路政署
HIGHWAYS DEPARTMENT

Monthly EM\＆A Report No． 40 （January 2016）

16 February 2016

Revision 1

Main Contractor
坡园䢖槷工程（香港）有限公司
CHINA STATE CONSTRUCTION ENGINEERING（HONG KONG）LTD．

路政署
HIGHWAYS DEPARTMENT

Contents

Executive Summary

1 Introduction 1
1.1 Basic Project Information 1
1.2 Project Organisation 2
1.3 Construction Programme 2
1.4 Construction Works Undertaken During the Reporting Month． 2
2 Air Quality Monitoring． 4
2.1 Monitoring Requirements 4
2.2 Monitoring Equipment 4
2.3 Monitoring Locations 4
2.4 Monitoring Parameters，Frequency and Duration 5
2.5 Monitoring Methodology 5
2.6 Monitoring Schedule for the Reporting Month 7
2.7 Monitoring Results 7
3 Noise Monitoring 9
3.1
Monitoring Requirements 9
3.2 Monitoring Equipment 9
3.3 Monitoring Locations 9
3.4 Monitoring Parameters，Frequency and Duration 9
3.5 Monitoring Methodology 10
3.6 Monitoring Schedule for the Reporting Month 10
3.7 Monitoring Results 11
4 Water Quality Monitoring 12
4.14.24.3
4.45 Dolphin Monitoring16
5.1 Monitoring Requirements 16
5.2 Monitoring Methodology 16
5.3 Monitoring Results 18
5.4 Reference 20
路政署
HIGHWAYS DEPARTMENT
6 Environmental Site Inspection and Audit 21
6．1 Site Inspection 21
6.2 Advice on the Solid and Liquid Waste Management Status 23
6.3 Environmental Licenses and Permits 23
6.4 Implementation Status of Environmental Mitigation Measures 23
6.5 Summary of Exceedances of the Environmental Quality Performance Limit 23
6.6 Summary of Complaints，Notification of Summons and Successful Prosecution 24
7 Future Key Issues 25
7．1 Construction Programme for the Coming Months 25
7．2 Environmental Monitoring Schedule for the Coming Month 26
8 Conclusions 27
8.1 Conclusions 27

Figures

Figure $1.1 \quad$ Location of the Site
Figure 2．1 Environmental Monitoring Stations

Appendices

Appendix A Environmental Management Structure
Appendix B Construction Programme
Appendix C Calibration Certificates
Appendix D Monitoring Schedule
Appendix E Monitoring Data and Graphical Plots
Appendix F Event and Action Plan
Appendix G Wind Data
Appendix H Dolphin Monitoring Results
Appendix I Waste Flow Table
Appendix J Cumulative Statistics on Complaints
Appendix K Environmental Licenses and Permits
Appendix L Implementation Schedule of Environmental Mitigation Measures
Appendix M Record of＂Notification of Environmental Quality Limit Exceedances＂and Record of＂Notification of Summons and Prosecutions＂
Appendix N Location of Works Areas

Executive Summary

The Hong Kong－Zhuhai－Macao Bridge（HZMB）Hong Kong Link Road（HKLR）serves to connect the HZMB Main Bridge at the Hong Kong Special Administrative Region（HKSAR）Boundary and the HZMB Hong Kong Boundary Crossing Facilities（HKBCF）located at the north eastern waters of the Hong Kong International Airport（HKIA）．
The HKLR project has been separated into two contracts．They are Contract No．HY／2011／03 Hong Kong－Zhuhai－Macao Bridge Hong Kong Link Road－Section between Scenic Hill and Hong Kong Boundary Crossing Facilities（hereafter referred to as the Contract）and Contract No．HY／2011／09 Hong Kong－Zhuhai－Macao Bridge Hong Kong Link Road－Section between HKSAR Boundary and Scenic Hill．
China State Construction Engineering（Hong Kong）Ltd．was awarded by Highways Department as the Contractor to undertake the construction works of Contract No．HY／2011／03．The main works of the Contract include land tunnel at Scenic Hill，tunnel underneath Airport Road and Airport Express Line， reclamation and tunnel to the east coast of the Airport Island，at－grade road connecting to the HKBCF and highway works of the HKBCF within the Airport Island and in the vicinity of the HKLR reclamation． The Contract is part of the HKLR Project and HKBCF Project，these projects are considered to be ＂Designated Projects＂，under Schedule 2 of the Environmental Impact Assessment（EIA）Ordinance （Cap 499）and Environmental Impact Assessment（EIA）Reports（Register No．AEIAR－144／2009 and AEIAR－145／2009）were prepared for the Project．The current Environmental Permit（EP）EP－ 352／2009／D for HKLR and EP－353／2009／I for HKBCF were issued on 22 December 2014 and 17 July 2015，respectively．These documents are available through the EIA Ordinance Register．The construction phase of Contract was commenced on 17 October 2012.
BMT Asia Pacific Limited has been appointed by the Contractor to implement the Environmental Monitoring \＆Audit（EM\＆A）programme for the Contract in accordance with the Updated EM\＆A Manual for HKLR（Version 1．0）and will be providing environmental team services to the Contract．
This is the $40^{\text {th }}$ Monthly EM\＆A report for the Contract which summarizes the monitoring results and audit findings of the EM\＆A programme during the reporting period from 1 to 31 January 2016.

Environmental Monitoring and Audit Progress

The monthly EM\＆A programme was undertaken in accordance with the Updated EM\＆A Manual for HKLR（Version 1．0）．A summary of the monitoring activities during this reporting month is listed below：

1－hr TSP Monitoring	$5,11,15,21$ and 27January 2016
24－hr TSP Monitoring at station AMS5	$4,8,14,20$ and 26 January 2016
24－hr TSP Monitoring at station AMS6	$5,8,14,20$ and 26 January 2016
Noise Monitoring	$5,11,21$ and 27January 2016
Water Quality Monitoring	$1,4,6,8,11,13,15,18,20,22,25,27$ and 29 January
Chinese White Dolphin Monitoring	2016
Site Inspection	$8,11,13$ and 19 January 2016

Due to malfunctioning of timer of HVS at AMS6 on 4 January 2016，the 24－hr TSP monitoring at AMS6 on 4 January 2016 was cancelled．The timer was replaced and was used for 24 hr TSP monitoring on 5 January 2016.

Due to clash of schedule，the dolphin monitoring schedule was rescheduled from 4 January 2016 to 11 January 2016.

Due to weather condition／boat availability，the dolphin monitoring schedule was rescheduled from 12 January 2016 to 13 January 2016 and from 18 January 2016 to 19 January 2016.

Breaches of Action and Limit Levels

A summary of environmental exceedances for this reporting month is as follows：

Environmental Monitoring	Parameters	Action Level（AL）	Limit Level（LL）
	1 －hr TSP	2	0
	$24-h r ~ T S P ~$	0	0
Noise	Leq（30 min）	0	0
	Suspended solids level（SS）	0	0
	Turbidity level	0	0
	Dissolved oxygen level（DO）	0	0

Two Action Level exceedances 1 －hr TSP level at station AMS5 were recorded during the reporting month．

Complaint Log

There were no complaints received in relation to the environmental impacts during the reporting period．

Notifications of Summons and Prosecutions

There were no notifications of summons or prosecutions received during this reporting month．

Reporting Changes

This report has been developed in compliance with the reporting requirements for the subsequent EM\＆A reports as required by the Updated EM\＆A Manual for HKLR（Version 1．0）．

The proposal for the change of Action Level and Limit Level for suspended solid and turbidity was approved by EPD on 25 March 2013.

The revised Event and Action Plan for dolphin monitoring was approved by EPD on 6 May 2013.
The original monitoring station at IS（Mf）9（Coordinate－East：813273，North 818850）was observed inside the perimeter silt curtain of Contract HY／2010／02 on 1 July 2013，as such the original impact water quality monitoring location at IS（Mf）9 was temporarily shifted outside the silt curtain．As advised by the Contractor of HY／2010／02 in August 2013，the perimeter silt curtain was shifted to facilitate safe anchorage zone of construction barges／vessels until end of 2013 subject to construction progress． Therefore，water quality monitoring station IS（Mf）9 was shifted to 813226E and 818708N since 1 July 2013．According to the water quality monitoring team＇s observation on 24 March 2014，the original monitoring location of IS（Mf）9 was no longer enclosed by the perimeter silt curtain of Contract HY／2010／02．Thus，the impact water quality monitoring works at the original monitoring location of IS（Mf）9 has been resumed since 24 March 2014.

Transect lines $1,2,7,8,9$ and 11 for dolphin monitoring have been revised due to the obstruction of the permanent structures associated with the construction works of HKLR and the southern viaduct of TM－ CLKL，as well as provision of adequate buffer distance from the Airport Restricted Areas．The EPD issued a memo and confirmed that they had no objection on the revised transect lines on 19 August 2015.

Future Key Issues

The future key issues include potential noise，air quality，water quality and ecological impacts and waste management arising from the following construction activities to be undertaken in the upcoming month：
－Dismantling／trimming of Temporary 40mm Stone Platform for Construction of Seawall at Portion X；
－Filling Works behind Stone Platform at Portion X；
－Construction of Seawall at Portion X；
－Loading and Unloading Filling Material at Portion X；
－Pipe Piling at Portion X；
－Band Drains Installation at Portion X；
－Excavation and Lateral Support Works at Scenic Hill Tunnel（Cut \＆Cover Tunnel）at Portion X；
－Construction of Tunnel Box Structure at Scenic Hill Tunnel（Cut \＆Cover Tunnel）at Portion X
－Excavation Works for HKBCF to Airport Tunnel at Portion X；
－Sheet Piling Works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）at Portion X；
－Socket H－Piling Works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）at Portion X；
－Pipe Piling Works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）at Portion X；
－Jet Grouting works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）at Portion X；
－Works for Diversion of Airport Road；
－Utilities Detection at Airport Road／Airport Express Line／East Coast Road；
－Establishment of Site Access at Airport Road／Airport Express Line／East Coast Road；
－Canopy Pipe Drilling／Mined Tunnel Excavation／Box Jacking underneath Airport Road and Airport Express Line；
－Excavation and Lateral Support Works at shaft 3 extension north shaft at Kwo Lo Wan Road；
－Excavation and Lateral Support Works for HKBCF to Airport Tunnel West（Cut \＆Cover Tunnel） at Airport Road；
－Pipe piling works for HKBCF to Airport Tunnel West（Cut \＆Cover Tunnel）at Airport Road；
－Works for Diversion of Kwo Lo Wan Road；
－Utility Culvert Excavation at Portion Y；
－Sub－structure \＆superstructure works for Highway Operation and Maintenance Area Building at Portion Y；
－Excavation for Scenic Hill Tunnel at West Portal；and
－Superstructure works for Scenic Hill Tunnel West Portal Ventilation building at West Portal．

Introduction

1．1 Basic Project Information

1．1．1 The Hong Kong－Zhuhai－Macao Bridge（HZMB）Hong Kong Link Road（HKLR）serves to connect the HZMB Main Bridge at the Hong Kong Special Administrative Region（HKSAR）Boundary and the HZMB Hong Kong Boundary Crossing Facilities（HKBCF）located at the north eastern waters of the Hong Kong International Airport（HKIA）．

1．1．2 The HKLR project has been separated into two contracts．They are Contract No．HY／2011／03 Hong Kong－Zhuhai－Macao Bridge Hong Kong Link Road－Section between Scenic Hill and Hong Kong Boundary Crossing Facilities（hereafter referred to as the Contract）and Contract No． HY／2011／09 Hong Kong－Zhuhai－Macao Bridge Hong Kong Link Road－Section between HKSAR Boundary and Scenic Hill．

1．1．3 China State Construction Engineering（Hong Kong）Ltd．was awarded by Highways Department （HyD）as the Contractor to undertake the construction works of Contract No．HY／2011／03．The Contract is part of the HKLR Project and HKBCF Project，these projects are considered to be ＂Designated Projects＂，under Schedule 2 of the Environmental Impact Assessment（EIA） Ordinance（Cap 499）and Environmental Impact Assessment（EIA）Reports（Register No． AEIAR－144／2009 and AEIAR－145／2009）were prepared for the Project．The current Environmental Permit（EP）EP－352／2009／D for HKLR and EP－353／2009／I for HKBCF were issued on 22 December 2014 and 17 July 2015，respectively．These documents are available through the EIA Ordinance Register．The construction phase of Contract was commenced on 17 October 2012．Figure 1.1 shows the project site boundary．The works areas are shown in Appendix N ．

1．1．4 The Contract includes the following key aspects：
－New reclamation along the east coast of the approximately 23 hectares．
－Tunnel of Scenic Hill（Tunnel SHT）from Scenic Hill to the new reclamation，of approximately 1 km in length with three（3）lanes for the east bound carriageway heading to the HKBCF and four（4）lanes for the westbound carriageway heading to the HZMB Main Bridge．
－An abutment of the viaduct portion of the HKLR at the west portal of Tunnel SHT and associated road works at the west portal of Tunnel SHT．
－An at grade road on the new reclamation along the east coast of the HKIA to connect with the HKBCF，of approximately 1.6 km along dual 3－lane carriageway with hard shoulder for each bound．
－Road links between the HKBCF and the HKIA including new roads and the modification of existing roads at the HKIA，involving viaducts，at grade roads and a Tunnel HAT．
－A highway operation and maintenance area（HMA）located on the new reclamation， south of the Dragonair Headquarters Building，including the construction of buildings， connection roads and other associated facilities．
－Associated civil，structural，building，geotechnical，marine，environmental protection， landscaping，drainage and sewerage，tunnel and highway electrical and mechanical works，together with the installation of street lightings，traffic aids and sign gantries， water mains and fire hydrants，provision of facilities for installation of traffic control and surveillance system（TCSS），reprovisioning works of affected existing facilities， implementation of transplanting，compensatory planting and protection of existing trees， and implementation of an environmental monitoring and audit（EM\＆A）program．
1．1．5 This is the $40^{\text {th }}$ Monthly EM\＆A report for the Contract which summarizes the monitoring results and audit findings of the EM\＆A programme during the reporting period from 1 to 31 January 2016.

1．1．6 BMT Asia Pacific Limited has been appointed by the Contractor to implement the EM\＆A programme for the Contract in accordance with the Updated EM\＆A Manual for HKLR（Version

路政署
HIGHWAYS DEPARTMENT

1．0）for HKLR and will be providing environmental team services to the Contract．Ramboll Environ Hong Kong Ltd．was employed by HyD as the Independent Environmental Checker （IEC）and Environmental Project Office（ENPO）for the Project．The project organization with regard to the environmental works is as follows．

1.2
 Project Organisation

1．2．1 The project organization structure and lines of communication with respect to the on－site environmental management structure is shown in Appendix A．The key personnel contact names and numbers are summarized in Table 1．1．

Table 1．1 Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Supervising Officer＇s Representative （Ove Arup \＆Partners Hong Kong Limited）	（Chief Resident Engineer，CRE）	Robert Antony Evans	39680801	21091882
Environmental Project Office／Independent Environmental Checker （Ramboll Environ Hong Kong Limited）	Environmental Project Office Leader	Y．H．Hui	34652888	34652899
	Independent Environmental Checker	Antony Wong	34652888	34652899
Contractor （China State Construction Engineering（Hong Kong） Ltd）	Project Manager	S．Y．Tse	39687002	21092588
	Environmental Officer	Federick Wong	39687117	21092588
Environmental Team （BMT Asia Pacific）	Environmental Team Leader	Claudine Lee	22419847	28153377
24 hours complaint hotline	－－－	－－－	56995730	－－－

1．3 Construction Programme

1．3．1 A copy of the Contractor＇s construction programme is provided in Appendix B．

1．4 Construction Works Undertaken During the Reporting Month

1．4．1 A summary of the construction activities undertaken during this reporting month is shown in Table 1.2

Table 1．2 Construction Activities During Reporting Month

Description of Activities	Site Area
Dismantling／trimming of temporary 40 mm stone platform for construction of seawall	Portion X
Filling works behind stone platform	Portion X
Construction of seawall	Portion X
Loading and unloading of filling materials	Portion X
Band drains installation	Portion X
Excavation and lateral support works for Scenic Hill Tunnel（Cut \＆Cover Tunnel）	Portion X
Socket H－Piling work for Scenic Hill Tunnel（Cut \＆ Cover Tunnel）	Portion X
Construction of tunnel box structure at Scenic Hill Tunnel（Cut \＆Cover Tunnel）	Portion X
Pipe piling works for HKBCF to Airport Tunnel East （Cut \＆Cover Tunnel）	Portion X
Excavation for HKBCF to Airport Tunnel	Portion X
Sheet Piling Works for HKBCF to Airport Tunnel East （Cut \＆Cover Tunnel）	Portion X
Socket H－Piling Works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）	Portion X
Superstructure works for Scenic Hill Tunnel West Portal Ventilation building	West Portal
Pipe piling works for HKBCF to Airport Tunnel West （Cut \＆Cover Tunnel）	Airport Road
Works for diversion	Kwo Lo Wan Road and Airport Road
Utilities detection	Airport Road／Airport Express Line／East Coast Road
Establishment of Site Access	Airport Road／Airport Express Line／East Coast Road
Canopy pipe drilling／Box Jacking underneath Airport Express Line	Airport Express Line
Pipe roofing drilling／Mined Tunnel excavation underneath Airport Road	Airport Road
Excavation and lateral support works at shaft 3 extension north shaft	Kwo Lo Wan Road
Excavation and Lateral Support Works for HKBCF to Airport Tunnel West（Cut \＆Cover Tunnel）	Airport Road
Utility culvert excavation	Portion Y
Sub－structure \＆superstructure works for Highway Operation and Maintenance Area Building	Portion Y

路政署
HIGHWAYS DEPARTMENT

2 Air Quality Monitoring

2．1 Monitoring Requirements

2．1．1 In accordance with the Contract Specific EM\＆A Manual，baseline 1－hour and 24－hour TSP levels at two air quality monitoring stations were established．Impact 1－hour TSP monitoring was conducted for at least three times every 6 days，while impact 24 －hour TSP monitoring was carried out for at least once every 6 days．The Action and Limit Level for 1 －hr TSP and 24－hr TSP are provided in Table 2.1 and Table 2．2，respectively．

Table 2．1 Action and Limit Levels for 1－hour TSP

Monitoring Station	Action Level， $\boldsymbol{\mu \mathrm { g } / \mathbf { m } ^ { \mathbf { 3 } }}$	Limit Level， $\boldsymbol{\mu \mathrm { g } / \mathbf { m } ^ { \mathbf { 3 } }}$
AMS 5－Ma Wan Chung Village（Tung Chung）	352	
AMS 6－Dragonair／CNAC （Group）Building（HKIA）	360	500

Table 2．2 Action and Limit Levels for 24－hour TSP

Monitoring Station	Action Level， $\boldsymbol{\mu \mathrm { g } / \mathbf { m } ^ { \mathbf { 3 } }}$	Limit Level， $\boldsymbol{\mu \mathrm { g } / \mathbf { m } ^ { \mathbf { 3 } }}$
AMS 5－Ma Wan Chung Village（Tung Chung）	164	260
AMS 6－Dragonair／CNAC （Group）Building（HKIA）	173	260

2．2 Monitoring Equipment

2．2．1 24－hour TSP air quality monitoring was performed using High Volume Sampler（HVS）located at each designated monitoring station．The HVS meets all the requirements of the Contract Specific EM\＆A Manual．Portable direct reading dust meters were used to carry out the 1 －hour TSP monitoring．Brand and model of the equipment is given in Table 2．3．
Table 2．3 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter （1－hour TSP）	Sibata Digital Dust Monitor（Model No．LD－3B）
High Volume Sampler （24－hour TSP）	Tisch Environmental Mass Flow Controlled Total Suspended Particulate（TSP）High Volume Air Sampler（Model No．TE－ $5170)$

2．3 Monitoring Locations

2．3．1 Monitoring locations AMS5 and AMS6 were set up at the proposed locations in accordance with Contract Specific EM\＆A Manual．

2．3．2 Figure 2.1 shows the locations of monitoring stations．Table 2.4 describes the details of the monitoring stations．

Table 2．4 Locations of Impact Air Quality Monitoring Stations

Monitoring Station	Location
AMS5	Ma Wan Chung Village（Tung Chung）
AMS6	Dragonair／CNAC（Group）Building（HKIA）

2．4 Monitoring Parameters，Frequency and Duration

2．4．1 Table 2.5 summarizes the monitoring parameters，frequency and duration of impact TSP monitoring．
Table 2．5 Air Quality Monitoring Parameters，Frequency and Duration

Parameter	Frequency and Duration
1 －hour TSP	Three times every 6 days while the highest dust impact was expected
24 －hour TSP	Once every 6 days

2．5 Monitoring Methodology

2．5．1 24－hour TSP Monitoring

（a）The HVS was installed in the vicinity of the air sensitive receivers．The following criteria were considered in the installation of the HVS．
（i）A horizontal platform with appropriate support to secure the sampler against gusty wind was provided．
（ii）The distance between the HVS and any obstacles，such as buildings，was at least twice the height that the obstacle protrudes above the HVS．
（iii）A minimum of 2 meters separation from walls，parapets and penthouse for rooftop sampler was provided．
（iv）No furnace or incinerator flues are nearby．
（v）Airflow around the sampler was unrestricted．
（vi）Permission was obtained to set up the samplers and access to the monitoring stations．
（vii）A secured supply of electricity was obtained to operate the samplers．
（viii）The sampler was located more than 20 meters from any dripline．
（ix）Any wire fence and gate，required to protect the sampler，did not obstruct the monitoring process．
（x）Flow control accuracy was kept within $\pm 2.5 \%$ deviation over 24 －hour sampling period．
（b）Preparation of Filter Papers
（i）Glass fibre filters，G810 were labelled and sufficient filters that were clean and without pinholes were selected．
（ii）All filters were equilibrated in the conditioning environment for 24 hours before weighing．The conditioning environment temperature was around $25{ }^{\circ} \mathrm{C}$ and not variable by more than $\pm 3{ }^{\circ} \mathrm{C}$ ；the relative humidity（ RH ）was $<50 \%$ and not variable by more than $\pm 5 \%$ ．A convenient working RH was 40% ．
（iii）All filter papers were prepared and analysed by ALS Technichem（HK）Pty Ltd．， which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes．
（c）Field Monitoring
（i）The power supply was checked to ensure the HVS works properly．
（ii）The filter holder and the area surrounding the filter were cleaned．
（iii）The filter holder was removed by loosening the four bolts and a new filter，with stamped number upward，on a supporting screen was aligned carefully．
（iv）The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter．
（v）The swing bolts were fastened to hold the filter holder down to the frame．The pressure applied was sufficient to avoid air leakage at the edges．
（vi）Then the shelter lid was closed and was secured with the aluminium strip．
（vii）The HVS was warmed－up for about 5 minutes to establish run－temperature conditions．
（viii）A new flow rate record sheet was set into the flow recorder．
（ix）On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around $1.1 \mathrm{~m}^{3} / \mathrm{min}$ ，and complied with the range specified in the Updated EM\＆A Manual for HKLR （Version 1．0）（i．e． $0.6-1.7 \mathrm{~m}^{3} / \mathrm{min}$ ）．
（x）The programmable digital timer was set for a sampling period of 24 hours，and the starting time，weather condition and the filter number were recorded．
（xi）The initial elapsed time was recorded．
（xii）At the end of sampling，on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded．
（xiii）The final elapsed time was recorded．
（xiv）The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact．
（xv）It was then placed in a clean plastic envelope and sealed．
（xvi）All monitoring information was recorded on a standard data sheet．
（xvii）Filters were then sent to ALS Technichem（HK）Pty Ltd．for analysis．
（d）Maintenance and Calibration
（i）The HVS and its accessories were maintained in good working condition，such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply．
（ii）5－point calibration of the HVS was conducted using TE－5025A Calibration Kit prior to the commencement of baseline monitoring．Bi－monthly 5 －point calibration of the HVS will be carried out during impact monitoring．
（iii）Calibration certificate of the HVSs are provided in Appendix C．
2．5．2 1－hour TSP Monitoring
（a）Measuring Procedures
The measuring procedures of the 1 －hour dust meter were in accordance with the Manufacturer＇s Instruction Manual as follows：－
（i）Turn the power on．
（ii）Close the air collecting opening cover．
（iii）Push the＂TIME SETTING＂switch to［BG］．
（iv）Push＂START／STOP＂switch to perform background measurement for 6 seconds．
（v）Turn the knob at SENSI ADJ position to insert the light scattering plate．
（vi）Leave the equipment for 1 minute upon＂SPAN CHECK＂is indicated in the display．
（vii）Push＂START／STOP＂switch to perform automatic sensitivity adjustment．This measurement takes 1 minute．
（viii）Pull out the knob and return it to MEASURE position．
（ix）Push the＂TIME SETTING＂switch the time set in the display to 3 hours．
（x）Lower down the air collection opening cover．
（xi）Push＂START／STOP＂switch to start measurement．
（b）Maintenance and Calibration
（i）The 1－hour TSP meter was calibrated at 1－year intervals against a Tisch Environmental Mass Flow Controlled Total Suspended Particulate（TSP）High Volume Air Sampler．Calibration certificates of the Laser Dust Monitors are provided in Appendix C．

2．6 Monitoring Schedule for the Reporting Month

2．6．1 The schedule for air quality monitoring January 2016 is provided in Appendix \mathbf{D} ．

2．7 Monitoring Results

2．7．1 The monitoring results for 1－hour TSP and 24－hour TSP are summarized in Tables 2.6 and 2.7 respectively．Detailed impact air quality monitoring results and relevant graphical plots are presented in Appendix E．

Table 2．6 Summary of 1－hour TSP Monitoring Results During the Reporting Month

Monitoring Station	Average $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Range $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$
AMS5	174	$81-445$	352	500
AMS6	158	$76-291$	360	500

Table 2．7 Summary of 24－hour TSP Monitoring Results During the Reporting Month

Monitoring Station	Average $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Range $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level $\left(\mu \mathrm{g} / \mathbf{m}^{3}\right)$	Limit Level $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
AMS5	43	$19-65$	164	260
AMS6	59	$28-94$	173	260

2．7．2 Two Action Level exceedances 1－hr TSP level were recorded at AMS5 on 21 January 2016 during the reporting month．It was noted that the Contractor had implemented dust control measures throughout the construction phase．No fugitive dust emission was observed by ET on 21 January 2016 at construction site near monitoring station AMS5．As such，the exceedances recorded at monitoring station AMS5 is unlikely to be related to the Contract．In
this case，no immediate actions are required．However，the Contractor is reminded to continuously implement the dust control measures throughout the construction phase． Records of＂Notification of Environmental Quality Limit Exceedances＂are provided in Appendix M．

2．7．3 No Limit Level exceedances of 1－hr TSP were recorded at AMS5 during the reporting month． No Action and Limit Level exceedances of $24-\mathrm{hr}$ TSP were recorded at AMS5 during the reporting month．

2．7．4 No Action and Limit Level exceedances of 1－hr TSP and 24－hr TSP were recorded at AMS6 during the reporting month．

2．7．5 The event action plan is annexed in Appendix F．
2．7．6 The wind data obtained from the on－site weather station during the reporting month is shown in Appendix G．

路政署
HIGHWAYS DEPARTMENT

3 Noise Monitoring

3．1 Monitoring Requirements

3．1．1 In accordance with the Contract Specific EM\＆A Manual，impact noise monitoring was conducted for at least once per week during the construction phase of the Project．The Action and Limit level of the noise monitoring is provided in Table 3．1．

Table 3．1 Action and Limit Levels for Noise during Construction Period

Monitoring Station	Time Period	Action Level	Limit Level
NMS5－Ma Wan Chung Village（Ma Wan Chung Resident Association）（Tung Chung）	0700－1900 hours on normal weekdays	When one documented complaint is received	$75 \mathrm{~dB}(\mathrm{~A})$

3．2 Monitoring Equipment

3．2．1 Noise monitoring was performed using sound level meters at each designated monitoring station．The sound level meters deployed comply with the International Electrotechnical Commission Publications（IEC）651：1979（Type 1）and 804：1985（Type 1）specifications． Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level．Brand and model of the equipment are given in Table 3．2．

Table 3．2 Noise Monitoring Equipment

Equipment	Brand and Model
Integrated Sound Level Meter	B\＆K 2238
Acoustic Calibrator	B\＆K 4231

3．3 Monitoring Locations
3．3．1 Monitoring location NMS5 was set up at the proposed locations in accordance with Contract Specific EM\＆A Manual．

3．3．2 Figure 2.1 shows the locations of monitoring stations．Table 3.3 describes the details of the monitoring stations．

Table 3.3 Locations of Impact Noise Monitoring Stations

Monitoring Station	Location
NMS5	Ma Wan Chung Village（Ma Wan Chung Resident
Association）（Tung Chung）	

3．4 Monitoring Parameters，Frequency and Duration

3．4．1 Table 3.4 summarizes the monitoring parameters，frequency and duration of impact noise monitoring．

路政署
HIGHWAYS DEPARTMENT

Table 3．4 Noise Monitoring Parameters，Frequency and Duration

Parameter	Frequency and Duration
30－mins measurement at each monitoring station between 0700 and 1900 on normal weekdays（Monday to Saturday）．	At least once per week
L_{10} and L_{90} would be recorded．	

3．5 Monitoring Methodology

3．5．1 Monitoring Procedure

（a）The sound level meter was set on a tripod at a height of 1.2 m above the podium for free－field measurements at NMS5．A correction of $+3 \mathrm{~dB}(\mathrm{~A})$ shall be made to the free field measurements．
（b）The battery condition was checked to ensure the correct functioning of the meter．
（c）Parameters such as frequency weighting，the time weighting and the measurement time were set as follows：－
（i）frequency weighting：A
（ii）time weighting：Fast
（iii）time measurement：Leq（30－minutes）during non－restricted hours i．e．07：00－1900 on normal weekdays
（e）Prior to and after each noise measurement，the meter was calibrated using the acoustic calibrator for $94.0 \mathrm{~dB}(\mathrm{~A})$ at 1000 Hz ．If the difference in the calibration level before and after measurement was more than $1.0 \mathrm{~dB}(\mathrm{~A})$ ，the measurement would be considered invalid and repeat of noise measurement would be required after re－ calibration or repair of the equipment．
（f）During the monitoring period，the $L_{e q}, L_{10}$ and L_{90} were recorded．In addition，site conditions and noise sources were recorded on a standard record sheet．
（g）Noise measurement was paused during periods of high intrusive noise（e．g．dog barking，helicopter noise）if possible．Observations were recorded when intrusive noise was unavoidable．
（h）Noise monitoring was cancelled in the presence of fog，rain，wind with a steady speed exceeding $5 \mathrm{~m} / \mathrm{s}$ ，or wind with gusts exceeding $10 \mathrm{~m} / \mathrm{s}$ ．The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m / s ．

3．5．2 Maintenance and Calibration
（a）The microphone head of the sound level meter was cleaned with soft cloth at regular intervals
（b）The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals．
（c）Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix C．

3．6 Monitoring Schedule for the Reporting Month

3．6．1 The schedule for construction noise monitoring in January 2016 is provided in Appendix D．

3．7 Monitoring Results

3．7．1 The monitoring results for construction noise are summarized in Table 3.5 and the monitoring results and relevant graphical plots are provided in Appendix E．
Table 3．5 Summary of Construction Noise Monitoring Results During the Reporting Month

Monitoring Station	Average $L_{\text {eq（ } 30 \text { mins }}$, $\mathrm{dB}(A)$	Range of $L_{\text {eq（ } 30 \text { mins }), ~}$ $\mathrm{~dB}(A)$	Limit Level $L_{\text {eq（ } 30 \text { mins }),}$ $\mathrm{dB}(A)$
NMS5	61	$58-65$	75

＊A correction factor of $+3 \mathrm{~dB}(\mathrm{~A})$ from free field to facade measurement was included．
3．7．2 There were no Action and Limit Level exceedances for noise during daytime on normal weekdays of the reporting month．
3．7．3 Major noise sources during the noise monitoring included construction activities of the Contract， nearby traffic and insect noise．
3．7．4 The event action plan is annexed in Appendix \mathbf{F} ．

路政署
HIGHWAYS DEPARTMENT

4 Water Quality Monitoring

4．1 Monitoring Requirements

4．1．1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality is detected，and that timely action is taken to rectify the situation．For impact water quality monitoring，measurements were taken in accordance with the Contract Specific EM\＆A Manual． Table 4.1 shows the established Action／Limit Levels for the environmental monitoring works． The ET proposed to amend the Acton Level and Limit Level for turbidity and suspended solid and EPD approved ET＇s proposal on 25 March 2013．Therefore，Action Level and Limit Level for the Contract have been changed since 25 March 2013.

4．1．2 The original and revised Action Level and Limit Level for turbidity and suspended solid are shown in Table 4．1．

Table 4．1 Action and Limit Levels for Water Quality

Parameter（unit）	Water Depth	Action Level	Limit Level
Dissolved Oxygen （mg／L）（surface， middle and bottom）	Surface and Middle	5.0	4.2 except 5 for Fish Culture Zone
	Bottom	4.7	3.6
Turbidity（NTU）	Depth average	27.5 or 120% of upstream control station＇s turbidity at the same tide of the same day； The action level has been amended to ＂ 27.5 and 120% of upstream control station＇s turbidity at the same tide of the same day＂since 25 March 2013.	47.0 or 130% of turbidity at the upstream control station at the same tide of same day； The limit level has been amended to＂47．0 and 130% of turbidity at the upstream control station at the same tide of same day＂since 25 March 2013.
Suspended Solid （SS）（mg／L）	Depth average	23.5 or 120% of upstream control station＇s SS at the same tide of the same day； The action level has been amended to ＂23．5 and 120\％of upstream control station＇s SS at the same tide of the same day＂since 25 March 2013.	34.4 or 130% of SS at the upstream control station at the same tide of same day and $10 \mathrm{mg} / \mathrm{L}$ for Water Services Department Seawater Intakes； The limit level has been amended to＂34．4 and 130% of SS at the upstream control station at the same tide of same day and $10 \mathrm{mg} / \mathrm{L}$ for Water Services Department Seawater Intakes＂since 25 March 2013

Notes：
（1）Depth－averaged is calculated by taking the arithmetic means of reading of all three depths．
（2）For DO，non－compliance of the water quality limit occurs when monitoring result is lower that the limit．
（3）For SS \＆turbidity non－compliance of the water quality limits occur when monitoring result is higher

路 政 署
HIGHWAYS DEPARTMENT
than the limits．
（4）The change to the Action and limit Levels for Water Quality Monitoring for the EM\＆A works was approved by EPD on 25 March 2013.

4．2 Monitoring Equipment

4．2．1 Table 4.2 summarises the equipment used in the impact water quality monitoring programme．
Table 4.2 Water Quality Monitoring Equipment

Equipment	Brand and Model
DO and Temperature Meter，Salinity Meter，Turbidimeter and pH Meter	YSI Model 6820 V2－M，650
Positioning Equipment	DGPS－KODEN ：KGP913MKII， KBG3
Water Depth Detector	Layin Associates：SM－5 \＆SM5A
Water Sampler	Wildlife Supply Company ：5487－10

4．3 Monitoring Parameters，Frequency and Duration

4．3．1 Table 4.3 summarises the monitoring parameters，frequency and monitoring depths of impact water quality monitoring as required in the Contract Specific EM\＆A Manual．
Table 4．3 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter，unit	Frequency	No．of depth
Impact Stations： IS5，IS（Mf）6，IS7，IS8， IS（Mf）9 \＆IS10， Control／Far Field Stations： CS2 \＆CS（Mf）5， Sensitive Receiver Stations： SR3，SR4，SR5， SR10A \＆SR10B	－Depth，m －Temperature，${ }^{\circ} \mathrm{C}$ －Salinity，ppt －Dissolved Oxygen （DO），mg／L －DO Saturation，\％ －Turbidity，NTU －pH －Suspended Solids （SS），mg／L	Three times per week during mid－ ebb and mid－ flood tides （within ± 1.75 hour of the predicted time）	3 （ 1 m below water surface，mid－depth and 1 m above sea bed， except where the water depth is less than 6 m ， in which case the mid－ depth station may be omitted．Should the water depth be less than 3 m ，only the mid－ depth station will be monitored）．

4．4 Monitoring Locations

4．4．1 In accordance with the Contract Specific EM\＆A Manual，thirteen stations（6 Impact Stations， 5 Sensitive Receiver Stations and 2 Control Stations）were designated for impact water quality monitoring．The six Impact Stations（IS）were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts，the five Sensitive Receiver Stations（SR）were chosen as they are close to the key sensitive receives and the two Control Stations（CS）were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project／ambient water quality conditions．
4．4．2 The locations of these monitoring stations are summarized in Table 4.4 and shown in Figure 2．1．

路政署
HIGHWAYS DEPARTMENT

Table 4．4 Impact Water Quality Monitoring Stations

Monitoring Stations	Description	Coordinates	
		Easting	Northing
IS5	Impact Station（Close to HKLR construction site）	811579	817106
IS（Mf）6	Impact Station（Close to HKLR construction site）	812101	817873
IS7	Impact Station（Close to HKBCF construction site）	812244	818777
IS8	Impact Station（Close to HKBCF construction site）	814251	818412
IS（M9）9	Impact Station（Close to HKBCF construction site）	813273	818850
IS10	Impact Station（Close to HKBCF construction site）	812577	820670
SR3	Sensitive receivers（San Tau SSSI）	810525	816456
SR4	Sensitive receivers（Tai Ho Inlet）	814760	817867
SR5	Sensitive receivers（Artificial Reef In NE Airport）	811489	820455
SR10A	Sensitive receivers（Ma Wan Fish Culture Zone）	823741	823495
SR10B	Sensitive receivers（Ma Wan Fish Culture Zone）	823686	823213
CS2	Control Station（Mid－Ebb）	805849	818780
CS（Mf）5	Control Station（Mid－Flood）	817990	821129

4．5 Monitoring Methodology

4．5．1 Instrumentation
（a）The in－situ water quality parameters including dissolved oxygen，temperature，salinity and turbidity，pH were measured by multi－parameter meters．
4．5．2 Operating／Analytical Procedures
（a）Digital Differential Global Positioning Systems（DGPS）were used to ensure that the correct location was selected prior to sample collection．
（b）Portable，battery－operated echo sounders were used for the determination of water depth at each designated monitoring station．
（c）All in－situ measurements were taken at 3 water depths， 1 m below water surface，mid－ depth and 1 m above sea bed，except where the water depth was less than 6 m ，in which case the mid－depth station was omitted．Should the water depth be less than 3 m ，only the mid－depth station was monitored．
（d）At each measurement／sampling depth，two consecutive in－situ monitoring（DO concentration and saturation，temperature，turbidity， pH ，salinity）and water sample for SS．The probes were retrieved out of the water after the first measurement and then re－deployed for the second measurement．Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading，the reading was discarded and further readings were taken．
（e）Duplicate samples from each independent sampling event were collected for SS measurement．Water samples were collected using the water samplers and the samples were stored in high－density polythene bottles．Water samples collected were well－mixed in the water sampler prior to pre－rinsing and transferring to sample bottles． Sample bottles were pre－rinsed with the same water samples．The sample bottles were then be packed in cool－boxes（cooled at $4^{\circ} \mathrm{C}$ without being frozen），and delivered to ALS Technichem（HK）Pty Ltd．for the analysis of suspended solids concentrations． The laboratory determination work would be started within 24 hours after collection of
the water samples．ALS Technichem（HK）Pty Ltd．is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes．
（f）The analysis method and detection limit for SS is shown in Table 4．5．
Table 4．5 Laboratory Analysis for Suspended Solids

Parameters	Instrumentation	Analytical Method	Detection Limit
Suspended Solid（SS）	Weighting	APHA 2540－D	$0.5 \mathrm{mg} / \mathrm{L}$

（g）Other relevant data were recorded，including monitoring location／position，time，water depth，tidal stages，weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information．
4．5．3 Maintenance and Calibrations
（a）All in situ monitoring instruments would be calibrated by ALS Technichem（HK）Pty Ltd． before use and at 3－monthly intervals throughout all stages of the water quality monitoring programme．The procedures of performance check of sonde and testing results are provided in Appendix C．

4．6 Monitoring Schedule for the Reporting Month

4．6．1 The schedule for impact water quality monitoring in January 2016 is provided in Appendix D．

4．7 Monitoring Results

4．7．1 Impact water quality monitoring was conducted at all designated monitoring stations during the reporting month．Impact water quality monitoring results and relevant graphical plots are provided in Appendix E．

4．7．2 For marine water quality monitoring，no Action Level and Limit Level exceedances of turbidity level，dissolved oxygen level and suspended solid level were recorded during the reporting month．

4．7．3 Water quality impact sources during water quality monitoring were the construction activities of the Contract，nearby construction activities by other parties and nearby operating vessels by other parties．

4．7．4 The event action plan is annexed in Appendix F．

5 Dolphin Monitoring

5．1 Monitoring Requirements

5．1．1 Impact dolphin monitoring is required to be conducted by a qualified dolphin specialist team to evaluate whether there have been any effects on the dolphins．

5．1．2 The Action Level and Limit Level for dolphin monitoring are shown in Table 5．1．
Table 5．1 Action and Limit Levels for Dolphin Monitoring

	North Lantau Social Cluster	
	NEL	NWL
Action Level	STG $<4.2 \& A N I<15.5$	STG $<6.9 \& A N I<31.3$
Limit Level	$(S T G<2.4 \& A N I<8.9)$ and $(S T G<3.9 \& A N I<17.9)$	

Remarks：
1．STG means quarterly encounter rate of number of dolphin sightings．
2．ANI means quarterly encounter rate of total number of dolphins．
3．For North Lantau Social Cluster，AL will be trigger if either NEL or NWL fall below the criteria；LL will be triggered if both NEL and NWL fall below the criteria．

5．1．3 The revised Event and Action Plan for dolphin Monitoring was approved by EPD in 6 May 2013. The revised Event and Action Plan is annexed in Appendix F．

5．2 Monitoring Methodology

Vessel－based Line－transect Survey

5．2．1 According to the requirements of the Updated EM\＆A Manual for HKLR（Version 1．0），dolphin monitoring programme should cover all transect lines in NEL and NWL survey areas（see Figure 1 of Appendix H）twice per month．The co－ordinates of all transect lines are shown in Table 5．2．The coordinates of several starting points have been revised due to the obstruction of the permanent structures associated with the construction works of HKLR and the southern viaduct of TM－CLKL，as well as provision of adequate buffer distance from the Airport Restricted Areas．The EPD issued a memo and confirmed that they had no objection on the revised transect lines on 19 August 2015，and the revised coordinates are in red and marked with an asterisk in Table 5．2．

Table 5．2 Co－ordinates of Transect Lines

Line No．		Easting	Northing	Line No．		Easting	Northing	
1	Start Point	804671	815456^{\star}		13	Start Point	816506	819480
1	End Point	804671	831404		13	End Point	816506	824859
2	Start Point	805475	815913^{\star}		14	Start Point	817537	820220
2	End Point	805477	826654		14	End Point	817537	824613
3	Start Point	806464	819435		15	Start Point	818568	820735
3	End Point	806464	822911		15	End Point	818568	824433
4	Start Point	807518	819771		16	Start Point	819532	821420
4	End Point	807518	829230		16	End Point	819532	824209
5	Start Point	808504	820220		17	Start Point	820451	822125
5	End Point	808504	828602		17	End Point	820451	823671

路政署
HIGHWAYS DEPARTMENT

Line No．		Easting	Northing		Line No．		Easting	Northing
6	Start Point	809490	820466		18	Start Point	821504	822371
6	End Point	809490	825352		18	End Point	821504	823761
7	Start Point	810499	820880^{*}		19	Start Point	822513	823268
7	End Point	810499	824613		19	End Point	822513	824321
8	Start Point	811508	821123^{*}		20	Start Point	823477	823402
8	End Point	811508	824254		20	End Point	823477	824613
9	Start Point	812516	821303^{*}		21	Start Point	805476	827081
9	End Point	812516	824254		21	End Point	805476	830562
10	Start Point	813525	820872		22	Start Point	806464	824033
10	End Point	813525	824657		22	End Point	806464	829598
11	Start Point	814556	818853^{*}		23	Start Point	814559	821739
11	End Point	814556	820992		23	End Point	814559	824768
12	Start Point	815542	818807					
12	End Point	815542	824882					

Note：
Co－ordinates in red and marked with asterisk are revised co－ordinates of transect line．

5．2．2 The survey team used standard line－transect methods（Buckland et al．2001）to conduct the systematic vessel surveys，and followed the same technique of data collection that has been adopted over the last 18 years of marine mammal monitoring surveys in Hong Kong developed by HKCRP（see Hung 2015）．For each monitoring vessel survey，a $15-\mathrm{m}$ inboard vessel with an open upper deck（about 4.5 m above water surface）was used to make observations from the flying bridge area．

5．2．3 Two experienced observers（a data recorder and a primary observer）made up the on－effort survey team，and the survey vessel transited different transect lines at a constant speed of 13－ 15 km per hour．The data recorder searched with unaided eyes and filled out the datasheets， while the primary observer searched for dolphins and porpoises continuously through 7×50 Fujinon marine binoculars．Both observers searched the sea ahead of the vessel，between 270° and 90°（in relation to the bow，which is defined as 0° ）．One to two additional experienced observers were available on the boat to work in shift（i．e．rotate every 30 minutes）in order to minimize fatigue of the survey team members．All observers were experienced in small cetacean survey techniques and identifying local cetacean species．

5．2．4 During on－effort survey periods，the survey team recorded effort data including time，position （latitude and longitude），weather conditions（Beaufort sea state and visibility），and distance travelled in each series（a continuous period of search effort）with the assistance of a handheld GPS（Garmin eTrex Legend）．

5．2．5 Data including time，position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review．

5．2．6 When dolphins were sighted，the survey team would end the survey effort，and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel，as well as the sighting time and position．Then the research vessel was diverted from its course to approach the animals for species identification，group size estimation，assessment of group composition，and behavioural observations．The perpendicular distance（PSD）of the dolphin group to the transect line was later calculated from the initial sighting distance and angle．
5．2．7 Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines（as indicated in Figure 1 of Appendix H）was labeled as＂primary＂survey effort， while the survey effort conducted along the connecting lines between parallel lines was labeled
as＂secondary＂survey effort．According to HKCRP long－term dolphin monitoring data， encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in NEL and NWL survey areas．Therefore，both primary and secondary survey effort were presented as on－effort survey effort in this report．

5．2．8 Encounter rates of Chinese White Dolphins（number of on－effort sightings per 100 km of survey effort and number of dolphins from all on－effort sightings per 100 km of survey effort）were calculated in NEL and NWL survey areas in relation to the amount of survey effort conducted during each month of monitoring survey．Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis．Dolphin encounter rates were calculated using primary survey effort alone，as well as the combined survey effort from both primary and secondary lines．

Photo－identification Work

5．2．9 When a group of Chinese White Dolphins were sighted during the line－transect survey，the survey team would end effort and approach the group slowly from the side and behind to take photographs of them．Every attempt was made to photograph every dolphin in the group，and even photograph both sides of the dolphins，since the colouration and markings on both sides may not be symmetrical．

5．2．10 A professional digital cameras（Canon EOS 7D and 60D models），equipped with long telephoto lenses（100－400 mm zoom），were available on board for researchers to take sharp，close－up photographs of dolphins as they surfaced．The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer．

5．2．11 All digital images taken in the field were first examined，and those containing potentially identifiable individuals were sorted out．These photographs would then be examined in greater detail，and were carefully compared to the existing Chinese White Dolphin photo－identification catalogue maintained by HKCRP since 1995.

5．2．12 Chinese White Dolphins can be identified by their natural markings，such as nicks，cuts，scars and deformities on their dorsal fin and body，and their unique spotting patterns were also used as secondary identifying features（Jefferson 2000）．
5．2．13 All photographs of each individual were then compiled and arranged in chronological order，with data including the date and location first identified（initial sighting），re－sightings，associated dolphins，distinctive features，and age classes entered into a computer database．Detailed information on all identified individuals will be further presented as an appendix in quarterly EM\＆A reports．

5．3 Monitoring Results

Vessel－based Line－transect Survey

5．3．1 During the month of January 2016，two sets of systematic line－transect vessel surveys were conducted on the $8^{\text {th }}, 11^{\text {th }}, 13^{\text {th }}$ and $19^{\text {th }}$ to cover all transect lines in NWL and NEL survey areas twice．The survey routes of each survey day are presented in Figures 2 to 5 of Appendix H．

5．3．2 From these surveys，a total of 302.06 km of survey effort was collected，with 99.3% of the total survey effort being conducted under favourable weather conditions（i．e．Beaufort Sea State 3 or below with good visibility）（Annex I of Appendix H）．Among the two areas， 116.80 km and 185.26 km of survey effort were collected from NEL and NWL survey areas respectively． Moreover，the total survey effort conducted on primary lines was 218.06 km ，while the effort on secondary lines was 84.00 km ．

5．3．3 During the two sets of monitoring surveys in January 2016，five groups of 18 Chinese White Dolphins were sighted（Annex II of Appendix H）．All five dolphin sightings were made in NWL， while none was sighted in NEL．

5．3．4 During the January＇s surveys，three of the five dolphin sightings were made on primary lines during on－effort search，and none of these groups was associated with any operating fishing vessel．

5．3．5 Distribution of these dolphin sightings made in January 2016 is shown in Figure 6 of Appendix H．Three dolphin groups were clustered at the northwestern corner of the NWL survey area， while another two groups（both were lone individuals）occurred in the inshore waters to the west of Sha Chau（Figure 6 of Appendix H）．

5．3．6 As in previous months of HKLR03 monitoring surveys，none of the dolphin sightings were located in the proximity of the HKLR03 and HKBCF reclamation sites，as well as the TMCLKL alignment（Figure 6 of Appendix H）．However，one sighting of a lone dolphin was made just to the south of the HKLR09 alignment（Figure 6 of Appendix H）．

5．3．7 During the January＇s surveys，encounter rates of Chinese White Dolphins deduced from the survey effort and on－effort sighting data made under favourable conditions（Beaufort 3 or below） are shown in Table 5.3 and Table 5．4．

5．3．8 The average dolphin group size in January 2016 was 3.6 individuals per group，which was similar to the ones in previous months of monitoring surveys．Among the five dolphin groups， three groups were composed of 1－2 individuals only，while the other two were moderately large groups with six and eight animals respectively．

Table 5．3 Individual Survey Event Encounter Rates

		Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）	Encounter rate（ANI） （no．of dolphins from all on－ effort sightings per 100 km of survey effort）
		Primary Lines Only	Primary Lines Only
NEL	Set 1：January $8^{\text {th }} / 11^{\text {th }}$	0.0	0.0
	Set 2：January $13^{\text {th }} / 19^{\text {th }}$	0.0	0.0
NWL	Set 1：January $8^{\text {th }} / 11^{\text {th }}$	2.8	9.8
	Set 2：January $13^{\text {th }} / 19^{\text {th }}$	1.4	10.9

Remarks：
1．Dolphin Encounter Rates Deduced from the Two Sets of Surveys（Two Surveys in Each Set）in January 2016 in Northeast（NEL）and Northwest Lantau（NWL）．
Table 5．4 Monthly Average Encounter Rates

	Encounter rate（STG） （no．of on－effort dolphin sightings per 100 km of survey effort）		Encounter rate（ANI） （no．of dolphins from all on－effort sightings per 100 km of survey effort）	
	Primary Lines Only	Both Primary and Secondary Lines	Primary Lines Only	Both Primary and Secondary Lines
Northeast Lantau	0.0	0.0	0.0	0.0
Northwest Lantau	2.1	2.7	10.3	9.8

Remarks：
1．Monthly Average Dolphin Encounter Rates（Sightings Per 100 km of Survey Effort）from All Four Surveys Conducted in January 2016 on Primary Lines only as well as Both Primary Lines and Secondary Lines in Northeast（NEL）and Northwest Lantau（NWL）．

Photo－identification Work

5．3．9 Ten individual dolphins were sighted 16 times during January＇s surveys（Annex III and IV of Appendix H）．Half of the individuals were sighted only once during the monitoring month，but
there were also four individuals（i．e．NL48，NL182，NL220 and NL320）being sighted twice and one individual（NL285）being sighted thrice．

5．3．10 Notably，none of these individual dolphins were accompanied with their calves during their re－ sightings．

Conclusion

5．3．11 During this month of dolphin monitoring，no adverse impact from the activities of this construction project on Chinese White Dolphins was noticeable from general observations．
5．3．12 Due to monthly variation in dolphin occurrence within the study area，it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM\＆A report，where comparison on distribution，group size and encounter rates of dolphins between the quarterly impact monitoring period（December 2015 －February 2016）and baseline monitoring period（3－month period）will be made．

5．4 Reference

5．4．1 Buckland，S．T．，Anderson，D．R．，Burnham，K．P．，Laake，J．L．，Borchers，D．L．，and Thomas， L．2001．Introduction to distance sampling：estimating abundance of biological populations． Oxford University Press，London．

5．4．2 Hung，S．K．2015．Monitoring of Marine Mammals in Hong Kong waters：final report（2014－ 15）．An unpublished report submitted to the Agriculture，Fisheries and Conservation Department， 198 pp．

5．4．3 Jefferson，T．A．2000．Population biology of the Indo－Pacific hump－backed dolphin in Hong Kong waters．Wildlife Monographs 144：1－65．

6 Environmental Site Inspection and Audit

6．1 Site Inspection

6．1．1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project．During the reporting month，five site inspections were carried out on 6，13， 20 and 29 January 2016.
6．1．2 A summary of observations found during the site inspections and the follow up actions taken by the Contractor are described in Table 6．1．

Table 6．1 Summary of Environmental Site Inspections

Date of Audit	Observations	Actions Taken by Contractor／ Recommendation	Date of Observations Closed
2 Dec 2015	1．Blockage of wheel washing facility was observed at N4．	1．The blockage has been removed from the wheel washing facility．	6 Jan 2016
	2．A slit curtain was not properly aligned near S7．＊ 3．Some of barriers were placed with adsorptive side facing NSRs at S16．＊	2．The Contractor was reminded to align the silt curtain properly near S 7 ． 3．The Contractor was reminded to place the noise barriers properly at S16．	Follow－up actions for the observations will be inspected during the next reporting month．
$\begin{array}{ll} 17 & \text { Dec } \\ 2015 & \end{array}$	1．A slit curtain was not properly aligned at Portion X．＊	1．The Contractor was reminded to align the silt curtain properly at Portion X．	Follow－up actions for the observations will be inspected during the next reporting month．
$\begin{array}{ll} 29 & \text { Dec } \\ 2015 & \end{array}$	1．Stagnant water was observed at the drip tray of A2 bridge at N 20 ． 2．Dusty stockpile without dust control measures was observed at N26． 3．No wheel washing was provided for vehicles before leaving the site at N26． 4．Storm drain at N26 site exit was not protected．． 5．Mixer of wastewater treatment plan at N26 was not properly operated． 6．The protection of storm drain near the wastewater treatment plan at N26 was insufficient． 7．No chemical label was provided for a chemical container at N26．	1．As the drip tray of A 2 bridge of at N 20 was removed，no stagnant water was observed． 2．The dusty stockpile was watered at N26． 3．Wheel washing was provided for vehicles before leaving the site at N26． 4．The storm drain at N 26 site exit was covered． 5．It was observed that the mixer was switched on during the operation of wastewater treatment facility． 6．Sand bags were placed around the storm drain． 7．The chemical container was removed at N26．	6 Jan 2016
6 Jan 2016	1．Stagnant water was observed inside a steel beam at N 4 ． 2．Stagnant water was observed inside	1．The stagnant water inside the steel beam was removed at N 4 ． 2．As the drip trays was removed，no	13 Jan 2016

	drip trays at N4． 3．More than twenty bags of cement were not covered entirely by impervious sheet at S15． 4．Accumulated waste was observed at S16． 5．Stagnant water was observed on the ground at S23． 6．No chemical labels and drip trays were provided for chemical containers at N1．	stagnant water was observed at N4． 3．The cement bags was covered entirely at S15． 4．The accumulated waste was removed at S16． 5．The stagnant water was removed on the ground at S23． 6．The chemical containers were removed at N1．	
$\begin{array}{ll} 13 & \text { Jan } \\ 2016 & \end{array}$	1．Accumulated general refuse was observed at PR9 2．Treated wastewater was discharged directly on the ground at PR9． 3．No sand bags were placed along the seafront of S7 to prevent discharge of silty surface runoff into the sea． 4．Damaged blue hoses which were used to divert treated wastewater to the discharge point were observed at S 11 ． 5．No drip trays was provided for chemical containers at $\mathrm{S8}$ ． 6．Stagnant water was observed at S8． 7．More than twenty bags of cement were not covered at N1．	1．The accumulated general refuse was cleared at PR9． 2．Proper connection for the wastewater treatment facility was provided at PR9． 3．Proper bunding were provided along the seafront to prevent discharge of silty surface runoff into the sea at $S 7$ ． 4．The damaged blue hoses at S 11 were replaced by new blue hoses and no leakage was observed． 5．The chemical containers at S 8 were removed． 6．The stagnant water was cleared at S 8 ． 7．The cement bags were covered entirely at N 1 ．	20 Jan 2016
$\begin{array}{lr} 20 & \text { Jan } \\ 2016 & \end{array}$	1．No proper enclosure was provided for a grouting station at HAT． 2．No protection was provided around the manhole which has been used as wastewater discharge point at HAT． 3．Accumulated waste was observed at HMA． 4．No drip tray was provided for oil drums at $S 7$ ．	1．Proper enclosure was provided for the grouting station at HAT． 2．Sand bags were provided around the manhole to prevent discharge of silty surface runoff into the drain at HAT． 3．The waste was cleared at HMA． 4．The oil drums were removed at $S 7$ ．	29 Jan 2016
29 Jan 2016	1．Concrete waste was observed at N1． 2．Cement bags were not covered with impervious sheets at several locations at N1． 3．Rubbish scattered on ground was observed at several locations at N1． 4．Stagnant water was observed at N1． 5．No drip tray was provided for chemical drums at N1．	The Contractor was recommended to： 1．dispose of the concrete waste． 2．cover cement bag entirely at several locations． 3．provide proper segregation and collection of waste． 4．remove stagnant water to avoid mosquito breeding． 5．provide drip trays for all chemical drums to avoid oil spillage．	Follow－up actions for the observations issued for the last weekly site inspection of the reporting month will be inspected during the next site inspections．

6．1．3 The Contractor has rectified most of the observations as identified during environmental site inspections within the reporting month．Follow－up actions for outstanding observations will be inspected during the next site inspections．

6．2 Advice on the Solid and Liquid Waste Management Status

6．2．1 The Contractor registered as a chemical waste producer for the Project．Sufficient numbers of receptacles were available for general refuse collection and sorting．

6．2．2 Monthly summary of waste flow table is detailed in Appendix I．
6．2．3 The Contractor was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging，Labelling and Storage of Chemical Wastes．

6．3 Environmental Licenses and Permits

6．3．1 The valid environmental licenses and permits during the reporting month are summarized in Appendix K．

6．4 Implementation Status of Environmental Mitigation Measures

6．4．1 In response to the site audit findings，the Contractors have rectified most of the observations as identified during environmental site inspections during the reporting month．Follow－up actions for outstanding observations will be inspected during the next site inspections．

6．4．2 A summary of the Implementation Schedule of Environmental Mitigation Measures（EMIS）is presented in Appendix L．Most of the necessary mitigation measures were implemented properly．

6．4．3 Regular marine travel route for marine vessels were implemented properly in accordance to the submitted plan and relevant records were kept properly．
6．4．4 Dolphin Watching Plan was implemented during the reporting month．No dolphins inside the silt curtain were observed．The relevant records were kept properly．

6．5 Summary of Exceedances of the Environmental Quality Performance Limit

6．5．1 Two Action Level exceedances 1－hr TSP level were recorded at AMS5 on 21 January 2016 during the reporting month．It was noted that the Contractor had implemented dust control measures throughout the construction phase．No fugitive dust emission was observed by ET on 21 January 2016 at construction site near monitoring station AMS5．As such，the exceedances recorded at monitoring station AMS5 is unlikely to be related to the Contract．In this case，no immediate actions are required．However，the Contractor is reminded to continuously implement the dust control measures throughout the construction phase．Records of＂Notification of Environmental Quality Limit Exceedances＂are provided in Appendix M．
6．5．2 No Limit Level exceedances of 1－hr TSP were recorded at AMS5 during the reporting month． No Action and Limit Level exceedances of 24 －hr TSP were recorded at AMS5 during the reporting month．

6．5．3 No Action and Limit Level exceedances of 1－hr TSP and 24－hr TSP were recorded at AMS6 during the reporting month．
6．5．4 For construction noise，no Action and Limit Level exceedances were recorded at the monitoring stations during the reporting month．

6．5．5 For marine water quality monitoring，no Action Level and Limit Level exceedances of turbidity level，dissolved oxygen level and suspended solid level were recorded during the reporting month．

6．6 Summary of Complaints，Notification of Summons and Successful Prosecution

6．6．1 There were no complaints received during the reporting month．The details of cumulative statistics of Environmental Complaints are provided in Appendix K．

6．6．2 No notification of summons and prosecution was received during the reporting period．
6．6．3 Statistics on notifications of summons and successful prosecutions are summarized in Appendix M．

Future Key Issues

7．1 Construction Programme for the Coming Months
7．1．1 As informed by the Contractor，the major construction activities for February 2016 are summarized in Table 7．1．

Table 7．1 Construction Activities for February 2016

Site Area	Description of Activities
Portion X	Dismantling／Trimming of Temporary 40 mm Stone Platform for Construction of Seawall
Portion X	Filling Works behind Stone Platform
Portion X	Construction of Seawall
Portion X	Loading and Unloading of Filling Material
Portion X	Pipe Piling
Portion X	Band Drains Installation
Portion X	Excavation and Lateral Support Works at Scenic Hill Tunnel（Cut \＆Cover Tunnel）
Portion X	Construction of Tunnel Box Structure at Scenic Hill Tunnel（Cut \＆Cover Tunnel）
Portion X	Excavation Works for HKBCF to Airport Tunnel
Portion X	Sheet Piling Works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）
Portion X	Socket H－Piling works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）
Portion X	Pipe Piling works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）
Portion X	Jet Grouting works for HKBCF to Airport Tunnel East（Cut \＆Cover Tunnel）
Airport Road	Works for Diversion of Airport Road
Airport Road／Airport Express Line／East Coast Road	Utilities Detection
Airport Road／Airport Express Line／East Coast Road	Establishment of Site Access
Airport Road／Airport Express Line	Canopy Pipe Drilling／Mined Tunnel Excavation／Box Jacking underneath Airport Road and Airport Express Line
Kwo Lo Wan Road	Excavation and Lateral Support Works at shaft 3 extension north shaft
Airport Road	Excavation and Lateral Support Works for HKBCF to Airport Tunnel West（Cut \＆Cover Tunnel）
Airport Road	Pipe piling works for HKBCF to Airport Tunnel West（Cut \＆Cover Tunnel）
Kwo Lo Wan Road	Works for Diversion of Kwo Lo Wan Road
Portion Y	Utility Culvert Excavation
Portion Y	Sub－structure \＆superstructure works for Highway Operation and Maintenance Area Building
West Portal	Excavation for Scenic Hill Tunnel
West Portal	Superstructure works for Scenic Hill Tunnel West Portal Ventilation building

7．2 Environmental Monitoring Schedule for the Coming Month

7．2．1 The tentative schedule for environmental monitoring in February 2016 is provided in Appendix D．

8 Conclusions

8．1 Conclusions

8．1．1 The construction phase and EM\＆A programme of the Contract commenced on 17 October 2012. This is the $40^{\text {th }}$ Monthly EM\＆A report for the Contract which summarizes the monitoring results and audit findings of the EM\＆A programme during the reporting period from 1 to 31 January 2016.

Air Quality

8．1．2 Two Action Level exceedances 1－hr TSP level were recorded at AMS5 on 21 January 2016 during the reporting month．After investigation，the exceedances recorded at monitoring station AMS5 is unlikely to be related to the Contract．

8．1．3 No Limit Level exceedances of 1－hr TSP were recorded at AMS5 during the reporting month． No Action and Limit Level exceedances of $24-\mathrm{hr}$ TSP were recorded at AMS5 during the reporting month．

8．1．4 No Action and Limit Level exceedances of 1－hr TSP and 24－hr TSP were recorded at AMS6 during the reporting month．

Noise

8．1．5 For construction noise，no Action and Limit Level exceedances were recorded at the monitoring stations during the reporting month．

Water Quality

8．1．6 For marine water quality monitoring，no Action Level and Limit Level exceedances of turbidity level，dissolved oxygen level and suspended solid level were recorded during the reporting month．

Dolphin
8．1．7 During the January＇s surveys of the Chinese White Dolphin，no adverse impact from the activities of this construction project on Chinese White Dolphins was noticeable from general observations．

8．1．8 Due to monthly variation in dolphin occurrence within the study area，it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM\＆A report，where comparison on distribution，group size and encounter rates of dolphins between the quarterly impact monitoring period（December 2015 －February 2016）and baseline monitoring period（3－month period）will be made．

Environmental Site Inspection and Audit

8．1．9 Environmental site inspection was carried out on 6，13， 20 and 29 January 2016. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site inspections．

8．1．10 There were no complaints received in relation to the environmental impact during the reporting period．

8．1．11 No notification of summons and prosecution was received during the reporting period．

Site Boundary of Contract HY/2011/03
hong kong international airport

Appendix A

Project Organization for
\longleftrightarrow Line of communication
Environmental Works

(Feburary 2016 to April 2016

(Feburary 2016 to April 2016)

Appendix C

輝創工程有限公司
Sun Creation Engineering Limited
Calibration and Testing Laboratory

Certificate of Calibration
 校正證書

Certificate No．：C153870
證書編號

ITEM TESTED／送檢項目（Job No．／序引編號：IC15－1591）
Date of Receipt／收件日期：16 July 2015
Description／儀器名稱 ：Acoustical Calibrator
Manufacturer／製造商：Brüel \＆Kjær
Model No．／型號 ： 4231
Serial No．／編號 ： 3004068
Supplied By／委託者 ：Atkins China Limited 19／F．，Tower 1，The Gateway Harbour City， Tsim Sha Tsui，Kowloon

TEST CONDITIONS／測試條件
Temperature／溫度 ：$\quad(23 \pm 2)^{\circ} \mathrm{C} \quad$ Relative Humidity／相對濕度 ：$\quad(55 \pm 20) \%$
Line Voltage／電壓 ：－－－

TEST SPECIFICATIONS／測試規範
Calibration check

DATE OF TEST／測試日期 ： 18 July 2015

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only．
All results are within manufacturer＇s specification．
The results are detailed in the subsequent page（s）．
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Agilent Technologies／Keysight Technologies
－Rohde \＆Schwarz Laboratory，Germany
－Fluke Everett Service Center，USA

Tested By
測試

Certified By
核證
：

21 July 2015簽發日期

[^0] written approval of this laboratory，

Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lane，Tuen Mun，New Territories，Hong Kong

輝創工程有限公司
Sun Creation Engineering Limited

Certificate of Calibration校正證書

Certificate No．
C153870
證書編號

1．The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test．

2．The results presented are the mean of 3 measurements at each calibration point．
3．Test equipment ：

Equipment ID	$\underline{\text { Description }}$	Certificate No．
CL130	Universal Counter	C153519
CL281	Multifunction Acoustic Calibrator	DC130171
TST150A	Measuring Amplifier	C141558

4．Test procedure ：MA100N．
5．Results ：
5．1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr＇s Spec． (dB)	Uncertainty of Measured Value (dB)
$94 \mathrm{~dB}, 1 \mathrm{kHz}$	94.0	± 0.2	± 0.2
$114 \mathrm{~dB}, 1 \mathrm{kHz}$	114.0		

5．2 Frequency Accuracy

UUT Nominal Value (kHz)	Measured Value (kHz)	Mfr＇s Spec．	Uncertainty of Measured Value (Hz)
1	1.0000	$1 \mathrm{kHz} \pm 0.1 \%$	± 0.1

Remark：The uncertainties are for a confidence probability of not less than 95% ．

Note ：
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift，variations with environment changes， vibration and shock during transportation，overloading，mis－handling，or the capability of any other laboratory to repeat the measurement．Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment．

[^1]Sun Creation Enginecring Limited－Calibration \＆Testing Laboratory
c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lanc，Tuen Mun，New Territories，Hong Kong

輝創工程有限公司

Sun Creation Engineering Limited

Certificate of Calibration校正證書

Certificate No．：C153871
證書編號

ITEM TESTED／送檢項目（Job No．／序引編號：IC15－1591）
Date of Receipt／收件日期：16 July 2015
Description／儀器名稱 ：Integrating Sound Level Meter
Manufacturer／製造商：Brüel \＆Kjær
Model No．／型號 ： 2238
Serial No．／編號 ： 2800932
Supplied By／委託者 ：Atkins China Limited 19／F．，Tower 1，The Gateway Harbour City， Tsim Sha Tsui，Kowloon

TEST CONDITIONS／測試條件

Temperature／溫度 ：$(23 \pm 2)^{\circ} \mathrm{C}$
Relative Humidity／相對澋度
$(55 \pm 20) \%$
Line Voltage／電壓 ：－－－

TEST SPECIFICATIONS／測試規範

Calibration check

DATE OF TEST／測試日期 ： 18 July 2015

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only．
All results are within manufacturer＇s specification．
The results are detailed in the subsequent page（s）．
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Agilent Technologies／Keysight Technologies
－Rohde \＆Schwarz Laboratory，Germany
－Fluke Everett Service Center，USA

[^2]輝創工程有限公司

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration
 校正證書

Certificate No．：C153871證書編號

1．The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 12 hours，and switched on to warm up for over 10 minutes before the commencement of the test．

2．Self－calibration using the B \＆K Acoustic Calibrator 4231，S／N ： 3004068 was performed before the test．
3．The results presented are the mean of 3 measurements at each calibration point．
4．Test equipment ：
Equipment ID
Description
Certificate No．
CL280
40 MHz Arbitrary Waveform Generator
C150014
Multifunction Acoustic Calibrator
DC130171

5．Test procedure ：MA101N．
6．Results ：

6．1 Sound Pressure Level
6．1．1 Reference Sound Pressure Level

UUT Setting				Applied Value		UUT Reading	IEC 60651 Type 1 Spec． (dB)
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq． (kHz)		（d）
$50-130$	L $_{\text {AFP }}$	A	F	94.00	1	94.1	± 0.7

6．1．2 Linearity

UUT Setting				Applied Value		UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq． (kHz)	Reading (dB)
50－130	$\mathrm{L}_{\text {AFP }}$	A	F	94.00	1	94.1 （Ref．）
				104.00		104.1
				114.00		114.1

IEC 60651 Type 1 Spec．：$\pm 0.4 \mathrm{~dB}$ per 10 dB step and $\pm 0.7 \mathrm{~dB}$ for overall different．
6．2 Time Weighting
6．2．1 Continuous Signal

UUT Setting				Applied Value		UUT Reading （dB）	IEC 60651 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq． （kHz）		
50－130	$\mathrm{L}_{\text {AFP }}$	A	F	94.00	1	94.1	Ref．
	$\mathrm{L}_{\text {ASP }}$		S			94.1	± 0.1
	$\mathrm{L}_{\text {AIP }}$		I			94.1	± 0.1

[^3]Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lanc，Tuen Mun，New Territories，Hong Kong
輝創工程有限公司－校正及檢測實驗所
c／o 否港新界屯門興安里一號青山灣機樓四樓

輝創工程有限公司

Sun Creation Engineering Limited

Certificate of Calibration
 校正證書

Certificate No．：C153871
證書編號

6．2．2 Tone Burst Signal（ 2 kHz ）

| UUT Setting | | | | Applied Value | | $\begin{array}{c}\text { UUT } \\ \text { Reading } \\ \text { Range } \\ (\mathrm{dB})\end{array}$ | Parameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}IEC 60651

Type 1 Spec．

(\mathrm{dB}\end{array}\right)\)

6．3 Frequency Weighting
6．3．1 A－Weighting

UUT Setting				Applied Value		UUT Reading （dB）	IEC 60651 Type 1 Spec． （dB）
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq．		
50－130	$L_{\text {AFP }}$	A	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.1	Ref．
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	92.9	－1．1（＋1．5；－3．0）
					12.5 kHz	89.8	－4．3（＋3．0；－6．0）

6．3．2 C－Weighting

UUT Setting				Applied Value		UUT Reading （dB）	IEC 60651 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Time Weighting	Level （dB）	Freq．		
50－130	$\mathrm{L}_{\text {CFP }}$	C	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5
					63 Hz	93.3	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref．
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	－3．0（＋1．5；－3．0）
					12.5 kHz	87.8	－6．2（＋3．0；－6．0）

[^4]本證書所載校正用之測試器材均可溯源主國際標準。局部複印本沸書需先獲本貝驗所書面批准。
Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lanc，Tuen Mun，New Territories，Hong Kong
輝創工程有限公司－校正及檢測晁驗所

輝 創 工程有限公司

Sun Creation Engineering Limited

Certificate of Calibration
 校正證書

Certificate No．：C153871
證書編號
6.4

Time Averaging

UUT Setting				Applied Value					UUT Reading （dB）	IEC 60804 Type 1 Spec． （dB）
Range （dB）	Parameter	Frequency Weighting	Integrating Time	Frequency （kHz）	$\begin{gathered} \text { Burst } \\ \text { Duration } \\ (\mathrm{ms}) \\ \hline \end{gathered}$	Burst Duty Factor	Burst Level (dB)	Equivalent Level （dB）		
30－110	$L_{\text {Aeq }}$	A	10 sec ．	4	1	1／10	110.0	100	100.0	± 0.5
						$1 / 10^{2}$		90	90.2	± 0.5
			60 sec ．			$1 / 10^{3}$		80	79.7	± 1.0
			5 min ．			$1 / 10^{4}$		70	69.8	± 1.0

Remarks：－UUT Microphone Model No．： 4188 \＆S／N ： 2793199
－Mfr＇s Spec．：IEC 60651 Type 1 \＆IEC 60804 Type 1
－Uncertainties of Applied Value：$\quad 94 \mathrm{~dB}: 31.5 \mathrm{~Hz}-125 \mathrm{~Hz}: \pm 0.35 \mathrm{~dB}$ $250 \mathrm{~Hz}-500 \mathrm{~Hz} \quad: \pm 0.30 \mathrm{~dB}$
$1 \mathrm{kHz} \quad: \pm 0.20 \mathrm{~dB}$
$2 \mathrm{kHz}-4 \mathrm{kHz} \quad: \pm 0.35 \mathrm{~dB}$
$8 \mathrm{kHz} \quad: \pm 0.45 \mathrm{~dB}$
$12.5 \mathrm{kHz} \quad: \pm 0.70 \mathrm{~dB}$
$104 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
$114 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
Burst equivalent level $: \pm 0.2 \mathrm{~dB}$（Ref． 110 dB
continuous sound level）
－The uncertainties are for a confidence probability of not less than 95% ．
Note：
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift，variations with environment changes，vibration and shock during transportation，overloading，mis－handling，or the capability of any other laboratory to repeat the measurement．Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment．

[^5]Sun Creation Engineering Limited－Calibration \＆Testing Laboratory

ENVIROTECH SERVICES CO.

High-Volume TSP Sampler

5-Point Calibration Record

Location	$:$	AMS5(Ma Wan Chung Village)
Calibrated by	$:$	K.F.Ho
Date	$:$	$\mathbf{2 8 / 1 2} / \mathbf{2 0 1 5}$

Sampler
Model $\quad: \quad$ TE-5170

Serial Number : S/N3640
Calibration Orifice and Standard Calibration Relationship

Serial Number	$:$	2454
Service Date	$:$	$\mathbf{2 4}$ Mar 2015
Slope (m)	$:$	$\mathbf{2 . 0 9 5 3 2}$
Intercept (b)	$:$	$\mathbf{- 0 . 0 3 8 1 2}$
Correlation Coefficient(r)	$:$	$\mathbf{0 . 9 9 9 9 4}$

Standard Condition		
Pstd (hpa)	$:$	1013
Tstd (K)	$:$	298.18

Calibration Condition
Pa (hpa) : 1012
$\mathrm{Ta}(\mathbf{K}) \quad: \quad 302$

Resistance Plate		dH [green liquid] (inch water)	Z	X=Qstd (cubic meter/min)	IC	Y
$\mathbf{1}$	$\mathbf{1 8}$ holes	$\mathbf{1 1 . 5}$	$\mathbf{3 . 3 6 7}$	$\mathbf{1 . 6 2 5}$	$\mathbf{5 6}$	$\mathbf{5 5 . 6 0}$
2	13 holes	9.2	$\mathbf{3 . 0 1 2}$	$\mathbf{1 . 4 5 5}$	$\mathbf{5 0}$	49.64
3	10 holes	6.9	2.608	1.263	44	43.69
4	7 holes	4.4	2.083	1.012	36	35.74
5	5 holes	2.7	1.631	0.797	28	27.80

Sampler Calibration Relationship

ENVIROTECH SERVICES CO.

High-Volume TSP Sampler
 5-Point Calibration Record

Location	$:$	AMS6(Dragonair Building)
Calibrated by	$:$	P.F.Yeung
Date	$:$	$\mathbf{2 8} / 12 / 2015$

Sampler
Model : TE-5170

Serial Number : S/N3639
Calibration Orifice and Standard Calibration Relationship

Serial Number	$:$	$\mathbf{2 4 5 4}$
Service Date	$:$	$\mathbf{2 4}$ Mar 2015
Slope (m)	$:$	$\mathbf{2 . 0 9 5 3 2}$
Intercept (b)	$:$	$\mathbf{- 0 . 0 3 8 1 2}$
Correlation Coefficient(r)	$:$	$\mathbf{0 . 9 9 9 9 4}$

Standard Condition		
Pstd (hpa)	$:$	1013
Tstd (K)	$:$	298.18

Calibration Condition
Pa (hpa) : 1012
$\mathrm{Ta}(\mathbf{K}) \quad: \quad 302$

Resistance Plate		dH [green liquid] (inch water)	Z	X=Qstd (cubic meter/min)	IC	Y
1	18 holes	11.6	3.382	1.632	54	53.61
2	13 holes	9.0	2.979	1.440	48	47.66
3	10 holes	6.8	2.589	1.254	42	41.70
4	7 holes	4.4	2.083	1.012	35	34.75
5	5 holes	2.6	1.601	0.782	27	26.81

Sampler Calibration Relationship
Slope(m): $\mathbf{3 1 . 7 2 6}$ Intercept(b): $\mathbf{2 . 6 2 4 \quad \text { Correlation Coefficient(r): } \mathbf { 0 . 9 9 9 6 }}$

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Mar 24, 2015	Rootsmeter S/N	0438320	Ta (K) -	292
Operator Tisch	Orifice I.D. -	2454	Pa (mm) -	756.92

PLATE OR Run \#	$\begin{gathered} \text { VOLUME } \\ \text { START } \\ \text { (m3) } \end{gathered}$	$\begin{aligned} & \text { VOLUME } \\ & \text { STOP } \\ & \text { (m3) } \end{aligned}$	$\begin{gathered} \text { DIFF } \\ \text { VOLUME } \\ \text { (m3) } \end{gathered}$	DIFF TIME (min)	$\begin{gathered} \text { DIFF } \\ \mathrm{Hg} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { DIFF } \\ \text { H2O } \\ \text { (in.) } \end{gathered}$
1	NA	NA	1.00	1.4460	3.2	2.00
2	NA	NA	1.00	1.0300	6.4	4.00
3	NA	NA	1.00	0.9180	7.9	5.00
4	NA	NA	1.00	0.8780	8.7	5.50
5	NA	NA	1.00	0.7240	12.6	8.00

DATA TABULATION

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760] (298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] $\mathrm{Qa}=\mathrm{Va} /$ Time

For subsequent flow rate calculations:
Qstd $=1 / \mathrm{m}\{[\operatorname{SQRT}(\mathrm{H} 2 \mathrm{O}(\mathrm{Pa} / 760)(298 / \mathrm{Ta}))]-\mathrm{b}\}$
Qa $=1 / \mathrm{m}\{[\mathrm{SQRT} \mathrm{H} 2 \mathrm{O}(\mathrm{Ta} / \mathrm{Pa})]-\mathrm{b}\}$

EQUIPMENT CALIBRATION RECORD

Type :
Manufacturer / Brand :
Model No.:
Equipment No.:
Serial No.:
Sensitivity Adjustment Scale Setting :

Laser Dust Monitor
SIBATA
LD-3B
LD-3B-003
276018
799 CPM

Standard Equipment

Equipment :
Venue:
Model No.:
Serial No.:

MFC High Volume Air Sampler
Tung Chung Pier
TE-5170 Total Suspended Particulate
S/N3641

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration) : Sensitivity Adjustment Scale Setting (After Calibration) :

Hour	$\begin{gathered} \text { Date } \\ \text { (dd-mmm-yy) } \end{gathered}$	Time		Ambient Condition		Concentration (ug/m ${ }^{3}$) Y-axis	Total Count	Count/Minute X-axis
				Temp (${ }^{\circ} \mathrm{C}$)	R.H. (\%)			
1	25-Nov-15	14:20	15:20	23.6	68\%	87.5	930	15.5
2	25-Nov-15	15:34	16:34	24.8	60\%	93.1	1135	18.9
3	25-Nov-15	16:50	17:50	23.8	60\%	96.0	1248	20.8
4	25-Nov-15	18:00	19:00	23.5	50\%	94.6	1206	20.1

Be Linear Regression of Y or X
Slope (K-factor):
1.5832

Correlation coefficient: $\quad 0.9981$

Remark:

ALS Technichem (HK) Pry Ltd
$11 / F$, Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung, N.T., Hong Kong
T: +852 26101044
F: +852 26102021
www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR MIKE SHEK
CLIENT:	AECOM ASIA COMPANY LIMITED
ADDRESS:	$1501-10,15 / F$, TOWER 1,
	GRAND CENTRAL PLAZA,
	138 SHATIN RURAL COMMITTEE ROAD,
	SHATIN, NEW TERRITORIES, HONG KONG

WORK ORDER: HK1541932
SUB-BATCH: 0
LABORATORY: HONG KONG
DATE RECEIVED: 03/11/2015
DATE OF ISSUE: $05 / 11 / 2015$

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.
The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Conductivity, Temperature ,Dissolved Oxygen, Salinity, pH and Turbidity
Description: Multifunctional Meter
Brand Name:
Model No.: PSI

Serial No.: 12A101545
Equipment No.: W.026.35
Date of Calibration: 03 November, 2015

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to samples) as submitted. All pages of this report have been checked and approved for release.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:
Sub-batch:
Date of Issue
Client:

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No
Date of Calibr
Parameters:

HK1541932
Sub-batch: 0
05/11/2015
AECOM ASIA COMPANY LIMITED

Multifunctional Meter
YSI
Sonde 6820 V2
12A101545
W.026.35

Equipment No.: W.026.35

Parameters:

Conductivity Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (\%)
46.9		
	145.8	-0.7
	6710	+0.6
58670	12710	-1.4
	58780	+0.2
	Tolerance Limit (\%)	± 10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.48	-0.02
5.75	5.78	+0.03
7.70	7.66	-0.04
		± 0.20

Temperature
Method Ref: Section 6 of International Accreditation New Zealand Technical
Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer $\left({ }^{\circ} \mathrm{C}\right)$	Displayed Reading $\left({ }^{\circ} \mathrm{C}\right)$	Tolerance $\left({ }^{\circ} \mathrm{C}\right)$
10.5	10.47	-0.0
22.0	21.95	-0.1
37.0	36.86	-0.1
	Tolerance Limit $\left({ }^{\circ} \mathrm{C}\right)$	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless
of equipment precision or significant figures.


```
REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION
```

Work Order:
Sub-batch:
Date of Issue:
Client:

Description:
Brand Name:
Model No.:
Serial No.:
Equipment No.:
Date of Calibration: 03 November, 2015

HK1 541932
0
05/11/2015
AECOM ASIA COMPANY LIMITED

Multifunctional Meter
YSI
Sonde 6820 V2
12A101545
W.026.35

Parameters:

Salinity
Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (\%)
10	0.0	-
20	9.95	-0.5
30	19.97	-0.2
	29.92	-0.3
	Tolerance Limit (\%)	± 10.0

Turbidity
Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
4	0.0	-
10	4.0	0.0
20	10.3	+3.0
50	20.2	+1.0
100	50.4	+0.8
	99.6	-0.4
	Tolerance Limit (\%)	± 10.0

pH Value
Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.00	0.00
7.0	7.02	+0.02
10.0	10.01	+0.01
		± 0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

ALS Technichem (HK) Pty Ltd
11/F, Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung, N.T., Hong Kong
T: +852 26101044
F: +852 26102021
www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR MIKE SHEK
CLIENT: AECOM ASIA COMPANY LIMITED
ADDRESS: 1501-10, 15/F, TOWER 1, GRAND CENTRAL PLAZA, 138 SHATIN RURAL COMMITTEE ROAD, SHATIN, NEW TERRITORIES, HONG KONG

WORK ORDER: HK1541933
SUB-BATCH: 0
LABORATORY: HONG KONG
DATE RECEIVED: 03/11/2015
DATE OF ISSUE: $\quad 05 / 11 / 2015$

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.
The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Conductivity, Temperature ,Dissolved Oxygen, Salinity, pH and Turbidity
Description: Multifunctional Meter
Brand Name: YSI
Model No.: Sonde 6820 V2
Serial No.: \quad 12D100972
Equipment No.: W.026.36
Date of Calibration: 03 November, 2015

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.
Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

[^6]
REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1541933
Sub-batch:	0
Date of Issue:	$05 / 11 / 2015$
Client:	AECOM ASIA COMPANY LIMITED
Description:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Sonde 6820 V2
Serial No.:	12D100972
Equipment No.:	W.026.36
Date of Calibration:	03 November, 2015

Date of next Calibration: 03 February, 2016

Parameters:

Conductivity Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (\%)
46.9		
	145.2	-1.2
	6690	+0.3
58670	12850	-0.3
	58700	+0.1
	Tolerance Limit (\%)	± 10.0

Dissolved Oxygen
Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.51	+0.01
5.75	5.72	-0.03
7.70	7.67	-0.03
		± 0.20

Temperature
Method Ref: Section 6 of International Accreditation New Zealand Technical
Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer $\left({ }^{\circ} \mathrm{C}\right)$	Displayed Reading $\left({ }^{\circ} \mathrm{C}\right)$	Tolerance $\left({ }^{\circ} \mathrm{C}\right)$
10.5	10.51	+0.0
22.0	22.05	+0.1
37.0	36.89	-0.1
	Tolerance Limit $\left({ }^{\circ} \mathrm{C}\right)$	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless
of equipment precision or significant figures.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION	
Work Order:	HK1541933
Sub-batch:	0
Date of Issue:	$05 / 11 / 2015$
Client:	AECOM ASIA COMPANY LIMITED
Description:	Multifunctional Meter
Brand Name:	YSI
Model No.:	Sonde 6820 V2
Serial No.:	$12 D 100972$
Equipment No.:	W.026.36
Date of Calibration: 03 November, 2015	

Parameters:

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (\%)
0	0.0	--
10	10.04	+0.4
20	20.06	+0.3
30	30.04	+0.1
	Tolerance Limit (\%)	± 10.0

Turbidity
Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (\%)
0	0.0	--
4	4.1	+2.5
10	10.2	+2.0
20	20.2	+1.0
50	50.5	+1.0
100	99.3	-0.7
	Tolerance Limit (\%)	± 10.0

pH Value
Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.03	+0.03
10.0	9.98	-0.02
		± 0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
Mr Fung Lim Che er, Richard
General Manager -
Greater China \& Hong Kong

Appendix D

Monitoring Schedule

Jan-16							
Monday		Tueday	Wednesday	Thursday	Friday	Saturday	Sunday
Time					1-Jan	2-Jan	3-Jan
					Holiday Water Quality Monitoring		
Time	4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan
	AMS5-24hr Dust Water Quality Monitoring	AMS6-1hr AMS5-1hr+NMS5 AMS6 (See Remark 1)	Water Quality Monitoring		1st Dolphin Monitoring AMS6/AMS5-24hr Dust Water Quality Monitoring		
Time	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan
	AMS6-1hr AMS5-1hr+NMS5 1st Dolphin Monitoring (See Remark 2) Water Quality Monitoring		2nd Dolphin Monitoring (See Remark 2) Water Quality Monitoring	AMS6/AMS5-24hr Dust	AMS6-1hr AMS5-1hr Water Quality Monitoring		
Time	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan	23-Jan	24-Jan
	Water Quality Monitoring	2nd Dolphin Monitoring (See Remark 3)	AMS6/AMS5 - 24hr Dust Water Quality Monitoring	AMS6-1hr AMS5-1hr+NMS5	Water Quality Monitoring		
Time	$25-J a n$	26-Jan	27-Jan	28-Jan	29-Jan	30-Jan	31-Jan
	Water Quality Monitoring	AMS6/AMS5-24hr Dust	AMS6-1hr AMS5-1hr+NMS5 Water Quality Monitoring		Water Quality Monitoring		

1) Due to malfunctioning of timer of HVS at AMS6 on 4 January 2016, the 24 -hr TSP monitoring at AMS6 on 4 January 2016 was cancelled. The timer was replaced and was used for 24 hr TSP monitoring on 5 January 2016 .
2) Due to clash of schedule, the dolphin monitoring schedule was rescheduled from 4 January 2016 to 11 January 2016.
3) Due to weather condition/boat availability, the dolphin monitoring schedule was rescheduled from 12 January 2016 to 13 January 2016 and from 18 January 2016 to 19 January 2016.

Feb-16							
Monday		Tueday	Wednesday	Thursday	Friday	Saturday	Sunday
Time	1-Feb	2-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb
	$1^{\text {st }}$ Dolphin Monitoring AMS6/AMS5 - 24hr Dust Water Quality Monitoring	AMS6-1 hr AMS5-1 $\mathrm{hr}+$ NMS5	$1^{\text {st }}$ Dolphin Monitoring Water Quality Monitoring		AMS6/AMS5-24hr Dust Water Quality Monitoring	$\begin{aligned} & \text { AMS6-1 hr } \\ & \text { AMS5-1 hr } \end{aligned}$	
Time	8-Feb	9-Feb	10-Feb	11-Feb	12-Feb	13-Feb	14-Feb
	Holiday See Remark 1	Holiday	Holiday	AMS6/AMS5-24hr Dust Water Quality Monitoring	AMS6-1hr AMS5-1hr+NMS5	Water Quality Monitoring	
Time	15-Feb	16-Feb	17-Feb	18-Feb	19-Feb	20-Feb	21-Feb
	Water Quality Monitoring	$2^{\text {nd }}$ Dolphin Monitoring	AMS6/AMS5 - 24hr Dust Water Quality Monitoring	AMS6-1hr AMS5-1hr+NMS5	Water Quality Monitoring		
Time	22-Feb	23-Feb	24-Feb	25-Feb	26-Feb	27-Feb	28-Feb
	$2^{\text {nd }}$ Dolphin Monitoring Water Quality Monitoring	AMS6/AMS5 - 24hr Dust	AMS6-1hr AMS5-1hr+NMS5 Water Quality Monitoring		Water Quality Monitoring		
Time	29-Feb						
	AMS6/AMS5-24hr Dust Water Quality Monitoring						

Remark:
) As informed by the Contractor on 29 January 2016, no marine work will be undertaken by Contract no. HY/2011/03 during the Chinese New Year Period from 7 - 10 February 2016. As such, the scheduled impact water quality monitoring on 8 February 2016 will be cancelled.

APPENDIX E

Monitoring Data

Air Quality Monitoring Data

HKLR	HY/2011/03	2016-01-05	AMS5	13:32	1-hr TSP	101	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS5	14:32	1-hr TSP	87	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS5	15:32	1-hr TSP	81	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS5	13:04	1-hr TSP	81	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS5	14:04	1-hr TSP	148	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS5	15:04	1-hr TSP	157	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS5	13:08	1-hr TSP	152	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS5	14:08	1-hr TSP	144	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS5	15:08	1-hr TSP	128	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS5	13:40	1-hr TSP	333	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS5	14:40	1-hr TSP	445	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS5	15:40	1-hr TSP	441	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS5	13:00	1-hr TSP	90	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS5	14:00	1-hr TSP	108	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS5	15:00	1-hr TSP	113	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-04	AMS5	08:00	24-hr TSP	19	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-08	AMS5	08:00	24-hr TSP	65	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-14	AMS5	08:00	24-hr TSP	44	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-20	AMS5	08:00	24-hr TSP	26	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-26	AMS5	08:00	24-hr TSP	60	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS6	08:30	1-hr TSP	162	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS6	09:30	1-hr TSP	176	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS6	10:30	1-hr TSP	167	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS6	08:39	1-hr TSP	77	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS6	09:39	1-hr TSP	76	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-11	AMS6	10:39	1-hr TSP	83	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS6	08:52	1-hr TSP	189	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS6	09:52	1-hr TSP	221	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-15	AMS6	10:52	1-hr TSP	172	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS6	08:45	1-hr TSP	220	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS6	09:45	1-hr TSP	261	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-21	AMS6	10:45	1-hr TSP	291	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS6	09:06	1-hr TSP	96	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS6	10:06	1-hr TSP	96	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-27	AMS6	11:06	1-hr TSP	85	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-05	AMS6	13:00	24-hr TSP	40	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-08	AMS6	08:00	24-hr TSP	94	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-14	AMS6	08:00	24-hr TSP	62	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-20	AMS6	08:00	24-hr TSP	28	$\mathrm{ug} / \mathrm{m}^{3}$
HKLR	HY/2011/03	2016-01-26	AMS6	08:00	24-hr TSP	71	$\mathrm{ug} / \mathrm{m}^{3}$

Remarks:

1) Due to malfunctioning of timer orf HVS at AMS6 on 4 January 2016, the 24-hr TSP monitoring at AMS6 on 4 January 2016 was cancelled. The timer was replaced and was used for 24 hr TSP monitoring on 5 January 2016.

Air Quality Monitoring Data (1-hour)

Air Quality Monitoring Data (24-hour)

Remarks:
Date

1) Due to malfunctioning of HVS at station AMS6, the 24-hr TSP monitoring at station AMS6 on 30 October 2015 was cancelled.
2) Due to power interruption of HVS at AMS6 on 23 November 2015, the 24-hr TSP monitoring result obtained at AMS6 on 23 November 2015 was considered invalid.
3) Due to power interruption of HVS at AMS6 on 23 December 2015, the 24-hr TSP monitoring result obtained at AMS6 on 23 December 2015 was considered invalid
4) Due to malfunctioning of timer for HVS at AMS6 on 4 January 2016, the 24-hr TSP monitoring at AMS6 on 4 January 2016 was cancelled. The timer was replaced and was used for 24hr TSP monitoring on 5 January 2016.

Project	Works	Date (yyyy-mm-dd)	Station	Start Time	Wind Speed, m/s	1 sts set 5 mins		2nd set 5 mins		3 rd set 5 mins		4th set 5 mins		5th set 5mins		6th set 5 mins		Overall (30 mins)*		Unit
HKLR	HY/2011/03	2016-01-05	NMS5	14:41	<5	Leq:	62.3	Leq:	61.6	Leq:	61.7	Leq:	61.3	Leq:	61.0	Leq:	61.2	Leq:	64.5	
						L10:	62.5	L10:	63.0	L10:	63.0	L10:	62.5	L10:	62.5	L10:	62.5	L10:	65.7	dB(A)
						L90:	56.5	L90:	58.0	L90:	57.5	L90:	57.0	L90:	56.5	L90:	57.0	L90:	60.1	
HKLR	HY/2011/03	2016-01-11	NMS5	13:02	<5	Leq:	56.3	Leq:	55.1	Leq:	55.3	Leq:	53.8	Leq:	57.0	Leq:	57.8	Leq:	59.1	dB(A)
						L10:	59.0	L10:	58.0	L10:	58.0	L10:	56.5	L10:	60.5	L10:	60.5	L10:	62.0	
						L90:	50.0	L90:	50.5	L90:	50.5	L90:	50.0	L90:	51.5	L90:	51.5	L90:	53.7	
HKLR	HY/2011/03	2016-01-21	NMS5	14:01	<5	Leq:	54.8	Leq:	53.9	Leq:	54.4	Leq:	55.5	Leq:	53.2	Leq:	54.8	Leq:	57.5	dB(A)
						L10:	57.5	L10:	57.0	L10:	58.5	L10:	59.5	L10:	55.5	L10:	57.5	L10:	60.8	
						L90:	50.5	L90:	49.0	L90:	48.0	L90:	47.5	L90:	49.0	L90:	50.0	L90:	52.1	
HKLR	HY/2011/03	2016-01-27	NMS5	14:01	<5	Leq:	59.3	Leq:	59.3	Leq:	58.8	Leq:	58.6	Leq:	57.1	Leq:	57.3	Leq:	61.5	dB(A)
						L10:	63.0	L10:	62.5	L10:	61.5	L10:	62.0	L10:	60.5	L10:	60.5	L10:	64.8	
						L90:	51.5	L90:	52.0	L90:	53.5	L90:	53.5	L90:	52.0	L90:	53.0	L90:	55.7	

(1)* A facade correction of $+3 \mathrm{~dB}(A)$ was applied to the measured noise level.

Remark:
(1) A facade correction of $+3 \mathrm{~dB}(\mathrm{~A})$ was applied to the measured noise level.

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:19:38	1.0	Surface	1	1	16.2	8.22	25.64	100.1	8.44	4.7	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:20:42	1.0	Surface	1	2	16.21	8.23	25.64	100.4	8.45	5	3.9
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:20:20	4.1	Middle	2	1	16.15	8.23	25.72	100.1	8.43	5.1	4.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:19:18	4.1	Middle	2	2	16.17	8.22	25.69	99.6	8.4	4.9	4.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:18:55	7.2	Bottom	3	1	16.03	8.21	25.74	99.4	8.41	5.4	4.2
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	155	17:19:55	7.2	Bottom	3	2	16.01	8.22	25.75	100	8.45	5.3	4.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS(Mf)6	17:27:55	1.0	Surface	1	1	16.3	8.18	26.03	98.8	8.27	3.7	2.8
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	17:28:35	1.0	Surface	1	2	16.33	8.2	26.01	98.5	8.24	3.8	3.3
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS(Mf)6	17:27:37	2.2	Bottom	3	1	16.24	8.17	25.97	98.6	8.26	4.2	2.9
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	17:28:13	2.2	Bottom	3	2	16.21	8.19	25.99	98.3	8.25	4.5	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS7	17:35:49	1.0	Surface	1	1	16.45	8.22	26.51	98.6	8.21	4.5	5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	157	17:35:10	1.0	Surface	1	2	16.47	8.21	26.57	98.9	8.23	4.6	3.2
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	157	17:34:49	2.3	Bottom	3	1	16.23	8.2	26.44	98.5	8.24	4.9	3.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	157	17:35:31	2.3	Bottom	3	2	16.23	8.22	26.45	98.3	8.22	4.7	3.8
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	158	18:05:10	1.0	Surface	1	1	16.23	8.25	26.22	97.5	8.17	2.8	2.6
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	158	18:05:46	1.0	Surface	1	2	16.23	8.25	26.24	97.8	8.19	2.7	2.6
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	158	18:05:28	2.7	Bottom	3	1	16.17	8.25	26.33	97.2	8.14	2.9	2.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	158	18:04:52	2.7	Bottom	3	2	16.12	8.24	26.36	97.1	8.15	2.8	2.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS(Mf)9	17:43:15	1.0	Surface	1	1	16.27	8.19	26.54	98.6	8.24	3	3.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	17:43:50	1.0	Surface	1	2	16.27	8.22	26.51	98.4	8.24	2.9	2.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	17:43:30	2.3	Bottom	3	1	16.2	8.21	26.57	97.7	8.19	2.9	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	17:42:56	2.3	Bottom	3	2	16.19	8.18	26.58	98.1	8.2	3	3.3
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:52:24	1.0	Surface	1	1	19.51	8.17	28.67	91.6	7.1	3	2.3
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:51:56	1.0	Surface	1	2	19.52	8.17	28.65	89.9	6.97	2.8	3.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:52:16	5.3	Middle	2	1	19.45	8.17	28.75	90.4	7.01	3.2	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:51:48	5.3	Middle	2	2	19.45	8.17	28.75	88.5	6.86	3.4	2.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:52:07	9.6	Bottom	3	1	19.47	8.17	28.73	89	6.9	3.2	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	IS10	17:51:41	9.6	Bottom	3	2	19.45	8.17	28.76	88.4	6.85	3.4	2.8
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR3	17:03:14	0.6	Middle	2	1	16.15	8.09	25.38	100.9	8.53	6.6	4.6
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR3	17:02:59	0.6	Middle	2	2	16.15	8.07	25.39	101.1	8.55	6.3	4.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR4	17:51:14	1.0	Surface	1	1	16.15	8.18	26.3	96.5	8.1	2.7	2.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR4	17:51:54	1.0	Surface	1	2	16.17	8.21	26.28	96.2	8.07	2.8	2.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR4	17:50:58	2.6	Bottom	3	1	16.11	8.18	26.39	96.8	8.12	2.8	2.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR4	17:51:36	2.6	Bottom	3	2	16.12	8.2	26.4	96.3	8.08	2.9	2.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR5	17:45:08	1.0	Surface	1	1	19.52	8.17	28.64	93	7.2	2.6	2.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR5	17:44:51	1.0	Surface	1	2	19.58	8.17	28.6	93.8	7.26	2.4	2.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR5	17:44:58	3.9	Bottom	3	1	19.53	8.17	28.67	90.9	7.04	2.6	3.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR5	17:44:38	3.9	Bottom	3	2	19.48	8.17	28.69	91.1	7.07	2.8	2.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:14:03	1.0	Surface	1	1	16.23	8.15	28.84	92.2	7.59	2.7	3.6
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:15:06	1.0	Surface	1	2	16.22	8.17	28.85	92.5	7.62	2.8	3.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:14:43	3.2	Middle	2	1	16.22	8.16	28.74	91	7.5	2.9	3.9
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:13:41	3.2	Middle	2	2	16.23	8.15	28.75	91.3	7.52	2.9	2.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:14:19	5.4	Bottom	3	1	16.22	8.16	28.57	91.5	7.54	2.9	3.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10A	19:13:25	5.4	Bottom	3	2	16.23	8.15	28.58	91.4	7.54	2.9	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10B	19:28:18	1.0	Surface	1	1	16.28	8.18	29.09	93.5	7.7	2.9	3
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10B	19:28:54	1.0	Surface	1	2	16.28	8.19	29.08	93.4	7.69	2.8	2.8
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10B	19:28:35	3.7	Bottom	3	1	16.27	8.18	29.07	93.5	7.7	3.4	2.2
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	SR10B	19:27:59	3.7	Bottom	3	2	16.28	8.18	29.05	93.8	7.72	3.5	2.2
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	CS2	16:29:22	1.0	Surface	1	1	19.58	8.19	28.5	91	7.05	4.7	4.5
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	CS2	16:29:54	1.0	Surface	1	2	19.59	8.19	28.48	90.8	7.04	4.5	4.7
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	CS2	16:29:11	3.8	Middle	2	1	19.55	8.19	28.52	91.1	7.06	5.4	5.4
HKLR	HY/2011/03	2016-01-01	Mid-Ebb	Sunny	CS2	16:29:42	3.8	Middle	2	2	19.54	8.19	28.58	90	6.97	5.1	3.9

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	Do,\%	Do, mg/L	Turbidity,	mg / L
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	SR10B	11:03:41	1.0	Surface	1	1	16.03	7.97	33.46	95.4	7.67	1.8	1.6
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	SR10B	11:03:04	1.0	Surface	1	2	16.02	7.97	33.43	95.9	7.72	1.8	2.4
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	SR10B	11:02:48	4.1	Bottom	3	1	16.02	7.96	33.46	95.6	7.7	1.5	1.6
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	SR10B	11:03:19	4.1	Bottom	3	2	16.02	7.95	33.47	96.2	7.73	1.8	1.5
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:26:08	1.0	Surface	1	1	19.59	8.16	28.56	90.7	7.02	4.6	6
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:25:40	1.0	Surface	1	2	19.58	8.16	28.55	89.9	6.96	4.7	4.6
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:25:29	3.6	Middle	2	1	19.55	8.16	28.56	89.9	6.96	4.9	3.8
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:25:56	3.6	Middle	2	2	19.51	8.16	28.57	90.4	7.01	5	4.7
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:25:50	6.2	Bottom	3	1	19.54	8.16	28.56	89.7	6.95	5.2	3.1
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS2	13:25:21	6.2	Bottom	3	2	19.56	8.16	28.55	89.5	6.93	5.4	4.7
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	11:51:02	1.0	Surface	1	1	16.05	8.08	31.12	91.6	7.54	3.4	2.3
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	11:50:01	1.0	Surface	1	2	16.04	8.05	31.13	91.7	7.55	3.2	1.6
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	CS(Mf) 5	11:50:41	6.8	Middle	2	1	16.14	8.06	32.62	91.1	7.43	4.1	2.4
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	11:49:39	6.8	Middle	2	2	16.14	8.03	32.71	91.2	7.42	4.5	1.5
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	11:50:19	12.6	Bottom	3	1	16.14	8.05	33.03	93.4	7.61	4.6	2.8
HKLR	HY/2011/03	2016-01-01	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	11:49:21	12.6	Bottom	3	2	16.14	8.01	33.09	93.4	7.58	4.8	2.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS5	08:09:28	1.0	Surface	1	1	19.6	8.16	25.99	89.6	7.05	3.5	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	155	08:08:44	1.0	Surface	1	2	19.57	8.16	25.75	90.3	7.11	3.6	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	155	08:09:20	4.2	Middle	2	1	19.64	8.14	27.47	89.4	6.96	3.4	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	155	08:08:33	4.2	Middle	2	2	19.64	8.14	27.48	90	7	3.7	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	155	08:08:25	7.4	Bottom	3	1	19.6	8.14	27.57	90	7.01	3.8	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS5	08:09:09	7.4	Bottom	3	2	19.63	8.13	27.96	88.5	6.87	4	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	07:58:13	1.0	Surface	1	1	19.58	8.14	26.3	94.3	7.4	4	2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS(Mf)6	07:57:58	1.0	Surface	1	2	19.57	8.14	26.32	93.7	7.35	4.3	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	07:58:04	2.3	Bottom	3	1	19.57	8.14	26.39	94.9	7.44	4.4	2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	07:57:52	2.3	Bottom	3	2	19.57	8.14	26.38	93.2	7.31	4.4	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	157	07:47:50	1.0	Surface	1	1	19.53	8.14	26.05	92.5	7.27	3.3	1.5
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	157	07:47:37	1.0	Surface	1	2	19.53	8.14	26.04	92.5	7.28	3.4	1.4
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	157	07:47:41	2.2	Bottom	3	1	19.52	8.14	26.08	92.9	7.3	3.4	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	157	07:47:28	2.2	Bottom	3	2	19.53	8.14	26.08	92.2	7.25	3.5	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	158	07:17:08	1.0	Surface	1	1	19.57	8.16	26.26	92.2	7.24	5	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	158	07:17:28	1.0	Surface	1	2	19.56	8.16	26.12	91.4	7.19	5.3	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	158	07:16:59	2.9	Bottom	3	1	19.6	8.15	26.71	91.1	7.13	5.9	1.4
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	158	07:17:16	2.9	Bottom	3	2	19.62	8.15	27.19	92.5	7.22	6.5	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS(Mf)9	07:39:30	1.0	Surface	1	1	19.56	8.14	26.02	92.3	7.26	5.1	3
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	07:39:47	1.0	Surface	1	2	19.56	8.14	26.03	91.7	7.21	5	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	07:39:39	2.6	Bottom	3	1	19.6	8.13	26.8	91.4	7.15	5.3	2.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	07:39:23	2.6	Bottom	3	2	19.56	8.14	27	92.2	7.21	5.5	2.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:46:39	1.0	Surface	1	1	16.06	8.07	28.79	94.8	7.84	1.4	1.1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:46:13	1.0	Surface	1	2	16.08	8.06	29.02	94.4	7.8	1.5	1.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:46:04	5.4	Middle	2	1	16.12	8.04	32.53	94.6	7.64	1.5	0.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:46:29	5.4	Middle	2	2	16.11	8.04	32.41	94.4	7.63	1.5	1.1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:46:21	9.7	Bottom	3	1	16.09	8.04	32.62	94.6	7.64	1.5	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	IS10	07:45:56	9.7	Bottom	3	2	16.12	8.03	32.88	95.1	7.67	1.5	2.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR3	08:19:14	0.8	Middle	2	1	19.54	8.15	25.56	90.5	7.14	3.4	2.1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR3	08:19:20	0.8	Middle	2	2	19.53	8.15	25.54	90.8	7.17	3.4	2.4
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR4	07:28:43	1.0	Surface	1	1	19.58	8.15	26.43	91.3	7.16	4.5	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR4	07:28:30	1.0	Surface	1	2	19.56	8.15	26.2	92	7.23	4	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR4	07:28:22	2.8	Bottom	3	1	19.58	8.14	26.68	90.9	7.11	4.1	1.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR4	07:28:37	2.8	Bottom	3	2	19.59	8.14	26.95	92	7.19	4.2	1.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR5	07:57:01	1.0	Surface	1	1	16.03	8.07	27.21	96.7	8.08	1.3	1.3
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR5	07:56:41	1.0	Surface	1	2	16.05	8.07	26.87	96	8.04	1.3	1.1

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	Do, \%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR5	07:56:34	4.1	Bottom	3	1	16.05	8.04	31.41	95.3	7.77	1.4	1.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR5	07:56:51	4.1	Bottom	3	2	16.05	8.04	31.09	96.8	7.9	1.4	1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:59:06	1.0	Surface	1	1	19.65	8.13	26.27	90.4	7.09	1.8	0.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:59:34	1.0	Surface	1	2	19.66	8.13	26.33	90.7	7.11	1.7	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:58:56	3.4	Middle	2	1	19.68	8.13	26.51	90.3	7.06	1.8	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:59:26	3.4	Middle	2	2	19.67	8.13	26.56	89.5	7	1.7	0.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:58:50	5.8	Bottom	3	1	19.68	8.11	27.48	89.8	6.98	1.8	0.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10A	05:59:13	5.8	Bottom	3	2	19.66	8.12	27.55	90.8	7.06	1.8	0.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10B	05:37:13	1.0	Surface	1	1	19.64	8.15	25.97	90.7	7.12	1.7	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10b	05:36:43	1.0	Surface	1	2	19.64	8.16	25.81	90.2	7.09	1.9	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10B	05:36:59	4.2	Bottom	3	1	19.67	8.14	26.77	91	7.11	1.6	1.3
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	SR10B	05:36:27	4.2	Bottom	3	2	19.67	8.16	26.59	90.3	7.06	1.7	1.3
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:09:13	1.0	Surface	1	1	16.05	8.1	25.43	95.9	8.1	1.2	1.1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:09:39	1.0	Surface	1	2	16.05	8.1	25.71	95.9	8.09	1.2	0.9
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:09:30	4.0	Middle	2	1	16.07	8.08	29.05	95.9	7.92	1.5	0.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:08:59	4.0	Middle	2	2	16.06	8.07	28.44	94.6	7.85	1.4	1.1
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:09:23	6.9	Bottom	3	1	16.09	8.07	29.54	96.3	7.93	1.5	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS2	09:08:44	6.9	Bottom	3	2	16.11	8.05	29.66	95	7.81	1.5	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	06:34:04	1.0	Surface	1	1	19.64	8.14	27.15	89.4	6.97	1.8	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	06:33:25	1.0	Surface	1	2	19.63	8.15	27.04	89.5	6.99	1.9	0.7
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	06:33:51	6.7	Middle	2	1	19.68	8.13	27.88	88.8	6.89	1.8	1.3
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	06:33:10	6.7	Middle	2	2	19.68	8.13	27.86	88.8	6.89	1.9	1.2
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	CS(Mf) 5	06:33:04	12.4	Bottom	3	1	19.67	8.13	27.91	91.8	6.9	2	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	06:33:43	12.4	Bottom	3	2	19.68	8.13	28	89.4	6.93	1.8	1.9
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS5	13:00:43	1.0	Surface	1	1	19.79	8.19	26.4	93.2	7.28	3	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	155	13:00:16	1.0	Surface	1	2	19.77	8.19	26.43	93.3	7.29	3.2	1.8
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	155	13:00:32	4.2	Middle	2	1	19.68	8.18	26.92	92.8	7.24	3.3	2.1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	155	13:00:07	4.2	Middle	2	2	19.68	8.19	26.75	92	7.18	3.6	2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	155	12:59:57	7.3	Bottom	3	1	19.67	8.19	27.22	92.1	7.18	3.5	2.5
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	155	13:00:26	7.3	Bottom	3	2	19.7	8.18	27.36	93.3	7.26	3.3	2.4
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS(Mf)6	13:12:31	1.0	Surface	1	1	19.8	8.15	26.71	95.4	7.44	3	1.5
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS(Mf) 6	13:12:11	1.0	Surface	1	2	19.8	8.15	26.71	93.7	7.3	3	1.7
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS(Mf) 6	13:12:04	2.2	Bottom	3	1	19.8	8.15	26.72	94	7.33	3	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	13:12:23	2.2	Bottom	3	2	19.79	8.15	26.73	94.4	7.36	3	2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	1S7	13:18:49	1.0	Surface	1	1	19.82	8.15	26.69	94.3	7.35	3.2	2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	157	13:17:49	1.0	Surface	1	2	19.8	8.15	26.71	94.5	7.37	3.3	2.1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	157	13:17:43	2.2	Bottom	3	1	19.8	8.15	26.72	94.9	7.4	3.3	2.1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	157	13:18:39	2.2	Bottom	3	2	19.82	8.15	26.69	94	7.33	3.1	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	158	13:51:22	1.0	Surface	1	1	19.79	8.14	26.73	92.6	7.22	15.8	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	158	13:51:12	1.0	Surface	1	2	19.79	8.14	26.74	92.4	7.21	16.2	2.2
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	158	13:51:06	2.8	Bottom	3	1	19.8	8.13	26.85	91.9	7.16	14.9	4.1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	158	13:51:17	2.8	Bottom	3	2	19.79	8.14	26.84	91.5	7.13	14.5	4
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS(Mf)9	13:27:26	1.0	Surface	1	1	19.79	8.15	26.65	94	7.33	3.3	2.4
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	13:27:44	1.0	Surface	1	2	19.77	8.15	26.68	94	7.34	3.2	2.4
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	13:27:37	2.4	Bottom	3	1	19.72	8.15	26.74	93.7	7.32	3.3	2.6
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	13:27:17	2.4	Bottom	3	2	19.76	8.15	26.73	94.3	7.36	3.2	2.1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:29:24	1.0	Surface	1	1	16.12	8.14	26.53	93.3	7.82	3.2	0.9
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:28:55	1.0	Surface	1	2	16.12	8.14	26.48	94.7	7.94	3.2	1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:28:45	5.3	Middle	2	1	16.14	8.12	28.51	95	7.86	3.4	1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:29:14	5.3	Middle	2	2	16.14	8.12	28.37	94.8	7.85	3.4	1
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:28:38	9.6	Bottom	3	1	16.13	8.12	29.06	95.7	7.89	3.4	1.6
HKLR	HY/2011/03	2016-01-04	Mid-Flood	Sunny	IS10	14:29:06	9.6	Bottom	3	2	16.15	8.12	28.94	95.6	7.89	3.5	1.8

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	DO, mg/L	Turbidity, NTU	Ss, mg/L
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	157	14:56:11	2.2	Bottom		1	20.39	8.18	26.97	95.4	7.34	3.6	3.4
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	157	14:55:57	2.2	Bottom	3	2	20.38	8.17	27.07	94.2	7.25	3.5	2.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	158	15:25:57	1.0	Surface	1	1	20.61	8.15	25.49	93	7.19	8.4	7.3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	158	15:25:44	1.0	Surface	1	2	20.62	8.15	25.68	92.3	7.13	8.5	8.2
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	158	15:25:37	2.9	Bottom	3	1	20.62	8.15	25.96	92.7	7.15	8.7	7.2
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	158	15:25:49	2.9	Bottom	3	2	20.61	8.15	25.8	92.6	7.15	8.6	6.2
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	15:03:48	1.0	Surface	1	1	20.58	8.17	26.59	97.2	7.47	3.7	2.7
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS(Mf)9	15:04:06	1.0	Surface	1	2	20.62	8.17	26.55	97.4	7.49	3.6	3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	15:03:41	2.7	Bottom	3	1	20.31	8.17	27.02	98.4	7.58	3.8	3.4
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	15:03:59	2.7	Bottom	3	2	20.3	8.16	27.12	98.5	7.59	3.8	3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:21:55	1.0	Surface	1	1	16.67	8.13	23.11	95.4	8.27	1.4	2.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:21:07	1.0	Surface	1	2	16.42	8.11	23.95	95.6	8.23	1.3	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:21:44	5.6	Middle	2	1	16.43	8.1	23.36	94.7	7.95	1.7	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:21:00	5.6	Middle	2	2	16.35	8.1	24.59	94	7.93	1.6	2.7
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:20:52	10.2	Bottom	3	1	16.34	8.09	26.37	93.4	7.88	2	2.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	IS10	16:21:31	10.2	Bottom	3	2	16.41	8.08	24.4	93.6	7.91	1.9	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR3	14:31:41	0.7	Middle	2	1	20.76	8.24	27.24	92	7.03	18.5	9.1
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR3	14:31:50	0.7	Middle	2	2	20.74	8.23	27.25	92.1	7.03	18.3	8.4
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR4	15:16:45	1.0	Surface	1	1	20.58	8.17	24.8	93.1	7.23	7.7	7.7
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR4	15:16:29	1.0	Surface	1	2	20.59	8.17	24.83	94.1	7.31	7.7	7.9
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR4	15:16:22	2.7	Bottom	3	1	20.59	8.17	25.25	94.3	7.31	7.6	6.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR4	15:16:34	2.7	Bottom	3	2	20.59	8.16	25.93	93.5	7.22	7.8	7.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR5	16:08:12	1.0	Surface	1	1	16.5	8.1	22.65	96.3	8.2	1.7	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR5	16:07:42	1.0	Surface	1	2	16.6	8.1	21.2	96.1	8.23	1.6	3.4
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR5	16:07:27	4.0	Bottom	3	1	16.43	8.08	25.02	95.5	8.03	2.2	,
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR5	16:07:56	4.0	Bottom	3	2	16.52	8.07	26.49	97.2	8.09	2.3	3.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:41:59	1.0	Surface	1	1	19.93	8.15	28.18	86.9	6.7	2.2	3.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:42:44	1.0	Surface	1	2	20.07	8.16	27.59	88	6.79	2.1	3.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:42:32	3.4	Middle	2	1	19.86	8.14	29.26	85.5	6.56	2.6	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:41:50	3.4	Middle	2	2	19.86	8.14	29.27	87.4	6.71	2.7	2.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:42:20	5.7	Bottom	3	1	19.85	8.14	29.31	86	6.6	3.3	2.3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10A	16:41:40	5.7	Bottom	3	2	19.88	8.14	29.04	87.7	6.74	3.1	2.3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10B	16:52:07	1.0	Surface	1	1	20.23	8.18	25.38	90.6	7.06	1.6	2.6
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10B	16:51:49	1.0	Surface	1	2	20.04	8.16	26.51	89.7	6.97	1.6	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10B	16:51:58	4.1	Bottom	3	1	19.95	8.14	29.2	90.1	6.9	1.5	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	SR10B	16:51:42	4.1	Bottom	3	2	20.05	8.15	29.1	90.1	6.89	1.5	2.8
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:54:22	1.0	Surface	1	1	16.77	8.14	24.72	94.9	7.94	2.2	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:53:41	1.0	Surface	1	2	16.82	8.14	25.39	94.6	7.87	2	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:53:31	4.1	Middle	2	1	16.43	8.12	29.77	93	7.59	2.2	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:54:08	4.1	Middle	2	2	16.4	8.1	30.63	93.6	7.61	2.3	3.1
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:53:17	7.2	Bottom	3	1	16.38	8.11	31.78	93.1	7.52	2.5	2.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	CS2	14:53:56	7.2	Bottom	3	2	16.42	8.08	31.75	94.5	7.62	2.5	,
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:58:50	1.0	Surface	1	1	20.18	8.16	26.93	91.3	7.06	2.4	3.1
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:59:28	1.0	Surface	1	2	20.17	8.16	27.36	89.1	6.88	2.4	2.2
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:58:40	6.4	Middle	2	1	19.88	8.13	29.31	88.8	6.81	2.4	2.3
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:59:14	6.4	Middle	2	2	19.86	8.13	29.33	87	6.67	2.4	2.9
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:59:06	11.7	Bottom	3	1	19.86	8.13	29.34	88.2	6.76	2.6	3.5
HKLR	HY/2011/03	2016-01-06	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	15:58:31	11.7	Bottom	3	2	20.06	8.14	29.19	90.6	6.93	2.5	2.4
HKLR	HY/2011/03	2016-01-08	Mid-Ebb	Sunny	IS5	13:02:35	1.0	Surface	1	1	20.13	8.18	26.71	93.9	7.28	5.3	6.1
HKLR	HY/2011/03	2016-01-08	Mid-Ebb	Sunny	155	13:02:10	1.0	Surface	1	2	20.12	8.18	26.72	94.9	7.35	5.3	5.8
HKLR	HY/2011/03	2016-01-08	Mid-Ebb	Sunny	155	13:02:03	4.2	Middle	2	1	20.12	8.18	26.72	94	7.28	5.2	7.6
HKLR	HY/2011/03	2016-01-08	Mid-Ebb	Sunny	155	13:02:28	4.2	Middle	2	2	20.12	8.18	26.72	93.6	7.25	5.3	7

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:39:34	1.0	Surface	1	1	16.63	8.19	30.73	99.1	8.02	3.6	3.5
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:40:05	1.0	Surface	1	2	16.63	8.17	30.71	98.8	7.99	3.4	2.3
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:39:56	3.8	Middle	2	1	16.53	8.18	31.21	98.6	7.97	3.7	2.6
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:39:23	3.8	Middle	2	2	16.59	8.2	31.06	98.7	7.97	4	2.8
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:38:58	6.6	Bottom	3	1	16.38	8.2	32.25	98.5	7.93	3.9	2.3
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	CS2	15:39:46	6.6	Bottom	3	2	16.43	8.17	32.01	100.8	8.12	3.7	2.6
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	17:16:34	1.0	Surface	1	1	20.16	8.2	28.51	93.2	7.13	1.6	2.4
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{Cs}(\mathrm{Mf}) 5$	17:17:14	1.0	Surface	1	2	20.15	8.2	28.6	92.4	7.08	1.7	2.1
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	17:17:07	6.3	Middle	2	1	20.07	8.19	29.17	91.1	6.96	1.6	2
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	17:16:24	6.3	Middle	2	2	20.11	8.19	29	92.6	7.1	1.6	2.2
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{Cs}(\mathrm{Mf}) 5$	17:16:15	11.5	Bottom	3	1	20.09	8.19	29.31	93	7.1	1.7	2.6
HKLR	HY/2011/03	2016-01-08	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	17:17:00	11.5	Bottom	3	2	20.03	8.19	29.48	90.7	6.93	1.6	2.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	155	12:57:05	1.0	Surface	1	1	19.55	8.26	27.66	93.3	7.26	3.2	4.8
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	155	12:56:43	1.0	Surface	1	2	19.58	8.27	27.55	94.3	7.35	3.2	6.5
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	155	12:56:33	4.4	Middle	2	1	19.52	8.28	27.68	93.5	7.29	3.3	7
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS5	12:56:58	4.4	Middle	2	2	19.52	8.27	27.75	93.9	7.31	3.3	6.2
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	155	12:56:52	7.7	Bottom	3	1	19.54	8.27	27.71	94.6	7.37	3.4	5.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	155	12:56:27	7.7	Bottom	3	2	19.55	8.28	27.62	94.7	7.38	3.3	6.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)6	13:06:27	1.0	Surface	1	1	19.6	8.23	27.86	94.2	7.32	2.2	6
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)6	13:06:08	1.0	Surface	1	2	19.53	8.23	28.01	95	7.39	2.2	7.1
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)6	13:05:56	2.2	Bottom	3	1	19.54	8.23	28	96	7.46	2.2	5.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)6	13:06:15	2.2	Bottom	3	2	19.54	8.23	28.04	94.3	7.33	2.2	5.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	1S7	13:10:37	1.0	Surface	1	1	19.59	8.23	27.9	95.1	7.39	2.5	3.6
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	157	13:10:25	1.0	Surface	1	2	19.61	8.23	27.86	94.8	7.36	2.5	3.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	157	13:10:31	2.2	Bottom	3	1	19.56	8.23	28.02	94.8	7.37	2.5	6.2
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	157	13:10:17	2.2	Bottom	3	2	19.59	8.23	27.95	94.2	7.32	2.4	7.4
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	158	13:34:56	1.0	Surface	1	1	19.91	8.21	28.19	96.5	7.44	2.2	4.5
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	158	13:34:43	1.0	Surface	1	2	20.06	8.21	28.18	95.6	7.36	2.2	2.8
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	158	13:34:50	3.0	Bottom	3	1	19.97	8.21	28.15	96.2	7.41	2.2	5.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	158	13:34:36	3.0	Bottom	3	2	20.09	8.21	28.11	96.1	7.39	2.2	4.5
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)9	13:19:21	1.0	Surface	1	1	20.21	8.21	28.21	99.1	7.6	2.8	2.8
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf) 9	13:19:05	1.0	Surface	1	2	20.2	8.21	28.22	97.2	7.45	2.6	2.4
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)9	13:18:56	2.6	Bottom	3	1	20.14	8.21	28.22	98	7.53	2.6	4.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS(Mf)9	13:19:13	2.6	Bottom	3	2	20.13	8.21	28.24	98.8	7.59	2.6	3.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:42:31	1.0	Surface	1	1	16.3	8.19	26.28	101.4	8.5	1.9	4.2
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:43:22	1.0	Surface	1	2	16.34	8.19	25.9	100.6	8.42	1.8	2.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:43:04	5.3	Middle	2	1	16.24	8.19	26.16	100.6	8.4	2.2	5.1
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:42:18	5.3	Middle	2	2	16.19	8.19	26.72	100.5	8.41	2.1	3.4
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:42:54	9.6	Bottom	3	1	16.19	8.18	26.2	99.8	8.34	2.2	6.8
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	IS10	13:42:07	9.6	Bottom	3	2	16.19	8.19	26.86	99.8	8.33	2.3	6.8
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR3	12:47:09	0.7	Middle	2	1	19.66	8.37	26.98	95.5	7.45	2.6	5.4
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR3	12:47:13	0.7	Middle	2	2	19.65	8.37	27.04	95.9	7.49	2.6	5.2
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR4	13:28:35	1.0	Surface	1	1	20.17	8.21	28.18	96	7.37	2.3	5.1
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR4	13:28:48	1.0	Surface	1	2	20.16	8.21	28.18	96.9	7.44	2.3	6.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR4	13:28:40	2.7	Bottom	3	1	20.07	8.21	28.12	94.6	7.28	2.4	3.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR4	13:28:27	2.7	Bottom	3	2	19.99	8.21	28.17	95.2	7.33	2.4	2.9
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR5	13:32:12	1.0	Surface	1	1	16.31	8.19	27.23	100.9	8.39	2.1	6.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR5	13:31:49	1.0	Surface	1	2	16.25	8.19	27.84	100.6	8.34	2	6.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR5	13:31:57	4.0	Bottom	3	1	16.28	8.19	27.71	100.1	8.28	2.2	6.3
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR5	13:31:41	4.0	Bottom	3	2	16.26	8.19	27.98	100	8.29	2.1	6.6
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR10A	14:51:42	1.0	Surface	1	1	20.05	8.21	28.36	95.1	7.31	1.8	2.6
HKLR	HY/2011/03	2016-01-11	Mid-Ebb	Sunny	SR10A	14:51:11	1.0	Surface	1	2	20.07	8.21	28.33	95.1	7.31	1.9	2.7

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO,\%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR4	08:53:35	2.8	Bottom	3	1	19.63	8.19	27.66	93.1	7.24	2.9	6.2
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR4	08:53:44	2.8	Bottom	3	2	19.63	8.19	27.67	93.3	7.26	2.9	5.2
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR5	08:57:51	1.0	Surface	1	1	16.05	8.16	29.47	97.2	8.01	3.5	4.6
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR5	08:58:18	1.0	Surface	1	2	16.04	8.16	29.08	97.3	8.01	3.3	5.6
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR5	08:57:43	4.2	Bottom	3	1	16.05	8.15	29.54	96.9	7.99	3.8	6.6
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR5	08:58:09	4.2	Bottom	3	2	16.05	8.16	29.33	96.9	7.99	3.6	5
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:41:41	1.0	Surface	1	1	19.74	8.14	26.69	93.2	7.28	1.7	3.9
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:42:19	1.0	Surface	1	2	19.73	8.15	26.73	94	7.34	1.7	4.4
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:41:33	3.3	Middle	2	1	19.75	8.14	26.72	92.7	7.24	1.8	4.7
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:42:12	3.3	Middle	2	2	19.76	8.15	26.81	92.4	7.2	1.8	3.3
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:42:01	5.6	Bottom	3	1	19.76	8.15	26.87	92.2	7.19	1.8	4.5
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10A	07:41:25	5.6	Bottom	3	2	19.74	8.14	26.74	92.2	7.2	1.7	4.5
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10B	07:33:00	1.0	Surface	1	1	19.74	8.13	26.43	93.3	7.29	3.3	2.1
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10B	07:32:46	1.0	Surface	1	2	19.73	8.12	26.28	93.4	7.31	3.2	3.7
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10B	07:32:54	4.1	Bottom	3	1	19.74	8.12	26.51	94.3	7.37	3.2	5.2
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	SR10B	07:32:37	4.1	Bottom	3	2	19.75	8.12	26.37	92.6	7.24	3.1	2.9
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:18:16	1.0	Surface	1	1	16.13	8.15	25.52	99.5	8.35	2.8	3.7
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:18:44	1.0	Surface	1	2	16.13	8.15	25.32	100	8.36	2.7	3.8
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:18:06	4.1	Middle	2	1	16.12	8.14	25.81	98.2	8.28	3.3	4
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:18:33	4.1	Middle	2	2	16.11	8.15	25.55	98.6	8.31	3.1	4.5
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:18:26	7.1	Bottom	3	1	16.11	8.14	26.31	97.8	8.23	3.4	6
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS2	10:17:50	7.1	Bottom	3	2	16.1	8.12	27.07	97.5	8.23	3.5	7.4
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	CS(Mf) 5	08:18:20	1.0	Surface	1	1	19.71	8.17	26.99	94.5	7.37	4.1	5.1
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	08:17:34	1.0	Surface	1	2	19.7	8.17	26.91	94.3	7.36	4.3	4.8
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	08:17:17	6.3	Middle	2	1	19.77	8.16	27.3	91.1	7.09	4.2	3.4
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	08:18:05	6.3	Middle	2	2	19.77	8.16	27.36	92.4	7.18	4.2	3.2
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	08:17:10	11.6	Bottom	3	1	19.76	8.16	27.26	92	7.15	4.2	4
HKLR	HY/2011/03	2016-01-11	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	08:17:51	11.6	Bottom	3	2	19.77	8.16	27.36	91	7.07	4.2	3.1
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS5	14:08:27	1.0	Surface	1	1	19.59	8.28	27.08	97.3	7.6	3.6	4.5
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	155	14:08:53	1.0	Surface	1	2	19.62	8.27	27.08	97.7	7.63	3.6	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	155	14:08:41	4.3	Middle	2	1	19.5	8.28	27.21	97	7.58	4	4.4
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	155	14:08:17	4.3	Middle	2	2	19.51	8.29	27.18	96.9	7.58	3.6	4.2
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	155	14:08:35	7.5	Bottom	3	1	19.54	8.28	27.19	96.6	7.55	3.8	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	155	14:08:12	7.5	Bottom	3	2	19.52	8.29	27.14	97	7.58	3.5	4.3
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)6	14:17:58	1.0	Surface	1	1	19.34	8.25	27.07	95.1	7.47	5.1	3.1
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf) 6	14:17:41	1.0	Surface	1	2	19.35	8.26	27.05	95.8	7.52	4.9	5
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf) 6	14:17:50	2.2	Bottom	3	1	19.33	8.25	27.09	95.5	7.49	5.2	5.6
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)6	14:17:32	2.2	Bottom	3	2	19.33	8.26	27.08	95.5	7.49	5.2	4.4
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	157	14:25:19	1.0	Surface	1	1	19.33	8.24	27.1	95.2	7.47	5	4.2
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	157	14:25:05	1.0	Surface	1	2	19.35	8.24	27.09	94.6	7.42	4.6	5.3
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	157	14:24:58	2.6	Bottom	3	1	19.34	8.24	27.12	95.3	7.48	4.9	4.8
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	157	14:25:12	2.6	Bottom	3	2	19.34	8.24	27.12	95.5	7.49	5.1	3.5
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	158	14:56:31	1.0	Surface	1	1	19.68	8.24	27.03	99.9	7.79	3.5	3.1
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	158	14:56:16	1.0	Surface	1	2	19.63	8.24	27.05	100.2	7.82	3.8	2.1
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	158	14:56:08	3.1	Bottom	3	1	19.63	8.24	27.16	99.7	7.78	3.5	3.9
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	158	14:56:24	3.1	Bottom	3	2	19.63	8.24	27.16	100.5	7.84	3.5	4.8
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)9	14:35:45	1.0	Surface	1	1	19.52	8.24	26.94	97.2	7.61	3.4	4.2
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)9	14:35:06	1.0	Surface	1	2	19.5	8.24	26.95	98.8	7.73	3.6	5.1
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)9	14:34:56	2.8	Bottom	3	1	19.46	8.24	27.02	98.9	7.74	3.4	4.3
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS(Mf)9	14:35:30	2.8	Bottom	3	2	19.42	8.24	27.05	97.4	7.64	3.1	3.7
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS10	15:22:41	1.0	Surface	1	1	16.13	8.23	24.86	105.9	8.93	2.1	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Ebb	Sunny	IS10	15:21:47	1.0	Surface	1	2	16.12	8.22	25.02	105.6	8.88	2.2	4.2

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO,\%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	158	10:07:05	3.0	Bottom	3	1	19.43	8.2	27.91	93.8	7.31	5.5	8
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	158	10:06:46	3.0	Bottom	3	2	19.43	8.2	27.9	95	7.4	5.7	8.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	10:36:59	1.0	Surface	1	1	19.48	8.2	27.89	96.4	7.51	3.4	5.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS(Mf)9	10:36:42	1.0	Surface	1	2	19.47	8.19	27.88	98.8	7.7	3.4	6.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	10:36:33	2.5	Bottom	3	1	19.47	8.19	27.92	97.1	7.57	3.4	5.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	10:36:53	2.5	Bottom	3	2	19.47	8.19	27.93	95.4	7.43	3.3	5.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:57:49	1.0	Surface	1	1	15.8	8.16	29.63	102.4	8.46	4.1	3.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:58:23	1.0	Surface	1	2	15.8	8.17	29.04	102.5	8.5	4.2	3.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:58:11	5.3	Middle	2	1	15.77	8.17	29.31	102.2	8.47	5.2	5.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:57:36	5.3	Middle	2	2	15.77	8.16	30.02	102.1	8.42	5.5	4.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:58:01	9.6	Bottom	3	1	15.78	8.16	29.6	100.1	8.31	5.1	4.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	IS10	09:57:27	9.6	Bottom	3	2	15.78	8.16	30.36	101.2	8.37	5.2	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR3	11:12:16	0.7	Middle	2	1	19.23	8.22	27.92	94.7	7.41	3.4	4.8
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR3	11:12:27	0.7	Middle	2	2	19.23	8.22	27.92	95.6	7.48	3.2	4.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR4	10:22:36	1.0	Surface	1	1	19.48	8.18	27.91	94.2	7.34	9.8	10.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR4	10:21:59	1.0	Surface	1	2	19.47	8.17	27.9	95.3	7.43	9.4	11.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR4	10:22:24	2.9	Bottom	3	1	19.47	8.18	27.91	95.4	7.43	9.9	10.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR4	10:21:46	2.9	Bottom	3	2	19.47	8.17	27.9	95.6	7.45	10	10.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR5	10:08:05	1.0	Surface	1	1	15.85	8.15	27.94	103	8.61	3.8	4.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR5	10:08:21	1.0	Surface	1	2	15.85	8.15	27.68	102.6	8.59	3.9	5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR5	10:07:56	4.1	Bottom	3	1	15.81	8.14	28.29	102.7	8.57	3.9	4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR5	10:08:12	4.1	Bottom	3	2	15.83	8.15	27.93	102.5	8.57	3.8	3.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:48:06	1.0	Surface	1	1	19.56	8.12	27.38	92	7.18	1.9	3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:48:36	1.0	Surface	1	2	19.56	8.13	27.46	90.9	7.09	2.1	2.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:48:27	3.3	Middle	2	1	19.58	8.13	27.5	90.7	7.07	2.1	3.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:47:53	3.3	Middle	2	2	19.59	8.12	27.47	91.6	7.13	2.1	2.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:48:18	5.6	Bottom	3	1	19.57	8.12	27.54	90.8	7.07	2.5	2.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10A	08:47:45	5.6	Bottom	3	2	19.58	8.11	27.5	91.9	7.17	2.3	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10b	08:35:53	1.0	Surface	1	1	19.58	8.07	27.2	92.4	7.21	1.8	3.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10b	08:35:21	1.0	Surface	1	2	19.57	8.04	27.05	92.6	7.24	1.7	2.1
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10B	08:35:44	3.8	Bottom	3	1	19.59	8.06	27.23	91.6	7.15	1.9	2.6
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	SR10B	08:35:09	3.8	Bottom	3	2	19.59	8.02	27.05	92.4	7.22	1.8	2.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:17:38	1.0	Surface	1	1	15.82	8.19	26.23	103.2	8.71	3.6	3.4
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:17:07	1.0	Surface	1	2	15.84	8.19	26.05	103	8.71	3.7	3.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:17:30	4.1	Middle	2	1	15.79	8.19	26.41	102.7	8.67	4	3.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:16:55	4.1	Middle	2	2	15.79	8.18	26.03	102.8	8.7	3.8	4.1
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:16:45	7.1	Bottom	3	1	15.79	8.18	25.96	102.7	8.69	3.8	4.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS2	11:17:20	7.1	Bottom	3	2	15.79	8.19	27.15	102.8	8.64	3.9	4.5
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	CS(Mf) 5	09:20:53	1.0	Surface	1	1	19.49	8.19	27.84	96.1	7.49	3.5	2.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	09:21:43	1.0	Surface	1	2	19.47	8.2	27.86	93.7	7.3	3.5	2.9
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	09:21:15	6.5	Middle	2	1	19.63	8.19	28.32	93.6	7.25	5	2.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	09:20:37	6.5	Middle	2	2	19.63	8.18	28.29	94.3	7.31	4.8	3.3
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	09:20:31	11.9	Bottom	3	1	19.61	8.18	28.24	93.3	7.23	4.8	3.2
HKLR	HY/2011/03	2016-01-13	Mid-Flood	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	09:21:06	11.9	Bottom	3	2	19.61	8.19	28.28	93.8	7.27	4.6	4.2
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	IS5	16:12:20	1.0	Surface	1	1	18.82	8.11	26.8	94.5	7.5	4	6.1
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	155	16:11:50	1.0	Surface	1	2	18.82	8.08	26.76	94.4	7.49	3.9	5.4
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	155	16:11:41	4.2	Middle	2	1	18.82	8.07	26.96	94.2	7.47	4.6	3.5
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	155	16:12:09	4.2	Middle	2	2	18.82	8.1	26.98	93.6	7.42	4.4	4.3
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	155	16:11:34	7.3	Bottom	3	1	18.82	8.06	26.96	93.9	7.46	4.5	7.8
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	IS5	16:12:03	7.3	Bottom	3	2	18.82	8.09	26.99	93.6	7.42	4.4	9
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	IS(Mf)6	16:22:22	1.0	Surface	1	1	18.78	8.2	27.11	96.5	7.65	2.8	7.2
HKLR	HY/2011/03	2016-01-15	Mid-Ebb	Rainy	IS(Mf)6	16:22:56	1.0	Surface	1	2	18.77	8.21	27.13	96.4	7.64	2.8	8.2

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	Do,\%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	CS2	12:25:20	7.1	Bottom	3	1	15.56	8.08	25.08	101.7	8.7	3.2	7.4
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	CS2	12:25:57	7.1	Bottom	3	2	15.55	8.11	25.05	101.7	8.7	3.3	8
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	10:51:54	1.0	Surface	1	1	19.34	8.21	27.7	95.1	7.44	8.4	5.5
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	10:52:23	1.0	Surface	1	2	19.33	8.21	27.72	95.3	7.45	8.5	5.4
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	10:52:14	6.2	Middle	2	1	19.34	8.21	27.92	94.8	7.4	8.5	5.1
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	CS(Mf) 5	10:51:44	6.2	Middle	2	2	19.34	8.21	27.9	94.2	7.36	8.5	5.9
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	10:52:03	11.4	Bottom	3	1	19.34	8.21	27.89	94.4	7.37	8.5	6.7
HKLR	HY/2011/03	2016-01-15	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	10:51:35	11.4	Bottom	3	2	19.34	8.21	27.87	94.2	7.35	8.4	5.7
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS5	08:25:04	1.0	Surface	1	1	18.13	8.23	26.5	91.3	7.3	2.8	3.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	155	08:25:39	1.0	Surface	1	2	18.21	8.23	26.64	91.2	7.27	2.8	4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	155	08:25:30	4.2	Middle	2	1	18.41	8.22	27.16	90.3	7.26	3.1	2.5
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	155	08:24:54	4.2	Middle	2	2	18.39	8.21	27.15	90.8	7.26	3	2.8
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	155	08:25:22	7.3	Bottom	3	1	18.44	8.21	27.22	90.1	7.25	3.1	4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	155	08:24:47	7.3	Bottom	3	2	18.33	8.21	27.2	89.8	7.24	3.1	3.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS(Mf)6	08:13:41	1.0	Surface	1	1	18.06	8.21	26.33	93	7.51	2.7	2.9
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS(Mf) 6	08:13:55	1.0	Surface	1	2	18.1	8.21	26.37	92.4	7.46	2.4	3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	08:13:47	2.2	Bottom	3	1	18.1	8.21	26.59	92.8	7.48	2.7	3.9
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS(Mf)6	08:13:33	2.2	Bottom	3	2	18.1	8.2	26.61	94.8	7.64	2.5	2.5
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	157	08:06:54	1.0	Surface	1	1	18.27	8.21	25.93	91.5	7.38	2.1	3.1
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	157	08:06:35	1.0	Surface	1	2	18.28	8.21	25.97	91.9	7.41	2.2	3.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	157	08:06:27	2.2	Bottom	3	1	18.3	8.2	26.19	91.5	7.37	2.2	3.6
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	157	08:06:47	2.2	Bottom	3	2	18.33	8.2	26.31	92	7.39	2.2	4.5
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	158	07:45:26	1.0	Surface	1	1	18.38	8.2	25.46	94.6	7.63	5.7	3.7
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	158	07:45:54	1.0	Surface	1	2	18.28	8.21	25.66	91.6	7.39	5.6	3.7
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	158	07:45:42	3.0	Bottom	3	1	18.44	8.19	26.42	91.4	7.32	5.7	4.9
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	158	07:45:20	3.0	Bottom	3	2	18.36	8.19	27.08	97.9	7.82	5.7	3.5
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	07:57:16	1.0	Surface	1	1	18.27	8.2	25.95	92.7	7.47	2.1	3.2
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS(Mf)9	07:57:30	1.0	Surface	1	2	18.28	8.2	26	93.3	7.52	2.2	4.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS(Mf)9	07:57:21	2.7	Bottom	3	1	18.29	8.19	26.16	92.8	7.47	2.2	3.1
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	07:57:08	2.7	Bottom	3	2	18.27	8.19	26.48	93.5	7.51	2.1	3.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:06:12	1.0	Surface	1	1	14.68	8.09	23.66	96.1	8.43	2.3	3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:06:46	1.0	Surface	1	2	14.67	8.09	23.53	97.8	8.6	2.3	3.8
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:06:31	5.2	Middle	2	1	14.85	8.09	23.79	98.5	8.61	2.5	2.6
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:05:58	5.2	Middle	2	2	14.91	8.08	23.99	97	8.46	2.5	3.8
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:05:48	9.3	Bottom	3	1	15.07	8.07	25.89	99.9	8.58	2.4	3.8
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	IS10	07:06:23	9.3	Bottom	3	2	14.96	8.08	24.76	99	8.59	2.5	3.5
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR3	08:36:17	0.7	Middle	2	1	18.06	8.23	26.51	91.7	7.4	2.8	4.7
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR3	08:36:10	0.7	Middle	2	2	18.07	8.23	26.51	91.6	7.39	2.9	5.1
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR4	07:49:59	1.0	Surface	1	1	18.29	8.21	25.58	91.2	7.37	5.3	3.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR4	07:50:14	1.0	Surface	1	2	18.28	8.21	25.53	91.9	7.42	5.5	4.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR4	07:50:06	2.8	Bottom	3	1	18.33	8.2	26.4	91.8	7.38	5.5	4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR4	07:49:51	2.8	Bottom	3	2	18.3	8.21	26.55	91.3	7.33	5.5	4.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR5	07:15:11	1.0	Surface	1	1	14.66	8.09	23.07	98	8.64	2	3.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR5	07:14:54	1.0	Surface	1	2	14.66	8.08	23.03	96.6	8.52	2	3.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR5	07:14:48	3.8	Bottom	3	1	14.66	8.07	23.04	96.6	8.51	2.2	2.3
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR5	07:15:03	3.8	Bottom	3	2	14.66	8.09	23.1	98.1	8.64	2.1	3.1
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:23:14	1.0	Surface	1	1	18.17	8.16	24.97	91.2	7.41	1.8	3.6
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:23:34	1.0	Surface	1	2	18.21	8.16	24.94	91.6	7.44	1.7	2.4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:23:28	3.3	Middle	2	1	18.43	8.14	26.51	91.4	7.32	1.7	2.6
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:23:04	3.3	Middle	2	2	18.52	8.14	26.52	92	7.35	1.7	2.7
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:22:56	5.5	Bottom	3	1	18.45	8.12	28.06	93.3	7.4	1.8	4
HKLR	HY/2011/03	2016-01-18	Mid-Ebb	Sunny	SR10A	06:23:19	5.5	Bottom	3	2	18.2	8.14	28.28	92.2	7.34	1.8	5.6

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	DO, mg/L	Turbidity, NTU	Ss, mg/L
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS(Mf)9	14:50:15	2.2	Bottom	3	1	18.34	8.23	28.2	94.2	7.48	3.1	2.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{IS}(\mathrm{Mf}) 9$	14:49:49	2.2	Bottom	3	2	18.35	8.23	28.21	93.5	7.43	3.2	4.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:08:13	1.0	Surface	1	1	14.96	8.21	26.12	102.6	8.83	1.3	2.7
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:08:48	1.0	Surface	1	2	14.97	8.21	25.83	102.8	8.85	1.3	2.3
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:08:36	5.4	Middle	2	1	14.97	8.21	26.03	102.5	8.81	1.5	2.1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:08:04	5.4	Middle	2	2	14.97	8.21	25.85	102.3	8.81	1.5	2.2
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:07:50	9.7	Bottom	3	1	14.96	8.21	26.05	102.3	8.8	1.6	2
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	IS10	16:08:24	9.7	Bottom	3	2	14.96	8.21	26.2	102.1	8.78	1.6	3.4
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR3	14:09:34	0.7	Middle	2	1	17.99	8.28	28.39	93.3	7.45	5.7	5.5
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR3	14:09:42	0.7	Middle	2	2	17.98	8.27	28.37	93.6	7.48	5.5	5.2
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR4	15:01:42	1.0	Surface	1	1	18.43	8.24	28.45	92.2	7.3	5.5	5.5
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR4	15:02:02	1.0	Surface	1	2	18.42	8.24	28.44	92.4	7.32	5.8	5.3
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR4	15:01:32	2.8	Bottom	3	1	18.53	8.23	28.71	92.8	7.32	5.3	6.1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR4	15:01:51	2.8	Bottom	3	2	18.53	8.23	28.7	92.6	7.31	5.7	5.6
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR5	16:00:39	1.0	Surface	1	1	14.96	8.2	26.43	102.2	8.75	1.2	1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR5	16:01:10	1.0	Surface	1	2	14.97	8.2	26.37	100.3	8.61	1	1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR5	16:00:48	4.4	Bottom	3	1	14.96	8.2	27.44	99.7	8.5	1.2	1.6
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR5	16:00:26	4.4	Bottom	3	2	14.96	8.2	26.76	100.9	8.66	1.3	1.5
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:36:03	1.0	Surface	1	1	18.79	8.26	29.57	93.6	7.31	1.6	0.9
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:35:37	1.0	Surface	1	2	18.78	8.26	29.57	91.6	7.16	1.5	1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:35:28	3.3	Middle	2	1	18.8	8.26	29.59	91.6	7.16	1.5	1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:35:54	3.3	Middle	2	2	18.8	8.26	29.6	93.9	7.33	1.6	0.9
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:35:20	5.6	Bottom	3	1	18.81	8.26	29.63	91	7.1	1.9	1.3
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10A	16:35:47	5.6	Bottom	3	2	18.8	8.26	29.62	92	7.18	1.8	1.4
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10B	16:46:39	1.0	Surface	1	1	18.77	8.26	29.58	94.1	7.36	1.6	0.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10B	16:46:20	1.0	Surface	1	2	18.78	8.26	29.58	93	7.26	1.4	0.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10B	16:46:11	4.4	Bottom	3	1	18.78	8.26	29.6	93.4	7.3	1.5	0.9
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	SR10B	16:46:26	4.4	Bottom	3	2	18.77	8.26	29.59	92.1	7.19	1.5	1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:46:10	1.0	Surface	1	1	14.97	8.23	33.02	101.1	8.33	1.1	1.3
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:45:37	1.0	Surface	1	2	14.97	8.24	33.15	101.7	8.37	1	1.2
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:46:02	4.1	Middle	2	1	14.97	8.23	33.06	100.4	8.27	1.1	1.6
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:45:23	4.1	Middle	2	2	14.96	8.26	33.21	100.6	8.28	1.1	1.4
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:45:08	7.2	Bottom	3	1	14.97	8.28	33.28	99	8.16	1.1	1.4
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS2	14:45:52	7.2	Bottom	3	2	14.97	8.24	33.1	99.3	8.18	1.2	1.4
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	15:53:29	1.0	Surface	1	1	18.79	8.25	29.51	94	7.35	1.6	0.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	15:54:20	1.0	Surface	1	2	18.78	8.25	29.52	93.4	7.3	1.6	0.9
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	CS(Mf) 5	15:54:03	7	Middle	2	1	18.82	8.25	29.67	90.1	7.03	1.8	1.1
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	15:53:18	7	Middle	2	2	18.82	8.24	29.64	91.5	7.14	1.7	0.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	15:53:12	12.9	Bottom	3	1	18.81	8.24	29.62	91.6	7.15	1.8	0.8
HKLR	HY/2011/03	2016-01-20	Mid-Flood	Rainy	$\mathrm{CS}(\mathrm{Mf}) 5$	15:53:55	12.9	Bottom	3	2	18.82	8.25	29.68	90.9	7.09	1.8	0.8
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS5	13:01:57	1.0	Surface	1	1	17.94	8.23	28.06	91.4	7.32	4.8	4.8
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	155	13:01:32	1.0	Surface	1	2	17.95	8.23	28	91	7.29	4.7	4.4
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS5	13:01:49	4.3	Middle	2	1	17.96	8.23	28.09	90.8	7.28	4.9	4.8
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	155	13:01:23	4.3	Middle	2	2	17.96	8.23	28.08	90.9	7.28	4.8	5.4
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	155	13:01:15	7.5	Bottom	3	1	17.95	8.22	28.04	90.6	7.27	5.1	5.4
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	155	13:01:43	7.5	Bottom	3	2	17.96	8.23	28.08	90.8	7.27	5.2	5.5
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS(Mf)6	12:54:45	1.0	Surface	1	1	17.96	8.21	27.94	92.8	7.44	9.5	8.4
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS(Mf)6	12:54:13	1.0	Surface	1	2	17.95	8.21	27.91	93	7.46	9.6	8.3
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS(Mf) 6	12:54:02	2.4	Bottom	3	1	17.94	8.21	27.82	90.7	7.27	9.8	9.3
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS(Mf) 6	12:54:21	2.4	Bottom	3	2	17.96	8.21	27.92	90.8	7.28	9.8	9.5
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	IS7	12:47:09	1.0	Surface	1	1	18.12	8.23	28.05	90.9	7.26	3	4.4
HKLR	HY/2011/03	2016-01-22	Mid-Ebb	Cloudy	157	12:47:26	1.0	Surface	1	2	18.11	8.23	28.02	91.2	7.29	3	3.8

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO,\%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	155	16:25:58	7.6	Bottom	3	1	17.87	8.2	27	89.8	7.24	5.6	8.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS5	16:26:17	7.6	Bottom	3	2	17.85	8.21	27.04	89.9	7.25	5.4	8.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)6	16:30:43	1.0	Surface	1	1	17.87	8.22	27.13	90	7.27	6.3	9.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)6	16:30:53	1.0	Surface	1	2	17.86	8.22	27.1	90	7.26	6.2	9.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)6	16:30:38	2.6	Bottom	3	1	17.81	8.22	27.07	89.6	7.23	6.4	8.7
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{IS}(\mathrm{Mf}) 6$	16:30:49	2.6	Bottom	3	2	17.85	8.22	27.14	89.7	7.26	6.5	8.8
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS7	16:37:17	1.0	Surface	1	1	17.75	8.22	27.13	93.6	7.55	4.3	5.9
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	157	16:37:29	1.0	Surface	1	2	17.74	8.22	27.15	93.3	7.57	4.2	6.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	157	16:37:23	2.5	Bottom	3	1	17.66	8.22	27.15	92.2	7.45	4.5	7.5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	157	16:37:11	2.5	Bottom	3	2	17.74	8.21	27.22	91.9	7.43	4.4	6.3
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	158	16:58:12	1.0	Surface	1	1	17.96	8.23	27.62	91	7.3	5.6	3.6
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS8	16:57:57	1.0	Surface	1	2	17.93	8.23	27.62	90.8	7.29	5.6	3
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	158	16:58:05	2.9	Bottom	3	1	17.94	8.23	27.67	90.2	7.25	5.7	3.5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS8	16:57:48	2.9	Bottom	3	2	17.92	8.23	27.63	90.1	7.23	5.8	4.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)9	16:44:31	1.0	Surface	1	1	17.93	8.22	27.45	95.5	7.69	2.9	5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)9	16:44:45	1.0	Surface	1	2	17.98	8.22	27.54	96.5	7.77	2.9	4.6
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS(Mf)9	16:44:26	2.7	Bottom	3	1	17.88	8.22	27.45	93.2	7.5	2.9	5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{IS}(\mathrm{Mf}) 9$	16:44:39	2.7	Bottom	3	2	17.91	8.22	27.51	93.5	7.53	3	4.6
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	17:01:13	1.0	Surface	1	1	14.5	8.13	24.04	98	8.59	2.3	4.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	17:00:42	1.0	Surface	1	2	14.45	8.12	23.6	97.9	8.64	2.4	3.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	17:01:04	5.2	Middle	2	1	14.58	8.12	24.44	95	8.35	2.3	3.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	17:00:10	5.2	Middle	2	2	14.57	8.12	24.68	97.5	8.51	2.4	4.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	17:00:55	9.3	Bottom	3	1	14.56	8.12	24.36	96	8.41	2.5	4.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	IS10	16:59:59	9.3	Bottom	3	2	14.6	8.12	24.86	94.9	8.3	2.5	3.3
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR3	16:20:53	0.8	Middle	2	1	17.88	8.16	26.82	91.5	7.39	6.9	5.7
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR3	16:20:49	0.8	Middle	2	2	17.88	8.15	26.8	92.2	7.45	7	5.7
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR4	16:50:25	1.0	Surface	1	1	17.89	8.22	27.5	93.9	7.55	3.7	4.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR4	16:50:42	1.0	Surface	1	2	17.97	8.22	27.57	93.3	7.53	3.7	3.5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR4	16:50:36	2.9	Bottom	3	1	17.97	8.22	27.68	92.9	7.47	3.8	4.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR4	16:50:16	2.9	Bottom	3	2	17.87	8.22	27.56	91.4	7.36	3.9	4.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR5	16:45:59	1.0	Surface	1	1	14.49	8.1	24.77	95.5	8.36	1.5	3.8
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR5	16:46:15	1.0	Surface	1	2	14.49	8.1	24.64	95.6	8.38	1.5	3
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR5	16:46:07	4.4	Bottom	3	1	14.53	8.1	25.03	96.4	8.42	1.6	3.9
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR5	16:45:49	4.4	Bottom	3	2	14.53	8.09	25.2	96.1	8.39	1.6	4.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:13:02	1.0	Surface	1	1	18.48	8.24	29.34	91.9	7.22	1.1	3.6
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:12:35	1.0	Surface	1	2	18.48	8.24	29.31	91.9	7.18	1.2	4.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:12:27	3.4	Middle	2	1	18.5	8.23	29.31	90.7	7.14	1.3	5.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:12:53	3.4	Middle	2	2	18.49	8.24	29.35	90.9	7.16	1.3	4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:12:21	5.7	Bottom	3	1	18.47	8.23	29.3	89.5	7.04	1.5	3.8
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10A	18:12:46	5.7	Bottom	3	2	18.48	8.24	29.34	90.3	7.1	1.5	3.7
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10B	18:18:11	1.0	Surface	1	1	18.48	8.25	29.37	88.9	7	1.1	2.3
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10B	18:18:24	1.0	Surface	1	2	18.5	8.25	29.38	89	7	1	3.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10B	18:18:04	4.2	Bottom	3	1	18.47	8.25	29.37	88.3	6.95	1.1	3.8
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	SR10B	18:18:18	4.2	Bottom	3	2	18.48	8.25	29.38	88.4	6.96	1.1	3.4
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:58	1.0	Surface	1	1	14.63	8.1	25.71	97	8.42	1.4	3.5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:28	1.0	Surface	1	2	14.63	8.1	25.95	96	8.3	1.5	3.5
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:17	4.0	Middle	2	1	14.61	8.1	26.21	95.7	8.3	1.4	3.9
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:43	4.0	Middle	2	2	14.6	8.1	26.27	96.6	8.36	1.5	3.9
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:00	6.9	Bottom	3	1	14.6	8.08	26.45	94.7	8.19	1.6	4.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS2	15:41:37	6.9	Bottom	3	2	14.61	8.1	26.3	96.4	8.34	1.5	4.9
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	17:31:53	1.0	Surface	1	1	18.27	8.26	28.44	92	7.3	1.1	6
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	17:32:15	1.0	Surface	1	2	18.27	8.26	28.45	92	7.31	1.1	5.8

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	Do,\%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS(Mf)5	17:31:43	6.8	Middle	2	1	18.28	8.25	28.44	91.3	7.25	1.2	5.2
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	17:32:09	6.8	Middle	2	2	18.29	8.26	28.46	91.4	7.26	1.1	4.7
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	17:32:03	12.5	Bottom	3	1	18.27	8.26	28.46	91.2	7.24	1.2	5.1
HKLR	HY/2011/03	2016-01-22	Mid-Flood	Cloudy	CS(Mf) 5	17:31:35	12.5	Bottom	3	2	18.28	8.25	28.44	91.1	7.23	1.3	6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:07:35	1.0	Surface	1	1	14.61	8.42	27.74	90.9	7.79	6.1	8.5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:08:06	1.0	Surface	1	2	14.63	8.4	27.8	89.6	7.68	5.8	8.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:07:25	4.2	Middle	2	1	14.59	8.43	27.97	89.9	7.7	5.9	9.5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:07:54	4.2	Middle	2	2	14.57	8.41	28.02	89.4	7.66	5.9	8.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:07:44	7.3	Bottom	3	1	14.58	8.42	27.99	89.1	7.63	6	8.4
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	155	13:07:12	7.3	Bottom	3	2	14.57	8.44	27.97	89.5	7.67	5.7	8.7
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf) 6	13:15:36	1.0	Surface	1	1	14.69	8.33	27.79	91	7.79	10.7	13
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf)6	13:15:21	1.0	Surface	1	2	14.54	8.34	27.8	91.7	7.87	10.4	14.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf)6	13:15:27	2.2	Bottom	3	1	14.5	8.34	27.89	90.5	7.77	10.5	13.4
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf)6	13:15:12	2.2	Bottom	3	2	14.51	8.34	27.86	92.1	7.91	10.6	13.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	157	13:22:13	1.0	Surface	1	1	14.61	8.32	27.85	90.8	7.78	10.5	11.9
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	157	13:21:58	1.0	Surface	1	2	14.68	8.32	27.83	91.4	7.83	10.5	12.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	157	13:22:06	2.2	Bottom	3	1	14.59	8.32	27.89	91.4	7.84	10.6	12.7
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	157	13:21:47	2.2	Bottom	3	2	14.57	8.32	27.9	90.7	7.78	10.5	13.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	158	13:45:12	1.0	Surface	1	1	15.24	8.33	27.79	90.2	7.64	5.7	8.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	158	13:45:29	1.0	Surface	1	2	15.36	8.32	27.78	90.4	7.63	5.8	8.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	158	13:45:21	2.8	Bottom	3	1	15.67	8.31	29.14	91.2	7.59	5.7	7.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	158	13:45:03	2.8	Bottom	3	2	15.51	8.32	29.17	91.7	7.66	5.8	8.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf)9	13:29:11	1.0	Surface	1	1	15.55	8.3	28.37	92.4	7.74	4.7	5.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS(Mf)9	13:29:27	1.0	Surface	1	2	15.53	8.3	28.38	92.1	7.72	4.7	4.7
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	13:29:03	2.8	Bottom	3	1	15.54	8.29	28.43	93.2	7.81	4.7	5.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	13:29:17	2.8	Bottom	3	2	15.54	8.3	28.46	92.9	7.78	4.6	5.5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:35:55	1.0	Surface	1	1	13.05	8.41	29.31	97.7	8.6	2.2	3.9
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:36:27	1.0	Surface	1	2	13.03	8.42	29.2	98.2	8.61	2.1	4.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:36:22	5.3	Middle	2	1	12.86	8.42	29.28	97.8	8.59	2.2	3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:35:46	5.3	Middle	2	2	12.97	8.41	29.35	97.7	8.58	2.3	4.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:35:32	9.5	Bottom	3	1	12.8	8.41	29.2	97.2	8.57	2.4	3.7
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	IS10	13:36:14	9.5	Bottom	3	2	12.71	8.42	29.2	97.9	8.58	2.3	3.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR3	12:56:31	0.7	Middle	2	1	14.49	8.56	27.52	94.2	8.11	6.7	7.9
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR3	12:56:35	0.7	Middle	2	2	14.49	8.56	27.54	93.1	8.01	6.7	7.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR4	13:38:31	1.0	Surface	1	1	15.22	8.32	27.78	91	7.71	6.5	8.4
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR4	13:38:54	1.0	Surface	1	2	14.97	8.32	27.92	89.8	7.63	6.5	7.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR4	13:38:40	2.7	Bottom	3	1	15.55	8.31	28.91	92	7.68	6.4	8.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR4	13:38:23	2.7	Bottom	3	2	15.37	8.31	29.18	92.6	7.75	6.5	7.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR5	13:22:07	1.0	Surface	1	1	13.04	8.39	30.74	100.5	8.68	2.1	4.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR5	13:22:35	1.0	Surface	1	2	13.06	8.41	30.39	100.4	8.65	2.1	5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR5	13:21:56	3.9	Bottom	3	1	12.95	8.39	30.87	98.9	8.6	2.3	4.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR5	13:22:18	3.9	Bottom	3	2	12.96	8.4	30.53	98.6	8.58	2.2	4.4
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:52:21	1.0	Surface	1	1	16.89	8.35	29.2	91.3	7.41	2.1	3.9
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:51:54	1.0	Surface	1	2	16.89	8.35	29.23	91.6	7.44	2.2	3.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:52:12	3.3	Middle	2	1	16.87	8.35	29.29	91	7.39	2.2	3.5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:51:48	3.3	Middle	2	2	16.89	8.35	29.27	91	7.39	2.2	3.5
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:51:37	5.6	Bottom	3	1	16.88	8.35	29.28	90.7	7.37	2.2	3.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10A	14:52:02	5.6	Bottom	3	2	16.87	8.35	29.32	90.3	7.33	2.3	3.7
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10B	15:01:52	1.0	Surface	1	1	16.89	8.35	29.16	92	7.47	1.9	3.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10B	15:01:37	1.0	Surface	1	2	16.88	8.35	29.21	91.2	7.41	1.9	3.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10B	15:01:31	3.9	Bottom	3	1	16.88	8.35	29.22	91	7.39	1.9	3.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	SR10B	15:01:43	3.9	Bottom	3	2	16.88	8.35	29.19	91.7	7.45	1.9	4.7

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:16:55	1.0	Surface	1	1	12.86	8.33	34.77	99.5	8.47	3.4	5.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:16:16	1.0	Surface	1	2	12.84	8.3	34.81	99.1	8.44	3.3	6.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:16:06	3.9	Middle	2	1	12.8	8.29	34.83	98.6	8.39	3.5	6.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:16:45	3.9	Middle	2	2	12.83	8.32	34.81	98.8	8.41	3.6	4.9
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:15:53	6.8	Bottom	3	1	12.81	8.27	34.85	98.5	8.38	3.7	5.3
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS2	12:16:36	6.8	Bottom	3	2	12.82	8.32	34.82	98.4	8.38	3.7	5.2
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	14:17:24	1.0	Surface	1	1	16.86	8.35	29.37	91	7.38	2.3	3.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	14:16:53	1.0	Surface	1	2	16.88	8.35	29.31	91.5	7.42	2.2	3.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	CS(Mf) 5	14:17:15	6.4	Middle	2	1	16.81	8.35	29.55	90.8	7.37	2.4	3.1
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	14:16:40	6.4	Middle	2	2	16.81	8.35	29.55	91.1	7.4	2.4	2.8
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	14:16:26	11.7	Bottom	3	1	16.82	8.35	29.6	90	7.31	2.5	4.6
HKLR	HY/2011/03	2016-01-25	Mid-Ebb	Sunny	$\mathrm{CS}(\mathrm{Mf}) 5$	14:17:04	11.7	Bottom	3	2	16.83	8.35	29.58	89.9	7.29	2.4	3.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS5	09:31:00	1.0	Surface	1	1	14.56	8.26	28.85	91.2	7.78	7.2	7.9
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	155	09:32:00	1.0	Surface	1	2	14.56	8.27	28.86	91.7	7.82	7.4	8.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS5	09:30:42	4.3	Middle	2	1	14.51	8.26	28.87	90.3	7.71	7.3	8.9
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS5	09:31:48	4.3	Middle	2	2	14.55	8.27	28.87	90	7.67	7.4	8.4
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS5	09:31:40	7.6	Bottom	3	1	14.55	8.27	28.87	89.5	7.63	7.3	9.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS5	09:30:34	7.6	Bottom	3	2	14.52	8.26	28.82	89.8	7.65	7.1	9.2
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	09:21:49	1.0	Surface	1	1	14.54	8.25	28.79	92.7	7.91	8.2	7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	09:21:35	1.0	Surface	1	2	14.54	8.25	28.77	93.1	7.94	8	7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	09:21:40	2.2	Bottom	3	1	14.54	8.25	28.78	93.1	7.94	8.1	6.3
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 6$	09:21:28	2.2	Bottom	3	2	14.54	8.24	28.75	94.2	8.04	7.9	6.2
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS7	09:15:24	1.0	Surface	1	1	15.03	8.28	29.23	90.2	7.6	5.8	6.5
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	157	09:15:35	1.0	Surface	1	2	15.02	8.28	29.21	89.5	7.54	5.8	6.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	157	09:15:29	2.3	Bottom	3	1	15.02	8.28	29.22	90	7.58	6	7.3
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	157	09:15:18	2.3	Bottom	3	2	15.04	8.28	29.26	90	7.58	5.9	6.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	158	08:51:28	1.0	Surface	1	1	15.98	8.28	29.7	93.1	7.67	5.3	7.1
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	158	08:51:41	1.0	Surface	1	2	15.98	8.28	29.72	93.2	7.68	5.3	6.1
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	158	08:51:20	2.9	Bottom	3	1	15.98	8.27	29.69	94.4	7.78	5.4	8.1
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	158	08:51:33	2.9	Bottom	3	2	15.99	8.28	29.71	92.5	7.63	5.3	6.9
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS(Mf)9	09:08:18	1.0	Surface	1	1	15.06	8.28	29.25	89.8	7.56	6	6.5
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	09:08:02	1.0	Surface	1	2	15.06	8.28	29.24	92.9	7.82	6	7.4
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	09:08:13	2.8	Bottom	3	1	15.06	8.28	29.25	90.7	7.63	6.1	7.9
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	$\mathrm{IS}(\mathrm{Mf}) 9$	09:07:54	2.8	Bottom	3	2	15.06	8.28	29.24	90	7.58	6.3	7.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:32:26	1.0	Surface	1	1	12.12	8.34	30.45	98	8.66	6.1	8.5
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:31:34	1.0	Surface	1	2	12.08	8.33	30.86	98.6	8.69	6.3	7.9
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:32:11	5.3	Middle	2	1	12.1	8.34	30.76	97.3	8.55	6.5	8.3
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:31:19	5.3	Middle	2	2	12.09	8.32	31.16	96.8	8.58	6.5	7.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:31:57	9.5	Bottom	3	1	12.1	8.33	30.69	96.3	8.5	6.8	8.2
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	IS10	08:31:04	9.5	Bottom	3	2	12.1	8.32	31.21	95.6	8.45	6.7	7.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR3	09:39:42	0.7	Middle	2	1	14.56	8.27	28.87	90.8	7.74	6.8	9.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR3	09:39:38	0.7	Middle	2	2	14.56	8.27	28.87	90.2	7.69	6.9	8.8
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR4	08:57:49	1.0	Surface	1	1	15.98	8.29	29.76	91.6	7.54	5.1	6.8
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR4	08:58:05	1.0	Surface	1	2	15.98	8.29	29.76	91	7.5	5.1	6.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR4	08:57:55	2.6	Bottom	3	1	15.98	8.29	29.76	90.8	7.48	5.2	8.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR4	08:57:40	2.6	Bottom	3	2	15.98	8.29	29.76	91.4	7.53	5.2	8.2
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR5	08:40:30	1.0	Surface	1	1	12.09	8.34	29.58	96.5	8.61	5.8	9.8
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR5	08:41:40	1.0	Surface	1	2	12.09	8.29	28.98	96.8	8.68	5.8	9.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR5	08:40:16	4.1	Bottom	3	1	12.12	8.34	29.68	95.2	8.51	6	8.6
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR5	08:41:27	4.1	Bottom	3	2	12.12	8.24	29.24	95.7	8.56	6.1	8.7
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR10A	07:43:42	1.0	Surface	1	1	16.65	8.22	29.18	90.5	7.39	6.3	9.2
HKLR	HY/2011/03	2016-01-25	Mid-Flood	Sunny	SR10A	07:42:54	1.0	Surface	1	2	16.66	8.2	29.1	91.8	7.49	6.1	9.4

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	Do,\%	Do, mg/L	Turbidity, N	mg/L
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	IS10	09:24:19	5.3	Middle	2	1	11.56	8.37	34.72	97.7	8.54	6.1	10.9
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	IS10	09:23:49	5.3	Middle	2	2	11.59	8.36	34.72	98	8.57	5.7	12
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	IS10	09:23:37	9.5	Bottom	3	1	11.59	8.36	34.72	98	8.56	6	10.5
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	IS10	09:24:09	9.5	Bottom	3	2	11.58	8.37	34.71	97.9	8.56	5.7	11.6
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR3	10:21:03	0.6	Middle	2	1	14.43	8.25	29	88.4	7.55	5.5	9.4
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR3	10:21:09	0.6	Middle	2	2	14.43	8.25	29	88.8	7.58	5.5	10.4
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR4	09:40:02	1.0	Surface	1	1	14.76	8.26	29.07	89.6	7.6	6.5	10.2
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR4	09:39:48	1.0	Surface	1	2	14.78	8.26	29.08	88.6	7.51	6.6	10.9
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR4	09:39:41	2.9	Bottom	3	1	14.79	8.26	29.13	88.7	7.51	6.4	10.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR4	09:39:54	2.9	Bottom	3	2	14.77	8.26	29.11	89.2	7.55	6.5	11.3
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR5	09:32:15	1.0	Surface	1	1	11.6	8.35	34.47	97.9	8.57	5.6	5
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR5	09:32:39	1.0	Surface	1	2	11.59	8.37	34.3	98.1	8.59	5.6	4.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR5	09:32:29	3.9	Bottom	3	1	11.59	8.36	34.35	97.8	8.57	5.7	4.1
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR5	09:32:00	3.9	Bottom	3	2	11.6	8.31	34.59	97.8	8.55	5.3	5.5
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:23:02	1.0	Surface	1	1	16.04	8.24	28.63	89.1	7.39	3.7	3.7
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:22:36	1.0	Surface	1	2	16.05	8.23	28.56	89.2	7.39	3.8	4.3
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:22:27	3.2	Middle	2	1	16.06	8.23	28.67	88.9	7.37	4.4	4.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:22:55	3.2	Middle	2	2	16.02	8.24	28.76	89.3	7.4	4.2	5.2
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:22:16	5.4	Bottom	3	1	15.99	8.23	28.69	88.5	7.34	4.5	4.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10A	08:22:48	5.4	Bottom	3	2	16.03	8.24	28.77	88.8	7.36	4.3	3.7
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10B	08:12:31	1.0	Surface	1	1	16.07	8.2	28.3	90.8	7.53	3.5	3.5
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10B	08:11:37	1.0	Surface	1	2	16.05	8.17	28.08	90.4	7.52	3.6	4.3
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10b	08:11:29	4.2	Bottom	3	1	16.07	8.16	28.09	90.9	7.55	3.7	6.3
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	SR10B	08:12:18	4.2	Bottom	3	2	15.98	8.19	28.34	90.2	7.49	3.6	5.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:47:58	1.0	Surface	1	1	11.63	8.39	29.92	97.9	8.81	12.7	15.7
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:47:19	1.0	Surface	1	2	11.63	8.38	30.16	98.1	8.81	12.5	16
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:47:07	3.8	Middle	2	1	11.61	8.37	30.66	97.5	8.74	14.5	15.9
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:47:46	3.8	Middle	2	2	11.61	8.38	30.01	97.7	8.79	14.3	16.7
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:46:51	6.6	Bottom	3	1	11.6	8.35	30.12	97.4	8.76	14.8	15.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	CS2	10:47:37	6.6	Bottom	3	2	11.61	8.38	30.06	97.6	8.78	14.3	15.3
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:00:33	1.0	Surface	1	1	16	8.25	28.93	89.9	7.44	4.5	5.9
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:01:17	1.0	Surface	1	2	15.9	8.26	29.11	89.6	7.44	4.4	4.8
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:00:21	6.4	Middle	2	1	15.76	8.26	29.12	89.7	7.45	4.5	5.2
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:01:08	6.4	Middle	2	2	15.78	8.26	29.21	89.3	7.41	4.6	5.4
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:00:56	11.7	Bottom	3	1	15.78	8.26	29.24	88.8	7.35	4.6	6
HKLR	HY/2011/03	2016-01-27	Mid-Flood	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	09:00:11	11.7	Bottom	3	2	15.76	8.25	29.18	88.9	7.39	4.6	6.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	155	15:15:37	1.0	Surface	1	1	15.46	8.24	27.14	91.8	7.76	8.4	7.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS5	15:15:12	1.0	Surface	1	2	15.45	8.24	27.25	91.7	7.74	8.4	7.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	155	15:15:05	4.1	Middle	2	1	15.41	8.23	27.59	91.4	7.73	9.3	8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	155	15:15:30	4.1	Middle	2	2	15.31	8.23	27.88	91.7	7.73	8.7	7.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	155	15:15:22	7.1	Bottom	3	1	15.35	8.22	27.97	91.2	7.7	8.8	8.6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	155	15:14:54	7.1	Bottom	3	2	15.47	8.23	27.53	90.4	7.64	8.9	7.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS(Mf)6	15:26:39	1.0	Surface	1	1	15.61	8.25	27.16	92.3	7.79	12.2	8.8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS(Mf)6	15:26:24	1.0	Surface	1	2	15.56	8.24	27.03	92.6	7.82	12.4	9.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS(Mf)6	15:26:13	2.3	Bottom	3	1	15.41	8.24	27.78	94.4	7.97	12.6	9.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS(Mf) 6	15:26:31	2.3	Bottom	3	2	15.41	8.24	27.71	92.1	7.77	12.5	9
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	157	15:34:46	1.0	Surface	1	1	15.58	8.24	26.92	92.7	7.83	6.4	8.8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	157	15:35:09	1.0	Surface	1	2	15.51	8.24	27.23	90.6	7.65	6.5	8.6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	157	15:34:37	2.1	Bottom	3	1	15.48	8.24	27.49	92	7.76	6.6	9.2
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	157	15:35:02	2.1	Bottom	3	2	15.39	8.24	27.83	90.4	7.63	6.5	9.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	158	15:58:27	1.0	Surface	1	1	15.61	8.24	28.11	93	7.79	8.4	5.8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	158	15:58:13	1.0	Surface	1	2	15.57	8.24	28.16	94.4	7.92	8.2	5.3

Project	Works	Date (yyyy-mm-dd)	Tide	Weather Condition	Station	Time	Depth, m	Level	Level_Code	Replicate	Temperature, ${ }^{\circ} \mathrm{C}$	pH	Salinity, ppt	DO, \%	Do, mg/L	Turbidity,	mg/L
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	158	15:58:04	2.9	Bottom	3	1	15.51	8.24	28.33	92.7	7.78	8.4	8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	158	15:58:20	2.9	Bottom	3	2	15.56	8.24	28.26	92.8	7.78	8.5	7.2
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{IS}(\mathrm{Mf}) 9$	15:40:40	1.0	Surface	1	1	15.76	8.23	28.16	93.8	7.84	10.6	11.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS(Mf)9	15:40:55	1.0	Surface	1	2	15.76	8.24	28.16	93.7	7.83	10.6	11.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{IS}(\mathrm{Mf}) 9$	15:40:48	2.8	Bottom	3	1	15.73	8.23	28.23	93.7	7.83	10.9	12
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{IS}(\mathrm{Mf}) 9$	15:40:33	2.8	Bottom	3	2	15.74	8.23	28.21	94.2	7.87	10.9	13.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	15:59:20	1.0	Surface	1	1	11.84	8.35	23.28	95.7	8.94	2.6	4.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	16:00:04	1.0	Surface	1	2	11.76	8.4	23.36	95.6	8.94	2.9	4.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	15:59:55	5.3	Middle	2	1	11.79	8.37	28.32	97.4	8.83	3.1	5.5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	15:59:10	5.3	Middle	2	2	11.79	8.31	28.37	97.4	8.82	2.9	5.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	15:59:01	9.5	Bottom	3	1	11.8	8.27	28.51	97	8.78	3	5.8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	IS10	15:59:44	9.5	Bottom	3	2	11.79	8.36	28.5	97.4	8.82	3.3	5.5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR3	15:01:30	0.7	Middle	2	1	15.74	8.23	26.24	94.1	7.96	6.3	8.9
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR3	15:01:25	0.7	Middle	2	2	15.72	8.23	26.3	94.4	7.99	6.3	9.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR4	15:51:02	1.0	Surface	1	1	15.69	8.24	28.02	93.4	7.82	7.4	5.5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR4	15:50:44	1.0	Surface	1	2	15.62	8.24	28.11	92.6	7.77	7.2	5.6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR4	15:50:49	2.9	Bottom	3	1	15.58	8.24	28.23	92.3	7.74	7.7	6.9
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR4	15:50:33	2.9	Bottom	3	2	15.61	8.24	28.2	92.7	7.77	7.1	7.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR5	15:51:57	1.0	Surface	1	1	11.84	8.34	23.8	95.5	8.89	2.5	3.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR5	15:52:19	1.0	Surface	1	2	11.84	8.37	23.57	96	8.95	2.6	2.9
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR5	15:52:09	4.0	Bottom	3	1	11.8	8.33	28.71	97.1	8.77	2.9	4.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR5	15:51:44	4.0	Bottom	3	2	11.8	8.31	28.96	96.4	8.7	2.8	4.6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:29	1.0	Surface	1	1	15.83	8.25	29.06	92.1	7.64	3	4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:49	1.0	Surface	1	2	15.83	8.25	29.08	92.4	7.66	3.1	3.4
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:22	3.2	Middle	2	1	15.85	8.25	29.25	91.9	7.62	2.9	3.9
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:43	3.2	Middle	2	2	15.84	8.25	29.23	92.1	7.63	3	4.6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:17	5.4	Bottom	3	1	15.83	8.25	29.25	91.7	7.6	3	6.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10A	17:01:36	5.4	Bottom	3	2	15.83	8.25	29.23	92	7.63	3	5.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10B	17:12:53	1.0	Surface	1	1	15.83	8.25	29.01	92.5	7.68	3.2	5.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10B	17:13:07	1.0	Surface	1	2	15.84	8.26	29.06	91.8	7.62	3.1	5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10B	17:12:43	3.7	Bottom	3	1	15.83	8.25	29.13	91.4	7.58	3.3	6.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	SR10B	17:13:00	3.7	Bottom	3	2	15.84	8.25	29.22	92.3	7.65	3.2	6.5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:36:46	1.0	Surface	1	1	11.83	8.33	27.25	94.5	8.62	2.9	5.8
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:36:06	1.0	Surface	1	2	11.84	8.28	27.28	96.8	8.82	2.9	5.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:35:55	3.7	Middle	2	1	11.69	8.25	29.11	95.6	8.63	3.7	6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:36:33	3.7	Middle	2	2	11.68	8.31	28.91	96.3	8.71	3.6	4.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:35:39	6.3	Bottom	3	1	11.73	8.21	31.53	96.4	8.57	3.5	5.5
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	CS2	14:36:25	6.3	Bottom	3	2	11.75	8.29	30.58	96.5	8.63	3.4	5.1
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:30:34	1.0	Surface	1	1	15.83	8.25	29.04	91.1	7.56	3	5.3
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:31:13	1.0	Surface	1	2	15.83	8.25	29.04	90.2	7.45	2.8	6
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:31:01	6.2	Middle	2	1	15.95	8.24	29.42	89.7	7.43	2.9	5.2
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:30:21	6.2	Middle	2	2	15.95	8.24	29.43	90.9	7.51	2.8	6.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:30:10	11.4	Bottom	3	1	16.08	8.23	29.6	90.6	7.46	3	6.7
HKLR	HY/2011/03	2016-01-29	Mid-Ebb	Cloudy	$\mathrm{CS}(\mathrm{Mf}) 5$	16:30:50	11.4	Bottom	3	2	16.02	8.24	29.64	89.2	7.37	2.9	5.7
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	IS5	11:28:21	1.0	Surface	1	1	15.34	8.25	27.48	92.1	7.79	5.8	7.4
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	155	11:27:37	1.0	Surface	1	2	15.27	8.25	27.88	90.3	7.64	5.8	7.8
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	155	11:28:04	4.4	Middle	2	1	15.22	8.24	28.48	90.5	7.63	6.5	7.7
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	155	11:27:29	4.4	Middle	2	2	15.23	8.24	28.47	90.3	7.61	6.2	7.4
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	155	11:27:19	7.7	Bottom	3	1	15.25	8.24	28.47	90.2	7.6	6.2	7.5
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	IS5	11:27:56	7.7	Bottom	3	2	15.23	8.24	28.5	89.6	7.56	6.6	7.7
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	IS(Mf)6	11:17:49	1.0	Surface	1	1	15.33	8.23	28.1	92.5	7.8	5.6	8.1
HKLR	HY/2011/03	2016-01-29	Mid-Flood	Rainy	$\mathrm{IS}(\mathrm{Mf}) 6$	11:18:05	1.0	Surface	1	2	15.32	8.23	28.1	92.9	7.84	5.5	8

DO Concentrations at Station CS2 (Mid Flood)

Turbidity Concentrations at Station IS7 (Mid Flood)

Turbidity Concentrations at Station IS8 (Mid Flood)

Turbidity Concentrations at Station IS(Mf)9 (Mid Ebb)

Turbidity Concentrations at Station SR4 (Mid Flood)

Turbidity Concentrations at Station SR10B (Mid Flood)

Appendix F

Event and Action Plan for Air Quality

Event	Action			
	ET	IEC	SO	Contractor
Exceedance of Action Level for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform IEC and SO; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method.	1. Notify Contractor.	1. Rectify any unacceptable practice; 2. Amend working methods if appropriate.
Exceedance of Action Level for two or more consecutive samples	1. Identify source; 2. Inform IEC and SO; 3. Advise the SO on the effectiveness of the proposed remedial measures; 4. Repeat measurements confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and SO; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor;	1. Submit proposals for remedial to SO within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

Event	Action			
	ET	IEC	SO	Contractor
Exceedance of Limit Level for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform SO, Contractor and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the $S O$ on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
Exceedance of Limit Level for two or more consecutive samples	1. Notify IEC, SO, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and SO to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst SO, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals problem still not under control; 5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.

Event and Action Plan for Noise

Event	Action			
	ET	IEC	So	Contractor
Exceedance of Action Level	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Notify IEC and Contractor; 3. Report the results of investigation to the IEC, SO and Contractor; 4. Discuss with the Contractor and formulate remedial measures; 5. Increase monitoring frequency to check mitigation effectiveness.	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the SO accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	1. Submit noise mitigation proposals to IEC; 2. Implement noise mitigation proposals.
Exceedance of Limit Level	1. Identify source; 2. Inform IEC, SO, EPD and Contractor; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Inform IEC, SO and EPD the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst SO, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals problem still not under control; 5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.

Event and Action Plan for Water Quality

Event	Action			
	ET Leader	IEC	SO	Contractor
Action level being exceeded by one sampling day	1. Repeat in situ measurement on next day of exceedance to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor and SO; 4. Check monitoring data, all plant, equipment and Contractor's working methods.	1. Check monitoring data submitted by ET and Contractor's working methods.	1. Confirm receipt of notification of noncompliance in writing; 2. Notify Contractor.	1. Inform the SO and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	1. Repeat measurement on next day of exceedance to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor, SO and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5; Ensure mitigation measures are implemented; 6. Increase the monitoring frequency to daily until no exceedance of Action level.	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly; 4. Supervise the implementation mitigation measures.	1. Discuss with IEC on the proposed mitigation measures; 2. Ensure mitigation measures are properly implemented; 3. Assess the effectiveness of the implemented mitigation measures.	1. Inform the Engineer and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Submit proposal of additional mitigation measures to SO within 3 working days of notification and discuss with $\mathrm{ET}, \mathrm{IEC}$ and SO ; 5. Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	1. Repeat measurement on next day of exceedance to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor, SO and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, SO and Contractor;	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly.	1. Confirm receipt of notification of failure in writing; 2. Discuss with IEC, ET and Contractor on the proposed mitigation measures; 3. Request Contractor to review the working methods.	1. Inform the SO and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment and consider changes of working methods; 4. Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO.

Event	Action			
	ET Leader	IEC	SO	Contractor
Limit level being exceeded by two or more consecutive sampling days	1. Repeat measurement on next day of exceedance to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor, SO and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, SO and Contractor; 6. Ensure mitigation measures are implemented;	1. Check monitoring data submitted by ET and Contractor's working method; 2. Discuss with ET and Contractor on possible remedial actions; 3. Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SO accordingly; 4. Supervise the implementation of mitigation measures.	1. Discuss with IEC, ET and Contractor on the proposed mitigation measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Ensure mitigation measures are properly implemented; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	1. Take immediate action to avoid further exceedance; 2. Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; 3. Implement the agreed mitigation measures; 4. Resubmit proposals of mitigation measures if problem still not under control; 5. As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event and Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM\&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, ER/SOR and Contractor; 5. Check monitoring data. 6. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary.	1. Check monitoring data submitted by ET and Contractor; 2. Discuss monitoring results and findings with the ET and the Contractor.	1. Discuss monitoring with the IEC and any other measures proposed by the ET; 2. If $E R / S O R$ is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented.	1. Inform the ER/SOR and confirm notification of the noncompliance in writing; 2. Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; 3. Implement the agreed measures.
Limit Level	1. Repeat statistical data analysis to confirm findings; 2. Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM\&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; 3. Identify source(s) of impact; 4. Inform the IEC, ER/SOR and Contractor of findings; 5. Check monitoring data; 6. Repeat review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary;	1. Check monitoring data submitted by ET and Contractor; 2. Discuss monitoring results and findings with the ET and the Contractor; 3. Attend the meeting to discuss with ET , ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; 4. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and advise ER/SOR of the results and findings accordingly; 5. Supervise / Audit the	1. Attend the meeting to discuss with ET , IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures; 2. If $E R / S O R$ is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures; 3. Supervise the implementation of additional monitoring	1. Inform the ER/SOR and confirm notification of the noncompliance in writing; 2. Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures; 3. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary; 4. Implement the agreed additional dolphin monitoring and/or any other mitigation measures.

Event	ET Leader	IEC	ER / SOR	Contractor
	7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary.	anditional monitoring mitigation other measures and advise ER/SOR the results and findings accordingly.	and/or any other mitigation measures.	

Event and Action Plan for Mudflat Monitoring
$\left.\begin{array}{|l|l|l|l|l|}\hline \hline \text { Event } & \text { ET Leader } & \text { IEC } & \text { SO } & \text { Contractor } \\ \hline \begin{array}{l}\text { Density or the } \\ \text { distribution pattern of } \\ \text { horseshoe crab, } \\ \text { seagrass or intertidal } \\ \text { soft shore } \\ \text { communities recorded } \\ \text { in the impact or post- } \\ \text { construction } \\ \text { monitoring are } \\ \text { significantly lower } \\ \text { than or different from } \\ \text { those recorded in the } \\ \text { baseline monitoring. }\end{array} & \begin{array}{l}\text { Review historical data } \\ \text { to ensure differences } \\ \text { are as a result of } \\ \text { natural variation or } \\ \text { previously observed } \\ \text { seasonal differences; } \\ \text { Identify source(s) of } \\ \text { impact; } \\ \text { Inform the IEC, SO } \\ \text { and Contractor; } \\ \text { Check monitoring data; } \\ \text { Discuss additional } \\ \text { monitoring and any } \\ \text { other measures, with } \\ \text { the IEC and } \\ \text { Contractor. }\end{array} & \begin{array}{l}\text { Discuss monitoring } \\ \text { with the ET and the } \\ \text { Contractor; } \\ \text { Review proposals for } \\ \text { additional monitoring } \\ \text { and any other } \\ \text { measures submitted } \\ \text { by the Contractor and } \\ \text { advise the SO } \\ \text { accordingly. }\end{array} & \begin{array}{l}\text { Discuss with the IEC } \\ \text { additional monitoring } \\ \text { requirements and any } \\ \text { other measures } \\ \text { proposed by the ET; } \\ \text { Make agreement on } \\ \text { the measures to be } \\ \text { implemented. }\end{array} & \begin{array}{l}\text { Inform the SO and in } \\ \text { writing; } \\ \text { Discuss with the ET } \\ \text { and the IEC and } \\ \text { propose measures to } \\ \text { the IEC and the ER; }\end{array} \\ \text { Implement the agreed } \\ \text { measures. }\end{array}\right]$

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
01/01/2016	00:05	2.7	ENE	01/01/2016	07:40	2.7	ENE	01/01/2016	15:15	3.1	NNE
01/01/2016	00:10	4.9	NE	01/01/2016	07:45	2.2	ENE	01/01/2016	15:20	2.7	ENE
01/01/2016	00:15	5.4	NE	01/01/2016	07:50	1.8	ENE	01/01/2016	15:25	2.2	NE
01/01/2016	00:20	4.9	E	01/01/2016	07:55	1.8	E	01/01/2016	15:30	1.8	NNE
01/01/2016	00:25	4.5	NE	01/01/2016	08:00	1.8	NE	01/01/2016	15:35	1.8	NE
01/01/2016	00:30	5.4	NE	01/01/2016	08:05	2.2	ENE	01/01/2016	15:40	1.8	NE
01/01/2016	00:35	4	NE	01/01/2016	08:10	1.3	ENE	01/01/2016	15:45	1.8	NNE
01/01/2016	00:40	4.9	NE	01/01/2016	08:15	2.7	ENE	01/01/2016	15:50	1.8	NNE
01/01/2016	00:45	4	NE	01/01/2016	08:20	1.8	ENE	01/01/2016	15:55	1.3	NE
01/01/2016	00:50	3.6	NE	01/01/2016	08:25	1.8	NE	01/01/2016	16:00	1.8	ENE
01/01/2016	00:55	3.1	E	01/01/2016	08:30	1.8	NE	01/01/2016	16:05	1.8	E
01/01/2016	01:00	3.1	ESE	01/01/2016	08:35	2.7	ENE	01/01/2016	16:10	3.1	NE
01/01/2016	01:05	3.1	NE	01/01/2016	08:40	2.7	NE	01/01/2016	16:15	1.3	NNE
01/01/2016	01:10	1.3	NNE	01/01/2016	08:45	2.2	NE	01/01/2016	16:20	1.3	N
01/01/2016	01:15	1.3	N	01/01/2016	08:50	1.8	NNE	01/01/2016	16:25	1.3	NNE
01/01/2016	01:20	1.3	NNE	01/01/2016	08:55	2.2	NE	01/01/2016	16:30	1.3	NNE
01/01/2016	01:25	1.3	NNE	01/01/2016	09:00	1.3	ENE	01/01/2016	16:35	1.8	NNE
01/01/2016	01:30	1.8	NNE	01/01/2016	09:05	1.3	NNE	01/01/2016	16:40	2.2	NE
01/01/2016	01:35	1.8	NNE	01/01/2016	09:10	3.1	NE	01/01/2016	16:45	1.3	N
01/01/2016	01:40	1.3	NNW	01/01/2016	09:15	1.3	NNE	01/01/2016	16:50	1.3	NNE
01/01/2016	01:45	1.3	NE	01/01/2016	09:20	1.3	N	01/01/2016	16:55	0.9	ENE
01/01/2016	01:50	2.2	NE	01/01/2016	09:25	1.3	NNE	01/01/2016	17:00	1.8	NW
01/01/2016	01:55	1.3	N	01/01/2016	09:30	1.3	NNE	01/01/2016	17:05	1.3	NW
01/01/2016	02:00	1.3	NNE	01/01/2016	09:35	1.8	NNE	01/01/2016	17:10	1.3	WNW
01/01/2016	02:05	1.3	N	01/01/2016	09:40	2.2	NE	01/01/2016	17:15	1.3	WNW
01/01/2016	02:10	4.9	NE	01/01/2016	09:45	1.3	N	01/01/2016	17:20	0.9	NNW
01/01/2016	02:15	5.4	NE	01/01/2016	09:50	1.3	NNE	01/01/2016	17:25	1.3	NNE
01/01/2016	02:20	4.9	E	01/01/2016	09:55	1.8	NE	01/01/2016	17:30	0.9	NNE
01/01/2016	02:25	4.5	NE	01/01/2016	10:00	2.7	ENE	01/01/2016	17:35	1.3	W
01/01/2016	02:30	5.4	NE	01/01/2016	10:05	2.2	ENE	01/01/2016	17:40	1.3	W
01/01/2016	02:35	4	NE	01/01/2016	10:10	1.8	ENE	01/01/2016	17:45	1.3	WNW
01/01/2016	02:40	3.1	NE	01/01/2016	10:15	1.8	E	01/01/2016	17:50	1.3	W
01/01/2016	02:45	1.3	NNE	01/01/2016	10:20	1.8	NE	01/01/2016	17:55	1.3	sw
01/01/2016	02:50	1.3	N	01/01/2016	10:25	1.8	NE	01/01/2016	18:00	0.9	SW
01/01/2016	02:55	1.3	NNE	01/01/2016	10:30	2.7	ENE	01/01/2016	18:05	0.9	SSW
01/01/2016	03:00	1.3	NNE	01/01/2016	10:35	2.7	NE	01/01/2016	18:10	1.3	WSW
01/01/2016	03:05	1.8	NNE	01/01/2016	10:40	2.2	NE	01/01/2016	18:15	1.3	SW
01/01/2016	03:10	1.8	NNE	01/01/2016	10:45	1.8	NNE	01/01/2016	18:20	0.9	sW
01/01/2016	03:15	1.3	SW	01/01/2016	10:50	2.2	NE	01/01/2016	18:25	0.9	SW
01/01/2016	03:20	0.9	SW	01/01/2016	10:55	4.5	E	01/01/2016	18:30	0.4	SW
01/01/2016	03:25	0.9	SSW	01/01/2016	11:00	4	ENE	01/01/2016	18:35	0.4	WNW
01/01/2016	03:30	0.9	W	01/01/2016	11:05	3.6	ENE	01/01/2016	18:40	3.1	NE
01/01/2016	03:35	0.9	ESE	01/01/2016	11:10	4	NE	01/01/2016	18:45	1.3	NNE
01/01/2016	03:40	0.9	ESE	01/01/2016	11:15	4.5	NE	01/01/2016	18:50	1.3	N
01/01/2016	03:45	0.4	ESE	01/01/2016	11:20	4.5	NE	01/01/2016	18:55	1.3	NNE
01/01/2016	03:50	1.3	ENE	01/01/2016	11:25	3.1	NE	01/01/2016	19:00	1.3	NNE
01/01/2016	03:55	1.3	NNE	01/01/2016	11:30	1.3	NNE	01/01/2016	19:05	1.8	NNE
01/01/2016	04:00	1.3	E	01/01/2016	11:35	1.3	N	01/01/2016	19:10	2.2	NE
01/01/2016	04:05	3.1	NE	01/01/2016	11:40	1.3	NNE	01/01/2016	19:15	1.3	N
01/01/2016	04:10	1.3	NNE	01/01/2016	11:45	1.3	NNE	01/01/2016	19:20	1.3	NNE
01/01/2016	04:15	1.3	N	01/01/2016	11:50	1.8	NNE	01/01/2016	19:25	0.9	NW
01/01/2016	04:20	1.3	NNE	01/01/2016	11:55	2.2	NE	01/01/2016	19:30	1.3	WNW
01/01/2016	04:25	1.3	NNE	01/01/2016	12:00	1.3	N	01/01/2016	19:35	0.9	NNW
01/01/2016	04:30	1.8	NNE	01/01/2016	12:05	1.3	NNE	01/01/2016	19:40	1.3	NNE
01/01/2016	04:35	2.2	NE	01/01/2016	12:10	4	NE	01/01/2016	19:45	0.9	NNE
01/01/2016	04:40	1.3	N	01/01/2016	12:15	4.9	NE	01/01/2016	19:50	1.3	W
01/01/2016	04:45	1.3	NNE	01/01/2016	12:20	4	NE	01/01/2016	19:55	0.4	ESE
01/01/2016	04:50	0.4	SW	01/01/2016	12:25	3.6	NE	01/01/2016	20:00	2.7	ENE
01/01/2016	04:55	0.4	NNE	01/01/2016	12:30	3.1	E	01/01/2016	20:05	2.7	NE
01/01/2016	05:00	0.9	NW	01/01/2016	12:35	3.1	ESE	01/01/2016	20:10	2.7	ENE
01/01/2016	05:05	0.4	NNW	01/01/2016	12:40	2.2	E	01/01/2016	20:15	2.2	ENE
01/01/2016	05:10	0.4	NNE	01/01/2016	12:45	3.1	NNE	01/01/2016	20:20	2.2	ENE
01/01/2016	05:15	0.4	E	01/01/2016	12:50	2.7	ENE	01/01/2016	20:25	3.1	ENE
01/01/2016	05:20	0.4	E	01/01/2016	12:55	2.7	E	01/01/2016	20:30	2.7	ENE
01/01/2016	05:25	1.3	ENE	01/01/2016	13:00	2.7	SSE	01/01/2016	20:35	2.7	NE
01/01/2016	05:30	1.3	NE	01/01/2016	13:05	3.1	NE	01/01/2016	20:40	3.1	ENE
01/01/2016	05:35	0.9	E	01/01/2016	13:10	1.3	NNE	01/01/2016	20:45	2.2	NE
01/01/2016	05:40	1.3	E	01/01/2016	13:15	1.3	N	01/01/2016	20:50	2.2	NE
01/01/2016	05:45	1.3	ESE	01/01/2016	13:20	1.3	NNE	01/01/2016	20:55	1.8	ENE
01/01/2016	05:50	0.4	E	01/01/2016	13:25	1.3	NNE	01/01/2016	21:00	1.8	NE
01/01/2016	05:55	0.4	ESE	01/01/2016	13:30	0.9	NNW	01/01/2016	21:05	2.2	ENE
01/01/2016	06:00	0.9	E	01/01/2016	13:35	1.3	ENE	01/01/2016	21:10	3.1	NE
01/01/2016	06:05	0.4	ESE	01/01/2016	13:40	0.9	NNW	01/01/2016	21:15	1.3	NNE
01/01/2016	06:10	1.3	ENE	01/01/2016	13:45	1.3	NNE	01/01/2016	21:20	1.3	N
01/01/2016	06:15	1.3	NNE	01/01/2016	13:50	1.3	NNE	01/01/2016	21:25	1.3	NNE
01/01/2016	06:20	1.3	E	01/01/2016	13:55	3.1	NE	01/01/2016	21:30	1.3	NNE
01/01/2016	06:25	1.8	ENE	01/01/2016	14:00	1.3	NNE	01/01/2016	21:35	1.8	NNE
01/01/2016	06:30	0.4	ENE	01/01/2016	14:05	1.3	N	01/01/2016	21:40	2.2	NE
01/01/2016	06:35	0.4	ENE	01/01/2016	14:10	1.3	NNE	01/01/2016	21:45	1.3	N
01/01/2016	06:40	3.1	NE	01/01/2016	14:15	1.3	NNE	01/01/2016	21:50	1.3	NNE
01/01/2016	06:45	1.3	NNE	01/01/2016	14:20	1.8	NNE	01/01/2016	21:55	0.4	ENE
01/01/2016	06:50	1.3	N	01/01/2016	14:25	2.2	NE	01/01/2016	22:00	0.4	ENE
01/01/2016	06:55	1.3	NNE	01/01/2016	14:30	1.3	N	01/01/2016	22:05	2.2	ENE
01/01/2016	07:00	1.3	NNE	01/01/2016	14:35	1.3	NNE	01/01/2016	22:10	2.2	ENE
01/01/2016	07:05	1.8	NNE	01/01/2016	14:40	4.5	NE	01/01/2016	22:15	3.1	ENE
01/01/2016	07:10	2.2	NE	01/01/2016	14:45	5.4	NE	01/01/2016	22:20	2.7	ENE
01/01/2016	07:15	1.3	N	01/01/2016	14:50	4	NE	01/01/2016	22:25	2.7	NE
01/01/2016	07:20	1.3	NNE	01/01/2016	14:55	3.6	NE	01/01/2016	22:30	3.1	ENE
01/01/2016	07:25	1.8	NE	01/01/2016	15:00	3.1	E	01/01/2016	22:35	2.2	ENE
01/01/2016	07:30 07:35	0.9 1.8	ENE	$01 / 01 / 2016$ $01 / 01 / 2016$	15:05 15:10	3.1 2.2	ESE	01/01/2016	22:40	1.3 0.9	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
01/01/2016	22:50	0.9	ESE	02/01/2016	06:25	1.8	NE	02/01/2016	14:00	3.1	WSW
01/01/2016	22:55	0.9	W	02/01/2016	06:30	2.7	W	02/01/2016	14:05	1.8	ENE
01/01/2016	23:00	0.9	W	02/01/2016	06:35	2.2	WSW	02/01/2016	14:10	1.3	WNW
01/01/2016	23:05	0.4	ESE	02/01/2016	06:40	3.1	WSW	02/01/2016	14:15	1.3	SSW
01/01/2016	23:10	3.1	NE	02/01/2016	06:45	1.8	ENE	02/01/2016	14:20	1.8	W
01/01/2016	23:15	1.3	NNE	02/01/2016	06:50	1.3	WNW	02/01/2016	14:25	5.4	E
01/01/2016	23:20	1.3	N	02/01/2016	06:55	1.3	SSW	02/01/2016	14:30	4.5	ENE
01/01/2016	23:25	1.3	NNE	02/01/2016	07:00	1.8	W	02/01/2016	14:35	4.5	E
01/01/2016	23:30	1.3	NNE	02/01/2016	07:05	4.5	E	02/01/2016	14:40	3.6	ENE
01/01/2016	23:35	1.8	NNE	02/01/2016	07:10	5.8	E	02/01/2016	14:45	4.9	ENE
01/01/2016	23:40	2.2	NE	02/01/2016	07:15	4.9	E	02/01/2016	14:50	3.6	ENE
01/01/2016	23:45	1.3	N	02/01/2016	07:20	5.4	E	02/01/2016	14:55	4.9	NE
01/01/2016	23:50	1.3	NNE	02/01/2016	07:25	5.8	E	02/01/2016	15:00	4.5	NE
01/01/2016	23:55	0.9	SSW	02/01/2016	07:30	4.9	E	02/01/2016	15:05	4.5	NE
02/01/2016	00:00	0.9	SSW	02/01/2016	07:35	4.9	E	02/01/2016	15:10	4.5	E
02/01/2016	00:05	3.1	ENE	02/01/2016	07:40	4.5	E	02/01/2016	15:15	4.9	NE
02/01/2016	00:10	4.9	NE	02/01/2016	07:45	4.5	E	02/01/2016	15:20	4.9	NE
02/01/2016	00:15	4.5	NE	02/01/2016	07:50	4.9	E	02/01/2016	15:25	4.5	E
02/01/2016	00:20	4.5	NE	02/01/2016	07:55	4.5	E	02/01/2016	15:30	6.7	E
02/01/2016	00:25	1.8	N	02/01/2016	08:00	5.4	E	02/01/2016	15:35	7.2	ENE
02/01/2016	00:30	1.8	NE	02/01/2016	08:05	4.9	E	02/01/2016	15:40	6.7	E
02/01/2016	00:35	2.7	W	02/01/2016	08:10	5.4	E	02/01/2016	15:45	7.2	E
02/01/2016	00:40	2.2	WSW	02/01/2016	08:15	4.9	E	02/01/2016	15:50	6.3	E
02/01/2016	00:45	3.1	WSW	02/01/2016	08:20	4.5	ENE	02/01/2016	15:55	5.8	E
02/01/2016	00:50	1.8	ENE	02/01/2016	08:25	4.5	ENE	02/01/2016	16:00	4.9	E
02/01/2016	00:55	1.3	WNW	02/01/2016	08:30	4.5	E	02/01/2016	16:05	6.7	ENE
02/01/2016	01:00	1.3	SSW	02/01/2016	08:35	1.8	N	02/01/2016	16:10	5.8	ENE
02/01/2016	01:05	1.8	W	02/01/2016	08:40	1.8	NE	02/01/2016	16:15	6.3	ENE
02/01/2016	01:10	7.2	ENE	02/01/2016	08:45	2.7	W	02/01/2016	16:20	4.9	ENE
02/01/2016	01:15	7.6	ENE	02/01/2016	08:50	2.2	WSW	02/01/2016	16:25	1.8	N
02/01/2016	01:20	6.7	E	02/01/2016	08:55	3.1	WSW	02/01/2016	16:30	1.8	NE
02/01/2016	01:25	7.2	ENE	02/01/2016	09:00	1.8	ENE	02/01/2016	16:35	2.7	W
02/01/2016	01:30	5.8	ENE	02/01/2016	09:05	1.3	WNW	02/01/2016	16:40	2.2	WSW
02/01/2016	01:35	6.3	NE	02/01/2016	09:10	1.3	SSW	02/01/2016	16:45	3.1	WSW
02/01/2016	01:40	5.8	ENE	02/01/2016	09:15	1.8	W	02/01/2016	16:50	1.8	ENE
02/01/2016	01:45	6.7	NE	02/01/2016	09:20	1.3	NNE	02/01/2016	16:55	1.3	WNW
02/01/2016	01:50	7.6	ENE	02/01/2016	09:25	1.3	WNW	02/01/2016	17:00	1.3	SSW
02/01/2016	01:55	6.7	ENE	02/01/2016	09:30	1.8	N	02/01/2016	17:05	1.8	W
02/01/2016	02:00	8	ENE	02/01/2016	09:35	1.3	WNW	02/01/2016	17:10	7.2	ENE
02/01/2016	02:05	8.5	ENE	02/01/2016	09:40	0.9	NE	02/01/2016	17:15	6.7	ENE
02/01/2016	02:10	1.8	N	02/01/2016	09:45	1.3	WNW	02/01/2016	17:20	8.5	ENE
02/01/2016	02:15	1.8	NE	02/01/2016	09:50	1.3	W	02/01/2016	17:25	8	ENE
02/01/2016	02:20	2.7	W	02/01/2016	09:55	1.8	N	02/01/2016	17:30	7.2	ENE
02/01/2016	02:25	2.2	WSW	02/01/2016	10:00	1.8	WNW	02/01/2016	17:35	7.6	ENE
02/01/2016	02:30	3.1	WSW	02/01/2016	10:05	1.3	W	02/01/2016	17:40	6.7	ENE
02/01/2016	02:35	1.8	ENE	02/01/2016	10:10	2.7	E	02/01/2016	17:45	8	ENE
02/01/2016	02:40	1.3	WNW	02/01/2016	10:15	1.8	NE	02/01/2016	17:50	8.5	ENE
02/01/2016	02:45	1.3	SSW	02/01/2016	10:20	2.2	ENE	02/01/2016	17:55	7.6	ENE
02/01/2016	02:50	1.8	W	02/01/2016	10:25	4.9	E	02/01/2016	18:00	7.2	ENE
02/01/2016	02:55	4.5	ENE	02/01/2016	10:30	4.9	E	02/01/2016	18:05	7.2	E
02/01/2016	03:00	3.1	NE	02/01/2016	10:35	4.5	E	02/01/2016	18:10	6.3	E
02/01/2016	03:05	3.1	NNE	02/01/2016	10:40	4.5	E	02/01/2016	18:15	5.8	E
02/01/2016	03:10	4.5	NE	02/01/2016	10:45	4.9	E	02/01/2016	18:20	4.9	E
02/01/2016	03:15	4.9	ENE	02/01/2016	10:50	4.5	E	02/01/2016	18:25	6.7	ENE
02/01/2016	03:20	3.6	ENE	02/01/2016	10:55	4.9	E	02/01/2016	18:30	5.8	ENE
02/01/2016	03:25	2.7	N	02/01/2016	11:00	4.5	ENE	02/01/2016	18:35	6.3	ENE
02/01/2016	03:30	2.2	N	02/01/2016	11:05	4.5	ENE	02/01/2016	18:40	6.7	NE
02/01/2016	03:35	1.8	N	02/01/2016	11:10	1.8	N	02/01/2016	18:45	5.8	ENE
02/01/2016	03:40	1.8	NE	02/01/2016	11:15	1.8	NE	02/01/2016	18:50	5.4	ENE
02/01/2016	03:45	2.7	W	02/01/2016	11:20	2.7	W	02/01/2016	18:55	1.8	N
02/01/2016	03:50	2.2	WSW	02/01/2016	11:25	2.2	WSW	02/01/2016	19:00	1.8	NE
02/01/2016	03:55	3.1	WSW	02/01/2016	11:30	3.1	WSW	02/01/2016	19:05	2.7	W
02/01/2016	04:00	1.8	ENE	02/01/2016	11:35	1.8	ENE	02/01/2016	19:10	2.2	WSW
02/01/2016	04:05	1.3	WNW	02/01/2016	11:40	1.3	WNW	02/01/2016	19:15	3.1	WSW
02/01/2016	04:10	1.3	SSW	02/01/2016	11:45	1.3	SSW	02/01/2016	19:20	1.8	ENE
02/01/2016	04:15	1.8	W	02/01/2016	11:50	1.8	W	02/01/2016	19:25	1.3	WNW
02/01/2016	04:20	2.7	WNW	02/01/2016	11:55	5.8	E	02/01/2016	19:30	1.3	SSW
02/01/2016	04:25	2.2	NE	02/01/2016	12:00	4.5	E	02/01/2016	19:35	1.8	W
02/01/2016	04:30	2.2	NW	02/01/2016	12:05	4.9	E	02/01/2016	19:40	4.5	ENE
02/01/2016	04:35	2.7	NNE	02/01/2016	12:10	4.5	E	02/01/2016	19:45	5.4	ENE
02/01/2016	04:40	1.8	E	02/01/2016	12:15	5.4	E	02/01/2016	19:50	4.9	ENE
02/01/2016	04:45	3.1	NE	02/01/2016	12:20	4.5	ENE	02/01/2016	19:55	3.6	NE
02/01/2016	04:50	3.6	NE	02/01/2016	12:25	4.5	ENE	02/01/2016	20:00	3.6	NE
02/01/2016	04:55	2.7	ENE	02/01/2016	12:30	4.5	E	02/01/2016	20:05	3.1	NNE
02/01/2016	05:00	2.2	NE	02/01/2016	12:35	3.6	ENE	02/01/2016	20:10	3.1	ENE
02/01/2016	05:05	3.1	ENE	02/01/2016	12:40	4.9	ENE	02/01/2016	20:15	4	ENE
02/01/2016	05:10	2.2	NE	02/01/2016	12:45	3.6	ENE	02/01/2016	20:20	4.5	ENE
02/01/2016	05:15	3.1	ENE	02/01/2016	12:50	4.9	NE	02/01/2016	20:25	3.1	NE
02/01/2016	05:20	4.9	NE	02/01/2016	12:55	4.9	NE	02/01/2016	20:30	3.1	NNE
02/01/2016	05:25	4.5	NE	02/01/2016	13:00	4.5	NE	02/01/2016	20:35	3.1	NE
02/01/2016	05:30	4.5	NE	02/01/2016	13:05	4.5	NE	02/01/2016	20:40	2.2	NNE
02/01/2016	05:35	4.5	E	02/01/2016	13:10	4.9	NE	02/01/2016	20:45	3.1	E
02/01/2016	05:40	4.9	ENE	02/01/2016	13:15	4.5	NE	02/01/2016	20:50	2.7	ENE
02/01/2016	05:45	4.5	ENE	02/01/2016	13:20	4.5	NE	02/01/2016	20:55	4.5	NE
02/01/2016	05:50	4.9	ENE	02/01/2016	13:25	4.5	E	02/01/2016	21:00	4.9	ENE
02/01/2016	05:55	5.8	ENE	02/01/2016	13:30	4.9	NE	02/01/2016	21:05	3.6	ENE
02/01/2016	06:00	5.8	ENE	02/01/2016	13:35	4.9	NE	02/01/2016	21:10	2.7	N
02/01/2016	06:05	5.4	ENE	02/01/2016	13:40	1.8	N	02/01/2016	21:15	2.2	N
02/01/2016	06:10	2.2	N	02/01/2016	13:45	1.8	NE	02/01/2016	21:20	1.8	N
02/01/2016	06:15 06:20	1.8 1.8	N	02/01/2016 02/01/2016	13:50 13:55	2.7 2.2	WS	02/01/2016	21:25	4.5 4.5	ENE NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
02/01/2016	21:35	4.5	ENE	03/01/2016	05:10	3.6	E	03/01/2016	12:45	4	E
02/01/2016	21:40	1.8	N	03/01/2016	05:15	2.7	E	03/01/2016	12:50	4.9	E
02/01/2016	21:45	1.8	NE	03/01/2016	05:20	2.2	ENE	03/01/2016	12:55	1.3	E
02/01/2016	21:50	2.7	W	03/01/2016	05:25	3.1	E	03/01/2016	13:00	0.4	E
02/01/2016	21:55	2.2	WSW	03/01/2016	05:30	3.1	E	03/01/2016	13:05	1.3	NE
02/01/2016	22:00	3.1	WSW	03/01/2016	05:35	3.6	E	03/01/2016	13:10	1.3	ENE
02/01/2016	22:05	1.8	ENE	03/01/2016	05:40	2.7	ENE	03/01/2016	13:15	1.8	E
02/01/2016	22:10	1.3	WNW	03/01/2016	05:45	2.2	ENE	03/01/2016	13:20	1.8	E
02/01/2016	22:15	1.3	SSW	03/01/2016	05:50	1.8	NE	03/01/2016	13:25	1.8	E
02/01/2016	22:20	1.8	W	03/01/2016	05:55	2.2	NE	03/01/2016	13:30	2.2	ENE
02/01/2016	22:25	2.2	NE	03/01/2016	06:00	2.2	ENE	03/01/2016	13:35	1.8	ENE
02/01/2016	22:30	2.7	ENE	03/01/2016	06:05	1.3	E	03/01/2016	13:40	1.8	E
02/01/2016	22:35	4	ENE	03/01/2016	06:10	0.4	E	03/01/2016	13:45	5.4	NE
02/01/2016	22:40	4.5	E	03/01/2016	06:15	1.3	NE	03/01/2016	13:50	4.9	ENE
02/01/2016	22:45	6.3	ENE	03/01/2016	06:20	1.3	ENE	03/01/2016	13:55	5.8	E
02/01/2016	22:50	5.8	ENE	03/01/2016	06:25	1.8	E	03/01/2016	14:00	5.8	E
02/01/2016	22:55	5.8	ENE	03/01/2016	06:30	1.8	E	03/01/2016	14:05	5.4	ENE
02/01/2016	23:00	5.8	ENE	03/01/2016	06:35	1.8	E	03/01/2016	14:10	3.6	E
02/01/2016	23:05	1.8	N	03/01/2016	06:40	2.2	ENE	03/01/2016	14:15	5.4	E
02/01/2016	23:10	1.8	NE	03/01/2016	06:45	1.8	ENE	03/01/2016	14:20	5.4	E
02/01/2016	23:15	2.7	W	03/01/2016	06:50	1.8	E	03/01/2016	14:25	4.5	E
02/01/2016	23:20	2.2	WSW	03/01/2016	06:55	2.2	ENE	03/01/2016	14:30	5.4	ENE
02/01/2016	23:25	3.1	WSW	03/01/2016	07:00	2.2	E	03/01/2016	14:35	5.4	E
02/01/2016	23:30	1.8	ENE	03/01/2016	07:05	3.1	E	03/01/2016	14:40	5.8	ENE
02/01/2016	23:35	1.3	WNW	03/01/2016	07:10	3.1	ENE	03/01/2016	14:45	5.8	E
02/01/2016	23:40	1.3	SSW	03/01/2016	07:15	3.1	E	03/01/2016	14:50	5.8	ENE
02/01/2016	23:45	1.8	W	03/01/2016	07:20	2.7	E	03/01/2016	14:55	6.7	E
02/01/2016	23:50	6.7	ENE	03/01/2016	07:25	2.2	E	03/01/2016	15:00	6.3	ENE
02/01/2016	23:55	6.3	ENE	03/01/2016	07:30	1.8	E	03/01/2016	15:05	5.8	ENE
03/01/2016	00:00	5.8	ENE	03/01/2016	07:35	2.2		03/01/2016	15:10	5.8	ENE
03/01/2016	00:05	1.3	E	03/01/2016	07:40	2.7	E	03/01/2016	15:15	6.7	E
03/01/2016	00:10	0.4	E	03/01/2016	07:45	1.8	NE	03/01/2016	15:20	6.7	ENE
03/01/2016	00:15	1.3	NE	03/01/2016	07:50	1.8	E	03/01/2016	15:25	7.2	NE
03/01/2016	00:20	1.3	ENE	03/01/2016	07:55	1.3	E	03/01/2016	15:30	6.3	ENE
03/01/2016	00:25	1.8	E	03/01/2016	08:00	2.2	E	03/01/2016	15:35	5.4	ENE
03/01/2016	00:30	1.3	ENE	03/01/2016	08:05	2.2	E	03/01/2016	15:40	5.8	ENE
03/01/2016	00:35	1.3	E	03/01/2016	08:10	2.7	E	03/01/2016	15:45	4.9	ENE
03/01/2016	00:40	0.4	E	03/01/2016	08:15	2.2	E	03/01/2016	15:50	4.9	NE
03/01/2016	00:45	1.3	NE	03/01/2016	08:20	2.2	ENE	03/01/2016	15:55	5.4	ENE
03/01/2016	00:50	1.3	ENE	03/01/2016	08:25	2.2	E	03/01/2016	16:00	4.9	ENE
03/01/2016	00:55	1.8	E	03/01/2016	08:30	2.2	ENE	03/01/2016	16:05	4.9	ENE
03/01/2016	01:00	1.8	E	03/01/2016	08:35	2.2	E	03/01/2016	16:10	4.5	E
03/01/2016	01:05	1.8	E	03/01/2016	08:40	2.7		03/01/2016	16:15	4.9	E
03/01/2016	01:10	2.2	ENE	03/01/2016	08:45	2.2	E	03/01/2016	16:20	4.5	E
03/01/2016	01:15	1.8	ENE	03/01/2016	08:50	1.8	E	03/01/2016	16:25	1.3	E
03/01/2016	01:20	1.8	E	03/01/2016	08:55	2.2	E	03/01/2016	16:30	0.4	E
03/01/2016	01:25	1.8	ENE	03/01/2016	09:00	1.3	E	03/01/2016	16:35	1.3	NE
03/01/2016	01:30	1.8	ENE	03/01/2016	09:05	0.4	E	03/01/2016	16:40	1.3	ENE
03/01/2016	01:35	1.8	ENE	03/01/2016	09:10	1.3	NE	03/01/2016	16:45	1.8	E
03/01/2016	01:40	1.8	ENE	03/01/2016	09:15	1.3	ENE	03/01/2016	16:50	1.8	E
03/01/2016	01:45	2.7	E	03/01/2016	09:20	1.8	E	03/01/2016	16:55	1.8	E
03/01/2016	01:50	2.7	E	03/01/2016	09:25	1.8	E	03/01/2016	17:00	2.2	ENE
03/01/2016	01:55	2.7	ENE	03/01/2016	09:30	1.8	E	03/01/2016	17:05	1.8	ENE
03/01/2016	02:00	2.7	ENE	03/01/2016	09:35	2.2	ENE	03/01/2016	17:10	1.8	E
03/01/2016	02:05	3.1	E	03/01/2016	09:40	1.8	ENE	03/01/2016	17:15	4.5	E
03/01/2016	02:10	3.1	ENE	03/01/2016	09:45	1.8	E	03/01/2016	17:20	4.9	ENE
03/01/2016	02:15	2.7	ENE	03/01/2016	09:50	3.1	E	03/01/2016	17:25	4.9	E
03/01/2016	02:20	1.8	NE	03/01/2016	09:55	3.1	E	03/01/2016	17:30	4	E
03/01/2016	02:25	2.2	NE	03/01/2016	10:00	2.2	E	03/01/2016	17:35	4	E
03/01/2016	02:30	3.6	E	03/01/2016	10:05	4	E	03/01/2016	17:40	4.9	E
03/01/2016	02:35	2.7	E	03/01/2016	10:10	3.6	E	03/01/2016	17:45	4.9	E
03/01/2016	02:40	1.8	E	03/01/2016	10:15	4	ENE	03/01/2016	17:50	5.8	E
03/01/2016	02:45	2.7	ENE	03/01/2016	10:20	3.1	ENE	03/01/2016	17:55	5.4	E
03/01/2016	02:50	3.1	E	03/01/2016	10:25	4.9	E	03/01/2016	18:00	4.5	E
03/01/2016	02:55	2.2	ENE	03/01/2016	10:30	4.9	ENE	03/01/2016	18:05	5.8	E
03/01/2016	03:00	3.1	E	03/01/2016	10:35	4	E	03/01/2016	18:10	4.9	ENE
03/01/2016	03:05	3.1	E	03/01/2016	10:40	4.5	E	03/01/2016	18:15	4.9	ENE
03/01/2016	03:10	3.6	E	03/01/2016	10:45	4.9	E	03/01/2016	18:20	4	ENE
03/01/2016	03:15	3.1	ENE	03/01/2016	10:50	3.6	NE	03/01/2016	18:25	4.5	ENE
03/01/2016	03:20	0.9	ESE	03/01/2016	10:55	3.1	ENE	03/01/2016	18:30	4	ENE
03/01/2016	03:25	1.8	E	03/01/2016	11:00	4	ENE	03/01/2016	18:35	4.5	ENE
03/01/2016	03:30	2.7	ENE	03/01/2016	11:05	4.5	E	03/01/2016	18:40	4	ENE
03/01/2016	03:35	1.3	E	03/01/2016	11:10	4.5	E	03/01/2016	18:45	4	ENE
03/01/2016	03:40	0.4	E	03/01/2016	11:15	3.6	E	03/01/2016	18:50	4.5	ENE
03/01/2016	03:45	1.3	NE	03/01/2016	11:20	2.7	E	03/01/2016	18:55	4	ENE
03/01/2016	03:50	1.3	ENE	03/01/2016	11:25	3.1	E	03/01/2016	19:00	4.9	E
03/01/2016	03:55	1.8	E	03/01/2016	11:30	3.1	E	03/01/2016	19:05	4	E
03/01/2016	04:00	1.8	E	03/01/2016	11:35	2.2	E	03/01/2016	19:10	4	E
03/01/2016	04:05	1.8	E	03/01/2016	11:40	4	E	03/01/2016	19:15	4.9	E
03/01/2016	04:10	2.2	ENE	03/01/2016	11:45	4.9	E	03/01/2016	19:20	4.9	E
03/01/2016	04:15	1.8	ENE	03/01/2016	11:50	4.9	ENE	03/01/2016	19:25	5.8	E
03/01/2016	04:20	1.8	E	03/01/2016	11:55	4	E	03/01/2016	19:30	4.9	ENE
03/01/2016	04:25	1.8	E	03/01/2016	12:00	4.5	E	03/01/2016	19:35	4.9	ENE
03/01/2016	04:30	1.8	ENE	03/01/2016	12:05	5.4	ENE	03/01/2016	19:40	4	ENE
03/01/2016	04:35	1.8	ENE	03/01/2016	12:10	6.3	E	03/01/2016	19:45	4	NE
03/01/2016	04:40	2.7	E	03/01/2016	12:15	5.4	ENE	03/01/2016	19:50	4	ENE
03/01/2016	04:45	2.7	E	03/01/2016	12:20	5.4	ENE	03/01/2016	19:55	4.9	E
03/01/2016	04:50	2.7	ENE	03/01/2016	12:25	3.6	E	03/01/2016	20:00	4.9	ENE
03/01/2016	04:55	2.7	ENE	03/01/2016	12:30	5.4	E	03/01/2016	20:05	5.4	ENE
03/01/2016 $03 / 01 / 2016$	05:00	1.8 2.2	NE	03/01/2016 $03 / 01 / 2016$	12:35 12:40	5.4 4.5	E	$03 / 01 / 2016$ $03 / 01 / 2016$	20:10	6.3 5.4	E

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
03/01/2016	20:20	5.4	E	04/01/2016	03:55	1.3	WNW	04/01/2016	11:30	3.1	NW
03/01/2016	20:25	5.8	E	04/01/2016	04:00	2.2	SW	04/01/2016	11:35	1.3	W
03/01/2016	20:30	5.8	E	04/01/2016	04:05	1.8	E	04/01/2016	11:40	0.9	NW
03/01/2016	20:35	6.3	E	04/01/2016	04:10	2.2	WNW	04/01/2016	11:45	4	ENE
03/01/2016	20:40	1.3	E	04/01/2016	04:15	1.8	NNW	04/01/2016	11:50	4.9	E
03/01/2016	20:45	0.4	E	04/01/2016	04:20	1.8	S	04/01/2016	11:55	5.8	ENE
03/01/2016	20:50	1.3	NE	04/01/2016	04:25	2.7	W	04/01/2016	12:00	5.4	E
03/01/2016	20:55	1.3	ENE	04/01/2016	04:30	1.8	NNE	04/01/2016	12:05	5.4	ENE
03/01/2016	21:00	1.8	E	04/01/2016	04:35	2.7	ENE	04/01/2016	12:10	4.9	ENE
03/01/2016	21:05	1.8	E	04/01/2016	04:40	4	NE	04/01/2016	12:15	4.5	ENE
03/01/2016	21:10	1.8	E	04/01/2016	04:45	3.1	NE	04/01/2016	12:20	4.9	ENE
03/01/2016	21:15	2.2	ENE	04/01/2016	04:50	1.8	WNW	04/01/2016	12:25	4.9	ENE
03/01/2016	21:20	1.8	ENE	04/01/2016	04:55	1.3	W	04/01/2016	12:30	5.8	ENE
03/01/2016	21:25	1.8	E	04/01/2016	05:00	0.9	NW	04/01/2016	12:35	5.8	ENE
03/01/2016	21:30	4.9	E	04/01/2016	05:05	1.3	W	04/01/2016	12:40	5.4	ENE
03/01/2016	21:35	4.9	ENE	04/01/2016	05:10	1.3	NW	04/01/2016	12:45	6.3	E
03/01/2016	21:40	5.4	ENE	04/01/2016	05:15	1.8	W	04/01/2016	12:50	6.7	E
03/01/2016	21:45	6.3	E	04/01/2016	05:20	1.8	WNW	04/01/2016	12:55	5.4	ENE
03/01/2016	21:50	5.4	ENE	04/01/2016	05:25	1.8	W	04/01/2016	13:00	6.7	ENE
03/01/2016	21:55	6.3	E	04/01/2016	05:30	1.8	NW	04/01/2016	13:05	5.4	E
03/01/2016	22:00	5.8	E	04/01/2016	05:35	1.8	NW	04/01/2016	13:10	4.5	E
03/01/2016	22:05	6.3	E	04/01/2016	05:40	1.8	WNW	04/01/2016	13:15	4.9	E
03/01/2016	22:10	6.7	ENE	04/01/2016	05:45	3.1	NW	04/01/2016	13:20	1.8	WNW
03/01/2016	22:15	4.5	ENE	04/01/2016	05:50	1.3	W	04/01/2016	13:25	1.3	W
03/01/2016	22:20	4.5	ENE	04/01/2016	05:55	0.9	NW	04/01/2016	13:30	0.9	NW
03/01/2016	22:25	5.4	ENE	04/01/2016	06:00	3.6	ENE	04/01/2016	13:35	1.3	W
03/01/2016	22:30	4.5	ENE	04/01/2016	06:05	2.7	ENE	04/01/2016	13:40	1.3	NW
03/01/2016	22:35	3.6	ENE	04/01/2016	06:10	3.1	NE	04/01/2016	13:45	1.8	W
03/01/2016	22:40	3.1	ENE	04/01/2016	06:15	2.7	ENE	04/01/2016	13:50	1.8	WNW
03/01/2016	22:45	3.1	ENE	04/01/2016	06:20	2.7	ENE	04/01/2016	13:55	1.8	W
03/01/2016	22:50	3.1	ENE	04/01/2016	06:25	3.1	ENE	04/01/2016	14:00	1.8	NW
03/01/2016	22:55	1.8	E	04/01/2016	06:30	2.7	NE	04/01/2016	14:05	1.8	NW
03/01/2016	23:00	3.6	ENE	04/01/2016	06:35	3.6	NE	04/01/2016	14:10	1.8	WNW
03/01/2016	23:05	1.3	E	04/01/2016	06:40	3.6	NE	04/01/2016	14:15	3.1	NW
03/01/2016	23:10	0.4	E	04/01/2016	06:45	3.1	NE	04/01/2016	14:20	1.3	W
03/01/2016	23:15	1.3	NE	04/01/2016	06:50	4.5	ENE	04/01/2016	14:25	0.9	NW
03/01/2016	23:20	1.3	ENE	04/01/2016	06:55	4.5	NE	04/01/2016	14:30	5.4	ENE
03/01/2016	23:25	1.8	E	04/01/2016	07:00	4.5	ENE	04/01/2016	14:35	4.9	ENE
03/01/2016	23:30	1.8	E	04/01/2016	07:05	3.6	NE	04/01/2016	14:40	4.5	ENE
03/01/2016	23:35	1.8	E	04/01/2016	07:10	4	NE	04/01/2016	14:45	4.9	ENE
03/01/2016	23:40	2.2	ENE	04/01/2016	07:15	4	NE	04/01/2016	14:50	6.3	E
03/01/2016	23:45	1.8	ENE	04/01/2016	07:20	4	NE	04/01/2016	14:55	6.7	E
03/01/2016	23:50	1.8	E	04/01/2016	07:25	4	NE	04/01/2016	15:00	5.4	ENE
03/01/2016	23:55	4.9	ENE	04/01/2016	07:30	2.7	ENE	04/01/2016	15:05	6.7	ENE
04/01/2016	00:00	5.8	E	04/01/2016	07:35	3.6	ENE	04/01/2016	15:10	4.5	ENE
04/01/2016	00:05	1.8	WNW	04/01/2016	07:40	2.7	ENE	04/01/2016	15:15	3.6	E
04/01/2016	00:10	1.3	W	04/01/2016	07:45	3.1	NE	04/01/2016	15:20	5.4	E
04/01/2016	00:15	0.9	NW	04/01/2016	07:50	1.8	WNW	04/01/2016	15:25	4.5	ENE
04/01/2016	00:20	1.3	W	04/01/2016	07:55	1.3	W	04/01/2016	15:30	2.7	E
04/01/2016	00:25	1.3	NW	04/01/2016	08:00	0.9	NW	04/01/2016	15:35	2.7	E
04/01/2016	00:30	1.8	W	04/01/2016	08:05	1.3	W	04/01/2016	15:40	3.1	ENE
04/01/2016	00:35	1.8	WNW	04/01/2016	08:10	1.3	NW	04/01/2016	15:45	2.7	E
04/01/2016	00:40	1.8	W	04/01/2016	08:15	1.8	W	04/01/2016	15:50	1.3	ENE
04/01/2016	00:45	1.8	NW	04/01/2016	08:20	1.8	WNW	04/01/2016	15:55	1.8	ESE
04/01/2016	00:50	1.8	NW	04/01/2016	08:25	1.8	W	04/01/2016	16:00	0.9	NNE
04/01/2016	00:55	1.8	WNW	04/01/2016	08:30	1.8	NW	04/01/2016	16:05	2.7	ENE
04/01/2016	01:00	3.1	NW	04/01/2016	08:35	1.8	NW	04/01/2016	16:10	3.6	ENE
04/01/2016	01:05	1.3	W	04/01/2016	08:40	1.8	WNW	04/01/2016	16:15	4	ENE
04/01/2016	01:10	0.9	NW	04/01/2016	08:45	3.1	NW	04/01/2016	16:20	1.8	WNW
04/01/2016	01:15	1.3	W	04/01/2016	08:50	1.3	W	04/01/2016	16:25	1.3	W
04/01/2016	01:20	1.8	WNW	04/01/2016	08:55	0.9	NW	04/01/2016	16:30	0.9	NW
04/01/2016	01:25	1.8	W	04/01/2016	09:00	4.5	NE	04/01/2016	16:35	1.3	W
04/01/2016	01:30	1.8	NW	04/01/2016	09:05	4.9	NE	04/01/2016	16:40	1.3	NW
04/01/2016	01:35	2.2	WNW	04/01/2016	09:10	4	NE	04/01/2016	16:45	1.8	W
04/01/2016	01:40	2.2	NW	04/01/2016	09:15	3.1	NE	04/01/2016	16:50	1.8	WNW
04/01/2016	01:45	2.2	NW	04/01/2016	09:20	3.6	ENE	04/01/2016	16:55	1.8	W
04/01/2016	01:50	0.9	WNW	04/01/2016	09:25	4	ENE	04/01/2016	17:00	1.8	NW
04/01/2016	01:55	1.3	W	04/01/2016	09:30	4	NE	04/01/2016	17:05	1.8	NW
04/01/2016	02:00	2.7	W	04/01/2016	09:35	4	ENE	04/01/2016	17:10	1.8	WNW
04/01/2016	02:05	0.9	NE	04/01/2016	09:40	5.4	ENE	04/01/2016	17:15	3.1	NW
04/01/2016	02:10	0.9	WSW	04/01/2016	09:45	5.8	ENE	04/01/2016	17:20	1.3	W
04/01/2016	02:15	1.8	W	04/01/2016	09:50	5.8	ENE	04/01/2016	17:25	0.9	NW
04/01/2016	02:20	1.8	WNW	04/01/2016	09:55	5.8	E	04/01/2016	17:30	3.1	ENE
04/01/2016	02:25	2.2	N	04/01/2016	10:00	5.4	E	04/01/2016	17:35	4.9	ENE
04/01/2016	02:30	1.3	WNW	04/01/2016	10:05	5.4	ENE	04/01/2016	17:40	4.9	E
04/01/2016	02:35	2.2	SW	04/01/2016	10:10	5.8	E	04/01/2016	17:45	1.8	ESE
04/01/2016	02:40	2.2	W	04/01/2016	10:15	6.3	E	04/01/2016	17:50	0.9	NNE
04/01/2016	02:45	2.2	NW	04/01/2016	10:20	4	NE	04/01/2016	17:55	2.7	ENE
04/01/2016	02:50	1.8	E	04/01/2016	10:25	3.6	NE	04/01/2016	18:00	4.5	ENE
04/01/2016	02:55	2.2	WNW	04/01/2016	10:30	4	NE	04/01/2016	18:05	4	NE
04/01/2016	03:00	1.8	NNW	04/01/2016	10:35	1.8	WNW	04/01/2016	18:10	3.6	ENE
04/01/2016	03:05	1.8	S	04/01/2016	10:40	1.3	W	04/01/2016	18:15	2.7	ENE
04/01/2016	03:10	2.7	WSW	04/01/2016	10:45	0.9	NW	04/01/2016	18:20	2.7	ENE
04/01/2016	03:15	1.8	W	04/01/2016	10:50	1.3	W	04/01/2016	18:25	4.5	E
04/01/2016	03:20	2.2	WSW	04/01/2016	10:55	1.3	NW	04/01/2016	18:30	4.5	ENE
04/01/2016	03:25	2.2	NW	04/01/2016	11:00	1.8	W	04/01/2016	18:35	4.5	ENE
04/01/2016	03:30	0.9	WNW	04/01/2016	11:05	1.8	WNW	04/01/2016	18:40	3.1	ENE
04/01/2016	03:35	1.3	W	04/01/2016	11:10	1.8	W	04/01/2016	18:45	3.6	ENE
04/01/2016	03:40	1.8	W	04/01/2016	11:15	1.8	NW	04/01/2016	18:50	3.6	ENE
04/01/2016	03:45 03:50	1.8 2.2	WNW N	04/01/2016	11:20 11:25	1.8 1.8	NW WNW	04/01/2016 04/01/2016	18:55 19:00	3.1 3.6	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
04/01/2016	19:05	1.8	WNW	05/01/2016	02:40	0.4	WNW	05/01/2016	10:15	0.9	w
04/01/2016	19:10	1.3	W	05/01/2016	02:45	0.4	WNW	05/01/2016	10:20	0.4	W
04/01/2016	19:15	0.9	NW	05/01/2016	02:50	0.4	WNW	05/01/2016	10:25	0.4	W
04/01/2016	19:20	1.3	W	05/01/2016	02:55	0.9	NW	05/01/2016	10:30	0.4	W
04/01/2016	19:25	1.3	NW	05/01/2016	03:00	1.8	W	05/01/2016	10:35	0.9	W
04/01/2016	19:30	1.8	W	05/01/2016	03:05	1.8	W	05/01/2016	10:40	0.9	SW
04/01/2016	19:35	1.8	WNW	05/01/2016	03:10	0.9	W	05/01/2016	10:45	0.9	WSW
04/01/2016	19:40	1.8	W	05/01/2016	03:15	0.4	W	05/01/2016	10:50	1.3	WSW
04/01/2016	19:45	1.8	WNW	05/01/2016	03:20	1.3	SSW	05/01/2016	10:55	1.3	SSE
04/01/2016	19:50	1.3	W	05/01/2016	03:25	0	NNW	05/01/2016	11:00	0.9	SSE
04/01/2016	19:55	0.9	NW	05/01/2016	03:30	0	NNW	05/01/2016	11:05	3.1	NE
04/01/2016	20:00	1.3	W	05/01/2016	03:35	0.4	NE	05/01/2016	11:10	2.2	NE
04/01/2016	20:05	1.3	NW	05/01/2016	03:40	0.9	N	05/01/2016	11:15	2.2	E
04/01/2016	20:10	1.8	W	05/01/2016	03:45	1.8	WSW	05/01/2016	11:20	4	NE
04/01/2016	20:15	1.8	WNW	05/01/2016	03:50	1.3	WSW	05/01/2016	11:25	4	ENE
04/01/2016	20:20	1.8	W	05/01/2016	03:55	0.4	W	05/01/2016	11:30	0.9	NNE
04/01/2016	20:25	1.8	NW	05/01/2016	04:00	0.4	WNW	05/01/2016	11:35	3.1	NE
04/01/2016	20:30	1.8	NW	05/01/2016	04:05	0.9	E	05/01/2016	11:40	3.6	NE
04/01/2016	20:35	1.8	WNW	05/01/2016	04:10	0.9	W	05/01/2016	11:45	,	NE
04/01/2016	20:40	3.1	NW	05/01/2016	04:15	0.4	W	05/01/2016	11:50	3.1	ENE
04/01/2016	20:45	1.3	W	05/01/2016	04:20	0.4	W	05/01/2016	11:55	4	NE
04/01/2016	20:50	0.9	NW	05/01/2016	04:25	0.4	W	05/01/2016	12:00	4	NE
04/01/2016	20:55	3.6	ENE	05/01/2016	04:30	0.9	W	05/01/2016	12:05	2.7	ENE
04/01/2016	21:00	3.1	ENE	05/01/2016	04:35	0.9	SW	05/01/2016	12:10	2.2	NNE
04/01/2016	21:05	3.6	ENE	05/01/2016	04:40	0.9	WSW	05/01/2016	12:15	1.3	NE
04/01/2016	21:10	4	ENE	05/01/2016	04:45	0.4	E	05/01/2016	12:20	1.8	NE
04/01/2016	21:15	4	ENE	05/01/2016	04:50	0.4	E	05/01/2016	12:25	1.8	NNE
04/01/2016	21:20	4	ENE	05/01/2016	04:55	0.4	E	05/01/2016	12:30	1.8	NNE
04/01/2016	21:25	2.2	NE	05/01/2016	05:00	0.9	E	05/01/2016	12:35	1.8	NW
04/01/2016	21:30	3.6	ENE	05/01/2016	05:05	0.9	W	05/01/2016	12:40	2.7	WNW
04/01/2016	21:35	1.8	WNW	05/01/2016	05:10	0.4	W	05/01/2016	12:45	3.6	WSW
04/01/2016	21:40	1.3	W	05/01/2016	05:15	0.4	W	05/01/2016	12:50	4	WSW
04/01/2016	21:45	0.9	NW	05/01/2016	05:20	0.4	W	05/01/2016	12:55	3.1	WSW
04/01/2016	21:50	1.3	W	05/01/2016	05:25	0.9	W	05/01/2016	13:00	3.1	W
04/01/2016	21:55	1.3	NW	05/01/2016	05:30	0.9	SW	05/01/2016	13:05	4.9	W
04/01/2016	22:00	1.8	W	05/01/2016	05:35	0.9	WSW	05/01/2016	13:10	3.1	W
04/01/2016	22:05	1.8	WNW	05/01/2016	05:40	0.9	WSW	05/01/2016	13:15	1.8	WNW
04/01/2016	22:10	1.8	W	05/01/2016	05:45	0.9	SW	05/01/2016	13:20	4	W
04/01/2016	22:15	1.8	NW	05/01/2016	05:50	0.9	SW	05/01/2016	13:25	3.6	WSW
04/01/2016	22:20	1.8	NW	05/01/2016	05:55	0.9	SW	05/01/2016	13:30	2.2	W
04/01/2016	22:25	1.8	WNW	05/01/2016	06:00	0.9	WSW	05/01/2016	13:35	2.2	W
04/01/2016	22:30	3.1	NW	05/01/2016	06:05	0.9	W	05/01/2016	13:40	2.2	W
04/01/2016	22:35	1.3	W	05/01/2016	06:10	0.9	NW	05/01/2016	13:45	3.1	W
04/01/2016	22:40	0.9	NW	05/01/2016	06:15	0.4	ENE	05/01/2016	13:50	1.8	WSW
04/01/2016	22:45	0.9	NE	05/01/2016	06:20	0.4	NE	05/01/2016	13:55	1.3	WSW
04/01/2016	22:50	0.4	E	05/01/2016	06:25	0.4	NW	05/01/2016	14:00	0.4	W
04/01/2016	22:55	0.9	NNE	05/01/2016	06:30	0.4	W	05/01/2016	14:05	0.4	WNW
04/01/2016	23:00	0.4	WNW	05/01/2016	06:35	0.4	W	05/01/2016	14:10	0.9	E
04/01/2016	23:05	0.9	SW	05/01/2016	06:40	0.4	W	05/01/2016	14:15	0.9	W
04/01/2016	23:10	4.9	NE	05/01/2016	06:45	0.4	W	05/01/2016	14:20	0.4	W
04/01/2016	23:15	4.5	NE	05/01/2016	06:50	0.4	W	05/01/2016	14:25	0.4	W
04/01/2016	23:20	3.6	NNE	05/01/2016	06:55	0.9	NW	05/01/2016	14:30	0.4	W
04/01/2016	23:25	1.3	NE	05/01/2016	07:00	0.9	N	05/01/2016	14:35	0.9	W
04/01/2016	23:30	0.9	NE	05/01/2016	07:05	0.9	W	05/01/2016	14:40	0.9	SW
04/01/2016	23:35	0.4	E	05/01/2016	07:10	1.3	N	05/01/2016	14:45	0.9	WSW
04/01/2016	23:40	0.9	NNE	05/01/2016	07:15	0.9	NNE	05/01/2016	14:50	1.3	NW
04/01/2016	23:45	0.4	WNW	05/01/2016	07:20	1.8	Wsw	05/01/2016	14:55	2.2	WNW
04/01/2016	23:50	2.2	NE	05/01/2016	07:25	1.3	WSW	05/01/2016	15:00	2.2	NNW
04/01/2016	23:55	2.2	NNE	05/01/2016	07:30	0.4	W	05/01/2016	15:05	2.2	NW
05/01/2016	00:00	0.4	NW	05/01/2016	07:35	0.4	WNW	05/01/2016	15:10	2.2	WNW
05/01/2016	00:05	0.9	WSW	05/01/2016	07:40	0.9	E	05/01/2016	15:15	1.8	NNW
05/01/2016	00:10	2.2	WSW	05/01/2016	07:45	0.9	W	05/01/2016	15:20	1.3	WSW
05/01/2016	00:15	0.9	WSW	05/01/2016	07:50	0.4	W	05/01/2016	15:25	1.8	NNE
05/01/2016	00:20	2.2	WSW	05/01/2016	07:55	0.4	W	05/01/2016	15:30	1.3	N
05/01/2016	00:25	2.7	WSW	05/01/2016	08:00	0.4	W	05/01/2016	15:35	1.8	NE
05/01/2016	00:30	2.7	WSW	05/01/2016	08:05	0.9	W	05/01/2016	15:40	1.3	NNE
05/01/2016	00:35	1.8	WSW	05/01/2016	08:10	0.9	SW	05/01/2016	15:45	1.3	N
05/01/2016	00:40	1.3	WSW	05/01/2016	08:15	0.9	WSW	05/01/2016	15:50	2.2	NNE
05/01/2016	00:45	0.4	W	05/01/2016	08:20	0.9	N	05/01/2016	15:55	1.8	NE
05/01/2016	00:50	0.4	WNW	05/01/2016	08:25	1.8	NW	05/01/2016	16:00	1.8	NNE
05/01/2016	00:55	0.9	E	05/01/2016	08:30	0.9	NNE	05/01/2016	16:05	1.8	NNE
05/01/2016	01:00	0.9	W	05/01/2016	08:35	0.9	W	05/01/2016	16:10	1.8	N
05/01/2016	01:05	0.4	W	05/01/2016	08:40	1.3	WSW	05/01/2016	16:15	1.3	N
05/01/2016	01:10	0.4	W	05/01/2016	08:45	0.9	W	05/01/2016	16:20	1.8	NNE
05/01/2016	01:15	0.4	W	05/01/2016	08:50	1.3	WNW	05/01/2016	16:25	1.3	NE
05/01/2016	01:20	0.9	W	05/01/2016	08:55	0.9	ENE	05/01/2016	16:30	2.2	NE
05/01/2016	01:25	0.9	SW	05/01/2016	09:00	1.8	SW	05/01/2016	16:35	2.2	NE
05/01/2016	01:30	0.9	WSW	05/01/2016	09:05	0.9	SW	05/01/2016	16:40	1.8	NNW
05/01/2016	01:35	0.9	W	05/01/2016	09:10	1.3	ENE	05/01/2016	16:45	2.2	NE
05/01/2016	01:40	0.9	NW	05/01/2016	09:15	0.9	ENE	05/01/2016	16:50	1.8	NNE
05/01/2016	01:45	0.4	ENE	05/01/2016	09:20	1.3	WSW	05/01/2016	16:55	1.8	NNE
05/01/2016	01:50	0.4	NE	05/01/2016	09:25	0.9	SW	05/01/2016	17:00	1.8	N
05/01/2016	01:55	0.4	W	05/01/2016	09:30	2.2	WSW	05/01/2016	17:05	1.3	NNE
05/01/2016	02:00	1.3	W	05/01/2016	09:35	0.9	WNW	05/01/2016	17:10	1.8	NE
05/01/2016	02:05	0.9	WNW	05/01/2016	09:40	0.9	WSW	05/01/2016	17:15	1.8	NE
05/01/2016	02:10	0.4	N	05/01/2016	09:45	0.9	WNW	05/01/2016	17:20	1.8	WSW
05/01/2016	02:15	0.4	NW	05/01/2016	09:50	1.8	WSW	05/01/2016	17:25	1.3	WSW
05/01/2016	02:20	0.4	NW	05/01/2016	09:55	1.3	WSW	05/01/2016	17:30	0.4	W
05/01/2016	02:25	0.4	WSW	05/01/2016	10:00	0.4	W	05/01/2016	17:35	0.4	WNW
$\begin{aligned} & 05 / 01 / 2016 \\ & 05 / 01 / 2016 \end{aligned}$	02:30 02:35	0.9 0.4	WSW WSW	05/01/2016	10:05 10:10	0.4 0.9	WNW	05/01/2016 05/01/2016	$17: 40$ $17: 45$	0.9 0.9	E

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
05/01/2016	17:50	0.4	w	06/01/2016	01:25	1.3	WSW	06/01/2016	09:00	0.4	NNW
05/01/2016	17:55	0.4	W	06/01/2016	01:30	1.3	WSW	06/01/2016	09:05	0.9	NNW
05/01/2016	18:00	0.4	W	06/01/2016	01:35	0.9	WSW	06/01/2016	09:10	0.4	NNW
05/01/2016	18:05	0.9	W	06/01/2016	01:40	0.9	W	06/01/2016	09:15	0.9	NNW
05/01/2016	18:10	0.9	SW	06/01/2016	01:45	0.9	W	06/01/2016	09:20	0.9	NNW
05/01/2016	18:15	0.9	WSW	06/01/2016	01:50	0.9	W	06/01/2016	09:25	1.3	NE
05/01/2016	18:20	1.3	WSW	06/01/2016	01:55	0.9	W	06/01/2016	09:30	0.4	NE
05/01/2016	18:25	1.8	WSW	06/01/2016	02:00	0.4	WSW	06/01/2016	09:35	0.9	NW
05/01/2016	18:30	1.3	W	06/01/2016	02:05	0.4	NE	06/01/2016	09:40	0.4	NW
05/01/2016	18:35	1.8	WSW	06/01/2016	02:10	0.9	NE	06/01/2016	09:45	0.4	NW
05/01/2016	18:40	1.8	W	06/01/2016	02:15	0.4	NE	06/01/2016	09:50	1.3	WSW
05/01/2016	18:45	1.8	W	06/01/2016	02:20	1.3	NE	06/01/2016	09:55	0.9	WSW
05/01/2016	18:50	1.8	WSW	06/01/2016	02:25	1.3	NNE	06/01/2016	10:00	0.4	SW
05/01/2016	18:55	1.8	WSW	06/01/2016	02:30	1.3	NE	06/01/2016	10:05	0.9	SW
05/01/2016	19:00	1.8	WSW	06/01/2016	02:35	1.3	NE	06/01/2016	10:10	0.9	WSW
05/01/2016	19:05	1.3	WSW	06/01/2016	02:40	1.3	E	06/01/2016	10:15	0.4	SSW
05/01/2016	19:10	1.3	WSW	06/01/2016	02:45	1.3	E	06/01/2016	10:20	0.4	SW
05/01/2016	19:15	1.8	WSW	06/01/2016	02:50	1.3	E	06/01/2016	10:25	0.9	SSW
05/01/2016	19:20	2.2	WSW	06/01/2016	02:55	0.9	ESE	06/01/2016	10:30	0.9	WSW
05/01/2016	19:25	1.8	WSW	06/01/2016	03:00	0.9	ESE	06/01/2016	10:35	1.3	WSW
05/01/2016	19:30	1.3	W	06/01/2016	03:05	0.4	ESE	06/01/2016	10:40	1.3	WSW
05/01/2016	19:35	1.3	W	06/01/2016	03:10	0.4	ESE	06/01/2016	10:45	0.9	SSW
05/01/2016	19:40	0.9	W	06/01/2016	03:15	0.4	ESE	06/01/2016	10:50	0.9	WSW
05/01/2016	19:45	0.9	W	06/01/2016	03:20	0.4	ESE	06/01/2016	10:55	1.3	WSW
05/01/2016	19:50	1.3	WSW	06/01/2016	03:25	0.4	ESE	06/01/2016	11:00	1.3	NW
05/01/2016	19:55	1.3	WSW	06/01/2016	03:30	0.4	ESE	06/01/2016	11:05	1.3	WNW
05/01/2016	20:00	0.9	WSW	06/01/2016	03:35	0.4	ESE	06/01/2016	11:10	1.3	WNW
05/01/2016	20:05	0.9	W	06/01/2016	03:40	0.4	ESE	06/01/2016	11:15	1.3	W
05/01/2016	20:10	1.3	W	06/01/2016	03:45	0.4	SSW	06/01/2016	11:20	0.9	WNW
05/01/2016	20:15	0.4	W	06/01/2016	03:50	1.3	WSW	06/01/2016	11:25	0.9	NNW
05/01/2016	20:20	0.4	W	06/01/2016	03:55	0.9	Wsw	06/01/2016	11:30	0.9	N
05/01/2016	20:25	0.9	W	06/01/2016	04:00	0.4	SW	06/01/2016	11:35	0.9	W
05/01/2016	20:30	1.3	W	06/01/2016	04:05	0.9	SW	06/01/2016	11:40	1.3	WNW
05/01/2016	20:35	1.3	WSW	06/01/2016	04:10	0.9	WSW	06/01/2016	11:45	1.8	W
05/01/2016	20:40	1.3	WSW	06/01/2016	04:15	0.4	SSW	06/01/2016	11:50	1.8	WSW
05/01/2016	20:45	0.9	WSW	06/01/2016	04:20	0.4	SW	06/01/2016	11:55	2.7	W
05/01/2016	20:50	1.8	WSW	06/01/2016	04:25	0.9	SSW	06/01/2016	12:00	2.7	WNW
05/01/2016	20:55	1.3	WSW	06/01/2016	04:30	0.9	WSW	06/01/2016	12:05	1.3	WSW
05/01/2016	21:00	0.4	W	06/01/2016	04:35	1.3	WSW	06/01/2016	12:10	0.9	WSW
05/01/2016	21:05	0.4	WNW	06/01/2016	04:40	1.3	WSW	06/01/2016	12:15	0.4	SW
05/01/2016	21:10	0.9	E	06/01/2016	04:45	0.9	SSW	06/01/2016	12:20	0.9	SW
05/01/2016	21:15	0.9	W	06/01/2016	04:50	0.9	WSW	06/01/2016	12:25	0.9	WSW
05/01/2016	21:20	0.4	W	06/01/2016	04:55	1.3	WSW	06/01/2016	12:30	0.4	SSW
05/01/2016	21:25	0.4	W	06/01/2016	05:00	1.3	E	06/01/2016	12:35	0.4	SW
05/01/2016	21:30	0.4	W	06/01/2016	05:05	1.3	E	06/01/2016	12:40	0.9	SSW
05/01/2016	21:35	0.9	W	06/01/2016	05:10	1.3	ENE	06/01/2016	12:45	0.9	WSW
05/01/2016	21:40	0.9	SW	06/01/2016	05:15	1.8	E	06/01/2016	12:50	1.3	WSW
05/01/2016	21:45	0.9	WSW	06/01/2016	05:20	1.3	E	06/01/2016	12:55	1.3	WSW
05/01/2016	21:50	0.4	W	06/01/2016	05:25	0.9	E	06/01/2016	13:00	0.9	SSW
05/01/2016	21:55	0.4	W	06/01/2016	05:30	0.9	E	06/01/2016	13:05	0.9	WSW
05/01/2016	22:00	0.4	W	06/01/2016	05:35	0.4	NE	06/01/2016	13:10	1.3	WSW
05/01/2016	22:05	0.4	W	06/01/2016	05:40	0.4	NE	06/01/2016	13:15	3.1	W
05/01/2016	22:10	0.4	W	06/01/2016	05:45	0.4	NE	06/01/2016	13:20	3.1	W
05/01/2016	22:15	0.4	W	06/01/2016	05:50	0.9	NE	06/01/2016	13:25	3.1	W
05/01/2016	22:20	0.4	W	06/01/2016	05:55	0.4	ESE	06/01/2016	13:30	3.1	WNW
05/01/2016	22:25	0.4	W	06/01/2016	06:00	0.4	ESE	06/01/2016	13:35	3.6	W
05/01/2016	22:30	0.4	NE	06/01/2016	06:05	0.4	ESE	06/01/2016	13:40	3.1	W
05/01/2016	22:35	1.8	NE	06/01/2016	06:10	0.9	ESE	06/01/2016	13:45	2.2	W
05/01/2016	22:40	1.8	NE	06/01/2016	06:15	0.9	ESE	06/01/2016	13:50	2.7	SW
05/01/2016	22:45	1.3	NE	06/01/2016	06:20	0.9	ESE	06/01/2016	13:55	2.7	sW
05/01/2016	22:50	1.3	NE	06/01/2016	06:25	0.4	ESE	06/01/2016	14:00	2.2	W
05/01/2016	22:55	0.9	ENE	06/01/2016	06:30	0.4	NE	06/01/2016	14:05	2.7	W
05/01/2016	23:00	1.3	ENE	06/01/2016	06:35	1.3	NE	06/01/2016	14:10	3.1	WNW
05/01/2016	23:05	1.8	WSW	06/01/2016	06:40	0.4	NE	06/01/2016	14:15	3.6	WNW
05/01/2016	23:10	1.3	WSW	06/01/2016	06:45	0.4	NE	06/01/2016	14:20	3.1	W
05/01/2016	23:15	0.4	W	06/01/2016	06:50	1.8	NE	06/01/2016	14:25	3.6	WSW
05/01/2016	23:20	0.4	WNW	06/01/2016	06:55	2.2	NE	06/01/2016	14:30	1.3	WSW
05/01/2016	23:25	0.9	E	06/01/2016	07:00	1.8	NE	06/01/2016	14:35	0.9	WSW
05/01/2016	23:30	0.9	W	06/01/2016	07:05	1.3	NE	06/01/2016	14:40	0.4	SW
05/01/2016	23:35	0.4	W	06/01/2016	07:10	0.9	NE	06/01/2016	14:45	0.9	SW
05/01/2016	23:40	0.4	W	06/01/2016	07:15	0.9	ENE	06/01/2016	14:50	0.9	WSW
05/01/2016	23:45	0.4	W	06/01/2016	07:20	0.4	NE	06/01/2016	14:55	0.4	SSW
05/01/2016	23:50	0.9	W	06/01/2016	07:25	0.9	NE	06/01/2016	15:00	0.4	SW
05/01/2016	23:55	0.9	SW	06/01/2016	07:30	0.9	NE	06/01/2016	15:05	0.9	SSW
06/01/2016	00:00	0.9	WSW	06/01/2016	07:35	1.3	WSW	06/01/2016	15:10	0.9	WSW
06/01/2016	00:05	1.3	WSW	06/01/2016	07:40	0.9	WSW	06/01/2016	15:15	1.3	WSW
06/01/2016	00:10	1.3	WNW	06/01/2016	07:45	0.4	SW	06/01/2016	15:20	1.3	WSW
06/01/2016	00:15	1.3	WNW	06/01/2016	07:50	0.9	SW	06/01/2016	15:25	0.9	SSW
06/01/2016	00:20	1.3	WSW	06/01/2016	07:55	0.9	WSW	06/01/2016	15:30	0.9	WSW
06/01/2016	00:25	0.9	WSW	06/01/2016	08:00	0.4	SSW	06/01/2016	15:35	1.3	WSW
06/01/2016	00:30	0.4	SW	06/01/2016	08:05	0.4	SW	06/01/2016	15:40	2.7	WNW
06/01/2016	00:35	0.9	SW	06/01/2016	08:10	0.9	SSW	06/01/2016	15:45	3.6	WNW
06/01/2016	00:40	0.9	WSW	06/01/2016	08:15	0.9	WSW	06/01/2016	15:50	3.6	WNW
06/01/2016	00:45	0.4	SSW	06/01/2016	08:20	1.3	WSW	06/01/2016	15:55	3.6	W
06/01/2016	00:50	0.4	SW	06/01/2016	08:25	1.3	WSW	06/01/2016	16:00	3.6	W
06/01/2016	00:55	0.9	SSW	06/01/2016	08:30	0.9	SSW	06/01/2016	16:05	4	NW
06/01/2016	01:00	0.9	WSW	06/01/2016	08:35	0.9	WSW	06/01/2016	16:10	2.7	W
06/01/2016	01:05	1.3	WSW	06/01/2016	08:40	1.3	WSW	06/01/2016	16:15	3.6	W
06/01/2016	01:10	1.3	WSW	06/01/2016	08:45	0.9	NNW	06/01/2016	16:20	3.1	W
$\begin{aligned} & 06 / 01 / 2016 \\ & 06 / 01 / 2016 \end{aligned}$	01:15 $01: 20$	0.9 0.9	SSW WSW	06/01/2016	08:50	0.9 0.4	NNW NNW	06/01/2016	16:25 16:30	3.1 3.6	W

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
06/01/2016	16:35	3.1	w	07/01/2016	00:10	1.3	NNE	07/01/2016	07:45	2.7	N
06/01/2016	16:40	4	W	07/01/2016	00:15	1.3	NNW	07/01/2016	07:50	2.7	NNE
06/01/2016	16:45	2.7	WNW	07/01/2016	00:20	1.3	NNW	07/01/2016	07:55	3.1	NNE
06/01/2016	16:50	2.7	W	07/01/2016	00:25	1.8	NW	07/01/2016	08:00	2.7	NNE
06/01/2016	16:55	3.6	W	07/01/2016	00:30	2.2	NW	07/01/2016	08:05	1.3	NNW
06/01/2016	17:00	3.6	WNW	07/01/2016	00:35	2.2	NW	07/01/2016	08:10	1.8	NW
06/01/2016	17:05	1.3	WSW	07/01/2016	00:40	2.2	NW	07/01/2016	08:15	2.2	NW
06/01/2016	17:10	0.9	WSW	07/01/2016	00:45	2.2	NNW	07/01/2016	08:20	2.2	NW
06/01/2016	17:15	0.4	SW	07/01/2016	00:50	2.2	NNW	07/01/2016	08:25	2.2	NW
06/01/2016	17:20	0.9	SW	07/01/2016	00:55	2.7	NNW	07/01/2016	08:30	2.2	NNW
06/01/2016	17:25	0.9	WSW	07/01/2016	01:00	2.7	NW	07/01/2016	08:35	2.2	NNW
06/01/2016	17:30	0.4	SSW	07/01/2016	01:05	1.8	NW	07/01/2016	08:40	2.7	NNW
06/01/2016	17:35	0.4	SW	07/01/2016	01:10	2.2	NNW	07/01/2016	08:45	2.7	NW
06/01/2016	17:40	0.9	SSW	07/01/2016	01:15	2.2	NW	07/01/2016	08:50	1.8	NW
06/01/2016	17:45	0.9	WSW	07/01/2016	01:20	1.8	N	07/01/2016	08:55	2.2	NNW
06/01/2016	17:50	1.3	WSW	07/01/2016	01:25	1.8	WNW	07/01/2016	09:00	0.9	NE
06/01/2016	17:55	1.3	WSW	07/01/2016	01:30	2.2	NW	07/01/2016	09:05	1.3	N
06/01/2016	18:00	0.9	SSW	07/01/2016	01:35	2.2	NNW	07/01/2016	09:10	1.8	NE
06/01/2016	18:05	0.9	WSW	07/01/2016	01:40	2.2	NNW	07/01/2016	09:15	2.2	NE
06/01/2016	18:10	1.3	WSW	07/01/2016	01:45	2.2	N	07/01/2016	09:20	2.2	NE
06/01/2016	18:15	3.1	W	07/01/2016	01:50	2.2	N	07/01/2016	09:25	2.2	NE
06/01/2016	18:20	3.1	W	07/01/2016	01:55	1.8	N	07/01/2016	09:30	1.8	NE
06/01/2016	18:25	2.7	W	07/01/2016	02:00	1.8	NNW	07/01/2016	09:35	1.3	ENE
06/01/2016	18:30	3.1	W	07/01/2016	02:05	2.2	NW	07/01/2016	09:40	1.3	N
06/01/2016	18:35	2.2	W	07/01/2016	02:10	2.2	NW	07/01/2016	09:45	1.3	N
06/01/2016	18:40	2.7	W	07/01/2016	02:15	2.7	NW	07/01/2016	09:50	1.3	NW
06/01/2016	18:45	3.1	W	07/01/2016	02:20	2.2	NW	07/01/2016	09:55	2.2	N
06/01/2016	18:50	2.7	WSW	07/01/2016	02:25	2.2	NW	07/01/2016	10:00	0.9	NW
06/01/2016	18:55	2.7	W	07/01/2016	02:30	1.8	NW	07/01/2016	10:05	1.8	N
06/01/2016	19:00	2.7	W	07/01/2016	02:35	1.8	NW	07/01/2016	10:10	1.8	N
06/01/2016	19:05	3.1	W	07/01/2016	02:40	1.8	NW	07/01/2016	10:15	1.8	N
06/01/2016	19:10	3.6	W	07/01/2016	02:45	1.8	NW	07/01/2016	10:20	1.3	NNW
06/01/2016	19:15	2.7	W	07/01/2016	02:50	1.8	NW	07/01/2016	10:25	1.8	NW
06/01/2016	19:20	4	W	07/01/2016	02:55	1.8	NW	07/01/2016	10:30	2.2	NW
06/01/2016	19:25	3.6	W	07/01/2016	03:00	2.7	NW	07/01/2016	10:35	2.2	NW
06/01/2016	19:30	3.1	W	07/01/2016	03:05	2.2	NW	07/01/2016	10:40	2.2	NW
06/01/2016	19:35	3.1	WNW	07/01/2016	03:10	2.2	NW	07/01/2016	10:45	2.2	NNW
06/01/2016	19:40	4	WNW	07/01/2016	03:15	1.3	NNW	07/01/2016	10:50	2.2	NNW
06/01/2016	19:45	4.9	WNW	07/01/2016	03:20	1.8	NW	07/01/2016	10:55	2.7	NNW
06/01/2016	19:50	1.3	WSW	07/01/2016	03:25	2.2	NW	07/01/2016	11:00	2.7	NW
06/01/2016	19:55	0.9	WSW	07/01/2016	03:30	2.2	NW	07/01/2016	11:05	1.8	NW
06/01/2016	20:00	0.4	SW	07/01/2016	03:35	2.2	NW	07/01/2016	11:10	2.2	NNW
06/01/2016	20:05	0.9	SW	07/01/2016	03:40	2.2	NNW	07/01/2016	11:15	2.2	W
06/01/2016	20:10	0.9	WSW	07/01/2016	03:45	2.2	NNW	07/01/2016	11:20	3.1	WNW
06/01/2016	20:15	0.4	SSW	07/01/2016	03:50	2.7	NNW	07/01/2016	11:25	4	WNW
06/01/2016	20:20	0.4	SW	07/01/2016	03:55	2.7	NW	07/01/2016	11:30	2.2	W
06/01/2016	20:25	0.9	SSW	07/01/2016	04:00	1.8	NW	07/01/2016	11:35	3.6	WNW
06/01/2016	20:30	0.9	WSW	07/01/2016	04:05	2.2	NNW	07/01/2016	11:40	4	W
06/01/2016	20:35	1.3	WSW	07/01/2016	04:10	1.8	NNW	07/01/2016	11:45	3.6	W
06/01/2016	20:40	1.3	WSW	07/01/2016	04:15	2.2	NW	07/01/2016	11:50	3.6	WNW
06/01/2016	20:45	0.9	SSW	07/01/2016	04:20	1.8	NW	07/01/2016	11:55	3.1	W
06/01/2016	20:50	0.9	WSW	07/01/2016	04:25	1.3	NW	07/01/2016	12:00	4.5	W
06/01/2016	20:55	1.3	WSW	07/01/2016	04:30	1.8	NW	07/01/2016	12:05	4	WNW
06/01/2016	21:00	3.1	WNW	07/01/2016	04:35	2.2	NW	07/01/2016	12:10	4.5	W
06/01/2016	21:05	3.6	WNW	07/01/2016	04:40	2.2	NW	07/01/2016	12:15	4	W
06/01/2016	21:10	2.2	WNW	07/01/2016	04:45	2.2	NNW	07/01/2016	12:20	4.5	W
06/01/2016	21:15	1.8	NW	07/01/2016	04:50	2.2	NNW	07/01/2016	12:25	3.6	W
06/01/2016	21:20	0.9	WNW	07/01/2016	04:55	2.2	NNW	07/01/2016	12:30	3.6	WNW
06/01/2016	21:25	1.3	NNW	07/01/2016	05:00	2.2	NNW	07/01/2016	12:35	3.6	WNW
06/01/2016	21:30	1.3	N	07/01/2016	05:05	2.2	NNW	07/01/2016	12:40	3.1	WNW
06/01/2016	21:35	0.4	N	07/01/2016	05:10	2.2	NW	07/01/2016	12:45	3.6	W
06/01/2016	21:40	0.9	NNW	07/01/2016	05:15	2.2	NNW	07/01/2016	12:50	1.3	NNW
06/01/2016	21:45	0.4	NW	07/01/2016	05:20	1.8	NNW	07/01/2016	12:55	1.8	NW
06/01/2016	21:50	0.9	NW	07/01/2016	05:25	2.2	NNW	07/01/2016	13:00	2.2	NW
06/01/2016	21:55	1.3	WSW	07/01/2016	05:30	2.2	NNW	07/01/2016	13:05	2.2	NW
06/01/2016	22:00	0.9	WSW	07/01/2016	05:35	2.2	NNW	07/01/2016	13:10	2.2	NW
06/01/2016	22:05	0.4	SW	07/01/2016	05:40	1.3	NNW	07/01/2016	13:15	2.2	NNW
06/01/2016	22:10	0.9	SW	07/01/2016	05:45	1.8	NW	07/01/2016	13:20	2.2	NNW
06/01/2016	22:15	0.9	WSW	07/01/2016	05:50	2.2	NW	07/01/2016	13:25	2.7	NNW
06/01/2016	22:20	0.4	SSW	07/01/2016	05:55	2.2	NW	07/01/2016	13:30	2.7	NW
06/01/2016	22:25	0.4	SW	07/01/2016	06:00	2.2	NW	07/01/2016	13:35	1.8	NW
06/01/2016	22:30	0.9	SSW	07/01/2016	06:05	2.2	NNW	07/01/2016	13:40	2.2	NNW
06/01/2016	22:35	0.9	WSW	07/01/2016	06:10	2.2	NNW	07/01/2016	13:45	4.5	W
06/01/2016	22:40	1.3	WSW	07/01/2016	06:15	2.7	NNW	07/01/2016	13:50	4	W
06/01/2016	22:45	1.3	WSW	07/01/2016	06:20	2.7	NW	07/01/2016	13:55	4	W
06/01/2016	22:50	0.9	SSW	07/01/2016	06:25	1.8	NW	07/01/2016	14:00	4.5	W
06/01/2016	22:55	0.9	WSW	07/01/2016	06:30	2.2	NNW	07/01/2016	14:05	4.5	W
06/01/2016	23:00	1.3	WSW	07/01/2016	06:35	1.8	N	07/01/2016	14:10	4.5	W
06/01/2016	23:05	1.8	N	07/01/2016	06:40	1.8	N	07/01/2016	14:15	4.9	W
06/01/2016	23:10	1.3	N	07/01/2016	06:45	2.2	NNW	07/01/2016	14:20	4	W
06/01/2016	23:15	1.8	N	07/01/2016	06:50	1.8	NNW	07/01/2016	14:25	4	WNW
06/01/2016	23:20	2.2	NNW	07/01/2016	06:55	1.3	N	07/01/2016	14:30	4.5	W
06/01/2016	23:25	1.8	N	07/01/2016	07:00	1.8	NNW	07/01/2016	14:35	4	WNW
06/01/2016	23:30	1.3	N	07/01/2016	07:05	1.8	NNW	07/01/2016	14:40	3.6	WNW
06/01/2016	23:35	1.3	NW	07/01/2016	07:10	1.8	N	07/01/2016	14:45	4	WNW
06/01/2016	23:40	1.3	NNW	07/01/2016	07:15	1.8	NE	07/01/2016	14:50	4.5	WNW
06/01/2016	23:45	1.8	NW	07/01/2016	07:20	2.2	NE	07/01/2016	14:55	4.5	WNW
06/01/2016	23:50	2.2	NNW	07/01/2016	07:25	1.3	NE	07/01/2016	15:00	4.5	WNW
06/01/2016	23:55	1.8	NNW	07/01/2016	07:30	1.8	NE	07/01/2016	15:05	4.9	WNW
07/01/2016 07/01/2016	00:00 00:05	1.8 1.3	N N	07/01/2016	07:35	2.7 2.2	NE	07/01/2016	15:10 15:15	4.5 4.9	WNW WNW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
07/01/2016	15:20	1.3	NNW	07/01/2016	22:55	2.2	NW	08/01/2016	06:30	1.8	NW
07/01/2016	15:25	1.8	NW	07/01/2016	23:00	2.2	NW	08/01/2016	06:35	1.8	NW
07/01/2016	15:30	2.2	NW	07/01/2016	23:05	2.2	NNW	08/01/2016	06:40	1.3	NW
07/01/2016	15:35	2.2	NW	07/01/2016	23:10	2.2	NNW	08/01/2016	06:45	1.8	NW
07/01/2016	15:40	2.2	NW	07/01/2016	23:15	2.7	NNW	08/01/2016	06:50	1.8	NW
07/01/2016	15:45	2.2	NNW	07/01/2016	23:20	2.7	NW	08/01/2016	06:55	1.8	NW
07/01/2016	15:50	2.2	NNW	07/01/2016	23:25	1.8	NW	08/01/2016	07:00	1.3	NW
07/01/2016	15:55	2.7	NNW	07/01/2016	23:30	2.2	NNW	08/01/2016	07:05	1.8	WNW
07/01/2016	16:00	2.7	NW	07/01/2016	23:35	1.3	NNE	08/01/2016	07:10	2.2	NW
07/01/2016	16:05	1.8	NW	07/01/2016	23:40	1.3	ENE	08/01/2016	07:15	2.2	NW
07/01/2016	16:10	2.2	NNW	07/01/2016	23:45	2.2	NE	08/01/2016	07:20	1.8	NW
07/01/2016	16:15	0.4	NE	07/01/2016	23:50	2.2	NE	08/01/2016	07:25	1.8	NE
07/01/2016	16:20	0.4	NNE	07/01/2016	23:55	2.2	NNE	08/01/2016	07:30	2.2	NNE
07/01/2016	16:25	1.3	NE	08/01/2016	00:00	2.7	NE	08/01/2016	07:35	2.2	NNE
07/01/2016	16:30	1.3	NE	08/01/2016	00:05	2.2	NE	08/01/2016	07:40	2.2	NE
07/01/2016	16:35	1.3	ENE	08/01/2016	00:10	1.8	ENE	08/01/2016	07:45	1.8	NNE
07/01/2016	16:40	1.8	NE	08/01/2016	00:15	1.8	NE	08/01/2016	07:50	1.8	NNE
07/01/2016	16:45	1.3	NNE	08/01/2016	00:20	1.8	NE	08/01/2016	07:55	1.8	NNE
07/01/2016	16:50	2.2	N	08/01/2016	00:25	1.8	ENE	08/01/2016	08:00	1.3	NNE
07/01/2016	16:55	1.8	N	08/01/2016	00:30	1.8	NE	08/01/2016	08:05	1.8	N
07/01/2016	17:00	1.8	N	08/01/2016	00:35	1.8	NE	08/01/2016	08:10	1.8	N
07/01/2016	17:05	2.2	N	08/01/2016	00:40	1.8	NE	08/01/2016	08:15	2.2	N
07/01/2016	17:10	2.2	N	08/01/2016	00:45	1.8	NE	08/01/2016	08:20	1.8	NNW
07/01/2016	17:15	2.2	N	08/01/2016	00:50	2.2	NNE	08/01/2016	08:25	1.8	NW
07/01/2016	17:20	2.2	N	08/01/2016	00:55	2.2	NNE	08/01/2016	08:30	1.3	NW
07/01/2016	17:25	2.2	N	08/01/2016	01:00	2.2	NE	08/01/2016	08:35	1.3	NW
07/01/2016	17:30	2.2	N	08/01/2016	01:05	1.8	NNE	08/01/2016	08:40	2.2	NW
07/01/2016	17:35	1.3	NNW	08/01/2016	01:10	1.8	NNE	08/01/2016	08:45	1.8	NNW
07/01/2016	17:40	1.8	NW	08/01/2016	01:15	1.8	NNE	08/01/2016	08:50	1.8	NNW
07/01/2016	17:45	2.2	NW	08/01/2016	01:20	1.3	NNE	08/01/2016	08:55	1.8	NW
07/01/2016	17:50	2.2	NW	08/01/2016	01:25	1.8	N	08/01/2016	09:00	1.8	NW
07/01/2016	17:55	2.2	NW	08/01/2016	01:30	1.8	N	08/01/2016	09:05	1.8	NW
07/01/2016	18:00	2.2	NNW	08/01/2016	01:35	2.2	N	08/01/2016	09:10	1.3	NNW
07/01/2016	18:05	2.2	NNW	08/01/2016	01:40	1.8	NNW	08/01/2016	09:15	1.8	NW
07/01/2016	18:10	2.7	NNW	08/01/2016	01:45	1.3	NNE	08/01/2016	09:20	1.8	NW
07/01/2016	18:15	2.7	NW	08/01/2016	01:50	1.3	NNE	08/01/2016	09:25	1.8	NNW
07/01/2016	18:20	1.8	NW	08/01/2016	01:55	1.8	N	08/01/2016	09:30	1.8	N
07/01/2016	18:25	2.2	NNW	08/01/2016	02:00	1.3	NNE	08/01/2016	09:35	1.8	NNW
07/01/2016	18:30	2.2	NNW	08/01/2016	02:05	0.9	NNE	08/01/2016	09:40	1.3	N
07/01/2016	18:35	1.8	N	08/01/2016	02:10	1.3	N	08/01/2016	09:45	1.3	NW
07/01/2016	18:40	0.9	N	08/01/2016	02:15	1.8	NW	08/01/2016	09:50	1.3	NW
07/01/2016	18:45	1.3	NNW	08/01/2016	02:20	1.8	NW	08/01/2016	09:55	1.3	N
07/01/2016	18:50	0.9	N	08/01/2016	02:25	1.8	NW	08/01/2016	10:00	0.9	NW
07/01/2016	18:55	0.9	N	08/01/2016	02:30	2.2	NW	08/01/2016	10:05	1.3	NNW
07/01/2016	19:00	0	N	08/01/2016	02:35	1.8	NW	08/01/2016	10:10	1.8	NW
07/01/2016	19:05	0.4	N	08/01/2016	02:40	1.8	NW	08/01/2016	10:15	2.2	WNW
07/01/2016	19:10	0.9	NNE	08/01/2016	02:45	2.2	NW	08/01/2016	10:20	2.2	NW
07/01/2016	19:15	2.7	NNW	08/01/2016	02:50	1.8	NW	08/01/2016	10:25	1.8	NW
07/01/2016	19:20	2.2	NNW	08/01/2016	02:55	1.8	NW	08/01/2016	10:30	2.2	W
07/01/2016	19:25	2.2	N	08/01/2016	03:00	1.8	NNW	08/01/2016	10:35	2.2	WNW
07/01/2016	19:30	2.2	N	08/01/2016	03:05	1.3	NNW	08/01/2016	10:40	3.1	WNW
07/01/2016	19:35	1.8	N	08/01/2016	03:10	2.2	NNW	08/01/2016	10:45	2.7	WNW
07/01/2016	19:40	1.3	ENE	08/01/2016	03:15	1.8	NNW	08/01/2016	10:50	2.2	W
07/01/2016	19:45	0.4	NE	08/01/2016	03:20	2.2	NW	08/01/2016	10:55	1.8	NE
07/01/2016	19:50	0.9	NE	08/01/2016	03:25	1.8	NW	08/01/2016	11:00	2.2	NNE
07/01/2016	19:55	1.3	ENE	08/01/2016	03:30	2.2	NW	08/01/2016	11:05	2.2	NNE
07/01/2016	20:00	1.3	ENE	08/01/2016	03:35	2.2	NW	08/01/2016	11:10	2.2	NE
07/01/2016	20:05	1.8	NE	08/01/2016	03:40	1.8	NE	08/01/2016	11:15	1.8	NNE
07/01/2016	20:10	1.3	NNW	08/01/2016	03:45	2.2	NNE	08/01/2016	11:20	1.8	NNE
07/01/2016	20:15	1.8	NW	08/01/2016	03:50	2.2	NNE	08/01/2016	11:25	1.8	NNE
07/01/2016	20:20	2.2	NW	08/01/2016	03:55	2.2	NE	08/01/2016	11:30	1.3	NNE
07/01/2016	20:25	2.2	NW	08/01/2016	04:00	1.8	NNE	08/01/2016	11:35	1.8	N
07/01/2016	20:30	2.2	NW	08/01/2016	04:05	1.8	NNE	08/01/2016	11:40	1.8	N
07/01/2016	20:35	2.2	NNW	08/01/2016	04:10	1.8	NNE	08/01/2016	11:45	2.2	N
07/01/2016	20:40	2.2	NNW	08/01/2016	04:15	1.3	NNE	08/01/2016	11:50	1.8	NNW
07/01/2016	20:45	2.7	NNW	08/01/2016	04:20	1.8	N	08/01/2016	11:55	2.7	W
07/01/2016	20:50	2.7	NW	08/01/2016	04:25	1.8	N	08/01/2016	12:00	4	WNW
07/01/2016	20:55	1.8	NW	08/01/2016	04:30	2.2	N	08/01/2016	12:05	3.1	W
07/01/2016	21:00	2.2	NNW	08/01/2016	04:35	1.8	NNW	08/01/2016	12:10	3.1	W
07/01/2016	21:05	1.8	ENE	08/01/2016	04:40	2.7	NW	08/01/2016	12:15	3.6	W
07/01/2016	21:10	1.8	ENE	08/01/2016	04:45	2.7	NW	08/01/2016	12:20	4	W
07/01/2016	21:15	2.2	ENE	08/01/2016	04:50	2.2	NW	08/01/2016	12:25	3.6	W
07/01/2016	21:20	1.8	NE	08/01/2016	04:55	2.2	NW	08/01/2016	12:30	4.9	W
07/01/2016	21:25	2.2	NE	08/01/2016	05:00	2.2	NW	08/01/2016	12:35	4	W
07/01/2016	21:30	1.3	NNE	08/01/2016	05:05	1.8	NW	08/01/2016	12:40	4	W
07/01/2016	21:35	1.8	NE	08/01/2016	05:10	2.7	NW	08/01/2016	12:45	4	W
07/01/2016	21:40	1.3	NE	08/01/2016	05:15	2.2	NNW	08/01/2016	12:50	5.4	W
07/01/2016	21:45	1.3	NE	08/01/2016	05:20	2.2	NW	08/01/2016	12:55	4.9	W
07/01/2016	21:50	1.3	NE	08/01/2016	05:25	1.8	NW	08/01/2016	13:00	4.5	W
07/01/2016	21:55	2.2	ENE	08/01/2016	05:30	2.7	NW	08/01/2016	13:05	4	WNW
07/01/2016	22:00	2.2	ENE	08/01/2016	05:35	2.2	NW	08/01/2016	13:10	4	WNW
07/01/2016	22:05	1.8	ENE	08/01/2016	05:40	1.8	NNW	08/01/2016	13:15	4.9	WNW
07/01/2016	22:10	2.2	ENE	08/01/2016	05:45	2.2	NW	08/01/2016	13:20	4.5	WNW
07/01/2016	22:15	2.2	ENE	08/01/2016	05:50	2.2	NW	08/01/2016	13:25	4.5	W
07/01/2016	22:20	1.8	ENE	08/01/2016	05:55	1.8	NNW	08/01/2016	13:30	4.9	W
07/01/2016	22:25	1.3	ENE	08/01/2016	06:00	1.8	NW	08/01/2016	13:35	4.9	W
07/01/2016	22:30	1.8	ENE	08/01/2016	06:05	2.2	NW	08/01/2016	13:40	4.5	W
07/01/2016	22:35	1.8	ENE	08/01/2016	06:10	2.2	NW	08/01/2016	13:45	4.9	W
07/01/2016	22:40	1.3	NNW	08/01/2016	06:15	1.3	NW	08/01/2016	13:50	4	W
07/01/2016	22:45 22:50	1.8 2.2	NW	08/01/2016	06:20 06:25	1.3 1.8	NW	08/01/2016	$13: 55$ $14: 00$	4 5.4	W WNW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
08/01/2016	14:05	4.9	W	08/01/2016	21:40	1.8	N	09/01/2016	05:15	1.8	NNW
08/01/2016	14:10	5.4	WNW	08/01/2016	21:45	2.2	NNW	09/01/2016	05:20	2.2	NNW
08/01/2016	14:15	4.5	W	08/01/2016	21:50	1.8	NW	09/01/2016	05:25	2.2	NNW
08/01/2016	14:20	4.9	W	08/01/2016	21:55	1.8	NE	09/01/2016	05:30	1.3	NW
08/01/2016	14:25	4.5	WNW	08/01/2016	22:00	2.2	NNE	09/01/2016	05:35	2.2	NNW
08/01/2016	14:30	3.1	WNW	08/01/2016	22:05	2.2	NNE	09/01/2016	05:40	2.2	NW
08/01/2016	14:35	4.9	W	08/01/2016	22:10	2.2	NE	09/01/2016	05:45	1.8	NW
08/01/2016	14:40	1.8	NE	08/01/2016	22:15	1.8	NNE	09/01/2016	05:50	1.8	NNW
08/01/2016	14:45	2.2	NNE	08/01/2016	22:20	1.8	NNE	09/01/2016	05:55	1.3	NNW
08/01/2016	14:50	2.2	NNE	08/01/2016	22:25	1.8	NNE	09/01/2016	06:00	2.2	NNW
08/01/2016	14:55	2.2	NE	08/01/2016	22:30	1.3	NNE	09/01/2016	06:05	0.9	NW
08/01/2016	15:00	1.8	NNE	08/01/2016	22:35	1.8	N	09/01/2016	06:10	1.3	N
08/01/2016	15:05	1.8	NNE	08/01/2016	22:40	1.8	N	09/01/2016	06:15	1.3	N
08/01/2016	15:10	1.8	NNE	08/01/2016	22:45	2.2	N	09/01/2016	06:20	1.8	NNW
08/01/2016	15:15	1.3	NNE	08/01/2016	22:50	1.8	NNW	09/01/2016	06:25	1.8	WNW
08/01/2016	15:20	1.8	N	08/01/2016	22:55	2.2	N	09/01/2016	06:30	1.8	NW
08/01/2016	15:25	1.8	N	08/01/2016	23:00	2.2	N	09/01/2016	06:35	1.8	NW
08/01/2016	15:30	2.2	N	08/01/2016	23:05	2.2	NNW	09/01/2016	06:40	1.8	WNW
08/01/2016	15:35	1.8	NNW	08/01/2016	23:10	1.8	N	09/01/2016	06:45	1.8	WNW
08/01/2016	15:40	3.6	WNW	08/01/2016	23:15	2.2	N	09/01/2016	06:50	1.8	NW
08/01/2016	15:45	4	W	08/01/2016	23:20	2.2	N	09/01/2016	06:55	1.3	NW
08/01/2016	15:50	3.6	W	08/01/2016	23:25	2.2	N	09/01/2016	07:00	1.8	NW
08/01/2016	15:55	3.6	W	08/01/2016	23:30	2.2	N	09/01/2016	07:05	1.3	NW
08/01/2016	16:00	3.1	WNW	08/01/2016	23:35	1.3	N	09/01/2016	07:10	1.8	WNW
08/01/2016	16:05	3.6	W	08/01/2016	23:40	2.2	NNW	09/01/2016	07:15	1.8	WNW
08/01/2016	16:10	3.6	W	08/01/2016	23:45	2.7	NNW	09/01/2016	07:20	1.8	NW
08/01/2016	16:15	4.5	W	08/01/2016	23:50	2.2	NNW	09/01/2016	07:25	1.8	NW
08/01/2016	16:20	3.6	W	08/01/2016	23:55	2.2	NNW	09/01/2016	07:30	2.2	NW
08/01/2016	16:25	4	WNW	09/01/2016	00:00	2.7	NW	09/01/2016	07:35	2.2	NW
08/01/2016	16:30	2.7	WNW	09/01/2016	00:05	1.8	NW	09/01/2016	07:40	2.2	NNW
08/01/2016	16:35	4	WNW	09/01/2016	00:10	1.8	NNW	09/01/2016	07:45	1.8	NNW
08/01/2016	16:40	4	WNW	09/01/2016	00:15	1.8	NW	09/01/2016	07:50	2.2	NNW
08/01/2016	16:45	2.7	W	09/01/2016	00:20	2.2	NNW	09/01/2016	07:55	2.2	NNW
08/01/2016	16:50	4.9	W	09/01/2016	00:25	2.7	NW	09/01/2016	08:00	1.3	NW
08/01/2016	16:55	4	W	09/01/2016	00:30	2.2	NNW	09/01/2016	08:05	2.2	NNW
08/01/2016	17:00	3.6	W	09/01/2016	00:35	2.2	NW	09/01/2016	08:10	2.2	NW
08/01/2016	17:05	4	WNW	09/01/2016	00:40	2.2	NW	09/01/2016	08:15	1.8	NW
08/01/2016	17:10	3.6	W	09/01/2016	00:45	2.2	NNW	09/01/2016	08:20	1.8	NNW
08/01/2016	17:15	4.5	W	09/01/2016	00:50	1.8	NNW	09/01/2016	08:25	1.3	NNW
08/01/2016	17:20	4.5	WNW	09/01/2016	00:55	2.2	NNW	09/01/2016	08:30	2.2	NNW
08/01/2016	17:25	4	W	09/01/2016	01:00	1.8	NNW	09/01/2016	08:35	2.7	NW
08/01/2016	17:30	3.6	W	09/01/2016	01:05	2.2	NNW	09/01/2016	08:40	1.8	NW
08/01/2016	17:35	5.4	W	09/01/2016	01:10	2.2	NNW	09/01/2016	08:45	2.2	WNW
08/01/2016	17:40	3.6	W	09/01/2016	01:15	1.3	NW	09/01/2016	08:50	2.7	W
08/01/2016	17:45	4.5	W	09/01/2016	01:20	2.2	NNW	09/01/2016	08:55	3.1	WNW
08/01/2016	17:50	4	W	09/01/2016	01:25	2.2	NW	09/01/2016	09:00	2.7	WNW
08/01/2016	17:55	5.4	W	09/01/2016	01:30	1.8	NW	09/01/2016	09:05	2.7	W
08/01/2016	18:00	5.4	W	09/01/2016	01:35	1.8	NNW	09/01/2016	09:10	3.1	W
08/01/2016	18:05	4	W	09/01/2016	01:40	1.3	NNW	09/01/2016	09:15	3.1	W
08/01/2016	18:10	1.8	NE	09/01/2016	01:45	2.2	NNW	09/01/2016	09:20	2.7	WNW
08/01/2016	18:15	2.2	NNE	09/01/2016	01:50	1.3	NNW	09/01/2016	09:25	3.1	W
08/01/2016	18:20	2.2	NNE	09/01/2016	01:55	1.8	NW	09/01/2016	09:30	3.6	WNW
08/01/2016	18:25	2.2	NE	09/01/2016	02:00	1.8	NW	09/01/2016	09:35	3.1	WNW
08/01/2016	18:30	1.8	NNE	09/01/2016	02:05	1.3	NNW	09/01/2016	09:40	3.6	WNW
08/01/2016	18:35	1.8	NNE	09/01/2016	02:10	1.3	NNW	09/01/2016	09:45	3.6	W
08/01/2016	18:40	1.8	NNE	09/01/2016	02:15	2.2	NNW	09/01/2016	09:50	3.6	WNW
08/01/2016	18:45	1.3	NNE	09/01/2016	02:20	2.2	NNW	09/01/2016	09:55	4	WNW
08/01/2016	18:50	1.8	N	09/01/2016	02:25	1.8	NW	09/01/2016	10:00	3.6	NW
08/01/2016	18:55	1.8	N	09/01/2016	02:30	1.8	NW	09/01/2016	10:05	3.1	WNW
08/01/2016	19:00	2.2	N	09/01/2016	02:35	2.7	NW	09/01/2016	10:10	3.6	WNW
08/01/2016	19:05	1.8	NNW	09/01/2016	02:40	2.2	NNW	09/01/2016	10:15	4.5	WNW
08/01/2016	19:10	1.3	NW	09/01/2016	02:45	2.2	NW	09/01/2016	10:20	4	WNW
08/01/2016	19:15	1.8	N	09/01/2016	02:50	2.2	NNW	09/01/2016	10:25	4	WNW
08/01/2016	19:20	1.8	N	09/01/2016	02:55	1.8	NNW	09/01/2016	10:30	4	W
08/01/2016	19:25	1.3	N	09/01/2016	03:00	1.3	NNW	09/01/2016	10:35	4.9	WNW
08/01/2016	19:30	1.3	N	09/01/2016	03:05	1.8	NNW	09/01/2016	10:40	3.6	WNW
08/01/2016	19:35	2.7	N	09/01/2016	03:10	2.2	NNW	09/01/2016	10:45	4.9	W
08/01/2016	19:40	3.6	N	09/01/2016	03:15	1.3	NNW	09/01/2016	10:50	4.5	W
08/01/2016	19:45	2.7	N	09/01/2016	03:20	2.7	NW	09/01/2016	10:55	4.5	W
08/01/2016	19:50	2.2	N	09/01/2016	03:25	1.8	NNW	09/01/2016	11:00	4	W
08/01/2016	19:55	1.8	N	09/01/2016	03:30	1.3	NW	09/01/2016	11:05	4.5	W
08/01/2016	20:00	1.8	NNE	09/01/2016	03:35	1.8	NW	09/01/2016	11:10	4	W
08/01/2016	20:05	2.7	NNE	09/01/2016	03:40	1.8	NNW	09/01/2016	11:15	4.5	W
08/01/2016	20:10	2.2	NNE	09/01/2016	03:45	1.8	NW	09/01/2016	11:20	4.5	W
08/01/2016	20:15	2.7	NNE	09/01/2016	03:50	1.3	NW	09/01/2016	11:25	4.5	W
08/01/2016	20:20	2.2	NNE	09/01/2016	03:55	0.9	NW	09/01/2016	11:30	3.6	W
08/01/2016	20:25	3.1	N	09/01/2016	04:00	1.3	NNW	09/01/2016	11:35	3.6	W
08/01/2016	20:30	2.2	N	09/01/2016	04:05	1.3	NW	09/01/2016	11:40	4.5	W
08/01/2016	20:35	2.2	N	09/01/2016	04:10	1.8	NNW	09/01/2016	11:45	4	WNW
08/01/2016	20:40	1.8	N	09/01/2016	04:15	1.8	NNW	09/01/2016	11:50	4.5	WNW
08/01/2016	20:45	2.2	N	09/01/2016	04:20	1.3	NNW	09/01/2016	11:55	2.2	NNW
08/01/2016	20:50	3.1	NNW	09/01/2016	04:25	2.2	NW	09/01/2016	12:00	1.8	NNW
08/01/2016	20:55	1.8	N	09/01/2016	04:30	2.2	NW	09/01/2016	12:05	2.2	NNW
08/01/2016	21:00	2.7	N	09/01/2016	04:35	2.2	NNW	09/01/2016	12:10	2.2	NNW
08/01/2016	21:05	2.7	N	09/01/2016	04:40	2.2	NW	09/01/2016	12:15	1.3	NW
08/01/2016	21:10	1.8	NNE	09/01/2016	04:45	1.8	NNW	09/01/2016	12:20	2.2	NNW
08/01/2016	21:15	1.8	NNE	09/01/2016	04:50	1.3	NNE	09/01/2016	12:25	2.2	NW
08/01/2016	21:20	2.7	N	09/01/2016	04:55	1.3	N	09/01/2016	12:30	1.8	NW
08/01/2016	21:25	1.8	NNE	09/01/2016	05:00	1.3	NNW	09/01/2016	12:35	1.8	NNW
$\begin{aligned} & 08 / 01 / 2016 \\ & 08 / 01 / 2016 \end{aligned}$	21:30 21:35	1.8 1.3	N N	09/01/2016	05:05	0.9 2.2	NNW NNW	09/01/2016	12:40 12:45	1.3 2.2	NNW NNW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
09/01/2016	12:50	4	w	09/01/2016	20:25	1.3	NNW	10/01/2016	04:00	2.7	NE
09/01/2016	12:55	4.5	W	09/01/2016	20:30	2.2	NNW	10/01/2016	04:05	2.2	ENE
09/01/2016	13:00	4.9	W	09/01/2016	20:35	2.7	WSW	10/01/2016	04:10	0.9	ENE
09/01/2016	13:05	4.5	WNW	09/01/2016	20:40	2.2	WSW	10/01/2016	04:15	0.9	ENE
09/01/2016	13:10	4.5	WNW	09/01/2016	20:45	4	W	10/01/2016	04:20	1.3	E
09/01/2016	13:15	4	W	09/01/2016	20:50	1.3	SSW	10/01/2016	04:25	1.3	NNE
09/01/2016	13:20	3.6	WNW	09/01/2016	20:55	1.8	WSW	10/01/2016	04:30	0.4	NE
09/01/2016	13:25	5.4	WNW	09/01/2016	21:00	4	SW	10/01/2016	04:35	4.5	E
09/01/2016	13:30	4.5	WNW	09/01/2016	21:05	3.1	WSW	10/01/2016	04:40		ENE
09/01/2016	13:35	4.9	WNW	09/01/2016	21:10	3.6	WSW	10/01/2016	04:45	3.1	E
09/01/2016	13:40	5.4	WNW	09/01/2016	21:15	3.1	WSW	10/01/2016	04:50	3.1	E
09/01/2016	13:45	5.8	WNW	09/01/2016	21:20	3.1	WSW	10/01/2016	04:55	3.6	E
09/01/2016	13:50	5.8	WNW	09/01/2016	21:25	2.7	SW	10/01/2016	05:00	2.7	E
09/01/2016	13:55	6.3	WNW	09/01/2016	21:30	2.2	SW	10/01/2016	05:05	3.1	E
09/01/2016	14:00	5.4	WNW	09/01/2016	21:35	1.8	SW	10/01/2016	05:10	2.7	E
09/01/2016	14:05	6.7	WNW	09/01/2016	21:40	2.2	NNW	10/01/2016	05:15	1.8	E
09/01/2016	14:10	2.2	NNW	09/01/2016	21:45	1.8	NNW	10/01/2016	05:20	2.7	E
09/01/2016	14:15	1.8	NNW	09/01/2016	21:50	2.2	NNW	10/01/2016	05:25	3.1	E
09/01/2016	14:20	2.2	NNW	09/01/2016	21:55	2.2	NNW	10/01/2016	05:30	5.8	E
09/01/2016	14:25	2.2	NNW	09/01/2016	22:00	1.3	NW	10/01/2016	05:35	4	E
09/01/2016	14:30	1.3	NW	09/01/2016	22:05	2.2	NNW	10/01/2016	05:40	4.5	ENE
09/01/2016	14:35	2.2	NNW	09/01/2016	22:10	2.2	NW	10/01/2016	05:45	3.6	ENE
09/01/2016	14:40	2.2	NW	09/01/2016	22:15	1.8	NW	10/01/2016	05:50	4	E
09/01/2016	14:45	1.8	NW	09/01/2016	22:20	1.8	NNW	10/01/2016	05:55	3.1	E
09/01/2016	14:50	1.8	NNW	09/01/2016	22:25	1.3	NNW	10/01/2016	06:00	3.1	E
09/01/2016	14:55	1.3	NNW	09/01/2016	22:30	2.2	NNW	10/01/2016	06:05	2.7	E
09/01/2016	15:00	2.2	NNW	09/01/2016	22:35	0.4	WSW	10/01/2016	06:10	2.2	E
09/01/2016	15:05	4.9	WNW	09/01/2016	22:40	0.4	WSW	10/01/2016	06:15	1.8	ENE
09/01/2016	15:10	5.4	WNW	09/01/2016	22:45	0.4	WSW	10/01/2016	06:20	4	E
09/01/2016	15:15	6.3	WNW	09/01/2016	22:50	0.4	WSW	10/01/2016	06:25	2.2	E
09/01/2016	15:20	5.8	WNW	09/01/2016	22:55	0.4	WSW	10/01/2016	06:30	1.8	E
09/01/2016	15:25	6.7	WNW	09/01/2016	23:00	0.4	WSW	10/01/2016	06:35	2.7	E
09/01/2016	15:30	4.9	WNW	09/01/2016	23:05	0.4	WSW	10/01/2016	06:40	3.6	E
09/01/2016	15:35	6.3	WNW	09/01/2016	23:10	2.2	NNW	10/01/2016	06:45	2.2	E
09/01/2016	15:40	4.9	WNW	09/01/2016	23:15	1.8	NNW	10/01/2016	06:50	2.7	E
09/01/2016	15:45	4.9	W	09/01/2016	23:20	2.2	NNW	10/01/2016	06:55	0.9	ENE
09/01/2016	15:50	4.5	WNW	09/01/2016	23:25	2.2	NNW	10/01/2016	07:00	1.8	E
09/01/2016	15:55	4.5	WNW	09/01/2016	23:30	1.3	NW	10/01/2016	07:05	1.8	NE
09/01/2016	16:00	4.9	WNW	09/01/2016	23:35	2.2	NNW	10/01/2016	07:10	2.2	ENE
09/01/2016	16:05	5.8	WNW	09/01/2016	23:40	2.2	NW	10/01/2016	07:15	2.7	NE
09/01/2016	16:10	4.9	W	09/01/2016	23:45	1.8	NW	10/01/2016	07:20	2.2	ENE
09/01/2016	16:15	5.8	WNW	09/01/2016	23:50	1.8	NNW	10/01/2016	07:25	0.9	ENE
09/01/2016	16:20	4.9	WNW	09/01/2016	23:55	1.3	NNW	10/01/2016	07:30	0.9	ENE
09/01/2016	16:25	5.8	WNW	10/01/2016	00:00	2.2	NNW	10/01/2016	07:35	1.3	E
09/01/2016	16:30	5.4	WNW	10/01/2016	00:05	0.9	ENE	10/01/2016	07:40	1.3	NNE
09/01/2016	16:35	5.8	WNW	10/01/2016	00:10	0.9	NE	10/01/2016	07:45	0.4	NE
09/01/2016	16:40	5.4	WNW	10/01/2016	00:15	0.9	ENE	10/01/2016	07:50	4.9	E
09/01/2016	16:45	4.9	WNW	10/01/2016	00:20	1.8	E	10/01/2016	07:55	4	E
09/01/2016	16:50	5.4	WNW	10/01/2016	00:25	1.8	NE	10/01/2016	08:00	4	E
09/01/2016	16:55	5.4	WNW	10/01/2016	00:30	2.2	ENE	10/01/2016	08:05	4.5	E
09/01/2016	17:00	4.9	WNW	10/01/2016	00:35	2.7	NE	10/01/2016	08:10	4	E
09/01/2016	17:05	5.8	W	10/01/2016	00:40	2.2	ENE	10/01/2016	08:15	4	E
09/01/2016	17:10	5.8	WNW	10/01/2016	00:45	0.9	ENE	10/01/2016	08:20	4	ENE
09/01/2016	17:15	4.5	WNW	10/01/2016	00:50	0.9	ENE	10/01/2016	08:25	4.9	E
09/01/2016	17:20	4.9	W	10/01/2016	00:55	1.3	E	10/01/2016	08:30	4	E
09/01/2016	17:25	5.4	W	10/01/2016	01:00	1.3	NNE	10/01/2016	08:35	4.5	E
09/01/2016	17:30	4	W	10/01/2016	01:05	0.4	NE	10/01/2016	08:40	5.4	E
09/01/2016	17:35	4.5	WNW	10/01/2016	01:10	2.7	ENE	10/01/2016	08:45	6.3	ENE
09/01/2016	17:40	2.2	NNW	10/01/2016	01:15	2.2	ENE	10/01/2016	08:50	6.3	E
09/01/2016	17:45	1.8	NNW	10/01/2016	01:20	1.3	ENE	10/01/2016	08:55	5.4	E
09/01/2016	17:50	2.2	NNW	10/01/2016	01:25	1.8	E	10/01/2016	09:00	5.4	E
09/01/2016	17:55	2.2	NNW	10/01/2016	01:30	1.8	ENE	10/01/2016	09:05	5.8	ENE
09/01/2016	18:00	1.3	NW	10/01/2016	01:35	3.6	ENE	10/01/2016	09:10	4.5	E
09/01/2016	18:05	2.2	NNW	10/01/2016	01:40	2.7	E	10/01/2016	09:15	4.9	E
09/01/2016	18:10	2.2	NW	10/01/2016	01:45	2.7	ENE	10/01/2016	09:20	4.5	E
09/01/2016	18:15	1.8	NW	10/01/2016	01:50	4.5	E	10/01/2016	09:25	4.9	ENE
09/01/2016	18:20	1.8	NNW	10/01/2016	01:55	2.2	ENE	10/01/2016	09:30	5.8	E
09/01/2016	18:25	1.3	NNW	10/01/2016	02:00	2.2	E	10/01/2016	09:35	5.4	E
09/01/2016	18:30	2.2	NNW	10/01/2016	02:05	3.6	E	10/01/2016	09:40	4.9	E
09/01/2016	18:35	4.5	WNW	10/01/2016	02:10	3.1	E	10/01/2016	09:45	4.5	ENE
09/01/2016	18:40	4.5	WNW	10/01/2016	02:15	2.2	E	10/01/2016	09:50	5.4	E
09/01/2016	18:45	4.9	WNW	10/01/2016	02:20	2.7	E	10/01/2016	09:55	4	E
09/01/2016	18:50	5.4	WNW	10/01/2016	02:25	3.1	E	10/01/2016	10:00	4.5	ENE
09/01/2016	18:55	3.6	W	10/01/2016	02:30	3.1	E	10/01/2016	10:05	4.9	E
09/01/2016	19:00	4.9	WNW	10/01/2016	02:35	4	ESE	10/01/2016	10:10	0.9	ENE
09/01/2016	19:05	3.6	W	10/01/2016	02:40	3.1	E	10/01/2016	10:15	1.8	E
09/01/2016	19:10	4	W	10/01/2016	02:45	4.5	ENE	10/01/2016	10:20	1.8	NE
09/01/2016	19:15	4	W	10/01/2016	02:50	6.3	E	10/01/2016	10:25	2.2	ENE
09/01/2016	19:20	4.9	W	10/01/2016	02:55	5.4	E	10/01/2016	10:30	2.7	NE
09/01/2016	19:25	4	W	10/01/2016	03:00	6.3	E	10/01/2016	10:35	2.2	ENE
09/01/2016	19:30	4.5	WNW	10/01/2016	03:05	5.8	E	10/01/2016	10:40	0.9	ENE
09/01/2016	19:35	4.9	W	10/01/2016	03:10	6.3	E	10/01/2016	10:45	0.9	ENE
09/01/2016	19:40	2.2	NNW	10/01/2016	03:15	5.8	E	10/01/2016	10:50	1.3	E
09/01/2016	19:45	1.8	NNW	10/01/2016	03:20	6.3	ENE	10/01/2016	10:55	1.3	NNE
09/01/2016	19:50	2.2	NNW	10/01/2016	03:25	4.5	ENE	10/01/2016	11:00	0.4	NE
09/01/2016	19:55	2.2	NNW	10/01/2016	03:30	5.8	E	10/01/2016	11:05	5.8	E
09/01/2016	20:00	1.3	NW	10/01/2016	03:35	4.5	E	10/01/2016	11:10	5.4	E
09/01/2016	20:05	2.2	NNW	10/01/2016	03:40	0.9	ENE	10/01/2016	11:15	5.4	E
09/01/2016	20:10	2.2	NW	10/01/2016	03:45	1.8	E	10/01/2016	11:20	4.5	E
09/01/2016	20:15 20:20	1.8 1.8	NW NNW	10/01/2016 10/01/2016	03:50	1.8 2.2	NE ENE	10/01/2016 10/01/2016	11:25 11:30	4	E

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction

10/01/2016	11:35	5.4	ENE	10/01/2016	19:10	0.9	WNW	11/01/2016	02:45	0.4	SW
10/01/2016	11:40	4.9	E	10/01/2016	19:15	1.8	WSW	11/01/2016	02:50	0.9	SW
10/01/2016	11:45	6.3	E	10/01/2016	19:20	1.8	WSW	11/01/2016	02:55	0.9	SW
10/01/2016	11:50	4.5	ENE	10/01/2016	19:25	2.2	WSW	11/01/2016	03:00	0.9	SW
10/01/2016	11:55	6.7	E	10/01/2016	19:30	0.9	ENE	11/01/2016	03:05	0.9	SW
10/01/2016	12:00	5.4	E	10/01/2016	19:35	1.8	E	11/01/2016	03:10	0.9	SW
10/01/2016	12:05	4.5	E	10/01/2016	19:40	1.8	NE	11/01/2016	03:15	0.9	SSW
10/01/2016	12:10	5.4	E	10/01/2016	19:45	2.2	ENE	11/01/2016	03:20	0.9	SW
10/01/2016	12:15	4.9	E	10/01/2016	19:50	2.7	NE	11/01/2016	03:25	0.4	SW
10/01/2016	12:20	4.9	E	10/01/2016	19:55	2.2	ENE	11/01/2016	03:30	0.9	SSW
10/01/2016	12:25	4.5	E	10/01/2016	20:00	0.9	ENE	11/01/2016	03:35	1.3	WSW
10/01/2016	12:30	4	E	10/01/2016	20:05	0.9	ENE	11/01/2016	03:40	1.3	WSW
10/01/2016	12:35	4.5	ENE	10/01/2016	20:10	1.3	E	11/01/2016	03:45	0.9	SSW
10/01/2016	12:40	4.9	ENE	10/01/2016	20:15	1.3	NNE	11/01/2016	03:50	0.4	WSW
10/01/2016	12:45	4.9	E	10/01/2016	20:20	0.4	NE	11/01/2016	03:55	0.4	SW
10/01/2016	12:50	4.9	ENE	10/01/2016	20:25	2.7	WSW	11/01/2016	04:00	1.3	SW
10/01/2016	12:55	4.9	E	10/01/2016	20:30	2.7	W	11/01/2016	04:05	0.4	SW
10/01/2016	13:00	4.5	ENE	10/01/2016	20:35	2.2	W	11/01/2016	04:10	0.9	SW
10/01/2016	13:05	5.4	E	10/01/2016	20:40	1.3	W	11/01/2016	04:15	0.9	SSW
10/01/2016	13:10	5.8	E	10/01/2016	20:45	1.3	WNW	11/01/2016	04:20	0.4	SW
10/01/2016	13:15	4.5	E	10/01/2016	20:50	1.8	NW	11/01/2016	04:25	0.9	SW
10/01/2016	13:20	4.9	E	10/01/2016	20:55	1.3	WNW	11/01/2016	04:30	0.9	SW
10/01/2016	13:25	4.5	ENE	10/01/2016	21:00	1.3	WNW	11/01/2016	04:35	1.3	SW
10/01/2016	13:30	0.9	ENE	10/01/2016	21:05	1.8	WNW	11/01/2016	04:40	0.4	SW
10/01/2016	13:35	1.8	E	10/01/2016	21:10	1.8	WNW	11/01/2016	04:45	0.9	SSW
10/01/2016	13:40	1.8	NE	10/01/2016	21:15	2.2	W	11/01/2016	04:50	0.4	SSW
10/01/2016	13:45	2.2	ENE	10/01/2016	21:20	2.2	W	11/01/2016	04:55	0.4	SW
10/01/2016	13:50	2.7	NE	10/01/2016	21:25	1.3	WNW	11/01/2016	05:00	0.4	SW
10/01/2016	13:55	2.2	ENE	10/01/2016	21:30	0.9	ENE	11/01/2016	05:05	0.4	SW
10/01/2016	14:00	0.9	ENE	10/01/2016	21:35	1.8	E	11/01/2016	05:10	1.3	SW
10/01/2016	14:05	0.9	ENE	10/01/2016	21:40	1.8	NE	11/01/2016	05:15	0.4	SW
10/01/2016	14:10	1.3	E	10/01/2016	21:45	2.2	ENE	11/01/2016	05:20	0.4	WSW
10/01/2016	14:15	1.3	NNE	10/01/2016	21:50	2.7	NE	11/01/2016	05:25	0.4	SW
10/01/2016	14:20	0.4	NE	10/01/2016	21:55	2.2	ENE	11/01/2016	05:30	1.3	SW
10/01/2016	14:25	2.7	ENE	10/01/2016	22:00	0.9	ENE	11/01/2016	05:35	0.4	SW
10/01/2016	14:30	2.2	E	10/01/2016	22:05	0.9	ENE	11/01/2016	05:40	0.9	SW
10/01/2016	14:35	2.2	ENE	10/01/2016	22:10	1.3	E	11/01/2016	05:45	0.9	SSW
10/01/2016	14:40	2.7	E	10/01/2016	22:15	1.3	NNE	11/01/2016	05:50	0.4	SW
10/01/2016	14:45	2.7	ESE	10/01/2016	22:20	0.4	NE	11/01/2016	05:55	0.9	SW
10/01/2016	14:50	1.8	ENE	10/01/2016	22:25	0.4	N	11/01/2016	06:00	0.9	SSW
10/01/2016	14:55	3.1	E	10/01/2016	22:30	0.4	N	11/01/2016	06:05	0.4	WSW
10/01/2016	15:00	2.2	E	10/01/2016	22:35	0.4	N	11/01/2016	06:10	0.4	SW
10/01/2016	15:05	3.6	E	10/01/2016	22:40	0.4	N	11/01/2016	06:15	1.3	SW
10/01/2016	15:10	3.1	NE	10/01/2016	22:45	0.4	N	11/01/2016	06:20	0.4	SW
10/01/2016	15:15	3.6	E	10/01/2016	22:50	0.4	WSW	11/01/2016	06:25	0.9	SW
10/01/2016	15:20	4.5	ENE	10/01/2016	22:55	0.9	WSW	11/01/2016	06:30	0.9	SSW
10/01/2016	15:25	3.6	E	10/01/2016	23:00	0.9	WSW	11/01/2016	06:35	0.4	SW
10/01/2016	15:30	3.6	NE	10/01/2016	23:05	1.8	WSW	11/01/2016	06:40	0.9	SW
10/01/2016	15:35	3.1	NE	10/01/2016	23:10	1.8	WSW	11/01/2016	06:45	0.9	SW
10/01/2016	15:40	3.6	NE	10/01/2016	23:15	1.3	WSW	11/01/2016	06:50	0.4	WSW
10/01/2016	15:45	2.7	ENE	10/01/2016	23:20	0.9	ENE	11/01/2016	06:55	0.9	WSW
10/01/2016	15:50	2.7	ENE	10/01/2016	23:25	1.8	E	11/01/2016	07:00	0.9	SSW
10/01/2016	15:55	2.7	NE	10/01/2016	23:30	1.8	NE	11/01/2016	07:05	0.9	SSW
10/01/2016	16:00	1.8	SE	10/01/2016	23:35	2.2	ENE	11/01/2016	07:10	1.3	SSW
10/01/2016	16:05	2.2	ENE	10/01/2016	23:40	2.7	NE	11/01/2016	07:15	1.3	WSW
10/01/2016	16:10	2.7	ENE	10/01/2016	23:45	2.2	ENE	11/01/2016	07:20	1.8	WSW
10/01/2016	16:15	3.6	ENE	10/01/2016	23:50	0.9	ENE	11/01/2016	07:25	1.3	SW
10/01/2016	16:20	2.7	ENE	10/01/2016	23:55	0.9	ENE	11/01/2016	07:30	2.2	SW
10/01/2016	16:25	2.2	NE	11/01/2016	00:00	1.3	E	11/01/2016	07:35	2.2	SW
10/01/2016	16:30	0.9	ENE	11/01/2016	00:05	0.4	SW	11/01/2016	07:40	2.2	SW
10/01/2016	16:35	1.8	E	11/01/2016	00:10	0.4	SSW	11/01/2016	07:45	2.2	SW
10/01/2016	16:40	1.8	NE	11/01/2016	00:15	0.9	SW	11/01/2016	07:50	2.2	SW
10/01/2016	16:45	2.2	ENE	11/01/2016	00:20	0.9	SSE	11/01/2016	07:55	1.8	W
10/01/2016	16:50	2.7	NE	11/01/2016	00:25	0.9	SSE	11/01/2016	08:00	1.8	WSW
10/01/2016	16:55	2.2	ENE	11/01/2016	00:30	0.9	SSE	11/01/2016	08:05	2.2	W
10/01/2016	17:00	0.9	ENE	11/01/2016	00:35	0.9	SSW	11/01/2016	08:10	2.2	WSW
10/01/2016	17:05	0.9	ENE	11/01/2016	00:40	0.9	SSW	11/01/2016	08:15	1.8	W
10/01/2016	17:10	1.3	E	11/01/2016	00:45	0.9	SSW	11/01/2016	08:20	0.9	WSW
10/01/2016	17:15	1.3	NNE	11/01/2016	00:50	0.9	SSW	11/01/2016	08:25	2.2	W
10/01/2016	17:20	0.4	NE	11/01/2016	00:55	0.9	SSW	11/01/2016	08:30	0.9	SSW
10/01/2016	17:25	1.3	ENE	11/01/2016	01:00	0.4	WSW	11/01/2016	08:35	0.4	WSW
10/01/2016	17:30	1.8	ENE	11/01/2016	01:05	0.4	SW	11/01/2016	08:40	0.4	SW
10/01/2016	17:35	2.2	E	11/01/2016	01:10	1.3	SW	11/01/2016	08:45	1.3	SW
10/01/2016	17:40	1.3	NNE	11/01/2016	01:15	0.4	SW	11/01/2016	08:50	0.4	SW
10/01/2016	17:45	2.2	E	11/01/2016	01:20	0.9	SW	11/01/2016	08:55	0.9	SW
10/01/2016	17:50	1.8	E	11/01/2016	01:25	0.9	SSW	11/01/2016	09:00	0.9	SSW
10/01/2016	17:55	1.8	E	11/01/2016	01:30	0.4	SW	11/01/2016	09:05	0.4	SW
10/01/2016	18:00	1.3	ENE	11/01/2016	01:35	0.9	SW	11/01/2016	09:10	0.9	SW
10/01/2016	18:05	0.9	E	11/01/2016	01:40	0.9	SW	11/01/2016	09:15	0.9	SW
10/01/2016	18:10	0.4	S	11/01/2016	01:45	0.9	SSW	11/01/2016	09:20	0.9	W
10/01/2016	18:15	0.9	E	11/01/2016	01:50	0.9	SW	11/01/2016	09:25	1.3	W
10/01/2016	18:20	1.3	SSW	11/01/2016	01:55	0.4	SSW	11/01/2016	09:30	1.8	Wsw
10/01/2016	18:25	2.2	ENE	11/01/2016	02:00	0.4	SW	11/01/2016	09:35	1.3	W
10/01/2016	18:30	1.8	NNE	11/01/2016	02:05	0.4	SW	11/01/2016	09:40	1.8	W
10/01/2016	18:35	1.8	NE	11/01/2016	02:10	0.4	SW	11/01/2016	09:45	1.3	W
10/01/2016	18:40	1.3	ENE	11/01/2016	02:15	0.4	SW	11/01/2016	09:50	2.2	W
10/01/2016	18:45	1.3	ENE	11/01/2016	02:20	1.3	SW	11/01/2016	09:55	2.7	W
10/01/2016	18:50	1.3	NE	11/01/2016	02:25	0.4	SW	11/01/2016	10:00	2.7	WNW
10/01/2016	18:55	1.3	E	11/01/2016	02:30	0.4	WSW	11/01/2016	10:05	2.7	WNW
10/01/2016	19:00	0.9	NNE	11/01/2016	02:35	0.4	SW	11/01/2016	10:10	2.7	W
10/01/2016	19:05	0.9	NNE	11/01/2016	02:40	1.3	SW	11/01/2016	10:1	2.7	W

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 $(d d / m m / y y y y)$ | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

11/01/2016	10:20	2.2	w	11/01/2016	17:55	1.8	SW	12/01/2016	01:30	0.9	NE
11/01/2016	10:25	1.8	W	11/01/2016	18:00	1.8	SW	12/01/2016	01:35	1.3	N
11/01/2016	10:30	1.8	WNW	11/01/2016	18:05	1.8	SW	12/01/2016	01:40	0.4	SSW
11/01/2016	10:35	1.8	WNW	11/01/2016	18:10	1.8	SW	12/01/2016	01:45	0.4	SSW
11/01/2016	10:40	2.2	W	11/01/2016	18:15	1.3	SW	12/01/2016	01:50	0.4	NW
11/01/2016	10:45	2.2	WNW	11/01/2016	18:20	0.9	SSW	12/01/2016	01:55	0.4	NW
11/01/2016	10:50	2.2	W	11/01/2016	18:25	0.9	SSW	12/01/2016	02:00	0.4	WSW
11/01/2016	10:55	2.7	WNW	11/01/2016	18:30	0.4	WSW	12/01/2016	02:05	0.4	WSW
11/01/2016	11:00	0.9	SSW	11/01/2016	18:35	0.4	SW	12/01/2016	02:10	0.9	WSW
11/01/2016	11:05	0.4	WSW	11/01/2016	18:40	1.3	SW	12/01/2016	02:15	0.9	NNE
11/01/2016	11:10	0.4	SW	11/01/2016	18:45	0.4	SW	12/01/2016	02:20	0.9	NE
11/01/2016	11:15	1.3	SW	11/01/2016	18:50	0.9	SW	12/01/2016	02:25	1.3	NE
11/01/2016	11:20	0.4	SW	11/01/2016	18:55	0.9	SSW	12/01/2016	02:30	1.3	N
11/01/2016	11:25	0.9	SW	11/01/2016	19:00	0.4	SW	12/01/2016	02:35	1.3	N
11/01/2016	11:30	0.9	SSW	11/01/2016	19:05	0.9	SW	12/01/2016	02:40	1.3	N
11/01/2016	11:35	0.4	SW	11/01/2016	19:10	0.9	SW	12/01/2016	02:45	1.3	NE
11/01/2016	11:40	0.9	SW	11/01/2016	19:15	1.8	SSW	12/01/2016	02:50	0.9	NE
11/01/2016	11:45	0.9	SW	11/01/2016	19:20	1.8	SSW	12/01/2016	02:55	1.3	N
11/01/2016	11:50	2.2	W	11/01/2016	19:25	1.3	SW	12/01/2016	03:00	0.4	NNE
11/01/2016	11:55	2.7	WNW	11/01/2016	19:30	0.4	SW	12/01/2016	03:05	0.4	NNE
11/01/2016	12:00	2.7	WNW	11/01/2016	19:35	2.2	SW	12/01/2016	03:10	0.4	NNE
11/01/2016	12:05	2.7	WNW	11/01/2016	19:40	2.2	WSW	12/01/2016	03:15	0.4	NNE
11/01/2016	12:10	3.1	W	11/01/2016	19:45	1.8	SW	12/01/2016	03:20	0.9	WSW
11/01/2016	12:15	2.2	W	11/01/2016	19:50	2.2	SW	12/01/2016	03:25	0.9	WSW
11/01/2016	12:20	2.7	WSW	11/01/2016	19:55	1.8	SW	12/01/2016	03:30	0.9	WSW
11/01/2016	12:25	2.7	W	11/01/2016	20:00	1.8	SW	12/01/2016	03:35	0.9	WSW
11/01/2016	12:30	2.7	WNW	11/01/2016	20:05	1.8	SW	12/01/2016	03:40	0.9	WSW
11/01/2016	12:35	3.1	W	11/01/2016	20:10	1.8	SW	12/01/2016	03:45	0.9	WSW
11/01/2016	12:40	3.1	W	11/01/2016	20:15	0.4	W	12/01/2016	03:50	0.4	WSW
11/01/2016	12:45	2.7	W	11/01/2016	20:20	0.4	WSW	12/01/2016	03:55	0.4	WSW
11/01/2016	12:50	2.7	W	11/01/2016	20:25	0.4	WSW	12/01/2016	04:00	0.4	WSW
11/01/2016	12:55	3.1	W	11/01/2016	20:30	0.4	WSW	12/01/2016	04:05	0.9	WSW
11/01/2016	13:00	2.7	WNW	11/01/2016	20:35	0.4	WSW	12/01/2016	04:10	0.9	NNE
11/01/2016	13:05	2.7	W	11/01/2016	20:40	0.4	WSW	12/01/2016	04:15	0.9	NE
11/01/2016	13:10	3.1	W	11/01/2016	20:45	1.3	NE	12/01/2016	04:20	1.3	NE
11/01/2016	13:15	2.7	W	11/01/2016	20:50	0.9	NE	12/01/2016	04:25	1.3	N
11/01/2016	13:20	3.1	W	11/01/2016	20:55	0.4	NE	12/01/2016	04:30	1.3	N
11/01/2016	13:25	2.7	WNW	11/01/2016	21:00	0.4	NE	12/01/2016	04:35	1.3	N
11/01/2016	13:30	3.1	WNW	11/01/2016	21:05	1.3	NE	12/01/2016	04:40	1.3	NE
11/01/2016	13:35	3.1	W	11/01/2016	21:10	1.8	NE	12/01/2016	04:45	0.9	NE
11/01/2016	13:40	2.7	WNW	11/01/2016	21:15	0.9	NE	12/01/2016	04:50	1.3	N
11/01/2016	13:45	3.1	W	11/01/2016	21:20	0.9	NE	12/01/2016	04:55	0.4	NNE
11/01/2016	13:50	3.1	W	11/01/2016	21:25	0.9	NE	12/01/2016	05:00	0.4	NNE
11/01/2016	13:55	2.7	WNW	11/01/2016	21:30	0.9	NE	12/01/2016	05:05	0.9	WNW
11/01/2016	14:00	3.1	W	11/01/2016	21:35	0.9	NE	12/01/2016	05:10	1.3	N
11/01/2016	14:05	2.7	WSW	11/01/2016	21:40	0.9	NE	12/01/2016	05:15	0.9	NE
11/01/2016	14:10	3.1	W	11/01/2016	21:45	1.3	NE	12/01/2016	05:20	0.9	NNW
11/01/2016	14:15	3.6	W	11/01/2016	21:50	0.9	NE	12/01/2016	05:25	0.9	NNW
11/01/2016	14:20	3.1	W	11/01/2016	21:55	0.4	NE	12/01/2016	05:30	0.9	NNW
11/01/2016	14:25	3.1	W	11/01/2016	22:00	0.4	NE	12/01/2016	05:35	0.4	NNE
11/01/2016	14:30	3.1	W	11/01/2016	22:05	0.9	SSW	12/01/2016	05:40	0.4	NNE
11/01/2016	14:35	3.6	W	11/01/2016	22:10	0.4	WSW	12/01/2016	05:45	0.4	NNE
11/01/2016	14:40	3.1	W	11/01/2016	22:15	0.4	SW	12/01/2016	05:50	0.4	NNE
11/01/2016	14:45	0.9	SSW	11/01/2016	22:20	1.3	SW	12/01/2016	05:55	0.4	NNE
11/01/2016	14:50	0.4	WSW	11/01/2016	22:25	0.4	SW	12/01/2016	06:00	0.4	NNE
11/01/2016	14:55	0.4	SW	11/01/2016	22:30	0.9	SW	12/01/2016	06:05	0.4	NNE
11/01/2016	15:00	1.3	SW	11/01/2016	22:35	0.9	SSW	12/01/2016	06:10	0.4	NNE
11/01/2016	15:05	0.4	SW	11/01/2016	22:40	0.4	SW	12/01/2016	06:15	0.4	NNE
11/01/2016	15:10	0.9	SW	11/01/2016	22:45	0.9	SW	12/01/2016	06:20	0.4	NNE
11/01/2016	15:15	0.9	SSW	11/01/2016	22:50	0.9	SW	12/01/2016	06:25	0.4	NNE
11/01/2016	15:20	0.4	SW	11/01/2016	22:55	0.4	WSW	12/01/2016	06:30	0.9	WSW
11/01/2016	15:25	0.9	SW	11/01/2016	23:00	0.4	WSW	12/01/2016	06:35	0.4	WSW
11/01/2016	15:30	0.9	SW	11/01/2016	23:05	0.4	WSW	12/01/2016	06:40	0.4	WSW
11/01/2016	15:35	2.7	W	11/01/2016	23:10	0.4	WSW	12/01/2016	06:45	0.9	WSW
11/01/2016	15:40	2.7	W	11/01/2016	23:15	0.4	WSW	12/01/2016	06:50	0.9	NNE
11/01/2016	15:45	2.7	WSW	11/01/2016	23:20	0.4	WSW	12/01/2016	06:55	0.9	NE
11/01/2016	15:50	2.2	WSW	11/01/2016	23:25	0.9	SSW	12/01/2016	07:00	1.3	NE
11/01/2016	15:55	2.7	WSW	11/01/2016	23:30	1.3	SW	12/01/2016	07:05	1.3	N
11/01/2016	16:00	2.2	WSW	11/01/2016	23:35	0.9	WSW	12/01/2016	07:10	1.3	N
11/01/2016	16:05	2.7	WSW	11/01/2016	23:40	1.3	WSW	12/01/2016	07:15	1.3	N
11/01/2016	16:10	3.1	W	11/01/2016	23:45	1.3	WSW	12/01/2016	07:20	1.3	NE
11/01/2016	16:15	2.7	W	11/01/2016	23:50	0.4	WSW	12/01/2016	07:25	0.9	NE
11/01/2016	16:20	2.7	W	11/01/2016	23:55	0.9	SSW	12/01/2016	07:30	1.3	N
11/01/2016	16:25	3.1	W	12/01/2016	00:00	1.3	SW	12/01/2016	07:35	0.4	WSW
11/01/2016	16:30	2.7	W	12/01/2016	00:05	0.4	NNE	12/01/2016	07:40	0.4	WSW
11/01/2016	16:35	2.7	WNW	12/01/2016	00:10	0.9	NNE	12/01/2016	07:45	0.4	WSW
11/01/2016	16:40	3.1	W	12/01/2016	00:15	0.9	NNE	12/01/2016	07:50	0.4	WSW
11/01/2016	16:45	2.2	W	12/01/2016	00:20	0.4	NNE	12/01/2016	07:55	0.4	WSW
11/01/2016	16:50	2.7	W	12/01/2016	00:25	0.9	ENE	12/01/2016	08:00	0.4	WSW
11/01/2016	16:55	2.2	W	12/01/2016	00:30	0.9	ENE	12/01/2016	08:05	0.4	WSW
11/01/2016	17:00	2.7	WSW	12/01/2016	00:35	0.9	ENE	12/01/2016	08:10	0.4	WSW
11/01/2016	17:05	2.2	WSW	12/01/2016	00:40	0.4	WSW	12/01/2016	08:15	0.4	WSW
11/01/2016	17:10	2.2	WSW	12/01/2016	00:45	0.4	WSW	12/01/2016	08:20	0.4	WSW
11/01/2016	17:15	1.8	WSW	12/01/2016	00:50	0.9	WSW	12/01/2016	08:25	0.9	WSW
11/01/2016	17:20	2.2	SW	12/01/2016	00:55	0.9	NNE	12/01/2016	08:30	0.9	NNE
11/01/2016	17:25	1.8	SW	12/01/2016	01:00	0.9	NE	12/01/2016	08:35	0.9	NE
11/01/2016	17:30	2.7	SW	12/01/2016	01:05	1.3	NE	12/01/2016	08:40	1.3	NE
11/01/2016	17:35	2.2	SW	12/01/2016	01:10	1.3	N	12/01/2016	08:45	1.3	N
11/01/2016	17:40	2.2	WSW	12/01/2016	01:15	1.3	N	12/01/2016	08:50	0.4	WSW
11/01/2016	17:45	1.8	SW	12/01/2016	01:20	1.3	N	12/01/2016	08:55	0.4	WSW
11/01/2016	17:50	2.2	SW	12/01/2016	01:25	1.3	NE	12/01/2016	09:00	0.9	WSW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction

12/01/2016	09:05	0.9	NNE	12/01/2016	16:40	2.2	NE	13/01/2016	00:15	1.3	ENE
12/01/2016	09:10	0.9	NE	12/01/2016	16:45	1.8	NE	13/01/2016	00:20	0.9	NE
12/01/2016	09:15	1.3	NE	12/01/2016	16:50	1.8	NE	13/01/2016	00:25	0.9	ENE
12/01/2016	09:20	1.3	N	12/01/2016	16:55	2.2	NE	13/01/2016	00:30	1.3	WNW
12/01/2016	09:25	1.3	N	12/01/2016	17:00	1.8	NE	13/01/2016	00:35	0.9	WNW
12/01/2016	09:30	1.3	N	12/01/2016	17:05	1.8	NE	13/01/2016	00:40	1.3	W
12/01/2016	09:35	1.3	NE	12/01/2016	17:10	1.3	ENE	13/01/2016	00:45	1.3	NNW
12/01/2016	09:40	0.9	NE	12/01/2016	17:15	1.3	ENE	13/01/2016	00:50	2.2	NE
12/01/2016	09:45	1.3	N	12/01/2016	17:20	1.3	NNE	13/01/2016	00:55	1.8	WNW
12/01/2016	09:50	1.3	NNE	12/01/2016	17:25	1.3	NE	13/01/2016	01:00	0.9	NW
12/01/2016	09:55	1.3	N	12/01/2016	17:30	0.9	NE	13/01/2016	01:05	0.9	N
12/01/2016	10:00	0.9	NNE	12/01/2016	17:35	0.9	NE	13/01/2016	01:10	1.3	NE
12/01/2016	10:05	0.9	NNE	12/01/2016	17:40	0.9	NE	13/01/2016	01:15	1.8	NE
12/01/2016	10:10	1.3	NNE	12/01/2016	17:45	0.9	NE	13/01/2016	01:20	0.4	NW
12/01/2016	10:15	0.9	NNE	12/01/2016	17:50	1.3	WSW	13/01/2016	01:25	1.3	NE
12/01/2016	10:20	0.9	NNE	12/01/2016	17:55	1.8	WNW	13/01/2016	01:30	0.9	SSW
12/01/2016	10:25	0.9	NNE	12/01/2016	18:00	1.8	W	13/01/2016	01:35	0.9	SSW
12/01/2016	10:30	0.9	NNE	12/01/2016	18:05	1.3	NW	13/01/2016	01:40	0.9	SSW
12/01/2016	10:35	0.4	NNE	12/01/2016	18:10	1.3	N	13/01/2016	01:45	0.4	SSW
12/01/2016	10:40	0.4	NNE	12/01/2016	18:15	0.9	WNW	13/01/2016	01:50	0.4	SSW
12/01/2016	10:45	0.4	NNE	12/01/2016	18:20	0.9	NW	13/01/2016	01:55	0.4	SSW
12/01/2016	10:50	0.9	WNW	12/01/2016	18:25	0.9	NE	13/01/2016	02:00	0.4	SSW
12/01/2016	10:55	1.3	N	12/01/2016	18:30	0.9	W	13/01/2016	02:05	1.3	SW
12/01/2016	11:00	0.9	NE	12/01/2016	18:35	0.9	NW	13/01/2016	02:10	1.8	SW
12/01/2016	11:05	0.9	NNW	12/01/2016	18:40	1.3	W	13/01/2016	02:15	1.3	SSW
12/01/2016	11:10	0.9	NNW	12/01/2016	18:45	1.3	W	13/01/2016	02:20	1.3	SSW
12/01/2016	11:15	0.9	NNW	12/01/2016	18:50	0.4	N	13/01/2016	02:25	0.4	SSW
12/01/2016	11:20	0.9	WNW	12/01/2016	18:55	0.4	N	13/01/2016	02:30	0.9	S
12/01/2016	11:25	0.4	NNE	12/01/2016	19:00	0.4	SW	13/01/2016	02:35	1.3	N
12/01/2016	11:30	2.7	W	12/01/2016	19:05	0.4	SW	13/01/2016	02:40	1.3	ENE
12/01/2016	11:35	0.4	WSW	12/01/2016	19:10	0.4	SW	13/01/2016	02:45	0.9	NE
12/01/2016	11:40	0.4	WSW	12/01/2016	19:15	0.4	SW	13/01/2016	02:50	0.9	ENE
12/01/2016	11:45	0.9	WSW	12/01/2016	19:20	0.4	WSW	13/01/2016	02:55	1.3	NNW
12/01/2016	11:50	0.9	NNE	12/01/2016	19:25	0.4	WSW	13/01/2016	03:00	2.2	NE
12/01/2016	11:55	0.9	NE	12/01/2016	19:30	0.9	WSW	13/01/2016	03:05	1.8	WNW
12/01/2016	12:00	1.3	NE	12/01/2016	19:35	0.9	NNE	13/01/2016	03:10	0.9	NW
12/01/2016	12:05	1.3	N	12/01/2016	19:40	0.9	NE	13/01/2016	03:15	0.4	NW
12/01/2016	12:10	1.3	N	12/01/2016	19:45	1.3	NE	13/01/2016	03:20	1.3	NE
12/01/2016	12:15	1.3	N	12/01/2016	19:50	1.3	N	13/01/2016	03:25	0.9	SSW
12/01/2016	12:20	1.3	NE	12/01/2016	19:55	1.3	N	13/01/2016	03:30	0.9	S
12/01/2016	12:25	0.9	NE	12/01/2016	20:00	1.3	N	13/01/2016	03:35	1.3	N
12/01/2016	12:30	1.3	N	12/01/2016	20:05	1.3	NE	13/01/2016	03:40	1.3	ENE
12/01/2016	12:35	2.2	W	12/01/2016	20:10	0.9	NE	13/01/2016	03:45	0.9	NE
12/01/2016	12:40	2.7	W	12/01/2016	20:15	1.3	N	13/01/2016	03:50	0.9	ENE
12/01/2016	12:45	2.7	W	12/01/2016	20:20	1.8	WSW	13/01/2016	03:55	1.3	WNW
12/01/2016	12:50	2.7	WSW	12/01/2016	20:25	2.2	W	13/01/2016	04:00	0.9	WNW
12/01/2016	12:55	3.6	WSW	12/01/2016	20:30	1.8	W	13/01/2016	04:05	1.3	W
12/01/2016	13:00	3.1	WSW	12/01/2016	20:35	2.7	WSW	13/01/2016	04:10	1.3	NNW
12/01/2016	13:05	3.1	WSW	12/01/2016	20:40	2.7	WSW	13/01/2016	04:15	2.2	NE
12/01/2016	13:10	2.2	SW	12/01/2016	20:45	2.2	WSW	13/01/2016	04:20	1.8	WNW
12/01/2016	13:15	2.7	SW	12/01/2016	20:50	2.2	W	13/01/2016	04:25	2.2	SW
12/01/2016	13:20	3.1	WSW	12/01/2016	20:55	2.7	W	13/01/2016	04:30	1.8	SW
12/01/2016	13:25	3.1	SW	12/01/2016	21:00	2.2	WSW	13/01/2016	04:35	2.2	SW
12/01/2016	13:30	3.1	WSW	12/01/2016	21:05	1.8	W	13/01/2016	04:40	1.3	N
12/01/2016	13:35	3.1	W	12/01/2016	21:10	1.8	NE	13/01/2016	04:45	1.3	NNW
12/01/2016	13:40	2.7	W	12/01/2016	21:15	3.1	NE	13/01/2016	04:50	1.3	N
12/01/2016	13:45	2.7	W	12/01/2016	21:20	1.3	ENE	13/01/2016	04:55	0.9	ENE
12/01/2016	13:50	2.7	WSW	12/01/2016	21:25	0.4	E	13/01/2016	05:00	1.8	N
12/01/2016	13:55	2.7	WSW	12/01/2016	21:30	0.4	E	13/01/2016	05:05	2.7	N
12/01/2016	14:00	2.2	WSW	12/01/2016	21:35	3.1	WSW	13/01/2016	05:10	1.8	N
12/01/2016	14:05	2.7	SW	12/01/2016	21:40	3.1	SW	13/01/2016	05:15	1.8	N
12/01/2016	14:10	3.1	SW	12/01/2016	21:45	3.1	WSW	13/01/2016	05:20	1.3	NE
12/01/2016	14:15	3.1	Wsw	12/01/2016	21:50	3.1	W	13/01/2016	05:25	1.8	NE
12/01/2016	14:20	2.7	WSW	12/01/2016	21:55	2.7	W	13/01/2016	05:30	0.9	NNW
12/01/2016	14:25	3.1	WSW	12/01/2016	22:00	2.7	W	13/01/2016	05:35	0.9	N
12/01/2016	14:30	3.1	WSW	12/01/2016	22:05	2.7	WSW	13/01/2016	05:40	0.9	NW
12/01/2016	14:35	2.2	WSW	12/01/2016	22:10	2.7	WSW	13/01/2016	05:45	0.9	N
12/01/2016	14:40	2.2	WSW	12/01/2016	22:15	2.2	WSW	13/01/2016	05:50	0.9	N
12/01/2016	14:45	1.8	WSW	12/01/2016	22:20	2.7	SW	13/01/2016	05:55	1.8	N
12/01/2016	14:50	1.3	WSW	12/01/2016	22:25	0.9	WSW	13/01/2016	06:00	1.8	N
12/01/2016	14:55	2.2	WSW	12/01/2016	22:30	1.3	W	13/01/2016	06:05	2.7	W
12/01/2016	15:00	1.8	WSW	12/01/2016	22:35	1.8	W	13/01/2016	06:10	0.9	SSW
12/01/2016	15:05	2.2	WSW	12/01/2016	22:40	1.3	SW	13/01/2016	06:15	0.9	S
12/01/2016	15:10	2.2	W	12/01/2016	22:45	1.3	SW	13/01/2016	06:20	0.9	S
12/01/2016	15:15	1.8	WSW	12/01/2016	22:50	0.4	WSW	13/01/2016	06:25	2.2	SW
12/01/2016	15:20	0.4	WSW	12/01/2016	22:55	0.4	WSW	13/01/2016	06:30	1.3	NNW
12/01/2016	15:25	0.4	WSW	12/01/2016	23:00	0.9	WSW	13/01/2016	06:35	1.3	N
12/01/2016	15:30	0.9	WSW	12/01/2016	23:05	0.9	NNE	13/01/2016	06:40	0.9	ENE
12/01/2016	15:35	0.9	NNE	12/01/2016	23:10	0.9	NE	13/01/2016	06:45	0.9	S
12/01/2016	15:40	0.9	NE	12/01/2016	23:15	1.3	NE	13/01/2016	06:50	1.3	N
12/01/2016	15:45	1.3	NE	12/01/2016	23:20	1.3	N	13/01/2016	06:55	1.3	ENE
12/01/2016	15:50	1.3	N	12/01/2016	23:25	1.3	N	13/01/2016	07:00	0.9	NE
12/01/2016	15:55	1.3	N	12/01/2016	23:30	1.3	N	13/01/2016	07:05	0.9	ENE
12/01/2016	16:00	1.3	N	12/01/2016	23:35	1.3	NE	13/01/2016	07:10	1.3	WNW
12/01/2016	16:05	1.3	NE	12/01/2016	23:40	0.9	NE	13/01/2016	07:15	0.9	WNW
12/01/2016	16:10	0.9	NE	12/01/2016	23:45	1.3	N	13/01/2016	07:20	1.3	W
12/01/2016	16:15	1.3	N	12/01/2016	23:50	0.4	WSW	13/01/2016	07:25	1.3	NNW
12/01/2016	16:20	2.7	NE	12/01/2016	23:55	0.9	WSW	13/01/2016	07:30	2.2	NE
12/01/2016	16:25	2.2	NE	13/01/2016	00:00	0.9	WSW	13/01/2016	07:35	1.8	WNW
12/01/2016	16:30	2.2	NE	13/01/2016	00:05	0.9	S	13/01/2016	07:40	5.4	ENE
12/01/2016	16:3	2.2	NE	13/01/2016	00:10	1.3	N	13/01/2016	45	4	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	$\begin{gathered} \text { Date } \\ \text { (dd/mm/yyyy) } \end{gathered}$	Time	Wind Speed (m/s)	Wind Direction

13/01/2016	07:50	4.5	ENE	13/01/2016	15:25	4	W	13/01/2016	23:00	0.9	WSW
13/01/2016	07:55	4.9	E	13/01/2016	15:30	4.9	W	13/01/2016	23:05	0.4	WSW
13/01/2016	08:00	3.1	E	13/01/2016	15:35	4.9	WNW	13/01/2016	23:10	0.9	S
13/01/2016	08:05	3.6	E	13/01/2016	15:40	4.5	WNW	13/01/2016	23:15	1.3	N
13/01/2016	08:10	2.7	NE	13/01/2016	15:45	4.9	WNW	13/01/2016	23:20	1.3	ENE
13/01/2016	08:15	0.9	WNW	13/01/2016	15:50	4.5	W	13/01/2016	23:25	0.9	NE
13/01/2016	08:20	2.2	E	13/01/2016	15:55	4.9	WNW	13/01/2016	23:30	0.9	ENE
13/01/2016	08:25	3.1	NE	13/01/2016	16:00	5.4	WNW	13/01/2016	23:35	1.3	WNW
13/01/2016	08:30	3.6	ENE	13/01/2016	16:05	4.5	WNW	13/01/2016	23:40	0.9	WNW
13/01/2016	08:35	0.9	N	13/01/2016	16:10	4.9	WNW	13/01/2016	23:45	1.3	W
13/01/2016	08:40	0.9	NE	13/01/2016	16:15	4	WNW	13/01/2016	23:50	1.3	NNW
13/01/2016	08:45	0.9	NNE	13/01/2016	16:20	4.9	WNW	13/01/2016	23:55	2.2	NE
13/01/2016	08:50	1.3	NNW	13/01/2016	16:25	4.5	WNW	14/01/2016	00:00	1.8	WNW
13/01/2016	08:55	0.9	NNW	13/01/2016	16:30	4.5	W	14/01/2016	00:05	3.1	E
13/01/2016	09:00	1.3	N	13/01/2016	16:35	3.6	W	14/01/2016	00:10	3.1	E
13/01/2016	09:05	0.4	NNW	13/01/2016	16:40	4.9	W	14/01/2016	00:15	3.1	E
13/01/2016	09:10	0.4	NNW	13/01/2016	16:45	3.6	W	14/01/2016	00:20	2.2	ENE
13/01/2016	09:15	0.9	WNW	13/01/2016	16:50	3.6	W	14/01/2016	00:25	2.2	ENE
13/01/2016	09:20	4.5	ENE	13/01/2016	16:55	4	W	14/01/2016	00:30	2.2	ENE
13/01/2016	09:25	4.9	ENE	13/01/2016	17:00	0.9	S	14/01/2016	00:35	2.2	ENE
13/01/2016	09:30	5.4	ENE	13/01/2016	17:05	1.3	N	14/01/2016	00:40	1.8	E
13/01/2016	09:35	4	ENE	13/01/2016	17:10	1.3	ENE	14/01/2016	00:45	0.4	E
13/01/2016	09:40	4.5	ENE	13/01/2016	17:15	0.9	NE	14/01/2016	00:50	0.4	E
13/01/2016	09:45	0.9	S	13/01/2016	17:20	0.9	ENE	14/01/2016	00:55	0.9	E
13/01/2016	09:50	1.3	N	13/01/2016	17:25	1.3	WNW	14/01/2016	01:00	0.4	E
13/01/2016	09:55	1.3	ENE	13/01/2016	17:30	0.9	WNW	14/01/2016	01:05	0.9	E
13/01/2016	10:00	0.9	NE	13/01/2016	17:35	1.3	W	14/01/2016	01:10	1.3	E
13/01/2016	10:05	0.9	ENE	13/01/2016	17:40	1.3	NNW	14/01/2016	01:15	1.3	ENE
13/01/2016	10:10	1.3	WNW	13/01/2016	17:45	2.2	NE	14/01/2016	01:20	0.9	ESE
13/01/2016	10:15	0.9	WNW	13/01/2016	17:50	1.8	WNW	14/01/2016	01:25	0.9	ESE
13/01/2016	10:20	1.3	W	13/01/2016	17:55	2.2	WNW	14/01/2016	01:30	1.3	E
13/01/2016	10:25	1.3	NNW	13/01/2016	18:00	2.2	WNW	14/01/2016	01:35	0.9	ESE
13/01/2016	10:30	2.2	NE	13/01/2016	18:05	2.2	W	14/01/2016	01:40	0.4	NNE
13/01/2016	10:35	1.8	WNW	13/01/2016	18:10	2.7	W	14/01/2016	01:45	0.4	NNE
13/01/2016	10:40	2.2	N	13/01/2016	18:15	2.7	W	14/01/2016	01:50	1.3	E
13/01/2016	10:45	2.2	N	13/01/2016	18:20	2.2	W	14/01/2016	01:55	2.2	E
13/01/2016	10:50	1.8	N	13/01/2016	18:25	3.6	WNW	14/01/2016	02:00	2.2	NE
13/01/2016	10:55	2.2	W	13/01/2016	18:30	3.1	WNW	14/01/2016	02:05	1.8	ENE
13/01/2016	11:00	1.8	W	13/01/2016	18:35	2.7	WNW	14/01/2016	02:10	2.2	E
13/01/2016	11:05	1.8	WSW	13/01/2016	18:40	3.1	W	14/01/2016	02:15	2.2	ENE
13/01/2016	11:10	2.2	W	13/01/2016	18:45	3.1	W	14/01/2016	02:20	0.9	ESE
13/01/2016	11:15	2.2	NW	13/01/2016	18:50	2.7	W	14/01/2016	02:25	1.8	E
13/01/2016	11:20	1.8	NW	13/01/2016	18:55	2.2	WNW	14/01/2016	02:30	1.3	ESE
13/01/2016	11:25	2.7	W	13/01/2016	19:00	2.2	WNW	14/01/2016	02:35	2.2	E
13/01/2016	11:30	3.1	W	13/01/2016	19:05	0.9	SE	14/01/2016	02:40	1.3	E
13/01/2016	11:35	3.1	W	13/01/2016	19:10	0.9	SE	14/01/2016	02:45	1.3	E
13/01/2016	11:40	2.2	W	13/01/2016	19:15	0.9	S	14/01/2016	02:50	2.2	ENE
13/01/2016	11:45	2.7	WNW	13/01/2016	19:20	1.3	N	14/01/2016	02:55	1.8	E
13/01/2016	11:50	2.2	WNW	13/01/2016	19:25	1.3	ENE	14/01/2016	03:00	0.4	E
13/01/2016	11:55	3.1	W	13/01/2016	19:30	0.9	NE	14/01/2016	03:05	0.4	E
13/01/2016	12:00	0.9	S	13/01/2016	19:35	0.9	ENE	14/01/2016	03:10	0.9	E
13/01/2016	12:05	1.3	N	13/01/2016	19:40	1.3	WNW	14/01/2016	03:15	0.4	E
13/01/2016	12:10	1.3	ENE	13/01/2016	19:45	0.9	WNW	14/01/2016	03:20	0.9	E
13/01/2016	12:15	0.9	NE	13/01/2016	19:50	1.3	W	14/01/2016	03:25	1.3	E
13/01/2016	12:20	0.9	ENE	13/01/2016	19:55	1.3	NNW	14/01/2016	03:30	1.3	ENE
13/01/2016	12:25	1.3	WNW	13/01/2016	20:00	2.2	NE	14/01/2016	03:35	0.9	ESE
13/01/2016	12:30	0.9	WNW	13/01/2016	20:05	1.8	WNW	14/01/2016	03:40	0.9	ESE
13/01/2016	12:35	1.3	W	13/01/2016	20:10	2.2	SSW	14/01/2016	03:45	1.3	E
13/01/2016	12:40	1.3	NNW	13/01/2016	20:15	0.9	WSW	14/01/2016	03:50	0.9	ESE
13/01/2016	12:45	2.2	NE	13/01/2016	20:20	0.9	SSW	14/01/2016	03:55	0.4	NNE
13/01/2016	12:50	1.8	WNW	13/01/2016	20:25	0.4	S	14/01/2016	04:00	0.4	NNE
13/01/2016	12:55	2.2	W	13/01/2016	20:30	0.4	S	14/01/2016	04:05	1.3	E
13/01/2016	13:00	2.2	W	13/01/2016	20:35	0.9	SSW	14/01/2016	04:10	0.4	NNE
13/01/2016	13:05	2.2	NW	13/01/2016	20:40	0.9	SSW	14/01/2016	04:15	0.4	NNE
13/01/2016	13:10	1.8	NW	13/01/2016	20:45	0.9	SSW	14/01/2016	04:20	1.3	E
13/01/2016	13:15	2.7	W	13/01/2016	20:50	1.3	S	14/01/2016	04:25	2.2	E
13/01/2016	13:20	2.7	WNW	13/01/2016	20:55	0.9	S	14/01/2016	04:30	2.2	NE
13/01/2016	13:25	2.2	WNW	13/01/2016	21:00	0.9	S	14/01/2016	04:35	1.3	ESE
13/01/2016	13:30	3.1	W	13/01/2016	21:05	0.9	WSW	14/01/2016	04:40	2.2	E
13/01/2016	13:35	3.6	W	13/01/2016	21:10	0.9	SSW	14/01/2016	04:45	1.3	E
13/01/2016	13:40	4.5	WNW	13/01/2016	21:15	0.4	S	14/01/2016	04:50	1.3	E
13/01/2016	13:45	4	WNW	13/01/2016	21:20	0.4	SE	14/01/2016	04:55	2.2	E
13/01/2016	13:50	4.5	WNW	13/01/2016	21:25	0.4	S	14/01/2016	05:00	0.4	SSW
13/01/2016	13:55	4.9	WNW	13/01/2016	21:30	0.9	S	14/01/2016	05:05	0.4	SSW
13/01/2016	14:00	4.5	WNW	13/01/2016	21:35	1.3	N	14/01/2016	05:10	0.4	SSW
13/01/2016	14:05	4.9	WNW	13/01/2016	21:40	1.3	ENE	14/01/2016	05:15	1.8	ENE
13/01/2016	14:10	4.5	WNW	13/01/2016	21:45	0.9	NE	14/01/2016	05:20	1.8	ENE
13/01/2016	14:15	5.4	WNW	13/01/2016	21:50	0.9	ENE	14/01/2016	05:25	0.4	ENE
13/01/2016	14:20	4.5	W	13/01/2016	21:55	1.3	WNW	14/01/2016	05:30	0.4	E
13/01/2016	14:25	4.9	WNW	13/01/2016	22:00	0.9	WNW	14/01/2016	05:35	0.4	E
13/01/2016	14:30	0.9	S	13/01/2016	22:05	1.3	W	14/01/2016	05:40	0.4	E
13/01/2016	14:35	1.3	N	13/01/2016	22:10	1.3	NNW	14/01/2016	05:45	0.9	E
13/01/2016	14:40	1.3	ENE	13/01/2016	22:15	2.2	NE	14/01/2016	05:50	2.2	ENE
13/01/2016	14:45	0.9	NE	13/01/2016	22:20	1.8	WNW	14/01/2016	05:55	1.8	E
13/01/2016	14:50	0.9	ENE	13/01/2016	22:25	0.9	SSW	14/01/2016	06:00	0.4	E
13/01/2016	14:55	1.3	WNW	13/01/2016	22:30	1.3	S	14/01/2016	06:05	0.4	E
13/01/2016	15:00	0.9	WNW	13/01/2016	22:35	0.4	SE	14/01/2016	06:10	0.9	E
13/01/2016	15:05	1.3	W	13/01/2016	22:40	0.4	SE	14/01/2016	06:15	0.4	E
13/01/2016	15:10	1.3	NNW	13/01/2016	22:45	0.9	WSW	14/01/2016	06:20	0.9	E
13/01/2016	15:15	2.2	NE	13/01/2016	22:50	0.9	WSW	14/01/2016	06:25	1.3	E
13/01/2016	15:20	1.8	WNW	13/01/2016	22:55	1.3	WSW	14/01/2016	06:30	1.3	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
14/01/2016	06:35	0.9	ESE	14/01/2016	14:10	4	WSW	14/01/2016	21:45	1.8	WSW
14/01/2016	06:40	0.9	ESE	14/01/2016	14:15	4.5	WSW	14/01/2016	21:50	1.3	SW
14/01/2016	06:45	1.3	E	14/01/2016	14:20	4.5	W	14/01/2016	21:55	2.2	WSW
14/01/2016	06:50	0.9	ESE	14/01/2016	14:25	4	W	14/01/2016	22:00	2.2	ENE
14/01/2016	06:55	0.4	NNE	14/01/2016	14:30	1.8	N	14/01/2016	22:05	1.8	E
14/01/2016	07:00	0.4	NNE	14/01/2016	14:35	1.8	N	14/01/2016	22:10	0.4	E
14/01/2016	07:05	1.3	E	14/01/2016	14:40	1.3	N	14/01/2016	22:15	0.4	E
14/01/2016	07:10	1.3	SW	14/01/2016	14:45	1.3	NNE	14/01/2016	22:20	0.9	E
14/01/2016	07:15	1.3	SW	14/01/2016	14:50	1.3	N	14/01/2016	22:25	0.4	E
14/01/2016	07:20	0.4	ESE	14/01/2016	14:55	0.4	N	14/01/2016	22:30	0.9	E
14/01/2016	07:25	1.3	SW	14/01/2016	15:00	0.4	ESE	14/01/2016	22:35	1.3	E
14/01/2016	07:30	1.3	SSW	14/01/2016	15:05	0.9	N	14/01/2016	22:40	1.3	ENE
14/01/2016	07:35	1.3	SW	14/01/2016	15:10	0.9	N	14/01/2016	22:45	0.9	ESE
14/01/2016	07:40	0.9	ENE	14/01/2016	15:15	0.4	NW	14/01/2016	22:50	0.9	ESE
14/01/2016	07:45	1.3	NE	14/01/2016	15:20	0.9	ENE	14/01/2016	22:55	1.3	E
14/01/2016	07:50	1.8	ENE	14/01/2016	15:25	1.3	NNW	14/01/2016	23:00	0.9	ESE
14/01/2016	07:55	1.8	NE	14/01/2016	15:30	0.9	NNW	14/01/2016	23:05	0.4	NNE
14/01/2016	08:00	1.8	ENE	14/01/2016	15:35	0.9	N	14/01/2016	23:10	0.4	NNE
14/01/2016	08:05	1.8	NE	14/01/2016	15:40	0.4	N	14/01/2016	23:15	1.3	E
14/01/2016	08:10	2.2	NE	14/01/2016	15:45	2.7	W	14/01/2016	23:20	1.8	E
14/01/2016	08:15	2.2	ENE	14/01/2016	15:50	4.9	Wsw	14/01/2016	23:25	1.8	NNE
14/01/2016	08:20	2.7	NE	14/01/2016	15:55	4.5	WSW	14/01/2016	23:30	1.8	ENE
14/01/2016	08:25	2.7	NE	14/01/2016	16:00	3.1	WSW	14/01/2016	23:35	3.1	ENE
14/01/2016	08:30	2.7	NE	14/01/2016	16:05	3.1	WSW	14/01/2016	23:40	1.3	ENE
14/01/2016	08:35	3.1	NE	14/01/2016	16:10	2.7	WSW	14/01/2016	23:45	1.3	ENE
14/01/2016	08:40	2.7	NE	14/01/2016	16:15	2.7	WSW	14/01/2016	23:50	0.4	ESE
14/01/2016	08:45	3.1	NE	14/01/2016	16:20	2.2	ENE	14/01/2016	23:55	0.9	ESE
14/01/2016	08:50	2.7	NE	14/01/2016	16:25	1.8	E	15/01/2016	00:00	0.9	ESE
14/01/2016	08:55	3.1	NE	14/01/2016	16:30	0.4		15/01/2016	00:05	0.4	SSW
14/01/2016	09:00	2.2	NE	14/01/2016	16:35	0.4		15/01/2016	00:10	0.4	SSW
14/01/2016	09:05	3.1	NE	14/01/2016	16:40	0.9	E	15/01/2016	00:15	0.4	SSW
14/01/2016	09:10	2.7	NE	14/01/2016	16:45	0.4	E	15/01/2016	00:20	0.4	SSW
14/01/2016	09:15	2.7	NE	14/01/2016	16:50	0.9	E	15/01/2016	00:25	0.4	SSW
14/01/2016	09:20	2.2	ENE	14/01/2016	16:55	1.3	E	15/01/2016	00:30	0.9	SSW
14/01/2016	09:25	1.8	E	14/01/2016	17:00	1.3	ENE	15/01/2016	00:35	0.4	SSE
14/01/2016	09:30	0.4	E	14/01/2016	17:05	0.9	ESE	15/01/2016	00:40	0.9	SSE
14/01/2016	09:35	0.4	E	14/01/2016	17:10	0.9	ESE	15/01/2016	00:45	0.4	SE
14/01/2016	09:40	0.9	E	14/01/2016	17:15	1.3	E	15/01/2016	00:50	1.8	SSW
14/01/2016	09:45	0.4	E	14/01/2016	17:20	0.9	ESE	15/01/2016	00:55	1.3	SSW
14/01/2016	09:50	0.9	E	14/01/2016	17:25	0.4	NNE	15/01/2016	01:00	0.9	SSE
14/01/2016	09:55	1.3	E	14/01/2016	17:30	0.4	NNE	15/01/2016	01:05	0.9	S
14/01/2016	10:00	1.3	ENE	14/01/2016	17:35	1.3	E	15/01/2016	01:10	0.4	SSW
14/01/2016	10:05	0.9	ESE	14/01/2016	17:40	1.3	SW	15/01/2016	01:15	0.9	SSW
14/01/2016	10:10	0.9	ESE	14/01/2016	17:45	2.2	WSW	15/01/2016	01:20	0.9	SSW
14/01/2016	10:15	1.3	E	14/01/2016	17:50	2.2	SW	15/01/2016	01:25	0.4	SSW
14/01/2016	10:20	0.9	ESE	14/01/2016	17:55	1.3	WSW	15/01/2016	01:30	0.4	SSW
14/01/2016	10:25	0.4	NNE	14/01/2016	18:00	0.9	WNW	15/01/2016	01:35	0.9	ESE
14/01/2016	10:30	0.4	NNE	14/01/2016	18:05	0.9	SE	15/01/2016	01:40	1.3	WSW
14/01/2016	10:35	1.3	E	14/01/2016	18:10	0.9	SSE	15/01/2016	01:45	2.7	WSW
14/01/2016	10:40	2.2	NE	14/01/2016	18:15	0.9	SSE	15/01/2016	01:50	2.2	W
14/01/2016	10:45	2.7	NE	14/01/2016	18:20	1.3	NE	15/01/2016	01:55	0.4	SSW
14/01/2016	10:50	1.8	NE	14/01/2016	18:25	0.9	NNE	15/01/2016	02:00	0.4	SSW
14/01/2016	10:55	2.2	ENE	14/01/2016	18:30	0.4	NNE	15/01/2016	02:05	0.4	SSW
14/01/2016	11:00	1.8	N	14/01/2016	18:35	0.4	NNE	15/01/2016	02:10	0.4	SSW
14/01/2016	11:05	1.8	N	14/01/2016	18:40	2.2	ENE	15/01/2016	02:15	0.9	SSW
14/01/2016	11:10	1.3	N	14/01/2016	18:45	1.8	E	15/01/2016	02:20	0.4	SE
14/01/2016	11:15	1.3	NNE	14/01/2016	18:50	0.4	E	15/01/2016	02:25	0.4	SE
14/01/2016	11:20	1.3	N	14/01/2016	18:55	0.4	E	15/01/2016	02:30	0.4	SE
14/01/2016	11:25	0.9	N	14/01/2016	19:00	0.9	E	15/01/2016	02:35	0.4	SE
14/01/2016	11:30	0.9	NW	14/01/2016	19:05	0.4	E	15/01/2016	02:40	0.4	SE
14/01/2016	11:35	0.4	N	14/01/2016	19:10	0.9	E	15/01/2016	02:45	0.4	SE
14/01/2016	11:40	0.4	N	14/01/2016	19:15	1.3	E	15/01/2016	02:50	0.4	SSW
14/01/2016	11:45	0.4	N	14/01/2016	19:20	1.3	ENE	15/01/2016	02:55	0.4	SSW
14/01/2016	11:50	0.4	N	14/01/2016	19:25	0.9	ESE	15/01/2016	03:00	0.4	SE
14/01/2016	11:55	0.4	ESE	14/01/2016	19:30	0.9	ESE	15/01/2016	03:05	1.8	SSW
14/01/2016	12:00	0.9	N	14/01/2016	19:35	1.3	E	15/01/2016	03:10	1.3	SSW
14/01/2016	12:05	0.9	N	14/01/2016	19:40	0.9	ESE	15/01/2016	03:15	0.9	SSE
14/01/2016	12:10	0.4	NW	14/01/2016	19:45	0.4	NNE	15/01/2016	03:20	0.9	S
14/01/2016	12:15	0.9	ENE	14/01/2016	19:50	0.4	NNE	15/01/2016	03:25	0.4	SSW
14/01/2016	12:20	1.3	NNW	14/01/2016	19:55	1.3	E	15/01/2016	03:30	0.9	SSW
14/01/2016	12:25	1.3	NNW	14/01/2016	20:00	0.4	SE	15/01/2016	03:35	0.9	SSW
14/01/2016	12:30	1.3	NW	14/01/2016	20:05	0.4	SE	15/01/2016	03:40	0.4	SSW
14/01/2016	12:35	2.2	ENE	14/01/2016	20:10	1.3	SE	15/01/2016	03:45	0.4	SSW
14/01/2016	12:40	1.8	E	14/01/2016	20:15	0.4	SSE	15/01/2016	03:50	0.9	ESE
14/01/2016	12:45	0.4	E	14/01/2016	20:20	0.4	SSW	15/01/2016	03:55	1.3	WSW
14/01/2016	12:50	0.4	E	14/01/2016	20:25	0.4	SSW	15/01/2016	04:00	2.7	WSW
14/01/2016	12:55	0.9	E	14/01/2016	20:30	0.4	SSW	15/01/2016	04:05	2.2	W
14/01/2016	13:00	0.4	E	14/01/2016	20:35	0.4	SSW	15/01/2016	04:10	1.3	WSW
14/01/2016	13:05	0.9	E	14/01/2016	20:40	0.9	ESE	15/01/2016	04:15	2.2	W
14/01/2016	13:10	1.3	E	14/01/2016	20:45	0.4	ESE	15/01/2016	04:20	1.3	WSW
14/01/2016	13:15	1.3	ENE	14/01/2016	20:50	0.9	ESE	15/01/2016	04:25	0.4	SE
14/01/2016	13:20	0.9	ESE	14/01/2016	20:55	0.9	ESE	15/01/2016	04:30	0.4	SE
14/01/2016	13:25	0.9	ESE	14/01/2016	21:00	2.2	WSW	15/01/2016	04:35	0.4	SE
14/01/2016	13:30	1.3	E	14/01/2016	21:05	2.7	WSW	15/01/2016	04:40	0.4	SE
14/01/2016	13:35	0.9	ESE	14/01/2016	21:10	2.2	WSW	15/01/2016	04:45	0.4	SSW
14/01/2016	13:40	0.4	NNE	14/01/2016	21:15	2.2	WSW	15/01/2016	04:50	0.4	SSW
14/01/2016	13:45	0.4	NNE	14/01/2016	21:20	0.9	E	15/01/2016	04:55	0.4	SSW
14/01/2016	13:50	1.3	E	14/01/2016	21:25	0.4	E	15/01/2016	05:00	0.4	SSW
14/01/2016	13:55	4.9	W	14/01/2016	21:30	1.8	W	15/01/2016	05:05	0.4	SSW
$14 / 01 / 2016$ $14 / 01 / 2016$	$14: 00$ $14: 05$	5.4	w	14/01/2016	$21: 35$ $21: 40$	1.8	WS	$15 / 01 / 2016$ $15 / 01 / 2016$	$05: 10$ $05: 15$	0.4 1.8	SE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	$\begin{gathered} \text { Date } \\ \text { (dd/mm/yyyy) } \end{gathered}$	Time	Wind Speed (m/s)	Wind Direction

15/01/2016	05:20	1.3	SSW	15/01/2016	12:55	2.7	WSW	15/01/2016	20:30	1.8	SW
15/01/2016	05:25	0.9	SSE	15/01/2016	13:00	2.2	W	15/01/2016	20:35	0.9	WSW
15/01/2016	05:30	0.9	S	15/01/2016	13:05	1.3	N	15/01/2016	20:40	1.3	WSW
15/01/2016	05:35	0.4	SSW	15/01/2016	13:10	2.7	N	15/01/2016	20:45	1.3	E
15/01/2016	05:40	0.9	SSW	15/01/2016	13:15	2.2	N	15/01/2016	20:50	1.3	E
15/01/2016	05:45	0.9	SSW	15/01/2016	13:20	2.2	N	15/01/2016	20:55	0.4	E
15/01/2016	05:50	0.4	SSW	15/01/2016	13:25	1.8	NNW	15/01/2016	21:00	0.9	E
15/01/2016	05:55	0.4	SSW	15/01/2016	13:30	1.3	NW	15/01/2016	21:05	0.9	SSW
15/01/2016	06:00	0.9	ESE	15/01/2016	13:35	0.9	NW	15/01/2016	21:10	0.9	SSW
15/01/2016	06:05	1.3	WSW	15/01/2016	13:40	0.9	NNW	15/01/2016	21:15	1.3	E
15/01/2016	06:10	2.7	WSW	15/01/2016	13:45	1.3	WNW	15/01/2016	21:20	0.9	E
15/01/2016	06:15	2.2	W	15/01/2016	13:50	1.8	N	15/01/2016	21:25	1.3	E
15/01/2016	06:20	1.3	WSW	15/01/2016	13:55	1.3	WNW	15/01/2016	21:30	0.4	E
15/01/2016	06:25	2.7	WSW	15/01/2016	14:00	1.8	W	15/01/2016	21:35	0.4	E
15/01/2016	06:30	2.2	W	15/01/2016	14:05	1.3	NNW	15/01/2016	21:40	0.4	E
15/01/2016	06:35	0.4	SE	15/01/2016	14:10	2.2	WNW	15/01/2016	21:45	1.3	ESE
15/01/2016	06:40	0.4	SSW	15/01/2016	14:15	2.2	N	15/01/2016	21:50	1.3	ESE
15/01/2016	06:45	0.4	SSW	15/01/2016	14:20	2.7	W	15/01/2016	21:55	1.3	ESE
15/01/2016	06:50	0.4	SSW	15/01/2016	14:25	3.6	W	15/01/2016	22:00	0.4	ESE
15/01/2016	06:55	0.4	SSW	15/01/2016	14:30	1.3	WSW	15/01/2016	22:05	0.4	ESE
15/01/2016	07:00	0.4	S	15/01/2016	14:35	2.2	W	15/01/2016	22:10	1.3	ENE
15/01/2016	07:05	0.4	S	15/01/2016	14:40	1.8	NNE	15/01/2016	22:15	0.9	E
15/01/2016	07:10	0.4	NNW	15/01/2016	14:45	1.8	NNE	15/01/2016	22:20	1.8	ESE
15/01/2016	07:15	0.9	NW	15/01/2016	14:50	1.8	NNE	15/01/2016	22:25	0.9	SE
15/01/2016	07:20	0.4	WNW	15/01/2016	14:55	2.2	N	15/01/2016	22:30	0.9	SSW
15/01/2016	07:25	0.4	E	15/01/2016	15:00	1.8	NNE	15/01/2016	22:35	0.4	SE
15/01/2016	07:30	0.4	E	15/01/2016	15:05	1.3	NNE	15/01/2016	22:40	1.8	SSW
15/01/2016	07:35	0.9	ESE	15/01/2016	15:10	1.8	N	15/01/2016	22:45	1.3	SSW
15/01/2016	07:40	1.3	SSW	15/01/2016	15:15	1.8	N	15/01/2016	22:50	0.9	SSE
15/01/2016	07:45	1.3	SSW	15/01/2016	15:20	0.4	SE	15/01/2016	22:55	0.9	S
15/01/2016	07:50	0.4	SE	15/01/2016	15:25	1.8	SSW	15/01/2016	23:00	0.4	SSW
15/01/2016	07:55	1.8	SSW	15/01/2016	15:30	1.3	SSW	15/01/2016	23:05	0.9	SSW
15/01/2016	08:00	1.3	SSW	15/01/2016	15:35	0.9	SSE	15/01/2016	23:10	0.9	SSW
15/01/2016	08:05	0.9	SSE	15/01/2016	15:40	0.9	S	15/01/2016	23:15	0.4	SSW
15/01/2016	08:10	0.9	S	15/01/2016	15:45	0.4	SSW	15/01/2016	23:20	0.4	SSW
15/01/2016	08:15	0.4	SSW	15/01/2016	15:50	0.9	SSW	15/01/2016	23:25	0.9	ESE
15/01/2016	08:20	0.9	SSW	15/01/2016	15:55	0.9	SSW	15/01/2016	23:30	1.3	WSW
15/01/2016	08:25	0.9	SSW	15/01/2016	16:00	0.4	SSW	15/01/2016	23:35	2.7	WSW
15/01/2016	08:30	0.4	SSW	15/01/2016	16:05	0.4	SSW	15/01/2016	23:40	2.2	W
15/01/2016	08:35	0.4	SSW	15/01/2016	16:10	0.9	ESE	15/01/2016	23:45	1.3	ENE
15/01/2016	08:40	0.9	ESE	15/01/2016	16:15	1.3	WSW	15/01/2016	23:50	0.9	E
15/01/2016	08:45	1.3	WSW	15/01/2016	16:20	2.7	WSW	15/01/2016	23:55	1.8	ESE
15/01/2016	08:50	2.7	WSW	15/01/2016	16:25	2.2	W	16/01/2016	00:00	0.9	SE
15/01/2016	08:55	2.2	W	15/01/2016	16:30	2.7	WSW	16/01/2016	00:05	4.5	ENE
15/01/2016	09:00	1.3	NNE	15/01/2016	16:35	2.7	W	16/01/2016	00:10	4.9	E
15/01/2016	09:05	0.4	NE	15/01/2016	16:40	2.7	WNW	16/01/2016	00:15	4.9	ENE
15/01/2016	09:10	1.3	NE	15/01/2016	16:45	1.8	NW	16/01/2016	00:20	4	ENE
15/01/2016	09:15	1.3	NE	15/01/2016	16:50	1.8	N	16/01/2016	00:25	4	ENE
15/01/2016	09:20	1.3	NE	15/01/2016	16:55	2.7	WNW	16/01/2016	00:30	4.9	E
15/01/2016	09:25	1.8	NE	15/01/2016	17:00	2.7	WNW	16/01/2016	00:35	5.8	ENE
15/01/2016	09:30	1.8	NE	15/01/2016	17:05	1.8	WNW	16/01/2016	00:40	5.4	E
15/01/2016	09:35	1.8	NE	15/01/2016	17:10	2.7	W	16/01/2016	00:45	2.2	WNW
15/01/2016	09:40	1.8	NNE	15/01/2016	17:15	1.8	W	16/01/2016	00:50	1.8	NNW
15/01/2016	09:45	1.3	N	15/01/2016	17:20	1.8	NNW	16/01/2016	00:55	1.8	S
15/01/2016	09:50	1.3	N	15/01/2016	17:25	1.8	N	16/01/2016	01:00	2.7	WSW
15/01/2016	09:55	1.3	NNE	15/01/2016	17:30	1.8	W	16/01/2016	01:05	1.8	W
15/01/2016	10:00	1.3	N	15/01/2016	17:35	1.8	N	16/01/2016	01:10	2.2	WSW
15/01/2016	10:05	1.8	NNE	15/01/2016	17:40	1.3	N	16/01/2016	01:15	3.6	NW
15/01/2016	10:10	1.8	N	15/01/2016	17:45	1.3	ENE	16/01/2016	01:20	1.8	SSW
15/01/2016	10:15	1.8	NNW	15/01/2016	17:50	2.2	WNW	16/01/2016	01:25	2.7	ENE
15/01/2016	10:20	1.8	NNW	15/01/2016	17:55	1.3	WSW	16/01/2016	01:30	4.9	ENE
15/01/2016	10:25	1.3	NNE	15/01/2016	18:00	1.8	NE	16/01/2016	01:35	2.2	ENE
15/01/2016	10:30	0.9	ESE	15/01/2016	18:05	1.8	N	16/01/2016	01:40	2.2	WNW
15/01/2016	10:35	1.3	SSW	15/01/2016	18:10	0.9	N	16/01/2016	01:45	2.2	NW
15/01/2016	10:40	1.3	SSW	15/01/2016	18:15	1.8	W	16/01/2016	01:50	1.3	ENE
15/01/2016	10:45	1.3	E	15/01/2016	18:20	1.3	E	16/01/2016	01:55	4.9	ENE
15/01/2016	10:50	0.9	E	15/01/2016	18:25	2.2	ENE	16/01/2016	02:00	4	ENE
15/01/2016	10:55	0.9	S	15/01/2016	18:30	1.3	NE	16/01/2016	02:05	4	ENE
15/01/2016	11:00	0.4	ESE	15/01/2016	18:35	1.3	NNE	16/01/2016	02:10	4.9	E
15/01/2016	11:05	0.4	WSW	15/01/2016	18:40	1.3	SW	16/01/2016	02:15	5.8	ENE
15/01/2016	11:10	0.4	WSW	15/01/2016	18:45	1.3	S	16/01/2016	02:20	5.4	E
15/01/2016	11:15	0.4	WSW	15/01/2016	18:50	0.4	SE	16/01/2016	02:25	5.8	ENE
15/01/2016	11:20	1.3	SW	15/01/2016	18:55	1.8	SSW	16/01/2016	02:30	6.7	ENE
15/01/2016	11:25	1.8	NNW	15/01/2016	19:00	1.3	SSW	16/01/2016	02:35	5.4	E
15/01/2016	11:30	1.8	NE	15/01/2016	19:05	0.9	SSE	16/01/2016	02:40	4.5	E
15/01/2016	11:35	1.8	NNE	15/01/2016	19:10	0.9	S	16/01/2016	02:45	4.9	E
15/01/2016	11:40	1.8	NNE	15/01/2016	19:15	0.4	SSW	16/01/2016	02:50	5.4	ENE
15/01/2016	11:45	1.8	NNE	15/01/2016	19:20	0.9	SSW	16/01/2016	02:55	2.2	WNW
15/01/2016	11:50	1.8	NNE	15/01/2016	19:25	0.9	SSW	16/01/2016	03:00	1.8	NNW
15/01/2016	11:55	0.4	SE	15/01/2016	19:30	0.4	SSW	16/01/2016	03:05	1.8	S
15/01/2016	12:00	1.8	SSW	15/01/2016	19:35	0.4	SSW	16/01/2016	03:10	2.7	WSW
15/01/2016	12:05	1.3	SSW	15/01/2016	19:40	0.9	ESE	16/01/2016	03:15	1.8	W
15/01/2016	12:10	0.9	SSE	15/01/2016	19:45	1.3	WSW	16/01/2016	03:20	2.2	WSW
15/01/2016	12:15	0.9	S	15/01/2016	19:50	2.7	WSW	16/01/2016	03:25	3.6	NW
15/01/2016	12:20	0.4	SSW	15/01/2016	19:55	2.2	W	16/01/2016	03:30	1.8	SSW
15/01/2016	12:25	0.9	SSW	15/01/2016	20:00	1.3	N	16/01/2016	03:35	2.7	ENE
15/01/2016	12:30	0.9	SSW	15/01/2016	20:05	1.3	ENE	16/01/2016	03:40	4.9	ENE
15/01/2016	12:35	0.4	SSW	15/01/2016	20:10	2.2	WNW	16/01/2016	03:45	2.2	ENE
15/01/2016	12:40	0.4	SSW	15/01/2016	20:15	1.3	WSW	16/01/2016	03:50	2.2	WNW
15/01/2016	12:45	0.9	ESE	15/01/2016	20:20	1.8	NE	16/01/2016	03:55	2.2	NW
15/01/2016	12:50	1.3	WSW	15/01/2016	20:25	1.3	WSW	16/01/2016	04:00	1.3	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
16/01/2016	04:05	2.2	W	16/01/2016	11:40	1.3	SSW	16/01/2016	19:15	3.6	NW
16/01/2016	04:10	3.1	WSW	16/01/2016	11:45	4.5	ENE	16/01/2016	19:20	1.8	SSW
16/01/2016	04:15	3.1	WSW	16/01/2016	11:50	3.1	ENE	16/01/2016	19:25	2.7	ENE
16/01/2016	04:20	1.3	SSW	16/01/2016	11:55	2.7	ENE	16/01/2016	19:30	4.9	ENE
16/01/2016	04:25	2.7	W	16/01/2016	12:00	2.7	ENE	16/01/2016	19:35	2.2	ENE
16/01/2016	04:30	1.8	NNE	16/01/2016	12:05	2.7	ENE	16/01/2016	19:40	2.2	WNW
16/01/2016	04:35	2.7	ENE	16/01/2016	12:10	3.1	ENE	16/01/2016	19:45	2.2	NW
16/01/2016	04:40	4	NE	16/01/2016	12:15	4.5	ENE	16/01/2016	19:50	1.3	ENE
16/01/2016	04:45	3.1	NE	16/01/2016	12:20	4.9	ENE	16/01/2016	19:55	4	ENE
16/01/2016	04:50	4.5	ENE	16/01/2016	12:25	4.9	ENE	16/01/2016	20:00	4	ENE
16/01/2016	04:55	4.5	NE	16/01/2016	12:30	2.2	WNW	16/01/2016	20:05	3.1	E
16/01/2016	05:00	4.5	ENE	16/01/2016	12:35	1.8	NNW	16/01/2016	20:10	3.1	ENE
16/01/2016	05:05	3.6	NE	16/01/2016	12:40	1.8	S	16/01/2016	20:15	2.2	E
16/01/2016	05:10	4	NE	16/01/2016	12:45	2.7	WSW	16/01/2016	20:20	1.8	ENE
16/01/2016	05:15	3.6	NE	16/01/2016	12:50	1.8	W	16/01/2016	20:25	2.2	E
16/01/2016	05:20	4	NE	16/01/2016	12:55	2.2	WSW	16/01/2016	20:30	1.3	ENE
16/01/2016	05:25	4	NE	16/01/2016	13:00	3.6	NW	16/01/2016	20:35	0.9	NNE
16/01/2016	05:30	4	NE	16/01/2016	13:05	1.8	SSW	16/01/2016	20:40	2.7	ENE
16/01/2016	05:35	4	NE	16/01/2016	13:10	2.7	ENE	16/01/2016	20:45	3.6	ENE
16/01/2016	05:40	3.1	ENE	16/01/2016	13:15	4.9	ENE	16/01/2016	20:50	4	ENE
16/01/2016	05:45	2.2	WNW	16/01/2016	13:20	2.2	ENE	16/01/2016	20:55	4.5	ENE
16/01/2016	05:50	1.8	NNW	16/01/2016	13:25	2.2	WNW	16/01/2016	21:00	4	ENE
16/01/2016	05:55	1.8	S	16/01/2016	13:30	2.2	NW	16/01/2016	21:05	2.7	ENE
16/01/2016	06:00	2.7	WSW	16/01/2016	13:35	1.3	ENE	16/01/2016	21:10	1.8	ENE
16/01/2016	06:05	1.8	W	16/01/2016	13:40	5.4	E	16/01/2016	21:15	2.7	ENE
16/01/2016	06:10	2.2	WSW	16/01/2016	13:45	5.4	ENE	16/01/2016	21:20	4	ENE
16/01/2016	06:15	3.6	NW	16/01/2016	13:50	3.1	E	16/01/2016	21:25	2.2	WNW
16/01/2016	06:20	1.8	SSW	16/01/2016	13:55	4.9	ENE	16/01/2016	21:30	1.8	NNW
16/01/2016	06:25	2.7	ENE	16/01/2016	14:00	4.5	E	16/01/2016	21:35	1.8	S
16/01/2016	06:30	4.9	ENE	16/01/2016	14:05	4.5	E	16/01/2016	21:40	2.7	WSW
16/01/2016	06:35	2.2	ENE	16/01/2016	14:10	3.6	ENE	16/01/2016	21:45	1.8	W
16/01/2016	06:40	2.2	WNW	16/01/2016	14:15	4.5	ENE	16/01/2016	21:50	2.2	WSW
16/01/2016	06:45	2.2	NW	16/01/2016	14:20	4.9	E	16/01/2016	21:55	3.6	NW
16/01/2016	06:50	1.3	ENE	16/01/2016	14:25	4.9	E	16/01/2016	22:00	1.8	SSW
16/01/2016	06:55	1.3	SSW	16/01/2016	14:30	4.9	E	16/01/2016	22:05	2.7	ENE
16/01/2016	07:00	2.7	W	16/01/2016	14:35	4.5	E	16/01/2016	22:10	4.9	ENE
16/01/2016	07:05	1.8	NNE	16/01/2016	14:40	5.4	ENE	16/01/2016	22:15	2.2	ENE
16/01/2016	07:10	4.5	NE	16/01/2016	14:45	6.3	E	16/01/2016	22:20	2.2	WNW
16/01/2016	07:15	4.5	ENE	16/01/2016	14:50	6.7	E	16/01/2016	22:25	2.2	NW
16/01/2016	07:20	3.6	NE	16/01/2016	14:55	5.4	ENE	16/01/2016	22:30	1.3	ENE
16/01/2016	07:25	4	NE	16/01/2016	15:00	6.7	ENE	16/01/2016	22:35	2.7	ENE
16/01/2016	07:30	3.6	NE	16/01/2016	15:05	5.4	E	16/01/2016	22:40	4	ENE
16/01/2016	07:35	2.2	ENE	16/01/2016	15:10	4.5	ENE	16/01/2016	22:45	4	ENE
16/01/2016	07:40	1.3	NW	16/01/2016	15:15	5.4	E	16/01/2016	22:50	2.2	NE
16/01/2016	07:45	1.8	W	16/01/2016	15:20	2.2	WNW	16/01/2016	22:55	3.6	ENE
16/01/2016	07:50	1.8	WNW	16/01/2016	15:25	1.8	NNW	16/01/2016	23:00	3.1	E
16/01/2016	07:55	1.8	W	16/01/2016	15:30	1.8	S	16/01/2016	23:05	2.2	WNW
16/01/2016	08:00	2.7	W	16/01/2016	15:35	2.7	WSW	16/01/2016	23:10	1.8	NNW
16/01/2016	08:05	2.7	NW	16/01/2016	15:40	1.8	W	16/01/2016	23:15	1.8	S
16/01/2016	08:10	2.7	NW	16/01/2016	15:45	2.2	WSW	16/01/2016	23:20	2.7	WSW
16/01/2016	08:15	0.9	NE	16/01/2016	15:50	3.6	NW	16/01/2016	23:25	1.8	W
16/01/2016	08:20	0.9	WSW	16/01/2016	15:55	1.8	SSW	16/01/2016	23:30	2.2	WSW
16/01/2016	08:25	1.8	W	16/01/2016	16:00	2.7	ENE	16/01/2016	23:35	3.6	NW
16/01/2016	08:30	2.2	W	16/01/2016	16:05	4.9	ENE	16/01/2016	23:40	1.8	SSW
16/01/2016	08:35	2.2	NW	16/01/2016	16:10	2.2	ENE	16/01/2016	23:45	2.7	ENE
16/01/2016	08:40	1.8	W	16/01/2016	16:15	2.2	WNW	16/01/2016	23:50	4.9	ENE
16/01/2016	08:45	2.2	WSW	16/01/2016	16:20	2.2	NW	16/01/2016	23:55	2.2	ENE
16/01/2016	08:50	3.6	NW	16/01/2016	16:25	1.3	ENE	17/01/2016	00:00	2.2	WNW
16/01/2016	08:55	1.8	SSW	16/01/2016	16:30	3.6	ENE	17/01/2016	00:05	0.4	ESE
16/01/2016	09:00	3.1	WSW	16/01/2016	16:35	4	ENE	17/01/2016	00:10	0.9	ESE
16/01/2016	09:05	3.1	WSW	16/01/2016	16:40	3.1	NE	17/01/2016	00:15	0.4	ESE
16/01/2016	09:10	1.3	SSW	16/01/2016	16:45	2.2	NE	17/01/2016	00:20	1.3	SE
16/01/2016	09:15	4.5	ENE	16/01/2016	16:50	2.7	ENE	17/01/2016	00:25	0.4	ESE
16/01/2016	09:20	4.5	NE	16/01/2016	16:55	2.7	ENE	17/01/2016	00:30	0.9	ESE
16/01/2016	09:25	4.5	ENE	16/01/2016	17:00	4.5	E	17/01/2016	00:35	0.9	SE
16/01/2016	09:30	2.2	WNW	16/01/2016	17:05	4.5	ENE	17/01/2016	00:40	1.3	ESE
16/01/2016	09:35	1.8	NNW	16/01/2016	17:10	4.5	ENE	17/01/2016	00:45	0.9	E
16/01/2016	09:40	1.8	S	16/01/2016	17:15	4	ENE	17/01/2016	00:50	0.9	WSW
16/01/2016	09:45	2.7	WSW	16/01/2016	17:20	2.7	ENE	17/01/2016	00:55	0.9	WSW
16/01/2016	09:50	1.8	W	16/01/2016	17:25	4	ENE	17/01/2016	01:00	0.9	WSW
16/01/2016	09:55	2.2	WSW	16/01/2016	17:30	3.1	ENE	17/01/2016	01:05	0.9	WSW
16/01/2016	10:00	3.6	NW	16/01/2016	17:35	4.9	ENE	17/01/2016	01:10	0.9	WSW
16/01/2016	10:05	1.8	SSW	16/01/2016	17:40	4.9	E	17/01/2016	01:15	0.9	WSW
16/01/2016	10:10	2.7	ENE	16/01/2016	17:45	4.5	ENE	17/01/2016	01:20	0.9	WSW
16/01/2016	10:15	4.9	ENE	16/01/2016	17:50	5.4	ENE	17/01/2016	01:25	0.9	ESE
16/01/2016	10:20	2.2	ENE	16/01/2016	17:55	0.9	NNE	17/01/2016	01:30	1.8	E
16/01/2016	10:25	2.2	WNW	16/01/2016	18:00	2.7	ENE	17/01/2016	01:35	2.2	E
16/01/2016	10:30	2.2	NW	16/01/2016	18:05	3.6	ENE	17/01/2016	01:40	2.2	ESE
16/01/2016	10:35	1.3	ENE	16/01/2016	18:10	4	ENE	17/01/2016	01:45	1.8	E
16/01/2016	10:40	5.4	E	16/01/2016	18:15	4.5	ENE	17/01/2016	01:50	1.3	E
16/01/2016	10:45	5.8	ENE	16/01/2016	18:20	4	NE	17/01/2016	01:55	1.3	E
16/01/2016	10:50	2.7	W	16/01/2016	18:25	2.7	ENE	17/01/2016	02:00	0.9	SE
16/01/2016	10:55	2.7	NW	16/01/2016	18:30	2.7	ENE	17/01/2016	02:05	0.4	ESE
16/01/2016	11:00	2.7	NW	16/01/2016	18:35	4.5	E	17/01/2016	02:10	0.4	SW
16/01/2016	11:05	0.9	NE	16/01/2016	18:40	4.5	ENE	17/01/2016	02:15	0.4	SW
16/01/2016	11:10	0.9	WSW	16/01/2016	18:45	2.2	WNW	17/01/2016	02:20	0.4	SW
16/01/2016	11:15	1.8	W	16/01/2016	18:50	1.8	NNW	17/01/2016	02:25	0.4	SW
16/01/2016	11:20	3.6	NW	16/01/2016	18:55	1.8	S	17/01/2016	02:30	0.4	SW
16/01/2016	11:25	1.8	SSW	16/01/2016	19:00	2.7	WSW	17/01/2016	02:35	0.4	ESE
$16 / 01 / 2016$ $16 / 01 / 2016$	$11: 30$ $11: 35$	3.1 3.1	WSW	$16 / 01 / 2016$ $16 / 01 / 2016$	19:05	1.8 2.2	W	$17 / 01 / 2016$ $17 / 01 / 2016$	02:40 02:45	0.4 0.9	E

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction

17/01/2016	02:50	0.9	SW	17/01/2016	10:25	0.9	NE	17/01/2016	18:00	1.8	W
17/01/2016	02:55	0.9	SSW	17/01/2016	10:30	0.9	NE	17/01/2016	18:05	1.8	W
17/01/2016	03:00	2.7	WSW	17/01/2016	10:35	0.9	ENE	17/01/2016	18:10	1.3	WSW
17/01/2016	03:05	2.2	WSW	17/01/2016	10:40	1.3	NE	17/01/2016	18:15	1.3	WSW
17/01/2016	03:10	1.8	W	17/01/2016	10:45	0.9	ENE	17/01/2016	18:20	0.4	ESE
17/01/2016	03:15	0.4	ESE	17/01/2016	10:50	0.9	ENE	17/01/2016	18:25	0.9	ESE
17/01/2016	03:20	0.9	ESE	17/01/2016	10:55	1.3	NNE	17/01/2016	18:30	0.4	ESE
17/01/2016	03:25	0.4	ESE	17/01/2016	11:00	0.9	NNE	17/01/2016	18:35	1.3	SE
17/01/2016	03:30	1.3	SE	17/01/2016	11:05	1.3	NNE	17/01/2016	18:40	0.4	ESE
17/01/2016	03:35	0.4	ESE	17/01/2016	11:10	0.9	NE	17/01/2016	18:45	0.9	ESE
17/01/2016	03:40	0.9	ESE	17/01/2016	11:15	0.4	ESE	17/01/2016	18:50	0.9	SE
17/01/2016	03:45	0.9	SE	17/01/2016	11:20	0.9	ESE	17/01/2016	18:55	1.3	ESE
17/01/2016	03:50	1.3	ESE	17/01/2016	11:25	0.4	ESE	17/01/2016	19:00	0.9	E
17/01/2016	03:55	0.9	E	17/01/2016	11:30	1.3	SE	17/01/2016	19:05	0.9	WSW
17/01/2016	04:00	0.9	WSW	17/01/2016	11:35	0.4	ESE	17/01/2016	19:10	0.9	WSW
17/01/2016	04:05	0.9	WSW	17/01/2016	11:40	0.9	ESE	17/01/2016	19:15	0.9	WSW
17/01/2016	04:10	0.9	WSW	17/01/2016	11:45	0.9	SE	17/01/2016	19:20	0.9	NNE
17/01/2016	04:15	0.9	SE	17/01/2016	11:50	1.3	ESE	17/01/2016	19:25	0.4	WSW
17/01/2016	04:20	1.3	ESE	17/01/2016	11:55	0.9	E	17/01/2016	19:30	0.9	WNW
17/01/2016	04:25	0.9	WSW	17/01/2016	12:00	0.9	WSW	17/01/2016	19:35	0.4	N
17/01/2016	04:30	0.9	WSW	17/01/2016	12:05	0.9	WSW	17/01/2016	19:40	0.4	NW
17/01/2016	04:35	0.9	WSW	17/01/2016	12:10	0.9	WSW	17/01/2016	19:45	0.4	NE
17/01/2016	04:40	0.9	ESE	17/01/2016	12:15	4.5	E	17/01/2016	19:50	1.3	NE
17/01/2016	04:45	1.8	E	17/01/2016	12:20	5.4	E	17/01/2016	19:55	0.4	NE
17/01/2016	04:50	2.2	E	17/01/2016	12:25	5.8	E	17/01/2016	20:00	0.9	E
17/01/2016	04:55	2.2	ESE	17/01/2016	12:30	4.9	E	17/01/2016	20:05	1.3	ESE
17/01/2016	05:00	0.4	SW	17/01/2016	12:35	4	E	17/01/2016	20:10	1.8	ENE
17/01/2016	05:05	0.4	SW	17/01/2016	12:40	5.4	E	17/01/2016	20:15	1.3	ENE
17/01/2016	05:10	0.4	SW	17/01/2016	12:45	4.5	E	17/01/2016	20:20	1.3	E
17/01/2016	05:15	0.4	ESE	17/01/2016	12:50	5.4	E	17/01/2016	20:25	1.8	E
17/01/2016	05:20	0.4	E	17/01/2016	12:55	4	E	17/01/2016	20:30	1.8	E
17/01/2016	05:25	0.9	WSW	17/01/2016	13:00	4.5	E	17/01/2016	20:35	0.4	ESE
17/01/2016	05:30	0.9	SW	17/01/2016	13:05	4	E	17/01/2016	20:40	0.9	ESE
17/01/2016	05:35	0.9	SSW	17/01/2016	13:10	4.5	E	17/01/2016	20:45	0.4	ESE
17/01/2016	05:40	0.9	ESE	17/01/2016	13:15	4	E	17/01/2016	20:50	1.3	SE
17/01/2016	05:45	0.9	SSW	17/01/2016	13:20	3.6	E	17/01/2016	20:55	0.4	ESE
17/01/2016	05:50	0.9	SSW	17/01/2016	13:25	4	ENE	17/01/2016	21:00	0.9	ESE
17/01/2016	05:55	0.9	SSW	17/01/2016	13:30	0.4	ESE	17/01/2016	21:05	0.9	SE
17/01/2016	06:00	1.3	WSW	17/01/2016	13:35	0.9	ESE	17/01/2016	21:10	1.3	ESE
17/01/2016	06:05	0.4	WSW	17/01/2016	13:40	0.4	ESE	17/01/2016	21:15	0.9	E
17/01/2016	06:10	0.4	ESE	17/01/2016	13:45	1.3	SE	17/01/2016	21:20	0.9	WSW
17/01/2016	06:15	0.4	ESE	17/01/2016	13:50	0.4	ESE	17/01/2016	21:25	0.9	WSW
17/01/2016	06:20	0.9	ESE	17/01/2016	13:55	0.9	ESE	17/01/2016	21:30	0.9	WSW
17/01/2016	06:25	0.4	ESE	17/01/2016	14:00	0.9	SE	17/01/2016	21:35	2.2	SSW
17/01/2016	06:30	1.3	SE	17/01/2016	14:05	1.3	ESE	17/01/2016	21:40	2.2	NE
17/01/2016	06:35	0.4	ESE	17/01/2016	14:10	0.9	E	17/01/2016	21:45	2.2	NE
17/01/2016	06:40	0.9	ESE	17/01/2016	14:15	0.9	WSW	17/01/2016	21:50	2.2	NE
17/01/2016	06:45	0.9	SE	17/01/2016	14:20	0.9	WSW	17/01/2016	21:55	1.8	NNE
17/01/2016	06:50	1.3	ESE	17/01/2016	14:25	0.9	WSW	17/01/2016	22:00	1.8	NNE
17/01/2016	06:55	0.9	E	17/01/2016	14:30	3.6	E	17/01/2016	22:05	2.2	NNE
17/01/2016	07:00	0.9	WSW	17/01/2016	14:35	2.7	SE	17/01/2016	22:10	2.2	N
17/01/2016	07:05	0.9	WSW	17/01/2016	14:40	2.2	ESE	17/01/2016	22:15	1.3	NE
17/01/2016	07:10	0.9	WSW	17/01/2016	14:45	2.2	ENE	17/01/2016	22:20	1.3	W
17/01/2016	07:15	2.2	ENE	17/01/2016	14:50	2.7	E	17/01/2016	22:25	1.3	W
17/01/2016	07:20	3.1	ENE	17/01/2016	14:55	2.2	E	17/01/2016	22:30	0.9	NNE
17/01/2016	07:25	1.8	NE	17/01/2016	15:00	2.7	NE	17/01/2016	22:35	0.9	N
17/01/2016	07:30	1.3	ENE	17/01/2016	15:05	2.7	E	17/01/2016	22:40	1.3	NE
17/01/2016	07:35	1.8	NE	17/01/2016	15:10	2.2	E	17/01/2016	22:45	1.3	ENE
17/01/2016	07:40	1.8	ENE	17/01/2016	15:15	3.6	E	17/01/2016	22:50	1.8	NNE
17/01/2016	07:45	2.2	ENE	17/01/2016	15:20	1.3	N	17/01/2016	22:55	0.4	ESE
17/01/2016	07:50	2.7	ENE	17/01/2016	15:25	1.3	NNW	17/01/2016	23:00	0.9	ESE
17/01/2016	07:55	2.7	E	17/01/2016	15:30	3.6	ENE	17/01/2016	23:05	0.4	ESE
17/01/2016	08:00	3.6	ENE	17/01/2016	15:35	4	E	17/01/2016	23:10	1.3	SE
17/01/2016	08:05	2.7	E	17/01/2016	15:40	4	ENE	17/01/2016	23:15	0.4	ESE
17/01/2016	08:10	2.2	ENE	17/01/2016	15:45	4	ENE	17/01/2016	23:20	0.9	ESE
17/01/2016	08:15	2.2	NE	17/01/2016	15:50	0.4	ESE	17/01/2016	23:25	0.9	SE
17/01/2016	08:20	0.4	ESE	17/01/2016	15:55	0.9	ESE	17/01/2016	23:30	1.3	ESE
17/01/2016	08:25	0.9	ESE	17/01/2016	16:00	0.4	ESE	17/01/2016	23:35	0.9	E
17/01/2016	08:30	0.9	SSW	17/01/2016	16:05	1.3	SE	17/01/2016	23:40	0.9	WSW
17/01/2016	08:35	0.9	SSE	17/01/2016	16:10	0.4	ESE	17/01/2016	23:45	0.9	WSW
17/01/2016	08:40	0.4	NNE	17/01/2016	16:15	0.9	ESE	17/01/2016	23:50	0.9	WSW
17/01/2016	08:45	0.4	ESE	17/01/2016	16:20	0.9	SE	17/01/2016	23:55	1.3	W
17/01/2016	08:50	0.9	ESE	17/01/2016	16:25	1.3	ESE	18/01/2016	00:00	1.8	ENE
17/01/2016	08:55	0.9	ESE	17/01/2016	16:30	0.9	E	18/01/2016	00:05	1.3	E
17/01/2016	09:00	1.3	ENE	17/01/2016	16:35	0.9	WSW	18/01/2016	00:10	2.2	NE
17/01/2016	09:05	2.2	ENE	17/01/2016	16:40	0.9	WSW	18/01/2016	00:15	2.2	ENE
17/01/2016	09:10	3.1	ENE	17/01/2016	16:45	0.9	WSW	18/01/2016	00:20	2.7	E
17/01/2016	09:15	0.4	ESE	17/01/2016	16:50	1.8	ENE	18/01/2016	00:25	1.8	ENE
17/01/2016	09:20	0.9	ESE	17/01/2016	16:55	1.8	NE	18/01/2016	00:30	2.7	E
17/01/2016	09:25	0.4	ESE	17/01/2016	17:00	1.3	E	18/01/2016	00:35	3.1	NE
17/01/2016	09:30	1.3	SE	17/01/2016	17:05	0.9	E	18/01/2016	00:40	2.2	NE
17/01/2016	09:35	0.4	ESE	17/01/2016	17:10	1.3	ESE	18/01/2016	00:45	2.2	NE
17/01/2016	09:40	0.9	ESE	17/01/2016	17:15	1.8	ENE	18/01/2016	00:50	1.8	NE
17/01/2016	09:45	0.9	SE	17/01/2016	17:20	1.3	ENE	18/01/2016	00:55	1.8	ENE
17/01/2016	09:50	1.3	ESE	17/01/2016	17:25	1.3	E	18/01/2016	01:00	1.3	ENE
17/01/2016	09:55	0.9	E	17/01/2016	17:30	1.8	E	18/01/2016	01:05	0.9	NNE
17/01/2016	10:00	0.9	WSW	17/01/2016	17:35	1.8	E	18/01/2016	01:10	0.9	W
17/01/2016	10:05	0.9	WSW	17/01/2016	17:40	1.3	ENE	18/01/2016	01:15	0.4	ENE
17/01/2016	10:10	0.9	WSW	17/01/2016	17:45	0.4	E	18/01/2016	01:20	0.4	W
17/01/2016	10:15	0.9	NNE	17/01/2016	17:50	1.8	SW	18/01/2016	01:25	1.3	WSW
17/01/2016	10:20	1.3	NE	17/01/2016	17:55	1.8	SW	18/01/2016	01:30	0.4	WNW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	$\begin{gathered} \text { Date } \\ \text { (dd/mm/yyyy) } \end{gathered}$	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction

19/01/2016	00:20	3.6	NE	19/01/2016	07:55	2.2	WNW	19/01/2016	15:30	0.9	W
19/01/2016	00:25	4	NE	19/01/2016	08:00	1.8	WNW	19/01/2016	15:35	0.9	W
19/01/2016	00:30	4	NE	19/01/2016	08:05	1.3	NNE	19/01/2016	15:40	3.6	E
19/01/2016	00:35	4.5	NE	19/01/2016	08:10	1.8	NNE	19/01/2016	15:45	4.9	E
19/01/2016	00:40	4.5	NE	19/01/2016	08:15	1.3	ENE	19/01/2016	15:50	4.9	E
19/01/2016	00:45	4.5	NE	19/01/2016	08:20	1.8	N	19/01/2016	15:55	3.6	ENE
19/01/2016	00:50	2.2	NE	19/01/2016	08:25	1.3	N	19/01/2016	16:00	2.7	NNW
19/01/2016	00:55	1.8	NE	19/01/2016	08:30	1.8	NNE	19/01/2016	16:05	0.4	E
19/01/2016	01:00	1.8	NE	19/01/2016	08:35	1.3	NNE	19/01/2016	16:10	2.7	WSW
19/01/2016	01:05	0.9	W	19/01/2016	08:40	1.8	NNE	19/01/2016	16:15	3.6	NW
19/01/2016	01:10	0.9	W	19/01/2016	08:45	1.8	NNE	19/01/2016	16:20	3.1	NW
19/01/2016	01:15	3.6	E	19/01/2016	08:50	1.3	NE	19/01/2016	16:25	1.3	NNE
19/01/2016	01:20	4.9	E	19/01/2016	08:55	1.3	NE	19/01/2016	16:30	1.8	NNE
19/01/2016	01:25	4.9	E	19/01/2016	09:00	1.3	NE	19/01/2016	16:35	1.8	NNE
19/01/2016	01:30	3.6	ENE	19/01/2016	09:05	0.9	WSW	19/01/2016	16:40	1.8	NNW
19/01/2016	01:35	2.7	NNW	19/01/2016	09:10	0.9	WSW	19/01/2016	16:45	2.2	WNW
19/01/2016	01:40	0.4	E	19/01/2016	09:15	0.4	WSW	19/01/2016	16:50	2.2	WNW
19/01/2016	01:45	2.2	WNW	19/01/2016	09:20	0.9	SW	19/01/2016	16:55	1.8	WNW
19/01/2016	01:50	2.2	WNW	19/01/2016	09:25	0.9	W	19/01/2016	17:00	1.8	NW
19/01/2016	01:55	1.8	WNW	19/01/2016	09:30	1.3	NE	19/01/2016	17:05	1.8	W
19/01/2016	02:00	1.8	NW	19/01/2016	09:35	1.3	NE	19/01/2016	17:10	1.8	W
19/01/2016	02:05	1.8	W	19/01/2016	09:40	1.8	NE	19/01/2016	17:15	1.8	W
19/01/2016	02:10	1.8	W	19/01/2016	09:45	1.3	NE	19/01/2016	17:20	2.2	NE
19/01/2016	02:15	1.8	W	19/01/2016	09:50	1.3	ENE	19/01/2016	17:25	1.8	NE
19/01/2016	02:20	0.9	WNW	19/01/2016	09:55	1.8	NE	19/01/2016	17:30	1.8	NE
19/01/2016	02:25	1.8	W	19/01/2016	10:00	1.3	NE	19/01/2016	17:35	0.9	W
19/01/2016	02:30	1.3	W	19/01/2016	10:05	1.3	NE	19/01/2016	17:40	0.9	W
19/01/2016	02:35	0.4	W	19/01/2016	10:10	1.3	NE	19/01/2016	17:45	3.6	E
19/01/2016	02:40	3.1	E	19/01/2016	10:15	0.9	WSW	19/01/2016	17:50	4.9	E
19/01/2016	02:45	3.6	E	19/01/2016	10:20	0.9	WSW	19/01/2016	17:55	4.9	E
19/01/2016	02:50	2.7	NE	19/01/2016	10:25	0.4	WSW	19/01/2016	18:00	3.6	ENE
19/01/2016	02:55	0.9	WNW	19/01/2016	10:30	0.9	SW	19/01/2016	18:05	2.7	NNW
19/01/2016	03:00	2.2	E	19/01/2016	10:35	0.9	WSW	19/01/2016	18:10	0.4	E
19/01/2016	03:05	3.1	NE	19/01/2016	10:40	0.9	WSW	19/01/2016	18:15	2.2	WNW
19/01/2016	03:10	4	NE	19/01/2016	10:45	0.4	WSW	19/01/2016	18:20	2.2	WNW
19/01/2016	03:15	3.6	NE	19/01/2016	10:50	2.2	NE	19/01/2016	18:25	1.8	WNW
19/01/2016	03:20	4	NE	19/01/2016	10:55	1.8	NE	19/01/2016	18:30	2.7	NE
19/01/2016	03:25	4	NE	19/01/2016	11:00	1.8	NE	19/01/2016	18:35	0.9	WNW
19/01/2016	03:30	4.5	NE	19/01/2016	11:05	0.9	W	19/01/2016	18:40	2.2	E
19/01/2016	03:35	4.5	NE	19/01/2016	11:10	0.9	W	19/01/2016	18:45	3.1	NE
19/01/2016	03:40	0.9	W	19/01/2016	11:15	3.6	E	19/01/2016	18:50	3.6	ENE
19/01/2016	03:45	0.9	W	19/01/2016	11:20	4.9	E	19/01/2016	18:55	1.8	ENE
19/01/2016	03:50	3.6	E	19/01/2016	11:25	4.9	E	19/01/2016	19:00	0.4	ENE
19/01/2016	03:55	2.2	NE	19/01/2016	11:30	3.6	ENE	19/01/2016	19:05	3.6	ENE
19/01/2016	04:00	1.8	NE	19/01/2016	11:35	2.7	NNW	19/01/2016	19:10	4	E
19/01/2016	04:05	1.8	NE	19/01/2016	11:40	0.4	E	19/01/2016	19:15	4	ENE
19/01/2016	04:10	0.9	W	19/01/2016	11:45	2.2	WNW	19/01/2016	19:20	2.7	E
19/01/2016	04:15	0.9	W	19/01/2016	11:50	2.2	WNW	19/01/2016	19:25	2.7	ENE
19/01/2016	04:20	3.6	E	19/01/2016	11:55	1.8	WNW	19/01/2016	19:30	3.1	E
19/01/2016	04:25	4.9	E	19/01/2016	12:00	4.9	NE	19/01/2016	19:35	2.7	ENE
19/01/2016	04:30	4.9	E	19/01/2016	12:05	4	NE	19/01/2016	19:40	1.3	E
19/01/2016	04:35	3.6	ENE	19/01/2016	12:10	3.6	NE	19/01/2016	19:45	3.1	NW
19/01/2016	04:40	2.7	NNW	19/01/2016	12:15	3.6	NE	19/01/2016	19:50	1.3	NNE
19/01/2016	04:45	0.4	E	19/01/2016	12:20	3.6	NE	19/01/2016	19:55	1.8	NNE
19/01/2016	04:50	2.2	WNW	19/01/2016	12:25	3.1	NE	19/01/2016	20:00	1.8	NNE
19/01/2016	04:55	2.2	WNW	19/01/2016	12:30	3.1	NNE	19/01/2016	20:05	1.8	NNW
19/01/2016	05:00	1.8	WNW	19/01/2016	12:35	3.1	NE	19/01/2016	20:10	2.2	WNW
19/01/2016	05:05	0.9	S	19/01/2016	12:40	3.1	NE	19/01/2016	20:15	0.9	WNW
19/01/2016	05:10	1.3	N	19/01/2016	12:45	3.1	NE	19/01/2016	20:20	1.8	W
19/01/2016	05:15	1.3	ENE	19/01/2016	12:50	2.7	NE	19/01/2016	20:25	1.3	W
19/01/2016	05:20	0.9	NE	19/01/2016	12:55	4.9	NE	19/01/2016	20:30	0.4	W
19/01/2016	05:25	0.4	NW	19/01/2016	13:00	4.9	ENE	19/01/2016	20:35	1.8	NNW
19/01/2016	05:30	1.3	NE	19/01/2016	13:05	4.5	NE	19/01/2016	20:40	2.2	NE
19/01/2016	05:35	1.3	NE	19/01/2016	13:10	4.5	NE	19/01/2016	20:45	1.8	NE
19/01/2016	05:40	1.3	NE	19/01/2016	13:15	4	NE	19/01/2016	20:50	1.8	NE
19/01/2016	05:45	1.3	NE	19/01/2016	13:20	4	NE	19/01/2016	20:55	0.9	W
19/01/2016	05:50	0.9	WSW	19/01/2016	13:25	4	NE	19/01/2016	21:00	0.9	W
19/01/2016	05:55	0.9	WSW	19/01/2016	13:30	4	NE	19/01/2016	21:05	3.6	E
19/01/2016	06:00	0.4	WSW	19/01/2016	13:35	4	NE	19/01/2016	21:10	4.9	E
19/01/2016	06:05	0.9	SW	19/01/2016	13:40	3.6	NE	19/01/2016	21:15	4.9	E
19/01/2016	06:10	0.9	WSW	19/01/2016	13:45	4	NE	19/01/2016	21:20	3.6	ENE
19/01/2016	06:15	0.9	WSW	19/01/2016	13:50	4	NE	19/01/2016	21:25	2.7	NNW
19/01/2016	06:20	0.4	WSW	19/01/2016	13:55	4.5	NE	19/01/2016	21:30	0.4	E
19/01/2016	06:25	0.9	WSW	19/01/2016	14:00	4.5	NE	19/01/2016	21:35	2.2	WNW
19/01/2016	06:30	0.4	WSW	19/01/2016	14:05	2.2	NE	19/01/2016	21:40	2.2	WNW
19/01/2016	06:35	0.9	W	19/01/2016	14:10	1.8	NE	19/01/2016	21:45	1.8	WNW
19/01/2016	06:40	1.3	NE	19/01/2016	14:15	1.8	NE	19/01/2016	21:50	0.9	ENE
19/01/2016	06:45	1.3	NE	19/01/2016	14:20	0.9	W	19/01/2016	21:55	1.3	WNW
19/01/2016	06:50	1.8	NE	19/01/2016	14:25	0.9	W	19/01/2016	22:00	0.9	WNW
19/01/2016	06:55	2.2	NE	19/01/2016	14:30	3.6	E	19/01/2016	22:05	1.3	W
19/01/2016	07:00	1.8	NE	19/01/2016	14:35	4.9	E	19/01/2016	22:10	1.3	NNW
19/01/2016	07:05	1.8	NE	19/01/2016	14:40	4.9	E	19/01/2016	22:15	2.2	NE
19/01/2016	07:10	0.9	W	19/01/2016	14:45	3.6	ENE	19/01/2016	22:20	1.8	WNW
19/01/2016	07:15	0.9	W	19/01/2016	14:50	2.7	NNW	19/01/2016	22:25	0.9	NW
19/01/2016	07:20	3.6	E	19/01/2016	14:55	0.4	E	19/01/2016	22:30	0.9	N
19/01/2016	07:25	4.9	E	19/01/2016	15:00	2.2	WNW	19/01/2016	22:35	1.3	NE
19/01/2016	07:30	4.9	E	19/01/2016	15:05	2.2	WNW	19/01/2016	22:40	1.8	NE
19/01/2016	07:35	3.6	ENE	19/01/2016	15:10	1.8	WNW	19/01/2016	22:45	3.6	E
19/01/2016	07:40	2.7	NNW	19/01/2016	15:15	3.6	NE	19/01/2016	22:50	2.2	NE
19/01/2016	07:45	0.4	E	19/01/2016	15:20	3.6	NE	19/01/2016	22:55	1.8	NE
19/01/2016	07:50	2.2	WNW	19/01/2016	15:25	3.1	NE	19/01/2016	23:00	1.8	NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 (dd/mm/yyyy) | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

19/01/2016	23:05	0.9	w	20/01/2016	06:40	0.9	W	20/01/2016	14:15	1.8	ENE
19/01/2016	23:10	0.9	W	20/01/2016	06:45	1.3	SW	20/01/2016	14:20	0.9	N
19/01/2016	23:15	3.6	E	20/01/2016	06:50	1.8	SW	20/01/2016	14:25	0.9	NE
19/01/2016	23:20	4.9	E	20/01/2016	06:55	1.8	WSW	20/01/2016	14:30	1.3	NE
19/01/2016	23:25	4.9	E	20/01/2016	07:00	2.2	W	20/01/2016	14:35	1.3	ENE
19/01/2016	23:30	3.6	ENE	20/01/2016	07:05	1.8	W	20/01/2016	14:40	1.8	NNE
19/01/2016	23:35	2.7	NNW	20/01/2016	07:10	1.3	NNE	20/01/2016	14:45	0.9	SSW
19/01/2016	23:40	0.4	E	20/01/2016	07:15	1.8	E	20/01/2016	14:50	0.9	SSW
19/01/2016	23:45	2.2	WNW	20/01/2016	07:20	1.8	ENE	20/01/2016	14:55	1.8	ENE
19/01/2016	23:50	2.2	WNW	20/01/2016	07:25	1.3	N	20/01/2016	15:00	0.9	N
19/01/2016	23:55	1.8	WNW	20/01/2016	07:30	1.8	ENE	20/01/2016	15:05	0.4	WNW
20/01/2016	00:00	1.3	NE	20/01/2016	07:35	0.9	N	20/01/2016	15:10	0.4	WNW
20/01/2016	00:05	2.2	E	20/01/2016	07:40	0.9	NE	20/01/2016	15:15	3.1	W
20/01/2016	00:10	2.7	ENE	20/01/2016	07:45	1.3	NE	20/01/2016	15:20	2.2	W
20/01/2016	00:15	1.8	SSE	20/01/2016	07:50	1.3	ENE	20/01/2016	15:25	2.2	W
20/01/2016	00:20	3.1	E	20/01/2016	07:55	1.8	NNE	20/01/2016	15:30	2.7	W
20/01/2016	00:25	2.2	ENE	20/01/2016	08:00	0.9	SSW	20/01/2016	15:35	2.2	W
20/01/2016	00:30	2.7	ESE	20/01/2016	08:05	0.9	SSW	20/01/2016	15:40	1.8	W
20/01/2016	00:35	2.7	E	20/01/2016	08:10	1.8	ENE	20/01/2016	15:45	1.3	NE
20/01/2016	00:40	2.2	E	20/01/2016	08:15	0.9	N	20/01/2016	15:50	2.2	WNW
20/01/2016	00:45	2.2	ENE	20/01/2016	08:20	0.4	WNW	20/01/2016	15:55	2.2	W
20/01/2016	00:50	2.7	NE	20/01/2016	08:25	0.4	WNW	20/01/2016	16:00	3.1	W
20/01/2016	00:55	1.3	NNE	20/01/2016	08:30	2.7	WSW	20/01/2016	16:05	2.2	W
20/01/2016	01:00	1.8	E	20/01/2016	08:35	2.2	W	20/01/2016	16:10	2.2	W
20/01/2016	01:05	1.8	ENE	20/01/2016	08:40	2.7	W	20/01/2016	16:15	1.8	SW
20/01/2016	01:10	1.3	N	20/01/2016	08:45	3.1	W	20/01/2016	16:20	1.3	W
20/01/2016	01:15	1.8	ENE	20/01/2016	08:50	3.1	W	20/01/2016	16:25	1.8	W
20/01/2016	01:20	0.9	N	20/01/2016	08:55	2.7	SW	20/01/2016	16:30	1.3	WNW
20/01/2016	01:25	0.9	NE	20/01/2016	09:00	0.9	NE	20/01/2016	16:35	0.9	WNW
20/01/2016	01:30	1.3	NE	20/01/2016	09:05	0.9	NE	20/01/2016	16:40	1.3	WNW
20/01/2016	01:35	1.3	ENE	20/01/2016	09:10	0.4	E	20/01/2016	16:45	0.9	NW
20/01/2016	01:40	1.8	NNE	20/01/2016	09:15	0.4	NE	20/01/2016	16:50	1.3	W
20/01/2016	01:45	0.9	SSW	20/01/2016	09:20	0.9	NNE	20/01/2016	16:55	2.2	W
20/01/2016	01:50	0.9	SSW	20/01/2016	09:25	0.4	NNE	20/01/2016	17:00	1.3	WSW
20/01/2016	01:55	1.8	ENE	20/01/2016	09:30	0.9	NNE	20/01/2016	17:05	1.8	WNW
20/01/2016	02:00	0.9	N	20/01/2016	09:35	0.9	NE	20/01/2016	17:10	1.3	NNE
20/01/2016	02:05	0.4	WNW	20/01/2016	09:40	0.9	NE	20/01/2016	17:15	1.8	E
20/01/2016	02:10	0.4	WNW	20/01/2016	09:45	0.9	NE	20/01/2016	17:20	1.8	ENE
20/01/2016	02:15	1.3	NE	20/01/2016	09:50	0.9	N	20/01/2016	17:25	1.3	N
20/01/2016	02:20	0.9	NE	20/01/2016	09:55	1.3	NW	20/01/2016	17:30	1.8	ENE
20/01/2016	02:25	0.9	ENE	20/01/2016	10:00	1.3	SW	20/01/2016	17:35	0.9	N
20/01/2016	02:30	0.9	ENE	20/01/2016	10:05	1.3	WSW	20/01/2016	17:40	0.9	NE
20/01/2016	02:35	2.2	NNW	20/01/2016	10:10	1.3	NW	20/01/2016	17:45	1.3	NE
20/01/2016	02:40	0.9	W	20/01/2016	10:15	0.9	WNW	20/01/2016	17:50	1.3	ENE
20/01/2016	02:45	1.8	NE	20/01/2016	10:20	1.3	WNW	20/01/2016	17:55	1.8	NNE
20/01/2016	02:50	1.8	NE	20/01/2016	10:25	1.3	N	20/01/2016	18:00	0.9	SSW
20/01/2016	02:55	3.1	E	20/01/2016	10:30	1.3	W	20/01/2016	18:05	0.9	SSW
20/01/2016	03:00	2.2	ENE	20/01/2016	10:35	0.9	E	20/01/2016	18:10	1.8	ENE
20/01/2016	03:05	2.7	ESE	20/01/2016	10:40	1.3	NNE	20/01/2016	18:15	0.9	N
20/01/2016	03:10	2.7	E	20/01/2016	10:45	1.8	E	20/01/2016	18:20	0.4	WNW
20/01/2016	03:15	2.2	E	20/01/2016	10:50	1.8	ENE	20/01/2016	18:25	0.4	WNW
20/01/2016	03:20	2.2	ENE	20/01/2016	10:55	1.3	N	20/01/2016	18:30	1.8	WSW
20/01/2016	03:25	1.8	ENE	20/01/2016	11:00	1.8	ENE	20/01/2016	18:35	1.3	W
20/01/2016	03:30	0.9	N	20/01/2016	11:05	0.9	N	20/01/2016	18:40	1.8	W
20/01/2016	03:35	0.9	NE	20/01/2016	11:10	0.9	NE	20/01/2016	18:45	1.3	WNW
20/01/2016	03:40	1.3	NE	20/01/2016	11:15	1.3	NE	20/01/2016	18:50	0.9	WNW
20/01/2016	03:45	1.3	ENE	20/01/2016	11:20	1.3	ENE	20/01/2016	18:55	1.3	WNW
20/01/2016	03:50	0.9	E	20/01/2016	11:25	1.8	NNE	20/01/2016	19:00	0.9	NW
20/01/2016	03:55	1.3	NNE	20/01/2016	11:30	0.9	SSW	20/01/2016	19:05	1.8	WSW
20/01/2016	04:00	1.8	E	20/01/2016	11:35	0.9	SSW	20/01/2016	19:10	0.9	NW
20/01/2016	04:05	1.8	ENE	20/01/2016	11:40	1.8	ENE	20/01/2016	19:15	1.3	WNW
20/01/2016	04:10	1.3	N	20/01/2016	11:45	0.9	N	20/01/2016	19:20	0.9	ENE
20/01/2016	04:15	1.8	ENE	20/01/2016	11:50	0.4	WNW	20/01/2016	19:25	1.3	NNE
20/01/2016	04:20	0.9	N	20/01/2016	11:55	0.4	WNW	20/01/2016	19:30	1.8	NE
20/01/2016	04:25	0.9	NE	20/01/2016	12:00	0.4	E	20/01/2016	19:35	3.1	W
20/01/2016	04:30	1.3	NE	20/01/2016	12:05	0.9	NE	20/01/2016	19:40	2.7	W
20/01/2016	04:35	1.3	ENE	20/01/2016	12:10	0.9	NE	20/01/2016	19:45	3.6	W
20/01/2016	04:40	1.8	NNE	20/01/2016	12:15	0.9	NE	20/01/2016	19:50	3.6	W
20/01/2016	04:45	0.9	SSW	20/01/2016	12:20	0.9	N	20/01/2016	19:55	1.3	NNE
20/01/2016	04:50	0.9	SSW	20/01/2016	12:25	1.3	NW	20/01/2016	20:00	1.8	E
20/01/2016	04:55	1.8	ENE	20/01/2016	12:30	1.3	SW	20/01/2016	20:05	1.8	ENE
20/01/2016	05:00	0.9	N	20/01/2016	12:35	0.9	NE	20/01/2016	20:10	1.3	N
20/01/2016	05:05	0.4	WNW	20/01/2016	12:40	1.3	NNE	20/01/2016	20:15	1.8	ENE
20/01/2016	05:10	0.4	WNW	20/01/2016	12:45	1.3	SE	20/01/2016	20:20	0.9	N
20/01/2016	05:15	1.3	E	20/01/2016	12:50	1.8	N	20/01/2016	20:25	0.9	NE
20/01/2016	05:20	1.3	ENE	20/01/2016	12:55	1.3	NE	20/01/2016	20:30	1.3	NE
20/01/2016	05:25	1.3	ENE	20/01/2016	13:00	0.9	ENE	20/01/2016	20:35	1.3	ENE
20/01/2016	05:30	0.4	NNE	20/01/2016	13:05	2.7	WSW	20/01/2016	20:40	1.8	NNE
20/01/2016	05:35	0.4	NNE	20/01/2016	13:10	2.2	W	20/01/2016	20:45	0.9	SSW
20/01/2016	05:40	0.4	NW	20/01/2016	13:15	2.7	W	20/01/2016	20:50	0.9	SSW
20/01/2016	05:45	0.4	N	20/01/2016	13:20	3.1	W	20/01/2016	20:55	1.8	ENE
20/01/2016	05:50	0.4	E	20/01/2016	13:25	3.1	W	20/01/2016	21:00	0.9	N
20/01/2016	05:55	0.4	NNW	20/01/2016	13:30	2.7	SW	20/01/2016	21:05	0.4	WNW
20/01/2016	06:00	0.4	ENE	20/01/2016	13:35	3.1	W	20/01/2016	21:10	0.4	WNW
20/01/2016	06:05	0.9	WSW	20/01/2016	13:40	2.2	W	20/01/2016	21:15	2.7	W
20/01/2016	06:10	0.9	WSW	20/01/2016	13:45	2.2	W	20/01/2016	21:20	3.1	W
20/01/2016	06:15	0.9	ENE	20/01/2016	13:50	2.2	W	20/01/2016	21:25	3.1	W
20/01/2016	06:20	1.8	W	20/01/2016	13:55	1.3	NNE	20/01/2016	21:30	2.2	W
20/01/2016	06:25	0.9	W	20/01/2016	14:00	1.8	E	20/01/2016	21:35	2.7	W
20/01/2016	06:30	1.3	NW	20/01/2016	14:05	1.8	ENE	20/01/2016	21:40	3.6	W
20/01/2016	06:35	2.2	WSW	20/01/2016	14:10	1.3	N	20/01/2016	21:45	3.6	W

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
20/01/2016	21:50	3.6	WNW	21/01/2016	05:25	0.9	NW	21/01/2016	13:00	0.9	SSW
20/01/2016	21:55	4	W	21/01/2016	05:30	0.9	WNW	21/01/2016	13:05	0.4	NW
20/01/2016	22:00	2.2	W	21/01/2016	05:35	0.4	W	21/01/2016	13:10	0.4	NE
20/01/2016	22:05	2.2	WNW	21/01/2016	05:40	0.9	WSW	21/01/2016	13:15	0.4	NE
20/01/2016	22:10	1.8	W	21/01/2016	05:45	0.4	WSW	21/01/2016	13:20	0.4	NE
20/01/2016	22:15	2.2	W	21/01/2016	05:50	0.9	SW	21/01/2016	13:25	0.4	NE
20/01/2016	22:20	1.3	NNE	21/01/2016	05:55	0.4	WSW	21/01/2016	13:30	0.9	N
20/01/2016	22:25	1.8	E	21/01/2016	06:00	0.9	SW	21/01/2016	13:35	1.8	N
20/01/2016	22:30	1.8	ENE	21/01/2016	06:05	1.3	SW	21/01/2016	13:40	0.9	N
20/01/2016	22:35	1.3	N	21/01/2016	06:10	0.9	SW	21/01/2016	13:45	0.9	NNE
20/01/2016	22:40	1.8	ENE	21/01/2016	06:15	0.9	SSW	21/01/2016	13:50	0.9	NNE
20/01/2016	22:45	0.9	N	21/01/2016	06:20	1.8	NW	21/01/2016	13:55	0.4	N
20/01/2016	22:50	0.9	NE	21/01/2016	06:25	1.8	NW	21/01/2016	14:00	0.9	N
20/01/2016	22:55	1.3	NE	21/01/2016	06:30	1.3	NW	21/01/2016	14:05	1.8	W
20/01/2016	23:00	1.3	ENE	21/01/2016	06:35	1.3	NW	21/01/2016	14:10	0.9	NW
20/01/2016	23:05	1.8	NNE	21/01/2016	06:40	1.8	NW	21/01/2016	14:15	0.9	WNW
20/01/2016	23:10	0.9	SSW	21/01/2016	06:45	1.8	NW	21/01/2016	14:20	0.4	W
20/01/2016	23:15	0.9	SSW	21/01/2016	06:50	1.3	NW	21/01/2016	14:25	0.9	WSW
20/01/2016	23:20	1.8	ENE	21/01/2016	06:55	0.4	NW	21/01/2016	14:30	0.4	WSW
20/01/2016	23:25	0.9	N	21/01/2016	07:00	1.3	NW	21/01/2016	14:35	0.9	SW
20/01/2016	23:30	0.4	WNW	21/01/2016	07:05	0.9	NW	21/01/2016	14:40	0.4	WSW
20/01/2016	23:35	0.4	WNW	21/01/2016	07:10	1.3	NNW	21/01/2016	14:45	0.9	SW
20/01/2016	23:40	2.2	W	21/01/2016	07:15	1.3	NW	21/01/2016	14:50	1.3	SW
20/01/2016	23:45	2.7	W	21/01/2016	07:20	1.3	NW	21/01/2016	14:55	0.9	SW
20/01/2016	23:50	1.8	W	21/01/2016	07:25	1.3	NNW	21/01/2016	15:00	0.9	SSW
20/01/2016	23:55	1.8	SSW	21/01/2016	07:30	1.3	N	21/01/2016	15:05	0.9	NE
21/07/2015	00:00	1.8	SW	21/01/2016	07:35	0.9	NW	21/01/2016	15:10	0.4	ENE
21/01/2016	00:05	1.8	SW	21/01/2016	07:40	0.9	NW	21/01/2016	15:15	0.9	NNE
21/01/2016	00:10	1.8	SW	21/01/2016	07:45	1.3	N	21/01/2016	15:20	1.3	NE
21/01/2016	00:15	1.3	W	21/01/2016	07:50	0.4	WNW	21/01/2016	15:25	0.4	ENE
21/01/2016	00:20	1.3	W	21/01/2016	07:55	0.4	NW	21/01/2016	15:30	0.4	NE
21/01/2016	00:25	2.2	W	21/01/2016	08:00	0.4	NW	21/01/2016	15:35	0.9	NE
21/01/2016	00:30	2.2	WNW	21/01/2016	08:05	0.4	NW	21/01/2016	15:40	1.3	NE
21/01/2016	00:35	1.3	WNW	21/01/2016	08:10	0.9	NNW	21/01/2016	15:45	1.3	NE
21/01/2016	00:40	1.3	WNW	21/01/2016	08:15	0.9	NNW	21/01/2016	15:50	1.3	NE
21/01/2016	00:45	1.8	W	21/01/2016	08:20	0.4	WNW	21/01/2016	15:55	1.3	NE
21/01/2016	00:50	1.8	W	21/01/2016	08:25	1.3	WNW	21/01/2016	16:00	1.3	NE
21/01/2016	00:55	2.2	W	21/01/2016	08:30	1.3	N	21/01/2016	16:05	0.9	N
21/01/2016	01:00	2.2	W	21/01/2016	08:35	1.8	W	21/01/2016	16:10	1.3	N
21/01/2016	01:05	1.8	W	21/01/2016	08:40	0.9	NW	21/01/2016	16:15	1.3	NNW
21/01/2016	01:10	1.3	WSW	21/01/2016	08:45	0.9	WNW	21/01/2016	16:20	1.3	N
21/01/2016	01:15	1.8	W	21/01/2016	08:50	0.4	W	21/01/2016	16:25	0.4	N
21/01/2016	01:20	2.2	W	21/01/2016	08:55	0.9	WSW	21/01/2016	16:30	0.4	N
21/01/2016	01:25	2.2	W	21/01/2016	09:00	0.4	WSW	21/01/2016	16:35	1.8	W
21/01/2016	01:30	1.3	W	21/01/2016	09:05	0.9	SW	21/01/2016	16:40	0.9	NW
21/01/2016	01:35	1.8	W	21/01/2016	09:10	0.4	WSW	21/01/2016	16:45	0.9	WNW
21/01/2016	01:40	1.8	W	21/01/2016	09:15	0.9	SW	21/01/2016	16:50	0.4	W
21/01/2016	01:45	0.9	NW	21/01/2016	09:20	1.3	SW	21/01/2016	16:55	0.9	WSW
21/01/2016	01:50	0.9	WNW	21/01/2016	09:25	0.9	SW	21/01/2016	17:00	0.4	WSW
21/01/2016	01:55	0.4	W	21/01/2016	09:30	0.9	SSW	21/01/2016	17:05	0.9	SW
21/01/2016	02:00	0.9	WSW	21/01/2016	09:35	0.9	N	21/01/2016	17:10	0.4	WSW
21/01/2016	02:05	0.4	WSW	21/01/2016	09:40	1.8	N	21/01/2016	17:15	0.9	SW
21/01/2016	02:10	0.9	SW	21/01/2016	09:45	1.3	N	21/01/2016	17:20	1.3	SW
21/01/2016	02:15	0.4	WSW	21/01/2016	09:50	1.8	N	21/01/2016	17:25	0.9	SW
21/01/2016	02:20	0.9	SW	21/01/2016	09:55	2.2	N	21/01/2016	17:30	0.9	SSW
21/01/2016	02:25	1.3	SW	21/01/2016	10:00	1.3	NE	21/01/2016	17:35	0.4	NE
21/01/2016	02:30	0.9	SW	21/01/2016	10:05	1.8	NNE	21/01/2016	17:40	0.4	NE
21/01/2016	02:35	0.9	SSW	21/01/2016	10:10	1.3	NE	21/01/2016	17:45	1.3	W
21/01/2016	02:40	0.4	SW	21/01/2016	10:15	1.3	NE	21/01/2016	17:50	1.8	WSW
21/01/2016	02:45	0.9	SW	21/01/2016	10:20	1.3	NE	21/01/2016	17:55	1.3	WSW
21/01/2016	02:50	0.9	SW	21/01/2016	10:25	1.3	NNE	21/01/2016	18:00	1.8	WSW
21/01/2016	02:55	1.3	W	21/01/2016	10:30	0.9	NE	21/01/2016	18:05	2.2	WSW
21/01/2016	03:00	1.8	NW	21/01/2016	10:35	1.3	NNE	21/01/2016	18:10	1.8	WSW
21/01/2016	03:05	1.3	NW	21/01/2016	10:40	1.3	NE	21/01/2016	18:15	1.8	W
21/01/2016	03:10	0.9	NW	21/01/2016	10:45	1.8	N	21/01/2016	18:20	1.8	W
21/01/2016	03:15	1.3	WNW	21/01/2016	10:50	1.8	N	21/01/2016	18:25	1.3	W
21/01/2016	03:20	1.8	W	21/01/2016	10:55	0.9	N	21/01/2016	18:30	1.3	W
21/01/2016	03:25	2.2	WNW	21/01/2016	11:00	1.8	NNW	21/01/2016	18:35	1.3	WSW
21/01/2016	03:30	2.7	W	21/01/2016	11:05	1.8	N	21/01/2016	18:40	1.3	WSW
21/01/2016	03:35	1.3	WNW	21/01/2016	11:10	1.8	N	21/01/2016	18:45	0.9	W
21/01/2016	03:40	1.8	W	21/01/2016	11:15	2.2	N	21/01/2016	18:50	1.8	SW
21/01/2016	03:45	1.8	W	21/01/2016	11:20	1.8	NNE	21/01/2016	18:55	1.8	SW
21/01/2016	03:50	2.2	W	21/01/2016	11:25	1.8	NNE	21/01/2016	19:00	1.3	W
21/01/2016	03:55	2.2	w	21/01/2016	11:30	1.8	NE	21/01/2016	19:05	1.3	W
21/01/2016	04:00	1.8	w	21/01/2016	11:35	1.8	NNW	21/01/2016	19:10	2.2	W
21/01/2016	04:05	1.8	W	21/01/2016	11:40	0.4	NW	21/01/2016	19:15	1.8	W
21/01/2016	04:10	1.8	W	21/01/2016	11:45	0.9	NNE	21/01/2016	19:20	2.2	W
21/01/2016	04:15	0.9	NW	21/01/2016	11:50	0.9	NNE	21/01/2016	19:25	2.2	W
21/01/2016	04:20	0.9	WNW	21/01/2016	11:55	0.9	N	21/01/2016	19:30	1.8	W
21/01/2016	04:25	0.4	W	21/01/2016	12:00	0.9	N	21/01/2016	19:35	1.3	WSW
21/01/2016	04:30	0.9	WSW	21/01/2016	12:05	1.8	W	21/01/2016	19:40	1.8	W
21/01/2016	04:35	1.8	WNW	21/01/2016	12:10	0.9	NW	21/01/2016	19:45	2.2	W
21/01/2016	04:40	2.2	WNW	21/01/2016	12:15	0.9	WNW	21/01/2016	19:50	1.8	W
21/01/2016	04:45	2.2	WNW	21/01/2016	12:20	0.4	W	21/01/2016	19:55	1.8	W
21/01/2016	04:50	2.2	WNW	21/01/2016	12:25	0.9	WSW	21/01/2016	20:00	0.9	NW
21/01/2016	04:55	2.2	WNW	21/01/2016	12:30	0.4	WSW	21/01/2016	20:05	0.9	WNW
21/01/2016	05:00	1.8	WNW	21/01/2016	12:35	0.9	SW	21/01/2016	20:10	0.4	W
21/01/2016	05:05	1.3	WNW	21/01/2016	12:40	0.4	WSW	21/01/2016	20:15	0.9	WSW
21/01/2016	05:10	0.9	WNW	21/01/2016	12:45	0.9	SW	21/01/2016	20:20	0.4	WSW
21/01/2016	05:15 $05: 20$	1.3 1.8	NNW W	21/01/2016	12:50 12:55	1.3 0.9	SW SW	21/01/2016	20:25	0.9 1.8	SW

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 $(d d / m m / y y y y)$ | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

21/01/2016	20:35	0.9	NW	22/01/2016	04:10	1.8	WSW	22/01/2016	11:45	1.8	NE
21/01/2016	20:40	0.9	WNW	22/01/2016	04:15	0.4	ENE	22/01/2016	11:50	2.2	NE
21/01/2016	20:45	0.4	W	22/01/2016	04:20	0.9	E	22/01/2016	11:55	1.8	NE
21/01/2016	20:50	0.9	WSW	22/01/2016	04:25	1.3	E	22/01/2016	12:00	1.8	NNE
21/01/2016	20:55	0.4	WSW	22/01/2016	04:30	0.4	ESE	22/01/2016	12:05	1.3	NNE
21/01/2016	21:00	0.9	SW	22/01/2016	04:35	0.9	ENE	22/01/2016	12:10	3.6	NE
21/01/2016	21:05	0.4	WSW	22/01/2016	04:40	0.9	NE	22/01/2016	12:15	2.7	E
21/01/2016	21:10	0.9	SW	22/01/2016	04:45	0.4	NE	22/01/2016	12:20	1.8	E
21/01/2016	21:15	1.3	SW	22/01/2016	04:50	0.9	NE	22/01/2016	12:25	1.8	E
21/01/2016	21:20	0.9	SW	22/01/2016	04:55	0.9	NE	22/01/2016	12:30	1.8	NE
21/01/2016	21:25	0.9	SSW	22/01/2016	05:00	0.9	NE	22/01/2016	12:35	2.7	ENE
21/01/2016	21:30	1.8	W	22/01/2016	05:05	1.8	NE	22/01/2016	12:40	2.2	E
21/01/2016	21:35	1.8	W	22/01/2016	05:10	1.8	NE	22/01/2016	12:45	1.3	E
21/01/2016	21:40	1.3	W	22/01/2016	05:15	1.3	E	22/01/2016	12:50	1.3	ENE
21/01/2016	21:45	1.3	W	22/01/2016	05:20	1.3	ENE	22/01/2016	12:55	0.9	NE
21/01/2016	21:50	2.2	W	22/01/2016	05:25	0.9	NE	22/01/2016	13:00	0.4	ENE
21/01/2016	21:55	1.8	W	22/01/2016	05:30	0.4	ENE	22/01/2016	13:05	0.4	ESE
21/01/2016	22:00	2.2	W	22/01/2016	05:35	0.4	ESE	22/01/2016	13:10	0.4	ENE
21/01/2016	22:05	2.2	W	22/01/2016	05:40	0.4	ENE	22/01/2016	13:15	0.4	ENE
21/01/2016	22:10	0.9	NE	22/01/2016	05:45	0.4	ENE	22/01/2016	13:20	0.4	NE
21/01/2016	22:15	1.3	ENE	22/01/2016	05:50	0.4	NE	22/01/2016	13:25	0.4	ENE
21/01/2016	22:20	0.9	ENE	22/01/2016	05:55	0.4	ENE	22/01/2016	13:30	0.4	W
21/01/2016	22:25	1.3	ENE	22/01/2016	06:00	0.4	W	22/01/2016	13:35	0.4	W
21/01/2016	22:30	0.9	NE	22/01/2016	06:05	0.4	W	22/01/2016	13:40	3.1	WSW
21/01/2016	22:35	0.4	ENE	22/01/2016	06:10	3.1	WSW	22/01/2016	13:45	2.2	WSW
21/01/2016	22:40	1.8	ENE	22/01/2016	06:15	2.2	WSW	22/01/2016	13:50	1.8	WSW
21/01/2016	22:45	0.4	NE	22/01/2016	06:20	1.8	WSW	22/01/2016	13:55	1.8	WSW
21/01/2016	22:50	1.3	E	22/01/2016	06:25	1.8	NE	22/01/2016	14:00	1.3	SW
21/01/2016	22:55	1.8	W	22/01/2016	06:30	1.3	ENE	22/01/2016	14:05	1.3	WSW
21/01/2016	23:00	0.9	NW	22/01/2016	06:35	1.8	ENE	22/01/2016	14:10	1.3	WSW
21/01/2016	23:05	0.9	WNW	22/01/2016	06:40	2.2	NE	22/01/2016	14:15	0.9	NE
21/01/2016	23:10	0.4	W	22/01/2016	06:45	1.8	NE	22/01/2016	14:20	1.3	N
21/01/2016	23:15	0.9	WSW	22/01/2016	06:50	2.2	NE	22/01/2016	14:25	2.2	NE
21/01/2016	23:20	0.4	WSW	22/01/2016	06:55	1.8	NE	22/01/2016	14:30	1.8	E
21/01/2016	23:25	0.9	SW	22/01/2016	07:00	1.8	NE	22/01/2016	14:35	2.7	ENE
21/01/2016	23:30	0.4	WSW	22/01/2016	07:05	0.9	NE	22/01/2016	14:40	2.7	ENE
21/01/2016	23:35	0.9	SW	22/01/2016	07:10	0.9	NE	22/01/2016	14:45	2.7	ENE
21/01/2016	23:40	1.3	SW	22/01/2016	07:15	0.9	NE	22/01/2016	14:50	1.8	NE
21/01/2016	23:45	0.9	SW	22/01/2016	07:20	1.8	NE	22/01/2016	14:55	2.2	E
21/01/2016	23:50	0.9	SSW	22/01/2016	07:25	1.8	NE	22/01/2016	15:00	2.2	E
21/01/2016	23:55	0.9	ENE	22/01/2016	07:30	0.9	NE	22/01/2016	15:05	1.3	E
22/01/2016	00:00	1.3	ENE	22/01/2016	07:35	0.9	NE	22/01/2016	15:10	0.4	ENE
22/01/2016	00:05	0.9	NNE	22/01/2016	07:40	0.9	NE	22/01/2016	15:15	1.3	NNE
22/01/2016	00:10	0.9	NNE	22/01/2016	07:45	1.3	E	22/01/2016	15:20	1.8	ENE
22/01/2016	00:15	0.9	NNE	22/01/2016	07:50	1.3	ENE	22/01/2016	15:25	2.2	ENE
22/01/2016	00:20	0.9	ENE	22/01/2016	07:55	0.9	NE	22/01/2016	15:30	1.3	E
22/01/2016	00:25	0.9	NE	22/01/2016	08:00	0.4	ENE	22/01/2016	15:35	1.3	ENE
22/01/2016	00:30	0.9	ENE	22/01/2016	08:05	0.4	ESE	22/01/2016	15:40	0.9	NE
22/01/2016	00:35	0.9	NNE	22/01/2016	08:10	0.4	ENE	22/01/2016	15:45	0.4	ENE
22/01/2016	00:40	0.9	NNE	22/01/2016	08:15	0.4	ENE	22/01/2016	15:50	0.4	ESE
22/01/2016	00:45	0.9	ENE	22/01/2016	08:20	0.4	NE	22/01/2016	15:55	0.4	ENE
22/01/2016	00:50	0.9	ENE	22/01/2016	08:25	0.4	ENE	22/01/2016	16:00	0.4	ENE
22/01/2016	00:55	1.3	E	22/01/2016	08:30	0.4	W	22/01/2016	16:05	0.4	NE
22/01/2016	01:00	1.3	ENE	22/01/2016	08:35	0.4	W	22/01/2016	16:10	0.4	ENE
22/01/2016	01:05	0.9	NE	22/01/2016	08:40	3.1	WSW	22/01/2016	16:15	0.4	W
22/01/2016	01:10	0.4	ENE	22/01/2016	08:45	2.2	WSW	22/01/2016	16:20	0.4	W
22/01/2016	01:15	0.4	ESE	22/01/2016	08:50	1.8	WSW	22/01/2016	16:25	3.1	WSW
22/01/2016	01:20	0.4	ENE	22/01/2016	08:55	3.6	NE	22/01/2016	16:30	2.2	WSW
22/01/2016	01:25	0.4	ENE	22/01/2016	09:00	2.7	E	22/01/2016	16:35	1.8	WSW
22/01/2016	01:30	0.4	NE	22/01/2016	09:05	1.8	E	22/01/2016	16:40	2.7	ENE
22/01/2016	01:35	0.4	ENE	22/01/2016	09:10	1.8	E	22/01/2016	16:45	2.7	ENE
22/01/2016	01:40	0.4	W	22/01/2016	09:15	1.8	NE	22/01/2016	16:50	2.7	ENE
22/01/2016	01:45	0.4	W	22/01/2016	09:20	2.7	ENE	22/01/2016	16:55	1.8	NE
22/01/2016	01:50	3.1	WSW	22/01/2016	09:25	2.2	E	22/01/2016	17:00	2.2	E
22/01/2016	01:55	2.2	WSW	22/01/2016	09:30	2.7	ENE	22/01/2016	17:05	2.2	E
22/01/2016	02:00	1.8	WSW	22/01/2016	09:35	2.7	NE	22/01/2016	17:10	1.3	NNE
22/01/2016	02:05	1.3	SW	22/01/2016	09:40	2.2	NE	22/01/2016	17:15	2.2	NNE
22/01/2016	02:10	1.3	WSW	22/01/2016	09:45	3.1	NE	22/01/2016	17:20	0.4	NNW
22/01/2016	02:15	1.3	WSW	22/01/2016	09:50	2.7	NE	22/01/2016	17:25	1.3	N
22/01/2016	02:20	0.4	SW	22/01/2016	09:55	2.2	NE	22/01/2016	17:30	1.8	NNW
22/01/2016	02:25	0.9	SW	22/01/2016	10:00	2.7	NE	22/01/2016	17:35	0.9	NNE
22/01/2016	02:30	0.4	SW	22/01/2016	10:05	3.6	NE	22/01/2016	17:40	0.9	WNW
22/01/2016	02:35	0.4	SW	22/01/2016	10:10	3.6	NE	22/01/2016	17:45	1.8	NE
22/01/2016	02:40	0.4	SW	22/01/2016	10:15	1.3	E	22/01/2016	17:50	0.9	NNE
22/01/2016	02:45	0.4	SW	22/01/2016	10:20	1.3	ENE	22/01/2016	17:55	0.9	NNE
22/01/2016	02:50	0.4	SW	22/01/2016	10:25	0.9	NE	22/01/2016	18:00	1.3	E
22/01/2016	02:55	0.4	SW	22/01/2016	10:30	0.4	ENE	22/01/2016	18:05	1.3	ENE
22/01/2016	03:00	0.9	NE	22/01/2016	10:35	0.4	ESE	22/01/2016	18:10	0.9	NE
22/01/2016	03:05	1.3	E	22/01/2016	10:40	0.4	ENE	22/01/2016	18:15	0.4	ENE
22/01/2016	03:10	1.3	ENE	22/01/2016	10:45	0.4	ENE	22/01/2016	18:20	0.4	ESE
22/01/2016	03:15	0.9	NE	22/01/2016	10:50	0.4	NE	22/01/2016	18:25	0.4	ENE
22/01/2016	03:20	0.4	ENE	22/01/2016	10:55	0.4	ENE	22/01/2016	18:30	0.4	ENE
22/01/2016	03:25	0.4	ESE	22/01/2016	11:00	0.4	W	22/01/2016	18:35	0.4	NE
22/01/2016	03:30	0.4	ENE	22/01/2016	11:05	0.4	W	22/01/2016	18:40	0.4	ENE
22/01/2016	03:35	0.4	ENE	22/01/2016	11:10	3.1	WSW	22/01/2016	18:45	0.4	W
22/01/2016	03:40	0.4	NE	22/01/2016	11:15	2.2	WSW	22/01/2016	18:50	0.4	W
22/01/2016	03:45	0.4	ENE	22/01/2016	11:20	1.8	WSW	22/01/2016	18:55	3.1	WSW
22/01/2016	03:50	0.4	W	22/01/2016	11:25	1.8	NNE	22/01/2016	19:00	2.2	WSW
22/01/2016	03:55	0.4	W	22/01/2016	11:30	1.3	NNE	22/01/2016	19:05	1.8	WSW
22/01/2016	04:00	3.1	WSW	22/01/2016	11:35	1.8	NNE	22/01/2016	19:10	2.2	NNE
22/01/2016	04:05	2.2	WSW	22/01/2016	11:40	2.2	E	22/01/2016	19:15	0.9	NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time
Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction								

22/01/2016	19:20	1.3	ENE	23/01/2016	02:55	4	ENE	23/01/2016	10:30	2.2	E
22/01/2016	19:25	1.8	NNE	23/01/2016	03:00	3.6	ENE	23/01/2016	10:35	0.9	E
22/01/2016	19:30	1.3	WNW	23/01/2016	03:05	4.5	E	23/01/2016	10:40	0.9	E
22/01/2016	19:35	1.3	NW	23/01/2016	03:10	4.9	E	23/01/2016	10:45	0.4	ENE
22/01/2016	19:40	0.9	W	23/01/2016	03:15	2.2	ENE	23/01/2016	10:50	0.9	ENE
22/01/2016	19:45	1.3	NE	23/01/2016	03:20	2.7	ENE	23/01/2016	10:55	1.3	E
22/01/2016	19:50	2.2	E	23/01/2016	03:25	1.8	ENE	23/01/2016	11:00	2.2	NE
22/01/2016	19:55	2.7	NE	23/01/2016	03:30	3.1	ENE	23/01/2016	11:05	2.2	NE
22/01/2016	20:00	4	E	23/01/2016	03:35	2.2	E	23/01/2016	11:10	0.9	ENE
22/01/2016	20:05	3.1	NE	23/01/2016	03:40	0.9	E	23/01/2016	11:15	1.3	ENE
22/01/2016	20:10	3.6	ENE	23/01/2016	03:45	0.9	E	23/01/2016	11:20	3.6	ENE
22/01/2016	20:15	2.7	ENE	23/01/2016	03:50	0.4	ENE	23/01/2016	11:25	3.1	E
22/01/2016	20:20	2.7	NE	23/01/2016	03:55	0.9	ENE	23/01/2016	11:30	3.1	E
22/01/2016	20:25	3.1	NE	23/01/2016	04:00	1.3	E	23/01/2016	11:35	4	E
22/01/2016	20:30	1.3	E	23/01/2016	04:05	2.2	NE	23/01/2016	11:40	3.1	ENE
22/01/2016	20:35	1.3	ENE	23/01/2016	04:10	2.2	NE	23/01/2016	11:45	4.9	ENE
22/01/2016	20:40	0.9	NE	23/01/2016	04:15	0.9	ENE	23/01/2016	11:50	4	ENE
22/01/2016	20:45	0.4	ENE	23/01/2016	04:20	1.3	ENE	23/01/2016	11:55	4	E
22/01/2016	20:50	0.4	ESE	23/01/2016	04:25	3.6	ENE	23/01/2016	12:00	4.5	E
22/01/2016	20:55	0.4	ENE	23/01/2016	04:30	4	ENE	23/01/2016	12:05	4.5	ENE
22/01/2016	21:00	0.4	ENE	23/01/2016	04:35	5.4	ENE	23/01/2016	12:10	3.1	ENE
22/01/2016	21:05	0.4	NE	23/01/2016	04:40	5.4	ENE	23/01/2016	12:15	1.8	E
22/01/2016	21:10	0.4	ENE	23/01/2016	04:45	5.4	E	23/01/2016	12:20	2.2	ENE
22/01/2016	21:15	0.4	W	23/01/2016	04:50	4.9	E	23/01/2016	12:25	3.1	E
22/01/2016	21:20	0.4	W	23/01/2016	04:55	4	E	23/01/2016	12:30	2.2	E
22/01/2016	21:25	3.1	WSW	23/01/2016	05:00	5.8	ENE	23/01/2016	12:35	2.2	ENE
22/01/2016	21:30	2.2	WSW	23/01/2016	05:05	5.8	ENE	23/01/2016	12:40	2.2	ENE
22/01/2016	21:35	1.8	WSW	23/01/2016	05:10	5.8	ENE	23/01/2016	12:45	3.1	E
22/01/2016	21:40	2.2	NNE	23/01/2016	05:15	6.3	ENE	23/01/2016	12:50	2.7	ENE
22/01/2016	21:45	0.9	NE	23/01/2016	05:20	5.4	E	23/01/2016	12:55	2.2	E
22/01/2016	21:50	3.1	ENE	23/01/2016	05:25	5.4	ENE	23/01/2016	13:00	2.2	NE
22/01/2016	21:55	3.1	ENE	23/01/2016	05:30	4.9	E	23/01/2016	13:05	2.7	ENE
22/01/2016	22:00	5.4	ENE	23/01/2016	05:35	5.4	ENE	23/01/2016	13:10	3.1	E
22/01/2016	22:05	4	ENE	23/01/2016	05:40	5.8	ENE	23/01/2016	13:15	2.2	ENE
22/01/2016	22:10	4.9	ENE	23/01/2016	05:45	3.1	E	23/01/2016	13:20	2.2	NE
22/01/2016	22:15	4	ENE	23/01/2016	05:50	2.2	ENE	23/01/2016	13:25	1.8	NE
22/01/2016	22:20	4.9	NE	23/01/2016	05:55	2.2	ENE	23/01/2016	13:30	2.7	NE
22/01/2016	22:25	5.8	ENE	23/01/2016	06:00	2.7	ENE	23/01/2016	13:35	1.8	E
22/01/2016	22:30	4.9	ENE	23/01/2016	06:05	1.8	ENE	23/01/2016	13:40	2.2	ENE
22/01/2016	22:35	5.4	NE	23/01/2016	06:10	3.1	ENE	23/01/2016	13:45	2.7	ENE
22/01/2016	22:40	5.8	NE	23/01/2016	06:15	2.2	E	23/01/2016	13:50	1.8	ENE
22/01/2016	22:45	5.4	ENE	23/01/2016	06:20	0.9	E	23/01/2016	13:55	3.1	ENE
22/01/2016	22:50	4.9	NE	23/01/2016	06:25	0.9	E	23/01/2016	14:00	2.2	E
22/01/2016	22:55	1.3	E	23/01/2016	06:30	0.4	ENE	23/01/2016	14:05	0.9	E
22/01/2016	23:00	1.3	ENE	23/01/2016	06:35	0.9	ENE	23/01/2016	14:10	0.9	E
22/01/2016	23:05	0.9	NE	23/01/2016	06:40	1.3	E	23/01/2016	14:15	0.4	ENE
22/01/2016	23:10	0.4	ENE	23/01/2016	06:45	2.2	NE	23/01/2016	14:20	0.9	ENE
22/01/2016	23:15	0.4	ESE	23/01/2016	06:50	2.2	NE	23/01/2016	14:25	1.3	E
22/01/2016	23:20	0.4	ENE	23/01/2016	06:55	0.9	ENE	23/01/2016	14:30	2.2	NE
22/01/2016	23:25	0.4	ENE	23/01/2016	07:00	1.3	ENE	23/01/2016	14:35	2.2	NE
22/01/2016	23:30	0.4	NE	23/01/2016	07:05	1.3	ENE	23/01/2016	14:40	0.9	ENE
22/01/2016	23:35	0.4	ENE	23/01/2016	07:10	0.9	ENE	23/01/2016	14:45	1.3	ENE
22/01/2016	23:40	0.4	W	23/01/2016	07:15	0.9	NE	23/01/2016	14:50	2.2	E
22/01/2016	23:45	0.4	W	23/01/2016	07:20	1.8	ENE	23/01/2016	14:55	2.2	NE
22/01/2016	23:50	3.1	WSW	23/01/2016	07:25	1.3	NE	23/01/2016	15:00	1.8	NE
22/01/2016	23:55	2.2	WSW	23/01/2016	07:30	1.3	NNE	23/01/2016	15:05	2.7	NE
23/01/2016	00:00	1.8	WSW	23/01/2016	07:35	1.8	ENE	23/01/2016	15:10	1.8	E
23/01/2016	00:05	6.3	NE	23/01/2016	07:40	3.1	ENE	23/01/2016	15:15	2.7	ENE
23/01/2016	00:10	6.3	ENE	23/01/2016	07:45	3.1	ENE	23/01/2016	15:20	2.2	ENE
23/01/2016	00:15	5.8	ENE	23/01/2016	07:50	0.9	ENE	23/01/2016	15:25	3.1	E
23/01/2016	00:20	6.3	ENE	23/01/2016	07:55	1.3	ENE	23/01/2016	15:30	1.3	NE
23/01/2016	00:25	2.2	ENE	23/01/2016	08:00	1.8	ENE	23/01/2016	15:35	2.2	ENE
23/01/2016	00:30	2.7	ENE	23/01/2016	08:05	3.1	E	23/01/2016	15:40	1.3	ENE
23/01/2016	00:35	1.8	ENE	23/01/2016	08:10	3.6	ENE	23/01/2016	15:45	1.3	E
23/01/2016	00:40	3.1	ENE	23/01/2016	08:15	1.8	ENE	23/01/2016	15:50	1.8	NE
23/01/2016	00:45	2.2	E	23/01/2016	08:20	3.1	ENE	23/01/2016	15:55	1.8	ENE
23/01/2016	00:50	0.9	E	23/01/2016	08:25	2.2	E	23/01/2016	16:00	1.3	NE
23/01/2016	00:55	0.9	E	23/01/2016	08:30	0.9	E	23/01/2016	16:05	0.4	NE
23/01/2016	01:00	0.4	ENE	23/01/2016	08:35	0.9	E	23/01/2016	16:10	1.8	NE
23/01/2016	01:05	0.9	ENE	23/01/2016	08:40	0.4	ENE	23/01/2016	16:15	1.8	NE
23/01/2016	01:10	1.3	E	23/01/2016	08:45	0.9	ENE	23/01/2016	16:20	1.3	E
23/01/2016	01:15	2.2	NE	23/01/2016	08:50	1.3	ENE	23/01/2016	16:25	1.3	NNE
23/01/2016	01:20	2.2	NE	23/01/2016	08:55	1.3	ENE	23/01/2016	16:30	0.4	SE
23/01/2016	01:25	0.9	ENE	23/01/2016	09:00	0.9	ENE	23/01/2016	16:35	1.3	E
23/01/2016	01:30	1.3	ENE	23/01/2016	09:05	0.9	NE	23/01/2016	16:40	1.3	E
23/01/2016	01:35	5.8	ENE	23/01/2016	09:10	3.1	ENE	23/01/2016	16:45	0.9	ENE
23/01/2016	01:40	4.9	ENE	23/01/2016	09:15	2.7	E	23/01/2016	16:50	0.9	SSE
23/01/2016	01:45	5.8	ENE	23/01/2016	09:20	4	ENE	23/01/2016	16:55	1.3	NNW
23/01/2016	01:50	5.4	ENE	23/01/2016	09:25	4	E	23/01/2016	17:00	0.9	E
23/01/2016	01:55	6.3	ENE	23/01/2016	09:30	4	E	23/01/2016	17:05	1.3	ENE
23/01/2016	02:00	5.8	ENE	23/01/2016	09:35	3.6	ENE	23/01/2016	17:10	1.3	ENE
23/01/2016	02:05	6.3	ENE	23/01/2016	09:40	3.1	E	23/01/2016	17:15	1.3	ENE
23/01/2016	02:10	6.7	ENE	23/01/2016	09:45	3.1	E	23/01/2016	17:20	1.3	ENE
23/01/2016	02:15	5.4	NE	23/01/2016	09:50	4	E	23/01/2016	17:25	2.2	ENE
23/01/2016	02:20	5.4	ENE	23/01/2016	09:55	3.1	ENE	23/01/2016	17:30	2.7	ENE
23/01/2016	02:25	5.4	ENE	23/01/2016	10:00	3.6	E	23/01/2016	17:35	1.8	ENE
23/01/2016	02:30	5.8	E	23/01/2016	10:05	2.7	ENE	23/01/2016	17:40	3.1	ENE
23/01/2016	02:35	4.9	ENE	23/01/2016	10:10	2.2	ENE	23/01/2016	17:45	2.2	E
23/01/2016	02:40	5.4	ENE	23/01/2016	10:15	2.7	ENE	23/01/2016	17:50	0.9	E
23/01/2016	02:45	5.8	ENE	23/01/2016	10:20	1.8	ENE	23/01/2016	17:55	0.9	E
23/01/2016	02:50	5.4	E	23/01/2016	10:25	3.1	ENE	23/01/2016	18:00	0.4	ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction

23/01/2016	18:05	0.9	ENE	24/01/2016	01:40	0.9	E	24/01/2016	09:15	1.8	NNE
23/01/2016	18:10	1.3	E	24/01/2016	01:45	1.8	E	24/01/2016	09:20	1.3	NNE
23/01/2016	18:15	2.2	NE	24/01/2016	01:50	2.2	NE	24/01/2016	09:25	0.9	N
23/01/2016	18:20	2.2	NE	24/01/2016	01:55	2.2	NE	24/01/2016	09:30	1.3	N
23/01/2016	18:25	0.9	ENE	24/01/2016	02:00	3.1	NE	24/01/2016	09:35	1.3	NNW
23/01/2016	18:30	1.3	ENE	24/01/2016	02:05	2.2	NE	24/01/2016	09:40	0.9	NNW
23/01/2016	18:35	0.9	ENE	24/01/2016	02:10	2.2	E	24/01/2016	09:45	0.9	NNE
23/01/2016	18:40	0.9	ENE	24/01/2016	02:15	2.2	E	24/01/2016	09:50	0.4	NNE
23/01/2016	18:45	0.9	NE	24/01/2016	02:20	2.7	E	24/01/2016	09:55	1.3	NNE
23/01/2016	18:50	1.3	ENE	24/01/2016	02:25	1.8	ENE	24/01/2016	10:00	0.9	N
23/01/2016	18:55	1.3	NNE	24/01/2016	02:30	2.2	NE	24/01/2016	10:05	1.3	N
23/01/2016	19:00	1.3	NE	24/01/2016	02:35	2.2	NE	24/01/2016	10:10	1.3	NE
23/01/2016	19:05	0.9	NE	24/01/2016	02:40	2.2	NE	24/01/2016	10:15	0.9	ENE
23/01/2016	19:10	0.4	NE	24/01/2016	02:45	0.9	ENE	24/01/2016	10:20	1.3	ENE
23/01/2016	19:15	0.9	E	24/01/2016	02:50	1.3	ENE	24/01/2016	10:25	1.3	NE
23/01/2016	19:20	1.3	ENE	24/01/2016	02:55	1.3	NE	24/01/2016	10:30	1.8	NE
23/01/2016	19:25	1.8	NE	24/01/2016	03:00	1.8	NE	24/01/2016	10:35	1.8	NE
23/01/2016	19:30	1.8	NE	24/01/2016	03:05	1.8	NE	24/01/2016	10:40	1.3	NE
23/01/2016	19:35	1.8	NNE	24/01/2016	03:10	1.3	NE	24/01/2016	10:45	1.3	NNE
23/01/2016	19:40	1.3	NNE	24/01/2016	03:15	1.3	NNE	24/01/2016	10:50	1.8	NNE
23/01/2016	19:45	1.3	NNE	24/01/2016	03:20	1.8	NNE	24/01/2016	10:55	0.9	NNE
23/01/2016	19:50	1.8	NE	24/01/2016	03:25	0.9	NNE	24/01/2016	11:00	2.2	E
23/01/2016	19:55	1.3	NE	24/01/2016	03:30	2.2	E	24/01/2016	11:05	2.2	NE
23/01/2016	20:00	0.9	NNE	24/01/2016	03:35	2.2	NE	24/01/2016	11:10	2.2	E
23/01/2016	20:05	1.3	NE	24/01/2016	03:40	2.2	E	24/01/2016	11:15	0.9	NE
23/01/2016	20:10	0.9	NE	24/01/2016	03:45	0.9	NE	24/01/2016	11:20	0.9	NE
23/01/2016	20:15	0.4	NE	24/01/2016	03:50	0.9	NE	24/01/2016	11:25	1.8	NNW
23/01/2016	20:20	0.4	NE	24/01/2016	03:55	3.1	NE	24/01/2016	11:30	1.3	NNW
23/01/2016	20:25	0.4	ENE	24/01/2016	04:00	3.6	NE	24/01/2016	11:35	2.2	NE
23/01/2016	20:30	0.4	ENE	24/01/2016	04:05	4	NE	24/01/2016	11:40	1.8	NNE
23/01/2016	20:35	0.9	ENE	24/01/2016	04:10	2.7	NE	24/01/2016	11:45	1.8	NNE
23/01/2016	20:40	0.9	ENE	24/01/2016	04:15	2.2	E	24/01/2016	11:50	1.8	NNE
23/01/2016	20:45	0.9	NE	24/01/2016	04:20	2.2	NE	24/01/2016	11:55	1.8	NNE
23/01/2016	20:50	0.9	NE	24/01/2016	04:25	2.2	E	24/01/2016	12:00	1.8	NNE
23/01/2016	20:55	2.2	ENE	24/01/2016	04:30	2.2	E	24/01/2016	12:05	1.8	NNE
23/01/2016	21:00	2.7	ENE	24/01/2016	04:35	2.7	E	24/01/2016	12:10	0.9	NNW
23/01/2016	21:05	1.8	ENE	24/01/2016	04:40	1.8	ENE	24/01/2016	12:15	0.9	NNE
23/01/2016	21:10	3.1	ENE	24/01/2016	04:45	1.3	ENE	24/01/2016	12:20	0.4	NNE
23/01/2016	21:15	2.2	E	24/01/2016	04:50	0.4	ESE	24/01/2016	12:25	1.3	NNE
23/01/2016	21:20	0.9	E	24/01/2016	04:55	1.8	WNW	24/01/2016	12:30	0.9	N
23/01/2016	21:25	0.9	E	24/01/2016	05:00	1.3	W	24/01/2016	12:35	1.3	N
23/01/2016	21:30	0.4	ENE	24/01/2016	05:05	0.9	NW	24/01/2016	12:40	1.3	NE
23/01/2016	21:35	0.9	ENE	24/01/2016	05:10	0.9	ENE	24/01/2016	12:45	4	W
23/01/2016	21:40	1.3	E	24/01/2016	05:15	1.3	ENE	24/01/2016	12:50	0.9	ENE
23/01/2016	21:45	2.2	NE	24/01/2016	05:20	1.3	NE	24/01/2016	12:55	1.3	ENE
23/01/2016	21:50	2.2	NE	24/01/2016	05:25	1.8	NE	24/01/2016	13:00	1.3	NE
23/01/2016	21:55	0.9	ENE	24/01/2016	05:30	1.8	NE	24/01/2016	13:05	1.8	NE
23/01/2016	22:00	1.3	ENE	24/01/2016	05:35	1.3	NE	24/01/2016	13:10	1.8	NE
23/01/2016	22:05	0.9	NE	24/01/2016	05:40	1.3	NNE	24/01/2016	13:15	1.3	NE
23/01/2016	22:10	0.4	NE	24/01/2016	05:45	1.8	NNE	24/01/2016	13:20	1.3	NNE
23/01/2016	22:15	0.4	NE	24/01/2016	05:50	0.9	NNE	24/01/2016	13:25	1.8	NNE
23/01/2016	22:20	0.4	ENE	24/01/2016	05:55	2.2	E	24/01/2016	13:30	0.9	NNE
23/01/2016	22:25	0.4	ENE	24/01/2016	06:00	2.2	NE	24/01/2016	13:35	2.2	E
23/01/2016	22:30	0.9	ENE	24/01/2016	06:05	2.2	E	24/01/2016	13:40	2.2	NE
23/01/2016	22:35	0.9	ENE	24/01/2016	06:10	0.9	NE	24/01/2016	13:45	2.2	E
23/01/2016	22:40	1.3	NE	24/01/2016	06:15	0.9	NE	24/01/2016	13:50	0.9	NE
23/01/2016	22:45	1.3	NNE	24/01/2016	06:20	1.8	NE	24/01/2016	13:55	0.9	NE
23/01/2016	22:50	2.2	ENE	24/01/2016	06:25	1.3	ENE	24/01/2016	14:00	1.8	WNW
23/01/2016	22:55	2.7	ENE	24/01/2016	06:30	2.2	ENE	24/01/2016	14:05	2.7	WNW
23/01/2016	23:00	1.8	ENE	24/01/2016	06:35	3.1	ENE	24/01/2016	14:10	3.6	WNW
23/01/2016	23:05	3.1	ENE	24/01/2016	06:40	2.2	NE	24/01/2016	14:15	3.6	W
23/01/2016	23:10	2.2	E	24/01/2016	06:45	2.2	E	24/01/2016	14:20	3.1	W
23/01/2016	23:15	0.9	E	24/01/2016	06:50	2.2	E	24/01/2016	14:25	4	W
23/01/2016	23:20	0.9	E	24/01/2016	06:55	2.7	E	24/01/2016	14:30	4	WSW
23/01/2016	23:25	0.4	ENE	24/01/2016	07:00	1.8	ENE	24/01/2016	14:35	4	WSW
23/01/2016	23:30	0.9	ENE	24/01/2016	07:05	1.3	ENE	24/01/2016	14:40	3.1	W
23/01/2016	23:35	1.3	E	24/01/2016	07:10	0.4	ESE	24/01/2016	14:45	3.6	W
23/01/2016	23:40	2.2	NE	24/01/2016	07:15	4	NE	24/01/2016	14:50	3.1	W
23/01/2016	23:45	2.2	NE	24/01/2016	07:20	3.1	NE	24/01/2016	14:55	3.6	W
23/01/2016	23:50	0.9	ENE	24/01/2016	07:25	4.5	ENE	24/01/2016	15:00	2.7	W
23/01/2016	23:55	1.3	ENE	24/01/2016	07:30	4.5	NE	24/01/2016	15:05	3.6	W
24/01/2016	00:00	2.7	ENE	24/01/2016	07:35	4.5	ENE	24/01/2016	15:10	3.6	WSW
24/01/2016	00:05	2.7	NE	24/01/2016	07:40	3.6	NE	24/01/2016	15:15	2.7	W
24/01/2016	00:10	2.2	NE	24/01/2016	07:45	2.2	NE	24/01/2016	15:20	3.1	W
24/01/2016	00:15	2.2	NE	24/01/2016	07:50	0.9	ENE	24/01/2016	15:25	2.7	W
24/01/2016	00:20	2.2	NE	24/01/2016	07:55	1.3	ENE	24/01/2016	15:30	2.7	W
24/01/2016	00:25	3.1	NE	24/01/2016	08:00	1.3	NE	24/01/2016	15:35	2.2	WNW
24/01/2016	00:30	0.9	ENE	24/01/2016	08:05	1.8	NE	24/01/2016	15:40	2.2	W
24/01/2016	00:35	1.3	ENE	24/01/2016	08:10	1.8	NE	24/01/2016	15:45	1.3	WNW
24/01/2016	00:40	1.3	NE	24/01/2016	08:15	1.3	NE	24/01/2016	15:50	2.7	WNW
24/01/2016	00:45	1.8	NE	24/01/2016	08:20	1.3	NNE	24/01/2016	15:55	1.3	WNW
24/01/2016	00:50	1.8	NE	24/01/2016	08:25	1.8	NNE	24/01/2016	16:00	2.7	WNW
24/01/2016	00:55	1.3	NE	24/01/2016	08:30	0.9	NNE	24/01/2016	16:05	0.9	ENE
24/01/2016	01:00	1.3	NNE	24/01/2016	08:35	2.2	E	24/01/2016	16:10	1.3	ENE
24/01/2016	01:05	1.8	NNE	24/01/2016	08:40	2.2	NE	24/01/2016	16:15	1.3	NE
24/01/2016	01:10	0.9	NNE	24/01/2016	08:45	2.2	E	24/01/2016	16:20	1.8	NE
24/01/2016	01:15	2.2	E	24/01/2016	08:50	0.9	NE	24/01/2016	16:25	1.8	NE
24/01/2016	01:20	2.2	NE	24/01/2016	08:55	0.9	NE	24/01/2016	16:30	1.3	NE
24/01/2016	01:25	2.2	E	24/01/2016	09:00	1.8	NNE	24/01/2016	16:35	1.3	NNE
$24 / 01 / 2016$ $24 / 01 / 2016$	01:30 $01: 35$	0.9 0.9	NE	$24 / 01 / 2016$ $24 / 01 / 2016$	09:05	1.8 1.8	NNE	$24 / 01 / 2016$ $24 / 01 / 2016$	16:40 16:45	1.8 0.9	NNE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 $(d d / m m / y y y y)$ | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

24/01/2016	16:50	2.2	E	25/01/2016	00:25	2.7	NE	25/01/2016	08:00	1.8	E
24/01/2016	16:55	2.2	NE	25/01/2016	00:30	2.7	NE	25/01/2016	08:05	2.2	NE
24/01/2016	17:00	2.2	E	25/01/2016	00:35	1.8	E	25/01/2016	08:10	2.7	NNE
24/01/2016	17:05	0.9	NE	25/01/2016	00:40	1.3	ENE	25/01/2016	08:15	2.7	E
24/01/2016	17:10	0.9	NE	25/01/2016	00:45	0.4	ENE	25/01/2016	08:20	2.2	NNE
24/01/2016	17:15	1.3	WSW	25/01/2016	00:50	0.4	E	25/01/2016	08:25	3.6	ENE
24/01/2016	17:20	0.4	W	25/01/2016	00:55	0.4	NW	25/01/2016	08:30	2.7	ENE
24/01/2016	17:25	1.8	W	25/01/2016	01:00	0.4	WSW	25/01/2016	08:35	2.2	ENE
24/01/2016	17:30	1.8	W	25/01/2016	01:05	0.4	WSW	25/01/2016	08:40	2.7	ENE
24/01/2016	17:35	1.3	W	25/01/2016	01:10	0.4	WSW	25/01/2016	08:45	2.2	ENE
24/01/2016	17:40	0.4	NNW	25/01/2016	01:15	2.2	E	25/01/2016	08:50	2.7	ENE
24/01/2016	17:45	1.3	NNE	25/01/2016	01:20	2.2	E	25/01/2016	08:55	2.2	ENE
24/01/2016	17:50	1.3	NNE	25/01/2016	01:25	1.8	E	25/01/2016	09:00	2.2	ENE
24/01/2016	17:55	1.3	NNE	25/01/2016	01:30	2.2	ENE	25/01/2016	09:05	2.7	ENE
24/01/2016	18:00	1.3	NNE	25/01/2016	01:35	2.7	ENE	25/01/2016	09:10	2.7	ENE
24/01/2016	18:05	1.3	NNE	25/01/2016	01:40	2.2	E	25/01/2016	09:15	2.7	ENE
24/01/2016	18:10	1.3	NE	25/01/2016	01:45	0.9	NE	25/01/2016	09:20	3.1	ENE
24/01/2016	18:15	1.3	NE	25/01/2016	01:50	0.9	ENE	25/01/2016	09:25	2.7	ENE
24/01/2016	18:20	1.3	ENE	25/01/2016	01:55	0.9	ENE	25/01/2016	09:30	2.7	NE
24/01/2016	18:25	1.3	NE	25/01/2016	02:00	0.9	ENE	25/01/2016	09:35	2.7	ENE
24/01/2016	18:30	0.9	ENE	25/01/2016	02:05	0.4	ENE	25/01/2016	09:40	2.2	NE
24/01/2016	18:35	0.9	NE	25/01/2016	02:10	0.9	ENE	25/01/2016	09:45	0.4	SW
24/01/2016	18:40	1.3	NE	25/01/2016	02:15	0.9	ENE	25/01/2016	09:50	0.9	E
24/01/2016	18:45	0.9	ENE	25/01/2016	02:20	2.7	NE	25/01/2016	09:55	0.9	NE
24/01/2016	18:50	1.3	ENE	25/01/2016	02:25	2.7	NE	25/01/2016	10:00	1.3	ENE
24/01/2016	18:55	1.3	NE	25/01/2016	02:30	1.8	E	25/01/2016	10:05	2.7	NE
24/01/2016	19:00	1.8	NE	25/01/2016	02:35	1.3	ENE	25/01/2016	10:10	2.7	NE
24/01/2016	19:05	1.8	NE	25/01/2016	02:40	0.4	ENE	25/01/2016	10:15	1.8	E
24/01/2016	19:10	1.3	NE	25/01/2016	02:45	0.4	E	25/01/2016	10:20	1.3	ENE
24/01/2016	19:15	1.3	NNE	25/01/2016	02:50	2.2	E	25/01/2016	10:25	0.4	ENE
24/01/2016	19:20	1.8	NNE	25/01/2016	02:55	2.2	E	25/01/2016	10:30	0.4	E
24/01/2016	19:25	0.9	NNE	25/01/2016	03:00	1.8	E	25/01/2016	10:35	0.4	NW
24/01/2016	19:30	2.2	E	25/01/2016	03:05	2.2	ENE	25/01/2016	10:40	0.4	WSW
24/01/2016	19:35	2.2	NE	25/01/2016	03:10	2.7	ENE	25/01/2016	10:45	0.4	WSW
24/01/2016	19:40	2.2	E	25/01/2016	03:15	0.4	N	25/01/2016	10:50	0.4	WSW
24/01/2016	19:45	0.9	NE	25/01/2016	03:20	0.9	ENE	25/01/2016	10:55	2.2	E
24/01/2016	19:50	0.9	NE	25/01/2016	03:25	0.9	ENE	25/01/2016	11:00	2.7	E
24/01/2016	19:55	2.2	NE	25/01/2016	03:30	0.9	WSW	25/01/2016	11:05	1.3	E
24/01/2016	20:00	3.6	ENE	25/01/2016	03:35	0.9	WSW	25/01/2016	11:10	1.3	NE
24/01/2016	20:05	4	ENE	25/01/2016	03:40	0.9	W	25/01/2016	11:15	1.3	NE
24/01/2016	20:10	3.1	ENE	25/01/2016	03:45	0.9	WSW	25/01/2016	11:20	2.2	ENE
24/01/2016	20:15	2.2	E	25/01/2016	03:50	0.9	WSW	25/01/2016	11:25	2.2	ENE
24/01/2016	20:20	0.4	W	25/01/2016	03:55	0.4	WSW	25/01/2016	11:30	1.8	ENE
24/01/2016	20:25	1.8	W	25/01/2016	04:00	1.8	WNW	25/01/2016	11:35	2.2	ENE
24/01/2016	20:30	1.8	W	25/01/2016	04:05	0.9	W	25/01/2016	11:40	1.3	NE
24/01/2016	20:35	1.3	W	25/01/2016	04:10	2.2	W	25/01/2016	11:45	1.3	NE
24/01/2016	20:40	0.4	NNW	25/01/2016	04:15	1.3	WNW	25/01/2016	11:50	2.2	ENE
24/01/2016	20:45	1.3	NNE	25/01/2016	04:20	1.8	W	25/01/2016	11:55	1.8	ENE
24/01/2016	20:50	1.3	NNE	25/01/2016	04:25	1.8	NW	25/01/2016	12:00	1.3	NE
24/01/2016	20:55	1.3	ENE	25/01/2016	04:30	0.9	NW	25/01/2016	12:05	1.8	NNE
24/01/2016	21:00	1.3	NE	25/01/2016	04:35	0.9	W	25/01/2016	12:10	2.7	E
24/01/2016	21:05	0.9	ENE	25/01/2016	04:40	0.9	NW	25/01/2016	12:15	1.8	ENE
24/01/2016	21:10	0.9	NE	25/01/2016	04:45	1.3	NNW	25/01/2016	12:20	0.9	NNW
24/01/2016	21:15	1.3	NE	25/01/2016	04:50	1.8	NNE	25/01/2016	12:25	1.3	NNE
24/01/2016	21:20	1.3	NE	25/01/2016	04:55	1.8	NNE	25/01/2016	12:30	1.8	NNE
24/01/2016	21:25	1.3	NE	25/01/2016	05:00	1.3	NNW	25/01/2016	12:35	1.3	NE
24/01/2016	21:30	0.9	ENE	25/01/2016	05:05	2.2	WNW	25/01/2016	12:40	1.8	NE
24/01/2016	21:35	1.3	ENE	25/01/2016	05:10	1.3	NNW	25/01/2016	12:45	0.9	ENE
24/01/2016	21:40	1.3	NE	25/01/2016	05:15	0.4	SW	25/01/2016	12:50	1.3	NE
24/01/2016	21:45	1.8	NE	25/01/2016	05:20	0.9	E	25/01/2016	12:55	1.3	NE
24/01/2016	21:50	1.8	NE	25/01/2016	05:25	0.9	NE	25/01/2016	13:00	1.8	NE
24/01/2016	21:55	1.3	NE	25/01/2016	05:30	1.3	ENE	25/01/2016	13:05	2.2	NE
24/01/2016	22:00	1.3	NNE	25/01/2016	05:35	2.7	NE	25/01/2016	13:10	2.7	ENE
24/01/2016	22:05	1.8	NNE	25/01/2016	05:40	2.7	NE	25/01/2016	13:15	2.2	NE
24/01/2016	22:10	0.9	NNE	25/01/2016	05:45	1.8	E	25/01/2016	13:20	2.2	NNE
24/01/2016	22:15	2.2	E	25/01/2016	05:50	1.3	ENE	25/01/2016	13:25	2.7	NNE
24/01/2016	22:20	2.2	NE	25/01/2016	05:55	0.4	ENE	25/01/2016	13:30	2.7	NE
24/01/2016	22:25	2.2	E	25/01/2016	06:00	0.4	E	25/01/2016	13:35	3.1	NE
24/01/2016	22:30	0.9	NE	25/01/2016	06:05	0.4	NW	25/01/2016	13:40	3.1	E
24/01/2016	22:35	0.9	NE	25/01/2016	06:10	0.4	WSW	25/01/2016	13:45	0.4	SW
24/01/2016	22:40	2.2	NE	25/01/2016	06:15	0.4	WSW	25/01/2016	13:50	0.9	E
24/01/2016	22:45	1.8	WNW	25/01/2016	06:20	0.4	WSW	25/01/2016	13:55	0.9	NE
24/01/2016	22:50	1.8	WNW	25/01/2016	06:25	2.2	E	25/01/2016	14:00	1.3	ENE
24/01/2016	22:55	1.8	W	25/01/2016	06:30	0.9	W	25/01/2016	14:05	2.7	NE
24/01/2016	23:00	1.8	NW	25/01/2016	06:35	0.9	NW	25/01/2016	14:10	2.7	NE
24/01/2016	23:05	1.8	NW	25/01/2016	06:40	1.3	NNW	25/01/2016	14:15	1.8	E
24/01/2016	23:10	0.9	NNE	25/01/2016	06:45	0.4	W	25/01/2016	14:20	1.3	ENE
24/01/2016	23:15	3.6	E	25/01/2016	06:50	0.4	W	25/01/2016	14:25	0.4	ENE
24/01/2016	23:20	4.9	ENE	25/01/2016	06:55	0.4	ESE	25/01/2016	14:30	0.4	E
24/01/2016	23:25	3.6	NE	25/01/2016	07:00	1.8	ENE	25/01/2016	14:35	0.4	NW
24/01/2016	23:30	4	NE	25/01/2016	07:05	2.2	ENE	25/01/2016	14:40	0.4	WSW
24/01/2016	23:35	3.6	NNE	25/01/2016	07:10	1.3	NE	25/01/2016	14:45	0.4	WSW
24/01/2016	23:40	4.5	NNE	25/01/2016	07:15	2.7	ENE	25/01/2016	14:50	0.4	WSW
24/01/2016	23:45	0.9	WNW	25/01/2016	07:20	2.2	ENE	25/01/2016	14:55	2.2	E
24/01/2016	23:50	0.9	WSW	25/01/2016	07:25	1.8	NNE	25/01/2016	15:00	1.8	NNE
24/01/2016	23:55	1.8	W	25/01/2016	07:30	2.7	NE	25/01/2016	15:05	2.7	E
25/01/2016	00:00	1.8	WNW	25/01/2016	07:35	2.7	ENE	25/01/2016	15:10	1.8	ENE
25/01/2016	00:05	0.4	SW	25/01/2016	07:40	2.2	NE	25/01/2016	15:15	0.9	NNW
25/01/2016	00:10	0.9	E	25/01/2016	07:45	2.2	NE	25/01/2016	15:20	1.3	NNE
25/01/2016	00:15	0.9	NE	25/01/2016	07:50	2.7	ENE	25/01/2016	15:25	2.7	NE
25/01/2016	00:20	1.3	ENE	25/01/2016	07:55	2.7	E	25/01/2016	15:30	2.2	NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
25/01/2016	15:35	2.2	N	25/01/2016	23:10	3.1	ENE	26/01/2016	06:45	0.4	E
25/01/2016	15:40	2.2	NE	25/01/2016	23:15	3.6	ENE	26/01/2016	06:50	0.9	NE
25/01/2016	15:45	2.7	NE	25/01/2016	23:20	1.8	ENE	26/01/2016	06:55	1.3	ENE
25/01/2016	15:50	2.2	NNE	25/01/2016	23:25	0.9	ENE	26/01/2016	07:00	2.2	E
25/01/2016	15:55	2.2	E	25/01/2016	23:30	2.2	NE	26/01/2016	07:05	3.1	NE
25/01/2016	16:00	2.2	ENE	25/01/2016	23:35	2.2	E	26/01/2016	07:10	2.7	NE
25/01/2016	16:05	2.2	ENE	25/01/2016	23:40	1.8	NE	26/01/2016	07:15	2.2	ENE
25/01/2016	16:10	2.7	E	25/01/2016	23:45	1.8	NNE	26/01/2016	07:20	1.8	ENE
25/01/2016	16:15	1.8	E	25/01/2016	23:50	1.3	NNW	26/01/2016	07:25	2.2	E
25/01/2016	16:20	1.3	ENE	25/01/2016	23:55	0.4	NNW	26/01/2016	07:30	2.2	ENE
25/01/2016	16:25	1.3	NE	26/01/2016	00:00	0.9	NNW	26/01/2016	07:35	2.7	ENE
25/01/2016	16:30	1.3	N	26/01/2016	00:05	1.8	NNW	26/01/2016	07:40	3.1	E
25/01/2016	16:35	1.8	NNE	26/01/2016	00:10	2.2	NNE	26/01/2016	07:45	2.7	ENE
25/01/2016	16:40	1.3	E	26/01/2016	00:15	2.7	NE	26/01/2016	07:50	3.1	ENE
25/01/2016	16:45	2.2	ENE	26/01/2016	00:20	2.2	ENE	26/01/2016	07:55	1.3	NNE
25/01/2016	16:50	1.8	NE	26/01/2016	00:25	2.2	ENE	26/01/2016	08:00	1.8	E
25/01/2016	16:55	1.3	NNE	26/01/2016	00:30	1.3	ESE	26/01/2016	08:05	3.1	NE
25/01/2016	17:00	1.3	ENE	26/01/2016	00:35	0.4	ESE	26/01/2016	08:10	4	NE
25/01/2016	17:05	1.8	NW	26/01/2016	00:40	0.4	ESE	26/01/2016	08:15	3.1	ENE
25/01/2016	17:10	0.9	N	26/01/2016	00:45	0.4	NE	26/01/2016	08:20	4	E
25/01/2016	17:15	1.8	NNE	26/01/2016	00:50	0.4	E	26/01/2016	08:25	2.2	ENE
25/01/2016	17:20	2.2	W	26/01/2016	00:55	0.9	NE	26/01/2016	08:30	,	NE
25/01/2016	17:25	2.7	W	26/01/2016	01:00	1.3	ENE	26/01/2016	08:35	2.7	NE
25/01/2016	17:30	2.7	WSW	26/01/2016	01:05	2.2	E	26/01/2016	08:40	2.7	NE
25/01/2016	17:35	0.4	SW	26/01/2016	01:10	0.9	ENE	26/01/2016	08:45	2.7	NE
25/01/2016	17:40	0.9	E	26/01/2016	01:15	0.9	NE	26/01/2016	08:50	3.1	NE
25/01/2016	17:45	0.9	NE	26/01/2016	01:20	2.2	NE	26/01/2016	08:55	3.6	NE
25/01/2016	17:50	1.3	ENE	26/01/2016	01:25	2.2	NE	26/01/2016	09:00	3.6	ENE
25/01/2016	17:55	2.7	NE	26/01/2016	01:30	2.2	NE	26/01/2016	09:05	3.1	ENE
25/01/2016	18:00	2.7	NE	26/01/2016	01:35	2.7	NE	26/01/2016	09:10	3.1	E
25/01/2016	18:05	1.8	E	26/01/2016	01:40	2.7	NE	26/01/2016	09:15	3.1	ENE
25/01/2016	18:10	1.3	ENE	26/01/2016	01:45	3.1	ENE	26/01/2016	09:20	2.7	NE
25/01/2016	18:15	0.4	ENE	26/01/2016	01:50	3.1	NE	26/01/2016	09:25	3.1	NE
25/01/2016	18:20	0.4	E	26/01/2016	01:55	2.7	ENE	26/01/2016	09:30	1.8	NNW
25/01/2016	18:25	0.4	NW	26/01/2016	02:00	3.6	ENE	26/01/2016	09:35	2.2	NNE
25/01/2016	18:30	0.4	WSW	26/01/2016	02:05	3.1	ENE	26/01/2016	09:40	2.7	NE
25/01/2016	18:35	0.4	WSW	26/01/2016	02:10	2.7	ENE	26/01/2016	09:45	2.2	ENE
25/01/2016	18:40	0.4	WSW	26/01/2016	02:15	2.2	ENE	26/01/2016	09:50	2.2	ENE
25/01/2016	18:45	2.2	E	26/01/2016	02:20	2.7	E	26/01/2016	09:55	1.3	ESE
25/01/2016	18:50	2.7	E	26/01/2016	02:25	1.8	E	26/01/2016	10:00	0.4	ESE
25/01/2016	18:55	1.8	E	26/01/2016	02:30	2.2	E	26/01/2016	10:05	0.4	ESE
25/01/2016	19:00	1.3	ENE	26/01/2016	02:35	1.8	ENE	26/01/2016	10:10	0.4	NE
25/01/2016	19:05	1.3	NE	26/01/2016	02:40	1.3	ENE	26/01/2016	10:15	0.4	E
25/01/2016	19:10	1.3	N	26/01/2016	02:45	1.8	NNW	26/01/2016	10:20	0.9	NE
25/01/2016	19:15	1.8	NNE	26/01/2016	02:50	2.2	NNE	26/01/2016	10:25	1.3	ENE
25/01/2016	19:20	1.3	NNE	26/01/2016	02:55	2.7	NE	26/01/2016	10:30	2.2	E
25/01/2016	19:25	1.3	ENE	26/01/2016	03:00	2.2	ENE	26/01/2016	10:35	2.7	NE
25/01/2016	19:30	1.8	NW	26/01/2016	03:05	2.2	ENE	26/01/2016	10:40	3.6	E
25/01/2016	19:35	0.9	N	26/01/2016	03:10	1.3	ESE	26/01/2016	10:45	3.1	ENE
25/01/2016	19:40	1.8	NNE	26/01/2016	03:15	0.4	ESE	26/01/2016	10:50	4	E
25/01/2016	19:45	2.2	W	26/01/2016	03:20	0.4	ESE	26/01/2016	10:55	3.6	E
25/01/2016	19:50	2.7	W	26/01/2016	03:25	0.4	NE	26/01/2016	11:00	2.7	ENE
25/01/2016	19:55	2.7	WSW	26/01/2016	03:30	0.4	E	26/01/2016	11:05	4	NE
25/01/2016	20:00	0.9	W	26/01/2016	03:35	0.9	NE	26/01/2016	11:10	3.1	ENE
25/01/2016	20:05	0.9	WSW	26/01/2016	03:40	1.3	ENE	26/01/2016	11:15	4	E
25/01/2016	20:10	0.9	WSW	26/01/2016	03:45	2.2	E	26/01/2016	11:20	2.2	ENE
25/01/2016	20:15	0.4	WSW	26/01/2016	03:50	2.7	NE	26/01/2016	11:25	4	NE
25/01/2016	20:20	0.4	WSW	26/01/2016	03:55	3.1	ENE	26/01/2016	11:30	2.7	NE
25/01/2016	20:25	0.4	WSW	26/01/2016	04:00	2.2	NE	26/01/2016	11:35	2.7	NE
25/01/2016	20:30	0.4	WSW	26/01/2016	04:05	2.2	ENE	26/01/2016	11:40	3.1	NE
25/01/2016	20:35	0.4	WSW	26/01/2016	04:10	2.7	E	26/01/2016	11:45	1.8	NNW
25/01/2016	20:40	0.4	WSW	26/01/2016	04:15	1.8	NE	26/01/2016	11:50	2.2	NNE
25/01/2016	20:45	0.4	WSW	26/01/2016	04:20	2.7	NE	26/01/2016	11:55	2.7	NE
25/01/2016	20:50	0.4	WSW	26/01/2016	04:25	1.8	NE	26/01/2016	12:00	2.2	ENE
25/01/2016	20:55	0.4	WSW	26/01/2016	04:30	2.7	NE	26/01/2016	12:05	2.2	ENE
25/01/2016	21:00	0.4	WSW	26/01/2016	04:35	3.1	NE	26/01/2016	12:10	1.3	ESE
25/01/2016	21:05	0.4	WSW	26/01/2016	04:40	1.3	E	26/01/2016	12:15	0.4	ESE
25/01/2016	21:10	0.4	WSW	26/01/2016	04:45	2.2	NNE	26/01/2016	12:20	0.4	ESE
25/01/2016	21:15	0.4	WSW	26/01/2016	04:50	3.1	NE	26/01/2016	12:25	0.4	NE
25/01/2016	21:20	0.4	WSW	26/01/2016	04:55	2.2	NE	26/01/2016	12:30	0.4	E
25/01/2016	21:25	0.4	WSW	26/01/2016	05:00	2.7	ENE	26/01/2016	12:35	0.9	NE
25/01/2016	21:30	0.9	WSW	26/01/2016	05:05	3.1	ENE	26/01/2016	12:40	1.3	ENE
25/01/2016	21:35	0.4	SW	26/01/2016	05:10	2.7	NE	26/01/2016	12:45	2.2	E
25/01/2016	21:40	0.9	E	26/01/2016	05:15	2.2	ENE	26/01/2016	12:50	3.1	NE
25/01/2016	21:45	0.9	NE	26/01/2016	05:20	1.8	ENE	26/01/2016	12:55	3.1	NE
25/01/2016	21:50	1.3	ENE	26/01/2016	05:25	2.2	E	26/01/2016	13:00	3.1	NE
25/01/2016	21:55	2.7	NE	26/01/2016	05:30	2.2	ENE	26/01/2016	13:05	3.1	NE
25/01/2016	22:00	2.7	NE	26/01/2016	05:35	2.7	ENE	26/01/2016	13:10	3.6	NE
25/01/2016	22:05	1.8	E	26/01/2016	05:40	2.2	E	26/01/2016	13:15	3.6	NE
25/01/2016	22:10	1.3	ENE	26/01/2016	05:45	2.2	E	26/01/2016	13:20	3.1	NE
25/01/2016	22:15	0.4	ENE	26/01/2016	05:50	2.7	ENE	26/01/2016	13:25	2.2	NNE
25/01/2016	22:20	0.4	E	26/01/2016	05:55	2.2	ENE	26/01/2016	13:30	2.2	N
25/01/2016	22:25	0.4	NW	26/01/2016	06:00	1.8	NNW	26/01/2016	13:35	2.7	NNE
25/01/2016	22:30	0.4	WSW	26/01/2016	06:05	2.2	NNE	26/01/2016	13:40	2.7	NE
25/01/2016	22:35	0.4	WSW	26/01/2016	06:10	2.7	NE	26/01/2016	13:45	2.2	N
25/01/2016	22:40	0.4	WSW	26/01/2016	06:15	2.2	ENE	26/01/2016	13:50	2.2	NE
25/01/2016	22:45	2.2	E	26/01/2016	06:20	2.2	ENE	26/01/2016	13:55	1.3	WNW
25/01/2016	22:50	3.6	NE	26/01/2016	06:25	1.3	ESE	26/01/2016	14:00	2.7	NNE
25/01/2016	22:55	2.7	NE	26/01/2016	06:30	0.4	ESE	26/01/2016	14:05	2.7	N
25/01/2016	23:00	3.6 3.1	ENE	26/01/2016	06:35 06:40	0.4 0.4	ESE	26/01/2016	$14: 10$ $14: 15$	2.2 1.8	NE ENE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction
26/01/2016	14:20	1.8	E	26/01/2016	21:55	0.9	w	27/01/2016	05:30	1.3	NW
26/01/2016	14:25	2.2	ENE	26/01/2016	22:00	1.3	W	27/01/2016	05:35	2.2	W
26/01/2016	14:30	1.8	ESE	26/01/2016	22:05	1.3	W	27/01/2016	05:40	1.3	WNW
26/01/2016	14:35	2.2	ENE	26/01/2016	22:10	0.4	W	27/01/2016	05:45	1.3	WNW
26/01/2016	14:40	2.2	ENE	26/01/2016	22:15	0.4	W	27/01/2016	05:50	0.4	E
26/01/2016	14:45	1.8	NE	26/01/2016	22:20	0.4	W	27/01/2016	05:55	1.3	WSW
26/01/2016	14:50	1.8	NNE	26/01/2016	22:25	0.4	E	27/01/2016	06:00	0.9	W
26/01/2016	14:55	3.1	NE	26/01/2016	22:30	0.4	NNE	27/01/2016	06:05	1.3	W
26/01/2016	15:00	1.8	NNW	26/01/2016	22:35	1.3	WSW	27/01/2016	06:10	0.4	W
26/01/2016	15:05	2.2	NNE	26/01/2016	22:40	1.3	SW	27/01/2016	06:15	0.4	NE
26/01/2016	15:10	2.7	NE	26/01/2016	22:45	1.8	NNW	27/01/2016	06:20	0.4	W
26/01/2016	15:15	2.2	ENE	26/01/2016	22:50	2.2	NNE	27/01/2016	06:25	0.4	W
26/01/2016	15:20	2.2	ENE	26/01/2016	22:55	2.7	NE	27/01/2016	06:30	0.4	NW
26/01/2016	15:25	1.3	ESE	26/01/2016	23:00	2.2	ENE	27/01/2016	06:35	1.3	NE
26/01/2016	15:30	0.4	ESE	26/01/2016	23:05	2.2	ENE	27/01/2016	06:40	2.2	NE
26/01/2016	15:35	0.4	ESE	26/01/2016	23:10	1.3	ESE	27/01/2016	06:45	2.7	NE
26/01/2016	15:40	0.4	NE	26/01/2016	23:15	0.4	ESE	27/01/2016	06:50	2.2	W
26/01/2016	15:45	0.4	E	26/01/2016	23:20	0.4	ESE	27/01/2016	06:55	1.3	NW
26/01/2016	15:50	0.9	NE	26/01/2016	23:25	0.4	NE	27/01/2016	07:00	2.2	W
26/01/2016	15:55	1.3	ENE	26/01/2016	23:30	0.4	E	27/01/2016	07:05	1.3	WNW
26/01/2016	16:00	2.2	E	26/01/2016	23:35	0.9	NE	27/01/2016	07:10	1.3	WNW
26/01/2016	16:05	2.2	WNW	26/01/2016	23:40	1.3	ENE	27/01/2016	07:15	0.4	E
26/01/2016	16:10	2.7	WSW	26/01/2016	23:45	2.2	E	27/01/2016	07:20	1.3	N
26/01/2016	16:15	1.3	W	26/01/2016	23:50	0.4	W	27/01/2016	07:25	1.8	ENE
26/01/2016	16:20	1.3	NW	26/01/2016	23:55	0.4	E	27/01/2016	07:30	1.3	ENE
26/01/2016	16:25	2.2	WNW	27/01/2016	00:00	0.4	NNE	27/01/2016	07:35	0.9	ENE
26/01/2016	16:30	2.2	W	27/01/2016	00:05	0.9	SSW	27/01/2016	07:40	0.9	NE
26/01/2016	16:35	1.3	WSW	27/01/2016	00:10	0.9	SSW	27/01/2016	07:45	0.9	NE
26/01/2016	16:40	1.8	N	27/01/2016	00:15	0.4	W	27/01/2016	07:50	0.4	NE
26/01/2016	16:45	0.9	NNE	27/01/2016	00:20	0.9	W	27/01/2016	07:55	1.3	E
26/01/2016	16:50	1.3	WNW	27/01/2016	00:25	0.4	WNW	27/01/2016	08:00	1.3	NE
26/01/2016	16:55	1.8	NW	27/01/2016	00:30	0.4	WNW	27/01/2016	08:05	0.9	E
26/01/2016	17:00	1.8	NE	27/01/2016	00:35	0.4	WNW	27/01/2016	08:10	1.3	NNE
26/01/2016	17:05	1.8	NNE	27/01/2016	00:40	0.4	WNW	27/01/2016	08:15	0.9	NNE
26/01/2016	17:10	1.3	NNE	27/01/2016	00:45	1.3	WSW	27/01/2016	08:20	0.9	NNE
26/01/2016	17:15	1.8	NNE	27/01/2016	00:50	0.9	W	27/01/2016	08:25	0.9	NNW
26/01/2016	17:20	1.3	NNE	27/01/2016	00:55	1.3	W	27/01/2016	08:30	1.8	NNE
26/01/2016	17:25	0.4	NNW	27/01/2016	01:00	0.4	W	27/01/2016	08:35	1.3	NNE
26/01/2016	17:30	1.3	NW	27/01/2016	01:05	0.4	NE	27/01/2016	08:40	2.2	NE
26/01/2016	17:35	0.9	NE	27/01/2016	01:10	0.4	W	27/01/2016	08:45	2.2	NNE
26/01/2016	17:40	1.3	NE	27/01/2016	01:15	0.4	W	27/01/2016	08:50	2.2	NE
26/01/2016	17:45	1.3	N	27/01/2016	01:20	0.4	NW	27/01/2016	08:55	1.8	NE
26/01/2016	17:50	1.8	W	27/01/2016	01:25	1.3	NE	27/01/2016	09:00	3.1	NE
26/01/2016	17:55	1.3	W	27/01/2016	01:30	2.2	NE	27/01/2016	09:05	3.1	NE
26/01/2016	18:00	1.3	WSW	27/01/2016	01:35	2.7	NE	27/01/2016	09:10	1.3	WSW
26/01/2016	18:05	1.8	W	27/01/2016	01:40	2.7	E	27/01/2016	09:15	0.9	W
26/01/2016	18:10	0.9	W	27/01/2016	01:45	3.1	NE	27/01/2016	09:20	1.3	W
26/01/2016	18:15	0.4	W	27/01/2016	01:50	3.1	ENE	27/01/2016	09:25	0.4	W
26/01/2016	18:20	0.9	WNW	27/01/2016	01:55	2.7	NE	27/01/2016	09:30	0.4	NE
26/01/2016	18:25	0.9	WNW	27/01/2016	02:00	3.1	NE	27/01/2016	09:35	0.4	W
26/01/2016	18:30	1.3	WSW	27/01/2016	02:05	3.1	ENE	27/01/2016	09:40	0.4	W
26/01/2016	18:35	1.8	W	27/01/2016	02:10	3.6	NE	27/01/2016	09:45	0.4	NW
26/01/2016	18:40	1.3	WNW	27/01/2016	02:15	4	NE	27/01/2016	09:50	1.3	NE
26/01/2016	18:45	1.8	NNW	27/01/2016	02:20	4	WNW	27/01/2016	09:55	2.2	NE
26/01/2016	18:50	2.2	NNE	27/01/2016	02:25	0.4	SW	27/01/2016	10:00	2.7	NE
26/01/2016	18:55	2.7	NE	27/01/2016	02:30	0.4	SW	27/01/2016	10:05	2.7	ENE
26/01/2016	19:00	2.2	ENE	27/01/2016	02:35	0.9	SSW	27/01/2016	10:10	2.7	NE
26/01/2016	19:05	2.2	ENE	27/01/2016	02:40	0.4	W	27/01/2016	10:15	3.6	NE
26/01/2016	19:10	1.3	ESE	27/01/2016	02:45	0.9	W	27/01/2016	10:20	2.7	NNE
26/01/2016	19:15	0.4	ESE	27/01/2016	02:50	0.4	WNW	27/01/2016	10:25	2.2	NE
26/01/2016	19:20	0.4	ESE	27/01/2016	02:55	1.3	Wsw	27/01/2016	10:30	2.7	NE
26/01/2016	19:25	0.4	NE	27/01/2016	03:00	0.9	W	27/01/2016	10:35	1.8	NE
26/01/2016	19:30	0.4	E	27/01/2016	03:05	1.3	W	27/01/2016	10:40	3.1	NE
26/01/2016	19:35	0.9	NE	27/01/2016	03:10	0.4	W	27/01/2016	10:45	2.2	N
26/01/2016	19:40	1.3	ENE	27/01/2016	03:15	0.4	NE	27/01/2016	10:50	2.7	N
26/01/2016	19:45	2.2	E	27/01/2016	03:20	0.4	W	27/01/2016	10:55	1.8	N
26/01/2016	19:50	1.8	N	27/01/2016	03:25	0.4	W	27/01/2016	11:00	1.8	N
26/01/2016	19:55	0.9	NNE	27/01/2016	03:30	0.4	NW	27/01/2016	11:05	1.8	NNE
26/01/2016	20:00	1.3	WNW	27/01/2016	03:35	1.3	NE	27/01/2016	11:10	2.2	NNE
26/01/2016	20:05	0.9	NE	27/01/2016	03:40	2.2	NE	27/01/2016	11:15	2.2	N
26/01/2016	20:10	1.3	NE	27/01/2016	03:45	2.7	NE	27/01/2016	11:20	2.2	N
26/01/2016	20:15	1.3	N	27/01/2016	03:50	0.4	SSW	27/01/2016	11:25	1.3	NW
26/01/2016	20:20	1.8	W	27/01/2016	03:55	0.4	SSW	27/01/2016	11:30	3.1	W
26/01/2016	20:25	1.3	W	27/01/2016	04:00	0.4	SSW	27/01/2016	11:35	1.8	NNE
26/01/2016	20:30	1.3	WSW	27/01/2016	04:05	0.4	SSW	27/01/2016	11:40	1.3	NNE
26/01/2016	20:35	1.8	W	27/01/2016	04:10	0.9	W	27/01/2016	11:45	2.2	NE
26/01/2016	20:40	0.4	NNW	27/01/2016	04:15	0.4	WSW	27/01/2016	11:50	2.2	NNE
26/01/2016	20:45	1.3	NW	27/01/2016	04:20	0.4	SSW	27/01/2016	11:55	2.2	NE
26/01/2016	20:50	0.4	W	27/01/2016	04:25	0.4	SSW	27/01/2016	12:00	1.8	NE
26/01/2016	20:55	0.4	WSW	27/01/2016	04:30	0.9	SW	27/01/2016	12:05	3.1	NE
26/01/2016	21:00	0.4	WSW	27/01/2016	04:35	0.4	SW	27/01/2016	12:10	1.3	WSW
26/01/2016	21:05	0.9	WSW	27/01/2016	04:40	0.4	SW	27/01/2016	12:15	0.9	W
26/01/2016	21:10	0.9	WSW	27/01/2016	04:45	0.4	WSW	27/01/2016	12:20	1.3	W
26/01/2016	21:15	0.9	WSW	27/01/2016	04:50	0.4	SW	27/01/2016	12:25	0.4	W
26/01/2016	21:20	0.4	W	27/01/2016	04:55	0.4	W	27/01/2016	12:30	0.4	NE
26/01/2016	21:25	0.9	W	27/01/2016	05:00	0.4	W	27/01/2016	12:35	0.4	W
26/01/2016	21:30	0.9	W	27/01/2016	05:05	0.4	W	27/01/2016	12:40	0.4	W
26/01/2016	21:35	0.9	NE	27/01/2016	05:10	0.4	W	27/01/2016	12:45	0.4	NW
26/01/2016	21:40	0.9	NE	27/01/2016	05:15	0.4	N	27/01/2016	12:50	1.3	NE
26/01/2016	$21: 45$ $21: 50$	0.9 0.9	NE	27/01/2016	05:20 05:25	0.4 1.8	NNW	27/01/2016	12:55 13:00	2.2 2.7	NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 $(d d / m m / y y y y)$ | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

27/01/2016	13:05	1.8	W	27/01/2016	20:40	0.9	SSW	28/01/2016	04:15	2.2	NE
27/01/2016	13:10	2.2	W	27/01/2016	20:45	1.8	NE	28/01/2016	04:20	0.4	SW
27/01/2016	13:15	1.3	NW	27/01/2016	20:50	1.8	NE	28/01/2016	04:25	0.4	SSW
27/01/2016	13:20	2.2	W	27/01/2016	20:55	1.3	NE	28/01/2016	04:30	1.8	W
27/01/2016	13:25	1.3	WNW	27/01/2016	21:00	0.4	NE	28/01/2016	04:35	2.2	WNW
27/01/2016	13:30	1.3	WNW	27/01/2016	21:05	0.4	NE	28/01/2016	04:40	1.8	WNW
27/01/2016	13:35	1.8	NNW	27/01/2016	21:10	0.4	WSW	28/01/2016	04:45	2.2	WNW
27/01/2016	13:40	2.2	NNE	27/01/2016	21:15	1.3	WSW	28/01/2016	04:50	2.7	WNW
27/01/2016	13:45	2.2	NNE	27/01/2016	21:20	2.2	WSW	28/01/2016	04:55	1.8	WNW
27/01/2016	13:50	1.8	N	27/01/2016	21:25	1.3	WSW	28/01/2016	05:00	1.8	W
27/01/2016	13:55	1.3	N	27/01/2016	21:30	0.9	W	28/01/2016	05:05	1.8	W
27/01/2016	14:00	1.3	N	27/01/2016	21:35	1.3	W	28/01/2016	05:10	1.3	W
27/01/2016	14:05	1.3	N	27/01/2016	21:40	0.4	W	28/01/2016	05:15	1.8	W
27/01/2016	14:10	1.3	N	27/01/2016	21:45	0.4	NE	28/01/2016	05:20	1.3	W
27/01/2016	14:15	1.3	NNE	27/01/2016	21:50	0.4	W	28/01/2016	05:25	0.4	SSW
27/01/2016	14:20	1.8	N	27/01/2016	21:55	0.4	W	28/01/2016	05:30	0.9	SSW
27/01/2016	14:25	1.8	NNE	27/01/2016	22:00	0.4	NW	28/01/2016	05:35	0.9	SSW
27/01/2016	14:30	2.2	NNE	27/01/2016	22:05	1.3	NE	28/01/2016	05:40	0.9	SSW
27/01/2016	14:35	2.2	NNE	27/01/2016	22:10	2.2	NE	28/01/2016	05:45	0.9	SSW
27/01/2016	14:40	2.2	N	27/01/2016	22:15	2.7	NE	28/01/2016	05:50	2.2	WNW
27/01/2016	14:45	1.8	N	27/01/2016	22:20		WSW	28/01/2016	05:55	1.8	WNW
27/01/2016	14:50	1.8	NW	27/01/2016	22:25	3.6	WSW	28/01/2016	06:00	2.2	WNW
27/01/2016	14:55	0.9	N	27/01/2016	22:30	4	W	28/01/2016	06:05	2.7	WNW
27/01/2016	15:00	1.3	NNE	27/01/2016	22:35	4	W	28/01/2016	06:10	1.8	WNW
27/01/2016	15:05	1.3	NNE	27/01/2016	22:40	3.6	WSW	28/01/2016	06:15	1.8	W
27/01/2016	15:10	2.2	NE	27/01/2016	22:45	2.7	WSW	28/01/2016	06:20	1.8	W
27/01/2016	15:15	1.8	NNE	27/01/2016	22:50	1.8	W	28/01/2016	06:25	0.4	NNW
27/01/2016	15:20	2.2	NNE	27/01/2016	22:55	0.9	NW	28/01/2016	06:30	0.4	NNW
27/01/2016	15:25	1.3	WSW	27/01/2016	23:00	1.3	WNW	28/01/2016	06:35	0.4	NNW
27/01/2016	15:30	0.9	W	27/01/2016	23:05	1.3	NNW	28/01/2016	06:40	0.4	NNW
27/01/2016	15:35	1.3	W	27/01/2016	23:10	1.3	WSW	28/01/2016	06:45	0.4	SW
27/01/2016	15:40	0.4	W	27/01/2016	23:15	0.9	W	28/01/2016	06:50	2.7	ENE
27/01/2016	15:45	0.4	NE	27/01/2016	23:20	1.3	W	28/01/2016	06:55	2.2	ENE
27/01/2016	15:50	0.4	W	27/01/2016	23:25	0.4	W	28/01/2016	07:00	2.7	NE
27/01/2016	15:55	0.4	W	27/01/2016	23:30	0.4	NE	28/01/2016	07:05	1.8	ENE
27/01/2016	16:00	0.4	NW	27/01/2016	23:35	0.4	W	28/01/2016	07:10	1.8	NNE
27/01/2016	16:05	1.3	NE	27/01/2016	23:40	0.4	W	28/01/2016	07:15	0.9	NNE
27/01/2016	16:10	2.2	NE	27/01/2016	23:45	0.4	NW	28/01/2016	07:20	1.8	NNE
27/01/2016	16:15	2.7	NE	27/01/2016	23:50	1.3	NE	28/01/2016	07:25	1.8	NNE
27/01/2016	16:20	1.8	ENE	27/01/2016	23:55	2.2	NE	28/01/2016	07:30	2.2	NE
27/01/2016	16:25	2.2	NE	28/01/2016	00:00	2.7	NE	28/01/2016	07:35	0.4	SW
27/01/2016	16:30	3.1	ENE	28/01/2016	00:05	0.4	SSW	28/01/2016	07:40	0.4	SSW
27/01/2016	16:35	2.7	ENE	28/01/2016	00:10	0.4	SSW	28/01/2016	07:45	0.9	NNE
27/01/2016	16:40	2.2	ENE	28/01/2016	00:15	0.4	SW	28/01/2016	07:50	0.9	NNE
27/01/2016	16:45	2.7	ENE	28/01/2016	00:20	2.7	ENE	28/01/2016	07:55	0.9	NNE
27/01/2016	16:50	2.7	NE	28/01/2016	00:25	2.2	ENE	28/01/2016	08:00	0.9	N
27/01/2016	16:55	1.8	N	28/01/2016	00:30	2.7	NE	28/01/2016	08:05	1.3	N
27/01/2016	17:00	1.3	N	28/01/2016	00:35	1.8	ENE	28/01/2016	08:10	0.9	NE
27/01/2016	17:05	1.3	N	28/01/2016	00:40	1.8	NNE	28/01/2016	08:15	0.9	NNE
27/01/2016	17:10	1.3	N	28/01/2016	00:45	0.9	NNE	28/01/2016	08:20	0.9	NNE
27/01/2016	17:15	1.3	N	28/01/2016	00:50	1.8	NNE	28/01/2016	08:25	1.3	NE
27/01/2016	17:20	1.3	NNE	28/01/2016	00:55	1.8	NNE	28/01/2016	08:30	1.3	NE
27/01/2016	17:25	1.8	N	28/01/2016	01:00	2.2	NE	28/01/2016	08:35	1.8	NE
27/01/2016	17:30	1.8	NNE	28/01/2016	01:05	0.4	SW	28/01/2016	08:40	1.3	NE
27/01/2016	17:35	1.3	NNE	28/01/2016	01:10	0.4	SSW	28/01/2016	08:45	1.8	NE
27/01/2016	17:40	2.2	NE	28/01/2016	01:15	0.4	SW	28/01/2016	08:50	1.8	NE
27/01/2016	17:45	1.8	NNE	28/01/2016	01:20	0.4	SW	28/01/2016	08:55	1.8	NNE
27/01/2016	17:50	2.2	NNE	28/01/2016	01:25	0.4	SW	28/01/2016	09:00	1.8	NE
27/01/2016	17:55	2.7	NE	28/01/2016	01:30	0.4	SW	28/01/2016	09:05	1.3	NE
27/01/2016	18:00	2.2	N	28/01/2016	01:35	0.4	ESE	28/01/2016	09:10	1.3	NE
27/01/2016	18:05	2.2	NNE	28/01/2016	01:40	0.9	SW	28/01/2016	09:15	1.3	NE
27/01/2016	18:10	2.7	NE	28/01/2016	01:45	0.9	SW	28/01/2016	09:20	1.8	NNE
27/01/2016	18:15	3.1	ENE	28/01/2016	01:50	0.4	SW	28/01/2016	09:25	1.3	NNE
27/01/2016	18:20	2.7	ENE	28/01/2016	01:55	0.4	SW	28/01/2016	09:30	1.3	NE
27/01/2016	18:25	1.3	WSW	28/01/2016	02:00	0.4	SW	28/01/2016	09:35	1.3	NE
27/01/2016	18:30	0.9	W	28/01/2016	02:05	0.9	SW	28/01/2016	09:40	1.8	NE
27/01/2016	18:35	1.3	W	28/01/2016	02:10	0.9	SW	28/01/2016	09:45	1.3	ENE
27/01/2016	18:40	0.4	W	28/01/2016	02:15	0.9	SW	28/01/2016	09:50	2.2	NE
27/01/2016	18:45	0.4	NE	28/01/2016	02:20	0.4	SW	28/01/2016	09:55	2.2	NE
27/01/2016	18:50	0.4	W	28/01/2016	02:25	0.4	SW	28/01/2016	10:00	1.8	NE
27/01/2016	18:55	0.4	W	28/01/2016	02:30	1.3	W	28/01/2016	10:05	1.8	ENE
27/01/2016	19:00	0.4	NW	28/01/2016	02:35	1.3	W	28/01/2016	10:10	2.2	NE
27/01/2016	19:05	1.3	NE	28/01/2016	02:40	0.4	ESE	28/01/2016	10:15	0.4	SW
27/01/2016	19:10	2.2	NE	28/01/2016	02:45	1.8	NE	28/01/2016	10:20	2.7	ENE
27/01/2016	19:15	2.7	NE	28/01/2016	02:50	0.9	NNE	28/01/2016	10:25	2.2	ENE
27/01/2016	19:20	1.3	W	28/01/2016	02:55	1.8	ESE	28/01/2016	10:30	2.7	NE
27/01/2016	19:25	0.9	NW	28/01/2016	03:00	1.8	ENE	28/01/2016	10:35	1.8	ENE
27/01/2016	19:30	2.2	WSW	28/01/2016	03:05	2.7	E	28/01/2016	10:40	1.8	NNE
27/01/2016	19:35	1.8	WSW	28/01/2016	03:10	2.7	E	28/01/2016	10:45	0.9	NNE
27/01/2016	19:40	2.2	WSW	28/01/2016	03:15	2.7	ENE	28/01/2016	10:50	1.8	NNE
27/01/2016	19:45	1.8	WSW	28/01/2016	03:20	2.2	ENE	28/01/2016	10:55	1.8	NNE
27/01/2016	19:50	1.8	SW	28/01/2016	03:25	2.7	NE	28/01/2016	11:00	2.2	NE
27/01/2016	19:55	2.2	WSW	28/01/2016	03:30	0.4	SW	28/01/2016	11:05	0.4	SW
27/01/2016	20:00	1.8	WSW	28/01/2016	03:35	2.7	ENE	28/01/2016	11:10	0.4	SSW
27/01/2016	20:05	1.3	SW	28/01/2016	03:40	2.2	ENE	28/01/2016	11:15	2.7	NE
27/01/2016	20:10	1.3	SW	28/01/2016	03:45	2.7	NE	28/01/2016	11:20	2.2	NE
27/01/2016	20:15	1.8	SW	28/01/2016	03:50	1.8	ENE	28/01/2016	11:25	2.2	NE
27/01/2016	20:20	1.8	WSW	28/01/2016	03:55	1.8	NNE	28/01/2016	11:30	2.7	NE
27/01/2016	20:25	1.8	NW	28/01/2016	04:00	0.9	NNE	28/01/2016	11:35	2.7	NE
27/01/2016	20:30	0.9	NNW	28/01/2016	04:05	1.8	NNE	28/01/2016	11:40	2.7	NE
27/01/2016	20:35	0.9	SSW	28/01/2016	04:10	1.8	NNE	28/01/2016	11:45	2.7	NE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction	Date $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$	Time
Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction								

$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 28/01/2016 $28 / 01 / 2016$
$28 / 01 / 2016$ 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016 28/01/2016

Extracted from the weather station at Tung Chung China State Site Office Rooftop

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m / s)	Wind Direction

29/01/2016	10:35	1.8	NE	29/01/2016	18:10	1.8	ENE	30/01/2016	01:45	0.4	ESE
29/01/2016	10:40	2.2	NE	29/01/2016	18:15	1.3	E	30/01/2016	01:50	0.9	SW
29/01/2016	10:45	3.6	E	29/01/2016	18:20	1.8	NE	30/01/2016	01:55	0.9	SW
29/01/2016	10:50	1.8	NNE	29/01/2016	18:25	2.2	NE	30/01/2016	02:00	0.9	SW
29/01/2016	10:55	0.9	NNE	29/01/2016	18:30	3.6	E	30/01/2016	02:05	0.9	SW
29/01/2016	11:00	0.9	N	29/01/2016	18:35	2.2	W	30/01/2016	02:10	1.3	SW
29/01/2016	11:05	1.3	NNW	29/01/2016	18:40	0.4	WSW	30/01/2016	02:15	0.4	SSW
29/01/2016	11:10	1.8	NNE	29/01/2016	18:45	0.4	WSW	30/01/2016	02:20	0.9	SSW
29/01/2016	11:15	1.8	NE	29/01/2016	18:50	0.4	NNE	30/01/2016	02:25	0.4	SSW
29/01/2016	11:20	1.8	NNE	29/01/2016	18:55	0.9	W	30/01/2016	02:30	0.4	SSW
29/01/2016	11:25	2.2	NE	29/01/2016	19:00	0.9	W	30/01/2016	02:35	0.4	SSW
29/01/2016	11:30	2.2	NE	29/01/2016	19:05	0.9	NW	30/01/2016	02:40	0.4	WSW
29/01/2016	11:35	2.7	NE	29/01/2016	19:10	0.4	NNW	30/01/2016	02:45	0.4	WSW
29/01/2016	11:40	2.7	NE	29/01/2016	19:15	0.4	E	30/01/2016	02:50	0.4	NE
29/01/2016	11:45	2.2	NE	29/01/2016	19:20	1.3	ENE	30/01/2016	02:55	0.9	E
29/01/2016	11:50	1.8	NE	29/01/2016	19:25	1.8	E	30/01/2016	03:00	0.9	E
29/01/2016	11:55	1.3	NNE	29/01/2016	19:30	1.8	E	30/01/2016	03:05	0.9	E
29/01/2016	12:00	1.8	N	29/01/2016	19:35	2.2	E	30/01/2016	03:10	0.4	ESE
29/01/2016	12:05	1.3	N	29/01/2016	19:40	0.9	W	30/01/2016	03:15	2.7	NE
29/01/2016	12:10	0.9	N	29/01/2016	19:45	1.3	W	30/01/2016	03:20	2.2	NE
29/01/2016	12:15	1.8	NE	29/01/2016	19:50	2.7	WSW	30/01/2016	03:25	1.8	ENE
29/01/2016	12:20	1.8	N	29/01/2016	19:55	1.8	W	30/01/2016	03:30	2.2	NE
29/01/2016	12:25	0.9	ESE	29/01/2016	20:00	1.3	W	30/01/2016	03:35	2.2	ENE
29/01/2016	12:30	2.2	NE	29/01/2016	20:05	2.2	W	30/01/2016	03:40	0.9	SE
29/01/2016	12:35	1.8	N	29/01/2016	20:10	0.4	WSW	30/01/2016	03:45	0.4	SW
29/01/2016	12:40	1.3	N	29/01/2016	20:15	0.9	ENE	30/01/2016	03:50	0.9	SW
29/01/2016	12:45	0.9	NE	29/01/2016	20:20	0.9	ENE	30/01/2016	03:55	0.9	SW
29/01/2016	12:50	1.3	NE	29/01/2016	20:25	1.3	NE	30/01/2016	04:00	0.9	SW
29/01/2016	12:55	1.3	NE	29/01/2016	20:30	0.9	ENE	30/01/2016	04:05	0.4	WSW
29/01/2016	13:00	1.8	NNE	29/01/2016	20:35	0.4	ENE	30/01/2016	04:10	0.4	SSW
29/01/2016	13:05	1.8	NE	29/01/2016	20:40	0.9	NE	30/01/2016	04:15	0.4	SSW
29/01/2016	13:10	2.2	NE	29/01/2016	20:45	0.4	NE	30/01/2016	04:20	0.4	SSW
29/01/2016	13:15	2.2	NE	29/01/2016	20:50	0.9	NE	30/01/2016	04:25	0.4	WSW
29/01/2016	13:20	2.2	NE	29/01/2016	20:55	0.9	NE	30/01/2016	04:30	0.4	WSW
29/01/2016	13:25	1.3	NNE	29/01/2016	21:00	0.9	NE	30/01/2016	04:35	0.4	ESE
29/01/2016	13:30	2.2	NE	29/01/2016	21:05	0.4	NE	30/01/2016	04:40	0.4	ESE
29/01/2016	13:35	2.2	ENE	29/01/2016	21:10	0.4	NE	30/01/2016	04:45	3.1	WSW
29/01/2016	13:40	1.8	NE	29/01/2016	21:15	0.4	NE	30/01/2016	04:50	2.7	WSW
29/01/2016	13:45	1.8	ENE	29/01/2016	21:20	0.4	NE	30/01/2016	04:55	2.2	W
29/01/2016	13:50	1.3	NNE	29/01/2016	21:25	0.4	ENE	30/01/2016	05:00	2.7	WSW
29/01/2016	13:55	1.8	WSW	29/01/2016	21:30	0.9	E	30/01/2016	05:05	1.8	W
29/01/2016	14:00	2.7	WSW	29/01/2016	21:35	1.8	E	30/01/2016	05:10	0.4	S
29/01/2016	14:05	2.7	WSW	29/01/2016	21:40	1.3	E	30/01/2016	05:15	0.4	S
29/01/2016	14:10	0.9	E	29/01/2016	21:45	1.8	E	30/01/2016	05:20	0.4	SSW
29/01/2016	14:15	1.8	E	29/01/2016	21:50	1.8	E	30/01/2016	05:25	0.4	SSW
29/01/2016	14:20	1.3	E	29/01/2016	21:55	2.2	ENE	30/01/2016	05:30	0.4	SSW
29/01/2016	14:25	1.8	E	29/01/2016	22:00	1.8	ENE	30/01/2016	05:35	0.4	SSW
29/01/2016	14:30	1.8	E	29/01/2016	22:05	1.3	E	30/01/2016	05:40	0.4	SSW
29/01/2016	14:35	2.2	ENE	29/01/2016	22:10	1.8	NE	30/01/2016	05:45	0.4	SSW
29/01/2016	14:40	1.8	ENE	29/01/2016	22:15	2.2	NE	30/01/2016	05:50	0.4	SSW
29/01/2016	14:45	1.3	E	29/01/2016	22:20	3.6	E	30/01/2016	05:55	0.4	SSW
29/01/2016	14:50	1.8	NE	29/01/2016	22:25	0.4	SSW	30/01/2016	06:00	0.4	WSW
29/01/2016	14:55	2.2	NE	29/01/2016	22:30	1.3	W	30/01/2016	06:05	0.4	NE
29/01/2016	15:00	3.6	E	29/01/2016	22:35	0.9	WSW	30/01/2016	06:10	0.9	E
29/01/2016	15:05	1.3	WNW	29/01/2016	22:40	0.4	WSW	30/01/2016	06:15	0.9	E
29/01/2016	15:10	1.3	WNW	29/01/2016	22:45	0.4	WSW	30/01/2016	06:20	0.9	E
29/01/2016	15:15	1.3	W	29/01/2016	22:50	0.4	WSW	30/01/2016	06:25	0.4	ESE
29/01/2016	15:20	2.2	NNE	29/01/2016	22:55	0.4	NNE	30/01/2016	06:30	2.7	NE
29/01/2016	15:25	2.2	NNE	29/01/2016	23:00	0.9	W	30/01/2016	06:35	2.2	NE
29/01/2016	15:30	3.1	NE	29/01/2016	23:05	0.9	W	30/01/2016	06:40	1.8	ENE
29/01/2016	15:35	3.1	NE	29/01/2016	23:10	0.9	E	30/01/2016	06:45	2.2	NE
29/01/2016	15:40	3.6	NE	29/01/2016	23:15	1.8	E	30/01/2016	06:50	2.2	ENE
29/01/2016	15:45	3.6	NE	29/01/2016	23:20	1.3	E	30/01/2016	06:55	1.8	NNE
29/01/2016	15:50	3.6	NE	29/01/2016	23:25	1.8	E	30/01/2016	07:00	2.2	NNE
29/01/2016	15:55	3.6	NE	29/01/2016	23:30	1.8	E	30/01/2016	07:05	0.4	ESE
29/01/2016	16:00	2.7	NE	29/01/2016	23:35	2.2	ENE	30/01/2016	07:10	0.4	ESE
29/01/2016	16:05	3.1	NE	29/01/2016	23:40	1.8	ENE	30/01/2016	07:15	0.4	ESE
29/01/2016	16:10	3.6	NE	29/01/2016	23:45	1.3	E	30/01/2016	07:20	0.4	ESE
29/01/2016	16:15	3.1	NE	29/01/2016	23:50	1.8	NE	30/01/2016	07:25	0.4	ESE
29/01/2016	16:20	,	NE	29/01/2016	23:55	2.2	NE	30/01/2016	07:30	0.4	ESE
29/01/2016	16:25	3.6	NE	30/01/2016	00:00	3.6	E	30/01/2016	07:35	0.4	ESE
29/01/2016	16:30	3.1	NE	30/01/2016	00:05	0.4	NE	30/01/2016	07:40	0.4	ESE
29/01/2016	16:35	2.7	NE	30/01/2016	00:10	0.9	E	30/01/2016	07:45	0.4	ESE
29/01/2016	16:40	1.8	NE	30/01/2016	00:15	0.9	E	30/01/2016	07:50	0.4	ESE
29/01/2016	16:45	1.8	NE	30/01/2016	00:20	0.9	E	30/01/2016	07:55	0.4	ESE
29/01/2016	16:50	1.3	W	30/01/2016	00:25	0.4	ESE	30/01/2016	08:00	0.4	ESE
29/01/2016	16:55	2.2	NNE	30/01/2016	00:30	2.7	NE	30/01/2016	08:05	0.4	ESE
29/01/2016	17:00	2.2	NNE	30/01/2016	00:35	2.2	NE	30/01/2016	08:10	0.4	N
29/01/2016	17:05	3.1	NE	30/01/2016	00:40	1.8	ENE	30/01/2016	08:15	0.4	N
29/01/2016	17:10	3.1	NE	30/01/2016	00:45	2.2	NE	30/01/2016	08:20	1.8	NE
29/01/2016	17:15	3.6	NE	30/01/2016	00:50	2.2	ENE	30/01/2016	08:25	1.3	NE
29/01/2016	17:20	3.6	NE	30/01/2016	00:55	2.2	NE	30/01/2016	08:30	1.3	NE
29/01/2016	17:25	0.9	NNW	30/01/2016	01:00	2.7	ENE	30/01/2016	08:35	1.8	NE
29/01/2016	17:30	1.8	NW	30/01/2016	01:05	2.7	NE	30/01/2016	08:40	1.8	NNE
29/01/2016	17:35	2.2	W	30/01/2016	01:10	2.7	NE	30/01/2016	08:45	2.2	NE
29/01/2016	17:40	0.9	E	30/01/2016	01:15	2.2	NE	30/01/2016	08:50	2.2	ENE
29/01/2016	17:45	1.8	E	30/01/2016	01:20	2.7	NE	30/01/2016	08:55	1.8	NE
29/01/2016	17:50	1.3	E	30/01/2016	01:25	2.7	NE	30/01/2016	09:00	1.8	NE
29/01/2016	17:55	1.8	E	30/01/2016	01:30	0.9	SSW	30/01/2016	09:05	1.3	NE
29/01/2016	18:00	1.8	E	30/01/2016	01:35	0.9	SSW	30/01/2016	09:10	1.3	NE
29/01/2016	18:05	2.2	ENE	30/01/2016	01:40	0.9	W	30/01/2016	09:15	3	NNE

Extracted from the weather station at Tung Chung China State Site Office Rooftop

| Date | Time | Wind
 $(d d / m m / y y y y)$ | Date
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Wind
 Direction | Time | Wind
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ | Date
 Direction | Time
 $(\mathrm{dd} / \mathrm{mm} / \mathrm{yyyy})$ | Wind
 Speed
 $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Wind |
| :---: |
| Direction |

30/01/2016	09:20	1.3	NNE	30/01/2016	16:55	1.3	NW	31/01/2016	00:30	1.8	ENE
30/01/2016	09:25	1.3	NE	30/01/2016	17:00	1.8	W	31/01/2016	00:35	1.3	ENE
30/01/2016	09:30	1.3	NNE	30/01/2016	17:05	1.8	WSW	31/01/2016	00:40	1.8	,
30/01/2016	09:35	0.4	NNE	30/01/2016	17:10	1.8	NW	31/01/2016	00:45	1.3	ENE
30/01/2016	09:40	1.3	NE	30/01/2016	17:15	0.9	NNE	31/01/2016	00:50	1.8	N
30/01/2016	09:45	1.3	NE	30/01/2016	17:20	1.8	WNW	31/01/2016	00:55	0.9	N
30/01/2016	09:50	1.3	NE	30/01/2016	17:25	1.3	WNW	31/01/2016	01:00	0.9	N
30/01/2016	09:55	2.2	NNE	30/01/2016	17:30	1.3	W	31/01/2016	01:05	1.8	W
30/01/2016	10:00	1.8	NE	30/01/2016	17:35	2.2	W	31/01/2016	01:10	0.9	NW
30/01/2016	10:05	1.8	NE	30/01/2016	17:40	2.2	W	31/01/2016	01:15	1.3	NE
30/01/2016	10:10	1.8	NNE	30/01/2016	17:45	2.2	W	31/01/2016	01:20	1.3	NNE
30/01/2016	10:15	2.2	NNE	30/01/2016	17:50	0.4	NE	31/01/2016	01:25	0.9	NW
30/01/2016	10:20	0.4	NE	30/01/2016	17:55	0.9	E	31/01/2016	01:30	0.9	W
30/01/2016	10:25	0.9	E	30/01/2016	18:00	0.9	E	31/01/2016	01:35	2.7	NE
30/01/2016	10:30	0.9	E	30/01/2016	18:05	0.9	E	31/01/2016	01:40	1.8	ENE
30/01/2016	10:35	0.9	E	30/01/2016	18:10	0.4	ESE	31/01/2016	01:45	2.2	NE
30/01/2016	10:40	0.4	ESE	30/01/2016	18:15	2.7	NE	31/01/2016	01:50	2.2	W
30/01/2016	10:45	2.7	NE	30/01/2016	18:20	2.2	NE	31/01/2016	01:55	2.2	W
30/01/2016	10:50	2.2	NE	30/01/2016	18:25	1.8	ENE	31/01/2016	02:00	2.2	E
30/01/2016	10:55	1.8	ENE	30/01/2016	18:30	2.2	NE	31/01/2016	02:05	1.8	E
30/01/2016	11:00	2.2	NE	30/01/2016	18:35	2.2	ENE	31/01/2016	02:10	1.8	ENE
30/01/2016	11:05	2.2	ENE	30/01/2016	18:40	0.9	WSW	31/01/2016	02:15	1.8	ENE
30/01/2016	11:10	2.7	NE	30/01/2016	18:45	1.3	WSW	31/01/2016	02:20	0.9	NNE
30/01/2016	11:15	2.7	NE	30/01/2016	18:50	1.3	WSW	31/01/2016	02:25	0.9	NE
30/01/2016	11:20	2.7	NE	30/01/2016	18:55	0.9	WSW	31/01/2016	02:30	0.9	ENE
30/01/2016	11:25	2.7	NE	30/01/2016	19:00	1.8	SW	31/01/2016	02:35	0.9	ENE
30/01/2016	11:30	2.2	NE	30/01/2016	19:05	2.2	WSW	31/01/2016	02:40	0.9	NE
30/01/2016	11:35	1.8	ENE	30/01/2016	19:10	1.8	SW	31/01/2016	02:45	1.3	ENE
30/01/2016	11:40	2.2	NE	30/01/2016	19:15	1.8	W	31/01/2016	02:50	2.7	NE
30/01/2016	11:45	2.2	ENE	30/01/2016	19:20	0.9	W	31/01/2016	02:55	2.7	NE
30/01/2016	11:50	2.2	NE	30/01/2016	19:25	0.4	WSW	31/01/2016	03:00	1.8	ENE
30/01/2016	11:55	2.7	ENE	30/01/2016	19:30	0.4	ENE	31/01/2016	03:05	1.3	ENE
30/01/2016	12:00	2.7	NE	30/01/2016	19:35	0.9	ENE	31/01/2016	03:10	1.8	E
30/01/2016	12:05	2.7	NE	30/01/2016	19:40	1.3	ENE	31/01/2016	03:15	1.3	ENE
30/01/2016	12:10	2.2	NE	30/01/2016	19:45	0.9	ENE	31/01/2016	03:20	1.8	N
30/01/2016	12:15	2.7	NE	30/01/2016	19:50	0.9	ENE	31/01/2016	03:25	0.9	N
30/01/2016	12:20	2.7	NE	30/01/2016	19:55	2.7	ENE	31/01/2016	03:30	0.9	N
30/01/2016	12:25	2.7	NE	30/01/2016	20:00	2.7	NE	31/01/2016	03:35	1.8	W
30/01/2016	12:30	2.7	ENE	30/01/2016	20:05	3.1	NE	31/01/2016	03:40	0.9	NW
30/01/2016	12:35	2.7	NE	30/01/2016	20:10	1.8	ENE	31/01/2016	03:45	1.8	ENE
30/01/2016	12:40	2.7	NE	30/01/2016	20:15	1.8	ENE	31/01/2016	03:50	2.2	NE
30/01/2016	12:45	2.2	NE	30/01/2016	20:20	2.2	NE	31/01/2016	03:55	2.2	W
30/01/2016	12:50	2.2	NNE	30/01/2016	20:25	1.3	NE	31/01/2016	04:00	2.2	W
30/01/2016	12:55	2.7	NNE	30/01/2016	20:30	1.3	NW	31/01/2016	04:05	2.2	E
30/01/2016	13:00	2.7	NE	30/01/2016	20:35	0.9	ENE	31/01/2016	04:10	0.9	ENE
30/01/2016	13:05	3.1	NE	30/01/2016	20:40	0.9	ENE	31/01/2016	04:15	0.9	ENE
30/01/2016	13:10	1.8	ENE	30/01/2016	20:45	0.9	ENE	31/01/2016	04:20	0.9	ENE
30/01/2016	13:15	1.3	W	30/01/2016	20:50	0.4	ENE	31/01/2016	04:25	0.9	ENE
30/01/2016	13:20	2.7	W	30/01/2016	20:55	0.9	NNE	31/01/2016	04:30	0.4	E
30/01/2016	13:25	2.7	W	30/01/2016	21:00	0.9	WSW	31/01/2016	04:35	0.4	NW
30/01/2016	13:30	3.1	Wsw	30/01/2016	21:05	1.8	SW	31/01/2016	04:40	0.4	WSW
30/01/2016	13:35	2.7	WSW	30/01/2016	21:10	2.2	WSW	31/01/2016	04:45	0.4	WSW
30/01/2016	13:40	2.2	W	30/01/2016	21:15	1.8	SW	31/01/2016	04:50	0.4	WSW
30/01/2016	13:45	2.2	W	30/01/2016	21:20	0.4	NE	31/01/2016	04:55	0.9	ENE
30/01/2016	13:50	2.7	W	30/01/2016	21:25	0.9	E	31/01/2016	05:00	2.7	E
30/01/2016	13:55	2.7	W	30/01/2016	21:30	0.9	E	31/01/2016	05:05	2.7	ENE
30/01/2016	14:00	3.6	W	30/01/2016	21:35	0.9	E	31/01/2016	05:10	2.2	E
30/01/2016	14:05	0.4	NE	30/01/2016	21:40	0.4	ESE	31/01/2016	05:15	2.2	E
30/01/2016	14:10	0.9	E	30/01/2016	21:45	2.7	NE	31/01/2016	05:20	1.8	E
30/01/2016	14:15	0.9	E	30/01/2016	21:50	2.2	NE	31/01/2016	05:25	1.8	E
30/01/2016	14:20	0.9	E	30/01/2016	21:55	1.8	ENE	31/01/2016	05:30	1.8	ENE
30/01/2016	14:25	0.4	ESE	30/01/2016	22:00	2.2	NE	31/01/2016	05:35	1.8	ENE
30/01/2016	14:30	2.7	NE	30/01/2016	22:05	2.2	ENE	31/01/2016	05:40	0.9	NE
30/01/2016	14:35	2.2	NE	30/01/2016	22:10	0.4	NE	31/01/2016	05:45	1.3	ENE
30/01/2016	14:40	1.8	ENE	30/01/2016	22:15	0.4	N	31/01/2016	05:50	2.7	NE
30/01/2016	14:45	2.2	NE	30/01/2016	22:20	0.4	WSW	31/01/2016	05:55	2.7	NE
30/01/2016	14:50	2.2	ENE	30/01/2016	22:25	0.4	SSW	31/01/2016	06:00	1.8	ENE
30/01/2016	14:55	1.3	WNW	30/01/2016	22:30	0.9	W	31/01/2016	06:05	1.3	ENE
30/01/2016	15:00	1.8	W	30/01/2016	22:35	0.4	NW	31/01/2016	06:10	1.8	E
30/01/2016	15:05	1.3	NW	30/01/2016	22:40	0.9	WSW	31/01/2016	06:15	1.3	ENE
30/01/2016	15:10	1.8	W	30/01/2016	22:45	1.8	NE	31/01/2016	06:20	1.8	N
30/01/2016	15:15	2.2	WNW	30/01/2016	22:50	0.9	NNE	31/01/2016	06:25	0.9	N
30/01/2016	15:20	2.7	WSW	30/01/2016	22:55	1.3	NE	31/01/2016	06:30	0.9	N
30/01/2016	15:25	1.8	N	30/01/2016	23:00	0.4	NNW	31/01/2016	06:35	1.8	W
30/01/2016	15:30	1.8	ENE	30/01/2016	23:05	1.3	ENE	31/01/2016	06:40	0.9	NW
30/01/2016	15:35	2.2	NE	30/01/2016	23:10	0.4	NE	31/01/2016	06:45	0.4	NW
30/01/2016	15:40	1.3	NE	30/01/2016	23:15	0.9	E	31/01/2016	06:50	0.4	WSW
30/01/2016	15:45	1.3	NNE	30/01/2016	23:20	0.9	E	31/01/2016	06:55	0.4	WSW
30/01/2016	15:50	0.9	NW	30/01/2016	23:25	0.9	E	31/01/2016	07:00	1.8	E
30/01/2016	15:55	0.9	NW	30/01/2016	23:30	0.4	ESE	31/01/2016	07:05	1.8	ENE
30/01/2016	16:00	0.9	NW	30/01/2016	23:35	2.7	NE	31/01/2016	07:10	1.8	ENE
30/01/2016	16:05	1.3	WNW	30/01/2016	23:40	2.2	NE	31/01/2016	07:15	0.9	NNE
30/01/2016	16:10	1.3	NNW	30/01/2016	23:45	1.8	ENE	31/01/2016	07:20	0.9	NE
30/01/2016	16:15	1.8	WSW	30/01/2016	23:50	2.2	NE	31/01/2016	07:25	0.4	ENE
30/01/2016	16:20	2.2	WSW	30/01/2016	23:55	2.2	ENE	31/01/2016	07:30	0.4	W
30/01/2016	16:25	2.7	SW	31/01/2016	00:00	1.3	E	31/01/2016	07:35	0.9	W
30/01/2016	16:30	2.2	WSW	31/01/2016	00:05	0.9	E	31/01/2016	07:40	0.4	W
30/01/2016	16:35	1.8	W	31/01/2016	00:10	0.9	NE	31/01/2016	07:45	0.9	WSW
30/01/2016	16:40	1.8	W	31/01/2016	00:15	1.3	ENE	31/01/2016	07:50	0.4	NNW
30/01/2016	16:45	1.3	WSW	31/01/2016	00:20	2.7	NE	31/01/2016	07:55	0.4	NNW
30/01/2016	16:50	0.9	WSW	31/01/2016	00:25	2.7	NE	31/01/2016	08:00	0.9	SW

Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction	Date (dd/mm/yyyy)	Time	Wind Speed (m/s)	Wind Direction
31/01/2016	08:05	1.3	SW	31/01/2016	15:40	1.8	E	31/01/2016	23:15	0.9	N
31/01/2016	08:10	1.3	WSW	31/01/2016	15:45	1.3	ENE	31/01/2016	23:20	1.8	W
31/01/2016	08:15	1.3	WSW	31/01/2016	15:50	1.8	N	31/01/2016	23:25	0.9	NW
31/01/2016	08:20	0.4	WNW	31/01/2016	15:55	0.9	N	31/01/2016	23:30	1.3	ENE
31/01/2016	08:25	0.9	N	31/01/2016	16:00	0.9	N	31/01/2016	23:35	0.9	ENE
31/01/2016	08:30	0.4	ENE	31/01/2016	16:05	1.8	W	31/01/2016	23:40	0.9	ENE
31/01/2016	08:35	0.9	ENE	31/01/2016	16:10	0.9	NW	31/01/2016	23:45	2.2	E
31/01/2016	08:40	0.9	NE	31/01/2016	16:15	1.8	N	31/01/2016	23:50	2.2	ENE
31/01/2016	08:45	1.3	ENE	31/01/2016	16:20	1.8	NNW	31/01/2016	23:55	1.8	E
31/01/2016	08:50	2.7	NE	31/01/2016	16:25	0.9	NE	01/02/2016	00:00	0.9	E

Figure 1. Transect Line Layout in Northwest and Northeast Lantau Survey Areas

Figure 2. Survey Route on January 8 ${ }^{\text {th }}, 2016$

Figure 3. Survey Route on January $11^{\text {th }}, 2016$

Figure 4. Survey Route on January $13^{\text {th }}, 2016$

Figure 5. Survey Route on January $19^{\text {th }}, 2016$

Figure 6. Distribution of Chinese White Dolphin Sightings During January 2016 HKLR03 Monitoring Surveys

Annex I. HKLR03 Survey Effort Database (January 2016)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
8-Jan-16	NW LANTAU	2	25.03	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NW LANTAU	3	15.46	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NW LANTAU	2	10.60	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NW LANTAU	3	2.21	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NE LANTAU	2	16.39	WINTER	STANDARD31516	HKLR	P
8-Jan-16	NE LANTAU	2	8.31	WINTER	STANDARD31516	HKLR	S
8-Jan-16	NE LANTAU	3	2.10	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NE LANTAU	1	1.97	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	2	15.21	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	3	2.72	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NE LANTAU	2	11.00	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NE LANTAU	3	1.30	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	2	11.76	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NW LANTAU	3	19.32	WINTER	STANDARD31516	HKLR	P
11-Jan-16	NW LANTAU	2	4.82	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	3	1.00	WINTER	STANDARD31516	HKLR	S
11-Jan-16	NW LANTAU	4	2.10	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NE LANTAU	1	1.00	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NE LANTAU	2	15.93	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NE LANTAU	2	9.63	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NE LANTAU	3	0.64	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NW LANTAU	2	26.61	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NW LANTAU	3	15.03	WINTER	STANDARD31516	HKLR	P
13-Jan-16	NW LANTAU	2	5.05	WINTER	STANDARD31516	HKLR	S
13-Jan-16	NW LANTAU	3	6.87	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NW LANTAU	2	22.73	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NW LANTAU	3	9.01	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NW LANTAU	2	6.16	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NW LANTAU	3	1.50	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NE LANTAU	1	0.90	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	2	16.70	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	3	2.29	WINTER	STANDARD31516	HKLR	P
19-Jan-16	NE LANTAU	1	2.30	WINTER	STANDARD31516	HKLR	S
19-Jan-16	NE LANTAU	2	8.41	WINTER	STANDARD31516	HKLR	S

Annex II. HKLR03 Chinese White Dolphin Sighting Database (January 2016)

(Abberviations: STG\# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance;
BOAT ASSOC. $=$ Fishing Boat Association P/S: Sighting Made on Primary/Secondary Line\$

DATE	STG \#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
8-Jan-16	1	1209	1	NW LANTAU	2	591	ON	HKLR	822365	806458	WINTER	NONE	P
11-Jan-16	1	1303	6	NW LANTAU	3	140	ON	HKLR	830351	805495	WINTER	NONE	P
13-Jan-16	1	1355	1	NW LANTAU	3	54	ON	HKLR	823584	806162	WINTER	NONE	S
13-Jan-16	2	1458	2	NW LANTAU	2	83	ON	HKLR	830961	805085	WINTER	NONE	S
19-Jan-16	1	1112	8	NW LANTAU	3	332	ON	HKLR	829044	805503	WINTER	NONE	P

Annex III. Individual dolphins identified during HKLR03 monitoring surveys in January 2016

ID\#	DATE	STG\#	AREA
NL48	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
NL123	$11 / 01 / 16$	1	NW LANTAU
NL182	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
NL202	$19 / 01 / 16$	1	NW LANTAU
NL210	$13 / 01 / 16$	2	NW LANTAU
NL220	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
NL284	$19 / 01 / 16$	1	NW LANTAU
NL285	$08 / 01 / 16$	1	NW LANTAU
	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU
NL302	$13 / 01 / 16$	2	NW LANTAU
NL320	$11 / 01 / 16$	1	NW LANTAU
	$19 / 01 / 16$	1	NW LANTAU

Annex IV. Photographs of Identified Individual Dolphins in January 2016 (HKLR03)

Annex IV. (cont'd)

APPENDIXI

Waste Flow Table

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: HyD
Monthly Summary Waste Flow Table for 2015

Month	Actual Quantities of Inert C\&D Materials Generated Monthly						Actual Quantities of C\&D Wastes Generated Monthly				
	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract (Note 8)	Reused in Other Projects (Note 8)	Disposed as Public Fill (Note 6)	Imported Fill (Note 6)	Metals	Paper / Cardboard Packaging	Plastics (Note 3)	Chemical Waste	Others, e.g. general refuse (Note 8)
	(in ${ }^{\text {'000m }}{ }^{\text {3 }}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in ${ }^{0} 000 \mathrm{~m}^{3}$)	(in ${ }^{\text {'000m }}{ }^{\text {3 }}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in ${ }^{1} 000 \mathrm{~m}^{3}$)
Jan	48.460	0.000	33.635	14.687	0.138	3.380	7.500	0.000	0.000	0.000	0.189
Feb	28.973	0.000	8.313	20.634	0.026	19.826	2.700	0.400	0.000	0.000	0.130
Mar	41.562	0.000	21.776	19.786	0.000	35.687	2.800	0.000	0.000	0.000	0.098
Apr	40.002	0.000	12.304	27.698	0.000	22.723	8.970	0.000	0.000	1.239	0.150
May	46.877	0.000	11.038	35.839	0.000	37.790	6.780	0.750	0.000	0.000	0.176
Jun	7.659	0.000	7.659	0.000	0.000	71.856	3.210	0.000	0.000	0.000	0.228
Sub-total	213.533	0.000	94.725	118.644	0.164	191.262	31.960	1.150	0.000	1.239	0.969
Jul	12.324	0.000	12.324	0.000	0.000	63.589	6.620	0.250	0.000	0.000	0.390
Aug	3.097	0.000	3.097	0.000	0.000	38.259	9.447	0.000	0.000	0.000	0.332
Sep	6.468	0.000	5.846	0.000	0.622	9.458	2.101	0.000	0.000	0.000	0.390
Oct	3.977	0.000	3.865	0.000	0.112	13.171	6.211	0.650	0.000	0.000	0.462
Nov	21.083	0.000	3.919	17.036	0.128	0.000	10.300	0.300	0.000	1.023	0.462
Dec	23.209	0.000	2.938	19.815	0.456	0.363	9.812	0.000	0.000	0.000	0.410
Sub- total	70.157	0.000	31.989	36.851	1.318	124.839	44.491	1.200	0.000	1.023	2.444
Total	283.690	0.000	126.714	155.495	1.482	316.102	76.451	2.350	0.000	2.262	3.413

Forecast of Total Quantities of C\&D Materials to be Generated from the Contract*										
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in ${ }^{\text {'000m }}{ }^{\text {3 }}$)	(in $000 \mathrm{~m}^{3}$)	(in ${ }^{\text {'000m }}{ }^{\text {3 }}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in ${ }^{\text {' }} 000 \mathrm{~m}^{3}$)
310.805	21.788	224.130	40.265	24.622	1362.000	10.000	4.600	0.500	3.400	2.350

Notes: (1) The performance target are given in ER Appendix 8J Clause 14
(2) The waste flow table shall also include C\&D materials that are not specified in the Contract to be imported for use at the Site
(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
(4) The Contractor shall also submit the latest forecast of the amount of C\&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of $C \& D$ materials expected to be generated from the Works is equal to or exceeding $50,000 \mathrm{~m}^{3}$.
(5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
(6) Conversion factors for reporting purpose:
excavated (bulk): rock $=2.0$ tonnes $/ \mathrm{m}^{3}$; soil $=1.8$ tonnes $/ \mathrm{m}^{3}$, sand $=1.9$ tonnes $/ \mathrm{m}^{3}$ Metal=7.85tonnes $/ \mathrm{m}^{3}$
(7) Numbers are rounded off to the nearest three decimal places
(8) 30T dump truck carries C\&D waste of $8.0 \mathrm{~m}^{3}$; 24 T dump truck carries C\&D waste of $6.5 \mathrm{~m}^{3}$
(9) The actual quantities of inert C\&D material generated in November and December 2015 will be updated in Monthly EM\&A Report for January 2016.

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: HyD
Monthly Summary Waste Flow Table for 2016

Month	Actual Quantities of Inert C\&D Materials Generated Monthly						Actual Quantities of C\&D Wastes Generated Monthly				
	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract (Note 8)	Reused in Other Projects (Note 8)	Disposed as Public Fill (Note 6)	Imported Fill (Note 6)	Metals	Paper / Cardboard Packaging	Plastics (Note 3)	Chemical Waste	Others, e.g. general refuse (Note 8)
	(in $000 \mathrm{~m}^{3}$)	(in $000 \mathrm{~m}^{3}$)	(in $000 \mathrm{~m}^{3}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in ${ }^{\text {' } 000 \mathrm{~m}^{3} \text {) }}$	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in $000 \mathrm{~m}^{3}$)
Jan	See Note 9	0.000	See Note 9	See Note 9	0.000	0.000	5.203	0.500	0.000	0.000	0.475
Feb											
Mar											
Apr											
May											
Jun											
Sub-total	See Note 9	0.000	See Note 9	See Note 9	0.000	0.000	5.203	0.500	0.000	0.000	0.475
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Sub- total											
Total	See Note 9	0.000	See Note 9	See Note 9	0.000	0.000	5.203	0.500	0.000	0.000	0.475

Forecast of Total Quantities of C\&D Materials to be Generated from the Contract*										
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in $0000 \mathrm{~m}^{3}$)	(in $0000 \mathrm{~m}^{3}$)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)	(in $0000 \mathrm{~m}^{3}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)
310.805	21.788	224.130	40.265	24.622	1362.000	10.000	4.600	0.500	3.400	2.350

Notes: (1) The performance target are given in ER Appendix 8J Clause 14
(2) The waste flow table shall also include C\&D materials that are not specified in the Contract to be imported for use at the Site
(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
(4) The Contractor shall also submit the latest forecast of the amount of C\&D materials expected to be generated from the Works, together with a break down of the nature where the total amount of $C \& D$ materials expected to be generated from the Works is equal to or exceeding $50,000 \mathrm{~m}^{3}$.
(5) All recyclable materials, including metals, paper / cardboard packaging, plastics, etc. will be collected by registered collector for recycling.
(6) Conversion factors for reporting purpose:
excavated (bulk): rock $=2.0$ tonnes $/ \mathrm{m}^{3}$; soil $=1.8$ tonnes $/ \mathrm{m}^{3}$, sand $=1.9$ tonnes $/ \mathrm{m}^{3}$ Metal=7.85tonnes $/ \mathrm{m}^{3}$
(7) Numbers are rounded off to the nearest three decimal places
(8) 30 T dump truck carries $\mathrm{C} \& \mathrm{D}$ waste of $8.0 \mathrm{~m}^{3}$; 24 T dump truck carries C\&D waste of $6.5 \mathrm{~m}^{3}$
(9) The actual quantities of inert C\&D materials generated in January 2016 will be updated in Monthly EM\&A Report for February 2016.

Appendix J

HyD Contract No．HY／2011／03

Hong Kong－Zhuhai－Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No．	Received Date	Received Time	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM－2012－008	22－Oct－2012	16：41	EPD	Environmental （Water Pollution）	X先生投訴東涌機場對出港珠澳大橋地盤，有污水排到海中 （櫰疑是油污），污染噮境，要求跟進及回覆。（Photos attached）．The＂phenomenon＂was observed over the past week． The photos attached were taken on 19．10．2012， 22．10．2012 and 23．10．2012	Portion X	The pelican barge as shown in the photos provided on 24 October 2012 did not belong to the Contractor．	Closed	－
COM－2012－009	05－Nov－2012	－	$\begin{aligned} & 1823 \text { CASE: } 1- \\ & 391341859 \end{aligned}$	Environmental （Noise and light）	The citizen complained about noise and light pollution from the barges working on the Zhuhai Macau Bridge project． Barge machinery working to about 10 pm at night and sometimes can be heard intermittently through the night． The noise is more audible because the machinery is sited on／over the water．	Portion X	The Contractor has adjusted the emission angle of the lights on working vessels with a view to minimizing the glaring effect to the adjoining residential areas	Closed	－
COM－2012－009（2）	11－Nov－2012	－	$\begin{aligned} & 1823 \text { CASE: 1- } \\ & 391341859 \end{aligned}$	Environmental （Noise，water quality \＆air quality）	The complainant noted that the barges are still working on a Sunday，up until 10pm at night，very noisy，causing pollution of the water and at times expelling black smoke from their engines．A photograph taken at 10.40 am on Sunday 11 November 2012 was attached．	Portion X	－	Closed	－
COM－2012－009（3）	14－Nov－2012	－	$\begin{aligned} & 1823 \text { CASE: } 1- \\ & 391341859 \end{aligned}$	$\begin{array}{\|l} \hline \text { Environmental } \\ \hline \text { (Noise) } \end{array}$	The complainant did not accept the reply．He further said that＂Al staff has to do is come out either at night or a Sunday to check，so easy．If this continues I will have no choice to call the police out．＂	Portion X	The Contractor has taken the following further mitigation measures for the reclamation works： （a）Mitigation Measures for Noise Nuisance： －Improvement of noise covers onto the generators／motors on barges；and －Increase frequency of applying lubricant to all moving parts and gear wheels of the working barges． （b）Mitigation Measures for Smoke Emission： －Increase frequency of maintenance and checking of engines on barges that may emit smoke；and －Installation／replacement of smoke suppression device such as air filter，at engines where necessary．	Closed	－
COM－2012－010（1）	06－Nov－2012	－	$\begin{array}{\|l\|} \hline \text { <hzmbenquiry@ } \\ \text { hyd.gov.hk> } \end{array}$	$\begin{aligned} & \text { Environmental } \\ & \text { (Noise) } \end{aligned}$	The complainant stated that lately work has started opposite Le Bleu Deux estate using barges．The work in process is generated high level of noise from powered acceptable on those barges．Even if the noise was creating nuisance to local resident at night（past 7pm）and on Sunday．Basically as 5 November 12 evening，he could not leave his window open as the elevel of noise prevent his baby to sleep and he could not even hear the TV in his flat．the noise coming from the site is higher then the sounds from my TV． He would like to know what measure you are planning to put in place to address this issue．He did not think that the current level of noise are acceptable past 7pm and on Sunday．	Portion X	－	Closed	－
COM－2012－010（2）	15－Nov－2012	－	$\begin{aligned} & \text { <hzmbenquiry@ } \\ & \text { Shyd.oov.hk } \end{aligned}$ hyd．gov．hk＞	Environmental （Noise \＆air quality）	The noise can be very annoying，on days depending of the wind direction，you are making more noise than the plane taking off（I measured it myself），to give you an idea of the disturbance you are creating again．I would also like to bring an other topic beside the noise．Since the beginning of the filling operation，very strong smell of exhaust pipe gas can be smelt in the residential area and I think this is a huge health concern for the local population．On certain days when the wind is blowing towards the residential areas，I have the feeling that there is a diesel engine running in my living room！I would like to know how you are planning to address this？	Portion X	－	Closed	－

HyD Contract No.HY/2011/03

Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No.	$\begin{aligned} & \text { Received } \\ & \text { Date } \end{aligned}$	$\begin{array}{\|c} \text { Received } \\ \text { Time } \end{array}$	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM-2012-010(3)	15-Nov-2012	-	EPD	Environmental (Noise, water quality \& air quality)	The complainant has copied his reply from HyD dated 15 Nov 2012 to EPD and Health Department and he further complained on the following issues: - Noise nuisance generated by diesel engine; - Smell of exhaust pipe gas in his residence; and - Suspected marine water pollution (see enclosed photo). The complainant also requested EPD to install noise and air quality monitoring at Le Bleu Deux estate.	WA6 ${ }^{\text {Wartion } \mathrm{X}}$	Noise from blowing horn from vessels and barges and Metallic Parts thrown on Ground - Reminded the Contractor to request the captains of the vessels and barges not blowing the horn except in case of emergency or prevention of ship collisions/serious safety matters; - The supervision teams would enhance their tight control on the vessels and barges working at that location, and monitor the situation and take corresponding actions; and - To enhance the work force of RSS to supervise each step of construction activities and the use of hand tools until the completion of the site office erection. Noise from Engines and Cranes of the Barges during Marine Operation - Installation of noise covers onto the generators / motors on all working barges;	Closed	-
COM-2012-010(4)	19-Nov-2012	22:25 hrs.	EPD	Environmenta (Air quality and Noise)	The complainant filed again a complaint for the strong exhaust pipe fumes smell coming for the construction site in Tung Chung tonight as well as the extremely high leve of noise as at at $10: 30 \mathrm{pm}$ ($19 / 11 / 12$).	WA6	- Increase frequency of applying lubricant to all moving parts and gear wheels of the working barges to avoid generation of abnormal sound; and - Review of working hours for the reclamation works and switching off all unnecessary machinery and plants at night time and Sundays. Noise from power generators		
COM-2012-010(5)	24-Nov-2012	$\begin{aligned} & \text { 13:42 hrs. } \\ & \text { 13:49 hrs } \end{aligned}$	$\begin{aligned} & \text { EPD } \\ & \text { (cc to HyD) } \end{aligned}$	Environmental (Air quality and Noise)	The noise is coming for the following sources: power generator engines from the barges used for marine operation noise from the cranes use of the construction barges. engine from the boat used to transport staff in and out boats blowing their horn late in the evening and at night Gas emissions: power generators marine operation complainant file again a complaint against the strong exhaust pipe emission flowing towards le Bleu Deux estate this afternoon 24/11/10 at 13:47. I can assure you that is it not "not that bad" whatever that means for you. And again strong noise of metallic parts being thrown on the ground. thought you have already sorted out that problem according to your multiple replies to my complaints since July???"	WA6	- All generators shall be either screened or covered by adequate sound reducing materials; - All generators situated in front of Le Bleu Deux estate will be switched off at $19: 00$ hrs, except two generators will be kept running up to 22:00hrs and one generator will be kept running overnight for maintaining minimum power requirement; and - Arrangement with CLP Power HK Ltd (CLP) for the permanent power supply to the site offices has been chased in a matter of urgency. The use of power generators will be terminated in phase starting from 6 December 2012. Exhaust Fume Emission - Tight control on using the machine and generators in the vicinity of Le Bleu Deux estate; and - Closely monitor the frequency on engine cleansing and replacement of dust filter. Change of Sea Water in Yellow - The Contractor was reminded to move their vessels and barges at areas with adequate water depth as practically as possible.		
	25-Nov-2012	$\begin{array}{\|l} \text { 22:02 hrs. } \\ \text { 22:08 hrs. } \end{array}$	$\left\lvert\, \begin{aligned} & \text { EPD to HyD) } \\ & \text { (cc }) \end{aligned}\right.$		A pictures taken this morning (25/11/12) around 9:30am10 am showing the water pollution in different area outside the floating barriers. At $21: 56$ hrs., boat used by the Highway Department against blew their horn repetitively at close proximity from the residential estate.	Portion X			
COM-2012-012(1)	13-Nov-2012	22:27 hrs.	HyD	$\begin{aligned} & \hline \begin{array}{l} \text { Environmental } \\ \text { (Noise) } \end{array} \\ & \hline \end{aligned}$	Once again your site continues to work late. The attached photo was taken at 10.15 pm on Tuesday 13 Nov . The machinery used on the barges is very noisy. Why do you continue to work till 10 pm and why do you work on a Sunday. Surely this is classified as a construction site for which you are in breach of various ordinances. An early reply is appreciated.	Portion X	The following further mitigation measures during the course of the reclamation works will be taken: - Installation of noise covers onto the generators / motors on all working barges; - Increase frequency of applying lubricant to all moving parts and gear wheels of the working barges to avoid generation of abnormal sound; and - Review of working hours for the reclamation works and switching off all unnecessary machinery and plants at nighttime and Sundays.	Closed	-
COM-2013-015	17-Jan-2013	-	EPD	Environmental (Air)		WA3	The Contractor of HY/2011/03 would take the following actions with immediate effect - To ensure no loosed earth material exposed at the edges of eth stockpiled earth materials i.e. to prevent erosion by wind and water ; - To cover the stockpiled earth material by adequate tarpaulin; - To enhance the frequency of watering (3 times per day) onto existing haul road and other area as appropriate; and - To install a water sprinkler system to enhance the existing dust suppression measures once the water point is ready for water supply by WSD.	Closed	

HyD Contract No.HY/2011/03

Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No.	Received	Received	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM-2013-016	18-Jan-2013	-	EPD	$\begin{aligned} & \text { Environmental } \\ & \text { (Water) } \end{aligned}$	The complainant advised that turbid water and concretelcement has been arising from the Hong Kong- Zhuhai-Macao Bridge Hong Kong Proiects to marine water Zhunai-Macao Bridge Hong Kong Projects to marine wate water and concrete/cement.	N/A	-	Closed	-
COM-2013-018	02-Mar-2013	-	HyD	$\begin{aligned} & \text { Environmental } \\ & \text { (Noise) } \end{aligned}$	The complainant advised that "It seems that the Contractor's cranes operating on the barges are again in need of bit of lubricant, as this evening i.e. 2 March 2013, the cranes are again polluting the neighborhood with intolerable noise." The complainant requested Mr. Ng from EPD to take note of this complaint and expected a detailed report.	Portion X	The Contractor has been reminded to continue the process of applying lubricant/ grease to all barges which are to be worked in the site area near Le Bleu Deux.	Closed	-
COM-2013-018 (2)	04-Mar-2013	-	EPD	$\begin{aligned} & \text { Environmental } \\ & \text { (Noise) } \end{aligned}$	The complainant complained that the cranes operating on the barges for the HZMB HK project generating squeak noise in the evening of 1 March 2013 causing an annoyance to him/her.	Portion X	The Contractor implemented the following measures: - Birifing given tothe operator of the proper operation of marine vessels; - Keip adequate routine maintenacere - Minimize the euantities of plant $\begin{aligned} & \text { Ifter } 7 \text { pm; \& } \\ & \text { - Review the working hours of night time works and switch off all unnecessary machinery and plants at night time. }\end{aligned}$	Closed	-
COM-2013-018 (3)	13-Mar-2013	-	HyD	$\begin{aligned} & \text { Environmental } \\ & \text { (Noise) } \end{aligned}$	The complainant asked what noise mitigation the Contractor was taking. The complainant pointed out that the noise in question was so strong that it woke up his baby girl.	Portion X	-	Closed	-
COM-2013-018 (4)	22-Mar-2013 24-Mar-2013	14:19 hrs 10:28 hrs	HyD	$\begin{array}{\|l\|l\|} \hline \text { Environmental } \\ \text { (Noise) } \end{array}$	The complainant complained that "the lifting appliance was operated gently and softly to keep the noise emission as low as possible" but the noise still woke up his baby. "Lubricant was regularly applied to smoothen all moving parts and gear wheels of the working barges" that did not seem to be the case at all. The complainant pointed that the crane operating at 10:27 hrs on 24 March 2012 needed lubricant.	Portion X	The Contractor will keep on closely monitoring the situation and carry out the necessary noise mitigation measures while barges are working in the site area nearby residential area.	Closed	-
COM-2013-018 (5)	31-Mar-2013 1-Apr-2013	10:25 hrs 10:32 hrs	HyD	$\begin{array}{\|l\|} \hline \text { Environmental } \\ \text { (Noise) } \end{array}$	The complainant complained that noise emitted from a crane at 10:19 hrs. The complainant further complained that noise was generated from a barge at 07:30 hrs.	Portion Y	-	Closed	-
$\begin{aligned} & \text { COM-2013-018 (6), } \\ & \text { (7) } \&(9) \end{aligned}$	15-Apr-2013	15:41 hrs	EPD	Environmental (Noise)	The complainant complained that machinery noise generated from the construction site near Tung Chung Development Pier operating for the Hong Kong-Zhuhai Macao Bridge Hong Kong during the normal working hours on 6 April 2013 and 13 April 2013 and the late evening of 10 April 2013 causing nuisance to public.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours and non-restricted hours, the Contractor has implemented the following additional measures: - Briefing given to the operator of the barges for proper operation of marine vessels; - Operating barge by experienced operators only; - Keeping adequate routine maintenance for barges e.g. application of lubricants into moving parts in order to minimize squeak noise; - Install noise covers onto noisy equipment where practicable. - Remind subcontractor only well-maintained plant should be operated on-site. - Minimized the quantities of plant used after 7 pm as far as practicable; - Speed up of construction works in order to shorten the duration (days) of potential noise impact/nuisance to the surrounding environment; and - Regular review of working hours for night time works and switch off all unnecessary machinery and plants at night time.	Closed	-

HyD Contract No.HY/2011/03

Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No.	Received Date	Received Time	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM-2013-018 (11)	28-Apr-2013	15:44	EPD	Environmental (Noise)	The complainant complained that machinery noise generated from the reclamation site near Tung Chung Development Pier at around 22:00 of 28 April 2013 causing nuisance to public.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - Briefing given to the operator of the barges for proper operation of marine vessels; - Operating barge by experienced operators only; - Keeping adequate routine maintenance for barges e.g. application of lubricants into moving parts in order to avoid squeak noise; - Install noise covers onto noisy equipment where practicable. - Remind subcontractor only well-maintained plant should be operated on-site. - Speed up of construction works in order to shorten the duration (days) of potential noise impact/nuisance to the surrounding environment; and - Regular review of working hours for night time works and switch off all unnecessary machinery and plants at night time.	Closed	-
COM-2013-022	08-Apr-2013	-	EPD	Environmental (Water)	The complaint alleged that oil was dumped from various vessels operating tor H ZMB Hp projects near Tung Cung Development Pier over the past few months. Photos were provided by the complainant.	Portion X	The Contractor has checked the photos provided by the complainant and confirmed that the vessels and boats shown in the photos do not belong to Contract No. HY/2011/03.As this complaint is not related to this Contract, no follow up action is required. The Contractor has reminded their subcontractors to implement the measures recommended in the Spill Response Plan (SRP) in case of accidental release of oils from vessel.	Closed	-
COM-2013-022(2)	23-May-2013	09:15 hrs	EPD	Environmental (Water)	This complaint was a follow-up of a previous complaint received by EPD on 8 Apri- 2013 regararing oil slicks caused by vessels. It was alleged that oil was still being dumped from various vessels operating for HZMB HK projects near Tung Chung Development Pier over the past few months. On the other hand, the complainant would also like to know whether the owners of the vessels could present engine oil disposal records for the vessels which supported the HZMB project.	Portion X	The Contractor has reminded their subcontractors to implement the measures recommended in the Spill Response Plan in case of accidental release of oils from vessel and handle the chemical waste (waste oil) in accordance with the requirements provided in the EM\&A Manual.	Closed	-
COM-2013-023	02-May-2013	-	HyD	Environmental (Noise)	The complainant alleged that there were metal parts dropped on the ground creating noise at 12:58 on 1 May 2013 dropped on the ground creating noise at 12:58 on 1 May 2013	WA6	If there are metal handling works, the Contractor will not carry out the metal handling works in early morning in order to minimize potential noise disturbance as far as practicable in future.	Closed	-
COM-2013-024	23-May-2013	09:50 hrs	EPD	Environmental (Noise)	A complaint was received on 23 May 2013 regarding noise generated from dropping metal parts on numerous occasion on the pier opposite Le Blau Deux at around 08:45 to 10:00 hrs of 18 May 2013 and loading/unloading activities creating noise disturbance by the contractor of HY/2011/03.	WA6	If there are metal handling works, the Contractor will not carry out the metal handling works in early morning in order to minimize potential noise disturbance as far as practicable in future.	Closed	-
COM-2013-027	29-Jun-2013	10:02 hrs	RSS	Environmental (Noise)	A complaint was received on 29 June 2013 regarding noise generated from the works area near the site office (WA6) around 10:00 hrs on 29 June 2013	WA6	The Contractor was recommended to minimize the potential noise impacts generated from the construction sites as far as practicable in future.	Closed	-
COM-2013-033	13-Sep-2013	$\begin{gathered} \hline \text { Around } \\ \text { 22:00 hrs } \end{gathered}$	RSS	Environmental (Noise)	A complaint was received regarding the noise nuisance from barge at about 22:20 hrs on 13 September 2013 and 02:30 hrs on 14 September 2013.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - inimized the quantities of plant used after 7pm as far as practicable; and - Regular review of working hours for night time works and switch off all unnecessary machinery and plants at night time.	Closed	-
COM-2013-034	17-Sep-2013	-	HyD	Environmental (Noise)	A complaint was received on 17 September 2013 regarding the noise nuisance from tree transplanting activities in the morning of 14 September 2013.	Portion Y	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. o minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - Minimized the quantities of plant used after 7pm as far as practicable; and - Regular review of working hours for night time works and switch off all unnecessary machinery and plants at night time.	Closed	-
COM-2013-037	8-Oct-2013 9-Oct-2013 16-Oct-2013	-	$\begin{gathered} \text { Supervising } \\ \text { Dfficer's } \\ \text { Representative } \end{gathered}$	Environmental (Noise)	The complainant complained the noise from barge operation from 21:30 to 22:30 hrs on 4 October 2013 The complainant complained that several loud bangs were heard starting from 21:00 hrs on 7 October 2013 The complainant complained that it was very noisy at the noon of 14 October 2013.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: -minimize the quantities of plant used during restricted hours as far as practicable; and Pregitfaf feview of working duration for restricted hours works and switch off all unnecessary machinery and plants during restricted hours.	Closed	-

HyD Contract No.HY/2011/03

Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No.	Received Date	Received Time	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM-2013-041	31-Oct-2013	21:52 hrs	EPD	Environmental (Noise)	A complaint was received on 31 October 2013 regarding the noise generated from a barge being moved by a tug boat in the morning of 31 October 2013 (around 05:55).	N/A	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - minimize the quantities of plant used during restricted hours as far as practicable; and - regular review of working duration for restricted hours works and switch off all unnecessary machinery and plants during the night-time and early morning period (7 pm to 7 am).	Closed	-
COM-2013-043	11-Nov-2013	-	EPD	Environmental (Noise)	A complaint was received on 11 November 2013 regarding a barge moving through the southern channel of HyD's construction site after 23:00 hrs on 8 November 2013.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - minimize the quantities of plant used during restricted hours as far as practicable; and - regular review of working duration for restricted hours works and switch off all unnecessary machinery and plants during restricted hours.	Closed	
COM-2013-045	27-Dec-2013	--	HyD	$\underset{\text { Environmental }}{\text { (Noise) }}$	A complaint was received on 27 December 2013 regarding barges operating at the south channel of Portion X in the afternoon of 26 December 2013.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: -minimize the quantities of plant used during restricted hours as far as practicable; and - regular review of working duration for restricted hours works and switch off all unnecessary machinery and plants during restricted hours.	Closed	-
COM-2014-046	16-Jan-2014	17:22 hrs	HyD	Environmental	A complaint was received on 16 January 2014 regarding heavy exhausts generated at around $8 \mathrm{a} . \mathrm{m}$. and 10 a.m. over past few months and or even midnight.	N/A	The Contractor has implemented the following measure to minimize exhaust fumes generated from machinery: - Maintenance for the all machinery regularly.	Closed	-
COM-2014-048	18-Jan-2014	-	EPD	Environmental (Other: Blackish mud)	A complaint was received on 18 January 2014 regarding blackish mud along the edge of the construction site of Hong Kong-ZZuhai-Macao Bridge Hong Kong Project near the airport in the morning of 18 January 2014 .	Portion X	Based on the investigation results, it is considered that the blackish mud raised in the complaint was not related to HKLRO3 Contract. In this case, no follow up action is required.	Closed	-
COM-2014-050	24-Mar-2014	-	EPD	$\begin{gathered} \text { Environmental } \\ \text { (Other: Dredged } \\ \text { Marine Sediment) } \end{gathered}$	A complaint was received by EPD on 24 March 2014. The complainant advised that there was dredged material found being mixed with soil in the construction site of Hong Kong- Zhuhai-Macao Bridge Hong Kong Link Road Project in the Znicinity of CAD headquarters and transported out of the site. The complainant suspected that there was improper disposal of dredged marine sediment.	Portion X	Based on the investigation results, it is considered that the complaint is invalid. In this case, no follow up action is required.	Closed	-
COM-2014-051	29-Apr-2014	-	SOR	Environmental (Noise)	A complaint was received on 29 April 2014 regarding loud bang coming from the site at 21:37 hrs on 28 April 2014.	Portion X	Based on the Contractor's site dariry and our investigation, no non-compliance was identified.	Closed	-
COM-2014-053	02-May-2014	-	EPD	Environmental (Noise)	A complaint was received by EPD on 1 May 2014. The complainant advised that there was noise nuisance arising during the evening of 1 May 2014.	Portion X	The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours. To minimize the potential noise impact during restricted hours, the Contractor has implemented the following additional measures: - minimize the quantities of plant used during restricted hours as far as practicable; and - regular review of working duration for restricted hours works and switch off all unnecessary machinery and plant during restricted hours.	Closed	-
COM-2014-063	03-Dec-14	-	Arup	Environmental (Noise)	According to Arup's email to CSCE and DCVJV on 3 December 2014, "A resident living in Le Bleu Duex addressed a complaint to CE of HyD at about 20:04 hrs last night. He complained about the noise nuisance coming from site office since 19:30 hrs last night. epetitively metal parts had been dropped on the ground by people who seem to be loading or unloading a boat at the pier. Noise was still going on right now at 20:04."	WA6	Based on the investigation results, it is found that the noise complaint is not related to Contract No. HY/2011/03. In this case, no follow up action is required.	Closed	-

HyD Contract No.HY/2011/03

Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road
Section between Scenic Hill and Hong Kong Boundary Crossing Facilities

Complaint Register

Complaint No.	Received Date	Received Time	Source	Category	Complaint Details	Location	Improvement Measures Taken	Status	Remarks
COM-2014-065	24-Dec-14	Nil	EPD	Environmental (Water Qulity)	A complaint was received on 24 December 2014 regarding the increase of marine efefuse (water bobtles and debris) along the shore from Yat Tung to Tai O, where the complainant considered might be in relation to the HZMB project(s).	Portion X	Based on the investigation results, it is considered that the complaint is unlikely related to HKLR03 Contract. Nevertheless, the Contractor is reminded to implement all recommended mitigation measures for waste management and avoid dumping rubbish into the sea.	Closed	-
COM-2015-066	08-Apr-15	Nil	EPD (An email forwarded by Arup)	$\begin{gathered} \text { Environmental } \\ \text { (Dust) } \end{gathered}$	According to Arup's email to CSCE on 8 April 2015 , the ET was intormed that a complaint had been received by EPD at about 18:29 hrs on 2 Apr 2015 regarding construction dust from construction site (S15) at Kwo Lo Wan Road, Tung Chung.	S15	Based on the Contractor's information and our investigation, no non-compliance was identified. The Contractor is reminded to continuously implement the dust suppression measures to minimize potential dust impact.	Closed	-
COM-2015-068	10-Apr-15	Nil	EPD (An email forwarded by Arup)	Environmental (Noise)	According to Arup's email to CSCE on 10 April 2015 , it is noted that EPD received a noise complaint from a resident of Caribeean Coast. According to the complainant, he was disturbed by noise from construction activities of the HZMB Project during weekends and holidays. The complainant was referring to those activities carried out between Scenic Hill and HKBCF because the complainant mentioned the contractor was China State.	N/A	Based on the information provided and our investigation, the Contractor had complied with the conditions laid down in Construction Noise Permit (CNP) Nos. GW-RS0113-15 and GW-RS0356-15. Hence, no non-compliance was identified. The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours and recommended to implement the following measures to minimize the potential noise impact during restricted hours: minimize the quantities of plant used during restricted hours as far as practicable; and regular review of working duration for restricted hours works and switch off all unnecessary machinery and plant during restricted hours.	Closed	-
COM-2015-074	16-Jul-15	Nil	EPD	Environmental (Wastewater)	According to EPD's email to Highways Department, ET, SOR and ENPO, a complaint was received on 16 July 2015 regarding wastewater splashing from vehicles to pedestrian at Tung Fai Road. The complainant complained that wastewater was splashed to people waiting at the bus stop near Civil Aviation Department Headquarters Office Building when vehicles leaving the HZMB site to Tung Fai Road.	Tung Fai Road	Based on the investigation results, it is considered that the complaint is unlikely related to HKLR03 Contract. The Contractor has been reminded to slow down their vehicles when leaving the concerned construction site.	Closed	-
COM-2015-076	17-Jul-15	Nil	$\begin{aligned} & \text { EPD (An email } \\ & \text { forwarded by } \\ & \text { ENPO) } \end{aligned}$	Environmental (Noise)	According to EPD's email to ENPO on 17 July 2015, it is noted that EPD received a noise complaint from public. The complainant said that he/she was disturbed by the noise generated from construction sites of the HZMB Project during the daytime period of past few Sundays. Afterwards, EPD contacted the complainant and confirmed that the noise was generated from construction sites along Kwo Lo Wan Road and signs of "China State Construction Engineering (HK) Ltd" were noted.	$\begin{gathered} \text { Kwo Lo } \\ \text { Wan Road } \end{gathered}$	Based on the information provided and our investigation, the Contractor complied with the conditions laid down in Construction Noise Permit (CNP) Nos. GW-RS0733-15 and GW-RS0740-15 and no noncompliance was found. The Contractor has been reminded to comply with CNP conditions for construction works undertaken during restricted hours and recommended to implement the following measures to minimize the potential noise impact during restricted hours: - minimize the quantities of plant used during restricted hours as far as practicable; and - regular review of working duration for restricted hours works and switch off all unnecessary machinery and plant during restricted hours.	Closed	-
COM-2015-079	07-Dec-15	Nil	$\begin{array}{\|c} \hline \text { ENPO (EPD } \\ \text { referred the } \\ \text { email from } \\ \text { Complainant to } \\ \text { ENPO) } \end{array}$	Environmental (Water Quality)	According to ENPO's email to SOR and ET on 7 December 2015, a complaint was received by EPD on 2 December 2015 regarding water quality near HKLR work site The complainant mentioned that "I moved to Tung site. The complainant mentioned that "I moved to Tung Chung since July and it was the second time I saw similar situation polluting the sea. Last time it was even worse in red colour. Please look into this matter and let me know what was being dropped into the sea and whether it was hazardous to the sea.". EPD has contacted the complainant and obtained the additional information from the complainant. EPD suspected that the incident happened in the afternoon on 28 November 2015.	Portion X		Closed	-

Appendix K

Summary of Environmental Licences and Permits Application and Status

Environmental Permit

Date Application Submitted	Status	Date EP Issued	EP No.	EP Holder	Expiry Date
04.12 .2014	VEP issued	22.12 .2014	EP-352/2009/D	Highways Department	N/A
30.06 .2015	VEP Issued	17.07 .2015	EP-353/2009/1	Highways Department	N/A

Notification of Carrying Out Notifiable Works under Air Pollution Control (Construction Dust) Regulation

Date Notification Submitted	Notification Ref. No.	Valid Since	Expiry Date
25.05 .2012	345690	01.06 .2012	N/A

Notification of Carrying Out Notifiable Works under Air Pollution Control (Construction Dust) Regulation Form NB

Date Notification Submitted	Notification Ref. No.	Valid Since	Expiry Date
31.07 .2015	391702	31.07 .2015	N/A

Billing Account for Disposal of Construction Waste

Billing Account for Disposal of Construction Waste	Valid Since	Expiry Date	
01.06 .2012	Account No	27.06 .2012	N/A

Item No.	Date Application Submitted	Works Area Applied	Description	Status	Permit No.	Validity of Permit	
						From	To
1	16.11.2015	SHT Tunnel	Cat. L Dredged / Excavated Sediment Requiring Type 1 Open Sea Disposal	Permit issued on 04.12.2015	EP/MD/16-136	04.12.2015	29.02.2016
2	20.04.2015	SHT Tunnel	Cat. L Dredged / Excavated Sediment Requiring Type 1 Open Sea Disposal (Cross-boundary Disposal)	Permit issued on 29.01.2016	EP/MD/16-011	29.01.2016	28.02.2016

Contract No. HY/2011/03
Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road - Section Between Scenic Hill
And Hong Kong Boundary Crossing Facilities
License \& Permit Register

Chemical Waste Producer Registration

Date Registration Submitted	Waste Producer No.	Date Registration Issued	Major Waste Type
20.06 .2012	$5213-950-C 1169-43$	12.07 .2012	Spent lubricating oil, spent flammable liquid (diesel), surplus paint, spent organic solvent and their containers, spent batteries, soil containing mineral oil

Wastewater Discharge License

Item No.	Date Application Submitted	Area Applied	Status	Expiry Date
1	22.06.2012	Site Office for Supervising Officer (WA6)	Application Ref. No. 346651 Letter from the EPD (Ref: EP/RS/0000346267) dated 19.07.2012 confirming that license under WPCO is not required.	N/A
2	04.07.2012	Site Office for China States (WA6)	Application Ref. No. 346982 Water Discharge License WT00014182-2012 was granted on 20 Sep 2012	Valid until 30 Sept 2017
3.	31.07.2012	Portion B, Portion X \& Portion Y	Application Ref. No. 348019 Water Discharge License WT00014118-2012 was granted on 20 Sep 2012	Valid until 30 Sep 2017.
4.	15.01.2013	WA 3	Application Ref No. 356237 Water Discharge License Ref. WT00015423-2013 was granted on 4 Mar 2013	Valid until 31/03/2018
5.	15.01.2013	WA 4	Application Ref No. 356240 Water Discharge License Ref. WT00016158-2013 was granted on 30 July 2013	Valid until 31/07/2018
6	02.04.2013	Airport Road (Southern)	Water discharge license Ref. WT00015865-2013 was granted on 29 Apr 2013	Valid until 30/04/2018
7	26.10.2015	Airport Road (Northern)	Water discharge license Ref. WT00023165-2015 was granted on 21 Dec 2015	Valid until 30/04/2018

And Hong Kong Boundary Crossing Facilities
License \& Permit Registe

Construction Noise Permit

| Item
 No. | Date Application
 Submitted | Works Area Applied | Description | Status | CNP No. | Validity of CNP
 1 31.07.2015 | Arom |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Contract No. HY/2011/03
Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road - Section Between Scenic Hill
And Hong Kong Boundary Crossing Facilities
License \& Permit Register

Item No.	Date Application Submitted	Works Area Applied	Description	Status	CNP No.	Validity of CNP	
						From	To
9	26.10.2015	HAT	Percussive Piling	CNP issued on 05.11.2015	PP-RS0027-15	$\begin{aligned} & 05.11 .2015 \\ & 0700 \end{aligned}$	$\begin{array}{\|l} 04.05 .2016 \\ 1900 \end{array}$
10	23.12.2015	Reclamation Area	Marine Works	CNP issued on 05.01.2016	GW-RS1464-15	$\begin{aligned} & \text { 06.01.2016 } \\ & 1900 \end{aligned}$	$\begin{aligned} & 05.07 .2016 \\ & 2400 \end{aligned}$
11	09.11.2015	Shaft 1-3	Tunnel Works	CNP issued on 23.11.2015	GW-RS1266-15	$\begin{aligned} & 23.11 .2015 \\ & 1900 \end{aligned}$	$\begin{aligned} & 22.05 .2016 \\ & 2400 \end{aligned}$
12	06.01.2016	Airport Road	Road Works (Special Case)	CNP issued on 20.01.2016	GW-RS0028-16	$\begin{aligned} & 20.01 .2016 \\ & 0000 \end{aligned}$	$\begin{aligned} & 29.02 .2016 \\ & 0500 \end{aligned}$

Appendix L

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
Air Quality							
S5.5.6. 1	A1	1) The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	All construction sites	Construction stage	Partially implemented
S5.5.6.2	A2	2) Proper watering of exposed spoil should be undertaken throughout the construction phase: - Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backilled or reinstated where practicable within 24 hours of the excavation or unloading; -Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; -A stockpile of dusty material should not be extend beyond the pedestrian barriers, fencing or traffic cones. -The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle; -Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores;	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	All construction sites	Construction stage	Partially implemented
S5.5.6.2	A2	-When there are open excavation and reinstatement works, hoarding of not less than 2.4 m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S5.5.6.2	A2	-The portion of any road leading only to construction site that is within 30 m of a vehicle entrance or exit should be kept clear of dusty materials; - Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; - Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; -Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; -Any skip hoist for material transport should be totally enclosed by impervious sheeting; - Every stock of more than 20 bags of cement or dry pulverized fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	All construction sites	Construction stage	$\sqrt{ }$
S5.5.6.2	A2	- Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfiling is allowed; - Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and - Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.	Good construction site practices to control the dust impact at the nearby sensitive receivers to within the relevant criteria.	Contractor	All construction sites	Construction stage	N/A

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S5.5.6.3	A3	3) The Contractor should undertake proper watering on all exposed spoil (with at least 8 times per day) throughout the construction phase.	Control construction dust	Contractor	All construction sites	Construction stage	$\sqrt{ }$
S5.5.6	A5	5) Implement regular dust monitoring under EM\&A programme during the construction stage.	Monitor the 24 hr and 1 hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period	Contractor	Selected representative dust monitoring station	Construction stage	$\sqrt{ }$
S5.5.71	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions for concrete batching plant: - Loading, unloading, handling, transfer or storage of any dusty materials should be carried out in totally enclosed system; - All dust-laden air or waste gas generated by the process operations should be properly extracted and vented to fabric filtering system to meet the emission limits for TSP; - Vents for all silos and cement/pulverised fuel ash (PFA) weighing scale should be fitted with fabric filtering system; -The materials which may generate airborne dusty emissions should be wetted by water spray system; - All receiving hoppers should be enclosed on three sides up to 3 m above unloading point; -All conveyor transfer points should be totally enclosed; - All access and route roads within the premises should be paved and wetted; and - Vehicle cleaning facilities should be provided and used by all concrete trucks before leaving the premises to wash off any dust on the wheels and/or body.	Monitor the 24 hr and 1 hr TSP levels at the representative dust monitoring stations to ensure compliance with relevant criteria throughout the construction period	Contractor	Selected representative dust monitoring station	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S5.5.2.7	A7	The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point: -All road surface within the barging facilities will be paved; -Dust enclosures will be provided for the loading ramp; -Vehicles will be required to pass through designated wheels wash facilities; and -Continuous water spray at the loading points.	Control construction dust	Contractor	All construction sites	Construction stage	$\sqrt{ }$
Noise							
S6.4.10	N1	1) Use of good site practices to limit noise emissions by considering the following: -only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; -machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; -plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; -silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works -mobile plant should be sited as far away from NSRs as possible and practicable; -material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities.	Control construction airborne noise by means of good site practices	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between noisy construction activities and NSRs. The conditions of the hoardings shall be properly maintained throughout the construction period.	Reduce the constructionnoise levels at low-level zone of NSRs through partial screening.	Contractor	All construction sites	Construction stage	$\sqrt{ }$
S6.4.12	N3	3) Install movable noise barriers (typically density @ $14 \mathrm{~kg} / \mathrm{m}_{2}$),acoustic mat or full enclosure close to noisy plants including air compressor, generators, saw.	Screen the noisy plant items to be used at all construction sites	Contractor	For plant items listed in Appendix 6D of the EIA report at all construction sites	Construction stage	$\sqrt{ }$
S6.4.13	N4	4) Select .Quiet plants. which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	For plant items listed in Appendix 6D of the EIA report at all construction sites	Construction stage	$\sqrt{ }$
S6.4.14	N5	5) Sequencing operation of construction plants where practicable.	Operate sequentially within the same work site to reduce the construction airborne noise	Contractor	All construction sites where practicable	Construction stage	$\sqrt{ }$
	N6	6) Implement a noise monitoring under EM\&A programme.	Monitor the construction noise levels at the selected representative locations 	Contractor	Selected representative noise monitoring station	Construction stage	$\sqrt{ }$
Waste Management (Construction waste)							
S8.3.8	WM1	Construction and Demolition Material The following mitigation measures should be implemented in handling the waste: -Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement; - Carry out on-site sorting; - Make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; -Adopt .Selective Demolition. technique to demolish the existing structures and facilities	Good site practice to minimize the waste generation and recycle the C\&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		with a view to recovering broken concrete effectively for recycling purpose, where possible; -Implement a trip-ticket system for each works contract to ensure that the disposal of C\&D materials are properly documented and verified; and -Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005. Environmental Management on Construction Sites. to encourage on-site sorting of C\&D materials and to minimize their generation during the course of construction. - In addition, disposal of the C\&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation					
$\begin{aligned} & \text { S8.3.9- } \\ & \text { S8.3.11 } \end{aligned}$	WM2	C\&D Waste - Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C\&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. -The Contractor should recycle as much of the C\&D materials as possible on-site. Public fill and C\&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Where practicable, concrete and masonry can be crushed and used as fill. Steel reinforcement bar can be used by scrap steel mills. Different areas of the sites should be considered for such segregation and storage.	Good site practice to minimize the waste generation and recycle the C\&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{array}{\|l\|} \hline \text { EM\&A } \\ \text { Log } \\ \text { Ref } \end{array}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
$\begin{aligned} & \text { S8.2.12- } \\ & \text { S8.3.15 } \end{aligned}$	WM3	Chemical Waste -Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General) Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. -Containers used for the storage of chemical wastes should be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless the specification has been approved by the EPD; and display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the regulation.. -The storage area for chemical wastes should be clearly labeled and used solely for the storage of chemical waste; enclosed on at least 3 sides; have an impermeable floor and bunding of sufficient capacity to accommodate 110% of the volume of the largest container or 20% of the total volume of waste stored in that area, whichever is the greatest; have adequate ventilation; covered to prevent rainfall entering; and arranged so that incompatible materials are adequately separated. -Disposal of chemical waste should be via a licensed waste collector; be to a facility licensed to receive chemical waste, such as the Chemical Waste Treatment Centre which also offers a chemical waste collection service and can supply the necessary storage containers; or be to a reuser of the waste, under approval from the EPD.	Control the chemical waste and ensure proper storage, handling and disposal.	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S8.3.16	WM4	Sewage - Adequate numbers of portable toilets should be provided for the workers. The portable toilets should be maintained in a state, which will not deter the workers from utilizing these portable toilets. Night soil should be collected by licensed collectors regularly.	Proper handling of sewage from worker to avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	$\sqrt{ }$
S8.3.17	WM5	General Refuse - General refuse generated on-site should be stored in enclosed bins or compaction units separately from construction and chemical wastes. - A reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law. -Aluminium cans are often recovered from the waste stream by individual collectors if they are segregated and made easily accessible. Separate labelled bins for their deposit should be provided if feasible. - Office wastes can be reduced through the recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. -Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes.	Minimize production of the general refuse and avoid odour, pest and litter impacts	Contractor	All construction sites	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
Water quality (Construction Phase)							
$\begin{aligned} & \text { S9.11.1- } \\ & \text { S9.11.1. } \end{aligned}$	W1	-Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of filling work, as well as protection measures. Details of the measures are provided below and summarised in the Environmental Mitigation Implementation Schedule in EM\&A Manual. -Construction of seawalls to be advanced by at least $100-200 \mathrm{~m}$ before the filling can commence. It should be noted that the protection by advanced seawall is a dynamic process depending on the progress of the construction activities. The part of the works where such measures can be undertaken for the majority of the time includes the following locations: - TMCLKL northern reclamation; TMCLKL southern reclamation (after formation of the nips); - Reclamation filling for Portion 1 of HKLR;	To control construction water quality	Contractor	During seawall filling	Construction stage	$\sqrt{ }$
$\begin{aligned} & \text { S9.11.1-1 } \\ & \text { S9.11.1. } \end{aligned}$	W1	- Single layer silt curtains will be applied around all works; -silt curtain shall be fully maintained throughout the works.	To control construction water quality	Contractor	During seawall filling	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures		Implementation Status
$\begin{aligned} & \hline \text { S9.11.1- } \\ & \text { S9.11.1. } \\ & 2 \end{aligned}$	W1	-excess material shall be cleaned from the decks and exposed fittings of barges before the vessel is moved; -all vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and -the works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.	To control construction water quality	Contractor	During seawall filling	Construction stage	$\sqrt{ }$
$\begin{aligned} & \hline \text { S9.11.1- } \\ & \text { S9.11.1. } \\ & 2 \end{aligned}$	W1	- Mechanical grabs shall be designed and maintained to avoid spillage and should seal tightly while being lifted; -barges shall have tight fitting seals to their bottom openings to prevent leakage of material; - any pipe leakages shall be repaired quickly. Plant should not be operated with leaking pipes; - loading of barges shall be controlled to prevent splashing of filling materials to the surrounding water. -Barges shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation; -adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action; -all vessels shall be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and -the works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site .	To control construction water quality	Contractor	During seawall filling	Construction stage	Partially implemented

EIA Ref.	$\begin{aligned} & \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		into the drainage system, and to prevent storm run-off from getting into foul sewers; - discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.					
S9.14	W3	- Implement a water quality monitoring programme	Control water quality	Contractor	At identified monitoring	During construction	$\sqrt{ }$
Ecology (Construction Phase)							
S10.7	E1	- Good site practices to avoid runoff entering woodland habitats in Scenic Hill; -Reinstate works areas in Scenic Hill; -Avoid stream modification in Scenic Hill.	Avoid potential disturbance on habitat of Romer.s Tree Frog in Scenic Hill	Designer; Contractor	Scenic Hill	During construction	$\sqrt{ }$
S10.7	E2	- Install silt curtain during the construction; -Construct seawall prior to reclamation filling where practicable; - Good site practices; - Site runoff control; - Spill response plan.	Minimise marine water quality impacts	Contractor	Seawall, reclamation area	During construction	$\sqrt{ }$
S10.7	E4	-Watering to reduce dust generation; prevention of siltation of freshwater habitats; Site runoff should be desilted, to reduce the potential for suspended sediments, organics and other contaminants to enter streams and standing freshwater.	Prevent Sedimentation from Land-based works areas	Contractor	Land-based works areas	During construction	$\sqrt{ }$
S10.7	E5	-Good site practices, including strictly following the permitted works hours, using quieter machines where practicable, and avoiding excessive lightings during night time	Prevent disturbance to terrestrial fauna and habitats	Contractor	Land-based works areas	During construction	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
S10.7	E6	-Dolphin Exclusion Zone; -Dolphin watching plan .	Minimize temporary marine habitat loss impact to dolphins	Contractor	Marine works	During marine works	$\sqrt{ }$
S10.7	E7	-Decouple compressors and other equipment on working vessels; - Avoidance of percussive piling; - Marine underwater noise monitoring; -Temporal suspension of drilling bored pile casing in rock during peak dolphin calving season in May and June; -Handling with care for the installation of sheet piling for reclamation site	Minimize temporary marine habitat loss impact to dolphins	Contractor	Marine works	During marine works	$\sqrt{ }$
S10.7	E8	- Control vessel speed; - Skipper training; -Predefined and regular routes for working vessels; avoid Brothers Islands.	Minimise marine traffic disturbance dolphins	Contractor	Marine traffic	During marine works	$\sqrt{ }$
S10.10	E9	-Dolphin vessel monitoring; - Mudflat ecological monitoring.	Minimise marine traffic disturbance dolphins	Contractor	North Lantau and West Lantau	Prior to construction, during construction, and 1 year after operation	$\sqrt{ }$
Ecology (Operation Phase)							
S10.7	E10	-Preconstruction dive survey for corals	Minimise impacts on marine ecology	Contractor	The marine pier sites nearest to intertidal zone and along the shore of the HKLR eclamation site	Prior to marine construction works in these locations	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
Fisheries							
S11.7	F2	- Reduce re-suspension of sediments - Good site practices -Spill response plan	Minimise marine water quality impacts	Contractor	Seawall, reclamation area	During construction	$\sqrt{ }$
S11.7	F3	- Install silt-grease trap in the drainage system collecting surface runoff	Minimise impacts on marine water quality impacts	Designer	Reclamation area	During construction	$\sqrt{ }$
S11.7	F4	-Maritime Oil Spill Response Plan (MOSRP); -Contingency plan.	Minimise impacts on marine water quality impacts	Management	HKLR	During operation stage	$\sqrt{ }$
Landscape \& Visual (Detailed Design Phase)							
$\begin{aligned} & \text { S14.3.3. } \\ & 1 \end{aligned}$	LV1	General design measures include: -Roadside planting and planting along the edge of the reclamation is proposed; -Transplanting of mature trees in good health and amenity value where appropriate and reinstatement of areas disturbed during construction by compensatory hydro-seeding and planting; -Protection measures for the trees to be retained during construction activities; - Optimizing the sizes and spacing of the bridge columns; -Fine-tuning the location of the bridge columns to avoid visually sensitive locations; - Aesthetic design of the bridge form and its structural elements for HKLR, e.g. parapet, soffit, columns, lightings and so on; Considering the decorative urban design elements for HKLR, e.g. decorative road lightings;	Minimise visual \& landscape impact	Detailed designer	HKLR	Design stage	.

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		-Maximizing new tree, shrub and other vegetation planting to compensate tree felled and vegetation removed; -Providing planting area around peripheral of HKLR for tree planting screening effect.					
S14.3.3.1	LV1	-Providing salt-tolerant native trees along the planter strip at affected seawall and newly reclaimed coastline. -Providing salt-tolerant native trees along the planter strip at affected seawall and newly reclaimed coastline. -For HKLR, providing aesthetic design on the viaduct, tunnel portals, at-grade roads and - reclamation (e.g. subtle colour tone and slim form for viaduct to minimize the bulkiness of the structure and to blend the viaduct better with the background environment, featured form of tunnel portals, roadside planting along at-grade roads and landscape berm on \& planting along edge of reclamation area) to beautify the HKLR alignment (refer to Figure 14.4.3).	Minimise visual \& landscape impact	Detailed designer	HKLR	Design stage	
Landscape \& Visual (Construction Phase)							
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts G1. Grass-hydroseed bare soil surface and stock pile areas. G2. Add planting strip and automatic irrigation system if appropriate at some portions of bridge or footbridge to screen bridge and traffic. G3. For HKLR, providing aesthetic design on the viaduct, tunnel portals, at-grade roads and reclamation (e.g. subtle colour tone and slim form for viaduct, featured form of tunnel portals, roadside planting along at-grade roads and landscape berm on \& planting along edge of reclamation area) to beautify the HKLR alignment. G4. Vegetation reinstatement and upgrading to disturbed areas.	Minimise visual \& landscape impact	Contractor	HKLR	Construction stage	$\sqrt{ }$

EIA Ref.	$\begin{aligned} & \hline \text { EM\&A } \\ & \text { Log } \\ & \text { Ref } \end{aligned}$	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concerns to address	Who to implement the measures?	Location of the measures	When to implement the measures?	Implementation Status
		G5. Maximize new tree, shrub and other vegetation planting to compensate tree felled and vegetation removed. G6. Provide planting area around peripheral of and within HKLR for tree screening buffer effect. G7. Plant salt tolerant native tree and shrubs etc along the planterstrip at affected seawall. G8. Reserve of loose natural granite rocks for re-use. Provide new coastline to adopt .naturallook. by means of using armour rocks in the form of natural rock materials and planting strip area accommodating screen buffer to enhance .natural-look. of the new coastline (see Figure 14.4.2 for example).					
S14.3.3.3	LV3	Mitigate Visual Impacts V1.Minimize time for construction activities during construction period. V2.Provide screen hoarding at the portion of the project site / works areas / storage areas near VSRs who have close low-level views to the Project during HKLR construction.					$\sqrt{ }$
EM\&A							
$\begin{aligned} & \hline \text { S15.5- } \\ & \text { S15.6 } \end{aligned}$	EM2	1) An Environmental Team needs to be employed as per the EM\&A Manual. 2) Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. 3) An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM\&A Manual are fully complied with.	Perform environmental monitoring \& auditing	Contractor	All construction sites	Construction stage	$\sqrt{ }$

Appendix M

Record of＂Notification of Environmental Quality Limit Exceedances＂and Record of＂Notification of Summons and Prosecutions＂

Contract No. HY/2011/03 Hong Kong- Zhuhai- Macao Hong Kong Link Road Sect Notifications of Environme	ridge between Scenic Hill and al Quality Limits Exceedan	ong Boun	y Crossin	acilities Notification No.: 222 ver1
Date of Notification: 22 January 2016				
Works Inspected: 1-hr TSP monitoring was undertaken on 21 January 2016				
Monitoring Location: AMS5 - Ma Wan Chung Village				
Parameter: 1-hour TSP monitoring				
Action \& Limit Level (AL \& LL) / Measured Level:				
PARAMETER	STATION	AL ($\mu \mathrm{g} / \mathrm{m}^{3}$)	$\underline{L L}\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right)$	MEASURED LEVEL, $\mu \mathrm{g} / \mathrm{m}^{3}$
1-hr TSP (13:40-14:40 hours)	Ma Wan Chung Village (AMS5)	352	500	333
1-hr TSP (14:40-15:40 hours)	Ma Wan Chung Village (AMS5)	352	500	445
1-hr TSP (15:40-16:40 hours)	Ma Wan Chung Village (AMS5)	352	500	441
$\begin{array}{ll}\text { Notes: } & \begin{array}{l}\text { Bold Italic means AL exceedance } \\ \\ \\ \\ \text { Bold Italic with underline means LL exceedance }\end{array}\end{array}$				
Possible reason for Action or Limit Level Non-compliance:				
Two Action Level exceedances of 1-hr TSP level were recorded for monitoring period from 13:40-16:40 hours at AMS5, Ma Wan Chung Village, on 21 January 2016.				
According to the information provided by the Contractor, the following construction activities were undertaken during the sampling period:				
Zone 1				
- Removal of Surcharge - Box Culvert Construction				
Zone 2				
- Seawall Construction - Box Culvert Construction - Removal of Surcharge - Sorting soil material				
Zone 3A				
Filling work on surcharg Seawall Construction Transportation of fill mat				
The Contractor confirmed that water spraying had been provided for fill materials to maintain the entire surface in a damp condition before loading and unloading and haul roads were sprayed with water by water trucks regularly. The fill material in dump trucks were covered to avoid generating dust. During the site visit undertaken on 21 January 2016, no fugitive dust emission was observed by ET at the construction site near monitoring station AMS5. The weather condition during the monitoring period were foggy and rainy.				

Actions taken/ to be taken:

It was noted that the Contractor had implemented dust control measures throughout the construction phase. No fugitive dust emission was observed by ET on 21 January 2016 at construction site near monitoring station AMS5. As such, the exceedances recorded at monitoring station AMS5 is unlikely to be related to the Contract. In this case, no immediate actions are required. However, the Contractor is reminded to continuously implement the dust control measures throughout the construction phase.

Reviewed by : Claudine Lee	Title : ET Leader

Copied to : Supervising Officer, IEC, EPD, Contractor, ENPO

Summary of Notifications of Summons and Prosecutions

Total No. of Notifications of Summons / Prosecutions Received	No. of Notifications of Summons / Prosecutions Received during Reporting Period	Status of Notifications of Summons / Prosecutions
0	0	N/A

Appendix N

[^0]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior

[^1]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．

[^2]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory
 本證書所載校正用之測試器材均可湖源至國際標準。局部複印本證書需先獲本書驗所書面批准。
 Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
 c／o 4／F，Tsing Shan Wan Exchange Building， 1 Hing On Lane，Tuen Mun，New Territories，Hong Kong
 輝飤工程有限公司－校正及檢測實驗所
 c／o 香港新界屯門興安里—號青山灣機樓四樓
 Tel／象話： 29272606 Fax／傳真： 27448986 E－mai／電郵：callab（asuncreation．com Website網址：www．suncreation．com

[^3]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．

[^4]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．

[^5]: The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．
 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本賽驗所書面批准。

[^6]: This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

