

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.45) – APRIL 2017

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
15 May 2017	TCS00694/13/600/R0969v2	Anh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks	
1	10 May 2017	First Submission	
2	15 May 2017	Amended against the IEC's comments on 12 May 2017	

Unit A-C, 27/F Ford Glory Plaza 37- 39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

15 May 2017

Our ref: 7076192/L21804/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 45) – April 2017

With reference to the Monthly EM&A Report No. 45 for April 2017 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG

Independent Environmental Checker

сс	CEDD/BCP	177	Mr Desmond LAM	by fax: 3547 1659
	ArchSD	20	Mr William WL CHENG	by fax: 2804 6805
	AECOM		Mr Pat LAM / Mr Perry YAM	by email
	Ronald Lu	()#E	Mr Peter YAM / Mr Justin CHEUNG	by email
	CW		Mr Daniel HO	by email
	DHK	34	Mr Daniel ALTIER	by email
	CCKJV	157	Mr Vincent CHAN	by email
	KRSJV	-	Mr TY LEUNG	by email
	Leighton	0.22	Mr Jon KITCHING	by email
	AUES		Mr TW TAM	by email

\\hksmecdf01\share\jobs\7076192 - cedd - iec for liantang heung yuen wai bcp\02 out\02_170515-01-o-l verify monthly

EXECUTIVE SUMMARY

ES01 This is the **45th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 30 April 2017** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting	Period
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions
Air Quality	1-hour TSP	9	150
Air Quality	24-hour TSP	9	45
Construction Noise	L _{eq(30min)} Daytime	10	40
		WM1 & WM1-C	12 Scheduled & 3 extra
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	12 Scheduled & 3 extra
Water Quality		WM2B & WM2B-C	12 Scheduled & 0 extra
		WM3x &WM3-C	12 Scheduled & 3 extra
		WM4, WM4-CA &WM4-CB	12 Scheduled & 1 extra
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats	1
		Contract 2	4
Joint Site	IEC, ET, the Contractor and	Contract 3	4
Inspection /	RE joint site Environmental	Contract 6	4
Audit	Inspection and Auditing	Contract 7	4
		Contract SS C505 (#)	4

Note: Extra monitoring day was due to measurement results exceedance # *IEC only joined one (1) event of site inspection for Contract SS C505.*

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedances were recorded. For water quality monitoring, twenty-two (22) Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			
	24-hour TSP	0	0	0			
Construction Noise	L _{eq(30min)} Daytime	0	0	0			

			Event & Action				
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
	DO	0	0	0	-		
Water Quality	Turbidity	0	10	10	 exceedances recoded on 8, 10, 12, 13 and 14 April 2017 were concluded 	0	The Contractors were reminded to implement water quality
	SS	0	12	12	as non-project related - exceedances 22, 25 and 26 April 2017 were under investigation.	0	mitigation measures in accordance with ISEMM of the EM&A Manual requirements

ENVIRONMENTAL COMPLAINT

- ES05 In this Reporting Period, two (2) documented environmental complaints were received regarding noise issue for Contract 2 and wastewater issue related to Contracts 2 and 6. Investigation report (IR) for complaints revealed that all the complaints were not related to the Contract.
- ES06 The summary of complaint received in the Reporting Period is summarized below.

		Environmental Complaint				
Reporting Period	Contract No	Frequency	Complaint Nature	Project related complaint		
	Contract 2	2	Noise (1) Wastewater (1)	0		
1 20 April 2017	Contract 3	1	wastewater	0		
1 – 30 April 2017	Contract 6	0	NA	NA		
	Contract 7	0	NA	NA		
	SS C505	0	NA	NA		

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES07 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

- ES08 In the Reporting Period, EPD has approved the revised EM&A Programme (Rev.7) which included the proposal for not necessary to perform noise measurement during restricted hours periods. Therefore, noise measurement during restricted hours periods will be ceased on 7 April 2017 in accordance with the updated EM&A Programme (Rev. 07) (Section 3.1.5) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)
- ES09 Moreover, EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

SITE INSPECTION

- ES10 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 7, 12, 21 and 28 April 2017. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on 3, 10, 19 and 24 April 2017. No non-compliance was noted during the site inspection.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 April 2017. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, IEC, ET and the Contractor on **5**, **12**, **19** and **26 April 2017**. No non-compliance was noted during the site inspection.
- ES14 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on **3**, **11**, **18 and 25 April 2017**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES15 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES16 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES17 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES18 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5 7
	2.3 CONCURRENT PROJECTS	
	2.4 CONSTRUCTION PROGRESS	7
	2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL	14
	3.2 MONITORING PARAMETERS	14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	 3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS 3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL 	21 22
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 GENERAL	26
	5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)	26
	5.3 NOISE MONITORING RESULTS (RESTRICTED HOURS)	26
6	WATER QUALITY MONITORING	28
	6.1 GENERAL	28
	6.2 RESULTS OF WATER QUALITY MONITORING	28
7	ECOLOGY MONITORING	31
,	7.1 GENERAL	31
0		
8	WASTE MANAGEMENT 8.1 GENERAL WASTE MANAGEMENT	32 32
	8.1 GENERAL WASTE MANAGEMENT8.2 RECORDS OF WASTE QUANTITIES	32
9	SITE INSPECTION	33
	9.1 REQUIREMENTS	33
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	33
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	36
	10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	36
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	40
-	11.1 GENERAL REQUIREMENTS	40
	11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	40
	11.3 KEY ISSUES FOR THE COMING MONTH	41
12	CONCLUSIONS AND RECOMMENDATIONS	43
	12.1 CONCLUSIONS	43
	12.2 RECOMMENDATIONS	43
		-

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-3	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (EVENING TIME)
TABLE 5-4	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (NIGHT TIME)
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 5 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 6-7	SUMMARY OF WATER QUALITY EXCEEDANCE WHICH WERE UNDER REVIEW BY IEC IN APRIL 2016
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
Appendix F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015 and the latest Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **45th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **30 April 2017**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring

Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Environmental Complaints and Non-Compliance
Section 10	Implementation Status of Mitigation Measures
Section 11	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work will be commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Mid-Vent Portal	 Tunnel Boring Machine (TBM) U-Turn Adit invert slab, waterproofing and lining Stud tunnel post-excavation activities Structure connecting the adit tunnel and ventilation building superstructure Mid-Vent building structure and backfilling
North Portal	 Retaining wall Southbound tunnel enlargement Southbound tunnel internal structure, backfilling and cross passage North Bound Tunnel bench excavation, water proofing and lining North ventilation building superstructure
South Portal	 Southbound and northbound Drill & Blast Excavation South ventilation and building superstructure Tunnel invert, waterproofing, lining, internal structure and cross passage Mucking out from tunnels
Admin Building	• Building superstructure, fence wall, drainage and E&M installation

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Boundary Wall for DSD Pumping Station
 - Cable detection and trial trenches
 - Footbridge construction
 - Noise barrier construction
 - Pier table construction
 - Portal construction
 - Road works
 - Viaduct Segment Erection
 - Water Main Laying
 - Gabion wall construction
 - Installation of Noise Barrier Steel Column & Panel
 - Per-drilling for noise barrier
 - Pit construction for heading works.
 - Parapet installation
 - Planter Wall Construction
 - Drainage Work
 - Mini-pile Installation
 - Construction of Profile Barrier on Viaduct deck
 - Stressing of External Tendon

Contract 4 (NE/2014/02)

2.4.4 The Contract was awarded in mid-April 2016 and the major construction work has not yet commenced.

Contract 5 (CV/2013/03)

2.4.5 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bored Piling
 - Pile Cap Construction
 - Bridge Pier Construction
 - Bridge Segment Erection
 - Tunnel Excavation
 - Sewage Treatment Plant Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - U-trough construction at Bridges A and E
 - Pile Caps construction at Bridge E
 - Column construction at Bridges B and D
 - 3rd floor slab construction at Bridge C

Contract SS C505

2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 26, 30, 36 and 41 construction
- ABWF Works and Contractors Testing for Building no.36
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works and Landscaping
- Formwork and falsework for PTB's slab construction
- Construction PTB M/F & 1/F flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Bridge deck construction for Bridges 1 5

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (*TCS00690/13/600/R0030v3*) for the Project
 - Waste Management Plan of the Contracts 2, 3, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

-		License	/Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
		Contract 2		
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends
2	Chemical Waste Producer Registration	<i>North Portal</i> Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends
		<i>Mid-Vent Portal</i> Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019
	Control Ordinance -	No.: W5/11389	28 Mar 2014	31 Mar 2019
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392	28 Mar 2014	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0759-16	12-Oct-2016	11-Apr-2017
	Permit	GW-RN0839-16	20-Nov-2016	07-May-2017
		GW-RN0895-16	20-Dec-2016	11-Jun-2017
		GW-RN0214-17	30-Mar-2017	14-Sep 2017
		GW-RN0201-17	28-Mar-2017	14-Sep-2017
		GW-RN0288-17	26-Apr-2017	20-Sep-2017
		GW-RN0291-17 GW-RN0318-17	26-Apr-2017 09-May-2017	20-Sep-2017 27-Oct-2017
		GW-RN0228-17	01-Apr-2017	16-Sep-2017
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12 Apr 2016	11 Apr 2021
		Contract 3		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 - 2013	28 Aug 13	31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	2 Aug 13	Till Contract ends
	Construction Noise	GW-RN0756-16	18 Oct 2016	13 Apr 2017

 $Z: Jobs \ 2013 \ TCS00694 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 45th \ (April \ 2017) \ R0969v \ 2.docx$

Iterry		License/Permit Status		
Item	Description	Ref. no.	Effective Date	Expiry Date
	Permit	GW-RN0759-16	5 Nov 2016	29 Apr 2017
		GW-RN0833-16	13 Nov2016	10 May 2017
		GW-RN0843-16	18 Nov2016	17 May 2017
		GW-RN0870-16	30 Nov2016	13 May 2017
		GW-RN0871-16	29 Nov2016	20 May 2017
		GW-RN0872-16	29 Nov2016	20 May 2017
		GW-RN0901-16	11 Dec 2016	4 Jun 2017
		GW-RN0939-16	22 Dec 2016	21 Jun 2017
		GW-RN0002-17	8 Jan 2017	4 Jun 2017
		GW-RN0021-17	19 Jan 2017	8 Jul 2017
		GW-RN0029-17	21 Jan 2017	8 Jul 2017
		GW-RN0040-17	25 Jan 2017	24 Aug 2017
		GW-RN0048-17	3 Feb 2017	16 Jun 2017
		GW-RN0066-17	15 Feb 2017	15 Jul 2017
		GW-RN0069-17	15 Feb 2017	14 Aug 2017
		GW-RN0070-17	3 Feb 2017	15 Jul 2017
		GW-RN0071-17	16 Feb 2017	15 Aug 2017
		GW-RN0078-17	21 Feb 2017	21 Jun 2017
		GW-RN0084-17	8 Feb 2017	15 Jul 2017
		GW-RN0096-17	19 Feb 2017	10 Jul 2017
		GW-RN0099-17	17 Feb 2017	12 Aug 2017
		GW-RN0111-17	26 Feb 2017	30 Jul 2017
		GW-RN0115-17	2 Mar 2017	26 Aug 2017
		GW-RN0161-17	1 Apr 2017	30 Sep 2017
		GW-RN0168-17	2 Apr 2017	25 Sep 2017
		GW-RN0185-17	1 Apr 2017	30 Sep 2017
		GW-RN0204-17	30 Mar 2017	29 Sep 2017
		GW-RN0213-17	6 Apr 2017	9 Sep 2017
		GW-RN0219-17	31 Mar 201	30 Sep 2017
		GW-RN0235-17	11 Apr 2017	7 Oct 2017
		GW-RN0236-17	10 Apr 2017	16 Sep 2017
		GW-RN0302-17	30 Apr 2017	29 Oct 2017
		GW-RN0203-17	11 May 2017	10 Oct 2017
		GW-RN0205-17	30 Apr 2017	30 Jul 2017
		Contract 5		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338	13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract

T.	D	License/Permit Status			
Item	Description	Ref. no.	Effective Date	Expiry Date	
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract	
		Contract 6			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract	
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract	
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021	
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021	
		No.:WT00024742-2016	14 June 2016	30 June 2021	
		No.:WT00024746-2016	14 June 2016	30 June 2021	
5	Construction Noise	GW-RN0003-17	16 Jan 20217	15 Jul 2017	
	Permit	GW-RN0005-17	1 Apr 2017	30 Jun 2017	
		GW-RN0062-17	27 Jan 2017	26 Apr 2017	
		GW-RN0090-17	15 Feb 2017	14 Aug 2017	
		GW-RN0126-17	3 Mar 2017	27 Aug 2017	
		GW-RN0230-17	6 Apr 2017	27 May 2017	
		GW-RN0251-17	17 Apr 2017	12 Oct 2017	
		Contract SS C505	L		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract	
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract	
5	Construction Noise	GW-RN0803-16	5 Nov 2016	4 May 2017	
	Permit	GW-RN0065-17	7 Feb 2017	6 Aug 2017	
		GW-RN0290-17	5 May 2017	4 Nov 20017	
		Contract 7		·	

14	Description	License/I	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
1	Air pollution Control (Construction Dust) Regulation			Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016 10 May 2016		31 May 2021
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract
5	Construction Noise Permit	GW-RN0799-16	5 Nov 2016	4 May 2017
		Contract 4		
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2, Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

 Table 3-2
 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	BCP	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 5-4 Impact Monitoring Stations - Water Quanty					
Station ID	Description	Designated Loca	nates of / Alternative ation	Nature of the location	Related to the Work Contract
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

Table 3-4 Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

(#) Proposal for the change of water quality monitoring location (EM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in Sections 2.1.6, 3.1.5 and 4.1.6 of the

approved EM&A Manual and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works
 - 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5Air Quality Monitoring Equipment

Equipment Model			
24-Hr TSP			
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*		
Calibration Kit	TISCH Model TE-5025A*		
	1-Hour TSP		
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &		
Fortable Dust Meter	Counter*		

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.

- 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

 Table 3-6
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31 or Rion NL-52*
Calibrator	B&K Type 4231* or Cesva CB-5 or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For

sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument/ YSI 550A Multifunctional Meter*/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ 650MDS/ YSI Professional DSS
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

Table 3-7Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

- 3.6.14 YSI 550A Multifunctional Meter is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Table 3-8Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP 24-hour TSP		1-hour TSP	24-hour TSP	
AM1b	265	143			
AM2	268	149			
AM3	269	145			
AM4b	267	148	500	260	
AM5a	268	143			
AM6	269	148			
AM7b	275	156			

Monitoring Station	Action I	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AM8	269	144			
AM9b	271	151			

Table 3-9	Action and Limit Levels for Construction Noise
Iuble c >	

Monitoring Location	Action Level	Limit Level in dB(A)		
Monitoring Location	Time Period: 0700-1900 hours on normal weekdays			
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}		

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

 Table 3-10
 Action and Limit Levels for Water Quality

D	Performance		M	onitoring Loca	tion		
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4	
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14	
(mg/L)	Limit Level	^(#) 4.19	^(**) 4.00	^(#) 4.60	^(**) 4.00	^(#) 4.08	
Turbidity	A ation I areal	51.3	24.9	11.4	13.4	35.2	
	Action Level	AND	D 120% of upstream control station of the sam				
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4	
		AND	130% of upstream control station of the same day				
	A ation I areal	54.5	14.6	11.8	12.6	39.4	
CC (/ T)	Action Level	AND	120% of upstream control station of the same day				
SS (mg/L)	T ::: T1	64.9	17.3	12.4	12.9	45.5	
	Limit Level	AND	130% of ups	130% of upstream control station of the same day			

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

^(#) The Proposed Limit Level of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4 **AIR QUALITY MONITORING**

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *150* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Apr-17	83	6-Apr-17	9:15	147	118	112	
11-Apr-17	66	12-Apr-17	9:40	90	87	87	
17-Apr-17	80	18-Apr-17	9:32	131	122	123	
22-Apr-17	78	24-Apr-17	9:25	64	54	53	
28-Apr-17	77	28-Apr-17	9:40	59	52	60	
Average	77	Avera	•		91 (52 147)		
(Range)	(66 – 83)	(Rang	ge)		(52 – 147)		

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (μg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
5-Apr-17	125	6-Apr-17	9:11	160	126	121
11-Apr-17	97	12-Apr-17	9:48	115	112	107
17-Apr-17	79	18-Apr-17	9:37	139	124	123
22-Apr-17	113	24-Apr-17	9:32	70	68	63
28-Apr-17	144	28-Apr-17	9:49	76	74	72
Average	112	Avera	ge		103	
(Range)	(79 – 144)	(Rang	ge)		(63 - 160)	

	24-hour		1	-hour TSP (µg	g/m ³)	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
5-Apr-17	111	6-Apr-17	9:06	141	108	94
11-Apr-17	104	12-Apr-17	9:57	113	116	107
17-Apr-17	97	18-Apr-17	9:41	144	147	142
22-Apr-17	118	24-Apr-17	9:41	64	73	76
28-Apr-17	135	28-Apr-17	9:58	62	62	68
Average (Range)	113 (97 - 135)	Avera (Rang	0		101 (62 - 147)	

Table 4-4Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24 h	1-hour TSP (µg/m ³)					
Date	24-hour TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Apr-17	54	1-Apr-17	8:57	83	75	75	
12-Apr-17	46	7-Apr-17	9:00	95	82	112	
18-Apr-17	99	13-Apr-17	9:23	114	130	132	
24-Apr-17	72	19-Apr-17	10:31	118	134	136	
29-Apr-17	71	25-Apr-17	9:23	100	106	108	
		29-Apr-17	12:48	109	107	104	
Average	68		Average		107		
(Range)	(46 – 99)	(Rang	ge)	(75 – 136)			

Table 4-5Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Apr-17	55	1-Apr-17	9:01	78	71	71	
12-Apr-17	64	7-Apr-17	9:02	74	59	82	
18-Apr-17	108	13-Apr-17	9:20	113	127	131	
24-Apr-17	80	19-Apr-17	10:28	123	138	142	
29-Apr-17	64	25-Apr-17	9:19	108	119	120	
		29-Apr-17	12:45	117	120	115	
Average (Range)	74 (55 - 108)	Avera (Rang	C		106 (59 - 142)		

Table 4-6Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (µg/m ³)						
Date	TSP (µg/m ³)	Date Start Time 1 st reading		2 nd reading	3 rd reading			
6-Apr-17	145	1-Apr-17	9:13	80	72	73		
12-Apr-17	124	7-Apr-17	9:08	111	141	116		
18-Apr-17	131	13-Apr-17	9:10	120	122	123		
24-Apr-17	126	19-Apr-17	10:24	137	139	140		
29-Apr-17	147	25-Apr-17	9:12	102	114	113		
		29-Apr-17	9:35	89	82	80		
Average	135	Avera	ge	109				
(Range)	(126 - 147)	(Rang	ge)	(72 – 141)				

Table 4-7 Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b

	24-hour	1-hour TSP (µg/m ³)						
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
6-Apr-17	36	1-Apr-17	13:00	76	72	75		
12-Apr-17	62	7-Apr-17	9:13	107	137	111		
18-Apr-17	123	13-Apr-17	9:00	108	110	111		
24-Apr-17	86	19-Apr-17	10:20	131	131 121			
29-Apr-17	88	25-Apr-17	9:07	99 120		118		
		29-Apr-17	9:28	82	84	80		
Average	79	Average 104						
(Range)	(36 – 123)	(Rang	ge)	(72 – 137)				

	24-hour	1-hour TSP (µg/m ³)							
Date	TSP (µg/m ³)	Date Start Time 1 st reading		2 nd reading	3 rd reading				
6-Apr-17	56	1-Apr-17	13:04	78	76	79			
12-Apr-17	107	7-Apr-17	13:00	78	64	86			
18-Apr-17	104	13-Apr-17	13:00	98	88	97			
24-Apr-17	87	19-Apr-17	10:15	124	124 126				
29-Apr-17	97	25-Apr-17	12:45	93 107		111			
29-Apr-17 9:18			9:18	88	91	87			
Average	90	Avera (Dere	C	94					
(Range)	(56 – 107)	(Rang	ge)		(64 - 128)				

Table 4-9	Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b
	Summary of 21 nour and 1 nour 151 Monitoring Results 11015

	24-hour						
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Apr-17	35	6-Apr-17	13:26	120	110	90	
11-Apr-17	45	10-Apr-17	13:18	48	58	48	
17-Apr-17	39	18-Apr-17	13:10	77 89		91	
22-Apr-17	49	24-Apr-17	10:04	59 63		59	
28-Apr-17	34	28-Apr-17	9:34	75	77	64	
Average (Range)	40 (35 - 49)	Average (Range)		75 (48 – 120)			

- 4.2.1 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.2 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

5.2.1 In the Reporting Period, a total of **40** event noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
6-Apr-17	61	75	59	62	62			
12-Apr-17	61	70	56	66	61			
18-Apr-17	56	71	60	62	62			
24-Apr-17	55	67	61	64	61			
Limit Level			75 dB(A)					

Table 5-1Summary of Construction Noise Monitoring Results

Remarks

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

Table 5-2Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM3	NM4	NM5	NM6	NM7			
7-Apr-17	57	63	55	58	60			
13-Apr-17	59	62	53	61	57			
19-Apr-17	59	62	53	61	55			
25-Apr-17	64	65	53	59	65			
Limit Level			75 dB(A)					

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

5.3 NOISE MONITORING RESULTS (RESTRICTED HOURS)

- 5.3.1 In the Reporting Period, CNPs were granted by Contracts 2, 3, 6, 7 and SS C505 for use of Powered Mechanical Equipment (PME) during restricted hour. As confirmed by both Contractors with their works schedules, construction works would be conducted at Contract 2, 3, 6 and SS C505 during restricted hours with the granted CNP. Noise monitoring was therefore conducted at the relevant noise monitoring locations during respective restricted hour periods.
- 5.3.2 Based on the works schedule by the Contractor of Contracts 2, 3, 6, 7 and SS C505, the involved noise monitoring locations included NM1, NM4, NM5, NM7, NM8, NM9 and NM10 and the noise monitoring results are summarized in *Tables 5-3 and 5-4*.

Table 5-3Summary of Construction Noise Monitoring Results (Evening Time)

Construction Noise Level (L _{eq5min}), dB(A)								
Date	NM1	NM4	NM5	NM7	NM8			
	L _{eq5min}	L_{eq5min}	L _{eq5min}	L _{eq5min}	L _{eq5min}			
7-Apr-17	47	58	59	58	59			
00501 valion/	dogs barking nom	and occasionally dogs barking from village	occasionally dogs	flowing in the gully, occasionally dogs	Traffic noise from trains as NM8 close to train tracks and occasionally dogs barking from village			

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Construction Noise Level (L _{eq5min}), dB(A)							
Date (#)	NM5	NM7	NM8 L _{eq5min}				
	L _{eq5min}	L _{eq5min}					
7-Apr-17	44	56	60				
	occasionally dogs barking	gully, occasionally dogs barking	Traffic noise from trains as NM8 close to train tracks and occasionally dogs barking from village				

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Note: EPD has approved the revised EM&A Programme (Rev.7) on 7 April 2017 which proposed that noise measurement during restricted hours periods is not necessary to perform accordance with the updated EM&A Programme (Rev. 07) (Section 3.1.5) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20)

- 5.3.3 According to the site records by the monitoring team, no construction noise from the construction was noted during the course of monitoring at all locations. On the other hand, traffic noise was dominated at NM8 since the monitoring locations were closed to the train tracks and occasionally noise from vehicle and dogs barking were recorded at all stations. Therefore, it is considered that the measurement results were likely to be the background noise.
- 5.3.4 In the Reporting Period, EPD has approved the revised EM&A Programme (Rev.7) which included the proposal for not necessary to perform noise measurement during restricted hours periods. Therefore, noise measurement during restricted hours periods will be ceased on 7 April 2017 in accordance with the updated EM&A Programme (Rev. 07) (Section 3.1.5) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of twelve (12) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM1, WM2A(a), WM4 and WM3x, according to "*Event and Action Plan*" stipulation, one (1) additional water quality monitoring day was conducted for WM1 and three (3) additional water quality monitoring days were conducted for WM2A(a), WM4 and WM3x and theirs control stations in the reporting period.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

	·· acci	Water Quality Monitoring Results Associated of Contracts 2 and 5								
Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)			Suspended Solids (mg/L)		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	
3-Apr-17	7.8	8.5	6.3	11.7	7.2	16.2	12.0	7.5	14.0	
6-Apr-17	6.4	7.8	4.8	7.8	5.4	19.2	8.0	4.5	32.0	
8-Apr-17	7.2	8.3	6.3	14.6	8.3	18.8	17.0	3.5	21.5	
10-Apr-17	6.5	7.6	4.7	11.3	7.0	17.5	14.5	4.5	14.5	
12-Apr-17	6.6	7.9	4.9	33.0	7.3	20.2	18.5	4.0	19.5	
14-Apr-17	7.1	8.2	4.4	25.4	10.9	47.1	13.0	7.0	41.5	
18-Apr-17	6.8	7.5	5.3	20.3	5.0	17.7	19.0	4.5	17.5	
20-Apr-17	6.2	7.0	4.6	7.8	2.2	17.7	9.5	22.0	22.0	
22-Apr-17	7.4	7.9	5.7	279.0	20.8	59.2	209.0	15.5	52.0	
24-Apr-17	6.9	7.6	5.5	22.9	10.5	15.4	16.0	6.0	17.0	
25-Apr-17#	#	#	#	22.8	4.0	18.9	26.0	4.0	17.0	
26-Apr-17	6.6	7.4	5.7	31.6	6.9	17.6	34.5	4.0	13.5	
28-Apr-17	7.0	7.5	5.2	33.2	11.2	14.8	23.0	4.5	12.0	
Remarks:	bold with	n underline	indicated	Limit Leve	el exceedar	псе				

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Quality Monitoring Results Associated of Contracts 5, 6 and SS C505
	Water Quality Monitoring Results Associated of Contracts 5, 6 and 55 C505

Date	Dissolved Oxygen (mg/L)		Turbidity (NTU)		Suspended Solids (mg/L)	
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C
1-Apr-17#	#	#	414.5	355.0	216.0	199.0
3-Apr-17	8.2	6.1	57.3	60.8	48.0	75.5
6-Apr-17	6.9	5.2	59.0	49.3	37.5	45.0
8-Apr-17	7.9	6.6	85.1	76.6	83.0	104.0
10-Apr-17	4.9	5.1	77.3	75.9	61.5	81.0
12-Apr-17	7.6	5.0	40.1	65.8	42.0	90.0
14-Apr-17	7.1	6.2	361.5	347.5	172.5	173.0
18-Apr-17	5.4	3.7	75.1	67.5	63.0	50.0
20-Apr-17	5.1	4.6	86.3	185.0	40.5	262.0
22-Apr-17	6.9	7.5	<u>621.5</u>	78.1	<u>569.0</u>	54.0
24-Apr-17	5.4	6.2	175.5	366.0	145.0	170.5
25-Apr-17#	#	#	135.0	69.0	91.0	45.0

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
26-Apr-17	5.0	6.2	315.5	224.5	<u>140.5</u>	96.0	
27-Apr-17	#	#	171.5	297.5	106.0	346.0	
28-Apr-17	6.4	6.5	130.0 112.5		79.0	124.5	

Remarks:

s: bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-3 Water Quality Monitoring Results Associated only Contract 6

	he o o white Quality Monitoring Results Associated only Construct o											
Date]	Dissolve (m	d Oxyg g/L)	gen		Turb (N7	•		Suspended Solids (mg/L)			
Dute	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C
3-Apr-17	8.5	8.1	8.3	9.5	14.8	10.6	10.9	4.0	14.5	6.0	11.0	5.5
6-Apr-17	7.2	6.9	7.4	8.5	13.7	9.8	8.5	5.3	12.5	4.0	5.0	<2
8-Apr-17	6.9	7.0	7.2	8.1	23.9	11.8	11.1	3.5	25.5	4.0	11.0	2.5
10-Apr-17	7.1	5.3	7.3	8.2	22.5	14.1	10.5	7.0	20.0	12.0	9.0	5.5
12-Apr-17	6.8	6.6	*	*	18.6	15.9	*	*	10.0	4.0	*	*
14-Apr-17	7.4	6.8	*	*	77.8	17.9	*	*	47.0	5.5	*	*
15-Apr-17#	#	#	*	*	10.2	10.5	*	*	2.0	4.0	*	*
18-Apr-17	6.9	6.4	*	*	12.1	12.8	*	*	3.5	3.5	*	*
20-Apr-17	6.4	5.8	*	*	19.5	11.2	*	*	6.5	7.0	*	*
22-Apr-17	6.7	7.1	*	*	47.9	19.2	*	*	37.5	9.0	*	*
24-Apr-17	7.3	7.2	*	*	11.1	12.7	*	*	4.0	6.5	*	*
25-Apr-17#	#	#	*	*	17.1	22.6	*	*	5.0	7.0	*	*
26-Apr-17	7.1	6.5	*	*	100.5	14.9	*	*	30.5	7.5	*	*
27-Apr-17#	#	#	*	*	10.1	25.8	*	*	5.0	13.0	*	*
28-Apr-17	7.6	6.7	*	*	50.5	59.8	*	*	69.0	58.5	*	*

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

* water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

Table 6-4Water Quality Monitoring Results Associated Contracts 2 and 6

Disso Date		l Oxygen g/L)	Turb (N)	•	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
1-Apr-17#	#	#	10.8	6.5	12.0	10.0	
3-Apr-17	8.9	8.0	15.9	34.9	15.5	55.5	
6-Apr-17	7.5	7.5	6.4	4.4	8.5	6.5	
8-Apr-17	7.7	7.1	8.2	2.6	9.0	9.0	
10-Apr-17	7.8	6.2	9.2	11.6	10.0	63.5	
12-Apr-17	6.8	7.1	<u>59.4</u>	3.9	75.5	<2	
13-Apr-17#	#	#	52.8	9.7	38.0	13.0	
14-Apr-17	7.0	7.9	49.5	10.4	37.5	9.0	
15-Apr-17#	#	#	10.9	11.4	7.0	7.0	
18-Apr-17	7.7	7.2	9.8	12.4	5.0	10.0	
20-Apr-17	7.5	7.0	7.6	8.7	<2	10.5	
22-Apr-17	7.4	7.3	11.7	6.6	6.0	10.0	
24-Apr-17	7.4	6.9	13.2	3.4	12.0	5.5	
26-Apr-17	6.3	6.7	13.1	3.7	10.5	5.5	
28-Apr-17	7.3	38.9	10.4	7.2	3.5	<2	

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Location		olved ygen	Turt	oidity	-	ended ids		otal edance	•	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	3	0	3	0	6	0	#
WM2A(a)	0	0	0	3	0	5	0	8	0	#
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	3	0	3	0	6	0	0
WM4	0	0	0	1	0	1	0	2	0	#
No of Exceedance	0	0	0	10	0	12	0	22	0	#

 Table 6-5
 Action and Limit (A/L) Levels Exceedance Recorded

Remark: (#) exceedances recorded on 22, 25 and 26 April 2017 were under investigation.

- 6.2.3 In this Reporting Period, a total of twenty-two (22) Limit Level (LL) exceedances, namely ten (10) LL exceedance of turbidity and twelve (12) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. According to the investigation result, the exceedances recoded on 8, 10, 12, 13 and 14 April 2017 were concluded as non-project related and the exceedances 22, 25 and 26 April 2017 were under investigation.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
31 March 2017	WM1	NTU & SS	Investigation report revealed that exceedances were likely related to the impact of rain and not due to works under both Contract 6 and Contract SS C505,
31 March 2017	WM3 INTL&SS		Investigation report revealed that exceedances were likely related to the impact of rain and storm water from road surface of Sha Tau Kok Road and not likely caused by works under Contract 2 and Contract 6.
8, 10 and 14 April 2017	WM2A(a)	NTU & SS	Investigation report revealed that the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. Moreover, there were no rain recorded on the exceedance days and muddy runoff from the site was unlikely to occur. It is considered that the exceedances on 8, 10 and 14 April 2017 were due to natural variation and not caused by the works under the Contract.
12, 13 and 14 April 2017	WM3x	NTU & SS	Investigation report revealed that exceedances were likely related to the impact of rain and storm water from road surface of Sha Tau Kok Road and not likely caused by works under Contract 2 and Contract 6.
22, 25 and 26 April 2017	WM1	NTU & SS	The investigation is underway.
22 April 2017	WM4	NTU & SS	The investigation is underway.
22 and 26 April 2017	WM2A(a)	NTU & SS	The investigation is underway.

 Table 6-6
 Summary of Water Quality Exceedance in the Reporting Period

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval. The last ecological monitoring report (Jan-Feb 2017) was submitted to EPD in March 2017. In the Reporting Report, the ecological monitoring was carried out on 30 March and 5 April 2017

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Type of	Cont	tract 2	Cor	ntract 3	Con	tract 6	Co	ntract 7	Contra	ct SS C505	Total
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
C&D Materials (Inert) (in '000m ³)	40.2517		1.004		9.792		1.473		3.136		55.6567
Reused in this Contract (Inert) (in '000 m ³)	2.1348		0.036		0		0		0.13919		2.30999
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	30.9507	C6/ NENT# & other projects approved by the ER	0	-	0	-	0	-	0	-	30.9507
Disposal as Public Fill (Inert) (in '000 m ³)	7.1663	Tuen Mun 38	0.903	Tuen Mun 38	9.792	Tuen Mun 38	1.473	Tuen Mun 38	2.9835	TKO 137	22.3178

 Table 8-1
 Summary of Quantities of Inert C&D Materials for the Project

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2

-2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	tract 6	Cont	ract 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	203.400	Licensed collector	0	-	0		3.1	Licensed collector	148.11	Licensed collector	354.61
Recycled Paper / Cardboard Packing ('000kg) #	0.3000	Licensed collector	0	-	0	-	0.04	Licensed collector	0.3	Licensed collector	0.64
Recycled Plastic ('000kg) #	2.0983	Licensed collector	0.004	Licensed collector	0		0.001	Licensed collector	1.223	Licensed collector	3.3223 + 0.004#
Chemical Wastes ('000kg) #	11.2640	Licensed collector	0	-	0		0		0		11.264
General Refuses ('000m ³)	0.3862	NENT	0.075	NENT	0.162	NENT	0.02	NENT	0.3575	NENT	1.0007

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ((000m^3)).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 12, 21 and 28 April 2017. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies		Follow-Up Status
7 April 2017	• No adverse environmental issue was observed.	•	NA
12 April 2017	• No adverse environmental issue was observed.	•	NA
21 April 2017	 Contaminated surface run-off should be diverted to de-silting facilities prior discharge from site. (North Portal) It was reminded that ponding water cumulated on site should be removed or provide mitigation measures to prevent mosquito breeding. 		The pump was replaced immediately and the contaminated surface run-off was pumped into the de-silting tank prior discharge. Not requried for reminder.
28 April 2017	• Ponding water cumulated inside the drip tray was observed. Ponding water should be removed to maintain the function of drip tray. (South Portal)		The concerned drip tray was removed.

Table 9-1Site Observations for Contract 2

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **19 and 24** April 2017. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Date	Findings / Deficiencies	Follow-Up Status		
3 April 2017	• No adverse environmental issue was observed.	• NA		
10 April 2017	• No adverse environmental issue was observed.	• NA		
19 April 2017	• Construction waste accumulated on site was observed, the Contractor should clean up the waste and maintain the site cleanliness. (Location: Pier AC12)	• Construction waste was removed from site.		
24 April 2017	• No adverse environmental issue was observed.	• NA		

Table 9-2Site Observations for Contract 3

- 9.2.5 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 April 2017. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Date	Findings / Deficiencies	Follow-Up Status			
6 April 2017	• No adverse environmental issue was observed.	• NA			
13 April 2017	• No adverse environmental issue was observed.	• NA			
20 April 2017	• It was reminded that all site surface run-off should be diverted to proper desilting facilities before discharge from site.	• Not required for reminder.			
27 April 2017	• No adverse environmental issue was observed.	• NA			

Table 9-4Site Observations for Contract 6

Contract SS C505

- 9.2.7 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 5, 12, and 19 and 26 April 2017 in which IEC joined the site inspection on 26 April 2017. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
5 April 2017	• Stagnant water was observed on the ground level at work area of PTB. The contractor was advised to clear the stagnant water or spray with larvicidal oil to prevent mosquito breeding.	• Stagnant water was removed on the ground level at work area of PTB.
12 April 2017	• It was reminded that drip tray should be provided for all chemical storage on site.	• Not required for reminder.
	• It was reminded that ponding water should be cleaned after rainstorm to prevent mosquito breeding.	• Not required for reminder.
19 April 2017	• Free-standing chemical container without drip tray was observed at M floor of PTB. The Contractor should place the container into drip tray to prevent land contamination.	• The chemical container was removed from site
26 April 2017	• Chemical containers without drip tray were observed at PTB. The Contractor should place the containers into drip ray to avoid land contamination.	• Chemical container were placed on drip tray.
	• Stagnant water was observed at drip tray at PTB. The Contractor should remove the stagnant water to prevent mosquito breeding.	• Stagnant water on drip tray was removed.
	• The Contractor was reminded to remove stagnant water on site after rainy days.#	• Not required for reminder.

- 9.2.9 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 3, 11, 18 and 25 April 2017. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract* 7 that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	Follow-Up Status				
3 April 2017	• No adverse environmental issue was observed.	• NA				
11 April 2017	• No adverse environmental issue was observed.	• NA				
18 April 2017	• No adverse environmental issue was observed.	• NA				
25 April 2017	• Open stockpile was observed on site, the Contractor should cover the stockpile to prevent surface run-off.	• The stockpile was covered entirely.				

Table 9-6	Site Observations	for Contract 7
1 a D C - 0	She Observations	IUI COMMACI /

9.2.11 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

Other Contracts

9.2.12 Since the construction work of Contract 5 has substantially completed and Contract 4 has not commenced, no site inspection was performed.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecution

10.1.1 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for all Contracts. However, two (2) documented environmental complaints were received regarding noise issue for Contract 2 and wastewater issue related to Contracts 2 and 6. The investigation details for the complaint and status are presented below.

Investigation Result for the Documented Complaint received by RE on 6 and 7 March 2017 (Contract 2) (last Reporting Period)

- 10.1.2 AECOM received a complaint from the public regarding construction noise from operation of a tower crane near Loi Tung Village at night time which affecting the resting time of the villagers. According to the details from the complainant, it was suspected the complaint location should be North Portal of Contract 2 (DHK).
- 10.1.3 According to EPD's record, DHK has granted two construction noise permits for works within North Portal. CNP GW-RN0759-16 is applicable for the use of Powered Mechanical Equipment from 19:00 23:00 and it included the operation of tower crane. CNP GW-RN0895-16 is granted for the use of Powered Mechanical Equipment from 23:00 07:00 of next day and tower crane is not covered.
- 10.1.4 According to the site diaries on 6 and 7 March 2017 provided by DHK, the tower cranes were in operation between 07:30 and 18:30 only on both 6 and 7 March 2017 and there were no PME in use outside the tunnel during 2300-0700. As advised by DHK, the grouping of PME in used inside the tunnel were strictly followed the CNP's conditions (GW-RN0895-16) and the grouping of PME would not be operated simultaneously in the light of the tunnel construction sequence.
- 10.1.5 Joint inspection by RE, IEC, DHK and ET was carried out on 24 March 2017. It was observed that tower cranes were located within the works area of North Portal as specified in the CNP. As advised by DHK, for safety and security purpose, the lighting of the tower cranes powered by CLP would be turned on throughout the night time for illumination. Since the lighting doesn't involve any PME, there should not be any non-compliance to the Noise control Ordinance.
- 10.1.6 In our investigation, there should not be any operation of tower crane between 19:00 and 07:00 at the subject period. It is considered that the complaint is due to misunderstanding of tower crane in operation and it should be invalid to Contract 2. Nevertheless, DHK was reminded not to violate CNP conditions.

<u>Investigation Result for the Documented Complaint received by Contract 2's hotline on 1</u> <u>April 2017 (Contract 2)</u>

- 10.1.7 The complainant called the hotline of Contract 2 to enquire about the approved works hour in Mid-Vent Portal as operation of tower crane was observed after 11pm which generated significant noise. AECOM organized a meeting with the participation of DHK and the complainant on 8 April 2017 and the complainant further mentioned that noise nuisance was noted between 29 and 31 March 2017.
- 10.1.8 According to EPD's record, DHK has granted two construction noise permits for works within Mid-Vent Portal. CNP GW-RN0214-17 is applicable for the use of Powered Mechanical Equipment from 19:00 23:00 and also 07:00 23:00 on general holidays including Sunday which including the operation of tower crane. CNP GW-RN0201-17 is granted for the use of Powered Mechanical Equipment from 23:00 07:00 of next day without operation of tower crane.
- 10.1.9 As advised by DHK, operation of tower crane is managed by the Mid-Vent building team. Since there is no night shift for building works, no building activity and tower crane operation were

recorded after 19:00 during 29 to 31 March 2017. Moreover, during restricted hour, the grouping of PME in used inside the tunnel were strictly followed the CNP's conditions (GW-RN0895-16) and the grouping of PME would not be operated simultaneously in the light of the tunnel construction sequence.

- 10.1.10 Joint inspection by RE, IEC, DHK and ET was carried out on 7 April 2017. It was observed that tower crane was located within the works area of North Portal as specified in the CNP. Furthermore, DHK advised that the lighting of tower crane is powered by CLP and it turns on throughout the night time for illumination as well as safety and security purpose. Since lighting does not involve any PME, there should not be any non-compliance to the Noise Control Ordinance.
- 10.1.11 In our investigation, there should not be any operation of tower crane between 19:00 and 07:00 at the subject period and the construction activities carried out during restricted hour were followed the CNP requirement, therefore, it is considered that the complaint is not valid to Contract 2. Nevertheless, DHK was reminded not to violate CNP conditions.

Investigation Result for the Documented Complaint received by 1823 on 10 April 2017 (Contract 2 and Contract 6)

- 10.1.12 A public complaint was received from 1823 on 10 April 2017 regarding muddy water found on Sha Tau Kok (STK) Road – Lung Yeuk Tau Section. The complainant complained that due to frequent entry and exit of dump truck from the construction site, excessive muddy water was generated during wheel washing and cumulated on road surface, causing slippery road and pose dangerous to the driver. He requested the related department to follow up. According to the description from the complainant, the complaint location was Sha Tau Kok Road - Lung Yeuk Tau Section. Nevertheless, the active construction sites under the Project are all located near the junction of Sha Tau Kok Road and Wo Keng Shan (WKS) Road.
- 10.1.13 Joint site inspection was carried out by RE, IEC, Contractors and ET on 20 and 21 April 2017 at the suspected four (4) site exits along the Sha Tau Kok Road and Wo Keng Shan Road for the complaint investigation. The aim of the inspection was to examine the condition of the existing site exit and the implementation the wheel washing facilities and to assess the possibility of muddy water discharge out of the construction site to the public road. The observations during the site inspection are summarized in below.

North Portal under Contract 2

10.1.14 Site inspection was conducted on 21 April 2017 at the concerned site exit SA18 of North Portal under Contract 2 on Sha Tau Kok Road. It was observed that wheel washing facilities were provided within the construction site and each dump truck was thoroughly cleaned by wheel washing facility before leaving SA18. Moreover, cut-off drain and sedimentation tank were in place at SA18 to prevent any muddy water discharging to STK road. As advised by the Contractor of Contact 2 (DHK), WKS road and STK road were cleaned regularly by water wagon. According to the investigation on 21 April 2017, the condition of the site exit was clean and satisfactory and no trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road.

Proposed Sha Tau Kok Interchange under Contract 6

10.1.15 Site inspection was conducted on 20 April 2017. The site exit of proposed Sha Tau Kok Interchange under Contract 6 was located at the junction of Sha Tau Kok Road and Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Sha Tau Kok Road and Wo Keng Shan Road.

Wo Keng Shan Park under Contract 6

10.1.16 Site inspection was conducted on 20 April 2017. The site exit of Wo Keng Shan Park under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly

implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.

South Portal and Site Office under Contract 6

- 10.1.17 Site inspection was conducted on 20 April 2017. The site exit of South Portal and Site Office under Contract 6 was located on Wo Keng Shan Road. Wheel washing facilities was properly implemented at the site exit and the area between the wheel washing bay and site exit was hard paved. No trails of mud and muddy water were observed on the adjacent Wo Keng Shan Road.
- 10.1.18 As advised by both contractors, road washing/ cleaning by water bowsers was provided along Wo Keng Shan Road to Sha Tau Kok Road in every normal working day (Mon-Sat), except for rainy day. Moreover, road sweeping would be provided for the concerned roads twice a week to maintain cleanliness of the roads. In our investigation, no cumulated muddy water and mud trails were observed and the site exits near the complaint location were satisfactory. It is considered that the complaint was unlikely due to the project. To address the complainant's concern, the ET will keep closely inspection on the cleanliness situation on both roads during weekly site inspection.
- 10.1.19 The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

		-		mplaint Statistics	Project
Reporting Period	Contract No	Frequency	Cumulative		related complaint
19 May 2014 – 31 Mar 2017	Contract 2	0	27	 (16)Water Quality (7) Dust (3) Noise (1) dust & noise 	(5) water(2) dust(1) noise
06 Nov 2013 – 31 Mar 2017	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	0
16 Aug 2013 – 31 Mar 2017	Contract 5	0	4	 (3) Dust (1) Noise 	0
16 Aug 2013 – 31 Mar 2017	Contract 6	0	31	 (22) Water Quality (6) Dust (2) Noise (1) Nuisance 	(6) water(2) dust(1) Nuisance
15 Feb 2016 – 31 Mar 2017	Contract 7	0	1	• (1) Noise	0
16 Aug 2013 – 31 Mar 2017	SS C505	0	2	(1) Noise(1) dust	0
	Contract 2	2	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	0
1 20 April 2017	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	NA
1 – 30 April 2017	Contract 6	1	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	0
	Contract 7	0	1	• (1) Noise	NA
	SS C505	0	2	 (1) Noise (1) dust 	NA

 Table 10-1
 Statistical Summary of Environmental Complaints

	Careford of Na	Environmental Summons Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 Mar 2017	Contract 2	0	0	NA	
06 Nov 2013 – 31 Mar 2017	Contract 3	0	0	NA	
16 Aug 2013 – 31 Mar 2017	Contract 5	0	0	NA	
16 Aug 2013 – 31 Mar 2017	Contract 6	0	0	NA	
15 Feb 2016 – 31 Mar 2017	Contract 7	0	0	NA	
16 Aug 2013 – 31 Mar 2017	SS C505	0	0	NA	
	Contract 2	0	0	NA	
	Contract 3	0	0	NA	
1 – 30 April 2017	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

 Table 10-2
 Statistical Summary of Environmental Summons

Table 10-3 Sta	atistical Summary	of Environmental	Prosecution
----------------	-------------------	------------------	-------------

	Careford of Na	Environmental Prosecution Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 Mar 2017	Contract 2	0	0	NA	
06 Nov 2013 – 31 Mar 2017	Contract 3	0	0	NA	
16 Aug 2013 – 31 Mar 2017	Contract 5	0	0	NA	
16 Aug 2013 – 31 Mar 2017	Contract 6	0	0	NA	
15 Feb 2016 – 31 Mar 2017	Contract 7	0	0	NA	
16 Aug 2013 – 31 Mar 2017	SS C505	0	0	NA	
	Contract 2	0	0	NA	
	Contract 3	0	0	NA	
1 – 30 April 2017	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

The Other Contracts

10.1.20 Since the construction works at the Contract 5 was substantially completed and Contract 4 has not yet commenced, no environmental complaint, summons and prosecution under the EM&A Programme are registered in the Reporting Period.

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract 2

Contract 2	
Mid-Vent Portal	• Adit invert slab, water proofing and lining
	• TBM U-turn
	• Tube tunnel post-excavation activities and mucking out
	• Structure connecting the adit tunnel, and ventilation building
North Portal	• Southbound tunnel enlargement and Northbound tunnel top-heading and bench excavation
	• Tunnel backfilling, construction of internal structure and cross passage
	• Tunnel waterproofing, lining and erection of curtain door at
	Southbound tunnel
	Retaining walls
	North ventilation building superstructure
South Portal	Southbound and Northbound D&B excavation
	South ventilation building superstructure
	Tunnel invert, waterproofing and lining
	Muck out from tunnels
Admin Building	Construction of permanent drainage and fencing wall
C	• Internal fitting out, E&M and curtain wall installation
	-

- Construction of Boundary Wall for Pumping Station
- Cable detection and trial trenches
- Extended Podium Construction near Bored Pile Wall
- Installation of noise barrier post and panel
- Footbridge construction
- Mini-pile installation works
- Noise barrier construction
- Pier / Pier Table construction
- Pipe Jacking Works for DN2200 Water Mains
- Road works
- Viaduct segment erection
- Water Main Laying
- Parapet Installation
- Planter Wall construction
- Demolition of Existing Kiu Tau Footbridge
- Construction of Profile barrier on Viaduct Deck
- Drainage Work
- Stressing of External Tendon

Contract 6

- Bored Piling
- Pile Cap Construction
- Bridge Pier Construction
- Segment section
- Sewage Treatment Plant Construction
- Tunnel Works

Contract 7

- U-trough and abutment construction at Bridge A and Bridge E
- Column construction at Bridge A and E
- Column and deck construction at Bridge B and D
- Roof floor construction of Bridge C

Contract SS C505

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 26, 30, 36 and 41 construction
- ABWF Works and Contractors Testing for Building no.36
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works and Landscaping
- Formwork and falsework for PTB's slab construction and Bridges Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Bridge deck construction for Bridges 1 5

11.3 KEY ISSUES FOR THE COMING MONTH

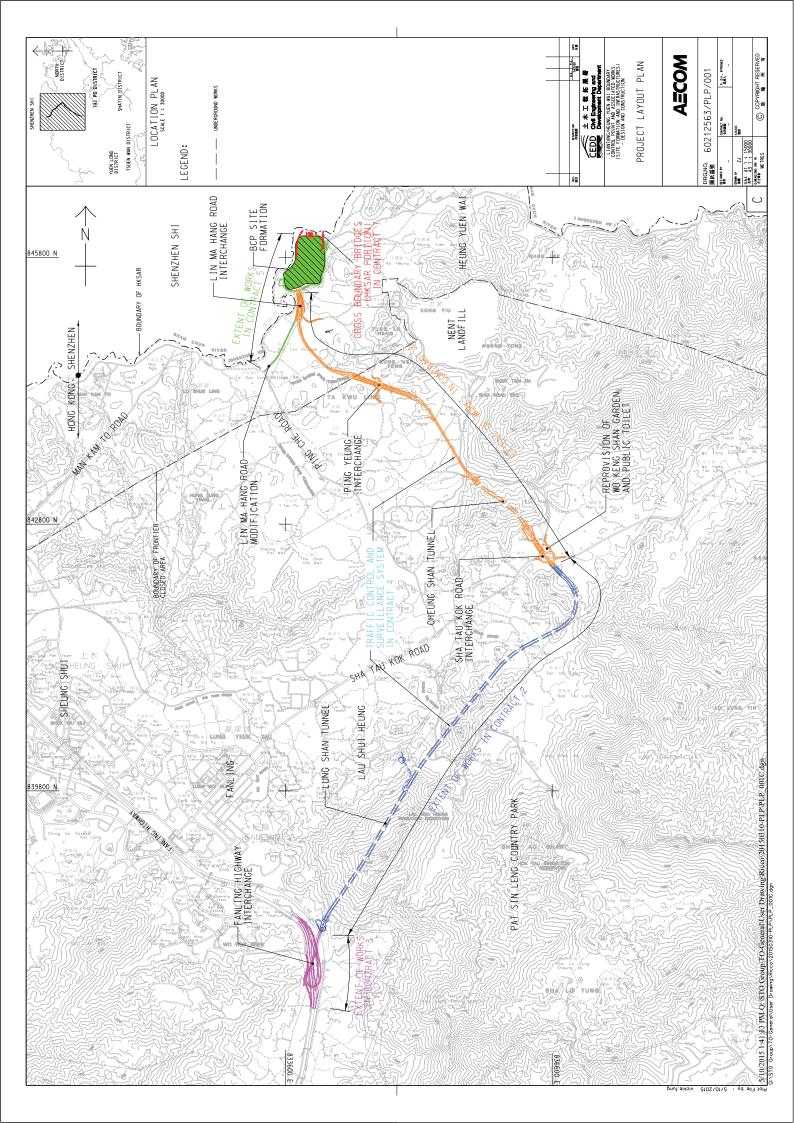
- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;

- Implementation of dust suppression measures at all times;
- Potential wastewater quality impact due to surface runoff;
- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures
- 11.3.2 Since the construction work of Contract 4 has not commenced, no environmental issue is presented.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

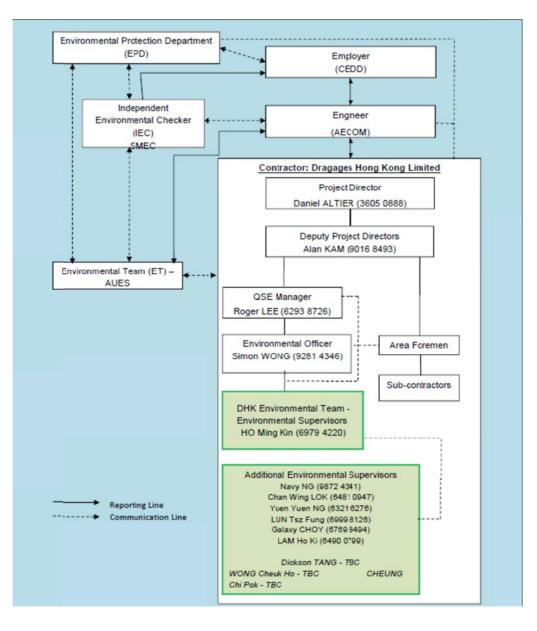
- 12.1.1 This is the **45th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **30 April 2017**.
- 12.1.2 For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of twenty-two (22) Limit Level (LL) exceedances, namely ten (10) LL exceedance of turbidity and twelve (12) LL exceedances of Suspended Solids were recorded for the Project. According to the investigation result, the exceedances recoded on 8, 10, 12, 13 and 14 April 2017 were concluded as non-project related and the exceedances 22, 25 and 26 April 2017 were under investigation.
- 12.1.5 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- 12.1.6 In this Reporting Period, two (2) documented environmental complaints were received regarding noise issue for Contract 2 and wastewater issue for Contracts 2 and 5. Investigation report (IR) for complaints revealed that all the complaints were not related to the Contract.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- 12.2.1 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project



Appendix B

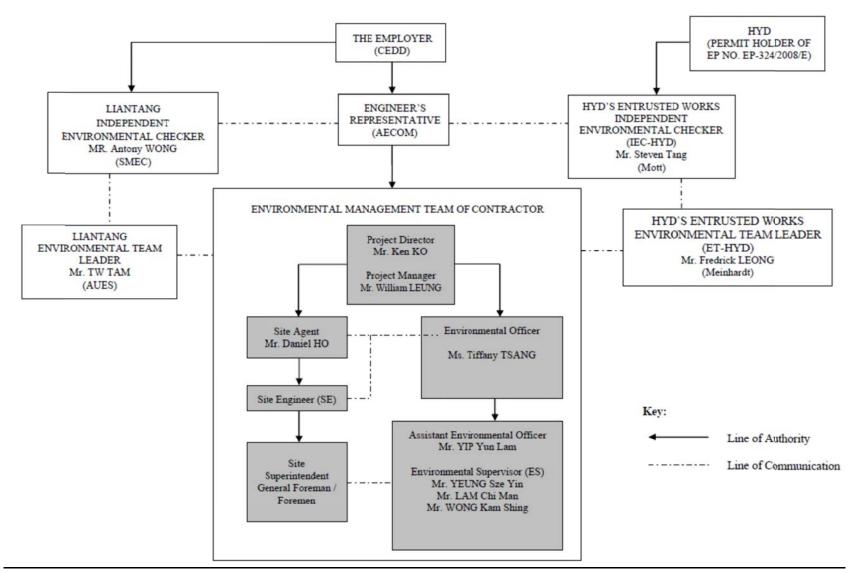
Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)

Contact Details of	Key Personnel for	Contract 2 - CV/2012/08

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	CT Wong	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Ho Ming Kin	6979 4220	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:


CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

DHK(Main Contractor) – Dragages Hong Kong Ltd.

SMEC (IEC) – SMEC Asia Limited

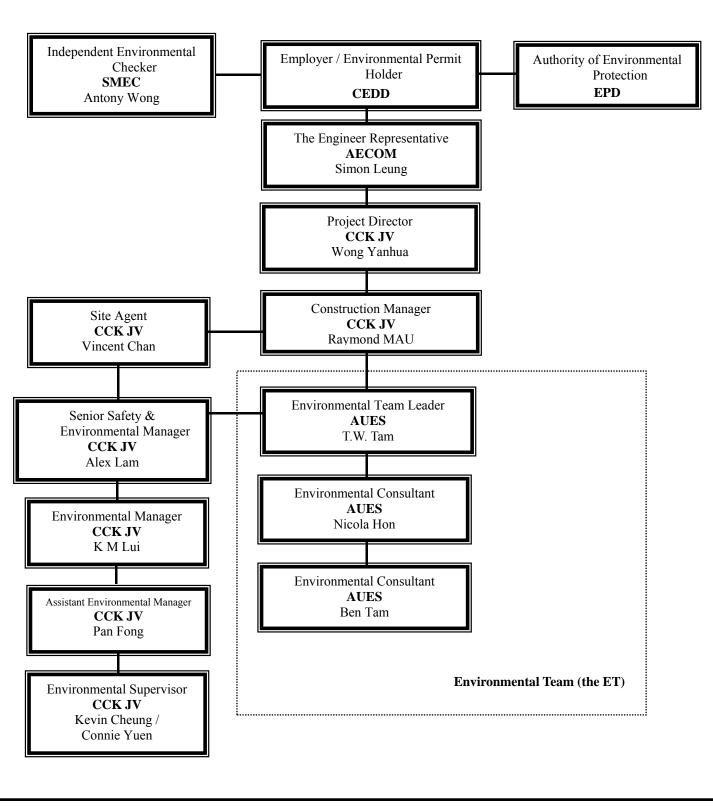
AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Tiffany Tsang	2638 6115	2638 7077
Chun Wo	Assistant Environmental Officer	Yip Yun Lam	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:


CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

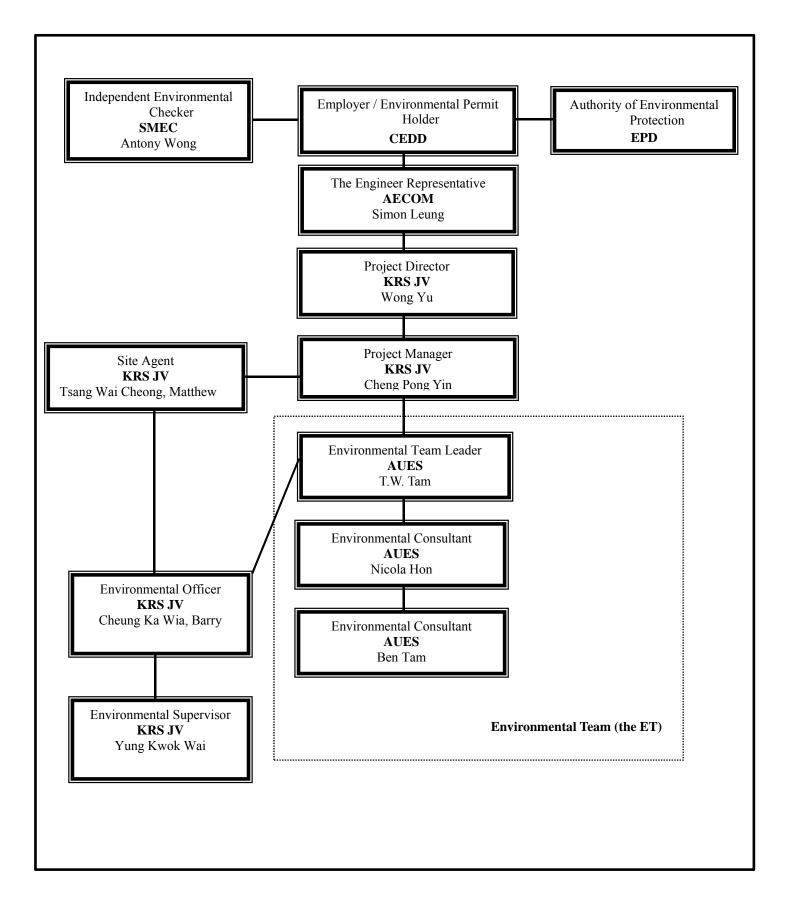
Chun Wo (Main Contractor) - Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization – CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Alex Lam	5547 0181	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Officer	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

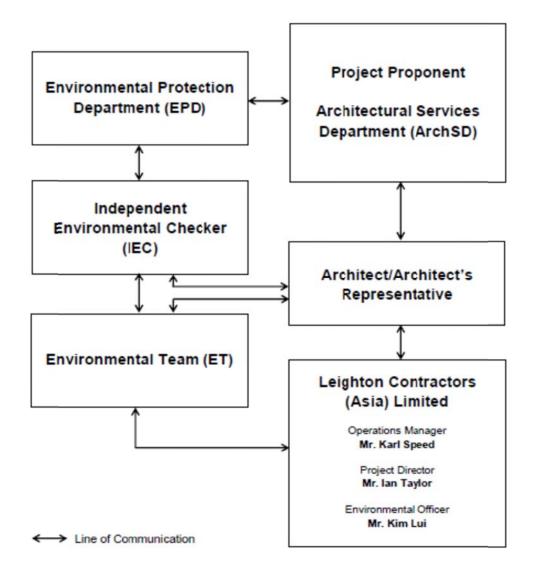
Environmental Management Organization -NE/2014/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD(Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Tentative Three Months (May, June, Jul 2017) Construction Rolling Progam

Item	Construction Activites			
	Admin Bldg - Construction of permanent drainage and fence wall			
2	Admin Bldg - Building internal structure, E&M installation and fitting out work			
3	Mid Vent Portal - Adit tunnel waterproofing and lining			
4	Mid Vent Portal - TBM U-turn			
5	Mid Vent Portal - Tube stud post-excavation activities and mucking out			
6	Mid Vent Portal - Structure connecting the adit tunnel and ventilation building superstructure works			
7	North Portal - Southbound tunnel enlargement and Northbound tunnel top-heading and bench excavation			
8	North Portal - Tunnel backfilling, construction of internal structure and cross passage			
	North Portal - Tunnel waterproofing, lining and erection of curtain door at Southbound tunnel			
9	North Portal - Retaining walls			
10	North Portal - North ventilation building superstructure and backfilling			
11	South Portal - Northbound and Southbound tunnel D&B excavation			
12	South Portal - South ventilation building superstructure works and backfilling			
13	South Portal - Tunnel invert, waterproofing and lining			
14	South Portal - Mucking out from tunnels			

後和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (April, May and June 2017) Construction Rolling Progam

Item	Construction Activites	
1	Boundary Wall for Pumping Station	
2	Cable Detection and Trial Trenches	
3	Extended Podium Construction near Bored Pile Wall	
4	Installation of Noise Barrier Steel Post & Panel	
5	Footbridge Construction	
6	Mini-pile Installation Works	
7	Noise Barrier Construction	
8	Pier Table Construction	
9	Pipe Jacking Works for DN2200 Water Mains	
10	Roadworks	
11	Viaduct Segment Erection	
12	Water Main Laying Works	
13	Parapet Installation	
14	Planter Wall Construction	
15	Demolition of Existing Kiu Tau Footbridge	
16	Construction of Profile barrier on Viaduct Deck	
17	Drainage Work	
18	Stressing of External Tendon	

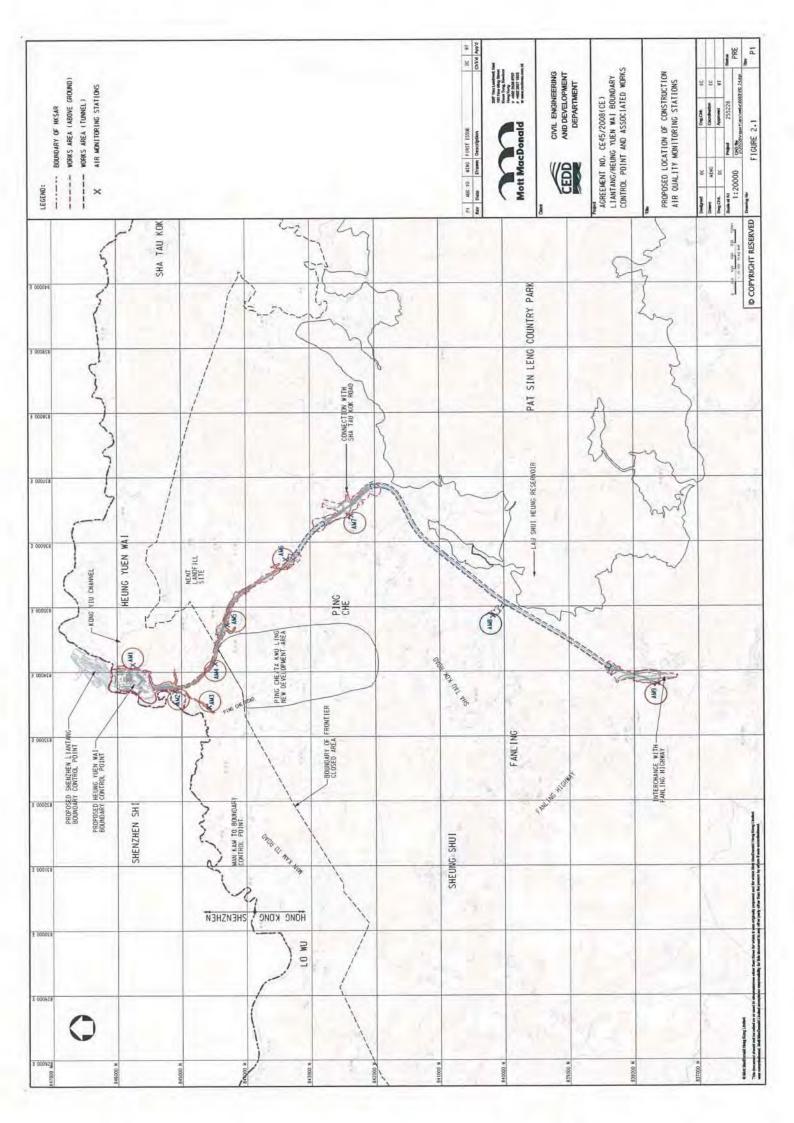
Tentative Three Months (April, May and June 2017) Construction Rolling Progam

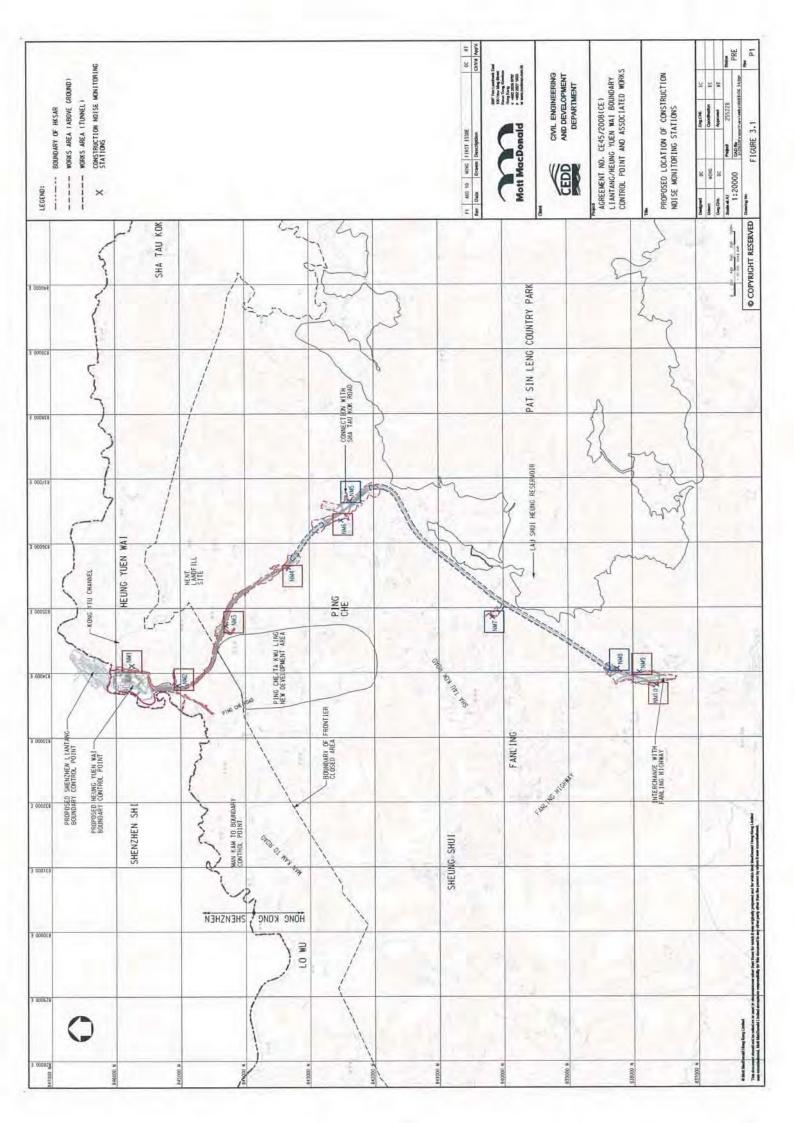
Item	Construction Activites	
1	Bored Piling	
2	Pile Cap Construction	
3	Bridge Pier Constrcution	
4	Segment Erection	
5	Tunnel Works	
6	Sewage Treatment Plant Construction	

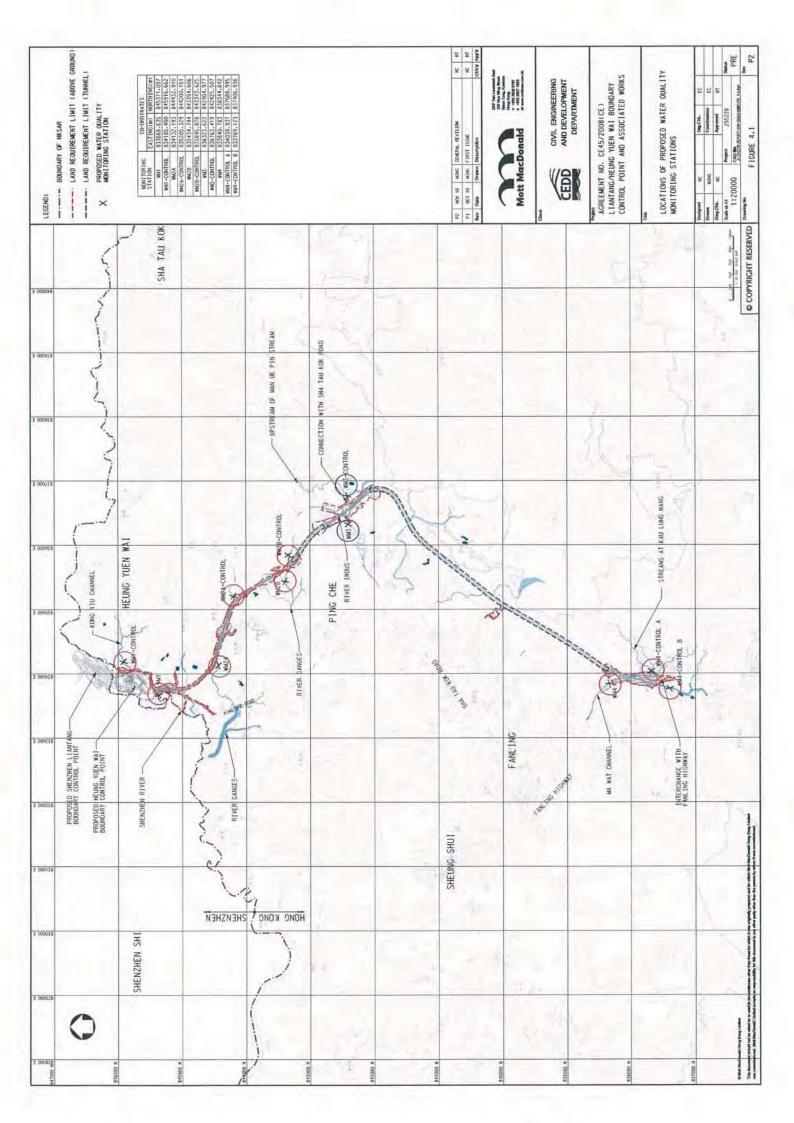
Tentative Three Months(April 2017, May 2017 and June 2017) Construction Rolling Progam

Item	Construction Activites
1	Bridge A - U-trough and abutment
2	Bridge A - Column
3	Bridge B - Column and Deck
4	Bridge C - Construction of Roof Floor Slab Bridge D - Column and Deck
5	Bridge D - Column and Deck
6	Bridge E - U-trough and abutment
7	Bridge E - Column

Contract SS C505

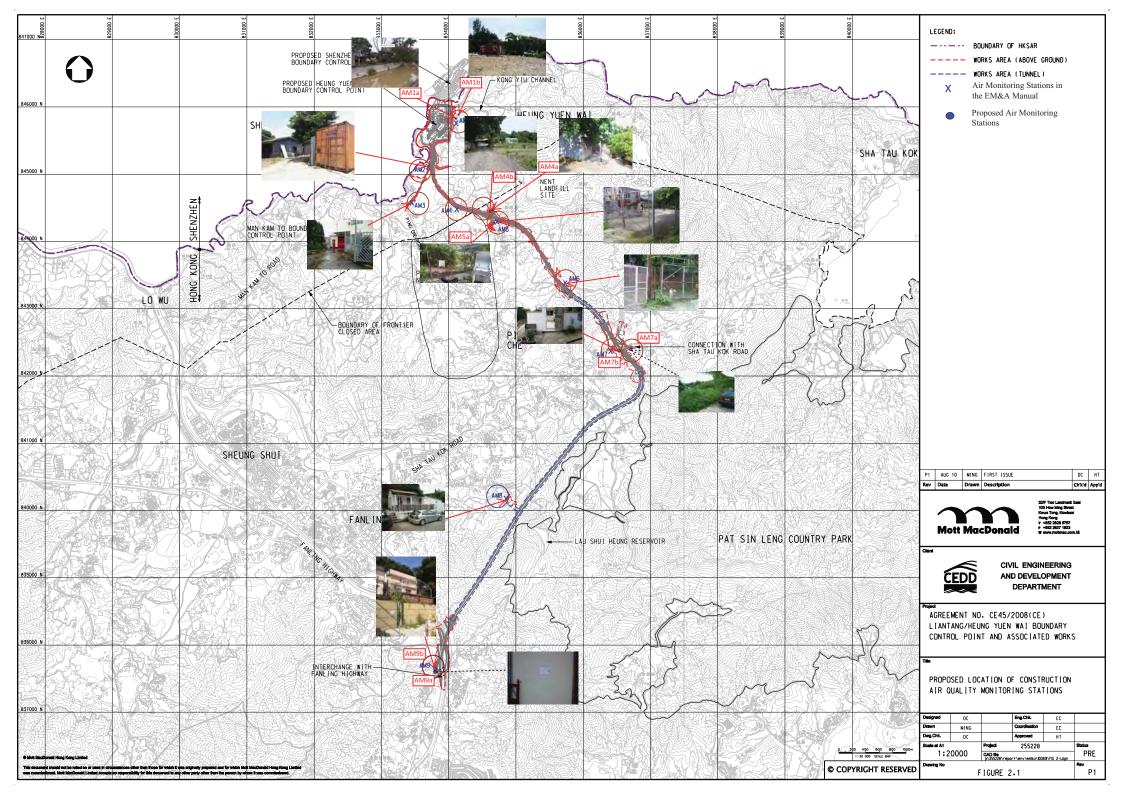

Tentative Three Months (April, May and June 2017) Construction Rolling Progam

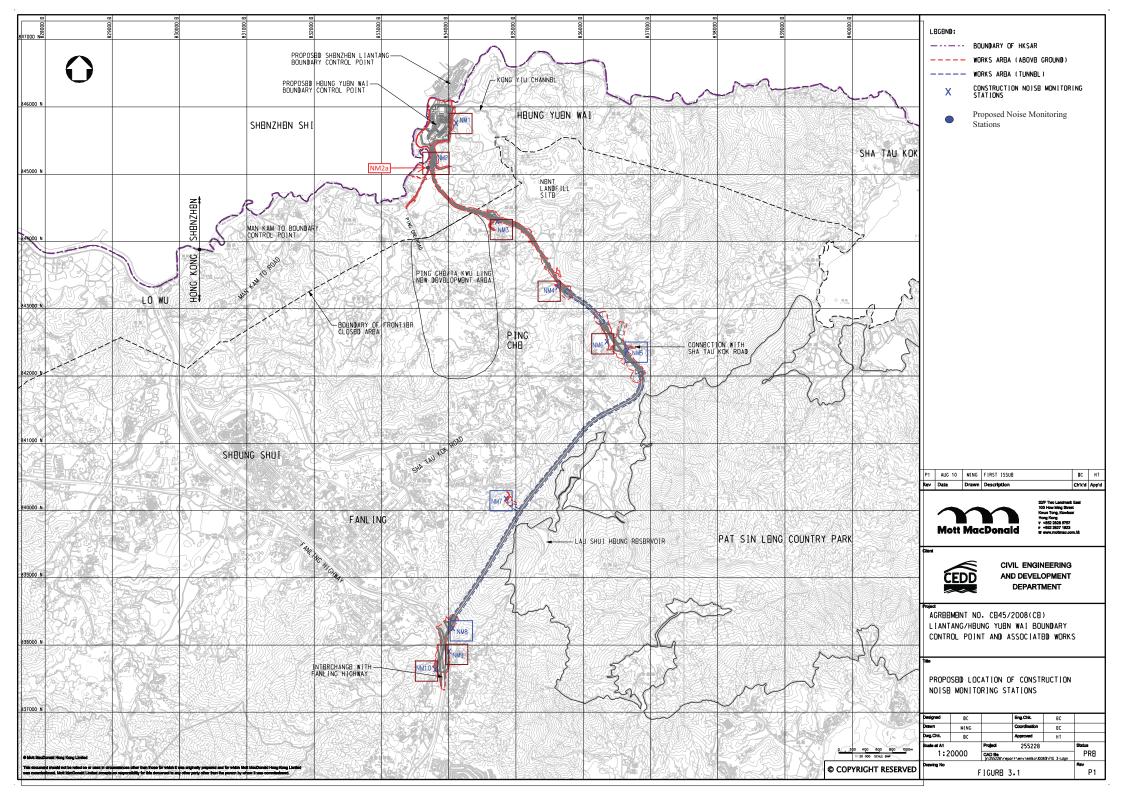

Item	Construction Activites
	Passenger Terminal Building - RC Superstructure Works
2	Passenger Terminal Building - ABWF Works & Building Services Installation Works
3	Passenger Terminal Building - Bridge C Fitout Works
4	C&ED Detector Dog Base - Substructures, RC structures and Integrated ABWF & BS Works
5	HKPF Building and Observation Tower - Substructure, RC structures, External Civil Works, Integrated ABWF & BS Works, Electrical Installation Works Oil Tank & Oil Pipework Installation
6	Fire Station and Drill Tower - Structures, Integradted ABWF & MEP Works, Electrical Installation Works
	Cargo Examination Building (Inbound) - Underground Drainage & Utilities, RC Structure and Integrated ABWF & BS Works
	Cargo Examination Building (Outbound) - RC Structure, Integrated ABWF & BS Works, External Civil Works
9	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, RC Structures and ABWF & BS Works
10	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Substructures, RC Structural Works and ABWF & BS Works
11	GV Kiosk (Inbound) - Earthworks and Substructures Works
12	GV Kiosk (Outbound) - Earthworks and Substructures Works
13	Public Toilets (Inbound) - Earthworks and Substructure Works
14	Public Toilets (Outbound) - Earthworks, Substructures Works and RC Structures Works
15	MXRVSS (Inbound) - Site Formation works
16	MXRVSS (Outbound) - Structures works
17	Traffic Control Office (Outbound) - Site Formation, Substructure, RC Structures Works and BS Works
18	EUVSS & Monitoring Room - Site Formation Works and Substructure Works
19	Refuse Collection Point - Site Formation, Substructure and Structures Works
20	Guard Booth (Outbound) - Site Formation, Substructure, Structures and BS Works
21	Fire Hydrant Tank & Pump Room - ABWF & BS works and Contractors Testing
22	Irrigation Pump Room - Site Formation, Substructure and Structures works
23	Elevated Walkway (E1, E3 & E4) - Structure Works
24	Vehicular bridges 1-5 - Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks, Road and Finishes Works
25	External Works in Portion 1 - Underground utilities, Road Works and Landscaping
26	External Works in Portion 2 - Underground utilities, Road Works and Landscaping
27	BS Works - CLP Cable Laying

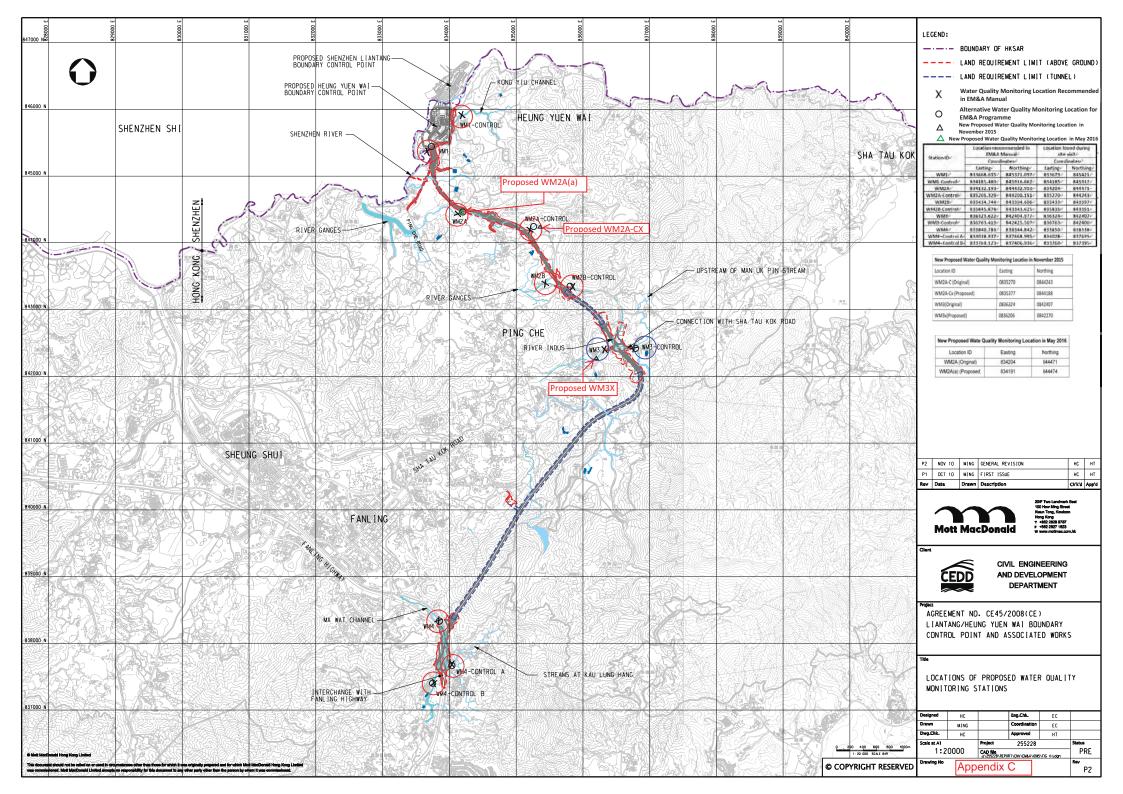


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Location]	-	ea at Tsu AM1b	ng Yuer	n Ha Village			Next Calibra	Date of Calibration: Next Calibration Date: Technician:		
					C	ONDITIONS	6			
	Se	a Level I Temp	Pressure perature		<u>1015.3</u> 18.9		Corrected Pressure Temperature			761.475 292
					CALIB	RATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->	-	2.00411 -0.03059	
					C	ALIBRATIO	N			
Plate	H20 (L)		H20	Qstd	[(altart)	IC	LINE			
No. 18 13 10 7 5	(in) 6 4.6 3.6 2.3 1.4	(in) 6 4.6 3.6 2.3 1.4	(in) 12.0 9.2 7.2 4.6 2.8	(m3/min) 1.763 1.546 1.369 1.098 0.860	(chart) 50 46 41 34 28	corrected 50.57 46.52 41.47 34.39 28.32	REGRES Slope = Intercept = Corr. coeff. =	25.1357 6.8922 0.9983		
Calculatio Qstd = $1/n$	n[Sqrt(H			l/Ta))-b]		60.00 T	FLOW RAT	E CHART		
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope						50.00 - <u>()</u> 40.00 -				•
	al temper	ature du	ing cali	bration (de ration (mm	0 ,	+ 00.04 (IC) + 00.05 vertual chart response + 00.05 vertual chart response + 00.05 vertual chart ver				
	For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)									
b = samp	m = sampler slope b = sampler intercept l = chart response									
Tav = dai Pav = dai	ly averag	-				0.00	0 0.500 Standard Flow	1.000 Rate (m3/min	1.500)	2.000

Location : Location I	_	House ne AM2	ear Lin I	Ma Hang Ro	oad		Date of Calibration: Next Calibration Date: Technician:	22/2/2017 22/4/2017 Fai So
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure perature	· /	1015.3 18.9		Corrected Pressure (mm Hg) Temperature (K)	761.475 292
					CALIBRA	ATION ORIF	ICE	
				Make-> Model-> Serial # ->	5025A]		00411 03059
					CAL	IBRATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	[(chart)	IC corrected	LINEAR REGRESSION	
No. (in) (in) (m3/min) (chart) 18 5.8 5.8 11.6 1.734 56 13 4.6 4.6 9.2 1.546 52 10 3.5 3.5 7.0 1.350 46 7 2.3 2.3 4.6 1.098 38						56.64 52.59 46.52 38.43	Slope = 29.5511 $Intercept = 6.1722$ $Corr. coeff. = 0.9983$	
5 Calculatio Qstd = 1/r IC = I[Sqr	n[Sqrt(H			0.860 /Ta))-b]	31	70.00	FLOW RATE CHART	
Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow:						40.00 40.00 00.05 00.05 00.05 00.02 00.02 00.02 00.03 0.		
1/m((I)[S	l/m((I)[Sqrt(298/Tav)(Pav/760)]-b)							
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	cept se temper				0.00	0.500 1.000 1.50 Standard Flow Rate (m3/min)	00 2.000

Location : Location I		u Ling Fin AM3	e Servic	ce Station			Date of Calibration:22/2/2017Next Calibration Date:22/4/2017Technician:Fai So				
	S	a Laval I	Progetter	$(\mathbf{b}\mathbf{D}_{\mathbf{c}})$		nditions 1					
	St	ea Level I Temp	erature	. ,	1015.3 18.9		Corrected Pressure (mm Hg)761.475Temperature (K)292				
					CALIBR	ATION OR	IFICE				
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059				
					CAL	IBRATIO	N				
Plate		H2O (R)	H20	Qstd	I (alcort)	IC	LINEAR				
No. 18 13 10 7 5	(in) 5.8 4.4 3.4 2.2 1.2	(in) 5.8 4.4 3.6 2.2 1.2	(in) 11.6 8.8 7.0 4.4 2.4	(m3/min) 1.734 1.512 1.350 1.074 0.797	(chart) 58 52 47 40 34	3 58.66 Slope = 26.0975 2 52.59 Intercept = 12.9675 7 47.53 Corr. coeff. = 0.9982 0 40.45					
	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto l temper	d)(Tstd/T ow rate rt respond ponse d slope l intercep rature dur	a)] es t ing calil	/Ta))-b] oration (de ation (mm		70000 00.007 00000 00000 00000 00000 00000	FLOW RATE CHART				
	For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)										
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept se temper				10.00 0.00 0.00	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)				

Location : Location I		u Ha Villa AM4b	ige				Date of Calibration:22/2/2017Next Calibration Date:22/4/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	` ´	1015.3 18.9		Corrected Pressure (mm Hg) 761.475 Temperature (K) 292
					CALIBR	ATION OR	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd (m3/min)	[(chart)	IC corrected	LINEAR REGRESSION
No. (in) (in) (m3/min) (chart) 18 5.3 5.3 10.6 1.658 58 13 4.3 4.3 8.6 1.495 52 10 3.4 3.4 6.8 1.331 46 7 2.2 2.2 4.4 1.074 38 5 1.4 1.4 2.8 0.860 30						58.66 52.59 46.52 38.43 30.34	Slope = 34.9980 $Intercept = 0.3845$ $Corr. coeff. = 0.9995$
Pstd = acti	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto tor Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercep rature dur sure durin alculatio	a)] es t ing calit g calibra n of san	pration (deg ation (mm apler flow:	g K)	Vertial Chart Lesbouse (IC) 400.00 Vertical Chart Lesbouse (IC) 40	FLOW RATE CHART
m = sampl b = sampl I = chart ro Tav = dail Pav = dail	ler interc esponse y averag	cept se tempers				10.00 0.00 0.000	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:22/2/2017Next Calibration Date:22/4/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	· · ·	1015.3 18.9		Corrected Pressure (mm Hg) 761.475 Temperature (K) 292
					CALIBR	ATION OR	IFICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059
					CAL	IBRATION	1
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	6.1 4.7 3.6 2.8 1.4	6.1 4.7 3.6 2.8 1.4	(iii) 12.2 9.4 7.2 5.6 2.8	1.778 1.562 1.369 1.209 0.860	55 49 42 34 23	55.63 49.56 42.48 34.39 23.26	Slope = 36.2865 Intercept = -8.1354 Corr. coeff. = 0.9967
Pstd = act	n[Sqrt(H t(Pa/Pstc ndard flo cted char chart res ator Qstd ator Qstd il temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope intercept ature dur ure durin	a)] es ing calif g calibra n of san	pration (deg ation (mm n pler flow:		60.00 50.00 60.00 50.00 60.000 60.000 60.000 60.000 60.0000000 60.00000000	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e tempera				10.00 0.00 0.00	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	/illage H	House			Date of Calibration:22/2/201Next Calibration Date:22/4/201Technician:Fai S	17
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure erature	. ,	1015.3 18.9		Corrected Pressure (mm Hg) 761.47 Temperature (K) 29	
					CALIBR	ATION ORIF	ICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059	
					CAL	IBRATION		
Plate		H2O (R)	H20	Qstd (m3/min)	[(chart)	IC corrected	LINEAR REGRESSION	
No. 18 13 10 7 5	(in) 6.5 4.9 3.8 2.4 1.5	(in) 6.5 4.9 3.8 2.4 1.5	(in) 13.0 9.8 7.6 4.8 3.0	(m3/min) 1.835 1.595 1.406 1.121 0.889	(chart) 67 55 46 35 27	67.76 55.63 46.52 35.40 27.31	Slope = 42.6443 Intercept = -11.8705 Corr. coeff. = 0.9968	
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto d temper ual press equent c Sqrt(298/ ler slope	d)(Tstd/Ta ow rate rt respond ponse d slope l intercept rature dur ure durin alculation Tav)(Pav	a)] es ing calit g calibra n of san	pration (deg ation (mm apler flow:	g K)	80.00 Actral chart response 70.00 00.00 60.00 00.00 30.00 00.00 20.00 00.00 10.00 00.00	FLOW RATE CHART	
I = chart r Tav = dail Pav = dail	y averag	-				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	

Location : Location 1	-	House of AM7b	ÈLoi Tur	g Village		Date of Calibration: 22/2/2017 Next Calibration Date: 22/4/2017 Technician: Fai So					
					COND	TIONS					
	Se	a Level I Temp	Pressure perature	. ,	1015.3 18.9		Corrected Pressure (mm Hg) 761.475 Temperature (K) 292				
				C	ALIBRATI	ON ORIFICE					
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059				
					CALIBR	RATION					
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION				
18 13 10 7 5	3.7 3.4 2.6 1.6 1.2	3.7 3.4 2.6 1.6 1.2	7.4 6.8 5.2 3.2 2.4	1.388 1.331 1.166 0.918 0.797	52 48 44 36 32	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Calculatio Qstd = 1/r IC = I[Sq1	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART				
Pstd = act	ected char chart resp rator Qsto ator Qstd al temper ual presso	t respon- ponse l slope intercep ature dur ure durin	t ring calil ng calibra	pration (de, ation (mm ppler flow:		50.00 () () () () () () () () () ()					
1/m((I)[S	-			-		10.00					
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interco esponse y averago	e temper				0.00	0.500 1.000 1.500 Standard Flow Rate (m3/min)				

Location :			age No.	4			Date of Calibration: 22/2/2017		
Location I	D :	AM8					Next Calibration Date: 22/4/2017 Technician: Fai So		
					COND	ITIONS			
	Se	ea Level I Temp	Pressure perature	. ,	1015.3 18.9		Corrected Pressure (mm Hg) 761.475 Temperature (K) 292		
				C	ALIBRATI	ON ORIFICE	E		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.00411 Qstd Intercept -> -0.03059		
					CALIB	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	6.3 4.8 3.7 2.4 1.5	6.3 4.8 3.7 2.4 1.5	12.6 9.6 7.4 4.8 3.0	1.807 1.579 1.388 1.121 0.889	65 56 50 42 32	65.74 56.64 50.57 42.48 32.36	Slope = 35.2897 Intercept = 1.6780 Corr. coeff. = 0.9979		
Calculatio Qstd = 1/n	ons : n[Sqrt(H2	20(Pa/Ps	std)(Tstd			70.00	FLOW RATE CHART		
Pstd = actu	andard flo ected char chart resp rator Qstd ator Qstd al tempera ual pressu equent ca	ow rate rt respond ponse d slope intercept rature dur ure durin	es t ring calibra n of san	bration (deg ration (mm) npler flow: 5)		60.00 50.00 Ctrial chart response (IC) 90.00 00.05 00.02 00.02			
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interce esponse ly average	e tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)		

Location : Location I		a Po Vill AM9b	age Hoi	ise No. 80			Next Calibra	alibration: ation Date: echnician:	22/2/2017 22/4/2017 Fai So	
						CONDITIONS	;			
	Se	ea Level I Temp	Pressure perature		1015. 18.9		Corrected Pressure Temperature			761.475 292
					CALIE	BRATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> Qstd Intercept ->		2.00411 -0.03059	
					C	ALIBRATION	N			
Plate No. 18 13 10	H20 (L) (in) 5.8 4.6 3.6	H2O (R) (in) 5.8 4.6 3.6	H20 (in) 11.6 9.2 7.2	Qstd (m3/min) 1.734 1.546 1.369	I (chart) 52 47 41	IC corrected 52.59 47.53 41.47	LINE <u>REGRES</u> Slope = Intercept = Corr. coeff. =		1	
7 5	2.3 1.4	2.3 1.4	4.6 2.8	1.098 0.860	35 28	35.40 28.32		0.9904		
Calculatio Qstd = 1/r IC = I[Sqr	n[Sqrt(H/ rt(Pa/Pstd)(Tstd/Ta		/Ta))-b]		60.00	FLOW RATE	CHART		
Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)						50.00 40.00 30.00 30.00 90.00 90.00		2		
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						90.00 Gt rai				
b = sampl I = chart r Tav = dail	m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure						0.500 1. Standard Flow F	000 Rate (m3/min	1.500)	2.000

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		5 Rootsmeter Orifice I.I		438320 1612	Ta (K) - Pa (mm) -	295 745,49
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP - (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.3770 0.9710 0.8710 0.8310 0.6860	3.2 6.4 7.8 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9804 0.9793 0.9741	0.7165 1.0117 1.1256 1.1785 1.4200	1.4078 1.9909 2.2259 2.3345 2.8155		0.9957 0.9914 0.9894 0.9883 0.9830	0.7231 1.0210 1.1360 1.1893 1.4330	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd slop intercept coefficie y axis =	t (b) = ent (r) =	2.00411 -0.03059 0.99995 Pa/760) (298/Ta	a)]	Qa slop intercep coeffici y axis =	ot (b) =	1.25494 -0.01933 0.99995 Ca/Pa)1

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Location Location		ea at Tsu AM1b	ng Yuer	ı Ha Village			Date of C Next Calibra T		19/4/2017 19/6/2017 Fai So
					C	ONDITIONS			
	Se	a Level I Temp	Pressure perature		1009.1 26.7		Corrected Pressure (Temperature (756.825 300
					CALIB	RATION OR	IFICE		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		11965 .02696
					C	ALIBRATION	N		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE. REGRES		
18 13 10 7 5	6.1 4.6 3.5 2.2 1.4	6.1 4.6 3.5 2.2 1.4	12.2 9.2 7.0 4.4 2.8	1.652 1.437 1.255 0.997 0.798	52 45 40 34 28	51.74 44.78 39.80 33.83 27.86	Slope = Intercept = Corr. coeff. =	27.2899 6.0943 0.9984	
Calculati Qstd = 1/: IC = I[Sq	m[Sqrt(H			l/Ta))-b]		^{60.00} T	FLOW RAT	E CHART	
Qstd = sta IC = corre I = actual m = calib	andard flo ected cha chart res rator Qsto	ow rate rt respon- ponse d slope	es			50.00 - 50.00 - 9 40.00 -			
b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)						40.00 40:00 (IC) 40:00 - 00.05		×	
<i>For subsequent calculation of sampler flow:</i> 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						90.00 Actua			
m = sampler slope b = sampler intercept L = chart response						10.00			
Tav = dai	I = chart response Tav = daily average temperature Pav = daily average pressure							.000 1 Rate (m3/min)	.500 2.000

Location : Location I	_	House ne AM2	ear Lin I	Ma Hang Ro	oad		Date of Calibration:19/4/2017Next Calibration Date:19/6/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	· /	1009.1 26.7		Corrected Pressure (mm Hg) 756.825 Temperature (K) 300
					CALIBRA	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	$ \begin{array}{c} (11) \\ 5.8 \\ 4.6 \\ 3.4 \\ 2.3 \\ 1.3 \end{array} $	5.8 4.6 3.4 2.3 1.3	(iii) 11.6 9.2 6.8 4.6 2.6	1.612 1.437 1.237 1.020 0.770	57 53 46 38 31	56.72 52.74 45.77 37.81 30.85	Slope = 31.7705 Intercept = 6.1809 Corr. coeff. = 0.9978
Qstd = 1/r IC = I[Squ Qstd = sta	Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones						FLOW RATE CHART
 m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 						Actual chart response (IC) 00.05 00.06	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse ly averag	cept ge temper	ature	<i>.</i>		10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		a Ling Fin AM3	e Servio	ce Station			Date of Calibration:19/4/2017Next Calibration Date:19/6/2017Technician:Fai So
					CO	NDITIONS	S
	Se	ea Level I Temp	Pressure perature	. ,	1009.1 26.7		Corrected Pressure (mm Hg)756.825Temperature (K)300
					CALIBR	ATION OR	RIFICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATIO	Ν
Plate		H2O (R)	H20	Qstd (m3/min)	[(chart)	IC	LINEAR d REGRESSION
No. 18 13 10 7 5	(in) 5.9 4.4 3.4 2.2 1.3	(in) 5.9 4.4 3.6 2.2 1.3	(in) 11.8 8.8 7.0 4.4 2.6	(m3/min) 1.625 1.405 1.255 0.997 0.770	(chart) 59 53 47 39 34	corrected 58.71 52.74 46.77 38.81 33.83	Slope = 29.9195 Intercept = 9.9534 Corr. coeff. = 0.9966
S 1.5 2.0 0.770 34 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope						70.00 60.00 50.00 (C) 90.00 00.00	FLOW RATE CHART
Pstd = act	al temper ual press equent c	ature dur ure durin alculatio	ring calil Ig calibr n of sar	pration (de ation (mm npler flow:		Actual chart response (1) Actual chart response (1) 0.00 – 0.00 –	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept se temper				10.00 0.00 0.00	00 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	nge				Date of Calibration:19/4/2017Next Calibration Date:19/6/2017Technician:Fai So
	Se	ea Level I Temp	Pressure perature	. ,	1009.1 26.7		Corrected Pressure (mm Hg)756.825Temperature (K)300
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.4 4.3 3.4 2.2 1.4	(in) 5.4 4.3 3.4 2.2 1.4	(in) 10.8 8.6 6.8 4.4 2.8	(m3/min) 1.555 1.389 1.237 0.997 0.798	(chart) 55 50 45 36 30	corrected 54.73 49.75 44.78 35.82 29.85	REGRESSION Slope = 33.4756 Intercept = 2.9669 Corr. coeff. = 0.9992
S 1.4 1.4 2.8 0.798 30 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						40.00 50.00 40.00 30.00 20.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse y averag	ept se tempera	ature	7		10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:19/4/2017Next Calibration Date:19/6/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	· /	1009.1 26.7		Corrected Pressure (mm Hg) 756.825 Temperature (K) 300
					CALIBR	ATION ORIF	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	[(abort)	IC	LINEAR
No. 18 13 10 7 5	(in) 6 4.7 3.5 2.8 1.3	(in) 6 4.7 3.5 2.8 1.3	(in) 12.0 9.4 7.0 5.6 2.6	(m3/min) 1.639 1.452 1.255 1.124 0.770	(chart) 55 48 41 34 23	corrected 54.73 47.76 40.80 33.83 22.89	REGRESSION Slope = 37.1504 Intercept = -6.3549 Corr. coeff. = 0.9974
S 1.5 1.5 2.0 0.770 25 Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						90.00 50.00 50.00 00.04 00.05 00.05 00.05 00.05 00.05 00.00 00.05 00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	Village H	House			Date of Calibration:19/4/2017Next Calibration Date:19/6/2017Technician:Fai So			
CONDITIONS										
	Se	ea Level I Temp	Pressure perature	. ,	1009.1 26.7		Corrected Pressure (mm Hg) 756.825 Temperature (K) 300			
					CALIBR	ATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696			
					CAL	IBRATION	I			
Plate	• • •	H2O (R)	H20	Qstd	Ι	IC	LINEAR			
<u>No.</u> 18 13 10 7 5	(in) 6.7 5 3.8 2.4 1.3	(in) 6.7 5 3.8 2.4 1.3	(in) 13.4 10.0 7.6 4.8 2.6	(m3/min) 1.731 1.497 1.307 1.041 0.770	(chart) 66 56 47 36 27	corrected 65.67 55.72 46.77 35.82 26.87	REGRESSION Slope = 40.8436 Intercept = -5.6696 Corr. coeff. = 0.9981			
Calculatio	ons :					20.87	FLOW RATE CHART			
Qstd = 1/n IC = I[Sqr	·			/Ta))-b]		70.00	· · · ·			
Qstd = sta IC = corre I = actual	cted cha	rt respon	es			60.00 50.00				
m = calibr b = calibra	ator Qsto ator Qstd	d slope intercep		oration (de		esponse (IC)				
	-		0	ation (mm		Actual chart response ()				
<i>For subsequent calculation of sampler flow:</i> 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						20.00 -				
m = sampl b = sampl	ler interc					10.00				
I = chart re Tav = dail Pav = dail	y averag					0.00	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)			

Location : Location 1	-	House of AM7b	ÈLoi Tur	Date of Calibration: 19/4/2017 Next Calibration Date: 19/6/2017 Technician: Fai So					
					COND	TIONS			
	Se	a Level I Temp	Pressure perature	. ,	1009.1 26.7]	Corrected Pressure (mm Hg) 756.825 Temperature (K) 300		
				C	ALIBRATI	ON ORIFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696		
					CALIBR	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	3.9 3.4 2.5 1.7 1.2	3.9 3.4 2.5 1.7 1.2	7.8 6.8 5.0 3.4 2.4	1.324 1.237 1.062 0.878 0.740	53 49 44 37 32	52.74 48.76 43.78 36.82 31.84	Slope = 35.1033 Intercept = 5.9893 Corr. coeff. = 0.9987		
Calculatio Qstd = 1/r IC = I[Sq1	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART		
Qstd = sta IC = corre I = actual m = calibrb = calibraTa = actuaPstd = act	ndard flo acted char chart resp rator Qstd ator Qstd al temper- ual press equent ca Sqrt(298/	ow rate et respon- ponse l slope intercep ature dur ure durin	es t ting calil g calibra n of san	oration (deg ation (mm n pler flow:))	00.00 00.05 00.04 00.05 00.05 V V V V V V V V V V V V V V V V V V V				
h = samp b = samp I = chart r Tav = dail Pav = dail	ler interco esponse y averago	e temper				0.00	0.500 1.000 1.500 Standard Flow Rate (m3/min)		

Location :			age No.	4			Date of Calibration: 19/4/2017
Location I	D :	AM8				Next Calibration Date: 19/6/2017 Technician: Fai So	
	J				COND	ITIONS	-
	Se	a Level I Temp	Pressure perature	. ,	1009.1 26.7		Corrected Pressure (mm Hg) 756.825 Temperature (K) 300
				C	ALIBRATI	ON ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	6.3 4.7 3.7 2.4 1.4	6.3 4.7 3.7 2.4 1.4	12.6 9.4 7.4 4.8 2.8	1.679 1.452 1.290 1.041 0.798	65 55 49 41 32	64.68 54.73 48.76 40.80 31.84	Slope = 36.5867 Intercept = 2.3520 Corr. coeff. = 0.9983
Calculatio	ons :					70.00	FLOW RATE CHART
Qstd = 1/n IC = I[Sqr	rt(Pa/Pstd	l)(Tstd/T		/Ta))-bj		60.00	
Qstd = stat IC = corre I = actual α m = calibr	ected char chart rest	rt respone ponse	es			50.00 (<u>C)</u> 8	
b = calibra Ta = actua	ator Qstd al tempera	intercept ature dur	ring calil	bration (deg ation (mm)		00.00 (C) 00.00 00.00 10 00.00 10 10 10 10 10 10 10 10 10 10 10 10 1	
For subse 1/m((I)[S	-			npler flow: o)		90.00	
m = sampl b = sampl I = chart re	ler interce esponse	-				0.00	0.500 1.000 1.500 2.000
Tav = dail Pav = dail		-					Standard Flow Rate (m3/min)

Location : Location :		a Po Villa AM9b	age Hoi	ise No. 80			Next Calibra	alibration: ation Date: echnician:		19/4/2017 19/6/2017 Fai So
					(CONDITIONS	3			
	Se	a Level I Temp	Pressure erature		1009.3 26.7		Corrected Pressure Temperature			756.825 300
					CALIE	BRATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> Qstd Intercept ->		2.11965 -0.02696	
					C		N			
Plate No. 18 13 10 7 5	H20 (L) (in) 5.9 4.6 3.6 2.2 1.4	H2O (R) (in) 5.9 4.6 3.6 2.2 1.4	H20 (in) 11.8 9.2 7.2 4.4 2.8	Qstd (m3/min) 1.625 1.437 1.272 0.997 0.798	I (chart) 53 47 42 35 28	IC corrected 52.74 46.77 41.79 34.83 27.86	LINE REGRES Slope = Intercept = Corr. coeff. =			
Calculatio Qstd = 1/1 IC = I[Sqi	m[Sqrt(H2			/Ta))-b]		60.00	FLOW RATE	E CHART		
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)						50.00 40.00 30.00 30.00 90.00 90.00				
<i>For subsequent calculation of sampler flow:</i> 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						90.00 Actina				
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure						10.00 0.00 0.000	0.500 1. Standard Flow F	000 Rate (m3/min	1.500)	2.000

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Fe Operator		Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	294 - 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	======================================	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4600 1.0410 0.9280 0.8840 0.7290	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Oa	(y axis)
				va	Qa 	
0.9967	0.6827	1.4149		0.9957	0.6820	0.8851
0.9925	0.9534	2.0010 2.2372	CONCEPTION OF	0.9915	0.9524	1.2517
0.9894	1.1192	2.3464		0.9894	1.0661	1.3995
0.9840	1.3499	2.8299		0.9830	1.3485	1.7702
Qstd slop intercept coefficie	t (b) =	2.11965 -0.02696 0.99991	ner	Qa slope intercept coefficie	z (b) =	1.32729 -0.01686 0.99991
y axis =	SQRT [H2O (I	Pa/760) (298/5	 Ta)]	y axis =	SQRT [H2O (7	Га/Ра)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust monitor				
Manufacturer:	Sibata LD-3B				
Serial No.	2X6145				
Equipment Ref:	EQ105				
Job Order	HK1603558				

Standard Equipment:

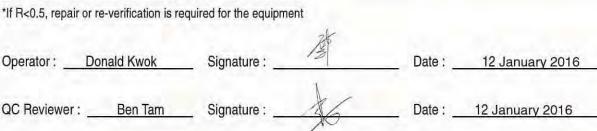
Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

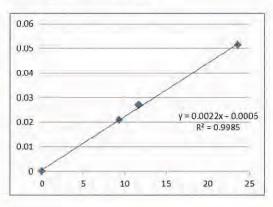
	-
Testing	Date:
rooming	Duit.

4 to 6 January 2016

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1602	11.7
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1522	9.3
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3347	23.6


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear	Regression	of Y or X	


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9985		
Date of Issue	11 January 2016		

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

593 (CPM) 596 (CPM)

Location : Gold King Industrial Building, Kwai Location ID : Calibration Room							ung	Date of Calibrat Next Calibration D	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm H Temperature (K)	rg) 766.5 292
					CALIE	BRATI	ON ORIFIC	E	
			Calibrat	Make-> Model-> tion Date->	TIS 502 24-Ma	25A		Qstd Slope -> Qstd Intercept -> Expiry Date->	2.10265 -0.00335 24-Mar-16
					C	CALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC	LINEAR	
No.(in)(in)(m3/min)(chart)correctedREGRESSION184.14.18.21.3845656.82Slope = 30.1332 133.23.26.41.2225252.76Intercept = 15.8637 102.42.44.81.0594848.71Corr. coeff. = 0.9950 81.61.63.20.8654242.6251.01.02.00.6843535.51						1332 3637			
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .02 .02	.00	FLOW RATE CHART	
b = sampl I = chart r Tav = dail Pav = dail	esponse y averag	ge temper				0.	0.000	0.500 1.000 Standard Flow Rate (m3/min)	1.500

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor		
Manufacturer:	Sibata LD-3B		
Serial No.	366409		
Equipment Ref:	EQ109		
Job Order	HK1603560		

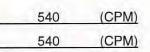
Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

Testing Date:

4 to 6 January 2016


0.0022

0.9975

11 January 2016

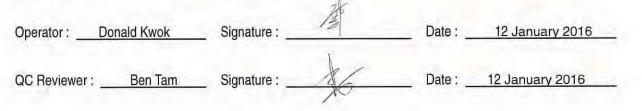
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1577	11.5
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1433	8.8
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3328	23.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Remarks:

Slope (K-factor):

Date of Issue


Correlation Coefficient

1. Strong Correlation (R>0.8)

Linear Regression of Y or X

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kwai Location ID : Calibration Room							ung	Date of Calibrat Next Calibration D	
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm H Temperature (K)	rg) 766.5 292
					CALIE	BRATI	ON ORIFIC	E	
			Calibrat	Make-> Model-> tion Date->	TIS 502 24-Ma	25A		Qstd Slope -> Qstd Intercept -> Expiry Date->	2.10265 -0.00335 24-Mar-16
					C	CALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC	LINEAR	
No.(in)(in)(m3/min)(chart)correctedREGRESSION184.14.18.21.3845656.82Slope = 30.1332 133.23.26.41.2225252.76Intercept = 15.8637 102.42.44.81.0594848.71Corr. coeff. = 0.9950 81.61.63.20.8654242.6251.01.02.00.6843535.51						1332 3637			
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .02 .02	.00	FLOW RATE CHART	
b = sampl I = chart r Tav = dail Pav = dail	esponse y averag	ge temper				0.	0.000	0.500 1.000 Standard Flow Rate (m3/min)	1.500

Equipment Calibrated:

Туре:	Laser Dust monitor					
Manufacturer:	Sibata LD-3B					
Serial No.	366410					
Equipment Ref:	EQ110					
Job Order	HK1603561					

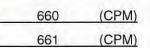
Standard Equipment:

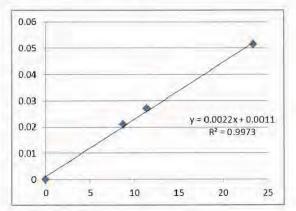
Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

Equipment Verification Results:

Testing Date:

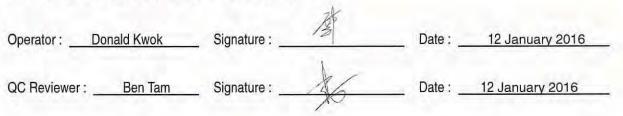
4 to 6 January 2016


Hour	Time	Mean Temp °C Mean (hPa)		Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1566	11.4	
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1422	8.7	
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3318	23.4	


Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue

0.00)22	
0.99	973	
11 Jar	nuary 2	2016



Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

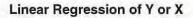
Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Sea Level Pressure (hPa) Temperature (°C)							Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	3RATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm apler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Calibrated:

Туре:	Laser Dust monitor			
Manufacturer:	Sibata LD-3B			
Serial No.	3Y6503			
Equipment Ref:	EQ112			
Job Order	HK1603553			

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016


Equipment Verification Results:

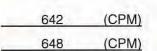
Testing Date:

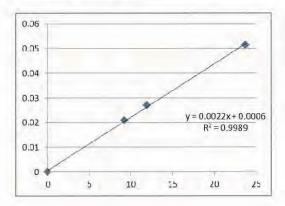
4 to 6 January 2016

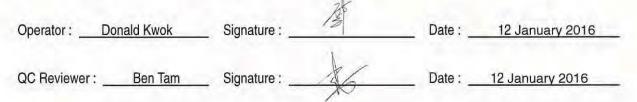
Hour	Hour Time Mean Press		Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1633	11.9	
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1502	9.2	
2hr21min	18:00 ~ 20:21	20,9	1018.8	0.051	3365	23.8	

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Slope (K-factor): Correlation Coefficient Date of Issue


(0.002	2	
(0.998	9	_
11	Janu	ary 20	16


Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16	
					(COND	ITIONS		
	Sea Level Pressure (hPa) Temperature (°C)							Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
Make-> TIS Model-> 502 Calibration Date-> 24-M						25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
18 13 10 8 5	4.1 3.2 2.4 1.6 1.0	4.1 3.2 2.4 1.6 1.0	8.2 6.4 4.8 3.2 2.0	1.384 1.222 1.059 0.865 0.684	50 52 48 42 35	6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm apler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
 b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure 						0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Calibrated:

Туре:	Laser Dust monitor				
Manufacturer:	Sibata LD-3B				
Serial No.	3Y6505				
Equipment Ref:	EQ114				
Job Order	HK1603562				

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 January 2016

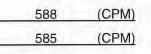
Equipment Verification Results:

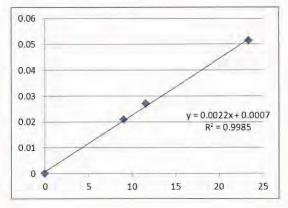
Testing	Data:	
resung	Dale.	

4 to 6 January 2016

Hour			Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
2hr17min	17:30 ~ 19:47	20.6	1018.9	0.027	1589	11.6
2hr42min	17:00 ~ 19:42	20.7	1015.9	0.021	1473	9.0
2hr21min	18:00 ~ 20:21	20.9	1018.8	0.051	3314	23.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)


Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9985
Date of Issue	11 January 2016

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

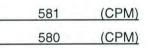
Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						Date of Calibration: 2-Jan-16 Next Calibration Date: 2-Apr-16			
					(COND	ITIONS		
	Se	ea Level F Temp	Pressure perature	, ,		1022 18.9		Corrected Pressure (mm Hg) 766. Temperature (K) 29	
					CALIE	BRATI	ON ORIFIC	CE	
			Calibrat	Make-> Model-> tion Date->	TIS 502 24-Ma	25A		Qstd Slope ->2.10265Qstd Intercept ->-0.00335Expiry Date->24-Mar-1	5
					C	ALIB	RATION		
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	I (cha		IC corrected	LINEAR REGRESSION	
No. (in) (in) (m3/min) (cha 18 4.1 4.1 8.2 1.384 50 13 3.2 3.2 6.4 1.222 52 10 2.4 2.4 4.8 1.059 44 8 1.6 1.6 3.2 0.865 44 5 1.0 1.0 2.0 0.684 33						6 2 8 2	56.82 52.76 48.71 42.62 35.51	Slope = 30.1332 Intercept = 15.8637 Corr. coeff. = 0.9950	
Pstd = actu For subse 1/m((I)[S m = sampl	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto al temper ual press sequent ca Sqrt(298/ ler slope	d)(Tstd/T ow rate ort respond sponse d slope l intercep rature dur sure durin alculatior (Tav)(Pav	a)] es t ring cali ring calibr g calibr	bration (de ation (mm ppler flow:		.00 Actual chart response (IC) .05 .05 .02	.00	FLOW RATE CHART	
b = sampl I = chart r Tav = dail Pav = dail	esponse y averag	ge temper				0.	0.000	0.500 1.000 1.500 Standard Flow Rate (m3/min)	C

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1703462

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

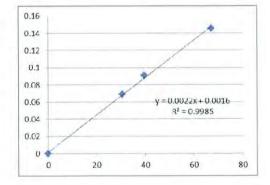
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	13025	67.2
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3586	30.6
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4709	39.6

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9992
Date of Issue	11 January 2017

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location : Gold King Industrial Building, Kwai Chung Location ID : Calibration Room							Date of Calibration: 25-Nov-16 Next Calibration Date: 25-Feb-17	
						COND	TIONS	
	Se	ea Level I Temp	Pressure erature		1	016.4 20.0		Corrected Pressure (mm Hg) 762.3 Temperature (K) 293
					CALI	BRATI	ON ORIFICE	
			Calibra	Make-> Model-> tion Date->	TIS 502 14-M	25A		Qstd Slope ->2.00411Qstd Intercept ->-0.03059Expiry Date->14-Mar-17
					(CALIBR	RATION	
					(ch	I IC hart) corrected		LINEAR REGRESSION
18 6.1 6.1 12.2 1.776 5 13 4.7 4.7 9.4 1.560 4 10 3.6 3.6 7.2 1.368 4 8 2.3 2.3 4.6 1.096 3					4 4 3	56 56.56 49 49.49 43 43.43 34 34.34 23 23.23		Slope = 35.6871 Intercept = -6.1123 Corr. coeff. = 0.9967
Pstd = act	m[Sqrt(H rt(Pa/Psto andard flo ected chai chart res rator Qsto ator Qsto al temper rual press equent ca Sqrt(298/ oler slope oler interco	d)(Tstd/T ow rate rt respone ponse d slope intercept ature dur ure durin alculatio Tav)(Pav	a)] es ing calil g calibr n of san	bration (deg ation (mm F npler flow:		.07 .03 .05 .05 .05 .05 .02 .02 .02 .02 .02 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03		FLOW RATE CHART
Tav = dai Pav = dai	ly averag						1	Standard Flow Rate (m3/min)

Equipment Calibrated:

Туре:	Laser Dust monitor			
Manufacturer:	Sibata LD-3B			
Serial No.	366409			
Equipment Ref:	EQ109			
Job Order	HK1703455			

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
25 November 2016


Equipment Verification Results:

Testing Date:

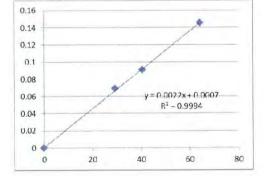
9 January 2017

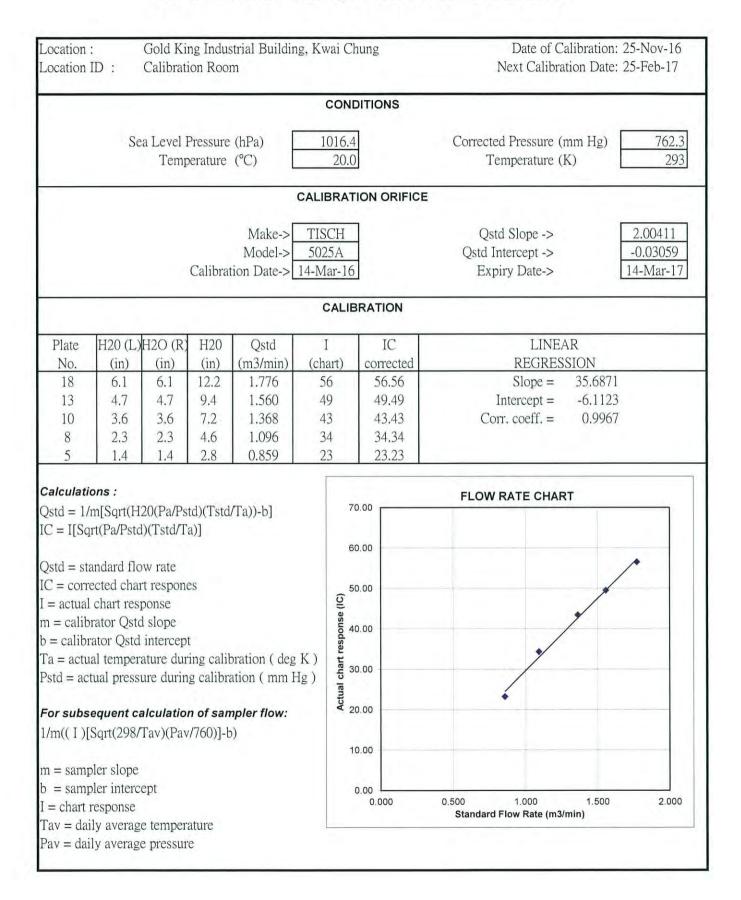
Hour	Hour Time Mean Temp °C Mean (hPa)		Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12487	64.4
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3433	29.3
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4815	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):	0.0022	
Correlation Coefficient	0.9997	
Date of Issue	11 January 2017	


Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

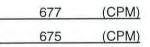
*If R<0.5, repair or re-verification is required for the equipment

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	366410	
Equipment Ref:	EQ110	
Job Order	HK1703460	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

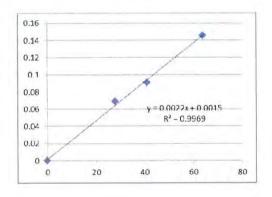
Testing Date:

9 January 2017

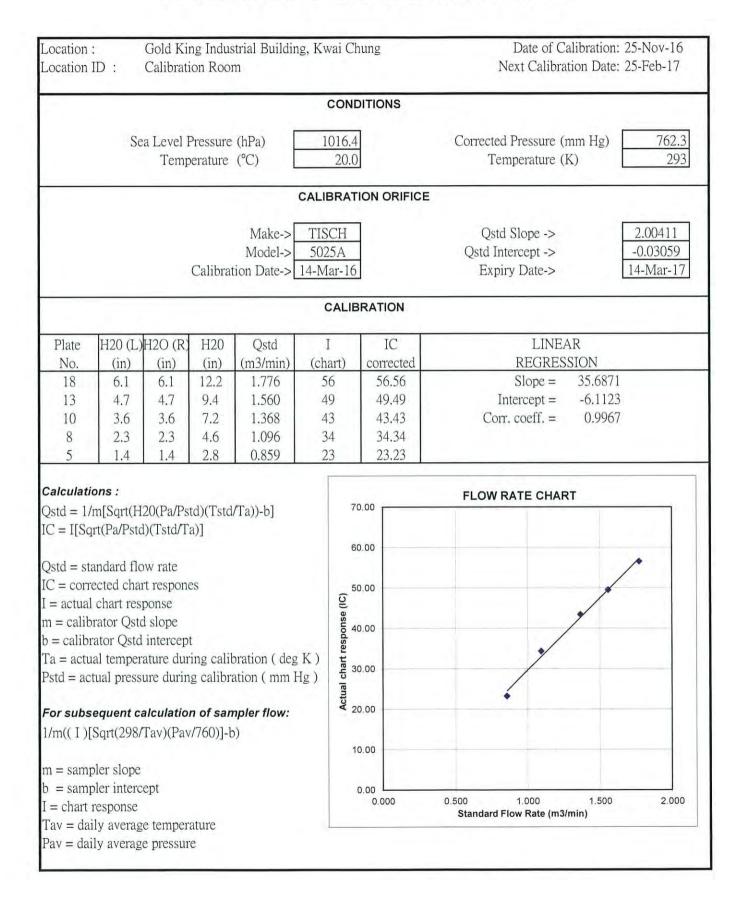
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12401	64.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3266	27.9
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4878	41.1

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9984
Date of Issue	11 January 2017

Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

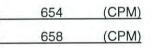
*If R<0.5, repair or re-verification is required for the equipment

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	3Y6503	
Equipment Ref:	EQ112	
Job Order	HK1703461	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	_
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

Testing Date:

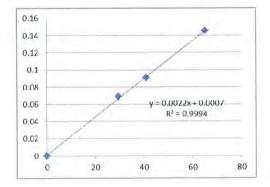
9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12647	65.3
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3476	29.7
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4876	41.0

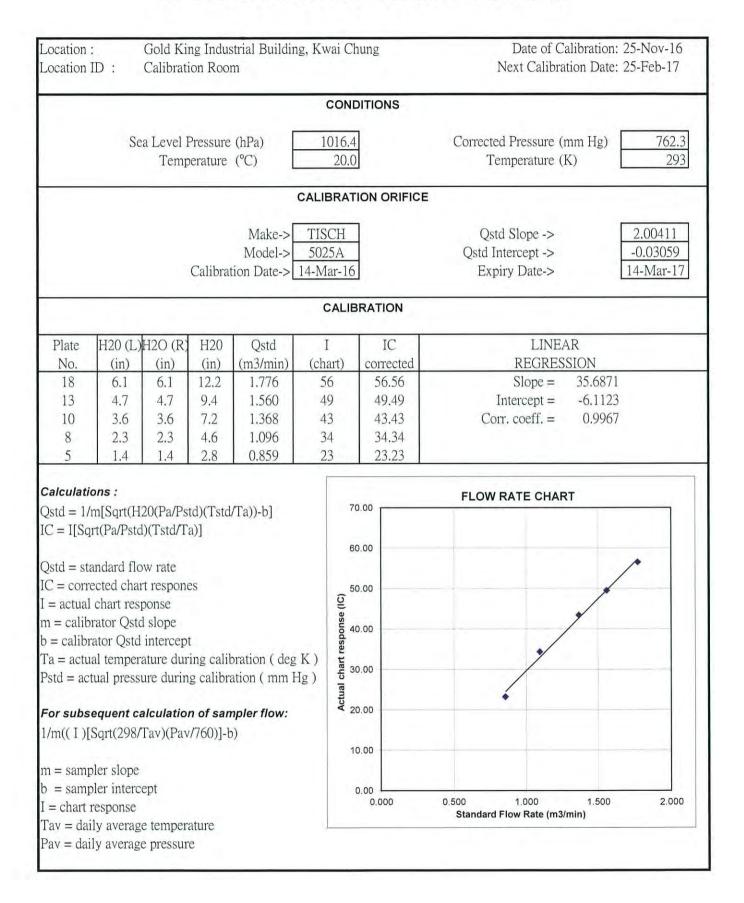
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):	0.0022	
Correlation Coefficient	0.9997	
Date of Issue	11 January 2017	



Remarks:


1. Strong Correlation (R>0.8)

Factor 0.0022 should be apply for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	3Y6505	
Equipment Ref:	EQ114	
Job Order	HK1703464	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	25 November 2016

Equipment Verification Results:

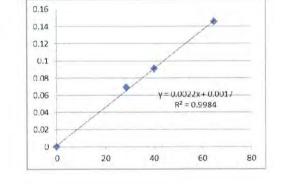
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12588	65.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3339	28.5
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4774	40.2

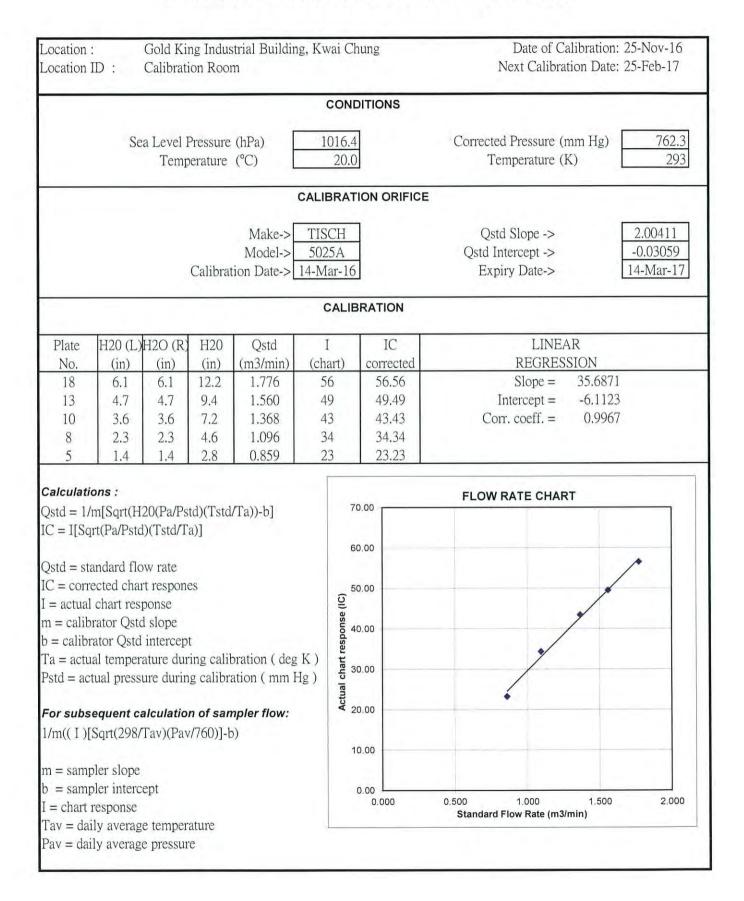
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>588 (CPM)</u> 587 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9992
Date of Issue	11 January 2017

Remarks:

1. Strong Correlation (R>0.8)


2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

 Operator :
 Martin Li
 Signature :
 Date :
 11 January 2017

 QC Reviewer :
 Ben Tam
 Signature :
 Date :
 11 January 2017

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號: IC16-0843) Date of Receipt / 收件日期: 26 May 2016
Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	Integrating Sound Level Meter (EQ065) Brüel & Kjær 2238 2337676 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building.
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K¢ Lee Project Engineer

Date of Issue : 簽發日期

6 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

z/o 4/F. Tsing Shan Wan Exchange Building, 1 Hing On Lanc, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 z/o 香港新界屯門與安里一號背頂讀機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec (dB)
50 - 130	LAFP	А	F	94.00	0 1	94.0	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading Type 1 S (dB) (dB)	
30 - 110	LAFP	A CONTRACTOR OF	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting				Appli	ied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	31.5 Hz	54.9	-39.4 ± 1.5
					63 Hz	67.9	-26.2 ± 1.5
				125 Hz	77.9	-16.1 ± 1.0	
					250 Hz	85.4	-8.6 ± 1.0
				500 Hz 90.8	90.8	-3.2 ± 1.0	
					1 kHz	94.0	Ref.
				2 kHz	95.2	$+1.2 \pm 1.0$	
				4 kHz	95.0	$+1.0 \pm 1.0$	
				8 kHz	92.9	-1.1 (+1.5 ; -3.0)	
				12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)	

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 枝正及检測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傅真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Certificate of Calibration 校正證書

Certificate No. : C162996 證書編號

6.3.2 C-Weighting

UUT Setting				Applied Value		UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
			125 Hz	93.8	-0.2 ± 1.0		
				250 Hz	94.0	0.0 ± 1.0	
				500 Hz 94.0	0.0 ± 1.0		
			1 kHz	94.0	Ref.		
			2 kHz	93.8	-0.2 ± 1.0		
			4 kHz	93.2	-0.8 ± 1.0		
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)
· · · · · · · · · · · · · · · · · · ·			12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)		

Time Averaging 6.4

UUT Setting			Applied Value					UUT	IEC 60804									
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec, (dB)								
30-110 LAcq A 10	10 sec.	4	4 1	1/10	110.0	100	100.2	± 0.5										
									1.1	1.1	11 C 11	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/10 ²		90	90.1	± 0.5
	60 sec.				(60 sec.		1/103		80	79.8	±1.0						
			5 min.			1/104		70	69.8	± 1.0								

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812708

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz	
	104 dB : 1 kHz 114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB) $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162991 證書編號

ITEM TESTED / 送檢項 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者	(Job No. / 序引編號: IC16-0843) Sound Calibrator (EQ083) Rion NC-74	Date of Receipt / 收件日期:24 May 2016
	34246492 Action-United Environmental Services and Cor Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.	nsulting

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 . 2 June 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

- The test equipment used for calibration are traceable to National Standards via :
- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Project Engineer

Certified By 核證

K C/Lee

Date of Issue 簽發日期

3

3 June 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong c/o 香港新界屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website 網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162991 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

ITEM TESTED / 送檢項目	(Job No./序引編號: IC16-0662)	Date of Receipt / 收件日期: 22 March 2016
Description / 儀器名稱 :	Sound Level Meter (EQ014)	
Manufacturer / 製造商 :	Rion	
Model No. / 型號 :	NL-52	
Serial No. / 編號 :	00142580	
Supplied By / 委託者 :	Action-United Environmental Services and	d Consulting
	Unit A, 20/F., Gold King Industrial Buildi	ing,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Γ.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage/ 電壓 :

Relative Humidity / 相對濕度 ; $(55 \pm 20)\%$

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 6 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment) The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

K C Lee Project Engineer

Date of Issue 簽發日期

7 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shant Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所

e/o 香港新界屯鬥興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳道: 2744 8986 E-mail/IEm: callab@suncreation.com Websue/期时: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C160077 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

	UUT Setting			Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	* 91.9	± 1.1

* Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

UUT Setting				Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class I Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU	T Setting		Applie	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L _A	А	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

即創工程有限公司 - 校正及檢測實驗所

ela 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Pax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in fall, without the prior written approval of this laboratory.

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

Certificate of Calibration 校正證書

Certificate No. : C161797 證書編號

6.2 Time Weighting

UUT Setting			Applie	d Value	UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.0	Ref.
			Slow		1.1	94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _A	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5	
	1.000			125 Hz	77.8	-16.1 ± 1.5	
				250 Hz	85.3	-8.6 ± 1.4	
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
				4 kHz	95.0	$+1.0 \pm 1.6$	
					8 kHz	92.9	-1.1 (+2.1 ; -3.1)
		-			12.5 kHz	89.5	-4.3 (+3.0 ; -6.0)

C-Weighting 6.3.2

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _C	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5	
				125 Hz	93.8	-0.2 ± 1.5	
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1 ; -3.1)
	1				12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

Sun Creation Engineering Contrast Canona Constrainty Catobratory co 47, Fring Shant Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門興安里一號青山灣機樣四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab/@suncreation.com Website/翻 Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C161797 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07725

- Mfr's Spec. : IEC 61672 Class 1

Hz - 125 Hz : ± 0.35 dB 0 Hz - 500 Hz : ± 0.30 dB kHz : ± 0.20 dB
kHz $: \pm 0.20 \text{ dB}$
11- 4 LTL + 0.25 4D
$kHz - 4 kHz$: $\pm 0.35 dB$
kHz : ± 0.45 dB
.5 kHz : ± 0.70 dB
kHz : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
kHz $:\pm 0.10 \text{ dB}$ (Ref. 94 dB)
k.k

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/a 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號背山灣機械四樓 Tel/電話: 2927 2606 Fax/標準: 2744 8986 E-mail/電郵; callab@suncreation.com Website/網知: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

ITEM TESTED / 送檢」	頁目	(Job No./序引編號: IC16-0843)	Date of Receipt / 收件日期: 14 April 2016
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ006)	
Manufacturer / 製造商	1	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285762	
Supplied By/委託者	ĸ	Action-United Environmental Services and Unit A, 20/F., Gold King Industrial Buildin	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 25 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany

Tested By 測試	÷	H T Wong Technical Officer			
Certified By 核證	: ~	K C/Lee Project Engineer	Date of Issue 簽發日期	ŧ	27 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所咸枝正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory v/o 4/T, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 師創工程有限公司 - 校正及檢測實驗所 v/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C160077
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT	Setting	Applied	UUT		
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq, (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	I	94.2

6.1.1.2 After Self-calibration

UUT Setting			Applie	d Value	UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

UUT Setting				Applied Value		UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130 L _{AFP}	LAFP	L _{AFP} A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		113.9

IEC 60651 Type I Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162177 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	Ref.
	LASP		S			94.0	± 0.1
	L _{AiP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			Applied Value		UUT	IEC 60651	
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax				200 ms	105.0	-1.0 ± 1.0
	LASP				Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting				Applied Value		IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 L _{AFP}	A	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5	
					63 Hz	67.9	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
				8 kHz	91.0	-1.1 (+1.5 ; -3.0)	
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162177 證書編號

6.3.2 C-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130 L _{CFP}	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5	
					63 Hz	93.4	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
	1				2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
			8 kHz	92.9	-3.0 (+1.5 ; -3.0)		
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging UUT Setting Applied Value UUT IEC 60804 Burst Burst Burst Equivalent Reading Type 1 Parameter Frequency Frequency Integrating Range (kHz) Duration Duty Level Level (dB) Spec. Weighting Time (dB) Factor (dB) (dB) (dB) (ms) 30 - 110 10 sec. 4 1/10 110.0 100 100.0 ±0.5 1 LAcq A $1/10^{2}$ 90 89.9 ±0.5 1/103 80 79.2 ±1.0 60 sec. 1/104 70 69.2 ± 1.0 5 min.

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz Burst equivalent level	: \pm 0.30 dB : \pm 0.20 dB : \pm 0.35 dB : \pm 0.45 dB : \pm 0.70 dB : \pm 0.10 dB (Ref. 94 dB) : \pm 0.10 dB (Ref. 94 dB) : \pm 0.2 dB (Ref. 110 dB
and a second second	continuous sound level)
	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准・

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162438 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者	 夏目 (Job No. / 序引編號: IC16-0843 Acoustical Calibrator (EQ081) Brüel & Kjær 4231 2326408 Action-United Environmental Servi Unit A, 20/F., Gold King Industrial 	ices and Consulting					
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.					
TEST CONDITIONS /	測試條件						
Temperature / 溫度 : Line Voltage / 電壓 :	(23 ± 2)°C	Relative Humidity / 相對濕度 : (55 ± 20)%					
TEST SPECIFICATIO	NS/測試規範						
DATE OF TEST / 測試	日期 : 10 May 2016						
TEST RESULTS / 測記	結果						
The results do not excee	particular unit-under-test only. d manufacturer's specification. n the subsequent page(s).						
	ooratory, Germany						

Tested By 測試	ų,	H T Wong Technical Officer			
Certified By 核證	:	K C/Lee Project Engineer	Date of Issue 簽發日期	:	11 May 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本質驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun. New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山體機模四樓 Tel/電話: 2927 2606 Fax/佛真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No.: C162438 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C153519
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C162125 證書編號

ITEM TESTED / 送檢 Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號	項目 : ::	(Job No. / 序引編號: IC16-0843) Acoustical Calibrator (EQ082) Brüel & Kjær 4231	Date of Receipt / 收件日期: 14	April 2016		
Serial No. / 編號 Supplied By / 委託者	•••••	2713428 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.				
TEST CONDITIONS / Temperature / 溫度 :	Server.		Relative Humidity / 相對濕度 :	(55 ± 20)%		
Line Voltage / 電壓 :						

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 22 April 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

worth.
H T Wong
Technical Officer

Certified By 核證 Date of Issue 簽發日期 25 April 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載枚正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所習面批准,

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新昇屯門與安里一號肾山灣機機四艘 Tel/電話: 2927 2606 Fax/健真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

K C/Lee Project Engineer

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C162125 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A DescriptionQUniversal CounterQMultifunction Acoustic CalibratorPMeasuring AmplifierQ

Certificate No. C153519 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark 1 The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部海印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG.

WORK ORDER:	HK1705560
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	09/02/2017
DATE OF ISSUE:	16/02/20 <mark>1</mark> 7

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	14 February, 2017

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Sub-Batch:0Date of Issue:16/02/2017Client:ACTION UNITE	ED ENVIRO SERVICES	(ALS)
Equipment Type:Dissolved OxyBrand Name:YSIModel No.:550ASerial No.:16A104433Equipment No.:Date of Calibration:14 February, 2		on: 14 May, 2017

Parameters:

Dissolved Oxygen	Method Ref: APHA (21st edition), 45000: G
Dissolved Oxygen	Method Rel. A HA (215t cutton), 45000. d

Method Rel. AFIA (21st edition), 45000. G				
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)		
4.26	4.22	-0.04		
6.02	5.93	-0.09		
9.06	8.88	-0.18		
	Tolerance Limit (mg/L)	±0.20		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.			
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)	
6.5 20.0 39.0	6.9 20.5 38.1	+0.4 +0.5 -0.9	
	Tolerance Limit (°C)	±2.0	

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager – Inorganics

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>E</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM
CLIENT:	ACTION UNITED ENVIRO SERVICES
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,
	NO. 35–41 TAI LIN PAI ROAD,
	KWAI CHUNG,
	N.T., HONG KONG

WORK ORDER:	HK1705557
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	09/02/2017
DATE OF ISSUE:	16/02/2017

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH and Temperature
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1127748
Equipment No.:	
Date of Calibration:	14 February, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:	HK1705557
Sub-batch:	0
Date of Issue:	16/02/2017
Client:	ACTION UNITED ENVIRO SERVICES
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1127748

Equipment No.: --Date of Calibration: 14 February, 2017

Date of next Calibration:

14 May, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.1	+0.10
7.0	6.8	-0.20
10.0	9.8	-0.20
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
6.5	7.3	+0.8
20.0	19.0	-1.0
38.0	36.8	-1.2
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T., HONG KONG

WORK ORDER:	HK1705562
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	09/02/2017
DATE OF ISSUE:	16/02/2017

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	HACH
Model No.:	2100Q
Serial No.:	11030C008499
Equipment No.:	
Date of Calibration:	14 February, 2017

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Sub-batch: Date of Issue: Client:	HK1705562 0 16/02/2017 ACTION UNITED ENVIRO SE	RVICES	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Turbidimeter HACH 2100Q 11030C008499 14 February, 2017	Date of next Calibration:	14 May, 2017

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.41	
4	4.00	0.0
40	41.2	+3.0
80	78.8	-1.5
400	380	-5.0
800	742	-7.3
	Tolerance Limit (%)	± 10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

ALS Technichem (HK) Pty Ltd

Appendix G

Event and Action Plan

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 45th \ (April \ 2017) \ R0969v \ 2.docx$

Event and Action Plan for Air Quality

Event	ET	IEC	ER ER	Action Contracto
Action Level				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
Limit Level				
 Exceedance for one sample 	 I. Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confrm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
 Exceedance for two or more consecutive samples 		submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the polential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	 Confrm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	ET	IEC	EF	Action Contractor
Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writina: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further <u>exceedance</u> : 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on naxt day of 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	exceedance. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitgation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Lovel, Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implementad; Increase the monitoring frequency to daily until no exceedance of Limit Lovel for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitgation measures to be implemented; Assess the effectiveness of the implemented mitigaton measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A \ Report \ Monthly \ EM\&A \ Report \ 45th \ (April \ 2017) \ R0969v \ 2.docx$

Impact Monitoring Schedule for Reporting Period – April 2017

	Dete	Dust Mo	onitoring	NT- THE BALL AND A STATE	Weter Orelite
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
SAT	1-Apr-17	AM4b, AM5, AM6, AM7b & AM8			
SUN	2-Apr-17				
Mon	3-Apr-17				All Water Quality Monitoring Locations
TUE	4-Apr-17				
WED	5-APR-17		AM1b, AM2, AM3 & AM9b		
THU	6-Apr-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	7-Apr-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
SAT	8-APR-17				All Water Quality Monitoring Locations
SUN	9-Apr-17				
Mon	10-Apr-17				All Water Quality Monitoring Locations
TUE	11-Apr-17		AM1b, AM2, AM3 & AM9b		
WED	12-Apr-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
THU	13-Apr-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Fri	14-Apr-17				All Water Quality Monitoring Locations
SAT	15-Apr-17				
SUN	16-Apr-17				
Mon	17-Apr-17		AM1b, AM2, AM3 & AM9b		
TUE	18-Apr-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
WED	19-Apr-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
THU	20-Apr-17				All Water Quality Monitoring Locations
Fri	21-Apr-17				
SAT	22-Apr-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
SUN	23-Apr-17				
Mon	24-Apr-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
TUE	25-APR-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
WED	26-Apr-17				All Water Quality Monitoring Locations
THU	27-Apr-17				
Fri	28-APR-17	AM1b, AM2, AM3 & AM9b	AM1b, AM2, AM3 & AM9b		
SAT	29-Apr-17	AM4b, AM5, AM6, AM7b & AM8	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
SUN	30-Apr-17				

Monitoring Day
Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period –May 2017

	D. (Dust Mo	onitoring	NI - NF -	
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
MON	1-MAY-17				
TUE	2-MAY-17				All Water Quality Monitoring Locations
WED	3-MAY-17				
THU	4-MAY-17	AM1b, AM2, AM3 & AM9b	AM1b, AM2, AM3 & AM9b	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	5-MAY-17	AM4b, AM5, AM6, AM7b & AM8	AM4b, AM5, AM6, AM7b & AM8	NM3, NM4, NM5, NM6 & NM7	
SAT	6-MAY-17				All Water Quality Monitoring Locations
SUN	7-MAY-17				Locations
Mon	8-MAY-17				
TUE	9-MAY-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
WED	10-MAY-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
THU	11-MAY-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	12-MAY-17				
SAT	13-MAY-17				All Water Quality Monitoring Locations
SUN	14-MAY-17				
Mon	15-MAY-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
TUE	16-MAY-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
WED	17-MAY-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	18-MAY-17				
Fri	19-MAY-17				
SAT	20-MAY-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
SUN	21-MAY-17				
Mon	22-MAY-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
TUE	23-MAY-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
WED	24-MAY-17				
THU	25-MAY-17				All Water Quality Monitoring Locations
Fri	26-MAY-17		AM1b, AM2, AM3 & AM9b		
SAT	27-MAY-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
SUN	28-MAY-17	-			
Mon	29-MAY-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
TUE	30-MAY-17				
WED	31-MAY-17				All Water Quality Monitoring Locations

Monitoring Day
Sunday or Public Holiday

Appendix I

Database of Monitoring Result

24-hour TSP Monitoring Data

	SAMPLE	EL	APSED TIN	ИE		CHAR READII		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V (g		DUST WEIGHT COLLECTED	24-HR TSP
DATE	NUMBER	INITIAL	FINAL	(min)	MI N	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
AM1b – Oj	pen Area, Tsi	ung Yuen H	Ia Village												
5-Apr-17	20757	12890.39	12914.57	1450.80	50	50	50.0	23.4	1014.8	1.72	2498	2.8358	3.0433	0.2075	83
11-Apr-17	20791	12914.57	12938.75	1450.80	50	50	50.0	26.1	1007.7	1.71	2475	2.8212	2.9835	0.1623	66
17-Apr-17	20839	12938.75	12962.89	1448.40	48	48	48.0	26	1010.9	1.63	2361	2.8160	3.0046	0.1886	80
22-Apr-17	20888	12962.89	12986.97	1444.80	48	48	48.0	20.6	1012.9	1.55	2237	2.7964	2.9703	0.1739	78
28-Apr-17	20895	12986.97	13011.12	1449.00	48	48	48.0	21.8	1015.2	1.55	2241	2.8019	2.9750	0.1731	77
AM2 - Villa	age House ne	ar Lin Ma	Hang Road												
5-Apr-17	20756	8403.00	8427.14	1448.40	34	34	34.0	23.4	1014.8	0.95	1370	2.8349	3.0064	0.1715	125
11-Apr-17	20789	8427.14	8450.89	1425.00	35	35	35.0	26.1	1007.7	0.97	1382	2.8289	2.9630	0.1341	97
17-Apr-17	20840	8450.89	8474.71	1429.20	40	40	40.0	26	1010.9	1.14	1630	2.8179	2.9473	0.1294	79
22-Apr-17	20887	8474.71	8498.47	1425.60	40	40	40.0	20.6	1012.9	1.07	1531	2.8003	2.9726	0.1723	113
28-Apr-17	20896	8498.47	8522.07	1416.00	40	40	40.0	21.8	1015.2	1.07	1519	2.7776	2.9962	0.2186	144
AM3 - Ta l	Kwu Ling Fir	e Service S	Station of Ta	a Kwu Lin	g Vill	lage									
5-Apr-17	20755	9548.17	9572.21	1442.40	42	42	42.0	23.4	1014.8	1.12	1613	2.8175	2.9971	0.1796	111
11-Apr-17	20790	9572.21	9596.21	1440.00	38	38	38.0	26.1	1007.7	0.95	1372	2.8186	2.9613	0.1427	104
17-Apr-17	20837	9596.21	9620.21	1440.00	34	34	34.0	26	1010.9	0.80	1155	2.8217	2.9339	0.1122	97
22-Apr-17	20846	9620.21	9644.22	1440.60	36	36	36.0	20.6	1012.9	0.88	1267	2.8460	2.9951	0.1491	118
28-Apr-17	20913	9644.22	9668.22	1440.00	36	36	36.0	21.8	1015.2	0.88	1265	2.8032	2.9735	0.1703	135
	ouse no. 10B1					-	-				-	-	-		
6-Apr-17	20759	11553.49	11577.49	1440.00	44	44	44.0	23.5	1012.5	1.25	1798	2.8437	2.9407	0.0970	54
12-Apr-17	20795	11577.49	11601.49	1440.00	44	44	44.0	20.6	1013.2	1.26	1808	2.8115	2.8943	0.0828	46
18-Apr-17	20841	11601.49	11625.49	1440.00	43	43	43.0	26.7	1008.9	1.21	1745	2.8248	2.9976	0.1728	99
24-Apr-17	20894	11625.49	11649.50	1440.60	40	40	40.0	21.5	1014.3	1.11	1605	2.8001	2.9162	0.1161	72
29-Apr-17	20919	11649.50	11673.50	1440.00	44	44	44.0	23	1014.4	1.23	1772	2.8117	2.9377	0.1260	71
	ng Yeung Vill			i		i	i ———		ii		t	i	i	ri	
6-Apr-17	20760	9399.64	9423.64	1440.00	48	48	48.0	23.5	1012.5	1.55	2232	2.8369	2.9588	0.1219	55
12-Apr-17	20796	9423.64	9447.64	1440.00	48	48	48.0	20.6	1013.2	1.56	2242	2.8340	2.9780	0.1440	64
18-Apr-17	20842	9447.64	9471.65	1440.60	48	48	48.0	26.7	1008.9	1.54	2219	2.8100	3.0496	0.2396	108
24-Apr-17	20893	9471.65	9495.65	1440.00	48	48	48.0	21.5	1014.3	1.47	2119	2.7907	2.9607	0.1700	80
29-Apr-17	20916	9495.65	9519.66	1440.60	48	48	48.0	23	1014.4	1.47	2115	2.8174	2.9518	0.1344	64
	Keng Shan V	. 0		1	-	·	· · · ·				h		1	i i	
6-Apr-17	20761	7981.76	8005.78	1441.20	55	55	55.0	23.5	1012.5	1.57	2264	2.8110	3.1385	0.3275	145
12-Apr-17	20794	8005.78	8029.78	1440.00	60	60	60.0	20.6	1013.2	1.70	2442	2.7988	3.1004	0.3016	124

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\45th (April 2017)\R0969v2.docx

DATE	SAMPLE	EL	APSED TIM	1E		CHAR READII		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V (g		DUST WEIGHT COLLECTED	24-HR TSP
DATE	NUMBER	INITIAL	FINAL	(min)	MI N	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
18-Apr-17	20843	8029.78	8053.78	1440.00	60	60	60.0	26.7	1008.9	1.68	2417	2.8061	3.1225	0.3164	131
24-Apr-17	20892	8053.78	8077.79	1440.60	60	60	60.0	21.5	1014.3	1.62	2330	2.7920	3.0861	0.2941	126
29-Apr-17	20917	8077.79	8101.79	1440.00	60	60	60.0	23.0	1014.4	1.61	2324	2.8111	3.1523	0.3412	147
AM7b - Lo	i Tung Villag	ge House		_											
6-Apr-17	20762	17028.60	17052.60	1440.00	40	40	40.0	23.5	1012.5	1.03	1489	2.8321	2.8862	0.0541	36
12-Apr-17	20792	17052.60	17076.60	1440.00	34	34	34.0	20.6	1013.2	0.85	1231	2.8246	2.9004	0.0758	62
18-Apr-17	20844	17076.60	17100.60	1440.00	38	38	38.0	26.7	1008.9	0.96	1388	2.8100	2.9802	0.1702	123
24-Apr-17	20891	17100.60	17124.61	1440.60	39	39	39.0	21.5	1014.3	0.95	1365	2.7870	2.9040	0.1170	86
29-Apr-17	20918	17124.61	17148.61	1440.00	38	40	39.0	23	1014.4	0.94	1360	2.8243	2.9437	0.1194	88
AM8 - Po F	Kat Tsai Villa	nge No. 4													
6-Apr-17	20785	10925.23	10949.22	1439.40	42	42	42.0	23.5	1012.5	1.15	1648	2.7843	2.8759	0.0916	56
12-Apr-17	20793	10949.23	10973.24	1440.60	40	40	40.0	20.6	1013.2	1.09	1576	2.8197	2.9880	0.1683	107
18-Apr-17	20845	10973.24	10997.24	1440.00	35	35	35.0	26.7	1008.9	0.94	1353	2.8128	2.9530	0.1402	104
24-Apr-17	20890	10997.24	11021.24	1440.00	34	34	34.0	21.5	1014.3	0.87	1254	2.7926	2.9012	0.1086	87
29-Apr-17	20915	11021.24	11045.24	1440.00	38	38	38.0	23	1014.4	0.98	1409	2.8076	2.9436	0.1360	97
AM9b - Na	m Wa Po Vil	lage House	No. 80												
5-Apr-17	20758	18304.45	18328.45	1440.00	30	30	30.0	23.4	1014.8	0.92	1329	2.8390	2.8852	0.0462	35
11-Apr-17	20788	18328.45	18352.45	1440.00	32	34	33.0	26.1	1007.7	1.02	1473	2.8018	2.8678	0.0660	45
17-Apr-17	20838	18352.45	18376.45	1440.00	32	36	34.0	26	1010.9	1.06	1528	2.8090	2.8691	0.0601	39
22-Apr-17	20889	18376.45	18400.45	1440.00	30	32	31.0	20.6	1012.9	0.90	1297	2.7988	2.8629	0.0641	49
28-Apr-17	20914	18400.45	18424.46	1440.60	28	28	28.0	21.8	1015.2	0.80	1148	2.8082	2.8477	0.0395	34

Construction Noise Monitoring Results, dB(A)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NM1 - Tsung	g Yuen	Ha Vill	age Hou	ise No. (63			-		-										-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6-Apr-17	9:30	58.4	61.4	52.4	59.2	62.0	54.2	58.9	61.5	54.3	62.2	63.2	54.9	62.1	63.7	54.6	62.8	65.7	56.6	61	NA
24-Apr-17 10:07 53.5 55.5 48.5 54.8 56.0 49.0 53.8 56.0 49.5 54.4 56.0 51.5 55.7 58.5 50.5 54.5 56.0 50.0 55.5 NM2a-Village House near Lin Ma Hang Road 6-Apr-17 10:09 75.4 67.9 64.4 65.3 65.8 63.9 64.7 65.5 63.6 65.2 66.7 63.7 76.8 69.1 63.3 65.1 66.5 63.3 72 7 12-Apr-17 10:13 67.1 69.5 58.0 66.2 69.0 60.0 65.4 68.0 60.0 68.8 71.0 57.5 69.2 72.5 60.5 69.2 72.5 60.5 69.2 72.5 60.5 69.2 72.5 60.5 69.2 72.5 60.5 69.2 72.5 60.5 69.2 72.5 60.5 68.7 72 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 75.9 55.5 58.6 60.3 55.9 58.4 59.8	12-Apr-17	9:44	58.9	60.5	56.5	61.7	64.5	56.5	60.6	63.5	55.5	60.4	63.0	55.5	60.2	62.5	50.0	60.8	63.5	55.5	61	NA
NM2a - Village House near Lin Ma Hang Road 6-Apr-17 10:09 75.4 67.9 64.4 65.3 65.8 63.9 64.7 65.5 63.6 65.2 66.7 63.7 76.8 69.1 63.3 65.1 66.5 63.3 72 7 12-Apr-17 10:32 66.9 69.5 57.5 66.2 68.5 55.0 67.0 70.5 55.5 66.0 69.5 56.5 66.0 67.5 56.5 60.0 67.5 56.5 60.0 67.5 56.5 60.0 67.5 56.5 60.0 67.5 56.5 60.0 68.8 71.0 57.5 69.2 72.5 60.5 68.7 69.2 72.5 60.0 68.8 70.0 57.5 58.5 64 67 63.7 74.8 58.5 61.7 50.8 54.9 56.6 59.2 48.9 58.2 61.0 50.7 57 N 13-Apr-17 9:34 54.5 55.6 58.8 59.7 <td>18-Apr-17</td> <td>9:28</td> <td></td> <td></td> <td>52.0</td> <td></td> <td>57.0</td> <td>51.0</td> <td>55.1</td> <td>57.5</td> <td>50.5</td> <td>55.4</td> <td>58.0</td> <td>50.5</td> <td>56.1</td> <td>58.0</td> <td>52.5</td> <td>57.1</td> <td>59.0</td> <td>53.0</td> <td></td> <td>NA</td>	18-Apr-17	9:28			52.0		57.0	51.0	55.1	57.5	50.5	55.4	58.0	50.5	56.1	58.0	52.5	57.1	59.0	53.0		NA
	24-Apr-17	10:07	53.5	55.5	48.5	54.8	56.0	49.0	53.8	56.0	49.5	54.4	56.0	51.5	55.7	58.5	50.5	54.5	56.0	50.0	55	NA
12-Apr-17 10:32 66.9 69.5 57.5 66.2 68.5 55.0 67.0 70.5 55.5 66.0 69.5 56.5 66.9 70.0 55.5 67 7 18-Apr-17 10:13 67.1 69.5 58.0 66.2 69.0 60.0 65.4 68.0 60.0 68.8 71.0 57.5 69.2 72.5 60.5 69.2 72.5 60.0 68.8 77 24-Apr-17 9:21 64.6 67.0 60.0 63.8 66.0 60.5 64.1 66.0 60.5 64.8 67.5 61.0 65.8 69.2 72.5 60.0 68.8 77 8 56.5 56.5 58.5 58.5 64.4 66.0 60.5 64.8 67.5 56.8 69.2 72.5 60.5 69.2 65.5 58.5 64.4 66.7 57.5 58.5 58.5 61.7 50.8 54.9 56.8 69.2 48.9 58.2 61.0 50.7 57.8 58.7 50.4 58.4 59.7 56.2 58.4	NM2a - Villa	ge Ho	use near	· Lin Ma	a Hang I	Road																
18-Apr-17 10:13 67.1 69.5 58.0 66.2 69.0 60.0 65.4 68.0 60.0 68.8 71.0 57.5 69.2 72.5 60.5 69.2 72.5 60.0 68.8 71.0 57.5 69.2 72.5 60.0 68.8 71.0 57.5 69.2 72.5 60.0 68.8 71.0 57.5 69.2 72.5 60.0 68.8 72.5 60.5 69.2 72.5 60.0 68.8 70.0 68.8 71.0 57.5 69.2 72.5 60.0 68.8 70.0 68.8 67.0 60.2 65.5 58.5 64.0 60.0 68.8 61.0 65.8 69.0 61.5 63.2 65.5 58.5 64.0 60.0 58.4 59.8 56.1 58.4 69.0 55.6 59.2 48.9 58.5 61.7 50.8 59.0 50.1 50.1 50.1 50.1 50.1 50.2 58.4 60.2 56.6 58.9 59.9 56.8 61.1 62.1 57.7 57.0 N	6-Apr-17	10:09	75.4				65.8		64.7	65.5			66.7		76.8			65.1	66.5			75
24-Apr-17 9:21 64.6 67.0 60.0 63.8 66.0 60.5 64.1 66.0 60.5 64.8 67.5 61.0 65.8 69.0 61.5 63.2 65.5 58.5 64 66 NM3 - Ping Yeung Village House 7-Apr-17 9:34 54.5 56.6 45.9 55.8 59.5 47.8 58.5 61.7 50.8 54.9 56.6 59.2 48.9 58.2 61.0 50.7 57 N 13-Apr-17 9:47 57.7 59.5 55.6 58.7 60.4 56.0 58.4 59.7 56.2 58.4 60.3 56.7 59.0 60.0 56.8 60.2 61.0 57.3 59 N 19-Apr-17 10:33 57.8 59.4 55.5 58.7 60.4 56.0 58.4 59.7 56.2 58.4 60.3 56.7 59.0 60.0 56.8 60.2 61.0 57.3 59 N 25-Apr-17 10:38 64.6 65.5 50.3 64.4 65.3 50.1 62.4 </td <td>12-Apr-17</td> <td>10:32</td> <td>66.9</td> <td>69.5</td> <td>57.5</td> <td>66.2</td> <td>68.5</td> <td>55.0</td> <td>67.0</td> <td>70.5</td> <td>55.5</td> <td>66.0</td> <td>69.5</td> <td>56.5</td> <td>66.0</td> <td>67.5</td> <td>56.5</td> <td>66.9</td> <td>70.0</td> <td>55.5</td> <td>67</td> <td>70</td>	12-Apr-17	10:32	66.9	69.5	57.5	66.2	68.5	55.0	67.0	70.5	55.5	66.0	69.5	56.5	66.0	67.5	56.5	66.9	70.0	55.5	67	70
NM3 - Ping Yeung Village House 7-Apr-17 9:34 54.5 56.6 45.9 55.8 59.5 47.8 58.5 61.7 50.8 54.9 56.6 49.1 55.6 59.2 48.9 58.2 61.0 50.7 57 N 13-Apr-17 9:47 57.7 59.5 55.6 58.6 60.3 55.9 58.4 59.8 56.1 58.4 60.2 56.6 58.9 59.9 56.8 61.1 62.1 57.2 59 N 19-Apr-17 10:33 57.8 59.4 55.5 58.7 60.4 56.0 58.4 59.7 56.2 58.4 60.3 56.7 59.0 60.0 56.8 61.1 62.1 57.2 59 N 25-Apr-17 9:26 66.9 69.8 59.1 62.2 65.4 59.3 62.8 65.1 59.2 64.1 65.5 58.4 62.1 63.7 57.4 64 N M4 - Wo Keng Shan Village Hou	18-Apr-17	10:13	67.1	69.5	58.0	66.2	69.0	60.0	65.4	68.0	60.0	68.8	71.0	57.5	69.2	72.5	60.5	69.2	72.5	60.0	68	71
7-Apr-17 9:34 54.5 56.6 45.9 55.8 59.5 47.8 58.5 61.7 50.8 54.9 56.8 49.1 55.6 59.2 48.9 58.2 61.0 50.7 57 N 13-Apr-17 9:47 57.7 59.5 55.6 58.6 60.3 55.9 58.4 59.8 56.1 58.4 60.2 56.6 58.9 59.9 56.8 61.1 62.1 57.2 59 N 19-Apr-17 10:33 57.8 59.4 55.5 58.7 60.4 56.0 58.4 59.3 62.2 58.4 60.3 56.7 59.0 60.0 56.8 60.2 61.0 57.3 59 N 25-Apr-17 9:26 66.9 69.8 59.1 62.2 65.4 59.0 63.1 64.9 59.3 62.8 65.1 59.2 64.1 65.5 58.4 62.1 63.7 57.4 64 N MM4 - Wo Keng Sham Village House 7 9:10 62.5 66.3 63.1 61.7 64.4	24-Apr-17	9:21	64.6	67.0	60.0	63.8	66.0	60.5	64.1	66.0	60.5	64.8	67.5	61.0	65.8	69.0	61.5	63.2	65.5	58.5	64	67
13-Apr-17 9:47 57.7 59.5 55.6 58.6 60.3 55.9 58.4 59.8 56.1 58.4 60.2 56.6 58.9 59.9 56.8 61.1 62.1 57.2 59 N 19-Apr-17 10:33 57.8 59.4 55.5 58.7 60.4 56.0 58.4 59.7 56.2 58.4 60.3 56.7 59.0 60.0 56.8 60.2 61.0 57.3 59 N 25-Apr-17 9:26 66.9 69.8 59.1 62.2 65.4 59.0 63.1 64.9 59.3 62.8 65.1 59.2 64.1 65.5 58.4 62.1 63.7 57.4 64 N NM4 - Wo Keng Sham Village House Poilo 62.5 66.3 63.1 61.7 64.1 54.2 62.9 54.1 60.0 62.1 53.9 63.8 N 13-Apr-17 9:10 62.5 66.3 63.1 61.7 64.1 54.2 62.9 54.1 60.0 62.1 53.9 62.2 65.1 <td>NM3 - Ping Y</td> <td>Yeung</td> <td>Village I</td> <td>House</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NM3 - Ping Y	Yeung	Village I	House										-								
19-Apr-17 10:33 57.8 59.4 55.5 58.7 60.4 56.0 58.4 59.7 56.2 58.4 60.3 56.7 59.0 60.0 56.8 60.2 61.0 57.3 59 N 25-Apr-17 9:26 66.9 69.8 59.1 62.2 65.4 59.0 63.1 64.9 59.3 62.8 65.1 59.2 64.1 65.5 58.4 62.1 63.7 57.4 64 N NM4 - Wo Keng Shan Village House	7-Apr-17	9:34								61.7	50.8		56.8					58.2				NA
25-Apr-17 9:26 66.9 69.8 59.1 62.2 65.4 59.0 63.1 64.9 59.3 62.8 65.1 59.2 64.1 65.5 58.4 62.1 63.7 57.4 64 N M4 - Wo Keng Shan Village House	13-Apr-17	9:47	57.7								56.1		60.2			59.9		61.1	62.1			NA
NM4 - Wo Keng Shan Village House 7-Apr-17 10:08 64.6 65.5 50.3 64.4 65.3 50.1 62.1 64.5 49.1 64.1 65.3 50.1 62.0 59.6 49.9 61.1 58.9 48.9 63 N 13-Apr-17 9:10 62.5 66.3 63.1 61.7 64.1 54.2 62.9 62.9 54.1 60.0 62.1 53.9 62.2 65.1 54.4 62 N 19-Apr-17 11:05 62.5 66.0 51.9 61.7 63.6 51.3 60.4 60.7 54.1 61.9 61.2 52.7 62.3 63.6 52.6 61.2 62.6 51.4 62 N 25-Apr-17 10:00 64.3 65.5 50.1 62.9 64.7 65.2 50.4 65.6 67.7 50.8 63.8 59.7 51.9 66.8 69.8 52.3 65 N 25-Apr-17 10:00	19-Apr-17	10:33						56.0					60.3		59.0	60.0		60.2	61.0		59	NA
7-Apr-17 10:08 64.6 65.5 50.3 64.4 65.3 50.1 62.1 64.5 49.1 64.1 65.3 50.1 62.0 59.6 49.9 61.1 58.9 48.9 63 N 13-Apr-17 9:10 62.5 66.3 63.1 61.7 64.1 54.2 62.5 63.4 53.9 62.9 54.1 60.0 62.1 53.9 62.2 65.1 54.4 62 N 19-Apr-17 11:05 62.5 66.0 51.9 61.7 63.6 51.3 60.4 60.7 54.1 61.9 62.2 65.6 61.2 62.6 51.4 62 N 25-Apr-17 10:00 64.3 65.5 50.1 62.9 64.7 49.9 64.7 65.2 50.4 65.6 67.7 50.8 63.8 59.7 51.9 66.8 69.8 52.3 65 N 25-Apr-17 10:00 64.3 55.3 57.2 50.2 56.8 60.2 50.3 53.3 56.1 49.9 53.5	25-Apr-17	9:26	66.9	69.8	59.1	62.2	65.4	59.0	63.1	64.9	59.3	62.8	65.1	59.2	64.1	65.5	58.4	62.1	63.7	57.4	64	NA
13-Apr-17 9:10 62.5 66.3 63.1 61.7 64.1 54.2 62.5 63.4 53.9 62.9 54.1 60.0 62.1 53.9 62.2 65.1 54.4 62 N 19-Apr-17 11:05 62.5 66.0 51.9 61.7 63.6 51.3 60.4 60.7 54.1 61.9 61.2 52.7 62.3 63.6 52.6 61.2 62.6 51.4 62 N 25-Apr-17 10:00 64.3 65.5 50.1 62.9 64.7 49.9 64.7 65.2 50.4 65.6 67.7 50.8 63.8 59.7 51.9 66.8 69.8 52.3 65 N NM5- Ping Yeung Village House V <th< td=""><td></td><td></td><td></td><td>0</td><td></td><td>r T</td><td></td><td></td><td>-</td><td></td><td>0</td><td>1 1</td><td></td><td>T</td><td>1</td><td></td><td></td><td>1 1</td><td></td><td></td><td>r</td><td></td></th<>				0		r T			-		0	1 1		T	1			1 1			r	
19-Apr-17 11:05 62.5 66.0 51.9 61.7 63.6 51.3 60.4 60.7 54.1 61.9 61.2 52.7 62.3 63.6 52.6 61.2 62.6 51.4 62 N 25-Apr-17 10:00 64.3 65.5 50.1 62.9 64.7 49.9 64.7 65.2 50.4 65.6 67.7 50.8 63.8 59.7 51.9 66.8 69.8 52.3 65 N NM5- Ping Yeung Village House Villag	L																					NA
25-Apr-17 10:00 64.3 65.5 50.1 62.9 64.7 49.9 64.7 65.2 50.4 65.6 67.7 50.8 63.8 59.7 51.9 66.8 69.8 52.3 65 N NM5- Ping Yeung Village House 7-Apr-17 10:45 56.2 57.6 51.1 55.3 57.2 50.2 56.8 60.2 50.3 53.3 56.1 49.9 53.5 55.6 50.2 55.0 58.1 49.4 55 N 13-Apr-17 10:30 51.3 53.8 47.1 51.2 53.7 47.3 53.3 56.6 48.0 52.7 54.9 47.8 53.6 56.1 48.0 52.4 55.9 47.6 53 N 19-Apr-17 11:41 51.7 54.0 47.1 51.3 53.8 47.5 53.3 56.6 48.0 52.8 55.1 47.9 53.3 56.1 48.2 52.3 55.8 47.7 53 N																						NA
NM5- Ping Yeung Village House 7-Apr-17 10:45 56.2 57.6 51.1 55.3 57.2 50.2 56.8 60.2 50.3 53.3 56.1 49.9 53.5 55.6 50.2 55.0 58.1 49.4 55 N 13-Apr-17 10:30 51.3 53.8 47.1 51.2 53.7 47.3 53.3 56.5 48.0 52.7 54.9 47.8 53.6 56.1 48.0 52.4 55.9 47.6 53 N 19-Apr-17 11:41 51.7 54.0 47.1 51.3 53.8 47.5 53.3 56.6 48.0 52.8 55.1 47.9 53.3 56.1 48.2 52.3 55.8 47.7 53 N	1																					NA
7-Apr-17 10:45 56.2 57.6 51.1 55.3 57.2 50.2 56.8 60.2 50.3 53.3 56.1 49.9 53.5 55.6 50.2 55.0 58.1 49.4 55 N 13-Apr-17 10:30 51.3 53.8 47.1 51.2 53.7 47.3 53.3 56.5 48.0 52.7 54.9 47.8 53.6 56.1 48.0 52.4 55.9 47.6 53 N 19-Apr-17 11:41 51.7 54.0 47.1 51.3 53.8 47.5 53.3 56.6 48.0 52.8 55.1 47.9 53.3 56.1 48.2 52.3 55.8 47.7 53 N	25-Apr-17	10:00	64.3	65.5	50.1	62.9	64.7	49.9	64.7	65.2	50.4	65.6	67.7	50.8	63.8	59.7	51.9	66.8	69.8	52.3	65	NA
13-Apr-17 10:30 51.3 53.8 47.1 51.2 53.7 47.3 53.3 56.5 48.0 52.7 54.9 47.8 53.6 56.1 48.0 52.4 55.9 47.6 53 N 19-Apr-17 11:41 51.7 54.0 47.1 51.3 53.8 47.5 53.3 56.6 48.0 52.8 55.1 47.9 53.3 56.1 48.2 52.3 55.8 47.7 53 N				House								, ,		1	1 1			-			1	
19-Apr-17 11:41 51.7 54.0 47.1 51.3 53.8 47.5 53.3 56.6 48.0 52.8 55.1 47.9 53.3 56.1 48.2 52.3 55.8 47.7 53 N	7-Apr-17	10:45	56.2	57.6	51.1	55.3	57.2	50.2	56.8	60.2	50.3	53.3	56.1	49.9	53.5	55.6	50.2	55.0	58.1	49.4	55	NA
	13-Apr-17	10:30	51.3	53.8	47.1	51.2	53.7	47.3	53.3	56.5	48.0	52.7	54.9	47.8	53.6	56.1	48.0	52.4	55.9	47.6	53	NA
	19-Apr-17	11:41	51.7	54.0	47.1	51.3	53.8	47.5	53.3	56.6	48.0	52.8	55.1	47.9	53.3	56.1	48.2	52.3	55.8	47.7	53	NA
25-Apr-17 10:35 51.8 54.1 47.3 51.3 53.7 47.4 53.1 55.9 47.9 52.9 55.0 47.8 53.8 56.1 48.1 52.3 55.8 47.8 53 N	25-Apr-17	10:35	51.8	54.1	47.3	51.3	53.7	47.4	53.1	55.9	47.9	52.9	55.0	47.8	53.8	56.1	48.1	52.3	55.8	47.8	53	NA
NM6 – Tai Tong Wu Village House 2	NM6 – Tai Te	ong W	u Village	e House	2					-		• •		•	•		-		-		*	
7-Apr-17 11:20 58.8 61.1 54.2 59.2 60.8 53.2 56.4 59.4 51.8 57.3 60.4 51.0 55.7 58.1 52.1 57.4 59.4 54.2 58 N	7-Apr-17	11:20	58.8	61.1	54.2	59.2	60.8	53.2	56.4	59.4	51.8	57.3	60.4	51.0	55.7	58.1	52.1	57.4	59.4	54.2	58	NA
13-Apr-17 11:05 59.9 62.4 53.9 62.0 63.1 49.8 63.1 68.0 49.3 60.8 64.1 50.8 59.9 62.9 50.1 61.8 64.2 50.9 61 N	13-Apr-17	11:05	59.9	62.4	53.9	62.0	63.1	49.8	63.1	68.0	49.3	60.8	64.1	50.8	59.9	62.9	50.1	61.8	64.2	50.9	61	NA
19-Apr-17 12:14 59.8 62.3 53.7 62.0 65.2 49.8 62.7 67.0 48.3 60.7 64.1 50.7 59.5 62.6 49.9 61.6 64.6 50.7 61 N	19-Apr-17	12:14	59.8	62.3	53.7	62.0	65.2	49.8	62.7	67.0	48.3	60.7	64.1	50.7	59.5	62.6	49.9	61.6	64.6	50.7	61	NA
	25-Apr-17			61.7	53.1	59.2	61.8	54.1	60.8	62.8	54.9	59.1	63.1	53.9	58.7	62.8		58.8	63.2	54.7	59	NA
NM7 – Po Kat Tsai Village	NM7 – Po Ka	at Tsai				. 1																
		1	0	60.1	56.1	59.4	61.3	55.3	60.1	63.1	55.5	61.0	63.2	56.0	59.9	62.4	55.6	58.9	60.4	55.9	60	NA

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
13-Apr-17	13:00	54.7	57.7	51.6	55.0	57.3	51.8	60.1	58.9	52.0	55.5	56.8	51.7	55.3	55.9	49.9	55.9	56.1	51.1	57	NA
19-Apr-17	12:53	55.1	57.8	51.6	55.1	57.3	51.5	54.2	55.9	49.9	55.5	56.8	50.6	54.6	55.8	49.8	56.0	56.7	50.9	55	NA
25-Apr-17	12:46	63.4	65.4	58.7	63.1	65.9	59.5	68.1	69.8	61.3	64.3	67.1	59.9	64.8	67.2	59.2	64.4	66.8	57.7	65	NA
NM8 - Villag	ge Hous	e, Tong	g Hang																		
6-Apr-17	10:07	59.6	65.2	50.4	57.8	61.6	50.1	58.9	64.8	49.6	57.9	63.4	48.8	59.4	65.5	48.5	57	58.7	48	59	NA
10-Apr-17	9:25	53.6	55.2	51	56.8	56.6	51.5	54.4	56.8	51.7	55.5	57	52.5	57.6	58.5	52.6	55.5	56.7	51.5	56	NA
18-Apr-17	9:49	58.5	63.2	47	59.7	63.7	47.5	60.8	66.6	48.3	59.6	65.8	48.5	57.5	58.5	48.3	60.9	66.5	47	60	NA
24-Apr-17	13:01	61.3	64.7	56	62.1	64.9	56.7	61.7	64.8	56.3	60.1	63.3	56.1	60.7	63.7	56.8	61	64.1	56.8	61	NA
NM9 - Villag	ge Hous	e, Kiu '	Гаu Vill	age	_															_	-
6-Apr-17	10:51	61.6	64.1	58.2	60.5	63.7	58.7	61.6	64.5	58.5	60.9	62.0	58.0	62.8	65.4	58.5	61.9	63.5	58.6	62	NA
10-Apr-17	10:18	64.1	66.7	61.4	65.7	67.9	62.9	66.7	69.0	63.0	65.8	68.5	62.2	66.4	69.4	63.7	65.6	68.7	62.0	66	NA
18-Apr-17	10:33	61.8	64.5	58.0	60.9	63.7	58.6	62.5	65.5	58.8	60.5	61.6	58.7	62.7	63.9	59.0	63.5	64.5	60.5	62	NA
24-Apr-17	13:37	63.4	67.5	59.4	65.1	68.4	59.0	64.7	68.8	59.7	62.1	65.7	58.4	62.7	65.8	58.5	63.0	67.9	59.1	64	NA
NM10 - Nam	wa Po	o Villag	e House	No. 80																	
6-Apr-17	11:36	62.8	63.6	60.1	61.8	62.9	59.8	61.5	63.5	60.3	62.7	63.3	60.5	62.6	63.3	60.6	62.5	63.5	60.0	62	65
10-Apr-17	11:00	60.7	61.9	59.0	61.2	62.6	59.2	61.6	63.2	59.6	60.4	62.7	59.5	61.7	62.4	60.3	60.6	61.1	59.2	61	64
18-Apr-17	11:18	60.6	61.3	59.0	61.3	62.5	59.1	61.4	63.7	59.5	62.5	64.0	59.1	62.9	64.5	60.5	63.2	65.3	60.9	62	65
24-Apr-17	14:15	61.4	64.3	57.7	62.5	65.1	57.6	61.5	64.5	57.7	60.7	63.9	58.0	63.1	66.7	59.1	51.1	63.8	58.5	61	64

Noise Monitoring Results for Restricted Hour, dB(A)

		Evening Time	e					Nig	ght Time		
Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}	Date	Start Time	Leq _{5min}	L10	L90	façade correction Leq _{5min}
NM1 - Tsung Yuen Ha V	'illage House N	No. 63									
7-Apr-17	22:07	47	51	42	NA						
NM4 - Wo Keng Shan Vi	llage House										
7-Apr-17	22:30	58	53	42	NA						
NM5– Ping Yeung Villag	e House										
7-Apr-17								44	47	41	NA
NM7 – Po Kat Tsai Villag	ge										
7-Apr-17	21:44	58	58	54	NA	7-Apr-17	23:26	56	58	53	NA
NM8 - Village House, To	ng Hang		-	-							
7-Apr-17	21:11	59	53	47	NA	7-Apr-17	23:54	60	65	48	NA

Water Quality Monitoring Data for Contract 6 and SS C505

Date	1-Apr-17#	•	-		•		• •	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM1-C	9:27	0.34				<u>351.0</u> 359.0 355.0		199 199.0
WM1	9:38	0.26				<u>409.0</u> 420.0 414.5		216 216.0
		-						
Date	3-Apr-17	F						
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	9:50	0.34	<u>19.5</u> 19.5 19.5	<u>6.04</u> <u>6.06</u> 6.1	<u>65.7</u> 65.9 65.8	$\frac{60.9}{60.7} \qquad 60.8$	9.5 9.5 9.5	74 77 75.5
WM1	10:00	0.26	$\begin{array}{c c} 20.7 \\ \hline 20.7 \end{array}$ 20.7	8.22 8.25 8.2	<u>91.7</u> 92.3 92.0	<u>61.9</u> <u>52.7</u> 57.3	<u>9.2</u> 9.2 9.2	
_								
Date	6-Apr-17	Dently (m)	\mathbf{T}_{a}	$\mathbf{DO}(m_{\mathbf{z}}/\mathbf{I})$				$\Omega\Omega(m_{\rm e}/{\rm I})$
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%) 61.1 (1.2	Turbidity (NTU) 48.9	pH	SS(mg/L) 48 45 0
WM1-C	9:55	0.34	24 24.0	<u>5.16</u> <u>5.17</u> 5.2	61.2 61.2	49.7 49.5	8.4 8.4 8.4	42 45.0
WM1	10:05	0.26	<u>23.7</u> 23.7 23.7	<u>6.87</u> <u>6.89</u> 6.9	<u>81.1</u> 81.3 81.2	<u>59.0</u> 58.9 59.0	8.2 8.2 8.2	$\frac{39}{36}$ 37.5
		-						· · · · ·
Date	8-Apr-17		T (()				T İT	
Location	Time	Depth (m)	Temp (oC) 24.3 24.4	DO (mg/L) 6.53	DO (%)	Turbidity (NTU)75.876.6	pH	SS(mg/L)
WM1-C	9:50	0.34	24.4 24.4	6.6 0.0	78.2 78.8 79.3 78.8	77.4 /0.0	8.6 8.6 8.6	101 104.0
WM1	9:59	0.17	<u>25.5</u> 25.7 25.6	7.81 7.89 7.9	<u>95.6</u> 96.6 96.1	<u>84.7</u> 85.5 85.1	8.3 8.3 8.3	79 87 83.0
Date	10-Apr-17		T (()				TT	
Location	Time	Depth (m)	$\begin{array}{c c} Temp (oC) \\ \hline 26 \hline 26$	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	10:10	0.34	26 20.0	<u>5.13</u> <u>5.14</u> 5.1	<u>62.7</u> <u>62.9</u> 62.8	<u>76.2</u> 75.5 75.9	7.9 7.9 7.9	<u>80</u> 82 81.0
WM1	10:25	0.26	$\begin{array}{c c} 26.2 \\ \hline 26.2 \end{array}$ 26.2	<u>4.95</u> <u>4.94</u> 4.9	<u>59.7</u> <u>59.6</u> 59.7	77.1 77.3 77.3	6.6 6.6 6.6	
	10 1 15							
Date	12-Apr-17						T İT	
L o o o ti o			Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
Location WM1-C	Time 9:45	Depth (m)	23 22.0	5 50	58.1 57.8	66.8 65.8	8.9 8.9	88 90.0
United Control	9:45 9:55	034 0.26		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58.1 57.5 \$57.5 \$57.8 \$86.0 \$86.1	$\begin{array}{c c} 66.8 \\ \hline 64.8 \\ \hline 40.5 \\ \hline 39.6 \\ \end{array} 65.8$	8.9 8.9 8.5 8.5	88 90.0 92 90.0 40 42.0

Date	14-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рH	SS(mg/L)
WM1-C	9:25	0.34	<u>19</u> 19.0	6.01	<u>66.8</u> 66.9 66.9	<u>343.0</u> 352.0 347.5	8.5 8.5 8.5	$\begin{array}{c c} 167 \\ \hline 179 \end{array}$ 173.0
WM1	9:35	0.26	<u>19.5</u> 19.5 19.5	7.07 7.1	77.0 77.1 77.2	<u>365.0</u> 358.0 361.5	8.9 8.9 8.9	$ \begin{array}{r} 169 \\ 176 \\ 172.5 \end{array} $
					· · ·			
Date	18-Apr-17		T (O)				TT TT	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	10:10	0.26	<u>27.5</u> 27.5 27.5	3.74	<u>46.8</u> 47.0 46.9	<u>69.8</u> <u>65.1</u> 67.5	8.8 8.8 8.8	<u>52</u> 48 50.0
WM1	10:20	0.34	$\begin{array}{r} 27.5 \\ 27.5 \end{array}$ 27.5	5.44 5.4	<u>68.9</u> <u>68.7</u> 68.8	75.9 74.3 75.1	7.9 7.9 7.9	<u>65</u> 61 63.0
	•••	-	-		· ·	· ·	• •	
Date	20-Apr-17						í ir	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	9:30	0.34	$\begin{array}{c c} 27.3 \\ \hline 27.3 \end{array}$ 27.3	4.57	57.3 57.6 57.8 57.6	188.0 182.0 185.0	8.3 8.3 8.3	$ \begin{array}{c c} 256 \\ 268 \end{array} $ 262.0
WM1	9:40	0.26	$ \begin{array}{r} 26.5 \\ 26.5 \end{array} $ 26.5	<u>5.19</u> 5.05 5.1	<u>64.7</u> <u>62.5</u> 63.6	<u>90.0</u> 82.5 86.3	7.7 7.7 7.7	$\frac{42}{39}$ 40.5
·		-	• • •		· · ·	· ·		
Date	22-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	9:01	0.34	$\begin{array}{c} 21.2 \\ \hline 21.2 \end{array}$ 21.2	1.53	<u>84.2</u> 85.1 84.7	77.7 78.1	8.5 8.5 8.5	$\frac{55}{53}$ 54.0
WM1	9:23	0.18	$\begin{array}{c} 21.3 \\ \hline 21.3 \end{array}$ 21.3	<u>6.89</u> <u>6.93</u> 6.9	77.8 78.1	<u>609.0</u> <u>634.0</u> 621.5	<u>8.2</u> 8.2 8.2	$\frac{590}{548}$ 569.0
·		-	• • •		· · ·	· · · · · · · · · · · · · · · · · · ·		
Date	24-Apr-17						r	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM1-C	11:33	0.34	$\begin{array}{c c} 22.3 \\ \hline 22.3 \\ \hline 22.3 \\ \hline \end{array} 22.3$	0.2	$\begin{array}{c c} 71.3 \\ \hline 70.6 \end{array}$ 71.0	<u>368.0</u> 364.0 366.0	8 8.0	$ \begin{array}{c c} 169 \\ 172 \\ 170.5 \end{array} $
WM1	11:20	0.26	$\begin{array}{c c} 22.9 \\ \hline 22.9 \\ \hline 22.9 \end{array}$ 22.9	<u>5.4</u> 5.35 5.4	<u>62.8</u> <u>62.1</u> 62.5	<u>169.0</u> 182.0 175.5	7.7 7.7 7.7	$\begin{array}{r} 145 \\ 145 \end{array}$ 145.0
				·	÷		·	
Date	25-Apr-17#							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM1-C	9:45	0.34				<u>69.2</u> 68.8 69.0		<u>45</u> 45 45.0
WM1	9:57	0.26				$\frac{134.0}{136.0}$ 135.0		<u>91</u> 91 91.0

Date	26-Apr-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS(r	ng/L)
WM1-C	9:30	0.34	23.3	22.2	6.16	62	71.7	71.0	223.0	224.5	8.9	80	87	96.0
WIVII-C	9.30	0.34	23.3	23.5	6.17	6.2	72.1	/1.9	226.0	224.3	8.9	0.9	105	90.0
WM1	9:40	0.26	23.9	23.9	5.04	5.0	59.7	59.2	315.0	315.5	8.3	8.2	147	140.5
VV IVI I	9.40	0.20	23.9	23.9	4.98	5.0	58.7	39.2	316.0	515.5	8.3	0.5	134	140.3

Date	27-Apr-17#	-		-				•	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(m	ng/L)
WM1-C	9:50	0.35				<u>304.0</u> 291.0 297.5		346	346.0
WM1	10:00	0.26				<u>171.0</u> 172.0 171.5		106	106.0

Date	28-Apr-17	-	-			-		-	-		-		-	•
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(r	ng/L)
WM1-C	9:30	0.34	21.4 21.4	21.4	6.52 6.51	6.5	72.2 72.9	72.6	112.0 113.0	112.5	9 9	9.0	129 120	124.5
WM1	9:43	0.26	21.8 21.8	21.8	6.36 6.34	6.4	72.3	72.3	135.0 125.0	130.0	8.5 8.5	8.5	76 82	79.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 3

Date	3-Apr-17	-	-		_	-	•	-	•		-		-	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM4-CA	11:30	0.18	24	24.0	8.47	8.5	100.7	100.9	7.9	7.2	7.7	77	5	7.5
WW4-CA	11.50	0.18	24	24.0	8.49	0.5	101.0	100.9	6.5	1.2	7.7	1.1	10	7.5
WM4-CB	11:40	0.31	24.3	24.3	6.32	6.2	76.0	76.2	16.3	16.2	7.5	75	14	14.0
WW4-CD	11.40	0.51	24.3	24.3	6.34	6.3	76.3	70.2	16.1	10.2	7.5	7.5	14	14.0
WM4	11:20	0.15	22.1	22.1	7.77	7.8	89.1	89.4	11.8	117	7.9	7.9	12	12.0
vv 1v14	11.20	0.13	22.1	22.1	7.79	/.0	89.7	09.4	11.5	11.7	7.9	7.9	12	12.0

Date	6-Apr-17		-					-					=	
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	12:15	0.18	23.7	23.7	7.78	7.8	91.8	91.9	5.4	5.4	8.2	8.2	5	4.5
WM4-CA	12.15	0.18	23.7	23.7	7.79	7.0	91.9	91.9	5.4	5.4	8.2	0.2	4	4.5
WM4-CB	12:35	0.31	24.6	24.6	4.74	4.8	56.9	57.0	19.5	19.2	7.8	7.8	32	32.0
WW4-CD	12.55	0.51	24.6	24.0	4.76	4.8	57.1	57.0	18.9	19.2	7.8	/.0	32	52.0
WINAA	12.05	0.15	24	24.0	6.38	6.4	75.7	75.0	7.8	7.0	8.3	0.2	8	8.0
WM4	12:05	0.15	24	24.0	6.39	6.4	75.8	75.8	7.9	7.8	8.3	8.3	8	8.0

Date	8-Apr-17		-			-		-			-		-	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM4-CA	12:19	0.18	26.1	26.1	8.28	8.3	101.9	102.1	8.2	8.3	7.3	7.2	4	3.5
WW4-CA	12.19	0.18	26.1	20.1	8.3	0.3	102.3	102.1	8.3	0.3	7.3	1.5	3	5.5
WM4-CB	12:37	0.35	26.1	26.1	6.2	6.2	76.5	77.2	18.5	18.8	7	7.0	21	21.5
WIVI4-CD	12.57	0.55	26.1	20.1	6.3	6.3	77.9	11.2	19.0	10.0	7	7.0	22	21.3
WMA	12.04	0.10	25.7	25.7	7.19	7.2	87.8	88.3	14.2	14.6	7.3	7.2	18	17.0
WM4	12:04	0.19	25.6	25.7	7.2	1.2	88.7	00.3	15.0	14.6	7.3	1.5	16	17.0

Date	10-Apr-17		-		-	-		•			-	•	-	-
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	12:15	0.18	24.8	24.8	7.57	76	90.4	90.5	7.3	7.0	6.8	6.8	5	4.5
WW4-CA	12.13	0.18	24.8	24.0	7.56	7.6	90.5	90.5	6.7	7.0	6.8	0.0	4	4.5
WM4-CB	12:25	0.31	25.6	25.6	4.66	4.7	57.2	57.3	17.4	17.5	6.4	6.4	14	14.5
WWW4-CD	12.23	0.31	25.6	23.0	4.68	4./	57.4	57.5	17.5	17.5	6.4	0.4	15	14.3
WM4	12:05	0.15	25.3	25.3	6.48	6.5	78.6	78.7	12.2	11.2	6.8	6.8	15	14.5
W 1V14	12.03	0.13	25.3	23.5	6.49	6.5	78.7	/0./	10.3	11.3	6.8	0.8	14	14.5

Date	12-Apr-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	11:20	0.18	22.2	22.2	7.94	7.9	91.2	01.1	7.5	7 2	9.7	0.7	4	4.0
WW4-CA	11.20	0.18	22.2	22.2	7.92	7.9	90.9	91.1	7.2	1.3	9.7	9.7	4	4.0
WM4-CB	11:30	0.31	22.4	22.4	4.96	4.9	57.4	57.0	20.6	20.2	9	9.0	20	19.5
WIVI4-CD	11.50	0.51	22.4	22.4	4.91	4.9	56.5	57.0	19.7	20.2	9	9.0	19	19.5
W/M/	11.10	0.15	22.1	22.1	6.62	6.6	76.0	75 7	34.4	22.0	9.8	0.8	18	10.5
WM4	11:10	0.15	22.1	22.1	6.59	6.6	75.4	75.7	31.6	33.0	9.8	9.8	19	18.5

Date	14-Apr-17	-	-				•	-			-	-	-	-
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	10:55	0.19	21	21.0	8.15	8.2	91.4	91.5	10.4	10.9	8.7	8.7	8	7.0
WM4-CA	10.55	0.18	21	21.0	8.17	0.2	91.6	91.5	11.4	10.9	8.7	0./	6	7.0
WM4-CB	11:10	0.31	21.9	21.9	4.41	4.4	50.3	50.4	47.3	47.1	8.1	8.1	42	41.5
WIVI4-CD	11.10	0.51	21.9	21.9	4.43	4.4	50.4	30.4	46.8	4/.1	8.1	0.1	41	41.5
W/M/	10.40	0.15	20.9	20.0	7.05	71	79.0	70.1	26.3	25 4	8.7	07	12	12.0
WM4	10:40	0.15	20.9	20.9	7.06	/.1	79.1	79.1	24.4	25.4	8.7	8.7	14	13.0

Date	18-Apr-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	11.45	0.18	27.4	27.4	7.48	75	94.5	94.8	5.6	5.0	8	8.0	4	4.5
WM4-CA	11:45	0.18	27.4	27.4	7.52	7.5	95.1	94.8	4.3	5.0	8	8.0	5	4.5
WM4-CB	12:00	0.31	28.1	28.1	5.27	53	67.4	67.3	17.8	17.7	7.6	76	17	17.5
WIVI4-CD	12.00	0.51	28.1	28.1	5.26	5.5	67.1	07.5	17.6	1/./	7.6	/.6	18	17.5
WM4	11.25	0.15	27	27.0	6.76	60	84.9	85.0	20.4	20.3	8	8.0	18	19.0
vv 1V14	11:35	0.15	27	27.0	6.77	6.8	85.1	83.0	20.1	20.5	8	8.0	20	19.0

Date	20-Apr-17	-	-		_	-		•	•		-	•	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM4-CA	13:10	0.19	26.9	26.9	6.94	7.0	86.8	87.4	2.3	2.2	8.4	8.4	22	22.0
WM4-CA	15.10	0.18	26.9	20.9	7.01	7.0	87.9	87.4	2.0	2.2	8.4	0.4	<2	22.0
	12.20	0.21	27.2	27.2	4.64	16	58.6	59.0	17.6	177	7.7		<2	22.0
WM4-CB	13:20	0.31	27.2	27.2	4.55	4.6	57.4	58.0	17.8	17.7	7.7	1.1	22	22.0
WINAA	12.00	0.15	27.8	27.0	6.22	60	79.2	79.5	8.0	70	8.3	0.2	10	9.5
WM4	13:00	0.15	27.8	27.8	6.26	6.2	79.8	19.5	7.7	7.8	8.3	8.3	9	9.5

Date	22-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	11:48	0.24	21.3	21.3	7.84	7.9	88.7	88.9	20.4	20.8	8.4	8.4	17	15.5
WM4-CA	11.40	0.24	21.2	21.5	7.93	7.9	89.1	00.9	21.1	20.8	8.4	0.4	14	13.3
WM4-CB	12:07	0.27	21.3	21.2	5.64	57	63.7	64.1	58.6	59.2	7.9	79	50	52.0
WINI4-CD	12.07	0.37	21.3	21.3	5.74	5.7	64.5	04.1	59.7	39.2	7.9	7.9	54	32.0
WINAA	11.26	0.17	21.2	21.2	7.31	74	82.3	92.0	275.0	270.0	8.2	0.2	218	209.0
WM4	11:36	0.17	21.2	21.2	7.43	/.4	83.7	83.0	283.0	279.0	8.2	8.2	200	209.0

Date	24-Apr-17		-		-	-		-	•		-	•	-	-
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	12.07	0.19	23	22.0	7.58	76	88.3	88.4	11.1	10.5	8.2	0 2	6	6.0
WM4-CA	13:07	0.18	23	23.0	7.59	7.6	88.5	88.4	9.8	10.5	8.2	8.2	6	6.0
WM4-CB	13:35	0.21	24.1	24.1	5.44		65.0	65.1	15.4	15.4	7.7		18	17.0
WW4-CD	15.55	0.31	24.1	24.1	5.46	5.5	65.2	03.1	15.4	13.4	7.7	1.1	16	17.0
WM4	13:00	0.15	23.5	23.5	6.87	6.9	80.8	80.8	22.5	22.9	7.9	7.9	16	16.0
vv 1v14	15.00	0.15	23.5	23.3	6.87	0.9	80.7	80.8	23.3	22.9	7.9	7.9	16	10.0

Date	25-Apr-17#								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(n	ng/L)
WM4-CA	13:45	0.18				4.1		4	4.0
WM4-CA	15.45	0.18				3.9 4.0		4	4.0
WM4-CB	13:55	0.21				19.6 18.9		17	17.0
WIVI4-CD	15.55	0.31				18.2		17	17.0
3373.4.4	12.40	0.15				23.2 22.8		26	26.0
WM4	13:40	0.15				22.4 22.8		26	26.0

Date	26-Apr-17		-		_	-	•	-	•		•	•	-	•
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM4-CA	11.10	0.19	23.8	23.8	7.34	74	86.9	87.0	7.4	6.9	9.5	9.5	5	4.0
WM4-CA	11:10	0.18	23.8	23.8	7.36	/.4	87.0	87.0	6.4	0.9	9.5	9.5	3	4.0
WM4 CD	11.20	0.21	24.7	24.7	5.75	57	69.0	(0)	17.8	17.6	8.9	8.0	14	12.5
WM4-CB	11:20	0.31	24.7	24.7	5.66	5.7	67.4	68.2	17.4	17.6	8.9	8.9	13	13.5
WM4	11:00	0.15	23.9	23.9	6.63	6.6	78.3	78.4	31.7	21.6	9.1	91	34	34.5
vv 1v14	11.00	0.15	23.9	23.9	6.62	6.6	78.4	/8.4	31.5	31.6	9.1	9.1	35	54.5

Date	28-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM4-CA	11:45	0.18	24.4	24.4	7.46	7.5	88.8	89.3	11.5	11.2	8.6	8.6	5	4.5
WM4-CA	11.43	0.18	24.4	24.4	7.51	7.5	89.8	09.5	10.9	11.2	8.6	0.0	4	4.5
WM4-CB	12:00	0.31	25.5	25.5	5.13	5.2	62.6	62.8	15.2	14.8	8.2	8.2	12	12.0
WW4-CD	12.00	0.51	25.5	23.5	5.17	5.2	63.0	02.8	14.4	14.0	8.2	0.2	12	12.0
WM4	11:25	0.15	23.7	23.7	6.98	7.0	82.2	82.1	33.5	33.2	8.3	8.3	24	23.0
vv 1V14	11.23	0.15	23.7	23.1	6.95	7.0	82.0	02.1	32.8	33.2	8.3	0.3	22	23.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 6

Date	3-Apr-17					-		-			-		-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)		Н	SS(n	ng/L)
WM2A-C	10:20	0.28	18.6 18.6	18.6	8.11 8.1	8.1	86.8 86.6	86.7	10.9 10.2	10.6	7.50 7.50	7.5	6 6	6.0
WM2A	10:10	0.17	20.1 20.1	20.1	8.45 8.47	8.5	93.1 93.2	93.2	15.7 13.9	14.8	7.70 7.70	7.7	15 14	14.5
					-	-	-	-	-	-	-	-	-	
Date	6-Apr-17	-			-	-	•			-		-	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM2A-C	10:48	0.29	22 22	22.0	6.89 6.91	6.9	78.8 79.2	79.0	9.8 9.9	9.8	7.50 7.50	7.5	4	4.0
WM2A	10:43	0.15	23.2 23.2	23.2	7.23 7.25	7.2	84.6 85.1	84.9	13.7 13.6	13.7	7.80 7.80	7.8	12 13	12.5
·		•			•	-	•	•	-	•	•	•	•	
Date	8-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM2A-C	10:27	0.30	22.8 22.8	22.8	7 7.04	7.0	80.7 81.9	81.3	11.6 12.0	11.8	7.80 7.80	7.8	4	4.0
WM2A	10:14	0.17	23.9 23.9	23.9	6.88 6.91	6.9	81.3 82.1	81.7	23.3 24.5	23.9	8.20 8.20	8.2	26 25	25.5
LL		<u> </u>			<u>L</u>	4	4	<u>L</u>	4	4	4	4	4	
Date	10-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2A-C	10:50	0.28	23.4 23.4	23.4	5.27 5.26	5.3	61.9 62.0	62.0	14.3 13.9	14.1	6.50 6.50	6.5	12 12	12.0
WM2A	10:35	0.17	25.9 25.9	25.9	7.14 7.15	7.1	87.7 87.8	87.8	22.3 22.6	22.5	6.90 6.90	6.9	19 21	20.0
··		•			.	-	•	•	-	•	•	•	•	
Date	12-Apr-17					-					-		-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2A-C	10:15	0.28	21.6 21.6	21.6	6.62 6.6	6.6	75.1 74.7	74.9	15.9 15.9	15.9	8.00 8.00	8.0	5 3	4.0
WM2A	10:05	0.17	21.9 21.9	21.9	6.85 6.81	6.8	78.5 77.5	78.0	18.2 19.0	18.6	8.30 8.30	8.3	11 9	10.0

Date	14-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM2A-C	9:55	0.28	<u>19.7</u> <u>19.7</u> 19.7	<u>6.84</u> <u>6.85</u> 6.8	74.6 74.7 74.7	7 18.7 17.9	8.90 8.90 8.9	<u>5</u> <u>6</u> 5.5
WM2A	9:45	0.20	<u>19.7</u> <u>19.7</u> 19.7	7.4 7.42 7.4	<u>81.2</u> 81.4 81.	3 77.7 77.8	8.70 8.70 8.7	<u>46</u> 48 47.0
					<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Date	15-Apr-17#						т <u>:</u>	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(mg/L)
WM2A-C	10:15	0.28				10.6 10.5 10.5		4 4.0
WM2A	10:00	0.20				<u>9.4</u> 11.0 10.2		2 2.0
Date	18-Apr-17						· · ·	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM2A-C	10:40	0.27	<u>23.8</u> 23.8 23.8	<u>6.37</u> 6.38 6.4	75.2 75.3 75.	$3 \frac{13.3}{12.3}$ 12.8	7.60 7.6	4 3.5
WM2A	10:30	0.20	$\frac{26}{26}$ 26.0	6.93 6.9 6.95 6.9	85.3 85.8 85.8	$6 \frac{13.1}{11.0} 12.1$	7.60 7.6 7.60 7.6	<u>4</u> <u>3</u> <u>3.5</u>
Date	20-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM2A-C	10:07	0.25	<u>23.9</u> 23.9 23.9	<u>5.84</u> <u>5.84</u> 5.8	<u>69.2</u> <u>69.1</u> 69.	$2 \qquad \frac{11.3}{11.0} \qquad 11.2$	7.80 7.8	<u>6</u> 8 7.0
WM2A	9:52	0.20	25.9 25.9 25.9	6.38 6.4 6.37 6.4	78.4 78.3 78.3	$4 \frac{20.3}{18.7} 19.5$	7.80 7.8 7.80 7.8	<u>6</u> 7 6.5
Date	22-Apr-17	,		- r				r
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(mg/L)
WM2A-C	10:23	0.27	$\frac{21}{21}$ 21.0	7.04 7.1	79.1 79. 80.7 79.	9 18.9 19.2	8.10 8.10 8.1	<u>10</u> <u>8</u> 9.0
WM2A	9:41	0.17	<u>21.7</u> 21.7 21.7	<u>6.65</u> 6.7 6.7	75.8 76.7 76.7	$3 \frac{47.6}{48.2} 47.9$	8.20 8.2 8.20 8.2	39 37.5 36 37.5

Date	24-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2A-C	10:55	0.28	21.4 21.4	21.4	7.17 7.18	7.2	80.8 80.9	80.9	12.7 12.6	12.7	8.10 8.10	8.1	76	6.5
WM2A	11:07	0.20	22.1 22.1	22.1	7.29 7.3	7.3	83.5 83.6	83.6	11.5 10.6	11.1	8.00 8.00	8.0	4	4.0
Date	25 Ame 17//						-				-			
	25-Apr-17# Time	Donth (m)	Tomm	(aC)	DO (ma/L)	DO	(0/)	Turbidit			H	SS (m	~/I)
Location	Time	Depth (m)	Temp	(OC)	DO (I	mg/L)	DO	(%)		y (NTU)	p.	П	SS(n	ig/L)
WM2A-C	10:45	0.28							22.5 22.6	22.6			777	7.0
WM2A	10:10	0.20							16.8 17.4	17.1			5 5	5.0
<u> </u>							•					•		
Date	26-Apr-17						-		•		-	-	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2A-C	10:10	0.28	22.8 22.8	22.8	6.51 6.53	6.5	75.4 75.8	75.6	15.0 14.7	14.9	8.90 8.90	8.9	8	7.5
WM2A	9:55	0.20	23 23	23.0	7.15 7.14	7.1	83.1 82.8	83.0	101.0 100.0	100.5	9.00 9.00	9.0	32 29	30.5
							-			-	-	-	-	
Date	27-Apr-17#			-	-	-				-	-	-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)		y (NTU)	p	Н	SS(n	ng/L)
WM2A-C	10:23	0.28							25.8 25.7	25.8			13 13	13.0
WM2A	10:10	0.20							10.2 10.0	10.1			5 5	5.0
	a a k a-				-	-	-	-	-	-	-	-	-	
Date	28-Apr-17					/T)	D 0	(0/)					001	/ T >
Location	Time	Depth (m)	Temp) (0C)		mg/L)	DO	(%)		y (NTU)	1	H	SS(m	ıg/L)
WM2A-C	10:35	0.28	21.5 21.5	21.5	6.69 6.72	6.7	75.6 75.9	75.8	57.7 61.8	59.8	8.90 8.90	8.9	58 59	58.5
WM2A	10:50	0.20	22.3 22.3	22.3	7.62 7.63	7.6	93.1 93.3	93.2	50.2 50.7	50.5	8.80 8.80	8.8	66 72	69.0

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
 Limit Level

10

Date	3-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2B-C	10:40	0.02	19.3 19.3	19.3	9.53 9.53	9.5	103.3 103.4	103.4	4.3 3.6	4.0	7.7 7.7	7.7	6 5	5.5
WM2B	10:30	0.02	22 22	22.0	8.25 8.25	8.3	94.6 94.7	94.7	11.0 10.8	10.9	7.3 7.3	7.3	11 11	11.0
Date	6-Apr-17				<u>-</u>		<u>-</u>					-		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2B-C	11:08	0.01	22.3 22.3	22.3	8.51 8.53	8.5	97.5 98.0	97.8	5.4 5.3	5.3	8.3 8.3	8.3	<2 <2	<2
WM2B	11:01	0.03	24.3 24.3	24.3	7.37 7.4	7.4	88.0 88.8	88.4	8.5 8.4	8.5	8.3 8.3	8.3	5 5	5.0
Dete	Q A 17		······				-							-
Date	8-Apr-17 Time	Danth (m)	Tama	(aC)	DO (DO	(0/)	Turkidit	y (NTU)		H	SS (~/T)
Location	Time	Depth (m)	Temp	(0C)	DO (1	ing/L)		(70)		y (NTU)	1	п	SS(n	ig/L)
WM2B-C	10:57	0.02	23.6 23.7	23.7	8.07 8.12	8.1	94.5 95.7	95.1	3.5 3.5	3.5	7.8 7.8	7.8	3	2.5
WM2B	10:49	0.02	25.1 25.2	25.2	7.15 7.2	7.2	87.2 88.3	87.8	11.2 11.0	11.1	7.3 7.3	7.3	10 12	11.0
Date	10-Apr-17					-	<u>.</u>		-	<u>.</u>	-	-	<u>.</u>	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2B-C	11:10	0.02	23.8 23.8	23.8	8.24 8.23	8.2	97.2 97.3	97.3	6.9 7.1	7.0	7.7	7.7	5	5.5
WM2B	11:00	0.02	26.2 26.2	26.2	7.26	7.3	89.8 89.9	89.9	11.0	10.5	7.9	7.9	8	9.0

89.9

9.9

7.9

7.27

26.2

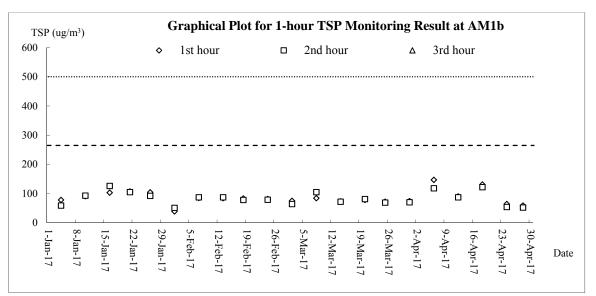
Water Quality Monitoring Data for Contract 2 and 6

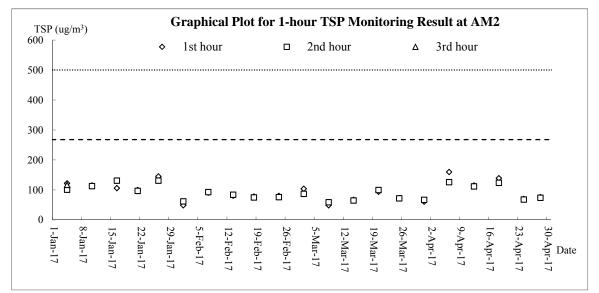
Date	1-Apr-17#							<u>.</u>
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:21	0.03				6.7 6.3 6.5		10 10 10.0
WM3	10:37	0.13				<u>10.7</u> 10.9 10.8		<u>12</u> 12 12.0
	r	<u>.</u>		<u> </u>	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
Date	3-Apr-17				T	[r <u>-</u>	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:55	0.03	<u>22.2</u> 22.2 22.2	7.99 8.03 8.0	<u>91.8</u> 92.3 92.1	<u>35.0</u> 34.8 34.9	8.3 8.3 8.3	<u>61</u> 50 55.5
WM3	11:05	0.15	<u>21.8</u> 21.8 21.8	8.9 8.92 8.9	<u>101.4</u> 101.7 101.6	<u>15.7</u> 16.0 15.9	8.2 8.2 8.2	<u>15</u> 16 15.5
	-			· · ·	· · ·			· · ·
Date	6-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	11:19	0.02	<u>24.5</u> 24.5 24.5	7.55 7.5	<u>90.6</u> 90.5 90.6	4.3 4.4	8.8 8.8 8.8	<u>6</u> 7 6.5
WM3	11:29	0.13	23.3 23.3 23.3	7.48 7.5 7.46 7.5	87.7 87.4 87.6	<u>6.4</u> 6.5 6.4	8.7 8.7 8.7	<u>8</u> 9 8.5
D /	0.4.17							
Date	8-Apr-17	Douth (m)	Tama (aC)	DO(ma/L)		Turkidita (NITU)	all	$\Omega\Omega(m_{\alpha}/L)$
Location WM3-C	Time 11:30	Depth (m) 0.07	Temp (oC) 25.4 25.5	DO (mg/L) 7.05 7.1	DO (%) 86.3 87.1	Turbidity (NTU) 2.6 2.6	рН 7.4 7.4	SS(mg/L) 9 9.0
WM3-C	11:30	0.07	25.5	7.11	87.8	2.6	7.4 7.4	9
WM3	11:19	0.11	<u>25.5</u> 25.6 25.6	7.7 7.7	<u>94.5</u> 95.7 95.1	8.1 8.3 8.2	7.5 7.5	9 9.0
	r							
Date	10-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	11:25	0.02	<u>25.6</u> 25.6 25.6	<u>6.24</u> <u>6.23</u> 6.2	76.8 76.8	<u>12.5</u> 10.7 11.6	7 7.0	<u>26</u> 101 63.5
WM3	11:35	0.15	24.9 24.9 24.9	7.82 7.8 7.84 7.8	<u>94.1</u> 94.2 94.2	<u>9.3</u> 9.0 9.2	6.9 6.9 6.9	10 10 10.0

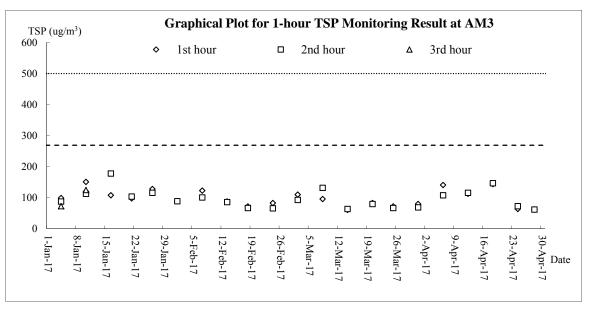
Date	12-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:45	0.15	<u>24.3</u> 24.3 24.3	7.09 7.1	<u>85.1</u> 85.9 85.5	<u>4.3</u> 3.5 3.9	<u>11.4</u> 11.4 11.4	$\begin{array}{c c} \hline <2 \\ \hline <2 \\ \end{array} <2 \\ \end{array}$
WM3	10:55	0.15	22.6 22.6 22.6	6.8 6.8 6.81 6.8	78.7 78.8 78.9 78.8	<u>59.2</u> 59.5 59.4	10.9 10.9 10.9	74 77 75.5
	r	-			· · ·			
Date	13-Apr-17#							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(mg/L)
WM3-C	10:45	0.15				<u>9.8</u> 9.5 9.7		<u>13</u> 13 13.0
WM3	11:05	0.15				<u>52.8</u> 52.8 52.8		<u>38</u> 38 38.0
			II					
Date	14-Apr-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:10	0.15	<u>21.9</u> 21.9 21.9	7.85 7.9	<u>89.7</u> 89.8 89.8	<u>10.2</u> 10.6 10.4	<u>8</u> 8 8.0	<u>8</u> 10 9.0
WM3	10:20	0.15	21.2 21.2 21.2	6.99 6.98 7.0	78.5 78.5 78.5 78.5	<u>49.4</u> 49.5 49.5	8.2 8.2 8.2	$\frac{36}{39}$ 37.5
ſ	F	-		<u> </u>		- ·		
Date	15-Apr-17#				20.00			
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:30	0.15				<u>11.2</u> 11.6 11.4		7 7.0
WM3	10:40	0.15				<u>10.3</u> 11.4 10.9		7 7.0
						11.1		,
Date	18-Apr-17			<u>-</u>		· · · ·		
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	11:00	0.15	26.8 26.8 26.8	7.22 7.24 7.2	<u>90.2</u> 90.5 90.4	<u>13.1</u> 11.6 12.4	8.9 8.9 8.9	$\frac{10}{10}$ 10.0
WM3	11:10	0.15	26.8 26.8 26.8	<u>7.71</u> 7.77 7.77	<u>96.4</u> 97.5 97.0	<u>9.7</u> 9.9 9.8	8.3 8.3 8.3	<u>6</u> <u>4</u> 5.0

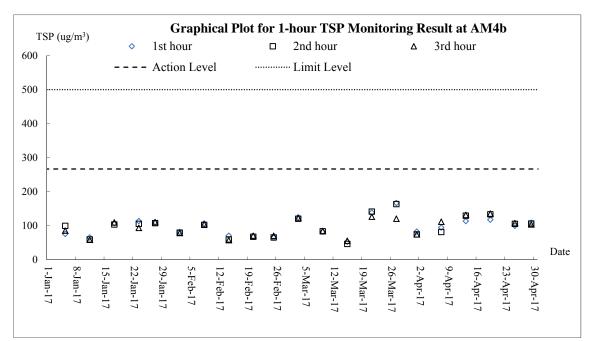
Date	20-Apr-17					-	·	-	-			-	-	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:32	0.15	26.5 26.5	26.5	7.02 7.04	7.0	87.5 87.9	87.7	10.2 7.2	8.7	7.7 7.7	7.7	11 10	10.5
WM3	10:45	0.15	25.9 25.9	25.9	7.49 7.52	7.5	92.0 92.4	92.2	8.6 6.6	7.6	7.7 7.7	7.7	<2 <2	<2
Dete	22 Apr 17	·			-		<u>.</u>	-		. <u></u>		<u>.</u>	-	
Date	22-Apr-17	Denth (m)		(-0)	DO (···· - /T)		(0/)	T				00(/T)
Location	Time	Depth (m)	Temp	(0C)	DO (1	ng/L)		(%)		y (NTU)		H	SS(n	ng/L)
WM3-C	10:45	0.15	24 23.8	23.9	7.25 7.3	7.3	86.5 87.7	87.1	6.5 6.6	6.6	7.9 7.9	7.9	10 10	10.0
WM3	10:59	0.17	23.2 23.1	23.2	7.31 7.39	7.4	85.4 86.6	86.0	11.3 12.0	11.7	8.2 8.2	8.2	75	6.0
<u> </u>	•								1					
Date	24-Apr-17	•			-	-		-	-		-		-	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:25	0.15	23.6 23.6	23.6	6.89 6.88	6.9	81.1 80.9	81.0	3.4 3.4	3.4	7.8 7.8	7.8	5 6	5.5
WM3	10:35	0.15	23 23	23.0	7.44 7.39	7.4	86.7 86.2	86.5	13.1 13.2	13.2	7.9 7.9	7.9	12 12	12.0
Date	26-Apr-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:25	0.15	24.8 24.8	24.8	6.7 6.72	6.7	80.7 81.1	80.9	4.4	3.7	11 11	11.0	5	5.5
WM3	10:35	0.15	23.7 23.7	23.7	6.27 6.29	6.3	73.9 74.4	74.2	13.2 13.0	13.1	10 10	10.0	10 11	10.5
Date	28-Apr-17				_	-	•	•	-		-	•	-	-
Location	Time	Depth (m)	Temp	(0C)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:10	0.15	24.5 24.5	24.5	7.05 70.7	38.9	84.5 84.8	84.7	7.6 6.9	7.2	10.4 10.4	10.4	<2 <2	<2
WM3	10:20	0.15	23.2 23.2	23.2	7.33 7.32	7.3	85.3 85.4	85.4	10.6 10.2	10.4	9.1 9.1	9.1	3 4	3.5

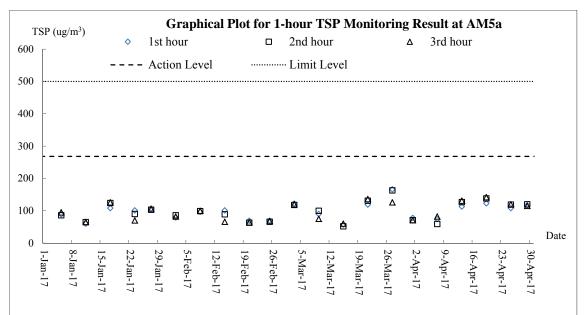
Remarks:

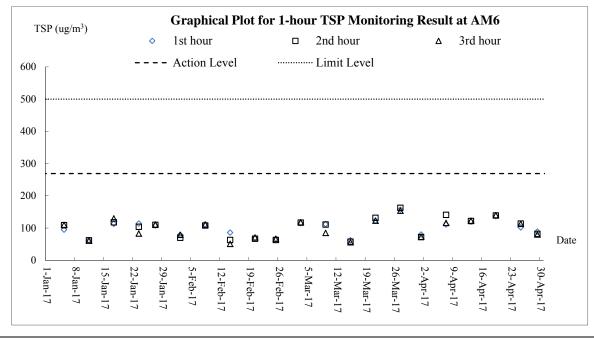

[#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

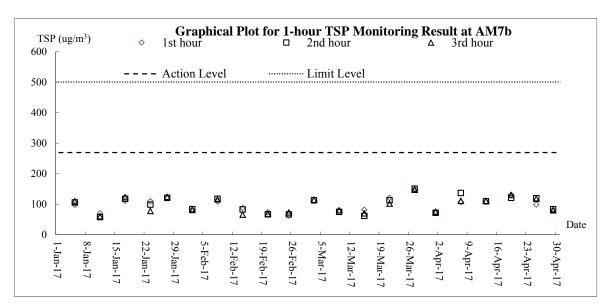

Action Level
Limit Level

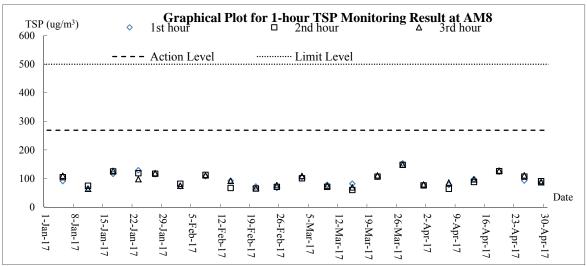

Appendix J

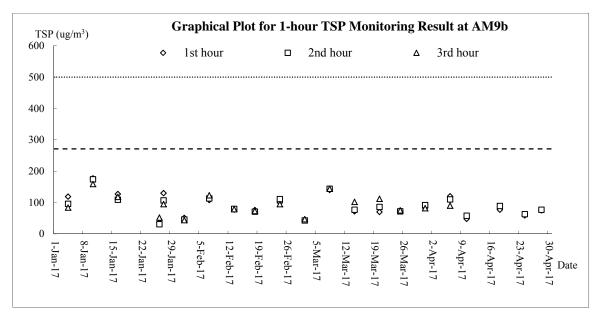

Graphical Plots for Monitoring Result

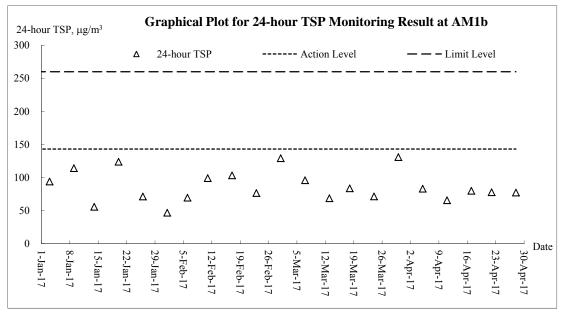

<u>Air Quality – 1-hour TSP</u>

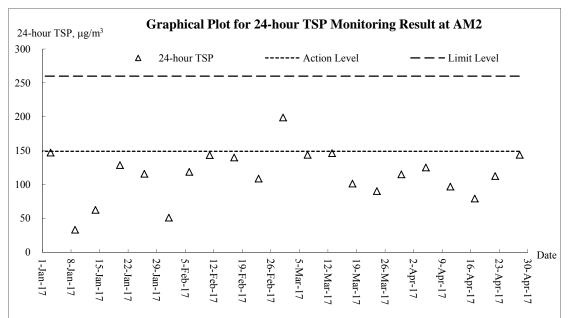


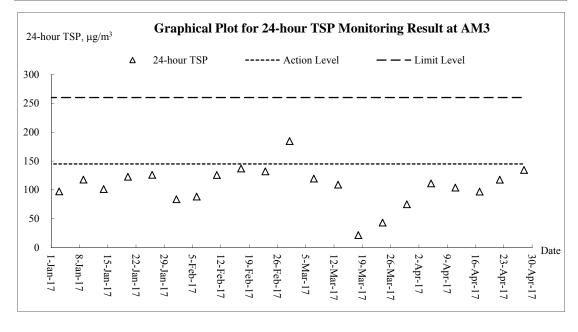


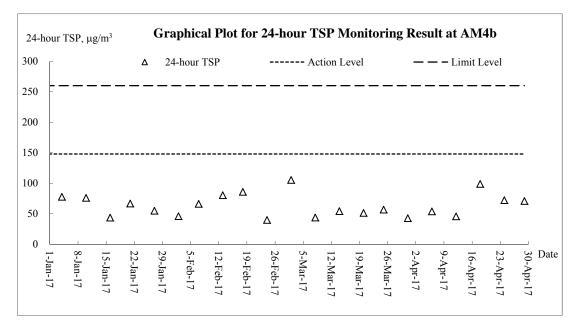


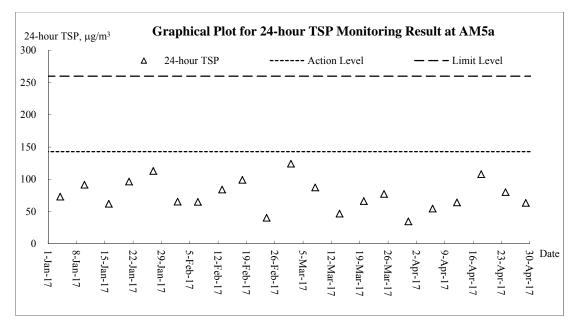


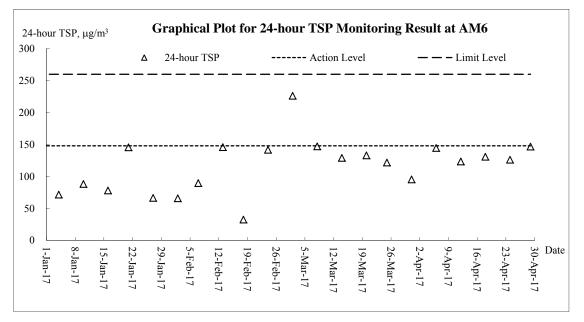


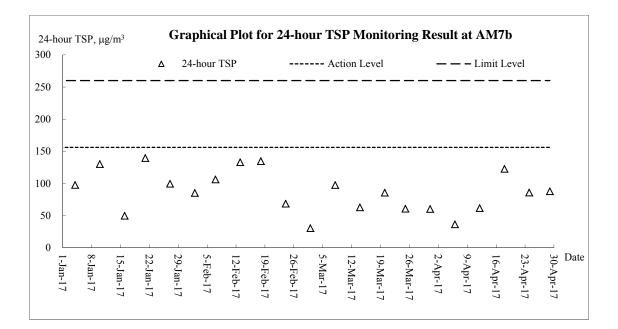


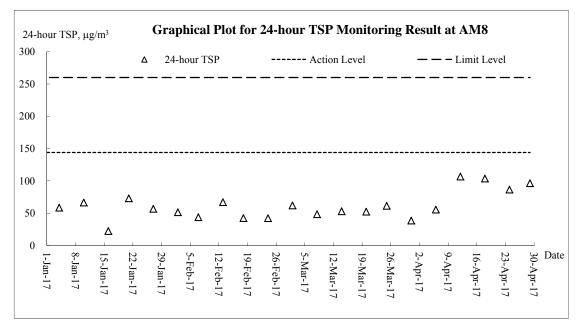


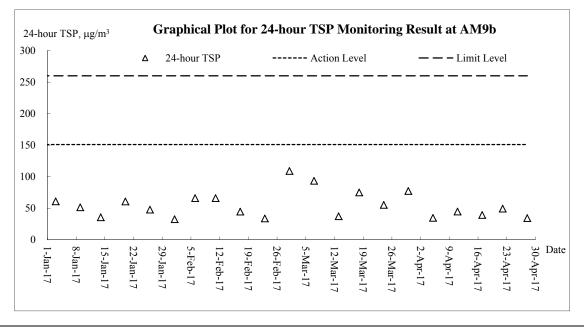


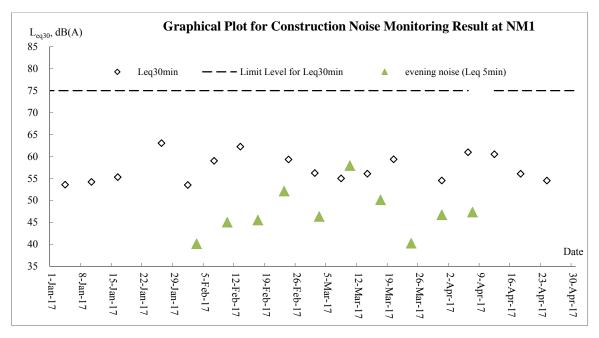

Air Quality – 24-hour TSP

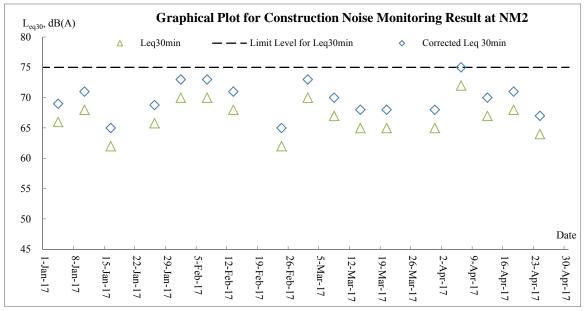


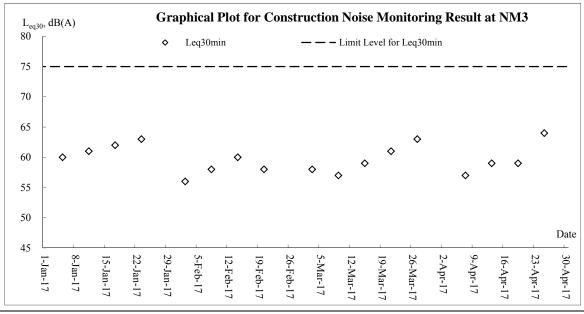


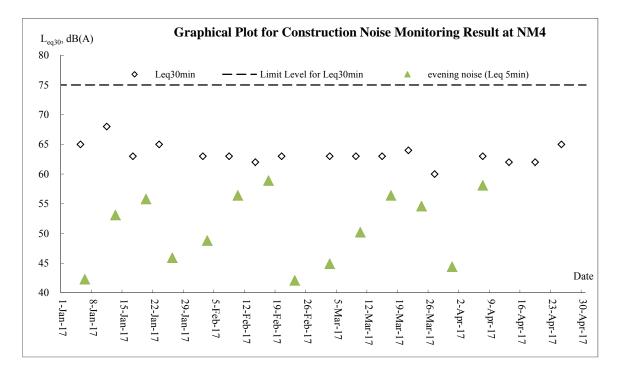


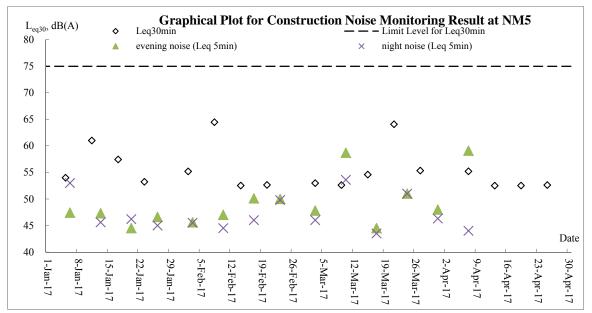


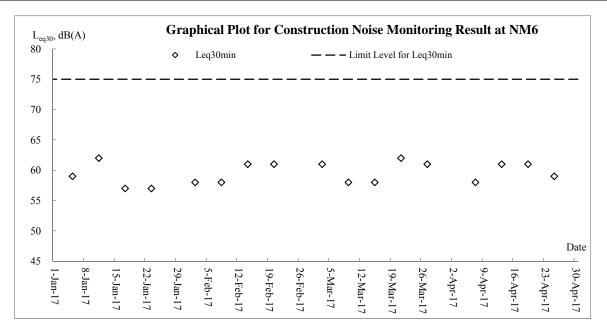


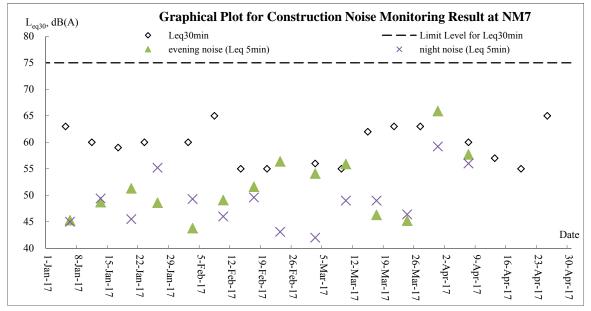


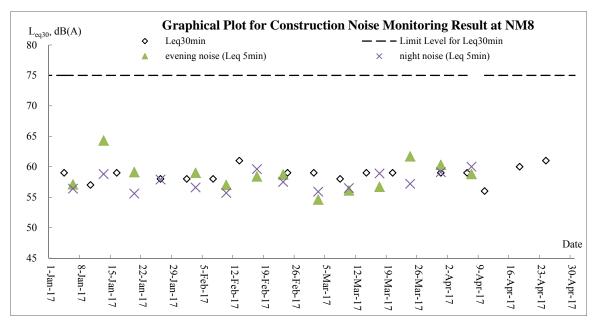


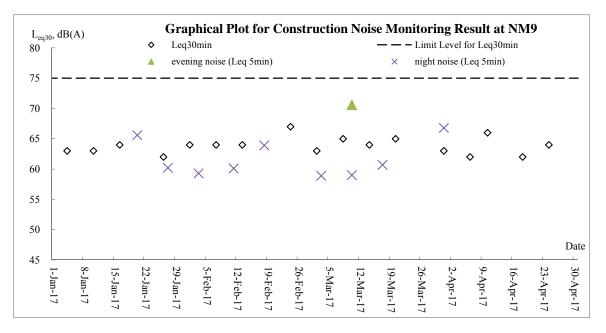

Noise

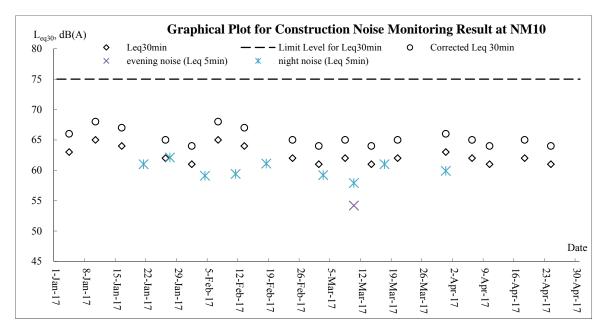


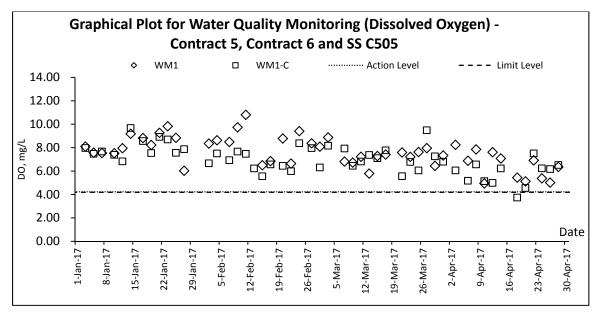


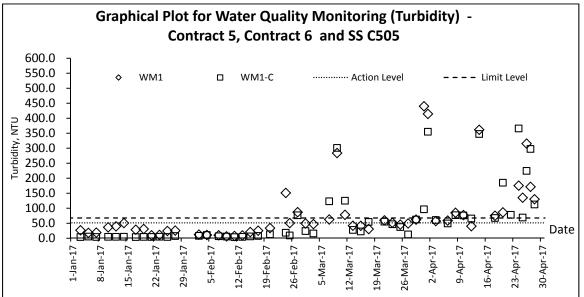


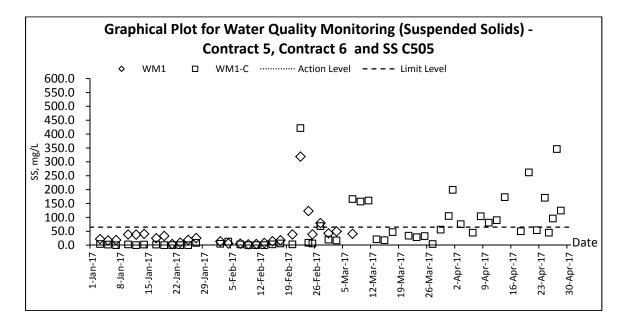

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\45th (April 2017)\R0969v2.docx

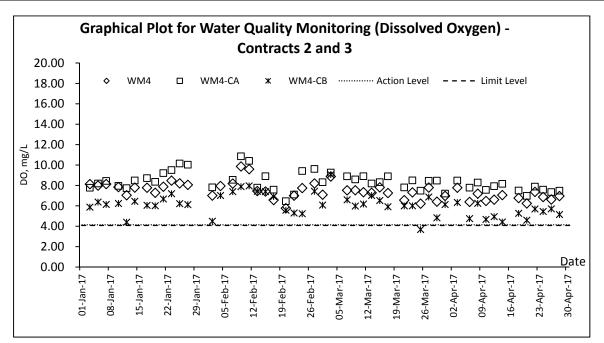


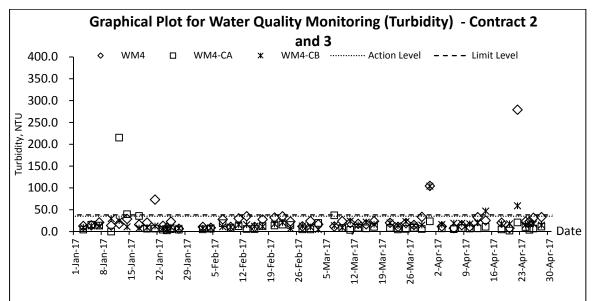


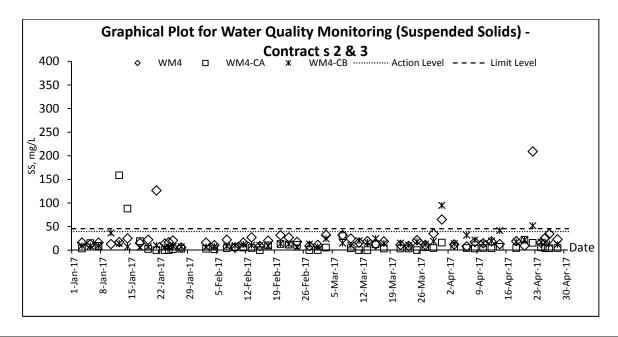


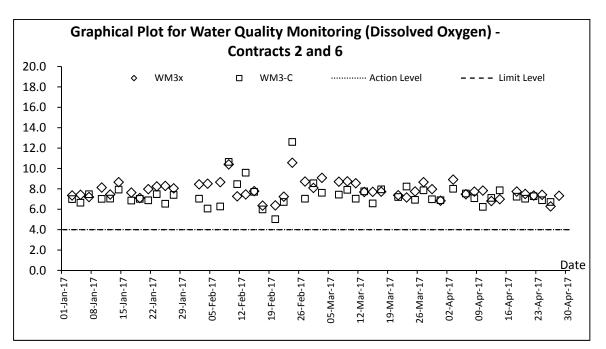


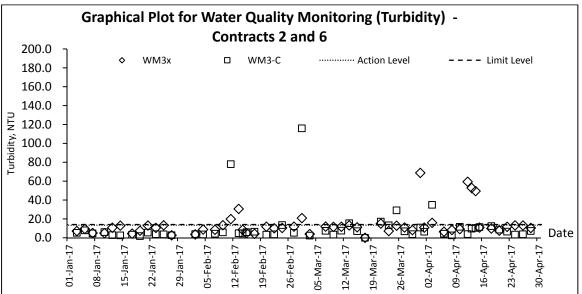


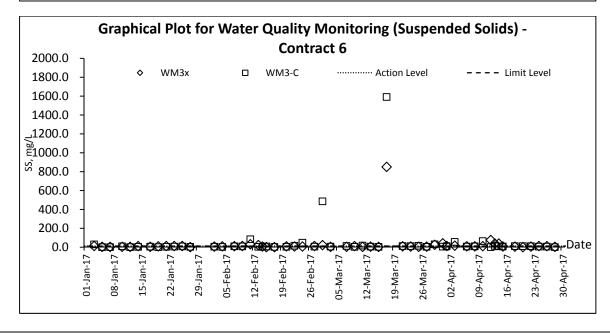


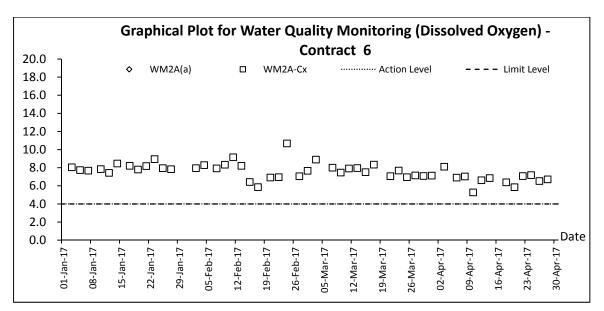

Water Quality

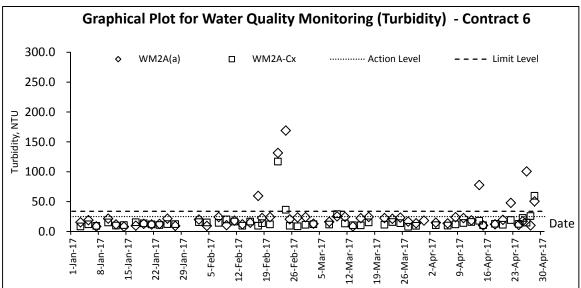


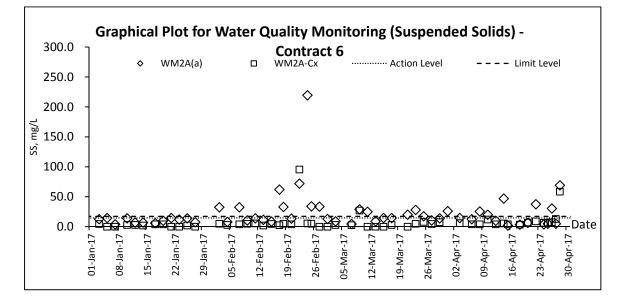


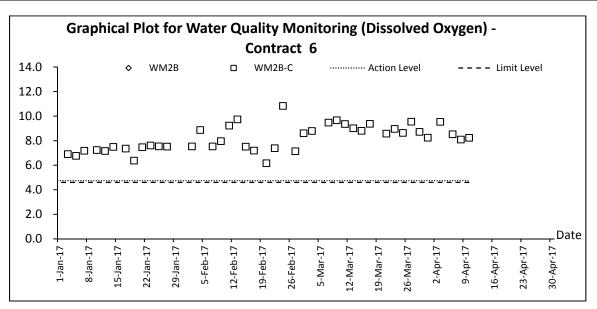


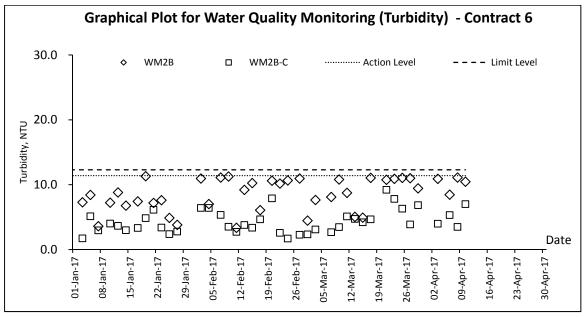


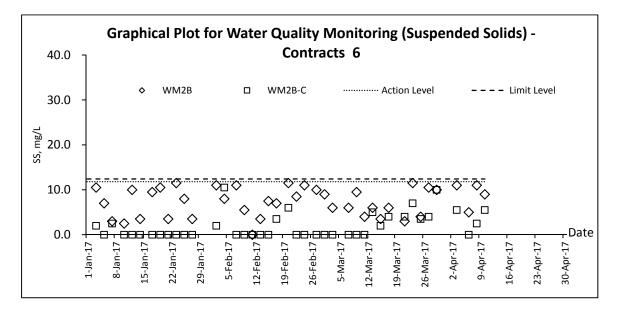









Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\45th (April 2017)\R0969v2.docx



Appendix K

Meteorological Data

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.45) – April 2017

				,	Ta Kwu	Ling Station	ı
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Apr-17	Sat	Mainly cloudy.	0.2	19.2	10.2	72.5	E/SE
2-Apr-17	Sun	Sunny intervals and isolated showers	0	18.5	10	53.5	Е
3-Apr-17	Mon	Mainly cloudy.	0	18.6	7.6	68.7	E/NE
4-Apr-17	Tue	Mainly cloudy. Moderate south to southwesterly winds	0	21.3	9.2	72.5	E/NE
5-Apr-17	Wed	Light to moderate southwesterly winds.	0	22.9	7.5	78	E/NE
6-Apr-17	Thu	Sunny intervals and isolated showers	0.3	23.9	6	85	E/NE
7-Apr-17	Fri	Mainly cloudy.	0	24.9	6.1	79.7	E/NE
8-Apr-17	Sat	Light to moderate southwesterly winds.	0	25.3	7.5	61.5	SW
9-Apr-17	Sun	Mainly cloudy. Moderate south to southwesterly winds	0	25.7	9.3	72.2	S
10-Apr-17	Mon	Cloudy with a few showers.	Trace	26.6	8.2	82.5	S/SW
11-Apr-17	Tue	Sunny intervals and isolated showers	0.6	25.4	6.5	84.2	S/SW
12-Apr-17	Wed	Mainly cloudy. Moderate south to southwesterly winds	21.5	18.9	6.5	83.7	N/NW
13-Apr-17	Thu	Light to moderate southwesterly winds.	Trace	18.8	5.3	82.2	N/NW
14-Apr-17	Fri	Mainly cloudy. Moderate south to southwesterly winds	0	21.7	11.5	77.8	E/SE
15-Apr-17	Sat	Cloudy with a few showers.	0	24.5	8.5	87.8	E/SE
16-Apr-17	Sun	Sunny intervals and isolated showers	Trace	26.8	7.5	83.5	W/NW
17-Apr-17	Mon	Mainly cloudy.	Trace	27.4	7.5	72	S/SW
18-Apr-17	Tue	Mainly cloudy.	0	27	6.1	72.2	SW
19-Apr-17	Wed	Cloudy with a few showers.	0	27.3	7.5	68	S/SW
20-Apr-17	Thu	Cloudy with a few showers.	3.1	26.6	8.8	80	E/SE
21-Apr-17	Fri	Cloudy with a few showers.	7.8	26.2	11	84	S/SW
22-Apr-17	Sat	Cloudy with a few showers.	6.6	19.8	10.8	89.5	S/SW
23-Apr-17	Sun	Cloudy with a few showers.	1.4	20.2	5.4	79.5	E/NE
24-Apr-17	Mon	Moderate east to southeasterly winds.	Trace	21.4	6.5	82.5	E/NE
25-Apr-17	Tue	Mainly cloudy. Rather low visibility in some areas.	10.9	21.2	10.6	86.5	E/NE
26-Apr-17	Wed	Cloudy with a few showers.	2.9	24.8	9.5	88	E/NE
27-Apr-17	Thu	Moderate east to southeasterly winds.	3.5	21.8	7	83.2	Ν
28-Apr-17	Fri	Mainly cloudy. Rather low visibility in some areas.	0	21.5	5.8	65	N/NW
29-Apr-17	Sat	Sunny periods and one or two showers	0	21.5	5.8	37.8	SE
30-Apr-17	Sun	Light winds.	0	22.7	7.5	34.3	E/SE

Appendix L

Waste Flow Table

 Name of Department :
 CEDD
 Contract No./ Work Order No. :
 CV/2012/08

Appendix I - Monthly Summary Waste Flow Table for 2017

(All quantities shall be rounded off to 3 decimal places)

Month	D Materials Ger	nerated / Importe	ed (in '000 m3)		Actual	Quantities of Otl	ner C&D Mater	ials / Wastes Ge	nerated		
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	Others (e.g. General Refuse etc.) (in '000 m3)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
January	72.9008	0.0000	2.0045	31.5900	39.3063	1.7050	144.0000	0.3600	1.9179	1.7600	0.3210
February	85.6304	0.0000	1.4795	29.9165	54.2343	1.6040	76.9000	0.3000	2.1663	4.3480	0.3365
March	36.8034	0.0000	0.5425	33.0669	3.1940	1.5500	389.2000	0.3000	2.2109	4.0720	0.4167
April	40.2517	0.0000	2.1348	30.9507	7.1663	1.6190	203.4000	0.3000	2.0983	11.2640	0.3862
May	0.0000										
June	0.0000										
Half-year total	235.5863	0.0000	6.1614	125.5241	103.9009	6.4780	813.5000	1.2600	8.3934	21.4440	1.4604
July	0.0000										
August	0.0000										
September	0.0000										
October	0.0000										
November	0.0000										
December	0.0000										
Yearly Total	235.5863	0.0000	6.1614	125.5241	103.9009	6.4780	813.5000	1.2600	8.3934	21.4440	1.4604

(All quantities shall be rounded off to 3 decimal places)

Year	D Materials Ge	nerated / Importe	ed (in '000 m3)		Actual	Quantities of Ot	her C&D Mater	ials / Wastes Ge	enerated		
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	Others (e.g. General Refuse etc.) (in '000 m3)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	11.9700	16.1920	1.1696
2016	905.0989	0.0000	7.4372	427.7834	469.8783	24.8350	259.2290	3.8500	18.7262	34.2936	1.9720
2017	235.5863	0.0000	6.1614	125.5241	103.9009	6.4780	813.5000	1.2600	8.3934	21.4440	1.4604
2018											
Total	2137.0717	0.0000	37.1506	1472.9183	627.0028	41.4867	1090.0690	9.4710	39.0966	82.8096	6.8630

3) Density of Spent Oil to be

0.88 metric ton/m3

Remark:

- 1) Density of C&D material to t _____ metric ton/m3
- 2) Density of General Refuse t 1.6 metric ton/m3

Monthly Summary Waste Flow Table for 2017 (year)

	Actua	l Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual Quantities of C&D Wastes Generated Monthly					
		Hard Rock										
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.	
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general	
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in m³)	(in '000m ³)	
Jan	1.150	0.204	0.150	0.000	0.796	1.150	0.000	0.000	0.001	0.000	0.170	
Feb	1.160	0.308	0.192	0.000	0.660	0.926	0.000	0.000	0.001	0.000	0.140	
Mar	2.287	0.565	0.060	0.000	1.662	1.055	0.000	0.000	0.000	0.000	0.115	
Apr	1.004	0.064	0.036	0.000	0.903	0.463	0.000	0.000	0.004	0.000	0.075	
May												
Jun												
Sub-total	5.601	1.141	0.438	0.000	4.022	3.593	0.000	0.000	0.006	0.000	0.500	
Jul												
Aug												
Sep												
Oct												
Nov												
Dec												
Total	5.601	1.141	0.438	0.000	4.022	3.593	0.000	0.000	0.006	0.000	0.500	

Note: 1. Assume the density of soil fill is 2 ton/m^3 .

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is 5m³.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m^3 .

Total Quantity Generated	Hard Rock and Large Broken Concrete		Reused in other	ties of C&D Diposal as Public Fill	Materials to Imported Fill	be Generate Metals	ed from the C Paper/card board packaging		Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

ltem No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works		Actual Quantities Used (m ³)	Remarks
	Formwork for concreting the Stem wall bay13 of noise barrier NB68A	Easy handling by manpower	4.87	1.95	
	Formwork for concreting the Stem wall bay2 & 4 of noise barrier NB68	Easy handling by manpower	6.33	2.93	
3	Formwork for concreting the pire AB4	Easy handling by manpower	3.81	3.84	
		Total Estimated Quantity of Timber Used	15.01		

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
 - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Monthly Summary Waste Flow Table for <u>2017</u> (year)

Name of Person completing the record: <u>K.M. Lui (EO)</u>

Project : L	iangtang / Heu	ing Yuen Wai	Boundary Co	ntrol Point Sit	e Formation an	d Infrastructur	e Works – Co	ontract 6		Contract No.: CV	//2013/08
	Ac	ctual Quantitie	s of Inert C&I	D Materials G	enerated Month	nly	Actua	al Quantities o	of C&D Waste	es Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	40.128	0	19.297	6.067	14.764	0	0	0.171	0	0	0.065
Feb	48.065	0	16.328	7.123	24.614	0	0	0.294	0	0	0.107
Mar	49.230	0	5.661	15.029	28.540	0	0	0.494	0	0	0.217
Apr	9.792	0	0	0	9.792	0	0	0	0	0	0.162
May											
Jun											
Sub-total	147.215	0	41.286	28.219	77.71	0	0	0.959	0	0	0.551
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	890.377	0	124.977	226.511	538.889	53.939	0	3.732	0.007	33.755	5.403

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

Appendix I

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works – Contract 7Contract No.:

NE/2014/03

Monthly Summary Waste Flow Table for <u>2017</u> (year)

		Actual Quar	ntities of Inert C&I	Materials Generation	ted Monthly		A	ctual Quantities of	Inert C&D Waste	s Generated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0.1	0.05	0.001	0	0.01
Feb	0	0	0	0	0	0	0.5	0.04	0.001	0	0.015
Mar	0.822	0	0	0	0.822	0	2.2	0.04	0.001	0	0.025
Apr	1.473	0	0	0	1.473	0	3.1	0.04	0.001	0	0.02
May											
June											
Sub-total	2.295	0	0	0	2.295	0	5.9	0.17	0.004	0	0.07
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	2.295	0	0	0	2.295	0	5.9	0.17	0.004	0	0.07

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for <u>2017</u> [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of Inc	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	3.160	0	2.003	0	1.157
Feb	1.374	0	0.249	0	1.1245
Mar	0.548	0	0.054	0	0.494
Apr	3.136	0.013	0.13919	0	2.9835
May	-	-	-	-	-
Jun	-	-	-	-	-
Sub-total	8.217	0.013	2.44519	0	5.759
Jul	-	-	-	-	-
Aug	-	-	-	-	-
Sep	-	-	-	-	-
Oct	-	-	-	-	-
Nov	-	-	-	-	-
Dec	-	-	-	-	-
Total	8.21719	0.013	2.44519	0	5.759

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ber	Ме	tals	Paper/ ca packa		Plas (see N		Chemic	al Waste	Mate	ecyclable erials age 3)	General Refuse disposed of at Landfill
	(in '0	00kg)	(in '000kg)		(in '000kg)		(in '0	00kg)	(in '0	00kg)	(in '000kg)		(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0	0	458.15	458.15	0.560	0.560	0.058	0.058	0.000	0.000	0.024	0.024	0.481
Feb	0	0	177.18	177.18	0.370	0.370	0.036	0.036	0.000	0.000	0.008	0.008	0.280
Mar	0	0	97.37	97.37	3.380	3.380	1.573	1.573	0.000	0.000	0.0355	0.0355	0.4225
Apr	0	0	148.11	148.11	0.3	0.3	1.223	1.223	0.000	0.000	29.795	29.795	0.3575
May	-	-	-	-	-	-	-	-	-	-	-	-	-
Jun	-	-	-	-	-	-	-	-	-	-	-	-	-
Sub-total	0	0	880.81	880.81	4.610	4.610	2.890	2.890	0.000	0.000	29.863	29.863	1.541
Jul	-	-	-	-	-	-	-	-	-	-	-	-	-
Aug	-	-	-	-	-	-	-	-	-	-	-	-	-
Sep	-	-	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	0	0	880.81	880.81	4.610	4.610	2.890	2.890	0.000	0.000	29.863	29.863	1.541

Architectural Services Department

Description of mod	le and details of recycling if	any for the month e.g. X	X kg of used timber was se	ent to YY site for transform	nation into fertilizers
25kg of cans and 0.3tons of paper were sent to Kong Han and Wai San for recycling	1.223tons of plastics (bottles and water-filled barrier) were sent to Action Health and Forest Hill for recycling.	148.11 tons of scrap metals were sent for recycling.	29.77 tons of broken concrete were sent to K. Wah for recycling.		

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

(2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include:	To minimize adverse dust emission generated from various construction activities of the	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 Good site management The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 	works sites				
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding					
		Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
		Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

			Objectives of the	Who to			What requirements
EIA Ref.	EIA Ref. EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation, EIAO and NCO
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

	ientai wor	nitoring and Audit Manual	Objectives of the				
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirement or standards for th measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Vater Qu	uality Impa	ct (Construction)					
5.6.1.1	4.1	 Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of 	To control site runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nel.		& Main Concerns to address	measure?	measure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	-	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
		ganten ganten ganten ganten ganten	grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironmenta	al Monitc	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	-	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	Implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	ny on ts Id a		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	or g e d		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			to address	measure?			achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices	To minimize	Contractor	Construction	Construction	EIA recommendation
		Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	adverse environmental impact		works sites (general)	Phase	Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No. 19/2005,
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
	-	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of worth concreted and avoid uppercents concretion of worth	to address	measure :			acineve
		 of waste generated and avoid unnecessary generation of waste In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes. 					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below: A Waste Management Plan should be prepared and implemented	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes</i> . Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-ma	ail			
Company	CRBC-CEC-Kaden JV						
сс							
From	Nicola Hon	Date	20 April	2017			
Our Ref	TCS00694/13/300/ F0939	No of Pages	4	(Incl. cover sheet)			
RE	2 Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM1 on 31 March 2017						
If you do not	receive all pages or transmission is illegible please of	contact the originate	or on (852) 2	959-6059 to re-send Shoul			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0914 dated 31 March 2017 TCS00694/13/300/F0925 dated 10 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

•	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008			
Project Date		CE 45/2008			
Location		31 March 2017 WM1			
Time			31		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)		
		51.3 AND 120% of upstream	54.5 AND 120% of upstream control		
Action Leve	el	control station of the same day	station of the same day		
		67.6 AND 130% of upstream control	64.9 AND 130% of upstream control		
Limit Leve	l	station of the same day	station of the same day		
Measured WM1-C		96.4	105.0		
Levels	WM1	440.0	361.5		
Exceedance	<u>,</u>	Limit Level	Limit Level		
Investigation Recommen Mitigation	dations &	activities carried out on 31 Mar (BCP) which upstream of WM1	n provided from CCKJV, construction ch 2017 near Boundary Control Point was mainly construction of depressed and works area are shown in <i>Figure 1</i> .		
			<i>hoto 1 & 2</i>) taken on 31 March 2017, ghout the channel including WM1 and was carried out under rain.		
		3. According to weather data record from HKO, there was heavy rainstorm (rainfall 21.9mm) on 31 March 2017. The water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, the past monitoring result in mid-March also revealed that the water quality at control station WM1-C was not in good condition.			
		was observed that the main con depressed road near Bridge Y and	ed out by the ET in late March 2017, it astruction activity was construction of d no adverse water quality impact was mitigation measure such as wastewater uplemented (<i>Photo 5</i>)		
		5. In our investigation, it is considered that the exceedances were likely related to the impact of the rain and not due to the works under the Contract.			
	 According to the Event and Action, the monitoring frequency has been increased to daily due to the limit level exceedance until no exceedances were triggered in consecutive days. A monitoring was carried out on 1 and 3 April 2017 and no ex was triggered. Nevertheless, the Contractor should contir implement the water mitigation measures as recommended implementation schedule for environmental mitigation measure EM&A Manual. 				
Prepared B	y :	Nicola Hon			
Designation	ation : Environmental Consultant				
Signature :		Aul			
Date :	20 April 2017				

Photo 1

On 31 March 2017, muddy water was observed at WM1 and water sampling was carried out under rain.

Photo 3

During site inspection in March 2017, it was observed that the main construction activity was construction of depressed road near Bridge Y and no adverse water quality impact was recorded.

Photo 5 A wastewater treatment facility with AquaSed SH-20 was implemented.

Photo 2

On 31 March 2017, muddy water was observed at WM1-C and water sampling was carried out under rain.

Photo 4

During site inspection in early March 2017, no adverse water quality impact was observed at the works area near WM1.

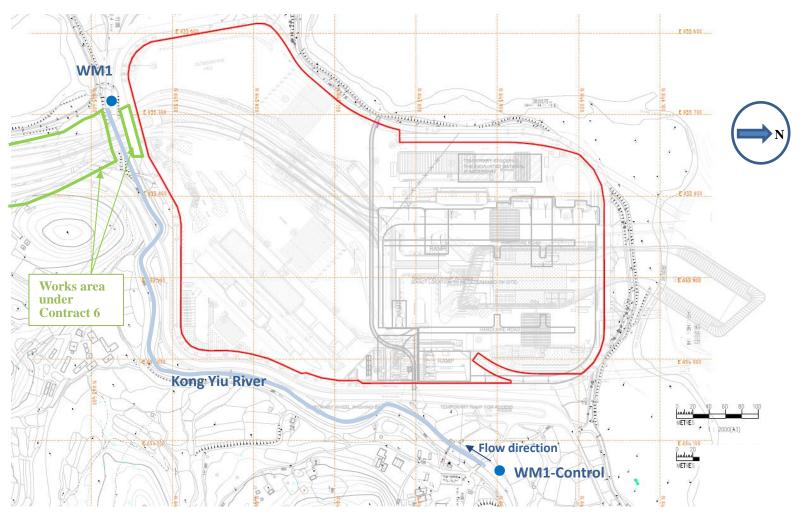


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0939.doc Action-United Environmental Services & Consulting

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	20 April	2017
Our Ref	TCS00694/13/300/ F0940	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of March 2017 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0915 dated 31 March 2017 TCS00694/13/300/F0926 dated 10 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project CE 45/2008		15/2008		
Date			irch 2017	
Location			M3x	
Time		1(0:44	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Lev	el	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Leve	1	14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	10.9	5.0	
Level	WM3x	68.8	40.5	
Exceedance	9	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		(CCKJV), the construction activitie (upstream of WM3x) carried out of	n provided from the Contractor of C6 es at South Portal and Wo Keng Shan Park on 31 March 2017 was mainly bored pile E. The monitoring locations and works	
		2. According to the site photo (<i>Photo 1 & 2</i>) on 31 March 2017, turbid water was observed at WM3x while the water quality at WM3-C was clear and the water sampling was carried out under rain.		
		(rainfall 21.9mm) on 31 March 201 was deteriorated by rain and st observed that the monitored channe road surface of Sha Tau Kok Roa	from HKO, there was heavy rainstorm 17. The water quality in the river course irred up sediment. Moreover, it was el was also received the storm water from ad and the water quality at WM3x was especially during rainy day. (<i>Photo 3 & 4</i>)	
		in early April 2017 for investiga treatment facilites were maintain	E, Contractor, IEC and ET was conducted attion. It was observed that wastewater ed properly at the works area and no huddy discharge was observed. (<i>Photo 5</i>)	
		 Based on the above investigation, in March 2017 were unlikely caused b 	t is considered that the exceedances on 31 by the works under Contract 6.	
		increased to daily due to the lin exceedances were triggered in cons triggered in the monitoring result o Contractor should continually fully	e monitoring frequency at WM3x has been mit level exceedance recorded until no secutive days. There were no exceedances on 1 and 3 April 2017. Nevertheless, the implement the water mitigation measures mentation schedule for environmental Manual.	

Action to be taken		nplement the water mitigation measures as n schedule for environmental mitigation
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aul	
Date :	20 April 2017	

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 5

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted in early April 2017 for investigation. It was observed that wastewater treatment facilites were maintained properly at the works area and no adverse water quality impact and muddy discharge was observed.

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted in early April 2017 for investigation. It was observed that wastewater treatment facilites were maintained properly at the works area and no adverse water quality impact and muddy discharge was observed.

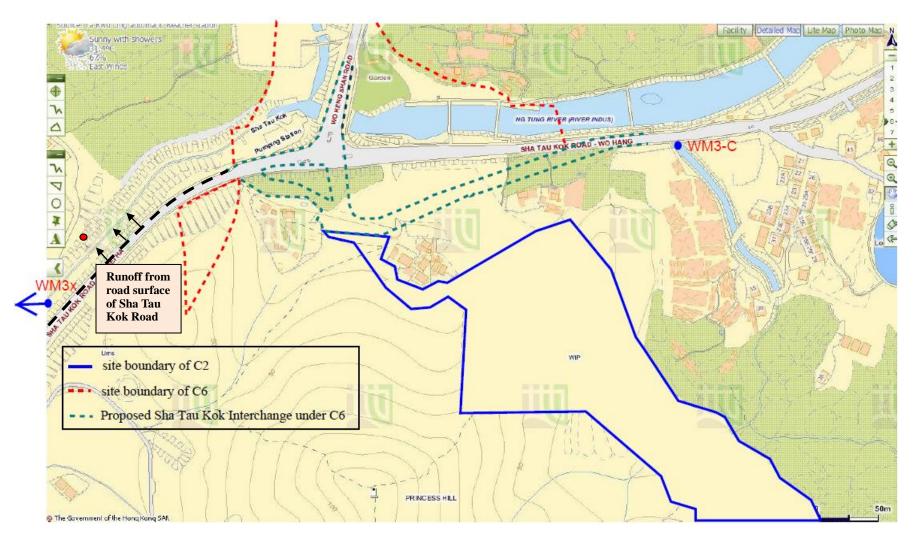


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	20 April	2017	
Our Ref	TCS00697/13/300/ F0941	No of Pages	4	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 31 Marcl 2017 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0915 dated 31 March 2017 TCS00694/13/300/F0926 dated 10 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)Fax:2685 1155Mr. Raymond Leong (CE/BCP, NTWDO, CEDD)Fax:3547 1659Mr. Edwin Ching (CRE, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008		
Date		31 March 2017		
Location			A3x	
Time			:44	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level	l	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Level		14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	10.9	5.0	
Level	WM3x	68.8	40.5	
Exceedance	e.	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 the construction activities carried out was superstructure work at Admin B C2 and the water monitoring locations 2. According to the site photo (<i>Photo 1</i>) 	& 2) on 31 March 2017, turbid water was	
		 observed at WM3x while the water quality at WM3-C was clear and the water sampling was carried out under rain. 3. According to weather data record from HKO, there was heavy rainstorm (rainfall 21.9mm) on 31 March 2017. The water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, it was observed that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by 		
		that superstructure work was carried generated from superstructure work warea of Admin Building was mostly impact was identified during site insp5. Based on the above investigation, it	DHK in early April 2017, it was observed d out at Admin Building and wastewater vas very limited. In addition that the site y hard paved, no adverse water quality ection. (<i>Photo 5</i>) is considered that the exceedances on 31	
		increased to daily due to the lim exceedances were triggered in conse triggered in the monitoring result on Contractor should continually fully in	the works under Contract 2. monitoring frequency at WM3x has been hit level exceedance recorded until no ecutive days. There were no exceedances a 1 and 3 April 2017. Nevertheless, the mplement the water mitigation measures as n schedule for environmental mitigation	
Prepared By	y:	Nicola Hon		
Designation	:	Environmental Consultant		
Signature :		Auch.		

Date :

20 April 2017

Photo 1

Turbid water was observed at WM3x on 31 March 2017.

Photo 3

On 31 March 2017, it was observed that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 2

During water sampling on 31 March 2017, the water quality at WM3-C was clear.

Photo 4

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 5

Superstructure works for Admin Building was carried out and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water quality impact was identified.

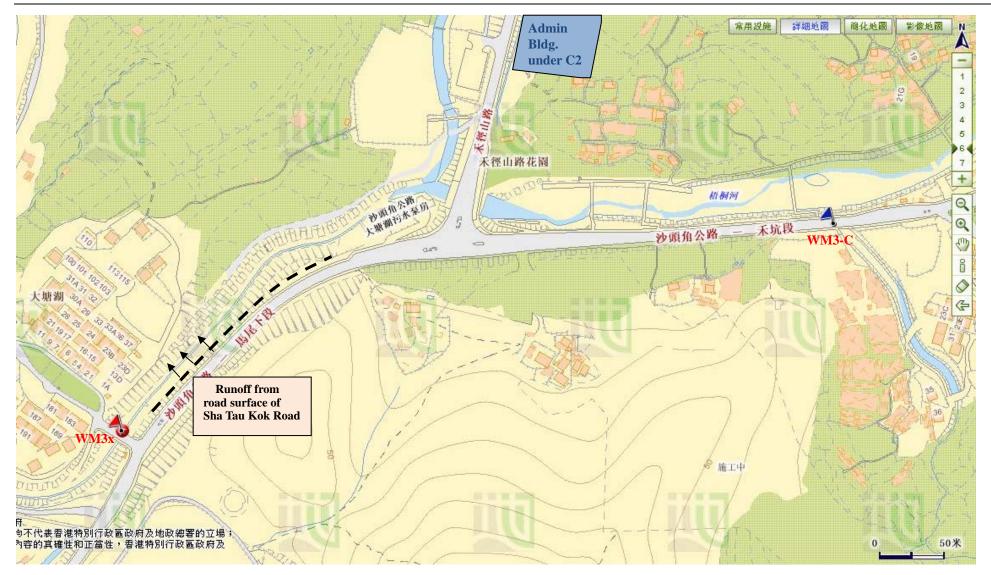


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-r	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	4 May	2017
Our Ref	TCS00694/13/300/ F0957	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of V and 14 April 2017			
If you do not	raceive all pages or transmission is illegible please	contact the originat	or on (852	2050_6050 to re-send Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0934 dated 18 April 2017 TCS00694/13/300/F0949 dated 26 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date			14 Apr 2017	8 Apr 2017	10 Apr 2017	14 Apr 2017
Location				WM2A(a)		
Time			9:45	10:14	10:05	9:45
Parameter		Т	Surbidity (NTU)	Suspe	ended solids (mg	g/L)
Action Level		u	.9 AND 120% of pstream control on of the same day		% of upstream control of the same day	ontrol station
Limit Level		u	.8 AND 130% of pstream control on of the same day		% of upstream control of the same day	ontrol station
111cubul cu	WM2A-C		17.9	4.0	12.0	5.5
	WM2A(a)		77.8	25.5	20.0	47.0
Exceedance	Results,		Limit Level	Limit Level	Limit Level	Limit Level
Investigation Recommenda Mitigation M	tions &	2. 4 3. 1 3. 1	summarized below. (a) Works at Bridg), construction act ridge D (upstream ection. There pril 2017 since it s and works area a e photo taken by e water quality) and WM2A-C we ed. (<i>Photo 1 to 4</i> at both WM2A(a) site inspection come water mitigation	ivities carried ou n of WM2A(a) was no constr was a general re shown in Fig the monitoring at the existing vere clear and no 0 On 14 Apri and WM2A-C. onducted at Brid ion measures waring the site bridge segment	at during 8 and) were mainly ruction works holiday. The ure 1. team on 8 and ; river course o water quality 1 2017, turbid (<i>Photo 5 & 6</i>) ge D on 6 and were properly inspection is t erection and
			 (b) Wastewater trea the treated water <i>and Photo 8</i>) (c) To minimize the temporary bund turbid runoff and 	l was visuilaly c om the site, con lign the river c	lear. (<i>Figure 1</i> accrete block as course and no	
		((d) The slope adjac	-	se was covered	
		1	In our investigation measures on site wa was observed. Mo		adverse water	quality impact

	exceedance days and muddy runoff from the site was unlikely to occur. It is considered that the exceedances on 8, 10 and 14 April 2017 were due to natural variation and not caused by the works under the Contract.
5.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Since the SS result required 5 working days to process, the need for repeated measurement could only rely on the result of turbidity which is in-situ measurement. There were no repeated monitoring on 11 and 13 April 2017 as no exceedance of turbidity recorded at the day before. Moreover, there were no exceedances recorded on 15 and 18 April 2017 Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Anh			
Date :	4 May 2017			
	· · · · · ·			

Photo 1

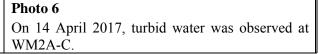
On 8 April 2017, the water quality observed at WM2A(a) was clear.

On 10 April 2017, the water quality observed at

WM2A(a) was clear.

Photo 2

On 8 April 2017, the water quality observed at WM2A-C was clear.


Photo 4

On 10 April 2017, the water quality observed at WM2A-C was clear.

Photo 5 On 14 April 2017, turbid water was observed at WM2A(a).

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0957.doc Action-United Environmental Services & Consulting

In April 2017, works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 8 Wastewater treatment facilites were provided for Bridge D.

Photo 9

Concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site.

Photo 10

The slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Z:\Jobs\2013\TCS00694\300\NOE\IR\F0957.doc Action-United Environmental Services & Consulting

То	Mr. Roger Lee	Fax No	2717 32	299		
Company	Dragages Hong Kong Limited					
сс						
From	Nicola Hon	Date	5 May 2	017		
Our Ref	TCS00697/13/300/ F0959	No of Pages	6	(Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 12, 13 and 14 April 2017 (Contract 2)					

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0936 dated 18 April 2017 TCS00694/13/300/F0951 dated 26 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Raymond Leong (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Edwin Ching (CRE, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008						
Date		12 Apr 2017	13 Apr 2017	14 Apr 2017	12 Apr 2017	13 Apr 2017	14 Apr 2017	
Location				WM	[3x			
Time		10:55	11:05	10:20	10:55	11:05	10:20	
Parameter			urbidity (NTU		Suspe	nded Solids (n	ng/L)	
Action Level			20% of upstre			20% of upstre		
			on of the same 30% of upstre			on of the same 30% of upstre		
Limit Level		14.0 AND 1 static	on of the same	dav		on of the same		
Measured	WM3-C	3.9	9.7	10.4	<2	13.0	9.0	
Level	WM3x	59.4	52.8	49.5	75.5	38.0	37.5	
Exceedance	<u>e</u>	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Results, Recommen & M Measures	dations fitigation	 WM3x way works perelevant win Figure 2. According observed 6 3. According (rainfall 2 deteriorate the monite Sha Tau Froad runo) 4. During way superstruct generated area of A impact way carried o Cumulative channel area on previous 	as superstructur rformed on 1 yorks area und 1. g to the site p at WM3x whi g to weather 1.5mm) on 12 ed by rain and ored channel w Cok Road and ff especially dr eekly site insp ture work w from superstructure admin Buildin as identified du ut in the may we mud and so nd it may caus us days. (Phot	the work at Ad 4 April 2017 er C2 and the bhoto on 12, 1 le the water qu data record f April 2017. I stirred up sec vas also receiv the water qua uring rainy day ection with DI as carried ou ucture work w ag was mostly pring site inspe- ponitored cham- ediment was c se by the wash o 9)	HK on 7 April at at Admin as very limited hard paved, hection. (<i>Photo 8</i> nel at the se observed at the out soil from	There was no a general ho ing locations a ril 2017, turbio C was clear. Here was heav lity in the rive eover, it was o water from roa was highly aff 2017, it was o Building and I. In addition no adverse w 8) Beside, ins ction leading e toe of slope the slope durin	construction bliday. The re illustrated d water was (<i>Photo 1 to</i> ry rainstorm r course was bserved that id surface of ected by the bbserved that wastewater that the site vater quality spection was to WM3x. of the river ng rainy day	
		 13 and 14 According increased exceedance triggered Contracto recomment 	April 2017 we g to Event and to daily du- ces were trigg in the monitor r should contin	ere unlikely ca l Action, the n e to the limit ered in consect ing result on 1 nually fully im mplementation	s considered the used by the wo nonitoring frec it level exceed cutive days. The 5 and 18 Apri plement the wa schedule for	orks under Con quency at WM edance recorde here were no 1 2017. Neve ater mitigation	tract 2. 3x has been ed until no exceedances ertheless, the measures as	

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Auh			
Date :	5 May 2017			

Photo 8

Superstructure works for Admin Building was carried out and wastewater generated from the site was limited. The site area was mostly hard paved and no adverse water quality impact was identified.

Photo 7

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 9

Inspection was carried out in the monitored channel at the section leading to WM3x. Cumulative mud and sediment was observed at the toe of slope of the river channel and it may cause by the wash out soil from the slope during rainy day on previous days.

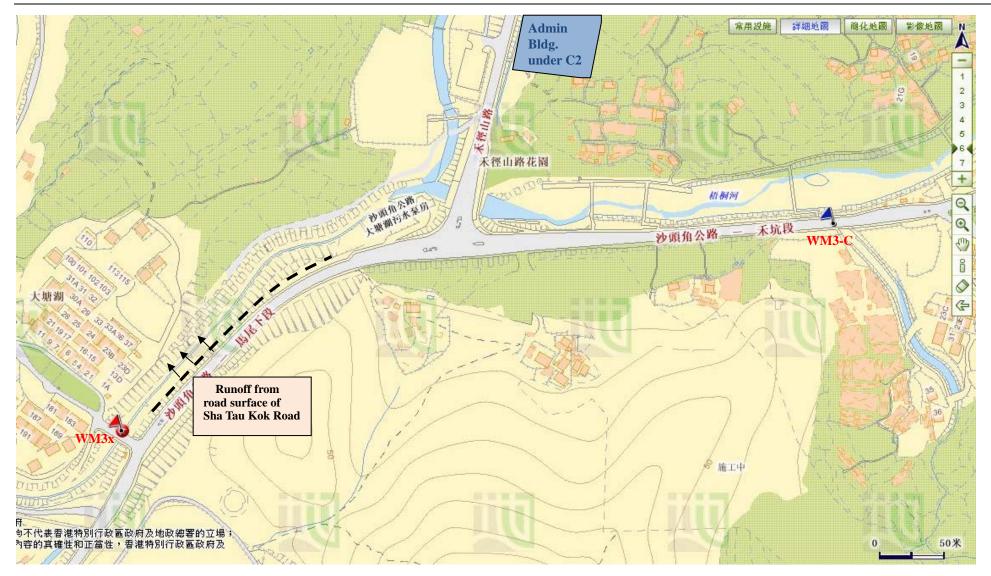


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail		
Company	CRBC-CEC-Kaden JV					
сс						
From	Nicola Hon	Date	5 May 20	017		
Our Ref	TCS00694/13/300/ F0958	No of Pages	6	(Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 12, 13 and 14 April 2017 (Contract 6)					

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0935 dated 18 April 2017 TCS00694/13/300/F0950 dated 26 April 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008						
Date		12 Apr	13 Apr	14 Apr	12 Apr	13 Apr	14 Apr	
Location		2017	2017 2017 2017 2017 2017 2017 2017 WM3x					
Time		10:55	11:05	10:20	10:55	11:05	10:20	
Parameter			urbidity (NT			ended Solids (r		
				ream control		120% of upstre		
Action Lev	el		on of the sam			on of the same		
Limit Leve	1			ream control		130% of upstre		
			on of the sam	5		on of the same	2	
Measured	WM3-C	3.9	9.7	10.4	<2	13.0	9.0	
Level	WM3x	59.4	52.8	49.5	75.5	38.0	37.5	
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Recommen & N Measures	dations Aitigation	 (upstreapile word perform a generation figure) 2. According observet to 6) 3. According (rainfall was de observet road subservet	im of WM3x rks and const ied on 14 Ap al holiday. <i>re 1</i> . ing to the situ d at WM3x v ing to weath 21.5mm) or teriorated by d that the mo rface of Sha	uction activitie) carried out of truction of Brid ril 2017 at Brid The monitoring e photo on 12 while the wate er data record n 12 April 201 y rain and st ponitored channe Tau Kok Ro	n 12 and 13 A dge E. There dge A and Sha g locations and , 13 and 14 A r quality at W from HKO, 7. The water firred up sedi el was also rec ad and the wa	pril 2017 was was no constr Tau Kok Road works areas a pril 2017, turb M3-C was clea there was hea quality in the ment. More- revel the storn ater quality at	mainly bored uction works d since it was are illustrated id water was ar. (<i>Photo 1</i> vy rainstorm e river course over, it was n water from WM3x was	
		4. Weekly on 13 treatmen (<i>Photo</i> observe adjacent monitor sedimer cause by (<i>Photo</i>)	joint site ins April 2017 nt facilites w 8) Howeve d and the s t village. (Pl red channel a nt was observ y the wash ou 10)	e road runoff e spection by RE for investigat ere properly ir r, muddy wate ource of mud hoto 9) Mor at the section 1 ved at the toe at soil from the	E, Contractor, I ion. It was a place and the er flowing from dy water was eover, inspecti- eading to WM of slope of th e slope during	EC and ET w observed that discharge wat n upstream of probably can ion was carrie I3x. Cumulat e river channe rainy day on p	as conducted t wastewater ter was clear. the site was me from the ed out in the tive mud and el and it may revious days.	
		13 and 1	14 April 2017	nvestigation, i were unlikely	caused by the	works under (Contract 6.	
				and Action, the due to the line				

	exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 15 and 18 April 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.					
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.					
Prepared By :	Nicola Hon					
Designation :	Environmental Consultant					
Signature :	Anh					

5 May 2017

Date :

Photo 7

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 13 April 2017 for investigation. It was observed that wastewater treatment facilites were maintained properly at the works area and discharge water was clear.

Photo 9

On 13 April 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 10

On 13 April 2017, inspection was carried out in the monitored channel at the section leading to WM3x. Cumulative mud and sediment was observed at the toe of slope of the river channel and it may cause by the wash out soil from the slope during rainy day on previous days.

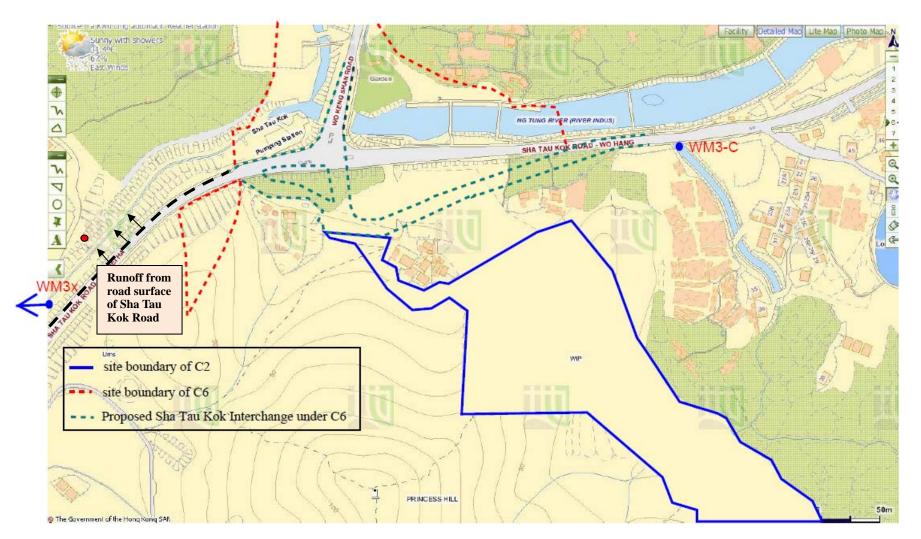


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location