
REPORT

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Sixty-Seventh Monthly EM&A Report

14 June 2019

Environmental Resources Management 2507, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone 2271 3000 Facsimile 2723 5660

www.erm.com

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Sixty-seventh Monthly EM&A Report

Document Code: 0215660_67th Monthly EM&A_20190613.doc

Environmental Resources Management

2507, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Project N	0:			
Gammon		021566	0			
Summary	:	Date: 14 June Approved				
This document presents the Sixty-seventh Monthly EM&A Report for Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section.						
		Mr Craig Reid				
		Partner				
		Certified I	oy:			
		Jam				
		Ďr Jasmine Ng				
		ET Leade	er			
	Sixty-seventh Monthly EM&A Report	CY	JN	CAR	14/6/19	
Revision	Description	Ву	Checked	Approved	Date	
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.		Distribution Distribution Internal Distribution				
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		Public				
			nfidential	ential ISO 9001 : 2008 Certificate No. FS 32515		

Ref.: HYDHZMBEEM00_0_7454L.19

17 June 2019

By Fax (3691 2899) and By Post

AECOM Asia Company Limited Supervising Officer's Representative Office 780 Cheung Tung Road Lantau, Hong Kong

Attention: Mr. Daniel Ip

Dear Mr. Ip,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2012/07 TM-CLKL – Southern Connection Viaduct Section <u>67th Monthly EM&A Report for May 2019</u>

Reference is made to the Environmental Team's submission of the monthly EM&A report for May 2019 (ET's ref.: "0215660_67th Monthly EM&A_20190613.doc" dated 14 June 2019) certified by the ET Leader and provided to us via e-mail on 14 June 2019.

Please be informed that we have no adverse comments on the captioned submission. We write to verify the captioned submission in accordance with Condition 4.4 of EP-354/2009/D.

Thank you for very much your attention. Please feel free to contact the undersigned or the ENPO Leader, Mr. Y H Hui, should you require further information.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

Fagter Best

F. C. Tsang Independent Environmental Checker Tuen Mun-Chek Lap Kok Link

c.c.

HyD	Mr. Patrick Ng	(By Fax: 3188 6614)
HyD	Mr. Cheng Pan	(By Fax: 3188 6614)
AECOM	Mr. Conrad Ng	(By Fax: 3922 9797)
ERM	Dr. Jasmine Ng	(By Fax: 2723 5660)
Gammon	Mr. Roy Leung	(By Fax: 3520 0486)

Internal: DY, YH, RY, DF, HW, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_7454L.19.doc.doc

Ramboll Hong Kong Limited 英環香港有限公司

21/F, BEA Harbour View Centre, 56 Gloucester Road, Wan Chai, Hong Kong Tel: 852.3465 2888 Fax: 852.3465 2899 www.ramboll.com

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	3
2	EM&A RESULTS	5
2.1	Air Quality	5
2.2	NOISE MONITORING	7
2.3	WATER QUALITY MONITORING	8
2.4	DOLPHIN MONITORING	9
2.5	EM&A SITE INSPECTION	13
2.6	WASTE MANAGEMENT STATUS	14
2.7	ENVIRONMENTAL LICENSES AND PERMITS	15
2.8	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	17
2.9	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMAN	CE
	LIMIT	17
2.10	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL	
	PROSECUTIONS	17
3	FUTURE KEY ISSUES	18
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTH	18
3.2	Key Issues for the Coming Month	18
3.3	MONITORING SCHEDULE FOR THE COMING MONTH	18
4	CONCLUSIONS AND RECOMMENDATIONS	19
4.1	Conclusions	19

Ι

List of Appendices

- Appendix A Project Organization for Environmental Works
- Appendix B Three Month Rolling Construction Programmes
- Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Monitoring Equipment
- Appendix F EM&A Monitoring Schedules
- Appendix G Impact Air Quality Monitoring Results and Graphical Presentation
- Appendix H Meteorological Data for the Reporting Month
- Appendix I Impact Noise Monitoring Results and Graphical Presentation
- Appendix J Impact Water Quality Monitoring Results and Graphical Presentation
- Appendix K Impact Dolphin Monitoring Survey Results
- Appendix L Event Action Plan
- Appendix M Monthly Summary of Waste Flow Table
- Appendix N Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of the Tuen Mun – Chek Lap Kok Link Project (TM-CLK Link Project) while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by the HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07*. Another part of the southern landfall area under *EP-354/2009/D* was handed-over to *Contract No. HY/2012/07* after completion of reclamation works by *Contract No. HY/2010/02* in June 2016.

The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2019. The impact monitoring of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well as environmental site inspections, commenced on 31 October 2013.

This is the sixty-seventh Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 May 2019 for the Southern Connection Viaduct Section in accordance with the Updated EM&A Manual of the TM-CLK Link Project. As informed by the Contractor, major activities in the reporting period included:

Marine-based Works

• Reinstatement of Seawall at Seafront

Land-based Works

- Slope work of Viaduct D; and
- Landscaping works at HKBCF.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour TSP Monitoring	6 sessions
1-hour TSP Monitoring	6 sessions
Water Quality Monitoring	13 sessions
Noise Monitoring	6 sessions
Impact Dolphin Monitoring	2 sessions
Joint Environmental Site Inspection	5 sessions

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting month.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting month.

Breaches of Action and Limit Levels for Water Quality

Two (2) Action Level exceedances of Suspended Solids (SS) were recorded for water quality impact monitoring in the reporting month.

Impact Dolphin Monitoring

One (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between March to May 2019, whilst no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

Daily marine mammal exclusion zone monitoring was undertaken during the period of marine works under this Contract. No sighting of the Chinese White Dolphin was recorded in May 2019 during the exclusion zone monitoring.

Environmental Complaints, Non-compliance & Summons

No complaints, notification of summons or successful prosecution recorded in the reporting period.

Reporting Change

There was no reporting change in the reporting period.

Upcoming Works for the Next Reporting Period

Works to be undertaken in the next monitoring period of June 2019 include the following:

Marine-based Works

• Reinstatement of Seawall at Seafront

Land-based Works

• At-grade works at HKBCF.

Future Key Issues

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of June 2019 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

1.1 BACKGROUND

According to the findings of the Northwest New Territories (NWNT) Traffic and Infrastructure Review conducted by the Transport Department, Tuen Mun Road, Ting Kau Bridge, Lantau Link and North Lantau Highway would be operating beyond capacity after 2016. This forecast has been based on the estimated increase in cross boundary traffic, developments in the Northwest New Territories (NWNT), and possible developments in North Lantau, including the Airport developments, the Lantau Logistics Park (LLP) and the Hong Kong – Zhuhai – Macao Bridge (HZMB). In order to cope with the anticipated traffic demand, two new road sections between NWNT and North Lantau – Tuen Mun – Chek Lap Kok Link (TM-CLKL) and Tuen Mun Western Bypass (TMWB) are proposed.

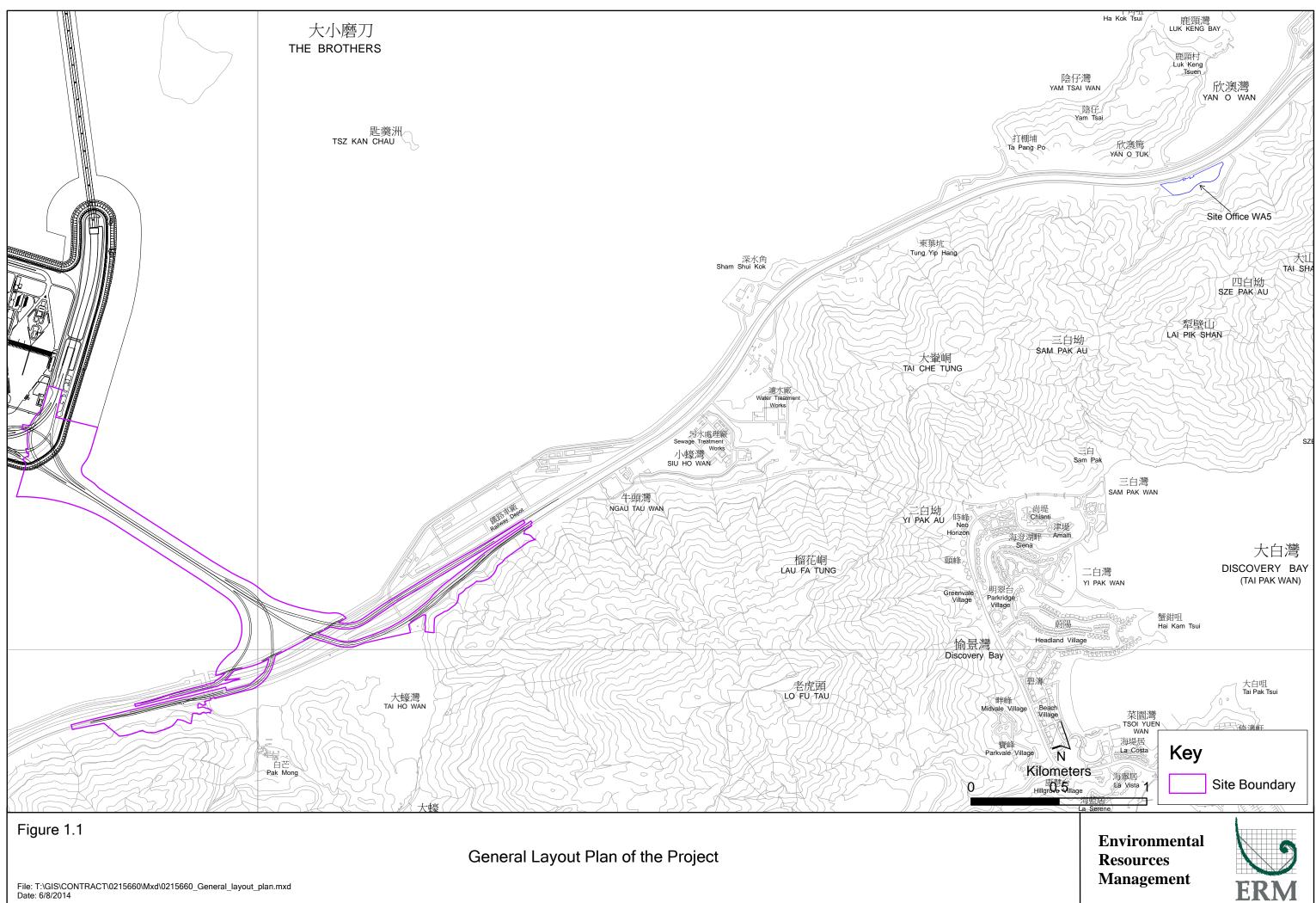
An Environmental Impact Assessment (EIA) of TM-CLKL (the Project) was prepared in accordance with the EIA Study Brief (No. ESB-175/2007) and the *Technical Memorandum of the Environmental Impact Assessment Process (EIAO-TM*). The EIA Report was submitted under the Environmental Impact Assessment Ordinance (EIAO) in August 2009. Subsequent to the approval of the EIA Report (EIAO Register Number AEIAR-146/2009), an Environmental Permit (*EP-354/2009*) for TM-CLKL was granted by the Director of Environmental Protection (DEP) on 4 November 2009, and EP variation (*EP-354/2009/A*) was issued on 8 December 2010.

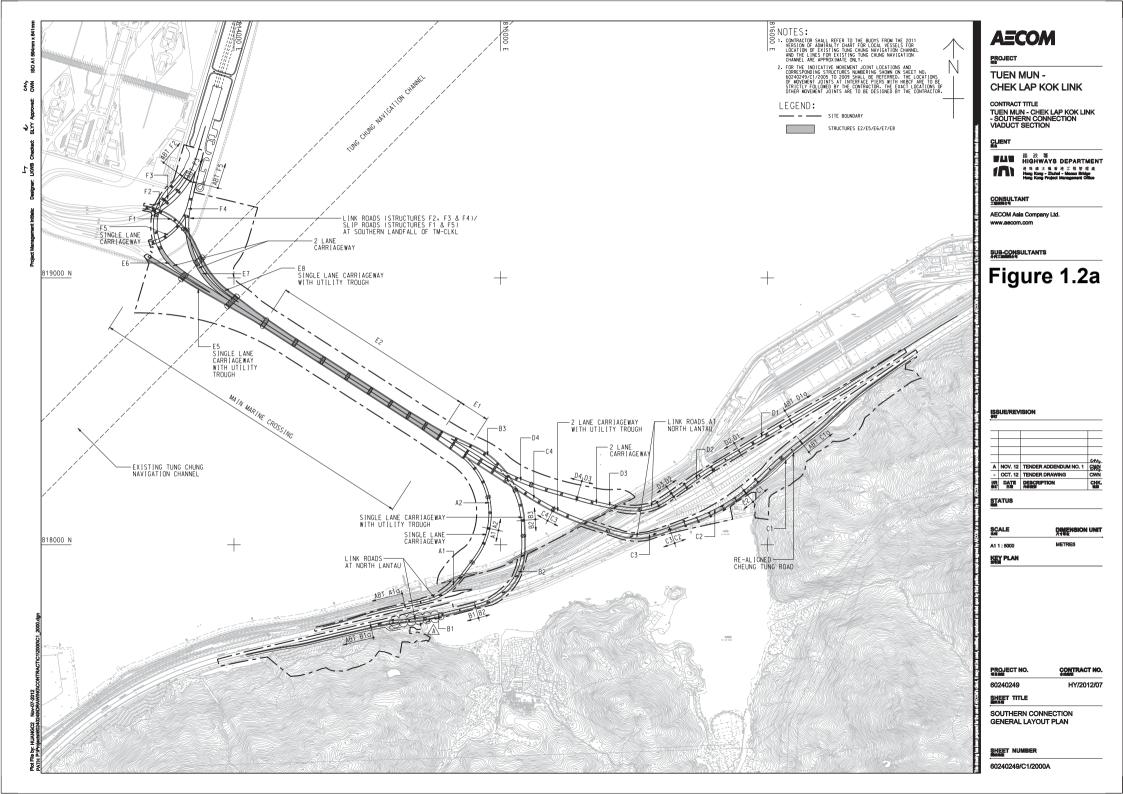
Under *Contract No. HY/2012/07*, Gammon Construction Limited (GCL) is commissioned by the Highways Department (HyD) to undertake the design and construction of the Southern Connection Viaduct Section of TM-CLKL ("the Contract") while AECOM Asia Company Limited was appointed by HyD as the Supervising Officer. For implementation of the environmental monitoring and audit (EM&A) programme under the Contract, ERM-Hong Kong, Limited (ERM) has been appointed as the Environmental Team (ET). Ramboll Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) in accordance with *Environmental Permit No. EP-354/2009/A*. Further applications for variation of environmental permit (VEP), *EP-354/2009/B*, *EP-354/2009/C* and *EP-354/2009/D*, were granted on 28 January 2014, 10 December 2014 and 13 March 2015, respectively.

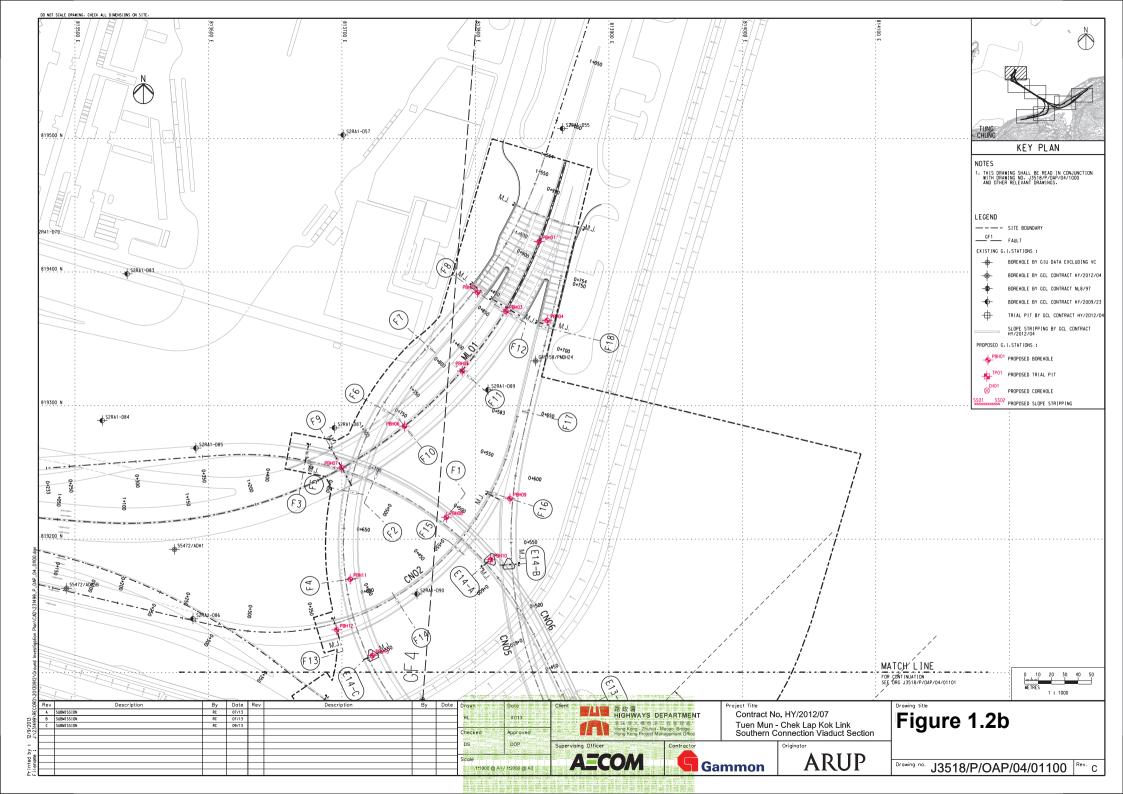
The southern landfall of TM-CLK Link lies alongside the Hong Kong - Zhuhai - Macao Bridge Hong Kong Boundary Crossing Facilities (HKBCF) where a reclamation area is constructed by *Contract No. HY/2010/02* under *Environmental Permit No. EP-353/2009/K* and *EP-354/2009/D*. Upon the agreement and confirmation between the Supervising Officer Representatives and Contractors of *HY/2010/02* and *HY/2012/07* in September 2015, part of the reclamation area for southern landfall under *EP-353/2009/K* and *EP-*

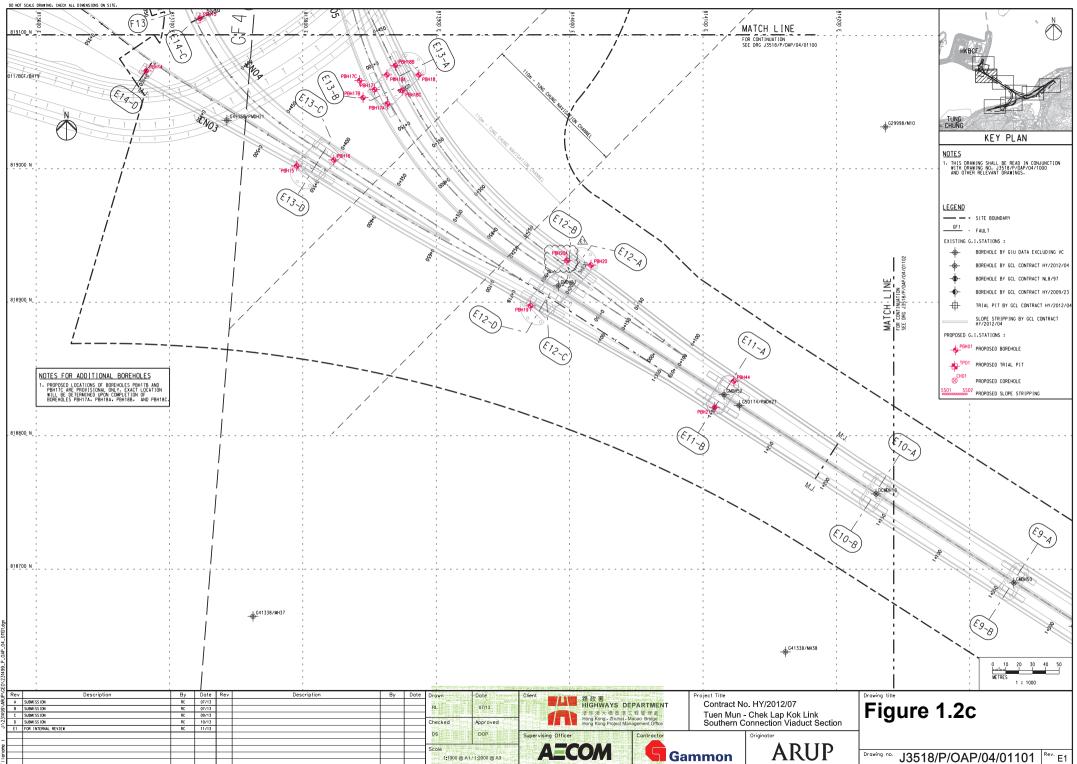
354/2009/D was handed-over to *Contract No. HY*/2012/07. Another part of the southern landfall area under *EP-354*/2009/D was handed-over to *Contract No. HY*/2012/07 after completion of reclamation works by *Contract No. HY*/2010/02 in June 2016.

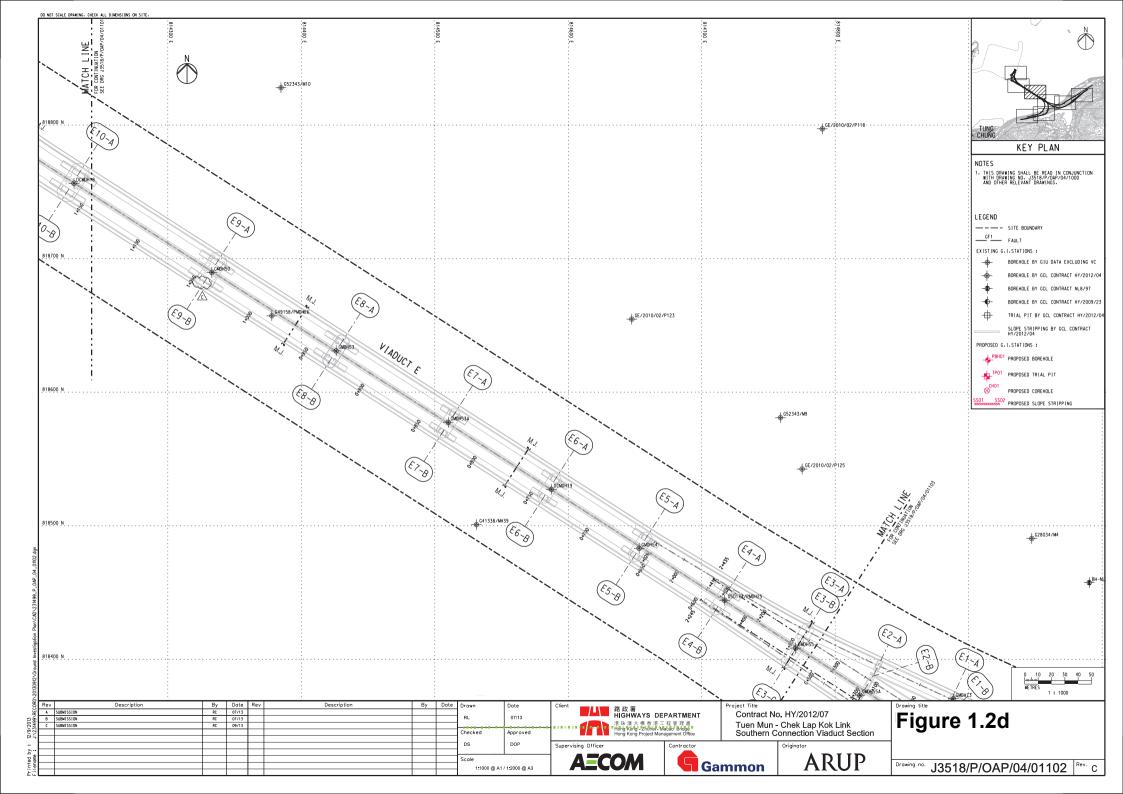
The construction phase of the Contract commenced on 31 October 2013 and will be tentatively completed by 2019. The impact monitoring phase of the EM&A programme, including air quality, noise, water quality and marine ecological monitoring as well environmental site inspections, commenced on 31 October 2013.

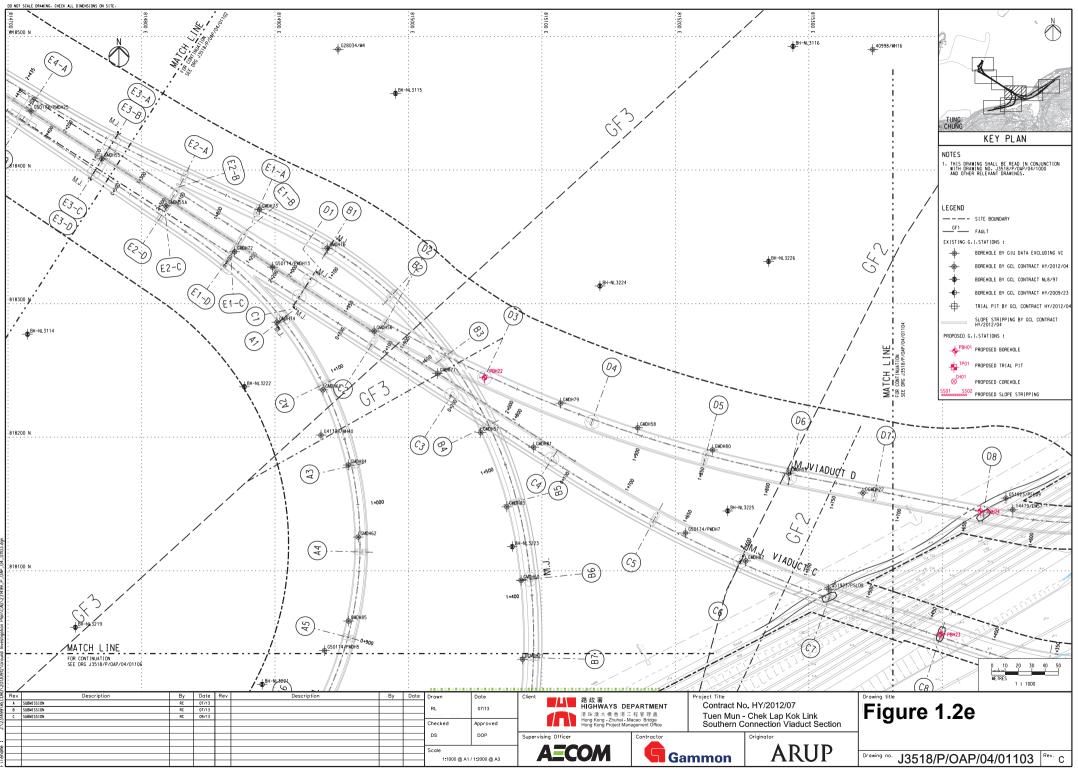

The general layout plan of the Contract components is presented in *Figures 1.1* & 1.2a to l.

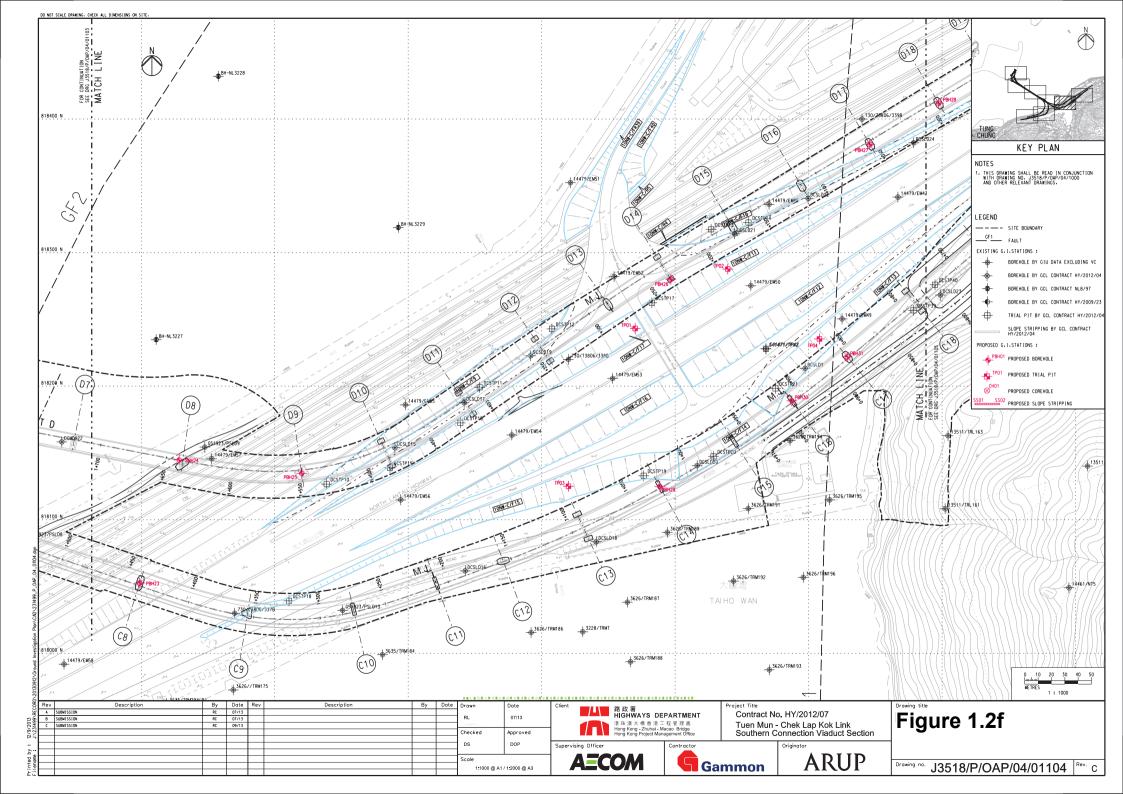

1.2 SCOPE OF REPORT

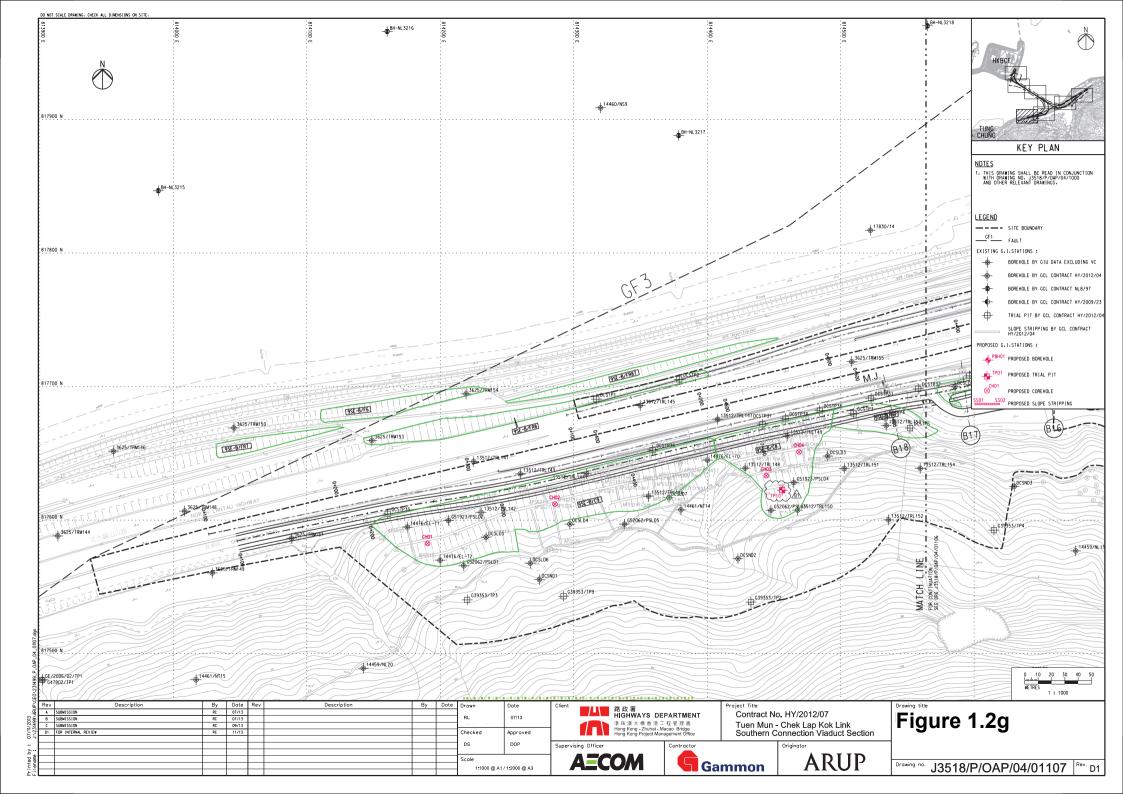

This is the sixty-seventh Monthly EM&A Report under the *Contract No. HY*/2012/07 *Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section*. This report presents a summary of the environmental monitoring and audit works in May 2019.

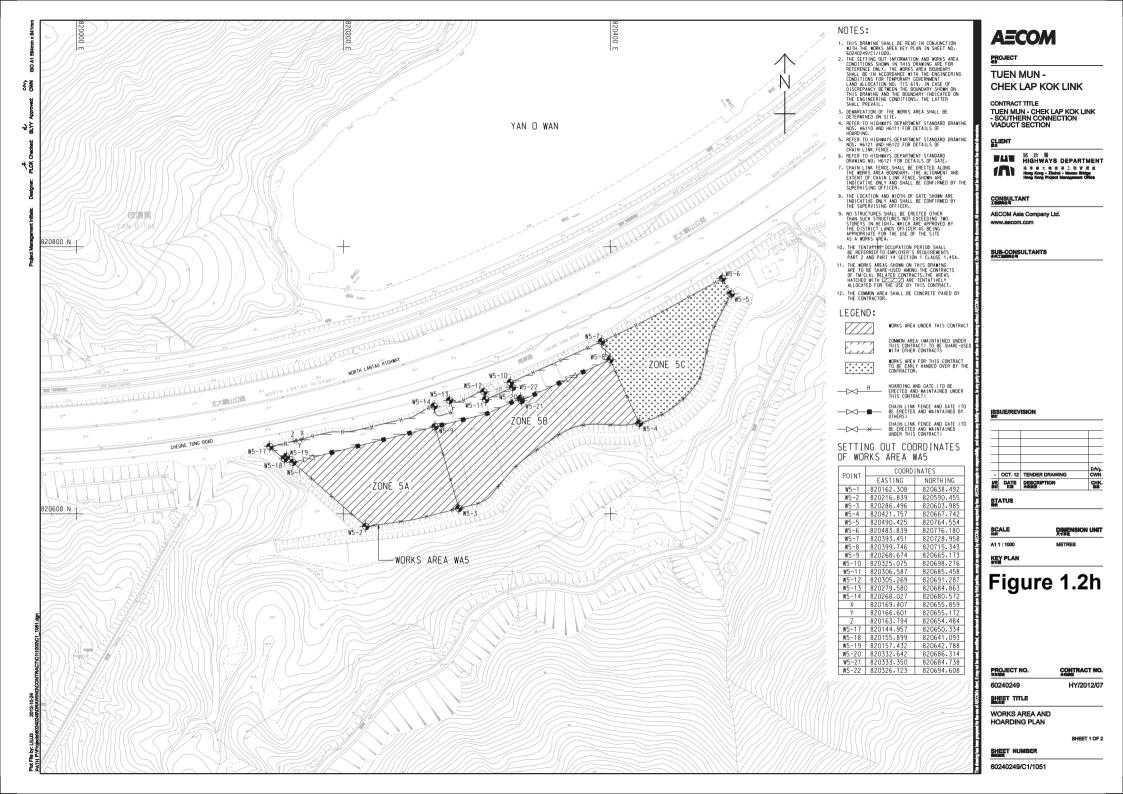

1.3 ORGANIZATION STRUCTURE

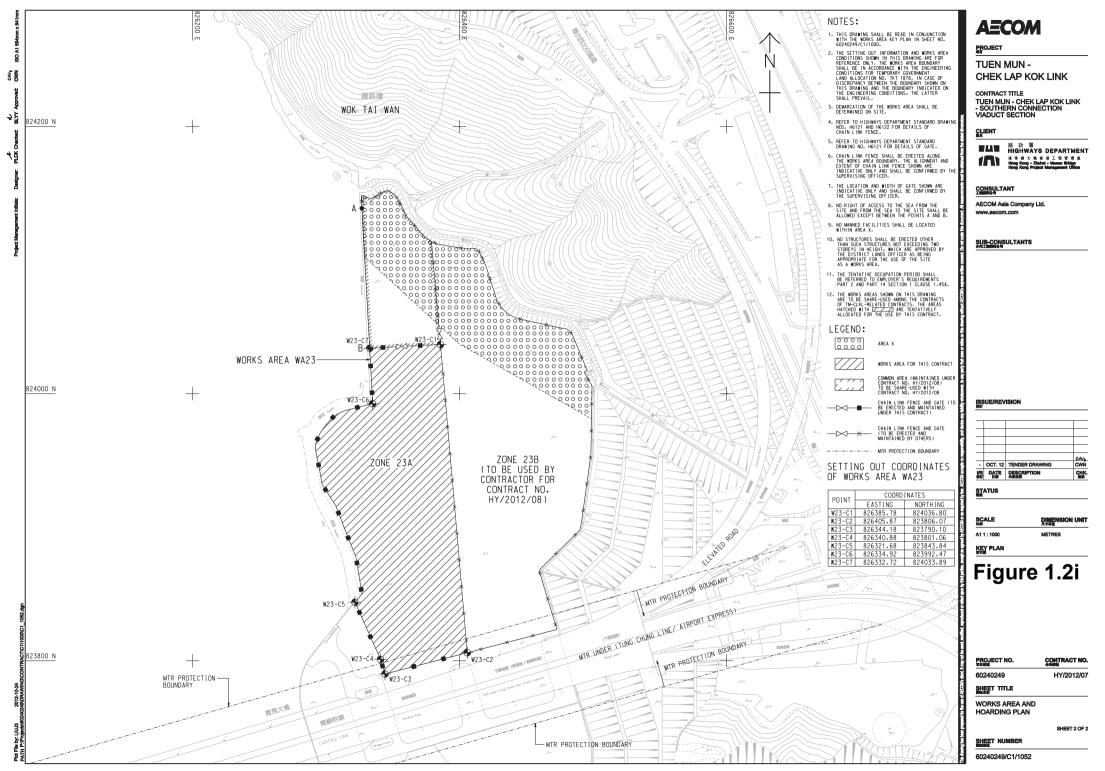

The organization structure of the Contract is shown in *Appendix A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

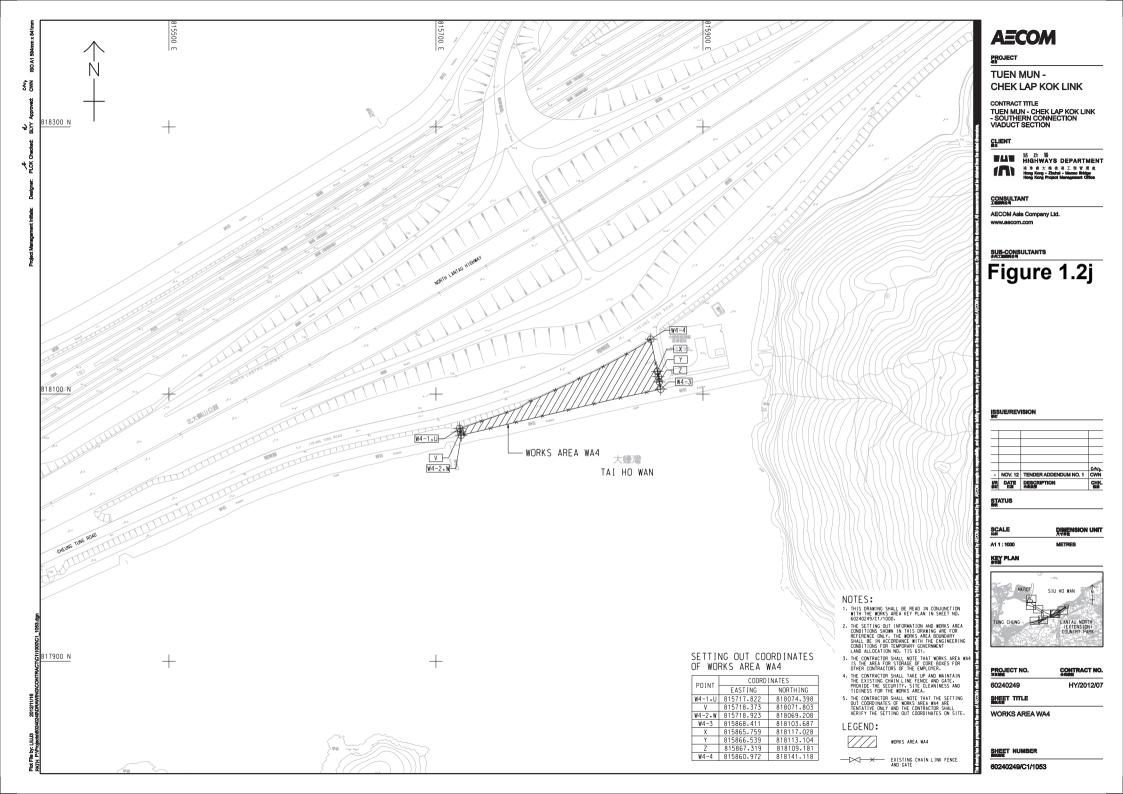


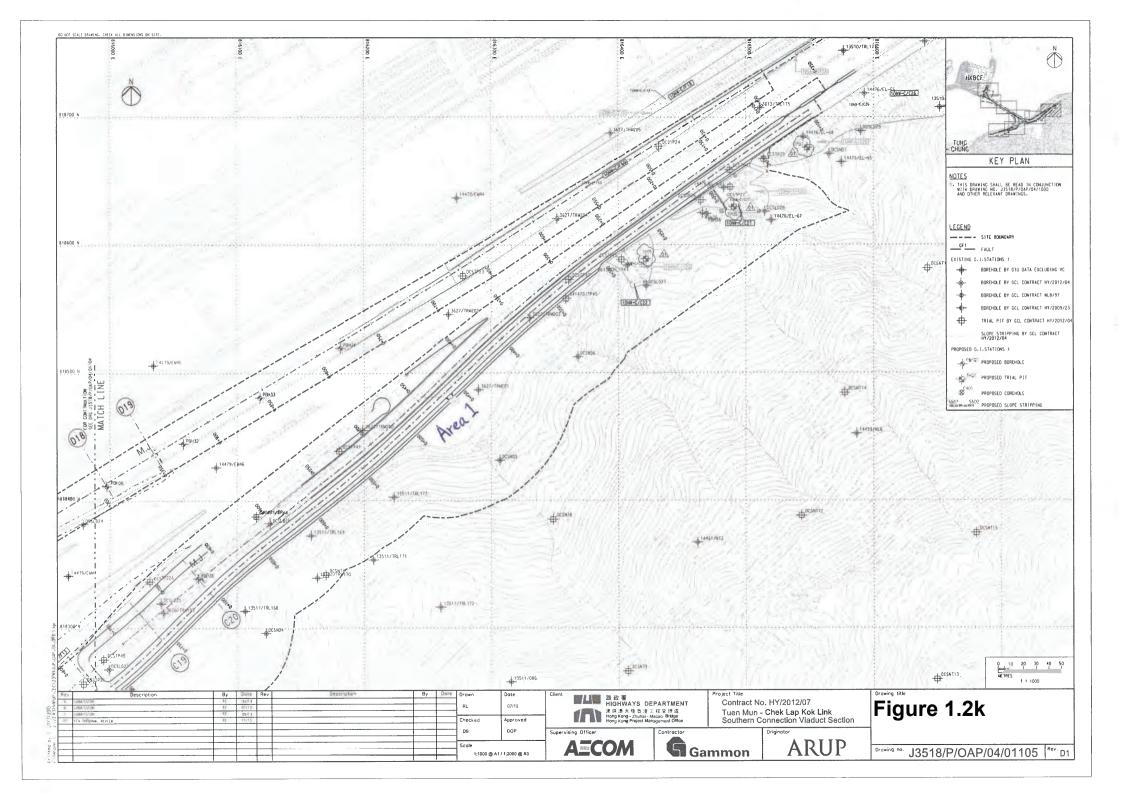












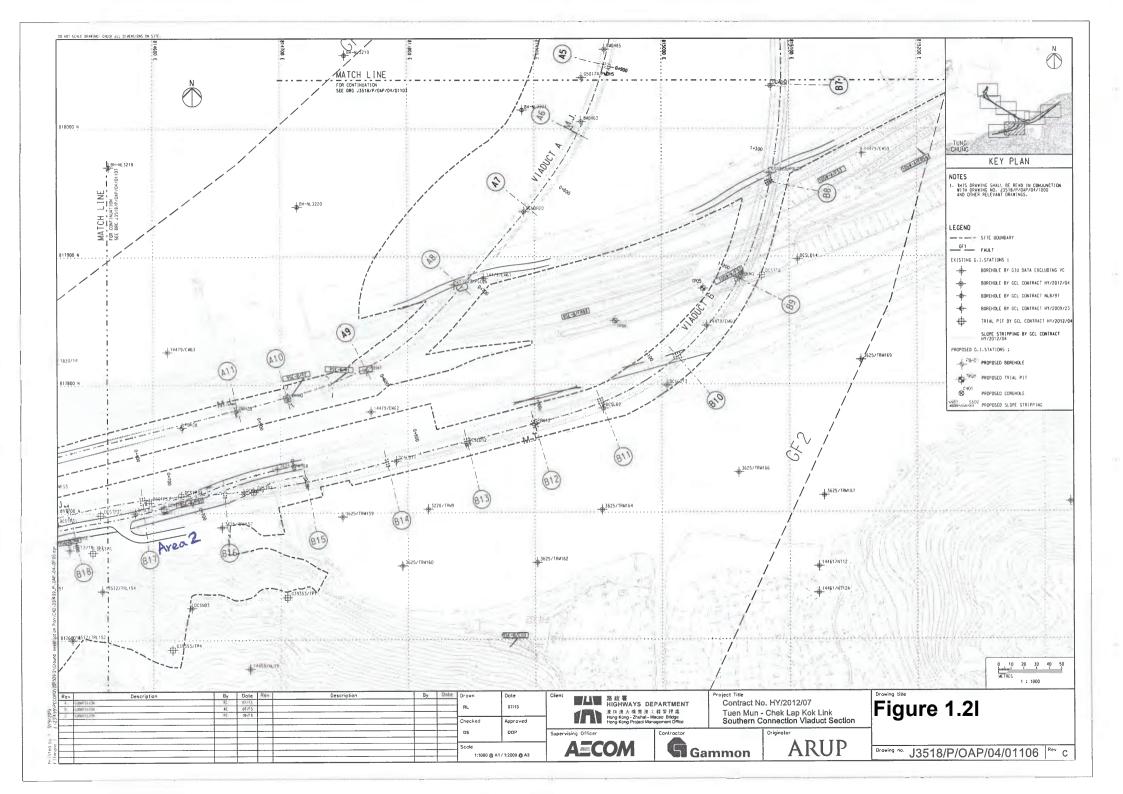


Table 1.1Contact Information of Key Personnel

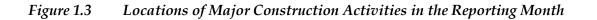
Party	Position	Name	Telephone	Fax
HyD (Highways Department)	Project Coordinator	Stanley Chan	2762 3406	3188 6614
1 /	Senior Engineer	Steven Shum	2762 4133	3188 6614
SOR (AECOM Asia Company Limited)	Chief Resident Engineer	Daniel Ip	3553 3800	2492 2057
	Resident Engineer	Ivan Yim	3691 3950	3691 2899
ENPO / IEC (Ramboll Hong Kong	ENPO Leader	Y.H. Hui	3465 2850	3465 2899
Ltd.)	IEC	Dr. F.C. Tsang	3465 2851	3465 2899
Contractor (Gammon Construction Limited)	Environmental Officer	Roy Leung	3520 0387	3520 0486
	24-hour Complaint Hotline		9738 4332	
ET (ERM-HK)	ET Leader	Dr. Jasmine Ng	2271 3311	2723 5660

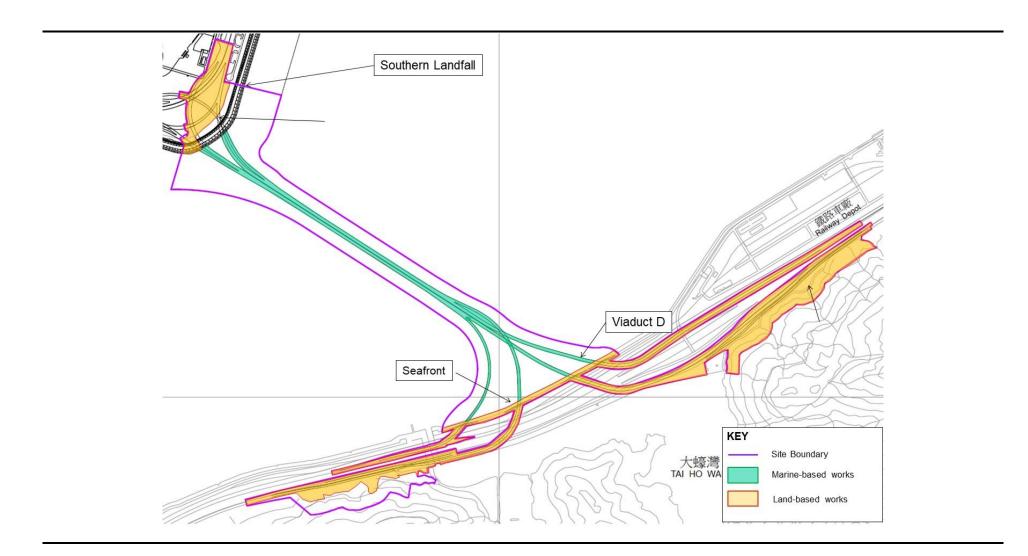
1.4 SUMMARY OF CONSTRUCTION WORKS

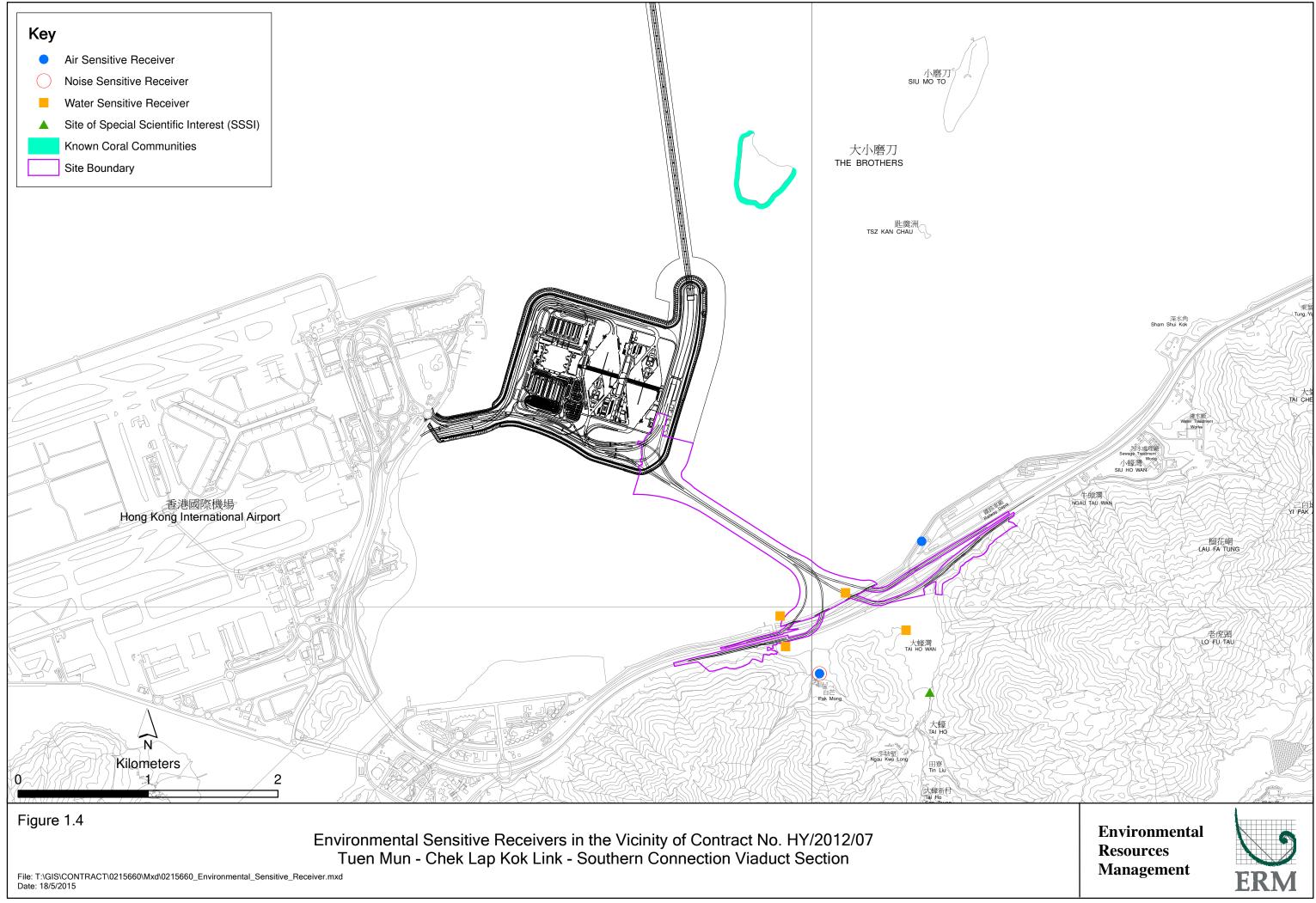
The construction phase of the Contract commenced on 31 October 2013. The three-month rolling construction programme is shown in Appendix B.

As informed by the Contractor, details of the major works carried out in this reporting month are listed below:

Marine-based Works


• Reinstatement of Seawall at Seafront


Land-based Works


- Slope work of Viaduct D; and
- Landscaping works at HKBCF.

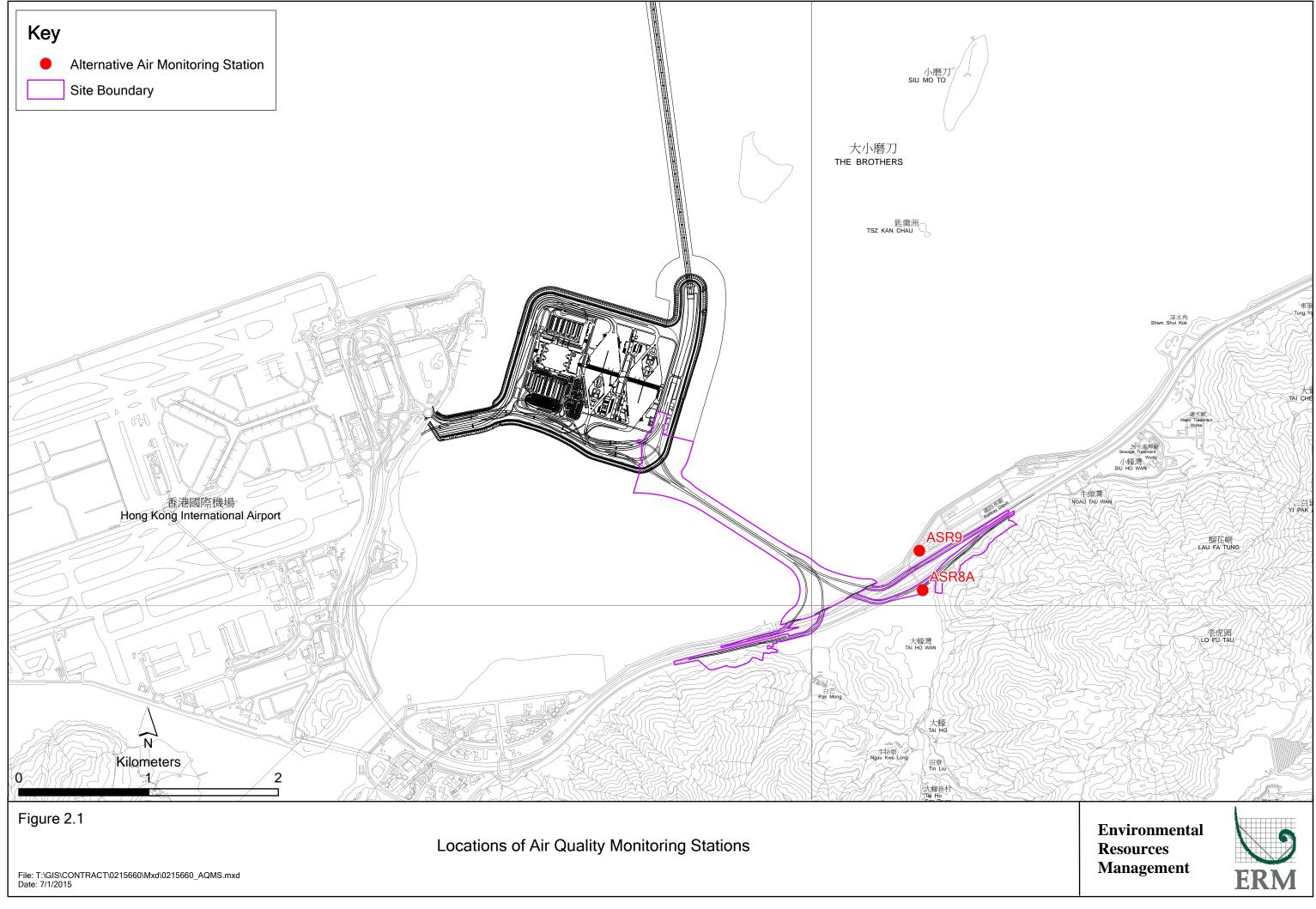
The locations of the construction activities are shown in *Figure 1.3*. The Environmental Sensitive Receivers in the vicinity of the Project are shown in *Figure 1.4*.

The environmental mitigation measures implementation schedule is presented in *Appendix C*.

2 EM&A RESULTS

The EM&A programme required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY


2.1.1 Monitoring Requirements and Equipment

In accordance with the Updated EM&A Manual, impact 1-hour TSP monitoring was conducted three (3) times every six (6) days and impact 24-hour TSP monitoring was carried out once every six (6) days when the highest dust impact was expected. The Action and Limit Levels of the air quality monitoring is provided in *Appendix D*.

Table 2.1Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location	Description	Monitoring Dates
ASR 9	MTR Depot	On the ground nearby MTR Depot Entrance	2, 8, 14, 20, 23 and 29 May 2019
ASR 8A	Area 4	On ground at the works area, Area 4	2, 8, 14, 20, 23 and 29 May 2019

High Volume Samplers (HVSs) were used for 1-hour TSP and 24-hour TSP monitoring at ASR8A and ASR9 in accordance with the requirements of the Updated EM&A Manual. The TSP monitoring stations are illustrated in *Figure 2.1* and detailed in *Table 2.1*. Wind meter was deployed at Area 4 for logging wind speed and wind direction. Copies of the calibration certificates for the equipment are presented in *Appendix E*. Details of the deployed equipment are given in *Table 2.2*.

Equipment	Brand and Model
High Volume Sampler	Tisch Environmental Mass Flow Controlled
(1-hour TSP and 24-hour TSP)	Total Suspended Particulate (TSP) High
	Volume Sampler (Model No. TE-5170)
Wind Sensor	Global Water (Wind Speed Sensor: WE550;
	Wind Direction Sensor: WE570)
Wind Anemometer for calibration	Lutron (Model No. AM-4201)

Table 2.2Air Quality Monitoring Equipment

2.1.2 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring in May 2019 is provided in Appendix F.

2.1.3 Results and Observations

The monitoring results for 1-hour TSP and 24-hour TSP are summarized in *Tables 2.3* and *2.4* respectively. Detailed impact air quality monitoring results are presented in *Appendix G*.

Table 2.3Summary of 1-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ASR 8A	63	16-129	394	500
ASR 9	83	42-220	393	500

Table 2.4Summary of 24-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (µg/m³)	Range (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
ASR 8A	40	16-55	178	260
ASR 9	50	25-73	178	260

The major dust sources in the reporting period included construction activities under the Contract as well as nearby traffic emissions.

All 1-hour and 24-hour TSP results were below the Action and Limit Levels at all monitoring locations in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

Meteorological information collected at ASR8A including wind speed and wind direction is provided in *Appendix H*.

2.2 NOISE MONITORING

2.2.1 Monitoring Requirements and Equipment

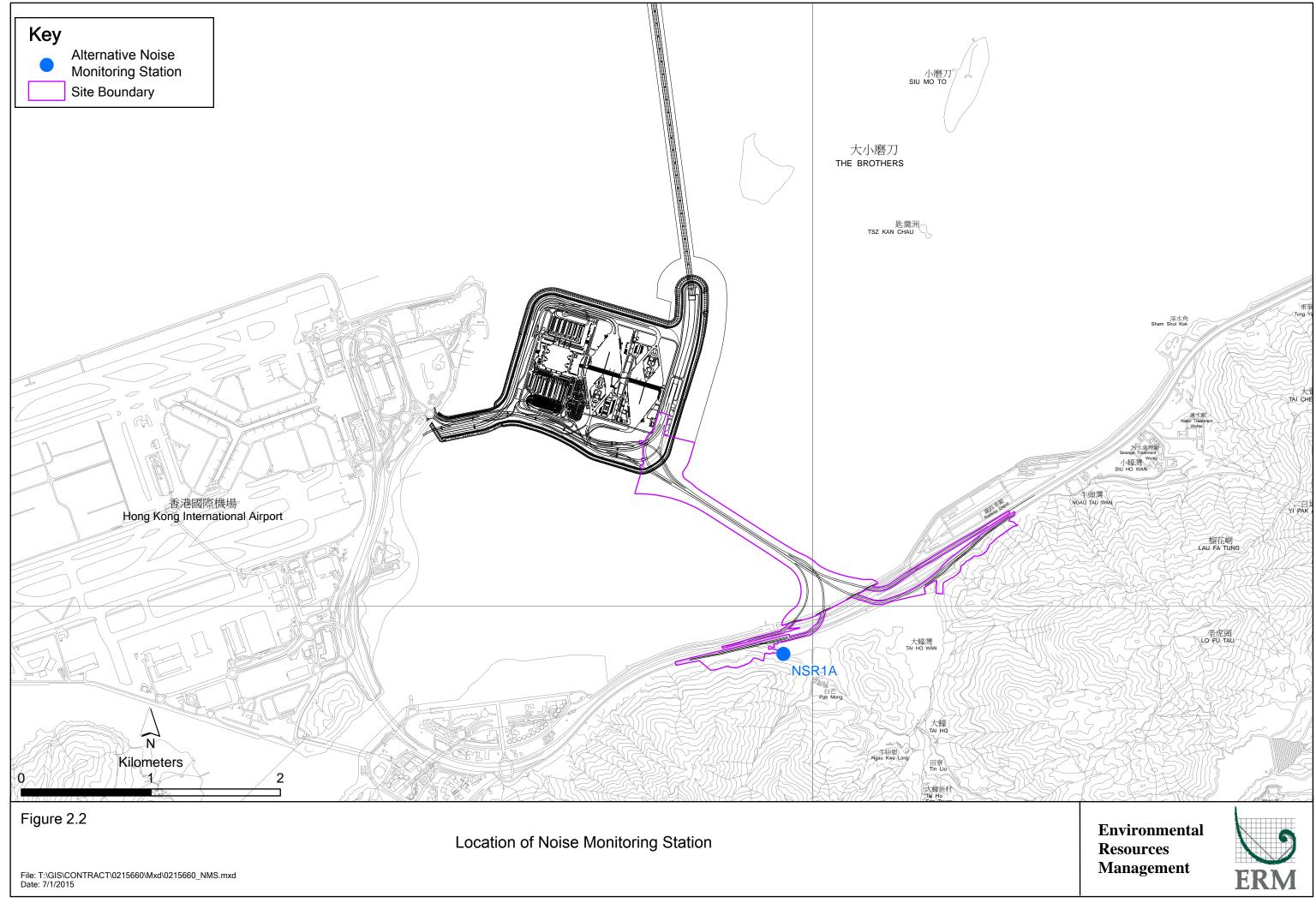
In accordance with the Updated EM&A Manual, impact noise monitoring was conducted once per week during the construction phase of the Contract. The Action and Limit Level of the noise monitoring is provided in *Appendix D*.

Noise monitoring was performed on 2, 8, 14, 20, 23 and 29 May 2019 using sound level meter at the designated monitoring station NSR1A (*Figure 2.2; Table 2.5*) in accordance with the requirements stipulated in the Updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.6*. Copies of the calibration certificates for the equipment are presented in *Appendix E*.

Table 2.5Location of Impact Noise Monitoring Station

Monitoring Station	Location	Description	Parameter	Frequency and Duration	Monitoring Dates
NSR 1A	Pak Mong Village Pavilion	On the ground at the village entrance	30-minute measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week	2, 8, 14, 20, 23 and 29 May 2019

Table 2.6Noise Monitoring Equipment


Equipment	Brand and Model	
Integrated Sound Level Meter	Rion NL-52	
Acoustic Calibrator	Rion NC-73	

2.2.2 Monitoring Schedule for the Reporting Month

The schedule for construction noise monitoring in the reporting period is provided in *Appendix F*.

2.2.3 Results and Observations

Results for noise monitoring are summarized in *Table 2.7* and the monitoring data is provided in *Appendix I*.

Table 2.7Summary of Construction Noise Monitoring Results in the Reporting Period

	Average , dB(A),	Range, dB(A),	Limit Level, dB(A),
	Leq (30mins)	Leq (30mins)	L _{eq (30mins)}
NSR 1A	64	62-66	75

Major noise sources during the noise monitoring included noise from nearby traffic noise and aircraft noise.

All noise monitoring results were below the Action and Limit Levels in the reporting period. No action is thus required to be undertaken in accordance with the Event Action Plan presented in *Appendix L*.

2.3 WATER QUALITY MONITORING

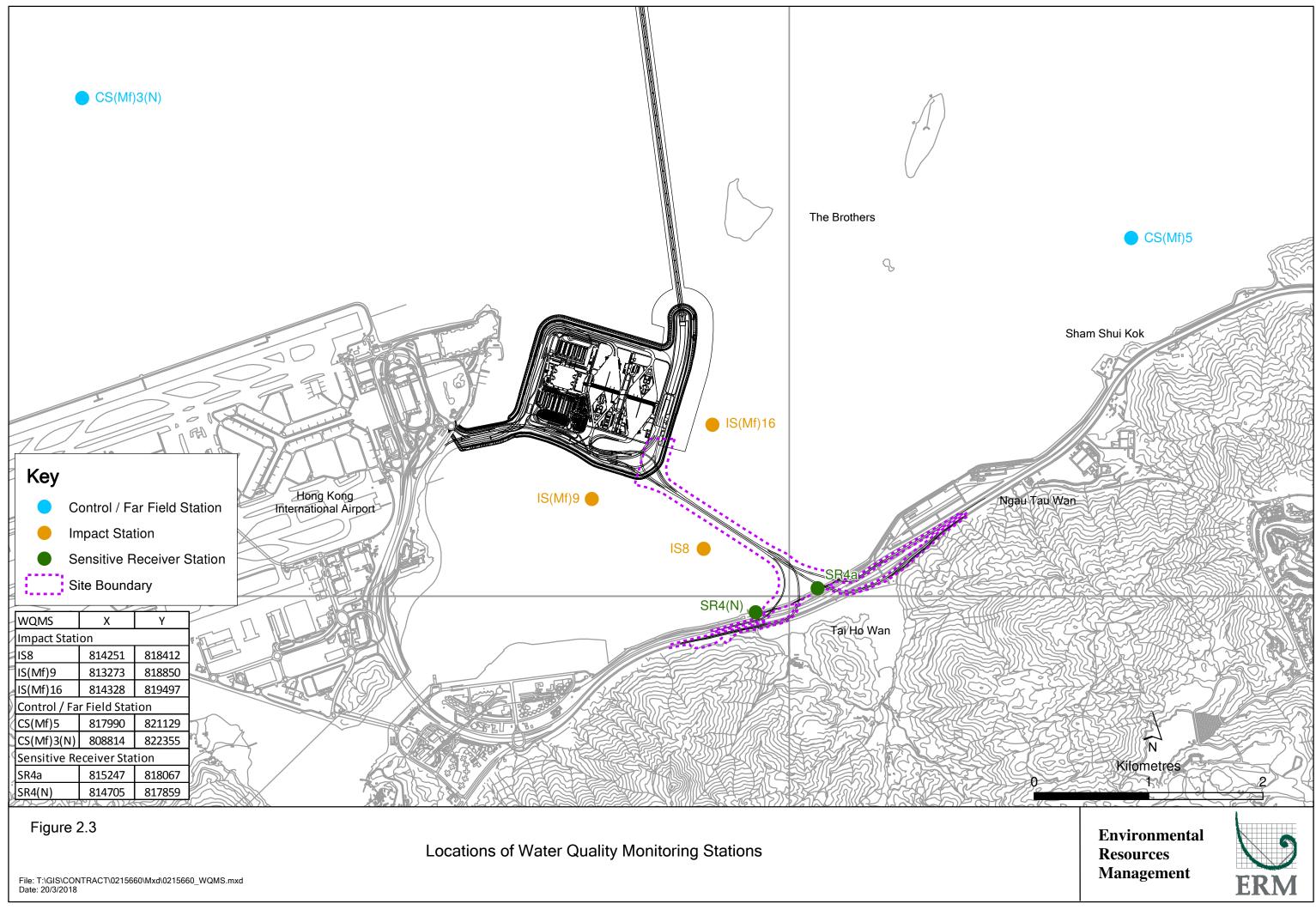
2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week during the construction period in accordance with the Updated EM&A Manual. The Action and Limit Levels of the water quality monitoring are provided in *Appendix D*.

The locations of the monitoring stations under the Contract are shown in *Figure 2.3* and *Table 2.8*.

Table 2.8Locations of Impact Water Quality Monitoring Stations and its
Corresponding Monitoring Requirements

Station	Туре	Coordinates		*Parameters, unit	Frequency	Depth
ID						
		Easting	Northing			
IS(Mf)9	Impact Station	813273	818850	• Temperature(°C)	Impact	3 water depths: 1m
	(Close to HKBCF			 pH (pH unit) 	monitoring: 3	below sea surface,
	construction site)			• Turbidity (NTU)	days per	mid-depth and 1m
IS(Mf)16	Impact Station	814328	819497	• Water depth (m)	week, at mid-	above sea bed. If
	(Close to HKBCF			 Salinity (ppt) 	flood and	the water depth is
	construction site)			 Dissolved 	mid-ebb tides	less than 3m, mid-
IS8	Impact Station	814251	818412	Oxygen (DO)	during the	depth sampling
	(Close to HKBCF			(mg/L and % of	construction	only. If water
	construction site)			saturation)	period of the	depth less than 6m,
SR4(N)	Sensitive receiver	814705	817859	Suspended Solid	Contract	mid-depth may be
	(Tai Ho Inlet)			(SS) (mg/L)		omitted
SR4a	Sensitive receiver	815247	818067			
CS(Mf)3(Control Station	808814	822355			
N)						
CS(Mf)5	Control Station	817990	821129			


^{*}Notes:

In addition to the parameters presented monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or works underway nearby were also recorded.

Water Quality Monitoring Station CS(Mf)3 was relocated to CS(Mf)3(N) since 2 May 2017.

Water Quality Monitoring Station SR4 was relocated to SR4(N) since 2 March 2018.

Access to stations IS8 and SR4(N) were blocked during the reporting month. Therefore, water quality monitoring at stations IS8 and SR4(N) were conducted at a location which is as close to the original coordinates as far as practicable.

Table 2.9 summarises the equipment used in the impact water quality monitoring programme. Copies of the calibration certificates are attached in *Appendix E*.

Table 2.9Water Quality Monitoring Equipment

Equipment	Brand and Model		
Multi-parameters	YSI ProDSS		
(Dissolved Oxygen, Salinity,			
Turbidity, Temperature, pH)			
Positioning Equipment	Furuno GP-170		
Water Depth Detector	Lowrance Mark 5x / Garmin Striker 4		
Water Sampler	WildCo Vertical Alpha Bottles 1120-2.2L /1120-3.2L Aquatic Research Instrument Vertical/Horizontal Point Water Sampler 2.2L / 3.0L		

2.3.2 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring in May 2019 is provided in *Appendix F*. Water quality monitoring on 1 May 2019 was cancelled due to site closure during holiday.

2.3.3 Results and Observations

In total of 13 monitoring events for impact water quality monitoring were conducted at all designated monitoring stations in the reporting month. Impact water quality monitoring results and graphical presentations are provided in *Appendix J*.

Two (2) Action Level of Suspended Solids (SS) exceedances were recorded for water quality impact monitoring in the reporting month. The exceedances were considered not related to this Contract upon further investigation and the investigation report is presented in *Appendix N*. No action is required to be undertaken in accordance with the Event Action Plan as presented in *Appendix L*.

2.4 DOLPHIN MONITORING

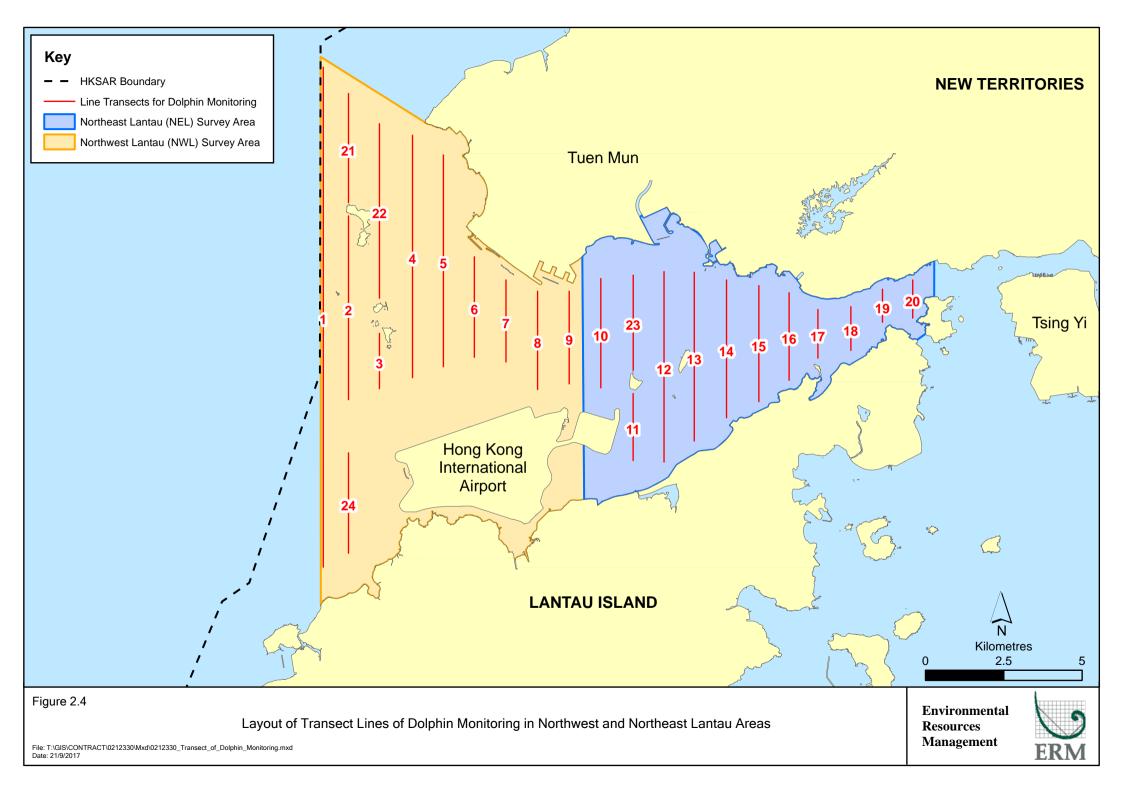
2.4.1 Monitoring Requirements

Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) from the Contract. In order to fulfil the EM&A requirements and make good use of available resources, the on-going impact line transect dolphin monitoring data collected by HyD's *Contract No. HY/2011/03 Hong Kong-Zhuhai-Macao Bridge. Hong Kong Link Road - Section between Scenic Hill and Hong Kong Boundary Crossing Facilities* on the monthly basis is adopted to avoid duplicates of survey effort.

2.4.2 Monitoring Equipment

Table 2.10 summarizes the equipment used for the impact dolphin monitoring.

Table 2.10Dolphin Monitoring Equipment


Equipment	Model	
Global Positioning System (GPS)	Garmin 18X-PC	
	Geo One Phottix	
Camera	Nikon D90 300m 2.8D fixed focus Nikon D90 20-300m zoom lens	
Laser Binoculars	Infinitor LRF 1000	
Marine Binocular	Bushell 7 x 50 marine binocular with compass and reticules	
Vessel for Monitoring	65 foot single engine motor vessel with viewing platform 4.5m above water level	

2.4.3 Monitoring Parameter, Frequencies and Duration

Dolphin monitoring should cover all transect lines in Northeast Lantau (NEL) and the Northwest Lantau (NWL) survey areas twice per month throughout the entire construction period. The monitoring data should be compatible with, and should be made available for, long-term studies of small cetacean ecology in Hong Kong. In order to provide a suitable long-term dataset for comparison, identical methodology and line transects employed in baseline dolphin monitoring was followed in the impact dolphin monitoring.

2.4.4 Monitoring Location

The impact dolphin monitoring was carried out in the NEL and NWL along the line transect as depicted in *Figure 2.4*. The co-ordinates of all transect lines are shown in *Table 2.11* below ⁽¹⁾.

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	804671	815456	13	Start Point	816506	819480
1	End Point	804671	831404	13	End Point	816506	824859
2	Start Point	805476	820800	14	Start Point	817537	820220
2	End Point	805476	826654	14	End Point	817537	824613
3	Start Point	806464	821150	15	Start Point	818568	820735
3	End Point	806464	822911	15	End Point	818568	824433
4	Start Point	807518	821500	16	Start Point	819532	821420
4	End Point	807518	829230	16	End Point	819532	824209
5	Start Point	808504	821850	17	Start Point	820451	822125
5	End Point	808504	828602	17	End Point	820451	823671
6	Start Point	809490	822150	18	Start Point	821504	822371
6	End Point	809490	825352	18	End Point	821504	823761
7	Start Point	810499	822000*	19	Start Point	822513	823268
7	End Point	810499	824613	19	End Point	822513	824321
8	Start Point	811508	821123	20	Start Point	823477	823402
8	End Point	811508	824254	20	End Point	823477	824613
9	Start Point	812516	821303	21	Start Point	805476	827081
9	End Point	812516	824254	21	End Point	805476	830562
10	Start Point	813525	821176	22	Start Point	806464	824033
10	End Point	813525	824657	22	End Point	806464	829598
11	Start Point	814556	818853	23	Start Point	814559	821739
11	End Point	814556	820992	23	End Point	814559	824768
12	Start Point	815542	818807	24	Start Point	805476	815900
12	End Point	815542	824882	24	End Point	805476	819100

Table 2.11 Impact Dolphin Monitoring Line Transect Co-ordinates

2.4.5 Action & Limit Levels

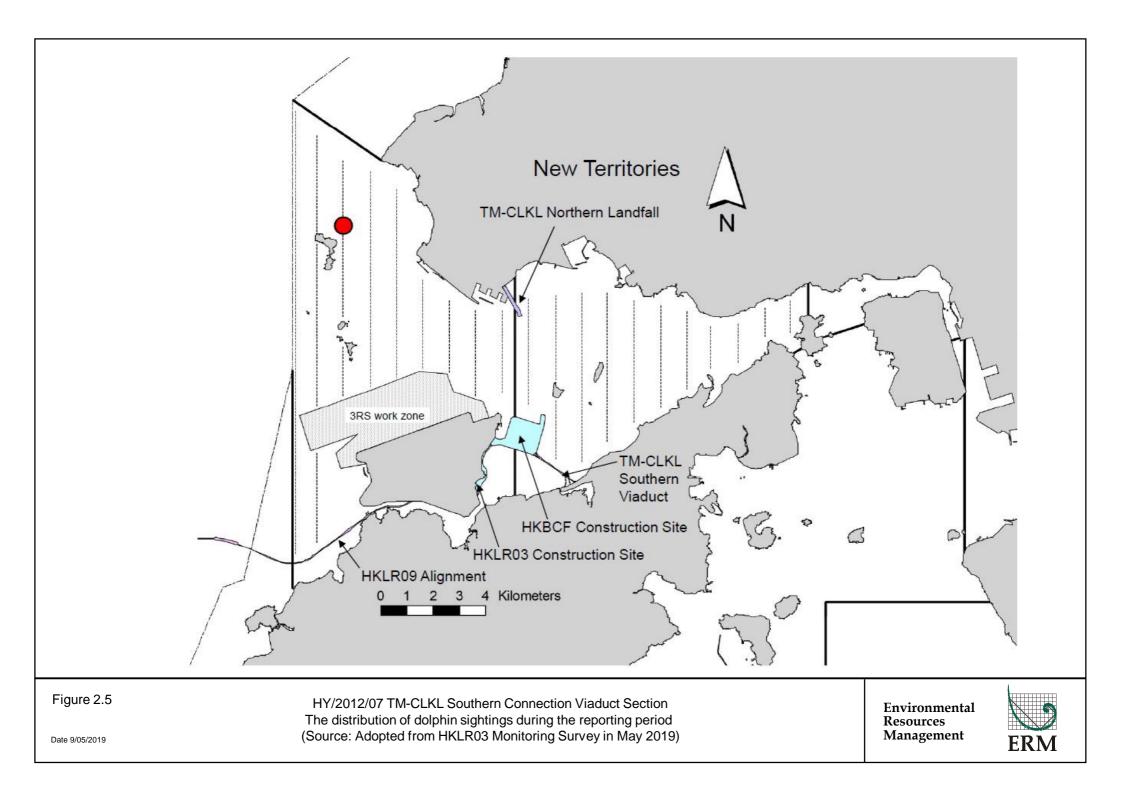
The Action and Limit levels of dolphin impact monitoring are shown in *Appendix D*. The Event and Action plan is presented in *Appendix L*.

2.4.6 Monitoring Schedule for the Reporting Month

Dolphin monitoring was carried out on 2, 7, 21 and 23 May 2019 (Appendix F).

2.4.7 Results and Observations

A total of 264.90 km of survey effort was collected, with 99.2% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) during the surveys in April 2019. Among the two areas, 98.30 km and 166.60 km of survey effort were collected from NEL and NWL survey areas, respectively. The total survey effort conducted on primary and secondary lines were 191.39 km and 73.51 km, respectively. The survey efforts are summarized in *Appendix K*.


One (1) group of three (3) Chinese White Dolphins was sighted during the two sets of monitoring surveys in May 2019. The lone dolphin sighting is made in NWL. During the surveys in May 2019, the lone sighting was made during on-effort search on the primary line. The dolphin group was not associated with operating fishing vessel and was not sighted in the proximity of the Project's alignment. The distribution of dolphin sighting during the reporting month is shown in *Figure 2.5*.

Encounter rates of Chinese White Dolphins are deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) in May 2019 are shown in *Tables 2.12 & 2.13*.

		Encounter rate (STG) (no. of on-effort dolphin sightings per 100 km of survey effort)	Encounter rate (ANI) (no. of dolphins from all on- effort sightings per 100 km of survey effort)
		Primary Lines Only	Primary Lines Only
	Set 1: May 2nd / 7th	0.0	0.0
NEL	Set 2: May 21st / 23rd	0.0	0.0
	Set 1: May 2nd / 7th	1.7	5.1
NWL	Set 2: May 21st / 23rd	0.0	0.0

Table 2.12Individual Survey Event Encounter Rates

Note: Dolphin Encounter Rates are deduced from the two sets of surveys (two surveys in each set) in May 2019 in Northeast (NEL) and Northwest Lantau (NWL)

Table 2.13Monthly Average Encounter Rates

	Encounter (no. of on-effort o per 100 km of	lolphin sightings	(no. of dolphins	rate (ANI) from all on-effort 00 km of survey ort)
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines
Northeast Lantau	0.0	0.0	0.0	0.0
Northwest Lantau	0.9	0.6	2.6	1.8

Note: Overall dolphin encounter rates (sightings per 100 km of survey effort) from all four surveys are conducted in May 2019 on primary lines only as well as both primary lines and secondary lines in Northeast and Northwest Lantau

One (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between March to May 2019, whilst no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations. Due to monthly variation in dolphin occurrence within the Study Area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of the TM-CLKL Southern Connection Viaduct Section in the quarterly EM&A reports, in which comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

2.4.8 Marine Mammal Exclusion Zone Monitoring

Daily 250 m marine mammal exclusion zone monitoring was undertaken during the period of daytime marine works activities. No sighting of Chinese White Dolphin was recorded in May 2019 during the exclusion zone monitoring.

Passive Acoustic Monitoring (PAM) had been decommissioned as no marine piling works was carried out outside the daylight hours since September 2015.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting month, five (5) site inspections were carried out on 2, 8, 15, 22 and 30 May 2019.

Key observations during the site inspections are summarized in Table 2.14.

Inspection Date	Environmental Observations	Recommendations/ Remarks
2 May 2019	 Seafront Mud was observed in the U-channel. The road is dusty when car pass by. Viaduct D General refuse was observed on the ground. 	 Seafront The Contractor was reminded to clear the mud inside the U-channel to prevent blockage. The Contractor was reminded to apply water on the road to control dust on the ground. Viaduct D The Contractor was reminded to clear general refuse off the ground.
8 May 2019	 BCF (Portion A) Chemical container should be placed in drip tray. Seafront The silt curtain should be properly extended. 	 BCF (Portion A) The Contractor was reminded to place chemical container in drip tray. Seafront The Contractor was reminded to properly extend the silt curtain.
15 May 2019	 WA4 Mud was observed in the U-channel. General refuse was observed on the ground. 	 WA4 The Contractor was reminded to clear the U-channel. The Contractor was reminded to clear general refuse on the ground.
22 May 2019	 BCF Chemical container was observed without drip tray. Accumulated waste was observed. 	BCF
30 May 2019	 Seafront Stagnant water was observed in drip tray. Chemical container should be placed in drip tray. 	 Seafront The Contractor was reminded to discharge stagnant water in drip tray. The Contractor was reminded to place chemical container in drip tray.

Table 2.14 Specific Observations Identified during the Weekly SiteInspections in this Reporting Month

The Contractor has rectified all of the observations identified during environmental site inspections in the reporting month.

2.6 WASTE MANAGEMENT STATUS

The Contractor has submitted application form for registration as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

Wastes generated during this reporting period include mainly construction wastes (inert and non-inert) and recyclable materials. Reference has been made to the waste flow table prepared by the Contractor (*Appendix M*). The quantities of different types of wastes are summarized in *Table 2.15*.

Month/	Inert C&D	Imported	Inert	Non-inert	Recyclable	Chemical	Mariı	ne Sedimen	ıt (m³)
Year	Materials ^(a) (m ³)	Fill (m³)	Constructio n Waste Re-	Constructio n Waste ^(b)	Materials ^(c) (kg)	Wastes (kg)	Category L	Category M	Category H
			used (m³)	(kg)				(M _p & M _f)	
May 2019	5,334	0	5,258	65,810	0	0	0	0	0

Notes:

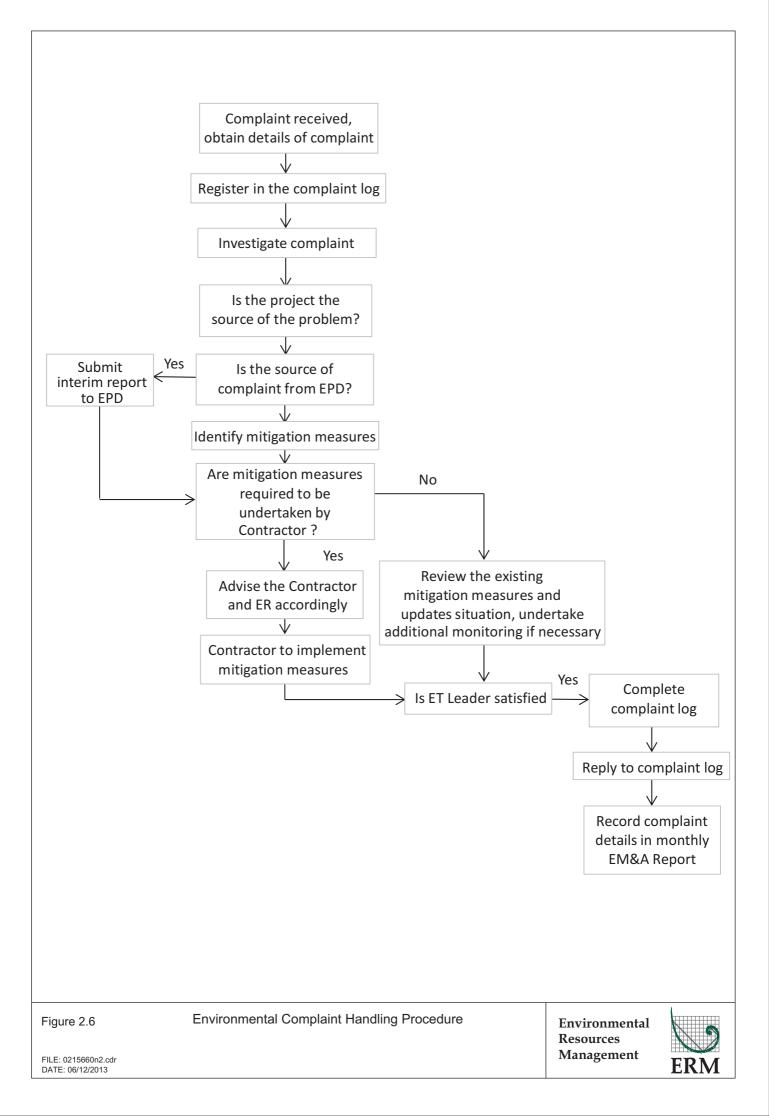
(a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.

(b) Non-inert construction wastes include general refuse disposed at landfill.

(c) Recyclable materials include metals, paper, cardboard, plastics, timber, felled trees and others.

The Contractor was advised to properly maintain on site C&D materials and waste collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse/ recycle of C&D materials and wastes. The Contractor was also reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.

For chemical waste containers, the Contractor was reminded to treat properly and store temporarily in designated chemical waste storage area on site in accordance with the *Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes*.


2.7 Environmental Licenses and Permits

The status of environmental licensing and permit is summarized in *Table 2.16* below.

License/ Permit	License or Permit	Date of Issue	Date of Expiry	License/	Remarks
	No.			Permit Holder	
Environmental Permit	EP-354/2009/D	13 Mar 2015	N/A	HyD	Tuen Mun- Chek Lap Kok Link
Environmental Permit	EP-353/2009/K	11 Apr 2016	N/A	HyD	Hong Kong Boundary Crossing Facilities
Construction Dust Notification	361571	5 Jul 2013	N/A	GCL	
Construction Dust Notification	362093	17 Jul 2013	N/A	GCL	For Area 23
Chemical Waste Registration	5213-961-G2380-13	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No.
					HY/2012/07
					(Area 1 adjacent to Cheng Tung Road, Siu Ho
					Wan)
Chemical Waste Registration	5213-961-G2380-14	10 Oct 2013	N/A	GCL	Chemical waste produced in Contract No.
					HY/2012/07
					(Area 2 adjacent to Cheung Tung Road, Pak Mong
					Village)
Chemical Waste Registration	5213-974-G2588-03	4 Nov 2013	N/A	GCL	Chemical waste produced in Contract No.
					HY/2012/07
					(WA5 adjacent to Cheung Tung Road, Yam O)
Chemical Waste Registration	5213-951-G2380-17	12 Jun 2014	N/A	GCL	Viaducts A, B, C, D & E
Construction Waste Disposal Account	7017735	10 Jul 2013	N/A	GCL	-
Construction Waste Disposal Account	7019470	3 Mar 2014	N/A	GCL	Vessel CHIT Account
Waste Water Discharge License	WT00019017-2014	13 May 2014	31 May 2019	GCL	Discharge for marine portion
Waste Water Discharge License	WT00019018-2014	13 May 2014	31 May 2019	GCL	Discharge for land portion
Construction Noise Permit for night works and	GW-RS0149-19	19 February 2019	15 July 2019	GCL	Broad Permit for Whole Site Areas
works in general holidays					
Construction Noise Permit for night works and	GW-RW012-19	23 Jan 2019	13 Jun 2019	GCL	General works at WA5
works in general holidays					

Table 2.16Summary of Environmental Licensing and Permit Status

2.8	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES
	In response to the site audit findings, the Contractors carried out corrective actions.
	A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in <i>Appendix C</i> . The necessary mitigation measures were implemented properly for this Contract.
	The landscape and visual (L&V) mitigation measures were also monitored on weekly basis in the reporting period. The monitoring status is summarized in <i>Appendix C</i> .
2.9	Summary of Exceedances of the Environmental Quality Performance Limit
	Results for 1-hour TSP, 24-hour TSP and noise complied with the Action/ Limit levels in the reporting period.
	Two (2) Action Level exceedances of Suspended Solids (SS) were recorded for water quality impact monitoring in the reporting month.
	Cumulative statistics on exceedances is provided in <i>Appendix N</i> .
2.10	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS
	The Environmental Complaint Handling Procedure is provided in <i>Figure 2.6</i> .
	There was no complaint, notification of summons or successful prosecution recorded in the reporting period.
	Statistics on complaints, notifications of summons, successful prosecutions are summarized in <i>Appendix N</i> .

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTH

As informed by the Contractor, the major works for this Contract in June 2019 will be:

Marine-based Works

• Reinstatement of Seawall at Seafront

Land-based Works

• At-grade work at HKBCF.

3.2 KEY ISSUES FOR THE COMING MONTH

Potential environmental impacts arising from the above upcoming construction activities in the next reporting month of June 2019 are mainly associated with dust, noise, marine water quality, marine ecology and waste management issues.

3.3 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedules for environmental monitoring in June 2019 are provided in *Appendix F*.

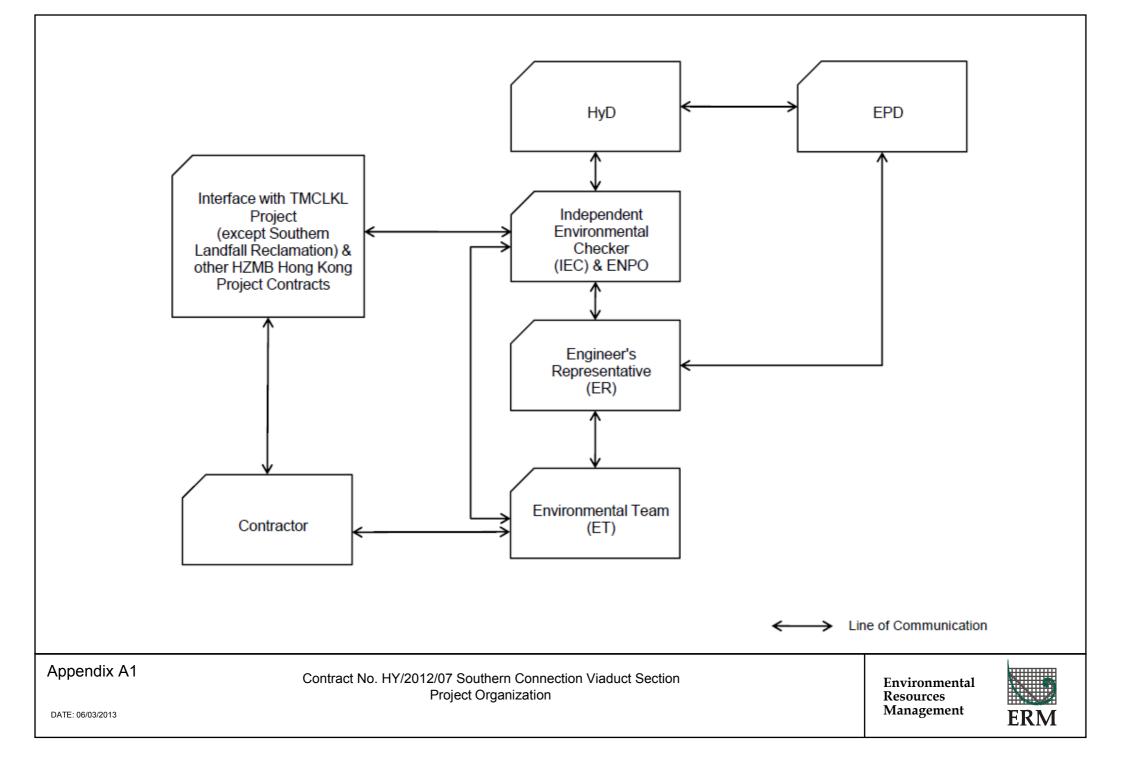
4 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

This Sixty-seventh Monthly EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 31 May 2019 in accordance with the Updated EM&A Manual and the requirements of the Environmental Permits (*EP-354/2009/D* and *EP-353/2009/K*).

Air quality (1-hour TSP and 24-hour TSP) noise, water quality monitoring (DO, turbidity and SS) and dolphin monitoring were carried out in the reporting month. Results of air quality and noise monitoring complied with the Action and Limit levels in the reporting period.

Two (2) Action Level exceedances of Suspended Solids (SS) were recorded for water quality impact monitoring in the reporting month.


One (1) group of three (3) Chinese White Dolphins was sighted during the two sets of monitoring surveys in May 2019. One (1) Limit Level exceedance was observed for the quarterly dolphin monitoring data between March to May 2019, whilst no unacceptable impact from the construction activities of the TM-CLKL Southern Connection Viaduct Section on Indo-Pacific humpback dolphin *Sousa chinensis* (i.e. Chinese White Dolphin) was noticeable from general observations.

Environmental site inspection was carried out five (5) times in May 2019. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audits.

There was no complaint, notification of summons or successful prosecution recorded in the reporting period.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. Appendix A

Project Organization for Environmental Works

Appendix B

Three-Month Rolling Construction Programme

Activity ID	Activity Name		FC Early Rem.	Act. Finish / FC Early	Late Start Lat	e Finish Tota	Float Physical	6			2019	-
		Durn. S	itart Durn.	Finish			Comple	e May 29 06 13	20 27	June 03 10 17	July 24 01 08 15 22	August mbe 29 05 12 19 26 02
HY/2012/07 Tu	uen Mun-Chek Lap Kok Link - Southern Connect	tion										
Contract Milest	ones									1 1 1		
Key Dates for 0	Completion											
Section of the	e Works											
Completion Da	ate											
General												
KD15 KD17	KD15 - Section 9: Watermains Tung Chung-HKBCF (EoT 27-Feb-19) KD17 - Section 11: Works Not in Section 1-10 & 12-14 (EoT 8-Apr-17)	0 0	0	29-Nov-18 A 21-Mar-19 A			100% 100%					
KD17 KD20	KD20 - Section 14: Preserve & Protect Existing Trees (EoT 7-Apr-17)	0	0	21-May-19*	07-	Apr-17 -7	73 0%			 		
Portion Hando				,		1				1 1 1		
Vacate Works	Area									L		J
Vacate Dates												
General										 		
VAC05	Vacate Works Area WA5 (Zone 5C) (Extension Requested)	0	0	21-May-19*	18-	Mar-19 -(63 0%		•	 		
Construction	Outboling Works								• • • • • • • • • • • • • •	1 		1
	Substructure Works									1 1 1		
Ramp A	nnroach Ramn A											
	pproach Ramp A s, E&M & Roadworks											
ARA-C7850	Ramp A - maintenance period completion	0	0	21-Jun-19*	21-	Jun-19	0 0%	b		•		
Ramp B												
Abutment & Ap	pproach Ramp B									1 1 1		
	s, E&M & Roadworks									1 1 1		
ARB-C7850	Ramp B - maintenance period completion	0	0	21-Jun-19*	21-	Jun-19	0 0%	0		•		
Ramp C												
	pproach Ramp C s, E&M & Roadworks					<u></u>	<u></u>					
ARC-C7850	Ramp C- maintenance period completion	0	0	21-May-19*	09-	Feb-19 -1	00 0%	Ď				
Ramp D		-	-					-		 		
Abutment & Ap	pproach Ramp D									1 1 1 1		
	s, E&M & Roadworks									+		
	Ramp D - maintenance period completion	0	0	21-May-19*	26-	Apr-19 -:	24 0%		•			
	e & Associated Works											
Viaduct A Bridge A2												
	E&M and Roadworks						<u></u>		• • • • • • • • • • • • • • • • • • • •	, , ,		
VA2-C7850	Viaduct A - maintenance period completion	0	0	21-Jun-19*	21-	Jun-19	0 0%	, D		•		
Viaduct B												
Bridge B3										 		
	E&M and Roadworks	-										
VB3-C7850 Viaduct C	Viaduct B - maintenance period completion	0	0	21-Jun-19*	20-	Jun-19	0 09	b		•		
Bridge C4												
	E&M and Roadworks											
VC4-C7850	Viaduct C - maintenance period completion	0	0	21-May-19*	09-	Feb-19 -1	00 0%	þ	•	 	, , ,	
Viaduct D										 		
Bridge D3										1 1 1 1		
	E&M and Roadworks	-							L	1 1 1 1		
VD3-C7850 Viaduct E	Viaduct D - maintenance period completion	0	0	21-May-19*	26-	Apr-19 -:	24 0%	b	1	1 1 1		
Bridge E1									•	۱ L		
	E&M and Roadworks									1 1 1		
	Viaduct E1 - maintenance period completion	0	0	21-Jun-19*	21-	Jun-19	0 0%	, D		•		
Bridge E2												
Deck Fnishes,	E&M and Roadworks											
Actual Work	Project ID: TMCLK-DWPM-M72 Layout: J3518-DWP-3MRP Submission - M72				outhern Connection		Date		Check	Approved	DWG. No.:	
Planned Bar Critical Bar	Filter: TASK filters: 3-Month Lookahead, No CC	3-Montl			Page 1 of 2 Pag	jes)	21-May	·	Drago E	niali nu		
 Milestone 	Milestones, No Level of Effort.		(Progre	ss as of 21-l	May-19)							GM/3MRP-M72
								· 1	I			

ivity ID	Activity Name	Orig.	Act. Start / FC Early	Rem.	Act. Finish / FC Early	Late Start	Late Finish	Total Float								2019						
		Durn.	Start	Durn.	Finish				Complete		May			June			_	July			August	
										29 06	13	20 27	03	10	17 24	01	08	15	22 2	29 05	12 1	19 26
VE23-C7850	Viaduct E2 - maintenance period completion	0		0	19-Jun-19*		18-Jun-19	0	0%						•	į				i.		i
At-Grade Worl	ks & Miscellaneous Works																			1		į
At-Grade Wo	rks Along North Lantau Highway												 							I		;
Slope Works	Near Viaduct A												1							-		1
Slope 9SE-B/I	FR8																					1
GFXX560	9SE-B/FR8 - Slopeworks	85	11-Dec-18 A	0	26-Mar-19 A				100%											:		
At-Grade Wor	rks at Southern Landfall												1							1		
HKBCF Area													1							1		
General																				1		
RW30018	South Landfall - Irrigation Pipe (Portion B)	60	18-Feb-19 A	0	17-May-19 A				100%				i 									
RW30100	South Landfall - New proposed maintenance access	90	21-Mar-19 A	90	04-Sep-19	05-Jun-18	19-Sep-18	-283	50%													
Landscaping	Works & Establishment Works																					
Lanscape So	ftworks																			1		
General													1									;
LW00010	Landscaping Works at NLH/CTR (Slope Areas)	120	21-Dec-18 A	0	21-May-19 A				100%				 									
LW00020	Irrigation System for Soft Landscape Works	100	13-Feb-19 A	0	17-May-19 A				100%				i I			i				i.		;

Actual Work	Project ID: TMCLK-DWPM-M72	Tuen Mun - Chek Lap Kok Link - Southern Connection	Date	Revision	Check	Approved	DWG. No.:
Planned Bar	Layout: J3518-DWP-3MRP Submission - M72	3-Month Rolling Programme (Page 2 of 2 Pages)	21-May		Drago	Brian Ho	
Critical Bar	Filter: TASK filters: 3-Month Lookahead, No CO	(Progress as of 21-May-19)					J3518/GCL/PGM/3MRP-M72
Milestone	Milestones, No Level of Effort.	(Progress as 01 21-may-19)					

Appendix C

Environmental Mitigation and Enhancement Measure Implementation Schedules

(In reference to CINOTECH (2011) Agreement No. CE35/2011 EP Baseline Environmental Monitoring for Hong Kong-Zhuhai-Macao Bridge Tuen Mun-Chep Lap Kok Link – Investigation. Updated EM&A Manual for Tuen Mun-Chek Lap Kok Link)

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link Southern Connection Viaduct Section Environmental Mitigation and Enhancement Measure Implementation Schedule

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages	Status	
	Reference					D	С	0	
AIR QUALIT	Y								
4.8.1	3.8	An effective watering programme of eight daily watering with complete coverage, is estimated to reduce by 50%. This is recommended for all areas in order to reduce dust levels to a minimum;	All areas / throughout construction period	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		✓
4.8.1	3.8	The Contractor shall, to the satisfaction of the Engineer, install effective dust suppression measures and take such other measures as may be necessary to ensure that at the Site boundary and any nearby sensitive receiver, dust levels are kept to acceptable levels.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		*
4.8.1	3.8	The Contractor shall not burn debris or other materials on the works areas.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	In hot, dry or windy weather, the watering programme shall maintain all exposed road surfaces and dust sources wet.	All unpaved haul roads / throughout construction period in hot, dry or windy weather	Contractor	TMEIA Avoid smoke impacts and disturbance		Y		*
4.8.1	3.8	Where breaking of oversize rock/concrete is required, watering shall be implemented to control dust. Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		*
4.8.1	3.8	Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓
4.8.1	3.8	During transportation by truck, materials shall not be loaded to a level higher than the side and tail boards, and shall be dampened or covered before transport.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages		Status
	Reference					D	С	Ο	
4.8.1	3.8	Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Ŷ		•
4.8.1	3.8	No earth, mud, debris, dust and the like shall be deposited on public roads. Wheel washing facility shall be usable prior to any earthworks excavation activity on the site.	All site exits / throughout construction period	Contractor	TMEIA Avoid dust		Y		•
4.8.1	3.8	Areas of exposed soil shall be minimised to areas in which works have been completed shall be restored as soon as is practicable.	All exposed surfaces / throughout construction period	Contractor	TMEIA Avoid dust generation		Y		✓
4.8.1	3.8	All stockpiles of aggregate or spoil shall be enclosed or covered and water applied in dry or windy condition.	All areas / throughout construction period	Contractor	TMEIA Avoid dust generation		Y	*	✓
4.11	Section 3	EM&A in the form of 1 hour and 24 hour dust monitoring and site audit	All representative existing ASRs / throughout construction period	Contractor	EM&A Manual		Ŷ		•
NOISE	i	A			4		.i	i	
5.11	Section 4	Noise monitoring	All existing representative sensitive receivers / during North Lantau Viaduct construction	Contractor	EM&A Manual		Y		•
WATER QUA	LITY					.1		1	1
General Mar	rine Works								
6.10	-	Bored piling to be undertaken within a metal casing.	Marine viaducts of TM- CLKL and HKLR/ bored piling	Contractor	TM-EIAO		Y		n/a
6.10	-	Barges and hopper dredgers shall have tight fitting seals to their bottom openings to prevent leakage of material.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	ement Stages		Status
	Reference					D	C	0	
6.10	-	Any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		✓
6.10	-	Loading of barges and hoppers shall be controlled to prevent splashing of dredged material to the surrounding water. Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	All vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Y		n/a
6.10	-	The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	All areas/ throughout construction period	Contractor	Marine Fill Committee Guidelines. DASO permit conditions.		Ŷ		•
Temporary S	Staging work		•						
	5.2	Regular inspection for the accumulation of floating refuse and collection of floating refuse if required	During temporary staging works	Contractor			Y		n/a
	5.2	Provision of temporary drainage system on the temporary staging for collection of construction site runoff to allow appropriate treatment before discharge into the sea	During temporary staging works	Contractor			Y		•
	5.2	Wastewater generated from construction works such as bored / drilling water will be collected, treated, neutralized and de-silted through silt trap or sedimentation tank before disposal	During temporary staging works	Contractor			Y		n/a
	5.2	One additional water quality monitoring station is	During temporary	Contractor			Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage		Status
	Reference					D	С	Ο	
		proposed at station SR4a In case elevated SS or turbidity is identified during the water quality monitoring, the source of pollution will be tracked down and be removed as soon as possible. In case depletion of dissolved oxygen is identified, artificial aeration will be arranged at the monitoring station SR4a,	staging works						
Land Works									
6.10	-	Wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		~
6.10	-	Sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		•
5.10	-	Storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		•
6.10	-	Silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		<>
6.10	-	Temporary access roads should be surfaced with crushed stone or gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
5.10	-	Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Stages			Status
	Reference					D	С	0	
6.10	-	Open stockpiles of construction materials (e.g. aggregates and sand) on site should be covered with tarpaulin or similar fabric during rainstorms.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	5.8	Manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		✓
6.10	-	Discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	All vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit.	All areas/ throughout construction period	Contractor	TM-EIAO		Υ		✓
6.10	-	Wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	The Contractor shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		✓
6.10	-	Waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance.	All areas/ throughout construction period	Contractor	TM-EIAO Waste Disposal Ordinance		Y		•

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	d Implen St			Status
	Reference					D	С	Ο	
6.10	-	All fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		 Image: A start of the start of
6.10	-	Surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the stormwater system.	All areas/ throughout construction period	Contractor	TM-EIAO		Y		•
6.10	-	Roadside gullies to trap silt and grit shall be provided prior to discharging the stormwater into the marine environment. The sumps will be maintained and cleaned at regular intervals.	Roadside/design and operation	Design Consultant/ Contractor	TM-EIAO	Y		Υ	•
6.10	Section 5	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All areas/ throughout construction period	Contractor	EM&A Manual		Y		•
Water Quali	ity Monitoring	3		•	•				
6.10	Section 5	Water quality monitoring shall be undertaken for suspended solids, turbidity, and dissolved oxygen. Nutrients and metal parameters shall also be measured for Mf sediment operations (only HKBCF and HKLR required handling of Mf sediment) during baseline, backfilling and post construction period. One year operation phase water quality monitoring at designated stations	Designated monitoring stations as defined in EM&A Manual, Section 5/ Before, through-out marine construction period, post construction and monthly operational phase water quality monitoring for a year.	Contractor	EM&A Manual		Y	Y	•
Ecology									
8.14	6.3	Specification for and implement pre, during and post construction dolphin abundance monitoring.	All Areas/Detailed Design/ during construction works/post construction	Design Consultant/ Contractor	TMEIA	Y	Y	Y	✓
8.14	6.3	Specification for bored piling monitoring	Detailed Design	Design Consultant	TMEIA	Y			n/a
8.14	6.3	Implement any recommendations of the bored piling monitoring	Southern marine viaduct/Throughout	Contractor	TMEIA		Y		4

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	0	
			construction during bored piling						
8.14	6.3,6.5	Avoidance of peak CWD calving season in May and June for driving of metal caissons during bored piling works	Southern marine viaduct/ May and June during bored piling	Contractor	TMEIA		Y		n/a
8.14	6.3,6.5	Specification and implementation of 250m dolphin exclusion zone.	All marine bored piling and temporary staging works areas/Detailed Design/during all marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Ŷ	Y		•
8.15	6.3, 6.5	Specification and deployment of an artificial reef of an area of 3,600 m ² in an area where fishing activities are prohibited.	Area of prohibited fishing activities/Detailed Design/towards end of construction period	TM-CLKL/ HKBCF Design Consultant/ TM-CLKL/ HKBCF Contractor	TMEIA	Y		Y	n/a To be enforced by AFCD.
8.14	6.3, 6.5	Specification and implementation of marine vessel control specifications	All areas/Detailed Design/during construction works	Design Consultant/ Contractor	TMEIA	Y	Y		•
8.14	6.3, 6.5	Design and implementation of acoustic decoupling methods for marine bored piling and the whole lifespan of temporary staging works.	All areas/ Detailed Design/during marine bored piling and temporary staging works	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.15	6.3, 6.4	Pre-construction phase survey and coral translocation	Tai Ho Wan (donar site) and Yam Tsui Wan (receptor site) / Detailed Design/Prior to construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a
8.15	6.5	Audit coral translocation success	Yam Tsui Wan (receptor site)/Post translocation	Contractor	TMEIA		Y		Completed in October 2014
7.13	6.5	Undertaken gabion wall works in Stream NL1 in the dry season	North Lantau slope works/dry	Contractor	TMEIA		Y		n/a

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lement Stage		Status
	Reference					D	С	0	
			season/construction phase						4
7.13	6.5	The loss of habitat shall be supplemented by enhancement planting in accordance with the landscape mitigation schedule.	All areas / As soon as accessible	Contractor	TMEIA		Y		n/a. To be approved by AFCD/LCSD
7.13	6.5	Spoil heaps shall be covered at all times.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Avoid damage and disturbance to the remaining and surrounding natural habitat	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Placement of equipment in designated areas within the existing disturbed land	All areas / Throughout construction period	Contractor	TMEIA		Y		<>
7.13	6.5	Disturbed areas to be reinstated immediately after completion of the works.	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
7.13	6.5	Construction activities should be restricted to the proposed works boundary	All areas / Throughout construction period	Contractor	TMEIA		Y		✓
LANDSCAPE	AND VISUAL	<u> </u>			4			.1	
10.9	7.6	Round angle, patterned finishes, and oval shaped pier were considered in the viaduct design, and further details will be developed under ACABAS submission (DM3)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Details of the street furniture will be developed in the detailed design stage (DM4)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Aesthetic design of the viaduct, retaining wall and other structures will be developed under ACABAS submission (DM5)	All areas/detailed design	Design Consultant	TMEIA	Y			n/a
10.9	7.6	Existing trees on boundary of the Project Area shall be carefully protected during construction. Detailed Tree Protection Specification shall be provided in the Contract Specification. Under this specification, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Ŷ	Y		•

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	С	Ο	
		prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. (Tree protection measures will be detailed at Tree Removal Application stage) (CM1)							
10.9	7.6	Trees unavoidably affected by the works shall be transplanted where practical. Trees will be transplanted straight to their final receptor site and not held in a temporary nursery. A detailed Tree Transplanting Specification shall be provided in the Contract Specification. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme (CM2)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Υ		✓ Tree transplanted as Contract Specification
10.9	7.6	Hillside and roadside screen planting to proposed roads, associated structures and slope works (CM3).	All areas/detailed design/ during construction/post construction	Design Consultant/	TMEIA	Y	Y		•
10.9	7.6	Hydroseeding or sheeting of soil stockpiles with visually unobtrusive material (in earth tone) (CM4)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		<>
10.9	7.6	Screening of construction works by hoardings around works area in visually unobtrusive colours, to screen works (CM5)	All areas/detailed design/ during construction/post construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Control night-time lighting and glare by hooding all lights (CM6)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Ensure no run-off into water body adjacent to the Project Area (CM7)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•
10.9	7.6	Avoidance of excessive height and bulk of buildings and structures (CM8)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		•

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	nplementation Stages		Status
	Reference					D	С	0	
10.9	7.6	Recycle/Reuse all felled trees and vegetation, e.g. mulching (CM9)	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Y		n/a No felled trees or vegetation suitable for recycle
10.9	7.6	Compensatory tree planting shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Felling Application process under ETWBTC 3/2006 (CM10).	All areas/detailed design/ during construction	Design Consultant/ Contractor	TMEIA	Y	Υ		•
10.9	7.6	Re-vegetation of affected woodland/shrubland with native species (OM1)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Υ	Υ	n/a. To be implemented by AFCD/HyD/ L CSD
10.9	7.6	Tall buffer screen tree / shrub / climber planting should be incorporated to soften hard engineering structures and facilities (OM2)	All areas/detailed design/ during construction/ during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Υ	n/a To be implemented by HyD/LCSD
10.9	7.6	Streetscape elements (e.g. paving, signage, street furniture, lighting etc.) shall be sensitively designed in a manner that responds to the local context, and minimises potential negative landscape and visual impacts. Lighting units should be directional and minimise unnecessary light spill (OM3)	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Ŷ	Ŷ	n/a. To be implemented by HyD/LCSD
10.9	7.6	Structure, ornamental tree / shrub / climber planting should be provided along roadside amenity strips, central dividers and newly formed slopes to enhance the townscape quality and further greenery enhancement	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	rd Implementation Stages			Status
	Reference					D	С	0	
		(OM4)	ê		•	•			HyD/LCSD
10.9	7.6	Aesthetically pleasing design (visually unobtrusive and non-reflective) as regard to the form, material and finishes	All areas/detailed design/ during construction / during operation	Design Consultant/ Contractor	TMEIA	Y	Y	Y	n/a. To be implemented by HyD
WASTE									
12.6		The Contractor shall identify a coordinator for the management of waste.	Contract mobilisation	Contractor	TMEIA		Y		•
12.6		The Contractor shall prepare and implement a Waste Management Plan which specifies procedures such as a ticketing system, to facilitate tracking of loads and to ensure that illegal disposal of wastes does not occur, and protocols for the maintenance of records of the quantities of wastes generated, recycled and disposed. A recording system for the amount of waste generated, recycled and disposed (locations) should be established.	Contract mobilisation	Contractor	TMEIA, Works Branch Technical Circular No. 5/99 for the Trip-ticket System for Disposal of Construction and Demolition Material		Y		•
12.6		The Contractor shall apply for and obtain the appropriate licenses for the disposal of public fill, chemical waste and effluent discharges.	Contract mobilisation	Contractor	TMEIA, Land (Miscellaneous Provisions) Ordinance (Cap 28); Waste Disposal Ordinance (Cap 354); Dumping at Sea Ordinance (Cap 466); Water Pollution Control Ordinance.		Υ		✓
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedures including waste reduction, reuse and recycling.	Contract Mobilisation	Contractor	TMEIA		Y		•
12.6	8.1	The extent of cutting operation should be optimised	All areas / throughout	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	С	Ο	
		where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	construction period						
12.6	8.1	Rock armour from the existing seawall should be reused on the new sloping seawall as far as possible	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	The site and surroundings shall be kept tidy and litter free.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	No waste shall be burnt on site.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Provisions to be made in contract documents to allow and promote the use of recycled aggregates where appropriate.	Detailed Design	Design Consultant	TMEIA	Y			n/a
12.6	8.1	The Contractor shall be prohibited from disposing of C&D materials at any sensitive locations. The Contractor should propose the final disposal sites in the EMP and WMP for approval before implementation.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Stockpiled material shall be covered by tarpaulin and /or watered as appropriate to prevent windblown dust/ surface run off.	All areas / throughout construction period	Contractor	TMEIA		Y		<>
12.6	8.1	Excavated material in trucks shall be covered by tarpaulins to reduce the potential for spillage and dust generation.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Wheel washing facilities shall be used by all trucks leaving the site to prevent transfer of mud onto public roads.	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Standard formwork or pre-fabrication should be used as far as practicable so as to minimise the C&D materials arising. The use of more durable formwork/plastic facing for construction works should be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction	All areas / throughout construction period	Contractor	TMEIA		Y		✓

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	-	lement Stages		Status
	Reference					D	С	0	
		materials should avoid over-ordering and wastage.							
12.6	8.1	The Contractor should recycle as many C&D materials (this is a waste section) as possible on-site. The public fill and C&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	All areas / throughout construction period	Contractor	TMEIA		Υ		•
12.6	8.1	All falsework will be steel instead of wood.	All areas / throughout construction period	Contractor	TMEIA		Y	*	✓
12.6	8.1	 Chemical waste producers should register with the EPD. Chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; Having a capacity of <450L unless the specifications have been approved by the EPD; and Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. Clearly labelled and used solely for the storage of chemical wastes; Enclosed with at least 3 sides; Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste; 	All areas / throughout construction period	Contractor	TMEIA		Υ		

EIA Reference	EM&A Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Imp	lemen Stage		Status
	Reference					D	С	Ο	
		 Adequate ventilation; Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and Incompatible materials are adequately separated. 							
12.6	8.1	Waste oils, chemicals or solvents shall not be disposed of to drain,	All areas / throughout construction period	Contractor	TMEIA		Y		✓
12.6	8.1	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them.	All areas / throughout construction period	Contractor	TMEIA		Y		•
12.6	8.1	Night soil should be regularly collected by licensed collectors.	All areas / throughout construction period	Contractor	TMEIA		Y		•
12.6	8.1	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C&D and chemical wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By- laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. Burning of refuse on construction sites is prohibited.	All areas / throughout construction period	Contractor	TMEIA		Υ		✓
12.6	8.1	All waste containers shall be in a secure area on hard standing;	All areas / throughout construction period	Contractor	TMEIA		Υ		•
12.6	8.1	Training shall be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	All areas / throughout construction period	Contractor	TMEIA		Υ		•
12.6	8.1	Office wastes can be reduced by recycling of	Site Offices/	Contractor	TMEIA		Y		✓

EIA Referenc	EM&A ce Manual	Environmental Protection Measures	Location/ Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
	Reference					D	C	0	
		paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the Contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	throughout construction period						
12.6	Section 8	EM&A of waste handling, storage, transportation, disposal procedures and documentation through the site audit programme shall be undertaken.	All areas / throughout construction period	Contractor	EM&A Manual		Y		✓
Cultur/	L HERITAGE								
11.8	Section 9	EM&A in the form of audit of the mitigation measures	All areas / throughout construction period	Highways Department	EIAO-TM		Y		n/a
0	0	struction, O=Operation mitigation measures will be the Highways Department of th	ne Hong Kong SAR Gover	mment					
✓	Compliance of Mi	tigation Measures							
<>	Compliance of Mi	tigation but need improvement							
x	Non-compliance of Mitigation Measures								
	Non-compliance o	of Mitigation Measures but rectified by Contractor							
	Deficiency of Mitigation Measures but rectified by Contractor								
Δ	Deficiency of Miti	gation Measures but rectified by Contractor							

Appendix D

Summary of Action and Limit Levels

Table D1Action and Limit Levels for 1-hour and 24-hour TSP

Parameters	Action	Limit
24 Hour TSP Level in µg/m ³ ASR9A/ASR8A = 1 ASR9C/ASR8/ASF		260
1 Hour TSP Level in $\mu g / m^3$	ASR9A/ASR8A = 394 ASR9C/ASR8/ ASR9 = 393	500

Table D2Action and Limit Levels for Construction Noise (0700-1900 hrs of normal
weekdays)

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75* dB(A)

Table D3Action and Limit Levels for Water Quality

Parameter	Action Level#	Limit Level#
DO in mg/L $^{(a)}$	Surface and Middle	Surface and Middle
	5.0 mg/L	4.2 mg/L
	Bottom	Bottom
	4.7 mg/L	3.6 mg/L
Turbidity in NTU (Depth- averaged ^{(b), (c)})	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e.,	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data, i.e.,
	27.5 NTU	47.0 NTU
SS in mg/L (Depth-averaged $^{(b), (c)}$)	120% of upstream control station at the same tide of the same day and 95%-ile of baseline data, i.e., 23.5 mg/L	130% of upstream control station at the same tide of the same day and 10mg/L for WSD Seawater Intakes at Tuen Mun and 99%-ile of baseline data, i.e.,
		34.4 mg/L

Notes:

Baseline data: data from HKZMB Baseline Water Quality Monitoring between 6 and 31 October 2011.

- (a) For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- (b) "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths
- (c) For turbidity and SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.
- (d) All figures given in the table are used for reference only, and EPD may amend the figures whenever it is considered as necessary

Parameter	Action Level#	Limit Level#
(e) The 1%-ile of base	eline data for surface and middle	DO is 4.2 mg/L, whilst for bottom DO
is 3.6 mg/L.		

Table D4Action and Limit Levels for Impact Dolphin Monitoring

	North Lantau Social Cluster	
	NEL	NWL
Action Level	STG < 70% of baseline &	STG < 70% of baseline &
	ANI < 70% of baseline	ANI < 70% of baseline
Limit Level	[STG < 40% of baseli	ne & ANI < 40% of baseline]
		and
	STG < 40% of baseli	ne & ANI < 40% of baseline
Notes:		
1. STG means quar	rterly encounter rate of number of dol	ohin sightings, which is 6.00 i
NEL and OPE in		monied

- NEL and 9.85 in NWL during the baseline monitoring period
 ANI means quarterly encounter rate of total number of dolphins, which is 22.19 in NEL and 44.66 in NWL during the baseline monitoring period
- 3. For North Lantau Social Cluster, AL will be trigger if NEL or NWL fall below the criteria; LL will be triggered if both NEL and NWL fall below the criteria.

Table D5Derived Value of Action Level (AL) and Limit Level (LL)

	North Lantau Social Cluster		
	NEL	NWL	
Action Level	STG < 4.2 & ANI< 15.5	STG < 6.9 & ANI < 31.3	
Limit Level	[STG < 2.4 & ANI <8.9]		
		and	
	[STG < 3.9	& ANI <17.9]	

Appendix E

Calibration Certificates of Monitoring Equipments

High-Volume TSP Sampler 5-Point Calibration Record

Location Calibrated by Date	::	ASR8(A) P.F.Yeung 28/03/2019
Sampler_		
Model	:	TE-5170
Serial Number	:	S/N 3956
Calibration Orifice and Standard (Serial Number Service Date Slope (m) Intercept (b) Correlation Coefficient(r)	Calibration : : : :	n Relationship 2454 25 February 2019 2.07076 -0.02917 1.00000
<u>Standard Condition</u> Pstd (hpa) Tstd (K)	:	1013 298.18
Calibration Condition Pa (hpa) Ta(K)	:	1012 297

Resi	istance Plate	dH [green liquid]	Ζ	X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.0	3.321	1.625	52	52.06
2	13 holes	9.0	3.004	1.470	48	48.06
3	10 holes	6.6	2.572	1.260	43	43.05
4	7 holes	4.4	2.100	1.030	38	38.05
5	5 holes	2.6	1.614	0.793	30	30.04

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b,Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>25.774</u> Intercept(b):<u>10.404</u>

Correlation Coefficient(r): 0.9966

Checked by: Magnum Fan

Date: 02/04/2019

High-Volume TSP Sampler 5-Point Calibration Record

Location	:	ASR9
Calibrated by	:	P.F.Yeung
Date	:	28/03/2019
<u>Sampler</u>		
Model	:	TE-5170
Serial Number	:	S/N 3958
Calibration Orifice and Stand	lard Calibratio	n Relationship
Serial Number	:	2454
Service Date	:	25 February 2019
Slope (m)	:	2.07076
Intercept (b)	:	-0.02917
Correlation Coefficient(r)	:	1.00000
Standard Condition		
Pstd (hpa)	:	1013
Tstd (K)	:	298.18
Calibration Condition		

	-	
Pa (hpa)	:	1012
Ta(K)	:	297

Resi	stance Plate	dH [green liquid] Z X=Qstd		X=Qstd	IC	Y
		(inch water)		(cubic meter/min)	(chart)	(corrected)
1	18 holes	11.6	3.410	1.661	56	56.07
2	13 holes	9.2	3.037	1.481	48	48.06
3	10 holes	7.0	2.649	1.293	42	42.05
4	7 holes	4.8	2.193	1.073	37	37.04
5	5 holes	2.4	1.551	0.763	28	28.03

Notes:Z=SQRT{dH(Pa/Pstd)(Tstd/Ta)}, X=Z/m-b, Y(Corrected Flow)=IC*{SQRT(Pa/Pstd)(Tstd/Ta)}

Sampler Calibration Relationship (Linear Regression)

Slope(m):<u>30.180</u> Intercept(b):<u>4.398</u>

Correlation Coefficient(r): 0.9936

Checked by: Magnum Fan

Date: 02/04/2019

RECALIBRATION DUE DATE: February 25, 2020

Certificate of Calibration

			Calibration	Certificati	on Informat	ion		
Cal. Date:	February 2	5,2019	Roots	meter S/N:	438320	Ta:	294	°K
Operator:	Jim Tisch					Pa:	762.0	mm Hg
Calibration	Model #:	TE-5025A	E-5025A Calibrator S/N: 2454					
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔН	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4400	3.2	2.00	
	2	3	4	1	1.0200	6.4	4.00	
	3	5	6	1	0.9120	7.9	5.00	1
	4	7	8	1	0.8700	8.8	5.50	
	5	9	10	1	0.7180	12.8	8.00	
			1	Data Tabula	tion			
			Jaul Pa	\/ Tstd \				
	Vstd	Qstd	√ ^{∆H} (Pstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)}$		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax		Va	(x-axis)	(y-axis)	
	1.0120	0.7028	1.42		0.9958	0.6915	0.8784	
	1.0077	0.9880	2.010		0.9916	0.9722	1.2423	
	1.0057	1.1028	2.254	MASCI 1.0	0.9896	1.0851	1.3889	
	1.0045 0.9992	1.1546 1.3916	2.364		0.9885	1.1362	1.4567	
	0.5552		2.85		0.9652	1.3694 m=	1.7569 1.29667	
	QSTD	b=	-0.029	a manufacture of the second	QA	b=	-0.01797	
	4010	r=	1.000		Q/1	r=	1.00000	
	Г			Coloulatio	1			
	Vstd=	AVOI((Pa-AP)	/Pstd)(Tstd/Ta			ΔVol((Pa-Δ		
		Vstd/∆Time	1/1 500/1500/10	<i>,</i> ,	Qa=			
		· · · · · · · · · · · · · · · · · · ·	For subsequ	Jent flow rate calculations:				
	Qstd=	1/m ((\\ \[\] \(\] \ \ \ \ \ \ \ \ \ \ \ \ \	Pa Pstd Tstd))-b)	$\mathbf{Qa= 1/m}\left(\left(\sqrt{\Delta H(Ta/Pa)}\right) - b\right)$			
	Standard	Conditions						
Tstd:	298.15	°K				RECA	LIBRATION	
Pstd:		mm Hg			LIS EPA reco	mmends a	nnual recalibratio	on nor 1008
ΔH: calibrate		(ey ter reading (i	n H2O)				Regulations Part !	
Semantic Contraction of the second seco	Contraction of the second s	eter reading					, Reference Meth	×
		perature (°K)					ended Particulat	
the second secon	arometric p	ressure (mm	Hg)			CONTRACTOR OF STREET,	ere, 9.2.17, page	onstructional and an and an and an and and and and an
b: intercept							, o, page	
m: slope								

0

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185606 證書編號

ITEM TESTED Description / 儀 Manufacturer / 集 Model No. / 型勁 Serial No. / 編號 Supplied By / 委	器名稱 : 製造商 : 虎 :	(Job No. / 序引編號: IC Sound Level Calibrator Rion NC-73 10786708 Envirotech Services Co. Room 113, 1/F, My Loft, 9 New Territories, Hong Kor	9 Hoi Wing	Date of Receipt / 收件日期:27 S Road, Tuen Mun,	eptember 201
TEST CONDIT Temperature / 涩 Line Voltage / 習	温度 : (2	式條件 3 ± 2)°C -	-	Relative Humidity / 相對濕度 :	(50 ± 25)%
TEST SPECIF		/ 測試規範			
DATE OF TES	T/測試日其	朝 : 14 October 2018			
The results do not	to the particul t exceed manu	果 lar unit-under-test only. ıfacturer's specification. ubsequent page(s).			
The GovernmentThe Bruel & Kj	nt of The Hon jaer Calibratic logies / Keysi arz Laborator				
		4 pm			
Tested By 測試		K C/Lee Engineer			

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

E-mail/電郵: callab@suncreation.com Website/網:

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185606 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C183775 CDK1806821 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.5	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.986	1 kHz ± 2 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183088 證書編號

ITEM TESTEI Description / 儀 Manufacturer / 集 Model No. / 型嬰 Serial No. / 編閉 Supplied By / 委	器名稱 : S 製造商 : F 虎 : N 記 : C 記者 : E F	Job No. / 序引編號:IC Sound Level Meter Rion NL-52 20131628 Envirotech Services Co. Room 113, 1/F, My Loft, 9 New Territories, Hong Ko	9 Hoi Wing Ro	Date of Receipt , bad, Tuen Mun,	/ 收件日期:	25 May 2018
TEST CONDIT Temperature / 涯 Line Voltage / 智	温度 : (23 ±		-	Relative Humidity / 村	目對濕度 :	(50 ± 25)%
TEST SPECIF	ICATIONS / 洌	測試規範				
DATE OF TES	ST / 測試日期	: 10 June 2018				
The results do n The results are o The test equipm - The Governm	y to the particu ot exceed manu detailed in the s ent used for cal ent of The Hon hologies / Keysi warz Laborator		National Standa	ards via :	n Laboratory	
Tested By 測試	:	KC Lee Engineer				
Certified By 核證	:	H C Chan Engineer		e of Issue : 發日期	14 June 2	2018

written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

300

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C183088 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C180024
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672 Class 1 Spec. (dB)
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L _A	A	Fast	94.00	1	* 95.3	± 1.1

* Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting		Applied	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0 (Ref.)
				104.00	[104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門與安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (8: 50

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183088 證書編號

6.2 Time Weighting

UUT Setting			Applie	d Value	UUT	IEC 61672	
Range (dB)	Function	Frequency. Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L_A	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting		Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level - (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	93.0	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.6	-4.3 (+3.0 ; -6.0)

6.3.2

UUT Setting			Appl	ied Value	UUT	IEC 61672				
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)			
30 - 130	L _C	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5			
			10		5 m			125 Hz	93.8	-0.2 ± 1.5
			250 Hz	94.0	0.0 ± 1.4					
			500 Hz	94.0	0.0 ± 1.4					
					1 kHz	94.0	Ref.			
					2 kHz	93.8	-0.2 ± 1.6			
					4 kHz	93.2	-0.8 ± 1.6			
					8 kHz	91.1	-3.0 (+2.1 ; -3.			
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.			

de.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183088 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 10446

- Mfr's Spec. : IEC 61672 Class 1

94 dB : 63 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz	: $\pm 0.35 \text{ dB}$: $\pm 0.30 \text{ dB}$: $\pm 0.20 \text{ dB}$: $\pm 0.35 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB) : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	1 ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

2

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Report No.	
Date of Issue	
Page No.	

AI040001 01 April, 2019 1 of 2

•

:

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	:	YSI ProDSS (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	00019CB2
Date of Received	:	Mar 27, 2019
Date of Calibration	:	Mar 27, 2019
Date of Next Calibration(a)	:	Jun 27, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.06	0.06	Satisfactory
7.42	7.48	0.06	Satisfactory
10.01	10.05	0.04	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
19.5	18.9	-0.6	Satisfactory
41.0	41.3	0.3	Satisfactory
65.0	64.5	-0.5	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(0) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(e) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM Ho-yee, Emma

Assistant Laboratory Manager

Report No.	:	AI040001
Date of Issue	:	01 April, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
1.76	1.72	-0.04	Satisfactory
4.51	4.48	-0.03	Satisfactory
6.26	6.31	0.05	Satisfactory
8.39	8.50	0.11	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.20 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	147.1	0.1	Satisfactory
0.01	1412	1477	4.6	Satisfactory
0.1	12890	12934	0.3	Satisfactory
0.5	58670	58414	-0.4	Satisfactory
1.0	111900	111746	-0.1	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.82	-1.8	Satisfactory
20	19.91	-0.4	Satisfactory
30	30.18	0.6	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.00		
10	10.00	0.0	Satisfactory
20	20.18	0.9	Satisfactory
100	98.94	-1.1	Satisfactory
800	811.20	1.4	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- (9) "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 (9) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form
- rine Toterance Linni mentioned is the acceptance criteria applicable for similar equipment used by Quanty Pro Test-Consult Lia. or quoted j relevant international standards.

Report No.	:	AI050006
Date of Issue	:	02 May, 2019
Page No.	1	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 16H104233
Date of Received	: Apr 30, 2019
Date of Calibration	: Apr 30, 2019
Date of Next Calibration(a)	: Jul 30, 2019

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Parameter</u>	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
100 C	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results	
4.00	4.00	0.00	Satisfactory	
7.42	7.42	0.00	Satisfactory	
10.01	10.00	-0.01	Satisfactory	

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.5	14.7	0.2	Satisfactory
25.0	25.1	0.1	Satisfactory
62.0	61.4	-0.6	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

(10) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM Ho-yee, Emma

Assistant Laboratory Manager

Report No.		AI050006
Date of Issue	:	02 May, 2019
Page No.	1	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.02	0.34	0.32	Satisfactory
2.74	2.39	-0.35	Satisfactory
5.37	5.17	-0.20	Satisfactory
8.14	8.30	0.16	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	138.7	-5.6	Satisfactory
0.01	1412	1430	1.3	Satisfactory
0.1	12890	12869	-0.2	Satisfactory
0.5	58670	58863	0.3	Satisfactory
1.0	111900	111581	-0.3	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.99	-0.1	Satisfactory
20	20.11	0.5	Satisfactory
30	30.99	3.3	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.00		
10	10.15	1.5	Satisfactory
20	20.00	0.0	Satisfactory
100	108.33	8.3	Satisfactory
800	829.20	3.7	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

⁽⁰⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 ^(g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	
Date of Issue	
Page No.	

AI050004 02 May, 2019 1 of 2

•

5

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 16H104234
Date of Received	: Apr 30, 2019
Date of Calibration	: Apr 30, 2019
Date of Next Calibration(a)	: Jul 30, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.02	0.02	Satisfactory
7.42	7.42	0.00	Satisfactory
10.01	10.00	-0.01	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
14.5	14.6	0.1	Satisfactory
25.0	25.1	0.1	Satisfactory
62.0	62.1	0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM/Ho-yee, Emma Assistant Laboratory Manager

Report No.	:	AI050004
Date of Issue		02 May, 2019
Page No.		2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.02	0.29	0.27	Satisfactory
2.74	2.33	-0.41	Satisfactory
5.37	5.03	-0.34	Satisfactory
8.14	8.41	0.27	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	140.2	-4.6	Satisfactory
0.01	1412	1437	1.8	Satisfactory
0.1	12890	12789	-0.8	Satisfactory
0.5	58670	58362	-0.5	Satisfactory
1.0	111900	111714	-0.2	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.96	-0.4	Satisfactory
20	19.84	-0.8	Satisfactory
30	30.00	0.0	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.00		
10	10.10	1.0	Satisfactory
20	19.88	-0.6	Satisfactory
100	99.04	-1.0	Satisfactory
800	778.05	-2.7	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

- <u>Remark(s): -</u> ⁽ⁱ⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. (g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form
- relevant international standards.

專業化驗有限公司 **OUALITY PRO TEST-CONSULT LIMITED**

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.	:	AI050005
Date of Issue	:	02 May, 2019
Page No.	;	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House. Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 17H105557
Date of Received	: Apr 30, 2019
Date of Calibration	: Apr 30, 2019
Date of Next Calibration(a)	: Jul 30, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
I	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.01	0.01	Satisfactory
7.42	7.42	0.00	Satisfactory
10.01	10.01	0.00	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
14.5	14.8	0.3	Satisfactory
25.0	25.1	0.1	Satisfactory
62.0	62.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. (c)

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM Ho-yee, Emma Assistant Laboratory Manager

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

Report No.	: AI050005
Date of Issue	: 02 May, 2019
Page No.	: 2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.02	0.28	0.26	Satisfactory
2.74	2.35	-0.39	Satisfactory
5.37	5.19	-0.18	Satisfactory
8.14	8.44	0.30	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	156.3	6.4	Satisfactory
0.01	1412	1388	-1.7	Satisfactory
0.1	12890	12767	-1.0	Satisfactory
0.5	58670	58538	-0.2	Satisfactory
1.0	111900	111855	0.0	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.5	Satisfactory
20	19.93	-0.4	Satisfactory
30	30.33	1.1	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.02		
10	10.01	0.1	Satisfactory
20	19.78	-1.1	Satisfactory
100	99.29	-0.7	Satisfactory
800	784.87	-1.9	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

 [&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 (8) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

ENVIROTECH SERVICES CO.

Date of Calibration :	19 February 2019
Brand of Test Meter:	Global Water
Model:	Speed Sensor: WE550 (S/N:E1337005099)
	Direction Senor: WE570 (S/N:153500564)
Location :	Pak Mong, Siu Ho Wan
Procedures :	
1. Wind Still Test:	The wind speed sensor was hold by hand until it keep still
2.Wind Speed Test:	The wind meter was on-site calibrated against the Anemometer
3. Wind Direction Test :	The wind meter was on-site calibrated against the marine compass at four directions
Results:	

Wind Still Test

Wind Speed (m/s) 0.00

Wind Speed Test

Global Wate (m/s)	Anemometer (m/s)
2.40	2.6
1.81	1.6
0.43	0.5

Wind Direction Test

Global Wate (o)	Marine Compass (o)
270.95	270
0.02	0
90.01	90
179.84	180

Calibrated by:

Að

Yeung Ping Fai (Technical Officer)

Checked by : Fat

Ho Kam Fat (Senior Technical Officer)

Calibration Report of Wind Meter

1

輝創工程有限公司

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C184960 證書編號

Manufacturer / 製 Model No. / 型號 Serial No. / 編號 Supplied By / 委言	:	 Job No. / 序引編號: IC18-1761 Anemometer Lutron AM-4201 AF.27513 Envirotech Services Co. Room 113, 1/F, My Loft, 9 Hoi With New Territories, Hong Kong 		t / 收件日期:23 August 201
TEST CONDIT Temperature / 溫 Line Voltage / 電	度: (2	試條件 23 ± 2)°C	Relative Humidity	/ 相對濕度 : (50±25)9
TEST SPECIFIC		/ 測試規範		
DATE OF TEST				
	to the par	决 ticular unit-under-test only. he subsequent page(s).		
		r calibration are traceable to National GmbH, Germany	Standards via :	
Tested By 測試	: _	T L Shek Assistant Engineer		

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Website/網址: www.suncreation.com

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C184960 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 10 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL386 Description Multi-function Measuring Instrument Certificate No. S16493

- 4. Test procedure : MA130N.
- 5. Results :

Air Velocity

Applied	UUT	Measured Correction					
Value	Reading	Value Measurement Uncertainty					
(m/s)	(m/s)	(m/s)	Expanded Uncertainty (m/s)	Coverage Factor			
2.0	1.7	+0.3	0.2	2.0			
4.0	3.8	+0.2	0.3	2.0			
6.0	5.8	+0.2	0.3	2.0			
8.0	7.9	+0.1	0.3	2.0			
10.0	10.0	0.0	0.4	2.0			

Remarks : - The Measured Corrections are defined as : Value = Applied Value - UUT Reading

- The expanded uncertainties are for a level of confidence of 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Appendix F

EM&A Monitoring Schedules

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 31 May 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-May	2-May	3-May	4-Ma
				Noise Impact		
				Monitoring		
5-May	6-May	7-May	8-May	9-May	10-May	11-M
			Noise Impact Monitoring			
12-May	13-May	14-May	15-May	16-May	17-May	18-M
12 May		Noise Impact Monitoring	10 May	To May	TT May	
19-May	20-May	21-May	22-May	23-May	24-May	25-M
N	oise Impact Monitoring			Noise Impact Monitoring		
26-May	27-May	28-May	29-May	30-May	31-May	
20 11/10	27 Way	20 11/4	Noise Impact Monitoring			

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. Additional weekly noise impact monitoring for construction works undertaken between 19:00-07:00 will be supplemented after confirmation of construction schedule.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Air Quality Monitoring Schedule (1 to 31 May 2019)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Apr	2-Apr	1-May	2-May	3-May	4-May
				1-hr TSP Monitoring		
				24-hr TSP Monitoring		
				-		
5-May	6-May	7-May	,	9-May	10-May	11-May
			1-hr TSP Monitoring			
			24-hr TSP Monitoring			
12-May	13-May	14-May	15-May	16-May	17-May	18-May
		1-hr TSP Monitoring				
		24-hr TSP Monitoring				
		C C				
19-May		21-May	22-May	· · · · · · · · · · · · · · · · · · ·	24-May	25-May
	1-hr TSP Monitoring			1-hr TSP Monitoring		
	24-hr TSP Monitoring			24-hr TSP Monitoring		
	07.14		00.14		24.14	
26-May	27-May	28-May	· · · · · · · · · · · · · · · · · · ·	30-May	31-May	
			1-hr TSP Monitoring			
			24-hr TSP Monitoring			
	to agreement from the EF					

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (May 2019)

Sunday	Monday	Tuesdav	Wednesday	Thursday	Friday	Saturday
			1/May	2/May	3/May	
			WQM will be canceled due to suspension of marine works during holiday		ebb tide 10:41 - 14:11 flood tide 16:45 - 20:15	
5/May	6/May	7/May	8/May	9/May	10/May	11/May
	ebb tide 12:10 - 15:40 flood tide 5:34 - 9:04		ebb tide 13:27 - 16:57 flood tide 6:34 - 10:04		ebb tide 15:04 - 18:34 flood tide 7:47 - 11:17	
12/May	13/May	14/May	15/May	16/May	17/May	18/May
	ebb tide 7:10 - 10:40 flood tide 12:05 - 15:35		ebb tide 8:58 - 12:28 flood tide 14:41 - 18:11		ebb tide 10:17 - 13:47 flood tide 16:40 - 20:10	
19/May	20/May	21/May	22/May	23/May	24/May	25/May
	ebb tide 12:13 - 15:43 flood tide 5:29 - 8:59		ebb tide 13:32 - 17:02 flood tide 6:33 - 10:03		ebb tide 14:55 - 18:25 flood tide 7:40 - 11:10	
26/May	27/May	28/May	29/May	30/May	31/May	
	ebb tide 6:54 - 10:12 flood tide 11:05 - 14:35		ebb tide 8:34 - 12:04 flood tide 13:49 - 17:19		ebb tide 9:39 - 13:09 flood tide 15:42 - 19:12	

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) condition

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 31 May 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-May		3-May	4-May
				Impact Dolphin		
				Monitoring		
5-May	6-May		8-May	9-May	10-May	11-May
		Impact Dolphin				
		Monitoring				
12-May	13-May	14-May	15-May	16-May	17-May	18-May
,						
19-May	20-May	21-May	22-May	23-May	24-May	25-May
- To May		Impact Dolphin		Impact Dolphin	211103	20 May
		Monitoring		Monitoring		
		00.14				
26-May	27-May	28-May	29-May	30-May	31-May	

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 - Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Marine Water Quality Monitoring (WQM) Schedule (June 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Fridav	Saturday
						1/Jun
2/Jun	3/Jun	4/Jun	5/Jun	6/Jun	7/Jun	8/Jun
					WQM will be canceled due to	
	ebb tide 11:15 - 14:45 flood tide 4:27 - 7:57		ebb tide 12:34 - 16:04 flood tide 5:36 - 9:06		suspension of marine works	
			1000 102 3.00 - 3.00		during holiday	
9/Jun	10/Jun	11/Jun	12/Jun	13/Jun	14/Jun	15/Jun
	ebb tide 5:10 - 8:40		ebb tide 7:38 - 11:08		ebb tide 9:16 - 12:46	
	flood tide 10:15 - 13:45		flood tide 13:23 - 16:53		flood tide 15:46 - 19:16	
16/Jun	17/Jun	18/Jun	19/Jun	20/Jun	21/Jun	22/Jun
	ebb tide 11:18 - 14:48		ebb tide 12:35 - 16:05		ebb tide 13:51 - 17:21	
	flood tide 4:24 - 7:54		flood tide 5:33 - 9:03		flood tide 6:45 - 10:15	
23/Jun	24/Jun	25/Jun	26/Jun	27/Jun	28/Jun	
23/3011				27/Juli		<u>29/Juli</u>
	ebb tide 15:49 - 19:00		ebb tide 7:00 - 10:11		ebb tide 8:23 - 11:53	
	flood tide 9:02 - 12:32		flood tide 11:40 - 15:10		flood tide 14:22 - 17:52	
30/Jun						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Noise Monitoring Schedule (1 to 30 June 2019)

Sunday	toring at Pak Mong Village I Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Ju
2-Jui	n 3-Jun		5-Jun	6-Jun	7-Jun	8-J
		Noise Impact Monitoring				
9-Jui		11-Jun	12-Jun			15-J
	Noise Impact Monitoring			Noise Impact Monitoring		
16-Ju	n 17-Jun			20-Jun	21-Jun	22-J
			Noise Impact Monitoring			
23-Ju	n 24-Jun		26-Jun	27-Jun	28-Jun	29-J
		Noise Impact Monitoring			Noise Impact	
					Monitoring	
30-Ju	1					

Alternative Noise Monitoring at Pak Mong Village Entrance

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions. Additional weekly noise impact monitoring for construction works undertaken between 19:00-07:00 will be supplemented after confirmation of construction schedule.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Air Quality Monitoring Schedule (1 to 30 June 2019)

Alternative Air Quality Monitoring at WA4 and MTRC Depot Entrance

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-J
2-Jun	3-Jun	4-Jun	5-Jun	6-Jun	7-Jun	8-J
		1-hr TSP Monitoring 24-hr TSP Monitoring				
9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-J
	1-hr TSP Monitoring 24-hr TSP Monitoring			1-hr TSP Monitoring 24-hr TSP Monitoring		
16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-J
			1-hr TSP Monitoring 24-hr TSP Monitoring			
23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29
		1-hr TSP Monitoring 24-hr TSP Monitoring			1-hr TSP Monitoring 24-hr TSP Monitoring	
30-Jun						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section Impact Dolphin Monitoring Survey Schedule (1 to 30 June 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jun
2-Jun		4-Jun	5-Jun		7-Jun	8-Jun
	Impact Dolphin Monitoring			Impact Dolphin Monitoring		
9-Jun	10-Jun	11-Jun	12-Jun	13-Jun	14-Jun	15-Jun
	Impact Dolphin		Impact Dolphin			
	Monitoring		Monitoring			
16-Jun	17-Jun	18-Jun	19-Jun	20-Jun	21-Jun	22-Jun
10-5011	17-3ull	10-5011	19-3011	20-3011	21-5011	22-5011
23-Jun	24-Jun	25-Jun	26-Jun	27-Jun	28-Jun	29-Jun
30-Jun						

The schedule is subject to agreement from the EPD on the monitoring times. The schedule will be revised after reviewing the progress of the construction works or due to adverse (safety, weather etc) conditions.

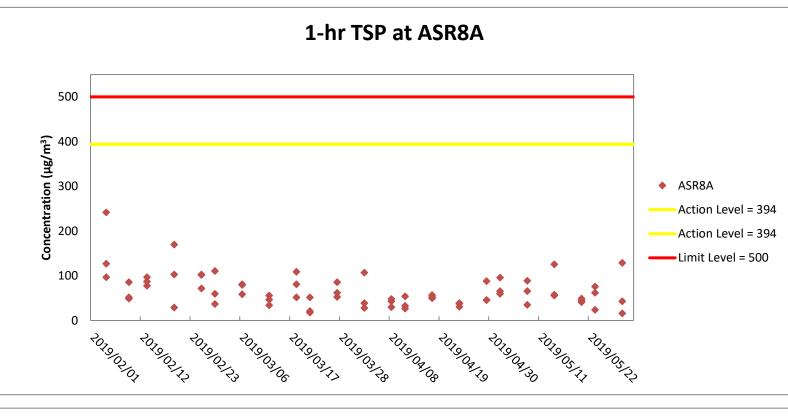
Appendix G

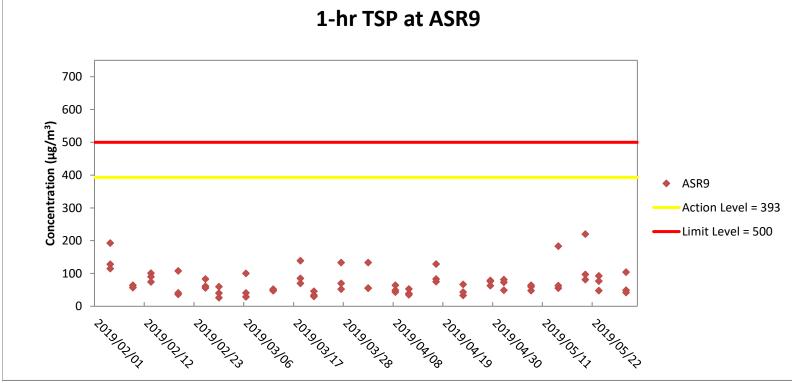
Impact Air Quality Monitoring Results and Graphical Presentation

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2019/05/02	ASR8A	9:10	1-hr TSP	96		
TMCLKL	HY/2012/07	2019/05/02	ASR8A	10:12	1-hr TSP	66		
TMCLKL	HY/2012/07	2019/05/02	ASR8A	11:17	1-hr TSP	60		
TMCLKL	HY/2012/07	2019/05/08	ASR8A	8:27	1-hr TSP	66		
TMCLKL	HY/2012/07	2019/05/08	ASR8A	9:29	1-hr TSP	35		
TMCLKL	HY/2012/07	2019/05/08	ASR8A	10:31	1-hr TSP	89		
TMCLKL	HY/2012/07	2019/05/14	ASR8A	8:38	1-hr TSP	56		
TMCLKL	HY/2012/07	2019/05/14	ASR8A	9:40	1-hr TSP	58		
TMCLKL	HY/2012/07	2019/05/14	ASR8A	10:44	1-hr TSP	126	204	500
TMCLKL	HY/2012/07	2019/05/20	ASR8A	8:40	1-hr TSP	45	394	500
TMCLKL	HY/2012/07	2019/05/20	ASR8A	9:42	1-hr TSP	41		
TMCLKL	HY/2012/07	2019/05/20	ASR8A	10:47	1-hr TSP	49		
TMCLKL	HY/2012/07	2019/05/23	ASR8A	8:56	1-hr TSP	62		
TMCLKL	HY/2012/07	2019/05/23	ASR8A	9:58	1-hr TSP	76		
TMCLKL	HY/2012/07	2019/05/23	ASR8A	11:02	1-hr TSP	24		
TMCLKL	HY/2012/07	2019/05/29	ASR8A	8:35	1-hr TSP	129		
TMCLKL	HY/2012/07	2019/05/29	ASR8A	9:37	1-hr TSP	16		
TMCLKL	HY/2012/07	2019/05/29	ASR8A	10:41	1-hr TSP	43		
					Average	63		
					Min.	16		
					Max.	129		

1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

1-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9


	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2019/05/02	ASR9	9:00	1-hr TSP	49		
TMCLKL	HY/2012/07	2019/05/02	ASR9	10:02	1-hr TSP	73		
TMCLKL	HY/2012/07	2019/05/02	ASR9	11;06	1-hr TSP	81		
TMCLKL	HY/2012/07	2019/05/08	ASR9	8:15	1-hr TSP	60		
TMCLKL	HY/2012/07	2019/05/08	ASR9	9:17	1-hr TSP	48		
TMCLKL	HY/2012/07	2019/05/08	ASR9	10:19	1-hr TSP	64		
TMCLKL	HY/2012/07	2019/05/14	ASR9	8:28	1-hr TSP	55		500
TMCLKL	HY/2012/07	2019/05/14	ASR9	9:30	1-hr TSP	63		
TMCLKL	HY/2012/07	2019/05/14	ASR9	10:33	1-hr TSP	183	202	
TMCLKL	HY/2012/07	2019/05/20	ASR9	8:30	1-hr TSP	81	393	
TMCLKL	HY/2012/07	2019/05/20	ASR9	9:32	1-hr TSP	220		
TMCLKL	HY/2012/07	2019/05/20	ASR9	10:39	1-hr TSP	97		
TMCLKL	HY/2012/07	2019/05/23	ASR9	8:45	1-hr TSP	93		
TMCLKL	HY/2012/07	2019/05/23	ASR9	9:47	1-hr TSP	77		
TMCLKL	HY/2012/07	2019/05/23	ASR9	10:50	1-hr TSP	48		
TMCLKL	HY/2012/07	2019/05/29	ASR9	8:25	1-hr TSP	104	-	
TMCLKL	HY/2012/07	2019/05/29	ASR9	9:27	1-hr TSP	49		
TMCLKL	HY/2012/07	2019/05/29	ASR9	10:30	1-hr TSP	42		
					Average	83		
					Min.	42		
					Max.	220		


24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR8A

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2019/05/02	ASR8A	12:19	24-hr TSP	47	178	260
TMCLKL	HY/2012/07	2019/05/08	ASR8A	11:33	24-hr TSP	22		
TMCLKL	HY/2012/07	2019/05/14	ASR8A	11:46	24-hr TSP	16		
TMCLKL	HY/2012/07	2019/05/20	ASR8A	11:49	24-hr TSP	50		
TMCLKL	HY/2012/07	2019/05/23	ASR8A	12:04	24-hr TSP	55		
TMCLKL	HY/2012/07	2019/05/29	ASR8A	11:43	24-hr TSP	47		
					Average	40		
					Min.	16		
					Max.	55		

24-hour TSP Monitoring Results at Air Quality Monitoring Station ASR9

Project	Works	Date(yyyy-mm-dd)	Station	Time (hh:mm, 24hour)	Parameter	Results (ug/m3)	Action Level (ug/m3)	Limit Level (ug/m3)
TMCLKL	HY/2012/07	2019/05/02	ASR9	12:08	24-hr TSP	53	178	260
TMCLKL	HY/2012/07	2019/05/08	ASR9	11:21	24-hr TSP	25		
TMCLKL	HY/2012/07	2019/05/14	ASR9	11:35	24-hr TSP	33		
TMCLKL	HY/2012/07	2019/05/20	ASR9	11:38	24-hr TSP	73		
TMCLKL	HY/2012/07	2019/05/23	ASR9	11:52	24-hr TSP	63		
TMCLKL	HY/2012/07	2019/05/29	ASR9	11:32	24-hr TSP	51		
					Average	50		
					Min.	25		
					Max.	73		

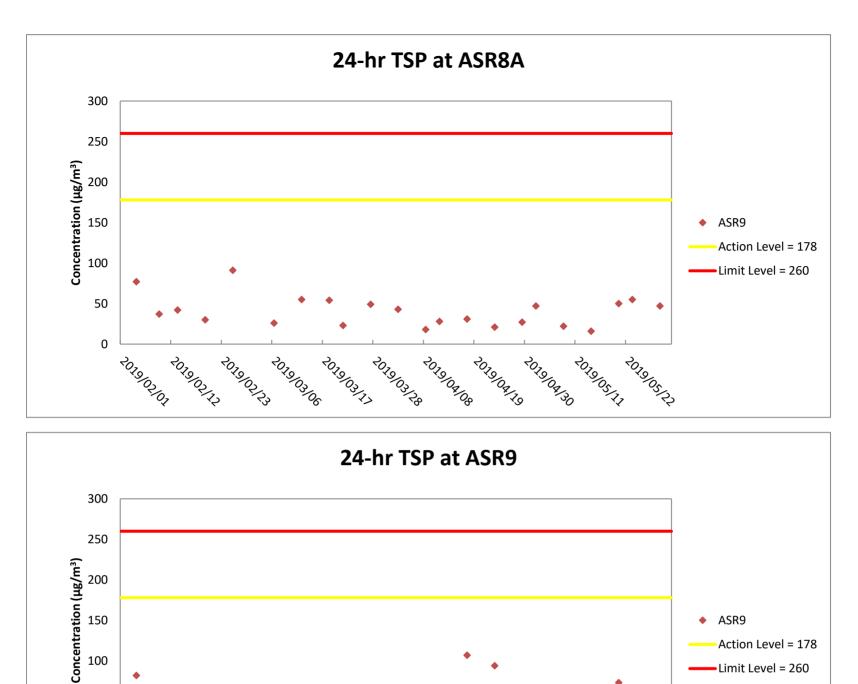
Weather condition within the reporting period varied between sunny to cloudy.

Major construction works undertaken within the reporting period include slope work at Viaduct D and landscaping works at HKBCF. Marine works within the reporting period include reinstatement of seawall at seafront

100

50

0


2019/02/02

- 1019/01/12

2019/01/13

2019/03/06

2019/03/13

Action Level = 178

Limit Level = 260

- 2019/05/12

2019/05/17

Weather condition within the reporting period varied between sunny to cloudy. Major construction works undertaken within the reporting period include slope work at Viaduct D and landscaping works at HKBCF. Marine works within the reporting period include reinstatement of seawall at seafront

2029/03/28

- 2019/08/19

2019/04/30

2019/04/08

Appendix H

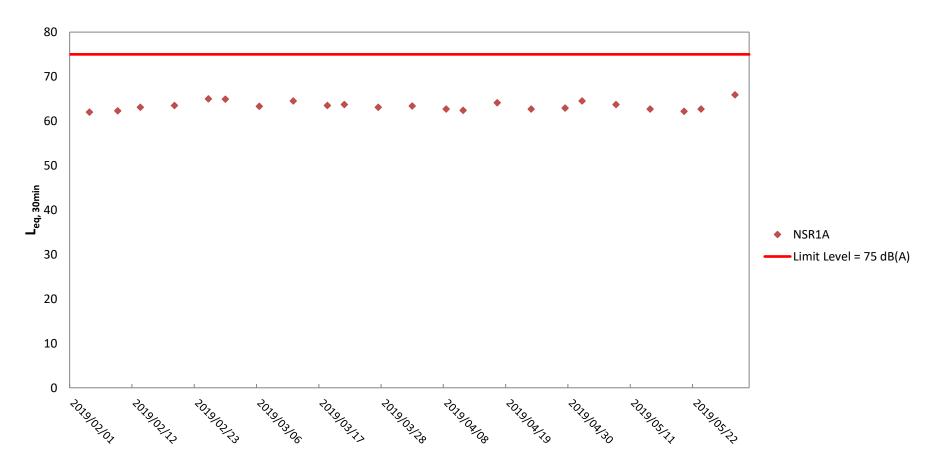
Meteorological Data for the Reporting Month

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-02	0	0.03	80
2019-05-02	1	0.02	87
2019-05-02	2	0.02	112
2019-05-02	3	0.02	134
2019-05-02	4	0.02	142
2019-05-02	5	0.02	152
2019-05-02	6	0.02	130
2019-05-02	7	0.03	103
2019-05-02	8	0.02	142
2019-05-02	9	0.03	151
2019-05-02	10	0.46	173
2019-05-02	11	0.26	213
2019-05-02	12	0.09	178
2019-05-02	13	0.49	197
2019-05-02	14	0.02	157
2019-05-02	15	0.03	169
2019-05-02	16	0.02	236
2019-05-02	10	0.02	167
2019-05-02	18	0.02	109
2019-05-02	19	0.02	158
2019-05-02	20	0.02	153
2019-05-02	20	0.02	142
2019-05-02	22	0.02	189
2019-05-02	23	0.02	211
2019-04-03	0	0.06	217
2019-05-03	1	0.02	170
2019-05-03	2	0.02	137
2019-05-03	3	0.03	217
2019-05-03	4	0.03	203
2019-05-03	5	0.02	163
2019-05-03	6	0.02	144
2019-05-03	7	0.53	193
2019-05-03	8	0.03	266
2019-05-03	9	0.34	176
2019-05-03	10	0.03	252
2019-05-03	10	0.04	176
2019-05-03	12	0.05	181
2019-05-03	13	0.51	198
2019-05-03	14	0.85	206
2019-05-03	15	1.17	210
2019-05-03	16	1.70	210
2019-05-03	10	0.72	226
2019-05-03	18	0.51	226
2019-05-03	19	2.22	214
2019-05-03	20	2.16	210
2019-05-03	20	0.36	203
2019-05-03	22	0.56	203
2019-05-03	22	0.33	191
2019-05-08	0	0.33	204
2019-05-08	1	1.43	204
2019-05-08	2	0.76	200

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-08	3	0.19	221
2019-05-08	4	0.10	217
2019-05-08	5	0.07	210
2019-05-08	6	0.28	226
2019-05-08	7	1.32	234
2019-05-08	8	2.24	225
2019-05-08	9	1.38	214
2019-05-08	10	0.79	194
2019-05-08	11	0.44	199
2019-05-08	12	0.07	156
2019-05-08	13	0.02	137
2019-05-08	14	0.11	255
2019-05-08	15	0.63	218
2019-05-08	16	0.92	222
2019-05-08	17	0.80	230
2019-05-08	18	0.24	219
2019-05-08	19	0.03	197
2019-05-08	20	0.02	128
2019-05-08	20	0.31	152
2019-05-08	22	0.48	230
2019-05-08	23	0.03	193
2019-05-08	0	0.03	196
2019-05-09	1	0.03	196
2019-05-09	2	0.03	190
2019-05-09	3	0.03	150
2019-05-09	4	0.10	107
2019-05-09	5	0.03	95
2019-05-09	6	0.03	181
2019-05-09	7	0.03	222
2019-05-09	8	0.03	211
2019-05-09	9	0.03	235
2019-05-09	10	0.03	344
2019-05-09	10	0.03	162
2019-05-09	11	0.02	236
2019-05-09		0.02	357
2019-05-09	13 14	0.02	350
2019-05-09	14	0.28	229
		0.02	
2019-05-09 2019-05-09	16 17	0.02	142 236
2019-05-09	18	0.02	200
2019-05-09 2019-05-09	19 20	0.02	226 228
2019-05-09	21	0.06	194
2019-05-09	22	0.62	234
2019-05-09	23	0.62	210
2019-05-14	0	0.08	196
2019-05-14	1	0.02	315
2019-05-14	2	0.02	310
2019-05-14	3	0.02	313
2019-05-14	4	0.30	215
2019-05-14	5	0.30	220

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-14	6	0.07	172
2019-05-14	7	0.18	249
2019-05-14	8	0.02	62
2019-05-14	9	0.02	62
2019-05-14	10	0.10	237
2019-05-14	11	0.14	244
2019-05-14	12	0.01	292
2019-05-14	13	0.65	225
2019-05-14	14	0.11	130
2019-05-14	15	1.80	208
2019-05-14	16	2.87	204
2019-05-14	17	2.93	215
2019-05-14	18	2.12	193
2019-05-14	19	2.30	201
2019-05-14	20	2.63	201
2019-05-14	21	1.34	197
2019-05-14	22	1.18	202
2019-05-14	23	0.92	190
2019-05-15	0	1.22	205
2019-05-15	1	1.34	210
2019-05-15	2	1.22	202
2019-05-15	3	0.96	214
2019-05-15	4	0.73	211
2019-05-15	5	1.28	208
2019-05-15	6	1.45	208
2019-05-15	7	2.45	207
2019-05-15	8	2.45	215
2019-05-15	9	2.67	209
2019-05-15	10	2.67	205
2019-05-15	11	3.47	199
2019-05-15	11	3.80	206
2019-05-15	13	2.93	200
2019-05-15	13	2.33	204
2019-05-15	14	2.08	207
2019-05-15	16	0.54	203
2019-05-15	10	2.15	240
2019-05-15	17	1.66	199
2019-05-15	18 19	2.19	200
2019-05-15	20	2.19	200
2019-05-15	20	1.32	208
2019-05-15	22	0.97	209
2019-05-15	23	0.94	230
2019-05-20	0	1.25	200
2019-05-20	1	0.73	212
2019-05-20	2	1.11	211
2019-05-20	3	1.77	206
2019-05-20	4	0.76	211
2019-05-20	5	0.02	238
2019-05-20	6	0.02	226
2019-05-20	7	0.02	312
2019-05-20	8	0.02	252

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-20	9	0.10	252
2019-05-20	10	0.07	252
2019-05-20	11	0.06	165
2019-05-20	12	0.00	198
2019-05-20	13	0.52	135
2019-05-20	14	0.04	143
2019-05-20	15	0.05	199
2019-05-20	16	0.08	216
2019-05-20	17	0.02	271
2019-05-20	18	0.59	216
2019-05-20	19	0.33	164
2019-05-20	20	0.25	203
2019-05-20	21	0.17	158
2019-05-20	22	0.23	139
2019-05-20	23	0.03	179
2019-05-21	0	0.02	223
2019-05-21	1	0.35	148
2019-05-21	2	0.87	205
2019-05-21	3	1.72	218
2019-05-21	4	2.81	220
2019-05-21	5	2.96	223
2019-05-21	6	0.93	215
2019-05-21	7	0.59	239
2019-05-21	8	1.27	219
2019-05-21	9	2.04	203
2019-05-21	10	0.78	212
2019-05-21	11	2.16	218
2019-05-21	12	1.41	216
2019-05-21	13	1.34	218
2019-05-21	14	1.81	205
2019-05-21	15	1.97	207
2019-05-21	16	1.44	207
2019-05-21	17	1.64	210
2019-05-21	18	2.20	216
2019-05-21	19	0.49	210
2019-05-21	20	0.84	214
2019-05-21	21	1.71	204
2019-05-21	22	1.35	223
2019-05-21	23	0.36	232
2019-05-23	0	1.62	220
2019-05-23	1	1.73	216
2019-05-23	2	2.13	204
2019-05-23	3	2.35	209
2019-05-23	4	1.93	210
2019-05-23	5	2.41	223
2019-05-23	6	2.03	222
2019-05-23	7	2.14	221
2019-05-23	8	2.26	204
2019-05-23	9	1.78	204
2019-05-23	10	1.78	205
2019-05-23	10	1.94	210


Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-23	12	2.67	207
2019-05-23	13	2.18	199
2019-05-23	14	2.46	207
2019-05-23	15	1.89	201
2019-05-23	16	1.83	211
2019-05-23	17	0.46	177
2019-05-23	18	0.67	146
2019-05-23	19	1.69	209
2019-05-23	20	3.37	210
2019-05-23	21	1.29	206
2019-05-23	22	0.14	145
2019-05-23	23	0.30	127
2019-05-24	0	0.27	112
2019-05-24	1	0.27	118
2019-05-24	2	0.37	102
2019-05-24	3	0.30	104
2019-05-24	4	0.83	113
2019-05-24	5	0.43	104
2019-05-24	6	1.49	108
2019-05-24	7	0.36	131
2019-05-24	8	1.87	213
2019-05-24	9	2.72	219
2019-05-24	10	1.90	216
2019-05-24	11	1.47	235
2019-05-24	12	0.70	184
2019-05-24	13	0.74	175
2019-05-24	14	0.85	197
2019-05-24	15	2.50	202
2019-05-24	16	2.54	207
2019-05-24	17	1.01	208
2019-05-24	18	1.45	207
2019-05-24	19	2.11	213
2019-05-24	20	0.58	198
2019-05-24	21	1.35	194
2019-05-24	22	0.19	163
2019-05-24	23	0.17	149
2019-05-29	0	1.80	216
2019-05-29	1	0.92	215
2019-05-29	2	0.88	233
2019-05-29	3	0.91	215
2019-05-29	4	1.21	224
2019-05-29	5	1.68	213
2019-05-29	6	0.55	213
2019-05-29	7	2.86	202
2019-05-29	8	1.85	193
2019-05-29	9	1.02	213
2019-05-29	10	0.69	201
2019-05-29	10	1.94	201
2019-05-29	11	0.73	199
2019-05-29	12	1.26	215
2019-05-29	13	0.64	215

Date	Time (HH)	Wind speed (m/s)	Wind direction (deg)
2019-05-29	15	1.58	217
2019-05-29	16	0.19	176
2019-05-29	17	0.51	109
2019-05-29	18	0.63	155
2019-05-29	19	0.74	152
2019-05-29	20	0.30	208
2019-05-29	21	0.65	194
2019-05-29	22	0.42	133
2019-05-29	23	0.25	144
2019-05-29	0	0.27	132
2019-05-30	1	0.20	142
2019-05-30	2	0.32	216
2019-05-30	3	0.49	178
2019-05-30	4	1.34	207
2019-05-30	5	3.04	199
2019-05-30	6	2.10	203
2019-05-30	7	2.11	212
2019-05-30	8	1.53	195
2019-05-30	9	2.42	207
2019-05-30	10	2.44	200
2019-05-30	11	1.83	205
2019-05-30	12	1.59	214
2019-05-30	13	1.83	209
2019-05-30	14	1.69	200
2019-05-30	15	0.34	136
2019-05-30	16	0.31	174
2019-05-30	17	0.94	219
2019-05-30	18	1.46	213
2019-05-30	19	1.00	208
2019-05-30	20	1.45	201
2019-05-30	21	1.43	220
2019-05-30	22	0.90	210
2019-05-30	23	0.05	246

Appendix I

Impact Noise Monitoring Results and Graphical Presentation

Designet)A/a misa		Otation	Maathan Oanditian		Noise L	evel for 30-	min, dB(A)	Limit Level	Wind Speed		Calibrator
Project	Works	Date (yyyy-mm-dd)	Station	Weather Condition	Time (hh:mm, 24hour)	Leq	L10	L90	dB(A)	(m/s)	Noise Meter Model/ID	Model/ID
TMCLKL	HY/2012/07	2019/05/02	NSR1A	Cloudy	10:22	64.5	64.6	60.3	75	0.5	RION NL52	RION NC73
TWICERE	111/2012/07	2019/03/02	NONIA	Cloudy	10.22	04.5	04.0	00.3	75	0.5	(00131628)	(S/N 10486660)
TMCLKL	HY/2012/07	2019/05/08	NSR1A	Cloudy	9:36	63.7	65.1	61.9	75	0.5	RION NL52	RION NC73
TIVICERE	HT/2012/07	2019/05/06	NORIA	Cloudy	9.30	03.7	05.1	01.9	75	0.5	(00131628)	(S/N 10486660)
TMCLKL	HY/2012/07	2019/05/14	NSR1A	Sunny	9:48	62.7	64.5	59.8	75	0.5	RION NL52	RION NC73
TWICERE	HT/2012/07	2019/03/14	NORIA	Sunny	9.40	02.7	04.5	59.6	75	0.5	(00131628)	(S/N 10486660)
TMCLKL	HY/2012/07	2019/05/20	NSR1A	Sunny	9:51	62.2	64.4	59.8	75	0.2	RION NL52	RION NC73
TWICERE	111/2012/07	2019/03/20	NONTA	Sumry	9.51	02.2	04.4	59.0	75	0.2	(00131628)	(S/N 10486660)
TMCLKL	HY/2012/07	2019/05/23	NSR1A	Cloudy	10:08	62.7	63.9	59.8	75	0.3	RION NL52	RION NC73
TWICERE	111/2012/07	2019/03/23	NORIA	Cloudy	10.08	02.7	03.9	59.6	75	0.3	(00131628)	(S/N 10486660)
TMCLKL	HY/2012/07	2019/05/29	NSR1A	Sunny	9:50	65.9	67.8	60.8	75	1.5	RION NL52	RION NC73
TWICERE	111/2012/07	2019/03/29	NORIA	Sunny	9.30	05.9	07.0	00.0	75	1.5	(00131628)	(S/N 10486660)
		· ·			Min.	62.2		· · · · · · · · · · · · · · · · · · ·				
					Max.	65.9						
					Average	64						

Noise Monitoring Results at NSR 1A ($L_{eq, 30min}$)

Weather condition within the reporting period varied between sunny to cloudy.

Major construction works undertaken within the reporting period include slope work of viaduct D, landscaping works at HKBCF. Marine works within the reporting period include reinstatement of seawall at seafront.

Appendix J

Impact Water Quality Monitoring Results and Graphical Presentation

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Surface	1	1	24.7	8.1	23.7	6.7		2.5		3.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Surface	1	2	24.2	8.0	24.4	6.8	6.7	2.5		3.4	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Middle	2	1	24.9	8.1	24.1	6.5	0.7	3.5	3.1	5.0	5.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Middle	2	2	24.4	8.0	24.8	6.6		3.4	5.1	5.9	5.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Bottom	3	1	24.9	8.1	25.2	6.6	6.6	3.5		6.8	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)5	11:39	Bottom	3	2	24.5	8.0	25.9	6.6	0.0	3.3		5.8	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Surface	1	1	24.8	7.9	23.7	6.2		9.8		2.9	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Surface	1	2	24.8	7.9	23.7	6.3	6.1	9.8		3.9	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Middle	2	1	24.7	7.9	25.3	6.0	0.1	11.0	10.8	4.1	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Middle	2	2	24.7	7.9	25.3	6.0		11.0	10.8	4.5	5.5
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Bottom	3	1	24.8	7.9	26.3	6.0	6.0	11.5	1	6.8	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	CS(Mf)3(N)	12:57	Bottom	3	2	24.8	7.9	26.3	6.0	6.0	11.5	1	5.8	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Surface	1	1	24.8	8.1	22.9	6.5		6.0		7.7	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Surface	1	2	24.3	8.0	23.5	6.5		6.1		8.1	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Middle	2	1					6.5		6.2		7.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Middle	2	2							6.3		7.8
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Bottom	3	1	24.8	8.1	23.0	6.6	6.6	6.4	1	8.3	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)16	12:13	Bottom	3	2	24.4	8.0	23.6	6.6	6.6	6.5	1	9.2	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Surface	1	1	24.6	8.1	21.5	7.0		3.8		5.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Surface	1	2	24.2	8.1	22.0	7.0	7.0	3.6	1	4.5	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Middle	2	1					7.0		4.0		5.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Middle	2	2							4.0		5.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Bottom	3	1	24.9	8.1	21.6	6.9	6.0	4.3		5.6	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4a	12:20	Bottom	3	2	24.5	8.0	22.1	6.9	6.9	4.2		4.7	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Surface	1	1	24.8	8.0	21.1	6.6		3.6		5.2	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Surface	1	2	24.4	8.0	21.7	6.7	67	3.6	1	5.2	1
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Middle	2	1					6.7		2.5		7.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Middle	2	2							3.5		7.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Bottom	3	1	24.8	8.0	21.0	6.6	67	3.4		6.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	SR4(N)	12:24	Bottom	3	2	24.4	8.0	21.6	6.7	6.7	3.5		6.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Surface	1	1	25.1	8.1	24.1	6.8		4.0		11.9	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Surface	1	2	24.6	8.0	24.7	6.8	6.9	4.2	1	11.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Middle	2	1					6.8		Г.C.		
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Middle	2	2							5.6		8.3
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Bottom	3	1	24.8	8.1	21.6	6.6	6.6	7.1	1	7.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS8	12:30	Bottom	3	2	24.4	8.0	22.2	6.6	6.6	6.9		6.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Surface	1	1									
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Surface	1	2]]
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Middle	2	1	24.8	8.1	21.7	7.0	7.0	3.4	2 5	6.0	ے [
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Middle	2	2	24.4	8.1	22.3	7.0		3.5	3.5	5.3	5.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Bottom	3	1					NI/A]]
TMCLKL	HY/2012/07	2019/05/03	Mid-Ebb	IS(Mf)9	12:38	Bottom	3	2					N/A				

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Surface	1	1	24.6	8.1	24.8	6.5		2.7		3.7	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Surface	1	2	24.1	8.0	25.5	6.5	6.5	2.7		3.6	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Middle	2	1	24.6	8.1	24.8	6.5	0.5	2.9	3.1	4.2	3.9
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Middle	2	2	24.1	8.0	25.5	6.5		2.8	5.1	3.2	5.5
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Bottom	3	1	24.6	8.0	26.2	6.3	6.2	3.8		4.1	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)5	18:16	Bottom	3	2	24.1	8.0	26.9	6.3	6.3	3.7		3.7	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Surface	1	1	24.9	7.8	22.4	6.2		9.6		4.7	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Surface	1	2	24.9	7.8	22.4	6.2	6.2	9.6	1	4.1	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Middle	2	1	24.9	7.8	23.2	6.1	6.2	10.7	11.0	4.9	1.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Middle	2	2	24.9	7.8	23.2	6.1		10.6	11.0	3.9	4.9
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Bottom	3	1	24.8	7.8	23.5	6.1	6.4	12.7		4.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	CS(Mf)3(N)	17:03	Bottom	3	2	24.8	7.8	23.5	6.1	6.1	12.6		4.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Surface	1	1	24.6	8.1	23.6	6.6		3.1		8.2	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Surface	1	2	24.0	8.0	24.4	6.7	67	3.1		9.2	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Middle	2	1					6.7		2.1		0.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Middle	2	2							3.1		8.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Bottom	3	1	24.5	8.1	23.3	6.6	67	3.1	1	9.8	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)16	17:47	Bottom	3	2	24.0	8.0	23.9	6.7	6.7	3.2		9.6	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Surface	1	1	24.7	8.1	22.5	6.7		6.1		4.8	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Surface	1	2	24.2	8.0	23.1	6.7	6.7	6.1]	5.4	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Middle	2	1					0.7		6.6		6.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Middle	2	2							0.0		0.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Bottom	3	1	24.7	8.1	23.3	6.9	6.9	7.1		6.8	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4a	17:36	Bottom	3	2	24.3	8.1	23.9	6.8	0.9	7.2		6.3	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Surface	1	1	24.6	8.1	22.5	6.8		3.5		5.3	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Surface	1	2	24.2	8.0	23.1	6.8	6.8	3.4		5.4	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Middle	2	1					0.8		3.7		5.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Middle	2	2							5.7		5.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Bottom	3	1	24.6	8.1	22.4	6.8	6.8	3.7		4.9	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	SR4(N)	17:33	Bottom	3	2	24.2	8.0	23.2	6.8	0.8	4.0		5.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Surface	1	1	24.6	8.1	23.5	6.7		3.6		6.2	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Surface	1	2	24.2	8.0	24.1	6.8	6.8	3.9		7.0	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Middle	2	1					0.8		3.9		5.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Middle	2	2							5.5		5.4
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Bottom	3	1	24.5	8.1	23.4	6.7	6.8	4.0		4.7	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS8	17:27	Bottom	3	2	24.1	8.0	24.1	6.8	0.0	4.0		4.5	
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Surface	1	1									
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Surface	1	2					6.9		ļ		
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Middle	2	1	24.7	8.1	23.3	6.8	0.5	4.1	4.1	5.2	6.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Middle	2	2	24.3	8.0	23.9	6.9		4.1		5.6	0.0
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Bottom	3	1					N/A		ļ		
TMCLKL	HY/2012/07	2019/05/03	Mid-Flood	IS(Mf)9	17:19	Bottom	3	2									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Surface	1	1	24.0	8.1	24.4	6.6		8.8		7.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Surface	1	2	24.0	8.1	24.4	6.6	6.6	8.9		8.1	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Middle	2	1	24.1	8.1	24.6	6.6	0.0	5.2	6.6	7.5	7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Middle	2	2	24.0	8.1	24.6	6.6		5.1	0.0	8.4	7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Bottom	3	1	24.0	8.1	25.2	6.6	6.6	6.0		7.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)5	13:34	Bottom	3	2	24.0	8.1	25.2	6.6	0.0	5.5		8.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Surface	1	1	23.8	8.0	23.8	6.7		2.7		5.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Surface	1	2	23.8	8.0	23.8	6.7	67	2.7		6.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Middle	2	1	23.7	8.0	23.7	6.7	6.7	2.7	2.0	5.8	6.2
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Middle	2	2	23.7	8.0	23.7	6.7		2.7	3.0	6.8	6.3
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Bottom	3	1	23.8	7.9	23.7	6.7	67	3.5	1	5.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	CS(Mf)3(N)	12:26	Bottom	3	2	23.8	7.9	23.7	6.7	6.7	3.5	1	6.5	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Surface	1	1	23.8	8.0	24.4	7.0		9.0		6.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Surface	1	2	23.8	8.0	24.4	7.0	7.0	9.0		6.9	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Middle	2	1					7.0				7 4
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Middle	2	2							9.0		7.4
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Bottom	3	1	23.7	8.0	25.1	6.8	6.0	9.2		8.9	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)16	13:08	Bottom	3	2	23.8	8.0	25.1	6.7	6.8	8.9		8.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Surface	1	1	23.8	8.1	24.0	6.8		5.5		5.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Surface	1	2	23.9	8.1	23.9	6.8	6.9	5.6	1	4.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Middle	2	1					6.8		7.2		C O
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Middle	2	2							7.3		6.8
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Bottom	3	1	23.8	8.1	24.0	6.9	6.0	8.9]	8.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4a	12:56	Bottom	3	2	23.8	8.1	24.0	6.9	6.9	9.2]	9.3	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Surface	1	1	23.9	8.0	23.9	6.7		4.7		4.7	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Surface	1	2	23.9	8.0	23.9	6.7	6.7	4.6]	3.7	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Middle	2	1					0.7		4.9		6.0
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Middle	2	2							4.9		0.0
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Bottom	3	1	23.9	8.0	24.0	6.7	6.7	5.2		7.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	SR4(N)	12:53	Bottom	3	2	23.9	8.0	24.0	6.7	0.7	5.2		7.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Surface	1	1	23.9	8.0	24.1	6.7		6.7		6.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Surface	1	2	23.9	8.0	24.1	6.7	6.7	6.4		7.3	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Middle	2	1					0.7		8.1		11.8
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Middle	2	2							0.1		11.0
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Bottom	3	1	23.9	8.0	24.4	6.7	6.7	9.5		17.7	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS8	12:46	Bottom	3	2	23.9	8.0	24.4	6.7	0.7	9.9		16.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Surface	1	1	23.9	8.0	24.4	6.8		8.2		5.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Surface	1	2	23.9	8.0	24.4	6.8	6.8	8.3		6.3	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Middle	2	1					0.0		7.4		6.1
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Middle	2	2							/.4		0.1
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Bottom	3	1	23.9	8.1	24.5	6.8	6.8	6.5		6.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Ebb	IS(Mf)9	12:37	Bottom	3	2	23.9	8.1	24.5	6.8	0.0	6.5		7.4	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Surface	1	1	23.8	8.0	24.0	6.6		4.9		4.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Surface	1	2	23.8	8.0	24.0	6.6	6.6	4.7		3.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Middle	2	1	23.8	8.0	24.7	6.6	0.0	4.8	5.2	5.5	7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Middle	2	2	23.8	8.0	24.7	6.6		4.8	5.2	4.8	7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Bottom	3	1	23.8	8.0	25.5	6.6	6.6	6.0]	7.5	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)5	6:38	Bottom	3	2	23.8	8.0	25.5	6.6	6.6	5.9		6.5	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Surface	1	1	23.6	7.9	23.0	6.7		5.7		17.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Surface	1	2	23.6	7.9	22.9	6.7	67	5.3		16.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Middle	2	1	23.7	7.9	23.0	6.7	6.7	6.0		15.7	15.2
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Middle	2	2	23.6	7.9	22.9	6.7		7.0	6.0	16.7	15.2
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Bottom	3	1	23.7	7.9	23.0	6.7	6.7	6.1	1	17.7	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	CS(Mf)3(N)	7:26	Bottom	3	2	23.6	7.9	23.0	6.7	6.7	5.8	1	18.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Surface	1	1	23.9	8.0	23.9	6.7		4.9		6.1	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Surface	1	2	23.9	8.0	23.9	6.7	67	4.8	1	5.1	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Middle	2	1					6.7		-		
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Middle	2	2							5.0		5.1
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Bottom	3	1	23.9	8.0	24.1	6.7	6.7	5.1	-	5.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)16	7:07	Bottom	3	2	23.9	8.0	24.1	6.7	6.7	5.1	-	4.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Surface	1	1	23.8	8.0	24.1	6.8		7.6		4.5	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Surface	1	2	23.8	8.0	24.1	6.8	6.0	7.3	7	5.5	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Middle	2	1					6.8				F 2
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Middle	2	2							7.7		5.3
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Bottom	3	1	23.8	8.0	24.2	6.8	6.9	8.0]	4.9	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4a	7:17	Bottom	3	2	23.8	8.0	24.2	6.8	6.8	8.0]	5.3	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Surface	1	1	23.8	8.0	24.2	6.7		6.4		5.3	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Surface	1	2	23.8	8.0	24.2	6.7	6.7	6.5]	5.8	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Middle	2	1					0.7		7.1		7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Middle	2	2							/.1		7.5
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Bottom	3	1	23.8	8.0	24.3	6.8	6.9	7.8]	9.9	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	SR4(N)	7:22	Bottom	3	2	23.8	8.0	24.3	6.8	6.8	7.7		9.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Surface	1	1	23.8	8.0	23.6	7.0		5.3		5.4	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Surface	1	2	23.8	8.0	23.6	6.9	7.0	5.4]	6.0	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Middle	2	1					7.0		7.7		6.2
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Middle	2	2] /./		6.2
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Bottom	3	1	23.8	8.0	23.7	6.7	6.9	10.0]	6.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS8	7:28	Bottom	3	2	23.8	8.0	23.7	6.8	6.8	10.2		7.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Surface	1	1	23.8	8.0	24.1	6.8		7.6		5.2	
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Surface	1	2	23.8	8.0	24.1	6.8	6.0	7.9]	5.6]
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Middle	2	1					6.8		76		67
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Middle	2	2							7.6		6.7
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Bottom	3	1	23.8	8.0	24.3	6.7	67	7.4]	6.2]
TMCLKL	HY/2012/07	2019/05/06	Mid-Flood	IS(Mf)9	7:37	Bottom	3	2	23.8	8.0	24.3	6.7	6.7	7.4		7.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Surface	1	1	23.5	7.9	24.2	6.7		4.2		8.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Surface	1	2	23.5	7.9	24.2	6.7	6.7	4.2		8.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Middle	2	1	23.3	7.9	24.3	6.7	0.7	6.4	5.3	10.2	8.9
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Middle	2	2	23.3	7.9	24.3	6.7		6.3	5.5	9.2	0.5
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Bottom	3	1	23.2	7.9	24.5	6.7	6.7	5.2		10.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)5	14:47	Bottom	3	2	23.2	7.9	24.5	6.7	0.7	5.3		10.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Surface	1	1	23.5	8.0	21.4	7.0		7.9		4.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Surface	1	2	23.5	8.0	21.4	7.0	7.0	7.9		5.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Middle	2	1	23.5	8.0	21.4	7.0	7.0	5.7	9 C	4.8	7.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Middle	2	2	23.5	8.0	21.4	7.0	1	5.7	8.6	5.8	7.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Bottom	3	1	23.5	8.0	21.3	7.0	7.0	12.7		6.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	CS(Mf)3(N)	13:46	Bottom	3	2	23.5	8.0	21.3	7.0	7.0	11.9		6.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Surface	1	1	22.9	7.9	24.7	6.8		6.4		12.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Surface	1	2	22.9	7.9	24.7	6.8	6.9	6.5		13.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Middle	2	1					6.8		6.0		
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Middle	2	2							6.0		0.8
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Bottom	3	1	22.9	7.9	24.7	6.9	6.0	5.6		7.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)16	14:24	Bottom	3	2	22.9	7.9	24.7	6.9	6.9	5.5		6.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Surface	1	1	23.1	7.9	23.8	6.8		7.6		8.0	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Surface	1	2	23.1	7.9	23.8	6.8	6.0	7.5		8.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Middle	2	1					6.8		7.4		0.4
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Middle	2	2							7.4		0.4
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Bottom	3	1	23.1	7.9	23.9	7.0	7.0	7.4		16.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4a	14:13	Bottom	3	2	23.1	7.9	23.9	7.0	7.0	7.1		17.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Surface	1	1	22.9	7.9	23.1	6.9		5.2		9.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Surface	1	2	22.9	7.9	23.1	6.9	6.9	5.1		8.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Middle	2	1					0.9		5.5		8.7
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Middle	2	2							5.5		0.7
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Bottom	3	1	23.0	7.9	23.6	6.9	6.9	5.7		8.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	SR4(N)	14:10	Bottom	3	2	23.0	7.9	23.6	6.9	0.5	5.8		7.7	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Surface	1	1	23.0	8.0	24.5	6.8		7.8		10.4	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Surface	1	2	23.0	8.0	24.4	6.8	6.8	8.0		11.4	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Middle	2	1					0.8		7.6		13.5
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Middle	2	2							7.0		13.5
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Bottom	3	1	23.0	8.0	24.4	6.9	6.9	7.4		18.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS8	14:05	Bottom	3	2	23.0	8.0	24.4	6.9	0.9	7.3		17.3	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Surface	1	1	22.9	8.0	24.6	6.9		8.4		6.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Surface	1	2	23.0	8.0	24.6	6.9	6.9	8.4		7.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Middle	2	1					0.9		7.3		7.4
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Middle	2	2							7.5		7.4
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Bottom	3	1	22.7	8.0	24.6	6.9	6.9	6.2		7.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Ebb	IS(Mf)9	13:56	Bottom	3	2	22.7	8.0	24.7	6.9	0.9	6.3		8.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Surface	1	1	23.2	7.9	24.2	6.9		3.3		7.0	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Surface	1	2	23.2	7.9	24.1	6.8	6.8	3.4		6.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Middle	2	1	23.0	7.9	24.7	6.8	0.8	4.7	3.9	7.3	1.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Middle	2	2	23.0	7.9	24.7	6.8		4.4	5.5	6.3	1.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Bottom	3	1	23.1	7.9	24.6	6.9	6.0	3.9		4.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)5	7:31	Bottom	3	2	23.1	7.9	24.6	6.9	6.9	3.9		4.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Surface	1	1	23.4	8.0	21.5	6.9		6.2		9.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Surface	1	2	23.4	8.0	21.5	6.9	6.0	6.2		8.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Middle	2	1	23.5	8.0	21.4	6.9	6.9	8.8	7.0	11.2	0.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Middle	2	2	23.5	8.0	21.4	6.9	1	8.8	7.2	11.2	9.8
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Bottom	3	1	23.4	8.0	21.5	6.8	6.0	6.6	1	9.2	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	CS(Mf)3(N)	8:34	Bottom	3	2	23.4	8.0	21.5	6.8	6.8	6.6	1	9.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Surface	1	1	23.4	7.9	24.2	6.8		4.2		8.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Surface	1	2	23.4	7.9	24.2	6.8	6.0	4.2	1	7.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Middle	2	1					6.8		- 		
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Middle	2	2					1		5.6		5.8
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Bottom	3	1	23.5	7.9	24.2	6.8	6.0	6.9		4.6	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)16	7:57	Bottom	3	2	23.5	7.9	24.2	6.8	6.8	7.0		4.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Surface	1	1	22.9	7.9	24.3	6.9		3.6		5.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Surface	1	2	23.0	7.9	24.3	6.9	6.0	3.5		6.0	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Middle	2	1					6.9		2.0		4.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Middle	2	2]		3.6		4.8
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Bottom	3	1	22.9	7.9	24.3	7.1	7 1	3.7		4.8	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4a	8:06	Bottom	3	2	22.9	7.9	24.3	7.1	7.1	3.6		3.9	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Surface	1	1	23.1	7.9	24.3	6.8		6.5		4.4	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Surface	1	2	23.1	7.9	24.3	6.8	6.8	6.7		5.5	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Middle	2	1					0.8		7.6		6.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Middle	2	2							7.0		0.0
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Bottom	3	1	23.2	7.9	24.3	6.8	6.9	8.6		6.0	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	SR4(N)	8:12	Bottom	3	2	23.2	7.9	24.3	6.8	6.8	8.5		6.3	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Surface	1	1	23.2	7.9	23.9	6.8		4.9		6.0	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Surface	1	2	23.2	7.9	23.9	6.8	6.8	5.0		5.4	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Middle	2	1					0.8		4.8		6 1
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Middle	2	2							4.0		6.1
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Bottom	3	1	23.2	7.9	23.9	6.8	6.9	4.5		6.7	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS8	8:18	Bottom	3	2	23.2	7.9	23.9	6.8	6.8	4.6		6.1	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Surface	1	1	23.2	7.9	24.0	6.8		6.7		6.2	
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Surface	1	2	23.2	7.9	24.0	6.8	د م	6.8]	5.2]
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Middle	2	1					6.8		6.2		
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Middle	2	2							6.2		5.8
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Bottom	3	1	23.2	7.9	24.0	6.8	6.9	5.7]	6.3]
TMCLKL	HY/2012/07	2019/05/08	Mid-Flood	IS(Mf)9	8:25	Bottom	3	2	23.2	7.9	24.0	6.8	6.8	5.7]	7.2	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Surface	1	1	24.7	7.9	21.0	7.0		2.3		4.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Surface	1	2	24.7	7.9	21.0	7.0	7.0	2.0		5.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Middle	2	1	24.7	7.9	22.1	6.9	7.0	5.4	3.5	2.6	4.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Middle	2	2	24.8	7.9	22.1	6.9		5.4	5.5	3.4	4.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Bottom	3	1	24.5	7.9	22.3	6.8	6.8	2.8		5.4	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)5	16:13	Bottom	3	2	24.5	7.9	22.3	6.8	0.8	2.8		4.4	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Surface	1	1	24.1	8.1	18.3	6.6		3.6		2.7	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Surface	1	2	24.2	8.1	18.3	6.6	6.5	3.5		3.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Middle	2	1	23.9	8.1	22.9	6.3	0.5	6.2	5.6	3.3	3.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Middle	2	2	23.9	8.1	22.8	6.3		6.1	5.0	2.3	5.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Bottom	3	1	23.9	8.1	25.3	6.3	6.3	7.2		2.6	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	CS(Mf)3(N)	15:36	Bottom	3	2	23.9	8.1	25.2	6.3	0.5	7.1		3.6	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Surface	1	1	24.6	7.9	22.6	6.7		3.3		3.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Surface	1	2	24.6	7.9	22.6	6.8	6.8	3.3		4.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Middle	2	1					0.8		4.1		5.5
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Middle	2	2							4.1		5.5
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Bottom	3	1	24.5	7.9	23.6	6.6	6.6	4.9		5.7	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)16	15:51	Bottom	3	2	24.5	7.9	23.6	6.6	0.0	4.8		6.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Surface	1	1	24.5	7.9	22.2	6.7		4.2		6.1	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Surface	1	2	24.5	7.9	22.2	6.7	6.7	4.2		5.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Middle	2	1					0.7		4.8		1.6
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Middle	2	2							4.0		1.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Bottom	3	1	24.4	7.9	22.5	6.7	6.7	5.4		7.1	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4a	15:41	Bottom	3	2	24.4	7.9	22.5	6.7	0.7	5.5		6.1	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Surface	1	1	24.4	7.9	22.8	6.5		6.2		8.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Surface	1	2	24.4	7.9	22.8	6.5	6.5	6.1		7.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Middle	2	1					0.5		6.4		8.2
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Middle	2	2							0.4		0.2
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Bottom	3	1	24.4	7.9	23.0	6.5	6.5	6.7		9.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	SR4(N)	15:38	Bottom	3	2	24.4	7.9	23.0	6.4	0.5	6.7		8.7	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Surface	1	1	24.6	7.9	22.8	6.7		6.8		7.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Surface	1	2	24.6	7.9	22.8	6.7	6.7	6.8		8.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Middle	2	1					0.7		8 Q		67
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Middle	2	2							8.9		6.7
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Bottom	3	1	24.6	7.9	22.7	6.7	67	10.8		7.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS8	15:33	Bottom	3	2	24.6	7.9	22.7	6.7	6.7	11.0		7.1	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Surface	1	1	25.3	7.9	22.2	7.0		2.1		3.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Surface	1	2	25.3	7.9	22.2	7.0	7.0	2.2		3.6	
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Middle	2	1					7.0		2.4		2.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Middle	2	2							2.4		3.6
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Bottom	3	1	25.5	7.9	22.8	6.8	6.0	2.6		3.1	1
TMCLKL	HY/2012/07	2019/05/10	Mid-Ebb	IS(Mf)9	15:25	Bottom	3	2	25.5	7.9	22.8	6.8	6.8	2.5		4.0	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Surface	1	1	24.0	7.9	20.4	6.7		2.1		3.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Surface	1	2	24.0	7.9	20.4	6.7	6.7	1.8		4.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Middle	2	1	24.0	7.9	20.7	6.7	0.7	2.5	2.5	3.1	0.7
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Middle	2	2	24.0	7.9	20.7	6.7		2.1	2.5	3.5	0.7
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Bottom	3	1	24.0	7.8	25.3	6.6	6.6	3.3		4.4	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)5	9:08	Bottom	3	2	24.0	7.8	25.3	6.6	0.0	2.9		4.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Surface	1	1	24.0	8.0	18.6	6.2		4.9		4.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Surface	1	2	24.0	8.0	18.5	6.2	6.2	4.9		3.2	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Middle	2	1	23.9	8.0	19.0	6.2	0.2	8.5	6.9	3.0	2.9
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Middle	2	2	23.9	8.0	19.0	6.2		8.5	0.5	2.0	2.5
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Bottom	3	1	24.0	8.0	22.7	6.1	6.1	7.3		2.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	CS(Mf)3(N)	10:20	Bottom	3	2	23.9	8.0	22.7	6.1	0.1	7.3		3.3	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Surface	1	1	24.0	7.9	21.5	6.7		4.7		3.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Surface	1	2	24.0	7.9	21.5	6.7	6.7	4.7		4.5	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Middle	2	1					0.7		3.8		4.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Middle	2	2							5.0		4.0
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Bottom	3	1	24.0	7.9	22.2	6.6	6.6	2.9		3.5	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)16	9:35	Bottom	3	2	24.0	7.9	22.2	6.6	0.0	2.9		4.5	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Surface	1	1	24.0	7.9	20.9	6.7		2.7		3.4	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Surface	1	2	24.0	7.9	20.9	6.7	6.7	2.6		2.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Middle	2	1					0.7		3.7		3.3
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Middle	2	2							5.7		5.5
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Bottom	3	1	24.0	7.9	21.2	6.7	6.7	4.8		3.7	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4a	9:43	Bottom	3	2	24.1	7.9	21.2	6.7	0.7	4.8		4.1	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Surface	1	1	24.1	7.9	20.8	6.7		2.7		2.6	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Surface	1	2	24.1	7.9	20.8	6.7	6.7	2.5		1.9	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Middle	2	1					0.7		2.9		3.1
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Middle	2	2							2.5		5.1
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Bottom	3	1	24.0	7.9	20.9	6.7	6.7	3.1		3.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	SR4(N)	9:49	Bottom	3	2	24.0	7.9	20.9	6.7	0.7	3.1		2.8	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Surface	1	1	24.1	7.9	21.0	6.6		3.0		4.5	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Surface	1	2	24.1	7.9	21.0	6.6	6.6	2.8		3.5	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Middle	2	1					0.0		3.0		4.3
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Middle	2	2							5.0		4.5
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Bottom	3	1	24.1	7.9	21.1	6.6	6.6	3.1		4.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS8	9:54	Bottom	3	2	24.1	7.9	21.1	6.6	0.0	3.1		4.0	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Surface	1	1	24.1	7.9	21.3	6.6		3.6		5.7	
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Surface	1	2	24.1	7.9	21.3	6.6	6.6	3.3		5.1	J
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Middle	2	1					6.6		20		10
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Middle	2	2							3.9		4.9
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Bottom	3	1	24.1	7.9	21.7	6.6	6.6	4.3]	6.2]
TMCLKL	HY/2012/07	2019/05/10	Mid-Flood	IS(Mf)9	10:02	Bottom	3	2	24.1	7.9	21.7	6.6	6.6	4.3]	6.7]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Surface	1	1	24.7	8.0	23.2	7.2		1.4		1.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Surface	1	2	24.7	8.0	23.2	7.2	7.2	1.5		1.6	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Middle	2	1	24.7	8.0	23.2	7.1	1.2	2.1	1.8	2.4	2.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Middle	2	2	24.7	8.0	23.2	7.1		2.0	1.0	1.5	2.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Bottom	3	1	24.8	8.0	23.7	7.2	7.2	1.9		1.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)5	8:22	Bottom	3	2	24.7	8.0	23.7	7.2	7.2	1.9		1.6	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Surface	1	1	25.2	8.1	17.3	8.1		2.0		3.2	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Surface	1	2	25.2	8.1	17.3	8.1	8.1	2.0		2.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Middle	2	1	25.2	8.0	18.0	8.0	0.1	2.0	3.9	2.6	4.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Middle	2	2	25.2	8.0	18.0	8.0		1.9	5.5	3.4	4.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Bottom	3	1	25.1	8.1	17.4	8.0	8.0	8.2		4.2	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	CS(Mf)3(N)	9:27	Bottom	3	2	25.1	8.1	17.4	8.0	8.0	7.2		4.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Surface	1	1	25.0	8.0	22.4	7.3		2.7		6.4	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Surface	1	2	25.0	8.0	22.4	7.3	7.3	2.6		6.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Middle	2	1					7.5		2.6		4.3
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Middle	2	2							2.0		4.5
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Bottom	3	1	25.0	8.0	22.5	7.3	7.3	2.6		3.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)16	8:52	Bottom	3	2	25.0	8.0	22.5	7.3	7.5	2.6		3.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Surface	1	1	25.0	8.0	22.4	7.1		3.0		4.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Surface	1	2	25.0	8.0	22.4	7.1	7.1	2.9		4.3	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Middle	2	1					/.1		3.8		4.5
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Middle	2	2							5.0		4.5
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Bottom	3	1	24.8	8.0	22.9	6.9	6.9	4.6		5.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4a	9:00	Bottom	3	2	24.8	8.0	22.9	6.9	0.5	4.6		5.4	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Surface	1	1	24.9	8.0	22.1	7.0		4.9		2.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Surface	1	2	24.9	8.0	22.1	7.0	7.0	4.8		3.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Middle	2	1					7.0		4.8		5.8
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Middle	2	2							4.0		5.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Bottom	3	1	24.9	8.0	22.0	7.0	7.0	4.6		7.2	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	SR4(N)	9:06	Bottom	3	2	24.9	8.0	22.0	7.0	7.0	4.8		7.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Surface	1	1	25.2	8.1	21.7	7.7		2.1		5.1	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Surface	1	2	25.2	8.1	21.7	7.7	7.7	2.1		5.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Middle	2	1					,.,		2.2		3.2
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Middle	2	2							2.2		5.2
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Bottom	3	1	25.2	8.1	21.7	7.7	7.7	2.2		2.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS8	9:13	Bottom	3	2	25.2	8.1	21.7	7.7	,.,	2.2		2.3	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Surface	1	1	25.2	8.1	21.4	7.7		2.9		2.2	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Surface	1	2	25.2	8.1	21.4	7.7	7.7	3.0		1.3	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Middle	2	1					,.,		3.2		3.5
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Middle	2	2							5.2		5.5
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Bottom	3	1	25.2	8.1	21.0	7.7	7.7	3.5		3.1	
TMCLKL	HY/2012/07	2019/05/13	Mid-Ebb	IS(Mf)9	9:22	Bottom	3	2	25.2	8.1	21.0	7.7	/./	3.3		4.1	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Surface	1	1	25.1	8.1	22.4	8.0		2.7		5.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Surface	1	2	25.1	8.1	22.4	8.0	8.1	2.7		5.9	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Middle	2	1	25.3	8.2	22.2	8.1	0.1	3.0	2.8	5.2	5.4
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Middle	2	2	25.2	8.2	22.3	8.1		3.0	2.0	4.4	5.4
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Bottom	3	1	25.5	8.2	21.5	8.5	0 Г	2.7		5.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)5	13:45	Bottom	3	2	25.6	8.2	21.5	8.5	8.5	2.8		5.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Surface	1	1	25.6	8.2	18.9	8.9		2.4		5.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Surface	1	2	25.6	8.2	18.9	8.9	8.9	2.4		6.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Middle	2	1	25.6	8.2	18.8	8.9	0.9	2.0	4.0	6.2	E G
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Middle	2	2	25.6	8.2	18.8	8.9		2.0	4.0	5.9	5.6
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Bottom	3	1	25.6	8.2	18.7	8.7	8.7	8.1		4.6	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	CS(Mf)3(N)	12:30	Bottom	3	2	25.6	8.2	18.7	8.7	0.7	7.1		4.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Surface	1	1	25.6	8.2	21.4	8.6		3.1		5.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Surface	1	2	25.6	8.2	21.4	8.6	9.6	3.1		4.9	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Middle	2	1					8.6		2.1		г э
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Middle	2	2							3.1		5.3
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Bottom	3	1	25.7	8.2	21.5	8.6	9.6	3.1		5.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)16	13:18	Bottom	3	2	25.6	8.2	21.5	8.6	8.6	3.0		4.6	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Surface	1	1	25.3	8.1	21.0	8.2		3.6		6.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Surface	1	2	25.3	8.1	21.0	8.2	0.7	3.6		6.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Middle	2	1					8.2		2.0		7 1
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Middle	2	2							3.9		7.1
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Bottom	3	1	25.3	8.1	21.1	8.0	8.0	4.2		6.4	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4a	13:08	Bottom	3	2	25.3	8.1	21.1	8.0	8.0	4.0		5.7	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Surface	1	1	25.5	8.2	20.5	8.5		5.4		9.4	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Surface	1	2	25.5	8.2	20.5	8.5	0 F	5.4		8.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Middle	2	1					8.5		4.7		7.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Middle	2	2							4.7		7.9
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Bottom	3	1	25.5	8.2	20.7	8.5	0 F	4.0		7.6	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	SR4(N)	13:05	Bottom	3	2	25.5	8.2	20.7	8.5	8.5	3.9		8.5	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Surface	1	1	25.6	8.2	20.2	8.8		4.4		6.9	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Surface	1	2	25.6	8.2	20.2	8.8	0.0	4.4		6.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Middle	2	1					8.8		4.5		7.0
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Middle	2	2							4.5		7.9
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Bottom	3	1	25.6	8.2	20.0	8.7	0.7	4.6		10.0	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS8	13:00	Bottom	3	2	25.6	8.2	20.0	8.7	8.7	4.6		8.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Surface	1	1	25.9	8.2	21.1	8.6		2.8		5.8	
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Surface	1	2	25.8	8.2	21.2	8.6		2.8	1	6.6	1
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Middle	2	1					8.6		1		1
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Middle	2	2					1		2.8		8.2
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Bottom	3	1	26.0	8.2	21.0	8.6		2.7	1	7.0	1
TMCLKL	HY/2012/07	2019/05/13	Mid-Flood	IS(Mf)9	12:52	Bottom	3	2	26.0	8.2	21.0	8.6	8.6	2.7	1	7.8	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Surface	1	1	26.5	8.1	21.3	8.8		4.7		11.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Surface	1	2	26.5	8.2	21.3	8.8	8.6	4.8		12.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Middle	2	1	26.4	8.1	21.9	8.3	8.0	4.1	4.3	13.0	13.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Middle	2	2	26.4	8.1	21.9	8.3		4.2	4.5	12.9	15.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Bottom	3	1	26.5	8.1	23.3	8.2	8.2	4.1		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Bottom	3	2	26.5	8.1	23.3	8.2	0.2	4.0		13.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Surface	1	1	25.3	8.1	20.6	8.6		4.1		8.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Surface	1	2	25.3	8.1	20.5	8.6	8.4	4.0		9.2]
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Middle	2	1	25.2	8.1	20.9	8.2	0.4	5.0	4.7	9.9	9.2
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Middle	2	2	25.2	8.1	20.9	8.2		5.0	4.7	9.7	9.2
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Bottom	3	1	25.2	8.1	21.0	8.2	8.2	5.1		9.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Bottom	3	2	25.2	8.1	21.0	8.2	0.2	5.1		9.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Surface	1	1	26.4	8.2	21.6	8.6		10.8		18.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Surface	1	2	26.5	8.2	21.6	8.6	8.6	10.3		17.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Middle	2	1					0.0		11.0		18.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Middle	2	2							11.0		10.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Bottom	3	1	26.3	8.2	21.8	8.5	8.5	11.5		19.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Bottom	3	2	26.3	8.2	21.8	8.5	6.5	11.5		18.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Surface	1	1	26.4	8.2	21.9	8.6		6.8		17.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Surface	1	2	26.5	8.2	21.9	8.6	8.6	6.8		17.3	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Middle	2	1					0.0		7.0		18.3
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Middle	2	2							7.0		10.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Bottom	3	1	26.2	8.2	22.0	8.5	8.5	7.2		18.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Bottom	3	2	26.2	8.2	22.0	8.5	6.5	7.1		19.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Surface	1	1	26.6	8.1	21.6	8.2		10.3		13.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Surface	1	2	26.6	8.1	21.6	8.2	8.2	10.5		14.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Middle	2	1					0.2		9.1		13.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Middle	2	2							9.1		13.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Bottom	3	1	26.8	8.1	21.7	8.2	8.2	7.7		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Bottom	3	2	26.8	8.1	21.7	8.2	0.2	7.8		13.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Surface	1	1	26.4	8.2	22.1	8.6		16.1		25.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Surface	1	2	26.4	8.2	22.0	8.6	8.6	16.0		25.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Middle	2	1					0.0		15.2		24.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Middle	2	2							15.3		24.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Bottom	3	1	26.3	8.2	22.1	8.6	<u>۹</u> ۲	14.6		23.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Bottom	3	2	26.3	8.2	22.1	8.6	8.6	14.6		24.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Surface	1	1	27.1	8.3	21.5	9.5		6.4		15.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Surface	1	2	27.1	8.3	21.5	9.5		6.5		14.6]
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Middle	2	1					9.5		6 4		15 1
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Middle	2	2							6.4		15.1
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Bottom	3	1	27.1	8.3	21.4	9.4	0.5	6.4		14.4]
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Bottom	3	2	27.1	8.3	21.4	9.5	9.5	6.3		15.5]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Surface	1	1	26.5	8.3	21.4	9.1		4.8		12.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Surface	1	2	26.5	8.3	21.5	9.1	9.1	4.9		11.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Middle	2	1	26.3	8.3	21.4	9.0	9.1	7.1	5.8	11.0	11.4
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Middle	2	2	26.5	8.3	21.4	9.2		6.0	5.8	10.5	11.4
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Bottom	3	1	26.3	8.3	21.7	9.1	0.1	6.2		11.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Bottom	3	2	26.3	8.3	21.7	9.0	9.1	5.6		11.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Surface	1	1	26.5	8.3	17.4	10.1		4.5		10.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Surface	1	2	26.5	8.3	17.4	10.1	9.0	4.4		11.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Middle	2	1	25.2	8.0	18.3	7.8	9.0	4.4	1 5	12.0	12.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Middle	2	2	25.2	8.0	18.1	7.9		4.4	4.5	13.0	12.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Bottom	3	1	25.7	8.0	20.1	7.9	7.9	4.5		13.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Bottom	3	2	25.5	8.0	20.2	7.9	7.9	4.5		13.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Surface	1	1	26.6	8.3	21.2	10.1		9.4		7.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Surface	1	2	26.6	8.3	21.2	10.1	10.1	9.2		7.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Middle	2	1					10.1		7 2		0 5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Middle	2	2							7.3		8.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Bottom	3	1	26.7	8.3	21.2	10.1	10.1	5.2		9.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Bottom	3	2	26.7	8.3	21.2	10.1	10.1	5.2		9.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Surface	1	1	26.9	8.4	21.4	10.3		3.8		13.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Surface	1	2	26.9	8.4	21.4	10.3	10.3	3.9		13.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Middle	2	1					10.5		2.0		13.8
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Middle	2	2							3.9		13.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Bottom	3	1	26.8	8.4	21.5	9.8	9.8	3.9		14.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Bottom	3	2	26.8	8.4	21.5	9.8	9.8	3.8		14.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Surface	1	1	26.8	8.4	21.2	10.3		11.3		9.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Surface	1	2	26.8	8.4	21.2	10.3	10.3	12.6		8.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Middle	2	1					10.5		8.7		10.9
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Middle	2	2							0.7		10.9
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Bottom	3	1	26.8	8.4	21.3	10.3	10.3	5.3		12.3	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Bottom	3	2	26.8	8.4	21.3	10.3	10.5	5.4		12.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Surface	1	1	26.4	8.3	21.3	9.4		10.7		14.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Surface	1	2	26.4	8.3	21.3	9.4	9.4	10.6		14.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Middle	2	1					9.4		0.5		13.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Middle	2	2							9.5		15.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Bottom	3	1	26.4	8.3	21.4	9.4	0.4	8.2		12.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Bottom	3	2	26.4	8.3	21.4	9.4	9.4	8.6		13.3	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Surface	1	1	26.6	8.3	20.9	9.5		9.8		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Surface	1	2	26.6	8.3	20.9	9.5	0.5	10.4		13.0]
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Middle	2	1					9.5		0.0		12.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Middle	2	2					1		9.0		13.6
	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Bottom	3	1	26.5	8.3	21.1	9.5	0.5	7.8		13.8	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Bottom	3	2	26.5	8.3	21.1	9.5	9.5	7.8		14.4	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Surface	1	1	27.3	7.9	21.2	7.0		2.4		4.6	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Surface	1	2	27.2	7.9	21.2	7.1	7.1	2.4		3.8	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Middle	2	1	27.7	7.9	22.5	7.1	/.1	5.5	3.5	5.0	5.4
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Middle	2	2	27.8	7.9	22.5	7.1		5.5	5.5	5.0	5.4
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Bottom	3	1	27.2	7.9	23.0	7.1	7.1	2.7		7.3	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)5	11:41	Bottom	3	2	27.3	7.9	23.0	7.1	7.1	2.6		6.6	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Surface	1	1	26.7	8.1	20.2	7.1		2.9		3.1	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Surface	1	2	26.7	8.1	20.2	7.1	7.1	2.9		4.1	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Middle	2	1	26.7	8.1	20.2	7.1	/.1	3.2	3.2	3.8	3.6
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Middle	2	2	26.7	8.1	20.2	7.1		3.2	5.2	3.0	5.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Bottom	3	1	26.7	8.1	20.2	7.1	7.1	3.6		4.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	CS(Mf)3(N)	13:22	Bottom	3	2	26.7	8.1	20.2	7.1	/.1	3.5		3.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Surface	1	1	27.5	8.0	21.5	7.3		4.1		9.9	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Surface	1	2	27.5	8.0	21.5	7.3	7.3	4.1		9.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Middle	2	1					7.5		4.0		9.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Middle	2	2							4.0		9.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Bottom	3	1	27.6	8.0	21.7	7.3	7.3	3.8		8.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)16	12:15	Bottom	3	2	27.6	8.0	21.7	7.3	7.5	3.8]	8.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Surface	1	1	27.7	8.0	21.4	7.3		3.2		6.0	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Surface	1	2	27.7	8.0	21.4	7.3	7.3	3.1		5.7	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Middle	2	1					7.5		2.9		6.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Middle	2	2							2.5		0.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Bottom	3	1	27.9	8.0	21.7	7.3	7.3	2.7		6.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4a	12:23	Bottom	3	2	27.9	8.0	21.7	7.3	7.5	2.6		6.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Surface	1	1	27.4	8.0	21.7	7.4		4.3		7.8	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Surface	1	2	27.4	8.0	21.7	7.4	7.4	4.3		7.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Middle	2	1					7.4		4.2		7.7
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Middle	2	2							4.2		7.7
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Bottom	3	1	27.3	8.0	21.6	7.4	7.4	4.1		7.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	SR4(N)	12:27	Bottom	3	2	27.3	8.0	21.6	7.4	7.4	4.1		8.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Surface	1	1	28.1	8.0	21.8	7.3		4.9		6.3	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Surface	1	2	28.1	8.0	21.8	7.3	7.3	4.9		6.0	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Middle	2	1					7.5		5.6		7.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Middle	2	2							5.0		7.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Bottom	3	1	28.0	8.0	21.6	7.3	7.3	6.4		8.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS8	12:32	Bottom	3	2	28.0	8.0	21.6	7.3	7.5	6.3		7.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Surface	1	1	27.3	8.0	20.7	7.4		4.1		6.7	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Surface	1	2	27.3	8.0	20.7	7.4	7.4	4.1		7.7	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Middle	2	1					/.4		٨٥		7.4
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Middle	2	2							4.8		/.4
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Bottom	3	1	27.3	8.0	20.5	7.3	7.4	5.4]	7.0	
TMCLKL	HY/2012/07	2019/05/17	Mid-Ebb	IS(Mf)9	12:40	Bottom	3	2	27.3	8.0	20.5	7.4	/.4	5.4		8.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Surface	1	1	27.1	8.0	21.5	7.1		1.6		2.8	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Surface	1	2	27.1	8.0	21.5	7.1	7.1	1.5		2.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Middle	2	1	27.0	8.0	21.6	7.1	/.1	3.3	4.1	2.2	3.3
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Middle	2	2	27.0	8.0	21.6	7.1		3.2	4.1	3.0	5.5
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Bottom	3	1	26.9	8.0	22.1	7.1	7.1	7.5		4.9	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)5	17:59	Bottom	3	2	26.9	8.0	22.1	7.1	7.1	7.5		4.6	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Surface	1	1	27.3	8.0	16.6	7.2		2.6		2.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Surface	1	2	27.3	8.0	16.6	7.2		2.4		2.7	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Middle	2	1	27.3	8.0	16.5	7.2	7.2	3.8	3.4	6.3	6.2
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Middle	2	2	27.3	8.0	16.5	7.2	1	3.8	5.4	7.3	6.3
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Bottom	3	1	27.3	8.0	16.6	7.2	7.2	4.1		9.0	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	CS(Mf)3(N)	16:58	Bottom	3	2	27.3	8.0	16.6	7.2	7.2	3.8		10.3	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Surface	1	1	27.4	8.1	21.8	7.3		6.0		11.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Surface	1	2	27.4	8.1	21.8	7.3	7.2	6.0		12.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Middle	2	1					7.3		6.0		9.6
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Middle	2	2							0.0		9.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Bottom	3	1	27.5	8.1	21.8	7.3	7.3	5.9		7.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)16	17:32	Bottom	3	2	27.5	8.1	21.8	7.3	7.5	5.9		7.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Surface	1	1	27.7	8.1	21.8	7.4		1.4		4.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Surface	1	2	27.7	8.1	21.8	7.4	7.4	1.4		3.2	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Middle	2	1					7.4		3.3		4.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Middle	2	2							5.5		4.0
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Bottom	3	1	27.4	8.1	21.8	7.4	7.4	5.3		4.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4a	17:23	Bottom	3	2	27.4	8.1	21.8	7.4	7.4	5.2		4.1	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Surface	1	1	27.6	8.1	21.8	7.5		1.5		4.0	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Surface	1	2	27.6	8.1	21.7	7.5	7.5	1.5		3.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Middle	2	1					7.5		1.6		3.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Middle	2	2							1.0		5.1
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Bottom	3	1	27.6	8.1	21.8	7.5	7.5	1.7		2.5	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	SR4(N)	17:19	Bottom	3	2	27.6	8.1	21.8	7.5	7.5	1.7		2.4	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Surface	1	1	27.5	8.1	21.9	7.4		1.4		2.8	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Surface	1	2	27.5	8.1	21.9	7.4	7.4	1.4		3.6	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Middle	2	1					7.4		2.0		4.2
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Middle	2	2							2.0		7.2
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Bottom	3	1	27.5	8.1	21.9	7.4	7.4	2.5		4.9	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS8	17:15	Bottom	3	2	27.5	8.1	21.9	7.4	7.4	2.5		5.6	
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Surface	1	1									
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Surface	1	2					7.2				
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Middle	2	1	27.7	8.1	21.8	7.2	,.2	11.0	11.0	10.0	10.5
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Middle	2	2	27.7	8.1	21.8	7.2		11.0	11.0	11.0	10.5
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Bottom	3	1					N/A				
TMCLKL	HY/2012/07	2019/05/17	Mid-Flood	IS(Mf)9	17:08	Bottom	3	2					1975				

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Surface	1	1	28.0	8.0	21.0	7.2		2.9		2.2	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Surface	1	2	28.1	8.0	21.0	7.2	7.1	2.9		2.8	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Middle	2	1	27.7	8.0	22.7	7.0	/.1	3.0	2.5	2.4	2.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Middle	2	2	27.6	8.0	22.7	7.0		2.8	2.5	2.0	2.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Bottom	3	1	28.1	8.0	20.8	7.2	7.2	1.8		2.3	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)5	13:21	Bottom	3	2	28.1	8.0	20.8	7.2	7.2	1.8		1.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Surface	1	1	27.5	8.0	21.4	7.0		8.7		4.8	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Surface	1	2	27.5	8.0	21.4	7.0	7.0	8.7		3.8	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Middle	2	1	27.3	7.9	21.5	7.0	7.0	5.8	7.1	2.3	3.4
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Middle	2	2	27.3	7.9	21.5	7.0		5.9	7.1	3.3	5.4
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Bottom	3	1	27.3	7.9	21.6	7.0	7.0	6.8		2.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	CS(Mf)3(N)	12:31	Bottom	3	2	27.3	7.9	21.6	7.0	7.0	6.9		3.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Surface	1	1	27.9	8.0	21.6	7.4		2.5		4.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Surface	1	2	27.9	8.0	21.6	7.4	7.4	2.6		4.4	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Middle	2	1					7.4		2.4	3.7	4.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Middle	2	2							2.4	4.0	4.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Bottom	3	1	27.9	8.0	21.6	7.4	7.4	2.4			
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)16	12:58	Bottom	3	2	27.9	8.0	21.6	7.4	7.4	2.2			
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Surface	1	1	28.2	8.0	20.6	7.5		2.3		3.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Surface	1	2	28.2	8.0	20.6	7.5	7 6	2.3		3.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Middle	2	1					7.5		2 7		2.7
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Middle	2	2							2.7		3.7
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Bottom	3	1	28.2	8.1	20.6	7.3	7.3	3.1		3.5	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4a	12:49	Bottom	3	2	28.2	8.0	20.6	7.3	7.5	3.0		3.9	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Surface	1	1	28.2	8.0	21.2	7.5		3.2		4.3	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Surface	1	2	28.4	8.0	21.2	7.5	7.5	3.4		4.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Middle	2	1					7.5		3.2		3.6
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Middle	2	2							5.2		5.0
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Bottom	3	1	28.1	8.0	20.8	7.5	7.5	3.1		2.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	SR4(N)	12:46	Bottom	3	2	28.0	8.0	20.9	7.5	7.5	3.0		3.5	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Surface	1	1	28.3	8.0	21.2	7.5		4.0		5.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Surface	1	2	28.2	8.0	21.2	7.5	7.5	4.1		5.8	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Middle	2	1					7.5		3.9		5.7
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Middle	2	2							5.5		5.7
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Bottom	3	1	28.5	8.0	21.3	7.5	7.5	3.8		6.2	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS8	12:41	Bottom	3	2	28.5	8.0	21.3	7.5	7.5	3.7		5.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Surface	1	1	28.4	8.0	21.1	7.6		1.9		2.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Surface	1	2	28.4	8.0	21.1	7.6	7.6	1.9		1.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Middle	2	1					7.0		2.0		2.1
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Middle	2	2							2.0		2.1
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Bottom	3	1	28.3	8.0	21.0	7.6	7.6	2.0		2.0]
TMCLKL	HY/2012/07	2019/05/20	Mid-Ebb	IS(Mf)9	12:36	Bottom	3	2	28.3	8.0	21.1	7.6	7.0	2.0		2.5	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Surface	1	1	27.1	8.0	22.9	6.7		2.2		1.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Surface	1	2	27.0	8.0	22.9	6.7	6.6	2.1		2.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Middle	2	1	27.1	8.0	22.2	6.8	0.0	2.5	2.1	1.0	1.5
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Middle	2	2	27.1	8.0	22.2	6.8		2.5	2.1	1.2	1.5
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Bottom	3	1	27.0	8.0	22.8	6.7	6.6	1.8		1.3	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)5	6:48	Bottom	3	2	27.0	8.0	22.8	6.7	0.0	1.7		1.6	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Surface	1	1	27.4	7.9	19.8	6.9		3.7		3.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Surface	1	2	27.4	7.9	19.8	6.9	7.2	3.8		4.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Middle	2	1	27.5	7.9	19.8	6.9	1.2	3.4	20	4.4	20
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Middle	2	2	27.5	7.9	19.8	6.9		3.1	3.8	3.7	3.8
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Bottom	3	1	27.4	7.9	19.8	6.9	7.2	4.4		3.3	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	CS(Mf)3(N)	7:52	Bottom	3	2	27.4	7.9	19.8	6.9	7.2	4.3		4.3	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Surface	1	1	27.4	8.0	20.6	6.9		3.9		1.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Surface	1	2	27.4	8.0	20.5	6.9	0.1	3.9		2.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Middle	2	1					8.1		F 0		2.4
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Middle	2	2							5.0		2.4
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Bottom	3	1	27.3	8.0	21.3	6.9		5.8		3.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)16	7:12	Bottom	3	2	27.3	8.0	21.3	6.9	8.0	6.3		2.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Surface	1	1	27.5	8.0	20.8	6.9		2.1		1.5	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Surface	1	2	27.4	8.0	20.8	6.9	7.0	2.1		2.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Middle	2	1					7.3		2.0		2.1
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Middle	2	2							2.0		2.1
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Bottom	3	1	27.5	8.0	21.2	6.9	7.3	1.8		2.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4a	7:23	Bottom	3	2	27.5	8.0	21.3	6.9	7.5	1.8		2.7	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Surface	1	1	27.4	8.0	20.7	6.9		1.9		1.4	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Surface	1	2	27.4	8.0	20.7	6.9	7.1	1.9		2.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Middle	2	1					/.1		1.9		1.6
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Middle	2	2							1.9		1.0
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Bottom	3	1	27.4	8.0	20.7	6.9	6.9	1.9		1.8	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	SR4(N)	7:29	Bottom	3	2	27.4	8.0	20.7	6.9	0.9	1.9		1.1	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Surface	1	1	27.5	8.0	20.3	6.9		1.8		1.9	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Surface	1	2	27.5	8.0	20.3	6.9	7.0	1.8		2.9	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Middle	2	1					7.0		1.8		2.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Middle	2	2							1.0		2.2
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Bottom	3	1	27.5	8.0	20.3	6.9	7.0	1.8		2.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS8	7:38	Bottom	3	2	27.5	8.0	20.3	6.9	7.0	1.6		1.9	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Surface	1	1	27.5	8.0	20.5	7.0		1.9		2.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Surface	1	2	27.5	8.0	20.5	7.0	7.7	1.8		1.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Middle	2	1							2.9		1 2
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Middle	2	2							2.9		1.3
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Bottom	3	1	27.4	8.0	20.6	7.0	7.0	3.9		1.0	
TMCLKL	HY/2012/07	2019/05/20	Mid-Flood	IS(Mf)9	7:44	Bottom	3	2	27.4	8.0	20.6	7.0	7.0	3.8		1.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Surface	1	1	26.9	7.9	24.1	6.8		5.2		4.0	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Surface	1	2	26.9	7.9	24.1	6.8	7.7	5.1		4.3	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Middle	2	1	26.1	7.9	26.0	6.1	/./	8.4	9.2	3.7	3.8
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Middle	2	2	26.1	7.9	25.9	6.1		8.1	5.2	3.7	5.0
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Bottom	3	1	25.8	7.9	27.7	6.1	6.1	14.2		3.9	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)5	15:41	Bottom	3	2	25.8	7.9	27.7	6.0	0.1	14.1		2.9	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Surface	1	1	27.1	8.1	20.5	7.4		2.5		2.6	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Surface	1	2	27.1	8.1	20.5	7.4	8.1	2.5		3.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Middle	2	1	27.1	8.1	20.4	7.4	8.1	2.6	4.0	3.4	20
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Middle	2	2	27.1	8.1	20.4	7.4		2.6	4.9	2.4	2.8
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Bottom	3	1	27.0	8.1	21.1	7.4	0.5	9.6		2.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	CS(Mf)3(N)	13:52	Bottom	3	2	27.0	8.1	21.1	7.4	8.5	9.6		1.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Surface	1	1	26.3	7.9	25.6	7.0		9.3		4.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Surface	1	2	26.3	8.0	25.6	7.0	8.0	9.2		4.3	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Middle	2	1					8.9		8.0		
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Middle	2	2							8.9		4.4
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Bottom	3	1	26.0	7.9	26.9	6.9	0.7	8.5		4.2	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)16	14:32	Bottom	3	2	26.0	7.9	26.9	6.8	8.7	8.5		4.7	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Surface	1	1	26.8	8.0	23.6	7.6		8.2		3.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Surface	1	2	26.8	8.0	23.7	7.7	8 C	8.2		2.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Middle	2	1					8.6		8.8		2.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Middle	2	2							0.0		2.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Bottom	3	1	26.5	7.9	24.8	7.2	8.6	9.2		2.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4a	14:21	Bottom	3	2	26.5	7.9	24.8	7.1	8.0	9.4		1.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Surface	1	1	26.4	8.0	24.6	6.6		9.8		6.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Surface	1	2	26.5	8.0	24.6	6.6	8.2	9.9		6.0	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Middle	2	1					0.2		9.9		4.9
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Middle	2	2									4.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Bottom	3	1	26.4	8.0	25.1	6.6	8.0	9.9		3.0	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	SR4(N)	14:18	Bottom	3	2	26.4	8.0	25.1	6.6	0.0	10.0		3.6	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Surface	1	1	26.8	8.0	24.2	7.1		11.1		5.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Surface	1	2	26.9	8.0	24.2	7.2	8.5	10.9		5.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Middle	2	1					0.5		11.1		5.7
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Middle	2	2							11.1		5.7
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Bottom	3	1	26.7	8.0	24.5	7.2	8.5	11.0		6.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS8	14:12	Bottom	3	2	26.7	8.0	24.5	7.1	0.5	11.2		5.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Surface	1	1	26.8	7.9	23.9	7.2		9.0		2.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Surface	1	2	26.7	7.9	23.9	7.2	8.8	9.1		1.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Middle	2	1					0.0		9.2		1.6
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Middle	2	2							5.2		1.0
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Bottom	3	1	26.5	7.9	24.7	7.1	7.1	9.5		1.4	1
TMCLKL	HY/2012/07	2019/05/22	Mid-Ebb	IS(Mf)9	14:03	Bottom	3	2	26.5	7.9	24.7	7.1	/.1	9.3		<0.5	

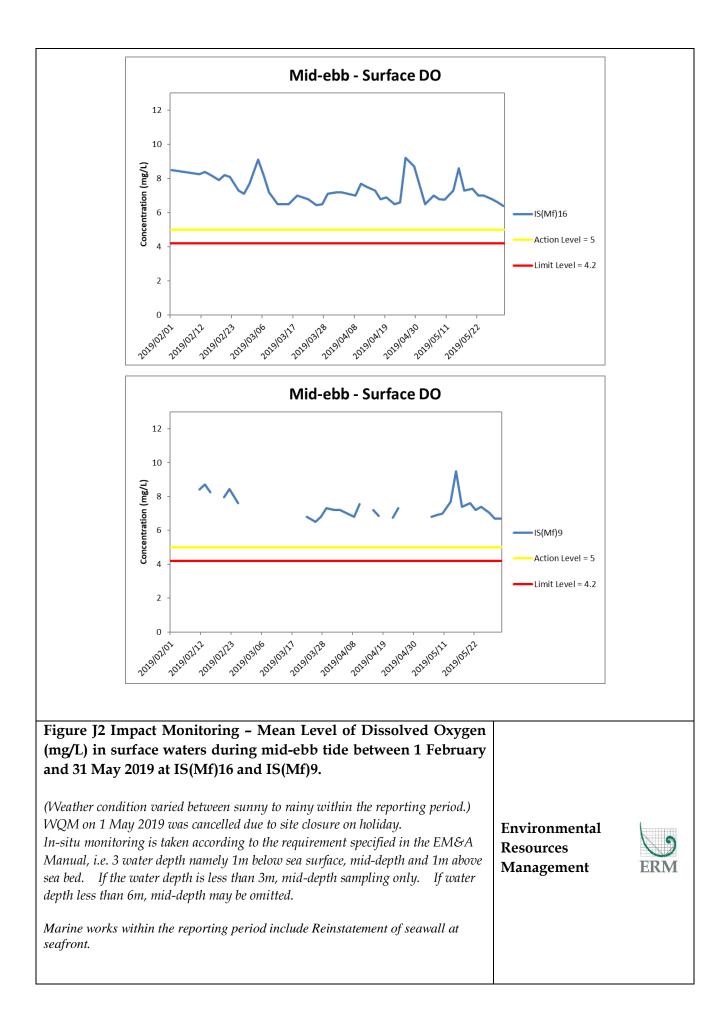
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Surface	1	1	26.3	7.8	23.5	6.3		7.8		1.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Surface	1	2	26.4	7.8	23.4	6.3	8.6	7.8		2.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Middle	2	1	25.9	7.9	27.5	5.9	8.0	9.1	10.3	2.3	2.3
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Middle	2	2	25.9	7.9	27.6	5.9		8.8	10.5	3.0	2.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Bottom	3	1	25.5	7.9	29.7	5.8	5.8	13.9		2.7	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)5	7:54	Bottom	3	2	25.5	7.9	29.7	5.8	5.8	14.1		1.8	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Surface	1	1	26.2	8.1	21.1	6.9		3.0		4.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Surface	1	2	26.2	8.1	21.1	6.9	6.0	3.1		4.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Middle	2	1	26.1	8.1	21.6	6.9	6.9	10.8	6.6	6.6	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Middle	2	2	26.1	8.1	21.6	6.9	1	10.3	6.6	6.2	5.4
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Bottom	3	1	26.1	8.0	21.5	6.9	6.0	6.3		5.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	CS(Mf)3(N)	9:04	Bottom	3	2	26.1	8.0	21.5	6.9	6.9	6.1		5.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Surface	1	1	26.3	7.9	23.7	6.6		7.7		2.3	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Surface	1	2	26.3	7.9	23.7	6.7	67	7.8		2.0	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Middle	2	1					6.7		7.0		2.0
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Middle	2	2							7.8		2.0
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Bottom	3	1	26.3	7.9	24.3	6.6	6.6	7.8		2.3	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)16	8:21	Bottom	3	2	26.3	7.9	24.3	6.5	6.6	7.9		1.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Surface	1	1	26.3	7.9	23.9	6.5		7.9		2.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Surface	1	2	26.3	7.9	23.9	6.6		7.9		1.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Middle	2	1					6.6		0.1		4.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Middle	2	2					1		8.1		1.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Bottom	3	1	26.3	7.9	24.2	6.6	6.6	8.3		1.6	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4a	8:30	Bottom	3	2	26.3	7.9	24.2	6.6	6.6	8.1		1.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Surface	1	1	26.4	7.9	24.0	6.5		8.1		1.4	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Surface	1	2	26.4	7.9	24.0	6.5	C F	8.1		1.3	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Middle	2	1					6.5		0.2		1.0
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Middle	2	2					1		8.2		1.8
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Bottom	3	1	26.4	7.9	24.3	6.5	C F	8.2		2.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	SR4(N)	8:36	Bottom	3	2	26.4	7.9	24.4	6.5	6.5	8.2		2.1	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Surface	1	1	26.3	7.9	23.1	6.6		9.0		2.7	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Surface	1	2	26.3	7.9	23.1	6.6		8.6		2.7	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Middle	2	1					6.6		0.1		2.2
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Middle	2	2							9.1		2.3
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Bottom	3	1	26.3	7.9	23.4	6.5		9.1	1	2.4]
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS8	8:42	Bottom	3	2	26.3	7.9	23.4	6.5	6.5	9.5	1	1.4]
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Surface	1	1	26.2	8.0	24.0	6.6		8.7		2.5	
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Surface	1	2	26.2	8.0	24.0	6.6		8.4	1	2.0]
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Middle	2	1					6.6				
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Middle	2	2					1 1		9.6		2.5
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Bottom	3	1	26.3	8.0	24.6	6.5		10.5	1	2.6]
TMCLKL	HY/2012/07	2019/05/22	Mid-Flood	IS(Mf)9	8:49	Bottom	3	2	26.3	8.0	24.6	6.5	6.5	10.6	1	2.8	1

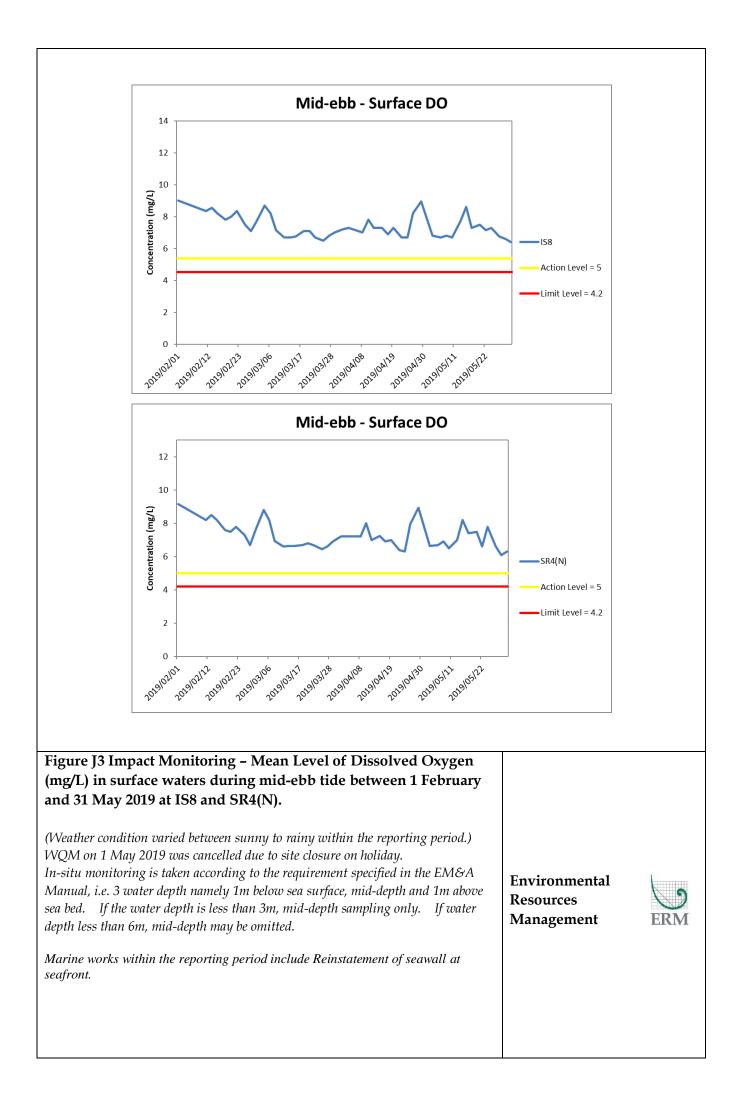
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Surface	1	1	26.4	8.1	23.5	7.3		3.3		3.0	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Surface	1	2	26.4	8.1	23.5	7.3	6.8	3.3		3.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Middle	2	1	26.4	8.1	23.7	7.2	0.8	3.3	6.5	2.9	3.6
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Middle	2	2	26.4	8.1	23.7	7.2		3.3	0.5	3.2	5.0
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Bottom	3	1	26.2	8.1	25.2	6.8	6.8	3.8		4.7	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)5	16:17	Bottom	3	2	26.2	8.1	25.1	6.8	0.8	3.7		4.5	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Surface	1	1	26.6	8.0	22.6	7.3		1.9		2.4	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Surface	1	2	26.6	8.0	22.6	7.3	7.0	1.8		2.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Middle	2	1	26.6	8.0	22.6	7.3	7.0	3.8	2.0	3.7	2.0
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Middle	2	2	26.6	8.0	22.6	7.3	1	4.1	2.9	4.0	3.9
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Bottom	3	1	26.6	8.0	22.6	7.3	7.0	5.0		5.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	CS(Mf)3(N)	15:14	Bottom	3	2	26.6	8.0	22.6	7.3	7.0	4.9		5.5	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Surface	1	1	26.3	8.1	23.5	7.0		4.3		2.4	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Surface	1	2	26.3	8.1	23.5	7.0		4.3		2.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Middle	2	1					6.8		C 7		2.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Middle	2	2					1		6.7		2.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Bottom	3	1	26.3	8.1	23.7	6.9	6.0	4.3		2.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)16	15:55	Bottom	3	2	26.3	8.1	23.7	6.9	6.8	4.3		2.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Surface	1	1	26.5	8.1	23.2	7.2		3.5		2.8	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Surface	1	2	26.5	8.1	23.2	7.2	67	3.4		2.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Middle	2	1					6.7		2.0		2 5
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Middle	2	2							3.9		3.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Bottom	3	1	26.3	8.1	24.7	6.8	6.7	4.7		3.9	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4a	15:45	Bottom	3	2	26.3	8.1	24.7	6.8	0.7	4.7		4.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Surface	1	1	26.7	8.1	22.7	7.8		4.1		1.7	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Surface	1	2	26.7	8.1	22.7	7.8	6.6	4.0		1.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Middle	2	1					0.0		4.0		1.6
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Middle	2	2							4.0		1.0
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Bottom	3	1	26.3	8.1	24.4	6.7	6.6	4.6		1.8	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	SR4(N)	15:41	Bottom	3	2	26.3	8.1	24.5	6.7	0.0	4.6		1.7	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Surface	1	1	26.5	8.1	23.1	7.3		4.4		6.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Surface	1	2	26.5	8.1	23.1	7.3	د ٥	4.3		6.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Middle	2	1					6.8		26		E 2
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Middle	2	2							3.6		5.2
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Bottom	3	1	26.4	8.1	23.7	6.8	67	5.7		4.0	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS8	15:36	Bottom	3	2	26.4	8.1	23.7	6.8	6.7	5.7		4.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Surface	1	1	26.4	8.1	23.2	7.4		4.0		3.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Surface	1	2	26.5	8.1	23.2	7.4		4.0		2.9]
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Middle	2	1					7.1		E /		27
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Middle	2	2							5.4		2.7
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Bottom	3	1	26.4	8.1	23.2	7.3	71	5.4		4.4]
TMCLKL	HY/2012/07	2019/05/24	Mid-Ebb	IS(Mf)9	15:28	Bottom	3	2	26.4	8.1	23.2	7.3	7.1	5.8		4.1	

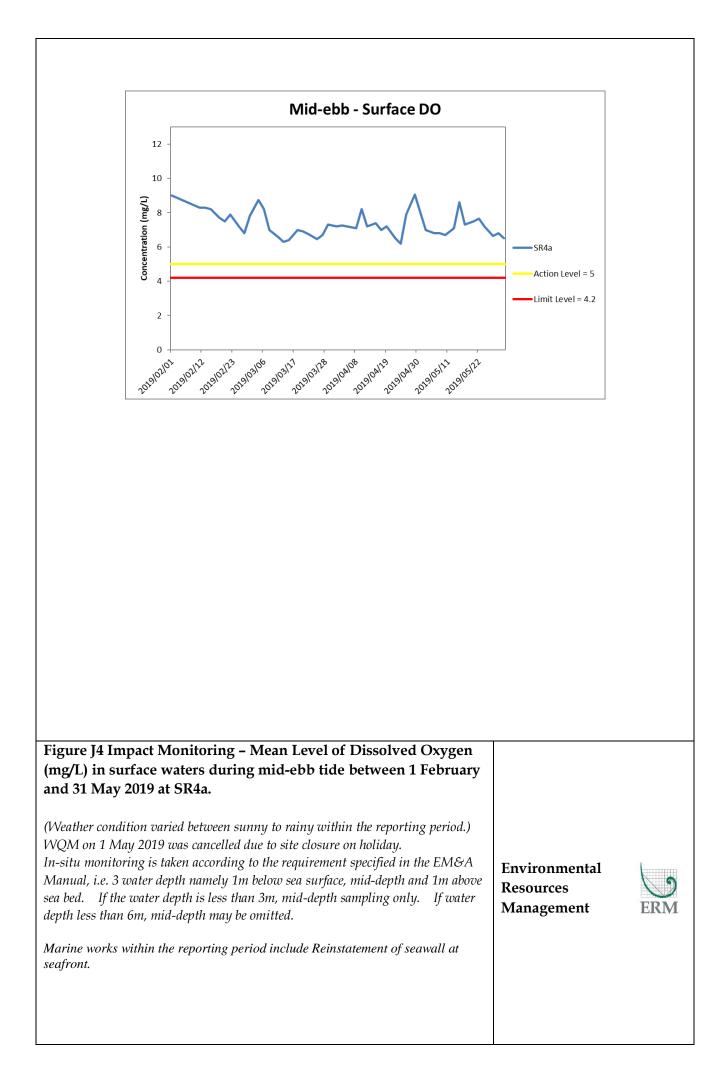
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Surface	1	1	26.2	8.0	23.9	6.6		3.3		2.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Surface	1	2	26.2	8.0	23.8	6.6	6.1	3.3		2.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Middle	2	1	26.0	8.0	24.7	6.4	0.1	3.0	3.4	2.6	2.7
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Middle	2	2	26.1	8.0	24.6	6.4		3.1	5.4	2.5	2.7
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Bottom	3	1	26.0	8.0	25.3	6.4	5.6	3.0		3.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)5	8:50	Bottom	3	2	26.0	8.0	25.3	6.4	5.0	2.9		3.4	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Surface	1	1	26.4	8.0	21.3	7.0		2.2		3.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Surface	1	2	26.4	8.0	21.3	7.0	7.1	2.2		3.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Middle	2	1	26.3	8.0	21.5	7.0	/.1	2.4	ГО	4.1	4.0
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Middle	2	2	26.3	8.0	21.6	7.0		2.3	5.9	3.7	4.0
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Bottom	3	1	26.4	8.0	21.3	7.0	7.4	1.9		4.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	CS(Mf)3(N)	9:53	Bottom	3	2	26.3	8.0	21.3	7.0	7.1	1.7		4.9	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Surface	1	1	26.3	8.0	22.4	6.9		3.7		1.9	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Surface	1	2	26.3	8.0	22.4	6.9	6.5	3.7		1.7	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Middle	2	1					6.5				2.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Middle	2	2							4.4		2.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Bottom	3	1	26.3	8.0	23.1	6.8	6.4	3.7		3.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)16	9:14	Bottom	3	2	26.3	8.0	23.1	6.8	6.1	3.6		3.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Surface	1	1	26.5	8.0	23.0	6.9		3.9		2.1	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Surface	1	2	26.5	8.0	23.0	6.9	5.0	3.8		2.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Middle	2	1					5.8				2.2
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Middle	2	2							4.1		2.3
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Bottom	3	1	26.3	8.0	23.7	6.8	6.2	3.7		2.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4a	9:22	Bottom	3	2	26.3	8.0	23.7	6.8	6.2	3.7		2.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Surface	1	1	26.5	8.0	23.4	6.8		5.4		3.7	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Surface	1	2	26.5	8.0	23.4	6.8	го	5.3		3.8	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Middle	2	1					5.9		ГО		2.1
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Middle	2	2							5.0		3.1
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Bottom	3	1	26.5	8.0	23.4	6.9	ГО	5.3		2.6	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	SR4(N)	9:29	Bottom	3	2	26.5	8.0	23.5	6.9	5.9	5.4		2.4	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Surface	1	1	26.4	8.0	22.5	6.9		3.7		2.3	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Surface	1	2	26.4	8.0	22.4	6.9	6.4	3.7		2.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Middle	2	1					6.4		4.2		2.6
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Middle	2	2]		4.2		2.6
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Bottom	3	1	26.4	8.0	22.8	6.8	6.2	3.9		2.8]
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS8	9:34	Bottom	3	2	26.4	8.0	22.8	6.8	6.3	3.9		3.2]
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Surface	1	1	26.3	8.0	23.1	6.8		3.9		3.2	
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Surface	1	2	26.3	8.0	23.1	6.8		3.8		2.9]
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Middle	2	1					6.4		4 7		25
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Middle	2	2]		4.7		2.5
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Bottom	3	1	26.3	8.0	23.3	6.7	F 7	4.7		3.8	1
TMCLKL	HY/2012/07	2019/05/24	Mid-Flood	IS(Mf)9	9:42	Bottom	3	2	26.3	8.0	23.3	6.7	5.7	4.7		4.2]

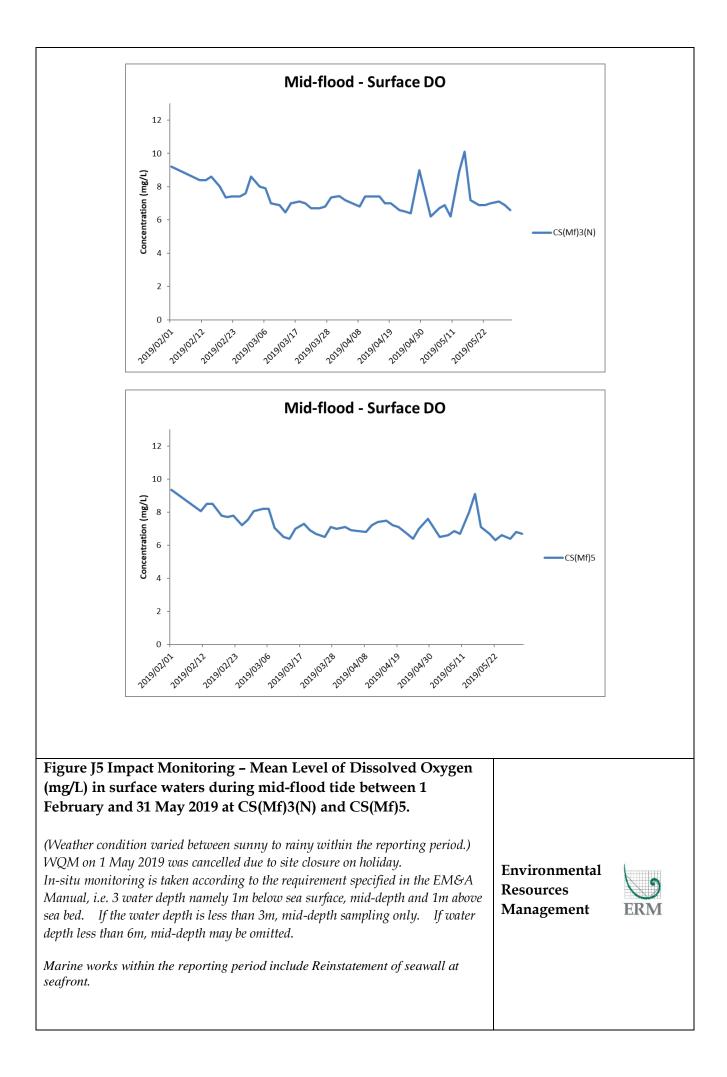
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Surface	1	1	26.6	8.0	22.5	6.8		3.9		0.6	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Surface	1	2	26.6	7.9	22.7	6.8	6.6	4.0		<0.5	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Middle	2	1	26.6	8.0	22.2	6.8	0.0	6.9	6.5	1.0	0.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Middle	2	2	26.6	7.9	22.5	6.8		6.9	0.5	0.9	0.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Bottom	3	1	26.6	8.0	22.6	6.8	6.5	8.6		1.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)5	8:00	Bottom	3	2	26.6	7.9	22.9	6.8	0.5	8.7		0.6	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Surface	1	1	26.6	8.0	17.6	7.0		2.8		3.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Surface	1	2	26.6	8.0	17.6	7.0	6.5	2.9		2.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Middle	2	1	26.6	8.0	17.5	7.0	0.5	2.6	2.9	2.8	3.3
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Middle	2	2	26.6	8.0	17.5	7.0		2.6	2.9	2.6	5.5
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Bottom	3	1	26.7	8.0	17.2	7.0	6.6	3.3		4.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	CS(Mf)3(N)	9:15	Bottom	3	2	26.7	8.0	17.2	7.0	0.0	3.3		4.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Surface	1	1	26.6	8.1	21.6	6.8		4.5		1.3	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Surface	1	2	26.6	7.9	21.9	6.8	6.6	4.4		1.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Middle	2	1					0.0		6.7		1.8
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Middle	2	2							0.7		1.0
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Bottom	3	1	26.6	8.1	22.0	6.8	6.6	8.9		2.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)16	8:28	Bottom	3	2	26.6	8.0	22.2	6.7	0.0	8.9		2.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Surface	1	1	26.6	8.1	22.1	6.7		3.6		1.2	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Surface	1	2	26.6	7.9	22.4	6.6	6.8	3.7		1.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Middle	2	1					0.8		3.9		1.4
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Middle	2	2							5.5		
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Bottom	3	1	26.6	8.1	22.3	6.7	6.4	4.2		1.5	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4a	8:35	Bottom	3	2	26.6	7.9	22.5	6.7	0.4	4.1		1.6	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Surface	1	1	26.5	8.1	21.7	6.6		4.1		1.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Surface	1	2	26.5	7.9	22.0	6.6	6.1	4.2		1.9	-
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Middle	2	1					012		4.0		2.0
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Middle	2	2									
	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Bottom	3	1	26.5	8.1	21.6	6.6	6.0	3.8		2.4	-
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	SR4(N)	8:39	Bottom	3	2	26.5	7.9	21.9	6.6		4.0		2.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Surface	1	1	26.5	8.1	22.2	6.8		3.3		2.0	-
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Surface	1	2	26.5	8.0	22.4	6.7	6.6	3.2		2.3	-
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Middle	2	1							3.6		2.3
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Middle	2	2									
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Bottom	3	1	26.5	8.1	21.8	6.7	6.5	3.9		2.5	-
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS8	8:45	Bottom	3	2	26.5	8.0	22.0	6.7		3.9		2.3	
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Surface	1	1	26.5	8.1	18.8	7.1	4	5.8		2.1	4
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Surface	1	2	26.4	8.0	19.0	7.0	6.7	5.9		2.2	4
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Middle	2	1							5.4		1.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Middle	2	2									4
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Bottom	3	1	26.4	8.1	17.6	7.1	6.7	4.8		2.1	4
TMCLKL	HY/2012/07	2019/05/27	Mid-Ebb	IS(Mf)9	8:53	Bottom	3	2	26.4	8.0	17.8	7.1		4.9		2.1	

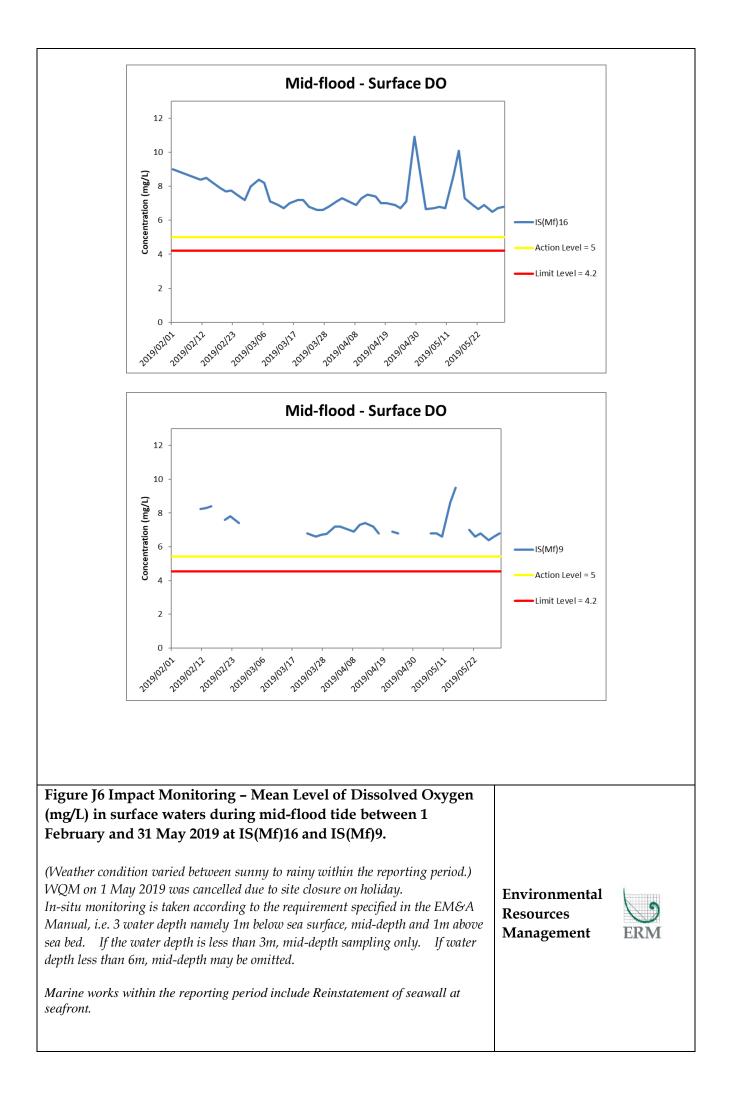
Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Surface	1	1	26.5	8.0	21.0	6.4		3.2		3.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Surface	1	2	26.5	7.9	21.2	6.4	6.7	3.2		2.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Middle	2	1	26.2	8.0	24.6	5.9	0.7	3.5	3.4	2.8	3.3
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Middle	2	2	26.2	7.9	24.9	5.8		3.7	5.4	2.6	5.5
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Bottom	3	1	25.7	8.0	28.3	5.6	6.5	3.5		4.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)5	12:59	Bottom	3	2	25.8	7.9	28.6	5.5	0.5	3.4		4.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Surface	1	1	26.6	8.0	15.3	7.1		6.1		2.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Surface	1	2	26.6	8.0	15.3	7.1	6.9	6.3		2.6	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Middle	2	1	26.6	8.0	15.2	7.1	0.9	4.0	5.9	3.4	2.2
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Middle	2	2	26.6	8.0	15.2	7.1		4.0	5.9	3.0	3.3
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Bottom	3	1	26.6	8.0	15.4	7.1	6.0	7.4		4.3	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	CS(Mf)3(N)	11:21	Bottom	3	2	26.6	8.0	15.4	7.1	6.9	7.5		3.9	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Surface	1	1	26.5	8.0	21.8	6.5		3.8		2.5	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Surface	1	2	26.5	7.9	22.1	6.5	67	3.8		2.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Middle	2	1					6.7				2.2
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Middle	2	2							4.4		3.3
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Bottom	3	1	26.4	8.0	23.4	6.1	6.7	4.9		4.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)16	12:14	Bottom	3	2	26.4	7.9	23.5	6.1	6.7	5.0		3.8	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Surface	1	1	26.5	8.0	22.8	5.8		4.4		2.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Surface	1	2	26.5	7.9	23.0	5.7	6.6	4.7		2.2	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Middle	2	1					6.6		4 1		2 7
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Middle	2	2							4.1		2.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Bottom	3	1	26.5	8.0	22.2	6.3	6.9	3.6		2.8	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4a	12:02	Bottom	3	2	26.5	7.9	22.5	6.0	0.9	3.8		3.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Surface	1	1	26.5	8.0	22.4	5.9		5.3		3.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Surface	1	2	26.5	7.9	22.7	5.9	6.6	5.4		3.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Middle	2	1					0.0		5.0		3.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Middle	2	2							5.0		5.7
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Bottom	3	1	26.4	8.0	22.5	5.9	6.6	4.6		3.8	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	SR4(N)	11:57	Bottom	3	2	26.4	7.9	22.8	5.9	0.0	4.6		4.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Surface	1	1	26.5	8.0	21.4	6.4		3.3		2.4	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Surface	1	2	26.5	7.9	21.7	6.4	6.6	3.3		2.2	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Middle	2	1					0.0		4.2		26
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Middle	2	2							4.2		2.6
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Bottom	3	1	26.5	8.0	22.4	6.3	6.6	5.0		2.9	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS8	11:48	Bottom	3	2	26.5	7.9	22.7	6.3	0.0	5.3		2.7	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Surface	1	1	26.5	8.0	21.1	6.4		3.9		3.0	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Surface	1	2	26.5	7.9	21.3	6.4	6.6	4.1		2.6	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Middle	2	1					0.0		4.7		2.2
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Middle	2	2							-+./		2.2
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Bottom	3	1	26.3	8.0	24.6	5.7	6.6	5.3		3.1	
TMCLKL	HY/2012/07	2019/05/27	Mid-Flood	IS(Mf)9	11:38	Bottom	3	2	26.3	7.9	25.1	5.7	0.0	5.5		2.5	

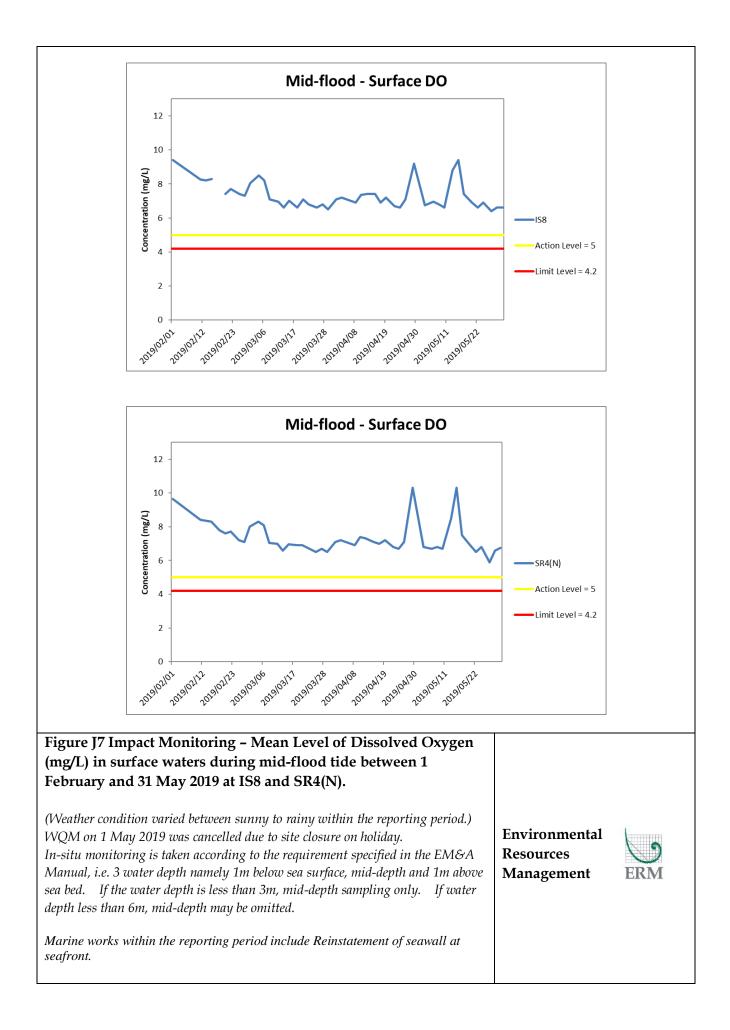

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Surface	1	1	26.5	8.0	21.3	6.6		1.7		0.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Surface	1	2	26.5	8.0	21.3	6.6	6.6	1.7		0.9	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Middle	2	1	26.4	8.0	21.3	6.5	0.0	2.2	1.8	<0.5	0.7
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Middle	2	2	26.4	8.0	21.3	6.6		2.2	1.0	0.6	0.7
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Bottom	3	1	26.4	8.0	23.2	6.5	6.5	1.6		0.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Bottom	3	2	26.4	8.0	23.2	6.5	0.5	1.6		1.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Surface	1	1	26.6	7.9	19.3	6.5		4.6		2.4	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Surface	1	2	26.6	7.9	19.3	6.5	6.5	4.6		2.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Middle	2	1	26.6	7.9	19.3	6.5	0.5	4.5	5.1	3.2	2.7
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Middle	2	2	26.6	7.9	19.3	6.5		4.5	5.1	2.7	2.7
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Bottom	3	1	26.6	7.9	19.3	6.6	6.6	6.1		3.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Bottom	3	2	26.6	7.9	19.3	6.6	0.0	6.1		2.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Surface	1	1	26.4	8.0	19.0	6.6		3.2		2.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Surface	1	2	26.4	8.0	19.0	6.6	6.6	3.2		2.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Middle	2	1					0.0		2 5		20
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Middle	2	2							3.5		2.8
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Bottom	3	1	26.4	8.0	19.1	6.6	6.6	3.7		2.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Bottom	3	2	26.4	8.0	19.1	6.6	0.0	3.7		2.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Surface	1	1	26.6	8.0	14.7	6.8		7.6		5.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Surface	1	2	26.6	8.0	14.7	6.8	6.8	7.6		5.2	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Middle	2	1					0.8		5.9		4.3
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Middle	2	2							5.5		4.5
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Bottom	3	1	26.5	8.0	19.7	6.4	6.4	4.2		3.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Bottom	3	2	26.5	8.0	19.7	6.4	0.4	4.2		4.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Surface	1	1	26.4	7.9	17.4	6.1		5.4		6.2	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Surface	1	2	26.4	7.9	17.4	6.1	6.1	5.4		5.9	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Middle	2	1					0.1		5.8		7.1
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Middle	2	2							5.6		,
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Bottom	3	1	26.4	7.9	19.8	6.0	6.0	6.2		8.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Bottom	3	2	26.4	7.9	19.8	6.0	0.0	6.2		8.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Surface	1	1	26.5	8.0	17.5	6.6		5.6		8.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Surface	1	2	26.5	8.0	17.5	6.6	6.6	5.6		7.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Middle	2	1					0.0		6.2		9.1
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Middle	2	2							0.2		5.1
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Bottom	3	1	26.4	8.0	18.9	6.5	6.5	6.7		10.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Bottom	3	2	26.4	8.0	18.9	6.5	0.5	6.7		10.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Surface	1	1	26.3	8.0	18.2	6.7		4.0		4.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Surface	1	2	26.3	8.0	18.2	6.7	6.7	3.9		4.5	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Middle	2	1							4.5		3.6
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Middle	2	2									
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Bottom	3	1	26.3	8.0	17.8	6.7	6.7	5.1		5.2	
TMCLKL	HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Bottom	3	2	26.3	8.0	17.8	6.7	0.7	5.1		5.7	

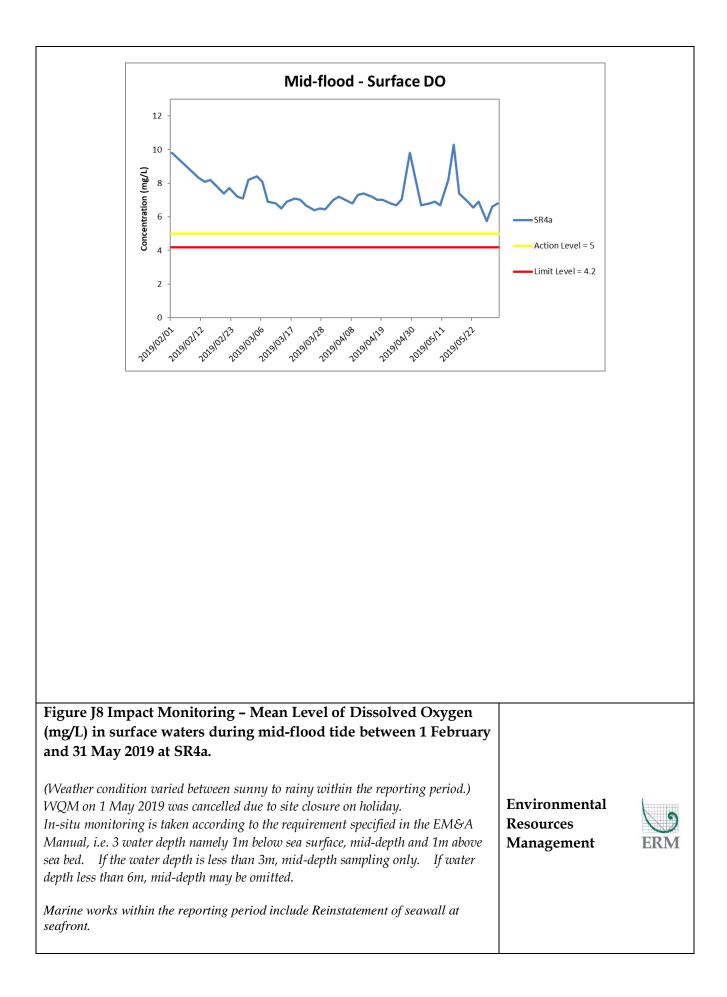

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Surface	1	1	26.0	8.1	20.9	6.8		2.6		3.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Surface	1	2	26.0	8.1	20.9	6.8	6.7	2.6		3.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Middle	2	1	26.1	8.0	21.1	6.6	0.7	4.7	3.4	3.1	3.3
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Middle	2	2	26.1	8.0	21.1	6.7		4.7	5.4	3.2	5.5
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Bottom	3	1	25.9	8.0	22.9	6.5	6.5	2.9		3.6	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Bottom	3	2	25.9	8.0	22.9	6.5	0.5	2.8		3.5	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Surface	1	1	26.6	7.9	18.9	6.9		3.9		1.2	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Surface	1	2	26.6	7.9	18.9	6.9	6.9	3.9		1.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Middle	2	1	26.6	7.9	18.9	6.8	0.9	3.9	2.0	1.3	1.4
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Middle	2	2	26.6	7.9	18.9	6.8		3.9	3.9	1.4	1.4
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Bottom	3	1	26.6	7.9	19.0	6.9	6.0	4.0		1.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Bottom	3	2	26.6	7.9	19.0	6.9	6.9	4.0		1.6	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Surface	1	1	26.3	8.0	19.7	6.7		3.5		3.6	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Surface	1	2	26.3	8.0	19.7	6.7	67	3.5		4.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Middle	2	1					6.7		6.2		
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Middle	2	2							6.2		4.4
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Bottom	3	1	26.4	8.0	19.8	6.7	6.7	8.9		4.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Bottom	3	2	26.4	8.0	19.8	6.7	0.7	9.0		5.1	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Surface	1	1	26.5	8.0	19.8	6.6		3.4		5.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Surface	1	2	26.5	8.0	19.8	6.6	66	3.4		6.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Middle	2	1					6.6		8.3		13.1
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Middle	2	2							0.5		15.1
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Bottom	3	1	25.9	8.0	18.8	6.9	6.9	13.3		16.5	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Bottom	3	2	25.9	8.0	18.8	6.8	0.9	13.2		16.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Surface	1	1	26.2	8.0	18.3	6.6		12.4		25.0	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Surface	1	2	26.1	8.0	18.3	6.6	6.6	12.3		25.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Middle	2	1					0.0		12.1		24.4
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Middle	2	2							12.1		27.7
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Bottom	3	1	26.2	8.0	18.9	6.6	6.6	11.8		23.2	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Bottom	3	2	26.2	8.0	18.9	6.6	0.0	11.8		23.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Surface	1	1	26.3	8.0	20.2	6.6		3.5		2.8	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Surface	1	2	26.2	8.0	20.0	6.6	6.6	3.5		3.3	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Middle	2	1					0.0		5.3		2.8
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Middle	2	2							5.5		2.0
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Bottom	3	1	26.3	8.0	20.2	6.6	6.6	7.1		2.4	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Bottom	3	2	26.3	8.0	20.2	6.6	0.0	7.0		2.6	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Surface	1	1	26.3	8.0	19.9	6.6		6.1		3.9	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Surface	1	2	26.4	8.0	19.9	6.6	6.6	6.1		3.7	
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Middle	2	1					0.0		5.3		2.9
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Middle	2	2							5.5		2.5
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Bottom	3	1	26.2	8.0	19.7	6.6	6.6	4.5		3.7	1
TMCLKL	HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Bottom	3	2	26.2	8.0	19.7	6.6	0.0	4.6		3.9	

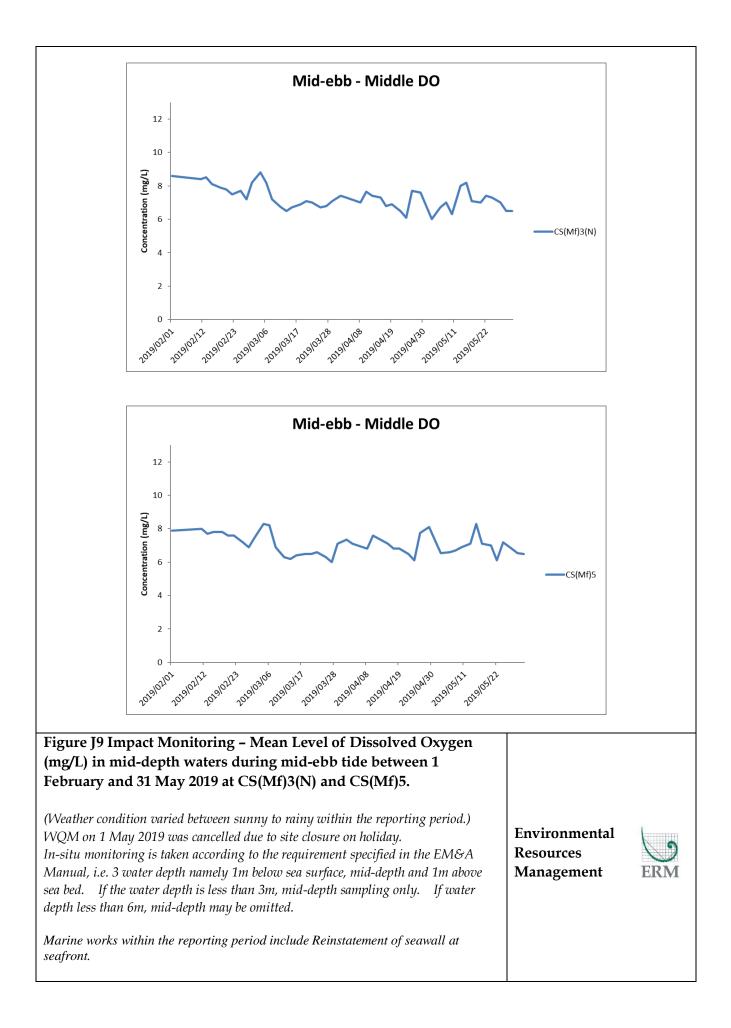

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Surface	1	1	26.1	7.9	20.0	6.5		2.3		1.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Surface	1	2	26.1	7.9	20.0	6.5	6.5	2.3		1.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Middle	2	1	26.1	7.9	20.5	6.5	0.5	2.3	2.4	2.2	2.7
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Middle	2	2	26.1	7.9	20.5	6.5		2.4	2.4	2.5	2.7
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Bottom	3	1	26.0	7.9	23.0	6.1	6.1	2.6		4.1	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)5	10:28	Bottom	3	2	26.0	7.9	23.0	6.1	0.1	2.6		4.3	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Surface	1	1	26.6	7.9	17.8	6.5		2.5		2.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Surface	1	2	26.6	7.9	17.8	6.5	6.5	2.5		2.2	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Middle	2	1	26.5	7.9	17.9	6.5	0.5	2.3	2 5	1.8	2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Middle	2	2	26.5	7.9	17.9	6.5		2.6	2.5	2.2	2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Bottom	3	1	26.5	7.9	17.8	6.6	6.6	2.4		1.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	CS(Mf)3(N)	11:28	Bottom	3	2	26.5	7.9	17.8	6.6	6.6	2.5		1.9	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Surface	1	1	26.1	8.0	22.6	6.4		3.7		2.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Surface	1	2	26.1	8.0	22.6	6.4	6.4	3.7		2.8	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Middle	2	1					6.4		2 5		2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Middle	2	2							3.5		3.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Bottom	3	1	26.2	8.0	20.1	6.5	6.5	3.2		3.3	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)16	11:58	Bottom	3	2	26.2	8.0	20.1	6.5	0.5	3.2		3.1	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Surface	1	1	26.2	8.0	21.7	6.5		2.8		1.5	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Surface	1	2	26.2	8.0	21.7	6.5	6.5	2.8		1.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Middle	2	1					0.5		3.0		2.6
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Middle	2	2							5.0		2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Bottom	3	1	26.1	8.0	21.9	6.5	6.5	3.2		3.3	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4a	12:07	Bottom	3	2	26.1	8.0	21.9	6.5	0.5	3.2		2.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Surface	1	1	26.1	8.0	22.2	6.3		3.7		3.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Surface	1	2	26.1	8.0	22.2	6.3	6.3	3.7		3.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Middle	2	1					0.5		4.7		4.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Middle	2	2							4.7		4.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Bottom	3	1	26.1	8.0	22.1	6.5	6.5	5.7		4.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	SR4(N)	12:11	Bottom	3	2	26.1	8.0	22.1	6.5	0.5	5.5		5.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Surface	1	1	26.1	8.0	22.5	6.4		4.6		5.8	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Surface	1	2	26.2	8.0	22.5	6.4	6.4	4.4		5.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Middle	2	1					0.4		4.1		5.9
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Middle	2	2							4.1		5.5
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Bottom	3	1	26.2	8.0	22.1	6.5	6.5	3.7		6.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS8	12:16	Bottom	3	2	26.2	8.0	22.1	6.5	0.5	3.7		5.9	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Surface	1	1	26.2	8.0	22.1	6.7		3.1		2.5] 7
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Surface	1	2	26.1	8.0	22.1	6.7	6.7	3.2		2.1]
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Middle	2	1					0.7		3.5		2.6
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Middle	2	2							5.5		2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Bottom	3	1	26.1	8.0	22.3	6.6	6.7	3.9		5.6	
TMCLKL	HY/2012/07	2019/05/31	Mid-Ebb	IS(Mf)9	12:23	Bottom	3	2	26.1	8.0	22.3	6.7	0.7	3.9		5.7	

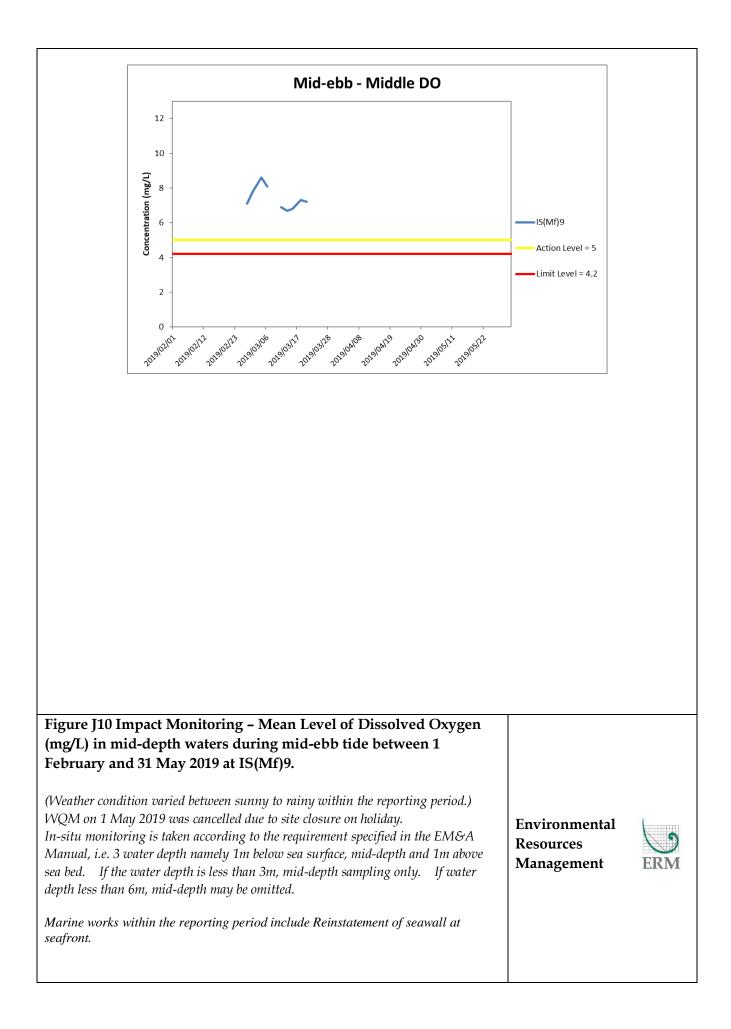

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Level Code	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Surface	1	1	26.1	8.0	20.6	6.7		2.5		2.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Surface	1	2	26.1	8.0	20.6	6.7	6.8	2.6		2.2	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Middle	2	1	26.0	8.0	20.0	6.8	0.0	2.7	2.8	1.8	2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Middle	2	2	26.0	8.0	20.0	6.8		2.8	2.0	2.2	2.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Bottom	3	1	26.1	8.0	20.9	6.8	6.8	2.7		1.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)5	17:39	Bottom	3	2	26.1	8.0	20.9	6.8	0.0	3.3		1.9	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Surface	1	1	26.6	8.0	13.7	6.6		3.7		2.8	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Surface	1	2	26.6	8.0	13.7	6.6	6.6	3.6		2.5	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Middle	2	1	26.5	8.0	15.5	6.6	0.0	3.3	- 3.4	2.2	2.4
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Middle	2	2	26.5	8.0	15.5	6.6		3.4	5.4	2.3	2.4
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Bottom	3	1	26.6	8.0	13.3	6.8	6.8	3.3		2.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	CS(Mf)3(N)	16:43	Bottom	3	2	26.6	8.0	13.3	6.8	0.8	3.3		2.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Surface	1	1	26.3	8.0	20.5	6.8		2.6		2.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Surface	1	2	26.3	8.0	20.5	6.8	6.8	2.7		3.1	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Middle	2	1					0.8		2.8		лл
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Middle	2	2							2.0		4.4
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Bottom	3	1	26.2	8.1	20.6	6.8	6.8	2.9		5.6	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)16	16:10	Bottom	3	2	26.2	8.1	20.6	6.8	0.8	2.9		6.2	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Surface	1	1	26.2	8.0	20.8	6.8		2.8		3.3	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Surface	1	2	26.2	8.0	20.8	6.8	6.8	2.8		3.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Middle	2	1					0.8		6.1		3.7
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Middle	2	2							0.1		5.7
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Bottom	3	1	26.2	8.0	20.8	6.9	6.9	9.4		4.1	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4a	16:01	Bottom	3	2	26.2	8.0	20.8	6.9	0.9	9.4		4.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Surface	1	1	26.2	8.0	21.0	6.7		5.9		2.9	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Surface	1	2	26.2	8.0	21.0	6.8	6.8	6.0		3.3	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Middle	2	1					0.8		7.1		3.4
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Middle	2	2							7.1		5.4
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Bottom	3	1	26.1	8.0	20.5	6.8	6.8	8.3		3.8	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	SR4(N)	15:57	Bottom	3	2	26.1	8.0	20.6	6.8	0.8	8.3		3.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Surface	1	1	26.2	8.0	20.8	6.6		4.1		5.2	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Surface	1	2	26.2	8.0	20.8	6.6	6.6	4.1		5.4	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Middle	2	1					0.0		4.1		5.6
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Middle	2	2							4.1		5.0
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Bottom	3	1	26.2	8.0	20.4	6.7	67	4.1		6.0	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS8	15:52	Bottom	3	2	26.2	8.0	20.4	6.7	6.7	4.0		5.7	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Surface	1	1	26.3	8.0	20.8	6.8		4.0		4.6	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Surface	1	2	26.3	8.0	20.8	6.8	6.8	4.1		4.5	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Middle	2	1					0.0			3.5	
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Middle	2	2							4.7		5.5
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Bottom	3	1	26.3	8.0	18.7	6.9	6.0	5.3]	4.6]
TMCLKL	HY/2012/07	2019/05/31	Mid-Flood	IS(Mf)9	15:44	Bottom	3	2	26.3	8.0	18.7	6.9	6.9	5.4		4.7	

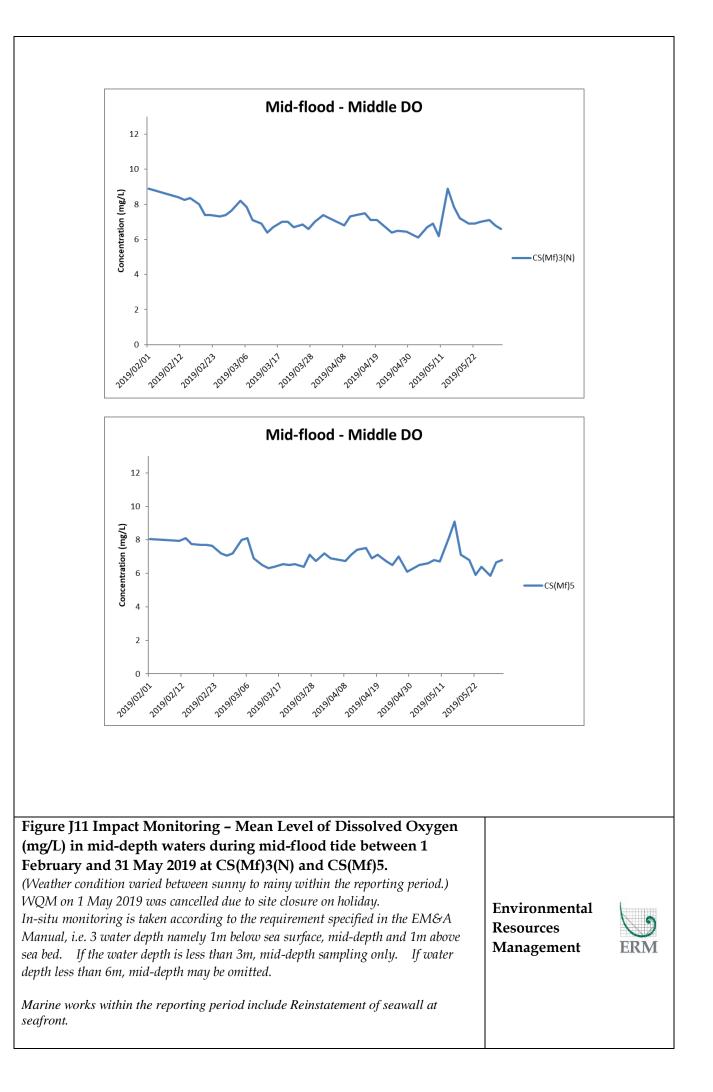


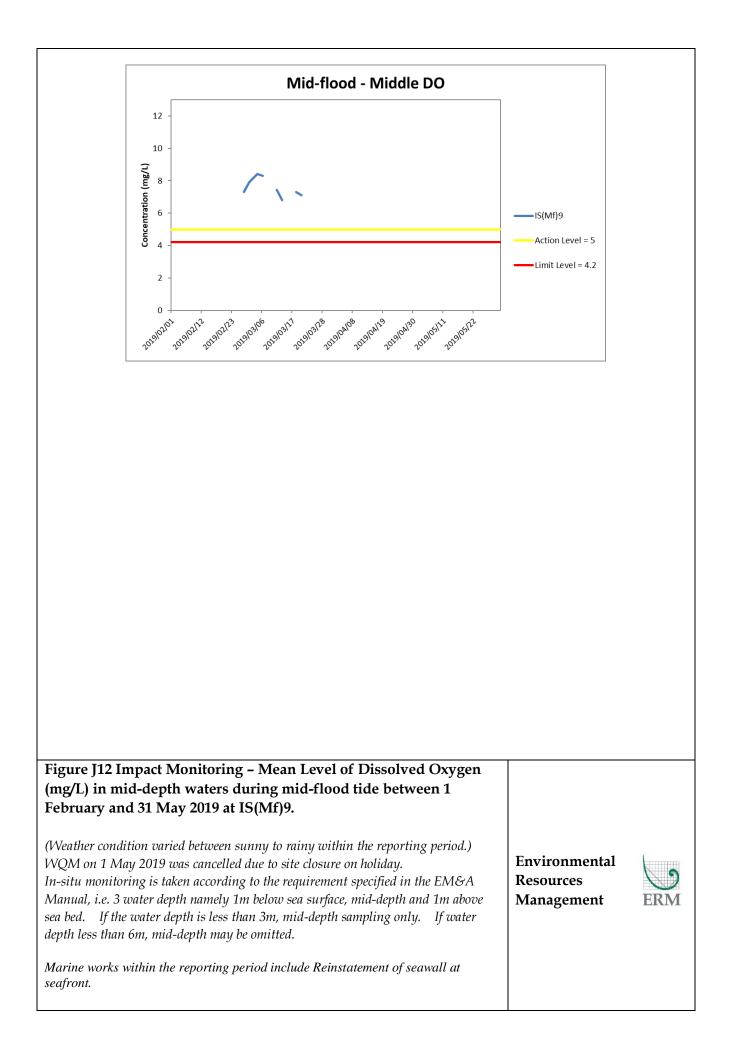


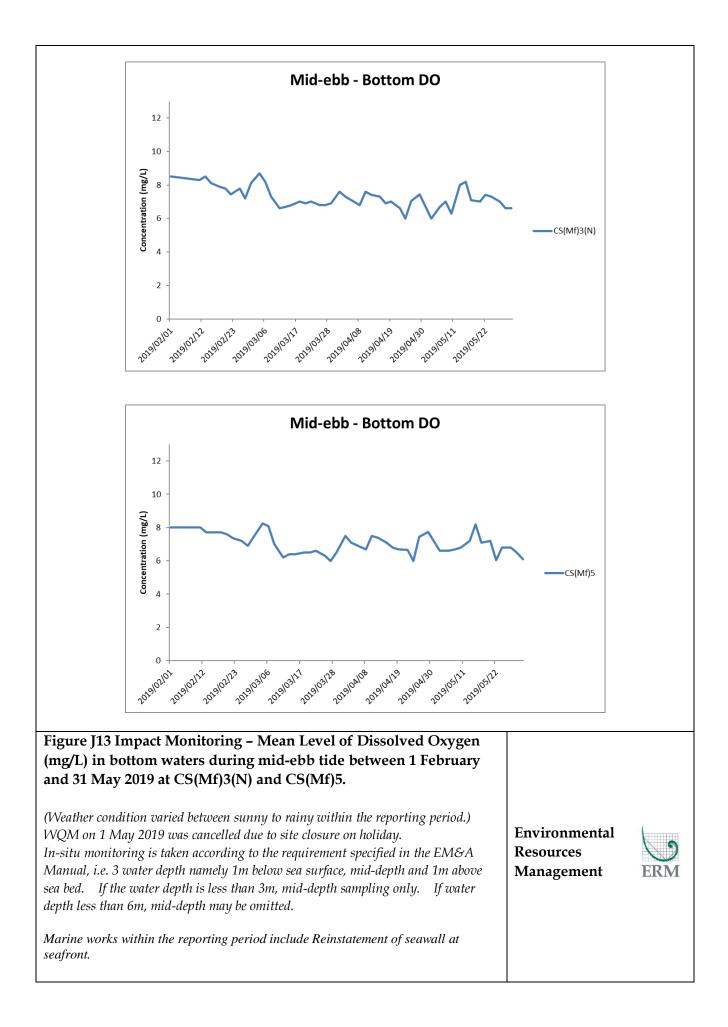


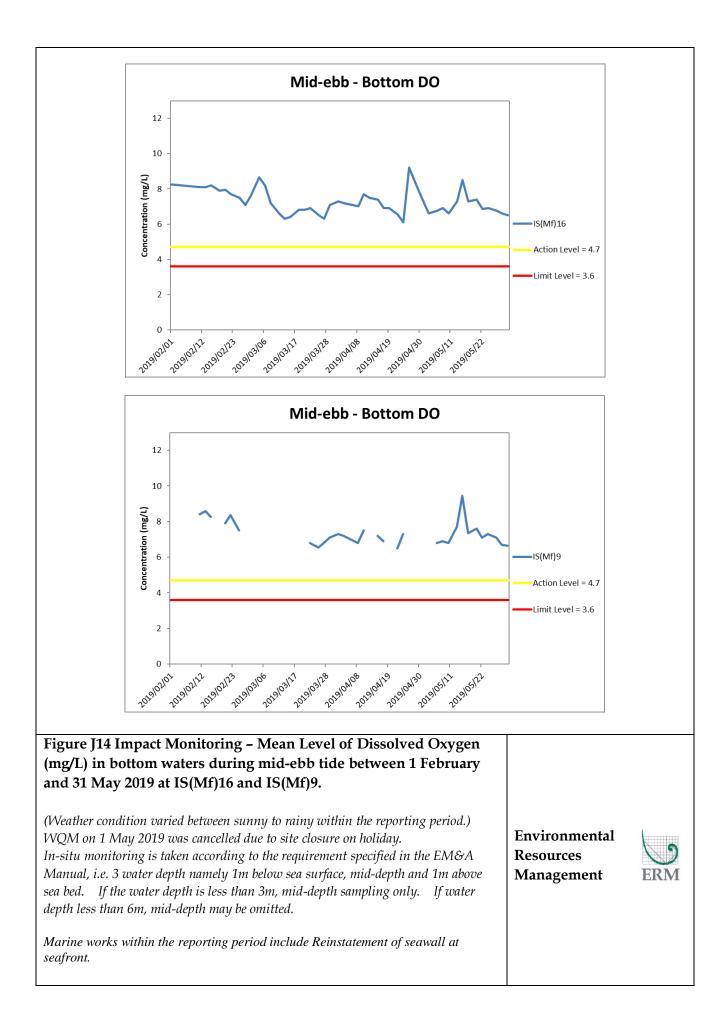


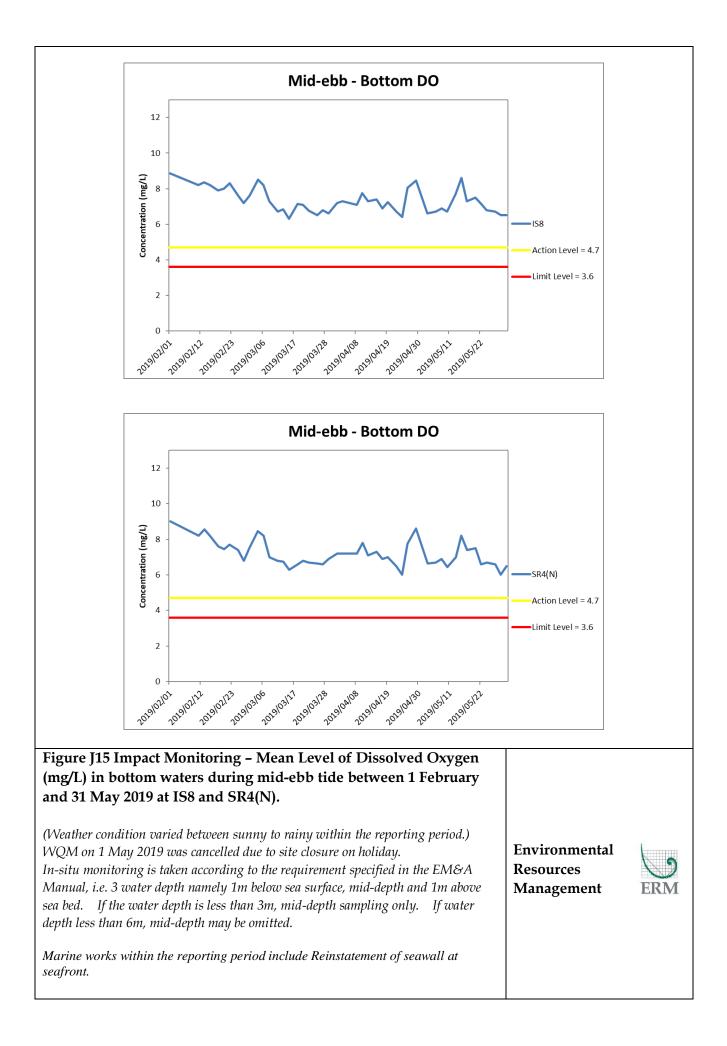


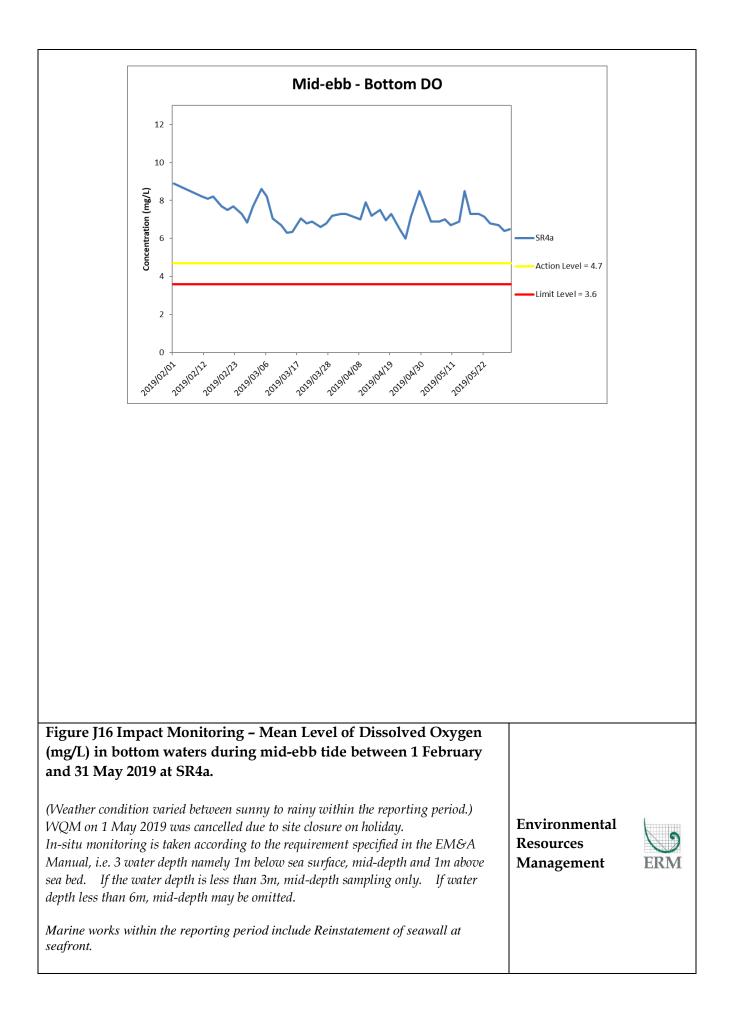


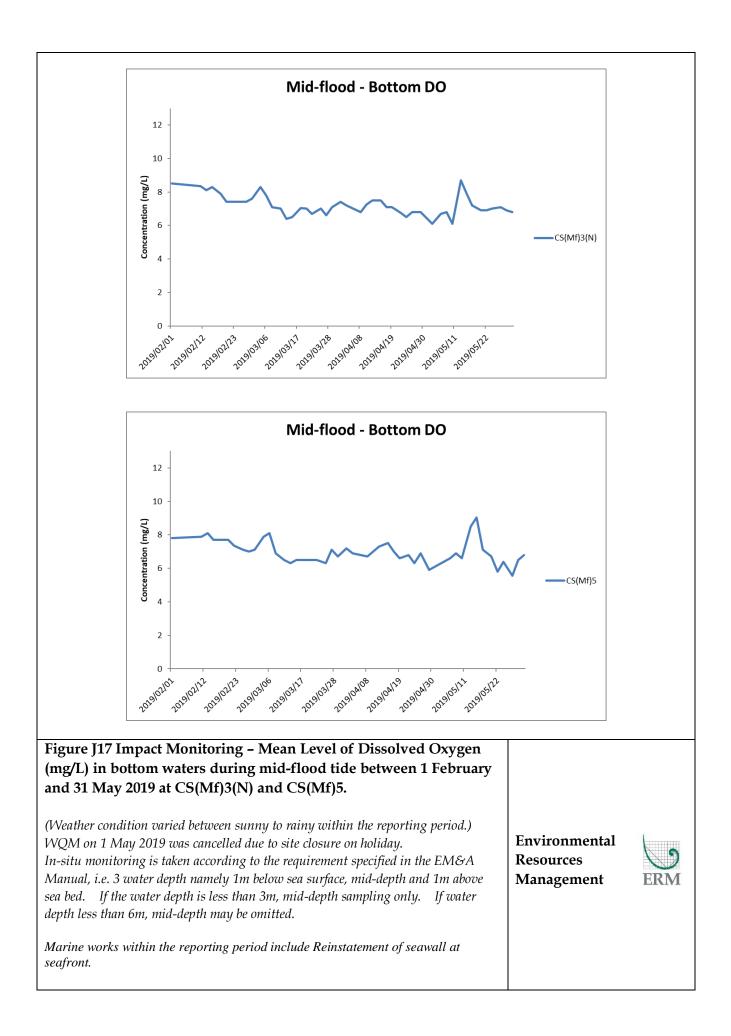


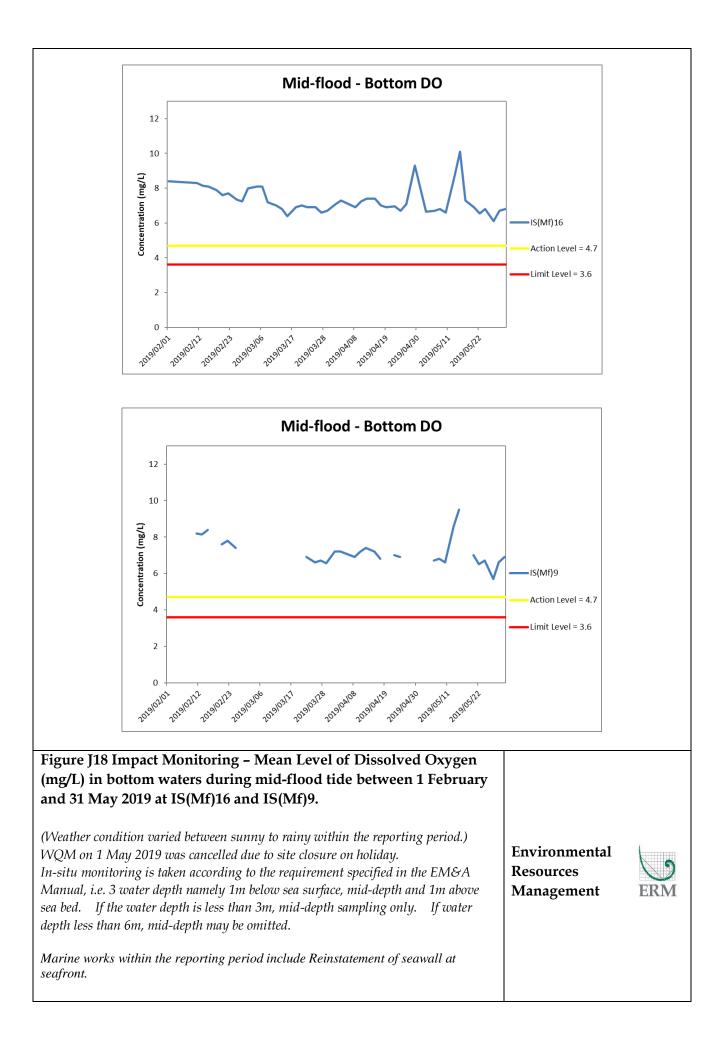


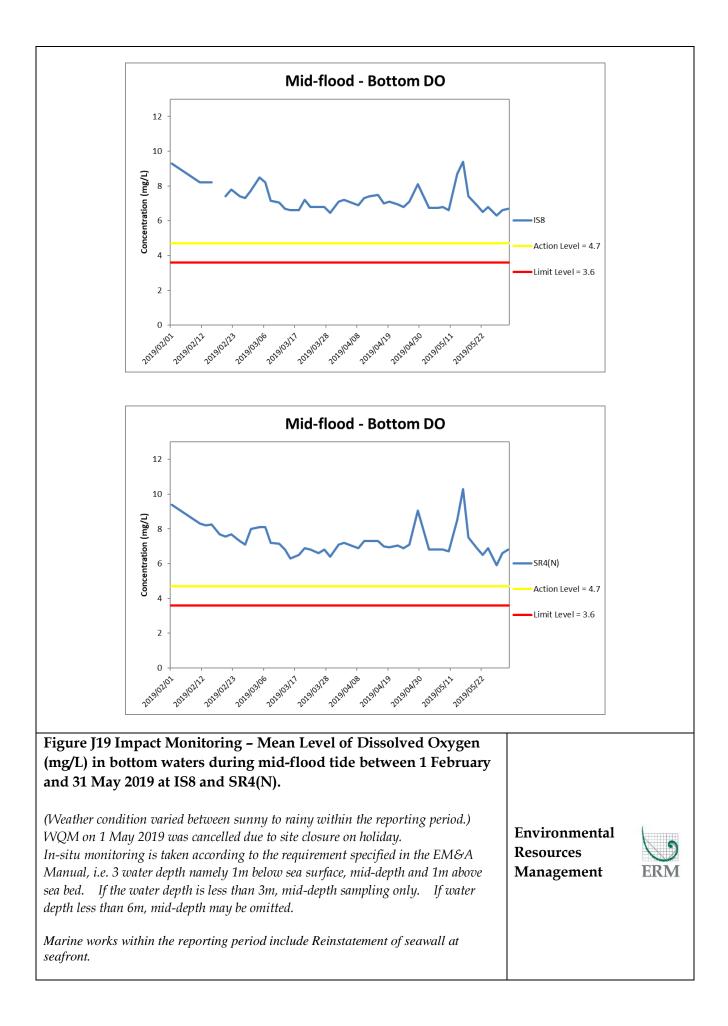


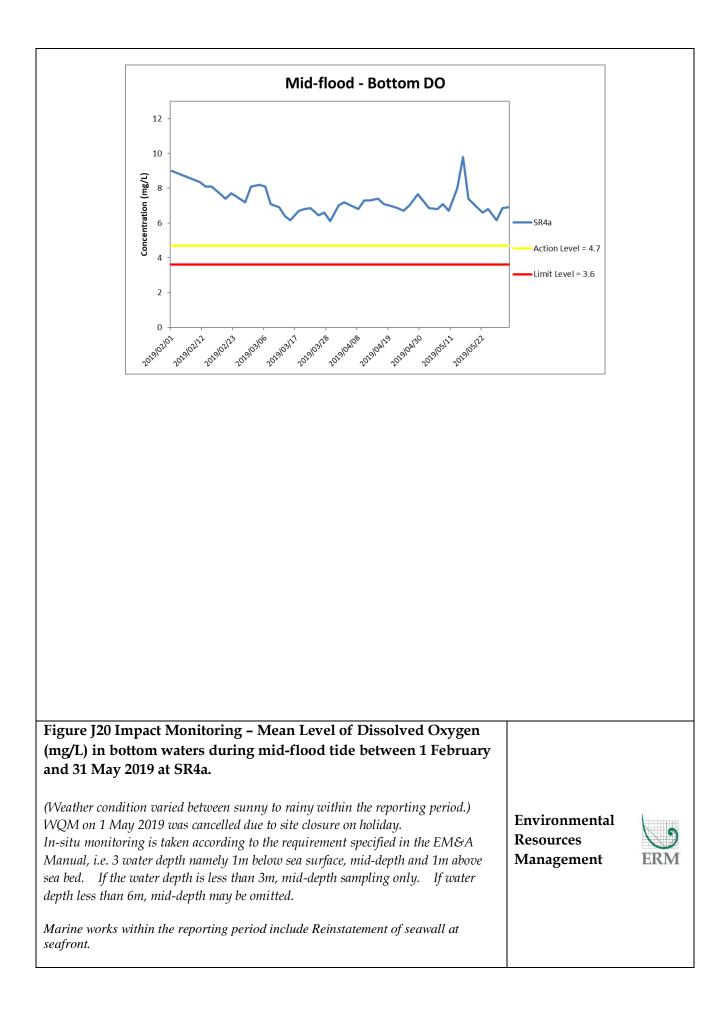


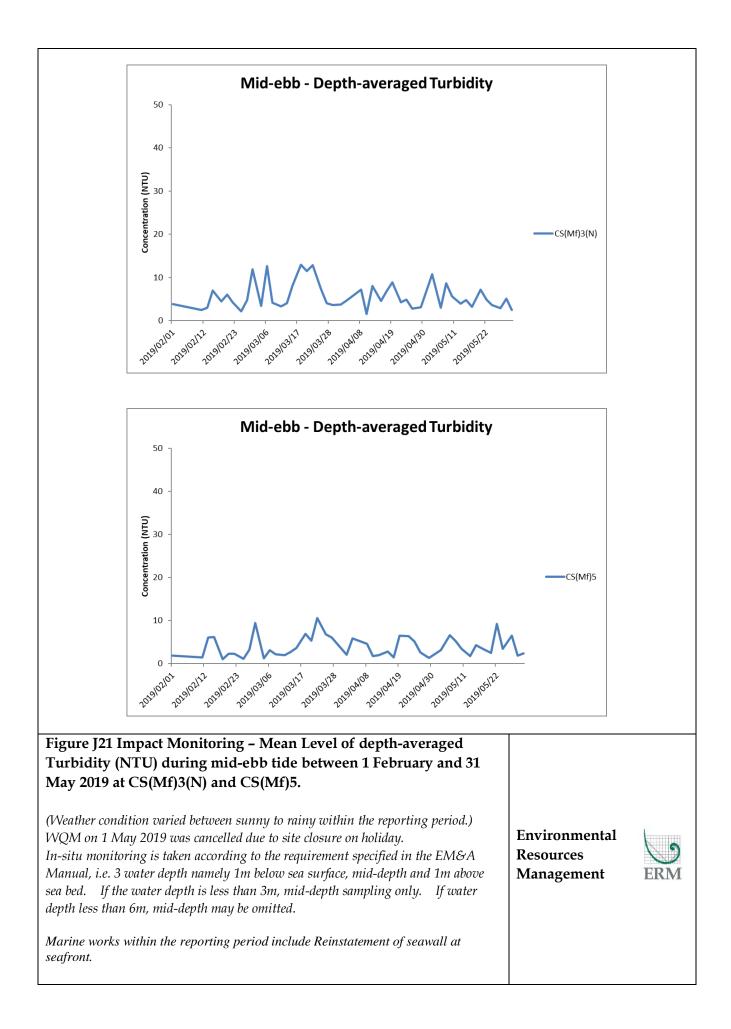


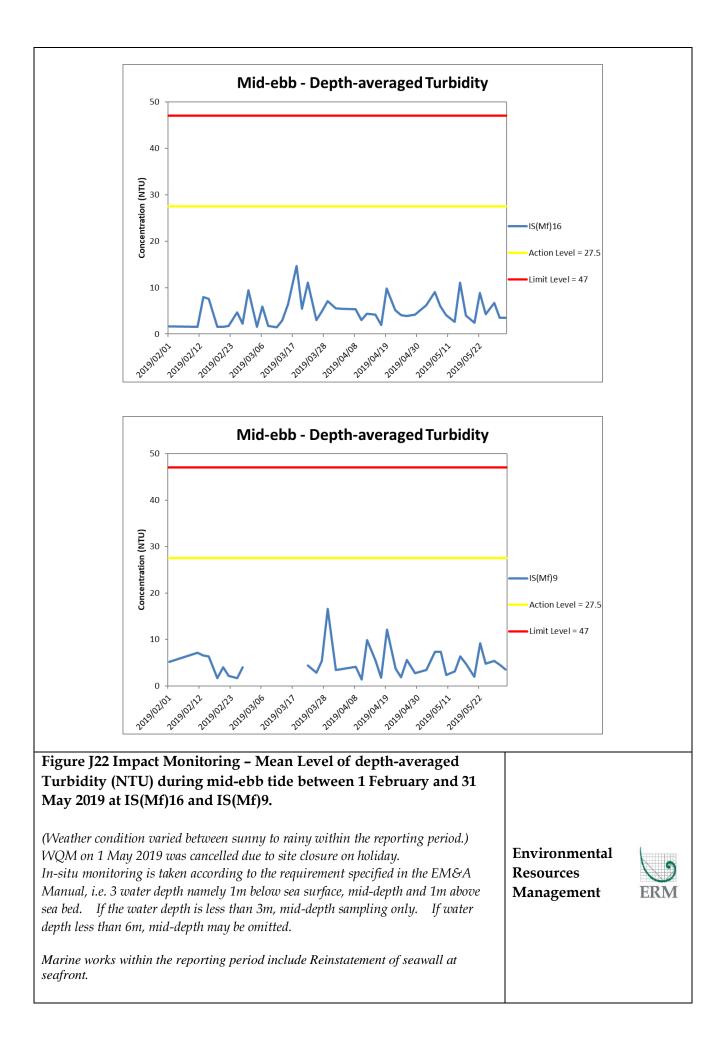


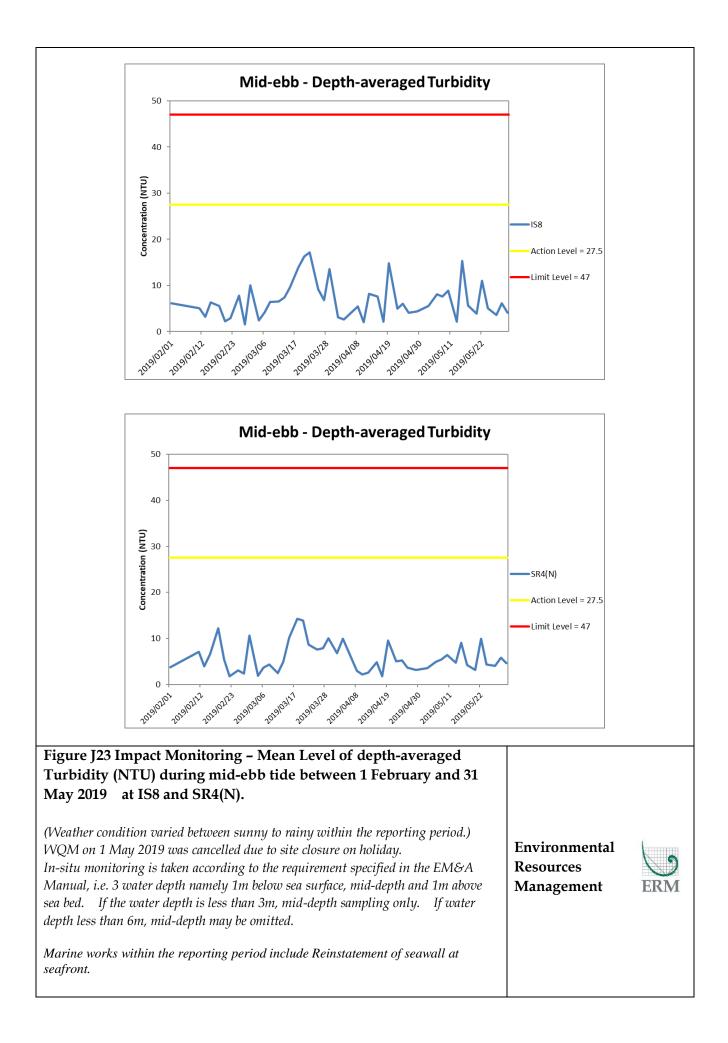


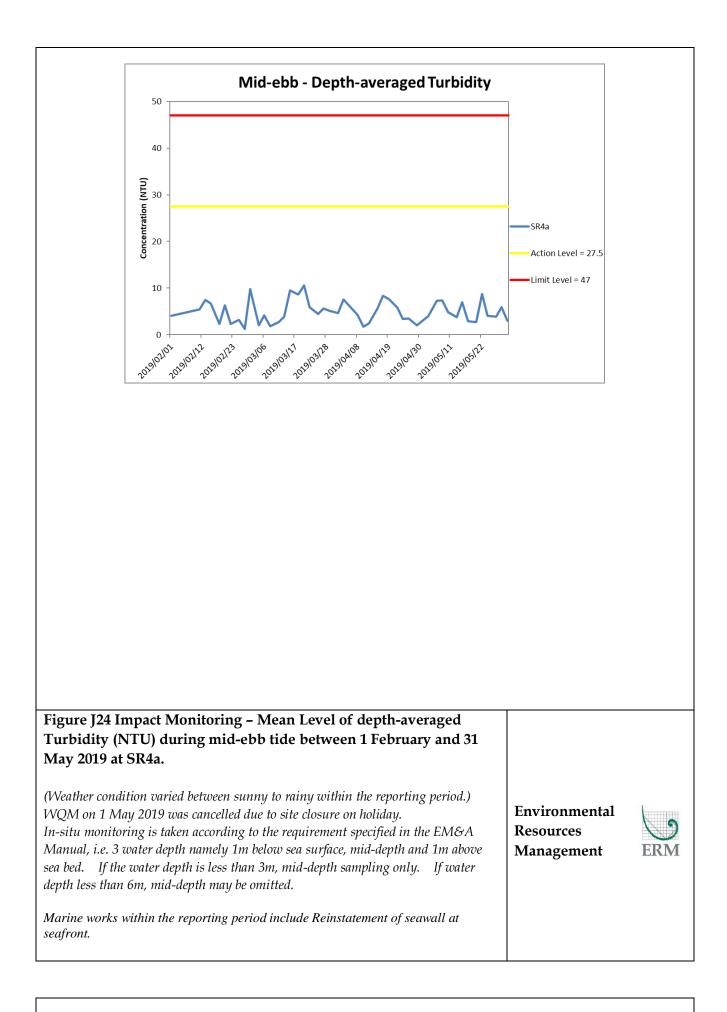


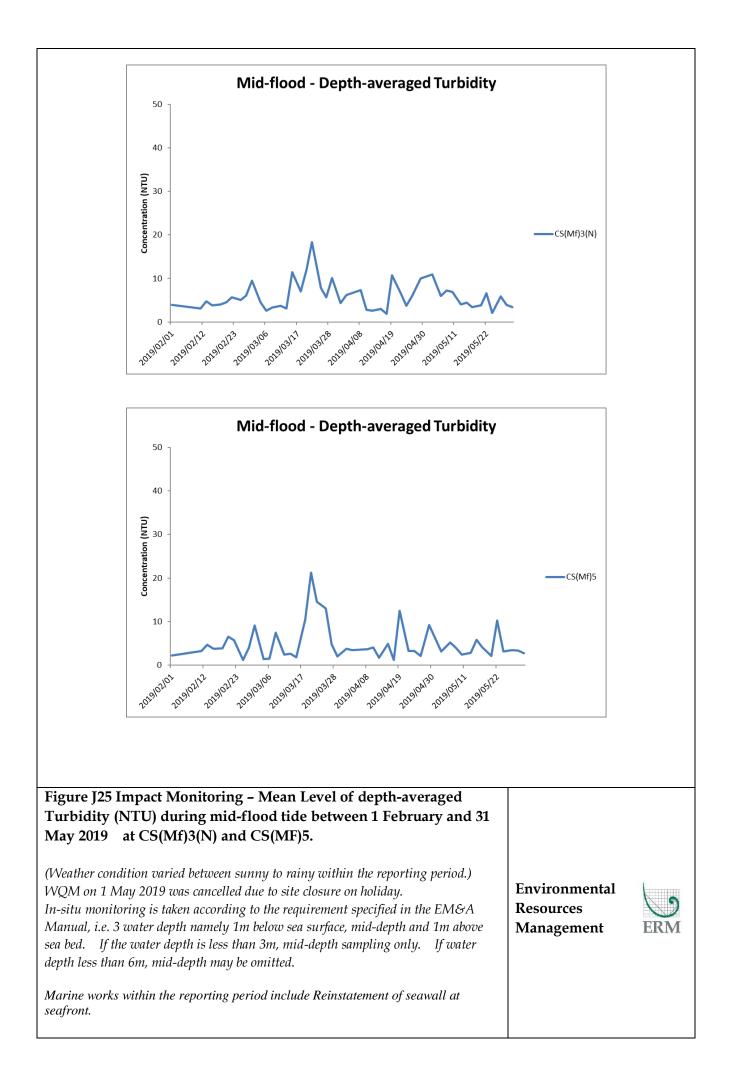


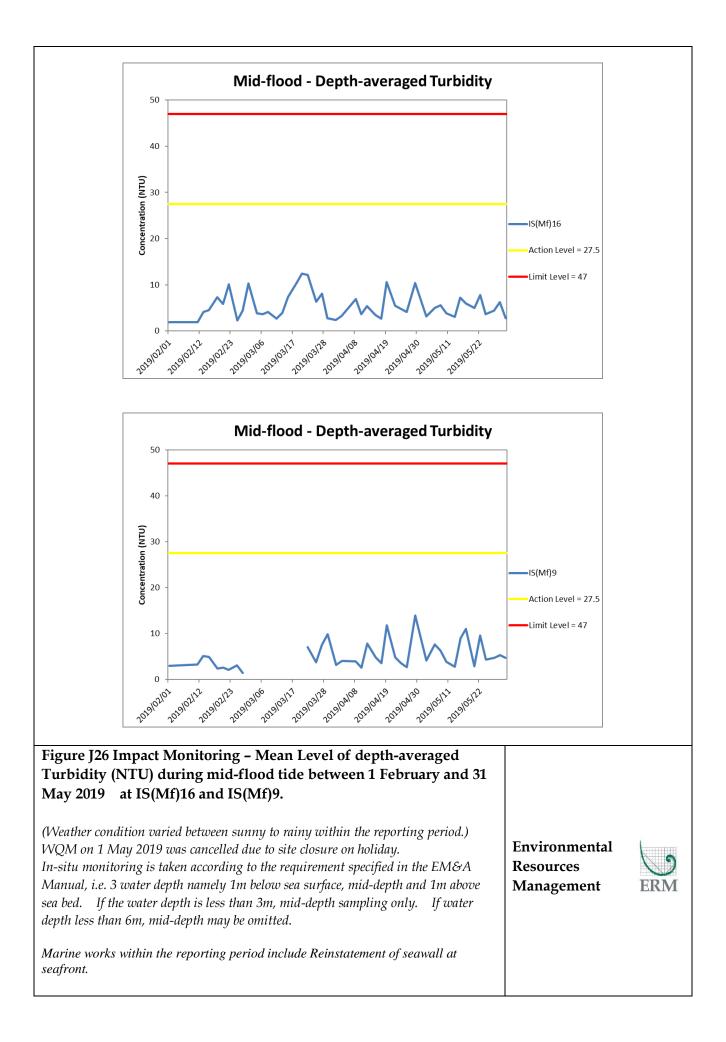


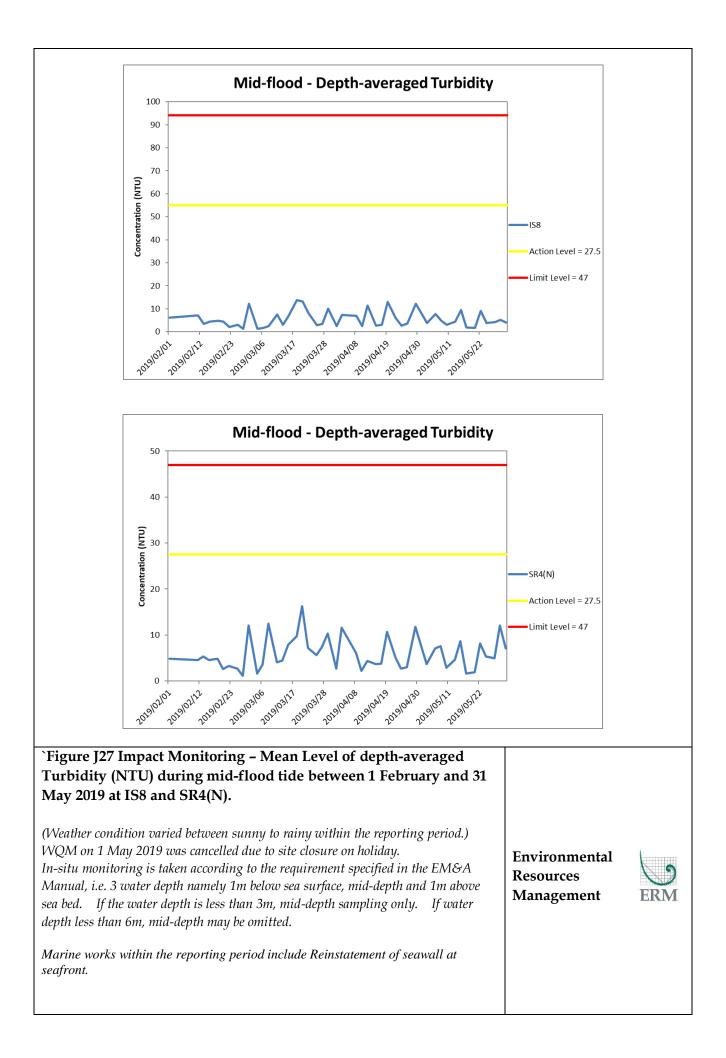


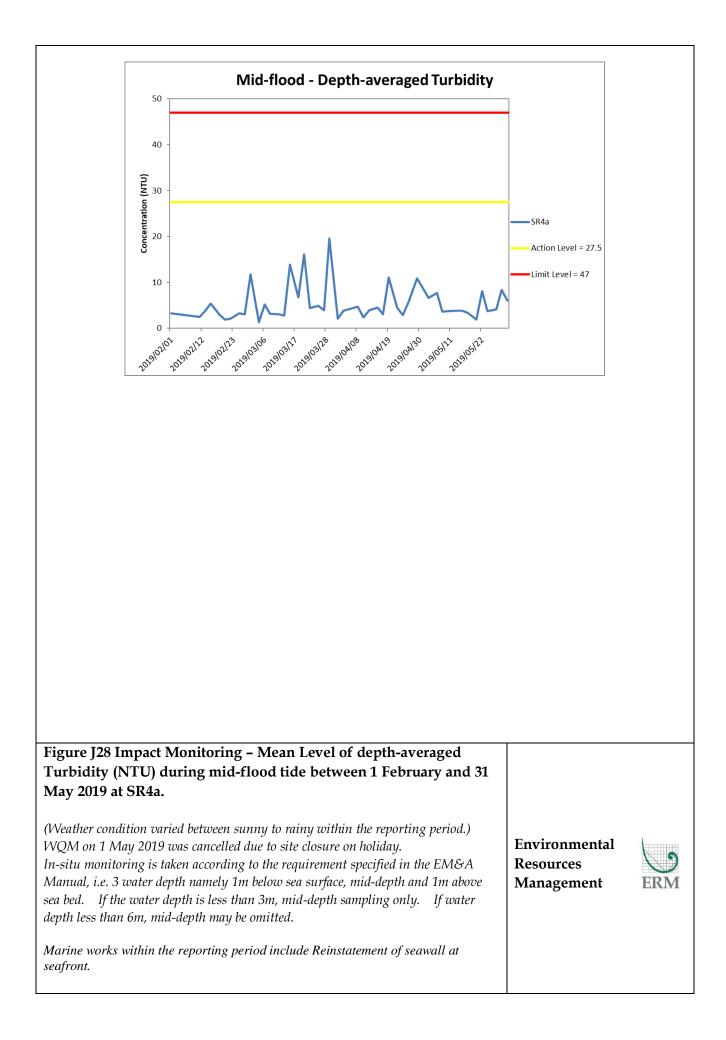


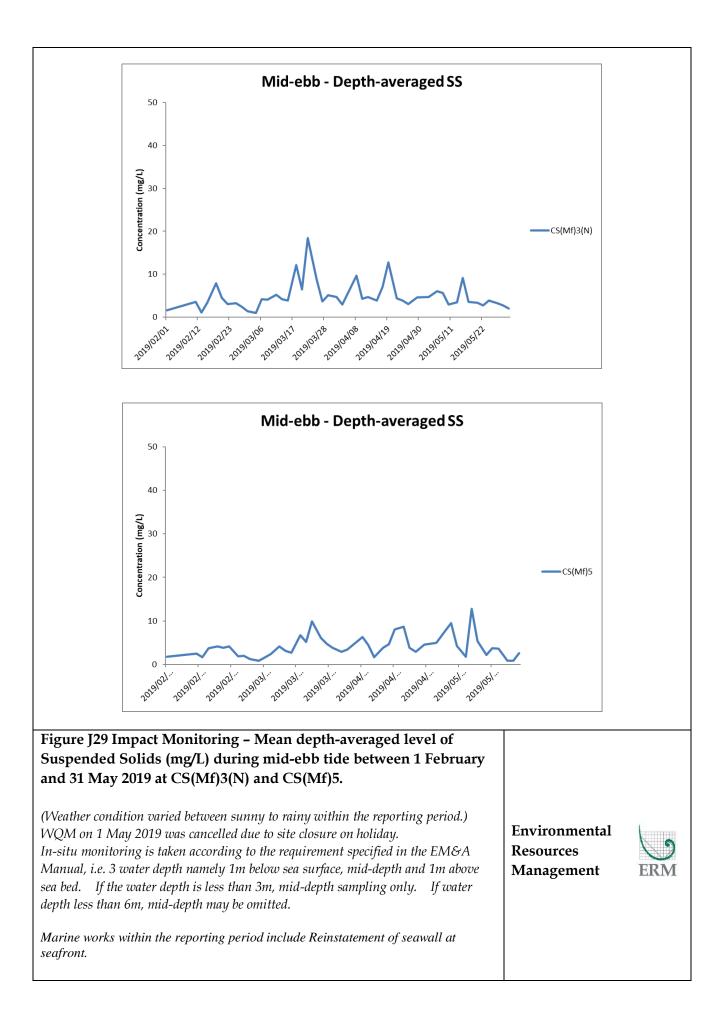


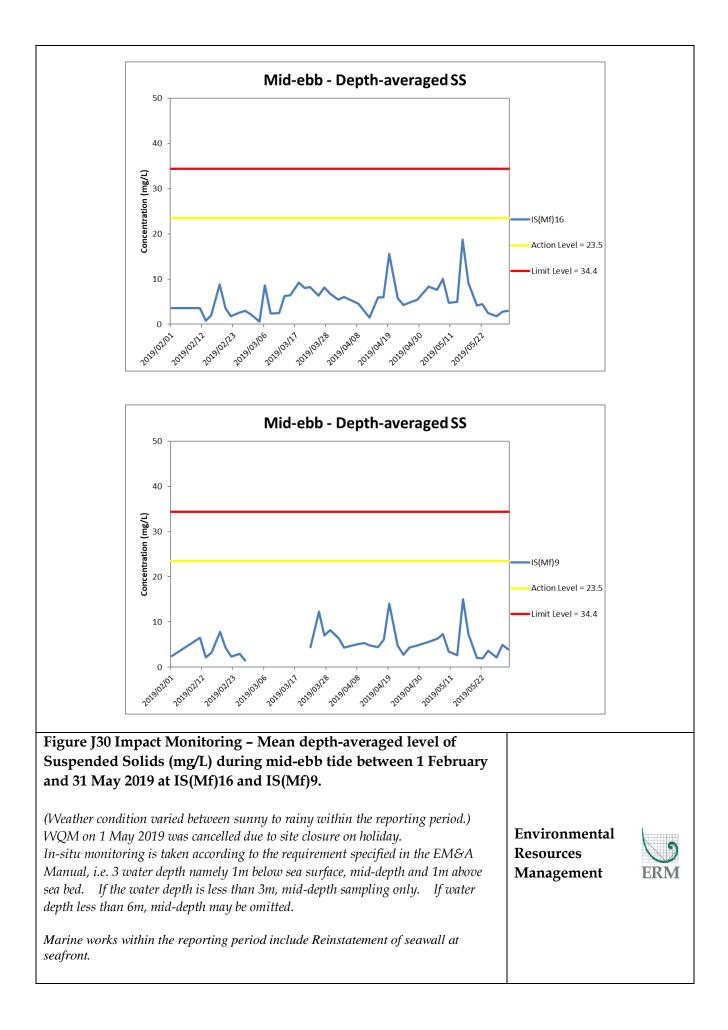


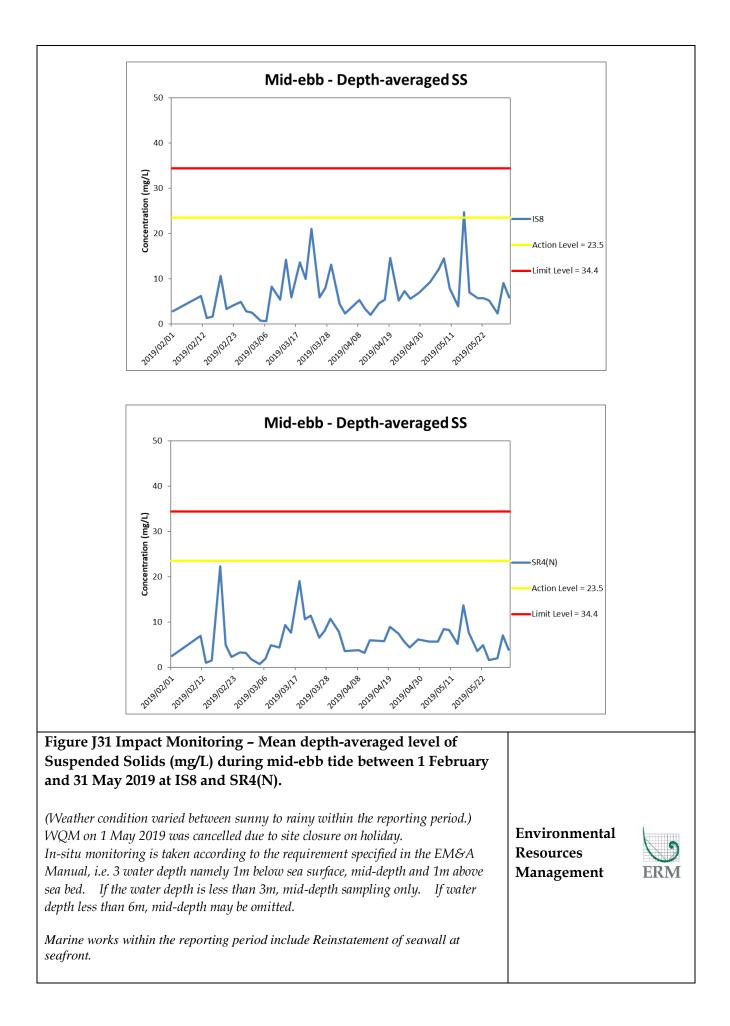


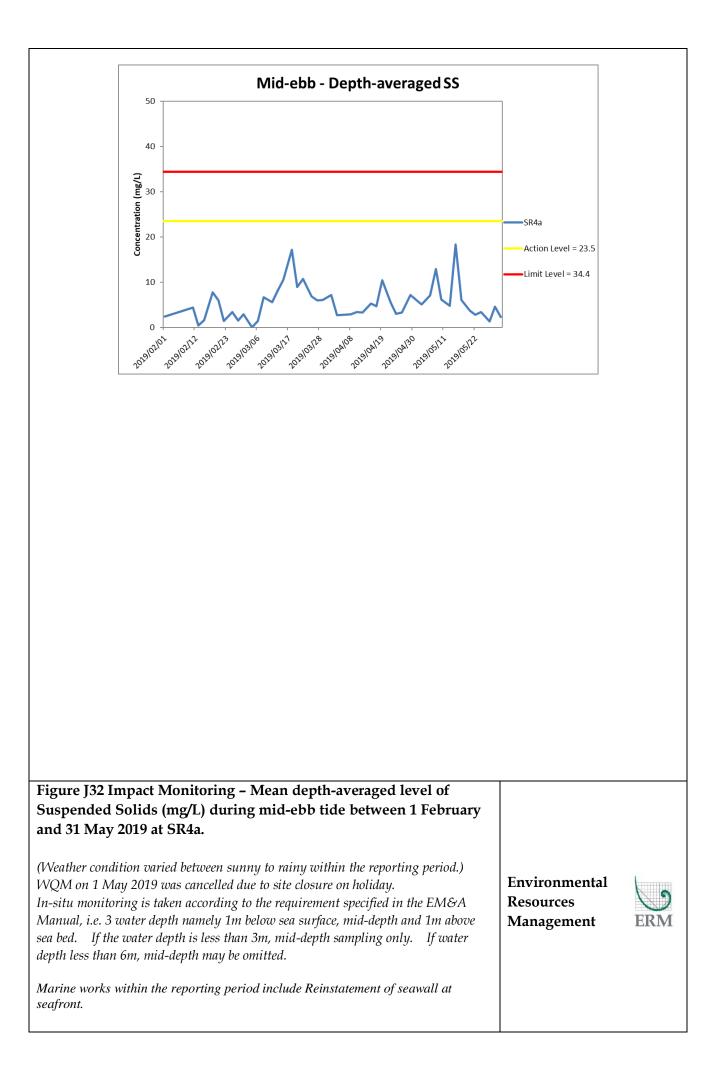


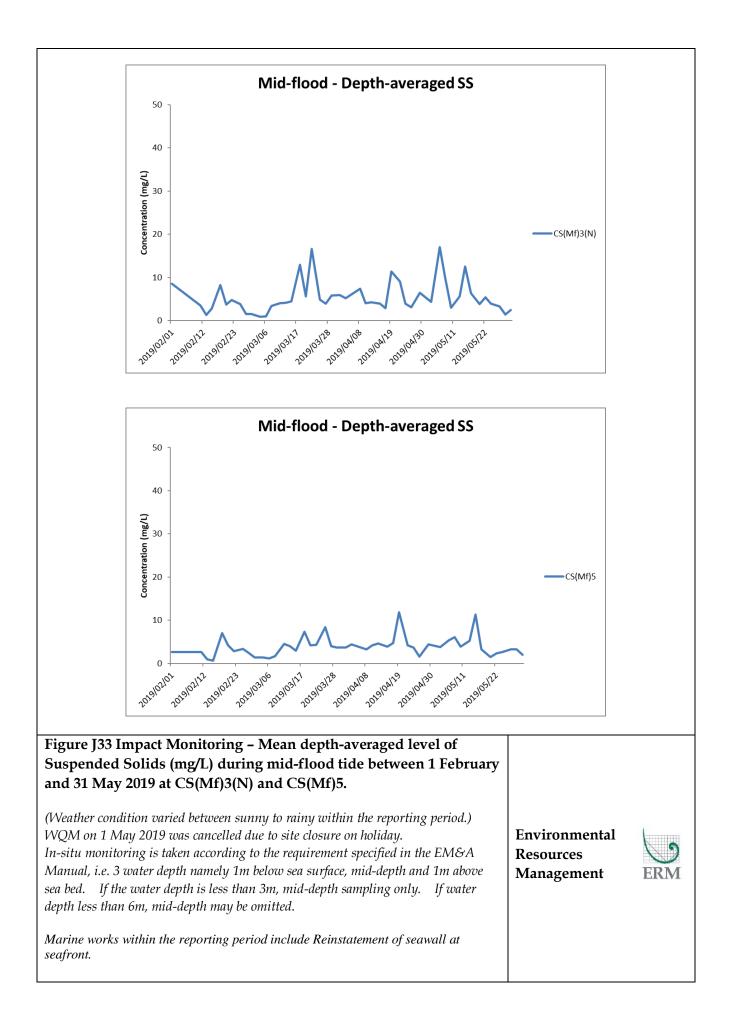


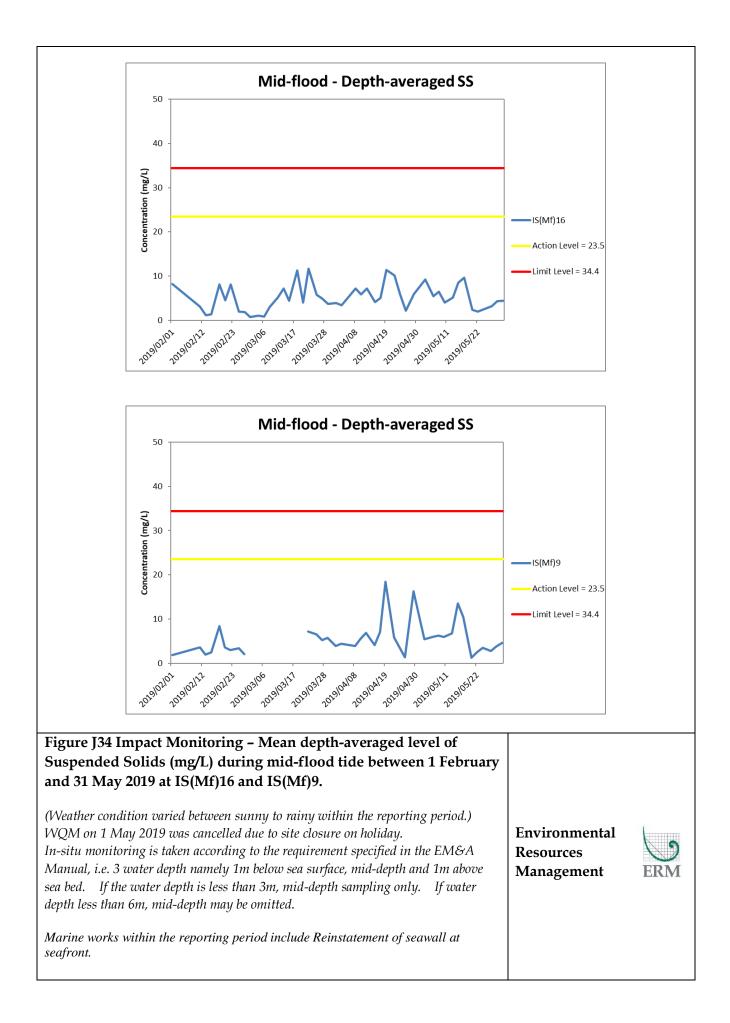


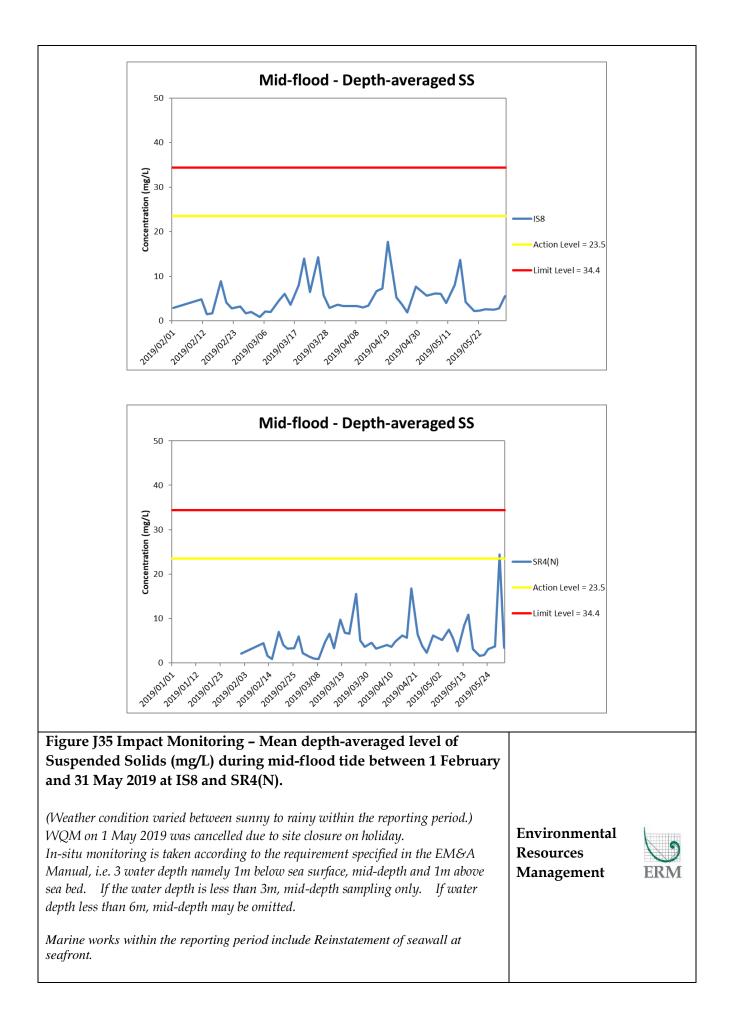


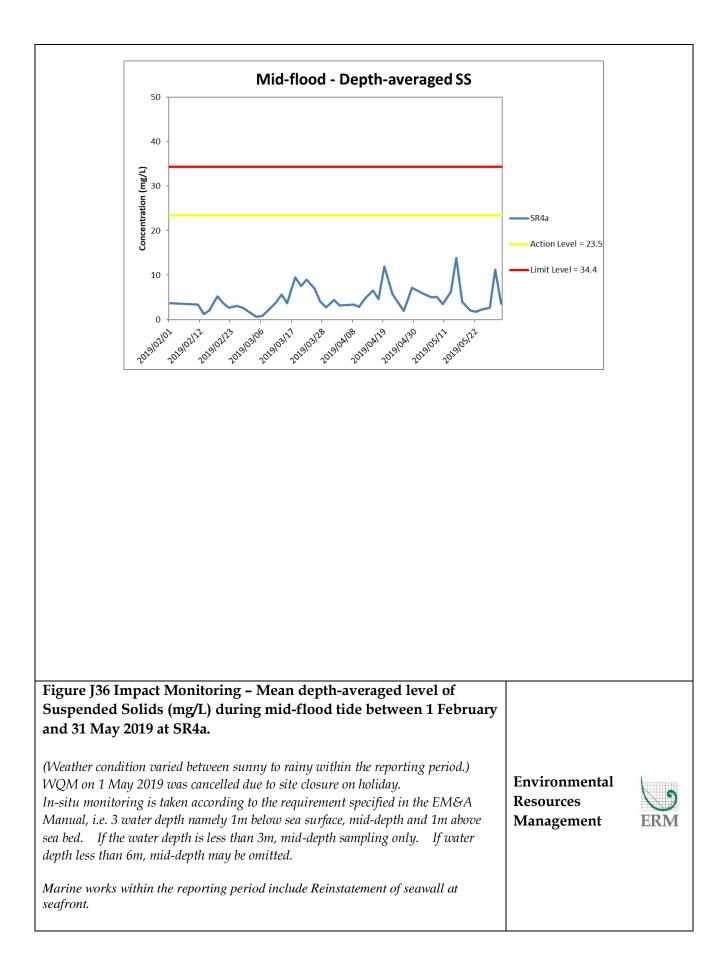












Appendix K

Impact Dolphin Monitoring Survey Results

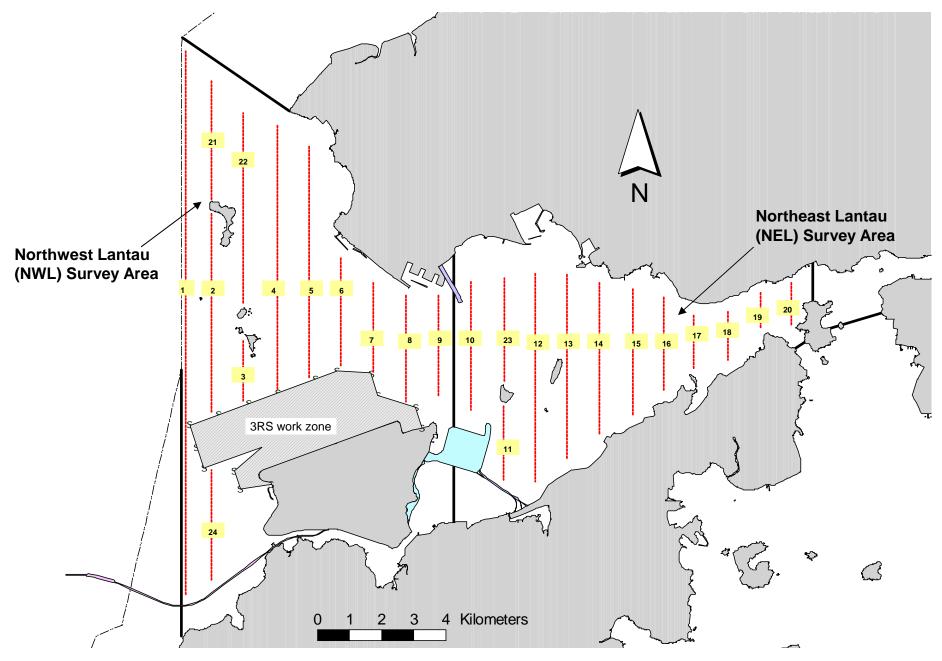


Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

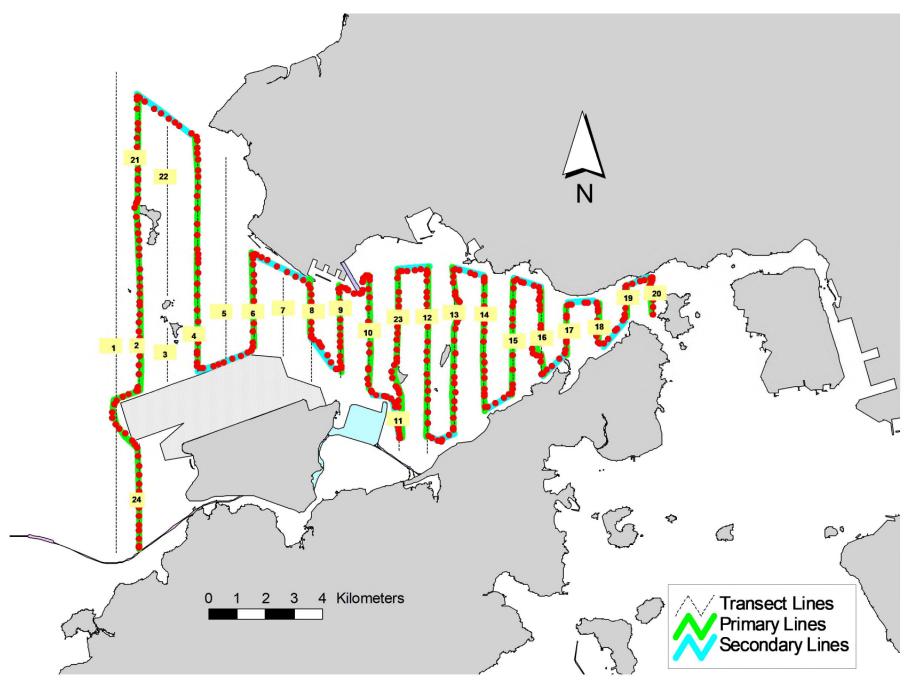


Figure 2. Survey Route on May 2nd, 2019 (from HKLR03 project)

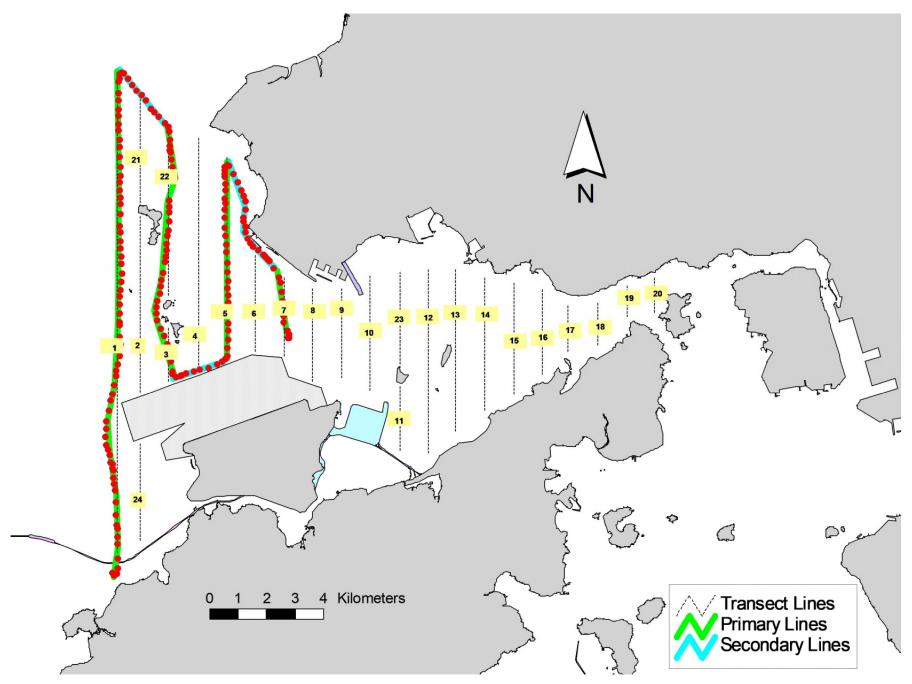


Figure 3. Survey Route on May 7th, 2019 (from HKLR03 project)

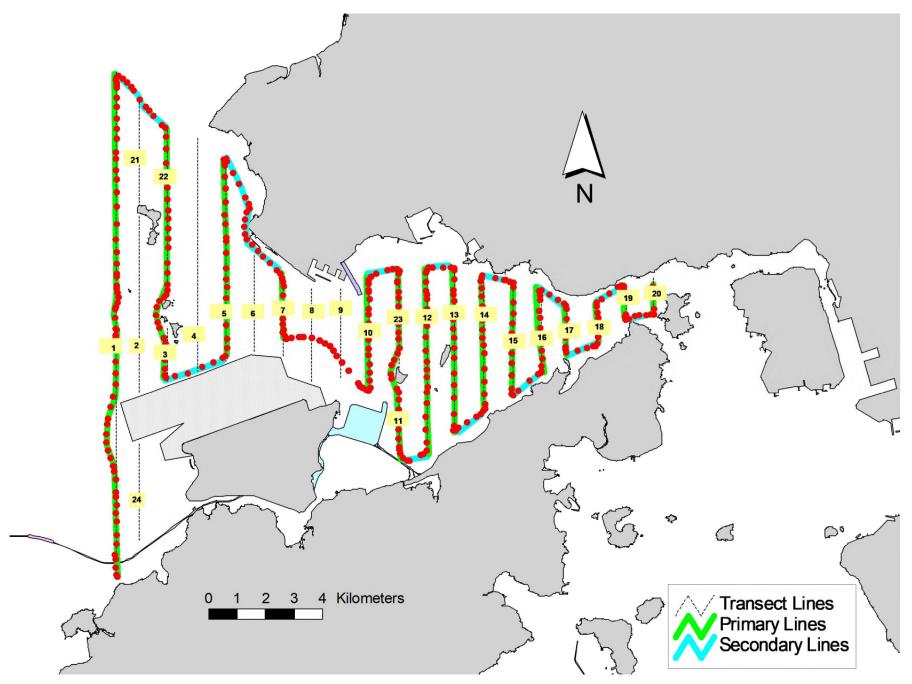


Figure 4. Survey Route on May 21st, 2019 (from HKLR03 project)

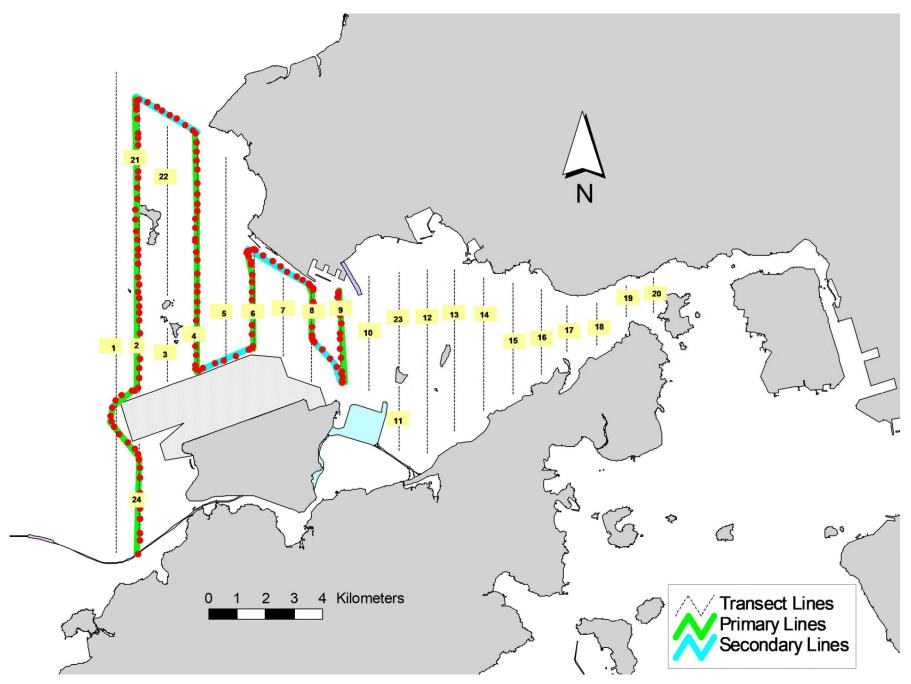


Figure 5. Survey Route on May 23rd, 2019 (from HKLR03 project)

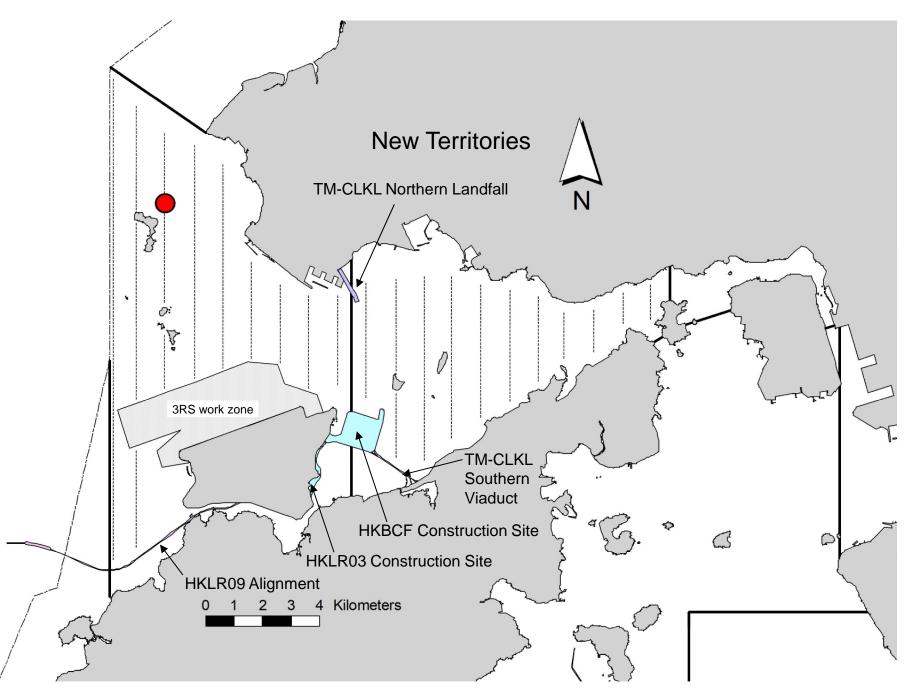


Figure 6. Distribution of Chinese White Dolphin Sightings during May 2019 HKLR03 Monitoring Surveys

Appendix I. HKLR03 Survey Effort Database (May 2019)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
2-May-19	NW LANTAU	2	22.59	SPRING	STANDARD36826	HKLR	Р
2-May-19	NW LANTAU	3	4.80	SPRING	STANDARD36826	HKLR	Р
2-May-19	NW LANTAU	2	9.51	SPRING	STANDARD36826	HKLR	S
2-May-19	NW LANTAU	3	2.80	SPRING	STANDARD36826	HKLR	S
2-May-19	NE LANTAU	2	22.54	SPRING	STANDARD36826	HKLR	Р
2-May-19	NE LANTAU	3	13.82	SPRING	STANDARD36826	HKLR	Р
2-May-19	NE LANTAU	2	12.74	SPRING	STANDARD36826	HKLR	S
7-May-19	NW LANTAU	2	14.50	SPRING	STANDARD36826	HKLR	Р
7-May-19	NW LANTAU	3	16.55	SPRING	STANDARD36826	HKLR	Р
7-May-19	NW LANTAU	4	0.90	SPRING	STANDARD36826	HKLR	Р
7-May-19	NW LANTAU	2	8.25	SPRING	STANDARD36826	HKLR	S
7-May-19	NW LANTAU	3	2.00	SPRING	STANDARD36826	HKLR	S
21-May-19	NE LANTAU	2	27.09	SPRING	STANDARD36826	HKLR	Р
21-May-19	NE LANTAU	3	9.40	SPRING	STANDARD36826	HKLR	Р
21-May-19	NE LANTAU	2	11.51	SPRING	STANDARD36826	HKLR	S
21-May-19	NE LANTAU	3	1.20	SPRING	STANDARD36826	HKLR	S
21-May-19	NW LANTAU	2	9.44	SPRING	STANDARD36826	HKLR	Р
21-May-19	NW LANTAU	3	19.68	SPRING	STANDARD36826	HKLR	Р
21-May-19	NW LANTAU	4	1.20	SPRING	STANDARD36826	HKLR	Р
21-May-19	NW LANTAU	2	8.58	SPRING	STANDARD36826	HKLR	S
21-May-19	NW LANTAU	3	4.60	SPRING	STANDARD36826	HKLR	S
23-May-19	NW LANTAU	2	18.63	SPRING	STANDARD36826	HKLR	Р
23-May-19	NW LANTAU	3	10.25	SPRING	STANDARD36826	HKLR	Р
23-May-19	NW LANTAU	2	11.32	SPRING	STANDARD36826	HKLR	S
23-May-19	NW LANTAU	3	1.00	SPRING	STANDARD36826	HKLR	S

Appendix II. HKLR03 Chinese White Dolphin Sighting Database (May 2019)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance; BOAT ASSOC. = Fishing Boat Association; P/S: Sighting Made on Primary/Secondary Lines)

DATE	STG #	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
7-May-1	9 1	1137	3	NW LANTAU	2	254	ON	HKLR	827293	806457	SPRING	NONE	Р

Appendix III. Individual dolphins identified during HKLR03 monitoring surveys in (May 2019)

ID#	DATE	STG#	AREA
NL123	07/05/19	1	NW LANTAU

Appendix IV. Photograph of Identified Individual Dolphin in May 2019 (HKLR03)

Appendix L

Event Action Plan

Appendix L1 Event/ Action Plan for Air Quality

	ACTION									
EVENT	ET ⁽¹⁾	IEC ⁽¹⁾	SOR ⁽¹⁾	Contractor						
Action Level										
1. Exceedance for one sample	 Identify the source. Inform the IEC and the SOR. 	 Check monitoring data submitted by the ET. 	1. Notify Contractor.	 Rectify any unacceptable practice Amend working methods if 						
	 Repeat measurement to confirm finding. Increase monitoring frequency to 	2. Check Contractor's working method.		appropriate						
	daily.									
2. Exceedance for two	1. Identify the source.	1. Check monitoring data	1. Confirm receipt of notification of	1. Submit proposals for remedial						
or more consecutive samples	2. Inform the IEC and the SOR.	submitted by the ET.	failure in writing.	actions to IEC within 3 working days of notification						
samples	3. Repeat measurements to confirm findings.	 Check the Contractor's working method. Discuss with the ET and the Contractor on possible remedial 	 Notify the Contractor. Ensure remedial measures properly 	2. Implement the agreed proposals						
	4. Increase monitoring frequency to daily.		implemented.	3. Amend proposal if appropriate						
	5. Discuss with the IEC and the Contractor on remedial actions required.	measures. 4. Advise the SOR on the effectiveness of the proposed remedial measures.								
	 If exceedance continues, arrange meeting with the IEC and the SOR. 	 Supervisor implementation of remedial measures. 								
	7. If exceedance stops, cease additional monitoring.									

	ACTION										
EVENT	ET ⁽¹⁾	IEC ⁽¹⁾	SOR ⁽¹⁾	Contractor							
Limit Level											
1. Exceedance for one sample	 Identify the source. Inform the SOR and the DEP. 	1. Check monitoring data submitted by the ET.	1. Confirm receipt of notification of failure in writing.	1. Take immediate action to avoid further exceedance							
	3. Repeat measurement to confirm finding.	2. Check Contractor's working method.	 Notify the Contractor. Ensure remedial measures are 	2. Submit proposals for remedial actions to IEC within 3 working							
	4. Increase monitoring frequency to daily.	 Discuss with the ET and the Contractor on possible remedial measures. 	properly implemented.	days of notification 3. Implement the agreed proposals							
	5. Assess effectiveness of Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of	4. Advise the SOR on the effectiveness of the proposed remedial measures.		4. Amend proposal if appropriate							
	the results.	5. Supervisor implementation of remedial measures.									
2. Exceedance for two or more consecutive	1. Notify the IEC, the SOR, the DEP and the Contractor.	 Discuss amongst the SOR, ET and the Contractor on the 	 Confirm receipt of notification of failure in writing. 	1. Take immediate action to avoid further exceedance.							
samples	2. Identify the source.	potential remedial actions. 2. Review the Contractor's remedial actions whenever	2. Notify the Contractor.	2. Submit proposals for remedial							
	Repeat measurements to confirm findings.		3. In consultation with the IEC, agree with the Contractor on the	actions to IEC within 3 working days of notification.							
	4. Increase monitoring frequency to	necessary to assure their effectiveness and advise the	remedial measures to be	3. Implement the agreed proposals.							
	daily.	SOR accordingly.	implemented.	4. Resubmit proposals if problem stil							
	Carry out analysis of the Contractor's working	3. Supervise the implementation of	 Ensure remedial measures are properly implemented. 	not under control. 5. Stop the relevant activity of works							
	procedures to determine possible mitigation to be implemented.	remedial measures.	 If exceedance continues, consider what activity of the work is responsible and instruct the 	as determined by the SOR until the exceedance is abated.							
	 Arrange meeting with the IEC and the SOR to discuss the remedial actions to be taken. 		Contractor to stop that activity of work until the exceedance is abated.								
	7. Assess effectiveness of the Contractor's remedial actions										

and keep the IEC, the DEP and the SOR informed of the results.

8. If the exceedance stops, cease additional monitoring.

Appendix L2 Event/Action Plan for Construction Noise

	ACTION											
EVENT	ET	IEC	SOR	Contractor								
Action Level	 Notify the IEC and the Contractor. Carry out investigation. 	1. Review the analysed results submitted by the ET.	1. Confirm receipt of notification of failure in writing.	1. Submit noise mitigation proposals to IEC								
	 Report the results of investigation to the IEC and the Contractor. 	measures by the Contractor and	 Notify the Contractor. Require the Contractor to propose 	2. Implement noise mitigation proposals								
	 Discuss with the Contractor and formulate remedial measures. 	advise the SOR accordingly.3. Supervise the implementation of	remedial measures for the analysed noise problem.									
	Increase monitoring frequency to check mitigation effectiveness.	remedial measures.	4. Ensure remedial measures are properly implemented.									
2.	1. Notify the IEC, the SOR, the DEP and the Contractor.	and the Contractor on the potential	1. Confirm receipt of notification of failure in writing.	1. Take immediate action to avoid further exceedance								
	2. Identify the source.	remedial actions.	2. Notify the Contractor.	2. Submit proposals for remedial								
	Repeat measurement to confirm findings.	actions whenever necessary to	3. Require the Contractor to propose remedial measures for the analysed	actions to IEC within 3 working days of notification								
	4. Increase monitoring frequency.	assure their effectiveness and advise the SOR accordingly.	noise problem.	3. Implement the agreed proposals								
	 Carry out analysis of Contractor's working procedures to determine 	 Supervise the implementation of remedial measures. 	4. Ensure remedial measures are properly implemented.	4. Resubmit proposals if problem standar control								
	possible mitigation to be implemented.		5. If exceedance continues, consider what activity of the work is	5. Stop the relevant activity of works as determined by the SOR until th								
6. 7.	 Inform the IEC, the SOR and the DEP the causes & actions taken for the exceedances. 		responsible and instruct the Contractor to stop that activity of work until the exceedance is abated.	exceedance is abated.								
	 Assess effectiveness of the Contractor's remedial actions and keep the IEC, the DEP and the SOR informed of the results. 											
	8. If exceedance stops, cease additional monitoring.											

Appendix L3Event/Action Plan for Water Quality

Event	ET	Leader		IEC	S	OR		Contractor
Action level being exceeded by one sampling day	1.	Repeat in situ measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working methods.	1.	Confirm receipt of notification of non-compliance in writing;	1.	Inform the SOR and confirm notification of the non- compliance in writing;
	2.	Identify source(s) of impact;			2.	Notify Contractor.	2.	Rectify unacceptable practice;
	3.	Inform IEC, contractor and SOR;					3.	Amend working methods if appropriate.
	4.	Check monitoring data, all plant, equipment and Contractor's working methods.						appropriate.
Action level being exceeded by two or more consecutive sampling days	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Discuss with IEC on the proposed mitigation measures;	1.	Inform the Supervising Officer and confirm notification of the non-
10,	2.	Identify source(s) of impact;	•		•			compliance in writing;
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;	2.	Ensure mitigation measures are properly implemented;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation measures submitted by Contractor and advise the SOR accordingly;	3.	Assess the effectiveness of the implemented mitigation measures.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;	4.	Supervise the implementation of mitigation measures.			4.	Submit proposal of additional mitigation measures to SOR within 3 working days of
	6.	Ensure mitigation measures are implemented;		mugaton neusures.				notification and discuss with ET, IEC and SOR;
	7.	Increase the monitoring frequency to daily until no exceedance of Action level;					5.	Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;	1.	Confirm receipt of notification of failure in writing;	1.	Inform the SOR and confirm notification of the non-compliance in writing;

Event	ET	Leader		IEC	SC	DR		Contractor
	2.	Identify source(s) of impact;		2	2.	Discuss with IEC, ET and		
	3.	Inform IEC, contractor, SOR and EPD;	2.	Discuss with ET and Contractor on possible remedial actions;		Contractor on the proposed mitigation measures;	2.	Rectify unacceptable practice;
	4.	Check monitoring data, all plant, equipment and Contractor's working methods;	3.	Review the proposed mitigation 3 measures submitted by Contractor and advise the SOR	3.	Request Contractor to review the working methods.	3.	Check all plant and equipment and consider changes of working methods;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		accordingly.			4.	Submit proposal of mitigation measures to SOR within 3 working days of notification and discuss with ET, IEC and SOR.
Limit level being exceeded by two or more consecutive	1.	Repeat measurement on next day of exceedance to confirm findings;	1.	Check monitoring data submitted by ET and Contractor's working method;		1. Discuss with IEC, ET and Contractor on the proposed mitigation	1.	Take immediate action to avoid further exceedance;
sampling days	2.	Identify source(s) of impact;	2.	Discuss with ET and Contractor		measures; 2. Request Contractor to	2.	Submit proposal of mitigation measures to SOR within 3
	3.	Inform IEC, contractor, SOR and EPD;		on possible remedial actions;		critically review the working methods;		working days of notification and discuss with ET, IEC and
	4.	Check monitoring data, all plant, equipment and Contractor's working	3.	Review the Contractor's mitigation measures whenever		3. Make agreement on the mitigation measures to be		SOR;
		methods;		necessary to assure their effectiveness and advise the		implemented; 4.	3.	Implement the agreed mitigation measures;
	5.	Discuss mitigation measures with IEC, SOR and Contractor;		SOR accordingly;		5. Ensure mitigation measures are properly implemented;	4.	Resubmit proposals of
	6.	Ensure mitigation measures are implemented;	4.	Supervise the implementation of mitigation measures.		6.7. Consider and instruct, if necessary, the Contractor to slow down or to stop all		mitigation measures if problem still not under control;
	7.	Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days;				or part of the construction activities until no exceedance of Limit level.	5.	As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event	ET Leader	IEC	SOR	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings;	1. Check monitoring data submitted by ET and Contractor;	1. Discuss monitoring with the IEC and any other measures	1. Inform the SOR and confirm notification of the non-
	2. Review all available and relevant data, including		proposed by the ET;	compliance in writing;
	raw data and statistical analysis results of other	2. Discuss monitoring results and		
	parameters covered in the EM&A, to ascertain if	findings with the ET and the	2. If SOR is satisfied with the	2. Discuss with the ET and the
	differences are as a result of natural variation or	Contractor.	proposal of any other measures,	IEC and propose measures to
	previously observed seasonal differences;		SOR to signify the agreement in writing on the measures to be	the IEC and the SOR;
	3. Identify source(s) of impact;		implemented.	Implement the agreed measures.
	4. Inform the IEC, SOR and Contractor;			incusures.
5	5. Check monitoring data.			
	 Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 			

Appendix L4Implementation of Event-Action Plan for Dolphin Monitoring

Event ET Leader		IE	C	SC	OR	Co	ntractor
Limit Level1. Repeat statistical2. Review all availa raw data and stat parameters cover differences are as previously observed3. Identify source(s)4. Inform the IEC, Efindings;5. Check monitoring6. Repeat review to measures are full advise on addition7. If ET proves that any of the constru- contract, ET to ar IEC, ER/SOR and additional dolphi potential mitigati modify the perimi- control/temporar activity etc.) and	R/SOR and Contractor of g data; ensure all the dolphin protective y and properly implemented and nal measures if necessary; the source of impact is caused by action activity by the works range a meeting to discuss with a Contractor the necessity of n monitoring and/or any other on measures (e.g., consider to eter silt curtain or consider to rily stop relevant construction submit to IEC a proposal of n monitoring and/or mitigation	 1. 2. 3. 4. 5. 	Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise ER/SOR of the results and findings accordingly; Supervise / Audit the implementation of additional monitoring and/or any other mitigation measures and advise ER/SOR the results and findings accordingly.	1.		 2. 3. 4. 	Inform the ER/SOR and confirm notification of the non- compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures; Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary; Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

EVENT		ACTION			
	ET Leader	IEC	SO	Contractor	
Action Level					
With the numerical values presented in <i>Table 5.7</i> of <i>Baseline Monitoring Report</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 20% lower or higher than that recorded in the baseline monitoring (see <i>Table 5.8</i> of <i>Baseline</i> <i>Monitoring Report</i>), or when there is a difference of 20% in dolphin acoustic signal detection at nighttime period at Site C1 only, the action level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures. 	

Appendix L5 Event and Action Plan on Dolphin Acoustic Behaviour

EVENT		ACTION		
	ET Leader	IEC	SO	Contractor
Limit Level				
With the numerical values presented in Table 5.7 of <i>Baseline Monitoring Report</i> , when any of the response variable for dolphin acoustic behaviour recorded in the construction phase monitoring is 40% lower or higher than that recorded in the baseline monitoring (see Table 5.8 of <i>Baseline Monitoring Report</i>), or when there is a difference of 40% in dolphin acoustic signal detection at nighttime at Site C1 only, the limit level should be triggered	 Repeat statistical data analysis to confirm findings; Review all available and relevant data to ascertain if differences are as a result of natural variation or seasonal differences; Identify source(s) of impact; Inform the IEC, SO and Contractor; Check monitoring data; Carry out audit to ensure all dolphin protective measures are implemented fully and additional measures be proposed if necessary Discuss additional dolphin monitoring and any other potential mitigation measures (eg consider to temporarily stop relevant portion of construction activity) with the IEC and Contractor. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring with the ET and the Contractor; Review proposals for additional monitoring and any other measures submitted by the Contractor and advise ER accordingly. 	 Discuss with the IEC the repeat monitoring and any other measures proposed by the ET; Make agreement on measures to be implemented. 	 Inform the SO and confirm notification of the non- compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO; Implement the agreed measures.

Abbreviations: ET - Environmental Team, IEC - Independent Environmental Checker, SO - Supervising Office, DEP - Director of Environmental Protection

Appendix M

Monthly Summary of Waste Flow Table

Contract No. : HY/2012/07 Tuen Mun Chek Lap Kok Link – Southern Connection Viaduct Section Monthly Summary Waste Flow Table for 2019 (Year)

		Actual Qu	antities of Inert	C&D Materials 0	Generation			Actu	al Quantities of (C&D wastes Ger	neration		Actua	Actual Quantities of Recyclables Generation				
Month\Material	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fills	Imported Fill	Marine Sediment, Cat. L	Marine Sediment, Cat. Mp	Marine Sediment, Cat. Mf	Marine Sediment, Cat. H	Chemical Waste	General Refuse	Metals	Felled trees	Paper/ cardboard packaging	Plastics		
Unit	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000m ³)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)	('000Kg)		
Jan	3.687	0.861	-	-	3.687	-	-	-	-	-	0.800	251.110	-	-	-	-		
Feb	1.254	0.046	-	0.637	0.617	-	-	-	-	-	-	84.990	-	-	-	-		
Mar	4.491	0.000	-	3.627	0.864	-	-	-	-	-	-	71.750	-	-	-	-		
Apr	9.363	0.153	-	8.979	0.384	-	-	-	-	-	-	56.470	-	9.520	0.084	-		
Мау	5.334	0.000	-	5.258	0.077	-	-	-	-	-	-	65.810	-	-	-	-		
Jun	-	0.000	-	-	-	-	-	-	-	-		-	-	-	-	-		
SUB-TOTAL	24.129	1.060	0.000	18.500	5.629	0.000	-	-	-	-	0.800	530.130	-	9.520	0.084	-		
Jul	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Aug	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Sep	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Oct	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Dec	-	0.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
TOTAL	24.129	1.060	-	18.500	5.629	-	-	-	-	-	0.800	530.130	-	9.520	0.084	-		

Notes :

1 - The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2 - Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

3 - Broken concrete for recycling into aggregates.

4 - Assumed 5 kg per damaged water-filled barrier.

5 - Disposed as Public Fills includes Hard Rock and Large Broken Concrete.

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix N1 Cumulative Statistics on Exceedances

		Total No. recorded in this reporting month	Total No. recorded since contract commencement
1-Hr TSP	Action	0	0
	Limit	0	1
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	2	226
	Limit	0	24
Impact Dolphin	Action	0	11
Monitoring	Limit	1	16

Appendix N2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics									
	Complaints	Notifications of	Successful							
		Summons	Prosecutions							
This Reporting Month (May 2019)	0	0	0							
Total No. received since contract commencement	14	0	0							

Email message

niessage		Management
То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section	E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	30 May 2019	ERM

Environmental

Resources

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

<u>Action Level Exceedance</u> 0215660_15 May 2019_ Depth-averaged SS_E_Station IS8

A total of one exceedance was recorded on 15 May 2019.

Regards,

Jamin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

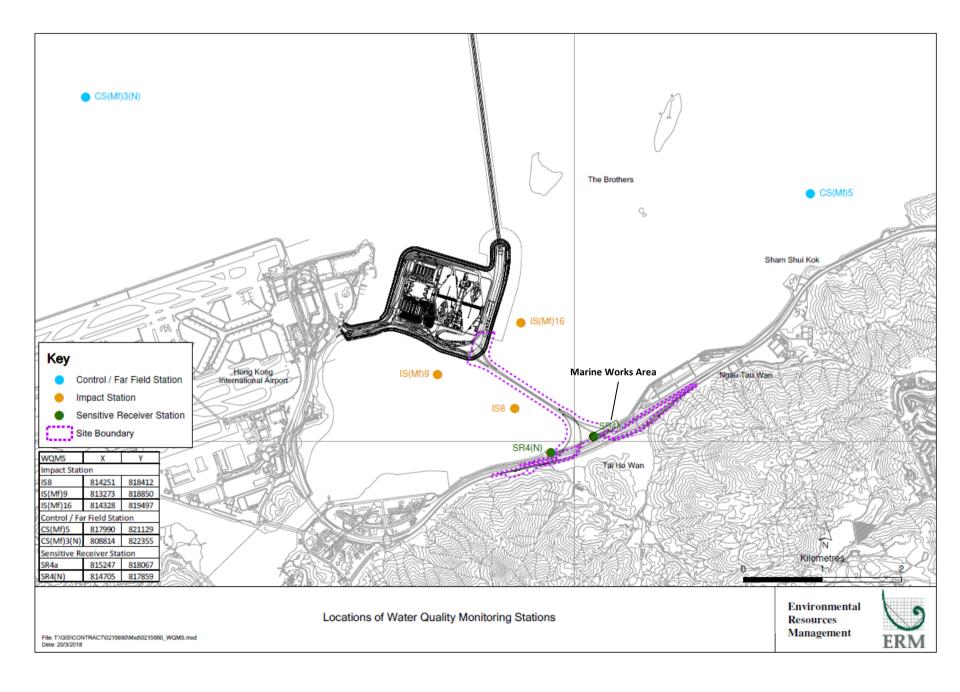
ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_15	<u>Action Level Exceedance</u> May 2019_ Depth-averaged SS_E_Station IS8 [Total No. of Exceedance = 1]											
Date		15 May 2019 (Measured)											
		16 May 2019 (In situ results received by ERM)											
	,	2019 (Laboratory results received by ERM)											
Monitoring Station	CS(Mf)5, SI	R4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)											
Parameter(s) with Exceedance(s)		Depth-average SS											
Action Levels for SS	Depth-averaged SS	23.5 mg/L											
Limit Levels for SS	Depth-averaged SS	34.4 mg/L											
Measured Levels	Action Level Exceedance1.Mid-ebb at IS8 (Depth-av												
Works Undertaken (at the time of monitoring event)	Reinstatement of seawall at seaf	ont was undertaken under this Contract on 15 May 2019.											
Possible Reason for	The exceedances of SS are unlike	ly to be due to the Contract, in view of the following											
Action or Limit Level	Apart from SS exceedance at	IS8 during mid-ebb tide, levels of SS at all monitoring stations were											
Exceedance(s)	same day.	n and Limit Levels during both mid-ebb and mid-flood tides on the											
	during both mid-ebb and mid	itoring stations were in compliance with the Action and Limit levels d-flood tides on the same day.											
	same day (refer to Site Photo												
Actions Taken / To Be	No immediate action is consider	ed necessary. The ET will monitor for future trends in											
Taken	exceedances.												
Remarks	The monitoring results on 15 Ma attached. Site photo record on	y 2019 and locations of water quality monitoring stations are 15 May 2019 is attached.											


Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Surface	1	26.5	8.1	21.3	8.8		4.7		11.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Surface	2	26.5	8.2	21.3	8.8	8.6	4.8		12.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Middle	1	26.4	8.1	21.9	8.3	0.0	4.1	4.2	13.0	12.8
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Middle	2	26.4	8.1	21.9	8.3		4.2	4.3	12.9	12.8
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Bottom	1	26.5	8.1	23.3	8.2	8.2	4.1		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)5	9:51	Bottom	2	26.5	8.1	23.3	8.2	0.2	4.0		13.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Surface	1	25.3	8.1	20.6	8.6		4.1		8.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Surface	2	25.3	8.1	20.5	8.6	8.4	4.0		9.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Middle	1	25.2	8.1	20.9	8.2	0.4	5.0	4.7	9.9	9.2
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Middle	2	25.2	8.1	20.9	8.2		5.0	4.7	9.7	9.2
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Bottom	1	25.2	8.1	21.0	8.2	8.2	5.1		9.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	CS(Mf)3(N)	11:02	Bottom	2	25.2	8.1	21.0	8.2	0.2	5.1		9.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Surface	1	26.4	8.2	21.6	8.6		10.8		18.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Surface	2	26.5	8.2	21.6	8.6	0 C	10.3		17.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Middle	1					8.6		11.0		18.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Middle	2							11.0		18.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Bottom	1	26.3	8.2	21.8	8.5	0 5	11.5		19.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)16	10:25	Bottom	2	26.3	8.2	21.8	8.5	8.5	11.5		18.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Surface	1	26.4	8.2	21.9	8.6		6.8		17.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Surface	2	26.5	8.2	21.9	8.6	0.0	6.8		17.3	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Middle	1					8.6		7.0		10.2
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Middle	2							7.0		18.3
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Bottom	1	26.2	8.2	22.0	8.5	0 5	7.2		18.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4a	10:33	Bottom	2	26.2	8.2	22.0	8.5	8.5	7.1		19.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Surface	1	26.6	8.1	21.6	8.2		10.3		13.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Surface	2	26.6	8.1	21.6	8.2	0.2	10.5		14.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Middle	1					8.2				10 7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Middle	2							9.1		13.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Bottom	1	26.8	8.1	21.7	8.2	0.2	7.7		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	SR4(N)	10:38	Bottom	2	26.8	8.1	21.7	8.2	8.2	7.8		13.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Surface	1	26.4	8.2	22.1	8.6		16.1		25.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Surface	2	26.4	8.2	22.0	8.6	0.0	16.0		25.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Middle	1					8.6		45.2		247
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Middle	2							15.3		24.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Bottom	1	26.3	8.2	22.1	8.6	0.0	14.6		23.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS8	10:43	Bottom	2	26.3	8.2	22.1	8.6	8.6	14.6		24.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Surface	1	27.1	8.3	21.5	9.5		6.4		15.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Surface	2	27.1	8.3	21.5	9.5	0 5	6.5		14.6]
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Middle	1					9.5				4 - 4
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Middle	2							6.4		15.1
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Bottom	1	27.1	8.3	21.4	9.4	0 5	6.4		14.4	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Ebb	IS(Mf)9	10:51	Bottom	2	27.1	8.3	21.4	9.5	9.5	6.3	1	15.5	1

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Surface	1	26.5	8.3	21.4	9.1		4.8		12.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Surface	2	26.5	8.3	21.5	9.1	9.1	4.9		11.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Middle	1	26.3	8.3	21.4	9.0	5.1	7.1	5.8	11.0	11.4
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Middle	2	26.5	8.3	21.4	9.2		6.0	5.0	10.5	11.4
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Bottom	1	26.3	8.3	21.7	9.1	9.1	6.2		11.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)5	16:01	Bottom	2	26.3	8.3	21.7	9.0	5.1	5.6		11.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Surface	1	26.5	8.3	17.4	10.1		4.5		10.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Surface	2	26.5	8.3	17.4	10.1	9.0	4.4		11.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Middle	1	25.2	8.0	18.3	7.8	5.0	4.4	4.5	12.0	12.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Middle	2	25.2	8.0	18.1	7.9		4.4	4.5	13.0	12.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Bottom	1	25.7	8.0	20.1	7.9	7.9	4.5		13.6	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	CS(Mf)3(N)	14:57	Bottom	2	25.5	8.0	20.2	7.9	7.5	4.5		13.8	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Surface	1	26.6	8.3	21.2	10.1		9.4		7.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Surface	2	26.6	8.3	21.2	10.1	10.1	9.2		7.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Middle	1					10.1		7.3		8.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Middle	2							7.5		0.5
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Bottom	1	26.7	8.3	21.2	10.1	10.1	5.2		9.4	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)16	15:34	Bottom	2	26.7	8.3	21.2	10.1	10.1	5.2		9.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Surface	1	26.9	8.4	21.4	10.3		3.8		13.2	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Surface	2	26.9	8.4	21.4	10.3	10.3	3.9		13.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Middle	1					10.5		2.0		12.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Middle	2							3.9		13.8
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Bottom	1	26.8	8.4	21.5	9.8	0.9	3.9		14.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4a	15:25	Bottom	2	26.8	8.4	21.5	9.8	9.8	3.8		14.1	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Surface	1	26.8	8.4	21.2	10.3		11.3		9.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Surface	2	26.8	8.4	21.2	10.3	10.2	12.6		8.9	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Middle	1					10.3		07		10.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Middle	2							8.7		10.9
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Bottom	1	26.8	8.4	21.3	10.3	10.2	5.3		12.3	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	SR4(N)	15:22	Bottom	2	26.8	8.4	21.3	10.3	10.3	5.4		12.7	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Surface	1	26.4	8.3	21.3	9.4		10.7		14.5	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Surface	2	26.4	8.3	21.3	9.4	0.4	10.6		14.6]
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Middle	1					9.4		0.5		127
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Middle	2							9.5		13.7
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Bottom	1	26.4	8.3	21.4	9.4	0.4	8.2		12.2	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS8	15:17	Bottom	2	26.4	8.3	21.4	9.4	9.4	8.6		13.3	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Surface	1	26.6	8.3	20.9	9.5		9.8		13.0	
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Surface	2	26.6	8.3	20.9	9.5	0 5	10.4		13.0	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Middle	1					9.5				12.0
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Middle	2							9.0		13.6
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Bottom	1	26.5	8.3	21.1	9.5	0 5	7.8		13.8	1
TMCLKL	HY/2012/07	2019/05/15	Mid-Flood	IS(Mf)9	15:08	Bottom	2	26.5	8.3	21.1	9.5	9.5	7.8		14.4	1

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS8 on 15 May 2019

Email message

nessage		Management
То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section	E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	9
Date	11 June 2019	ERM

Environmental

Resources

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

<u>Action Level Exceedance</u> 0215660_29 May 2019_ Depth-averaged SS_F_Station SR4(N)

A total of one exceedance was recorded on 29 May 2019.

Regards,

Jamin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

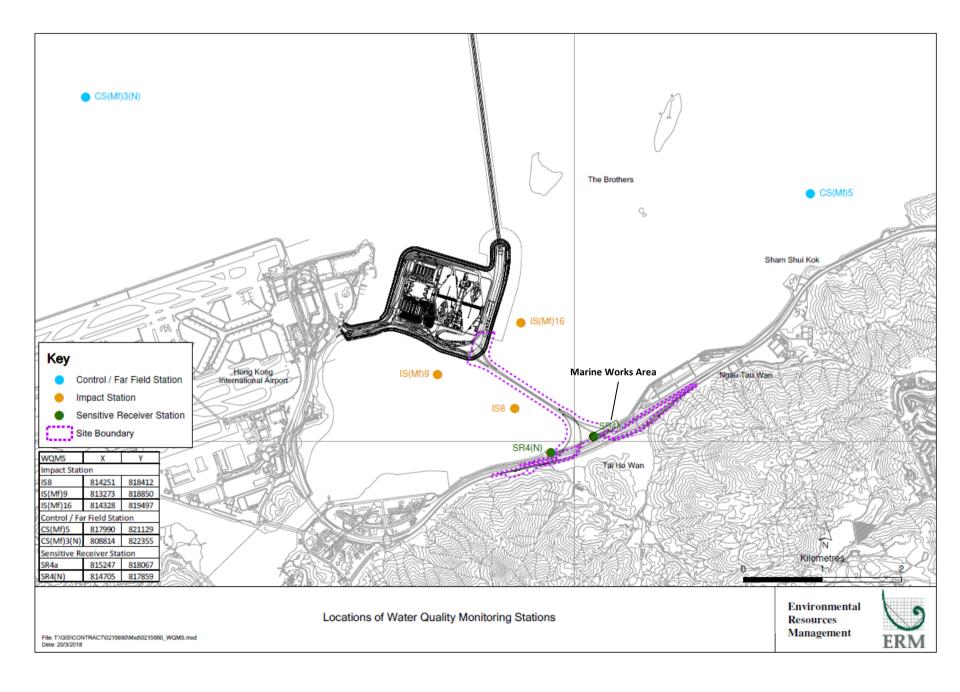
Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_15	<u>Action Level Exceedance</u> May 2019_ Depth-averaged SS_E_Station IS8 [Total No. of Exceedance = 1]											
Date		29 May 2019 (Measured)											
		31 May 2019 (<i>In situ</i> results received by ERM)											
		2019 (Laboratory results received by ERM)											
Monitoring Station	CS(Mf)5, SI	R4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)											
Parameter(s) with Exceedance(s)		Depth-average SS											
Action Levels for SS	Depth-averaged SS	Depth-averaged SS 23.5 mg/L											
Limit Levels for SS	Depth-averaged SS	34.4 mg/L											
Measured Levels	Action Level Exceedance1.Mid-flood at SR4(N) (Dep												
Works Undertaken (at the time of monitoring event)	Reinstatement of seawall at seafr	ront was undertaken under this Contract on 29 May 2019.											
Possible Reason for Action or Limit Level Exceedance(s)	 Apart from SS exceedance at (including SR4a that closer to Limit Levels during both mic Levels of turbidity at all mon during both mid-ebb and mic No effluent discharge from p 	he exceedances of SS are unlikely to be due to the Contract, in view of the following Apart from SS exceedance at SR4(N) during mid-flood tide, levels of SS at all monitoring stations (including SR4a that closer to the marine works area) were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. Levels of turbidity at all monitoring stations were in compliance with the Action and Limit levels during both mid-ebb and mid-flood tides on the same day. No effluent discharge from platforms and work areas was observed during the sampling on the same day (refer to <i>Site Photo Record</i>).											
Actions Taken / To Be Taken	exceedances.	o immediate action is considered necessary. The ET will monitor for future trends in ceedances.											
Remarks	The monitoring results on 29 Ma attached. Site photo record on 2	y 2019 and locations of water quality monitoring stations are 29 May 2019 is attached.											

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Surface	1	1	26.5	8.0	21.3	6.6		1.7		0.8	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Surface	1	2	26.5	8.0	21.3	6.6	6.6	1.7		0.9	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Middle	2	1	26.4	8.0	21.3	6.5	0.0	2.2	1.8	<0.5	0.7
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Middle	2	2	26.4	8.0	21.3	6.6		2.2	1.0	0.6	0.7
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Bottom	3	1	26.4	8.0	23.2	6.5	6.5	1.6		0.8	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)5	9:39	Bottom	3	2	26.4	8.0	23.2	6.5	0.5	1.6		1.1	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Surface	1	1	26.6	7.9	19.3	6.5		4.6		2.4	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Surface	1	2	26.6	7.9	19.3	6.5	6.5	4.6		2.3	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Middle	2	1	26.6	7.9	19.3	6.5	0.5	4.5	5.1	3.2	2.7
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Middle	2	2	26.6	7.9	19.3	6.5		4.5	5.1	2.7	2.7
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Bottom	3	1	26.6	7.9	19.3	6.6	6.6	6.1		3.0	
HY/2012/07	2019/05/29	Mid-Ebb	CS(Mf)3(N)	11:00	Bottom	3	2	26.6	7.9	19.3	6.6	0.0	6.1		2.7	
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Surface	1	1	26.4	8.0	19.0	6.6		3.2		2.8	
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Surface	1	2	26.4	8.0	19.0	6.6	6.6	3.2		2.8	
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Middle	2	1					0.0		3.5		2.8
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Middle	2	2							5.5		2.0
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Bottom	3	1	26.4	8.0	19.1	6.6	6.6	3.7		2.7	
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)16	10:09	Bottom	3	2	26.4	8.0	19.1	6.6	0.0	3.7		2.8	
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Surface	1	1	26.6	8.0	14.7	6.8		7.6		5.1	
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Surface	1	2	26.6	8.0	14.7	6.8	6.8	7.6		5.2	
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Middle	2	1					0.8		5.9		4.3
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Middle	2	2							5.5		4.5
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Bottom	3	1	26.5	8.0	19.7	6.4	6.4	4.2		3.7	
HY/2012/07	2019/05/29	Mid-Ebb	SR4a	10:17	Bottom	3	2	26.5	8.0	19.7	6.4	0.4	4.2		4.1	
HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Surface	1	1	26.4	7.9	17.4	6.1		5.4		6.2	
HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Surface	1	2	26.4	7.9	17.4	6.1	6.1	5.4		5.9	
HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Middle	2	1					0.1		5.8		7.1
HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Middle	2	2							5.0		,
HY/2012/07	2019/05/29	Mid-Ebb	SR4(N)	10:21	Bottom	3	1	26.4	7.9	19.8	6.0	6.0	6.2		8.0	
HY/2012/07		Mid-Ebb	SR4(N)	10:21	Bottom	3	2	26.4	7.9	19.8	6.0	0.0	6.2		8.3	
HY/2012/07		Mid-Ebb	IS8	10:27	Surface	1	1	26.5	8.0	17.5	6.6		5.6		8.0	
HY/2012/07		Mid-Ebb	IS8	10:27	Surface	1	2	26.5	8.0	17.5	6.6	6.6	5.6		7.8	
HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Middle	2	1					0.0		6.2		9.1
HY/2012/07		Mid-Ebb	IS8	10:27	Middle	2	2							0.2		
HY/2012/07	2019/05/29	Mid-Ebb	IS8	10:27	Bottom	3	1	26.4	8.0	18.9	6.5	6.5	6.7		10.3	
HY/2012/07		Mid-Ebb	IS8	10:27	Bottom	3	2	26.4	8.0	18.9	6.5	0.5	6.7		10.1	
HY/2012/07		Mid-Ebb	IS(Mf)9	10:34	Surface	1	1	26.3	8.0	18.2	6.7		4.0		4.3	1
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Surface	1	2	26.3	8.0	18.2	6.7	6.7	3.9		4.5	1
HY/2012/07		Mid-Ebb	IS(Mf)9	10:34	Middle	2	1					0.7		4.5		3.6
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Middle	2	2									
	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Bottom	3	1	26.3	8.0	17.8	6.7	6.7	5.1		5.2	
HY/2012/07	2019/05/29	Mid-Ebb	IS(Mf)9	10:34	Bottom	3	2	26.3	8.0	17.8	6.7	0.7	5.1		5.7	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Surface	1	1	26.0	8.1	20.9	6.8		2.6		3.0	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Surface	1	2	26.0	8.1	20.9	6.8	6.7	2.6		3.3	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Middle	2	1	26.1	8.0	21.1	6.6	0.7	4.7	3.4	3.1	3.3
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Middle	2	2	26.1	8.0	21.1	6.7		4.7	5.4	3.2	5.5
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Bottom	3	1	25.9	8.0	22.9	6.5	6.5	2.9		3.6	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)5	15:05	Bottom	3	2	25.9	8.0	22.9	6.5	0.5	2.8		3.5	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Surface	1	1	26.6	7.9	18.9	6.9		3.9		1.2	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Surface	1	2	26.6	7.9	18.9	6.9	6.9	3.9		1.0	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Middle	2	1	26.6	7.9	18.9	6.8	0.9	3.9	3.9	1.3	1.4
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Middle	2	2	26.6	7.9	18.9	6.8		3.9	5.9	1.4	1.4
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Bottom	3	1	26.6	7.9	19.0	6.9	6.9	4.0		1.7	
HY/2012/07	2019/05/29	Mid-Flood	CS(Mf)3(N)	14:13	Bottom	3	2	26.6	7.9	19.0	6.9	0.9	4.0		1.6	
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Surface	1	1	26.3	8.0	19.7	6.7		3.5		3.6	
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Surface	1	2	26.3	8.0	19.7	6.7	67	3.5		4.1	
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Middle	2	1					6.7		6.2		
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Middle	2	2							6.2		4.4
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Bottom	3	1	26.4	8.0	19.8	6.7	67	8.9		4.7	
HY/2012/07	2019/05/29	Mid-Flood	IS(Mf)16	14:39	Bottom	3	2	26.4	8.0	19.8	6.7	6.7	9.0		5.1	
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Surface	1	1	26.5	8.0	19.8	6.6		3.4		5.7	
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Surface	1	2	26.5	8.0	19.8	6.6	<i>c</i> .c.	3.4		6.0	
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Middle	2	1					6.6				12.1
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Middle	2	2							8.3		13.1
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Bottom	3	1	25.9	8.0	18.8	6.9	6.0	13.3		16.5	
HY/2012/07	2019/05/29	Mid-Flood	SR4a	14:30	Bottom	3	2	25.9	8.0	18.8	6.8	6.9	13.2		16.7	
HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Surface	1	1	26.2	8.0	18.3	6.6		12.4		25.0	
HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Surface	1	2	26.1	8.0	18.3	6.6	<i>c</i> .c	12.3		25.7	
HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Middle	2	1					6.6				24.4
HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Middle	2	2							12.1		24.4
HY/2012/07	2019/05/29	Mid-Flood	SR4(N)	14:27	Bottom	3	1	26.2	8.0	18.9	6.6	<u> </u>	11.8		23.2	
HY/2012/07		Mid-Flood	SR4(N)	14:27	Bottom	3	2	26.2	8.0	18.9	6.6	6.6	11.8		23.7	
HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Surface	1	1	26.3	8.0	20.2	6.6		3.5		2.8	
HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Surface	1	2	26.2	8.0	20.0	6.6		3.5		3.3	
HY/2012/07	2019/05/29	Mid-Flood	IS8	14:23	Middle	2	1					6.6		5.2		2.0
HY/2012/07		Mid-Flood	IS8	14:23	Middle	2	2			1				5.3		2.8
HY/2012/07		Mid-Flood	IS8	14:23	Bottom	3	1	26.3	8.0	20.2	6.6		7.1		2.4	1
HY/2012/07		Mid-Flood	IS8	14:23	Bottom	3	2	26.3	8.0	20.2	6.6	6.6	7.0	1	2.6	1
HY/2012/07		Mid-Flood	IS(Mf)9	14:15	Surface	1	1	26.3	8.0	19.9	6.6		6.1		3.9	
	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Surface	1	2	26.4	8.0	19.9	6.6		6.1	1	3.7	1
HY/2012/07		Mid-Flood	IS(Mf)9	14:15	Middle	2	1			1		6.6				
	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Middle	2	2							5.3		2.9
	2019/05/29	Mid-Flood	IS(Mf)9	14:15	Bottom	3	1	26.2	8.0	19.7	6.6		4.5		3.7	1
HY/2012/07		Mid-Flood	IS(Mf)9	14:15	Bottom	3	2	26.2	8.0	19.7	6.6	6.6	4.6		3.9	1


Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

CONTRACT NO. HY/2012/07 - WQM SITE PHOTO AT SR4(N) ON 29 MAY 2019

Photos 1 and 2 - Mid-flood at SR4(N) on 29 May 2019

