENDATIONS	21
4.1	Conclusions	21

List of Appendices

- Appendix A Project Organization for Environmental Works
- Appendix B Three Month Rolling Construction Programmes
- Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Monitoring Equipment
- Appendix F EM&A Monitoring Schedules
- Appendix G Impact Air Quality Monitoring Results and Graphical Presentation
- Appendix H Meteorological Data for the Reporting Month
- Appendix I Impact Noise Monitoring Results and Graphical Presentation
- Appendix J Impact Water Quality Monitoring Results and Graphical Presentation
- Appendix K Impact Dolphin Monitoring Survey Results
- Appendix L Event Action Plan
- Appendix M Monthly Summary of Waste Flow Table
- Appendix N Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by the HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2018. The impact monitoring of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well as environmental site inspections, commenced on 31 October 2013.

This is the Fifty-fourth Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 30 April 2018 for the Southern Connection Viaduct Section in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;

- Asphalt paving;
- Construction of sign gantries, light poles and street furniture;
- Parapets and barriers installation; and
- Slope work of Viaducts A, B, C & D.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring	6 sessions
1-hour TSP Monitoring	6 sessions
Water Quality Monitoring	13 sessions
Noise Monitoring	6 sessions
Impact Dolphin Monitoring	2 sessions
Joint Environmental Site Inspection	4 sessions

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting month.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting month.

Breaches of Action and Limit Levels for Water Quality

No exceedance of Action and Limit Levels was recorded for water quality impact monitoring in the reporting month.

Impact Dolphin Monitoring

During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Daily marine mammal exclusion zone monitoring was undertaken during the period of marine works under this Contract. No sighting of the Chinese White Dolphin was recorded in April 2018 during the exclusion zone monitoring.

Environmental Complaints, Non-compliance & Summons

There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

Summary of Marine Travel Route record

No non-compliance with EIA recommendations, EP conditions and other requirements associated with the marine travel route record of this Contract was recorded in March 2018. Summary of marine travel route record for this reporting period will be provided when available.

Reporting Change

There was no reporting change in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the next monitoring period of May 2018 include the following:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Construction of sign gantries, light poles and street furniture;
- Parapets and barriers installation; and
- Slope work of Viaducts A, B, C & D.

Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of May 2018 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

1.1 BACKGROUND

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

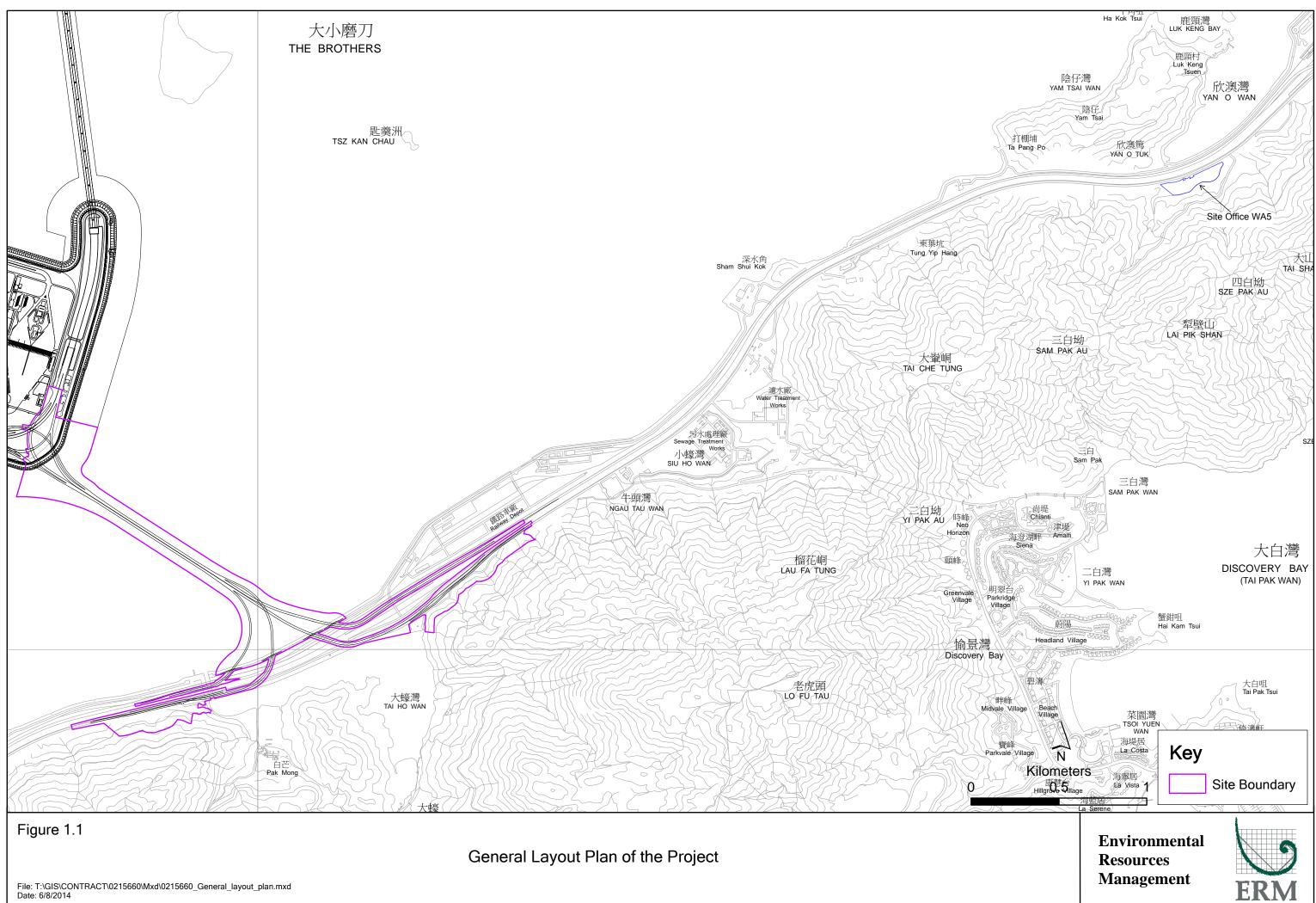
An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (*EP-354/2009*) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (*EP-354/2009/A*) was issued on 8 December 2010.

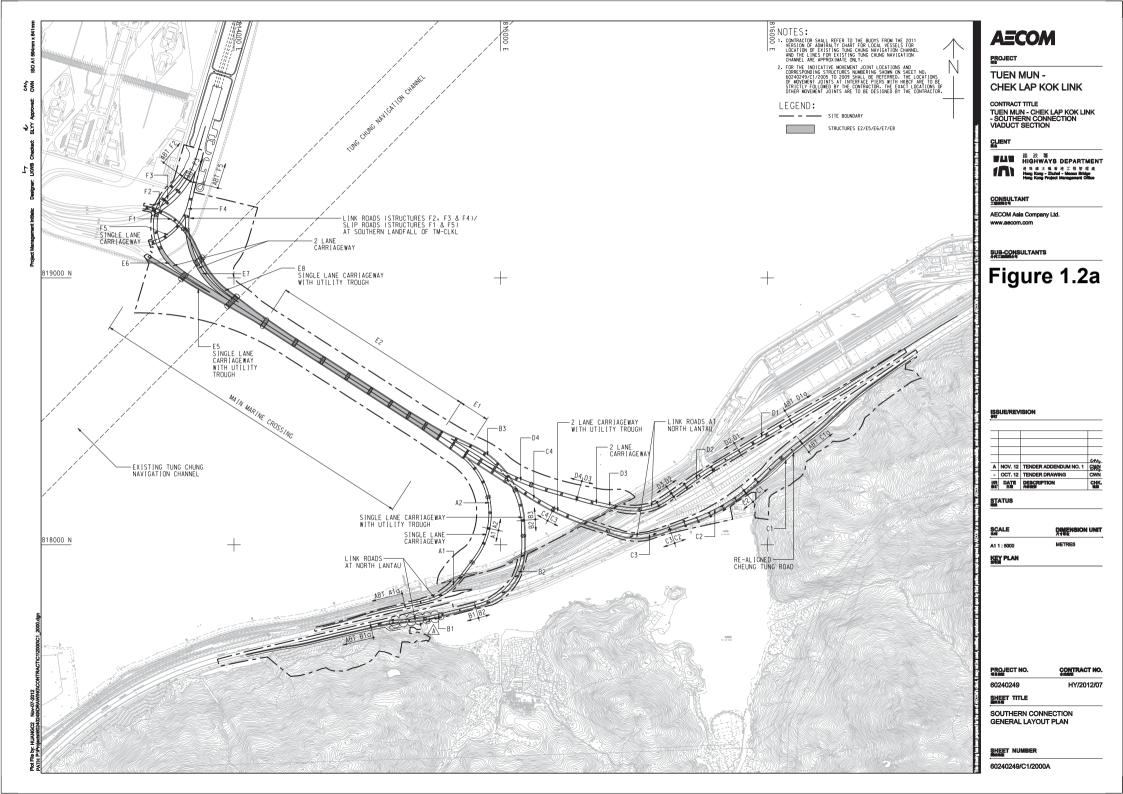
Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

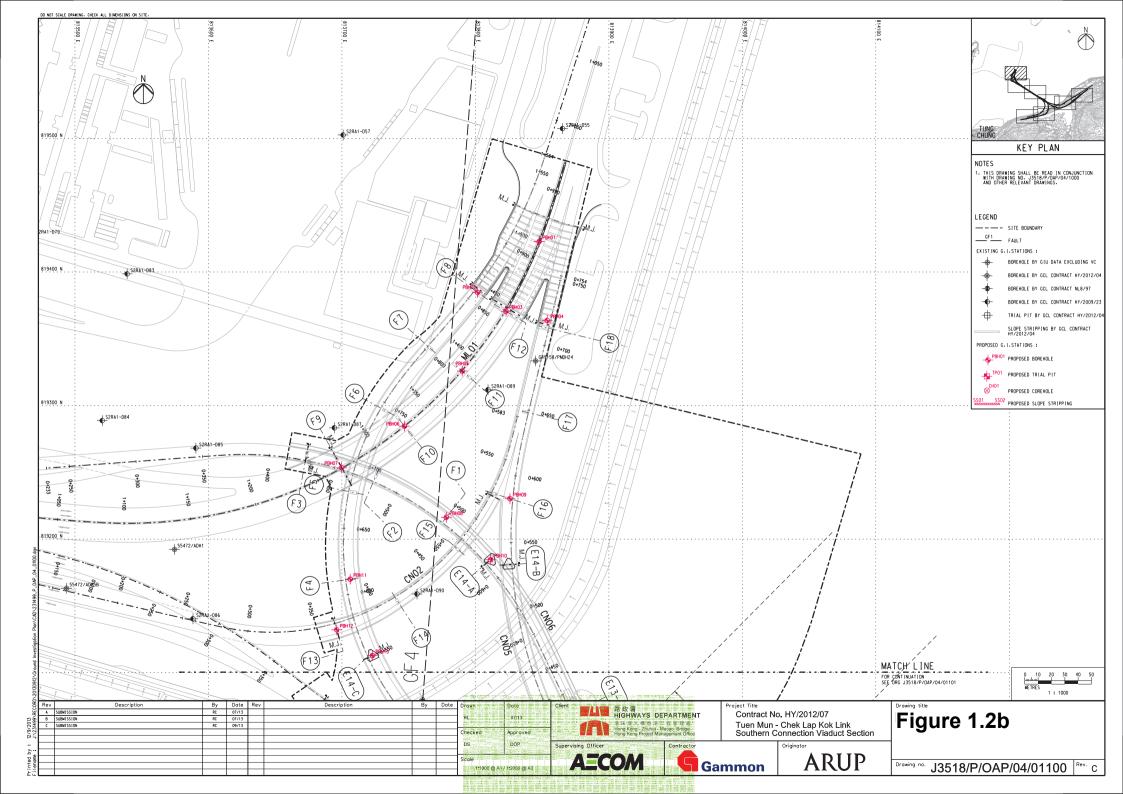
The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the

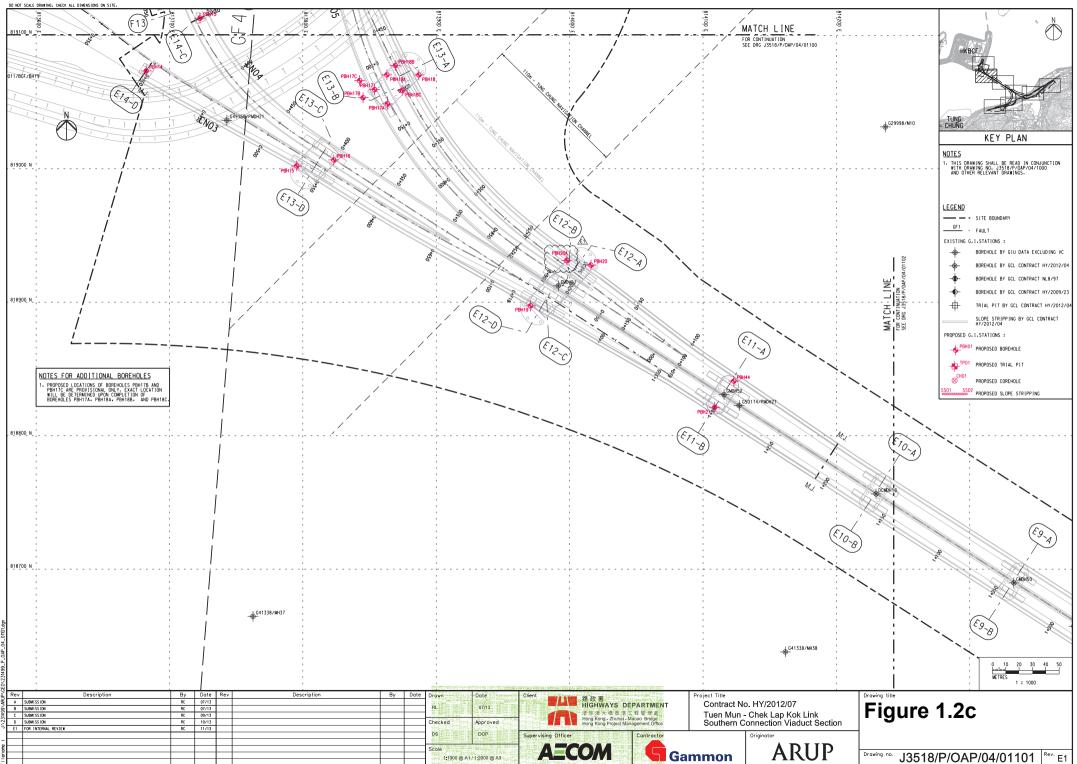
southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

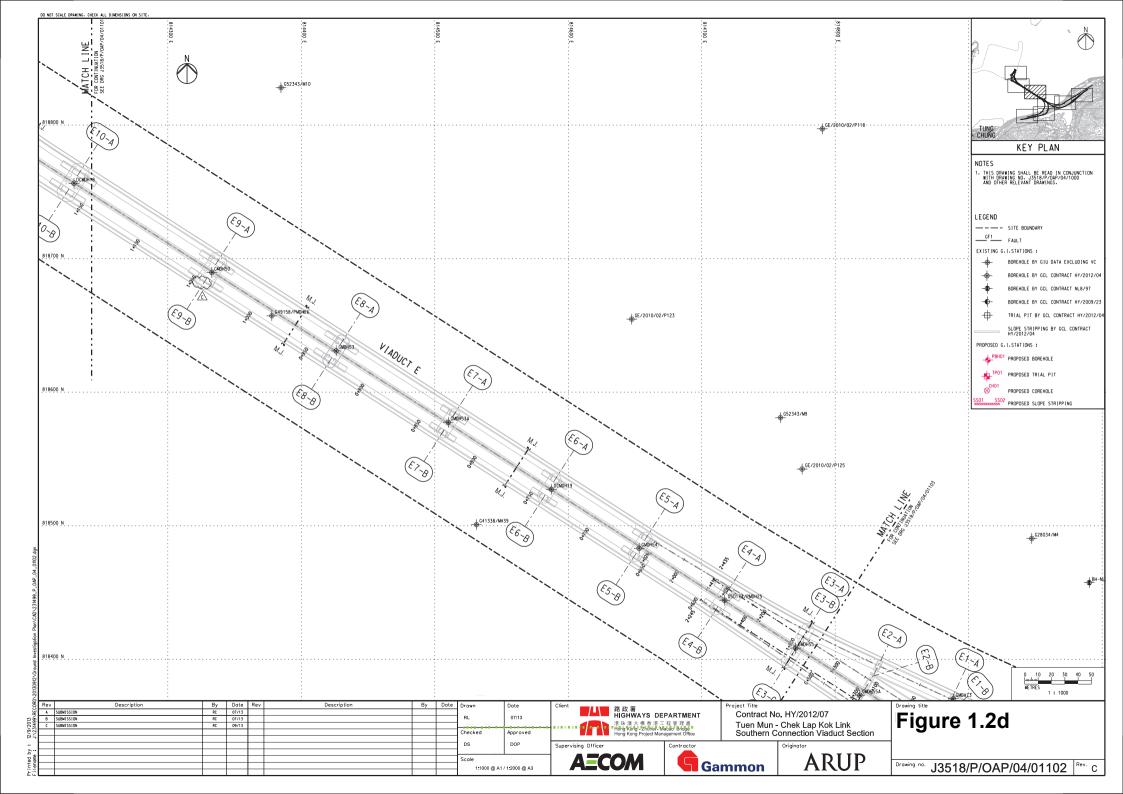
The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2018. The impact monitoring phase of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well environmental site inspections, commenced on 31 October 2013.

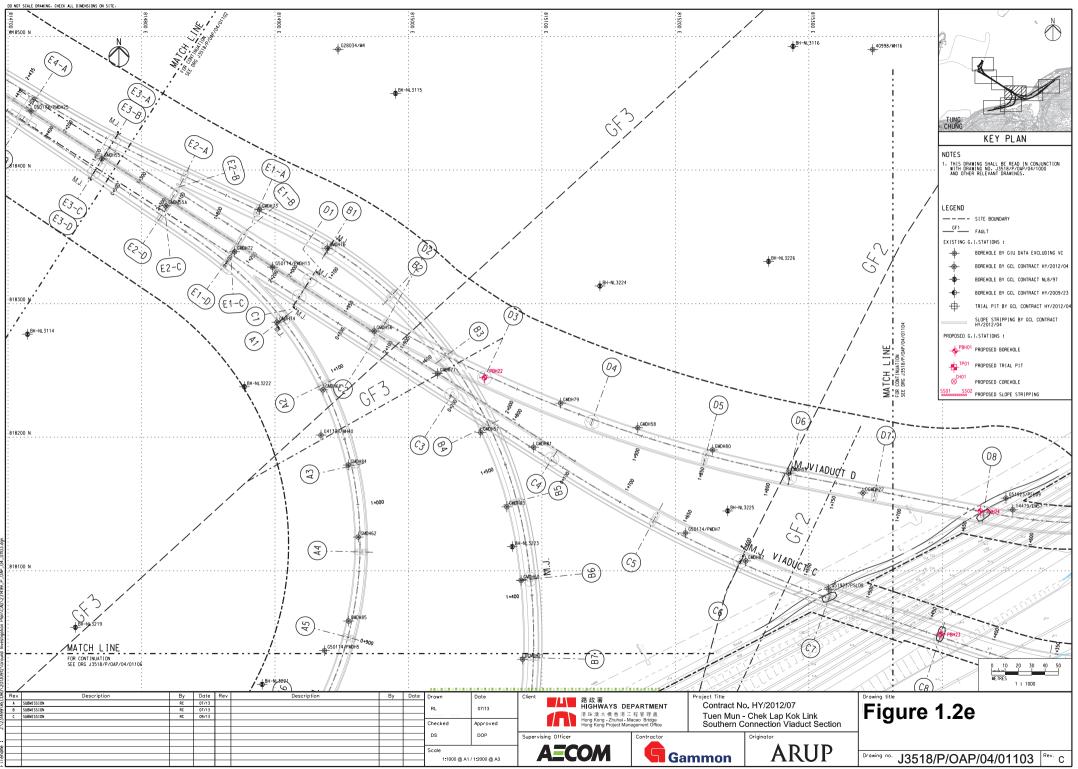

The general layout plan of the Contract components is presented in *Figures 1.1* & 1.2a to l.

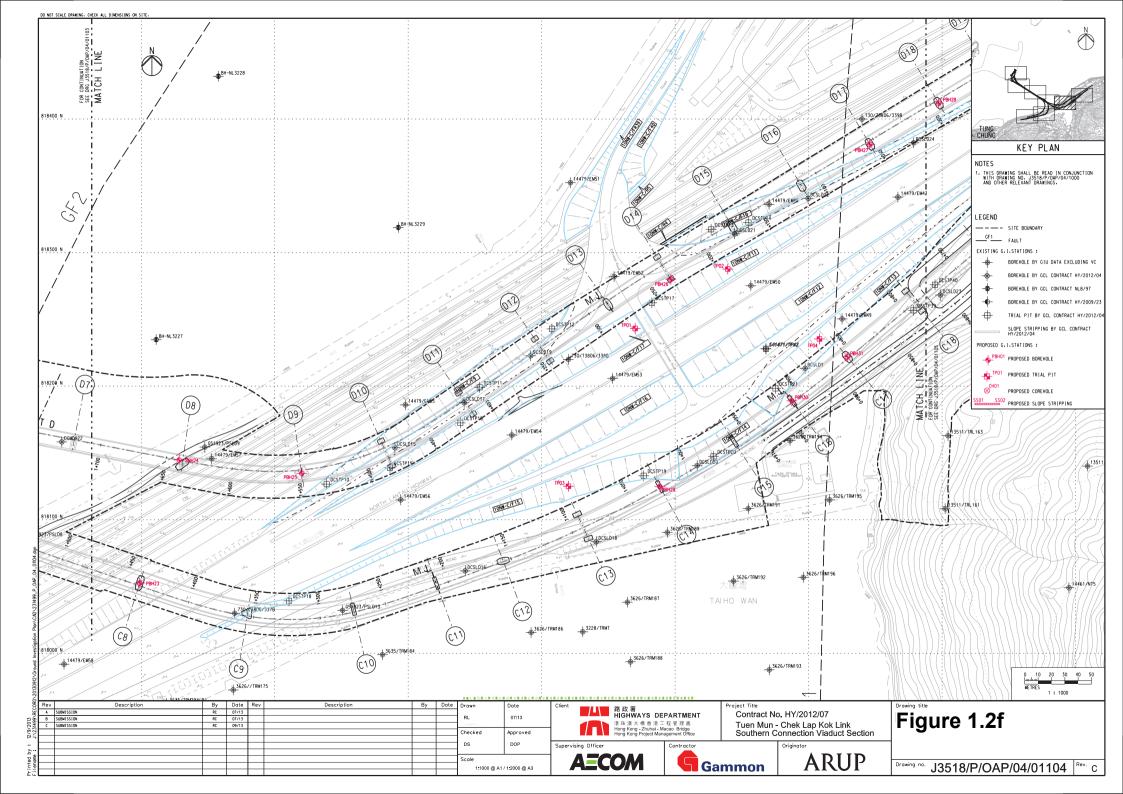

1.2 SCOPE OF REPORT

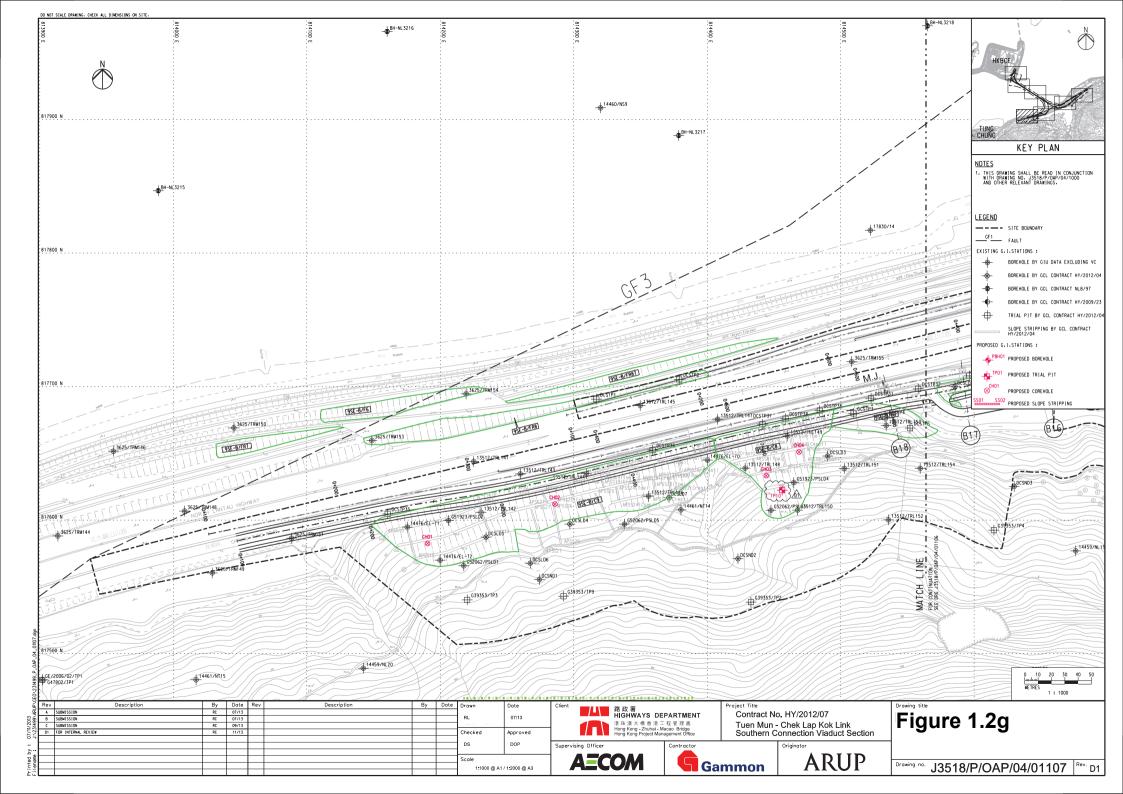

This is the Fifty-fourth Monthly EM&A Report under the *Contract No. HY*/2012/07 *Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.* This report presents a summary of the environmental monitoring and audit works in April 2018.

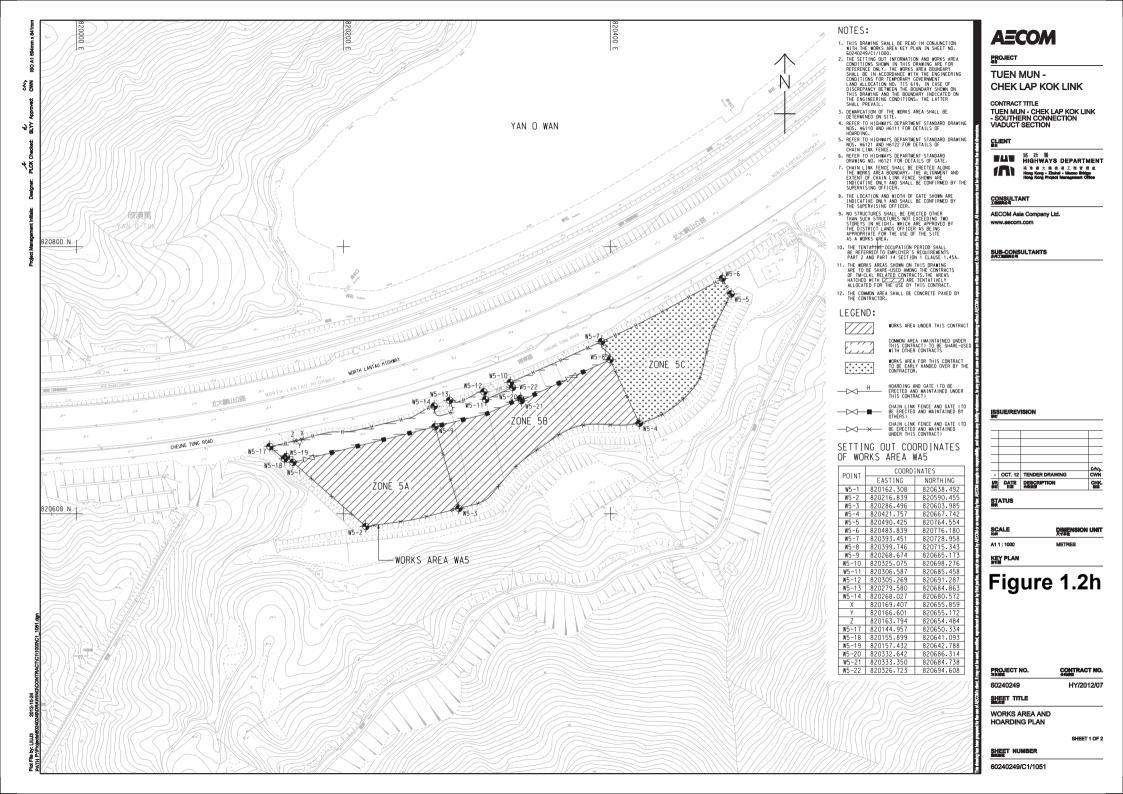

1.3 ORGANIZATION STRUCTURE

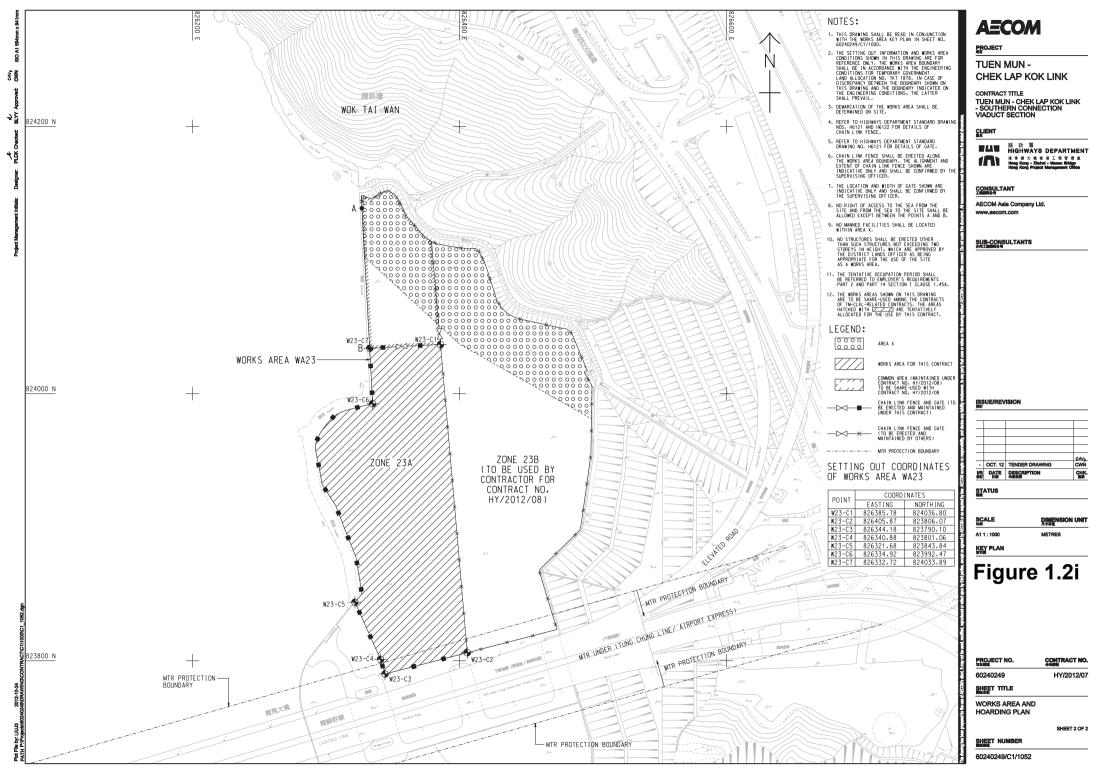

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

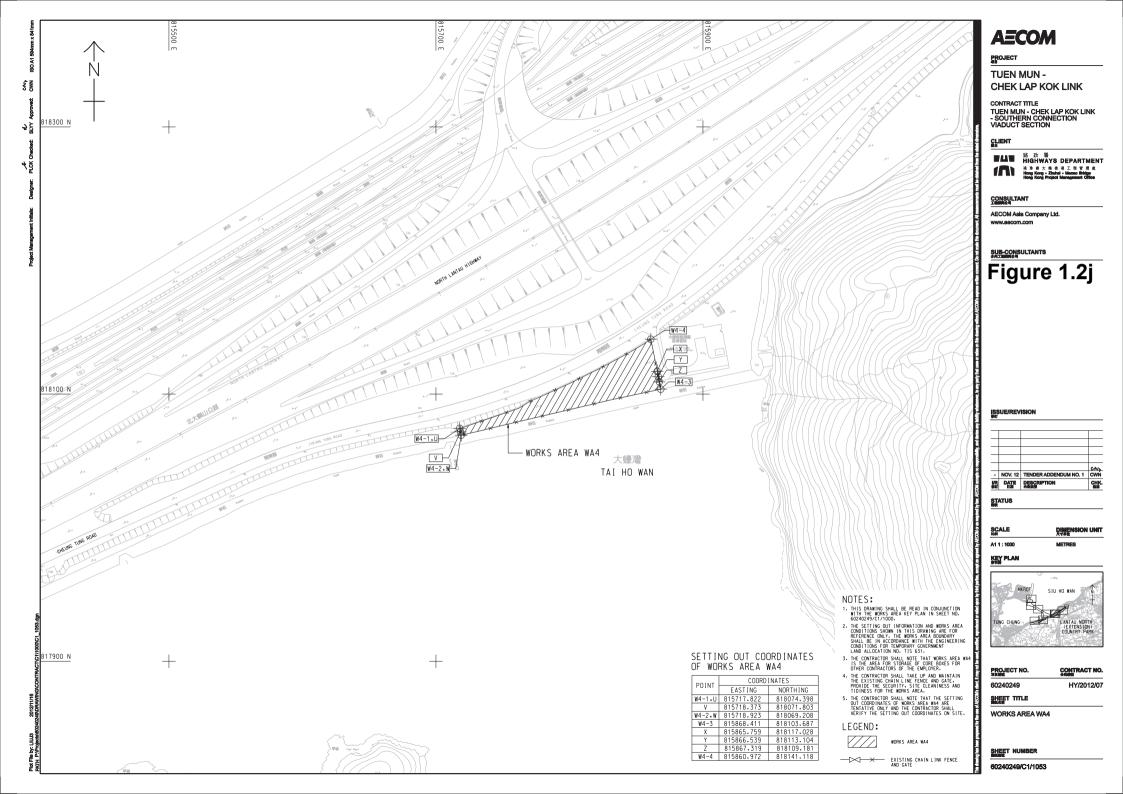


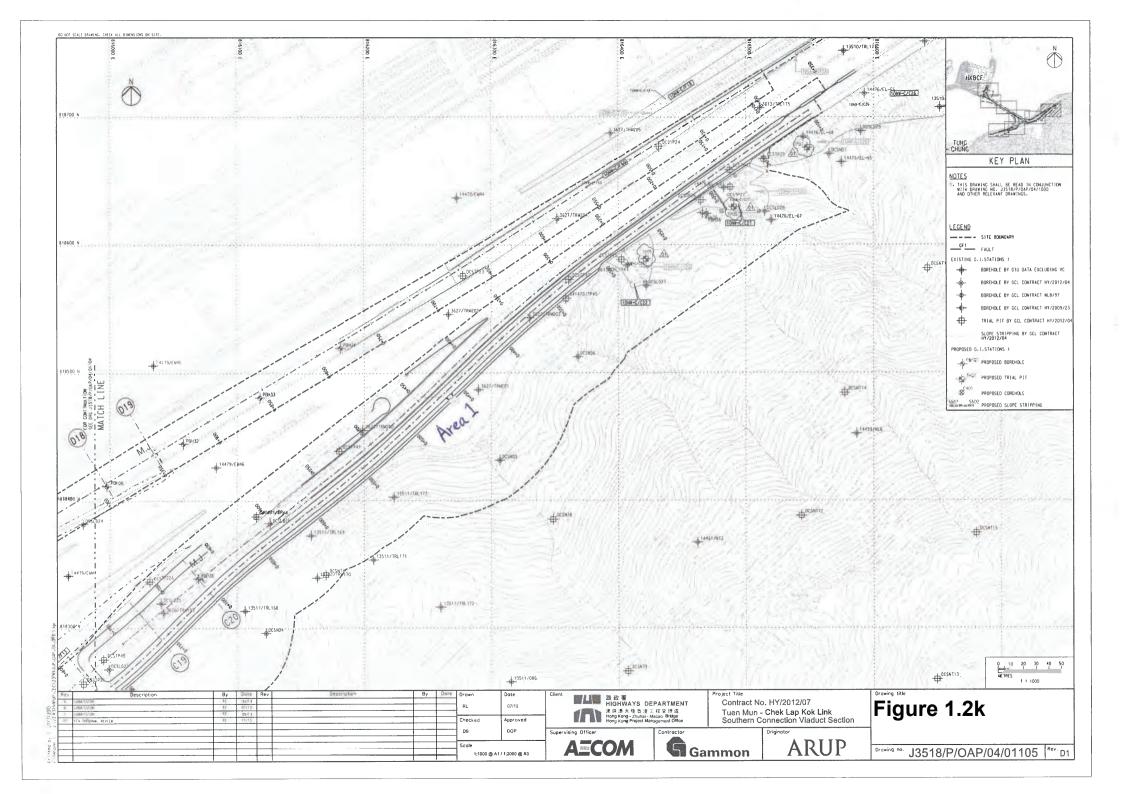












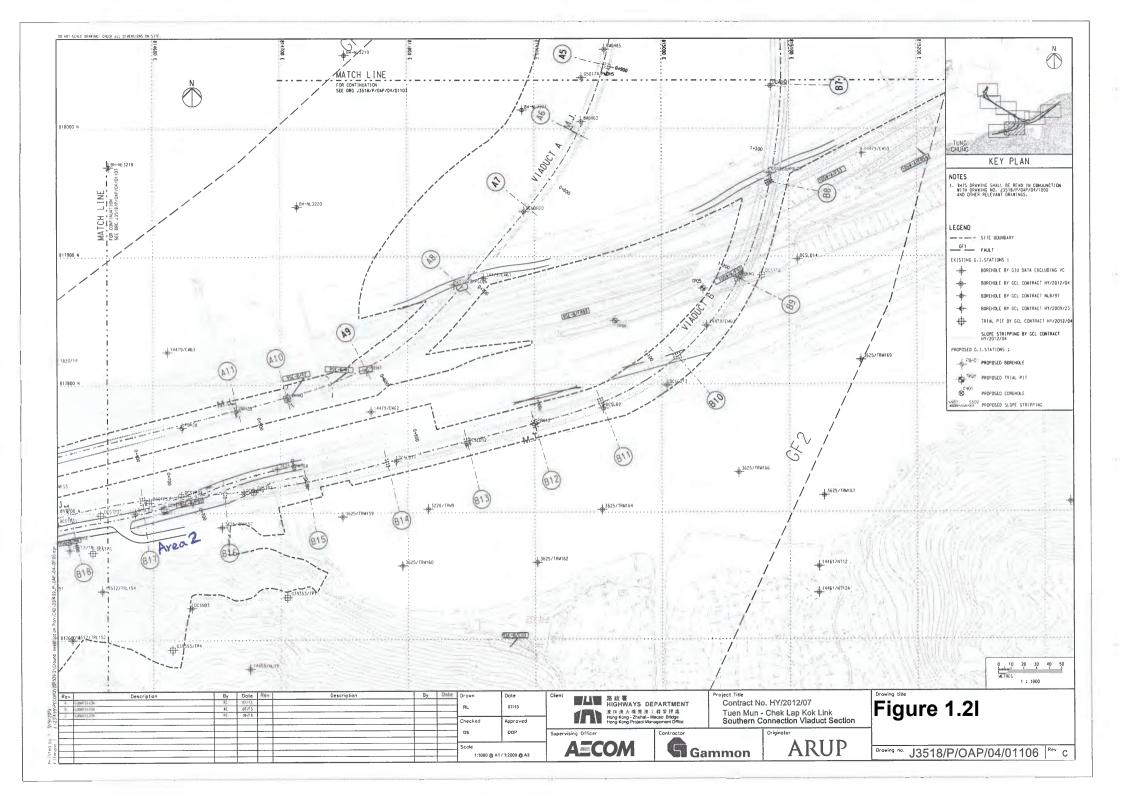
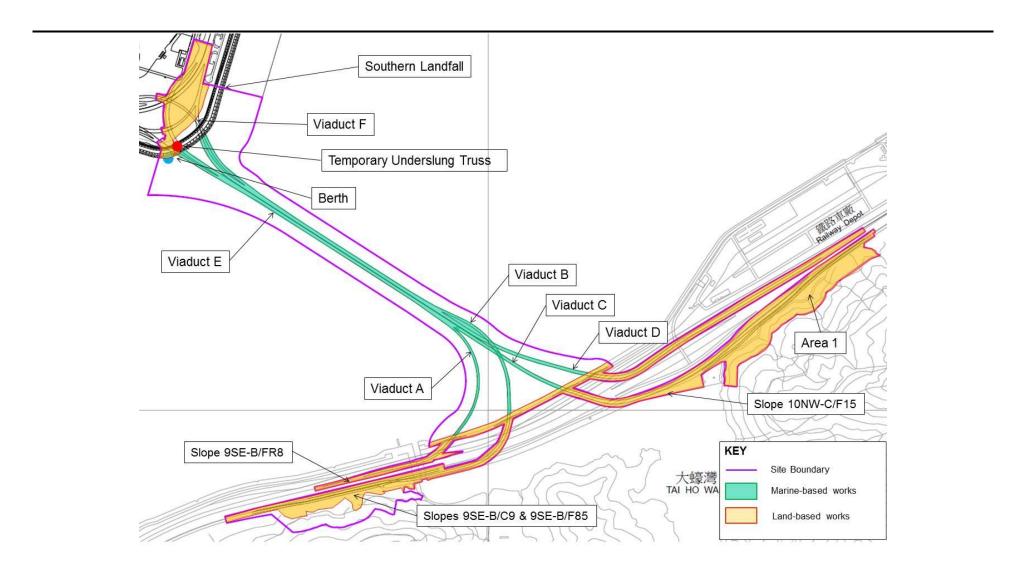


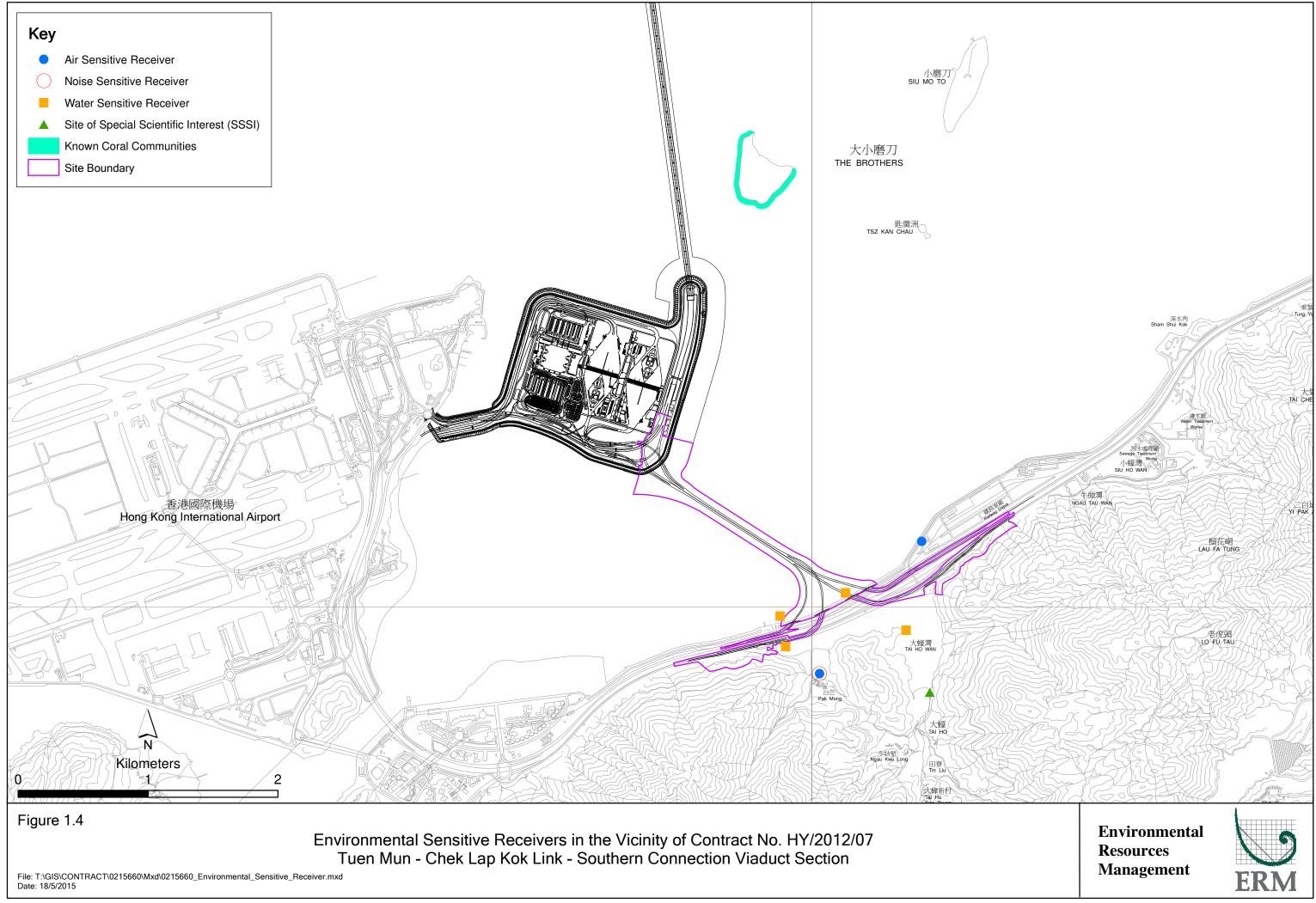
Table 1.1Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
HyD (Highways Department)	Project Coordinator	Stanley Chan	2762 3406	3188 6614
1 /	Senior Engineer	Steven Shum	2762 4133	3188 6614
SOR (AECOM Asia Company Limited)	Chief Resident Engineer	Daniel Ip	3553 3800	2492 2057
	Resident Engineer	Kingman Chan	3691 3950	3691 2899
ENPO / IEC (Ramboll Hong Kong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Gammon Construction Limited)	Environmental Manager	Brian Kam	3520 0387	3520 0486
Construction Emilieu)	Environmental Officer	Roy Leung	3520 0387	3520 0486
	24-hour Complaint Hotline		9738 4332	
ET (ERM-HK)	ET Leader	Jovy Tam	2271 3113	2723 5660

1.4 SUMMARY OF CONSTRUCTION WORKS

The construction phase of the Contract commenced on 31 October 2013. The three-month rolling construction programme is shown in Appendix B.


As informed by the Contractor, details of the major works carried out in this reporting month are listed below:


Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Construction of sign gantries, light poles and street furniture;
- Parapets and barriers installation; and
- Slope work of Viaducts A, B, C & D.

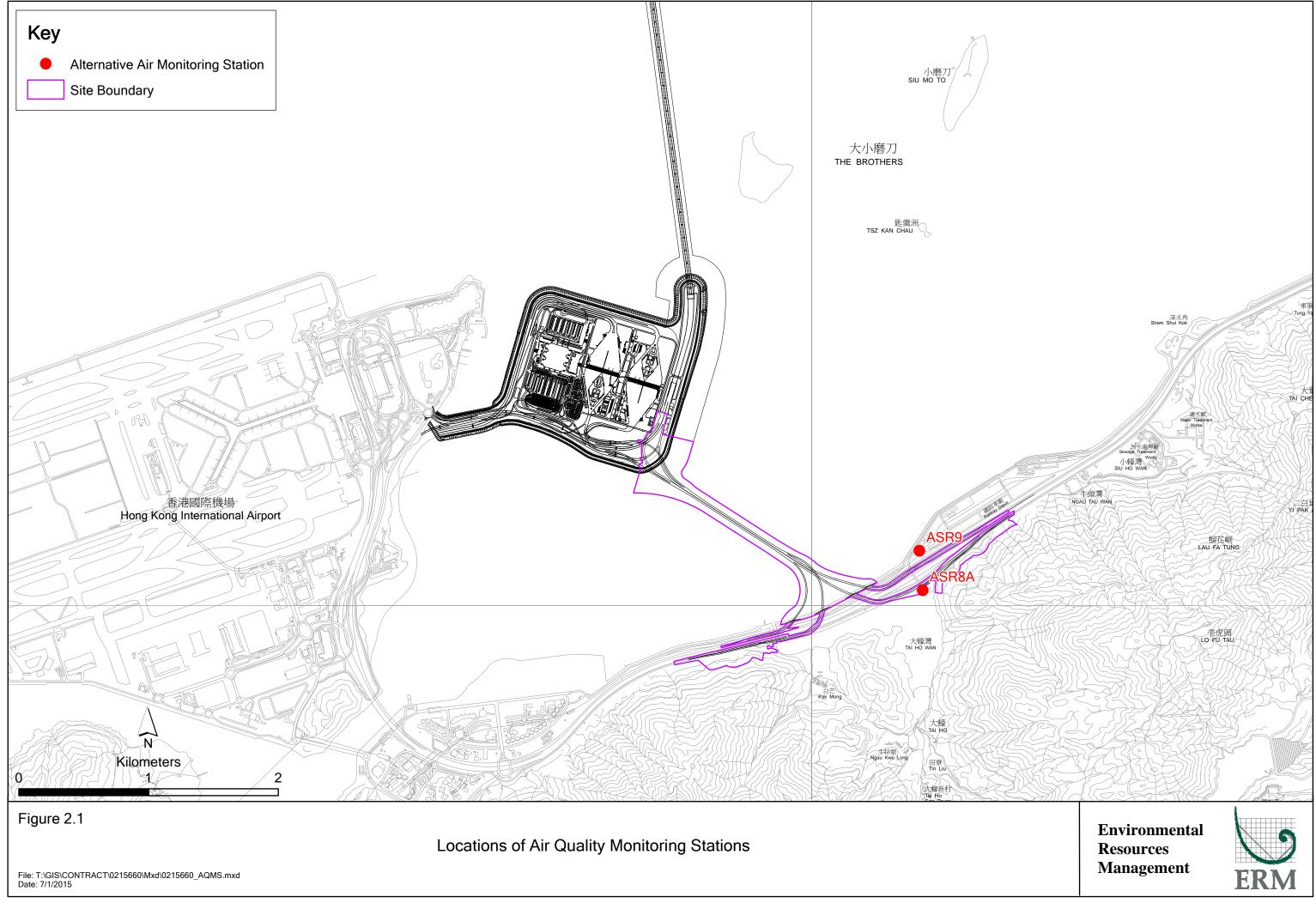
The locations of the construction activities are shown in *Figure 1.3*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.4*.

The environmental mitigation measures implementation schedule is presented in *Appendix C*.

2

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY


2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*.

Table 2.1Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description	Monitoring Dates
ASR 9	MTR Depot	On the ground nearby MTR Depot Entrance	4, 10, 16, 19, 25 and 28 April 2018
ASR 8A	Area 4	On ground at the works area, Area 4	4, 10, 16, 19, 25 and 28 April 2018

High Volume Samplers (HVSs) were used for 1-hour TSP and 24-hour TSP monitoring at ASR8A and ASR9 in accordance with the requirements of the Updated EM&A Manual. The TSP monitoring stations are illustrated in *Figure 2.1* and detailed in *Table 2.1*. Wind meter was deployed at Area 4 for logging wind speed and wind direction. Copies of the calibration certificates for the equipment are presented in *Appendix E*. Details of the deployed equipment are given in *Table 2.2*.

Equipment	Brand and Model
High Volume Sampler	Tisch Environmental Mass Flow Controlled
(1-hour TSP and 24-hour TSP)	Total Suspended Particulate (TSP) High
	Volume Sampler (Model No. TE-5170)
Wind Sensor	Global Water (Wind Speed Sensor: WE550; Wind Direction Sensor: WE570)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

Table 2.2Air Quality Monitoring Equipment

2.1.2 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in April 2018 is provided in *Appendix F*.

2.1.3 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4* respectively. Detailed impact air quality monitoring results are presented in *Appendix G*.

Table 2.3Summary of 1-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ASR 8A	86	41-152	394	500
ASR 9	116	56-199	393	500

Table 2.4Summary of 24-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ASR 8A	57	49-72	178	260
ASR 9	64	39-88	178	260

The major dust sources in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

All 1-hour and 24-hour TSP results were below the Action and Limit Levels at all monitoring locations in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Meteorological information collected at ASR8A including wind speed and wind direction is provided in *Appendix H*.

2.2 NOISE MONITORING

2.2.1 Monitoring Requirements and Equipment

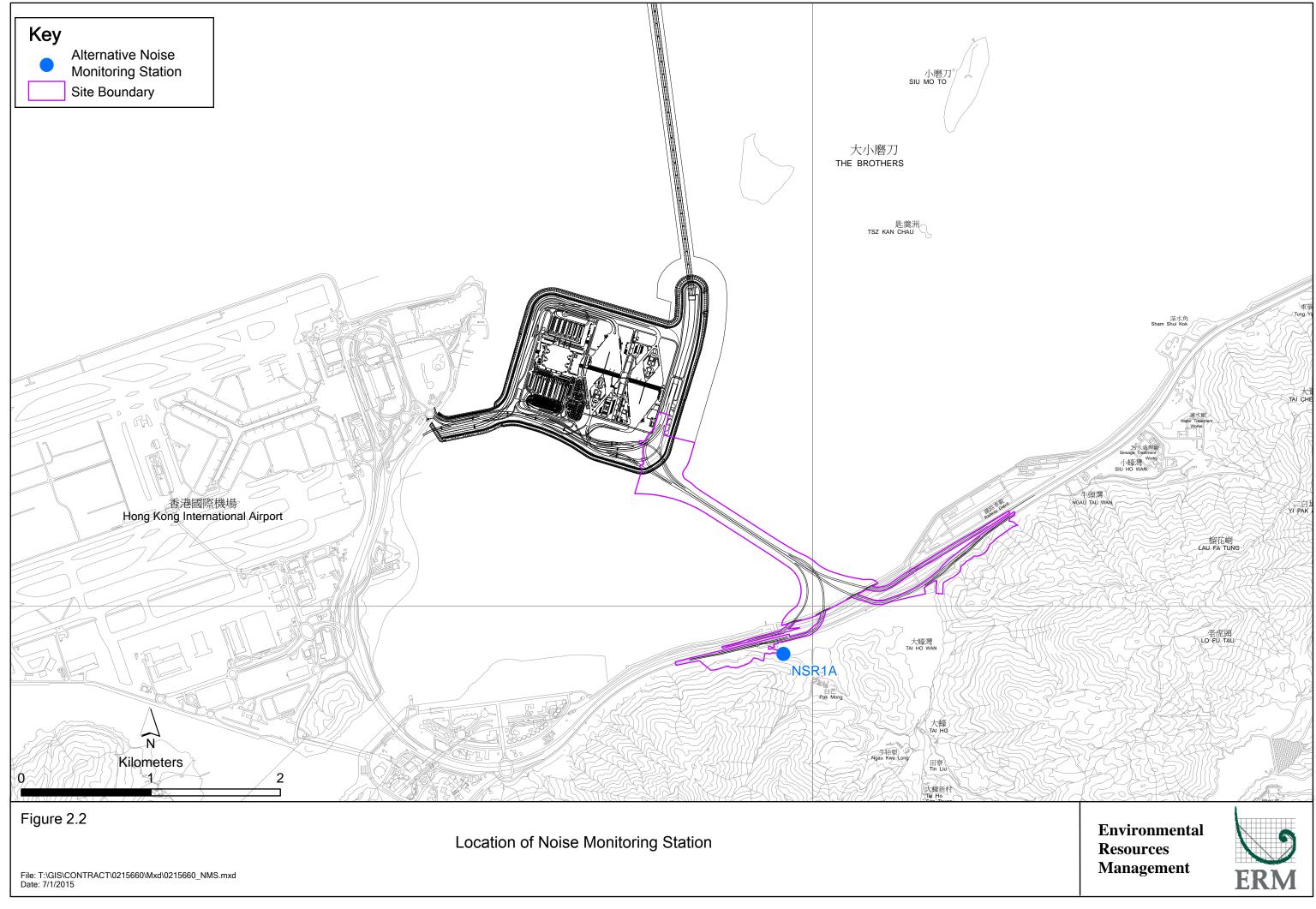
In accordance with the Updated EM&A Manual, impact noise monitoring was conducted once per week during the construction phase of the Contract. The Action and Limit Level of the noise monitoring is provided in *Appendix D*.

Noise monitoring was performed on 4, 10, 16, 19, 25 and 28 April 2018 using sound level meter at the designated monitoring station NSR1A (*Figure 2.2; Table 2.5*) in accordance with the requirements stipulated in the Updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.6*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.5Location of Impact Noise Monitoring Station

Monitoring Station	Location	Description	Parameter	Frequency and Duration	Monitoring Dates
NSR 1A	Pak Mong Village Pavilion	On the ground at the village entrance	30-minute measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L _{eq} , L ₁₀ and L ₉₀ would be recorded.	At least once per week	4, 10, 16, 19, 25 and 28 April 2018

Table 2.6Noise Monitoring Equipment


Equipment	Brand and Model	
Integrated Sound Level Meter	Rion NL-31	
Acoustic Calibrator	Rion NC-73	

2.2.2 Monitoring Schedule for the Reporting Month

The schedule for construction noise monitoring in the reporting period is provided in *Appendix F*.

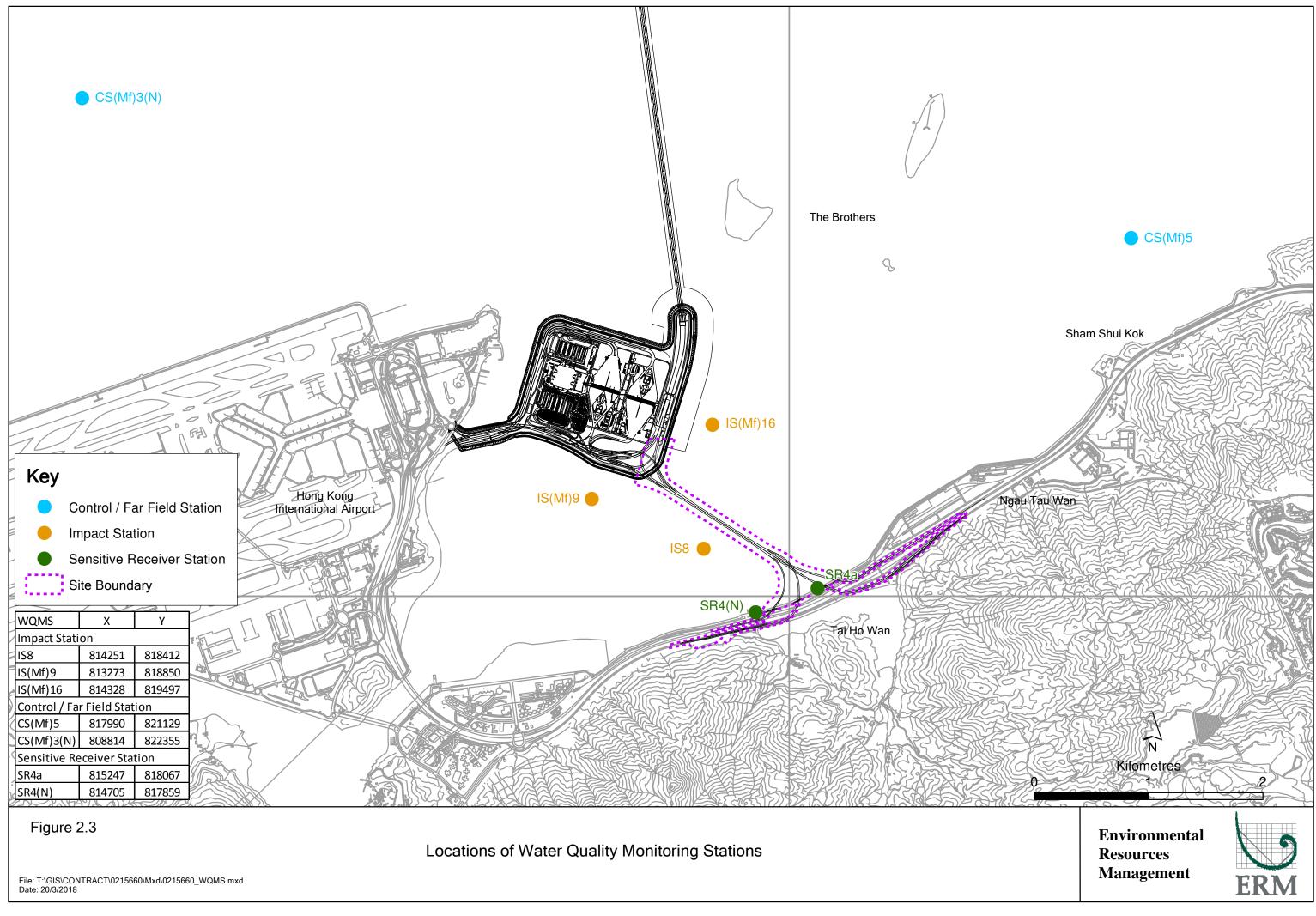
2.2.3 *Results and Observations*

Results for noise monitoring are summarized in *Table 2.7* and the monitoring data is provided in *Appendix I*.

Table 2.7Summary of Construction Noise Monitoring Results in the Reporting Period

	Average , dB(A),	Range, dB(A),	Limit Level, dB(A),
	Leq (30mins)	L _{eq (30mins)}	L _{eq} (30mins)
NSR 1A	64	62-65	75

No noise Action or Limit Level exceedance was recorded in the reporting month. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.


Major noise sources during the noise monitoring included noise from crane and excavator operation, hammering and nearby traffic noise and aircraft noise.

2.3 WATER QUALITY MONITORING

2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week during the construction period in accordance with the Updated EM&A Manual. The Action and Limit Levels of the water quality monitoring are provided in *Appendix D*.

The locations of the monitoring stations under the Contract are shown in *Figure 2.3* and *Table 2.8*.

	Table 2.8 Locations of Impact Water Quality Monitoring Stations and its Corresponding Monitoring Requirements							
Station ID	Туре	Coordinates		*Parameters, unit	Frequency	Depth		
		Easting	Northing					
IS(Mf)9	Impact Station	813273	818850	• Temperature(°C)	Impact	3 water denths: 1m		

Table 2.8	Locations of Impact Water Quality Monitoring Stations and its
Correspor	iding Monitoring Requirements

ID						
		Easting	Northing			
IS(Mf)9	Impact Station	813273	818850	• Temperature(°C)	Impact	3 water depths: 1m
	(Close to HKBCF			 pH (pH unit) 	monitoring: 3	below sea surface,
	construction site)			• Turbidity (NTU)	days per	mid-depth and 1m
IS(Mf)16	Impact Station	814328	819497	• Water depth (m)	week, at mid-	above sea bed. If
	(Close to HKBCF			 Salinity (ppt) 	flood and	the water depth is
	construction site)			 Dissolved 	mid-ebb tides	less than 3m, mid-
IS8	Impact Station	814251	818412	Oxygen (DO)	during the	depth sampling
	(Close to HKBCF			(mg/L and % of	construction	only. If water
	construction site)			saturation)	period of the	depth less than 6m,
SR4(N)	Sensitive receiver	814705	817859	Suspended Solid	Contract	mid-depth may be
	(Tai Ho Inlet)			(SS) (mg/L)		omitted
SR4a	Sensitive receiver	815247	818067			
CS(Mf)3(Control Station	808814	822355			
N)						
CS(Mf)5	Control Station	817990	821129			
*Notes:						

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Water Quality Monitoring Station CS(Mf)3 was relocated to CS(Mf)3(N) since 2 May 2017.

Water Quality Monitoring Station SR4 was relocated to SR4(N) since 2 March 2018.

Table 2.9 summarises the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in Appendix E.

Table 2.9 Water Quality Monitoring Equipment

Equipment	Brand and Model			
Multi-parameters	YSI ProDSS / YSI 6920 / YSI 6920 V2			
(Dissolved Oxygen, Salinity,				
Turbidity, Temperature, pH)				
Positioning Equipment	Furuno GP-170			
Water Depth Detector	Lowrance Mark 5x / Garmin Striker 4			
Water Sampler	WildCo Vertical Alpha Bottles 1120-2.2L /1120-3.2L Aquatic Research Instrument Vertical/Horizontal Point Water Sampler 2.2L / 3.0L			

2.3.2 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in April 2018 is provided in *Appendix F*.

2.3.3 Results and Observations

In total of 13 monitoring events for impact water quality monitoring were conducted at all designated monitoring stations in the reporting month. Impact water quality monitoring results and graphical presentations are provided in *Appendix J*.

No exceedance of Action and Limit Levels was recorded for water quality impact monitoring in the reporting month. No action is thus required to be undertaken in accordance with the Event Action Plan as presented in Appendix L.

2.4 DOLPHIN MONITORING

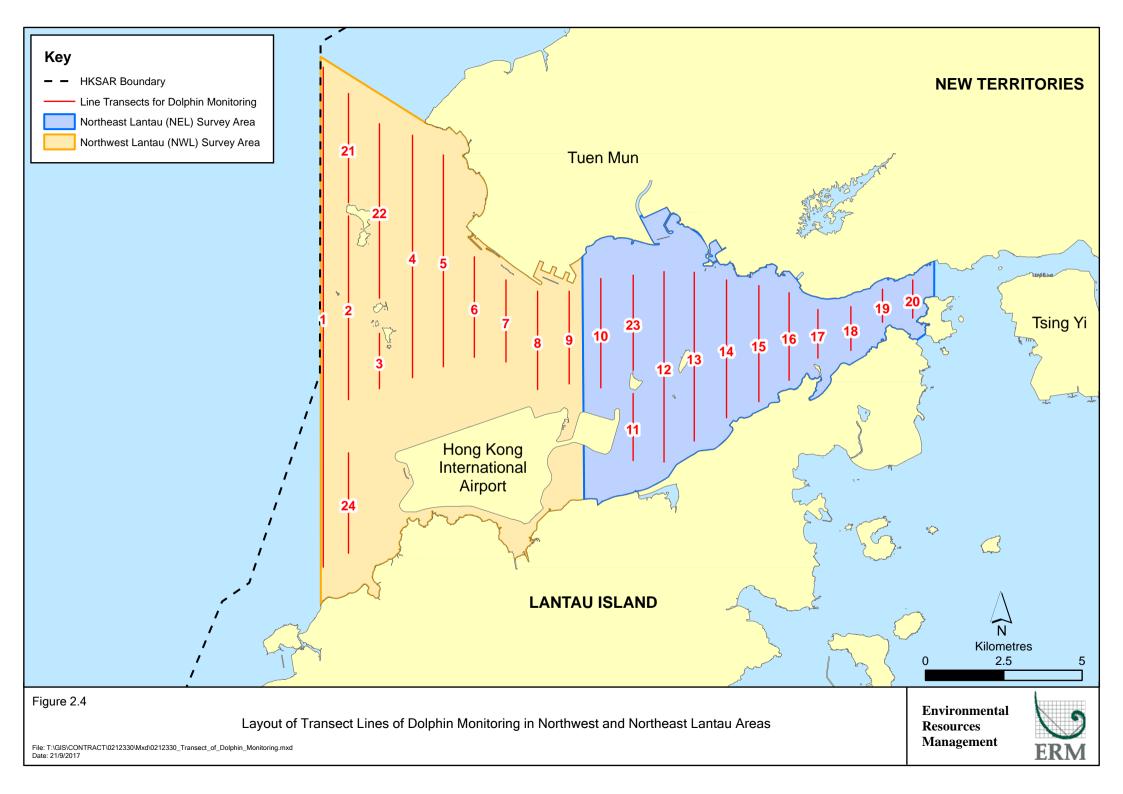
2.4.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) from the Contract. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis is adopted to avoid duplicates of survey effort.

2.4.2 Monitoring Equipment

Table 2.10 summarizes the equipment used for the impact dolphin monitoring.

Equipment	Model
Global Positioning System (GPS)	Garmin 18X-PC
	Geo One Phottix
Camera	Nikon D90 300m 2.8D fixed focus Nikon D90 20-300m zoom lens
	Nikon D70 20-300in zoom iens
Laser Binoculars	Infinitor LRF 1000
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform
	4.5m above water level


2.4.3 Monitoring Parameter, Frequencies and Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.4.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.4*. The co-ordinates of all transect lines are shown in *Table 2.11* below ⁽¹⁾.

Proposal on the changes of transect lines for dolphin monitoring was approved by EPD on 28 July 2017 (Reference number: (19) in EP2/G/A/129 Pt. 8).

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000*	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

Table 2.11 Impact Dolphin Monitoring Line Transect Co-ordinates

2.4.5 Action & Limit Levels

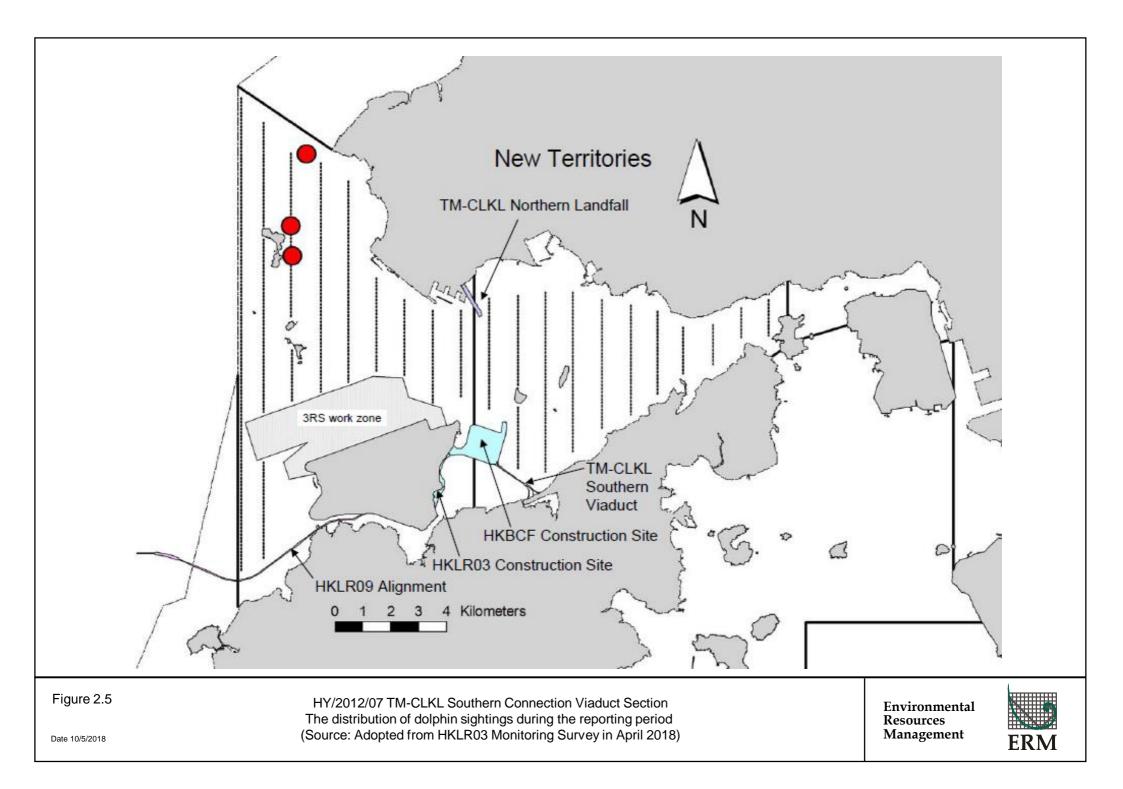
The Action and Limit levels of dolphin impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix L*.

2.4.6 Monitoring Schedule for the Reporting Month

Dolphin monitoring was carried out on 10, 17, 19 and 25 April 2018 (*Appendix F*).

2.4.7 Results and Observations

A total of 267.09 km of survey effort was collected, with 100% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) during the surveys in April 2018. Among the two areas, 97.20 km and 169.89 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 194.96 km and 72.13 km, respectively. The survey efforts are summarized in *Appendix K*.


Three (3) groups of 4 Chinese White Dolphins were sighted during the two sets of monitoring surveys in April 2018. All dolphin sightings were made in NWL, while none was sighted in NEL. During the surveys in April 2018, all sightings were made during on-effort search while two of the three on-effort sightings were made on primary lines. None of the dolphin groups was associated with operating fishing vessel and was not sighted in the proximity of the Project's alignment. The distribution of dolphin sighting during the reporting month is shown in *Figure 2.5*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in April 2018 are shown in *Tables 2.12 & 2.13*.

Table 2.12Individual Survey Event Encounter Rates

		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)
		Primary Lines Only	Primary Lines Only
NEL	Set 1: Apr 10th / 17th	0.0	0.0
INEL	Set 2: Apr 19th / 25th	0.0	0.0
NWL	Set 1: Apr 10th / 17th	0.0	0.0
INVVL	Set 2: Apr 19th / 25th	3.2	4.9

Note: Dolphin Encounter Rates are deduced from the two sets of surveys (two surveys in each set) in April 2018 in Northeast (NEL) and Northwest Lantau (NWL)

Table 2.13Monthly Average Encounter Rates

	(no. of on-effort o	rate (STG) lolphin sightings survey effort)	(no. of dolphins	rate (ANI) from all on-effort 00 km of survey ort)
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines
Northeast Lantau	0.0	0.0	0.0	0.0
Northwest Lantau	1.6	1.8	2.5	2.4

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in April 2018 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau

During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.4.8 Marine Mammal Exclusion Zone Monitoring

Daily 250 m marine mammal exclusion zone monitoring was undertaken during the period of daytime marine works activities. No sighting of Chinese White Dolphin was recorded in April 2018 during the exclusion zone monitoring.

Passive Acoustic Monitoring (PAM) had been decommissioned as no marine piling works was carried out outside the daylight hours since September 2015.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, four (4) site inspections were carried out on 4, 9, 18 and 26 April 2018.

Key observations during the site inspections are summarized in *Table 2.14*.

Inspection Date	Environmental Observations	Recommendations/ Remarks
4 April 2018	Viaduct E (Pier E9)	Viaduct E (Pier E9)
-	Chemical containers were observed not	• The Contractor was reminded to place
	placed in drip tray.	chemical containers in drip tray.
	 Accumulated general refuse should be 	The Contractor was reminded to clear
	removed.	accumulated general refuse.
9 April 2018	Viaduct B (Ramp B) (Area A)	Viaduct B (Ramp B) (Area A)
	 Watering should be maintained on 	• The Contractor was reminded to maintain
	unpaved road.	watering on unpaved road.
	Chemical containers were observed not	• The Contractor was reminded to place
	placed in drip tray.	chemical containers in drip tray.
18 April 2018	Viaduct E (Pier E13CD)	Viaduct E (Pier E13CD)
-	Chemical containers were observed not	• The Contractor was reminded to place
	placed in drip tray.	chemical containers in drip tray.
	Viaduct E (Pier E12)	Viaduct E (Pier E12)
	Chemical containers were observed not	• The Contractor was reminded to place
	placed in drip tray.	chemical containers in drip tray.
26 April 2018	Southern Landfall (Portion S-c)	Southern Landfall (Portion S-c)
	 Stagnant water in the drip tray should be 	The Contractor was reminded to clear
	cleared.	stagnant water in the drip tray.
	Viaduct E (Pier E12)	Viaduct E (Pier E12)
	• Oil stain was observed nearby the drip tray.	• The Contractor was reminded to clear oil
	 Wastewater should be collected. 	stain.
	Viaduct E (E10)	The Contractor was reminded to collect
	• NRMM label should be provided on the	wastewater.
	generator.	Viaduct E (Pier E10)
	-	• The Contractor was reminded to provide
		NRMM label on the generator.

Table 2.14Specific Observations Identified during the Weekly Site Inspections in this
Reporting Month

The Contractor has rectified all of the observations identified during environmental site inspections in the reporting month.

2.6 WASTE MANAGEMENT STATUS

The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert) and recyclable materials. Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.15*.

Month/	Inert C&D	Imported	Inert	Non-inert	Recyclable	Chemical	Mariı	ne Sedimen	ıt (m ³)
Year	Materials (a)	Fill (m³)	Constructio	Constructio	Materials	Wastes	Category	Category	Category
	(m ³)		n Waste Re-	n Waste ^(b)	^(c) (kg)	(kg)	L	Μ	Н
			used	(kg)				(M _p &	
			(m ³)					M_{f})	
April 2018	6,103	3,977	852	349,640	19,262	0	0	0	0

Notes:

(a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.

(b) Non-inert construction wastes include general refuse disposed at landfill.

(c) Recyclable materials include metals, paper, cardboard, plastics, timber, felled trees and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the *Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes*.

2.7 Environmental Licenses and Permits

The status of environmental licensing and permit is summarized in *Table 2.16* below.

License/ Permit	License or Permit	Date of Issue	Date of Expiry	License/	Remarks
	No.			Permit Holder	
Environmental Permit	EP-354/2009/D	13 Mar 2015	N/A	HyD	Tuen Mun- Chek Lap Kok Link
Environmental Permit	EP-353/2009/K	11 Apr 2016	N/A	HyD	Hong Kong Boundary Crossing Facilities
Construction Dust Notification	361571	5 Jul 2013	N/A	GCL	
Construction Dust Notification	362093	17 Jul 2013	N/A	GCL	For Area 23
Chemical Waste Registration	5213-961-G2380-13	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07
					(Area 1 adjacent to Cheng Tung Road, Siu Ho Wan)
Chemical Waste Registration	5213-961-G2380-14	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07
					(Area 2 adjacent to Cheung Tung Road, Pak Mong Village)
Chemical Waste Registration	5213-974-G2588-03	4 Nov 2013	N/A	GCL	Chemical waste produced in Contract No. HY/2012/07
					(WA5 adjacent to Cheung Tung Road, Yam O)
Chemical Waste Registration	5213-951-G2380-17	12 Jun 2014	N/A	GCL	Viaducts A, B, C, D & E
Construction Waste Disposal Account	7017735	10 Jul 2013	N/A	GCL	-
Construction Waste Disposal Account	7019470	3 Mar 2014	N/A	GCL	Vessel CHIT Account
Waste Water Discharge License	WT00019017-2014	13 May 2014	31 May 2019	GCL	Discharge for marine portion
Waste Water Discharge License	WT00019018-2014	13 May 2014	31 May 2019	GCL	Discharge for land portion
Construction Noise Permit for night works and works in general holidays	GW-RW0650-17	19 Dec 2017	18 Jun 2018	GCL	General works at WA5
Construction Noise Permit for night works and works in general holidays	GW-RS0244-18	30 Mar 2018	29 Sep 2018	GCL	Broad Permit for Whole Site Areas
Construction Noise Permit for night works and works in general holidays	GW-RS0201-18	12 Mar 2018	30 Apr 2018	GCL	Broad Permit for Segment Launching at Land Portion
Construction Noise Permit for night works and works in general holidays	GW-RS0064-18	1 Feb 2018	29 Jul 2018	GCL	Pre-casted pile cap shell installation at E8-E13

Table 2.16Summary of Environmental Licensing and Permit Status

2.8 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

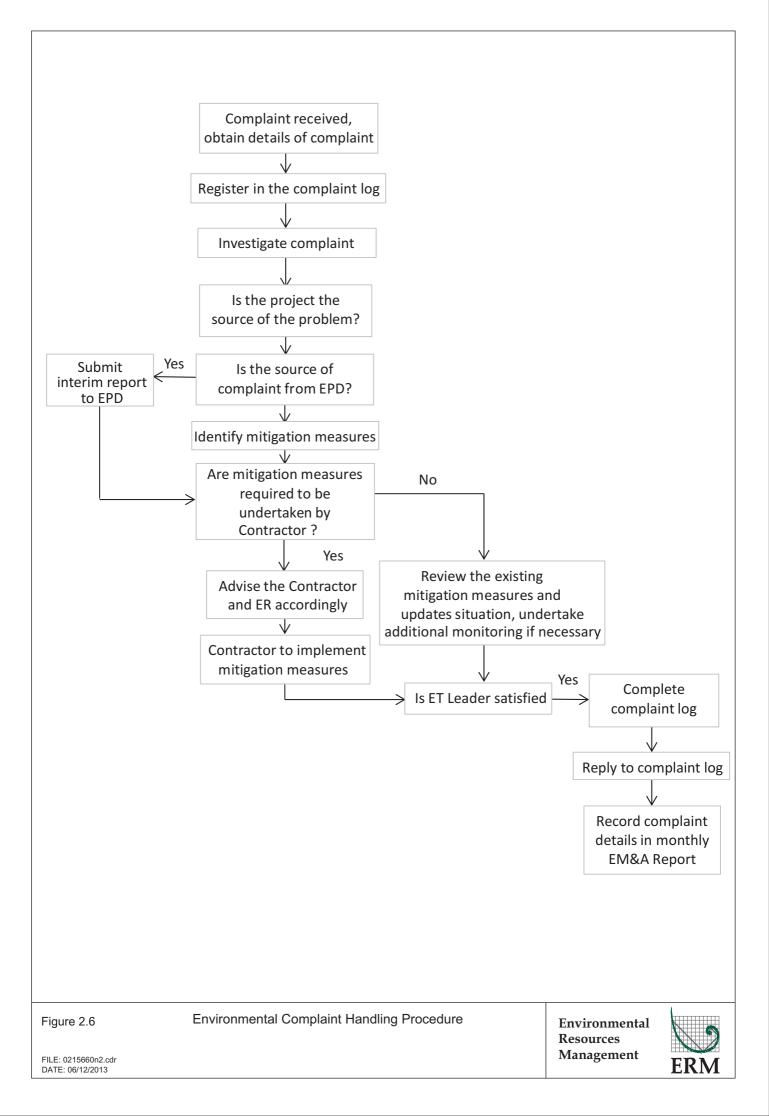
In response to the site audit findings, the Contractors carried out corrective actions.

A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in *Appendix C*. The necessary mitigation measures were implemented properly for this Contract.

The landscape and visual (L&V) mitigation measures were also monitored on weekly basis in the reporting period. The monitoring status is summarized in *Appendix C*.

2.9 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

Results for water quality, 1-hour TSP, 24-hour TSP and construction noise monitoring complied with the Action/ Limit levels in the reporting period.


Cumulative statistics on exceedances is provided in *Appendix N*.

2.10 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

The Environmental Complaint Handling Procedure is provided in Figure 2.6.

There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

Statistics on complaints, notifications of summons, successful prosecutions are summarized in *Appendix N*.

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTH

As informed by the Contractor, the major works for this Contract in May 2018 will be:

Land-based Works

- Pier construction;
- Re-alignment of Cheung Tung Road;
- Road works along North Lantau Highway;
- Installation of pier head and deck segments;
- Asphalt paving;
- Construction of sign gantries, light poles and street furniture;
- Parapets and barriers installation; and
- Slope work of Viaducts A, B, C & D.

3.2 Key Issues for the Coming Month

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of May 2018 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedules for environmental monitoring in May 2018 are provided in *Appendix F*.

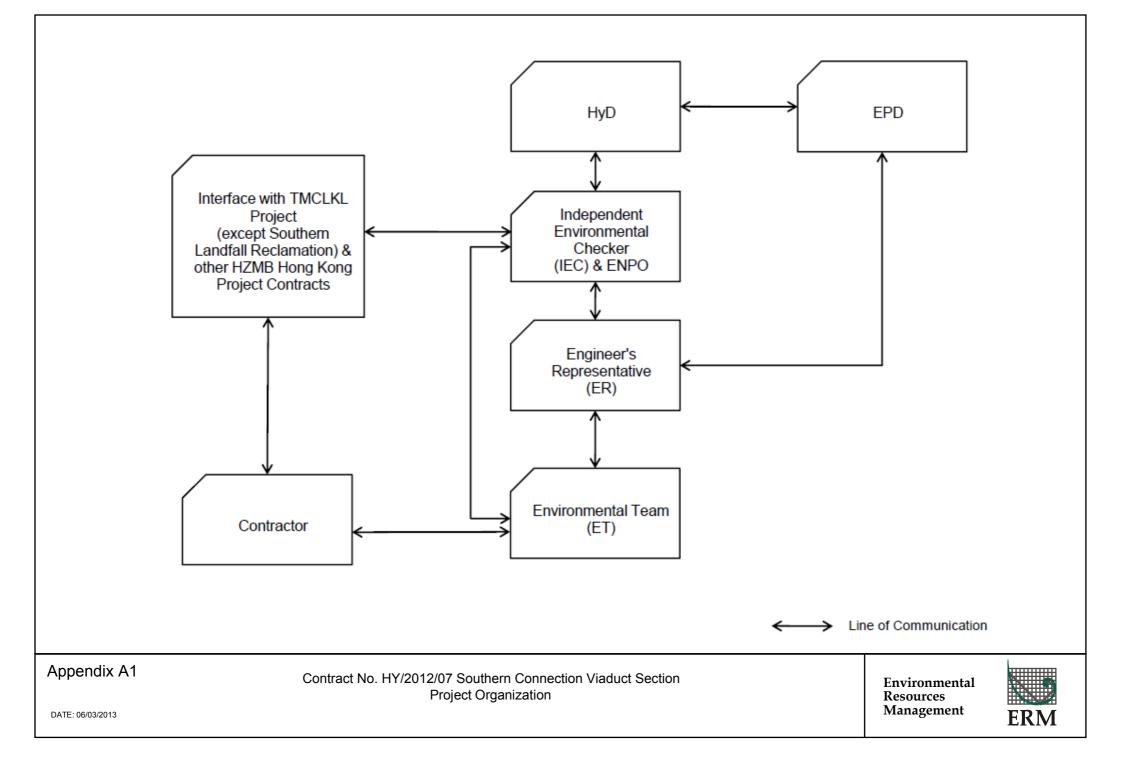
CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

4

This Fifty-fourth Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 30 April 2018 in accordance with the Updated EM&A Manual and the requirements of the Environmental Permits (*EP-354/2009/D* and *EP-353/2009/K*).

Air quality (1-hour TSP and 24-hour TSP), noise, water quality (DO, turbidity and SS) and dolphin monitoring were carried out in the reporting month. Results for water quality, air quality and noise monitoring complied with the Action and Limit levels in the reporting period.


Three (3) groups of 4 Chinese White Dolphins were sighted during the two sets of monitoring surveys in April 2018. During this month of dolphin monitoring, no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations.

Environmental site inspection was carried out four (4) times in April 2018. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.

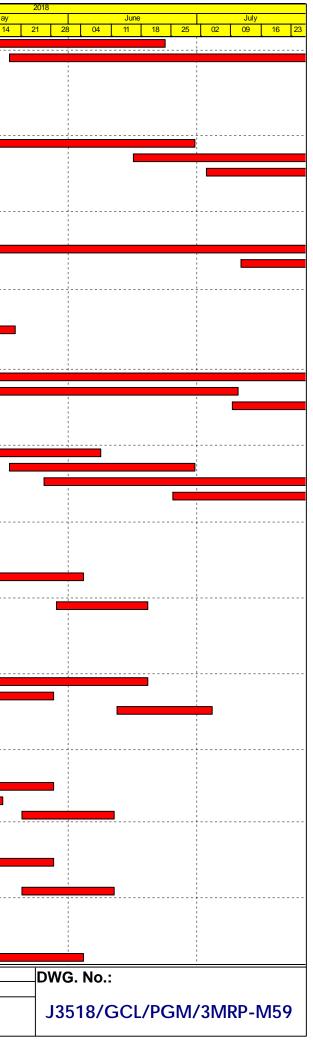
There was no environmental complaint, notification of summons or successful prosecution recorded in the reporting period.

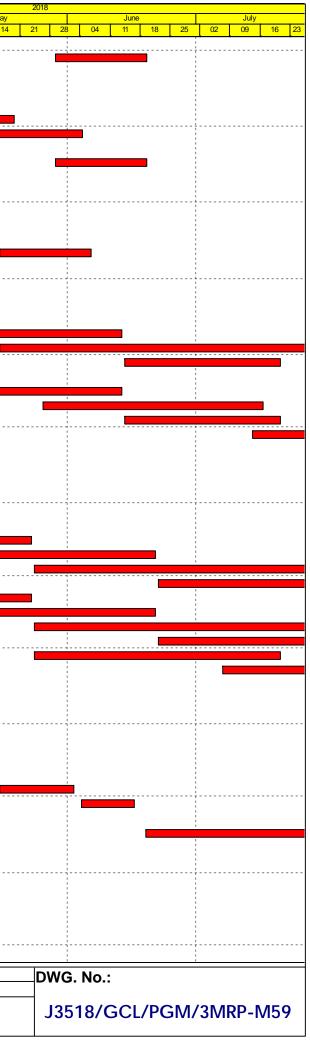
The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. Appendix A

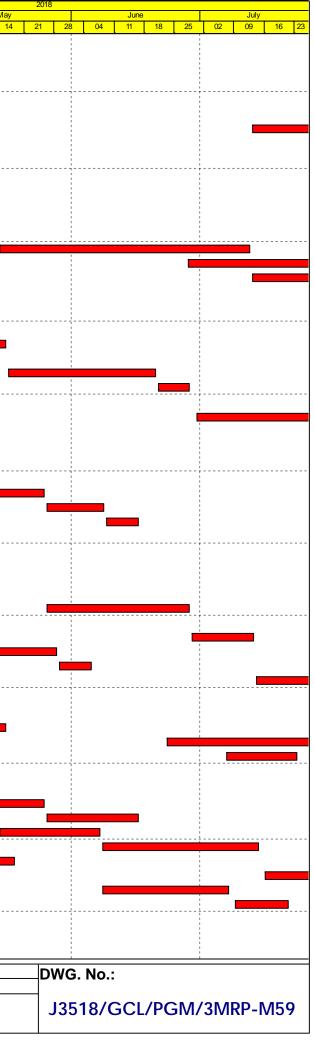
Project Organization for Environmental Works

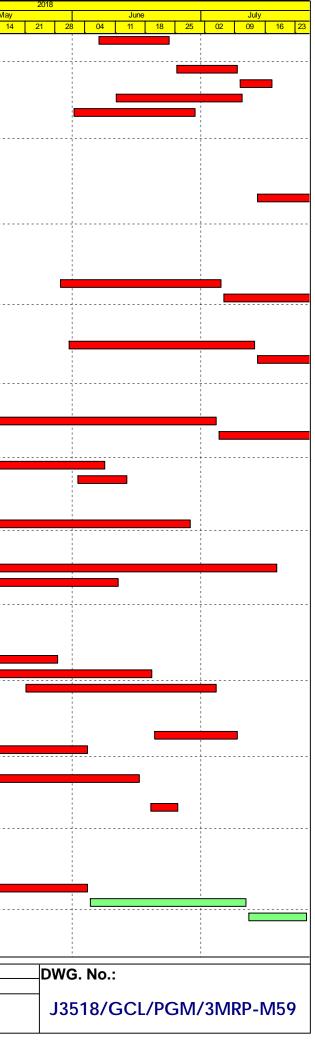
Appendix B

Three-Month Rolling Construction Programme

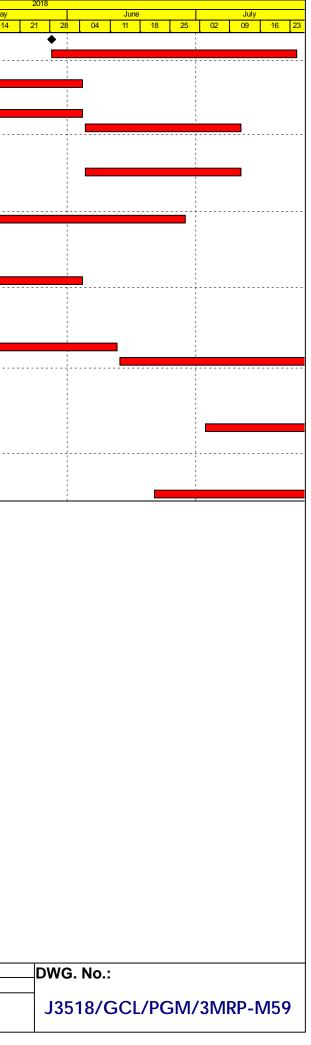

ID Activity Name	Orig. Durn.	Act. Start / FC Early Start	Rem. A Durn.	ct. Finish / FC Early Finish	Late Start	Late Finish	Total Floa	Physical % Complete	00	April	
المراجعة 1Y/2012/07 Tuen Mun-Chek Lap Kok Link -	- Southern Connection								26 02	09 16	5 <u>23</u> 30 C
Contract Milestones								_			
Key Dates for Completion						. <u></u>					
Stage of the Works											
Completion Date									1		
General									 ! !		
KD03 KD3 - Stage 3: TCSS Along NLH Near Viaduct	t C, D (EoT 8-Apr-16) 0	<u> </u>	0	30-Apr-18*		08-Apr-16	-752	0%			•
Section of the Works											
Completion Date General											
KD13 KD13 - Section 7: All Works at Viaduct C (EoT	6-Oct-16) 0		0	04-Jul-18*		06-Oct-16	-636	0%			
KD14 KD14 - Section 8: All Works at Viaduct D (EoT	7-Oct-16) 0		0	19-Jun-18*		06-Oct-16	-621	0%			
Portion Handover Dates											
Possession of the Works Area											
Access Dates											
General POS02-6B Portion A - Area 6B (To be confirmed)	0	21-Apr-18*	0		22-Jul-20		824	0%			
Design		217.0110	Ű				021	070			
Detailed Design											
Slope Works Near Viaduct A											
Feature 9SE-B/FR8, B/R1, B/R2											
Slope Works Design											
ARDD0596-1 IC/SO Approval of Slope Combined AIP/DDA -	- CP11.01 60	13-Jun-17 A	30	28-May-18	12-Sep-16	19-Oct-16	-473	90%			la contraction de la contracti
rocurement											
Precast Parapets & Barriers											
Viaduct A to F											
Precast Parapet Manufacture											
General PP6011-01 Viaduct A - Precast Parapets/Barriers Production	on 90	01-Sep-16 A	36	04-Jun-18	05-Sep-16	19-Oct-16	-479	95%			
PP6011-02 Viaduct A Precast Parapets/Barriers Production		03-May-16 A	15	09-May-18	31-Oct-16	16-Nov-16	-434	95%			
PP6011-05 Viaduct E - Precast Parapets/Barriers Production		02-Jul-16 A	90	08-Aug-18	16-Dec-17	11-Apr-18	-98	95%			
PP6011-06 Viaduct F - Precast Parapets/Barriers Production	ion 198	05-Mar-18 A	150	20-Oct-18	06-Dec-17	12-Jun-18	-107	10%	1		
Bearings Viaduct F											
Bearing Design & Manufacture		_									
General											
PPBRF9 Bearing Delivery - Viaduct F	34	18-Jul-17 A	2	23-Apr-18	20-Jun-18	21-Jun-18	48	95%	1		
Construction											
Foundation & Substructure Works											
Ramp A											
Abutment & Approach Ramp A											
Ramp Finishes, E&M & Roadworks			00	40.1.1.40	05.0 40	00 NL (0	100	00/			
ARA-C7710 Ramp A - Parapet Panels ARA-C7720 Ramp A - Ducting, Gantry & TCSS Provisions (66 (KD5) 30	26-Apr-18 25-Jun-18	66 30	16-Jul-18 30-Jul-18	05-Sep-16 03-Nov-16	23-Nov-16 07-Dec-16	-483 -483	0% 0%			
ARA-C7810 Ramp A - Drainage, Fire Main & E&M Services		17-Jul-18	42	03-Sep-18	24-Jan-17	16-Mar-17	-434	0%			
Ramp B									 ! !		
Abutment & Approach Ramp B											
Ramp Structure											
ARB-C6150 Ramp B - RC Wall - Side Wall ARB-C6160 Ramp B - RC Wall - Backfill with ramp drainage	92 1e 48	06-Nov-17 A		29-Mar-18 A	03-Aug-16	22 4.17 16	E07	100%			
Ramp Finishes, E&M & Roadworks	40	14-Mar-18 A	18	12-May-18	03-Aug-16	23-Aug-16	-507	0%			
ARB-C7710 Ramp B - Parapet Panels	76	14-May-18	76	13-Aug-18	24-Aug-16	23-Nov-16	-507	0%		l	
Ramp C										l	
Abutment & Approach Ramp C											
Ramp Finishes, E&M & Roadworks											
Actual Work Project ID: TMCLK-DW			-		Southern Co			Date 24-Apr-			
Planned Bar Layout: J3518-DVVP-3N	MPD Submission MEQ							174-Anr-	181	PKN	HF
	MRP Submission - M59 Month Lookahead, No CQ	3-Month Ro	-	-	e (Page 1 of 1-Apr-18)	r / Pages)		247.01	-		


ID	Activity Name	Orig. Durn.	Act. Start / FC Early Start	Rem. Durn.	Act. Finish / FC Early Finish	Late Start	Late Finish	Total Floa	t Physical % Complete	April		May
ARC-C7720	Ramp C - Ducting, Gantry & TCSS Provisions (KD3)	36	18-Sep-17 A	8	30-Apr-18	30-Mar-16	08-Apr-16	-610	95%	26 02 09	16 23	30 07 14
	Ramp C - Drainage, Fire Main & E&M Services	54	15-Jan-18 A	24	19-May-18	24-Aug-16	21-Sep-16	-489	70%			
	Ramp C - Railings, Light Poles, Signs & Street Furniture	30	21-Feb-18 A	24	19-May-18	17-Aug-16	13-Sep-16	-495	70%			
ARC-C7830	Ramp C - Deck Paving & Roadmarking (KD13)	18	21-May-18	18	11-Jun-18	14-Sep-16	06-Oct-16	-495	0%			
Ramp D												
Abutment & A	pproach Ramp D											
	s, E&M & Roadworks	<u> </u>										
	Ramp D - Railings, Light Poles, Signs & Street Furniture	30	21-Feb-18 A	30	28-May-18	10-Aug-16	13-Sep-16	-501	70%	1		
	Ramp D - Deck Paving & Roadmarking (KD14)	18	29-May-18	18	19-Jun-18	14-Sep-16	06-Oct-16	-501	0%			
	ridge E5, E6, E7, E8											
Pier E12D (E5												
Pile Cap Dolp	-											
	E12D Dolphin - Marine Pile Cap - Fixings, Dewatering & Trim Pile	11	17-Nov-17 A	0	07-Apr-18 A	[[100%			
	E12D Dolphin - Marine Pile Cap - Rebar, Concreting	5	09-Apr-18 A	2	23-Apr-18	07-Aug-18	08-Aug-18	88	100%			
	E12D Dolphin - Marine Pile Cap - CJ preparation & Curing	3	24-Apr-18	3	26-Apr-18	09-Aug-18	11-Aug-18	88	0%			
Pier E13A (E8							3			 		
Pile Cap Dolp	•											
	E13A Dolphin - Marine Pile Cap - Fixings, Dewatering & Trim Pile	11	19-Mar-18 A	0	17-Apr-18 A				100%			
	E13A Dolphin - Marine Pile Cap - Rebar, Concreting	5	21-Apr-18	5	26-Apr-18	03-Aug-18	08-Aug-18	85	0%			
	E13A Dolphin - Marine Pile Cap - CJ preparation & Curing	3	27-Apr-18	3	30-Apr-18	09-Aug-18	11-Aug-18	85	0%			
Pier E13D (E5	· · · · · ·					U	Ū					
Pile Cap Dolp						<u>,</u>	<u> </u>					
	E13D Dolphin - Marine Pile Cap - Fixings, Dewatering & Trim Pile	11	19-Dec-17 A	0	11-Apr-18 A				100%			
	E13D Dolphin - Marine Pile Cap - Rebar, Concreting	5	12-Apr-18 A	17	11-May-18	20-Jul-18	08-Aug-18	73	70%			
	E13D Dolphin - Marine Pile Cap - CJ preparation & Curing	3	12-May-18	3	15-May-18	09-Aug-18	11-Aug-18	73	0%			
/iaduct F - B												
Pier F8 (F2f)												
Pier Head Seg	ment					<u>.</u>	<u>.</u>					
	F8 Pier Head - Scaffold, Temp Works	18	03-Mar-18 A	0	24-Mar-18 A				100%			
	F8 Pier Head - Erect PH Segment (1 nr)	1	24-Mar-18 A	0	24-Mar-18 A				100%			
	F8 Pier Head - Construct Diaphragm (2nd Cast) in PHS	1	24-Mar-18 A	0	24-Mar-18 A				100%			
	F8 Pier Head - Curing, Remove Temp Works	1	24-Mar-18 A	0	24-Mar-18 A				100%			
Viaduct F - B				1 -								
Pier F10 (F3c)												
Pier Head Seg						<u> </u>	<u> </u>					
v	F10 Pier Head - Scaffold, Temp Works	30	12-Sep-17 A	28	25-May-18	01-Feb-18	08-Mar-18	-61	0%			
	F10 Pier Head - Erect last PH segment (1 nr)	1	06-Jul-18	1	06-Jul-18	16-Mar-18	16-Mar-18	-88	0%			
Pier F11 (F3b)			00 00 10					00	070			
Pier Head Seg												
	F11 Pier Head - Scaffold, Temp Works	33	15-Mar-18 A	17	11-May-18	03-Jul-20	22-Jul-20	652	0%			
	F11 Pier Head - Erect PH Segment (2 nr)	2	06-Apr-18 A	1	21-Apr-18	16-Mar-18	16-Mar-18	-27	0%			
	F11 Pier Head - Construct Diaphragm (2nd Cast) in PHS	48	06-Apr-18 A	0	06-Apr-18 A				100%		T	
	F11 Pier Head - Curing, Remove Temp Works	5	06-Apr-18 A	0	06-Apr-18 A				100%			
Viaduct F - B				1				1				
Pier F16 (F5a												
											· · · <mark>·</mark> · · · · · · · ·	
Pier Head Seg	F16 Pier Head - Curing, Remove Formwork	12	21-Mar-18 A	9	02-May-18	05-Dec-17	14-Dec-17	-108	50%	1		
Pier F18 (F4c)	•	12	21-1VIAI-10 A	9	02-May-16	05-Dec-17	14-Dec-17	-106	50%	1		-
Pier Head Seg		05	04 Eab 40 A		04 Apr 40	40 Jan 40	10 Jan 10	75	000/			
	F18 Pier Head - Scaffold, Temp Works	25	21-Feb-18 A	1	21-Apr-18	16-Jan-18	16-Jan-18	-75	99%			
	F18 Pier Head - Erect PH Segment (1 nr)	2	23-Apr-18	2	24-Apr-18	17-Jan-18	18-Jan-18	-75	0%			
	F18 Pier Head - Construct Diaphragm (2nd Cast) in PHS F18 Pier Head - Curing, Remove Temp Works	20 5	25-Apr-18	20	18-May-18	19-Jan-18	10-Feb-18 20-Feb-18	-75 -75	0%			1
	r to Pier Head - Curing, Remove Temp Works	5	19-May-18	5	25-May-18	12-Feb-18	20-Feb-18	-75	0%			
Ramp F												
	pproach Ramp F											
Ramp Structu												
	Ramp F - Cap & Ground Beams	54	31-Oct-17 A	0	17-Apr-18 A				100%			
	Ramp F -Abutment wall (RF-6)	14	18-Apr-18 A	11	04-May-18	02-Feb-18	14-Feb-18	-60	10%			
ARF-C6140	Ramp F - Column and beam (FB2 & FB3)	54	14-Feb-18 A	31	29-May-18	21-Oct-17	27-Nov-17	-145	50%			
		1	T 17	01. 7 -		0				Devision In	م ادم جا	A =========
Actual Work	Project ID: TMCLK-DWPL-M59 Layout: J3518-DWP-3MRP Submission - M5				_ap Kok Link - S				Date			Approved
Planned Bar	Filter: TASK filters: 3-Month Lookahead, No			-	Programme	• •	t 7 Pages)		24-Apr-	18 PK	N HF	
Critical Bar	Milestones, No Level of Effort.	-]	(Prog	ress as of 2 ⁴	1-Apr-18)						
Milestone			· ·			• - /						


	Activity Name	Orig. Durn.	Act. Start / FC Early Start	Rem. Durn.	Act. Finish / FC Early Finish	Late Start	Late Finish	Total Float	Complete	April	
ARE C6150	Ramp F - Column and beam (FB1 & FB3)	86	26-Mar-18 A	5 2	23-Jun-18	20-Jan-18	24-Mar-18	-71	<u>26</u> 10%	02 09 16	5 <u>23</u> 30
	Ramp F - Column and beam (FBT & FBS) Ramp F - Ramp deck	71		52 71		15-Feb-18	17-May-18	-71	0%		
	e & Associated Works	/ 1	18-May-18	1	11-Aug-18	15-Feb-16	17-1viay-10	-/1	0%		
	e & Associated works										
iaduct A											
Bridge A2											
Deck Fnishes	E&M and Roadworks										
-	Viaduct A2 - Parapet Panels	118	13-Feb-18 A	58	30-Jun-18	31-Aug-16	09-Nov-16	-483	7%		
	Viaduct A2 - Gantry & TCSS Provisions (KD5)	36	16-Jun-18	36	30-Jul-18	27-Oct-16	07-Dec-16	-483	0%		
	Viaduct A2 - Drainage, Fire Main & E&M Services	60	03-Jul-18	60	10-Sep-18	10-Jan-17	23-Mar-17	-434	0%		
Bridge A1											
Deck Span Se	ament										
	Viaduct A1 - Final Stitch & Stressing to Span	14	14-Mar-18 A	0	29-Mar-18 A				100%		
	E&M and Roadworks		TT Mai TO/T	0	20 Mai 10/1	1			10070		
	Viaduct A1 - Parapet Panels	220	10-Feb-18 A	120	12-Sep-18	04-Jul-16	23-Nov-16	-533	40%		
	Viaduct A1 - Parapet Panels (with MTR access)	51	11-Jul-18	51	07-Sep-18	23-Sep-16	23-Nov-16	-529	0%		
/iaduct B			in our ro	01	01 000 10	20 000 10	20110110	020	070		
Bridge B3											
Deck Fnishes	E&M and Roadworks										
	Viaduct B3 - Gantry & TCSS Provisions (KD5)	36	21-Mar-18 A	24	19-May-18	10-Nov-16	07-Dec-16	-425	20%		le la companya de la
Bridge B2											
Deck Fnishes	E&M and Roadworks										
VB2-C7710	Viaduct B2 - Parapet Panels	60	15-Aug-17 A	87	04-Aug-18	11-Aug-16	23-Nov-16	-500	85%		
	Viaduct B2 - Parapet Panels (with MTR access)	52	04-Apr-18 A	65	10-Jul-18	08-Jul-16	22-Sep-16	-529	15%		1
	Viaduct B2 - Gantry & TCSS Provisions (KD5)	36	09-Jul-18	36	18-Aug-18	27-Oct-16	07-Dec-16	-500	0%		
Bridge B1											
	E&M and Roadworks										
	Viaduct B1 - Parapet Panels	83	06-Nov-17 A	40	08-Jun-18	29-Sep-16	16-Nov-16	-459	65%		
	Viaduct B1 - Gantry & TCSS Provisions (KD5)	36	18-May-18	36	30-Jun-18	27-Oct-16	07-Dec-16	-459	03 %		:
	Viaduct B1 - Drainage, Fire Main & E&M Services	60		60		11-Jan-17	24-Mar-17	-403	0%		
	Viaduct B1 - Drainage, Fire Main & Eavi Services Viaduct B1 - Railings, Light Poles, Signs & Street Furniti		26-May-18 25-Jun-18	30	06-Aug-18 30-Jul-18	11-Jan-17 11-Feb-17	17-Mar-17	-403	0%		
			23-3011-10	50	30-301-10			400	070		
liaduct C											
Bridge C4											
Deck Fnishes	E&M and Roadworks										
VC4-C7720	Viaduct C4 - Gantry & TCSS Provisions (KD4)	36	01-Feb-18 A	3	24-Apr-18	13-Aug-16	16-Aug-16	-498	90%		
	Viaduct C4 - Drainage, Fire Main & E&M Services	60	21-Feb-18 A	36	04-Jun-18	10-Aug-16	21-Sep-16	-501	0%		
VC4-C7820	Viaduct C4 - Railings, Light Poles, Signs & Street Furnite	ure 30	21-Mar-18 A	18	12-May-18	24-Aug-16	13-Sep-16	-489	50%		
VC4-C7830	Viaduct C4 - Deck Paving & Roadmarking (KD13)	18	29-May-18	18	19-Jun-18	14-Sep-16	06-Oct-16	-501	0%		
Bridge C3											
Deck Fnishes	E&M and Roadworks						,				
VC3-C7710	Viaduct C3 - Parapet Panels (with MTR access)	60	01-Sep-17 A	7	28-Apr-18	02-Aug-16	09-Aug-16	-508	90%		
	Viaduct C3 - Gantry & TCSS Provisions (KD4)	36	21-Feb-18 A	18	12-May-18	27-Jul-16	16-Aug-16	-513	50%		
	Viaduct C3 - Drainage, Fire Main & E&M Services	48	21-Feb-18A	48	19-Jun-18	27-Jul-16	21-Sep-16	-513	0%		
	Viaduct C3 - Railings, Light Poles, Signs & Street Furniti		21-Mar-18 A	30	28-May-18	10-Aug-16	13-Sep-16	-501	30%		
	Viaduct C3 - Deck Paving & Roadmarking (KD13)	18	12-Jun-18	18	04-Jul-18	14-Sep-16	06-Oct-16	-513	0%		
Bridge C2											
	E&M and Roadworks										
	Viaduct C2 - Parapet Panels	48	13-Jun-17 A	7	28-Apr-18	13-Sep-16	21-Sep-16	-472	95%		.
	•	36			•						
	Viaduct C2 - Gantry & TCSS Provisions (KD4)		10-Feb-18A	14	08-May-18	05-Sep-16	21-Sep-16	-479	70%		
	Viaduct C2 - Drainage, Fire Main & E&M Services	60	22-Jan-18 A	30	28-May-18	17-Aug-16	21-Sep-16	-495	80%		
	Viaduct C2 - Railings, Light Poles, Signs & Street Furnit		21-Mar-18 A	21	16-May-18	20-Aug-16	13-Sep-16	-492	0%		:
	Viaduct C2 - Deck Paving & Roadmarking (KD13)	18	21-May-18	18	11-Jun-18	14-Sep-16	06-Oct-16	-495	0%		
Bridge C1											
	E&M and Roadworks										
	Viaduct C1 - Drainage, Fire Main & E&M Services	60	22-Jan-18 A	30	28-May-18	17-Aug-16	21-Sep-16	-495	70%		
	Viaduct C1 - Railings, Light Poles, Signs & Street Furnite		21-Mar-18 A	18	12-May-18	24-Aug-16	13-Sep-16	-489	40%		
VC1-C7830	Viaduct C1 - Deck Paving & Roadmarking (KD13)	18	21-May-18	18	11-Jun-18	14-Sep-16	06-Oct-16	-495	0%		.
/iaduct D											
Bridge D3											
	E&M and Roadworks										
	Viaduct D3 - Drainage, Fire Main & E&M Services	60	21-Feb-18 A	36	04-Jun-18	10-Aug-16	21-Sep-16	-501	75%		:
	-							-501		Devicier IO	
Actual Work	Project ID: TMCLK-DWPL-M59	MEO			ap Kok Link -				Date	Revision Chec	
Planned Bar	Layout: J3518-DWP-3MRP Sub Filter: TASK filters: 3-Month Loc		3-Month Ro	olling	Programme	e (Page 3 o	f 7 Pages)		24-Apr-18	PKN	HF
		Jraneau, NO CU		-	ress as of 2	•	2 /				
Critical Bar	Milestones, No Level of Effort.										


Activi	ty Name	Orig. Durn.	Act. Start / FC Early Start	Rem. Durn.	Act. Finish / FC Early Finish	Late Start	Late Finish	Total Float	Physical % Complete	April 26 02 09 1	6 22	30
VD3-C7820 Viac	duct D3 - Railings, Light Poles, Signs & Street Furniture	30	01-Mar-18 A	20	15-May-18	22-Aug-16	13-Sep-16	-491	40%			
VD3-C7830 Viac	duct D3 - Deck Paving & Roadmarking (KD14)	18	29-May-18	18	19-Jun-18	14-Sep-16	06-Oct-16	-501	0%			
Bridge D2												
Deck Fnishes, E&	M and Roadworks											
	duct D2 - Parapet Panels (with MTR access)	74	24-Feb-18 A	14	08-May-18	22-Aug-16	06-Sep-16	-491	95%			
	duct D2 - Gantry & TCSS Provisions (KD4)	36	12-Feb-18 A	24	19-May-18	10-Aug-16	06-Sep-16	-501	75%			
	duct D2 - Drainage, Fire Main & E&M Services	48	22-Jan-18 A	36	04-Jun-18	10-Aug-16	21-Sep-16	-501	60%			<u> </u>
	duct D2 - Railings, Light Poles, Signs & Street Furniture	30	21-Mar-18 A	18	12-May-18	24-Aug-16	13-Sep-16	-489	40%			
	duct D2 - Deck Paving & Roadmarking (KD14)	18	29-May-18	18	19-Jun-18	14-Sep-16	06-Oct-16	-501	0%			
Bridge D1							<u> </u>					
Deck Fnishes, E&								1	-	<u></u>		
	duct D1 - Gantry & TCSS Provisions (KD4)	36	13-Nov-17 A	0	07-Apr-18 A	04.0	01.0	400	100%			
	Juct D1 - Drainage, Fire Main & E&M Services Juct D1 - Railings, Light Poles, Signs & Street Furniture	60 30	22-Jan-18 A 21-Mar-18 A	18 20	12-May-18 15-May-18	31-Aug-16 22-Aug-16	21-Sep-16 13-Sep-16	-483 -491	50% 40%			
	duct D1 - Railings, Light Poles, Sights & Street Purhiture duct D1 - Deck Paving & Roadmarking (KD14)	18	16-May-18	18	06-Jun-18	14-Sep-16	06-Oct-16	-491	40%			1
iaduct E		10	10-1viay-10	10	00-3011-18	14-3ep-10	00-00-10	-491	0 /0			-
Bridge E1												1
	M and Roadworks											1
	duct E1A/B - Parapet Panels	48	27-Nov-17 A	20	15-May-18	20-Jun-16	13-Jul-16	-544	92%			
	duct E1A/B - Gantry & TCSS Provisions (KD4)	36	02-May-18	36	13-Jun-18	29-Jun-16	10-Aug-16	-544	0%		1	
	duct E1A/B - Drainage, Fire Main & E&M Services duct E1A/B - Railings, Light Poles, Signs & Street Furniture	60	16-May-18	60	27-Jul-18	14-Jul-16	22-Sep-16	-544	0%		+	
	duct E1A/B - Railings, Light Poles, Signs & Street Furniture	30 56	14-Jun-18 21-Dec-17 A	30	20-Jul-18	11-Aug-16	14-Sep-16	-544	0% 92%	1		1
	duct E1C/D - Parapet Parels duct E1C/D - Gantry & TCSS Provisions (KD4)	36	02-May-18	20 36	15-May-18 13-Jun-18	27-Jun-16 07-Jul-16	20-Jul-16 17-Aug-16	-538 -538	92%	1		·
	duct E1C/D - Grainage, Fire Main & E&M Services	42	26-May-18	42	16-Jul-18	01-Sep-16	22-Oct-16	-538	0%			
	duct E1C/D - Railings, Light Poles, Signs & Street Furniture	30	14-Jun-18	30	20-Jul-18	18-Aug-16	22-Sep-16	-538	0%			
	duct E1C/D - Deck Paving & Roadmarking (KD10)	18	14-Jul-18	18	03-Aug-18	15-Sep-16	07-Oct-16	-538	0%			
Bridge E2												
Deck Span Segme		0140	00 14-1 40 4	0	00 Mag 40 A			1	4000/	-		
	A - Quarter Span (1 nr) with stitch - TLB (incl. modification of A-E11A / E10A-E8: Install Bearing & Stress Continuity Tendor		20-Mar-18 A 30-Mar-18 A	0	29-Mar-18 A 02-May-18	06-Dec-17	15-Dec-17	-107	100%			
	B-E11B / E10B-E8B: Install Bearing & Stress Continuity Tendo B-E11B / E10B-E8B: Install Bearing & Stress Continuity Tendo		21-Mar-18 A	9	02-May-18	06-Dec-17	15-Dec-17	-107	0%		-	
	M and Roadworks		21 1001 1071	0	02 May 10	00 000 11	10 000 11	107	0 / 0			1
	duct E2-1 (E3-E6) - Parapet Panels	48	15-Feb-18 A	26	23-May-18	15-Mar-18	18-Apr-18	-28	50%	i		i
	duct E2-1 (E3-E6) - Gantry & TCSS Provisions (KD4)	36	09-May-18	36	21-Jun-18	04-Apr-18	17-May-18	-28	0%	 		
	duct E2-1 (E3-E6) - Drainage, Fire Main & E&M Services	60	24-May-18	60	03-Aug-18	17-May-18	28-Jul-18	-5	0%			1
	duct E2-1 (E3-E6) - Railings, Light Poles, Signs & Street Furn	iture 30	22-Jun-18	30	27-Jul-18	15-Jun-18	21-Jul-18	-5	0%			
VE22-C7710 Viac	duct E2-2 (E6-E8) - Parapet Panels	48	19-Mar-18 A	26	23-May-18	15-Jan-18	13-Feb-18	-76	50%			<u> </u>
	duct E2-2 (E6-E8) - Gantry & TCSS Provisions (KD4)	36	09-May-18	36	21-Jun-18	04-Apr-18	17-May-18	-28	0%			
	duct E2-2 (E6-E8) - Drainage, Fire Main & E&M Services	60	24-May-18	60	03-Aug-18	17-May-18	28-Jul-18	-5	0%			
	duct E2-2 (E6-E8) - Railings, Light Poles, Signs & Street Furn		22-Jun-18	30	27-Jul-18	15-Jun-18	21-Jul-18	-5	0%			
	duct E2-3 (E8-E10) - Parapet Panels	48	24-May-18	48	20-Jul-18	14-Feb-18	18-Apr-18	-76	0%			
	duct E2-3 (E8-E10) - Gantry & TCSS Provisions (KD4)	36	07-Jul-18	36	17-Aug-18	04-Apr-18	17-May-18	-76	0%			
Bridge E5											1	
Deck Span Segme											1	
	D Deck - Engage temporary support below segment S3U19	7	28-Mar-18 A	0	02-Apr-18 A	04.0.4.5	04.0.1.1=		100%		<u>_</u>	
	D Deck - Cantilever span (4 seg) - KF	5	18-Apr-18 A	1	21-Apr-18	21-Oct-17	21-Oct-17	-174	75%		-'	
	D Deck - Adjustment of segments, stressing and remove KF	4	22-Apr-18	4	25-Apr-18	22-Oct-17	25-Oct-17	-174	0%		—	i
	D Deck - Stitching S1 Between E13D & E14D D Deck - Stitching S2 Between E13D & E14D	8	26-Apr-18	8	05-May-18	26-Oct-17	04-Nov-17 14-Nov-17	-145	0%			:
1	D Deck - Stitching S2 Between E13D & E14D D Deck - Dismantle Truss & Clear Deck (KD1)	15	07-May-18 16-May-18	8 15	15-May-18 02-Jun-18	06-Nov-17 15-Nov-17	14-Nov-17 01-Dec-17	-145 -145	0% 0%		1	
	duct E5 - Final Stressing to Span	13	04-Jun-18	12	16-Jun-18	02-Dec-17	15-Dec-17	-145	0%		+	·
	M and Roadworks	12		12	10-001-10	02 000 11	10-000-17	- 1-40	070		1	
	duct E5 - Parapet Panels	48	19-Jun-18	48	14-Aug-18	16-Dec-17	13-Feb-18	-145	0%		1	
Bridge E6	and the second											
Deck Span Segme			40.11		04.1						<u>.</u>	
	C Deck - Stitch between E12C and E13C	12	16-Mar-18 A	1	21-Apr-18	22-Jul-20	22-Jul-20	734	95%			
1	C Deck - Cantilever span to E13C (6 nr) -crane	20	12-Mar-18 A	0	03-Apr-18 A				100%		1	
	C Deck - Stitch between E13C and E14C	8	16-Apr-18 A	0	19-Apr-18 A	00 1 10			100%			
	duct E6 - Final Stressing to Span	12	21-Apr-18	12	05-May-18	23-Jan-18	05-Feb-18	-69	0%			; .
VE6-C6920 Viad Bridge E7	dcct E6 - Install, grout permanent bearing and load transfer at	t pier E14(7	07-May-18	7	14-May-18	06-Feb-18	13-Feb-18	-69	0%		+	
Actual Work	Project ID: TMCLK-DWPL-M59		Tuen Mun - (Chek I	ap Kok Link - 3	Southern Co	nnection		Date	Revision Che	ckedl	App
Planned Bar	Layout: J3518-DWP-3MRP Submission	- M59			•				24-Apr-1			<u> </u>
Critical Bar	Filter: TASK filters: 3-Month Lookahead,		3-Month Ro	-	-		i i rayes)		p. 1	-	"	
	Milestones, No Level of Effort.	1		Produ	ress as of 2 ^r	$1-\Delta nr-18$			1			

		Durn.	Start	Durn.	Finish				Complete	26 02 0	April 09 16	23 30
Deck Span Segment										20 02 0		20 30
	Deck - Stitch between E12B and E13B	12	21-Mar-18 A	0	07-Apr-18 A				100%			
	Deck - Stitch between E13B and E14B	8	18-Apr-18 A	0	20-Apr-18 A				100%			
	ct E7 - Final Stressing to Span	12	21-Apr-18	12	05-May-18	23-Jan-18	05-Feb-18	-69	0%			
	ct E7 - Install, grout permanent bearing and load transfer to E14C	7	07-May-18	7	14-May-18	06-Feb-18	13-Feb-18	-69	0%			
Deck Fnishes, E&M		•	or may ro	•	TT May To			00	070			
	ct E7 - Parapet Panels	48	13-Jul-18	48	06-Sep-18	14-Feb-18	18-Apr-18	-117	0%	1		
Bridge E8		40	13-Jul-18	40	00-Sep-18	14-1-60-18	18-Api-18	-117	078			
Deck Span Segment	• • • • • • • • • • • • • • • • • • •											
	Deck - Remove equipment & Stitch between E12A and E13A	15	28-Mar-18 A	0	03-Apr-18 A				100%			
	Deck - Stitch between E13A and E14A	18	14-Apr-18 A	0	18-Apr-18 A				100%			
	ct E8 - Final Stressing to Span	12	21-Apr-18	12	05-May-18	24-Nov-17	07-Dec-17	-117	0%			
	ct E8 - Install, grout permanent bearing and load transfer	7	07-May-18	7	14-May-18	08-Dec-17	15-Dec-17	-117	0%			
Deck Fnishes, E&M			07-1viay-10	1	14-Way-10	00-Dec-17	13-Dec-17	-117	078			
	ct E8 - Parapet Panels	48	15-May-18	48	12-Jul-18	16-Dec-17	13-Feb-18	-117	0%			
	ct E8 - Gantry & TCSS Provisions (KD4)	36	28-Jun-18	36	09-Aug-18	04-Apr-18	17-May-18	-69	0%			
	ct E8 - Grantry & TCSS Provisions (KD4) ct E8 - Drainage, Fire Main & E&M Services	60	13-Jul-18	60		· ·	-	-69	0%			
Viaduct F	ci Eo - Drainage, File Main & E&M Services	60	13-Jul-18	60	20-Sep-18	10-May-18	21-Jul-18	-52	0%			
Bridge F1										¦		
Deck Span Segment												
	Deck - Stitching to E14A-F1, release U tendon, stress bar breakup stite	21	06-Apr-18 A	21	16-May-18	07-Dec-17	03-Jan-18	-106	30%		i=	
	eck - Stitching to F2-F3 & Clear Deck (KD1)	35	20-Mar-18 A	0	31-Mar-18 A				100%			
	ct F1 - Final Stressing	28	17-May-18	28	20-Jun-18	04-Jan-18	05-Feb-18	-106	0%			
	ct F1 - Install, grout permanent bearing and load transfer at piers F3	7	21-Jun-18	7	28-Jun-18	06-Feb-18	13-Feb-18	-106	0%			
Deck Fnishes, E&M												
	ct F1 - Parapet Panels	48	30-Jun-18	48	25-Aug-18	14-Feb-18	18-Apr-18	-107	0%			
Bridge F2												
Deck Span Segment	t											
	Deck - Cantilever Span to F4 (6 nr) - crane	21	12-Mar-18 A	0	29-Mar-18 A				100%			
	ck - Cantilever Span (10 nr) - crane	20	12-Mar-18 A	0	13-Apr-18 A				100%			
	eck - Stitching to E14C-F4	12	11-May-18	12	25-May-18	26-Mar-18	12-Apr-18	-35	0%		-	
	eck - release U tendon, stress bar & break up temp stitch @E14C	12	26-May-18	12	08-Jun-18	24-Apr-18	08-May-18	-26	0%			
	eck - Install, grout permanent bearing and load transfer	7	09-Jun-18	7	16-Jun-18	09-May-18	16-May-18	-26	0%			
	eck - Cantilever span (1 nr) - crane	2	16-Apr-18 A	0	16-Apr-18 A		re may re		100%			
	eck - Cantilever span (2 nr) - crane	3	16-Apr-18 A	4	25-Apr-18	18-Jan-18	22-Jan-18	-73	0%			·····
	eck - Stitching to F4-F5	12	26-Apr-18	12	10-May-18	12-Mar-18	24-Mar-18	-35	0%			
	eck - Install, grout permanent bearing and load transfer at pier F6	7	21-Mar-18 A	0	29-Mar-18 A		24 100	00	100%			
	eck - Cantilever Span (6 nr) - crane	. 12	30-Mar-18 A	0	09-Apr-18 A				100%			
	eck - Stitching to F5-F6 and remove proping	28	26-May-18	28	28-Jun-18	13-Apr-18	16-May-18	-35	0%			
	eck - Cantilever Span (2 nr) - crane	3	21-Apr-18	3	24-Apr-18	11-Jan-18	13-Jan-18	-79	0%			
	eck - Stitching to F6-F7	12	29-Jun-18	12	13-Jul-18	17-May-18	31-May-18	-35	0%			-
	eck - Falsework for End Span to F7	30	21-Apr-18	30	28-May-18	07-Dec-17	13-Jan-18	-106	0%			
	eck - Falsework for End Span to F7	- 30 - 7	21-Apr-18 29-May-18	7	05-Jun-18	15-Jan-18	22-Jan-18	-106	0%			
	eck - Stitching to F7-F8	12	14-Jul-18	12	27-Jul-18	01-Jun-18	14-Jun-18	-35	0%			
Bridge F3		12		١Z	21-Jui-10	UT-Jun-To		-55	0 /0			
Deck Span Segment		04	04 4	04	40.14	44 1-1 10	00 5-1-10	70	001			
	0 Deck - Erect Falsework (with Sliding System)	21	21-Apr-18	21	16-May-18	11-Jan-18	03-Feb-18	-79	0%			
	0 Deck - Span Segment (33 nr) - Crane	45	23-Jun-18	45	15-Aug-18	06-Feb-18	06-Apr-18	-108	0%			
	11 Deck - Erect Falsework (stage 1)	14	07-Jul-18	14	23-Jul-18	17-Mar-18	06-Apr-18	-88	0%			·····
Bridge F4												
Deck Span Segment												
	Deck - Cantilever Span (3 nr) & stitches towards E14B,F15,F17) - cra	19	03-May-18	19	25-May-18	15-Dec-17	09-Jan-18	-108	0%			
	eck - Cantilever Span (5 nr) & stitches - crane	19	26-May-18	19	16-Jun-18	10-Jan-18	31-Jan-18	-108	0%			
	eck - Construct props with footing	24	15-May-18	24	07-Jun-18	29-Dec-17	22-Jan-18	-130	0%			
	Deck - Cantilever Span (12 nr) - THB / crane	30	08-Jun-18	30	14-Jul-18	23-Jan-18	01-Mar-18	-108	0%			
	Deck - Cantilever Span (12 nr) - crane (Props at 5th Pair)	23	26-Mar-18 A	23	18-May-18	07-Mar-18	06-Apr-18	-35	90%			
	Deck - Stitching to F16-F17	12	16-Jul-18	12	28-Jul-18	07-Apr-18	20-Apr-18	-81	0%			
	Deck - Falsework for End Span to F17	24	08-Jun-18	24	07-Jul-18	06-Mar-18	06-Apr-18	-75	0%			
F18-C6310 F18 D	Deck - End Span to F17 (9 nr) - Crane	12	09-Jul-18	12	21-Jul-18	07-Apr-18	20-Apr-18	-75	0%			
Bridge F5												
Deck Span Segment	t									1		
	- Peck - Falsework for End Span to F14	24	07-Apr-18 A	18	12-May-18	10-Mar-18	03-Apr-18	-32	70%			
			•				•		· · · ·			ıl ^
Actual Work	Project ID: TMCLK-DWPL-M59				ap Kok Link -				Date	Revision	Checked	
Planned Bar	Layout: J3518-DWP-3MRP Submission - M59		3-Month Ro	lling	Programme	(Page 5 of	f 7 Pages)		24-Apr-1	8	PKN	HF
Critical Bar	Filter: TASK filters: 3-Month Lookahead, No CQ			-	ress as of 2	•	- /					



D		Activity Name	Orig. Durn.	Act. Start / FC Early Start	Rem. Durn.	Act. Finish / FC Early Finish	Late Start	Late Finish	Total Float	Physical % Complete		April		
			2 4 1 1	Citari	20.11					· · .	26 02	09 16	23	30
F13-C	C6310	F13 Deck - End Span to F14 (7 nr) - Crane	14	07-Jun-18	14	23-Jun-18	04-Apr-18	20-Apr-18	-52	0%				-
F14-C	6320	F14 Deck - Cantilever Span (12 nr) - crane	20	27-Mar-18 A	20	11-May-18	19-Dec-17	09-Jan-18	-116	83%				
F14-C	26410	F14 Deck - Stitching to F13-F14 & Clear Deck (KD2)	12	25-Jun-18	12	09-Jul-18	21-Apr-18	05-May-18	-52	0%				
		F14 Deck - Install, grout permanent bearing and load transfer at F14	7	10-Jul-18	7	17-Jul-18	11-May-18	18-May-18	-48	0%				
		F15 - Falsework for End Span to F14	24	11-Jun-18	24	10-Jul-18	12-Apr-18	10-May-18	-49	0%				
		F15 - Falsework for End Span to F16	24	01-Jun-18	24	29-Jun-18	22-Feb-18	21-Mar-18	-79	0%	1			
		Track Re-Provisioning Works	2.			Lo dan to	2210010	ET Mar 10	10	070	1			
										r				
Viaduct	t A to I													
Access	s Track	S												
Genera	al													
PR300	060	Construct perm. realignment of CEDD access track at Pier A8	42	14-Jul-18*	42	31-Aug-18	02-Dec-16	23-Jan-17	-474	0%				
At-Grade		s & Miscellaneous Works			1	Ű								
At-Grad		ks Along North Lantau Highway												÷
-														
		Near Viaduct A						<u>.</u>						
Slope 9														1
GFXX	(501	9SE-B/FR8 - Demolish existing wall stem	31	29-May-18	31	05-Jul-18	20-Oct-16	24-Nov-16	-473	0%				
GFXX	(541	9SE-B/FR8 - Construct New Wall Stem	90	06-Jul-18	90	22-Oct-18	25-Nov-16	16-Mar-17	-473	0%	1			
Slope W	Works I	Near Viaduct B												
Slope 1														
GFXX4		10SW-A/F52 - Slopework - Phase 1	26	21 Mov 19	20	12 10 40	09-Nov-16	20-Dec-16	-458	0%				
GFXX		· · · · · · · · · · · · · · · · · · ·	36 68	31-May-18 14-Jul-18	36 68	13-Jul-18 03-Oct-18	21-Dec-16	20-Dec-16 16-Mar-17	-458	0%				
		10SW-A/F52 - Slopework - Phase 2	68	14-Jul-1δ	00	03-00-18	21-Dec-16	10-1Via[-17	-438	0%				
		Near Viaduct D												
Slope 1														
M2012	200	10NW-C/F9 - Site clearance and excavation to formation	48	16-Oct-17 A	8	30-Apr-18	16-Dec-16	24-Dec-16	-394	85%				Í.
M2012		10NW-C/F9 - Fill and compact filled material	52	02-May-18	52	04-Jul-18	28-Dec-16	02-Mar-17	-394	0%				
M2012		10NW-C/F9 - Install Geo. Instru. & Baseline Monitoring	30	05-Jul-18	30	08-Aug-18	03-Mar-17	07-Apr-17	-394	0%				
Slope 1	10NW-0		,		1			· ·						
M2012		10NW-C/F10 - Fill and compact filled material	160	16-Oct-17 A	40	08-Jun-18	15-Feb-17	01-Apr-17	-348	60%				
M2012		10NW-C/F10 - Slope drainage	100	02-Jun-18	12	13-Jun-18	26-Mar-17	07-Apr-17	-432	0%	1			1
			12	02-Jun-16	12	13-Juli-16	20-1VIAI - 17	07-Api-17	-432	0%	1			
	10NW-C							1	1	10001	1	_		1
M2012		10NW-C/F11 - Formation & subsoil drain	22	26-Feb-18 A	0	14-Apr-18 A				100%				
M2012		10NW-C/F11 - Fill and compact filled material - Phase 2	72	16-Apr-18 A	56	28-Jun-18	01-Feb-17	07-Apr-17	-360	10%				
Slope 1	10NW-C	C/F17												1
M2011	195	10NW-C/F17 - Excavation to formation & subsoil drain (remaining area	a) 52	01-Mar-18 A	12	05-May-18	17-Feb-17	02-Mar-17	-346	80%				
M2011	197	10NW-C/F17 - Fill and compact filled material	60	07-May-18	60	18-Jul-18	03-Mar-17	18-May-17	-346	0%				1
M2011	198	10NW-C/F17 - Construct POP	30	07-May-18	30	11-Jun-18	03-Mar-17	07-Apr-17	-346	0%				1
Slope 1	10NW-C	C/F50									1			1
M2011	148	10NW-C/F50 - Fill and compact filled material	18	21-Apr-18	18	12-May-18	17-Mar-17	07-Apr-17	-322	0%				
Road W		Nong NLH Westbound												
Genera														
RW10		NLH W/B (Viaduct C) - Road Drainage Works for tie-in	104	26-Jun-17 A	30	28-May-18	03-Mar-17	07-Apr-17	-334	75%				1
RW100		NLH W/B (Viaduct C) - Road Drainage Works for tie-in NLH W/B (Viaduct B) - Drainage for ramp B tie out		15-Dec-17 A	48	· · · · · · · · · · · · · · · · · · ·	24-Jan-17	23-Mar-17	-364	60%				
			48			19-Jun-18								
RW110		NLH W/B (Viaduct B) - Profile Barrier and roadwork	36	21-May-18	36	04-Jul-18	24-Feb-17	07-Apr-17	-364	0%				
Road W	vorks A	Nong NLH Eastbound												
Genera														
RW20	0080-5	Ch275-800 Portion 4-7(Viaduct D area)Asphalt laying & road marking	16	20-Jun-18	16	09-Jul-18	20-Mar-17	07-Apr-17	-368	0%				
RW200	0084	NLH E/B Viaduct A - Ch200-388 Roadwork (SL & HS) & Reinstate NLH	H 127	17-Dec-16 A	36	04-Jun-18	24-Feb-17	07-Apr-17	-340	80%				
RW200		NLH E/B (Gantries 319 - 322) - Implement TTA for NLH (Central Rese		09-Apr-18 A	0	11-Apr-18 A				100%				
RW209		NLH E/B (Gantries 319 - 322) - Footing & A-Frame at NLH (Central R		12-Apr-18 A	47	16-Jun-18	06-Oct-16	30-Nov-16	-454	10%				
RW209		NLH E/B (Gantries 319 - 322) - Footing & A-Frame at NLH (verge)	22	26-Feb-18 A	0	22-Mar-18 A	-			100%				
RW210		NLH E/B (Gantries 319 - 322) - Erection of Gantry beams	6	19-Jun-18	6	25-Jun-18	01-Dec-16	07-Dec-16	-454	0%				
		NLH E/B (Viaduct A) - Connect Exist. Ductings/Drawpits - Hard should		26-Feb-18 A	0	22-Mar-18 A	01 000-10			100%				
		ks Along Cheung Tung Road	. 22	20100-10A	0			1		10070				
-														
		Near Viaduct B												
Slope 9	9SE-B/F	85												
SWVB	34020	9SE-B/F85 - Fill and compact filled material	60	16-Jan-18 A	36	04-Jun-18	02-Feb-18	19-Mar-18	-60	50%				
		9SE-B/F85 - Install Geo. Instru. & Baseline Monitoring	30	05-Jun-18	30	11-Jul-18	13-Oct-18	17-Nov-18	108	0%				
		9SE-B/F85 - Hydroseeding	12	12-Jul-18	12	25-Jul-18	19-Nov-18	01-Dec-18	108	0%				
		Near Viaduct C	12		14	20 001 10			100	070				
Slope F	PFI&F	Γ2												<u>i</u>
leutoA	al Work	Project ID: TMCLK-DWPL-M59		Tuen Mun - C	Chek I	ap Kok Link - S	Southern Co	nnection		Date	Revision	Checke	ed	App
		Layout: J3518-DWP-3MRP Submission - M59								24-Apr-18		PKN	HF	171
	ned Bar	Filter: TASK filters: 3-Month Lookahead, No C			-	Programme	• •	r i rages)						
Critica	cal Bar stone	Milestones, No Level of Effort.		(Proa	ress as of 21	-Apr-18)							
		Milestones, No Level of Effort.	1	(rivy	1233 as UI Z	-~hi-io)							

Activit	y ID	Activity Name	Orig.	Act. Start / FC Early	Rem.	Act. Finish / FC Early	Late Start	Late Finish	Total Float								
			Durn.	Start	Durn.	Finish				Complete	26	02	Apr 09	il 16	23	30 0	May 07 14
	SWVC6990	10NW-PF1 & PF2 complete site site clearance	0	28-May-18*	0		21-Dec-17		-158	0%	20	02	09	10	<u></u>		<u>J/</u> 14
		10NW - PF2 slope works	48	28-May-18	48	24-Jul-18	21-Dec-17	21-Feb-18	-123	0%							
	Slope 10NW-	•	10	20 may 10	10	2100110	21 800 11	2110010	120	070				••••			
	-	10NW-C/F13 - Slope works	100	25-Jan-18 A	36	04-Jun-18	13-Mar-18	27-Apr-18	-30	70%		; 					
	Slope 10NW-					,						1					
	-	10NW-C/F14 - Slope works	100	01-Mar-18 A	36	04-Jun-18	02-Feb-18	19-Mar-18	-60	70%		1					
	SWVC6010	10NW-C/F14 - Install Geo. Instru. & Baseline Monitoring	30	05-Jun-18	30	11-Jul-18	20-Mar-18	27-Apr-18	-60	0%							
	Slope 10NW-	C/F15															
		10NW-C/F15 - Slope works	114	18-Sep-17 A	12	05-May-18	06-Mar-18	19-Mar-18	-36	85%		1					
		10NW-C/F15 - Install Geo. Instru. & Baseline Monitoring	30	05-Jun-18*	30	11-Jul-18	20-Mar-18	27-Apr-18	-60	0%							
	Re-alignmen	t of CTR Along Viaduct B															
	General																
	RP00077-1	Ch100-300: Street Lighting, thrie beam, bus stop & water point, etc	48	08-Dec-17 A	56	28-Jun-18	03-Apr-17	14-Jun-17	-308	0%							
	RP00082	Ch100-300: TCSS pillar box	24	07-Mar-18 A	10	03-May-18	01-Mar-18	12-Mar-18	-40	95%		1					
	Re-alignmen	t of CTR Along Viaduct C															
	East Portion																
	RW60080	CTR Tie in Works	116	18-May-17 A	36	04-Jun-18	24-Feb-17	07-Apr-17	-340	50%							
	At-Grade Wo	rks at Southern Landfall															
	HKBCF Area																
	General																
	RW30010	South Landfall - Mobilisation for Portion B Works	24	15-May-18*	24	12-Jun-18	10-Jan-18	06-Feb-18	-99	0%							
	RW30014	South Landfall - DN300 Fresh water main works installation & connection (60	13-Jun-18	60	23-Aug-18	07-Feb-18	25-Apr-18	-99	0%							
	Watermain fr	om Tung Chung to Southern Landfall				, v											
	Watermain W																
	General																
	WM00190	Viaduct B1 - Lay DN450 Fresh Water Main	42	03-Jul-18	42	20-Aug-18	10-Feb-18	07-Apr-18	-111	0%							
		Works & Establishment Works	72	00-00-10	72	20 Aug 10	10-1 66-10	07-Api-10		070		1					
	Lanscape So	ftworks															
	General		100		100		00 NL (=	44 1 1 45	105	0.01							
.	LW00012	Deliver & Stockpile Top Soil (29,000 cu.m) to BCF Near Ramp F	180	21-Jun-18	180	24-Jan-19	28-Nov-17	11-Jul-18	-163	0%		1					

Actual Work F	Project ID: TMCLK-DWPL-M59	Tuen Mun - Chek Lap Kok Link - Southern Connection	Date	Revision	Checked		Approved
Fiai ileo bai	_ayout: J3518-DWP-3MRP Submission - M59	5-WONTH ROWING PROGRAMME (Page / of / Pages)	24-Apr-18		PKN	HF	
Critical Bar	Filter: TASK filters: 3-Month Lookahead, No CO	(Progress as of 21-Apr-18)					
♦ ♦ Milestone	Milestones, No Level of Effort.	(1 10g1ess as 01 21-Api-10)					

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

(In reference to CINOTECH (2011) Agreement No. CE35/2011 EP Baseline Environmental Monitoring for Hong Kong-Zhuhai-Macao Bridge Tuen Mun-Chep Lap Kok Link – Investigation. Updated EM&A Manual for Tuen Mun-Chek Lap Kok Link)

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link Southern Connection Viaduct Section Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages		Status
	Reference					D	C	0	
AIR QUALIT	Y								
4.8.1	3.8	An effective watering programme of eight daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		<>
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓
4.8.1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Ŷ		<>
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓
4.8.1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement		ement Stages		Status
	Reference					D	С	0	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Υ		✓
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Ŷ		*
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		•
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		<>
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Ŷ		✓
Noise	i.				A	.4	i		i
5.11	Section 4	Noise monitoring	All existing representative sensitive receivers / during North Lantau Viaduct construction	Contractor	EM&A Manual		Y		•
WATER QUA	LITY				å	.1	4		L
General Ma	rine Works								
6.10	-	Bored piling to be undertaken within a metal casing.	Marine viaducts of TM- CLKL and HKLR/ bored piling	Contractor	TM-EIAO		Y		✓
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Ŷ		√

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages		Status
	Reference					D	C	0	
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		•
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Ŷ		✓
Temporary S	Staging work	•	•		•	•		•	•••••••••••••••••••••••••••••••••••••••
	5.2	Regular inspection for the accumulation of floating refuse and collection of floating refuse if required	During temporary staging works	Contractor			Ŷ		✓
	5.2	Provision of temporary drainage system on the temporary staging for collection of construction site runoff to allow appropriate treatment before discharge into the sea	During temporary staging works	Contractor			Ŷ		<>
	5.2	Wastewater generated from construction works such as bored / drilling water will be collected, treated, neutralized and de-silted through silt trap or sedimentation tank before disposal	During temporary staging works	Contractor			Ŷ		✓
	5.2	One additional water quality monitoring station is	During temporary	Contractor			Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement		lemen Stage		Status
	Reference					D	C	0	
		proposed at station SR4a In case elevated SS or turbidity is identified during the water quality monitoring, the source of pollution will be tracked down and be removed as soon as possible. In case depletion of dissolved oxygen is identified, artificial aeration will be arranged at the monitoring station SR4a,	staging works						
Land Works									
6.10	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Sewage effluent and discharges from on- site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		•
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement		lementa Stages		Status
	Reference					D	C	0	
6.10	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		✓
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		✓
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		1
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		•
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		1
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		•

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	С	0	
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Υ	✓
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		✓
Water Quali	ity Monitoring	3							
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	Designated monitoring stations as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Υ	Y	•
Ecology									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3	Specification for bored piling monitoring	Detailed Design	Design Consultant	TMEIA	Y			n/a
8.14	6.3	Implement any recommendations of the bored piling monitoring	Southern marine viaduct/Throughout	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage	tation s	Status
	Reference					D	С	0	-
			construction during bored piling	5	•				
8.14	6.3,6.5	Avoidance of peak CWD calving season in May and June for driving of metal caissons during bored piling works	Southern marine viaduct/ May and June during bored piling	Contractor	TMEIA		Y		n/a
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All marine bored piling and temporary staging works areas/Detailed Design/during all marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Υ		✓
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600 m ² in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	n/a To be enforced by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		✓
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for marine bored piling and the whole lifespan of temporary staging works.	All areas/ Detailed Design/during marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		•
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Tai Ho Wan (donar site) and Yam Tsui Wan (receptor site) / Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Υ		n/a
8.15	6.5	Audit coral translocation success	Yam Tsui Wan (receptor site)/Post translocation	Contractor	TMEIA		Y		Completed in October 2014
7.13	6.5	Undertaken gabion wall works in Stream NL1 in the dry season	North Lantau slope works/dry	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage		Status
	Reference					D	С	0	
			season/construction phase						p ⁴
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		n/a. To be approved by AFCD/LCSD
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE	AND VISUAL	A			4				
10.9	7.6	Round angle, patterned finishes, and oval shaped pier were considered in the viaduct design, and further details will be developed under ACABAS submission (DM3)	All areas/detailed design	Design Consultant	TMEIA	Ŷ			n/a
10.9	7.6	Details of the street furniture will be developed in the detailed design stage (DM4)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Ŷ	Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	C	0	
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage) (CM1)							
10.9	7.6	Trees unavoidably affected by the works shall be transplanted where practical. Trees will be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme (CM2)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		✓ Tree transplanted as Contract Specification
10.9	7.6	Hillside and roadside screen planting to proposed roads, associated structures and slope works (CM3).	All areas/detailed design/ during construction/post construction	Design Consultant/	TMEIA	Y	Y		•
10.9	7.6	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone) (CM4)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		↔
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		 ✓
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	0	
10.9	7.6	Recycle/Reuse all felled trees and vegetation, e.g. mulching (CM9)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a No felled trees or vegetation suitable for recycle
10.9	7.6	Compensatory tree planting shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006 (CM10).	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Re-vegetation of affected woodland/shrubland with native species (OM1)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	n/a. To be implemented by AFCD/HyD/ L CSD
10.9	7.6	Tall buffer screen tree / shrub / climber planting should be incorporated to soften hard engineering structures and facilities (OM2)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a To be implemented by HyD/LCSD
10.9	7.6	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill (OM3)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by HyD/LCSD
10.9	7.6	Structure, ornamental tree / shrub / climber planting should be provided along roadside amenity strips, central dividers and newly formed slopes to enhance the townscape quality and further greenery enhancement	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by

EIA Reference	EM&A Manual Reference	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	Ο	
		(OM4)			•				HyD/LCSD
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by HyD
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		•
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		✓
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Υ		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		•
12.6	8.1	The extent of cutting operation should be optimised	All areas / throughout	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual Reference	Environmental Protection Measures		Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	С	Ο	
		where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	construction period						
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		1
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			n/a
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Ŷ		✓
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		•
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		•
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction	All areas / throughout construction period	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages		Status
	Reference					D	C	0	
		materials should avoid over-ordering and wastage.							
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	 Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; Having a capacity of <450L unless the specifications have been approved by the EPD; and Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. Clearly labelled and used solely for the storage of chemical wastes; Enclosed with at least 3 sides; Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste; 	All areas / throughout construction period	Contractor	TMEIA		Υ		<>

EIA Reference	EM&A Manual	Ianual	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	0	
		 Adequate ventilation; Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and Incompatible materials are adequately separated. 							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By- laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	All waste containers shall be in a secure area on hard standing;	All areas / throughout construction period	Contractor	TMEIA		Y		√
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Office wastes can be reduced by recycling of	Site Offices/	Contractor	TMEIA		Y		✓

EIA Referer		Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stages		Status							
	Reference					D	С	0								
		paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	throughout construction period													
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		✓							
Cultur	AL HERITAGE								-							
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		n/a							
0	0	truction, O=Operation mitigation measures will be the Highways Department of th	ne Hong Kong SAR Gover	mment												
✓	Compliance of Mi	tigation Measures														
<>	Compliance of Mi	tigation but need improvement														
x	Non-compliance of Mitigation Measures															
	Non-compliance of Mitigation Measures but rectified by Contractor															
Δ	Deficiency of Miti	gation Measures but rectified by Contractor														
n/a	Not Applicable in	Reporting Period							Jot Applicable in Reporting Period							

Appendix D

Summary of Action and Limit Levels

Table D1Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in $\mu g/m^3$	ASR9A/ASR8A = 178 ASR9C/ASR8/ASR9 = 178	260
1 Hour TSP Level in $\mu g / m^3$	ASR9A/ASR8A = 394 ASR9C/ASR8/ ASR9 = 393	500

Table D2Action and Limit Levels for Construction Noise (0700-1900 hrs of normal
weekdays)

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)

Table D3Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L $^{(a)}$	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depth- averaged ^{(b), (c)})	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged $^{(b), (c)}$)	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary

Parameter	Action Level#	Limit Level#
(e) The 1%-ile of base	eline data for surface and middle	DO is 4.2 mg/L, whilst for bottom DO
is 3.6 mg/L.		

Table D4Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster				
	NEL	NWL			
Action Level	STG < 70% of baseline &	STG < 70% of baseline &			
	ANI < 70% of baseline	ANI < 70% of baseline			
Limit Level	[STG < 40% of baseli	ne & ANI < 40% of baseline]			
		and			
	STG < 40% of baseli	ne & ANI < 40% of baseline			
Notes:					
1. STG means quarterly encounter rate of number of dolphin sightings, which is 6.00 in					
NET I IOOF!	NTXATT Junta of a local transmission				

- NEL and 9.85 in NWL during the baseline monitoring period
 ANI means quarterly encounter rate of total number of dolphins, which is 22.19 in NEL and 44.66 in NWL during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D5Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau Social Cluster				
	NEL	NWL			
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3			
Limit Level	[STG < 2.4	4 & ANI <8.9]			
		and			
	[STG < 3.9	[STG < 3.9 & ANI <17.9]			

Appendix E

Calibration Certificates of Monitoring Equipments

High-Volume TSP Sampler 5-Point Calibration Record

Location Calibrated by Date	: : :	ASR8(A) P.F.Yeung 28/03/2018
<u>Sampler</u> Model Serial Number	:	TE-5170 S/N 3956
Calibration Orifice and Standard Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	<u>l Calibr</u> : : : :	ation Relationship 2454 19 Mar 2018 2.05242 -0.01383 0.99994
<u>Standard Condition</u> Pstd (hpa) Tstd (K) <u>Calibration Condition</u> Pa (hpa) Ta(K)	::	1013 298.18 1014 297

Resi	stance Plate	dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.0	3.324	1.626	56	56.12
2	13 holes	9.0	3.007	1.472	50	50.11
3	10 holes	6.8	2.613	1.280	45	45.10
4	7 holes	4.5	2.126	1.043	40	40.09
5	5 holes	2.5	1.585	0.779	32	32.07

 $Notes: Z=SQRT\{dH(Pa/Pstd)(Tstd/Ta)\}, X=Z/m-b, Y(Corrected Flow)=IC*\{SQRT(Pa/Pstd)(Tstd/Ta)\}$

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>27.222</u> Intercept(b):<u>10.946</u>

Correlation Coefficient(r): 0.9960

Checked by: <u>Magnum Fan</u> Date: <u>05/04/2018</u>

High-Volume TSP Sampler 5-Point Calibration Record

Location Calibrated by Date	: :	ASR9 P.F.Yeung 28/03/2018
Sampler		
Model	:	TE-5170
Serial Number	:	S/N 3958
Calibration Orifice and Standa Serial Number	ard Calibra :	tion Relationship 2454
Service Date	:	19 Mar 2018
Slope (m)	:	2.05242
Intercept (b)	:	-0.01383
Correlation Coefficient(r)	:	0.99994
Standard Condition		1012
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition Pa (hpa)	:	1014
Ta(K)	:	297

Resi	stance Plate	dH [green liquid]	Z	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	10.8	3.293	1.611	60	60.13
2	13 holes	8.2	2.870	1.405	55	55.12
3	10 holes	6.2	2.495	1.223	50	50.11
4	7 holes	4.0	2.004	0.983	43	43.09
5	5 holes	2.4	1.553	0.763	35	35.08

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):29.402 Intercept(b):13.509

Correlation Coefficient(r): 0.9970

Checked by: Magnum Fan

Date: 05/04/2018

RECALIBRATION DUE DATE: March 19, 2019

nmental Certificate of Calibration

Calibration Certification Information									
Cal. Date:	March 19,	2018	Roots	meter S/N:	438320	Ta:	Ta: 294		
Operator:	Jim Tisch					Pa:	746.8	mm Hg	
Calibration	Model #:	TE-5025A	Calil	orator S/N:	2454	N		0	
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH]	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)		
	1	1	2	1	1.4300	3.2	2.00		
	2 3 4			1	1.0040	6.4	4.00	1	
	3 5 6		1	0.9030	7.9	5.00			
	4 7 8		1	0.8590	8.7	5.50			
	5 9 10		1	0.7080	12.8	8.00			
			E	Data Tabula	tion			ĺ	
	Vstd Qstd $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$			
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)		
	0.9917	0.6935	1.41:	13	0.9957	0.6963	0.8874		
	0.9874	0.9835	1.995	59	0.9914	0.9875	1.2549		
	0.9854	1.0913	2.233	15	0.9894	1.0957	1.4030		
	0.9843	1.1459	2.340	05	0.9883	1.1506	1.4715		
	0.9789	1.3826	2.822	27	0.9829	1.3882	1.7747		
		m=	2.05242			m=	1.28519		
	QSTD	b=	-0.013		QA	b=	-0.00869		
	L	r=	0.999	94		r= 0.99994			
				Calculatio	ns				
			/Pstd)(Tstd/Ta	a)	Va=	∆Vol((Pa-∆I	P)/Pa)		
	Qstd=	Vstd/∆Time			Qa=	Va/∆Time			
			For subsequ	ent flow ra	te calculation	15:			
	Qstd=	1/m ((\\ \ \ \ \ \ \ H (Pa <u>(Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆⊦	I(Ta/Pa))-b)		
		Conditions	1						
Tstd:						RECA	LIBRATION		
Pstd:	1	mm Hg (ey			US FPA reco		nual recalibratio	n nor 1000	
AH: calibrat		er reading (i	n H2O)				Regulations Part 5		
		eter reading						10 50	
		perature (°K)			Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in				
		essure (mm	Hg)						
: intercept					the	e Atmosphe	re, 9.2.17, page 3	30	

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

b: intercept m: slope

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173478 證書編號

Description / 儀得 Manufacturer / 集 Model No. / 型勁 Serial No. / 編號 Supplied By / 委	器名稱 : W造商 : E :	(Job No. / 序引編號: IC1 Sound Level Calibrator Rion NC-73 10997142 Envirotech Services Co. Room 113, 1/F, My Loft, 9 New Territories, Hong Kon	Hoi Wing Road, Tuer		/ 收件日期:23 June 201
TEST CONDIT Temperature / 溫 Line Voltage / 霍	度: (2		Relative	Humidity / †	目對濕度 : (55±20)%
TEST SPECIFI Calibration chec		/ 測試規範			
DATE OF TES	T / 測試日其	期 : 28 June 2017			
The results do no The results are d The test equipme - The Governme	y to the parti- ot exceed ma- etailed in the ent used for ent of The H	果 icular unit-under-test only. anufacturer's specification. e subsequent page(s). calibration are traceable to N long Kong Special Administra ysight Technologies			n Laboratory
Rohde & SchvFluke Everett					
Tested By 測試	: _	H T Wong Technical Officer			
Certified By 核證	:	K C Lee	Date of Issue 簽發日期	:	30 June 2017

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山轉機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

2

輝創工程有限公司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173478 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.8	± 0.5	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value		
(kHz)	(kHz)	Spec.	(Hz)		
1	0.985	1 kHz ± 2 %	± 1		

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C173884 證書編號

Description / 儀器 Manufacturer / 集 Model No. / 型號 Serial No. / 編號 Supplied By / 委	器名稱 : W造商 : E :		Hoi Wing Road, Tuen M		日期:3 July 20
TEST CONDIT Temperature / 溫 Line Voltage / 霍	度: (2		Relative Hı	umidity / 相對濕度	: (55 ± 20)
TEST SPECIFI Calibration	CATIONS	/ 測試規範			
DATE OF TES	Γ/測試日其	期 : 16 July 2017			
The results do no	to the parti of exceed ma	果 icular unit-under-test only. anufacturer's specification. (aft e subsequent page(s).	er adjustment)		
- The Governme	ent of The H ologies / Ke varz Laborat			Calibration Labora	itory
Tested By 測試	: _	H T Wong Technical Officer			
		1	Date of Issue		

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173884 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

	UU	JT Setting		Applied	l Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	LA	А	Fast	94.00	1	* 92.5	± 1.1

6.1.1.2 After Adjustment

	UU	JT Setting		Applied	l Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.9	± 1.1

6.1.2 Linearity

	U	UT Setting		Applied	Value	UUT
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	L _A	A	Fast	94.00	1	93.9 (Ref.)
				104.00		104.1
				114.00		114.4

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173884 證書編號

6.2 Time Weighting

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	L _A	A	Fast	94.00	1	93.9	Ref.
			Slow			93.8	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

		Γ Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	LA	А	Fast	94.00	63 Hz	67.6	-26.2 ± 1.5
					125 Hz	77.6	-16.1 ± 1.5
					250 Hz	85.2	-8.6 ± 1.4
					500 Hz	90.6	-3.2 ± 1.4
					1 kHz	93.9	Ref.
					2 kHz	95.1	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.8	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.9	-0.8 ± 1.5
					125 Hz	93.7	-0.2 ± 1.5
					250 Hz	93.9	0.0 [±] 1.4
					500 Hz	93.9	0.0 ± 1.4
	•				1 kHz	93.9	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	90.9	-3.0 (+2.1 ; -3.1)
					12.5 kHz	88.1	· -6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C173884 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 316987

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	:	\pm 0.30 dB
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	:	$\pm 0.35 \text{ dB}$
		8 kHz	:	$\pm 0.45 \text{ dB}$
		12.5 kHz	:	± 0.70 dB
	104 dB	: 1 kHz		± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Report No.	:	AH020040
Date of Issue	:	07 February 2018
Page No.	:	1 of 2

PART A – CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment	:	YSI ProDSS (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	16H104234
Date of Received	:	Feb 06, 2018
Date of Calibration	:	Feb 06, 2018 to Feb 06, 2018
Date of Next Calibration(a)	:	May 06, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.03	+0.03	Satisfactory
7.42	7.40	-0.02	Satisfactory
10.01	10.05	+0.04	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	13.9	-0.1	Satisfactory
26.0	26.1	+0.1	Satisfactory
33.0	32.8	-0.2	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d)

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards. (e)

APPROVED SIGNATORY:

FUNG Yuen-ching Aries Laboratory Manager

Report No.	:	AH020040
Date of Issue	:	07 February 2018
Page No.	2	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.07	+0.07	Satisfactory
1.95	1.90	-0.05	Satisfactory
3.68	3.66	-0.02	Satisfactory
6.26	6.22	-0.04	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	149.9	+2.0	Satisfactory
0.01	1412	1362	-3.5	Satisfactory
0.1	12890	12536	-2.7	Satisfactory
0.5	58670	58006	-1.1	Satisfactory
1.0	111900	107622	-3.8	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.5	Satisfactory
20	19.86	-0.7	Satisfactory
30	29.88	-0.4	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	9.8	-2.0	Satisfactory
20	19.8	-1.0	Satisfactory
100	96.1	-3.9	Satisfactory
800	785.4	-1.8	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

 $\frac{Remark(s):}{\emptyset}$

- () "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- (8) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.
Date of Issue
Page No.

: AH020041 : 07 February 2018 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	:	YSI ProDSS (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	17H105557
Date of Received	1	Feb 06, 2018
Date of Calibration	:	Feb 06, 2018 to Feb 06, 2018
Date of Next Calibration(a)	:	May 06, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
-	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.08	+0.08	Satisfactory
7.42	7.47	+0.05	Satisfactory
10.01	10.07	+0.06	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	13.8	-0.2	Satisfactory
26.0	25.7	-0.3	Satisfactory
33.0	32.6	-0.4	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY :

FUNG Yuen-ching Aries Laboratory Manager

Report No.	1	AH020041
Date of Issue		07 February 2018
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.02	+0.02	Satisfactory
1.95	1.93	-0.02	Satisfactory
3.68	3.59	-0.09	Satisfactory
6.26	6.24	-0.02	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	143.6	-2.2	Satisfactory
0.01	1412	1394	-1.3	Satisfactory
0.1	12890	12770	-0.9	Satisfactory
0.5	58670	57972	-1.2	Satisfactory
1.0	111900	109332	-2.3	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.89	-1.1	Satisfactory
20	19.76	-1.2	Satisfactory
30	29.70	-1.0	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	9.6	-4.0	Satisfactory
20	19.6	-2.0	Satisfactory
100	96.5	-3.5	Satisfactory
800	779.6	-2.6	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- (0) "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- ⁽⁸⁾ The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	:	AH020039
Date of Issue	:	07 February 2018
Page No.	:	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Par	ameters)
Manufacturer	: YSI (a xylem brand)	
Serial Number	: 16H104233	
Date of Received	: Feb 06, 2018	
Date of Calibration	: Feb 06, 2018 to Feb 06,	2018
Date of Next Calibration(a)	: May 06, 2018	

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.04	+0.04	Satisfactory
7.42	7.39	-0.03	Satisfactory
10.01	10.08	+0.07	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	13.6	-0.4	Satisfactory
26.0	25.8	-0.2	Satisfactory
33.0	32.5	-0.5	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY :

FUNG Yuen-ching Aries Laboratory Manager

Report No.	:	AH020039
Date of Issue		07 February 2018
Page No.		2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.05	+0.05	Satisfactory
1.95	1.99	+0.04	Satisfactory
3.68	3.73	+0.05	Satisfactory
6.26	6.21	-0.05	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	150.6	+2.5	Satisfactory
0.01	1412	1377	-2.5	Satisfactory
0.1	12890	12598	-2.3	Satisfactory
0.5	58670	57622	-1.8	Satisfactory
1.0	111900	107426	-4.0	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.92	-0.8	Satisfactory
20	19.79	-1.1	Satisfactory
30	29.80	-0.7	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	10.6	+6.0	Satisfactory
20	19.4	-3.0	Satisfactory
100	95.9	-4.1	Satisfactory
800	790.1	-1.2	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

 ⁽⁰⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 ^(g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	1	AH020037
Date of Issue	:	07 February 2018
Page No.	•	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 17E100747
Date of Received	: Feb 01, 2018
Date of Calibration	: Feb 01, 2018 to Feb 01, 2018
Date of Next Calibration(a)	: May 01, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.08	+0.08	Satisfactory
7.42	7.48	+0.06	Satisfactory
10.01	10.03	+0.02	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	13.8	-0.2	Satisfactory
26.0	25.8	-0.2	Satisfactory
33.0	33.1	+0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(*d*) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards.

APPROVED SIGNATORY :

FUNG Yuen-ching Aries Laboratory Manager

Report No.	:	AH020037
Date of Issue	:	07 February 2018
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.03	0.03	Satisfactory
1.95	1.88	-0.07	Satisfactory
3.68	3.61	-0.07	Satisfactory
6.26	6.20	-0.06	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	144.2	-1.8	Satisfactory
0.01	1412	1383	-2.1	Satisfactory
0.1	12890	12603	-2.2	Satisfactory
0.5	58670	57995	-1.2	Satisfactory
1.0	111900	109400	-2.2	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.82	-1.8	Satisfactory
20	19.81	-1.0	Satisfactory
30	29.74	-0.9	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	10.1	1.0	Satisfactory
20	20.4	2.0	Satisfactory
100	103.2	3.2	Satisfactory
800	781.2	-2.3	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- ⁽⁰⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- (*) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	:	AH020038
Date of Issue	;	07 February 2018
Page No.		1 of 2

PART A – CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	:	YSI ProDSS (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	15M100005
Date of Received	:	Feb 06, 2018
Date of Calibration	:	Feb 06, 2018 to Feb 06, 2018
Date of Next Calibration(a)	:	May 06, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Parameter</u>	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.97	-0.03	Satisfactory
7.42	7.35	-0.07	Satisfactory
10.01	10.03	+0.02	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.0	13.9	-0.1	Satisfactory
26.0	25.7	-0.3	Satisfactory
33.0	32.7	-0.3	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards. (d) (e)

APPROVED SIGNATORY :

FUNG Yuen-ching Aries Laboratory Manager

Report No.	5	AH020038
Date of Issue	1	07 February 2018
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.02	+0.02	Satisfactory
1.95	1.99	+0.04	Satisfactory
3.68	3.72	+0.04	Satisfactory
6.26	6.19	-0.07	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	143.1	-2.0	Satisfactory
0.01	1412	1401	-0.8	Satisfactory
0.1	12890	12762	-1.0	Satisfactory
0.5	58670	57936	-1.3	Satisfactory
1.0	111900	109009	-2.6	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.02	+0.2	Satisfactory
20	19.88	-0.6	Satisfactory
30	29.65	-1.2	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	10.3	+3.0	Satisfactory
20	20.4	+2.0	Satisfactory
100	104.2	+4.2	Satisfactory
800	789.7	-1.3	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	:
Date of Issue	1
Page No.	20 10

AH030025 09 March 2018 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811. Hin Pui House. Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI 6920 (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 000109DF
Date of Received	: Mar 02, 2018
Date of Calibration	: Mar 02, 2018 to Mar 02, 2018
Date of Next Calibration(a)	: Jun 02, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.97	-0.03	Satisfactory
7.42	7.46	+0.04	Satisfactory
10.01	10.08	+0.07	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
18.0	17.9	-0.1	Satisfactory
22.0	21.9	-0.1	Satisfactory
36.0	35.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. (c)

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards. (d) (e)

APPROVED SIGNATORY :

LAM Ho-yee, Emma Assistant Laboratory Manager

Report No.	1	AH030025
Date of Issue	:	09 March 2018
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.16	+0.16	Satisfactory
2.44	2.38	-0.06	Satisfactory
5.84	5.77	-0.07	Satisfactory
7.06	6.98	-0.08	Satisfactory
8.53	8.48	-0.05	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	144	-2.0	Satisfactory
0.01	1412	1422	+0.7	Satisfactory
0.1	12890	12716	-1.3	Satisfactory
0.5	58670	57921	-1.3	Satisfactory
1.0	111900	109891	-1.8	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.92	-0.8	Satisfactory
20	19.90	-0.5	Satisfactory
30	29.78	-0.7	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		
10	9.7	-3.0	Satisfactory
20	19.6	-2.0	Satisfactory
100	96.4	-3.6	Satisfactory
800	782	-2.2	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	:	AH030026
Date of Issue	:	09 March 2018
Page No.	:	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Rm 811, Hin Pui House, Hin Keng Estate, Tai Wai New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment	:	YSI 6920 v2 (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	0001C6A7
Date of Received	:	Mar 02, 2018
Date of Calibration	:	Mar 02, 2018 to Mar 02, 2018
Date of Next Calibration(a)	1	Jun 02, 2018

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
un unter here of the set of the s	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.95	-0.05	Satisfactory
7.42	7.39	-0.03	Satisfactory
10.01	10.06	+0.05	Satisfactory

Tolerance of pH should be less than ±0.10 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
18.0	17.9	-0.1	Satisfactory
22.0	21.9	-0.1	Satisfactory
36.0	35.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. (c)

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by QPT or quoted form relevant international standards. (d)

(e)

APPROVED SIGNATORY:

LAM Ho-yee, Emma Assistant Laboratory Manager

Report No.	:	AH030026
Date of Issue	:	09 March 2018
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.00	0.13	+0.13	Satisfactory
2.44	2.40	-0.04	Satisfactory
5.84	5.77	-0.07	Satisfactory
7.06	6.99	-0.07	Satisfactory
8.53	8.50	-0.03	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	143.2	-2.5	Satisfactory
0.01	1412	1429	+1.2	Satisfactory
0.1	12890	12730	-1.2	Satisfactory
0.5	58670	58276	-0.7	Satisfactory
1.0	111900	109414	-2.2	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.97	-0.3	Satisfactory
20	19.89	-0.5	Satisfactory
30	29.84	-0.5	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		2
10	9.5	-0.5	Satisfactory
20	19.4	-3.0	Satisfactory
100	94.7	-5.3	Satisfactory
800	779	-2.6	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u> ⁽¹⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. (g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C175727 證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-227 Description / 儀器名稱 : Anemometer Manufacturer / 製造商 : Lutron Model No. / 型號 : AM-4201 Serial No. / 編號 : AF.27513 Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	
Description / 儀器名稱 : Anemometer Manufacturer / 製造商 : Lutron Model No. / 型號 : AM-4201 Serial No. / 編號 : AF.27513 Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	
Manufacturer / 製造商 : Lutron Model No. / 型號 : AM-4201 Serial No. / 編號 : AF.27513 Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	Wing Road, Tuen Mun,
Model No. / 型號 : AM-4201 Serial No. / 編號 : AF.27513 Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi W New Territories, Hong Kong	Wing Road, Tuen Mun,
Supplied By / 委託者 : Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi V New Territories, Hong Kong	Wing Road, Tuen Mun,
Room 113, 1/F, My Loft, 9 Hoi V New Territories, Hong Kong	Wing Road, Tuen Mun,
New Territories, Hong Kong	Wing Road, Tuen Mun,
TEST CONDITIONS / 測試條件	· .
Temperature / 溫度 : (23 ± 2)°C	Relative Humidity / 相對濕度 : (55 ± 20)%
Line Voltage / 電壓 :	
TEST RESULTS / 測試結果	
The results apply to the particular unit-under-test only. The results are detailed in the subsequent page(s).	
The test equipment used for calibration are traceable to Nationa - Testo Industrial Services GmbH, Germany	al Standards via :
Tested By : <i>Unn Unn C</i> 測試 H C Chan Engineer	
Tested By : <u>Unn Un Un</u> 測試 H C Chan Engineer	
Tested By : Chan An C 測試 H C Chan	Date of Issue : 16 October 2017 簽發日期

The test equipment used for ca ration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用。之測試器科均可溯源至國際標準。局部海印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C175727 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 10 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL386	Multi-function Measuring Instrument	S16493

- 4. Test procedure : MA130N.
- 5. Results :

Air Velocity

Applied	UUT		Measured Correction				
Value	Reading	Value	Measurement Uncertainty				
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor			
1.9	1.7	+0.2	0.2	2.0			
4.0	3.8	+0.2	0.2	2.0			
6.0	5.9	+0.1	0.3	2.0			
8.0	8.0	0.0	0.3	2.0			
10.0	10.1	-0.1	0.4	2.0			

Remarks : - The Measured Corrections are defined as : Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ENVIROTECH SERVICES CO.

Date of Calibration :	18 October 2017
Brand of Test Meter:	Global Water
Model:	Speed Sensor: WE550 (S/N:E1337005099)
	Direction Senor: WE570 (S/N:153500564)
Location :	Pak Mong, Siu Ho Wan
Procedures :	
1. Wind Still Test:	The wind speed sensor was hold by hand until it keep still
2.Wind Speed Test:	The wind meter was on-site calibrated against the Anemometer
3.Wind Direction Test :	The wind meter was on-site calibrated against the marine compass at four directions
Results:	

Calibration Report of Wind Meter

Wind Still Test

Wind Speed (m/s) 0.00

Wind Speed Test

Global Water (m/s)	Anemometer (m/s)	
2.29	2.5	
1.42	1.6	
0.47	0.5	

Wind Direction Test

Global Water (o)	Marine Compass (o)
270.09	270
0.03	0
90.05	90
181.03	180

Calibrated by:

Aa

Checked by : Fat

Yeung Ping Fai (Technical Officer) Ho Kam Fat (Senior Technical Officer)

ENVIROTECH SERVICES CO.

Date of Calibration :	01 April 2018
Brand of Test Meter:	Global Water
Model:	Speed Sensor: WE550 (S/N:E1337005099)
	Direction Senor: WE570 (S/N:153500564)
Location :	Pak Mong, Siu Ho Wan
Procedures :	
1. Wind Still Test:	The wind speed sensor was hold by hand until it keep still
2.Wind Speed Test:	The wind meter was on-site calibrated against the Anemometer
3.Wind Direction Test :	The wind meter was on-site calibrated against the marine compass at four directions
Results:	

Calibration Report of Wind Meter

Wind Still Test

Wind Speed (m/s) 0.00

Wind Speed Test

Global Wate (m/s)	Anemometer (m/s)	
1.71	1.6	
1.19	1.1	
0.47	0.4	

Wind Direction Test

Global Wate (o)	Marine Compass (o)
271.10	270
0.04	0
90.25	90
180.66	180

Calibrated by:

Að

Checked by : Fat

Ho Kam Fat (Senior Technical Officer)

Yeung Ping Fai (Technical Officer) Appendix F

EM&A Monitoring Schedules

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 30 April 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Apr				05-Apr	06-Apr	07-Ap
			Noise Impact Monitoring			
08-Apr	09-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Ap
		Noise Impact Monitoring				
15-Apr		17-Apr	18-Apr	19-Apr	20-Apr	21- Ap
	Noise Impact Monitoring			Noise Impact Monitoring		
22-Apr	23-Apr			26-Apr	27-Apr	28-Ap
			Noise Impact Monitoring			Noise Impact Monitoring
29-Apr	30-Apr					
2071						

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 30 April 2018)

Friday Tuesday Wednesday Thursday Saturday Sunday Monday 04-Apr 01-Apr 02-Apr 03-Apr 05-Apr 06-Apr 07-Apr 1-hr TSP Monitoring 24-hr TSP Monitoring 08-Apr 13-Apr 09-Apr 10-Apr 14-Apr 11-Apr 12-Apr 1-hr TSP Monitoring 24-hr TSP Monitoring 18-Apr 21-Apr 20-Apr 15-Apr 16-Apr 17-Apr 19-Apr 1-hr TSP Monitoring 1-hr TSP Monitoring 24-hr TSP Monitoring 24-hr TSP Monitoring 27-Apr 23-Apr 24-Apr 26-Apr 22-Apr 25-Apr 28-Ap 1-hr TSP Monitoring 1-hr TSP Monitoring 24-hr TSP Monitoring 24-hr TSP Monitoring

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

29-Apr	30-Apr			

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 31 May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturda	
		01-May	02-May	03-May	04-May		05-Ma
					Noise Impact		
					Monitoring		
					, i i i i i i i i i i i i i i i i i i i		
06-May	07-May	08-May			11-May		12-M
				Noise Impact			
				Monitoring			
12 Mov	14 Mov	15 Mov	16 Mov	17 Mov	19 Mov		19-M
13-May	14-May	15-May	16-May	17-May			19-10
			Noise Impact Monitoring			Noise Impact	
						Monitoring	
20-May	21-May	22-May	23-May	24-May	25-May		26-M
					Noise Impact		
					Monitoring		
					Ŭ		
27-May	28-May	29-May	30-May	31-May			
				Noise Impact			
				Monitoring			
				Ŭ			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. Additional weekly noise impact monitoring for construction works undertaken between 19:00-07:00 will be supplemented after confirmation of construction schedule.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Air Quality Monitoring Schedule (1 to 31 May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-May	02-May	03-May	04-May	05-May
					1-hr TSP Monitoring	
					24-hr TSP Monitoring	
06-May	07-May	08-May	09-May	10-May	11-May	12-May
				1-hr TSP Monitoring		
				24-hr TSP Monitoring		
13-May	14-May	15-May	16-May	17-May	18-May	19-May
			1-hr TSP Monitoring			1-hr TSP Monitoring
			24-hr TSP Monitoring			24-hr TSP Monitoring
				24 Ма		
20-May	21-May	22-May	23-May	24-May	,	26-May
					1-hr TSP Monitoring	
					24-hr TSP Monitoring	

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

.

27-May	28-May	29-May	30-May	31-May	
				1-hr TSP Monitoring 24-hr TSP Monitoring	

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (April 2018)

Sunday	Monday	Tuesdav	Wednesday	Thursday	Friday	Saturday
1-Apr						
	ebb tide 12:27 - 15:57 flood tide 6:20 - 9:50		ebb tide 13:38 - 17:08 flood tide 7:13 - 10:43		ebb tide 15:02 - 18:32 flood tide 8:09 - 11:39	
8-Apr	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
	ebb tide 5:43 - 9:13 flood tide 18:24 - 21:30		ebb tide 9:30 - 12:37 flood tide 13:56 - 17:26		ebb tide 10:07 - 13:37 flood tide 15:38 - 19:08	
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
	ebb tide 11:34 - 15:04 flood tide 5:19 - 8:49		ebb tide 12:45 - 16:15 flood tide 6:16 - 9:46		ebb tide 14:13 - 17:43 flood tide 7:22 - 10:52	
22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr
	ebb tide 17:25 - 20:40 flood tide 10:00 - 13:30		ebb tide 8:40 - 11:55 flood tide 13:38 - 17:08		ebb tide 9:53 - 13:23 flood tide 15:41 - 19:11	
29-Apr	30-Apr					
	ebb tide 11:32 - 15:02 flood tide 5:10 - 8:40					

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (May 2018)

	-		, , , , , , , , , , , , , , , , , , , ,		,	
Sundav	Mondav			Thursdav	Friday	Saturdav
		1-Mav	2-May	3-May	4-Mav	5-May
			ebb tide 12:40 - 16:10 flood tide 6:05 - 9:35		ebb tide 13:52 - 17:22 flood tide 7:02 - 10:32	
6-May	7-Mav	8-Mav	9-Mav	10-May	11-May	12-Mav
	ebb tide 16:09 - 19:33 flood tide 3:40 - 7:10		ebb tide 7:33 - 11:01 flood tide 11:55 - 15:25	10 100	ebb tide 9:01 - 12:31 flood tide 14:22 - 17:52	
13-Mav	14-May	15-May	16-Mav	17-Mav	18-Mav	19-Mav
ebb tide 10:02 - 13:32 flood tide 16:06 - 19:36			ebb tide 11:49 - 15:19 flood tide 5:10 - 8:40		ebb tide 13:16 - 16:46 flood tide 6:22 - 9:52	
20-Mav	21-Mav	22-Mav	23-Mav	24-Mav	25-Mav	26-Mav
	ebb tide 15:59 - 18:53 flood tide 8:45 - 12:15		ebb tide 6:53 - 10:23 flood tide 12:04 - 15:34		ebb tide 8:47 - 12:17 flood tide 14:37 - 18:07	
27-May	28-May	29-May	30-May	31-May		
	ebb tide 10:37 - 14:07 flood tide 17:20 - 20:50		ebb tide 11:48 - 15:18 flood tide 18:49 - 22:19			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 30 April 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
01-Apr	02-Apr	03-Apr	04-Apr	05-Apr	06-Apr	07-Apr
08-Apr	09-Apr	10-Apr	11-Apr	12-Apr	13-Apr	14-Apr
		Impact Dolphin				
		Monitoring				
15-Apr	16-Apr	17-Apr	18-Apr	19-Apr	20-Apr	21-Apr
· · ·		Impact Dolphin	•	Impact Dolphin	· · · ·	
		Monitoring		Monitoring		
		-		-		
22-Apr	23-Apr	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr
· · · ·	•		Impact Dolphin			
			Monitoring			
			-			
29-Apr	30-Apr					
2074	50 / Ipi					

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 31 May 2018)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		01-May	02-May	03-May	04-May	05-May
06-May		08-May	09-May		11-May	12-May
	Impact Dolphin			Impact Dolphin		
	Monitoring			Monitoring		
13-May	14-May	15-May		17-May	18-May	19-May
			Impact Dolphin			
			Monitoring			
20-May	21-May			24-May	25-May	26-May
			Impact Dolphin			
			Monitoring			
27-May	28-May	29-May	30-May	31-May		

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

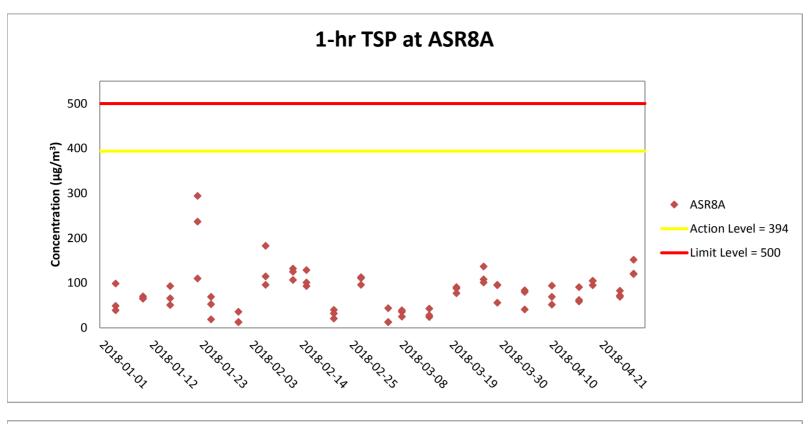
Appendix G

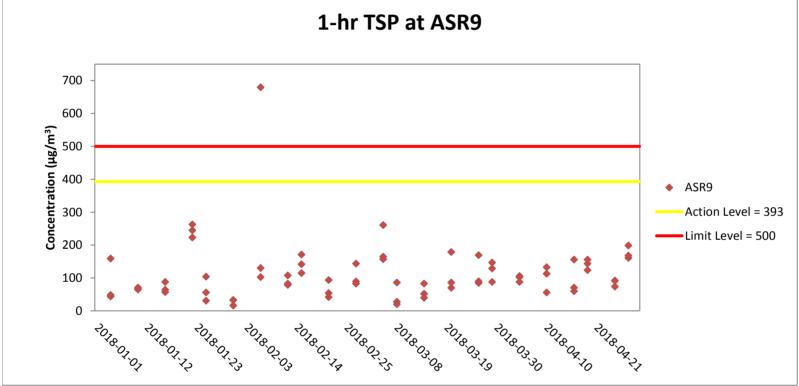
Impact Air Quality Monitoring Results and Graphical Presentation

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2018-04-04	ASR8A	9:02	1-hr TSP	84		
TMCLKL	HY/2012/07	2018-04-04	ASR8A	10:04	1-hr TSP	41		
TMCLKL	HY/2012/07	2018-04-04	ASR8A	11:08	1-hr TSP	80		
TMCLKL	HY/2012/07	2018-04-10	ASR8A	8:10	1-hr TSP	94		
TMCLKL	HY/2012/07	2018-04-10	ASR8A	9:25	1-hr TSP	69		
TMCLKL	HY/2012/07	2018-04-10	ASR8A	10:40	1-hr TSP	52		
TMCLKL	HY/2012/07	2018-04-16	ASR8A	8:00	1-hr TSP	91		
TMCLKL	HY/2012/07	2018-04-16	ASR8A	9:02	1-hr TSP	59		
TMCLKL	HY/2012/07	2018-04-16	ASR8A	10:10	1-hr TSP	62	394	500
TMCLKL	HY/2012/07	2018-04-19	ASR8A	8:02	1-hr TSP	105	394	500
TMCLKL	HY/2012/07	2018-04-19	ASR8A	9:04	1-hr TSP	95		
TMCLKL	HY/2012/07	2018-04-19	ASR8A	10:08	1-hr TSP	105		
TMCLKL	HY/2012/07	2018-04-25	ASR8A	13:10	1-hr TSP	83		
TMCLKL	HY/2012/07	2018-04-25	ASR8A	14:22	1-hr TSP	72		
TMCLKL	HY/2012/07	2018-04-25	ASR8A	15:24	1-hr TSP	69		
TMCLKL	HY/2012/07	2018-04-28	ASR8A	9:00	1-hr TSP	152		
TMCLKL	HY/2012/07	2018-04-28	ASR8A	10:10	1-hr TSP	121		
TMCLKL	HY/2012/07	2018-04-28	ASR8A	11:12	1-hr TSP	120		
					Average	86		
					Min.	41		
					Max.	152		

1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9


Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2018-04-04	ASR9	8:50	1-hr TSP	103		
TMCLKL	HY/2012/07	2018-04-04	ASR9	9:52	1-hr TSP	88		
TMCLKL	HY/2012/07	2018-04-04	ASR9	10:55	1-hr TSP	106		
TMCLKL	HY/2012/07	2018-04-10	ASR9	8:20	1-hr TSP	133		
TMCLKL	HY/2012/07	2018-04-10	ASR9	9:35	1-hr TSP	113		
TMCLKL	HY/2012/07	2018-04-10	ASR9	10:50	1-hr TSP	56		
TMCLKL	HY/2012/07	2018-04-16	ASR9	8:10	1-hr TSP	156		
TMCLKL	HY/2012/07	2018-04-16	ASR9	9:12	1-hr TSP	60		
TMCLKL	HY/2012/07	2018-04-16	ASR9	10:22	1-hr TSP	71	202	500
TMCLKL	HY/2012/07	2018-04-19	ASR9	8:13	1-hr TSP	144	393	500
TMCLKL	HY/2012/07	2018-04-19	ASR9	9:15	1-hr TSP	124		
TMCLKL	HY/2012/07	2018-04-19	ASR9	10:30	1-hr TSP	156		
TMCLKL	HY/2012/07	2018-04-25	ASR9	13:22	1-hr TSP	92		
TMCLKL	HY/2012/07	2018-04-25	ASR9	14:33	1-hr TSP	74		
TMCLKL	HY/2012/07	2018-04-25	ASR9	15:35	1-hr TSP	92		
TMCLKL	HY/2012/07	2018-04-28	ASR9	9:13	1-hr TSP	199		
TMCLKL	HY/2012/07	2018-04-28	ASR9	10:25	1-hr TSP	161		
TMCLKL	HY/2012/07	2018-04-28	ASR9	11:27	1-hr TSP	168		
					Average	116		
					Min.	56		
					Max.	199		


Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2018-04-04	ASR8A	12:10	24-hr TSP	50		260
TMCLKL	HY/2012/07	2018-04-10	ASR8A	11:42	24-hr TSP	49		
TMCLKL	HY/2012/07	2018-04-16	ASR8A	11:12	24-hr TSP	52	178	
TMCLKL	HY/2012/07	2018-04-19	ASR8A	11:10	24-hr TSP	72	170	
TMCLKL	HY/2012/07	2018-04-25	ASR8A	16:26	24-hr TSP	57		
TMCLKL	HY/2012/07	2018-04-28	ASR8A	12:14	24-hr TSP	63		
					Average	57		
					Min.	49		
					Max.	72		

24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

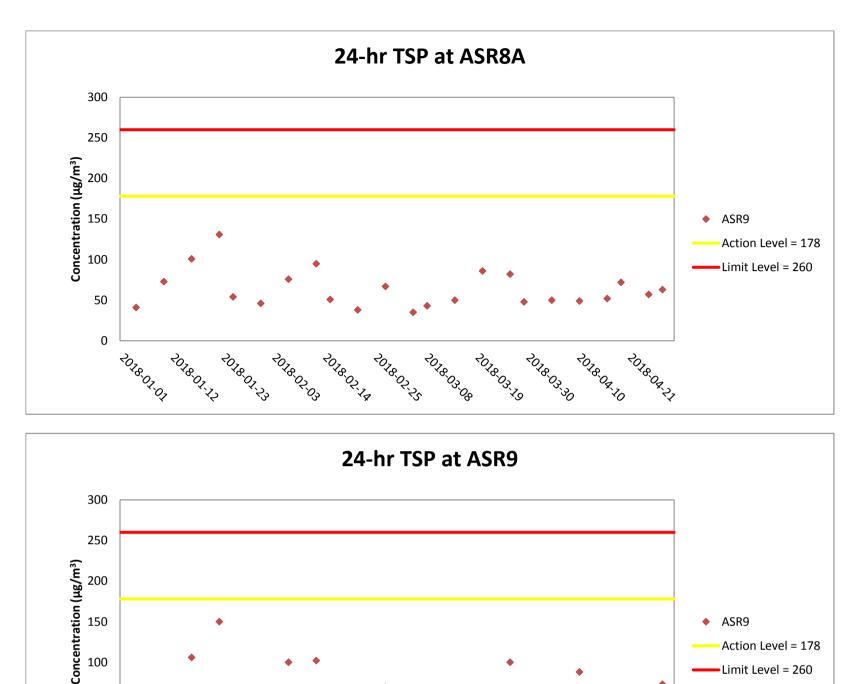
24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2018-04-04	ASR9	11:57	24-hr TSP	61		
TMCLKL	HY/2012/07	2018-04-10	ASR9	11:52	24-hr TSP	88	479	260
TMCLKL	HY/2012/07	2018-04-16	ASR9	11:24	24-hr TSP	57		
TMCLKL	HY/2012/07	2018-04-19	ASR9	11:32	24-hr TSP	39	178	
TMCLKL	HY/2012/07	2018-04-25	ASR9	16:37	24-hr TSP	66		
TMCLKL	HY/2012/07	2018-04-28	ASR9	12:29	24-hr TSP	73		
					Average	64		
					Min.	39		
					Max.	88		

Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Installation of pier head and deck segments; Asphalt paving; Sign gantries construction; Parapet installation; and Slope work of Viaducts A, B,C & D.

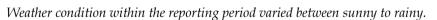
150


100

50

0

-²⁰¹⁰0101


-2018,01,12

۲ ASR9

Action Level = 178

Limit Level = 260

-2018001,23

-70780703

-707807,74

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Installation of pier head and deck segments; Asphalt paving; Sign gantries construction; Parapet installation; and *Slope work of Viaducts A, B,C & D.*

-707807,75

-2018003,30

- 2018,0x,27

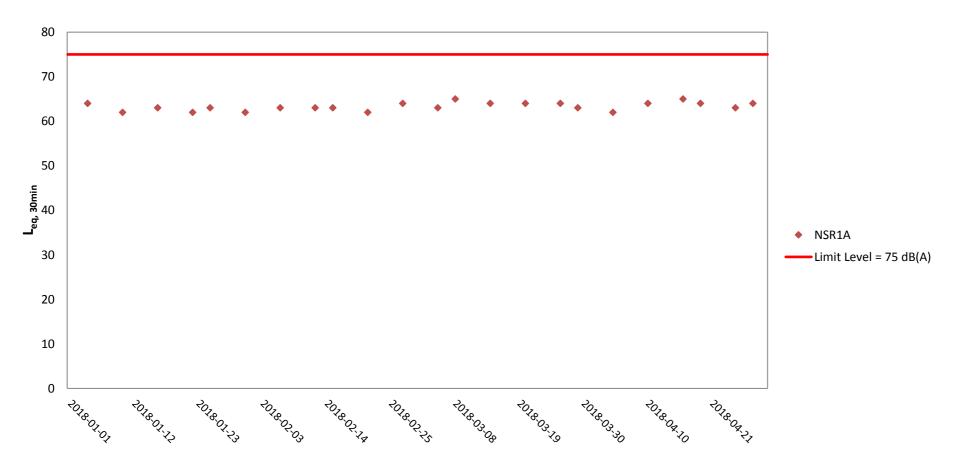
-201803,19

Appendix H

Meteorological Data for the Reporting Month

	T : (111)		
Date 2018/4/4	Time (HH) 0	Wind speed (m/s) 0.02	Wind direction (deg) 166
2018/4/4	1	0.02	205
2018/4/4	2	0.08	169
2018/4/4	3	0.05	175
2018/4/4	4	0.03	182
	5	0.02	173
2018/4/4			
2018/4/4	6	0.02	166
2018/4/4	7	0.03	154
2018/4/4	8	0.71	175
2018/4/4	9	1.66	171
2018/4/4	10	1.56	196
2018/4/4	11	0.21	185
2018/4/4	12	1.55	176
2018/4/4	13	1.64	174
2018/4/4	14	2.79	191
2018/4/4	15	2.99	174
2018/4/4	16	3.49	156
2018/4/4	17	3.76	165
2018/4/4	18	2.89	167
2018/4/4	19	1.95	165
2018/4/4	20	1.02	149
2018/4/4	20	0.08	139
2018/4/4	22	0.05	143
2018/4/4	23	0.02	212
2018/4/5	0	0.02	174
2018/4/5	1	0.02	147
2018/4/5	2	0.02	152
2018/4/5	3	0.02	175
2018/4/5	4	0.02	175
2018/4/5	5	0.02	176
2018/4/5	6	0.07	180
2018/4/5	7	0.14	175
2018/4/5	8	0.40	131
2018/4/5	9	1.60	151
2018/4/5	10	2.28	175
2018/4/5	10	2.75	169
2018/4/5	12	2.87	182
2018/4/5	13	3.35	181
2018/4/5	14	3.37	169
2018/4/5	15	3.27	168
2018/4/5	16	2.03	159
2018/4/5	17	2.05	148
2018/4/5	18	2.51	164
2018/4/5	19	2.33	148
2018/4/5	20	2.69	154
2018/4/5	21	2.53	149
2018/4/5	22	1.02	143
2018/4/5	23	0.96	146
2018/4/10	0	1.60	160
2018/4/10	1	1.71	158
2018/4/10	2	1.71	158
2018/4/10	3	1.73	160
		0.56	142
2018/4/10	4		
2018/4/10	5	0.02	139
2018/4/10	6	0.02	136
2018/4/10	7	0.24	186
2018/4/10	8	1.19	178
2018/4/10	9	1.72	166
2018/4/10	10	2.23	184
2018/4/10	11	2.48	177
2018/4/10	12	0.22	197
2018/4/10	13	0.77	146
2018/4/10	14	3.47	170
2018/4/10	15	2.82	170
	15	2.02	144
2018/4/10			
2018/4/10	17	2.49	166
2018/4/10	18	2.31	157
2018/4/10	19	2.20	153
2018/4/10	20	3.32	162
2018/4/10	21	2.02	165
			101
2018/4/10	22	1.68	164

Date	Time (HH)	Wind anood (m/o)	Wind direction (dog)
2018/4/11	Time (HH) 0	Wind speed (m/s) 1.48	Wind direction (deg) 164
2018/4/11	1	0.67	159
2018/4/11	2	0.98	165
2018/4/11	3	1.80	152
2018/4/11	4	1.50	159
2018/4/11	5	0.14	141
2018/4/11	6	0.16	166
2018/4/11	7	0.52	188
2018/4/11	8	0.67	172
2018/4/11	9	1.04	158
2018/4/11	10	0.87	172
2018/4/11	11	1.31	178
2018/4/11	12	1.04	176
2018/4/11	13	1.37	174
2018/4/11	14	2.89	174
2018/4/11	15	3.30	171
2018/4/11	16	1.66	165
2018/4/11	17	1.81	144
2018/4/11	18	2.11	152
2018/4/11	19	2.53	160
2018/4/11	20	1.85	154
2018/4/11	21	1.60	158
2018/4/11	22	0.42	143
2018/4/11	23	0.18	134
2018/4/16	0	0.08	63
2018/4/16	1	0.08	106
2018/4/16	2	0.04	50
2018/4/16	3	0.03	77
2018/4/16	4	0.02	196
2018/4/16	5	0.02	249
2018/4/16	6	0.03	88
2018/4/16	7	0.03	98
2018/4/16	8	0.02	45
2018/4/16	9	0.03	62
2018/4/16	10	0.02	65
2018/4/16	11	0.02	192
2018/4/16	12	0.07	68
2018/4/16	13	0.02	99
2018/4/16	14	0.02	206
2018/4/16	15	0.02	339
2018/4/16	16	0.03	311
2018/4/16	17	0.03	298
2018/4/16	18	0.05	41
2018/4/16	19	0.02	74
2018/4/16	20	0.02	64
2018/4/16	21	0.04	219
2018/4/16	22	0.03	284
2018/4/16	23	0.02	179
2018/4/17	0	0.03	79
2018/4/17	1	0.02	65
2018/4/17	2	0.02	185
2018/4/17	3	0.02	132
2018/4/17	4	0.06	40
2018/4/17	5	0.02	65
2018/4/17	6	0.02	56
2018/4/17	7	0.02	50
2018/4/17	8	0.02	40
2018/4/17	9	0.02	38
2018/4/17	10	0.02	76
2018/4/17	11	0.07	183
2018/4/17	12	0.02	283
2018/4/17	12	0.02	193
2018/4/17	13	0.04	94
2018/4/17	14	0.02	44
2010/4/17			
0040/4/47	A / ·	0.02	2
2018/4/17	16		~~
2018/4/17	17	0.40	89
2018/4/17 2018/4/17	17 18	0.40 1.06	164
2018/4/17 2018/4/17 2018/4/17	17 18 19	0.40 1.06 1.20	164 164
2018/4/17 2018/4/17 2018/4/17 2018/4/17	17 18 19 20	0.40 1.06 1.20 1.69	164
2018/4/17 2018/4/17 2018/4/17	17 18 19	0.40 1.06 1.20	164 164
2018/4/17 2018/4/17 2018/4/17 2018/4/17	17 18 19 20	0.40 1.06 1.20 1.69	164 164 169


Dete		$\mathbf{M}(\mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{3},$	
Date 2018/4/19	Time (HH) 0	Wind speed (m/s) 0.68	Wind direction (deg) 175
2018/4/19	1	0.39	147
2018/4/19	2	0.12	111
2018/4/19	3	0.06	162
2018/4/19	4	0.06	168
2018/4/19	5	0.55	184
2018/4/19	6	1.24	169
2018/4/19	7	1.89	161
2018/4/19	8	1.39	175
2018/4/19	9	0.86	183
2018/4/19	10	0.50	159
2018/4/19	11	1.38	138
2018/4/19	12	2.24	163
2018/4/19	13	2.32	157
2018/4/19	14	3.97	184
2018/4/19	15	3.08	172
2018/4/19	16	1.85	168
2018/4/19	17	1.78	169
2018/4/19	18	2.74	169
2018/4/19	19	2.08	179
2018/4/19	20	0.76	156
2018/4/19	21	3.01	177
2018/4/19	21	0.44	155
2018/4/19	22	0.44	155
2018/4/20	0	0.26	171
2018/4/20	1	0.05	151
2018/4/20	2	0.02	122
2018/4/20	3	0.02	146
2018/4/20	4	0.10	156
2018/4/20	5	0.15	156
2018/4/20	6	0.08	138
2018/4/20	7	0.02	97
2018/4/20	8	0.13	76
2018/4/20	9	0.31	156
2018/4/20	10	0.62	102
2018/4/20	11	0.41	171
2018/4/20	12	1.38	162
2018/4/20	13	1.18	164
2018/4/20	14	0.55	104
2018/4/20	15	0.53	100
2018/4/20	16	0.54	135
2018/4/20	17	0.45	147
2018/4/20	18	0.46	165
2018/4/20	19	0.02	157
2018/4/20	20	0.91	159
2018/4/20	21	3.15	160
2018/4/20	22	0.84	148
2018/4/20	23	1.15	124
2018/4/25	0	0.02	197
2018/4/25	1	0.04	200
2018/4/25	2	0.02	170
2018/4/25	3	0.03	61
2018/4/25	4	0.04	52
2018/4/25	5	0.08	57
2018/4/25	6	0.07	162
2018/4/25	7	0.04	132
2018/4/25	8	0.02	38
2018/4/25	o 9	0.02	163
2018/4/25	10	0.37	183
2018/4/25	11	1.25	186
2018/4/25	12	1.13	185
2018/4/25	13	0.71	169
2018/4/25	14	0.86	188
2018/4/25	15	0.77	194
2018/4/25	16	0.30	161
	17	0.02	133
2018/4/25		0.56	173
2018/4/25 2018/4/25	18	0.00	
2018/4/25			
2018/4/25 2018/4/25	19	0.62	182
2018/4/25 2018/4/25 2018/4/25	19 20	0.62 0.07	182 146
2018/4/25 2018/4/25	19	0.62	182

Date	Time (HH)	Wind anood (m/o)	Wind direction (deg)
2018/4/26	0	Wind speed (m/s) 0.15	170
2018/4/26	1	0.53	154
2018/4/26	2	1.25	198
2018/4/26	3	0.90	195
2018/4/26	4	1.03	195
2018/4/26	5	1.04	208
2018/4/26	6	2.58	183
2018/4/26	7	0.22	164
2018/4/26	8	0.63	172
2018/4/26	9	0.88	167
2018/4/26	10	1.28	158
2018/4/26	11	0.91	154
2018/4/26	12	1.58	167
2018/4/26	13	1.13	168
2018/4/26	14	0.68	166
2018/4/26	15	0.36	163
2018/4/26	16	0.02	92
2018/4/26	17	0.26	165
2018/4/26	18	1.80	185
2018/4/26	19	1.05	187
2018/4/26	20	0.02	174
2018/4/26	21	0.13	181
2018/4/26	22	0.40	180
2018/4/26	23	0.11	172
2018/4/28	0	0.09	181
2018/4/28	1	0.14	172
2018/4/28	2	0.43	161
2018/4/28	3	0.42	155
2018/4/28	4	0.11	123
2018/4/28	5	0.31	40
2018/4/28	6	0.29	109
2018/4/28	7	0.23	172
2018/4/28	8	0.13	160
2018/4/28	9	2.27	164
2018/4/28	10	3.53	176
2018/4/28	11	1.79	152
2018/4/28	12	0.30	172
2018/4/28	13	0.81	134
2018/4/28	14	1.13	159
2018/4/28	15	1.81	149
2018/4/28	16	2.86	153
2018/4/28	17	2.46	182
2018/4/28	18	0.50	173
2018/4/28	19	1.10	168
2018/4/28	20	1.57	176
2018/4/28	21	2.08	161
2018/4/28	22	1.99	167
2018/4/28	23	1.41	161
2018/4/29	0	1.57	155
2018/4/29		0.68	161
	1		
2018/4/29	2	0.10	191
2018/4/29	3	0.02	189
2018/4/29	4	0.02	164
2018/4/29	5	0.02	75
2018/4/29	6	0.39	137
2018/4/29	7	0.53	176
2018/4/29	8	0.54	183
2018/4/29	9	1.04	175
2018/4/29	10	1.18	183
ZU 10/4/79	10		
			103
2018/4/29	11	2.74	193
2018/4/29 2018/4/29	11 12	2.74 3.47	191
2018/4/29 2018/4/29 2018/4/29	11 12 13	2.74 3.47 3.54	191 185
2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14	2.74 3.47 3.54 3.03	191 185 173
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15	2.74 3.47 3.54 3.03 3.08	191 185 173 177
2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14	2.74 3.47 3.54 3.03	191 185 173
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15	2.74 3.47 3.54 3.03 3.08	191 185 173 177
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16	2.74 3.47 3.54 3.03 3.08 2.73	191 185 173 177 165
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16 17	2.74 3.47 3.54 3.03 3.08 2.73 3.35 2.67	191 185 173 177 165 159
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16 17 18 19	2.74 3.47 3.54 3.03 3.08 2.73 3.35 2.67 1.98	191 185 173 177 165 159 163 168
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16 17 18 19 20	2.74 3.47 3.54 3.03 3.08 2.73 3.35 2.67 1.98 1.62	191 185 173 177 165 159 163 168 163
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16 17 18 19 20 21	2.74 3.47 3.54 3.03 3.08 2.73 3.35 2.67 1.98 1.62 1.73	191 185 173 177 165 159 163 168 163 163 163 163
2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29 2018/4/29	11 12 13 14 15 16 17 18 19 20	2.74 3.47 3.54 3.03 3.08 2.73 3.35 2.67 1.98 1.62	191 185 173 177 165 159 163 168 163

Appendix I

Impact Noise Monitoring Results and Graphical Presentation

Drois of			Otation	Weather Condition		Noise L	evel for 30-	min, dB(A)	Limit Level	Wind Speed		Calibrator
Project	Works	Date (yyyy-mm-dd)	Station	Weather Condition	Time (hh:mm, 24hour)	Leq	L10	L90	dB(A)	(m/s)	Noise Meter Model/ID	Model/ID
TMCLKL	HY/2012/07	2018-04-04	NSR1A	Sunny	10:13	62	63	59	75	0.3	RION NL31	RION NC73
TWICERE	111/2012/07	2010-04-04	NORIA	Sunny	10.15	02	03	59	75	0.5	(S/N 00603867)	(S/N 10486660)
TMCLKL	HY/2012/07	2018-04-10	NSR1A	Sunny	10:00	64	64	60	75	0.5	RION NL31	RION NC73
TWICLKL	Π1/2012/07	2010-04-10	NORIA	Sunny	10.00	04	04	00	75	0.5	(S/N 00603867)	(S/N 10486660)
TMCLKL	HY/2012/07	2018-04-16	NSR1A	Cloudy	9:30	65	66	62	75	0.3	RION NL31	RION NC73
TWICLKL	Π1/2012/07	2010-04-10	NORIA	Cloudy	9.30	05	00	02	75	0.5	(S/N 00603867)	(S/N 10486660)
TMCLKL	HY/2012/07	2018-04-19	NSR1A	Sunny	9:29	64	64	61	75	0.5	RION NL31	RION NC73
TWICERE	111/2012/07	2010-04-19	NORIA	Sunny	9.29	04	04	01	75	0.5	(S/N 00603867)	(S/N 10486660)
TMCLKL	HY/2012/07	2018-04-25	NSR1A	Cloudy	13:45	63	63	60	75	0.6	RION NL31	RION NC73
TWICLKL	Π1/2012/07	2010-04-25	NORIA	Cloudy	13.45	03	03	00	75	0.0	(S/N 00603867)	(S/N 10486660)
TMCLKL	HY/2012/07	2018-04-28	NSR1A	Cloudy	9:31	64	65	61	75	1 5	RION NL31	RION NC73
TIVICERE	Π1/2012/07	2010-04-20	NORIA	Cloudy	9.31	04	00	01	75	1.5	(S/N 00603867)	(S/N 10486660)
					Min.	62						
					Max.	65						
					Average	64						

Noise Monitoring Results at NSR 1A ($L_{eq, 30min}$)

Weather condition within the reporting period varied between sunny to rainy.

Major construction works undertaken within the reporting period include Pier construction; Re-alignment of Cheung Tung Road; Road works along North Lantau Highway; Installation of pier head and deck segments; Asphalt paving; Sign gantries construction; Parapet installation; and Slope work of Viaducts A, B,C & D.

Appendix J

Impact Water Quality Monitoring Results and Graphical Presentation

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Surface	1	1	22.3	7.9	28.0	6.8		10.6		6.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Surface	1	2	22.2	8.0	28.3	6.8	6.8	10.9		7.1	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Middle	2	1	22.2	7.9	28.0	6.8	0.8	11.8	10.9	7.3	7.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Middle	2	2	22.2	8.1	28.3	6.8		11.4	10.9	7.0	7.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Bottom	3	1	22.0	7.9	28.5	6.8	6.8	10.4		7.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)5	14:02	12.6	Bottom	3	2	22.0	8.1	28.8	6.8	0.8	10.3		7.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Surface	1	1	22.8	8.0	27.1	6.5		15.7		8.8	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Surface	1	2	22.7	8.0	27.2	6.5	6.6	15.7		9.1	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Middle	2	1	22.4	8.0	28.7	6.6	0.0	15.4	15.5	8.6	8.7
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Middle	2	2	22.4	8.0	28.8	6.6		15.4	15.5	8.6	0.7
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Bottom	3	1	22.4	8.1	29.7	6.6	6.6	15.5		9.0	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	CS(Mf)3(N)	12:47	7.4	Bottom	3	2	22.3	8.0	29.7	6.6	0.0	15.3		8.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Surface	1	1	23.1	7.9	27.5	7.1		5.2		7.8	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Surface	1	2	23.1	8.0	27.8	7.0	7.1	5.3		7.0	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Middle	2	1					/.1		7.5		7.3
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Middle	2	2							7.5		7.5
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Bottom	3	1	22.6	7.9	27.8	6.7	6.7	9.6		7.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)16	13:37	5.9	Bottom	3	2	22.7	7.9	27.8	6.7	0.7	9.9		6.9	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Surface	1	1	22.6	7.9	27.6	6.6		10.3		5.4	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Surface	1	2	22.6	8.1	27.9	6.6	6.6	10.5		5.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Middle	2	1					0.0		11.7		5.1
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Middle	2	2							11.7		5.1
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Bottom	3	1	22.5	7.9	27.7	6.6	6.6	13.1		5.0	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4a	13:26	4.4	Bottom	3	2	22.5	8.1	28.0	6.6	0.0	13.0		4.9	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Surface	1	1	23.0	7.9	27.5	6.9		6.9		7.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Surface	1	2	23.0	8.1	27.8	6.9	6.9	6.8		6.5	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Middle	2	1					0.5		6.9		6.8
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Middle	2	2							0.9		0.8
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Bottom	3	1	23.0	7.9	27.5	6.9	6.9	6.9		6.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	SR4(N)	13:20	3.6	Bottom	3	2	23.0	8.1	27.8	6.9	0.9	6.9		7.1	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Surface	1	1	22.9	7.9	27.9	7.0		9.2		4.5	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Surface	1	2	22.9	8.1	28.2	6.9	7.0	9.0		4.6	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Middle	2	1					7.0		9.6		4.4
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Middle	2	2							5.0		4.4
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Bottom	3	1	22.8	7.9	27.9	6.8	6.8	10.3		4.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS8	13:14	4.1	Bottom	3	2	22.8	8.1	28.2	6.7	0.0	10.0		4.1	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Surface	1	1	23.4	7.9	27.8	7.0		7.8		5.0	
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Surface	1	2	23.4	8.1	28.1	7.0	7.0	7.5		4.9]
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Middle	2	1					7.0		7.5		5.2
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Middle	2	2							7.5		5.2
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Bottom	3	1	23.5	7.9	27.7	7.0	7.0	7.5		5.1]
TMCLKL	HY/2012/07	2018-04-02	Mid-Ebb	IS(Mf)9	13:05	3.4	Bottom	3	2	23.5	8.1	28.1	7.0	7.0	7.2		5.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Surface	1	1	22.2	8.0	27.6	6.9		5.4		7.4	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Surface	1	2	22.2	8.0	27.8	6.9	6.9	5.6		7.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Middle	2	1	22.2	8.0	27.7	6.9	0.5	6.2	7.9	7.3	8.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Middle	2	2	22.2	8.0	28.0	6.9		6.0	7.5	8.5	0.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Bottom	3	1	21.9	8.0	28.7	6.8	6.8	12.0		9.5	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)5	7:39	12.3	Bottom	3	2	21.9	8.0	29.0	6.8	0.8	12.2		8.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Surface	1	1	22.6	7.9	26.2	6.3		14.9		9.1	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Surface	1	2	22.6	7.9	26.2	6.3	6.2	14.6		8.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Middle	2	1	22.5	8.0	27.0	6.3	6.3	21.6	10.2	7.9	0.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Middle	2	2	22.4	7.9	27.0	6.3		21.7	19.2	9.1	9.8
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Bottom	3	1	22.4	8.0	27.1	6.3	6.2	21.3		12.4	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	CS(Mf)3(N)	8:54	7.3	Bottom	3	2	22.4	7.9	27.1	6.3	6.3	21.2		11.8	1
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Surface	1	1	22.3	8.0	27.4	6.8		8.5		5.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Surface	1	2	22.3	8.0	27.7	6.8	C O	8.4		6.3	1
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Middle	2	1					6.8		0.4		
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Middle	2	2							9.4		5.9
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Bottom	3	1	22.3	8.0	27.6	6.8	6.9	10.8		6.7	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)16	8:07	5.9	Bottom	3	2	22.3	8.0	27.9	6.8	6.8	10.0		5.5	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Surface	1	1	22.2	8.0	27.4	6.9		15.5		13.3	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Surface	1	2	22.2	8.0	27.7	6.9	6.0	15.1		13.9	1
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Middle	2	1					6.9		15.4		12.9
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Middle	2	2							15.4		12.9
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Bottom	3	1	22.2	8.0	27.4	6.9	6.9	15.2		12.3]
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4a	8:16	4.3	Bottom	3	2	22.2	8.0	27.7	6.9	0.9	15.6		12.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Surface	1	1	22.3	8.0	27.6	6.8		10.1		9.9	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Surface	1	2	22.3	8.0	27.8	6.8	6.8	10.4		8.6	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Middle	2	1					0.8		10.3		10.1
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Middle	2	2							10.5		10.1
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Bottom	3	1	22.3	8.0	27.6	6.9	6.9	10.1		10.0	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	SR4(N)	8:22	3.1	Bottom	3	2	22.3	8.0	27.9	6.9	0.9	10.4		11.7	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Surface	1	1	22.3	8.0	27.4	6.9		7.1		9.6	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Surface	1	2	22.3	8.0	27.7	6.9	6.9	7.1		9.0]
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Middle	2	1					0.5		7.3		9.8
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Middle	2	2							7.5		5.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Bottom	3	1	22.3	8.0	27.5	6.9	6.9	7.5		10.3]
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS8	8:29	4.3	Bottom	3	2	22.3	8.0	27.7	6.9	0.9	7.5		10.2	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Surface	1	1	22.4	8.0	27.7	6.8		8.8		7.6	
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Surface	1	2	22.4	8.0	28.0	6.8	6.8	8.7		7.2	l
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Middle	2	1					0.0		8.9		7.6
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Middle	2	2							0.3		7.0
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Bottom	3	1	22.4	8.0	27.7	6.8	6.8	9.0		7.7]
TMCLKL	HY/2012/07	2018-04-02	Mid-Flood	IS(Mf)9	8:41	3.4	Bottom	3	2	22.4	8.0	28.0	6.8	0.0	9.0		7.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Surface	1	1	23.8	7.9	27.9	6.9		7.6		10.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Surface	1	2	23.7	8.0	26.7	6.9	6.8	7.6		10.4	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Middle	2	1	22.8	7.9	29.1	6.6	0.8	8.5	9.6	9.4	10.3
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Middle	2	2	22.8	8.1	27.9	6.6		8.6	5.0	10.1	10.5
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Bottom	3	1	22.5	7.9	30.0	6.5	6.5	12.6		10.4	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)5	15:05	13.4	Bottom	3	2	22.5	8.1	28.7	6.5	0.5	12.6		11.5	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Surface	1	1	23.9	8.0	25.7	6.7		6.7		12.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Surface	1	2	23.5	8.0	25.8	6.7	<u>د ٥</u>	6.9		12.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Middle	2	1	23.4	8.0	27.4	6.9	6.8	9.1	10.2	13.1	12.6
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Middle	2	2	22.9	8.0	27.7	6.9	1	9.3	10.2	12.3	12.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Bottom	3	1	23.3	8.0	28.2	6.9	6.0	14.2		12.7	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	CS(Mf)3(N)	13:57	7.2	Bottom	3	2	22.8	8.0	28.4	6.9	6.9	14.8		12.5	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Surface	1	1	23.6	7.9	28.4	6.8		6.3		5.4	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Surface	1	2	23.6	8.1	27.2	6.8	6.0	6.2		5.8	1
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Middle	2	1					6.8		07		6.2
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Middle	2	2					1		8.7		6.2
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Bottom	3	1	23.2	7.9	28.9	6.4		11.1		6.3	1
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)16	14:41	5.9	Bottom	3	2	23.2	8.1	27.7	6.5	6.5	11.1		7.1	1
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Surface	1	1	23.3	7.9	28.1	6.6		7.5		9.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Surface	1	2	23.3	8.0	26.9	6.6	6.6	7.9		8.5]
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Middle	2	1					6.6		0 0		8.6
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Middle	2	2							8.8		0.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Bottom	3	1	23.2	7.9	28.4	6.4	6.5	9.9		8.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4a	14:29	4	Bottom	3	2	23.2	8.0	27.2	6.5	0.5	10.0		8.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Surface	1	1	24.0	7.9	28.0	6.7		7.1		8.7	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Surface	1	2	23.9	7.8	26.8	6.7	6.7	7.4		7.7	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Middle	2	1					0.7		8.5		8.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Middle	2	2							0.5		0.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Bottom	3	1	23.5	7.9	28.5	6.3	6.3	9.6		9.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	SR4(N)	14:24	3.6	Bottom	3	2	23.5	7.8	27.3	6.3	0.5	9.8		8.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Surface	1	1	23.8	7.9	27.9	6.9		5.8		7.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Surface	1	2	23.9	7.9	26.7	6.9	6.9	6.1		7.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Middle	2	1					0.9		8.5		8.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Middle	2	2							0.5		0.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Bottom	3	1	23.3	7.9	28.9	6.3	6.4	10.9		9.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS8	14:17	4.2	Bottom	3	2	23.3	8.0	27.6	6.4	0.4	11.2		9.7	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Surface	1	1	23.6	7.9	28.2	6.9		5.0		6.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Surface	1	2	23.6	8.0	27.0	6.9	6.9	5.4		5.9]
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Middle	2	1					0.9		10.1		7.1
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Middle	2	2							10.1		/.1
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Bottom	3	1	23.3	7.9	28.8	6.4	65	14.9		7.7]
TMCLKL	HY/2012/07	2018-04-04	Mid-Ebb	IS(Mf)9	14:07	3.4	Bottom	3	2	23.3	7.9	27.5	6.5	6.5	15.1		8.8	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Surface	1	1	22.9	7.8	26.7	6.8		4.4		7.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Surface	1	2	22.9	8.0	27.9	6.7	6.7	4.1		7.3	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Middle	2	1	22.8	7.8	27.2	6.7	0.7	6.1	7.2	7.0	8.2
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Middle	2	2	22.7	8.0	28.5	6.6	1	6.1	7.2	6.5	0.2
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Bottom	3	1	22.4	7.8	29.1	6.6	6.6	11.1		10.2	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)5	8:27	13.2	Bottom	3	2	22.3	8.0	30.4	6.5	6.6	11.2		11.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Surface	1	1	23.4	7.9	25.2	6.5		8.2		9.8	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Surface	1	2	23.0	8.0	25.4	6.6	6.6	8.1		9.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Middle	2	1	23.3	7.9	25.3	6.5	6.6	9.5	9.6	10.6	11.3
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Middle	2	2	23.0	8.0	25.4	6.6	1	9.4	9.0	11.6	11.5
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Bottom	3	1	23.3	7.9	25.3	6.5	6.6	11.2		13.8	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	CS(Mf)3(N)	9:22	7	Bottom	3	2	23.0	8.0	25.4	6.6	6.6	11.2		12.2	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Surface	1	1	23.0	7.8	26.5	6.8		3.5		7.3	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Surface	1	2	23.0	8.0	27.7	6.7	C O	3.3		6.5	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Middle	2	1					6.8		C 4		6.9
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Middle	2	2					1		6.4		6.8
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Bottom	3	1	22.9	7.8	27.0	6.6	6.6	9.3		7.4	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)16	8:58	5.7	Bottom	3	2	22.9	7.9	28.3	6.5	6.6	9.4		6.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Surface	1	1	23.0	7.8	26.3	6.8		12.7		12.2	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Surface	1	2	23.0	7.9	27.5	6.7	C O	12.6		12.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Middle	2	1					6.8		13.6		11.8
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Middle	2	2							15.0		11.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Bottom	3	1	23.0	7.8	26.3	6.8	6.8	14.7		11.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4a	9:08	4.1	Bottom	3	2	23.0	7.9	27.5	6.8	0.8	14.4		11.2	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Surface	1	1	23.1	7.8	26.6	6.7		7.1		10.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Surface	1	2	23.1	7.9	27.8	6.7	6.7	7.2		11.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Middle	2	1					0.7		8.6		10.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Middle	2	2							8.0		10.4
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Bottom	3	1	23.0	7.8	26.6	6.8	6.8	10.1		10.0	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	SR4(N)	9:14	3.7	Bottom	3	2	23.0	7.9	27.8	6.8	0.0	10.1		10.4	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Surface	1	1	23.1	7.8	26.5	6.8		7.4		5.8	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Surface	1	2	23.1	7.9	27.7	6.7	6.8	7.0		6.1	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Middle	2	1					0.0		8.5		8.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Middle	2	2							0.5		0.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Bottom	3	1	23.0	7.8	26.7	6.7	6.7	10.0		10.5	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS8	9:20	4	Bottom	3	2	23.0	7.9	27.8	6.7	0.7	9.7		9.6	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Surface	1	1	23.1	7.8	27.1	6.6	ļ T	6.7		9.3	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Surface	1	2	23.1	7.9	28.3	6.5	6.6	6.7		9.5	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Middle	2	1					0.0		8.5		9.6
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Middle	2	2							0.5		5.0
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Bottom	3	1	23.1	7.8	27.3	6.5	6.5	10.3		9.2	
TMCLKL	HY/2012/07	2018-04-04	Mid-Flood	IS(Mf)9	9:29	3.2	Bottom	3	2	23.1	7.9	28.5	6.4	0.5	10.1		10.5	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Surface	1	1	23.4	8.0	27.6	6.3		8.7		8.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Surface	1	2	23.3	8.0	27.7	6.3	6.2	8.9		8.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Middle	2	1	23.2	8.0	28.0	6.1	0.2	9.0	9.1	9.0	9.3
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Middle	2	2	23.2	8.0	28.0	6.2		9.2	5.1	7.8	5.5
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Bottom	3	1	22.6	8.1	31.2	6.0	6.0	9.4		11.6	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)5	16:36	12.6	Bottom	3	2	22.6	8.0	31.3	6.0	0.0	9.1		10.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Surface	1	1	23.7	8.0	25.5	6.9		5.8		8.1	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Surface	1	2	24.1	8.0	25.4	6.9	6.9	4.9		7.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Middle	2	1	23.5	8.0	26.1	6.8	0.9	7.3	6.2	10.5	9.0
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Middle	2	2	23.9	8.0	25.9	6.9	1	6.4	6.3	9.3	9.0
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Bottom	3	1	23.6	8.0	25.9	6.9	6.0	7.1		9.1	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	CS(Mf)3(N)	15:21	7.3	Bottom	3	2	23.9	8.0	25.8	6.9	6.9	6.2		10.1	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Surface	1	1	23.7	8.0	27.9	6.2		11.5		8.6	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Surface	1	2	23.7	7.9	28.0	6.2	6.2	11.8		8.8	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Middle	2	1					6.2		13.0		10.5
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Middle	2	2] [15.0		10.5
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Bottom	3	1	23.2	8.0	28.9	6.0	6.1	14.4		12.8	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)16	16:09	5.6	Bottom	3	2	23.2	8.0	28.9	6.1	6.1	14.2		11.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Surface	1	1	23.8	8.0	26.5	6.2		12.5		7.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Surface	1	2	23.7	8.0	26.5	6.2	6.2	12.2		7.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Middle	2	1					0.2		15.7		9.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Middle	2	2							15.7		5.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Bottom	3	1	23.6	8.0	27.2	5.9	6.0	19.0		10.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4a	15:56	4.4	Bottom	3	2	23.6	7.9	27.2	6.0	0.0	19.2		11.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Surface	1	1	24.0	8.0	27.3	5.9		13.0		9.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Surface	1	2	24.0	7.9	27.4	5.9	5.9	13.2		9.8	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Middle	2	1					5.5		13.4		9.9
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Middle	2	2							13.4		5.5
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Bottom	3	1	24.1	7.9	27.5	5.9	6.0	13.8		10.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	SR4(N)	15:52	3.5	Bottom	3	2	24.0	7.9	27.6	6.0	0.0	13.6		10.4	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Surface	1	1	23.7	8.0	27.3	6.3		17.4		8.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Surface	1	2	23.6	8.0	27.4	6.3	6.3	17.0		9.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Middle	2	1					0.5		18.3		9.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Middle	2	2							10.5		5.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Bottom	3	1	23.7	8.0	27.5	6.3	6.3	19.3		9.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS8	15:44	4.2	Bottom	3	2	23.6	7.9	27.5	6.3	0.5	19.3		9.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Surface	1	1	23.7	8.0	27.7	6.2	ļl	19.4		13.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Surface	1	2	23.7	7.9	27.7	6.3	6.3	19.9		13.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Middle	2	1							19.9		13.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Middle	2	2							19.5		13.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Bottom	3	1	23.7	8.0	27.7	6.2	6.3	20.1		12.2	
TMCLKL	HY/2012/07	2018-04-06	Mid-Ebb	IS(Mf)9	15:35	3.3	Bottom	3	2	23.7	7.9	27.7	6.3	0.0	20.1		13.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Surface	1	1	23.6	8.0	26.6	6.2		9.7		4.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Surface	1	2	23.6	8.0	26.7	6.3	6.2	9.3		5.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Middle	2	1	23.2	8.0	28.4	6.1	0.2	10.1	12.2	6.2	7.9
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Middle	2	2	23.2	8.0	28.4	6.1		10.6	12.2	7.2	7.5
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Bottom	3	1	22.6	8.1	31.3	6.0	6.0	16.8		13.1	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)5	9:13	12.4	Bottom	3	2	22.5	8.0	31.3	6.0	0.0	16.7		11.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Surface	1	1	24.1	8.0	24.5	6.6		6.2		7.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Surface	1	2	23.7	8.0	24.7	6.6	6.6	7.2		6.6	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Middle	2	1	24.0	8.0	24.9	6.5	0.0	8.3	8.0	8.8	8.6
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Middle	2	2	23.6	8.0	25.1	6.6		9.6	0.0	8.1	0.0
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Bottom	3	1	24.0	7.9	24.9	6.6	6.6	7.7		9.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	CS(Mf)3(N)	10:27	7	Bottom	3	2	23.6	8.0	25.0	6.6	0.0	8.9		10.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Surface	1	1	23.6	8.0	26.9	6.3		9.5		6.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Surface	1	2	23.6	8.0	26.9	6.3	6.3	9.3		4.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Middle	2	1					0.5		10.3		6.4
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Middle	2	2							10.5		0.4
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Bottom	3	1	23.4	8.0	27.6	6.1	6.1	11.2		6.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)16	9:46	5.7	Bottom	3	2	23.4	8.0	27.6	6.1	0.1	11.1		8.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Surface	1	1	23.8	8.0	26.4	6.4		11.5		8.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Surface	1	2	23.8	8.0	26.5	6.4	6.4	11.8		9.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Middle	2	1					0.4		12.1		10.1
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Middle	2	2							12.1		10.1
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Bottom	3	1	23.7	8.0	26.5	6.3	6.4	12.5		11.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4a	9:57	4.2	Bottom	3	2	23.7	8.0	26.5	6.4	0.4	12.4		11.0	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4(N)	10:04	3.3	Surface	1	1	23.7	8.0	26.7	6.3		12.8		10.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4(N)	10:04	3.3	Surface	1	2	23.7	8.0	26.7	6.3	6.3	12.9		9.9	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4(N)	10:04	3.3	Middle	2	1					0.0		13.6		11.0
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4(N)	10:04	3.3	Middle	2	2							10.0		11.0
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood		10:04	3.3	Bottom	3	1	23.7	8.0	26.7	6.4	6.4	14.1		12.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	SR4(N)	10:04	3.3	Bottom	3	2	23.7	8.0	26.7	6.4	0.1	14.5		11.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Surface	1	1	23.6	8.0	27.0	6.1		14.8		13.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Surface	1	2	23.6	8.0	27.1	6.1	6.1	14.8		13.4	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Middle	2	1					0.1		14.6		13.2
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Middle	2	2							1.10		
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Bottom	3	1	23.5	8.0	28.0	5.8	5.9	14.6		13.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS8	10:12	4.2	Bottom	3	2	23.5	7.9	28.0	5.9	0.0	14.3		12.6	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Surface	1	1	23.7	8.0	27.8	6.1	4	14.4		6.5	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Surface	1	2	23.7	7.9	27.8	6.1	6.1	14.5		5.3	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Middle	2	1					0.1		15.5		6.9
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Middle	2	2							10.0		
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Bottom	3	1	23.7	8.0	27.8	6.1	6.1	16.4		8.7	
TMCLKL	HY/2012/07	2018-04-06	Mid-Flood	IS(Mf)9	10:20	3.7	Bottom	3	2	23.7	7.9	27.8	6.1	0.1	16.5		7.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Surface	1	1	22.3	8.1	31.1	7.7		1.9		7.3	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Surface	1	2	22.4	8.1	32.4	7.6	7.4	1.9		6.0	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Middle	2	1	22.0	8.0	31.9	7.1	7.4	2.0	2.2	6.3	6.3
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Middle	2	2	22.0	8.0	33.3	7.0		2.0	2.2	5.9	0.5
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Bottom	3	1	22.1	8.1	31.9	7.1	7.1	2.8		5.9	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)5	19:51	12.1	Bottom	3	2	22.1	8.1	33.5	7.0	7.1	2.8		6.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Surface	1	1	22.8	8.1	29.9	7.6		6.4		6.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Surface	1	2	22.8	8.2	29.9	7.6	7.6	6.3		5.5	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Middle	2	1	22.3	8.1	30.9	7.6	7.0	6.5	8.6	6.1	6.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Middle	2	2	22.3	8.2	30.9	7.6		6.9	0.0	7.3	0.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Bottom	3	1	22.1	8.1	32.3	7.3	7.3	12.8		7.7	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	CS(Mf)3(N)	18:46	7.3	Bottom	3	2	22.1	8.2	32.2	7.2	7.5	12.5		7.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Surface	1	1	22.3	8.0	30.9	7.4		4.2		6.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Surface	1	2	22.3	8.0	32.1	7.3	7.4	4.2		5.0	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Middle	2	1					7.4		2.0		
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Middle	2	2					1		3.9		6.4
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Bottom	3	1	22.1	8.0	31.8	7.1	7.1	3.6		7.5	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)16	19:23	5.6	Bottom	3	2	22.1	8.0	33.2	7.0	7.1	3.6		6.5	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Surface	1	1	22.3	8.0	30.7	6.4		7.1		7.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Surface	1	2	22.3	8.0	32.0	6.3		7.1		8.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Middle	2	1					6.4		7.4		7.0
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Middle	2	2					1		7.4		7.8
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Bottom	3	1	22.3	8.0	30.8	6.4	6.4	7.7		7.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4a	19:13	4.7	Bottom	3	2	22.3	8.0	32.1	6.3	6.4	7.7		8.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Surface	1	1	23.2	8.0	28.7	7.5		5.8		7.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Surface	1	2	23.2	8.0	30.0	7.5	7 -	5.8		6.5	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Middle	2	1					7.5		F 7		67
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Middle	2	2					1		5.7		6.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Bottom	3	1	23.3	8.0	28.6	7.1	7 1	5.6		6.8	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	SR4(N)	19:09	3.1	Bottom	3	2	23.2	8.0	30.1	7.1	7.1	5.6		6.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Surface	1	1	22.4	8.0	30.2	7.4		4.3		8.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Surface	1	2	22.4	8.0	31.6	7.3	7.4	4.3		8.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Middle	2	1					7.4		4.2		0.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Middle	2	2					l í		4.3		8.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Bottom	3	1	22.3	8.0	30.2	7.4	7.4	4.3		9.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS8	19:02	4	Bottom	3	2	22.4	8.0	31.6	7.3	7.4	4.3		8.6	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Surface	1	1									
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Surface	1	2									1
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Middle	2	1	22.4	8.0	30.0	7.6	7.6	7.6	7.0	10.7	
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Middle	2	2	22.4	8.0	31.3	7.5	t t	7.6	7.6	12.4	11.6
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Bottom	3	1		-							1
TMCLKL	HY/2012/07	2018-04-09	Mid-Ebb	IS(Mf)9	18:53	2.9	Bottom	3	2					t ł				1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Surface	1	1	22.0	8.1	33.3	7.0		1.0		6.0	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Surface	1	2	22.0	8.1	31.8	7.1	7.0	1.0		5.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Middle	2	1	22.0	8.1	33.8	6.9	7.0	1.4	1.2	7.8	7.4
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Middle	2	2	22.0	8.1	32.3	7.0		1.4	1.2	7.9	/.4
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Bottom	3	1	22.0	8.1	33.8	7.0	7.1	1.3		8.9	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)5	6:49	12.3	Bottom	3	2	22.0	8.1	32.3	7.1	7.1	1.3		8.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Surface	1	1	22.2	8.0	28.8	6.8		7.8		5.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Surface	1	2	22.2	8.1	28.8	6.8	6.8	7.2		6.8	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Middle	2	1	22.0	8.1	30.6	6.8	0.8	9.4	9.2	6.1	6.3
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Middle	2	2	22.1	8.2	30.5	6.7		9.3	5.2	6.7	0.5
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Bottom	3	1	22.0	8.1	31.0	6.7	6.7	10.6		6.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	CS(Mf)3(N)	8:02	7.2	Bottom	3	2	22.0	8.2	30.9	6.7	0.7	10.6		6.8	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Surface	1	1	21.9	8.1	31.7	7.1		2.6		8.0	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Surface	1	2	21.9	8.1	30.3	7.2	7.2	2.6		7.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Middle	2	1					7.2		2 7		
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Middle	2	2							2.7		7.7
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Bottom	3	1	21.9	8.1	31.8	7.2	7.3	2.7		7.2	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)16	7:23	5.6	Bottom	3	2	21.9	8.1	30.4	7.3	7.3	2.7		7.8	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Surface	1	1	21.9	8.0	31.8	6.9		3.9		4.7	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Surface	1	2	21.9	8.0	30.5	7.0	7.0	3.9		3.3	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Middle	2	1					7.0		4.0		6.0
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Middle	2	2							4.0		6.0
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Bottom	3	1	22.0	8.0	32.0	7.0	7 1	4.0		8.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4a	7:30	4.6	Bottom	3	2	22.0	8.0	30.6	7.1	7.1	4.0		7.2	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Surface	1	1	21.9	8.0	31.5	6.5		5.6		5.9	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Surface	1	2	21.9	8.0	30.2	6.4	6.5	5.6		5.7	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Middle	2	1					0.5		6.0		6.5
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Middle	2	2							6.0		0.5
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Bottom	3	1	22.0	8.0	31.8	6.2	6.3	6.4		7.6	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	SR4(N)	7:37	3.1	Bottom	3	2	22.0	8.0	30.3	6.3	0.5	6.4		6.7	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Surface	1	1	21.8	8.1	31.5	7.1		3.5		6.3	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Surface	1	2	21.8	8.1	30.2	7.2	7.2	3.5		6.1	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Middle	2	1					1.2		2 5		6.4
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Middle	2	2					Ī		3.5		0.4
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Bottom	3	1	21.8	8.1	31.5	7.2	7.2	3.4		6.9	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS8	7:44	4.1	Bottom	3	2	21.8	8.1	30.2	7.3	7.3	3.4		6.4	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Surface	1	1	21.6	8.0	31.1	7.0		5.4		5.4	
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Surface	1	2	21.6	8.0	29.8	7.1		5.4		5.4	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Middle	2	1					7.1		F 4		
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Middle	2	2					1 1		5.4		5.9
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Bottom	3	1	21.6	8.0	31.1	7.0		5.4		6.1	1
TMCLKL	HY/2012/07	2018-04-09	Mid-Flood	IS(Mf)9	7:52	3.1	Bottom	3	2	21.6	8.0	29.8	7.1	7.1	5.4		6.8	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Surface	1	1	23.1	8.1	29.6	8.0		2.2		5.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Surface	1	2	23.1	8.1	31.0	8.0	7.5	2.3		5.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Middle	2	1	22.4	8.1	31.9	7.0	7.5	1.5	1.8	6.2	6.2
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Middle	2	2	22.4	8.0	33.4	6.9		1.4	1.0	7.4	0.2
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Bottom	3	1	22.4	8.1	31.9	7.1	7.1	1.6		7.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)5	10:44	12.3	Bottom	3	2	22.4	8.0	33.4	7.0	7.1	1.7		6.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Surface	1	1	23.2	8.0	26.8	7.0		2.2		6.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Surface	1	2	23.2	8.1	26.8	7.0	7.0	2.6		6.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Middle	2	1	22.8	8.0	28.1	6.9	7.0	4.7	4.1	9.2	8.4
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Middle	2	2	22.8	8.1	28.0	6.9		5.1	4.1	9.8	0.4
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Bottom	3	1	22.8	8.0	29.4	6.9	6.9	4.7		8.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	CS(Mf)3(N)	11:55	7.1	Bottom	3	2	22.9	8.1	29.4	6.9	0.9	5.0		8.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Surface	1	1	22.9	8.0	29.9	7.7		5.6		5.7	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Surface	1	2	22.9	8.1	31.2	7.6	7.7	5.5		4.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Middle	2	1] '.'		6.2		
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Middle	2	2] [6.2		5.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Bottom	3	1	22.5	8.0	30.6	7.4	7.4	6.9		5.1	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)16	11:13	5.6	Bottom	3	2	22.5	8.0	32.0	7.3	7.4	6.9		6.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Surface	1	1	22.8	8.0	29.9	7.4		2.8		8.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Surface	1	2	22.8	8.0	31.2	7.2	7.0	2.7		7.9	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Middle	2	1					7.3		2.1		7.9
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Middle	2	2]		3.1		7.9
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Bottom	3	1	22.7	8.0	30.0	7.3	7.3	3.4		7.6	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4a	11:22	4.5	Bottom	3	2	22.8	8.0	31.4	7.2	7.5	3.3		7.6	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Surface	1	1	22.9	8.0	29.8	7.0		4.8		5.2	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Surface	1	2	22.9	8.0	31.1	6.9	7.0	4.6		4.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Middle	2	1					7.0		4.9		7.1
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Middle	2	2							4.5		/.1
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Bottom	3	1	22.8	8.0	30.0	7.1	7.1	5.1		9.5	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	SR4(N)	11:27	3.2	Bottom	3	2	22.9	8.0	31.3	7.0	7.1	5.2		9.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Surface	1	1	23.1	8.1	29.4	8.0		4.1		6.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Surface	1	2	23.2	8.1	30.7	7.9	8.0	4.0		6.6	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Middle	2	1					8.0		1 2		5.9
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Middle	2	2							4.2		5.9
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Bottom	3	1	23.0	8.1	29.6	7.9	7.9	4.3		5.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS8	11:34	3.5	Bottom	3	2	22.9	8.1	31.0	7.8	7.9	4.4		5.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Surface	1	1	23.0	8.1	29.3	8.0		3.8		9.1	
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Surface	1	2	23.0	8.1	30.6	7.9		3.8		9.4]
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Middle	2	1					8.0		2.0		
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Middle	2	2					1 1		3.9		8.6
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Bottom	3	1	23.0	8.1	29.3	8.0	0.0	4.0		8.0	1
TMCLKL	HY/2012/07	2018-04-11	Mid-Ebb	IS(Mf)9	11:42	3.1	Bottom	3	2	23.0	8.1	30.6	7.9	8.0	4.1		7.9	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Surface	1	1	23.4	8.1	28.0	8.8		3.4		9.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Surface	1	2	23.4	8.1	28.0	8.8	8.0	3.6		8.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Middle	2	1	22.5	8.0	31.0	7.3	8.0	1.6	2.5	8.7	8.1
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Middle	2	2	22.6	8.0	32.3	7.2		1.6	2.5	7.7	0.1
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Bottom	3	1	22.6	8.1	31.5	7.4	7.4	2.5		7.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)5	15:22	11.9	Bottom	3	2	22.6	8.1	33.0	7.3	7.4	2.4		7.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Surface	1	1	23.2	8.1	27.5	7.4		9.1		5.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Surface	1	2	23.2	8.1	27.4	7.4	7.4	9.4		4.1	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Middle	2	1	23.1	8.1	27.9	7.3	7.4	9.3	9.0	5.1	5.4
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Middle	2	2	23.1	8.2	27.8	7.3		8.1	5.0	4.9	5.4
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Bottom	3	1	22.8	8.0	29.3	7.2	7.2	9.0		5.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	CS(Mf)3(N)	14:14	7.1	Bottom	3	2	22.8	8.1	29.2	7.2	7.2	9.3		7.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Surface	1	1	23.5	8.1	29.6	8.3		3.3		5.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Surface	1	2	23.6	8.0	30.9	8.2	8.3	3.2		6.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Middle	2	1					0.5		4.3		6.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Middle	2	2							4.5		0.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Bottom	3	1	22.6	8.1	30.3	7.4	7.3	5.2		6.7	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)16	14:55	5.7	Bottom	3	2	22.6	8.0	31.7	7.2	7.5	5.4		7.2	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Surface	1	1	23.6	8.1	27.6	8.6		6.4		9.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Surface	1	2	23.7	8.1	28.8	8.5	8.6	6.5		9.1	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Middle	2	1					8.0		6.9		9.0
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Middle	2	2							0.5		5.0
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Bottom	3	1	23.6	8.0	27.9	8.2	8.1	7.2		8.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4a	14:44	4.6	Bottom	3	2	23.6	8.1	29.2	8.0	0.1	7.4		9.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Surface	1	1	23.6	8.0	28.4	8.4		5.5		7.6	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Surface	1	2	23.6	8.1	29.6	8.3	8.4	5.4		7.7	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Middle	2	1					0.4		5.4		10.0
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Middle	2	2							5.4		10.0
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Bottom	3	1	23.6	8.0	28.4	8.3	8.3	5.4		13.0	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	SR4(N)	14:40	3.1	Bottom	3	2	23.6	8.1	29.7	8.2	0.5	5.3		11.8	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Surface	1	1	22.8	8.0	30.1	7.5		5.4		4.6	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Surface	1	2	22.9	8.0	31.5	7.4	7.5	5.3		4.4	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Middle	2	1					7.5		5.9		5.3
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Middle	2	2							5.5		5.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Bottom	3	1	22.7	8.0	30.3	7.1	7.1	6.6		6.9	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS8	14:33	3.7	Bottom	3	2	22.7	8.0	31.6	7.0	/.1	6.4		5.3	
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Surface	1	1									
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Surface	1	2					0 F				
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Middle	2	1	23.3	8.1	29.3	8.5	8.5	5.3	E 2	7.7	7.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Middle	2	2	23.3	8.1	30.6	8.4		5.3	5.3	7.2	7.5
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Bottom	3	1									
TMCLKL	HY/2012/07	2018-04-11	Mid-Flood	IS(Mf)9	14:25	2.9	Bottom	3	2									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Surface	1	1	23.7	8.2	27.8	7.8		1.5		5.6	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Surface	1	2	23.3	8.2	27.9	7.9	7.3	1.8		6.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Middle	2	1	23.3	8.1	30.2	6.8	7.5	2.0	2.1	5.5	5.7
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Middle	2	2	22.9	8.2	30.4	6.8		2.3	2.1	5.5	5.7
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Bottom	3	1	23.3	8.1	30.3	6.9	6.9	2.4		5.2	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)5	11:02	11.9	Bottom	3	2	22.9	8.2	30.6	6.8	0.9	2.7		5.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Surface	1	1	24.1	8.2	26.4	7.3		10.3		9.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Surface	1	2	24.1	8.1	26.5	7.4	7.2	10.3		9.9	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Middle	2	1	23.4	8.2	27.5	7.0	7.2	11.5	11.3	9.5	9.3
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Middle	2	2	23.4	8.1	27.5	7.0		14.3	11.5	10.0	5.5
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Bottom	3	1	23.4	8.1	27.8	7.0	7.0	11.1		8.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	CS(Mf)3(N)	12:24	7.2	Bottom	3	2	23.4	8.1	27.8	7.0	7.0	10.2		8.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Surface	1	1	23.9	8.2	28.2	7.8		2.3		6.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Surface	1	2	23.4	8.2	28.4	7.8	7.8	2.4		6.2	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Middle	2	1					7.8		2.4		6.5
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Middle	2	2							2.4		0.5
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Bottom	3	1	23.8	8.2	28.3	7.6	7.6	2.3		6.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)16	11:32	5.5	Bottom	3	2	23.4	8.2	28.4	7.6	7.0	2.4		7.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Surface	1	1	24.1	8.2	27.6	7.9		4.9		9.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Surface	1	2	23.6	8.2	27.8	8.0	8.0	5.9		8.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Middle	2	1					8.0		5.9		8.9
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Middle	2	2							5.5		0.5
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Bottom	3	1	24.0	8.2	27.7	7.5	7.5	5.7		8.5	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4a	11:41	4.8	Bottom	3	2	23.6	8.2	27.9	7.5	7.5	6.9		9.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Surface	1	1	24.6	8.2	27.3	8.0		4.1		6.7	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Surface	1	2	24.2	8.2	27.5	8.0	8.0	4.7		6.6	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Middle	2	1					0.0		4.7		6.6
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Middle	2	2							4.7		0.0
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Bottom	3	1	24.6	8.2	27.5	7.6	7.7	4.8		6.6	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	SR4(N)	11:48	3.3	Bottom	3	2	24.1	8.2	27.6	7.7	/./	5.1		6.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Surface	1	1	24.3	8.2	27.4	8.7		4.4		8.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Surface	1	2	23.9	8.3	27.6	8.7	8.7	5.3		7.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Middle	2	1					0.7		5.5		8.4
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Middle	2	2							5.5		0.4
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Bottom	3	1	24.2	8.2	27.7	8.0	8.0	5.8		9.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS8	11:54	4.3	Bottom	3	2	23.7	8.3	27.8	8.0	0.0	6.6		8.2	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Surface	1	1	24.6	8.3	27.2	9.1		4.6		8.7	
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Surface	1	2	24.2	8.3	27.4	9.1	9.1	4.6		9.9	J l
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Middle	2	1					9.1		4.7		10.1
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Middle	2	2							4./		
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Bottom	3	1	24.6	8.3	27.2	9.0	0.0	4.7		10.5]
TMCLKL	HY/2012/07	2018-04-13	Mid-Ebb	IS(Mf)9	12:00	3.1	Bottom	3	2	24.1	8.3	27.4	9.0	9.0	4.7		11.4	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Surface	1	1	24.4	8.3	27.0	8.3		2.4		5.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Surface	1	2	23.9	8.2	27.2	8.3	8.0	2.4		4.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Middle	2	1	24.1	8.3	28.4	7.7	8.0	3.1	2.7	4.5	5.1
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Middle	2	2	23.6	8.2	28.6	7.8	[3.0	2.7	6.3	5.1
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Bottom	3	1	23.9	8.3	28.9	7.3	7.3	2.8		5.3	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)5	17:08	11.8	Bottom	3	2	23.4	8.2	29.1	7.3	7.3	2.7		4.7	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Surface	1	1	24.5	8.1	26.0	7.5		10.4		8.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Surface	1	2	24.5	8.1	26.0	7.5	7.4	10.9		7.3	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Middle	2	1	24.5	8.1	26.0	7.3	7.4	10.5	10.8	7.9	7.6
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Middle	2	2	24.4	8.1	26.0	7.4		10.8	10.8	7.1	7.0
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Bottom	3	1	23.7	8.1	27.6	6.9	6.9	11.0		7.2	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	CS(Mf)3(N)	16:01	7.2	Bottom	3	2	23.7	8.0	27.6	6.9	0.9	10.9		8.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Surface	1	1	24.6	8.3	27.7	9.1		8.1		10.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Surface	1	2	24.1	8.3	27.9	9.1	9.1	8.1		10.8	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Middle	2	1					9.1		7.9		11.1
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Middle	2	2							7.5		11.1
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Bottom	3	1	24.2	8.3	27.9	8.5	8.5	7.6		11.6	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)16	16:40	5.6	Bottom	3	2	23.8	8.3	28.1	8.5	8.5	7.7		11.9	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Surface	1	1	24.1	8.3	28.2	8.1		6.8		9.3	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Surface	1	2	23.6	8.3	28.4	8.2	8.2	6.8		9.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Middle	2	1					0.2		7.0		9.3
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Middle	2	2							7.0		9.5
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Bottom	3	1	24.2	8.3	28.2	7.6	7.7	7.1		9.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4a	16:28	4.7	Bottom	3	2	23.7	8.2	28.4	7.7	7.7	7.2		9.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Surface	1	1	24.2	8.2	28.0	7.6		11.2		12.3	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Surface	1	2	23.7	8.2	28.2	7.6	7.6	11.3		13.1	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Middle	2	1					7.0		11.2		13.8
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Middle	2	2							11.2		15.0
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Bottom	3	1	24.2	8.2	28.0	7.6	7.6	11.1		14.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	SR4(N)	16:24	3.1	Bottom	3	2	23.7	8.2	28.2	7.6	7.0	11.1		15.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Surface	1	1	24.1	8.2	28.0	7.9		7.5		10.0	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Surface	1	2	23.6	8.2	28.2	8.0	8.0	7.6		10.6	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Middle	2	1					0.0		7.6		9.7
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Middle	2	2							7.0		5.7
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Bottom	3	1	24.1	8.2	28.0	7.6	7.6	7.6		9.4	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS8	16:19	4.1	Bottom	3	2	23.6	8.2	28.2	7.6	7.0	7.6		8.9	
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Surface	1	1					ļ l				
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Surface	1	2					8.3				
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Middle	2	1	24.6	8.2	27.9	8.4	0.5	9.4	9.4	9.9	9.6
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Middle	2	2	24.1	8.3	28.1	8.2		9.4	5.4	9.3	5.0
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Bottom	3	1									
TMCLKL	HY/2012/07	2018-04-13	Mid-Flood	IS(Mf)9	16:11	2.9	Bottom	3	2									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Surface	1	1	23.1	8.2	29.0	6.4		3.6		6.7	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Surface	1	2	23.4	8.2	28.8	6.4	6.4	3.0		6.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Middle	2	1	23.1	8.2	29.9	6.4	0.4	2.6	4.5	7.6	7.4
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Middle	2	2	23.5	8.2	29.7	6.3		2.2	4.5	6.4	7.4
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Bottom	3	1	23.1	8.2	30.7	6.3	6.3	8.3		9.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)5	12:57	12.2	Bottom	3	2	23.4	8.1	30.6	6.3	0.5	7.5		8.8	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Surface	1	1	22.8	8.2	28.8	7.1		10.1		9.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Surface	1	2	22.8	8.1	28.8	7.2	7.2	10.3		9.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Middle	2	1	22.8	8.2	29.0	7.1	7.2	10.4	10.6	8.1	10.3
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Middle	2	2	22.8	8.1	29.1	7.2		10.1	10.0	9.2	10.5
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Bottom	3	1	22.8	8.2	29.4	7.1	7.2	11.5		12.8	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	CS(Mf)3(N)	11:50	7.1	Bottom	3	2	22.8	8.1	29.5	7.2	1.2	11.2		12.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Surface	1	1	23.1	8.2	27.7	6.5		5.1		10.2	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Surface	1	2	23.4	8.1	27.6	6.5	6.5	4.4		10.6	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Middle	2	1					0.5		16		10.2
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Middle	2	2							4.6		10.2
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Bottom	3	1	23.1	8.2	30.1	6.4	6.4	4.6		10.3	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)16	12:32	5.9	Bottom	3	2	23.5	8.1	30.0	6.4	0.4	4.1		9.6	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Surface	1	1	22.9	8.2	27.3	6.6		4.4		11.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Surface	1	2	23.3	8.1	27.2	6.6	6.6	3.8		10.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Middle	2	1					0.0		4.3		10.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Middle	2	2							4.5		10.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Bottom	3	1	22.9	8.2	27.3	6.7	6.7	4.4		11.8	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4a	12:22	4.6	Bottom	3	2	22.9	8.2	27.3	6.7	0.7	4.4		10.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Surface	1	1	22.9	8.2	27.4	6.4		5.6		10.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Surface	1	2	23.3	8.1	27.2	6.7	6.6	5.9		9.3	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Middle	2	1					0.0		5.7		10.6
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Middle	2	2							5.7		10.0
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Bottom	3	1	22.9	8.2	27.4	6.4	6.4	5.6		11.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	SR4(N)	12:17	3.6	Bottom	3	2	23.3	8.1	27.3	6.4	0.4	5.8		12.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Surface	1	1	23.0	8.2	27.4	6.6		4.1		8.6	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Surface	1	2	23.4	8.1	27.2	6.6	6.6	3.6		6.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Middle	2	1					0.0		3.9		9.1
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Middle	2	2							5.5		5.1
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Bottom	3	1	23.0	8.2	27.4	6.6	6.6	4.2		11.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS8	12:12	4.3	Bottom	3	2	23.4	8.1	27.3	6.6	0.0	3.7		10.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Surface	1	1	23.0	8.2	27.4	6.6		5.2		8.4	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Surface	1	2	23.3	8.1	27.3	6.6	6.6	4.6		7.7	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Middle	2	1					0.0		4.9		9.2
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Middle	2	2							4.5		9.2
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Bottom	3	1	23.0	8.2	27.4	6.6	6.6	5.3		10.7	
TMCLKL	HY/2012/07	2018-04-16	Mid-Ebb	IS(Mf)9	12:05	3.9	Bottom	3	2	23.3	8.1	27.3	6.6	6.6	4.4		9.8	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Surface	1	1	23.4	8.1	27.7	6.6		2.6		4.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Surface	1	2	23.1	8.2	27.8	6.6	6.5	3.1		4.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Middle	2	1	23.6	8.1	29.0	6.4	0.5	2.6	4.3	6.5	6.4
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Middle	2	2	23.3	8.2	29.1	6.5		2.8	4.5	7.8	0.4
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Bottom	3	1	23.5	8.1	30.5	6.5	6 F	6.7		8.2	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)5	6:29	12.1	Bottom	3	2	23.2	8.2	30.6	6.5	6.5	8.2		7.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Surface	1	1	23.1	8.2	27.9	7.0		12.6		22.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Surface	1	2	23.1	8.1	28.0	7.0	7.0	12.9		21.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Middle	2	1	23.1	8.2	27.9	7.0	7.0	16.3	16.0	21.4	22.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Middle	2	2	23.1	8.1	28.0	7.0	1	16.5	16.9	21.9	22.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Bottom	3	1	23.2	8.2	27.9	7.0	7.0	21.5		23.7	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	CS(Mf)3(N)	7:25	7.2	Bottom	3	2	23.1	8.1	28.0	7.0	7.0	21.7		25.0	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Surface	1	1	23.4	8.1	27.4	6.7		3.8		3.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Surface	1	2	23.1	8.2	27.5	6.7	67	4.3		4.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Middle	2	1					6.7		4.2		7 1
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Middle	2	2							4.2		7.1
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Bottom	3	1	23.4	8.1	27.4	6.7	67	4.1		9.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)16	7:00	5.6	Bottom	3	2	23.1	8.2	27.5	6.7	6.7	4.5		10.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Surface	1	1	23.4	8.1	27.3	6.6		5.2		7.8	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Surface	1	2	23.0	8.2	27.5	6.6	6.6	5.9		8.3	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Middle	2	1					6.6		F 7		8.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Middle	2	2							5.7		0.7
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Bottom	3	1	23.4	8.1	27.4	6.7	6.7	5.5		9.5	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4a	7:07	4.6	Bottom	3	2	23.0	8.2	27.5	6.7	0.7	6.1		9.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Surface	1	1	23.4	8.1	27.2	6.5		4.4		7.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Surface	1	2	23.0	8.2	27.3	6.5	6.5	5.2		8.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Middle	2	1					0.5		5.2		9.0
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Middle	2	2							5.2		5.0
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Bottom	3	1	23.4	8.1	27.3	6.6	6.6	5.4		10.4	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	SR4(N)	7:15	3.1	Bottom	3	2	23.1	8.2	27.4	6.6	0.0	5.9		9.7	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Surface	1	1	23.4	8.1	27.4	6.6		4.2		9.9	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Surface	1	2	23.1	8.2	27.5	6.6	6.6	4.7		8.2	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Middle	2	1					0.0		4.9		10.6
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Middle	2	2							4.5		10.0
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Bottom	3	1	23.4	8.1	27.4	6.6	6.6	5.2		12.8	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS8	7:21	4.3	Bottom	3	2	23.1	8.2	27.5	6.6	0.0	5.6		11.3	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Surface	1	1	23.4	8.1	27.4	6.6	ļ T	3.9		6.4	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Surface	1	2	23.1	8.2	27.5	6.6	6.6	4.5		6.1	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Middle	2	1					0.0		4.5		8.1
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Middle	2	2							7.5		0.1
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Bottom	3	1	23.4	8.1	27.3	6.6	6.6	4.6		10.4	
TMCLKL	HY/2012/07	2018-04-16	Mid-Flood	IS(Mf)9	7:28	3.3	Bottom	3	2	23.1	8.2	27.5	6.6	0.0	4.8		9.4	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Surface	1	1	22.7	8.0	31.3	6.5		8.2		12.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Surface	1	2	22.7	8.2	29.8	6.3	6.4	8.2		12.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Middle	2	1	22.7	8.0	31.5	6.5	0.4	10.8	10.7	16.1	16.3
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Middle	2	2	22.6	8.1	30.0	6.3] [11.0	10.7	17.9	10.5
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Bottom	3	1	22.7	8.0	32.0	6.4	6.4	12.9		18.9]
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)5	14:10	11.6	Bottom	3	2	22.6	8.2	30.4	6.3	6.4	13.1		20.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Surface	1	1	23.1	8.0	29.6	6.9		11.4		8.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Surface	1	2	23.1	8.1	29.5	6.9	6.0	11.2		7.5	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Middle	2	1	22.7	8.1	30.8	6.9	6.9	14.1	10.0	8.4	0.7
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Middle	2	2	22.7	8.1	30.7	6.9	Ī	14.8	13.3	8.7	8.7
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Bottom	3	1	22.6	8.1	31.9	6.9	6.0	14.7		9.6	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	CS(Mf)3(N)	13:05	7.3	Bottom	3	2	22.6	8.2	31.9	6.8	6.9	13.4		9.8	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Surface	1	1	22.8	8.0	30.8	6.5		6.0		8.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Surface	1	2	22.7	8.1	29.3	6.3		6.0		9.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Middle	2	1					6.4		<u> </u>		
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Middle	2	2					1 1		6.4		8.8
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Bottom	3	1	22.8	8.0	30.8	6.5	6.5	6.7		8.8	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)16	13:45	5.6	Bottom	3	2	22.7	8.1	29.3	6.4	6.5	6.7		9.0	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Surface	1	1	22.7	8.0	31.0	6.4		5.0		7.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Surface	1	2	22.7	8.1	29.4	6.2	6.2	5.0		6.8	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Middle	2	1					6.3		5.2		7.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Middle	2	2					1 1		5.2		7.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Bottom	3	1	22.7	8.0	31.0	6.4	6.2	5.3		7.6	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4a	13:34	4.7	Bottom	3	2	22.6	8.1	29.5	6.2	6.3	5.3		6.5	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Surface	1	1	22.9	8.0	30.4	6.4		5.6		7.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Surface	1	2	22.9	8.1	28.9	6.3	6.4	5.6		7.7	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Middle	2	1					6.4		ГС		7.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Middle	2	2					Ī		5.6		7.9
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Bottom	3	1	22.9	8.0	30.5	6.5	6.4	5.6		8.9]
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	SR4(N)	13:30	3.3	Bottom	3	2	22.9	8.1	29.0	6.3	0.4	5.6		7.4]
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Surface	1	1	22.9	8.0	30.6	6.5		6.3		8.9	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Surface	1	2	22.9	8.1	29.1	6.3	6.4	6.3		9.6	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Middle	2	1					6.4		7 /		8.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Middle	2	2					Ī		7.4		8.9
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Bottom	3	1	22.6	8.0	30.9	6.4	6.4	8.4		8.5	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS8	13:24	4.3	Bottom	3	2	22.6	8.1	29.4	6.3	6.4	8.4		8.7	1
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Surface	1	1	22.9	8.0	30.5	6.6		4.2		7.8	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Surface	1	2	22.8	8.1	29.0	6.4		4.2		7.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Middle	2	1					6.5		4.5		7 -
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Middle	2	2							4.2		7.5
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Bottom	3	1	22.9	8.0	30.5	6.6	6.5	4.2		7.8]
TMCLKL	HY/2012/07	2018-04-18	Mid-Ebb	IS(Mf)9	13:16	3.4	Bottom	3	2	22.8	8.1	29.0	6.4	6.5	4.2		7.1	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Surface	1	1	22.6	8.0	31.1	6.6		4.5		9.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Surface	1	2	22.6	8.2	29.7	6.4	6.5	4.3		7.8	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Middle	2	1	22.6	8.0	31.2	6.6	0.5	4.6	11.7	8.2	19.1
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Middle	2	2	22.6	8.2	29.7	6.4] [4.4	11.7	7.6	19.1
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Bottom	3	1	22.6	8.0	31.7	6.5	6.4	28.9		42.3	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)5	7:24	11.2	Bottom	3	2	22.6	8.2	30.1	6.3	6.4	23.6		39.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Surface	1	1	22.8	8.1	29.6	6.7		18.7		13.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Surface	1	2	22.8	8.2	29.6	6.7	67	17.3		12.6	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Middle	2	1	22.8	8.1	29.6	6.7	6.7	18.6	17.9	16.4	15.3
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Middle	2	2	22.8	8.2	29.6	6.7	Ī	17.4	17.9	16.0	15.5
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Bottom	3	1	22.8	8.1	29.6	6.7	67	18.7		16.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	CS(Mf)3(N)	8:30	7.1	Bottom	3	2	22.8	8.2	29.5	6.7	6.7	16.5		17.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Surface	1	1	22.6	8.0	30.9	6.6		6.2		6.7	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Surface	1	2	22.6	8.2	29.5	6.4		6.2		7.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Middle	2	1					6.5		C 1		
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Middle	2	2					1		6.1		8.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Bottom	3	1	22.6	8.0	31.0	6.6	6.5	6.1		9.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)16	7:55	5.5	Bottom	3	2	22.6	8.2	29.5	6.4	6.5	5.9		9.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Surface	1	1	22.6	8.0	31.2	6.5		10.2		11.6	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Surface	1	2	22.6	8.2	29.7	6.3	6.4	10.3		11.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Middle	2	1					6.4		10.5		12.2
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Middle	2	2							10.5		12.2
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Bottom	3	1	22.6	8.0	31.2	6.6	6.5	10.9		12.4	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4a	8:04	4.6	Bottom	3	2	22.6	8.2	29.7	6.4	0.5	10.7		13.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Surface	1	1	22.6	8.0	31.1	6.3		8.5		10.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Surface	1	2	22.6	8.1	29.6	6.1	6.2	7.4		10.2	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Middle	2	1					0.2		7.6		10.8
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Middle	2	2							7.0		10.8
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Bottom	3	1	22.6	8.0	31.1	6.3	6.3	7.2		11.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	SR4(N)	8:11	3.2	Bottom	3	2	22.6	8.2	29.6	6.3	0.5	7.2		11.7	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Surface	1	1	22.6	8.0	31.2	6.5		7.1		9.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Surface	1	2	22.6	8.2	29.6	6.3	6.4	6.6		9.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Middle	2	1					0.4		7.1		8.9
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Middle	2	2							/.1		0.5
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Bottom	3	1	22.6	8.0	31.2	6.5	6.4	7.7		9.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS8	8:16	3.8	Bottom	3	2	22.6	8.2	29.6	6.3	0.4	7.1		8.5	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Surface	1	1	22.6	8.0	30.7	6.5	l l	3.6		5.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Surface	1	2	22.6	8.1	29.2	6.2	6.4	3.7		5.1	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Middle	2	1					0.4		3.7		5.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Middle	2	2							5.7		5.0
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Bottom	3	1	22.6	8.0	30.7	6.5	6.4	3.6		5.0	
TMCLKL	HY/2012/07	2018-04-18	Mid-Flood	IS(Mf)9	8:24	3.2	Bottom	3	2	22.6	8.1	29.2	6.3	0.7	3.7		4.6	

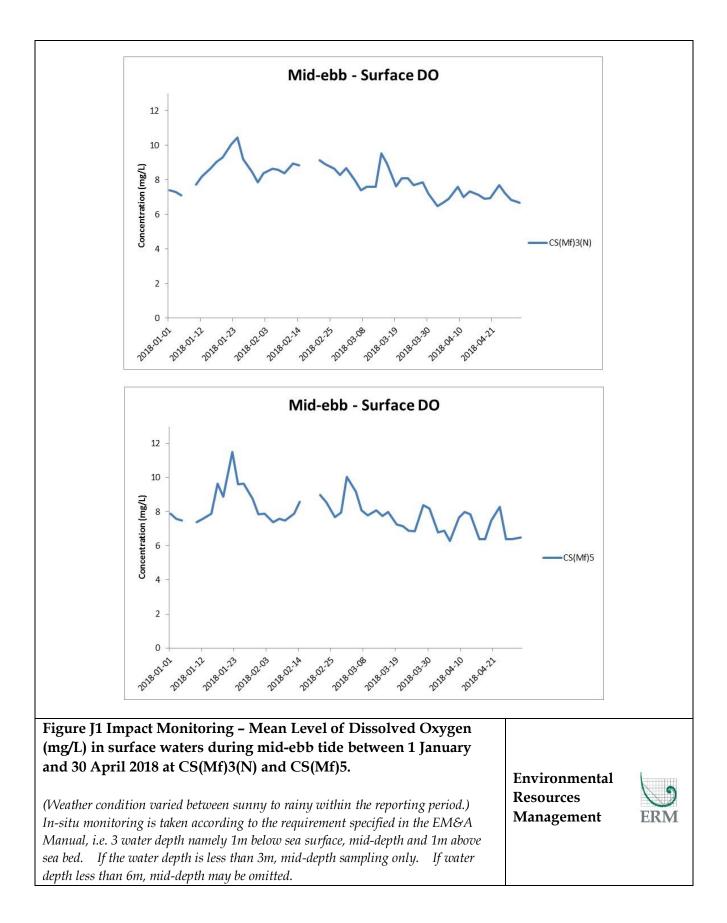
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Surface	1	1	23.3	8.1	29.6	7.5		6.2		6.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Surface	1	2	23.3	8.0	29.8	7.5	7.3	6.9		8.3	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Middle	2	1	23.0	8.1	30.2	7.1	7.5	9.2	9.6	11.0	9.9
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Middle	2	2	23.0	8.0	30.4	7.1		9.4	9.0	9.3	5.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Bottom	3	1	22.9	8.1	30.4	7.1	7 1	12.9		12.9	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)5	15:38	12.3	Bottom	3	2	22.9	8.0	30.6	7.1	7.1	12.9		11.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Surface	1	1	23.5	8.0	29.3	7.0		13.6		11.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Surface	1	2	23.5	8.1	29.3	6.9	7.0	13.2		10.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Middle	2	1	23.3	8.0	30.1	7.0	7.0	14.6	1.4.4	10.2	10.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Middle	2	2	23.3	8.1	30.0	6.9		14.7	14.4	11.0	10.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Bottom	3	1	23.2	8.0	30.9	6.9	6.0	14.8		10.0	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	CS(Mf)3(N)	14:34	7.4	Bottom	3	2	23.2	8.1	30.8	6.9	6.9	15.2		10.2	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Surface	1	1	23.1	8.1	29.6	7.6		6.2		9.2	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Surface	1	2	23.1	8.0	29.8	7.6	7.0	6.1		8.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Middle	2	1					7.6		6.2		
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Middle	2	2							6.2		8.7
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Bottom	3	1	23.1	8.1	29.6	7.7	~ ~	6.3		8.7	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)16	15:13	5.7	Bottom	3	2	23.1	8.0	29.8	7.7	7.7	6.0		8.5	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Surface	1	1	23.0	8.1	29.4	7.5		6.9		7.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Surface	1	2	23.0	8.0	29.6	7.5	7 -	6.2		8.0	1
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Middle	2	1					7.5		7.4		10.0
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Middle	2	2							7.4		10.6
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Bottom	3	1	23.0	8.2	29.5	7.4	7.4	8.4		13.8	1
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4a	15:01	4.5	Bottom	3	2	23.0	8.0	29.7	7.4	7.4	8.2		13.3	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Surface	1	1	23.1	8.1	29.4	7.5		5.5		9.7	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Surface	1	2	23.2	8.0	29.6	7.4	7.5	5.4		8.4]
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Middle	2	1					7.5		Ε 4		0.6
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Middle	2	2							5.4		9.6
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Bottom	3	1	23.1	8.1	29.4	7.5	7.5	5.3		9.5]
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	SR4(N)	14:57	3.3	Bottom	3	2	23.2	8.0	29.6	7.5	7.5	5.2		10.8	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Surface	1	1	23.1	8.1	29.5	7.7		5.2		6.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Surface	1	2	23.1	8.0	29.7	7.7	7.7	4.8		6.3	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Middle	2	1					/./		6.2		7.6
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Middle	2	2							6.2		7.0
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Bottom	3	1	23.0	8.1	29.8	7.3	7.3	7.3		9.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS8	14:51	4.4	Bottom	3	2	23.0	8.0	30.0	7.3	7.5	7.5		8.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Surface	1	1	23.3	8.1	29.5	7.8		5.5		7.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Surface	1	2	23.3	8.0	29.7	7.8	7.8	5.5		7.4]
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Middle	2	1					/.0		6.2		9.2
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Middle	2	2							6.2		9.2
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Bottom	3	1	23.3	8.1	29.5	7.8	7.8	6.8		10.5	J l
TMCLKL	HY/2012/07	2018-04-20	Mid-Ebb	IS(Mf)9	14:42	3.5	Bottom	3	2	23.3	8.0	29.7	7.8	/.0	7.1		11.2	

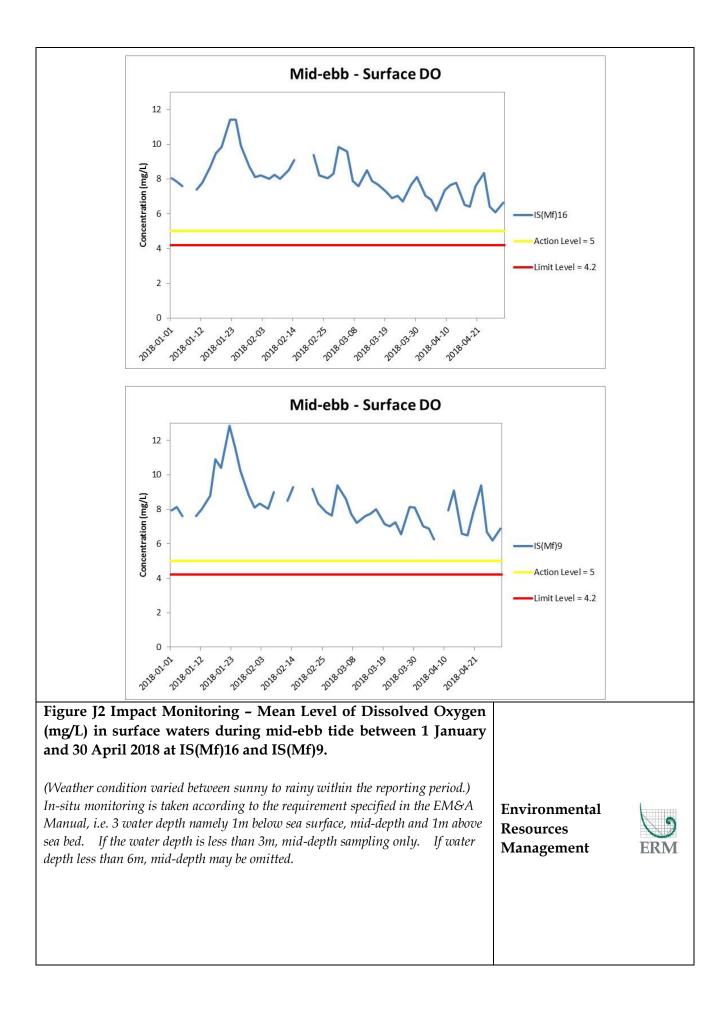
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Surface	1	1	23.0	8.1	29.0	7.5		3.7		6.9	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Surface	1	2	23.0	7.9	29.2	7.5	7.5	4.1		7.2	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Middle	2	1	23.0	8.1	29.6	7.4	7.5	4.4	6.1	7.4	8.3
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Middle	2	2	23.0	7.9	29.8	7.4		4.0	0.1	7.5	0.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Bottom	3	1	22.9	8.1	30.2	7.3	7.3	10.2		10.9	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)5	8:27	12.2	Bottom	3	2	22.9	7.9	30.5	7.3	7.5	10.2		10.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Surface	1	1	23.2	8.0	28.8	6.8		17.2		11.2	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Surface	1	2	23.2	8.1	28.8	6.8	6.8	17.2		9.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Middle	2	1	23.2	8.0	28.9	6.8	0.8	19.3	19.0	13.8	15.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Middle	2	2	23.2	8.1	28.8	6.7		19.4	19.0	14.2	15.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Bottom	3	1	23.2	8.0	28.9	6.8	6.8	20.2		21.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	CS(Mf)3(N)	9:37	7.4	Bottom	3	2	23.2	8.1	28.9	6.8	0.0	20.4		22.5	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Surface	1	1	23.0	8.2	29.1	7.5		5.5		9.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Surface	1	2	23.1	8.0	29.3	7.6	7.6	5.2		8.7	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Middle	2	1					7.0		7.6		9.9
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Middle	2	2							7.0		9.9
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Bottom	3	1	22.9	8.1	29.5	7.5	7.5	9.6		10.9	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)16	8:52	5.6	Bottom	3	2	23.0	8.0	29.7	7.5	7.5	9.9		10.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Surface	1	1	23.0	8.2	29.3	7.6		12.0		14.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Surface	1	2	23.0	8.0	29.4	7.6	7.6	12.2		13.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Middle	2	1					7.0		12.0		15.4
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Middle	2	2							12.0		13.4
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Bottom	3	1	23.0	8.2	29.4	7.6	7.6	11.9		16.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4a	9:01	4.4	Bottom	3	2	23.0	8.0	29.6	7.6	7.0	12.0		17.8	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Surface	1	1	22.9	8.1	29.5	7.4		9.7		9.9	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Surface	1	2	22.9	8.0	29.7	7.4	7.4	10.2		11.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Middle	2	1					/		9.9		12.8
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Middle	2	2							5.5		12.0
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Bottom	3	1	22.9	8.1	29.5	7.6	7.6	9.9		15.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	SR4(N)	9:08	3.2	Bottom	3	2	22.9	8.0	29.7	7.6	7.0	9.9		14.4	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Surface	1	1	23.0	8.2	29.3	7.5		6.8		10.3	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Surface	1	2	23.0	8.0	29.5	7.5	7.5	6.4		9.5	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Middle	2	1					7.5		7.4		11.4
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Middle	2	2							,,,,		
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Bottom	3	1	22.9	8.2	29.5	7.5	7.5	8.2		12.3	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS8	9:14	4.4	Bottom	3	2	23.0	8.0	29.6	7.5	,	8.3		13.6	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Surface	1	1	22.8	8.1	29.6	7.5	ļ	6.1		8.0	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Surface	1	2	22.9	8.0	29.8	7.5	7.5	6.0		7.5	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Middle	2	1					,.5		6.1		11.3
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Middle	2	2							0.1		11.5
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Bottom	3	1	22.8	8.1	29.6	7.5	7.5	6.2		14.1	
TMCLKL	HY/2012/07	2018-04-20	Mid-Flood	IS(Mf)9	9:22	3.6	Bottom	3	2	22.9	8.0	29.8	7.5	,.5	6.0		15.5	

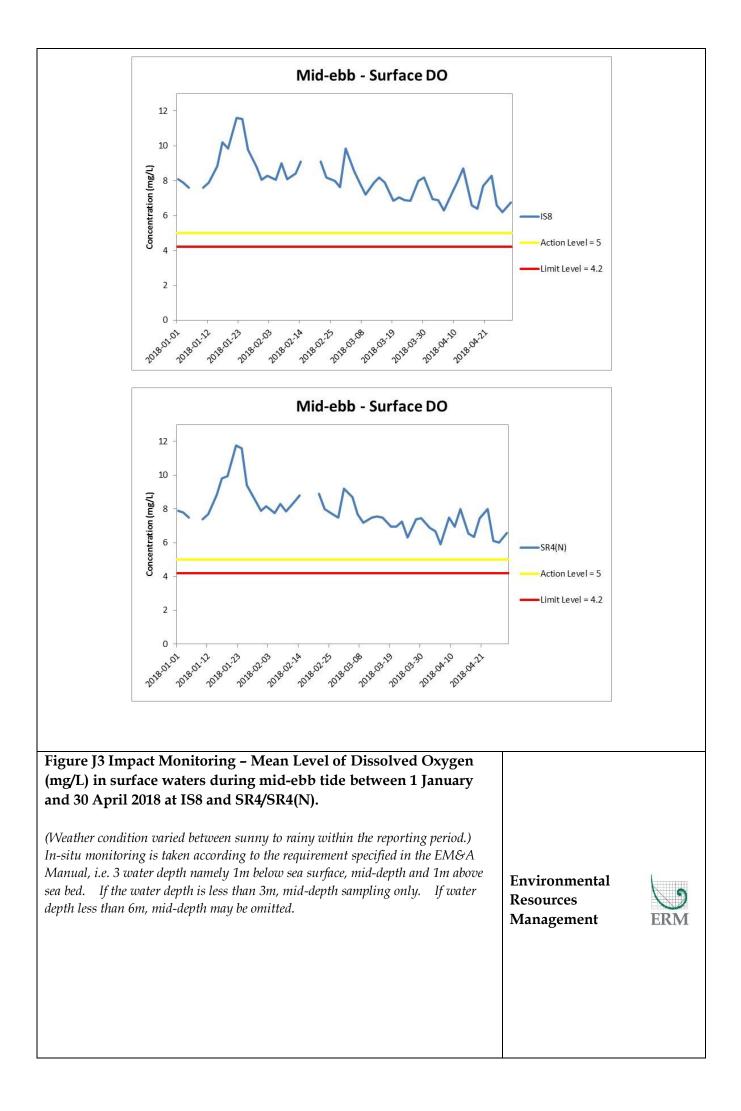
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Surface	1	1	23.9	8.2	28.5	8.3		2.5		3.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Surface	1	2	24.4	8.3	28.3	8.3	7.8	2.5		4.9	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Middle	2	1	23.7	8.1	29.9	7.3	7.0	3.9	3.4	5.9	4.9
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Middle	2	2	23.7	8.1	29.6	7.3		3.9	5.4	5.1	4.5
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Bottom	3	1	24.3	8.0	28.8	7.3	7.4	3.7		4.9	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)5	18:41	12.1	Bottom	3	2	24.2	8.1	28.7	7.4	7.4	3.6		5.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Surface	1	1	25.3	8.1	26.3	7.7		9.4		6.2	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Surface	1	2	25.3	8.0	26.3	7.7	7.5	10.0		4.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Middle	2	1	24.4	8.1	28.4	7.3	7.5	11.2	11.2	6.2	5.8
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Middle	2	2	24.3	8.0	28.4	7.4	1	11.8	11.2	5.8	5.6
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Bottom	3	1	24.3	8.1	29.0	7.4	7.5	11.3		6.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	CS(Mf)3(N)	17:43	7.2	Bottom	3	2	24.3	8.0	29.0	7.5	7.5	13.2		6.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Surface	1	1	24.5	8.1	29.2	8.4		5.6		3.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Surface	1	2	24.5	8.1	28.9	8.3		5.5		2.5	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Middle	2	1					8.4		67		4.2
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Middle	2	2					1		6.7		4.2
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Bottom	3	1	23.9	8.1	29.7	7.4	7.4	7.8		6.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)16	18:19	5.9	Bottom	3	2	23.9	8.1	29.5	7.4	7.4	7.7		5.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Surface	1	1	24.4	8.1	29.1	8.0		2.0		6.5	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Surface	1	2	24.4	8.1	28.9	7.9	8.0	2.2		4.9	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Middle	2	1					8.0		6 5		9.4
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Middle	2	2							6.5		9.4
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Bottom	3	1	24.2	8.0	29.6	7.4	7.4	10.9		12.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4a	18:09	5.2	Bottom	3	2	24.2	8.1	29.4	7.4	7.4	10.8		13.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Surface	1	1	24.9	8.0	29.0	8.0		4.0		3.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Surface	1	2	24.9	8.1	28.8	8.0	8.0	3.9		2.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Middle	2	1					8.0		4.0		4.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Middle	2	2							4.0		4.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Bottom	3	1	24.9	8.0	29.0	8.1	8.1	4.0		6.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	SR4(N)	18:04	4.2	Bottom	3	2	24.9	8.1	28.8	8.0	0.1	3.9		4.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Surface	1	1	24.7	8.1	29.0	8.3		3.8		2.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Surface	1	2	24.6	8.1	28.8	8.3	8.3	3.9		3.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Middle	2	1					6.5		4.8		3.6
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Middle	2	2							4.0		5.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Bottom	3	1	24.6	8.1	29.2	8.3	8.3	5.6		3.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS8	17:59	4.3	Bottom	3	2	24.6	8.1	29.0	8.2	0.5	5.7		5.3	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Surface	1	1	25.2	8.1	28.9	9.4		2.3		2.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Surface	1	2	25.2	8.2	28.7	9.4	9.4	2.3		2.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Middle	2	1					5.4		2.3		3.8
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Middle	2	2							2.3		5.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Bottom	3	1	25.2	8.1	28.9	9.4	9.4	2.3		6.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Ebb	IS(Mf)9	17:53	3.6	Bottom	3	2	25.2	8.2	28.7	9.3	5.4	2.2		4.3	

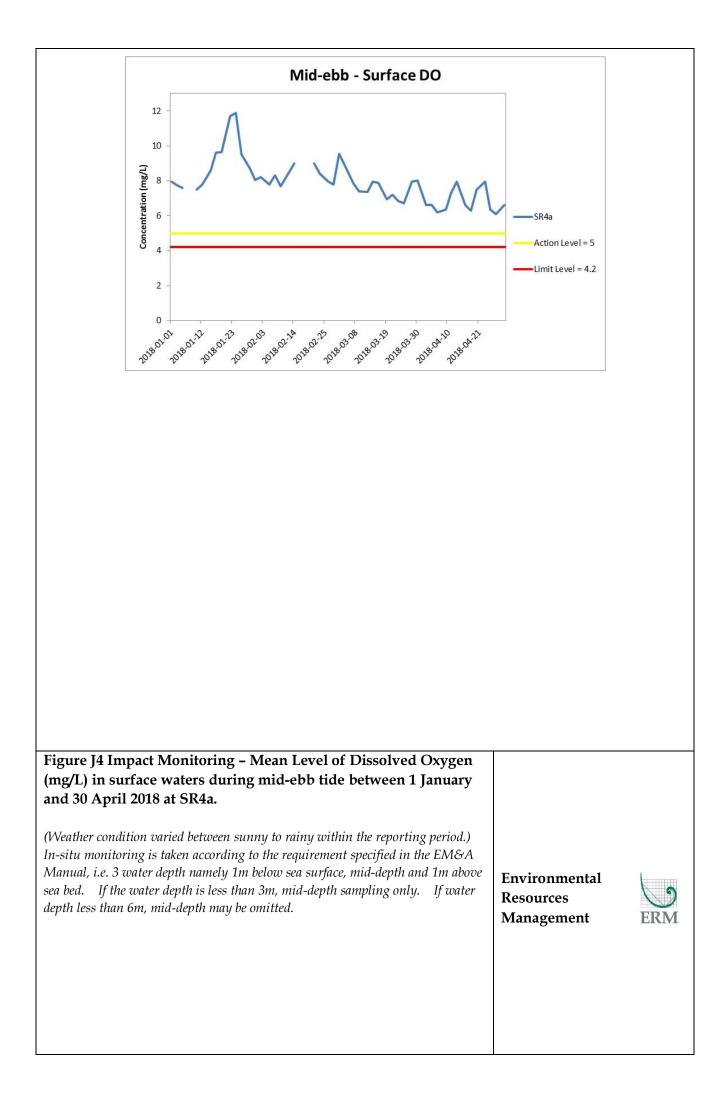
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Surface	1	1	23.8	8.1	29.4	7.7		1.9		4.5	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Surface	1	2	23.8	8.1	29.3	7.7	7.4	2.0		4.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Middle	2	1	23.6	8.1	30.1	7.1	7.4	1.8	1.9	5.6	5.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Middle	2	2	23.5	8.1	29.9	7.1] [1.8	1.5	4.8	5.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Bottom	3	1	23.6	8.1	30.0	7.2	7.2	1.8		5.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)5	11:08	11.4	Bottom	3	2	23.5	8.1	29.8	7.2	7.2	1.8		5.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Surface	1	1	25.4	8.0	26.4	7.1		9.2		6.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Surface	1	2	25.4	7.9	26.4	7.2	7.1	10.1		6.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Middle	2	1	24.3	8.0	27.3	7.0	7.1	10.6	10.5	6.6	8.7
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Middle	2	2	24.3	7.9	27.3	7.0] [11.7	10.5	6.9	0.7
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Bottom	3	1	24.3	8.1	27.6	7.1	7 1	10.2		12.5	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	CS(Mf)3(N)	12:23	7.3	Bottom	3	2	24.2	8.0	27.7	7.1	7.1	11.3		12.9	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Surface	1	1	24.4	8.0	28.6	8.2		2.4		3.2	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Surface	1	2	24.3	8.1	28.5	8.0	0 1	2.4		2.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Middle	2	1					8.1		2.6		2.6
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Middle	2	2					1		2.6		3.6
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Bottom	3	1	24.2	8.0	29.1	8.0	8.0	2.7		4.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)16	11:33	5.6	Bottom	3	2	24.2	8.1	28.9	8.0	8.0	2.8		4.5	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Surface	1	1	24.4	8.1	28.3	7.8		4.6		4.8	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Surface	1	2	24.3	8.1	28.2	7.7	7.0	4.6		4.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Middle	2	1					7.8		FO		4.9
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Middle	2	2]		5.8		4.9
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Bottom	3	1	24.2	8.1	28.8	7.6	7.6	6.9		5.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4a	11:42	5.3	Bottom	3	2	24.2	8.1	28.6	7.6	7.0	7.0		5.0	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Surface	1	1	24.1	8.0	29.5	7.3		7.1		14.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Surface	1	2	24.1	8.1	29.3	7.3	7.3	7.2		15.9	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Middle	2	1					7.5		7.1		15.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Middle	2	2							7.1		15.1
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Bottom	3	1	24.1	8.0	29.4	7.3	7.3	7.1		14.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	SR4(N)	11:47	4	Bottom	3	2	24.1	8.1	29.3	7.3	7.5	7.0		15.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Surface	1	1	24.2	8.0	29.4	7.5		5.0		6.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Surface	1	2	24.2	8.1	29.2	7.5	7.5	5.0		5.3	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Middle	2	1					7.5		4.9		6.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Middle	2	2							4.5		0.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Bottom	3	1	24.3	8.0	29.3	7.6	7.6	4.8		6.4	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS8	11:52	4.3	Bottom	3	2	24.2	8.1	29.1	7.6	7.0	4.8		5.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Surface	1	1	24.4	8.0	29.3	8.1		4.8		5.1	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Surface	1	2	24.4	8.1	29.1	8.1	8.1	4.9		4.6	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Middle	2	1					0.1		4.9		5.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Middle	2	2							4.7		5.0
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Bottom	3	1	24.4	8.1	29.2	8.1	8.1	5.0		5.7	
TMCLKL	HY/2012/07	2018-04-23	Mid-Flood	IS(Mf)9	12:00	3.2	Bottom	3	2	24.4	8.1	29.0	8.1	0.1	5.0		4.5	

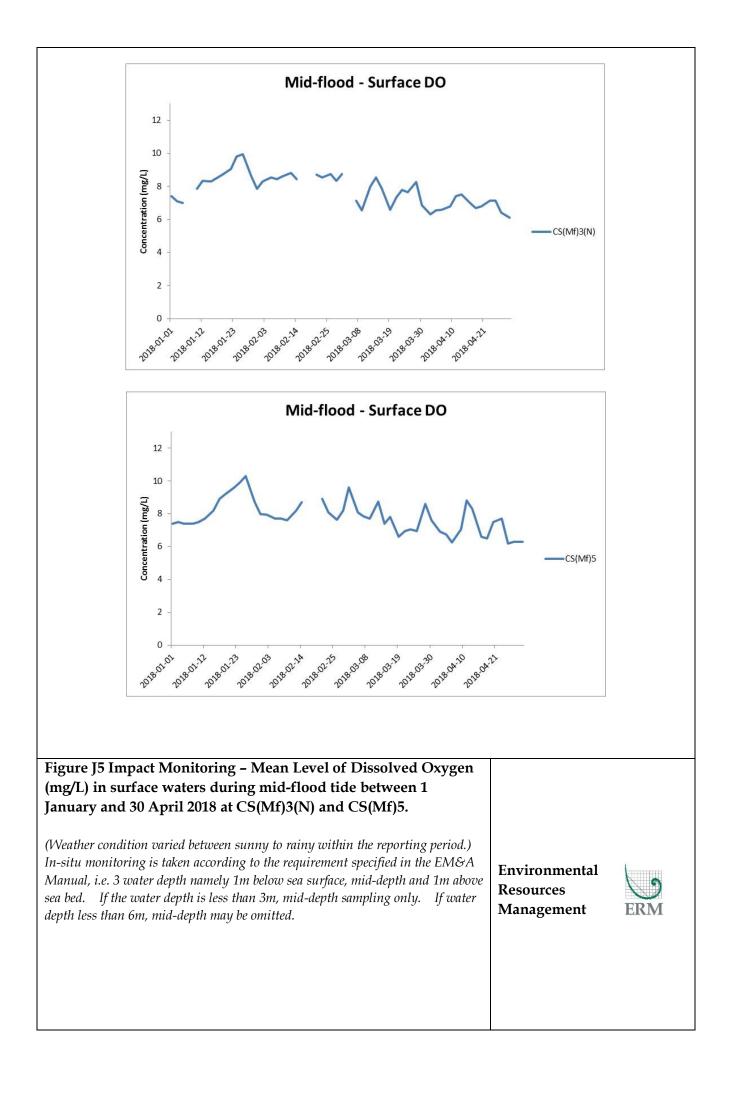
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Surface	1	1	24.1	8.0	27.3	6.4		1.6		2.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Surface	1	2	24.1	8.0	27.5	6.4	6.2	1.5		2.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Middle	2	1	23.6	8.0	31.1	6.0	0.2	2.7	3.4	3.0	4.0
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Middle	2	2	23.6	8.0	31.3	5.9] [2.9	5.4	3.6	4.0
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Bottom	3	1	23.5	8.0	31.6	6.1	6.1	5.8		5.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)5	9:46	13.3	Bottom	3	2	23.5	8.0	31.8	6.1	6.1	5.7		6.6	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Surface	1	1	24.4	8.1	23.5	7.2		9.3		5.7	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Surface	1	2	24.5	7.9	23.5	7.3	7.2	9.2		6.7	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Middle	2	1	24.3	8.1	27.6	7.0	7.2	9.0	10 F	7.4	6.0
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Middle	2	2	24.2	8.0	27.6	7.1	Ī	9.1	10.5	7.0	6.9
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Bottom	3	1	24.1	8.1	29.5	6.9	6.0	13.2		7.0	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	CS(Mf)3(N)	10:56	7.6	Bottom	3	2	24.1	8.0	29.5	6.9	6.9	13.1		7.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Surface	1	1	24.4	7.9	27.1	6.4		3.4		3.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Surface	1	2	24.4	7.9	27.3	6.4		3.3		2.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Middle	2	1					6.4		4 5		
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Middle	2	2					1		4.5		6.1
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Bottom	3	1	23.9	7.9	29.7	6.1	6.1	5.7		8.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)16	10:23	5.9	Bottom	3	2	23.9	7.9	29.7	6.1	6.1	5.6		9.6	1
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Surface	1	1	24.6	7.9	26.5	6.4		20.0		13.9	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Surface	1	2	24.6	7.9	26.7	6.3	6.4	22.4		14.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Middle	2	1					6.4		10.1		21 5
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Middle	2	2					Î		19.1		21.5
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Bottom	3	1	24.6	7.9	26.5	6.4	6.4	17.1		28.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4a	10:34	5.3	Bottom	3	2	24.6	7.9	26.7	6.3	0.4	17.0		29.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Surface	1	1	24.5	7.9	26.2	6.1		4.6		4.9	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Surface	1	2	24.6	7.9	26.3	6.1	6.1	4.3		5.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Middle	2	1					0.1		4.7		
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Middle	2	2							4.7		5.7
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Bottom	3	1	24.6	7.9	26.2	6.2	6.2	5.0		6.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	SR4(N)	10:41	3.7	Bottom	3	2	24.6	7.9	26.4	6.2	0.2	4.9		5.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Surface	1	1	24.5	8.0	26.2	6.6		2.1		4.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Surface	1	2	24.5	8.0	26.3	6.6	6.6	2.1		4.9	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Middle	2	1					0.0		4.9		5.1
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Middle	2	2							4.9		5.1
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Bottom	3	1	24.7	7.9	26.9	6.2	6.2	7.7		5.7	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS8	10:52	4.5	Bottom	3	2	24.7	7.9	27.0	6.2	0.2	7.6		5.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Surface	1	1	24.5	8.0	26.1	6.7		2.9		3.9	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Surface	1	2	24.5	8.0	26.3	6.7	6.7	2.9		2.6] [
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Middle	2	1					0.7		6.5		3.3
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Middle	2	2							0.5		5.5
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Bottom	3	1	24.5	7.9	26.3	6.5	6.6	10.1		3.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Ebb	IS(Mf)9	11:06	3.5	Bottom	3	2	24.5	7.9	26.5	6.6	6.6	10.1		3.4	

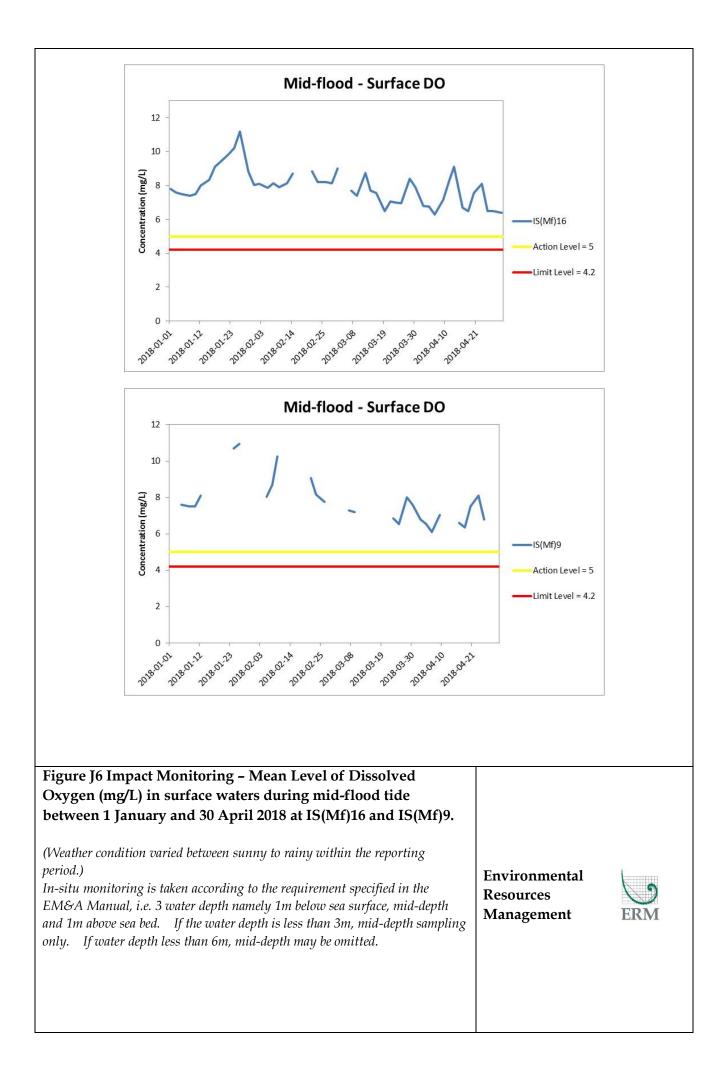

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Surface	1	1	24.0	8.0	27.5	6.2		3.0		4.2	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Surface	1	2	24.0	8.1	27.7	6.2	6.1	3.0		3.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Middle	2	1	23.5	8.0	31.4	6.0	0.1	5.8	5.2	4.1	5.4
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Middle	2	2	23.5	8.1	31.7	6.0		5.7	5.2	5.1	5.4
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Bottom	3	1	23.5	8.0	31.7	6.0	6.0	7.1		8.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)5	15:14	12.9	Bottom	3	2	23.5	8.1	31.9	6.0	6.0	6.8		7.6	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Surface	1	1	24.3	8.1	25.9	7.1		7.8		5.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Surface	1	2	24.3	8.0	25.9	7.2	7 1	7.7		4.0	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Middle	2	1	24.3	8.1	27.1	7.0	7.1	7.5	77	5.2	-
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Middle	2	2	24.3	8.0	27.1	7.1	Ī	7.6	7.7	6.7	5.9
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Bottom	3	1	24.3	8.1	27.7	7.1	7.4	7.8		6.9	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	CS(Mf)3(N)	14:32	7.4	Bottom	3	2	24.2	8.0	27.8	7.1	7.1	7.9		7.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Surface	1	1	24.5	8.0	26.8	6.5		2.7		7.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Surface	1	2	24.5	8.0	27.0	6.5	<u> </u>	2.7		6.0	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Middle	2	1					6.5		2.0		
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Middle	2	2					1 1		2.8		6.8
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Bottom	3	1	24.4	7.9	27.1	6.5	6.5	2.8		7.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)16	14:45	5.6	Bottom	3	2	24.5	8.0	27.2	6.5	6.5	2.8		6.3	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Surface	1	1	24.2	7.9	26.9	6.2		5.3		5.7	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Surface	1	2	24.2	8.0	27.1	6.2	6.2	5.4		5.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Middle	2	1					6.2		6.4		
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Middle	2	2					Ī		6.1		5.2
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Bottom	3	1	24.0	7.9	29.0	5.9	F 0	7.0		5.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4a	14:34	5.1	Bottom	3	2	24.0	8.0	29.2	5.9	5.9	6.8		4.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Surface	1	1	24.3	7.9	27.8	6.0		7.1		3.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Surface	1	2	24.4	8.0	27.9	6.0	6.0	6.9		3.7	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Middle	2	1					6.0		7.0		4.0
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Middle	2	2					1		7.0		4.0
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Bottom	3	1	24.4	7.9	27.6	6.1	6.1	6.9		4.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	SR4(N)	14:29	3.7	Bottom	3	2	24.4	8.0	27.7	6.1	6.1	6.9		4.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Surface	1	1	24.4	7.9	27.2	6.2		3.9		2.8	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Surface	1	2	24.4	8.0	27.4	6.2	6.2	3.9		3.1	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Middle	2	1					6.2		2.0		4.5
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Middle	2	2					Ī		3.9		4.5
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Bottom	3	1	24.4	7.9	27.1	6.3	6.2	3.9		5.5	1
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS8	14:23	4.2	Bottom	3	2	24.5	8.0	27.1	6.3	6.3	3.9		6.4	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Surface	1	1	24.5	7.9	26.5	6.8		3.0		2.5	
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Surface	1	2	24.5	8.0	26.8	6.8	د م	3.0		3.5]
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Middle	2	1					6.8		2.0		
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Middle	2	2							3.9		3.4
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Bottom	3	1	24.5	7.9	27.4	6.4	C A	4.7		3.4]
TMCLKL	HY/2012/07	2018-04-25	Mid-Flood	IS(Mf)9	14:13	3.2	Bottom	3	2	24.5	8.0	27.6	6.4	6.4	4.7		4.2	1

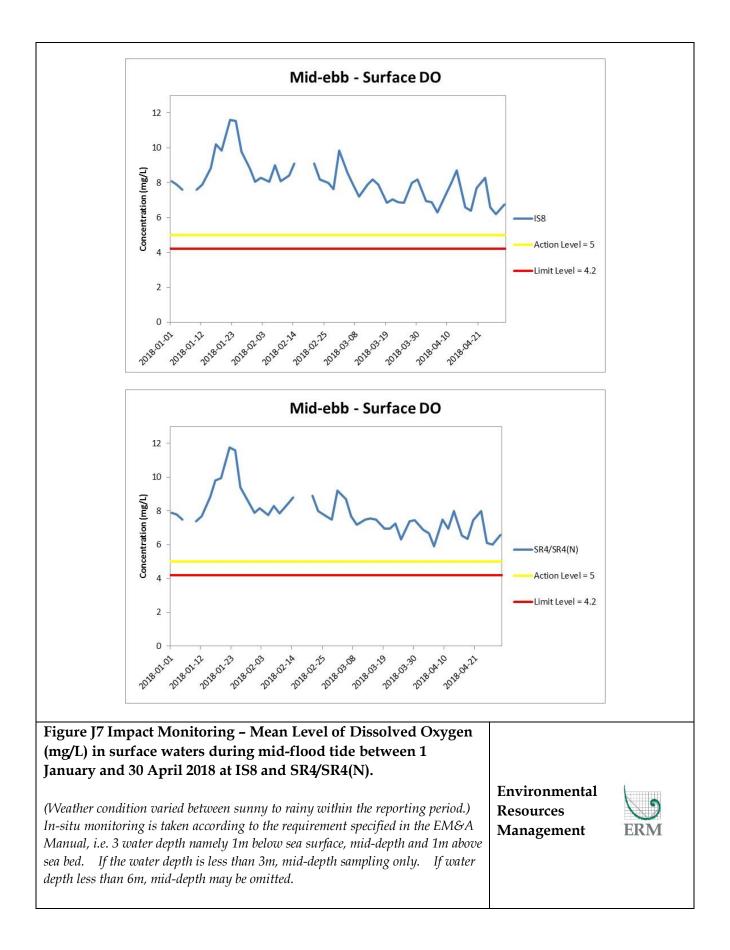

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Surface	1	1	24.0	8.1	29.6	6.4		1.8		5.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Surface	1	2	24.0	8.0	29.5	6.4	6.2	2.0		6.7	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Middle	2	1	23.7	8.1	30.6	6.0	0.2	2.9	5.1	5.8	6.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Middle	2	2	23.7	8.0	30.4	6.0		3.0	5.1	5.8	0.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Bottom	3	1	23.6	8.0	31.0	6.0	6.0	10.5		7.4	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)5	10:48	13.8	Bottom	3	2	23.6	8.0	30.8	6.0	0.0	10.5		8.4	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Surface	1	1	24.3	8.1	27.3	6.8		5.8		9.1	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Surface	1	2	24.0	8.1	27.3	6.9	<u>د ٥</u>	6.0		9.3	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Middle	2	1	24.1	8.1	28.1	6.8	6.8	6.9	6.4	8.5	9.3
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Middle	2	2	23.8	8.1	28.1	6.8	1	6.3	6.4	8.1	9.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Bottom	3	1	24.1	8.2	28.5	6.9	6.0	6.5		10.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	CS(Mf)3(N)	11:42	7.2	Bottom	3	2	23.7	8.1	28.6	6.9	6.9	6.6		10.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Surface	1	1	24.0	8.0	29.2	6.1		3.3		2.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Surface	1	2	23.9	8.0	29.0	6.1	6.1	3.5		2.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Middle	2	1					6.1		4.0		2.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Middle	2	2					1		4.0		3.9
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Bottom	3	1	24.0	8.0	29.4	6.2	6.2	4.6		4.8	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)16	11:25	5.9	Bottom	3	2	24.0	8.0	29.2	6.2	6.2	4.7		5.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Surface	1	1	24.0	8.0	28.9	6.1		3.3		3.4	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Surface	1	2	24.0	7.9	28.8	6.1	6.1	3.5		3.4	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Middle	2	1					6.1		F 7		5.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Middle	2	2							5.7		5.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Bottom	3	1	23.9	8.0	29.1	5.9	5.9	7.8		6.1	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4a	11:35	5.1	Bottom	3	2	23.9	7.9	28.9	5.9	5.9	8.0		7.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Surface	1	1	24.2	8.0	28.6	6.0		4.1		3.7	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Surface	1	2	24.1	7.9	28.5	6.0	6.0	4.2		3.3	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Middle	2	1					0.0		4.2		6.4
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Middle	2	2							4.2		0.4
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Bottom	3	1	24.4	8.0	28.5	6.0	6.1	4.2		9.8	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	SR4(N)	11:42	3.4	Bottom	3	2	24.4	7.9	28.3	6.1	0.1	4.2		8.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Surface	1	1	24.2	8.0	28.9	6.2		2.8		2.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Surface	1	2	24.2	7.9	28.7	6.2	6.2	2.8		3.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Middle	2	1					0.2		3.9		4.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Middle	2	2							5.5		4.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Bottom	3	1	24.0	8.0	29.1	6.1	6.1	5.2		5.3	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS8	11:52	4.1	Bottom	3	2	24.0	7.9	28.9	6.1	0.1	4.9		6.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Surface	1	1	24.2	8.0	28.8	6.2		4.1		6.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Surface	1	2	24.1	7.9	28.6	6.2	6.2	4.3		7.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Middle	2	1					0.2		5.5		7.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Middle	2	2							5.5		7.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Bottom	3	1	24.0	8.0	29.0	6.2	6.3	6.8		6.8	
TMCLKL	HY/2012/07	2018-04-27	Mid-Ebb	IS(Mf)9	12:05	3.5	Bottom	3	2	24.0	8.0	28.8	6.3	0.5	6.7		7.1	

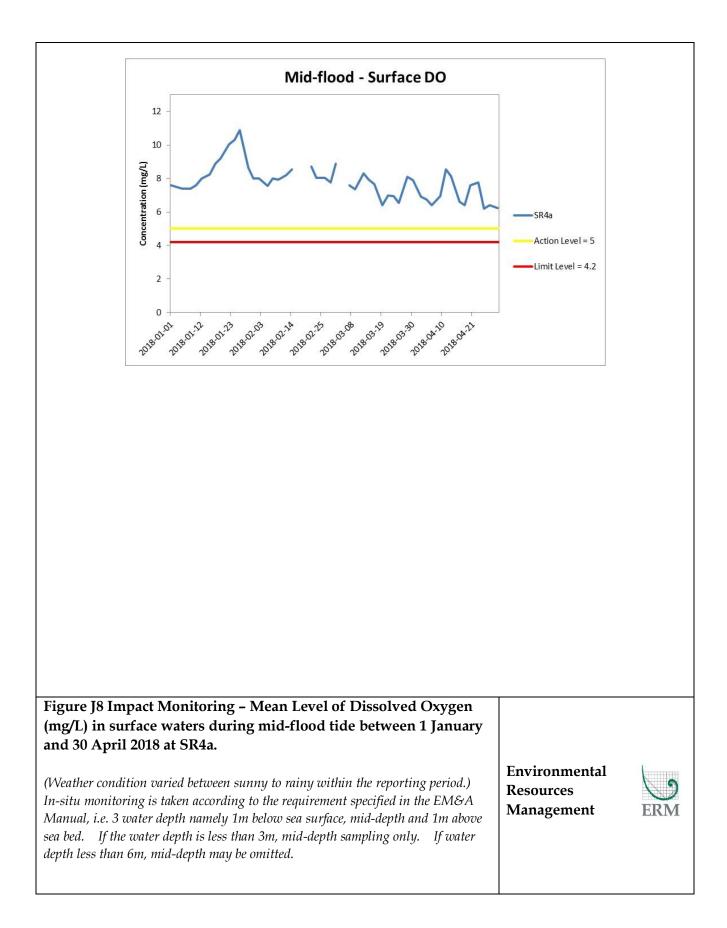

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Surface	1	1	24.2	8.1	29.4	6.3		2.1		3.9	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Surface	1	2	24.1	8.0	29.2	6.3	6.2	2.3		3.8	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Middle	2	1	23.7	8.1	31.0	6.0	0.2	8.4	7.9	4.6	8.8
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Middle	2	2	23.7	8.0	30.8	6.0		8.7	7.5	5.3	0.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Bottom	3	1	23.6	8.1	31.2	6.0	6.0	12.8		17.1	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)5	17:34	13	Bottom	3	2	23.6	8.0	31.0	6.0	0.0	12.9		18.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Surface	1	1	25.4	7.9	23.5	6.4		3.9		7.7	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Surface	1	2	25.0	7.9	23.5	6.4	6.4	4.0		8.4	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Middle	2	1	24.9	8.0	25.6	6.3	0.4	3.5	4.9	8.6	8.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Middle	2	2	24.5	8.0	25.6	6.3		3.4	4.5	7.4	0.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Bottom	3	1	24.7	8.0	26.3	6.3	6.3	7.4		9.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	CS(Mf)3(N)	16:40	7.1	Bottom	3	2	24.2	8.0	26.4	6.3	0.5	7.4		9.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Surface	1	1	24.7	8.1	29.1	6.5		2.2		6.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Surface	1	2	24.7	8.0	28.9	6.5	6.5	2.4		6.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Middle	2	1					0.5		4.0		6.6
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Middle	2	2							4.0		0.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Bottom	3	1	24.2	8.1	29.4	6.4	6.5	5.5		6.6	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)16	16:58	5.8	Bottom	3	2	24.2	8.0	29.2	6.5	0.5	5.8		7.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Surface	1	1	24.4	8.1	29.1	6.4		3.4		7.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Surface	1	2	24.4	8.0	28.9	6.4	6.4	3.6		6.6	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Middle	2	1					0.4		4.0		9.3
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Middle	2	2							4.0		5.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Bottom	3	1	24.0	8.1	29.4	6.3	6.4	4.5		11.6	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4a	16:43	5.3	Bottom	3	2	24.0	8.0	29.2	6.4	0.4	4.4		12.0	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Surface	1	1	24.4	8.0	28.9	6.1		11.0		15.6	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Surface	1	2	24.4	7.9	28.7	6.1	6.1	11.3		15.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Middle	2	1					0.1		10.9		16.6
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Middle	2	2							10.5		10.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Bottom	3	1	24.5	8.0	28.9	6.3	6.3	10.9		17.8	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	SR4(N)	16:34	3.3	Bottom	3	2	24.5	7.9	28.7	6.3	0.5	10.3		17.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Surface	1	1	24.5	8.1	29.0	6.1		12.1		10.7	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Surface	1	2	24.5	7.9	28.8	6.1	6.1	11.5		10.2	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Middle	2	1					0.1		10.3		13.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Middle	2	2							10.5		13.5
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Bottom	3	1	24.3	8.0	29.0	6.2	6.2	8.8		16.7	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS8	16:29	3.8	Bottom	3	2	24.3	7.9	28.8	6.2	0.2	8.9		16.5	
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Surface	1	1									
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Surface	1	2					6.3				
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Middle	2	1	24.1	8.1	29.2	6.2	0.5	5.8	6.2	10.3	11.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Middle	2	2	24.2	7.9	29.0	6.3		6.6	0.2	11.6	11.0
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Bottom	3	1									
TMCLKL	HY/2012/07	2018-04-27	Mid-Flood	IS(Mf)9	16:16	2.9	Bottom	3	2									

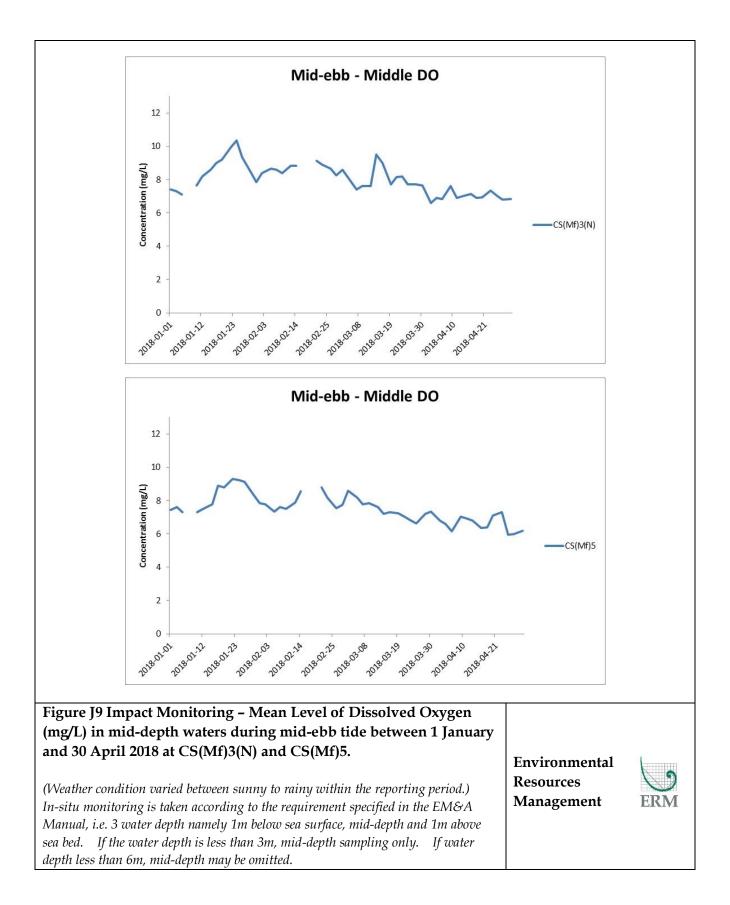

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Surface	1	1	24.9	7.9	28.5	6.5		4.7		5.7	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Surface	1	2	25.0	8.1	28.7	6.5	6.4	4.6		5.7	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Middle	2	1	24.5	7.9	29.2	6.2	0.4	5.5	5.1	5.7	6.9
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Middle	2	2	24.5	8.1	29.3	6.2		5.4	5.1	6.9	0.5
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Bottom	3	1	24.5	7.9	29.4	6.2	6.2	5.2		8.7	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)5	12:57	12.3	Bottom	3	2	24.5	8.1	29.6	6.2	0.2	5.2		8.9	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Surface	1	1	25.2	8.0	26.1	6.7		5.2		10.0	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Surface	1	2	25.7	8.0	26.0	6.7	6.8	4.9		10.1	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Middle	2	1	24.7	8.0	27.5	6.8	0.0	7.0	6.8	11.8	11.3
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Middle	2	2	25.1	8.1	27.5	6.9		6.8	0.8	11.5	11.5
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Bottom	3	1	24.6	8.1	28.4	7.0	7.0	8.7		12.0	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	CS(Mf)3(N)	13:31	7.1	Bottom	3	2	25.1	8.1	28.3	7.0	7.0	8.3		12.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Surface	1	1	25.0	8.0	28.7	6.6		3.5		5.1	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Surface	1	2	25.0	8.1	28.8	6.7	6.7	3.3		4.3	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Middle	2	1					0.7		3.4		6.1
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Middle	2	2							5.4		0.1
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Bottom	3	1	25.0	8.0	28.6	6.5	6.5	3.2		7.6	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)16	12:33	5.9	Bottom	3	2	25.0	8.1	28.8	6.5	0.5	3.4		7.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Surface	1	1	24.9	8.0	28.5	6.6		3.8		7.6	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Surface	1	2	24.9	8.1	28.7	6.6	6.6	3.3		6.6	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Middle	2	1					0.0		3.8		7.2
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Middle	2	2							5.8		7.2
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Bottom	3	1	24.9	8.0	28.6	6.7	6.7	4.4		7.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4a	12:22	4.9	Bottom	3	2	24.9	8.1	28.7	6.7	0.7	3.6		7.2	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Surface	1	1	25.2	8.0	28.3	6.6		3.1		5.1	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Surface	1	2	25.2	8.1	28.5	6.6	6.6	2.9		4.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Middle	2	1					0.0		3.0		4.8
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Middle	2	2							5.0		4.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Bottom	3	1	25.3	8.0	28.3	6.6	6.7	3.0		4.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	SR4(N)	12:16	4.3	Bottom	3	2	25.3	8.1	28.5	6.7	0.7	2.8		5.2	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Surface	1	1	25.1	8.0	28.6	6.7		2.9		3.9	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Surface	1	2	25.2	8.1	28.7	6.8	6.8	2.7		3.8	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Middle	2	1					0.0		2.7		4.3
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Middle	2	2							_ ./		
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Bottom	3	1	25.2	8.0	28.5	6.8	6.8	2.8		4.0	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS8	12:10	4.3	Bottom	3	2	25.2	8.1	28.7	6.8	0.0	2.5		5.3	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Surface	1	1	25.1	8.0	28.6	6.9		2.2		4.6	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Surface	1	2	25.2	8.1	28.8	6.9	6.9	2.0		5.1	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Middle	2	1					0.5		2.1		6.6
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Middle	2	2							2.1		0.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Bottom	3	1	25.2	8.0	28.6	6.9	6.9	2.2		8.2	
TMCLKL	HY/2012/07	2018-04-30	Mid-Ebb	IS(Mf)9	11:59	3.1	Bottom	3	2	25.2	8.1	28.8	6.9	0.5	2.0		8.4	

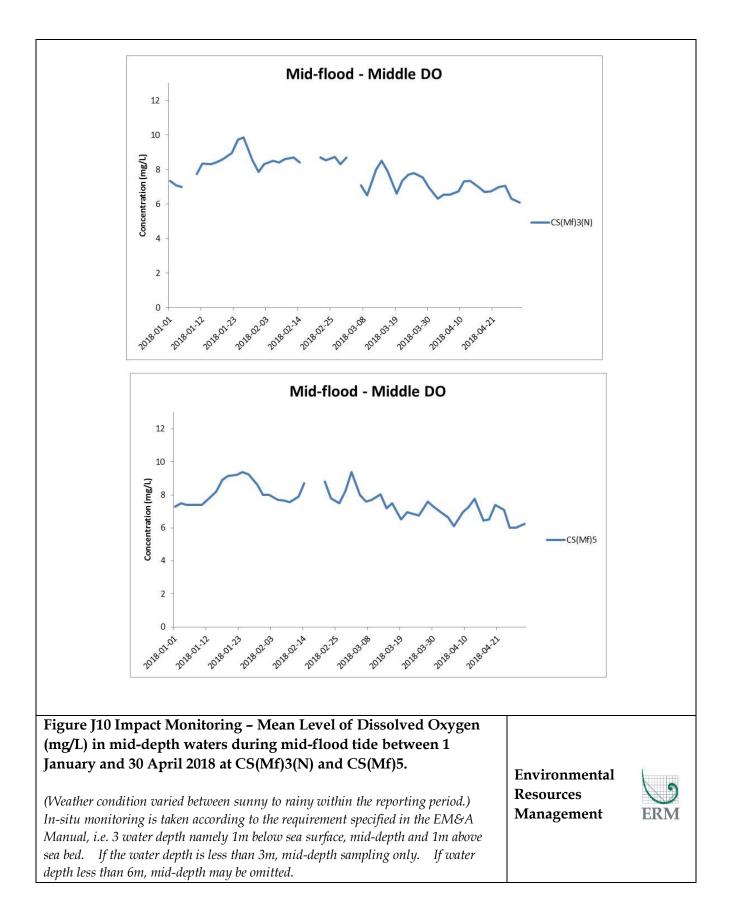

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Depth (m)	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Surface	1	1	24.6	7.9	28.3	6.3		3.2		5.1	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Surface	1	2	24.7	8.1	28.5	6.3	6.3	3.0		4.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Middle	2	1	24.6	7.9	28.7	6.2	0.5	3.5	3.3	4.3	4.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Middle	2	2	24.6	8.1	28.8	6.3		3.3	5.5	3.8	4.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Bottom	3	1	24.6	7.9	28.6	6.3	6.3	3.3		3.3	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)5	6:03	11.8	Bottom	3	2	24.6	8.1	28.8	6.3	0.5	3.3		3.2	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Surface	1	1	24.9	8.0	25.2	6.1		6.5		10.8	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Surface	1	2	25.3	8.0	25.1	6.1	6.1	6.1		10.0	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Middle	2	1	24.8	8.0	25.3	6.1	0.1	10.2	11.6	13.8	12.4
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Middle	2	2	25.3	8.0	25.3	6.1		10.4	11.0	13.7	12.4
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Bottom	3	1	24.8	8.0	25.3	6.1	6.1	18.4		12.4	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	CS(Mf)3(N)	7:15	7.2	Bottom	3	2	25.3	8.0	25.3	6.1	0.1	18.2		13.7	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Surface	1	1	24.7	8.0	28.0	6.4		2.8		3.0	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Surface	1	2	24.7	8.1	28.2	6.4	6.4	2.7		3.8	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Middle	2	1					6.4		2 5		2.2
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Middle	2	2					Ι		3.5		3.2
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Bottom	3	1	24.7	7.9	28.5	6.3	6.4	4.0		3.1	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)16	6:31	5.7	Bottom	3	2	24.7	8.1	28.7	6.4	6.4	4.6		3.0	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Surface	1	1	24.6	8.0	28.3	6.2		7.1		8.2	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Surface	1	2	24.7	8.1	28.5	6.3	6.2	6.5		7.2	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Middle	2	1					6.3		7.0		7.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Middle	2	2					Ī		7.0		7.6
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Bottom	3	1	24.6	8.0	28.5	6.2	6.2	7.7		7.4	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4a	6:40	4.3	Bottom	3	2	24.6	8.1	28.7	6.2	6.2	6.7		7.7	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Surface	1	1	24.6	8.0	28.7	6.2		4.2		8.9	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Surface	1	2	24.6	8.1	28.9	6.2	6.2	4.1		7.0	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Middle	2	1					6.2		4.2		7.0
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Middle	2	2					Ī		4.3		7.9
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Bottom	3	1	24.6	8.0	28.7	6.2	6.2	4.5		8.2	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	SR4(N)	6:47	3.4	Bottom	3	2	24.6	8.1	28.9	6.3	6.3	4.3		7.4	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Surface	1	1	24.6	8.0	28.6	6.3		4.5		5.5	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Surface	1	2	24.6	8.1	28.8	6.3		4.3		5.3	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Middle	2	1					6.3		4 5		
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Middle	2	2					t t		4.5		5.9
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Bottom	3	1	24.6	8.0	28.6	6.3	<u> </u>	4.8		6.7	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS8	6:54	4	Bottom	3	2	24.6	8.1	28.8	6.4	6.4	4.3		6.1	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Surface	1	1	24.7	8.0	28.7	6.3		3.1		4.3	
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Surface	1	2	24.7	8.1	28.9	6.3		3.1		4.6	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Middle	2	1					6.3				1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Middle	2	2							3.4		5.7
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Bottom	3	1	24.7	8.0	28.7	6.3		3.5		6.6	1
TMCLKL	HY/2012/07	2018-04-30	Mid-Flood	IS(Mf)9	7:03	3.3	Bottom	3	2	24.7	8.1	28.9	6.3	6.3	3.8		7.4	1
THICENE	,2012/07	2010 04-30		13(1911)5	7.05	5.5	Dottom	5	2	27.7	0.1	20.5	0.5		5.0		7.7	I

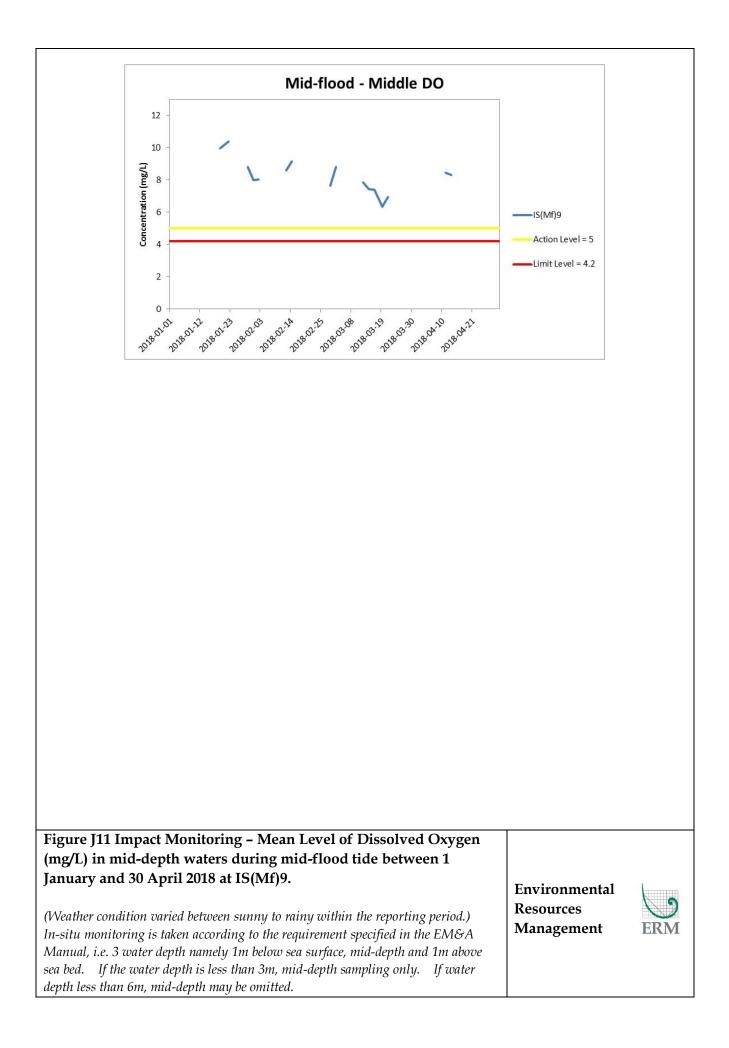


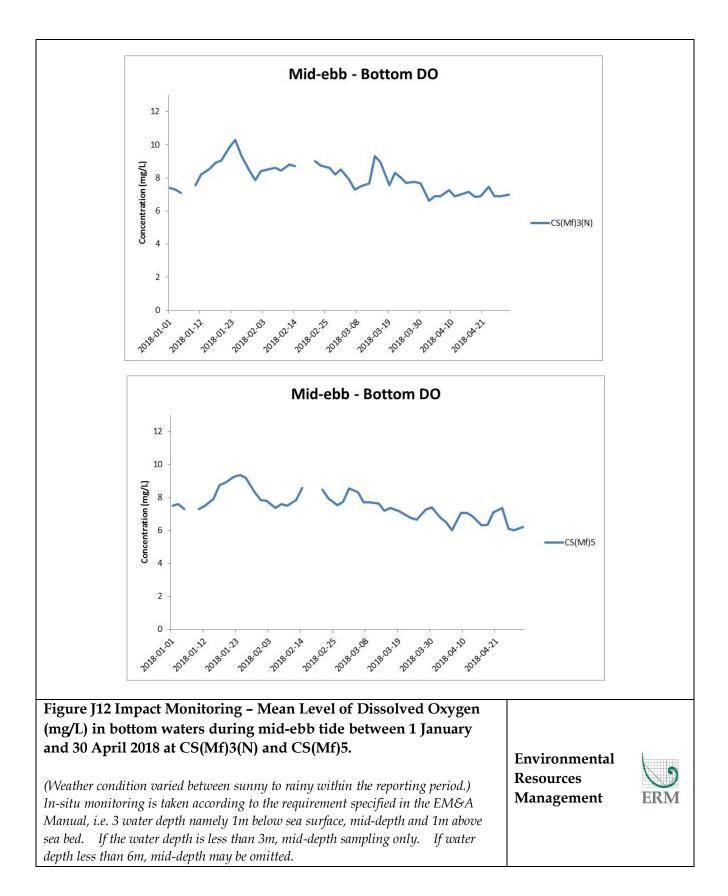


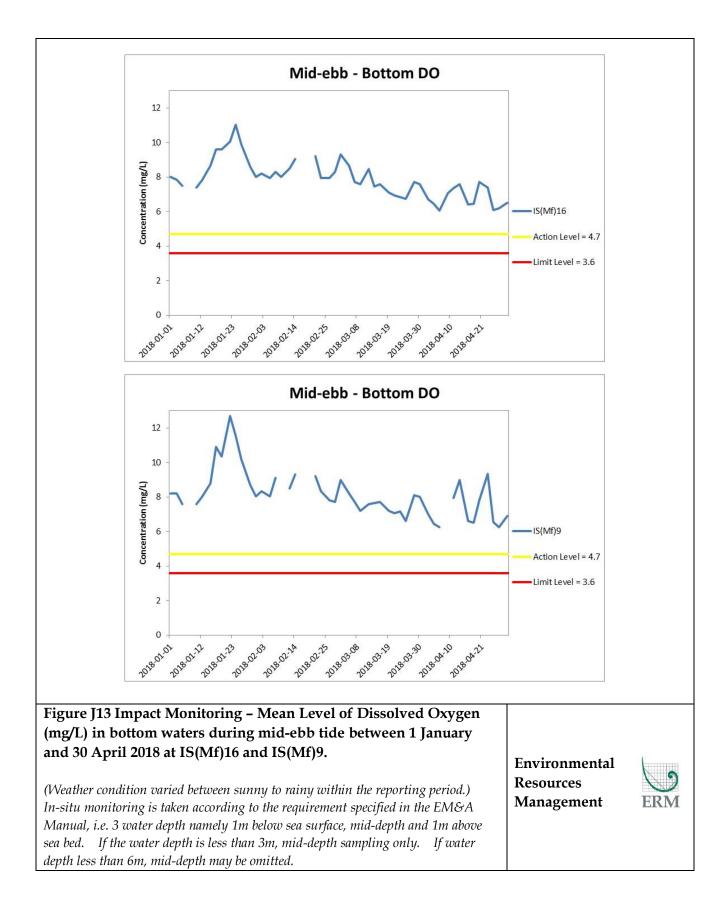


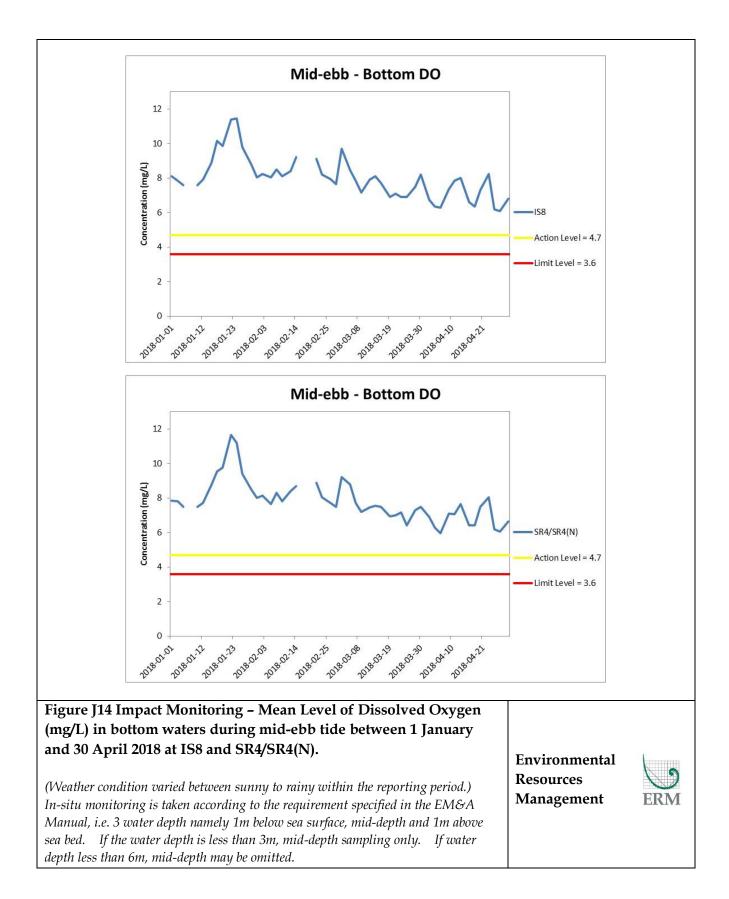


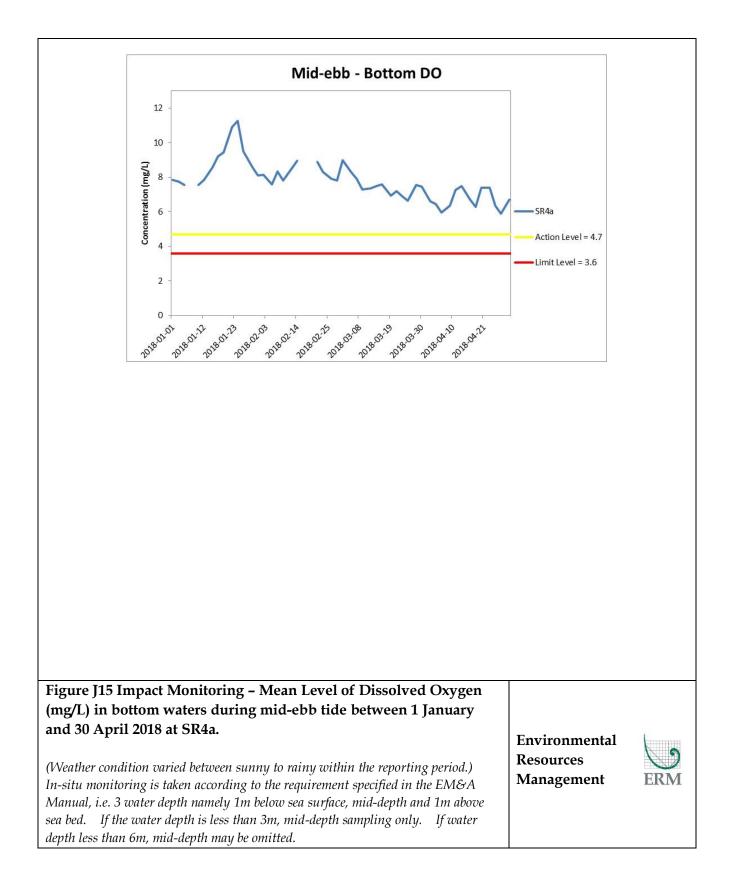


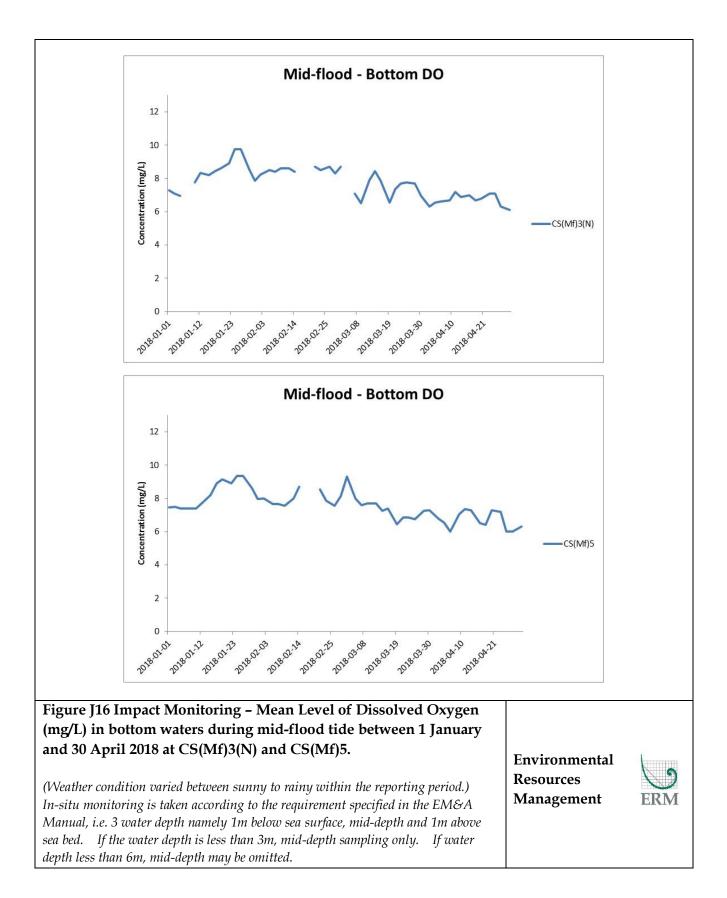


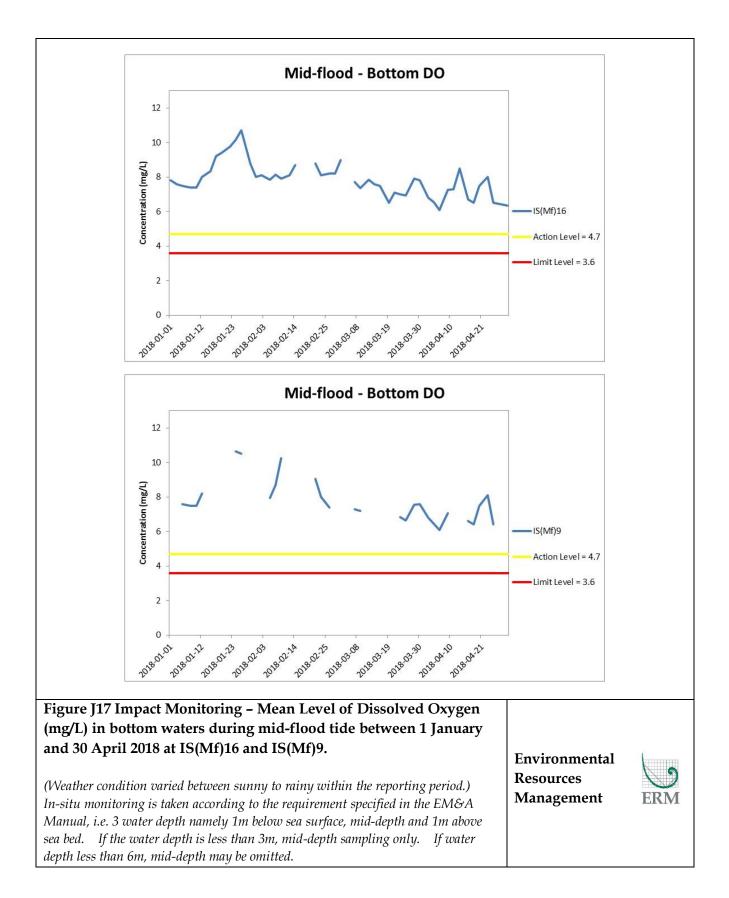


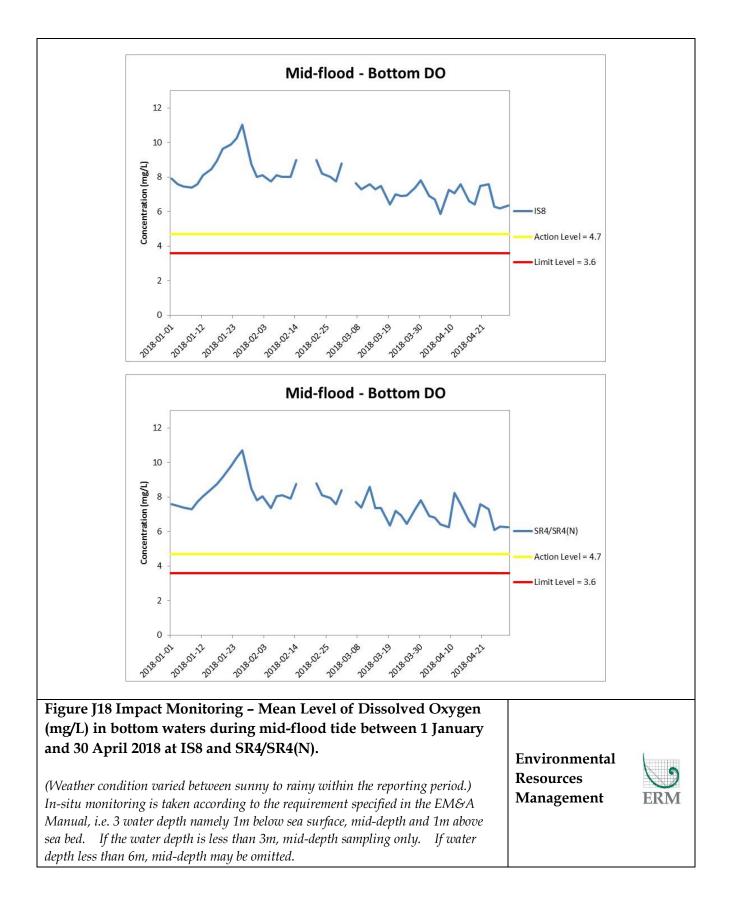


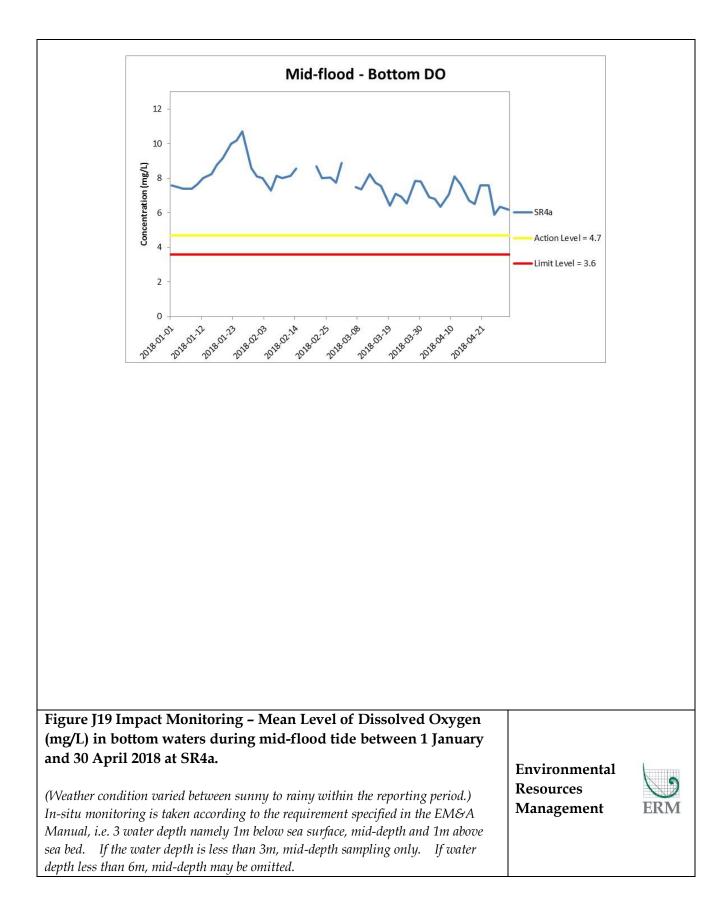


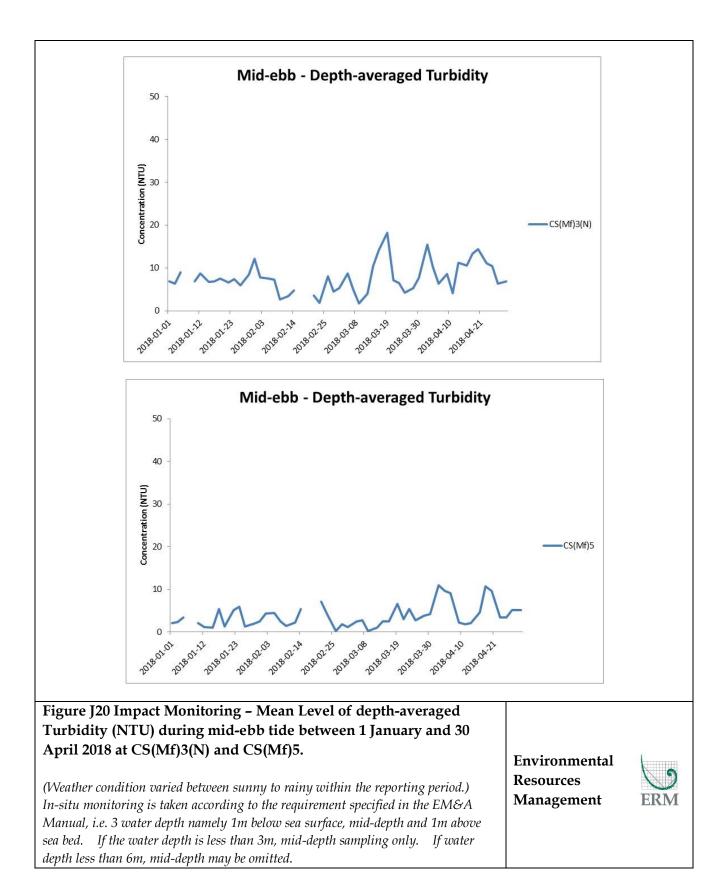


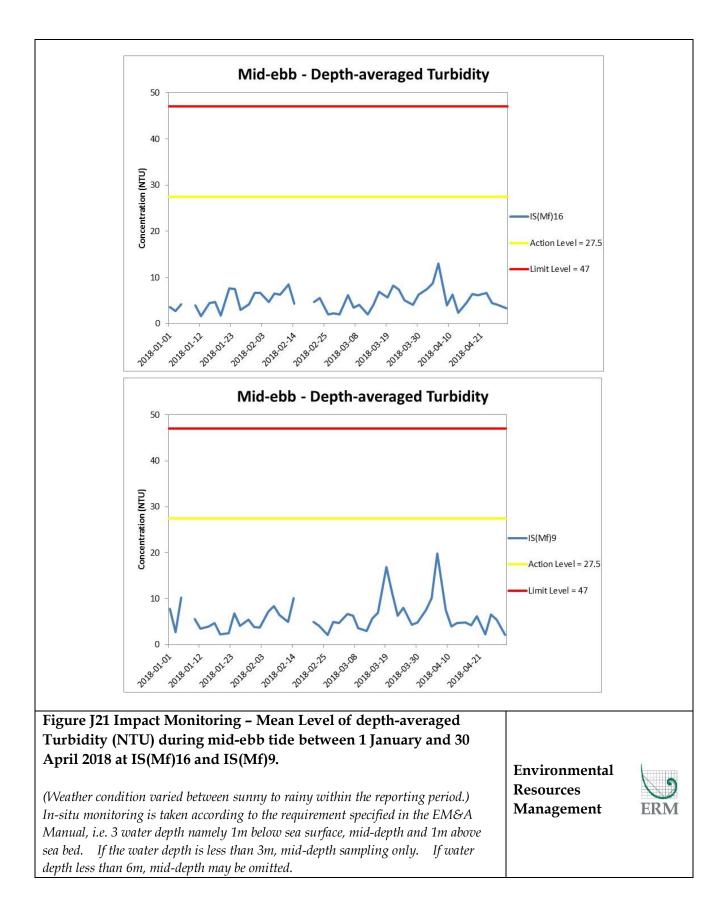


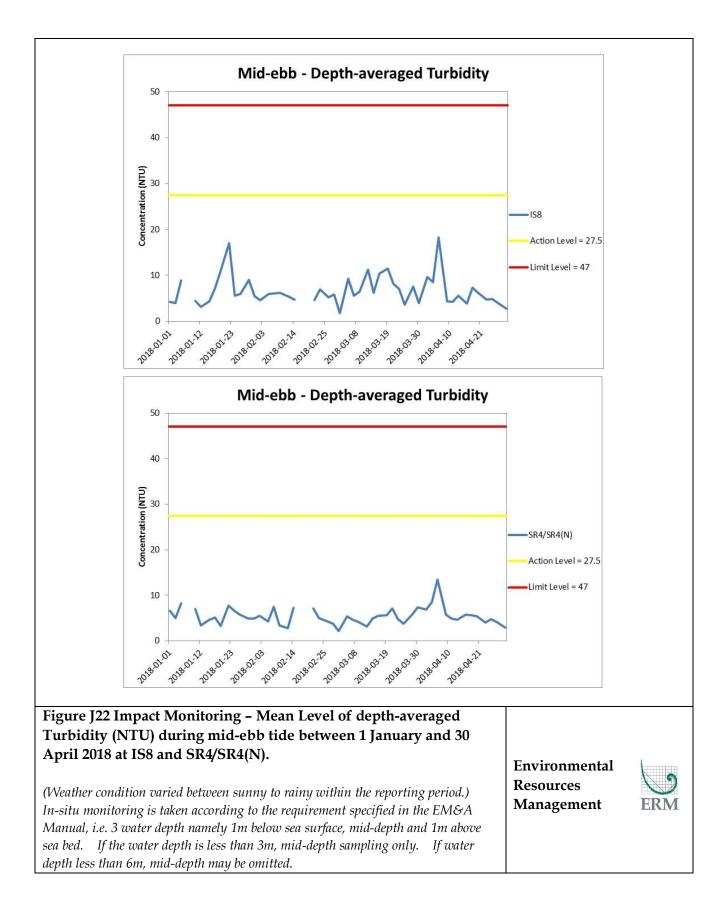


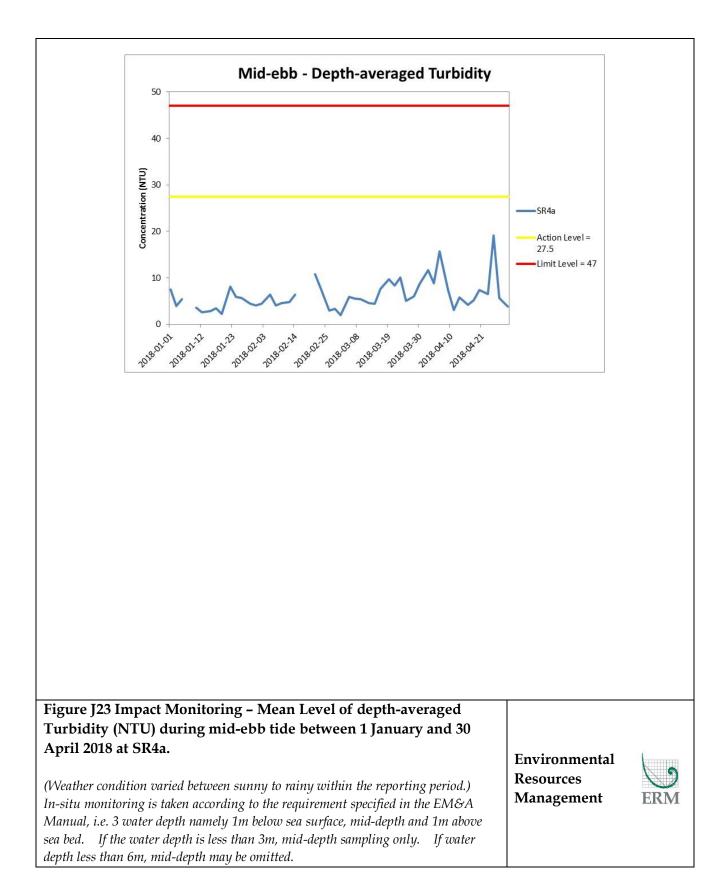


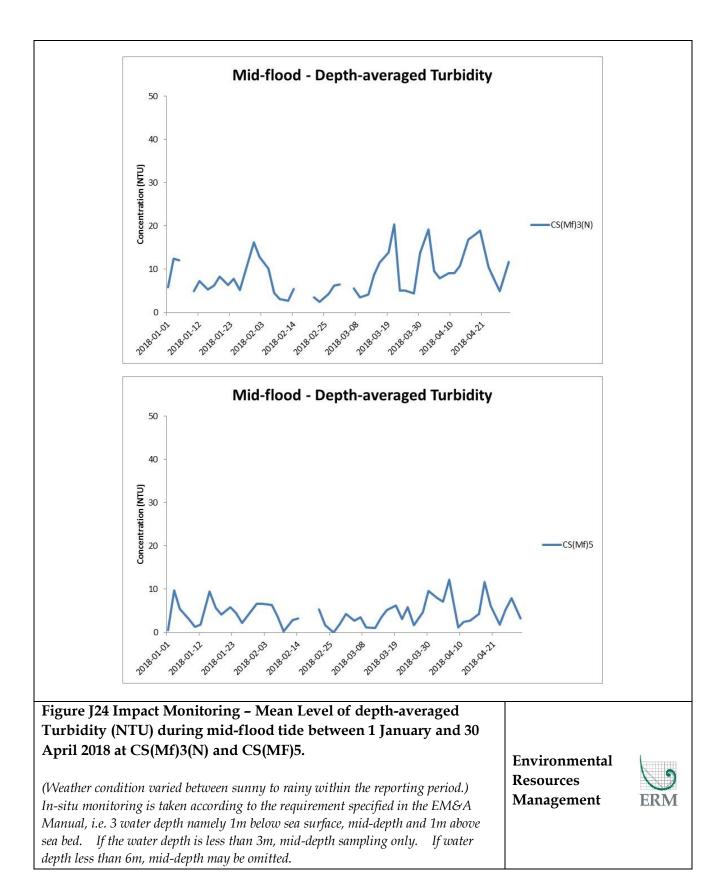


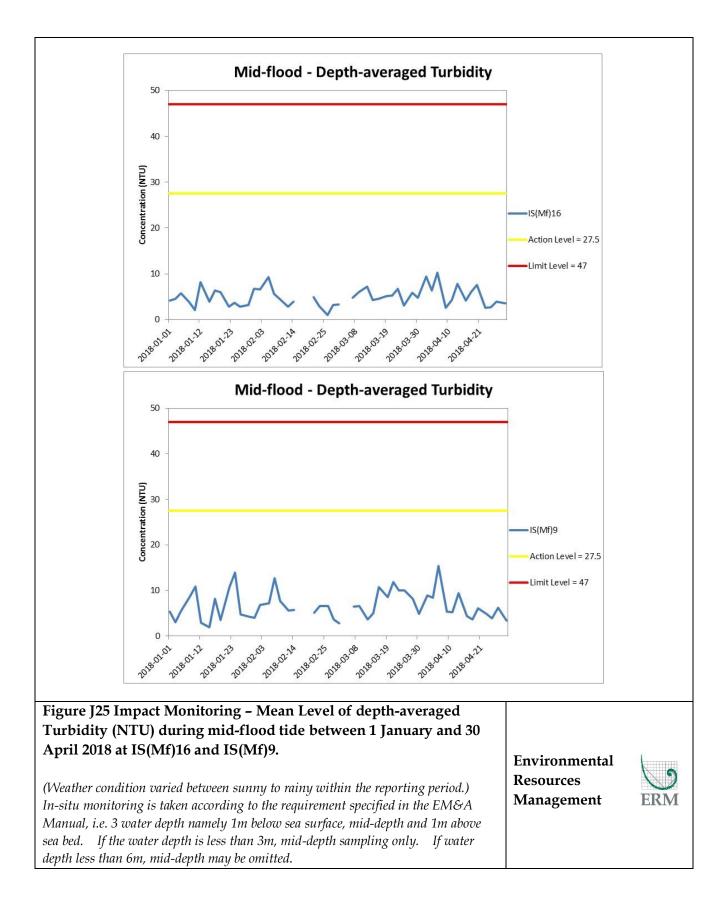


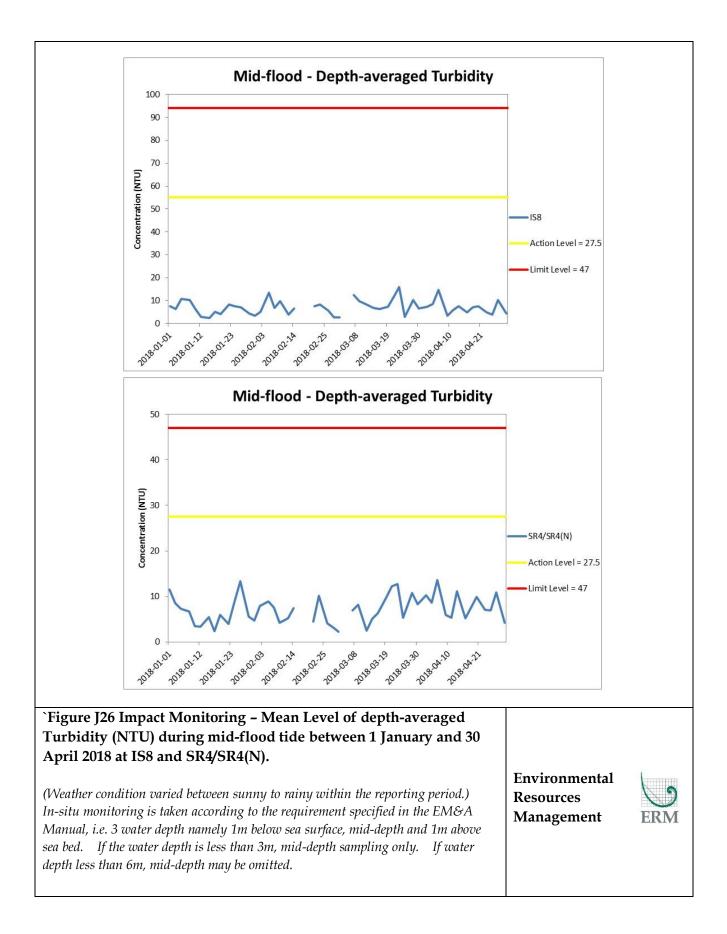


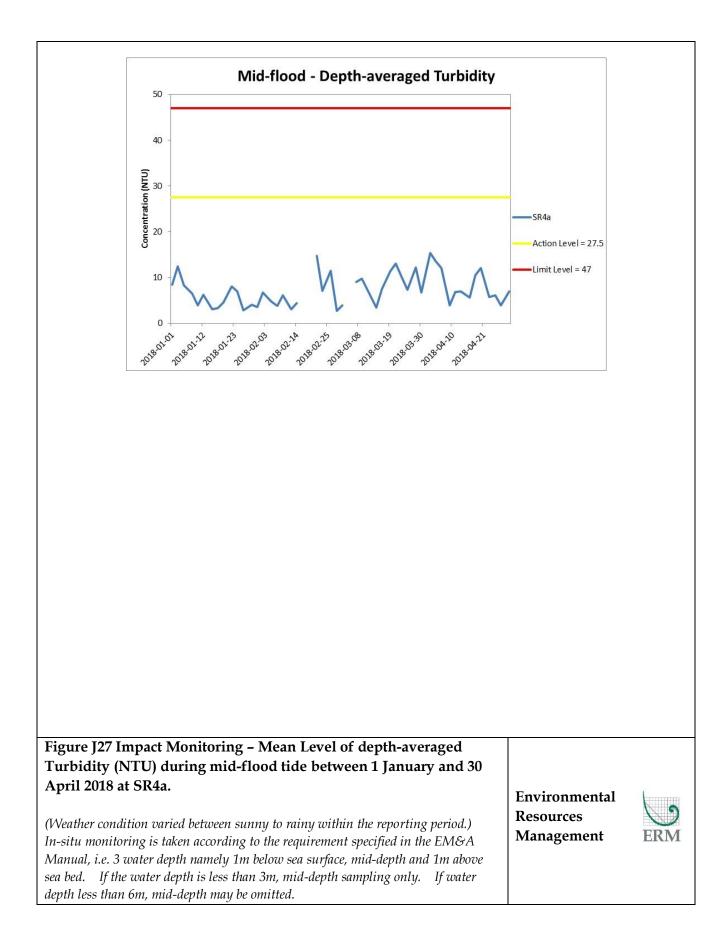


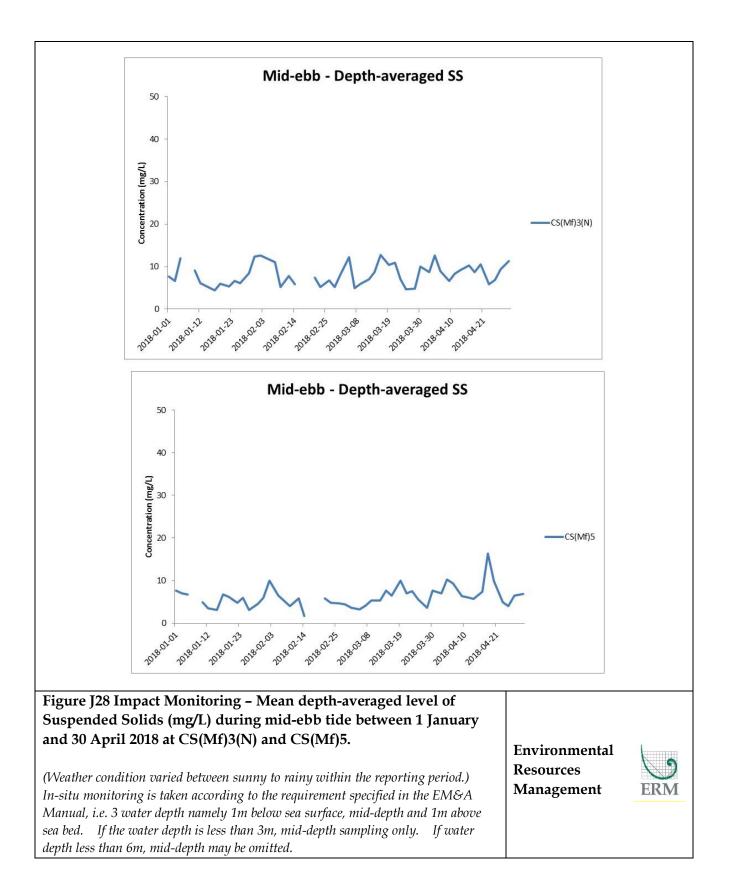


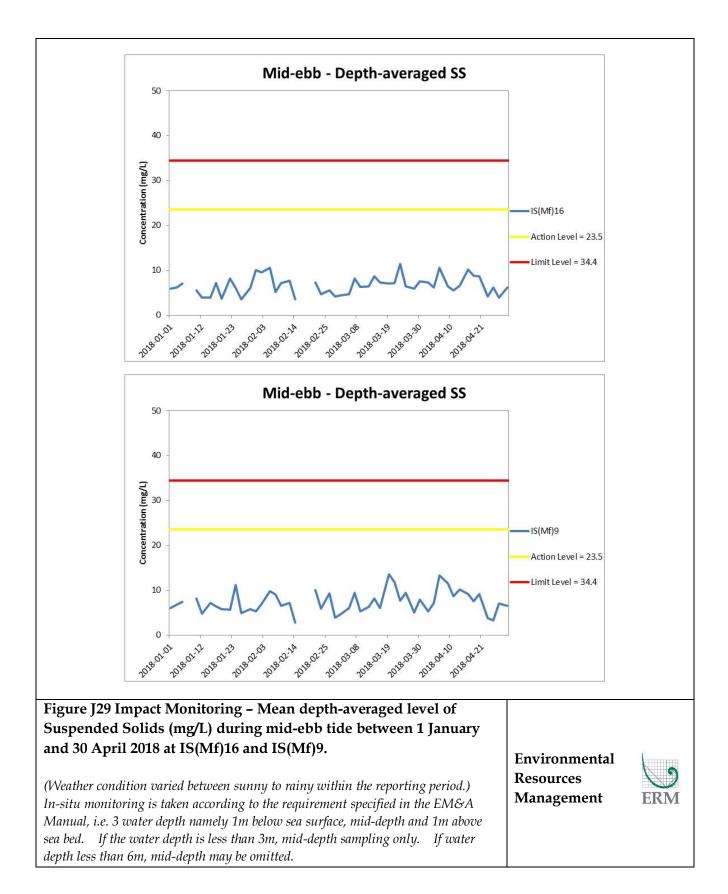


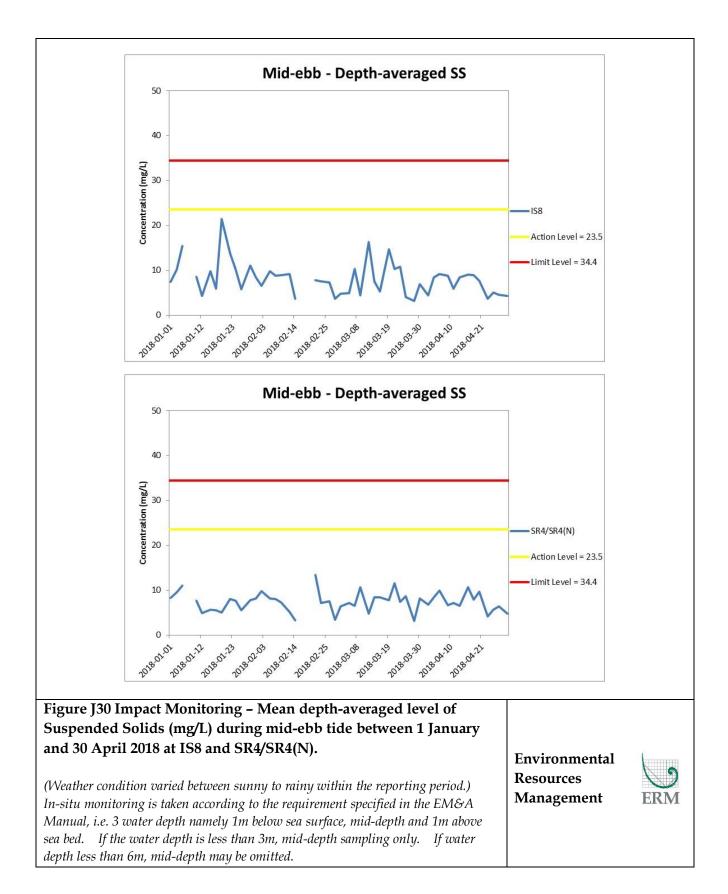


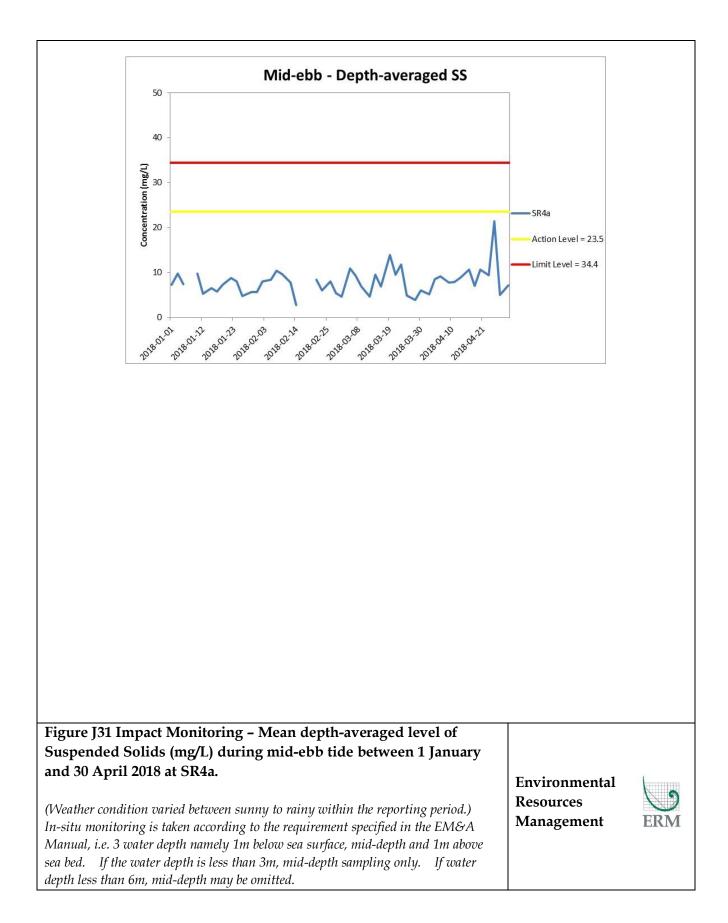


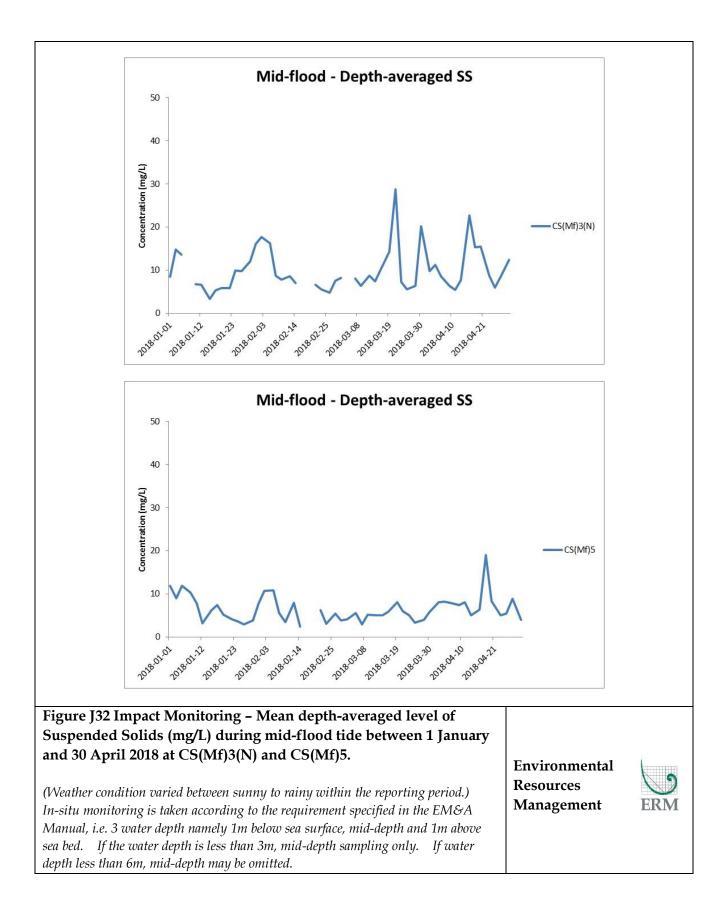


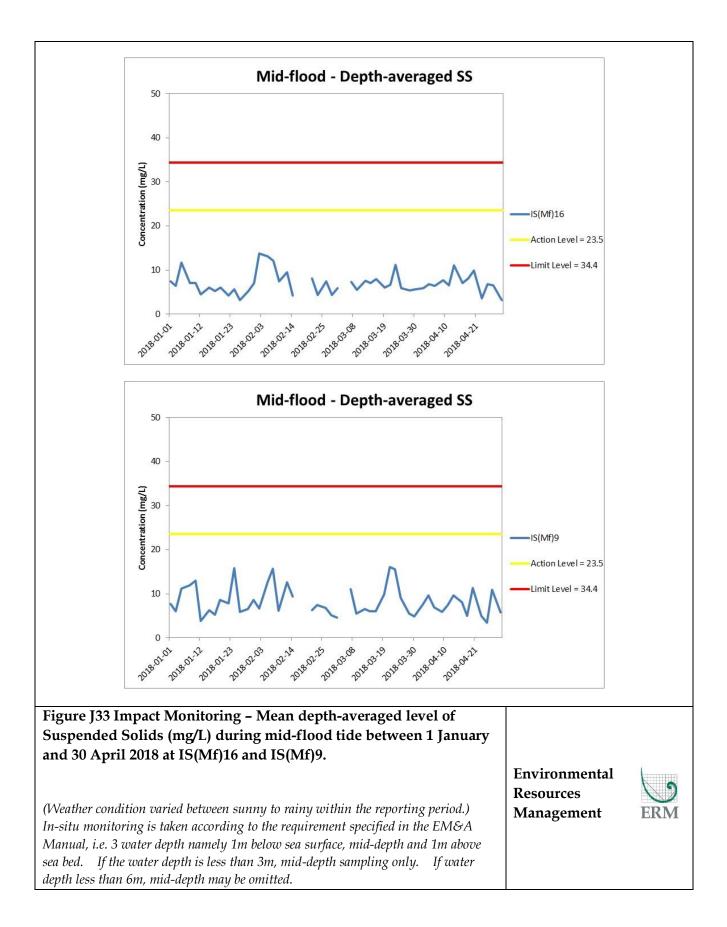


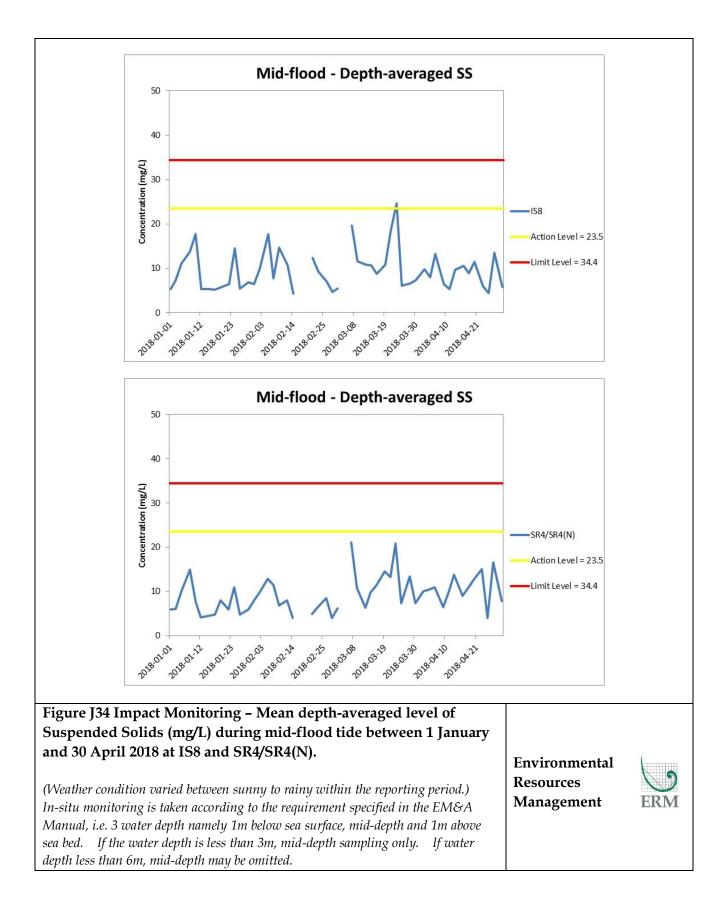


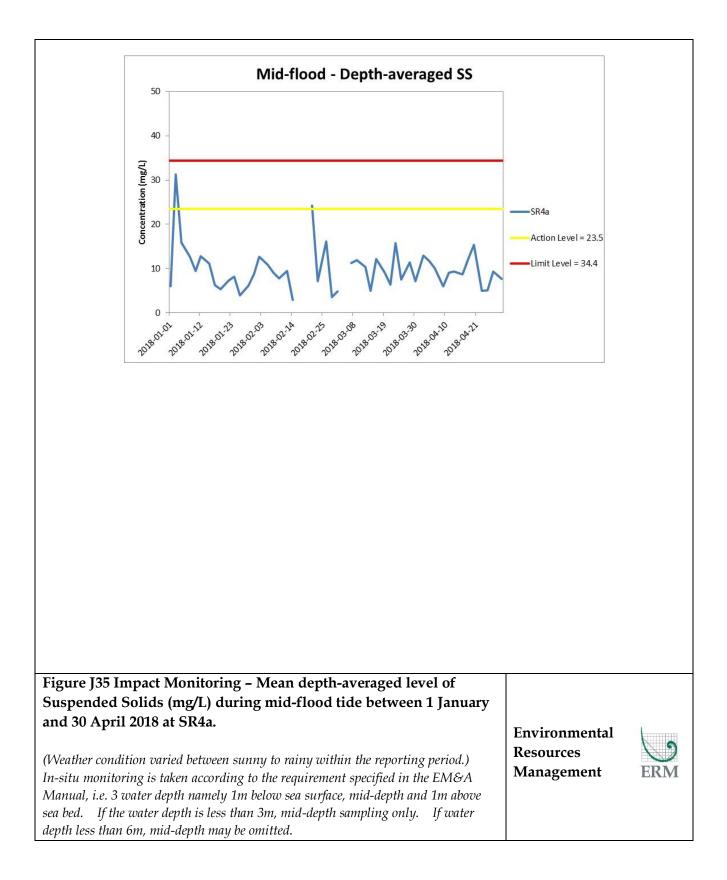












Appendix K

Impact Dolphin Monitoring Survey Results

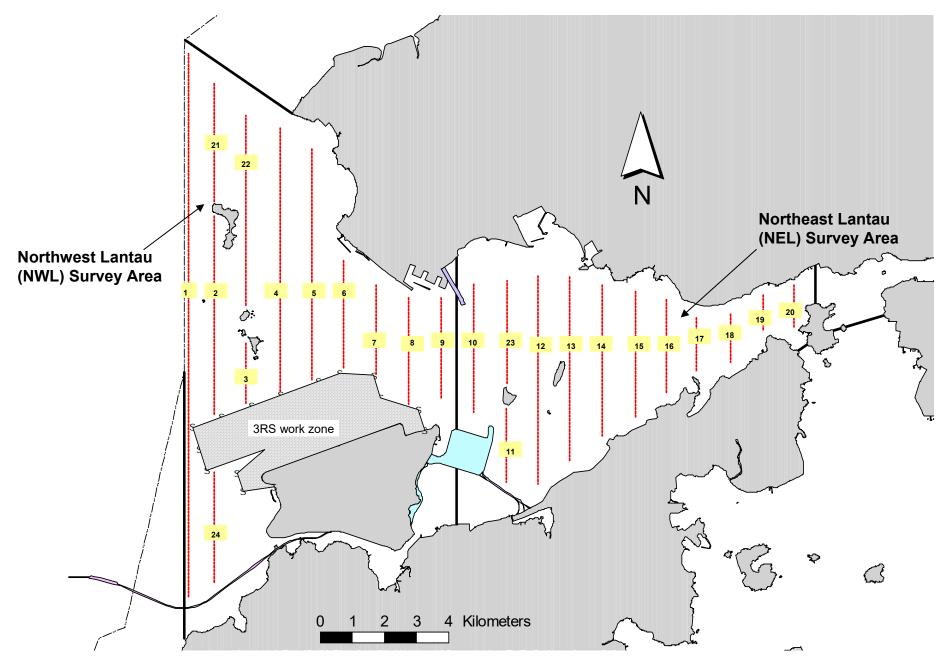


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

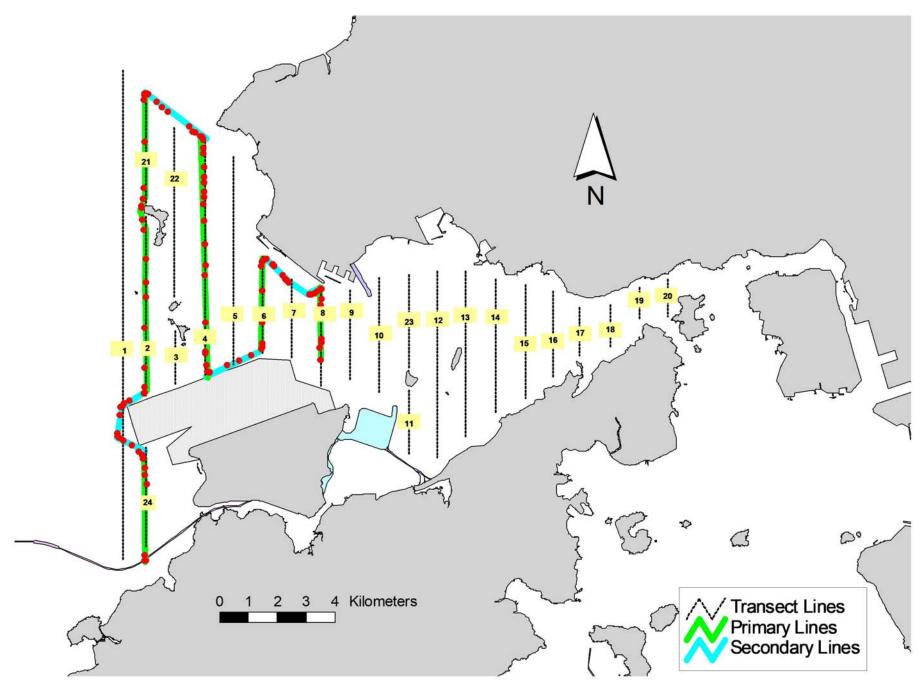


Figure 2. Survey Route on April 10th, 2018 (from HKLR03 project)

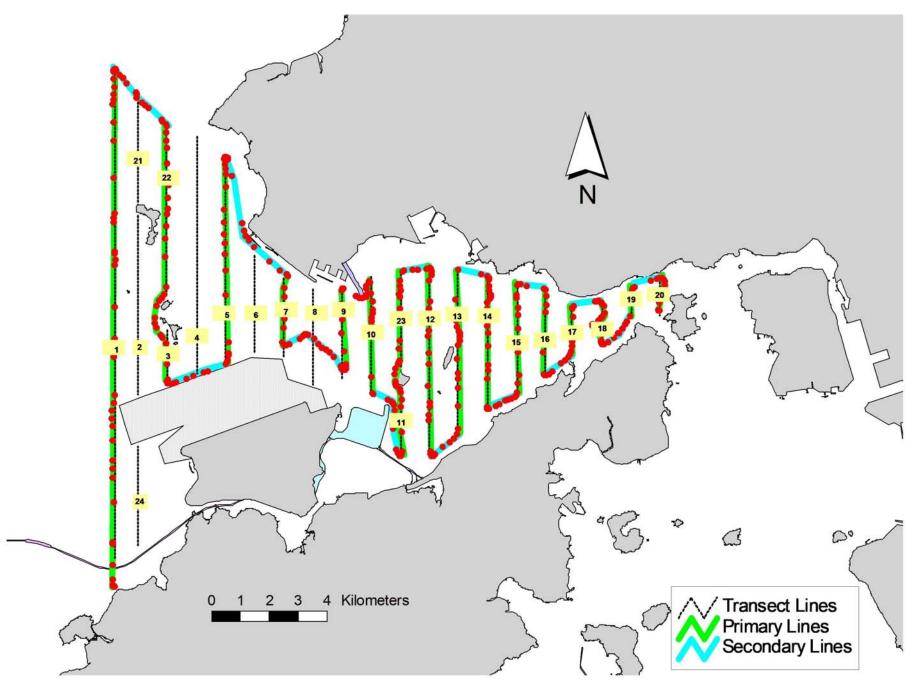


Figure 3. Survey Route on April 17th, 2018 (from HKLR03 project)

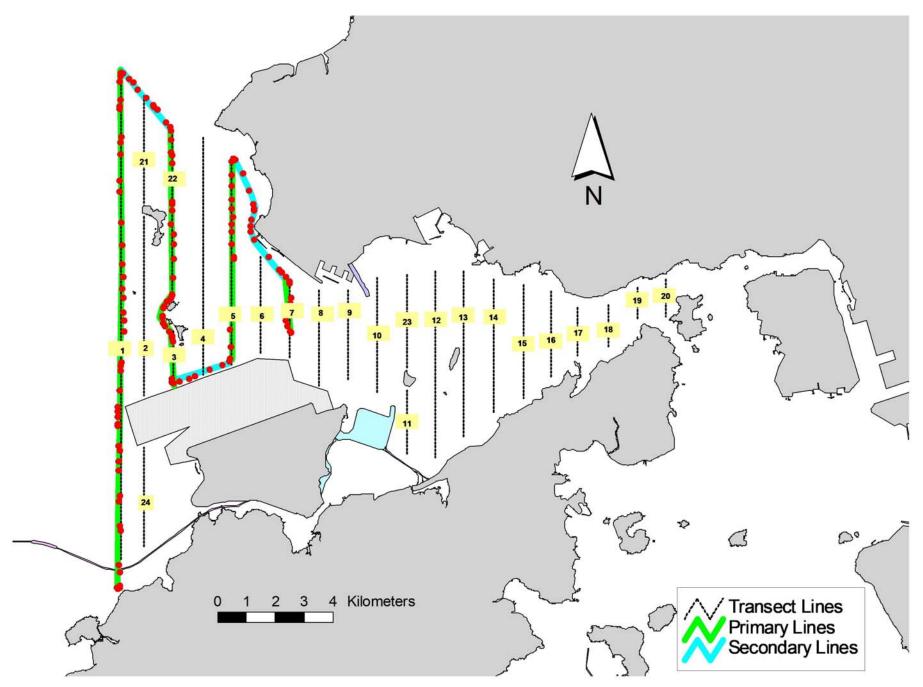


Figure 4. Survey Route on April 19th, 2018 (from HKLR03 project)

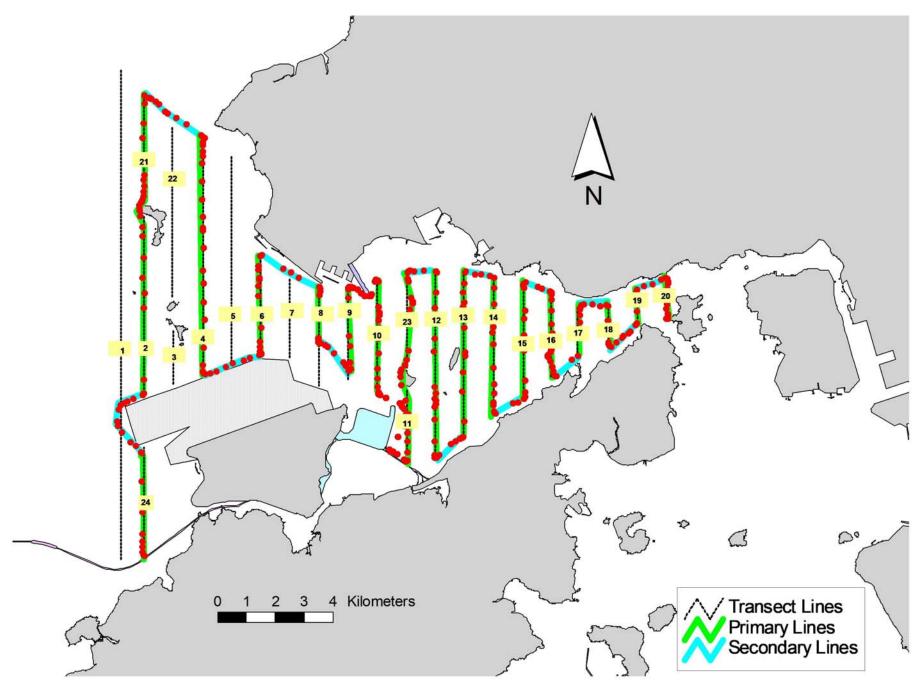


Figure 5. Survey Route on April 25th, 2018 (from HKLR03 project)

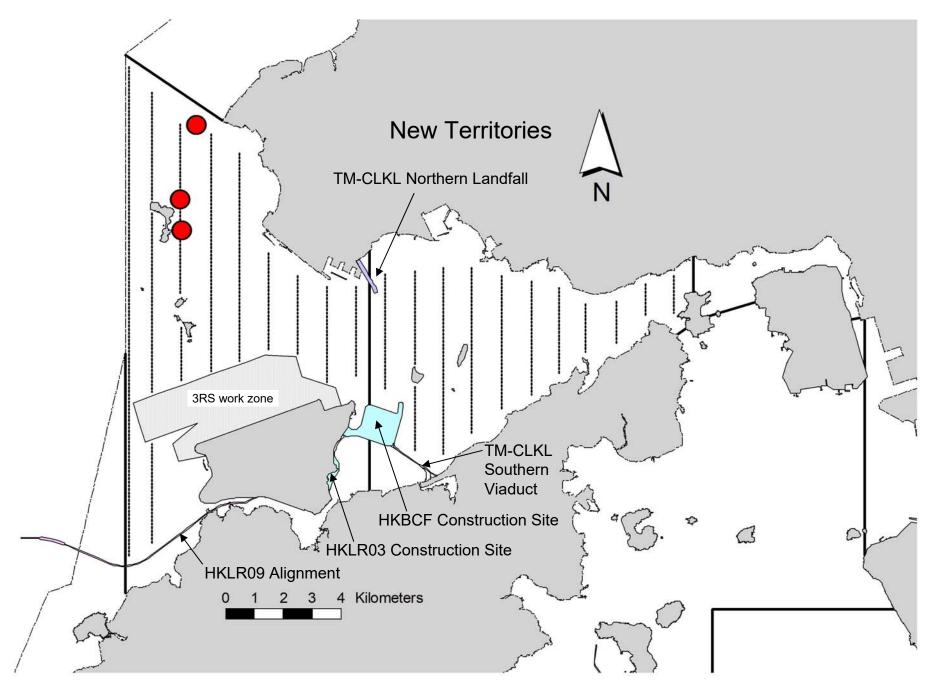


Figure 6. Distribution of Chinese White Dolphin Sightings during April 2018 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (April 2018)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
10-Apr-18	NW LANTAU	2	23.74	SPRING	STANDARD36826	HKLR	Р
10-Apr-18	NW LANTAU	3	1.23	SPRING	STANDARD36826	HKLR	Р
10-Apr-18	NW LANTAU	2	11.73	SPRING	STANDARD36826	HKLR	S
17-Apr-18	NW LANTAU	1	2.20	SPRING	STANDARD36826	HKLR	Р
17-Apr-18	NW LANTAU	2	33.50	SPRING	STANDARD36826	HKLR	Р
17-Apr-18	NW LANTAU	2	14.10	SPRING	STANDARD36826	HKLR	S
17-Apr-18	NE LANTAU	1	1.20	SPRING	STANDARD36826	HKLR	Р
17-Apr-18	NE LANTAU	2	34.52	SPRING	STANDARD36826	HKLR	Р
17-Apr-18	NE LANTAU	1	1.10	SPRING	STANDARD36826	HKLR	S
17-Apr-18	NE LANTAU	2	12.58	SPRING	STANDARD36826	HKLR	S
19-Apr-18	NW LANTAU	1	3.85	SPRING	STANDARD36826	HKLR	Р
19-Apr-18	NW LANTAU	2	8.59	SPRING	STANDARD36826	HKLR	Р
19-Apr-18	NW LANTAU	3	20.48	SPRING	STANDARD36826	HKLR	Р
19-Apr-18	NW LANTAU	1	2.26	SPRING	STANDARD36826	HKLR	S
19-Apr-18	NW LANTAU	2	8.21	SPRING	STANDARD36826	HKLR	S
25-Apr-18	NW LANTAU	1	10.61	SPRING	STANDARD36826	HKLR	Р
25-Apr-18	NW LANTAU	2	18.13	SPRING	STANDARD36826	HKLR	Р
25-Apr-18	NW LANTAU	1	1.60	SPRING	STANDARD36826	HKLR	S
25-Apr-18	NW LANTAU	2	9.66	SPRING	STANDARD36826	HKLR	S
25-Apr-18	NE LANTAU	2	36.91	SPRING	STANDARD36826	HKLR	Р
25-Apr-18	NE LANTAU	2	10.89	SPRING	STANDARD36826	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (April 2018) (Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG #	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
10-Apr-18	1	1125	1	NW LANTAU	2	24	ON	HKLR	829507	806966	SPRING	NONE	S
19-Apr-18	1	1133	2	NW LANTAU	3	363	ON	HKLR	826075	806486	SPRING	NONE	Р
19-Apr-18	2	1146	1	NW LANTAU	3	208	ON	HKLR	827093	806426	SPRING	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in April 2018

ID#	DATE	STG#	AREA
NL182	19/04/18	2	NW LANTAU
NL226	19/04/18	1	NW LANTAU
NL261	19/04/18	1	NW LANTAU
NL286	10/04/18	1	NW LANTAU

Appendix IV. Photographs of Identified Individual Dolphins in April 2018 (HKLR03)

Appendix L

Event Action Plan

Appendix L1 Event/ Action Plan for Air Quality

	ACTION									
EVENT	ET ⁽¹⁾	IEC ⁽¹⁾	SOR ⁽¹⁾	Contractor						
Action Level										
1. Exceedance for one sample	 Identify the source. Inform the IEC and the SOR. 	 Check monitoring data submitted by the ET. 	1. Notify Contractor.	 Rectify any unacceptable practice Amend working methods if 						
	 Repeat measurement to confirm finding. Increase monitoring frequency to 	2. Check Contractor's working method.		appropriate						
	daily.									
2. Exceedance for two	1. Identify the source.	1. Check monitoring data	1. Confirm receipt of notification of	1. Submit proposals for remedial						
or more consecutive samples	2. Inform the IEC and the SOR.	submitted by the ET.	failure in writing.	actions to IEC within 3 working days of notification						
samples	3. Repeat measurements to confirm findings.	Check the Contractor's working method.	 Notify the Contractor. Ensure remedial measures properly 	2. Implement the agreed proposals						
	4. Increase monitoring frequency to daily.	3. Discuss with the ET and the Contractor on possible remedial	implemented.	3. Amend proposal if appropriate						
	5. Discuss with the IEC and the Contractor on remedial actions required.	measures. 4. Advise the SOR on the effectiveness of the proposed remedial measures.								
	 If exceedance continues, arrange meeting with the IEC and the SOR. 	 Supervisor implementation of remedial measures. 								
	7. If exceedance stops, cease additional monitoring.									

	ACTION									
EVENT	ET ⁽¹⁾	IEC ⁽¹⁾	SOR ⁽¹⁾	Contractor						
Limit Level										
1. Exceedance for one sample	 Identify the source. Inform the SOR and the DEP. 	1. Check monitoring data submitted by the ET.	1. Confirm receipt of notification of failure in writing.	1. Take immediate action to avoid further exceedance						
	3. Repeat measurement to confirm finding.	2. Check Contractor's working method.	 Notify the Contractor. Ensure remedial measures are 	2. Submit proposals for remedial actions to IEC within 3 working						
	4. Increase monitoring frequency to daily.	 Discuss with the ET and the Contractor on possible remedial measures. 	properly implemented.	days of notification 3. Implement the agreed proposals						
	5. Assess effectiveness of Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of	4. Advise the SOR on the effectiveness of the proposed remedial measures.		4. Amend proposal if appropriate						
	the results.	5. Supervisor implementation of remedial measures.								
2. Exceedance for two or more consecutive	1. Notify the IEC, the SOR, the DEP and the Contractor.	 Discuss amongst the SOR, ET and the Contractor on the 	 Confirm receipt of notification of failure in writing. 	1. Take immediate action to avoid further exceedance.						
samples	2. Identify the source.	potential remedial actions.	2. Notify the Contractor.	2. Submit proposals for remedial						
	Repeat measurements to confirm findings.	2. Review the Contractor's remedial actions whenever	3. In consultation with the IEC, agree with the Contractor on the	actions to IEC within 3 working days of notification.						
	4. Increase monitoring frequency to	necessary to assure their effectiveness and advise the	remedial measures to be	3. Implement the agreed proposals.						
	daily.	SOR accordingly.	implemented.	4. Resubmit proposals if problem stil						
	Carry out analysis of the Contractor's working	3. Supervise the implementation of	 Ensure remedial measures are properly implemented. 	not under control. 5. Stop the relevant activity of works						
	procedures to determine possible mitigation to be implemented.	remedial measures.	 If exceedance continues, consider what activity of the work is responsible and instruct the 	as determined by the SOR until the exceedance is abated.						
	 Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken. 		Contractor to stop that activity of work until the exceedance is abated.							
	7. Assess effectiveness of the Contractor's remedial actions									

and keep the IEC, the DEP and the SOR informed of the results.

8. If the exceedance stops, cease additional monitoring.

Appendix L2 Event/Action Plan for Construction Noise

	ACTION											
EVENT	ET	IEC	SOR	Contractor								
Action Level	 Notify the IEC and the Contractor. Carry out investigation. 	1. Review the analysed results submitted by the ET.	1. Confirm receipt of notification of failure in writing.	1. Submit noise mitigation proposals to IEC								
	 Report the results of investigation to the IEC and the Contractor. 	measures by the Contractor and	 Notify the Contractor. Require the Contractor to propose 	2. Implement noise mitigation proposals								
	 Discuss with the Contractor and formulate remedial measures. 	advise the SOR accordingly.3. Supervise the implementation of	remedial measures for the analysed noise problem.									
	Increase monitoring frequency to check mitigation effectiveness.	remedial measures.	4. Ensure remedial measures are properly implemented.									
Limit Level 1. 2. 3.	1. Notify the IEC, the SOR, the DEP and the Contractor.	and the Contractor on the potential	1. Confirm receipt of notification of failure in writing.	1. Take immediate action to avoid further exceedance								
	2. Identify the source.	remedial actions.	2. Notify the Contractor.	2. Submit proposals for remedial								
	Repeat measurement to confirm findings.	actions whenever necessary to	3. Require the Contractor to propose remedial measures for the analysed	actions to IEC within 3 working days of notification								
	4. Increase monitoring frequency.	assure their effectiveness and advise the SOR accordingly.	noise problem.	3. Implement the agreed proposals								
	 Carry out analysis of Contractor's working procedures to determine 	 Supervise the implementation of remedial measures. 	4. Ensure remedial measures are properly implemented.	4. Resubmit proposals if problem standar control								
	possible mitigation to be implemented.		5. If exceedance continues, consider what activity of the work is	5. Stop the relevant activity of works as determined by the SOR until th								
	 Inform the IEC, the SOR and the DEP the causes & actions taken for the exceedances. 		responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	exceedance is abated.								
	 Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 											
	8. If exceedance stops, cease additional monitoring.											

Appendix L3Event/Action Plan for Water Quality

Event	ET	Leader		IEC	S	OR		Contractor
Action level being exceeded by one sampling day	1.	Repeat in situ measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working methods.	1.	Confirm receipt of notification of non-compliance in writing;	1.	Inform the SOR and confirm notification of the non- compliance in writing;
	2.	Identify source(s) of impact;			2.	Notify Contractor.	2.	Rectify unacceptable practice;
	3.	Inform IEC, contractor and SOR;					3.	Amend working methods if appropriate.
	4.	Check monitoring data, all plant, equipment and Contractor's working methods.						appropriate.
Action level being exceeded by two or more consecutive sampling days	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Discuss with IEC on the proposed mitigation measures;	1.	Inform the Supervising Officer and confirm notification of the non-
	2.	Identify source(s) of impact;	•		•			compliance in writing;
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;	2.	Ensure mitigation measures are properly implemented;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;	3.	Assess the effectiveness of the implemented mitigation measures.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;	4.	Supervise the implementation of mitigation measures.			4.	Submit proposal of additional mitigation measures to SOR within 3 working days of
	6.	Ensure mitigation measures are implemented;		mugaton neusures.				notification and discuss with ET, IEC and SOR;
	7.	Increase the monitoring frequency to daily until no exceedance of Action level;					5.	Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Confirm receipt of notification of failure in writing;	1.	Inform the SOR and confirm notification of the non-compliance in writing;

Event	ET	Leader		IEC	SC	DR		Contractor
	2.	Identify source(s) of impact;		2	2.	Discuss with IEC, ET and		
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;		Contractor on the proposed mitigation measures;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation 3 measures submitted by Contractor and advise the SOR	3.	Request Contractor to review the working methods.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		accordingly.			4.	Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;		1. Discuss with IEC, ET and Contractor on the proposed mitigation	1.	Take immediate action to avoid further exceedance;
sampling days	2.	Identify source(s) of impact;	2.	Discuss with ET and Contractor		measures; 2. Request Contractor to	2.	Submit proposal of mitigation measures to SOR within 3
	3.	Inform IEC, contractor, SOR and EPD;		on possible remedial actions;		critically review the working methods;		working days of notification and discuss with ET, IEC and
	4.	Check monitoring data, all plant, equipment and Contractor's working	3.	Review the Contractor's mitigation measures whenever		3. Make agreement on the mitigation measures to be		SOR;
		methods;		necessary to assure their effectiveness and advise the		implemented; 4.	3.	Implement the agreed mitigation measures;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		SOR accordingly;		5. Ensure mitigation measures are properly implemented;	4.	Resubmit proposals of
	6.	Ensure mitigation measures are implemented;	4.	Supervise the implementation of mitigation measures.		6.7. Consider and instruct, if necessary, the Contractor to slow down or to stop all		mitigation measures if problem still not under control;
	7.	Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;				or part of the construction activities until no exceedance of Limit level.	5.	As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event	ET Leader	IEC	SOR	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings;	1. Check monitoring data submitted by ET and Contractor;	1. Discuss monitoring with the IEC and any other measures	1. Inform the SOR and confirm notification of the non-
	2. Review all available and relevant data, including		proposed by the ET;	compliance in writing;
	raw data and statistical analysis results of other	2. Discuss monitoring results and		
	parameters covered in the EM&A, to ascertain if	findings with the ET and the	2. If SOR is satisfied with the	2. Discuss with the ET and the
	differences are as a result of natural variation or	Contractor.	proposal of any other measures,	IEC and propose measures to
	previously observed seasonal differences;		SOR to signify the agreement in writing on the measures to be	the IEC and the SOR;
	3. Identify source(s) of impact;		implemented.	Implement the agreed measures.
	4. Inform the IEC, SOR and Contractor;			incusures.
ξ	5. Check monitoring data.			
	 Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 			

Appendix L4Implementation of Event-Action Plan for Dolphin Monitoring

Event ET Leader		IE	C	SC	OR	Co	ntractor
Limit Level1. Repeat statistical2. Review all availa raw data and stat parameters cover differences are as previously observed3. Identify source(s)4. Inform the IEC, Efindings;5. Check monitoring6. Repeat review to measures are full advise on addition7. If ET proves that any of the constru- contract, ET to ar IEC, ER/SOR and additional dolphi potential mitigati modify the perimi- control/temporar activity etc.) and	R/SOR and Contractor of g data; ensure all the dolphin protective y and properly implemented and nal measures if necessary; the source of impact is caused by action activity by the works range a meeting to discuss with a Contractor the necessity of n monitoring and/or any other on measures (e.g., consider to eter silt curtain or consider to rily stop relevant construction submit to IEC a proposal of n monitoring and/or mitigation	 1. 2. 3. 4. 5. 	Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise ER/SOR of the results and findings accordingly; Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly.	1.		 2. 3. 4. 	Inform the ER/SOR and confirm notification of the non- compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures; Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary; Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

EVENT		ACTION			
	ET Leader	IEC	SO	Contractor	
Action Level					
With the numerical values presented in <i>Table 5.7</i> of <i>Baseline Monitoring Report</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 20% lower or higher than that recorded in the baseline monitoring (see <i>Table 5.8</i> of <i>Baseline</i> <i>Monitoring Report</i>), or when there is a difference of 20% in dolphin acoustic signal detection at nighttime period at Site C1 only, the action level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures. 	

Appendix L5 Event and Action Plan on Dolphin Acoustic Behaviour

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Limit Level				
With the numerical values presented in Table 5.7 of <i>Baseline Monitoring Report</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 40% lower or higher than that recorded in the baseline monitoring (see Table 5.8 of <i>Baseline Monitoring Report</i>), or when there is a difference of 40% in dolphin acoustic signal detection at nighttime at Site C1 only, the limit level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary Discuss additional dolphin monitoring and any other potential mitigation measures (eg consider to temporarily stop relevant portion of construction activity) with the IEC and Contractor. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; Review proposals for additional monitoring and any other measures submitted by the Contractor and advise ER accordingly. 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.

Abbreviations: ET - Environmental Team, IEC - Independent Environmental Checker, SO - Supervising Office, DEP - Director of Environmental Protection

Appendix M

Monthly Summary of Waste Flow Table

Contract No. : HY/2012/07 Tuen Mun Chek Lap Kok Link – Southern Connection Viaduct Section Monthly Summary Waste Flow Table for 2018 (Year)

	Actual Quantities of Inert C&D Materials Generation					Actual Quantities of C&D wastes Generation					Actual Quantities of Recyclables Generation					
Month\Material	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills	Imported Fill	Marine Sediment, Cat. L	Marine Sediment, Cat. Mp	Marine Sediment, Cat. Mf	Marine Sediment, Cat. H	Chemical Waste	General Refuse	Metals	Felled trees	Paper/ cardboard packaging	Plastics
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)
Jan	4.288	0.405	0.137	-	4.151	-	-	-	-	-	-	211.060	-	2.540	0.084	-
Feb	2.662	0.241	0.826	-	1.836	-	-	-	-	-	-	184.880	-	12.280	0.028	-
Mar	5.916	0.289	2.503	-	1.536	1.877	-	-	-	-	1.200	307.670	-	30.190	0.161	-
Apr	6.103	0.352	0.852	-	1.274	3.977	-	-	-	-	-	349.640	-	19.150	0.112	-
May	-	0.000	-	-	-	-	-	-	-	-			-			-
Jun	-	0.000	-	-	-	-	-	-	-	-			-			-
SUB-TOTAL	18.968	1.286	4.316	-	8.798	5.854	-	-	-	-	1.200	1053.250	-	64.160	0.385	-
Jul	-	0.000	-	-	-	-	-	-	-	-			-			-
Aug	-	0.000	-	-	-	-	-	-	-	-			-			-
Sep	-	0.000	-	-	-	-	-	-	-	-			-			-
Oct	-	0.000	-	-	-	-	-	-	-	-			-			-
Nov	-	0.000	-	-	-	-	-	-	-	-			-			-
Dec	-	0.000	-	-	-	-	-	-	-	-			-			-
TOTAL	18.968	1.286	4.316	-	8.798	5.854	-	-	-	-	1.200	1,053.250	-	64.160	0.385	-

Notes :

1 - The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2 - Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

3 - Broken concrete for recycling into aggregates.

4 - Assumed 5 kg per damaged water-filled barrier.

5 - Disposed as Public Fills includes Hard Rock and Large Broken Concrete.

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix N1 Cumulative Statistics on Exceedances

		Total No. recorded in this reporting month	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	1
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	0	137
-	Limit	0	15
Impact Dolphin	Action	0	11
Monitoring	Limit	0	11

Appendix N2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics					
	Complaints	Notifications of Summons	Successful Prosecutions			
This Reporting Month (April 2018)	0	0	0			
Total No. received since project commencement	12	0	0			