

China Harbour Engineering Company Limited

Contract No. HY/2010/02

Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2017

[04/2017]

	Name	Signature
Prepared & Checked:	Y T Tang	Cargettaling
Reviewed, Approved and Certified:	Echo Leong (ETL)	Envlouf

Version:	Rev. 0	Date: 19 April 2017	
----------	--------	---------------------	--

Disclaimer

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited Engineering Company Limited and China Harbour Engineering Company Limited and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd. 15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

Ref.: HYDHZMBEEM00_0_5278L.17

19 April 2017

By Fax (3698 5999) and By Post

Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong

Attention: Mr. Paul Appleton

Dear Sir,

Re: Agreement No. CE 48/2011 (EP) Environmental Project Office for the HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities, and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 – HZMB HKBCF – Reclamation Works Monthly Environmental Monitoring & Audit Report for March 2017

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for March 2017 certified by the ET Leader (ET's ref.: "60249820/C/RMKY17041902" dated 19 April 2017) and provided to us via e-mail on 19 April 2017.

We are pleased to inform you that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 5.4 of EP-353/2009/K and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

The ET Leader is reminded that it is the ET's responsibility to ensure the report be timely submitted to the Director of Environmental Protection and the reported information be true, valid and correct as per Conditions 5.4 and 5.5 of EP-353/2009/K and Conditions 4.4 and 4.5 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only) respectively.

As per Condition 1.7 of EPs, please be reminded to keep in view on the site condition, in particular on the integrity of the perimeter silt curtain with your on-going surveillance and monitoring, and to further update/notify ENPO and EPD from time to time and prior to each further removal of other section(s) of the perimeter silt curtains. Similarly, adequate site drainage facilities shall be provided to prevent discharge sediment laden/contaminated surface runoff into the marine waters.

Thank you very much for your attention and please feel free to contact the undersigned should you require further information.

Yours faithfully, For and on behalf of Ramboll Environ Hong Kong Limited

Raymond Dai Independent Environmental Checker

 $\label{eq:projects} Q: \label{eq:projects} Q: \label{eq:projects}$

c.c.	HyD	Mr. Vico Cheung	(By Fax: 3188 6614)
	HyD	Mr. Wai-Ping Lee	(By Fax: 3188 6614)
	AECOM	Ms. Echo Leong	(By Fax: 2317 7609)
	CHEC	Mr. Lim Kim Chuan	(By Fax: 2578 0413)

Internal: DY, YH, ENPO Site

Q:\Projects\HYDHZMBEEM00\02_Proj_Mgt\02_Corr\HYDHZMBEEM00_0_5278L.17.doc

	•		Page
EXE	CUTI	VE SUMMARY	3
1	INTF	RODUCTION	6
		Background Scope of Report Contract Organization Summary of Construction Works Summary of EM&A Programme Requirements	6 6 7 7 8
2	AIR	QUALITY MONITORING	9
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	9 9 10 10 12 12
3	NOIS	SE MONITORING	13
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Monitoring Requirements Monitoring Equipment Monitoring Locations Monitoring Parameters, Frequency and Duration Monitoring Methodology Monitoring Schedule for the Reporting Month Monitoring Results	13 13 14 14 14 14
4	WAT	ER QUALITY MONITORING	16
	4.1 4.2 4.3 4.4 4.5 4.6 4.7	Monitoring Requirements Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Locations Monitoring Methodology Monitoring Schedule for the Reporting Month Results and Observations	16 16 17 18 19 19
5	DOL	PHIN MONITORING	23
	5.7 5.8 5.9 5.10 5.11 5.12 5.13	Monitoring Procedures Month	23 23 23 23 25 25 25 25
6	ENV	IRONMENTAL SITE INSPECTION AND AUDIT	29
	6.1 6.2 6.3 6.4 6.5 6.6	Site Inspection Advice on the Solid and Liquid Waste Management Status Environmental Licenses and Permits Implementation Status of Environmental Mitigation Measures Summary of Exceedances of the Environmental Quality Performance Limit Summary of Complaints, Notification of Summons and Successful Prosecutions	29 31 32 33 34 34
7	FUT	URE KEY ISSUES	36
	7.1 7.2 7.3	Construction Programme for the Coming Months Key Issues for the Coming Month Monitoring Schedule for the Coming Month	36 37 37
8	CON	ICLUSIONS AND RECOMMENDATIONS	38

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

38

39

8.1 Conclusions

8.2 Recommendations

List of Tables

- Table 1.1Contact Information of Key Personnel
- Table 2.1
 Air Quality Monitoring Equipment
- Table 2.2
 Locations of Impact Air Quality Monitoring Stations
- Table 2.3
 Air Quality Monitoring Parameters, Frequency and Duration
- Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period
- Table 2.5Summary of 24-hour TSP Monitoring Results in the Reporting Period
- Table 3.1 Noise Monitoring Equipment
- Table 3.2
 Locations of Impact Noise Monitoring Stations
- Table 3.3
 Noise Monitoring Parameters, Frequency and Duration
- Table 3.4
 Summary of Construction Noise Monitoring Results in the Reporting Period
- Table 4.1Water Quality Monitoring Equipment
- Table 4.2
 Impact Water Quality Monitoring Parameters and Frequency
- Table 4.3
 Impact Water Quality Monitoring Stations
- Table 4.4
 Laboratory Analysis for Suspended Solids
- Table 4.5
 Summary of Water Quality Exceedances
- Table 5.1 Dolphin Monitoring Equipment
- Table 5.2
 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)
- Table 5.3
 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State
- Table 5.4
 Impact Dolphin Monitoring Survey Detail March 2017
- Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^
- Table 6.1
 Summary of Environmental Licensing and Permit Status

Figures

- Figure 1 General Contract Layout Plan
- Figure 2 Impact Air Quality and Noise Monitoring Stations and Wind Station
- Figure 3 Impact Water Quality Monitoring Stations
- Figure 4 Impact Dolphin Monitoring Line Transect Layout Map
- Figure 5 Impact Dolphin Monitoring Survey Efforts and Sightings in March 2017
- Figure 6 Environmental Complaint Handling Procedures

List of Appendices

- Appendix A Contract Organization for Environmental Works
- Appendix B Three Month Rolling Construction Programmes
- Appendix C Implementation Schedule of Environmental Mitigation Measures (EMIS)
- Appendix D Summary of Action and Limit Levels
- Appendix E Calibration Certificates of Monitoring Equipments
- Appendix F EM&A Monitoring Schedules
- Appendix G Impact Air Quality Monitoring Results and their Graphical Presentation
- Appendix H Meteorological Data for Monitoring Periods on Monitoring Dates in March
- 2017
- Appendix I Impact Construction Noise Monitoring Results and their Graphical Presentation
- Appendix J Impact Water Quality Monitoring Results and their Graphical Presentation
- Appendix K Impact Dolphin Monitoring Survey Sighting Summary
- Appendix L Event Action Plan
- Appendix M Monthly Summary of Waste Flow Table
- Appendix N Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

EXECUTIVE SUMMARY

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated Project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.

Ramboll Environ Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 March 2017. As informed by the Contractor, major activities in the reporting period were:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring	6 sessions
1-hour TSP monitoring	6 sessions
Noise monitoring	5 sessions
Impact water quality monitoring	14 sessions
Impact dolphin monitoring	2 surveys
Joint Environmental site inspection	5 sessions

For impact air quality monitoring, no exceedance of 1-Hour TSP or 24-Hour TSP was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Noise

For construction noise monitoring, no exceedance was recorded at all monitoring stations in the reporting month.

Breaches of Action and Limit Levels for Water Quality

For impact water quality monitoring, 1 action level exceedance of turbidity were recorded at both SR4(N) and IS8 during flood tide on 24 March 2017; 1 action level exceedance and 1 limit level exceedance of suspended solids were recorded at SR4(N) and IS8 respectively during flood tide on 24 March 2017; 1 action level exceedance of suspended solids were recorded at both SR4(N) and IS8 during ebb tide on 24 March 2017. The exceedances were considered unrelated to this Contract's activities after investigation. No other exceedance was recorded at all monitoring stations in the reporting month.

Summary of Impact Dolphin Monitoring

For dolphin monitoring, a total of two sightings were made, two sightings were recorded as "opportunistic". One sighting was recorded on 6 March 2017 and the other on the 21 March 2017. Both groups were recorded as travelling. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d. No resighting in February 2017.

Complaint, Notification of Summons and Successful Prosecution

One environmental complaint was received on 27 March 2017, and the complainant complained that a very loud sound was intermittently heard by the Complainant since 10pm on 26 March and such loud sound was heard by the complainant until midnight. It was suspected that the sound came from the Hong Kong-Zhuhai-Macao Bridge (HZMB) construction works near the artificial island. In addition, a large area of pollution was observed on sea in the morning of the day the complainant made the complaint. It was suspected that was caused by the HZMB construction works. After investigation, there is no adequate information to conclude the complaint is related to this Contract. Nevertheless, the Contractor was reminded to continue to fully maintain all noise and water quality mitigation measures.

No notification of summons or prosecution was received in the reporting period.

Reporting Change

No reporting change in the reporting month.

Future Key Issues

Key issues to be considered in the coming month included:

- Site runoff should be properly collected and treated prior to discharge;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facil

Hong Kong Boundary Crossing Facilities – Reclamation Works

- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.
- Regular review and provide maintenance to dust control measures such as sprinkler system

1 INTRODUCTION

1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works (here below, known as "the Contract") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.3 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G), January 2015 (EP-353/2009/H), July 2015 (EP-353/2009/I), February 2016 (EP-353/2009/J) and April 2016 (EP-353/2009/K). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.4 The Project is a designated Project and is governed by the current permits for the Project, i.e. the amended EPs issued on 11 April 2016 (EP-353/2009/K) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.5 A Contract Specific EM&A Manual, which included all Contract -relation contents from the original EM&A Manuals for the Contract, was issued in May 2012.
- 1.1.6 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Contract).
- 1.1.7 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Contract.
- 1.1.8 Ramboll Environ Hong Kong Limited was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.9 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Contract for carrying out the EM&A works.
- 1.1.10 The construction phase of the Project under the EPs was commenced on 12 March 2012.
- 1.1.11 According to the Contract Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Contract commenced on 12 March 2012.

1.2 Scope of Report

1.2.1 This is the sixty-first monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Contract in March 2017.

1.3 Contract Organization

1.3.1 The Contract organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Party	Position	Name	Telephone	Fax
Engineer's Representative (ER) (Ove Arup & Partners Hong Kong Limited)	Chief Resident Engineer	Paul Appleton	3698 5889	2698 5999
IEC / ENPO	Independent Environmental Checker	Raymond Dai	3465 2888	3465 2899
(Ramboll Environ Hong Kong Limited)	Environmental Project Office Leader	Y. H. Hui	3465 2850	3465 2899
Contractor (China Harbour	Environmental Officer	Louie Chan	3693 2254	2578 0413
Engineering Company Limited)	24-hour Hotline	Alan C.C. Yeung	9448 0325	
ET (AECOM Asia Company Limited)	ET Leader	Echo Leong	3922 9280	2317 7609

Table 1.1 Contact Information of Key Personnel

1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Contract is shown in Appendix B.
- 1.4.4 The general layout plan of the Contract site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
 - All monitoring parameters;
 - Monitoring schedules for the reporting month and forthcoming month;
 - Action and Limit levels for all environmental parameters;
 - Event / Action Plan;
 - Environmental mitigation measures, as recommended in the Project EIA reports; and
 - Environmental requirement in contract documents.

2. AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the Contract Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Contract Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

 Table 2.1
 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)
High Volume Sampler (24-hour TSP)	Tisch Environmental Mass Flow Controlled Total Suspended Particulate (TSP) High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Contract Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 The impact air quality monitoring station AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) has been relocated to AMS7 (Hong Kong SkyCity Marriott Hotel) on 30 December 2015. The impact air quality monitoring was conducted at AMS7 (Hong Kong SkyCity Marriott Hotel) since January 2016, action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel has been adopted for this air quality monitoring location.

2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of impact All Quality Monitoring Stations	Table 2.2	Locations of Impact Air Quality Monitoring Statio	ns
---	-----------	---	----

Monitoring Station	Location	Description
AMS2	Tung Chung Development Pier	Rooftop of the premise
AMS3B	Site Boundary of Site Office Area at Works Area WA2	On ground at the area boundary
AMS6*	Dragonair/CNAC (Group) Building	On ground at boundary of the premise
AMS7	Hong Kong SkyCity Marriott Hotel	On ground at boundary of the premise

*Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the Contract. The omission will be effective on 19 November 2012.

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	Three times every 6 days while the highest dust impact was expected
24-hour TSP	Once every 6 days

2.5 Monitoring Methodology

- 2.5.1 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) No two samplers should be placed less than 2 meters apart.
 - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
 - (vi) No furnace or incinerator flues nearby.
 - (vii) Airflow around the sampler was unrestricted.
 - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (ix) A secured supply of electricity was obtained to operate the samplers.
 - (x) The sampler was located more than 20 meters from any dripline.
 - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.
 - (b) Preparation of Filter Papers
 - (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
 - (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more

than ± 3 °C; the relative humidity (RH) was < 50% and not variable by more than $\pm 5\%$. A convenient working RH was 40%.

- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.
- (c) Field Monitoring
 - (i) The power supply was checked to ensure the HVS works properly.
 - (ii) The filter holder and the area surrounding the filter were cleaned.
 - (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
 - (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
 - (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
 - (vi) Then the shelter lid was closed and was secured with the aluminum strip.
 - (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
 - (viii) A new flow rate record sheet was set into the flow recorder.
 - (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
 - (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
 - (xi) The initial elapsed time was recorded.
 - (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
 - (xiii) The final elapsed time was recorded.
 - (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
 - (xv) It was then placed in a clean plastic envelope and sealed.
 - (xvi) All monitoring information was recorded on a standard data sheet.
 - (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.
- (d) Maintenance and Calibration
 - (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
 - (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
 - (iii) Calibration certificate of the HVSs are provided in Appendix E.
- 2.5.2 1-hour TSP Monitoring
 - (a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.

- (xi) Push "START/STOP" switch to start measurement.
- (b) Maintenance and Calibration
 - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
 - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in March 2017 is provided in Appendix F.

2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

 Table 2.4
 Summary of 1-hour TSP Monitoring Results in the Reporting Period

	Average (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AMS2	72	69-76	374	500
AMS3B	73	70-77	368	500
AMS7	73	70-78	370	500

Table 2.5	Summary of 24-hour TSP Monitoring Results in the Reporting Period
-----------	---

	Average (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
AMS2	51	23-74	176	260
AMS3B	46	31-68	167	260
AMS7	73	48-112	183	260

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

3. NOISE MONITORING

3.1 Monitoring Requirements

3.1.1 In accordance with the Contract Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. The Action and Limit level of the noise monitoring is provided in Appendix D.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1	Noise Monitoring Equipment
-----------	----------------------------

Equipment	Brand and Model
Integrated Sound Level Meter	Rion NL-31 & B&K2238
Acoustic Calibrator	Rion NC-73 & B&K 4231

3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Contract Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Contract Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

 Table 3.2
 Locations of Impact Noise Monitoring Stations

Monitoring Station	Location	Description
NMS2	Seaview Crescent Tower 1	Free-field on the rooftop of the premise
NMS3B	Site Boundary of Site Office Area at Works Area WA2	Free-field on ground at the area boundary.

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week

3.5 Monitoring Methodology

- 3.5.1 Monitoring Procedure
 - (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
 - (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
 - (c) The battery condition was checked to ensure the correct functioning of the meter.
 - (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 07:00 1900 on normal weekdays.
 - (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
 - (f) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
 - (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
 - (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.2 Maintenance and Calibration
 - (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
 - (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
 - (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in March 2017 is provided in Appendix F.

3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

	Average, dB(A),	Range, dB(A),	Limit Level, dB(A),
	L _{eq (30 mins)}	L _{eq (30 mins)}	L _{eq} (30 mins)
NMS2	67	63-68*	75
NMS3B	66	62-69*	70/65^

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

*+3dB(A) Façade correction included

^ Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

- 3.7.2 The measured noise level on 30 Mar 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works is 53 dB(A) which is lower than the exceedance level of 65dB(A). Therefore, it is not considered as an exceedance. As such the EAP was not triggered. Other noise sources during the noise monitoring included construction activities of the Contract, construction activities by noise. Nonetheless, other contracts and nearby traffic the Contractor of Contract No.HY/2010/02 was reminded to continue to properly implement all noise mitigation measures.
- 3.7.3 The event action plan is annexed in Appendix L.

4. WATER QUALITY MONITORING

4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Contract Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

 Table 4.1
 Water Quality Monitoring Equipment

Equipment	Brand and Model
Dissolved Oxygen (DO) and Temperature Meter, Salinity Meter and Turbidity Meter	YSI Model 6820
pH Meter	YSI Model 6820 or Thermo Orion 230A+
Positioning Equipment	JRC DGPS 224 Model JLR-4341 with J-NAV 500 Model NWZ4551
Water Depth Detector	Eagle Cuda-168 and Lowrance x-4
Water Sampler	Kahlsio Water Sampler (Vertical) 2.2 L with messenger

4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Contract Specific EM&A Manual.

 Table 4.2
 Impact Water Quality Monitoring Parameters and Frequency

Monitoring Stations	Parameter, unit	Frequency	No. of depth
Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17 Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B	 Depth, m Temperature, °C Salinity, ppt Dissolved Oxygen (DO), mg/L DO Saturation, % Turbidity, NTU pH Suspended Solids (SS), mg/L 	Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time)	3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid- depth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored).

4.4 Monitoring Locations

- 4.4.1 In accordance with the Contract Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 With respect to the latest available information about the temporary works boundary associated with the Expansion of Hong Kong International Airport into a Three-Runway System project (3RS project), it is noted that impact water quality monitoring stations SR5, IS10 & CS(Mf)3 will be enclosed by temporary works boundary of 3RS project. For details of proposed changes, please refer to section 6.4.9.
- 4.4.5 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Station	Description	East	North
IS5	Impact Station (Close to HKBCF construction site)	811579	817106
IS(Mf)6	Impact Station (Close to HKBCF construction site)	812101	817873
IS7	Impact Station (Close to HKBCF construction site)	812244	818777
IS8	Impact Station (Close to HKBCF construction site)	814251	818412
IS(Mf)9	Impact Station (Close to HKBCF construction site)	813273	818850
IS10	Impact Station (Close to HKBCF construction site)	812577	820670
IS(Mf)11	Impact Station (Close to HKBCF construction site)	813562	820716
IS(Mf)16	Impact Station (Close to HKBCF construction site)	814328	819497
IS17	Impact Station (Close to HKBCF construction site)	814539	820391
SR3	Sensitive receivers (San Tau SSSI)	810525	816456
SR4(N)	Sensitive receivers (Tai Ho)	814705	817859
SR5	Sensitive receivers (Artificial Reef in NE Airport)	811489	820455
SR6	Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park)	805837	821818
SR7	Sensitive receivers (Tai Mo Do)	814293	821431
SR10A	Sensitive receivers (Ma Wan FCZ)1	823741	823495
SR10B(N)	Sensitive receivers (Ma Wan FCZ)2	823683	823187
CS(Mf)3	Control Station	809989	821117
CS(Mf)5	Control Station	817990	821129
CS4	Control Station	810025	824004
CS6	Control Station	817028	823992
CSA	Control Station	818103	823064

 Table 4.3
 Impact Water Quality Monitoring Stations

4.5 Monitoring Methodology

4.5.1 Instrumentation

- (a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.
- 4.5.2 Operating/Analytical Procedures
 - (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
 - (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
 - (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the middepth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
 - (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
 - (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in highdensity polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
 - (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Parameters	Instrumentation	Analytical Method	Reporting Limit	Detection Limit		
Suspended Solid (SS)	Weighting	APHA 2540-D	0.5mg/L	0.5mg/L		

Table 4.4 Laboratory Analysis for Suspended Solids

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

- 4.5.3 Maintenance and Calibration
 - (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
 - (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
 - (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

4.6 Monitoring Schedule for the Reporting Month

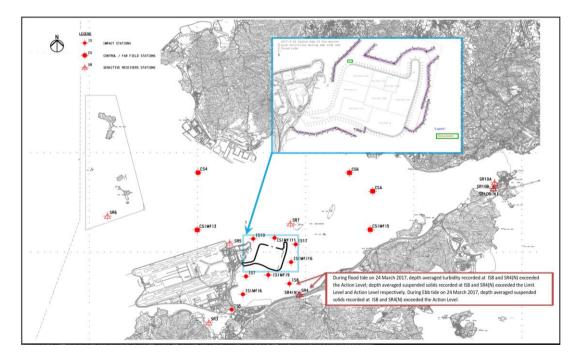
- 4.6.1 The schedule for impact water quality monitoring in March 2017 is provided in Appendix F.
- 4.6.2 Due to thunderstorm signal issued by Hong Kong Observatory, impact water quality monitoring at 15:16 during ebb tide on 31 March 2017 was cancelled, no substitute monitoring was conducted.

4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

Station	Station Exceedance Level		S&M)	DO (B	ottom)	Tur	bidity	SS		Total	
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood
IS5	Action	0	0	0	0	0	0	0	0	0	0
155	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)6	Action	0	0	0	0	0	0	0	0	0	0
13(111)0	Limit	0	0	0	0	0	0	0	0	0	0
IS7	Action	0	0	0	0	0	0	0	0	0	0
137	Limit	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	(1)	(1)	0	1	1
100	Action						24 Mar 2017	24 Mar 2017			
IS8	Limit	0	0	0	0	0	0	0	(1) 24 Mar 2017	0	1
IS(Mf)9	Action	0	0	0	0	0	0	0	0	0	0
13(111)9	Limit	0	0	0	0	0	0	0	0	0	0
IS10	Action	0	0	0	0	0	0	0	0	0	0
1310	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)11	Action	0	0	0	0	0	0	0	0	0	0
13(101)11	Limit	0	0	0	0	0	0	0	0	0	0
IS(Mf)16	Action	0	0	0	0	0	0	0	0	0	0
13(101)10	Limit	0	0	0	0	0	0	0	0	0	0
IS17	Action	0	0	0	0	0	0	0	0	0	0
1517	Limit	0	0	0	0	0	0	0	0	0	0
SR3	Action	0	0	0	0	0	0	0	0	0	0
010	Limit	0	0	0	0	0	0	0	0	0	0
SR4(N)	Action	0	0	0	0	0	(1) 24 Mar 2017	(1) 24 Mar 2017	(1) 24 Mar 2017	1	2

Table 4.5 Summary of Water Quality Exceedances


Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2017

Station	Exceedance Level	DO (S&M)	DO (B	ottom)	Tur	bidity		SS	T	otal								
	Level	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood								
	Limit	0	0	0	0	0	0	0	0	0	0								
SR5	Action	0	0	0	0	0	0	0	0	0	0								
363	Limit	0	0	0	0	0	0	0	0	0	0								
SR6	Action	0	0	0	0	0	0	0	0	0	0								
SKO	Limit	0	0	0	0	0	0	0	0	0	0								
SR7	Action	0	0	0	0	0	0	0	0	0	0								
SR/	Limit	0	0	0	0	0	0	0	0	0	0								
SR10A	Action	0	0	0	0	0	0	0	0	0	0								
SKIUA	Limit	0	0	0	0	0	0	0	0	0	0								
SR10B	Action	0	0	0	0	0	0	0	0	0	0								
(N)	Limit	0	0	0	0	0	0	0	0	0	0								
Total	Action	0	0	0	0	0	2	2	1		5								
	Limit	0	0	0	0	0	0	0	1		1								
Note: S	: Surface; and																		

M: Mid-depth.

- 4.7.1 Two turbidity action level exceedances on 24 March 2017 at monitoring stations IS8 and SR4(N) during flood tide; One suspended solids action level and one suspended solids limit level exceedance were recorded at monitoring station SR4(N) and IS8 respectively during flood tide. During ebb tide on 24 March 2017, two suspended solids action level were recorded at monitoring station SR4(N) and IS8.
- 4.7.1.1 Below layout map shows active works conducted on 24 March 2017. Construction of sloping seawall was conducted at Portion C2a as part of the HKBCF Reclamation Works during flood tide.

4.7.1.2 Investigation Results:

4.7.1.3 With refer to the layout map attached and as informed by the Contractor, no active works was conducted along the southern seawall on 24 March 2017 which is the part of the reclamation located closest to monitoring stations IS8 and SR4(N). Only construction of sloping seawall was conducted at Portion C2a on 24 March 2017, the works is located relatively far away from IS8 and SR4(N), in addition, there were no water quality exceedance at monitoring stations IS10, IS(Mf)11, IS(Mf)6 and IS(Mf)9 on 24 March 2017, which are located closer to active work than monitoring stations IS8 and SR4(N). It is unlikely that the turbidity and suspended solids exceedances recorded at IS8 and SR4(N) are caused by this Contract..

- 4.7.1.4 With referred to photo records taken in the vicinity of IS8 and SR4(N) on 24 March 2017, relatively turbid water was observed within the vicinity of monitoring station IS8 and SR4(N) but no silt plume was observed to flow from the inside of the perimeter silt curtain to the outside of the perimeter silt curtain during flood tide on 24 March 2017.
- 4.7.1.5 Photo record taken in the vicinity of SR4(N) on 24 March 2017 shows that vessels were observed in the vicinity monitoring station SR4(N). After checking with the Contractor, vessels shown in photo record were not working for this Contract.

Photo record of the sea condition near IS8 on 24 March 2017. The photo shows that no turbid water was observe at the side near HKBCF Reclamation works.

Photo record of the sea condition near SR4(N) on 24 March 2017

- 4.7.1.6 The exceedances were likely due to local effects in the vicinity of IS8 and SR4(N).
- 4.7.1.7 As such, the exceedances recorded at IS8 and SR4(N) on 24 March 2017 were unlikely to be contract related.
- 4.7.1.8 Action taken under the action plan:
 - 1. *in situ* measurement was repeated to confirm findings if turbidity exceedances; not applicable to SS measurement as SS was not measured in situ ;

- 2. After considering the above mentioned investigation results, it appears that it was unlikely that the exceedances were attributed to active construction activities of this Contract;
- 3. IEC, contractor, ER and EPD were informed via email;
- 4. Monitoring data, all plant, equipment and Contractor's working methods were checked;
- 5. Since it is considered that the turbidity exceedance is unlikely to be project related, as such, actions 5-7. under the EAP are not considered applicable.
- 4.7.1.9 Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains and to carry out maintenance work once defects were found.
- 4.7.1.10 Maintenance work of the silt curtain will be provided by the Contractor on a daily basis except Sunday and public holiday, when defects were found.
- 4.7.2 No other exceedance was recorded at all monitoring stations in the reporting month.
- 4.7.3 The event action plan is annexed in Appendix L.

5 DOLPHIN MONITORING

5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), *Sousa chinensis*, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

Equipment	Model
Commercially licensed motor vessel	15m in length with a 4.5m viewing platform
Global Positioning System (GPS) x2	Integrated into T7000
	Garmin GPS Map 76C
Computers (T7000 Tablet, Intel Atom)	Windows 7/MSO 13
	Logger
Camera	Nikon D7100 300m 2.8D fixed focus
	Nikon D90 80-400mm zoom lens
Laser Rangefinder	Range Finder Bushnell 1000m
Marine Binocular x3	Nexus 7 x 50 marine binocular with compass
	and reticules
	Fujinon 7 x 50 marine binocular with compass
	and reticules

5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 With respect to the latest available information about the temporary works boundary associated with the Expansion of Hong Kong International Airport into a Three-Runway System project (3RS project), full access of transect lines of dolphin monitoring 2, 3, 4, 5, 6 and 7 of this Contract is limited by temporary works boundary of 3RS project. For details of proposed changes, please refer to section 6.4.9.
- 5.4.5 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

	HK Grid System		Long Lat in WGS84		
ID	X	Y	Long	Lat	
1	804671	815456	113.870287	22.277678	
1	804671	831404	113.869975	22.421696	
2	805475	815913	113.878079	22.281820	
2	805477	826654	113.877896	22.378814	
3	806464	819435	113.887615	22.313643	
3	806464	822911	113.887550	22.345030	
4	807518	819771	113.897833	22.316697	
4	807518	829230	113.897663	22.402113	
5	808504	820220	113.907397	22.320761	
5	808504	828602	113.907252	22.396462	
6	809490	820466	113.916965	22.323003	
6	809490	825352	113.916884	22.367128	
7	810499	820880	113.926749	22.326757	
7	810499	824613	113.926688	22.360464	
8	811508	821123	113.936539	22.328966	
8	811508	824254	113.936486	22.357241	
9	812516	821303	113.946320	22.330606	
9	812516	824254	113.946279	22.357255	
10*	813525	820827	113.956112	22.326321	
10*	813525	824657	113.956066	22.360908	
11	814556	818853	113.966155	22.304858	
11	814556	820992	113.966125	22.327820	
12	815542	818807	113.975726	22.308109	
12	815542	824882	113.975647	22.362962	
13	816506	819480	113.985072	22.314192	
13	816506	824859	113.985005	22.362771	
14	817537	820220	113.995070	22.320883	
14	817537	824613	113.995018	22.360556	
15	818568	820735	114.005071	22.325550	
15	818568	824433	114.005030	22.358947	
16	819532	821420	114.014420	22.331747	
16	819532	824209	114.014390	22.356933	
17	820451	822125	114.023333	22.338117	
17	820451	823671	114.023317	22.352084	
18	821504	822371	114.033556	22.340353	
18	821504	823761	114.033544	22.352903	
19	822513	823268	114.043340	22.348458	
19	822513	824321	114.043331	22.357971	
20	823477	823402	114.052695	22.349680	
20 21	823477	824613	114.052686	22.360610 22.382668	
21	805476	827081	113.877878 113.877811	22.382668	
21	805476 806464	830562 824033	113.877811	22.414103	
22	806464	829598	113.887416	22.355164	
22	814559	829598	113.966142	22.334574	
23	814559	824768	113.966101	22.361920	
23	014009	024100	113.300101	22.301920	

Table 5.2 Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)

Remarks:

(a) *Due to the presence of deployed silt curtain systems at the site boundaries of the Contract, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 108km.

(b) Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015.

5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in March 2017 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 6, 7, 20, 21 March 2017. A total of 211.3 km of transect line was conducted; 207.3km of transect line was travelled during Beaufort Sea State 3 or better (favourable water conditions).

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in March 2017 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3	Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort
	Sea State

					Total Distance Travelled
Survey	Date	Area	Beaufort	Effort (km)	(km)
	03/06/2017	NWL	1	11.5	
	03/06/2017	NWL	2	38.5	
1	03/06/2017	NWL	3	8.2	107.9
	03/07/2017	NWL	1	8.6	107.9
	03/07/2017	NWL	4	4	
	03/07/2017	NEL	1	37.1	
	03/20/2017	NWL	1	11.7	
2	03/20/2017	NWL	2	6.6	
	03/20/2017	NEL	1	19.1	103.4
	03/20/2017	NEL	2	17.8	105.4
	03/21/2017	NWL	1	40.7	
	03/21/2017	NWL	2	7.5	
			TOTAL	in March 2017	211.3

*Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4	Impact Dolphin Monitoring Survey Detail March 2017
-----------	--

Date	Location	No. Sightings "on effort"	No. Sightings "opportunistic"
	NWL/WL	0	1*
06/03/2017	NEL	0	0
	NWL	0	0
07/03/2017	NEL	0	0
	NWL	0	0
20/03/2017	NEL	0	0
	NWL/WL	0	1*
21/03/2017	NEL	0	0
	TOTAL in March 2017	0	2

* Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL

Table 5.5	The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins
	per Area^

Encounter Rate of Number of Dolphin Sightings (STG)*							
Date	NEL Track (km)	NWL Track (km)	NEL Sighting s	NWL Sighting s	NEL Encounter Rate	NWL Encounter Rate	
6 & 7 March 17	37.1	66.8	0	0	0	0	
20 & 21 March 17	36.9	66.5	0	0	0	0	
Encounter Rate of Total Number of Dolphins (ANI)**							
DateNELNWLNELNWLNELNWLTrackTrackDolphinsDolphinsEncounterEncounter(km)(km)RateRate							
6 & 7 March 17	37.1	66.8	0	0	0	0	
20 & 21 March 17	36.9	66.5	0	0	0	0	

* Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

** Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

[^]The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

- 5.7.2 A total of two sightings were made, two sightings were recorded as "opportunistic". One sighting was recorded on 6 March 2017 and the other on the 21 March 2017. Two groups were recorded as travelling. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d.
- 5.7.3 No resighting in February 2017.
- 5.7.4 Noteworthy Observation¹:
- 5.7.4.1 When impact monitoring was conducted at the southern parts of transect lines 2 and 3, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased however the number of working vessels appears to have decreased, thus making it possible to travel between some of the structures. It is considered that the working barges will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin behaviour.
- 5.7.4.2 HKBCF and adjoining "Southern Landfall" Projects effected lines 10, 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term. As construction is ongoing, it is not yet known if these fixed structures will affect the transect lines passage. It is noted that fewer vessels occupy this area compared to previous months.
- 5.7.4.3 Fishing Vessels were noted anchored on several occasions at line 1. Previously, dolphins have been known to be attracted to fishing vessels, both active and anchored, and as such the anchored vessels may have temporarily affected the dolphins distribution.
- 5.7.4.4 Travel to the northern end of line 10 and along line 23 was slightly impeded by an anchorage. After checking with the Contractor, there are no trans-boundary vessels that are required to anchor at northern ends of line 10 during this reporting period, as such they are unlikely to be related to this Contract. As

¹ A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

there are variable numbers of ships in this anchorage through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use. Other areas where many boats were anchored (covering large areas) were noted at lines 5, 7, 8, 11,12, 18 and 22.

- 5.7.4.5 Anchored vessels (usually single) were noted on line 22 which caused the monitoring vessel to divert slightly from the trackline or blocked the transect area view. It is unknown who these vessels belong to or even if they were Project related. After checking with the Contractor, there are no transboundary vessels that are required to anchor on line 22 during this reporting period, as such they are unlikely to be related to this Contract. As there are variable numbers of ships in anchor on the line through time, it is considered that this could temporarily affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.4.6 New projects, associated with the Third Runway System (3RS) works, were noted on lines 1, 2, 3, 5, 6, 7 and 8 which blocked the transect area view. These projects have increased dramatically in extent and site access was restricted on 6, 7, 20 and 21 March 2017. It is considered that these new projects will affect survey protocol, survey data collection and dolphin habitat use.
- 5.7.4.7 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report) until such a time as the new projects at the 3RS designated site prevent passage into that area.
- 5.7.4.8 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
 - 5.7.5 The event action plan is annexed in Appendix L.

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Contract. In the reporting month, 5 site inspections were carried out on 2, 9, 16, 23 & 30 March 2017.
- 6.1.2 Particular observations during the site inspections are described below:

Air Quality

- 6.1.3 Dust was observed during excavation, the Contractor was reminded to spray water or dust suppression chemical before, during and immediately after the operation so as to maintain the entire surface wet. (Reminder)
- 6.1.4 Dark smoke emission from plant/equipment and vessels were observed, the Contractor was reminded that dark smoke emission from plant/equipment shall be avoided. Emission of dark smoke was no longer observed. (Closed)
- 6.1.5 Dust was observed during the transport of dusty materials. The Contractor was reminded to spray water or other dust suppression chemical prior to loading, unloading or transport of dusty materials. (Pending for Contractor's rectification in the reporting month)
- 6.1.6 It was observed that a discolored NRMM labels was affixed on the side of a drilling rig machines. The Contractor was reminded to affix appropriate NRMM labels on the machines. The Contractor subsequently provided NRMM label to the machine. (Closed)

Noise

6.1.7 Acoustic mat was not provided to generator placed on ship deck of Mytilus, the Contractor was reminded to provide appropriate acoustic decoupling measures. The Contractor subsequently rectified the situation by providing acoustic decoupling measures to the concerned generator. (Closed)

Water Quality

6.1.8 No relevant adverse impact was observed in the reporting month.

Chemical and Waste Management

- 6.1.9 Chemical containers were placed on bare ground or on the edge of drip tray, the Contractor was reminded to place all chemical containers on drip tray properly to retain leakage, if any. The Contractor subsequently remove the chemical containers from the location. The Contractor was reminded chemical containers should be put inside drip trays as a preventive measure. (Closed)
- 6.1.10 The Contractor was reminded to provide drip tray to equipment that use petrol or other chemical as fuel to avoid leakage, if any. (Reminder)
- 6.1.11 The Contractor was reminded to clear leaked water on ground and replace the flawed drip tray to prevent leakage, if any. (Reminder)
- 6.1.12 Oil Spillage was observed from derrick lighter along the pathway on ship deck of Chun Ming 68, the Contractor was reminded to clear all leaked oil as chemical waste, provide adequate spill kits and repair derrick lighter at once before using. The Contractor subsequently rectified the situation. (Closed)
- 6.1.13 The Contractor was reminded to clear spilled oil or chemical retained on drip tray to prevent chemical leakage. (Reminder)

Landscape and Visual Impact

6.1.14 No relevant adverse impact was observed in the reporting month.

Others

6.1.15 No relevant adverse impact was observed in the reporting month.

6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 60,649.6m³ of inert C&D material was reused in other projects. 20,601.3m³ of fill material were imported for the Contract use in the reporting period. 58.5m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.
- 6.2.5 After checking with the Contractor, surcharge material was removed off site to Macau from 27 April 2016 and it is continued in the reporting month. Surplus surcharge was exported to Macau during the reporting month. The Contractor was reminded to ensure consistency in quantities in case of any C&D material disposed off-site and/or no surcharge material removed off site.
- 6.2.6 As advised by the Contractor, approximately 171,692.5m³ of surplus surcharge was exported to Macau during the reporting month.

6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Contract and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

Statutory Reference	License/ Permit	License or Permit No.	Valid Period		License/ Permit	Remarks	
Reference			From	То	Holder		
	Environmental	EP- 353/2009/K	11/04/2016	N/A		Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities	
EIAO	Permit	EP- 354/2009/D	13/03/2015	N/A	HyD	Tuen Mun – Chek Lap Kok Link (TMCLKL Southern Landfall Reclamation only)	
APCO	NA notification		30/12/2011		CHEC	Works Area WA2 and WA3	
APCO	NA notification		25/07/2014		CHEC	Works Area WA1	
WDO	Chemical Waste Producer Registration	5213-951- C1186-30	28/10/2015	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA1)	
WDO	Chemical Waste Producer Registration	5213-951- C1186-21	30/3/2012	N/A	CHEC	Chemical waste produced in Contract HY/2010/02 (WA2)	
WDO	Chemical Waste Producer Registration	5213-839- C3750-02	13/09/2012		CHEC	Registration as Chemical Waste Producer at TKO 137(FB)	
WDO	Billing Account for Disposal of Construction Waste	7014181	05/12/2011	N/A	CHEC	Waste disposal in Contract HY/2010/02	
NCO	Construction Noise Permit	GW-RS1231- 16	13/12/2016	10/4/2017	CHEC	Reclamation Works in Contract HY/2010/02	

6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.
- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the mal-function period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Contract site and associated works areas throughout the construction phase.
- 6.4.7 After review, no floating grout production was in operation at any time in March 2017 for Contract No.HY/2010/02. Condition 3.26A of EP-353/2009/K for Contract No.HY/2010/02 is complied with during the reporting month.
- 6.4.8 Further to our letter (ET's letter's ref.: 60249820/rmky16033001) dated 30/3/2016 regarding the notification of silt curtain removal programme and arrangement, as informed by RSS on 18 May 2016, the Contractor provided an updated programme on 31 October 2016 to indicate the current site situation. According to CHEC's latest removal programme during the reporting month, stage 2 (east side of the perimeter silt curtain removal work has been completed and dates for the subsequent stages have also been updated in the reporting month, while the overall phasing arrangement has not changed. A notification email has been sent to IEC/ENPO to inform them that the completion of removal of perimeter silt curtain of Stages 2 and the tentative date for silt curtain removal work of stage 3, 4 and 5. With referred to previous IEC/ENPO comment received on 7 June 2016 if update of proposal was mainly on time schedule and they have no objection in principle. However prior to IEC/ENPO's reply to confirm ET's updated proposal, ET was requested to provide site photos to show ET's checking of the current site condition with respect to the reminders given in their previous letter (Our Ref.: HYDHZMBEEM00_0_4102L.16 dated 22 April 2016).
- 6.4.9 Due to the commencement of marine work of the Expansion of Hong Kong International Airport into a Three-Runway System (3RS Project), a large portion of works site boundary will be established at the northern part of the existing airport Island. The recent arrangement of works boundary of 3RS Project which delineates the boundary of the designated 3RS Project (for the indicative 3RS boundary, please refer to Figure 5). The works area of 3RS project will affect several water quality monitoring stations and the dolphin monitoring transect lines which are being used for conducting monitoring under Contract No. HY/2010/02. The EM&A Programme for the HZMB HKBCF Project will therefore be affected. As a result, a proposal was prepared by ET in September 2016 in accordance with condition 5.1 of EP-353/2009/K and condition 4.1 of EP-354/2009/D, to relocate water quality monitoring stations from SR5, IS10, CS(Mf)3 and alternate the transect lines of dolphin monitoring 2, 3, 4, 5, 6 and 7. Comment was subsequently received from IEC/ENPO. The comments were under ET's review in the reporting month. A revised proposal has been updated and sent to IEC/ENPO for their further review on

Monthly EM&A Report for March 2017

24 March 2017 and IEC/ENPO verified the revised proposal on the same date. The verified proposal will be sent to authority by project team in the next reporting month.

6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For impact water quality monitoring, 1 action level exceedance of turbidity were recorded at both SR4(N) and IS8 during flood tide on 24 March 2017; 1 action level exceedance and 1 limit level exceedance of suspended solids were recorded at SR4(N) and IS8 respectively during flood tide on 24 March 2017; 1 action level exceedance of suspended solids were recorded at both SR4(N) and IS8 during ebb tide on 24 March 2017. The exceedances were considered unrelated to this Contract's activities after investigation. No other exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.4 For dolphin monitoring, a total of two sightings were made, two sightings were recorded as "opportunistic". One sighting was recorded on 6 March 2017 and the other on the 21 March 2017. Both groups were recorded as travelling. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d. No resighting in February 2017.
- 6.5.5 Environmental site inspection was carried out 5 times in March 2017. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.6 Cumulative statistics on exceedance is provided in Appendix N.

6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

6.6.1 An environmental complaint was received by EPD on 27 March 2017 and was referred to ET of this Contract by IEC/ENPO on 28 March 2017 for follow-up. The Complainant complained that a very loud sound was intermittently heard by the Complainant since 10pm last night and such loud sound was heard by the complainant until midnight. It was suspected that the sound came from the Hong Kong-Zhuhai-Macao Bridge (HZMB) construction works near the artificial island. In addition, a large area of pollution was observed on sea in the morning of the day the complainant made the complaint. It was suspected that was caused by the HZMB construction works. Photo record provided by the complainant:

- 6.6.2 Investigation action:
 - Review of the information provided by the complainant.
 - Checking whether there were any construction activities under Contract HY/2010/02 which would cause noise and plume and review of monitoring record.
- 6.6.3 Investigation result:
- 6.6.4 For the noise part of the complaint:

Monthly EM&A Report for March 2017

- 6.6.4.1 It is noted that the Complainant observed that the noise was from Hong Kong-Zhuhai-Macao Bridge construction works near the artificial island but not from HKBCF reclamation works. After checking with the Contractor of contract no. HY/2010/02, no works were conducted between 26 March 2017 10:00pm onward till mid night. Hence, it is unlikely that the HY/2010/02 has contributed to noise which was heard from described location.
 - 6.6.5 For the water quality part of the complaint:
- 6.6.5.1 After review of the photo record provided by the Complainant it was noted from complainant's photo that the silt plume was located at an area further away of HKBCF reclamation works. In addition, after checking of monitoring record on 27 March 2017, no silt plume was observed to flow from the inside of the perimeter silt curtain to the outside of the perimeter silt curtain. As such, it is unlikely that the observed pollution was caused by this Contract. In addition, as shown by the WQM data retrieved on 27 March 2017, no IWQM exceedances were recorded on 27 March 2017.
 - 6.6.6 As such, after investigation, there is no adequate information to conclude the complaint is related to this Contract. Nevertheless, the Contractor was reminded to continue to fully maintain all noise and water quality mitigation measures.
 - 6.6.7 No notification of summons or prosecution was received in the reporting period.
 - 6.6.8 The Environmental Complaint Handling Procedure is annexed in Figure 6.
 - 6.6.9 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

7 FUTURE KEY ISSUES

7.1 Construction Programme for the Coming Months

7.1.1 As informed by the Contractor, the major works for the Contract in April 2017 and May 2017 will be *:-

Marine-base

- Sloping Seawalls
- Rubble Mound Seawall
- Maintenance of silt curtain

Land-base

- Surcharge removal & laying
- Construction of Permanent Seawall
- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

*Construction activities in April 2017 and May 2017 will be changed subject to works progress.

7.2 Key Issues for the Coming Month

- 7.2.1 Key issues to be considered in the coming months:-
 - Site runoff should be properly collected and treated prior to discharge;
 - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
 - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
 - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
 - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
 - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
 - Quieter powered mechanical equipment should be used;
 - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
 - Closely check and replace the sound insulation materials regularly;
 - Better scheduling of construction works to minimize noise nuisance;
 - Properly store and label oil drums and chemical containers placed on site;
 - Proper chemicals, chemical wastes and wastes management;
 - Maintenance works should be carried out within roofed, paved and confined areas;
 - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
 - Proper protection and regular inspection of existing trees, transplanted/retained trees.
 - Control night-time lighting and glare by hooding all lights.
 - Regular review and provide maintenance to dust control measures such as sprinkler system.

7.3 Monitoring Schedule for the Coming Month

7.3.1 The tentative schedule for environmental monitoring of April 2017 is provided in Appendix F.

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 For impact air quality monitoring, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.3 For impact water quality monitoring, 1 action level exceedance of turbidity were recorded at both SR4(N) and IS8 during flood tide on 24 March 2017; 1 action level exceedance and 1 limit level exceedance of suspended solids were recorded at SR4(N) and IS8 respectively during flood tide on 24 March 2017; 1 action level exceedance of suspended solids were recorded at both SR4(N) and IS8 during ebb tide on 24 March 2017. The exceedances were considered unrelated to this Contract's activities after investigation. No other exceedance was recorded at all monitoring stations in the reporting month.
- 8.1.4 For dolphin monitoring, a total of two sightings were made, two sightings were recorded as "opportunistic". One sighting was recorded on 6 March 2017 and the other on the 21 March 2017. Both groups were recorded as travelling. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively. The locations of sighting with different behaviour are mapped in Figure 5d. No resighting in February 2017.
- 8.1.5 An environmental complaints was received by EPD on 27 March 2017, and the complainant complained that a very loud sound was intermittently heard by the Complainant since 10pm on 26 March and such loud sound was heard by the complainant until midnight. It was suspected that the sound came from the Hong Kong-Zhuhai-Macao Bridge (HZMB) construction works near the artificial island. In addition, a large area of pollution was observed on sea in the morning of the day the complainant made the complaint. It was suspected that was caused by the HZMB construction works. After investigation, there is no adequate information to conclude the complaint is related to this Contract.
- 8.1.6 No notification of summons or prosecution was received in the reporting period.
- 8.1.7 Environmental site inspection was carried out 5 times in March 2017. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

Air Quality Impact

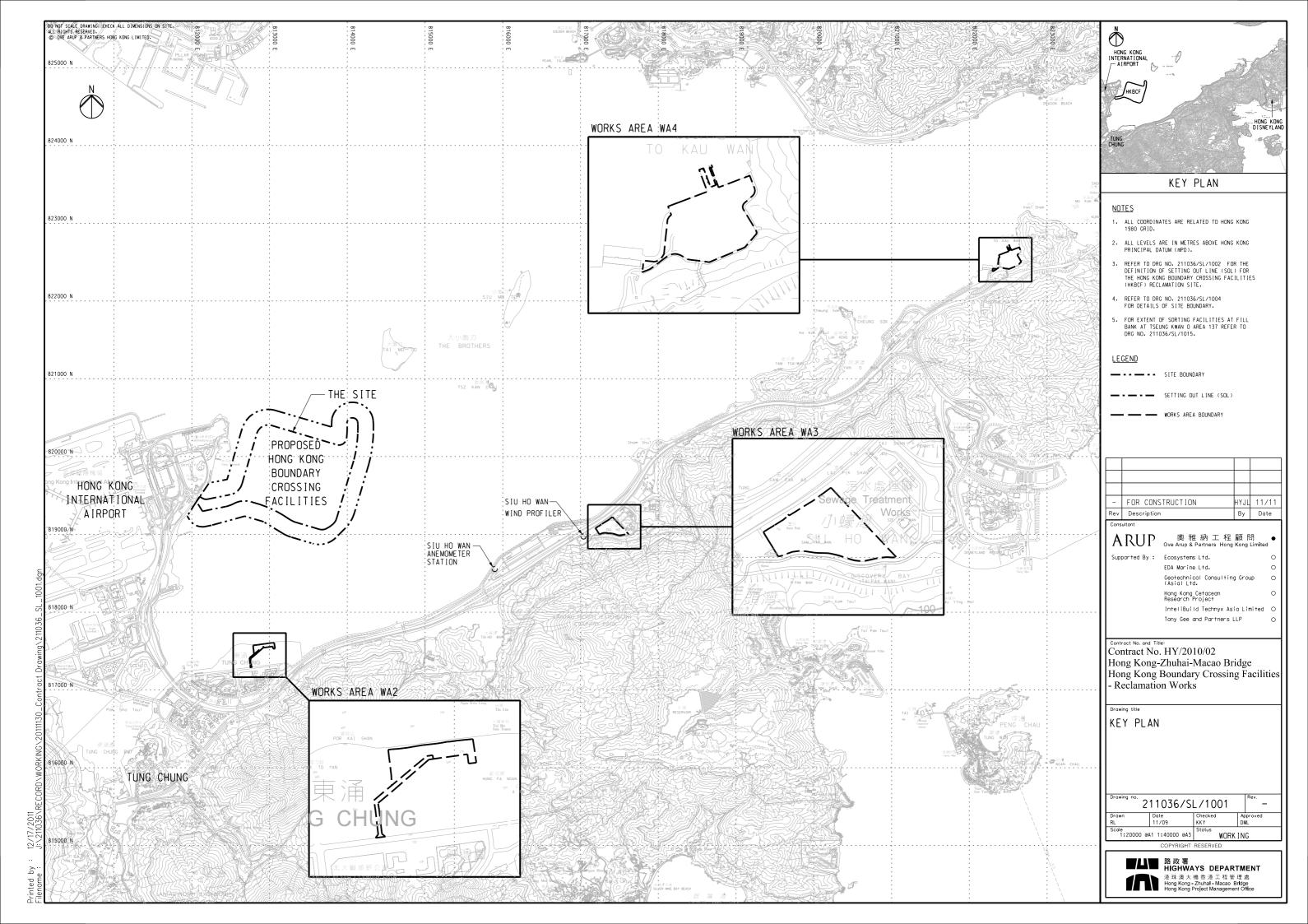
- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

Construction Noise Impact

- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming construction vessels with continuous and regularly checking to ensure effective implementation of acoustic decoupling measures.

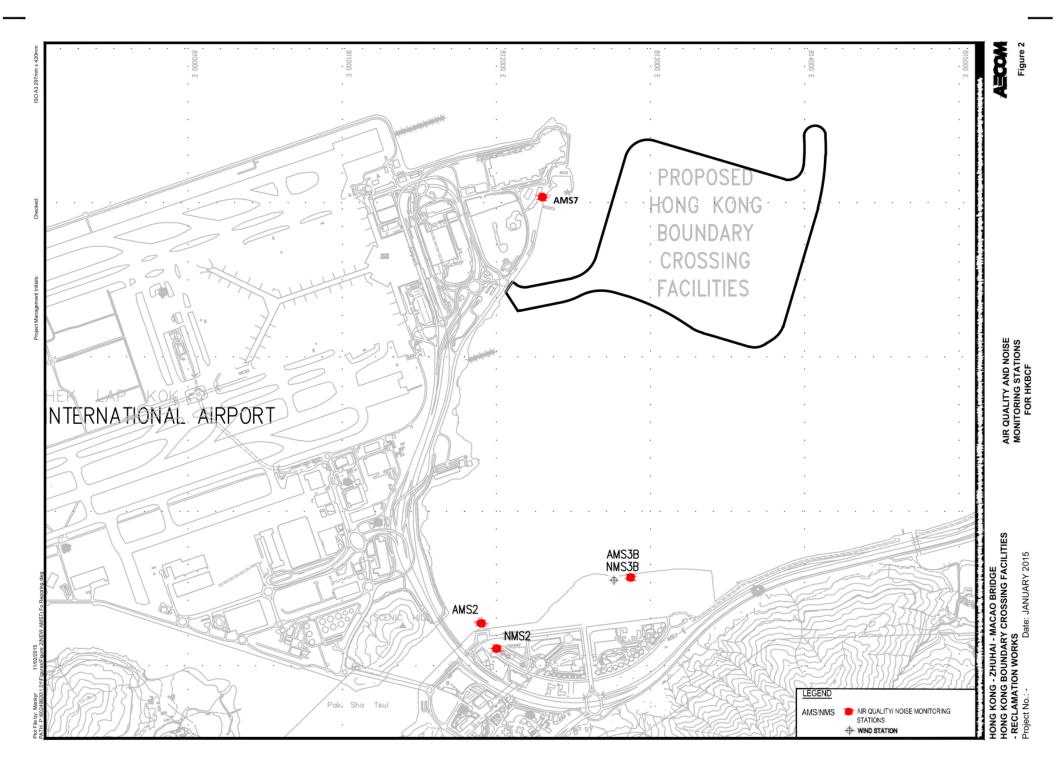
Water Quality Impact

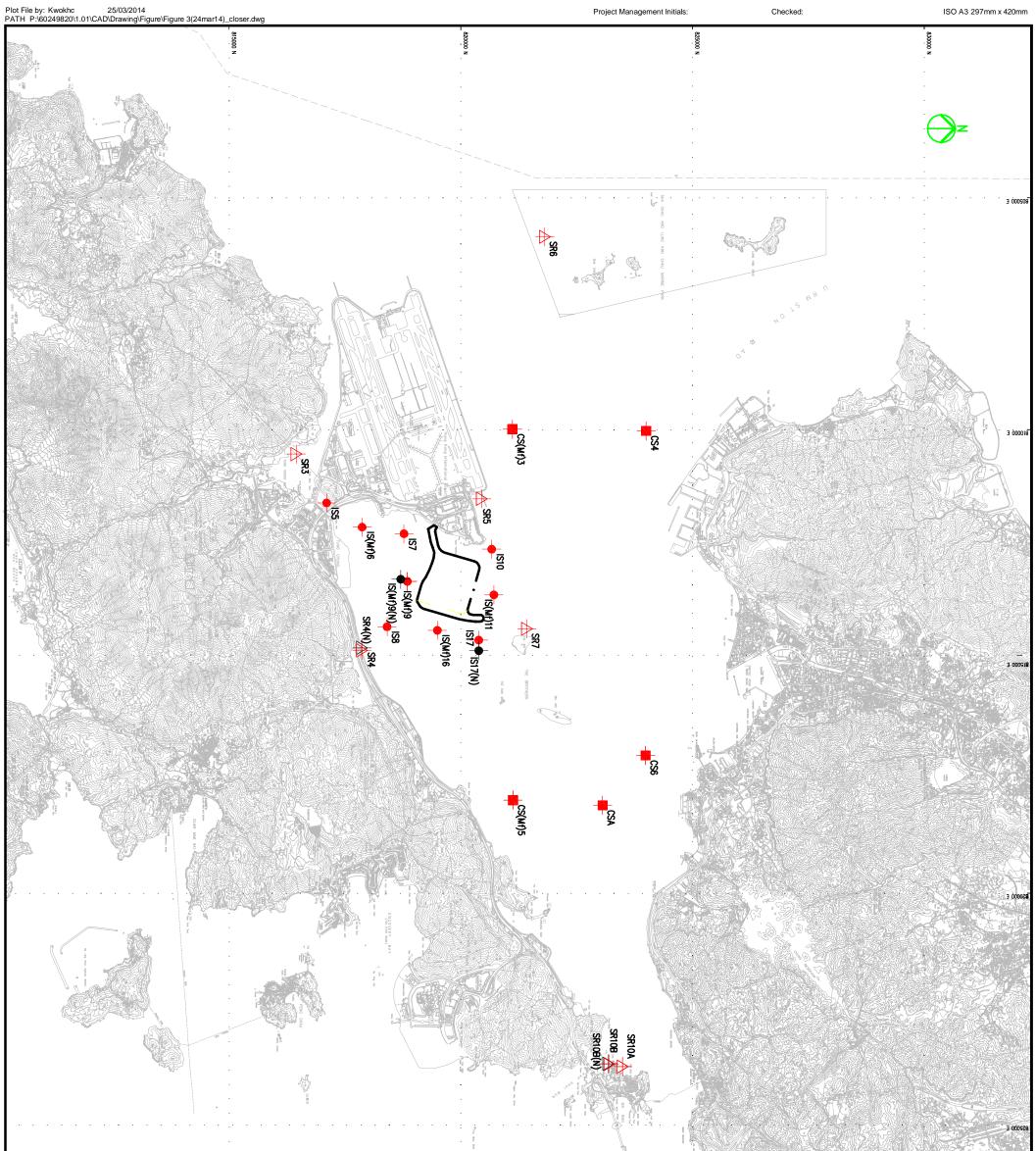
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter u-channels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.



rks Monthly EM&A Report for March 2017

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly and disposed of timely and properly. They should be properly stored in designated areas within works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient measures and spill control kits were provided on working barges and patrol boats to avoid any spreading of leaked oil/chemicals.


Landscape and Visual Impact


- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.

	\land
	HONG KONG INTERNATIONAL
	AIRPORT
	нквсг
	HONG KONG DISNEYLAND
	TUNG CHUNG
	KEY PLAN
	NOTES
	 FOR LEGENDS AND NOTES FOR CHAIN LINK FENCE AND GATE REFER TO DRG ND. 211036/SL/1013.
	 THE ERECTION OF CHAIN LINK FENCE AND GATES SHALL BE COMPLETED BY THE HANDOVER DATE OF
	EACH PORTION OF SITE, OR AS INSTRUCTED BY THE ENGINEER.
	 FOR SETTING OUT COORDINATES OF DIFFERENT PORTIONS OF SITE REFER TO DRG NO. 211036/SL/1003.
	 ACCESS POINTS BETWEEN PORTIONS SHALL BE PROVIDED BY THE CONTRACTOR, AND THE LOCATIONS SHALL BE AGREED WITH THE ENGINEER ON SITE.
	 FOR HOARDING AND FENCE AT FILL BANK AT TSEUNG KWAN O AREA 137 REFER TO DRG NO. 211036/SL/1015.
	LEGEND
	SETTING OUT LINE (SOL)
	WORKS AREA BOUNDARY
	PORTIONS BOUNDARY LINE
	- FOR CONSTRUCTION HYJL 11/11 Rev Description By Date
	Consultant
	ARUP 奥雅納工程顧問 ● Ove Arup & Partners Hong Kong Limited
	Supported By: Ecosystems Ltd. O EDA Marine Ltd. O
	Geotechnical Consulting Group O (Asia) Ltd.
	Hong Kong Cetacean O Research Project
	InteliBuild Technyx Asia Limited O Tony Gee and Partners LLP O
	Contract No. and Title: Contract No. HY/2010/02
	Hong Kong-Zhuhai-Macao Bridge
	Hong Kong Boundary Crossing Facilities - Reclamation Works
	Drawing title
	WORKS AREA LAYOUT
	AND HORADING PLAN
	(SHEET 2 OF 3)
	Drawing no. Rev.
	Drawn Date Checked Approved
	RL 06/10 KKY DML Scale Status
	1:5000 @A1 1:10000 @A3 WORKING COPYRIGHT RESERVED
	■山■ 路政署 HIGHWAYS DEPARTMENT
:	港珠澳大橋香港工程管理處 Hong Kong - Zhuhal - Macao Bridge Hong Kong Project Management Office
	in grinning material

Setting out sc	Schedule	
MONITORING	CO-OR EASTING	CO-ORDINATES
IS2	811579	817106
IS(Mf)6	812101	817873
IS7	812244	818777
8SI	814251	818412
IS(Mf)9	813273	818850
IS(Mf)9(N)	813226	818708
IS10	812577	029028
IS(Mf)11	813562	820716
IS(Mf)16	814328	819497
IS17	814539	820391
IS17(N)	814767	820391
SR3	810525	816456
SR4(N)	814705	817859
SR5	811489	820455
SR6	805837	821818
SR7	814293	821431
SR10A	823741	823495
SR10B(N)	823683	823187
CS(Mf)3	686608	821117
CS(Mf)5	817990	821129
CS4	810025	824004
CS6	817028	823992
CSA	818103	823064

This drawing has been prepared for the uses of AECON's client, It may not be used, modified, reproduced or relied upon by third parties, except as agreed by AECON or as required by law. AECON accepts no responsibility, and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and denices any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document. All measurements must be obtained from the stability and there any liability windsboever, to any party that uses or relies on this drawing witbut AECON's express written consent. Do not scale this document.

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS

Project No.: -Date: MAR 2014

WATER QUALITY MONITORING STATION

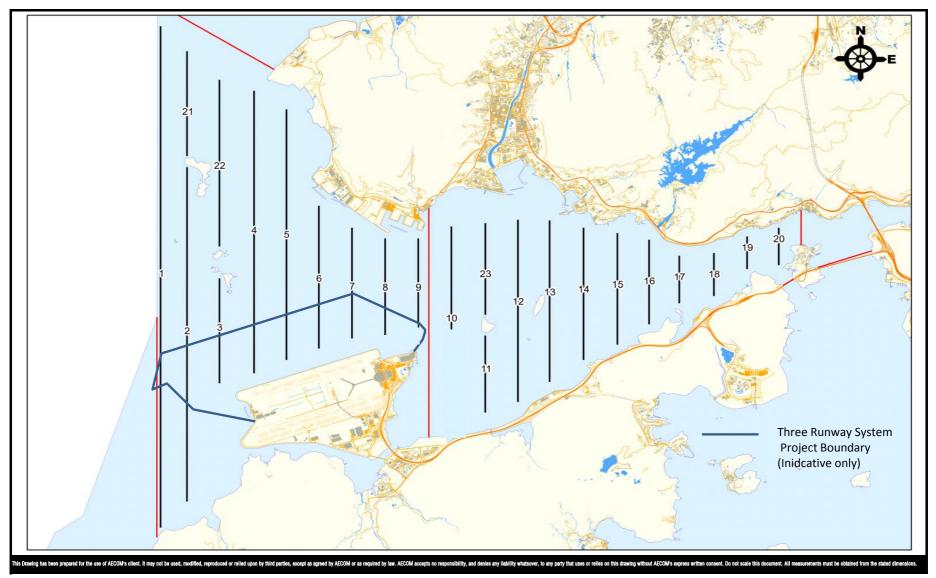
Figure 3

IMPACT STATIONS

↓ IEGEND

ខ

CONTROL / FAR FIELD STATIONS


SENSITIVE RECEIVERS STATIONS

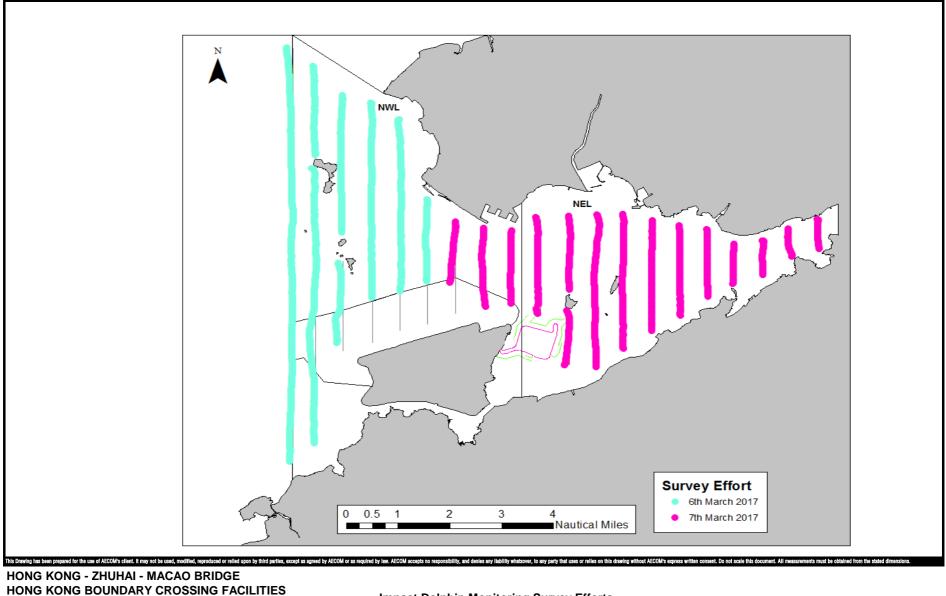
SENSITIVE RECEIVERS STATIONS (RELOCATED)

IMPACT STATIONS (RELOCATED)

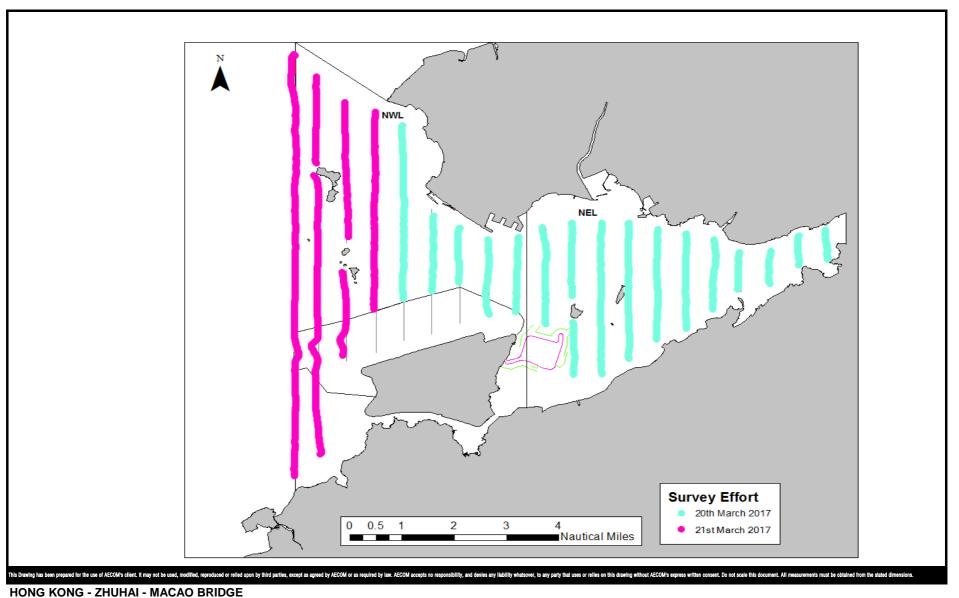
\$ ₽ \$ ₽ SR -∳-

Remarks:

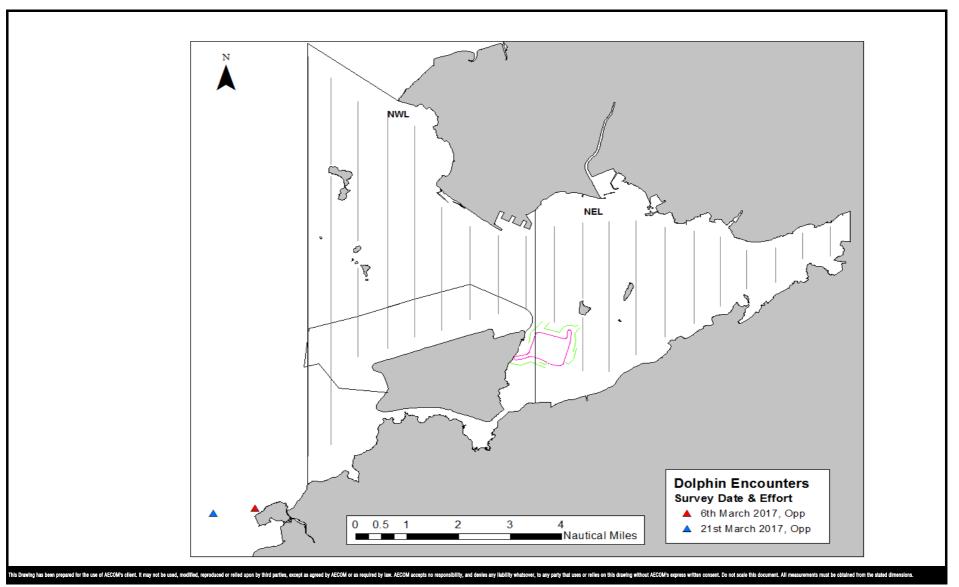
*Transect 10 is now 3.6km in length due to the HKBCF construction site.


[^]Coordinates for transect lines 1, 2, 7, 8, 9 and 11 have been updated in respect to the Proposal for Alteration of Transect Line for Dolphin Monitoring approved by EPD on 19 August 2015. The total transect length for both NEL and NWL combined is 108km.

New projects, large number of barges/vessels were anchored densely at north of Three Runway System project boundary, access to the transect area on lines 1, 2, 3, 5, 6, 7 and 8 were blocked or affected in March 2017.


HONG KONG BOUNDARY CORSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: April 2017

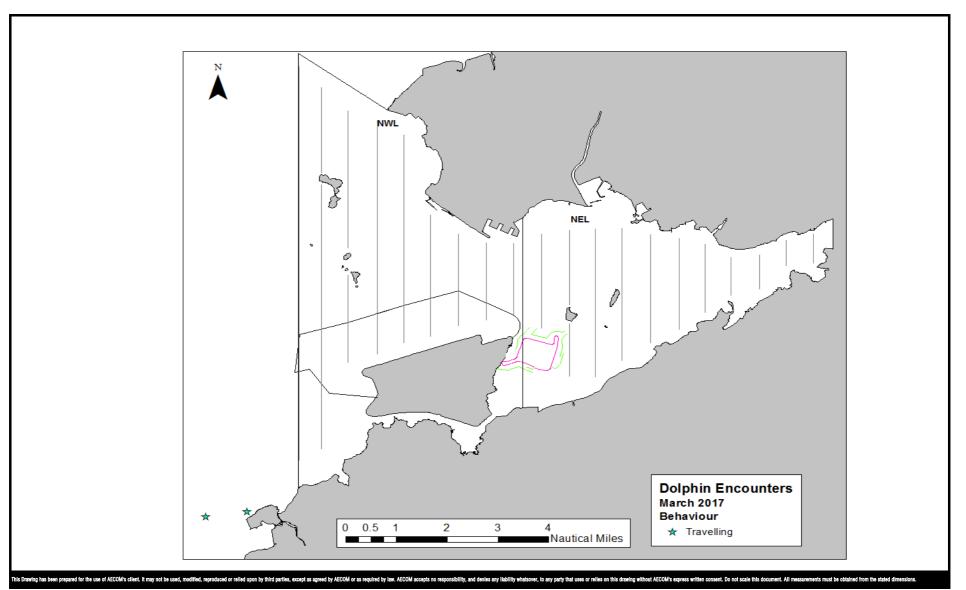
Impact Dolphin Monitoring Line Transect Layout Map



- RECLAMATION WORKS Project No.: 60249820 Date: April 2017 Impact Dolphin Monitoring Survey Efforts on 6 & 7 March 2017

HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Project No.: 60249820 Date: April 2017

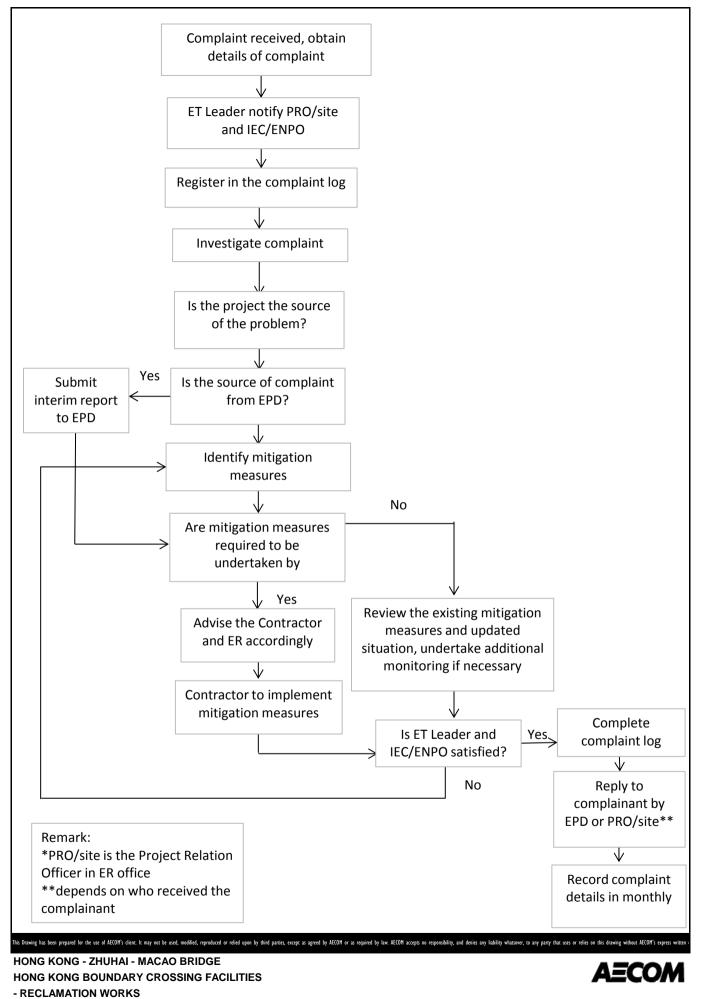
Impact Dolphin Monitoring Survey Efforts on 20 & 21 March 2017



HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES

- RECLAMATION WORKS Project No.: 60249820

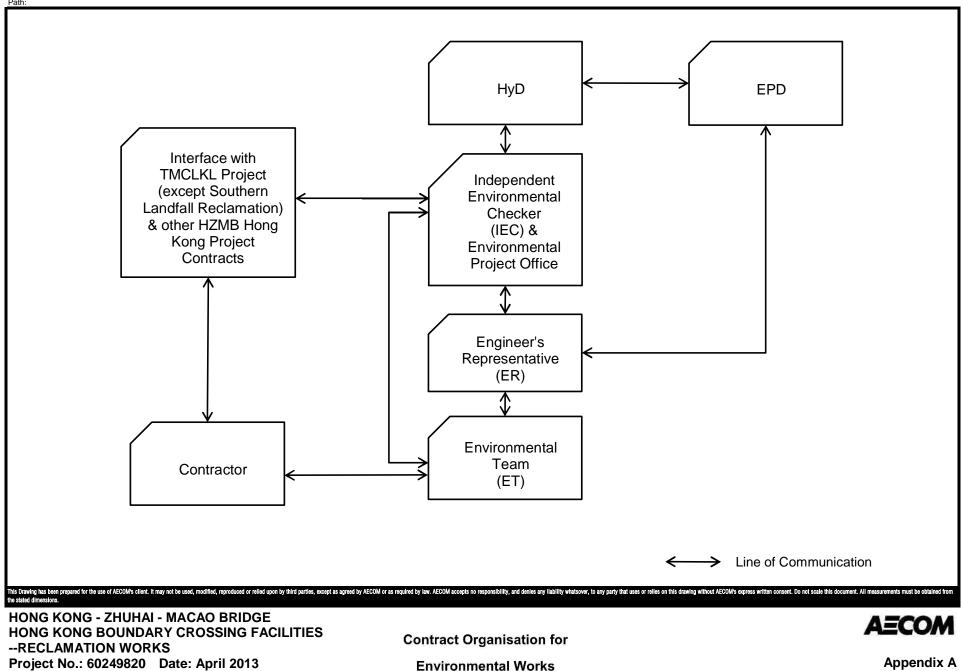
Date: April 2017


Impact Dolphin Monitoring Survey Sightings in March 2017

HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

Project No.: 60249820 Date: April 2017

Impact Dolphin Monitoring Survey Behaviour Map in March 2017



Environmental Complaint Handling Procedure

Checked:

ISO A4 210mm X 297mm

h Monthly Progress Report	Status as on 21Mar2017 for report	HKBCF 3MTH Rolling	Programme		10-Apr-17
vity ID Act	tivity Name			2017	
			Mar 64	Apr 65	May Jun 66 67
Ath Monthly Dr	anne a Demont Ctature an an A		04	63	88 87
	ogress Report Status as on 2	1 Mar2017 for report			
•	fined in PS Clause 1.03(6)				
Portion A, B, C & E					
Portion A, B, C & E					
Seawall Optimizing Rubble M	ound Seawalls				•
Rock Armour					
CS10030 Co	mpletion of Rock Armour at Rubble Mound Seav	valls		•	
	(013-K027 Ch0+450 - Ch1+100				
	at K013 - K027 Cat1 (16,900m3, 1000m3/day)				
RFB0-030 PB	at K013 - K027 Underlayer (200-500kg) 16,832	m3 1000m3/day			
RFB0-040 PB	at K013 - K027 Rock Armour (0.3-1 ton 33904n	n3 244m3/day)			
	a C113-C119 Ch4+710 - Ch5+050				
	2a at C113 - C117 Removal of Temporary Rockf				
	2a at C113 - C117 Underlayer 21,600m3 1000m				
RFC2a040 PC	2a at C113 - C117 Rock Armour (2-5 ton 43,272	m3 305m3/day)			
Conforming Sloping					_
Rock Armour - Befor	e Surcharge Period mpletion of Rock Armour at Conforming Sloping	Cooucillo			
		Seawaiis			•
Portion E1 & E2 In I	Front of Cells Ch1+990 - 3+810				
	2 Ch2+750 - Ch2+870 1-3ton Armour				
Portion E1 Ch2+87	0 - Ch2+980		•		
	2 Ch2+870 - Ch2+980 Area Released by DBJV		•		
RFE1b-010 PE	1 Ch2+870 - Ch2+980 Trimming at the toe (110	m)			
RFE1b-020 PE	1 Ch2+870 - Ch2+980 Geotextile				
RFE1b-030 PE	1 Ch2+870 - Ch2+980 10-60kg Underlayer				
RFE1b-040 PE	1 Ch2+870 - Ch2+980 1-3ton Armour		_		
Portion E1 & E2 on	Cells C049 - C091		•		
	067 & E1 C068-C070		I V		
	2 C060-C067 & PE1 C068-C070 Trimming				
	2 C060-C067 & PE1 C068-C070 Geotextile				
	2 C060-C067 60-200kg Underlayer & PE1 C068				
	2 C060-C067 & PE1 C068-C070 2-5ton Rock Ar	mour			-
Portion E1 C071-C0					
	1 C071-C076 Trimming			—	
	1 C071-C076 Geotextile				
	1 C071-C076 10-60kg Underlayer				
	1 C071-C076 2-5ton Rock Armour			•	
	2 - C112 (Ch4+262 - Ch4+710)			<u></u>	
BF-RFC2a-030 PC	22a at C102 - C112 on cells Rock Armour 2-5ton	• •			
Remaining Level of Effor	rt Remaining Work S	Page 1 of 2)	TASK filters: 3 months rolling pro	gramme EP, Responsbility.
Actual Level of Effort	Critical Remaining Work				Oracle Corp
Actual Work	♦ Milestone				Oracle Corp

64th Monthly Progress Report S	Status as on 21Mar2017 for report	HKBCF 3MTH Rollin	ng Programme				10-Apr-17 10:50
Activity ID Acti	ivity Name				2017		
,				Mar	Apr	May	Jun
		0.51		64	65	66	67
	2c at C102 - C112 in front of cells Rock Armour	2-5ton 19,855m3 221m3/day					
Portion D							
Site Construction							
C1 to C4 Construction of Perma	anont Soawall						
Vertical Seawall Type					•		
Insitu Concrete Copi							
PD-V2-0995 PD	C1 West - Insitu Coping VSOP22-20 9bays stg	J2					
PD-V2-1030 PD	C4 East - Insitu Coping VSOP05-01 9bays stg2	2					
Reclamation upto +5	5.5mPD		· · · · · · · · · · · · · · · · · · ·				
PD-V2-0380 PD	C1 West - Coping backfill with compaction upto	o +5.5mPD VSOP22-20					
PD-V2-0420 PD	C4 East - Coping backfill with compaction upto	+5.5mPD VSOP05-01					
PD-V2-0430 PD	Completion of Coping before end June 2017			•			
Sloping Seawall Type	e S1 0+000 to 0+420						
S1 Rockfill Type 1							
PD-S1-1030 PD	C2/3 - Sloping Seawall Type S1 Reconstruction	า					
PD-S1-1040 PD	C3/4 - Sloping Seawall Type S1 Reconstruction	ו					
PD-S1-1045 PD	C4 East - Sloping Seawall Type S1 Reconstruct	tion					
PD-S1-1050 Con	mpletion of Southern Sloping Seawall				•		

Remaining Level of Effort Re	emaining Work VIII S	Page 2 of 2	TASK filters: 3 months rolling programme EP, Responsbility.
Actual Level of Effort Cri	itical Remaining Work		Oracle Corporatic
Actual Work Mil	ilestone		

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
Air Quality		•	·	
S5.5.6.1 of	A1	The contractor shall follow the procedures and requirements given in the Air Pollution	All construction sites	V
HKBCFEIA		Control (Construction Dust) Regulation		
S5.5.6.2 of	A2	Proper watering of exposed spoil should be undertaken throughout the construction	All construction sites	V
HKBCFEIA		phase:		
and S4.8.1 of		Any excavated or stockpile of dusty material should be covered entirely by		
TKCLKLEIA		impervious sheeting or sprayed with water to maintain the entire surface wet and		
		then removed or backfilled or reinstated where practicable within 24 hours of the		
		excavation or unloading;		
		Any dusty materials remaining after a stockpile is removed should be wetted with		
		water and cleared from the surface of roads;		
		• A stockpile of dusty material should not be extend beyond the pedestrian barriers,		
		fencing or traffic cones.		
		• Where practicable, vehicle washing facilities with high pressure water jet should be		
		provided at every discernible or designated vehicle exit point. The area where		
		vehicle washing takes place and the road section between the washing facilities		
		and the exit point should be paved with concrete, bituminous materials or		
		hardcores;		
		When there are open excavation and reinstatement works, hoarding of not less		
		than 2.4m high should be provided as far as practicable along the site boundary		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;		
		• The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;		
		 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously; 		
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; 		
		 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding; 		
		 Any skip hoist for material transport should be totally enclosed by impervious sheeting; 		
		• Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;		
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		audible high level alarm which is interlocked with the material filling line and no		
		overfilling is allowed;		
		All unpaved roads/exposed area shall be watered which results in dust suppression		
		by forming moist cohesive films among the discrete grains of road surface material.		
		 No burning of debris or other materials on the works areas is allowed; 		
		• Water spray shall be used during the handling of fill material at the site and at active		
		cuts, excavation and fill sites where dust is likely to be created;		
		Open dropping heights for excavated materials shall be controlled to a maximum		
		height of 2m to minimise the fugitive dust arising from unloading;		
		• During transportation by truck, materials shall not be loaded to a level higher than		
		the side and tail boards, and shall be dampened or covered before transport.		
		Materials having the potential to create dust shall not be loaded to a level higher		
		than the side and tail boards, and shall be covered by a clean tarpaulin. The		
		tarpaulin shall be properly secured and shall extend at least 300mm over the edges		
		of the side and tail boards;		
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should		
		be carried out in a totally enclosed system or facility, and any vent or exhaust		
		should be fitted with an effective fabric filter or equivalent air pollution control		
		system; and		
		• Exposed earth should be properly treated by compaction, turfing, hydroseeding,		
		vegetation planting or sealing with latex, vinyl, bitumen, shotcrete or other suitable		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		surface stabiliser within six months after the last construction activity on the		
		construction site or part of the construction site where the exposed earth lies.		
S5.5.6.3 of	A3	The Contractor should undertake proper watering on all exposed spoil and associated	All construction sites	V
HKBCFEIA		work areas (with at least 8 times per day) throughout the construction phase.		
and S4.8.1 of				
TKCLKLEIA				
S5.5.6.4 of	A4	Implement regular dust monitoring under EM&A programme during the construction	Selected	V
HKBCFEIA		stage.	representative dust	
and S4.11 of			monitoring station	
TKCLKLEIA				
S5.5.7.1 of	A5	The following mitigation measures should be adopted to prevent fugitive dust emissions	All construction sites	N/A
HKBCFEIA		for concrete batching plant:		
		• Loading, unloading, handling, transfer or storage of any dusty materials should be		
		carried out in totally enclosed system;		
		All dust-laden air or waste gas generated by the process operations should be		
		properly extracted and vented to fabric filtering system to meet the emission limits		
		for TSP;		
		• Vents for all silos and cement/ pulverised fuel ash (PFA) weighing scale should be		
		fitted with fabric filtering system;		
		The materials which may generate airborne dusty emissions should be wetted by		
		water spray system;		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		All receiving hoppers should be enclosed on three sides up to 3m above unloading point;		
		All conveyor transfer points should be totally enclosed;		
		• All access and route roads within the premises should be paved and wetted; and		
		Vehicle cleaning facilities should be provided and used by all concrete trucks		
		before leaving the premises to wash off any dust on the wheels and/or body.		
S5.5.2.7 of HKBCFEIA	A6	The following mitigation measures should be adopted to prevent fugitive dust emissions at barging point:	All construction sites	N/A (Construction in
		All road surface within the barging facilities will be paved;		process)
		Dust enclosures will be provided for the loading ramp;		
		Vehicles will be required to pass through designated wheels wash facilities; and		
		Continuous water spray at the loading points.		
Construction	Noise (Air bori	ne)		
S6.4.10 of	N1	Use of good site practices to limit noise emissions by considering the following:	All construction sites	V
HKBCFEIA		only well-maintained plant should be operated on-site and plant should be		
		serviced regularly during the construction programme;		
		• machines and plant (such as trucks, cranes) that may be in intermittent use should		
		be shut down between work periods or should be throttled down to a minimum;		
		plant known to emit noise strongly in one direction, where possible, be orientated		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		so that the noise is directed away from nearby NSRs;		
		silencers or mufflers on construction equipment should be properly fitted and		
		maintained during the construction works;		
		• mobile plant should be sited as far away from NSRs as possible and practicable;		
		• material stockpiles, mobile container site officer and other structures should be		
		effectively utilised, where practicable, to screen noise from on-site construction		
		activities.		
S6.4.11 of	N2	Install temporary hoarding located on the site boundaries between noisy construction	All construction sites	V
HKBCFEIA		activities and NSRs. The conditions of the hoardings shall be properly maintained		
		throughout the construction period.		
S6.4.12 of	N3	Install movable noise barriers (typically density @14kg/m ²), acoustic mat or full	For plant items listed	N/A
HKBCFEIA		enclosure close to noisy plants including air compressor, generators, saw.	in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.13 of	N4	Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	For plant items listed	V
HKBCFEIA			in Appendix 6D of the	
			EIA report at all	
			construction sites	
S6.4.14 of	N5	Sequencing operation of construction plants where practicable.	All construction sites	V
HKBCFEIA			where practicable	
S5.1 of	N6	Implement a noise monitoring under EM&A programme.	Selected	V

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA			representative noise	
			monitoring station	
Waste Manag	ement (Const	ruction Waste)		
S12.6 of	WM1	The Contractor shall identify a coordinator for the management of waste.		V
TMCLKLEIA			All construction sites	
S12.6 of	WM2	The Contractor shall apply for and obtain the appropriate licenses for the disposal of	All construction sites	V
TMCLKLEIA		public fill, chemical waste and effluent discharges.	All construction sites	
S12.6 of	WM3	EM&A of waste handling, storage, transportation, disposal procedures and		V
TMCLKLEIA		documentation through the site audit programme shall be undertaken.	All construction sites	
S8.3.8 of	WM4	Construction and Demolition Material		V
HKBCFEIA		The following mitigation measures should be implemented in handling the waste:		
and S12.6 of		Maintain temporary stockpiles and reuse excavated fill material for backfilling and		
TMCLKLEIA		reinstatement;		
		Carry out on-site sorting;	All construction sites	
		Make provisions in the Contract documents to allow and promote the use of	All construction sites	
		recycled aggregates where appropriate;		
		Adopt 'Selective Demolition' technique to demolish the existing structures and		
		facilities with a view to recovering broken concrete effectively for recycling purpose,		
		where possible;		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 Implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified; Implement an enhanced Waste Management Plan similar to ETWBTC (Works) No. 19/2005 – "Environmental Management on Construction Sites" to encourage on-site sorting of C&D materials and to minimize their generation during the course 		
		 of construction; In addition, disposal of the C&D materials onto any sensitive locations such as agricultural lands, etc. should be avoided. The Contractor shall propose the final disposal sites to the Project Proponent and get its approval before implementation; and The surplus surcharge should be transferred to a fill bank. 		
S8.3.9- S8.3.11 of HKBCFEIA and S12.6 of TMCLKLEIA	WM5	 <u>C&D Waste</u> Standard formwork or pre-fabrication should be used as far as practicable in order to minimise the arising of C&D materials. The use of more durable formwork or plastic facing for the construction works should be considered. Use of wooden hoardings should not be used, as in other projects. Metal hoarding and falsework should be used to enhance the possibility of recycling. The purchasing of construction materials will be carefully planned in order to avoid over ordering and wastage. The Contractor should recycle as much of the C&D materials as possible on-site. Public fill and C&D waste should be segregated and stored in different containers 	All construction sites	V

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		or skips to enhance reuse or recycling of materials and their proper disposal.		
		Where practicable, concrete and masonry can be crushed and used as fill. Steel		
		reinforcement bar can be used by scrap steel mills. Different areas of the sites		
		should be considered for such segregation and storage.		
S8.2.12-	WM6	Chemical Waste	All construction sites	V
S8.3.15 of		Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal		
HKBCFEIA		(Chemical Waste) (General) Regulation, should be handled in accordance with the		
and S12.6 of		Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes.		
TMCLKLEIA		Containers used for the storage of chemical wastes should be suitable for the		
		substance they are holding, resistant to corrosion, maintained in a good condition,		
		and securely closed; have a capacity of less than 450 liters unless the specification		
		has been approved by the EPD; and display a label in English and Chinese in		
		accordance with instructions prescribed in Schedule 2 of the regulation.		
		• The storage area for chemical wastes should be clearly labelled and used solely for		
		the storage of chemical waste; enclosed on at least 3 sides; have an impermeable		
		floor and bunding of sufficient capacity to accommodate 110% of the volume of the		
		largest container or 20 % of the total volume of waste stored in that area, whichever		
		is the greatest; have adequate ventilation; covered to prevent rainfall entering; and		
		arranged so that incompatible materials are adequately separated.		
		• Disposal of chemical waste should be via a licensed waste collector; be to a facility		
		licensed to receive chemical waste, such as the Chemical Waste Treatment Centre		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		which also offers a chemical waste collection service and can supply the necessary		
		storage containers; or be to a reuser of the waste, under approval from the EPD.		
S8.3.16 of	WM7	Sewage	All construction sites	V
HKBCFEIA		Adequate numbers of portable toilets should be provided for the workers. The		
and S12.6 of		portable toilets should be maintained in a state, which will not deter the workers		
TMCLKLEIA		from utilizing these portable toilets. Night soil should be collected by licensed		
		collectors regularly.		
S8.3.17 of	WM8	General Refuse	All construction sites	V
HKBCFEIA		The site and surroundings shall be kept tidy and litter free. General refuse		
and S12.6 of		generated on-site should be stored in enclosed bins or compaction units separately		
TMCLKLEIA		from construction and chemical wastes.		
		A reputable waste collector should be employed by the Contractor to remove		
		general refuse from the site, separately from construction and chemical wastes, on		
		a daily basis to minimize odour, pest and litter impacts. Burning of refuse on		
		construction sites is prohibited by law.		
		• Aluminium cans are often recovered from the waste stream by individual collectors		
		if they are segregated and made easily accessible. Separate labelled bins for their		
		deposit should be provided if feasible.		
		• Office wastes can be reduced through the recycling of paper if volumes are large		
		enough to warrant collection. Participation in a local collection scheme should be		

Monthly EM&A Report for March 2017

EM&A Log	Environmental Mitigation Measures	Location	Implementation
Ref			Status
Construction	 considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. 		
		During filling	V
W1	Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures that restrict the method and sequencing of backfilling, as well as protection measures. Details of the measures are provided below:	During filling	V
	Ref	Ref considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. • Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. • Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. • All waste containers shall be in a secure area on hardstanding. (Construction Phase) W1 Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures. Details of the measures are	Ref Considered by the Contractor. In addition, waste separation facilities for paper, aluminum cans, plastic bottles etc., should be provided. Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including reduction, reuse and recycling of wastes. Sufficient dustbins shall be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By-laws. In addition, general refuse shall be cleared daily and shall be disposed of to the nearest licensed landfill or refuse transfer station. All waste containers shall be in a secure area on hardstanding. W1 Mitigation during the marine works to reduce impacts to within acceptable levels have been recommended and will comprise a series of measures. Details of the measures are During filling

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
EIA Ref.		 Environmental Mitigation Measures Reclamation filling for the Project shall not proceed until at least 200m of leading seawall at the reclamation area formed above +2.2mPD, unless otherwise agreement was obtained from EPD, except for the 300m gaps for marine access. All underwater filling works shall be carried out behind seawalls to avoid dispersion of suspended solids outside the Project limit; Except for the filling of the cellular structures, not more than 15% public fill shall be used for reclamation filling below +2.5mPD during construction of the seawall; After the seawall is completed except for the 300m marine access as indicated in the EPs, not more than 30% public fill shall be used for reclamation filling below +2.5mPD, unless otherwise agreement from EPD was obtained; Upon completion of 200m leading seawall, no more than a total of 60 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and Upon completion of the whole section of seawall except for the 300m marine access as indicated in the EPs, no more than a total of 190 filling barge trips per day shall be made with a cumulative maximum daily filling rate of 60,000 m3 for HKBCF and TMCLKL southern landfall reclamation during the filling operation; and 	Location	-
		 remaining filling operations for HKBCF and TMCLKL southern landfall reclamation. Floating type perimeter silt curtains shall be around the HKBCF site before the commencement of marine works. Staggered layers of silt curtain shall be provided 		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		 to prevent sediment loss at navigation accesses. The length of each staggered layers shall be at least 200m; Single layer silt curtain to be applied around the North-east airport water intake; The silt-curtains should be maintained in good condition to ensure the sediment plume generated from filling be confined effectively within the site boundary; The filling works shall be scheduled to spread the works evenly over a working day; Cellular structure shall be used for seawall construction; A layer of geotextile shall be placed on top of the seabed before any filling activities take place inside the cellular structures to form the seawall; The conveyor belts shall be fitted with windboards and conveyor release points shall be covered with curtain to prevent any spillage of filling materials onto the surrounding waters; and An additional layer of silt curtain shall be installed near the active stone column installation points. A layer of geotextile with stone blanket on top shall be placed on the seabed prior to stone column installation works. 		
S9.11.1.3 of HKBCFEIA and S6.10 of	W2	Land Works General construction activities on land should also be governed by standard good working practice. Specific measures to be written into the works contracts should include:	All land-based construction sites	V

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
TMCLKLEIA		 wastewater from temporary site facilities should be controlled to prevent direct discharge to surface or marine waters; sewage effluent and discharges from on-site kitchen facilities shall be directed to Government sewer in accordance with the requirements of the WPCO or collected for disposal offsite. The use of soakaways shall be avoided; storm drainage shall be directed to storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sediment basins. Channels, earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks; silt removal facilities, channels and manholes shall be maintained and any deposited silt and grit shall be removed regularly, including specifically at the onset of and after each rainstorm; temporary access roads should be surfaced with crushed stone or gravel; rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities; measures should be taken to prevent the washout of construction materials, soil, silt or debris into any drainage system; open stockpiles of construction materials (e.g. aggregates and sand) on site 		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
	Ref	 should be covered with tarpaulin or similar fabric during rainstorms; manholes (including any newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers; discharges of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system; all vehicles and plant should be cleaned before they leave the construction site to ensure that no earth, mud or debris is deposited by them on roads. A wheel washing bay should be provided at every site exit; wheel wash overflow shall be directed to silt removal facilities before being discharged to the storm drain; the section of construction road between the wheel washing bay and the public road 		Status
		 should be surfaced with crushed stone or coarse gravel; wastewater generated from concreting, plastering, internal decoration, cleaning work and other similar activities, shall be screened to remove large objects; vehicle and plant servicing areas, vehicle wash bays and lubrication facilities shall be located under roofed areas. The drainage in these covered areas shall be connected to foul sewers via a petrol interceptor in accordance with the requirements of the WPCO or collected for offsite disposal; 		

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		the contractors shall prepare an oil / chemical cleanup plan and ensure that		
		leakages or spillages are contained and cleaned up immediately;		
		waste oil should be collected and stored for recycling or disposal, in accordance		
		with the Waste Disposal Ordinance;		
		• all fuel tanks and chemical storage areas should be provided with locks and be		
		sited on sealed areas. The storage areas should be surrounded by bunds with a		
		capacity equal to 110% of the storage capacity of the largest tank; and		
		surface run-off from bunded areas should pass through oil/grease traps prior to		
		discharge to the storm water system		
S9.14 of	W3	Implement a water quality monitoring programme	At identified	V
HKBCFEIA			monitoring location	
and S6.10 of				
TMCLKLEIA				
S6.10 of	W4	All construction works shall be subject to routine audit to ensure implementation of all	All construction site	V
TMCLKLEIA		EIA recommendations and good working practice.	areas	
Ecology (Con	struction Phas	e)		
S10.7 of	E1	Install silt curtain during the construction	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
and S8.14 of		 Construct seawall prior to reclamation filling where practicable 		
TMCLKLEIA				

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
		Good site practices		
		Strict enforcement of no marine dumping		
		Site runoff control		
		Spill response plan		
S10.7 of	E2	Watering to reduce dust generation; prevention of siltation of freshwater habitats;	Land-based works	V
HKBCFEIA		Site runoff should be desilted, to reduce the potential for suspended sediments,	areas	
		organics and other contaminants to enter streams and standing freshwater.		
S10.7 of	E3	Good site practices, including strictly following the permitted works hours, using	Land-based works	V
HKBCFEIA		quieter machines where practicable, and avoiding excessive lightings during night	areas	
and S8.14 of		time.		
TMCLKLEIA				
S10.7 of	E4	Dolphin Exclusion Zone	Marine works	V
HKBCFEIA		Dolphin watching plan		
and S8.14 of				
TMCLKLEIA				
S10.7 of	E5	Decouple compressors and other equipment on working vessels	Marine works	V
HKBCFEIA		Proposal on design and implementation of acoustic decoupling measures applied		
and S8.14 of		during reclamation works		
TMCLKLEIA		Avoidance of percussive piling		
S10.7 of	E6	Control vessel speed	Marine traffic	V

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log	Environmental Mitigation Measures	Location	Implementation
	Ref			Status
HKBCFEIA		Skipper training		
and S8.14 of		Predefined and regular routes for working vessels; avoid Brothers Islands		
TMCLKLEIA				
S10.10 of	E7	Vessel based dolphin monitoring	Northeast and	V
HKBCFEIA			Northwest	
and S8.14 of			Lantau	
TMCLKLEIA				
Fisheries				
S11.7 of	F1	Reduce re-suspension of sediments	Seawall, reclamation	V
HKBCFEIA		Limit works fronts	area	
		Good site practices		
		Strict enforcement of no marine dumping		
		Spill response plan		
S11.7 of	F2	 Install silt-grease trap in the drainage system collecting surface runoff 	Reclamation area	V
HKBCFEIA				
Landscape &	Visual (Constr	uction Phase)		
S14.3.3. 3 of	LV1	Mitigate Landscape Impacts	All construction site	N/A
HKBCFEIA			areas	
and S10.9 of		G1/CM4 Grass-hydroseed or sheeting bare soil surface and stock pile areas.		
TMCLKLEIA		G9 Reserve of loose natural granite rocks for re-use. Provide new coastline to		
		adopt "natural-look" by means of using armour rocks in the form of natural		

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2017

EIA Ref.	EM&A Log Ref	Environmental Mitigation Measures	Location	Implementation Status
		rock materials and planting strip area accommodating screen buffer to enhance "natural-look" of new coastline.		Status
S10.9 of TMCLKLEIA	LV2	Mitigate Landscape Impacts CM7 Ensure no run-off into water body adjacent to the Project Area.	All construction site areas	V
S14.3.3. 3 of HKBCFEIA	LV4	Mitigate Visual ImpactsV1Minimize time for construction activities during construction period.	All construction site areas	V
S10.9 of TMCLKLEIA	LV5	<u>Mitigate Visual Impacts</u> CM6 Control night-time lighting and glare by hooding all lights.	All construction site areas	V
EM&A		•	L	
S15.2.2 of HKBCFEIA	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	All construction site areas	V
S15.5 - S15.6 of HKBCFEIA	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	All construction site areas	V

Legend: V = implemented;

x = not implemented;

N/A = not applicable

Appendix D - Summary of Action and Limit Levels

Location	Action Level	Limit Level
AMS2	374 μg/m³	500 μg/m³
AMS3B*	368 μg/m³	500 μg/m³
AMS6	360 μg/m³	500 μg/m³
AMS7	370 μg/m³	500 μg/m³

Table 1 – Action and Limit Levels for 1-hour TSP

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 2 – Action and Limit Levels for 24-hour TSP	ls for 24-hour TSP
---	--------------------

Location	Action Level	Limit Level
AMS2	176 μg/m³	260 μg/m³
AMS3B*	167 μg/m³	260 μg/m³
AMS6	173 μg/m³	260 μg/m³
AMS7	183 μg/m³	260 μg/m³

Remarks: * Action Level set out at AMS3 Ho Yu College is adopted.

Table 3 – Action and Limit Levels for Construction Noise (0700-1900 hrs of normal weekdavs)

Location	Action Level	Limit Level	
NMS2	When one documented	75 dB(A)	
	complaint, related to 0700 -		
	1900 hours on normal		
NMS3B	weekdays, is received	*65 / 70 dB(A)	
	from any one of the sensitive		
	receivers		

*Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

Parameters	Action	Limit
DO in mg L ⁻¹	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.0	4 .2 (except 5 mg/L for FCZ)
	Bottom	<u>Bottom</u>
	4.7	3.6
SS in mg L ⁻¹	23.5 and 120% of upstream	34.4 and 130% of upstream
(depth-averaged)	control station's SS at the	control station's SS at the same
	same tide of the same day	tide of the same day and
		10mg/L for WSD Seawater
		intakes
Turbidity in NTU	27.5 and 120% of upstream	47.0 and 130% of upstream
(depth-averaged)	control station's turbidity at	control station's turbidity at the
	the same tide of the same	same tide of the same day
	day	

Table 4 – Action and Limit Levels for Water Quality

Notes:

- 1. "depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.
- 2. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.
- 3. For turbidity, SS, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5(a) Action and Limit Levels for Chinese White Dolphin Monitoring - Approach to Define Action Level (AL) and Limit Level (LL):

	North Lantau Social Cluster			
	NEL	NWL		
Action Level	(STG < 70% of baseline) &	(STG < 70% of baseline) &		
	(ANI < 70% of baseline)	(ANI < 70% of baseline)		
Limit Level	[(STG < 40% of baseline) & (ANI < 40% of baseline)] AND			
	[(STG < 40% of baseline) & (ANI < 40% of baseline)]			

For North Lantau Social Cluster, action level will be trigger if either NEL **or** NWL fall below the criteria; limit level will be triggered if both NEL **and** NWL fall below the criteria.

Table 5(b) Derived Value of Action Level (AL) and Limit Level (LL) for Chinese White Dolphin Monitoring

	North Lantau Social Cluster		
	NEL	NWL	
Action Level	(STG < 4.2) &	(STG < 6.9) &	
	(ANI < 15.5)	(ANI < 31.3)	
Limit Level	[(STG < 2.4) & (ANI <8.9)] AND		
	[(STG < 3.9)& (ANI < 17.9)]		

Station	Tung Chung Dev	ng Chung Development Pier (AMS2)	Operator:	Choi Wing Ho	
Cal. Date:	13-Jan-17		Next Due Date:	13-Mar-17	
Equipment No.:	A-001-78T	-	Serial No.	3383	
			Ambient Condition		
Temperatu	ure, Ta (K)	290.0	Pressure, Pa (mmHg)	760.5	

		Orifice Transfer S	tandard Informatio	on	
Serial No:	988	Slope, mc	1.99349	Intercept, bc	-0.02737
Last Calibration Date:	31-May-16		mc x Qstd + bc	= [DH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	31-May-17		Qstd = {[DH x (Pa/760) x (298/Ta)] ^{1/2} -bc} / mc	

.

QC Reviewer: WS CHAN

		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.1	2.70	1.37	45.0	45.63
13	6.1	2.50	1.27	40.0	40.56
10	5.0	2.27	1.15	35.0	35.49
7	3.7	1.95	0.99	28.0	28.39
5	2.8	1.70	0.86	23.0	23.32
Correlation Coe		0.9987	Intercept, bw =	-15.0	0869
Slope , mw = Correlation Coe *If Correlation Co	fficient* =	heck and recalibrate.	-	-15.(0869
Correlation Coe *If Correlation Co	fficient* = pefficient < 0.990, c	heck and recalibrate.	Intercept, bw = Calculation	-15.(0869
Correlation Coe *If Correlation Co From the TSP Fie	fficient* = efficient < 0.990, c eld Calibration Cur	heck and recalibrate.	-	-15.0)869
Correlation Coe *If Correlation Co From the TSP Fie	fficient* = efficient < 0.990, c eld Calibration Cur	heck and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation)869
Correlation Coe *If Correlation Co From the TSP Fie	fficient* = efficient < 0.990, c eld Calibration Cur	heck and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	-	-15.(0869

Date: 13/1/1 P Signature:

D:\HVS Calibration Certificate (Existing)

Station	Tung Chung Deve	elopment Pier (A	MS2) Operator:	Choi Wing Ho	
Cal. Date:	13-Mar-17		Next Due Date:	13-May-17	
Equipment No.:	A-001-78T	-	Serial No.	3383	
			Ambient Condition		
Temperat	ure, Ta (K)	299.6	Pressure, Pa (mmHg)	762.1	

	(Orifice Transfer St	andard Information		
Serial No:	988	Slope, mc	1.99349	Intercept, bc	-0.02737
Last Calibration Date:	31-May-16		mc x Qstd + bc = [[OH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	31-May-17		Qstd = {[DH x (Pa/	760) x (298/Ta)] ^{1/2} -bc} / mc	

	Calibration of	of TSP Sampler		
	Orfice		HV	S Flow Recorder
DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
7.0	2.64	1.34	46.0	45.94
6.0	2.45	1.24	41.0	40.95
5.0	2.23	.1.13	36.0	35.95
3.8	1.95	0.99	29.0	28.96
2.8	1.67	0.85	24.0	23.97
	0.9965 heck and recalibrate.	_		
		Calculation		
eld Calibration Cur	ve, take Qstd = 1.30m ³ /min			
sion Equation, the	"Y" value according to			
	mw x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)] ^{1/2}	
oint; IC = (mw x Q	std + bw) x [(760 / Pa) x (Ta / 29	98)] ^{1/2} =	•	43.80
	in. of water 7.0 6.0 5.0 3.8 2.8 ession of Y on X 45.5063 fficient* = pefficient < 0.990, c eld Calibration Cur- sion Equation, the	Orfice DH (orifice), in. of water [DH x (Pa/760) x (298/Ta)] ^{1/2} 7.0 2.64 6.0 2.45 5.0 2.23 3.8 1.95 2.8 1.67 ession of Y on X 45.5063 efficient* = 0.9965 oefficient < 0.990, check and recalibrate. Set Point eld Calibration Curve, take Qstd = 1.30m ³ /min ession Equation, the "Y" value according to mw x Qstd + bw = IC	DH (orifice), in. of water $[DH \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (m ³ /min) X - axis 7.0 2.64 1.34 6.0 2.45 1.24 5.0 2.23 1.13 3.8 1.95 0.99 2.8 1.67 0.85 ession of Y on X 45.5063 Intercept, bw = officient* = 0.9965 oefficient < 0.990, check and recalibrate.	Orfice HVS DH (orifice), in. of water $[DH \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (m ³ /min) X axis Flow Recorder Reading (CFM) 7.0 2.64 1.34 46.0 6.0 2.45 1.24 41.0 5.0 2.23 1.13 36.0 3.8 1.95 0.99 29.0 2.8 1.67 0.85 24.0 session of Y on X 45.5063 Intercept, bw =

Remarks:							
QC Reviewer: _	N	Y	Tip	Signature:	MK	Date	e: <u>14 /3 /2017</u> Calibration Certificate (Existing)

Station	Site Boundary of	Site Office (WA2)	(AMS3B) Operator:	Leung Yiu Ting	
Cal. Date:	28-Feb-17		Next Due Date:	4/28/2017	
Equipment No.:	A-001-79T	-	Serial No.	3384	_
			Ambient Condition		
Temperati	ure, Ta (K)	291.3	Pressure, Pa (mmHg)	765.6	

	(Orifice Transfer St	tandard Information		
Serial No:	988	Slope, mc	1.99349	Intercept, bc	-0.02737
Last Calibration Date:	31-May-16		mc x Qstd + bc = [[DH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	31-May-17		Qstd = {[DH x (Pa/	760) x (298/Ta)] ^{1/2} -bc} / mc	

		Calibration of	of TSP Sampler		
		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	7.1	. 2.70	1.37	52.0	52.79
13	6.2	2.53	1.28	44.0	44.67
10	5.1	2.29	1.16	36.0	36.55
7	3.3	1.84	0.94	24.0	24.36
5	2.2	1.51	0.77	14.0	14.21
Slope , mw = Correlation Coo If Correlation C	_	0.9929 check and recalibrate.	Intercept, bw = 	-34.	1621
Correlation Co	efficient* =	check and recalibrate.	_	-34.1	1621
Correlation Coo	efficient* = oefficient < 0.990, o	check and recalibrate. Set Point	Intercept, bw =	-34.1	1621
Correlation Coorelation Coorelation C	efficient* = oefficient < 0.990, o ield Calibration Cur	check and recalibrate. Set Point rve, take Qstd = 1.30m ³ /min	_	-34.1	1621
Correlation Coorelation Coorelation C	efficient* = oefficient < 0.990, o ield Calibration Cur	check and recalibrate. Set Point	_	-34.1	1621
Correlation Coorelation Coorelation C	efficient* = oefficient < 0.990, o ield Calibration Cur	check and recalibrate. Set Point rve, take Qstd = 1.30m ³ /min	Calculation		1621

40-P

Signature:

QC Reviewer: 44 Sugar

Date: ______28/2/07

D:\HVS Calibration Certificate (Existing)

Station	Hong Kong SkyC	ity Marriott Hotel	(AMS7) Operator:	Leung Yiu Ting	_
Cal. Date:	28-Feb-17		Next Due Date:	4/28/2017	-
Equipment No.:	A-001-80T	-	Serial No.	3385	-
			Ambient Condition		
Temperat	ure, Ta (K)	291.2	Pressure, Pa (mmHg)	765.6	
			Drifice Transfer Standard Information		

	(Drifice Transfer St	tandard Information		and the second second
Serial No:	988	Slope, mc	1.99349	Intercept, bc	-0.02737
Last Calibration Date:	31-May-16		mc x Qstd + bc = [l	DH x (Pa/760) x (298/Ta)] ^{1/2}	
Next Calibration Date:	31-May-17		Qstd = {[DH x (Pa/	760) x (298/Ta)] ^{1/2} -bc} / mc	

and the second se		Calibration of	of TSP Sampler		
		Orfice		HVS	S Flow Recorder
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (m ³ /min) X · axis	Flow Recorder Reading (CFM)	Continuous Flow Recorder Reading IC (CFM) Y-axis
18	6.9	2.67	1.35	46.0	46.71
13	6.2	2.53	1.28	42.0	42.64
10	5.1	2.29	· 1.16	36.0	36.55
7	3.4	1.87	0.95	24.0	24.37
5	2.3	1.54	0.79	16.0	16.25
Slope , mw = Correlation Coe		0.9992 check and recalibrate.	Intercept, bw =	-26.1	7285
Slope , mw = Correlation Coe	54.2140 fficiént* =	sheck and recalibrate.	_	-26.	7285
Slope , mw = Correlation Coe *If Correlation Co	54.2140 ifficient* = pefficient < 0.990, o	check and recalibrate. Set Point	Intercept, bw =	-26.	7285
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	54.2140 fficient* = pefficient < 0.990, of eld Calibration Cur	sheck and recalibrate.	_	-26.	7285
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	54.2140 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to	Calculation		7285
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	54.2140 fficient* = pefficient < 0.990, of eld Calibration Cur	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min	Calculation	[a)] ^{1/2}	7285
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	54.2140 fficient* = pefficient < 0.990, of eld Calibration Cur ssion Equation, the	check and recalibrate. Set Point ve, take Qstd = 1.30m ³ /min "Y" value according to			43.09

Remarks:	-			
QC Reviewer: _	14	Shen	Signature:h_f	Date: <u>ンをしてして</u> D:\HVS Calibration Certificate (Existin

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - May 31,	2016 Rootsmeter	-/	438320	Ta (K) -	298
Operator Tisch	Orifice I.1		0988	Pa (mm) -	754.38
PLATE VOLUM OR STAR Run # (m3) 1 N 2 N 3 N 4 N 5 N	T STOP (m3) A NA A NA A NA A NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3670 0.9750 0.8700 0.8260 0.6830	METER DIFF Hg (mm) 3.2 6.4 7.9 8.7 12.7	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9884 0.9842 0.9821 0.9811 0.9758	0.7230 1.0094 1.1289 1.1878 1.4288	1.4090 1.9926 2.2278 2.3365 2.8179		0.9957 0.9915 0.9894 0.9884 0.9831	0.7284 1.0170 1.1373 1.1967 1.4394	0.8888 1.2570 1.4054 1.4740 1.7777
Qstd slop intercept coefficie	t (b) = ent (r) =	1.99349 -0.02737 0.99988 Pa/760) (298/5	[[Qa slope intercept coefficie y axis =	t (b) =	1.24829 -0.01727 0.99988 Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT(H2O(Ta/Pa)] - b \}$

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.07a
Sensitivity Adjustment Scale Setting:	557 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 140	DOAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	Ko:	12500		
Last Calibration Date*: 7 May 2016						

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

557	CPM
557	CPM

Hour	Date (dd-mm-yy)	Time		Ambient Condition		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	07-05-16	12:15	-	13:15	28.1	77	0.04530	1812	30.20
2	07-05-16	13:15	-	14:15	28.2	76	0.04659	1863	31.05
3	07-05-16	14:15	-	15:15	28.4	78	0.04560	1824	30.40
4	07-05-16	15:15	-	16:15	28.5	77	0.04434	1774	29.57

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X

Slope (K-factor):	0.0015	
Correlation coefficient:	0.9969	
Validity of Calibration Record:	7 May 2017	
valuity of Galibration Record.	I Way LOTT	

R	en	na	rk	S:	

QC Reviewer:	YW Fung	Signature: _	M	Date:	09 May 2016

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.08a
Sensitivity Adjustment Scale Setting:	702 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	Ko:	12500		
Last Calibration Date*: 7 May 2016						

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

702	CPM
702	CPM

Hour	Date		Tim	е	Amb		Concentration ¹	Total	Count/
	(dd-mm-yy)				Cond Temp (°C)	R.H. (%)	(mg/m ³) Y-axis	Count ²	Minute ³ X-axis
1	07-05-16	12:30	-	13:30	28.2	77	0.04611	1727	28.78
2	07-05-16	13:30	-	14:30	28.2	77	0.04678	1758	29.30
3	07-05-16	14:30	-	15:30	28.4	78	0.04574	1717	28.62
4	07-05-16	15:30	-	16:30	28.5	77	0.04353	1634	27.23

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0016	
Correlation coefficient:	0.9977	

Validity of Calibration Record: 7 May 2017

Remarks:					
QC Reviewer:	YW Fung	Signature:	4/	Date:	09 May 2016

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.09a
Sensitivity Adjustment Scale Setting:	797 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control: 140AB219899803					
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 2016					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

797	CPM
797	CPM

Hour	Date (dd-mm-yy)	Time		Amb Cond	bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³	
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	07-05-16	11:45	-	12:45	28.2	77	0.04623	1847	30.78
2	07-05-16	12:45	-	13:45	28.2	78	0.04708	1885	31.42
3	07-05-16	13:45	-	14:45	28.3	76	0.04591	1836	30.60
4	07-05-16	14:45	-	15:45	28.4	77	0.04333	1726	28.77

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X			
Slope (K-factor):	0.0015		
Correlation coefficient:	0.9964		
Validity of Calibration Record:	7 May 2017		

R	em	nar	ks:

QC Reviewer:	YW Fung	S

C Signature:

Date: 09 May 2016

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.10a
Sensitivity Adjustment Scale Setting:	753 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	Ko:	12500		
Last Calibration Date*:	7 May 201	6	_			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 753 CPM 753 CPM

Hour	Date (dd-mm-yy)	-	Time	9		pient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-16	10:00	-	11:00	28.3	76	0.04945	1975	32.92
2	08-05-16	11:00	-	12:00	28.3	77	0.05116	2049	34.15
3	08-05-16	12:00	-	13:00	28.4	76	0.04767	1912	31.87
4	08-05-16	13:00	-	14:00	28.3	76	0.04593	1833	30.55

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

0015
9975

Validity of Calibration Record: 8 Ma

8 May	2017	

Re	m	2	rl	10	
L/G		a		20	٠

QC Reviewer:	YW Fung	Signature:	4/	Date:	09 May 2016

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3
Equipment No.:	A.005.11a
Sensitivity Adjustment Scale Setting:	799 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control: 140AB219899803					
	Sensor:	1200C143659803	Ko:	12500		
Last Calibration Date*:	7 May 201	6				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

799	CPM
799	CPM

Hour	Date (dd-mm-yy)	Т	ime)		bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-16	09:30	-	10:30	28.3	77	0.04959	1893	33.05
2	08-05-16	10:30	-	11:30	28.4	77	0.05173	2071	34.52
3	08-05-16	11:30	-	12:30	28.3	76	0.04817	1922	32.03
4	08-05-16	12:30	-	13:30	28.3	77	0.04562	1828	30.47

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

Validity of Calibration Record: 8

3	May	2017	

Remarks:

QC	Reviewer:	YW Fung	
		1	

Signature:

Date: 09 May 2016

Laser Dust Monitor
SIBATA
LD-3B
A.005.13a
643 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400	DAB				
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	K _o :	12500		
Last Calibration Date*:	7 May 2016	3				

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration): 643 CPM 643 CPM

Hour	Date (dd-mm-yy)	Т	ime)	Amb Cond	bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-16	09:45	-	10:45	28.3	76	0.04923	1977	32.95
2	08-05-16	10:45	-	11:45	28.3	77	0.05086	2034	33.90
3	08-05-16	11:45	-	12:45	28.4	77	0.04834	1936	32.27
4	08-05-16	12:45	-	13:45	28.4	76	0.04617	1850	30.83

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9981

Validity of Calibration Record: 8 Ma

May	201	1	

Remarks:

QC Reviewer:	YW Fung

Signature:

Date: 09 May 2016

Туре:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.14a
Sensitivity Adjustment Scale Setting:	786 CPM

Operator:

Mike Shek (MSKM)

Standard Equipment

Equipment:	Rupprecht & Patashnick TEOM [®]						
Venue:	Cyberport (Pui Ying Secondary School)						
Model No.:	Series 1400AB						
Serial No:	Control: 140AB219899803						
	Sensor:	1200C143659803	Ko:	12500			
Last Calibration Date*:	7 May 201	6					

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

786 CPM 786 CPM

Hour	Date (dd-mm-yy)	Т	ime)	Amb Cond		Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	08-05-16	13:45	-	14:45	28.4	77	0.04652	1994	33.23
2	08-05-16	14:45	-	15:45	28.5	77	0.04837	2071	34.52
3	08-05-16	15:45	-	16:45	28.4	77	0.05162	2205	36.75
4	08-05-16	16:45	-	17:45	28.4	77	0.04983	2135	35.59

Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM®

8 May 2017

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By Linear Regression of Y or X		
Slope (K-factor):	0.0014	
Correlation coefficient:	0.9987	
Validity of Calibration Record:	8 May 2017	

Remarks:					
QC Reviewer:	YW Fung	Signature:	η	Date:	09 May 2016

Type:	Laser Dust Monitor
Manufacturer/Brand:	SIBATA
Model No.:	LD-3B
Equipment No.:	A.005.16a
Sensitivity Adjustment Scale Setting:	521 CPM

Mike Shek (MSKM)

Standard Equipment

Operator:

Equipment:	Rupprecht & Patashnick TEOM®					
Venue:	Cyberport (Pui Ying Secondary School)					
Model No.:	Series 1400AB					
Serial No:	Control:	140AB219899803				
	Sensor:	1200C143659803	Ko:	12500		
Last Calibration Date*:	7 May 201	6	_			

*Remarks: Recommended interval for hardware calibration is 1 year

Calibration Result

Sensitivity Adjustment Scale Setting (Before Calibration): Sensitivity Adjustment Scale Setting (After Calibration):

521 CPM 521 CPM

Hour	Date (dd-mm-yy)	-	Time)		bient dition	Concentration ¹ (mg/m ³)	Total Count ²	Count/ Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	16-07-16	10:15	-	11:15	30.1	76	0.05319	2135	35.58
2	16-07-16	11:15	-	12:15	30.3	76	0.05615	2247	37.45
3	16-07-16	13:00	-	14:00	30.5	77	0.05984	2392	39.87
4	16-07-16	14:00	-	15:00	30.4	77	0.05786	2313	38.55
Note:	1. Monitoring c	lata was i	mea	sured by	Ruppreck	nt & Pata	shnick TEOM®		

2. Total Count was logged by Laser Dust Monitor

3. Count/minute was calculated by (Total Count/60)

By L	inear	R	egression	of	Y	or	Х
------	-------	---	-----------	----	---	----	---

Slope (K-factor):	0.0015	
Correlation coefficient:	0.9987	
Validity of Calibration Record:	16 July 2017	

Remarks:

QC Reviewer:	YW Fung	Signature: _	2	Date:	18 July 2016

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	16CA1201 01		Page:	1	of	2
Item tested						
Description:	Acoustical Calibrat	or (Class 1)				
Manufacturer:	Rion Co., Ltd.					
Type/Model No.:	NC-73	CN.004.08)				
Serial/Equipment No.:	10307223	CN.004.08/				
Adaptors used:	-					
Item submitted by						
Curstomer:	AECOM ASIA CO.	LTD.				
Address of Customer:	-					
Request No.:	T 1					
Date of receipt:	01-Dec-2016					
Date of test:	05-Dec-2016					
Reference equipment	used in the calib	ration				
Description:	Model:	Serial No.	Expiry Date:	Т	raceab	le to:
Lab standard microphone	B&K 4180	2412857	14-Apr-2017	-	CL	
Preamplifier	B&K 2673	2239857	28-Apr-2017		EPREI	
Measuring amplifier	B&K 2610	2346941	26-Apr-2017		EPREI	
Signal generator	DS 360	61227	18-Apr-2017		EPREI	
Digital multi-meter	34401A	US36087050	18-Apr-2017		EPREI	
Audio analyzer	8903B	GB41300350	19-Apr-2017	1.1	EPREI	
Universal counter	53132A	MY40003662	19-Apr-2017	· C	EPREI	
Ambient conditions						
Temperature:	22 ± 1 °C					
Relative humidity:	55 ± 10 %					
	1005 ± 5 hPa					

Test specifications

1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.

3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Huang Jian Min/Peng Jun Qi

08-Dec-2016 Company Chop:

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com

Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	16CA0704 03-01			Page	1	of	2
Item tested							
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Mete B & K 2238 2800927 / N.009.0		, , ,	Microphone B & K 4188 2791211			
Item submitted by							
Customer Name: Address of Customer: Request No.: Date of receipt:	AECOM ASIA CO - - 04-Jul-2016	., LTD.					
Date of test:	07-Jul-2016						
Reference equipment	used in the calib	ration					
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227		Expiry Date: 18-Jun-2017 18-Apr-2017 18-Apr-2017		Traceab CIGISME CEPREI CEPREI	
Ambient conditions							
Temperature: Relative humidity: Air pressure:	22 ± 1 °C 60 ± 10 % 1000 ± 5 hPa						
Test specifications							

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Huang Jian Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

09-Jul-2016

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

Company Chop:

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Work Order: Sub-batch: Client: Date of Issue:	HK1703627 0 AECOM ASIA COMPANY LIMITED 27/01/2017
Description:	Multifunctional Meter
Brand Name:	YSI
Model No.:	6820 V2
Serial No.:	12A101545
Equipment No.:	W.026.35
Date of Calibration:	24 January, 2017

Date of next Calibration:

24 April, 2017

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	146.0	-0.6
6667	6670	+0.0
12890	12940	+0.4
58670	58520	-0.3
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.48	-0.02
5.45	5.40	-0.05
7.70	7.67	-0.03
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	10.96	-0.0
20.0	20.02	+0.0
38.0	37.95	-0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager – Inorganics

ALS Technichem (HK) Pty Ltd ALS Environmental

Work Order:		HK1703627
Sub-Batch:	1	0
Client:		AECOM ASIA COMPANY LIMITED
Date of Issue:		27/01/2017
Description:		Multifunctional Meter
Brand Name:		YSI
Model No.:		6820 V2

Serial No.: 12A101545 Equipment No.: W.026.35 Date of Calibration: 24 January, 2017

Date of next Calibration:

24 April, 2017

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.04	+0.4
20	20.02	+0.1
30	30.05	+0.2
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.9	-2.5
10	10.1	+1.0
20	19.6	-2.0
50	49.7	-0.6
100	99.5	-0.5
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.98	-0.02
7.0	7.01	+0.01
10.0	9.97	-0.03
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico

Mr Chan Siu Ming, Vico Manager – Inorganics

ALS Technichem (HK) Pty Ltd

Work Order: Sub-batch:	HK1703618 ,0
Client:	AECOM ASIA COMPANY LIMITED
Date of Issue:	27/01/2017
Description:	Multifunctional Meter
Brand Name:	YSI
Model No.:	6820 V2
Serial No.:	12D100972
Equipment No.:	W.026.36
Date of Calibration:	24 January, 2017

Date of next Calibration:

24 April, 2017

Parameters:

Conductivity

Method Ref: APHA (21th edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	145.0	-1.3
6667	6660	-0.1
12890	12810	-0.6
58670	58730	+0.1
	Tolerance Limit (%)	±10.0

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.50	3.52	+0.02
5.45	5.46	+0.01
7.70	7.73	+0.03
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.03	+0.0
20.0	20.01	+0.0
38.0	37.96	-0.0
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vičo Manager – Inorganics

ALS Technichem (HK) Pty Ltd ALS Environmental

HK1703618 0 AECOM ASIA COMPANY LIMITED 27/01/2017
Multifunctional Meter YSI 6820 V2
12D100972
W.026.36 24 January, 2017

Date of next Calibration:

24 April, 2017

Parameters:

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0	0.00	
10	10.01	+0.1
20	20.04	+0.2
30	29.96	-0.1
	Tolerance Limit (%)	±10.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.8	-5.0
10	10.3	+3.0
20	20.4	+2.0
50	50.5	+1.0
100	99.7	-0.3
	Tolerance Limit (%)	±10.0

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	+0.01
7.0	7.01	+0.01
10.0	9.98	-0.02
	Tolerance Limit (pH Unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico

Manager – Inorganics

ALS Technichem (HK) Pty Ltd ALS Environmental

Mondoy						Eri	idov	Saturday
ivioriuay		Tuesday	weune			FII	2 Mor	Saturday 4-Ma
				I-IVIAI	2-Ivial		S-IVIAI	4-101a
			Mid-Flood	8.54		Mid-Flood	9.57	
							10:21	
			INOI	ise				
	6-Mar	7-Mar		8-Mar	9-Mar		10-Mar	11-Ma
	0 11101			e ma	0 mai		i o mai	
Mid-Ebb	6.23		Mid-Ebb	10.22		Mid-Ebb	12.03	
	12.20		Mild-Flood	15.20		Mid-Flood	17.20	
Dolphin Monitoring								
		Noise						
	13-Mar	14-Mar		15-Mar	16-Mar		17-Mar	18-Ma
								24-hour TSP
			Mid-Ebb	14:38		Mid-Ebb	15:46	1-hour TSP
Noise								
	20-Mar	21-Mar		22-Mar	23-Mar		24-Mar	25-Ma
Mid-Flood	10:59		Mid-Ebb	8:24		Mid-Ebb	11:06	
Mid-Ebb			Mid-Flood			Mid-Flood		
Dolphin Monitoring				_				
						1-hou	ur TSP	
						No	oise	
	27-Mar	28-Mar		29-Mar	30-Mar		31-Mar	
Mid Elood	G.F.1		Mid Flood	7.44	24 hour TSP	Mid Flood	0.40	
						Mid-Flood Mid-Ebb*		
Mid-Ebb								
Mid-Ebb	12:45		Mid-Ebb	13:54	1-hour TSP Noise		15:16	
	Mid-Flood Mid-Ebb 24-hour TSP 1-hour TSP Noise Mid-Flood Mid-Flood Dolphin Monitoring	6-Mar Mid-Ebb 6:53 Mid-Flood 12:28 Dolphin Monitoring 13-Mar Mid-Flood 7:52 Mid-Ebb 13:39 24-hour TSP 1-hour TSP 1-hour TSP Noise 20-Mar Mid-Flood 10:59 Mid-Ebb 18:19 Dolphin Monitoring	MondayTuesday06-Mar7-MarMid-Ebb6:53Mid-Flood12:28Dolphin MonitoringDolphin Monitoring24-hour TSP1-hour TSP1-hour TSPNoise13-Mar14-MarMid-Flood7:52Mid-Ebb13:3924-hour TSP1-hour TSP1-hour TSP13:3924-hour TSP10:59Mid-Ebb18:19Dolphin MonitoringDolphin Monitoring20-Mar21-Mar	MondayTuesdayWednMid-BobMid-FloodMid-FloodMid-Ebb6-Mar7-MarMid-Ebb6:53Mid-FloodMid-Flood12:28Dolphin MonitoringDolphin Monitoring24-hour TSP1-hour TSPNoiseMid-Flood7:52Mid-Ebb13:3924-hour TSP1-hour TSPNoiseMid-FloodMid-Flood13:3924-hour TSPMid-EbbMid-Flood10:59Mid-Flood10:50Mid-Flood10:50<	MondayTuesdayWednesdayImage: Constraint of the second s	MondayTuesdayWednesdayThursdayImage: Constraint of the second secon	MondayTuesdayWednesdayThursdayFr1-Mar2-Mar2-Mar2-MarMid-Flood8:54Mid-FloodMid-Ebb14:54Mid-Flood24-hour TSP 1-hour TSP Noise9-Mar9-MarMid-Ebb6:53Mid-Ebb10:22Mid-Flood15:26Mid-Flood15:26Dolphin Monitoring 24-hour TSP 1-hour TSP NoiseMid-Flood15:26Mid-Flood7:52Mid-Flood8:40Mid-Flood7:52Mid-Flood8:40Mid-Flood7:52Mid-Flood8:40Mid-Flood7:52Mid-Flood8:40Mid-Flood10:59Mid-Flood8:24Mid-Flood10:5900phin MonitoringMid-Flood20-Mar21-Mar22-Mar23-MarMid-Flood10:59Mid-Flood21:02Mid-Flood10:5900phin MonitoringMid-FloodDolphin Monitoring00phin MonitoringMid-Flood27-Mar28-Mar29-Mar30-Mar	Image: Second

Hong Kong Boundary Crossing Facilities – Reclamation Works Impact Monitoring Schedule for March 2017

* Due to thunderstorm signal issued by Hong Kong Observatory, impact water quality monitoring at 15:16 Ebb tide on 31 March 2017 was cancelled.

Sunday	Monday	Tuesday	ct Monitoring Schedul Wednesday	Thursday	Friday	Saturday
Canady	monady	lacoday		indicady	1 Hody	1-Ap
2 4~*	3-Ap	r 4-Apr	5-Apr	6-Apr	7-Apr	8-Ap
2-Apr	5-Ap	4-Api	5-Арг	6-Арг	7-Арг	0-A
	Mid-Flood 10:4	7	Mid-Ebb 9:03		Mid-Ebb 11:09	
	Mid-Ebb 18:0	D	Mid-Flood 13:56		Mid-Flood 16:31	
			24-hour TSP			
			1-hour TSP Noise			
				Dolphin Monitoring		
			Dolphin Montoring	Dolphin Monitoring		
9-Apr	10-Ap	r 11-Apr	12-Apr	13-Apr	14-Apr	15-Ap
<u> </u>						
	Mid-Flood 6:4	2	Mid-Flood 7:31		Mid-Flood 8:21	
	Mid-Ebb 12:4		Mid-Ebb 13:43	24-hour TSP	Mid-Ebb 14:45	
	24-hour TSP			1-hour TSP		
	1-hour TSP			i nour rer		
	Noise					
16-Apr	17-Ap	r 18-Apr	19-Apr	20-Apr	21-Apr	22-Ap
	Mid-Flood 9:4	2	Mid-Flood 6:01		Mid-Ebb 9:49	
	Mid-Ebb 16:4		Mid-Ebb 18:35		Mid-Flood 14:31	
			24-hour TSP			
			1-hour TSP			
		Dolphin Monitoring	Noise			
		2 c.p	Dolphin Monitoring			
23-Apr	24-Ap	r 25-Apr	26-Apr	27-Apr	28-Apr	29-Ap
	Mid-Ebb 11:4	3 24-hour TSP	Mid-Flood 6:34	1	Mid-Flood 7:41	24-hour TSP
	Mid-Flood 17:3		Mid-Ebb 12:54		Mid-Ebb 14:16	1-hour TSP
		Noise				
30-Apr						
			weather etc)	1		

Hong Kong Boundary Crossing Facilities – Reclamation Works Tentative Impact Monitoring Schedule for April 2017

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix G Impact Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m³)	Action Level (µg/m ³)	Limit Level (µg/m ³)
1-Mar-17	1st Hour	Fine	0.06	10:13	74	374	500
1-Mar-17	2nd Hour	Fine	<u>N.A.</u>	11:13	73	374	500
1-Mar-17	3rd Hour	Fine	N.A.	12:13	74	374	500
7-Mar-17	1st Hour	Fine	<u>N.A.</u>	9:50	71	374	500
7-Mar-17	2nd Hour	Fine	N.A.	10:50	69	374	500
7-Mar-17	3rd Hour	Fine	0.74	11:50	71	374	500
13-Mar-17	1st Hour	Sunny	0.22	10:26	75	374	500
13-Mar-17	2nd Hour	Sunny	0.11	11:26	74	374	500
13-Mar-17	3rd Hour	Sunny	0.29	12:26	73	374	500
18-Mar-17	1st Hour	Fine	4.21	10:35	72	374	500
18-Mar-17	2nd Hour	Fine	0.90	11:35	72	374	500
18-Mar-17	3rd Hour	Fine	3.23	12:35	70	374	500
24-Mar-17	1st Hour	Rainy	2.31	11:30	71	374	500
24-Mar-17	2nd Hour	Rainy	0.69	12:30	69	374	500
24-Mar-17	3rd Hour	Rainy	1.13	13:30	71	374	500
30-Mar-17	1st Hour	Fine	0.14	10:50	76	374	500
30-Mar-17	2nd Hour	Fine	0.98	11:50	76	374	500
30-Mar-17	3rd Hour	Fine	2.08	12:50	74	374	500
,T				Average	72		
				Min	69		
				Max	76		

1-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Date	Session	Weather Condition	averaged Wind Speed (m/s)*	Time (hh:mm)	Conc. (µg/m ³)	Action Level (µg/m ³) ^	Limit Level (µg/m ³)
1-Mar-17	1st Hour	Fine	N.A.	11:12	74	368	500
1-Mar-17	2nd Hour	Fine	N.A.	12:12	73	368	500
1-Mar-17	3rd Hour	Fine	<u>N.A.</u>	13:12	74	368	500
7-Mar-17	1st Hour	Fine	N.A.	10:12	72	368	500
7-Mar-17	2nd Hour	Fine	0.74	11:12	72	368	500
7-Mar-17	3rd Hour	Fine	0.49	13:12	71	368	500
13-Mar-17	1st Hour	Sunny	0.22	10:48	73	368	500
13-Mar-17	2nd Hour	Sunny	0.11	11:48	74	368	500
13-Mar-17	3rd Hour	Sunny	0.29	12:48	74	368	500
18-Mar-17	1st Hour	Fine	0.90	10:50	71	368	500
18-Mar-17	2nd Hour	Fine	3.23	11:50	74	368	500
18-Mar-17	3rd Hour	Fine	5.65	12:50	72	368	500
24-Mar-17	1st Hour	Rainy	1.29	10:15	70	368	500
24-Mar-17	2nd Hour	Rainy	1.51	11:15	70	368	500
24-Mar-17	3rd Hour	Rainy	2.31	12:15	71	368	500
30-Mar-17	1st Hour	Fine	0.14	11:00	77	368	500
30-Mar-17	2nd Hour	Fine	0.98	12:00	74	368	500
30-Mar-17	3rd Hour	Fine	2.08	13:00	75	368	500
				Average	73		
				Min	70		
				Max	77		

Remarks:

^ Action Level set out at AMS3 Ho Yu College is adopted.

1-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel

		Weather	averaged Wind	Time	Conc.	Action Level	Limit Level
Duti	Casaian		Speed (m/s)*	-	$(\mu g/m^3)$	(µg/m ³)	(µg/m ³)
Date	Session	Condition	Speed (m/s)	(hh:mm)	(µg/m)		(µg/m)
1-Mar-17	1st Hour	Fine	0.06	9:52	75	370	500
1-Mar-17	2nd Hour	Fine	N.A.	10:52	73	370	500
1-Mar-17	3rd Hour	Fine	<u>N.A.</u>	11:52	74	370	500
7-Mar-17	1st Hour	Fine	N.A.	10:49	72	370	500
7-Mar-17	2nd Hour	Fine	0.74	11:49	73	370	500
7-Mar-17	3rd Hour	Fine	0.49	12:49	70	370	500
13-Mar-17	1st Hour	Sunny	0.22	10:45	74	370	500
13-Mar-17	2nd Hour	Sunny	0.11	11:45	74	370	500
13-Mar-17	3rd Hour	Sunny	0.29	12:45	75	370	500
18-Mar-17	1st Hour	Fine	4.21	10:15	72	370	500
18-Mar-17	2nd Hour	Fine	0.90	11:15	72	370	500
18-Mar-17	3rd Hour	Fine	3.23	12:15	70	370	500
24-Mar-17	1st Hour	Rainy	1.29	9:59	71	370	500
24-Mar-17	2nd Hour	Rainy	1.15	10:59	72	370	500
24-Mar-17	3rd Hour	Rainy	2.31	11:59	72	370	500
30-Mar-17	1st Hour	Fine	0.14	10:35	77	370	500
30-Mar-17	2nd Hour	Fine	0.98	11:35	78	370	500
30-Mar-17	3rd Hour	Fine	2.08	12:35	74	370	500
				Average	73		
				Min	70		
				Max	78		
			Ľ			u	

*Remarks: Due to the malfunction of the wind station monitoring equipment, wind data was not able to be obtained for monitoring event(s) conducted between 09:40:18 1 Mar 2017-11:30:51 7 Mar 2017. Wind speed and direction data set between 09:40:18 1 Mar 2017-11:30:51 7 Mar 2017 from Hong Kong Overservatory is not available at time this monthly report is submitted.

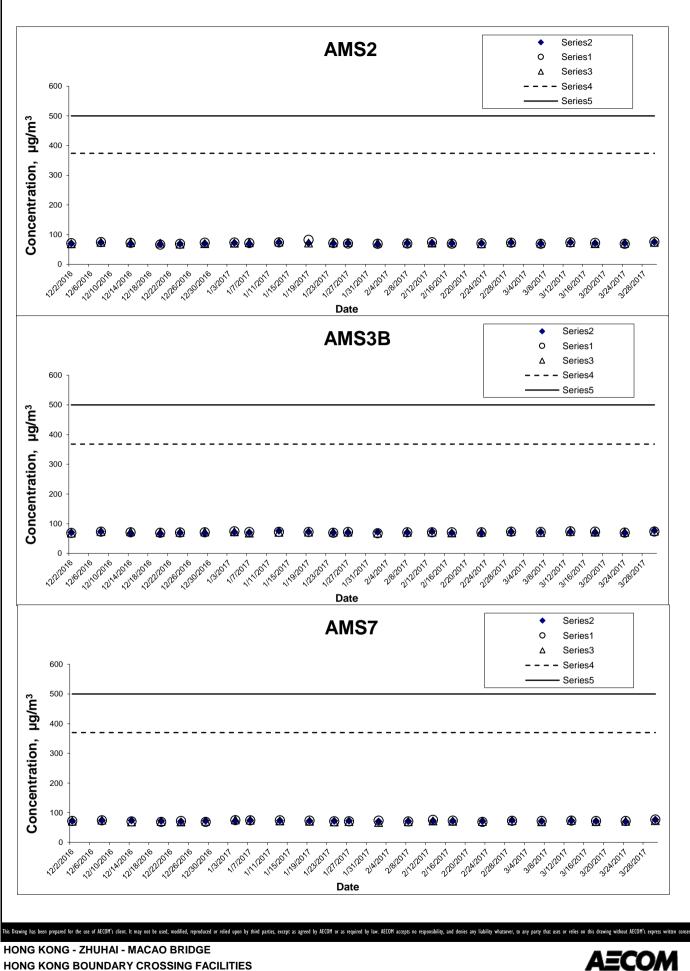
Appendix G Impact Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station AMS2 - Tung Chung Development Pier

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Action Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µq/m ³)	$(\mu g/m^3)$	(µg/m ³)
28-Feb-17	16:00	1-Mar-17	16:00	Sunny	18.8	1019.5	1.33	1.33	1.33	1909.4	2.8209	2.9413	0.1204	7656.04	7680.04	24.00	63	176	260
6-Mar-17	16:00	7-Mar-17	16:00	Fine	18.0	1016.5	1.33	1.33	1.33	1909.4	2.8246	2.9579	0.1333	7680.04	7704.04	24.00	70	176	260
13-Mar-17	9:00	14-Mar-17	9:00	Fine	19.1	1015.8	1.33	1.33	1.33	1909.4	2.8002	2.8836	0.0834	7704.04	7728.04	24.00	44	176	260
17-Mar-17	16:00	18-Mar-17	16:00	Sunny	18.9	1017.8	1.33	1.33	1.33	1909.4	2.8341	2.9008	0.0667	7728.04	7752.04	24.00	35	176	260
23-Mar-17	16:00	24-Mar-17	16:00	Fine	21.2	1015.0	1.33	1.33	1.33	1909.4	2.7856	2.8295	0.0439	7752.04	7776.04	24.00	23	176	260
29-Mar-17	16:00	30-Mar-17	16:00	Fine	21.9	1017.3	1.33	1.33	1.33	1909.4	2.7943	2.9351	0.1408	7776.04	7800.04	24.00	74	176	260
																Average	51		
																Min	23]	
																Max	74]	

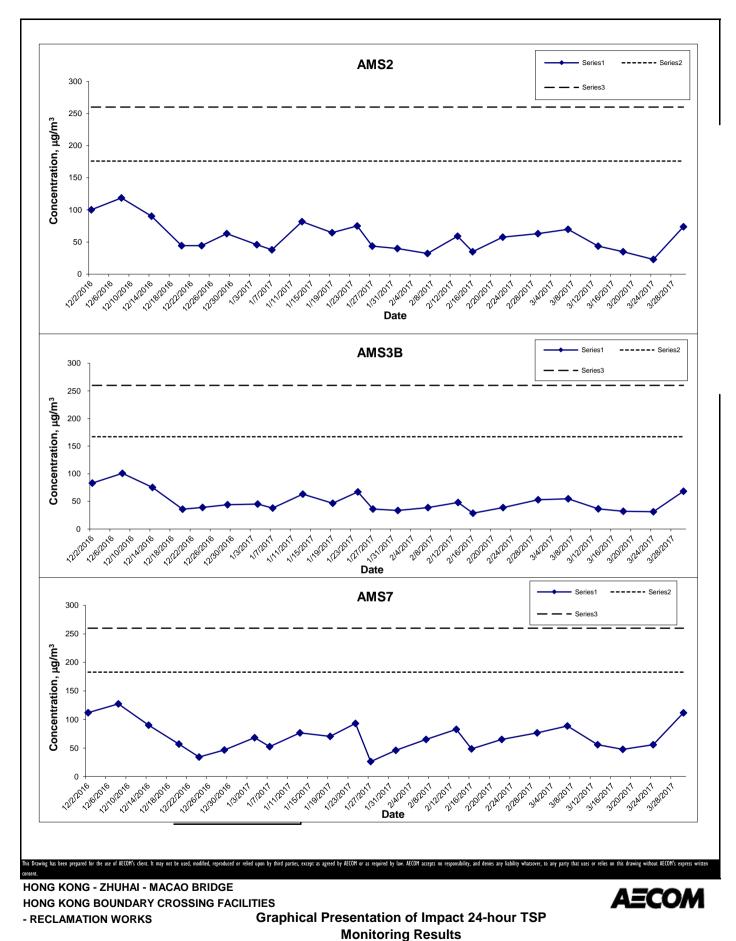
24-hour TSP Monitoring Results at Station AMS3B - Site Boundary of Site Office (WA2)

Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Action Level	Limit Level
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
28-Feb-17	16:00	1-Mar-17	16:00	Sunny	18.8	1019.5	1.34	1.34	1.34	1923.8	2.8149	2.9169	0.1020	8431.38	8455.38	24.00	53	167	260
6-Mar-17	16:00	7-Mar-17	16:00	Fine	18.0	1016.5	1.34	1.34	1.34	1923.8	2.8167	2.9218	0.1051	8455.38	8479.38	24.00	55	167	260
13-Mar-17	9:00	14-Mar-17	9:00	Fine	19.1	1015.8	1.34	1.34	1.34	1923.8	2.7950	2.8652	0.0702	8479.38	8503.38	24.00	36	167	260
17-Mar-17	16:00	18-Mar-17	16:00	Sunny	18.9	1017.8	1.34	1.34	1.34	1923.8	2.8220	2.8836	0.0616	8503.38	8527.38	24.00	32	167	260
23-Mar-17	16:00	24-Mar-17	16:00	Fine	21.2	1015.0	1.34	1.34	1.34	1923.8	2.8086	2.8688	0.0602	8527.38	8551.38	24.00	31	167	260
29-Mar-17	16:00	30-Mar-17	16:00	Fine	21.9	1017.3	1.34	1.34	1.34	1923.8	2.7905	2.9221	0.1316	8551.38	8575.38	24.00	68	167	260
																Average	46		· · · ·


Average46Min31Max68

^ Action Level set out at AMS3 Ho Yu College is adopted.

24-hour TSP Monitoring Results at Station AMS7 - Hong Kong SkyCity Marriott Hotel


DateTimeDateTimeConditionTemp. (°C)Pressure(hPa)InitialFinal(m³/min)(m³)InitialFinalweight(g)InitialFinalTime(hrs.)(µg/m³)(Start	Start	End	End	Weather	Air	Atmospheric	Flow Rate	e (m ³ /min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elaps	e Time	Sampling	Conc.	Action Level	Limit Level
6-Mar-1716:007-Mar-1716:00Fine18.01016.51.301.301.301.801.801.65.12.82592.99130.1654764.917664.9124.008818326013-Mar-179:0014-Mar-179:00Fine19.11015.81.301.301.301869.12.82592.99130.1654764.917664.9124.008818326017-Mar-1716:0018-Mar-1716:00Sunny18.91017.81.301.301.301869.12.81132.90020.08897684.917708.9124.004818326023-Mar-1716:0024-Mar-1716:00Fine21.210151.301.301.801.808.12.80682.91080.10407708.917732.9124.0056183260	Date	Time	Date	Time	Condition	Temp. (°C)	Pressure(hPa)	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m ³)	(µg/m ³)	(µg/m ³)
13-Mar-17 9:00 14-Mar-17 9:00 Fine 19.1 1015.8 1.30 1.30 1.80 1.80 2.8001 2.9043 0.1042 7664.91 768.91 24.00 56 183 260 17-Mar-17 16:00 18-Mar-17 16:00 Sunny 18.9 1017.8 1.30 1.30 1.80 1.801 2.8113 2.9002 0.0889 768.91 24.00 48 183 260 23-Mar-17 16:00 24-Mar-17 16:00 Fine 21.2 1015 1.30 1.30 1869.1 2.8068 2.9108 0.1040 7708.91 24.00 48 183 260	28-Feb-17	16:00	1-Mar-17	16:00	Sunny	18.8	1019.5	1.30	1.30	1.30	1869.1	2.8057	2.9488	0.1431	7616.91	7640.91	24.00	77	183	260
17-Mar-17 16:00 18-Mar-17 16:00 Sunny 18.9 1017.8 1.30 1.30 1.30 1869.1 2.8113 2.902 0.0889 768.91 7708.91 24.00 48 183 260 23-Mar-17 16:00 24-Mar-17 16:00 Fine 21.2 1015 1.30 1.30 1869.1 2.8068 2.9108 0.1040 7708.91 24.00 48 183 260	6-Mar-17	16:00	7-Mar-17	16:00	Fine	18.0	1016.5	1.30	1.30	1.30	1869.1	2.8259	2.9913	0.1654	7640.91	7664.91	24.00	88	183	260
23-Mar-17 16:00 24-Mar-17 16:00 Fine 21.2 1015 1.30 1.30 1.30 1869.1 2.8068 2.9108 0.1040 7708.91 7732.91 24.00 56 183 260	13-Mar-17	9:00	14-Mar-17	9:00	Fine	19.1	1015.8	1.30	1.30	1.30	1869.1	2.8001	2.9043	0.1042	7664.91	7688.91	24.00	56	183	260
	17-Mar-17	16:00	18-Mar-17	16:00	Sunny	18.9	1017.8	1.30	1.30	1.30	1869.1	2.8113	2.9002	0.0889	7684.91	7708.91	24.00	48	183	260
29-Mar-17 16:00 30-Mar-17 16:00 Fine 21.9 1017.3 1.30 1.30 1.30 1869.1 2.7851 2.9937 0.2086 7732.91 7756.91 24.00 112 183 260	23-Mar-17	16:00	24-Mar-17	16:00	Fine	21.2	1015	1.30	1.30	1.30	1869.1	2.8068	2.9108	0.1040	7708.91	7732.91	24.00	56	183	260
	29-Mar-17	16:00	30-Mar-17	16:00	Fine	21.9	1017.3	1.30	1.30	1.30	1869.1	2.7851	2.9937	0.2086	7732.91	7756.91	24.00	112	183	260

Average73Min48Max112

Graphical Presentation of Impact 1-hour TSP Monitoring Results

- RECLAMATION WORKS

Appendix H Meterological Data for Monitoring Periods on Monitoring Dates in March 2017

WIND DATA

WIND DATA			
Date	Time	Averaged Wind Speed (m/s)	Averaged Wind Direction (degrees)
2/28/2017	15:40:18	0.15	302
2/28/2017	16:40:18	0.01	79
2/28/2017	17:40:18	0.25	69
2/28/2017	18:40:18	0.77	320
2/28/2017	19:40:18	0.29	346
2/28/2017	20:40:18	0.62	292
2/28/2017	21:40:18	0.08	290
2/28/2017	22:40:18	0.20	71
2/28/2017	23:40:18	0.43	334
3/1/2017	00:40:18	0.43	140
3/1/2017		0.52	138
	01:40:18		
3/1/2017	02:40:18	0.17	98
3/1/2017	03:40:18	0.01	98
3/1/2017	04:40:18	0.01	318
3/1/2017	05:40:18	0.00	292
3/1/2017	06:40:18	0.10	287
3/1/2017	07:40:18	0.10	278
3/1/2017	08:40:18	0.10	61
3/1/2017	09:40:18	0.06	77
3/7/2017	11:30:51	0.74	115
3/7/2017	12:30:51	0.49	93
3/7/2017	13:30:51	0.11	90
3/7/2017	14:30:51	0.80	96
3/7/2017	15:30:51	0.06	44
3/7/2017	16:30:51	0.45	316
3/7/2017	17:30:51	0.08	276
3/13/2017	08:30:51	0.62	141
3/13/2017	09:30:51	0.02	152
3/13/2017	10:30:51	0.22	142
	11:30:51	0.22	142
3/13/2017	12:30:51	0.29	151
3/13/2017			179
3/13/2017	13:30:51	0.78	-
3/13/2017	14:30:51	0.35	309
3/13/2017	15:30:51	0.29	214
3/13/2017	16:30:51	0.84	328
3/13/2017	17:30:51	1.55	332
3/13/2017	18:30:51	0.15	59
3/13/2017	19:30:51	0.27	268
3/13/2017	20:30:51	0.14	137
3/13/2017	21:30:51	0.04	131
3/13/2017	22:30:51	0.28	290
3/13/2017	23:30:51	0.13	141
3/14/2017	00:30:51	0.04	308
3/14/2017	01:30:51	0.01	126
3/14/2017	02:30:51	0.53	143
3/14/2017	03:30:51	0.01	292
3/14/2017	04:30:51	0.55	140
3/14/2017	05:30:51	0.00	152
3/14/2017	06:30:51	0.21	150
3/14/2017	07:30:51	0.15	144
3/14/2017	08:30:51	0.55	147
3/14/2017	09:30:51	0.39	113
3/17/2017	15:30:51	1.43	184
3/17/2017	16:30:51	1.43	184 153
3/17/2017	17:30:51	2.55	188
3/17/2017	18:30:51	1.93	151
3/17/2017	19:30:51	1.38	161
3/17/2017	20:30:51	3.15	159
3/17/2017	21:30:51	1.15	161
3/17/2017	22:30:51	2.71	190
3/17/2017	23:30:51	0.41	89
3/18/2017	00:30:51	1.16	71
3/18/2017	01:30:51	1.15	141
3/18/2017	02:30:51	1.61	101
3/18/2017	03:30:51	2.08	151
3/18/2017	04:30:51	1.22	108
3/18/2017	05:30:51	3.89	102
3/18/2017	06:30:51	1.68	139
3/18/2017	07:30:51	0.76	139
3/18/2017 3/18/2017	07:30:51	4.73	139
3/18/2017	09:30:51	2.74	165
3/18/2017	09:59:02	4.21	168
3/18/2017	10:59:02	0.90	104
3/18/2017	11:59:02	3.23	137
3/18/2017	12:59:02	5.65	154
3/18/2017	13:59:02	0.76	141
3/18/2017	14:59:02	4.73	127
3/18/2017	15:59:02	3.75	157

3/18/2017	16:59:02	2.73	135
3/18/2017	17:59:02	4.55	132
3/23/2017	15:59:02	0.34	111
3/23/2017	16:59:02	0.62	184
3/23/2017	17:59:02	0.70	54
3/23/2017	18:59:02	0.36	301
3/23/2017	19:59:02	0.20	349
3/23/2017	20:59:02	3.48	141
3/23/2017	21:59:02	0.15	272
3/23/2017	22:59:02	0.27	113
3/23/2017	23:59:02	0.15	280
3/24/2017	00:59:02	0.94	94
3/24/2017	01:59:02	0.03	85
3/24/2017	02:59:02	0.06	44
3/24/2017	03:59:02	0.92	119
3/24/2017	04:59:02	1.41	148
3/24/2017	05:59:02	1.45	328
3/24/2017	06:59:02	0.52	40
3/24/2017	07:59:02	2.15	76
3/24/2017	08:59:02	0.29	193
3/24/2017	09:59:02	1.29	52
3/24/2017	10:59:02	1.51	136
3/24/2017	11:59:02	2.31	160
3/24/2017	12:59:02	0.69	90
3/24/2017	13:59:02	1.13	85
3/24/2017	14:59:02	0.46	154
3/24/2017	15:59:02	0.74	119
3/24/2017	16:59:02	0.01	159
3/24/2017	17:59:02	0.34	124
3/29/2017	15:59:02	2.49	130
3/29/2017	16:59:02	0.07	154
3/29/2017	17:59:02	0.21	148
3/29/2017	18:59:02	1.79	93
3/29/2017	19:59:02	4.13	123
3/29/2017	20:59:02	0.21	106
3/29/2017	21:59:02	0.77	337
3/29/2017	22:59:02	1.29	148
3/29/2017	23:59:02	3.19	325
3/30/2017	00:59:02	0.32	124
3/30/2017	01:59:02	0.36	41
3/30/2017	02:59:02	0.76	96
3/30/2017	03:59:02	0.59	112
3/30/2017	04:59:02	0.03	310
3/30/2017	05:59:02	0.43	129
3/30/2017	06:59:02	0.28	237
3/30/2017	07:59:02	2.71	138
3/30/2017	08:59:02	0.07	114
3/30/2017	09:59:02	0.87	100
3/30/2017	10:59:02	0.14	36
3/30/2017	11:59:02	0.98	138
3/30/2017	12:59:02	2.08	160
3/30/2017	13:59:02	2.18	134
3/30/2017	14:59:02	2.39	145
3/30/2017	15:59:02	1.40	160
3/30/2017	16:59:02	0.38	104
3/30/2017	17:59:02	4.08	136

Remarks: Due to the malfunction of the wind station monitoring equipment, wind data was not able to be obtained for monitoring event(s) conducted between 09:40:18 1 Mar 2017-11:30:51 7 Mar 2017. Wind speed and direction data set between 09:40:18 1 Mar 2017-11:30:51 7 Mar 2017 from Hong Kong Overservatory is not available at time this monthly report is submitted.

Appendix I Impact Daytime Construction Noise Monitoring Results

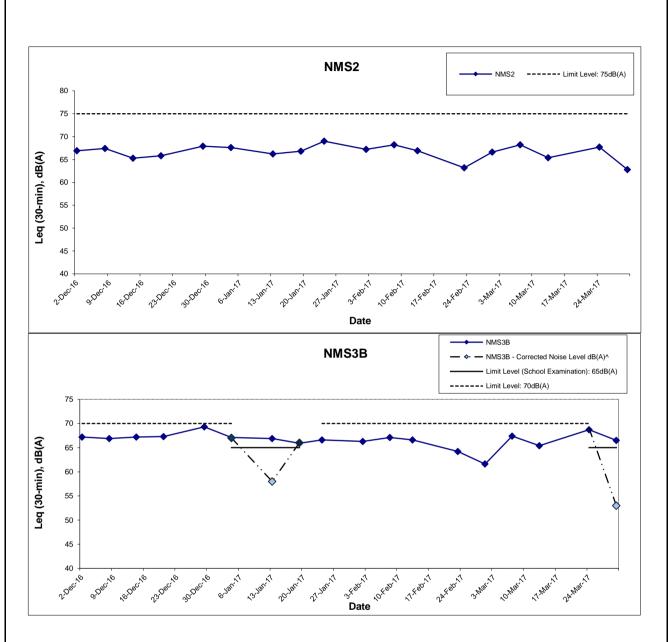
Date	Weather	Nois	e Level for 30	0-min, dB(A) [#]		Averaged Wind Speed (m/s)	Baseline Noise	Limit Level,	Exceedance (Y/N)
Duic	Condition	Time	L90	L10	Leq	Averaged Wind Opeed (II/3)	Level, dB(A)	dB(A)	
1-Mar-17	Sunny	10:29	64	69	67	<5m/s	62.9	75	Ν
7-Mar-17	Fine	10:42	60	72	68	<5m/s	62.9	75	Ν
13-Mar-17	Sunny	10:40	62	69	65	<5m/s	62.9	75	Ν
24-Mar-17	Sunny	10:42	62	71	68	<5m/s	62.9	75	Ν
30-Mar-17	Fine	11:10	61	65	63	<5m/s	62.9	75	Ν
		Min	60	65	63				
		Max	64	72	68				
		Average			67				

Daytime Noise Monitoring Results at Station NMS2 - Seaview Crescent Tower 1

Daytime Noise Monitoring Results at Station NMS3B - Site Boundary of Site Office (WA2)

Date	Weather	Nois	e Level for 30	D-min, dB(A) [#]		Averaged Wind Speed (m/s)	Baseline Noise	Limit Level,	Exceedance (Y/N)
Duto	Condition	Time	L90	L10	Leq		Level, dB(A) ^	dB(A)**	
1-Mar-17	Sunny	11:12	59	63	62	<5m/s	66.3	70	N
7-Mar-17	Fine	11:30	63	70	67	<5m/s	66.3	70	Ν
13-Mar-17	Sunny	11:22	63	68	65	<5m/s	66.3	70	Ν
24-Mar-17	Sunny	10:25	65	72	69	<5m/s	66.3	70	Ν
30-Mar-17	Fine	11:00	62	70	67>	<5m/s	66.3	65	Ν
		Min	59	63	62				
		Max	65	72	69				
		Average		-	66				

Remark:


[#] A correction of +3dB(A) was made to the free field measurement.

* Façade measurement.

^ Averaged baseline noise level recorded at NMS3 Ho Yu College is adopted.

** Limit Level of 70dB(A) applies to education institutes while 65dB(A) applies during school examination period.

>The measured noise level on 30 Mar 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works 53 dB(A) respectively which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.

Remarks: Effective from July 2012, the Limit Level at NMS3A was revised to 70dB(A). Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

* The measured noise level on 13 Jan 2016 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise levle of Consturction work is 58 dB(A) which is lower than the exceedance level of 65 dB(A). As such the EAP was not triggered. # The measured noise level on 19 Jan 2017 exceeded the noise level of 65dB(A) during examination period but it is below the baseline level. Therefore, it is not considered as an exceedance. As such the EAP was not triggered.

>The measured noise level on 30 Mar 2017 at NMS3B exceeded the noise level of 65dB(A) during examination period but it is higher than the baseline level. Therefore, baseline correction was carried out and the corrected noise level which solely represent the noise level of Construction works 53 dB(A) respectively which is lower than the exceedance level of 65dB(A). As such the EAP was not triggered.

This Drawing has been prepared for the use of AECOM's client. It may no	t be used, modified, reproduced or relied upon by third parties, except as agreed by AECOM or as required by law. AECOM accepts no responsibility, and denies any liability whatsover, to a	ny party that uses or relies on this drawing without AECOM's express written const
HONG KONG - ZHUHAI - MAG	CAO BRIDGE	
HONG KONG BOUNDARY CR	AECOM	
- RECLAMATION WORKS	Graphical Presentation of Impact Daytime	
	Construction Noise Monitoring Results	
Project No.: 60249820	Date: March 2017	Appendix I

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temperature (°C)		pН		Salinity (ppt)		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTU)			Suspended Solids (mg/L)		
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:11		Surface	1.0	17.6 17.6	17.6	8.1 8.2	8.2	32.8 32.8	32.8	95.3 95.8	95.6	7.5 7.5	7.5	7.5	7.5 7.4	7.5		14.8 15.6	15.2	
				6.6	Middle	3.3	17.6 17.6	17.6	8.1 8.2	8.1	32.8 32.8	32.8	94.9 95.4	95.2	7.4 7.5	7.5	7.5	7.7 7.6	7.7	7.7	15.6 16.2	15.9	15.3
					Bottom	5.6	17.5 17.6	17.6	8.1 8.2	8.1	32.9 32.8	32.9	93.8 94.8	94.3	7.4 7.4	7.4	7.4	7.9	7.9		15.1 14.6	14.9	
3-Mar-17	Sunny	Moderate	15:40		Surface	1.0	17.9 17.9	17.9	8.3 8.3	8.3	32.4 32.3	32.4	96.8 97.0	96.9	7.6 7.6	7.6		6.1 6.2	6.2		11.2 11.4	11.3	
				6.5	Middle	3.3	17.9 17.9	17.9	8.3 8.3	8.3	32.3 32.5	32.4	96.8 96.3	96.6	7.6 7.5	7.5	7.6	6.3 6.5	6.4	6.5	10.8	11.0	11.4
					Bottom	5.5	17.9 17.8	17.9	8.3 8.3	8.3	32.4 32.6	32.5	97.5 95.7	96.6	7.6 7.5	7.5	7.5	7.0 6.8	6.9		11.7 11.9	11.8	
6-Mar-17	Cloudy	Moderate	07:17		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	30.2 30.1	30.1	95.6 96.7	96.2	7.5 7.6	7.5		2.5 2.4	2.5		3.8 3.5	3.7	
				6.3	Middle	3.2	18.5 18.5	18.5	8.2 8.2	8.2	30.2 30.5	30.3	95.8 95.5	95.7	7.5	7.5	7.5	3.0	3.0	2.9	6.0 7.7	6.9	6.1
					Bottom	5.3	18.5 18.5	18.5	8.1 8.1	8.1	31.5 31.1	31.3	95.5 97.4	96.5	7.4 7.6	7.5	7.5	3.1 3.0	3.1		8.2 7.3	7.8	
8-Mar-17	Cloudy	Moderate	10:16		Surface	1.0	18.1 18.1	18.1	8.0 8.1	8.1	32.5 32.5	32.5	94.6 95.2	94.9	7.4 7.4	7.4	7.4	1.5 1.4	1.5		8.9 9.5	9.2	
				6.8	Middle	3.4	18.1 18.1	18.1	8.1 8.1	8.1	32.6 32.6	32.6	94.3 94.5	94.4	7.3 7.4	7.4	7.4	1.6 1.6	1.6	1.7	10.2 9.7	10.0	10.7
					Bottom	5.8	18.1 18.1	18.1	8.1 8.1	8.1	32.6 32.6	32.6	94.2 93.7	94.0	7.3 7.3	7.3	7.3	1.8 2.2	2.0		12.4 13.2	12.8	
10-Mar-17	Cloudy	Moderate	12:16		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	33.0 33.0	33.0	95.3 95.7	95.5	7.4 7.4	7.4	7.5	4.4 4.7	4.6		7.3 7.1	7.2	
				6.5	Middle	3.3	18.0 18.0	18.0	8.2 8.2	8.2	33.1 33.1	33.1	96.7 95.5	96.1	7.5 7.4	7.5	7.5	4.7 4.3	4.5	4.5	8.7 8.2	8.5	8.6
					Bottom	5.5	18.0 17.9	18.0	8.2 8.2	8.2	33.1 33.4	33.2	95.9 95.7	95.8	7.4 7.4	7.4	7.4	4.3 4.6	4.5		9.8 10.1	10.0	
13-Mar-17	Fine	Moderate	13:03		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	30.3 30.4	30.4	92.3 93.4	92.9	7.2 7.3	7.2	7.2	4.2 4.3	4.3		8.2 9.8	9.0	
				6.3	Middle	3.2	18.6 18.5	18.6	8.1 8.1	8.1	31.1 30.8	31.0	92.9 92.3	92.6	7.2 7.2	7.2		5.3 5.3	5.3	5.1	9.1 8.7	8.9	9.0
					Bottom	5.3	18.4 18.4	18.4	8.1 8.1	8.1	32.1 32.2	32.2	91.8 91.5	91.7	7.1 7.1	7.1	7.1	5.8 5.7	5.8		9.3 9.0	9.2	
15-Mar-17	Fine	Moderate	14:00		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	32.1 32.1	32.1	91.8 92.0	91.9	7.1 7.1	7.1	7.1	5.4 5.3	5.4		10.5 11.7	11.1	
				6.3	Middle	3.2	18.6 18.7	18.7	8.1 8.1	8.1	32.1 32.1	32.1	91.5 91.9	91.7	7.1 7.1	7.1		5.6 5.5	5.6	5.6	11.8 13.4	12.6	12.3
					Bottom	5.3	18.6 18.7	18.7	8.1 <u>8.1</u>	8.1	32.0 32.0	32.0	91.0 91.3	91.2	7.0 7.0	7.0	7.0	5.8 5.7	5.8		13.2 12.9	13.1	
17-Mar-17	Cloudy	Moderate	15:09		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	30.5 30.4	30.5	94.2 94.6	94.4	7.3 7.3	7.3	7.3	3.7 4.0	3.9		10.6 11.3	11.0	
				6.7	Middle	3.4	18.7 18.8	18.8	8.1 8.1	8.1	30.9 30.6	30.8	94.2 93.6	93.9	7.3 7.3	7.3		4.2 3.9	4.1	4.1	10.3 9.2	9.8	10.8
00.11.45					Bottom	5.7	18.6 18.7	18.7	8.1 <u>8.1</u>	8.1	31.4 <u>31.2</u>	31.3	92.3 93.5	92.9	7.2 7.3	7.2	7.2	4.2 4.2	4.2		11.5 11.6	11.6	
20-Mar-17	Sunny	Moderate	18:09		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	31.0 31.0	31.0	96.7 96.3	96.5	7.6 7.6	7.6	7.6	3.9 3.8	3.9		6.1 6.9	6.5	
				6.4	Middle	3.2	19.3 19.2	19.2	8.1 8.1	8.1	31.7 31.7	31.7	95.8 95.0	95.4	7.5 7.5	7.5		4.3 4.5	4.4	4.3	7.8 8.6	8.2	8.3
					Bottom	5.4	19.1 19.1	19.1	8.1 8.1	8.1	31.7 31.8	31.8	95.0 94.5	94.8	7.4 7.4	7.4	7.4	4.6 4.7	4.7		10.0 10.1	10.1	

Remarks: * DA: Depth-Averaged ** Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring Results at CS(Mf)3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ł	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:14		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	30.3 30.2	30.3	96.2 95.0	95.6	7.4 7.3	7.3	7.3	1.7 1.8	1.8		8.0 9.1	8.6	
				6.7	Middle	3.4	19.6 19.6	19.6	8.1 8.1	8.1	30.5 30.3	30.4	94.7 94.6	94.7	7.2 7.2	7.2	1.0	1.9 2.0	2.0	2.0	7.5 8.4	8.0	8.1
					Bottom	5.7	19.6 19.5	19.6	8.1 8.0	8.1	30.7 31.0	30.8	93.9 93.4	93.7	7.2 7.1	7.2	7.2	2.2 2.3	2.3		7.0 8.6	7.8	1
24-Mar-17	Sunny	Moderate	11:25		Surface	1.0	19.7 19.7	19.7	8.2 8.2	8.2	30.8 30.8	30.8	95.6 94.7	95.2	7.3 7.2	7.3	7.3	5.0 5.0	5.0		5.9 4.4	5.2	
				6.6	Middle	3.3	19.7 19.6	19.7	8.2 8.2	8.2	30.8 31.0	30.9	94.7 94.0	94.4	7.2 7.2	7.2		5.2 5.5	5.4	5.4	7.1 8.1	7.6	7.6
					Bottom	5.6	19.7 19.4	19.5	8.2 8.2	8.2	30.9 31.6	31.2	94.8 95.5	95.2	7.2 7.3	7.3	7.3	5.6 5.8	5.7		10.0 10.2	10.1	
27-Mar-17	Fine	Moderate	12:08		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	30.8 30.8	30.8	88.8 88.5	88.7	6.4 6.4	6.4	6.4	7.5 7.5	7.5		11.6 10.0	10.8	
				6.6	Middle	3.3	19.4 19.3	19.4	8.2 8.2	8.2	31.1 31.1	31.1	88.3 88.0	88.2	6.3 6.3	6.3	0.4	7.4 7.2	7.3	7.3	10.2 11.7	11.0	10.8
					Bottom	5.6	19.3 19.4	19.3	8.2 8.2	8.2	31.5 31.3	31.4	88.5 88.4	88.5	6.3 6.3	6.3	6.3	7.0 7.0	7.0		10.0 11.4	10.7	
29-Mar-17	Fine	Moderate	13:10		Surface	1.0	20.3 20.3	20.3	8.0 8.0	8.0	29.9 29.9	29.9	94.0 94.0	94.0	7.1 7.1	7.1	7.1	7.2 7.3	7.3			-	
				6.3	Middle	3.2	20.0 20.2	20.1	8.0 7.9	8.0	30.4 30.0	30.2	93.7 94.0	93.9	7.1 7.1	7.1	7.1	7.5 7.6	7.6	7.6		-	=
					Bottom	5.3	19.8 19.9	19.9	7.9 8.0	7.9	32.1 31.8	31.9	92.3 93.2	92.8	7.0 7.1	7.0	7.0	7.8 7.8	7.8		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	، (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:15		Surface	1.0	17.5 17.4	17.4	8.1 8.0	8.1	32.8 32.9	32.8	96.0 96.9	96.5	7.6 7.6	7.6	7.0	9.2 9.2	9.2		9.7 9.7	9.7	
				6.7	Middle	3.4	17.4 17.3	17.4	8.1 8.1	8.1	33.0 33.0	33.0	95.6 95.2	95.4	7.5 7.5	7.5	7.6	9.4 9.6	9.5	9.5	9.5 10.5	10.0	10.0
					Bottom	5.7	17.4	17.4	8.0 8.0	8.0	33.0 32.9	33.0	94.2 94.2	94.2	7.4	7.4	7.4	9.9 9.7	9.8		10.8	10.4	
3-Mar-17	Sunny	Moderate	10:16		Surface	1.0	17.6 17.6	17.6	8.3 8.3	8.3	32.2 32.2	32.2	96.7 95.6	96.2	7.6 7.5	7.6		10.1 10.8	10.5		11.3 10.9	11.1	
				6.3	Middle	3.2	17.5 17.5	17.5	8.3 8.3	8.3	32.4 32.4	32.4	98.2 95.2	96.7	7.7	7.6	7.6	13.2 13.0	13.1	12.5	11.4	11.8	12.7
					Bottom	5.3	17.5 17.5	17.5	8.2 8.3	8.3	32.6 32.6	32.6	99.7 95.7	97.7	7.8	7.7	7.7	14.1 13.5	13.8		14.7	15.1	
6-Mar-17	Cloudy	Moderate	11:52		Surface	1.0	18.6 18.5	18.6	8.2 8.2	8.2	30.1 30.1	30.1	97.1 97.0	97.1	7.6 7.6	7.6		3.3	3.4		6.2 5.4	5.8	
				6.3	Middle	3.2	18.4 18.4	18.4	8.2 8.2	8.2	30.2 30.6	30.4	96.1 96.1	96.1	7.5 7.5	7.5	7.6	6.8 7.2	7.0	5.9	5.7 4.7	5.2	6.0
					Bottom	5.3	18.4	18.4	8.2 8.2	8.2	32.1 32.0	32.1	96.2 96.4	96.3	7.5 7.5	7.5	7.5	7.3	7.2		7.4	7.0	
8-Mar-17	Cloudy	Moderate	15:24		Surface	1.0	18.1 18.1	18.1	8.1 8.2	8.1	32.2 32.2	32.2	96.6 96.8	96.7	7.5 7.5	7.5		1.3 1.3	1.3		5.0 5.1	5.1	
				6.8	Middle	3.4	18.1	18.1	8.1 8.1	8.1	32.2 32.2	32.2	96.6 96.4	96.5	7.5 7.5	7.5	7.5	1.5	1.5	1.5	5.5 6.0	5.8	5.6
					Bottom	5.8	18.1	18.1	8.1 8.1	8.1	32.5 32.4	32.4	95.4 95.9	95.7	7.4	7.5	7.5	1.7	1.7		6.4 5.5	6.0	
10-Mar-17	Cloudy	Moderate	16:48		Surface	1.0	18.2 18.2	18.2	8.2 8.2	8.2	32.3 32.3	32.3	94.8 94.9	94.9	7.4 7.4	7.4		4.7 5.2	5.0		7.6 7.4	7.5	
				6.6	Middle	3.3	18.1 18.1	18.1	8.2 8.2	8.2	32.7 32.5	32.6	94.7 95.6	95.2	7.4 7.4	7.4	7.4	6.2 6.0	6.1	6.0	8.5 8.0	8.3	8.0
					Bottom	5.6	18.1 18.1	18.1	8.2 8.2	8.2	32.9 33.0	32.9	94.5 95.0	94.8	7.3 7.4	7.4	7.4	6.7 6.9	6.8		8.7 7.7	8.2	
13-Mar-17	Fine	Moderate	08:01		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	32.2 32.2	32.2	93.5 93.9	93.7	7.2 7.3	7.3	7.0	8.5 8.2	8.4		8.8 9.4	9.1	
				6.5	Middle	3.3	18.4 18.3	18.4	8.1 8.1	8.1	32.3 32.4	32.3	93.3 93.5	93.4	7.2 7.2	7.2	7.3	9.6 9.7	9.7	9.2	12.6 11.7	12.2	12.0
					Bottom	5.5	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.4	32.4	93.2 93.0	93.1	7.2 7.2	7.2	7.2	9.6 9.6	9.6		14.1 15.2	14.7	
15-Mar-17	Fine	Moderate	09:01		Surface	1.0	18.6 18.5	18.6	8.1 8.1	8.1	31.9 31.9	31.9	94.8 93.4	94.1	7.3 7.2	7.3	7.3	7.6 7.4	7.5		11.2 11.8	11.5	
				6.4	Middle	3.2	18.6 18.6	18.6	8.1 8.1	8.1	32.0 32.0	32.0	92.5 92.4	92.5	7.2 7.2	7.2	1.5	7.9 7.7	7.8	7.8	12.4 13.4	12.9	13.0
					Bottom	5.4	18.6 18.5	18.6	8.1 8.1	8.1	32.1 32.1	32.1	90.6 90.7	90.7	7.0 7.0	7.0	7.0	7.9 8.1	8.0		15.2 14.0	14.6	
17-Mar-17	Cloudy	Moderate	09:57		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	31.1 31.1	31.1	92.8 93.2	93.0	7.2 7.3	7.2	7.2	7.9 8.1	8.0		15.0 14.6	14.8	
				6.7	Middle	3.4	18.5 18.5	18.5	8.1 8.0	8.1	31.1 31.2	31.1	92.7 92.0	92.4	7.2 7.2	7.2		8.3 8.2	8.3	8.3	19.6 19.3	19.5	17.6
					Bottom	5.7	18.5 18.5	18.5	8.1 8.1	8.1	31.3 31.1	31.2	91.6 91.3	91.5	7.1 7.1	7.1	7.1	8.5 8.4	8.5		18.3 18.9	18.6	
20-Mar-17	Sunny	Moderate	11:24		Surface	1.0	19.3 19.3	19.3	8.0 8.0	8.0	29.9 29.8	29.9	91.4 90.4	90.9	7.2 7.2	7.2	7.2	2.7 2.8	2.8		4.7 5.1	4.9	
				6.6	Middle	3.3	18.9 18.9	18.9	8.0 8.0	8.0	31.6 31.5	31.6	91.3 89.9	90.6	7.2 7.1	7.1		3.7 3.3	3.5	3.5	6.1 7.2	6.7	6.8
					Bottom	5.6	18.8 18.8	18.8	8.0 8.0	8.0	32.1 32.1	32.1	89.4 92.2	90.8	7.1 7.1	7.1	7.1	3.9 4.2	4.1		9.0 8.6	8.8	

Water Quality Monitoring Results at CS(Mf)3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Г	Furbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:03		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	31.8 31.9	31.9	91.3 91.0	91.2	7.0 7.0	7.0	7.0	1.2 1.1	1.2		3.9 5.0	4.5	
				6.7	Middle	3.4	19.2 19.2	19.2	8.1 8.0	8.1	32.3 32.2	32.2	91.0 90.9	91.0	6.9 7.0	6.9	7.0	1.3 1.2	1.3	1.4	6.2 5.1	5.7	5.2
					Bottom	5.7	19.1 19.1	19.1	8.0 8.1	8.0	32.6 32.4	32.5	90.9 90.9	90.9	6.9 6.9	6.9	6.9	1.6 1.5	1.6		4.8 6.2	5.5	
24-Mar-17	Sunny	Moderate	15:27		Surface	1.0	20.0 20.0	20.0	8.2 8.2	8.2	30.4 30.5	30.5	96.6 97.0	96.8	7.3 7.4	7.4	7.4	4.5 4.5	4.5		4.2 4.6	4.4	
				6.5	Middle	3.3	19.8 19.5	19.7	8.2 8.2	8.2	30.6 31.1	30.9	95.4 95.4	95.4	7.3 7.3	7.3	7.4	4.9 4.9	4.9	4.8	5.8 5.6	5.7	5.1
					Bottom	5.5	19.7 19.3	19.5	8.2 8.2	8.2	30.9 31.4	31.1	96.3 94.6	95.5	7.3 7.3	7.3	7.3	4.9 5.3	5.1		5.2 5.1	5.2	
27-Mar-17	Fine	Moderate	07:14		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	31.9 31.9	31.9	87.5 88.9	88.2	6.3 6.4	6.3	6.3	9.1 9.1	9.1		8.8 9.5	9.2	
				6.6	Middle	3.3	19.2 19.2	19.2	8.1 8.1	8.1	31.9 31.9	31.9	87.2 88.2	87.7	6.2 6.3	6.3	0.0	9.7 9.2	9.5	9.4	10.8 10.4	10.6	10.6
					Bottom	5.6	19.3 19.2	19.2	8.1 8.1	8.1	31.9 32.0	32.0	88.3 90.7	89.5	6.3 6.4	6.4	6.4	9.5 9.5	9.5		11.8 12.3	12.1	
29-Mar-17	Fine	Moderate	08:04		Surface	1.0	19.7 19.7	19.7	8.1 8.0	8.1	31.9 31.9	31.9	94.2 94.5	94.4	7.1 7.2	7.1	7.1	11.0 11.1	11.1		-	-	
				6.4	Middle	3.2	19.7 19.7	19.7	8.1 8.0	8.0	31.9 32.1	32.0	93.9 93.5	93.7	7.1 7.1	7.1	7.1	11.3 11.2	11.3	11.3	-	-	=
					Bottom	5.4	19.7 19.7	19.7	8.0 8.1	8.0	32.2 32.1	32.2	93.0 92.9	93.0	7.0 7.0	7.0	7.0	11.5 11.4	11.5		-	-	
31-Mar-17	Rainy	Moderate	08:04		Surface	1.0	20.4 20.4	20.4	8.0 8.0	8.0	31.0 31.0	31.0	93.0 92.0	92.5	7.0 6.9	7.0	7.0	17.4 17.2	17.3		-	-	
				6.6	Middle	3.3	20.3 20.3	20.3	8.0 8.0	8.0	31.2 31.3	31.2	93.3 92.2	92.8	7.0 6.9	7.0	7.0	18.3 18.6	18.5	18.2	-	-	=
					Bottom	5.6	20.3 20.3	20.3	8.0 8.0	8.0	31.3 31.4	31.4	92.9 91.9	92.4	7.0 6.9	6.9	6.9	18.9 18.5	18.7		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	n (mg/L)	T	Furbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:51		Surface	1.0	17.7 17.6	17.6	8.1 8.1	8.1	32.7 32.8	32.8	95.2 95.9	95.6	7.5 7.5	7.5	7.5	8.2 8.4	8.3		14.6 13.7	14.2	
				15.8	Middle	7.9	17.6 17.6	17.6	8.1 8.1	8.1	32.8 32.8	32.8	94.7 94.6	94.7	7.4 7.4	7.4	7.5	8.5 8.6	8.6	8.6	14.0 14.1	14.1	14.7
					Bottom	14.8	17.6 17.5	17.5	8.1 8.1	8.1	32.8 32.9	32.8	94.4 94.1	94.3	7.4	7.4	7.4	8.7 8.8	8.8		16.5 15.1	15.8	
3-Mar-17	Sunny	Moderate	15:20		Surface	1.0	17.9 17.9	17.9	8.3 8.3	8.3	32.4 32.4	32.4	97.0 97.3	97.2	7.6 7.6	7.6		9.1 9.3	9.2		10.3	10.6	
				15.6	Middle	7.8	17.7 17.7	17.7	8.4 8.4	8.4	32.9 32.7	32.8	96.8 97.7	97.3	7.6 7.6	7.6	7.6	11.4 11.5	11.5	11.3	11.2 11.4	11.3	10.9
					Bottom	14.6	17.7	17.7	8.3 8.4	8.4	32.9 32.9	32.9	97.1 97.2	97.2	7.6 7.6	7.6	7.6	13.2 13.1	13.2		10.9	10.8	
6-Mar-17	Cloudy	Moderate	07:37		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	30.1 30.1	30.1	95.3 95.4	95.4	7.5	7.5		2.7	2.7		4.2	3.8	
				16.2	Middle	8.1	18.4 18.4	18.4	8.2 8.2	8.2	31.8 31.7	31.7	95.6 95.9	95.8	7.4	7.4	7.5	3.7 3.5	3.6	3.4	5.3 5.9	5.6	6.5
					Bottom	15.2	18.4 18.4	18.4	8.2 8.2	8.2	31.9 32.1	32.0	95.8 95.1	95.5	7.4	7.4	7.4	3.6 3.9	3.8		9.1 10.8	10.0	
8-Mar-17	Cloudy	Moderate	10:38		Surface	1.0	18.0 18.1	18.1	8.2 8.1	8.2	32.4 32.6	32.5	94.2 94.1	94.2	7.3 7.3	7.3	7.0	1.4 1.3	1.4		10.1 10.5	10.3	
				15.3	Middle	7.7	18.1 18.1	18.1	8.2 8.2	8.2	32.5 32.5	32.5	93.8 93.9	93.9	7.3 7.3	7.3	7.3	1.5 1.4	1.5	1.6	9.7 9.3	9.5	9.9
					Bottom	14.3	18.1 18.1	18.1	8.2 8.1	8.1	32.6 32.6	32.6	93.3 93.5	93.4	7.3 7.3	7.3	7.3	1.8 1.7	1.8		10.0 9.9	10.0	
10-Mar-17	Cloudy	Moderate	12:36		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	33.0 33.0	33.0	96.0 94.9	95.5	7.5 7.4	7.4	7.4	4.9 4.6	4.8		8.3 7.4	7.9	
				16.5	Middle	8.3	18.0 17.9	17.9	8.2 8.2	8.2	33.3 33.4	33.3	94.7 95.5	95.1	7.4 7.4	7.4	7.4	4.6 4.8	4.7	4.7	7.9 6.9	7.4	8.7
					Bottom	15.5	17.9 18.0	17.9	8.2 8.2	8.2	33.4 33.3	33.3	94.4 94.8	94.6	7.3 7.4	7.3	7.3	4.6 4.7	4.7		10.4 11.4	10.9	
13-Mar-17	Fine	Moderate	12:41		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	30.5 30.4	30.4	92.6 93.1	92.9	7.2 7.2	7.2	7.2	5.9 5.6	5.8		8.6 7.2	7.9	
				16.0	Middle	8.0	18.3 18.3	18.3	8.1 8.1	8.1	32.4 32.4	32.4	92.6 92.3	92.5	7.2 7.2	7.2	1.2	7.1 7.4	7.3	6.8	7.7 9.2	8.5	8.8
					Bottom	15.0	18.3 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	91.7 91.6	91.7	7.1 7.1	7.1	7.1	7.4 7.1	7.3		10.6 9.6	10.1	
15-Mar-17	Fine	Moderate	13:37		Surface	1.0	18.6 18.7	18.7	8.1 8.1	8.1	32.0 32.1	32.1	95.1 93.8	94.5	7.3 7.2	7.3	7.3	5.4 5.4	5.4		8.6 9.6	9.1	
				15.2	Middle	7.6	18.6 18.6	18.6	8.1 8.1	8.1	32.1 32.1	32.1	93.0 92.6	92.8	7.2 7.2	7.2		5.7 5.6	5.7	5.7	11.6 11.2	11.4	11.2
					Bottom	14.2	18.6 18.6	18.6	8.1 8.1	8.1	32.0 32.1	32.1	92.4 91.5	92.0	7.1 7.1	7.1	7.1	5.9 5.8	5.9		13.9 12.5	13.2	
17-Mar-17	Cloudy	Moderate	14:48		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	30.6 30.6	30.6	94.5 94.8	94.7	7.3 7.4	7.3	7.3	4.2 4.1	4.2		6.7 8.2	7.5	
				15.3	Middle	7.7	18.6 18.6	18.6	8.1 8.0	8.1	31.5 31.4	31.5	93.0 93.0	93.0	7.2 7.2	7.2		4.3 4.2	4.3	4.4	7.8 10.2	9.0	9.4
					Bottom	14.3	18.6 18.7	18.7	8.2 8.1	8.1	32.8 31.4	32.1	92.6 93.7	93.2	7.2 7.2	7.2	7.2	4.5 4.6	4.6		12.0 11.5	11.8	<u> </u>
20-Mar-17	Sunny	Moderate	17:53		Surface	1.0	19.8 19.8	19.8	8.0 8.1	8.1	30.8 30.9	30.9	95.1 94.9	95.0	7.4 7.4	7.4	7.4	4.5 4.6	4.6		7.0 8.0	7.5	
				16.4	Middle	8.2	19.1 19.0	19.1	8.0 8.0	8.0	32.0 32.0	32.0	93.6 93.6	93.6	7.2 7.3	7.3		5.7 5.9	5.8	5.7	8.4 9.0	8.7	8.5
					Bottom	15.4	19.0 19.0	19.0	8.0 8.0	8.0	32.3 32.3	32.3	92.3 92.6	92.5	7.0 7.1	7.1	7.1	6.5 6.6	6.6		9.6 8.9	9.3	

Water Quality Monitoring Results at CS4 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:36		Surface	1.0	19.6 19.6	19.6	8.0 8.0	8.0	30.2 30.2	30.2	94.9 94.3	94.6	7.3 7.2	7.2	7.2	4.2 4.3	4.3		9.7 10.2	10.0	
				15.8	Middle	7.9	19.6 19.6	19.6	8.0 8.0	8.0	30.4 30.4	30.4	94.0 94.0	94.0	7.2 7.2	7.2	1.2	4.4 4.5	4.5	4.5	9.8 10.7	10.3	11.2
					Bottom	14.8	19.5 19.6	19.6	8.0 8.0	8.0	30.9 30.6	30.8	93.3 93.4	93.4	7.1 7.2	7.2	7.2	4.7 4.6	4.7		13.4 12.9	13.2	
24-Mar-17	Sunny	Moderate	11:46		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	30.8 30.8	30.8	94.3 94.3	94.3	7.2 7.2	7.2	7.2	4.7 4.8	4.8		6.8 6.5	6.7	
				16.7	Middle	8.4	19.6 19.5	19.6	8.2 8.2	8.2	31.0 31.1	31.0	92.5 92.4	92.5	7.1 7.1	7.1		5.4 5.5	5.5	5.4	9.1 9.3	9.2	8.3
					Bottom	15.7	19.4 19.5	19.5	8.2 8.2	8.2	31.4 31.2	31.3	92.7 93.1	92.9	7.1 7.1	7.1	7.1	5.9 6.1	6.0		9.5 8.4	9.0	
27-Mar-17	Fine	Moderate	11:48		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	30.8 31.0	30.9	88.2 88.5	88.4	6.3 6.3	6.3	6.3	9.7 8.8	9.3		10.6 9.2	9.9	
				16.8	Middle	8.4	19.3 19.3	19.3	8.2 8.2	8.2	31.8 31.9	31.8	88.0 87.5	87.8	6.2 6.2	6.2	0.5	10.2 10.5	10.4	9.9	10.8 10.0	10.4	10.3
					Bottom	15.8	19.2 19.2	19.2	8.2 8.2	8.2	31.8 31.9	31.9	88.7 88.1	88.4	6.3 6.2	6.2	6.2	9.9 10.3	10.1		11.0 9.9	10.5	
29-Mar-17	Fine	Moderate	12:53		Surface	1.0	20.3 20.2	20.3	8.0 8.0	8.0	29.9 29.9	29.9	95.2 94.9	95.1	7.2 7.2	7.2	7.2	7.6 7.7	7.7		-	-	
				15.2	Middle	7.6	19.8 20.2	20.0	8.0 7.9	8.0	31.5 29.9	30.7	94.2 94.3	94.3	7.1 7.2	7.1	1.2	8.2 7.9	8.1	8.0	-	-	-
					Bottom	14.2	19.8 19.8	19.8	8.0 7.9	8.0	31.8 32.0	31.9	93.8 94.1	94.0	7.1 7.1	7.1	7.1	8.3 8.3	8.3		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-		-		-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:34		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.8	32.8	95.4 95.4	95.4	7.5 7.5	7.5	7.5	9.0 9.1	9.1		11.5 12.5	12.0	
				15.8	Middle	7.9	17.4 17.4	17.4	8.1 8.1	8.1	32.8 32.8	32.8	94.8 94.6	94.7	7.5 7.4	7.4	7.5	9.3 9.3	9.3	9.3	12.0 11.7	11.9	12.3
					Bottom	14.8	17.4 17.3	17.4	8.1 8.1	8.1	32.9 33.1	33.0	94.5 94.1	94.3	7.4 7.4	7.4	7.4	9.6 9.5	9.6		12.8 13.3	13.1	
3-Mar-17	Sunny	Moderate	10:35		Surface	1.0	17.6 17.5	17.6	8.3 8.3	8.3	32.2 32.3	32.2	95.0 94.7	94.9	7.5 7.5	7.5	7.5	12.2 12.4	12.3		7.0 8.5	7.8	
				15.8	Middle	7.9	17.5 17.5	17.5	8.3 8.3	8.3	32.7 32.7	32.7	94.3 94.3	94.3	7.4 7.4	7.4	7.5	12.4 12.3	12.4	13.4	8.0 10.0	9.0	8.9
					Bottom	14.8	17.5 17.5	17.5	8.3 8.3	8.3	32.7 32.7	32.7	94.2 94.0	94.1	7.4 7.4	7.4	7.4	15.5 15.2	15.4		10.2 9.6	9.9	
6-Mar-17	Cloudy	Moderate	11:32		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	30.1 30.1	30.1	96.7 96.4	96.6	7.6 7.6	7.6	7.6	4.0 3.9	4.0		3.9 4.5	4.2	
				16.3	Middle	8.2	18.4 18.4	18.4	8.2 8.2	8.2	32.1 32.0	32.0	96.1 95.9	96.0	7.5 7.4	7.5	7.0	5.8 5.5	5.7	5.3	5.2 6.2	5.7	5.2
					Bottom	15.3	18.4 18.4	18.4	8.2 8.2	8.2	32.0 32.1	32.1	96.1 96.4	96.3	7.5 7.5	7.5	7.5	6.0 6.2	6.1		5.4 6.0	5.7	
8-Mar-17	Cloudy	Moderate	15:06		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	32.2 32.3	32.2	94.9 95.8	95.4	7.4 7.5	7.4	7.4	2.2 2.1	2.2		4.1 5.8	5.0	
				15.5	Middle	7.8	18.1 18.1	18.1	8.1 8.1	8.1	32.5 32.5	32.5	94.5 94.6	94.6	7.4 7.4	7.4		2.2 2.3	2.3	2.3	8.7 9.4	9.1	7.6
					Bottom	14.5	18.1 18.1	18.1	8.1 8.1	8.1	32.6 32.5	32.5	94.1 94.4	94.3	7.3 7.4	7.3	7.3	2.4 2.5	2.5		8.9 8.3	8.6	
10-Mar-17	Cloudy	Moderate	16:28		Surface	1.0	18.2 18.1	18.2	8.2 8.2	8.2	32.4 32.5	32.4	95.2 94.0	94.6	7.4 7.3	7.4	7.4	5.6 5.5	5.6		6.8 7.0	6.9	_
				16.8	Middle	8.4	18.1 18.1	18.1	8.2 8.2	8.2	33.2 33.3	33.3	95.2 94.9	95.1	7.4 7.4	7.4		6.1 5.8	6.0	6.1	7.5 8.9	8.2	8.0
					Bottom	15.8	18.1 18.1	18.1	8.1 8.2	8.2	33.3 33.2	33.2	94.8 95.0	94.9	7.3 7.4	7.4	7.4	6.3 6.8	6.6		9.6 8.0	8.8	
13-Mar-17	Fine	Moderate	08:22		Surface	1.0	18.4 18.5	18.5	8.1 8.1	8.1	32.2 32.2	32.2	93.2 93.9	93.6	7.2 7.3	7.2	7.2	9.5 9.5	9.5		10.9 10.2	10.6	_
				16.7	Middle	8.4	18.3 18.3	18.3	8.1 8.2	8.1	32.4 32.4	32.4	93.0 92.7	92.9	7.2 7.2	7.2		11.5 11.4	11.5	10.8	10.7 11.7	11.2	12.0
					Bottom	15.7	18.3 18.4	18.4	8.1 8.1	8.1	32.4 32.3	32.4	92.6 92.4	92.5	7.2 7.2	7.2	7.2	11.2 11.3	11.3		14.4 14.1	14.3	
15-Mar-17	Fine	Moderate	09:21		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	31.8 31.8	31.8	92.4 91.9	92.2	7.2 7.1	7.1	7.1	5.4 5.2	5.3		12.5 13.4	13.0	_
				15.3	Middle	7.7	18.5 18.5 18.6	18.5	8.1 8.1 8.1	8.1	31.8 31.8 31.8	31.8	91.7 91.8 91.6	91.8	7.1 7.1 7.1	7.1		5.6 5.6 5.8	5.6	5.6	12.3 13.9 14.1	13.1	13.7
47.14 47		Madaaata	40.40		Bottom	14.3	18.5	18.6	8.1	8.1	31.9	31.8	91.7	91.7	7.1	7.1	7.1	5.7	5.8		15.9	15.0	<u> </u>
17-Mar-17	Cloudy	Moderate	10:18		Surface	1.0	18.5 18.5 18.5	18.5	8.0 8.1	8.0	31.1 31.2	31.1	91.4 92.0	91.7	7.1 7.2	7.1	7.1	8.3 8.4	8.4		16.4 15.8	16.1	4
				15.3	Middle	7.7	18.5 18.5 18.5	18.5	8.0 8.0 8.0	8.0	31.3 31.3 31.3	31.3	91.4 91.3 91.0	91.4	7.1 7.1 7.1	7.1		8.5 8.6 8.9	8.6	8.6	16.6 17.2 15.8	16.9	16.6
20 Mar 17	Suppy	Modorate	11.11		Bottom	14.3	18.5	18.5	8.0	8.0	31.3	31.3	91.2	91.1	7.1	7.1	7.1	8.8	8.9		17.6	16.7	<u> </u>
20-Mar-17	Sunny	Moderate	11:41		Surface	1.0	19.4 19.4	19.4	8.1 8.1	8.1	29.9 29.9	29.9	89.6 90.2	89.9	7.2 7.3	7.2	7.2	3.2 3.0	3.1		5.8 4.9	5.4	4
				16.6	Middle	8.3	18.8 18.7	18.8	8.1 8.1	8.1	31.7 31.6	31.6	89.9 89.1	89.5	7.2	7.2		4.5 4.3	4.4	4.2	5.4 6.0	5.7	5.8
					Bottom	15.6	18.5 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	88.8 88.2	88.5	7.1 7.1	7.1	7.1	5.3 5.1	5.2		6.8 5.8	6.3	

Water Quality Monitoring Results at CS4 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)		ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	Turbidity(NTL	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:42		Surface	1.0	19.3 19.3	19.3	8.0 8.1	8.1	31.9 31.8	31.9	92.8 93.8	93.3	7.1 7.2	7.1	7.1	1.4 1.2	1.3		3.6 4.6	4.1	
				16.0	Middle	8.0	19.3 19.2	19.2	8.1 8.0	8.1	32.0 32.2	32.1	92.5 92.6	92.6	7.1 7.1	7.1	7.1	1.4 1.5	1.5	1.5	4.5 5.4	5.0	5.3
					Bottom	15.0	19.0 19.2	19.1	8.1 8.0	8.1	32.8 32.3	32.5	91.6 91.3	91.5	7.0 7.0	7.0	7.0	1.6 1.8	1.7		6.4 6.9	6.7	
24-Mar-17	Sunny	Moderate	15:09		Surface	1.0	20.1 20.0	20.0	8.2 8.2	8.2	30.4 30.4	30.4	97.3 96.9	97.1	7.4 7.4	7.4	7.3	4.4 4.6	4.5		9.3 9.6	9.5	
				16.6	Middle	8.3	19.3 19.3	19.3	8.2 8.1	8.2	31.3 31.3	31.3	92.9 93.8	93.4	7.1 7.2	7.1	1.0	5.3 5.1	5.2	4.9	9.3 8.7	9.0	7.6
					Bottom	15.6	19.3 19.3	19.3	8.2 8.1	8.1	31.3 31.3	31.3	94.5 95.3	94.9	7.2 7.3	7.3	7.3	5.1 5.0	5.1		4.0 4.6	4.3	
27-Mar-17	Fine	Moderate	07:35		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	31.9 31.9	31.9	86.6 86.9	86.8	6.2 6.2	6.2	6.1	8.8 8.4	8.6		6.8 6.7	6.8	
				16.6	Middle	8.3	19.2 19.2	19.2	8.1 8.1	8.1	32.0 32.0	32.0	85.0 85.0	85.0	6.0 6.0	6.0	0.1	9.1 9.4	9.3	9.1	8.0 7.8	7.9	8.0
					Bottom	15.6	19.2 19.2	19.2	8.1 8.1	8.1	32.0 32.0	32.0	86.0 85.8	85.9	6.1 6.1	6.1	6.1	9.7 9.3	9.5		9.3 9.5	9.4	
29-Mar-17	Fine	Moderate	08:25		Surface	1.0	19.7 19.7	19.7	8.1 8.1	8.1	31.8 31.8	31.8	94.3 93.5	93.9	7.1 7.1	7.1	7.1	10.6 10.4	10.5		-	-	
				15.3	Middle	7.7	19.7 19.7	19.7	8.1 8.1	8.1	31.8 31.8	31.8	93.2 93.3	93.3	7.1 7.1	7.1	7.1	10.6 10.6	10.6	10.7		-	-
					Bottom	14.3	19.7 19.7	19.7	8.0 8.1	8.0	31.9 31.9	31.9	92.7 92.8	92.8	7.0 7.0	7.0	7.0	10.9 10.9	10.9		-	-	
31-Mar-17	Rainy	Moderate	08:24		Surface	1.0	20.4 20.4	20.4	8.0 8.0	8.0	31.1 31.0	31.0	93.5 93.0	93.3	7.0 7.0	7.0	7.0	17.8 18.8	18.3		-	-	
				16.5	Middle	8.3	20.3 20.3	20.3	8.0 8.0	8.0	31.4 31.4	31.4	91.6 92.6	92.1	6.9 7.0	6.9	7.0	20.0 19.5	19.8	19.6	-	-	-
					Bottom	15.5	20.3 20.3	20.3	8.0 7.9	8.0	31.4 31.4	31.4	92.0 92.3	92.2	6.9 6.9	6.9	6.9	20.9 20.7	20.8		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:56		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	30.6 30.6	30.6	95.2 95.1	95.2	7.6 7.6	7.6	7.0	4.7 4.5	4.6		8.5 8.3	8.4	
				13.2	Middle	6.6	17.5 17.5	17.5	8.2 8.2	8.2	30.7 30.7	30.7	94.7 94.2	94.5	7.5 7.5	7.5	7.6	5.6 5.0	5.3	5.0	8.5 7.4	8.0	8.1
					Bottom	12.2	17.5 17.5	17.5	8.2 8.2	8.2	30.8 30.7	30.7	94.4 94.7	94.6	7.5	7.5	7.5	5.2 5.0	5.1		8.2	7.9	
3-Mar-17	Sunny	Moderate	16:21		Surface	1.0	17.9 18.0	18.0	8.2 8.2	8.2	28.3 28.2	28.3	95.0 95.8	95.4	7.6 7.7	7.6	= 0	6.7 6.7	6.7		8.5 9.6	9.1	
				12.0	Middle	6.0	17.8	17.8	8.2 8.2	8.2	28.4 28.5	28.4	95.5 95.0	95.3	7.7	7.6	7.6	6.8 6.8	6.8	6.8	10.8	10.3	10.1
					Bottom	11.0	17.8 17.8	17.8	8.2 8.2	8.2	28.6 28.6	28.6	94.9 94.6	94.8	7.6	7.6	7.6	6.8 6.8	6.8		10.3 11.6	11.0	
6-Mar-17	Cloudy	Moderate	06:32		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	28.5 28.6	28.6	95.4 94.9	95.2	7.6 7.5	7.5		2.8 2.7	2.8		6.7 5.1	5.9	
				12.1	Middle	6.1	18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.3 93.6	94.0	7.5 7.4	7.4	7.5	3.0	2.9	2.9	6.1 5.4	5.8	5.6
					Bottom	11.1	18.0 18.1	18.0	8.1 8.1	8.1	29.6 29.5	29.6	93.5 93.9	93.7	7.4	7.4	7.4	2.8	2.9		5.1 5.3	5.2	
8-Mar-17	Cloudy	Moderate	09:58		Surface	1.0	18.0 18.0	18.0	8.1 8.1	8.1	29.3 29.1	29.2	91.6 92.2	91.9	7.3 7.3	7.3	= 0	1.8 1.8	1.8		5.0 4.3	4.7	
				12.0	Middle	6.0	18.0 18.0	18.0	8.1 8.1	8.1	30.1 30.1	30.1	91.4 91.8	91.6	7.2	7.3	7.3	1.9	1.9	1.8	4.6	5.1	5.0
					Bottom	11.0	18.0 18.0	18.0	8.1 8.1	8.1	30.2 30.2	30.2	91.6 91.3	91.5	7.3 7.2	7.2	7.2	1.7 1.9	1.8		5.4 5.1	5.3	
10-Mar-17	Cloudy	Moderate	11:47		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	91.1 91.0	91.1	7.2 7.2	7.2	7.0	2.4 2.1	2.3		6.0 6.8	6.4	
				11.7	Middle	5.9	18.0 18.0	18.0	8.1 8.1	8.1	29.6 29.6	29.6	90.7 90.6	90.7	7.2 7.2	7.2	7.2	2.4 2.1	2.3	2.3	6.6 6.7	6.7	6.9
					Bottom	10.7	18.0 18.0	18.0	8.1 8.1	8.1	29.6 29.7	29.7	90.7 90.8	90.8	7.2 7.2	7.2	7.2	2.2 2.4	2.3		7.5 7.8	7.7	
13-Mar-17	Fine	Moderate	13:46		Surface	1.0	18.7 18.6	18.7	8.2 8.2	8.2	29.1 29.1	29.1	93.1 93.0	93.1	7.3 7.3	7.3	7.0	3.9 4.1	4.0		8.7 7.3	8.0	
				13.3	Middle	6.7	18.3 18.3	18.3	8.2 8.2	8.2	29.7 29.7	29.7	92.2 92.2	92.2	7.3 7.3	7.3	7.3	3.9 4.1	4.0	4.1	7.3 7.1	7.2	7.8
					Bottom	12.3	18.3 18.4	18.3	8.2 8.2	8.2	29.7 29.6	29.6	92.8 92.5	92.7	7.3 7.3	7.3	7.3	4.3 4.0	4.2		8.7 7.7	8.2	
15-Mar-17	Fine	Moderate	14:36		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.2 29.2	29.2	91.0 93.2	92.1	7.1 7.3	7.2	7.2	4.1 4.0	4.1		7.8 8.4	8.1	
				11.6	Middle	5.8	18.6 18.6	18.6	8.2 8.2	8.2	29.4 29.4	29.4	92.0 90.9	91.5	7.2 7.1	7.2	1.2	3.9 4.1	4.0	4.1	8.8 8.4	8.6	8.9
					Bottom	10.6	18.5 18.6	18.6	8.2 8.2	8.2	29.5 29.4	29.5	91.9 90.6	91.3	7.2 7.1	7.2	7.2	4.1 4.1	4.1		10.2 10.0	10.1	
17-Mar-17	Cloudy	Moderate	15:58		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	29.2 29.2	29.2	93.2 92.4	92.8	7.3 7.2	7.3	7.3	4.4 4.8	4.6		7.0 8.1	7.6	
				13.3	Middle	6.7	18.5 18.5	18.5	8.2 8.2	8.2	29.7 29.7	29.7	93.0 91.9	92.5	7.3 7.2	7.3	7.0	4.2 4.2	4.2	4.4	8.2 9.6	8.9	9.1
					Bottom	12.3	18.5 18.6	18.5	8.2 8.2	8.2	29.8 29.6	29.7	93.9 92.2	93.1	7.4 7.2	7.3	7.3	4.5 4.1	4.3		11.1 10.4	10.8	
20-Mar-17	Sunny	Moderate	18:17		Surface	1.0	20.0 20.2	20.1	8.1 8.1	8.1	27.7 27.6	27.7	94.0 94.9	94.5	7.3 7.3	7.3	7.3	2.4 2.3	2.4		7.5 8.6	8.1]
				13.4	Middle	6.7	18.6 18.6	18.6	8.1 8.1	8.1	28.9 28.9	28.9	92.0 91.4	91.7	7.2 7.2	7.2	7.0	3.0 2.8	2.9	2.8	9.2 8.4	8.8	8.5
					Bottom	12.4	18.7 18.7	18.7	8.1 8.1	8.1	28.9 28.9	28.9	92.5 93.1	92.8	7.3 7.3	7.3	7.3	2.9 3.1	3.0		8.8 8.2	8.5	

Water Quality Monitoring Results at CS(Mf)5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ł	ъH	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	٦	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:12		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	28.9 28.9	28.9	89.6 89.7	89.7	7.0 7.0	7.0	7.0	2.1 2.2	2.2		4.4 3.9	4.2	
				12.4	Middle	6.2	18.8 18.8	18.8	8.1 8.1	8.1	29.3 29.4	29.4	89.3 89.3	89.3	7.0 7.0	7.0	7.0	2.6 2.5	2.6	2.5	4.9 4.8	4.9	5.3
					Bottom	11.4	18.8 18.8	18.8	8.1 8.1	8.1	29.3 29.4	29.4	89.2 89.1	89.2	7.0 7.0	7.0	7.0	2.5 2.6	2.6		6.6 6.7	6.7	1
24-Mar-17	Sunny	Moderate	10:49		Surface	1.0	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	90.9 90.9	90.9	7.0 7.0	7.0	7.0	2.1 2.1	2.1		6.1 5.1	5.6	
				12.3	Middle	6.2	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	90.5 90.6	90.6	7.0 7.0	7.0		2.1 2.1	2.1	2.1	5.0 6.4	5.7	6.4
					Bottom	11.3	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	90.4 90.5	90.5	7.0 7.0	7.0	7.0	2.1 2.1	2.1		7.7 7.8	7.8	
27-Mar-17	Fine	Moderate	13:16		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.8 28.7	28.7	91.9 92.0	92.0	7.1 7.1	7.1	7.1	4.2 4.1	4.2		10.6 9.4	10.0	
				12.2	Middle	6.1	19.4 19.4	19.4	8.2 8.2	8.2	29.1 29.1	29.1	91.7 91.8	91.8	7.1 7.1	7.1	7.1	4.2 4.2	4.2	4.2	10.1 11.3	10.7	11.1
					Bottom	11.2	19.4 19.4	19.4	8.2 8.2	8.2	29.4 29.2	29.3	91.6 91.6	91.6	7.1 7.1	7.1	7.1	4.4 4.1	4.3		12.6 12.4	12.5	
29-Mar-17	Fine	Moderate	13:46		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	29.7 29.7	29.7	93.2 93.5	93.4	7.1 7.2	7.1	7.1	4.8 4.8	4.8		-	-	
				12.1	Middle	6.1	19.6 19.6	19.6	8.2 8.2	8.2	30.1 30.0	30.1	92.6 92.2	92.4	7.1 7.1	7.1	7.1	5.2 5.1	5.2	5.1		-	=
					Bottom	11.1	19.7 19.5	19.6	8.2 8.2	8.2	30.1 30.3	30.2	92.5 91.8	92.2	7.1 7.1	7.1	7.1	5.1 5.2	5.2		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:31		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	29.5 29.5	29.5	94.9 95.0	95.0	7.6 7.6	7.6	= 0	6.9 7.0	7.0		8.7 8.1	8.4	
				13.3	Middle	6.7	17.4 17.4	17.4	8.1 8.1	8.1	29.6 29.6	29.6	94.6 94.5	94.6	7.6	7.6	7.6	7.5	7.3	7.4	8.6 8.0	8.3	9.2
					Bottom	12.3	17.4	17.4	8.1 8.1	8.1	29.6 29.6	29.6	94.7 94.6	94.7	7.6 7.6	7.6	7.6	7.7	8.0		10.4 11.5	11.0	
3-Mar-17	Sunny	Moderate	09:31		Surface	1.0	17.7	17.6	8.1 8.1	8.1	29.3 29.3	29.3	93.8 93.4	93.6	7.5 7.5	7.5		6.4 6.5	6.5		11.6	11.4	
				12.0	Middle	6.0	17.6 17.6	17.6	8.1 8.1	8.1	29.5 29.5 29.5	29.5	93.1 93.5	93.3	7.4 7.5	7.5	7.5	6.6 6.8	6.7	6.7	11.3 11.6	11.5	11.2
					Bottom	11.0	17.6 17.6	17.6	8.1 8.1	8.1	29.5 29.5	29.5	93.0 93.2	93.1	7.4	7.4	7.4	6.7 6.8	6.8		11.2 10.3	10.8	
6-Mar-17	Cloudy	Moderate	12:31		Surface	1.0	18.5 18.4	18.5	8.1 8.1	8.1	28.6 28.9	28.8	96.4 96.3	96.4	7.6 7.6	7.6	= 0	5.1 5.2	5.2		3.3 4.1	3.7	
				12.6	Middle	6.3	18.4 18.5	18.5	8.1 8.1	8.1	29.4 29.4	29.4	96.2 96.2	96.2	7.6 7.6	7.6	7.6	5.5 5.3	5.4	5.3	4.8	4.7	4.7
					Bottom	11.6	18.5 18.5	18.5	8.1 8.1	8.1	29.6 29.5	29.5	96.2 96.2	96.2	7.6 7.6	7.6	7.6	5.2 5.3	5.3		5.7 5.8	5.8	
8-Mar-17	Cloudy	Moderate	15:31		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	29.5 29.5	29.5	92.1 92.3	92.2	7.3 7.3	7.3	7.3	3.1 3.0	3.1		5.4 4.5	5.0	
				12.5	Middle	6.3	18.1 18.1	18.1	8.1 8.1	8.1	29.6 29.7	29.7	91.5 91.8	91.7	7.2 7.3	7.3	7.5	3.5 3.5	3.5	3.4	5.8 5.9	5.9	6.2
					Bottom	11.5	18.1 18.1	18.1	8.1 8.1	8.1	29.9 29.6	29.8	91.9 92.0	92.0	7.3 7.3	7.3	7.3	3.5 3.4	3.5		7.5 8.1	7.8	
10-Mar-17	Cloudy	Moderate	17:30		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.5 29.5	29.5	95.0 95.1	95.1	7.5 7.5	7.5	7.5	7.0 7.1	7.1		10.5 9.3	9.9	
				12.2	Middle	6.1	18.1 18.1	18.1	8.2 8.2	8.2	29.8 29.8	29.8	94.2 94.5	94.4	7.5 7.5	7.5		8.8 8.7	8.8	8.2	10.5 10.0	10.3	10.8
					Bottom	11.2	18.2 18.1	18.1	8.2 8.2	8.2	29.7 29.8	29.8	94.6 94.1	94.4	7.5 7.4	7.5	7.5	8.6 8.9	8.8		13.0 11.6	12.3	
13-Mar-17	Fine	Moderate	07:26		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	29.7 29.7	29.7	90.9 91.0	91.0	7.2 7.2	7.2	7.2	4.0 4.2	4.1		9.5 10.7	10.1	
				13.4	Middle	6.7	18.2 18.2	18.2	8.1 8.1	8.1	29.9 29.9	29.9	90.6 90.6	90.6	7.1	7.1		4.6 4.5	4.6	4.4	9.0 10.1	9.6	10.4
					Bottom	12.4	18.2 18.3	18.3	8.1 <u>8.1</u>	8.1	29.9 29.8	29.9	90.8 90.7	90.8	7.2 7.2	7.2	7.2	4.7 4.4	4.6		12.0 11.1	11.6	
15-Mar-17	Fine	Moderate	08:19		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	27.7 27.7	27.7	90.2 89.7	90.0	7.2	7.1	7.1	9.7 9.5	9.6		6.7 8.1	7.4	
				12.6	Middle	6.3	18.6 18.6 18.6	18.6	8.1 8.1 8.1	8.1	28.6 28.6 28.6	28.6	89.7 90.3 89.5	90.0	7.1 7.1 7.1	7.1		9.7 9.5 9.6	9.6	9.6	8.4 7.0 9.0	7.7	7.8
17-Mar-17	Cloudy	Moderate	09:08		Bottom	11.6	18.6 18.5	18.6	8.1 8.1	8.1	28.0 28.0 28.0	28.6	89.8 91.0	89.7	7.1	7.1	7.1	9.5 5.4	9.6		9.0 7.4 9.3	8.2	<u> </u>
17-10101-17	Cloudy	woderate	09.06		Surface	1.0	18.5 18.5 18.5	18.5	8.1 8.1	8.1	28.0 27.8 28.9	27.9	90.9 90.6	91.0	7.2	7.2	7.2	5.8 7.9	5.6		9.3 9.1 7.6	9.2	
				13.3	Middle	6.7	18.5 18.5 18.5	18.5	8.1 8.1	8.1	28.8 28.7	28.8	90.0 90.7 90.9	90.7	7.2	7.2		7.4	7.7	6.8	9.2 11.7	8.4	9.6
20-Mar-17	Sunny	Moderate	10:39		Bottom	12.3	18.5 18.5 19.1	18.5	8.1 8.1	8.1	28.9 28.6	28.8	91.1 93.0	91.0	7.2 7.2 7.3	7.2	7.2	7.3	7.0		10.6 5.8	11.2	<u> </u>
20-19/01-17	Guinty	woderaid	10.55		Surface	1.0	18.9 18.6	19.0	8.1 8.1	8.1	28.8 29.4	28.7	92.4 91.8	92.7	7.3 7.2	7.3	7.3	1.0 1.9 1.7	1.9		6.9 7.2	6.4	
				13.4	Middle	6.7	18.6 18.6	18.6	8.1 8.1	8.1	29.4 29.4 29.4	29.4	92.3 92.8	92.1	7.2 7.2 7.3	7.2		1.7 1.8 1.8	1.8	1.8	5.7 8.2	6.5	7.0
					Bottom	12.4	18.8	18.7	8.1	8.1	29.4	29.3	92.8 92.5	92.7	7.2	7.3	7.3	1.8	1.8		7.9	8.1	

Water Quality Monitoring Results at CS(Mf)5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		pН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	۲	Furbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:56		Surface	1.0	19.5 19.4	19.4	8.2 8.2	8.2	27.9 28.0	28.0	93.4 93.1	93.3	7.3 7.3	7.3	7.3	2.9 2.7	2.8		6.9 5.2	6.1	
				12.5	Middle	6.3	19.0 18.9	19.0	8.2 8.2	8.2	29.9 30.0	29.9	92.2 92.6	92.4	7.2 7.2	7.2	7.5	2.7 2.8	2.8	2.8	7.5 7.7	7.6	7.8
					Bottom	11.5	18.9 18.9	18.9	8.2 8.2	8.2	29.9 30.0	30.0	92.0 91.8	91.9	7.2 7.1	7.1	7.1	2.8 2.9	2.9		10.3 9.3	9.8	
24-Mar-17	Sunny	Moderate	16:21		Surface	1.0	20.0 19.9	19.9	8.2 8.2	8.2	28.1 28.4	28.2	94.0 93.8	93.9	7.2 7.2	7.2	7.2	2.6 2.5	2.6		6.1 5.8	6.0	
				12.3	Middle	6.2	19.4 19.3	19.4	8.2 8.2	8.2	29.4 29.6	29.5	93.2 92.8	93.0	7.2 7.2	7.2	7.2	2.8 2.7	2.8	2.7	7.2 7.7	7.5	7.2
					Bottom	11.3	19.5 19.3	19.4	8.2 8.2	8.2	29.6 29.8	29.7	92.4 92.7	92.6	7.1 7.2	7.2	7.2	2.8 2.8	2.8		7.8 8.4	8.1	
27-Mar-17	Fine	Moderate	06:29		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	28.4 28.4	28.4	91.2 91.2	91.2	7.1 7.1	7.1	7.1	3.8 3.7	3.8		4.3 3.7	4.0	
				12.8	Middle	6.4	19.3 19.3	19.3	8.2 8.2	8.2	29.4 29.4	29.4	91.0 91.2	91.1	7.1 7.1	7.1	7.1	3.6 3.8	3.7	3.8	4.9 4.0	4.5	4.5
					Bottom	11.8	19.3 19.3	19.3	8.2 8.2	8.2	29.4 29.4	29.4	90.9 90.9	90.9	7.0 7.1	7.0	7.0	3.8 3.8	3.8		5.5 4.3	4.9	
29-Mar-17	Fine	Moderate	07:18		Surface	1.0	19.6 19.5	19.6	8.2 8.2	8.2	30.1 30.1	30.1	92.2 92.2	92.2	7.1 7.1	7.1	7.1	8.9 8.6	8.8		-	-	
				12.7	Middle	6.4	19.4 19.4	19.4	8.2 8.2	8.2	30.5 30.5	30.5	92.0 91.7	91.9	7.1 7.0	7.1	7.1	8.8 8.8	8.8	8.8	-	-	=
					Bottom	11.7	19.5 19.5	19.5	8.2 8.2	8.2	30.5 30.5	30.5	91.7 91.8	91.8	7.0 7.0	7.0	7.0	8.7 8.8	8.8		-	-	
31-Mar-17	Rainy	Moderate	08:30		Surface	1.0	20.3 20.2	20.2	8.1 8.1	8.1	28.5 28.7	28.6	92.7 92.4	92.6	7.1 7.1	7.1	7.1	3.7 3.6	3.7		-	-	
				12.5	Middle	6.3	20.0 20.0	20.0	8.1 8.1	8.1	29.3 29.3	29.3	91.9 92.0	92.0	7.0 7.0	7.0	7.1	3.8 3.8	3.8	3.8	-	-	=
					Bottom	11.5	20.0 20.1	20.1	8.1 8.1	8.1	29.3 29.2	29.3	91.8 91.8	91.8	7.0 7.0	7.0	7.0	3.8 3.9	3.9		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ł	ъН	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	/ed Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	15:38		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	33.4 33.4	33.4	94.4 94.0	94.2	7.4 7.4	7.4		3.2 3.2	3.2		6.2 7.2	6.7	
				10.2	Middle	5.1	17.4 17.5	17.5	8.1 8.1	8.1	33.5 33.4	33.4	93.2 93.2	93.2	7.3 7.3	7.3	7.4	3.3 3.4	3.4	3.4	9.6 9.1	9.4	8.6
					Bottom	9.2	17.4	17.4	8.1 8.1	8.1	33.4 33.5	33.5	92.8 92.8	92.8	7.3	7.3	7.3	3.6 3.5	3.6		10.1 9.5	9.8	
3-Mar-17	Sunny	Moderate	16:58		Surface	1.0	17.8 17.8 17.8	17.8	8.3 8.3	8.3	33.2 33.1	33.2	94.4 94.5	94.5	7.4 7.4	7.4		2.8 2.8	2.8		9.3 8.7	9.0	
				10.1	Middle	5.1	17.6	17.6	8.3 8.3	8.3	33.5 33.5	33.5	93.4 93.9	93.7	7.4 7.3 7.3	7.3	7.4	2.0 2.7 2.7	2.7	2.8	8.3 8.6	8.5	9.2
					Bottom	9.1	17.5 17.6	17.6	8.3 8.3	8.3	33.5 33.5	33.5	95.8 93.5	94.7	7.5	7.4	7.4	3.0 2.8	2.9		9.4 10.8	10.1	
6-Mar-17	Cloudy	Moderate	05:57		Surface	1.0	18.2 18.2	18.2	8.1 8.2	8.1	32.3 32.3	32.3	94.7 95.2	95.0	7.4 7.4	7.4		3.3 3.4	3.4		5.8 7.0	6.4	
				10.1	Middle	5.1	18.0 18.0	18.0	8.2 8.1	8.1	32.6 32.7	32.7	94.6 95.0	94.8	7.4	7.4	7.4	3.5 3.4	3.5	3.5	5.7 5.7	5.7	6.3
					Bottom	9.1	18.0 18.0	18.0	8.1 8.2	8.1	32.8 32.7	32.7	94.1 94.4	94.3	7.3 7.4	7.3	7.3	3.4 3.5	3.5		6.4 7.3	6.9	
8-Mar-17	Cloudy	Moderate	08:49		Surface	1.0	17.9 17.9	17.9	8.1 8.2	8.1	33.2 33.2	33.2	92.5 92.2	92.4	7.2 7.2	7.2	7.0	1.3	1.2		6.1 6.5	6.3	
				10.4	Middle	5.2	17.9 17.9	17.9	8.1 8.1	8.1	33.5 33.6	33.6	91.9 91.5	91.7	7.1 7.1	7.1	7.2	1.3 1.4	1.4	1.4	5.9 5.7	5.8	6.4
					Bottom	9.4	17.9 17.9	17.9	8.1 8.1	8.1	33.6 33.8	33.7	91.8 91.5	91.7	7.1 7.1	7.1	7.1	1.5 1.5	1.5		7.8 6.6	7.2	
10-Mar-17	Cloudy	Moderate	10:56		Surface	1.0	18.0 18.0	18.0	8.1 8.0	8.0	33.9 33.9	33.9	89.8 90.3	90.1	6.9 7.0	7.0	7.0	3.7 3.6	3.7		5.2 4.0	4.6	
				10.3	Middle	5.2	17.9 17.9	17.9	8.1 8.0	8.0	34.0 34.0	34.0	90.1 89.5	89.8	7.0 6.9	6.9	7.0	4.0 4.1	4.1	3.9	7.6 8.6	8.1	7.2
					Bottom	9.3	17.9 17.9	17.9	8.0 8.0	8.0	34.0 34.0	34.0	90.0 90.5	90.3	7.0 7.0	7.0	7.0	4.0 3.9	4.0		8.2 9.6	8.9	
13-Mar-17	Fine	Moderate	14:12		Surface	1.0	18.5 18.5	18.5	8.1 8.0	8.1	33.7 33.7	33.7	90.5 90.4	90.5	6.9 6.9	6.9	6.9	2.4 2.5	2.5		7.9 7.0	7.5	
				10.1	Middle	5.1	18.3 18.3	18.3	8.0 8.1	8.0	33.8 33.8	33.8	89.1 89.8	89.5	6.9 6.9	6.9	0.0	2.7 2.7	2.7	2.6	7.5 6.2	6.9	7.4
					Bottom	9.1	18.2 18.3	18.3	8.0 8.1	8.0	33.8 33.8	33.8	88.6 89.3	89.0	6.8 6.9	6.8	6.8	2.7 2.6	2.7		7.4 7.9	7.7	1
15-Mar-17	Fine	Moderate	15:27		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	32.9 32.9	32.9	92.6 93.5	93.1	7.1 7.2	7.2	7.2	3.3 3.2	3.3		6.4 7.5	7.0	
				10.2	Middle	5.1	18.6 18.6	18.6	8.1 8.1	8.1	32.9 32.9	32.9	91.6 92.2	91.9	7.1 7.1	7.1		3.4 3.3	3.4	3.4	10.2 11.7	11.0	10.1
					Bottom	9.2	18.6 18.6	18.6	8.1 8.1	8.1	32.9 32.9	32.9	90.4 91.8	91.1	7.0 7.1	7.0	7.0	3.5 3.4	3.5		12.7 12.0	12.4	
17-Mar-17	Cloudy	Moderate	16:30		Surface	1.0	18.6 18.6	18.6	8.1 8.2	8.2	32.6 32.8	32.7	92.5 92.1	92.3	7.1 7.1	7.1	7.1	1.4 1.3	1.4		6.8 7.3	7.1	
				10.3	Middle	5.2	18.6 18.6	18.6	8.2 8.2	8.2	32.7 32.8	32.8	91.9 91.5	91.7	7.1 7.0	7.1		1.6 1.7	1.7	1.7	8.2 6.6	7.4	7.1
					Bottom	9.3	18.6 18.6	18.6	8.2 8.2	8.2	32.7 32.7	32.7	91.1 91.2	91.2	7.0 7.0	7.0	7.0	1.9 1.8	1.9		7.0 6.5	6.8	
20-Mar-17	Sunny	Moderate	19:22		Surface	1.0	19.0 19.1	19.0	8.0 8.1	8.0	32.8 32.8	32.8	99.2 98.7	99.0	8.1 8.0	8.0	7.8	1.6 1.5	1.6		7.7 7.0	7.4	
				9.8	Middle	4.9	18.8 18.8	18.8	8.0 8.0	8.0	33.0 33.1	33.0	94.6 95.2	94.9	7.6 7.7	7.6		1.6 1.6	1.6	1.7	8.1 9.1	8.6	8.0
					Bottom	8.8	18.5 18.5	18.5	8.0 8.0	8.0	33.4 33.4	33.4	94.0 94.3	94.2	7.5 7.5	7.5	7.5	1.9 1.8	1.9		7.9 8.1	8.0	

Water Quality Monitoring Results at CS6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	06:51		Surface	1.0	19.1 19.2	19.1	8.0 8.0	8.0	32.8 32.4	32.6	92.8 93.2	93.0	7.1 7.1	7.1	7.1	1.6 1.4	1.5		6.2 5.3	5.8	
				10.2	Middle	5.1	19.0 19.1	19.1	8.1 8.1	8.1	32.8 32.7	32.7	92.7 92.8	92.8	7.1 7.1	7.1	7.1	1.8 1.7	1.8	1.8	6.3 7.0	6.7	6.8
					Bottom	9.2	19.0 19.1	19.1	8.1 8.1	8.1	33.0 32.6	32.8	92.0 92.7	92.4	7.0 7.1	7.0	7.0	2.0 1.9	2.0		7.3 8.4	7.9	I
24-Mar-17	Sunny	Moderate	10:03		Surface	1.0	19.2 19.2	19.2	8.0 8.0	8.0	33.7 33.7	33.7	91.9 92.1	92.0	7.0 7.0	7.0	7.0	3.3 3.2	3.3		5.6 4.2	4.9	
				10.1	Middle	5.1	19.2 19.2	19.2	8.0 8.0	8.0	33.7 33.7	33.7	91.5 91.4	91.5	6.9 6.9	6.9	1.0	3.4 3.3	3.4	3.3	5.3 5.8	5.6	5.6
					Bottom	9.1	19.2 19.2	19.2	7.9 8.0	8.0	33.7 33.7	33.7	92.1 91.8	92.0	7.0 7.0	7.0	7.0	3.2 3.3	3.3		6.6 6.1	6.4	
27-Mar-17	Fine	Moderate	13:22		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	32.1 32.1	32.1	88.1 89.1	88.6	6.3 6.3	6.3	6.3	5.8 5.6	5.7		6.8 6.3	6.6	
				10.2	Middle	5.1	19.3 19.3	19.3	8.2 8.2	8.2	33.1 32.9	33.0	86.6 89.6	88.1	6.1 6.3	6.2	0.5	5.2 5.1	5.2	5.4	9.8 10.9	10.4	9.7
					Bottom	9.2	19.3 19.3	19.3	8.2 8.2	8.2	33.1 33.0	33.1	86.5 92.0	89.3	6.1 6.4	6.3	6.3	5.3 5.0	5.2		12.6 11.4	12.0	
29-Mar-17	Fine	Moderate	14:22		Surface	1.0	19.7 19.7	19.7	8.0 8.0	8.0	33.3 33.3	33.3	93.8 93.8	93.8	7.1 7.1	7.1	7.1	5.8 5.8	5.8		-	-	
				10.1	Middle	5.1	19.7 19.6	19.7	8.0 8.0	8.0	33.3 33.4	33.3	93.2 93.4	93.3	7.0 7.0	7.0	7.1	5.9 5.8	5.9	6.0	-	-	-
					Bottom	9.1	19.6 19.7	19.6	8.0 7.9	7.9	33.5 33.4	33.5	92.8 92.4	92.6	7.0 7.0	7.0	7.0	6.2 6.1	6.2		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-		-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-		-	-	-		-	-	-		-	-	-	-	-	=
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	ъН	Salini	ity (ppt)	DO Satu	uration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:06		Surface	1.0	17.3 17.3	17.3	8.0 8.0	8.0	33.2 33.2	33.2	94.2 94.8	94.5	7.4 7.5	7.4	7.4	3.5 3.4	3.5		9.4 10.3	9.9	
				10.2	Middle	5.1	17.3 17.3	17.3	8.0 8.0	8.0	33.2 33.2	33.2	93.9 93.9	93.9	7.4 7.4	7.4	7.4	3.6 3.8	3.7	3.7	9.8 9.8	9.8	9.6
					Bottom	9.2	17.3 17.3	17.3	8.0 8.1	8.0	33.2 33.2	33.2	93.6 93.1	93.4	7.4 7.3	7.3	7.3	3.8 3.9	3.9		9.1 9.0	9.1	
3-Mar-17	Sunny	Moderate	08:57		Surface	1.0	17.5 17.5	17.5	8.0 8.1	8.1	32.7 32.7	32.7	93.5 93.6	93.6	7.4 7.4	7.4		3.9 4.0	4.0		11.1 10.5	10.8	
				10.3	Middle	5.2	17.5 17.5	17.5	8.0 8.0	8.0	33.0 33.0	33.0	93.4 93.3	93.4	7.3 7.3	7.3	7.4	3.9 3.8	3.9	4.0	9.8 11.6	10.7	11.1
					Bottom	9.3	17.5 17.5	17.5	8.0 8.0	8.0	33.1 33.0	33.1	94.0 93.5	93.8	7.4 7.3	7.4	7.4	4.0 4.1	4.1		11.4 12.4	11.9	
6-Mar-17	Cloudy	Moderate	13:13		Surface	1.0	18.2 18.1	18.1	8.0 8.0	8.0	32.5 32.5	32.5	95.8 94.5	95.2	7.4 7.4	7.4		2.4 2.3	2.4		3.0 3.3	3.2	i
				10.3	Middle	5.2	17.9 18.0	18.0	8.0 8.0	8.0	32.9 32.8	32.9	94.0 95.9	95.0	7.3 7.5	7.4	7.4	3.0 2.9	3.0	2.9	4.4	4.5	4.3
					Bottom	9.3	18.0 17.9	18.0	8.0 8.0	8.0	32.9 32.9	32.9	97.9 95.8	96.9	7.6 7.5	7.5	7.5	3.4 3.3	3.4		4.9 5.3	5.1	
8-Mar-17	Cloudy	Moderate	16:41		Surface	1.0	17.9 17.9	17.9	8.0 7.9	8.0	33.7 33.7	33.7	94.3 93.4	93.9	7.3 7.2	7.3	7.0	1.1 1.1	1.1		5.8 4.6	5.2	
				10.5	Middle	5.3	17.9 17.9	17.9	7.9 8.0	8.0	33.7 33.7	33.7	92.8 92.2	92.5	7.2 7.1	7.2	7.3	1.2 1.3	1.3	1.3	4.1 5.4	4.8	5.2
					Bottom	9.5	17.9 17.9	17.9	7.8 8.0	7.9	33.7 33.8	33.8	90.7 91.4	91.1	7.0 7.1	7.1	7.1	1.5 1.4	1.5		5.0 6.1	5.6	
10-Mar-17	Cloudy	Moderate	18:07		Surface	1.0	18.1 18.1	18.1	8.1 8.0	8.1	33.5 33.5	33.5	93.5 94.3	93.9	7.2 7.3	7.3	7.3	2.0 1.9	2.0		4.2 3.5	3.9	
				10.2	Middle	5.1	18.0 18.0	18.0	8.1 8.0	8.0	33.5 33.5	33.5	93.6 95.7	94.7	7.3 7.4	7.3	7.5	2.0 2.1	2.1	2.1	4.5 3.6	4.1	4.6
					Bottom	9.2	18.1 18.0	18.1	8.0 8.1	8.0	33.5 33.5	33.5	96.1 93.5	94.8	7.4 7.2	7.3	7.3	2.2 2.3	2.3		4.9 6.4	5.7	
13-Mar-17	Fine	Moderate	06:52		Surface	1.0	18.2 18.2	18.2	8.0 8.0	8.0	33.7 33.7	33.7	89.6 89.5	89.6	6.9 6.9	6.9	6.9	4.8 4.7	4.8		12.6 12.5	12.6	
				10.3	Middle	5.2	18.1 18.1	18.1	8.0 8.0	8.0	33.7 33.7	33.7	89.2 89.5	89.4	6.9 6.9	6.9	0.9	5.5 5.7	5.6	5.3	11.3 11.0	11.2	12.3
					Bottom	9.3	18.1 18.1	18.1	8.0 8.0	8.0	33.7 33.7	33.7	89.2 89.3	89.3	6.9 6.9	6.9	6.9	5.5 5.6	5.6		13.8 12.5	13.2	
15-Mar-17	Fine	Moderate	07:50		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	32.1 32.1	32.1	91.5 91.4	91.5	7.1 7.1	7.1	7.1	2.4 2.7	2.6		8.3 6.9	7.6	
				10.3	Middle	5.2	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.1	32.2	91.2 91.2	91.2	7.1 7.1	7.1	7.1	2.9 2.8	2.9	2.8	9.9 9.5	9.7	9.4
					Bottom	9.3	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.2	32.2	91.2 90.7	91.0	7.1 7.0	7.0	7.0	3.0 2.9	3.0		10.0 11.9	11.0	
17-Mar-17	Cloudy	Moderate	08:41		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	31.8 31.9	31.9	92.0 91.2	91.6	7.1 7.1	7.1	7.1	2.7 2.8	2.8		8.2 9.6	8.9	
				10.3	Middle	5.2	18.4 18.4	18.4	8.1 8.2	8.2	32.2 32.3	32.2	91.2 90.4	90.8	7.1 7.0	7.0		3.0 3.1	3.1	3.1	11.7 11.0	11.4	10.7
					Bottom	9.3	18.4 18.4	18.4	8.1 8.1	8.1	32.5 32.4	32.5	89.9 90.5	90.2	7.0 7.0	7.0	7.0	3.5 3.3	3.4	<u> </u>	11.5 11.8	11.7	
20-Mar-17	Sunny	Moderate	10:09		Surface	1.0	18.8 18.9	18.9	8.1 8.1	8.1	32.4 32.3	32.3	95.3 95.1	95.2	7.4 7.4	7.4	7.3	3.3 3.2	3.3	1	5.6 5.4	5.5	
				10.0	Middle	5.0	18.6 18.7	18.7	8.1 8.1	8.1	32.8 32.7	32.7	93.6 92.9	93.3	7.2 7.2	7.2		2.8 2.7	2.8	2.9	6.4 6.6	6.5	6.4
					Bottom	9.0	18.5 18.5	18.5	8.1 8.0	8.1	33.4 33.5	33.4	93.1 93.3	93.2	7.1 7.1	7.1	7.1	2.5 2.4	2.5		7.6 6.5	7.1	

Water Quality Monitoring Results at CS6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		pН	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	٦	Furbidity(NTL	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	22:22		Surface	1.0	19.3 19.2	19.3	8.1 8.0	8.1	31.6 32.1	31.9	92.8 92.5	92.7	7.1 7.1	7.1	7.1	1.1 1.2	1.2		4.7 5.9	5.3	
				10.3	Middle	5.2	19.2 19.0	19.1	8.1 8.0	8.0	31.8 32.9	32.4	93.3 92.4	92.9	7.1 7.1	7.1	7.1	1.3 1.3	1.3	1.3	8.5 7.3	7.9	6.9
					Bottom	9.3	19.3 19.0	19.2	8.1 8.0	8.0	32.7 33.1	32.9	92.4 91.4	91.9	7.0 7.0	7.0	7.0	1.4 1.5	1.5		7.3 7.4	7.4	
24-Mar-17	Sunny	Moderate	16:44		Surface	1.0	20.0 19.9	19.9	8.1 8.0	8.0	32.2 32.4	32.3	96.8 95.4	96.1	7.3 7.2	7.2	7.2	3.1 3.0	3.1		5.0 4.7	4.9	
				10.3	Middle	5.2	19.6 19.7	19.7	8.0 8.0	8.0	32.9 32.7	32.8	95.2 96.7	96.0	7.2 7.3	7.2	7.2	2.9 2.9	2.9	3.0	8.7 9.6	9.2	6.9
					Bottom	9.3	19.6 19.7	19.7	8.0 8.0	8.0	33.0 32.8	32.9	96.4 96.9	96.7	7.3 7.3	7.3	7.3	3.0 3.1	3.1		6.8 6.6	6.7	
27-Mar-17	Fine	Moderate	05:57		Surface	1.0	19.2 19.2	19.2	8.1 8.1	8.1	34.0 34.0	34.0	88.2 88.5	88.4	6.1 6.1	6.1	6.1	4.4 4.6	4.5		4.0 4.6	4.3	
				10.1	Middle	5.1	19.2 19.2	19.2	8.1 8.1	8.1	34.0 34.0	34.0	86.2 86.0	86.1	6.0 6.0	6.0	0.1	4.6 4.8	4.7	4.6	3.3 4.2	3.8	5.0
					Bottom	9.1	19.2 19.2	19.2	8.0 8.1	8.1	34.0 34.0	34.0	87.5 87.6	87.6	6.0 6.0	6.0	6.0	4.8 4.6	4.7		6.5 7.4	7.0	
29-Mar-17	Fine	Moderate	06:55		Surface	1.0	19.4 19.4	19.4	7.8 7.8	7.8	33.8 33.8	33.8	92.0 91.4	91.7	6.9 6.9	6.9	6.9	8.3 8.1	8.2		-	-	
				10.3	Middle	5.2	19.3 19.3	19.3	7.8 7.8	7.8	33.8 33.8	33.8	91.2 91.3	91.3	6.9 6.9	6.9	0.9	8.4 8.5	8.5	8.5		-	<u>-</u>
					Bottom	9.3	19.3 19.3	19.3	7.8 7.8	7.8	33.8 33.8	33.8	91.1 90.8	91.0	6.9 6.8	6.9	6.9	8.8 8.8	8.8		-	-	
31-Mar-17	Rainy	Moderate	06:46		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	31.0 31.0	31.0	93.0 93.4	93.2	7.0 7.0	7.0	7.0	7.0 6.8	6.9		-	-	
				10.2	Middle	5.1	20.3 20.3	20.3	7.9 7.9	7.9	31.3 31.3	31.3	92.2 93.8	93.0	6.9 7.0	7.0	7.0	7.7 7.8	7.8	7.5	-	-	-
					Bottom	9.2	20.3 20.3	20.3	7.9 7.9	7.9	31.3 31.3	31.3	92.4 95.2	93.8	6.9 7.2	7.0	7.0	8.1 7.5	7.8		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	15:53		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	33.4 33.4	33.4	94.4 94.6	94.5	7.4 7.4	7.4	7.4	3.2 3.1	3.2		5.5 6.1	5.8	
				34.6	Middle	17.3	17.4 17.4	17.4	8.1 8.1	8.1	33.5 33.4	33.4	94.2 93.9	94.1	7.4 7.4	7.4	7.4	3.3 3.2	3.3	3.3	7.2 8.3	7.8	7.2
					Bottom	33.6	17.4 17.4	17.4	8.1 8.1	8.1	33.4 33.4	33.4	93.5 93.6	93.6	7.3	7.3	7.3	3.3 3.4	3.4		8.8	8.0	
3-Mar-17	Sunny	Moderate	17:11		Surface	1.0	17.8 17.8	17.8	8.3 8.3	8.3	33.2 33.2	33.2	93.1 93.5	93.3	7.3	7.3		2.7	2.7		7.7	6.9	
				34.6	Middle	17.3	17.5	17.5	8.3 8.3	8.3	33.6 33.6	33.6	91.7 93.0	92.4	7.2	7.2	7.3	2.5	2.5	2.7	7.3	7.5	7.7
					Bottom	33.6	17.5	17.5	8.3 8.3	8.3	33.6 33.6	33.6	93.0 93.0 91.6	92.3	7.3	7.2	7.2	3.0	3.0		9.2	8.8	
6-Mar-17	Cloudy	Moderate	05:44		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	32.3 32.3	32.3	95.0 95.4	95.2	7.4	7.4		2.9 2.9 3.1	3.0		5.8 6.1	6.0	
				34.8	Middle	17.4	17.9	17.9	8.1 8.1	8.1	32.9 32.8	32.9	93.8 93.6	93.7	7.3	7.3	7.4	2.8	2.9	3.0	6.7 8.0	7.4	7.0
					Bottom	33.8	17.9	17.9	8.1 8.1	8.1	32.9 32.9	32.9	93.8 94.8	94.3	7.3	7.3	7.3	3.1 3.0	3.1		7.3	7.6	
8-Mar-17	Cloudy	Moderate	08:38		Surface	1.0	17.9 17.9 17.9	17.9	8.1 8.1	8.1	33.2 33.2	33.2	94.8 91.7 91.9	91.8	7.1	7.1		1.2 1.1	1.2		5.9	6.0	
				34.7	Middle	17.4	17.9 17.9 17.9	17.9	8.1 8.1	8.1	33.6 33.7	33.7	91.9 91.1 91.3	91.2	7.1	7.1	7.1	1.3	1.3	1.3	6.6 7.6	7.1	7.5
					Bottom	33.7	17.9	17.9	8.1 8.1	8.1	33.8 33.8	33.8	90.9 90.8	90.9	7.0	7.1	7.1	1.5 1.4 1.5	1.5		10.1	9.4	
10-Mar-17	Cloudy	Moderate	10:43		Surface	1.0	18.0 18.0	18.0	8.0 8.0	8.0	33.9 33.9	33.9	90.9 91.8	91.4	7.0	7.1		3.3 3.0	3.2		5.2 6.6	5.9	
				34.9	Middle	17.5	17.9 17.9	17.9	8.0 8.0	8.0	34.0 34.0	34.0	91.4 90.3	90.9	7.1 7.0	7.0	7.1	2.8 2.7	2.8	3.1	6.3 6.7	6.5	6.7
					Bottom	33.9	17.9 17.9	17.9	8.0 8.0	8.0	34.0 34.1	34.0	90.3 91.8	91.1	7.0	7.0	7.0	3.3	3.3		7.4	7.6	
13-Mar-17	Fine	Moderate	14:22		Surface	1.0	18.6 18.5	18.6	8.1 8.1	8.1	33.7 33.7	33.7	91.0 89.4	90.2	7.0 6.9	6.9		3.0 2.9	3.0		7.9 8.4	8.2	
				34.5	Middle	17.3	18.1 18.2	18.2	8.1 8.1	8.1	33.9 33.9	33.9	88.2 88.7	88.5	6.8 6.8	6.8	6.9	3.5 3.6	3.6	3.4	8.6 8.6	8.6	8.9
					Bottom	33.5	18.2 18.2	18.2	8.1 8.1	8.1	33.9 33.9	33.9	88.4 89.1	88.8	6.8 6.9	6.8	6.8	3.4 3.5	3.5		10.9 9.1	10.0	
15-Mar-17	Fine	Moderate	15:41		Surface	1.0	18.6 18.5	18.6	8.1 8.0	8.1	32.9 32.9	32.9	91.0 90.3	90.7	7.0 7.0	7.0	= 0	3.0 3.1	3.1		7.4 7.9	7.7	
				34.3	Middle	17.2	18.5 18.5	18.5	8.1 8.0	8.0	32.9 32.9	32.9	90.3 90.2	90.3	6.9 6.9	6.9	7.0	3.2 3.2	3.2	3.2	7.1 8.3	7.7	7.9
					Bottom	33.3	18.5 18.6	18.6	8.0 8.1	8.1	32.9 32.9	32.9	90.0 89.9	90.0	6.9 6.9	6.9	6.9	3.3 3.3	3.3		7.7 8.6	8.2	
17-Mar-17	Cloudy	Moderate	16:43		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	32.6 32.7	32.7	91.5 91.9	91.7	7.0 7.1	7.1	- 4	1.3 1.4	1.4		8.4 7.5	8.0	
				34.3	Middle	17.2	18.6 18.6	18.6	8.1 8.2	8.1	32.7 32.8	32.7	91.0 91.2	91.1	7.0 7.0	7.0	7.1	1.6 1.7	1.7	1.7	6.7 6.7	6.7	7.2
					Bottom	33.3	18.6 18.6	18.6	8.2 8.1	8.2	32.8 32.8	32.8	90.6 91.0	90.8	7.0 7.0	7.0	7.0	1.8 1.9	1.9		6.9 6.8	6.9	
20-Mar-17	Sunny	Moderate	19:36		Surface	1.0	19.1 19.1	19.1	8.1 8.1	8.1	32.6 32.6	32.6	96.0 95.0	95.5	7.8 7.7	7.7	7.5	2.3 2.2	2.3		5.5 6.9	6.2	
				35.0	Middle	17.5	18.5 18.5	18.5	8.1 8.1	8.1	33.6 33.6	33.6	92.3 92.0	92.2	7.4 7.3	7.3	<i>c.</i> 1	2.2 2.4	2.3	2.4	6.5 6.2	6.4	7.0
					Bottom	34.0	18.1 18.2	18.1	8.1 8.1	8.1	34.5 34.5	34.5	89.9 89.8	89.9	7.2	7.1	7.1	2.6	2.6		8.4 8.6	8.5	

Water Quality Monitoring Results at CSA - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Г	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	06:40		Surface	1.0	19.0 19.0	19.0	8.1 8.0	8.1	33.0 33.0	33.0	92.6 92.8	92.7	7.1 7.1	7.1	7.1	1.1 1.2	1.2		6.2 6.0	6.1	
				34.6	Middle	17.3	19.0 19.0	19.0	8.1 8.1	8.1	33.0 33.0	33.0	92.3 92.6	92.5	7.0 7.1	7.1	7.1	1.3 1.4	1.4	1.4	6.2 7.2	6.7	6.1
					Bottom	33.6	19.0 19.0	19.0	8.1 8.1	8.1	33.0 33.0	33.0	92.3 92.3	92.3	7.0 7.0	7.0	7.0	1.6 1.5	1.6		5.1 6.1	5.6	ĺ
24-Mar-17	Sunny	Moderate	09:50		Surface	1.0	19.2 19.2	19.2	7.9 7.9	7.9	33.7 33.7	33.7	92.9 92.5	92.7	7.0 7.0	7.0	7.0	2.9 2.8	2.9		6.1 5.5	5.8	
				34.7	Middle	17.4	19.1 19.2	19.2	7.9 7.9	7.9	33.7 33.7	33.7	92.3 93.2	92.8	7.0 7.1	7.0		3.0 3.2	3.1	3.1	6.4 6.7	6.6	6.8
					Bottom	33.7	19.2 19.1	19.2	7.9 7.9	7.9	33.7 33.7	33.7	94.5 92.6	93.6	7.2 7.0	7.1	7.1	3.3 3.1	3.2		7.4 8.3	7.9	
27-Mar-17	Fine	Moderate	13:36		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	32.1 32.2	32.2	86.9 87.0	87.0	6.3 6.3	6.3	6.2	5.6 5.5	5.6		9.1 9.0	9.1	
				35.1	Middle	17.6	19.3 19.3	19.3	8.2 8.1	8.2	32.9 33.2	33.0	85.2 85.6	85.4	6.1 6.1	6.1	0.2	5.2 5.1	5.2	5.4	10.2 9.5	9.9	9.7
					Bottom	34.1	19.3 19.3	19.3	8.2 8.1	8.2	33.2 33.5	33.3	85.4 86.7	86.1	6.1 6.2	6.1	6.1	5.3 5.2	5.3		9.4 10.7	10.1	
29-Mar-17	Fine	Moderate	14:34		Surface	1.0	19.7 19.7	19.7	8.0 8.0	8.0	33.4 33.4	33.4	93.0 93.0	93.0	7.0 7.0	7.0	7.0	6.0 5.9	6.0		-	-	
				34.1	Middle	17.1	19.6 19.6	19.6	8.0 8.0	8.0	33.4 33.5	33.4	92.4 92.6	92.5	7.0 7.0	7.0	7.0	6.1 6.1	6.1	6.1		-	-
					Bottom	33.1	19.5 19.5	19.5	8.0 7.9	8.0	33.6 33.6	33.6	91.7 91.9	91.8	6.9 6.9	6.9	6.9	6.2 6.2	6.2		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=		-	-
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	1	ъН	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	۲	Furbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	07:55		Surface	1.0	17.3 17.3	17.3	8.1 8.0	8.1	33.2 33.2	33.2	94.8 95.3	95.1	7.5 7.5	7.5	7.5	3.6 3.5	3.6		11.1 9.8	10.5	
				34.8	Middle	17.4	17.3 17.3	17.3	8.1 8.1	8.1	33.2 33.2	33.2	94.8 94.6	94.7	7.5 7.4	7.4	7.5	3.7 3.7	3.7	3.7	6.6 7.0	6.8	8.2
					Bottom	33.8	17.3	17.3	8.0 8.1	8.1	33.3 33.3	33.3	94.5 93.8	94.2	7.4	7.4	7.4	3.9	3.9		7.1	7.3	
3-Mar-17	Sunny	Moderate	08:45		Surface	1.0	17.5 17.5	17.5	8.0 8.0	8.0	32.8 32.7	32.8	93.2 94.6	93.9	7.3 7.4	7.4		3.3 3.1	3.2		5.4 7.0	6.2	
				35.7	Middle	17.9	17.5 17.5	17.5	8.0 8.0	8.0	33.1 33.1	33.1	93.5 95.3	94.4	7.3 7.5	7.4	7.4	3.1 3.3	3.2	3.2	6.7 8.0	7.4	7.9
					Bottom	34.7	17.5 17.5	17.5	8.0 8.0	8.0	33.2 33.2	33.2	97.3 93.7	95.5	7.6 7.3	7.5	7.5	3.2 3.1	3.2		9.9 10.0	10.0	
6-Mar-17	Cloudy	Moderate	13:28		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	32.5 32.5	32.5	93.8 93.7	93.8	7.3 7.3	7.3		1.8 1.9	1.9		5.7 4.3	5.0	
				35.0	Middle	17.5	17.9	17.9	8.1 8.1	8.1	33.0 33.0	33.0	92.8 92.8	92.8	7.2	7.2	7.3	2.0	1.9	2.0	5.2 5.6	5.4	5.1
					Bottom	34.0	17.9	17.9	8.1 8.1	8.1	33.0 33.0	33.0	92.6 92.6	92.6	7.2	7.2	7.2	2.2	2.3		4.4	4.9	
8-Mar-17	Cloudy	Moderate	16:52		Surface	1.0	17.9 17.9	17.9	8.1 8.1	8.1	33.7 33.7	33.7	91.3 91.0	91.2	7.1 7.1	7.1	7.4	1.1	1.2		3.2 2.8	3.0	
				34.9	Middle	17.5	17.9 17.9	17.9	8.1 8.1	8.1	33.8 33.7	33.7	90.9 91.0	91.0	7.1 7.1	7.1	7.1	1.2 1.3	1.3	1.3	2.8 3.7	3.3	3.9
					Bottom	33.9	17.9 17.9	17.9	8.1 8.1	8.1	33.8 33.6	33.7	90.6 90.7	90.7	7.0 7.0	7.0	7.0	1.5 1.4	1.5		4.8 5.8	5.3	
10-Mar-17	Cloudy	Moderate	18:21		Surface	1.0	18.0 18.0	18.0	8.1 8.1	8.1	33.5 33.5	33.5	92.1 92.6	92.4	7.1 7.2	7.1	74	1.5 1.6	1.6		7.7 6.8	7.3	
				35.2	Middle	17.6	18.0 18.0	18.0	8.1 8.1	8.1	33.5 33.5	33.5	91.4 92.1	91.8	7.1 7.1	7.1	7.1	1.6 1.6	1.6	1.7	9.5 8.4	9.0	8.3
					Bottom	34.2	18.0 18.0	18.0	8.1 8.1	8.1	33.5 33.5	33.5	91.7 91.5	91.6	7.1 7.1	7.1	7.1	1.8 2.0	1.9		8.9 8.3	8.6	
13-Mar-17	Fine	Moderate	06:41		Surface	1.0	18.2 18.2	18.2	7.8 7.9	7.9	33.7 33.7	33.7	89.6 89.8	89.7	6.9 6.9	6.9	6.9	3.7 3.7	3.7		11.6 11.3	11.5	
				34.2	Middle	17.1	18.1 18.1	18.1	7.9 7.8	7.9	33.7 33.7	33.7	89.2 89.2	89.2	6.9 6.9	6.9	0.9	4.2 4.1	4.2	4.0	10.6 11.0	10.8	10.8
					Bottom	33.2	18.1 18.1	18.1	7.8 7.9	7.8	33.7 33.7	33.7	88.7 89.2	89.0	6.8 6.9	6.9	6.9	4.1 4.1	4.1		10.3 10.1	10.2	
15-Mar-17	Fine	Moderate	07:41		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.2	32.2	92.0 92.0	92.0	7.1 7.1	7.1	7.1	2.2 2.1	2.2		7.7 8.1	7.9	
				34.4	Middle	17.2	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.2	32.2	91.0 91.3	91.2	7.0 7.1	7.0	7.1	2.4 2.3	2.4	2.4	9.4 9.5	9.5	8.6
					Bottom	33.4	18.6 18.6	18.6	8.1 8.1	8.1	32.3 32.3	32.3	90.9 90.9	90.9	7.0 7.0	7.0	7.0	2.6 2.5	2.6		9.0 8.0	8.5	
17-Mar-17	Cloudy	Moderate	08:30		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	31.8 32.4	32.1	92.1 92.0	92.1	7.1 7.1	7.1	7.1	2.3 2.1	2.2		7.3 7.0	7.2	
				34.5	Middle	17.3	18.4 18.4	18.4	8.1 8.1	8.1	32.1 31.8	32.0	91.7 91.6	91.7	7.1 7.1	7.1		2.4 2.5	2.5	2.5	8.8 8.8	8.8	8.3
					Bottom	33.5	18.4 18.4	18.4	8.1 8.1	8.1	31.9 32.5	32.2	91.3 90.6	91.0	7.1 7.0	7.0	7.0	2.8 2.9	2.9		9.1 8.4	8.8	
20-Mar-17	Sunny	Moderate	09:45		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	32.2 32.3	32.3	93.4 92.3	92.9	7.1 7.1	7.1	7.0	2.5 2.5	2.5		5.1 4.5	4.8	
				35.2	Middle	17.6	18.4 18.4	18.4	8.1 8.0	8.1	33.5 33.5	33.5	91.0 90.7	90.9	6.8 6.8	6.8		2.3 2.3	2.3	2.3	6.4 5.8	6.1	6.3
					Bottom	34.2	18.0 18.0	18.0	8.0 8.0	8.0	34.4 34.4	34.4	89.2 88.3	88.8	6.7 6.6	6.6	6.6	2.0 2.1	2.1		7.3 8.5	7.9	

Water Quality Monitoring Results at CSA - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampli	ing	Tempera	ature (°C)	F	эΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	22:35		Surface	1.0	19.3 19.2	19.2	8.1 8.1	8.1	31.8 32.2	32.0	93.0 93.2	93.1	7.1 7.1	7.1	7.1	1.2 1.1	1.2		6.6 5.9	6.3	
				34.7	Middle	17.4	19.0 19.1	19.1	8.1 8.1	8.1	32.8 32.6	32.7	92.6 92.7	92.7	7.1 7.1	7.1	7.1	1.3 1.3	1.3	1.3	5.5 7.0	6.3	6.6
					Bottom	33.7	19.0 19.3	19.2	8.1 8.1	8.1	33.0 32.2	32.6	92.1 92.2	92.2	7.0 7.0	7.0	7.0	1.4 1.5	1.5		8.0 6.5	7.3	
24-Mar-17	Sunny	Moderate	16:57		Surface	1.0	20.1 20.1	20.1	8.1 8.1	8.1	32.1 32.1	32.1	95.9 96.3	96.1	7.2 7.2	7.2	7.2	3.1 3.1	3.1		4.7 4.5	4.6	
				35.0	Middle	17.5	19.5 19.5	19.5	8.1 8.1	8.1	33.3 33.2	33.2	93.6 94.4	94.0	7.1 7.1	7.1	1.2	3.2 3.0	3.1	3.1	8.5 7.7	8.1	5.5
					Bottom	34.0	19.5 19.5	19.5	8.1 8.1	8.1	33.3 33.3	33.3	95.2 95.7	95.5	7.2 7.2	7.2	7.2	3.1 3.1	3.1		4.0 3.3	3.7	
27-Mar-17	Fine	Moderate	05:44		Surface	1.0	19.2 19.2	19.2	8.1 8.1	8.1	34.0 34.0	34.0	89.1 86.8	88.0	6.2 6.0	6.1	6.0	4.4 5.0	4.7		5.7 6.2	6.0	
				35.2	Middle	17.6	19.2 19.1	19.2	8.0 8.1	8.0	34.1 34.2	34.1	84.8 84.3	84.6	5.8 5.8	5.8	0.0	4.9 5.1	5.0	4.9	6.2 7.1	6.7	6.5
					Bottom	34.2	19.2 19.2	19.2	8.0 8.0	8.0	34.1 34.1	34.1	87.9 86.0	87.0	6.1 5.9	6.0	6.0	5.1 5.1	5.1		6.2 7.1	6.7	
29-Mar-17	Fine	Moderate	06:45		Surface	1.0	19.3 19.4	19.4	7.8 7.8	7.8	33.8 33.8	33.8	92.0 92.2	92.1	6.9 7.0	6.9	6.9	8.2 8.3	8.3		-	-	
				34.1	Middle	17.1	19.3 19.3	19.3	7.8 7.8	7.8	33.8 33.8	33.8	91.5 91.4	91.5	6.9 6.9	6.9	0.5	8.4 8.6	8.5	8.5	-	-	:
					Bottom	33.1	19.3 19.3	19.3	7.8 7.7	7.8	33.8 33.8	33.8	90.9 91.2	91.1	6.9 6.9	6.9	6.9	8.7 8.7	8.7		-	-	
31-Mar-17	Rainy	Moderate	06:31		Surface	1.0	20.2 20.2	20.2	7.8 7.8	7.8	31.9 31.8	31.8	92.9 93.2	93.1	7.0 7.0	7.0	7.0	6.2 5.8	6.0		-	-	
				35.2	Middle	17.6	20.0 20.0	20.0	7.8 7.8	7.8	32.6 32.6	32.6	92.3 91.8	92.1	6.9 6.9	6.9	7.0	7.2 7.4	7.3	6.9	-	-	-
					Bottom	34.2	19.9 20.0	20.0	7.8 7.8	7.8	32.8 32.6	32.7	92.8 92.8	92.8	7.0 7.0	7.0	7.0	7.6 7.3	7.5		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	Ł	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	T	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:33		Surface	1.0	17.6 17.5	17.6	8.2 8.2	8.2	31.4 31.4	31.4	97.7 96.8	97.3	7.7 7.7	7.7		10.3 10.5	10.4		17.1 16.0	16.6	
				3.3	Middle	-	-	-	-	-	-	-	-	-		-	7.7	-	-	10.5	-	-	16.6
					Bottom	2.3	17.6 17.5	17.6	8.2 8.2	8.2	31.4 31.4	31.4	98.3 97.2	97.8	7.8 7.7	7.7	7.7	10.4 10.7	10.6		16.1 16.8	16.5	
3-Mar-17	Sunny	Moderate	15:10		Surface	1.0	17.9 17.9	17.9	8.2 8.2	8.2	28.1 28.0	28.1	96.8 97.3	97.1	7.8 7.8	7.8	= 0	9.5 9.8	9.7		12.4 12.2	12.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	9.8	-	-	15.0
					Bottom	2.3	17.9 17.9	17.9	8.2 8.2	8.2	28.1 28.1	28.1	97.1 97.7	97.4	7.8 7.8	7.8	7.8	9.7 9.8	9.8		17.6 17.6	17.6	
6-Mar-17	Cloudy	Moderate	07:46		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	98.9 98.9	98.9	7.8 7.8	7.8	7.0	4.4 4.4	4.4		5.9 7.0	6.5	
				3.2	Middle	-	-	-		-		-	-	-	-	-	7.8	-	-	4.5	-	-	6.8
					Bottom	2.2	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	98.8 98.8	98.8	7.7 7.7	7.7	7.7	4.6 4.5	4.6		7.2 7.0	7.1	
8-Mar-17	Cloudy	Moderate	11:14		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	98.8 97.8	98.3	7.8 7.7	7.8	7.8	3.9 3.9	3.9		7.4 7.6	7.5	
				3.1	Middle	-	-	-		-		-	-	-	-	-	7.8	-	-	4.0	-	-	7.4
					Bottom	2.1	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	98.3 99.8	99.1	7.8 7.9	7.8	7.8	4.0 4.0	4.0		6.6 7.8	7.2	
10-Mar-17	Cloudy	Moderate	12:55		Surface	1.0	18.2 18.2	18.2	8.2 8.2	8.2	29.4 29.5	29.4	96.1 96.0	96.1	7.6 7.6	7.6	7.6	7.9 7.8	7.9		6.7 8.0	7.4	
				3.1	Middle	-		-		-		-	-	-	-	-	7.0	-	-	7.9	-	-	9.8
					Bottom	2.1	18.2 18.2	18.2	8.2 8.2	8.2	29.4 29.5	29.5	96.1 96.3	96.2	7.6 7.6	7.6	7.6	7.9 7.7	7.8		11.5 12.9	12.2	
13-Mar-17	Fine	Moderate	12:23		Surface	1.0	18.7 18.8	18.8	8.2 8.2	8.2	29.9 29.9	29.9	95.2 95.1	95.2	7.4 7.4	7.4	7.4	9.3 9.3	9.3		14.1 14.6	14.4	
				3.2	Middle	-	-	-		-		-	-	-	-	-	7.4	-	-	9.5	-	-	15.9
					Bottom	2.2	18.7 18.8	18.8	8.2 8.2	8.2	29.9 30.0	29.9	95.1 95.2	95.2	7.4 7.4	7.4	7.4	9.4 9.7	9.6		17.7 16.8	17.3	
15-Mar-17	Fine	Moderate	13:28		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	28.8 28.8	28.8	96.6 100.7	98.7	7.6 7.9	7.7	7.7	10.8 10.8	10.8		19.2 19.1	19.2	
				3.3	Middle	-	-	-		-		-	-	-	-	-	7.7	-	-	10.8	-	-	18.9
					Bottom	2.3	18.8 18.9	18.9	8.2 8.2	8.2	28.7 28.8	28.7	97.3 95.9	96.6	7.6 7.5	7.6	7.6	10.8 10.8	10.8		18.0 19.2	18.6	
17-Mar-17	Cloudy	Moderate	14:29		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.9 29.9	29.9	95.3 95.0	95.2	7.5 7.4	7.4	7.4	11.9 11.0	11.5		15.9 16.0	16.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	11.7	-	-	16.9
					Bottom	2.2	18.6 18.6	18.6	8.2 8.2	8.2	29.9 29.9	29.9	95.4 95.2	95.3	7.5 7.4	7.5	7.5	12.1 11.7	11.9		17.4 18.2	17.8	
20-Mar-17	Sunny	Moderate	17:01		Surface	1.0	20.0 20.0	20.0	8.1 8.1	8.1	26.9 26.9	26.9	96.5 95.8	96.2	7.5 7.4	7.5	7.5	5.9 5.9	5.9		11.6 13.0	12.3	
				3.3	Middle	-	-	-		-		-	-	-	-	-	7.0	-	-	5.9	-	-	12.3
					Bottom	2.3	20.0 19.9	20.0	8.1 8.1	8.1	26.9 27.0	26.9	95.7 95.9	95.8	7.4 7.5	7.4	7.4	5.6 6.0	5.8		12.5 11.8	12.2	

Water Quality Monitoring Results at IS(Mf)6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	09:22		Surface	1.0	20.9 20.9	20.9	8.1 8.1	8.1	25.5 25.6	25.6	101.2 100.0	100.6	7.8 7.7	7.7	7.7	4.5 4.6	4.6		8.1 8.5	8.3	
				3.2	Middle	-	-	-		-	-	-	-	-	-	-	1.1	-	-	4.5	-	-	8.4
					Bottom	2.2	20.8 20.9	20.8	8.1 8.1	8.1	25.5 25.5	25.5	100.4 102.5	101.5	7.7 7.9	7.8	7.8	4.4 4.4	4.4		8.6 8.4	8.5	
24-Mar-17	Sunny	Moderate	11:56		Surface	1.0	20.4 20.4	20.4	8.2 8.2	8.2	27.6 27.7	27.6	99.1 99.3	99.2	7.6 7.6	7.6	7.6	6.1 6.3	6.2		9.6 9.8	9.7	
				3.3	Middle	-		-		-	• •	-		-	-	-	7.0	-	-	6.2	-	-	10.9
					Bottom	2.3	20.4 20.3	20.4	8.2 8.2	8.2	27.8 27.8	27.8	99.0 98.8	98.9	7.6 7.6	7.6	7.6	6.2 6.2	6.2		11.6 12.6	12.1	
27-Mar-17	Fine	Moderate	11:45		Surface	1.0	19.5 19.5	19.5	8.1 8.1	8.1	27.4 27.4	27.4	95.9 99.4	97.7	7.5 7.8	7.6	7.6	8.5 8.5	8.5		9.2 9.5	9.4	
				3.4	Middle	-	-	-	-	-		-	-	-	-	-	7.0	-	-	8.5	-	-	9.8
					Bottom	2.4	19.4 19.5	19.4	8.1 8.1	8.1	27.4 27.3	27.4	96.9 102.0	99.5	7.6 8.0	7.8	7.8	8.4 8.5	8.5		9.8 10.3	10.1	
29-Mar-17	Fine	Moderate	12:38		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.5	29.5	95.5 95.4	95.5	7.3 7.3	7.3	7.3	11.1 11.3	11.2		-	-	
				3.3	Middle	-	-	-	-	-		-	-	-	-	-	7.5	-	-	11.2	-	-	-
					Bottom	2.3	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.5	29.5	95.4 95.3	95.4	7.3 7.3	7.3	7.3	10.9 11.2	11.1		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-		-		-		-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-		-		-		-		-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	ЪН	Salini	ity (ppt)	DO Satu	uration (%)	Dissol	ved Oxyger	i (mg/L)	Г	Furbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:56		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.7	29.7	97.3 97.4	97.4	7.8 7.8	7.8	7.8	6.6 6.3	6.5		9.0 9.0	9.0	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	6.3	-	-	9.5
					Bottom	2.2	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.7	29.7	97.3 97.3	97.3	7.8 7.8	7.8	7.8	5.8 6.4	6.1		9.9 10.1	10.0	
3-Mar-17	Sunny	Moderate	11:12		Surface	1.0	17.7 17.7	17.7	8.1 8.1	8.1	29.8 29.8	29.8	96.9 96.9	96.9	7.7 7.7	7.7	7.7	8.9 8.8	8.9		13.1 13.4	13.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	8.9	-	-	13.4
					Bottom	2.3	17.7 17.6	17.6	8.1 8.1	8.1	29.8 29.8	29.8	96.8 96.8	96.8	7.7 7.7	7.7	7.7	8.9 8.7	8.8		13.1 13.8	13.5	
6-Mar-17	Cloudy	Moderate	11:19		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	29.3 29.3	29.3	99.2 99.3	99.3	7.8 7.8	7.8	7.0	2.9 2.9	2.9		2.9 3.8	3.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	3.0	-	-	4.4
					Bottom	2.2	18.5 18.5	18.5	8.2 8.2	8.2	29.6 29.5	29.6	99.4 99.3	99.4	7.8 7.8	7.8	7.8	3.1 3.1	3.1		6.0 4.8	5.4	
8-Mar-17	Cloudy	Moderate	14:14		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.3 29.3	29.3	98.8 97.7	98.3	7.8 7.7	7.8	7.0	4.5 4.5	4.5		10.7 9.0	9.9	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	4.6	-	-	9.7
					Bottom	2.3	18.3 18.4	18.3	8.2 8.2	8.2	29.3 29.3	29.3	99.7 98.0	98.9	7.9 7.7	7.8	7.8	4.5 4.6	4.6		9.1 9.8	9.5	
10-Mar-17	Cloudy	Moderate	16:17		Surface	1.0	18.4 18.3	18.4	8.2 8.2	8.2	29.4 29.4	29.4	96.7 96.8	96.8	7.6 7.6	7.6	7.0	6.4 6.2	6.3		10.4 10.1	10.3	
				3.2	Middle	-	-	-		-		-		-	-	-	7.6	-	-	6.4	-	-	10.5
					Bottom	2.2	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.5	29.4	96.6 96.4	96.5	7.6 7.6	7.6	7.6	6.4 6.4	6.4		10.4 10.7	10.6	
13-Mar-17	Fine	Moderate	08:46		Surface	1.0	18.8 18.7	18.8	8.2 8.2	8.2	29.5 29.6	29.5	96.1 96.2	96.2	7.5 7.5	7.5	7.5	6.5 6.5	6.5		12.8 12.0	12.4	
				3.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.6	-	-	12.4
					Bottom	2.1	18.8 18.7	18.7	8.2 8.2	8.2	29.6 29.6	29.6	97.3 96.0	96.7	7.6 7.5	7.6	7.6	6.6 6.8	6.7		12.5 12.0	12.3	
15-Mar-17	Fine	Moderate	09:26		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	28.5 28.5	28.5	94.1 94.0	94.1	7.4 7.4	7.4	7.4	10.5 10.7	10.6		16.5 16.1	16.3	
				3.5	Middle	-	-	-		-		-		-	-	-	7.4	-	-	10.7	-	-	16.7
					Bottom	2.5	18.8 18.8	18.8	8.1 8.1	8.1	28.5 28.5	28.5	94.0 94.1	94.1	7.4 7.4	7.4	7.4	10.9 10.5	10.7		17.0 17.2	17.1	
17-Mar-17	Cloudy	Moderate	10:29		Surface	1.0	18.5 18.4	18.5	8.2 8.2	8.2	28.7 28.7	28.7	94.3 94.2	94.3	7.5 7.5	7.5	7.5	10.5 10.6	10.6		11.0 12.0	11.5	
				3.3	Middle	-	-	-	-	-		-		-	-	-	7.5	-	-	10.5	-	-	12.4
					Bottom	2.3	18.4 18.4	18.4	8.2 8.2	8.2	28.7 28.8	28.7	94.2 94.4	94.3	7.5 7.5	7.5	7.5	10.8 9.9	10.4	1	13.1 13.4	13.3	1
20-Mar-17	Sunny	Moderate	11:57		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	28.6 28.6	28.6	95.8 96.6	96.2	7.4	7.4	7.4	6.9 6.8	6.9		9.1 9.5	9.3	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	6.9	-	-	9.5
					Bottom	2.3	19.6 19.6	19.6	8.2 8.1	8.2	28.6 28.6	28.6	95.1 96.2	95.7	7.4	7.4	7.4	6.9 6.8	6.9		9.4 9.9	9.7	1

Water Quality Monitoring Results at IS(Mf)6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	19:50		Surface	1.0	20.8 20.8	20.8	8.2 8.2	8.2	26.6 26.6	26.6	101.3 101.2	101.3	7.8 7.8	7.8	7.8	5.7 5.9	5.8		7.4 7.7	7.6	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	5.8	-	-	7.4
					Bottom	2.5	20.8 20.8	20.8	8.2 8.2	8.2	26.6 26.6	26.6	101.3 101.2	101.3	7.8 7.8	7.8	7.8	5.8 5.8	5.8		7.0 7.2	7.1	
24-Mar-17	Sunny	Moderate	15:07		Surface	1.0	20.8 20.8	20.8	8.2 8.2	8.2	26.2 26.2	26.2	100.0 99.3	99.7	7.7 7.6	7.7	7.7	10.9 10.7	10.8		18.4 17.6	18.0	
				3.4	Middle	-		-	-	-	-	-	-	-	-	-		-	-	10.8	-	-	18.5
					Bottom	2.4	20.7 20.8	20.7	8.2 8.2	8.2	26.2 26.2	26.2	98.9 99.5	99.2	7.6 7.7	7.6	7.6	10.8 10.8	10.8		19.7 18.0	18.9	
27-Mar-17	Fine	Moderate	07:29		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	27.3 27.3	27.3	92.5 92.7	92.6	7.3 7.3	7.3	7.3	6.0 6.1	6.1		8.1 7.6	7.9	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.1	-	-	8.9
					Bottom	2.4	19.4 19.3	19.4	8.1 8.2	8.2	27.3 27.3	27.3	92.7 92.5	92.6	7.3 7.3	7.3	7.3	6.1 6.1	6.1		10.1 9.4	9.8	
29-Mar-17	Fine	Moderate	08:19		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	29.0 29.0	29.0	94.9 95.0	95.0	7.3 7.3	7.3	7.3	9.5 9.5	9.5		-	-	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	9.6	-	-	=
					Bottom	2.6	19.9 19.9	19.9	8.2 8.2	8.2	29.0 29.0	29.0	95.0 95.0	95.0	7.3 7.3	7.3	7.3	9.7 9.6	9.7		-	-	
31-Mar-17	Rainy	Moderate	09:28		Surface	1.0	20.8 20.8	20.8	8.1 8.1	8.1	28.8 28.8	28.8	97.1 98.1	97.6	7.3 7.4	7.4	7.4	8.7 9.0	8.9		-	-	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	1.4	-	-	8.9	-	-	=
					Bottom	2.3	20.8 20.8	20.8	8.1 8.1	8.1	29.0 28.9	28.9	99.6 97.6	98.6	7.5 7.4	7.5	7.5	8.8 9.0	8.9		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	þ	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:49		Surface	1.0	17.7 17.7	17.7	8.2 8.2	8.2	31.1 31.1	31.1	97.8 98.0	97.9	7.7 7.8	7.7		7.3 7.1	7.2		13.9 14.6	14.3	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	7.2	-	-	14.8
					Bottom	2.4	- 17.7 17.5	17.6	8.2 8.2	8.2	31.0 31.1	31.1	97.9 98.3	98.1	7.7	7.8	7.8	7.2	7.2		15.2 15.2	15.2	ł
3-Mar-17	Sunny	Moderate	15:26		Surface	1.0	18.1	18.1	8.2 8.2	8.2	27.9 27.9	27.9	98.3 98.7	98.5	7.9	7.9		10.8	10.8		16.7 15.8	16.3	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	10.7	-	-	16.7
					Bottom	2.7	18.1 18.1	18.1	8.2 8.2	8.2	27.9 27.9	27.9	98.9 98.4	98.7	7.9 7.9	7.9	7.9	10.3 10.7	10.5		18.0 16.0	17.0	l
6-Mar-17	Cloudy	Moderate	07:36		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	29.1 29.1	29.1	99.0 98.9	99.0	7.8 7.8	7.8	= 0	5.5 5.5	5.5		4.9 5.8	5.4	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	5.5	-	-	7.1
					Bottom	2.6	18.6 18.5	18.6	8.1 8.1	8.1	29.5 29.4	29.5	99.0 99.0	99.0	7.8 7.8	7.8	7.8	5.5 5.3	5.4		8.4 9.0	8.7	
8-Mar-17	Cloudy	Moderate	10:57		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.1 29.1	29.1	99.5 97.9	98.7	7.9 7.8	7.8	7.0	4.1 4.3	4.2		7.1 7.3	7.2	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	4.2	-	-	6.9
					Bottom	2.7	18.1 18.1	18.1	8.1 8.1	8.1	29.1 29.2	29.2	98.8 101.3	100.1	7.8 8.0	7.9	7.9	4.1 4.0	4.1		6.2 6.8	6.5	
10-Mar-17	Cloudy	Moderate	12:40		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	29.1 29.1	29.1	96.8 97.1	97.0	7.7 7.7	7.7	7.7	5.6 5.6	5.6		8.4 9.8	9.1	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	5.7	-	-	9.6
					Bottom	2.6	18.1 18.1	18.1	8.2 8.2	8.2	29.1 29.1	29.1	97.5 96.9	97.2	7.7 7.7	7.7	7.7	5.7 5.6	5.7		10.4 9.8	10.1	L
13-Mar-17	Fine	Moderate	12:37		Surface	1.0	18.8 18.9	18.9	8.2 8.2	8.2	29.6 29.6	29.6	96.0 96.0	96.0	7.5 7.5	7.5	7.5	7.8 7.8	7.8		14.8 15.2	15.0	
				3.4	Middle	-	-	-		-		-	-	-	-	-	7.0	-	-	7.9	-	-	15.3
					Bottom	2.4	18.8 18.8	18.8	8.2 8.2	8.2	29.6 29.6	29.6	95.9 95.8	95.9	7.5 7.5	7.5	7.5	7.8 8.1	8.0		15.9 15.3	15.6	<u> </u>
15-Mar-17	Fine	Moderate	13:46		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	28.7 28.8	28.7	98.1 96.9	97.5	7.7 7.6	7.7	7.7	10.8 10.4	10.6		16.8 15.6	16.2	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	10.7	-	-	16.7
					Bottom	2.6	18.8 18.8	18.8	8.2 8.2	8.2	28.7 28.6	28.7	97.2 99.7	98.5	7.6 7.8	7.7	7.7	10.7 10.7	10.7		16.8 17.6	17.2	<u> </u>
17-Mar-17	Cloudy	Moderate	14:45		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	29.4 29.3	29.4	94.6 94.5	94.6	7.4 7.4	7.4	7.4	11.0 10.5	10.8		15.1 15.8	15.5	1
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	11.6	-	-	17.0
					Bottom	2.5	18.7 18.7	18.7	8.1 8.1	8.1	29.4 29.4	29.4	94.5 94.6	94.6	7.4 7.4	7.4	7.4	12.5 12.2	12.4		17.7 19.0	18.4	<u> </u>
20-Mar-17	Sunny	Moderate	17:17		Surface	1.0	21.1 20.4	20.8	8.1 8.1	8.1	26.8 27.1	26.9	97.6 96.6	97.1	7.4 7.4	7.4	7.4	7.5 7.8	7.7		12.2 13.4	12.8	1
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.0	-	-	12.8
					Bottom	2.6	19.9 20.2	20.0	8.1 8.1	8.1	27.0 26.9	27.0	94.6 95.6	95.1	7.4 7.4	7.4	7.4	8.4 7.9	8.2		12.9 12.7	12.8	1

Water Quality Monitoring Results at IS(Mf)9 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ъH	Salini	y (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	09:05		Surface	1.0	20.3 20.3	20.3	8.1 8.1	8.1	25.8 25.8	25.8	99.4 98.2	98.8	7.7 7.6	7.7	7.7	3.3 3.4	3.4		5.3 5.1	5.2	
				3.6	Middle	-	-	-	-	-		-		-	-	-	1.1	-	-	3.5	-	-	5.4
					Bottom	2.6	20.3 20.2	20.2	8.1 8.1	8.1	25.9 25.9	25.9	98.6 100.6	99.6	7.7 7.8	7.7	7.7	3.5 3.5	3.5		4.6 6.3	5.5	
24-Mar-17	Sunny	Moderate	11:41		Surface	1.0	20.4 20.3	20.4	8.2 8.2	8.2	27.8 27.9	27.9	100.0 99.8	99.9	7.7 7.7	7.7	7.7	8.1 8.0	8.1		10.2 9.0	9.6	
				3.5	Middle	-	-	-	-	-		-		-		-	7.7	-	-	8.2	-	-	10.7
					Bottom	2.5	20.3 20.3	20.3	8.2 8.2	8.2	27.9 27.9	27.9	99.8 99.7	99.8	7.7 7.7	7.7	7.7	8.2 8.2	8.2		11.9 11.6	11.8	
27-Mar-17	Fine	Moderate	12:24		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.2 27.2	27.2	97.8 99.4	98.6	7.6 7.8	7.7	7.7	3.5 3.5	3.5		4.6 6.0	5.3	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	3.5	-	-	6.1
					Bottom	2.8	19.6 19.6	19.6	8.2 8.2	8.2	27.2 27.1	27.2	97.4 98.6	98.0	7.6 7.7	7.6	7.6	3.5 3.5	3.5		7.0 6.8	6.9	
29-Mar-17	Fine	Moderate	12:50		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.2 29.2	29.2	96.2 96.7	96.5	7.4 7.4	7.4	7.4	8.0 7.8	7.9		-	-	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	8.0	-	-	=
					Bottom	2.7	20.1 20.1	20.1	8.2 8.2	8.2	29.1 29.2	29.1	95.9 96.5	96.2	7.3 7.4	7.3	7.3	8.1 7.9	8.0		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	=
					Bottom	-	-	-	-	-		-		-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	þ	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	/ed Oxygen	(mg/L)	Г	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	ı (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:40		Surface	1.0	17.3 17.3	17.3	8.1 8.1	8.1	29.8 29.8	29.8	95.2 95.2	95.2	7.6 7.6	7.6	7.0	12.1 11.9	12.0		15.1 16.7	15.9	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	12.4	-	-	18.0
					Bottom	2.6	17.3 17.3	17.3	8.1 8.1	8.1	29.8 29.8	29.8	95.1 95.1	95.1	7.6 7.6	7.6	7.6	13.1 12.3	12.7		21.0 19.2	20.1	
3-Mar-17	Sunny	Moderate	10:59		Surface	1.0	17.6 17.6	17.6	8.1 8.1	8.1	29.7 29.7	29.7	99.7 98.6	99.2	8.0 7.9	7.9		9.2 9.5	9.4		17.4 15.9	16.7	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	9.4	-	-	16.8
					Bottom	2.6	17.6 17.6	17.6	8.1 8.1	8.1	29.7 29.7	29.7	99.0 100.9	100.0	7.9 8.1	8.0	8.0	9.3 9.3	9.3		16.5 17.0	16.8	
6-Mar-17	Cloudy	Moderate	11:34		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.4 29.4	29.4	99.3 99.4	99.4	7.8 7.8	7.8		4.3 4.4	4.4		5.5 4.8	5.2	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	4.4	-	-	5.6
					Bottom	2.7	18.6 18.6	18.6	8.2 8.2	8.2	29.6 29.6	29.6	99.5 99.3	99.4	7.8 7.8	7.8	7.8	4.4 4.3	4.4		6.4 5.5	6.0	
8-Mar-17	Cloudy	Moderate	14:30		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	29.2 29.2	29.2	98.9 100.1	99.5	7.8 7.9	7.9	7.0	3.8 3.6	3.7		8.7 8.6	8.7	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	3.8	-	-	8.2
					Bottom	2.7	18.2 18.2	18.2	8.1 8.2	8.2	29.2 29.2	29.2	99.5 101.3	100.4	7.9 8.0	7.9	7.9	3.7 3.8	3.8		8.2 7.2	7.7	
10-Mar-17	Cloudy	Moderate	16:36		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	96.9 96.8	96.9	7.6 7.6	7.6	7.0	9.7 9.9	9.8		13.7 12.9	13.3	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	9.8	-	-	13.3
					Bottom	2.8	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	96.8 96.9	96.9	7.6 7.7	7.6	7.6	9.8 9.7	9.8		13.8 12.7	13.3	
13-Mar-17	Fine	Moderate	08:31		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.1 29.2	29.2	95.2 95.6	95.4	7.5 7.5	7.5	7.5	6.0 6.0	6.0		11.5 11.7	11.6	
				3.4	Middle	-	-	-	-	-		-		-	-	-	7.5	-	-	6.1	-	-	12.4
					Bottom	2.4	18.5 18.5	18.5	8.2 8.2	8.2	29.2 29.2	29.2	95.9 95.3	95.6	7.6 7.5	7.5	7.5	6.2 5.9	6.1		12.3 13.9	13.1	
15-Mar-17	Fine	Moderate	09:09		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	28.2 28.2	28.2	91.7 91.6	91.7	7.2 7.2	7.2	7.2	7.6 7.5	7.6		13.3 12.5	12.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	7.6	-	-	14.3
					Bottom	2.7	18.7 18.7	18.7	8.1 8.1	8.1	28.2 28.3	28.3	91.6 91.6	91.6	7.2 7.2	7.2	7.2	7.6 7.6	7.6		15.0 16.3	15.7	
17-Mar-17	Cloudy	Moderate	10:10		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	92.2 92.2	92.2	7.3 7.3	7.3	7.3	8.0 8.0	8.0		17.6 17.4	17.5	
				3.4	Middle	-	-	-		-		-		-	-	-	1.5	-	-	8.2	-	-	17.4
					Bottom	2.4	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	92.2 92.1	92.2	7.3 7.3	7.3	7.3	8.6 8.1	8.4		17.1 17.4	17.3	
20-Mar-17	Sunny	Moderate	11:40		Surface	1.0	19.6 19.5	19.6	8.1 8.1	8.1	28.4 28.4	28.4	96.8 96.6	96.7	7.5 7.5	7.5	7.5	10.1 9.6	9.9		15.8 15.5	15.7	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	1.5	-	-	10.5	-	-	15.7
					Bottom	2.4	19.4 19.4	19.4	8.1 8.1	8.1	28.5 28.4	28.4	96.2 96.3	96.3	7.5 7.5	7.5	7.5	11.1 10.9	11.0		15.7 15.4	15.6	

Water Quality Monitoring Results at IS(Mf)9 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		pН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:02		Surface	1.0	20.4 20.4	20.4	8.2 8.2	8.2	26.7 26.6	26.6	100.9 101.2	101.1	7.8 7.8	7.8	7.8	4.4 4.3	4.4		7.8 7.0	7.4	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.4	-	-	8.5
					Bottom	2.7	20.4 20.4	20.4	8.2 8.2	8.2	26.7 26.6	26.6	101.2 101.6	101.4	7.8 7.8	7.8	7.8	4.5 4.3	4.4		10.0 9.0	9.5	
24-Mar-17	Sunny	Moderate	15:20		Surface	1.0	20.8 20.8	20.8	8.2 8.2	8.2	26.7 26.7	26.7	101.1 102.0	101.6	7.7 7.8	7.8	7.8	7.7 7.9	7.8		12.8 14.3	13.6	
				3.8	Middle	-	-	-		-		-	-	-	-	-	1.0	-	-	7.9	-	-	14.5
					Bottom	2.8	20.8 20.8	20.8	8.2 8.2	8.2	26.6 26.7	26.7	100.2 101.5	100.9	7.7 7.8	7.7	7.7	7.9 7.8	7.9		15.4 15.3	15.4	
27-Mar-17	Fine	Moderate	07:14		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.8 27.9	27.9	93.8 93.7	93.8	7.3 7.3	7.3	7.3	4.5 4.5	4.5		9.9 9.9	9.9	
				3.9	Middle	-	-	-		-	-	-	-	-	-	-	7.5	-	-	4.5	-	-	11.1
					Bottom	2.9	19.4 19.4	19.4	8.2 8.2	8.2	27.9 27.9	27.9	93.7 93.7	93.7	7.3 7.3	7.3	7.3	4.4 4.4	4.4		13.1 11.5	12.3	
29-Mar-17	Fine	Moderate	08:06		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	28.9 28.9	28.9	95.0 95.1	95.1	7.3 7.3	7.3	7.3	6.7 6.8	6.8		-	-	
				3.8	Middle	-	-	-		-	-	-	-	-	-	-	7.5	-	-	6.8	-	-	<u>-</u>
					Bottom	2.8	19.8 19.8	19.8	8.2 8.2	8.2	28.9 29.0	28.9	95.0 95.0	95.0	7.3 7.3	7.3	7.3	6.8 6.6	6.7		-	-	
31-Mar-17	Rainy	Moderate	09:16		Surface	1.0	20.5 20.5	20.5	8.1 8.1	8.1	28.3 28.3	28.3	95.7 96.9	96.3	7.3 7.4	7.3	7.3	7.5 7.6	7.6		-	-	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	1.5	-	-	7.6	-	-	=
					Bottom	2.7	20.5 20.5	20.5	8.1 8.1	8.1	28.5 28.3	28.4	98.6 96.0	97.3	7.5 7.3	7.4	7.4	7.6 7.6	7.6		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:41		Surface	1.0	17.7 17.8	17.7	8.1 8.2	8.1	32.3 32.2	32.3	95.3 95.5	95.4	7.5 7.5	7.5	7.5	6.2 6.3	6.3		11.1 11.1	11.1	
				10.7	Middle	5.4	17.6 17.6	17.6	8.1 8.2	8.1	32.6 32.6	32.6	94.3 94.5	94.4	7.4 7.4	7.4	7.5	6.6 6.5	6.6	6.6	11.6 12.5	12.1	11.6
					Bottom	9.7	17.6 17.6	17.6	8.1 8.1	8.1	32.6 32.7	32.7	93.9 93.8	93.9	7.4 7.4	7.4	7.4	6.7 6.8	6.8		12.4 11.0	11.7	
3-Mar-17	Sunny	Moderate	16:04		Surface	1.0	17.9 18.0	18.0	8.3 8.3	8.3	32.4 32.4	32.4	96.7 95.8	96.3	7.6 7.5	7.5		5.1 5.0	5.1		10.0	9.8	
				10.7	Middle	5.4	17.7	17.7	8.3 8.3	8.3	32.6 32.6	32.6	94.9 95.5	95.2	7.4 7.5	7.5	7.5	5.9 6.0	6.0	5.5	11.1 10.7	10.9	11.2
					Bottom	9.7	17.8	17.8	8.3 8.3	8.3	32.6 32.6	32.6	95.3 95.3	95.3	7.5 7.5	7.5	7.5	5.3 5.6	5.5		12.5 13.2	12.9	
6-Mar-17	Cloudy	Moderate	06:51		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.6 29.7	29.6	96.4 95.4	95.9	7.6 7.5	7.5		2.0 2.0	2.0		4.6	5.0	
				10.7	Middle	5.4	18.5 18.5 18.5	18.5	8.2 8.2 8.2	8.2	30.1 30.1	30.1	96.2 96.2	96.2	7.5 7.5 7.5	7.5	7.5	2.7	2.6	2.7	4.1 3.7	3.9	4.7
					Bottom	9.7	18.5 18.5	18.5	8.2 8.2	8.2	31.0 30.8	30.9	96.2 96.2 95.8	96.0	7.5	7.5	7.5	3.6 3.3	3.5		5.7 4.6	5.2	
8-Mar-17	Cloudy	Moderate	09:50		Surface	1.0	18.1 18.1	18.1	8.2 8.2 8.2	8.2	31.8 31.8	31.8	95.5 95.9	95.7	7.5 7.5 7.5	7.5		1.4 1.3	1.4		4.9 5.6	5.3	
				10.9	Middle	5.5	18.1	18.2	8.2 8.2	8.2	31.8 32.2	32.0	95.9 95.7 95.4	95.6	7.5 7.4	7.4	7.5	1.5	1.6	1.6	4.3 5.9	5.1	5.6
					Bottom	9.9	18.1	18.2	8.2 8.2	8.2	32.5 32.4	32.5	94.2 94.7	94.5	7.4 7.3 7.4	7.4	7.4	1.9	1.9		6.7 5.9	6.3	
10-Mar-17	Cloudy	Moderate	11:52		Surface	1.0	18.2 18.2	18.2	8.0 8.1	8.1	33.3 33.2	33.2	96.6 95.8	96.2	7. 5 7.4	7.4		3.9 3.5	3.7		6.4 7.5	7.0	
				10.8	Middle	5.4	18.1 18.1	18.1	8.0 8.1	8.0	33.3 33.4	33.3	96.2 95.7	96.0	7.4 7.4 7.4	7.4	7.4	3.8 3.6	3.7	3.8	6.8 6.7	6.8	7.5
					Bottom	9.8	18.2 18.0	18.1	8.0 8.1	8.0	33.3 33.4	33.3	95.7 95.4	95.6	7.4	7.4	7.4	4.0	3.9		8.2 9.3	8.8	
13-Mar-17	Fine	Moderate	13:20		Surface	1.0	19.0 18.8	18.9	8.1 8.1	8.1	31.1 31.4	31.2	94.4 93.4	93.9	7.3	7.3		4.8 5.0	4.9		9.4 10.3	9.9	
				10.4	Middle	5.2	18.6 18.7	18.7	8.1 8.1	8.1	32.1 32.0	32.1	93.0 92.7	92.9	7.2	7.2	7.3	5.5 5.3	5.4	5.2	11.0 10.5	10.8	10.4
					Bottom	9.4	18.6 18.5	18.5	8.2 8.1	8.1	32.3 32.4	32.4	92.2 92.5	92.4	7.1 7.2	7.1	7.1	5.3 5.1	5.2		9.9	10.5	
15-Mar-17	Fine	Moderate	14:29		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	32.0 32.0	32.0	92.7 92.6	92.7	7.2 7.2	7.2		5.2 4.9	5.1		10.3 11.9	11.1	
				10.5	Middle	5.3	18.7 18.7	18.7	8.1 8.1	8.1	32.0 32.0	32.0	92.0 91.9	92.0	7.1	7.1	7.2	5.3 5.3	5.3	5.3	12.5 13.0	12.8	12.4
					Bottom	9.5	18.7 18.6	18.7	8.1 8.1	8.1	32.0 32.0	32.0	91.7 91.1	91.4	7.1 7.0	7.1	7.1	5.6 5.5	5.6		13.4 13.2	13.3	
17-Mar-17	Cloudy	Moderate	15:32		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	30.9 30.9	30.9	93.9 93.8	93.9	7.3 7.3	7.3	-	3.7 3.8	3.8		9.3 10.7	10.0	
				10.4	Middle	5.2	18.8 18.8	18.8	8.1 8.1	8.1	31.1 31.3	31.2	92.9 92.8	92.9	7.2 7.2	7.2	7.3	4.2 4.1	4.2	4.1	12.4 10.3	11.4	10.5
					Bottom	9.4	18.7 18.8	18.8	8.1 8.1	8.1	31.6 31.5	31.6	93.1 92.2	92.7	7.2	7.2	7.2	4.4 4.4	4.4		10.7	10.2	
20-Mar-17	Sunny	Moderate	18:29		Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	31.0 31.1	31.0	95.8 95.7	95.8	7.7 7.7	7.7	7 7	2.9 3.1	3.0		2.2 3.1	2.7	
				10.0	Middle	5.0	19.0 19.0	19.0	8.1 8.1	8.1	32.1 32.1	32.1	95.0 94.7	94.9	7.6 7.6	7.6	7.7	3.7	3.7	3.7	3.2 4.2	3.7	4.0
					Bottom	9.0	18.9 18.9	18.9	8.1 8.1	8.1	32.1 32.1	32.1	92.6 93.2	92.9	7.3 7.4	7.3	7.3	4.4	4.3		6.4 5.0	5.7	

Water Quality Monitoring Results at IS10 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	٦	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:40		Surface	1.0	19.6 19.6	19.6	8.1 8.2	8.1	30.2 30.2	30.2	95.0 95.8	95.4	7.3 7.3	7.3	7.3	4.2 4.3	4.3		8.4 8.7	8.6	
				10.7	Middle	5.4	19.6 19.6	19.6	8.1 8.0	8.1	30.3 30.3	30.3	93.8 93.6	93.7	7.2 7.2	7.2	1.0	4.5 4.6	4.6	4.6	9.1 10.4	9.8	9.2
					Bottom	9.7	19.6 19.6	19.6	8.1 8.1	8.1	30.8 30.3	30.5	93.4 93.2	93.3	7.2 7.1	7.1	7.1	4.7 4.8	4.8		9.4 9.0	9.2	1
24-Mar-17	Sunny	Moderate	11:01		Surface	1.0	19.8 19.8	19.8	8.0 8.1	8.0	31.0 31.0	31.0	94.5 94.8	94.7	7.2 7.2	7.2	7.1	4.5 4.4	4.5		8.8 8.2	8.5	
				10.6	Middle	5.3	19.3 19.4	19.3	8.0 8.0	8.0	31.9 31.9	31.9	91.8 91.0	91.4	7.0 6.9	7.0		3.9 3.7	3.8	4.2	5.3 5.9	5.6	6.8
					Bottom	9.6	19.3 19.5	19.4	7.9 8.0	8.0	31.9 32.7	32.3	92.7 92.9	92.8	7.1 7.0	7.1	7.1	4.3 4.3	4.3		6.4 6.2	6.3	
27-Mar-17	Fine	Moderate	12:31		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	30.1 30.2	30.2	89.2 90.0	89.6	6.4 6.5	6.4	6.4	5.7 5.8	5.8		6.6 6.0	6.3	
				10.8	Middle	5.4	19.3 19.3	19.3	8.2 8.2	8.2	31.9 31.9	31.9	89.0 88.9	89.0	6.4 6.4	6.4	0.4	7.4 7.3	7.4	6.8	5.9 5.7	5.8	6.0
					Bottom	9.8	19.3 19.3	19.3	8.1 8.1	8.1	31.9 31.9	31.9	89.1 89.5	89.3	6.4 6.4	6.4	6.4	7.0 7.1	7.1		6.0 5.8	5.9	
29-Mar-17	Fine	Moderate	13:33		Surface	1.0	20.2 20.2	20.2	8.0 8.0	8.0	30.6 30.6	30.6	93.7 94.5	94.1	7.1 7.2	7.1	7.1	7.9 7.8	7.9		-	-	
				10.2	Middle	5.1	20.0 20.0	20.0	8.0 8.0	8.0	30.9 30.7	30.8	93.7 93.6	93.7	7.1 7.1	7.1	7.1	8.1 8.0	8.1	8.1		-	=
					Bottom	9.2	19.8 19.8	19.8	8.0 7.9	8.0	31.8 31.8	31.8	93.5 93.4	93.5	7.1 7.1	7.1	7.1	8.3 8.4	8.4		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	iration (%)	Dissol	/ed Oxygen	(mg/L)	T T	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:51		Surface	1.0	17.3 17.3	17.3	8.1 8.1	8.1	33.0 33.0	33.0	97.8 99.2	98.5	7.7 7.8	7.8	7.7	10.3 10.2	10.3		17.6 19.4	18.5	
				10.9	Middle	5.5	17.3 17.3	17.3	8.1 8.1	8.1	33.0 33.0	33.0	95.9 96.1	96.0	7.6 7.6	7.6	1.1	10.6 10.5	10.6	10.6	19.6 18.0	18.8	18.9
					Bottom	9.9	17.3 17.3	17.3	8.1 8.1	8.1	33.0 33.0	33.0	95.3 95.4	95.4	7.5 7.5	7.5	7.5	10.9 10.7	10.8		19.7 18.8	19.3	
3-Mar-17	Sunny	Moderate	09:51		Surface	1.0	17.6 17.5	17.6	8.1 8.1	8.1	32.8 32.8	32.8	94.0 95.9	95.0	7.4 7.5	7.5	7.5	10.0 10.3	10.2		18.3 18.7	18.5	
				10.6	Middle	5.3	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.8	32.8	94.7 95.1	94.9	7.4	7.5	7.5	10.4	10.5	10.8	18.7 18.1	18.4	18.4
					Bottom	9.6	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.8	32.8	96.1 94.9	95.5	7.5 7.5	7.5	7.5	11.5 11.7	11.6		19.2 17.2	18.2	
6-Mar-17	Cloudy	Moderate	12:18		Surface	1.0	18.5 18.6	18.6	8.1 8.1	8.1	29.7 29.4	29.5	96.2 97.4	96.8	7.5 7.6	7.6	= 0	3.7 3.4	3.6		3.3 4.7	4.0	
				10.2	Middle	5.1	18.5 18.5	18.5	8.1 8.1	8.1	30.1 30.1	30.1	96.5 96.2	96.4	7.6	7.5	7.6	3.8 3.6	3.7	3.6	5.6 6.1	5.9	4.8
					Bottom	9.2	18.5 18.5	18.5	8.1 8.1	8.1	30.1 30.2	30.2	96.4 96.6	96.5	7.6 7.6	7.6	7.6	3.5 3.6	3.6		4.4 4.6	4.5	
8-Mar-17	Cloudy	Moderate	15:48		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	32.0 32.1	32.1	97.5 97.9	97.7	7.6 7.6	7.6	7.0	1.6 1.5	1.6		5.4 5.7	5.6	
				10.9	Middle	5.5	18.1 18.1	18.1	8.1 8.1	8.1	32.2 32.0	32.1	95.8 95.7	95.8	7.5 7.5	7.5	7.6	1.8 1.9	1.9	1.9	5.0 5.6	5.3	6.1
					Bottom	9.9	18.1 18.1	18.1	8.1 8.1	8.1	32.0 32.3	32.2	95.4 95.4	95.4	7.4 7.4	7.4	7.4	2.1 2.2	2.2		7.1 7.4	7.3	
10-Mar-17	Cloudy	Moderate	17:13		Surface	1.0	18.2 18.2	18.2	8.3 8.3	8.3	32.6 32.6	32.6	95.6 96.4	96.0	7.4 7.5	7.5	7.5	3.4 3.1	3.3		8.6 9.5	9.1	
				10.4	Middle	5.2	18.1 18.1	18.1	8.3 8.3	8.3	33.2 33.2	33.2	95.3 95.5	95.4	7.4 7.4	7.4	7.5	4.0 3.7	3.9	3.6	9.3 9.8	9.6	9.6
					Bottom	9.4	18.1 18.1	18.1	8.3 8.3	8.3	33.2 33.1	33.2	95.3 96.4	95.9	7.4 7.5	7.4	7.4	3.7 3.5	3.6		10.0 10.3	10.2	
13-Mar-17	Fine	Moderate	07:38		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	93.8 93.9	93.9	7.3 7.3	7.3	7.3	9.0 8.8	8.9		14.2 14.9	14.6	
				10.5	Middle	5.3	18.3 18.3	18.3	8.1 8.1	8.1	32.5 32.5	32.5	93.4 93.7	93.6	7.2 7.3	7.3	7.5	9.7 9.9	9.8	9.5	14.0 13.2	13.6	15.4
					Bottom	9.5	18.3 18.3	18.3	8.1 8.1	8.1	32.5 32.5	32.5	92.8 93.0	92.9	7.2 7.2	7.2	7.2	9.7 9.9	9.8		18.5 17.4	18.0	
15-Mar-17	Fine	Moderate	08:35		Surface	1.0	18.5 18.6	18.6	8.1 8.0	8.1	31.8 31.8	31.8	93.6 92.9	93.3	7.3 7.2	7.2	7.2	10.3 10.5	10.4		21.1 20.7	20.9	
				10.6	Middle	5.3	18.5 18.6	18.6	8.1 8.0	8.1	31.8 31.8	31.8	92.0 91.9	92.0	7.1 7.1	7.1	7.2	10.6 10.7	10.7	10.7	23.4 22.5	23.0	22.9
					Bottom	9.6	18.6 18.6	18.6	8.0 8.1	8.0	31.8 31.8	31.8	91.6 91.7	91.7	7.1 7.1	7.1	7.1	10.9 10.8	10.9		25.4 24.3	24.9	
17-Mar-17	Cloudy	Moderate	09:24		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	31.6 31.5	31.6	93.1 92.0	92.6	7.2 7.1	7.2	7.2	5.3 5.2	5.3		16.2 17.2	16.7	
				10.6	Middle	5.3	18.4 18.5	18.5	8.1 8.1	8.1	31.7 31.7	31.7	91.6 91.7	91.7	7.1 7.1	7.1		5.5 5.4	5.5	5.6	18.3 17.4	17.9	18.3
					Bottom	9.6	18.4 18.6	18.5	8.1 8.1	8.1	31.9 32.7	32.3	91.3 90.5	90.9	7.1 7.0	7.1	7.1	5.8 5.9	5.9		20.8 19.5	20.2	<u> </u>
20-Mar-17	Sunny	Moderate	11:03		Surface	1.0	19.4 19.4	19.4	8.1 8.1	8.1	30.1 30.0	30.0	90.9 90.2	90.6	7.1 7.0	7.0	7.0	3.5 3.6	3.6		6.9 7.8	7.4	
				10.4	Middle	5.2	19.0 19.0	19.0	8.1 8.1	8.1	31.7 31.6	31.6	90.0 89.3	89.7	6.9 6.9	6.9	-	5.3 5.4	5.4	5.1	8.1 7.7	7.9	7.5
					Bottom	9.4	18.8 18.8	18.8	8.1 8.1	8.1	32.1 32.1	32.1	89.2 89.2	89.2	6.8 6.8	6.8	6.8	6.2 6.1	6.2		7.1 7.4	7.3	<u> </u>

Water Quality Monitoring Results at IS10 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	ъН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:32		Surface	1.0	19.2 19.4	19.3	8.1 8.1	8.1	31.5 31.3	31.4	91.3 91.4	91.4	7.0 7.0	7.0	7.0	1.2 1.1	1.2		5.7 6.5	6.1	
				10.8	Middle	5.4	19.0 19.0	19.0	8.1 8.1	8.1	32.9 32.9	32.9	90.6 90.7	90.7	6.9 6.9	6.9	7.0	1.4 1.3	1.4	1.4	7.2 7.8	7.5	7.2
					Bottom	9.8	18.9 19.2	19.1	8.1 8.1	8.1	33.1 32.9	33.0	90.1 90.2	90.2	6.9 6.9	6.9	6.9	1.7 1.6	1.7		7.2 8.8	8.0	
24-Mar-17	Sunny	Moderate	15:50		Surface	1.0	19.8 19.9	19.9	8.2 8.2	8.2	31.1 31.0	31.1	94.1 94.2	94.2	7.1 7.2	7.1	7.1	3.6 3.7	3.7		3.6 3.2	3.4	
				10.7	Middle	5.4	19.4 19.4	19.4	8.2 8.2	8.2	32.0 32.1	32.1	92.6 92.9	92.8	7.1 7.1	7.1	7.1	3.5 3.5	3.5	3.6	3.9 3.4	3.7	3.9
					Bottom	9.7	19.6 19.5	19.6	8.2 8.2	8.2	31.8 31.8	31.8	94.6 94.0	94.3	7.2 7.1	7.2	7.2	3.7 3.6	3.7		5.0 4.2	4.6	
27-Mar-17	Fine	Moderate	06:51		Surface	1.0	19.4 19.4	19.4	8.1 8.1	8.1	31.9 31.9	31.9	89.9 88.5	89.2	6.4 6.3	6.4	6.4	8.9 9.2	9.1		8.5 8.8	8.7	
				10.8	Middle	5.4	19.3 19.3	19.3	8.1 8.1	8.1	32.0 32.0	32.0	88.1 92.3	90.2	6.3 6.5	6.4	0.4	10.7 10.9	10.8	10.1	10.8 11.3	11.1	10.2
					Bottom	9.8	19.3 19.3	19.3	8.1 8.1	8.1	32.0 32.0	32.0	88.4 94.7	91.6	6.3 6.7	6.5	6.5	10.2 10.4	10.3		10.8 10.5	10.7	
29-Mar-17	Fine	Moderate	07:39		Surface	1.0	19.7 19.7	19.7	8.0 8.0	8.0	32.0 32.0	32.0	94.3 95.9	95.1	7.1 7.3	7.2	7.2	13.1 13.1	13.1		-	-	
				10.4	Middle	5.2	19.7 19.7	19.7	8.0 8.0	8.0	31.9 32.0	32.0	93.7 93.7	93.7	7.1 7.1	7.1	1.2	13.3 13.2	13.3	13.3	-	-	-
					Bottom	9.4	19.7 19.7	19.7	8.0 8.0	8.0	32.0 31.9	32.0	93.0 93.6	93.3	7.0 7.1	7.1	7.1	13.5 13.4	13.5		-	-	
31-Mar-17	Rainy	Moderate	07:41		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	31.0 31.0	31.0	93.1 93.0	93.1	7.0 7.0	7.0	7.0	17.8 17.6	17.7		-	-	
				10.8	Middle	5.4	20.3 20.3	20.3	7.9 7.9	7.9	31.3 31.3	31.3	91.8 92.7	92.3	6.9 7.0	6.9	7.0	18.8 18.7	18.8	18.6	-	-	-
					Bottom	9.8	20.4 20.3	20.4	7.9 7.9	7.9	31.2 31.3	31.3	92.7 92.4	92.6	7.0 6.9	7.0	7.0	19.2 19.3	19.3		-	-	1

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTL	J)	Suspe	ended Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:52		Surface	1.0	17.7 17.7	17.7	8.1 8.0	8.1	32.7 32.7	32.7	96.1 96.2	96.2	7.5 7.5	7.5	7.5	4.7 4.8	4.8		11.3 10.6	11.0	
				10.6	Middle	5.3	17.7 17.7	17.7	8.1 8.1	8.1	32.7 32.8	32.8	95.9 95.8	95.9	7.5 7.5	7.5	7.5	5.0 4.9	5.0	5.0	11.9 11.5	11.7	11.9
					Bottom	9.6	17.6 17.7	17.7	8.1 8.1	8.1	32.8 32.7	32.8	94.6 95.7	95.2	7.4	7.4	7.4	5.2	5.2		12.4	12.9	
3-Mar-17	Sunny	Moderate	16:13		Surface	1.0	17.9 17.9	17.9	8.3 8.3	8.3	32.3 32.3	32.3	96.0 96.8	96.4	7.5 7.6	7.5		3.4 3.5	3.5		9.7 10.6	10.2	
				10.6	Middle	5.3	17.6 17.7	17.7	8.3 8.3	8.3	32.8 32.7	32.8	96.3 94.9	95.6	7.5	7.5	7.5	3.4 3.5	3.5	3.6	12.7 11.9	12.3	11.5
					Bottom	9.6	17.6 17.8	17.7	8.3 8.3	8.3	32.8 32.6	32.7	95.3 97.7	96.5	7.5 7.6	7.5	7.5	3.9 3.7	3.8		12.4 11.7	12.1	
6-Mar-17	Cloudy	Moderate	06:42		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	29.8 29.8	29.8	95.0 95.9	95.5	7.5 7.5	7.5	7.5	3.7 3.6	3.7		5.7 6.4	6.1	
				10.3	Middle	5.2	18.5 18.5	18.5	8.2 8.1	8.1	29.8 29.8	29.8	96.0 96.0	96.0	7.5 7.5	7.5	7.5	3.8 3.8	3.8	3.8	6.0 6.0	6.0	6.0
					Bottom	9.3	18.5 18.5	18.5	8.2 8.1	8.1	29.9 29.9	29.9	96.2 95.9	96.1	7.5 7.5	7.5	7.5	3.8 3.8	3.8		5.4 6.2	5.8	
8-Mar-17	Cloudy	Moderate	09:39		Surface	1.0	18.0 18.0	18.0	8.2 8.1	8.2	32.5 32.5	32.5	94.7 94.5	94.6	7.4 7.4	7.4	7.4	1.4 1.4	1.4		6.1 7.2	6.7	
				10.8	Middle	5.4	18.0 18.0	18.0	8.1 8.1	8.1	32.5 32.5	32.5	93.7 94.1	93.9	7.3 7.3	7.3	7.4	1.7 1.6	1.7	1.7	5.6 5.4	5.5	6.8
					Bottom	9.8	18.0 18.0	18.0	8.1 8.2	8.2	32.5 32.5	32.5	93.3 93.5	93.4	7.3 7.3	7.3	7.3	1.9 1.8	1.9		8.9 7.3	8.1	
10-Mar-17	Cloudy	Moderate	11:42		Surface	1.0	18.0 18.0	18.0	8.1 8.1	8.1	33.3 33.3	33.3	93.6 92.9	93.3	7.3 7.2	7.2	7.2	4.5 4.7	4.6		6.1 7.9	7.0	
				10.6	Middle	5.3	17.9 17.9	17.9	8.1 8.0	8.1	33.3 33.3	33.3	93.1 93.2	93.2	7.2 7.2	7.2		5.0 5.3	5.2	5.1	7.9 6.2	7.1	7.3
					Bottom	9.6	17.9 17.9	17.9	8.1 8.0	8.0	33.3 33.3	33.3	93.7 93.8	93.8	7.3 7.3	7.3	7.3	5.4 5.6	5.5		8.1 7.4	7.8	
13-Mar-17	Fine	Moderate	13:34		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	32.6 32.5	32.6	91.1 91.1	91.1	7.0 7.0	7.0	7.0	8.4 8.4	8.4		9.0 8.7	8.9	
				10.2	Middle	5.1	18.2 18.2	18.2	8.1 8.1	8.1	33.2 33.1	33.2	90.8 91.1	91.0	7.0 7.0	7.0		8.4 8.1	8.3	8.4	10.0 11.6	10.8	11.3
					Bottom	9.2	18.2 18.3	18.2	8.0 8.1	8.1	33.3 33.1	33.2	90.6 90.6	90.6	7.0 7.0	7.0	7.0	8.5 8.5	8.5		13.3 14.9	14.1	
15-Mar-17	Fine	Moderate	14:41		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	32.0 32.1	32.0	94.9 94.7	94.8	7.4 7.3	7.3	7.3	6.3 6.2	6.3		11.7 11.2	11.5	
				10.6	Middle	5.3	18.6 18.6	18.6	8.2 8.2	8.2	32.5 32.2	32.4	94.3 94.4	94.4	7.3 7.3	7.3		6.4 6.4	6.4	6.4	12.7 12.0	12.4	13.3
					Bottom	9.6	18.6 18.6	18.6	8.1 8.2	8.2	32.5 32.0	32.3	92.9 93.1	93.0	7.2 7.2	7.2	7.2	6.5 6.5	6.5		15.6 16.6	16.1	
17-Mar-17	Cloudy	Moderate	15:46		Surface	1.0	18.6 18.7	18.6	8.0 8.1	8.1	31.9 31.7	31.8	92.9 93.0	93.0	7.2 7.2	7.2	7.2	3.1 3.2	3.2		11.4 12.1	11.8	
				10.6	Middle	5.3	18.7 18.7	18.7	8.1 <u>8.1</u>	8.1	31.7 31.7	31.7	92.3 92.6	92.5	7.1 7.2	7.1		3.4 3.4	3.4	3.4	11.6 10.0	10.8	11.6
					Bottom	9.6	18.6 18.7	18.7	8.0 <u>8.1</u>	8.1	31.8 <u>31.7</u>	31.8	92.2 91.7	92.0	7.1 7.1	7.1	7.1	3.6 3.7	3.7		13.0 11.1	12.1	
20-Mar-17	Sunny	Moderate	18:39		Surface	1.0	19.0 19.0	19.0	8.0 8.0	8.0	32.3 32.4	32.3	94.3 92.9	93.6	7.6 7.5	7.5	7.4	3.5 3.8	3.7		4.7 3.7	4.2	
				10.2	Middle	5.1	18.8 18.8	18.8	8.0 8.0	8.0	32.4 32.4	32.4	90.5 89.8	90.2	7.2 7.2	7.2		4.3 4.5	4.4	4.4	6.5 6.5	6.5	5.6
					Bottom	9.2	18.7 18.7	18.7	8.0 8.0	8.0	32.8 32.7	32.7	92.6 91.1	91.9	7.3 7.2	7.2	7.2	5.2 4.9	5.1		6.5 5.9	6.2	

Water Quality Monitoring Results at IS(Mf)11 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Г	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:29		Surface	1.0	19.6 19.6	19.6	8.0 8.1	8.0	30.9 30.8	30.9	92.5 92.4	92.5	7.1 7.1	7.1	7.1	2.1 2.3	2.2		5.4 5.6	5.5	
				10.8	Middle	5.4	19.6 19.5	19.5	8.1 8.1	8.1	31.0 31.2	31.1	92.1 92.5	92.3	7.0 7.1	7.1	7.1	2.4 2.4	2.4	2.4	4.4 4.1	4.3	5.3
					Bottom	9.8	19.5 19.4	19.5	8.1 8.0	8.1	31.3 31.4	31.4	91.8 91.8	91.8	7.0 7.0	7.0	7.0	2.5 2.6	2.6		6.4 5.5	6.0	1
24-Mar-17	Sunny	Moderate	10:50		Surface	1.0	19.6 19.6	19.6	8.0 8.0	8.0	31.6 31.7	31.6	92.4 93.1	92.8	7.0 7.1	7.0	7.0	4.0 4.1	4.1		6.0 7.4	6.7	
				10.6	Middle	5.3	19.1 19.1	19.1	8.0 8.0	8.0	33.3 33.1	33.2	90.6 90.5	90.6	6.9 6.9	6.9		4.2 4.0	4.1	4.2	3.0 3.0	3.0	5.3
					Bottom	9.6	19.1 19.3	19.2	8.0 8.0	8.0	33.5 33.0	33.2	91.2 92.6	91.9	6.9 7.0	7.0	7.0	4.4 4.1	4.3		6.9 5.5	6.2	
27-Mar-17	Fine	Moderate	12:39		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	30.6 30.6	30.6	88.9 88.2	88.6	6.4 6.3	6.3	6.3	5.1 5.3	5.2		5.4 4.1	4.8	
				10.7	Middle	5.4	19.3 19.3	19.3	8.1 8.1	8.1	32.3 32.4	32.4	87.9 87.1	87.5	6.2 6.2	6.2	0.5	6.0 5.9	6.0	5.6	6.8 5.9	6.4	5.5
					Bottom	9.7	19.3 19.4	19.4	8.2 8.1	8.2	32.3 32.5	32.4	89.6 88.4	89.0	6.3 6.3	6.3	6.3	5.8 5.5	5.7		5.5 5.3	5.4	
29-Mar-17	Fine	Moderate	13:45		Surface	1.0	20.0 20.1	20.0	8.0 8.0	8.0	31.9 31.9	31.9	95.4 95.6	95.5	7.2 7.2	7.2	7.2	8.3 8.3	8.3		-	-	
				10.3	Middle	5.2	19.9 20.0	20.0	8.0 8.0	8.0	32.0 32.0	32.0	95.3 95.3	95.3	7.2 7.2	7.2	1.2	8.4 8.4	8.4	8.4		-	=
					Bottom	9.3	19.7 19.9	19.8	7.9 8.0	8.0	32.5 32.1	32.3	94.0 94.2	94.1	7.1 7.1	7.1	7.1	8.5 8.5	8.5		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	H	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	/ed Oxygen	(mg/L)	1	Furbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:42		Surface	1.0	17.4 17.4	17.4	8.1 8.0	8.1	33.0 32.9	33.0	96.6 96.7	96.7	7.6 7.6	7.6	= 0	6.3 6.2	6.3		11.2 12.6	11.9	
				10.8	Middle	5.4	17.4 17.3	17.4	8.1 8.0	8.0	33.0 33.0	33.0	96.5 96.2	96.4	7.6 7.6	7.6	7.6	6.5 6.4	6.5	6.5	13.9 12.6	13.3	13.6
					Bottom	9.8	17.4 17.3	17.4	8.0 8.1	8.1	33.0 33.0	33.0	95.8 95.9	95.9	7.5 7.5	7.5	7.5	6.6 6.6	6.6		15.0	15.5	
3-Mar-17	Sunny	Moderate	09:42		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	32.6 32.6	32.6	95.8 95.2	95.5	7.5	7.5		7.2 7.3	7.3		9.3	9.0	
				10.6	Middle	5.3	17.5 17.5	17.5	8.1 8.0	8.1	32.8 32.8	32.8	95.3 96.5	95.9	7.5 7.6	7.5	7.5	7.8	7.9	7.8	10.3 10.3	10.3	9.6
					Bottom	9.6	17.5 17.5	17.5	8.0 8.1	8.1	32.8 32.7	32.8	97.2 95.1	96.2	7.6	7.6	7.6	8.3 8.2	8.3		9.3	9.6	
6-Mar-17	Cloudy	Moderate	12:27		Surface	1.0	18.6 18.6	18.6	8.0 8.1	8.0	29.7 29.7	29.7	97.6 98.0	97.8	7.7 7.7	7.7	7.0	2.4 2.3	2.4		4.6 5.6	5.1	
				10.5	Middle	5.3	18.5 18.5	18.5	8.1 8.0	8.0	31.2 30.6	30.9	96.5 96.6	96.6	7.5 7.5	7.5	7.6	2.5 2.3	2.4	2.4	9.3 9.9	9.6	8.8
					Bottom	9.5	18.5 18.4	18.5	8.0 8.0	8.0	31.2 31.5	31.4	98.0 95.8	96.9	7.6 7.4	7.5	7.5	2.4 2.2	2.3		12.3 11.3	11.8	
8-Mar-17	Cloudy	Moderate	16:01		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	32.5 32.5	32.5	95.7 95.8	95.8	7.4 7.5	7.4	7.4	4.1 4.2	4.2		11.1 11.8	11.5	
				10.9	Middle	5.5	18.1 18.1	18.1	8.1 8.1	8.1	32.5 32.6	32.5	94.0 94.2	94.1	7.3 7.3	7.3	7.4	4.4 4.3	4.4	4.4	11.5 12.6	12.1	12.1
					Bottom	9.9	18.1 18.1	18.1	8.1 8.0	8.1	32.6 32.5	32.6	93.6 93.8	93.7	7.3 7.3	7.3	7.3	4.6 4.7	4.7		13.4 12.1	12.8	
10-Mar-17	Cloudy	Moderate	17:21		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	33.2 33.1	33.2	94.8 95.6	95.2	7.4 7.4	7.4	7.4	5.0 5.2	5.1		8.8 7.8	8.3	
				10.3	Middle	5.2	18.0 18.0	18.0	8.2 8.2	8.2	33.2 33.2	33.2	95.4 94.9	95.2	7.4 7.4	7.4		5.4 5.0	5.2	5.2	9.5 7.9	8.7	9.8
					Bottom	9.3	18.0 18.0	18.0	8.2 8.2	8.2	33.2 33.2	33.2	95.5 95.2	95.4	7.4 7.4	7.4	7.4	5.5 5.3	5.4		12.6 12.0	12.3	
13-Mar-17	Fine	Moderate	07:29		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	32.4 32.4	32.4	93.0 92.9	93.0	7.2 7.2	7.2	7.2	10.5 10.6	10.6		19.4 19.3	19.4	
				10.7	Middle	5.4	18.3 18.3 18.3	18.3	8.1 8.1 8.0	8.1	32.6 32.6 32.6	32.6	92.8 92.5 92.7	92.7	7.2 7.2 7.2	7.2		10.6 10.5 10.5	10.6	10.6	21.9 20.4 21.9	21.2	20.6
15-Mar-17	Fine	Madagata	08:27		Bottom	9.7	18.3 18.5	18.3	8.1 8.1	8.1	32.6 31.6	32.6	91.9 92.7	92.3	7.1	7.2	7.2	10.3 10.4 9.6	10.5		20.7 15.9	21.3	
15-Mar-17	Fine	Moderate	08:27		Surface	1.0	18.5 18.5	18.5	8.2 8.1	8.2	31.6 31.6	31.6	92.7 92.6 92.6	92.7	7.2 7.2 7.2	7.2	7.2	9.6 9.4 9.8	9.5		15.9 15.2 14.2	15.6	
				10.7	Middle	5.4	18.5 18.5 18.5	18.5	8.1 8.1	8.1	31.6 31.6	31.6	92.0 92.4 92.2	92.5	7.2	7.2		9.5 9.9	9.7	9.7	14.2 15.3 18.4	14.8	16.2
17-Mar-17	Cloudy	Moderate	09:16		Bottom	9.7	18.5 18.5	18.5	8.2 8.2	8.1	31.7 30.8	31.6	92.0	92.1	7.1	7.1	7.1	9.7 5.3	9.8		17.8	18.1	<u> </u>
17-191001-17	Cioudy	moderate	03.10		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	30.8 31.0	30.8	92.6 92.1	92.5	7.2	7.2	7.2	5.2 5.4	5.3		8.2 9.5	8.5	
				10.7	Middle	5.4	18.5 18.5	18.5	8.2 8.2	8.2	30.9 31.2	30.9	92.4 91.9	92.3	7.2	7.2		5.3 5.7	5.4	5.5	8.2 18.0	8.9	11.7
20-Mar-17	Sunny	Moderate	10:53		Bottom	9.7	18.5 19.0	18.5	8.2 8.1	8.2	<u>31.1</u> 31.9	31.2	92.1 89.3	92.0	7.2 6.8	7.2	7.2	5.6 4.5	5.7		17.1	17.6	<u> </u>
20100117	Curry	moderate	10.00		Surface	1.0	19.1 18.8	19.1	8.0 8.0	8.1	31.8 32.1	31.9	90.0 89.7	89.7	6.9 6.8	6.9	6.9	4.2	4.4		6.1 6.6	5.9	
				10.4	Middle	5.2	18.8	18.8	8.1 8.0	8.1	32.1 32.1 32.1	32.1	88.9 89.0	89.3	6.8 6.7	6.8		4.9	4.9	5.1	5.9 8.3	6.3	7.1
					Bottom	9.4	18.8	18.8	8.0	8.1	32.1	32.1	89.0 89.1	89.1	6.7	6.7	6.7	5.8	5.9		10.1	9.2	<u>i</u>

Water Quality Monitoring Results at IS(Mf)11 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:42		Surface	1.0	19.3 19.4	19.4	8.1 8.1	8.1	31.1 31.7	31.4	96.5 97.2	96.9	7.4 7.4	7.4	7.4	1.2 1.3	1.3		4.7 5.1	4.9	
				10.9	Middle	5.5	19.3 19.2	19.2	8.1 8.1	8.1	31.8 31.8	31.8	95.8 95.7	95.8	7.3 7.3	7.3	7.4	1.4 1.5	1.5	1.5	4.7 5.2	5.0	6.3
					Bottom	9.9	19.1 19.1	19.1	8.2 8.1	8.1	33.0 32.8	32.9	93.5 94.0	93.8	7.2 7.1	7.2	7.2	1.7 1.8	1.8		9.1 8.9	9.0	
24-Mar-17	Sunny	Moderate	15:59		Surface	1.0	20.0 20.0	20.0	8.1 8.1	8.1	31.2 31.3	31.2	95.6 95.0	95.3	7.2 7.2	7.2	7.2	4.4 4.3	4.4		5.5 4.8	5.2	
				10.8	Middle	5.4	19.4 19.3	19.4	8.1 8.1	8.1	32.0 32.3	32.2	94.0 95.1	94.6	7.2 7.2	7.2	1.2	4.3 4.5	4.4	4.5	5.4 6.7	6.1	5.6
					Bottom	9.8	19.4 19.5	19.5	8.1 8.1	8.1	32.3 32.1	32.2	97.3 94.9	96.1	7.4 7.2	7.3	7.3	4.7 4.4	4.6		5.3 5.4	5.4	
27-Mar-17	Fine	Moderate	06:42		Surface	1.0	19.3 19.4	19.4	8.1 8.1	8.1	32.8 32.5	32.7	87.9 88.2	88.1	6.2 6.2	6.2	6.1	8.6 8.4	8.5		6.4 7.5	7.0	
				10.7	Middle	5.4	19.3 19.3	19.3	8.1 8.1	8.1	33.0 33.0	33.0	86.1 86.5	86.3	6.0 6.1	6.0	0.1	9.5 9.7	9.6	9.0	9.9 9.2	9.6	8.7
					Bottom	9.7	19.3 19.3	19.3	8.1 8.1	8.1	33.0 33.0	33.0	87.3 88.0	87.7	6.1 6.1	6.1	6.1	8.8 9.0	8.9		9.8 9.0	9.4	
29-Mar-17	Fine	Moderate	07:31		Surface	1.0	19.7 19.6	19.7	8.0 8.0	8.0	32.1 32.5	32.3	93.6 93.5	93.6	7.1 7.1	7.1	7.1	11.7 11.5	11.6		-	-	
				10.5	Middle	5.3	19.6 19.6	19.6	8.0 8.0	8.0	32.5 32.5	32.5	93.1 93.4	93.3	7.0 7.1	7.0	7.1	11.8 12.0	11.9	11.9	-	-	=
					Bottom	9.5	19.6 19.6	19.6	8.0 8.0	8.0	32.5 32.5	32.5	92.8 93.0	92.9	7.0 7.0	7.0	7.0	12.2 12.3	12.3		-	-	
31-Mar-17	Rainy	Moderate	07:31		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	31.0 30.9	31.0	93.7 92.3	93.0	7.1 7.0	7.0	7.0	16.2 16.5	16.4		-	-	
				10.4	Middle	5.2	20.3 20.3	20.3	7.9 7.9	7.9	31.3 31.3	31.3	92.5 93.6	93.1	7.0 7.0	7.0	7.0	17.7 17.5	17.6	18.0	-	-	=
					Bottom	9.4	20.3 20.3	20.3	7.9 7.9	7.9	31.3 31.3	31.3	92.6 92.2	92.4	7.0 6.9	6.9	6.9	20.1 19.7	19.9		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:27		Surface	1.0	17.7 17.6	17.7	8.2 8.2	8.2	29.7 29.4	29.5	96.8 96.8	96.8	7.7 7.7	7.7		9.7 9.8	9.8		10.8 10.1	10.5	
				6.1	Middle	3.1	17.5 17.5	17.5	8.2 8.2	8.2	29.2 29.6	29.4	96.3 96.5	96.4	7.7	7.7	7.7	11.1 10.9	11.0	10.5	13.2 12.5	12.9	13.9
					Bottom	5.1	17.5 17.5	17.5	8.2 8.2	8.2	29.1 29.5	29.3	96.2 96.5	96.4	7.7	7.7	7.7	11.0 10.6	10.8		18.5	18.2	
3-Mar-17	Sunny	Moderate	15:51		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	28.1 28.0	28.1	96.7 98.7	97.7	7.7 7.9	7.8		9.4 9.5	9.5		10.0 9.5	9.8	
				6.1	Middle	3.1	18.0 18.0	18.0	8.2 8.2	8.2	28.1 28.1	28.1	97.8 96.7	97.3	7.8	7.8	7.8	9.1 9.5	9.3	9.4	11.4 11.3	11.4	10.6
					Bottom	5.1	18.0 18.0	18.0	8.2 8.2	8.2	28.1 28.1	28.1	97.6 96.6	97.1	7.8 7.7	7.8	7.8	9.1 9.7	9.4		11.2 9.7	10.5	
6-Mar-17	Cloudy	Moderate	07:06		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.7 28.7	28.7	97.8 97.7	97.8	7.7 7.7	7.7	7.7	2.7 2.6	2.7		5.8 4.7	5.3	
				6.2	Middle	3.1	18.5 18.5	18.5	8.1 8.1	8.1	28.8 28.9	28.8	97.7 97.6	97.7	7.7 7.7	7.7	1.1	2.8 2.7	2.8	2.8	4.9 5.8	5.4	6.0
					Bottom	5.2	18.5 18.4	18.5	8.1 8.1	8.1	29.0 29.0	29.0	97.6 97.5	97.6	7.7 7.7	7.7	7.7	2.8 2.8	2.8		7.9 6.7	7.3	
8-Mar-17	Cloudy	Moderate	10:32		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.3 29.3	29.3	96.5 94.9	95.7	7.7 7.5	7.6	7.6	4.4 4.5	4.5		6.6 6.6	6.6	
				6.2	Middle	3.1	18.1 18.1	18.1	8.1 8.1	8.1	29.3 29.3	29.3	95.1 96.6	95.9	7.5 7.7	7.6	7.0	4.6 4.3	4.5	4.5	9.6 8.5	9.1	9.6
					Bottom	5.2	18.1 18.1	18.1	8.1 8.1	8.1	29.3 29.3	29.3	99.1 95.6	97.4	7.9 7.6	7.7	7.7	4.3 4.6	4.5		13.8 12.3	13.1	
10-Mar-17	Cloudy	Moderate	12:15		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	29.5 29.5	29.5	97.4 97.1	97.3	7.7 7.7	7.7	7.7	3.2 3.1	3.2		9.7 9.2	9.5	
				6.0	Middle	3.0	18.1 18.1	18.1	8.2 8.2	8.2	29.5 29.5	29.5	97.4 97.1	97.3	7.7 7.7	7.7		3.5 3.4	3.5	3.4	9.0 9.0	9.0	9.3
					Bottom	5.0	18.1 18.1	18.1	8.2 8.2	8.2	29.5 29.5	29.5	96.9 97.5	97.2	7.7 7.7	7.7	7.7	3.5 3.5	3.5		9.3 9.2	9.3	
13-Mar-17	Fine	Moderate	13:11		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.1 29.2	29.2	94.1 94.2	94.2	7.4 7.4	7.4	7.4	6.7 6.8	6.8		10.2 10.5	10.4	
				6.2	Middle	3.1	18.5 18.5	18.5	8.2 8.2	8.2	29.2 29.3	29.3	93.8 94.0	93.9	7.4 7.4	7.4		7.5 7.0	7.3	7.0	11.0 10.5	10.8	10.8
					Bottom	5.2	18.5 18.5	18.5	8.2 8.2	8.2	29.3 29.3	29.3	93.7 94.2	94.0	7.4 7.4	7.4	7.4	7.1 6.8	7.0		11.0 11.4	11.2	
15-Mar-17	Fine	Moderate	14:07		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	28.6 28.5	28.6	94.9 99.6	97.3	7.5 7.8	7.7	7.6	10.4 10.2	10.3		15.5 14.4	15.0	
				6.3	Middle	3.2	18.7 18.7 18.6	18.7	8.2 8.2 8.2	8.2	28.8 28.6 28.9	28.7	93.6 96.7 93.2	95.2	7.4 7.6 7.3	7.5		10.6 10.6 10.5	10.6	10.5	16.0 16.7 16.7	16.4	16.2
47 14 - 47	011	Madavata	45.00		Bottom	5.3	18.6	18.6	8.2	8.2	28.9	28.9	95.9	94.6	7.6	7.4	7.4	10.5	10.5		17.9	17.3	
17-Mar-17	Cloudy	Moderate	15:22		Surface	1.0	18.7 18.6 18.5	18.7	8.1 8.1	8.1	29.0 29.1 29.5	29.0	91.4 91.9	91.7	7.2 7.2	7.2	7.2	6.8 6.5	6.7		11.2 11.1	11.2	
				6.4	Middle	3.2	18.5 18.5 18.6	18.5	8.1 <u>8.1</u> 8.1	8.1	29.5 29.5 29.4	29.5	91.1 91.9 93.7	91.5	7.2 7.2 7.4	7.2		6.1 5.8 6.0	6.0	6.3	11.7 11.2 14.3	11.5	12.0
20-Mar-17	Suppy	Madarata	17:48		Bottom	5.4	18.6 18.5 19.9	18.6	8.1	8.1	29.4	29.4	91.4	92.6	7.2	7.3	7.3	6.3	6.2		12.4	13.4	
20-1vi8[-17	Sunny	Moderate	17:48		Surface	1.0	19.9 19.7 19.3	19.8	8.1 <u>8.1</u> 8.1	8.1	27.2 27.3 27.6	27.2	93.3 93.9 92.6	93.6	7.3 7.3 7.3	7.3	7.3	3.8 4.0 6.0	3.9		7.6 6.5 8.5	7.1	
				6.4	Middle	3.2	19.3 19.2 18.8	19.2	8.1 8.1 8.1	8.1	27.6 27.7 28.2	27.7	92.6 92.9 92.9	92.8	7.3	7.3		5.8 5.2	5.9	5.0	8.5 8.7 7.2	8.6	7.9
					Bottom	5.4	18.8 19.1	18.9	8.1 8.1	8.1	28.2 27.9	28.1	92.9 92.2	92.6	7.3 7.2	7.3	7.3	5.2 5.0	5.1		7.2 8.9	8.1	

Water Quality Monitoring Results at IS(Mf)16 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:41		Surface	1.0	19.6 19.6	19.6	8.1 8.1	8.1	26.6 26.7	26.6	95.5 97.1	96.3	7.5 7.6	7.5	7.5	2.5 2.5	2.5		5.3 5.0	5.2	
				6.2	Middle	3.1	19.3 19.3	19.3	8.1 8.1	8.1	28.2 28.1	28.1	95.4 96.4	95.9	7.4 7.6	7.5	7.0	2.3 2.3	2.3	2.4	5.8 4.2	5.0	5.3
					Bottom	5.2	19.3 19.4	19.3	8.1 8.1	8.1	28.2 28.3	28.2	96.3 95.0	95.7	7.5 7.4	7.5	7.5	2.3 2.2	2.3		5.8 5.7	5.8	
24-Mar-17	Sunny	Moderate	11:18		Surface	1.0	20.0 20.0	20.0	8.1 8.1	8.1	28.0 28.0	28.0	96.4 95.9	96.2	7.4 7.4	7.4	7.4	3.2 3.2	3.2		11.9 10.9	11.4	
				6.2	Middle	3.1	19.7 19.7	19.7	8.1 8.1	8.1	28.5 28.3	28.4	95.1 95.1	95.1	7.4 7.4	7.4		3.1 3.2	3.2	3.2	6.5 6.3	6.4	8.5
					Bottom	5.2	19.4 19.5	19.4	8.1 8.1	8.1	29.1 29.1	29.1	95.1 94.9	95.0	7.4 7.3	7.4	7.4	3.3 3.1	3.2		7.2 8.0	7.6	
27-Mar-17	Fine	Moderate	12:48		Surface	1.0	19.5 19.4	19.5	8.2 8.2	8.2	28.5 28.4	28.4	95.0 98.7	96.9	7.4 7.7	7.5	7.5	5.4 5.5	5.5		10.9 11.0	11.0	
				6.2	Middle	3.1	19.5 19.5	19.5	8.2 8.2	8.2	28.5 28.4	28.4	94.6 96.8	95.7	7.4 7.5	7.4	7.5	5.3 5.4	5.4	5.4	11.0 11.9	11.5	11.4
					Bottom	5.2	19.5 19.5	19.5	8.2 8.2	8.2	28.5 28.6	28.5	94.3 95.7	95.0	7.3 7.4	7.4	7.4	5.3 5.4	5.4		11.6 11.6	11.6	
29-Mar-17	Fine	Moderate	13:17		Surface	1.0	20.0 20.1	20.1	8.2 8.2	8.2	29.0 29.0	29.0	95.3 95.5	95.4	7.3 7.3	7.3	7.3	7.8 7.9	7.9		-	-	
				6.0	Middle	3.0	19.8 19.9	19.9	8.2 8.2	8.2	29.2 29.1	29.2	95.1 94.8	95.0	7.3 7.3	7.3	7.5	7.7 7.8	7.8	7.8		-	-
					Bottom	5.0	19.9 19.7	19.8	8.2 8.2	8.2	29.4 29.5	29.5	94.8 94.7	94.8	7.3 7.3	7.3	7.3	7.7 7.7	7.7		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:06		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.6	29.7	96.4 96.3	96.4	7.7 7.7	7.7		6.3 6.0	6.2		7.2 8.6	7.9	
				6.3	Middle	3.2	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.7	29.7	96.1 96.3	96.2	7.7	7.7	7.7	6.7 6.4	6.6	6.4	10.9 11.8	11.4	10.1
					Bottom	5.3	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.7	29.7	96.1 96.2	96.2	7.7	7.7	7.7	6.3 6.4	6.4		10.0	10.9	
3-Mar-17	Sunny	Moderate	10:33		Surface	1.0	17.7	17.7	8.1 8.1	8.1	29.3 29.4	29.4	100.4 98.0	99.2	8.0 7.8	7.9		9.2 9.2	9.2		16.1 15.4	15.8	
				6.3	Middle	3.2	17.7	17.7	8.1 8.1	8.1	29.3 29.4	29.4	99.1 97.1	98.1	7.9 7.8	7.8	7.9	9.1 9.5	9.3	9.2	14.8 15.0	14.9	15.3
					Bottom	5.3	17.7 17.7	17.7	8.1 8.1	8.1	29.2 29.4	29.3	98.5 96.8	97.7	7.9 7.7	7.8	7.8	9.1 9.2	9.2		15.4 15.2	15.3	
6-Mar-17	Cloudy	Moderate	11:58		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.6 28.8	28.7	97.9 97.8	97.9	7.7 7.7	7.7		3.8 3.6	3.7		4.9 3.5	4.2	1
				6.2	Middle	3.1	18.5 18.5	18.5	8.1 8.1	8.1	29.0 29.1	29.1	97.6 97.7	97.7	7.7 7.7	7.7	7.7	4.0 3.8	3.9	3.8	5.0 4.6	4.8	4.6
					Bottom	5.2	18.5 18.5	18.5	8.1 8.1	8.1	29.1 29.4	29.3	97.7 97.7	97.7	7.7 7.7	7.7	7.7	4.0 3.8	3.9		4.7 5.0	4.9	
8-Mar-17	Cloudy	Moderate	14:52		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.3 94.2	94.3	7.5 7.5	7.5	7.5	1.9 2.0	2.0		3.5 4.2	3.9	
				6.1	Middle	3.1	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.1 94.2	94.2	7.5 7.5	7.5	7.5	1.9 2.0	2.0	2.0	5.6 6.2	5.9	7.3
					Bottom	5.1	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.2 94.0	94.1	7.5 7.4	7.5	7.5	1.9 2.1	2.0		12.6 11.6	12.1	
10-Mar-17	Cloudy	Moderate	16:56		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.5 29.4	29.4	96.6 96.2	96.4	7.6 7.6	7.6	7.6	5.5 5.6	5.6		12.4 12.0	12.2	
				6.2	Middle	3.1	18.2 18.3	18.3	8.2 8.2	8.2	29.6 29.5	29.6	96.4 96.1	96.3	7.6 7.6	7.6		5.5 5.6	5.6	5.6	12.9 13.7	13.3	12.9
					Bottom	5.2	18.2 18.3	18.3	8.2 8.2	8.2	29.7 29.6	29.6	96.3 96.0	96.2	7.6 7.6	7.6	7.6	5.7 5.6	5.7		12.5 13.7	13.1	
13-Mar-17	Fine	Moderate	07:59		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.0 29.0	29.0	93.7 93.7	93.7	7.4 7.4	7.4	7.4	5.7 6.0	5.9		8.0 8.8	8.4	
				6.1	Middle	3.1	18.4 18.4	18.4	8.2 8.2	8.2	29.0 29.1	29.0	93.5 93.4	93.5	7.4 7.4	7.4		7.3 7.6	7.5	7.0	8.1 9.2	8.7	9.2
					Bottom	5.1	18.4 18.4	18.4	8.2 8.2	8.2	29.1 29.1	29.1	93.4 93.3	93.4	7.4 7.4	7.4	7.4	7.4 7.9	7.7		9.6 11.2	10.4	
15-Mar-17	Fine	Moderate	08:45		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	28.0 27.9	28.0	95.1 100.0	97.6	7.5 7.9	7.7	7.7	7.8 7.7	7.8		13.9 12.8	13.4	
				6.3	Middle	3.2	18.6 18.6	18.6	8.1 8.1	8.1	28.0 27.9	27.9	94.5 97.6	96.1	7.5 7.7	7.6		7.9 7.8	7.9	7.8	15.5 14.7	15.1	14.6
					Bottom	5.3	18.6 18.6	18.6	8.1 <u>8.1</u>	8.1	27.9 27.9	27.9	96.5 94.1	95.3	7.6 7.5	7.5	7.5	7.8 7.8	7.8		14.7 16.0	15.4	
17-Mar-17	Cloudy	Moderate	09:40		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.0 28.0	28.0	93.3 96.0	94.7	7.4 7.6	7.5	7.6	6.3 6.5	6.4		9.6 9.3	9.5	-
				6.3	Middle	3.2	18.5 18.5	18.5	8.1 8.1	8.1	28.1 28.1	28.1	93.4 97.1	95.3	7.4 7.7	7.6		6.5 6.9	6.7	6.7	10.9 12.4	11.7	10.9
00 M 17		Mad	44.50		Bottom	5.3	18.5 18.5	18.5	8.1 <u>8.1</u>	8.1	28.2 28.2	28.2	98.5 93.7	96.1	7.8 7.4	7.6	7.6	7.2 6.9	7.1		11.4 11.4	11.4	
20-Mar-17	Sunny	Moderate	11:12		Surface	1.0	19.3 19.2	19.2	8.1 8.1	8.1	28.3 28.4	28.3	92.6 92.1	92.4	7.2 7.2	7.2	7.2	2.7 2.7	2.7		5.5 6.7	6.1]
				6.2	Middle	3.1	18.9 18.9	18.9	8.1 8.1	8.1	28.6 28.6	28.6	91.5 91.4	91.5	7.2 7.2	7.2		2.9 2.9	2.9	2.8	7.6 9.3	8.5	8.0
					Bottom	5.2	18.9 18.8	18.8	8.1 8.1	8.1	28.7 28.8	28.7	91.6 91.3	91.5	7.2 7.2	7.2	7.2	2.7 2.7	2.7		10.1 8.7	9.4	

Water Quality Monitoring Results at IS(Mf)16 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:27		Surface	1.0	19.6 19.7	19.7	8.2 8.2	8.2	27.7 27.5	27.6	94.3 94.4	94.4	7.3 7.3	7.3	7.3	3.6 3.5	3.6		7.7 7.6	7.7	
				6.2	Middle	3.1	19.3 19.2	19.3	8.2 8.2	8.2	28.1 29.0	28.6	93.6 93.3	93.5	7.3 7.3	7.3	7.5	3.7 3.6	3.7	3.6	8.1 9.7	8.9	10.1
					Bottom	5.2	19.3 19.0	19.1	8.2 8.2	8.2	29.3 29.6	29.5	93.6 92.6	93.1	7.3 7.2	7.2	7.2	3.5 3.6	3.6		14.0 13.4	13.7	
24-Mar-17	Sunny	Moderate	15:47		Surface	1.0	20.5 20.1	20.3	8.2 8.2	8.2	26.8 27.1	26.9	97.0 96.8	96.9	7.5 7.5	7.5	7.5	9.9 9.7	9.8		16.3 16.4	16.4	
				6.4	Middle	3.2	19.8 20.1	19.9	8.2 8.2	8.2	27.5 27.2	27.3	96.4 96.0	96.2	7.5 7.4	7.4	1.0	9.5 9.6	9.6	9.7	21.4 20.5	21.0	19.4
					Bottom	5.4	19.8 20.0	19.9	8.2 8.2	8.2	27.5 27.3	27.4	95.7 95.9	95.8	7.4 7.4	7.4	7.4	9.7 9.7	9.7		20.0 21.5	20.8	
27-Mar-17	Fine	Moderate	06:54		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	28.0 28.1	28.1	97.1 93.5	95.3	7.5 7.3	7.4	7.4	5.1 5.2	5.2		6.5 7.5	7.0	
				6.4	Middle	3.2	19.3 19.3	19.3	8.2 8.2	8.2	28.5 28.4	28.4	92.9 95.1	94.0	7.2 7.4	7.3	7.4	5.5 5.1	5.3	5.2	7.9 8.6	8.3	8.1
					Bottom	5.4	19.4 19.4	19.4	8.2 8.2	8.2	28.8 28.9	28.9	94.7 92.9	93.8	7.4 7.2	7.3	7.3	5.1 5.1	5.1		9.7 8.2	9.0	
29-Mar-17	Fine	Moderate	07:42		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	29.0 29.0	29.0	96.9 95.9	96.4	7.5 7.4	7.4	7.4	8.5 8.6	8.6		-	-	
				6.2	Middle	3.1	19.8 19.8	19.8	8.2 8.2	8.2	29.0 29.0	29.0	95.9 97.4	96.7	7.4 7.5	7.4	7.4	8.9 8.8	8.9	8.8	-	-	=
					Bottom	5.2	19.8 19.8	19.8	8.2 8.2	8.2	29.0 29.0	29.0	96.1 98.5	97.3	7.4 7.6	7.5	7.5	8.8 8.8	8.8		-	-	
31-Mar-17	Rainy	Moderate	08:55		Surface	1.0	20.4 20.5	20.5	8.1 8.1	8.1	28.1 28.1	28.1	93.9 93.9	93.9	7.2 7.2	7.2	7.2	4.7 4.7	4.7		-	-	
				6.2	Middle	3.1	20.4 20.4	20.4	8.1 8.1	8.1	28.3 28.2	28.2	93.9 93.8	93.9	7.2 7.2	7.2	1.2	4.9 4.8	4.9	4.8	-	-	=
					Bottom	5.2	20.4 20.4	20.4	8.1 8.1	8.1	28.3 28.3	28.3	93.8 93.8	93.8	7.2 7.2	7.2	7.2	4.8 4.8	4.8		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	H	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:23		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	30.7 30.8	30.7	97.1 96.8	97.0	7.7 7.7	7.7		10.4 10.3	10.4		16.2 16.4	16.3	
				8.4	Middle	4.2	17.6 17.6	17.6	8.2 8.2	8.2	30.8 30.7	30.7	96.8 97.1	97.0	7.7 7.7	7.7	7.7	10.2 10.9	10.6	10.5	16.3 17.3	16.8	17.3
					Bottom	7.4	17.6	17.6	8.2 8.2	8.2	30.8 30.6	30.7	96.8 97.2	97.0	7.7	7.7	7.7	10.3 10.2 10.6	10.4		18.4	18.8	
3-Mar-17	Sunny	Moderate	15:00		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	27.3 27.5	27.4	97.9 97.7	97.8	7.9 7.9 7.9	7.9		10.6 10.6	10.6		16.3 16.7	16.5	
				8.4	Middle	4.2	17.9 18.0	18.0	8.2 8.2 8.2	8.2	27.3 27.5	27.4	97.7 97.8 97.5	97.7	7.9 7.9 7.8	7.9	7.9	10.5 10.4	10.5	10.6	15.1 17.0	16.1	16.0
					Bottom	7.4	18.0 17.9	17.9	8.2 8.2	8.2	27.5 27.3	27.4	97.5 97.7	97.6	7.8	7.9	7.9	10.4	10.7		15.0 15.7	15.4	
6-Mar-17	Cloudy	Moderate	07:56		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7 29.7	29.7	98.9 98.9	98.9	7.7	7.7		4.4 4.5	4.5		5.5	5.9	
				8.1	Middle	4.1	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7 29.8	29.8	98.7 98.6	98.7	7.7	7.7	7.7	4.8	5.0	4.9	6.5 5.3	5.9	6.9
					Bottom	7.1	18.6 18.6	18.6	8.2 8.2	8.2	29.8 29.8	29.8	98.5 98.6	98.6	7.7	7.7	7.7	5.1 5.0	5.1		9.8 8.1	9.0	
8-Mar-17	Cloudy	Moderate	11:22		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	98.1 96.7	97.4	7.8 7.6	7.7		4.7 4.7	4.7		5.0 3.7	4.4	
				8.2	Middle	4.1	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	98.9 96.9	97.9	7.8 7.7	7.7	7.7	4.8 4.8	4.8	4.8	7.1 8.4	7.8	6.4
					Bottom	7.2	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	97.1 99.7	98.4	7.7 7.9	7.8	7.8	4.7 4.8	4.8		6.7 7.4	7.1	
10-Mar-17	Cloudy	Moderate	13:06		Surface	1.0	18.2 18.2	18.2	8.2 8.2	8.2	29.5 29.5	29.5	96.9 96.9	96.9	7.7 7.7	7.7	7.7	6.0 5.9	6.0		8.8 8.7	8.8	
				8.1	Middle	4.1	18.2 18.2	18.2	8.2 8.2	8.2	29.5 29.5	29.5	96.7 96.7	96.7	7.6 7.6	7.6	1.1	6.4 6.1	6.3	6.2	11.3 11.0	11.2	10.2
					Bottom	7.1	18.2 18.2	18.2	8.2 8.2	8.2	29.6 29.6	29.6	96.7 96.4	96.6	7.6 7.6	7.6	7.6	6.1 6.4	6.3		10.7 10.6	10.7	
13-Mar-17	Fine	Moderate	12:12		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	29.8 29.9	29.9	95.3 95.4	95.4	7.4 7.4	7.4	7.4	10.5 10.4	10.5		14.7 15.7	15.2	
				8.7	Middle	4.4	18.8 18.8	18.8	8.2 8.2	8.2	29.8 29.9	29.9	95.0 95.1	95.1	7.4 7.4	7.4	7.4	10.9 10.7	10.8	10.6	14.9 16.7	15.8	16.0
					Bottom	7.7	18.8 18.8	18.8	8.2 8.2	8.2	29.8 29.8	29.8	94.9 95.2	95.1	7.4 7.4	7.4	7.4	10.7 10.4	10.6		17.9 16.1	17.0	1
15-Mar-17	Fine	Moderate	13:21		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	28.0 28.3	28.2	93.8 93.5	93.7	7.4 7.3	7.4	7.4	10.2 10.1	10.2		16.9 15.9	16.4	
				8.6	Middle	4.3	18.9 18.9	18.9	8.2 8.2	8.2	27.9 28.3	28.1	93.7 93.4	93.6	7.4 7.3	7.4		10.6 10.2	10.4	10.4	17.7 16.5	17.1	16.8
					Bottom	7.6	18.9 18.9	18.9	8.2 8.2	8.2	28.2 27.7	27.9	93.4 93.9	93.7	7.3 7.4	7.4	7.4	10.8 10.5	10.7		17.5 16.2	16.9	
17-Mar-17	Cloudy	Moderate	14:19		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	28.9 29.2	29.0	95.2 95.0	95.1	7.5 7.5	7.5	7.5	9.8 10.5	10.2		15.1 15.9	15.5	
				8.6	Middle	4.3	18.7 18.7	18.7	8.2 8.2	8.2	29.1 28.9	29.0	94.9 95.0	95.0	7.5 7.5	7.5		11.0 10.0	10.5	10.4	15.9 16.7	16.3	16.9
00.14			40.50		Bottom	7.6	18.7 18.6	18.7	8.2 8.2	8.2	28.7 29.1	28.9	95.1 94.9	95.0	7.5 7.5	7.5	7.5	10.2 10.9	10.6		18.8 19.1	19.0	
20-Mar-17	Sunny	Moderate	16:50		Surface	1.0	19.9 20.2	20.0	8.1 <u>8.1</u>	8.1	26.2 26.2	26.2	97.9 98.3	98.1	7.7 7.6	7.6	7.6	6.5 6.2	6.4		12.4 12.2	12.3	
				8.5	Middle	4.3	19.6 19.7	19.6	8.1 8.1	8.1	26.2 26.3	26.3	97.2 97.1	97.2	7.6 7.6	7.6		6.7 6.5	6.6	6.6	12.9 11.8	12.4	12.8
					Bottom	7.5	19.8 19.6	19.7	8.1 8.1	8.1	26.2 26.2	26.2	97.2 97.4	97.3	7.6 7.7	7.6	7.6	6.6 7.1	6.9		14.3 13.3	13.8	

Water Quality Monitoring Results at IS5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	09:31		Surface	1.0	21.2 21.2	21.2	8.1 8.1	8.1	25.9 25.7	25.8	98.0 99.9	99.0	7.5 7.7	7.6	7.6	4.4 4.4	4.4		6.7 6.3	6.5	
				8.3	Middle	4.2	21.0 21.2	21.1	8.1 8.1	8.1	26.1 25.7	25.9	97.7 99.4	98.6	7.5 7.6	7.5	7.0	4.4 4.3	4.4	4.4	6.8 7.4	7.1	6.9
					Bottom	7.3	20.7 20.7	20.7	8.1 8.1	8.1	26.8 26.7	26.8	97.2 99.0	98.1	7.4 7.6	7.5	7.5	4.4 4.4	4.4		7.7 6.7	7.2	
24-Mar-17	Sunny	Moderate	12:06		Surface	1.0	20.2 20.1	20.2	8.2 8.2	8.2	27.9 28.0	28.0	97.8 97.5	97.7	7.5 7.5	7.5	7.5	6.6 6.4	6.5		10.8 10.7	10.8	l
				8.4	Middle	4.2	20.0 20.0	20.0	8.2 8.2	8.2	28.2 28.2	28.2	97.3 97.4	97.4	7.5 7.5	7.5		6.8 6.9	6.9	6.8	10.7 10.9	10.8	11.4
					Bottom	7.4	20.1 20.0	20.0	8.2 8.2	8.2	28.2 28.3	28.3	97.2 97.1	97.2	7.5 7.5	7.5	7.5	6.8 6.9	6.9		12.9 12.3	12.6	
27-Mar-17	Fine	Moderate	11:32		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	27.5 27.5	27.5	102.5 95.6	99.1	8.0 7.5	7.7	7.7	7.9 7.9	7.9		7.5 6.6	7.1	
				9.0	Middle	4.5	19.4 19.5	19.5	8.2 8.2	8.2	27.5 27.6	27.5	99.2 95.1	97.2	7.8 7.4	7.6	7.1	7.7 7.8	7.8	7.8	10.2 10.1	10.2	8.9
					Bottom	8.0	19.4 19.4	19.4	8.2 8.2	8.2	27.6 27.6	27.6	94.9 97.4	96.2	7.4 7.6	7.5	7.5	7.8 7.7	7.8		9.6 9.0	9.3	
29-Mar-17	Fine	Moderate	12:30		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.4	29.4	95.6 95.5	95.6	7.3 7.3	7.3	7.3	11.2 11.2	11.2		-	-	
				8.4	Middle	4.2	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.3	29.4	95.4 95.3	95.4	7.3 7.3	7.3	7.5	11.3 11.4	11.4	11.3	-	-	-
					Bottom	7.4	20.0 20.0	20.0	8.2 8.2	8.2	29.5 29.3	29.4	95.2 94.8	95.0	7.3 7.3	7.3	7.3	11.5 11.2	11.4		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	=
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ъН	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	1	Furbidity(NT	J)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	10:05		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.7	29.7	99.1 97.0	98.1	7.9 7.8	7.9	7.0	8.9 9.2	9.1		13.4 13.3	13.4	
				8.3	Middle	4.2	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.8	29.7	100.5 97.3	98.9	8.1 7.8	7.9	7.9	9.2 9.6	9.4	9.2	15.6 16.7	16.2	16.3
					Bottom	7.3	17.4	17.4	8.1 8.1	8.1	29.8 29.8	29.8	101.1 97.6	99.4	8.1 7.8	8.0	8.0	9.2 9.2	9.2		19.8 18.7	19.3	
3-Mar-17	Sunny	Moderate	11:21		Surface	1.0	17.7	17.7	8.1 8.1	8.1	29.8 29.8	29.8	96.7 96.8	96.8	7.7	7.7		9.2 9.1	9.2		13.3 13.9	13.6	
				8.5	Middle	4.3	17.7 17.6	17.7	8.1 8.1	8.1	29.8 29.8	29.8	96.5 96.6	96.6	7.7	7.7	7.7	9.1 9.2	9.2	9.2	12.1 12.2	12.2	13.1
					Bottom	7.5	17.7	17.7	8.1 8.1	8.1	29.9 29.8	29.8	96.5 96.5	96.5	7.7	7.7	7.7	9.1 9.1	9.1		14.2 12.9	13.6	
6-Mar-17	Cloudy	Moderate	11:11		Surface	1.0	18.5 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	98.7 98.6	98.7	7.7	7.7		4.4	4.4		5.3 6.0	5.7	
				8.5	Middle	4.3	18.6 18.6	18.6	8.2 8.2	8.2	29.8 29.8	29.8	98.4 98.5	98.5	7.7	7.7	7.7	4.4	4.4	4.4	5.8 6.3	6.1	6.5
					Bottom	7.5	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	98.5 98.4	98.5	7.7 7.7	7.7	7.7	4.4 4.2	4.3		7.0 8.5	7.8	
8-Mar-17	Cloudy	Moderate	14:06		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.3 29.3	29.3	96.2 95.8	96.0	7.6 7.6	7.6	7.0	4.0 4.0	4.0		6.4 6.0	6.2	
				8.2	Middle	4.1	18.4 18.4	18.4	8.2 8.2	8.2	29.3 29.3	29.3	96.2 95.7	96.0	7.6 7.6	7.6	7.6	3.9 4.1	4.0	4.0	8.6 9.1	8.9	8.3
					Bottom	7.2	18.3 18.3	18.3	8.2 8.2	8.2	29.3 29.4	29.3	95.8 96.4	96.1	7.6 7.6	7.6	7.6	4.1 3.8	4.0		9.9 9.7	9.8	
10-Mar-17	Cloudy	Moderate	16:06		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.5 29.5	29.5	96.6 96.6	96.6	7.6 7.6	7.6	7.6	6.1 5.7	5.9		9.6 9.9	9.8	
				8.4	Middle	4.2	18.3 18.4	18.3	8.2 8.2	8.2	29.6 29.6	29.6	96.3 96.3	96.3	7.6 7.6	7.6	7.0	6.4 6.1	6.3	6.1	11.7 10.0	10.9	11.1
					Bottom	7.4	18.3 18.4	18.4	8.2 8.2	8.2	29.7 29.6	29.6	96.3 96.3	96.3	7.6 7.6	7.6	7.6	6.2 6.0	6.1		13.4 12.0	12.7	
13-Mar-17	Fine	Moderate	08:59		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.6 29.6	29.6	95.1 94.9	95.0	7.5 7.4	7.4	7.4	11.8 12.2	12.0		19.6 20.7	20.2	
				8.7	Middle	4.4	18.6 18.6	18.6	8.2 8.2	8.2	29.6 29.6	29.6	94.8 95.0	94.9	7.4 7.5	7.4		12.3 11.5	11.9	11.9	22.5 23.8	23.2	23.1
					Bottom	7.7	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.6	29.6	95.0 94.8	94.9	7.4 7.4	7.4	7.4	11.4 12.2	11.8		26.1 25.5	25.8	
15-Mar-17	Fine	Moderate	09:31		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	28.3 28.3	28.3	97.9 94.9	96.4	7.7 7.5	7.6	7.6	11.1 11.6	11.4		18.8 18.7	18.8	
				8.9	Middle	4.5	18.8 18.8	18.8	8.1 8.1	8.1	28.4 28.3	28.4	94.5 96.1	95.3	7.4 7.6	7.5	-	11.7 11.9	11.8	11.7	19.2 20.3	19.8	19.9
					Bottom	7.9	18.8 18.8	18.8	8.1 8.1	8.1	28.4 28.4	28.4	95.6 94.5	95.1	7.5 7.4	7.5	7.5	12.0 11.6	11.8		20.7 21.2	21.0	
17-Mar-17	Cloudy	Moderate	10:40		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	28.7 28.7	28.7	93.9 93.9	93.9	7.4 7.4	7.4	7.4	10.3 10.4	10.4		15.4 14.6	15.0	
				8.8	Middle	4.4	18.4 18.4	18.4	8.2 8.2	8.2	28.7 28.8	28.8	93.8 93.8	93.8	7.4 7.4	7.4		10.5 10.7	10.6	10.5	15.3 17.1	16.2	16.5
					Bottom	7.8	18.4 18.4	18.4	8.2 8.2	8.2	28.8 28.7	28.8	93.7 93.8	93.8	7.4 7.4	7.4	7.4	10.4 10.4	10.4		17.3 19.1	18.2	<u> </u>
20-Mar-17	Sunny	Moderate	12:07		Surface	1.0	19.5 19.6	19.6	8.1 8.1	8.1	28.5 28.4	28.5	95.4 96.4	95.9	7.4 7.5	7.4	7.4	7.4 7.5	7.5		12.2 13.5	12.9	
				8.7	Middle	4.4	19.5 19.5	19.5	8.1 8.1	8.1	28.5 28.5	28.5	95.0 95.7	95.4	7.4 7.4	7.4		7.4 7.7	7.6	7.5	13.0 11.8	12.4	12.5
					Bottom	7.7	19.5 19.5	19.5	8.1 8.1	8.1	28.6 28.5	28.5	94.4 95.6	95.0	7.3 7.4	7.4	7.4	7.3 7.4	7.4		12.2 12.2	12.2	

Water Quality Monitoring Results at IS5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	19:42		Surface	1.0	20.5 20.5	20.5	8.2 8.2	8.2	26.5 26.2	26.4	98.2 98.8	98.5	7.6 7.6	7.6	7.6	4.7 4.7	4.7		8.1 7.7	7.9	
				8.5	Middle	4.3	20.1 19.6	19.9	8.2 8.3	8.2	28.0 28.0	28.0	97.3 97.6	97.5	7.5 7.6	7.5	7.0	4.6 4.8	4.7	4.8	9.4 8.2	8.8	8.8
					Bottom	7.5	19.1 19.1	19.1	8.3 8.3	8.3	29.3 29.5	29.4	96.8 96.4	96.6	7.5 7.5	7.5	7.5	4.8 4.9	4.9		9.4 9.8	9.6	
24-Mar-17	Sunny	Moderate	14:56		Surface	1.0	20.6 20.7	20.7	8.2 8.2	8.2	25.8 25.7	25.7	99.8 100.2	100.0	7.7 7.8	7.8	7.8	5.3 5.5	5.4		10.0 9.8	9.9	
				8.4	Middle	4.2	20.3 20.3	20.3	8.2 8.2	8.2	25.8 25.9	25.8	100.6 99.3	100.0	7.8 7.7	7.7	1.0	5.5 5.4	5.5	5.5	10.6 10.0	10.3	10.4
					Bottom	7.4	20.1 20.4	20.3	8.2 8.2	8.2	25.9 25.8	25.9	99.7 99.1	99.4	7.7 7.7	7.7	7.7	5.5 5.5	5.5		10.4 11.4	10.9	
27-Mar-17	Fine	Moderate	07:38		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.3 27.3	27.3	91.9 92.0	92.0	7.2 7.2	7.2	7.2	6.4 6.5	6.5		8.0 8.4	8.2	
				8.6	Middle	4.3	19.3 19.3	19.3	8.2 8.2	8.2	27.3 27.4	27.3	91.8 91.6	91.7	7.2 7.2	7.2	1.2	6.6 6.9	6.8	6.7	9.5 10.1	9.8	9.1
					Bottom	7.6	19.3 19.3	19.3	8.2 8.2	8.2	27.4 27.4	27.4	91.8 91.6	91.7	7.2 7.2	7.2	7.2	6.6 6.7	6.7		9.3 9.5	9.4	
29-Mar-17	Fine	Moderate	08:28		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	29.0 29.0	29.0	94.4 94.5	94.5	7.2 7.3	7.2	7.2	10.4 10.4	10.4		-	-	
				9.0	Middle	4.5	19.9 19.9	19.9	8.2 8.2	8.2	29.1 29.1	29.1	94.4 94.5	94.5	7.2 7.3	7.2	1.2	10.6 10.6	10.6	10.5		-	=
					Bottom	8.0	19.9 19.9	19.9	8.2 8.2	8.2	29.0 29.1	29.1	94.3 94.4	94.4	7.2 7.2	7.2	7.2	10.2 10.5	10.4			-	
31-Mar-17	Rainy	Moderate	09:37		Surface	1.0	20.8 20.8	20.8	8.1 8.1	8.1	28.8 28.8	28.8	98.1 95.5	96.8	7.4 7.2	7.3	7.3	12.1 11.9	12.0		-	-	
				8.6	Middle	4.3	20.8 20.8	20.8	8.1 8.1	8.1	28.8 28.8	28.8	95.2 96.9	96.1	7.2 7.3	7.3	1.5	11.5 11.6	11.6	11.7	-	-	=
					Bottom	7.6	20.8 20.8	20.8	8.1 8.1	8.1	28.8 28.8	28.8	96.3 95.1	95.7	7.3 7.2	7.2	7.2	11.2 11.9	11.6		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	ъН	Salini	ty (ppt)	DO Satu	iration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:40		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	31.4 31.4	31.4	95.7 95.7	95.7	7.6 7.6	7.6		9.6 9.2	9.4		16.1 15.2	15.7	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	9.5	-	-	15.7
					Bottom	2.3	17.6 17.6	17.6	8.2 8.2	8.2	31.4 31.4	31.4	95.7 95.7	95.7	7.6 7.6	7.6	7.6	9.4 9.6	9.5		16.2 15.2	15.7	
3-Mar-17	Sunny	Moderate	15:16		Surface	1.0	17.9 17.9	17.9	8.2 8.2	8.2	28.1 28.1	28.1	96.2 96.2	96.2	7.7	7.7		9.5 9.4	9.5		16.7 18.1	17.4	
				3.4	Middle	-	-	-	-	-		-	-	-	-	-	7.7	-	-	9.6	-	-	17.6
					Bottom	2.4	17.9 17.9	17.9	8.2 8.2	8.2	28.2 28.2	28.2	96.1 96.1	96.1	7.7 7.7	7.7	7.7	9.8 9.5	9.7		18.2 17.3	17.8	
6-Mar-17	Cloudy	Moderate	07:39		Surface	1.0	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	99.1 98.9	99.0	7.8 7.8	7.8	7.0	4.5 4.6	4.6		7.1 6.4	6.8	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	4.6	-	-	6.3
					Bottom	2.3	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	99.1 98.9	99.0	7.8 7.8	7.8	7.8	4.6 4.4	4.5		6.4 5.0	5.7	
8-Mar-17	Cloudy	Moderate	11:04		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	29.2 29.2	29.2	94.7 94.9	94.8	7.5 7.5	7.5	7.5	4.2 4.3	4.3		5.9 5.9	5.9	
				3.1	Middle	•	-	-		-		-	-	-	-	-	7.5	-	-	4.3	-	-	5.9
					Bottom	2.1	18.2 18.2	18.2	8.1 8.1	8.1	29.2 29.2	29.2	94.7 95.1	94.9	7.5 7.5	7.5	7.5	4.3 4.3	4.3		5.4 6.4	5.9	
10-Mar-17	Cloudy	Moderate	12:48		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	29.1 29.1	29.1	96.3 96.2	96.3	7.6 7.6	7.6	7.6	5.9 5.7	5.8		8.1 8.0	8.1	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.8	-	-	9.3
					Bottom	2.2	18.1 18.1	18.1	8.2 8.2	8.2	29.1 29.1	29.1	96.2 96.2	96.2	7.6 7.6	7.6	7.6	5.8 5.7	5.8		10.4 10.5	10.5	
13-Mar-17	Fine	Moderate	12:31		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	29.6 29.6	29.6	95.6 95.7	95.7	7.5 7.5	7.5	7.5	9.3 8.5	8.9		14.3 14.8	14.6	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	9.0	-	-	15.3
					Bottom	2.2	18.8 18.9	18.9	8.2 8.2	8.2	29.6 29.6	29.6	95.5 95.5	95.5	7.5 7.4	7.4	7.4	8.7 9.5	9.1		16.1 15.7	15.9	
15-Mar-17	Fine	Moderate	13:37		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	28.9 28.9	28.9	93.6 93.8	93.7	7.3 7.3	7.3	7.3	10.9 11.3	11.1		16.8 15.4	16.1	
				3.2	Middle	-	-	-	-	-	- 28.9	-	93.7	-	-	-		-	-	11.2	-	-	17.5
47.14 47	011	Madaaata	11.00		Bottom	2.2	18.9 18.9	18.9	8.2 8.2	8.2	28.9	28.9	93.6	93.7	7.3 7.3	7.3	7.3	11.2 11.3	11.3		18.1 19.5	18.8	
17-Mar-17	Cloudy	Moderate	14:38		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	29.3 29.3	29.3	96.4 95.8	96.1	7.6 7.5	7.5	7.5	13.0 12.5	12.8		19.3 19.3	19.3	
				3.2	Middle	-	- 18.8	-	- 8.2	-	29.3	-	96.0	-	7.5	-		- 13.4	-	13.4	- 18.8	-	19.0
20-Mar-17	Suppy	Modorate	17:09		Bottom	2.2	18.7 19.9	18.7	8.2 8.1	8.2	29.3 29.3 27.0	29.3	96.0 96.9 97.1	96.5	7.6	7.6	7.6	13.4 14.3 6.2	13.9		18.6 9.8	18.7	
20-IVIAI-17	Sunny	Moderate	17.09		Surface	1.0	19.9	19.9	8.1 8.1	8.1	27.0	27.0	97.1 97.1	97.1	7.5 7.5	7.5	7.5	6.2 6.4	6.3		9.8 8.6	9.2	
				3.3	Middle	-	- 19.9	-	- 8.1	-	27.0	-	97.1	-	7.5	-		6.3	-	6.3	8.8	-	9.4
					Bottom	2.3	19.9	19.9	8.1 8.1	8.1	27.0	27.0	97.1 97.0	97.1	7.5	7.5	7.5	6.1	6.2		0.0 10.4	9.6	

Water Quality Monitoring Results at IS7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ĥ	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	09:13		Surface	1.0	20.3 20.3	20.3	8.1 8.1	8.1	25.9 25.9	25.9	96.8 96.8	96.8	7.5 7.5	7.5	7.5	3.2 3.2	3.2		4.1 5.5	4.8	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	3.3	-	-	5.5
					Bottom	2.3	20.3 20.3	20.3	8.1 8.1	8.1	25.9 25.9	25.9	96.9 96.8	96.9	7.5 7.5	7.5	7.5	3.3 3.2	3.3		5.3 6.8	6.1	
24-Mar-17	Sunny	Moderate	11:49		Surface	1.0	20.4 20.4	20.4	8.2 8.2	8.2	27.4 27.4	27.4	100.0 99.9	100.0	7.7 7.7	7.7	7.7	9.2 9.3	9.3		11.6 12.5	12.1	
				3.3	Middle	-	-	-	-	-		-	-	-	-	-		-	-	9.4	-	-	13.6
					Bottom	2.3	20.4 20.4	20.4	8.2 8.2	8.2	27.4 27.4	27.4	99.9 99.6	99.8	7.7 7.7	7.7	7.7	9.4 9.4	9.4		15.8 14.2	15.0	
27-Mar-17	Fine	Moderate	11:57		Surface	1.0	19.5 19.6	19.6	8.2 8.2	8.2	26.8 26.8	26.8	98.8 97.4	98.1	7.7 7.6	7.7	7.7	3.9 3.9	3.9		7.8 6.7	7.3	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	3.9	-	-	7.7
					Bottom	3.0	19.5 19.5	19.5	8.2 8.2	8.2	26.9 26.8	26.8	98.0 101.8	99.9	7.7 8.0	7.8	7.8	3.9 3.9	3.9		7.5 8.5	8.0	
29-Mar-17	Fine	Moderate	12:44		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.5	29.5	95.4 95.5	95.5	7.3 7.3	7.3	7.3	11.4 11.6	11.5		-	-	
				3.4	Middle	-	-	-	-	-		-	-	-		-	7.5	-	-	11.5	-	-	<u>-</u>
					Bottom	2.4	20.1 20.1	20.1	8.2 8.2	8.2	29.5 29.5	29.5	95.4 95.3	95.4	7.3 7.3	7.3	7.3	11.5 11.5	11.5		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-	-	-		-		-		-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	٦	Furbidity(NT	U)	Suspe	nded Solids	ه (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:48		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	29.7 29.7	29.7	101.2 99.3	100.3	8.1 8.0	8.0		6.8 6.5	6.7		8.7 8.2	8.5	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	8.0		-	6.7		-	9.9
					Bottom	2.4	17.5 17.4	17.5	8.1 8.1	8.1	29.7 29.7	29.7	100.3 102.2	101.3	8.0 8.2	8.1	8.1	6.6 6.6	6.6		10.6 11.9	11.3	
3-Mar-17	Sunny	Moderate	11:06		Surface	1.0	17.6 17.6	17.6	8.1 8.1	8.1	29.8 29.8	29.8	96.9 97.0	97.0	7.7	7.7		9.1 8.8	9.0		11.1	12.1	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	9.1	-	-	13.0
					Bottom	2.4	17.6 17.6	17.6	8.1 8.1	8.1	29.8 29.8	29.8	97.0 97.0	97.0	7.7 7.7	7.7	7.7	8.9 9.2	9.1		14.0 13.7	13.9	
6-Mar-17	Cloudy	Moderate	11:26		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.4 29.4	29.4	99.2 99.1	99.2	7.8 7.8	7.8	7.0	3.2 3.2	3.2		2.9 3.8	3.4	
				3.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	3.3	-	-	3.4
					Bottom	2.2	18.6 18.5	18.5	8.2 8.2	8.2	29.7 29.6	29.6	99.2 99.2	99.2	7.8 7.8	7.8	7.8	3.3 3.4	3.4		3.7 3.1	3.4	
8-Mar-17	Cloudy	Moderate	14:22		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.3 29.3	29.3	96.4 96.4	96.4	7.6 7.6	7.6	7.0	4.4 4.4	4.4		7.5 7.7	7.6	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	4.4	-	-	8.8
					Bottom	2.4	18.4 18.4	18.4	8.2 8.2	8.2	29.3 29.3	29.3	96.3 96.4	96.4	7.6 7.6	7.6	7.6	4.4 4.4	4.4		9.1 10.7	9.9	
10-Mar-17	Cloudy	Moderate	16:22		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.4 29.4	29.4	97.0 97.1	97.1	7.7 7.7	7.7	77	5.6 5.6	5.6		9.1 9.8	9.5	
				3.2	Middle	-	-	-		-	-	-		-	-	-	7.7	-	-	5.7	-	-	11.2
					Bottom	2.2	18.4 18.3	18.3	8.2 8.2	8.2	29.4 29.5	29.4	97.0 96.8	96.9	7.6 7.6	7.6	7.6	5.8 5.6	5.7		11.9 13.8	12.9	
13-Mar-17	Fine	Moderate	08:38		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.1 29.1	29.1	94.5 94.5	94.5	7.5 7.5	7.5	7.5	5.5 5.6	5.6		8.7 7.8	8.3	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	5.8	-	-	9.5
					Bottom	2.4	18.5 18.4	18.5	8.2 8.2	8.2	29.1 29.2	29.1	94.5 94.4	94.5	7.4 7.5	7.4	7.4	5.6 6.1	5.9		11.1 10.0	10.6	
15-Mar-17	Fine	Moderate	09:19		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	28.4 28.4	28.4	101.3 97.0	99.2	8.0 7.6	7.8	7.8	11.0 11.1	11.1		17.8 17.6	17.7	
				3.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	11.1	-	-	19.2
					Bottom	2.3	18.8 18.8	18.8	8.1 8.1	8.1	28.4 28.3	28.3	96.2 98.0	97.1	7.6 7.7	7.6	7.6	11.0 11.1	11.1		20.8 20.6	20.7	
17-Mar-17	Cloudy	Moderate	10:20		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.7 28.6	28.7	96.2 97.7	97.0	7.6 7.7	7.7	7.7	10.0 10.4	10.2		15.8 15.8	15.8	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	1.1	-	-	10.2	-	-	15.8
					Bottom	2.4	18.5 18.5	18.5	8.2 8.2	8.2	28.6 28.6	28.6	98.7 96.6	97.7	7.8 7.6	7.7	7.7	10.4 9.9	10.2		15.3 16.1	15.7	
20-Mar-17	Sunny	Moderate	11:49		Surface	1.0	19.5 19.6	19.6	8.1 8.1	8.1	28.4 28.4	28.4	97.0 97.5	97.3	7.5 7.6	7.5	7.5	12.0 12.2	12.1		12.6 12.8	12.7	
				3.4	Middle	-	-	-	-	-		-	-	-	-	-	7.5	-	-	12.5	-	-	15.8
					Bottom	2.4	19.5 19.4	19.5	8.1 8.1	8.1	28.4 28.4	28.4	96.7 97.4	97.1	7.5 7.6	7.5	7.5	12.5 13.2	12.9		19.2 18.5	18.9	

Water Quality Monitoring Results at IS7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	19:55		Surface	1.0	20.8 20.8	20.8	8.2 8.2	8.2	26.7 26.7	26.7	101.3 101.3	101.3	7.8 7.8	7.8	7.8	5.9 5.8	5.9		5.9 6.6	6.3	
				3.5	Middle	-	-	-		-		-	-	-		-	7.0	-	-	6.0	-	-	7.3
					Bottom	2.5	20.8 20.8	20.8	8.2 8.2	8.2	26.7 26.7	26.7	101.2 101.2	101.2	7.8 7.7	7.7	7.7	5.9 6.0	6.0		7.7 8.6	8.2	
24-Mar-17	Sunny	Moderate	15:12		Surface	1.0	20.8 20.8	20.8	8.2 8.2	8.2	26.2 26.2	26.2	100.6 100.8	100.7	7.7 7.7	7.7	7.7	12.3 12.4	12.4		15.3 15.4	15.4	
				3.3	Middle	-	-	-		-		-		-		-	7.7	-	-	12.4	-	-	16.1
					Bottom	2.3	20.7 20.7	20.7	8.2 8.2	8.2	26.3 26.3	26.3	100.2 100.5	100.4	7.7 7.7	7.7	7.7	12.2 12.5	12.4		16.9 16.6	16.8	
27-Mar-17	Fine	Moderate	07:23		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	27.2 27.2	27.2	95.9 95.0	95.5	7.5 7.5	7.5	7.5	5.8 6.0	5.9		8.4 8.4	8.4	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	5.9	-	-	8.5
					Bottom	2.5	19.3 19.3	19.3	8.1 8.1	8.1	27.2 27.2	27.2	97.4 95.5	96.5	7.6 7.5	7.6	7.6	5.8 5.8	5.8		8.8 8.2	8.5	
29-Mar-17	Fine	Moderate	08:13		Surface	1.0	20.0 20.0	20.0	8.2 8.2	8.2	29.0 29.0	29.0	95.9 96.4	96.2	7.4 7.4	7.4	7.4	9.2 9.1	9.2		-	-	
				3.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	9.2	-	-	=
					Bottom	2.4	20.0 19.9	20.0	8.2 8.2	8.2	29.0 29.1	29.1	96.2 97.7	97.0	7.4 7.5	7.4	7.4	9.1 9.1	9.1		-	-	
31-Mar-17	Rainy	Moderate	09:22		Surface	1.0	20.5 20.5	20.5	8.1 8.1	8.1	28.3 28.3	28.3	94.1 94.2	94.2	7.2 7.2	7.2	7.2	7.3 7.1	7.2		-	-	
				3.3	Middle	-	-	-		-	-	-		-		-	1.2	-	-	7.4	-	-	=
					Bottom	2.3	20.5 20.5	20.5	8.1 8.1	8.1	28.5 28.4	28.4	94.3 94.1	94.2	7.2 7.2	7.2	7.2	7.5 7.4	7.5		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salini	ty (ppt)	DO Satu	iration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:06		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	31.0 31.0	31.0	96.2 96.2	96.2	7.6 7.6	7.6		7.7 7.0	7.4		10.4 11.0	10.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	7.4	-	-	12.3
					Bottom	2.8	17.6 17.5	17.6	8.2 8.2	8.2	31.0 31.1	31.1	96.2 96.1	96.2	7.6 7.6	7.6	7.6	7.7 6.8	7.3		13.8 13.7	13.8	
3-Mar-17	Sunny	Moderate	15:42		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	28.2 28.2	28.2	97.0 97.0	97.0	7.7	7.7		10.6 10.8	10.7		12.4 12.6	12.5	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	10.8	-	-	15.1
					Bottom	2.8	18.1 17.9	18.0	8.2 8.2	8.2	28.2 28.3	28.2	96.7 96.7	96.7	7.7 7.7	7.7	7.7	10.9 10.9	10.9		17.1 18.2	17.7	
6-Mar-17	Cloudy	Moderate	07:17		Surface	1.0	18.5 18.6	18.5	8.1 8.1	8.1	29.1 29.3	29.2	98.8 98.9	98.9	7.8 7.8	7.8	7.8	7.5 7.1	7.3		7.8 7.1	7.5	
				4.0	Middle	-	-	-		-		-	-	-	-	-	7.0	-	-	7.4	-	-	7.1
					Bottom	3.0	18.6 18.6	18.6	8.1 8.1	8.1	29.5 29.5	29.5	98.8 99.0	98.9	7.8 7.8	7.8	7.8	7.4 7.3	7.4		6.3 6.8	6.6	1
8-Mar-17	Cloudy	Moderate	10:40		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	99.0 97.3	98.2	7.8 7.7	7.8	7.8	6.3 6.2	6.3		12.3 12.3	12.3	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.2	-	-	11.9
					Bottom	3.0	18.2 18.2	18.2	8.1 8.1	8.1	29.3 29.3	29.3	100.7 97.7	99.2	8.0 7.7	7.9	7.9	6.2 6.0	6.1		11.5 11.5	11.5	
10-Mar-17	Cloudy	Moderate	12:23		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.0 29.1	29.1	95.8 96.2	96.0	7.6 7.6	7.6	7.6	8.0 8.0	8.0		13.8 13.5	13.7	
				4.0	Middle	-	-	-	-	-	-	-	-	-		-		-	-	8.1	-	-	15.1
40 Mar 47	Fig.	Madazata	40.50		Bottom	3.0	18.1 18.1	18.1	8.2 8.1	8.2	29.1 29.0	29.1	97.0 95.9	96.5	7.7 7.6	7.7	7.7	8.3 8.0	8.2		15.6 17.2	16.4	
13-Mar-17	Fine	Moderate	12:56		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	29.4 29.4	29.4	96.0 96.0	96.0	7.5 7.5 -	7.5	7.5	5.9 5.9	5.9		10.2 10.5	10.4	
				3.8	Middle	-	18.8	-	8.2	-	29.5	-	95.8	-	7.5	-		6.0	-	6.0	11.3	-	11.2
15-Mar-17	Fine	Moderate	13:58		Bottom	2.8	18.8	18.8	8.2 8.2	8.2	29.5 28.8	29.5	95.7 93.8	95.8	7.5	7.5	7.5	5.9 10.7	6.0		12.4	11.9	
13-10101-17	FILIE	Moderate	13.56		Surface	1.0	18.8	18.8	8.2	8.2	28.8	28.8	94.0	93.9	7.4	7.4	7.4	10.7	10.6		18.9	19.4	
				4.0	Middle	-	- 18.8	-	- 8.2	-	28.8	-	93.8	-	-	-		- 10.6	-	10.6	23.9	-	21.4
17-Mar-17	Cloudy	Moderate	15:06		Bottom	3.0	18.8 18.7	18.8	8.2 8.2	8.2	28.8 28.9	28.8	94.0 94.4	93.9	7.4 7.4	7.4	7.4	10.4 6.9	10.5		22.6 11.6	23.3	
	,				Surface	1.0	18.7	18.7	8.1	8.2	28.9	28.9	94.3	94.4	7.4	7.4	7.4	6.9	6.9	7.0	12.5	12.1	10.0
				3.8	Middle	-	- 18.7	- 18.7	- 8.2	-	- 28.9	- 28.9	- 94.4	- 94.4	- 7.4	-	7.4	- 6.9	-	7.0	- 12.3	-	12.2
20-Mar-17	Sunny	Moderate	17:35		Bottom Surface	2.8	18.7 20.3	20.3	<u>8.2</u> 8.1	8.2 8.1	28.9 27.1	28.9	94.3 98.5	94.4	7.4 7.6	7.4 7.6	7.4	7.0 6.2	7.0 6.1		12.2 11.6	12.3 12.1	
	-			3.9	Middle	1.0	20.3	20.3	8.1 -	0.1	27.2	21.1	98.7	30.0	7.6	1.0	7.6	5.9	0.1	6.3	12.5	12.1	12.6
				3.9	Bottom	2.9	- 19.8	20.0	- 8.1	8.1	- 27.2	27.1	- 97.3	97.4	- 7.6	7.6	7.6	- 6.6	6.4	0.3	- 13.3	- 13.1	12.0
					Bolion	2.3	20.1	20.0	8.1	0.1	27.0	27.1	97.4	37.4	7.5	7.0	7.0	6.2	0.4		12.9	13.1	. <u> </u>

Water Quality Monitoring Results at IS8 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:48		Surface	1.0	20.0 20.0	20.0	8.1 8.1	8.1	26.1 26.1	26.1	98.6 97.2	97.9	7.7 7.6	7.6	7.6	3.5 3.5	3.5		6.0 5.6	5.8	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	3.6	-	-	5.4
					Bottom	2.9	20.0 20.0	20.0	8.1 8.1	8.1	26.2 26.1	26.1	97.7 100.5	99.1	7.6 7.8	7.7	7.7	3.6 3.5	3.6		4.6 5.3	5.0	
24-Mar-17	Sunny	Moderate	11:26		Surface	1.0	20.3 20.3	20.3	8.1 8.1	8.1	27.5 27.5	27.5	99.4 99.2	99.3	7.7 7.6	7.6	7.6	21.1 21.5	21.3		31.4 33.2	32.3	
				3.7	Middle	•	-	-	-	-	-	-		-		-	7.0	-	-	21.4	-	-	29.3
					Bottom	2.7	20.2 20.2	20.2	8.1 8.1	8.1	27.5 27.5	27.5	99.0 99.4	99.2	7.6 7.7	7.6	7.6	21.5 21.2	21.4		26.3 26.3	26.3	
27-Mar-17	Fine	Moderate	12:40		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	27.5 27.6	27.6	93.9 93.6	93.8	7.3 7.3	7.3	7.3	15.4 15.3	15.4		23.5 22.4	23.0	
				4.0	Middle	-	-	-	-	-	-	-	-	-		-	7.5	-	-	15.4	-	-	23.4
					Bottom	3.0	19.4 19.6	19.5	8.2 8.2	8.2	27.8 27.6	27.7	93.5 93.4	93.5	7.3 7.3	7.3	7.3	15.5 15.2	15.4		23.9 23.6	23.8	
29-Mar-17	Fine	Moderate	13:08		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.2 29.2	29.2	96.5 96.6	96.6	7.4 7.4	7.4	7.4	9.2 9.2	9.2		-	-	
				4.0	Middle	-	-	-	-	-	-	-	-	-		-	7.4	-	-	9.3	-	-	=
					Bottom	3.0	20.1 20.0	20.1	8.2 8.2	8.2	29.2 29.3	29.3	96.5 96.4	96.5	7.4 7.4	7.4	7.4	9.1 9.4	9.3		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	i (mg/L)	Г	Furbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:21		Surface	1.0	17.3 17.3	17.3	8.1 8.1	8.1	29.7 29.7	29.7	96.7 97.6	97.2	7.8 7.8	7.8		11.6 11.9	11.8		19.2 17.9	18.6	
				3.9	Middle	-	-	-		-	-	-	-	-	-	-	7.8	-	-	11.9	-	-	19.8
					Bottom	2.9	17.3 17.3	17.3	8.1 8.1	8.1	29.7 29.7	29.7	98.3 97.0	97.7	7.9 7.8	7.9	7.9	12.1 11.9	12.0		19.9 21.8	20.9	
3-Mar-17	Sunny	Moderate	10:41		Surface	1.0	17.8 17.8	17.8	8.1 8.1	8.1	29.3 29.3	29.3	97.7 99.2	98.5	7.8 7.9	7.9		12.7 12.6	12.7		17.1 17.3	17.2	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	12.8	-	-	18.5
					Bottom	2.9	17.8 17.8	17.8	8.1 8.1	8.1	29.2 29.3	29.3	100.9 98.3	99.6	8.1 7.9	8.0	8.0	12.5 13.1	12.8		19.5 20.1	19.8	
6-Mar-17	Cloudy	Moderate	11:51		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.8 28.8	28.8	97.8 97.9	97.9	7.7 7.7	7.7	7.7	3.1 3.0	3.1		4.0 4.0	4.0	
				4.0	Middle	-	-	-	-	-		-	-	-	-	-	7.7	-	-	3.2	-	-	4.5
					Bottom	3.0	18.5 18.5	18.5	8.1 8.1	8.1	28.9 29.0	29.0	97.8 97.8	97.8	7.7 7.7	7.7	7.7	3.3 3.1	3.2		4.9 4.9	4.9	
8-Mar-17	Cloudy	Moderate	14:45		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.8 94.6	94.7	7.5 7.5	7.5	7.5	1.9 1.9	1.9		4.1 4.9	4.5	
				4.1	Middle	-	-	-	-	-		-	-	-	-	-	7.5	-	-	1.9	-	-	4.7
					Bottom	3.1	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	94.7 94.8	94.8	7.5 7.5	7.5	7.5	1.9 1.9	1.9		4.7 4.9	4.8	
10-Mar-17	Cloudy	Moderate	16:48		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	96.6 96.6	96.6	7.6 7.6	7.6	7.6	9.9 9.7	9.8		19.0 18.7	18.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	9.7	-	-	20.4
					Bottom	3.1	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	96.4 96.5	96.5	7.6 7.6	7.6	7.6	9.7 9.3	9.5		22.8 21.0	21.9	
13-Mar-17	Fine	Moderate	08:11		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.9 28.9	28.9	94.9 95.2	95.1	7.5 7.5	7.5	7.5	5.8 5.7	5.8		9.7 10.4	10.1	
				3.7	Middle	-	-	-	-	-		-	-	-	-	-	7.0	-	-	5.7	-	-	10.9
					Bottom	2.7	18.5 18.5	18.5	8.2 8.2	8.2	28.9 28.9	28.9	95.5 95.0	95.3	7.5 7.5	7.5	7.5	5.4 5.8	5.6		12.3 11.0	11.7	
15-Mar-17	Fine	Moderate	08:52		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	28.2 28.2	28.2	94.7 96.4	95.6	7.5 7.6	7.5	7.5	8.3 8.2	8.3		14.6 15.5	15.1	
				4.3	Middle	-	-	-	-	-		-	-	-	-	-	7.0	-	-	8.3	-	-	16.1
					Bottom	3.3	18.7 18.7	18.7	8.1 8.1	8.1	28.2 28.2	28.2	95.4 98.0	96.7	7.5 7.7	7.6	7.6	8.2 8.2	8.2		17.4 16.5	17.0	
17-Mar-17	Cloudy	Moderate	09:51		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	96.2 94.7	95.5	7.6 7.5	7.6	7.6	8.4 8.3	8.4		17.4 18.8	18.1	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	8.5	-	-	19.1
					Bottom	2.7	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	95.3 97.1	96.2	7.5 7.7	7.6	7.6	8.3 8.6	8.5		21.2 19.0	20.1	
20-Mar-17	Sunny	Moderate	11:23		Surface	1.0	19.2 19.3	19.2	8.2 8.2	8.2	28.3 28.3	28.3	93.5 93.3	93.4	7.3 7.3	7.3	7.3	6.6 6.3	6.5		8.2 7.9	8.1	
				3.7	Middle	-	-	-		-		-	-	-	-	-		-	-	6.5	-	-	11.6
					Bottom	2.7	19.2 19.3	19.3	8.2 8.2	8.2	28.3 28.2	28.3	93.2 94.0	93.6	7.3 7.3	7.3	7.3	6.5 6.4	6.5		14.7 15.2	15.0	

Water Quality Monitoring Results at IS8 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:20		Surface	1.0	20.1 20.2	20.2	8.2 8.2	8.2	26.9 26.8	26.8	98.5 99.1	98.8	7.6 7.7	7.7	7.7	6.1 6.3	6.2		4.6 5.5	5.1	
				4.1	Middle	-	-	-		-	-	-	-	-		-	1.1	-	-	6.3	-	-	6.9
					Bottom	3.1	20.1 20.2	20.1	8.2 8.2	8.2	27.2 26.8	27.0	98.4 99.1	98.8	7.6 7.7	7.6	7.6	6.2 6.3	6.3		8.0 9.4	8.7	
24-Mar-17	Sunny	Moderate	15:37		Surface	1.0	20.6 20.6	20.6	8.2 8.2	8.2	26.6 26.6	26.6	97.5 97.5	97.5	7.5 7.5	7.5	7.5	35.4 35.5	35.5		45.6 44.6	45.1	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	34.9	-	-	<u>47.0</u>
					Bottom	3.1	20.6 20.6	20.6	8.2 8.2	8.2	26.6 26.6	26.6	97.4 97.4	97.4	7.5 7.5	7.5	7.5	35.2 33.4	34.3		49.6 48.1	48.9	
27-Mar-17	Fine	Moderate	07:01		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	27.8 27.8	27.8	99.0 97.2	98.1	7.7 7.6	7.7	7.7	4.5 4.5	4.5		7.3 7.4	7.4	
				4.3	Middle	-	-	-		-	-	-		-		-	7.1	-	-	4.6		-	9.5
					Bottom	3.3	19.3 19.3	19.3	8.2 8.2	8.2	27.8 27.8	27.8	100.4 98.1	99.3	7.9 7.7	7.8	7.8	4.5 4.7	4.6		12.1 11.0	11.6	
29-Mar-17	Fine	Moderate	07:48		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	28.9 28.9	28.9	96.2 97.3	96.8	7.4 7.5	7.4	7.4	7.5 7.4	7.5		-	-	
				4.2	Middle	-	-	-		-	-	-		-		-	7.4	-	-	7.5		-	<u>-</u>
					Bottom	3.2	19.8 19.8	19.8	8.2 8.2	8.2	29.0 29.0	29.0	98.1 96.6	97.4	7.5 7.4	7.5	7.5	7.5 7.5	7.5			-	
31-Mar-17	Rainy	Moderate	09:01		Surface	1.0	20.5 20.6	20.5	8.1 8.1	8.1	27.7 27.7	27.7	95.4 97.4	96.4	7.3 7.4	7.4	7.4	8.5 8.0	8.3		-	-	
				4.2	Middle	-	-	-		-	-	-		-		-	7.4	-	-	9.0		-	-
					Bottom	3.2	20.5 20.5	20.5	8.1 8.1	8.1	28.0 28.2	28.1	95.1 96.1	95.6	7.3 7.4	7.3	7.3	9.8 9.5	9.7			-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Susp	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:37		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	30.4 30.4	30.4	97.3 96.3	96.8	7.8 7.7	7.7	7.7	6.9 7.2	7.1		11.0 10.2	10.6	
				10.6	Middle	5.3	17.5 17.5	17.5	8.2 8.2	8.2	30.5 30.4	30.5	96.3 97.8	97.1	7.7 7.8	7.7	7.7	7.2 7.0	7.1	7.1	11.0 12.0	11.5	11.7
					Bottom	9.6	17.5 17.4	17.5	8.2 8.2	8.2	30.5 30.4	30.5	96.5 98.8	97.7	7.7	7.8	7.8	7.2	7.0		13.0 13.1	13.1	
3-Mar-17	Sunny	Moderate	15:56		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	28.2	28.2	98.4 96.4	97.4	7.9	7.8		6.8 6.8	6.8		10.1	9.1	
				10.9	Middle	5.5	17.9 17.9	17.9	8.2 8.2	8.2	28.3 28.3	28.3	97.4 96.2	96.8	7.8	7.7	7.8	6.7 6.7	6.7	6.8	9.9 8.7	9.3	9.3
					Bottom	9.9	17.9 17.8	17.8	8.2 8.2	8.2	28.4 28.4	28.4	97.1 95.8	96.5	7.8	7.7	7.7	6.8 6.9	6.9		9.2 9.5	9.4	
6-Mar-17	Cloudy	Moderate	06:58		Surface	1.0	18.5	18.5	8.1	8.1	28.8	28.8	98.0	98.1	7.7	7.8		2.9	3.0		4.9	4.6	
				10.4	Middle	5.2	18.5 18.4	18.5	8.1 8.1	8.1	28.8 29.1	29.1	98.2 97.9	98.0	7.8	7.7	7.8	3.1 3.2	3.2	3.2	4.3 5.8	5.7	5.7
					Bottom	9.4	18.5 18.5	18.5	8.1 8.1	8.1	29.1 29.3	29.5	98.1 97.8	98.1	7.7	7.7	7.7	3.1 3.3	3.3		5.6 6.0	6.7	
8-Mar-17	Cloudy	Moderate	10:26		Surface	1.0	18.6 18.2	18.2	8.1 8.1	8.1	29.7 29.2	29.2	98.4 101.4	99.9	7.7 8.0	7.9		3.2 4.6	4.7		7.4 8.7	8.7	
				10.2	Middle	5.1	18.2 18.1	18.1	8.1 8.1	8.1	29.3 29.3 29.3	29.3	98.3 97.8 99.0	98.4	7.8	7.8	7.9	4.8	4.6	4.6	8.7 8.7 9.2	9.0	9.2
					Bottom	9.2	18.1 18.1 18.1	18.1	8.1 8.1 8.1	8.1	29.3 29.4 29.3	29.4	99.0 97.0 97.6	97.3	7.9 7.7 7.7	7.7	7.7	4.6 4.6 4.6	4.6		9.2 10.8 9.0	9.9	
10-Mar-17	Cloudy	Moderate	12:09		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	29.3 29.4 29.4	29.4	96.4 95.3	95.9	7.7	7.6		8.4 8.7	8.6		9.0 17.6 18.4	18.0	
				9.9	Middle	5.0	18.0 18.0 18.0	18.0	8.2 8.2 8.2	8.2	29.4 29.4 29.4	29.4	95.3 95.1 96.0	95.6	7.6 7.6 7.6	7.6	7.6	10.5 10.5	10.5	9.8	18.4 18.7	18.6	18.1
					Bottom	8.9	18.0 18.0 18.0	18.0	8.2 8.2	8.2	29.4 29.4 29.4	29.4	95.9 95.1	95.5	7.6	7.6	7.6	10.3	10.3		18.0	17.6	
13-Mar-17	Fine	Moderate	13:24		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.4 29.2 29.1	29.2	94.1 94.2	94.2	7.4	7.4		6.9 6.6	6.8		10.5	10.6	
				11.1	Middle	5.6	18.5 18.5	18.5	8.2 8.2	8.2	29.1 29.2 29.2	29.2	93.5 93.4	93.5	7.4	7.4	7.4	7.3	7.5	7.3	11.1 11.8	11.5	10.9
					Bottom	10.1	18.5 18.5	18.5	8.2 8.2	8.2	29.2 29.2 29.2	29.2	93.6 93.5	93.6	7.4	7.4	7.4	7.2	7.5		10.8	10.6	
15-Mar-17	Fine	Moderate	14:13		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.2 28.7 28.7	28.7	91.5 93.1	92.3	7.2	7.3		8.3	8.4		16.5	16.3	
				10.1	Middle	5.1	18.7 18.6 18.6	18.6	8.2 8.2 8.2	8.2	28.7 28.9 28.9	28.9	93.1 92.4 91.4	91.9	7.3 7.2	7.2	7.3	8.4 8.4 8.0	8.2	8.2	16.0 18.1 19.7	18.9	17.8
					Bottom	9.1	18.6 18.6	18.6	8.2 8.2	8.2	29.0 29.0	29.0	91.4 91.3 92.2	91.8	7.2 7.3	7.2	7.2	8.0 8.2	8.1		19.7 18.8 17.6	18.2	
17-Mar-17	Cloudy	Moderate	15:37		Surface	1.0	18.7	18.6	8.1	8.1	29.0	29.1	90.9	90.7	7.1	7.1		6.5	6.5		11.5	11.6	
				11.3	Middle	5.7	18.6 18.5 18.5	18.5	8.1 8.1	8.1	29.1 29.5 29.5	29.5	90.4 90.1 90.4	90.3	7.1 7.1 7.1	7.1	7.1	6.5 6.3	6.2	6.2	11.6 12.5 13.1	12.8	12.8
					Bottom	10.3	18.5	18.5	8.1 8.1	8.1	29.5 29.6 29.5	29.5	90.4 90.6 90.2	90.4	7.1	7.1	7.1	6.1 5.8	6.0		14.8	14.1	
20-Mar-17	Sunny	Moderate	17:58		Surface	1.0	18.5 20.2	20.0	8.1 8.1	8.1	27.2	27.3	92.9	93.0	7.1	7.2		6.1 3.8	3.7		13.4 7.2	7.9	<u> </u>
				10.7	Middle	5.4	19.7 18.8	18.8	8.1 8.1	8.1	27.4 28.2	28.2	93.0 91.3	91.6	7.2	7.2	7.2	3.6 4.1	4.3	4.1	8.5 9.6	9.0	9.3
					Bottom	9.7	18.8 18.8	18.8	8.1 8.1	8.1	28.2 28.3	28.2	91.8 92.3	92.1	7.2	7.3	7.3	4.4 4.5	4.3		8.3 11.9	11.0	
					2010111	0	18.8		8.1	0	28.2	20.2	91.9	02.1	7.2			4.1			10.1		1

Water Quality Monitoring Results at IS17 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	рH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:35		Surface	1.0	19.5 19.4	19.4	8.1 8.1	8.1	27.1 27.1	27.1	96.7 93.6	95.2	7.6 7.3	7.5	7.5	2.3 2.1	2.2		3.2 4.0	3.6	
				10.7	Middle	5.4	19.2 19.2	19.2	8.1 8.1	8.1	28.4 28.3	28.3	93.6 95.0	94.3	7.3 7.4	7.4	7.0	2.1 2.1	2.1	2.1	3.2 3.3	3.3	4.6
					Bottom	9.7	19.0 19.2	19.1	8.1 8.1	8.1	28.7 28.5	28.6	94.8 93.2	94.0	7.4 7.3	7.3	7.3	2.1 2.1	2.1		6.9 6.6	6.8	1
24-Mar-17	Sunny	Moderate	11:11		Surface	1.0	19.6 19.5	19.5	8.1 8.1	8.1	28.8 28.9	28.9	91.7 94.3	93.0	7.1 7.3	7.2	7.2	8.4 8.1	8.3		9.9 10.0	10.0	
				10.2	Middle	5.1	19.4 19.5	19.4	8.1 8.1	8.1	29.1 29.0	29.0	91.5 92.9	92.2	7.1 7.2	7.1		8.5 8.5	8.5	8.4	9.6 10.3	10.0	10.4
					Bottom	9.2	19.4 19.4	19.4	8.1 8.1	8.1	29.0 29.1	29.1	92.7 91.2	92.0	7.2 7.1	7.1	7.1	8.3 8.5	8.4		11.6 10.8	11.2	
27-Mar-17	Fine	Moderate	12:54		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.6 28.6	28.6	93.0 92.7	92.9	7.2 7.2	7.2	7.2	3.8 3.9	3.9		10.0 9.3	9.7	
				10.4	Middle	5.2	19.5 19.5	19.5	8.2 8.2	8.2	28.9 28.8	28.8	92.7 93.0	92.9	7.2 7.2	7.2	1.2	3.7 3.7	3.7	3.9	9.5 9.6	9.6	10.3
					Bottom	9.4	19.4 19.5	19.4	8.2 8.2	8.2	29.0 28.9	29.0	92.8 92.6	92.7	7.2 7.2	7.2	7.2	4.0 4.1	4.1		12.0 11.3	11.7	
29-Mar-17	Fine	Moderate	13:21		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	29.4 29.4	29.4	95.7 94.2	95.0	7.3 7.2	7.3	7.3	8.7 8.4	8.6		-	-	
				10.1	Middle	5.1	19.8 19.8	19.8	8.2 8.2	8.2	29.6 29.6	29.6	93.7 94.9	94.3	7.2 7.3	7.2	7.5	8.8 8.6	8.7	8.7	-	-	=
					Bottom	9.1	19.7 19.7	19.7	8.2 8.2	8.2	29.8 29.9	29.9	93.6 94.7	94.2	7.2 7.3	7.2	7.2	8.8 8.7	8.8			-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	/ed Oxygen	(mg/L)	٦	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:54		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	29.6 29.6	29.6	97.0 99.0	98.0	7.8 7.9	7.9	7.9	7.4 7.9	7.7		10.9 10.6	10.8	
				10.8	Middle	5.4	17.4 17.4	17.4	8.1 8.1	8.1	29.6 29.7	29.6	100.2 97.1	98.7	8.0 7.8	7.9	7.5	7.8 8.5	8.2	8.2	10.2 9.6	9.9	11.1
					Bottom	9.8	17.4 17.4	17.4	8.2 8.1	8.2	29.6 29.7	29.7	101.9 97.5	99.7	8.2 7.8	8.0	8.0	8.5 8.9	8.7		13.0 12.4	12.7	
3-Mar-17	Sunny	Moderate	10:22		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	29.3 29.2	29.3	97.1 99.5	98.3	7.8 8.0	7.9	7.0	6.8 6.8	6.8		13.4 13.4	13.4	
				11.6	Middle	5.8	17.5 17.5	17.5	8.2 8.2	8.2	29.3 29.2	29.3	97.1 98.6	97.9	7.8 7.9	7.8	7.9	6.9 6.8	6.9	6.9	12.8 12.5	12.7	13.4
					Bottom	10.6	17.5 17.5	17.5	8.2 8.2	8.2	29.2 29.3	29.2	97.9 96.9	97.4	7.8 7.8	7.8	7.8	6.8 6.9	6.9		14.2 14.1	14.2	
6-Mar-17	Cloudy	Moderate	12:05		Surface	1.0	18.6 18.5	18.5	8.1 8.1	8.1	28.2 28.5	28.4	99.0 97.1	98.1	7.8 7.7	7.7	7.7	4.9 4.7	4.8		5.6 6.1	5.9	
				10.9	Middle	5.5	18.4 18.4	18.4	8.1 8.1	8.1	29.4 29.4	29.4	97.8 96.6	97.2	7.7 7.6	7.7	1.1	5.5 5.6	5.6	5.4	5.3 4.2	4.8	5.0
					Bottom	9.9	18.5 18.4	18.5	8.1 8.1	8.1	29.3 29.4	29.4	96.6 97.7	97.2	7.6 7.7	7.7	7.7	5.9 5.5	5.7		4.1 4.4	4.3	
8-Mar-17	Cloudy	Moderate	14:59		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	29.4 29.4	29.4	93.4 94.4	93.9	7.4 7.5	7.4	7.4	3.3 3.4	3.4		5.5 4.5	5.0	
				10.7	Middle	5.4	18.1 18.1	18.1	8.1 8.1	8.1	29.6 29.6	29.6	93.3 94.6	94.0	7.4 7.5	7.4	7.4	3.5 3.3	3.4	3.4	7.8 6.2	7.0	6.8
					Bottom	9.7	18.1 18.1	18.1	8.1 8.1	8.1	29.6 29.7	29.6	93.7 96.4	95.1	7.4 7.6	7.5	7.5	3.1 3.4	3.3		7.9 8.9	8.4	
10-Mar-17	Cloudy	Moderate	17:03		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	95.7 95.7	95.7	7.6 7.5	7.5	7.5	5.8 5.6	5.7		10.1 9.9	10.0	
				10.3	Middle	5.2	18.2 18.2	18.2	8.2 8.2	8.2	29.6 29.7	29.7	95.1 95.0	95.1	7.5 7.5	7.5	7.5	5.8 5.8	5.8	5.8	8.1 9.8	9.0	11.1
					Bottom	9.3	18.1 18.2	18.2	8.2 8.2	8.2	29.8 29.7	29.7	95.0 95.1	95.1	7.5 7.5	7.5	7.5	5.8 5.9	5.9		15.0 13.7	14.4	
13-Mar-17	Fine	Moderate	07:49		Surface	1.0	18.4 18.4	18.4	8.2 8.2	8.2	29.0 29.0	29.0	93.8 94.0	93.9	7.4 7.4	7.4	7.4	6.1 6.6	6.4		9.4 8.7	9.1	
				11.2	Middle	5.6	18.4 18.4	18.4	8.2 8.2	8.2	29.1 29.1	29.1	94.0 93.5	93.8	7.4 7.4	7.4	7.4	8.0 8.1	8.1	7.4	8.9 9.9	9.4	10.0
					Bottom	10.2	18.4 18.4	18.4	8.2 8.2	8.2	29.1 29.1	29.1	94.2 93.6	93.9	7.4 7.4	7.4	7.4	7.8 7.3	7.6		10.9 11.9	11.4	
15-Mar-17	Fine	Moderate	08:38		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	28.0 28.0	28.0	98.2 93.1	95.7	7.8 7.4	7.6	7.5	7.5 7.1	7.3		10.3 11.6	11.0	
				10.2	Middle	5.1	18.7 18.7	18.7	8.1 8.1	8.1	28.0 28.0	28.0	92.7 95.3	94.0	7.3 7.5	7.4		7.8 7.8	7.8	7.7	12.6 13.9	13.3	13.8
					Bottom	9.2	18.7 18.7	18.7	8.1 8.1	8.1	28.0 28.1	28.0	94.1 92.5	93.3	7.4 7.3	7.4	7.4	7.8 7.9	7.9		16.5 17.6	17.1	
17-Mar-17	Cloudy	Moderate	09:27		Surface	1.0	18.6 18.5	18.6	8.1 8.1	8.1	27.9 28.0	27.9	92.7 91.8	92.3	7.4 7.3	7.3	7.3	5.7 6.2	6.0		8.6 8.4	8.5	
				11.6	Middle	5.8	18.5 18.5	18.5	8.1 8.1	8.1	28.2 28.2	28.2	91.5 92.8	92.2	7.3 7.3	7.3		8.3 8.1	8.2	7.5	9.2 9.5	9.4	10.1
					Bottom	10.6	18.5 18.5	18.5	8.1 8.1	8.1	28.3 28.3	28.3	97.1 91.8	94.5	7.7 7.3	7.5	7.5	8.5 8.3	8.4		12.5 12.2	12.4	
20-Mar-17	Sunny	Moderate	10:57		Surface	1.0	19.3 19.1	19.2	8.2 8.1	8.2	28.3 28.4	28.3	92.9 92.0	92.5	7.3 7.2	7.2	7.2	2.5 2.6	2.6		4.4 3.5	4.0]
				10.9	Middle	5.5	18.8 18.8	18.8	8.2 8.1	8.2	28.8 28.7	28.8	91.0 91.6	91.3	7.1 7.2	7.2		2.8 2.6	2.7	2.7	6.5 6.4	6.5	5.6
					Bottom	9.9	18.8 18.9	18.8	8.1 8.2	8.2	28.8 28.8	28.8	91.8 91.4	91.6	7.2 7.2	7.2	7.2	2.7 2.9	2.8		6.6 5.8	6.2	

Water Quality Monitoring Results at IS17 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	ъН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:33		Surface	1.0	19.5 19.6	19.6	8.2 8.2	8.2	27.8 27.8	27.8	94.3 96.4	95.4	7.3 7.5	7.4	7.4	2.4 2.4	2.4		5.7 6.8	6.3	
				10.7	Middle	5.4	19.1 18.9	19.0	8.2 8.2	8.2	29.6 29.9	29.7	95.8 93.4	94.6	7.5 7.3	7.4	7.4	2.3 2.3	2.3	2.4	5.0 5.6	5.3	6.0
					Bottom	9.7	19.0 18.9	19.0	8.2 8.2	8.2	29.8 30.0	29.9	94.7 92.8	93.8	7.4 7.2	7.3	7.3	2.3 2.4	2.4		6.4 6.6	6.5	
24-Mar-17	Sunny	Moderate	15:52		Surface	1.0	20.6 20.7	20.7	8.2 8.2	8.2	27.1 27.1	27.1	95.5 91.8	93.7	7.4 7.1	7.3	7.2	7.3 7.4	7.4		13.4 13.5	13.5	
				10.7	Middle	5.4	19.3 19.3	19.3	8.2 8.2	8.2	28.5 28.6	28.6	93.1 91.2	92.2	7.2 7.0	7.1	1.2	7.7 7.6	7.7	7.5	12.8 13.8	13.3	14.6
					Bottom	9.7	19.5 19.3	19.4	8.2 8.2	8.2	28.4 28.8	28.6	94.0 90.5	92.3	7.2 7.0	7.1	7.1	7.3 7.5	7.4		17.9 16.0	17.0	
27-Mar-17	Fine	Moderate	06:48		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	28.7 28.7	28.7	97.3 92.7	95.0	7.5 7.2	7.4	7.4	3.5 3.6	3.6		7.0 6.6	6.8	
				10.8	Middle	5.4	19.4 19.4	19.4	8.2 8.2	8.2	29.2 29.2	29.2	92.3 95.5	93.9	7.2 7.4	7.3	7.4	4.3 4.4	4.4	4.1	7.5 7.7	7.6	7.5
					Bottom	9.8	19.4 19.4	19.4	8.2 8.2	8.2	29.2 29.2	29.2	94.2 92.2	93.2	7.3 7.2	7.2	7.2	4.4 4.3	4.4		7.5 8.4	8.0	
29-Mar-17	Fine	Moderate	07:36		Surface	1.0	19.8 19.7	19.8	8.2 8.2	8.2	29.4 29.4	29.4	94.9 94.2	94.6	7.3 7.2	7.3	7.3	7.1 7.2	7.2		-	-	
				10.7	Middle	5.4	19.7 19.7	19.7	8.2 8.2	8.2	29.5 29.5	29.5	94.8 94.0	94.4	7.3 7.2	7.3	7.5	7.2 7.4	7.3	7.3	-	-	=
					Bottom	9.7	19.7 19.7	19.7	8.2 8.2	8.2	29.5 29.6	29.6	94.1 95.7	94.9	7.2 7.4	7.3	7.3	7.5 7.4	7.5		-	-	
31-Mar-17	Rainy	Moderate	08:49		Surface	1.0	20.5 20.5	20.5	8.1 8.1	8.1	28.1 28.0	28.1	93.8 94.8	94.3	7.2 7.2	7.2	7.2	8.5 8.2	8.4		-	-	
				10.6	Middle	5.3	20.3 20.4	20.4	8.1 8.1	8.1	28.5 28.3	28.4	93.4 94.3	93.9	7.1 7.2	7.2	1.2	8.2 8.2	8.2	8.3	-	-	=
					Bottom	9.6	20.2 20.3	20.3	8.1 8.1	8.1	28.9 28.8	28.8	94.0 93.4	93.7	7.2 7.1	7.2	7.2	8.1 8.3	8.2		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	۲	urbidity(NT	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	-		Surface	-	-	-		-	-	-	-	-	-	-	7.7	-	-		-	-	
				1.6	Middle	0.8	17.6 17.6	17.6	8.2 8.2	8.2	29.0 29.3	29.2	95.7 96.5	96.1	7.7 7.7	7.7	1.1	10.4 10.2	10.3	10.3	11.6 11.9	11.8	11.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
3-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-			-	
				1.4	Middle	0.7	18.0 18.0	18.0	8.3 8.3	8.3	26.5 26.7	26.6	93.7 96.0	94.9	7.6 7.7	7.7	1.1	8.4 8.6	8.5	8.5	11.7 11.3	11.5	11.5
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
6-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7 7	-	-			-	
				1.4	Middle	0.7	18.6 18.6	18.6	8.2 8.2	8.2	29.7 29.7	29.7	98.7 98.7	98.7	7.7 7.7	7.7	7.7	4.3 4.4	4.4	4.4	7.0 6.4	6.7	6.7
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
8-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.2	Middle	0.6	18.3 18.3	18.3	8.1 8.1	8.1	29.2 29.2	29.2	95.9 95.9	95.9	7.6 7.6	7.6	7.0	3.6 3.6	3.6	3.6	10.9 9.7	10.3	10.3
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
10-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-		-	-	
				1.4	Middle	0.7	18.2 18.3	18.3	8.2 8.2	8.2	29.5 29.5	29.5	97.0 97.0	97.0	7.7 7.7	7.7	1.1	5.9 6.1	6.0	6.0	12.2 11.9	12.1	12.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
13-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
				1.6	Middle	0.8	18.8 18.8	18.8	8.2 8.2	8.2	29.7 29.6	29.7	94.1 93.6	93.9	7.4 7.3	7.3	7.5	10.7 10.5	10.6	10.6	16.8 17.7	17.3	17.3
					Bottom	-		-		-	-	-		-	-	-	-	-	-		-	-	
15-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.4	Middle	0.7	18.9 18.9	18.9	8.3 8.2	8.3	26.1 26.5	26.3	96.1 95.7	95.9	7.7 7.6	7.6	7.0	10.2 10.4	10.3	10.3	15.4 16.5	16.0	16.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
17-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.8	Middle	0.9	18.7 18.7	18.7	8.2 8.2	8.2	27.7 27.8	27.8	94.9 95.1	95.0	7.5 7.5	7.5	1.5	9.5 9.5	9.5	9.5	19.3 19.4	19.4	19.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	
20-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.8	Middle	0.9	20.2 20.2	20.2	8.2 8.2	8.2	25.4 25.5	25.4	94.5 96.2	95.4	7.4 7.5	7.4	7.7	6.6 6.5	6.6	6.6	16.0 16.1	16.1	16.1
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-	1	-	-	

Water Quality Monitoring Results at SR3 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ĥ	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.4	Middle	0.7	21.3 21.3	21.3	8.1 8.1	8.1	25.8 25.8	25.8	97.9 97.9	97.9	7.5 7.5	7.5	7.5	3.5 3.4	3.5	3.5	6.7 6.8	6.8	6.8
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
24-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-		-	-	
				1.6	Middle	0.8	20.2 20.2	20.2	8.2 8.2	8.2	27.9 27.9	27.9	98.3 97.9	98.1	7.6 7.5	7.5	7.5	5.4 5.1	5.3	5.3	9.0 10.3	9.7	9.7
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	
27-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.2	Middle	0.6	19.5 19.5	19.5	8.2 8.2	8.2	27.4 27.4	27.4	96.2 97.1	96.7	7.5 7.6	7.6	7.0	6.7 6.6	6.7	6.7	10.8 11.9	11.4	11.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
29-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	20.1 20.2	20.2	8.2 8.3	8.3	28.9 28.7	28.8	92.2 90.0	91.1	7.1 6.9	7.0	7.0	10.7 10.4	10.6	10.6	-	-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	/ed Oxyger	(mg/L)	T T	Furbidity(NT	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	17.4 17.4	17.4	8.1 8.1	8.1	29.7 29.7	29.7	96.1 96.1	96.1	7.7 7.7	7.7	7.7	8.4 8.3	8.4	8.4	17.3 18.6	18.0	18.0
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
3-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				1.6	Middle	0.8	17.7 17.7	17.7	8.1 8.1	8.1	29.8 29.8	29.8	96.8 96.9	96.9	7.7 7.7	7.7	7.7	8.5 8.5	8.5	8.5	13.9 15.8	14.9	14.9
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
6-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	18.6 18.6	18.6	8.2 8.2	8.2	29.6 29.7	29.7	99.2 99.0	99.1	7.8 7.8	7.8	7.8	3.6 3.8	3.7	3.7	7.3 6.2	6.8	6.8
					Bottom	-	-	-		-	-	-		-	-	-	-	-	-		-	-	
8-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
				1.4	Middle	0.7	18.4 18.4	18.4	8.2 8.2	8.2	29.2 29.3	29.2	99.7 98.7	99.2	7.9 7.8	7.8	7.8	4.5 4.5	4.5	4.5	8.8 10.4	9.6	9.6
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
10-Mar-17	Cloudy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
				1.4	Middle	0.7	18.5 18.5	18.5	8.2 8.2	8.2	29.3 29.3	29.3	95.9 96.4	96.2	7.6 7.6	7.6	7.0	5.6 5.6	5.6	5.6	12.5 11.1	11.8	11.8
					Bottom	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	
13-Mar-17	Fine	Moderate	-		Surface	-	-	-		-	-	-		-	-	-	7.4	-	-		-	-	
				1.6	Middle	0.8	18.6 18.6	18.6	8.2 8.2	8.2	29.6 29.6	29.6	94.9 94.8	94.9	7.4 7.4	7.4	7.4	10.0 10.5	10.3	10.3	23.3 23.2	23.3	23.3
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Mar-17	Fine	Moderate	-		Surface	-	-	-		-	-	-		-	-	-	7.4	-	-		-	-	
				1.6	Middle	0.8	18.8 18.8	18.8	8.1 8.1	8.1	28.4 28.4	28.4	93.7 93.7	93.7	7.4 7.4	7.4		9.8 9.6	9.7	9.7	18.8 17.3	18.1	18.1
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
17-Mar-17	Cloudy	Moderate	-		Surface	-	-	-		-	-	-	-	-	-	-	7.4	-	-		-	-	
				1.6	Middle	0.8	18.5 18.5	18.5	8.2 8.2	8.2	28.7 28.7	28.7	94.1 94.0	94.1	7.4 7.4	7.4		9.1 9.5	9.3	9.3	19.5 19.3	19.4	19.4
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
20-Mar-17	Sunny	Moderate	-		Surface	-	-	-		-	-	-		-	-	-	7.5	-	-		-	-	
				1.6	Middle	0.8	19.6 19.7	19.7	8.1 8.1	8.1	28.4 28.4	28.4	97.2 97.3	97.3	7.5 7.5	7.5		7.7 7.3	7.5	7.5	13.8 12.3	13.1	13.1
					Bottom	-	-	-		-	-	-		-	-	-	•	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	/ed Oxygen	(mg/L)	Т	urbidity(NTl	J)	Susper	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
				1.2	Middle	0.6	20.7 20.7	20.7	8.2 8.2	8.2	25.2 25.5	25.4	100.4 100.6	100.5	7.8 7.8	7.8	7.8	4.4 4.6	4.5	4.5	8.2 9.1	8.7	8.7
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
24-Mar-17	Sunny	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
				1.2	Middle	0.6	21.1 21.0	21.0	8.2 8.2	8.2	25.1 24.8	25.0	102.1 100.7	101.4	7.9 7.8	7.8	7.0	5.1 5.1	5.1	5.1	11.5 11.9	11.7	11.7
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
27-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-		-	-	
				1.4	Middle	0.7	19.4 19.4	19.4	8.2 8.2	8.2	27.3 27.3	27.3	91.9 91.9	91.9	7.2 7.2	7.2	1.2	6.0 6.0	6.0	6.0	9.9 9.8	9.9	9.9
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
29-Mar-17	Fine	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
				1.6	Middle	0.8	20.0 20.0	20.0	8.2 8.2	8.2	29.0 29.0	29.0	94.7 94.7	94.7	7.3 7.3	7.3	7.5	8.7 8.7	8.7	8.7	-	-	-
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	
31-Mar-17	Rainy	Moderate	-		Surface	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-		-	-	
				1.6	Middle	0.8	20.8 20.8	20.8	8.1 8.1	8.1	28.8 28.8	28.8	94.4 94.4	94.4	7.1 7.1	7.1	1.1	11.3 11.4	11.4	11.4	-	-	-
					Bottom	-	-	-		-	-	-	-	-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	þ	ЪН	Salin	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	n (mg/L)	1	Furbidity(NT	U)	Suspe	ended Solid	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:57		Surface	1.0	17.7 17.7	17.7	8.2 8.2	8.2	31.1 31.1	31.1	97.1 96.9	97.0	7.7 7.7	7.7		7.0 7.5	7.3		12.1 12.9	12.5	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	7.7	-	-	12.7
					Bottom	2.6	17.7 17.6	17.7	8.2 8.2	8.2	31.1 31.1	31.1	97.3 96.8	97.1	7.7	7.7	7.7	8.3 7.6	8.0		13.1 12.7	12.9	
3-Mar-17	Sunny	Moderate	15:35		Surface	1.0	18.2 18.1	18.2	8.2 8.2	8.2	28.1 28.1	28.1	96.9 96.7	96.8	7.7	7.7		10.2 10.6	10.4		10.6	10.8	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-	7.7	-	-	10.5	-	-	13.2
					Bottom	2.7	18.1 17.9	18.0	8.2 8.2	8.2	28.1 28.2	28.2	96.5 96.2	96.4	7.7 7.7	7.7	7.7	10.7 10.5	10.6		15.0 16.0	15.5	
6-Mar-17	Cloudy	Moderate	07:26		Surface	1.0	18.5 18.6	18.6	8.1 8.1	8.1	29.2 29.2 29.2	29.2	98.7 98.8	98.8	7.8	7.8		7.3	7.4		10.3	10.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	7.5	-	-	10.7
					Bottom	2.7	18.6 18.6	18.6	8.1 8.1	8.1	29.6 29.6	29.6	99.0 98.9	99.0	7.8 7.8	7.8	7.8	7.5 7.4	7.5		10.3 11.0	10.7	
8-Mar-17	Cloudy	Moderate	10:48		Surface	1.0	18.3 18.2	18.3	8.1 8.1	8.1	29.3 29.3	29.3	95.3 95.2	95.3	7.5 7.5	7.5		5.5 5.6	5.6		6.7 7.4	7.1	
				3.8	Middle	-	-	-	-	-		-	-	-	-	-	7.5	-	-	5.7	-	-	7.8
					Bottom	2.8	18.2 18.2	18.2	8.1 8.1	8.1	29.3 29.3	29.3	95.3 95.1	95.2	7.5 7.5	7.5	7.5	5.6 5.7	5.7		8.3 8.4	8.4	
10-Mar-17	Cloudy	Moderate	12:30		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.1 29.0	29.1	95.0 95.1	95.1	7.6 7.6	7.6	7.6	7.4 7.8	7.6		12.2 12.9	12.6	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	7.6	-	-	13.1
					Bottom	2.7	18.1 18.1	18.1	8.1 8.1	8.1	29.0 29.0	29.0	95.0 95.0	95.0	7.5 7.5	7.5	7.5	7.6 7.6	7.6		13.9 13.3	13.6	
13-Mar-17	Fine	Moderate	12:48		Surface	1.0	18.9 18.9	18.9	8.2 8.2	8.2	29.4 29.5	29.5	95.7 95.6	95.7	7.5 7.5	7.5	7.5	6.1 5.9	6.0		9.7 10.3	10.0	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.1	-	-	11.5
					Bottom	2.6	18.8 18.8	18.8	8.2 8.2	8.2	29.6 29.6	29.6	95.4 95.3	95.4	7.5 7.5	7.5	7.5	5.8 6.4	6.1		12.4 13.3	12.9	
15-Mar-17	Fine	Moderate	13:53		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	28.7 28.8	28.8	98.2 96.6	97.4	7.7 7.6	7.6	7.6	11.1 10.9	11.0		20.6 20.4	20.5	
				3.7	Middle	I	-	-	-	-	-	-		-	-	-	7.0	-	-	11.0	-	-	20.0
					Bottom	2.7	18.8 18.8	18.8	8.2 8.2	8.2	28.8 28.7	28.7	97.3 99.8	98.6	7.6 7.8	7.7	7.7	10.9 10.9	10.9		19.9 18.9	19.4	
17-Mar-17	Cloudy	Moderate	14:56		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	28.9 28.9	28.9	96.3 97.0	96.7	7.6 7.6	7.6	7.6	6.8 7.0	6.9		11.7 11.3	11.5	
				3.6	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	7.0	-	-	11.8
					Bottom	2.6	18.7 18.7	18.7	8.2 8.2	8.2	28.9 28.9	28.9	97.5 96.6	97.1	7.7 7.6	7.6	7.6	7.2 6.8	7.0		12.9 11.1	12.0	
20-Mar-17	Sunny	Moderate	17:27		Surface	1.0	20.0 20.2	20.1	8.1 8.1	8.1	27.1 27.1	27.1	96.4 98.0	97.2	7.5 7.6	7.5	7.5	6.3 6.6	6.5		11.3 10.1	10.7	
				3.7	Middle	-	-	-	-	-	-	-		-	-	-	1.0	-	-	6.5	-	-	11.5
					Bottom	2.7	20.0 19.9	20.0	8.1 8.1	8.1	27.1 27.1	27.1	95.9 96.6	96.3	7.4 7.5	7.5	7.5	6.1 6.7	6.4		11.9 12.7	12.3	

Water Quality Monitoring Results at SR4(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ĥ	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:56		Surface	1.0	20.1 20.0	20.1	8.1 8.1	8.1	26.1 26.2	26.2	95.2 95.1	95.2	7.4 7.4	7.4	7.4	3.4 3.3	3.4		6.6 4.8	5.7	
				3.7	Middle	-	-	-	-	-		-	-	-	-	-	7.4	-	-	3.4	-	-	6.1
					Bottom	2.7	20.0 20.1	20.1	8.1 8.1	8.1	26.2 26.4	26.3	95.1 95.2	95.2	7.4 7.4	7.4	7.4	3.3 3.5	3.4		5.9 7.0	6.5	
24-Mar-17	Sunny	Moderate	11:32		Surface	1.0	20.3 20.3	20.3	8.1 8.1	8.1	27.5 27.5	27.5	99.0 99.0	99.0	7.6 7.6	7.6	7.6	22.7 23.2	23.0		27.0 26.2	26.6	
				3.7	Middle	-	-	-	-	-		-		-		-	7.0	-	-	22.8	-	-	26.7
					Bottom	2.7	20.3 20.3	20.3	8.1 8.1	8.1	27.5 27.5	27.5	99.0 98.9	99.0	7.6 7.6	7.6	7.6	22.6 22.6	22.6		26.4 26.9	26.7	
27-Mar-17	Fine	Moderate	12:33		Surface	1.0	19.6 19.7	19.7	8.2 8.2	8.2	27.4 27.4	27.4	99.0 96.6	97.8	7.7 7.5	7.6	7.6	14.3 14.9	14.6		20.8 19.4	20.1	
				3.9	Middle	-	-	-	-	-	-	-	-	-		-	7.0	-	-	14.6	-	-	21.5
					Bottom	2.9	19.4 19.6	19.5	8.2 8.2	8.2	27.5 27.4	27.5	100.8 97.5	99.2	7.9 7.6	7.7	7.7	14.5 14.5	14.5		23.8 22.0	22.9	
29-Mar-17	Fine	Moderate	13:01		Surface	1.0	20.1 20.1	20.1	8.2 8.2	8.2	29.2 29.2	29.2	95.7 96.1	95.9	7.3 7.4	7.3	7.3	10.4 10.5	10.5		-	-	
				3.6	Middle	-	-	-	-	-	-	-	-	-		-	7.5	-	-	10.6	-	-	-
					Bottom	2.6	20.1 20.0	20.0	8.2 8.2	8.2	29.2 29.1	29.2	95.9 95.5	95.7	7.3 7.3	7.3	7.3	10.4 10.8	10.6		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-	-	-	-	-		-		-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	þ	ЪН	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxyger	(mg/L)	F	Furbidity(NT	U)	Suspe	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:32		Surface	1.0	17.3 17.3	17.3	8.1 8.1	8.1	29.7 29.7	29.7	95.2 95.4	95.3	7.7 7.7	7.7		11.2 11.7	11.5		15.2 16.9	16.1	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	12.0	-	-	18.4
					Bottom	2.8	17.3 17.3	17.3	8.1 8.1	8.1	29.7 29.7	29.7	95.3 95.1	95.2	7.7 7.6	7.7	7.7	12.2 12.5	12.4		21.3 19.9	20.6	
3-Mar-17	Sunny	Moderate	10:49		Surface	1.0	17.8 17.8	17.8	8.1 8.1	8.1	29.4 29.4	29.4	95.7 95.6	95.7	7.6 7.6	7.6	7.0	12.7 12.2	12.5		20.8 21.8	21.3	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	12.6	-	-	21.4
					Bottom	2.8	17.8 17.8	17.8	8.1 8.1	8.1	29.4 29.4	29.4	95.7 95.5	95.6	7.6 7.6	7.6	7.6	12.5 12.6	12.6		20.5 22.3	21.4	
6-Mar-17	Cloudy	Moderate	11:43		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	27.8 27.7	27.7	99.1 98.6	98.9	7.9 7.8	7.8	= 0	2.5 2.5	2.5		3.7 4.9	4.3	
				3.8	Middle	-	-	-	-	-	-	-		-	-	-	7.8	-	-	2.5	-	-	3.9
					Bottom	2.8	18.6 18.5	18.5	8.1 8.1	8.1	28.1 28.5	28.3	98.7 99.3	99.0	7.8 7.9	7.8	7.8	2.5 2.5	2.5		3.7 3.3	3.5	
8-Mar-17	Cloudy	Moderate	14:39		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	96.6 97.7	97.2	7.7	7.7		1.9 1.8	1.9		4.7 6.2	5.5	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	1.9	-	-	5.5
					Bottom	2.8	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	97.1 98.7	97.9	7.7 7.8	7.8	7.8	1.8 1.7	1.8		5.2 5.5	5.4	
10-Mar-17	Cloudy	Moderate	16:40		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.4	29.4	96.6 96.7	96.7	7.6 7.6	7.6	7.0	8.6 8.4	8.5		15.7 15.6	15.7	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	8.7	-	-	16.2
					Bottom	2.8	18.3 18.3	18.3	8.2 8.2	8.2	29.4 29.5	29.4	96.6 96.6	96.6	7.6 7.6	7.6	7.6	8.7 8.8	8.8		15.8 17.3	16.6	
13-Mar-17	Fine	Moderate	08:19		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.9 28.9	28.9	94.4 94.3	94.4	7.5 7.5	7.5	7.5	5.7 6.3	6.0		8.6 9.6	9.1	
				3.5	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.2	-	-	10.4
					Bottom	2.5	18.4 18.5	18.4	8.2 8.2	8.2	28.9 28.9	28.9	94.3 94.3	94.3	7.4 7.4	7.4	7.4	6.3 6.2	6.3		11.0 12.2	11.6	
15-Mar-17	Fine	Moderate	08:59		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	28.2 28.2	28.2	92.0 92.1	92.1	7.3 7.3	7.3	7.3	8.0 8.3	8.2		14.1 14.2	14.2	
				3.9	Middle	-	-	-	-	-		-	-	-	-	-	7.5	-	-	8.2	-	-	15.8
					Bottom	2.9	18.7 18.7	18.7	8.1 8.1	8.1	28.3 28.2	28.3	92.0 92.0	92.0	7.3 7.3	7.3	7.3	8.1 8.0	8.1		16.9 17.9	17.4	
17-Mar-17	Cloudy	Moderate	10:00		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	92.4 92.4	92.4	7.3 7.3	7.3	7.3	7.6 7.8	7.7		20.2 21.5	20.9	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	1.3	-	-	7.7	-	-	22.6
					Bottom	2.7	18.5 18.5	18.5	8.2 8.2	8.2	28.4 28.4	28.4	92.4 92.3	92.4	7.3 7.3	7.3	7.3	7.7 7.7	7.7		24.1 24.3	24.2	
20-Mar-17	Sunny	Moderate	11:30		Surface	1.0	19.2 19.2	19.2	8.1 8.1	8.1	28.3 28.3	28.3	94.3 94.5	94.4	7.4 7.4	7.4	7.4	5.5 5.7	5.6		11.2 10.7	11.0	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	6.0	-	-	11.8
					Bottom	2.8	19.2 19.2	19.2	8.2 8.1	8.2	28.3 28.3	28.3	94.2 94.2	94.2	7.4 7.4	7.4	7.4	6.6 6.1	6.4		13.1 12.0	12.6	1

Water Quality Monitoring Results at SR4(N) - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:12		Surface	1.0	20.2 20.2	20.2	8.2 8.2	8.2	26.7 26.8	26.7	99.2 99.1	99.2	7.7 7.7	7.7	7.7	5.3 5.4	5.4		7.8 7.8	7.8	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.5	-	-	8.6
					Bottom	2.8	20.1 20.2	20.1	8.2 8.2	8.2	26.9 26.9	26.9	98.6 99.0	98.8	7.6 7.7	7.7	7.7	5.6 5.6	5.6		8.9 9.6	9.3	
24-Mar-17	Sunny	Moderate	15:31		Surface	1.0	20.6 20.5	20.6	8.2 8.2	8.2	26.5 26.6	26.6	97.5 97.3	97.4	7.5 7.5	7.5	7.5	33.6 33.6	33.6		28.1 28.6	28.4	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	33.6	-	-	29.5
					Bottom	2.8	20.5 20.5	20.5	8.2 8.2	8.2	26.6 26.6	26.6	97.2 97.2	97.2	7.5 7.5	7.5	7.5	33.6 33.5	33.6		30.5 30.7	30.6	
27-Mar-17	Fine	Moderate	07:06		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	27.9 27.9	27.9	94.0 94.0	94.0	7.3 7.3	7.3	7.3	4.2 4.2	4.2		8.0 8.7	8.4	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	4.2	-	-	7.9
					Bottom	2.9	19.4 19.3	19.4	8.2 8.2	8.2	27.9 27.9	27.9	94.0 94.0	94.0	7.3 7.3	7.3	7.3	4.1 4.2	4.2		7.3 7.5	7.4	
29-Mar-17	Fine	Moderate	07:56		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	28.9 28.9	28.9	95.1 95.2	95.2	7.3 7.3	7.3	7.3	6.7 6.8	6.8		-	-	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.8	-	-	<u>-</u>
					Bottom	2.8	19.8 19.8	19.8	8.2 8.2	8.2	28.9 29.0	29.0	95.1 95.3	95.2	7.3 7.3	7.3	7.3	6.8 6.8	6.8			-	
31-Mar-17	Rainy	Moderate	09:06		Surface	1.0	20.5 20.5	20.5	8.1 8.1	8.1	27.7 27.8	27.7	93.9 93.9	93.9	7.2 7.2	7.2	7.2	7.8 7.9	7.9		-	-	
				3.7	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	7.9	-	-	=
					Bottom	2.7	20.5 20.5	20.5	8.1 8.1	8.1	27.8 28.1	28.0	93.9 93.9	93.9	7.2 7.2	7.2	7.2	7.8 7.9	7.9		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Temper	ature (°C)	F	ъН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	/ed Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	14:28		Surface	1.0	17.7 17.7	17.7	8.0 8.1	8.1	32.4 32.3	32.4	95.4 96.3	95.9	7.5 7.5	7.5	7.5	6.2 6.3	6.3		8.0 9.8	8.9	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	6.5	-	-	9.3
					Bottom	4.1	17.6 17.5	17.6	8.1 8.1	8.1	32.6 32.7	32.7	94.8 94.6	94.7	7.4 7.4	7.4	7.4	6.7 6.6	6.7		9.6 9.7	9.7	
3-Mar-17	Sunny	Moderate	15:54		Surface	1.0	18.0 18.0	18.0	8.3 8.3	8.3	32.4 32.4	32.4	100.6 98.6	99.6	7.9 7.7	7.8	7.0	5.1 5.3	5.2		9.1 9.6	9.4	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	5.5	-	-	9.0
					Bottom	4.3	17.9 17.8	17.9	8.2 8.3	8.3	32.5 32.5	32.5	100.4 99.7	100.1	7.8 7.8	7.8	7.8	5.4 5.9	5.7		8.0 9.1	8.6	
6-Mar-17	Cloudy	Moderate	07:03		Surface	1.0	18.6 18.5	18.6	8.2 8.2	8.2	29.5 29.5	29.5	96.3 96.4	96.4	7.6 7.6	7.6	7.6	1.6 1.7	1.7		6.2 5.1	5.7	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	1.7	-	-	6.2
					Bottom	4.4	18.5 18.5	18.5	8.2 8.2	8.2	29.7 29.6	29.7	95.6 96.0	95.8	7.5 7.5	7.5	7.5	1.8 1.6	1.7		7.0 6.3	6.7	
8-Mar-17	Cloudy	Moderate	10:01		Surface	1.0	18.1 18.1	18.1	8.2 8.1	8.1	31.8 31.8	31.8	96.5 96.6	96.6	7.5 7.5	7.5	7.5	1.2 1.1	1.2		6.7 8.2	7.5	
				5.2	Middle	•	-	-	-	-		-		-	-	-	7.5	-	-	1.3	-	-	6.8
					Bottom	4.2	18.2 18.2	18.2	8.2 8.1	8.1	32.5 32.0	32.2	95.8 96.5	96.2	7.5 7.5	7.5	7.5	1.3 1.4	1.4		6.5 5.7	6.1	
10-Mar-17	Cloudy	Moderate	12:02		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	33.1 33.1	33.1	95.5 94.9	95.2	7.4 7.4	7.4	7.4	3.8 3.6	3.7		6.8 7.8	7.3	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.9	-	-	7.5
					Bottom	3.8	18.2 18.1	18.2	8.1 8.1	8.1	33.1 33.1	33.1	95.4 95.7	95.6	7.4 7.4	7.4	7.4	4.0 4.1	4.1		8.0 7.2	7.6	
13-Mar-17	Fine	Moderate	13:12		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	31.5 31.8	31.6	95.0 93.6	94.3	7.3 7.2	7.3	7.3	4.8 5.0	4.9		8.3 9.9	9.1	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-	5.0	-	-	9.5
					Bottom	4.2	18.8 18.7	18.8	8.1 8.1	8.1	31.9 32.0	31.9	92.8 93.1	93.0	7.2 7.2	7.2	7.2	5.1 5.0	5.1		9.5 10.2	9.9	
15-Mar-17	Fine	Moderate	14:15		Surface	1.0	18.7 18.6	18.7	8.1 8.0	8.1	32.0 32.0	32.0	94.0 93.0	93.5	7.3 7.2	7.2	7.2	5.6 5.5	5.6		10.6 11.6	11.1	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.8	-	-	12.0
					Bottom	3.7	18.6 18.6	18.6	8.1 8.1	8.1	32.0 32.0	32.0	92.1 91.6	91.9	7.1 7.1	7.1	7.1	5.9 5.8	5.9		13.5 12.1	12.8	
17-Mar-17	Cloudy	Moderate	15:22		Surface	1.0	18.8 18.8	18.8	8.1 8.0	8.1	31.2 31.2	31.2	93.4 93.8	93.6	7.2 7.3	7.2	7.2	4.4 4.4	4.4		10.3 9.6	10.0	7
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	.=	-	-	4.6	-	-	10.2
					Bottom	3.8	18.7 18.8	18.8	8.1 8.0	8.1	31.7 31.4	31.6	92.9 93.3	93.1	7.2 7.2	7.2	7.2	4.8 4.8	4.8		11.0 9.6	10.3	
20-Mar-17	Sunny	Moderate	18:19		Surface	1.0	19.7 19.7	19.7	8.1 8.1	8.1	31.1 31.1	31.1	95.2 96.2	95.7	7.5 7.5	7.5	7.5	2.7 2.9	2.8		4.7 3.1	3.9	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.1	-	-	4.0
					Bottom	3.7	19.4 19.5	19.5	8.1 8.1	8.1	31.6 31.6	31.6	96.3 95.0	95.7	7.5 7.5	7.5	7.5	3.2 3.3	3.3		4.1 4.1	4.1	

Water Quality Monitoring Results at SR5 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	ŀ	pН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:51		Surface	1.0	19.6 19.6	19.6	8.0 8.0	8.0	30.4 30.4	30.4	94.1 93.8	94.0	7.2 7.2	7.2	7.2	3.4 3.5	3.5		9.3 7.9	8.6	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	3.7	-	-	8.7
					Bottom	4.1	19.6 19.6	19.6	7.9 8.0	8.0	30.7 30.7	30.7	93.1 92.9	93.0	7.1 7.1	7.1	7.1	3.9 3.8	3.9		7.8 9.6	8.7	
24-Mar-17	Sunny	Moderate	11:11		Surface	1.0	19.8 19.8	19.8	8.1 8.1	8.1	31.1 31.0	31.1	94.7 94.6	94.7	7.2 7.2	7.2	7.2	5.7 5.8	5.8		7.3 8.2	7.8	
				4.7	Middle	-	-	-		-		-		-		-	1.2	-	-	5.8	-	-	7.9
					Bottom	3.7	19.8 19.7	19.8	8.1 8.1	8.1	31.0 31.1	31.1	94.7 93.9	94.3	7.2 7.1	7.2	7.2	5.7 5.6	5.7		8.2 7.6	7.9	
27-Mar-17	Fine	Moderate	12:20		Surface	1.0	19.4 19.4	19.4	8.2 8.2	8.2	30.1 30.1	30.1	91.1 91.4	91.3	6.5 6.5	6.5	6.5	4.9 5.4	5.2		5.3 5.9	5.6	
				4.7	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	5.5	-	-	6.1
					Bottom	3.7	19.3 19.3	19.3	8.2 8.2	8.2	31.4 31.3	31.4	91.9 94.3	93.1	6.5 6.7	6.6	6.6	5.4 6.0	5.7		6.2 6.7	6.5	
29-Mar-17	Fine	Moderate	13:22		Surface	1.0	20.1 20.0	20.1	8.0 8.0	8.0	31.0 31.1	31.0	94.0 94.5	94.3	7.1 7.2	7.1	7.1	8.3 8.2	8.3		-	-	
				4.8	Middle	-	-	-		-	-	-	-	-		-	7.1	-	-	8.5	-	-	-
					Bottom	3.8	19.9 19.8	19.8	8.0 7.9	7.9	31.7 32.0	31.8	93.3 93.7	93.5	7.1 7.1	7.1	7.1	8.7 8.6	8.7		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	l

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		эΗ	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:00		Surface	1.0	17.3 17.3	17.3	8.1 8.1	8.1	33.0 33.0	33.0	95.3 95.4	95.4	7.5 7.5	7.5	7.5	10.2 10.2	10.2		18.5 17.1	17.8	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	10.4	-	-	18.0
					Bottom	4.2	17.3 17.3	17.3	8.1 8.1	8.1	33.0 33.0	33.0	95.0 95.1	95.1	7.5 7.5	7.5	7.5	10.5 10.6	10.6		18.7 17.6	18.2	
3-Mar-17	Sunny	Moderate	10:00		Surface	1.0	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.8	32.8	94.1 95.4	94.8	7.4 7.5	7.4	7.4	12.4 12.9	12.7		21.4 21.9	21.7	
				5.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	12.6	-	-	21.3
					Bottom	4.3	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.8	32.8	94.2 94.9	94.6	7.4 7.5	7.4	7.4	12.2 12.5	12.4		20.8 20.8	20.8	
6-Mar-17	Cloudy	Moderate	12:06		Surface	1.0	18.5 18.5	18.5	8.0 8.0	8.0	29.8 29.7	29.8	97.4 96.9	97.2	7.6 7.6	7.6	7.0	3.7 3.5	3.6		3.2 4.2	3.7	
				5.3	Middle	-	-	-		-	-	-	-	-	-	-	7.6	-	-	3.8	-	-	3.3
					Bottom	4.3	18.5 18.5	18.5	8.0 8.0	8.0	30.2 30.4	30.3	96.7 97.5	97.1	7.6 7.6	7.6	7.6	3.7 4.0	3.9		2.7 3.0	2.9	
8-Mar-17	Cloudy	Moderate	15:38		Surface	1.0	18.1 18.1	18.1	8.1 8.2	8.2	32.1 32.0	32.1	98.1 99.9	99.0	7.7	7.7		1.5 1.3	1.4		3.5 4.3	3.9	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	1.6	-	-	4.9
					Bottom	4.2	18.1 18.1	18.1	8.1 8.1	8.1	32.0 32.0	32.0	97.5 97.9	97.7	7.6 7.6	7.6	7.6	1.7 1.7	1.7		5.7 6.1	5.9	
10-Mar-17	Cloudy	Moderate	17:02		Surface	1.0	18.2 18.1	18.2	8.3 8.3	8.3	32.7 32.9	32.8	96.8 96.5	96.7	7.5 7.5	7.5	7.5	3.2 3.3	3.3		7.8 7.3	7.6	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	3.5	-	-	8.8
					Bottom	4.0	18.2 18.1	18.2	8.2 8.3	8.3	33.1 33.1	33.1	95.6 96.7	96.2	7.4 7.5	7.4	7.4	3.8 3.6	3.7		10.5 9.2	9.9	
13-Mar-17	Fine	Moderate	07:49		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	93.8 93.9	93.9	7.3 7.3	7.3	7.0	7.4 7.5	7.5		16.9 15.2	16.1	
				5.5	Middle	-	-	-		-	-	-		-	-	-	7.3	-	-	7.7	-	-	16.7
					Bottom	4.5	18.4 18.4	18.4	8.1 8.1	8.1	32.4 32.4	32.4	92.9 92.2	92.6	7.2 7.1	7.2	7.2	7.8 7.8	7.8		17.0 17.4	17.2	
15-Mar-17	Fine	Moderate	08:46		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	31.8 31.8	31.8	91.7 91.5	91.6	7.1 7.1	7.1	7.4	10.6 10.8	10.7		19.0 18.9	19.0	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	10.8	-	-	21.2
					Bottom	3.8	18.6 18.6	18.6	8.1 8.1	8.1	31.8 31.8	31.8	91.1 91.3	91.2	7.1 7.1	7.1	7.1	10.9 10.8	10.9		22.6 23.9	23.3	
17-Mar-17	Cloudy	Moderate	09:39		Surface	1.0	18.5 18.5	18.5	8.1 8.0	8.1	31.6 31.6	31.6	92.0 91.9	92.0	7.1 7.1	7.1		5.6 5.7	5.7		13.9 15.7	14.8	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	5.9	-	-	16.1
					Bottom	4.0	18.5 18.5	18.5	8.0 8.1	8.0	31.6 31.6	31.6	90.5 91.0	90.8	7.0 7.1	7.0	7.0	6.2 6.0	6.1		17.0 17.6	17.3	
20-Mar-17	Sunny	Moderate	11:13		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	30.2 30.2	30.2	90.4 91.1	90.8	7.2 7.2	7.2	= 0	2.6 2.8	2.7		6.3 7.0	6.7	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	3.0	-	-	6.7
					Bottom	4.0	19.1 19.1	19.1	8.1 8.1	8.1	30.9 31.0	31.0	90.3 91.7	91.0	7.1 7.2	7.2	7.2	3.1	3.2		6.4 6.8	6.6	

Water Quality Monitoring Results at SR5 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:18		Surface	1.0	19.0 19.2	19.1	8.1 8.1	8.1	33.0 32.4	32.7	92.2 92.7	92.5	7.0 7.1	7.1	7.1	1.4 1.6	1.5		6.5 7.5	7.0	
				5.3	Middle			-		-		-		-		-	7.1	-	-	1.7	-	-	7.1
					Bottom	4.3	19.0 19.4	19.2	8.1 8.1	8.1	33.0 31.6	32.3	90.4 91.2	90.8	6.9 7.0	6.9	6.9	1.8 1.7	1.8		7.6 6.8	7.2	
24-Mar-17	Sunny	Moderate	15:41		Surface	1.0	20.0 20.1	20.1	8.2 8.2	8.2	30.9 30.9	30.9	95.7 97.7	96.7	7.3 7.4	7.3	7.3	3.6 3.7	3.7		5.6 4.8	5.2	
				5.2	Middle	-		-		-		-	• •	-		-	7.5	-	-	3.7	-	-	5.6
					Bottom	4.2	19.7 19.5	19.6	8.2 8.1	8.1	31.6 31.8	31.7	96.1 95.6	95.9	7.3 7.3	7.3	7.3	3.5 3.6	3.6		6.4 5.5	6.0	
27-Mar-17	Fine	Moderate	07:01		Surface	1.0	19.3 19.4	19.4	8.1 8.1	8.1	31.9 31.9	31.9	88.7 88.5	88.6	6.4 6.3	6.3	6.3	9.4 9.0	9.2		9.1 8.6	8.9	
				4.8	Middle	-	-	-		-	-	-	-	-	-	-	0.5	-	-	9.4	-	-	8.7
					Bottom	3.8	19.3 19.3	19.3	8.1 8.1	8.1	31.9 32.0	32.0	88.6 89.8	89.2	6.3 6.4	6.4	6.4	9.4 9.8	9.6		7.6 9.2	8.4	
29-Mar-17	Fine	Moderate	07:50		Surface	1.0	19.7 19.7	19.7	8.0 8.0	8.0	32.0 32.0	32.0	93.8 94.0	93.9	7.1 7.1	7.1	7.1	12.8 12.7	12.8		-	-	
				4.8	Middle	-		-		-		-		-		-	7.1	-	-	12.9	-	-	=
					Bottom	3.8	19.7 19.7	19.7	8.0 8.0	8.0	32.0 32.0	32.0	93.5 93.2	93.4	7.1 7.1	7.1	7.1	12.9 13.1	13.0		-	-	
31-Mar-17	Rainy	Moderate	07:50		Surface	1.0	20.4 20.4	20.4	8.0 8.0	8.0	31.0 31.0	31.0	92.4 92.4	92.4	7.0 7.0	7.0	7.0	16.2 15.9	16.1		-	-	
				5.2	Middle	-	-	-	-	-		-	-	-		-	7.0	-	-	17.4	-	-	=
					Bottom	4.2	20.4 20.4	20.4	8.0 7.9	8.0	31.2 31.2	31.2	93.3 92.2	92.8	7.0 6.9	7.0	7.0	18.9 18.2	18.6		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTl	U)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	13:31		Surface	1.0	17.6 17.6	17.6	8.1 8.1	8.1	32.8 32.8	32.8	95.4 95.3	95.4	7.5 7.5	7.5		9.2 9.3	9.3		13.9 14.9	14.4	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	9.4	-	-	15.1
					Bottom	3.0	17.5 17.5	17.5	8.1 8.1	8.1	32.8 32.9	32.9	94.7 94.9	94.8	7.4 7.5	7.4	7.4	9.4 9.5	9.5		15.9 15.5	15.7	
3-Mar-17	Sunny	Moderate	15:01		Surface	1.0	18.0 18.0	18.0	8.3 8.3	8.3	32.4 32.4	32.4	97.0 99.1	98.1	7.6 7.7	7.7		5.9 6.0	6.0		10.2 10.3	10.3	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	6.2	-	-	10.9
					Bottom	3.4	18.0 18.0	18.0	8.3 8.3	8.3	32.4 32.4	32.4	97.1 98.4	97.8	7.6 7.7	7.6	7.6	6.0 6.6	6.3		11.4 11.3	11.4	
6-Mar-17	Cloudy	Moderate	07:57		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	30.0 30.0	30.0	96.2 96.1	96.2	7.5 7.5	7.5	7.5	1.6 1.7	1.7		4.4 5.0	4.7	
				4.0	Middle	-	-	-		-		-	-	-	-	-	7.5	-	-	1.8	-	-	7.3
					Bottom	3.0	18.5 18.5	18.5	8.2 8.2	8.2	30.1 30.1	30.1	95.9 95.9	95.9	7.5 7.5	7.5	7.5	1.8 1.7	1.8		10.4 9.2	9.8	
8-Mar-17	Cloudy	Moderate	10:58		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	32.5 32.5	32.5	93.6 93.6	93.6	7.3 7.3	7.3	7.3	2.1 2.0	2.1		6.2 4.7	5.5	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	6.0
					Bottom	3.1	18.1 18.1	18.1	8.1 8.2	8.1	32.6 32.6	32.6	92.4 92.9	92.7	7.2 7.2	7.2	7.2	2.2 2.3	2.3		5.7 7.0	6.4	
10-Mar-17	Cloudy	Moderate	12:57		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	33.0 33.0	33.0	95.2 94.7	95.0	7.4 7.4	7.4	7.4	4.5 4.2	4.4		6.3 7.4	6.9	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	4.4	-	-	9.3
40.14 47		Malanata	10.00		Bottom	2.9	18.1 18.1	18.1	8.2 8.2	8.2	33.0 33.0	33.0	95.2 95.9	95.6	7.4 7.4	7.4	7.4	4.4 4.2	4.3		11.0 12.1	11.6	
13-Mar-17	Fine	Moderate	12:22		Surface	1.0	18.7 18.8	18.8	8.1 8.1	8.1	30.7 30.5	30.6	92.5 91.4	92.0	7.2 7.1	7.1	7.1	4.6 4.8	4.7		7.4 8.7	8.1	
				4.1	Middle	-	- 18.7	-	- 8.1	-	30.9	-	- - 92.9	-	7.2	-		4.7	-	4.8	- 11.3	-	9.5
45 14 - 47	F ²	Malasata	40.00		Bottom	3.1	18.6	18.6	8.1	8.1	31.4	31.1	92.4	92.7	7.2	7.2	7.2	4.8	4.8		10.4	10.9	
15-Mar-17	Fine	Moderate	13:20		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	32.0 32.0	32.0	92.4 93.0	92.7	7.1 7.2	7.2	7.2	5.4 5.2	5.3		11.9 12.3	12.1	
				3.7	Middle	-	- - 18.6	-	8.0	-	32.0	-	92.2	-	7.1	-		5.6	-	5.5		-	12.3
17-Mar-17	Cloudy	Moderate	14:27		Bottom	2.7	18.6	18.6	8.1 8.1	8.1	32.0 30.9	32.0	92.4 94.4	92.3	7.1	7.1	7.1	5.6 5.4	5.6		12.0	12.4	
17 - IVIGII - 17	Cloudy	Moderate	17.27		Surface	1.0	18.7	18.7	8.1	8.1	30.9	30.9	93.5	94.0	7.3	7.3	7.3	5.3	5.4	_	11.8	11.9	
				4.1	Middle	-	- 18.7	-	- 8.1	-	- 31.1	-	- 94.1	-	- 7.3	-		- 5.6		5.5	- 10.6	-	11.5
20-Mar-17	Sunny	Moderate	17:30		Bottom	3.1	18.7 19.7	18.7	8.0 8.0	8.1	<u>31.0</u> 31.0	31.1	92.5 95.0	93.3	7.2	7.2	7.2	5.5 4.6	5.6		11.3 8.1	11.0	
	<i>cu</i> ,	moderate			Surface	1.0	19.7	19.7	8.0	8.0	31.1	31.1	95.0	95.0	7.3	7.3	7.3	4.6	4.6	10	9.0	8.6	
				3.6	Middle	-	- 19.1	-	- 8.0	-	- 31.8	-	- 94.7	-	- 7.2	-	7.0	- 5.1	-	4.9	- 9.8	-	8.8
					Bottom	2.6	19.2	19.2	8.0	8.0	31.7	31.8	94.5	94.6	7.2	7.2	7.2	5.3	5.2		8.2	9.0	

Water Quality Monitoring Results at SR6 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	1	рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	08:59		Surface	1.0	19.7 19.7	19.7	8.0 8.1	8.1	30.2 30.1	30.1	94.9 95.4	95.2	7.3 7.3	7.3	7.3	4.3 4.1	4.2		11.6 10.5	11.1	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	4.4	-	-	10.7
					Bottom	3.1	19.6 19.5	19.6	8.1 8.0	8.1	30.8 30.9	30.8	93.5 94.0	93.8	7.2 7.2	7.2	7.2	4.4 4.5	4.5		10.2 10.2	10.2	
24-Mar-17	Sunny	Moderate	12:05		Surface	1.0	19.8 19.8	19.8	8.2 8.2	8.2	30.7 30.7	30.7	96.0 94.6	95.3	7.3 7.2	7.3	7.3	6.3 6.3	6.3		4.8 4.5	4.7	
				4.4	Middle	-	-	-	-	-		-	-	-	-	-	1.0	-	-	6.6	-	-	5.4
					Bottom	3.4	19.8 19.8	19.8	8.2 8.2	8.2	30.8 30.8	30.8	94.7 95.6	95.2	7.2 7.3	7.3	7.3	7.1 6.6	6.9		6.8 5.3	6.1	
27-Mar-17	Fine	Moderate	11:28		Surface	1.0	19.3 19.4	19.4	8.2 8.2	8.2	31.0 30.9	31.0	89.1 89.7	89.4	6.3 6.4	6.4	6.4	7.3 7.0	7.2		11.6 10.6	11.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-	7.1	-	-	11.4
					Bottom	3.3	19.3 19.3	19.3	8.2 8.2	8.2	31.2 31.4	31.3	89.5 88.9	89.2	6.4 6.3	6.3	6.3	6.8 7.2	7.0		12.2 11.2	11.7	
29-Mar-17	Fine	Moderate	12:31		Surface	1.0	20.2 20.2	20.2	8.0 8.0	8.0	30.2 30.2	30.2	94.3 94.5	94.4	7.2 7.2	7.2	7.2	7.7 7.9	7.8		-	-	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	1.2	-	-	8.1	-	-	-
					Bottom	3.1	19.9 19.9	19.9	8.0 8.0	8.0	31.7 31.5	31.6	93.0 93.9	93.5	7.0 7.1	7.1	7.1	8.2 8.3	8.3		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-		-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-
					Bottom	-	-	-		-		-		-	-	-	-	-	-		-	-	l

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	эΗ	Salini	ity (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	09:56		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	32.8 32.8	32.8	95.9 96.3	96.1	7.5 7.6	7.6	7.6	9.4 9.5	9.5		21.3 19.6	20.5	
				4.1	Middle	-	-	-		-	-	-	-	-	-	-	7.0	-	-	9.7	-	-	20.4
					Bottom	3.1	17.4 17.4	17.4	8.1 8.1	8.1	32.8 32.8	32.8	95.5 94.7	95.1	7.5 7.5	7.5	7.5	9.8 9.9	9.9		19.8 20.8	20.3	
3-Mar-17	Sunny	Moderate	10:57		Surface	1.0	17.5 17.5	17.5	8.3 8.3	8.3	32.3 32.4	32.3	94.6 95.1	94.9	7.4 7.5	7.5	7.5	11.9 12.1	12.0		15.6 17.2	16.4	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	12.6	-	-	18.4
					Bottom	3.3	17.5 17.5	17.5	8.3 8.3	8.3	32.5 32.6	32.6	95.1 94.7	94.9	7.5 7.4	7.5	7.5	13.3 12.8	13.1		21.0 19.8	20.4	
6-Mar-17	Cloudy	Moderate	11:12		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	30.1 30.1	30.1	97.1 97.2	97.2	7.6 7.6	7.6	7.6	1.6 1.7	1.7		3.4 4.6	4.0	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	1.8	-	-	4.0
					Bottom	3.3	18.5 18.5	18.5	8.2 8.1	8.1	30.1 30.2	30.2	96.9 97.1	97.0	7.6 7.6	7.6	7.6	1.8 2.0	1.9		4.2 3.5	3.9	
8-Mar-17	Cloudy	Moderate	14:46		Surface	1.0	18.1 18.2	18.2	8.0 8.0	8.0	32.2 31.8	32.0	96.1 96.6	96.4	7.5 7.5	7.5	7 5	1.2 1.2	1.2		4.1 5.2	4.7	
				4.2	Middle	-	-	-		-	-	-		-	-	-	7.5	-	-	1.3	-	-	6.0
					Bottom	3.2	18.2 18.1	18.1	8.0 8.0	8.0	31.7 32.4	32.0	96.2 96.1	96.2	7.5 7.5	7.5	7.5	1.4 1.3	1.4		7.7 6.7	7.2	
10-Mar-17	Cloudy	Moderate	16:07		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	32.4 32.3	32.4	95.1 95.4	95.3	7.4 7.4	7.4	7.4	3.8 3.7	3.8		8.2 7.6	7.9	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	4.1	-	-	7.8
					Bottom	3.1	18.2 18.2	18.2	8.1 8.1	8.1	32.5 32.6	32.6	94.8 95.9	95.4	7.4 7.4	7.4	7.4	4.1 4.4	4.3		7.7 7.7	7.7	
13-Mar-17	Fine	Moderate	08:42		Surface	1.0	18.5 18.4	18.5	8.1 8.2	8.2	32.2 32.3	32.2	93.7 92.6	93.2	7.3 7.2	7.2	7.0	7.6 7.9	7.8		12.4 11.3	11.9	
				4.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	7.8	-	-	11.5
					Bottom	3.4	18.4 18.4	18.4	8.1 8.1	8.1	32.3 32.3	32.3	92.5 93.3	92.9	7.2 7.2	7.2	7.2	7.9 7.7	7.8		11.1 10.8	11.0	
15-Mar-17	Fine	Moderate	09:41		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	31.9 31.9	31.9	90.7 91.2	91.0	7.0 7.1	7.0	7.0	5.8 5.9	5.9		11.5 10.9	11.2	
				3.8	Middle	-	-	-		-	-	-	-	-	-	-	7.0	-	-	6.2	-	-	12.0
					Bottom	2.8	18.6 18.6	18.6	8.1 8.1	8.1	31.9 31.9	31.9	90.9 90.4	90.7	7.0 7.0	7.0	7.0	6.5 6.2	6.4		13.4 12.2	12.8	
17-Mar-17	Cloudy	Moderate	10:41		Surface	1.0	18.5 18.5	18.5	8.1 8.0	8.1	31.1 31.2	31.2	92.6 92.5	92.6	7.2 7.2	7.2		9.5 9.4	9.5		18.9 19.3	19.1	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	9.7	-	-	22.5
					Bottom	3.2	18.5 18.5	18.5	8.0 8.0	8.0	31.2 31.4	31.3	92.2 91.8	92.0	7.2 7.2	7.2	7.2	9.8 9.9	9.9		25.0 26.8	25.9	
20-Mar-17	Sunny	Moderate	12:06		Surface	1.0	19.5 19.5	19.5	8.1 8.1	8.1	29.8 29.8	29.8	90.6 91.1	90.9	7.3 7.4	7.3	= 0	2.5 2.8	2.7		4.9	5.2	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	3.3	-	-	5.6
					Bottom	3.0	19.2 19.1	19.1	8.1 8.1	8.1	30.6 30.7	30.7	89.8 89.9	89.9	7.2	7.2	7.2	3.6	3.8		5.7	5.9	1

Water Quality Monitoring Results at SR6 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	20:20		Surface	1.0	19.3 19.3	19.3	8.1 8.0	8.0	31.8 31.8	31.8	91.9 92.4	92.2	7.0 7.1	7.0	7.0	1.4 1.3	1.4		2.6 3.5	3.1	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-	1.5	-	-	4.9
					Bottom	3.3	19.1 19.1	19.1	8.1 8.0	8.1	32.3 32.4	32.4	91.5 91.0	91.3	7.0 7.0	7.0	7.0	1.5 1.6	1.6		7.1 6.3	6.7	
24-Mar-17	Sunny	Moderate	14:49		Surface	1.0	20.0 20.1	20.1	8.2 8.2	8.2	30.4 30.4	30.4	97.5 97.8	97.7	7.4 7.4	7.4	7.4	4.1 3.9	4.0		6.8 5.6	6.2	
				4.3	Middle	-	-	-		-		-		-		-	7.4	-	-	4.0		-	7.0
					Bottom	3.3	19.8 20.0	19.9	8.2 8.2	8.2	30.7 30.5	30.6	96.5 97.3	96.9	7.3 7.4	7.4	7.4	3.8 4.1	4.0		7.5 7.9	7.7	
27-Mar-17	Fine	Moderate	07:55		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	31.9 31.9	31.9	86.4 86.8	86.6	6.2 6.2	6.2	6.2	7.3 7.8	7.6		10.0 9.5	9.8	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	7.6	-	-	10.2
					Bottom	3.3	19.3 19.2	19.3	8.1 8.1	8.1	31.9 31.9	31.9	86.4 86.2	86.3	6.2 6.2	6.2	6.2	7.7 7.4	7.6		10.3 10.7	10.5	
29-Mar-17	Fine	Moderate	08:45		Surface	1.0	19.7 19.7	19.7	8.1 8.1	8.1	32.1 32.1	32.1	94.3 94.3	94.3	7.1 7.1	7.1	7.1	12.0 11.9	12.0		-	-	
				4.1	Middle	-	-	-		-		-		-		-	7.1	-	-	12.2		-	<u>-</u>
					Bottom	3.1	19.7 19.7	19.7	8.1 8.0	8.1	32.2 32.2	32.2	93.4 94.2	93.8	7.1 7.1	7.1	7.1	12.4 12.4	12.4			-	
31-Mar-17	Rainy	Moderate	08:44		Surface	1.0	20.4 20.4	20.4	8.0 8.0	8.0	31.0 31.0	31.0	93.5 93.5	93.5	7.0 7.0	7.0	7.0	16.7 15.9	16.3		-	-	
				4.2	Middle	-	-	-		-		-	-	-		-	7.0	-	-	17.0		-	=
					Bottom	3.2	20.4 20.4	20.4	8.0 7.9	8.0	31.1 31.2	31.1	93.0 93.1	93.1	7.0 7.0	7.0	7.0	17.2 18.0	17.6		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	ъН	Salini	ity (ppt)	DO Satu	iration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	15:06		Surface	1.0	17.7 17.7	17.7	8.2 8.2	8.2	32.7 32.7	32.7	96.2 95.9	96.1	7.5 7.5	7.5		4.4 4.6	4.5		9.3 9.7	9.5	
				3.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	4.7	-	-	10.0
					Bottom	2.9	17.6 17.7	17.7	8.1 8.2	8.2	32.8 32.8	32.8	95.4 95.6	95.5	7.5 7.5	7.5	7.5	4.7 4.8	4.8		9.8 10.9	10.4	
3-Mar-17	Sunny	Moderate	16:21		Surface	1.0	17.9 17.9	17.9	8.3 8.3	8.3	32.3 32.3	32.3	95.9 96.2	96.1	7.5 7.5	7.5		3.2 3.2	3.2		8.5 7.9	8.2	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	3.2	-	-	8.6
					Bottom	3.1	17.9 17.9	17.9	8.3 8.3	8.3	32.5 32.4	32.5	95.8 96.2	96.0	7.5 7.5	7.5	7.5	2.9 3.2	3.1		8.3 9.4	8.9	
6-Mar-17	Cloudy	Moderate	06:34		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	29.9 29.9	29.9	97.7 96.2	97.0	7.7 7.5	7.6	7.6	3.8 3.8	3.8		6.0 5.2	5.6	
				4.3	Middle	-	-	-	-	-		-		-	-	-	7.0	-	-	3.8	-	-	5.6
					Bottom	3.3	18.5 18.5	18.5	8.2 8.2	8.2	29.9 29.9	29.9	97.8 97.2	97.5	7.7 7.6	7.6	7.6	3.6 3.8	3.7		5.1 6.0	5.6	
8-Mar-17	Cloudy	Moderate	09:25		Surface	1.0	18.0 18.0	18.0	8.2 8.1	8.1	32.5 32.5	32.5	96.4 96.3	96.4	7.5 7.5	7.5	7.5	1.5 1.6	1.6		3.9 4.8	4.4	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-	1.7	-	-	5.1
					Bottom	3.1	18.1 18.1	18.1	8.2 8.1	8.2	32.6 32.6	32.6	94.6 94.2	94.4	7.4 7.3	7.4	7.4	1.8 1.8	1.8		6.3 5.3	5.8	L
10-Mar-17	Cloudy	Moderate	11:34		Surface	1.0	18.0 18.0	18.0	8.0 8.0	8.0	33.3 33.3	33.3	97.3 95.7	96.5	7.5 7.4	7.5	7.5	5.0 5.2	5.1		8.5 7.8	8.2	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.3	-	-	8.4
					Bottom	3.2	18.0 18.0	18.0	8.0 7.9	8.0	33.3 33.3	33.3	96.5 97.8	97.2	7.5 7.6	7.5	7.5	5.4 5.3	5.4		8.5 8.7	8.6	
13-Mar-17	Fine	Moderate	13:40		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	32.5 32.4	32.5	92.6 92.1	92.4	7.2 7.1	7.2	7.2	6.2 6.1	6.2		9.2 7.8	8.5	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.2	-	-	9.5
					Bottom	3.0	18.3 18.4	18.4	8.1 8.1	8.1	32.6 32.7	32.6	91.9 93.0	92.5	7.1 7.2	7.2	7.2	6.1 6.1	6.1		10.0 11.0	10.5	
15-Mar-17	Fine	Moderate	14:55		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	32.2 32.0	32.1	91.5 92.5	92.0	7.1 7.1	7.1	7.1	6.1 6.2	6.2		8.7 9.1	8.9	
				3.8	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	6.4	-	-	10.1
47.84 - 47	011	Madavata	45.50		Bottom	2.8	18.5 18.6	18.6	8.0 8.1	8.1	32.9 32.1	32.5	90.9 91.2	91.1	7.0 7.0	7.0	7.0	6.5 6.4	6.5		11.0 11.6	11.3	
17-Mar-17	Cloudy	Moderate	15:59		Surface	1.0	18.7 18.7	18.7	8.1 8.1	8.1	31.7 31.7	31.7	92.3 92.0	92.2	7.1 7.1	7.1	7.1	3.3 3.2	3.3		11.7 11.8	11.8	
				4.0	Middle	-	- 18.7	-	8.1	-	- - 31.8	-	- - 91.8	-		-			-	3.4		-	11.9
20-Mar-17	Suppy	Madarata	18:40		Bottom	3.0	18.7	18.7	8.1	8.1	31.7	31.8	91.3	91.6	7.1 7.1	7.1	7.1	3.5 3.4	3.5		12.6	11.9	<u> </u>
20-iviar-17	Sunny	Moderate	18:49		Surface	1.0	19.1 19.1	19.1	8.0 8.0	8.0	32.3 32.3	32.3	93.8 93.9	93.9	7.6 7.6	7.6	7.6	3.3 3.4	3.4		7.5 6.6	7.1	
				4.0	Middle	-	- - 18.9	-	-	-	32.4	-	93.5	-	-	-		-	-	3.6		-	7.2
					Bottom	3.0	18.9 18.9	18.9	8.0 8.0	8.0	32.4 32.4	32.4	93.5 93.5	93.5	7.6 7.6	7.6	7.6	3.8 3.7	3.8		6.7 7.8	7.3	

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at SR7 - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	ĥ	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	red Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:15		Surface	1.0	19.6 19.6	19.6	8.0 8.1	8.0	30.9 30.9	30.9	94.4 93.7	94.1	7.2 7.2	7.2	7.2	2.1 1.9	2.0		3.5 4.6	4.1	
				4.0	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	2.2	-	-	5.3
					Bottom	3.0	19.5 19.5	19.5	8.1 8.1	8.1	31.1 31.2	31.2	92.6 92.7	92.7	7.1 7.1	7.1	7.1	2.3 2.2	2.3		6.3 6.7	6.5	
24-Mar-17	Sunny	Moderate	10:41		Surface	1.0	19.5 19.5	19.5	8.0 7.9	8.0	31.8 31.9	31.9	94.1 93.4	93.8	7.2 7.1	7.1	7.1	3.4 3.3	3.4		3.6 3.6	3.6	
				4.1	Middle	-	-	-	-	-	-	-		-		-	7.1	-	-	3.6	-	-	5.4
					Bottom	3.1	19.5 19.5	19.5	7.9 7.9	7.9	31.9 31.9	31.9	94.4 94.1	94.3	7.2 7.2	7.2	7.2	3.8 3.6	3.7		7.7 6.5	7.1	
27-Mar-17	Fine	Moderate	12:46		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	30.8 30.9	30.8	88.5 87.8	88.2	6.4 6.3	6.3	6.3	4.9 4.8	4.9		5.3 6.3	5.8	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	5.0	-	-	8.4
					Bottom	3.2	19.5 19.5	19.5	8.1 8.2	8.2	31.4 31.0	31.2	87.0 87.9	87.5	6.2 6.3	6.3	6.3	5.0 4.9	5.0		10.3 11.6	11.0	
29-Mar-17	Fine	Moderate	13:53		Surface	1.0	20.0 20.0	20.0	8.0 8.0	8.0	32.0 32.0	32.0	95.0 94.6	94.8	7.2 7.1	7.1	7.1	8.3 8.3	8.3		-	-	
				3.9	Middle	-	-	-	-	-	-	-	-	-		-	7.1	-	-	8.4	-	-	-
					Bottom	2.9	19.8 19.9	19.9	8.0 7.9	8.0	32.3 32.1	32.2	94.5 94.4	94.5	7.1 7.1	7.1	7.1	8.4 8.5	8.5		-	-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	p	н	Salini	ity (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T T	urbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	ı (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	08:32		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	33.0 32.9	32.9	97.4 97.6	97.5	7.7 7.7	7.7	7.7	6.5 6.6	6.6		13.4 14.0	13.7	
				4.0	Middle	-	-	-		-		-	-	-	-	-	1.1	-	-	6.7	-	-	13.7
					Bottom	3.0	17.3 17.4	17.4	8.1 8.0	8.1	33.0 32.9	33.0	96.3 96.3	96.3	7.6 7.6	7.6	7.6	6.8 6.7	6.8		13.5 13.8	13.7	
3-Mar-17	Sunny	Moderate	09:34		Surface	1.0	17.5 17.5	17.5	8.0 8.1	8.1	32.6 32.7	32.7	98.3 97.8	98.1	7.7 7.7	7.7	7 7	6.2 6.3	6.3		10.8 12.2	11.5	
				4.1	Middle	-	-	-		-		-	-	-	-	-	7.7	-	-	6.5	-	-	12.3
					Bottom	3.1	17.5 17.5	17.5	8.0 8.0	8.0	32.7 32.7	32.7	99.4 96.6	98.0	7.8 7.6	7.7	7.7	6.6 6.6	6.6		13.2 13.0	13.1	
6-Mar-17	Cloudy	Moderate	12:35		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	29.8 29.8	29.8	97.4 98.0	97.7	7.6 7.7	7.7		1.8 1.8	1.8		3.3 2.4	2.9	
				4.2	Middle	-	-	-	-	-	-	-		-	-	-	7.7	-	-	2.0	-	-	3.6
					Bottom	3.2	18.6 18.6	18.6	8.0 8.1	8.1	30.0 30.1	30.1	97.4 97.7	97.6	7.6 7.6	7.6	7.6	2.0 2.2	2.1		4.3 4.1	4.2	
8-Mar-17	Cloudy	Moderate	16:10		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	32.5 32.5	32.5	93.1 93.5	93.3	7.2 7.3	7.3		4.2	4.2		11.5 11.0	11.3	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	4.4	-	-	12.0
					Bottom	3.1	18.1 18.1	18.1	8.1 8.1	8.1	32.6 32.6	32.6	92.6 92.4	92.5	7.2 7.2	7.2	7.2	4.5 4.6	4.6		13.4 11.7	12.6	
10-Mar-17	Cloudy	Moderate	17:28		Surface	1.0	18.1 18.1	18.1	8.2 8.2	8.2	33.1 33.1	33.1	95.1 95.9	95.5	7.4 7.4	7.4	7.4	5.1 5.0	5.1		10.7 9.3	10.0	
				4.2	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	5.0	-	-	11.3
					Bottom	3.2	18.1 18.1	18.1	8.1 8.2	8.2	33.2 33.1	33.2	94.7 95.7	95.2	7.3 7.4	7.4	7.4	4.9 4.9	4.9		13.2 11.7	12.5	
13-Mar-17	Fine	Moderate	07:18		Surface	1.0	18.4 18.4	18.4	8.0 8.0	8.0	32.3 32.3	32.3	93.2 92.9	93.1	7.2 7.2	7.2	7.0	9.3 9.8	9.6		17.9 17.7	17.8	
				4.3	Middle	-	-	-	-	-	-	-	-	-	-	-	7.2	-	-	9.6	-	-	20.0
					Bottom	3.3	18.4 18.3	18.4	8.0 8.0	8.0	32.3 32.4	32.4	94.2 93.2	93.7	7.3 7.2	7.3	7.3	9.4 9.8	9.6		21.5 22.6	22.1	
15-Mar-17	Fine	Moderate	08:18		Surface	1.0	18.5 18.5	18.5	8.2 8.2	8.2	31.6 31.6	31.6	94.0 93.8	93.9	7.3 7.3	7.3	7.0	9.7 9.4	9.6		16.8 15.1	16.0	
				3.9	Middle	-	-	-		-		-	-	-	-	-	7.3	-	-	9.8	-	-	17.4
					Bottom	2.9	18.5 18.5	18.5	8.1 8.1	8.1	31.6 31.6	31.6	93.3 93.5	93.4	7.2 7.3	7.2	7.2	9.8 9.9	9.9		18.1 19.3	18.7	
17-Mar-17	Cloudy	Moderate	09:07		Surface	1.0	18.5 18.5	18.5	8.1 8.2	8.2	30.8 30.8	30.8	92.9 92.9	92.9	7.2 7.3	7.2	7.2	5.5 5.4	5.5		12.1 10.9	11.5	
				4.0	Middle	-	-	-		-		-	-	-	-	-	1.2	-	-	5.7	-	-	11.9
					Bottom	3.0	18.5 18.5	18.5	8.2 8.2	8.2	31.0 30.8	30.9	92.0 91.7	91.9	7.2 7.2	7.2	7.2	5.8 5.7	5.8		13.2 11.3	12.3	
20-Mar-17	Sunny	Moderate	10:43		Surface	1.0	19.0 19.0	19.0	8.1 8.1	8.1	31.8 31.7	31.8	92.7 92.0	92.4	7.1 7.0	7.1	7.1	3.7 3.6	3.7		5.8 4.7	5.3	
				4.2	Middle	-	-	-		-		-	-	-	-	-	1.1	-	-	4.1	-	-	6.1
					Bottom	3.2	18.8 18.8	18.8	8.1 8.1	8.1	32.1 32.1	32.1	91.9 92.0	92.0	7.0 7.0	7.0	7.0	4.5 4.2	4.4		6.6 7.0	6.8	

Appendix J - Marine Water Quality Monitoring Results

Water Quality Monitoring Results at SR7 - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ing	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	(mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:52		Surface	1.0	19.1 19.4	19.2	8.1 8.0	8.1	32.1 31.8	32.0	93.6 93.7	93.7	7.1 7.2	7.1	7.1	1.4 1.4	1.4		4.8 3.5	4.2	
				4.1	Middle			-	-	-		-		-	-	-	7.1	-	-	1.6		-	5.3
					Bottom	3.1	19.3 19.0	19.1	8.0 8.1	8.1	31.8 33.2	32.5	92.6 92.7	92.7	7.1 7.1	7.1	7.1	1.6 1.7	1.7		6.7 5.8	6.3	
24-Mar-17	Sunny	Moderate	16:06		Surface	1.0	20.0 20.1	20.1	8.1 8.1	8.1	31.2 31.1	31.1	97.6 97.4	97.5	7.4 7.4	7.4	7.4	4.1 3.9	4.0		6.3 6.0	6.2	
				3.9	Middle	-		-	-	-		-		-	-	-	7.4	-	-	4.0	-	-	6.0
					Bottom	2.9	20.1 20.0	20.0	8.1 8.1	8.1	31.1 31.2	31.2	97.5 96.8	97.2	7.4 7.3	7.3	7.3	4.0 4.0	4.0		6.3 5.0	5.7	
27-Mar-17	Fine	Moderate	06:35		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	32.7 32.7	32.7	90.3 92.5	91.4	6.4 6.5	6.5	6.5	7.4 7.8	7.6		8.0 9.4	8.7	
				4.1	Middle	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	7.6	-	-	9.1
					Bottom	3.1	19.3 19.3	19.3	8.1 8.1	8.1	32.9 32.9	32.9	97.0 91.3	94.2	6.8 6.4	6.6	6.6	7.7 7.4	7.6		9.4 9.6	9.5	
29-Mar-17	Fine	Moderate	07:21		Surface	1.0	19.6 19.6	19.6	7.8 7.8	7.8	32.6 32.6	32.6	95.2 94.0	94.6	7.2 7.1	7.2	7.2	11.5 11.6	11.6		-	-	
				3.9	Middle	-		-	-	-		-		-	-	-	1.2	-	-	11.8	-	-	=
					Bottom	2.9	19.6 19.6	19.6	7.8 7.8	7.8	32.5 32.6	32.6	93.7 93.0	93.4	7.1 7.0	7.1	7.1	11.9 11.8	11.9		-	-	
31-Mar-17	Rainy	Moderate	07:20		Surface	1.0	20.4 20.4	20.4	7.9 7.9	7.9	31.0 31.0	31.0	92.8 93.0	92.9	7.0 7.0	7.0	7.0	15.5 14.6	15.1		-	-	
				3.8	Middle	-		-	-	-	-	-		-	-	-	7.0	-	-	17.0	-	-	=
					Bottom	2.8	20.4 20.4	20.4	7.9 7.9	7.9	31.2 31.2	31.2	92.3 92.4	92.4	6.9 6.9	6.9	6.9	18.8 18.9	18.9		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	H	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	15:34		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	30.5 30.5	30.5	95.4 95.3	95.4	7.6 7.6	7.6	7.0	4.4 4.3	4.4		8.8 7.2	8.0	
				6.4	Middle	3.2	17.6 17.5	17.5	8.2 8.2	8.2	30.5 30.6	30.6	95.1 95.0	95.1	7.6 7.6	7.6	7.6	4.5 4.4	4.5	4.4	9.1 7.6	8.4	9.1
					Bottom	5.4	17.5 17.6	17.5	8.2 8.2	8.2	30.6 30.5	30.6	95.1 95.1	95.1	7.6	7.6	7.6	4.3 4.5	4.4		11.0	10.9	
3-Mar-17	Sunny	Moderate	16:56		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	28.3 28.2	28.3	95.7 96.2	96.0	7.7	7.7		5.6 5.5	5.6		8.0 7.7	7.9	
				6.6	Middle	3.3	17.9 17.9	17.9	8.2 8.2	8.2	28.3 28.3	28.3	95.4 95.9	95.7	7.6 7.7	7.7	7.7	5.5 5.5	5.5	5.6	9.2 9.4	9.3	8.7
					Bottom	5.6	17.9 17.8	17.8	8.2 8.2	8.2	28.4 28.5	28.4	95.8 95.0	95.4	7.7	7.6	7.6	5.5 5.6	5.6		8.7 8.9	8.8	
6-Mar-17	Cloudy	Moderate	05:56		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.5 28.3	28.4	97.0 97.3	97.2	7.7	7.7		2.1 2.0	2.1		3.2 3.9	3.6	
				6.6	Middle	3.3	18.3 18.3	18.3	8.1 8.1	8.1	29.0 28.8	28.9	96.3 96.6	96.5	7.6 7.6	7.6	7.7	2.5 2.4	2.5	2.3	4.8 5.7	5.3	5.2
					Bottom	5.6	18.2 18.3	18.2	8.1 8.1	8.1	29.4 29.1	29.3	96.2 96.4	96.3	7.6	7.6	7.6	2.4 2.4	2.4		5.9	6.6	
8-Mar-17	Cloudy	Moderate	09:27		Surface	1.0	18.0 18.0	18.0	8.1 8.1	8.1	29.4 29.4	29.4	92.7 93.1	92.9	7.3 7.4	7.4	7.4	1.8 1.9	1.9		5.1 5.5	5.3	
				6.5	Middle	3.3	18.0 18.0	18.0	8.1 8.1	8.1	29.7 29.6	29.7	92.8 92.5	92.7	7.4 7.3	7.3	7.4	1.7 1.9	1.8	1.8	9.8 8.6	9.2	7.9
					Bottom	5.5	18.0 18.0	18.0	8.1 8.1	8.1	30.0 30.2	30.1	92.4 92.7	92.6	7.3 7.4	7.3	7.3	1.7 1.8	1.8		9.2 9.0	9.1	
10-Mar-17	Cloudy	Moderate	11:11		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.4 29.4	29.4	91.5 91.4	91.5	7.3 7.3	7.3	7.3	2.1 2.2	2.2		6.9 6.9	6.9	
				6.5	Middle	3.3	18.1 18.1	18.1	8.1 8.1	8.1	29.5 29.5	29.5	91.4 91.3	91.4	7.3 7.2	7.2	7.5	2.1 2.1	2.1	2.1	6.5 6.8	6.7	6.7
					Bottom	5.5	18.1 18.0	18.1	8.1 8.1	8.1	29.5 29.6	29.5	91.4 91.3	91.4	7.2 7.2	7.2	7.2	2.1 2.1	2.1		6.1 7.1	6.6	
13-Mar-17	Fine	Moderate	14:22		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	29.1 29.2	29.1	94.5 94.3	94.4	7.4 7.4	7.4	7.4	3.8 3.8	3.8		7.0 6.9	7.0	
				6.6	Middle	3.3	18.5 18.5	18.5	8.2 8.2	8.2	29.4 29.4	29.4	93.7 93.6	93.7	7.4 7.4	7.4	7.4	3.8 3.8	3.8	3.8	8.0 9.4	8.7	8.8
					Bottom	5.6	18.4 18.7	18.6	8.2 8.2	8.2	29.6 29.3	29.5	94.0 93.9	94.0	7.4 7.4	7.4	7.4	3.8 3.9	3.9		9.9 11.4	10.7	
15-Mar-17	Fine	Moderate	15:08		Surface	1.0	18.7 18.7	18.7	8.2 8.2	8.2	29.2 29.1	29.2	90.6 90.7	90.7	7.1 7.1	7.1	7.1	4.5 4.6	4.6		5.3 6.2	5.8	
				6.5	Middle	3.3	18.7 18.7	18.7	8.2 8.2	8.2	29.2 29.2	29.2	90.5 90.6	90.6	7.1 7.1	7.1	7.1	4.6 4.5	4.6	4.6	9.9 10.4	10.2	9.3
					Bottom	5.5	18.6 18.7	18.7	8.2 8.2	8.2	29.4 29.3	29.3	90.3 90.5	90.4	7.1 7.1	7.1	7.1	4.5 4.4	4.5		11.0 12.8	11.9	
17-Mar-17	Cloudy	Moderate	16:34		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	29.2 29.2	29.2	92.5 92.1	92.3	7.2 7.2	7.2	7.2	4.8 4.7	4.8		8.8 7.0	7.9	
				6.6	Middle	3.3	18.8 18.8	18.8	8.1 8.2	8.2	29.2 29.2	29.2	92.3 91.6	92.0	7.2 7.2	7.2		4.8 4.5	4.7	4.7	10.7 11.2	11.0	9.8
					Bottom	5.6	18.8 18.6	18.7	8.1 8.2	8.2	29.2 29.4	29.3	92.0 91.1	91.6	7.2 7.2	7.2	7.2	4.6 4.5	4.6		10.9 10.1	10.5	
20-Mar-17	Sunny	Moderate	18:55		Surface	1.0	19.9 19.9	19.9	8.1 8.1	8.1	27.8 27.8	27.8	94.2 94.7	94.5	7.3 7.3	7.3	7.3	2.2 2.2	2.2		6.7 7.2	7.0	
				6.6	Middle	3.3	19.1 19.0	19.1	8.1 8.1	8.1	28.4 28.4	28.4	92.4 93.1	92.8	7.2 7.3	7.3	-	2.4 2.3	2.4	2.4	7.9 9.4	8.7	8.1
					Bottom	5.6	18.8 18.6	18.7	8.1 8.1	8.1	28.7 28.9	28.8	93.3 91.5	92.4	7.3 7.2	7.3	7.3	2.4 2.5	2.5		8.3 8.8	8.6	

Water Quality Monitoring Results at SR10A - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	k	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	Г	urbidity(NTL	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:36		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	28.7 28.7	28.7	89.6 89.6	89.6	7.0 7.0	7.0	7.0	1.8 1.8	1.8		4.9 6.2	5.6	
				6.5	Middle	3.3	18.9 18.9	18.9	8.1 8.1	8.1	29.0 28.9	29.0	89.5 89.6	89.6	7.0 7.0	7.0	1.0	1.9 1.8	1.9	1.9	5.3 4.8	5.1	6.8
					Bottom	5.5	18.9 18.9	18.9	8.1 8.1	8.1	29.3 29.1	29.2	89.3 89.3	89.3	7.0 7.0	7.0	7.0	1.8 2.0	1.9		8.9 10.4	9.7	
24-Mar-17	Sunny	Moderate	10:12		Surface	1.0	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	91.1 91.0	91.1	7.0 7.0	7.0	7.0	2.0 2.0	2.0		5.0 5.5	5.3	
				6.4	Middle	3.2	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	90.9 91.0	91.0	7.0 7.0	7.0		2.0 2.1	2.1	2.1	6.9 6.2	6.6	5.9
					Bottom	5.4	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.2	30.2	90.9 90.8	90.9	7.0 7.0	7.0	7.0	2.1 2.0	2.1		6.6 5.2	5.9	
27-Mar-17	Fine	Moderate	13:50		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	92.7 92.8	92.8	7.2 7.2	7.2	7.2	5.5 5.5	5.5		10.0 10.2	10.1	
				6.4	Middle	3.2	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	92.6 92.5	92.6	7.2 7.2	7.2	1.2	5.4 5.6	5.5	5.5	11.3 11.9	11.6	10.8
					Bottom	5.4	19.5 19.5	19.5	8.2 8.2	8.2	28.7 28.7	28.7	92.5 92.7	92.6	7.2 7.2	7.2	7.2	5.6 5.4	5.5		11.2 10.2	10.7	
29-Mar-17	Fine	Moderate	14:20		Surface	1.0	20.0 19.9	20.0	8.2 8.2	8.2	29.8 29.8	29.8	93.9 93.8	93.9	7.2 7.2	7.2	7.2	4.6 4.6	4.6		-	-	
				6.3	Middle	3.2	19.9 19.8	19.8	8.2 8.2	8.2	29.8 29.9	29.9	93.6 93.4	93.5	7.2 7.2	7.2	1.2	4.6 4.5	4.6	4.6		-	=
					Bottom	5.3	19.6 19.8	19.7	8.2 8.2	8.2	30.2 30.0	30.1	93.1 93.2	93.2	7.1 7.1	7.1	7.1	4.6 4.5	4.6		-	-]
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-		-		-	-	=		-	=
					Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	р	Н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	Turbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	07:49		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	29.5 29.5	29.5	95.1 95.1	95.1	7.6 7.6	7.6	7.0	4.9 5.0	5.0		9.3 8.9	9.1	
				6.5	Middle	3.3	17.4 17.4	17.4	8.1 8.1	8.1	29.6 29.6	29.6	94.9 94.8	94.9	7.6 7.6	7.6	7.6	5.9 6.1	6.0	5.5	8.3 9.1	8.7	9.0
					Bottom	5.5	17.4	17.4	8.1 8.1	8.1	29.6 29.6	29.6	94.9 94.8	94.9	7.6 7.6	7.6	7.6	5.4 5.7	5.6		8.7 9.8	9.3	1
3-Mar-17	Sunny	Moderate	09:06		Surface	1.0	17.6	17.7	8.1 8.1	8.1	29.3 29.3	29.3	94.2 94.2	94.2	7.5 7.5	7.5		5.5 5.4	5.5		7.3	8.1	
				6.5	Middle	3.3	17.6	17.6	8.1 8.1	8.1	29.3 29.4	29.4	93.9 93.9	93.9	7.5 7.5	7.5	7.5	5.4 5.6	5.5	5.5	8.1 7.8	8.0	8.2
					Bottom	5.5	17.6 17.6	17.6	8.1 8.1	8.1	29.5 29.6	29.6	93.8 93.8	93.8	7.5 7.5	7.5	7.5	5.5 5.6	5.6		8.7 8.0	8.4	1
6-Mar-17	Cloudy	Moderate	13:06		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	29.0 29.0 28.8	28.9	95.9 96.0	96.0	7.6 7.6	7.6		5.4 5.2	5.3		4.0	4.0	
				6.6	Middle	3.3	18.3	18.3	8.1 8.1	8.1	29.3 29.3	29.3	96.0 95.8	95.9	7.6 7.6	7.6	7.6	5.5 5.3	5.4	5.4	3.7 4.5	4.1	4.1
					Bottom	5.6	18.4 18.4	18.4	8.1 8.1	8.1	29.4 29.2	29.3	95.8 95.7	95.8	7.6 7.6	7.6	7.6	5.5 5.4	5.5		4.1	4.2	1
8-Mar-17	Cloudy	Moderate	16:05		Surface	1.0	18.2 18.2	18.2	8.1 8.1	8.1	29.4 29.5	29.4	92.9 92.9	92.9	7.4 7.3	7.3	7.0	2.7 2.8	2.8		9.6 9.0	9.3	
				6.6	Middle	3.3	18.1 18.1	18.1	8.1 8.1	8.1	29.6 29.6	29.6	92.7 92.6	92.7	7.3 7.3	7.3	7.3	3.0 3.2	3.1	3.0	9.1 10.2	9.7	9.5
					Bottom	5.6	18.2 18.1	18.1	8.1 8.1	8.1	29.5 29.6	29.6	92.8 92.7	92.8	7.3 7.3	7.3	7.3	3.1 3.1	3.1		9.6 9.2	9.4	ſ
10-Mar-17	Cloudy	Moderate	18:06		Surface	1.0	18.3 18.2	18.3	8.2 8.2	8.2	29.5 29.5	29.5	95.4 95.3	95.4	7.5 7.5	7.5	7.5	5.4 5.6	5.5		8.5 9.0	8.8	
				6.7	Middle	3.4	18.1 18.1	18.1	8.2 8.2	8.2	29.7 29.7	29.7	95.0 95.0	95.0	7.5 7.5	7.5	7.5	5.5 5.4	5.5	5.6	8.6 7.9	8.3	9.6
					Bottom	5.7	18.2 18.1	18.2	8.2 8.2	8.2	29.7 29.8	29.7	95.0 94.9	95.0	7.5 7.5	7.5	7.5	5.8 5.6	5.7		12.2 10.9	11.6	
13-Mar-17	Fine	Moderate	06:51		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	29.9 30.0	29.9	91.2 91.2	91.2	7.2 7.2	7.2	7.2	3.3 3.4	3.4		6.9 6.9	6.9	
				6.6	Middle	3.3	18.3 18.3	18.3	8.1 8.1	8.1	30.1 30.0	30.1	91.0 90.9	91.0	7.2 7.2	7.2	1.2	3.9 4.2	4.1	3.8	7.7 8.5	8.1	7.9
					Bottom	5.6	18.2 18.3	18.3	8.1 8.1	8.1	30.2 30.1	30.1	91.0 90.9	91.0	7.2 7.2	7.2	7.2	4.0 4.0	4.0		8.9 8.5	8.7	
15-Mar-17	Fine	Moderate	07:49		Surface	1.0	18.6 18.6	18.6	8.1 8.1	8.1	27.9 27.9	27.9	91.0 91.3	91.2	7.2 7.2	7.2	7.2	3.6 3.6	3.6		10.4 10.5	10.5	
				6.5	Middle	3.3	18.6 18.6	18.6	8.1 8.1	8.1	28.0 28.5	28.2	91.2 90.8	91.0	7.2 7.2	7.2	1.2	3.8 3.7	3.8	3.7	12.7 12.2	12.5	11.9
					Bottom	5.5	18.6 18.6	18.6	8.1 8.1	8.1	28.9 28.8	28.8	91.6 90.7	91.2	7.2 7.2	7.2	7.2	3.8 3.8	3.8		13.1 12.1	12.6	
17-Mar-17	Cloudy	Moderate	08:30		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.0 28.0	28.0	92.1 91.9	92.0	7.3 7.3	7.3	7.3	4.2 4.2	4.2		8.7 8.5	8.6	
				6.6	Middle	3.3	18.5 18.5	18.5	8.1 8.1	8.1	28.6 28.5	28.6	91.6 91.8	91.7	7.2 7.3	7.3	1.0	4.5 4.6	4.6	4.4	8.9 8.2	8.6	8.8
					Bottom	5.6	18.5 18.5	18.5	8.1 8.1	8.1	28.8 28.4	28.6	92.0 92.0	92.0	7.3 7.3	7.3	7.3	4.7 4.3	4.5		9.0 9.1	9.1	
20-Mar-17	Sunny	Moderate	10:00		Surface	1.0	19.3 19.0	19.2	8.1 8.1	8.1	28.9 28.9	28.9	94.2 94.0	94.1	7.3 7.3	7.3	7.3	1.8 1.8	1.8		5.3 5.2	5.3	
				6.6	Middle	3.3	18.8 18.8	18.8	8.1 8.1	8.1	29.1 29.0	29.1	93.0 93.1	93.1	7.3 7.3	7.3	1.0	1.9 1.7	1.8	1.8	4.7 5.0	4.9	5.7
					Bottom	5.6	18.7 18.7	18.7	8.1 8.1	8.1	29.7 29.4	29.6	92.7 92.8	92.8	7.3 7.3	7.3	7.3	2.0 1.8	1.9		7.1 6.8	7.0	

Water Quality Monitoring Results at SR10A - Mid-FloodTide

Date	Weather	Sea	Sampling	Water	Sampl	ling	Tempera	ature (°C)	1	ъН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Susper	nded Solids	; (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:31		Surface	1.0	19.5 19.5	19.5	8.2 8.2	8.2	27.9 27.9	27.9	95.1 94.8	95.0	7.4 7.4	7.4	7.4	2.0 2.1	2.1		9.3 7.6	8.5	
				6.8	Middle	3.4	19.2 19.1	19.2	8.2 8.2	8.2	29.1 29.3	29.2	94.5 94.1	94.3	7.3 7.3	7.3	7.4	2.2 2.1	2.2	2.1	10.6 8.7	9.7	9.0
					Bottom	5.8	19.4 19.0	19.2	8.2 8.2	8.2	29.2 29.9	29.5	94.4 94.0	94.2	7.3 7.3	7.3	7.3	2.1 2.1	2.1		9.0 8.8	8.9	
24-Mar-17	Sunny	Moderate	16:59		Surface	1.0	20.0 20.1	20.1	8.2 8.2	8.2	28.1 28.1	28.1	95.4 95.3	95.4	7.4 7.3	7.3	7.3	2.4 2.5	2.5		6.3 7.0	6.7	
				6.5	Middle	3.3	19.7 19.6	19.7	8.2 8.2	8.2	28.4 28.6	28.5	94.8 94.4	94.6	7.3 7.3	7.3	1.0	2.5 2.6	2.6	2.6	6.3 5.2	5.8	6.0
					Bottom	5.5	19.9 19.6	19.7	8.2 8.2	8.2	28.5 29.2	28.8	94.6 94.2	94.4	7.3 7.3	7.3	7.3	2.6 2.6	2.6		5.7 5.4	5.6	
27-Mar-17	Fine	Moderate	05:58		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	28.5 28.6	28.5	91.5 91.5	91.5	7.1 7.1	7.1	7.1	2.4 2.6	2.5		4.6 5.3	5.0	
				6.6	Middle	3.3	19.3 19.3	19.3	8.2 8.2	8.2	29.1 29.1	29.1	91.3 91.3	91.3	7.1 7.1	7.1	7.1	2.6 2.7	2.7	2.6	3.6 4.1	3.9	4.4
					Bottom	5.6	19.3 19.3	19.3	8.2 8.2	8.2	29.3 29.4	29.4	91.3 91.3	91.3	7.1 7.1	7.1	7.1	2.6 2.6	2.6		3.7 4.6	4.2	
29-Mar-17	Fine	Moderate	06:49		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	30.2 30.1	30.1	92.6 92.6	92.6	7.1 7.1	7.1	7.1	6.6 6.4	6.5		-	-	
				6.3	Middle	3.2	19.5 19.5	19.5	8.2 8.2	8.2	30.4 30.4	30.4	92.5 92.4	92.5	7.1 7.1	7.1	7.1	6.6 6.4	6.5	6.5	-	-	=
					Bottom	5.3	19.5 19.5	19.5	8.2 8.2	8.2	30.4 30.6	30.5	92.4 92.4	92.4	7.1 7.1	7.1	7.1	6.6 6.6	6.6		-	-	
31-Mar-17	Rainy	Moderate	07:56		Surface	1.0	20.2 20.2	20.2	8.1 8.1	8.1	28.8 28.8	28.8	93.0 92.8	92.9	7.1 7.1	7.1	7.1	6.0 6.3	6.2		-	-	
				6.4	Middle	3.2	20.1 20.1	20.1	8.1 8.1	8.1	29.2 29.3	29.3	92.7 92.9	92.8	7.1 7.1	7.1	7.1	6.4 6.6	6.5	6.4	-	-	=
					Bottom	5.4	20.0 20.2	20.1	8.1 8.1	8.1	29.5 29.2	29.3	92.6 92.5	92.6	7.1 7.1	7.1	7.1	6.5 6.5	6.5		-	-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

Remarks:

* DA: Depth-Averaged

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	oling	Tempera	ature (°C)	Ł	Η	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxyger	(mg/L)	Т	urbidity(NTl	J)	Suspe	ended Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	15:46		Surface	1.0	17.6 17.6	17.6	8.2 8.2	8.2	30.5 30.5	30.5	95.3 95.3	95.3	7.6 7.6	7.6		4.1 4.3	4.2		10.6 10.7	10.7	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	4.3	-	-	10.7
					Bottom	4.0	17.5 17.6	17.6	8.2 8.2	8.2	30.5 30.5	30.5	95.1 95.2	95.2	7.6 7.6	7.6	7.6	4.3 4.2	4.3		10.1 11.0	10.6	
3-Mar-17	Sunny	Moderate	17:07		Surface	1.0	18.0 18.0	18.0	8.2 8.2	8.2	28.3 28.3	28.3	96.7 96.5	96.6	7.7	7.7		5.4 5.5	5.5		6.7 7.5	7.1	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	5.5	-	-	7.4
					Bottom	4.0	17.9 18.0	18.0	8.2 8.2	8.2	28.4 28.3	28.3	96.2 96.5	96.4	7.7 7.7	7.7	7.7	5.5 5.5	5.5		7.6 7.7	7.7	
6-Mar-17	Cloudy	Moderate	05:46		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	29.0 29.1	29.1	97.6 97.6	97.6	7.7	7.7		2.0 2.1	2.1		3.4 2.8	3.1	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.7	-	-	2.1	-	-	5.1
					Bottom	3.9	18.3 18.4	18.4	8.1 8.1	8.1	29.6 29.2	29.4	97.4 97.4	97.4	7.7 7.7	7.7	7.7	2.1 2.1	2.1		7.4 6.6	7.0	
8-Mar-17	Cloudy	Moderate	09:19		Surface	1.0	18.0 18.0	18.0	8.1 8.1	8.1	30.2 30.4	30.3	95.6 98.2	96.9	7.5 7.7	7.6	7.0	1.8 1.8	1.8		7.5 8.1	7.8	i
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	1.8	-	-	8.2
					Bottom	4.0	18.0 18.0	18.0	8.0 8.1	8.1	31.5 30.6	31.1	96.1 94.8	95.5	7.6 7.5	7.5	7.5	1.8 1.8	1.8		8.2 8.9	8.6	
10-Mar-17	Cloudy	Moderate	11:01		Surface	1.0	18.1 18.1	18.1	8.1 8.1	8.1	29.5 29.5	29.5	92.1 92.4	92.3	7.3 7.3	7.3	7.3	2.3 2.3	2.3		9.4 9.0	9.2	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	2.3	-	-	8.9
					Bottom	4.0	18.1 18.1	18.1	8.1 8.1	8.1	29.7 29.6	29.6	92.6 92.2	92.4	7.3 7.3	7.3	7.3	2.3 2.2	2.3		8.4 8.5	8.5	
13-Mar-17	Fine	Moderate	14:35		Surface	1.0	18.8 18.8	18.8	8.2 8.2	8.2	29.2 29.2	29.2	94.5 94.7	94.6	7.4 7.4	7.4	7.4	3.8 3.8	3.8		8.1 8.7	8.4	
				4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	3.9	-	-	9.5
					Bottom	3.8	18.7 18.5	18.6	8.2 8.2	8.2	29.2 29.4	29.3	94.2 93.9	94.1	7.4 7.4	7.4	7.4	3.8 3.9	3.9		10.3 10.7	10.5	
15-Mar-17	Fine	Moderate	15:20		Surface	1.0	18.7 18.8	18.7	8.2 8.2	8.2	29.1 29.1	29.1	90.8 91.0	90.9	7.1 7.1	7.1	7.1	4.3 4.3	4.3		6.8 5.1	6.0	
				5.0	Middle	-	-	-		-		-	-	-	-	-	7.1	-	-	4.3	-	-	6.9
					Bottom	4.0	18.7 18.6	18.6	8.2 8.2	8.2	29.3 29.3	29.3	90.6 90.4	90.5	7.1 7.1	7.1	7.1	4.3 4.2	4.3		8.4 7.2	7.8	
17-Mar-17	Cloudy	Moderate	16:47		Surface	1.0	18.8 18.8	18.8	8.1 8.1	8.1	29.2 29.2	29.2	92.4 92.4	92.4	7.2 7.2	7.2	7.2	5.0 5.0	5.0		8.8 7.8	8.3	
				5.0	Middle	-	-	-		-	-	-	-	-	-	-	1.2	-	-	5.0	-	-	9.6
					Bottom	4.0	18.8 18.8	18.8	8.1 8.1	8.1	29.2 29.2	29.2	92.2 92.2	92.2	7.2 7.2	7.2	7.2	4.8 5.0	4.9		11.7 9.9	10.8	
20-Mar-17	Sunny	Moderate	19:08		Surface	1.0	20.1 19.6	19.8	8.1 8.1	8.1	27.8 28.1	27.9	95.9 95.1	95.5	7.4 7.4	7.4	7.4	2.0 2.0	2.0		5.3 5.9	5.6	
				5.3	Middle	-	-	-		-		-	-	-	-	-	7.7	-	-	2.1	-	-	5.6
					Bottom	4.3	19.1 19.3	19.2	8.1 8.1	8.1	28.4 28.3	28.3	93.8 94.1	94.0	7.3 7.3	7.3	7.3	2.0 2.1	2.1		5.7 5.3	5.5	

Water Quality Monitoring Results at SR10B(N) - Mid-EbbTide

Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	F	ъH	Salini	ty (ppt)	DO Satu	ration (%)	Dissolv	ved Oxygen	(mg/L)	Т	urbidity(NTU	J)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	07:29		Surface	1.0	18.9 18.9	18.9	8.1 8.1	8.1	28.8 28.8	28.8	89.8 89.9	89.9	7.0 7.1	7.0	7.0	1.9 1.8	1.9		4.2 4.4	4.3	
				5.0	Middle	-	-	-	-	-	-	-		-		-	7.0	-	-	1.9	-	-	4.7
					Bottom	4.0	18.9 18.9	18.9	8.1 8.1	8.1	29.1 29.0	29.0	89.9 89.7	89.8	7.0 7.0	7.0	7.0	1.8 1.8	1.8		5.9 4.3	5.1	I
24-Mar-17	Sunny	Moderate	10:05		Surface	1.0	19.3 19.3	19.3	8.1 8.1	8.1	30.2 30.2	30.2	92.9 92.2	92.6	7.2 7.1	7.1	7.1	2.0 2.0	2.0		5.4 4.6	5.0	
				5.1	Middle	-	-	-	-	-	-	-		-		-	7.1	-	-	2.0		-	5.2
					Bottom	4.1	19.2 19.2	19.2	8.1 8.1	8.1	30.2 30.3	30.2	92.5 95.5	94.0	7.1 7.4	7.3	7.3	2.0 2.0	2.0		4.8 5.8	5.3	
27-Mar-17	Fine	Moderate	14:01		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	28.5 28.5	28.5	93.7 93.5	93.6	7.3 7.2	7.3	7.3	4.4 4.3	4.4		12.1 11.4	11.8	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	4.5	-	-	11.4
					Bottom	4.4	19.6 19.5	19.5	8.2 8.2	8.2	28.6 28.8	28.7	93.6 93.2	93.4	7.3 7.2	7.2	7.2	4.5 4.5	4.5		11.3 10.7	11.0	
29-Mar-17	Fine	Moderate	14:29		Surface	1.0	20.0 20.0	20.0	8.2 8.2	8.2	29.7 29.7	29.7	94.9 95.3	95.1	7.3 7.3	7.3	7.3	4.7 4.8	4.8		-	-	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	4.9		-	<u> </u>
					Bottom	4.0	19.9 20.0	19.9	8.2 8.2	8.2	29.8 29.7	29.7	95.4 95.0	95.2	7.3 7.3	7.3	7.3	4.8 4.9	4.9			-	
3/31/2017 #	-	-	-		Surface	-	-	-	-	-	-	-	-	-	-	-	_	-	-		-	-	
				-	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	=
					Bottom	-	-	-	-	-	-	-		-		-	-	-	-			-	

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

CS4 and CS(Mf)3 are considered as upstream contol stations of mid-ebb tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

#Due to thunderstorm signal issued by HKO, impact water quality monitoring at Ebb tide on 31 March 2017 was cancelled no substitute monitoring was conducted.

Remarks:

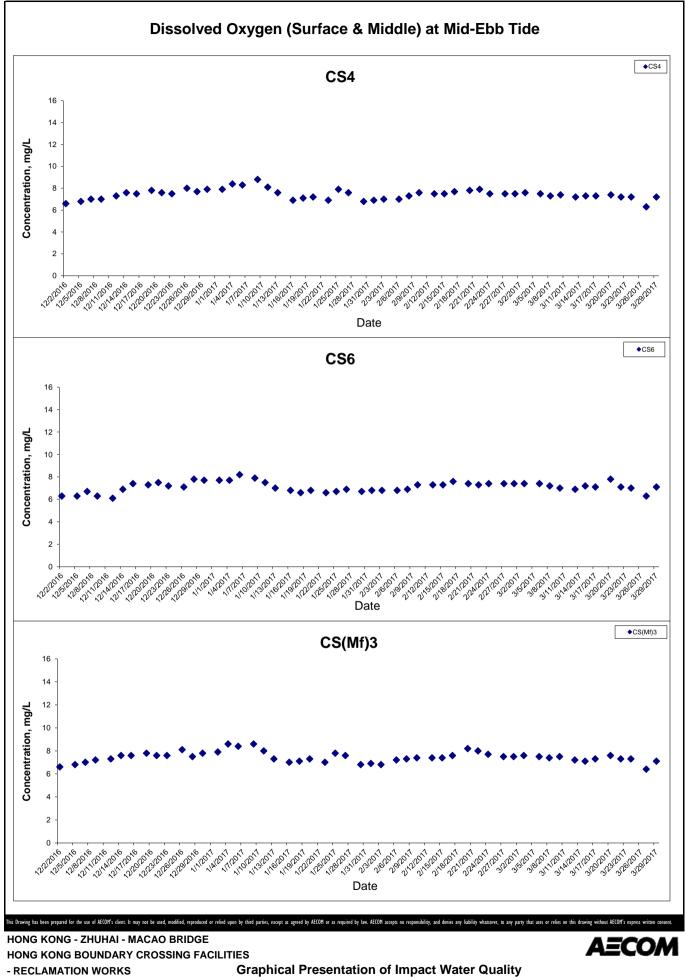
* DA: Depth-Averaged

Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

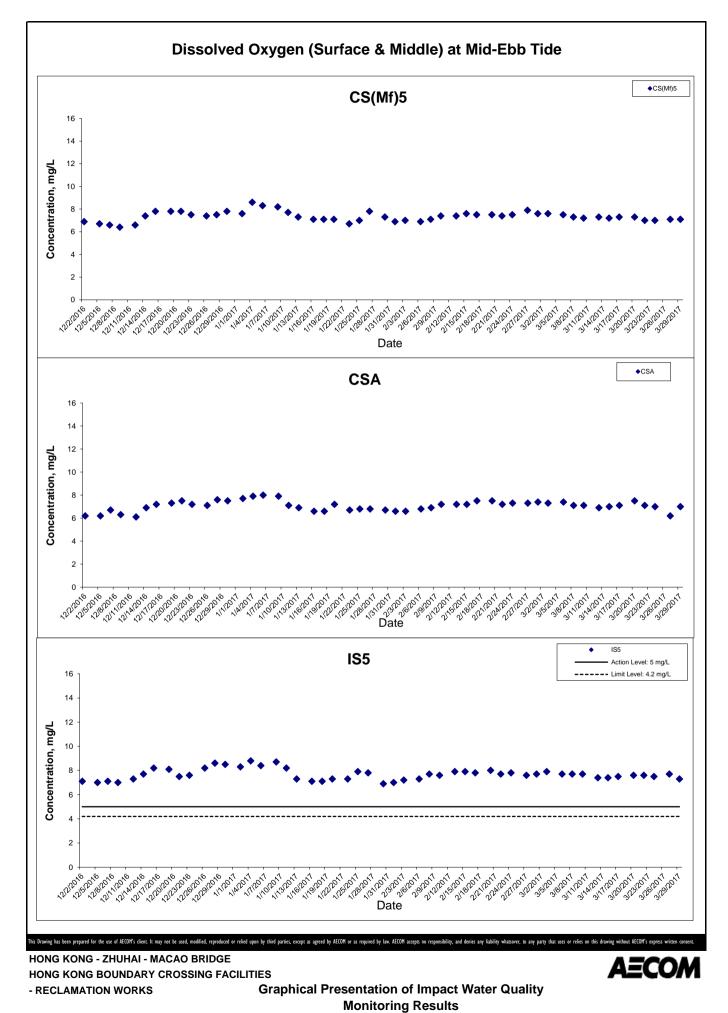
Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)	p	н	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T T	Furbidity(NT	U)	Suspe	nded Solids	s (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
1-Mar-17	Sunny	Moderate	07:35		Surface	1.0	17.4 17.4	17.4	8.1 8.1	8.1	31.0 31.6	31.3	97.9 99.7	98.8	7.8 7.9	7.8	7.0	6.6 6.4	6.5		5.4 4.6	5.0	
				4.9	Middle	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-	6.8	-	-	6.2
					Bottom	3.9	17.3 17.4	17.4	8.1 8.1	8.1	32.3 31.3	31.8	101.0 98.8	99.9	8.0 7.8	7.9	7.9	7.0 7.2	7.1		7.9 6.9	7.4	1
3-Mar-17	Sunny	Moderate	08:56		Surface	1.0	17.6 17.6	17.6	8.1 8.1	8.1	30.0 29.8	29.9	95.1 94.4	94.8	7.6 7.5	7.6		5.3 5.5	5.4		7.0 5.8	6.4	
				4.8	Middle	-		-	-	-		-	-	-	-	-	7.6		-	5.5		-	6.7
					Bottom	3.8	17.6 17.6	17.6	8.1 8.1	8.1	30.7 30.1	30.4	96.0 94.4	95.2	7.6 7.5	7.6	7.6	5.6 5.5	5.6		6.2 7.6	6.9	1
6-Mar-17	Cloudy	Moderate	13:16		Surface	1.0	18.4 18.4	18.4	8.1 8.1	8.1	28.9 29.0	29.0	95.7 95.9	95.8	7.6 7.6	7.6	7.0	4.8 4.7	4.8		4.8 4.0	4.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-	4.8	-	-	4.6
					Bottom	4.1	18.3 18.4	18.3	8.1 8.1	8.1	29.3 29.1	29.2	95.4 95.7	95.6	7.5 7.6	7.6	7.6	4.7 4.8	4.8		5.4 4.2	4.8	
8-Mar-17	Cloudy	Moderate	16:15		Surface	1.0	18.2 18.1	18.2	8.1 8.1	8.1	29.5 29.5	29.5	92.8 92.8	92.8	7.3 7.3	7.3	7.0	2.7 2.5	2.6		5.6 5.1	5.4	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-	2.6	-	-	5.9
					Bottom	4.1	18.1 18.1	18.1	8.1 8.1	8.1	29.6 29.5	29.5	92.7 92.7	92.7	7.3 7.3	7.3	7.3	2.6 2.6	2.6		6.5 6.3	6.4	
10-Mar-17	Cloudy	Moderate	18:17		Surface	1.0	18.3 18.3	18.3	8.2 8.2	8.2	29.5 29.5	29.5	95.5 95.5	95.5	7.5 7.5	7.5	7.5	5.6 5.6	5.6		6.8 8.3	7.6	
				5.4	Middle	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	5.6	-	-	8.8
					Bottom	4.4	18.1 18.2	18.2	8.2 8.2	8.2	29.8 29.6	29.7	95.1 95.3	95.2	7.5 7.5	7.5	7.5	5.5 5.5	5.5		9.4 10.6	10.0	
13-Mar-17	Fine	Moderate	06:36		Surface	1.0	18.3 18.3	18.3	8.1 8.1	8.1	30.9 30.5	30.7	92.6 92.0	92.3	7.3 7.2	7.2	7.2	4.0 3.8	3.9		6.9 8.6	7.8	
				5.1	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	4.0	-	-	8.2
					Bottom	4.1	18.3 18.3	18.3	8.1 8.1	8.1	31.2 30.8	31.0	92.9 92.0	92.5	7.3 7.2	7.2	7.2	4.2 4.0	4.1		8.5 8.6	8.6	
15-Mar-17	Fine	Moderate	07:37		Surface	1.0	18.6 18.6	18.6	8.1 8.0	8.1	28.5 28.8	28.7	92.9 94.6	93.8	7.3 7.5	7.4	7.4	4.5 4.3	4.4		4.7 3.4	4.1	
				5.0	Middle	-	-	-		-	-	-	-	-	-	-	7.4	-	-	4.4	-	-	6.1
					Bottom	4.0	18.6 18.6	18.6	8.1 8.0	8.0	29.3 30.0	29.6	93.5 97.4	95.5	7.4 7.6	7.5	7.5	4.5 4.3	4.4		7.7 8.5	8.1	
17-Mar-17	Cloudy	Moderate	08:17		Surface	1.0	18.5 18.5	18.5	8.1 8.1	8.1	28.9 28.4	28.6	96.2 93.6	94.9	7.6 7.4	7.5	7.5	4.5 4.1	4.3		6.8 7.1	7.0	
				5.1	Middle	-	-	-	-	-	-	-	-	-		-	7.5	-	-	4.5	-	-	7.2
					Bottom	4.1	18.5 18.5	18.5	8.1 8.1	8.1	29.2 29.9	29.6	94.3 98.0	96.2	7.4 7.7	7.6	7.6	4.5 4.6	4.6	1	7.5 7.1	7.3	1
20-Mar-17	Sunny	Moderate	09:47		Surface	1.0	19.1 19.2	19.1	8.1 8.1	8.1	30.3 29.8	30.1	93.8 94.2	94.0	7.3 7.3	7.3	7.2	1.8 1.8	1.8		3.6 3.1	3.4	
				5.3	Middle	-	-	-	-	-	-	-	-	-		-	7.3	-	-	1.9	-	-	5.3
					Bottom	4.3	18.7 19.0	18.8	8.1 8.1	8.1	31.2 30.3	30.7	92.9 93.3	93.1	7.2 7.2	7.2	7.2	2.0 1.8	1.9	1	6.9 7.4	7.2	1

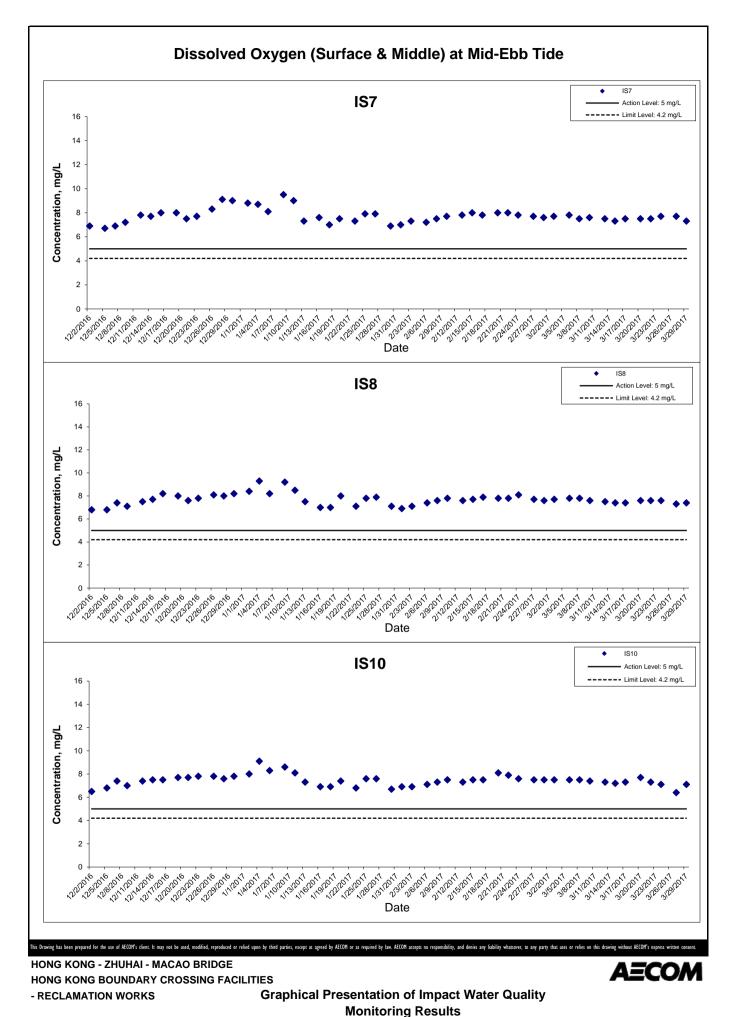
Water Quality Monitoring Results at SR10B(N) - Mid-FloodTide

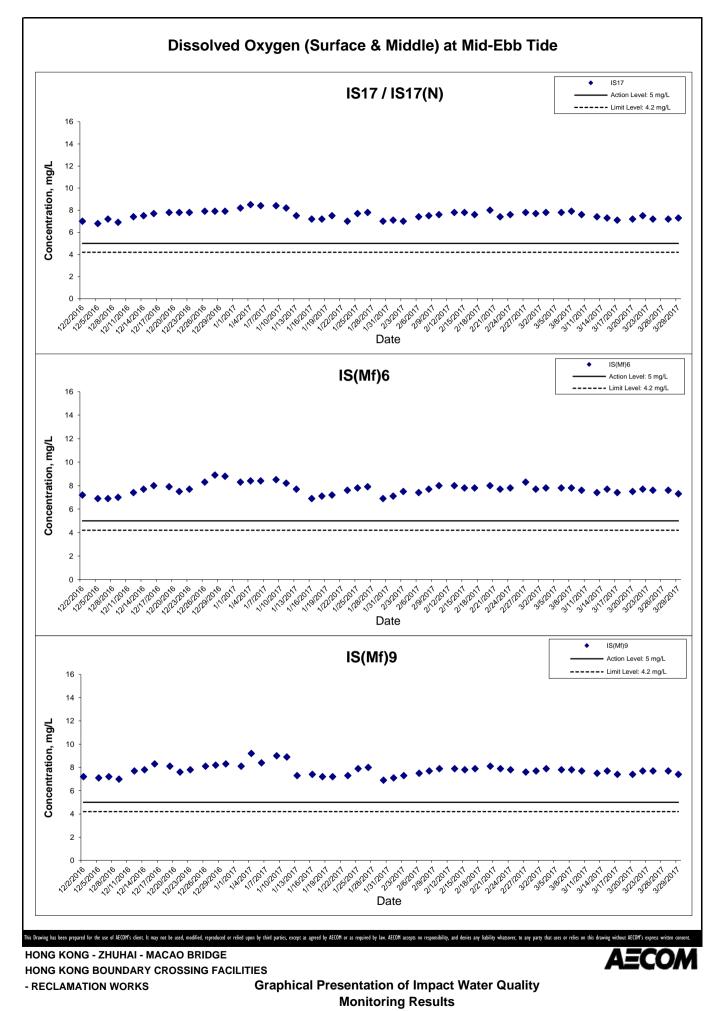
Date	Weather	Sea	Sampling	Water	Samp	ling	Tempera	ature (°C)		рН	Salini	ty (ppt)	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Г	urbidity(NTL	J)	Susper	nded Solids	, (mg/L)
	Condition	Condition**	Time	Depth (m)	Depth	(m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
22-Mar-17	Fine	Moderate	21:40		Surface	1.0	19.3 19.3	19.3	8.2 8.2	8.2	28.0 28.2	28.1	94.9 94.8	94.9	7.4 7.4	7.4	7.4	2.1 2.0	2.1		6.4 6.8	6.6	
				5.4	Middle	-	-	-	-	-		-	-	-	-	-	7.4	-	-	2.1	-	-	7.7
					Bottom	4.4	19.3 19.2	19.2	8.2 8.2	8.2	29.2 29.3	29.2	94.6 94.7	94.7	7.3 7.4	7.3	7.3	2.0 2.1	2.1		7.9 9.5	8.7	
24-Mar-17	Sunny	Moderate	17:09		Surface	1.0	19.9 19.9	19.9	8.2 8.2	8.2	28.2 28.3	28.3	94.9 95.0	95.0	7.3 7.3	7.3	7.3	2.2 2.1	2.2		7.2 6.0	6.6	
				5.2	Middle	-	-	-	-	-	-	-	-	-	-	-	1.0	-	-	2.2	-	-	6.1
					Bottom	4.2	19.5 19.7	19.6	8.2 8.2	8.2	29.3 28.8	29.1	94.3 94.2	94.3	7.3 7.3	7.3	7.3	2.2 2.1	2.2		5.2 5.9	5.6	
27-Mar-17	Fine	Moderate	05:50		Surface	1.0	19.3 19.3	19.3	8.1 8.2	8.2	29.4 29.3	29.3	93.9 93.1	93.5	7.3 7.2	7.2	7.2	2.4 2.5	2.5		4.1 3.1	3.6	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	2.5		-	5.3
					Bottom	4.0	19.3 19.3	19.3	8.1 8.1	8.1	30.4 29.7	30.1	95.6 93.4	94.5	7.4 7.2	7.3	7.3	2.5 2.5	2.5		6.7 7.3	7.0	
29-Mar-17	Fine	Moderate	06:42		Surface	1.0	19.6 19.6	19.6	8.2 8.2	8.2	30.2 30.4	30.3	93.6 94.0	93.8	7.2 7.2	7.2	7.2	6.0 6.0	6.0		-	-	
				5.1	Middle	-	-	-	-	-		-	-	-	-	-	1.2	-	-	6.0		-	<u>-</u>
					Bottom	4.1	19.5 19.6	19.5	8.2 8.2	8.2	30.7 30.4	30.6	94.6 93.5	94.1	7.3 7.2	7.2	7.2	5.9 5.9	5.9			-	
31-Mar-17	Rainy	Moderate	07:48		Surface	1.0	20.3 20.3	20.3	8.1 8.1	8.1	29.2 29.3	29.2	94.2 94.9	94.6	7.2 7.2	7.2	7.2	4.6 4.8	4.7		-	-	
				5.0	Middle	-	-	-	-	-	-	-	-	-	-	-	1.2	-	-	4.8	-	-	-
					Bottom	4.0	20.1 20.2	20.1	8.1 8.1	8.1	30.5 29.6	30.1	96.5 94.3	95.4	7.3 7.2	7.2	7.2	4.8 4.8	4.8			-	

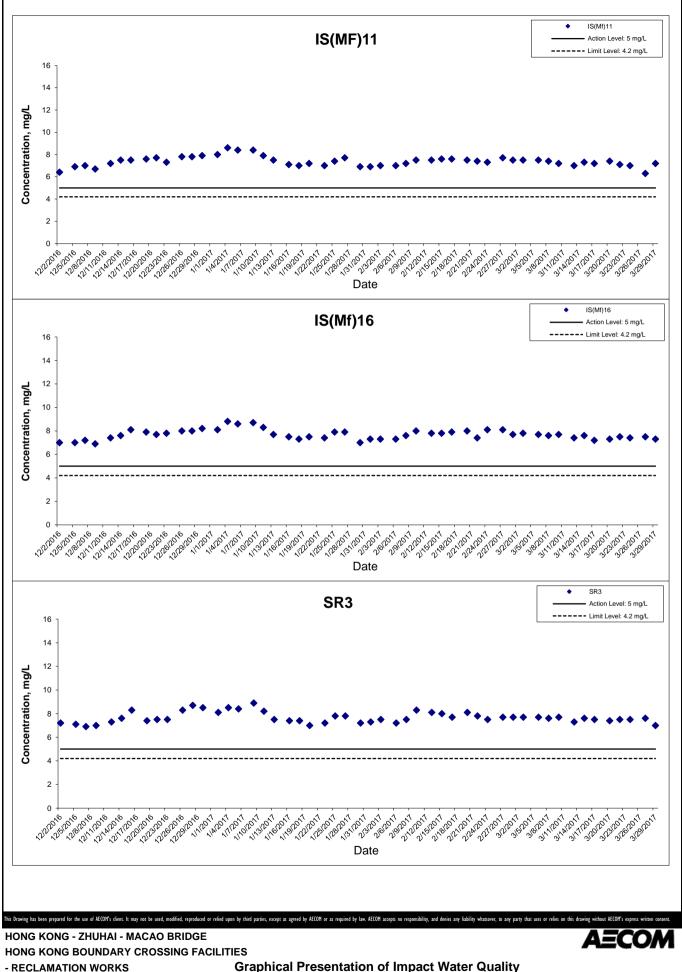

Remarks:

Bolded values means the measured values exceed the Action Level; Underlined bolded values means the measured values exceed the Limit Level.

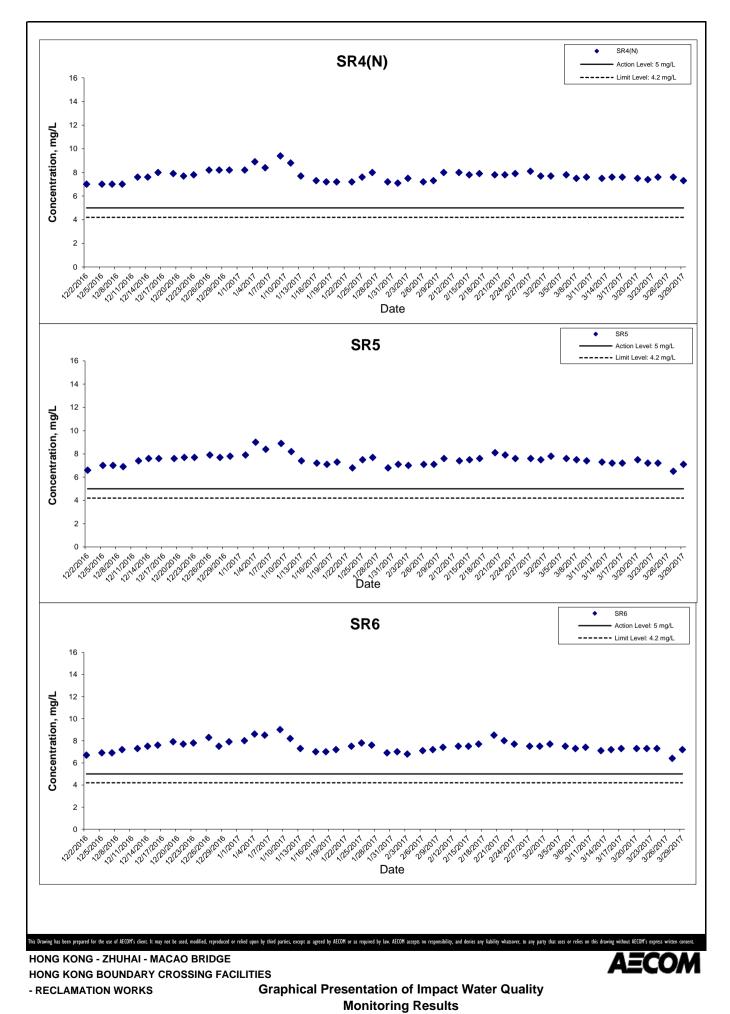

CS6, CSA and CS(Mf)5 are considered as upstream contol stations of mid-flood tide. The averaged turbidity and suspended solid values of these stations will be used for determination of Action and Limit Levels.

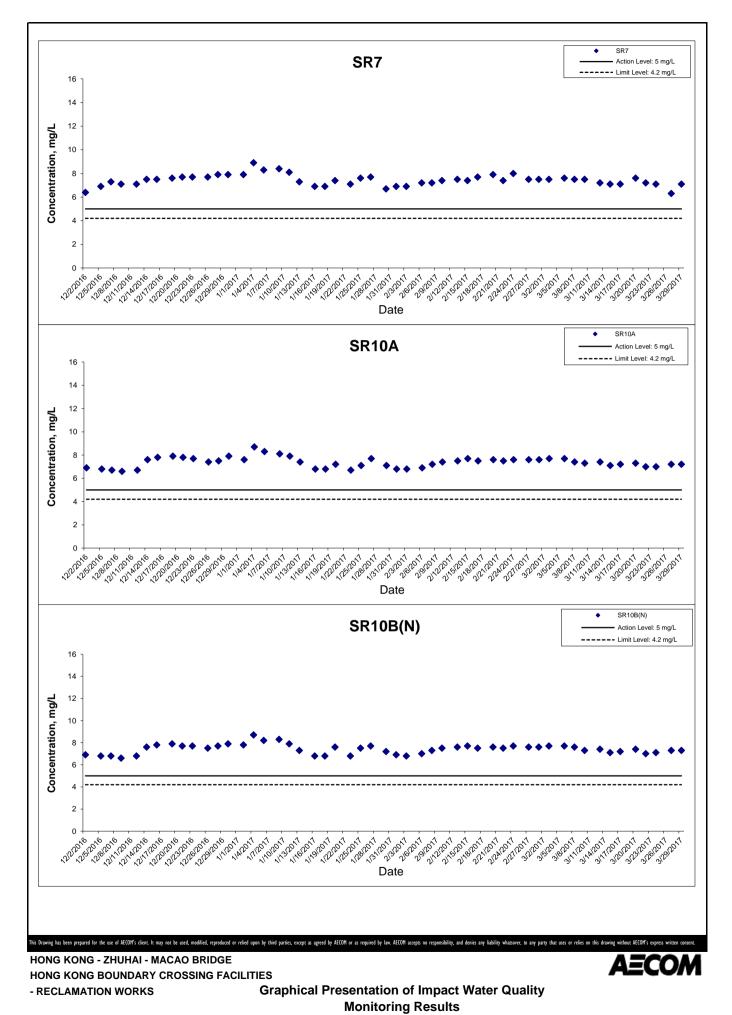

Remarks:

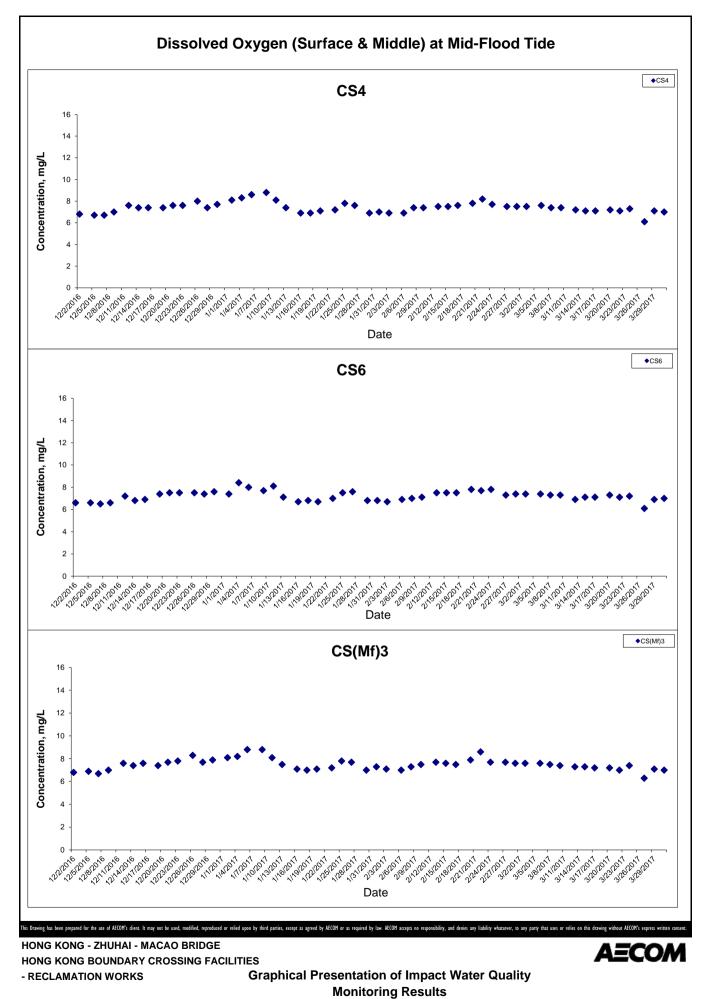

* DA: Depth-Averaged

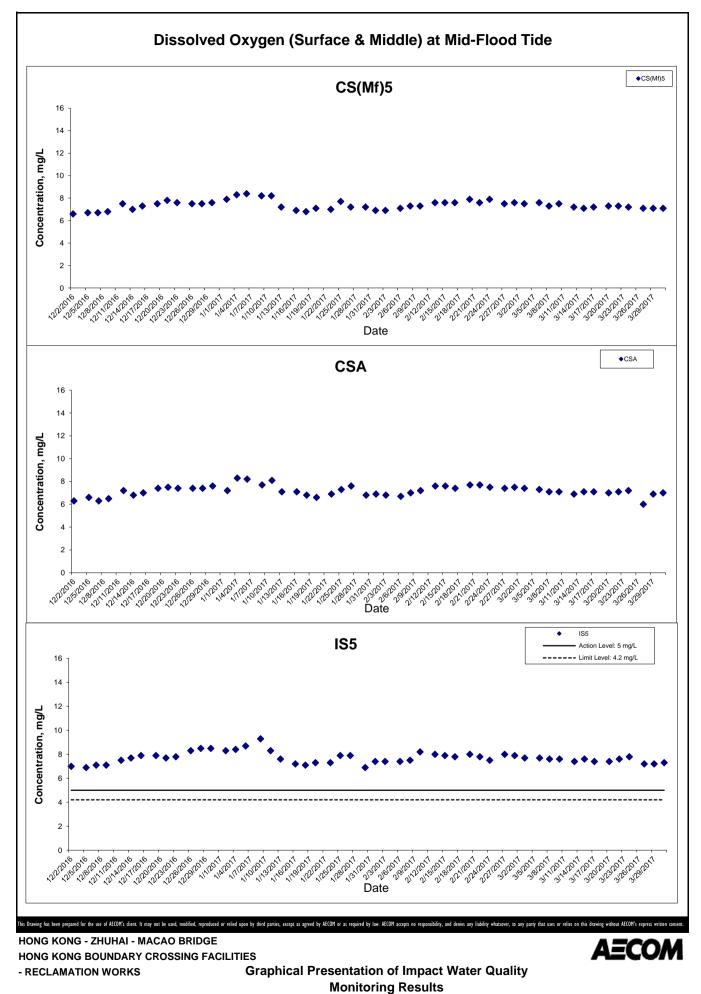


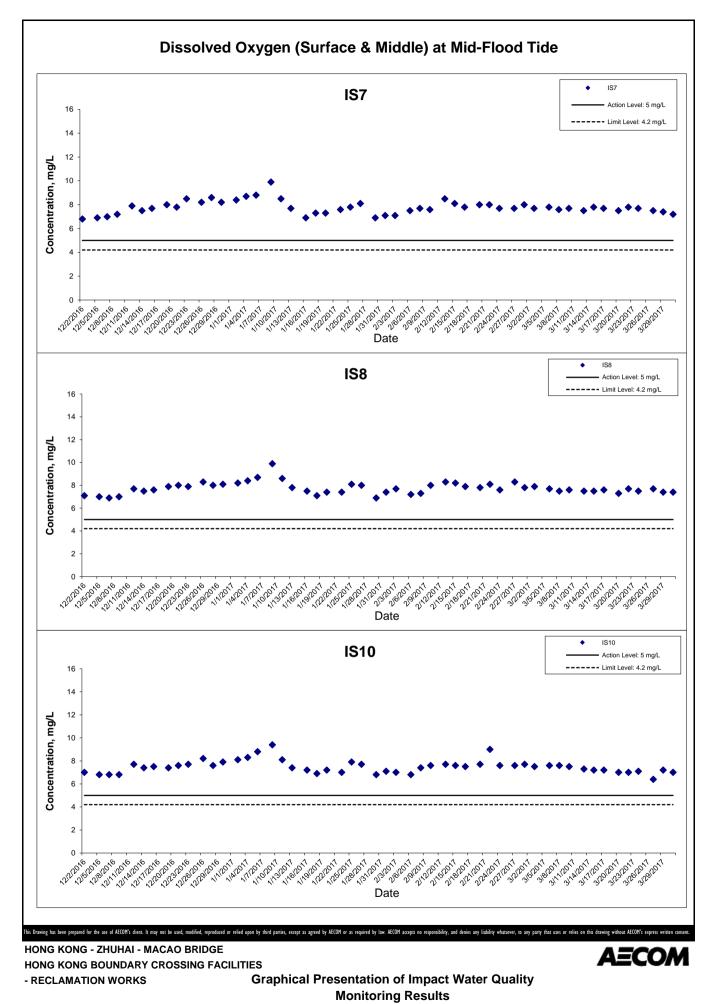
Monitoring Results

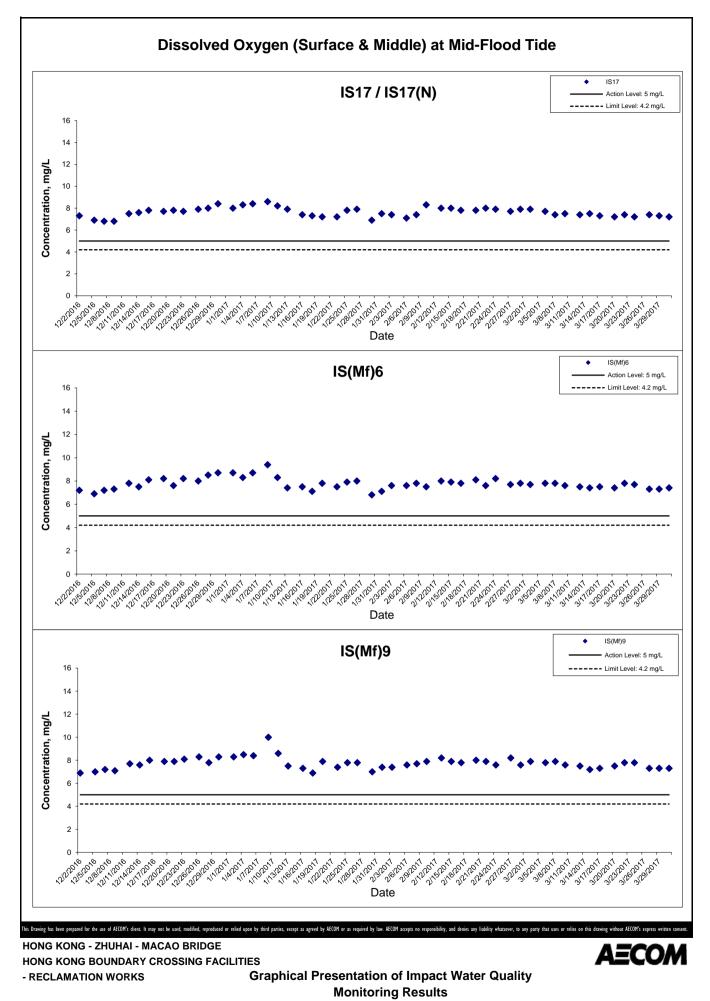


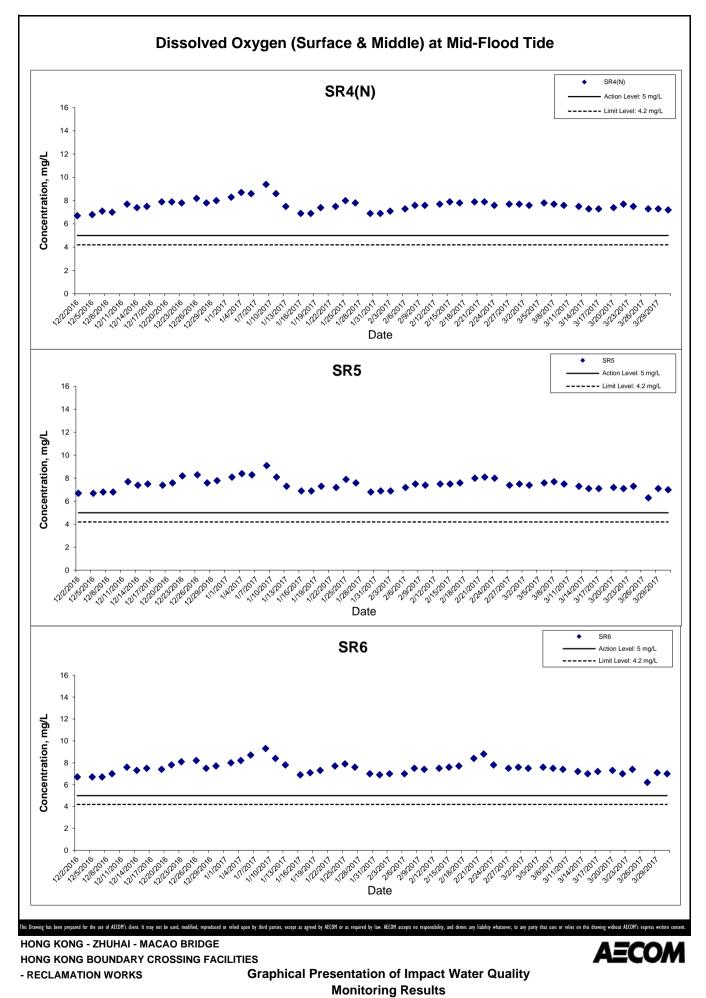


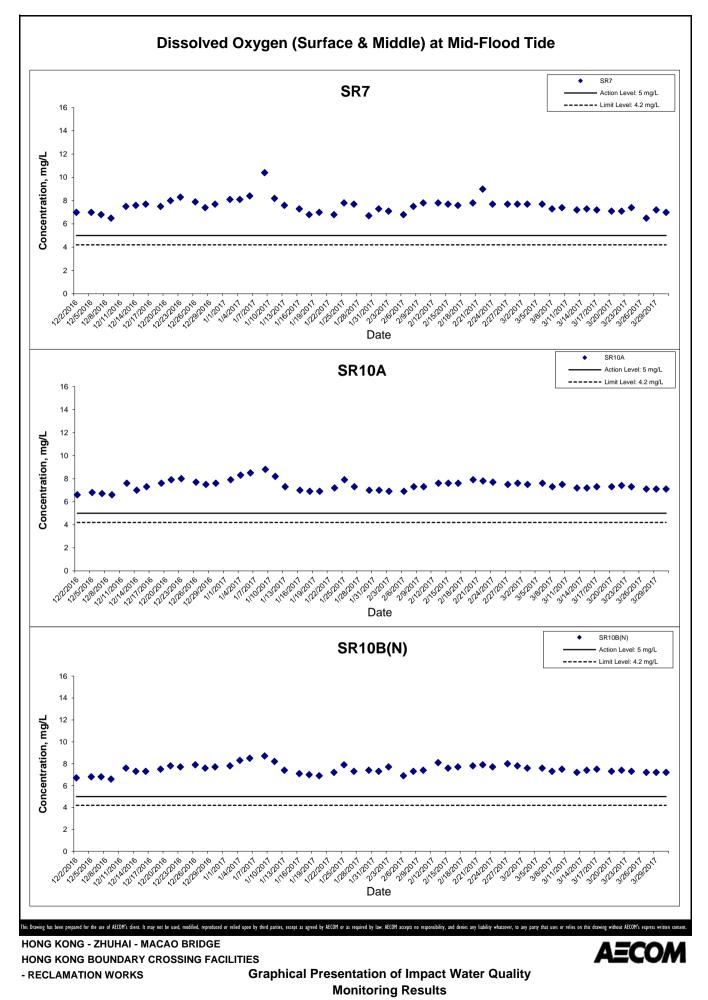


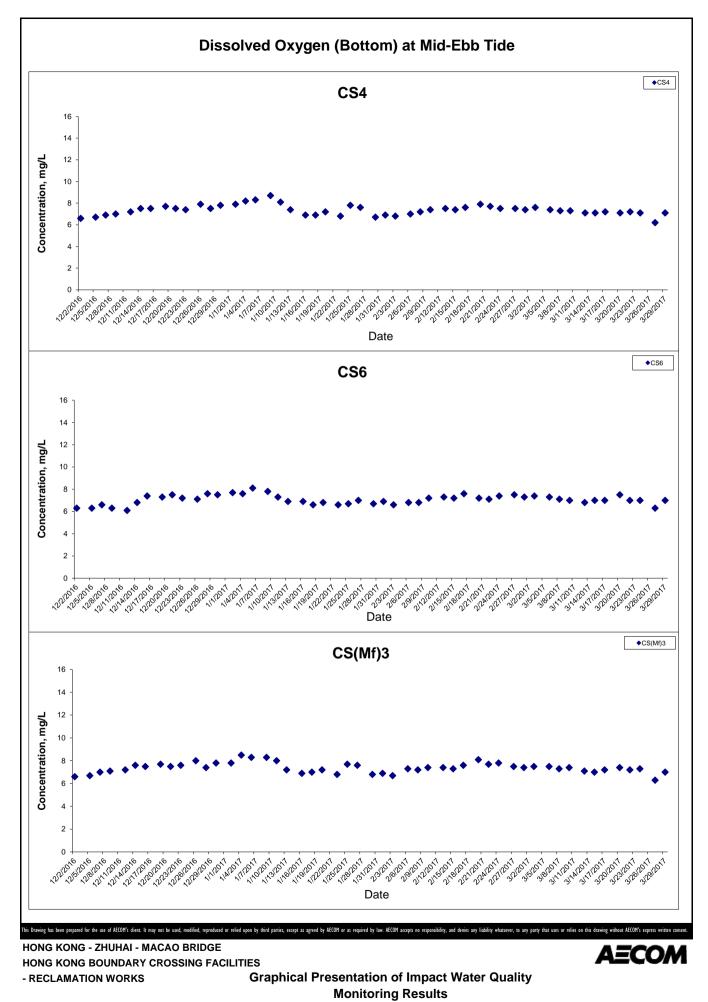

Graphical Presentation of Impact Water Quality Monitoring Results

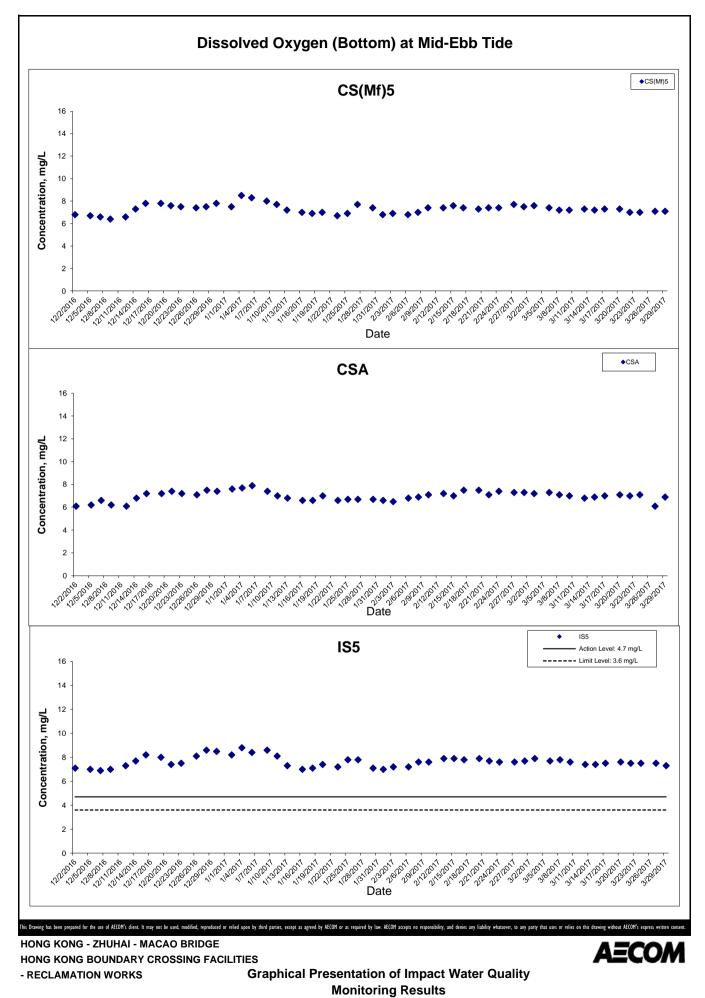


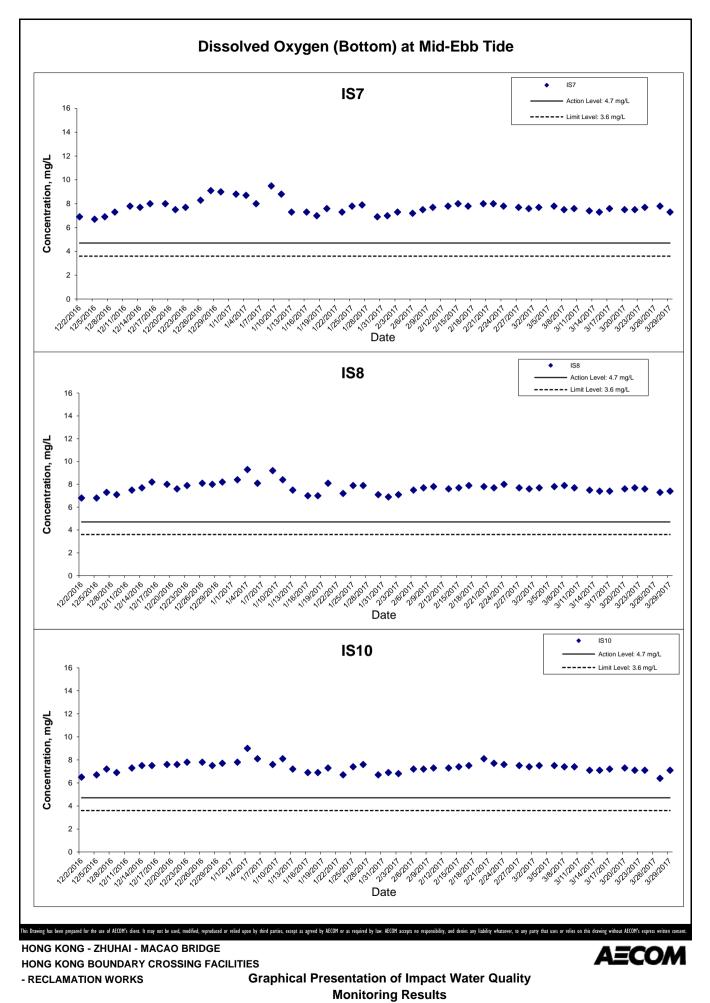


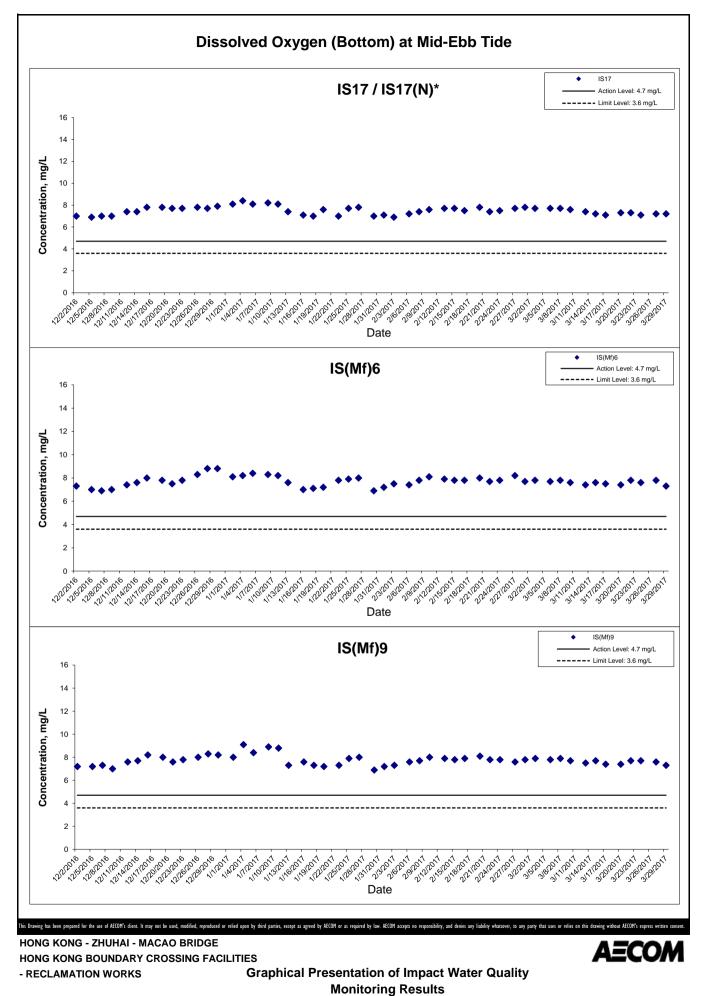

Appendix J

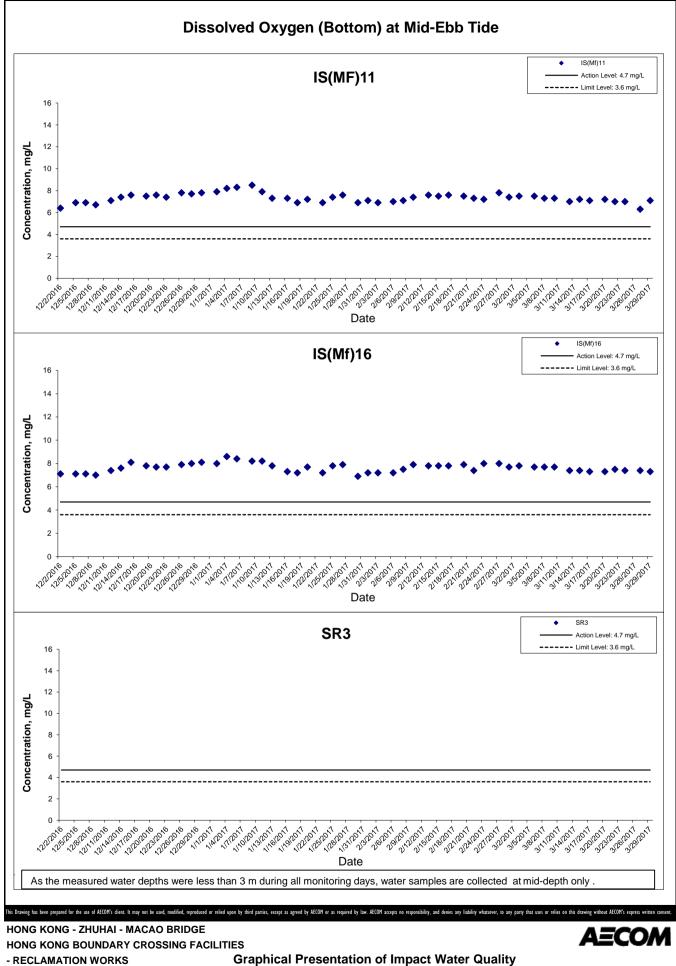




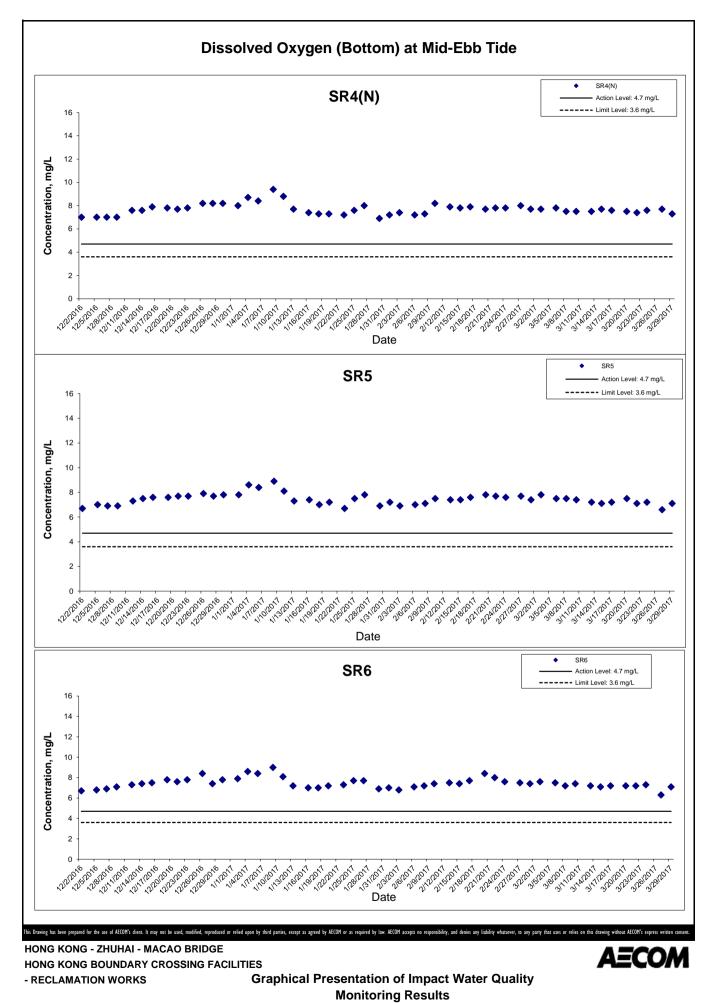


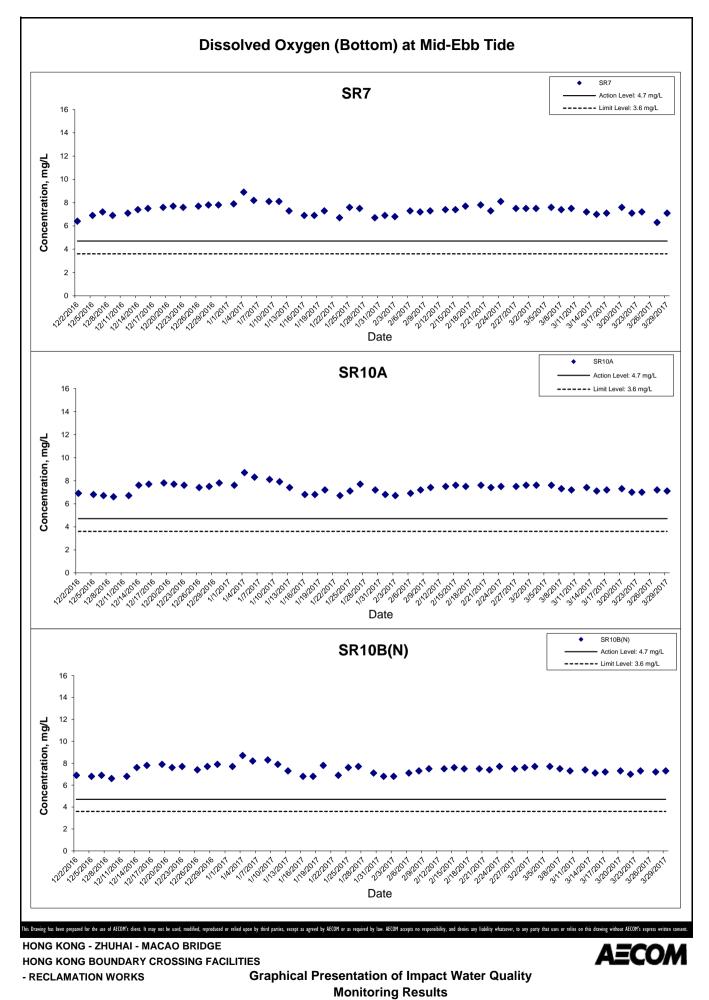


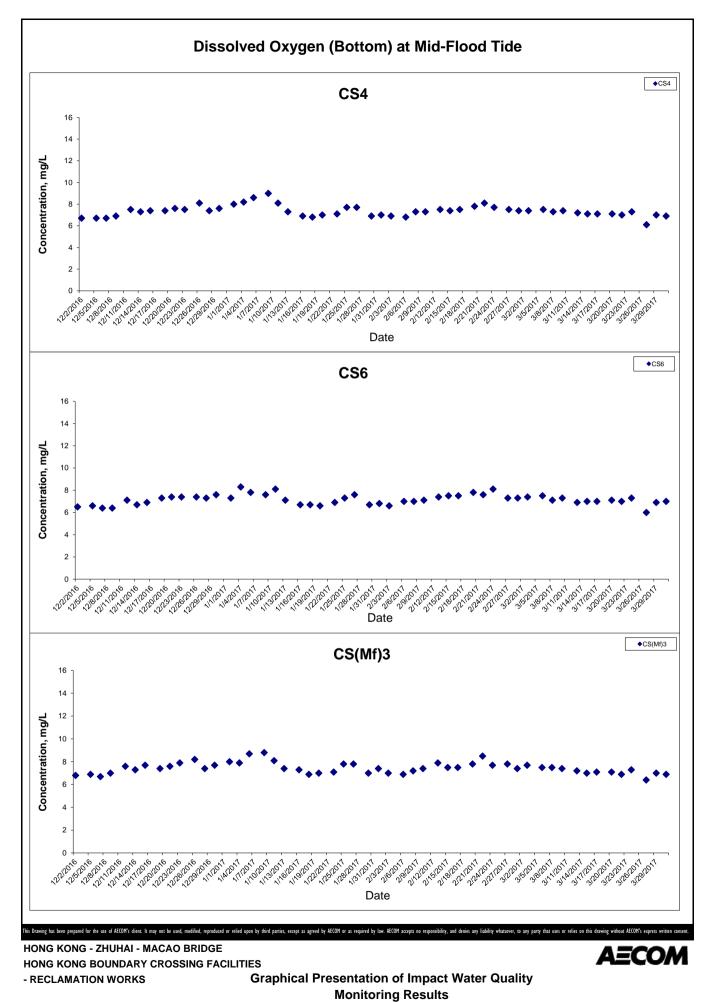


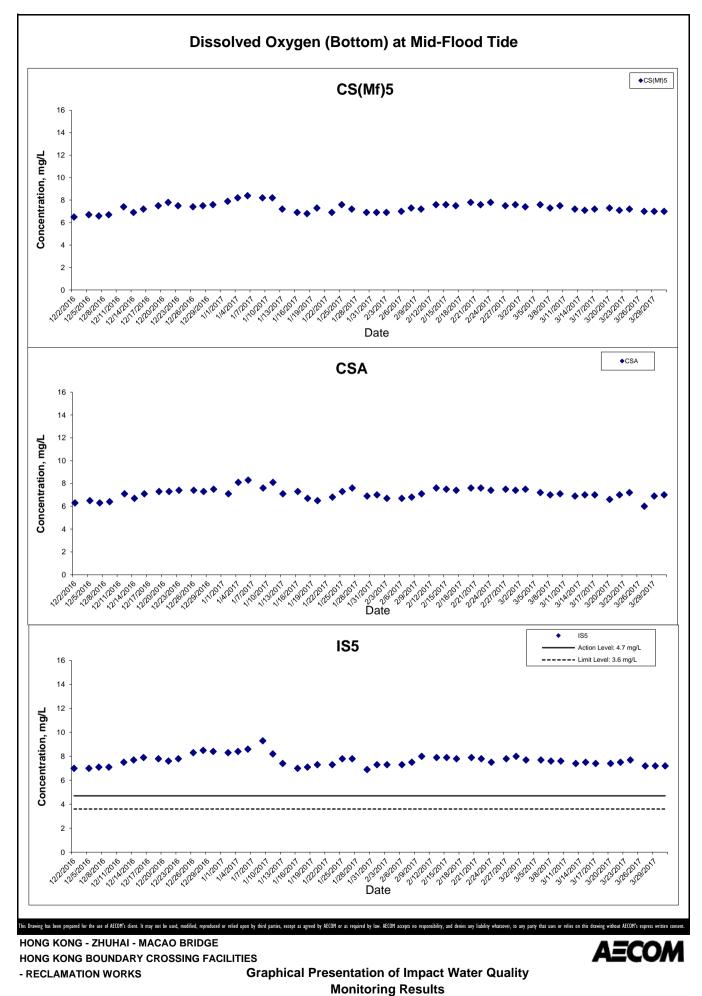


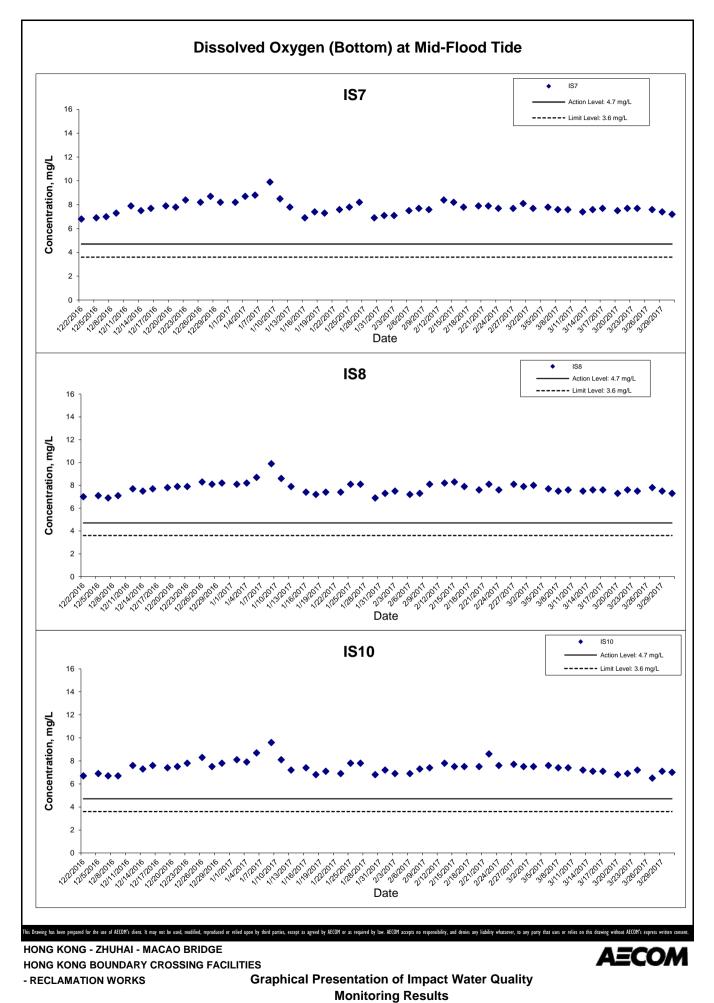
Appendix J

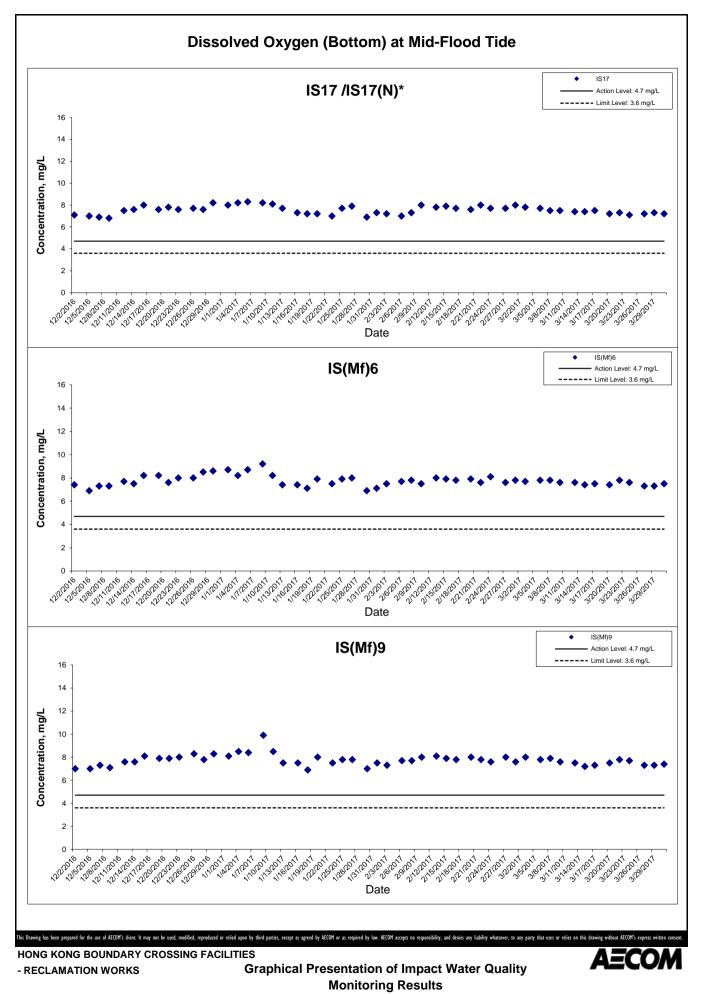


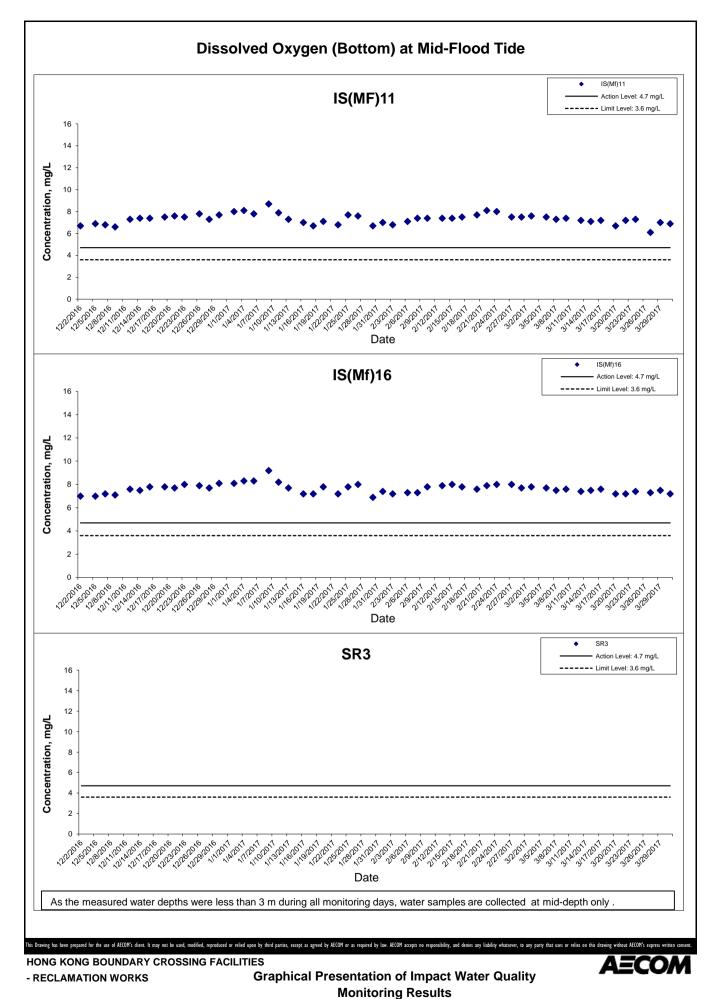


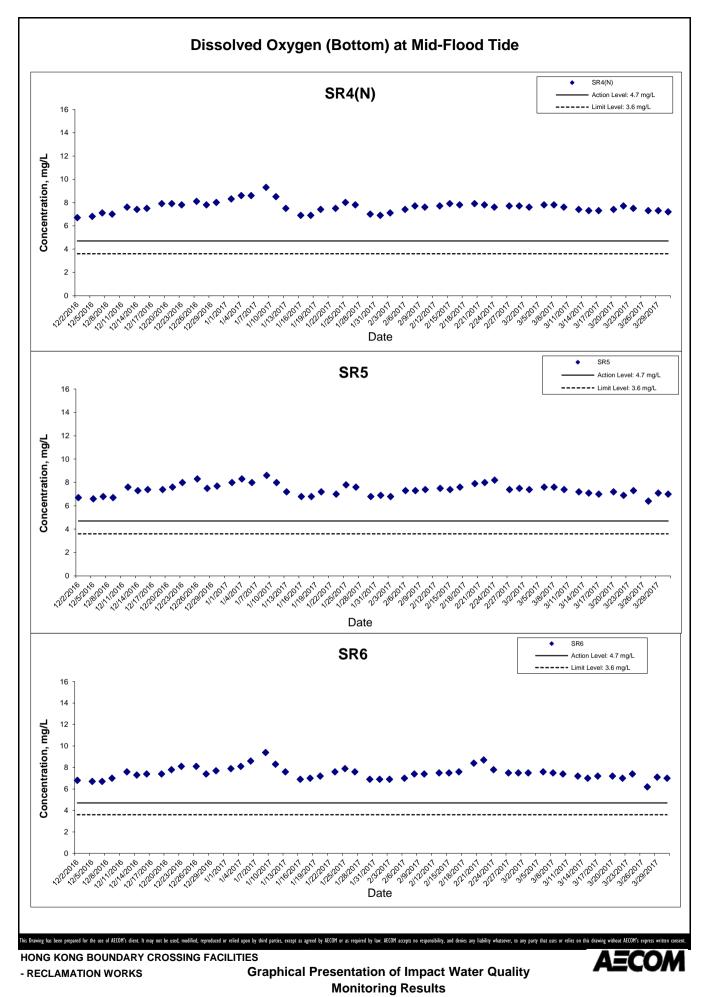


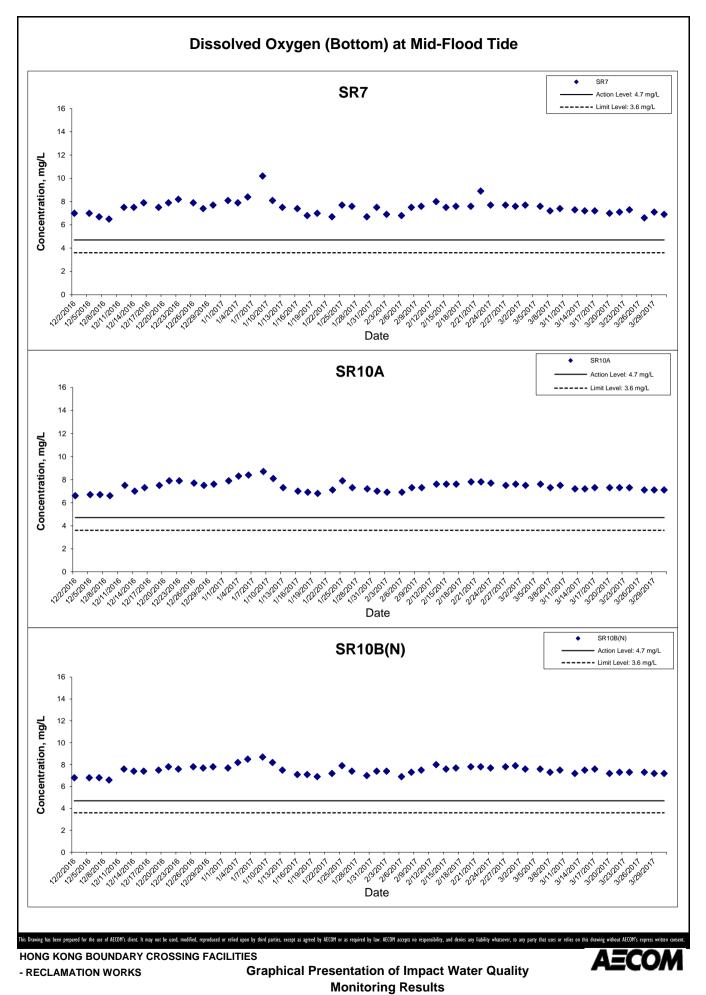


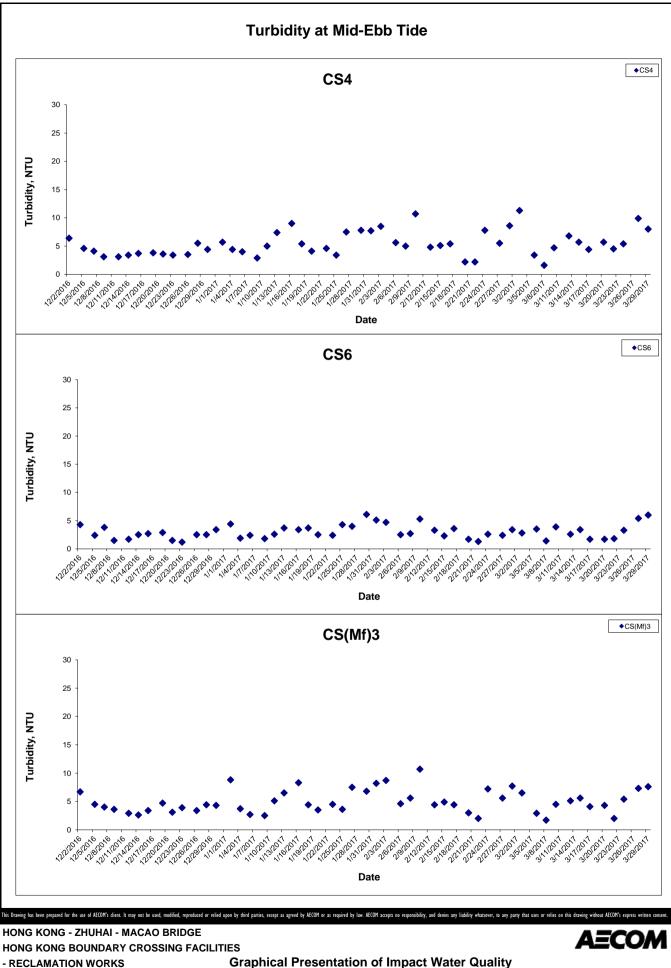

Monitoring Results

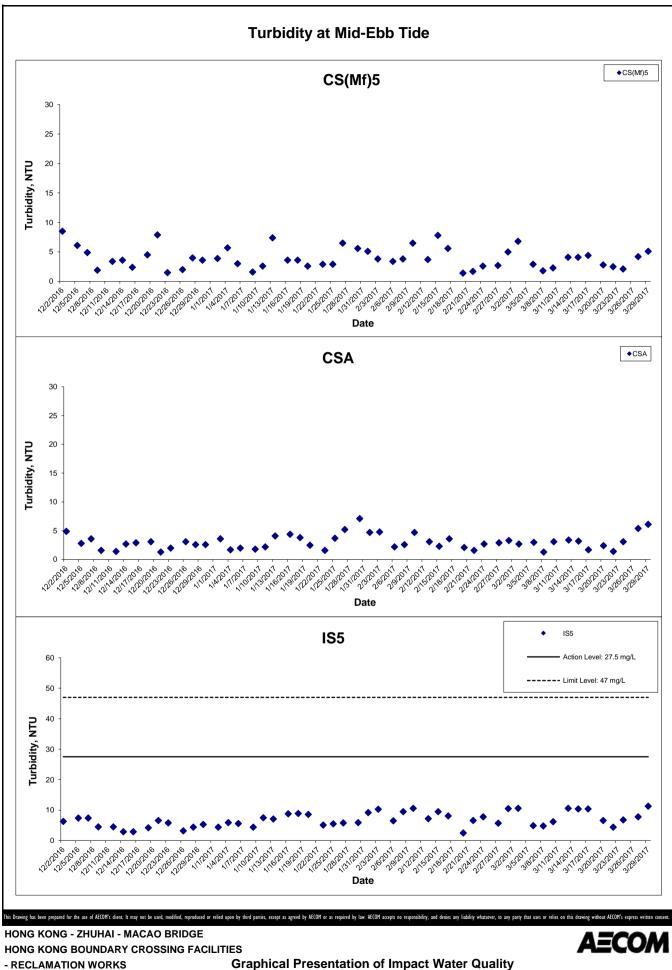


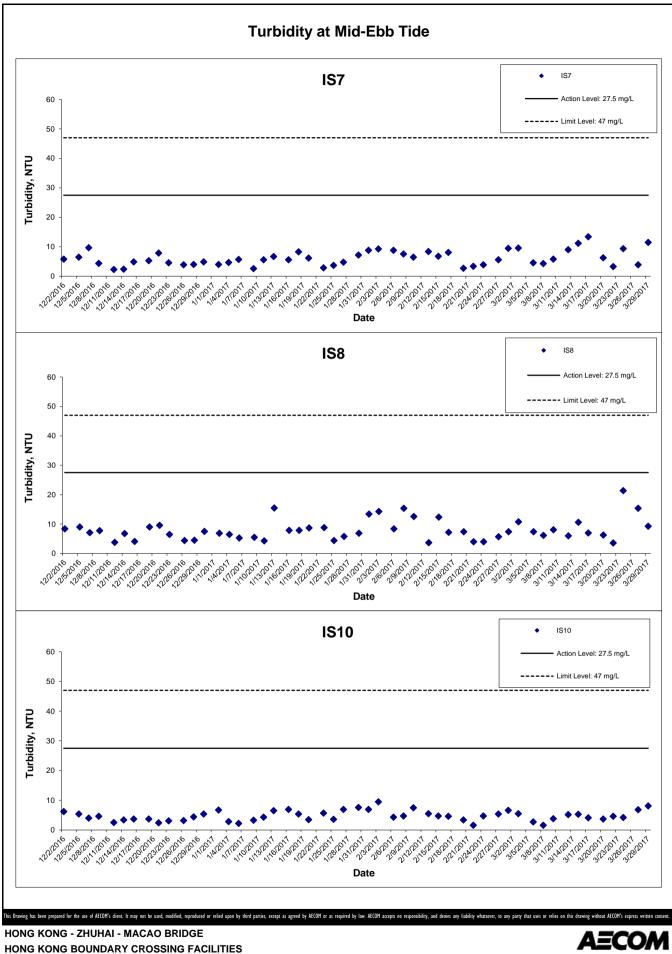


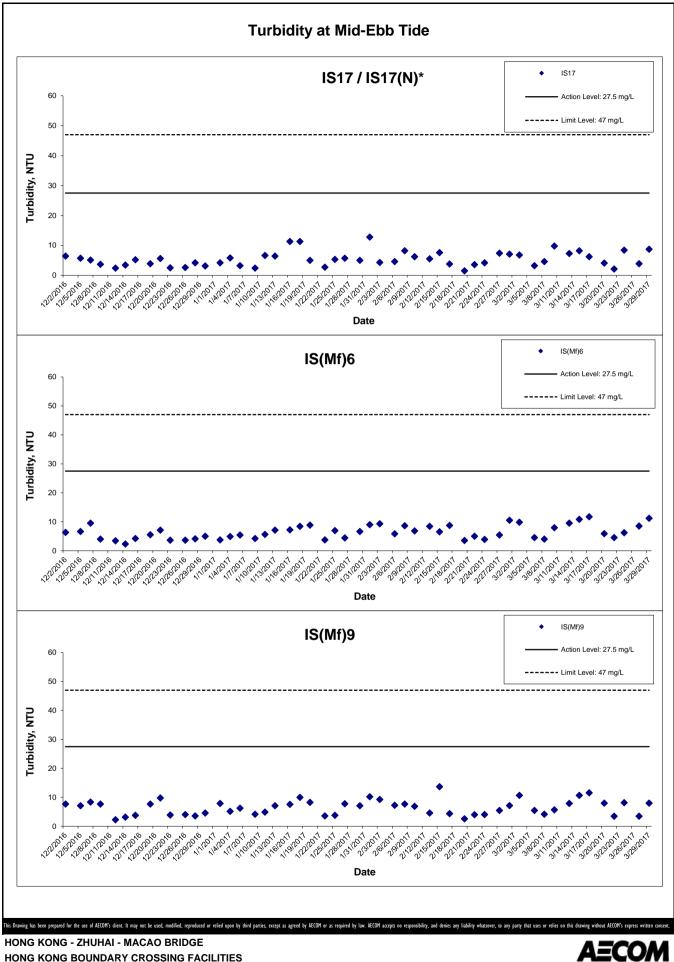


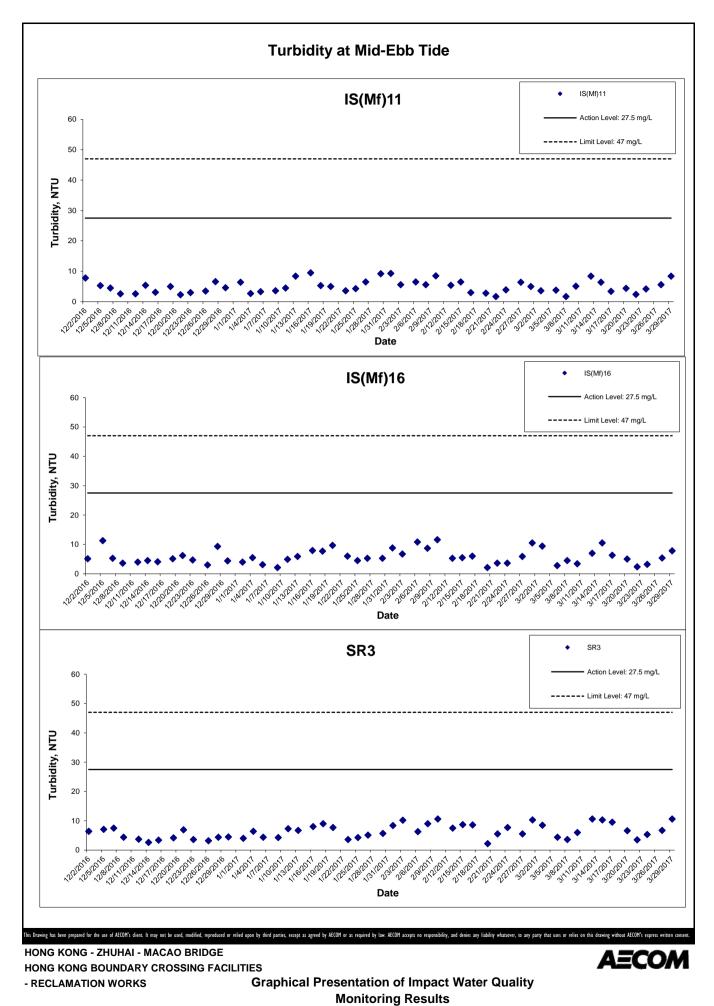


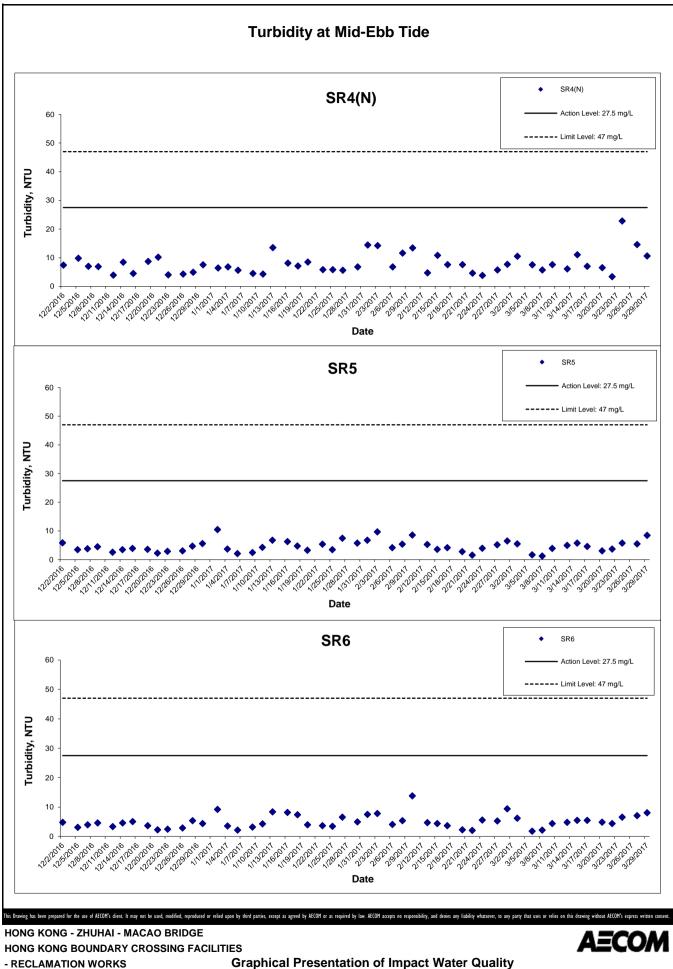


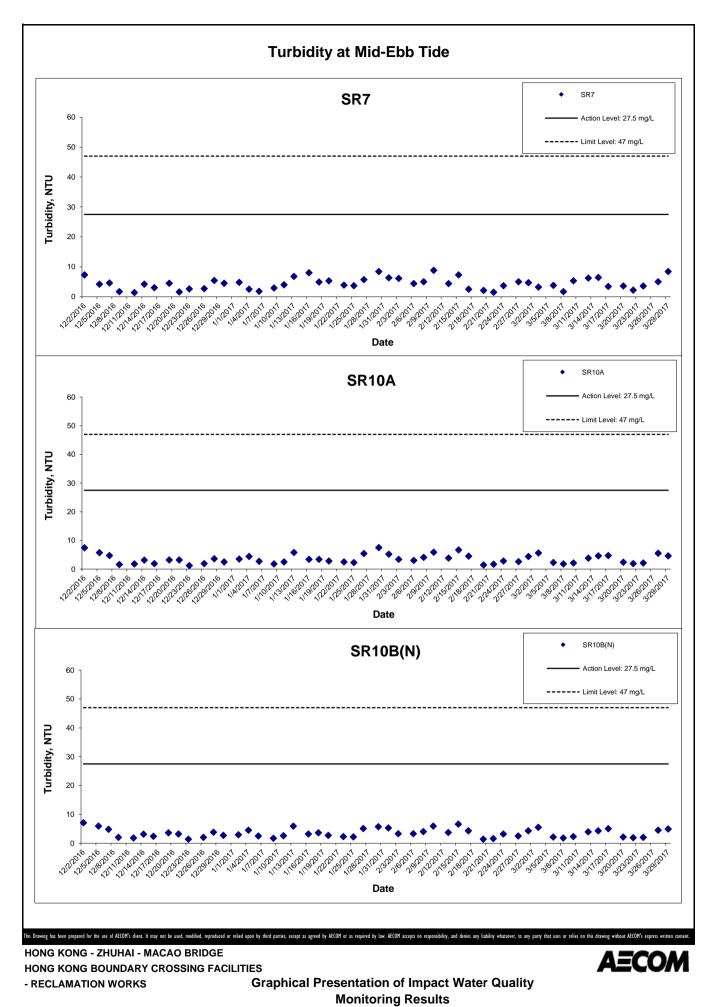


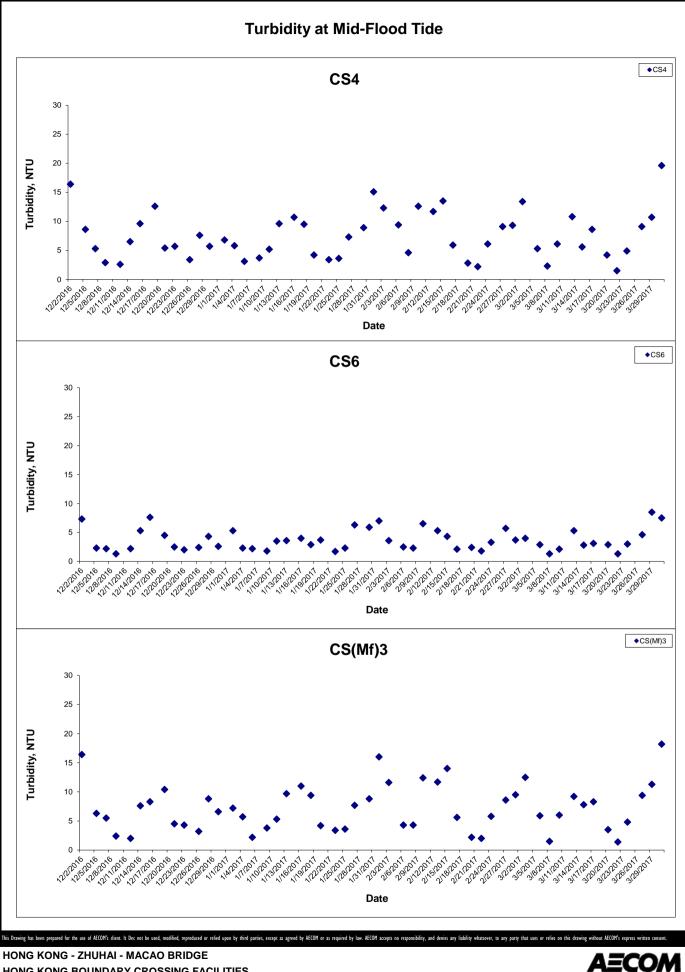


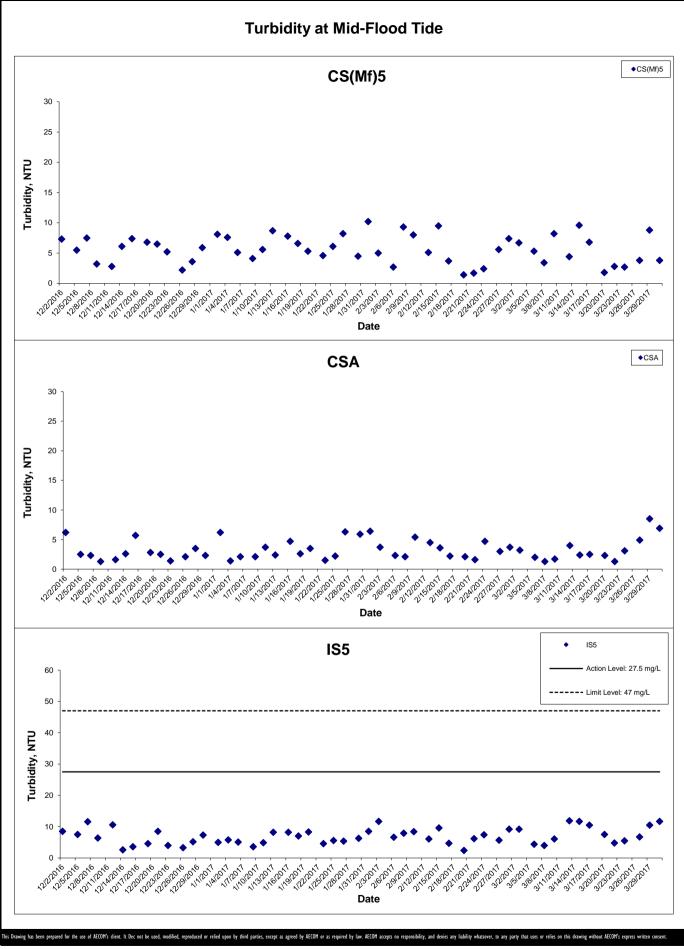

Project No.: 60249820 Date: April 2017

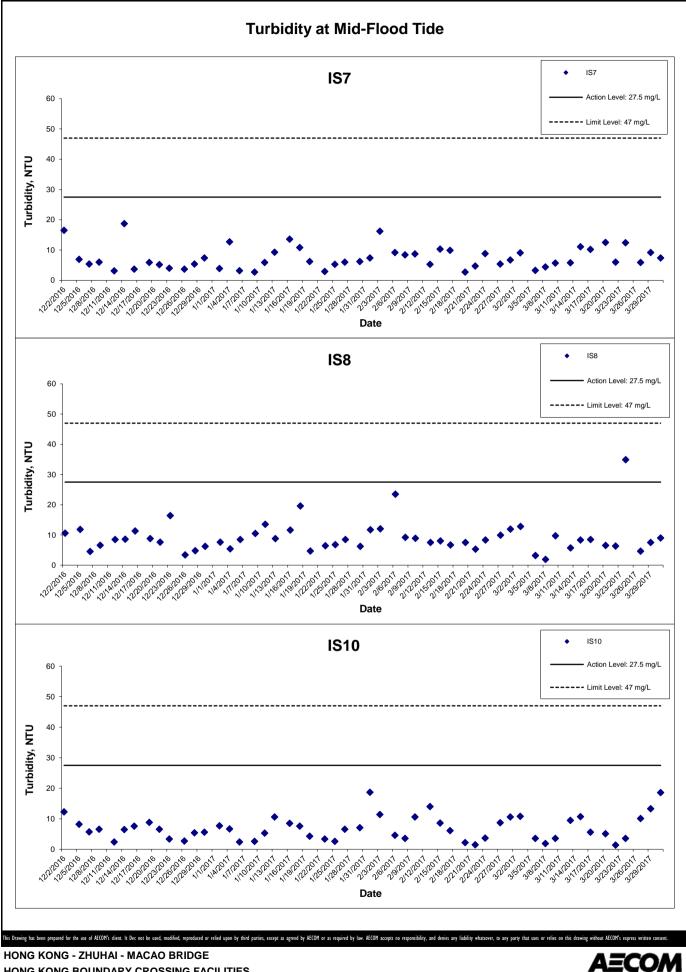




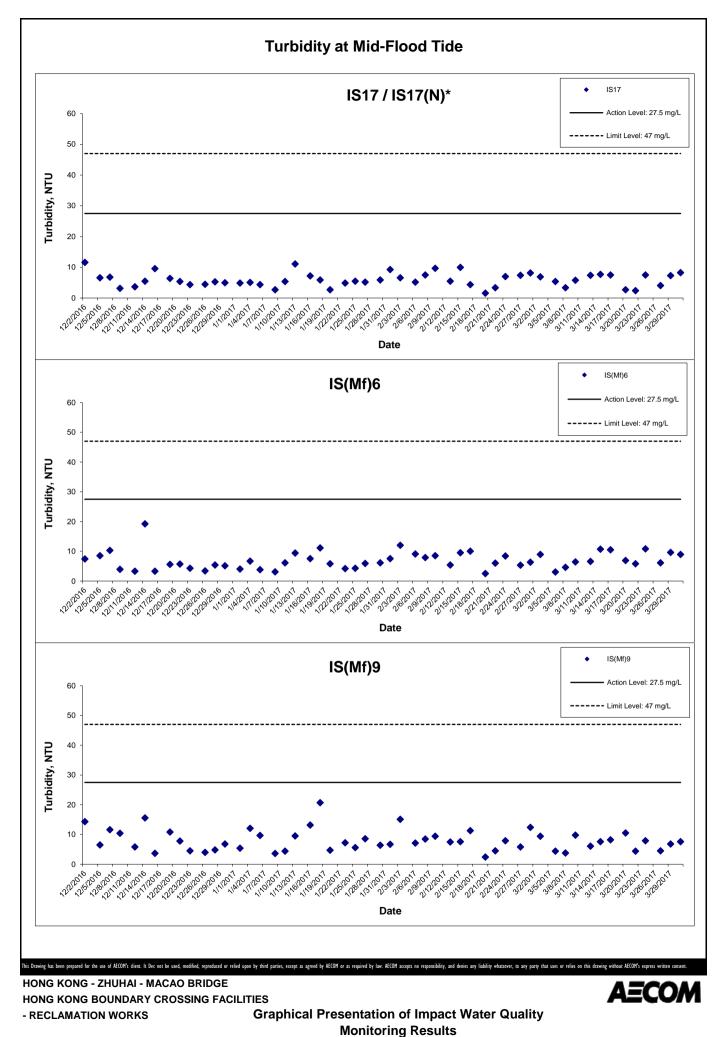

- RECLAMATION WORKS Graphical Presentation of Impact Water Quality Monitoring Results

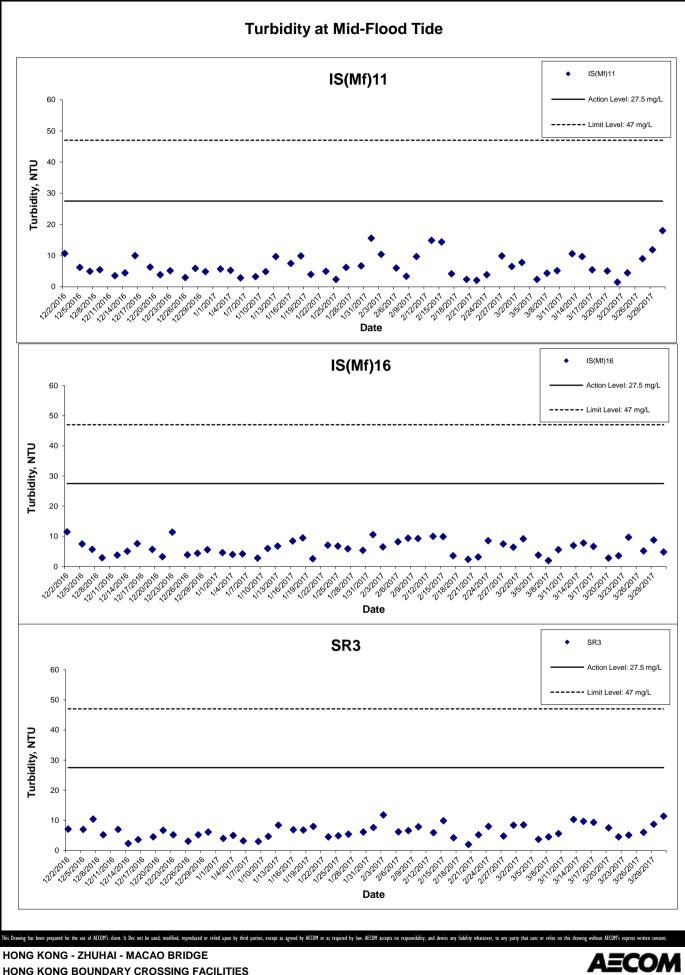



Appendix J

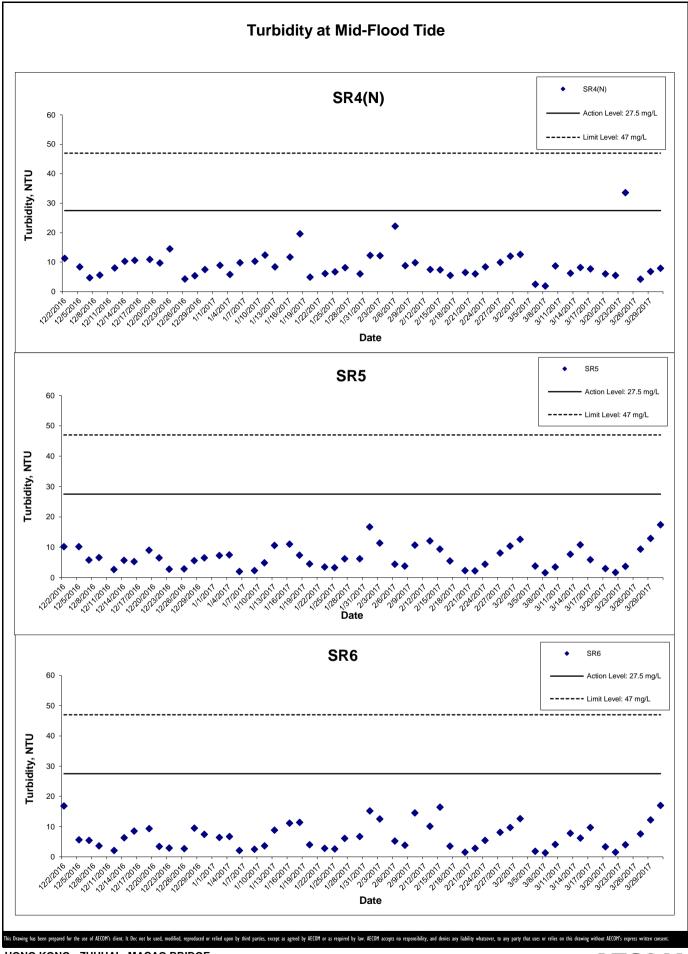


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS

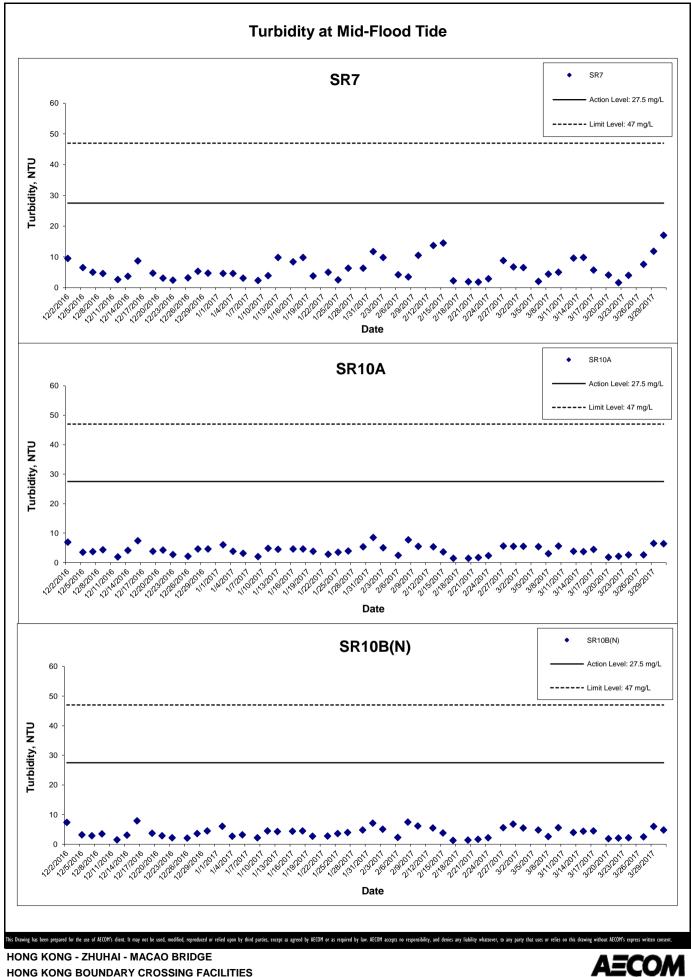



HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Graphical Presenta

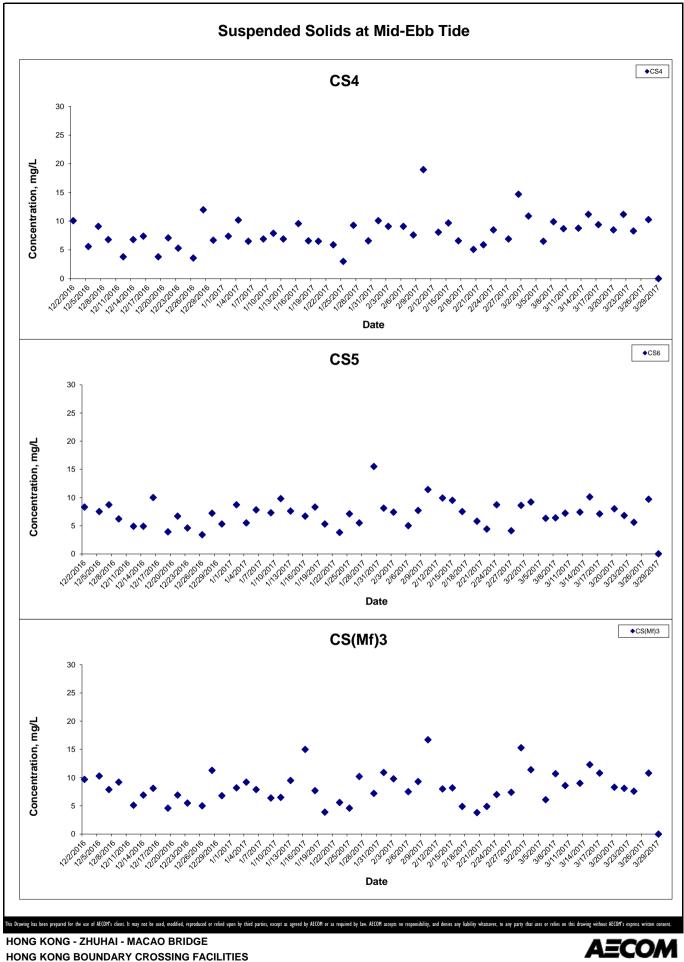
AECOM



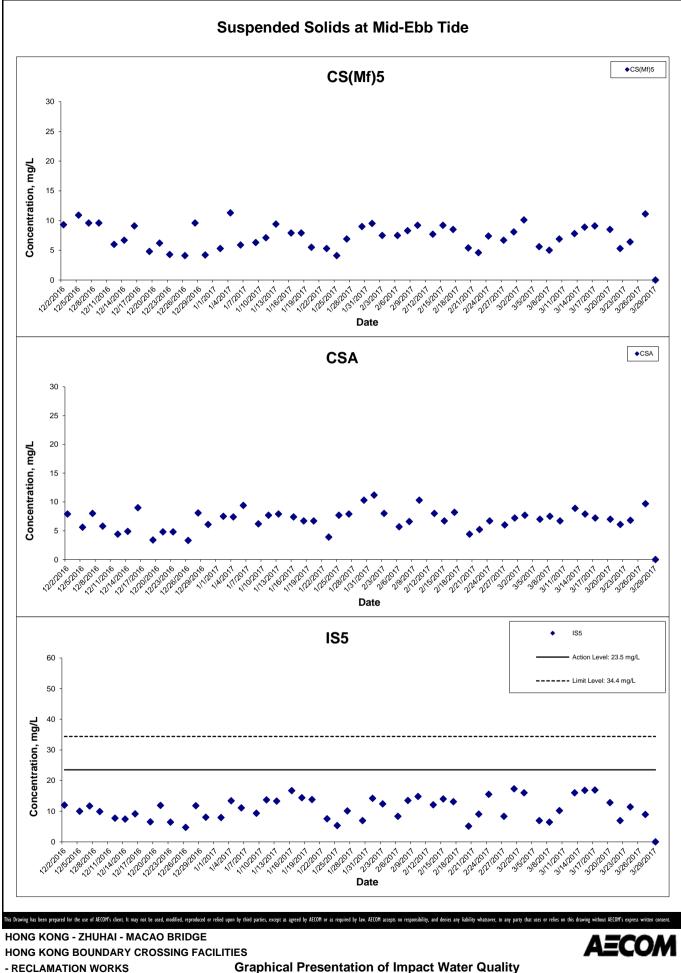
HONG KONG BOUNDARY CROSSING FACILITIES

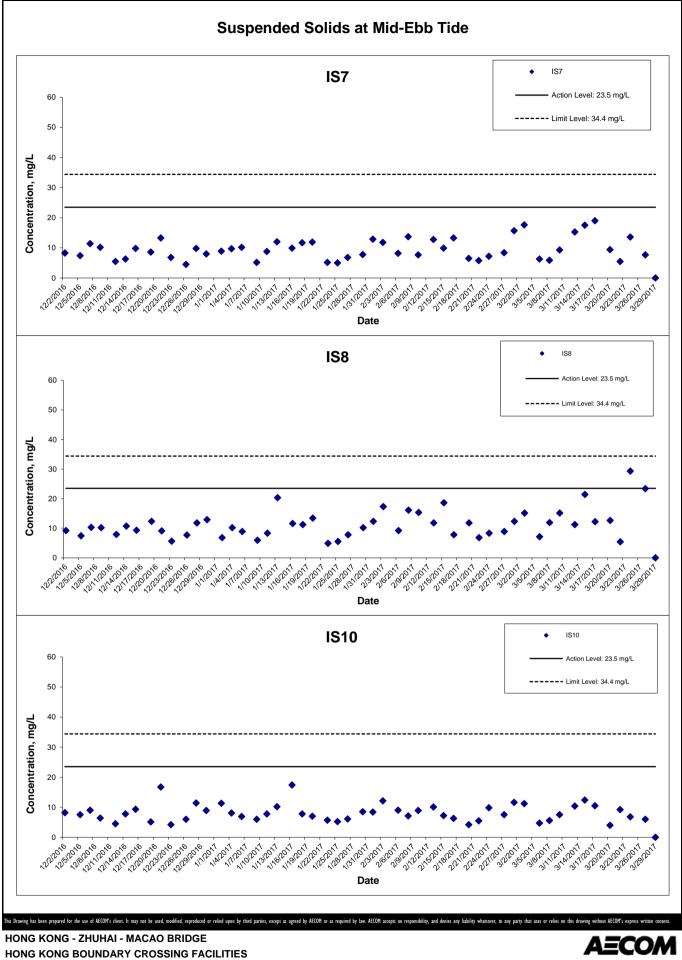


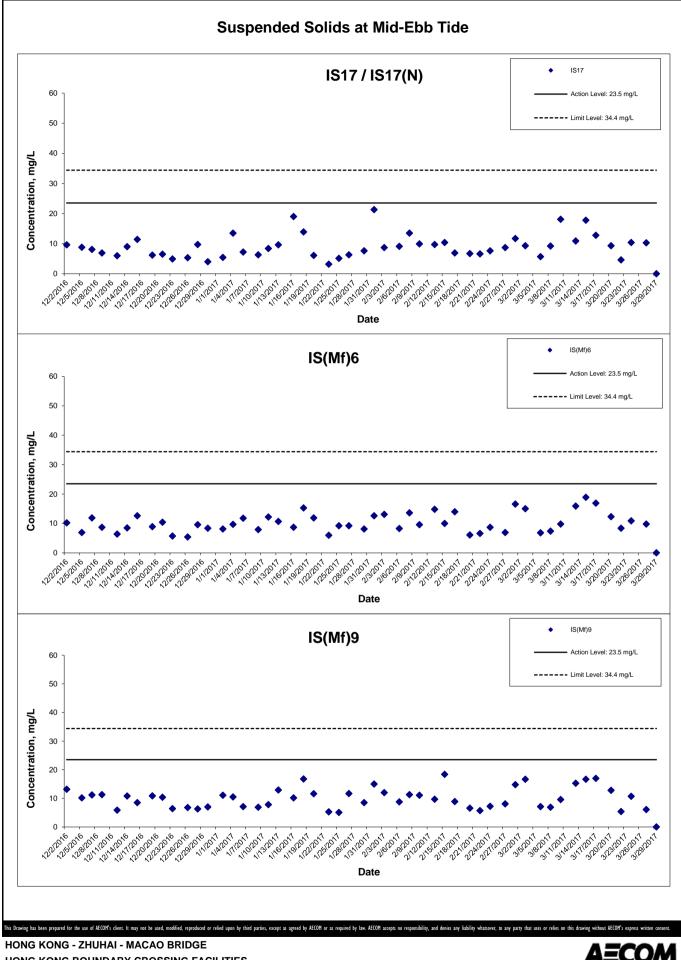
HONG KONG BOUNDARY CROSSING FACILITIES


HONG KONG - ZHUHAI - MACAO BRIDGE HONG KONG BOUNDARY CROSSING FACILITIES - RECLAMATION WORKS Graphical Pro

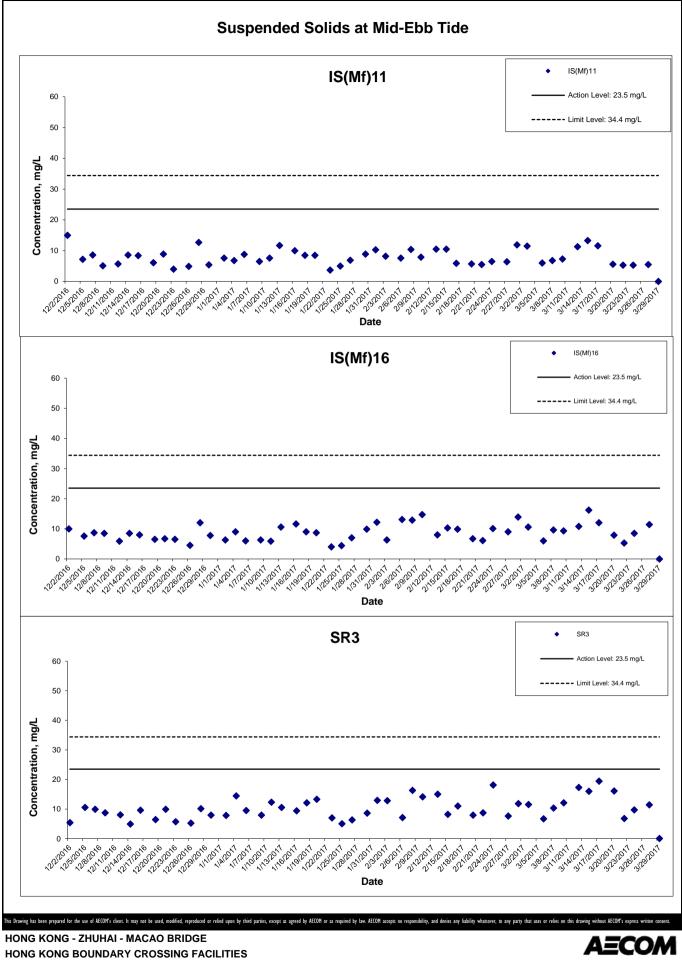
AECOM

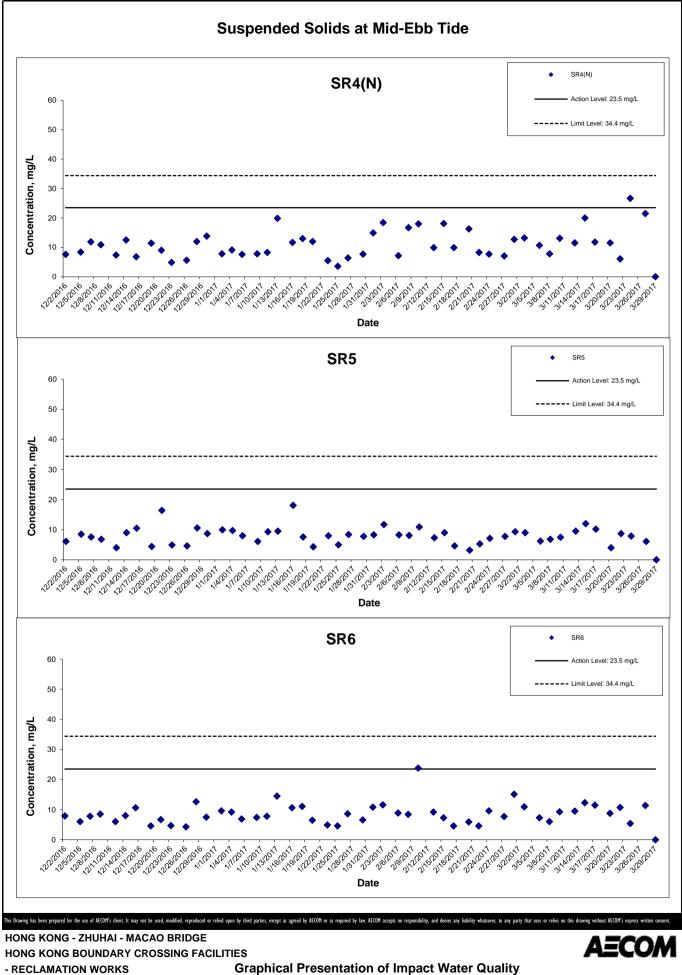


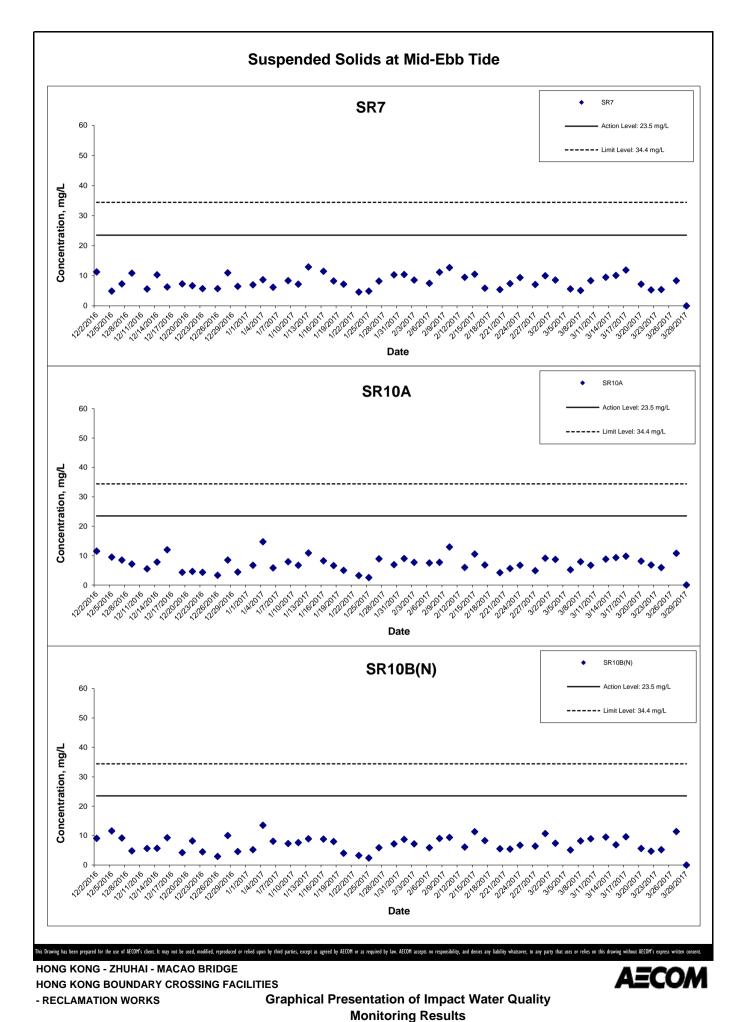

HONG KONG BOUNDARY CROSSING FACILITIES


Graphical Presentation of Impact Water Quality Monitoring Results

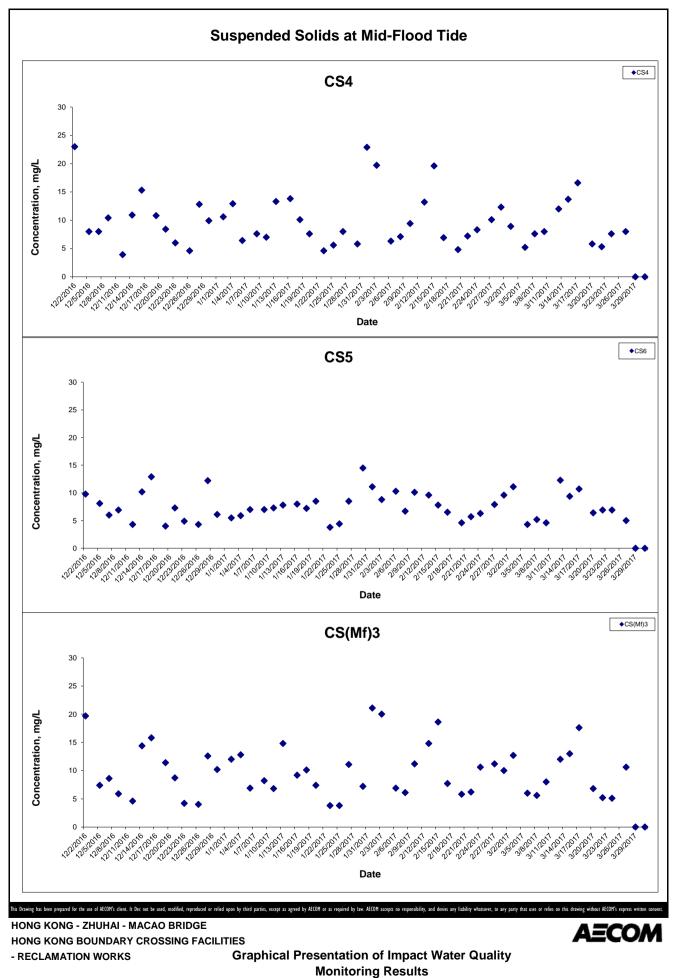
- RECLAMATION WORKS

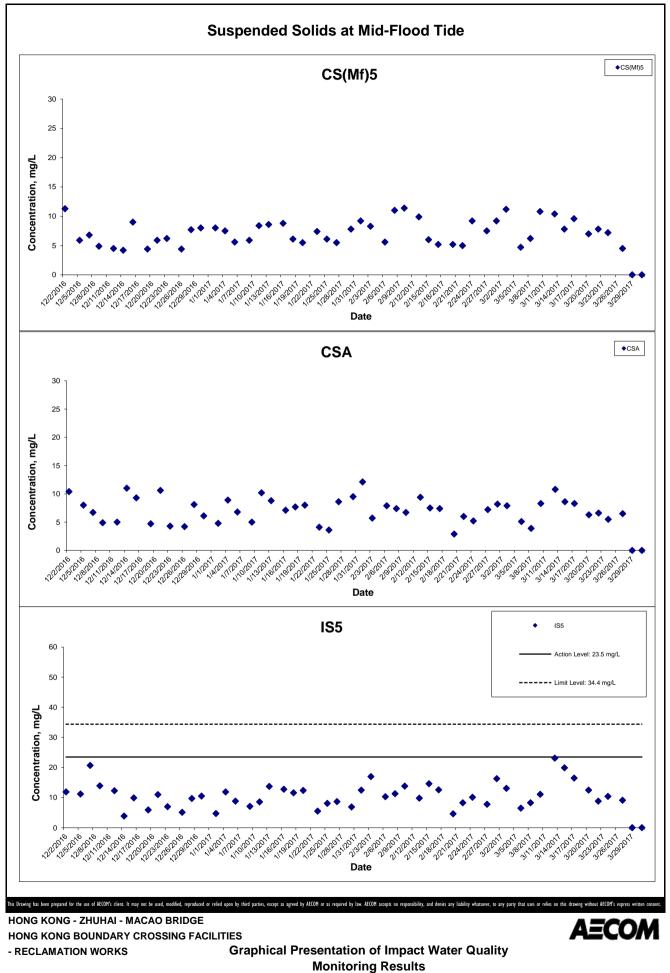


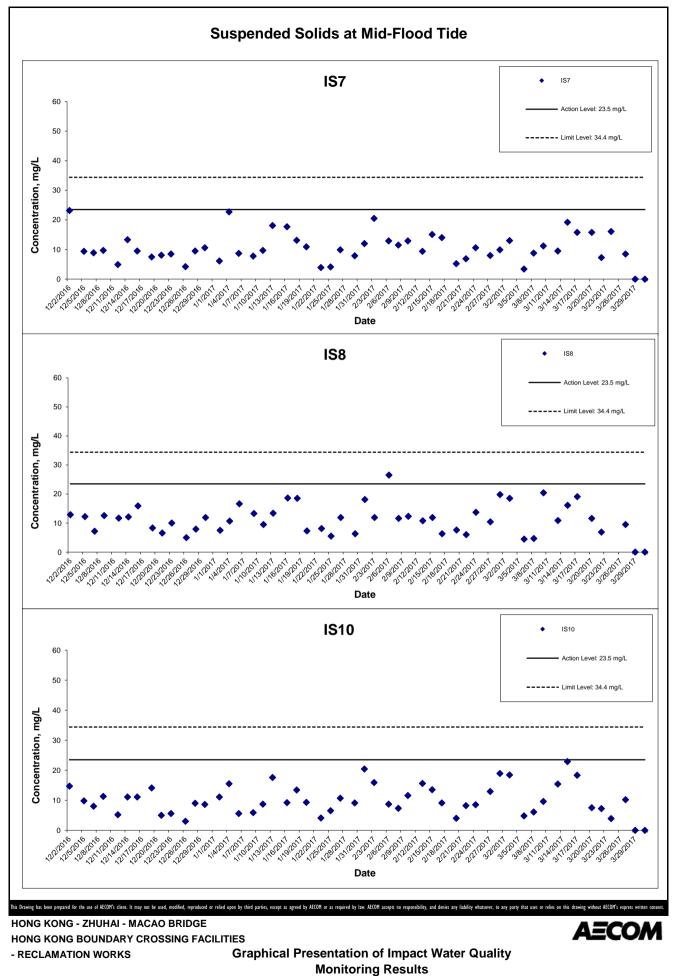


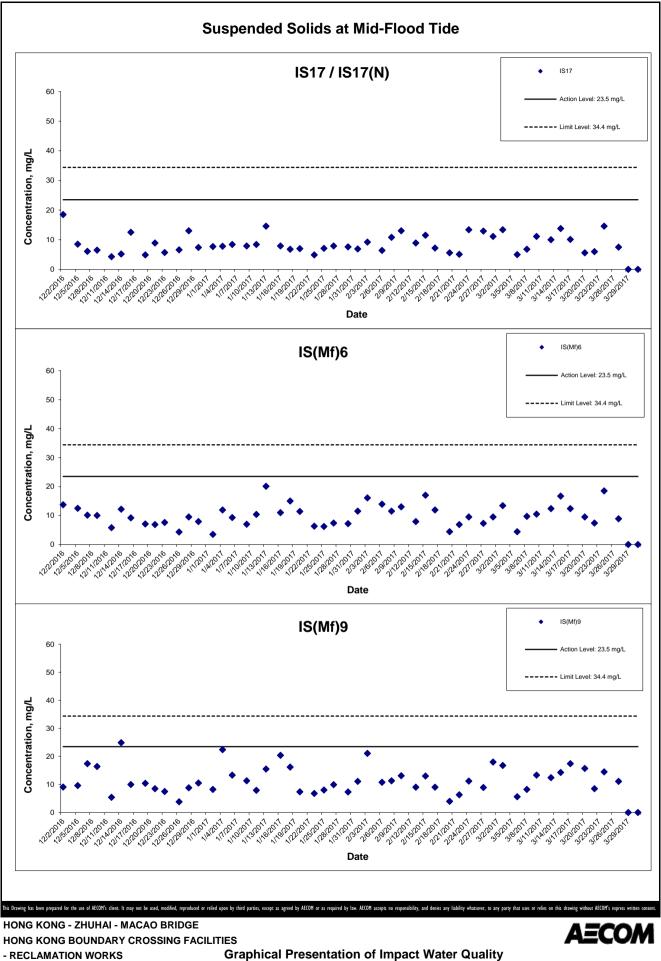


HONG KONG BOUNDARY CROSSING FACILITIES

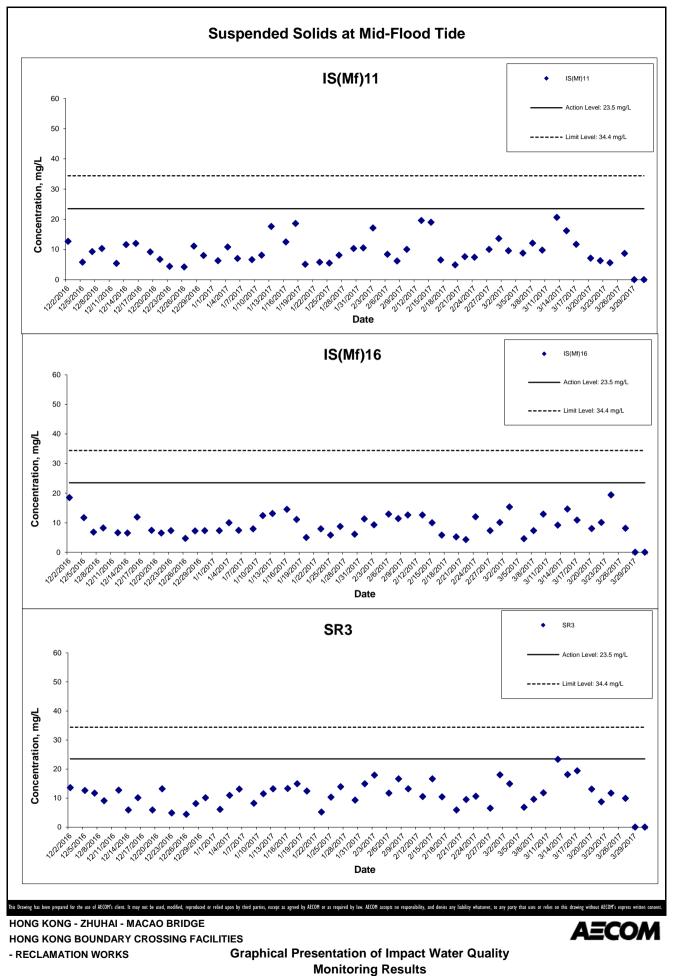

Graphical Presentation of Impact Water Quality Monitoring Results

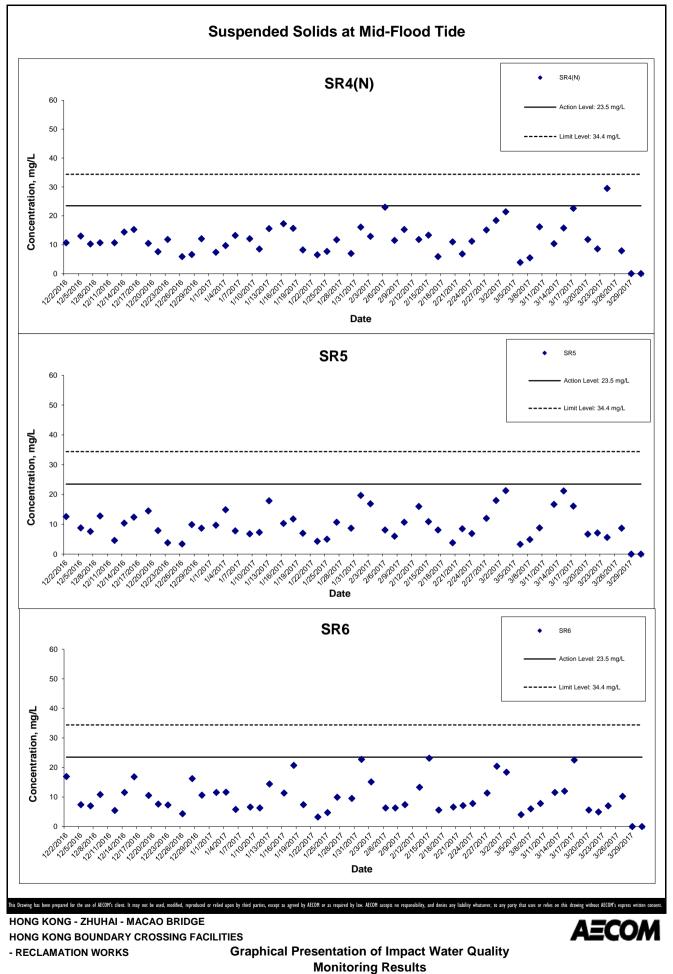


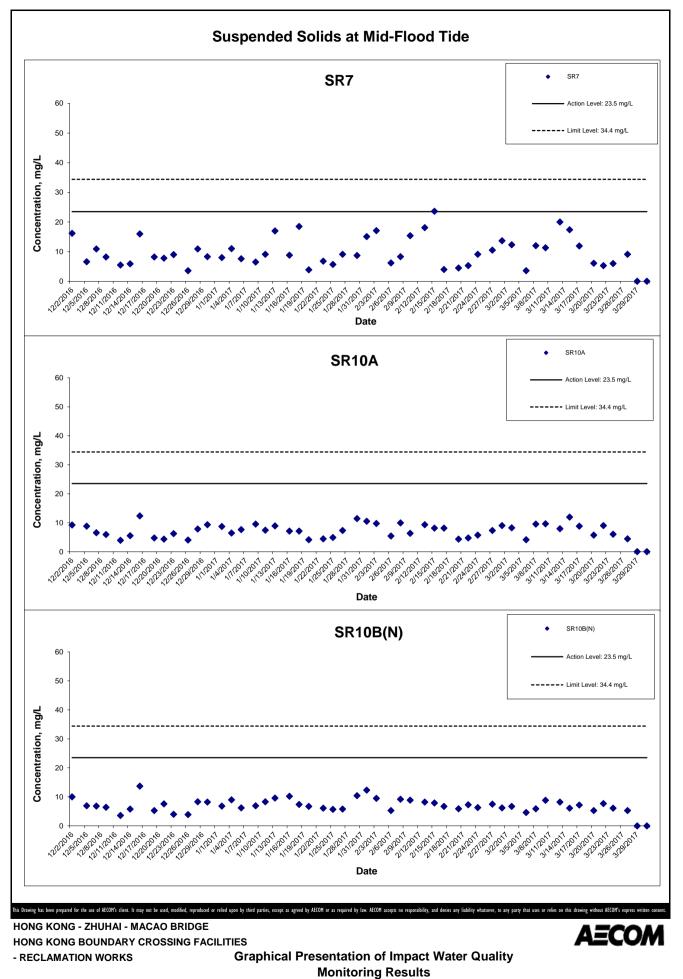




Appendix J







Monitoring Results

Appendix K Impact Dolphin Monitoring Survey Sighting Summary

Table 1 Impact Dolphin Monitoring Survey Sighting Table

			Sighting		Group									Boat
Project	Contract	Date	No.	Time	Size	Area	Beaufort	PSD	Effort	Туре	Northing	Easting	Season	Association
HKBCF	HY/2010/02	06-Mar-17	1374	9:48:42	3	WL*	1	N/A	Орр	Impact	813392	802772	Spring	No
HKBCF	HY/2010/02	21-Mar-17	1379	13:28:05	1	WL*	1	N/A	Орр	Impact	813192	801277	Spring	No

* Group of dolphin was sighted at WL area while vessel based dolphin monitoring was conducted in NWL

KEY:

Sighting	Opp Opportunistic On On effort		
PSD	Perpendicular Sighting Distance	NEL	North East Lantau
Group Size	Represents best estimate for group encountered	NWL	North West Lantau
PS = Purse Seine	e trawler (active)		
HT = Hang Trawl	ler (not active but sorting fish and cleaning nets)		

GN = Gill Net

Annex I Feb 2017 Photo Identification Information

Identification Number	Baseline Identification Number	Date (YYYY-MM- DD)	Sighting Number	Area Sighted
HZMB 134		5/23/2016	1251	NWL
HZMB 132		5/23/2016	1244	NWL
HZMB 131		3/22/2016	1215	NWL
		9/5/2016	1301	NWL
HZMB 130		2/4/2016	1199	NWL
		1/5/2017	1354	NWL
		1/5/2017	1353	NWL
		1/7/2016	1189	NWL
HZMB 129		10/22/2015	1156	NWL
		9/7/2015	1143	NWL
		8/25/2015	1138	NWL
HZMB 128		1/3/2015	1056	NWL
HZMB 127		1/3/2015	1056	NWL
HZMB 126		5/23/2016	1244	NWL
		2/23/2015	1068	NWL
		1/3/2015	1054	NWL
HZMB 125		5/23/2016	1249	NWL
		3/7/2016	1208	NWL
		10/13/2014	1019	NWL
HZMB 124		9/22/2014	1005	NWL
HZMB 123		8/25/2014	998	NWL
HZMB 122		10/22/2015	1156	NWL
		8/4/2014	989	NWL
HZMB 121		7/18/2016	1276	NWL

	7/14/2014	968	NWL
HZMB 120	5/31/2014	951	NWL
HZMB 119	4/19/2014	940	NWL
HZMB 118	1/6/2014	890	NWL
HZMB 117	6/17/2014	964	NWL
	1/6/2014	888	NWL
HZMB 116	8/25/2014	999	NWL
HZMB 115	7/14/2014	972	NWL
	7/14/2014	971	NWL
	12/26/2013	879	NWL
	12/26/2013	879	NWL
	1/5/2017	1351	NWL
	11/3/2016	1328	NWL
HZMB 114	6/6/2016	1261	NWL
	11/5/2015	1162	NWL
	10/24/2013	827	NWL
HZMB 113	10/24/2013	827	NWL
HZMB 112	10/15/2013	815	NWL
HZMB 111	10/15/2013	815	NWL
HZMB 110	1/18/2016	1193	NWL
	10/15/2013	812	NWL
HZMB 108	6/11/2015	1118	NWL
	8/30/2013	780	NEL
HZMB 107	7/28/2015	1126	NWL
	10/13/2014	1019	NWL
	5/31/2014	951	NWL
	8/21/2013	770	NWL

HZMB 106		8/21/2013	769	NWL
HZMB 105		5/31/2014	951	NWL
		7/8/2013	711	NWL
HZMB 104		7/8/2013	711	NWL
HZMB 103		7/8/2013	711	NWL
HZMB 102		7/8/2013	706	NWL
HZMB 101		7/8/2013	706	NWL
HZMB 100		7/8/2013	706	NWL
HZMB 099		6/13/2013	681	NWL
		6/13/2013	680	NWL
		1/5/2017	1353	NWL
		2/23/2015	1077	NWL
		12/18/2014	1044	NWL
		8/4/2014	992	NWL
		1/6/2014	888	NWL
		11/2/2013	849	NWL
		11/2/2013	845	NWL
		10/24/2013	831	NWL
HZMB 098	NL104	7/8/2013	711	NWL
		5/24/2013	659	NWL
		11/7/2011	Baseline	NWL
		11/5/2011	Baseline	NWL
		11/5/2011	Baseline	NWL
		11/2/2011	Baseline	NWL
		10/28/2011	Baseline	NWL
		9/23/2011	Baseline	NWL
		9/16/2011	Baseline	NWL
HZMB 097		5/9/2013	647	NWL
HZMB 096		4/1/2013	621	NWL
HZMB 095		8/30/2013	780	NEL

		6/25/2013	697	NWL
		6/13/2013	682	NWL
		4/1/2013	621	NWL
HZMB 094		8/30/2016	1299	NWL
		10/13/2014	1019	NWL
		5/31/2014	954	NWL
		2/17/2014	910	NWL
		6/26/2013	703	NWL
		6/25/2013	698	NWL
		3/18/2013	601	NWL
HZMB 093		5/24/2013	657	NWL
		2/21/2013	587	NWL
HZMB 092		4/20/2015	1097	NWL
		2/21/2013	589	NWL
		2/15/2013	581	NWL
HZMB 091		2/15/2013	579	NWL
		6/25/2013	697	NWL
HZMB 090		6/13/2013	682	NWL
		2/15/2013	579	NWL
HZMB 089		2/15/2013	579	NWL
HZMB 088		2/15/2013	579	NWL
HZMB 087		2/15/2013	579	NWL
		3/19/2015	1086	NWL
HZMB 086	NL242	5/9/2013	642	NWL
	INLZ4Z	2/15/2013	579	NWL
		10/10/2011	Baseline	NWL
HZMB 085		10/13/2014	1019	NWL
		5/31/2014	954	NWL
		6/26/2013	703	NWL
HZMB 084		2/15/2013	579	NWL
		2/14/2013	575	NWL
HZMB 083	NL136	11/3/2016	1332	NWL

	8/30/2016	1298	NWL
	12/1/2015	1180	NWL
	5/11/2015	1104	NWL
	12/19/2013	863	NWL
	3/28/2013	607	NWL
	2/15/2013	579	NWL
	1/28/2013	568	NWL
	1/28/2013	564	NWL
	4/19/2012	267	NWL
	10/28/2011	Baseline	NWL
	10/28/2011	Baseline	NWL
	10/10/2011	Baseline	NEL
	9/6/2011	Baseline	NWL
	10/20/2014	1024	NWL
HZMB 082	2/21/2013	587	NWL
	2/15/2013	579	NWL
	1/28/2013	563	NWL
	1/28/2013	559	NWL
HZMB 081	1/28/2013	557	NWL
HZMB 080	1/28/2013	556	NWL
HZMB 079	1/28/2013	556	NWL
	2/15/2013	579	NWL
HZMB 078	1/8/2013	552	NWL
	12/26/2013	878	NWL
HZMB 077	7/8/2013	706	NWL
	12/11/2012	541	NWL
HZMB 076	7/8/2013	706	NWL
	12/11/2012	541	NWL
HZMB 075	12/6/2012	525	NEL
	5/9/2013	647	NWL
	4/1/2013	623	NWL
	4/1/2013	621	NWL
HZMB 074	2/21/2013	594	NEL
	12/10/2012	529	NEL
	12/6/2012	525	NEL

		5/9/2013	647	NWL
		4/1/2013	623	NWL
		4/1/2013	621	NWL
HZMB 073		2/21/2013	594	NEL
		12/10/2012	529	NEL
		12/6/2012	525	NEL
HZMB 072		10/24/2012	476	NWL
		10/24/2012	475	NWL
HZMB 071		10/12/2012	466	NWL
HZMB 070		10/24/2012	476	NWL
HZMB 069		6/4/2015	1116	NWL
		8/21/2013	774	NWL
		7/8/2013	711	NWL
		10/24/2012	476	NWL
		10/20/2014	1025	NWL
HZMB 068		11/1/2013	839	NWL
		10/24/2012	476	NWL
HZMB 067		10/24/2012	475	NWL
		1/28/2013	559	NWL
		12/11/2012	537	NWL
HZMB 066	NL93	10/24/2012	475	NWL
	INL95	10/12/2012	466	NWL
		11/7/2011	Baseline	NWL
		11/5/2011	Baseline	NWL
HZMB 064		3/19/2015	1086	NWL
		6/17/2014	964	NWL
		5/9/2013	647	NWL
		1/28/2013	561	NWL
		10/24/2012	475	NWL
		10/12/2012	466	NWL
HZMB 063		5/9/2013	647	NWL
		10/12/2012	466	NWL
HZMB 062		12/6/2012	525	NEL
		10/11/2012	457	NWL
HZMB 060		9/18/2012	447	NWL
HZMB 059		2/21/2013	591	NWL

		9/18/2012	445	NWL
HZMB 057		9/18/2012	440	NWL
		9/18/2012	442	NWL
HZMB 056		9/5/2012	433	NEL
HZMB 055		9/4/2012	425	NWL
		11/3/2016	1331	NWL
		5/12/2016	1238	NWL
		12/1/2015	1180	NWL
		4/20/2015	1097	NWL
		1/15/2015	1062	NWL
		5/31/2014	953	NWL
		1/6/2014	888	NWL
		11/7/2013	854	NWL
		11/2/2013	845	NWL
		10/24/2013	831	NWL
HZMB 054	CH34	8/30/2013	780	NEL
		7/8/2013	711	NWL
		9/18/2013	448	NWL
		9/5/2012	432	NEL
		11/7/2011	Baseline	NWL
		11/5/2011	Baseline	NWL
		11/2/2011	Baseline	NWL
		11/1/2011	Baseline	NEL
		11/1/2011	Baseline	NEL
		10/28/2011	Baseline	NWL
		10/6/2011	Baseline	NWL
HZMB 053		9/4/2012	425	NWL
HZMB 052		9/4/2012	423	NWL
		5/11/2015	1104	NWL
		8/4/2014	989	NWL
		5/9/2013	644	NWL
	NIL 04 0	4/1/2013	622	NWL
HZMB 051	NL213	2/15/2013	582	NWL
		2/15/2013	581	NWL
		1/28/2013	559	NWL
		1/28/2013	556	NWL

		9/4/2012	422	NWL
		7/14/2014	971	NWL
		1/10/2014	900	NWL
HZMB 050		1/6/2014	888	NWL
		2/15/2013	579	NWL
		9/4/2012	421	NWL
		10/9/2015	1151	NWL
HZMB 049		7/29/2014	982	NWL
		9/3/2012	419	NWL
HZMB 048		9/3/2012	419	NWL
		4/28/2015	1100	NWL
HZMB 047		9/3/2012	412	NWL
HZMB 046		9/3/2012	412	NWL
		5/23/2016	1249	NWL
		2/17/2014	910	NWL
HZMB 045		6/13/2013	682	NWL
		2/15/2013	579	NWL
		11/1/2012	495	NWL
		1/5/2017	1350	NWL
		5/23/2016	1247	NWL
		1/18/2016	1194	NWL
		10/13/2014	1019	NWL
		2/17/2014	910	NWL
		12/19/2013	864	NWL
		11/2/2013	845	NWL
		11/1/2013	842	NWL
		10/15/2013	819	NWL
HZMB 044	NL98	5/9/2013	648	NWL
		5/9/2013	647	NWL
		4/1/2013	623	NWL
		4/1/2013	621	NWL
		2/15/2013	579	NWL
		11/1/2012	495	NWL
		11/7/2011	Baseline	NWL
		11/6/2011	Baseline	NEL
		11/1/2011	Baseline	NEL
		10/6/2011	Baseline	NEL

HZMB 043		9/3/2012	407	NWL
		10/22/2015	1156	NWL
	NII 000	12/19/2013	863	NWL
HZMB 042	NL260	11/1/2012	495	NWL
		11/7/2011	Baseline	NWL
		6/5/2014	960	NEL
		2/17/2014	910	NWL
		11/2/2013	845	NWL
		5/9/2013	648	NWL
		5/9/2013	647	NWL
		4/1/2013	623	NWL
HZMB 041	NL24	4/1/2013	621	NWL
		2/15/2013	579	NWL
		11/1/2012	495	NWL
		11/6/2011	Baseline	NEL
		11/5/2011	Baseline	NWL
	-	11/5/2011	Baseline	NWL
		10/10/2011	Baseline	NWL
		2/17/2014	910	NWL
		1/6/2014	893	NWL
		10/15/2013	821	NWL
HZMB 040		7/8/2013	714	NWL
		7/8/2013	711	NWL
		2/21/2013	589	NWL
		11/1/2012	493	NWL
HZMB 038		5/23/2016	1246	NWL
		11/1/2012	490	NWL
HZMB 037		11/1/2012	490	NWL
		1/5/2017	1351	NWL
HZMB 036		1/5/2017	1350	NWL
		9/3/2012	407	NWL
		11/1/2012	490	NWL
		2/15/2013	579	NWL
HZMB 035		11/1/2012	490	NWL
HZMB 034		11/1/2012	493	NWL
HZMB 028		11/17/2014	1035	NWL
		4/1/2013	625	NWL

	8/6/2012	373	NWL
	12/19/2013	863	NWL
	2/15/2013	579	NWL
HZMB 027	1/28/2013	568	NWL
	1/28/2013	564	NWL
	6/14/2012	299	NWL
	10/13/2014	1018	NWL
	6/25/2013	697	NWL
HZMB 026	5/9/2013	642	NWL
	1/28/2013	561	NWL
	6/13/2012	295	NEL
	2/22/2013	596	NEL
	2/21/2013	591	NWL
HZMB 025	12/6/2012	525	NEL
	10/11/2012	457	NWL
	6/13/2012	295	NEL
	3/18/2013	601	NWL
HZMB 024	6/13/2012	295	NEL
	1/5/2017	1353	NWL
	11/3/2016	1330	NWL
	10/9/2015	1153	NWL
	10/9/2015	1152	NWL
	4/20/2015	1097	NWL
	12/18/2014	1044	NWL
HZMB 023	11/17/2014	1035	NWL
	1/6/2014	888	NWL
	7/8/2013	715	NWL
	7/8/2013	711	NWL
	4/1/2013	619	NWL
	2/21/2013	589	NWL
	2/15/2013	579	NWL
	7/10/2012	330	NWL
	1/5/2017	1353	NWL
	11/3/2016	1330	NWL
HZMB 022	4/21/2016	1219	NWL
	9/7/2015	1143	NWL
	4/20/2015	1097	NWL

		12/18/2014	1044	NWL
		11/17/2014	1035	NWL
		8/4/2014	991	NWL
		1/6/2014	888	NWL
		10/24/2013	827	NWL
		7/8/2013	715	NWL
		7/8/2013	711	NWL
		4/1/2013	619	NWL
		2/21/2013	589	NWL
		2/15/2013	579	NWL
		7/10/2012	330	NWL
		3/22/2016	1215	NWL
HZMB 021	NL37	7/10/2012	330	NWL
		9/16/2011	Baseline	NWL
HZMB 020		7/10/2012	330	NWL
HZMB 019		7/10/2012	330	NWL
		2/17/2014	910	NWL
		5/9/2013	647	NWL
HZMB 018		2/21/2013	594	NEL
		12/10/2012	529	NEL
		7/10/2012	330	NWL
HZMB 017		7/10/2012	330	NWL
		7/8/2013	706	NWL
		12/11/2012	539	NWL
HZMB 016		9/18/2012	446	NWL
		9/4/2012	421	NWL
		7/10/2012	330	NWL
HZMB 015		7/10/2012	330	NEL
		8/25/2015	1139	NWL
		12/26/2013	880	NWL
		8/6/2012	373	NWL
HZMB 014	NL176	6/13/2012	295	NEL
		11/6/2011	Baseline	NEL
		11/1/2011	Baseline	NEL
		11/1/2011	Baseline	NEL
HZMB 013		5/28/2012	281	NWL
HZMB 012		5/28/2012	281	NWL

		2/22/2013	597	NEL
		2/21/2013	592	NEL
		2/14/2013	572	NEL
HZMB 011	EL01	11/6/2012	517	NEL
	ELUI	9/19/2012	452	NWL
		3/31/2012	261	NEL
		11/2/2011	Baseline	NWL
		11/1/2011	Baseline	NEL
		3/19/2015	1084	NWL
HZMB 009		5/28/2012	281	NWL
		7/6/2015	1122	NWL
HZMB 008		5/28/2012	281	NWL
		12/10/2012	529	NEL
HZMB 007	NL246	11/6/2011	Baseline	NEL
		9/16/2011	Baseline	NWL
		10/22/2015	1158	NWL
		2/21/2013	594	NEL
HZMB 006		12/11/2012	539	NWL
		11/1/2012	495	NWL
		3/29/2012	250	NWL
		2/9/2015	1070	NWL
		2/9/2015	1069	NWL
		11/9/2013	860	NWL
		11/7/2013	858	NWL
HZMB 005		10/15/2013	813	NWL
		12/10/2012	532	NWL
		8/6/2012	374	NWL
		5/28/2012	287	NWL
		7/28/2015	1126	NWL
HZMB 004		9/4/2012	421	NWL
		3/31/2012	262	NWL
		10/15/2013	812	NWL
		6/25/2013	697	NWL
	NU 470	12/10/2012	529	NEL
HZMB 003	NL179	3/31/2012	261	NWL
		11/6/2011	Baseline	NEL
		9/16/2011	Baseline	NWL

		5/31/2014	951	NWL
		12/26/2013	878	NWL
		12/19/2013	863	NWL
		11/1/2013	839	NWL
		10/15/2013	819	NWL
		9/24/2013	798	NWL
HZMB 002	WL111	2/14/2013	573	NWL
	VVLIII	12/11/2012	536	NWL
		12/11/2012	535	NWL
		10/12/2012	466	NWL
		10/24/2012	475	NWL
		5/28/2012	281	NWL
		3/29/2012	250	NWL
		11/2/2011	Baseline	NWL
HZMB 001	WL46	7/18/2016	1276	NWL
		5/23/2016	1251	NWL
		8/25/2014	997	NWL
		8/21/2013	771	NWL
		6/13/2013	681	NWL
		4/1/2013	617	NWL
		2/14/2013	573	NWL
		3/29/2012	250	NWL
	CH98	11/2/2011	Baseline	NWL
	NL11	11/2/2011	Baseline	NWL
		11/7/2011	Baseline	NWL
	NL12	11/2/2011	Baseline	NWL
		9/23/2011	Baseline	NWL
	NL33	11/1/2011	Baseline	NEL
	INE55	11/5/2011	Baseline	NWL
		11/7/2011	Baseline	NWL
	NL46	10/28/2011	Baseline	NWL
	CH153	10/11/2011	Baseline	NWL
		11/7/2001	Baseline	NWL
	NL48	11/2/2011	Baseline	NWL
		9/16/2011	Baseline	NWL
	NL75	9/16/2011	Baseline	NWL
		9/16/2011	Baseline	NWL

Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works Monthly EM&A Report for March 2017

	11/1/2011	Baseline	NEL
NL80	11/2/2011	Baseline	NWL
NL118	9/6/2011	Baseline	NWL
NII 400	11/6/2011	Baseline	NEL
NL120 -	10/10/2011	Baseline	NWL
	11/6/2011	Baseline	NEL
NL123	10/10/2011	Baseline	NWL
	10/6/2011	Baseline	NWL
	11/1/2011	Baseline	NEL
NL139	10/10/2011	Baseline	NEL
Ī	9/16/2011	Baseline	NWL
NII 405	11/5/2011	Baseline	NWL
NL165 -	11/2/2011	Baseline	NWL
NL170	10/6/2011	Baseline	NEL
	11/7/2011	Baseline	NWL
NL188	11/1/2011	Baseline	NWL
Ī	10/28/2011	Baseline	NWL
NL191	9/7/2011	Baseline	NWL
NII 000	11/7/2011	Baseline	NWL
NL202 -	10/28/2011	Baseline	NWL
	11/7/2011	Baseline	NWL
NII 040	11/5/2011	Baseline	NWL
NL210 -	11/2/2011	Baseline	NWL
	9/7/2011	Baseline	NWL
	11/5/2011	Baseline	NWL
NL214	11/2/2011	Baseline	NWL
	10/28/2011	Baseline	NWL
NL220	10/10/2011	Baseline	NEL
NL224	10/28/2011	Baseline	NWL
NII 000	11/5/2011	Baseline	NWL
NL226 -	10/17/2011	Baseline	WL
NII 000	11/2/2011	Baseline	NWL
NL230 -	10/17/2011	Baseline	WL
	10/28/2011	Baseline	NWL
NL233	10/6/2011	Baseline	NWL
ļ Ī	9/16/2011	Baseline	NWL
NL241	11/7/2011	Baseline	NWL

	11/2/2011	Baseline	NWL
	9/16/2011	Baseline	NWL
	11/1/2011	Baseline	NEL
NL244	11/1/2011	Baseline	NWL
	9/5/2011	Baseline	WL
NL256	11/2/2011	Baseline	NWL
	9/16/2011	Baseline	NWL
NL258	9/5/2011	Baseline	WL
NL259	11/7/2011	Baseline	NWL
NL261	11/1/2011	Baseline	NEL
	11/6/2011	Baseline	NEL
NL264	10/6/2011	Baseline	NEL
	9/23/2011	Baseline	NWL
NL269	11/2/2011	Baseline	NWL
	11/5/2011	Baseline	NWL
	11/2/2011	Baseline	NWL
NL272	10/28/2011	Baseline	NWL
	9/16/2011	Baseline	NWL
NL278	11/2/2011	Baseline	NWL
NL279	11/2/2011	Baseline	NWL
SL42	11/2/2011	Baseline	NWL
SL43	10/28/2011	Baseline	NWL
	11/5/2011	Baseline	NWL
	11/2/2011	Baseline	NWL
WL04	10/17/2011	Baseline	WL
	10/10/2011	Baseline	NWL
	9/16/2011	Baseline	NWL
14/1.05	11/1/2011	Baseline	NEL
WL05	11/1/2011	Baseline	NEL
WL11	11/7/2011	Baseline	NWL
	10/17/2011	Baseline	WL
WL25	9/23/2011	Baseline	WL
	9/16/2011	Baseline	NWL
14/1.00	11/2/2011	Baseline	WL
WL88	9/16/2011	Baseline	NWL
WL116	9/16/2011	Baseline	NWL
WL124	11/2/2011	Baseline	NWL

WL156	10/28/2011	Baseline	NWL
VVL150	9/23/2011	Baseline	WL
WL162	9/16/2011	Baseline	NWL
NL275	9/23/2011	Baseline	WL
	11/2/2011	Baseline	WL
SL48	10/17/2011	Baseline	WL
	9/23/2011	Baseline	WL
CH108	11/2/2011	Baseline	WL
CHIUO	11/2/2011	Baseline	WL
CH157	11/2/2011	Baseline	WL
NL206	10/7/2011	Baseline	WL
WL28	9/23/2011	Baseline	WL
14// 40	11/2/2011	Baseline	WL
WL42	9/5/2011	Baseline	WL
WL47	10/17/2011	Baseline	WL
WL61	10/17/2011	Baseline	WL
WLOT	9/23/2011	Baseline	WL
WL66	11/7/2011	Baseline	WL
WL68	9/5/2011	Baseline	WL
 VVL00	9/5/2011	Baseline	WL
WL72	11/2/2011	Baseline	WL
VVL/2	11/2/2011	Baseline	WL

	9/23/2011	Baseline	WL
WL87	9/23/2011	Baseline	WL
14/1 00	11/2/2011	Baseline	WL
WL88 -	9/16/2011	Baseline	WL
WL116	9/16/2011	Baseline	WL
WL118	11/2/2011	Baseline	WL
VVLIIO	11/2/2011	Baseline	WL
WL123	11/2/2011	Baseline	WL
WL124	11/2/2011	Baseline	WL
WL128	11/7/2011	Baseline	WL
WL128	11/2/2011	Baseline	WL
	11/2/2011	Baseline	WL
WL131	11/2/2011	Baseline	WL
	9/23/2011	Baseline	WL
WL132	9/23/2011	Baseline	WL
WL137	11/2/2011	Baseline	WL
WL138	11/2/2011	Baseline	WL
WL144	11/2/2011	Baseline	WL
WL145	9/5/2011	Baseline	WL
WL146	10/17/2011	Baseline	WL

WL153	11/7/2011	Baseline	WL
WL157	9/23/2011	Baseline	WL
WL158	9/23/2011	Baseline	WL
W// 160	11/7/2011	Baseline	WL
WL163	11/2/2011	Baseline	WL
WL165	10/17/2011	Baseline	WL
WL167	10/17/2011	Baseline	WL
WL170	11/7/2011	Baseline	WL
WL171	10/28/2011	Baseline	WL

Appendix L – Event Action Plan

Event / Action Plan for Air Quality

Event		Action	n	
	ET Leader	IEC	ER	Contractor
Action Level				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Event	Action				
	ET Leader	IEC	ER	Contractor	
Limit Level	·	-	·	·	
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	Contractor on possible	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

Event	Action				
	ET Leader	IEC	ER	Contractor	
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 	 proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is 	

Event / Action Plan for Construction Noise

Event		Actior	ı	
	ET Leader	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor; Identify source, investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Inform IEC, ER, EPD and Contractor; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action Plan for Water Quality

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working methods; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Action level being exceeded by two or more consecutiv e sampling days	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level; Repeat measurement on next day of exceedance to confirm findings. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of non-compliance in writing; Discuss with IEC on the proposed mitigation measures; Make agreement on mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET and IEC on possible remedial actions and propose mitigation measures to IEC and ER within 3 working days of notification; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Amend working methods if appropriate.

Event	Action			
	ET Leader	IEC	ER	Contractor
or more 3 consecutive 4 sampling days 5	 Repeat <i>in-situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor, ER and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the ER accordingly. 	 Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level. 	 Inform the ER and confirm notification of the non-compliance in writing; Take immediate action to avoid further exceedance; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET, IEC and ER; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Engineer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event / Action Plan for Dolphin Monitoring

Event	ET Leader	IEC	ER / SOR	Contractor
Action Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor; Check monitoring data. Review to ensure all the dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and finding with the ET and the Contractor. 	 Discuss monitoring with the IEC and any other measures proposed by the ET; If ER/SOR is satisfied with the proposal of any other measures, ER/SOR to signify the agreement in writing on the measures to be implemented. 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER/SOR; Implement the agreed measures.
Limit Level	 Repeat statistical data analysis to confirm findings; Review all available and relevant data, including raw data and statistical analysis results of other parameters covered in the EM&A, to ascertain if differences are as a result of natural variation or previously observed seasonal differences; Identify source(s) of impact; Inform the IEC, ER/SOR and Contractor of findings; Check monitoring data; Repeat review to ensure all the 	 Check monitoring data submitted by ET and Contractor; Discuss monitoring results and findings with the ET and the Contractor; Attend the meeting to discuss with ET, ER/SOR and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. Review proposals for additional monitoring and any other mitigation measures submitted by ET and Contractor and 	 Attend the meeting to discuss with ET, IEC and Contractor the necessity of additional dolphin monitoring and any other potential mitigation measures. If ER/SOR is satisfied with the proposals for additional dolphin monitoring and/or any other mitigation measures submitted by ET and Contractor and verified by IEC, ER/SOR to signify the agreement in writing on such proposals and any other mitigation measures. Supervise the implementation 	 Inform the ER/SOR and confirm notification of the non-compliance in writing; Attend the meeting to discuss with ET, IEC and ER/SOR the necessity of additional dolphin monitoring and any other potential mitigation measures. Jointly submit with ET to IEC a proposal of additional dolphin monitoring and/or any other mitigation measures when necessary. Implement the agreed additional dolphin monitoring and/or any other mitigation

Monthly EM&A Report for March 2017

 dolphin protective measures are fully and properly implemented and advise on additional measures if necessary. 7. If ET proves that the source of impact is caused by any of the construction activity by the works contract, ET to arrange a meeting to discuss with IEC, ER/SOR and Contractor the necessity of additional dolphin monitoring and/or any other potential mitigation measures (e.g., consider to modify the perimeter silt curtain or consider to control/temporarily stop relevant construction activity etc.) and submit to IEC a proposal of additional dolphin monitoring and/or mitigation measures where necessary. 		of additional monitoring and/or any other mitigation measures.	measures.
---	--	---	-----------

Monthly Summary Waste Flow Table for <u>March / 2017 (year)</u>

Project : Hong Kong – Zhuhai – Macao Bridge, Hong Kong Boundary Crossing Facilities – Reclamation Works Contract No.: HY/						HY/2010/02						
		Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects (see Note 5)	Surplus Surcharge exported to Macau (see Note 5)	Disposed as Public Fill	Imported Fill (see Note 5)	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste (see Note 4)	Others, e.g. general refuse (see Note 3)
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan-17	0.0000	0.0000	0.0000	15.6100	73.2375	0.0000	18.8927	0.0000	0.3640	0.0000	0.0000	0.0455
Feb-17	0.0000	0.0000	0.0000	39.0950	182.3675	0.0000	17.5747	0.0000	0.3920	0.0000	0.0000	0.0260
Mar-17	0.0000	0.0000	0.0000	60.6496	171.6925	0.0000	20.6013	0.0000	0.0000	0.0000	0.0000	0.0585
Apr-17												
May-17												
Jun-17												
Sub-total	0.0000	0.0000	0.0000	115.3546	427.2975	0.0000	57.0687	0.0000	0.7560	0.0000	0.0000	0.1300
Jul-17												
Aug-17												
Sep-17												
Oct-17												
Nov-17												
Dec-17												
Total	0.0000	0.0000	0.0000	115.3546	427.2975	0.0000	57.0687	0.0000	0.7560	0.0000	0.0000	0.1300

(1) Broken concrete for recycling into aggregates. Notes:

(2) Plastics refer to plastic bottles / containers / sheets / foam / barrier from packaging materials.

(3) Use the conversion factor : 1 full load of dumping truck being equivalent to $6.5m^3$ by volume.

(4) Chemical waste refer to spent "battery" and "oil with water".

(5) Amount is subjected to change due to actual surveyed quantities from the previously provided tentative quantity, actual quantity to be reviewed and agreed between project teams.

Appendix N

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Cumulative statistics on Exceedances

		Total no. recorded in this	Total no. recorded since		
		month	project commencement		
1-Hour TSP	Action	-	-		
	Limit	-	-		
24-Hour TSP	Action	-	-		
	Limit	-	-		
Noise	Action	-	-		
	Limit	-	-		
Water Quality	Action	-	2		
	Limit	-	3		
Dolphin Monitoring	Action	-	-		
	Limit	-	-		

Remarks: Exceedances which are not project-related are not presented in this table.

Cumulative statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	27 March 2017	An environmental complaint was received by EPD on 27 March 2017, and the complainant complained that a very loud sound was intermittently heard by the Complainant since 10pm on 26 March and such loud sound was heard by the complainant until midnight. It was suspected that the sound came from the Hong Kong-Zhuhai-Macao Bridge	Closed	1	45

	ong-Zhuhai-Macao ong Boundary Cro	 Bridge ssing Facilities – Reclamation Works 	Monthly EM8	A Report for Ma	arch 2017
		(HZMB) construction works near			
		the artificial island. In addition, a			
		large area of pollution was			
		observed on sea in the morning of			
		the day the complainant made the			
		complaint. It was suspected that			
		was caused by the HZMB			
		construction works. After			
		investigation, there is no adequate			
		information to conclude the			
		complaint is related to this			
		Contract.			
Notification of					3
summons	-	-	-	-	2
Successful					2
Prosecutions	-	-	-	-	2