

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for January 2016

[02/2016]

	Name	Signature
Prepared & Checked:	Y T Tang	Togethan
Reviewed, Approved and Certified:	Echo Leong (ETL)	Schokeon

Version:	Rev. 0	Date:	16 February 2016
----------	--------	-------	------------------

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_3865L.16

16 February 2016

By Fax (3698 5999) and By Post

Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong

Attention: Mr. Paul Appleton

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)

Environmental Project Office for the

HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,

and Tuen Mun-Chek Lap Kok Link - Investigation

Contract No. HY/2010/02 - HZMB HKBCF - Reclamation Works

Monthly Environmental Monitoring & Audit Report for January 2016

Reference is made to the Environmental Team's submission of Monthly Environmental Monitoring & Audit Report for January 2016 certified by the ET Leader (ET's ref.: "60249820/C/RMKY16021601" dated 16 February 2016) and provided to us via e-mail on 16 February 2016.

We are pleased to inform you that we have no adverse comment on the captioned report. We write to verify the captioned submission in accordance with Condition 5.4 of EP-353/2009/I and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

As per Condition 1.7 of EPs, please be reminded to keep in view on the site condition, in particular in the vicinity of Portion B with your on-going surveillance and monitoring.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of

Ramboll Environ Hong Kong Limited

Raymond Dai

Independent Environmental Checker

c.c. HyD Mr. Matthew Fung (By Fax: 3188 6614)
HyD Mr. Wai-Ping Lee (By Fax: 3188 6614)
AECOM Ms. Echo Leong (By Fax: 2317 7609)
CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

Internal: DY, YH, CL, JLau, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_3865L.16.doc

TABLE OF CONTENTS

			Page
EX	ECUT	IVE SUMMARY	3
1	INTE	RODUCTION	5
	1.1 1.2 1.3 1.4 1.5	Background Scope of Report Project Organization Summary of Construction Works Summary of EM&A Programme Requirements	5 5 6 6 7
2	AIR	QUALITY MONITORING	8
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	8 8 10 10 12 12
3	NOI	SE MONITORING	13
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Monitoring Results	13 13 13 14 14 14
4	WAT	FER QUALITY MONITORING	16
	4.1 4.2 4.3 4.4 4.5 4.6	Monitoring Requirements Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Schedule for the Reporting Month	16 16 16 17 18 19
5	DOL	PHIN MONITORING	21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Monitoring Requirements Monitoring Equipment Monitoring Frequency and Conditions Monitoring Methodology and Location Monitoring Procedures Monitoring Schedule for the Reporting Month Results and Observations	21 21 21 21 23 23 23
6	ENV	IRONMENTAL SITE INSPECTION AND AUDIT	26
	6.1 6.2 6.3 6.4 6.5 6.6	Site Inspection Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Notification of Summons and Successful Prosecutions	26 28 29 30 30 30
7	FUT	URE KEY ISSUES	31
	7.1 7.2 7.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	31 32 32
8	CON	ICLUSIONS AND RECOMMENDATIONS	33

34

List of Tables

Table 1.1	Contact Information of Key Personnel
Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Locations of Impact Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Monitoring Results in the Reporting Period
Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
Table 3.1	Noise Monitoring Equipment
Table 3.2	Locations of Impact Noise Monitoring Stations
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Summary of Construction Noise Monitoring Results in the Reporting Period
Table 4.1	Water Quality Monitoring Equipment
Table 4.2	Impact Water Quality Monitoring Parameters and Frequency
Table 4.3	Impact Water Quality Monitoring Stations
Table 4.4	Laboratory Analysis for Suspended Solids
Table 4.5	Summary of Water Quality Exceedances
Table 5.1	Dolphin Monitoring Equipment
Table 5.2	Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)
Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State
Table 5.4	Impact Dolphin Monitoring Survey Details January 2016
Table 5.5	The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^
Table 6.1	Summary of Environmental Licensing and Permit Status

Figures

Figure 1	General Project Layout Plan
Figure 2	Impact Air Quality and Noise Monitoring Stations and Wind Station
Figure 3	Impact Water Quality Monitoring Stations
Figure 4	Impact Dolphin Monitoring Line Transect Layout Map
Figure 5	Impact Dolphin Monitoring Survey Efforts and Sightings in January 2016
Figure 6	Environmental Complaint Handling Procedures

Project Organization for Environmental Works

List of Appendices

Appendix A

Appendix B	Three Month Rolling Construction Programmes
Appendix C	Implementation Schedule of Environmental Mitigation Measures (EMIS)
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Monitoring Equipments
Appendix F	EM&A Monitoring Schedules
Appendix G	Impact Air Quality Monitoring Results and their Graphical Presentation
Appendix H	Meteorological Data for Monitoring Periods on Monitoring Dates in January 2016
Appendix I	Impact Construction Noise Monitoring Results and their Graphical Presentation
Appendix J	Impact Water Quality Monitoring Results and their Graphical Presentation
Appendix K	Impact Dolphin Monitoring Survey Sighting Summary
Appendix L	Event Action Plan
Appendix M	Monthly Summary of Waste Flow Table
Appendix N	Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 17 July 2015 (EP-353/2009/I) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

Ramboll Environ Hong Kong Limited. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2017. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 January 2016. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Rock fill
- Conforming Sloping Seawalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Rubble Mound Seawall

Land-base

- Surcharge removal & laying
- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring6 sessions1-hour TSP monitoring6 sessionsNoise monitoring4 sessionsImpact water quality monitoring13 sessionsImpact dolphin monitoring2 surveysJoint Environmental site inspection4 sessions

Breaches of Action and Limit Levels for Air Quality

For impact air quality monitoring, no exceedance of 1-Hour TSP or 24-Hour TSP was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

For water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Impact Dolphin Monitoring

A total of three sightings were made, one "on effort" and two "opportunistic". One sighting was recorded on the 7 January 2016 and two sightings were recorded on 18 January 2016. All groups contained two individuals.

Behaviour: On the 7 January 2016, the first group was travelling. On the 18 January 2016, the first group was feeding and the second group was travelling. No calves were sighted in January 2016.

Complaint, Notification of Summons and Successful Prosecution

No complaint, notification of summons or prosecution was received in the reporting period.

Reporting Change

The impact air quality monitoring station AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) has been relocated to AMS7 (Hong Kong SkyCity Marriott Hotel) on 30 December 2015. The impact air quality monitoring for January 2016 was conducted at AMS7 (Hong Kong SkyCity Marriott Hotel), action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel has been adopted for this air quality monitoring location.

Future Key Issues

Key issues to be considered in the coming month included:

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G), January 2015 (EP-353/2009/H) and July 2015 (EP-353/2009/I). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.4 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 17 July 2015 (EP-353/2009/I) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Contract Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.8 Ramboll Environ Hong Kong Limited. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2017.
- 1.1.11 According to the Contract Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the forty-seven monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in January 2016.

1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Paul Appleton	3698 5889	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(Ramboll Environ Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3547 2133	3465 2899
Contractor (China Harbour	Environmental Officer	Louie Chan	36932254	2578 0413
`Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-base

- Rock fill
- Conforming Sloping Seawalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Rubble Mound Seawall

Land-base

- Surcharge removal & laying
- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Contract Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Contract Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Contract Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 The impact air quality monitoring station AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) has been relocated to AMS7 (Hong Kong SkyCity Marriott Hotel) on 30 December 2015. The impact air quality monitoring for January 2016 was conducted at AMS7 (Hong Kong SkyCity Marriott Hotel), action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel has been adopted for this air quality monitoring location.

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge

Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for January 2016
2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

Monitoring Station Location		Description	
AMS2 Tung Chung Development Pier		Rooftop of the premise	
AMS3B Site Boundary of Site Office Area at Works Area WA2		On ground at the area boundary	
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise	
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise	

^{*}Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration		
1-hour TSP	Three times every 6 days while the highest dust impact was expected		
24-hour TSP	Once every 6 days		

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.

(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in January 2016 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	78	72-83	374	500
AMS3B	77	73-81	368	500
AMS7	77	72-82	370	500

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
AMS2	61	38-97	176	260
AMS3B	52	26-83	167	260
AMS7	52	35-72	183	260

- 2.7.2 Due to electricity failure, the 24-hr TSP monitoring at AMS3B scheduled on 18-19 January 2016 was rescheduled to 19 -20 January 2016.
- 2.7.3 The event action plan is annexed in Appendix L.
- 2.7.4 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Contract Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Contract Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

Monitoring Station Location		Description		
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise		
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.		

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: $L_{eq(30\text{-minutes})}$ during non-restricted hours i.e. 07:00-1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the L_{eq} , L_{10} and L_{90} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in January 2016 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq (30 mins)}
NMS2	68	67-68*	75
NMS3B	66	61-68*	70/65^

^{*+3}dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

[^] Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

4 WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Contract Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidity Meter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Contract Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

A=COM

4.4 Monitoring Locations

- 4.4.1 In accordance with the Contract Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

4.5 Monitoring Methodology

4.5.1 Instrumentation

(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

- 4.6.1 The schedule for impact water quality monitoring in January 2016 is provided in Appendix F.
- 4.6.2 Results and Observations
- 4.6.3 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

Table 4.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (S&M)	DO (B	ottom)	Tur	bidity		SS	To	otal
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
155	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Action	0	0	0	0	0	0	0	0	0	0
13(111)6	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
IS8	Action	0	0	0	0	0	0	0	0	0	0
136	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(1011)9	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	0	0	0
1310	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(111)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(111) 16	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1317	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
SNS	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	0	0	0	0	0
3N4(N)	Limit	0	0	0	0	0	0	0	0	0	0
SR5	Action	0	0	0	0	0	0	0	0	0	0
SKS	Limit	0	0	0	0	0	0	0	0	0	0
SR6	Action	0	0	0	0	0	0	0	0	0	0
SKO	Limit	0	0	0	0	0	0	0	0	0	0
SR7	Action	0	0	0	0	0	0	0	0	0	0
SK1	Limit	0	0	0	0	0	0	0	0	0	0
SR10A	Action	0	0	0	0	0	0	0	0	0	0
SKIUA	Limit	0	0	0	0	0	0	0	0	0	0

Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for January 2016

Station	Exceedance	DO (S&M)		ceedance DO (S&M) Level		DO (B	ottom)	Tur	bidity		SS	Te	otal
	LCVCI	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood		
SR10B	Action	0	0	0	0	0	0	0	0	0	0		
(N)	Limit	0	0	0	0	0	0	0	0	0	0		
Total	Action	0	0	0	0	0	0	0	0		0		
	Limit	0	0	0	0	0	0	0	0		0		

Note: S: Surface; and M: Mid-depth.

- 4.6.4 For water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 4.6.5 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

	HK Grid	l System	Long Lat	in WGS84
ID	Х	Υ	Long	Lat
1	804671	815456	113.870287	22.277678
1	804671	831404	113.869975	22.421696
2	805475	815913	113.878079	22.281820
2	805477	826654	113.877896	22.378814
3	806464	819435	113.887615	22.313643
3	806464	822911	113.887550	22.345030
4	807518	819771	113.897833	22.316697
4	807518	829230	113.897663	22.402113
5	808504	820220	113.907397	22.320761
5	808504	828602	113.907252	22.396462
6	809490	820466	113.916965	22.323003
6	809490	825352	113.916884	22.367128
7	810499	820880	113.926749	22.326757
7	810499	824613	113.926688	22.360464
8	811508	821123	113.936539	22.328966
8	811508	824254	113.936486	22.357241
9	812516	821303	113.946320	22.330606
9	812516	824254	113.946279	22.357255
10*	813525	820827	113.956112	22.326321
10*	813525	824657	113.956066	22.360908
11	814556	818853	113.966155	22.304858
11	814556	820992	113.966125	22.327820
12	815542	818807	113.975726	22.308109
12	815542	824882	113.975647	22.362962
13	816506	819480	113.985072	22.314192
13	816506	824859	113.985005	22.362771
14	817537	820220	113.995070	22.320883
14	817537	824613	113.995018	22.360556
15	818568	820735	114.005071	22.325550
15	818568	824433	114.005030	22.358947
16	819532	821420	114.014420	22.331747
16	819532	824209	114.014390	22.356933
17	820451	822125	114.023333	22.338117
17	820451	823671	114.023317	22.352084
18	821504	822371	114.033556	22.340353
18	821504	823761	114.033544	22.352903
19	822513	823268	114.043340	22.348458
19	822513	824321	114.043331	22.357971
20	823477	823402	114.052695	22.349680
20	823477	824613	114.052686	22.360610
21	805476	827081	113.877878	22.382668
21	805476	830562	113.877811	22.414103
22	806464	824033	113.887520	22.355164
22	806464	829598	113.887416	22.405423
23	814559	821739	113.966142	22.334574
23	814559	824768	113.966101	22.361920

Remarks:

(a) *Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 108km.

(b) Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015.

5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in January 2016 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 7, 8, 18 and 19 January 2016. A total of 217.6 km of transect line was conducted, all 217.6km was conducted during Beaufort Sea State 3 or better (favourable water conditions).

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in January 2016 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

Survey	Date	Area	Beaufort	Effort (km)	Total Distance Travelled (km)	
Survey				` `	(KIII)	
1	01/07/2016	NWL	1	24		
	01/07/2016	NWL	2	38.1	108.6	
'	01/08/2016	NWL	1	10		
	01/08/2016	NEL	1	36.5		
	01/18/2016	NWL	1	13.2		
2	01/18/2016	NWL	2	32.7		
	01/18/2016	NWL	3	11.3	109	
	01/19/2016	NWL	1	14.9		
	01/19/2016	NEL	1	36.9		
TOTAL in January 2016						

^{*}Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details January 2016

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NW L	1	0
01/07/2016	NEL	0	0
	NW L	0	0
01/08/2016	NEL	0	0
	NW L	0	2
01/18/2016	NEL	0	0
	NW L	0	0
01/19/2016	NEL	0	0
	TOTAL in January 2016	1	2

^{*}Location indicates which area was being surveyed when the sighting was made. The area noted does not necessarily indicate where the dolphins were when the sighting was made.

Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*							
Date	NEL Track (km)	NWL Track (km)	NEL Sightings	NWL Sightings	NEL Encounter Rate	NWL Encounter Rate	
7 & 8 Jan 16	36.5	72.1	0	1	0.0	1.4	
18 & 19 Jan 16	36.9	72.1	0	0	0.0	0.0	

Encounter Rate of Total Number of Dolphins (ANI)

Date	NEL Track (km)	NWL Track (km)	NEL Dolphins	NWL Dolphins	NEL Encounter Rate	NWL Encounter Rate
7 & 8 Jan 16	36.5	72.1	0	2	0.0	2.8
18 & 19 Jan 16	36.9	72.1	0	0	0.0	0.0

^{*} Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of three sightings were made, one "on effort" and two "opportunistic". One sighting was recorded on the 7 January 2016 and two sightings were recorded on 18 January 2016. All groups contained two individuals.
- 5.7.3 Behaviour: On the 7 January 2016, the first group was travelling. On the 18 January 2016, the first group was feeding and the second group was travelling. No calves were sighted in January 2016.
- 5.7.4 Two resightings were recorded in December 2015. HZMB 054 [AFCD: CH34] has been resighted twelve times during impact monitoring. On ten occasions in NWL and on two occasiosn in NEL. HZMB 083 [AFCD: NL136] has been resighted eight times (including same day sightings) and always in NWL. Images and re-sightings data are included in Appendix K.
- 5.7.5 Noteworthy Observation¹:
- 5.7.6.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and in many areas, it is no longer possible to pass between them by ship. As the working vessels will move during the on-going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.
- 5.7.6.2 The HKBCF and adjoining "Southern Landfall" Projects effected lines 10, 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term. As construction is ongoing, it is not yet known if these fixed structures will affect the transect lines passage.
- 5.7.6.3 Travel to the northern end of line 10 was slightly impeded by the anchorage located there. After checking with the Contractor, there are no trans-boundary vessels that are required to anchor at northern ends of lines 10 during this reporting period, as such they are unlikely to be related to this

^{**} Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

Contract. As there are variable numbers of ships in this anchorage through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.

- 5.7.6.4 Anchored fishing vessels were noted on lines 1 and 2. In previous encounters, dolphins were seen feeding in association with these vessels despite them not being active. This may influence both dolphin behaviour and the view of the area.
- 5.7.6.5 Several single anchored vessels were noted on lines 5, 12, 17, 18, 22 and 23 18 which caused the monitoring vessel to divert slightly from the trackline or blocked the transect area view. It is unknown who these vessels belong to or even if they were Project related.
- 5.7.6.6 Projects which involved dredging were noted near the southern end of line 5 and mid-line 9. These were not part of this Contract. Dredging is known to impact dolphins. There was no signage on these projects and they were not part of HKBCF Reclamation Works.
- 5.7.6.7 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.6.8 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.6 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 7, 14, 21 and 28 January 2016.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

6.1.3 No relevant adverse impact was observed in the reporting month.

Noise

6.1.4 No relevant adverse impact was observed in the reporting month.

Water Quality

- 6.1.5 No relevant adverse impact was observed in the reporting month.
- 6.1.6 The Contractor was reminded to continue to carry out maintenance as necessary and ensure integrity of the perimenter silt curtain at all time. (Reminder)

Chemical and Waste Management

Hong Kong Boundary Crossing Facilities - Reclamation Works

- 6.1.7 Wood materials were observed scattered at Portion C2a. The Contractor was reminded to regualry clear the materials and keep the site tidy. The Contractor subsequently assigned area for temporary storage of wood materials. (Closed)
- 6.1.8 Oil drums were observed without drip trays on barge 振明 93. The Contractor was reminded to provide drip tray to oil drum. The Contractor subsequently cleared all oil drum from the area (closed).
- 6.1.9 General refuses were observed at Portion D, the Contractor was reminded to regularly clear the general refuses and dispose them of properly. The Contractor subsequently cleared the general refuses.
- 6.1.10 Chemical container were observed without bunding. The Contractor was reminded to store chemical in bunded area. The Contractor subsequently removed the chemical container from the area. (Closed)

Landscape and Visual Impact

6.1.11 No relevant adverse impact was observed in the reporting month.

Others

6.1.12 No relevant adverse impact was observed in the reporting month.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 52,472.9m³ of fill material were imported for the Project use in the reporting period. 252kg paper/cardboard packing, 800kg chemical, 520m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.
- 6.2.5 The treated marine sediment and/or excavated filling material specified by Contract no. HY/2013/01 was received as public fill for Contract no. HY/2010/02's reclamation filling works since January 2015. Such site arrangement was on-going in the reporting month and will be regularly reviewed and reported in the coming monthly EM&A report.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid I	Period	License/ Permit	Remarks	
			From	То	Holder		
EIAO	Environmental Permit	EP- 353/2009/I	17/07/2015	N/A	HyD	Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities	
		EP- 354/2009/D	13/03/2015	N/A		Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)	
APCO	NA notification		30/12/2011	-	CHEC	Works Area WA2 and WA3	
APCO	NA notification		25/07/2014	-	CHEC	Works Area WA1	
WDO	Chemical Waste Producer Registration	5213-951- C1186-30	28/10/2015	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA1)	
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA2)	
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012	1	CHEC	Registration as Chemical Waste Producer at TKO 137(FB)	
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02	
NCO	Construction Noise Permit	GW- RS1240-15	18/11/2015	28/02/2016	CHEC	Reclamation Works in Contract HY/2010/02	
NCO	Construction Noise Permit	GW- RE1214-15	20/12/2015	19/06/2016	CHEC	Section of TKO Fill Bank under Contract HY/2010/02	

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the malfunction period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 For impact air quality monitoring, no exceedance of 1-Hour TSP or 24-Hour TSP was recorded at all monitoring stations in the reporting month.
- 6.5.2 For construction noise monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For impact water quality, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.4 A total of three sightings were made, one "on effort" and two "opportunistic". One sighting was recorded on the 7 January 2016 and two sightings were recorded on 18 January 2016. All groups contained two individuals.
- 6.5.5 Behaviour: On the 7 January 2016, the first group was travelling. On the 18 January 2016, the first group was feeding and the second group was travelling. No calves were sighted in January 2016.
- 6.5.6 Environmental site inspection was carried out 4 times in January 2016. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.7 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 No complaint, notification of summons or prosecution was received in the reporting period.
- 6.6.3 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Project in February 2016 and March 2016 will be *:-

Marine-base

- Rock fill
- Conforming Sloping Seawalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA
- Rubble Mound Seawall

Land-base

- Deep Cement Mixing
- Installations of Precast Culverts except sloping outfalls
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

^{*}Construction activities in February 2016 and March 2016 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Minimize loss of sediment from filling works;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring in February 2016 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.1.2 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.4 For impact water quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.5 A total of three sightings were made, one "on effort" and two "opportunistic". One sighting was recorded on the 7 January 2016 and two sightings were recorded on 18 January 2016. All groups contained two individuals.
- 8.1.6 Behaviour: On the 7 January 2016, the first group was travelling. On the 18 January 2016, the first group was feeding and the second group was travelling. No calves were sighted in January 2016.
- 8.1.7 No complaint, notification of summons or prosecution was received in the reporting period.
- 8.1.8 Environmental site inspection was carried out 4 times in January 2016. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

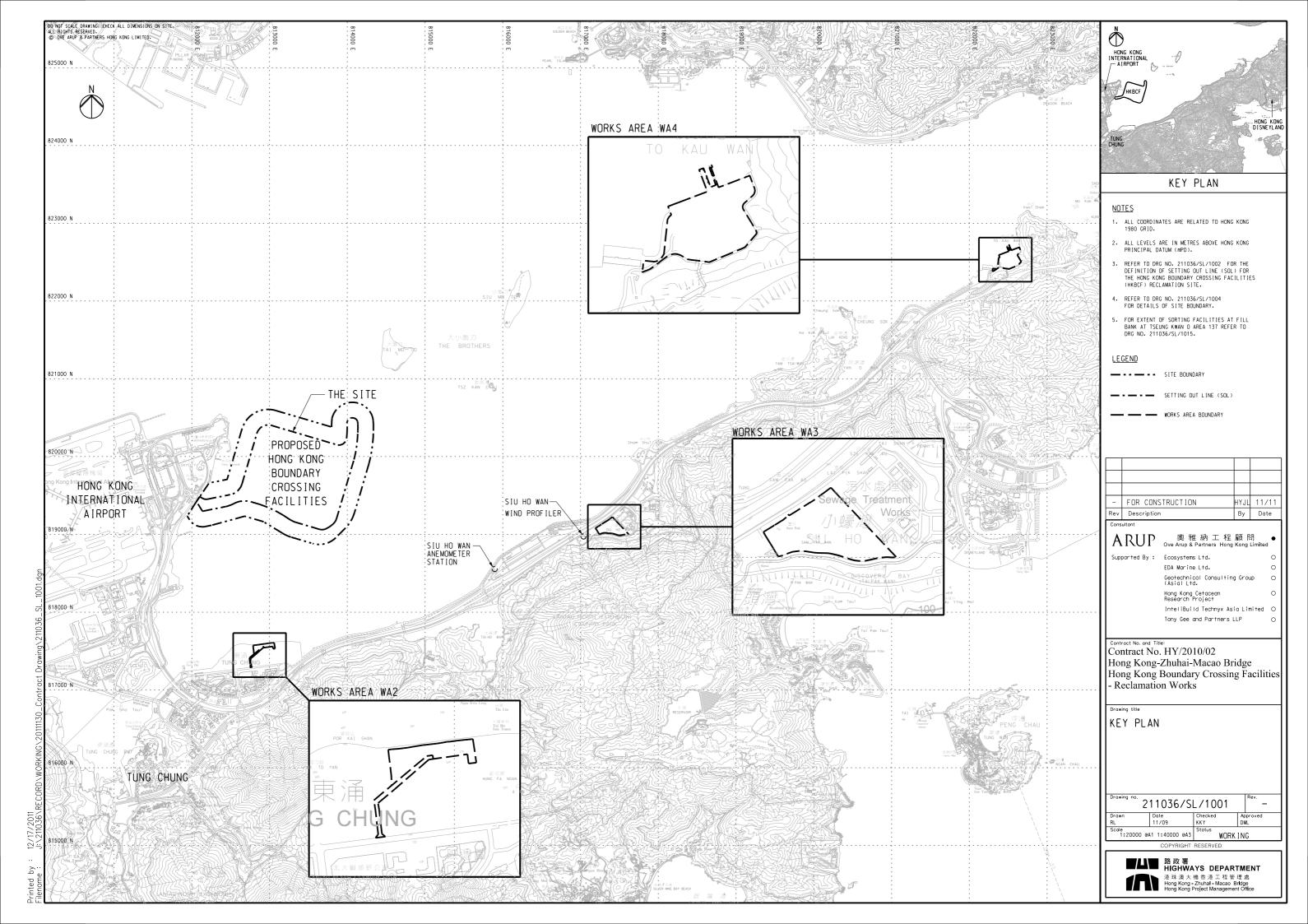
Air Quality Impact

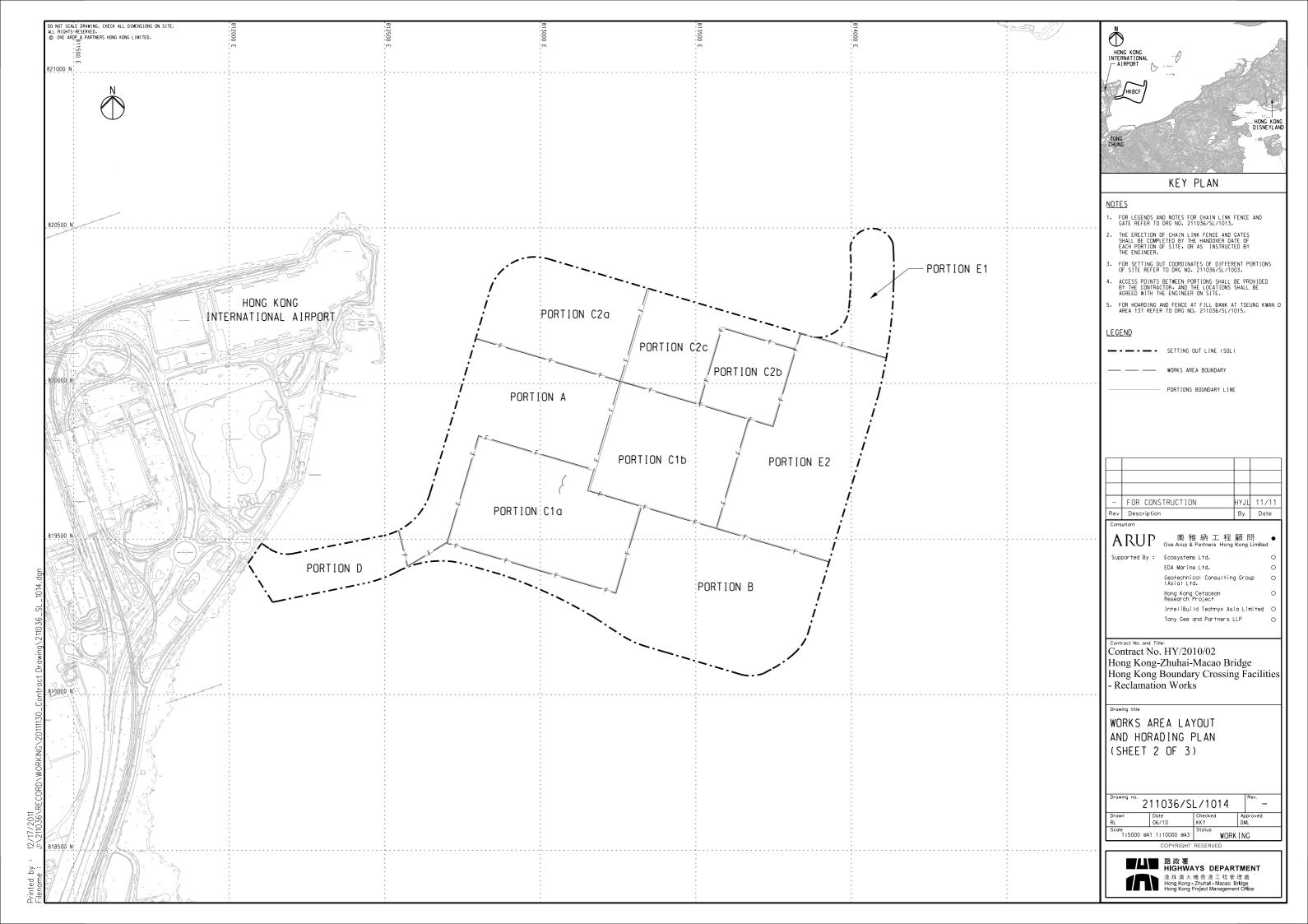
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

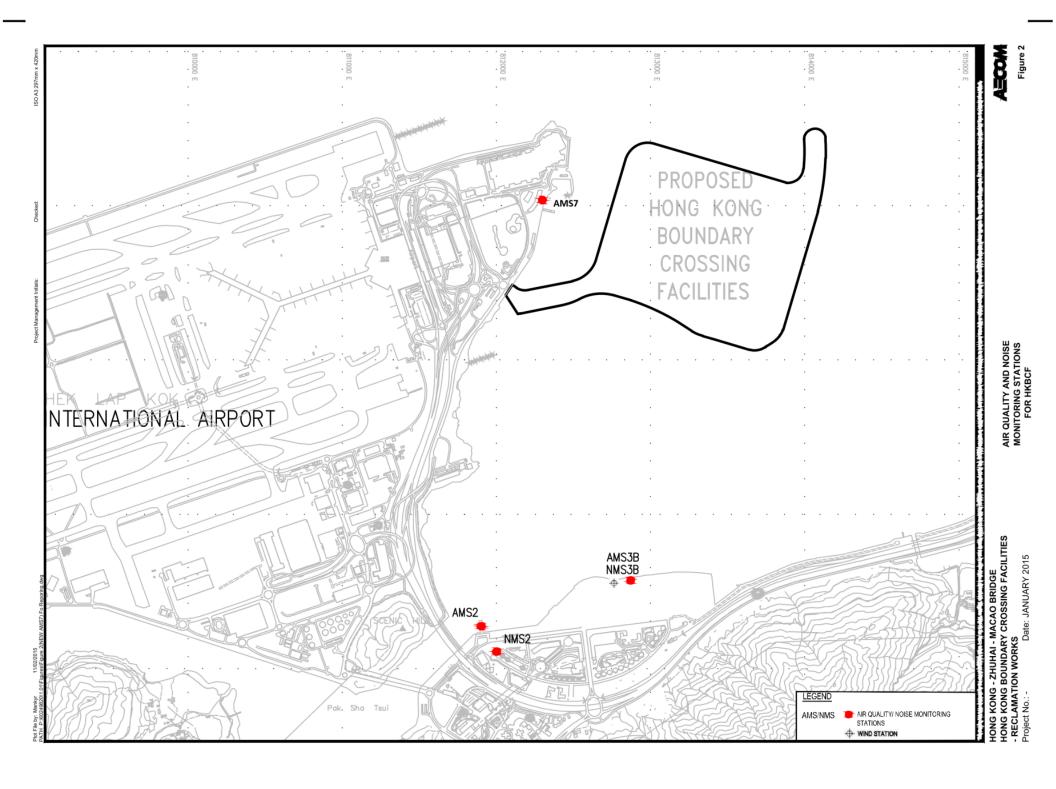
Construction Noise Impact

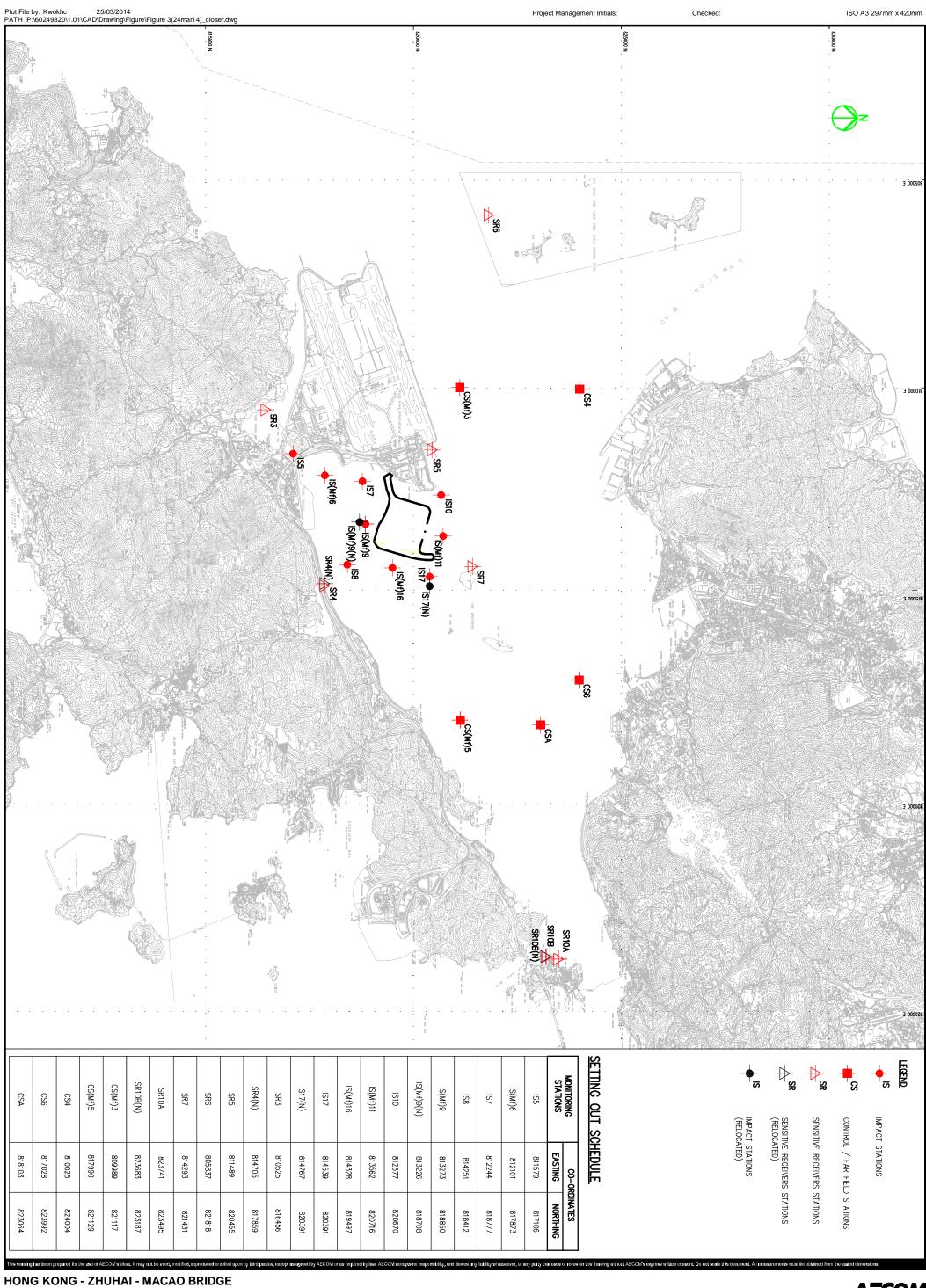
- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming
 construction vessels with continuous and regularly checking to ensure effective implementation of
 acoustic decoupling measures.

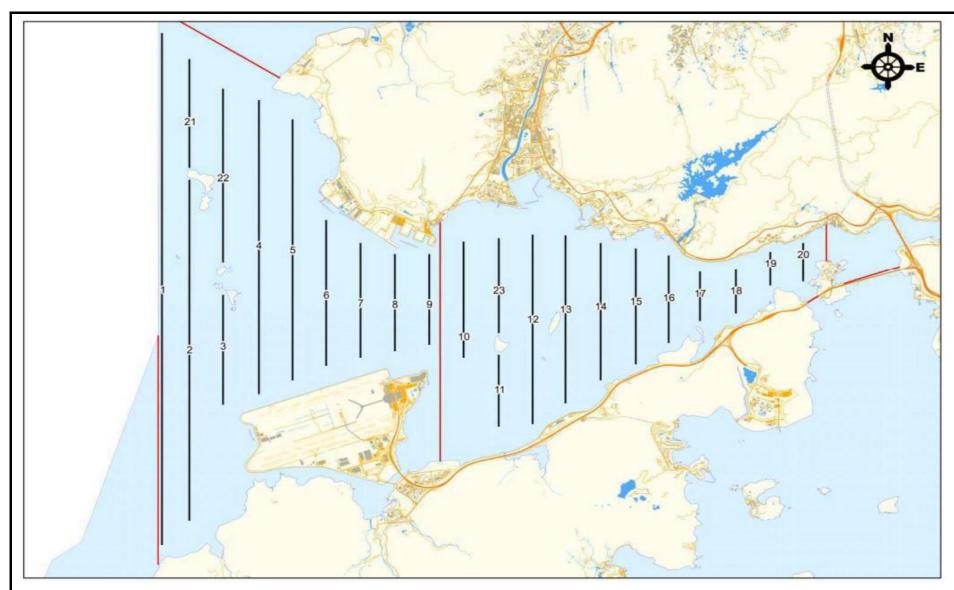
Water Quality Impact


- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.

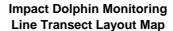

Chemical and Waste Management


- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
 and disposed of timely and properly. They should be properly stored in designated areas within
 works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
 measures and spill control kits were provided on working barges and patrol boats to avoid any
 spreading of leaked oil/chemicals.

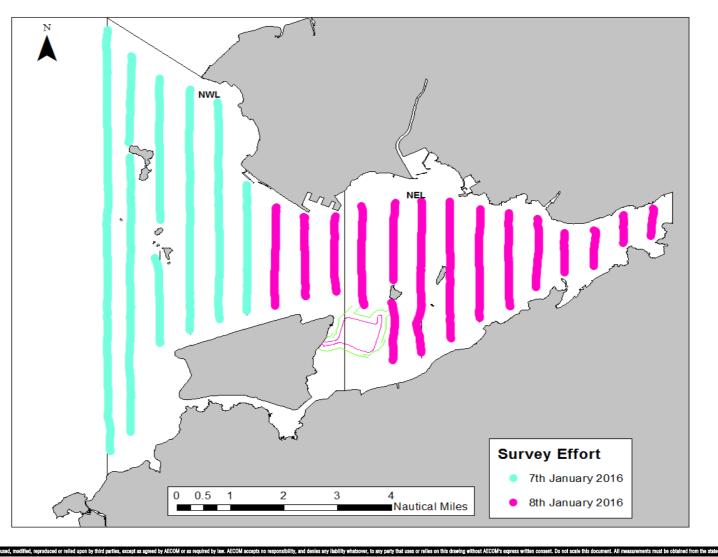

Landscape and Visual Impact


- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.

Remarks:

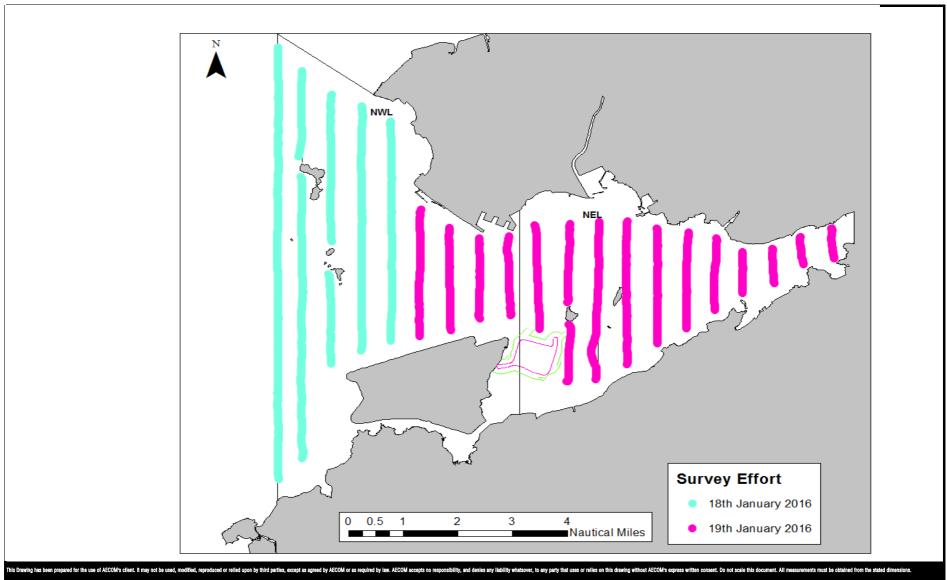

*Transect 10 is now 3.6km in length due to the HKBCF construction site.

^Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015. The total transect length for both NEL and NWL combined is 108km.


This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by lew. AECOM accepts no responsibility, and denies any liability whatsover, to any party that uses or relies on this drawing without AECOM's express written consent. Do not scale this document. All measurements must be obtained from the stated dimensions.

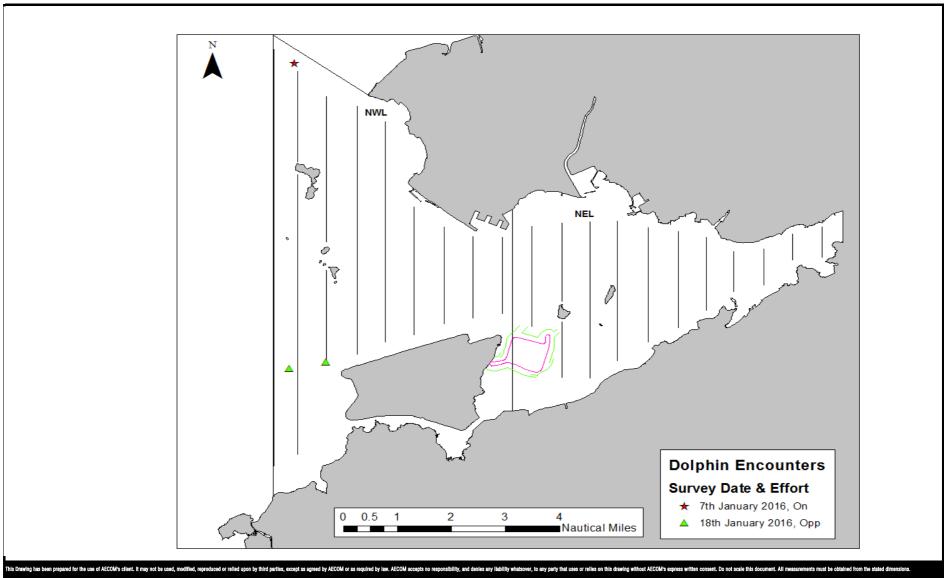
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: November 2015



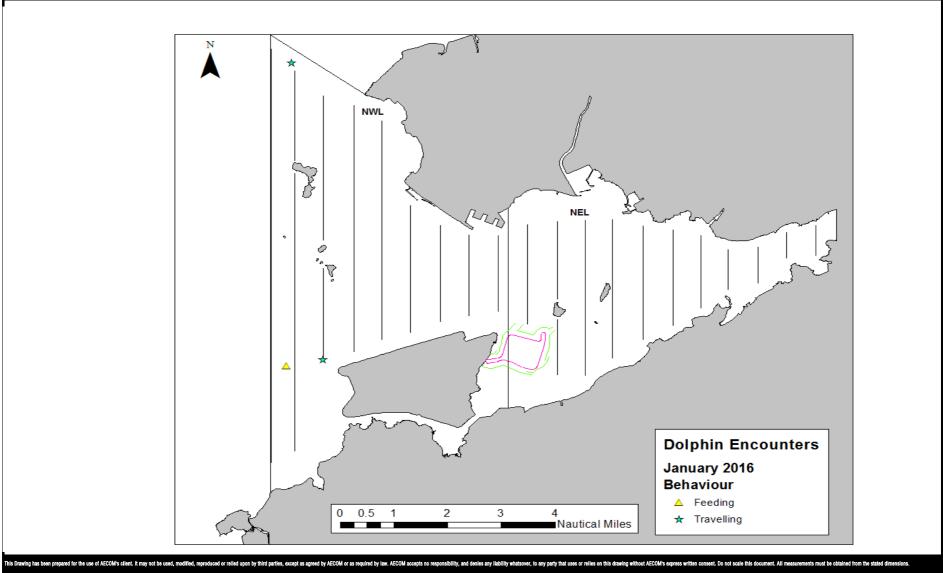
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: Feb 2016


Impact Dolphin Monitoring Survey Efforts on 7 & 8 January 2016

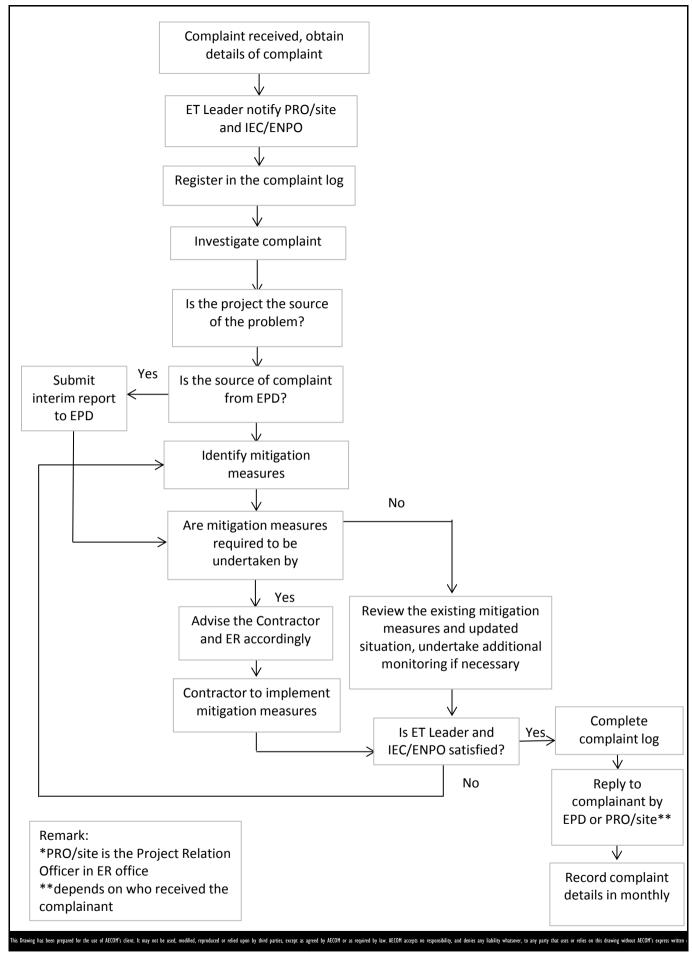
HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820


Date: Feb 2016

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES

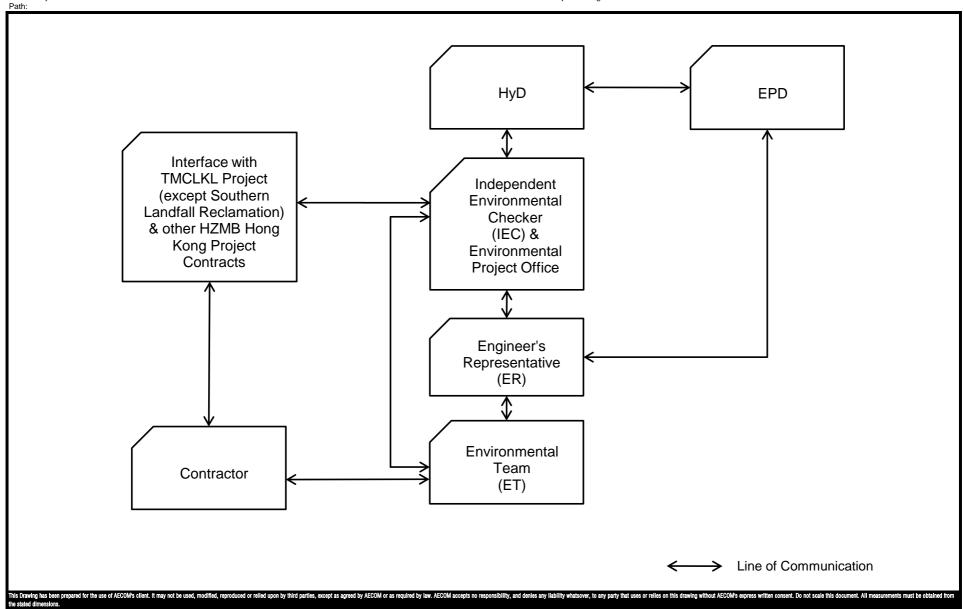
- RECLAMATION WORKS


Project No.: 60249820 Date: Feb 2016

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Project No.: 60249820 Date: Feb 2016


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

IES AECOM

- RECLAMATION WORKS

Environmental Complaint Handling Procedure

Project No.: 60249820 Date: July 2012 Figure 6

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES --RECLAMATION WORKS

Project No.: 60249820 Date: April 2013

ntract No.	Hong Kong - Zhuhai - Macao Brid	<u> </u>	`				OIKS		4.0	
ivity ID	Activity Name	Original Duration	Start	Finish	Total 2 Float	Jan 50		Feb 54	Mar	Ap
50th 7 Mon	thly Progress Report Status as on	21Jan2016 1774	21-May-12 A	28-Feb-17	316	50		51	52	50
Contract Key			21-Jan-16	05-Apr-16	66	,				—
	or achievement of Stages and completion	n of Sections 74	21-Jan-16	03-Apr-16	68	,				-
G1072	KD-05, Completion of Section D EC1-1 to EC1-6 10Aug2015 S			19-Mar-16*	-222				 	
G1073	KD-05, Completion of Section D EC1-7 to EC1-8 10Aug2015 S	6A3 0		30-Mar-16*	-233					+
G1075	KD-05, Completion of Section D Connection to Existing 10Aug	2015 SA3 0		30-Mar-16*	-233	÷				•
G1077	KD-05, Completion of Section D EC1-1 to EC1-6 West side to	Other Contractors 0		31-Jan-16*	-174	 	L			
G1081	KD-06C4TM, Completion of Section BC4TM Main Area West 1	2Sep2014 SA4 0		31-Jan-16*	-506	 	-			
G1086	KD-06C3 Completion of SEction BC3 Main Area East-N 21Nov	2015 SA4 0		25-Feb-16*	-96			•		
G1090	KD-07C3, Completion of Section C1aC3 6Jan2016 SA4	0		31-Jan-16*	-25		-			
G1092	KD-07C4, Completion of Section C1aC4 22Sep2014 SA4	0		19-Mar-16*	-544					
G1095	KD-08C3, Completion of Section C1bC3 South East 30Sep201	5 SA4 0		31-Jan-16*	-123		-			
G1100	KD-08C3, Completion of Section C1bC3 South West 30Sep20	15 SA4 0		21-Jan-16*	-112		,			
G1102	KD-08C3, Completion of Section C1bC3 North East 30Sep201	5 SA4 0		17-Mar-16*	-245				<u></u>	
G1103	KD-08C3, Completion of Section C1bC3 North West 30Sep201	5 SA4 0		03-Apr-16*	-187					4
G1117	KD-09C2, Completion of Section C2aC2 Edge Area C104 - C10	09 28Nov2015 SA3 0-43M 0		21-Jan-16*	-53	[*	>			+++
G1130	KD-11TM, Completion of Section E2TM Main Area North 05Fe	b2015 SA4 0		16-Feb-16*	-376			◆ η		
G1133	KD-11C3, Completion of Section E2C3 Main Area South 10Jun	2016 SA4 0		30-Mar-16*	72				-	•
Supplement	ary Agreement	63	31-Jan-16	03-Apr-16	-89		╽┿┼	-	┵	
SA4		63	31-Jan-16	03-Apr-16	-89		╽┿┼	\dashv	╫	H
SA4-KD06-010	KD-06C3 Completion of Section BC3 21Nov2015	0		25-Feb-16*	-97			•		+++
SA4-KD06-020	KD-06C8E Completion of Section BC8E 17Jun2015	0		25-Feb-16*	-254			┢		
SA4-KD06-030	KD-06C8N Completion of Section BC8N 17Jun2015	0		25-Feb-16*	-254			•		
						: !		111		
Remaining Lev	vel of Effort ◆ ◆ Milestone	50th_7 Monthly Progress Report Status as on 21.		ASK filters: No	Option 1	1 2, Thr	ee Mo	nth Ro	Iling, W	ork
Actual Level of	f Effort Summary	Page 1 of 21	Pr	ogramme.						
Actual Work										
Remaining Wo									Primavera	

ontract No.	Hong Kong - Zhuhai - Macao Bri	idge Holig Kolig D	oundary Crossing	z raciiiues	Reciamai	IOII WO	IKS			
tivity ID	Activity Name		Original Start Duration	Finish	Total 2 Float	Jan	Fe		Mar	Ар
SA4-KD06-040	KD-06C8NE Completion of Section BC8NE 17Jun2015		0	25-Feb-16*	-254	50	5	 •	52	53
SA4-KD07-010	KD-07C3 Completion of Section C1aC3 6Jan2016		0	31-Jan-16*	-26		+-			
SA4-KD07-020	KD-07C4 Completion of Section C1aC4 22Sep2014		0	19-Mar-16*	-545				-	
SA4-KD08-010	KD-08C3 Completion of Section C1bC3 30Sep2015		0	03-Apr-16*	-187					4-
SA4-KD08-020	KD-08C8NE Completion of Section C1bC8NE 17Jul2015		0	17-Mar-16*	-245				*	
SA4-KD08-040	KD-08C8SE Completion of Section C1bC8SE 17Jul2015		0	17-Mar-16*	-245				+-	
Summary Pr	ogramme		65 31-Jan-16	05-Apr-16	-90		+	╫┼	╫┿	
Portion Summ			65 31-Jan-16	05-Apr-16	-90		—	╫┼		
Portion B			25 31-Jan-16	25-Feb-16	-96		+	╫╸┃		
ZG1081	KD-06C4TM, Completion of Section BC3 Main Area West 21	1Nov2015 SA4	0	31-Jan-16*	-71		-			
ZG1086	KD-06C3 Completion of SEction BC3 Main Area East-N 21N	lov2015 SA4	0	25-Feb-16*	-96			 		
ZGA4-KD06-010	KD-06C3 Completion of Section BC3 21Nov2015		0	25-Feb-16*	-97			 		
ZGA4-KD06-020	KD-06C8E Completion of Section BC8E 17Jun2015		0	25-Feb-16*	-254			 	-	
ZGA4-KD06-030	KD-06C8N Completion of Section BC8N 17Jun2015		0	25-Feb-16*	-254			 		
ZGA4-KD06-040	KD-06C8NE Completion of Section BC8NE 17Jun2015		0	25-Feb-16*	-254			 		
Portion C			63 31-Jan-16	03-Apr-16	-88		+	╫╫	╫┿	
Portion C1a			48 31-Jan-16	19-Mar-16	-73		+	╫╫	╉╼╽	
ZG1090	KD-07C3, Completion of Section C1aC3 6Jan2016 SA4		0	31-Jan-16*	-25		•		-	
ZG1092	KD-07C4, Completion of Section C1aC4 22Sep2014 SA4		0	19-Mar-16*	-544				-	
ZGA4-KD07-010	KD-07C3 Completion of Section C1aC3 6Jan2016		0	31-Jan-16*	-26		-			
ZGA4-KD07-020	KD-07C4 Completion of Section C1aC4 22Sep2014		0	19-Mar-16*	-545				-	
Portion C1b			63 31-Jan-16	03-Apr-16	-186		+	╫╫	╫┼	
ZG1095	KD-08C3, Completion of Section C1bC3 South East 30Sep2	2015 SA4	0	31-Jan-16*	-123		*		-	
		50th 7 Manthly Drawrood Danart Ctatu	n on on 24 lon2046. T	A CIC filtana. Na	Ontine 4	0 Thus	- 14	la Dall		
Remaining Level of		50th_7 Monthly Progress Report Statu		ASK filters: No rogramme.	Option 1	∠, inre	e ivioni	ın Koll	ing, w	OLK
Actual Work		Page 2 of 21		•						
Remaining Wor	rk									

ty ID	Hong Kong - Zhuhai - Macao Br	•	Original Start	Finish	Total 2			201	6	
ity ID	Activity Name		Duration	FILIISH	Float	Jan		eb	Mar	Ap
ZG1102	KD-08C3, Completion of Section C1bC3 North East 30Sep20	015 SA4	0	17-Mar-16*	-169	50	T	51	52 →	53
ZG1103	KD-08C3, Completion of Section C1bC3 North West 30Sep2	2015 SA4	0	03-Apr-16*	-186				$\parallel \parallel$	-
ZGA4-KD08-010	KD-08C3 Completion of Section C1bC3 30Sep2015		0	03-Apr-16*	-187				$\parallel \parallel$	-
ZGA4-KD08-020	KD-08C8NE Completion of Section C1bC8NE 17Jul2015		0	17-Mar-16*	-245					
ZGA4-KD08-040	KD-08C8SE Completion of Section C1bC8SE 17Jul2015		0	31-Jan-16*	-199		-			
Portion C2a			0 25-Feb-16	25-Feb-16	-69			▼	$\parallel \parallel$	
ZGA4-KD09-020	KD-09C1C3 Completion of Section C2aC1C3 19Dec2015		0	25-Feb-16*	-69			+	$\parallel \parallel$	
Portion D			61 04-Feb-16	05-Apr-16	-239		V	╫	╫┵	+++
ZG1070	KD-05, Completion of Section D C1, C2, C3 & C4 Except Slo	oping outfall 10Aug2015 SA3	0	05-Apr-16*	-239				$\parallel \parallel$	H
ZG1072	KD-05, Completion of Section D EC1-1 to EC1-6 10Aug2015	5 SA3	0	19-Mar-16*	-222				-	
ZG1073	KD-05, Completion of Section D EC1-7 to EC1-9 10Aug2015	5 SA3	0	30-Mar-16*	-233				╢┟	╅║
ZG1074	KD-05, Completion of Section D Vertical Seawall 10Aug2015	5 SA3	0	04-Feb-16*	-178		-		$\parallel \parallel$	
ZG1075	KD-05, Completion of Section D Connection to Existing 10At	ug2015 SA3	0	30-Mar-16*	-233					∦
Work Zone, a	s defined in PS Clause 1.03(6)		511 21-Jul-15 A	12-Dec-16	394			╫┼	╫┤	╫┼┼
Portion A, B,			511 21-Jul-15 A	12-Dec-16	394					###
Portion A, B, C	: & E		511 21-Jul-15 A	12-Dec-16	394			╫╫	╫┽	╫┼┼╾
Seawall			408 02-Sep-15 A	13-Oct-16	454			╫┼	╫┥	╫┼┼╴
Optimizing Rubb	le Mound Seawalls		188 09-Nov-15 A	02-Jun-16	587			╫┼	╫┽	╫┼┼╴
Seawall Portion	A at C121 - C134		188 09-Nov-15 A	02-Jun-16	587			╫╫	╫┽	╫┼┼╾
RFA0-010	PA at C121 - C134 Removal of Temporary Rockfill (170,000m	n3, 1,500m3/day)	144 09-Nov-15 A	31-Mar-16	622					-
RFA0-020	PA at C121 - C134 Underlayer (21,600m3 1,000m3/day)		98 15-Nov-15 A	15-May-16	591		i		₩	
RFA0-030	PA at C121 - C134 Rock Armour (1-3ton 30,840m3 & 0.3-1to	on 14,466m3 244m3/day)	98 01-Dec-15 A	02-Jun-16	587				₩	
Conforming Slop	ing Seawalls		408 02-Sep-15 A	13-Oct-16	454		+	╫╬		╫╫╴
								4.5.		
Remaining Leve		50th_7 Monthly Progress Report Sta		SK filters: No	Option 1	12, Inr	ee ivio	ntn Koi	iing, v	/ork
Actual Level of	Effort ▼ Summary	Page 3 of 21	PIC	gramme.						
Actual Work	ı.									
Remaining Wor	K									

ty ID	Activity Name		Original Start	Finish	Total	2			2016			
.,			Duration	1	Float	J	an 50	Feb 51		Mar 52		Apr 53
Rock Armour			408 02-Sep-15 A	13-Oct-16	454			1			 	00
Portion B At K	028 - K039 (Ch1102 - Ch1600)		228 02-Sep-15 A	29-Feb-16	681				-		11-1-1	
RFB1-030	PB at K028 - K039 on cells Rock Armour 0.3-1ton 13,505m3 237r	m3/day	119 18-Sep-15 A	29-Feb-16	681	-						
RFB1-040	PB at K028 - K039 in front of cells Removal of temporary rockfill	10205m3 190m3/day	116 02-Sep-15 A	20-Jan-16 A								
RFB1-050	PB at K028 - K039 in front of cells Geotextile & Underlayer 10-60	kg 15m/day	33 02-Nov-15 A	05-Feb-16	705			 				
RFB1-060	PB at K028 - K039 in front of cells Rock Armour 0.3-1ton 11,244n	m3 244m3/day	54 01-Dec-15 A	29-Feb-16	681			:				
Portion E2 At I	(049 - C067 (Ch1990 - Ch2800)		368 12-Oct-15 A	13-Oct-16	347			} 			╫┼	
RFE2-012	PE2 at K049 - K067 on cells Removal of temporary rockfill		84 12-Oct-15 A	03-Feb-16	415			<u> </u>				
RFE2-014	PE2 at K049 - K067 on cells Geotextile & Underlayer 10-60kg 11,	733m3 200m3/day	84 17-Oct-15 A	08-Feb-16	410			-				
RFE2-030	PE2 at K049 - K067 on cells Rock Armour 1-3ton 31,820m3 237m	n3/day	134 21-Jan-16*	02-Jun-16	410						\blacksquare	
RFE2-040	PE2 at K049 - K067 in front of cells Removal of temporary rockfill	I 25,648m3	227 21-Jan-16	03-Sep-16	347						\blacksquare	
RFE2-050	PE2 at K049 - K067 in front of cells Geotextile & Underlayer 10-6	60kg 15m/day	227 10-Feb-16	23-Sep-16	347			-	1			
RFE2-060	PE2 at K049 - K067 in front of cells Rock Armour 1-3ton 32,060m	n3 237m3/day	227 01-Mar-16	13-Oct-16	347						\blacksquare	
Portion E1 At 0	C068 - C076 (Ch2800 - Ch3160)		35 04-Feb-16	09-Mar-16	523			V	╟╫	1		
RFE1a-010	PE1 at K068 - K076 on cells Removal of temporary rockfill		28 04-Feb-16	02-Mar-16	523			-				
RFE1a-020	PE1 at K068 - K076 on cells Geotextile & Underlayer 10-60kg 5,5	557m3 200m3/day	28 11-Feb-16	09-Mar-16	523			- -		1		
Portion C2a At	C102 - C112 (Ch4262 - Ch4710)		123 21-Jan-16	22-May-16	203		++	<u></u>			╫╫	
RFC2a-010	PC2a at C102 - C112 on cells Removal of temporary rockfill		55 21-Jan-16	15-Mar-16	202		 	1				
RFC2a-020	PC2a at C102 - C112 on cells Geotextile & Underlayer 10-60kg 10	0907m3 200m3/day	55 28-Jan-16	22-Mar-16	203			1				
RFC2a-030	PC2a at C102 - C112 on cells Rock Armour 2-5ton m3 23,923m3	221m3/day	109 04-Feb-16	22-May-16	203			-			\blacksquare	
RFC2a-040	PC2a at C102 - C112 in front of cells Removal of temporary rockfi	ill 31,987m3	32 16-Mar-16	16-Apr-16	202					-	\blacksquare	
Surcharge			511 21-Jul-15 A	12-Dec-16	394			<u> </u>			HH	
Land Portion B			382 22-Jul-15 A	06-Jul-16	-386				╫┼	╫┤	╫╫	
Remaining Lev Actual Level of Actual Work	of of Effort V Vinicotorio	0th_7 Monthly Progress Report Stat Page 4 of 21	1	SK filters: No gramme.	Option	1 2, T	hree	Month	n Rolli	ng, W	/ork	

					_				
ty ID	Activity Name	Original Duration Start	Finish	Total Float	2 Jan 50	Fe 5		Mar 52	Apr 53
Edge Areas		315 27-Sep-15 A	06-Jul-16	-670		H	T	Ť	
at K013 - K027		199 23-Dec-15 A	06-Jul-16	-676			╫╬	╫┿	╫┼┼─
SUEB0-036	PB Edge Area K013-K027 Sand Surcharge Checking at +10.5mPD	11 23-Dec-15 A	31-Dec-15 A						
SUEB0-038	PB Edge Area K013-K027 Sand Surcharge up to 11.5mPD 38,103m3 5,0	00m3/day by Dump Trucks 7 01-Jan-16 A	05-Jan-16 A	-	▶■				1-1-1
SUEB0-040	PB Edge Area K013-K027 Sand Surcharge Period at +11.5mPD 6mths	180 09-Jan-16 A	06-Jul-16	-676	-		╬	╬┿	₩
at K028 - K035		283 27-Sep-15 A	05-Jul-16	-688		╫┼	╫╫	╫┿	╫┼┼─
SUEB0-072	PB Edge Area K028-K035 Surcharge Strength Test Achievement	96 27-Sep-15 A	26-Dec-15 A						
SUEB0-080	PB Edge Area K028-K035 Sand Surcharge Laying up to 11.5mPD 45,440	m3 5,000m3/day 9 27-Dec-15 A	06-Feb-16	-590	-				
SUEB0-090	PB Edge Area K028-K035 Sand Surcharge Period +11.5mPD 5mths	150 07-Feb-16	05-Jul-16	-688		╽┞╬═			
at K036 - K039		242 07-Nov-15 A	05-Jul-16	-674		+	╫╫	╫┼	╫┼┼
SUEB0-130	PB Edge Area K036-K039 Surcharge Strength Test Achievement	55 07-Nov-15 A	21-Jan-16	-673					
SUEB0-140	PB Edge Area K036-K039 Sand Surcharge Laying up to 11.5mPD 30,293	m3 5,000m3/day 14 22-Jan-16	06-Feb-16	-577	L-1				
SUEB0-150	PB Edge Area K036-K039 Sand Surcharge Period +11.5mPD 5mths	150 07-Feb-16	05-Jul-16	-674			╇	╇┿	
at K047 - K052	(w Deep Cement Mixing)	210 17-Oct-15 A	13-May-16	-616					╫┼┼
DCM-2070	PB Edge Area K047-K052 36-73m Surcharge Period 7mths (13May2016)	210 17-Oct-15 A	13-May-16	-616			╬	╇	₩
Reclamation Are	eas	219 22-Jul-15 A	25-Feb-16	-254					
SURB4-099	Completion of Section B in Reclamation Areas	0	31-Jan-16	-506					
at West of Mair	n Area stg1	125 19-Aug-15 A	31-Jan-16	-467		┿╽			
SURB1-040	PB Main Area West-S Sand Surcharge Removal 291,223m3 10,000m3/da	ay 125 19-Aug-15 A	31-Jan-16	-467					
at West of Mair	n Area stg2	142 01-Aug-15 A	31-Jan-16	-467		 			
SURB2-040	PB Main Area West-N Sand Surcharge Removal 335,714m3 10,000m3/da	ay 142 01-Aug-15 A	31-Jan-16	-467					
at North- East of	of Main Area	219 22-Jul-15 A	25-Feb-16	-254		╫┼			
SURB3-030	PB Main Area East-N Sand Surcharge Period +11.5mPD 7mths (16Feb20	016) 210 22-Jul-15 A	16-Feb-16	-255			<u>, </u>		
				<u></u>	-				<u> </u>
Remaining Lev	of the transfer of this section		ASK filters: No	o Option	1 2, Thre	ee Mon	th Roll	ing, W	ork
Actual Level of	f Effort Summary	Page 5 of 21	rogramme.						
Actual Work									
Remaining Wo Critical Remain									s Systems

ntract No.	Hong Kong - Zhuhai - Macao Bridge					ation V			0016		
ty ID	Activity Name		Original Start uration	Finish	Total _ Float _	Ja		Feb	2016	Mar	Ap
SURB3-040	PB Main Area East-N Sand Surcharge Removal 60,000m3 10,000m3,	/day	9 17-Feb-	16 25-Feb-16	-233	50		51		52 	53
Land Portion C2	2a		450 20-Sep	15 A 12-Dec-16	-382		╫	+			╬┼
Edge Areas			395 14-Nov-	15 A 12-Dec-16	-382		╫	+-			╫
Deep Cement I	Mixing Works at C101 - C103		240 17-Dec-	15 A 12-Aug-16	-688		╫	+-			╫
DCM-3070	PC2a Edge Area C101-C103 Surcharge Period 8mths (Land Side)		240 17-Dec-	15 A 12-Aug-16	-688			 			┿
Option - Deep	Cement Mixing Works at C104 - C109		311 01-Dec-	15 A 06-Oct-16	-565						++
DCM-4140	PC2a Edge Area C104-C109 Hardening & Pause Period		31 01-Dec-	15 A 30-Dec-15 A		-					:
DCM-4150	PC2a Edge Area C104-C109 Filling up to +5.5mPD Type D (73m widt	th, 25,641m3) 5,000m3/day at	6 31-Dec-	15 A 13-Jan-16 A							:
DCM-4155	DCM by Dump Trucks PC2a Edge Area C104-C109 Completion of 0-43m		0	13-Jan-16 A		€,	<u> </u>				
DCM-4160	PC2a Edge Area C104-C109 Filling up to +8.5mPD Surcharge (30m v	width, 25,334m3 10,000m3/day	4 21-Jan-	16 25-Jan-16	-480	Ļ					:
DCM-4162	at DCM by Dump Trucks PC2a Edge Area C104-C109 CPT Test		10 26-Jan-	16 04-Feb-16	-564			•			-++
DCM-4170	PC2a Edge Area C104-C109 Filling up to +11.5mPD Surcharge (30m 10.000m3/day at DCM by Dump Trucks	width, 25,334m3	4 05-Feb-	16 09-Feb-16	-481		╢┡	;			: []
DCM-4180	PC2a Edge Area C104-C109 Surcharge Period 8mths (Land Side) (16	SSep2016)	240 10-Feb-	16 06-Oct-16	-565						+
at C110 - C112	Cellular Seawall		332 16-Jan-	16 A 12-Dec-16	-382	•		+			
DCM-4202	PC2a Edge Area C110-C112 Variation Order by the Engineer		0 16-Jan-	16 A		ب ــ					:
DCM-4210	PC2a Edge Area C110-C112 23m width installation 597nrs 15nrs/day		47 16-Jan-	16 A 02-Mar-16	-382	 [ļ		- + +
DCM-4220	PC2a Edge Area C110-C112 Hardening & Pause Period		30 03-Mar-	16 01-Apr-16	-382				<u>=</u>		41
DCM-4230	PC2a Edge Area C110-C112 Filling up to +5.5mPD Type D (73m widt	h, 12820m3) 5,000m3/day	3 17-Mar-	16 19-Mar-16	-369					┝┓┼╢	Щ.
DCM-4240	PC2a Edge Area C110-C112 Completion of 0-23m with DCM		0	01-Apr-16	-382						/
DCM-4250	PC2a Edge Area C110-C112 Filling up to +8.5mPD Surcharge (50m v	vidth, 12,667m3)	3 02-Apr-	16 04-Apr-16	-382						<u>.</u>
DCM-4260	PC2a Edge Area C110-C112 CPT Test		10 05-Apr-	16 14-Apr-16	-382						#
DCM-4270	PC2a Edge Area C110-C112 Filling up to +11.5mPD Surcharge (50m	width, 12,667m3)	2 15-Apr-	16 16-Apr-16	-382						┆╽╞╝
DCM-4280	PC2a Edge Area C110-C112 Surcharge Period Period 8mths		240 17-Apr-	16 12-Dec-16	-382						┆╽┞┰
_	50th 7	7 Monthly Progress Report Status as	on 21 lon2046	TACK filtage. No		10 T	ros M	Month.	Delli	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
Remaining Level of	VOI OI EITOIL V VIIIIIOGIGITO		o un z iJanzu 10	TASK filters: No Programme.	o Option	ı ∠, If	nee i	viorith	KOIII	ıg, vvo	I K
Actual Work		Page 6 of 21									
Remaining Wo	nrk										

tract No.		ong Boundary Crossing			_	OIKS	2010	
y ID	Activity Name	Original Start Duration	Finish	Total 2 Float	Jan 50	Feb	2016 Mar 52	Ap 53
CH4+710 - CH5-	-110 Rubble Mound Seawall	240 14-Nov-15 A	10-Jul-16	-230	30		32	
10-73m		150 21-Dec-15 A	18-May-16	-177		+	┼┼╢╴	╫┼┼
SUEC2a-1120	PC2a C113-C117 10m-73m Surcharge Sand Period 5mths (18May2016)	150 21-Dec-15 A	18-May-16	-177				
73-120m		240 14-Nov-15 A	10-Jul-16	-230	;		╂┊╫╌	╂╂┼┼
SUEC2a-2090	PC2a C113-C117 73m-120m Surcharge Sand Period 8mths (10Jul2016)	240 14-Nov-15 A	10-Jul-16	-230	-			
Reclamation Are	eas	275 20-Sep-15 A	20-Jun-16	-630			 	╫┼
C2aC1		240 25-Oct-15 A	20-Jun-16	-630			 	╫┼
SURC2aC1-070	PC2a C2aC1 Sand Surcharge Period 8mths (20Jun2016)	240 25-Oct-15 A	20-Jun-16	-630				
C2aC2		241 20-Sep-15 A	17-May-16	-606			↓	₩₩
	PC2a C2aC2 Sand Surcharge Period 8mths (17May2016)	241 20-Sep-15 A	17-May-16	-606				
Land Portion C1a		243 21-Jul-15 A	19-Mar-16	-74				
Reclamation Are		243 21-Jul-15 A	19-Mar-16	-74				
	ido							
C3	P04 M: A W 10 10 10 1007 040 0 40 000 0/1	53 10-Dec-15 A	31-Jan-16	-26	!	Щ		
SURC1a-040	PC1a Main Area West Sand Surcharge Removal 297,616m3 10,000m3/day	30 10-Dec-15 A	31-Jan-16	-24	į			
SURC1a-050	Completion of Section C1aC3	0	31-Jan-16	-26				
C4		243 21-Jul-15 A	19-Mar-16	-545				
SURC1a-140	PC1a South East Land Area Sand Surcharge Period at +11.5mPD 7mths (15Feb2016)	210 21-Jul-15 A	15-Feb-16	-516				
SURC1a-150	PC1a South West Land Area Sand Surcharge Period at +11.5mPD 8mths (16Mar2016)	240 21-Jul-15 A	16-Mar-16	-546				
SURC1a-160	PC1a South East Land Area Sand Surcharge Removal	3 16-Feb-16	18-Feb-16	-471		╽		↓∥
SURC1a-170	PC1a South West Land Area Sand Surcharge Removal	3 17-Mar-16	19-Mar-16	-499			╽┊┞┪	.
SURC1a-180	Completion of Section C1aC4	0	19-Mar-16	-545				{
Land Portion C1I		232 16-Aug-15 A	03-Apr-16	647			╅┼┼┼	
Reclamation Are	as	232 16-Aug-15 A	03-Apr-16	647		- - 	-	┡ ╫┽╎┈
					<u> </u>	115	<u> </u>	
Remaining Leve			SK filters: N ogramme.	o Option '	1 2, Thre	ee Month	n Rolling, \	Nork
Actual Level ofActual Work	Effort ▼ Summary Page 7 c	of 21	giaiiiile.					
Remaining Wor	k							
Critical Remain	ing Work						Primave	ra Systems

	Hong Kong - Zhuhai - Macao Bridge									0040	
ity ID	Activity Name		Original Duration	Start	Finish	Total Float	2 J	an	Feb	2016 Mar	A
			Duration			Float		50	51	52	5
East (3/4 Areas)			56	07-Dec-15 A	31-Jan-16	710			,		Ш
SURC1b-055	PC1b East Instruction of Surcharge Removal by the Engioneer (As	sumption)	0	21-Jan-16*		721		•	į		
SURC1b-060	PC1b East Sand Surcharge Removal 336,435m3 10,000m3/day		23	07-Dec-15 A	31-Jan-16	-185					111
SURC1b-095	Completion of Section PC1b		0		31-Jan-16	-123	1 1 1 1		اسر		
North Side clos	e to Portion C2b		215	16-Aug-15 A	17-Mar-16	-245	-				
SURC1b-1030	PC1b Main Area Sand Surcharge Period as +11.5mPD 7mths (12M	/lar2016)	210	16-Aug-15 A	12-Mar-16	-244					
SURC1b-1040	PC1b Main Area Sand Surcharge Removal 40,000m3 10,000m3/da	ау	4	14-Mar-16	17-Mar-16	-224	 		:	L419	
SURC1b-1050	Completion of Section PC1b North East at Reclamation Area close	to C2b	0		17-Mar-16	-245	1		:	 	
North Side clos	e to Portion C2c		216	01-Sep-15 A	03-Apr-16	-187				+	
SURC1b-1080	PC1b Main Area Sand Surcharge Period as +11.5mPD 7mths (28M	Mar2016)	210	01-Sep-15 A	28-Mar-16	-187					/
SURC1b-1090	PC1b Main Area Sand Surcharge Removal 56,468m3 10,000m3/da	ау	6	29-Mar-16	03-Apr-16	-170			:	ļ ļ	H
SURC1b-1100	Completion of Section PC1b North West at Reclamation Area close	e to C2c	0		03-Apr-16	-187			:		. 1
Land Portion E2			383	16-Aug-15 A	01-Sep-16	-99					
North Part			272	13-Nov-15 A	17-Aug-16	-84					H
Edge Areas - No	orth, Land Area & Edge Area C064-C067		140	13-Nov-15 A	08-Jun-16	-306	!				
SUEE2-120	PE2 North & East Edge C064-C067 Sand Surcharge Laying up to	8.5mPD 54,746m3 5,000m3/day	11	13-Nov-15 A	25-Jan-16	-262		7			
SUEE2-130	PE2 North & East Edge C064-C067 Sand Surcharge Period as +8.	5mPD 4.5mths	135	26-Jan-16	08-Jun-16	-306					
Land Areas - Ea	nst (TM) C057 - C063 Ch2+300 to Ch2+600		16	01-Feb-16	16-Feb-16	-376					
SURE2-055	PE2 Land C057-C063 Removal of Surcharge instructed by the Eng	ineer	0	01-Feb-16*		-371		╽	•		
SURE2-060	PE2 Land C057-C063 Tunnel Sand Surcharge Removal at tunnel a	area 107,437m3 10,000m3/day	11	01-Feb-16	16-Feb-16	-341					
Land Areas - We	est (C3)		272	20-Nov-15 A	17-Aug-16	-84					
SURE2-170-50	PE2 Land C061-C064 Non-Tunnel Sand Surcharge non tunnel area 60,000m3 5,000m3/day	a Laying upto 11.5mPD stg2	38	20-Nov-15 A	20-Jan-16 A						
SURE2-180	PE2 Land C061-C064 Non-Tunnel Sand Surcharge Period as +11.5	5mPD non tunnel area 7mths	210	21-Jan-16	17-Aug-16	-84					
	50th	n_7 Monthly Progress Report Status	as on 21	lan2016 TAG	SK filters: No	Ontion	1 2 T	broo	Month	Polling V	Vork
Remaining Leve	of Effort V Willoutono		. us on 2 lc		gramme.	Option	1 Z, I	IIIEE	IVIOTILIT	ronnig, v	VOIK
Actual Level of	Effort Summary	Page 8 of 21			grannie.						
Actual Work											
Remaining Work	k ing Work										

· ID	Activity Name	Origina		Start	Finish	Total			20		_
		Duratio	on			Float	Ja 50		Feb 51	Mar 52	
South Part		38	83 1	16-Aug-15 A	01-Sep-16	-227		TT			ſΤ
Edge Areas Ea	st C058 to C063	27	76 1	13-Oct-15 A	14-Jul-16	-536					Ħ
SUEE2-025	PE2 Edge C058-C063 Sand Surcharge Strength Test	8	80 1	13-Oct-15 A	31-Jan-16	-536	-	+++			
SUEE2-030	PE2 Edge C058-C063 Sand Surcharge Laying up to +11.5mPD 7	70,806m3 5,000m3/day 1	13 0	01-Feb-16	15-Feb-16	-456		┃ ┞╃ <u>┾</u>	-		
SUEE2-040	PE2 Edge C058-C063 Sand Surcharge Period as +11.5mPD 5mt	hs 15	50 1	16-Feb-16	14-Jul-16	-536	1		L-		⊭
Edge Areas Ea	st C056 to C057	26	68 0	09-Dec-15 A	01-Sep-16	-578		╫		+	H
SUEE2-640	PE2 Edge C056-C057 DCM Harden	3	30 C	09-Dec-15 A	19-Jan-16 A			4			
SUEE2-650	PE2 Edge C056-C057 DCM Fill upto +5.5mPD		4 1	11-Jan-16 A	15-Jan-16 A		=				
SUEE2-660	PE2 Edge C056-C057 Remaining Area Fill upto +11.5mPD		4 0	01-Feb-16*	04-Feb-16	-578					
SUEE2-670	PE2 Edge C056-C057 Remaining Area Surcharge Period 7mths	21	10 C	05-Feb-16	01-Sep-16	-578					₩
Edge Areas Ea	st C052 to C055	30	01 1	16-Oct-15 A	11-Aug-16	-558		╫		┿	₩
SURE2-420	PE2 Edge C052-C055 300m Zone Sand Surcharge Pause Period	l at 8.5mPD 4.5mths (27Feb2016) 13	35 1	16-Oct-15 A	27-Feb-16	-557					
SURE2-425	PE2 Edge C052-C055 300m Zone Sand Surcharge CPT Test at 8	3.5mPD	7 2	28-Feb-16	05-Mar-16	-557			<u>ا</u>	9	
SURE2-430	PE2 Edge C052-C055 300m Zone Sand Surcharge Laying upto 1	1.5mPD 58,348m3 5,000m3/day	7 0	07-Mar-16	14-Mar-16	-475			L	-	
SURE2-440	PE2 Edge C052-C055 300m Zone Sand Surcharge Period as +1	1.5mPD 5mths 15	50 1	15-Mar-16	11-Aug-16	-558				└ 	₩
Land Areas		25	59 1	16-Aug-15 A	30-Apr-16	-103	1	╫		+	H
300m to 100m	a Zone	22	22 2	22-Sep-15 A	30-Apr-16	-450					
SURE2-530	PE2 Land C052-C056 300m Zone Sand Surcharge Period as +11	.5mPD 7mths (18Apr2016) 21	10 2	22-Sep-15 A	18-Apr-16	-449		┿		┿	₩
SURE2-540	PE2 Land C052-C056 300m Zone Sand Surcharge Removal 105	,782m3 10,000m3/day 1	11 1	19-Apr-16	30-Apr-16	-410					
Out of K052 3	00m	22	28 1	16-Aug-15 A	30-Mar-16	-72		╫		+	ł
SURE2-020	PE2 Land C052-C060 Non-Tunnel Sand Surcharge Period as +17	I.5mPD 7mths (13Mar2016) 21	11 1	16-Aug-15 A	13-Mar-16	-72		┿		-	
SURE2-030	PE2 Land C052-C060 Non-Tunnel Sand Surcharge Removal 158	,673m3 + 28,116m3(C1b) 1	16 1	14-Mar-16	30-Mar-16	-63		1-1-1			
Land Portion E1	10,000m3/day	19	95 0	08-Dec-15 A	19-Jun-16	-657	-	┿		+	₩
							<u> </u>	<u> </u>			<u> </u>
Remaining Lev	vel of Effort ◆	oth_7 Monthly Progress Report Status as on 2	21Ja		SK filters: No	Option	1 2, Th	ree M	Ionth Ro	illing, Wo	٥rk
Actual Level of	f Effort Summary	Page 9 of 21		Pro	gramme.						
Actual Work											

y ID	Activity Name		Original Start Duration	Finish	Total _ Float _	J	an	Feb 20	Mar	Apr
Deep Cement N	ixing C077 - C080 150m (Exclude VB & RS)		195 08-Dec-15	A 19-Jun-16	-657	5	50	51	52	53
DCM-4020	PE1 Edge Area Installation 415nrs		33 08-Dec-15	A 06-Jan-16 A						
DCM-4050	PE1 Edge Area Hardening		28 07-Jan-16 /	A 03-Feb-16	-657	-		9		
DCM-4060	PE1 Edge Area Flling upto +5.5mPD 25,000m3 5,000m3/	day at DCM	6 21-Jan-16	27-Jan-16	-555		-			
DCM-4080	PE1 Edge Area Surcharge Filling up to +8.5mPD (10,000)	m3) 10,000m3/day at DCM	2 04-Feb-16	05-Feb-16	-561			<u>-1</u>		
DCM-4083	PE1 Edge Area Surcharge Pause Period 4.5mths		135 06-Feb-16	19-Jun-16	-657			-		
Edge Areas Exc	luded 150m of DCM Area		185 14-Dec-15	A 14-May-16	-645	-	╫		$\rightarrow \rightarrow$	₩—
SUEE1-010	PE1 Edge Sand Surcharge Laying up to 8.5mPD 126,529	m3 10,000m3/day	16 14-Dec-15	A 31-Dec-15 A		, <u></u>				
SUEE1-020	PE1 Edge Sand Surcharge Period +8.5mPD 4.5mths		135 01-Jan-16	14-May-16	-645	-				
Land Portion C2	b		277 12-Sep-15	A 28-May-16	-136		╫		$\rightarrow \rightarrow$	₩—
Edge Areas			212 16-Nov-15	A 24-May-16	-222		╫			-
SUEC2b-050	PC2b Edge Area PBF Surcharge w compaction upto 8.5m	PD 12,054m3 5,000m3/day	43 16-Nov-15	A 10-Jan-16 A	-	 1-,				
SUEC2b-060	PC2b Edge Area Surcharge Period as +8.5mPD 4.5mths		135 11-Jan-16 A	24-May-16	-222	-				#
Reclamation Ar	eas		260 12-Sep-15	A 28-May-16	-136					++
North			210 01-Nov-15	A 28-May-16	-146		+			+
SURC2b-020	PC2b Main Area North Sand Surcharge Period as +11.5m	PD 7mths (28May2016)	210 01-Nov-15	A 28-May-16	-146					
South			242 12-Sep-15	A 10-May-16	-118		╅			+-
SURC2b-034	PC2b Main Area South PBF Surcharge Period as +11.5m	PD 7mths (9Apr2016)	211 12-Sep-15	A 09-Apr-16	-117					#
SURC2b-036	PC2b Main Area South PBF Surcharge Removal 137,244	m3 5,000m3/day	28 11-Apr-16	10-May-16	-106					
Land Portion C2	С		296 27-Oct-15	A 17-Aug-16	-142		╅			+-
Edge Areas			152 20-Jan-16	20-Jun-16	-229		+++			+-
SUEC2c-010	PC2c Edge Area PBF Surcharge w compaction upto 8.5m	PD 43,395m3 5,000m3/day	9 20-Jan-16 /	A 06-Feb-16	-213			=		
SUEC2c-020	PC2c Edge Area PBF Surcharge Period +8.5mPD 4.5mth	s	135 07-Feb-16	20-Jun-16	-229			-		
Remaining Level of Actual Work Remaining Wo	Effort ▼ Summary	50th_7 Monthly Progress Repor		ASK filters: No Programme.	o Option	1 2, T	hree I	Month Ro	Iling, Wo	ork

ty ID	Activity Name	Original	Start	Finish	Total	2		20	016	
., .,	Training Training	Duration		THIGH	Float		an i0	Feb 51	Mar 52	A ₁
Reclamation Are	eas	296	27-Oct-15 A	17-Aug-16	-142			<u> </u>		ĦŤ
West		201	27-Oct-15 A	23-May-16	-56		╁			$oxed{+-}$
SURC2c-W030	PC2c Main Area Sand Surcharge Period 7mths (23May2016)	201	27-Oct-15 A	23-May-16	-56					╫
East		272	20-Nov-15 /	4 17-Aug-16	-142		╫			╫╴
SURC2c-E020	PC2c Main Area Sand Surcharge Laying upto 11.5mPD stg2 109,12	0m3 5,000m3/day 36	20-Nov-15	A 20-Jan-16 A				 		
SURC2c-E030	PC2c Main Area Sand Surcharge Period 7mths	210	21-Jan-16	17-Aug-16	-142					
Portion D		186	14-Nov-15 /	A 17-May-16	603		╫			╫╴
Precast Yard f	or Seawall Blocks & Culverts	15	11-Dec-15 A	25-Dec-15 A		7		1		
Culverts		15	11-Dec-15 /	A 25-Dec-15 A	-	7		1		
Culverts EC1		15	11-Dec-15 A	25-Dec-15 A		7			:	
EC1-8		15	11-Dec-15 A	A 25-Dec-15 A		7				
PY-EC1-08060	PD EC1-08 Base Curing	15	11-Dec-15 A	25-Dec-15 A		ι,			:	
Site Construct	tion	186	14-Nov-15 /	A 17-May-16	603		+++			H
C1 to C4		186	14-Nov-15 /	A 17-May-16	603		╫			╫
Installations of F	Precast Culverts except sloping outfalls	127	19-Dec-15 /	A 05-Apr-16	645		╫			₩
Culvert C1		28	24-Dec-15 /	A 17-Feb-16	-239	++		—		
C1-2		12	21-Jan-16	01-Feb-16	-239		+++	1		
PD-C1-2-060	PD C1-2 Removal of South Steel Bulkhead	4	21-Jan-16	24-Jan-16	-239		, ■	1		
PD-C1-2-070	PD C1-2 Manhole Insitu concrete	4	25-Jan-16	28-Jan-16	-239		┡╆	 		
PD-C1-2-120	PD C1-2 Backfill Manhole upto +5.5mPD	4	29-Jan-16*	01-Feb-16	-239		14#	1		
C1-3		4	02-Feb-16	05-Feb-16	-239	++	- 	,	<mark></mark>	
PD-C1-3-120	PD C1-3 Backfill Manhole upto +5.5mPD	4	02-Feb-16	05-Feb-16	-239		┤┞╬╸	1		
C1-4		4	06-Feb-16	09-Feb-16	-239			~		
_	FOAL	_7 Monthly Progress Report Status as on 21	Jan 2016	ACI/ filtoway NI-	Ontina	10 -	bros NA	lonth D	olling M	ork
Remaining Lev Actual Level of Actual Work	Effort ▼ Summary	_/ Monthly Progress Report Status as on 21	1 -	ASK filters: No Programme.	Option	ı 1 ∠, I	nree M	onth Ro	חוווכ, vvc	ΣΓΚ
Remaining WoCritical Remain									Primavera	

ntract No.	Hong Kong - Zhuhai - Macao Br	ridge Hong Kong F	•				*** 011			
tivity ID	Activity Name		Original Start Duration	Finish	Total Float	J	lan	201 Feb	Mar	Ap
PD-C1-4-120	PD C1-4 Backfill Manhole upto +5.5mPD		4 06-Feb-16	09-Feb-16	-239		50 	51 -	52	53
C1-5	·		4 10-Feb-16	13-Feb-16	-239		Ш	-		
PD-C1-5-120	PD C1-5 Backfill Manhole upto +5.5mPD		4 10-Feb-16	13-Feb-16	-239			L ₌	++	
C1-6	·		28 24-Dec-15 A	17-Feb-16	-239	-	₩			
PD-C1-6-050	PD C1-6 Removal of North Steel Bulkhead		4 21-Jan-16	24-Jan-16	-444		■U			
PD-C1-6-070	PD C1-6 Manhole Insitu concrete		4 24-Dec-15 A	27-Dec-15 A		=				
PD-C1-6-090	PD C1-5/6 Movement Joint Insitu		4 25-Dec-15 A	28-Dec-15 A						
PD-C1-6-120	PD C1-6 Backfill Manhole upto +5.5mPD		4 14-Feb-16	17-Feb-16	-239				++	
Culvert C2			77 19-Dec-15 A	04-Mar-16	677		╫		,	
C2-2			65 19-Dec-15 A	21-Feb-16	689		╫	-		
PD-C2-2-060	PD C2-2 Removal of South Steel Bulkhead		4 21-Jan-16	24-Jan-16	717					
PD-C2-2-070	PD C2-2 Manhole Insitu concrete		5 19-Dec-15 A	23-Dec-15 A						
PD-C2-2-120	PD C2-2 Backfill Manhole upto +5.5mPD		4 18-Feb-16	21-Feb-16	-239					
C2-3			4 22-Feb-16	25-Feb-16	-239		Ш	₩		
PD-C2-3-120	PD C2-3 Backfill Manhole upto +5.5mPD		4 22-Feb-16	25-Feb-16	-239		Ш	Ļ ■		
C2-4			4 26-Feb-16	29-Feb-16	-239		Ш	₩		
PD-C2-4-120	PD C2-4 Backfill Manhole upto +5.5mPD		4 26-Feb-16	29-Feb-16	-239		Ш	L _p		
C2-5			44 21-Jan-16	04-Mar-16	677			; ;	,	
PD-C2-5-050	PD C2-5 Removal of North Steel Bulkhead		4 21-Jan-16	24-Jan-16	717					
PD-C2-5-120	PD C2-5 Backfill Manhole upto +5.5mPD		4 01-Mar-16	04-Mar-16	-239		Ш	┡ <u></u>		
Culvert C3			111 19-Dec-15 A	20-Mar-16	661		╫		—	
C3-2			81 19-Dec-15 A	08-Mar-16	673		╫		→	
PD-C3-2-060	PD C3-2 Removal of South Steel Bulkhead		4 21-Jan-16	24-Jan-16	717					
								i i		<u> </u>
Remaining Level of		50th_7 Monthly Progress Report State	1	ASK filters: No ogramme.	Option	า 1 2, T	hree	Month Ro	ling, Wo	ork
Actual Level of Actual Work	Effort Summary	Page 12 of 21	l' i	ogramme.						
Remaining Wo	rk									
Critical Remain								F	Primavera	Svstem

ontract No.	Hong Kong - Zhuhai - Macao Bri	idge Hong Rong D	Soundary Crossing	; raciilles - i	XCCIaii.	auon v	VOIKS		
tivity ID	Activity Name		Original Start Duration	Finish	Total Float	2 Jai 50		2016 Feb Mar 51 52	A
PD-C3-2-070	PD C3-2 Manhole Insitu concrete		6 19-Dec-15 A	01-Jan-16 A		30		51 52	Th
PD-C3-2-120	PD C3-2 Backfill Manhole upto +5.5mPD		4 05-Mar-16	08-Mar-16	-239			Ļ <u>,</u>	
C3-3			4 09-Mar-16	12-Mar-16	-239			▼	
PD-C3-3-120	PD C3-3 Backfill Manhole upto +5.5mPD		4 09-Mar-16	12-Mar-16	-239			┡┛	
C3-4			4 13-Mar-16	16-Mar-16	-239	++		▼	
PD-C3-4-120	PD C3-4 Backfill Manhole upto +5.5mPD		4 13-Mar-16	16-Mar-16	-239			└ - 	
C3-5			111 26-Dec-15 A	20-Mar-16	661	•		- -	,
PD-C3-5-050	PD C3-5 Removal of North Steel Bulkhead		4 21-Jan-16	24-Jan-16	717				
PD-C3-5-070	PD C3-5 Manhole Insitu concrete		4 26-Dec-15 A	29-Dec-15 A		•			
PD-C3-5-090	PD C3-4/5 Movement Joint Insitu		4 30-Dec-15 A	02-Jan-16 A		4			
PD-C3-5-120	PD C3-5 Backfill Manhole upto +5.5mPD		4 17-Mar-16	20-Mar-16	-239			\ ₽	Ш
Culvert C4			76 21-Dec-15 A	05-Apr-16	-239				##
C4-2			4 21-Mar-16	24-Mar-16	-239			■ ▼	† []
PD-C4-2-120	PD C4-2 Backfill Manhole upto +5.5mPD		4 21-Mar-16	24-Mar-16	-239			 	#
C4-3			4 25-Mar-16	28-Mar-16	-239				
PD-C4-3-120	PD C4-3 Backfill Manhole upto +5.5mPD		4 25-Mar-16	28-Mar-16	-239			4	╬╽
C4-4			4 29-Mar-16	01-Apr-16	-239				
PD-C4-4-120	PD C4-4 Backfill Manhole upto +5.5mPD		4 29-Mar-16	01-Apr-16	-239				
C4-5			76 21-Dec-15 A	05-Apr-16	-239				###
PD-C4-5-050	PD C4-5 Removal of North Steel Bulkhead		3 21-Jan-16	23-Jan-16	-469				
PD-C4-5-070	PD C4-5 Manhole Insitu concrete		4 21-Dec-15 A	24-Dec-15 A	•				
PD-C4-5-080	PD C4-4/5 Movement Joint Installation		2 21-Dec-15 A	22-Dec-15 A					
PD-C4-5-090	PD C4-4/5 Movement Joint Insitu		4 23-Dec-15 A	26-Dec-15 A	+[!			$H \coprod$
Remaining Level of Actual Work	Effort ▼ Summary	50th_7 Monthly Progress Report Statu Page 13 of 21		ASK filters: No ogramme.	Option	1 2, Th	ree Mo	nth Rolling,	Work
Remaining Wo Critical Remain								Drimov	era Syster

ntract No.	Hong Kong - Zhuhai - Macao Bi	iluge Holig Kolig B	oundary Crossing				VV OIK		040	
vity ID	Activity Name		Original Start Duration	Finish	Total _ Float		an	Feb	016 Mar	Ar
				22.1.121			0	51	52	53
PD-C4-5-120	PD C4-5 Backfill Manhole upto +5.5mPD		4 02-Apr-16	05-Apr-16*	-239					
Permanent Acce	ss to Portion A		42 04-Jan-16 A	02-Mar-16	679	_			•	
PD-A2090	PD - C2 Divert Access		21 21-Jan-16*	10-Feb-16	-480			-	1	
PD-A2100	PD - C3 Divert Access		21 11-Feb-16	02-Mar-16	-480			-	•	
PD-A2110	PD - C4 Divert Access		21 04-Jan-16 A	10-Jan-16 A		-			-	
PD-A2140	Completion of Access to PA		0	02-Mar-16	679					
Removal of Tem	porary Access to Portion A		35 11-Feb-16	16-Mar-16	-462	++		4		1
PD-A1110	PD C2 - Removal of Temporary Access		7 11-Feb-16	17-Feb-16	-480			-		
PD-A1120	PD C3 - Removal of Temporary Access		7 03-Mar-16	09-Mar-16	-480				-	
PD-A1130	PD C4 - Removal of Temporary Access		7 10-Mar-16	16-Mar-16	-462				-	
Construction of	Sloping Outfalls		103 31-Dec-15 A	02-May-16	-469	-				
Culvert C1 Slop	oing Outfall		21 31-Dec-15 A	10-Feb-16	-433		- - - -			 -
PD-C1-0125	PD C1-1 Buoyancy		2 31-Dec-15 A	01-Jan-16 A		-1				
PD-C1-0130	PD C1-1 Outfall Installation		1 02-Jan-16 A	02-Jan-16 A						
PD-C1-0140	PD C1-1 Outfall Removal of Buoyancy & Bulkhead		4 03-Jan-16 A	06-Jan-16 A						
PD-C1-0150	PD C1-1 Outfall Insitu Concrete		14 21-Jan-16	03-Feb-16	-433		·	1		
PD-C1-0160	PD C1-1 Outfall Backfill		7 04-Feb-16	10-Feb-16	-433					
Culvert C2 Slop	oing Outfall		60 05-Feb-16	04-Apr-16	-480			▼		₩
PD-C2-0110	PD C2-1 Outfall Excavation		14 18-Feb-16	02-Mar-16	-480			L		
PD-C2-0120	PD C2-1 Outfall Formation		7 03-Mar-16	09-Mar-16	-480			Ļ		
PD-C2-0125	PD C2-1 Buoyancy		2 05-Feb-16*	06-Feb-16*	-448			••	<u> </u>	
PD-C2-0130	PD C2-1 Outfall Installation		1 10-Mar-16	10-Mar-16	-480					
PD-C2-0140	PD C2-1 Outfall Removal of Buoyancy & Bulkhead		4 11-Mar-16	14-Mar-16	-480					
1						:1	11 1 15			11 : 1
Remaining Lev		50th_7 Monthly Progress Report Statu		SK filters: No	Option	1 2, T	hree N	Month R	olling,	Work
Actual Level of	Effort ▼ Summary	Page 14 of 21	Pr	ogramme.						
Actual Work										
Remaining Wo										
Critical Remain	ning Work								Primave	era Systen
		1	1							

ontract No.	Hong Kong - Zhuhai - Macao Bri	iage frong boun	dary Crossing	1 acmicos	rcciaiii	nation Works	
tivity ID	Activity Name		ginal Start ation	Finish	Total Float		2016 eb Mar A
PD-C2-0150	PD C2-1 Outfall Insitu Concrete		14 15-Mar-16	28-Mar-16	-480	50 5	52 5
PD-C2-0160	PD C2-1 Outfall Backfill		7 29-Mar-16	04-Apr-16	-480		║║╟ <u>╤</u>
Culvert C3 Slop	oing Outfall		42 10-Mar-16	20-Apr-16	-480		╺┼┼╫┤┼
PD-C3-0110	PD C3-1 Outfall Excavation		14 10-Mar-16	23-Mar-16	-480		
PD-C3-0120	PD C3-1 Outfall Formation		7 24-Mar-16	30-Mar-16	-480		
PD-C3-0122	PD C3-1 & C4-1 Back & Delivery Stg18		7 11-Mar-16	17-Mar-16	-469		 -
PD-C3-0125	PD C3-1 Buoyancy		2 18-Mar-16	19-Mar-16	-469		┡ <u>╻</u> ╢╎│
PD-C3-0130	PD C3-1 Outfall Installation		3 31-Mar-16	02-Apr-16	-480		
PD-C3-0140	PD C3-1 Outfall Removal of Buoyancy & Bulkhead		4 03-Apr-16	06-Apr-16	-480		
PD-C3-0150	PD C3-1 Outfall Insitu Concrete		14 07-Apr-16	20-Apr-16	-480		
Culvert C4 Slop	oing Outfall		40 24-Mar-16	02-May-16	-469		
PD-C4-0110	PD C4-1 Outfall Excavation		14 24-Mar-16	06-Apr-16	-469		l l-
PD-C4-0120	PD C4-1 Outfall Formation		7 07-Apr-16	13-Apr-16	-469		
PD-C4-0125	PD C4-1 Buoyancy		2 01-Apr-16	02-Apr-16	-458		
PD-C4-0130	PD C4-1 Outfall Installation		1 14-Apr-16	14-Apr-16	-469		╽║╟
PD-C4-0140	PD C4-1 Outfall Removal of Buoyancy & Bulkhead		4 15-Apr-16	18-Apr-16	-469		╽╏╏
PD-C4-0150	PD C4-1 Outfall Insitu Concrete		14 19-Apr-16	02-May-16	-469		
Extension Culve	ert EC1 by one submerble barge		128 17-Dec-15 A	22-Apr-16	628		
Insitu Concrete			116 17-Dec-15 A	10-Apr-16	-265		
EC1-1			70 16-Jan-16 A	30-Mar-16	-254	│	╼┼┼┼┼┼┼┼
PD-EC1-1-050	PD EC1-1 External Wall Insitu Concrete		12 16-Jan-16 A	27-Jan-16	-233		
PD-EC1-1-060	PD EC1-1 External Wall Curing		1 28-Jan-16	28-Jan-16	-251		
PD-EC1-1-070	PD EC1-1 Removal of Extenal Wall Formwork		3 29-Jan-16	31-Jan-16	-251		
Remaining Lev Actual Level of Actual Work		50th_7 Monthly Progress Report Status as o		SK filters: No	Option	1 2, Three Mor	nth Rolling, Work
Remaining Wo	ork ning Work						Primavera Syster

ntract No.	Hong Kong - Zhuhai - Macao Br	- J	•			nation					
vity ID	Activity Name		Original Start Duration	Finish	Total Float		Jan 50	Feb 51	2016 Mar 52		A
PD-EC1-1-080	PD EC1-1 Base Slab & Internal Wall insitu Concrete		20 01-Feb-16	25-Feb-16	-233			51	52	ПП	50
PD-EC1-1-090	PD EC1-1 Top Slab Insitu Concrete		15 26-Feb-16	12-Mar-16	-233			-			
PD-EC1-1-100	PD EC1-1 Top Slab Curing		14 13-Mar-16	26-Mar-16	-254				- -	⋕ ┃┃	
PD-EC1-1-110	PD EC1-1 Removal of Internal Wall Formwork		4 27-Mar-16	30-Mar-16	-254					╫╡ <u>┤</u>	
EC1-2			80 17-Dec-15 A	05-Mar-16	-253		1	┼──	—		
PD-EC1-2-050	PD EC1-2 External Wall Insitu Concrete		16 17-Dec-15 A	22-Dec-15 A		#****					
PD-EC1-2-060	PD EC1-2 External Wall Curing		7 23-Dec-15 A	23-Dec-15 A		1					
PD-EC1-2-070	PD EC1-2 Removal of Extenal Wall Formwork		4 23-Dec-15 A	26-Dec-15 A		•		 ,			
PD-EC1-2-080	PD EC1-2 Base Slab & Internal Wall insitu Concrete		7 27-Dec-15 A	28-Jan-16	-359						
PD-EC1-2-090	PD EC1-2 Top Slab Insitu Concrete		14 29-Jan-16	16-Feb-16	-359		4	忡			
PD-EC1-2-100	PD EC1-2 Top Slab Curing		14 17-Feb-16	01-Mar-16	-253	1			•		
PD-EC1-2-110	PD EC1-2 Removal of Internal Wall Formwork		4 02-Mar-16	05-Mar-16	-253			^Ļ	7		
EC1-3			50 21-Dec-15 A	10-Mar-16	-254			┼┼	+		
PD-EC1-3-050	PD EC1-3 External Wall Insitu Concrete		12 21-Dec-15 A	28-Dec-15 A							
PD-EC1-3-070	PD EC1-3 Removal of Extenal Wall Formwork		4 29-Dec-15 A	01-Jan-16 A		+		ļ			
PD-EC1-3-080	PD EC1-3 Base Slab & Internal Wall insitu Concrete		7 02-Jan-16 A	30-Jan-16	-232	-					
PD-EC1-3-090	PD EC1-3 Top Slab Insitu Concrete		17 31-Jan-16	21-Feb-16	-232		- <u> -</u>				
PD-EC1-3-100	PD EC1-3 Top Slab Curing		14 22-Feb-16	06-Mar-16	-254			-	 		
PD-EC1-3-110	PD EC1-3 Removal of Internal Wall Formwork		4 07-Mar-16	10-Mar-16	-254				-		
EC1-4	'		49 21-Dec-15 A	15-Mar-16	-255			+-			
PD-EC1-4-050	PD EC1-4 External Wall Insitu Concrete		12 21-Dec-15 A	31-Dec-15 A						1	
PD-EC1-4-070	PD EC1-4 Removal of Extenal Wall Formwork		4 01-Jan-16 A	04-Jan-16 A		- -					
PD-EC1-4-080	PD EC1-4 Base Slab & Internal Wall insitu Concrete		7 05-Jan-16 A	03-Feb-16	-362	-					
Domesiaina I.	of Effort A A Milestone	50th_7 Monthly Progress Report Statu	s as on 21.Jan2016 TA	SK filters: No	Ontion	112 T	hree N	/onth E	Polling	Work	_
Remaining Level Actual Level of		Page 16 of 21		ogramme.	Option	Z, I	THEE I	JOHN IN	.omig,	VVOIN	
Actual Work	•	1 ago 10 01 21									
Remaining Wor	k										

: ID	A of the Alexander		0.1.1.1.0.1	Et al.		2			204	C	
vity ID	Activity Name		Original Start Duration	Finish	Total Float	,	Jan	Fe 5		Mar	A
PD-EC1-4-090	PD EC1-4 Top Slab Insitu Concrete		18 04-Feb-16	26-Feb-16	-362		50			52	5
PD-EC1-4-100	PD EC1-4 Top Slab Curing		14 27-Feb-16	11-Mar-16	-255				L- ==		
PD-EC1-4-110	PD EC1-4 Removal of Internal Wall Formwork		4 12-Mar-16	15-Mar-16	-255	#				┕┪╢	-
EC1-5			50 28-Dec-15 A	20-Mar-16	-256	+	╫	+	┝┼	╫┿║	
PD-EC1-5-050	PD EC1-5 External Wall Insitu Concrete		12 28-Dec-15 A	06-Jan-16 A		•	,				
PD-EC1-5-070	PD EC1-5 Removal of Extenal Wall Formwork		4 07-Jan-16 A	10-Jan-16 A				-		- -	
PD-EC1-5-080	PD EC1-5 Base Slab & Internal Wall insitu Concrete		7 11-Jan-16 A	11-Feb-16	-234	- <u> </u>					
PD-EC1-5-090	PD EC1-5 Top Slab Insitu Concrete		18 12-Feb-16	02-Mar-16	-234			-			-
PD-EC1-5-100	PD EC1-5 Top Slab Curing		14 03-Mar-16	16-Mar-16	-256				-	#	
PD-EC1-5-110	PD EC1-5 Removal of Internal Wall Formwork		4 17-Mar-16	20-Mar-16	-256					╬╢	
EC1-6			65 22-Dec-15 A	25-Mar-16	-257		┼┼			╫╫	,
PD-EC1-6-030	PD EC1-6 Installation of Precast Culvert Base		1 22-Dec-15 A	22-Dec-15 A							
PD-EC1-6-040	PD EC1-6 Removal of Buoyancy		2 23-Dec-15 A	24-Dec-15 A		1					
PD-EC1-6-050	PD EC1-6 External Wall Insitu Concrete		12 25-Dec-15 A	12-Jan-16 A							
PD-EC1-6-070	PD EC1-6 Removal of Extenal Wall Formwork		4 13-Jan-16 A	17-Jan-16 A		•	<u> </u>			7	
PD-EC1-6-080	PD EC1-6 Base Slab & Internal Wall insitu Concrete		18 18-Jan-16 A	17-Feb-16	-366		-	+-	•		
PD-EC1-6-090	PD EC1-6 Top Slab Insitu Concrete		18 18-Feb-16	07-Mar-16	-366					4	
PD-EC1-6-100	PD EC1-6 Top Slab Curing		14 08-Mar-16	21-Mar-16	-257	#					-
PD-EC1-6-110	PD EC1-6 Removal of Internal Wall Formwork		4 22-Mar-16	25-Mar-16	-257					╽║┡┪	,
EC1-7	'		76 22-Dec-15 A	05-Apr-16	-264					╫	
PD-EC1-7-010	PD EC1-7 & C1-1 Back & Delivery stg16		6 22-Dec-15 A	27-Dec-15 A							
PD-EC1-7-020	PD EC1-7 Buoyancy		2 28-Dec-15 A	29-Dec-15 A							
PD-EC1-7-030	PD EC1-7 Installation of Precast Culvert Base		1 30-Dec-15 A	30-Dec-15 A							
Remaining Leve	l of Effort ♦ ♦ Milestone	50th_7 Monthly Progress Report Statu	is as on 21Jan2016	ASK filters: No	Option	n 1 2 -	Three	e Mon	th Rol	ling. W	/ork
Actual Level of		Page 17 of 21		rogramme.	- po.	- - ,				٠	•
Actual Work											
Remaining Worl	k ng Work										a Systei

PD EC1-7 Removal of Buoyancy PD EC1-7 External Wall Insitu Concrete PD EC1-7 Removal of Extenal Wall Formwork PD EC1-7 Base Slab & Internal Wall insitu Concrete PD EC1-7 Top Slab Insitu Concrete PD EC1-7 Top Slab Curing PD EC1-7 Removal of Internal Wall Formwork		Original Duration Start 2 31-Dec-15 A 12 19-Jan-16 A 4 01-Feb-16 18 05-Feb-16 18 29-Feb-16	01-Jan-16 A 31-Jan-16 04-Feb-16 27-Feb-16	-241 -260		o	51 51	Mar 52	J. J
PD EC1-7 External Wall Insitu Concrete PD EC1-7 Removal of Extenal Wall Formwork PD EC1-7 Base Slab & Internal Wall insitu Concrete PD EC1-7 Top Slab Insitu Concrete PD EC1-7 Top Slab Curing		12 19-Jan-16 A 4 01-Feb-16 18 05-Feb-16	31-Jan-16 04-Feb-16 27-Feb-16	-260					
PD EC1-7 Removal of Extenal Wall Formwork PD EC1-7 Base Slab & Internal Wall insitu Concrete PD EC1-7 Top Slab Insitu Concrete PD EC1-7 Top Slab Curing		4 01-Feb-16 18 05-Feb-16	04-Feb-16 27-Feb-16	-260	Ļ				
PD EC1-7 Base Slab & Internal Wall insitu Concrete PD EC1-7 Top Slab Insitu Concrete PD EC1-7 Top Slab Curing		18 05-Feb-16	27-Feb-16						
PD EC1-7 Top Slab Insitu Concrete PD EC1-7 Top Slab Curing				-242				: :	
PD EC1-7 Top Slab Curing		18 29-Feb-16			1 1 1 1				ii E
			18-Mar-16	-242	-+++		 		
PD EC1-7 Removal of Internal Wall Formwork		14 19-Mar-16	01-Apr-16	-264			1		# I
		4 02-Apr-16	05-Apr-16	-264					14
		81 02-Jan-16 A	10-Apr-16	-265	-				┝╫╂┯
PD EC1-8 & C2-1 Back & Delivery stg17		8 02-Jan-16 A	09-Jan-16 A		-				
PD EC1-8 Buoyancy		2 10-Jan-16 A	11-Jan-16 A		1				
PD EC1-8 Outfall Installation of Precast Culvert Base		1 13-Jan-16 A	14-Jan-16 A		-[,	
PD EC1-8 Removal of Buoyancy		2 15-Jan-16 A	16-Jan-16 A		~				
PD EC1-8 External Outfall Wall Insitu Concrete		12 23-Jan-16*	04-Feb-16	-373	!				
PD EC1-8 Removal of Extenal Wall Formwork		6 05-Feb-16	10-Feb-16	-406	!	║╟╈	•		
PD EC1-8 Base Slab & Internal Wall insitu Concrete		21 11-Feb-16	04-Mar-16	-370		1		;	
PD EC1-8 Outfall Insitu Concrete		18 05-Mar-16	23-Mar-16	-370	! ! !			+++	
PD EC1-8 Outfall Curing		14 24-Mar-16	06-Apr-16	-265				-	
PD EC1-8 Removal of Internal Wall Formwork		4 07-Apr-16	10-Apr-16	-265					╽┞┪╸
ne Existing Culvert		26 01-Mar-16	28-Mar-16	-464				╅	-
PD EC1-0 South Wall Insitu Concrete		7 01-Mar-16*	07-Mar-16	-464				=	
PD EC1-0 North Wall Insitu Concrete		7 07-Mar-16	14-Mar-16	-464				+	
PD EC1-0 Top Slab Insitu Concrete		14 14-Mar-16	28-Mar-16	-464					
lamation		83 01-Jan-16 A	12-Apr-16	638					╫╋
of Effort ◆ Milestone Effort ▼ Summary	50th_7 Monthly Progress Report State Page 18 of 21			Option	n 1 2, T	nree M	onth Ro	lling, \	Vork
S Work								D	
	PD EC1-8 & C2-1 Back & Delivery stg17 PD EC1-8 Buoyancy PD EC1-8 Outfall Installation of Precast Culvert Base PD EC1-8 Removal of Buoyancy PD EC1-8 External Outfall Wall Insitu Concrete PD EC1-8 Removal of Extenal Wall Formwork PD EC1-8 Base Slab & Internal Wall insitu Concrete PD EC1-8 Outfall Insitu Concrete PD EC1-8 Outfall Curing PD EC1-8 Removal of Internal Wall Formwork Be Existing Culvert PD EC1-0 South Wall Insitu Concrete PD EC1-0 Top Slab Insitu Concrete PD EC1-0 Top Slab Insitu Concrete Iamation of Effort ◆ Millestone Effort ▼ Summary	PD EC1-8 & C2-1 Back & Delivery stg17 PD EC1-8 Buoyancy PD EC1-8 Outfall Installation of Precast Culvert Base PD EC1-8 Removal of Buoyancy PD EC1-8 External Outfall Wall Insitu Concrete PD EC1-8 Removal of Extenal Wall Formwork PD EC1-8 Base Slab & Internal Wall insitu Concrete PD EC1-8 Outfall Insitu Concrete PD EC1-8 Outfall Curing PD EC1-8 Removal of Internal Wall Formwork Le Existing Culvert PD EC1-0 South Wall Insitu Concrete PD EC1-0 North Wall Insitu Concrete PD EC1-0 Top Slab Insitu Concrete Immation of Effort ◆ Milestone Effort ◆ Milestone Summary Summary Fage 18 of 21	PD EC1-8 & C2-1 Back & Delivery stg17	B1 02-Jan-16 A 10-Apr-16 10-Apr-16 10-Apr-16 A 09-Jan-16 A 09-Jan-16 A 09-Jan-16 A 09-Jan-16 A 09-Jan-16 A 10-Jan-16 A 11-Jan-16 A	81 02-Jan-16 A 10-Apr-16 -265 PD EC1-8 & C2-1 Back & Delivery stg17 8 02-Jan-16 A 09-Jan-16 A PD EC1-8 Buoyancy 2 10-Jan-16 A 11-Jan-16 A PD EC1-8 Dutfall Installation of Precast Culvert Base 1 13-Jan-16 A 14-Jan-16 A PD EC1-8 Removal of Buoyancy 2 15-Jan-16 A 16-Jan-16 A PD EC1-8 Removal of Buoyancy 2 15-Jan-16 A 16-Jan-16 A PD EC1-8 External Outfall Wall Insitu Concrete 12 23-Jan-16	81 02-Jan-16 A 10-Apr-16 265 PD EC1-8 & C2-1 Back & Delivery stg17 8 02-Jan-16 A 09-Jan-16 A 09-Jan-16 A 11-Jan-16 A 11-Jan-	81 02-Jan-16 A 10-Apr-16 -265 PD EC1-8 & C2-1 Back & Delivery stg17 8 02-Jan-16 A 11-Jan-16 A PD EC1-8 Buoyancy 2 10-Jan-16 A 11-Jan-16 A PD EC1-8 Outfall Installation of Precast Culvert Base 1 13-Jan-16 A 14-Jan-16 A PD EC1-8 Removal of Buoyancy 2 15-Jan-16 A 16-Jan-16 A PD EC1-8 External Outfall Wall Insitu Concrete 12 23-Jan-16* 04-Feb-16 -373 PD EC1-8 Removal of Extenal Wall Formwork 6 05-Feb-16 10-Feb-16 -406 PD EC1-8 Base Slab & Internal Wall insitu Concrete 21 11-Feb-16 04-Mar-16 -370 PD EC1-8 Outfall Curing 14 24-Mar-16 06-Apr-16 -265 PD EC1-8 Cultrall Curing 14 24-Mar-16 06-Apr-16 -265 PD EC1-8 Removal of Internal Wall Formwork 4 07-Apr-16 10-Apr-16 -265 PD EC1-8 Removal of Internal Wall Formwork 4 07-Apr-16 10-Apr-16 -265 PD EC1-8 Removal of Internal Wall Insitu Concrete 7 01-Mar-16* 07-Mar-16 -464 PD EC1-0 South Wall Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 15 14-Mar-16 28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 17 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 18 14-Mar-16	St 0z-Jan-16 A 10-Apr-16 2-265 PD EC1-8 & C2-1 Back & Delivery stg17 8 0z-Jan-16 A 09-Jan-16 A 09-Jan-16 A PD EC1-8 Buoyancy 2 10-Jan-16 A 11-Jan-16 A 11-Jan-16 A 11-Jan-16 A PD EC1-8 Cutfall Installation of Precast Culvert Base 1 13-Jan-16 A 14-Jan-16 A PD EC1-8 Removal of Buoyancy 2 15-Jan-16 A 16-Jan-16 A PD EC1-8 External Outfall Wall Insitu Concrete 12 23-Jan-16 04-Feb-16 -373 PD EC1-8 Removal of External Wall Formwork 6 05-Feb-16 10-Feb-16 -406 PD EC1-8 Base Slab & Internal Wall insitu Concrete 18 05-Mar-16 23-Mar-16 -370 PD EC1-8 Outfall Curing 14 24-Mar-16 06-Apr-16 -2265 PD EC1-8 Cuntral Curing 14 24-Mar-16 06-Apr-16 -2265 PD EC1-8 Removal of Internal Wall Formwork 4 07-Apr-16 10-Apr-16 -2265 PD EC1-8 Countral Curing 14 24-Mar-16 06-Apr-16 -2265 PD EC1-9 South Wall Insitu Concrete 7 01-Mar-16 07-Mar-16 -464 PD EC1-0 South Wall Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 14-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 -	81 02-Jan-16 A 10-Apr-16 2-265 PD EC1-8 & C2-1 Back & Delivery stg17 8 02-Jan-16 A 09-Jan-16 A PD EC1-8 Bucyancy 2 10-Jan-16 A 11-Jan-16 A PD EC1-8 Outfall Installation of Precast Culvert Base 1 13-Jan-16 A 14-Jan-16 A PD EC1-8 Removal of Buoyancy 2 15-Jan-16 A 16-Jan-16 A PD EC1-8 External Outfall Wall Insitu Concrete 12 23-Jan-16* 04-Feb-16 -373 PD EC1-8 External Outfall Wall Fornwork 6 05-Feb-16 10-Feb-16 -406 PD EC1-8 Base Slab & Internal Wall insitu Concrete 13 05-Mar-16 23-Mar-16 -370 PD EC1-8 Outfall Curing 14 24-Mar-16 06-Apr-16 -266 PD EC1-8 Outfall Curing 14 24-Mar-16 06-Apr-16 -266 PD EC1-8 Removal of Internal Wall Fornwork 4 07-Apr-16 10-Apr-16 -266 PD EC1-9 South Wall Insitu Concrete 7 01-Mar-16* 07-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 7 07-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 -28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 -28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 -28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 -28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 14 14-Mar-16 -28-Mar-16 -464 PD EC1-0 Top Slab Insitu Concrete 15 05th_7 Monthly Progress Report Status as on 21Jan-2016 TASK filters: No Option 1 2, Three Month Rolling, Verification Page 18 of 21 Programme.

Activity Name	Origi Durat	nal Start	Finish	Total 2	2 Jan	n Fe	2016 eb Mar	
	Dulat				50			
PD-EC1-0100-020 PD EC1-1 Backfill and Compaction		6 18-Mar-16	23-Mar-16	620				4
PD-EC1-0100-030 PD EC1-2 Backfill and Compaction		6 22-Feb-16	27-Feb-16	-359			-	
PD-EC1-0100-040 PD EC1-3 Backfill and Compaction		6 24-Mar-16	30-Mar-16	620	1		-	1
PD-EC1-0100-050 PD EC1-4 Backfill and Compaction		6 03-Mar-16	08-Mar-16	-362	1		L÷ ■	
PD-EC1-0100-060 PD EC1-5 Backfill and Compaction		6 31-Mar-16	05-Apr-16	620				-
PD-EC1-0100-070 PD EC1-6 Backfill and Compaction		6 14-Mar-16	19-Mar-16	-366			└	
PD-EC1-0100-080 PD EC1-7 Backfill and Compaction		6 06-Apr-16	12-Apr-16	620				-
PD-EC1-0100-090 PD EC1-8 Outfall Backfill and Compaction		6 24-Mar-16	30-Mar-16	-370			Ļ	╬╣
PD-EC1-0100-100 Backfill west side of EC1-1 to EC1-6 for Handover to Other Contractor	S	36 01-Jan-16 A	31-Jan-16	-174				1
PD-EC1-0100-110 Handover EC1 40m strip to other Contractor		0	01-Feb-16*	0		4		
Removal of Temporary Bridge and Channel Beside Existing Seawall		12 11-Apr-16	22-Apr-16	-242				
PD-TD1-0010 PD EC1 Beside Existing Seawall - Removal of Temporary Channel		4 11-Apr-16	14-Apr-16	-242				1 4
PD-TD1-0020 PD EC1 Beside Existing Seawall - Backfill & Compaction		4 15-Apr-16	18-Apr-16	-242				
PD-TD1-0030 PD EC1 Beside Existing Seawall - Diversion Access from temporary by	ridge	0	18-Apr-16	-242	!			
PD-TD1-0040 PD EC1 Beside Existing Seawall - Removal of Temporary bridge, cond	crete blocks & Ramp	4 19-Apr-16	22-Apr-16	-242				
construction of Permanent Seawall	1	69 14-Nov-15 A	17-May-16	-443	<u> </u>			+
Vertical Seawall Type V2 6+136 to 5+650	1	14-Nov-15 A	17-May-16	-469				
Foundation Leveling	1	24 20-Nov-15 A	04-Apr-16	-464				++-
PD-V2-0050 PD C1 West - Vertical Seawall V2 VSOP22-20 Foundation Leveling 3	,000m2 and Geotextile	7 29-Mar-16	04-Apr-16	-464				-
PD-V2-0065 PD C3/C4 - Vertical Seawall V2 VSOP10-05 Foundation Leveling 3,00	00m2 and Geotextile	60 20-Nov-15 A	31-Dec-15 A		-		1	
PD-V2-920 PD C4 East - Vertical Seawall V2 VSOP04-01 Foundation Leveling 3,	000m2 and Geotextile	14 25-Jan-16	11-Feb-16	-432		┡╪═		٦ ا
Seawall Blocks Installation	1	41 14-Nov-15 A	17-Apr-16	-464				
PD-V2-0070 PD C1 West - Vertical Seawall Blocks V2 VSPD22-20 Type 2E & 2A 3	352nrs (30nrs/day)	12 05-Apr-16	17-Apr-16	-464				-
Remaining Level of Effort ◆ ◆ Milestone 50th_7	Monthly Progress Report Status as on	21Jan2016 TA	SK filters: No	Option	1 2. Th	ree Mon	th Rolling	Work
Actual Level of Effort Summary	Page 19 of 21		ogramme.		,			
Actual Work	Faye 19 01 21							

y Crossing					201	6	
Start	Finish	Total 2 Float	Jan		Feb	Mar	A
7 14-Nov-15 A	09-Jan-16 A		50		51	52	5
7 21-Jan-16	22-Feb-16	-480	-				
23-Feb-16	26-Mar-16	-480			-		
28-Mar-16	16-Apr-16	-473				-1	ļ
28-Jan-16 A	21-Apr-16	-465		+			
3 18-Apr-16	20-Apr-16	-464					4
28-Jan-16 A	31-Jan-16 A			-			
23-Feb-16	01-Mar-16	-471			-		
28-Mar-16	01-Apr-16	-480				<u></u>	
17-Apr-16	21-Apr-16	-473					+
21-Jan-16	04-Apr-16	-480					-
21-Jan-16	23-Jan-16	-457	-	•			
02-Mar-16	06-Mar-16	-471			╽┡	Щ	
02-Apr-16	04-Apr-16	-480				-t	•
25-Jan-16	13-Apr-16	-480		—			
3 25-Jan-16	01-Feb-16	-457	 	-			
07-Mar-16	15-Mar-16	-471			-	-	
05-Apr-16	13-Apr-16	-480					-
02-Feb-16	17-May-16	-480					
02-Feb-16	29-Feb-16	-457		\ -		4	
1 16-Mar-16	20-Apr-16	-471					
2 14-Apr-16	17-May-16	-480					4
01-Mar-16	12-Mar-16	-435				_	
		Option '	1 2, Thr	ree Mo	onth Rol	ling, Wo	ork
	1Jan2016 T <i>A</i>		1Jan2016 TASK filters: No Option	TASK filters: No Option 1 2, The	1Jan2016 TASK filters: No Option 1 2, Three Mo	TASK filters: No Option 1 2, Three Month Rol Programme.	TASK filters: No Option 1 2, Three Month Rolling, Wo

vity ID	Activity Name	Original	Start	Finish	Total 2		20	016	
•		Duration			Float	Jan 50	Feb 51	Mar 52	Apr 53
PD-V2-0390	PD C1/2 - Vertical Seawall V2 backfill with compaction upto +5.5mPD VSOP20-16	12	01-Mar-16	12-Mar-16	-435		51	32	
Rock Armour		86	21-Jan-16	26-Apr-16	-449	 	:		
PD-V2-0920	PD C1/2 - Vertical Seawall V2 Armour VSOP20-16	14	21-Jan-16	04-Feb-16	-414	-	—		
PD-V2-0930	PD C2/3 - Vertical Seawall V2 Armour VSOP16-11	14	23-Feb-16	08-Mar-16	-427		└-		
PD-V2-1000	PD C3/4 - Vertical Seawall V2 Armour VSOP11-05	14	28-Mar-16	11-Apr-16	-444			L-	
PD-V2-990	PD C4 East - Vertical Seawall V2 Armour VSOP05-01	9	17-Apr-16	26-Apr-16	-449				┖
Sloping Seawa	III Type S1 0+000 to 0+420	35	05-Apr-16	12-May-16	-438		1		•
Removal of So	outh Temporary Seawall S1	14	05-Apr-16	19-Apr-16	-438				-
PD-S1-0015	PD C2 - Removal of S1 Temporary seawall West2 0+100 to 0+200	14	05-Apr-16	19-Apr-16	-438			l	-
S1 Rockfill Ty	pe 1	21	20-Apr-16	12-May-16	-438				
PD-S1-1020	PD C2 - Sloping Seawall Type S1 0+100 to 0+200 Reconstruction	21	20-Apr-16	12-May-16	-438		+	 	
Works Area	WA2 (Tung Chung)	1459	21-May-12 A	28-Feb-17	0		1		
Zone A		1459	21-May-12 A	28-Feb-17	0			<u> </u>	
A1880	Maintenance of Engineer's Accommodation (28Feb2017)	1459	21-May-12 A	28-Feb-17	0		:		
Works Area	TKO Fill Bank	1279	25-Sep-12 A	30-Nov-16	0		1		
WA-TKO-1040	Operate and Maintain Public Fill Sorting Facilities in Zone A, B1 & B2 (30Nov2016)	1279	25-Sep-12 A	30-Nov-16	0				

Remaining Level of Effort ♦ Milestone	50th_7 Monthly Progress Report Status as on 21Jan2016	TASK filters: No Option 1 2, Three Month Rolling, Work
Actual Level of Effort ▼ Summary	Page 21 of 21	Programme.
Actual Work	•	
Remaining Work		
Critical Remaining Work		Primavera Systems, Inc.

Appendix C - Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality				
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;		
		Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;		
		Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;		
		Any skip hoist for material transport should be totally enclosed by impervious sheeting;		
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression by forming moist cohesive films among the discrete grains of road surface material.		
		No burning of debris or other materials on the works areas is allowed;		
		 Water spray shall be used during the handling of fill material at the site and at active cuts, excavation and fill sites where dust is likely to be created; 		
		Open dropping heights for excavated materials shall be controlled to a maximum height of 2m to minimise the fugitive dust arising from unloading;		
		During transportation by truck, materials shall not be loaded to a level higher than		
		the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher		
		than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should		
		be carried out in a totally enclosed system or facility, and any vent or exhaust		
		should be fitted with an effective fabric filter or equivalent air pollution control		
		the side and tail boards, and shall be dampened or covered before transport. Materials having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. The tarpaulin shall be properly secured and shall extend at least 300mm over the edges of the side and tail boards; Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	А3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		All receiving hoppers should be enclosed on three sides up to 3m above unloading point;		
		 All conveyor transfer points should be totally enclosed; All access and route roads within the premises should be paved and wetted; and Vehicle cleaning facilities should be provided and used by all concrete trucks before leaving the premises to wash off any dust on the wheels and/or body. 		
S5.5.2.7 of HKBCFEIA	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point: All road surface within the barging facilities will be paved; Dust enclosures will be provided for the loading ramp; Vehicles will be required to pass through designated wheels wash facilities; and Continuous water spray at the loading points.	All construction sites	N/A (Construction in process)
Construction	Noise (Air bor	ne)		L
S6.4.10 of HKBCFEIA	N1	 Use of good site practices to limit noise emissions by considering the following: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		mobile plant should be sited as far away from NSRs as possible and practicable;		
		material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Const	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.	All construction sites	V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course of construction; 		
		 In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and The surplus surcharge should be transferred to a fill bank. 		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
HKBCFEIA		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		 Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation. The storage area for chemical wastes should be clearly labelled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the 		
		largest container or 20 % of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. • Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of HKBCFEIA and S12.6 of TMCLKLEIA	WM7	 Sewage Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state, which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly. 	All construction sites	V
S8.3.17 of HKBCFEIA and S12.6 of TMCLKLEIA	WM8	 General Refuse The site and surroundings shall be kept tidy and litter free. General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be 	All construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation		
	Ref			Status		
		 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 				
Water Quality	Water Quality (Construction Phase)					
	W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Reclamation filling for the Project shall not proceed until at least 200m of leading		
		seawall at the reclamation area formed above +2.2mPD, unless otherwise		
		agreement was obtained from EPD, except for the 300m gaps for marine access.		
		All underwater filling works shall be carried out behind seawalls to avoid dispersion		
		of suspended solids outside the Project limit;		
		Except for the filling of the cellular structures, not more than 15% public fill shall be		
		used for reclamation filling below +2.5mPD during construction of the seawall;		
		After the seawall is completed except for the 300m marine access as indicated in		
		the EPs, not more than 30% public fill shall be used for reclamation filling below		
		+2.5mPD, unless otherwise agreement from EPD was obtained;		
		Upon completion of 200m leading seawall, no more than a total of 60 filling barge		
		trips per day shall be made with a cumulative maximum daily filling rate of 60,000		
		m3 for HKBCF and TMCLKL southern landfall reclamation during the filling		
		operation; and		
		Upon completion of the whole section of seawall except for the 300m marine access		
		as indicated in the EPs, no more than a total of 190 filling barge trips per day shall		
		be made with a cumulative maximum daily filling rate of 190,000 m3 for the		
		remaining filling operations for HKBCF and TMCLKL southern landfall reclamation.		
		Floating type perimeter silt curtains shall be around the HKBCF site before the		
		commencement of marine works. Staggered layers of silt curtain shall be provided		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment		
		 plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction; A layer of geotextile shall be placed on top of the seabed before any filling activities 		
		 take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on 		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	the seabed prior to stone column installation works. Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA		 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; silt removal facilities, channels and manholes shall be maintained and any 	Location	·
		 deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be 		
		 discharged into storm drains via silt removal facilities; measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; open stockpiles of construction materials (e.g. aggregates and sand) on site 		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 should be covered with tarpaulin or similar fabric during rainstorms; manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or 		
		debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers;		
		discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system;		
		 all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; 		
		 wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; 		
		the section of construction road between the wheel washing bay and the public road should be surfaced with crushed stone or coarse gravel;		
		 wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; 		
		vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the		
		requirements of the WPCO or collected for offsite disposal;		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 the contractors shall prepare an oil / chemical cleanup plan and ensure that leakages or spillages are contained and cleaned up immediately; waste oil should be collected and stored for recycling or disposal, in accordance with the Waste Disposal Ordinance; all fuel tanks and chemical storage areas should be provided with locks and be sited on sealed areas. The storage areas should be surrounded by bunds with a capacity equal to 110% of the storage capacity of the largest tank; and surface run-off from bunded areas should pass through oil/grease traps prior to discharge to the storm water system 		
S9.14 of HKBCFEIA and S6.10 of TMCLKLEIA	W3	Implement a water quality monitoring programme	At identified monitoring location	V
S6.10 of TMCLKLEIA	W4	All construction works shall be subject to routine audit to ensure implementation of all EIA recommendations and good working practice.	All construction site areas	V
Ecology (Cons	struction Phas	e)	'	ı
S10.7 of HKBCFEIA and S8.14 of TMCLKLEIA	E1	 Install silt curtain during the construction Limit works fronts Construct seawall prior to reclamation filling where practicable 	Seawall, reclamation area	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats;	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	Install silt-grease trap in the drainage system collecting surface runoff	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of new coastline.		
S10.9 of TMCLKLEIA	LV2	Mitigate Landscape Impacts CM7 Ensure no run-off into water body adjacent to the Project Area.	All construction site areas	V
S14.3.3. 3 of HKBCFEIA	LV4	Mitigate Visual Impacts V1 Minimize time for construction activities during construction period.	All construction site areas	V
S10.9 of TMCLKLEIA	LV5	Mitigate Visual Impacts CM6 Control night-time lighting and glare by hooding all lights.	All construction site areas	V
EM&A	1			,
S15.2.2 of HKBCFEIA	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction site areas	V
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Table 1 – Action and Limit Levels for 1-hour TSP

Location	Action Level	Limit Level
AMS2	374 μg/m ³	500 μg/m³
AMS3B*	368 μg/m ³	500 μg/m³
AMS6	360 μg/m ³	500 μg/m³
AMS7	370 μg/m ³	500 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 - Action and Limit Levels for 24-hour TSP

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m ³
AMS3B*	167 μg/m³	260 μg/m ³
AMS6	173 μg/m³	260 μg/m³
AMS7	183 μg/m³	260 μg/m ³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdays)

Location	Action Level	Limit Level
NMS2	When one documented	75 dB(A)
	complaint, related to 0700 -	
	1900 hours on normal	
NMS3B	weekdays, is received	*65 / 70 dB(A)
	from any one of the sensitive	
	receivers	

^{*}Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Table 4 - Action and Limit Levels for Water Quality

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	<u>Bottom</u>	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and 130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Notes:

- "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &		
	(ANI < 70% of baseline)	(ANI < 70% of baseline)		
Limit Level	[(STG < 40% of baseline) & (Al	NI < 40% of baseline)] AND		
	[(STG < 40% of baseline) & (A	NI < 40% of baseline)]		

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	(STG < 4.2) &	(STG < 6.9) &		
	(ANI < 15.5)	(ANI < 31.3)		
Limit Level	[(STG < 2.4) & (ANI <8.9)] ANI	D		
	[(STG < 3.9)& (ANI < 17.9)]			

Station	Tung Chung Dev	elopment Pier (A	MS2)	Operator:	Leung Y	iu Ting	
al. Date:	26-Nov-15			Next Due Date:	26-Ja	n-16	•
quipment No.:	A-001-78T	-		Serial No.	33	83	
			Ambiant	Candition			
T	T- ((0)	004		Condition		704.0	
Temperatu	re, Ta (K)	294	Pressure, I	Pa (mmHg)		764.2	****
			Orifice Transfer S	tandard Informatio	n		
Serial	No:	843	Slope, mc	1.99924	Interce	ept, bc	-0.0123
Last Calibra	ation Date:	9-Dec-14		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	9-Dec-15	ta		Pa/760) x (298/Ta)]		
pu .			Calibration	of TSP Sampler			
1 1				n 13P Sampler	HV9	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	Orfice [DH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (m³/min) X -	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI	
18	8.1		2.87	1.44	49.0	49.47	
13	6.9		2.65	1.33	44.0	44.42	
10	5.0		2.26	1.14	37.0	37.35	
7	4.0		2.02	1.02	32.0	32.31	
5	2.6		1.63	0.82	24.0	24.23	
By Linear Regre Blope , mw = Correlation Coe	ssion of Y on X 39.9977 fficient* =	- 0.	9990	Intercept, bw =	-8.4	251	
If Correlation Co	efficient < 0.990,	check and recali	brate.	_			
			Set Point	Calculation			
rom the TSP Fie	eld Calibration Cu	rve, take Qstd =	1.30m ³ /min				
	sion Equation, the						
					4/2		
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)]"²		
herefore Set Pr	oint: IC = (mw x ()std + hw \ v [/ 7	60 / Pa) x (Ta / 29	98)1 ^{1/2} =		43.16	
nerelore, oet r	Jint, 10 – (111 w x c	gota · DW / X [(/	00714/1/(1472)	,o , ₁		45.10	
Remarks:							

QC Reviewer:	his CHA	2/	Signature:	RI		Date: 26/11/	15

S 41 - 22 - 341		elopment Pier (Al	1102)	Operator: _	Leung Yi	
al. Date:	26-Jan-16	_		Next Due Date:	26-Ma 338	
quipment No.: _	A-001-78T			Serial No	330	
			Ambient	Condition		
Temperatur	re, Ta (K)	286	Pressure, F	a (mmHg)		769.1
	, , , ,	•				
		(Prifice Transfer St	andard Informatio		T
Serial	No:	988	Slope, mc	1.97831	Interce	
Last Calibra	ation Date:	29-May-15		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ¹¹²
Next Calibra	ation Date:	29-May-16		Qstd = {[DH x (F	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc
				of TSP Sampler	111/6	S Flow Becardor
		0	rfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Record Reading IC (CFM) Y-a:
18	8.0	+	2.90	1.46	48.0	49.29
13	6.9		2.70	1.36	45.0	46.21
10	5.0		2.30	1.15	38.0	39.02
7	4.0		2.05	1.03	33.0	33.89
					27.0	05.67
5	2.5		1.62	0.81	25.0	25.67
By Linear Regre Slope , mw =	ession of Y on X 36.8413	_		0.81		0613
By Linear Regro Slope , mw = Correlation Coe	ession of Y on X 36.8413 efficient* =	0.	9980			
By Linear Regro Slope , mw = Correlation Coe	ession of Y on X 36.8413 efficient* =	_	9980			
By Linear Regro Slope , mw = Correlation Coe	ession of Y on X 36.8413 efficient* =	0.	9980 brate.	Intercept, bw =		
By Linear Regre Slope , mw = Correlation Coe *If Correlation Co	ession of Y on X 36.8413 efficient* = oefficient < 0.990	0., check and recal	9980 brate. Set Poin			
By Linear Regre Slope , mw = Correlation Coe *If Correlation Coe From the TSP F	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C	0. , check and recal	9980 brate. Set Poin 1.30m³/min	Intercept, bw =		
By Linear Regre Slope , mw = Correlation Coe *If Correlation Coe From the TSP F	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C	0., check and recal	9980 brate. Set Poin 1.30m³/min	Intercept, bw =		
By Linear Regre Slope , mw = Correlation Coe *If Correlation Coe From the TSP F	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C	o, check and recall durve, take Qstd =	9980 brate. Set Poin 1.30m³/min rding to	Intercept, bw =	-4.0	
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Poin 1.30m³/min rding to	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	0613
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	0613
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	0613
By Linear Regres Slope , mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	0613
By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe From the TSP F From the Regres Therefore, Set F	ession of Y on X 36.8413 efficient* = oefficient < 0.990 ield Calibration C ssion Equation, the	o, check and recali durve, take Qstd = the "Y" value acco	9980 brate. Set Point 1.30m³/min rding to v x Qstd + bw = IC	Intercept, bw = t Calculation x [(Pa/760) x (298)	-4.0	0613

tation	Site Boundary of	Site Office (WA2) (AMS3B)	Operator:	Leung Yi	u Ting
al. Date:	30-Dec-15			Next Due Date:	29-Fel	b-16
quipment No.:	A-001-79T	- :		Serial No.	338	4
			Ambient	Condition		
	- 20	004.5			(1) A 1 (1) (1) (1) (1) (1) (1) (1)	764.4
Temperatu	ire, Ta (K)	291.5	Pressure, F	a (IIIIIIIy)		704.4
			Orifice Transfer St	andard Informatio	n	
Seria	l No:	988	Slope, mc	1.97831	Interce	
Last Calibr	ation Date:	29-May-15		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}
Next Calibr	Next Calibration Date: 29-May-16			$Qstd = \{[DH \times (Family + Family + Fami$	Pa/760) x (298/Ta)] ¹	^{/2} -bc} / mc
		. 1				
				f TSP Sampler		
		(Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	'60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Record Reading IC (CFM) Y-ax
18	7.1		2.70	1.36	48.0	48.67
13	6.0		2.48	1.25	43.0	43.60
10	4.8		2.22	1.12	37.0	37.52
7	3.2		1.81	0.91	24.0	24.34
5	2.1		1.47	0.74	16.0	16.22
By Linear Regr Slope , mw =	ression of Y on X 53.4091	(Intercept, bw =	-23.	3119
Correlation Co	efficient* =	().9961			
*If Correlation C	Coefficient < 0.990), check and reca	librate.			
				t Calculation		
	ield Calibration C					
From the Regre	ession Equation, t	he "Y" value acco	ording to			
				(500)	- >=1/2	
		m	w x Qstd + bw = IC	x [(Pa/760) x (298	((a)]	
Therefore Cat	Point: IC = / mus	v Oetd + hw \ v [/	760 / Pa) x (Ta / 2	198)] ^{1/2} =		45.48
Therefore, Set	Point, IC - (IIIW)	K CASIO + DW) X [[70071471	.00 /]		
Remarks:						
Romano.						
	1100	12	Signature:	4		Date: 20/12/15

tation -	Hong Kong SkyC	ity Marriott Floter	(AIVIST)	Operator: _	Leung y	
al. Date:	30-Dec-15	_		Next Due Date: _	29-Fel	
quipment No.:	A-001-80T			Serial No	<u> </u>	
			Ambient	Condition		
Temperatu	re, Ta (K)	291.5	Pressure, P	a (mmHg)		764.4
			Orifice Transfer St	andard Informatio		
Seria	l No:	988	Slope, mc	1.97831	Interce	
Last Calibra	ation Date:	29-May-15		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)]" ²
Next Calibra	ation Date:	29-May-16		Qstd = {[DH x (F	Pa/760) x (298/Ta)] ¹	'* -bc} / mc
			Calibration	f TCD Campier		
	l		Orfice	f TSP Sampler	HVS	Flow Recorder
Resistance		1	7111CE	3		Continuous Flow Recorder
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Reading IC (CFM) Y-axis
18	7.9	+	2.85	1.43	48.0	48.67
13	6.9		2.66	1.34	43.0	43.60
	5.2		2.31	1.16	37.0	37.52
10	0.2				The second secon	
10 7			1.81	0.91	24.0	24.34
10 7 5	3.2		1.81	0.91	24.0 16.0	24.34 16.22
7 5 By Linear Regr	3.2				16.0	
7 5 By Linear Regr Slope , mw =	3.2 2.1 ession of Y on X 46.2339	_		0.74	16.0	16.22
7 5 By Linear Regr Slope , mw = Correlation Cod	3.2 2.1 ession of Y on X 46.2339	0	1.47	0.74	16.0	16.22
7 5 By Linear Regr Slope , mw = Correlation Cod	3.2 2.1 ession of Y on X 46.2339 efficient* =	0	1.47 .9965 librate.	0.74	16.0	16.22
7 5 By Linear Regr Slope , mw = Correlation Cod *If Correlation C	3.2 2.1 ession of Y on X 46.2339 efficient* = oefficient < 0.990	0, check and recal	1.47 9.9965 librate.	0.74 Intercept, bw =	16.0	16.22
7 5 By Linear Regr Slope , mw = Correlation Co *If Correlation C	3.2 2.1 ession of Y on X 46.2339 efficient* = oefficient < 0.990	, check and recal	1.47 9.9965 librate. Set Point = 1.30m ³ /min	0.74 Intercept, bw =	16.0	16.22
7 5 By Linear Regr Slope , mw = Correlation Co *If Correlation C	3.2 2.1 ession of Y on X 46.2339 efficient* = oefficient < 0.990	o, check and recal	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to	0.74 Intercept, bw =	-17.	16.22
7 5 By Linear Regr Slope , mw = Correlation Co *If Correlation C	3.2 2.1 ession of Y on X 46.2339 efficient* = oefficient < 0.990	o, check and recal	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to	0.74 Intercept, bw =	-17.	16.22
7 5 By Linear Regroup Slope, mw = Correlation Correla	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597
7 5 By Linear Regroup Slope, mw = Correlation Correla	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to	Intercept, bw =	-17.	16.22
7 5 By Linear Regroup Slope, mw = Correlation Correla	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597
7 5 By Linear Regroup Slope, mw = Correlation Correla	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597
7 5 By Linear Regr Slope, mw = Correlation Co *If Correlation C From the TSP F From the Regre Therefore, Set I	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597
7 5 By Linear Regroup Slope, mw = Correlation Correla	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597
7 5 By Linear Regr Slope, mw = Correlation Co *If Correlation C From the TSP F From the Regre Therefore, Set I	3.2 2.1 ession of Y on X 46.2339 efficient* = coefficient < 0.990 field Calibration Coession Equation, the	curve, take Qstd =	1.47 2.9965 Bibrate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC	Intercept, bw =	-17.	16.22 5597 41.96
7 5 By Linear Regrest Slope, mw = Correlation Coexist Correlation Coexist From the TSP From the Regrest Therefore, Set I	3.2 2.1 ession of Y on X 46.2339 efficient* = oefficient < 0.990 field Calibration Consistent Equation, the	curve, take Qstd =	1.47 9.9965 librate. Set Point = 1.30m³/min ording to w x Qstd + bw = IC 760 / Pa) x (Ta / 2	Intercept, bw =	-17.	16.22 5597

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

						- 002311
Date - Ma Operator	ay 29, 201 Tisch	0438320 0988	Ta (K) - Pa (mm)	297 - 755.65		
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3980 0.9910 0.8790 0.8380 0.6890	METER DIFF Hg (mm) 3.2 6.3 7.8 8.6 12.6	ORFICE DIFF H20 (in.) 2.00 4.00 5.00 5.50 8.00
					''	

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9934 0.9893 0.9872 0.9862 0.9809	0.7106 0.9983 1.1231 1.1769 1.4237	1.4125 1.9976 2.2334 2.3424 2.8251		0.9957 0.9917 0.9896 0.9886 0.9833	0.7123 1.0007 1.1258 1.1797 1.4271	0.8866 1.2539 1.4019 1.4703
Qstd slop intercept coefficie	(b) = nt (r) =	1.97831 0.01264 0.99985	1 e n	Qa slope intercept coefficie	(b) =	1.23878 0.00793 0.99985
y axis =	SQRT[H2O(P	a/760) (298/1	[a)]	y axis =	SQRT [H2O (Ta	a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Type:				Laser Di	ust Moni	tor		
	facturer/Brand:		-	SIBATA	act mom			
Model	l No.:		-	LD-3				
	ment No.:			A.005.07a				
Sensi	tivity Adjustment	Scale Set	ting:	557 CPM				
Opera	ator:		_	Mike She	ek (MSKN	<i>M</i>)		
Standa	rd Equipment							
							750 - 330	
Equip			precht & Pa			, ,		
Venue			erport (Pui \	ring Seco	ondary So	chool)		
Model Serial			es 1400AB	1401100	00000			
Serial	NO.	Con		DAB2198		V . 10500		
Last C	Calibration Date*:	Sen 7 Ma	ay 2015	00C1436	59803	K _o : <u>12500</u>		
		-						
*Remar	ks: Recommend	ed interval	I for hardwa	re calibra	tion is 1 y	year		
Calibra	tion Result							
Consid	tivity Adjustment	Saala Satt	lina (Poforo	Calibratia	· n) ·	<i>557</i> OF	28.4	
	tivity Adjustment tivity Adjustment					557 CF 557 CF		
Ochsii	livity Adjustille III	ocale oeti	ing (Aiter C	alibration).	CF	IVI	
Hour	Date	Т	ime	Aml	pient	Concentration ¹	Total	Count/
	(dd-mm-yy)			Con	dition	(mg/m³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
				(°C)	(%)			
1	08-05-15	09:15	- 10.15	26.9	76	0.04417	1763	29.38
2	08-05-15	10:15	- 11:15	26.9	76	0.04625	1851	30.85
3	08-05-15	11:15	- 12:15	26.9	77	0.04513	1805	30.08
4	08-05-15	12:15	- 13:15	27.1	77	0.04828	1926	32.10
Note:						shnick TEOM®		
	Total CountCount/minut							
	o. Countrillina	e was care	diated by ()	otal Cou	11000)			
By Line	ar Regression of	Y or X						
	(K-factor):		0.0015					
	ation coefficient:		0.9983	8				
Validit	y of Calibration F	Secord:	8 May 20	16				
	,		_ 0 may 20	, -				
Remark	KS:							
				()		10		
L								
					1			
QC Re	eviewer: YW F	ung	Signa	ture:	1	Date	e: _11 Ma	y 2015

Model N Equipm	cturer/Brand: No.: ent No.: vity Adjustment	Scale Settii	- - - ng: -	Laser Dust Monitor SIBATA LD-3 A.005.08a 702 CPM					
Operato	or:		-	Mike Shek (MSKM)					
Standard	d Equipment						5510		
				Ying Seco 0AB2198 00C1436	99803 59803	School) K _o : _128	500		
Calibrati	on Result				·				
Sensitiv	Sensitivity Adjustment Scale Setting (Before Calibration): 702 CPM Sensitivity Adjustment Scale Setting (After Calibration): 702 CPM								
Hour	Date (dd-mm-yy)	Tin	ne	Amb Cond Temp (°C)		Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis	
1	08-05-15	09:30 -	10:30	26.9	76	0.04587	1722	28.70	
2	08-05-15	10:30 -	11:30	26.9	76	0.04774	1795	29.92	
3	08-05-15	11:30 -	12:30	26.9	77	0.04976	1864	31.07	
Note:	Total Count Count/minut	was logged e was calcu	by Laser	Dust Mor	nitor	0.05051 tashnick TEOM®	1901	31.68	
	Regression of	Y or X	0.0040						
	K-factor): tion coefficient:		0.0016 0.9978						
	of Calibration F	·	8 May 20)16					
Remarks	:								
					4/	/			
QC Rev	viewer: YW F	ung	Signa	ature:			Date: _11	1 May 2015	

Mode Equip Sensi	ment No.: tivity Adjustment	Scale Settii	ng: _	SIBATA LD-3 A.005.09 797 CPI	И			
Opera	ator:			Mike She	k (MSKN	1)		
Standa	rd Equipment							
	e: l No.:	Cybe Serie Contr Sens 7 Ma	or: 120 / 2015	7ing Seco 0AB21989 00C14369	99803 59803	K _o : <u>12500</u>)	
Calibra	tion Result	-						
Sensi	tivity Adjustment tivity Adjustment Date		ng (After Ca	alibration		797 CF 797 CF		Count/
	(dd-mm-yy)			Temp (°C)	dition R.H. (%)	(mg/m³) Y-axis	Count ²	Minute ³ X-axis
1	08-05-15	13:15 -		27.1	77	0.04986	1994	33.23
3	08-05-15 08-05-15	14:15 - 15:15 -	15:15 16:15	27.1 27.1	77 77	0.05083	2037	33.95
4	08-05-15	16:15 -	17:15	27.1	76	0.05012 0.05241	2003 2095	33.38 34.92
Slope Correl Validit	2. Total Count 3. Count/minut ar Regression of (K-factor): lation coefficient: by of Calibration F	was logged e was calcu Y or X	by Laser [Oust Mon otal Cou	itor	shnick TEOM [®]		
QC R	eviewer: YW F	- -una	Signat	ture:	η/	Date	ə: 11 Ma	v 2015

Type: Manufacturer/Brand: Model No.: Equipment No.: Sensitivity Adjustment Scale Setting:				Laser Do SIBATA LD-3 A.005.10 753 CPI	a	tor		
Opera	itor:			Mike She	k (MSKN	<i>A</i>)		
Standa	rd Equipment							
	e: No.:	Cybe Serie Cont Sens 7 Ma	or: 120 y 2015	7ing Seco 0AB21989 00C14369	99803 59803	K _o : <u>12500</u>		
Calibra	tion Result	1000	4.04					
Sensit	ivity Adjustment ivity Adjustment					753 CF		
Hour	Date (dd-mm-yy)	Tii	me		dition	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	08-05-15	13:45	- 14:45	27.1	(%) 77	0.04963	1989	33.15
2	08-05-15	14:45	- 15:45	27.1	77	0.05131	2054	34.23
3	08-05-15		- 16:45	27.1	77	0.05170	2066	34.43
4	08-05-15		- 17:45	27.1	77	0.05269	2110	35.17
Slope	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calc	d by Laser [Dust Mon	itor	ashnick TEOM [®]		
Validit	y of Calibration F	Record:	8 May 20	16				
Remark	s:							
OC Pa	aviewer VW F	Juna	Signat	ure.	9/	Date	. 11 May	v 2015

Model Equip	ment No.:		_	Laser Du SIBATA LD-3 A.005.11	а	tor		
Sensit	tivity Adjustment	Scale Setti	ng: _	799 CPM				
Opera	itor:		_	Mike She	k (MSKN	M)		
Standa	rd Equipment							
	e: No.:	Cybe Serie Cont Sens 7 Ma	or: 120 by 2015	7ing Seco 0AB21989 00C14369	99803 59803	K _o : _12500		
Calibra	tion Result						7	
	civity Adjustment civity Adjustment					799 CF 799 CF		
Hour	Date (dd-mm-yy)	Ti	me		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
_ 1	13-05-15	09:15	- 10:15	27.3	78	0.04635	1853	30.88
2	13-05-15		- 11:15	27.3	78	0.04788	1916	31.93
3	13-05-15		- 12:15	27.3	78	0.04943	1985	33.08
4	13-05-15	12:15	- 13:15	27.4	78	0.05176	2075	34.58
Slope	1. Monitoring of 2. Total Count 3. Count/minut ar Regression of (K-factor): ation coefficient:	was logged e was calc Y or X	d by Laser [Dust Mon	itor	ashnick TEOM [®]		
Validit	y of Calibration F	Record:	13 May 20	016				
Remark	ss:							
OC P/	eviewer: VW F	Euna	Signal	turo:	4/	Date	14 Ma	v 2015

Model Equipr	facturer/Brand: No.: ment No.: ivity Adjustment	Scale Settii		Laser Do SIBATA LD-3B A.005.13 643 CPI	la .	itor		
Opera	tor:		-	Mike She	ek (MSKN	M)		
Standa	rd Equipment			***				
	e: No.:	Cybe Serie Contr Sens 7 Ma	or: 120 y 2015	Ying Seco 0AB21989 00C14369	99803 59803	K _o : <u>125</u> 0	00	
Calibra	tion Result	1/20						
Sensit Sensit	ivity Adjustment ivity Adjustment	Scale Settir	ng (After Ca	alibration):		CPM CPM	
Hour	Date (dd-mm-yy)	Tir	ne		dition R.H. (%)	Concentration ¹ (mg/m ³) Y-axis	Total Count ²	Count/ Minute ³ X-axis
1	13-05-15	09:45 -	70.70	27.3	78	0.04654	1867	31.12
2	13-05-15	10:45 -	11:45	27.3	78	0.04743	1901	31.68
3	13-05-15 13-05-15	11:45 - 12:45 -	12:45 13:45	27.3	78 78	0.05036 0.05271	2010	33.50
Note:	1. Monitoring of 2. Total Count 3. Count/minut	lata was me was logged e was calcu	easured by by Laser [Rupprec Dust Mon	ht & Pata itor	ashnick TEOM®	2112	35.20
	ar Regression of (K-factor):	Y or X	0.0015					
	ation coefficient:		0.9984					
Validity	y of Calibration F	Record:	13 May 20	016				
Remark	s:	7						
QC Re	eviewer: YW F	ung	Signat	ture:	4,	/ Da	ate: _14 Ma	y 2015

Type: Manuf	acturer/Brand:		_	Laser Du SIBATA	ıst Moni	tor			
Model			_	LD-3B					
Equip	ment No.:		-	A.005.14a					
Sensit	ivity Adjustment	Scale Settir	ng: _	786 CPM					
Opera	tor:		_	Mike She	k (MSKN	1)			
Standa	rd Equipment				0.00				
Fauta					TEOL®				
Equip			recht & Pa			- I I)			
Venue			rport (Pui \	ring Seco	naary So	cnool)			
Model		-	s 1400AB						
Serial	No:	Contr		DAB21989					
1	N-121 - 12 - 15 - 1 +	Sens		00C14365	59803	K _o : <u>12500</u>	0 <u>2</u>		
Last C	Calibration Date*:	/ Ma	y 2015						
*Remar	ks: Recommend	ed interval t	for hardwai	re calibrat	tion is 1 y	/ear			
Calibra	tion Result						- 10 N N N N N N N N N N N N N N N N N N		
	ivity Adjustment ivity Adjustment					786 CP			
Hour	Date	Tir	ne	1	pient	Concentration ¹	Total	Count/	
	(dd-mm-yy)			Cond	dition	(mg/m ³)	Count ²	Minute ³	
	980.00,000.00			Temp (°C)	R.H. (%)	Y-axis		X-axis	
1	13-05-15	13:15	14:15	27.4	78	0.05084	2178	36.30	
2	13-05-15	14:15 -	15:15	27.5	78	0.05236	2243	37.38	
3	13-05-15	15:15 -	16:15	27.5	78	0.05345	2295	38.25	
4	13-05-15	16:15 -	17:15	27.4	77	0.05272	2261	37.68	
Note:	Monitoring of 2. Total Count 3. Count/minut	lata was me was logged	easured by by Laser I	Rupprecl Dust Mon	ht & Pata itor	shnick TEOM®	,		
By Linea	ar Regression of	Y or X							
	(K-factor):		0.0014						
Correl	ation coefficient:		0.9972						
Validit	y of Calibration F	Record:	13 May 2	016					
Remark	s:								
QC Re	eviewer: YW F	ung	Signa	ture:	9	Date	e: 14 May	y 2015	

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA1203 03

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Rion Co., Ltd. NC-73 10307223

Serial/Equipment No.: Adaptors used:

100

(N 4 18)

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:

-

Date of receipt:

03-Dec-2015

Date of test:

03-Dec-2015

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	15-Apr-2016	SCL
Preamplifier	B&K 2673	2239857	22-Apr-2016	CEPREI
Measuring amplifier	B&K 2610	2346941	22-Apr-2016	CEPREI
Signal generator	DS 360	61227	16-Apr-2016	CEPREI
Digital multi-meter	34401A	US36087050	17-Apr-2016	CEPREI
Audio analyzer	8903B	GB41300350	17-Apr-2016	CEPREI
Universal counter	53132A	MY40003662	16-Apr-2016	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

04-Dec-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone **B&K** 4188

Type/Model No.: Serial/Equipment No.:

B & K 2238 2800927

2791214

Adaptors used:

Item submitted by

Customer Name:

N.009.06 AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description:

Model: B&K 4226 Serial No.

Expiry Date: 19-Jun-2016

Traceable to:

Multi function sound calibrator Signal generator Signal generator

DS 360 DS 360

2288444 33873 61227

16-Apr-2016 16-Apr-2016

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1000 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Mint/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港 黄竹 坑 道 3.7 號 利 達 中 心 地 下 , 9 樓 , 1.2 樓 , 1.3 樓 及 2.0 樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

15CA0703 02-01

Page

Microphone

B&K 4188

2250455

of

2

Item tested

Description: Manufacturer: Type/Model No.: Sound Level Meter (Type 1)

2238 2800930

Adaptors used:

Serial/Equipment No .:

Item submitted by

N-009.0

Customer Name: Address of Customer: AECOM ASIA CO., LTD.

Request No .:

Date of receipt:

03-Jul-2015

Date of test:

04-Jul-2015

Reference equipment used in the calibration

Description: Multi function sound calibrator

Serial No. 2288444

Expiry Date: 19-Jun-2016

Traceable to: CIGISMEC CEPREI

CEPREI

Signal generator Signal generator

B&K 4226 DS 360 DS 360

Model:

33873 61227

16-Apr-2016 16-Apr-2016

Ambient conditions

Temperature: Relative humidity:

Air pressure:

21 ± 1 °C 60 ± 10 % 1000 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of +20%

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

06-Jul-2015

Company Chop:

n/Fena Jun Qi Huang Jian M

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1541932

Sub-batch:

Date of Issue:

05/11/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.: Serial No.:

Sonde 6820 V2 12A101545

Equipment No.:

W.026.35

Date of Calibration: 03 November, 2015

Date of next Calibration:

03 February, 2016

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.8	-0.7
6667	6710	+0.6
12890	12710	-1.4
58670	58780	+0.2
2.23.2		
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition). 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.48	-0.02
5.75	5.78	+0.03
7.70	7.66	-0.04
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure,

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
200000 -	0.00000	
10.5	10.47	-0.0
22.0	21.95	-0.1
37.0	36.86	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager/-

Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1541932

Sub-batch:

Date of Issue:

05/11/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

Model No.:

Sonde 6820 V2

Serial No.:

12A101545

Equipment No.:

W.026.35

Date of Calibration: 03 November, 2015

Date of next Calibration:

03 February, 2016

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.0	
10	9.95	-0.5
20	19.97	-0.2
30	29.92	-0.3
	Tolerance Limit (%)	±10.0

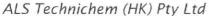
Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	4.0	0.0
10	10.3	+3.0
20	20.2	+1.0
50	50.4	+0.8
100	99.6	-0.4
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B


Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.00	0.00
7.0	7.02	+0.02
10.0	10.01	+0.01
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Fung Lim Chee, Richard

General Manager/-

Greater China & Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1541933

Sub-batch:

Date of Issue:

05/11/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

Model No .: Serial No .:

Sonde 6820 V2 12D100972

Equipment No.:

W.026.36

Date of Calibration: 03 November, 2015

Date of next Calibration:

03 February, 2016

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.2	-1.2
6667	6690	+0.3
12890	12850	-0.3
58670	58700	+0.1
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

3.50 5.75 7.70	Displayed Reading (mg/L)	Tolerance (mg/L)	
3.50	3.51	+0.01	
5.75	5.72	-0.03	
7.70	7.67	-0.03	
	Tolerance Limit (mg/L)	±0.20	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	10.51	+0.0
22.0	22.05	+0.1
37.0	36.89	-0.1
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

> Mr Fung Lim Chee, Richard General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1541933

Sub-batch:

0

Date of Issue:

05/11/2015

Client:

AECOM ASIA COMPANY LIMITED

Description:

Multifunctional Meter

Brand Name:

YSI

Model No.:

Sonde 6820 V2 12D100972

Serial No.: Equipment No .:

W.026.36

Date of Calibration: 03 November, 2015

Date of next Calibration:

03 February, 2016

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

0 10 20 30	Displayed Reading (g/L)	Tolerance (%)	
0	0.0		
10	10.04	+0.4	
20	20.06	+0.3	
30	30.04	+0.1	
	Tolerance Limit (%)	±10.0	

Turbidity

Method Ref: APHA (21st edition), 2130R

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
0	0.0	+2.5
10	10.2	+2.0
20	20.2	+1.0
50	50.5	+1.0
100	99.3	-0.7
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H;B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)		
4.0	4.01	+0.01		
7.0	7.03	+0.03		
10.0	9.98	-0.02		
	Tolerance Limit (pH Unit)	±0.20		

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Greater China & Hong Kong

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for January 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
- Canada,				1110110111	01-Jan	02-Jan
					Mid-Flood 12:19 Mid-Ebb 18:06	
03-Jan	04-Jan	05-Jan	06-Ja	n 07-Jan	08-Jan	09-Jan
	Mid-Ebb 07:42 Mid-Flood 14:33 24-hour TSP 1-hour TSP Noise		Mid-Ebb 10:2 Mid-Flood 15:5	3 Dolphin monitoring	Mid-Ebb 12:04 Mid-Flood 17:14 Dolphin monitoring	1-hour TSP
10-Jan	11-Jan	12-Jan	13-Ja	n 14-Jan	15-Jan	16-Jan
	Mid-Flood 08:42 Mid-Ebb 14:07		Mid-Flood 09:5 Mid-Ebb 15:3 24-hour TSP 1-hour TSP Noise	4	Mid-Flood 11:21 Mid-Ebb 17:18	
17-Jan	18-Jan	19-Jan	20-Ja	n 21-Jan	22-Jan	23-Jan
	Mid-Ebb 07:12 Mid-Flood 13:55 Dolphin monitoring		Mid-Ebb 10:1 Mid-Flood 15:4 24-hour TSP*	5	Mid-Ebb 12:06 Mid-Flood 17:20	
24-Jan	25-Jan	26-Jan	27-Ja	n 28-Jan	29-Jan	30-Jan
	Mid-Flood 08:39 Mid-Ebb 14:00 24-hour TSP 1-hour TSP Noise		Mid-Flood 09:3 Mid-Ebb 15:0		Mid-Flood 10:27 Mid-Ebb 16:11	
31-Jan						

Appendix F Schedule January 2016

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)
*Due to electricity failure, the 24-hr TSP monitoring at AMS3B scheduled on 19 January 2016 was rescheduled 20 January 2016.

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for February 2016

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	01-Fel	02-Feb	03-Feb	04-Feb	05-Feb	06-Feb
			Mid-Ebb 08:51 Mid-Flood 14:04		Mid-Ebb 11:01 Mid-Flood 16:03	
					24-hour TSP 1-hour TSP Dolphin monitoring	
07-Feb	08-Fel	09-Feb	10-Feb	11-Feb	12-Feb	13-Feb
	Mid-Flood 07:40 Mid-Ebb 13:08			Mid-Flood 09:18 Mid-Ebb 15:08 24-hour TSP 1-hour TSP Noise		Mid-Flood 10:28 Mid-Ebb 16:42
14-Feb	15-Fel	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb
	Mid-Flood 12:02 Mid-Ebb 18:50		Mid-Ebb 08:43 Mid-Flood 14:13 24-hour TSP 1-hour TSP		Mid-Ebb 11:18 Mid-Flood 16:28 Dolphin monitoring	
			Noise			
21-Feb	22-Fel	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb
	Mid-Flood 07:36 Mid-Ebb 13:08		Mid-Flood 08:23 Mid-Ebb 14:00		Mid-Flood 09:09 Mid-Ebb 15:01	
28-Feb	29-Fel					
	Mid-Flood 10:3: Mid-Ebb 17:00 24-hour TSP 1-hour TSP					
	Noise					

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F Schedule January 2016

^{*}As informed by the Contractor on 25 January 2016, no construction work will be undertaken by Contract no. HY/2010/02 during the Chinese New Year Period from 7 - 10 February 2016. As such, the scheduled impact water quality monitoring on 8 and 10 February 2016 will be cancelled.

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m³)	Limit Level (µg/m³)
04-Jan-16	1st Hour	Sunny	0.31	10:05	77	374	500
04-Jan-16	2nd Hour	Sunny	2.56	11:05	74	374	500
04-Jan-16	3rd Hour	Sunny	1.01	12:05	76	374	500
09-Jan-16	1st Hour	Sunny	0.10	10:35	76	374	500
09-Jan-16	2nd Hour	Sunny	1.45	11:35	79	374	500
09-Jan-16	3rd Hour	Sunny	1.92	12:35	77	374	500
13-Jan-16	1st Hour	Fine	0.06	11:50	83	374	500
13-Jan-16	2nd Hour	Fine	0.07	12:50	82	374	500
13-Jan-16	3rd Hour	Fine	0.34	13:50	82	374	500
19-Jan-16	1st Hour	Fine	Fine 0.18		81	374	500
19-Jan-16	2nd Hour	Fine	0.03	11:05	82	374	500
19-Jan-16	3rd Hour	Fine	0.01	12:05	81	374	500
25-Jan-16	1st Hour	Sunny	0.27	10:00	73	374	500
25-Jan-16	2nd Hour	Sunny	0.35	11:00	75	374	500
25-Jan-16	3rd Hour	Sunny	0.48	12:00	72	374	500
29-Jan-16	1st Hour	Cloudy	0.97	10:45	78	374	500
29-Jan-16	2nd Hour	Cloudy	0.41	11:45	79	374	500
29-Jan-16	3rd Hour	Cloudy	0.95	12:45	76	374	500
,				Average	78		· · · · · · · · · · · · · · · · · · ·
				Min	72		
				Max	83		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

	0	Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³) ^	(µg/m³)
04-Jan-16	1st Hour	Sunny	0.31	10:15	74	368	500
04-Jan-16	2nd Hour	Sunny	2.56	11:15	76	368	500
04-Jan-16	3rd Hour	Sunny	1.01	12:15	76	368	500
09-Jan-16	1st Hour	Sunny	0.10	10:25	75	368	500
09-Jan-16	2nd Hour	Sunny	1.45	11:25	77	368	500
09-Jan-16	3rd Hour	Sunny	1.92	12:25	75	368	500
13-Jan-16	1st Hour	Fine	0.07	12:02	81	368	500
13-Jan-16	2nd Hour	Fine	0.34	13:02	80	368	500
13-Jan-16	3rd Hour	Fine	0.00	14:02	81	368	500
19-Jan-16	1st Hour	Fine	0.03	11:40	80	368	500
19-Jan-16	2nd Hour	Fine	0.01	12:40	79	368	500
19-Jan-16	3rd Hour	Fine	0.03	13:40	81	368	500
25-Jan-16	1st Hour	Sunny	0.35	10:20	74	368	500
25-Jan-16	2nd Hour	Sunny	0.48	11:20	74	368	500
25-Jan-16	3rd Hour	Sunny	0.15	12:20	73	368	500
29-Jan-16	1st Hour	Cloudy	0.97	10:55	77	368	500
29-Jan-16	2nd Hour	Cloudy	0.41	11:55	78	368	500
29-Jan-16	3rd Hour	Cloudy	0.95	12:55	76	368	500
· · · · · · · · · · · · · · · · · · ·	·	·	i i	Avorago	77		

 Average
 77

 Min
 73

 Max
 81

Remarks:

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Date	Session	Condition	Speed (m/s)*	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
04-Jan-16	1st Hour	Sunny	0.31	09:50	75	370	500
04-Jan-16	2nd Hour	Sunny	2.56	10:50	77	370	500
04-Jan-16	3rd Hour	Sunny	1.01	11:50	77	370	500
09-Jan-16	1st Hour	Sunny	1.45	11:00	72	370	500
09-Jan-16	2nd Hour	Sunny	1.92	12:00	74	370	500
09-Jan-16	3rd Hour	Sunny	0.56	13:00	74	370	500
13-Jan-16	1st Hour	Fine	0.10	10:49	81	370	500
13-Jan-16	2nd Hour	Fine	0.06	11:49	81	370	500
13-Jan-16	3rd Hour	Fine	0.07	12:49 81		370	500
19-Jan-16	1st Hour	Fine	0.01	12:10	81	370	500
19-Jan-16	2nd Hour	Fine	0.03	13:10	82	370	500
19-Jan-16	3rd Hour	Fine	0.03	14:10	81	370	500
25-Jan-16	1st Hour	Sunny	0.35	10:29	73	370	500
25-Jan-16	2nd Hour	Sunny	0.48	11:29	73	370	500
25-Jan-16	3rd Hour	Sunny	0.15	12:29	75	370	500
29-Jan-16	1st Hour	Cloudy	0.97	10:30	75	370	500
29-Jan-16	2nd Hour	Cloudy	0.41	11:30	77	370	500
29-Jan-16	3rd Hour	Cloudy	0.95	12:30	75	370	500
					77		

 Average
 77

 Min
 72

 Max
 82

[^] Action Level set out at AMS3 Ho Yu College is adopted.

Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)	(µg/m³)	(µg/m ³)
04-Jan-16	09:00	05-Jan-16	09:00	Cloudy	20.6	1018.9	1.33	1.33	1.33	1912.3	2.8827	2.9551	0.0724	5832.04	5856.04	24.00	38	176	260
08-Jan-16	16:00	09-Jan-16	16:00	Sunny	18.1	1020.6	1.33	1.33	1.33	1912.3	2.8804	3.0650	0.1846	5856.04	5880.04	24.00	97	176	260
12-Jan-16	16:00	13-Jan-16	16:00	Fine	16.1	1020.8	1.33	1.33	1.33	1912.3	2.8690	2.9637	0.0947	5880.04	5904.04	24.00	50	176	260
18-Jan-16	16:00	19-Jan-16	16:00	Fine	16.4	1020.1	1.33	1.33	1.33	1912.3	2.8982	3.0223	0.1241	5904.04	5928.04	24.00	65	176	260
25-Jan-16	09:00	26-Jan-16	09:00	Fine	7.4	1032.6	1.33	1.33	1.33	1912.3	2.9032	3.0526	0.1494	5928.04	5952.04	24.00	78	176	260
29-Jan-16	16:00	30-Jan-16	16:00	Cloudy	17.6	1020.0	1.33	1.33	1.33	1912.3	2.8636	2.9387	0.0751	5952.04	5976.04	24.00	39	176	260

 Average
 61

 Min
 38

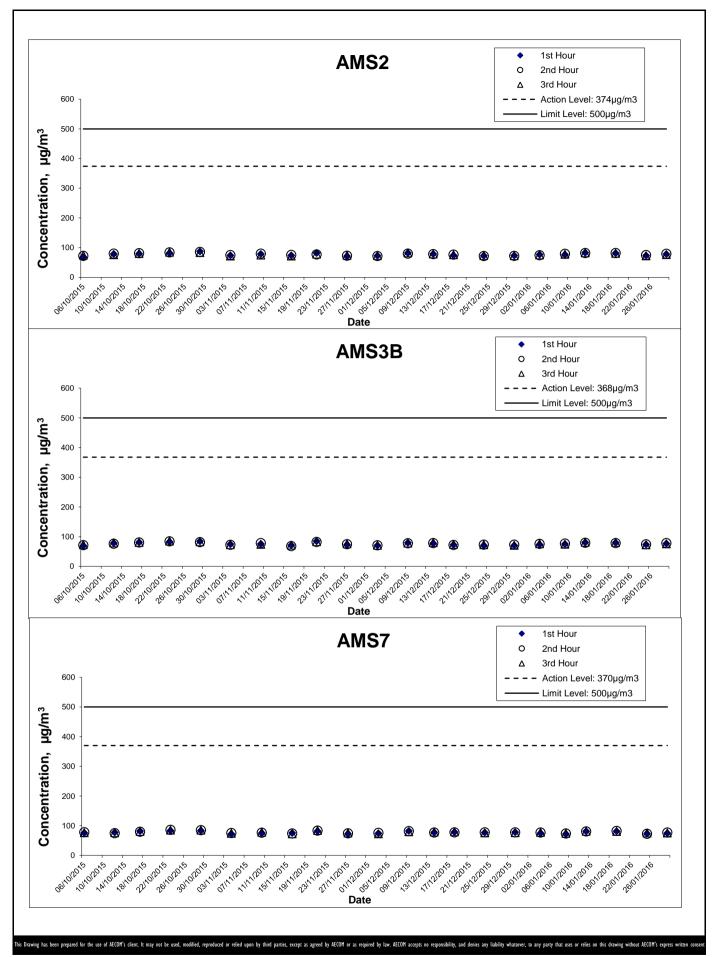
 Max
 97

24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
04-Jan-16	09:00	05-Jan-16	09:00	Cloudy	20.6	1018.9	1.34	1.34	1.34	1923.8	2.8974	2.9524	0.0550	6607.38	6631.38	24.00	29	167	260
08-Jan-16	16:00	09-Jan-16	16:00	Sunny	18.1	1020.6	1.34	1.34	1.34	1923.8	2.8700	3.0174	0.1474	6631.38	6655.38	24.00	77	167	260
12-Jan-16	16:00	13-Jan-16	16:00	Fine	16.1	1020.8	1.34	1.34	1.34	1923.8	2.8919	2.9677	0.0758	6655.38	6679.38	24.00	39	167	260
19-Jan-16	12:00	20-Jan-16	12:00	Fine	15.5	1019.6	1.34	1.34	1.34	1923.8	2.9078	3.0681	0.1603	6679.38	6703.38	24.00	83	167	260
25-Jan-16	09:00	26-Jan-16	09:00	Fine	7.4	1032.6	1.34	1.34	1.34	1923.8	2.8842	2.9931	0.1089	6703.38	6727.38	24.00	57	167	260
29-Jan-16	16:00	30-Jan-16	16:00	Cloudy	17.6	1020.0	1.34	1.34	1.34	1923.8	2.91	2.9602	0.0502	6727.38	6751.38	24.00	26	167	260

Average 52 Min 26 Max 83

24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

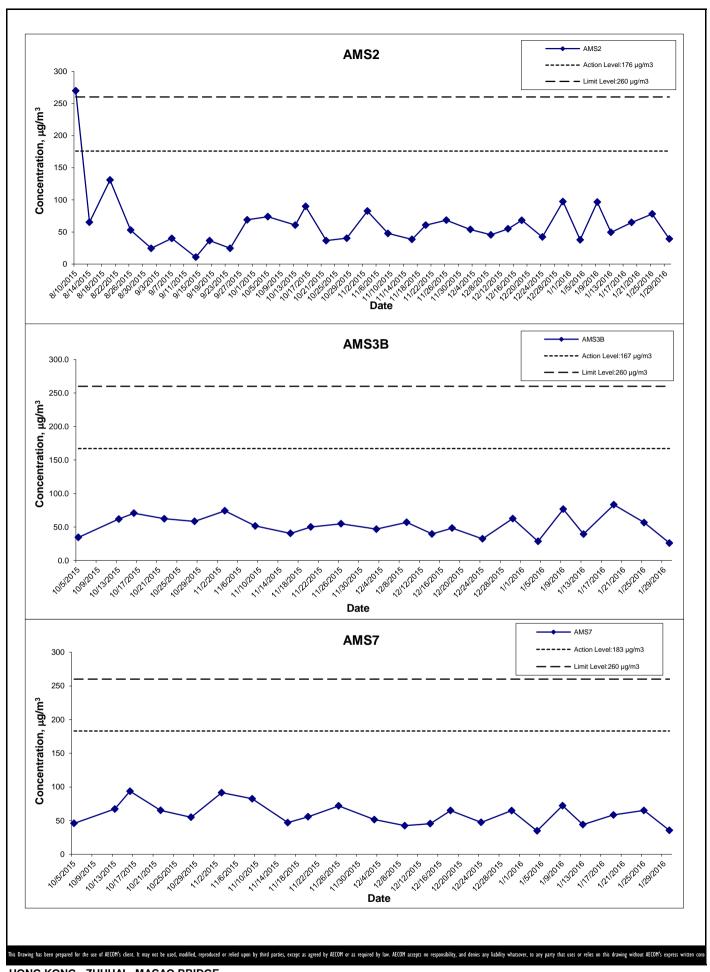

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Actino Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)	(µg/m ³)	(µg/m ³)
04-Jan-16	09:00	05-Jan-16	09:00	Cloudy	20.6	1018.9	1.30	1.30	1.30	1869.1	2.9034	2.9686	0.0652	5547.91	5571.91	24.00	35	183	260
08-Jan-16	16:00	09-Jan-16	16:00	Sunny	18.1	1020.6	1.30	1.30	1.30	1869.1	2.8798	3.0149	0.1351	5571.91	5595.91	24.00	72	183	260
12-Jan-16	16:00	13-Jan-16	16:00	Fine	16.1	1020.8	1.30	1.30	1.30	1869.1	2.8801	2.9625	0.0824	5595.91	5619.91	24.00	44	183	260
18-Jan-16	16:00	19-Jan-16	16:00	Fine	15.5	1019.6	1.30	1.30	1.30	1869.1	2.8910	3.0004	0.1094	5619.91	5643.91	24.00	59	183	260
25-Jan-16	09:00	26-Jan-16	09:00	Fine	7.4	1032.6	1.30	1.30	1.30	1869.1	2.8884	3.0101	0.1217	5643.91	5667.91	24.00	65	183	260
29-Jan-16	16:00	30-Jan-16	16:00	Cloudy	17.6	1020.0	1.30	1.30	1.30	1869.1	2.9096	2.9761	0.0665	5667.91	5691.91	24.00	36	183	260

 Average
 52

 Min
 35

 Max
 72

[^] Action Level set out at AMS3 Ho Yu College is adopted.


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

IES
Graphical Presentation of Impact 1-hour TSP

Project No.: 60249820 Date: February 2016 Appendix G

Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

Graphical Presentation of Impact 24-hour TSP Monitoring Results

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in January 2016

WIND DATA

WIND DATA		A	A IMC . I Direction (Issuer)
Date 01/04/2016	Time 08:20:16	Averaged Wind Speed (m/s) 0.11	Averaged Wind Direction (degrees) 10
01/04/2016	09:20:16	0.42	35
01/04/2016	10:20:16	0.31	80
01/04/2016	11:20:16	2.56	115
01/04/2016 01/04/2016	12:20:16 13:20:16	1.01 0.10	105 97
01/04/2016	14:20:16	0.69	96
01/04/2016	15:20:16	0.62	104
01/04/2016	16:20:16	0.17	89
01/04/2016 01/04/2016	17:20:16 18:20:16	0.95 0.64	96 133
01/04/2016	19:20:16	2.22	131
01/04/2016	20:20:16	0.46	63
01/04/2016	21:20:16	0.27	239
01/04/2016	22:20:16 23:20:16	2.35	111 107
01/04/2016 01/05/2016	00:20:16	1.87 1.22	107
01/05/2016	01:20:16	1.44	125
01/05/2016	02:20:16	2.90	130
01/05/2016	03:20:16	0.32	278
01/05/2016 01/05/2016	04:20:16 05:20:16	3.01 1.15	116 300
01/05/2016	06:20:16	0.92	100
01/05/2016	07:20:16	1.37	44
01/05/2016	08:20:16	2.03	103
01/05/2016	09:20:16	0.01	58
01/05/2016 01/08/2016	10:20:16 15:20:16	0.83 0.38	140 293
01/08/2016	16:20:16	1.01	282
01/08/2016	17:20:16	0.11	250
01/08/2016	18:20:16	0.14	246
01/08/2016	19:20:16	0.39	263
01/08/2016 01/08/2016	20:20:16 21:20:16	0.15 0.25	249 249
01/08/2016	22:20:16	0.17	152
01/08/2016	23:20:16	0.03	44
01/09/2016	00:20:16	1.02	103
01/09/2016 01/09/2016	01:20:16 02:20:16	2.28 1.44	113 90
01/09/2016	03:20:16	1.02	74
01/09/2016	04:20:16	0.03	101
01/09/2016	05:20:16	0.03	104
01/09/2016	06:20:16	0.35	102
01/09/2016 01/09/2016	07:20:16 08:20:16	0.15 0.15	106 252
01/09/2016	09:20:16	0.74	284
01/09/2016	10:20:16	0.10	71
01/09/2016	11:20:16	1.45	129
01/09/2016 01/09/2016	12:20:16	1.92 0.56	104 81
01/09/2016	13:20:16 14:20:16	2.42	142
01/09/2016	15:20:16	1.27	304
01/09/2016	16:20:16	0.07	175
01/09/2016	17:20:16	0.11	96
01/12/2016 01/12/2016	15:20:16 16:20:16	0.01 0.03	77 66
01/12/2016	17:20:16	0.60	103
01/12/2016	18:20:16	0.56	121
01/12/2016	19:20:16	0.29	68
01/12/2016 01/12/2016	20:20:16 21:20:16	0.83 0.69	79 79
01/12/2016	22:20:16	0.03	119
01/12/2016	23:20:16	0.67	120
1/13/2016	00:20:16	1.52	101
1/13/2016 1/13/2016	01:20:16 02:20:16	0.77 0.04	121 95
1/13/2016	03:20:16	0.04	82
1/13/2016	04:20:16	0.03	78
1/13/2016	05:20:16	0.01	199
1/13/2016 1/13/2016	06:20:16	0.06	66 93
1/13/2016	07:20:16 08:20:16	1.24 0.83	106
1/13/2016	09:20:16	0.27	96
1/13/2016	10:20:16	0.10	99
1/13/2016	11:20:16	0.06	55
1/13/2016 1/13/2016	12:07:29 13:07:28	0.07 0.34	72 73
1/13/2016	14:07:28	0.00	23
1/13/2016	15:07:28	0.06	127
1/13/2016	16:07:28	0.06	49
1/13/2016 1/18/2016	17:07:28 15:07:28	0.14 0.15	70 282
1/18/2016	16:07:28	0.15	282 256
1/18/2016	17:07:28	0.10	50
1/18/2016	18:07:28	0.14	274
1/18/2016	19:07:28	0.24	110
1/18/2016	20:07:28	0.74	118

Appendix H Wind Data 1 Feb 2016

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in January 2016

WIND DATA

WIND DATA	Time	Accessed Mind Connel (m/s)	A Wind Dinestine (dennes)
Date 1/18/2016	21:07:28	Averaged Wind Speed (m/s) 0.77	Averaged Wind Direction (degrees) 115
1/18/2016	22:07:28	0.77	128
1/18/2016	23:07:28	1.99	87
1/19/2016	00:07:28	1.04	98
1/19/2016	01:07:28	0.10	70
1/19/2016	02:07:28	0.62	144
1/19/2016	03:07:28	1.89	103
1/19/2016	04:07:28	1.13	116
1/19/2016	05:07:28	0.59	103
1/19/2016	06:07:28	1.58	101
1/19/2016	07:07:28	0.15	72
1/19/2016	08:07:28	0.56	65
1/19/2016	09:07:28	0.41	50
1/19/2016	10:07:28	0.18	
1/19/2016	11:07:28	0.03	63
1/19/2016	12:07:28	0.01	34
1/19/2016	13:07:28	0.03	68
1/19/2016	14:07:28	0.03	71
1/19/2016	15:07:28	0.01	66
1/19/2016	16:07:28	1.61	101
1/19/2016	17:07:28	0.20	131
1/19/2016	18:07:28	2.92	116
1/19/2016	19:07:28	0.20	135
1/19/2016	20:07:28	0.04	147
1/19/2016		1.26	98
1/19/2016	21:07:28 22:07:28	5.66	90
1/19/2016	23:07:28	4.21	101
1/19/2016	00:07:28	2.53	154
1/20/2016	01:07:28	1.16	99
1/20/2016	02:07:28	0.31	336
1/20/2016	03:07:28	0.31	109
1/20/2016	04:07:28	0.31	95
1/20/2016	05:07:28	0.17	95 84
1/20/2016	06:07:28	1.78	66
1/20/2016	06:07:28	0.24	289
1/20/2016	08:07:28	0.24	34
1/20/2016	09:07:28	0.03	68
1/20/2016	10:07:28	0.03	71
1/20/2016	11:07:28	0.03	66
1/20/2016	12:07:28	1.61	101
1/20/2016	13:07:28	0.07	50
1/25/2016	08:07:28	1.61	49
1/25/2016	09:07:28	1.04	55
1/25/2016	10:07:28	0.27	139
1/25/2016	10:30:13	0.35	132
1/25/2016	11:30:13	0.48	58
1/25/2016	12:30:13	0.15	163
1/25/2016	13:30:13	3.27	76
1/25/2016	14:30:13	0.39	352
1/25/2016	15:30:13	0.91	4
1/25/2016	16:30:13	0.28	348
1/25/2016	17:30:13	0.46	40
1/25/2016	18:30:13	0.42	60
1/25/2016	19:30:13	0.31	51
1/25/2016	20:30:13	0.42	269
1/25/2016	21:30:13	0.42	234
1/25/2016	22:30:13	0.28	230
1/25/2016	23:30:13	0.60	251
1/26/2016	00:30:13	0.17	214
1/26/2016	01:30:13	0.14	251
1/26/2016	02:30:13	0.14	179
1/26/2016	03:30:13	0.15	143
1/26/2016	04:30:13	0.15	107
1/26/2016	05:30:13	0.13	84
1/26/2016	06:30:13	0.17	97
1/26/2016	07:30:13	0.25	294
1/26/2016	08:30:13	0.20	113
1/26/2016	09:30:13	0.48	110
1/26/2016	10:30:13	0.08	111
1/26/2016	11:30:13	0.04	105
1/26/2016	12:30:13	0.01	37
1/26/2016	13:30:13	0.11	33
1/26/2016	14:30:13	0.49	35
1/26/2016	15:30:13	0.62	36
1/26/2016	16:30:13	0.00	62
1/26/2016	17:30:13	0.04	251
1/26/2016	18:30:13	0.04	292
1/26/2016	19:30:13	0.07	342
1/26/2016	20:30:13	0.03	345
1/26/2016	21:30:13	0.22	279
1/26/2016	22:30:13	0.38	39
1/29/2016	15:30:13	0.49	309
1/29/2016	16:30:13	0.57	267
	17:30:13	1.40	333
1/29/2016		0.62	332
	18:30:13	0.02	
1/29/2016 1/29/2016			
1/29/2016 1/29/2016 1/29/2016	19:30:13	0.71	138
1/29/2016 1/29/2016			
1/29/2016 1/29/2016 1/29/2016 1/29/2016	19:30:13 20:30:13	0.71 0.70	138 328

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

APPENDIX H Meteorological Data for Monitoring Periods on Monitoring Dates in January 2016

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
1/30/2016	00:30:13	0.66	17
1/30/2016	01:30:13	0.63	118
1/30/2016	02:30:13	0.84	36
1/30/2016	03:30:13	0.71	264
1/30/2016	04:30:13	0.63	241
1/30/2016	05:30:13	0.62	160
1/30/2016	06:30:13	0.63	227
1/30/2016	07:30:13	0.85	233
1/30/2016	08:30:13	0.63	250
1/30/2016	09:30:13	0.78	331
1/30/2016	10:30:13	1.27	279
1/30/2016	11:30:13	1.58	278
1/30/2016	12:30:13	1.16	267
1/30/2016	13:30:13	1.34	267
1/30/2016	14:30:13	0.91	331
1/30/2016	15:30:13	1.58	277
1/30/2016	16:30:13	0.36	278
1/30/2016	17:30:13	0.35	343

Appendix I Impact Daytime Construction Noise Monitoring Results

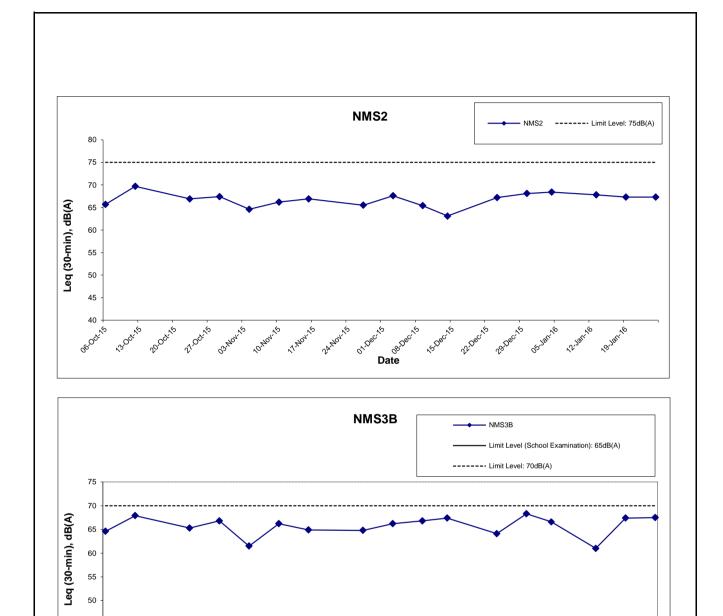
Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Average

Average

		Nois	se Level for 30	O-min, dB(A)					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A)	Limit Level, dB(A)	Exceedance (Y/N)
04-Jan-16	Sunny	10:35	63	72	68	<5m/s	62.9	75	N
13-Jan-16	Fine	10:46	63	71	68	<5m/s	62.9	75	N
19-Jan-16	Fine	10:44	66	70	67	<5m/s	62.9	75	N
25-Jan-16	Sunny	10:35	62	71	67	<5m/s	62.9	75	N
		Min	62	70	67		·		
		Mov	ee.	70	60				

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)


		Nois	se Level for 30	O-min, dB(A)#					
Date	Weather Condition	Time	L90	L10	Leq	Averaged Wind Speed (m/s)	Baseline Noise Level, dB(A) ^	Limit Level, dB(A)**	Exceedance (Y/N)
04-Jan-16	Sunny	11:30	64	68	67	<5m/s	66.3	70	N
13-Jan-16	Fine	11:58	57	62	61	<5m/s	66.3	70	N
19-Jan-16	Fine	11:39	66	70	67	<5m/s	66.3	70	N
25-Jan-16	Sunny	11:20	63	70	68	<5m/s	66.3	70	N
		Min	57	62	61				
		Max	66	70	68				

[#] A correction of +3dB(A) was made to the free field measurement.

^{*} Façade measurement.

[^] Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

^{**} Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

This Drawing has been prepared for the use of AECOM's client. It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatover, to any parry that uses or relies on this drawing without AECOM's express written oc

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

45 40

Graphical Presentation of Impact Daytime Construction Noise Monitoring Results

Date

AECOM

Project No.: 60249820 Date: Feb 2016 Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:29		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.5 28.5	28.5	89.6 90.1	89.9	6.9 7.0	7.0		4.3 4.2	4.3		4.1 4.6	4.4	
				6.6	Middle	3.3	19.5	19.5	8.2	8.2	28.7	28.7	89.2	89.3	6.9	6.9	7.0	5.1	5.1	5.0	3.9	3.2	3.5
					Bottom	5.6	19.5 19.6	19.6	8.2 8.2	8.2	28.7 28.7	28.7	89.4 89.8	89.5	6.9 7.0	6.9	6.9	5.0 5.5	5.7		3.8	2.9	
4 15 40		Madagas	00.07		Dotto	0.0	19.5	10.0	8.2	0.2	28.7	20	89.1	00.0	6.9	0.0	0.0	5.8	0		2.0	2.0	
4-Jan-16	Sunny	Moderate	08:07		Surface	1.0	16.1 16.1	16.1	8.1 8.1	8.1	28.1 27.4	27.8	98.8 98.2	98.5	8.2 8.2	8.2	8.2	2.1 2.0	2.1		2.3 2.5	2.4	<u> </u>
				6.4	Middle	3.2	16.1 16.1	16.1	8.0 8.0	8.0	28.6 29.5	29.1	98.7 98.2	98.5	8.2 8.1	8.1	•	2.1 2.2	2.2	2.2	2.8 3.0	2.9	3.0
					Bottom	5.4	16.1 16.1	16.1	8.0 8.0	8.0	31.2 31.9	31.5	98.7 98.4	98.6	8.1 8.1	8.1	8.1	2.3 2.2	2.3		3.6 3.5	3.6	
6-Jan-16	Sunny	Moderate	10:16		Surface	1.0	16.5 16.6	16.5	8.1 8.1	8.1	21.6 21.2	21.4	97.0 95.4	96.2	8.3 8.2	8.3		1.2 1.3	1.3		2.6 3.3	3.0	
				6.7	Middle	3.4	16.4 16.4	16.4	8.1 8.1	8.1	24.1 23.5	23.8	94.0 95.0	94.5	8.0 8.1	8.0	8.2	1.4 1.3	1.4	1.4	2.2 2.1	2.2	2.5
					Bottom	5.7	16.4	16.4	8.0	8.0	26.8	27.1	94.3	95.0	7.9	7.9	7.9	1.5	1.5		2.5	2.3	1
8-Jan-16	Sunny	Moderate	12:23		Surface	1.0	16.4 16.6	16.5	8.0 8.1	8.1	27.4 25.9	25.8	95.7 99.4	99.2	8.3	8.3		2.9	2.9		3.2	2.9	
				6.3		3.2	16.5 16.4	16.4	8.1 8.1	8.1	25.7 27.7	27.1	99.0 99.7	99.2	8.3 8.3	8.2	8.3	2.9	2.7	2.9	2.6 3.4	3.3	3.1
				0.3			16.4 16.4		8.1 8.1		26.5 28.5		98.6 100.6		8.2 8.3			2.8 3.0		2.5	3.2 4.1		3.1
44 15 40	0	Madagata	10.05		Bottom	5.3	16.4	16.4	8.1	8.1	26.8	27.7	98.8	99.7	8.2	8.2	8.2	2.9	3.0		2.3	3.2	
11-Jan-16	Sunny	Moderate	13:25		Surface	1.0	16.4 16.4	16.4	8.2 8.2	8.2	29.3 28.5	28.9	101.9 100.2	101.1	8.4 8.3	8.3	8.3	2.1 2.0	2.1		4.1 4.6	4.4]
				6.6	Middle	3.3	16.2 16.2	16.2	8.2 8.2	8.2	30.6 30.4	30.5	99.7 100.7	100.2	8.1 8.2	8.2		2.2 2.2	2.2	2.2	3.8 3.5	3.7	4.4
					Bottom	5.6	16.2 16.2	16.2	8.2 8.2	8.2	32.1 31.0	31.5	100.1 99.4	99.8	8.1 8.1	8.1	8.1	2.4 2.4	2.4		5.7 4.6	5.2	
13-Jan-16	Sunny	Moderate	15:00		Surface	1.0	16.1 16.1	16.1	8.3 8.2	8.3	27.4 27.9	27.6	104.0 106.8	105.4	8.7 8.9	8.8		2.3 2.4	2.4		7.0 8.4	7.7	
				6.6	Middle	3.3	16.0 16.0	16.0	8.2 8.3	8.3	28.6 27.9	28.3	106.5 103.9	105.2	8.8 8.7	8.7	8.8	2.4	2.4	2.4	5.0	4.5	6.3
					Bottom	5.6	16.0	16.0	8.2	8.2	28.3	28.7	106.8	106.8	8.9	8.9	8.9	2.4	2.4		7.0	6.7	1
15-Jan-16	Rainy	Moderate	16:42		Surface	1.0	16.0 15.3	15.3	8.2 8.1	8.1	29.1 24.0	24.3	106.8 100.6	100.7	8.8 8.7	8.7		2.4	2.0		6.4 1.1	1.1	
				6.5	-	3.3	15.3 15.5	15.4	8.1 8.1	8.1	24.5 24.4	24.6	100.8 101.1	100.9	8.7 8.7	8.7	8.7	1.9 2.3	2.2	2.2	1.1	1.5	1.6
				0.5	-	5.5	15.4 15.5	15.5	8.1 8.1	8.0	24.8 25.8	25.9	100.7 101.2	101.2	8.7 8.6	8.6	8.6	2.1	2.4	2.2	1.5 2.4	2.3	1.0
18-Jan-16	Sunny	Moderate	07:32				15.5 14.7		8.0 8.1		25.9 24.4		101.2 97.6		8.6 8.5		8.6	2.3			2.1	1	<u> </u>
10 0411 10	Curity	Woderate	07.02		Surface	1.0	14.7	14.7	8.1	8.1	25.4	24.9	98.5	98.1	8.6	8.5	8.5	2.2	2.2		2.8	2.6]
				6.6	Middle	3.3	14.9 14.9	14.9	8.1 8.1	8.1	25.2 26.1	25.7	98.1 98.8	98.5	8.5 8.5	8.5		2.0	2.1	2.2	3.0 2.6	2.8	2.8
					Bottom	5.6	15.0 15.4	15.2	8.1 8.1	8.1	26.5 28.0	27.3	101.4 101.8	101.6	8.7 8.6	8.6	8.6	2.1 2.2	2.2		3.0 3.0	3.0	
20-Jan-16	Rainy	Moderate	10:03		Surface	1.0	15.0 15.0	15.0	8.1 8.2	8.2	29.5 28.7	29.1	101.5 100.8	101.2	8.6 8.5	8.5	0.5	1.3 1.3	1.3		3.7 4.1	3.9	
				6.7	Middle	3.4	15.0 15.0	15.0	8.1 8.1	8.1	28.8 30.3	29.5	99.6 101.2	100.4	8.4 8.4	8.4	8.5	1.3 1.3	1.3	1.3	4.7 4.0	4.4	4.1
					Bottom	5.7	15.0	15.0	8.1 8.1	8.1	31.4	30.3	100.0	99.9	8.4 8.4	8.4	8.4	1.3	1.3		4.3	4.0	1
<u> </u>		l		1			15.0	l	8.1	l	29.1		99.7	1	8.4	I		1.3	1		3./	1	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:34		Surface	1.0	14.7 14.6	14.7	8.0 8.0	8.0	31.4 30.0	30.7	99.0 97.3	98.2	8.3 8.2	8.2	8.2	2.5 2.4	2.5		2.5 2.7	2.6	
				6.6	Middle	3.3	14.6 14.7	14.6	8.0 8.0	8.0	31.1 31.5	31.3	96.9 97.5	97.2	8.2 8.2	8.2	0.2	2.5 2.5	2.5	2.5	3.6 3.5	3.6	3.3
					Bottom	5.6	14.6 14.6	14.6	8.0 8.0	8.0	31.6 31.9	31.7	95.8 97.4	96.6	8.0 8.2	8.1	8.1	2.6 2.6	2.6		3.6 3.7	3.7	
25-Jan-16	Sunny	Moderate	13:13		Surface	1.0	12.9 12.9	12.9	8.4 8.4	8.4	31.9 31.5	31.7	97.1 97.1	97.1	8.4 8.4	8.4	8.4	2.7 2.8	2.8		7.0 7.3	7.2	
				6.6	Middle	3.3	12.9 12.8	12.8	8.3 8.4	8.4	31.9 31.4	31.7	97.3 96.8	97.1	8.4 8.4	8.4	0	3.2 3.1	3.2	3.2	8.0 7.4	7.7	7.5
					Bottom	5.6	12.8 12.8	12.8	8.3 8.3	8.3	31.4 32.1	31.8	96.7 97.0	96.9	8.4 8.4	8.4	8.4	3.4 3.5	3.5		7.0 7.9	7.5	
27-Jan-16	Cloudy	Moderate	14:31		Surface	1.0	11.9 12.0	11.9	8.4 8.3	8.4	31.0 31.2	31.1	98.2 98.4	98.3	8.7 8.7	8.7	8.7	2.7 3.0	2.9		5.2 4.4	4.8	
				6.5	Middle	3.3	11.8 11.8	11.8	8.3 8.4	8.3	31.5 31.0	31.3	97.7 97.9	97.8	8.7 8.7	8.7	0.7	4.3 4.0	4.2	3.3	5.7 5.8	5.8	5.1
					Bottom	5.5	11.8 11.8	11.8	8.3 8.3	8.3	31.1 31.6	31.4	98.0 97.7	97.9	8.7 8.7	8.7	8.7	3.0 2.6	2.8		4.6 4.8	4.7	
29-Jan-16	Cloudy	Moderate	15:35		Surface	1.0	11.8 11.8	11.8	8.4 8.4	8.4	25.3 24.8	25.1	95.1 94.2	94.7	8.8 8.7	8.8	8.8	3.2 3.0	3.1		2.1 3.6	2.9	
				6.6	Middle	3.3	11.7 11.7	11.7	8.3 8.4	8.4	25.9 25.6	25.8	94.7 94.1	94.4	8.7 8.7	8.7	0.0	3.8 3.8	3.8	3.5	3.3 2.9	3.1	2.9
					Bottom	5.6	11.8 11.8	11.8	8.3 8.3	8.3	30.3 29.9	30.1	96.6 96.2	96.4	8.6 8.6	8.6	8.6	3.6 3.7	3.7		3.3 2.3	2.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ed Oxygen	(mg/L)	Ti	urbidity(NTI	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:25		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.4 28.4	28.4	91.8 91.6	91.7	7.1 7.1	7.1		5.3 5.0	5.2		4.4 4.4	4.4	
				6.3	Middle	3.2	19.5	19.5	8.2	8.2	28.5	28.5	93.4	92.2	7.3	7.2	7.2	6.8	6.6	6.1	5.0	5.8	5.2
				0.0			19.5 19.5		8.2 8.2		28.5 28.5		90.9		7.1 7.0			6.3 6.3		0	6.5 5.6		0.2
					Bottom	5.3	19.5	19.5	8.2	8.2	28.5	28.5	90.8	90.8	7.1	7.0	7.0	6.5	6.4	Ь	4.9	5.3	
4-Jan-16	Sunny	Moderate	14:05		Surface	1.0	16.4 16.3	16.4	8.1 8.1	8.1	27.8 27.3	27.6	97.8 98.1	98.0	8.1 8.1	8.1		2.2 2.4	2.3	1	2.6 2.5	2.6	
				6.5	Middle	3.3	16.3	16.3	8.1	8.1	29.4	29.5	97.1	97.6	8.0	8.0	8.1	2.5	2.5	2.5	2.8	3.5	2.9
					Bottom	5.5	16.2 16.2	16.2	8.1 8.1	8.1	29.6 30.4	30.1	98.0 96.5	97.1	8.0 7.9	8.0	8.0	2.4	2.6	ĺ	3.0	2.6	
6-Jan-16	Cuppy	Moderate	15:56		BOLLOITI	5.5	16.3 17.0	10.2	8.1 8.1	0.1	29.7 20.5	30.1	97.7 97.1	97.1	8.0 8.3	6.0	0.0	2.6	2.0	 	2.1 3.0	2.0	
0-Jan-10	Sunny	Woderate	15.56		Surface	1.0	17.0	17.0	8.1	8.1	20.7	20.6	98.7	97.9	8.4	8.3	8.2	2.2	2.3	1	3.2	3.1]
				6.8	Middle	3.4	16.4 16.4	16.4	8.1 8.1	8.1	26.6 27.0	26.8	97.2 98.1	97.7	8.0 8.1	8.0	0.2	2.4 2.3	2.4	2.5	3.3 3.6	3.5	3.1
					Bottom	5.8	16.4	16.4	8.0	8.0	28.1	28.4	94.0	94.2	7.8	7.8	7.8	2.7	2.7	1	3.0	2.6	
8-Jan-16	Sunny	Moderate	16:34		Curtosa	1.0	16.4 16.7	16.7	8.0 8.2	8.2	28.7 26.8	27.0	94.4 98.7	98.6	7.8 8.2	8.2		2.6 3.5	3.4		2.1 3.1	3.0	\vdash
	Í				Surface	1.0	16.7 16.6		8.2 8.2		27.2 27.5		98.4 98.0	98.6	8.1 8.1	8.2	8.2	3.2	3.4	l	2.9		
				6.6	Middle	3.3	16.6	16.6	8.2	8.2	27.3	27.4	98.0	98.0	8.1	8.1		3.3	3.4	3.5	2.9	2.9	3.0
					Bottom	5.6	16.5 16.5	16.5	8.1 8.1	8.1	28.1 28.6	28.4	97.9 97.9	97.9	8.1 8.0	8.0	8.0	3.6 3.9	3.8	1	3.3 2.8	3.1	
11-Jan-16	Rainy	Moderate	09:07		Surface	1.0	16.2	16.1	8.2	8.2	28.4	28.4	98.8	98.7	8.1	8.1		2.9	3.0		5.1	4.6	
				6.0		3.4	16.1 16.1	16.1	8.2 8.2	8.2	28.3 28.5	28.6	98.5 98.2	98.2	8.1 8.1	8.1	8.1	3.0		3.2	4.1		4.0
				6.8	Middle	3.4	16.1	16.1	8.2	8.2	28.8	28.0	98.1 98.0	98.2	8.1	8.1		3.2 3.5	3.2	3.2	6.1 5.4	5.5	4.9
					Bottom	5.8	16.1 16.1	16.1	8.1 8.2	8.2	29.1 28.5	28.8	97.9	98.0	8.1 8.1	8.1	8.1	3.5	3.5		4.0	4.7	
13-Jan-16	Sunny	Moderate	10:17		Surface	1.0	15.8 15.8	15.8	8.2 8.2	8.2	27.2 27.6	27.4	102.9 103.5	103.2	8.6 8.7	8.7		4.8 4.7	4.8		5.4 6.2	5.8	
				6.6	Middle	3.3	15.8	15.8	8.2	8.2	27.6	27.5	103.4	103.3	8.7	8.7	8.7	4.8	4.8	4.8	5.9	5.1	5.5
					Detter	F.C.	15.8 15.8	45.0	8.2 8.2	0.0	27.4 27.4	20.0	103.1 103.2	402.0	8.7 8.7	0.7	0.7	4.8 4.9	4.0	ĺ	4.3 6.0	5.5	
15 1 10	5.		44.00		Bottom	5.6	15.8	15.8	8.2	8.2	28.5	28.0	103.9	103.6	8.7	8.7	8.7	4.6	4.8	<u> </u>	5.0	5.5	
15-Jan-16	Rainy	Moderate	11:30		Surface	1.0	15.6 15.5	15.6	8.1 8.1	8.1	27.5 26.4	26.9	102.2 102.1	102.2	8.6 8.7	8.7	8.7	2.5 2.5	2.5	ĺ	3.3 3.1	3.2	
				6.6	Middle	3.3	15.5 15.6	15.5	8.1 8.1	8.1	26.5 27.4	27.0	102.1 102.4	102.3	8.7 8.6	8.6	0.7	2.6 2.5	2.6	2.6	3.1 3.3	3.2	3.2
					Bottom	5.6	15.5	15.5	8.1	8.1	26.3	26.7	102.1	102.2	8.7	8.6	8.6	2.6	2.6	ĺ	3.5	3.2	
18-Jan-16	Sunny	Moderate	13:27				15.5 15.1		8.1 8.2		27.0 24.5		102.3 100.0		8.6 8.7			2.6 3.2		 	2.9 3.0		
10 04.11	Guiniy	modorato	10.27		Surface	1.0	15.1	15.1	8.2	8.2	24.6	24.6	99.9	100.0	8.7	8.7	8.7	3.5	3.4	1	2.9	3.0	
				6.6	Middle	3.3	15.3 15.2	15.3	8.2 8.2	8.2	24.9 24.8	24.9	99.3 99.4	99.4	8.5 8.6	8.6		3.0 2.9	3.0	3.5	2.9 2.8	2.9	2.9
					Bottom	5.6	15.4 15.5	15.4	8.2 8.2	8.2	26.9 26.8	26.9	100.6 100.5	100.6	8.5 8.5	8.5	8.5	4.0 4.2	4.1	ĺ	2.7 3.0	2.9	1
20-Jan-16	Rainy	Moderate	15:49		Surface	1.0	15.0	15.0	8.2	8.2	27.3	27.2	102.0	102.1	8.7	8.7		1.2	1.2		3.4	3.5	
							15.0 15.0		8.2 8.2		27.1 27.4		102.1 100.8		8.7 8.6		8.7	1.2			3.5 2.7		
				6.7	Middle	3.4	15.0	15.0	8.2	8.2	27.5	27.5	100.8	100.8	8.6	8.6		1.3	1.3	1.3	3.6	3.2	3.3
					Bottom	5.7	15.0 15.0	15.0	8.2 8.2	8.2	28.3 27.5	27.9	99.6 100.2	99.9	8.5 8.6	8.5	8.5	1.5 1.4	1.5	L	3.3 3.2	3.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:36		Surface	1.0	14.6 14.6	14.6	8.1 8.1	8.1	24.8 24.9	24.8	95.8 96.9	96.4	8.4 8.5	8.4	8.4	1.3 1.3	1.3		2.7 2.8	2.8	
				6.6	Middle	3.3	14.6 14.6	14.6	8.1 8.1	8.1	25.2 25.2	25.2	94.3 96.6	95.5	8.2 8.4	8.3	0.4	1.5 1.4	1.5	1.4	2.8 2.1	2.5	3.2
					Bottom	5.6	14.6 14.6	14.6	8.1 8.1	8.1	25.5 25.3	25.4	94.5 96.5	95.5	8.2 8.4	8.3	8.3	1.5 1.5	1.5		3.8 4.8	4.3	
25-Jan-16	Sunny	Moderate	08:52		Surface	1.0	12.6 12.7	12.6	8.3 8.3	8.3	29.7 29.2	29.5	98.9 98.7	98.8	8.7 8.7	8.7	8.7	8.1 8.2	8.2		12.3 12.6	12.5	
				6.8	Middle	3.4	12.6 12.7	12.6	8.3 8.3	8.3	30.1 29.4	29.7	97.3 98.3	97.8	8.6 8.7	8.6	0	8.2 8.3	8.3	8.3	13.1 12.9	13.0	13.7
					Bottom	5.8	12.6 12.6	12.6	8.3 8.3	8.3	30.6 29.5	30.1	97.1 97.2	97.2	8.6 8.6	8.6	8.6	8.5 8.5	8.5		15.4 15.9	15.7	
27-Jan-16	Cloudy	Moderate	09:47		Surface	1.0	11.6 11.6	11.6	8.3 8.3	8.3	32.5 34.3	33.4	98.3 98.6	98.5	8.7 8.6	8.7	8.7	12.9 13.4	13.2		13.0 12.6	12.8	
				6.6	Middle	3.3	11.6 11.6	11.6	8.3 8.3	8.3	34.5 33.0	33.8	98.6 98.0	98.3	8.6 8.7	8.6	0.7	13.9 13.1	13.5	13.5	13.8 12.1	13.0	13.9
					Bottom	5.6	11.6 11.6	11.6	8.3 8.3	8.3	34.8 33.6	34.2	98.8 98.2	98.5	8.6 8.6	8.6	8.6	14.2 13.6	13.9		15.3 16.4	15.9	
29-Jan-16	Rainy	Moderate	10:55		Surface	1.0	11.8 11.8	11.8	8.3 8.2	8.2	31.7 33.1	32.4	97.8 96.2	97.0	8.7 8.5	8.6	8.6	7.0 7.3	7.2		7.0 8.3	7.7	
				6.8	Middle	3.4	11.8 11.8	11.8	8.2 8.2	8.2	33.5 32.2	32.9	98.2 98.3	98.3	8.6 8.7	8.6	3.0	7.7 7.4	7.6	7.4	9.0 8.6	8.8	8.3
					Bottom	5.8	11.8 11.8	11.8	8.1 8.2	8.2	33.5 32.7	33.1	98.4 97.0	97.7	8.6 8.6	8.6	8.6	7.5 7.1	7.3		8.9 7.9	8.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:09		Surface	1.0	19.6	19.6	8.2	8.2	28.5	28.5	90.6 92.0	91.3	7.0	7.1		4.4	4.6		3.9 3.4	3.7	1
				16.7	Middle	8.4	19.6 19.5	19.5	8.2	8.2	28.5	28.7	89.3	89.5	7.1 6.9	6.9	7.0	6.2	6.4	5.8	3.6	3.5	3.8
					Bottom	15.7	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	89.6 88.8	89.6	6.9 6.9	6.9	6.9	6.5 6.5	6.4		3.3 4.4	4.2	
4 1		NA . I	20.04				19.5 16.1		8.2 8.1		28.7		90.3 95.3	****	7.0 8.0			6.3 1.5			4.0 2.0		
4-Jan-16	Sunny	Moderate	08:31		Surface	1.0	16.1	16.1	8.1	8.1	26.6 26.2	26.4	93.6	94.5	7.9	7.9	7.9	1.4	1.5		2.1	2.1	
				16.8	Middle	8.4	16.1 16.1	16.1	8.1 8.0	8.0	30.4 30.6	30.5	94.8 95.5	95.2	7.8 7.8	7.8		1.5 1.4	1.5	1.5	2.2 3.8	3.0	3.0
					Bottom	15.8	16.1 16.1	16.1	8.0 8.0	8.0	30.8 30.7	30.7	95.9 97.7	96.8	7.8 8.0	7.9	7.9	1.5 1.5	1.5		4.2 3.3	3.8	
6-Jan-16	Sunny	Moderate	10:36		Surface	1.0	16.4 16.5	16.5	8.1 8.1	8.1	21.4 21.3	21.4	95.2 95.2	95.2	8.2 8.2	8.2		1.2 1.2	1.2		1.8 1.8	1.8	
				15.9	Middle	8.0	16.4 16.4	16.4	8.1 8.1	8.1	22.3 23.2	22.7	93.6 93.3	93.5	8.0 7.9	8.0	8.1	1.4	1.4	1.4	3.1 2.8	3.0	2.7
					Bottom	14.9	16.4	16.4	8.0	8.0	26.2	26.4	94.4	94.0	7.9 7.8	7.8	7.8	1.6	1.6		3.0	3.3	
8-Jan-16	Sunny	Moderate	12:45		Surface	1.0	16.4 16.6	16.5	8.1	8.1	26.6 24.9	25.0	93.6 100.6	99.6	8.4	8.4		3.1	3.0		3.6 2.1	2.4	
				16.5	Middle	8.3	16.5 16.4	16.4	8.1 8.1	8.1	25.1 26.2	26.4	98.6 100.4	99.1	8.3 8.4	8.3	8.4	2.9	2.8	2.9	2.7	2.3	2.4
					Bottom	15.5	16.4 16.4	16.4	8.1 8.1	8.1	26.6 26.8	26.6	97.8 98.1	99.2	8.1 8.2	8.3	8.3	2.7	2.9		2.2	2.6	
11-Jan-16	Sunny	Moderate	13:07				16.4 16.2		8.1 8.3		26.4 31.1		100.2 100.9		8.4 8.1		0.5	2.9			2.3 3.4		
	,				Surface	1.0	16.2 16.2	16.2	8.2 8.3	8.3	31.7 32.4	31.4	101.5	101.2	8.2 8.1	8.2	8.2	2.1	2.1		4.2 5.2	3.8	
				15.6	Middle	7.8	16.2 16.4	16.2	8.2 8.3	8.3	32.3 30.4	32.4	100.0	100.0	8.1 8.1	8.1		2.1	2.1	2.2	4.2	4.7	4.1
					Bottom	14.6	16.3	16.3	8.2	8.3	31.0	30.7	99.7	99.5	8.1	8.1	8.1	2.4 2.4	2.4		3.4	3.9	
13-Jan-16	Sunny	Moderate	14:40		Surface	1.0	16.1 16.1	16.1	8.3 8.3	8.3	29.0 30.1	29.5	106.4 106.5	106.5	8.8 8.7	8.7	8.7	2.2 2.1	2.2		4.9 6.4	5.7	
				17.5	Middle	8.8	15.9 15.9	15.9	8.3 8.3	8.3	30.9 30.1	30.5	105.5 105.7	105.6	8.7 8.7	8.7	3:	2.1 2.2	2.2	2.2	6.0 6.0	6.0	6.0
					Bottom	16.5	15.9 16.0	16.0	8.3 8.3	8.3	31.4 30.3	30.9	105.0 105.2	105.1	8.6 8.7	8.6	8.6	2.1 2.2	2.2		6.1 6.5	6.3	
15-Jan-16	Rainy	Moderate	16:22		Surface	1.0	15.3 15.3	15.3	8.0 8.0	8.0	24.3 25.8	25.0	101.1 101.1	101.1	8.7 8.6	8.6		2.2 2.2	2.2		1.4 1.5	1.5	
				16.3	Middle	8.2	15.3 15.3	15.3	8.0 8.0	8.0	25.4 26.6	26.0	100.7 100.8	100.8	8.6 8.5	8.5	8.6	2.3	2.3	2.3	1.6 1.7	1.7	1.6
					Bottom	15.3	15.3 15.4	15.3	8.0 8.0	8.0	26.0 28.2	27.1	98.8 98.6	98.7	8.5 8.5	8.5	8.5	2.4	2.4		1.6 1.6	1.6	
18-Jan-16	Sunny	Moderate	07:52		Surface	1.0	14.7	14.7	8.1	8.1	23.5	23.2	97.7	96.9	8.6	8.5		1.9	2.0		2.6	2.6	
				16.5	Middle	8.3	14.7 15.3	15.4	8.1 8.1	8.1	23.0 25.0	24.8	96.0 96.8	96.3	8.5 8.3	8.3	8.4	2.0	2.0	2.0	2.6 3.2	3.5	2.9
				10.0		15.5	15.4 15.5	15.5	8.1 8.1	8.1	24.6 25.0	25.6	95.8 96.2	97.1	8.2 8.2	8.3	8.3	1.9 2.0	2.1	2.0	3.7 2.7	2.5	2.0
20-Jan-16	Rainy	Moderate	10:24		Bottom		15.5 15.0		8.1 8.2		26.2 27.9		97.9 100.9		8.3 8.6		8.3	2.2 1.1			2.3 3.8		
20 000	,				Surface	1.0	15.0 15.0	15.0	8.2 8.2	8.2	27.8 27.9	27.8	98.6	99.8	8.4 8.5	8.5	8.5	1.2	1.2		4.4	4.1	
				16.1	Middle	8.1	15.0	15.0	8.2	8.2	28.0	27.9	100.0	100.2	8.5	8.5		1.2	1.3	1.3	4.5	4.5	4.4
					Bottom	15.1	15.0 15.0	15.0	8.2 8.1	8.2	27.9 29.4	28.7	100.2 100.7	100.5	8.5 8.5	8.5	8.5	1.3 1.3	1.3		5.1 4.1	4.6	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tem	erature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m) Valu	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:57		Surface 1	1.0 14.6 14.6	14.6	8.1 8.1	8.1	27.3 28.3	27.8	97.3 96.2	96.8	8.4 8.2	8.3	8.3	1.6 1.5	1.6		3.9 3.5	3.7	
				16.5	Middle 8	3.3 14.6 14.6	14.6	8.1 8.1	8.1	28.6 29.2	28.9	97.1 94.9	96.0	8.3 8.1	8.2	0.3	1.8 1.8	1.8	1.8	4.2 4.0	4.1	3.9
					Bottom 1	5.5 14.6 14.6	14.6	8.0 8.1	8.1	29.8 28.5	29.1	94.9 96.9	95.9	8.0 8.3	8.2	8.2	1.9 1.9	1.9		3.0 4.5	3.8	
25-Jan-16	Sunny	Moderate	12:51		Surface 1	1.0 12.9 12.9	12.9	8.4 8.3	8.4	32.8 33.3	33.1	97.3 97.6	97.5	8.4 8.4	8.4	8.4	2.8 2.7	2.8		7.9 7.3	7.6	
				16.1	Middle 8	3.1 12.9 12.8	12.9	8.3 8.4	8.4	33.7 32.9	33.3	97.0 97.2	97.1	8.4 8.4	8.4	0.4	2.9 3.0	3.0	3.1	7.8 7.8	7.8	7.6
					Bottom 1	5.1 12.8 12.8	12.8	8.3 8.4	8.3	34.5 33.1	33.8	97.2 97.9	97.6	8.3 8.3	8.3	8.3	3.3 3.4	3.4		7.7 7.0	7.4	
27-Jan-16	Cloudy	Moderate	14:09		Surface 1	1.0	11.9	8.3 8.4	8.3	33.5 32.3	32.9	98.4 98.4	98.4	8.6 8.7	8.6	8.6	2.8 2.9	2.9		4.0 4.2	4.1	
				16.3	Middle 8	3.2 11.8 11.7	11.8	8.3 8.3	8.3	33.8 32.6	33.2	98.1 97.4	97.8	8.6 8.6	8.6	0.0	3.2 3.3	3.3	3.2	5.2 6.2	5.7	5.3
					Bottom 1	5.3 11.8 11.8	11.8	8.3 8.3	8.3	34.1 33.1	33.6	97.8 97.7	97.8	8.6 8.6	8.6	8.6	3.1 3.4	3.3		5.9 6.2	6.1	
29-Jan-16	Cloudy	Moderate	15:14		Surface 1	1.0 11.8 11.8	11.8	8.4 8.4	8.4	25.6 26.2	25.9	96.0 96.9	96.5	8.8 8.9	8.9	8.8	2.7 2.9	2.8		3.8 5.0	4.4	
				16.7	Middle 8	3.4 11.8 11.8	11.8	8.3 8.4	8.3	32.2 31.5	31.9	96.6 96.7	96.7	8.5 8.6	8.6	0.0	3.5 3.4	3.5	3.3	3.6 2.9	3.3	3.6
					Bottom 1	5.7 11.8 11.8	11.8	8.3 8.3	8.3	32.4 31.8	32.1	96.4 96.6	96.5	8.5 8.6	8.5	8.5	3.6 3.3	3.5		3.0 3.3	3.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:44		Surface	1.0	19.5 19.6	19.5	8.2 8.2	8.2	28.5 28.5	28.5	90.4 90.6	90.5	7.0 7.0	7.0		6.9 6.8	6.9		3.4 3.1	3.3	
				16.6	Middle	8.3	19.5	19.5	8.2	8.2	28.6	28.6	89.2	89.0	6.9	6.9	7.0	7.0	7.0	6.8	2.8	2.8	3.2
				10.0			19.5 19.5		8.2 8.2		28.6 28.6		88.7 89.6		6.9 7.0			7.0 6.5		0.0	2.7 3.4		0.2
					Bottom	15.6	19.5	19.5	8.2	8.2	28.6	28.6	88.3	89.0	6.9	6.9	6.9	6.6	6.6		3.7	3.6	
4-Jan-16	Sunny	Moderate	13:42		Surface	1.0	16.4 16.3	16.3	8.1 8.1	8.1	29.0 28.9	28.9	95.4 96.4	95.9	7.8 7.9	7.9		3.3 3.4	3.4		2.5 2.6	2.6	1
				17.1	Middle	8.6	16.3	16.2	8.1	8.1	31.6	32.0	96.0	95.4	7.8	7.7	7.8	5.5	5.5	4.9	4.0	3.8	3.5
				.,	Wildale		16.2 16.2		8.1 8.1		32.3 32.6		94.8 93.4		7.7 7.6			5.5 5.9		4.5	3.5		0.0
					Bottom	16.1	16.2	16.2	8.1	8.1	32.0	32.3	95.0	94.2	7.7	7.6	7.6	5.6	5.8		4.9	4.0	
6-Jan-16	Sunny	Moderate	15:36		Surface	1.0	16.7 16.6	16.6	8.1 8.1	8.1	21.7 23.3	22.5	93.6 94.8	94.2	8.0 8.0	8.0		2.4 2.3	2.4		3.1 4.4	3.8	
				16.1	Middle	8.1	16.4	16.4	8.1	8.1	27.8	28.4	95.6	95.0	7.8	7.8	7.9	2.9	3.0	2.9	4.7	4.3	3.9
				10.1	-		16.4 16.4		8.1 8.1		29.0 29.3		94.4		7.8 7.7			3.0		2.0	3.9 4.2		0.0
					Bottom	15.1	16.4	16.4	8.1	8.1	30.1	29.7	94.7	94.0	7.7	7.7	7.7	3.2	3.3		3.2	3.7	
8-Jan-16	Sunny	Moderate	16:18		Surface	1.0	16.7 16.7	16.7	8.2 8.2	8.2	28.7 27.9	28.3	98.3 98.0	98.2	8.0 8.1	8.1		3.2 3.5	3.4		2.8 2.7	2.8	
				16.5	Middle	8.3	16.5	16.5	8.1	8.2	30.5	30.0	97.4	97.1	7.9	7.9	8.0	3.9	4.1	3.9	3.0	3.1	3.1
							16.5 16.4		8.2 8.1		29.5 31.1		96.7 98.3		7.9 8.0			4.2 4.2			3.2 4.1		
					Bottom	15.5	16.4	16.4	8.1	8.1	29.6	30.4	97.0	97.7	7.9	7.9	7.9	4.2	4.2		2.6	3.4	
11-Jan-16	Rainy	Moderate	09:28		Surface	1.0	16.2 16.2	16.2	8.2 8.2	8.2	27.5 27.6	27.6	100.3 100.1	100.2	8.4 8.3	8.3	0.0	2.9 2.8	2.9		3.4 4.1	3.8	
				15.7	Middle	7.9	16.1	16.1	8.2	8.2	27.8	27.7	99.9	99.1	8.3	8.2	8.3	3.1	3.1	3.2	3.7	4.2	4.2
					Dattam	447	16.2 16.1	40.4	8.2 8.2	8.2	27.5 27.9	27.9	98.3 98.2	97.9	8.2 8.2	0.4	8.1	3.0 3.4	3.5		4.6 4.4	4.7	
40 1 40	0	Madagata	40.00		Bottom	14.7	16.1	16.1	8.1	8.2	27.8	27.9	97.6	97.9	8.1	8.1	8.1	3.5	3.5		4.9	4.7	
13-Jan-16	Sunny	Moderate	10:39		Surface	1.0	15.8 15.8	15.8	8.2 8.2	8.2	26.6 26.7	26.7	103.0 102.9	103.0	8.7 8.7	8.7	8.7	6.2 6.5	6.4		6.7 4.9	5.8	
				16.4	Middle	8.2	15.8 15.8	15.8	8.2 8.2	8.2	26.7 26.8	26.7	102.8 102.9	102.9	8.7 8.7	8.7	0.7	6.7 6.6	6.7	6.6	5.7 5.8	5.8	5.7
					Bottom	15.4	15.8	15.8	8.2	8.2	26.6	26.7	102.8	102.7	8.7	8.7	8.7	6.6	6.6		5.5	5.5	1
15-Jan-16	Rainy	Moderate	11:48		Dottom	10.4	15.8 15.5	13.0	8.2 8.1		26.7 26.1	20.7	102.5 101.9	102.7	8.6 8.7	0.7	0.7	6.6 2.6	0.0	<u> </u>	5.5 2.6	5.5	
15-Jan-16	Railly	Woderate	11.40		Surface	1.0	15.6	15.6	8.1	8.1	25.1	25.6	101.3	102.1	8.7	8.7	8.7	2.6	2.6		3.2	2.9	
				16.3	Middle	8.2	15.6 15.5	15.6	8.1 8.1	8.1	26.1 25.9	26.0	102.1 102.0	102.1	8.7 8.7	8.7	0.7	2.7 2.7	2.7	2.7	2.5 3.5	3.0	3.0
					Bottom	15.3	15.5	15.5	8.1	8.1	26.1	26.1	101.9	101.9	8.7	8.7	8.7	2.7	2.8		2.8	3.1	
18-Jan-16	Sunny	Moderate	13:05				15.5 15.1		8.1 8.2		26.1 25.7	l	101.9 98.6		8.7 8.5		<u> </u>	2.8		<u> </u>	3.4		
10 04.11 10	Guiniy	moderate	10.00		Surface	1.0	15.1	15.1	8.2	8.2	25.1	25.4	98.9	98.8	8.5	8.5	8.4	3.0	2.9		2.8	2.9	
				16.1	Middle	8.1	15.6 15.6	15.6	8.2 8.2	8.2	27.9 28.4	28.2	99.0 99.9	99.5	8.3 8.4	8.3		4.4 4.4	4.4	4.1	2.9 2.0	2.5	2.8
					Bottom	15.1	15.5	15.5	8.2	8.2	28.5	28.4	100.6	100.4	8.4	8.4	8.4	4.8	4.9	1	3.0	3.0	i
20-Jan-16	Rainy	Moderate	15:27				15.5 15.0		8.2 8.2	0.0	28.3 28.8	20.4	100.2 100.3		8.4 8.5		<u> </u>	5.0 1.0	4.0	l 	2.9 3.7	2.0	
	,				Surface	1.0	15.0	15.0	8.2	8.2	28.0	28.4	100.5	100.4	8.5	8.5	8.5	1.0	1.0		3.4	3.6	
				16.2	Middle	8.1	15.0 15.0	15.0	8.2 8.2	8.2	29.4 28.3	28.9	100.3 100.3	100.3	8.5 8.5	8.5		1.0 1.0	1.0	1.0	4.0 4.7	4.4	4.1
					Bottom	15.2	15.0	15.0	8.2	8.2	30.2	29.5	100.4	100.3	8.4	8.5	8.5	1.0	1.0		3.3	4.4	
				l	į.		15.0	1	8.2		28.8		100.1		8.5	<u> </u>	l	1.0		l	5.4		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	g	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:16		Surface	1.0	14.6 14.6	14.6	8.1 8.1	8.1	25.7 25.3	25.5	96.6 96.4	96.5	8.4 8.4	8.4	8.4	1.4 1.6	1.5		2.5 3.8	3.2	
				16.5	Middle	8.3	14.6 14.6	14.6	8.1 8.1	8.1	26.1 26.2	26.2	95.0 96.3	95.7	8.2 8.3	8.3	0.4	1.5 1.6	1.6	1.5	4.0 4.5	4.3	4.0
					Bottom 1	15.5	14.6 14.6	14.6	8.1 8.1	8.1	25.9 26.1	26.0	94.6 94.3	94.5	8.2 8.2	8.2	8.2	1.5 1.5	1.5		4.6 4.4	4.5	
25-Jan-16	Sunny	Moderate	09:13		Surface	1.0	12.7 12.7	12.7	8.4 8.4	8.4	28.4 28.4	28.4	97.6 96.2	96.9	8.7 8.6	8.6	8.6	8.4 8.5	8.5		11.2 11.2	11.2	
				16.3	Middle	8.2	12.7 12.7	12.7	8.4 8.3	8.4	28.4 28.5	28.4	96.0 96.5	96.3	8.5 8.6	8.6	0.0	8.7 8.5	8.6	8.7	10.3 10.9	10.6	10.7
					Bottom 1	15.3	12.7 12.7	12.7	8.3 8.4	8.4	28.5 28.5	28.5	97.8 97.0	97.4	8.7 8.6	8.7	8.7	8.9 8.9	8.9		10.9 9.5	10.2	
27-Jan-16	Cloudy	Moderate	10:07		Surface	1.0	11.6 11.6	11.6	8.4 8.3	8.4	31.2 31.4	31.3	98.2 97.8	98.0	8.8 8.7	8.7	8.7	12.8 12.1	12.5		12.3 12.6	12.5	
				16.5	Middle	8.3	11.6 11.6	11.6	8.4 8.3	8.3	31.2 31.7	31.4	97.9 95.6	96.8	8.7 8.5	8.6	0.7	13.0 12.6	12.8	13.4	14.2 14.0	14.1	13.5
					Bottom 1	15.5	11.6 11.6	11.6	8.3 8.4	8.3	31.8 31.3	31.6	97.9 97.7	97.8	8.7 8.7	8.7	8.7	15.2 14.5	14.9		13.5 14.3	13.9	
29-Jan-16	Rainy	Moderate	11:13		Surface	1.0	11.8 11.8	11.8	8.3 8.3	8.3	30.3 29.8	30.0	95.5 97.8	96.7	8.6 8.8	8.7	8.7	7.3 7.2	7.3		6.6 6.1	6.4	
				16.2	Middle	8.1	11.8 11.8	11.8	8.2 8.3	8.3	30.7 30.3	30.5	97.7 97.5	97.6	8.7 8.7	8.7	0.7	10.1 9.4	9.8	9.0	7.2 6.3	6.8	7.2
					Bottom 1	15.2	11.8 11.8	11.8	8.2 8.3	8.3	30.8 30.4	30.6	97.8 97.5	97.7	8.7 8.7	8.7	8.7	10.2 9.6	9.9		9.1 7.6	8.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:40		Surface	1.0	16.2 16.2	16.2	8.2 8.2	8.2	27.8 27.8	27.8	92.6 92.4	92.5	7.7 7.7	7.7		2.7 2.8	2.8		3.0 2.2	2.6	
				13.4	Middle	6.7	16.1	16.1	8.2	8.2	28.5	28.5	91.3	91.4	7.6	7.6	7.7	4.0	4.1	3.7	3.4	3.0	3.2
					Bottom	12.4	16.1 16.1	16.1	8.2 8.2	8.2	28.5 28.5	28.5	91.5 94.3	94.5	7.6 7.8	7.8	7.8	4.1	4.1		2.6 3.8	4.0	1
4 15 40		Madagas	00.00		Dottom	12.7	16.1	10.1	8.2	0.2	28.5	20.0	94.7	54.6	7.9	7.0	7.0	4.2	7.1		4.2	4.0	igwdap
4-Jan-16	Sunny	Moderate	06:32		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.1 27.1	27.1	91.0 94.0	92.5	7.1 7.3	7.2	7.1	1.8 1.9	1.9		2.3 2.3	2.3	<u> </u>
				13.3	Middle	6.7	19.7 19.7	19.7	8.1 8.1	8.1	27.8 27.9	27.9	90.7 89.6	90.2	7.0 7.0	7.0		1.7 1.7	1.7	1.8	3.4 2.1	2.8	2.8
					Bottom	12.3	19.7 19.7	19.7	8.1 8.1	8.1	27.9 28.0	27.9	90.6 90.8	90.7	7.0 7.0	7.0	7.0	1.8 1.7	1.8		3.0 3.7	3.4	
6-Jan-16	Sunny	Moderate	09:56		Surface	1.0	19.9 20.0	20.0	8.1 8.1	8.1	25.7 25.7	25.7	88.0 89.4	88.7	6.9 7.0	6.9		1.7 1.7	1.7		2.2 2.2	2.2	
				12.3	Middle	6.2	19.9 19.9	19.9	8.1 8.1	8.1	28.3 28.3	28.3	87.6 88.3	88.0	6.8 6.8	6.8	6.9	1.8 1.7	1.8	1.8	2.4	2.7	2.4
					Bottom	11.3	19.9	19.9	8.1	8.1	28.3	28.3	87.8	87.7	6.8	6.8	6.8	1.7	1.8		2.7	2.4	
8-Jan-16	Sunny	Moderate	11:50		Surface	1.0	19.9 20.1	20.1	8.1 8.2	8.2	28.3 28.1	28.0	92.8	94.2	6.8 7.1	7.3		1.8	1.4		2.1	3.0	
				12.6	Middle	6.3	20.1	20.0	8.2 8.2	8.2	27.9 28.7	28.7	95.6 91.6	91.4	7.4 7.0	7.0	7.2	1.4	1.2	1.3	3.4	3.0	2.9
				12.0		11.6	20.0	20.0	8.2 8.2	8.2	28.7 28.8	28.8	91.1 89.8	90.4	7.0 6.9		6.9	1.2 1.3	1.3	1.5	2.6	2.7	2.3
11-Jan-16	Sunny	Moderate	14:06		Bottom		20.0		8.2 8.2		28.8 28.2		90.9 96.9		7.0 7.4	6.9	6.9	1.3 1.5			2.8		
11 00.110	Cumy	modorato	1 1.00		Surface	1.0	20.0	20.1	8.2 8.2	8.2	28.3	28.3	92.7 92.7	94.8	7.1 7.1	7.3	7.3	1.4	1.5		3.7	3.2	
				12.5	Middle	6.3	19.8	19.8	8.2	8.2	29.0	29.0	93.6	93.2	7.2	7.2		1.5	1.5	1.6	2.8	3.0	3.4
					Bottom	11.5	19.8 19.8	19.8	8.2 8.2	8.2	29.1 29.1	29.1	92.8 90.9	91.9	7.1 7.0	7.1	7.1	1.7 1.8	1.8		4.8 3.2	4.0	
13-Jan-16	Sunny	Moderate	15:38		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	27.6 27.6	27.6	97.3 100.0	98.7	7.5 7.8	7.6	7.6	1.7 1.7	1.7		6.7 6.0	6.4	
				12.7	Middle	6.4	19.7 19.7	19.7	8.2 8.2	8.2	28.3 28.3	28.3	97.5 96.2	96.9	7.6 7.5	7.5	7.0	2.0 1.8	1.9	1.9	5.8 4.0	4.9	5.9
					Bottom	11.7	19.7 19.7	19.7	8.2 8.2	8.2	28.2 28.3	28.3	98.2 98.2	98.2	7.6 7.6	7.6	7.6	2.0 2.2	2.1		6.3 6.3	6.3	
15-Jan-16	Rainy	Moderate	17:20		Surface	1.0	19.1 19.1	19.1	8.3 8.3	8.3	27.8 27.9	27.8	98.4 96.5	97.5	7.7 7.5	7.6		1.8	1.7		1.7	1.8	
				12.0	Middle	6.0	19.2	19.2	8.3	8.3	28.1	28.1	96.1 97.1	96.6	7.5	7.6	7.6	1.7	1.8	1.8	2.4	2.3	2.2
					Bottom	11.0	19.2 19.3	19.3	8.2 8.2	8.2	28.1 28.3	28.3	96.2	96.0	7.6 7.6	7.5	7.5	1.8	1.8		2.2	2.4	
18-Jan-16	Sunny	Moderate	07:06		Surface	1.0	19.3 18.1	18.3	8.2 8.2	8.2	28.3 25.3	25.3	95.7 91.1	91.2	7.5 7.4	7.4		1.8	1.5		2.4	2.6	
				12.2	Middle	6.1	18.4 19.2	19.2	8.2 8.2	8.2	25.2 28.1	28.0	91.2 92.2	91.9	7.4 7.2	7.2	7.3	1.4	1	1.6	2.7	2.8	2.6
				12.2			19.2 19.2		8.2 8.1	-	28.0 28.1		91.5 91.0		7.2 7.1		7.	1.6 1.6	1.6	1.0	2.9		2.0
20-Jan-16	Rainy	Moderate	09:53	<u> </u>	Bottom	11.2	19.2	19.2	8.2 8.2	8.2	28.2	28.1	91.6 91.8	91.3	7.2 7.2	7.1	7.1	1.6	1.6		2.7	2.5	<u> </u>
20-Jan-10	кашу	Woderate	09.55		Surface	1.0	18.8	18.8	8.2	8.2	28.8	28.8	93.4	92.6	7.3	7.3	7.3	1.7	1.8		3.4	3.7	
				13.6	Middle	6.8	18.8 18.8	18.8	8.2 8.2	8.2	28.8 28.8	28.8	93.6 92.2	92.9	7.3 7.2	7.3		1.8	1.8	1.8	3.5 3.1	3.3	3.7
					Bottom	12.6	18.8 18.8	18.8	8.2 8.2	8.2	28.9 28.9	28.9	93.5 91.0	92.3	7.3 7.1	7.2	7.2	1.6 1.8	1.7		4.5 3.5	4.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Temper	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:49		Surface 1.0	18.3 18.3	18.3	8.3 8.3	8.3	28.3 28.4	28.4	92.6 93.2	92.9	7.3 7.4	7.4	7.3	1.2 1.2	1.2		4.7 4.1	4.4	
				13.4	Middle 6.7	18.3 18.5	18.4	8.2 8.2	8.2	28.4 28.9	28.6	90.0 91.7	90.9	7.2 7.3	7.2	7.3	1.3 1.4	1.4	1.4	4.7 3.7	4.2	4.4
					Bottom 12.4	18.5 18.4	18.4	8.2 8.2	8.2	29.2 28.7	28.9	88.9 88.4	88.7	7.0 7.0	7.0	7.0	1.5 1.4	1.5		4.6 4.5	4.6	
25-Jan-16	Sunny	Moderate	14:15		Surface 1.0	16.9 16.9	16.9	8.4 8.4	8.4	29.4 29.4	29.4	92.9 91.8	92.4	7.5 7.5	7.5	7.5	2.3 2.4	2.4		4.7 4.5	4.6	
				12.8	Middle 6.4	16.8 16.8	16.8	8.3 8.4	8.4	29.6 29.6	29.6	92.7 91.2	92.0	7.5 7.4	7.5	7.0	2.5 2.5	2.5	2.5	4.2 4.1	4.2	4.6
					Bottom 11.8	16.8 16.8	16.8	8.4 8.3	8.3	29.6 29.8	29.7	90.4 91.9	91.2	7.3 7.5	7.4	7.4	2.5 2.5	2.5		4.9 5.1	5.0	
27-Jan-16	Cloudy	Moderate	14:55		Surface 1.0	16.4 16.4	16.4	8.3 8.3	8.3	29.9 29.9	29.9	90.3 91.3	90.8	7.4 7.5	7.4	7.4	2.5 2.4	2.5		3.7 4.0	3.9	
				12.3	Middle 6.2	16.3 16.3	16.3	8.3 8.3	8.3	30.0 30.0	30.0	91.3 90.0	90.7	7.5 7.4	7.4	7.4	2.6 2.7	2.7	2.6	4.6 4.0	4.3	4.8
					Bottom 11.3	16.3 16.3	16.3	8.3 8.3	8.3	30.0 30.0	30.0	89.8 91.2	90.5	7.3 7.5	7.4	7.4	2.6 2.5	2.6		5.9 6.3	6.1	
29-Jan-16	Cloudy	Moderate	16:29		Surface 1.0	15.8 15.8	15.8	8.2 8.2	8.2	29.1 29.1	29.1	92.9 91.5	92.2	7.7 7.6	7.6	7.6	2.9 2.9	2.9		3.9 4.0	4.0	
				12.4	Middle 6.2	16.0 16.0	16.0	8.2 8.2	8.2	29.5 29.5	29.5	92.0 90.7	91.4	7.6 7.5	7.6	7.0	2.7 2.9	2.8	2.8	4.0 3.7	3.9	3.8
					Bottom 11.4	16.1 15.9	16.0	8.2 8.2	8.2	29.6 29.5	29.6	91.4 90.2	90.8	7.5 7.4	7.5	7.5	2.7 2.9	2.8		3.7 3.0	3.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:48		Surface	1.0	16.0 16.0	16.0	8.1 8.1	8.1	31.2 31.2	31.2	92.7 92.4	92.6	7.5 7.5	7.5		3.1 3.3	3.2		2.5 2.3	2.4	
				13.6	Middle	6.8	16.1 16.1	16.1	8.1 8.1	8.1	32.5 32.6	32.6	92.6 92.7	92.7	7.5 7.4	7.4	7.5	4.2 4.2	4.2	4.1	2.8	3.1	3.0
					Bottom	12.6	16.2 16.2	16.2	8.0 8.1	8.1	33.1 33.1	33.1	95.1 95.4	95.3	7.7 7.6	7.6	7.6	4.7	4.8		3.3	3.4	
4-Jan-16	Sunny	Moderate	14:32		Surface	1.0	19.9	19.8	8.2	8.2	27.5	27.6	91.8	91.4	7.0	7.1		1.6	1.7		1.3	1.4	
				13.6	Middle	6.8	19.8 19.7	19.7	8.2 8.2	8.2	27.6 28.9	29.0	91.0 89.6	88.6	7.1 6.9	6.8	7.0	1.7	1.8	1.8	1.4 2.2	2.3	2.1
				13.0	-		19.7 19.7		8.2 8.2		29.0 28.9		87.5 90.3		6.8 7.0			1.8 1.7		1.0	2.4		2.1
C lan 40	0	Madagata	45.50		Bottom	12.6	19.7	19.7	8.2	8.2	29.0	29.0	89.2 89.7	89.8	6.9	6.9	6.9	1.8	1.8		2.3	2.5	
6-Jan-16	Sunny	Moderate	15:58		Surface	1.0	20.3	20.3	8.2	8.2	26.3	26.2	89.3	89.5	7.0 6.9	6.9	6.8	2.3	2.3		3.6	3.7	
				12.8	Middle	6.4	19.9 19.9	19.9	8.1 8.1	8.1	29.3 29.3	29.3	88.4 85.4	86.9	6.8 6.6	6.7		2.5 2.5	2.5	2.5	3.8 2.7	3.3	3.4
					Bottom	11.8	19.9 20.0	19.9	8.1 8.1	8.1	29.4 29.2	29.3	86.2 89.6	87.9	6.6 6.9	6.7	6.7	2.5 2.6	2.6		3.5 3.1	3.3	
8-Jan-16	Sunny	Moderate	17:16		Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	28.6 28.6	28.6	95.1 96.4	95.8	7.3 7.4	7.3		1.8 1.6	1.7		2.7 2.2	2.5	
				12.5	Middle	6.3	20.1	20.1	8.2 8.2	8.2	29.0 28.8	28.9	94.1 94.3	94.2	7.2 7.2	7.2	7.3	1.9	1.9	1.8	3.1 2.5	2.8	2.5
					Bottom	11.5	20.1	20.1	8.2	8.2	29.2 29.2	29.2	93.6	94.2	7.2	7.2	7.2	1.7	1.7		2.1	2.2	
11-Jan-16	Rainy	Moderate	08:16		Surface	1.0	20.1 19.7	19.7	8.2 8.2	8.2	26.9	26.9	94.7 94.1	93.8	7.3	7.3		4.1	4.1		5.3	4.4	
				12.7	Middle	6.4	19.7 19.8	19.8	8.2 8.2	8.2	26.9 27.3	27.2	93.5 92.5	92.7	7.3 7.2	7.2	7.3	4.1	4.2	4.2	3.4 4.5	5.2	5.8
				.2		11.7	19.8 19.8	19.8	8.2 8.2	8.2	27.2 27.2	27.2	92.9 91.6	92.0	7.2 7.1		7.2	4.1 4.2	4.3		5.9 7.9	7.7	0.0
13-Jan-16	Sunny	Moderate	09:20		Bottom		19.8 19.5		8.2 8.2		27.2 27.9		92.3 92.2		7.2 7.2	7.2	1.2	4.3 3.0			7.5 5.9		
	Jan,				Surface	1.0	19.5 19.6	19.5	8.2 8.2	8.2	27.8	27.8	94.7	93.5	7.4 7.2	7.3	7.3	2.8	2.9		7.4 5.6	6.7	
				12.9	Middle	6.5	19.6	19.6	8.2	8.2	28.2	28.3	94.4	93.4	7.3	7.2		5.3	5.1	4.5	6.8	6.2	6.7
					Bottom	11.9	19.6 19.6	19.6	8.2 8.2	8.2	28.3 28.2	28.2	92.1 95.7	93.9	7.1 7.4	7.3	7.3	5.3 5.5	5.4		6.9 7.7	7.3	
15-Jan-16	Rainy	Moderate	10:51		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	27.7 27.4	27.6	96.2 96.7	96.5	7.5 7.6	7.5	7.5	8.2 8.4	8.3		3.4 2.6	3.0	
				12.7	Middle	6.4	19.4 19.4	19.4	8.2 8.2	8.2	27.8 27.9	27.8	96.4 95.9	96.2	7.5 7.5	7.5	7.0	8.5 8.2	8.4	8.4	3.6 3.0	3.3	3.1
					Bottom	11.7	19.3 19.3	19.3	8.2 8.2	8.2	27.8 27.8	27.8	95.7 95.3	95.5	7.5 7.5	7.5	7.5	8.3 8.5	8.4		2.8 3.0	2.9	
18-Jan-16	Sunny	Moderate	13:57		Surface	1.0	18.6 18.7	18.6	8.3 8.3	8.3	26.6 26.5	26.5	94.3 93.4	93.9	7.5 7.5	7.5		1.3	1.3		2.7	3.2	
				12.6	Middle	6.3	18.9	19.0	8.2	8.2	28.9	28.9	93.4	93.3	7.3	7.3	7.4	1.4	1.4	1.4	3.0	2.6	2.9
					Bottom	11.6	19.0 19.0	19.1	8.2 8.2	8.2	28.8 29.5	29.4	93.1 92.6	92.3	7.2 7.2	7.2	7.2	1.3 1.6	1.6		3.3	2.8	
20-Jan-16	Rainy	Moderate	15:52		Surface	1.0	19.1 18.8	18.8	8.2 8.2	8.2	29.3 29.4	29.5	92.0 95.2	94.2	7.2 7.4	7.4		1.6	1.7		2.2	2.8	
	•			40.0			18.8 18.8		8.2 8.2		29.5 29.6		93.1 92.0	-	7.3 7.2		7.4	1.7 1.9		4.0	3.3 3.1		2.0
				13.8	Middle	6.9	18.8	18.8	8.2 8.2	8.2	29.5 29.5	29.6	94.9	93.5	7.4 7.6	7.3		2.0	2.0	1.9	2.4 5.1	2.8	3.3
					Bottom	12.8	18.8	18.8	8.2	8.2	29.6	29.5	92.5	94.7	7.2	7.4	7.4	1.9	2.0		3.4	4.3	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplin	ıg	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	17:30		Surface	1.0	18.3 18.3	18.3	8.3 8.3	8.3	28.4 28.4	28.4	91.5 91.8	91.7	7.3 7.3	7.3	7.3	1.1 1.2	1.2		4.8 4.0	4.4	
				13.4	Middle	6.7	18.3 18.3	18.3	8.3 8.2	8.3	28.4 28.4	28.4	91.1 91.3	91.2	7.2 7.2	7.2	7.3	1.2 1.2	1.2	1.3	4.5 4.6	4.6	4.5
					Bottom 1	12.4	18.3 18.3	18.3	8.3 8.2	8.3	28.5 28.5	28.5	90.6 90.4	90.5	7.2 7.2	7.2	7.2	1.4 1.3	1.4		4.8 4.1	4.5	
25-Jan-16	Sunny	Moderate	08:18		Surface	1.0	16.6 16.6	16.6	8.3 8.3	8.3	29.4 29.3	29.4	90.3 90.7	90.5	7.4 7.4	7.4	7.4	6.4 6.5	6.5		12.2 12.5	12.4	
				12.4	Middle	6.2	16.6 16.6	16.6	8.3 8.3	8.3	29.4 29.3	29.4	89.2 89.4	89.3	7.3 7.3	7.3	7.4	6.6 6.6	6.6	6.5	11.5 13.2	12.4	12.5
					Bottom 1	11.4	16.6 16.6	16.6	8.3 8.3	8.3	29.3 29.4	29.3	89.1 88.8	89.0	7.3 7.2	7.3	7.3	6.5 6.4	6.5		11.7 13.4	12.6	
27-Jan-16	Cloudy	Moderate	08:59		Surface	1.0	16.0 16.0	16.0	8.3 8.2	8.3	28.9 28.8	28.8	90.1 89.3	89.7	7.5 7.4	7.4	7.4	4.5 4.4	4.5		4.3 4.7	4.5	
				12.8	Middle	6.4	15.8 15.8	15.8	8.2 8.3	8.3	29.0 29.0	29.0	89.1 89.0	89.1	7.4 7.4	7.4	7.4	4.5 4.4	4.5	4.5	4.4 5.9	5.2	5.2
					Bottom 1	11.8	15.8 15.9	15.9	8.2 8.3	8.3	29.0 29.0	29.0	88.9 88.7	88.8	7.4 7.4	7.4	7.4	4.6 4.6	4.6		6.3 5.4	5.9	
29-Jan-16	Rainy	Moderate	10:15		Surface	1.0	15.5 15.5	15.5	8.2 8.2	8.2	27.6 27.6	27.6	90.2 91.1	90.7	7.6 7.7	7.6	7.6	6.6 6.7	6.7		3.4 2.1	2.8	
				12.5	Middle	6.3	15.6 15.6	15.6	8.2 8.2	8.2	27.8 27.9	27.8	89.6 90.5	90.1	7.5 7.6	7.6	7.0	8.8 8.5	8.7	8.1	2.9 2.8	2.9	3.1
					Bottom 1	11.5	15.6 15.6	15.6	8.2 8.2	8.2	27.8 27.8	27.8	90.1 89.1	89.6	7.6 7.5	7.5	7.5	8.8 8.9	8.9		3.3 3.9	3.6	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTI	U)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:45		Surface	1.0	19.7	19.7	8.2	8.2	30.0	30.0	87.9	88.8	6.7	6.8		2.1	2.1		2.7	3.2	
				40.4	NA: -I -II -	<i></i>	19.7 19.7	10.7	8.2 8.2	0.0	30.0 30.0	20.0	89.6 90.7	00.0	6.9 7.0	0.0	6.9	2.0	0.4	2.0	3.7 2.2	0.7	2.0
				10.1	Middle	5.1	19.7	19.7	8.2	8.2	30.0	30.0	89.6	90.2	6.9	6.9		2.0	2.1	2.2	3.1	2.7	3.0
					Bottom	9.1	19.7 19.7	19.7	8.2 8.2	8.2	30.0 30.0	30.0	93.0 92.2	92.6	7.1 7.1	7.1	7.1	2.4 2.6	2.5		2.8 3.2	3.0	
4-Jan-16	Sunny	Moderate	06:50		Surface	1.0	16.1	16.1	8.0	8.0	30.9	30.9	95.8	95.9	7.8	7.8		1.4	1.5		2.5	2.3	
					Odnace		16.1		8.0		30.9		95.9		7.8		7.8	1.5			2.1		
				10.2	Middle	5.1	16.2 16.2	16.2	8.0 8.0	8.0	32.5 32.3	32.4	95.7 95.7	95.7	7.7 7.7	7.7		1.5 1.5	1.5	1.5	2.3 2.4	2.4	3.0
					Bottom	9.2	16.2	16.2	8.0	8.0	33.2	33.2	95.4	94.7	7.7	7.6	7.6	1.5	1.5		4.1	4.4	1 !
6-Jan-16	Sunny	Moderate	08:57				16.2 16.5		8.0 8.0	<u> </u>	33.2 31.4	 	93.9 95.1		7.6			1.5 1.6			4.7 2.2	+	
0 0011 10	Curry	Woderate	00.01		Surface	1.0	16.5	16.5	8.0	8.0	31.4	31.4	96.8	96.0	7.7	7.7	7.7	1.5	1.6		2.2	2.2	<u> </u>
				10.2	Middle	5.1	16.4 16.4	16.4	8.0 8.0	8.0	32.9 31.7	32.3	94.3 93.8	94.1	7.6 7.6	7.6		1.7 1.7	1.7	1.8	2.8 2.2	2.5	2.5
					Dattam	9.2	16.4	40.4	8.0	8.0	33.3	22.2	94.2	94.0	7.6	7.5	7.5	1.9	2.0		2.8	2.7	1 !
					Bottom	9.2	16.4	16.4	8.0	8.0	33.0	33.2	93.7	94.0	7.5	7.5	7.5	2.1	2.0		2.6	2.1	
8-Jan-16	Sunny	Moderate	11:02		Surface	1.0	16.5 16.5	16.5	8.1 8.1	8.1	33.1 33.1	33.1	98.9 99.1	99.0	7.9 7.9	7.9		1.9 1.8	1.9		1.8 1.6	1.7	1 !
				10.3	Middle	5.2	16.5	16.5	8.1	8.1	33.3	33.3	98.6	98.7	7.9	7.9	7.9	2.0	2.1	1.9	2.2	2.4	2.1
				10.0	madio		16.5 16.5		8.1 8.1		33.3 33.3		98.8 98.7		7.9 7.9			2.1 1.8		1.0	2.6 2.5	+	
					Bottom	9.3	16.5	16.5	8.1	8.1	33.3	33.3	98.9	98.8	7.9	7.9	7.9	1.7	1.8		2.1	2.3	
11-Jan-16	Sunny	Moderate	14:29		Surface	1.0	16.4	16.4	8.2	8.2	26.7	27.3	99.8	99.6	8.3	8.3		1.2	1.2		2.6	3.4	
				40.4	N.C. 1.11.		16.4 16.3	40.0	8.2 8.2	0.0	28.0 28.9	07.0	99.4 99.2	00.4	8.2 8.2	0.0	8.3	1.1	4.4		4.1	4.7	
				10.4	Middle	5.2	16.3	16.3	8.2	8.2	27.0	27.9	99.5	99.4	8.3	8.2		1.4	1.4	1.4	4.8	4.7	3.8
					Bottom	9.4	16.3 16.3	16.3	8.2 8.2	8.2	27.4 31.3	29.3	99.6 99.4	99.5	8.3 8.1	8.2	8.2	1.5 1.5	1.5		3.8	3.4	1 !
13-Jan-16	Sunny	Moderate	16:22		Surface	1.0	16.3	16.3	8.2	8.2	25.5	26.2	103.3	104.2	8.7	8.7		1.4	1.5		7.7	7.0	
					Suriace	1.0	16.3	10.5	8.2	0.2	26.9	20.2	105.0	104.2	8.8	0.7	8.6	1.6	1.5		6.3	7.0	
				10.5	Middle	5.3	16.2 16.2	16.2	8.2 8.2	8.2	26.1 29.4	27.8	101.4 103.4	102.4	8.5 8.5	8.5		1.5 1.6	1.6	1.5	5.1 5.0	5.1	6.1
					Bottom	9.5	16.2	16.2	8.2	8.2	31.5	28.9	104.0	102.3	8.5	8.4	8.4	1.5	1.5		6.0	6.3	1 !
15-Jan-16	Rainy	Moderate	17:51				16.1 15.6		8.2 8.1		26.3 25.8		100.5 100.1		8.4 8.5			1.5 1.1			6.6 1.2		
13-3411-10	Kairiy	Moderate	17.51		Surface	1.0	15.7	15.7	8.1	8.1	25.4	25.6	103.2	101.7	8.6	8.6	8.6	1.1	1.1		1.3	1.3	1 !
				10.2	Middle	5.1	15.8	15.8	8.1	8.1	27.2	26.5	100.5	100.2	8.5	8.5	0.0	1.2	1.2	1.2	2.3	2.3	2.1
					D. II.	0.0	15.8 15.8	45.0	8.1 8.1	0.4	25.9 28.7	07.4	99.8 100.2	20.7	8.5 8.4	0.4	0.4	1.2 1.3	4.0		2.2		1
					Bottom	9.2	15.8	15.8	8.1	8.1	26.1	27.4	99.2	99.7	8.4	8.4	8.4	1.2	1.3		2.4	2.6	
18-Jan-16	Sunny	Moderate	06:13		Surface	1.0	15.1 15.1	15.1	8.0 7.9	8.0	32.4 32.4	32.4	96.7 98.7	97.7	8.0 8.2	8.1		1.7 1.8	1.8		3.9 4.4	4.2	1 !
				10.2	Middle	5.1	15.3	15.3	7.9	7.9	33.0	33.1	99.0	98.8	8.1	8.1	8.1	1.8	1.8	1.8	3.9	4.0	3.9
				10.2	ivildale	5.1	15.3	15.5	7.9	7.9	33.1	33.1	98.5	90.0	8.1	0.1		1.8	1.0	1.0	4.1	4.0	3.9
					Bottom	9.2	15.2 15.3	15.3	7.9 7.9	7.9	33.1 33.2	33.1	99.0 98.6	98.8	8.1 8.1	8.1	8.1	1.7 1.6	1.7		3.1 4.1	3.6	i I
20-Jan-16	Rainy	Moderate	08:45		Surface	1.0	15.2	15.2	8.1	8.1	34.1	34.1	98.5	98.5	8.0	8.0		1.5	1.6		2.8	3.0	
							15.1 15.2		8.1 8.1		34.0 34.1		98.5 96.4		8.0 7.9		8.0	1.6 1.6			3.1 4.9	-	i
				10.3	Middle	5.2	15.2	15.2	8.1	8.1	34.1	34.2	96.4	96.7	7.9	7.9		1.6	1.6	1.6	4.9	4.9	3.9
					Bottom	9.3	15.2	15.2	8.1	8.1	34.2	34.2	96.5	96.4	7.9	7.9	7.9	1.7	1.7		4.1	3.9	i I
<u> </u>			<u> </u>		<u> </u>		15.2	1	8.1	l	34.2	1	96.3	l	7.9	l		1.6	l		3.6		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling) Т	emperature ((°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) V	'alue Ave	erage	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:11		Surface 1		14.9 14.9	14.9	8.1 8.1	8.1	34.2 34.2	34.2	95.3 95.1	95.2	7.8 7.8	7.8	7.8	1.3 1.4	1.4		2.8 3.2	3.0	
				10.3	Middle 5	〜 フー	14.9 14.9	14.9	8.1 8.1	8.1	34.2 34.2	34.2	94.9 95.0	95.0	7.8 7.8	7.8	7.0	1.4 1.5	1.5	1.5	4.0 3.7	3.9	3.6
					Bottom 9	43 I	14.9 14.9	14.9	8.1 8.1	8.1	34.2 34.2	34.2	95.0 94.7	94.9	7.8 7.8	7.8	7.8	1.5 1.4	1.5		3.8 4.2	4.0	
25-Jan-16	Sunny	Moderate	14:39		Surface 1		12.5 12.5	12.5	8.4 8.4	8.4	27.6 27.6	27.6	97.8 97.5	97.7	8.8 8.8	8.8	8.8	2.6 2.6	2.6		5.9 6.1	6.0	
				10.1	Middle 5		12.5 12.4	12.4	8.3 8.4	8.4	27.6 27.6	27.6	97.3 97.3	97.3	8.7 8.7	8.7	0.0	2.8 2.7	2.8	2.8	6.9 6.8	6.9	6.5
					Bottom 9	41 I	12.4 12.4	12.4	8.3 8.4	8.3	27.6 27.6	27.6	97.3 97.4	97.4	8.7 8.7	8.7	8.7	2.9 2.9	2.9		6.5 6.5	6.5	
27-Jan-16	Cloudy	Moderate	15:49		Surface 1	1.0	12.8 12.8	12.8	8.4 8.3	8.3	28.6 29.9	29.3	94.6 95.8	95.2	8.4 8.4	8.4	8.4	1.3 1.3	1.3		4.8 5.2	5.0	
				10.2	Middle 5		12.8 12.8	12.8	8.3 8.3	8.3	31.5 29.0	30.3	97.1 94.3	95.7	8.5 8.3	8.4	0.4	1.6 1.5	1.6	1.5	4.7 4.7	4.7	4.9
					Bottom 9	a ツ	12.8 12.8	12.8	8.3 8.3	8.3	32.5 29.2	30.9	98.7 94.9	96.8	8.5 8.4	8.5	8.5	1.5 1.6	1.6		4.3 5.8	5.1	
29-Jan-16	Cloudy	Moderate	16:59		Surface 1	1()	12.6 12.6	12.6	8.3 8.3	8.3	30.5 29.0	29.7	97.1 93.7	95.4	8.5 8.3	8.4	8.4	1.9 2.1	2.0		4.0 3.1	3.6	
				10.1	Middle 5	0.1	12.5	12.5	8.3 8.3	8.3	32.4 29.2	30.8	97.7 94.2	96.0	8.5 8.4	8.4	0.4	2.1 2.3	2.2	2.1	3.7 2.9	3.3	3.5
					Bottom 9	4 1 I	12.5 12.5	12.5	8.3 8.3	8.3	34.3 29.5	31.9	98.6 95.9	97.3	8.5 8.5	8.5	8.5	2.0 2.2	2.1		4.2 3.0	3.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:11		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	27.8 27.6	27.7	90.3 93.0	91.7	7.0 7.2	7.1		1.5 1.7	1.6		2.6 3.9	3.3	
				10.2	Middle	5.1	19.5 19.5	19.5	8.1 8.1	8.1	28.2 28.3	28.3	91.0 88.7	89.9	7.1 6.9	7.0	7.1	1.5 1.5	1.5	1.6	3.5 2.6	3.1	3.1
					Bottom	9.2	19.5 19.5	19.5	8.1 8.1	8.1	28.3 28.3	28.3	89.5 88.0	88.8	7.0 6.8	6.9	6.9	1.6	1.6		2.6	2.9	
4-Jan-16	Sunny	Moderate	15:21		Surface	1.0	16.3	16.3	8.1	8.1	27.4	28.2	96.6	97.2	8.0	7.9		1.5	1.5		2.6	2.3	
				10.6			16.3 16.2	16.2	8.1 8.1	8.1	29.0 31.5	30.4	97.8 97.5		7.9 7.8		7.9	1.5 1.5		1.5	2.0		2.5
				10.6	Middle	5.3	16.2 16.2		8.1 8.1		29.3 30.1		96.3 95.3	96.9	7.9 7.8	7.8		1.5 1.5	1.5	1.5	2.9	2.9	2.5
C lan 40	Comment	Madasata	47.47		Bottom	9.6	16.2	16.2	8.1	8.1	34.1	32.1	95.2 100.4	95.3	7.7	7.8	7.8	1.6	1.6		2.0	2.4	
6-Jan-16	Sunny	Moderate	17:17		Surface	1.0	16.9 16.9	16.9	8.1 8.1	8.1	23.7	23.5	99.0	99.7	8.3	8.4	8.3	1.5	1.5		4.9	4.3	
				10.2	Middle	5.1	16.8 16.6	16.7	8.1 8.1	8.1	25.4 25.4	25.4	98.0 95.8	96.9	8.2 8.0	8.1		1.6 1.7	1.7	1.7	2.3 3.9	3.1	3.6
					Bottom	9.2	16.6 16.4	16.5	8.1 8.1	8.1	28.6 27.2	27.9	97.2 95.8	96.5	8.0 8.0	8.0	8.0	1.8 1.9	1.9		3.8 3.1	3.5	
8-Jan-16	Sunny	Moderate	17:53		Surface	1.0	16.6 16.6	16.6	8.2 8.2	8.2	26.7 27.6	27.2	101.0 101.8	101.4	8.4 8.4	8.4		2.6 2.7	2.7		2.6 2.4	2.5	
				10.3	Middle	5.2	16.5 16.5	16.5	8.1 8.1	8.1	27.2 29.9	28.5	100.9 101.9	101.4	8.4 8.3	8.3	8.4	1.8 1.8	1.8	2.1	2.5 2.8	2.7	2.7
					Bottom	9.3	16.5 16.5	16.5	8.1 8.2	8.2	31.0 27.6	29.3	103.3 102.0	102.7	8.4 8.4	8.4	8.4	1.6 1.7	1.7		2.9	2.8	
11-Jan-16	Rainy	Moderate	07:55		Surface	1.0	16.2	16.2	8.1	8.1	32.5	32.5	100.0	99.9	8.1	8.1		1.6	1.6		4.2	4.0	
				10.5	Middle	5.3	16.2 16.2	16.2	8.1 8.1	8.1	32.5 32.6	32.6	99.8	97.7	7.9	7.9	8.0	1.5	1.7	1.7	3.7 4.4	4.5	4.2
					Bottom	9.5	16.2 16.2	16.2	8.1 8.1	8.1	32.6 32.6	32.6	97.5 97.3	97.4	7.9 7.9	7.9	7.9	1.7 1.9	1.9		4.6	4.0	
13-Jan-16	Sunny	Moderate	09:01		Surface	1.0	16.2 15.9	15.9	8.1 8.1	8.1	32.7 32.2	32.2	97.4 100.6	101.2	7.9 8.2	8.2		1.8	1.6		3.8 4.9	4.4	
				40.0			15.9 16.0		8.1 8.1	_	32.2 32.5		101.8 100.4		8.2 8.1		8.2	1.6 1.7		4.0	3.8 2.3		
				10.6	Middle	5.3	16.0 16.1	16.0	8.1 8.1	8.1	32.5 32.8	32.5	101.1 98.2	100.8	8.2 8.0	8.1		1.7 1.6	1.7	1.6	4.0 7.3	3.2	4.8
15 lon 16	Doiny	Madarata	10:24		Bottom	9.6	16.0 15.7	16.1	8.1 8.1	8.1	32.7 32.4	32.7	99.8	99.0	8.1 8.4	8.0	8.0	1.6	1.6		6.3	6.8	
15-Jan-16	Rainy	Moderate	10:34		Surface	1.0	15.7	15.7	8.1	8.1	32.4	32.4	102.6	102.5	8.4	8.4	8.4	1.2	1.2		2.1	2.1	
				10.3	Middle	5.2	15.7 15.8	15.8	8.1 8.1	8.1	32.4 32.5	32.5	102.2 102.3	102.3	8.3 8.3	8.3		1.3 1.3	1.3	1.3	2.7 2.7	2.7	2.5
					Bottom	9.3	15.8 15.8	15.8	8.1 8.1	8.1	32.5 32.5	32.5	101.9 102.2	102.1	8.3 8.3	8.3	8.3	1.4 1.5	1.5		2.8 2.3	2.6	
18-Jan-16	Sunny	Moderate	14:46		Surface	1.0	15.5 15.5	15.5	8.2 8.2	8.2	28.5 26.7	27.6	100.5 100.1	100.3	8.4 8.5	8.5	8.6	2.2 2.0	2.1		4.0 2.7	3.4	
				10.3	Middle	5.2	15.5 15.5	15.5	8.2 8.2	8.2	27.1 29.7	28.4	100.5 103.6	102.1	8.5 8.6	8.6	0.0	2.2	2.3	2.3	2.5 3.2	2.9	3.2
					Bottom	9.3	15.5 15.5	15.5	8.2 8.2	8.2	27.5 30.7	29.1	100.7 105.6	103.2	8.5 8.7	8.6	8.6	2.4	2.4		2.8	3.2	
20-Jan-16	Rainy	Moderate	17:05		Surface	1.0	15.1 15.1	15.1	8.2 8.2	8.2	28.1 29.8	29.0	105.0 103.4	104.2	8.6 8.6	8.6		1.1	1.2		3.6 3.1	3.4	
				10.4	Middle	5.2	15.2	15.2	8.2	8.2	28.6	29.8	102.7	102.1	8.6	8.6	8.6	1.2	1.2	1.2	3.3	3.8	4.1
					Bottom	9.4	15.1 15.1	15.2	8.2 8.2	8.2	31.1 33.0	31.0	101.5 100.3	100.8	8.6 8.5	8.5	8.5	1.2	1.3		4.3	5.0	
					Dottom	JT	15.2	10.2	8.2	0.2	29.0	01.0	101.3	100.0	8.6	0.0	0.0	1.3	1.0		6.0	0.0	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tem	perature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) Valu	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	18:06		Surface 1	1.0 14.8 14.8	1 14 8	8.1 8.1	8.1	28.2 27.1	27.7	102.5 96.6	99.6	8.6 8.3	8.4	8.4	1.4 1.3	1.4		4.8 4.3	4.6	
				10.4	Middle 5	5.2 14.9	149	8.1 8.1	8.1	29.6 27.5	28.6	97.5 96.7	97.1	8.3 8.3	8.3	0.4	1.4 1.4	1.4	1.4	3.7 4.0	3.9	4.2
					Bottom 9	9.4 14.9	1 14 9	8.1 8.1	8.1	31.2 27.8	29.5	97.0 94.9	96.0	8.2 8.1	8.2	8.2	1.5 1.4	1.5		4.3 4.0	4.2	
25-Jan-16	Sunny	Moderate	07:49		Surface 1	1.0 13.3 13.3		8.3 8.3	8.3	34.8 34.8	34.8	96.9 97.1	97.0	8.2 8.2	8.2	8.2	6.4 6.3	6.4		9.3 9.7	9.5	
				10.3	Middle 5	5.2 13.3 13.3		8.2 8.3	8.3	34.8 34.8	34.8	95.8 97.0	96.4	8.1 8.2	8.1	0.2	6.5 6.6	6.6	6.5	9.3 9.5	9.4	9.6
					Bottom 9	9.3 13.3 13.3	1 13.3	8.2 8.3	8.2	34.8 34.8	34.8	94.8 95.3	95.1	8.0 8.1	8.0	8.0	6.6 6.6	6.6		9.8 9.7	9.8	
27-Jan-16	Cloudy	Moderate	08:28		Surface 1	1.0	1 11.5	8.3 8.3	8.3	34.7 34.6	34.6	98.0 98.1	98.1	8.6 8.6	8.6	8.6	2.0 2.3	2.2		3.1 3.1	3.1	
				10.3	Middle 5	5.2 11.5 11.5		8.3 8.3	8.3	34.7 34.7	34.7	97.8 97.8	97.8	8.6 8.6	8.6	0.0	2.1 2.3	2.2	2.1	5.0 2.8	3.9	3.9
					Bottom 9	9.3	1 11.5	8.3 8.3	8.3	34.7 34.7	34.7	98.0 97.6	97.8	8.6 8.6	8.6	8.6	1.9 2.0	2.0		5.4 4.0	4.7	
29-Jan-16	Rainy	Moderate	09:35		Surface 1	1.0	1 119	8.2 8.2	8.2	33.3 33.4	33.4	95.6 96.8	96.2	8.4 8.5	8.4	8.5	2.1 2.0	2.1		2.9 2.3	2.6	
				10.3	Middle 5	5.2 12.0 12.0	12.0	8.1 8.2	8.2	33.7 33.7	33.7	97.3 97.5	97.4	8.5 8.5	8.5	0.0	2.2 2.3	2.3	2.2	3.5 3.0	3.3	3.0
					Bottom 9	9.3 12.0	12.0	8.1 8.2	8.1	33.8 33.7	33.7	97.2 96.9	97.1	8.5 8.5	8.5	8.5	2.2 2.2	2.2		3.6 2.6	3.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Temper	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:58		Surface	1.0	19.7 19.7	19.7	8.2 8.2	8.2	30.0 30.0	30.0	87.7 87.1	87.4	6.7 6.7	6.7		2.0 1.9	2.0		2.8 2.3	2.6	
				33.9	Middle	17.0	19.7 19.7	19.7	8.2 8.2	8.2	30.0 30.0	30.0	87.1 86.4	86.8	6.7 6.6	6.6	6.7	1.8	1.8	1.8	2.1 3.1	2.6	3.0
					Bottom	32.9	19.7 19.7	19.7	8.2 8.2	8.2	30.0 30.0	30.0	87.6 87.4	87.5	6.7 6.7	6.7	6.7	1.6	1.7		3.0	3.7	
4-Jan-16	Sunny	Moderate	06:42		Surface	1.0	16.1	16.1	8.0	8.0	30.8	30.7	95.3	95.4	7.7	7.7		1.1	1.2		2.7	2.6	
				33.7	Middle	16.9	16.1 16.2	16.2	7.9 7.9	7.9	30.7 33.2	33.0	95.4 94.4	94.5	7.8 7.6	7.6	7.7	1.2	1.1	1.2	2.5 2.9	2.9	2.7
				33.7			16.2 16.2		7.9 7.8	7.9	32.8 33.1		94.6 93.3		7.6 7.5		7.0	1.1 1.1		1.2	2.8	2.7	2.7
6-Jan-16	Sunny	Moderate	08:45		Bottom	32.7	16.2 16.5	16.2	7.9 8.0	1	33.1 31.2	33.1	93.3 93.6	93.3	7.6 7.6	7.6	7.6	1.2	1.2		2.8 2.6		
0-5an-10	Odility	Woderate	00.43		Surface	1.0	16.5 16.4	16.5	8.0 8.0	8.0	31.4 32.8	31.3	93.6 92.5	93.6	7.6	7.6	7.6	1.3	1.3		2.9	2.8	
				34.3	Middle	17.2	16.4	16.4	8.0	8.0	32.9	32.9	94.1	93.3	7.4 7.5	7.5		1.4	1.4	1.4	3.4	3.4	3.0
					Bottom	33.3	16.3 16.3	16.3	8.0 8.0	8.0	33.5 33.6	33.6	92.4 92.4	92.4	7.4 7.4	7.4	7.4	1.5 1.6	1.6		2.8 2.7	2.8	
8-Jan-16	Sunny	Moderate	10:51		Surface	1.0	16.5 16.5	16.5	8.1 8.1	8.1	33.0 33.0	33.0	99.3 99.1	99.2	7.9 7.9	7.9	7.9	1.9 1.8	1.9		1.5 1.4	1.5	
				35.0	Middle	17.5	16.4 16.4	16.4	8.1 8.1	8.1	33.4 33.4	33.4	97.5 98.3	97.9	7.8 7.9	7.8	7.5	2.0 2.0	2.0	1.9	1.9 1.3	1.6	2.0
					Bottom	34.0	16.4 16.4	16.4	8.1 8.1	8.1	33.4 33.4	33.4	97.4 98.6	98.0	7.8 7.9	7.8	7.8	1.8	1.8		3.3	2.9	
11-Jan-16	Sunny	Moderate	14:40		Surface	1.0	16.4 16.4	16.4	8.2 8.2	8.2	26.0 25.9	26.0	97.9 97.9	97.9	8.2 8.2	8.2		1.1	1.2		3.5	3.7	
				34.6	Middle	17.3	16.3	16.3	8.2	8.2	26.0	26.0	97.0	97.1	8.1	8.1	8.2	1.4	1.4	1.4	3.7	3.1	3.4
					Bottom	33.6	16.3 16.3	16.3	8.2 8.2	8.2	26.0 26.1	26.1	97.1 96.7	96.8	8.1 8.1	8.1	8.1	1.3 1.4	1.5		2.5 3.4	3.4	
13-Jan-16	Sunny	Moderate	16:32		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	26.1 24.7	24.7	96.8 102.5	102.8	8.1 8.7	8.7		1.5	1.3		3.4 5.9	5.9	
				34.4	Middle	17.2	16.3 16.1	16.1	8.2 8.2	8.2	24.8 25.4	25.5	103.1 100.0	100.2	8.7 8.4	8.5	8.6	1.2 1.5	1.5	1.4	5.8 5.2	4.8	5.0
				34.4			16.1 16.1		8.2 8.2		25.6 25.4		100.4 99.7		8.5 8.4			1.5 1.4	-	1.4	4.4 4.3		3.0
15-Jan-16	Rainy	Moderate	18:06		Bottom	33.4	16.1 15.6	16.1	8.2 8.2	8.2	25.7 24.4	25.6	99.3 101.4	99.5	8.4 8.7	8.4	8.4	1.5 1.2	1.5		4.1 1.8	4.2	
13-3411-10	reality	Woderate	10.00		Surface	1.0	15.7 15.8	15.6	8.1 8.1	8.2	24.6	24.5	101.8	101.6	8.7 8.7	8.7	8.7	1.2	1.2		1.7	1.8	.
				34.6	Middle	17.3	15.8	15.8	8.1	8.1	24.9	24.9	102.2	102.1	8.7	8.7		1.2	1.3	1.3	1.6	1.6	1.8
					Bottom	33.6	15.8 15.8	15.8	8.1 8.1	8.1	25.3 25.2	25.2	99.3 102.2	100.8	8.5 8.7	8.6	8.6	1.2 1.3	1.3		1.8 2.0	1.9	
18-Jan-16	Sunny	Moderate	06:00		Surface	1.0	15.1 15.1	15.1	8.0 8.0	8.0	32.3 32.1	32.2	98.9 99.1	99.0	8.2 8.2	8.2	8.2	2.0 1.9	2.0		3.2 2.3	2.8	
				35.2	Middle	17.6	15.3 15.3	15.3	8.0 8.0	8.0	32.6 33.2	32.9	98.1 99.0	98.6	8.1 8.1	8.1	0.2	1.8 1.6	1.7	1.8	2.5 3.1	2.8	3.2
					Bottom	34.2	15.3 15.4	15.3	7.9 7.9	7.9	32.3 33.2	32.8	103.2 99.3	101.3	8.5 8.1	8.3	8.3	1.8	1.7		3.5 4.4	4.0	
20-Jan-16	Rainy	Moderate	08:31		Surface	1.0	15.1 15.1	15.1	8.1 8.1	8.1	34.0 34.0	34.0	102.1 100.6	101.4	8.3 8.2	8.3		1.2 1.1	1.2		3.6 3.7	3.7	
				34.6	Middle	17.3	15.2	15.2	8.1	8.1	34.1	34.1	100.2	99.9	8.2	8.2	8.3	1.3	1.3	1.4	3.4	4.0	4.0
					Bottom	33.6	15.2 15.2	15.2	8.1 8.1	8.1	34.1 34.2	34.2	99.6 97.7	97.9	8.1	8.0	8.0	1.3	1.6		4.6 5.2	4.4	
					201.0.11	50.0	15.2		8.1	J	34.2	0 <u>.</u>	98.0	00	8.0	0.0	0.0	1.6			3.6		<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:02		Surface 1.0	14.9	14.9	8.1 8.1	8.1	34.1 34.1	34.1	95.5 94.7	95.1	7.8 7.8	7.8	7.8	1.9 1.8	1.9		4.5 3.1	3.8	
				33.8	Middle 16.	9 14.9 14.9	14.9	8.1 8.1	8.1	34.2 34.2	34.2	95.0 94.6	94.8	7.8 7.8	7.8	7.0	1.8 1.9	1.9	1.9	3.5 3.8	3.7	3.8
					Bottom 32.	8 14.9 14.9	14.9	8.1 8.1	8.1	34.2 34.2	34.2	94.6 93.1	93.9	7.8 7.6	7.7	7.7	1.9 1.9	1.9		4.0 3.6	3.8	
25-Jan-16	Sunny	Moderate	14:54		Surface 1.0	12.4 12.5	12.5	8.4 8.4	8.4	27.3 27.3	27.3	97.7 97.5	97.6	8.8 8.8	8.8	8.8	2.8 2.8	2.8		8.6 8.5	8.6	
				34.7	Middle 17.	4 12.3 12.4	12.4	8.4 8.4	8.4	27.3 27.2	27.3	97.6 97.2	97.4	8.8 8.8	8.8	0.0	2.8 2.9	2.9	2.9	8.9 9.2	9.1	8.7
					Bottom 33.	7 12.4 12.4	12.4	8.3 8.4	8.3	27.2 27.3	27.2	97.4 97.2	97.3	8.8 8.8	8.8	8.8	3.0 2.9	3.0		9.1 7.8	8.5	
27-Jan-16	Cloudy	Moderate	16:03		Surface 1.0	12.8 12.8	12.8	8.4 8.4	8.4	27.9 28.0	27.9	96.6 94.3	95.5	8.6 8.4	8.5	8.5	1.5 1.5	1.5		4.0 5.5	4.8	
				35.1	Middle 17.	6 12.8 12.8	12.8	8.3 8.4	8.4	28.0 28.0	28.0	95.7 96.2	96.0	8.5 8.6	8.5	0.5	1.8 1.8	1.8	1.8	5.2 5.2	5.2	5.2
					Bottom 34.	1 12.8 12.8	12.8	8.3 8.4	8.4	28.0 28.0	28.0	95.7 96.1	95.9	8.5 8.5	8.5	8.5	2.0 2.0	2.0		5.5 5.4	5.5	
29-Jan-16	Cloudy	Moderate	17:13		Surface 1.0	12.7 12.6	12.6	8.4 8.4	8.4	28.1 28.0	28.0	93.5 93.2	93.4	8.3 8.3	8.3	8.4	1.9 2.0	2.0		3.6 3.4	3.5	
				35.1	Middle 17.	12.5	12.5	8.4 8.3	8.4	28.0 28.1	28.1	95.0 94.8	94.9	8.5 8.5	8.5	0.4	2.8 2.8	2.8	2.4	3.5 5.4	4.5	4.0
					Bottom 34.	1 12.5 12.5	12.5	8.3 8.4	8.3	28.1 28.0	28.1	94.9 94.8	94.9	8.5 8.5	8.5	8.5	2.5 2.5	2.5		4.0 4.0	4.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli			ature (°C)	ŗ	Н	Salinity (ppt)		DO Saturation (%)				(mg/L)	Ti	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	10:59		Surface	1.0	19.6	19.6	8.1	8.1	27.6 27.7	27.6	90.0	89.5	7.0	7.0		1.5	1.6		2.8 3.2	3.0	P
				34.1	Middle	17.1	19.6 19.5	19.5	8.1 8.1	8.1	28.1	28.2	89.0 88.4	88.0	6.9 6.9	6.8	6.9	2.1	2.0	1.9	2.1	3.1	3.0
					Bottom	33.1	19.5 19.5	19.5	8.1 8.1	8.1	28.4 27.9	28.1	87.5 88.7	88.5	6.8	6.9	6.9	1.8 2.0	2.0		3.0	3.0	
4 1 40			45.05		Dottoili	00.1	19.5	10.0	8.1	0.1	28.3	20.1	88.3	00.0	6.9	0.0	0.0	1.9	2.0		3.0	0.0	<u> </u>
4-Jan-16	Sunny	Moderate	15:37		Surface	1.0	16.3 16.3	16.3	8.1 8.1	8.1	26.0 26.6	26.3	95.1 94.0	94.6	8.0 7.9	7.9	7.9	1.5 1.6	1.6		1.4 1.3	1.4	
				34.7	Middle	17.4	16.2 16.2	16.2	8.1 8.1	8.1	28.9 28.6	28.8	93.8 94.6	94.2	7.7 7.8	7.8		1.6 1.6	1.6	1.6	2.4 3.0	2.7	2.4
					Bottom	33.7	16.2 16.2	16.2	8.1 8.1	8.1	29.1 28.7	28.9	92.6 92.8	92.7	7.6 7.7	7.7	7.7	1.5 1.6	1.6		3.9 2.2	3.1	
6-Jan-16	Sunny	Moderate	17:30		Surface	1.0	16.9 16.9	16.9	8.1 8.1	8.1	23.1 23.2	23.1	97.8 98.0	97.9	8.2 8.3	8.2		1.6 1.6	1.6		2.6 3.2	2.9	
				34.4	Middle	17.2	16.6	16.6	8.1	8.1	25.8	25.8	95.0	95.2	7.9	7.9	8.1	1.6	1.7	1.7	2.1	2.3	3.5
					Bottom	33.4	16.6 16.4	16.4	8.1 8.1	8.1	25.7 26.8	26.9	95.3 94.6	94.9	7.9	7.9	7.9	1.7	1.8		4.3	5.2	
8-Jan-16	Sunny	Moderate	18:06				16.4 16.6		8.1 8.2		26.9 25.9		95.2 101.2		7.9 8.4			1.8			6.1 1.2		
	,				Surface	1.0	16.6 16.5	16.6	8.2 8.1	8.2	25.4 26.5	25.7	98.9 99.8	100.1	8.3 8.3	8.3	8.3	1.7	1.7		1.3 1.2	1.3	<u> </u>
				35.3	Middle	17.7	16.5	16.5	8.2	8.2	25.9	26.2	98.5	99.2	8.2	8.3		1.7	1.7	1.7	1.5	1.4	1.7
					Bottom	34.3	16.5 16.5	16.5	8.1 8.2	8.1	26.8 26.0	26.4	100.6 100.5	100.6	8.4 8.4	8.4	8.4	1.5 1.6	1.6		2.1 2.8	2.5	
11-Jan-16	Rainy	Moderate	07:43		Surface	1.0	16.2 16.2	16.2	8.1 8.1	8.1	32.1 32.4	32.3	100.1 100.3	100.2	8.1 8.1	8.1	8.0	1.3 1.4	1.4		4.6 4.5	4.6	
				34.8	Middle	17.4	16.2 16.2	16.2	8.1 8.1	8.1	32.1 32.4	32.2	98.1 97.3	97.7	7.9 7.9	7.9	0.0	1.4 1.5	1.5	1.6	5.0 4.0	4.5	4.5
					Bottom	33.8	16.2 16.2	16.2	8.1 8.1	8.1	31.9 32.4	32.1	98.2 98.8	98.5	8.0 8.0	8.0	8.0	1.7 1.8	1.8		4.2 4.7	4.5	1
13-Jan-16	Sunny	Moderate	08:53		Surface	1.0	16.0	16.0	8.1	8.1	32.3	32.3	102.5	101.4	8.3	8.2		1.5	1.5		5.5	4.6	
				34.0	Middle	17.0	16.0 16.1	16.1	8.1 8.1	8.1	32.3 32.9	32.9	100.3 99.8	99.2	8.1 8.1	8.0	8.1	1.5 1.5	1.5	1.5	3.7	3.6	5.7
				00	Bottom	33.0	16.1 16.1	16.1	8.1 8.1	8.1	32.9 32.9	32.9	98.6 97.4	97.8	8.0 7.9	7.9	7.9	1.5 1.5	1.5		4.1 8.3	8.9	- "
45 1 40	D. J.	Madagata	40.00		DOLLOTTI	33.0	16.1	16.1	8.1	0.1	33.0	32.9	98.2	97.0	8.0	7.9	7.9	1.5	1.5		9.5	0.9	<u> </u>
15-Jan-16	Rainy	Moderate	10:22		Surface	1.0	15.7 15.7	15.7	8.1 8.0	8.0	32.3 32.1	32.2	102.2 102.6	102.4	8.4 8.4	8.4	8.4	1.1 1.1	1.1		1.8 2.0	1.9	<u> </u>
				34.7	Middle	17.4	15.8 15.7	15.8	8.0 8.0	8.0	32.4 32.2	32.3	102.2 102.5	102.4	8.3 8.3	8.3	,	1.2 1.3	1.3	1.2	2.1 2.0	2.1	2.1
					Bottom	33.7	15.8 15.8	15.8	8.0 8.0	8.0	32.2 32.4	32.3	100.9 102.1	101.5	8.2 8.3	8.3	8.3	1.3 1.3	1.3		2.1 2.6	2.4	
18-Jan-16	Sunny	Moderate	14:59		Surface	1.0	15.5 15.5	15.5	8.2 8.2	8.2	25.9 25.9	25.9	99.4 99.2	99.3	8.5 8.5	8.5		1.9	1.9		2.8	3.0	
				35.4	Middle	17.7	15.5	15.5	8.2	8.2	26.0	26.0	98.7	98.8	8.4	8.4	8.5	1.8	1.9	2.0	2.8	3.4	2.9
					Bottom	34.4	15.5 15.5	15.5	8.2 8.2	8.2	26.0 25.9	26.0	98.9 98.9	98.9	8.4 8.4	8.4	8.4	2.0	2.3		3.9 2.5	2.4	-
20-Jan-16	Rainy	Moderate	17:19				15.5 15.1		8.2 8.2		26.1 26.8		98.8 100.0		8.4 8.5		0.4	2.3		<u> </u>	2.3		
	,				Surface	1.0	15.2 15.2	15.2	8.2 8.2	8.2	27.0 27.1	26.9	98.4 98.3	99.2	8.4 8.4	8.5	8.5	1.1	1.1		3.9	3.4	
				34.8	Middle	17.4	15.1	15.2	8.2	8.2	26.9	27.0	99.0	98.7	8.5	8.4		1.2	1.2	1.2	3.3	3.3	3.4
					Bottom	33.8	15.1 15.2	15.2	8.2 8.2	8.2	26.9 27.5	27.2	99.4 98.5	99.0	8.5 8.4	8.4	8.4	1.3 1.2	1.3		3.1 3.9	3.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Ter	perature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m)) Val	e Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	18:17		Surface 1	1.0 14 14	14.9	8.1 8.2	8.2	26.4 26.3	26.4	94.6 94.9	94.8	8.1 8.2	8.1	8.1	1.4 1.4	1.4		5.0 5.0	5.0	
				34.4	Middle 1	7.2 14 14	14.9	8.2 8.1	8.2	26.4 26.6	26.5	94.8 94.1	94.5	8.2 8.1	8.1	0.1	1.5 1.5	1.5	1.5	3.9 4.7	4.3	4.2
					Bottom 3	3.4 14 14	14.9	8.1 8.2	8.1	26.7 26.4	26.6	93.3 93.5	93.4	8.0 8.0	8.0	8.0	1.5 1.5	1.5		3.6 3.1	3.4	
25-Jan-16	Sunny	Moderate	07:39		Surface 1	1.0 13 13		8.2 8.2	8.2	34.8 34.8	34.8	98.8 97.4	98.1	8.3 8.2	8.3	8.2	5.1 5.1	5.1		10.3 10.3	10.3	
				34.8	Middle 1	7.4 13 13		8.2 8.2	8.2	34.8 34.8	34.8	95.8 96.5	96.2	8.1 8.1	8.1	0.2	5.2 5.3	5.3	5.3	11.3 11.8	11.6	11.3
					Bottom 3	3.8 13 13	1.3.3	8.2 8.2	8.2	34.8 34.8	34.8	95.1 95.9	95.5	8.0 8.1	8.1	8.1	5.5 5.4	5.5		12.4 11.6	12.0	
27-Jan-16	Cloudy	Moderate	08:14		Surface 1	1.0 11 11	1 11.5	8.3 8.3	8.3	34.6 34.5	34.6	98.4 98.7	98.6	8.6 8.7	8.6	8.6	2.5 2.4	2.5		4.2 4.4	4.3	
				35.3	Middle 1	7.7 11 11	1 115	8.3 8.2	8.3	34.7 34.6	34.6	98.0 98.9	98.5	8.6 8.7	8.6	0.0	2.1 2.3	2.2	2.3	4.9 3.7	4.3	4.3
					Bottom 3	4.3 11 11	1115	8.3 8.2	8.3	34.6 34.6	34.6	98.3 99.3	98.8	8.6 8.7	8.7	8.7	2.0 2.1	2.1		3.8 5.0	4.4	
29-Jan-16	Rainy	Moderate	09:22		Surface 1	I.0 11	1 119	8.2 8.1	8.2	33.2 32.9	33.1	95.2 95.6	95.4	8.4 8.4	8.4	8.5	1.9 1.8	1.9		4.1 4.4	4.3	
				35.2	Middle 1	7.6 12 12		8.1 8.2	8.1	33.3 33.7	33.5	97.1 97.1	97.1	8.5 8.5	8.5	0.5	1.8 2.0	1.9	1.8	3.9 3.7	3.8	3.8
					Bottom 3	4.2 12 12		8.2 8.1	8.1	33.6 33.1	33.4	97.0 97.4	97.2	8.5 8.5	8.5	8.5	1.8 1.6	1.7		2.9 3.6	3.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	Sampling Depth (m)		ature (°C)	F	Н	Salini	ty (ppt)	DO Saturation (%)		6) Dissolved Oxygen (mg/L			Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:26		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	26.0 26.0	26.0	99.0 99.2	99.1	8.3 8.3	8.3		3.9 3.7	3.8		2.4 3.7	3.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	4.0	-	-	3.3
					Bottom	2.2	16.2 16.2	16.2	8.2 8.2	8.2	25.9 25.9	25.9	99.1 99.0	99.1	8.3 8.3	8.3	8.3	4.1 4.3	4.2		2.9	3.5	
4-Jan-16	Sunny	Moderate	07:57		Surface	1.0	19.6	19.6	8.1	8.2	26.3	26.3	93.9	93.4	7.4	7.3		4.1	4.0		3.1	3.3	
				3.1	Middle		19.6 -	-	8.2	_	26.3	_	92.9	_	7.3		7.3	3.8		4.2	3.4	-	2.9
				0.1	Bottom	2.1	- 19.6	19.6	8.1	8.1	26.4	26.4	92.8	93.2	7.3	7.3	7.3	4.1	4.3	4.2	2.4	2.4	2.0
6-Jan-16	Sunny	Moderate	11:31			1.0	19.6 20.3	20.2	8.1 8.2	8.2	26.5 25.9	26.0	93.5 94.3	94.6	7.3 7.3	7.3	7.5	7.4	7.5		2.3 4.2	3.8	
	,				Surface	1.0	20.1		8.2		26.2		94.8		7.4	7.3	7.3	7.5			3.4		
				3.3	Middle	-	20.3	-	- 8.1	-	26.9	-	94.2	-	7.3	-		7.3	-	7.5	6.4	-	4.8
8-Jan-16	Sunny	Moderate	12:52		Bottom	2.3	20.2	20.3	8.1 8.2	8.1	27.0 26.8	26.9	94.0	94.1	7.3	7.3	7.3	7.5 7.1	7.4		5.1 5.4	5.8	
o dan 10	Culliny	Wioderate	12.02		Surface	1.0	20.2	20.2	8.2	8.2	26.8	26.8	93.1	93.7	7.2	7.3	7.3	6.9	7.0		5.9	5.7	
				3.2	Middle	-	-	-	-	-	-	-	-	-		-		-	-	7.1	-	-	6.3
	-				Bottom	2.2	20.1 20.1	20.1	8.2 8.2	8.2	26.9 26.9	26.9	95.7 93.2	94.5	7.4 7.2	7.3	7.3	7.0 7.2	7.1		6.7 7.1	6.9	
11-Jan-16	Sunny	Moderate	13:05		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.9 27.9	27.9	94.3 94.9	94.6	7.3 7.4	7.4	7.4	2.2 2.2	2.2		3.4 3.8	3.6	
				3.1	Middle	ı	-	-		-		-		-	-	-		-	-	2.3	-	-	3.6
					Bottom	2.1	19.5 19.6	19.5	8.2 8.2	8.2	28.0 28.0	28.0	96.1 94.6	95.4	7.5 7.4	7.4	7.4	2.3 2.3	2.3		3.3 3.6	3.5	
13-Jan-16	Sunny	Moderate	14:17		Surface	1.0	19.3 19.3	19.3	8.3 8.3	8.3	27.0 27.1	27.1	94.9 95.5	95.2	7.5 7.5	7.5		5.5 5.1	5.3		5.8 5.4	5.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	5.3	-	-	5.9
					Bottom	2.3	19.3 19.3	19.3	8.3 8.3	8.3	27.1 27.1	27.1	95.0 95.5	95.3	7.5 7.5	7.5	7.5	5.4 5.1	5.3		6.8 5.4	6.1	
15-Jan-16	Rainy	Moderate	16:21	1	Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	27.1 27.0	27.1	97.0 98.9	98.0	7.7 7.8	7.8		2.8 2.8	2.8		3.7 2.9	3.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	2.9	-	-	3.2
					Bottom	2.3	18.8 18.8	18.8	8.2	8.2	27.1 27.0	27.1	95.8	96.3	7.6 7.7	7.6	7.6	2.9	2.9		3.0	3.1	
18-Jan-16	Sunny	Moderate	08:13		Surface	1.0	18.0	18.0	8.2	8.2	26.3	26.3	96.8 94.6	95.4	7.7	7.7		2.5	2.5		2.4	3.2	
				3.2	Middle	_	18.0	-	8.2	_	26.2	-	96.1	_	7.8	_	7.7	2.5		2.5	3.9	_	3.0
					Bottom	2.2	18.1	18.1	8.2	8.2	26.5	26.6	95.4	97.4	7.7	7.8	7.8	2.5	2.5		2.9	2.8	
20-Jan-16	Rainy	Moderate	11:30		Surface	1.0	18.2 18.3	18.2	8.2 8.2	8.2	26.7 27.5	27.4	99.3 94.0	95.4	8.0 7.5	7.6	7.0	2.5 3.2	3.2		2.7 3.4	3.5	
				2.0		1.0	18.2 -		8.2		27.4		96.7		7.7	7.0	7.6	3.1		2.2	3.5		2.7
				3.2	Middle	-	- 18.1	-	8.2	-	- 27.5	-	99.3	-	8.0	-		3.0	-	3.2	3.6	-	3.7
					Bottom	2.2	18.2	18.2	8.2	8.2	27.4	27.4	95.2	97.3	7.6	7.8	7.8	3.3	3.2		4.0	3.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:53		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	27.9 27.9	27.9	91.3 91.8	91.6	7.3 7.4	7.3	7.3	9.6 9.5	9.6		9.6 9.6	9.6	
				3.5	Middle	-		•	1	-	1 1	i		-	-	-	7.5	-	-	9.7	-	1	9.4
					Bottom	2.5	17.9 18.0	18.0	8.2 8.2	8.2	27.8 27.9	27.9	89.2 90.6	89.9	7.2 7.3	7.2	7.2	9.7 9.7	9.7		9.6 8.8	9.2	
25-Jan-16	Sunny	Moderate	13:15		Surface	1.0	14.7 14.6	14.7	8.3 8.3	8.3	27.8 27.8	27.8	91.7 92.6	92.2	7.9 7.9	7.9	7.9	10.8 10.8	10.8		10.4 10.0	10.2	
				3.2	Middle	-		•		-	1 1	i		-	-	-	7.5	-	-	10.8	-	1	12.1
					Bottom	2.2	14.5 14.4	14.4	8.3 8.4	8.4	27.9 27.8	27.9	91.6 94.3	93.0	7.9 8.1	8.0	8.0	10.7 10.7	10.7		13.5 14.2	13.9	
27-Jan-16	Cloudy	Moderate	13:51		Surface	1.0	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.3	29.3	93.0 92.1	92.6	7.9 7.8	7.9	7.9	6.9 6.9	6.9		8.9 8.3	8.6	
				3.2	Middle	-		-		-	1 1	-		-	-	-	7.5	-	-	6.9	-	-	8.6
					Bottom	2.2	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.3	29.3	91.9 91.7	91.8	7.8 7.8	7.8	7.8	6.9 6.9	6.9		8.5 8.6	8.6	
29-Jan-16	Cloudy	Moderate	15:26		Surface	1.0	15.6 15.5	15.6	8.3 8.2	8.3	27.0 27.2	27.1	93.6 91.0	92.3	7.9 7.7	7.8	7.8	12.2 12.2	12.2		5.6 6.8	6.2	
				3.3	Middle	-		-		-	1 1	1		-	-	-	7.0	-	-	12.3	-	-	6.9
					Bottom	2.3	15.4 15.4	15.4	8.2 8.2	8.2	28.1 27.6	27.9	91.5 91.7	91.6	7.7 7.7	7.7	7.7	12.2 12.5	12.4		7.6 7.6	7.6	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	Sampling Depth (m)		ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:59		Surface	1.0	16.2 16.2	16.2	8.1 8.1	8.1	26.1 26.2	26.2	98.7 98.9	98.8	8.3 8.3	8.3	0.0	4.9 4.9	4.9		5.2 4.9	5.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	5.1	-	-	4.8
					Bottom	2.4	16.0 16.0	16.0	8.1 8.1	8.1	26.2 26.2	26.2	98.4 98.6	98.5	8.3 8.3	8.3	8.3	5.1 5.3	5.2		4.6 4.1	4.4	
4-Jan-16	Sunny	Moderate	13:11		Surface	1.0	19.8	19.8	8.2	8.2	26.7	26.7	94.1	94.1	7.3	7.3		2.9	2.9		3.9	3.6	
				3.2	Middle		19.8	-	8.2	-	26.7	-	94.0	-	7.3	7.0	7.3	2.9	2.0	3.0	3.2	-	3.2
				5.2			- 19.8		8.2		26.7		93.2		7.3	7.0	7.0	3.0		5.0	3.0		3.2
6-Jan-16	Sunny	Moderate	14:48		Bottom	2.2	19.8 20.8	19.8	8.2 8.2	8.2	26.8 26.8	26.7	93.2 95.6	93.2	7.3 7.3	7.3	7.3	2.9 3.4	3.0		2.4 4.6	2.7	
0-Jan-10	Sullily	Moderate	14.40		Surface	1.0	20.7	20.8	8.2	8.2	26.8	26.8	94.8	95.2	7.3	7.3	7.3	3.3	3.4		4.3	4.5	
				3.1	Middle	-	-	-	-	-		-	-	-	-	-		-	-	3.4	-	-	4.4
					Bottom	2.1	20.5 20.6	20.5	8.2 8.2	8.2	27.3 27.2	27.3	96.3 93.7	95.0	7.4 7.2	7.3	7.3	3.5 3.3	3.4		3.9 4.4	4.2	
8-Jan-16	Sunny	Moderate	16:09		Surface	1.0	20.4 20.5	20.5	8.2 8.2	8.2	27.9 27.9	27.9	95.9 96.3	96.1	7.3 7.4	7.4	7.4	5.2 5.1	5.2		5.8 5.9	5.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	5.2	-	-	6.1
					Bottom	2.4	20.3 20.2	20.2	8.2 8.2	8.2	28.1 28.3	28.2	95.3 94.7	95.0	7.3 7.3	7.3	7.3	5.1 5.1	5.1		5.5 6.8	6.2	
11-Jan-16	Rainy	Moderate	09:14		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.6 27.6	27.6	95.5 96.0	95.8	7.5 7.5	7.5		2.7 2.6	2.7		2.7 3.4	3.1	
				3.4	Middle	_	- 19.4	-	- 8.2	_	-	-	96.0	-	- 7.5	-	7.5	-	-	2.8	- 3.4	-	3.2
					Bottom	2.4	19.4	19.4	8.2	8.2	27.6	27.6	95.6	95.7	7.5	7.5	7.5	2.9	2.9		2.6	3.2	
13-Jan-16	Sunny	Moderate	10:49		Surface	1.0	19.5 19.4	19.4	8.2 8.2	8.2	27.6 27.8	27.7	95.7 96.9	97.4	7.5 7.6	7.6	7.0	2.8 4.6	4.8		3.8 4.1	4.3	
				0.4		1.0	19.3	15.4	8.2	-	27.7		97.8	37.4	7.6	7.0	7.6	5.0		4.0	4.5 -	-	5.0
				3.4	Middle		- 19.3		8.2		27.8		98.4		7.7			4.7		4.9	5.6		5.2
45 lee 40	Dein	Madagata	44:40		Bottom	2.4	19.3	19.3	8.2	8.2	27.8	27.8	97.1 96.2	97.8	7.6	7.6	7.6	5.0	4.9		6.6	6.1	
15-Jan-16	Rainy	Moderate	11:49		Surface	1.0	18.8	18.8	8.2 8.2	8.2	27.7	27.7	98.9	97.6	7.6 7.8	7.7	7.7	3.3	3.4		4.0	4.5	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.4	-	-	4.7
					Bottom	2.2	18.8 18.8	18.8	8.2 8.2	8.2	27.7 27.8	27.8	95.5 96.6	96.1	7.5 7.6	7.6	7.6	3.2 3.3	3.3		4.8 4.9	4.9	
18-Jan-16	Sunny	Moderate	12:49		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	25.9 25.9	25.9	94.7 93.9	94.3	7.6 7.6	7.6		1.8 1.8	1.8		2.8 3.1	3.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-		-	7.6	-	-	1.8	-	-	2.8
					Bottom	2.2	18.3 18.3	18.3	8.2 8.2	8.2	26.0 26.2	26.1	95.0 97.5	96.3	7.7	7.8	7.8	1.7	1.8		2.4	2.5	
20-Jan-16	Rainy	Moderate	14:32		Surface	1.0	18.2	18.2	8.2	8.2	28.1	28.1	95.2	94.8	7.6	7.6		5.1	5.2		4.9	5.1	
				3.1	Middle		18.2	_	8.2	_	28.1	_	94.3	_	7.5 -	_	7.6	5.3	_	5.2	5.3	-	5.7
					-	2.1	18.2	18.2	8.2	8.2	28.1	28.1	98.7	96.9	7.9	7.7	7.7	5.1	5.2	U. <u>L</u>	6.2	6.3	J
					Bottom	2.1	18.2	18.2	8.2	8.∠	28.1	28.1	95.1	96.9	7.6	1.1	7.7	5.2	5.2		6.3	0.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:30		Surface	1.0	17.9 17.8	17.8	8.2 8.2	8.2	27.0 26.8	26.9	90.1 90.1	90.1	7.3 7.3	7.3	7.3	6.1 6.2	6.2		10.2 10.6	10.4	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.4	-	-	11.5
					Bottom	2.6	17.9 17.8	17.8	8.2 8.2	8.2	27.1 27.0	27.1	89.3 89.5	89.4	7.2 7.2	7.2	7.2	6.5 6.5	6.5		12.0 13.1	12.6	
25-Jan-16	Sunny	Moderate	09:21		Surface	1.0	14.5 14.5	14.5	8.2 8.2	8.2	28.7 28.7	28.7	98.1 95.1	96.6	8.4 8.1	8.3	8.3	7.8 7.9	7.9		9.6 9.4	9.5	
				3.2	Middle	-	-	•		-		i		-	-	-	0.5	-	-	7.8	-	-	10.7
					Bottom	2.2	14.5 14.5	14.5	8.2 8.2	8.2	28.7 28.7	28.7	102.1 96.7	99.4	8.7 8.3	8.5	8.5	7.5 7.6	7.6		11.9 11.6	11.8	
27-Jan-16	Cloudy	Moderate	10:00		Surface	1.0	14.5 14.5	14.5	8.3 8.2	8.3	28.9 28.9	28.9	90.3 92.7	91.5	7.7 7.9	7.8	7.8	6.5 6.7	6.6		6.2 5.8	6.0	I
				3.3	Middle	-	-	-		-		-		-	-	-	7.0	-	-	6.6	-	-	6.2
					Bottom	2.3	14.5 14.5	14.5	8.3 8.2	8.3	29.0 29.0	29.0	91.7 96.2	94.0	7.8 8.2	8.0	8.0	6.4 6.6	6.5		5.7 6.8	6.3	
29-Jan-16	Rainy	Moderate	11:17		Surface	1.0	15.3 15.3	15.3	8.2 8.2	8.2	28.1 28.1	28.1	91.7 93.4	92.6	7.7 7.9	7.8	7.8	5.7 5.7	5.7		7.4 7.2	7.3	
				3.2	Middle	-	-	-		-	-	-	1 1	-	-	-	1.0	-	-	5.8	-	-	6.4
					Bottom	2.2	15.3 15.3	15.3	8.2 8.2	8.2	28.4 28.1	28.2	91.4 91.9	91.7	7.7 7.8	7.7	7.7	5.8 5.8	5.8		5.2 5.6	5.4]

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)		Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:42		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	26.5 26.5	26.5	98.8 98.5	98.7	8.3 8.2	8.2		3.0 3.0	3.0		3.1 3.2	3.2	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	3.1	-	-	3.9
					Bottom	2.3	16.2 16.2	16.2	8.2 8.2	8.2	26.6 26.6	26.6	98.0 98.1	98.1	8.2 8.2	8.2	8.2	3.0	3.2		4.4	4.6	
4-Jan-16	Sunny	Moderate	07:39		Surface	1.0	19.6	19.6	8.2	8.2	26.2	26.1	91.9	91.4	7.2	7.2		4.9	5.1		2.1	2.1	
				3.5	Middle		19.6	-	8.2	-	26.0		90.8	-	7.1		7.2	5.2	-	6.1	2.1		2.9
				0.0	Bottom	2.5	19.6	19.6	8.1	8.1	26.5	26.7	92.1	92.3	7.2	7.2	7.2	7.0	7.1	0.1	3.6	3.7	2.5
6-Jan-16	Sunny	Moderate	11:18				19.6 20.2		8.1 8.2		26.9 25.9		92.5 91.9		7.2 7.1		1.2	7.2 3.6			3.8 2.6		<u> </u>
o dan 10	Culliny	Woderate	11.10		Surface	1.0	20.1	20.1	8.2	8.2	26.3	26.1	92.8	92.4	7.2	7.2	7.2	3.6	3.6		2.8	2.7	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.7	3.8	-	3.3
	_				Bottom	2.6	20.1	20.1	8.2 8.2	8.2	26.3 26.4	26.3	91.5 93.1	92.3	7.1 7.2	7.2	7.2	3.7 3.6	3.7		3.8	3.8	
8-Jan-16	Sunny	Moderate	12:37		Surface	1.0	20.0 20.2	20.1	8.2 8.2	8.2	26.8 26.4	26.6	96.2 96.3	96.3	7.5 7.5	7.5	7.5	2.8 2.7	2.8		3.1 2.7	2.9	
				3.7	Middle	-	-	-	-	-	-	-		-		-		-	-	2.9	-	-	3.7
					Bottom	2.7	19.9 19.9	19.9	8.2 8.2	8.2	27.2 27.2	27.2	95.5 97.6	96.6	7.4 7.6	7.5	7.5	2.7 3.0	2.9		4.7 4.0	4.4	
11-Jan-16	Sunny	Moderate	13:18		Surface	1.0	20.1 20.2	20.2	8.2 8.2	8.2	28.1 28.2	28.2	95.6 97.3	96.5	7.3 7.5	7.4		2.6 2.6	2.6		4.2 3.9	4.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.6	-	-	3.9
					Bottom	2.8	20.2 20.1	20.2	8.2 8.2	8.2	28.2 28.3	28.3	96.6 95.3	96.0	7.4 7.3	7.4	7.4	2.5 2.6	2.6		4.4 3.0	3.7	1
13-Jan-16	Sunny	Moderate	14:34		Surface	1.0	19.5	19.5	8.2	8.2	26.9	26.9	98.2	97.9	7.7	7.7		3.6	3.6		5.4	5.6	
				3.7	Middle	_	19.5	-	8.2	-	26.9	-	97.6	-	7.6	-	7.7	3.6	-	3.8	5.8	-	6.7
					Bottom	2.7	19.4	19.4	8.2	8.2	27.0	27.0	97.5	97.3	7.6	7.6	7.6	3.8	3.9		8.5	7.8	1
15-Jan-16	Rainy	Moderate	16:33		Surface	1.0	19.4 18.8	18.8	8.2 8.2	8.2	27.0 27.3	27.3	97.1 96.0	95.9	7.6 7.6	7.6		4.0 2.8	2.8		7.0	2.9	
				3.7	Middle	1.0	18.8	-	8.2	-	27.3	-	95.7	-	7.6	7.0	7.6	2.8	-	2.8	2.5	-	3.1
				3.7		0.7	- 18.8		8.2		27.3		95.7		7.6	7.0	7.0	2.7		2.0	3.0		3.1
18-Jan-16	Sunny	Moderate	07:57		Bottom	2.7	18.8 18.2	18.8	8.2 8.2	8.2	27.3 25.6	27.3	95.9 93.2	95.8	7.6 7.5	7.6	7.6	2.8	2.8		3.6 2.1	3.3	
10 0411 10	Odiniy	Woderate	07.07		Surface	1.0	18.3	18.3	8.2	8.2	25.7	25.7	93.9	93.6	7.6	7.6	7.6	2.1	2.1		2.9	2.5	4
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.1	-	-	2.5
					Bottom	2.7	18.3 18.3	18.3	8.2 8.2	8.2	26.4 26.1	26.3	96.3 94.0	95.2	7.7 7.6	7.6	7.6	2.0 2.2	2.1		2.2 2.5	2.4	<u> </u>
20-Jan-16	Rainy	Moderate	11:16		Surface	1.0	18.2 18.2	18.2	8.2 8.2	8.2	27.6 27.5	27.5	94.9 94.8	94.9	7.6 7.6	7.6	7.6	4.2 4.3	4.3		4.2 4.3	4.3	
				3.4	Middle	-	-	-		-		-	-		-	-	7.0	-	-	4.4	-	-	4.1
					Bottom	2.4	18.2 18.2	18.2	8.2 8.2	8.2	27.6 27.5	27.5	94.4 96.4	95.4	7.6 7.7	7.6	7.6	4.3 4.4	4.4		3.9 3.7	3.8	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	ıg	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:41		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	28.0 27.9	28.0	93.4 92.5	93.0	7.3 7.4	7.4	7.4	3.1 3.0	3.1		4.5 4.5	4.5	
				3.5	Middle	-	-	-		-	-	-		-	1 1	-	7.4	-	-	3.1	-	-	4.7
					Bottom	2.5	18.0 18.0	18.0	8.2 8.2	8.2	27.9 28.0	27.9	89.7 90.3	90.0	7.2 7.2	7.2	7.2	3.1 3.1	3.1		5.3 4.3	4.8	
25-Jan-16	Sunny	Moderate	13:28		Surface	1.0	15.5 15.6	15.5	8.3 8.3	8.3	28.3 28.3	28.3	94.0 95.9	95.0	7.9 8.0	8.0	8.0	4.8 4.7	4.8		6.0 6.1	6.1	
				3.7	Middle	-	-	-		-	-	-		-		-	0.0	-	-	4.8	-	-	7.3
					Bottom	2.7	15.5 15.6	15.6	8.3 8.3	8.3	28.4 28.4	28.4	94.5 99.0	96.8	7.9 8.3	8.1	8.1	4.7 4.8	4.8		8.7 8.1	8.4	
27-Jan-16	Cloudy	Moderate	14:09		Surface	1.0	14.8 14.8	14.8	8.3 8.3	8.3	29.2 29.2	29.2	93.2 93.1	93.2	7.9 7.9	7.9	7.9	4.5 4.6	4.6		6.6 6.6	6.6	
				3.8	Middle	-	-	-		-	-	-		-		-	7.5	-	-	4.6	-	-	6.6
					Bottom	2.8	14.8 14.8	14.8	8.3 8.2	8.3	29.2 29.2	29.2	92.8 92.8	92.8	7.9 7.9	7.9	7.9	4.6 4.6	4.6		7.1 6.0	6.6	
29-Jan-16	Cloudy	Moderate	15:40		Surface	1.0	15.8 15.8	15.8	8.2 8.2	8.2	28.2 28.1	28.1	94.2 93.0	93.6	7.9 7.8	7.8	7.8	10.7 10.5	10.6		6.0 5.5	5.8	
				3.7	Middle	-	-	-	-	-	-	-		-		-	7.0	-	-	10.6	-	-	8.1
					Bottom	2.7	15.7 15.7	15.7	8.2 8.2	8.2	28.3 28.2	28.3	92.9 92.8	92.9	7.8 7.8	7.8	7.8	10.4 10.8	10.6		9.6 10.9	10.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:43		Surface	1.0	16.2 16.2	16.2	8.1 8.1	8.1	26.5 26.6	26.5	99.1 98.5	98.8	8.3 8.2	8.2		3.1 3.1	3.1		3.1 2.8	3.0	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	3.3	-	-	3.4
					Bottom	2.5	16.1 16.1	16.1	8.1 8.1	8.1	26.7 26.7	26.7	98.5 98.7	98.6	8.2 8.3	8.2	8.2	3.3 3.4	3.4		3.4 4.0	3.7	
4-Jan-16	Sunny	Moderate	13:26		Surface	1.0	19.8	19.8	8.2	8.2	26.7	26.7	93.6	94.0	7.3	7.3		3.2	3.2		3.3	2.7	
				3.3	Middle		19.8	-	8.2	-	26.7		94.3	_	7.4	-	7.3	3.1		3.2	2.1		3.1
				0.0	Bottom	2.3	19.8	19.8	8.2	8.2	26.7	26.7	92.6	93.1	7.2	7.3	7.3	3.1	3.1	0.2	3.8	3.4	0.1
6-Jan-16	Sunny	Moderate	15:03				19.8 20.8		8.2 8.2	_	26.7 26.4		93.5 96.5		7.3 7.4		7.3	3.1			3.0 2.7		<u> </u>
					Surface	1.0	20.5	20.7	8.2	8.2	26.6	26.5	94.4	95.5	7.3	7.3	7.3	3.9	3.8		3.5	3.1	
				3.6	Middle	-	20.5	-	8.2	-	26.8	-	95.4	-	7.3	-		3.8	-	3.8	3.1	-	3.2
0.1::40	0	Malara	40.00		Bottom	2.6	20.2	20.3	8.2	8.2	27.2	27.0	93.4	94.4	7.2	7.3	7.3	3.7	3.8		3.5	3.3	
8-Jan-16	Sunny	Moderate	16:23		Surface	1.0	20.3 20.3	20.3	8.2 8.2	8.2	28.0 28.0	28.0	98.9 98.4	98.7	7.6 7.5	7.6	7.6	3.2 3.2	3.2		4.4 4.4	4.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.2	-	-	4.4
					Bottom	2.7	20.2 20.0	20.1	8.2 8.2	8.2	28.2 28.5	28.4	97.9 98.7	98.3	7.5 7.6	7.5	7.5	3.1 3.2	3.2		4.7 4.1	4.4	
11-Jan-16	Rainy	Moderate	09:02		Surface	1.0	19.5 19.6	19.6	8.2 8.2	8.2	27.7 27.7	27.7	94.2 94.5	94.4	7.3 7.4	7.4	7.4	2.5 2.5	2.5		4.3 4.1	4.2	
				3.7	Middle	1	-	-		-		-		-		-	7.4	-	-	2.5	-	-	4.6
					Bottom	2.7	19.5 19.6	19.6	8.2 8.2	8.2	27.8 27.8	27.8	95.6 94.8	95.2	7.4 7.4	7.4	7.4	2.5 2.5	2.5		5.9 4.1	5.0	
13-Jan-16	Sunny	Moderate	10:36		Surface	1.0	19.5	19.5	8.2	8.2	27.8	27.9	98.6	98.0	7.7	7.6		3.4	3.5		3.9	4.3	
				3.5	Middle	-	19.5 -	-	8.2	-	27.9	-	97.3	-	7.6	-	7.6	3.5	-	3.5	4.6	-	4.3
					Bottom	2.5	19.5	19.5	8.2	8.2	27.9	27.9	98.6	99.9	7.7	7.8	7.8	3.6	3.5		3.8	4.2	
15-Jan-16	Rainy	Moderate	11:37		Surface	1.0	19.4 18.9	18.9	8.2 8.2	8.2	27.9 27.7	27.7	95.5	96.5	7.9 7.5	7.6		3.4	3.7		4.6 3.7	3.4	
				3.7	Middle	1.0	18.9	-	8.2	-	27.7	-	97.5	-	7.7	7.0	7.6	3.7	0.7	3.7	3.1	-	3.9
				3.7		0.7	- 18.9		8.2		- 27.7		95.9		7.6	-		3.7	0.7	3.7	4.5		3.9
18-Jan-16	Sunny	Moderate	13:02		Bottom	2.7	18.9 18.5	18.9	8.2 8.2	8.2	27.7 26.2	27.7	100.0 94.4	98.0	7.9 7.6	7.7	7.7	3.6 4.6	3.7		4.0 3.9	4.3	<u> </u>
10-5411-10	Guilly	Woderate	13.02		Surface	1.0	18.5	18.5	8.2	8.2	26.3	26.3	94.1	94.3	7.5	7.6	7.6	4.6	4.6		4.3	4.1	
				3.7	Middle	-		-	-	-	-	-	-	-	-	-		-	-	4.7	-	-	5.1
					Bottom	2.7	18.5 18.5	18.5	8.2 8.2	8.2	26.4 26.7	26.6	93.8 95.0	94.4	7.5 7.6	7.6	7.6	4.7 4.6	4.7		6.0 5.9	6.0	<u> </u>
20-Jan-16	Rainy	Moderate	14:49		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	28.2 28.2	28.2	94.6 96.4	95.5	7.5 7.7	7.6	7.6	3.4 3.2	3.3		4.5 4.6	4.6	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.4	-	-	4.5
					Bottom	2.4	18.3 18.3	18.3	8.2 8.2	8.2	28.2 28.2	28.2	98.5 95.8	97.2	7.8 7.6	7.7	7.7	3.4 3.4	3.4		4.8 3.8	4.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ţ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:44		Surface	1.0	17.9 17.9	17.9	8.2 8.2	8.2	27.4 27.4	27.4	95.1 95.5	95.3	7.7 7.7	7.7	7.7	2.8 2.8	2.8		5.3 5.8	5.6	
				3.7	Middle		-	-	-	-	-	-	-	-	-	-	1.1	-	-	2.9	-	-	5.5
					Bottom	2.7	17.9 17.9	17.9	8.2 8.2	8.2	27.4 27.4	27.4	91.9 92.5	92.2	7.4 7.4	7.4	7.4	2.9 2.9	2.9		5.7 5.1	5.4	
25-Jan-16	Sunny	Moderate	09:07		Surface	1.0	15.1 15.1	15.1	8.3 8.3	8.3	29.2 29.2	29.2	92.3 91.1	91.7	7.8 7.7	7.7	7.7	6.0 5.9	6.0		7.9 8.4	8.2	
				3.7	Middle	-		-		-		-		-	-	-	1.1	-	-	6.1	-	-	9.3
					Bottom	2.7	15.1 15.1	15.1	8.3 8.3	8.3	29.2 29.2	29.2	90.5 91.4	91.0	7.6 7.7	7.7	7.7	6.0 6.2	6.1		10.2 10.4	10.3	
27-Jan-16	Cloudy	Moderate	09:46		Surface	1.0	14.9 14.9	14.9	8.3 8.3	8.3	29.1 29.1	29.1	94.7 90.6	92.7	8.0 7.7	7.8	7.8	6.4 6.4	6.4		9.1 9.7	9.4	ĺ
				3.8	Middle		-	-	-	-	-	-	-	-	-	-	7.0	-	-	6.4	-	-	9.5
					Bottom	2.8	15.0 15.0	15.0	8.3 8.3	8.3	29.2 29.3	29.2	95.8 90.7	93.3	8.1 7.7	7.9	7.9	6.4 6.4	6.4		8.9 10.1	9.5	
29-Jan-16	Rainy	Moderate	11:05		Surface	1.0	15.3 15.3	15.3	8.2 8.2	8.2	28.1 28.1	28.1	92.1 91.8	92.0	7.8 7.7	7.8	7.8	5.7 5.9	5.8		5.4 6.1	5.8	
				3.8	Middle	-		-		-	-	-	1 1	-	-	-	7.0	-	-	5.9	-	-	6.0
					Bottom	2.8	15.3 15.3	15.3	8.2 8.2	8.2	28.2 28.2	28.2	92.2 91.3	91.8	7.8 7.7	7.7	7.7	5.8 5.9	5.9		7.2 5.1	6.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:52		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	91.9 91.1	91.5	7.1 7.1	7.1		2.8 3.0	2.9		3.4 2.5	3.0	
				10.7	Middle	5.4	19.5 19.5	19.5	8.2 8.2	8.2	28.8 28.8	28.8	89.2 89.6	89.4	6.9 7.0	6.9	7.0	3.7 3.5	3.6	3.3	3.4 2.4	2.9	3.1
					Bottom	9.7	19.5	19.5	8.2	8.2	28.7	28.7	89.9	89.5	7.0	6.9	6.9	3.3	3.5		3.9	3.3	
4-Jan-16	Sunny	Moderate	07:45		Surface	1.0	19.5 16.1	16.1	8.2	8.0	28.8	28.8	89.1 98.9	97.7	6.9 8.0	7.9		3.6 1.4	1.4		2.7	2.1	
				10.6	Middle	5.3	16.1 16.1	16.1	8.1 8.0	8.0	28.8 32.6	32.6	96.4 95.5	96.3	7.8 7.8	7.9	7.9	1.4	1.6	1.5	2.1	2.8	2.4
				10.6			16.1 16.1		8.0		32.6 32.7		97.1 94.5		8.0 7.7			1.6 1.5	_	1.5	2.9 2.4		2.4
6 lan 16	Cuppu	Moderate	09:55		Bottom	9.6	16.1 16.3	16.1	8.0 8.1	8.0	32.9 20.7	32.8	96.7 94.3	95.6	7.8 8.2	7.8	7.8	1.5	1.5		2.3	2.4	
6-Jan-16	Sunny	Woderate	09.55		Surface	1.0	16.2	16.3	8.1	8.1	19.5	20.1	95.1	94.7	7.9	8.0	8.0	1.7	1.8		2.6	2.6	
				11.1	Middle	5.6	16.4 16.4	16.4	8.1 8.1	8.1	27.4 26.1	26.8	94.5 94.9	94.7	7.9 7.9	7.9		1.8 1.8	1.8	1.9	3.5 2.1	2.8	2.8
					Bottom	10.1	16.4 16.4	16.4	8.0 8.0	8.0	29.9 31.6	30.8	93.6 92.8	93.2	7.7 7.6	7.6	7.6	2.0 2.1	2.1		3.7 2.3	3.0	
8-Jan-16	Sunny	Moderate	12:01		Surface	1.0	16.5 16.5	16.5	8.1 8.1	8.1	25.7 25.5	25.6	99.4 99.3	99.4	8.3 8.3	8.3	8.3	2.8 2.8	2.8		2.2 2.8	2.5	
				10.6	Middle	5.3	16.5 16.5	16.5	8.1 8.1	8.1	27.0 26.8	26.9	99.3 101.4	100.4	8.2 8.4	8.3	8.3	2.8 2.8	2.8	2.8	3.5 2.3	2.9	2.8
					Bottom	9.6	16.5 16.5	16.5	8.1 8.1	8.1	26.9 27.2	27.0	101.3 100.2	100.8	8.4 8.3	8.4	8.4	2.9	2.9		3.1	2.9	
11-Jan-16	Sunny	Moderate	13:41		Surface	1.0	16.3	16.3	8.2	8.2	26.1	26.3	101.4	101.5	8.5	8.5		2.1	2.0		2.3	3.1	
				10.6	Middle	5.3	16.3 16.3	16.2	8.2 8.2	8.2	26.4 26.8	26.9	101.6 100.0	100.0	8.5 8.4	8.4	8.5	1.9 2.1	2.1	2.1	3.9 4.5	3.8	3.6
					Bottom	9.6	16.2 16.2	16.2	8.2 8.2	8.2	27.0 27.3	27.1	99.9 99.5	99.8	8.4 8.3	8.3	8.3	2.1	2.3		3.1 4.6	4.0	
13-Jan-16	Sunny	Moderate	15:21	1		1.0	16.2 16.1		8.2 8.2		26.9 25.2		100.0 105.7		8.3 8.9		0.5	2.4			3.4 2.6		
	,				Surface		16.1 16.0	16.1	8.2 8.2	8.2	25.5 25.9	25.3	105.9 105.3	105.8	8.9 8.9	8.9	8.9	2.1	2.1		2.3	2.5	
				10.7	Middle	5.4	16.0 16.0	16.0	8.2 8.2	8.2	25.9 26.1	25.9	105.0	105.2	8.9 8.8	8.9		2.1	2.1	2.1	3.8 5.1	3.2	3.7
					Bottom	9.7	16.0	16.0	8.2	8.2	26.1	26.1	105.1	104.9	8.9	8.8	8.8	2.2	2.2		5.4	5.3	
15-Jan-16	Rainy	Moderate	17:02		Surface	1.0	15.4 15.3	15.4	8.1 8.1	8.1	23.1 22.9	23.0	101.6 101.7	101.7	8.8 8.8	8.8	8.8	1.6 1.7	1.7		1.7 1.6	1.7	
				10.7	Middle	5.4	15.5 15.5	15.5	8.1 8.1	8.1	23.2 23.4	23.3	101.0 101.8	101.4	8.8 8.8	8.8	0.0	1.8 1.9	1.9	1.9	1.4 1.5	1.5	1.7
					Bottom	9.7	15.5 15.6	15.5	8.1 8.1	8.1	24.5 24.7	24.6	101.3 101.7	101.5	8.7 8.7	8.7	8.7	2.0 2.1	2.1		1.6 1.9	1.8	
18-Jan-16	Sunny	Moderate	07:05		Surface	1.0	14.7 14.7	14.7	8.1 8.1	8.1	24.3 23.9	24.1	99.4 97.4	98.4	8.7 8.5	8.6		2.9 3.0	3.0		2.2	2.3	
				10.3	Middle	5.2	15.1	15.1	8.1	8.1	24.7	24.5	103.9	101.8	9.0	8.8	8.7	2.8	2.8	2.9	2.7	2.7	2.7
					Bottom	9.3	15.0 14.9	15.1	8.1 8.1	8.1	24.3 25.8	26.3	99.7 101.1	103.5	8.7 8.7	8.9	8.9	2.7	3.0		4.0	3.2	
20-Jan-16	Rainy	Moderate	09:41	1	Surface	1.0	15.3 14.9	15.0	8.1 8.2	8.2	26.8 31.9	32.3	105.8 101.6	101.4	9.0 8.4	8.4		3.1 1.1	1.2		2.3 4.3	3.7	
				40.5			15.0 15.0		8.1 8.1		32.6 32.7		101.1 99.3		8.4 8.2		8.4	1.3	_	4.0	3.1 3.8		2.5
				10.5	Middle	5.3	15.0 15.0	15.0	8.2 8.1	8.2	31.9 32.3	32.3	101.0 98.9	100.2	8.4	8.3		1.2	1.3	1.3	2.8	3.3	3.5
					Bottom	9.5	14.9	15.0	8.1	8.1	32.3 32.8	32.6	98.7	98.8	8.3	8.3	8.3	1.4	1.4		2.8	3.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:13		Surface	1.0	14.6 14.6	14.6	8.1 8.1	8.1	31.0 30.1	30.5	97.3 97.7	97.5	8.1 8.2	8.1	8.1	1.4 1.3	1.4		5.2 5.3	5.3	
				10.6	Middle	5.3	14.6 14.7	14.7	8.1 8.1	8.1	31.0 31.9	31.5	95.7 96.4	96.1	8.1 8.0	8.1	0.1	1.5 1.4	1.5	1.5	5.8 4.7	5.3	5.3
					Bottom	9.6	14.7 14.7	14.7	8.1 8.1	8.1	32.5 31.7	32.1	95.7 95.3	95.5	8.0 8.0	8.0	8.0	1.4 1.5	1.5		5.6 4.8	5.2	
25-Jan-16	Sunny	Moderate	13:34		Surface	1.0	13.0 13.0	13.0	8.4 8.4	8.4	29.5 29.4	29.4	97.4 97.8	97.6	8.6 8.6	8.6	8.6	2.2 2.1	2.2		7.8 7.9	7.9	
				10.5	Middle	5.3	12.9 12.9	12.9	8.4 8.4	8.4	29.4 29.6	29.5	97.5 97.0	97.3	8.6 8.6	8.6	0.0	2.3 2.3	2.3	2.3	8.3 8.1	8.2	7.9
					Bottom	9.5	12.7 12.9	12.8	8.3 8.4	8.4	29.5 29.3	29.4	97.5 97.6	97.6	8.6 8.6	8.6	8.6	2.5 2.5	2.5		7.2 7.7	7.5	
27-Jan-16	Cloudy	Moderate	14:54		Surface	1.0	11.7 11.7	11.7	8.4 8.4	8.4	28.9 29.0	28.9	98.5 98.5	98.5	8.9 8.9	8.9	8.9	2.7 2.9	2.8		4.6 6.1	5.4	
				10.6	Middle	5.3	11.7 11.7	11.7	8.4 8.4	8.4	28.9 29.1	29.0	98.2 98.1	98.2	8.9 8.9	8.9	0.9	3.0 3.2	3.1	2.9	6.5 5.8	6.2	5.7
					Bottom	9.6	11.7 11.7	11.7	8.4 8.4	8.4	29.0 29.2	29.1	98.2 98.5	98.4	8.9 8.9	8.9	8.9	2.8 2.6	2.7		5.4 5.3	5.4	
29-Jan-16	Cloudy	Moderate	16:01		Surface	1.0	11.8 11.8	11.8	8.4 8.4	8.4	22.9 23.2	23.0	95.5 95.5	95.5	9.0 8.9	8.9	8.9	2.6 2.9	2.8		4.4 5.0	4.7	
				10.5	Middle	5.3	11.8 11.8	11.8	8.4 8.4	8.4	28.2 28.3	28.3	96.8 97.7	97.3	8.8 8.9	8.8	0.9	3.1 3.2	3.2	3.0	3.9 4.9	4.4	4.5
					Bottom	9.5	11.8 11.8	11.8	8.4 8.4	8.4	28.3 28.5	28.4	97.1 97.1	97.1	8.8 8.8	8.8	8.8	2.8 3.0	2.9		4.7 4.0	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ing	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:02		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.2 28.1	28.1	90.6 91.0	90.8	7.0 7.1	7.1		3.7 3.4	3.6		4.0 2.0	3.0	
				10.5	Middle	5.3	19.5	19.5	8.2	8.2	28.4	28.4	89.5	89.2	7.0	6.9	7.0	4.6	4.5	4.3	2.2	2.2	3.2
					Bottom	9.5	19.5 19.5	19.5	8.2 8.2	8.2	28.4 28.5	28.4	88.9 89.3	89.6	6.9 6.9	7.0	7.0	4.4	4.8		3.5	4.3	
4 les 40	Commen	Madazata	44.07				19.5 16.1		8.2		28.4 26.4		89.8 92.8	1	7.0			4.9 3.2		l	5.0 3.7		
4-Jan-16	Sunny	Moderate	14:27		Surface	1.0	16.1	16.1	8.1 8.1	8.1	26.5	26.5	95.5	94.2	7.8 7.9	7.8	7.8	3.2	3.2		2.5	3.1]
				10.7	Middle	5.4	16.1 16.1	16.1	8.1 8.1	8.1	29.1 28.6	28.8	92.6 94.5	93.6	7.6 7.8	7.7		3.5 3.4	3.5	3.4	3.2 2.6	2.9	3.1
					Bottom	9.7	16.1 16.2	16.2	8.1 8.1	8.1	29.2 29.8	29.5	93.4 91.8	92.6	7.8 7.6	7.7	7.7	3.5 3.5	3.5		2.8 3.7	3.3	
6-Jan-16	Sunny	Moderate	16:20		Surface	1.0	16.4 16.4	16.4	8.1 8.1	8.1	23.8 24.3	24.0	96.3 94.3	95.3	8.1 8.0	8.1		1.5 1.4	1.5		3.1 2.8	3.0	
				11.2	Middle	5.6	16.4 16.4	16.4	8.1 8.1	8.1	24.3 25.2	24.7	95.2 94.1	94.7	8.0 8.0	8.0	8.1	1.7	1.7	1.7	2.5 3.1	2.8	3.1
					Bottom	10.2	16.4	16.5	8.1	8.1	26.0	25.5	93.3	93.1	7.8	7.8	7.8	2.0	2.0		3.8	3.4	
8-Jan-16	Sunny	Moderate	17:00		Surface	1.0	16.6 16.7	16.7	8.1 8.2	8.2	25.0 25.5	25.6	92.9 103.0	102.6	7.9 8.6	8.5		1.9 2.6	2.7		3.0 2.7	3.0	
				10.6	Middle	5.3	16.7 16.7	16.7	8.2 8.2	8.2	25.8 25.7	25.9	102.2 101.7	101.6	8.5 8.5	8.5	8.5	2.8	3.0	2.9	3.2 2.8	2.6	2.9
				10.0		9.6	16.7 16.6	16.6	8.2 8.2	8.2	26.1 26.5	26.3	101.5 101.5	101.7	8.4 8.4	8.5	8.5	3.1 2.8	2.9	2.0	2.3 3.6	3.2	2.5
11-Jan-16	Rainy	Moderate	08:49		Bottom		16.6 16.0		8.2 8.2		26.1 31.1		101.9 99.3		8.5 8.1		0.0	2.9 3.3			2.8 4.1		
11 0011 10	rtairy	Woderate	00.40		Surface	1.0	16.0 16.1	16.0	8.1 8.2	8.2	31.8 31.5	31.5	99.6 97.7	99.5	8.1 8.0	8.1	8.1	3.4	3.4		3.0	3.6	
				10.8	Middle	5.4	16.1	16.1	8.1	8.2	32.0	31.7	98.4	98.1	8.0	8.0		3.7	3.7	3.7	3.9	3.6	3.9
					Bottom	9.8	16.0 16.1	16.1	8.1 8.1	8.1	32.1 31.6	31.9	97.1 97.0	97.1	8.0 7.9	8.0	8.0	3.9 3.8	3.9		4.1 5.0	4.6	
13-Jan-16	Sunny	Moderate	09:56		Surface	1.0	15.8 15.8	15.8	8.2 8.2	8.2	31.4 30.4	30.9	106.2 103.4	104.8	8.7 8.5	8.6	8.6	4.0 3.9	4.0		7.0 5.7	6.4	
				10.7	Middle	5.4	15.8 15.8	15.8	8.2 8.2	8.2	30.3 31.9	31.1	102.7 104.5	103.6	8.5 8.5	8.5	0.0	4.9 4.9	4.9	4.7	6.0 6.2	6.1	6.1
					Bottom	9.7	15.8 15.8	15.8	8.2 8.1	8.2	31.0 32.1	31.6	102.0 104.2	103.1	8.4 8.5	8.5	8.5	5.1 5.1	5.1		6.6 5.0	5.8	
15-Jan-16	Rainy	Moderate	11:20		Surface	1.0	15.5 15.5	15.5	8.1 8.1	8.1	29.5 28.8	29.2	103.2 102.9	103.1	8.6 8.6	8.6		2.3	2.3		2.9 2.7	2.8	
				10.8	Middle	5.4	15.5	15.5	8.1	8.1	29.9	29.5	103.3	103.0	8.6	8.6	8.6	2.5	2.6	2.5	3.2	2.8	2.7
					Bottom	9.8	15.5 15.5	15.5	8.1 8.1	8.1	29.1 29.1	29.9	102.6 102.6	103.1	8.6 8.6	8.6	8.6	2.6	2.7		2.4	2.4	
18-Jan-16	Sunny	Moderate	13:50		Surface	1.0	15.5 15.0	15.0	8.1 8.2	8.2	30.6 22.1	22.3	103.6 98.8	99.1	8.6 8.7	8.7		2.7	2.4		2.1	2.7	\vdash
				40.2			15.0 15.3		8.2 8.2		22.4 24.4		99.3 99.7		8.7 8.6		8.7	2.4		2.0	2.9		20
				10.3	Middle	5.2	15.4 15.4	15.4	8.2 8.2	8.2	24.2 24.2	24.3	98.7 98.6	99.2	8.5 8.5	8.6		2.6	2.7	2.6	3.7 2.9	3.2	2.9
20 Jan 16	Doiny	Moderate	16:07		Bottom	9.3	15.3	15.4	8.2	8.2	24.5	24.4	99.8	99.2	8.6	8.6	8.6	2.9	2.8	<u> </u>	2.7	2.8	
20-Jan-16	Rainy	Moderate	16:07		Surface	1.0	15.0 15.0	15.0	8.2 8.2	8.2	25.9 25.8	25.9	99.6 101.6	100.6	8.6 8.8	8.7	8.7	1.3 1.2	1.3		3.8 4.1	4.0	
				10.6	Middle	5.3	15.0 15.0	15.0	8.2 8.2	8.2	26.0 26.0	26.0	99.5 100.2	99.9	8.6 8.6	8.6		1.4 1.4	1.4	1.4	3.3 2.3	2.8	3.4
					Bottom	9.6	15.0 15.0	15.0	8.2 8.2	8.2	26.2 26.0	26.1	99.6 99.0	99.3	8.6 8.5	8.5	8.5	1.5 1.6	1.6		2.9 3.7	3.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	, -	Temperatu	ure (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)) \	Value A	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:59		Surface 1		14.5 14.5	14.5	8.1 8.1	8.1	24.3 24.7	24.5	98.4 97.2	97.8	8.6 8.5	8.6	8.5	2.3 2.4	2.4		5.7 5.5	5.6	
				10.7	Middle 5	5 4 I	14.6 14.6	14.6	8.1 8.1	8.1	24.8 25.0	24.9	94.7 97.4	96.1	8.3 8.5	8.4	0.5	2.3 2.3	2.3	2.4	5.0 6.1	5.6	5.8
					Bottom 9	4 /	14.6 14.6	14.6	8.1 8.1	8.1	25.0 24.8	24.9	95.5 94.6	95.1	8.4 8.3	8.3	8.3	2.4 2.4	2.4		6.0 6.1	6.1	
25-Jan-16	Sunny	Moderate	08:30		Surface 1		12.1 12.1	12.1	8.3 8.3	8.3	32.0 31.3	31.7	97.5 98.2	97.9	8.6 8.6	8.6	8.6	6.3 6.2	6.3		9.2 9.3	9.3	
				10.6	Middle 5	2.3	12.1 12.1	12.1	8.3 8.3	8.3	32.3 31.4	31.8	96.4 97.0	96.7	8.5 8.5	8.5	0.0	6.5 6.6	6.6	6.6	8.5 8.7	8.6	8.9
					Bottom 9	16	12.1 12.1	12.1	8.3 8.3	8.3	31.7 32.6	32.1	95.5 95.4	95.5	8.5 8.5	8.5	8.5	6.9 6.8	6.9		8.9 8.6	8.8	<u> </u>
27-Jan-16	Cloudy	Moderate	09:23		Surface 1	1.0	11.6 11.6	11.6	8.4 8.3	8.3	34.7 34.7	34.7	98.3 99.4	98.9	8.6 8.7	8.6	8.7	6.2 5.7	6.0		9.5 9.6	9.6	
				10.5	Middle 5		11.6 11.6	11.6	8.3 8.3	8.3	34.7 34.7	34.7	98.4 100.0	99.2	8.6 8.7	8.7	0.7	6.3 5.9	6.1	6.1	10.1 10.3	10.2	9.9
					Bottom 9	15	11.6 11.6	11.6	8.3 8.3	8.3	34.7 34.7	34.7	98.8 100.8	99.8	8.6 8.8	8.7	8.7	6.0 6.1	6.1		9.6 10.1	9.9	
29-Jan-16	Rainy	Moderate	10:29		Surface 1	1 ()	11.8 11.8	11.8	8.2 8.3	8.2	33.2 33.2	33.2	97.2 98.0	97.6	8.5 8.6	8.6	8.6	4.5 4.5	4.5		5.2 6.9	6.1	
				10.7	Middle 5	5 4 I	11.8 11.8	11.8	8.2 8.3	8.2	33.4 33.3	33.4	98.5 97.7	98.1	8.6 8.6	8.6	0.0	4.9 4.6	4.8	4.9	6.5 6.0	6.3	6.8
					Bottom 9	4 /	11.8 11.8	11.8	8.2 8.2	8.2	33.3 33.4	33.4	97.7 98.8	98.3	8.6 8.7	8.6	8.6	5.2 5.4	5.3		7.9 8.2	8.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Condition 1-Jan-16 Sunny 4-Jan-16 Sunny	Condition** Moderate Moderate	Time 18:02	Depth (m)	Depth	(m)	Value	Average											1				
		18:02					Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
4-Jan-16 Sunny	Moderate			Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.8 28.7	28.7	90.6 89.0	89.8	7.0 6.9	6.9		3.0 3.0	3.0		3.6 4.3	4.0	
4-Jan-16 Sunny	Moderate		10.7	Middle	5.4	19.5 19.5	19.5	8.2 8.2	8.2	28.9 28.9	28.9	92.1 87.3	89.7	7.1 6.8	6.9	6.9	3.4 3.3	3.4	3.2	4.8 3.7	4.3	4.0
4-Jan-16 Sunny	Moderate			Bottom	9.7	19.5 19.6 19.5	19.6	8.2 8.2	8.2	28.9 28.9 28.9	28.9	88.2 91.1	89.7	6.8 7.1	6.9	6.9	3.1 3.5	3.3		3.7 3.6	3.7	
		07:35		Curtons	4.0	16.0	16.1	8.0	8.0	28.9	20.7	95.7	96.7	7.7	7.0		1.4	4.4		1.3	4.4	
				Surface	1.0	16.1 16.1		8.0 8.0		28.6 32.6	28.7	97.6 94.9		7.9 7.7	7.8	7.8	1.3	1.4		1.5 1.7	1.4	
			10.4	Middle	5.2	16.1 16.1	16.1	7.9 7.9	8.0	32.4 33.0	32.5	94.1 93.5	94.5	7.8 7.6	7.7		1.4	1.4	1.4	1.7	1.7	1.7
				Bottom	9.4	16.1	16.1	8.0	7.9	33.0	33.0	93.5	93.5	7.7	7.6	7.6	1.5	1.5		1.9	1.9	
6-Jan-16 Sunny	Moderate	09:41		Surface	1.0	16.3 16.3	16.3	8.0 8.0	8.0	23.9 29.3	26.6	94.0 93.9	94.0	8.0 8.0	8.0	8.0	1.5 1.6	1.6		3.0 2.2	2.6	1
			10.9	Middle	5.5	16.3 16.3	16.3	8.1 8.1	8.1	22.4 23.1	22.8	93.5 93.5	93.5	7.9 8.0	8.0	0.0	1.6 1.6	1.6	1.6	2.6 2.3	2.5	2.7
				Bottom	9.9	16.3 16.4	16.4	8.1 8.1	8.1	24.4 24.2	24.3	93.9 93.5	93.7	7.7 7.9	7.8	7.8	1.7 1.6	1.7		3.3 2.4	2.9	
8-Jan-16 Sunny	Moderate	11:49		Surface	1.0	16.5	16.6	8.1	8.1	32.1	32.2	99.2	99.0	8.0	8.0		3.2	3.2		3.1	3.3	
			10.4	Middle	5.2	16.6 16.4	16.4	8.1 8.1	8.1	32.2 32.3	32.4	98.8 98.5	97.0	7.9 7.9	7.8	7.9	3.1	3.3	3.3	3.5	3.2	3.0
				Bottom	9.4	16.4 16.4	16.4	8.1 8.1	8.1	32.4 32.4	32.4	95.5 98.9	97.6	7.7 8.0	7.8	7.8	3.2	3.3		3.3 2.5	2.5	
11-Jan-16 Sunny	Moderate	13:48				16.4 16.3		8.1 8.2		32.4 25.8		96.2 100.8		7.7 8.5		7.0	3.2 2.2			2.5 4.5		
,				Surface	1.0	16.3 16.1	16.3	8.2 8.2	8.2	25.6 25.7	25.7	100.5 99.2	100.7	8.4 8.3	8.4	8.4	2.2	2.2		3.4 3.8	4.0	
			10.5	Middle	5.3	16.2	16.2	8.2	8.2	26.0	25.8	98.6 98.7	98.9	8.3 8.3	8.3		2.3	2.3	2.3	4.3 4.1	4.1	4.0
				Bottom	9.5	16.1 16.2	16.2	8.2 8.2	8.2	26.6 25.8	26.2	98.5	98.6	8.3	8.3	8.3	2.5	2.5		3.9	4.0	
13-Jan-16 Sunny	Moderate	15:31		Surface	1.0	16.1 16.1	16.1	8.2 8.2	8.2	24.6 25.3	25.0	103.9 104.7	104.3	8.8 8.7	8.7	8.7	2.3 2.3	2.3		5.1 3.6	4.4	
			10.5	Middle	5.3	16.0 16.1	16.1	8.2 8.2	8.2	25.1 25.8	25.4	103.6 102.3	103.0	8.7 8.6	8.7	0.7	2.3 2.3	2.3	2.3	5.2 5.9	5.6	5.1
				Bottom	9.5	16.0 16.1	16.0	8.2 8.2	8.2	28.0 25.8	26.9	101.6 103.0	102.3	8.6 8.7	8.6	8.6	2.3 2.3	2.3		5.1 5.5	5.3	
15-Jan-16 Rainy	Moderate	17:11		Surface	1.0	15.3	15.3	8.1	8.1	22.9 23.3	23.1	104.3	104.1	8.9	8.9		1.5	1.6		1.3	1.3	
			10.7	Middle	5.4	15.3 15.5	15.4	8.1 8.1	8.1	25.0	24.1	103.8	102.1	8.9 8.9	8.9	8.9	1.6	1.7	1.7	1.3	1.7	1.7
				Bottom	9.7	15.4 15.5	15.5	8.1 8.1	8.1	23.2 25.5	25.2	102.0 102.0	101.5	8.9 8.8	8.8	8.8	1.6 1.8	1.8		2.0	2.1	
18-Jan-16 Sunny	Moderate	06:54			1.0	15.5 14.7	14.8	8.1 8.1	8.1	24.8 29.6	29.6	101.0 97.3	97.3	8.8 8.2		0.0	1.7 2.1			3.3		
,				Surface		14.8 15.5		8.1 8.1	_	29.6 32.0		97.3 98.4		8.2 8.1	8.2	8.2	2.2	2.2		2.9 2.6	3.1	
			10.6	Middle	5.3	15.5 15.5	15.5	8.1	8.1	32.2 32.7	32.1	98.3 98.7	98.4	8.1 8.1	8.1		2.3	2.2	2.1	2.5 2.7	2.6	2.8
				Bottom	9.6	15.5	15.5	8.1 8.1	8.1	32.8	32.7	98.6	98.7	8.1	8.1	8.1	2.0	2.0		2.8	2.8	
20-Jan-16 Rainy	Moderate	09:31		Surface	1.0	15.1 15.2	15.2	8.1 8.1	8.1	33.1 33.3	33.2	99.7 100.3	100.0	8.2 8.2	8.2	8.2	1.1 1.0	1.1		1.2 1.2	1.2	
			10.7	Middle	5.4	15.2 15.2	15.2	8.1 8.1	8.1	33.2 33.3	33.3	98.9 98.3	98.6	8.1 8.1	8.1	0.2	1.1 1.2	1.2	1.2	3.6 5.1	4.4	3.6
				Bottom	9.7	15.2 15.2	15.2	8.1 8.1	8.1	33.4 33.5	33.5	98.5 98.3	98.4	8.1	8.1	8.1	1.3	1.3		5.1	5.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling) T	emperature (°C	;)	рН	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	ı) V	alue Avera	ge Valu	e Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:03		Surface		4.7 4.7	7 8.1 8.1	8.1	32.1 31.8	31.9	97.0 95.6	96.3	8.0 7.9	8.0	8.0	1.8 1.7	1.8		2.9 3.7	3.3	
				10.4	Middle 5	52 I	4.8 4.8	8.1 8.1	8.1	33.1 33.0	33.0	95.0 95.0	95.0	7.9 7.9	7.9	0.0	1.8 1.7	1.8	1.8	4.9 4.8	4.9	4.5
					Bottom 9	94 1	4.8 4.8	8.1 8.1	8.1	33.1 33.2	33.2	94.9 94.6	94.8	7.9 7.8	7.8	7.8	1.7 1.7	1.7		4.9 5.5	5.2	
25-Jan-16	Sunny	Moderate	13:49		Surface		2.5 2.5	8.3 8.4	8.4	30.0 29.8	29.9	99.1 101.0	100.1	8.7 8.7	8.7	8.7	2.3 2.3	2.3		6.5 6.5	6.5	
				10.3	Middle 5	52	2.4 2.4	8.4 8.3	8.3	29.1 30.7	29.9	98.8 98.1	98.5	8.7 8.7	8.7	0.7	2.5 2.6	2.6	2.6	6.6 5.4	6.0	6.8
					Bottom 9	93	2.6 2.4	8.3 8.3	8.3	33.3 29.5	31.4	98.1 97.6	97.9	8.7 8.7	8.7	8.7	2.8 2.7	2.8		8.6 7.1	7.9	
27-Jan-16	Cloudy	Moderate	15:03		Surface		2.2 2.2	8.3 8.3	8.3	29.7 28.9	29.3	98.9 98.2	98.6	8.8 8.8	8.8	8.8	2.7 2.9	2.8		4.6 4.9	4.8	
				10.6	Middle 5	5.3	2.0 2.0	8.3	8.3	30.5 29.2	29.9	99.1 97.9	98.5	8.8 8.8	8.8	0.0	2.4 2.6	2.5	2.6	5.0 4.2	4.6	5.0
					Bottom 9	96	2.1 2.0	8.3	8.3	29.3 31.5	30.4	98.0 99.6	98.8	8.8 8.8	8.8	8.8	2.4 2.3	2.4		5.5 5.6	5.6	
29-Jan-16	Cloudy	Moderate	16:09		Surface	10	1.9 2.0	8.3 8.3	8.3	27.1 24.4	25.8	96.5 96.8	96.7	8.8 9.0	8.9	8.9	2.5 2.6	2.6		5.3 4.4	4.9	
				10.6	Middle 5		11.9 11.9	8.3 8.3	8.3	27.9 29.4	28.6	98.1 95.9	97.0	8.9 8.6	8.8	0.9	2.5 2.4	2.5	2.4	4.5 3.0	3.8	4.4
					Bottom 9	9 h	11.9 11.9	8.2	8.3	30.7 28.2	29.5	97.9 98.1	98.0	8.7 8.9	8.8	8.8	2.1 2.2	2.2		5.0 3.9	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Ti	urbidity(NTI	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:52		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.3 28.3	28.3	91.4 89.0	90.2	7.1 6.9	7.0		4.2 4.1	4.2		3.1 4.1	3.6	
				10.6	Middle	5.3	19.5	19.5	8.2	8.2	28.5	28.5	89.5	90.0	6.9	7.0	7.0	3.5	3.5	4.7	3.8	3.6	3.8
					Bottom	9.6	19.5 19.5	19.5	8.2 8.2	8.2	28.5 28.4	28.4	90.5 89.9	89.5	7.0	6.9	6.9	3.4 6.1	6.4		3.3 4.3	4.1	•
4 1		Madagas	44.00		Bottom	0.0	19.5	10.0	8.2	0.2	28.4	20	89.1	00.0	6.9	0.0	0.0	6.6	0		3.8		
4-Jan-16	Sunny	Moderate	14:39		Surface	1.0	16.2 16.3	16.3	8.1 8.1	8.1	25.7 25.9	25.8	97.3 98.4	97.9	8.2 8.3	8.2	8.2	1.5 1.5	1.5		3.1 2.6	2.9	
				10.6	Middle	5.3	16.2 16.2	16.2	8.1 8.1	8.1	27.8 27.3	27.5	97.5 96.8	97.2	8.1 8.1	8.1	0.2	1.5 1.6	1.6	1.6	2.6 4.2	3.4	3.0
					Bottom	9.6	16.2 16.2	16.2	8.1 8.1	8.1	27.4 29.1	28.3	98.3 98.9	98.6	8.2 8.2	8.2	8.2	1.6 1.5	1.6		2.9 2.5	2.7	
6-Jan-16	Sunny	Moderate	16:33		Surface	1.0	16.9 16.9	16.9	8.1 8.1	8.1	20.7 21.0	20.9	98.6 99.3	99.0	8.4 8.5	8.4		1.6	1.6		2.9 3.3	3.1	
				11.1	Middle	5.6	16.8	16.8	8.1	8.1	21.7	21.7	96.9	97.9	8.3	8.3	8.4	1.6	1.9	1.8	3.8	3.8	3.4
					Bottom	10.1	16.8 16.5	16.6	8.1 8.1	8.1	21.7 25.3	24.7	98.8 96.3	97.4	8.4 8.1	8.2	8.2	1.8	1.9		3.7	3.3	1
8-Jan-16	Sunny	Moderate	17:09				16.8 16.7		8.1 8.2		24.2 25.4		98.5 101.8		8.3 8.5		0.2	1.9 2.8			3.1 2.9		
o dun 10	Curity	Woderate	17.00		Surface	1.0	16.7	16.7	8.2	8.2	26.3	25.9	102.5	102.2	8.5	8.5	8.4	3.0	2.9		3.4	3.2	
				10.5	Middle	5.3	16.5 16.5	16.5	8.2 8.1	8.1	26.7 28.8	27.8	100.9 101.0	101.0	8.4 8.3	8.3		3.3	3.2	3.1	2.9 2.6	2.8	2.8
					Bottom	9.5	16.5 16.5	16.5	8.1 8.1	8.1	27.0 29.8	28.4	101.9 101.9	101.9	8.4 8.3	8.4	8.4	3.0 3.4	3.2		2.3 2.4	2.4	
11-Jan-16	Rainy	Moderate	08:39		Surface	1.0	16.1 16.1	16.1	8.2 8.2	8.2	32.3 32.2	32.3	100.5 100.2	100.4	8.1 8.1	8.1	0.4	2.8 2.8	2.8		4.3 4.6	4.5	
				10.6	Middle	5.3	16.1 16.1	16.1	8.2 8.2	8.2	32.4 32.4	32.4	100.2 100.1	100.2	8.1 8.1	8.1	8.1	2.9 2.8	2.9	2.9	4.9 4.6	4.8	4.8
					Bottom	9.6	16.1	16.1	8.2	8.2	32.4 32.4	32.4	99.7 99.0	99.4	8.1 8.0	8.0	8.0	2.9	2.9		5.8 4.5	5.2	
13-Jan-16	Sunny	Moderate	09:43		Surface	1.0	16.1 15.8	15.8	8.1 8.2	8.2	32.4	31.8	102.6	102.7	8.4	8.4		6.3	6.3		5.2	5.6	
							15.8 15.7		8.2 8.2		31.6 31.8		102.8 102.8		8.4 8.4		8.4	6.2 6.6			6.0 6.2		ļ __
				10.3	Middle	5.2	15.7 15.7	15.7	8.2 8.2	8.2	32.0 32.0	31.9	101.4	102.1	8.3 8.4	8.3		6.5 6.6	6.6	6.5	6.0	6.1	5.6
					Bottom	9.3	15.7	15.7	8.2	8.2	32.1	32.0	101.2	101.8	8.3	8.3	8.3	6.5	6.6		4.8	5.0	
15-Jan-16	Rainy	Moderate	11:13		Surface	1.0	15.6 15.6	15.6	8.1 8.1	8.1	31.6 29.7	30.7	102.4 102.4	102.4	8.5 8.5	8.5	8.5	2.8 2.8	2.8		2.5 2.3	2.4	
				10.8	Middle	5.4	15.6 15.6	15.6	8.1 8.1	8.1	30.9 31.8	31.3	102.1 102.1	102.1	8.4 8.4	8.4	6.5	2.8 2.9	2.9	2.9	3.0 2.8	2.9	2.8
					Bottom	9.8	15.6 15.6	15.6	8.1 8.1	8.1	31.7 31.6	31.6	102.0 101.9	102.0	8.4 8.4	8.4	8.4	3.0	3.0		2.7	3.1	
18-Jan-16	Sunny	Moderate	14:01		Surface	1.0	15.2	15.2	8.2	8.2	23.9	23.7	102.1	100.5	8.9	8.7		2.9	3.0		2.9	2.9	
				10.5	Middle	5.3	15.2 15.5	15.5	8.2 8.1	8.2	23.5 26.6	25.9	98.9 104.1	102.9	8.8	8.8	8.8	3.0	3.6	3.4	2.8	2.3	2.6
				10.5			15.5 15.5		8.2 8.1		25.2 27.5		101.7 105.5		8.7 8.9			3.5 3.6		3.4	2.2		2.0
20-Jan-16	Rojav	Moderate	16:21		Bottom	9.5	15.3	15.4	8.2	8.2	25.4	26.4	102.4	104.0	8.8	8.8	8.8	3.3	3.5		2.6	2.7	
20-Jän-16	Rainy	Moderate	16:21		Surface	1.0	15.1 15.1	15.1	8.2 8.2	8.2	26.8 27.1	27.0	100.0 100.4	100.2	8.5 8.6	8.5	8.5	1.2	1.2		4.2 4.1	4.2]
				10.8	Middle	5.4	15.1 15.1	15.1	8.2 8.2	8.2	27.6 26.9	27.2	100.3 100.0	100.2	8.5 8.5	8.5		1.3 1.3	1.3	1.3	4.1 5.1	4.6	4.5
					Bottom	9.8	15.1 15.1	15.1	8.2 8.2	8.2	27.0 28.5	27.8	99.5 99.4	99.5	8.5 8.4	8.5	8.5	1.5 1.4	1.5		5.1 4.3	4.7	
					<u> </u>		10.1	·	٠.٧		20.0		JJ.7		0.7						7.0		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	17:07		Surface	1.0	14.5 14.5	14.5	8.1 8.1	8.1	24.0 23.9	23.9	96.9 97.4	97.2	8.5 8.5	8.5	8.5	1.5 1.6	1.6		5.0 5.4	5.2	
				10.8	Middle	5.4	14.6 14.6	14.6	8.1 8.1	8.1	24.3 24.4	24.3	95.8 95.9	95.9	8.4 8.4	8.4	0.5	1.6 1.5	1.6	1.6	4.4 4.0	4.2	4.7
					Bottom	9.8	14.6 14.6	14.6	8.1 8.1	8.1	24.3 24.2	24.2	94.9 94.9	94.9	8.4 8.4	8.4	8.4	1.5 1.6	1.6		4.8 4.7	4.8	
25-Jan-16	Sunny	Moderate	08:21		Surface	1.0	12.1 12.1	12.1	8.3 8.3	8.3	33.7 33.2	33.4	96.2 97.0	96.6	8.4 8.5	8.4	8.4	3.9 3.8	3.9		8.5 8.8	8.7	
				10.5	Middle	5.3	12.1 12.1	12.1	8.3 8.2	8.3	33.4 33.9	33.6	96.1 95.5	95.8	8.3 8.3	8.3	0.4	4.0 4.0	4.0	4.0	9.3 8.4	8.9	9.0
					Bottom	9.5	12.1 12.1	12.1	8.2 8.3	8.2	34.3 33.7	34.0	95.3 95.5	95.4	8.3 8.3	8.3	8.3	4.1 4.1	4.1		9.4 9.2	9.3	
27-Jan-16	Cloudy	Moderate	09:12		Surface	1.0	11.5 11.5	11.5	8.3 8.3	8.3	34.7 34.7	34.7	98.1 97.9	98.0	8.6 8.6	8.6	8.6	5.8 5.5	5.7		8.0 8.5	8.3	
				10.3	Middle	5.2	11.5 11.5	11.5	8.3 8.3	8.3	34.8 34.8	34.8	97.8 97.5	97.7	8.6 8.5	8.6	0.0	6.3 6.8	6.6	6.1	8.3 8.6	8.5	8.3
					Bottom	9.3	11.5 11.5	11.5	8.3 8.3	8.3	34.8 34.8	34.8	97.6 97.7	97.7	8.6 8.6	8.6	8.6	6.0 5.8	5.9		7.7 8.7	8.2	
29-Jan-16	Rainy	Moderate	10:21		Surface	1.0	11.8 11.8	11.8	8.3 8.3	8.3	32.7 32.8	32.8	97.9 95.4	96.7	8.6 8.4	8.5	8.6	9.4 10.4	9.9		12.2 12.0	12.1	
				10.5	Middle	5.3	11.8 11.8	11.8	8.3 8.3	8.3	32.9 32.9	32.9	97.7 96.9	97.3	8.6 8.5	8.6	0.0	10.2 10.7	10.5	10.1	14.1 13.7	13.9	12.8
					Bottom	9.5	11.8 11.8	11.8	8.3 8.2	8.3	32.9 32.9	32.9	97.7 97.5	97.6	8.6 8.6	8.6	8.6	10.1 9.8	10.0		12.5 12.3	12.4	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:13		Surface	1.0	16.0 16.1	16.1	8.1 8.1	8.1	26.5 26.5	26.5	97.2 97.0	97.1	8.2 8.2	8.2		3.4 3.3	3.4		5.0 4.6	4.8	
				6.4	Middle	3.2	16.0 16.0	16.0	8.1 8.1	8.1	26.5 26.5	26.5	96.9 97.0	97.0	8.1 8.2	8.1	8.2	3.4 3.3	3.4	3.5	3.8	3.5	3.9
					Bottom	5.4	16.0 16.0	16.0	8.1 8.1	8.1	26.6 26.5	26.5	96.9 96.7	96.8	8.1 8.1	8.1	8.1	3.5 3.6	3.6		3.3	3.4	
4-Jan-16	Sunny	Moderate	07:01		Surface	1.0	19.7	19.7	8.1	8.1	27.3	27.3	90.2	90.0	7.0	7.0		1.8	1.9		4.0	3.8	
				6.4	Middle	3.2	19.6 19.7	19.7	8.1 8.1	8.1	27.3 27.8	27.7	89.7 90.4	89.6	7.0	7.0	7.0	1.9	1.8	1.8	3.5 2.1	2.8	3.1
					Bottom	5.4	19.7 19.7	19.7	8.1 8.1	8.1	27.5 27.8	27.9	88.8 89.1	89.2	6.9 6.9	6.9	6.9	1.7 1.6	1.7		3.4 2.6	2.7	
6-Jan-16	Sunny	Moderate	10:50		Surface	1.0	19.7 20.1	20.0	8.1 8.1	8.1	27.9 26.4	26.4	89.3 89.3	88.8	6.9 7.0	6.9	0.5	1.8	1.8		2.7 3.1	3.5	
	·				-		20.0 19.9		8.1 8.1		26.5 27.7		88.3 87.2		6.9 6.8		6.9	1.8			3.8 2.5		
				6.2	Middle	3.1	19.9	19.9	8.1 8.1	8.1	27.6	27.6	88.3 91.7	87.8	6.8	6.8		2.4	2.4	2.5	2.7	2.6	3.2
0 (an 40	Commen	Madasata	40.40		Bottom	5.2	19.9	19.9	8.1	8.1	27.8	27.8	88.8 95.4	90.3	6.9	7.0	7.0	3.1	3.2		4.3	3.6	
8-Jan-16	Sunny	Moderate	12:16		Surface	1.0	20.0	20.1	8.2 8.2	8.2	27.8 27.8	27.8	95.5	95.5	7.4 7.4	7.4	7.4	2.2	2.2		4.3 4.0	4.2	
				6.3	Middle	3.2	20.0 20.1	20.1	8.2 8.2	8.2	28.0 28.0	28.0	95.2 95.0	95.1	7.3 7.3	7.3		2.3 2.0	2.2	2.2	3.5 3.5	3.5	3.8
					Bottom	5.3	20.0 20.0	20.0	8.2 8.2	8.2	28.1 28.0	28.1	94.8 94.6	94.7	7.3 7.3	7.3	7.3	2.2 2.1	2.2		3.3 3.8	3.6	
11-Jan-16	Sunny	Moderate	13:41		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	28.2 28.2	28.2	94.9 95.6	95.3	7.3 7.4	7.4	7.4	1.6 1.5	1.6		3.7 2.4	3.1	
				6.3	Middle	3.2	19.8 19.8	19.8	8.2 8.2	8.2	28.2 28.2	28.2	94.8 94.8	94.8	7.3 7.3	7.3	7.4	1.6 1.6	1.6	1.6	2.6 3.5	3.1	3.4
					Bottom	5.3	19.8 19.8	19.8	8.2 8.2	8.2	28.2 28.2	28.2	94.3 95.4	94.9	7.3 7.4	7.3	7.3	1.6 1.6	1.6		4.1 4.0	4.1	
13-Jan-16	Sunny	Moderate	15:08		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.4 27.3	27.4	96.3 96.8	96.6	7.5 7.6	7.5		2.7 2.6	2.7		6.1 5.4	5.8	
				6.3	Middle	3.2	19.6 19.6	19.6	8.2 8.2	8.2	27.5 27.5	27.5	96.3 96.9	96.6	7.5 7.6	7.5	7.5	2.9 2.7	2.8	2.7	4.5 5.7	5.1	5.5
					Bottom	5.3	19.6 19.5	19.6	8.2 8.2	8.2	27.6 27.5	27.6	96.3 97.2	96.8	7.5 7.6	7.5	7.5	2.8	2.7		6.2	5.5	
15-Jan-16	Rainy	Moderate	16:57		Surface	1.0	19.1	19.1	8.2	8.2	27.5	27.5	97.8	97.7	7.7	7.7		2.0	2.0		2.7	2.4	
				6.0	Middle	3.0	19.1 19.1	19.1	8.2 8.2	8.2	27.5 27.5	27.6	97.5 96.7	97.0	7.7 7.6	7.6	7.7	2.0	2.2	2.1	2.0	2.3	2.5
					Bottom	5.0	19.1 19.1	19.1	8.2 8.2	8.2	27.6 27.6	27.6	97.2 95.4	95.5	7.6 7.5	7.5	7.5	2.1	2.2		2.1	2.7	
18-Jan-16	Sunny	Moderate	07:36		1	1.0	19.1 18.3	18.3	8.2 8.2	8.2	27.6 25.5	25.5	95.5 94.9	98.2	7.5 7.5	7.8	7.0	2.1 1.9			3.3	3.1	
	•				Surface		18.3 18.4		8.2 8.2		25.5 26.7		101.4 95.2		8.0 7.7		7.7	1.8 1.9	1.9	4.0	2.9 2.8		0.7
				6.2	Middle	3.1	18.6 18.7	18.5	8.2 8.2	8.2	26.8 27.8	26.8	92.7	94.0	7.5 7.6	7.6		1.9	1.9	1.9	2.2	2.5	2.7
20 lon 10	Boiny	Moderate	10:41		Bottom	5.2	18.8	18.8	8.2	8.2	27.8	27.8	91.9	93.3	7.4	7.5	7.5	1.9	1.9		2.5	2.4	<u> </u>
20-Jan-16	Rainy	Moderate	10:41		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	28.6 28.6	28.6	93.9 92.5	93.2	7.4 7.3	7.3	7.4	3.3	3.3		4.0 4.2	4.1	İ
				6.2	Middle	3.1	18.6 18.6	18.6	8.2 8.2	8.2	28.7 28.6	28.6	93.0 94.3	93.7	7.3 7.4	7.4		3.2	3.1	3.2	5.0 5.2	5.1	4.9
					Bottom	5.2	18.7 18.6	18.6	8.2 8.2	8.2	28.7 28.6	28.6	92.1 98.4	95.3	7.3 7.8	7.5	7.5	3.1 3.3	3.2		5.8 5.0	5.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:19		Surface 1.0	18.2 18.2	18.2	8.3 8.3	8.3	28.3 28.3	28.3	92.6 92.5	92.6	7.4 7.4	7.4	7.4	2.8 2.8	2.8		6.1 6.3	6.2	
				6.7	Middle 3.4	18.3 18.3	18.3	8.3 8.3	8.3	28.4 28.3	28.3	92.3 91.0	91.7	7.4 7.2	7.3	7.4	2.9 2.9	2.9	3.0	6.2 6.3	6.3	6.5
					Bottom 5.7	18.4 18.4	18.4	8.2 8.2	8.2	28.6 28.5	28.5	90.9 90.5	90.7	7.2 7.2	7.2	7.2	3.1 3.2	3.2		6.4 7.4	6.9	
25-Jan-16	Sunny	Moderate	13:52		Surface 1.0	16.1 16.1	16.1	8.3 8.3	8.3	28.8 28.8	28.8	96.0 92.5	94.3	7.9 7.6	7.8	7.8	3.2 3.2	3.2		6.2 5.9	6.1	
				6.2	Middle 3.1	16.1 16.1	16.1	8.3 8.3	8.3	29.0 29.0	29.0	91.8 94.2	93.0	7.6 7.8	7.7	7.0	3.1 3.1	3.1	3.1	6.3 6.6	6.5	6.4
					Bottom 5.2	16.1 16.1	16.1	8.3 8.3	8.3	29.0 29.0	29.0	91.8 93.1	92.5	7.6 7.7	7.6	7.6	3.1 3.1	3.1		6.9 6.5	6.7	
27-Jan-16	Cloudy	Moderate	14:30		Surface 1.0	15.4 15.4	15.4	8.3 8.3	8.3	29.7 29.7	29.7	93.8 91.9	92.9	7.8 7.7	7.8	7.8	3.3 3.5	3.4		3.8 4.6	4.2	
				6.1	Middle 3.1	15.4 15.4	15.4	8.3 8.3	8.3	29.8 29.7	29.7	91.6 93.4	92.5	7.6 7.8	7.7	7.0	3.4 3.4	3.4	3.4	3.9 4.3	4.1	4.5
					Bottom 5.1	15.4 15.4	15.4	8.3 8.3	8.3	29.9 29.8	29.8	92.1 90.9	91.5	7.7 7.6	7.6	7.6	3.5 3.5	3.5		4.1 6.3	5.2	
29-Jan-16	Cloudy	Moderate	16:06		Surface 1.0	15.7 15.6	15.6	8.3 8.3	8.3	27.8 28.1	28.0	92.9 92.9	92.9	7.8 7.8	7.8	7.8	4.2 4.0	4.1		4.2 5.1	4.7	
				6.3	Middle 3.2	15.5 15.5	15.5	8.3 8.3	8.3	28.5 28.5	28.5	92.0 90.5	91.3	7.7 7.6	7.7	7.0	4.1 4.1	4.1	4.1	3.5 3.7	3.6	3.9
					Bottom 5.3	15.5 15.4	15.5	8.3 8.2	8.3	28.5 28.7	28.6	91.2 90.6	90.9	7.7 7.6	7.6	7.6	4.0 4.2	4.1		3.8 3.2	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ıration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:16		Surface	1.0	16.0	16.0	8.1	8.1	26.7	26.7	94.1	94.3	7.9	7.9		5.3	5.4		4.6	4.4	
				6.6	Middle	3.3	16.0 15.9	15.9	8.1 8.1	8.1	26.7 26.8	26.8	94.5 94.4	94.4	7.9 7.9	7.9	7.9	5.4 6.2	6.2	6.2	4.2	4.7	4.3
							15.9 16.0		8.1 8.1		26.8 27.1		94.3 95.2		7.9 8.0		0.0	6.1 7.1			3.3		1
					Bottom	5.6	15.9	16.0	8.0	8.1	27.1	27.1	95.3	95.3	8.0	8.0	8.0	6.8	7.0		4.3	3.8	
4-Jan-16	Sunny	Moderate	13:59		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	25.9 26.0	26.0	91.6 92.3	92.0	7.2 7.2	7.2		5.1 5.7	5.4		1.3 1.5	1.4	
				6.3	Middle	3.2	19.7 19.7	19.7	8.2 8.2	8.2	27.1 27.1	27.1	89.9 90.1	90.0	7.0 7.0	7.0	7.1	8.2 7.5	7.9	6.9	1.7	1.5	1.6
					Bottom	5.3	19.7	19.7	8.1	8.1	28.3	28.3	90.2	90.3	7.0	7.0	7.0	7.8	7.5		1.7	1.8	
6-Jan-16	Sunny	Moderate	15:33		Surface	1.0	19.7 20.6	20.6	8.1 8.2	8.2	28.2 25.5	25.5	90.4 94.6	94.8	7.0 7.3	7.2		7.1 4.1	4.2		1.8 2.9	2.9	
	•						20.5		8.2 8.2		25.5 26.4		94.9 92.7		7.4 7.2	7.3	7.3	4.2 4.5	4.2		2.9 3.9		l
				6.4	Middle	3.2	20.3	20.3	8.2	8.2	26.5	26.4	92.2	92.5	7.1	7.2		4.1	4.3	4.3	3.2	3.6	3.7
					Bottom	5.4	20.2 20.3	20.2	8.1 8.1	8.1	27.1 27.0	27.1	94.0 92.9	93.5	7.3 7.2	7.2	7.2	4.4 4.2	4.3		5.3 3.7	4.5	
8-Jan-16	Sunny	Moderate	16:46		Surface	1.0	20.3 20.3	20.3	8.2 8.2	8.2	28.2 28.2	28.2	97.6 98.9	98.3	7.5 7.6	7.5		6.6 6.5	6.6		5.2 5.0	5.1	
				6.1	Middle	3.1	20.2	20.2	8.2	8.2	28.6	28.6	95.9	97.3	7.3	7.4	7.5	6.5	6.5	6.5	4.7	4.5	4.9
					Bottom	5.1	20.2	20.2	8.2 8.2	8.2	28.5 28.8	28.8	98.6 96.4	97.6	7.6 7.4	7.5	7.5	6.5 6.4	6.5		4.2	5.1	!
11-Jan-16	Rainy	Moderate	08:40				20.2 19.7		8.2 8.2		28.9 27.5		98.7 93.7		7.6 7.3		7.5	6.5 2.6			5.8 3.1		
11 0411 10	rtairy	Woderate	00.40		Surface	1.0	19.7	19.7	8.2	8.2	27.4	27.5	93.4	93.6	7.3	7.3	7.3	2.7	2.7		3.4	3.3	! !
				6.3	Middle	3.2	19.7 19.7	19.7	8.2 8.2	8.2	27.6 27.6	27.6	94.8 93.2	94.0	7.4 7.2	7.3		3.2 3.1	3.2	3.0	3.6 4.3	4.0	3.9
					Bottom	5.3	19.7 19.7	19.7	8.2 8.2	8.2	27.6 27.6	27.6	95.5 92.6	94.1	7.4 7.2	7.3	7.3	3.1 3.2	3.2		3.8 5.2	4.5	
13-Jan-16	Sunny	Moderate	09:47		Surface	1.0	19.3	19.3	8.2	8.2	27.8	27.8	97.9	97.1	7.7	7.6		2.9	2.9		4.9	4.3	
				6.2	Middle	3.1	19.3 19.3	19.3	8.2 8.2	8.2	27.9 27.9	27.8	96.2 99.4	99.1	7.5 7.8	7.7	7.7	3.1	3.2	3.3	3.7 8.1	7.7	6.8
					Bottom	5.2	19.3 19.3	19.3	8.2 8.2	8.2	27.8 27.8	27.8	98.7 101.0	98.7	7.7 7.9	7.7	7.7	3.3	3.9		7.3 9.1	8.3	
45 1: 40	D. J.	Martinet	44.44		DOMOIII	3.2	19.3 19.0	19.5	8.2 8.2	0.2	27.9 27.5	27.0	96.3 96.1	90.7	7.5	7.7	7.7	4.0 1.8	3.9		7.5 2.8	0.5	<u> </u>
15-Jan-16	Rainy	Moderate	11:14		Surface	1.0	19.0	19.0	8.2	8.2	27.6	27.5	97.6	96.9	7.6 7.7	7.6	7.6	1.7	1.8		2.9	2.9]
				6.4	Middle	3.2	19.1 19.2	19.2	8.2 8.2	8.2	27.8 27.8	27.8	96.4 96.6	96.5	7.6 7.6	7.6		1.8 1.8	1.8	1.8	3.1 2.2	2.7	2.6
					Bottom	5.4	19.1 19.2	19.1	8.2 8.2	8.2	27.8 27.9	27.8	96.3 96.3	96.3	7.6 7.6	7.6	7.6	1.9	1.9		2.1	2.3	
18-Jan-16	Sunny	Moderate	13:24		Surface	1.0	18.8	18.8	8.2	8.2	26.7	26.7	94.1	94.2	7.4	7.5		1.9	1.9		2.8	2.6	
				6.3		3.2	18.8 18.9	18.9	8.2 8.2	8.2	26.7 26.8	27.0	94.2 94.5	94.2	7.5 7.5		7.5	1.8		1.9	2.4	2.5	2.6
				6.3	Middle		18.9 18.9		8.2 8.2		27.2 27.8		93.9 92.7		7.5 7.3	7.5		1.9 1.9	1.9	1.9	2.4		2.6
00.1.45			45.04		Bottom	5.3	19.0	18.9	8.2	8.2	27.7	27.7	95.1	93.9	7.5	7.4	7.4	1.9	1.9		2.8	2.8	<u> </u>
20-Jan-16	Rainy	Moderate	15:21		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.0 29.1	29.1	94.1 92.6	93.4	7.4 7.3	7.3	7.4	3.0 3.1	3.1		3.5 3.9	3.7	<u> </u>
				6.1	Middle	3.1	18.7 18.7	18.7	8.2 8.2	8.2	29.0 29.1	29.1	95.7 92.3	94.0	7.5 7.3	7.4		2.3 2.2	2.3	2.9	4.2 3.9	4.1	4.2
					Bottom	5.1	18.7 18.7	18.7	8.2 8.2	8.2	29.1 29.0	29.0	93.3 97.3	95.3	7.3 7.6	7.5	7.5	3.0	3.2		4.6 5.0	4.8	
		l		<u> </u>			18.7	1	8.2	<u> </u>	29.0		91.3	1	۵.۱			3.3	l	l	5.0	<u> </u>	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Temperat	ture (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m	1)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	17:05		Surface	1.0	18.0 18.1	18.1	8.2 8.2	8.2	27.8 27.9	27.8	95.4 95.7	95.6	7.6 7.6	7.6	7.6	2.6 2.6	2.6		4.1 3.9	4.0	
				6.8	Middle	3.4	18.1 18.1	18.1	8.2 8.2	8.2	27.8 27.8	27.8	93.6 94.2	93.9	7.5 7.5	7.5	7.0	2.7 2.8	2.8	2.8	3.1 5.1	4.1	4.1
					Bottom 5	5.8	18.1 18.1	18.1	8.2 8.2	8.2	27.8 27.8	27.8	92.7 92.3	92.5	7.4 7.4	7.4	7.4	3.1 3.0	3.1		3.5 4.6	4.1	
25-Jan-16	Sunny	Moderate	08:43		Surface	1.0	16.3 16.3	16.3	8.3 8.3	8.3	29.6 29.7	29.6	104.6 99.2	101.9	8.6 8.1	8.4	8.1	4.7 4.7	4.7		8.8 8.8	8.8	
				6.4	Middle	3.2	16.3 16.3	16.3	8.3 8.3	8.3	29.7 29.6	29.6	94.2 96.5	95.4	7.7 7.9	7.8	0	4.8 4.9	4.9	4.8	7.1 7.4	7.3	8.5
					Bottom	5.4	16.2 16.3	16.3	8.3 8.3	8.3	29.5 29.6	29.6	92.5 94.0	93.3	7.6 7.7	7.6	7.6	4.8 4.8	4.8		9.3 9.7	9.5	
27-Jan-16	Cloudy	Moderate	09:24		Surface	1.0	15.4 15.5	15.4	8.3 8.3	8.3	29.3 29.4	29.3	95.5 91.4	93.5	8.0 7.6	7.8	7.8	4.0 4.0	4.0		4.0 4.6	4.3	
				6.3	Middle	3.2	15.5 15.5	15.5	8.3 8.3	8.3	29.4 29.5	29.4	93.5 90.4	92.0	7.8 7.5	7.7	7.0	4.5 4.3	4.4	4.3	6.1 5.5	5.8	5.3
					Bottom	5.3	15.5 15.4	15.5	8.3 8.2	8.3	29.5 29.5	29.5	90.5 92.2	91.4	7.6 7.7	7.6	7.6	4.3 4.5	4.4		5.1 6.2	5.7	
29-Jan-16	Rainy	Moderate	10:44		Surface	1.0	15.4 15.4	15.4	8.2 8.2	8.2	27.8 28.0	27.9	92.0 92.7	92.4	7.8 7.8	7.8	7.8	3.1 3.1	3.1		4.2 3.5	3.9	
				6.3	Middle	3.2	15.4 15.4	15.4	8.2 8.2	8.2	28.1 28.0	28.1	91.7 92.5	92.1	7.7 7.8	7.8	7.0	3.2 3.1	3.2	3.1	3.8 2.1	3.0	3.3
					Bottom !	5.3	15.4 15.4	15.4	8.2 8.2	8.2	28.0 28.1	28.1	91.6 91.5	91.6	7.7 7.7	7.7	7.7	3.1 3.1	3.1		3.3 2.7	3.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:17		Surface	1.0	16.2 16.2	16.2	8.2 8.2	8.2	25.6 25.6	25.6	99.6 100.1	99.9	8.4 8.4	8.4		4.8 4.9	4.9		5.0 4.5	4.8	
				8.2	Middle	4.1	16.1 16.2	16.1	8.2 8.2	8.2	25.7 25.7	25.7	99.9 99.9	99.9	8.4 8.4	8.4	8.4	4.9 5.1	5.0	5.1	5.4 3.9	4.7	4.6
					Bottom	7.2	16.0 16.1	16.1	8.2 8.2	8.2	25.7 25.7	25.7	99.6 99.8	99.7	8.4 8.4	8.4	8.4	5.4 5.3	5.4		5.0	4.4	
4-Jan-16	Sunny	Moderate	08:07		Surface	1.0	19.6	19.6	8.2	8.2	25.8	25.8	89.9	89.9	7.1	7.1		3.7	3.7		3.1	2.7	
				8.5	Middle	4.3	19.6 19.6	19.6	8.2 8.1	8.1	25.8 27.6	27.6	89.8 89.7	89.5	7.1 7.0	7.0	7.1	3.6	3.7	3.8	2.2	3.2	3.0
				0.0	Bottom	7.5	19.6 19.6	19.6	8.1 8.1	8.1	27.6 28.0	27.8	89.3 91.1	90.2	6.9 7.1	7.0	7.0	3.7 4.1	4.0	0.0	3.6 2.7	3.0	0.0
6-Jan-16	Sunny	Moderate	11:39				19.6 20.2		8.1 8.1		27.6 27.0		89.3 90.0		7.0		7.0	3.8 4.5			3.3 5.5		
	,				Surface	1.0	20.1	20.2	8.1 8.1	8.1	27.0 27.1	27.0	89.5 88.7	89.8	6.9 6.9	6.9	6.9	4.5 4.5	4.5		6.4	6.0	
				8.5	Middle	4.3	20.1	20.1	8.1	8.1	27.1	27.1	88.8 89.9	88.8	6.9 7.0	6.9		4.6 4.6	4.6	4.6	6.9	6.6	6.4
			10.01		Bottom	7.5	20.0	20.1	8.1 8.1	8.1	27.4	27.3	91.2	90.6	7.1	7.0	7.0	4.5	4.6		7.0	6.5	
8-Jan-16	Sunny	Moderate	13:01		Surface	1.0	20.2	20.2	8.2 8.2	8.2	26.7 26.7	26.7	94.1 97.0	95.6	7.3 7.5	7.4	7.4	5.3 5.4	5.4		5.4 5.8	5.6	
				8.3	Middle	4.2	20.1 20.1	20.1	8.2 8.2	8.2	26.7 26.7	26.7	94.0 96.9	95.5	7.3 7.5	7.4		5.3 5.5	5.4	5.4	6.2 6.6	6.4	6.1
					Bottom	7.3	20.1 20.1	20.1	8.2 8.2	8.2	26.8 26.7	26.8	92.9 94.7	93.8	7.2 7.4	7.3	7.3	5.3 5.3	5.3		6.2 6.1	6.2	
11-Jan-16	Sunny	Moderate	12:55		Surface	1.0	19.6 19.6	19.6	8.3 8.3	8.3	27.5 27.6	27.5	93.6 94.3	94.0	7.3 7.4	7.3	7.3	3.5 3.2	3.4		4.6 5.1	4.9	
				8.8	Middle	4.4	19.5 19.5	19.5	8.3 8.3	8.3	27.6 27.5	27.6	94.0 92.7	93.4	7.3 7.2	7.3	7.3	3.2 3.5	3.4	3.4	5.0 4.2	4.6	4.8
					Bottom	7.8	19.5 19.5	19.5	8.3 8.3	8.3	27.6 27.5	27.5	93.9 93.8	93.9	7.3 7.3	7.3	7.3	3.4 3.3	3.4		4.7 5.2	5.0	
13-Jan-16	Sunny	Moderate	14:07		Surface	1.0	19.6 19.5	19.6	8.3 8.3	8.3	27.0 27.1	27.0	96.8 97.4	97.1	7.6 7.6	7.6		3.3 3.4	3.4		6.0 5.0	5.5	
				8.6	Middle	4.3	19.5	19.5	8.3	8.3	27.1 27.2 27.1	27.1	96.9	96.8	7.6 7.6	7.6	7.6	3.6 3.4	3.5	3.5	5.0 5.1 6.6	5.9	5.7
					Bottom	7.6	19.5 19.5	19.5	8.3 8.3	8.3	27.1	27.1	96.6 95.3	95.9	7.5	7.5	7.5	3.5	3.6		5.3	5.7	
15-Jan-16	Rainy	Moderate	16:10		Surface	1.0	19.5 18.8	18.8	8.3 8.0	8.0	27.2 26.9	26.9	96.4 94.7	94.5	7.5 7.5	7.5		3.6	3.9		6.1 3.2	3.5	
				8.5	Middle	4.3	18.8 18.8	18.8	8.1 8.0	8.0	26.9 26.9	26.9	94.3 94.1	94.2	7.5 7.5	7.5	7.5	3.9 4.4	4.5	4.3	3.7	3.7	3.9
				0.0	Bottom	7.5	18.8 18.8	18.8	8.0 8.0	8.0	26.9 26.9	26.9	94.2 93.6	93.9	7.5 7.4	7.5	7.5	4.5 4.6	4.6		3.9 4.3	4.5	
18-Jan-16	Sunny	Moderate	08:24		1		18.8 18.2		8.0 8.2		26.9 26.3		94.2 92.3		7.5 7.4		7.5	4.6 2.9			4.6 3.2		
	,				Surface	1.0	18.2 18.4	18.2	8.2 8.2	8.2	26.6 27.1	26.5	94.5 92.4	93.4	7.6 7.4	7.5	7.5	2.8 3.0	2.9		2.6 2.8	2.9	
				8.6	Middle	4.3	18.4	18.4	8.2 8.2	8.2	27.1 27.1	27.1	91.7 91.5	92.1	7.4 7.4	7.4		3.0	3.0	3.0	4.3	3.6	3.3
00 1 10	D. C.	Malant	44.44		Bottom	7.6	18.3	18.3	8.2	8.2	27.1	27.1	91.4	91.5	7.3	7.3	7.3	3.1	3.1		3.6	3.3	
20-Jan-16	Rainy	Moderate	11:41		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	27.5 27.5	27.5	92.6 93.5	93.1	7.4 7.5	7.4	7.4	3.2	3.2		2.9	2.9	
				8.3	Middle	4.2	18.3 18.3	18.3	8.2 8.2	8.2	27.5 27.5	27.5	94.3 92.1	93.2	7.5 7.4	7.4		3.1 3.1	3.1	3.2	4.3 3.4	3.9	3.5
					Bottom	7.3	18.3 18.3	18.3	8.2 8.2	8.2	27.6 27.6	27.6	92.6 92.5	92.6	7.4 7.4	7.4	7.4	3.3 3.2	3.3		4.0 3.6	3.8	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	13:01		Surface 1.0	18.0 17.9	18.0	8.2 8.2	8.2	27.9 28.0	28.0	91.0 91.3	91.2	7.3 7.3	7.3	7.3	4.8 4.7	4.8		5.6 5.8	5.7	
				8.4	Middle 4.2	18.0 18.0	18.0	8.2 8.2	8.2	28.1 28.0	28.0	90.9 90.9	90.9	7.3 7.3	7.3	7.5	4.9 4.8	4.9	4.9	5.4 5.7	5.6	5.6
					Bottom 7.4	17.9 18.0	18.0	8.2 8.2	8.2	28.0 28.0	28.0	90.6 90.5	90.6	7.3 7.3	7.3	7.3	5.1 5.0	5.1		5.7 5.3	5.5	
25-Jan-16	Sunny	Moderate	13:07		Surface 1.0	14.6 14.6	14.6	8.5 8.5	8.5	27.8 27.7	27.8	90.4 90.6	90.5	7.7 7.8	7.8	7.8	5.8 6.1	6.0		8.1 9.0	8.6	
				8.2	Middle 4.1	14.6 14.6	14.6	8.5 8.5	8.5	27.9 28.0	27.9	89.8 90.1	90.0	7.7 7.7	7.7	7.0	5.9 5.7	5.8	5.9	11.3 11.1	11.2	10.6
					Bottom 7.2	14.6 14.6	14.6	8.5 8.5	8.5	28.0 28.0	28.0	89.5 90.2	89.9	7.7 7.7	7.7	7.7	5.9 6.0	6.0		11.7 12.3	12.0	
27-Jan-16	Cloudy	Moderate	13:41		Surface 1.0	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.4	29.3	89.8 89.5	89.7	7.6 7.6	7.6	7.6	6.6 6.5	6.6		7.6 7.9	7.8	
				8.4	Middle 4.2	14.5 14.5	14.5	8.3 8.3	8.3	29.4 29.4	29.4	89.7 89.5	89.6	7.6 7.6	7.6	7.0	6.7 6.7	6.7	6.7	7.8 8.3	8.1	8.3
					Bottom 7.4	14.5 14.5	14.5	8.3 8.3	8.3	29.4 29.4	29.4	89.2 89.3	89.3	7.6 7.6	7.6	7.6	6.6 6.8	6.7		8.9 8.9	8.9	
29-Jan-16	Cloudy	Moderate	15:14		Surface 1.0	15.6 15.5	15.6	8.2 8.2	8.2	26.4 27.1	26.8	92.3 91.9	92.1	7.8 7.8	7.8	7.8	8.3 8.5	8.4		4.4 4.9	4.7	
				8.1	Middle 4.1	15.3 15.4	15.4	8.2 8.2	8.2	27.8 27.6	27.7	91.2 91.8	91.5	7.7 7.8	7.7	7.0	9.0 8.9	9.0	8.7	6.3 7.2	6.8	5.7
					Bottom 7.1	15.3 15.4	15.4	8.2 8.2	8.2	28.1 28.0	28.1	91.0 90.8	90.9	7.7 7.7	7.7	7.7	8.8 8.7	8.8		5.3 6.0	5.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salinit	ty (ppt)	DO Satu	ıration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	13:07		Surface	1.0	16.0 16.0	16.0	8.2 8.2	8.2	25.8 25.8	25.8	99.7 100.1	99.9	8.4 8.4	8.4		4.9 4.9	4.9		4.2 4.5	4.4	
				8.4	Middle	4.2	16.0	16.0	8.2	8.2	26.0	26.0	99.3	99.4	8.4	8.4	8.4	4.9	5.0	5.0	3.9	4.0	4.6
					Bottom	7.4	16.0 15.9	15.9	8.2 8.2	8.2	26.0 26.1	26.1	99.5 98.7	98.8	8.4 8.3	8.3	8.3	5.1 5.3	5.2		4.1 6.0	5.3	
4 1 40	0	Martinet	40.50		DOMOIT	7.4	15.9	13.9	8.2	0.2	26.1	20.1	98.8	90.0	8.3	0.5	0.5	5.1	5.2		4.5	3.3	igwdown
4-Jan-16	Sunny	Moderate	12:59		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	26.4 26.4	26.4	93.5 93.2	93.4	7.3 7.3	7.3	7.3	2.8 3.0	2.9		2.0 2.1	2.1	
				8.2	Middle	4.1	19.7 19.7	19.7	8.2 8.2	8.2	26.7 26.8	26.7	92.0 92.8	92.4	7.2 7.3	7.2	7.5	3.1 2.9	3.0	3.2	2.9 2.5	2.7	2.5
					Bottom	7.2	19.7 19.7	19.7	8.2 8.2	8.2	27.0 27.2	27.1	91.5 92.4	92.0	7.1 7.2	7.2	7.2	3.4 3.7	3.6		3.0 2.1	2.6	
6-Jan-16	Sunny	Moderate	14:42		Surface	1.0	20.7	20.6	8.2	8.2	27.3	27.3	90.3	90.0	6.9	6.9		16.2	15.7		16.4	15.7	
				8.4	Middle	4.2	20.6 20.5	20.4	8.2 8.2	8.2	27.4 27.5	27.5	89.6 89.5	89.1	6.9 6.9	6.8	6.9	15.1 16.1	16.0	16.1	15.0 18.0	17.9	17.1
				0		7.4	20.4	20.3	8.2 8.2	8.2	27.6 27.6	27.6	88.7 88.0	88.4	6.8 6.8	6.8	6.8	15.9 16.6	16.5	10.1	17.8 17.6	17.6	'''
0.155.40	Common	Madazata	40.00		Bottom	7.4	20.3	20.3	8.2	0.2	27.7	27.0	88.8	00.4	6.8	0.0	0.0	16.3	10.5		17.6	17.0	
8-Jan-16	Sunny	Moderate	16:00		Surface	1.0	20.2 20.2	20.2	8.3 8.2	8.3	28.1 28.1	28.1	92.5 94.1	93.3	7.1 7.2	7.2	7.1	5.8 5.8	5.8		15.4 15.0	15.2	
				8.6	Middle	4.3	20.1 20.1	20.1	8.3 8.2	8.3	28.4 28.4	28.4	90.6 92.7	91.7	7.0 7.1	7.0		5.7 5.8	5.8	5.8	17.6 18.0	17.8	17.3
					Bottom	7.6	20.1 20.1	20.1	8.3 8.2	8.3	28.6 28.7	28.6	90.8 93.1	92.0	7.0 7.1	7.0	7.0	5.8 5.8	5.8		19.1 18.7	18.9	
11-Jan-16	Rainy	Moderate	09:22		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.4 27.2	27.3	93.2 94.1	93.7	7.3 7.4	7.3		2.6 2.7	2.7		4.0 4.5	4.3	
				8.8	Middle	4.4	19.5	19.5	8.2	8.2	27.7	27.7	92.1	93.9	7.2	7.3	7.3	2.6	2.7	2.7	3.9	4.0	4.5
					Bottom	7.8	19.5 19.5	19.5	8.2 8.2	8.2	27.7 27.7	27.7	95.6 94.0	93.3	7.5 7.3	7.3	7.3	2.8	2.7		4.1 4.4	5.1	
13-Jan-16	Sunny	Moderate	10:59				19.5 19.2		8.2 8.2		27.7 27.9		92.5 96.5		7.2 7.6		7.0	2.6	1		5.8 5.6		
10 0411 10	Curiny	Woderate	10.00		Surface	1.0	19.2	19.2	8.2	8.2	27.9	27.9	96.0	96.3	7.5	7.5	7.6	3.2	3.1		5.9	5.8	
				8.6	Middle	4.3	19.2 19.2	19.2	8.2 8.2	8.2	27.9 27.9	27.9	99.0 95.1	97.1	7.8 7.5	7.6		2.8 3.0	2.9	3.1	5.1 6.4	5.8	6.1
					Bottom	7.6	19.2 19.2	19.2	8.2 8.2	8.2	27.8 27.9	27.9	96.7 95.6	96.2	7.6 7.5	7.5	7.5	3.4 3.2	3.3		5.8 7.8	6.8	
15-Jan-16	Rainy	Moderate	11:58		Surface	1.0	18.8 18.8	18.8	8.2 8.3	8.3	27.8 27.9	27.8	95.1 95.4	95.3	7.5 7.5	7.5		2.8 3.0	2.9		4.0 4.0	4.0	
				8.6	Middle	4.3	18.9	18.9	8.2 8.2	8.2	28.0	28.0	94.7	94.4	7.5 7.4	7.4	7.5	2.9	2.9	2.9	2.6	3.1	3.4
					Bottom	7.6	18.9 18.9	18.9	8.2	8.2	28.0 28.0	28.0	94.1 94.2	93.7	7.4	7.4	7.4	2.9	2.9		3.3	3.1	
18-Jan-16	Sunny	Moderate	12:39		Surface	1.0	18.9 18.3	18.3	8.2 8.3	8.3	28.1 26.6	26.6	93.2 93.1	92.9	7.3 7.5	7.4		3.3	1		2.8 5.6	5.8	
							18.3 18.3		8.3 8.3		26.5 26.9		92.6 93.5		7.4 7.5		7.4	3.2	3.3		5.9 5.9		
				8.5	Middle	4.3	18.4 18.4	18.4	8.3 8.3	8.3	26.9 27.1	26.9	92.5 92.3	93.0	7.4 7.4	7.4		3.3	3.3	3.3	5.7	5.8	5.9
					Bottom	7.5	18.4	18.4	8.3	8.3	27.1	27.1	92.9	92.6	7.4	7.4	7.4	3.3	3.2		6.2	6.2	
20-Jan-16	Rainy	Moderate	14:24		Surface	1.0	18.1 18.0	18.1	8.3 8.3	8.3	28.3 28.4	28.4	94.3 93.7	94.0	7.5 7.5	7.5	7.5	5.5 5.0	5.3		7.5 8.3	7.9	
				8.5	Middle	4.3	18.1 18.1	18.1	8.3 8.3	8.3	28.5 28.5	28.5	94.5 94.9	94.7	7.5 7.6	7.5	7.5	5.2 5.0	5.1	5.2	8.2 8.1	8.2	8.7
					Bottom	7.5	18.1 18.1	18.1	8.3 8.3	8.3	28.5 28.5	28.5	93.2 92.9	93.1	7.4 7.4	7.4	7.4	5.3 5.1	5.2	1	10.3	10.0	
<u> </u>		<u> </u>	<u> </u>	I			18.1	l	8.3	<u> </u>	∠ర.5	l	92.9	1	1.4	l	<u> </u>	1.0	1	<u> </u>	9.7	<u> </u>	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:25		Surface	1.0	17.9 17.9	17.9	8.2 8.2	8.2	27.0 27.0	27.0	90.6 90.4	90.5	7.4 7.3	7.3	7.3	5.2 5.1	5.2		10.4 10.2	10.3	
				8.5	Middle	4.3	17.9 17.9	17.9	8.2 8.2	8.2	27.0 27.0	27.0	90.1 89.7	89.9	7.3 7.2	7.3	7.5	5.4 5.3	5.4	5.4	11.6 11.4	11.5	11.1
					Bottom	7.5	17.9 18.0	17.9	8.2 8.2	8.2	27.0 27.0	27.0	89.5 89.1	89.3	7.2 7.2	7.2	7.2	5.5 5.5	5.5		11.7 11.4	11.6	
25-Jan-16	Sunny	Moderate	09:30		Surface	1.0	14.5 14.5	14.5	8.3 8.3	8.3	28.9 28.8	28.8	91.5 91.0	91.3	7.8 7.8	7.8	7.8	7.3 7.5	7.4		11.4 11.5	11.5	
				8.4	Middle	4.2	14.5 14.6	14.6	8.3 8.3	8.3	28.8 28.9	28.8	90.8 90.8	90.8	7.7 7.7	7.7		7.1 7.2	7.2	7.3	11.7 11.1	11.4	11.7
					Bottom	7.4	14.5 14.6	14.5	8.3 8.3	8.3	28.8 28.8	28.8	89.7 90.4	90.1	7.7 7.7	7.7	7.7	7.3 7.2	7.3		12.8 11.3	12.1	
27-Jan-16	Cloudy	Moderate	10:12		Surface	1.0	14.5 14.5	14.5	8.3 8.3	8.3	29.0 29.0	29.0	90.3 93.5	91.9	7.7 8.0	7.8	7.8	5.5 5.5	5.5		6.9 7.8	7.4	
				8.8	Middle	4.4	14.5 14.5	14.5	8.3 8.3	8.3	29.1 29.2	29.2	91.8 90.0	90.9	7.8 7.7	7.8	7.0	5.9 5.7	5.8	5.7	6.4 6.8	6.6	7.2
					Bottom	7.8	14.5 14.5	14.5	8.3 8.3	8.3	29.2 29.3	29.2	90.3 89.2	89.8	7.7 7.6	7.7	7.7	5.8 5.8	5.8		7.4 7.9	7.7	
29-Jan-16	Rainy	Moderate	11:26		Surface	1.0	15.3 15.3	15.3	8.3 8.3	8.3	27.2 27.3	27.3	90.9 91.0	91.0	7.7 7.7	7.7	7.7	6.0 5.8	5.9		5.3 6.7	6.0	
				8.9	Middle	4.5	15.2 15.2	15.2	8.2 8.2	8.2	28.4 28.4	28.4	90.8 91.0	90.9	7.7 7.7	7.7		6.5 6.3	6.4	6.2	6.1 5.9	6.0	6.1
					Bottom	7.9	15.3 15.3	15.3	8.2 8.2	8.2	28.5 28.4	28.5	90.2 90.3	90.3	7.6 7.6	7.6	7.6	6.5 6.1	6.3		5.0 7.3	6.2	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:34		Surface	1.0	16.4 16.5	16.5	8.2 8.2	8.2	26.5 26.6	26.5	99.1 99.5	99.3	8.3 8.3	8.3	0.0	4.6 4.7	4.7		4.2 3.4	3.8	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	4.9	-	-	3.5
					Bottom	2.3	16.2 16.2	16.2	8.2 8.2	8.2	26.5 26.5	26.5	98.9 99.2	99.1	8.3 8.3	8.3	8.3	4.9 5.0	5.0		2.3 4.0	3.2	
4-Jan-16	Sunny	Moderate	07:47		Surface	1.0	19.5	19.5	8.1	8.1	26.1	26.1	91.9	91.7	7.2	7.2		3.3	3.3		2.8	2.5	
				3.4	Middle	1.0	19.5	-	8.1	-	26.1	20.1	91.5		7.2	7.2	7.2	3.2	3.5	3.7	2.1	-	2.8
				3.4			- 19.6		- 8.1		26.2		91.1		7.2	-		3.9	-	3.1	2.7		2.0
6-Jan-16	Cuppy	Moderate	11:24		Bottom	2.4	19.5	19.6	8.1 8.1	8.1	26.2 25.9	26.2	91.9 95.5	91.5	7.2	7.2	7.2	4.0	4.0		3.3	3.0	
0-Jan-16	Sunny	Moderate	11.24		Surface	1.0	20.2	20.2	8.1	8.1	25.9	25.9	94.1	94.8	7.3	7.4	7.4	2.4	2.4		3.2	3.1	
				3.1	Middle	-	-	-		-	-	-	-	-		-		-	-	2.4	-	-	3.3
					Bottom	2.1	20.0 20.1	20.1	8.1 8.1	8.1	26.5 26.3	26.4	94.6 94.1	94.4	7.4 7.3	7.3	7.3	2.4 2.3	2.4		3.5 3.5	3.5	
8-Jan-16	Sunny	Moderate	12:44		Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	26.5 26.5	26.5	95.7 96.2	96.0	7.4 7.5	7.4	7.4	3.3 3.4	3.4		3.4 3.7	3.6	
				3.1	Middle	-	-	-		-	-	-	-	-		-	7.4	-	-	3.4	-	-	4.0
					Bottom	2.1	20.2 19.8	20.0	8.2 8.2	8.2	26.7 27.4	27.0	96.4 96.3	96.4	7.5 7.5	7.5	7.5	3.3 3.3	3.3		4.0 4.8	4.4	
11-Jan-16	Sunny	Moderate	13:10		Surface	1.0	19.6	19.6	8.2	8.2	27.8 27.8	27.8	93.5 94.0	93.8	7.3	7.3		2.5	2.5		3.2	3.6	
				3.2	Middle	_	19.6	-	8.2	_	- 27.8	_	94.0	-	7.3	_	7.3	2.5	_	2.5	3.9	_	4.0
					Bottom	2.2	19.5	19.6	8.2	8.2	28.1	28.1	94.8	93.8	7.4	7.3	7.3	2.5	2.5		5.4	4.3	
13-Jan-16	Sunny	Moderate	14:24		Surface	1.0	19.6 19.3	19.4	8.2 8.2	8.2	28.0 27.1	27.1	92.8 95.2	94.7	7.2 7.5	7.4	7.0	2.5 4.5	4.7		3.1 8.2	8.0	
						1.0	19.4		8.2		27.1		94.2	94.7	7.4	7.4	7.4	4.8	4.7		7.7		_
				3.5	Middle	-	- 19.3	-	8.2	-	- 27.1	-	94.5	-	7.4	-		- 4.4	-	4.7	6.0	-	7.0
45.1.40			40.07		Bottom	2.5	19.3	19.3	8.2	8.2	27.1	27.1	94.2	94.4	7.4	7.4	7.4	4.7	4.6		6.0	6.0	
15-Jan-16	Rainy	Moderate	16:27		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	27.2 27.2	27.2	96.7 96.3	96.5	7.7 7.6	7.7	7.7	3.2 3.0	3.1		3.8 3.0	3.4	
				3.2	Middle	-	-	-		-	-	-	-	-		-		-	-	3.1	-	-	3.3
					Bottom	2.2	18.8 18.8	18.8	8.2 8.2	8.2	27.2 27.2	27.2	96.5 96.3	96.4	7.7 7.6	7.6	7.6	3.1 3.1	3.1		3.2 2.9	3.1	
18-Jan-16	Sunny	Moderate	08:06		Surface	1.0	18.2 18.2	18.2	8.2 8.2	8.2	25.6 25.8	25.7	91.0 91.5	91.3	7.4 7.4	7.4		2.1 2.2	2.2		3.4 2.8	3.1	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.2	-	-	2.7
					Bottom	2.3	18.3	18.3	8.2	8.2	26.4	26.3	91.5	91.5	7.4	7.4	7.4	2.1	2.1		2.3	2.2	
20-Jan-16	Rainy	Moderate	11:22		Surface	1.0	18.3 18.2	18.2	8.2 8.2	8.2	26.1 27.6	27.6	91.4 93.9	94.3	7.4 7.5	7.5		4.4	4.5		3.4	3.1	
				3.4	Middle		18.2	-	8.2	-	27.6	-	94.7		7.6		7.5	4.6	 	4.6	2.7	-	3.5
				3.4			18.2		8.2		27.6		94.9	04.7	7.6	7.0	7.0	4.5	1.0	٠.٠	4.4		5.5
					Bottom	2.4	18.2	18.2	8.2	8.2	27.6	27.6	94.5	94.7	7.6	7.6	7.6	4.7	4.6		3.3	3.9	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Temper	ature (°C)	ţ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:46		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	28.0 28.0	28.0	90.4 89.2	89.8	7.2 7.1	7.2	7.2	3.1 2.9	3.0		5.0 4.9	5.0	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	3.2	-	-	4.7
					Bottom	2.3	18.2 18.1	18.1	8.2 8.2	8.2	28.2 28.1	28.2	89.0 89.7	89.4	7.1 7.2	7.1	7.1	3.2 3.3	3.3		4.5 4.2	4.4	
25-Jan-16	Sunny	Moderate	13:21		Surface	1.0	14.7 14.7	14.7	8.3 8.3	8.3	27.8 27.8	27.8	91.1 91.0	91.1	7.8 7.8	7.8	7.8	10.4 10.7	10.6		13.7 13.5	13.6	
				3.2	Middle	-	-	-		-		i	1 1	-	-	-	7.0	-	-	10.6	-	-	13.6
					Bottom	2.2	14.6 14.6	14.6	8.3 8.3	8.3	27.9 27.9	27.9	90.5 89.7	90.1	7.8 7.7	7.7	7.7	10.5 10.5	10.5		13.5 13.7	13.6	
27-Jan-16	Cloudy	Moderate	13:59		Surface	1.0	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.2	29.3	89.5 89.6	89.6	7.6 7.6	7.6	7.6	6.9 7.0	7.0		6.8 7.0	6.9	
				3.3	Middle	-	-	-		-		-	1 1	-	-	-	7.0	-	-	7.0	-	-	7.1
					Bottom	2.3	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.3	29.3	89.3 89.5	89.4	7.6 7.6	7.6	7.6	7.0 6.9	7.0		7.6 6.8	7.2	
29-Jan-16	Cloudy	Moderate	15:34		Surface	1.0	15.6 15.6	15.6	8.3 8.3	8.3	26.9 26.9	26.9	92.1 92.4	92.3	7.8 7.8	7.8	7.8	6.3 6.5	6.4		4.8 5.7	5.3	
				3.2	Middle	-	-	-	-	-	-	-	1 1	-	-	-	1.0	-	-	6.6	-	-	5.6
					Bottom	2.2	15.5 15.4	15.4	8.2 8.2	8.2	27.5 27.9	27.7	91.2 90.9	91.1	7.7 7.7	7.7	7.7	6.8 6.8	6.8		6.3 5.2	5.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ţ.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:50		Surface	1.0	16.3 16.3	16.3	8.1 8.1	8.1	26.9 26.9	26.9	99.8 99.5	99.7	8.3 8.3	8.3	0.0	4.9 4.6	4.8		2.5 3.0	2.8	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	5.2	-	-	2.8
					Bottom	2.5	15.9 16.0	16.0	8.1 8.1	8.1	26.8 26.8	26.8	97.9 98.1	98.0	8.2 8.2	8.2	8.2	5.7 5.5	5.6		3.0 2.6	2.8	
4-Jan-16	Sunny	Moderate	13:17		Surface	1.0	19.8	19.8	8.2	8.2	26.7	26.7	94.7	94.0	7.4	7.3		3.4	3.3		2.7	2.6	
				3.2	Middle	-	19.8	-	8.2	-	26.7	-	93.3	-	7.3	-	7.3	3.1	-	3.2	2.5	-	2.6
					Bottom	2.2	19.8	19.8	8.2	8.2	26.7	26.7	93.1	93.5	7.3	7.3	7.3	3.1	3.1		2.2	2.6	
6-Jan-16	Sunny	Moderate	14:55		Surface	1.0	19.8 20.4	20.4	8.2	8.2	26.7	27.0	93.8 93.6	93.7	7.3	7.2		3.1	3.5		3.0	3.1	
				3.2	Middle	_	20.4	_	8.2	_	27.0	_	93.8	_	7.2	_	7.2	3.5	-	3.6	3.2	_	4.0
					Bottom	2.2	20.3	20.4	8.2	8.2	27.1	27.1	93.8	93.8	7.2	7.2	7.2	3.6	3.6		5.1	4.9	
8-Jan-16	Sunny	Moderate	16:17	<u> </u>	Surface	1.0	20.4	20.5	8.2 8.2	8.2	27.1 27.9	27.9	93.8 95.4	95.7	7.2 7.3	7.3		3.5 4.9	4.9		4.6 5.8	5.8	
				3.4	Middle	_	20.4	-	8.2	-	27.9		96.0	_	7.4	-	7.3	4.8	_	4.9	5.8	-	5.6
					Bottom	2.4	20.3	20.2	8.2	8.2	28.1	28.2	95.0	94.4	7.3	7.2	7.2	4.9	4.9		5.5	5.4	
11-Jan-16	Rainy	Moderate	09:07		Surface	1.0	20.2 19.5	19.5	8.2 8.2	8.2	28.3 27.6	27.6	93.8 95.2	95.5	7.2 7.4	7.5		4.9 2.5	2.6		5.3 4.8	5.1	
				3.2	Middle	-	19.5 -	-	8.2	-	27.6		95.7	-	7.5 -	-	7.5	2.6		2.6	5.3	-	5.5
				0.2	Bottom	2.2	19.5	19.5	8.2	8.2	27.7	27.7	96.7	96.1	7.5	7.5	7.5	2.5	2.6	2.0	5.4	5.9	0.0
42 (40	Commen	Madazata	40.44		Dottom	2.2	19.5	10.0	8.2	0.2	27.7	21.1	95.5	90.1	7.5	7.5	7.5	2.6	2.0		6.4	5.5	
13-Jan-16	Sunny	Moderate	10:41		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.8 27.8	27.8	96.1 96.0	96.1	7.5 7.5	7.5	7.5	4.3 4.3	4.3		5.7 4.9	5.3	
				3.6	Middle	-	-	-	-	-		-	-	-	-	-		-	-	4.4	-	-	5.9
					Bottom	2.6	19.4 19.3	19.4	8.2 8.2	8.2	27.8 27.8	27.8	95.3 96.6	96.0	7.4 7.5	7.5	7.5	4.3 4.7	4.5		6.5 6.3	6.4	
15-Jan-16	Rainy	Moderate	11:43		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	27.7 27.7	27.7	95.3 96.0	95.7	7.5 7.6	7.5	7.5	3.3 3.4	3.4		3.4 3.7	3.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.4	-	-	3.9
					Bottom	2.2	18.9 18.9	18.9	8.2 8.2	8.2	27.8 27.7	27.7	94.2 95.2	94.7	7.4 7.5	7.5	7.5	3.3 3.2	3.3		4.5 3.6	4.1	
18-Jan-16	Sunny	Moderate	12:57		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	25.9 25.9	25.9	92.4 91.6	92.0	7.5 7.4	7.4	7.4	1.8 1.7	1.8		2.8 2.5	2.7	
				3.2	Middle	-	-	-	-	-	-	-	-	-		-		-	-	1.8	-	-	2.7
					Bottom	2.2	18.2 18.3	18.3	8.2 8.2	8.2	26.0 26.1	26.0	92.8 92.5	92.7	7.5 7.5	7.5	7.5	1.8 1.8	1.8		2.7 2.6	2.7	
20-Jan-16	Rainy	Moderate	14:39		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	27.9 28.0	27.9	96.6 96.2	96.4	7.7 7.7	7.7	7.7	3.7 4.0	3.9		3.2 3.4	3.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	3.9	-	-	3.9
					Bottom	2.3	18.1 18.1	18.1	8.2 8.2	8.2	27.9 28.0	27.9	100.8 96.3	98.6	8.1 7.7	7.9	7.9	3.7 3.8	3.8		4.5 4.3	4.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplii	ng	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:37		Surface	1.0	17.7 17.8	17.8	8.2 8.2	8.2	27.1 27.1	27.1	92.8 93.8	93.3	7.5 7.6	7.5	7.5	4.3 4.2	4.3		4.6 5.9	5.3	
				3.4	Middle	-	-	•		-	-	-		-		-	7.5	-	-	4.4	-	-	5.4
					Bottom	2.4	17.8 17.8	17.8	8.2 8.2	8.2	27.2 27.2	27.2	91.8 91.4	91.6	7.4 7.4	7.4	7.4	4.5 4.4	4.5		6.2 4.6	5.4	
25-Jan-16	Sunny	Moderate	09:15		Surface	1.0	15.0 15.0	15.0	8.3 8.3	8.3	29.3 29.3	29.3	91.4 90.6	91.0	7.7 7.6	7.7	7.7	5.9 5.9	5.9		9.2 9.7	9.5	
				3.2	Middle	-	-	-		-	-	-		-	1 1	-	, . ,	-	-	5.9	-	-	10.4
					Bottom	2.2	15.0 15.1	15.1	8.3 8.3	8.3	29.3 29.3	29.3	90.8 89.8	90.3	7.6 7.6	7.6	7.6	5.8 5.8	5.8		11.2 11.1	11.2	
27-Jan-16	Cloudy	Moderate	09:55		Surface	1.0	14.9 14.9	14.9	8.3 8.3	8.3	29.2 29.2	29.2	89.3 88.4	88.9	7.5 7.5	7.5	7.5	6.7 6.7	6.7		10.2 10.8	10.5	
				3.3	Middle	-	-	-		-	-	-		-		-	7.5	-	-	6.7	-	-	11.5
					Bottom	2.3	14.9 15.0	15.0	8.3 8.3	8.3	29.2 29.3	29.3	88.9 89.8	89.4	7.5 7.6	7.5	7.5	6.8 6.5	6.7		12.8 11.9	12.4	
29-Jan-16	Rainy	Moderate	11:14		Surface	1.0	15.3 15.3	15.3	8.2 8.2	8.2	28.1 28.1	28.1	91.8 92.1	92.0	7.7 7.8	7.8	7.8	5.6 5.7	5.7		6.2 5.8	6.0	
				3.3	Middle	-	-	-		-	-	-		-		-	7.0	-	-	5.8	-	-	6.7
					Bottom	2.3	15.3 15.3	15.3	8.2 8.2	8.2	28.1 28.1	28.1	91.1 91.3	91.2	7.7 7.7	7.7	7.7	5.9 5.8	5.9		7.5 7.2	7.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:03		Surface	1.0	16.2 16.2	16.2	8.2 8.2	8.2	26.2 26.3	26.3	97.1 97.1	97.1	8.1 8.1	8.1		2.8 2.7	2.8		3.5 2.6	3.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	2.8	-	-	3.4
					Bottom	2.7	16.1 16.1	16.1	8.2 8.2	8.2	26.3 26.4	26.4	97.5 97.5	97.5	8.2 8.2	8.2	8.2	2.7	2.7		2.8	3.6	
4-Jan-16	Sunny	Moderate	07:16				19.6	10.0	8.2		26.1		90.5		7.1			5.5			2.8		
					Surface	1.0	19.6	19.6	8.2	8.2	26.3	26.2	91.9	91.2	7.2	7.2	7.2	5.7	5.6		2.8	2.8	
				3.8	Middle	-	19.6	-	8.2	-	27.3	-	90.6	-	- 7.1	-		6.6	-	6.1	2.8	-	2.8
					Bottom	2.8	19.6	19.6	8.2	8.2	27.1	27.2	93.4	92.0	7.3	7.2	7.2	6.3	6.5		2.7	2.8	<u> </u>
6-Jan-16	Sunny	Moderate	11:01		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	26.3 26.2	26.2	90.8 91.9	91.4	7.1 7.1	7.1	7.1	7.8 8.0	7.9		8.9 8.8	8.9	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7	-	-	7.9	-	-	8.8
					Bottom	2.9	20.1 20.0	20.1	8.1 8.1	8.1	26.5 26.6	26.6	91.2 91.5	91.4	7.1 7.1	7.1	7.1	7.9 7.8	7.9		9.2 8.1	8.7	
8-Jan-16	Sunny	Moderate	12:23		Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	26.9 26.9	26.9	95.8 96.2	96.0	7.4 7.4	7.4		2.2	2.2		2.8	2.8	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	2.2	-	-	3.0
					Bottom	2.9	19.9	19.9	8.2	8.2	27.5	27.4	96.3	95.8	7.5	7.4	7.4	2.2	2.1		3.1	3.2	
11-Jan-16	Sunny	Moderate	13:34		Surface	1.0	19.9 20.2	20.2	8.2 8.2	8.2	27.4 28.2	28.2	95.3 95.1	95.3	7.4	7.3		2.0	2.2		3.3	3.9	
				4.0		1.0	20.2	20.2	8.2		28.2		95.4		7.3	7.5	7.3	2.2			3.9		4.5
				4.0	Middle	-	20.2	-	8.2	-	28.1	-	95.4	-	7.3	-		2.2	-	2.2	4.9	-	4.5
40.1.40			=		Bottom	3.0	19.8	20.0	8.2	8.2	28.2	28.2	94.9	95.2	7.3	7.3	7.3	2.2	2.2		5.0	5.0	
13-Jan-16	Sunny	Moderate	14:55		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.1 27.0	27.1	100.1 100.4	100.3	7.8 7.8	7.8	7.8	3.7 3.4	3.6		4.3 3.6	4.0	
				4.1	Middle	-	-	-	-	-		-	-	-		-		-	-	3.5	-	-	5.2
					Bottom	3.1	19.6 19.6	19.6	8.2 8.2	8.2	27.2 27.1	27.2	99.6 100.4	100.0	7.8 7.8	7.8	7.8	3.1 3.4	3.3		5.7 7.1	6.4	ļ
15-Jan-16	Rainy	Moderate	16:49		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	27.3 27.3	27.3	95.3 95.5	95.4	7.5 7.6	7.6		3.2 3.1	3.2		2.9 3.6	3.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	3.2	-	-	3.3
					Bottom	3.1	18.9 18.9	18.9	8.2 8.2	8.2	27.4	27.4	95.0 95.2	95.1	7.5 7.5	7.5	7.5	3.1 3.1	3.1		3.1 3.5	3.3	
18-Jan-16	Sunny	Moderate	07:45		Surface	1.0	18.2	18.3	8.2	8.2	27.4 25.5	25.3	96.4	96.2	7.8	7.8		5.7	5.8		3.7	3.8	
				4.0	Middle		18.3		8.2		25.1		96.0	_	7.8		7.8	5.8	_	5.8	3.8	_	3.7
				4.0		3.0	18.2	18.3	8.2	8.2	26.1	26.3	95.0	96.8	7.7	7.0	7.8	5.6	5.7	0.0	3.4	3.5	5.,
20-Jan-16	Rainy	Moderate	10:55		Bottom		18.4 18.3		8.2 8.2		26.5 27.8		98.6 97.3	1	7.9 7.8	7.8	1.0	5.7 3.0			3.5 4.0		<u> </u>
25 54.1 .0	,				Surface	1.0	18.3	18.3	8.2	8.2	27.8	27.8	95.0	96.2	7.6	7.7	7.7	2.9	3.0		3.0	3.5	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.1	-	-	3.7
					Bottom	2.9	18.4 18.3	18.3	8.2 8.2	8.2	27.9 27.8	27.8	95.7 98.1	96.9	7.6 7.8	7.7	7.7	3.0 3.2	3.1		3.5 4.3	3.9	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:26		Surface	1.0	18.0 18.1	18.0	8.3 8.2	8.3	27.9 27.9	27.9	91.5 92.8	92.2	7.3 7.4	7.4	7.4	2.9 3.0	3.0		3.8 5.1	4.5	
				3.7	Middle	-	-	-		-	-	-	-	-	1 1	-	7.4	-	-	3.2	-	-	4.1
					Bottom	2.7	18.0 18.1	18.0	8.2 8.3	8.3	28.1 28.0	28.1	90.8 89.8	90.3	7.2 7.2	7.2	7.2	3.3 3.3	3.3		3.4 3.8	3.6	
25-Jan-16	Sunny	Moderate	13:44		Surface	1.0	15.3 15.5	15.4	8.3 8.3	8.3	27.9 28.0	28.0	91.0 90.4	90.7	7.7 7.6	7.6	7.6	5.9 5.8	5.9		5.4 5.3	5.4	
				3.9	Middle	-	-	-		-	-	-	-	-		-	7.0	-	-	5.9	-	-	7.3
					Bottom	2.9	16.0 15.8	15.9	8.3 8.3	8.3	28.9 29.1	29.0	92.5 92.4	92.5	7.7 7.7	7.7	7.7	5.8 5.8	5.8		9.5 8.6	9.1	
27-Jan-16	Cloudy	Moderate	14:22		Surface	1.0	15.0 15.0	15.0	8.3 8.3	8.3	29.3 29.3	29.3	90.9 91.1	91.0	7.7 7.7	7.7	7.7	5.2 5.3	5.3		6.2 6.7	6.5	
				3.8	Middle	-	-	-		-	-	-	-	-		-	7.7	-	-	5.3	-	-	7.0
					Bottom	2.8	15.1 15.0	15.0	8.3 8.3	8.3	29.5 29.4	29.4	91.0 89.6	90.3	7.7 7.6	7.6	7.6	5.2 5.3	5.3		6.7 8.0	7.4	
29-Jan-16	Cloudy	Moderate	15:57		Surface	1.0	15.6 15.6	15.6	8.2 8.2	8.2	28.2 28.1	28.2	93.7 93.9	93.8	7.9 7.9	7.9	7.9	8.1 8.1	8.1		8.1 8.6	8.4	
				3.9	Middle	-	-	-	-	-	-	-	-	-		-	1.5	-	-	8.2	-	-	8.2
					Bottom	2.9	15.5 15.4	15.5	8.2 8.2	8.2	28.3 28.4	28.3	92.2 93.5	92.9	7.7 7.9	7.8	7.8	8.4 8.2	8.3		7.1 8.8	8.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:23		Surface	1.0	16.1 16.1	16.1	8.1 8.1	8.1	25.6 25.6	25.6	96.1 95.8	96.0	8.1 8.1	8.1	0.4	3.2 3.1	3.2		3.7 3.8	3.8	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	3.3	-	-	4.0
					Bottom	2.9	16.1 16.1	16.1	8.1 8.1	8.1	25.9 25.9	25.9	96.2 96.2	96.2	8.1 8.1	8.1	8.1	3.5	3.4		4.1	4.2	
4-Jan-16	Sunny	Moderate	13:50		Surface	1.0	19.8	19.8	8.1	8.1	26.6	26.6	91.7	91.9	7.2	7.2		15.8	16.0		6.4	6.5	
				3.8	Middle	_	19.8	-	8.1	-	26.7	-	92.0	-	7.2	_	7.2	16.1	-	15.6	6.6	-	7.2
					Bottom	2.8	19.8	19.8	8.1	8.1	26.9	27.0	91.5	91.6	7.1	7.1	7.1	15.2	15.1		8.6	7.8	
6-Jan-16	Sunny	Moderate	15:25		Surface	1.0	19.8 20.6	20.6	8.1 8.2	8.2	27.0 25.2	25.4	91.6 92.8	93.0	7.1 7.2	7.2		15.0 8.9	9.2		7.0 5.2	5.8	
				4.0	Middle		20.6		8.2	-	25.6		93.1		7.2		7.2	9.4		9.0	6.4	-	6.0
					Bottom	3.0	20.6	20.6	8.1	8.2	26.1	26.0	92.8	92.8	7.2	7.2	7.2	8.8	8.7	0.0	5.8	6.1	0.0
8-Jan-16	Sunny	Moderate	16:36		Surface	1.0	20.6 20.3	20.3	8.2 8.2	8.2	25.8 28.1	28.1	92.8 96.8	96.7	7.2 7.4	7.4		8.6 7.5	7.4		6.4 4.5	5.2	
				4.0	Middle	-	20.3	-	8.2	-	28.0	-	96.5	-	7.4		7.4	7.2	-	7.5	5.9	-	5.5
					Bottom	3.0	20.1	20.2	8.2	8.2	28.6	28.5	96.3	96.1	7.4	7.4	7.4	7.5	7.5		5.3	5.7	
11-Jan-16	Rainy	Moderate	08:47		Surface	1.0	20.3 19.6	19.6	8.2 8.2	8.2	28.3 27.6	27.6	95.8 94.5	94.7	7.3 7.4	7.4		7.5 2.8	2.8		6.0 4.2	4.6	\vdash
				4.2	Middle	-	19.6 -	-	8.2	-	27.6		94.9	-	7.4		7.4	2.8		2.8	4.9	-	3.8
					Bottom	3.2	19.6	19.6	8.2	8.2	27.6	27.6	95.2	94.9	7.4	7.4	7.4	2.8	2.8	2.0	3.1	2.9	0.0
13-Jan-16	Cunny	Moderate	10:06		Dottom	0.2	19.6		8.2		27.6		94.6		7.4		7	2.8	2.0		2.7		
13-3411-10	Sunny	Moderate	10:06		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	27.9 27.9	27.9	94.9 95.4	95.2	7.4 7.4	7.4	7.4	5.4 5.0	5.2		5.9 6.1	6.0	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.9	-	-	10.1
					Bottom	3.1	19.4 19.4	19.4	8.2 8.2	8.2	27.9 27.9	27.9	93.7 96.2	95.0	7.3 7.5	7.4	7.4	4.5 4.5	4.5		14.3 14.0	14.2	
15-Jan-16	Rainy	Moderate	11:21		Surface	1.0	19.1 19.1	19.1	8.2 8.2	8.2	27.8 27.7	27.8	96.5 98.1	97.3	7.6 7.7	7.6	7.6	5.3 5.4	5.4		6.7 6.8	6.8	
				3.9	Middle	1	-	-	-	-	-	-	-	-		-		-	-	5.5	-	-	6.3
					Bottom	2.9	19.1 19.1	19.1	8.2 8.2	8.2	27.8 27.8	27.8	98.1 97.6	97.9	7.7 7.7	7.7	7.7	5.4 5.5	5.5		5.7 5.7	5.7	
18-Jan-16	Sunny	Moderate	13:16		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	26.0 26.3	26.1	90.9 91.7	91.3	7.3 7.3	7.3	7.3	2.6 2.8	2.7		3.2 2.4	2.8]
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.7	-	-	3.2
					Bottom	2.9	18.6 18.6	18.6	8.2 8.2	8.2	26.7 26.5	26.6	92.4 92.2	92.3	7.4 7.4	7.4	7.4	2.7 2.7	2.7		4.3 2.7	3.5	
20-Jan-16	Rainy	Moderate	15:08		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	28.4 28.4	28.4	92.9 93.4	93.2	7.4 7.4	7.4	7.4	5.8 6.1	6.0		5.5 5.5	5.5	
				3.7	Middle	-	-	-	-	-	-	-	-	-		-		-	-	6.0	-	-	5.6
					Bottom	2.7	18.4 18.4	18.4	8.2 8.2	8.2	28.4 28.6	28.5	93.8 93.0	93.4	7.4 7.4	7.4	7.4	6.0 5.8	5.9		5.7 5.7	5.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:57		Surface	1.0	18.0 17.9	18.0	8.2 8.2	8.2	27.6 27.6	27.6	90.4 90.4	90.4	7.3 7.3	7.3	7.3	5.6 5.5	5.6		8.2 8.2	8.2	
				3.9	Middle	-		-		-		-	-	-		-	7.5	-	-	5.8	-	-	8.4
					Bottom	2.9	17.9 18.0	18.0	8.2 8.2	8.2	27.6 27.7	27.7	89.8 89.6	89.7	7.2 7.2	7.2	7.2	5.9 5.8	5.9		8.0 9.2	8.6	
25-Jan-16	Sunny	Moderate	08:50		Surface	1.0	16.0 16.0	16.0	8.3 8.3	8.3	29.6 29.7	29.7	98.5 94.1	96.3	8.1 7.8	7.9	7.9	5.3 5.1	5.2		6.6 7.3	7.0	
				3.9	Middle	-		-	1 1	-	-	-	-	-		-	7.5	-	-	5.3	-	-	8.2
					Bottom	2.9	15.9 16.0	16.0	8.3 8.3	8.3	29.5 29.7	29.6	102.8 96.3	99.6	8.5 7.9	8.2	8.2	5.3 5.2	5.3		9.1 9.6	9.4	
27-Jan-16	Cloudy	Moderate	09:32		Surface	1.0	14.8 14.8	14.8	8.3 8.3	8.3	29.0 29.0	29.0	91.1 93.0	92.1	7.7 7.9	7.8	7.8	5.4 5.4	5.4		7.0 7.4	7.2	
				4.0	Middle	-		-		-	-	-	-	-		-	7.0	-	-	5.4	-	-	6.9
					Bottom	3.0	14.8 14.8	14.8	8.3 8.3	8.3	29.1 29.1	29.1	92.4 95.6	94.0	7.8 8.1	8.0	8.0	5.3 5.3	5.3		6.6 6.5	6.6	
29-Jan-16	Rainy	Moderate	10:51		Surface	1.0	15.4 15.4	15.4	8.2 8.2	8.2	27.6 27.5	27.6	93.3 92.8	93.1	7.9 7.8	7.9	7.9	3.3 3.3	3.3		3.4 4.5	4.0	
				3.8	Middle	-	1 1	-	1 1	-	-	-	-	-	-	-	1.5	-	-	3.3	-	-	4.1
					Bottom	2.8	15.4 15.4	15.4	8.2 8.2	8.2	27.8 28.0	27.9	92.3 92.5	92.4	7.8 7.8	7.8	7.8	3.3 3.2	3.3		3.8 4.3	4.1	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:23		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	26.9 27.0	26.9	94.2 94.6	94.4	7.9 7.9	7.9		3.3 3.3	3.3		3.1 3.3	3.2	
				10.6	Middle	5.3	16.0 16.0	16.0	8.2 8.2	8.2	27.2 27.2	27.2	92.9 92.6	92.8	7.8 7.8	7.8	7.9	4.8 5.0	4.9	4.6	2.8 2.6	2.7	3.3
					Bottom	9.6	16.0 16.1	16.0	8.2 8.2	8.2	27.7 27.6	27.7	95.0 94.7	94.9	7.9 7.9	7.9	7.9	5.5 5.6	5.6		3.8	3.9	
4-Jan-16	Sunny	Moderate	06:49		Surface	1.0	19.7	19.7	8.1	8.1	27.4	27.3	90.6	90.8	7.9	7.1		1.8	1.8		3.5	3.6	
				10.8	Middle	5.4	19.6 19.7	19.7	8.1 8.1	8.1	27.3 27.9	27.9	90.9 88.8	88.8	7.1 6.9	6.9	7.0	1.8	-	1.8	3.6	3.6	3.6
				10.0			19.7 19.7		8.1 8.1		27.9 28.0		88.8 88.3		6.9 6.9			1.8 1.7	1.8	1.0	3.7		3.0
C lea 40	C	Madazata	40.40		Bottom	9.8	19.7 19.9	19.7	8.1 8.2	8.1	27.9 24.5	28.0	88.9 88.5	88.6	6.9 7.0	6.9	6.9	1.8	1.8		4.3	3.7	
6-Jan-16	Sunny	Moderate	10:40		Surface	1.0	19.9	19.9	8.2	8.2	23.3	23.9	90.1	89.3	7.2	7.1	7.0	1.2	1.2		2.9	3.2	
				10.9	Middle	5.5	19.9 19.9	19.9	8.1 8.1	8.1	27.9 27.8	27.9	88.0 88.3	88.2	6.8 6.8	6.8		1.4 1.5	1.5	1.4	2.6 3.0	2.8	3.0
					Bottom	9.9	19.9 19.9	19.9	8.1 8.1	8.1	28.1 28.2	28.2	90.2 89.3	89.8	7.0 6.9	6.9	6.9	1.5 1.4	1.5		2.3 3.9	3.1	
8-Jan-16	Sunny	Moderate	12:10		Surface	1.0	20.0 20.0	20.0	8.2 8.2	8.2	27.9 27.9	27.9	93.6 93.8	93.7	7.2 7.2	7.2		6.5 6.1	6.3		6.3 6.2	6.3	
				10.6	Middle	5.3	20.0	20.0	8.2 8.2	8.2	28.0 28.1	28.0	91.3 92.2	91.8	7.0 7.1	7.1	7.2	5.8 5.9	5.9	6.0	6.4 5.7	6.1	5.9
					Bottom	9.6	20.0	20.0	8.2 8.2	8.2	28.2	28.2	91.5	91.3	7.1	7.0	7.0	5.8	5.7		4.6	5.2	
11-Jan-16	Sunny	Moderate	13:46		Surface	1.0	20.0 19.8	19.8	8.2	8.2	28.2 28.1	28.1	91.1 94.2	95.3	7.0 7.3	7.4		5.6 2.2	2.2		5.8 4.2	4.3	
				10.5	Middle	5.3	19.8 19.8	19.8	8.2 8.2	8.2	28.1 28.3	28.3	96.3 95.1	94.4	7.5 7.3	7.3	7.4	2.1	2.2	2.2	4.4 5.4	4.6	4.3
				10.5			19.8 19.8		8.2 8.2		28.3 28.6		93.6 92.9		7.2 7.2		7.0	2.1		2.2	3.8	_	4.5
13-Jan-16	Sunny	Moderate	15:15		Bottom	9.5	19.8 19.6	19.8	8.2 8.2	8.2	28.3 27.4	28.5	92.6 96.0	92.8	7.2 7.5	7.2	7.2	2.2	2.2		4.7 6.9	4.1	
10 0411 10	Curity	Woderate	10.10		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.4 27.6	27.4	96.8 96.1	96.4	7.6 7.5	7.5	7.5	2.3	2.4		5.4	6.2	
				10.6	Middle	5.3	19.6	19.6	8.2	8.2	27.6	27.6	96.0	96.1	7.5	7.5		2.4	2.3	2.3	4.1	3.7	5.3
					Bottom	9.6	19.6 19.6	19.6	8.2 8.2	8.2	27.7 27.6	27.6	96.0 96.5	96.3	7.5 7.5	7.5	7.5	2.3 2.3	2.3		5.6 6.4	6.0	
15-Jan-16	Rainy	Moderate	17:03		Surface	1.0	19.1 19.1	19.1	8.3 8.2	8.3	27.6 27.6	27.6	94.9 96.0	95.5	7.5 7.6	7.5	7.5	1.8 1.9	1.9		2.3 2.6	2.5	
				10.2	Middle	5.1	19.1 19.2	19.2	8.2 8.2	8.2	27.7 27.7	27.7	94.9 95.0	95.0	7.5 7.5	7.5	7.5	1.9 1.9	1.9	2.0	2.2 2.6	2.4	2.4
					Bottom	9.2	19.1 19.2	19.1	8.2 8.2	8.2	27.8 27.9	27.8	93.7 95.1	94.4	7.4 7.5	7.4	7.4	2.1	2.1		2.3	2.2	
18-Jan-16	Sunny	Moderate	07:30		Surface	1.0	18.5	18.4	8.2	8.2	25.5	25.6	91.7	95.4	7.4	7.6		1.2	1.2		2.1	2.2	
				10.3	Middle	5.2	18.4 19.2	19.2	8.2 8.2	8.2	25.7 28.4	28.4	99.1 93.1	95.1	7.7 7.3	7.4	7.5	1.2	1.5	1.4	2.3	2.5	2.6
				10.0			19.2 19.2		8.1 8.1	8.1	28.3 28.3		97.0 93.6	93.3	7.6 7.6		7.4	1.5 1.5	1.5	1	2.5 3.6	3.2	2.0
20-Jan-16	Rainy	Moderate	10:31	1	Bottom	9.3	19.1 18.7	19.1	8.2 8.2		28.5 28.9	28.4	92.9 93.2		7.3 7.3	7.4	7.4	1.5 2.6			2.8 4.1		
20 0011 10	romy	Moderate	10.01		Surface	1.0	18.7	18.7	8.2 8.2	8.2	28.9 29.0	28.9	92.7 92.9	93.0	7.3 7.3	7.3	7.3	2.7	2.7		3.6	3.9	
				10.6	Middle	5.3	18.8	18.8	8.2	8.2	28.9	28.9	92.8	92.9	7.3	7.3		2.6	2.8	2.7	3.7	3.7	4.0
					Bottom	9.6	18.8 18.8	18.8	8.2 8.2	8.2	29.0 29.0	29.0	92.8 92.7	92.8	7.3 7.3	7.3	7.3	2.5 2.4	2.5		4.5 4.3	4.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Temperat	ture (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	1)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:11		Surface	1.0	18.4 18.4	18.4	8.3 8.2	8.3	28.5 28.4	28.5	92.9 92.3	92.6	7.3 7.3	7.3	7.3	2.8 2.8	2.8		3.7 5.3	4.5	
				11.2	Middle	5.6	18.4 18.4	18.4	8.2 8.2	8.2	28.5 28.6	28.5	91.0 91.8	91.4	7.2 7.3	7.2	7.5	2.9 2.9	2.9	2.9	5.0 4.5	4.8	4.9
					Bottom 1	10.2	18.4 18.4	18.4	8.2 8.2	8.2	28.5 28.6	28.6	90.4 90.2	90.3	7.2 7.1	7.1	7.1	3.0 3.1	3.1		5.3 5.5	5.4	
25-Jan-16	Sunny	Moderate	14:00		Surface	1.0	15.9 15.9	15.9	8.3 8.3	8.3	29.0 28.9	28.9	90.9 93.6	92.3	7.5 7.8	7.7	7.7	4.2 4.2	4.2		7.7 7.8	7.8	
				10.5	Middle	5.3	15.9 15.9	15.9	8.3 8.3	8.3	29.0 29.1	29.1	92.4 90.6	91.5	7.7 7.5	7.6		4.4 4.1	4.3	4.2	9.2 9.3	9.3	8.5
					Bottom	9.5	15.9 15.9	15.9	8.3 8.3	8.3	29.2 29.1	29.2	90.2 92.3	91.3	7.5 7.7	7.6	7.6	4.3 4.1	4.2		8.9 8.0	8.5	
27-Jan-16	Cloudy	Moderate	14:36		Surface	1.0	15.3 15.3	15.3	8.3 8.3	8.3	29.8 29.8	29.8	91.4 92.6	92.0	7.6 7.7	7.7	7.7	9.5 9.5	9.5		12.5 13.3	12.9	
				10.2	Middle	5.1	15.3 15.3	15.3	8.3 8.3	8.3	29.9 29.9	29.9	91.4 92.4	91.9	7.6 7.7	7.7	7.7	9.4 9.5	9.5	9.5	12.2 11.9	12.1	12.6
					Bottom	9.2	15.3 15.3	15.3	8.3 8.3	8.3	29.9 29.9	29.9	91.0 91.8	91.4	7.6 7.7	7.6	7.6	9.2 9.6	9.4		12.9 12.6	12.8	
29-Jan-16	Cloudy	Moderate	16:12		Surface	1.0	15.6 15.5	15.6	8.3 8.3	8.3	28.2 28.2	28.2	92.3 91.9	92.1	7.8 7.7	7.7	7.7	5.4 5.4	5.4		4.3 5.3	4.8	
				10.2	Middle	5.1	15.5 15.5	15.5	8.3 8.3	8.3	28.7 28.7	28.7	91.6 91.8	91.7	7.7 7.7	7.7		5.3 5.5	5.4	5.5	5.1 5.3	5.2	5.5
					Bottom 9	9.2	15.5 15.5	15.5	8.2 8.3	8.3	28.8 28.8	28.8	90.3 91.4	90.9	7.6 7.7	7.6	7.6	5.5 5.6	5.6		7.1 5.6	6.4	<u> </u>

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	uration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:06		Surface	1.0	16.0 16.0	16.0	8.0 7.9	8.0	28.6 28.7	28.7	92.8 94.0	93.4	7.7 7.8	7.7		4.1 4.2	4.2		2.8 3.7	3.3	
				11.0	Middle	5.5	16.0	16.0	8.0	8.0	29.4	29.4	93.2	93.1	7.6	7.7	7.7	4.9	4.8	4.7	3.3	3.3	3.4
					Bottom	10.0	16.0 16.0	16.0	7.9 7.9	7.9	29.3 29.5	29.5	92.9 96.5	95.7	7.7 7.9	7.8	7.8	4.7 5.3	5.2		4.0	3.7	
4 1 40	0	Madagas	4440		Bottom		16.0	10.0	7.9	1.0	29.5	20.0	94.9	00	7.8	7.0	7.0	5.1	0.2		3.3	0	
4-Jan-16	Sunny	Moderate	14:10		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	25.8 25.6	25.7	91.8 92.9	92.4	7.2 7.3	7.2	7.1	6.2 6.3	6.3		3.3 2.3	2.8	i '
				10.9	Middle	5.5	19.7 19.7	19.7	8.1 8.1	8.1	28.1 28.5	28.3	89.4 88.6	89.0	6.9 6.9	6.9		5.8 5.7	5.8	6.2	3.0 2.8	2.9	3.0
					Bottom	9.9	19.7 19.7	19.7	8.1 8.1	8.1	28.6 28.7	28.6	90.9 91.2	91.1	7.0 7.0	7.0	7.0	6.3 6.6	6.5		3.5 2.9	3.2	
6-Jan-16	Sunny	Moderate	15:39		Surface	1.0	20.3 20.3	20.3	8.2 8.2	8.2	25.3 26.0	25.7	91.4 91.4	91.4	7.1 7.1	7.1		2.3 2.3	2.3		3.1 3.2	3.2	
				11.1	Middle	5.6	20.0	20.0	8.2 8.1	8.2	26.9 27.0	27.0	89.7 89.4	89.6	7.0 6.9	6.9	7.0	2.4	2.5	2.4	3.0 2.6	2.8	3.5
					Bottom	10.1	19.9	19.9	8.1	8.1	28.6	28.6	90.1	90.3	6.9	6.9	6.9	2.5	2.5		4.6	4.4	
8-Jan-16	Sunny	Moderate	16:52		Surface	1.0	20.0	20.3	8.1 8.2	8.2	28.6 28.1	28.1	90.4 95.0	95.9	7.0 7.3	7.3		3.4	3.5		4.2 3.4	3.0	
				10.3	Middle	5.2	20.3	20.1	8.2 8.2	8.2	28.0 28.7	28.7	96.8 93.5	94.0	7.4 7.2	7.2	7.3	3.6	3.7	3.6	2.5	2.6	2.7
				10.5			20.1		8.2 8.2		28.7 28.9		94.4 93.3		7.2 7.2		7.4	3.8		3.0	2.6		2.,
11-Jan-16	Rainy	Moderate	08:34		Bottom	9.3	20.0 19.7	20.0	8.2 8.2	8.2	28.9 27.4	28.9	93.0 94.1	93.2	7.1 7.3	7.1	7.1	3.6 2.4	3.6		2.6 4.0	2.4	
11 0011 10	reality	Woderate	00.04		Surface	1.0	19.7	19.7	8.2	8.2	27.3 27.4	27.3	94.8	94.5	7.4	7.4	7.4	2.2	2.3		3.8	3.9	
				10.7	Middle	5.4	19.7 19.7	19.7	8.2 8.2	8.2	27.4	27.4	94.3 95.2	94.8	7.3 7.4	7.4		2.5	2.5	2.4	5.0 4.5	4.8	4.3
					Bottom	9.7	19.7 19.7	19.7	8.2 8.2	8.2	27.5 27.5	27.5	92.9 97.6	95.3	7.2 7.6	7.4	7.4	2.5 2.5	2.5		4.5 3.6	4.1	
13-Jan-16	Sunny	Moderate	09:40		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.9 28.0	28.0	97.1 95.2	96.2	7.6 7.4	7.5	7.5	3.2 3.0	3.1		7.5 6.3	6.9	
				10.6	Middle	5.3	19.4 19.4	19.4	8.2 8.2	8.2	27.9 28.0	27.9	97.0 95.7	96.4	7.6 7.5	7.5	7.5	3.4 3.2	3.3	3.2	5.1 6.6	5.9	6.4
					Bottom	9.6	19.4 19.4	19.4	8.2 8.2	8.2	27.9 28.0	27.9	99.2 95.1	97.2	7.8 7.4	7.6	7.6	3.4	3.3		6.8 5.7	6.3	
15-Jan-16	Rainy	Moderate	11:07		Surface	1.0	19.1 19.1	19.1	8.2 8.2	8.2	27.7 27.7	27.7	96.1 98.5	97.3	7.5 7.7	7.6		2.1	2.2		2.6 3.0	2.8	
				10.0	Middle	5.0	19.1	19.1	8.2	8.2	27.9	27.9	98.0	96.9	7.7	7.6	7.6	2.1	2.2	2.2	3.1	2.8	2.8
					Bottom	9.0	19.1 19.1	19.1	8.2 8.2	8.2	27.9 27.9	27.9	95.7 94.9	96.0	7.5 7.4	7.5	7.5	2.2	2.2		2.4	2.8	
18-Jan-16	Sunny	Moderate	13:30		Surface	1.0	19.1 18.9	18.9	8.2 8.2	8.2	28.0 26.6	26.7	97.1 91.7	92.2	7.6 7.3	7.3		3.0	3.0		3.2	3.0	
				40.0			18.9 19.2		8.2 8.2		26.8 28.7	-	92.6 92.3		7.3 7.2		7.3	3.0 5.1		4.0	2.8		0.7
				10.6	Middle	5.3	19.2 19.2	19.2	8.2 8.2	8.2	28.7	28.7	91.2 88.9	91.8	7.1 6.9	7.2		5.5 5.5	5.3	4.6	2.3	2.5	2.7
00 1: 40	D. C.	Malana	45.04		Bottom	9.6	19.0	19.1	8.2	8.2	28.8	28.7	91.3	90.1	7.1	7.0	7.0	5.2	5.4		2.7	2.6	<u> </u>
20-Jan-16	Rainy	Moderate	15:34		Surface	1.0	18.7 18.7	18.7	8.3 8.3	8.3	29.1 29.1	29.1	94.3 92.2	93.3	7.4 7.2	7.3	7.3	1.9 2.0	2.0		3.2 2.4	2.8	
				10.3	Middle	5.2	18.7 18.7	18.7	8.3 8.2	8.3	29.1 29.1	29.1	93.6 92.4	93.0	7.4 7.3	7.3		1.9 2.0	2.0	2.0	4.0 3.1	3.6	3.1
					Bottom	9.3	18.7 18.7	18.7	8.3 8.2	8.3	29.1 29.1	29.1	92.2 91.6	91.9	7.2 7.2	7.2	7.2	2.0 1.8	1.9		2.9 2.8	2.9	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	Tempe	rature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	17:11		Surface 1.0) 18.1 18.1	18.1	8.2 8.3	8.3	27.9 27.9	27.9	93.9 94.1	94.0	7.5 7.6	7.5	7.5	2.2 2.3	2.3		4.1 4.0	4.1	
				11.3	Middle 5.3	7 18.1 18.1	18.1	8.2 8.2	8.2	27.9 27.9	27.9	93.9 93.4	93.7	7.5 7.5	7.5	7.5	2.4 2.3	2.4	2.4	4.4 4.0	4.2	4.4
					Bottom 10.	3 18.1 18.1	18.1	8.2 8.2	8.2	27.9 27.9	27.9	91.7 92.3	92.0	7.3 7.4	7.4	7.4	2.5 2.5	2.5		4.7 5.2	5.0	
25-Jan-16	Sunny	Moderate	08:37		Surface 1.0	16.2 16.2	16.2	8.3 8.2	8.3	29.7 29.7	29.7	103.8 100.7	102.3	8.6 8.3	8.4	8.1	8.3 8.6	8.5		12.1 14.3	13.2	
				10.3	Middle 5.2	16.1 16.1	16.1	8.3 8.2	8.2	29.7 29.6	29.7	93.7 96.4	95.1	7.7 7.9	7.8	0.1	10.4 10.1	10.3	9.7	13.5 13.1	13.3	13.7
					Bottom 9.3	3 16.1 16.1	16.1	8.3 8.2	8.2	29.7 29.5	29.6	92.7 93.4	93.1	7.6 7.7	7.6	7.6	10.4 10.3	10.4		14.6 14.3	14.5	
27-Jan-16	Cloudy	Moderate	09:16		Surface 1.0	15.0 15.0	15.0	8.3 8.3	8.3	29.3 29.3	29.3	90.4 94.2	92.3	7.6 7.9	7.8	7.8	12.3 12.6	12.5		5.2 4.3	4.8	
				10.2	Middle 5.	1 15.0 15.1	15.1	8.2 8.3	8.3	29.5 29.5	29.5	92.8 90.3	91.6	7.8 7.6	7.7	7.0	12.2 12.2	12.2	12.4	8.3 7.9	8.1	7.0
					Bottom 9.2	15.1 15.0	15.0	8.3 8.2	8.3	29.5 29.5	29.5	90.3 92.2	91.3	7.6 7.8	7.7	7.7	12.5 12.5	12.5		8.7 7.7	8.2	
29-Jan-16	Rainy	Moderate	10:32		Surface 1.0	15.4 15.4	15.4	8.2 8.2	8.2	27.7 27.8	27.7	92.9 92.8	92.9	7.9 7.8	7.8	7.8	5.2 5.1	5.2		3.2 2.1	2.7	
				10.7	Middle 5.4	4 15.3 15.3	15.3	8.2 8.2	8.2	28.2 28.2	28.2	92.0 92.4	92.2	7.8 7.8	7.8	1.0	5.4 5.1	5.3	5.2	3.2 2.4	2.8	3.0
					Bottom 9.3	7 15.3 15.3	15.3	8.2 8.2	8.2	28.1 28.2	28.2	91.7 92.5	92.1	7.7 7.8	7.8	7.8	5.1 5.2	5.2		3.7 3.2	3.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	Н	Salinit	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.2	Middle	0.6	16.2 16.2	16.2	8.1 8.1	8.1	25.4 25.4	25.4	100.9 101.1	101.0	8.5 8.5	8.5	8.5	6.6 6.5	6.6	6.6	4.4 5.2	4.8	4.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jan-16	Sunny	Moderate	-		Surface	-		-	-	-	-	-		-	-	-		-	-		-	-	
				1.6	Middle	0.8	19.5 19.6	19.6	8.2 8.1	8.2	25.6 25.7	25.7	91.0 90.8	90.9	7.2 7.2	7.2	7.2	3.8 3.6	3.7	3.7	2.3 2.5	2.4	2.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-		-	-	
				1.4	Middle	0.7	20.1 20.1	20.1	8.1 8.1	8.1	27.0 27.0	27.0	88.8 88.4	88.6	6.9 6.8	6.9	6.9	4.3 4.3	4.3	4.3	5.5 6.8	6.2	6.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
8-Jan-16	Sunny	Moderate	-		Surface			-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
				1.4	Middle	0.7	20.1 20.1	20.1	8.2 8.2	8.2	26.7 26.7	26.7	93.8 93.9	93.9	7.3 7.3	7.3	7.3	4.5 4.6	4.6	4.6	7.2 7.1	7.2	7.2
					Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
11-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.4	Middle	0.7	19.7 19.7	19.7	8.4 8.4	8.4	26.8 26.9	26.9	94.4 96.0	95.2	7.4 7.5	7.4	7.4	2.6 2.6	2.6	2.6	3.8 3.8	3.8	3.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-Jan-16	Sunny	Moderate	-		Surface	-		-		-	1 1	-	1 1	-	-	-	7.6	-	-		-	-	
				1.6	Middle	8.0	19.5 19.5	19.5	8.5 8.5	8.5	26.2 26.2	26.2	96.8 97.3	97.1	7.6 7.7	7.6	7.0	3.0 3.0	3.0	3.0	3.6 4.4	4.0	4.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jan-16	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.6	Middle	8.0	18.8 18.8	18.8	8.0 8.0	8.0	26.8 26.7	26.7	95.3 96.4	95.9	7.6 7.7	7.6		3.6 3.6	3.6	3.6	3.7 4.2	4.0	4.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
18-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.4	Middle	0.7	18.1 18.1	18.1	8.2 8.2	8.2	26.5 26.5	26.5	91.1 91.4	91.3	7.3 7.4	7.4		2.8 2.8	2.8	2.8	3.3 3.3	3.3	3.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
20-Jan-16	Rainy	Moderate	-		Surface	-	-	-	-	-		-	-	-	-	-	7.4	-	-		-	-	
				1.6	Middle	8.0	18.3 18.3	18.3	8.2 8.2	8.2	27.5 27.5	27.5	92.2 92.3	92.3	7.4 7.4	7.4		3.1 3.1	3.1	3.1	4.9 4.5	4.7	4.7
					Bottom	-	1 1	-	-	-	-	-		-	-	-	-	-	-		-	-	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.6	Middle	0.8	18.0 18.0	18.0	8.2 8.2	8.2	28.1 28.1	28.1	88.7 89.9	89.3	7.1 7.2	7.2	1.2	5.0 4.9	5.0	5.0	4.4 4.9	4.7	4.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
25-Jan-16	Sunny	Moderate	-		Surface	-	-	-	1 1	-	-	-		-	1 1	-	8.2	-	-		-	-	
				1.4	Middle	0.7	14.5 14.5	14.5	8.6 8.6	8.6	27.5 27.4	27.4	94.0 96.1	95.1	8.1 8.3	8.2	0.2	6.6 6.5	6.6	6.6	11.6 11.9	11.8	11.8
					Bottom	-	-	-	1	-	-	-		-		-	-	-	-		-	-	
27-Jan-16	Cloudy	Moderate	-		Surface	-	-	-		-	-	-		-		-	8.0	-	-		-	-	
				1.4	Middle	0.7	14.5 14.5	14.5	8.3 8.3	8.3	29.3 29.3	29.3	93.2 94.4	93.8	7.9 8.0	8.0	0.0	6.6 6.6	6.6	6.6	9.3 8.9	9.1	9.1
					Bottom	-	-	-		-	-	-		-		-	-	-	-		-	-	
29-Jan-16	Cloudy	Moderate	-	_	Surface	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	_	-	-	
				1.6	Middle	0.8	15.7 15.7	15.7	8.2 8.2	8.2	26.4 26.6	26.5	93.7 92.5	93.1	7.9 7.8	7.9	1.9	6.1 6.3	6.2	6.2	7.3 6.2	6.8	6.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Temper	ature (°C)	ř.	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	16.0 16.0	16.0	8.2 8.2	8.2	25.5 25.5	25.5	100.7 100.9	100.8	8.5 8.5	8.5	8.5	4.7 4.6	4.7	4.7	3.7 5.9	4.8	4.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	19.8 19.8	19.8	8.2 8.2	8.2	26.4 26.4	26.4	92.1 92.4	92.3	7.2 7.2	7.2	7.2	2.9 2.8	2.9	2.9	5.3 3.9	4.6	4.6
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	20.8 20.7	20.8	8.3 8.3	8.3	27.2 27.3	27.2	94.7 92.9	93.8	7.2 7.1	7.2	7.2	18.4 18.8	18.6	18.6	17.9 17.4	17.7	17.7
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
8-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.4	Middle	0.7	20.3 20.3	20.3	8.3 8.3	8.3	27.3 27.5	27.4	98.0 96.3	97.2	7.6 7.4	7.5	7.5	10.3 10.9	10.6	10.6	16.3 15.4	15.9	15.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
11-Jan-16	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	19.4 19.4	19.4	8.2 8.2	8.2	27.4 27.3	27.3	92.1 92.9	92.5	7.2 7.3	7.2	7.2	2.4 2.4	2.4	2.4	4.5 4.1	4.3	4.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	ļ
13-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	19.2 19.2	19.2	8.2 8.2	8.2	27.9 27.9	27.9	95.2 95.8	95.5	7.5 7.5	7.5	7.5	3.3 2.9	3.1	3.1	4.3 5.9	5.1	5.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jan-16	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.4	Middle	0.7	18.8 18.8	18.8	8.3 8.3	8.3	27.8 27.8	27.8	95.3 94.9	95.1	7.5 7.5	7.5	7.5	2.7 2.7	2.7	2.7	2.9 2.9	2.9	2.9
					Bottom	-		-	-	-	-	-		-	1 1	-	-	-	-		-	-	
18-Jan-16	Sunny	Moderate	-		Surface	-		-	-	-	-	-		-	-	-	7.7	-	- 1		-	-	
				1.4	Middle	0.7	18.3 18.3	18.3	8.4 8.4	8.4	26.6 26.5	26.5	95.7 94.8	95.3	7.7 7.6	7.7	1.1	4.4 4.4	4.4	4.4	5.2 4.7	5.0	5.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
20-Jan-16	Rainy	Moderate	-		Surface	-		-	-	-	-	-	-	-	-	-	7.7	-	-	_	-	-	
				1.6	Middle	0.8	18.0 18.0	18.0	8.3 8.3	8.3	28.4 28.4	28.4	94.8 97.0	95.9	7.6 7.8	7.7	1.1	5.3 5.1	5.2	5.2	5.8 6.0	5.9	5.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ng	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.6	Middle	0.8	17.9 17.9	17.9	8.1 8.2	8.1	26.8 26.8	26.8	92.2 92.3	92.3	7.4 7.5	7.4	7.4	6.8 6.9	6.9	6.9	11.3 11.4	11.4	11.4
					Bottom	-	-	-	-	-		-	1 1	-	1 1	-	-	-	-		-	-	
25-Jan-16	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	1 1	-	1 1	-	7.7	-	-		-	-	
				1.4	Middle	0.7	14.6 14.6	14.6	8.3 8.3	8.3	28.9 28.9	28.9	90.0 90.1	90.1	7.7 7.7	7.7	7.7	6.8 7.0	6.9	6.9	9.4 8.2	8.8	8.8
					Bottom	-	-	-		-		-	1 1	-	1 1	-	-	-	-		-	-	
27-Jan-16	Cloudy	Moderate	-		Surface	-	-	-		-		-	1 1	-		-	7.6	-	-		-	-	
				1.4	Middle	0.7	14.4 14.4	14.4	8.3 8.3	8.3	29.0 29.0	29.0	89.8 89.1	89.5	7.7 7.6	7.6	7.0	5.5 5.5	5.5	5.5	8.7 7.6	8.2	8.2
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
29-Jan-16	Rainy	Moderate	-		Surface	-	-	-		-	-	-	1 1	-		-	7.8	-	-		-	-	
				1.2	Middle	0.6	15.4 15.4	15.4	8.3 8.3	8.3	26.7 27.1	26.9	91.5 92.0	91.8	7.8 7.8	7.8	7.0	5.1 5.1	5.1	5.1	6.0 6.0	6.0	6.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:49		Surface	1.0	16.2 16.2	16.2	8.2 8.2	8.2	26.2 26.3	26.3	97.7 97.1	97.4	8.2 8.1	8.2	0.0	2.8 2.9	2.9		2.4 2.8	2.6	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-	2.9	-	-	2.8
					Bottom	2.6	16.1 16.1	16.1	8.2 8.2	8.2	26.3 26.3	26.3	98.0 97.3	97.7	8.2 8.2	8.2	8.2	2.7	2.8		3.6 2.3	3.0	
4-Jan-16	Sunny	Moderate	07:28		Surface	1.0	19.6	19.6	8.2	8.2	26.2	26.3	89.9	90.1	7.1	7.1		3.5	3.6		2.8	2.6	
				3.8	Middle	1.0	19.6 -	-	8.2	-	26.3	-	90.3	30.1	7.1	7.1	7.1	3.7	3.0	3.7	2.4	-	2.5
				3.8			- 19.7		- 8.1		26.9		89.3		7.0			3.8	-	3.7	2.2		2.5
C lea 40	C	Madasata	44.00		Bottom	2.8	19.6 20.1	19.6	8.1	8.1	26.6 26.3	26.8	91.5	90.4	7.2	7.1	7.1	3.5	3.7		2.5	2.4	
6-Jan-16	Sunny	Moderate	11:08		Surface	1.0	20.1	20.1	8.1 8.1	8.1	26.3	26.3	89.6 90.5	90.1	7.0 7.0	7.0	7.0	10.6	10.8		7.1 6.8	7.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.6	-	-	6.9
					Bottom	2.8	20.1 20.1	20.1	8.1 8.1	8.1	26.5 26.6	26.5	89.4 90.4	89.9	6.9 7.0	7.0	7.0	10.3 10.5	10.4		6.9 6.6	6.8	
8-Jan-16	Sunny	Moderate	12:29		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	27.4 27.4	27.4	95.8 95.5	95.7	7.4 7.4	7.4		1.9 1.8	1.9		2.5 2.2	2.4	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	1.9	-	-	2.7
					Bottom	2.8	19.9 19.9	19.9	8.2	8.2	27.6	27.6	94.9	95.2	7.4 7.4	7.4	7.4	1.8	1.8		2.5	2.9	
11-Jan-16	Sunny	Moderate	13:28		Surface	1.0	20.1	20.1	8.2	8.2	27.6 28.2	28.2	95.5 96.0	96.7	7.4	7.4		2.4	2.4		4.6	4.5	
				3.6	Middle		20.2	_	8.2	_	28.2	_	97.4	_	7.5 -	_	7.4	2.3	_	2.4	4.4	_	4.0
				0.0	Bottom	2.6	20.1	20.0	8.2	8.2	28.1	28.2	95.5	95.7	7.4	7.4	7.4	2.4	2.4		3.2	3.4	
13-Jan-16	Sunny	Moderate	14:44				19.9 19.8		8.2 8.2		28.2 26.9		95.9 99.2		7.4		7.4	2.4 3.0			3.5 4.9		
	,				Surface	1.0	19.8	19.8	8.2	8.2	26.9	26.9	99.3	99.3	7.7	7.7	7.7	3.1	3.1		6.0	5.5	
				3.9	Middle	-	-	-	-	-	27.0	-	-	-	-	-		-	-	3.1	-	-	6.3
					Bottom	2.9	19.7 19.6	19.6	8.2 8.2	8.2	27.1	27.1	99.6 98.1	98.9	7.8 7.7	7.7	7.7	3.1 2.9	3.0		7.3 6.8	7.1	
15-Jan-16	Rainy	Moderate	16:43		Surface	1.0	18.8 18.9	18.8	8.2 8.2	8.2	27.3 27.3	27.3	96.8 96.8	96.8	7.7 7.7	7.7	7.7	3.1 3.2	3.2		3.1 2.8	3.0	
				3.6	Middle	-	-	-	-	-		-		-		-	7.7	-	-	3.2	-	-	3.1
					Bottom	2.6	18.9 18.9	18.9	8.2 8.2	8.2	27.3 27.4	27.4	96.1 97.1	96.6	7.6 7.7	7.6	7.6	3.1 3.1	3.1		2.5 3.8	3.2	
18-Jan-16	Sunny	Moderate	07:49		Surface	1.0	18.3	18.3	8.2 8.2	8.2	25.7 25.5	25.6	90.7	91.1	7.3 7.4	7.4		5.3 5.6	5.5		4.1 3.7	3.9	
				3.7	Middle	-	18.3	_	- 8.2	-	25.5	_	91.5	-	- 7.4	-	7.4	5.6	_	5.5	- 3.7	-	3.6
					Bottom	2.7	18.5	18.4	8.2	8.2	26.6	26.3	91.7	91.4	7.3	7.3	7.3	5.5	5.5		3.1	3.3	
20-Jan-16	Rainy	Moderate	11:07				18.3 18.3		8.2 8.2		26.0 27.9	27.9	91.0 93.5		7.3 7.4		7.0	5.5 2.6			3.4]
	,				Surface	1.0	18.3	18.3	8.2	8.2	27.9		94.8	94.2	7.6	7.5	7.5	2.5	2.6		3.6	3.3	
				3.7	Middle	-	- 18.3	-	8.2	-	27.9	-	93.6	-	- 7.5	-		2.4	-	2.6	3.9	-	3.8
					Bottom	2.7	18.3	18.3	8.2 8.2	8.2	27.9 27.9	27.9	93.6	93.6	7.5 7.5	7.5	7.5	2.4	2.5		3.9 4.6	4.3	<u> </u>

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (n	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:32		Surface	1.0	18.0 18.1	18.0	8.2 8.2	8.2	27.9 28.0	28.0	90.4 90.1	90.3	7.3 7.2	7.2	7.2	3.8 3.9	3.9		3.5 3.8	3.7	
				3.8	Middle	-	-	•	1 1	-	-	-	-	-	1 1	-	7.2	-	-	4.1	-	-	3.6
					Bottom	2.8	18.2 18.0	18.1	8.2 8.2	8.2	28.2 28.1	28.2	89.9 89.7	89.8	7.2 7.2	7.2	7.2	4.2 4.1	4.2		4.2 2.8	3.5	
25-Jan-16	Sunny	Moderate	13:38		Surface	1.0	15.1 15.2	15.1	8.3 8.3	8.3	27.8 27.8	27.8	91.1 92.9	92.0	7.7 7.9	7.8	7.8	6.4 6.3	6.4		8.5 8.3	8.4	
				3.8	Middle	-	-	-		-	-	-	-	-		-	7.0	-	-	6.5	-	-	8.6
					Bottom	2.8	15.7 15.3	15.5	8.3 8.3	8.3	28.9 29.3	29.1	92.8 93.6	93.2	7.7 7.9	7.8	7.8	6.5 6.5	6.5		9.0 8.6	8.8	
27-Jan-16	Cloudy	Moderate	14:15		Surface	1.0	14.9 15.0	15.0	8.3 8.3	8.3	29.3 29.3	29.3	91.6 92.5	92.1	7.7 7.8	7.8	7.8	4.9 5.1	5.0		5.5 6.1	5.8	
				3.8	Middle	-	-	-	1 1	-	-	-	-	-	1 1	-	7.0	-	-	5.0	-	-	5.7
					Bottom	2.8	15.0 15.0	15.0	8.3 8.3	8.3	29.4 29.4	29.4	92.4 92.6	92.5	7.8 7.8	7.8	7.8	4.9 5.1	5.0		4.9 6.0	5.5	
29-Jan-16	Cloudy	Moderate	15:50		Surface	1.0	15.6 15.6	15.6	8.2 8.2	8.2	28.2 28.1	28.1	92.1 92.8	92.5	7.7 7.8	7.8	7.8	7.3 7.5	7.4		5.6 6.5	6.1	
				3.7	Middle	-	-	-		-	-	-	-	-		-	7.0	-	-	7.4	-	-	7.7
					Bottom	2.7	15.5 15.6	15.6	8.2 8.2	8.2	28.4 28.2	28.3	91.2 92.1	91.7	7.7 7.7	7.7	7.7	7.4 7.3	7.4		8.6 10.0	9.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:37		Surface	1.0	16.1 16.1	16.1	8.1 8.2	8.2	25.3 25.2	25.3	98.9 98.6	98.8	8.4 8.3	8.3		3.4 3.0	3.2		2.6 3.2	2.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	3.4	-	-	2.9
					Bottom	2.8	16.1	16.1	8.1	8.1	25.6	25.6	98.7	98.6	8.3	8.3	8.3	3.6	3.5		2.5	2.9	1
4 (== 40	C	Madazata	13:40	1			16.1 19.8		8.2 8.1		25.5 26.6		98.5 93.2	1	8.3 7.3	-		3.3 16.8	1		3.3 5.7		<u> </u>
4-Jan-16	Sunny	Moderate	13.40		Surface	1.0	19.9	19.9	8.1	8.1	26.5	26.6	95.7	94.5	7.5	7.4	7.4	17.1	17.0		6.2	6.0]
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	17.8	-	-	5.8
					Bottom	2.7	19.8 19.8	19.8	8.2 8.1	8.2	26.9 26.9	26.9	91.6 95.8	93.7	7.1 7.5	7.3	7.3	18.6 18.3	18.5		5.9 5.1	5.5	
6-Jan-16	Sunny	Moderate	15:15		Surface	1.0	20.6 20.6	20.6	8.2 8.2	8.2	24.7 24.7	24.7	94.1 95.2	94.7	7.3 7.4	7.4		7.9 7.7	7.8		5.5 6.0	5.8	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	7.8	-	-	5.4
					Bottom	2.7	20.6	20.6	8.2	8.2	25.5	25.8	95.3	95.3	7.4	7.4	7.4	7.8	7.8		5.8	5.0	1
8-Jan-16	Sunny	Moderate	16:29		Surface	1.0	20.6 20.4	20.3	8.2 8.2	8.2	26.1 27.8	27.9	95.2 98.4	97.7	7.3 7.6	7.5		7.7 6.6	6.7		4.1 6.5	6.7	
				3.9	Middle		20.3	_	8.2	_	27.9	_	97.0		7.4		7.5	6.7		6.7	6.8	_	6.2
				0.3		2.0	20.3	20.2	8.2	0.0	28.0	20.2	96.9	00.0	- 7.4	7.4	7.4	6.7	6.7	0.7	- 5.5		0.2
11-Jan-16	Rainy	Moderate	08:53		Bottom	2.9	20.2 19.6	20.3	8.2 8.2	8.2	28.4 27.7	28.2	95.0 92.6	96.0	7.3 7.2	7.4	7.4	6.7 2.8	6.7		5.6 4.2	5.6	<u> </u>
11-3411-10	reality	Woderate	00.55		Surface	1.0	19.6	19.6	8.2	8.2	27.7	27.7	92.5	92.6	7.2	7.2	7.2	2.8	2.8		4.9	4.6	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.9	-	-	5.0
					Bottom	2.9	19.6 19.6	19.6	8.2 8.2	8.2	27.7 27.7	27.7	91.5 92.4	92.0	7.1 7.2	7.2	7.2	2.8 2.9	2.9		6.3 4.2	5.3	
13-Jan-16	Sunny	Moderate	10:21		Surface	1.0	19.5 19.5	19.5	8.2 8.1	8.2	27.9 27.9	27.9	95.2 94.1	94.7	7.4 7.3	7.4	7.4	10.6 11.0	10.8		12.8 11.8	12.3	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	11.3	-	-	14.6
					Bottom	3.0	19.5 19.5	19.5	8.1 8.2	8.1	27.9 27.9	27.9	95.5 94.9	95.2	7.4 7.4	7.4	7.4	11.7 11.6	11.7		17.8 15.9	16.9	
15-Jan-16	Rainy	Moderate	11:25		Surface	1.0	19.1 19.1	19.1	8.2 8.2	8.2	27.8 27.8	27.8	94.2 94.8	94.5	7.4 7.4	7.4		7.2 7.1	7.2		4.9 5.7	5.3	
				3.8	Middle	-	- 19.1	-	-	-	-	-	- 94.0	-	-	-	7.4	-	-	7.2	-	-	6.1
					Bottom	2.8	19.1	19.1	8.2	8.2	27.8	27.8	94.0	94.3	7.4	7.4	7.4	7.1	7.2		7.0	6.8	
18-Jan-16	Sunny	Moderate	13:10		Surface	1.0	19.1 18.5	18.5	8.2 8.2	8.2	27.8 26.2	26.1	94.6 93.5	94.6	7.4 7.5	7.6		7.2 2.7	2.7		6.5 2.8	2.8	
				2.7		1.0	18.5 -		8.2		26.1		95.6		7.7	7.0	7.6	2.6	2.1	0.0	2.7		
				3.7	Middle	-	- 18.6	-	8.2	-	26.6	-	94.8	-	- 7.6	-		2.7	-	2.8	2.8	-	2.8
20 lan 40	Daine	Madaats	45:04		Bottom	2.7	18.5	18.6	8.2	8.2	26.6	26.6	95.9	95.4	7.7	7.6	7.6	2.8	2.8		2.8	2.8	<u> </u>
20-Jan-16	Rainy	Moderate	15:01		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.5 28.5	28.5	92.6 93.9	93.3	7.3 7.4	7.4	7.4	5.5 5.1	5.3		2.4 3.1	2.8	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.2	-	-	3.8
					Bottom	2.8	18.5 18.5	18.5	8.2 8.2	8.2	28.7 28.7	28.7	94.2 94.2	94.2	7.4 7.4	7.4	7.4	5.0 5.0	5.0		5.3 4.0	4.7	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Tempera	ature (°C)	ŗ	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:49		Surface	1.0	17.9 17.9	17.9	8.2 8.2	8.2	27.4 27.5	27.5	93.3 93.5	93.4	7.5 7.6	7.5	7.5	3.6 3.6	3.6		7.1 6.5	6.8	
				3.9	Middle	-	-	•		-	-	-		-		-	7.5	-	-	3.7	-	-	6.6
					Bottom	2.9	17.9 17.8	17.9	8.2 8.2	8.2	27.5 27.5	27.5	91.9 91.9	91.9	7.4 7.4	7.4	7.4	3.8 3.7	3.8		6.6 6.0	6.3	
25-Jan-16	Sunny	Moderate	08:57		Surface	1.0	16.0 16.0	16.0	8.3 8.3	8.3	29.8 29.8	29.8	91.1 92.5	91.8	7.5 7.6	7.6	7.6	5.0 4.8	4.9		9.2 9.2	9.2	
				3.8	Middle	-	-	•		-	-	-		-		-	7.0	-	-	4.9	-	-	9.2
					Bottom	2.8	16.0 16.0	16.0	8.3 8.3	8.3	29.8 29.8	29.8	91.7 91.9	91.8	7.6 7.6	7.6	7.6	5.0 4.8	4.9		8.8 9.5	9.2	
27-Jan-16	Cloudy	Moderate	09:39		Surface	1.0	14.8 14.8	14.8	8.3 8.3	8.3	29.1 29.0	29.1	89.0 88.9	89.0	7.5 7.5	7.5	7.5	6.5 6.5	6.5		8.0 9.2	8.6	
				3.8	Middle	-	-	-		-	-	-		-		-	7.5	-	-	6.6	-	-	10.4
					Bottom	2.8	14.8 14.8	14.8	8.3 8.3	8.3	29.1 29.1	29.1	90.8 89.3	90.1	7.7 7.6	7.6	7.6	6.6 6.6	6.6		12.3 12.0	12.2	
29-Jan-16	Rainy	Moderate	10:55		Surface	1.0	15.4 15.4	15.4	8.2 8.2	8.2	27.8 27.7	27.7	92.0 92.4	92.2	7.8 7.8	7.8	7.8	4.4 4.3	4.4		4.9 4.6	4.8	
				3.8	Middle	-	-	-		-		-		-	-	-	7.0	-	-	4.5	-	-	4.6
					Bottom	2.8	15.4 15.4	15.4	8.2 8.2	8.2	28.3 28.0	28.1	91.2 91.4	91.3	7.7 7.7	7.7	7.7	4.4 4.5	4.5		5.2 3.5	4.4	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	17:44		Surface	1.0	19.5 19.6	19.6	8.2 8.2	8.2	28.6 28.6	28.6	94.2 92.4	93.3	7.3 7.2	7.2	7.0	2.8 2.9	2.9		2.1 2.1	2.1	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	3.3	-	-	2.4
					Bottom	3.9	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	92.8 89.9	91.4	7.2 7.0	7.1	7.1	3.7 3.5	3.6		2.7 2.7	2.7	
4-Jan-16	Sunny	Moderate	07:56		Surface	1.0	16.0	16.1	8.1	8.1	28.1	28.4	94.5	95.1	7.9	7.9		1.5	1.5		2.5	3.2	
				5.3	Middle	1.0	16.1	-	8.0	-	28.7	-	95.7	-	7.9	7.0	7.9	1.4		1.5	3.8	-	3.0
				0.5		4.3	- 16.1		8.0	8.0	32.0	31.8	96.1	96.0	7.8	7.0	7.8	1.4	4.4	1.5	2.6	2.8	3.0
6-Jan-16	Sunny	Moderate	10:05		Bottom		16.1 16.3	16.1	8.0		31.6 21.8		95.8 95.4		7.8 8.0	7.8	7.8	1.4 2.1	1.4		2.9 3.1		
o dan 10	Cumy	modorato	10.00		Surface	1.0	16.4	16.4	8.1	8.1	23.0	22.4	94.1	94.8	8.3	8.1	8.1	2.0	2.1		2.7	2.9	
				4.9	Middle	-	16.4	-	8.0	-	24.9	-	93.3	-	7.7	-		2.3	-	2.2	2.8	-	2.7
0.1.10			40.40		Bottom	3.9	16.4	16.4	8.0	8.0	27.4	26.1	93.1	93.2	7.7	7.7	7.7	2.3	2.3		2.2	2.5	
8-Jan-16	Sunny	Moderate	12:10		Surface	1.0	16.6 16.5	16.5	8.1 8.1	8.1	25.1 25.2	25.2	98.8 99.0	98.9	8.3 8.3	8.3	8.3	2.8 2.9	2.9		2.3 2.2	2.3	
				5.1	Middle	-	-	-	-	-	-	-	-	-		-		-	-	2.9	-	-	2.5
					Bottom	4.1	16.5 16.5	16.5	8.1 8.1	8.1	26.2 26.2	26.2	98.6 98.5	98.6	8.2 8.2	8.2	8.2	2.9 2.8	2.9		2.6 2.5	2.6	
11-Jan-16	Sunny	Moderate	13:31		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	28.2 29.0	28.6	100.5 101.9	101.2	8.3 8.3	8.3	0.0	2.1 2.1	2.1		4.7 5.0	4.9	
				5.0	Middle	-	-	-	-	-	-	-	-	-		-	8.3	-	-	2.2	-	-	5.5
					Bottom	4.0	16.2 16.3	16.3	8.2 8.2	8.2	28.6 30.2	29.4	100.0 99.7	99.9	8.3 8.2	8.2	8.2	2.2 2.3	2.3		5.4 6.5	6.0	
13-Jan-16	Sunny	Moderate	15:10		Surface	1.0	16.1	16.1	8.2	8.2	26.7	27.4	103.4	103.1	8.7 8.5	8.6		2.2	2.2		2.8	3.7	
				5.1	Middle	-	16.1	-	8.2	-	28.2	-	102.8	-	- 8.5	-	8.6	2.1	-	2.2	4.5	-	3.8
					Bottom	4.1	16.1	16.1	8.2	8.2	27.8	29.3	104.4	104.3	8.7	8.6	8.6	2.2	2.2		4.1	3.9	
15-Jan-16	Rainy	Moderate	16:50		Surface	1.0	16.1 15.5	15.5	8.2 8.1	8.1	30.8 26.2	25.5	104.1	103.0	8.5 8.8	8.8		1.5	1.6		3.7 2.0	2.0	
				4.8	Middle	1.0	15.5 -	-	8.1	-	24.9	-	102.6	-	8.8	0.0	8.8	1.6	1.0	1.7	2.0	-	2.1
				4.0		-	- 15.5		8.0		28.7		104.3		8.7	0.7	8.7	1.9	1.0	1.7	2.1		2.1
18-Jan-16	Sunny	Moderate	07:15		Bottom	3.8	15.5 14.7	15.5	8.1 8.1	8.1	26.0 23.1	27.3	102.3 98.7	103.3	8.7 8.7	8.7	8.7	1.7 2.1	1.8		2.3 3.0	2.2	
10 0411 10	Curity	Woderate	07.10		Surface	1.0	14.7	14.7	8.1	8.1	23.1	23.1	97.1	97.9	8.6	8.6	8.6	2.0	2.1		2.2	2.6	•
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.1	-	-	3.1
					Bottom	3.7	14.7 14.7	14.7	8.1 8.1	8.1	23.1 23.1	23.1	98.8 98.7	98.8	8.7 8.7	8.7	8.7	2.1 2.1	2.1		3.4 3.7	3.6	
20-Jan-16	Rainy	Moderate	09:51		Surface	1.0	15.0 15.0	15.0	8.2 8.2	8.2	29.8 29.4	29.6	98.7 98.5	98.6	8.3 8.3	8.3	8.3	1.3 1.2	1.3		1.3 1.5	1.4	
				5.3	Middle	-	-	-	-	-		-		-		-	0.0	-	-	1.4	-	-	2.9
					Bottom	4.3	15.0 15.0	15.0	8.2 8.1	8.2	29.5 30.7	30.1	98.5 98.5	98.5	8.3 8.3	8.3	8.3	1.4 1.5	1.5		4.4 4.2	4.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplir	ng	Temper	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (ı	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	12:23		Surface	1.0	14.6 14.6	14.6	8.2 8.2	8.2	27.4 27.7	27.6	94.8 94.6	94.7	8.2 8.1	8.1	8.1	1.4 1.4	1.4		2.9 2.2	2.6	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-		0.1	-	-	1.5	-	-	2.7
					Bottom	4.2	14.6 14.7	14.6	8.2 8.2	8.2	28.0 28.5	28.3	94.9 94.3	94.6	8.1 8.0	8.1	8.1	1.4 1.5	1.5		2.6 3.0	2.8	
25-Jan-16	Sunny	Moderate	13:21		Surface	1.0	13.1 13.1	13.1	8.4 8.4	8.4	31.7 31.2	31.5	99.4 99.6	99.5	8.6 8.6	8.6	8.6	2.1 2.2	2.2		6.7 6.2	6.5	
				5.0	Middle	-	-	-	-	-		i		-		-	0.0	-	-	2.3	-	-	6.6
					Bottom	4.0	13.0 13.0	13.0	8.4 8.4	8.4	32.0 31.5	31.8	98.4 98.3	98.4	8.6 8.6	8.6	8.6	2.3 2.3	2.3		7.0 6.1	6.6	
27-Jan-16	Cloudy	Moderate	14:44		Surface	1.0	11.7 11.7	11.7	8.3 8.3	8.3	31.3 32.7	32.0	98.0 100.2	99.1	8.7 8.9	8.8	8.8	2.6 2.7	2.7		4.7 4.3	4.5	
				4.7	Middle	-	-	-	-	-		-		-		-	0.0	-	-	2.8	-	-	4.9
					Bottom	3.7	11.7 11.7	11.7	8.3 8.3	8.3	34.0 31.9	32.9	100.1 99.5	99.8	8.8 8.8	8.8	8.8	3.0 2.7	2.9		5.2 5.2	5.2	
29-Jan-16	Cloudy	Moderate	15:51		Surface	1.0	11.8 11.8	11.8	8.3 8.3	8.3	24.2 26.9	25.5	95.8 97.4	96.6	8.9 8.9	8.9	8.9	2.6 2.8	2.7		4.5 4.8	4.7	
				4.9	Middle	-	-	-	-	-	-	-		-		-	0.5	-	-	2.9	-	-	4.4
					Bottom	3.9	11.8 11.8	11.8	8.3 8.3	8.3	29.6 31.9	30.7	97.5 98.7	98.1	8.8 8.7	8.8	8.8	2.9 3.0	3.0		4.2 3.7	4.0	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	12:11		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.2 28.3	28.3	90.1 90.5	90.3	7.0 7.0	7.0	7.0	3.3 3.4	3.4		2.3 2.4	2.4	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.6	-	-	3.0
					Bottom	4.2	19.5 19.5	19.5	8.2 8.2	8.2	28.3 28.4	28.4	90.4 90.5	90.5	7.0 7.0	7.0	7.0	3.6 3.7	3.7		3.4 3.5	3.5	
4-Jan-16	Sunny	Moderate	14:16		Surface	1.0	16.2	16.2	8.1	8.1	26.7	27.5	98.3	98.2	8.2	8.2		1.7	1.8		2.2	2.2	
	•					1.0	16.1		8.1		28.3		98.0		8.1	0.2	8.2	1.8	1.0		2.2		
				5.3	Middle	-	- 16.1	-	8.1	-	30.1	-	98.1	-	8.0	-		- 1.8	-	1.8	4.2	-	2.7
					Bottom	4.3	16.1	16.1	8.1	8.1	29.4	29.8	98.0	98.1	8.1	8.1	8.1	1.6	1.7		2.2	3.2	
6-Jan-16	Sunny	Moderate	16:06		Surface	1.0	16.6 16.4	16.5	8.1 8.1	8.1	23.6 24.2	23.9	96.5 95.6	96.1	8.2 8.2	8.2	8.2	1.7 1.9	1.8		3.1 2.9	3.0	
				5.1	Middle	-	-	-	-	-		-		-		-	0.2	-	-	2.0	-	-	3.2
					Bottom	4.1	16.5 16.5	16.5	8.0 8.1	8.1	29.7 25.8	27.7	96.1 96.6	96.4	8.1 8.1	8.1	8.1	2.3 2.1	2.2		2.8 3.7	3.3	
8-Jan-16	Sunny	Moderate	16:48		Surface	1.0	16.7 16.7	16.7	8.1 8.1	8.1	27.8 29.3	28.6	103.4 102.1	102.8	8.5 8.3	8.4		2.9	2.9		2.7	2.7	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4	-	-	2.9	-	-	2.5
					Bottom	3.8	16.7	16.7	8.1	8.1	30.2	29.5	101.4	102.4	8.2	8.3	8.3	2.6	2.8		2.1	2.3	
11-Jan-16	Rainy	Moderate	08:57		Surface	1.0	16.7 16.1	16.1	8.1 8.1	8.2	28.7 29.5	29.4	103.4 97.2	97.2	8.5 8.0	8.0		2.9 3.3	3.4		2.5 4.5	4.4	
				5.1	Middle	1.0	16.1	10.1	8.2	0.2	29.4	20	97.1	07.12	8.0	0.0	8.0	3.4	0	3.6	4.2		4.7
				3.1		-	- 16.1		8.2	-	29.6	-	97.0	-	8.0	-		3.8	-	3.0	4.9	-	4.7
13-Jan-16	Sunny	Moderate	10:07		Bottom	4.1	16.1 15.8	16.1	8.1 8.1	8.1	29.6 28.4	29.6	96.5 103.3	96.8	8.0 8.6	8.0	8.0	3.6 4.0	3.7		5.0 8.0	5.0	
13-3411-10	Guilly	Woderate	10.07		Surface	1.0	15.9	15.8	8.1	8.1	29.2	28.8	106.3	104.8	8.8	8.7	8.7	3.9	4.0		9.4	8.7	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.0	-	-	7.5
					Bottom	4.2	15.8 15.8	15.8	8.1 8.1	8.1	30.3 28.9	29.6	104.9 103.7	104.3	8.7 8.6	8.7	8.7	3.9 4.1	4.0		5.4 6.9	6.2	
15-Jan-16	Rainy	Moderate	11:25		Surface	1.0	15.5 15.5	15.5	8.1 8.1	8.1	27.2 27.1	27.1	102.6 102.5	102.6	8.7 8.7	8.7	8.7	2.3 2.4	2.4		3.1 2.5	2.8	
				4.9	Middle	-	-	-	-	-		-		-		-	8.7	-	-	2.5	-	-	2.8
					Bottom	3.9	15.5 15.5	15.5	8.1 8.1	8.1	27.2 27.3	27.2	102.2 102.4	102.3	8.6 8.7	8.6	8.6	2.5 2.5	2.5		2.8 2.5	2.7	
18-Jan-16	Sunny	Moderate	13:41		Surface	1.0	14.9	14.9	8.2	8.2	24.4	25.1	99.4	99.8	8.7	8.6		2.1	2.2		2.8	2.5	
				5.1	Middle	_	14.9	_	8.2 -	_	25.8	_	100.2	-	8.6	_	8.6	2.3	_	2.3	2.2	_	2.6
				0.1		4.1	14.9	14.9	8.1	8.2	28.1	26.7	103.2	101.6	8.8	0.7	8.7	2.2	2.3	2.0	2.5	2.6	2.0
20-Jan-16	Rainy	Moderate	16:00		Bottom		14.9 15.0		8.2 8.2		25.4 26.6		100.0 101.1		8.6 8.7	8.7	0.1	2.3			2.7 4.8		
20 0011 10	rany	Moderate	10.00		Surface	1.0	15.0	15.0	8.2	8.2	27.0	26.8	102.6	101.9	8.8	8.7	8.7	1.2	1.2		5.4	5.1	
				5.5	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.3	-	-	4.8
					Bottom	4.5	15.0 15.0	15.0	8.2 8.2	8.2	27.0 27.5	27.3	100.6 101.1	100.9	8.6 8.6	8.6	8.6	1.3 1.3	1.3		5.2 3.8	4.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	ī	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	16:45		Surface	1.0	14.5 14.5	14.5	8.1 8.1	8.1	25.0 25.1	25.1	96.3 95.7	96.0	8.4 8.4	8.4	8.4	1.4 1.4	1.4		3.6 4.6	4.1	
				5.4	Middle	-		-		-		-	-	-		-	0.4	-	-	1.5	-	-	4.1
					Bottom	4.4	14.6 14.6	14.6	8.1 8.1	8.1	25.6 25.3	25.5	97.2 97.0	97.1	8.5 8.5	8.5	8.5	1.5 1.5	1.5		4.4 3.5	4.0	
25-Jan-16	Sunny	Moderate	08:39		Surface	1.0	12.1 12.1	12.1	8.3 8.3	8.3	29.8 29.9	29.9	97.2 95.2	96.2	8.7 8.5	8.6	8.6	5.8 5.7	5.8		7.7 8.2	8.0	
				5.1	Middle	-		-		-	-	-	-	-		-	0.0	-	-	5.9	-	-	9.7
					Bottom	4.1	12.2 12.1	12.2	8.2 8.3	8.3	30.3 29.9	30.1	95.5 95.5	95.5	8.5 8.5	8.5	8.5	5.9 5.9	5.9		11.1 11.7	11.4	
27-Jan-16	Cloudy	Moderate	09:33		Surface	1.0	11.6 11.6	11.6	8.4 8.4	8.4	34.1 33.9	34.0	96.6 98.0	97.3	8.5 8.6	8.5	8.5	5.9 6.0	6.0		6.2 5.8	6.0	
				4.9	Middle	•		-		-		-	-	-	1 1	-	0.5	-	-	6.1	-	-	6.8
					Bottom	3.9	11.6 11.6	11.6	8.4 8.4	8.4	34.3 34.0	34.2	97.8 97.8	97.8	8.6 8.6	8.6	8.6	6.1 6.3	6.2		7.2 7.8	7.5	
29-Jan-16	Rainy	Moderate	10:39		Surface	1.0	11.8 11.8	11.8	8.3 8.4	8.4	30.4 30.0	30.2	98.2 98.3	98.3	8.8 8.8	8.8	8.8	3.1 3.0	3.1		4.6 5.5	5.1	
				4.7	Middle	-		-		-		-	-	-		-	0.0	-	-	3.1	-	-	6.0
					Bottom	3.7	11.8 11.8	11.8	8.3 8.3	8.3	30.8 30.7	30.7	96.1 98.2	97.2	8.6 8.8	8.7	8.7	3.1 3.0	3.1		7.4 6.3	6.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	16:47		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.5 28.5	28.5	93.3 91.3	92.3	7.2 7.1	7.2	7.0	4.0 4.3	4.2		3.8 3.8	3.8	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	4.2	-	-	4.0
					Bottom	3.2	19.6 19.6	19.6	8.2 8.2	8.2	28.6 28.6	28.6	91.5 91.1	91.3	7.1 7.1	7.1	7.1	4.3 3.9	4.1		3.5 4.8	4.2	
4-Jan-16	Sunny	Moderate	08:49		Surface	1.0	16.1	16.1	8.1	8.1	25.9	26.0	96.8	97.1	8.2	8.2		1.2	1.2		1.6	1.6	
				4.2	Middle	-	16.1	-	8.1	-	26.1	-	97.4	-	8.2	-	8.2	1.1	-	1.2	1.5	-	1.6
					Bottom	3.2	16.1	16.1	8.1	8.1	28.0	28.1	96.7	97.1	8.0	8.1	8.1	1.2	1.2		1.5	1.5	
6-Jan-16	Sunny	Moderate	10:59		Surface	1.0	16.1 16.5	16.5	8.1	8.1	28.1	20.1	97.4 95.4	95.2	8.1 8.3	8.2		1.2	1.8		2.1	2.2	
				4.2	Middle	_	16.6	_	8.1	-	20.1	_	94.9	_	8.2	_	8.2	1.7	_	1.9	2.2	-	2.8
					Bottom	3.2	16.4	16.4	8.0	8.1	26.9	26.4	95.3	95.0	7.9	7.9	7.9	1.9	1.9		3.1	3.4	
8-Jan-16	Sunny	Moderate	13:05		Surface	1.0	16.4 16.6	16.6	8.1 8.1	8.1	26.0	24.8	94.6 99.2	99.1	7.9 8.3	8.3		2.8	2.9		3.6 2.6	2.7	
				4.1	Middle	-	16.6	-	8.1	-	24.7	-	99.0	-	8.3	-	8.3	3.0	-	2.9	2.8	-	2.6
					Bottom	3.1	16.4	16.4	8.1	8.1	25.8	25.7	98.6	99.7	8.3	8.4	8.4	2.7	2.9		2.7	2.4	
11-Jan-16	Sunny	Moderate	12:44		Surface	1.0	16.4 16.2	16.2	8.1 8.3	8.3	25.5 25.7	25.8	98.0	98.0	8.5 8.3	8.2		3.0 2.5	2.6		2.0 4.5	4.8	
				4.1	Middle	_	16.2	-	8.3	-	25.9	_	98.0	_	8.2	_	8.2	2.6	_	2.9	5.1	_	4.5
					Bottom	3.1	16.2	16.2	8.3	8.3	25.9	25.8	98.0	98.5	8.2	8.2	8.2	3.2	3.1		4.2	4.2	
13-Jan-16	Sunny	Moderate	14:19				16.2 16.1		8.2 8.3		25.8 31.5		98.9 107.7		8.3 8.8			3.0 2.1			7.3		
	22,				Surface	1.0	16.1	16.1	8.3	8.3	31.8	31.7	106.4	107.1	8.6	8.7	8.7	2.1	2.1		7.2	7.3	_
				4.5	Middle	-	- 16.0	-	- 8.3	-	32.3	-	107.5	-	8.7	-		2.1	-	2.1	6.9	-	7.1
					Bottom	3.5	16.1	16.0	8.3	8.3	32.1	32.2	107.1	107.3	8.7	8.7	8.7	2.1	2.1		6.7	6.8	
15-Jan-16	Rainy	Moderate	16:01		Surface	1.0	15.3 15.3	15.3	8.0 7.9	8.0	28.1 29.1	28.6	101.1 101.1	101.1	8.5 8.5	8.5	8.5	1.8 1.9	1.9		1.4 1.3	1.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.0	-	-	1.4
					Bottom	3.1	15.3 15.3	15.3	7.9 8.0	7.9	30.8 29.4	30.1	100.7 100.8	100.8	8.4 8.4	8.4	8.4	2.0 2.0	2.0		1.4 1.4	1.4	
18-Jan-16	Sunny	Moderate	08:14		Surface	1.0	14.7 14.7	14.7	8.1 8.1	8.1	22.6 22.9	22.8	98.9 99.5	99.2	8.7 8.8	8.8	8.8	1.9 2.0	2.0		2.3 2.4	2.4	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	2.0	-	-	3.1
					Bottom	3.0	14.7 14.7	14.7	8.1 8.1	8.1	23.2 22.7	22.9	99.3 98.4	98.9	8.7 8.7	8.7	8.7	2.0 1.9	2.0		4.0 3.4	3.7	
20-Jan-16	Rainy	Moderate	10:51		Surface	1.0	15.0 15.0	15.0	8.2 8.2	8.2	27.4 27.9	27.6	100.1 99.9	100.0	8.5 8.5	8.5	8.5	1.5 1.6	1.6		5.5 4.5	5.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	1.7	-	-	4.7
					Bottom	3.3	15.0 15.0	15.0	8.1 8.2	8.2	28.3 27.5	27.9	100.0 98.9	99.5	8.5 8.4	8.5	8.5	1.7 1.7	1.7		4.3 4.2	4.3	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (r	m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	13:16		Surface	1.0	14.6 14.7	14.7	8.1 8.1	8.1	26.9 26.9	26.9	97.2 97.2	97.2	8.4 8.4	8.4	8.4	1.6 1.6	1.6		3.7 2.4	3.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-		0.4	-	-	1.6	-	-	4.0
					Bottom	3.2	14.6 14.6	14.6	8.1 8.1	8.1	27.2 27.1	27.1	96.8 97.0	96.9	8.3 8.4	8.3	8.3	1.6 1.5	1.6		4.8 4.8	4.8	
25-Jan-16	Sunny	Moderate	12:27		Surface	1.0	12.9 12.9	12.9	8.3 8.4	8.4	34.7 34.4	34.5	98.1 98.1	98.1	8.4 8.4	8.4	8.4	2.7 2.7	2.7		7.5 7.3	7.4	
				3.7	Middle	-	-	-		-		-	-	-		-	0.4	-	-	2.9	-	-	7.0
					Bottom	2.7	12.9 12.9	12.9	8.3 8.4	8.3	34.8 34.6	34.7	97.9 97.8	97.9	8.3 8.3	8.3	8.3	3.0 3.0	3.0		6.7 6.2	6.5	
27-Jan-16	Cloudy	Moderate	13:47		Surface	1.0	11.9 11.9	11.9	8.3 8.3	8.3	34.8 34.8	34.8	98.9 99.1	99.0	8.6 8.6	8.6	8.6	2.6 2.5	2.6		5.7 5.6	5.7	
				4.0	Middle	-	-	-		-		-		-		-	0.0	-	-	2.6	-	-	5.7
					Bottom	3.0	11.8 11.9	11.9	8.3 8.3	8.3	34.8 34.8	34.8	98.8 98.5	98.7	8.6 8.6	8.6	8.6	2.6 2.4	2.5		5.6 5.8	5.7	
29-Jan-16	Cloudy	Moderate	14:54		Surface	1.0	11.8 11.8	11.8	8.3 8.3	8.3	27.0 27.3	27.1	96.2 94.2	95.2	8.8 8.6	8.7	8.7	2.3 2.5	2.4		2.2 3.2	2.7	
				3.8	Middle	-	-	-		-	-	-	-	-	-	-	0.7	-	-	2.7	-	-	3.7
					Bottom	2.8	11.7 11.7	11.7	8.3 8.3	8.3	27.7 28.1	27.9	95.5 94.0	94.8	8.7 8.6	8.6	8.6	2.7 3.0	2.9		4.7 4.7	4.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	13:03		Surface	1.0	19.5 19.6	19.6	8.2 8.2	8.2	28.5 28.5	28.5	90.4 90.9	90.7	7.0 7.0	7.0		5.6 5.5	5.6		3.6 4.8	4.2	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	5.5	-	-	4.3
					Bottom	3.3	19.5 19.5	19.5	8.2 8.2	8.2	28.6 28.5	28.6	89.2 89.7	89.5	6.9 7.0	6.9	6.9	5.2 5.4	5.3		4.4	4.4	
4-Jan-16	Sunny	Moderate	13:22		0 /	4.0	16.4	40.4	8.1		29.6	20.4	98.4		8.1			1.8	4.0		1.6		\vdash
	,				Surface	1.0	16.3	16.4	8.2	8.2	29.2	29.4	97.4	97.9	8.0	8.0	8.0	1.8	1.8		1.8	1.7	
				4.2	Middle	-	- 16.3	-	- 8.1	-	- 31.1	-	97.7	-	- 7.9	-		1.9	-	1.9	3.8	-	2.4
2 1 12			45.40		Bottom	3.2	16.2	16.3	8.1	8.1	31.5	31.3	96.6	97.2	7.9	7.9	7.9	1.8	1.9		2.3	3.1	<u> </u>
6-Jan-16	Sunny	Moderate	15:16		Surface	1.0	16.6 16.5	16.5	8.1 8.1	8.1	28.9 28.7	28.8	98.1 95.5	96.8	8.0 8.0	8.0	8.0	1.9 2.0	2.0		3.2 2.9	3.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	2.8
					Bottom	3.2	16.8 16.4	16.6	8.1 8.0	8.1	23.3 21.2	22.2	97.4 94.3	95.9	8.0 7.9	7.9	7.9	2.3 2.4	2.4		2.8 2.1	2.5	
8-Jan-16	Sunny	Moderate	15:57		Surface	1.0	16.6 16.6	16.6	8.2 8.2	8.2	29.9 30.4	30.1	99.7 99.5	99.6	8.1 8.1	8.1	8.1	3.1 2.9	3.0		3.3 2.5	2.9	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	3.2	-	-	3.1
					Bottom	2.9	16.6 16.6	16.6	8.2 8.2	8.2	30.7 30.2	30.5	99.3 99.4	99.4	8.0 8.1	8.1	8.1	3.5 3.3	3.4		3.4 3.2	3.3	
11-Jan-16	Rainy	Moderate	09:54		Surface	1.0	16.1 16.1	16.1	8.2 8.2	8.2	27.0 27.5	27.3	101.6 100.5	101.1	8.4 8.4	8.4		4.4 4.3	4.4		3.9 4.2	4.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.4	- 4.3	-	4.7	- 4.2	-	4.4
					Bottom	3.3	16.1	16.1	8.2	8.2	28.1	27.8	98.8	99.7	8.2	8.3	8.3	4.9	4.9		4.4	4.7	
13-Jan-16	Sunny	Moderate	11:00	<u> </u> 	Surface	1.0	16.1 15.8	15.8	8.2 8.2	8.2	27.4 26.2	26.2	100.6 103.1	103.1	8.4 8.7	8.7		4.8 3.7	3.7		4.9 6.9	6.6	
				4.3	Middle		15.8 -		8.2		26.1		103.0		8.7		8.7	3.6	-	3.8	6.2	-	5.2
				4.0	Bottom	3.3	- 15.8	15.8	8.2	8.2	26.1	26.2	102.9	103.0	8.7	8.7	8.7	3.8	3.8	0.0	3.8	3.8	0.2
15-Jan-16	Rainy	Moderate	12:06				15.8 15.5		8.2 8.1		26.3 25.3		103.1 105.0		8.7 8.8		0.7	3.8			3.7 2.3		
	,				Surface	1.0	15.5 -	15.5	8.1	8.1	26.2	25.8	104.1	104.6	8.8	8.8	8.8	3.2	3.2		2.2	2.3	
				4.2	Middle	-	- 15.5	-	- 8.1	-	- 28.8	-	103.1	-	8.8	-		3.4	-	3.3	4.3	-	2.9
40 1 40	0	Madaga	40.44		Bottom	3.2	15.6	15.5	8.1	8.1	26.2	27.5	102.5	102.8	8.8	8.8	8.8	3.4	3.4		2.7	3.5	
18-Jan-16	Sunny	Moderate	12:44		Surface	1.0	15.1 15.1	15.1	8.2 8.2	8.2	27.8 27.2	27.5	101.3 101.2	101.3	8.6 8.6	8.6	8.6	1.9 2.0	2.0		2.7 2.6	2.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	3.0
					Bottom	2.8	15.1 15.2	15.2	8.2 8.2	8.2	27.8 28.4	28.1	101.3 101.3	101.3	8.6 8.6	8.6	8.6	2.2 2.5	2.4		3.2 3.4	3.3	
20-Jan-16	Rainy	Moderate	15:05		Surface	1.0	15.0 15.0	15.0	8.2 8.2	8.2	32.3 31.0	31.7	98.8 98.6	98.7	8.2 8.2	8.2	8.2	1.0 1.0	1.0		3.3 3.4	3.4	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	8.∠	-	-	1.1	-	-	4.0
					Bottom	3.3	15.0 15.0	15.0	8.2 8.2	8.2	31.6 32.9	32.3	98.5 98.5	98.5	8.2 8.1	8.2	8.2	1.1	1.1		5.1 3.9	4.5	
		1		<u> </u>			15.0	<u> </u>	8.2	<u> </u>	32.9		98.5	<u> </u>	8.1			1.1	l	l	3.9		

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salinit	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	15:55		Surface	1.0	14.6 14.6	14.6	8.1 8.1	8.1	25.4 25.4	25.4	97.3 97.1	97.2	8.5 8.4	8.5	8.5	1.6 1.5	1.6		3.3 4.0	3.7	
				4.0	Middle	•		•	1 1	-	-	-		-		-	0.5	-	-	1.6	-	-	4.6
					Bottom	3.0	14.6 14.6	14.6	8.1 8.1	8.1	25.3 25.6	25.5	96.9 97.1	97.0	8.4 8.4	8.4	8.4	1.6 1.6	1.6		4.7 6.2	5.5	
25-Jan-16	Sunny	Moderate	09:33		Surface	1.0	12.7 12.6	12.7	8.3 8.4	8.3	27.9 28.0	28.0	95.8 96.1	96.0	8.6 8.6	8.6	8.6	9.1 9.2	9.2		15.8 15.6	15.7	
				3.8	Middle	•		•		-	-	-		-		-	0.0	-	-	9.3	-	-	15.8
					Bottom	2.8	12.7 12.7	12.7	8.4 8.3	8.3	28.1 28.0	28.0	95.7 95.7	95.7	8.5 8.5	8.5	8.5	9.3 9.3	9.3		15.4 16.3	15.9	
27-Jan-16	Cloudy	Moderate	10:28		Surface	1.0	11.6 11.6	11.6	8.4 8.3	8.4	30.4 30.7	30.6	98.0 98.0	98.0	8.8 8.8	8.8	8.8	10.9 10.4	10.7		15.1 13.9	14.5	
				3.9	Middle			-	1 1	-	-	-		-		-	0.0	-	-	10.4	-	-	16.0
					Bottom	2.9	11.6 11.6	11.6	8.4 8.3	8.3	30.5 30.9	30.7	97.7 98.2	98.0	8.8 8.8	8.8	8.8	10.0 9.9	10.0		17.8 16.9	17.4	
29-Jan-16	Rainy	Moderate	11:34		Surface	1.0	11.8 11.8	11.8	8.3 8.3	8.3	29.2 29.3	29.2	98.2 97.8	98.0	8.8 8.8	8.8	8.8	4.9 4.5	4.7		6.7 6.4	6.6	
				4.0	Middle	-		-		-	-	-		-		-	0.0	-	-	4.8	-	-	7.2
					Bottom	3.0	11.8 11.8	11.8	8.3 8.2	8.3	29.3 29.6	29.4	97.9 97.8	97.9	8.8 8.8	8.8	8.8	4.7 5.0	4.9		7.9 7.4	7.7	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	18:11		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.7 28.8	28.8	88.5 88.5	88.5	6.8 6.8	6.8		2.6 2.5	2.6		2.8 3.5	3.2	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-	2.8	-	-	3.3
					Bottom	2.8	19.5 19.6	19.5	8.2 8.2	8.2	28.9 28.8	28.9	89.0 88.4	88.7	6.9 6.8	6.9	6.9	2.7 3.0	2.9		3.5 3.1	3.3	
4-Jan-16	Sunny	Moderate	07:25		Surface	1.0	16.0	16.0	7.9	7.9	28.6	28.6	96.1	95.8	8.0	7.9		1.2	1.2		3.2	3.2	
				4.2	Middle	1.0	16.0	-	7.9	-	28.5	-	95.5	-	7.9	7.0	7.9	1.2	12	1.2	3.1	-	3.7
				4.2		-	- 16.1		7.8		30.6		94.8		- 7.8	7.0	7.0	1.2	- 10	1.2	3.8		3.7
6-Jan-16	Sunny	Moderate	09:31		Bottom	3.2	16.0 16.3	16.1	7.9 8.1	7.8	29.0 24.3	29.8	96.3 94.3	95.6	8.0	7.9	7.9	1.2 1.5	1.2		4.5 3.1	4.2	
0-Jan-10	Sullily	Moderate	09.51		Surface	1.0	16.3	16.3	8.1	8.1	26.6	25.5	95.1	94.7	7.9	8.0	8.0	1.5	1.5		2.3	2.7	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.5	-	-	3.1
					Bottom	3.0	16.4 16.4	16.4	8.1 8.1	8.1	29.4 28.8	29.1	95.7 95.0	95.4	7.8 7.8	7.8	7.8	1.5 1.5	1.5		3.8 3.2	3.5	
8-Jan-16	Sunny	Moderate	11:40		Surface	1.0	16.5 16.5	16.5	8.1 8.1	8.1	32.3 32.3	32.3	102.9 101.3	102.1	8.3 8.1	8.2	8.2	3.2 3.3	3.3		3.4 2.7	3.1	
				4.1	Middle	-	-	-	-	-	-	-	-	-		-	8.2	-	-	3.3	-	-	3.0
					Bottom	3.1	16.4 16.4	16.4	8.1 8.2	8.2	32.3 32.4	32.4	101.8 103.9	102.9	8.2 8.4	8.3	8.3	3.3 3.3	3.3		2.6 3.0	2.8	
11-Jan-16	Sunny	Moderate	13:59		Surface	1.0	16.2 16.4	16.3	8.2 8.2	8.2	25.3 25.3	25.3	102.0 102.0	102.0	8.6 8.6	8.6		2.1 2.0	2.1		3.0	2.9	
				4.1	Middle	-	-	-	- 8.2	_	- 25.3	-	-	-	-	-	8.6	-	-	2.2	- 2.8	-	3.9
					Bottom	3.1	16.2	16.2	8.2	8.2	25.3	25.3	101.5	101.2	8.5	8.5	8.5	2.2	2.3		4.9	4.9	
13-Jan-16	Sunny	Moderate	15:38		Surface	1.0	16.1 16.2	16.2	8.2 8.2	8.2	25.3 24.1	24.1	100.9 105.1	105.0	8.5 8.9	8.9		2.3	2.1		4.9 8.2	8.2	
				4.3		1.0	16.2	-	8.2	-	24.2		104.8	100.0	8.9	0.0	8.9	2.1	-	2.2	8.1	-	7.0
				4.3	Middle		- 16.1		8.2		24.3		104.5		8.9	-		2.2		2.2	6.4		7.0
45 Jan 40	Dein	Madagata	17:21		Bottom	3.3	16.2 15.4	16.1	8.2 8.1	8.2	24.4	24.3	104.7	104.6	8.9 8.9	8.9	8.9	2.1	2.2		4.9	5.7	
15-Jan-16	Rainy	Moderate	17:21		Surface	1.0	15.4	15.4	8.1	8.1	22.9	22.8	101.7	101.7	8.8	8.8	8.8	1.4	1.4		2.6	2.5	
				4.2	Middle	-	-	-	-	-	-	-	-	-		-		-	-	1.5	-	-	2.5
					Bottom	3.2	15.5 15.5	15.5	8.1 8.1	8.1	24.1 23.8	24.0	101.2 101.4	101.3	8.7 8.8	8.7	8.7	1.5 1.6	1.6		2.8 2.1	2.5	
18-Jan-16	Sunny	Moderate	06:48		Surface	1.0	14.7 14.7	14.7	8.1 8.1	8.1	29.8 29.8	29.8	97.6 99.0	98.3	8.3 8.4	8.3		2.0 1.8	1.9		2.5 2.2	2.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-	2.0	-	-	2.5
					Bottom	3.1	15.1 14.9	15.0	8.0 8.1	8.1	29.8 30.2	30.0	98.4 95.6	97.0	8.3 8.0	8.1	8.1	2.2	2.1		2.5 2.6	2.6	
20-Jan-16	Rainy	Moderate	09:18		Surface	1.0	15.2	15.2	8.1	8.1	33.3	33.3	100.4	100.7	8.2	8.2		1.2	1.3		4.2	3.8	
				4.1	Middle	_	15.2	_	8.1	_	33.3	_	101.0	-	8.3	_	8.2	1.3	_	1.4	3.4	_	3.7
						3.1	15.2	15.2	8.1	8.1	33.3	33.3	99.2	99.3	8.1	8.1	8.1	1.4	1.4		3.9	3.6	0
					Bottom	3.1	15.2	15.2	8.1	8.1	33.4	33.3	99.4	99.3	8.2	8.1	8.1	1.4	1.4		3.3	3.0	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Temper	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth ((m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:53		Surface	1.0	14.6 14.7	14.7	8.1 8.1	8.1	32.2 32.3	32.2	96.4 98.7	97.6	8.0 8.2	8.1	8.1	1.9 1.9	1.9		3.4 2.8	3.1	
				4.1	Middle		-	-	-	-	-	-	-	-	-		0.1	-	-	1.9	-	-	4.1
					Bottom	3.1	14.7 14.7	14.7	8.1 8.1	8.1	32.7 32.8	32.8	99.9 96.7	98.3	8.3 8.0	8.2	8.2	1.9 1.9	1.9		4.9 5.1	5.0	
25-Jan-16	Sunny	Moderate	14:04		Surface	1.0	12.5 12.5	12.5	8.4 8.4	8.4	28.1 28.3	28.2	97.7 97.6	97.7	8.7 8.7	8.7	8.7	2.8 2.7	2.8		4.7 5.2	5.0	
				4.1	Middle	•		•		-		-		-		-	0.7	-	-	2.8	-	-	5.9
					Bottom	3.1	12.5 12.4	12.4	8.4 8.3	8.3	28.2 28.3	28.3	97.6 97.7	97.7	8.7 8.7	8.7	8.7	2.8 2.8	2.8		7.2 6.1	6.7	
27-Jan-16	Cloudy	Moderate	15:10		Surface	1.0	12.1 12.2	12.1	8.3 8.3	8.3	28.2 28.3	28.3	97.6 97.6	97.6	8.8 8.8	8.8	8.8	2.3 2.4	2.4		6.4 6.7	6.6	
				4.3	Middle			-		-		-		-		-	0.0	-	-	2.4	-	-	6.4
					Bottom	3.3	12.1 12.1	12.1	8.3 8.3	8.3	28.1 28.3	28.2	97.2 97.4	97.3	8.8 8.8	8.8	8.8	2.3 2.3	2.3		5.6 6.5	6.1	
29-Jan-16	Cloudy	Moderate	16:17		Surface	1.0	11.9 12.0	12.0	8.3 8.3	8.3	24.4 23.3	23.8	96.1 96.1	96.1	8.9 9.0	8.9	8.9	2.5 2.3	2.4		3.4 3.1	3.3	
				3.9	Middle	-		-		-	-	-		-		-	0.9	-	-	2.8	-	-	4.1
					Bottom	2.9	12.0 12.0	12.0	8.3 8.3	8.3	26.2 26.3	26.3	96.1 97.2	96.7	8.8 8.9	8.8	8.8	3.0 3.1	3.1		5.3 4.4	4.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:44		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.2 28.2	28.2	94.2 92.0	93.1	7.3 7.1	7.2	7.0	3.8 3.5	3.7		5.0 3.7	4.4	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	3.7	-	-	4.4
					Bottom	3.2	19.5 19.5	19.5	8.2 8.2	8.2	28.3 28.4	28.3	94.3 91.5	92.9	7.3 7.1	7.2	7.2	3.7 3.4	3.6		5.3 3.5	4.4	
4-Jan-16	Sunny	Moderate	14:47		Surface	1.0	16.2	16.2	8.1	8.1	25.3	25.3	98.0	98.5	8.3	8.3		1.5	1.5		1.2	1.3	
				4.3	Middle	-	16.3	-	8.1	-	25.3	-	99.0	-	8.3	-	8.3	1.5	-	1.5	1.3	-	1.8
					Bottom	3.3	16.2	16.2	8.1	8.1	26.7	26.3	98.1	98.3	8.2	8.2	8.2	1.5	1.5		2.5	2.3	
6-Jan-16	Sunny	Moderate	16:48		Surface	1.0	16.2 16.9	16.9	8.1	8.1	25.8	20.3	98.5 99.2	99.4	8.3 8.5	8.5		1.5	1.7		3.3	3.4	
				4.1	Middle	_	16.9	_	8.1	_	20.2	-	99.5	_	8.5 -	_	8.5	1.6	-	1.8	3.4	-	3.3
					Bottom	3.1	16.8	16.8	8.1	8.1	23.1	23.0	98.7	98.9	8.3	8.4	8.4	1.9	1.9		2.7	3.1	
8-Jan-16	Sunny	Moderate	17:17		Surface	1.0	16.8 16.7	16.7	8.1 8.2	8.2	22.9 25.0	25.1	99.0 103.1	103.2	8.4 8.6	8.6		1.9 2.7	2.7		3.4 2.3	2.4	
				4.1	Middle		16.7	_	8.2	_	25.1	_	103.3	_	8.6	_	8.6	2.7	_	2.7	2.4	_	2.4
					Bottom	3.1	16.7	16.6	8.1	8.1	26.1	25.9	103.1	103.2	8.6	8.6	8.6	2.6	2.7		2.5	2.3	
11-Jan-16	Rainy	Moderate	08:27	<u> </u>	Surface	1.0	16.6 16.1	16.1	8.2 8.2	8.2	25.8 32.3	32.3	103.2 100.6	100.7	8.6 8.1	8.1		2.7	2.7		2.1 5.0	4.5	
				4.1	Middle	_	16.1	_	8.2	-	32.3	-	100.8	_	8.2	_	8.1	2.7	-	2.9	3.9	-	5.1
					Bottom	3.1	16.1	16.1	8.2	8.2	32.4	32.4	99.7	99.9	8.1	8.1	8.1	3.0	3.0		5.5	5.6	
13-Jan-16	Sunny	Moderate	09:27				16.1 15.7		8.2 8.1		32.4 32.1		100.1 105.1		8.1 8.6			3.0		l	5.7 6.5		<u> </u>
13-3411-10	Suring	Woderate	09.27		Surface	1.0	15.7	15.7	8.1	8.1	32.1	32.1	104.9	105.0	8.6	8.6	8.6	4.1	4.0		5.9	6.2	
				4.3	Middle	-	-	-	- - 8.1	-	32.2	-	109.8	-	9.0	-		3.9	-	4.0	8.0	-	7.5
					Bottom	3.3	15.7 15.7	15.7	8.1	8.1	32.1	32.1	105.8	107.8	8.6	8.8	8.8	3.9	3.9		9.4	8.7	
15-Jan-16	Rainy	Moderate	11:01		Surface	1.0	15.6 15.6	15.6	8.0 8.0	8.0	32.1 32.2	32.1	104.2 103.3	103.8	8.5 8.5	8.5	8.5	3.1 3.1	3.1		3.7 2.9	3.3	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.3	-	-	3.6
					Bottom	3.3	15.6 15.6	15.6	7.9 8.0	8.0	32.2 32.2	32.2	102.9 102.9	102.9	8.4 8.4	8.4	8.4	3.4 3.5	3.5		3.6 4.2	3.9	
18-Jan-16	Sunny	Moderate	14:08		Surface	1.0	15.2 15.2	15.2	8.2 8.2	8.2	22.9 23.1	23.0	101.2 100.9	101.1	8.8 8.8	8.8	8.8	2.4 2.7	2.6		2.7 2.0	2.4]
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.8	-	-	2.9
					Bottom	3.0	15.3 15.4	15.3	8.1 8.2	8.2	23.0 23.9	23.4	101.3 101.0	101.2	8.8 8.7	8.8	8.8	3.0 2.8	2.9		3.1 3.5	3.3	
20-Jan-16	Rainy	Moderate	16:30		Surface	1.0	15.1 15.1	15.1	8.2 8.2	8.2	26.2 26.2	26.2	99.3 99.0	99.2	8.5 8.5	8.5	8.5	1.0 1.0	1.0		2.9 3.1	3.0	
				4.3	Middle	-	-	-		-	-	-		-		-	0.0	-	-	1.1	-	-	3.1
					Bottom	3.3	15.1 15.1	15.1	8.2 8.2	8.2	26.6 26.3	26.5	98.6 98.7	98.7	8.5 8.5	8.5	8.5	1.1 1.0	1.1		2.3 4.1	3.2	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	17:15		Surface	1.0	14.4 14.5	14.5	8.1 8.1	8.1	23.8 23.7	23.8	97.7 97.4	97.6	8.6 8.6	8.6	8.6	1.6 1.6	1.6		5.3 4.3	4.8	
				4.4	Middle			•	1	-	-	-		-	1 1	-	0.0	-	-	1.6	-	-	4.3
					Bottom	3.4	14.6 14.5	14.5	8.1 8.1	8.1	23.8 23.8	23.8	95.3 97.2	96.3	8.4 8.6	8.5	8.5	1.6 1.6	1.6		3.8 3.7	3.8	
25-Jan-16	Sunny	Moderate	08:14		Surface	1.0	12.1 12.3	12.2	8.2 8.2	8.2	34.3 34.7	34.5	97.7 97.2	97.5	8.4 8.4	8.4	8.4	4.8 4.9	4.9		9.0 8.8	8.9	
				4.2	Middle			•		-	-	-		-	1 1	-	0.4	-	-	5.2	-	-	9.8
					Bottom	3.2	12.2 12.2	12.2	8.2 8.2	8.2	34.7 34.5	34.6	96.1 96.3	96.2	8.3 8.3	8.3	8.3	5.4 5.3	5.4		10.5 10.6	10.6	
27-Jan-16	Cloudy	Moderate	09:04		Surface	1.0	11.6 11.6	11.6	8.3 8.3	8.3	34.6 34.7	34.6	98.0 97.9	98.0	8.6 8.6	8.6	8.6	3.5 3.3	3.4		6.7 6.3	6.5	
				4.3	Middle	-		-		-	-	-		-	1 1	-	0.0	-	-	3.8	-	-	6.2
					Bottom	3.3	11.6 11.5	11.5	8.3 8.2	8.3	34.7 34.7	34.7	97.7 97.8	97.8	8.5 8.6	8.6	8.6	4.0 4.1	4.1		5.8 5.9	5.9	
29-Jan-16	Rainy	Moderate	10:12		Surface	1.0	11.8 11.8	11.8	8.2 8.2	8.2	32.7 32.7	32.7	98.5 99.3	98.9	8.7 8.8	8.7	8.7	8.0 7.9	8.0	_	6.6 6.5	6.6	
				3.9	Middle	-		-	1 1	-	-	-		-		-	0.7	-	-	8.3	-	-	7.8
					Bottom	2.9	11.8 11.8	11.8	8.2 8.2	8.2	32.8 32.7	32.8	98.6 99.9	99.3	8.7 8.8	8.7	8.7	8.6 8.6	8.6		8.1 9.6	8.9	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	19:13		Surface	1.0	16.2 16.2	16.2	8.1 8.1	8.1	28.8 28.8	28.8	92.3 91.6	92.0	7.6 7.6	7.6		2.7 2.8	2.8		2.8 3.9	3.4	
				6.4	Middle	3.2	16.2 16.2	16.2	7.1 8.1	7.6	28.8 28.7	28.7	91.1 91.2	91.2	7.5 7.5	7.5	7.6	2.7	2.7	2.8	2.3	2.3	3.5
					Bottom	5.4	16.2	16.2	8.1	7.6	28.5	28.6	91.3	91.4	7.5	7.5	7.5	2.9	3.0		4.9	4.8	
4-Jan-16	Sunny	Moderate	05:58				16.2 19.7		7.1 8.1		28.6 26.2		91.4 89.8		7.5 7.0			3.0 1.7			4.7 2.8		
4-5an-10	Odility	Woderate	05.50		Surface	1.0	19.7	19.7	8.1	8.1	26.2	26.2	88.9	89.4	7.0	7.0	7.0	1.7	1.7		2.0	2.4	
				6.8	Middle	3.4	19.7 19.7	19.7	8.1 8.1	8.1	26.4 26.5	26.5	89.0 88.1	88.6	7.0 6.9	6.9		1.7	1.7	1.7	2.5 3.0	2.8	2.6
					Bottom	5.8	19.7 19.7	19.7	8.1 8.1	8.1	27.6 27.5	27.5	87.7 89.6	88.7	6.8 7.0	6.9	6.9	1.7 1.7	1.7		2.5 2.4	2.5	
6-Jan-16	Sunny	Moderate	09:11		Surface	1.0	20.0 20.0	20.0	8.1 8.1	8.1	25.7 25.7	25.7	88.8 90.2	89.5	6.9 7.1	7.0	7.0	1.7 1.6	1.7		3.8 2.3	3.1	
				6.4	Middle	3.2	19.9 19.9	19.9	8.1 8.1	8.1	26.8 26.9	26.9	88.1 89.6	88.9	6.9 7.0	6.9	7.0	1.7 1.6	1.7	1.7	2.2 2.6	2.4	2.7
					Bottom	5.4	19.9 19.9	19.9	8.1 8.1	8.1	28.0 28.0	28.0	88.7 89.2	89.0	6.9	6.9	6.9	1.8 1.8	1.8		2.4	2.6	
8-Jan-16	Sunny	Moderate	11:11		Surface	1.0	20.0	20.0	8.1	8.1	28.1	28.0	90.3	90.1	7.0	6.9		1.8	1.9		2.7 2.7	2.7	
				6.7	Middle	3.4	20.0	20.0	8.1	8.1	28.0 28.0	28.0	89.9 89.7	90.2	6.9	7.0	7.0	1.9	1.9	1.9	2.5	2.6	2.5
					Bottom	5.7	20.0	20.0	8.1 8.1	8.1	28.1 28.0	28.0	90.7 89.8	89.4	7.0 6.9	6.9	6.9	1.9	1.9		2.7	2.3	
11-Jan-16	Sunny	Moderate	14:50		Surface	1.0	20.0	20.0	8.1 8.2	8.2	28.0 28.5	28.4	89.0 93.7	94.5	6.9 7.2	7.3		1.8	1.8		2.2	2.8	
				0.5			20.0 19.9		8.2 8.2		28.4 28.7		95.3 93.9		7.3 7.2		7.3	1.8		4.0	3.0 2.7		
				6.5	Middle	3.3	19.9 20.0	19.9	8.2 8.2	8.2	28.8 28.6	28.8	94.7 94.6	94.3	7.3 7.3	7.3		1.8	1.8	1.8	3.9 2.5	3.3	3.1
40.140	0	Madage	40.40		Bottom	5.5	19.9	19.9	8.2	8.2	29.0	28.8	94.1	94.4	7.2	7.3	7.3	1.8	1.9		3.9	3.2	
13-Jan-16	Sunny	Moderate	16:13		Surface	1.0	19.9 19.9	19.9	8.3 8.2	8.3	27.5 27.6	27.5	99.8 98.0	98.9	7.7 7.6	7.7	7.7	1.8 1.9	1.9		2.4 3.5	3.0	
				6.5	Middle	3.3	19.7 19.8	19.7	8.2 8.2	8.2	27.9 27.8	27.9	96.3 98.6	97.5	7.5 7.6	7.6		1.9 1.8	1.9	2.0	4.7 5.7	5.2	4.6
					Bottom	5.5	19.7 19.8	19.7	8.2 8.2	8.2	28.2 28.0	28.1	96.9 97.8	97.4	7.5 7.6	7.5	7.5	2.2 2.0	2.1		5.8 5.6	5.7	
15-Jan-16	Rainy	Moderate	17:56		Surface	1.0	19.1 19.1	19.1	8.3 8.3	8.3	27.9 27.9	27.9	97.1 96.6	96.9	7.6 7.6	7.6		1.7 1.7	1.7		2.6 2.1	2.4	
				6.3	Middle	3.2	19.1 19.1	19.1	8.3 8.3	8.3	27.9 27.9	27.9	95.8 96.4	96.1	7.5 7.6	7.5	7.6	1.8 1.7	1.8	1.7	2.2 2.3	2.3	2.4
					Bottom	5.3	19.1 19.2	19.1	8.3 8.3	8.3	28.0 28.0	28.0	95.7 95.2	95.5	7.5 7.5	7.5	7.5	1.7	1.7		2.1 2.6	2.4	
18-Jan-16	Sunny	Moderate	06:22		Surface	1.0	18.2	18.2	8.1	8.1	24.7	24.8	91.2	91.4	7.4	7.4		1.6	1.7		2.8	2.6	
				6.3	Middle	3.2	18.2 18.5	18.6	8.2 8.1	8.1	24.9 26.0	25.7	91.5 90.1	90.7	7.4 7.2	7.3	7.4	1.7	1.8	1.8	2.4	2.4	2.4
				0.0	Bottom	5.3	18.6 19.1	19.2	8.1 8.1	8.1	25.4 27.7	27.6	91.2 91.8	91.4	7.3 7.2	7.2	7.2	1.8 1.8	1.9	1.0	2.3	2.3	2.4
20-Jan-16	Rainy	Moderate	09:10				19.2 18.8		8.1 8.1		27.5 28.8		91.0 91.3		7.2 7.2		1.2	1.9 1.9			2.3 3.8		
20 34 13	,				Surface	1.0	18.8	18.8	8.1 8.1	8.1	28.8 28.8	28.8	93.3 92.6	92.3	7.3 7.3	7.2	7.3	1.9	1.9		4.0	3.9	ł
				6.7	Middle	3.4	18.8	18.8	8.1	8.1	28.8	28.8	93.8	93.2	7.4	7.3		1.8	1.9	1.9	4.5	4.5	5.3
					Bottom	5.7	18.8 18.8	18.8	8.1 8.1	8.1	28.9 28.8	28.9	92.8 90.5	91.7	7.3 7.1	7.2	7.2	1.8 1.8	1.8		7.1 7.6	7.4	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samplin	ng	Tempera	ature (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NTI	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth (m	n)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:15		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	89.6 89.5	89.6	7.1 7.1	7.1	7.1	1.0 0.9	1.0		3.2 3.9	3.6	
				6.5	Middle	3.3	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	89.0 89.0	89.0	7.1 7.0	7.0	7.1	1.0 1.0	1.0	1.0	4.5 4.7	4.6	4.0
					Bottom	5.5	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	88.7 88.9	88.8	7.0 7.0	7.0	7.0	1.1 1.1	1.1		4.3 3.2	3.8	
25-Jan-16	Sunny	Moderate	14:51		Surface	1.0	16.9 16.9	16.9	8.4 8.4	8.4	29.2 29.2	29.2	91.8 91.1	91.5	7.5 7.4	7.4	7.4	2.1 2.0	2.1		6.6 7.2	6.9	
				6.4	Middle	3.2	16.9 16.9	16.9	8.4 8.4	8.4	29.3 29.3	29.3	91.0 91.0	91.0	7.4 7.4	7.4	7.4	2.2 2.1	2.2	2.2	7.2 8.9	8.1	8.0
					Bottom	5.4	16.8 16.9	16.9	8.4 8.4	8.4	29.4 29.3	29.4	90.5 91.0	90.8	7.4 7.4	7.4	7.4	2.1 2.2	2.2		8.9 9.2	9.1	
27-Jan-16	Cloudy	Moderate	15:30		Surface	1.0	16.4 16.4	16.4	8.3 8.3	8.3	29.9 29.9	29.9	89.2 89.7	89.5	7.3 7.3	7.3	7.3	2.4 2.3	2.4		4.6 3.9	4.3	
				6.5	Middle	3.3	16.4 16.4	16.4	8.3 8.3	8.3	29.9 29.9	29.9	89.1 89.4	89.3	7.3 7.3	7.3	7.5	2.5 2.4	2.5	2.5	4.3 4.2	4.3	4.7
					Bottom	5.5	16.4 16.3	16.4	8.3 8.3	8.3	29.9 30.0	30.0	89.1 88.4	88.8	7.3 7.2	7.3	7.3	2.4 2.5	2.5		6.2 4.8	5.5	
29-Jan-16	Cloudy	Moderate	17:00		Surface	1.0	15.8 15.8	15.8	8.3 8.3	8.3	29.1 29.1	29.1	91.8 91.1	91.5	7.6 7.6	7.6	7.6	3.0 3.0	3.0		3.7 3.4	3.6	
				6.3	Middle	3.2	15.9 15.9	15.9	8.3 8.3	8.3	29.3 29.2	29.3	89.9 91.4	90.7	7.4 7.6	7.5	7.0	3.0 2.9	3.0	3.0	4.2 3.8	4.0	4.0
					Bottom	5.3	15.9 15.9	15.9	8.3 8.3	8.3	29.3 29.4	29.4	90.8 89.5	90.2	7.5 7.4	7.5	7.5	3.0 3.1	3.1		4.1 4.4	4.3	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:17		Surface	1.0	16.1 16.0	16.1	8.1 8.1	8.1	33.7 33.7	33.7	95.1 95.5	95.3	7.6 7.7	7.7		2.1 2.1	2.1		3.9 3.8	3.9	
				6.6	Middle	3.3	16.0 16.0	16.0	8.1 8.1	8.1	33.7 33.7	33.7	95.2 94.9	95.1	7.6 7.6	7.6	7.7	2.1	2.1	2.1	3.6 3.9	3.8	3.5
					Bottom	5.6	16.1 16.1	16.1	8.0 8.1	8.1	33.9 33.8	33.9	95.0 94.8	94.9	7.6 7.6	7.6	7.6	2.2	2.2		2.9	2.7	 -
4-Jan-16	Sunny	Moderate	15:06		Surface	1.0	20.0	20.0	8.2	8.2	27.4	27.5	92.7	92.6	7.2	7.2		1.6	1.6		2.1	2.1	
				6.7	Middle	3.4	20.0 19.7	19.7	8.2 8.2	8.2	27.5 28.0	28.0	92.4 91.4	91.3	7.2 7.1	7.1	7.2	1.6	1.7	1.6	2.0	2.1	2.2
					Bottom	5.7	19.7 19.8	19.7	8.2 8.2	8.2	27.9 28.2	28.3	91.1 92.2	91.5	7.1 7.1	7.1	7.1	1.6 1.6	1.6		2.1	2.4	i
6-Jan-16	Sunny	Moderate	16:41	<u> </u>	Surface	1.0	19.7 20.0	20.0	8.2 8.2	8.2	28.4 28.3	28.0	90.8 87.3	87.6	7.0 6.7	6.8		1.6 2.3	2.3		3.0	2.9	
				6.6	Middle	3.3	20.0 19.9	19.9	8.2 8.1	8.1	27.8 29.3	29.3	87.8 86.8	86.9	6.8 6.7	6.7	6.8	2.2	2.6	2.6	2.8 3.6	3.2	3.2
				0.0	Bottom	5.6	19.9 19.9	19.9	8.1 8.1	8.1	29.3 29.3	29.3	87.0 87.5	87.4	6.7 6.7	6.7	6.7	2.6 2.8	3.0	2.0	2.8 3.7	3.6	3.2
8-Jan-16	Sunny	Moderate	18:01	<u> </u>	Surface	1.0	19.9 20.2	20.2	8.1 8.2	8.2	29.3 28.5	28.5	87.3 96.1	96.3	6.7 7.4	7.4	6.7	3.1 1.5	1.5		3.5 2.3	2.2	
	•			6.5		3.3	20.2	20.2	8.2 8.2	8.2	28.4 28.5	28.5	96.5 96.5	95.7	7.4 7.4		7.4	1.4 1.5		4.0	2.1 2.4		2.5
				6.5	Middle		20.2		8.2 8.2		28.5 28.6		94.9 94.9		7.3 7.3	7.3		1.6 1.6	1.6	1.6	2.7	2.6	2.5
11-Jan-16	Rainy	Moderate	07:41		Bottom	5.5	20.2 19.7	20.2	8.2 8.1	8.2	28.5 26.6	28.6	96.5 92.2	95.7	7.4 7.2	7.3	7.3	1.6	1.6		3.0	2.8	
11-0411-10	Rainy	Woderate	07.41		Surface	1.0	19.7	19.7	8.1 8.1	8.1	26.6 26.7	26.6	92.1 92.0	92.2	7.2	7.2	7.2	1.7	1.8		3.7	3.6	 -
				6.4	Middle	3.2	19.8	19.8	8.1	8.1	26.6	26.7	92.9	92.5	7.2 7.3 7.2	7.2		1.8	1.8	1.8	3.5 3.9	4.0	3.7
					Bottom	5.4	19.7 19.8	19.8	8.1 8.1	8.1	26.7 26.7	26.7	92.7 94.5	93.6	7.4	7.3	7.3	1.8	1.8		3.3	3.6	
13-Jan-16	Sunny	Moderate	08:47		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	27.3 27.3	27.3	93.1 92.8	93.0	7.3 7.3	7.3	7.2	1.9 1.9	1.9		5.3 5.7	5.5	i
				6.6	Middle	3.3	19.6 19.6	19.6	8.1 8.1	8.1	27.4 27.5	27.4	90.5 92.5	91.5	7.1 7.2	7.1		2.0 2.0	2.0	2.1	5.7 4.1	4.9	4.9
					Bottom	5.6	19.6 19.6	19.6	8.1 8.1	8.1	27.5 27.4	27.4	92.1 90.0	91.1	7.2 7.0	7.1	7.1	2.3 2.2	2.3		4.4 4.4	4.4	
15-Jan-16	Rainy	Moderate	10:12		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	27.2 27.1	27.1	95.5 95.6	95.6	7.5 7.5	7.5	7.5	4.2 4.3	4.3		1.8 1.9	1.9	
				6.4	Middle	3.2	19.3 19.3	19.3	8.2 8.2	8.2	27.2 27.3	27.2	95.8 95.4	95.6	7.5 7.5	7.5	7.5	4.5 4.4	4.5	4.4	1.9 2.0	2.0	2.2
					Bottom	5.4	19.3 19.3	19.3	8.2 8.2	8.2	27.2 27.3	27.3	95.0 93.2	94.1	7.5 7.3	7.4	7.4	4.4 4.5	4.5		2.8 2.6	2.7	
18-Jan-16	Sunny	Moderate	14:45		Surface	1.0	18.7 18.6	18.6	8.3 8.3	8.3	27.4 27.2	27.3	96.0 95.5	95.8	7.6 7.6	7.6		1.2 1.2	1.2		2.4	2.7	
				6.4	Middle	3.2	18.7 18.7	18.7	8.2 8.2	8.2	27.8 27.7	27.7	93.9 97.1	95.5	7.4 7.7	7.6	7.6	1.3	1.3	1.3	2.4	2.6	2.6
					Bottom	5.4	18.9 18.7	18.8	8.2 8.2	8.2	28.8	28.7	94.1 95.0	94.6	7.4 7.5	7.4	7.4	1.3	1.3		2.5	2.6	
20-Jan-16	Rainy	Moderate	16:34		Surface	1.0	18.8	18.8	8.3	8.3	29.6	29.6	94.1	93.2	7.4	7.3		1.5	1.6		2.7	3.3	
				6.6	Middle	3.3	18.8	18.8	8.3	8.3	29.5 29.6	29.6	92.2	93.7	7.2	7.3	7.3	1.6	1.6	1.6	3.9	3.6	3.5
					Bottom	5.6	18.8 18.8	18.8	8.3 8.3	8.3	29.6 29.6	29.6	94.0 91.1	91.6	7.3 7.1	7.2	7.2	1.6 1.7	1.7	-	3.8	3.5	
					DOMONI	5.0	18.8	10.0	8.3	0.5	29.6	20.0	92.0	31.0	7.2	1.2	1.2	1.7	1.7		3.7	5.5	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampling	g	Tempera	ture (°C)	ŗ	Н	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NT	U)	Susper	nded Solids	(mg/L) د
	Condition	Condition**	Time	Depth (m)	Depth (m	1)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	18:12		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.3 29.2	29.3	92.8 92.6	92.7	7.3 7.3	7.3	7.2	1.2 1.2	1.2		2.4 3.1	2.8	
				6.7	Middle	3.4	18.4 18.5	18.5	8.2 8.2	8.2	29.2 29.3	29.2	90.2 90.3	90.3	7.1 7.1	7.1	1.2	1.4 1.3	1.4	1.4	3.9 3.4	3.7	4.0
					Bottom 5	5.7	18.3 18.5	18.4	8.2 8.2	8.2	29.2 29.2	29.2	88.9 89.0	89.0	7.0 7.0	7.0	7.0	1.6 1.5	1.6		5.9 4.9	5.4	
25-Jan-16	Sunny	Moderate	07:41		Surface	1.0	16.7 16.7	16.7	8.2 8.2	8.2	28.9 29.0	29.0	90.6 90.2	90.4	7.4 7.4	7.4	7.4	6.1 6.4	6.3		9.0 9.0	9.0	
				6.7	Middle	3.4	16.7 16.7	16.7	8.2 8.2	8.2	29.0 28.9	29.0	90.0 90.4	90.2	7.4 7.4	7.4	7.4	6.3 6.3	6.3	6.3	10.0 9.8	9.9	10.7
					Bottom 5	5.7	16.7 16.7	16.7	8.2 8.1	8.2	29.0 28.9	28.9	89.2 90.0	89.6	7.3 7.4	7.3	7.3	6.3 6.2	6.3		12.2 14.0	13.1	
27-Jan-16	Cloudy	Moderate	08:21		Surface	1.0	16.0 16.0	16.0	8.2 8.2	8.2	28.4 28.4	28.4	89.9 89.1	89.5	7.5 7.4	7.4	7.4	3.8 3.7	3.8		3.1 3.7	3.4	
				6.6	Middle 3	3.3	16.0 16.0	16.0	8.2 8.2	8.2	28.5 28.6	28.6	89.7 89.2	89.5	7.5 7.4	7.4	7.4	4.4 4.5	4.5	4.3	2.7 2.6	2.7	3.8
					Bottom 5	5.6	15.9 15.9	15.9	8.2 8.2	8.2	28.5 28.6	28.6	89.0 87.7	88.4	7.4 7.3	7.3	7.3	4.4 4.6	4.5		5.1 5.4	5.3	
29-Jan-16	Rainy	Moderate	09:42		Surface	1.0	15.5 15.5	15.5	8.2 8.2	8.2	27.3 27.2	27.2	91.5 90.2	90.9	7.7 7.6	7.7	7.7	2.6 2.4	2.5		3.2 2.8	3.0	
				6.6	Middle 3	3.3	15.5 15.5	15.5	8.1 8.2	8.2	27.3 27.3	27.3	91.4 90.9	91.2	7.7 7.7	7.7		3.5 3.4	3.5	3.1	2.5 2.3	2.4	3.1
					Bottom 5	5.6	15.6 15.6	15.6	8.1 8.2	8.1	27.4 27.4	27.4	90.1 89.9	90.0	7.6 7.6	7.6	7.6	3.5 3.3	3.4		2.9 4.6	3.8	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	19:27		Surface	1.0	16.3 16.3	16.3	8.2 8.2	8.2	29.0 29.0	29.0	94.3 94.0	94.2	7.8 7.8	7.8		3.0 3.1	3.1		2.9 2.2	2.6	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	3.3	-	-	3.0
					Bottom	3.7	16.3 16.3	16.3	8.1 8.2	8.2	28.9 29.0	28.9	94.1 94.6	94.4	7.8 7.8	7.8	7.8	3.3 3.4	3.4		3.5	3.4	
4-Jan-16	Sunny	Moderate	05:36		Surface	1.0	19.7	19.7	8.2	8.2	25.4	25.0	90.7	91.5	7.2	7.2		1.8	1.8		3.8	3.7	
				5.2	Middle	_	19.7	-	8.2	_	24.7	-	92.2	_	7.3	-	7.2	1.8	-	1.8	3.6	-	3.5
					Bottom	4.2	19.7	19.7	8.2	8.2	23.9	24.6	92.3	91.6	7.3	7.3	7.3	1.8	1.8		2.3	3.3	1
6-Jan-16	Sunny	Moderate	09:01	<u> </u>	Surface	1.0	19.7 20.0	20.0	8.2 8.2	8.2	25.2 25.2	25.3	90.8 88.5	88.9	7.2 7.0	7.0		1.8	1.6		4.2 2.6	3.1	
				5.3	Middle	1.0	19.9 -	-	8.2	-	25.4	-	89.3	-	7.0	7.0	7.0	1.6	-	1.6	3.6	-	3.1
				3.3	Bottom	4.3	- 19.9	19.9	8.1	8.1	27.5	27.3	89.2	89.2	6.9	6.9	6.9	1.6	1.6	1.0	2.4	3.0	3.1
8-Jan-16	Sunny	Moderate	11:02				19.9 20.0		8.1 8.1		27.1 26.8	27.0	89.2 92.3		6.9 7.2		0.9	1.5 1.1			3.6 1.1		
	,			5.4	Surface	1.0	20.0	20.0	8.1	8.1	27.2	27.0	92.2	92.3	7.1	7.2	7.2	1.1	1.1		1.0	1.1	
				5.1	Middle	-	20.0	-	8.0	-	26.3		91.4	-	7.1		7.4	- 1.1	-	1.1	0.8	-	1.0
11-Jan-16	Sunny	Moderate	15:00		Bottom	4.1	20.0	20.0	8.1 8.2	8.1	27.1 28.3	26.7	91.8 96.6	91.6	7.1 7.4	7.1	7.1	1.1	1.1		1.0 3.4	0.9	<u> </u>
11-5411-10	Suriny	Moderate	13.00		Surface	1.0	20.1	20.1	8.2	8.2	28.3	28.3	95.0	95.8	7.3	7.4	7.4	1.8	1.9		3.7	3.6	.
				5.0	Middle	-	-	-	-	-	-	-	-	-		-		-	-	1.9	-	-	3.8
					Bottom	4.0	19.9 20.1	20.0	8.2 8.2	8.2	28.7 28.2	28.5	94.7 96.3	95.5	7.3 7.4	7.3	7.3	1.8 1.9	1.9		3.4 4.3	3.9	
13-Jan-16	Sunny	Moderate	16:24		Surface	1.0	19.9 19.9	19.9	8.3 8.3	8.3	27.5 27.6	27.6	101.8 101.7	101.8	7.9 7.9	7.9	7.9	1.8 1.9	1.9		4.0 5.3	4.7	
				4.8	Middle	-	-	-		-		-		-	-	-	7.0	-	-	1.9	-	-	5.3
					Bottom	3.8	19.9 19.8	19.8	8.3 8.3	8.3	27.6 27.8	27.7	102.3 101.2	101.8	7.9 7.8	7.9	7.9	1.8 2.0	1.9		5.1 6.4	5.8	
15-Jan-16	Rainy	Moderate	18:06		Surface	1.0	19.1 19.1	19.1	8.3 8.3	8.3	27.9 27.9	27.9	96.5 96.3	96.4	7.6 7.6	7.6	7.6	1.8 1.7	1.8		1.8 1.8	1.8	
				5.2	Middle	-	-	-	-	-	-	-		-	-	-	7.6	-	-	1.8	-	-	1.8
					Bottom	4.2	19.1 19.1	19.1	8.3 8.3	8.3	28.1 28.0	28.0	96.6 96.0	96.3	7.6 7.5	7.5	7.5	1.8 1.8	1.8		1.6 1.9	1.8	
18-Jan-16	Sunny	Moderate	06:12		Surface	1.0	18.3 18.1	18.2	8.0 8.0	8.0	23.8	23.7	92.5 94.7	93.6	7.6 7.6	7.6		1.8	1.8		2.2	2.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	1.8	-	-	2.6
					Bottom	4.1	18.3 18.8	18.6	8.0 7.9	8.0	26.4 25.1	25.8	93.9 92.4	93.2	7.6 7.6	7.6	7.6	1.8	1.8		3.2	2.8	
20-Jan-16	Rainy	Moderate	08:56		Surface	1.0	18.8 18.8	18.8	8.0 8.0	8.0	28.3 27.8	28.1	93.3 94.6	94.0	7.3 7.5	7.4		2.0	2.1		4.4 4.8	4.6	
				5.2	Middle	-	-	-	- 8.0	-	-	-	94.6	-	-	-	7.4	-	_	2.1	- 4.0	-	4.5
					Bottom	4.2	18.8	18.8	8.0	8.0	27.1	27.7	97.9	95.7	7.8	7.6	7.6	2.1	2.1		5.2	4.4	
							18.8	. 5.0	8.0	0	28.2		93.4		7.4			2.0			3.6	<u> </u>	

Remarks:

* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTI	U)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	11:06		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.2 27.9	28.0	89.9 89.8	89.9	7.1 7.1	7.1	7.1	1.3 1.3	1.3		4.7 4.7	4.7	
				5.2	Middle	-		-		-	1 1	-	-	-	-	-	7.1	-	-	1.4	-	1	4.7
					Bottom	4.2	18.5 18.5	18.5	8.2 8.2	8.2	28.1 27.7	27.9	87.6 88.2	87.9	6.9 7.0	7.0	7.0	1.5 1.5	1.5		4.5 4.9	4.7	
25-Jan-16	Sunny	Moderate	15:01		Surface	1.0	16.9 16.9	16.9	8.4 8.4	8.4	29.2 29.2	29.2	91.3 92.5	91.9	7.4 7.5	7.5	7.5	1.9 1.9	1.9		8.5 8.7	8.6	
				5.0	Middle	-		-		-	1 1	-	-	-	-	-	7.10	-	-	2.0	-	-	8.5
					Bottom	4.0	16.9 16.8	16.9	8.4 8.4	8.4	29.2 29.4	29.3	90.9 89.6	90.3	7.4 7.3	7.3	7.3	2.0 1.9	2.0		8.6 8.2	8.4	
27-Jan-16	Cloudy	Moderate	15:40		Surface	1.0	16.4 16.4	16.4	8.3 8.3	8.3	29.9 29.9	29.9	89.8 90.4	90.1	7.3 7.4	7.4	7.4	2.3 2.2	2.3		5.8 5.9	5.9	
				5.0	Middle	-		-		-		-	-	-	-	-	7.4	-	-	2.3	-	ı	6.0
					Bottom	4.0	16.4 16.4	16.4	8.3 8.3	8.3	29.9 30.0	29.9	89.9 88.5	89.2	7.3 7.2	7.3	7.3	2.3 2.3	2.3		6.7 5.3	6.0	
29-Jan-16	Cloudy	Moderate	17:12		Surface	1.0	15.8 15.8	15.8	8.3 8.3	8.3	29.1 29.0	29.1	92.9 90.2	91.6	7.7 7.5	7.6	7.6	3.1 3.1	3.1		3.9 4.6	4.3	
				4.9	Middle	-		-		-	1 1	-	-	-	-	-	7.0	-	-	3.1	-	-	4.4
					Bottom	3.9	15.9 15.8	15.9	8.3 8.3	8.3	29.4 29.2	29.3	90.7 91.5	91.1	7.5 7.6	7.5	7.5	3.1 3.1	3.1		5.1 3.9	4.5	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

DA: Depth-Averaged
 Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

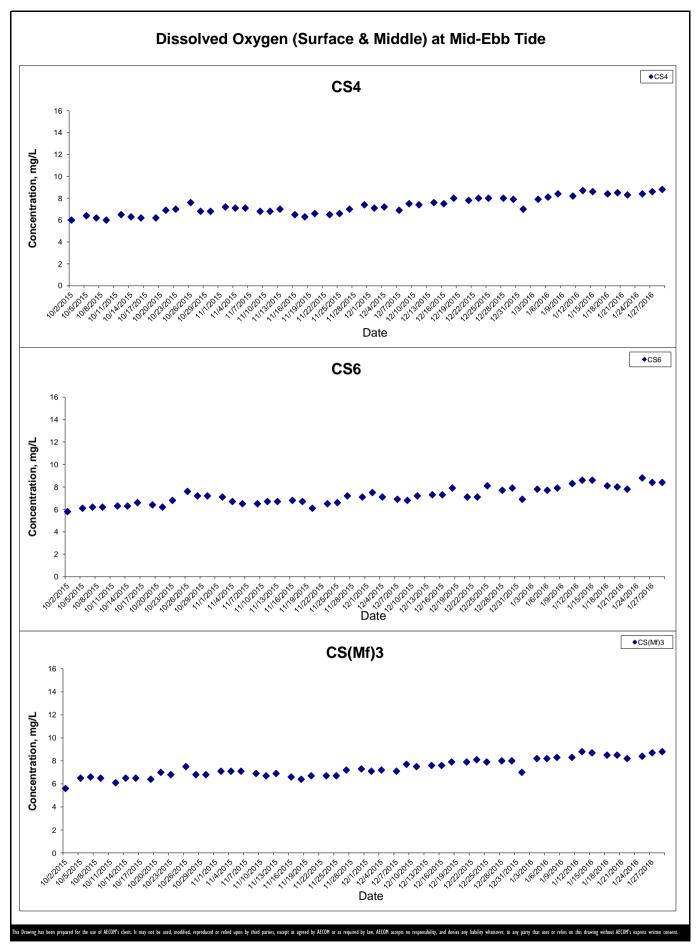
Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ŗ	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Jan-16	Sunny	Moderate	11:02		Surface	1.0	16.0 16.0	16.0	8.0 8.0	8.0	33.3 33.3	33.3	96.1 95.4	95.8	7.7 7.7	7.7		1.6 1.6	1.6		3.4 3.2	3.3	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	1.6	-	-	3.3
					Bottom	4.0	16.0 16.0	16.0	7.9 7.9	7.9	33.3 33.3	33.3	96.4 96.4	96.4	7.8 7.8	7.8	7.8	1.7	1.6		2.6	3.2	•
4-Jan-16	Sunny	Moderate	15:21				20.0		7.9 8.2		27.4		96.4		7.8			1.6			2.3	+	<u> </u>
4 0411 10	Curiny	Woderate	10.21		Surface	1.0	19.9	19.9	8.2	8.2	27.4	27.4	93.0	93.2	7.2	7.2	7.2	1.6	1.6		2.1	2.2	<u> </u>
				5.4	Middle	-	19.8	-	8.2	-	27.9	-	91.8	-	7.1	-		1.7	-	1.7	2.4	-	2.3
					Bottom	4.4	19.8	19.8	8.2	8.2	27.8	27.8	93.0	92.4	7.2	7.2	7.2	1.6	1.7		2.1	2.3	
6-Jan-16	Sunny	Moderate	16:51		Surface	1.0	20.0 20.1	20.1	8.2 8.2	8.2	26.7 27.4	27.1	89.1 89.2	89.2	6.9 6.9	6.9	6.9	1.6 1.6	1.6		3.2 4.2	3.7	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	1.6	-	-	3.4
					Bottom	4.1	20.0 19.9	19.9	8.1 8.1	8.1	29.0 29.3	29.2	89.1 87.2	88.2	6.8 6.7	6.8	6.8	1.6 1.6	1.6		3.1 2.9	3.0	
8-Jan-16	Sunny	Moderate	18:11		Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	28.5 28.5	28.5	96.8 95.9	96.4	7.4 7.4	7.4	7.4	1.5 1.5	1.5		2.8 3.2	3.0	
				5.3	Middle	-	-	-	-	-	-	-	-	-		-	7.4	-	-	1.6	-	-	3.3
					Bottom	4.3	20.2 20.2	20.2	8.2 8.2	8.2	28.5 28.6	28.6	96.2 95.6	95.9	7.4 7.3	7.3	7.3	1.6 1.6	1.6		3.6 3.6	3.6	
11-Jan-16	Rainy	Moderate	07:31		Surface	1.0	19.7	19.7	8.1	8.1	25.0	25.5	94.4	93.7	7.5	7.4		3.2	3.2		2.8	3.4	
				5.0	Middle	-	19.7	-	8.1	-	26.1	-	93.0	-	7.3	-	7.4	3.2	-	3.3	3.9	-	3.4
					Bottom	4.0	19.8	19.8	8.1	8.2	26.1	24.9	92.8	94.8	7.3	7.5	7.5	3.3	3.3		2.5	3.4	
13-Jan-16	Sunny	Moderate	08:34				19.7 19.6		8.2 8.0		23.8 26.4		96.8 95.2		7.7 7.5			3.2 2.0			4.2 3.4		
13-3411-10	Guilly	Woderate	00.54		Surface	1.0	19.6	19.6	8.0	8.0	26.9	26.7	92.5	93.9	7.2	7.4	7.4	2.0	2.0		2.3	2.9	-
				4.8	Middle	-	-	-		-	-	-		-	-	-		-	-	2.2	-	-	2.6
					Bottom	3.8	19.6 19.6	19.6	7.9 8.0	8.0	25.8 26.9	26.3	97.6 93.0	95.3	7.7 7.3	7.5	7.5	2.3 2.4	2.4		2.1 2.2	2.2	
15-Jan-16	Rainy	Moderate	10:01		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	26.7 26.5	26.6	94.8 96.1	95.5	7.5 7.6	7.5	7.5	2.6 2.4	2.5		2.9 2.6	2.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	2.6	-	-	2.7
					Bottom	4.2	19.3 19.3	19.3	8.2 8.2	8.2	26.7 26.1	26.4	95.5 95.8	95.7	7.5 7.6	7.5	7.5	2.7 2.6	2.7		2.7 2.4	2.6	
18-Jan-16	Sunny	Moderate	14:53		Surface	1.0	18.7 18.7	18.7	8.3 8.2	8.3	26.9 27.7	27.3	97.2 96.5	96.9	7.7 7.6	7.7		1.5 1.6	1.6		2.8 2.8	2.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	1.6	-	-	3.1
					Bottom	4.2	18.7 18.7	18.7	8.2 8.2	8.2	28.0	28.0	95.4 98.2	96.8	7.5 7.8	7.6	7.6	1.6	1.6		2.8	3.3	•
20-Jan-16	Rainy	Moderate	16:46		Surface	1.0	18.8	18.8	8.3	8.3	29.6	29.6	93.9 93.9	93.9	7.3	7.3		1.5	1.5		3.6	3.5	
				5.5	Middle	-	18.8	-	8.3	-	29.6	-	93.9	-	7.3	-	7.3	1.4	-	1.5	3.4	-	3.8
					Bottom	4.5	18.8	18.8	8.3	8.3	29.6	29.6	91.7	92.5	7.2	7.2	7.2	1.4	1.5		3.6	4.0	
							18.8		8.3		29.6		93.2		7.3			1.5			4.3		

Remarks:

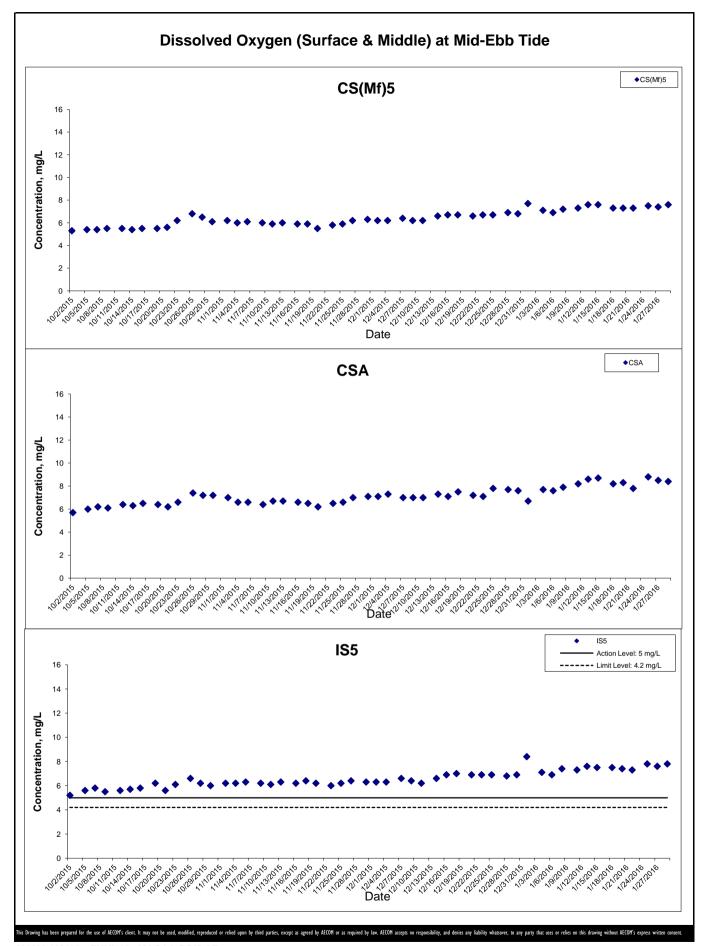
* DA: Depth-Averaged

** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

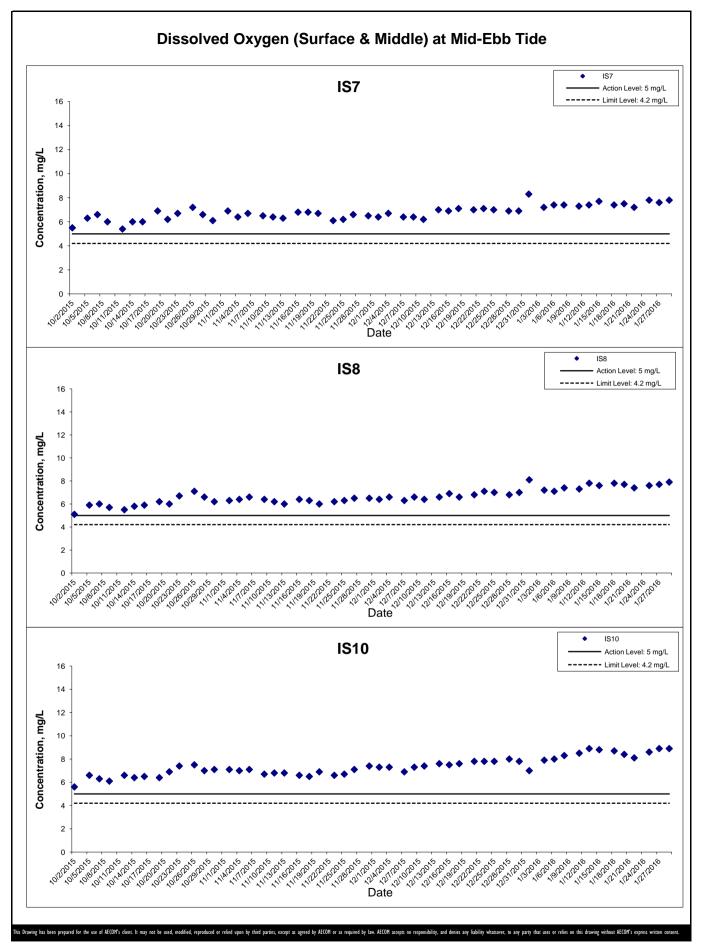

Date	Weather	Sea	Sampling	g Water Sampling		ing	Temperature (°C)		pН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth (m)		Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Jan-16	Cloudy	Moderate	18:17		Surface	1.0	18.5 18.5	18.5	8.3 8.3	8.3	29.4 29.4	29.4	88.6 89.4	89.0	7.0 7.0	7.0	7.0	1.1 1.0	1.1		5.4 4.4	4.9	
				5.3	Middle	-		-		-		-	1 1	-	-	-	7.0	-	-	1.1	-	-	5.6
					Bottom	4.3	18.5 18.5	18.5	8.3 8.3	8.3	29.4 29.4	29.4	88.2 88.6	88.4	6.9 7.0	7.0	7.0	1.1 1.1	1.1		5.8 6.8	6.3	
25-Jan-16	Sunny	Moderate	07:32	5.2	Surface	1.0	16.7 16.7	16.7	7.9 8.0	7.9	28.2 28.4	28.3	92.9 90.5	91.7	7.6 7.4	7.5	7.5	6.1 6.2	6.2	6.4	6.1 6.8	6.5	
					Middle	-		•		-	-	-		-	-	-		-	-		-	-	6.6
					Bottom	4.2	16.7 16.7	16.7	7.9 7.9	7.9	28.3 27.8	28.1	90.3 91.1	90.7	7.4 7.5	7.4	7.4	6.5 6.4	6.5		7.3 5.8	6.6	
27-Jan-16	Cloudy	Moderate	08:11		Surface	1.0	16.1 16.1	16.1	8.2 8.1	8.1	28.0 27.8	27.9	91.2 91.3	91.3	7.6 7.6	7.6	7.6	3.7 3.7	3.7		4.4 4.5	4.5	
				5.2	Middle	•		-		-	-	-		-	-	-	7.0	-	-	3.7	-	-	4.3
					Bottom	4.2	16.0 16.1	16.0	8.1 8.1	8.1	27.6 27.9	27.8	91.4 90.9	91.2	7.6 7.6	7.6	7.6	3.6 3.7	3.7	<u> </u>	4.3 3.9	4.1	
29-Jan-16	Rainy	Moderate	09:31	5.2	Surface	1.0	15.6 15.5	15.6	8.1 8.1	8.1	26.2 26.6	26.4	91.4 90.8	91.1	7.8 7.7	7.7	7.7	5.6 5.5	5.6		3.6 3.6	3.6	
					Middle	-	1 1	-	-	-	-	-	-	-	-	-	7.7	-	-	5.7	-	-	3.7
					Bottom	4.2	15.6 15.6	15.6	8.0 8.1	8.1	25.6 26.6	26.1	92.4 91.7	92.1	7.9 7.8	7.8	7.8	5.5 6.0	5.8		3.6 3.9	3.8	

Remarks:


Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

^{*} DA: Depth-Averaged

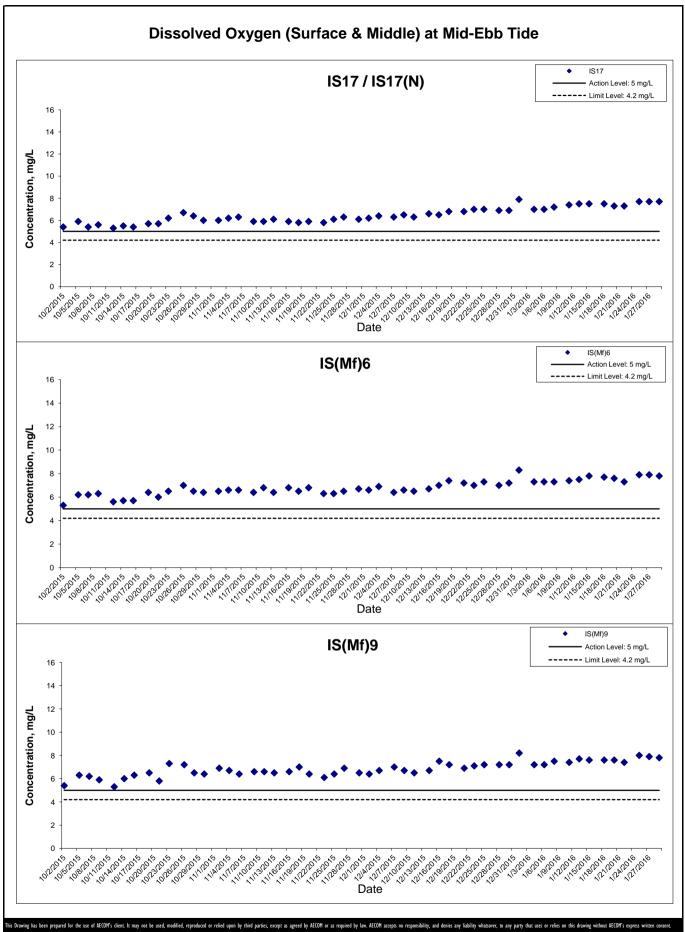
^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher


AECOM

- RECLAMATION WORKS

ES
Graphical Presentation of Impact Water Quality

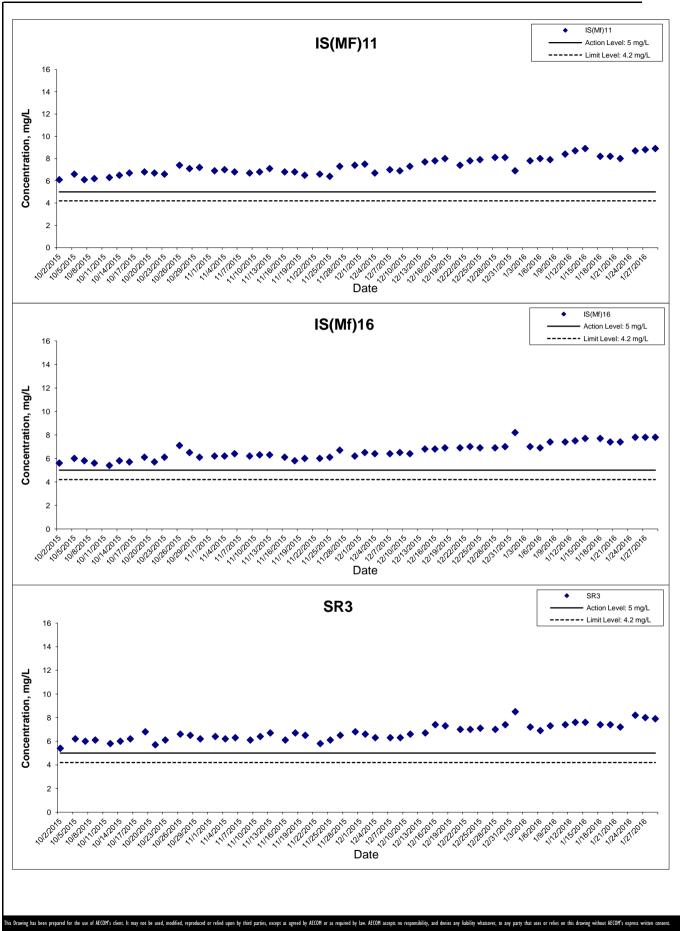
Monitoring Results
Project No.: 60249820 Date: February 2016

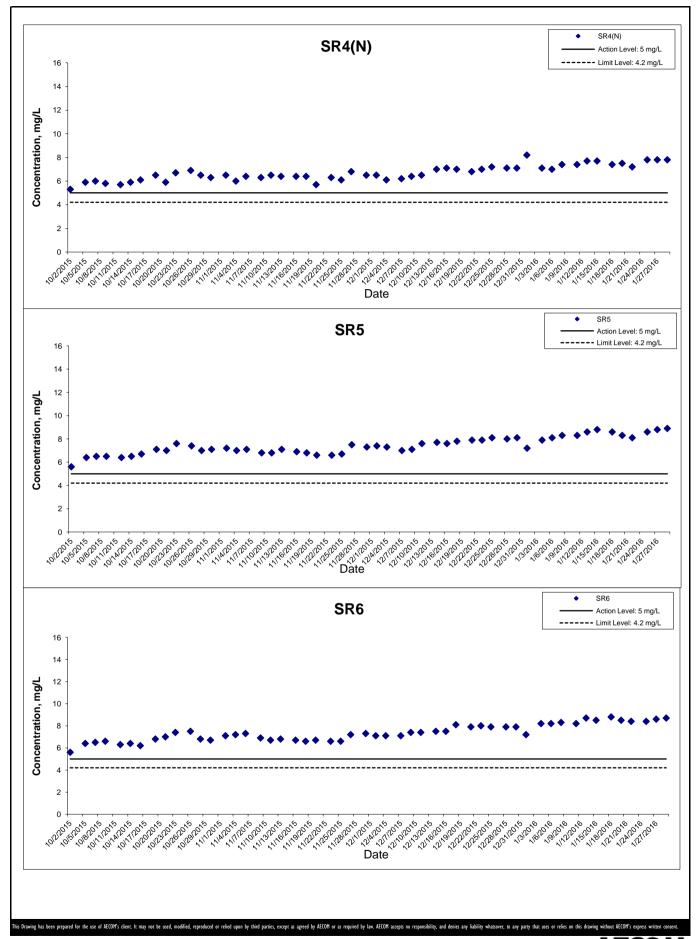

AECOM

- RECLAMATION WORKS

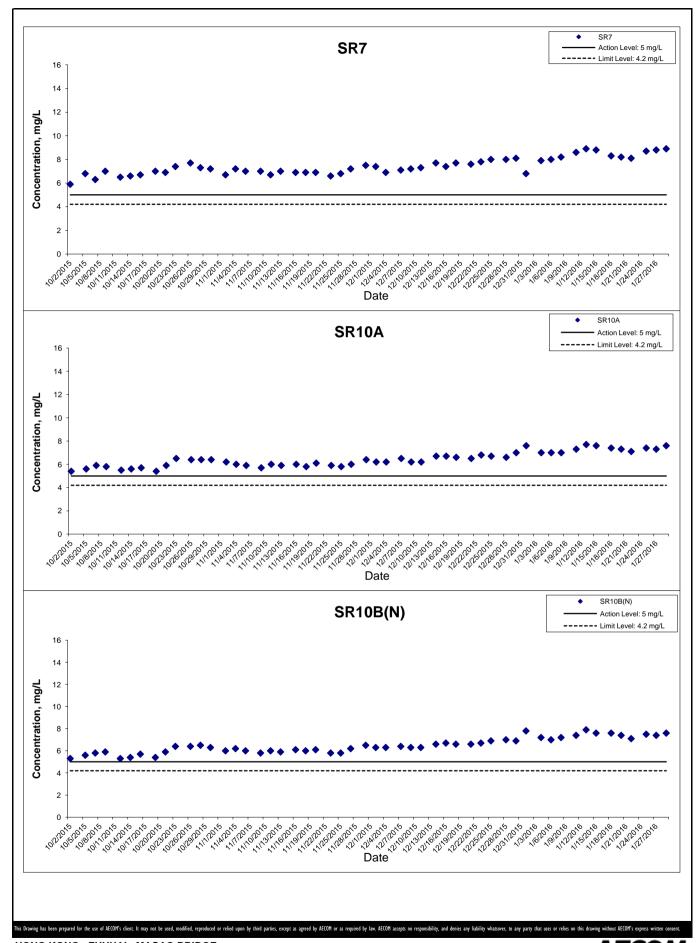
Graphical Presentation of Impact Water Quality

Monitoring Results

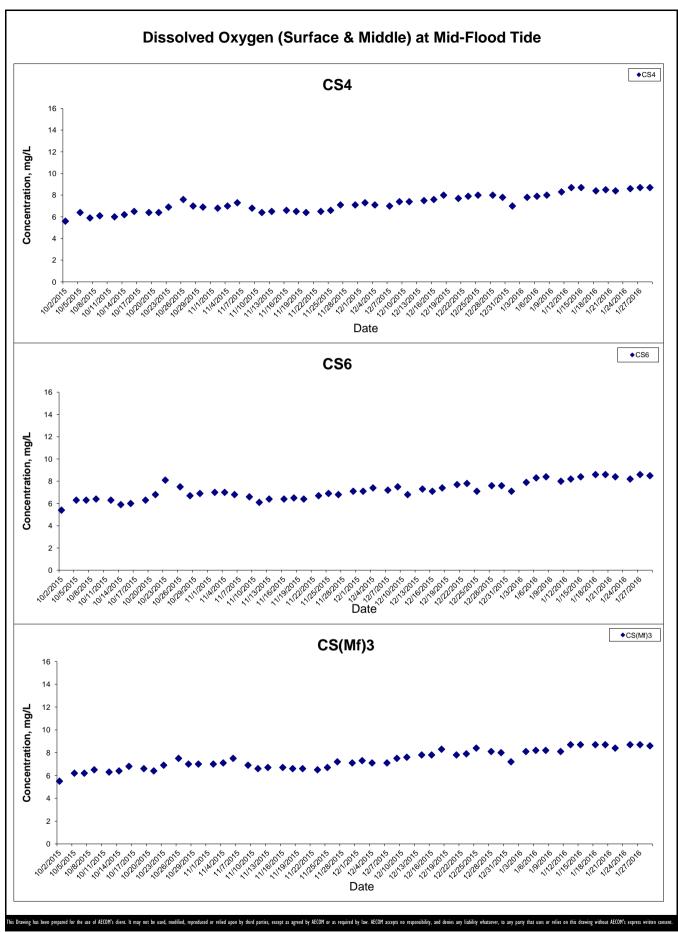

Project No.: 60249820 Date: February 2016


- RECLAMATION WORKS

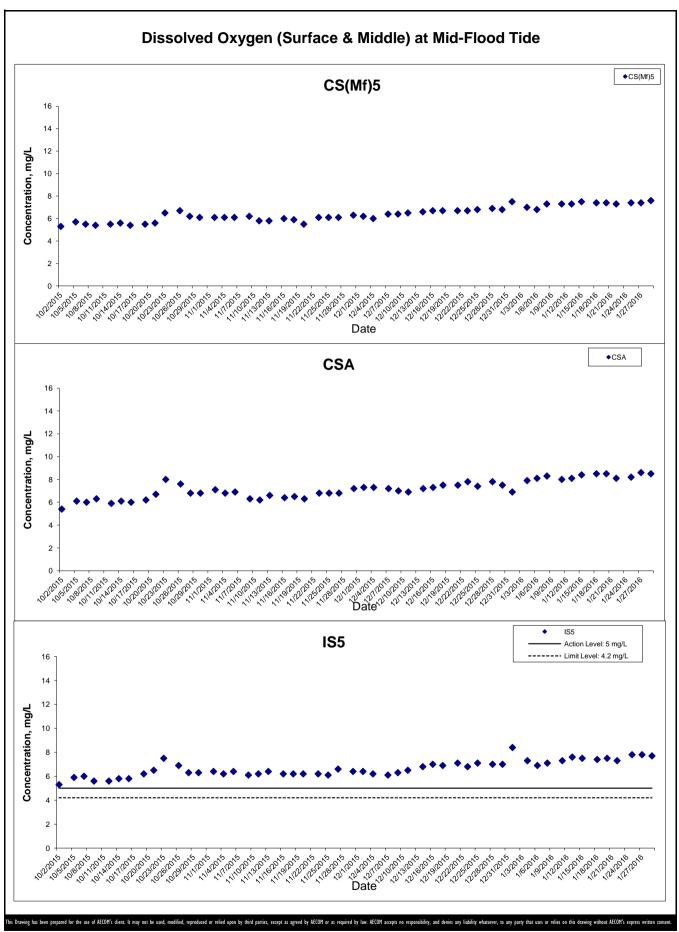
Graphical Presentation of Impact Water Quality


Monitoring Results

AECOM

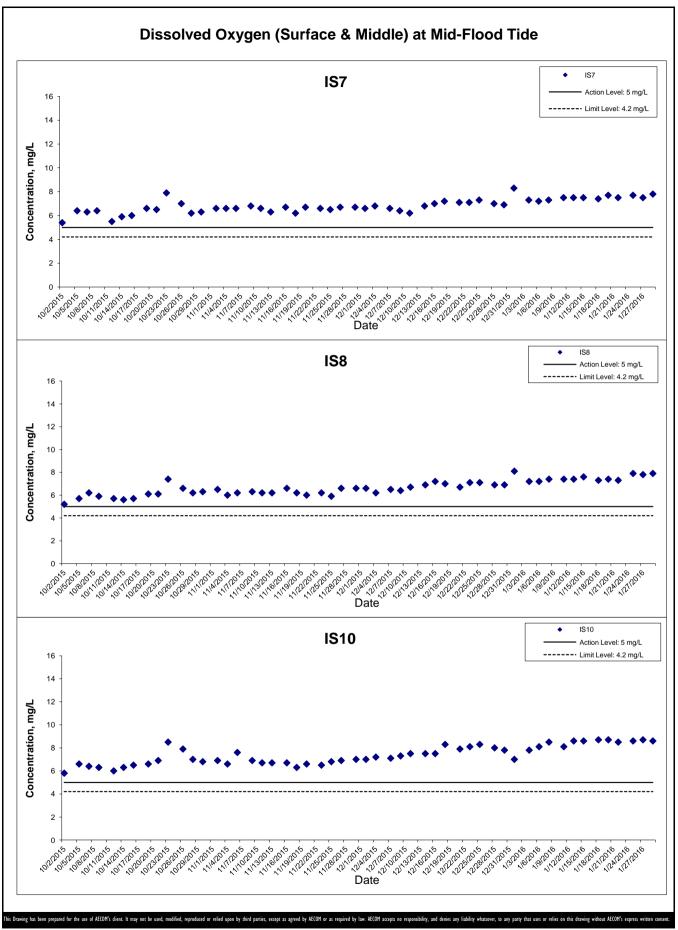

AECOM

AECOM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

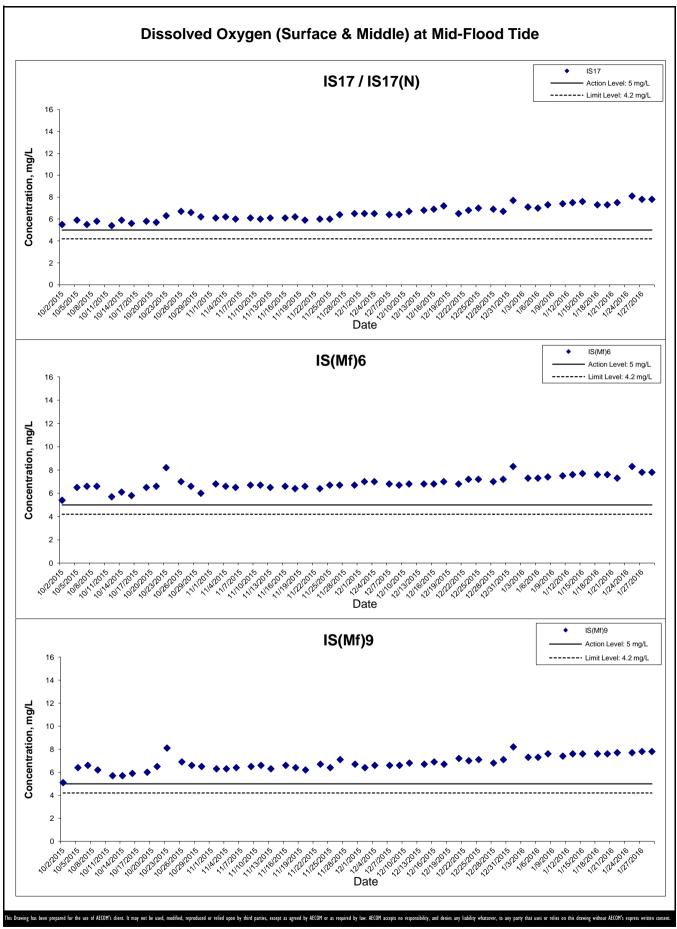
HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS


AECOM

AECOM

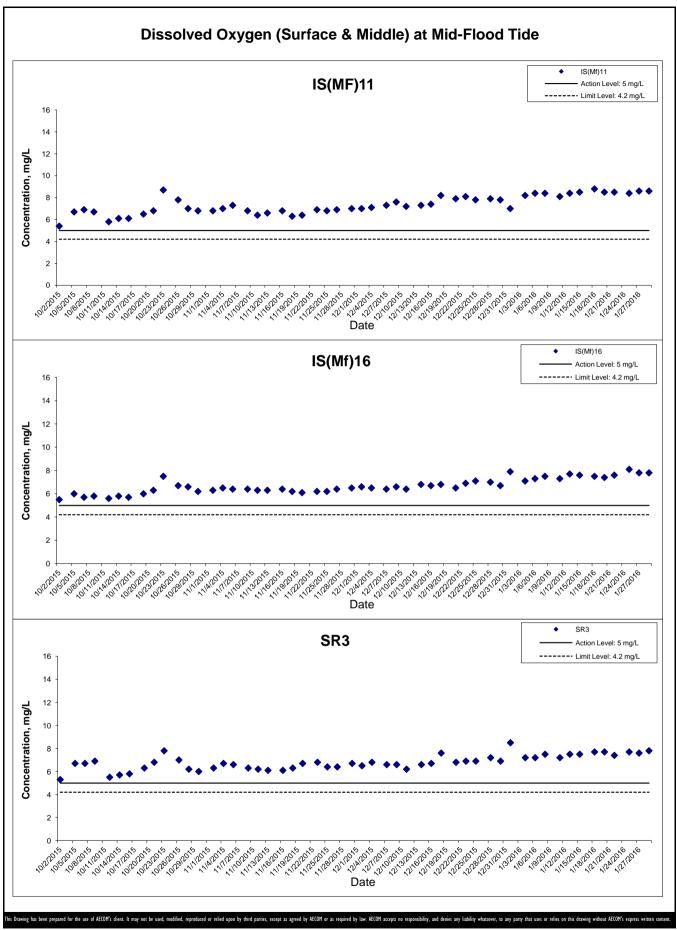
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

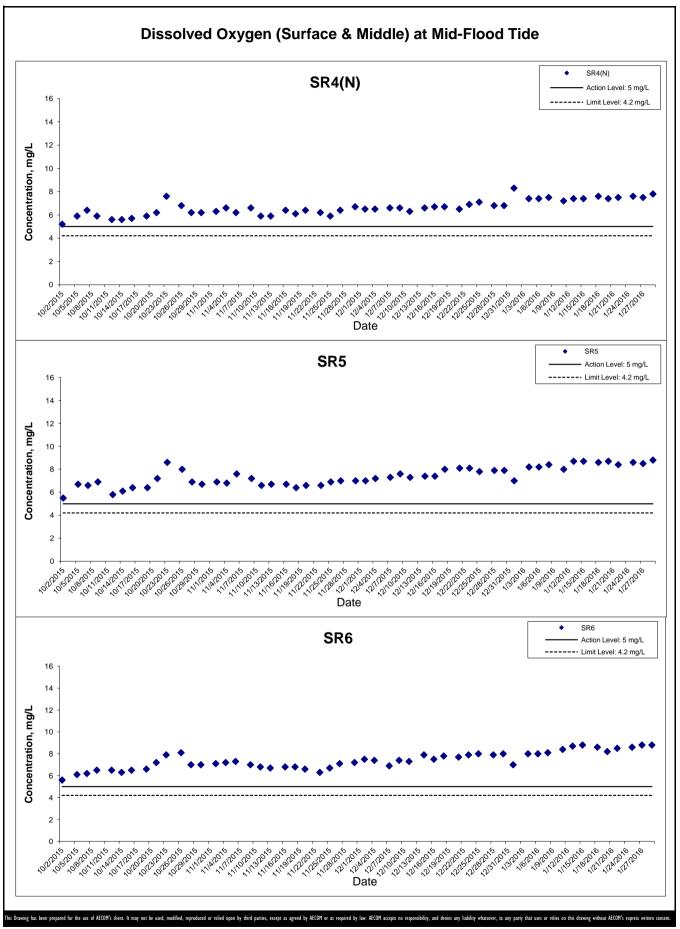

Project No.: 60249820

AECO/

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality


Monitoring Results

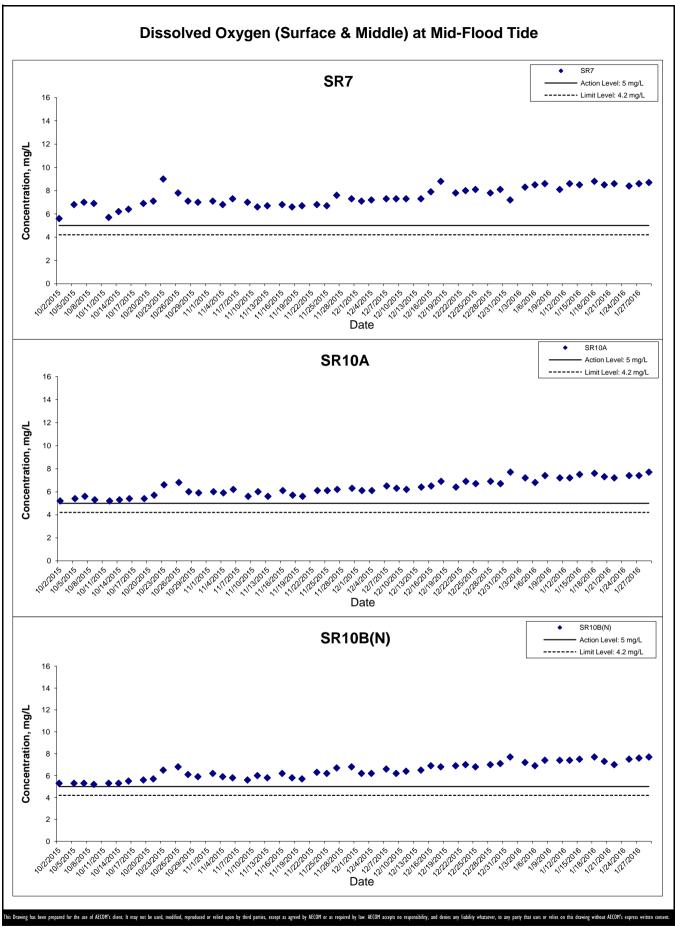
Date: February 2016


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

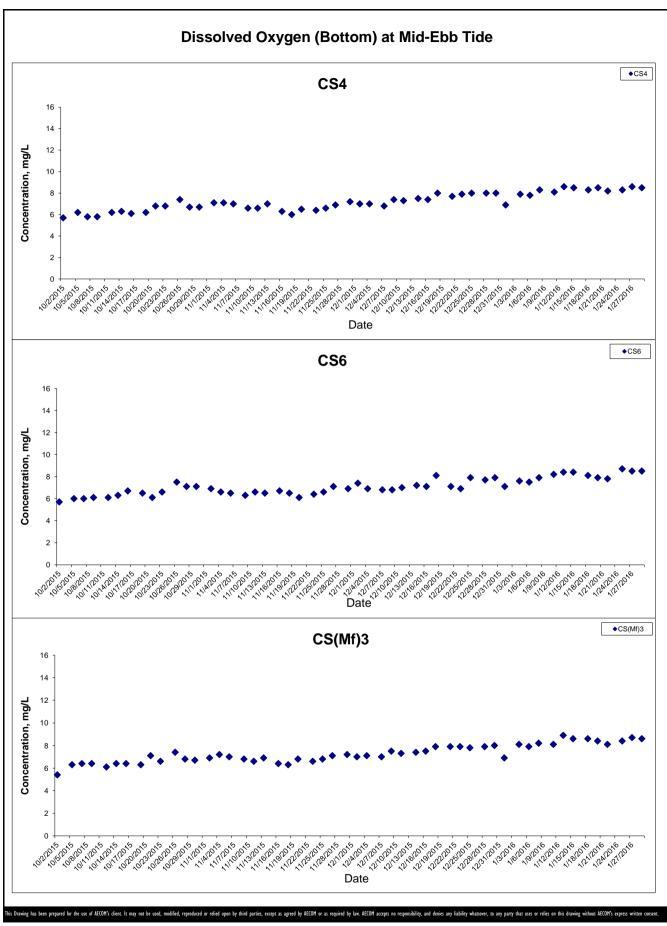
Graphical Presentation of Impact Water Quality
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Monitoring Results
Project No.: 60249820 Date: February 2016

Appendix J

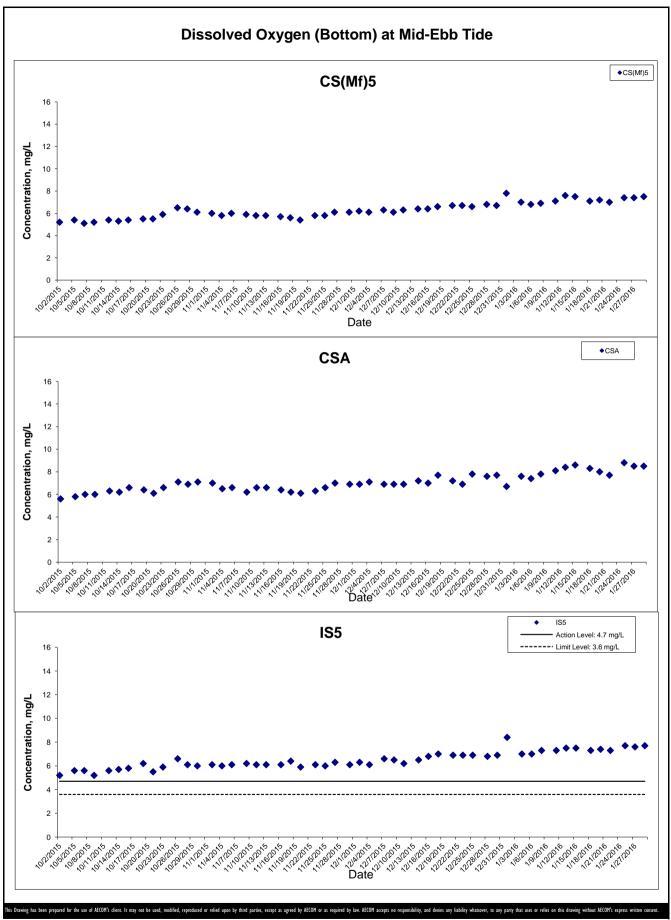


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

A=COM



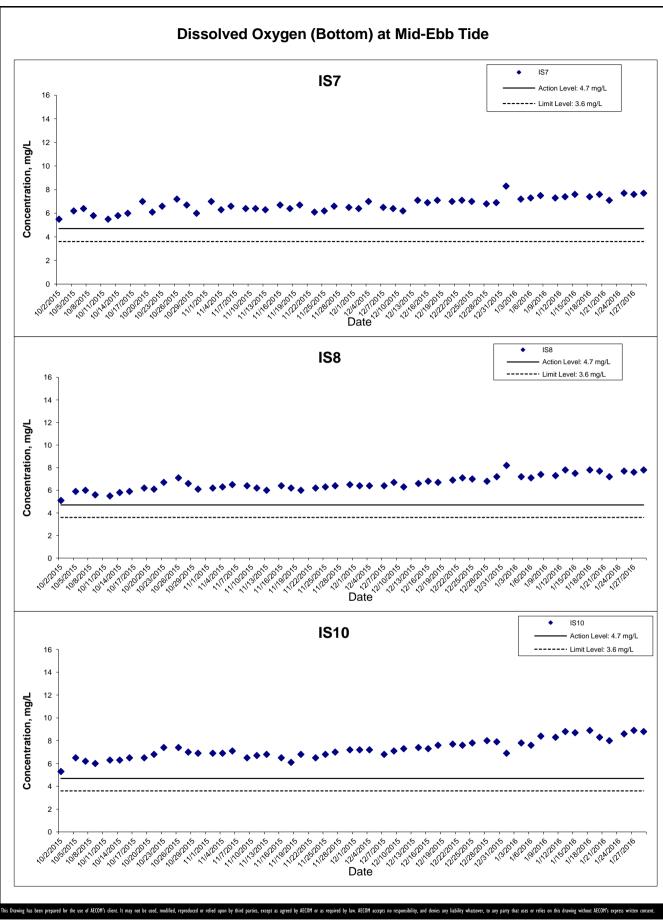
AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

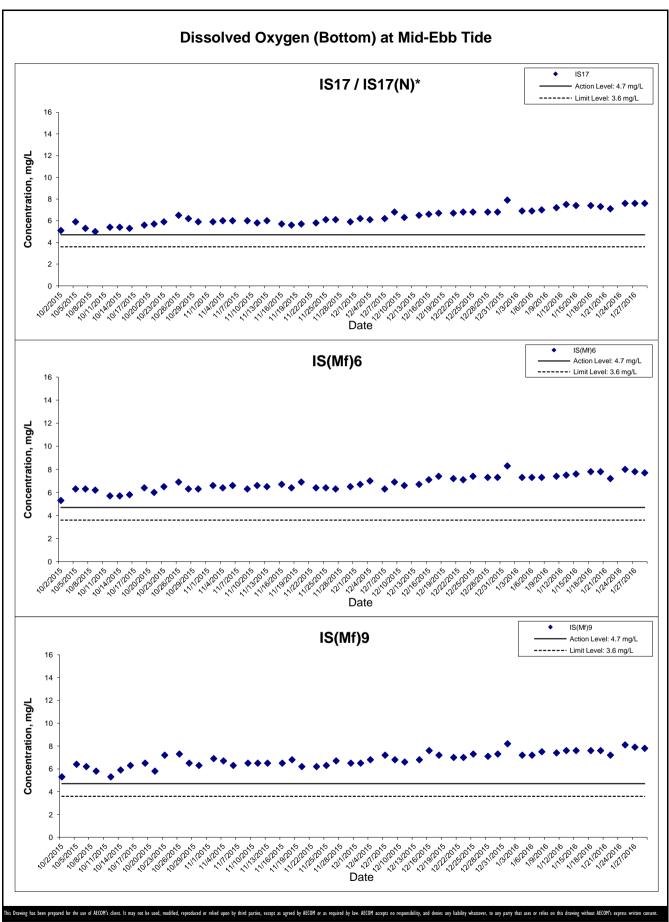
Monitoring Results

Project No.: 60249820

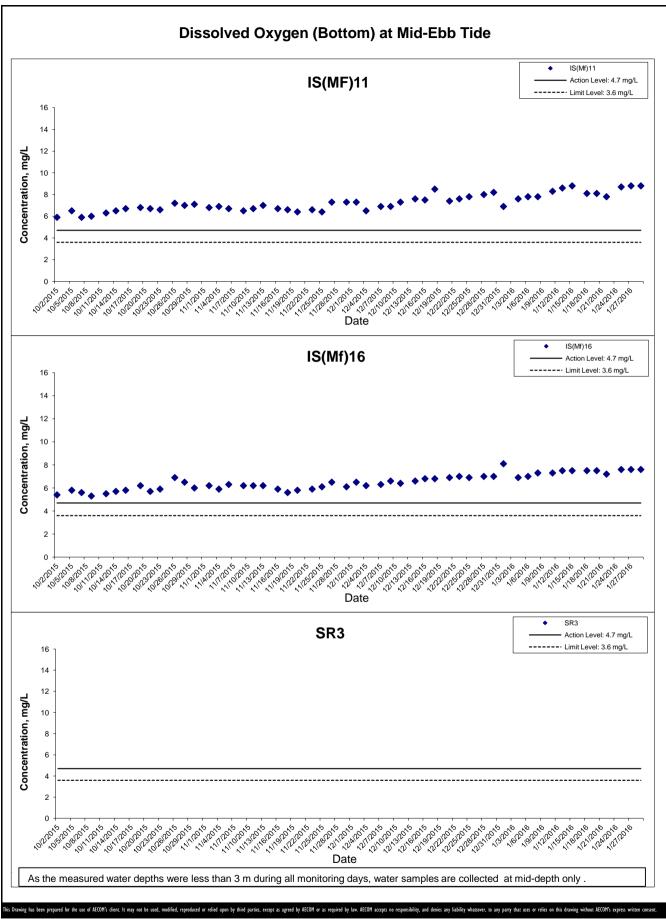

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

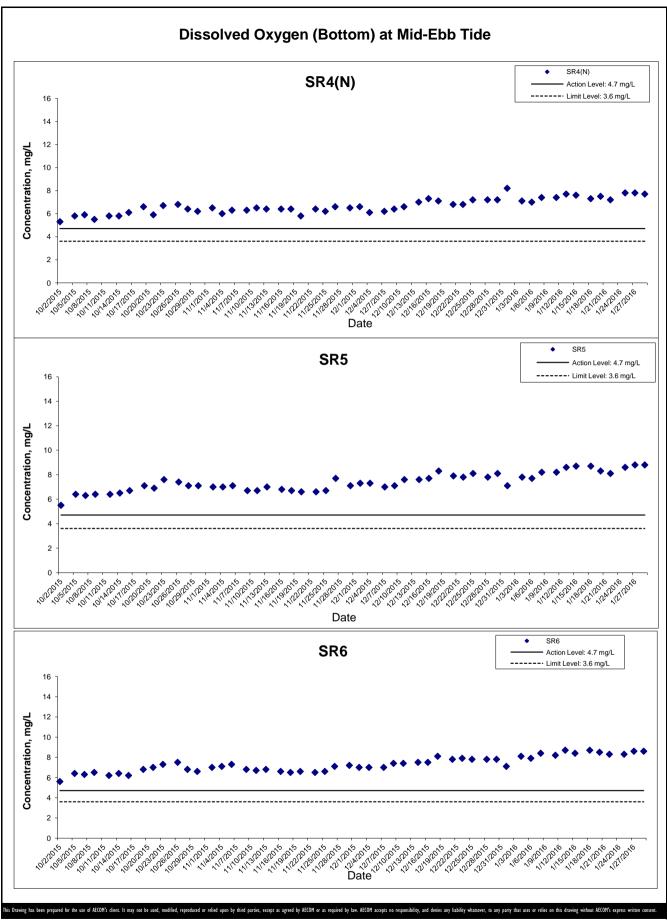

Date: February 2016

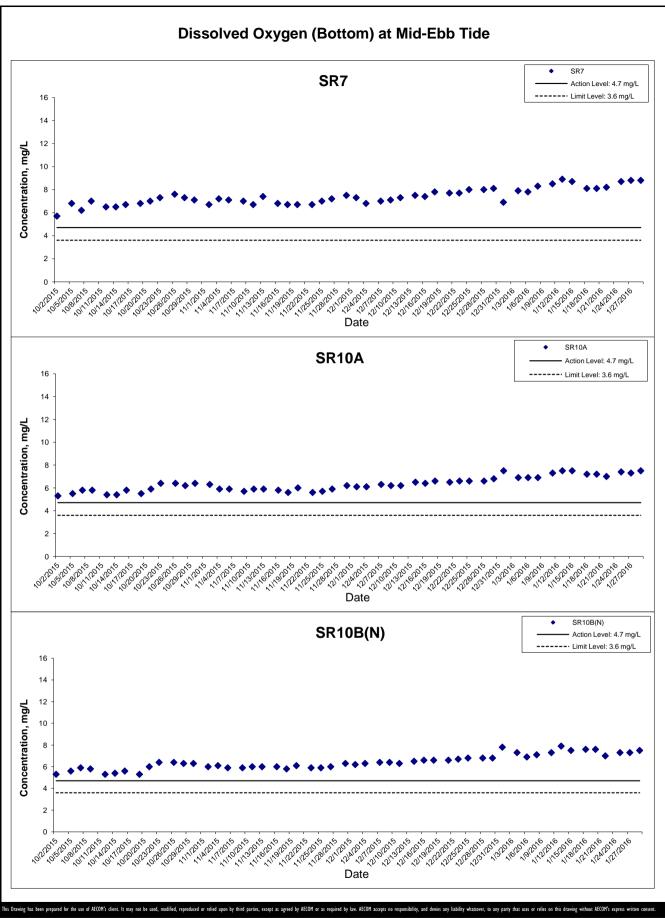
Appendix J


Project No.: 60249820

AECOM

AECOM

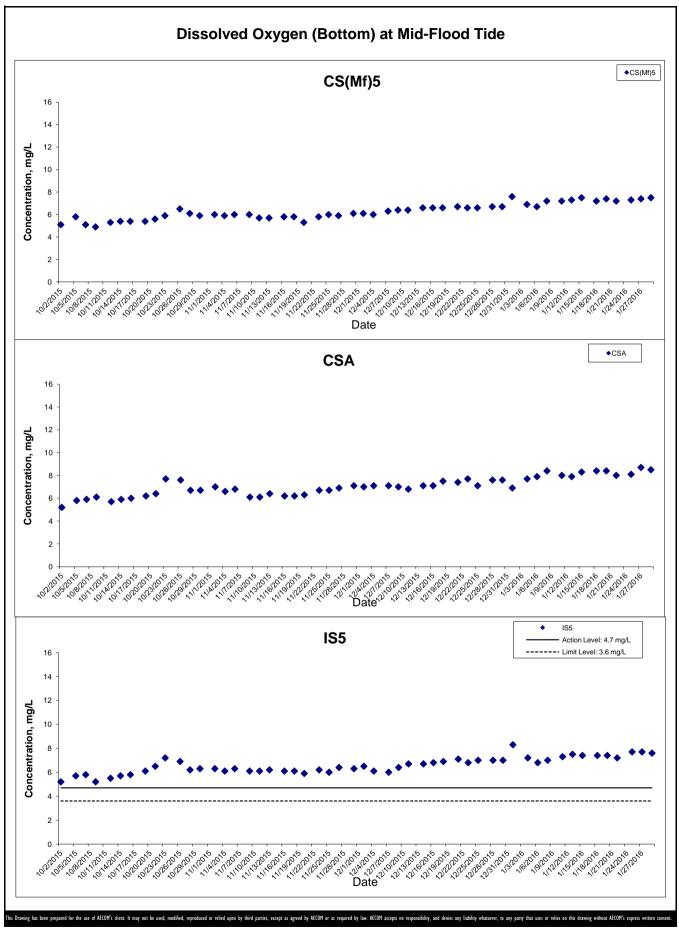

Appendix J


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

AECOM

Graphical Presentation of Impact Water Quality
Monitoring Results

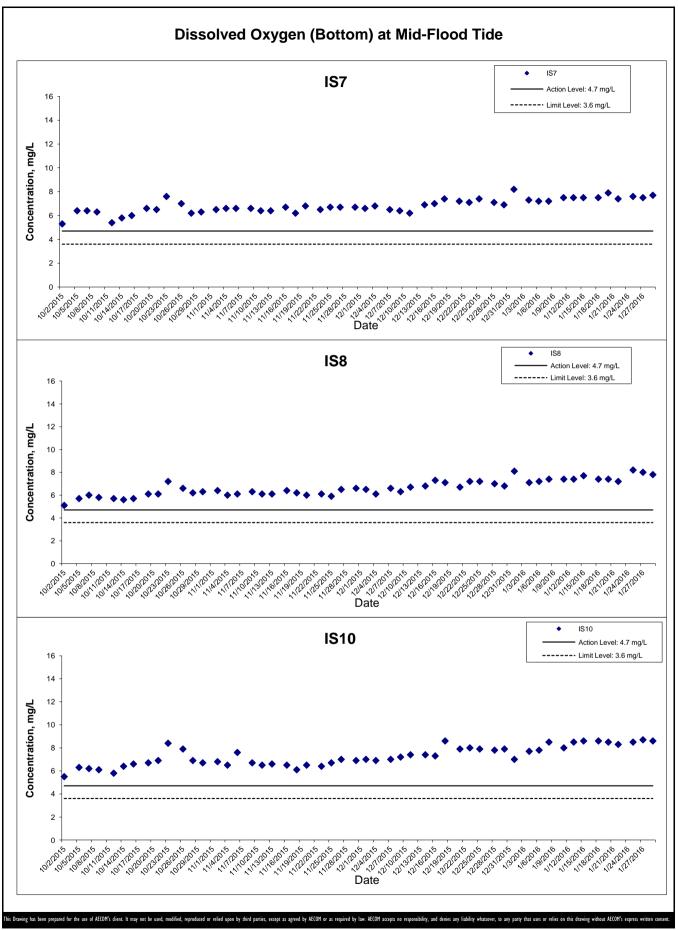
AECOM


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gra

AECOM

HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

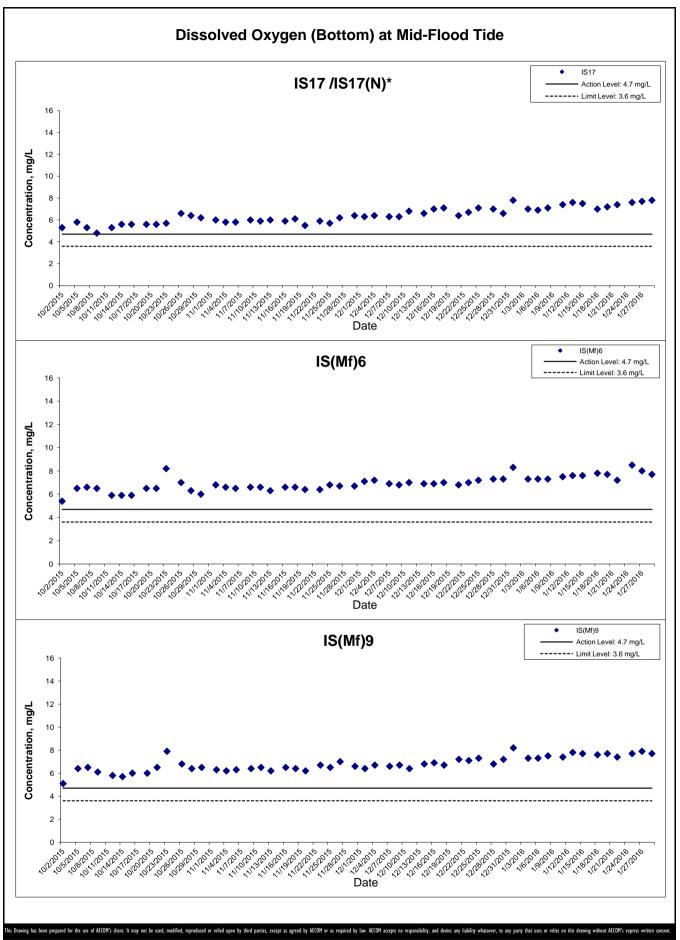
A=COM



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

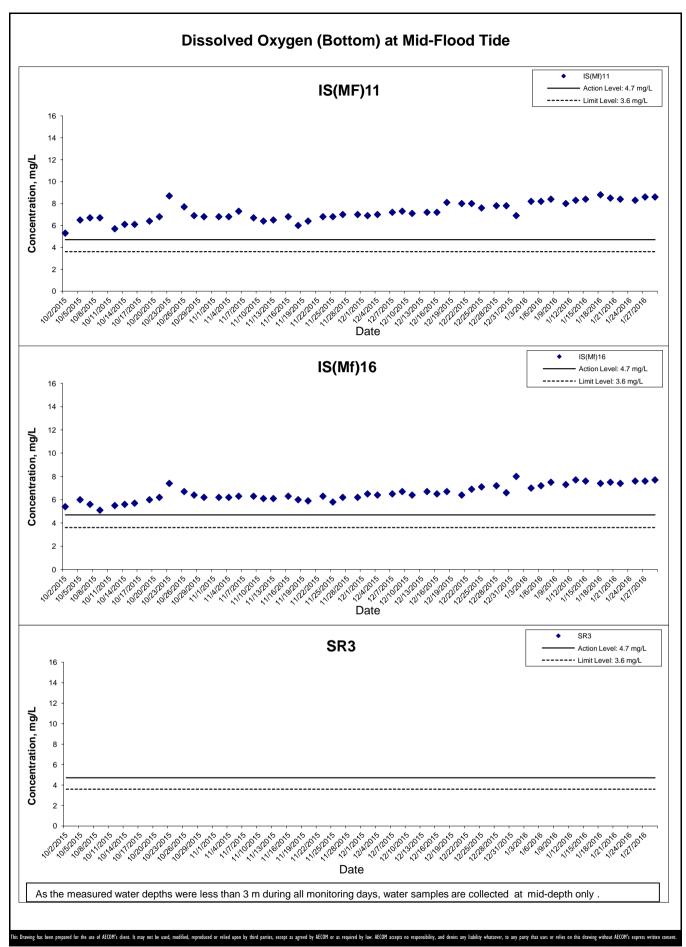
ES
Graphical Presentation of Impact Water Quality

Project No.: 60249820 Date: February 2016 Appendix J


Monitoring Results

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

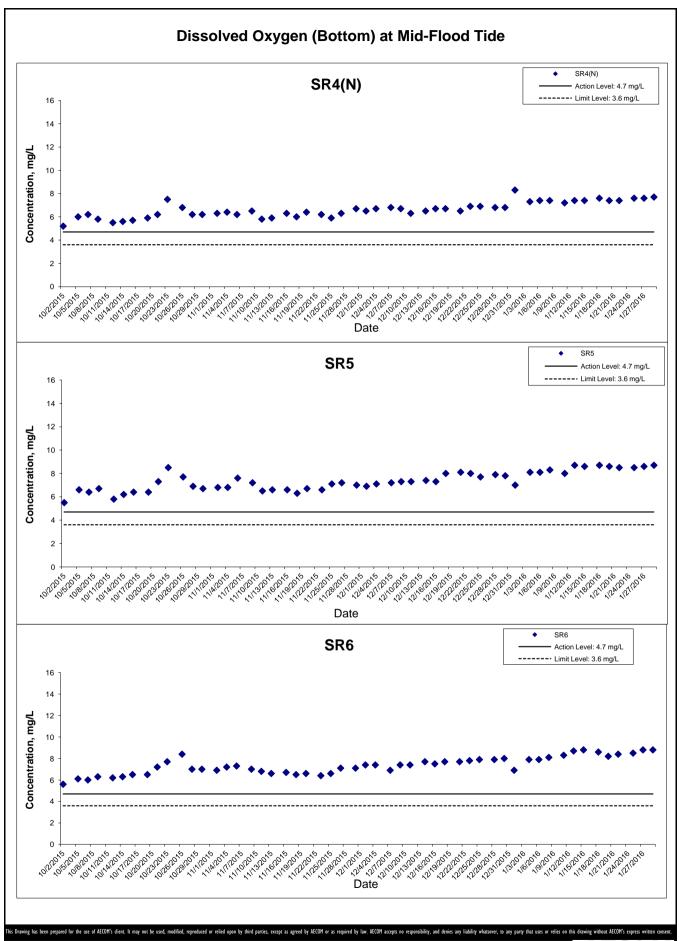
ES
Graphical Presentation of Impact Water Quality


Monitoring Results
Project No.: 60249820 Date: February 2016

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

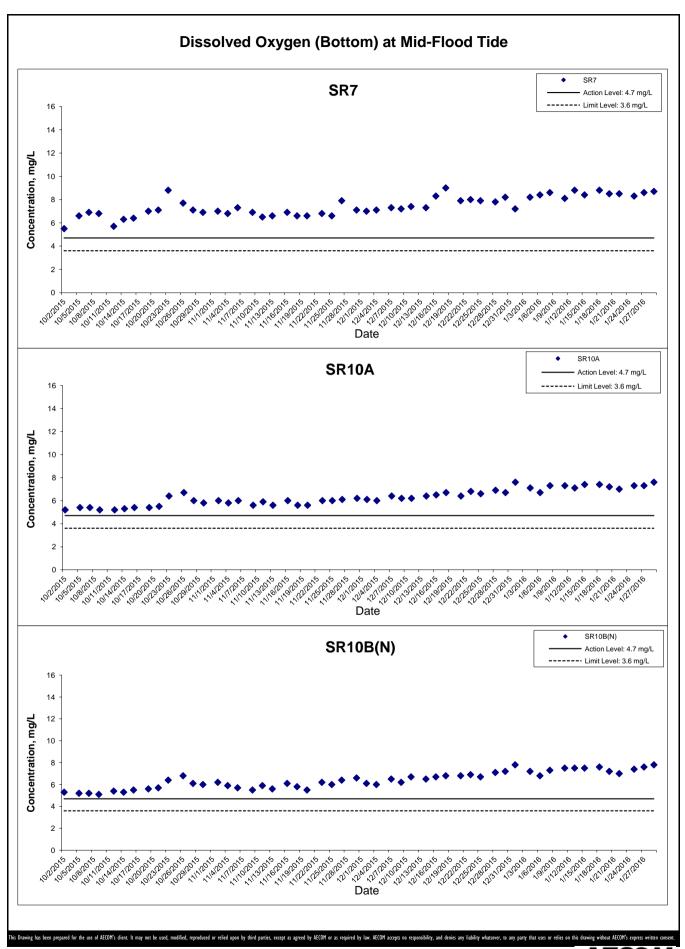
AECOM


Project No.: 60249820

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Date: February 2016

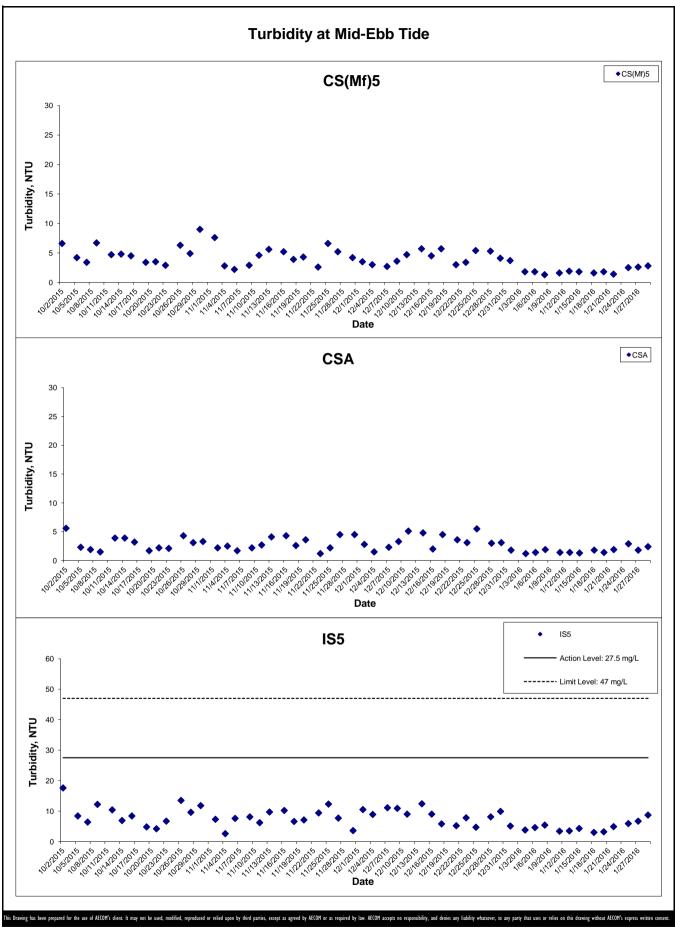

AECOM

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

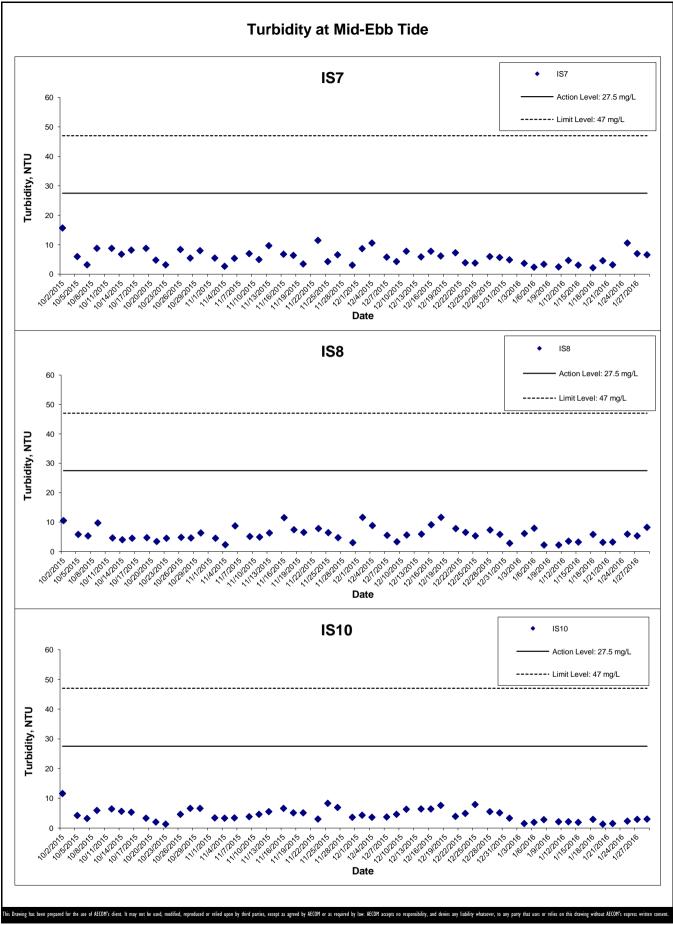
AECOM

- RECLAMATION WORKS

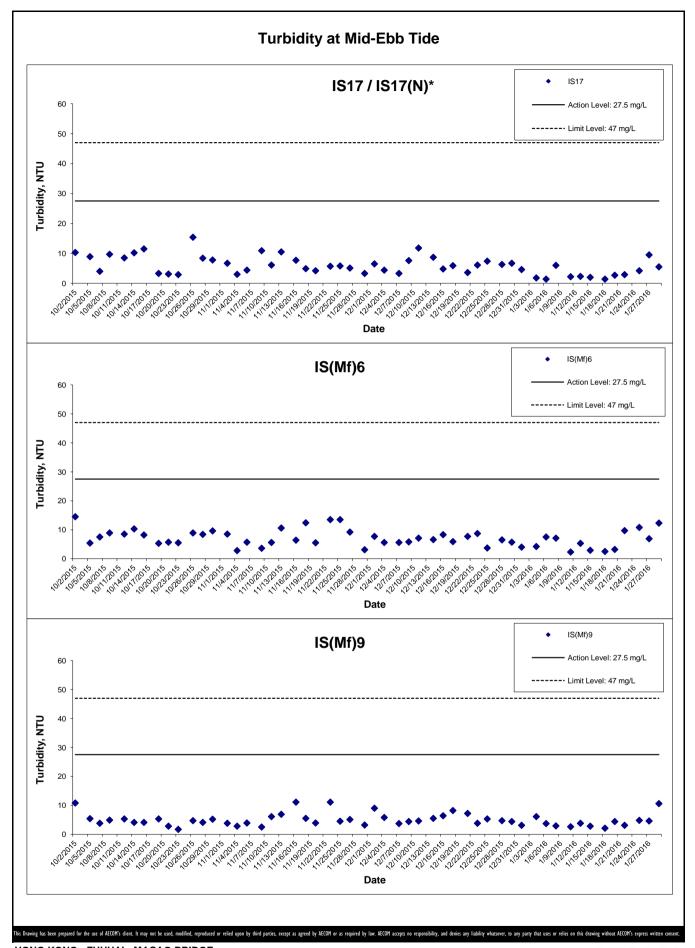

Graphical Presentation of Impact Water Quality
Monitoring Results

ECOM

- RECLAMATION WORKS


AECOM

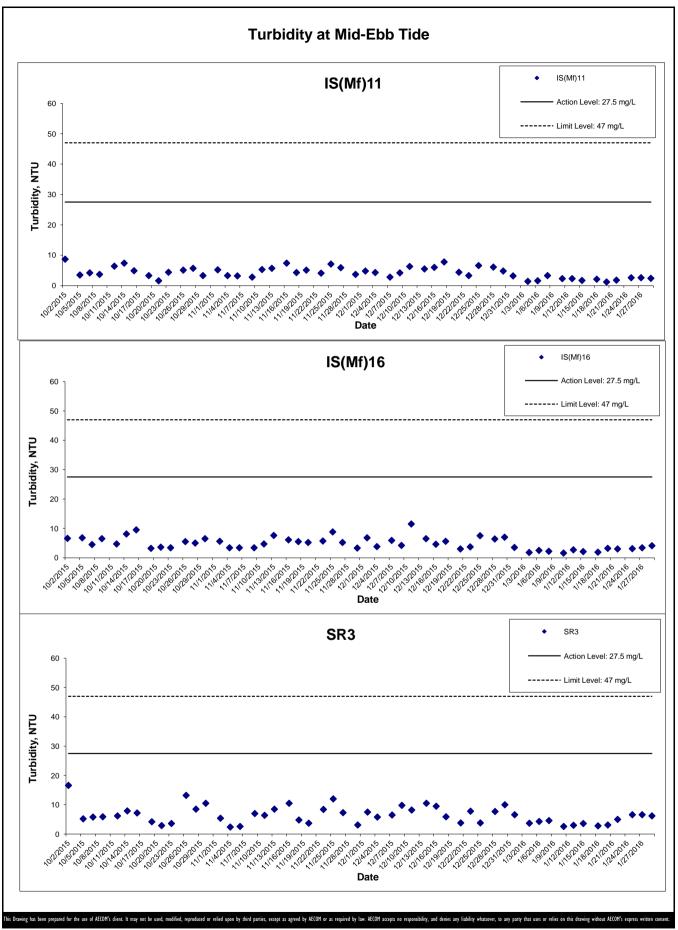
- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality

Monitoring Results

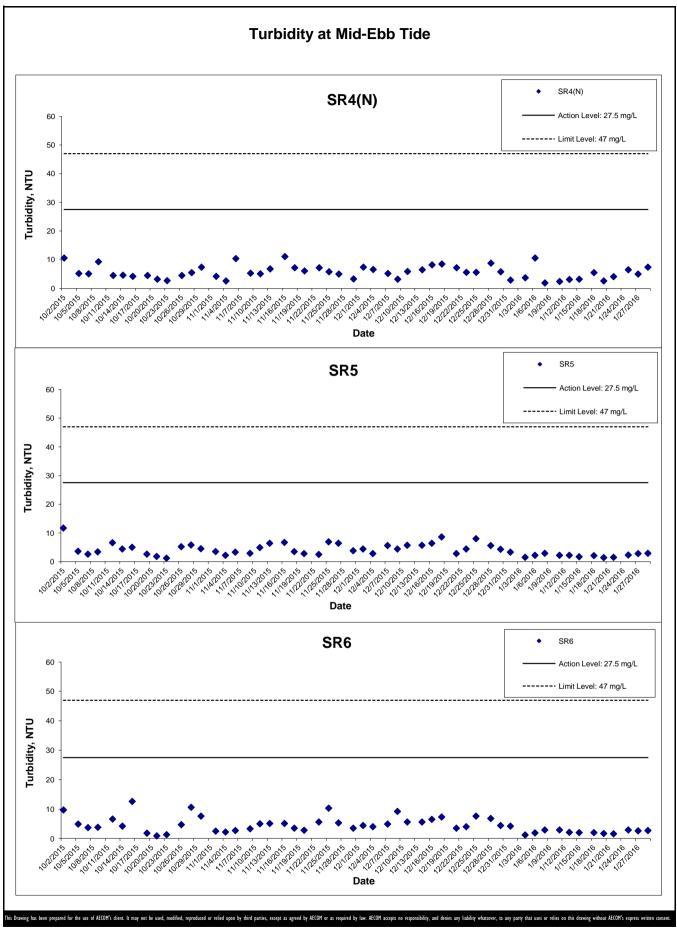
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS

AECOM

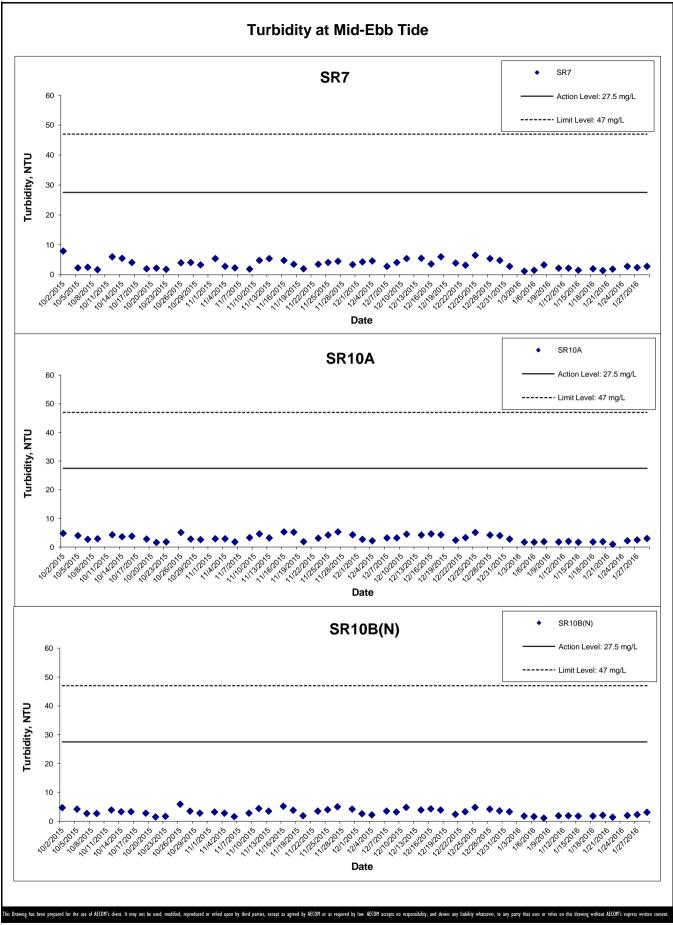

Graphical Presentation of Impact Water Quality

Monitoring Results

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Monitoring Results

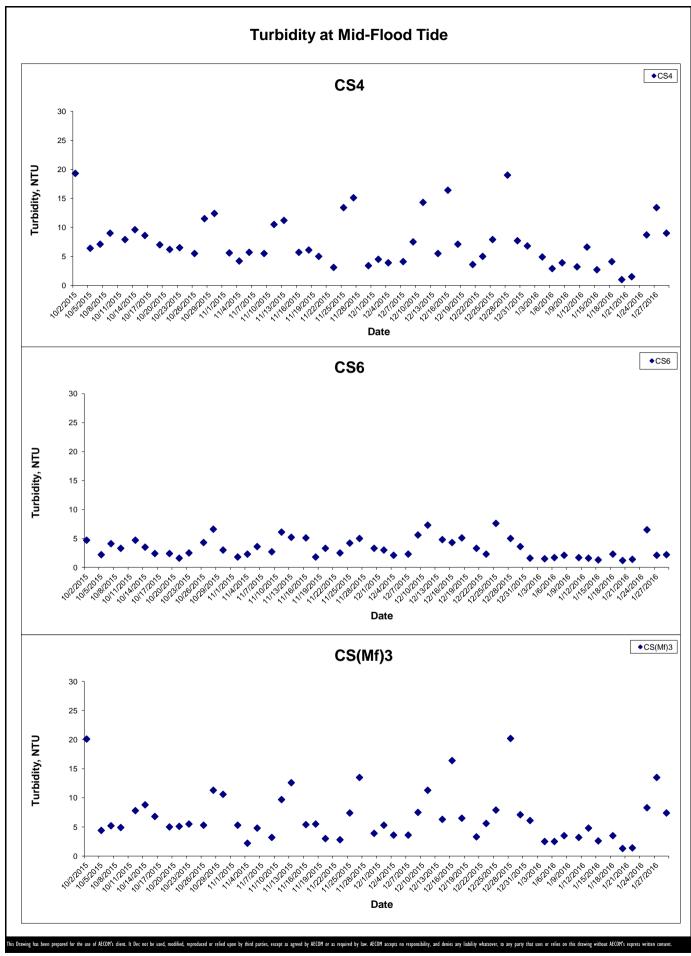

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

Project No.: 60249820

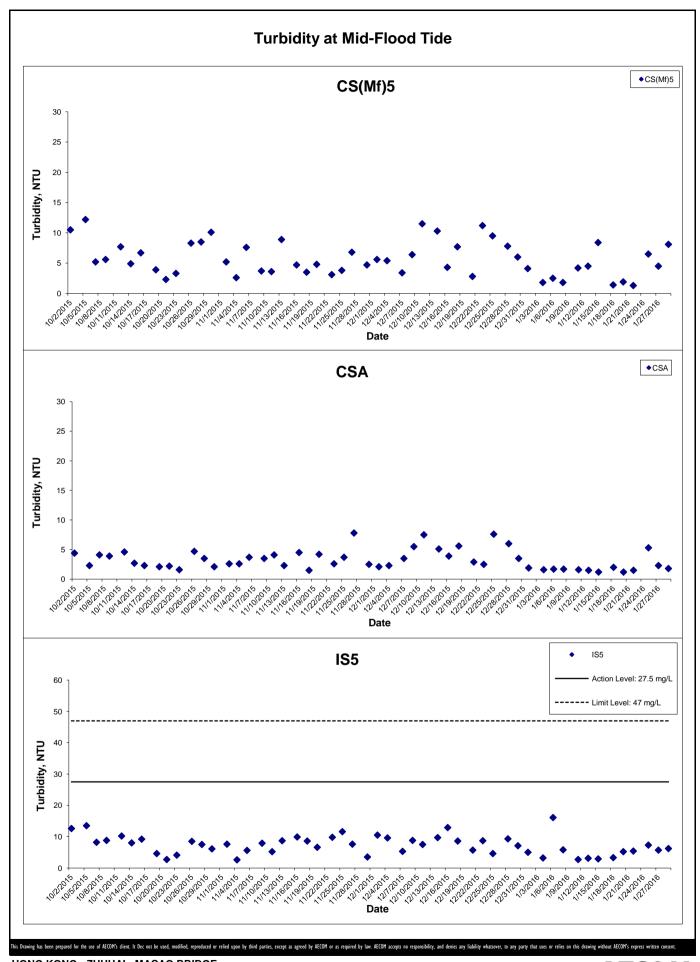
Graphical Presentation of Impact Water Quality - RECLAMATION WORKS

Date: February 2016

Appendix J

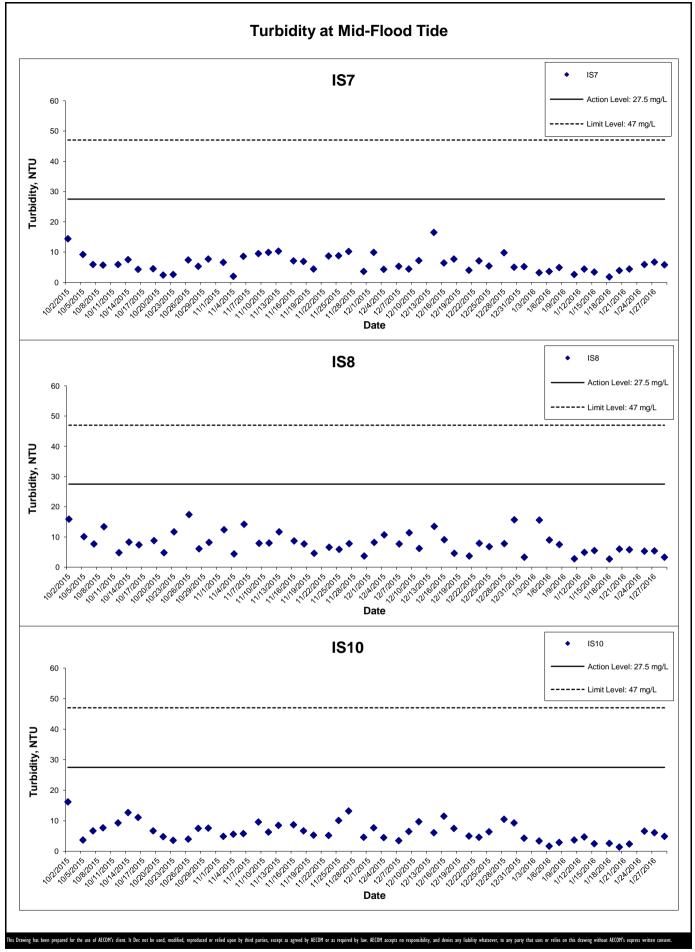


- RECLAMATION WORKS


Graphical Presentation of Impact Water Quality

Monitoring Results

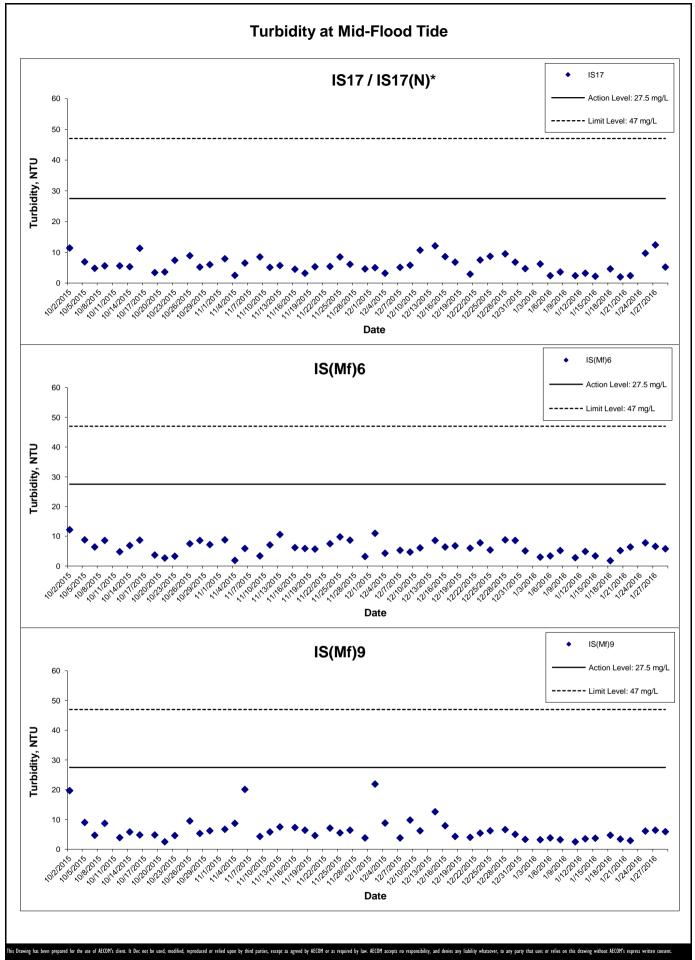
AECOM


AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM



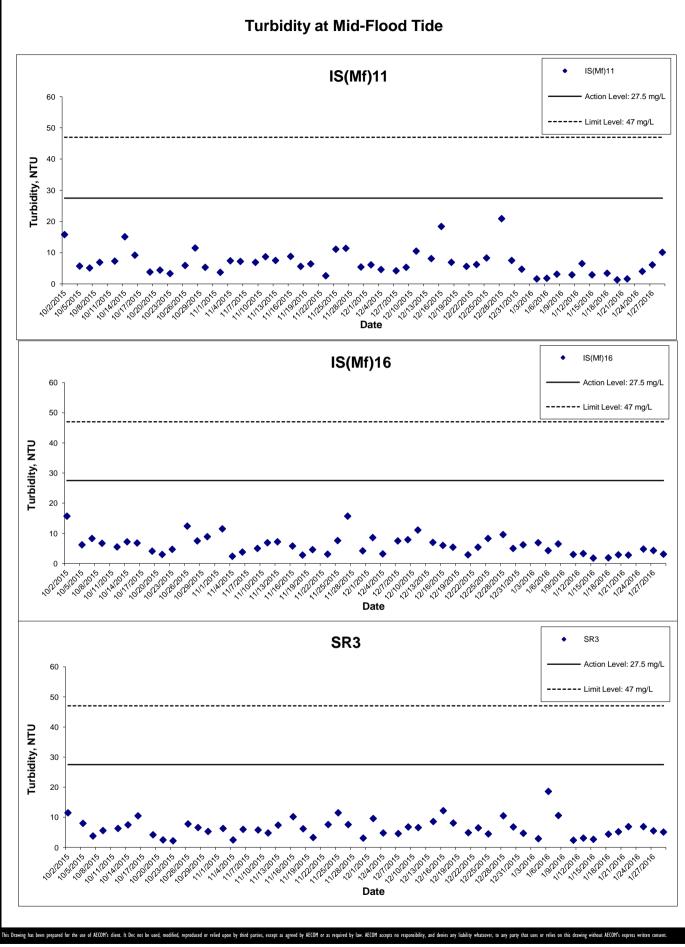
AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

Monitoring Results

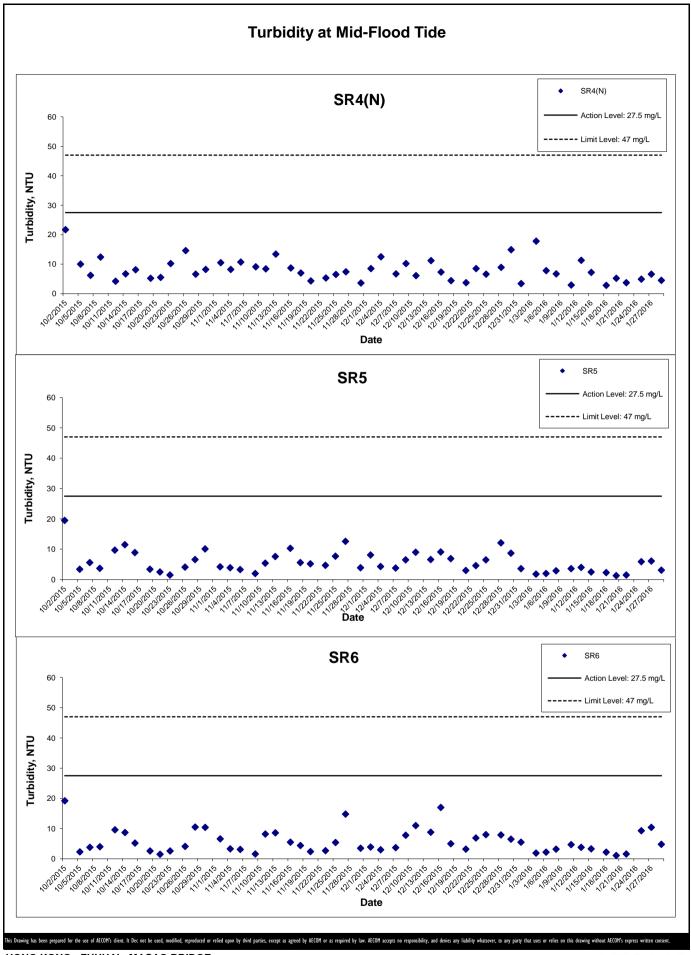
Project No.: 60249820


- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

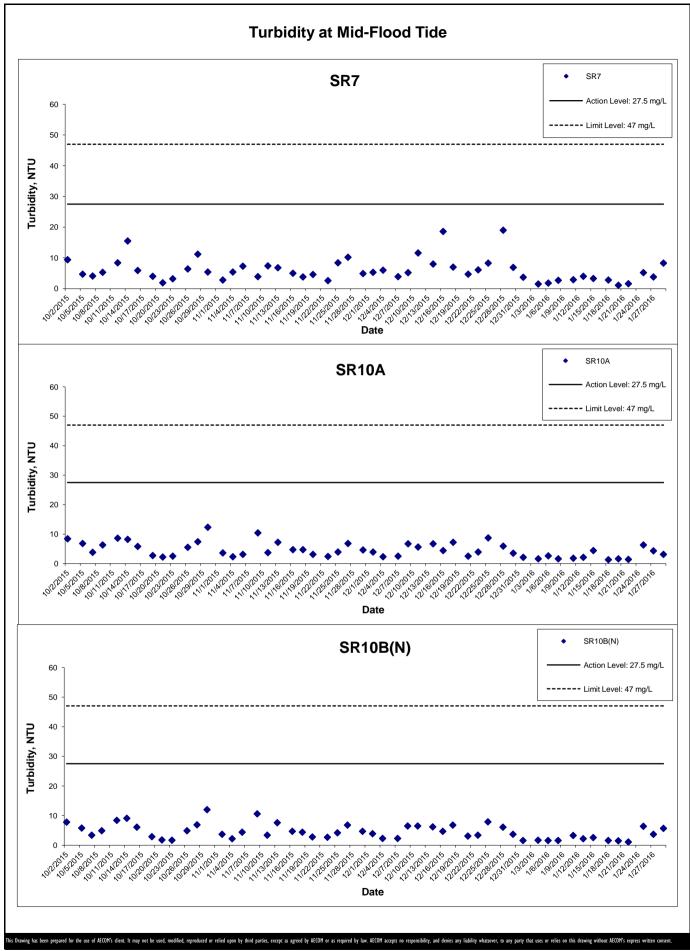
Monitoring Results

Date: February 2016



AECOM

- RECLAMATION WORKS

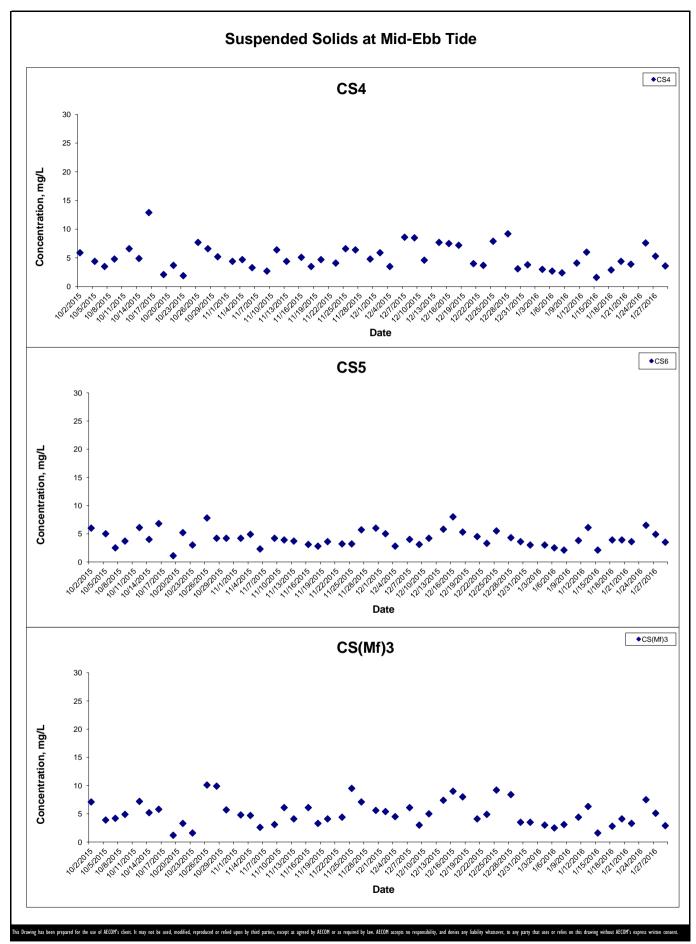

Graphical Presentation of Impact Water Quality
Monitoring Results

- RECLAMATION WORKS

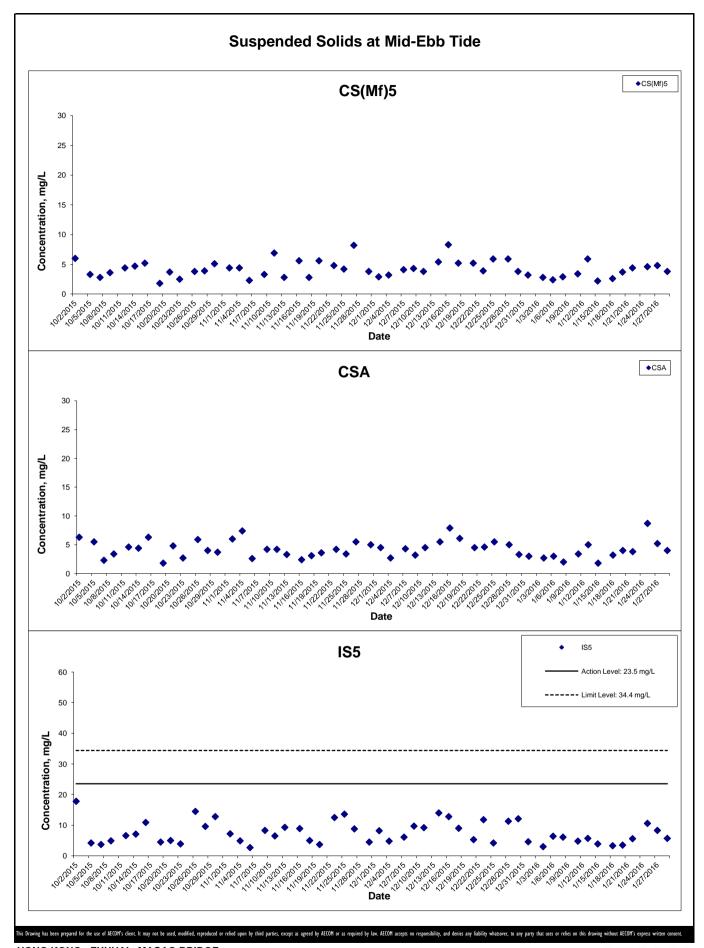
Graphical Presentation of Impact Water Quality
Monitoring Results

AECOM

- RECLAMATION WORKS

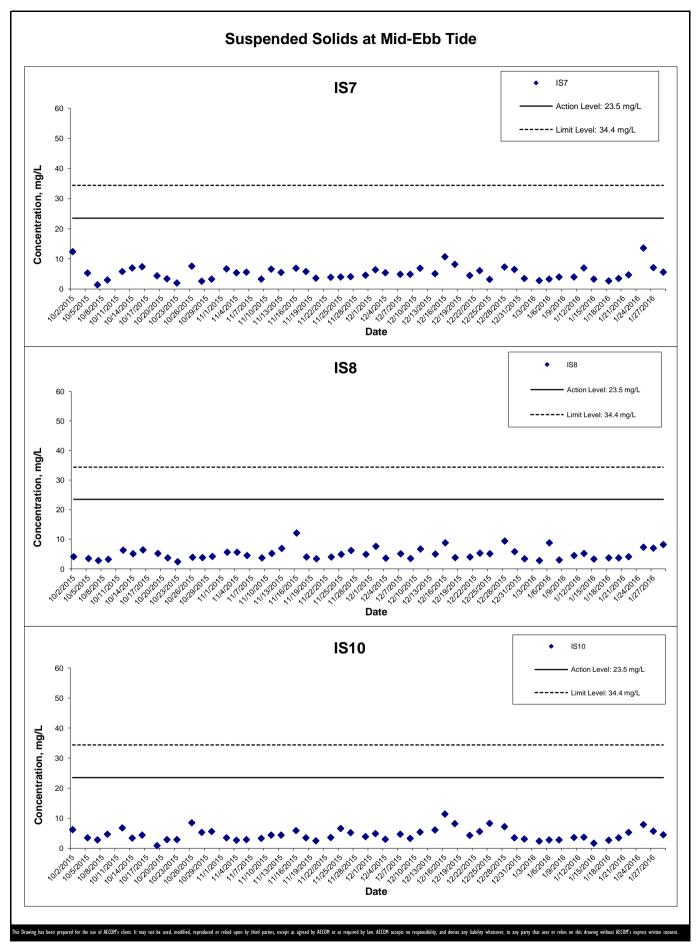

Graphical Presentation of Impact Water Quality

Monitoring Results


Monitoring Results
Project No.: 60249820 Date: February 2016

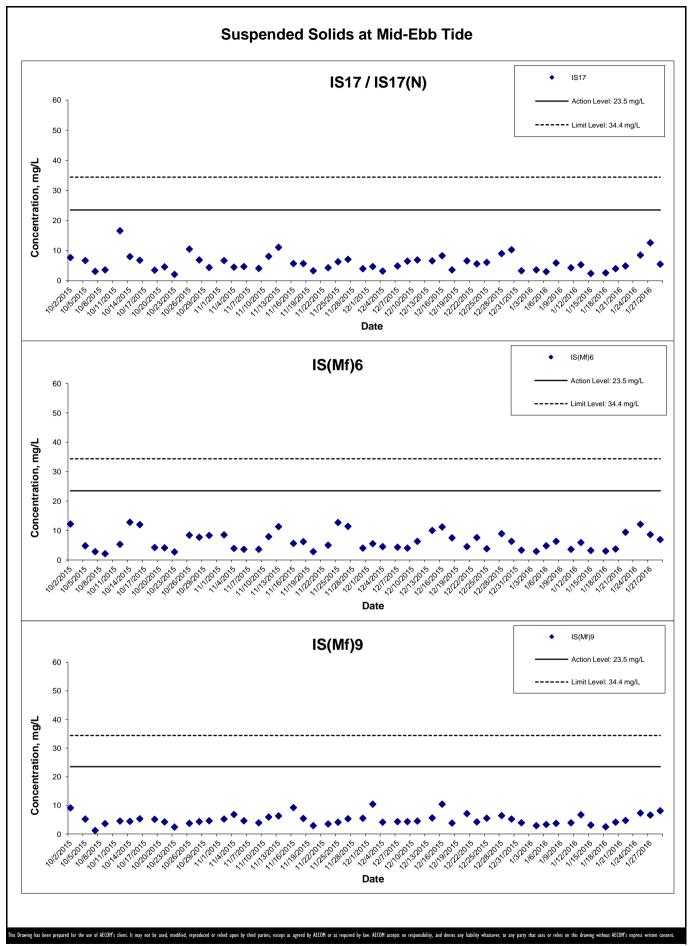
Appendix J

AECOM

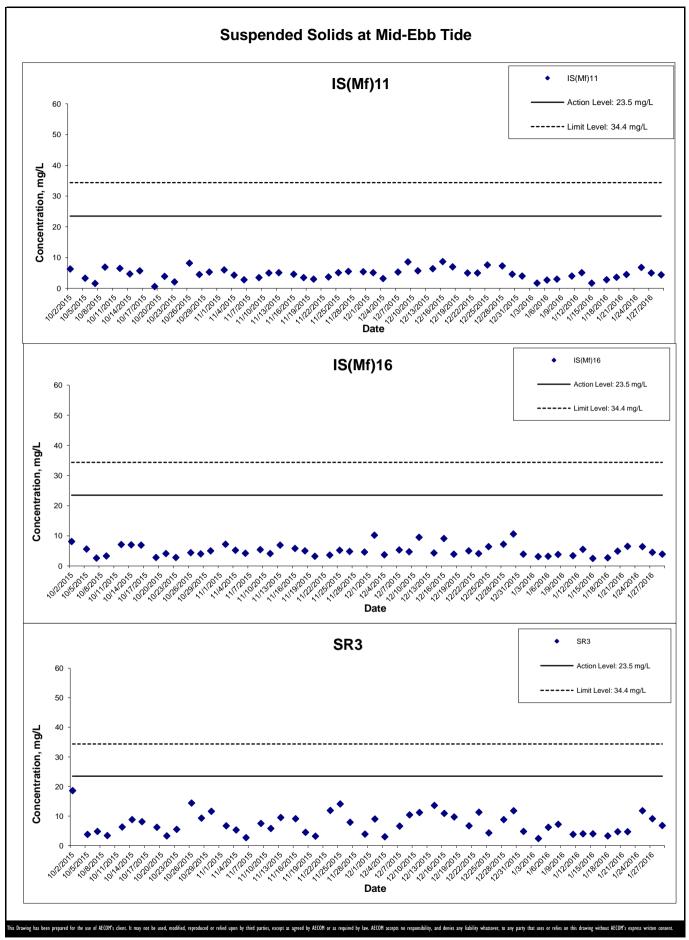


Date: February 2016

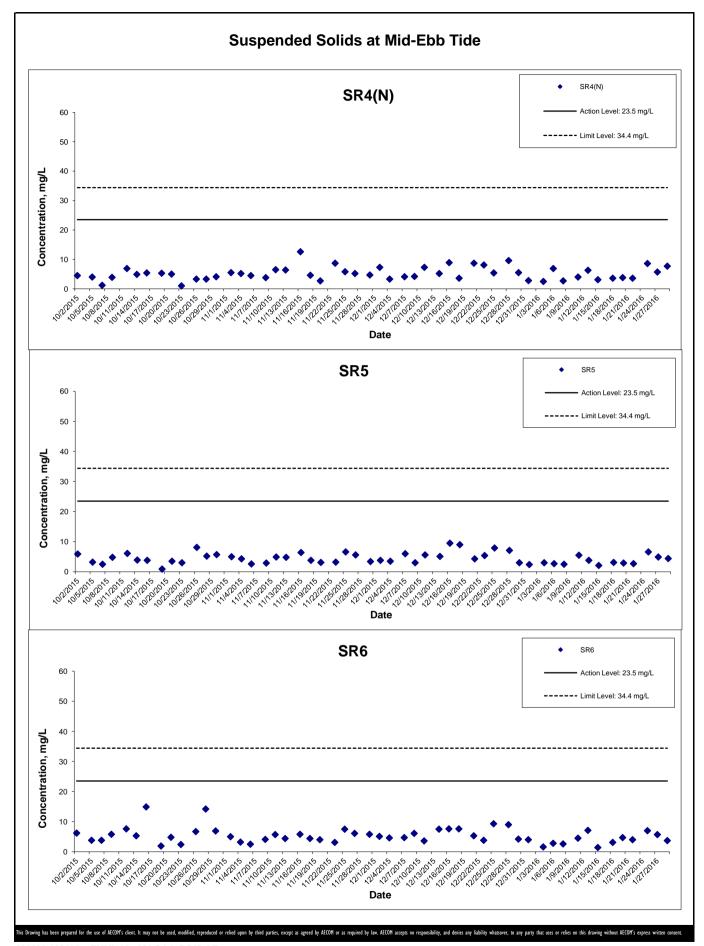
Graphical Presentation of Impact Water Quality Monitoring Results


- RECLAMATION WORKS

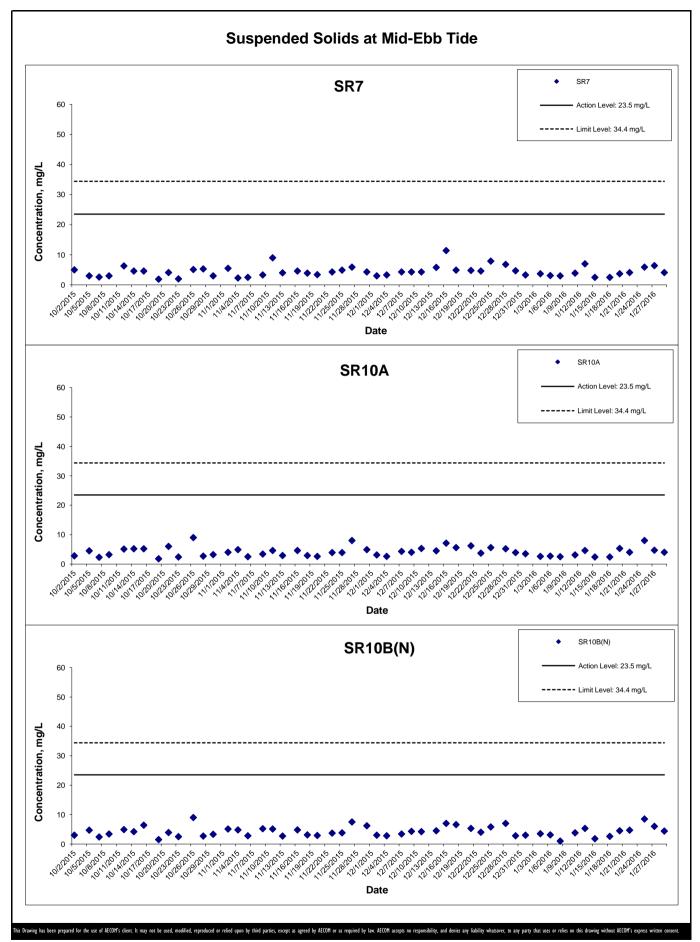
AECOM


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

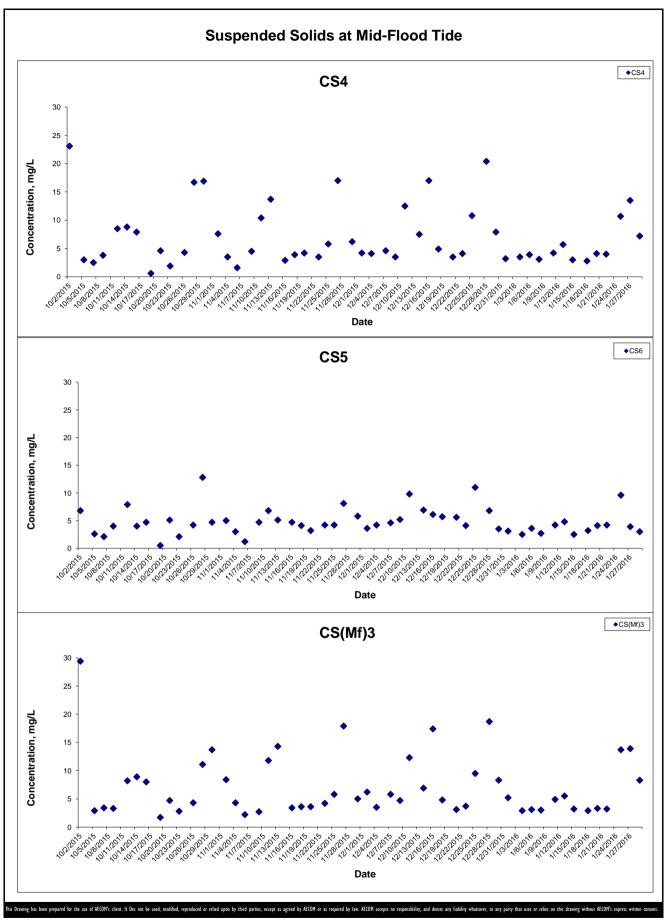
Monitoring Results



HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr


AECOM

AECOM


AECOM

AECOM

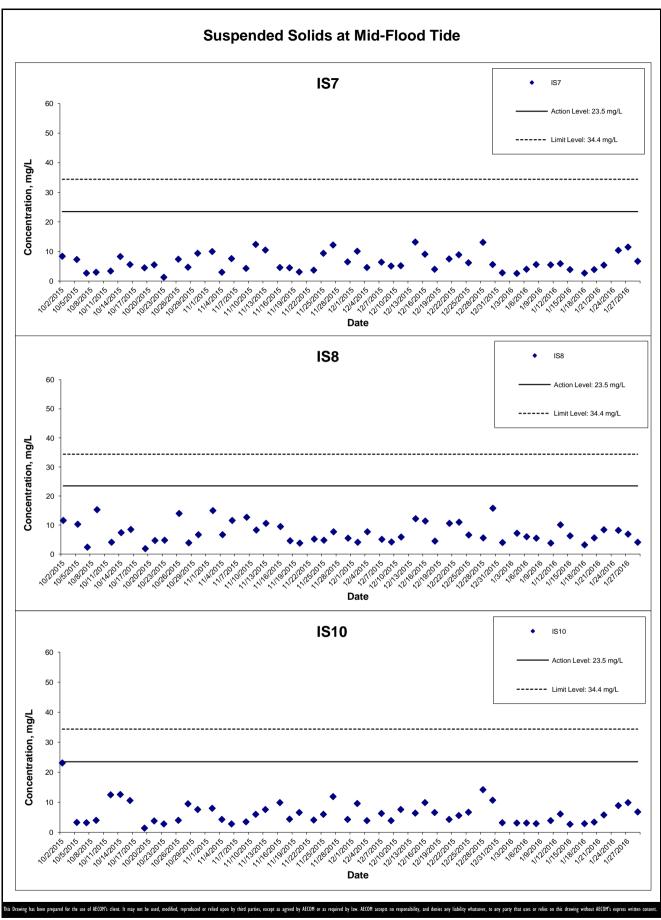
- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

AECOM

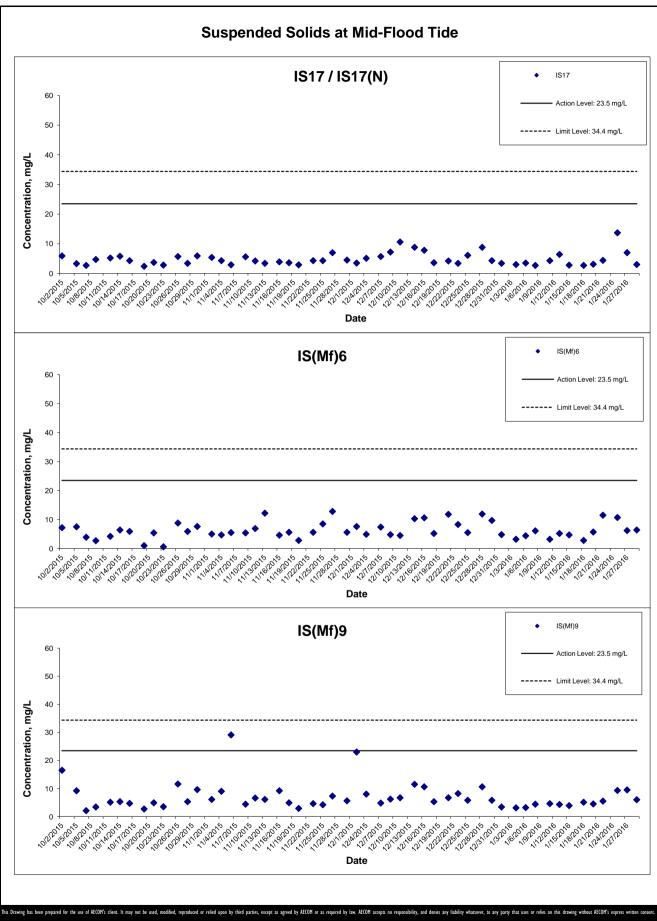
- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results


HONG KONG - ZHUHAI - MACAO BRIDGE
HONG KONG BOUNDARY CROSSING FACILITIES
- RECLAMATION WORKS
Gr

Graphical Presentation of Impact Water Quality
Monitoring Results

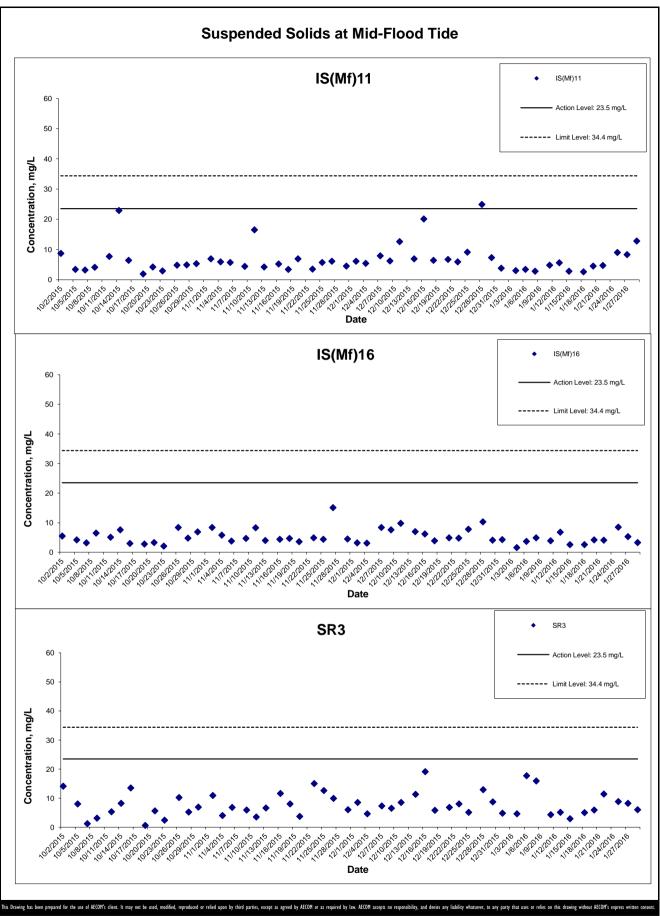
Monitoring Results
Project No.: 60249820 Date: February 2016


Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality

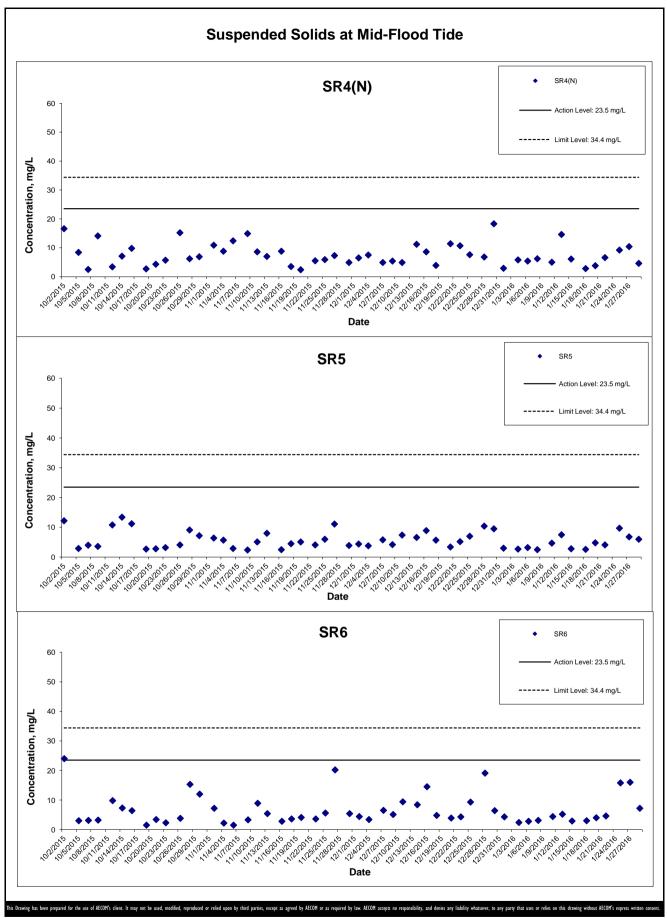
Monitoring Results


- RECLAMATION WORKS

Project No.: 60249820

Graphical Presentation of Impact Water Quality
Monitoring Results

Date: February 2016 Appendix J

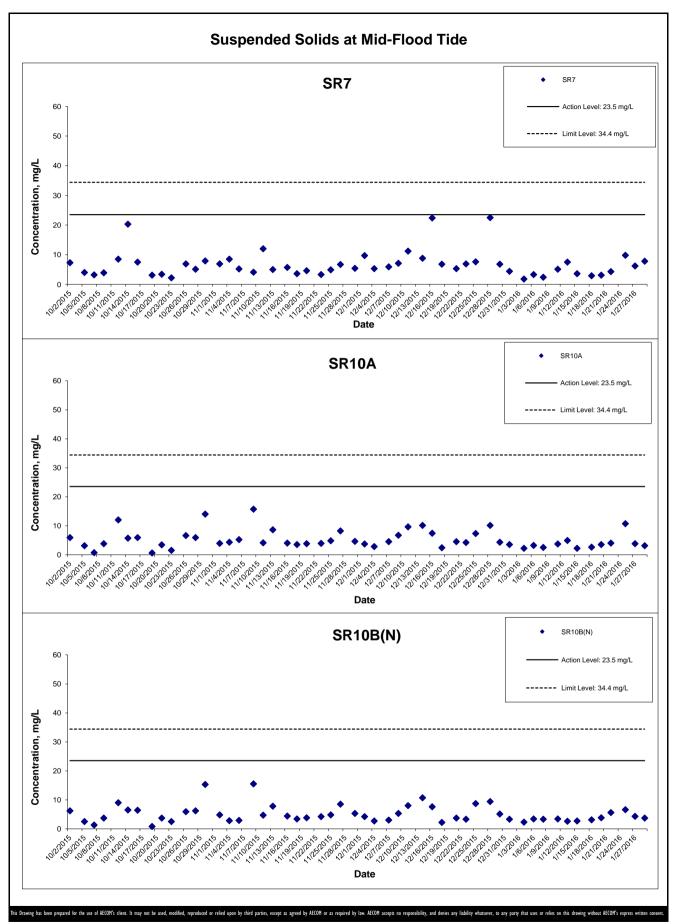


AECOM

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

Project No.: 60249820


- RECLAMATION WORKS Graphical Presentation of Impact Water Quality

Monitoring Results

Date: February 2016

AECOM

Appendix J

- RECLAMATION WORKS

Graphical Presentation of Impact Water Quality
Monitoring Results

North East Lantau

North West Lantau

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

Project	Contract	Date	Sighting No.	Time	Group Size	Area	Beaufort	PSD	Effort	Type	Northing	Easting	Season	Boat Association
HKBCF	HY/2010/02	07-Jan-16	1189	11:03:13	2	NWL	2	102	On	Impact	830701.5	805624.6	Winter	No
HKBCF	HY/2010/02	18-Jan-16	1193	12:27:56	2	NWL	1	N/A	Орр	Impact	819034.4	805457	Winter	No
HKBCF	HY/2010/02	18-Jan-16	1194	12:59:55	2	NWL	1	N/A	Орр	Impact	819289.9	806704.3	Winter	No

NEL

NWL

KEY:

Sighting Opp Opportunistic

On On effort

PSD Perpendicular Sighting Distance

Group Size Represents best estimate for group encountered

PS = Purse Seine trawler (active)

HT = Hang Trawler (not active but sorting fish and cleaning nets)

Annex I

December 2015 Photo Identification Information

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2015/10/22	1156	NWL
HZMB 129		2015/09/07	1143	NWL
		2015/08/25	1138	NWL
HZMB 128		2015/01/03	1056	NWL
HZMB 127		2015/01/03	1056	NWL
U7MD 106		2015/02/23	1068	NWL
HZMB 126		2015/01/03	1054	NWL
HZMB 125		2014/10/13	1019	NWL
HZMB 124		2014/09/22	1005	NWL
HZMB 123		2014/08/25	998	NWL
HZMB 122		2015/10/22	1156	NWL
HZIVID 122		2014/08/04	989	NWL
HZMB 121		2014/07/14	968	NWL
HZMB 120		2014/05/31	951	NWL
HZMB 119		2014/04/19	940	NWL
HZMB 118		2014/01/06	890	NWL
HZMB 117		2014/06/17	964	NWL
HZIVID I I I		2014/01/06	888	NWL
HZMB 116		2014/08/25	999	NWL
		2014/07/14	972	NWL
HZMB 115		2014/07/14	971	NWL
HZIVID 113		2013/12/26	879	NWL
		2013/12/26	879	NWL
LIZME		2015/11/05	1162	NWL
HZMB 114		2013/10/24	827	NWL
HZMB 113		2013/10/24	827	NWL
HZMB 112		2013/10/15	815	NWL
HZMB 111		2013/10/15	815	NWL
HZMB 110		2013/10/15	812	NWL
U7MD 100		2015/06/11	1118	NWL
HZMB 108		2013/08/30	780	NEL
		2015/07/28	1126	NWL
LIZMD 107		2014/10/13	1019	NWL
HZMB 107		2014/05/31	951	NWL
		2013/08/21	770	NWL
HZMB 106		2013/08/21	769	NWL
117MD 405		2014/05/31	951	NWL
HZMB 105		2013/07/08	711	NWL

HZMB 104 HZMB 103 HZMB 102 HZMB 101 HZMB 101 HZMB 101 HZMB 100 HZMB 100 HZMB 099 2013/07/08 706 NWL HZMB 099 2013/06/13 ABB NWL 2013/06/13 BB NWL 2014/08/04 PS NWL 2014/08/04 PS NWL 2013/11/02 BB NWL 2013/07/08 PNWL 2013/11/02 BB NWL 2013/11/02 BB SB NWL 2013/07/08 PNWL 2013/11/02 BB SB NWL 2013/11/02 BB SB NWL 2011/11/05 BB SB SB NWL 2011/11/05 BB SB SB NWL 2011/11/05 BB SB SB NWL 2011/11/07 BB SB SB NWL 2011/11/07 BB SB SB SB NWL 2011/11/07 BB SB SB SB SB NWL 2011/09/16 BB SB SB SB NWL 2011/09/16 BB SB SB SB NWL 2011/09/16 BB SB SB SB SB NWL 2011/09/16 BB SB SB SB SB SB SB NWL 2011/09/16 BB SB S	Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
HZMB 102	HZMB 104		2013/07/08	711	NWL
HZMB 101	HZMB 103		2013/07/08	711	NWL
HZMB 100 HZMB 099 2013/06/13 681 NWL 2013/06/13 680 NWL 2015/02/23 1077 NWL 2014/12/18 1044 NWL 2014/08/04 992 NWL 2014/01/06 888 NWL 2013/11/02 849 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2011/11/02 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/08 Baseline NWL 2011/109/23 Baseline NWL 2011/09/23 Baseline NWL 2011/09/21 Baseline NWL 2013/06/25 G97 NWL 2013/06/25 G97 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/26 698 NWL 2013/06/26 698 NWL 2013/06/24 657 NWL 2013/02/21 587 NWL	HZMB 102		2013/07/08	706	NWL
HZMB 099 2013/06/13 681 NWL	HZMB 101		2013/07/08	706	NWL
HZMB 099 2013/06/13	HZMB 100		2013/07/08	706	NWL
HZMB 094 2013/06/13 680 NWL	HZMR 000		2013/06/13	681	NWL
HZMB 094 HZMB 093 HZMB 094 DATE A LANG AND	TIZIVID 099		2013/06/13	680	NWL
HZMB 094 HZMB 093 HZMB 094 2014/08/04 992 NWL 2014/01/06 888 NWL 2013/11/02 849 NWL 2013/11/02 845 NWL 2013/11/02 845 NWL 2013/10/24 831 NWL 2013/07/08 711 NWL 2013/05/24 659 NWL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/02 Baseline NWL 2011/10/28 Baseline NWL 2011/09/23 Baseline NWL 2011/09/26 Baseline NWL 2011/09/26 Baseline NWL 2011/09/27 Baseline NWL 2011/09/28 Baseline NWL 2011/09/38 Baseline NWL 2011/09/38 Baseline NWL 2011/09/38 Baseline NWL 2011/09/38 Baseline NWL 2011/09/39 647 NWL 2013/06/25 697 NWL 2013/06/25 697 NWL 2013/06/25 697 NWL 2013/06/25 697 NWL 2013/06/26 703 NWL 2014/02/17 910 NWL 2014/02/17 910 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL			2015/02/23	1077	NWL
HZMB 094 HZMB 094 HZMB 094 HZMB 094 ANL 104		2014/12/18	1044	NWL	
HZMB 098 HZMB 099 HZMB 099 HZMB 099 HZMB 094 HZMB 093 HZMB 094 HZMB 093 HZMB 093 HZMB 094 HZMB 095 HZMB 095 HZMB 094 HZMB 095 HZMB 096 HZMB 097 HZMB 098 HZMB 099			2014/08/04	992	NWL
HZMB 098 HZMB 098 NL104 2013/10/24 2013/07/08 711 NWL 2013/05/24 659 NWL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/02 Baseline NWL 2011/11/02 Baseline NWL 2011/10/28 Baseline NWL 2011/09/23 Baseline NWL 2011/09/16 Baseline NWL 2013/06/09 647 NWL 2013/06/09 647 NWL 2013/06/25 697 NWL 2013/06/25 697 NWL 2013/06/21 2013/06/25 698 NWL 2014/02/17 910 NWL 2014/02/17 910 NWL 2013/06/25 698 NWL 2013/06/25 697 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/06/26 703 NWL			2014/01/06	888	NWL
HZMB 098 NL104 2013/10/24 831 NWL			2013/11/02	849	NWL
HZMB 098 HZMB 098 NL104 2013/05/24 659 NWL 2011/11/07 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/05 Baseline NWL 2011/11/02 Baseline NWL 2011/10/28 Baseline NWL 2011/09/23 Baseline NWL 2011/09/23 Baseline NWL 2011/09/16 Baseline NWL 2011/09/16 Baseline NWL 2011/09/16 Baseline NWL 2013/05/09 647 NWL 4ZMB 096 2013/05/09 647 NWL 2013/06/25 697 NWL 2013/06/25 697 NWL 2013/06/13 682 NWL 2013/06/13 682 NWL 2013/06/13 682 NWL 2013/06/13 1019 NWL 2014/05/31 954 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/05/24 657 NWL 4ZMB 093 HZMB 093			2013/11/02	845	NWL
HZMB 098 NL104 2013/05/24 659 NWL			2013/10/24	831	NWL
2013/05/24 659 NWL	LIZMD 000	NUADA	2013/07/08	711	NWL
2011/11/05 Baseline NWL	HZIVIB 098 	NL104	2013/05/24	659	NWL
2011/11/05 Baseline NWL			2011/11/07	Baseline	NWL
HZMB 093 2011/11/02 Baseline NWL			2011/11/05	Baseline	NWL
HZMB 094 2011/10/28 Baseline NWL			2011/11/05	Baseline	NWL
2011/09/23 Baseline NWL			2011/11/02	Baseline	NWL
HZMB 097 2013/05/09 647 NWL HZMB 096 2013/04/01 621 NWL AMB 095 2013/08/30 780 NEL 2013/06/25 697 NWL 2013/06/13 682 NWL 2013/06/13 682 NWL 2013/04/01 621 NWL 2013/06/13 1019 NWL 2014/10/13 1019 NWL 2014/05/31 954 NWL 2014/05/31 954 NWL 2013/06/26 703 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/05/24 657 NWL HZMB 093 2015/04/20 1097 NWL			2011/10/28	Baseline	NWL
HZMB 097 HZMB 096 2013/05/09 647 NWL 2013/04/01 621 NWL 2013/06/25 697 NWL 2013/06/13 682 NWL 2013/04/01 621 NWL 2013/06/13 682 NWL 2013/04/01 621 NWL 2013/06/31 1019 NWL 2014/05/31 954 NWL 2014/05/31 954 NWL 2014/02/17 910 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/05/24 657 NWL HZMB 093 42013/05/24 657 NWL 2013/05/24 657 NWL 2013/05/24 657 NWL 2013/05/24 657 NWL			2011/09/23	Baseline	NWL
HZMB 097 HZMB 096 2013/04/01 621 NWL 2013/08/30 780 NEL 2013/06/25 697 NWL 2013/06/13 682 NWL 2013/04/01 621 NWL 2013/06/13 682 NWL 2013/04/01 621 NWL 2014/10/13 1019 NWL 2014/05/31 954 NWL 2014/05/31 954 NWL 2014/02/17 910 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/06/25 698 NWL 2013/03/18 601 NWL HZMB 093 42013/05/24 657 NWL 2013/05/24 657 NWL 2013/05/24 1097 NWL			2011/09/16	Baseline	NWL
HZMB 095 2013/08/30 780 NEL	HZMB 097			647	NWL
HZMB 095 2013/06/25 697 NWL	HZMB 096		2013/04/01	621	NWL
HZMB 095 2013/06/13 682 NWL 2013/04/01 621 NWL 2014/10/13 1019 NWL 2014/05/31 954 NWL 2014/02/17 910 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/03/18 601 NWL 4ZMB 093 4ZMB 093 4ZMB 093 4ZMB 093 4ZMB 092			2013/08/30	780	NEL
HZMB 093 2013/06/13 682 NWL	LIZMD OOF		2013/06/25	697	NWL
HZMB 094 2014/10/13 1019 NWL	HZIVIB 095 		2013/06/13	682	NWL
HZMB 094 HZMB 094 2014/05/31 954 NWL 2014/02/17 910 NWL 2013/06/26 703 NWL 2013/06/25 698 NWL 2013/03/18 601 NWL 2013/05/24 657 NWL 2013/02/21 587 NWL 2015/04/20 1097 NWL			2013/04/01	621	NWL
HZMB 094 2014/02/17 910 NWL			2014/10/13	1019	NWL
HZMB 094 2013/06/26 2013/06/25 698 NWL 2013/03/18 601 NWL 2013/05/24 657 NWL 2013/02/21 587 NWL 2015/04/20 1097 NWL			2014/05/31	954	NWL
HZMB 093 2013/06/26	117MD 004		2014/02/17	910	NWL
2013/03/18 601 NWL 2013/05/24 657 NWL 2013/02/21 587 NWL 2015/04/20 1097 NWL	HZMB 094		2013/06/26	703	NWL
HZMB 093 2013/05/24 657 NWL 2013/02/21 587 NWL 2015/04/20 1097 NWL			2013/06/25	698	NWL
HZMB 093 2013/02/21 587 NWL 2015/04/20 1097 NWL			2013/03/18	601	NWL
HZMB 093 2013/02/21 587 NWL 2015/04/20 1097 NWL	LIZMD COO		2013/05/24	657	NWL
HZMB 092 2015/04/20 1097 NWL	HZMB 093			587	NWL
HZMB 092	11714D 000			1097	
	HZMB 092		2013/02/21	589	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/02/15	581	NWL
HZMB 091		2013/02/15	579	NWL
		2013/06/25	697	NWL
HZMB 090		2013/06/13	682	NWL
		2013/02/15	579	NWL
HZMB 089		2013/02/15	579	NWL
HZMB 088		2013/02/15	579	NWL
HZMB 087		2013/02/15	579	NWL
		2015/03/19	1086	NWL
HZMB 086	NL242	2013/05/09	642	NWL
HZIVID UOU	INLZ4Z	2013/02/15	579	NWL
		2011/10/10	Baseline	NWL
LIZMD OOF		2014/10/13	1019	NWL
HZMB 085		2014/05/31	954	NWL
		2013/06/26	703	NWL
HZMB 084		2013/02/15	579	NWL
		2013/02/14	575	NWL
		2015/12/01	1180	NWL
		2015/05/11	1104	NWL
		2013/12/19	863	NWL
		2013/03/28	607	NWL
		2013/02/15	579	NWL
1.171.4D 000	NII 400	2013/01/28	568	NWL
HZMB 083	NL136	2013/01/28	564	NWL
		2012/04/19	267	NWL
		2011/10/28	Baseline	NWL
		2011/10/28	Baseline	NWL
		2011/10/10	Baseline	NEL
		2011/09/06	Baseline	NWL
		2014/10/20	1024	NWL
LUZI 4D 000		2013/02/21	587	NWL
HZMB 082		2013/02/15	579	NWL
		2013/01/28	563	NWL
11714D 004		2013/01/28	559	NWL
HZMB 081		2013/01/28	557	NWL
HZMB 080		2013/01/28	556	NWL
HZMB 079		2013/01/28	556	NWL
HZMB 078		2013/02/15	579	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/01/08	552	NWL
		2013/12/26	878	NWL
HZMB 077		2013/07/08	706	NWL
		2012/12/11	541	NWL
LIZMD 076		2013/07/08	706	NWL
HZMB 076		2012/12/11	541	NWL
HZMB 075		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 074		2013/04/01	621	NWL
HZIVID U/4		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
LIZMD 070		2013/04/01	621	NWL
HZMB 073		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/12/06	525	NEL
HZMB 072		2012/10/24	476	NWL
117MD 074		2012/10/24	475	NWL
HZMB 071		2012/10/12	466	NWL
HZMB 070		2012/10/24	476	NWL
		2015/06/04	1116	NWL
LIZMD 000		2013/08/21	774	NWL
HZMB 069		2013/07/08	711	NWL
		2012/10/24	476	NWL
		2014/10/20	1025	NWL
HZMB 068		2013/11/01	839	NWL
		2012/10/24	476	NWL
HZMB 067		2012/10/24	475	NWL
		2013/01/28	559	NWL
LIZMD 000		2012/12/11	537	NWL
	NII OO	2012/10/24	475	NWL
HZMB 066	NL93	2012/10/12	466	NWL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
HZMB 064		2015/03/19	1086	NWL

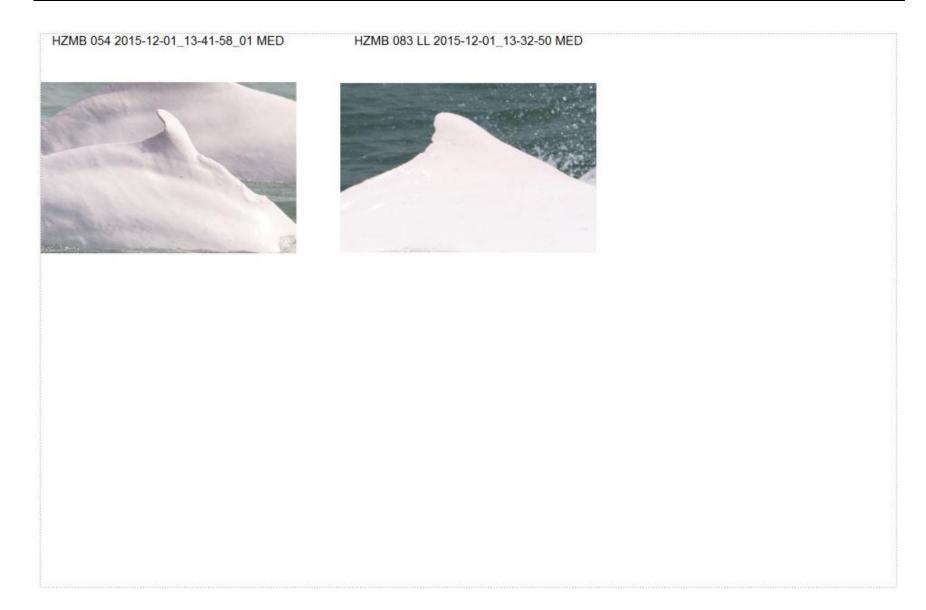
Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2014/06/17	964	NWL
		2013/05/09	647	NWL
		2013/01/28	561	NWL
		2012/10/24	475	NWL
		2012/10/12	466	NWL
LIZMD 000		2013/05/09	647	NWL
HZMB 063		2012/10/12	466	NWL
LIZMD 060		2012/12/06	525	NEL
HZMB 062		2012/10/11	457	NWL
HZMB 060		2012/09/18	447	NWL
LIZMD OFO		2013/02/21	591	NWL
HZMB 059		2012/09/18	445	NWL
HZMB 057		2012/09/18	440	NWL
HZMB 056		2012/09/18	442	NWL
HZIVID USO		2012/09/05	433	NEL
HZMB 055		2012/09/04	425	NWL
		2015/12/01	1180	NWL
		2015/04/20	1097	NWL
		2015/01/15	1062	NWL
		2014/05/31	953	NWL
		2014/01/06	888	NWL
		2013/11/07	854	NWL
		2013/11/02	845	NWL
		2013/10/24	831	NWL
		2013/08/30	780	NEL
HZMB 054	CH34	2013/07/08	711	NWL
		2013/09/18	448	NWL
		2012/09/05	432	NEL
		2011/11/07	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/10/28	Baseline	NWL
		2011/10/06	Baseline	NWL
HZMB 053		2012/09/04	425	NWL
HZMB 052		2012/09/04	423	NWL
HZMB 051	NL213	2015/05/11	1104	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2014/08/04	989	NWL
		2013/05/09	644	NWL
		2013/04/01	622	NWL
		2013/02/15	582	NWL
		2013/02/15	581	NWL
		2013/01/28	559	NWL
		2013/01/28	556	NWL
		2012/09/04	422	NWL
		2014/07/14	971	NWL
		2014/01/10	900	NWL
HZMB 050		2014/01/06	888	NWL
		2013/02/15	579	NWL
		2012/09/04	421	NWL
		2015/10/09	1151	NWL
HZMB 049		2014/07/29	982	NWL
		2012/09/03	419	NWL
HZMB 048		2012/09/03	419	NWL
117MD 047		2015/04/28	1100	NWL
HZMB 047		2012/09/03	412	NWL
HZMB 046		2012/09/03	412	NWL
		2014/02/17	910	NWL
		2013/06/13	682	NWL
HZMB 045		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2014/10/13	1019	NWL
		2014/02/17	910	NWL
		2013/12/19	864	NWL
		2013/11/02	845	NWL
		2013/11/01	842	NWL
		2013/10/15	819	NWL
LIZMAD OAA	NII OO	2013/05/09	648	NWL
HZMB 044	NL98	2013/05/09	647	NWL
		2013/04/01	623	NWL
		2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2011/11/06	Baseline	NEL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/01	Baseline	NEL
		2011/10/06	Baseline	NEL
HZMB 043		2012/09/03	407	NWL
		2015/10/22	1156	NWL
LIZMD 040	NII OCO	2013/12/19	863	NWL
HZMB 042	NL260	2012/11/01	495	NWL
		2011/11/07	Baseline	NWL
		2014/06/05	960	NEL
		2014/02/17	910	NWL
		2013/11/02	845	NWL
		2013/05/09	648	NWL
		2013/05/09	647	NWL
		2013/04/01	623	NWL
HZMB 041	NL24	2013/04/01	621	NWL
		2013/02/15	579	NWL
		2012/11/01	495	NWL
		2011/11/06	Baseline	NEL
		2011/11/05	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/10/10	Baseline	NWL
		2014/02/17	910	NWL
		2014/01/06	893	NWL
		2013/10/15	821	NWL
HZMB 040		2013/07/08	714	NWL
		2013/07/08	711	NWL
		2013/02/21	589	NWL
		2012/11/01	493	NWL
HZMB 038		2012/11/01	490	NWL
HZMB 037		2012/11/01	490	NWL
HZMD 000		2012/09/03	407	NWL
HZMB 036		2012/11/01	490	NWL
HZMD 025		2013/02/15	579	NWL
HZMB 035		2012/11/01	490	NWL
HZMB 034		2012/11/01	493	NWL
		2014/11/17	1035	NWL
HZMB 028		2013/04/01	625	NWL
		2012/08/06	373	NWL
HZMB 027		2013/12/19	863	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/02/15	579	NWL
		2013/01/28	568	NWL
		2013/01/28	564	NWL
		2012/06/14	299	NWL
		2014/10/13	1018	NWL
		2013/06/25	697	NWL
HZMB 026		2013/05/09	642	NWL
		2013/01/28	561	NWL
		2012/06/13	295	NEL
		2013/02/22	596	NEL
		2013/02/21	591	NWL
HZMB 025		2012/12/06	525	NEL
		2012/10/11	457	NWL
		2012/06/13	295	NEL
LIZMD 004		2013/03/18	601	NWL
HZMB 024		2012/06/13	295	NEL
		2015/10/09	1153	NWL
		2015/10/09	1152	NWL
		2015/04/20	1097	NWL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
LIZMD 000		2014/01/06	888	NWL
HZMB 023		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
		2015/07/09	1143	NWL
		2015/04/20	1097	NWL
		2014/12/18	1044	NWL
		2014/11/17	1035	NWL
LIZMD 000		2014/08/04	991	NWL
HZMB 022		2014/01/06	888	NWL
		2013/10/24	827	NWL
		2013/07/08	715	NWL
		2013/07/08	711	NWL
		2013/04/01	619	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2013/02/21	589	NWL
		2013/02/15	579	NWL
		2012/07/10	330	NWL
LIZMD 004	NII 27	2012/07/10	330	NWL
HZMB 021	NL37	2011/09/16	Baseline	NWL
HZMB 020		2012/07/10	330	NWL
HZMB 019		2012/07/10	330	NWL
		2014/02/17	910	NWL
		2013/05/09	647	NWL
HZMB 018		2013/02/21	594	NEL
		2012/12/10	529	NEL
		2012/07/10	330	NWL
HZMB 017		2012/07/10	330	NWL
		2013/07/08	706	NWL
		2012/12/11	539	NWL
HZMB 016		2012/09/18	446	NWL
		2012/09/04	421	NWL
		2012/07/10	330	NWL
HZMB 015		2012/07/10	330	NEL
		2015/08/25	1139	NWL
		2013/12/26	880	NWL
		2012/08/06	373	NWL
HZMB 014	NL176	2012/06/13	295	NEL
		2011/11/06	Baseline	NEL
		2011/11/01	Baseline	NEL
		2011/11/01	Baseline	NEL
HZMB 013		2012/05/28	281	NWL
HZMB 012		2012/05/28	281	NWL
		2013/02/22	597	NEL
		2013/02/21	592	NEL
		2013/02/14	572	NEL
LIZMD C44	EL 04	2012/11/06	517	NEL
HZMB 011	EL01	2012/09/19	452	NWL
		2012/03/31	261	NEL
		2011/11/02	Baseline	NWL
		2011/11/01	Baseline	NEL
HZMB 009		2015/03/19	1084	NWL
		2012/05/28	281	NWL


Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
LIZMD 000		2015/07/06	1122	NWL
HZMB 008		2012/05/28	281	NWL
		2012/12/10	529	NEL
HZMB 007	NL246	2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL
		2015/10/22	1158	NWL
		2013/02/21	594	NEL
HZMB 006		2012/12/11	539	NWL
		2012/11/01	495	NWL
		2012/03/29	250	NWL
		2015/02/09	1070	NWL
		2015/02/09	1069	NWL
		2013/11/09	860	NWL
LIZMD OOF		2013/11/07	858	NWL
HZMB 005		2013/10/15	813	NWL
		2012/12/10	532	NWL
		2012/08/06	374	NWL
		2012/05/28	287	NWL
		2015/07/28	1126	NWL
HZMB 004		2012/09/04	421	NWL
		2012/03/31	262	NWL
		2013/10/15	812	NWL
		2013/06/25	697	NWL
LIZMD 000	NII 470	2012/12/10	529	NEL
HZMB 003	NL179	2012/03/31	261	NWL
		2011/11/06	Baseline	NEL
		2011/09/16	Baseline	NWL
		2014/05/31	951	NWL
		2013/12/26	878	NWL
		2013/12/19	863	NWL
		2013/11/01	839	NWL
		2013/10/15	819	NWL
HZMB 002	WL111	2013/09/24	798	NWL
		2013/02/14	573	NWL
		2012/12/11	536	NWL
		2012/12/11	535	NWL
		2012/10/12	466	NWL
		2012/10/24	475	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2012/05/28	281	NWL
		2012/03/29	250	NWL
		2011/11/02	Baseline	NWL
		2014/08/25	997	NWL
		2013/08/21	771	NWL
1.17MD 004	VA/I 4C	2013/06/13	681	NWL
HZMB 001	WL46	2013/04/01	617	NWL
		2013/02/14	573	NWL
		2012/03/29	250	NWL
	CH98	2011/11/02	Baseline	NWL
	NII 44	2011/11/02	Baseline	NWL
	NL11	2011/11/07	Baseline	NWL
	NL12	2011/11/02	Baseline	NWL
		2011/09/23	Baseline	NWL
	NII 22	2011/11/01	Baseline	NEL
	NL33	2011/11/05	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL46	2011/10/28	Baseline	NWL
	CH153	2011/10/11	Baseline	NWL
		2001/11/07	Baseline	NWL
	NL48	2011/11/02	Baseline	NWL
		2011/09/16	Baseline	NWL
		2011/09/16	Baseline	NWL
	NL75	2011/09/16	Baseline	NWL
		2011/11/01	Baseline	NEL
	NL80	2011/11/02	Baseline	NWL
	NL118	2011/09/06	Baseline	NWL
	NL120	2011/11/06	Baseline	NEL
	INLIZU	2011/10/10	Baseline	NWL
		2011/11/06	Baseline	NEL
	NL123	2011/10/10	Baseline	NWL
		2011/10/06	Baseline	NWL
		2011/11/01	Baseline	NEL
	NL139	2011/10/10	Baseline	NEL
		2011/09/16	Baseline	NWL
	NL165	2011/11/05	Baseline	NWL
	INLIUS	2011/11/02	Baseline	NWL
	NL170	2011/10/06	Baseline	NEL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/07	Baseline	NWL
	NL188	2011/11/01	Baseline	NWL
		2011/10/28	Baseline	NWL
	NL191	2011/09/07	Baseline	NWL
	NL202	2011/11/07	Baseline	NWL
	INLZUZ	2011/10/28	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL210	2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
		2011/09/07	Baseline	NWL
		2011/11/05	Baseline	NWL
	NL214	2011/11/02	Baseline	NWL
		2011/10/28	Baseline	NWL
	NL220	2011/10/10	Baseline	NEL
	NL224	2011/10/28	Baseline	NWL
	NL226	2011/11/05	Baseline	NWL
	INLZZO	2011/10/17	Baseline	WL
	NL230	2011/11/02	Baseline	NWL
	INL230	2011/10/17	Baseline	WL
		2011/10/28	Baseline	NWL
	NL233	2011/10/06	Baseline	NWL
		2011/09/16	Baseline	NWL
		2011/11/07	Baseline	NWL
	NL241	2011/11/02	Baseline	NWL
		2011/09/16	Baseline	NWL
		2011/11/01	Baseline	NEL
	NL244	2011/11/01	Baseline	NWL
		2011/09/05	Baseline	WL
	NL256	2011/11/02	Baseline	NWL
	NL258	2011/09/16	Baseline	NWL
	INLZOO	2011/09/05	Baseline	WL
	NL259	2011/11/07	Baseline	NWL
	NL261	2011/11/01	Baseline	NEL
		2011/11/06	Baseline	NEL
	NL264	2011/10/06	Baseline	NEL
		2011/09/23	Baseline	NWL
	NL269	2011/11/02	Baseline	NWL
	NL272	2011/11/05	Baseline	NWL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/11/02	Baseline	NWL
		2011/10/28	Baseline	NWL
		2011/09/16	Baseline	NWL
	NL278	2011/11/02	Baseline	NWL
	NL279	2011/11/02	Baseline	NWL
	SL42	2011/11/02	Baseline	NWL
	SL43	2011/10/28	Baseline	NWL
		2011/11/05	Baseline	NWL
		2011/11/02	Baseline	NWL
	WL04	2011/10/17	Baseline	WL
		2011/10/10	Baseline	NWL
		2011/09/16	Baseline	NWL
	MUOF	2011/11/01	Baseline	NEL
	WL05	2011/11/01	Baseline	NEL
	WL11	2011/11/07	Baseline	NWL
		2011/10/17	Baseline	WL
	WL25	2011/09/23	Baseline	WL
		2011/09/16	Baseline	NWL
	VVII 00	2011/11/02	Baseline	WL
	WL88	2011/09/16	Baseline	NWL
	WL116	2011/09/16	Baseline	NWL
	WL124	2011/11/02	Baseline	NWL
	VAII 450	2011/10/28	Baseline	NWL
	WL156	2011/09/23	Baseline	WL
	WL162	2011/09/16	Baseline	NWL
	NL275	2011/09/23	Baseline	WL
		2011/11/02	Baseline	WL
	SL48	2011/10/17	Baseline	WL
		2011/09/23	Baseline	WL
	011100	2011/11/02	Baseline	WL
	CH108	2011/11/02	Baseline	WL
	CH157	2011/11/02	Baseline	WL
	NL206	2011/10/07	Baseline	WL
	WL28	2011/09/23	Baseline	WL
	14// 40	2011/11/02	Baseline	WL
	WL42	2011/09/05	Baseline	WL
	WL47	2011/10/17	Baseline	WL
	WL61	2011/10/17	Baseline	WL

Identification Number	Baseline Identification Number	Date (YYYY- MM-DD)	Sighting Number	Area Sighted
		2011/09/23	Baseline	WL
	WL66	2011/11/07	Baseline	WL
	14/1.60	2011/09/05	Baseline	WL
	WL68	2011/09/05	Baseline	WL
		2011/11/02	Baseline	WL
	WL72	2011/11/02	Baseline	WL
		2011/09/23	Baseline	WL
	WL87	2011/09/23	Baseline	WL
	14// 00	2011/11/02	Baseline	WL
	WL88	2011/09/16	Baseline	WL
	WL116	2011/09/16	Baseline	WL
	14/1.440	2011/11/02	Baseline	WL
	WL118	2011/11/02	Baseline	WL
	WL123	2011/11/02	Baseline	WL
	WL124	2011/11/02	Baseline	WL
	14// 400	2011/11/07	Baseline	WL
	WL128	2011/11/02	Baseline	WL
		2011/11/02	Baseline	WL
	WL131	2011/11/02	Baseline	WL
		2011/09/23	Baseline	WL
	WL132	2011/09/23	Baseline	WL
	WL137	2011/11/02	Baseline	WL
	WL138	2011/11/02	Baseline	WL
	WL144	2011/11/02	Baseline	WL
	WL145	2011/09/05	Baseline	WL
	WL146	2011/10/17	Baseline	WL
	WL153	2011/11/07	Baseline	WL
	WL157	2011/09/23	Baseline	WL
	WL158	2011/09/23	Baseline	WL
	14/1 400	2011/11/07	Baseline	WL
	WL163	2011/11/02	Baseline	WL
	WL165	2011/10/17	Baseline	WL
	WL167	2011/10/17	Baseline	WL
	WL170	2011/11/07	Baseline	WL
	WL171	2011/10/28	Baseline	WL

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		Action	n	
	ET Leader	IEC	ER	Contractor
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	1. Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Submit proposals for remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

Event	Action				
	ET Leader	IEC	ER	Contractor	
Limit Level					
	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.	

Event	Action				
	ET Leader	IEC	ER	Contractor	
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event / Action Plan for Construction Noise

Event		Action	1	
	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Water Quality

Event	Action				
	ET Leader	IEC	ER	Contractor	
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented.	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate. 	

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by two or more consecutiv e sampling days	 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; 4. Assess the effectiveness of the implemented mitigation measures.	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit	Repeat statistical data analysis	Check monitoring data	Attend the meeting to discuss	Inform the ER/SOR and
Level	to confirm findings; 2. Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, ER/SOR and Contractor of findings; 5. Check monitoring data; 6. Repeat review to ensure all the	submitted by ET and Contractor; 2. Discuss monitoring results and findings with the ET and the Contractor; 3. Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and	with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. 2. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. 3. Supervise the implementation	confirm notification of the non-compliance in writing; 2. Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. 4. Implement the agreed additional dolphin monitoring and/or any other mitigation

dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.		of additional monitoring and/or any other mitigation measures.	measures.
---	--	--	-----------

China Harbour Engineering Company Limited

Monthly Summary Waste Flow Table for <u>January / 2016</u> (year)

Project: Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works

Contract No.: HY/2010/02

110jeet . 1	long Rong Z	munai iviacao	Driage, Hong	Rong Doung	iary Crossing	5 r delitties re	cciamation	WOIKS		Contract 110	111/2010/02
		Actual Quantities of Inert C&D Materials Generated Monthly				A	Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-15	0.0000	0.0000	0.0000	0.0000	0.0000	52.4729	0.0000	0.2520	0.0000	0.8000	0.5200
Feb-15											
Mar-15											
Apr-15											
May-15											
Jun-15											
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	52.4729	0.0000	0.2520	0.0000	0.8000	0.5200
Jul-15											
Aug-15											
Sep-15											
Oct-15											
Nov-15											
Dec-15											
Total	0.0000	0.0000	0.0000	0.0000	0.0000	52.4729	0.0000	0.2520	0.0000	0.8000	0.5200

Notes:

- (1) Broken concrete for recycling into aggregates.
- (2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.
- (3) Use the conversion factor: 1 full load of dumping truck being equivalent to 6.5m³ by volume.
- (4) Chemical waste refer to spent "battery" and "oil with water".

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this month	Total no. recorded since project commencement
1-Hour TSP	Action	-	-
	Limit	-	-
24-Hour TSP	Action	-	-
	Limit	-	•
Noise	Action	-	•
	Limit	-	-
Water Quality	Action	-	2
	Limit	-	3
Dolphin Monitoring	Action	-	-
	Limit	-	-

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no.	Total no.
				in this	project
				month	commencement
Environmental					
complaints					
	-	-	-	-	35
Netitiontion of					
Notification of	-	-	-	-	2
summons					
Successful	_	_	_	_	2
Prosecutions	_	-	_	_	2