

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) LIANTANG/HEUNG YUEN WAI BOUNDARY CONTROL POINT AND ASSOCIATED WORKS

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (No.47) – June 2017

PREPARED FOR
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
(CEDD)

Date Reference No. Prepared By Certified By

13 July 2017 TCS00694/13/600/R1080v2

Nicola Hon Tam Tak Wing (Environmental Consultant) (Environmental Team Leader)

Version	Date	Remarks
1	10 July 2017	First Submission
2	13 July 2017	Amended according to the IEC's comments on 12 July 2017

Unit A-C, 27/F Ford Glory Plaza 37- 39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T+852 3995 8100 F+852 3995 8101 E hongkong@smec.com www.smec.com

14 July 2017

Our ref: 7076192/L22019/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Independent Environmental Checker – Investigation
Monthly EM&A Report (No. 47) – June 2017

With reference to the Monthly EM&A Report No. 47 for June 2017 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG

Independent Environmental Checker

CC CEDD/BCP Mr LU Pei Yu / Mr William CHEUNG by fax: 3547 1659 ArchSD Mr William WL CHENG by fax: 2804 6805 AECOM Mr Pat LAM / Mr Perry YAM by email Ronald Lu Mr Peter YAM / Mr Justin CHEUNG by email CW Mr Daniel HO by email DHK Mr Daniel ALTIER by email CCKJV Mr Vincent CHAN by email KRSJV Mr Matthew TSANG by email Leighton Mr Jon KITCHING by email Siemens Mr Michael LEUNG by email **AUES** Mr TW TAM by email

EXECUTIVE SUMMARY

ES01 This is the **47**th monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 30 June 2017** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period			
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions		
Air Quality	1-hour TSP	9	147		
All Quality	24-hour TSP	9	54		
Construction Noise	$L_{eq(30min)}$ Daytime	10	45		
		WM1 & WM1-C	13 Scheduled & 2 extra		
	337	WM2A(a) & WM2A-Cx	13 Scheduled & 6 extra		
Water Quality	Water in-situ measurement and/or sampling	WM2B & WM2B-C	(*) 13 Scheduled		
	and/or sampring	WM3x &WM3-C	13 Scheduled & 4 extra		
		WM4, WM4-CA &WM4-CB	13 Scheduled & 2 extra		
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats	1		
	•	Contract 2	5		
T :	IEC, ET, the Contractor	Contract 3	4		
Joint Site	and RE joint site	Contract 4 (#)	5		
Inspection / Audit	Environmental Inspection	Contract 6	5		
Addit	and Auditing	Contract 7	4		
		Contract SS C505 (#)	4		

Note: Extra monitoring day was due to measurement results exceedance

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedances were recorded. For water quality monitoring, thirty-one (31) Action level/ Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

Emrimon montol	Manitanina	owing Astion I		Event & Action			
Environmental Aspect	Parameters Parameters	Level		NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			

^(#) IEC only joined one (1) event of site inspection for Contracts 4 and SS C505.

^(*) Water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

Environmental	Monitoring Action Limi		Limit	Event & Action			
Aspect		Level	Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
	24-hour TSP	0	0	0			
Construction Noise	$\begin{array}{c} L_{eq(30min)} \\ Daytime \end{array}$	0	0	0			
	DO	0	0	0	-		
Water Quality	Turbidity	0	16	16	All exceedances were not	0	The Contractors were reminded to implement water quality mitigation
	SS	1	14	15	project-related	0	measures in accordance with ISEMM of the EM&A Manual

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, no environmental complaints were received under the EM&A program.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES07 No reporting changes were made in the Reporting Period.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on **2**, **9**, **16**, **23** and **30 June 2017**. No non-compliance was noted during the site inspection.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **5**, **15**, **21** and **29** June **2017**. No non-compliance was noted during the site inspection.
- ES10 In the Reporting, joint site inspection for **Contract 4** to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on **1**, **8**, **16**, **19** and **30** June **2017** in which IEC joined the site inspection on **19 2017**. No non-compliance was noted.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 June 2017. No non-compliance was noted during the site inspection.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on 6, 16, 19 and 30 June 2017. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on **7**, **14**, **21** and **28 June 2017** in which IEC joined the site inspection on **28 June 2017**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES14 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES15 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES16 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES17 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	7
	2.4 CONSTRUCTION PROGRESS	7
	2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL	14
	3.2 MONITORING PARAMETERS	14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 GENERAL	26
	5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)	26
6	WATER QUALITY MONITORING	27
	6.1 GENERAL	27
	6.2 RESULTS OF WATER QUALITY MONITORING	27
7	ECOLOGY MONITORING	32
	7.1 GENERAL	32
8	WASTE MANAGEMENT	33
	8.1 GENERAL WASTE MANAGEMENT	33
	8.2 RECORDS OF WASTE QUANTITIES	33
9	SITE INSPECTION	34
	9.1 REQUIREMENTS	34
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	34
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	38
	10.1 Environmental Complaint, Summons and Prosecution	38
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	40
-	11.1 GENERAL REQUIREMENTS	40
	11.2 Tentative Construction Activities in the Coming Month	40
	11.3 KEY ISSUES FOR THE COMING MONTH	42
12	CONCLUSIONS AND RECOMMENDATIONS	43
	12.1 CONCLUSIONS	43
	12.2 RECOMMENDATIONS	43

LIST OF TABLES

Table 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
Table 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
Table 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-3	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS (EVENING TIME)
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 5 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT 6
Table 9-6	SITE OBSERVATIONS FOR CONTRACT SS C505
Table 9-7	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

LAYOUT PLAN OF THE PROJECT
ORGANIZATION CHART
3-MONTH ROLLING CONSTRUCTION PROGRAM
DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
MONITORING LOCATIONS FOR IMPACT MONITORING
CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
EVENT AND ACTION PLAN
IMPACT MONITORING SCHEDULE
DATABASE OF MONITORING RESULT
GRAPHICAL PLOTS FOR MONITORING RESULT
METEOROLOGICAL DATA
WASTE FLOW TABLE
IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015 and the latest Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - 2) Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between 13 June 2013 and 12 July 2013 for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on 16 July 2013 for endorsement. The major construction works of the Project was commenced on 16 August 2013 in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is 47th monthly EM&A report presenting the monitoring results and inspection findings for reporting period from 1 to 30 June 2017.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - **Section 1** Introduction
 - Section 2 Project Organization and Construction Progress
 - **Section 3** Summary of Impact Monitoring Requirements
 - **Section 4** Air Quality Monitoring
 - **Section 5** Construction Noise Monitoring

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.47) – June 2017

Section 6	Water Quality Monitoring
Section 7	Waste Management
Section 8	Site Inspections
Section 9	Environmental Complaints and Non-Compliance
Section 10	Implementation Status of Mitigation Measures
Section 11	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP:
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 PROJECT ORGANIZATION

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A
 programme and the adequacy of mitigation measures implemented, confirm the validity of
 the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Adit waterproofing and lining
 Stud tunnel post-excavation activities and earthworks
 Structure connecting adit tunnel and ventilation building
 Mid-Vent ventilation building superstructure and backfilling
 Erection of bulk head door and enclosure for the extraction fans at
Mid-Vent Adit
 Southbound tunnel waterproofing and lining formwork
Southbound tunnel enlargement
 Southbound tunnel internal structure, backfilling and cross passage
 Tunnel Boring Machine (TBM) North drive excavation
 Northbound tunnel top heading and bench excavation, water proofing
and lining
North ventilation building structure
 Southbound and northbound Drill & Blast Excavation
South ventilation and building superstructure
• Tunnel invert, waterproofing, lining, internal structure and cross passage
Mucking out from tunnels
Construction of fence wall, drainage, internal structure, underground
utilities and E&M installation

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Boundary Wall for DSD Pumping Station
 - Cable detection and trial trenches
 - Remaining works on New Kiu Tau Footbridge
 - Noise barrier construction
 - Pier table construction
 - Road works
 - Viaduct Segment Erection
 - Water Main Laying
 - Gabion wall construction
 - Installation of Noise Barrier Steel Column & Panel
 - Per-drilling for noise barrier
 - Pit construction for heading works.
 - Parapet installation
 - Planter Wall Construction
 - Drainage
 - Mini-pile Installation
 - Construction of Profile Barrier on Viaduct deck
 - Stressing of External Tendon
 - Construction of Abutment Wall

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - System design
 - E&M installation at Admin Building

Contract 5 (CV/2013/03)

2.4.5 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bored Piling
 - Bridge Pier Construction
 - Bridge Segment Erection
 - Tunnel Excavation
 - Sewage Treatment Plant Construction
 - Tunnel Ventilation Building Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - U-trough construction at Bridges A and E
 - Abutment construction at Bridge E
 - Column construction at Bridges A, B and D
 - Roof floor construction at Bridge C

Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
 - Building no. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 18, 26, 30, 36 and 41 construction
 - ABWF Works for Building no.36
 - Tower crane operation
 - Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
 - Underground drainage works, Road Works, CLP Cable laying and Landscaping
 - Formwork and falsework for PTB's slab construction and Bridge Decks
 - Construction PTB M/F, 1/F, 2/F and Roof flat slab
 - Steel beam works for maintenance platform for PTB
 - PTB backfilling works
 - Elevated Walkway E1, E2, E3 and E4 construction
 - Bridge deck construction for Bridges 1-5

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
 - Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for

the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

T4	D ' '	License/Permit Status					
Item	Description	Ref. no.	Effective Date	Expiry Date			
		Contract 2	<u> </u>	<u> </u>			
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends			
2	Chemical Waste Producer Registration	North Portal Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends			
		Mid-Vent Portal Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends			
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends			
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019			
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019			
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019			
		No.: W5/1I392	28 Mar 2014	31 Mar 2019			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends			
5	Construction Noise	GW-RN0214-17	30-Mar-2017	14-Sep 2017			
	Permit	GW-RN0201-17	28-Mar-2017	14-Sep-2017			
		GW-RN0228-17	01-Apr-2017	16-Sep-2017			
		GW-RN0288-17	26-Apr-2017	20-Oct-2017			
		GW-RN0291-17	26-Apr-2017	20-Oct-2017			
		GW-RN0318-17 GW-RN0346-17	09-May-2017 24-May-2017	27-Oct-2017 13-Nov-2017			
		GW-RN0371-17	07-Jun-2017	30-Sep-2017			
		GW-RN0373-17	07-Jun-2017	30-Sep-2017			
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12 Apr 2016	11 Apr 2021			
		Contract 3					
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends			
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends			
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013	28 Aug 13	31 Aug 2018			
4	Waste Disposal Regulation - Billing	Account No. 7017914	2 Aug 13	Till Contract			

T	D ' ('	License/Permit Status					
Item	Description	Ref. no.	Effective Date	Expiry Date			
	Account for Disposal of Construction Waste			ends			
5	Construction Noise	GW-RN0901-16	11 Dec 2016	4 Jun 2017			
	Permit	GW-RN0939-16	22 Dec 2016	21 Jun 2017			
		GW-RN0002-17	8 Jan 2017	4 Jun 2017			
		GW-RN0021-17	19 Jan 2017	8 Jul 2017			
		GW-RN0029-17	19 Jan 2017	8 Jul 2017			
		GW-RN0040-17	25 Feb 2017	24 Aug 2017			
		GW-RN0048-17	25 Jan 2017	16 Jun 2017			
		GW-RN0066-17	3 Feb 2017	15 Jul 2017			
		GW-RN0069-17	15 Feb 2017	14 Aug 2017			
		GW-RN0070-17	3 Feb 2017	15 Jul 2017			
		GW-RN0071-17	16 Feb 2017	15 Aug 2017			
		GW-RN0078-17	21 Feb 2017	21 Jun 2017			
		GW-RN0084-17	8 Feb 2017	15 Jul 2017			
		GW-RN0096-17	19 Feb 2017	10 Jul 2017			
		GW-RN0111-17	26 Feb 2017	30 Jul 2017			
		GW-RN0115-17	2 Mar 2017	26 Aug 2017			
		GW-RN0161-17	1 Apr 2017	30 Sep 2017			
		GW-RN0168-17	2 Apr 2017	25 Sep 2017			
		GW-RN0185-17	1 Apr 2017	30 Sep 2017			
		GW-RN0204-17	30 Mar 2017	29 Sep 2017			
		GW-RN0213-17	6 Apr 2017	9 Sep 2017			
		GW-RN0219-17	31 Mar 201	30 Sep 2017			
		GW-RN0235-17	11 Apr 2017	7 Oct 2017			
		GW-RN0236-17	10 Apr 2017	16 Sep 2017			
		GW-RN0302-17	30 Apr 2017	29 Oct 2017			
		GW-RN0303-17	11 May 2017	10 Nov 2017			
		GW-RN0305-17	30 Apr 2017	30 Jul 2017			
		GW-RN0337-17	26 May 2017	9 Jun 2017			
		GW-RN0342-17	28 May 2017	20 Nov 2017			
		GW-RN0376-17	22 Jun 2017	21 Dec 2017			
		GW-RN0378-17	22 Jun 2017	21 Dec 2017			
		GW-RN0384-17	12 Jun 2017	9 Sep 2017			
		Gw-RN0417-17	27 Jun 2017	16 Dec 2017			
1	Air pollution Control	Contract 5 Ref. No: 359338	13 May 2013	Till the end of			
1	(Construction Dust) Regulation	101.110.337330	15 May 2015	Contract			
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract			

T .	5	License/Permit Status					
Item	Description	Ref. no.	Effective Date	Expiry Date			
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract			
		Contract 6					
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract			
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract			
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract			
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021			
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021			
		No.:WT00024742-2016	14 June 2016	30 June 2021			
		No.:WT00024746-2016	14 June 2016	30 June 2021			
5	Construction Noise	GW-RN0003-17	16 Jan 20217	15 Jul 2017			
	Permit	GW-RN0005-17	1 Apr 2017	30 Jun 2017			
		GW-RN0090-17	15 Feb 2017	14 Aug 2017			
		GW-RN0126-17	3 Mar 2017	27 Aug 2017			
		GW-RN0251-17	17 Apr 2017	12 Oct 2017			
		GW-RN0361-17	1 Jun 2017	31 Aug 2017			
		GW-RN0421-17	20 Jun 2017	19 Dec 2017			
		GW-RN0427-17	3 Jul 2017	31 Aug 2017			
		Contract SS C505	T				
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract			
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract			
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020			
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract			
5	Construction Noise	GW-RN0065-17	7 Feb 2017	6 Aug 2017			
	Permit	GW-RN0290-17	5 May 2017	4 Nov 20017			
		GW-RN0355-17	30 May 2017	25 Nov 2017			

		License/Permit Status			
Item	Description	Ref. no.	Effective Date	Expiry Date	
		GW-RN0418-17	21 Jun 2017	15 Dec 2017	
		Contract 7			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract	
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract	
5	Construction Noise Permit	GW-RN0321-17	10 May 2017	4 Nov 2017	
		Contract 4			
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract	
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract	

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters		
Air Onolity	1-hour TSP by Real-Time Portable Dust Meter; and		
Air Quality	24-hour TSP by High Volume Air Sampler.		
L _{eq(30min)} in normal working days (Monday to Saturday) except public holiday; and			
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00 next day, and whole day of public holiday or Sunday		
	• Supplementary information for data auditing, statistical results such as L ₁₀ and L ₉₀ shall also be obtained for reference.		
	In-situ Measurements		
	Dissolved Oxygen Concentration (mg/L);		
	Dissolved Oxygen Saturation (%);		
	• Turbidity (NTU);		
Water Quality	pH unit;		
•	Water depth (m); and		
	• Temperature (°C).		
	Laboratory Analysis		
	Suspended Solids (mg/L)		

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2*, *Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Table 3-2 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013)

Table 3-3 Impact Monitoring Stations - Construction Noise

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

^{*} Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[@] Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[^] Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Table 3-4 Impact Monitoring Stations - Water Quality

		Coordi	nates of			
Ctation ID	Dagawintian	Designated / Alternative		Noture of the leastion	Related to	
Station ID	Description		ation	Nature of the location	the Work	
		Easting	Northing		Contract	
	Downstream			Alternative location located	SS C505	
WM1	of Kong Yiu	833 679	845 421	at upstream 51m of the	Contract 6	
	Channel			designated location		
WM1-	Upstream of				SS C505	
Control	Kong Yiu	834 185	845 917	NA	Contract 6	
Control	Channel					
	Downstream			Alternative location located		
WM2A	of River	834 204	844 471	at upstream 81m of the	Contract 6	
	Ganges			designated location		
	Downstream			Alternative location located		
WM2A(a)*	of River	834 191	844 474	at upstream 70m of the	Contract 6	
	Ganges			designated location		
WM2A-	Upstream of			Alternative location located		
Controlx#	River Ganges	835 377	844 188	at upstream 160m of the	Contract 6	
Controla	Kivei Ganges			designated location		
	Downstream					
WM2B	of River	835 433 843 397	NA	Contract 6		
	Ganges					
WM2B-	Upstream of			Alternative location located		
Control	River Ganges	835 835	843 351	at downstream 31m of the	Contract 6	
Control	Taver Ganges			designated location		
	Downstream			Alternative location located	Contract 2	
WM3x#	of River Indus	836 206	842 270	at downstream 180m of the	Contract 6	
	of River mads			designated location	Contract o	
WM3-	Upstream of			Alternative location located	Contract 2	
Control	River Indus	836 763	842 400	at downstream 26m of the	Contract 6	
				designated location		
****	Downstream	000 070	000 550	Alternative location located	Contract 2	
WM4	of Ma Wat	833 850	838 338	at upstream 11m of the	Contract 3	
	Channel			designated location		
WM4-	Kau Lung	004.000	00= -05	Alternative location located	Contract 2	
Control A	Hang Stream	834 028 837 693	837 695		Contract 3	
	•			designated location		
WM4-	Upstream of	000-10	005555	Alternative location located	Contract 2	
Control B	Ma Wat	833760	837395	at upstream 15m of the	Contract 3	
Notes EDD h	Channel			designated location		

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in Sections 2.1.6, 3.1.5 and 4.1.6 of the

^(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

^(#) Proposal for the change of water quality monitoring location (EM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

approved EM&A Manual and presented as follows.

Air Quality Monitoring

3.4.1 Frequency of impact air quality monitoring is as follows:

1-hour TSP
 24-hour TSP
 3 times every six days during course of works
 Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5 Air Quality Monitoring Equipment

Equipment Model				
24-Hr TSP				
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*			
Calibration Kit	TISCH Model TE-5025A*			
1-Hour TSP				
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &			
Portable Dust Weter	Counter*			

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.

- 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Table 3-6 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31* or Rion NL-52*
Calibrator	B&K Type 4231* or Quest QC-20* or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For

sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Table 3-7 Water Quality Monitoring Equipment

Equipment	Model	
Water Depth Detector	Eagle Sonar or tape measures	
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket	
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument*/ YSI 550A Multifunctional Meter/ YSI Professional DSS	
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/650MDS/ YSI Professional DSS	
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS	
Sample Container	High density polythene bottles (provided by laboratory)	
Storage Container	'Willow' 33-liter plastic cool box with Ice pad	

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;

Monthly Environmental Monitoring & Audit Report (No.47) – June 2017

- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). $Leq_{(30min)}$ in six consecutive $Leq_{(5min)}$ measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; $Leq_{(5min)}$ measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4°C as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

- 3.6.14 YSI PRO20 Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8*, *3-9* and *3-10*.

Table 3-8 Action and Limit Levels for Air Quality Monitoring

Manitaring Station	Action Level (μg /m³)		Limit Level (µg/m³)	
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1b	265	143		
AM2	268	149		
AM3	269	145		
AM4b	267	148	500	260
AM5a	268	143		
AM6	269	148		
AM7b	275	156		

Manitaning Station	Action Level (μg /m³)		Limit Level (μg/m³)	
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM8	269	144		
AM9b	271	151		

Table 3-9 Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)	
Withintoning Location	Time Period: 0700-1900 hours on normal weekdays		
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}	

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10 Action and Limit Levels for Water Quality

Parameter	Performance	Monitoring Location						
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4		
DO	Action Level	(*)4.23	(**)4.00	(*)4.74	(**)4.00	(*)4.14		
(mg/L)	Limit Level	^(#) 4.19	4.00	^(#) 4.60	(**)4.00	^(#) 4.08		
Turbidity Acti	Action Level	51.3	24.9	11.4	13.4	35.2		
	Action Level	AND	120% of upstream control station of the same day					
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4		
	Lillill Level	AND	130% of upstream control station of the same day					
	Action Level	54.5	14.6	11.8	12.6	39.4		
CC (max/T)	Action Level	AND	120% of upstream control station of the same day					
SS (mg/L)	Limit Laval	64.9	17.3	12.4	12.9	45.5		
	Limit Level	AND	130% of ups	tream control s	tation of the s	ame day		

Remarks:

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

^(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

^(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

^(#) The Proposed Limit Level of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

4 AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *147* events of 1-hour TSP and *54* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

	24-hour		1.	-hour TSP (μg	y/m ³)	
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading
1-Jun-17	136	2-Jun-17	9:19	55	53	54
7-Jun-17	53	8-Jun-17	9:15	22	21	22
13-Jun-17	30	14-Jun-17	9:24	71	65	62
19-Jun-17	30	20-Jun-17	8:54	27	15	17
24-Jun-17	31	26-Jun-17	9:41	34	34	50
29-Jun-17	60	30-Jun-17	9:31	41	41	36
Average	57	Avera	ge		40	
(Range)	(30 - 136)	(Rang	ge)		(15-71)	

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour	1-hour TSP (μg/m³)					
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-17	41	2-Jun-17	9:13	58	54	56	
7-Jun-17	122	8-Jun-17	9:12	49	47	47	
13-Jun-17	41	14-Jun-17	9:20	71	74	77	
19-Jun-17	37	20-Jun-17	9:09	18	20	11	
24-Jun-17	33	26-Jun-17	9:35	53	55	50	
29-Jun-17	80	30-Jun-17	9:27	37	37	34	
Average	59	Avera	ige		47		
(Range)	(33 - 122)	(Rang	ge)		(11 - 77)		

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour	1-hour TSP (μg/m³)				
Date	TSP $(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading
1-Jun-17	102	2-Jun-17	9:09	55	48	45
7-Jun-17	40	8-Jun-17	9:10	33	34	36
13-Jun-17	32	14-Jun-17	9:15	70	89	73
19-Jun-17	46	20-Jun-17	9:12	18	18	15
24-Jun-17	130	26-Jun-17	9:29	55	53	54
29-Jun-17	79	30-Jun-17	9:24	34	36	32
Average (Range)	72 (32 – 130)	Avera (Rang	~		44 (15 – 89)	

Table 4-4 Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24-hour	1-hour TSP (μg/m³)					
Date	TSP (μg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
2-Jun-17	65	3-Jun-17	8:47	61	55	60	
8-Jun-17	29	9-Jun-17	9:26	84	75	78	
14-Jun-17	37	15-Jun-17	9:38	51	58	55	
20-Jun-17	36	21-Jun-17	9:27	66	54	42	
26-Jun-17	47	27-Jun-17	13:00	89	90	93	
30-Jun-17	35						
Average (Range)	42 (29 – 65)	Avera (Rang	C		67 (42 – 93)		

Table 4-5 Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a

	24-hour	1-hour TSP (μg/m³)					
Date	TSP (µg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
2-Jun-17	70	3-Jun-17	8:49	58	58	66	
8-Jun-17	132	9-Jun-17	10:00	93	81	83	
14-Jun-17	38	15-Jun-17	9:35	62	60	55	
20-Jun-17	29	21-Jun-17	9:24	51	52	39	
26-Jun-17	38	27-Jun-17	13:03	84	86	89	
30-Jun-17	39						
Average	58	Avera	ige		68		
(Range)	(29 - 132)	(Rang	ge)		(39 - 93)		

Table 4-6 Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (μg/m³)				
Date	TSP $(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading
2-Jun-17	89	3-Jun-17	9:07	63	58	64
8-Jun-17	63	9-Jun-17	9:38	85	85	83
14-Jun-17	48	15-Jun-17	9:30	49	44	44
20-Jun-17	38	21-Jun-17	9:19	45	51	47
26-Jun-17	59	27-Jun-17	13:17	87	88	91
30-Jun-17	66					
Average (Range)	61 (38 – 89)	Avera (Rang	•		66 (44 – 91)	

Table 4-7 Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b

	24-hour	1-hour TSP (μg/m³)						
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
2-Jun-17	121	3-Jun-17	13:00	64	53	57		
8-Jun-17	99	9-Jun-17	13:02	94	96	95		
14-Jun-17	44	15-Jun-17	9:22	51	41	42		
20-Jun-17	50	21-Jun-17	9:14	48	58	50		
26-Jun-17	132	27-Jun-17	8:57	82	82	82		
30-Jun-17	120							
Average (Range)	94 (44 – 132)	Avera (Rang	~		66 (41 – 96)			

Table 4-8 Summary of 24-hour and 1-hour TSP Monitoring Results – AM8

	24-hour	1-hour TSP (μg/m³)						
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
2-Jun-17	63	3-Jun-17	13:17	63	63	71		
8-Jun-17	18	9-Jun-17	13:24	92	96	94		
14-Jun-17	43	15-Jun-17	9:13	50	53	53		
20-Jun-17	43	21-Jun-17	9:04	50	37	38		
26-Jun-17	39	27-Jun-17	8:54	84	85	86		
30-Jun-17	44							
Average	42	Avera	•		68			
(Range)	(18 - 63)	(Rang	ge)		(37 - 96)			

Table 4-9 Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b

	24-hour	1-hour TSP (μg/m³)					
Date	TSP $(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
1-Jun-17	33	2-Jun-17	9:38	72	69	78	
7-Jun-17	33	8-Jun-17	9:25	37	41	39	
13-Jun-17	27	14-Jun-17	9:38	28	29	32	
19-Jun-17	37	20-Jun-17	9:49	55	53	49	
24-Jun-17	45	26-Jun-17	10:01	67	65	71	
29-Jun-17	23	30-Jun-17	8:57	39	41	36	
Average (Range)	33 (23 – 45)	Avera (Rang	_		50 (28 – 78)		

- 4.2.1 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.2 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in Appendix H and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

In the Reporting Period, a total of **45** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1 Summary of Construction Noise Monitoring Results

	Construction Noise Level (L _{eq30min}), dB(A)							
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
2-Jun-17	59	69	59	61	64			
8-Jun-17	56	72	57	62	65			
14-Jun-17	60	68	60	61	66			
20-Jun-17	57	69	59	62	66			
26-Jun-17	57	71	59	62	67			
Limit Level			75 dB(A)					

Remarks

Table 5-2 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)									
Date	NM3	NM3							
9-Jun-17	59	64	55	60	58				
15-Jun-17	59	62	52	57	59				
21-Jun-17	58	61	53	58	56				
27-Jun-17	62	62 64 54 60 64							
Limit Level	Limit Level 75 dB(A)								

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

 $^{^{(*)}}$ façade correction (+3 dB(A) is added according to acoustical principles and EPD guidelines

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 RESULTS OF WATER QUALITY MONITORING

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM1, WM2A(a), WM3x and WM4, according to "Event and Action Plan" stipulation, 2, 6, 4 and 2 additional water quality monitoring day was conducted for WM1, WM2A(a), WM3x and WM4 respectively and theirs control stations in the reporting period.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Table 6-1 Water Quality Monitoring Results Associated of Contracts 2 and 3

Date	Diss	solved Oxy (mg/L)	gen		Turbidity (NTU)		Suspended Solids (mg/L)		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB
2-Jun-17	7.6	7.9	6.4	12.5	7.6	14.9	7.5	5.0	13.0
5-Jun-17	8.1	7.8	6.4	7.8	5.6	11.5	4.5	3.5	11.0
7-Jun-17	6.4	6.3	5.4	15.5	4.3	9.2	12.5	2.0	9.5
9-Jun-17	7.1	6.0	5.2	8.4	2.7	12.1	9.0	3.5	12.0
13-Jun-17	9.4	9.6	9.2	94.1	86.1	73.8	94.0	83.5	67.0
15-Jun-17	7.3	7.1	5.3	34.9	12.1	25.9	28.0	8.0	18.5
17-Jun-17	7.5	8.3	6.1	34.9	13.7	17.1	27.0	5.5	13.5
19-Jun-17	7.3	7.5	6.8	70.6	46.0	59.9	65.0	26.5	56.5
21-Jun-17	8.1	8.5	7.3	90.6	58.0	65.8	<u>79.0</u>	50.0	53.5
22-Jun-17#	#	#	#	205.5	19.4	19.5	<u>164.0</u>	12.0	9.0
23-Jun-17#	#	#	#	24.4	9.4	6.6	26.0	12.0	12.0
24-Jun-17	6.6	6.6	5.3	35.1	16.8	12.3	34.0	15.5	7.0
26-Jun-17	6.7	6.5	6.9	23.9	375.0	9.8	12.5	214.0	6.5
28-Jun-17	6.9	6.7	5.8	13.3	14.5	8.0	12.5	14.5	6.0
30-Jun-17	7.1	8.0	6.3	21.8	7.4	11.5	31.0	6.5	8.5

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-2 Water Quality Monitoring Results Associated of Contracts 5, 6 and SS C505

Date		l Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
2-Jun-17	7.6	6.5	48.0	16.9	53.5	12.5	
5-Jun-17	6.7	6.2	50.9	20.7	51.5	13.5	
7-Jun-17	7.0	4.3	35.8	16.0	40.5	8.5	
9-Jun-17	8.9	6.9	38.3	11.5	35.5	7.0	
13-Jun-17	7.9	8.3	620.5	819.5	447.5	611.5	
15-Jun-17	8.4	7.6	25.2	17.7	22.0	14.0	
17-Jun-17	7.5	8.0	52.0	852.0	56.0	466.0	
19-Jun-17	7.9	6.9	199.0	over range	69.5	1070.0	
21-Jun-17	8.3	8.3	70.0	15.0	72.5	19.5	
22-Jun-17#	#	#	16.2	9.0	21.0	7.0	
23-Jun-17#	#	#	8.7 6.8		20.0	4.0	

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
24-Jun-17	7.3	7.4	50.5	15.2	53.5	20.5	
26-Jun-17	6.1	5.7	41.0	8.1	45.0	4.5	
28-Jun-17	5.8	5.9	18.6	9.4	29.5	6.0	
30-Jun-17	6.2	6.2	23.2	10.5	30.0	7.0	

Remarks: bold with underline indicated Limit Level exceedance

bold with italic indicated Action Level exceedance

Table 6-3 Water Quality Monitoring Results Associated only Contract 6

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)				Suspended Solids (mg/L)			
	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C
2-Jun-17	6.7	6.4	*	*	16.3	13.3	*	*	10.0	7.0	*	*
5-Jun-17	7.1	7.0	*	*	9.9	9.6	*	*	2.5	8.0	*	*
7-Jun-17	5.4	4.6	*	*	22.5	67.1	*	*	21.5	46.0	*	*
9-Jun-17	5.3	5.2	*	*	4.3	8.0	*	*	4.5	5.5	*	*
13-Jun-17	8.2	8.7	*	*	435.5	79.2	*	*	316.5	32.0	*	*
14-Jun-17#	#	#	*	*	194.0	32.5	*	*	136.0	30.0	*	*
15-Jun-17	6.6	8.5	*	*	34.2	6.7	*	*	23.5	4.5	*	*
16-Jun-17#	#	#	*	*	223.0	189.5	*	*	204.0	252.0	*	*
17-Jun-17	7.3	8.1	*	*	96.3	91.2	*	*	51.5	58.5	*	*
19-Jun-17	8.1	8.4	*	*	180.5	35.2	*	*	146.5	11.5	*	*
20-Jun-17#	#	#	*	*	77.8	26.1	*	*	65.0	22.0	*	*
21-Jun-17	7.9	8.5	*	*	163.0	151.5	*	*	141.0	98.5	*	*
22-Jun-17#	#	#	*	*	54.0	5.7	*	*	55.0	<2	*	*
23-Jun-17#	#	#	*	*	8.9	3.2	*	*	8.0	3.0	*	*
24-Jun-17	6.2	6.6	*	*	77.1	11.3	*	*	58.0	6.0	*	*
26-Jun-17	4.9	6.5	*	*	17.6	7.2	*	*	12.0	3.0	*	*
26-Jun-17#	#	#	*	*	21.4	7.0	*	*	17.0	<2	*	*
28-Jun-17	5.6	6.0	*	*	9.4	8.5	*	*	<2	5.0	*	*
30-Jun-17	7.4	7.2	*	*	20.9	7.5	*	*	14.0	<2	*	*

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-4 Water Quality Monitoring Results Associated Contracts 2 and 6

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
2-Jun-17	6.5	6.8	9.9	10.9	16.0	16.0	
5-Jun-17	7.0	7.2	13.2	9.9	12.0	12.0	
7-Jun-17	4.1	6.3	14.8	12.4	11.0	15.0	
9-Jun-17	4.9	4.6	9.1	2.0	6.5	6.0	
13-Jun-17	8.4	8.1	84.5	156.5	69.5	145.5	
15-Jun-17	7.2	7.7	11.8	3.7	12.0	6.5	
17-Jun-17	7.0	8.4	58.2	4.5	54.0	5.0	
19-Jun-17	7.8	7.9	27.1	26.7	28.5	37.0	
20-Jun-17#	#	#	22.3	18.6	25.0	25.0	
21-Jun-17	7.1	7.7	279.0	103.0	230.0	114.5	
22-Jun-17#	#	#	164.0	10.8	204.0	54.0	
23-Jun-17#	#	#	<u>25.1</u>	12.1	22.0	88.0	
24-Jun-17	6.1	7.6	44.2	106.0	52.5	190.5	

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

^{*} water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

Date	Dissolved Oxygen (mg/L)		· ·			Suspended Solids (mg/L)			
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C			
26-Jun-17	6.2	6.3	29.6	37.7	13.5	74.5			
28-Jun-17	5.8	6.5	29.0	12.1	15.0	18.5			
29-Jun-17#	#	#	14.9	13.3	6.0	17.0			
30-Jun-17	7.6	7.5	13.4	7.1	14.0	12.0			

Remarks:

bold with underline indicated Limit Level exceedance

Table 6-5 Action and Limit (A/L) Levels Exceedance Recorded

Location		olved ygen	Turb	oidity	Suspe Sol	ended ids		otal edance	-	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	1	0	1	0	2	0	0
WM2A(a)	0	0	0	8	1	8	1	16	0	0
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	5	0	3	0	8	0	0
WM4	0	0	0	2	0	2	0	4	0	0
No of Exceedance	0	0	0	16	1	14	1	30	0	0

- 6.2.3 In this Reporting Period, a total of thirty-one (31) Action level/ Limit Level (LL) exceedances, namely sixteen (16) LL exceedance of turbidity and fifteen (15) AL/ LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. According to the investigation result, all the exceedances were concluded as non-project related.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Table 6-6 Summary of Water Quality Exceedance in the Reporting Period

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief			
25 May 2017(last reporting period)	WM1	NTU & SS	It was observed that large amount of rubbish was cumulated near at the water gate near WM1 and the muddy water generated under rain was stagnant and could not flow to downstream. Investigation report revealed that exceedances were related to the impact of rain and not due to works under both Contract 6 and Contract SS C505.			
23, 25 and 29 May 2017 (last reporting period)	WM2A(a)	NTU & SS	There were successive rainy days on 21 to 24 May 2017. The water quality in the river course was deteriorated due to rain and stir up sediment at the river bed. Moreover, it was observed that nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 23 May were caused by rainstorm and exceedances on 25 and 29 May 2017 were due to residual impact of rain and not caused by the works under the Contract 6.			

^{*} Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

23, 24, 25 and 26 May 2017 (last reporting period)	WM3x	NTU & SS	Muddy water flowing from upstream of the site was observed and the source of muddy water was probably came from the adjacent villages. Moreover, the monitored channel also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by road runoff especially during rainy day. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 23 to 26 May 2017 were unlikely caused by the works under the Project.
13, 14 and 15 June 2017	WM2A(a)	NTU & SS	There were successive rainy days on 13 to 15 June 2017 in which red rainstorm signal was issued on 13 June 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 14 and 15 June 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 13 June 2017 was caused by the rainstorm and the exceedances on 14 and 15 June 2017 were due to residual impact of rain and not due to works under Contract 6.
17, 21, 22, 23 and 28 June 2017	WM3x	NTU & SS	Muddy water flowing from upstream of the site was observed and the source of muddy water was probably came from the adjacent villages. According to weather data record from HKO, there were successive rainy days on 17 to 21 June 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, the monitored channel also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by road runoff especially during rainy day. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 24, 26, 29 and 30 June 2017 were unlikely caused by the works under the Project.
21 Jun 2017	WM1	NTU & SS	It was observed that large amount of rubbish was cumulated near at the water gate near WM1 and the muddy water generated under rain was stagnant and could not flow to downstream. Investigation report revealed that exceedances were related to the impact of rain and not due to works under both Contract 6 and Contract SS C505.
21 and 22 June 2017	WM4	NTU & SS	According to the rainfall record from HKO, there was rainstorm (95.9mm) on 21 June 2017. The water quality throughout the water channel was deteriorated by the stirred up sediment and runoff from the surrounding environment. During weekly site inspection, no adverse water quality impact was observed with the mitigation measures implemented by

			the Contractor. The site condition was generally in order and no abnormal situation under the Contract was identified. In our investigation, it is considered that exceedances on 21 and 22 June 2017 were unlikely related to the works under the Contracts 2 and 3.
19, 20, 21 and 22 June 2017	WM2A(a)	NTU & SS	According to the weather information from HKO, there were successive rainy days on 19 to 21 June 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 19 and 22 June 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 19, 20 and 21 June 2017 was caused by the rainstorm and the exceedances on 22 June 2017 were due to residual impact of rain and not due to works under Contract 6.
24 and 26 June 2017	WM2A(a)	NTU & SS	According to the weather information from HKO, there were successive rainy days on 23 to 25 June 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 24 June 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. No abnormal phenomenon was observed on 27 June 2017. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances was due to natural variation and unlikely caused by the works under Contract 6.

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval. The last ecological monitoring report (March-April 2017) was submitted to EPD. In the Reporting Period, the ecological monitoring was carried out on 9 and 23 June 2017.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 RECORDS OF WASTE QUANTITIES

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and 8-2 and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials for the Project

Type of	Conti	ract 2	Cont	ract 3	Co	ntract 4	Cont	ract 6	Co	ontract 7	Contrac	et SS C505	
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Qty.
C&D Materials (Inert) (in '000m³)	14.5546		1.249		0	1	1.108		0.317		8.813		26.0416
Reused in this Contract (Inert) (in '000 m ³)	0.5364	-	0.150		0	-	0		0		0.317		1.0034
Reused in other Contracts/ Projects (Inert) (in '000 m³)	13.5970	C6/ NENT# & other projects approved by the ER	0		0	ŀ	0		0		0		13.597
Disposal as Public Fill (Inert) (in '000 m ³)	0.4212	Tuen Mun 38	0.948	Tuen Mun 38	0	ł	1.108	Tuen Mun 38	0.317	Tuen Mun 38	8.496	TKO 137	11.2902

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	ract 3	Cont	ract 4	Cont	tract 6	Cont	ract 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg) #	97.36	Licensed collector	0	-	0		0		4	Licensed collector	338.580	Licensed collector	439.94
Recycled Paper / Cardboard Packing ('000kg) #	0.30	Licensed collector	0	-	0	-	0	-	0.04	Licensed collector	0.710	Licensed collector	1.05
Recycled Plastic ('000kg) #	1.6730	Licensed collector	0	-	0		0		0.001	Licensed collector	0.036	Licensed collector	1.71
Chemical Wastes ('000kg) #	1.6840	Licensed collector	0	-	0		0		0		0		1.684
General Refuses ('000m ³)	0.1745	NENT	0.135	NENT	0		0.258	NENT	0.04	NENT	0.878	NENT	1.4855

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in (' $000m^3$).

9 SITE INSPECTION

9.1 REQUIREMENTS

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 16, 23 and 30 June 2017. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Table 9-1 Site Observations for Contract 2

Date	Findings / Deficiencies	Follow-Up Status
2 June 2017	The mud cumulated near the discharge outlet should be cleaned to prevent contamination with the surface run-off. (South Portal)	The mud cumulated near the discharge outlet was cleared.
9 June 2017	• It was reminded that dust suppression measures should be provided for the dusty works such as breaking. (Admin Building)	Not required for reminder.
16 June 2017	The footing of site hoarding should be sealed properly. Also, the overflow muddy water and silt trapped in the drainage pit during rainstorm should be cleaned. (Admin Building)	• Walkway was cleaned immediately and further seal up the hoarding, also silts trapped at the drainage pit after the heavy rain was cleaned.
23 June 2017	 Housekeeping should be inproved. C&D waste and general refuse scattered on site should be cleaned. Also, ponding water cumulated on site after rainstorm should be removed or provide proper mitigation measures to prevent mosquito breeding. (Mid-Vent) Waste battery placing at the site entrance was observed. All chemical waste should be stored at the designated chemical waste storage area. (Mid-Vent) 	C&D waste and general refuse were have been cleared and housekeeping of the construction site was improved. Also, the ponding water cumulated on site was removed and larvicide oil was applied in all suspected areas. The waste battery was placed in the chemical storage room immediately.
30 June 2017	Cumulative sediment was observed in the basin which collecting the hillside water, the Contractor should clear the thick sediment properly and ensure the diverted water not being contaminated. (North Portal)	The cumulative sediment of the basin was removed.

Contract 3

9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental

performance has been carried out by the RE, IEC, ET and the Contractor on 5, 15, 21 and 29 June 2017. No non-compliance was noted.

9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Table 9-2 Site Observations for Contract 3

Date	Findings / Deficiencies	Follow-Up Status
5 June 2017	No adverse environmental issue was observed.	• NA
15 June 2017	No adverse environmental issue was observed.	• NA
21 June 2017	• The Contractor was reminded to cover the stockpile stored on-site properly to prevent it being washed away during rainy days.	Not required for reminder.
29 June 2017	No adverse environmental issue was observed.	• NA

Contract 4

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 1, 8, 16, 19 and 30 June 2017 in which IEC joined the site inspection on 19 June 2017. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 9-3 Site Observations for Contract 4

Date	Findings / Deficiencies	Follow-Up Status
1 June 2017	No adverse environmental issue was observed.	• NA
8 June 2017	No adverse environmental issue was observed.	• NA
16 June 2017	No adverse environmental issue was observed.	• NA
19 June 2017	No adverse environmental issue was observed.	• NA
30 June 2017	No adverse environmental issue was observed.	• NA

Contract 6

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 22 and 29 June 2017. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Table 9-4 Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status
1 June 2017	No adverse environmental issue was observed.	• NA
8 June 2017	No adverse environmental issue was observed.	• NA
15 June 2017	No adverse environmental issue was observed.	• NA
22 June 2017	The Contractor was reminded that the exposed soil surface adjacent to the river course should be covered with tarpaulin sheet to minimize muddy runoff. (Bridge D)	Not required for reminder.
29 June 2017	Muddy trails on public road along the site area near Nylon Dam was observed, the Contractor	• The muddy trails were cleared.

Date	Findings / Deficiencies	Follow-Up Status
	 should clean up the mud and maintain the cleanliness on the public road. Muddy trails and wastewater from vehicle washing was observed at the site exit/entrance of DongDongShan, the Contractor should ensure all vehicles should be properly washed prior leaving the site and maintain the cleanliness on the public road. It was reminded that mitigation measures should be provided to the exposed slope along any water course. 	The muddy trails and wastewater were cleared.

Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on **7, 14, 21 and 28 June 2017** in which IEC joined the site inspection on **28 June 2017**. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5 Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
31 May 2017 (last reporting month)	• Chemical containers without drip tray were observed near Building 7 and at PTB. The Contractor should place the containers on drip tray to avoid land contamination.	Chemical containers were removed from site area
7 June 2017	• The Contractor was reminded to remove stagnant water within site area.	• Not required for reminder.
14 June 2017	 Construction wastes were observed on the ground. The contractor was advised to dispose wastes regularly. The Contractor was reminded to clean the ponding water within site area after raining. 	 Construction wastes on the ground were removed. Not required for reminder.
21 June 2017	 Wastes were observed at work area of PTB East. The Contractor was advised to dispose wastes regularly and perform house-keeping. The Contractor was reminded to clean the ponding water within site area after raining. 	 The wastes were disposed regularly. Not required for reminder.
28 June 2017	• Air compressor without NRMM label was observed at building 2. The Contractor was advised to provide NRMM label for the air compressor.	NRMM label was provide for air compressor.
	• The same air compressor without noise emission label was observed at building 2. The Contractor was advised to provide noise emission label for the air compressor.	Noise emsision label was provided fo air compression.
	• Stagnant water was observed at the channel of building6. The contractor was advised to clean the stagnant water to avoid mosquito breeding.	Pump device was provided on stie to pump away stagnant water.

Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6**, **16**, **19** and **30 June 2017**. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract 7* that observed during the weekly site inspection are listed in *Table 9-6*.

Table 9-6 Site Observations for Contract 7

Date	Findings / Deficiencies	Follow-Up Status
6 June 2017	No adverse environmental issue was observed.	• NA
16 June 2017	No adverse environmental issue was observed.	• NA
19 June 2017	No adverse environmental issue was observed.	• NA
30 June 2017	Stockpile without covering was observed, the Contractor should cover the stockpile with tarpaulin sheet to minimize dust impact.	• NA

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecution

- 10.1.1 In the Reporting Period, no environmental complaint, summons and prosecution under the EM&A Programme was lodged for all Contracts.
- 10.1.2 The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

	Contract	Contract Environmental Complaint Statistics			Project	
Reporting Period	No	Frequency	Cumulative	Complaint Nature	related complaint	
19 May 2014 – 31 May 2017	Contract 2	0	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	(5) water (2) dust (1) noise	
06 Nov 2013 – 31 May 2017	Contract 3	0	5	(1) Dust(3) Water quality(1) Noise	0	
16 Aug 2013 – 31 May 2017	Contract 5	0	4	• (3) Dust • (1) Noise	0	
16 Aug 2013 – 31 May 2017	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	(6) water (2) dust (1) Nuisance	
15 Feb 2016 – 31 May 2017	Contract 7	0	1	• (1) Noise	0	
16 Aug 2013 – 31 May 2017	SS C505	0	2	• (1) Noise • (1) dust	0	
	Contract 2	0	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	NA	
	Contract 3	0	5	(1) Dust(3) Water quality(1) Noise	NA	
1 – 30 June 2017	Contract 4	0	0	NA	NA	
	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	NA	
	Contract 7	0	1	• (1) Noise	NA	
	SS C505	0	2	• (1) Noise • (1) dust	NA	

 Table 10-2
 Statistical Summary of Environmental Summons

Danautina Dania d	Contract No	Environmental Summons Statistics			
Reporting Period		Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 May 2017	Contract 2	0	0	NA	
06 Nov 2013 – 31 May 2017	Contract 3	0	0	NA	
16 Aug 2013 – 31 May 2017	Contract 5	0	0	NA	

16 Aug 2013 – 31 May 2017	Contract 6	0	0	NA
15 Feb 2016 – 31 May 2017	Contract 7	0	0	NA
16 Aug 2013 – 31 May 2017	SS C505	0	0	NA
	Contract 2	0	0	NA
	Contract 3	0	0	NA
1 20 June 2017	Contract 4	0	0	NA
1 – 30 June 2017	Contract 6	0	0	NA
	Contract 7	0	0	NA
	SS C505	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecution

D	Canton A Na	Environmental Prosecution Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 May 2017	Contract 2	0	0	NA	
06 Nov 2013 – 31 May 2017	Contract 3	0	0	NA	
16 Aug 2013 – 31 May 2017	Contract 5	0	0	NA	
16 Aug 2013 – 31 May 2017	Contract 6	0	0	NA	
15 Feb 2016 – 31 May 2017	Contract 7	0	0	NA	
16 Aug 2013 – 31 May 2017	SS C505	0	0	NA	
	Contract 2	0	0	NA	
	Contract 3	0	0	NA	
1 – 30 June 2017	Contract 4	0	0	NA	
	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures				
Water	• Wastewater to be treated by the wastewater treatment facilities i.e.				
Quality	sedimentation tank or similar facility before discharge.				
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission 				
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used. 				
Waste and	On-site sorting prior to disposal				
Chemical	Follow requirements and procedures of the "Trip-ticket System"				
Management					
	 Collect the unused fresh concrete at designated locations in the sites for subsequent disposal 				
General	The site was generally kept tidy and clean.				

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract 2

Mid-Vent Portal	Adit tunnel water proofing and lining
	 Stud tunnel post-excavation activities and earthworks
	 Ventilation building superstructure and internal structure works
	 Structure connecting the adit tunnel, and ventilation building
	• Erection of enclosure for the extraction fan at the adit
North Portal	Southbound tunnel enlargement, waterproofing and lining
	• Southbound tunnel internal structure, backfilling and construction of
	cross passage
	 Northbound tunnel top-heading and bench excavation, waterproofing
	and lining
	 Erection of acoustic curtain door and tunnel door for Northbound and
	Southbound tunnels
	North ventilation building superstructure, internal structure and
	backfilling
South Portal	 Southbound and Northbound D&B excavation and mucking out
	 South ventilation building superstructure, internal structure and
	backfilling

	 Southbound and Northbound tunnel invert, waterproofing and lin 				
	•	Tunnel breakthrough to Mid-Vent Portal			
Admin Building	•	Construction of permanent drainage and fencing wall			
	•	Building internal structure, fitting out work, curtain wall, UU and			
		E&M installation			

Contract 3

- Construction of Boundary Wall for Pumping Station
- Cable detection and trial trenches
- Installation of Noise Barrier steel column & panel
- Remaining works on New Kiu Tau Footbridge
- Mini-pile Installation Works
- Noise barrier construction
- Pier / Pier Table construction
- Pipe Jacking Works DN2200 Water Mains
- Road works
- Viaduct segment erection
- Water Main Laying
- Parapet Installation
- Planter wall construction
- Construction of Profile barrier on Viaduct Deck
- Drainage Work
- Stressing of External Tendon
- Pit construction for heading works
- Construction of Abutment Wall
- Installation of noise barrier steel column and panel

Contract 4

- System design
- E&M installation at Admin Building

Contract 6

- Bored Piling
- Bridge Pier Construction
- Segment section
- Sewage Treatment Plant Construction
- Tunnel Works
- Tunnel Ventilation Building Construction

Contract 7

- U-trough and abutment construction at Bridge A and Bridge E
- Column construction at Bridge A and E
- Column and deck construction at Bridge B and D
- Roof floor construction of Bridge C

Contract SS C505

- Building no. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 18, 36 and 41 construction
- ABWF Works for Building no.36

- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab construction and Bridges Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Elevated Walkway E1, E2, E3 and E4 construction
- Bridge deck construction for Bridges 1 5

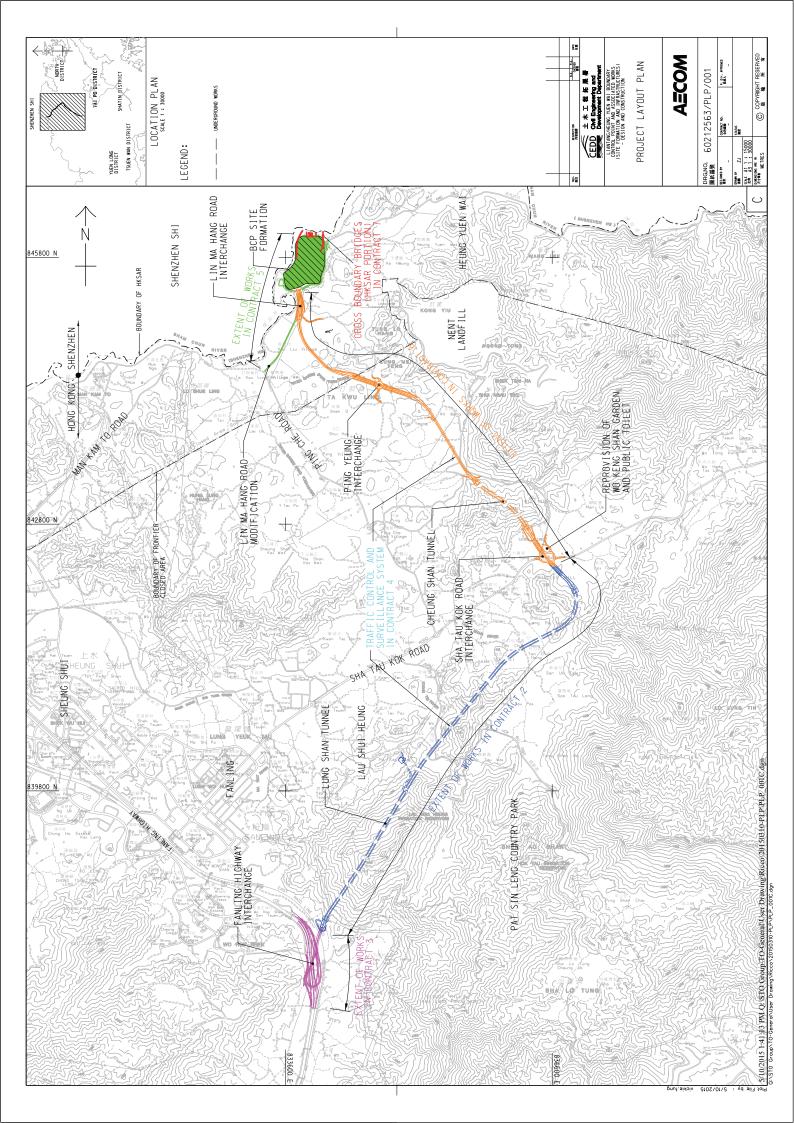
11.3 KEY ISSUES FOR THE COMING MONTH

- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;
 - Ensure dust suppression measures are implemented properly;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the **47**th monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **30 June 2017**.
- 12.1.2 For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of thirty-one (31) Action level/ Limit Level (LL) exceedances, namely sixteen (16) LL exceedance of turbidity and fifteen (15) AL/ LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. According to the investigation result, all the exceedances were concluded as non-project related.
- 12.1.5 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- 12.1.6 In this Reporting Period, no environmental complaints were received under the EM&A Programme.
- During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project

Appendix B

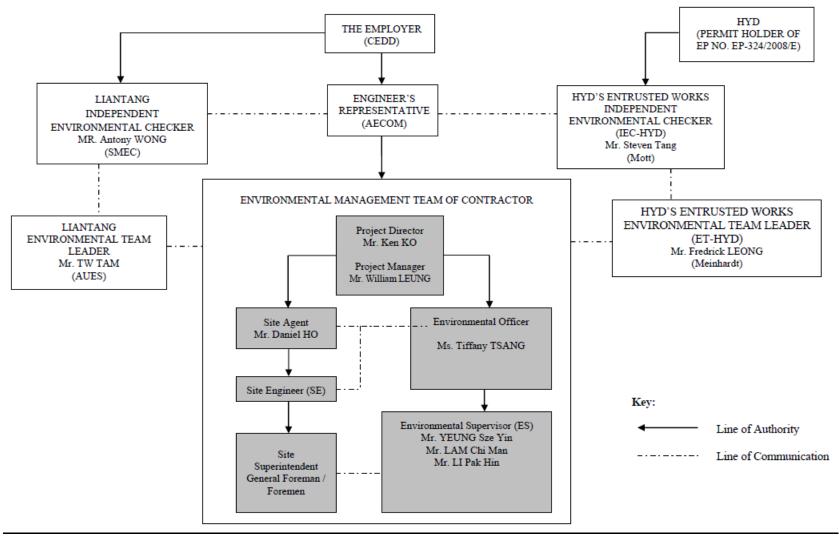
Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)

Contact Details of Key Personnel for Contract 2 - CV/2012/08

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Ho Ming Kin	6979 4220	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:


CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

DHK(Main Contractor) -Dragages Hong Kong Ltd.

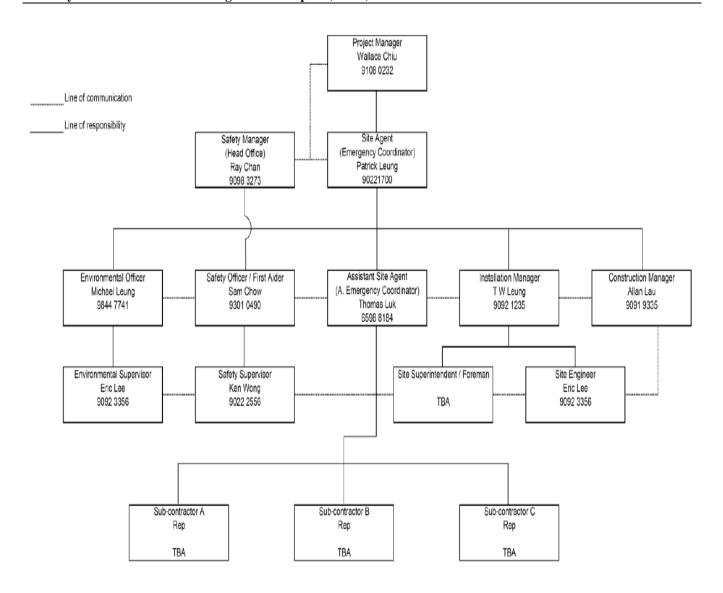
 $SMEC\left(IEC\right)-SMEC\ Asia\ Limited$

Environmental Management Organization for Contract 3 - CV/2012/09

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Tiffany Tsang	2638 6115	2638 7077
Chun Wo	Environmental supervisor	Yeung Sze Yin	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:


CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

Chun Wo (Main Contractor) - Chun Wo Construction Ltd.

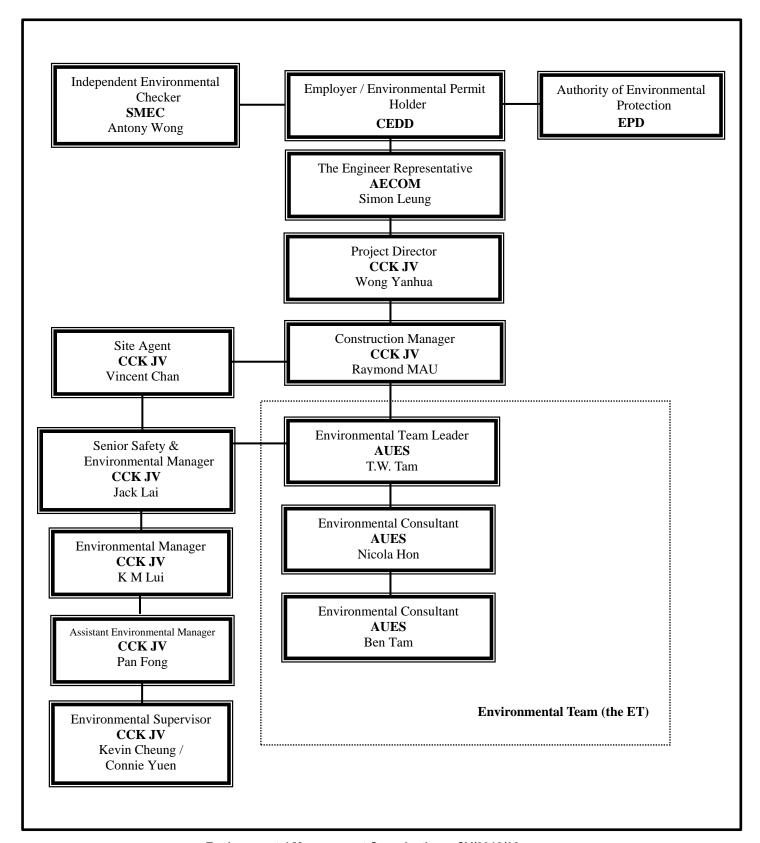
SMEC (IEC) – SMEC Asia Limited

Environmental Management Organization for Contract 4 - NE/2014/02

Contact Details of Key Personnel for Contract 4 - NE/2014/02

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Wallace Chiu	9108 0232	
Siemens	Site Agent	Patrick Leung	9022 1700	
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:


CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

Siemens (Main Contractor) – Siemens Ltd.

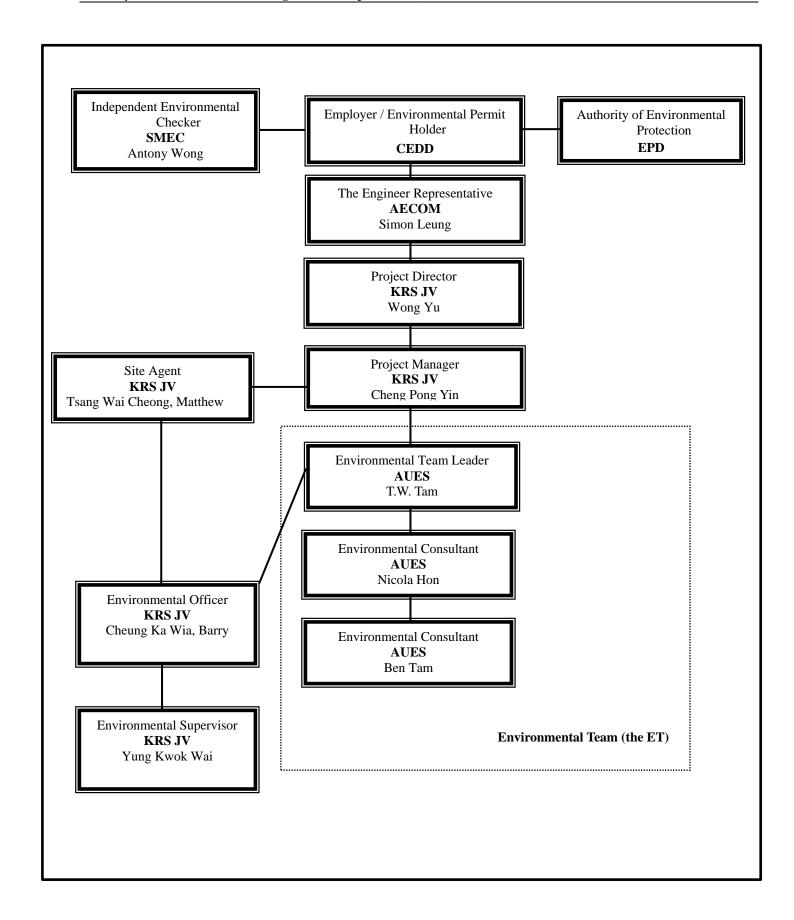
SMEC (IEC) – SMEC Asia Limited

Environmental Management Organization – CV/2013/08

Contact Details of Key Personnel for Contract 6 - CV/2013/08

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Jack Lao	9654 2966	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Officer	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:


CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture

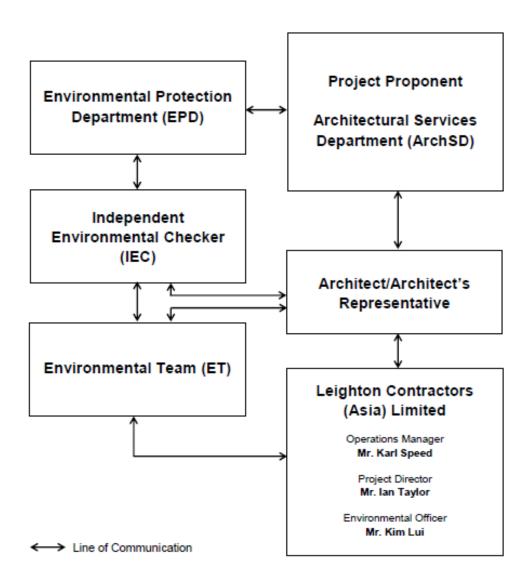
SMEC (IEC) – SMEC Asia Limited

Environmental Management Organization –NE/2014/03

Contact Details of Key Personnel for Contract 7 - NE/2014/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:


CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture

SMEC (IEC) – SMEC Asia Limited

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Contact Details of Key Personnel for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Legend:

ArchSD(Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/ Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

Appendix C

3-month rolling construction program

Contract 2

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/08

Main Contractor: Dragages Hong Kong Ltd

Tentative Three Months (Jul, Aug, Sep 2017) Construction Rolling Progam

Item	Construction Activites
1	Admin Bldg - Construction of permanent drainage and fence wall
2	Admin Bldg - Building internal structure, fitting out work, curtain wall, UU and E&M installation
3	Mid Vent Portal - Adit tunnel waterproofing and lining
5	Mid Vent Portal - Stud tunnel post-excavation activities and earthworks
6	Mid-Vent Portal - Ventilation building superstructure and internal structure works
	Mid Vent Portal - Structure connecting adit tunnel and ventilation building
8	Mid-Vent Portal - Erection of enclosure for the extraction fan at the adit
9	North Portal - Southbound tunnel enlargement, waterproofing and lining
	North Portal - Southbound tunnel internal sturcture, backfilling and construction of cross passage
11	North Portal - Northbound tunnel top-heading and bench excavation, waterproofing and lining
12	North Portal - Erection of acoustic curtain doors for the Northbound and Southbound tunnels
	North Portal - North ventilation building superstructure, internal structure and backfilling
14	South Portal - Northbound and Southbound tunnel D&B excavation and mucking out
	South Portal - South ventilation building superstructure, internal structure and backfilling
	South Portal - Southbound and Northbound tunnel invert, waterproofing and lining
17	South Portal - Tunnel breakthrough to Mid-Vent Portal

Contract 3

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

Tentative Three Months (June, July and August 2017) Construction Rolling Progam

Item	Construction Activites
1	Boundary Wall for Pumping Station
2	Cable Detection and Trial Trenches
3	Installation of Noise Barrier Steel and Panel
4	Remaining Works on New Kiu Tau Footbridge
5	Mini-pile Installation Works
6	Noise Barrier Construction
7	Pier Table Construction
8	Pipe Jacking Works for DN2200 Water Mains
9	Roadworks
10	Viaduct Segment Erection
11	Water Main Laying Works
12	Parapet Installation
13	Planter Wall Construction
14	Construction of Profile barrier on Viaduct Deck
15	Drainage Work
16	Stressing of External Tendon
17	Pit construction for heading works
18	Construction of abutment wall
19	Installation of noise barrier steel column and panel

Contract 4

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: NE/2014/02 Main Contractor: Siemens Ltd.

Tentative Three Months (June, July and August 2017) Construction Rolling Progam

Item	Construction Activites
1	System design
2	E&M installation at admin building

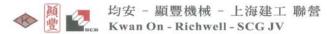
Contract 6

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2013/08

Main Contractor: CRBE-CEC-Kaden Joint Venture

Tentative Three Months (June, July and August 2017) Construction Rolling Progam


Item	Construction Activites
1	Bored Piling
2	Bridge Pier Constrcution
3	Segment Erection
4	Tunnel Works
5	Sewage Treatment Plant Construction
6	Tunnel Ventilation Building Construction

Contract 7

CEDD Contract No: NE/2014/03

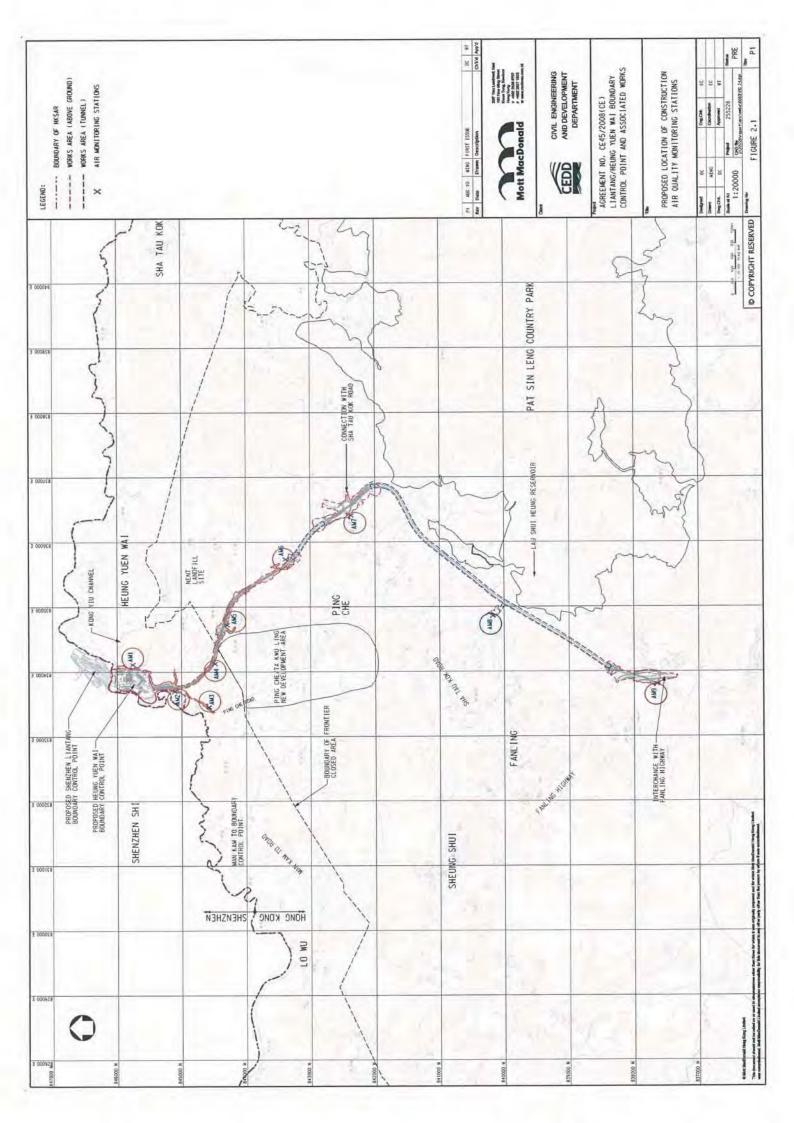
Main Contractor: Kwan On-Richwell-SCG Joint Venture

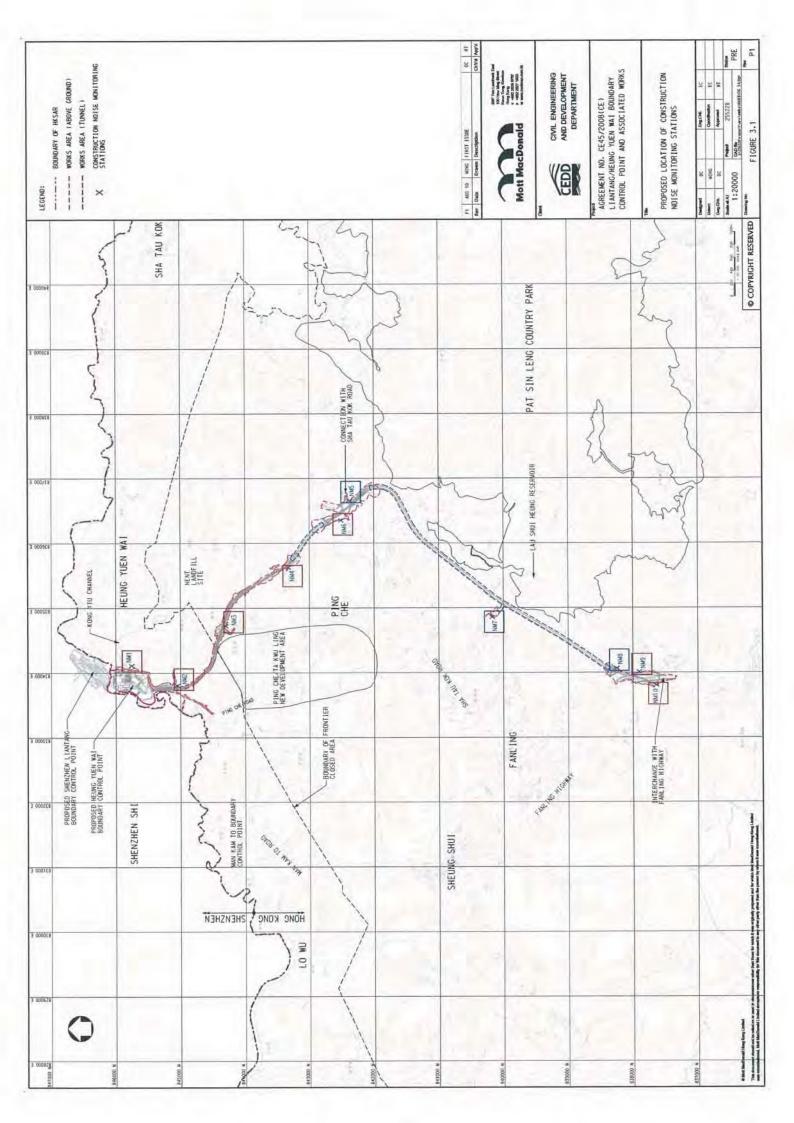
Tentative Three Months(June 2017, July 2017 and August 2017) Construction Rolling Progam

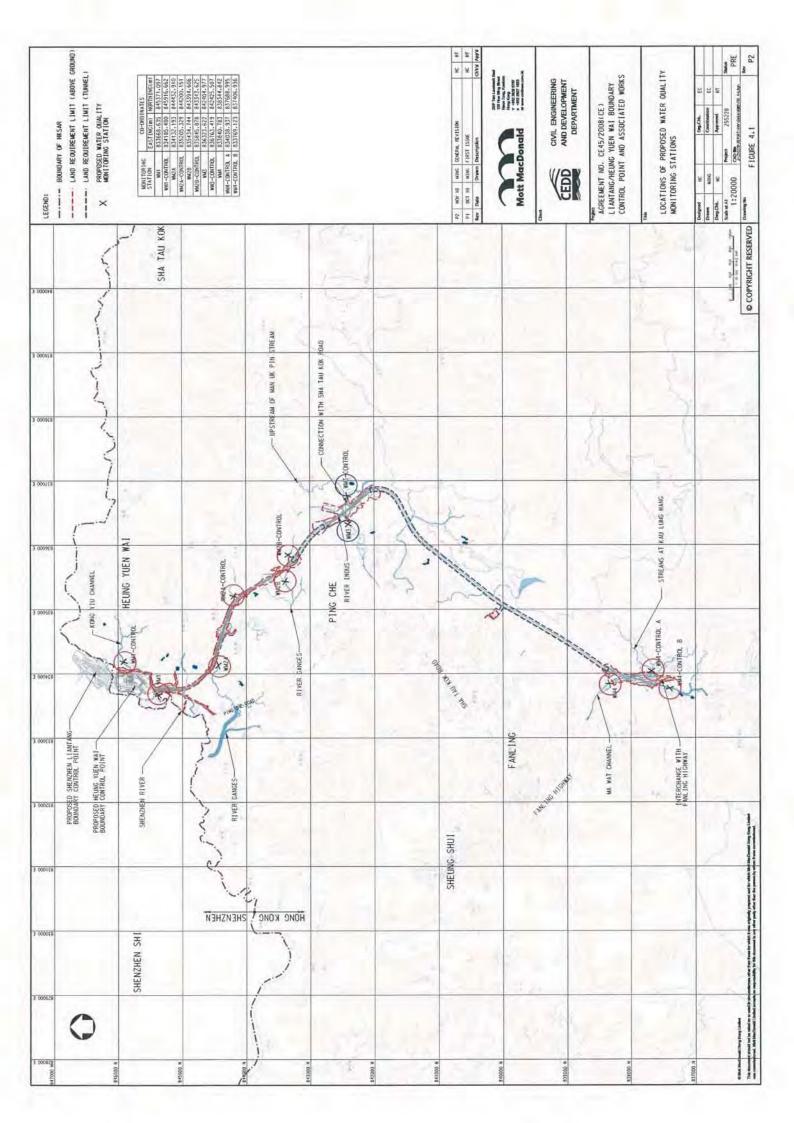
Item	Construction Activites
1	Bridge A - U-trough and abutment
2	Bridge A - Column
3	Bridge B - Column and Deck
4	Bridge C - Construction of Roof Floor Slab Bridge D - Column and Deck
5	Bridge D - Column and Deck
6	Bridge E - U-trough and abutment
7	Bridge E - Column

Contract SS C505

ArchSD Contract No: SSC505 Main Contractor: Leighton

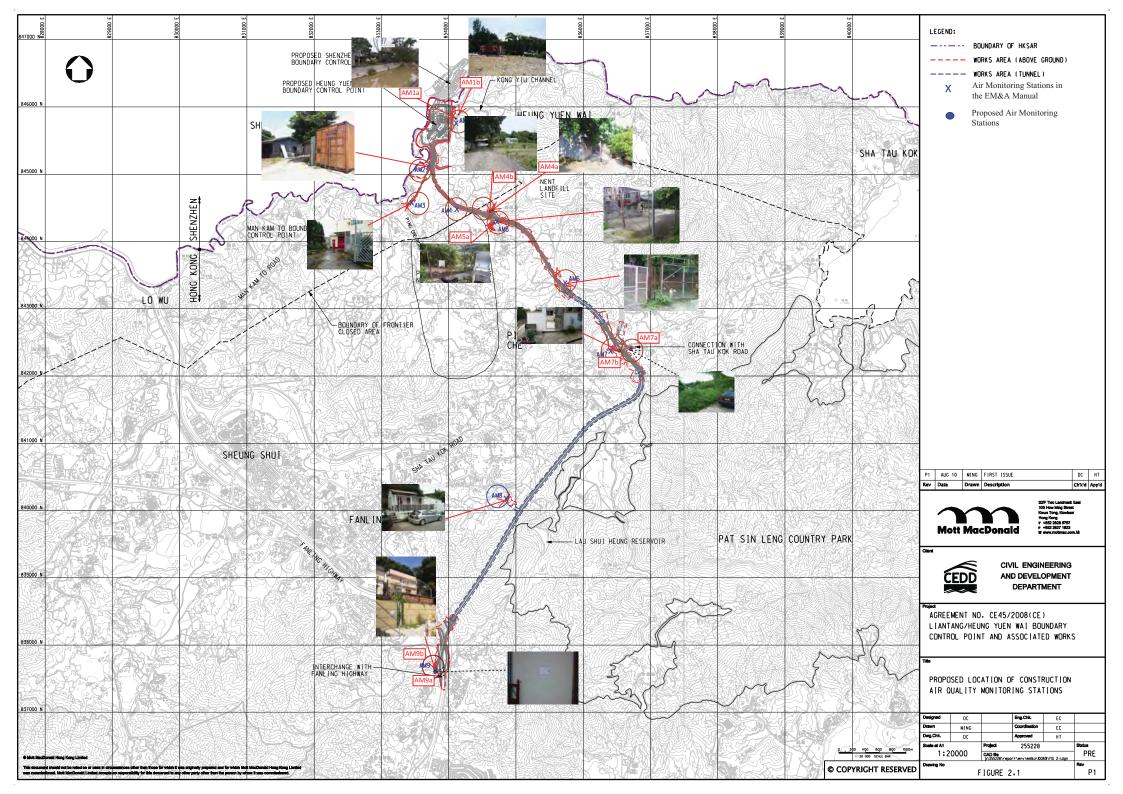

Tentative Three Months (June, July and August 2017) Construction Rolling Progam

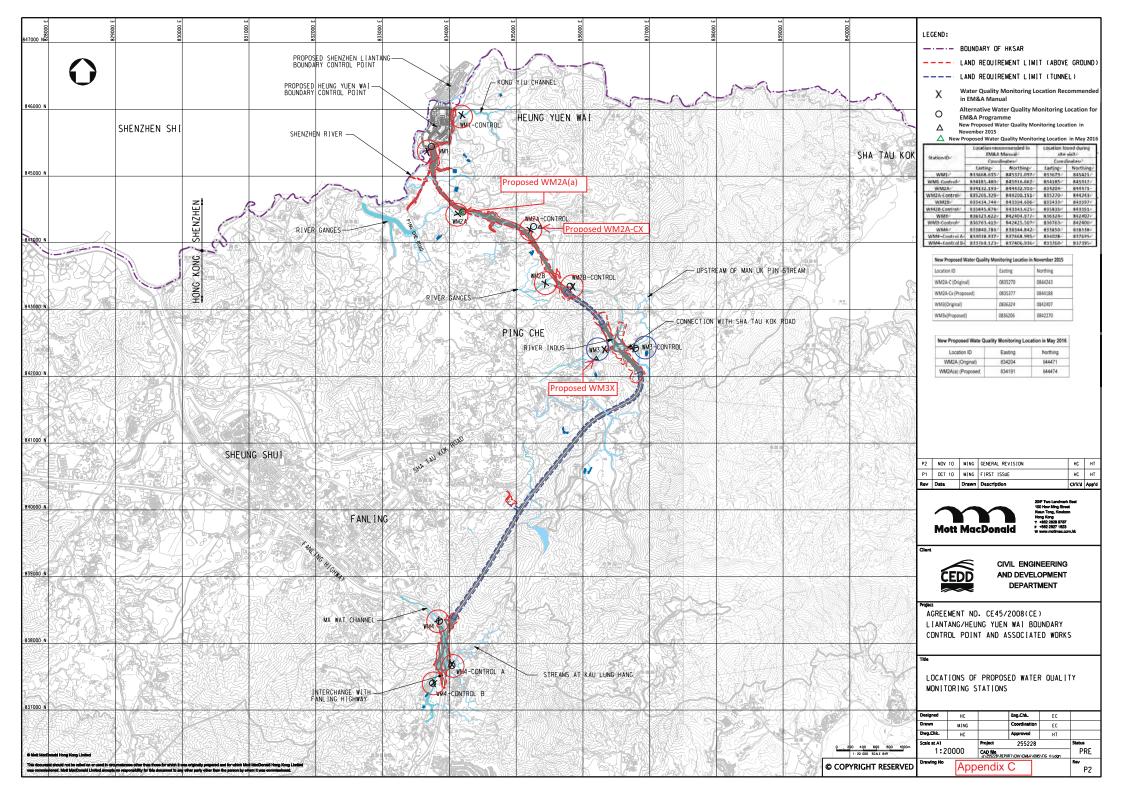

Item	Construction Activites
1	Passenger Terminal Building - RC Superstructure Works
2	Passenger Terminal Building - ABWF Works & Building Services Installation Works
3	Passenger Terminal Building - Southern Enterance Construction
4	C&ED Detector Dog Base - Superstructures and External Works, Integrated ABWF & MEP Works
5	HKPF Building and Observation Tower - Superstructures, External Works, Integrated ABWF & MEP Works
6	Fire Station and Drill Tower - Superstructures, Integradted ABWF & MEP Works
7	Cargo Examination Building (Inbound) - Superstructure and Integrated ABWF & MEP Works
8	Cargo Examination Building (Outbound) - Superstructure and Integrated ABWF & MEP Works
9	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, Superstructures and ABWF & MEP Works
10	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Superstructures and Integrated ABWF & MEP Works
11	GV Kiosk (Inbound) - Earthworks, Substructures and Superstructures Works
12	GV Kiosk (Outbound) - Earthworks and Substructures Works
13	Public Toilets (Outbound) - Substructure and Superstructures Works
14	MXRVSS (Outbound) - Superstructures works
15	Traffic Control Office (Inbound) - Site Formation Works
16	Traffic Control Office (Outbound) - Site Formation Works
17	Disinsection Facilities (Inbound) - Site Formation Works
18	Weigh Station - Site Formation Works
19	Refuse Collection Point - Substructure and Superstructures Works
20	Inspection Post - Site Formation works
21	Fire Hydrant Tank & Pump Room - Integrated ABWF & MEP works
22	Irrigation Pump Room - Substructure and Superstructures works
23	Master Water Meter Room 1 - Structures works
24	Elevated Walkway (E1, E2, E3 & E4) - Structure Works
25	Vehicular bridges 1-5 - Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks, Road and Finishes Works
	External Works - CLP Cable & Power ON Transfer room
	External Works - Underground Utilities & Structures
28	External Works - Road Works



Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual





Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Open area at Tsung Yuen Ha VillageDate of Calibration:19/4/2017Location ID : AM1bNext Calibration Date:19/6/2017Technician:Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

			1	•	ı		
Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.652	52	51.74	Slope = 27.2899
13	4.6	4.6	9.2	1.437	45	44.78	Intercept = 6.0943
10	3.5	3.5	7.0	1.255	40	39.80	Corr. coeff. = 0.9984
7	2.2	2.2	4.4	0.997	34	33.83	
5	1.4	1.4	2.8	0.798	28	27.86	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

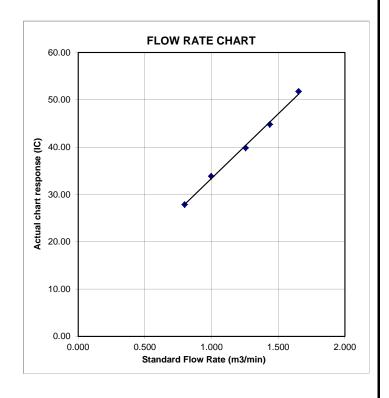
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House near Lin Ma Hang Road Date of Calibration: 19/4/2017
Location ID: AM2 Next Calibration Date: 19/6/2017

Technician:

Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Pla	ate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
N	lo.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
1	18	5.8	5.8	11.6	1.612	57	56.72	Slope = 31.7705
1	13	4.6	4.6	9.2	1.437	53	52.74	Intercept = 6.1809
1	10	3.4	3.4	6.8	1.237	46	45.77	Corr. coeff. = 0.9978
	7	2.3	2.3	4.6	1.020	38	37.81	
	5	1.3	1.3	2.6	0.770	31	30.85	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

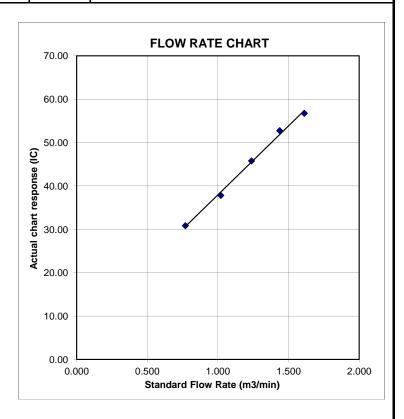
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Ta Kwu Ling Fire Service Station

Date of Calibration: 19/4/2017

Location ID: AM3

Next Calibration Date: 19/6/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.9	11.8	1.625	59	58.71	Slope = 29.9195
13	4.4	4.4	8.8	1.405	53	52.74	Intercept = 9.9534
10	3.4	3.6	7.0	1.255	47	46.77	Corr. coeff. = 0.9966
7	2.2	2.2	4.4	0.997	39	38.81	
5	1.3	1.3	2.6	0.770	34	33.83	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

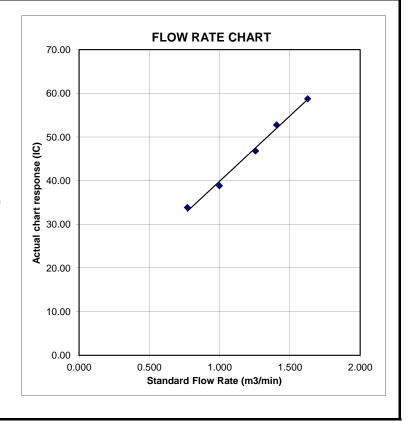
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nga Yiu Ha VillageDate of Calibration:19/4/2017Location ID: AM4bNext Calibration Date:19/6/2017

Technician:

Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.555	55	54.73	Slope = 33.4756
13	4.3	4.3	8.6	1.389	50	49.75	Intercept = 2.9669
10	3.4	3.4	6.8	1.237	45	44.78	Corr. coeff. = 0.9992
7	2.2	2.2	4.4	0.997	36	35.82	
5	1.4	1.4	2.8	0.798	30	29.85	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

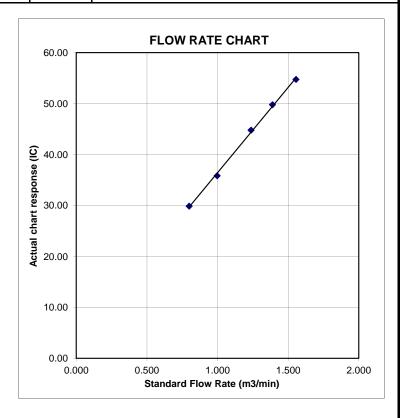
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Ping Yeung Village House

Date of Calibration: 19/4/2017

Location ID: AM5a

Next Calibration Date: 19/6/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1009.1

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.639	55	54.73	Slope = 37.1504
13	4.7	4.7	9.4	1.452	48	47.76	Intercept = -6.3549
10	3.5	3.5	7.0	1.255	41	40.80	Corr. coeff. = 0.9974
7	2.8	2.8	5.6	1.124	34	33.83	
5	1.3	1.3	2.6	0.770	23	22.89	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

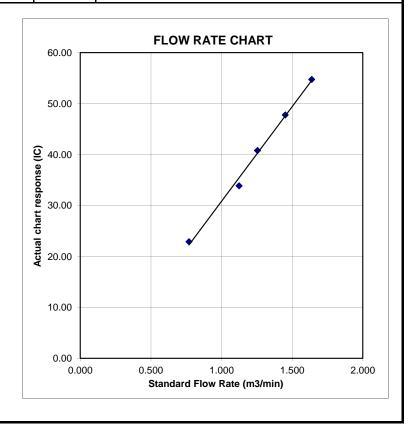
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Wo Keng Shan Village House Date of Calibration: 19/4/2017
Location ID: AM6 Next Calibration Date: 19/6/2017
Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.7	6.7	13.4	1.731	66	65.67	Slope = 40.8436
13	5	5	10.0	1.497	56	55.72	Intercept = -5.6696
10	3.8	3.8	7.6	1.307	47	46.77	Corr. coeff. = 0.9981
7	2.4	2.4	4.8	1.041	36	35.82	
5	1.3	1.3	2.6	0.770	27	26.87	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

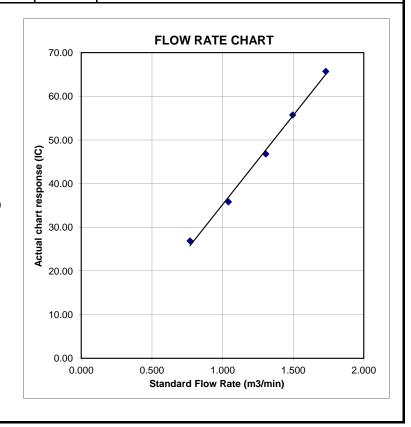
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House of Loi Tung Village

Date of Calibration: 19/4/2017

Location ID: AM7b

Next Calibration Date: 19/6/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.11965 -0.02696

CALIBRATION

	T	1					
Plate	H20(L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	3.9	3.9	7.8	1.324	53	52.74	Slope = 35.1033
13	3.4	3.4	6.8	1.237	49	48.76	Intercept = 5.9893
10	2.5	2.5	5.0	1.062	44	43.78	Corr. coeff. = 0.9987
7	1.7	1.7	3.4	0.878	37	36.82	
5	1.2	1.2	2.4	0.740	32	31.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

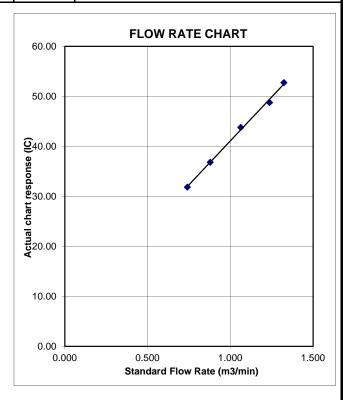
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Po Kat Tsai Village No. 4

Location ID: AM8

Date of Calibration: 19/4/2017

Next Calibration Date: 19/6/2017

ation ID: AM8 Next Calibration Date: 19/6/2017
Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) 1009.1 Corrected Pressure (mm Hg) 756.825 Temperature (°C) 26.7 Temperature (K) 300

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.3	6.3	12.6	1.679	65	64.68	Slope = 36.5867
13	4.7	4.7	9.4	1.452	55	54.73	Intercept = 2.3520
10	3.7	3.7	7.4	1.290	49	48.76	Corr. coeff. = 0.9983
7	2.4	2.4	4.8	1.041	41	40.80	
5	1.4	1.4	2.8	0.798	32	31.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

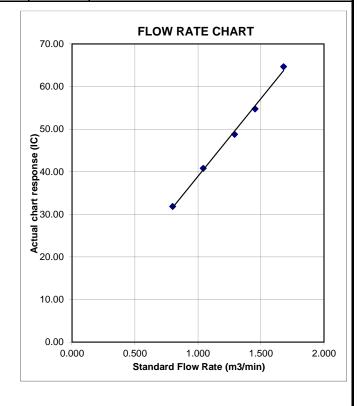
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Nam Wa Po Village House No. 80

Date of Calibration: 19/4/2017

Location ID: AM9b

Next Calibration Date: 19/6/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1009.1 26.7

Corrected Pressure (mm Hg)
Temperature (K)

756.825 300

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.9	11.8	1.625	53	52.74	Slope = 29.3979
13	4.6	4.6	9.2	1.437	47	46.77	Intercept = 4.7557
10	3.6	3.6	7.2	1.272	42	41.79	Corr. coeff. = 0.9988
7	2.2	2.2	4.4	0.997	35	34.83	
5	1.4	1.4	2.8	0.798	28	27.86	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

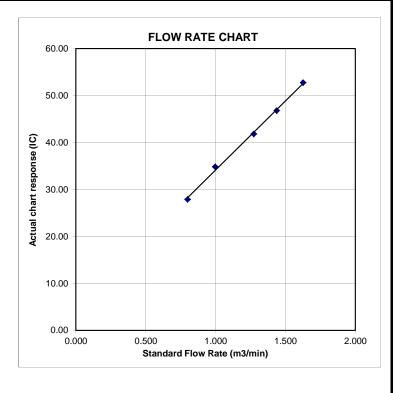
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House near Lin Ma Hang RoadDate of Calibration:16/6/2017Location ID: AM2Next Calibration Date:16/8/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) 1005.1 Corrected Pressure (mm Hg) 753.825
Temperature (°C) 29.0 Temperature (K) 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)H2O (R) H		H20	Qstd I		IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.8	5.8	11.6	1.602	58	57.38	Slope = 35.0342
13	4.6	4.6	9.2	1.428	54	53.42	Intercept = 1.9520
10	3.6	3.6	7.2	1.265	46	45.51	Corr. coeff. = 0.9969
7	2.3	2.3	4.6	1.014	38	37.59	
5	1.4	1.4	2.8	0.794	30	29.68	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

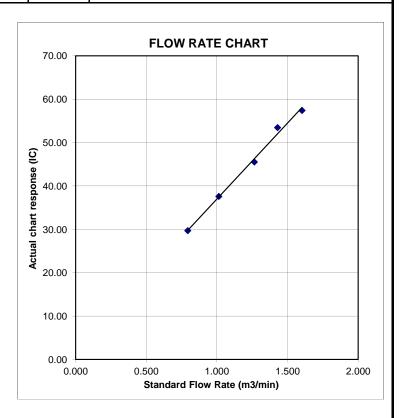
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Open area at Tsung Yuen Ha Village
Date of Calibration: 16/6/2017
Location ID: AM1b
Next Calibration Date: 16/8/2017
Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

	T	1					
Plate	H20(L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.503	52	51.44	Slope = 33.8571
13	4.1	4.1	8.2	1.349	46	45.51	Intercept = 0.2229
10	3.1	3.1	6.2	1.175	40	39.57	Corr. coeff. = 0.9982
7	2.2	2.2	4.4	0.992	35	34.63	
5	1.5	1.5	3.0	0.821	28	27.70	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

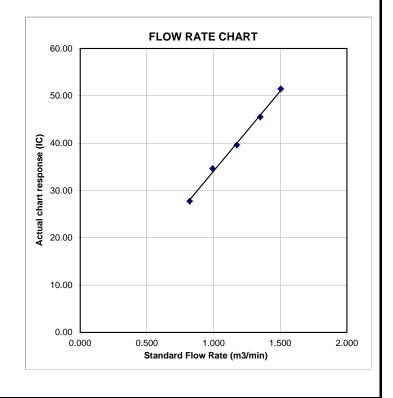
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Ta Kwu Ling Fire Service Station

Date of Calibration: 16/6/2017

Location ID: AM3

Next Calibration Date: 16/8/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)H2O (R)		H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.9	11.8	1.616	58	57.38	Slope = 30.2192
13	4.6	4.6	9.2	1.428	53	52.43	Intercept = 8.6443
10	3.5	3.5	7.0	1.248	46	45.51	Corr. coeff. = 0.9985
7	2.3	2.3	4.6	1.014	40	39.57	
5	1.4	1.4	2.8	0.794	33	32.65	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

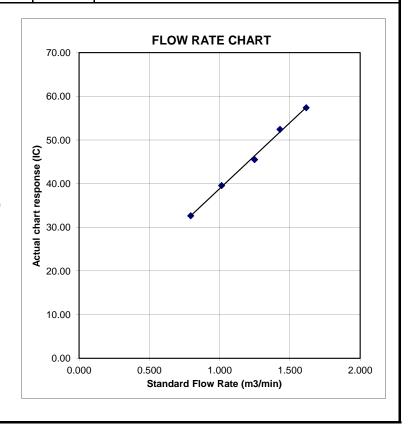
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nga Yiu Ha Village

Date of Calibration: 16/6/2017

Location ID: AM4b

Next Calibration Date: 16/8/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)H2O (R)		H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.5	5.4	10.9	1.554	55	54.41	Slope = 31.8460
13	4.4	4.4	8.8	1.397	50	49.47	Intercept = 4.8231
10	3.5	3.5	7.0	1.248	45	44.52	Corr. coeff. = 0.9987
7	2.2	2.2	4.4	0.992	36	35.62	
5	1.4	1.4	2.8	0.794	31	30.67	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

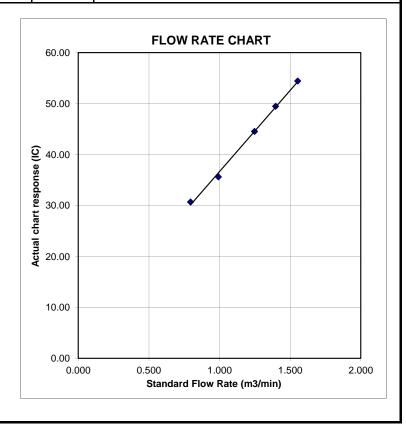
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ping Yeung Village HouseDate of Calibration:16/6/2017Location ID : AM5aNext Calibration Date:16/8/2017

Technician:

Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.630	56	55.40	Slope = 37.5740
13	4.8	4.8	9.6	1.459	48	47.49	Intercept = -6.7117
10	3.6	3.6	7.2	1.265	41	40.56	Corr. coeff. = 0.9983
7	2.8	2.8	5.6	1.117	35	34.63	
5	1.4	1.4	2.8	0.794	24	23.74	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

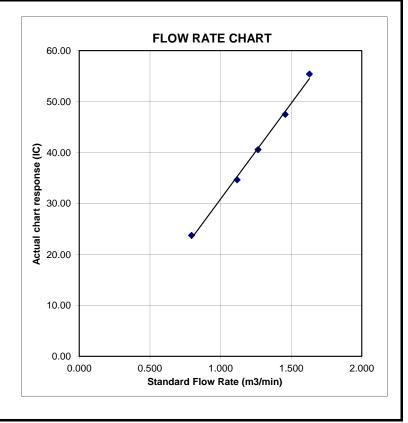
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Wo Keng Shan Village House Date of Calibration: 16/6/2017
Location ID: AM6 Next Calibration Date: 16/8/2017
Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)H2O (R)		H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.7	6.7	13.4	1.721	65	64.31	Slope = 40.0369
13	5	5	10.0	1.489	56	55.40	Intercept = -4.9560
10	3.8	3.8	7.6	1.299	48	47.49	Corr. coeff. = 0.9901
7	2.6	2.6	5.2	1.077	35	34.63	
5	1.3	1.3	2.6	0.765	28	27.70	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

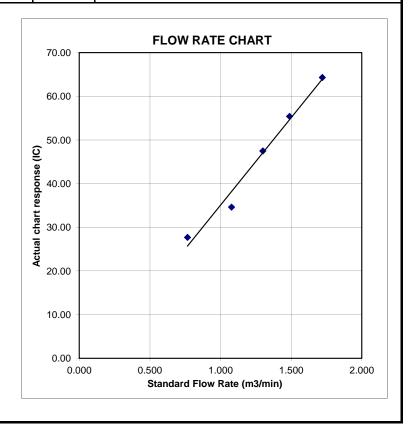
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House of Loi Tung Village

Date of Calibration: 16/6/2017

Location ID: AM7b

Next Calibration Date: 16/8/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) 1005.1 Corrected Pressure (mm Hg) 753.825 Temperature (°C) 29.0 Temperature (K) 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	3.9	3.9	7.8	1.316	53	52.43	Slope = 36.8226
13	3.5	3.5	7.0	1.248	49	48.48	Intercept = 3.1544
10	2.8	2.8	5.6	1.117	44	43.53	Corr. coeff. = 0.9934
7	1.7	1.7	3.4	0.873	37	36.60	
5	1.4	1.4	2.8	0.794	32	31.66	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

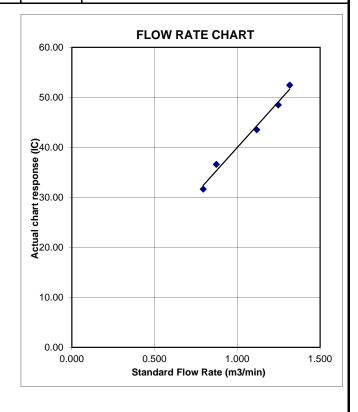
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Po Kat Tsai Village No. 4

Location ID: AM8

Date of Calibration:

Next Calibration Date:

Next Calibration Date: 16/8/2017 Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

16/6/2017

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.630	66	65.29	Slope = 41.8137
13	4.9	4.7	9.6	1.459	55	54.41	Intercept = -4.6472
10	3.5	3.5	7.0	1.248	48	47.49	Corr. coeff. = 0.9939
7	2.6	2.6	5.2	1.077	40	39.57	
5	1.5	1.5	3.0	0.821	31	30.67	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

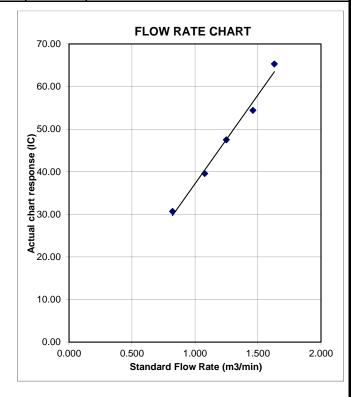
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nam Wa Po Village House No. 80

Date of Calibration: 16/6/2017

Location ID: AM9b

Next Calibration Date: 16/8/2017

Technician: Fai So

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.1 29.0

Corrected Pressure (mm Hg)
Temperature (K)

753.825 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.11965 -0.02696

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6.0	12.0	1.630	54	53.42	Slope = 31.7494
13	4.6	4.6	9.2	1.428	47	46.50	Intercept = 1.7974
10	3.6	3.6	7.2	1.265	43	42.54	Corr. coeff. = 0.9955
7	2.2	2.2	4.4	0.992	35	34.63	
5	1.5	1.5	3.0	0.821	27	26.71	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

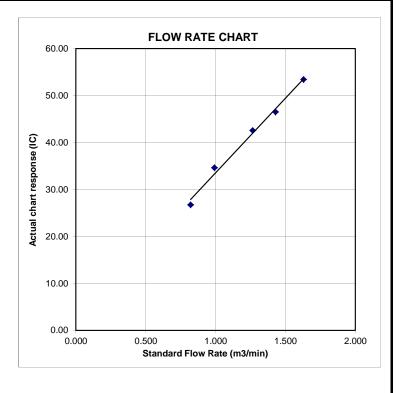
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Fe Operator		7 Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	294 - 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H20 (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4600 1.0410 0.9280 0.8840 0.7290	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9904 0.9894 0.9840	0.6827 0.9534 1.0672 1.1192 1.3499	1.4149 2.0010 2.2372 2.3464 2.8299		0.9957 0.9915 0.9894 0.9884 0.9830	0.6820 0.9524 1.0661 1.1181 1.3485	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slop intercept coefficie	t (b) = ent (r) =	2.11965 -0.02696 0.99991	n e r	Qa slope intercept coefficie	t (b) = ent (r) =	1.32729 -0.01686 0.99991
y axis =	SQRT[H2O(E	Pa/760)(298/	ra)]	y axis =	SQRT[H20(Γa/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Operator		Rootsmeter Orifice I.I		438320 1612	Ta (K) - Pa (mm) -	295 - 745.49
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.3770 0.9710 0.8710 0.8310 0.6860	3.2 6.4 7.8 8.7 12.6	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9866 0.9824 0.9804 0.9793 0.9741	0.7165 1.0117 1.1256 1.1785 1.4200	1.4078 1.9909 2.2259 2.3345 2.8155		0.9957 0.9914 0.9894 0.9883 0.9830	0.7231 1.0210 1.1360 1.1893 1.4330	0.8896 1.2581 1.4066 1.4753 1.7792
Qstd slope (m) = 2.00411 intercept (b) = -0.03059 coefficient (r) = 0.99995			n e n	intercept (b) = -0.0193		1.25494 -0.01933 0.99995
y = SQRT[H20(Pa/760)(298/Ta)]				y axis = SQRT[H2O(Ta/Pa)]		

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)

Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 2X6145

Equipment Ref: EQ105

Job Order HK1703462

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 25 November 2016

Equipment Verification Results:

Testing Date: 9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	13025	67.2	
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3586	30.6	
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4709	39.6	

Sensitivity Adjustment Scale Setting (Before Calibration) 581 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 580 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9992

Date of Issue 11 January 2017

0.1 11 January 2017 0.08 0.06 0.04 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.06 0.04 0.06 0.02 0.0985

0.16

0.14

80

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: Martin Li Signature: _____ Date: _____ Date: _____11 January 2017

QC Reviewer: _____ Ben Tam ____ Signature: ______ Date: ____11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Date of Calibration: 25-Nov-16 Location: Gold King Industrial Building, Kwai Chung Location ID: Calibration Room Next Calibration Date: 25-Feb-17

CONDITIONS

Sea Level Pressure (hPa)

1016.4 Temperature (°C) 20.0 Corrected Pressure (mm Hg) Temperature (K)

762.3 293

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A

Calibration Date-> 14-Mar-16

Ostd Slope -> Qstd Intercept ->

Expiry Date->

2.00411 -0.03059 14-Mar-17

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.776	56	56.56	Slope = 35.6871
13	4.7	4.7	9.4	1.560	49	49.49	Intercept = -6.1123
10	3.6	3.6	7.2	1.368	43	43.43	Corr. coeff. = 0.9967
8	2.3	2.3	4.6	1.096	34	34.34	
5	1.4	1.4	2.8	0.859	23	23.23	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

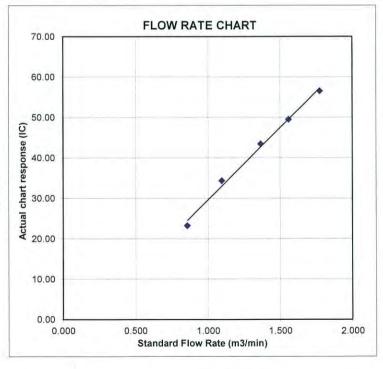
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. <u>366409</u>

Equipment Ref: EQ109

Job Order HK1703455

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

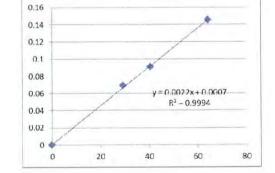
Last Calibration Date: 25 November 2016

Equipment Verification Results:

Testing Date: 9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12487	64.4	
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3433	29.3	
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4815	40.5	

Sensitivity Adjustment Scale Setting (Before Calibration) 523 (CPM)


Sensitivity Adjustment Scale Setting (After Calibration) 525 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9997

Date of Issue 11 January 2017

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: Martin Li Signature: Date: 11 January 2017

QC Reviewer: Ben Tam Signature: Date: 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 25-Nov-16
Location ID: Calibration Room Next Calibration Date: 25-Feb-17

CONDITIONS

Sea Level Pressure (hPa) 1016.4 Corrected Pressure (mm Hg) 762.3 Temperature (°C) 20.0 Temperature (K) 293

CALIBRATION ORIFICE

Make-> TISCH Qstd Slope -> 2.00411
Model-> 5025A Qstd Intercept -> -0.03059
Calibration Date-> 14-Mar-16 Expiry Date-> 14-Mar-17

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.776	56	56.56	Slope = 35.6871
13	4.7	4.7	9.4	1.560	49	49.49	Intercept = -6.1123
10	3.6	3.6	7.2	1.368	43	43.43	Corr. coeff. = 0.9967
8	2.3	2.3	4.6	1.096	34	34.34	
5	1.4	1.4	2.8	0.859	23	23.23	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

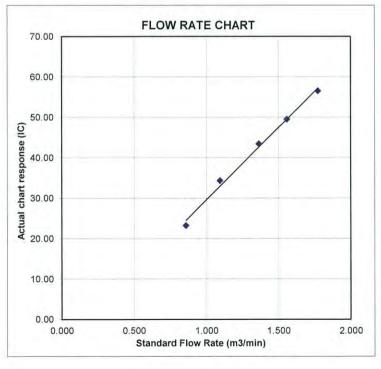
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 366410

Equipment Ref: EQ110

Job Order HK1703460

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 25 November 2016

Equipment Verification Results:

Testing Date: 9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	ssure (Standard Equipment) (Calibrated Equipment)		Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12401	64.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3266	27.9
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4878	41.1

Sensitivity Adjustment Scale Setting (Before Calibration) 677 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 675 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9984

 Date of Issue
 11 January 2017

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.16				
0.14				
0.12			/	
0.1		_/		_
80.0				
0.06	~		0022x+0.001	5
	/	R	2 - 0.9969	
	-/-			
0.04				
0.04				

Operator: Martin Li Signature: Date: 11 January 2017

QC Reviewer : _____ Ben Tam ___ Signature : _____ Date : ____ 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 25-Nov-16

Location ID: Calibration Room Next Calibration Date: 25-Feb-17

CONDITIONS

Sea Level Pressure (hPa) 1016.4 Corrected Pressure (mm Hg) 762.3
Temperature (°C) 20.0 Temperature (K) 293

CALIBRATION ORIFICE

 Make->
 TISCH
 Qstd Slope ->
 2.00411

 Model->
 5025A
 Qstd Intercept ->
 -0.03059

 Calibration Date->
 14-Mar-16
 Expiry Date->
 14-Mar-17

CALIBRATION

Plate		H2O (R)	H20	Qstd	I	IC .	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.776	56	56.56	Slope = 35.6871
13	4.7	4.7	9.4	1.560	49	49.49	Intercept = -6.1123
10	3.6	3.6	7.2	1.368	43	43.43	Corr. coeff. = 0.9967
8	2.3	2.3	4.6	1.096	34	34.34	
5	1.4	1.4	2.8	0.859	23	23.23	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

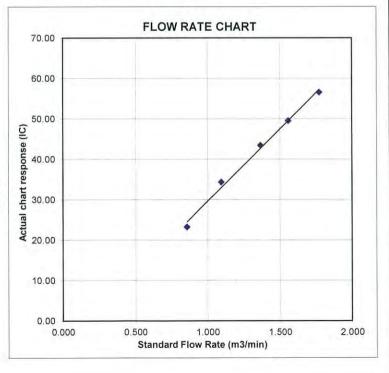
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6503

Equipment Ref: EQ112

Job Order HK1703461

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 25 November 2016

Equipment Verification Results:

Testing Date: 9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)	
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12647	65.3	
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3476	29.7	
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4876	41.0	

Sensitivity Adjustment Scale Setting (Before Calibration) 654 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 658 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9997

Date of Issue 11 January 2017

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.16				
0.14				_
0.12			/	-
0.1				
80.0				
0.06			0022x+0.000	1
0.04	-/-		$R^2 = 0.9994$	
0.02	/			_
0				-
	20	40	60	80

Operator: Martin Li Signature: Date: 11 January 2017

QC Reviewer: Ben Tam Signature: Date: 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 25-Nov-16

Location ID: Calibration Room Next Calibration Date: 25-Feb-17

CONDITIONS

Sea Level Pressure (hPa)1016.4Corrected Pressure (mm Hg)762.3Temperature (°C)20.0Temperature (K)293

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 14-Mar-16
Qstd Slope -> 2.00411
Qstd Intercept -> -0.03059
Expiry Date-> 14-Mar-17

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.776	56	56.56	Slope = 35.6871
13	4.7	4.7	9.4	1.560	49	49.49	Intercept = -6.1123
10	3.6	3.6	7.2	1.368	43	43.43	Corr. coeff. = 0.9967
8	2.3	2.3	4.6	1.096	34	34.34	
5	1.4	1.4	2.8	0.859	23	23.23	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

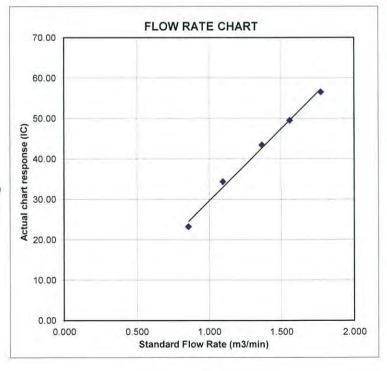
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6505

Equipment Ref: EQ114

Job Order HK1703464

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

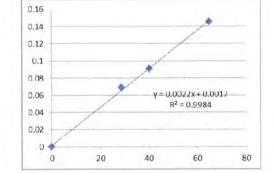
Equipment Ref: HVS 018

Last Calibration Date: 25 November 2016

Equipment Verification Results:

Testing Date: 9 January 2017

Hour	Time	Mean Temp °C	Pressure		Count/Minute (Total Count/60min)	
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12588	65.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3339	28.5
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4774	40.2


Sensitivity Adjustment Scale Setting (Before Calibration) 588 (CPM)
Sensitivity Adjustment Scale Setting (After Calibration) 587 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9992

 Date of Issue
 11 January 2017

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: Martin Li Signature: Date: 11 January 2017

QC Reviewer : ____ Ben Tam ___ Signature : _____ Date : ___ 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 25-Nov-16
Location ID: Calibration Room Next Calibration Date: 25-Feb-17

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1016.4 20.0

Corrected Pressure (mm Hg)
Temperature (K)

762.3 293

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 14-Mar-16

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.00411 -0.03059 14-Mar-17

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.1	6.1	12.2	1.776	56	56.56	Slope = 35.6871
13	4.7	4.7	9.4	1.560	49	49.49	Intercept = -6.1123
10	3.6	3.6	7.2	1.368	43	43.43	Corr. coeff. = 0.9967
8	2.3	2.3	4.6	1.096	34	34.34	
5	1.4	1.4	2.8	0.859	23	23.23	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

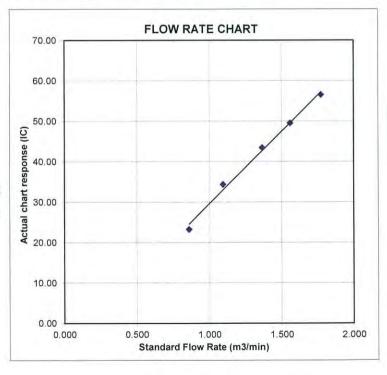
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172288

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0924)

Date of Receipt / 收件日期: 24 April 2017

Description / 儀器名稱

Integrating Sound Level Meter (EQ006)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2238

Serial No. / 編號

2285762

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By

核證

K C/Lee

Date of Issue 簽發日期

2 May 2017

Project Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172288

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280

40 MHz Arbitrary Waveform Generator

C170048

CL281

Multifunction Acoustic Calibrator

PA160023

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT S	Setting	Applied	Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)	(dB) Weighting Weighting				(kHz)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.1

6.1.1.2 After Self-calibration

	UUT Setting					UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	Γ Setting	Applied	d Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0 (Ref.)
	0000000			104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C

C172288

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

Continuous	Signai						
		Applied Value		UUT	IEC 60651		
Range	Range Parameter Frequency Time			Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	(dB)	(kHz)	(dB)	(dB)	
50 - 130	L _{AFP}	FP A F		94.00	1	94.0	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L_{AFP}	A	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

- Transferring		Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5
					63 Hz	68.0	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C172288

證書編號

6.3.2 C-Weighting

		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	_	(dB)	(dB)
50 - 130	L_{CFP}	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5
					63 Hz	93.4	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5; -3.0)
					12.5 kHz	87.9	-6.2 (+3.0; -6.0)

6.4 Time Averaging

	UUT	Setting			Aj	UUT	IEC 60804			
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	L _{Aeq}	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	89.9	± 0.5
			60 sec.			1/10 ³		80	79.2	± 1.0
			5 min.			1/104		70	69.2	± 1.0

Remarks: - UUT Microphone Model No.: 4188 & S/N: 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.35 dB

12.5 kHz : \pm 0.70 dB

104 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB)

114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) Burst equivalent level : ± 0.2 dB (Ref. 110 dB)

Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 紫暗如下 积 有限公司 大大正 基本的原始的

輝創工程有限公司 - 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172287

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0924)

Date of Receipt / 收件日期: 24 April 2017

Description / 儀器名稱

Sound Level Meter (EQ015)

Manufacturer / 製造商 Model No. / 型號

Rion

Serial No. / 編號

NL-52 00142581

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 : (55 ± 20)%

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

28 April 2017

TEST RESULTS / 測試結果

DATE OF TEST / 測試日期

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Project Engineer

Certified By 核證

Date of Issue

2 May 2017

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172287

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment :

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator

C170048

Multifunction Acoustic Calibrator

PA160023

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

		Applied Value		UUT	IEC 61672		
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)					(kHz)	(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	1	94.3	± 1.1

6.1.2 Linearity

	UU'	Γ Setting	Applie	d Value	UUT	
Range	Function	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 130	L_A	A	Fast	94.00	1	94.3 (Ref.)
				104.00		104.3
				114.00		114.3

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting					UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	1	94.3	Ref.
			Slow			94.3	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C1

C172287

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

1- weighting											
	UUT	Setting		Applied Value		UUT	IEC 61672				
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.				
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)				
30 - 130	L_A	A	Fast	94.00	63 Hz	68.1	-26.2 ± 1.5				
					125 Hz	78.1	-16.1 ± 1.5				
					250 Hz	85.6	-8.6 ± 1.4				
					500 Hz	91.0	-3.2 ± 1.4				
					1 kHz	94.3	Ref.				
					2 kHz	95.5	$+1.2 \pm 1.6$				
					4 kHz	95.3	$+1.0 \pm 1.6$				
					8 kHz	93.3	-1.1 (+2.1; -3.1)				
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)				

6.3.2 C-Weighting

	UUT Setting			Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L_{C}	С	Fast	94.00	63 Hz	93.4	-0.8 ± 1.5
					125 Hz	94.1	-0.2 ± 1.5
					250 Hz	94.3	0.0 ± 1.4
					500 Hz	94.3	0.0 ± 1.4
					1 kHz	94.3	Ref.
					2 kHz	94.1	-0.2 ± 1.6
					4 kHz	93.5	-0.8 ± 1.6
					8 kHz	91.4	-3.0 (+2.1; -3.1)
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C1

C172287

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 06015

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

250 Hz - 500 Hz : $\pm 0.30 \text{ dB}$ 1 kHz : $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz : $\pm 0.35 \text{ dB}$ 8 kHz : $\pm 0.45 \text{ dB}$ 12.5 kHz : $\pm 0.70 \text{ dB}$

104 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172286

證書編號

....

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0924)

Date of Receipt / 收件日期: 24 April 2017

Description / 儀器名稱

Sound Level Meter (EQ067)

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號 NL-31 00410221

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong Technical Officer

Certified By 核證

K C Lee

Date of Issue 簽發日期

2 May 2017

Project Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C

C172286

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

CL280 CL281 Description

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C170048 PA160023

5. Test procedure: MA101N.

6. Results:

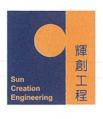
6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

UUT Setting			Applied Value		UUT	IEC 61672 Class 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.1	± 1.1

6.1.2 Linearity

	UUT Setting				Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.1 (Ref.)
				104.00		103.1
				114.00		113.2


IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting				Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.1	Ref.
			Slow			93.1	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C172286

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

a weighting								
	UUT Setting			Applied Value		UUT	IEC 61672 Class 1	
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.	
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)	
30 - 120	L_{A}	A	Fast	94.00	63 Hz	66.8	-26.2 ± 1.5	
					125 Hz	76.9	-16.1 ± 1.5	
					250 Hz	84.4	-8.6 ± 1.4	
					500 Hz	89.8	-3.2 ± 1.4	
					1 kHz	93.1	Ref.	
					2 kHz	94.4	$+1.2 \pm 1.6$	
					4 kHz	94.2	$+1.0 \pm 1.6$	
					8 kHz	92.0	-1.1 (+2.1; -3.1)	
					12.5 kHz	89.2	-4.3 (+3.0 ; -6.0)	

6.3.2 C-Weighting

		T Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L_{C}	С	Fast	94.00	63 Hz	92.2	-0.8 ± 1.5
					125 Hz	92.9	-0.2 ± 1.5
					250 Hz	93.1	0.0 ± 1.4
					500 Hz	93.1	0.0 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1; -3.1)
					12.5 kHz	87.3	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172286

證書編號

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 319734

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

 $250 \text{ Hz} - 500 \text{ Hz} : \pm 0.30 \text{ dB}$ $1 \text{ kHz} : \pm 0.20 \text{ dB}$ $2 \text{ kHz} - 4 \text{ kHz} : \pm 0.35 \text{ dB}$ $8 \text{ kHz} : \pm 0.45 \text{ dB}$ $12.5 \text{ kHz} : \pm 0.70 \text{ dB}$

104 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172284

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0924)

Date of Receipt / 收件日期: 24 April 2017

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong Technical Officer

Certified By 核證

Project Engineer

Date of Issue 簽發日期

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 2

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172284

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

> Equipment ID CL130

CL281 TST150A Description

Universal Counter Multifunction Acoustic Calibrator

Measuring Amplifier

Certificate No. C163709

PA160023 C161175

4. Test procedure: MA100N.

5. Results:

Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	$1 \text{ kHz} \pm 0.1 \%$	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172285

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-0924)

Date of Receipt / 收件日期: 24 April 2017

Description / 儀器名稱

Sound Level Calibrator (EQ088)

Manufacturer / 製造商 Model No. / 型號

Quest QC-20

Serial No./編號

OO9090006

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 :

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By 核證

K / Lee

Date of Issue 簽發日期

2 May 2017

Project Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C172285

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130 CL281 TST150A Description

Universal Counter

Multifunction Acoustic Calibrator

Certificate No. C163709

PA160023

Measuring Amplifier

C161175

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.2	± 0.3	± 0.2
114 dB, 1 kHz	114.2		

5.2 Frequency Accuracy

1 requested recentury			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.991	± 2 %	± 1

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C164099

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC16-0843)

Date of Receipt / 收件日期: 15 July 2016

Description / 儀器名稱

Sound Calibrator

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NC-74 34657231

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 :

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

27 July 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Technical Officer

Certified By

核證

Date of Issue 簽發日期

28 July 2016

K/C Lee

Project Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C164099

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

> Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C163709 PA160023 C161175

4. Test procedure: MA100N.

5. Results:

Sound Level Accuracy 5 1

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

Frequency Accuracy

1 requestey recentacy			
UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong T+852 2610 1044 F+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

WORK ORDER:

HK1711926

CLIENT:

ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

SUB-BATCH:

ADDRESS:

RM A 20/F., GOLD KING IND BLDG,

LABORATORY:

HONG KONG

NO. 35-41 TAI LIN PAI ROAD,

DATE RECEIVED: DATE OF ISSUE:

24/03/2017 31/03/2017

KWAI CHUNG, N.T., HONG KONG.

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Dissolved Oxygen and Temperature

Equipment Type:

Dissolved Oxygen Meter

Brand Name:

YSI

Model No.:

Pro 20

Serial No.:

12C100570

Equipment No.:

Date of Calibration: 30 March, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1711926

Sub-Batch:

0

Date of Issue:

31/03/2017

Client:

ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type:

Dissolved Oxygen Meter

Brand Name:

Model No.:

Pro 20

Serial No.:

12C100570

Equipment No.:

Date of Calibration:

30 March, 2017

Date of next Calibration:

30 June, 2017

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.81	2.63	-0.18
6.20	6.04	-0.16
8.47	8.29	-0.18
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
500 M/S	E	2 27
9.5	10.5	+1.0
22.5	23.1	+0.6
38.0	37.2	-0.8
14	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre
1-3 Wing Yip Street
Kwai Chung, N.T., Hong Kong
T+852 2610 1044 E+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM WORK ORDER: HK1711928

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING SUB-BATCH: 0

ADDRESS: RM A 20/F., GOLDEN KING IND BLDG, LABORATORY: HONG KONG

NO. 35-41 TAI LIN PAI ROAD, **DATE RECEIVED:** 24/03/2017 **CATE OF ISSUE:** 31/03/2017

N.T., HONG KONG

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: pH

Description: pH Meter

Brand Name: AZ
Model No.: 8685
Serial No.: 1118396

Equipment No.:

Date of Calibration: 30 March, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1711928

Sub-batch:

0

Date of Issue:

31/03/2017

Client:

ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Description:

pH Meter

Brand Name:

AZ

Model No.:

8685

Serial No.:

1118396

Equipment No.:

Date of Calibration: 30 March, 2017

Date of next Calibration:

30 June, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.0	0.00
7.0	6.8	-0.20
10.0	9.8	-0.20
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	9.4	+0.4
22.0	23.0	+1.0
38.0	37.8	-0.2
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

ALS Technichem (HK) Ptv Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong T+852 2610 1044 F+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1711929 CONTACT: MR BEN TAM

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING SUB-BATCH: 0

LABORATORY: ADDRESS: RM A 20/F., GOLD KING IND BLDG, HONG KONG

> NO. 35-41 TAI LIN PAI ROAD, DATE RECEIVED: 24/03/2017 KWAI CHUNG. DATE OF ISSUE: 31/03/2017

N.T., HONG KONG

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:

Turbidity

Equipment Type:

Turbidimeter

Brand Name:

HACH

Model No.:

2100Q

Serial No.:

12060C018266

Equipment No.:

Date of Calibration: 30 March, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1711929

Sub-batch:

0

Date of Issue:

31/03/2017

Client:

ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type:

Turbidimeter

Brand Name:

HACH

Model No.:

2100Q

Serial No.:

12060C018266

Equipment No.:

--

Date of Calibration:

30 March, 2017

Date of next Calibration:

30 June, 2017

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.28	
4	4.38	+9.5
40	41.4	+3.5
80	84.6	+5.7
400	437	+9.3
800	851	+6.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET	IEC	ER	Action Contractor
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	1. Identify source; 2. Inform IEC and ER; 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Monitor the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit Level				
Exceedance for one sample	investigate the causes of exceedance and propose remedial measures; 2. Inform ER, Contractor and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.	Contractor on possible remedial measures; 4. Advise the ER on the effectiveness of the proposed remedial measures; 5. Monitor theimplementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	,,	submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented;	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Action Level	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness.	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writing: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further exceedance: 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	ACTION CONTRACTOR
Action level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methode: 5. Discuss mitigation measures with IEC and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 2 working date: 6. Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level.	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures; 7. As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for Reporting Period –June 2017

	Data	Dust Mo	onitoring	Noise Menitorina	Western Orrelister
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
THU	1-Jun-17		AM1b, AM2, AM3 & AM9b		
Fri	2-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
SAT	3-Jun-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	3
SUN	4-Jun-17				
Mon	5-Jun-17				All Water Quality Monitoring Locations
TUE	6-Jun-17				
WED	7-Jun-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
THU	8-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	g
Fri	9-Jun-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
SAT	10-Jun-17				
SUN	11-Jun-17				
Mon	12-Jun-17				
TUE	13-Jun-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
WED	14-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	g
THU	15-Jun-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	16-Jun-17				
SAT	17-Jun-17				All Water Quality Monitoring Locations
SUN	18-Jun-17				e e
Mon	19-Jun-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
TUE	20-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
WED	21-Jun-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Тни	22-Jun-17				
Fri	23-Jun-17				
SAT	24-Jun-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	25-Jun-17				
Mon	26-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
TUE	27-Jun-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
WED	28-Jun-17				All Water Quality Monitoring Locations
THU	29-Jun-17		AM1b, AM2, AM3 & AM9b		
Fri	30-Jun-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations

Monitoring Day
Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – July 2017

	Date	Dust Mo	onitoring	Noise Monitoring	Woton Quality
	Date	1-hour TSP	24-hour TSP	Noise Mointoring	Water Quality
Sat	1-Jul-17				
Sun Mon	2-Jul-17 3-Jul-17	AM4b, AM5, AM6,		NM3, NM4, NM5,	
Tue	4-Jul-17	AM7b & AM8		NM6 & NM7	All Water Quality
Wed	5-Jul-17		AM1b, AM2, AM3		Monitoring Locations
Thu	6-Jul-17		& AM9b AM4b, AM5, AM6,	NM1, NM2a, NM8,	All Water Quality
-		& AM9b	AM7b & AM8	NM9 & NM10	Monitoring Locations
Fri	7-Jul-17	AM4b, AM5, AM6,			All Water Quality
Sat	8-Jul-17	AM7b & AM8			Monitoring Locations
Sun Mon	9-Jul-17 10-Jul-17				All Water Quality
Tue	11-Jul-17		AM1b, AM2, AM3		Monitoring Locations
Wed	12-Jul-17			NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	13-Jul-17	& AM9b	AM7b & AM8	NWI9 & NWII0	Monitoring Locations
Fri	14-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	15-Jul-17	AWI/D & AWIO		NVIO & NVI7	Monitoring Locations
Sun	16-Jul-17				
Mon	17-Jul-17		AM1b, AM2, AM3 & AM9b		
Tue	18-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	19-Jul-17				
Thu	20-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	21-Jul-17				
Sat	22-Jul-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	23-Jul-17			NM1 NM2 NM0	
Mon	24-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	25-Jul-17				
Wed	26-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	27-Jul-17				
Fri	28-Jul-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sat	29-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		
Sun	30-Jul-17				All Woton Onelian
Mon	31-Jul-17				All Water Quality Monitoring Locations

Monitoring Day
Sunday or Public Holiday

Appendix I

Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE	EL	APSED TIM	1E	CHAR	T REA	ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER (DUST WEIGHT COLLECTED	24-HR TSP
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m³/min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
AM1b – Or	en Area, Tsı	ıng Yuen H	Ia Village			<u>'</u>						•		_	
1-Jun-17	21072	13156.47	13180.64	1450.20	50	50	50.0	29.1	1003.2	1.59	2302	2.7787	3.0908	0.3121	136
7-Jun-17	21048	13180.64	13204.82	1450.80	50	50	50.0	30	1010	1.59	2308	2.7600	2.8832	0.1232	53
13-Jun-17	21095	13204.82	13228.93	1446.60	50	50	50.0	26.4	1006.2	1.60	2312	2.8173	2.8867	0.0694	30
19-Jun-17	21133	13228.93	13253.02	1445.40	54	54	54.0	26.2	1005.3	1.58	2282	2.8055	2.8738	0.0683	30
24-Jun-17	21183	13253.02	13277.19	1450.20	52	52	52.0	28.5	1006.3	1.52	2197	2.8385	2.9069	0.0684	31
29-Jun-17	21195	13277.19	13301.37	1450.80	52	52	52.0	29.6	1009.7	1.51	2198	2.8166	2.9495	0.1329	60
AM2 - Villa	age House ne	ar Lin Ma	Hang Road												
1-Jun-17	21073	8664.50	8688.40	1434.00	38	38	38.0	29.1	1003.2	0.99	1416	2.7976	2.8555	0.0579	41
7-Jun-17	21058	8688.80	8712.51	1422.60	34	34	34.0	30	1010	0.87	1231	2.8071	2.9567	0.1496	122
13-Jun-17	21094	8712.51	8736.30	1427.40	35	35	35.0	26.4	1006.2	0.90	1286	2.8023	2.8553	0.0530	41
19-Jun-17	21132	8736.30	8760.07	1426.20	36	36	36.0	26.2	1005.3	0.97	1377	2.8040	2.8544	0.0504	37
24-Jun-17	21182	8760.07	8783.78	1422.60	28	28	28.0	28.5	1006.3	0.74	1047	2.8392	2.8736	0.0344	33
29-Jun-17	21194	8783.78	8807.53	1425.00	30	30	30.0	29.6	1009.7	0.79	1129	2.8212	2.9111	0.0899	80
AM3 - Ta I	Kwu Ling Fir	e Service S	tation of Ta	Kwu Lin	g Villa										
1-Jun-17	21074	9788.25	9812.25	1440.00	32	32	32.0	29.1	1003.2	0.72	1043	2.8096	2.9159	0.1063	102
7-Jun-17	21047	9812.25	9836.26	1440.60	38	38	38.0	30	1010	0.92	1332	2.7683	2.8211	0.0528	40
13-Jun-17	21096	9836.26	9860.26	1440.00	36	36	36.0	26.4	1006.2	0.86	1243	2.8068	2.8469	0.0401	32
19-Jun-17	21131	9860.26	9884.27	1440.60	36	36	36.0	26.2	1005.3	0.90	1294	2.7943	2.8535	0.0592	46
24-Jun-17	21181	9884.27	9908.27	1440.00	35	35	35.0	28.5	1006.3	0.86	1240	2.8311	2.9924	0.1613	130
29-Jun-17	21193	9908.27	9932.28	1440.60	36	36	36.0	29.6	1009.7	0.89	1288	2.8239	2.9255	0.1016	79
	use no. 10B1														
2-Jun-17	21078	11793.51	11817.52	1440.60	42	42	42.0	29.4	1002.6	1.15	1657	2.8090	2.9175	0.1085	65
8-Jun-17	21093	11817.52	11841.52	1440.00	44	44	44.0	29.8	1009.9	1.21	1747	2.8204	2.8715	0.0511	29
14-Jun-17	21129	11841.52	11865.53	1440.60	42	42	42.0	28.3	1008.6	1.16	1666	2.8206	2.8828	0.0622	37
20-Jun-17	21134	11865.53	11889.53	1440.00	42	42	42.0	26.5	1005.1	1.16	1669	2.8147	2.8743	0.0596	36
26-Jun-17	21186	11889.53	11913.53	1440.00	42	42	42.0	29.8	1008.4	1.15	1661	2.8521	2.9298	0.0777	47
30-Jun-17	21246	11913.53	11937.53	1440.00	38	38	38.0	29.9	1007.8	1.03	1482	2.8599	2.9119	0.0520	35
AM5a - Pin	g Yeung Vill	age House													
2-Jun-17	21077	9639.72	9663.72	1440.00	54	54	54.0	29.4	1002.6	1.61	2313	2.8061	2.9685	0.1624	70
8-Jun-17	21092	9663.72	9687.72	1440.00	50	50	50.0	29.8	1009.9	1.50	2166	2.8084	3.0948	0.2864	132
14-Jun-17	21101	9687.72	9711.73	1440.60	54	54	54.0	28.3	1008.6	1.61	2324	2.7942	2.8819	0.0877	38
20-Jun-17	21135	9711.73	9735.73	1440.00	52	52	52.0	26.5	1005.1	1.55	2237	2.8162	2.8818	0.0656	29
26-Jun-17	21187	9735.73	9759.73	1440.00	54	54	54.0	29.8	1008.4	1.60	2305	2.8317	2.9194	0.0877	38

DATE	SAMPLE NUMBER		APSED TIN				ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER (g)	DUST WEIGHT COLLECTED	24-HR TSP (μg/m³)
	NOWIDER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(μg/III)
30-Jun-17	21199	9759.73	9783.73	1440.00	54	57	55.5	29.9	1007.8	1.64	2361	2.8024	2.8940	0.0916	39
AM6 - Wo	Keng Shan V														
2-Jun-17	21076	8221.84	8245.85	1440.60	24	24	24.0	29.4	1002.6	0.72	1036	2.8083	2.9010	0.0927	89
8-Jun-17	21051	8245.85	8269.85	1440.00	25	25	25.0	29.8	1009.9	0.75	1073	2.7723	2.8397	0.0674	63
14-Jun-17	21100	8269.85	8293.85	1440.00	26	26	26.0	28.3	1008.6	0.77	1109	2.8127	2.8664	0.0537	48
20-Jun-17	21136	8293.85	8317.86	1440.60	26	26	26.0	26.5	1005.1	0.77	1108	2.7945	2.8371	0.0426	38
26-Jun-17	21188	8317.86	8341.86	1440.00	27	27	27.0	29.8	1008.4	0.79	1139	2.8364	2.9040	0.0676	59
30-Jun-17	21245	8341.86	8365.86	1440.00	26	26	26.0	28.7	1006.2	0.77	1104	2.8244	2.8976	0.0732	66
AM7b - Loi	i Tung Villag	ge House													
2-Jun-17	21075	17268.63	17292.64	1440.60	38	38	38.0	29.4	1002.6	0.90	1294	2.7935	2.9497	0.1562	121
8-Jun-17	21050	17292.64	17316.64	1440.00	37	37	37.0	29.8	1009.9	0.87	1257	2.7784	2.9030	0.1246	99
14-Jun-17	21099	17316.64	17340.64	1440.00	39	39	39.0	28.3	1008.6	0.93	1342	2.8227	2.8821	0.0594	44
20-Jun-17	21137	17340.64	17364.65	1440.60	30	30	30.0	26.5	1005.1	0.72	1043	2.8186	2.8711	0.0525	50
26-Jun-17	21189	17364.65	17388.65	1440.00	38	38	38.0	29.8	1008.4	0.94	1347	2.8299	3.0071	0.1772	132
30-Jun-17	21198	17388.65	17412.65	1440.00	37	40	38.5	28.7	1006.2	0.95	1368	2.8369	3.0014	0.1645	120
AM8 - Po K	Kat Tsai Villa	ige No. 4													
2-Jun-17	21079	11165.26	11189.27	1440.60	38	38	38.0	29.4	1002.6	0.96	1385	2.8027	2.8900	0.0873	63
8-Jun-17	21049	11189.27	11213.27	1440.00	29	29	29.0	29.8	1009.9	0.72	1038	2.7739	2.7927	0.0188	18
14-Jun-17	21098	11213.27	11237.28	1440.60	36	36	36.0	28.3	1008.6	0.91	1314	2.8038	2.8608	0.0570	43
20-Jun-17	21180	11237.28	11261.28	1440.00	34	34	34.0	26.5	1005.1	0.92	1323	2.8146	2.8714	0.0568	43
26-Jun-17	21190	11261.28	11285.28	1440.00	36	36	36.0	29.8	1008.4	0.96	1387	2.8224	2.8767	0.0543	39
30-Jun-17	21197	11285.28	11309.28	1440.00	38	39	38.5	28.7	1006.2	1.02	1473	2.8253	2.8902	0.0649	44
AM9b - Na	m Wa Po Vil	llage House	No. 80												
1-Jun-17	21071	18544.49	18568.49	1440.00	28	28	28.0	29.1	1003.2	0.78	1122	2.7933	2.8301	0.0368	33
7-Jun-17	21046	18568.49	18592.50	1440.60	28	28	28.0	30	1010	0.78	1125	2.7628	2.8000	0.0372	33
13-Jun-17	21097	18592.50	18616.51	1440.60	30	30	30.0	26.4	1006.2	0.85	1228	2.8043	2.8377	0.0334	27
19-Jun-17	21130	18616.51	18640.51	1440.00	30	30	30.0	26.2	1005.3	0.88	1271	2.7937	2.8406	0.0469	37
24-Jun-17	21184	18640.51	18664.52	1440.60	30	30	30.0	28.5	1006.3	0.88	1267	2.8346	2.8913	0.0567	45
29-Jun-17	21196	18664.52	18688.52	1440.00	30	30	30.0	29.6	1009.7	0.88	1266	2.8246	2.8533	0.0287	23

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung	Yuen	Ha Vill	age Hou	ıse No.	63																
2-Jun-17	9:19	57.1	58.5	55.0	59.0	60.5	55.5	58.7	60.5	55.5	59.5	62.5	55.5	60.1	61.0	55.0	57.9	59.0	54.5	59	NA
8-Jun-17	10:11	58.3	59.7	53.4	58.1	62.4	53.8	55.1	569.3	53.4	54.5	56.2	52.4	55.2	56.9	53.1	55.6	57.2	53.4	56	NA
14-Jun-17	10:54	65.0	61.8	55.2	57.1	59.0	54.6	57.7	59.1	54.6	56.7	58.4	54.8	56.1	57.7	53.9	56.6	58.2	54.3	60	NA
20-Jun-17	11:05	57.2	59.4	54.7	56.0	57.8	54.0	56.1	57.7	54.2	55.4	57.1	53.6	56.1	58.7	53.2	59.1	61.1	53.9	57	NA
26-Jun-17	9:10	55.9	58.4	54.1	55.8	57.7	54.0	59.7	57.8	54.4	56.1	57.3	54.0	55.9	57.9	53.9	57.9	58.2	54.3	57	NA
NM2a - Villa	ge Hou	ise near	Lin Ma	a Hang	Road																
2-Jun-17	9:54	70.7	69.5	55.0	63.0	64.0	53.0	64.6	67.0	57.0	64.6	68.0	55.0	62.7	66.0	54.0	63.6	67.5	54.0	66	69
8-Jun-17	9:32	73.9	63.9	56.9	66.7	69.6	58.2	66.6	69.3	59.7	67.4	67.2	55.6	62.0	65.6	55.2	65.5	69.0	56.1	69	72
14-Jun-17	10:10	67.4	73.3	54.0	66.4	67.8	54.0	61.9	66.1	52.9	62.0	66.2	53.1	64.4	67.4	54.1	62.9	66.3	54.7	65	68
20-Jun-17	11:38	69.8	70.2	53.9	66.7	68.1	54.0	62.0	66.3	53.1	61.8	65.9	53.1	63.9	66.9	54.2	63.2	66.5	54.5	66	69
26-Jun-17	9:42	71.7	67.3	52.3	67.6	68.2	51.6	66.0	66.7	51.7	66.6	64.7	49.4	66.6	66.8	50.2	61.4	62.1	48.0	68	71
NM3 - Ping Y	eung V	Village I	House																		_
9-Jun-17	9:23	57.0	58.0	53.0	58.6	59.0	53.5	61.0	60.0	53.5	57.2	59.5	53.5	59.0	66.0	55.0	59.3	60.0	54.0	59	NA
15-Jun-17	9:31	59.9	58.0	52.5	56.5	57.0	51.0	60.1	61.5	52.5	57.7	58.5	51.0	58.5	59.5	61.0	59.9	59.0	52.0	59	NA
21-Jun-17	13:32	57.8	58.6	51.6	58.4	59.6	52.6	57.5	58.2	51.7	56.6	57.5	51.7	58.7	59.4	52.8	57.7	58.2	51.4	58	NA
27-Jun-17	13:00	61.0	64.5	53.0	66.8	58.5	53.5	57.6	57.0	52.5	57.7	60.5	52.5	62.5	65.5	53.5	56.7	58.0	52.0	62	NA
NM4 - Wo Ke	eng Sh	an Villa																			
	10:03	64.6	67.0	60.0	63.8	66.0	60.5	64.1	66.0	60.5	64.8	67.5	61.0	65.8	69.0	61.5	63.2	65.5	58.5	64	NA
	10:17	62.2	65.5	51.5	61.7	63.5	51.5	62.6	64.0	51.0	60.5	63.5	51.0	62.2	64.0	52.0	63.8	65.5	52.5	62	NA
	10:24	61.6	60.1	52.8	60.2	60.4	51.5	59.5	58.4	51.6	60.8	59.4	51.8	61.7	60.5	52.6	60.4	59.9	51.5	61	NA
27-Jun-17	13:45	63.4	66.7	59.2	64.1	67.6	60.7	62.8	66.4	58.9	64.3	67.9	60.0	66.4	69.1	61.7	63.7	67.2	60.3	64	NA
NM5- Ping Y					1																
9-Jun-17	10:46	53.5	55.5	48.5	54.8	56.0	49.0	53.8	56.0	49.5	54.4	56.0	51.5	55.7	58.5	50.5	54.5	56.0	50.0	55	NA
15-Jun-17	10:53	50.3	53.0	47.0	52.0	55.5	48.5	52.5	56.0	48.5	53.7	56.0	49.0	51.5	54.5	48.5	52.7	55.5	48.5	52	NA
21-Jun-17	11:02	53.3	55.3	49.7	51.5	54.2	48.0	53.1	55.4	48.2	53.8	56.3	48.4	52.6	55.6	48.5	52.5	55.4	48.7	53	NA
27-Jun-17	9:34	52.8	55.1	48.3	52.3	54.7	48.4	54.1	56.9	48.9	53.9	56.0	48.8	54.8	57.1	49.1	53.3	56.8	48.8	54	NA
NM6 – Tai To		ı Village	e House	2																	
9-Jun-17	13:08	58.2	60.5	55.0	59.5	61.5	55.5	60.0	62.0	55.0	61.9	64.5	58.5	58.1	61.0	53.5	58.8	61.5	54.0	60	NA
15-Jun-17	11:29	56.3	59.5	48.0	57.6	60.5	48.5	58.6	60.0	48.5	57.7	59.5	49.0	55.0	57.0	49.5	57.2	59.5	49.5	57	NA
21-Jun-17	11:36	58.4	62.4	50.2	57.2	62.8	49.6	57.6	61.7	49.8	58.2	62.6	50.6	57.6	61.4	50.8	58.4	62.9	50.7	58	NA
27-Jun-17	8:57	58.9	61.4	52.9	61.0	62.1	48.8	62.1	67.0	48.3	59.8	63.1	49.8	58.9	61.9	49.1	60.8	63.2	49.9	60	NA

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM7 – Po Ka	at Tsai	Village																			
9-Jun-17	13:59	57.8	59.5	52.0	58.9	61.0	53.0	58.2	60.0	53.5	57.9	59.9	53.0	58.3	60.5	52.0	58.0	60.5	52.5	58	NA
15-Jun-17	13:21	57.2	58.0	50.5	56.7	58.5	51.5	60.7	61.5	51.0	57.5	60.5	50.5	59.0	60.5	50.5	60.5	61.0	51.0	59	NA
21-Jun-17	14:20	55.6	57.6	51.4	54.6	56.2	50.2	56.9	58.9	51.9	55.6	57.4	50.6	56.8	58.6	51.7	55.4	57.9	50.4	56	NA
27-Jun-17	10:17	59.9	61.5	55.5	67.3	65.5	55.5	63.1	65.0	56.0	59.3	61.0	52.0	67.4	69.5	56.0	56.7	58.0	54.0	64	NA
NM8 - Villag	e Hous	e, Tong	Hang																		
2-Jun-17	11:11	55.6	57.5	53	61.1	64	55.5	59.1	61.5	55.5	61.1	62.5	58.5	57.7	59	56	58.9	60	55.5	59	NA
8-Jun-17	10:41	56.5	58.3	52.1	56.7	58.5	52.7	58.6	58	53.1	57	59.7	53.6	57.2	58.9	54	56.5	58.7	53.2	57	NA
14-Jun-17	11:28	61.4	63.5	58	60.7	62	58	60.3	61.5	57.5	60.1	61.5	58	59.9	61.5	58	60.3	61.5	58	60	NA
20-Jun-17	10:39	58.3	63.2	49.2	59.7	64.7	50.6	59.5	64.1	50.1	58.1	63.5	49	57.7	63.7	49.8	58.4	64.1	50.8	59	NA
26-Jun-17	13:01	58.1	60	50.5	59.3	65	51.5	57.9	61.5	51	58	62.5	52	59.3	64	51.5	60.4	66	52.5	59	NA
NM9 - Villag	e Hous	e, Kiu T	Γau Vill	age																	
2-Jun-17	10:23	60.7	62.0	54.5	62.1	64.0	55.0	63.1	66.0	55.0	58.2	60.0	54.5	59.7	62.0	55.0	59.7	62.0	56.0	61	NA
8-Jun-17	10:02	61.5	64.7	56.7	61.7	65.2	56.9	60.5	64.0	57.7	62.7	66.5	58.0	62.5	66.5	58.0	63.2	67.1	58.3	62	NA
14-Jun-17	10:32	58.9	60.5	56.5	61.7	64.5	56.5	60.6	63.5	55.5	60.4	63.0	55.5	60.2	62.5	55.0	60.8	63.5	55.5	61	NA
20-Jun-17	11:23	62.4	64.5	59.5	61.7	63.1	58.6	62.2	64.5	59.7	62.8	65.7	60.1	61.9	64.0	59.8	60.1	64.3	59.7	62	NA
26-Jun-17	11:07	63.9	66.1	58.2	64.0	65.6	58.8	56.0	57.5	53.9	56.6	58.0	54.3	56.7	57.6	54.0	64.1	66.4	56.3	62	NA
NM10 - Nam	Wa P	o Villag	e House	No. 80																	
2-Jun-17	9:34	62.6	66.5	57.0	62.8	67.0	57.0	59.6	60.5	57.0	61.2	62.5	57.0	60.4	60.5	56.5	58.4	59.5	56.5	61	64
8-Jun-17	9:17	62.0	66.2	57.5	62.4	66.0	57.9	62.8	67.0	57.5	61.7	64.6	56.9	62.5	66.7	57.0	61.0	66.0	57.5	62	65
14-Jun-17	9:42	62.4	65.0	55.5	62.4	65.0	57.0	62.9	66.0	56.5	61.2	64.5	54.5	62.2	65.0	55.5	63.7	66.5	56.5	63	66
20-Jun-17	14:17	61.6	62.2	59.2	62.6	63.6	60.7	62.7	63.8	60.1	63.4	64.9	61.7	62.7	63.9	60.0	62.1	63.1	60.9	63	66
26-Jun-17	10:17	66.8	69.5	62.5	64.5	66.7	61.8	63.4	66.0	60.7	62.8	65.2	60.0	62.8	65.5	61.0	63.1	66.3	61.4	64	67

Water Quality Monitoring Data for Contract 6 and SS C505

Date	2-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	0.40	0.24	29	29.0	6.46	<i>(</i> 5	84.1	0.4.1	17.3	16.0	8.5	0.5	12	12.5
WM1-C	9:40	0.34	29	29.0	6.46	6.5	84.1	84.1	16.5	16.9	8.5	8.5	13	12.5
WM1	9:50	0.20	29.5	29.5	7.62	7.6	100.0	100.0	49.5	48.0	8.2	0.2	52	52.5
VV IVI I	9.30	0.20	29.5	29.3	7.61	7.6	99.9	100.0	46.5	46.0	8.2	0.2	55	53.5

Date	5-Jun-17											•		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	10:36	0.34	29.3	29.3	6.14	6.2	80.4	80.7	21.2	20.7	7.8	7.0	14	12.5
WWIII-C	10:30	0.54	29.3	29.3	6.19	6.2	81.0	80.7	20.2	20.7	7.8	7.0	13	15.5
WM1	10:45	0.15	30.3	30.3	6.69	67	88.8	89.1	51.3	50.9	7.6	7.6	49	51.5
VV IVI I	10:43	0.13	30.3	30.3	6.72	6.7	89.3	09.1	50.4	30.9	7.6	7.0	54	31.3

Date	7-Jun-17	•	•			-	•	•	•		•	•	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	9:40	0.34	33	33.0	4.32	4.2	60.0	60.4	16.2	16.0	8.5	0.5	9	0 5
WWIT-C	9.40	0.34	33	33.0	4.37	4.3	60.7	00.4	15.8	10.0	8.5	8.3	8	8.3
WM1	9:50	0.15	31.5	21.5	6.97	7.0	94.6	05.1	36.2	35.8	8	8.0	42	40.5
W W I	9.30	0.13	31.5	31.5	7.05	7.0	95.5	93.1	35.3	33.8	8	8.0	39	40.3

Date	9-Jun-17	•	•			-	•			-		•	-	
Location	Time	Depth (m)	Temp	p (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	10:25	0.24	30.3	30.3	7.05	6.0	94.4	02.2	12.0	11.5	8.4	8.4	7	7.0
WWII-C	10:23	0.34	30.3	30.3	6.67	6.9	90.0	92.2	11.0	11.3	8.4	0.4	7	7.0
WM1	10:35	0.26	32.1	32.1	8.88	8.9	121.8	121.7	38.4	38.3	8.1	0.1	35	25.5
VV IVI I	10.55	0.20	32.1	32.1	8.85	8.9	121.5	121.7	38.1	36.3	8.1	0.1	36	33.3

Date	13-Jun-17		•			-	•			-			•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	10:00	0.36	26.6	26.6	8.31	0.2	102.5	101.3	821.0	819.5	8.9	9.0	624	611.5
WWII-C	10:00	0.30	26.6	20.0	8.19	8.3	100.1	101.5	818.0	819.3	8.9	0.9	599	611.5
WM1	10:25	0.50	26.1	26.1	7.93	7.0	97.9	98.1	607.0	620.5	8.6	0 6	435	447.5
VV IVI I	10:23	0.30	26.1	20.1	7.95	7.9	98.2	98.1	634.0	620.3	8.6	8.6	460	447.3

Date	15-Jun-17	•	•		_	-	•	•	•	•	•	•	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	S(mg/L)
WM1-C	0.40	0.34	27.1	27.1	7.61	7.6	97.9	97.6	17.5	17.7	8.4	0.1	14	14.0
WWII-C	9:40	0.54	27.1	27.1	7.53	7.6	97.2	97.0	17.8	17.7	8.4	0.4	14	14.0
WM1	9:52	0.26	26.9	26.9	8.38	8.4	104.9	105.0	25.0	25.2	7.8	7.0	22	22.0
VV IVI I	9:32	0.26	26.9	20.9	8.38	0.4	105.1	103.0	25.3	23.2	7.8	7.0	22	22.0

Date	17-Jun-17		•			=	•	•	•	•	•	•	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	8:49	0.34	26.3	26.3	7.93	8.0	99.0	99.9	846.0	852.0	8	9.0	478	166.0
WWII-C	8:49	0.34	26.3	20.5	7.99	8.0	100.7	99.9	858.0	832.0	8	8.0	454	466.0
WM1	9:17	0.27	26.9	26.9	7.46	7.5	93.5	94.1	52.5	52.0	7.9	7.0	57	56.0
VV IVI I	9.17	0.27	26.9	20.9	7.51	7.3	94.7	94.1	51.4	32.0	7.9	7.9	55	30.0

Date	19-Jun-17	•	•		_	-	•	•	•		•	•	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1-C	9:47	0.36	27.5	27.5	6.89	6.9	87.2	86.9	overange	OV. 04 40 0 00	8	8.0	1030	1070.0
WWII-C	9.47	0.30	27.5	21.3	6.84	0.9	86.5	80.9	overange	over range	8	8.0	1110	1070.0
WM1	9:55	0.30	25.7	25.7	7.85	7.9	97.4	97.6	198.0	199.0	7.9	7.0	72	69.5
VV IVI I	9.33	0.30	25.7	23.7	7.9	7.9	97.8	97.0	200.0	199.0	7.9	7.9	67	09.3

Date	21-Jun-17	•					•				•	•		
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	9:45	0.25	25.8	25.8	8.33	0.2	102.7	102.5	14.7	15.0	7.9	7.0	20	19.5
WWIII-C	9.43	0.35	25.8	23.8	8.28	8.3	102.3	102.3	15.2	13.0	7.9	7.9	19	19.3
WM1	0.55	0.28	25.4	25.4	8.28	0.2	101.1	101.1	68.4	70.0	7.7	77	71	72.5
VV IVI I	9:55	0.28	25.4	23.4	8.27	8.3	101.0	101.1	71.5	70.0	7.7	7.7	74	12.5

Date	22-Jun-17#	•	-	<u> </u>	•	•	•	<u> </u>	<u>-</u>
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS	(mg/L)
WM1-C	10:00	0.34				8.8 9.0		7	7.0
WWIII-C	10.00	0.34				9.2		7	7.0
WM1	10.10	0.26				16.3		21	21.0
VV 1VI 1	10:10	0.26	_			16.1		21	21.0

Date	23-Jun-17#		•		,				
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS	(mg/L)
WM1-C	10:25	0.34				7.2 6.5 6.8		4	4.0
WM1	10:32	0.26				8.2 9.3 8.7		20 20	20.0

Date	24-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1 C	0.20	0.25	30.1	20.1	7.38	7.4	97.4	07.5	15.3	15.2	8.8	8.8	21	20.5
WM1-C	9:30	0.35	30.1	30.1	7.39	7.4	97.5	97.5	15.1	15.2	8.8	8.8	20	20.5
WM1	9:40	0.26	28.6	28.6	7.31	7.2	94.4	93.5	51.0	50.5	8.2	0.2	51	52.5
VV IVI I	9.40	0.26	28.6	28.0	7.19	7.3	92.6	93.3	49.9	30.3	8.2	0.2	56	53.5

Date	26-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	10.05	0.24	33.1	22.1	5.72	57	79.7	70.7	8.2	0.1	8.7	0.7	4	1.5
WM1-C	10:05	0.34	33.1	33.1	5.71	5.7	79.6	79.7	8.1	8.1	8.7	8.7	5	4.5
XX/X // 1	10.15	0.26	30.1	30.1	6.14	<i>C</i> 1	83.1	92.0	42.5	41.0	8.1	0.1	44	45.0
WM1	10:15	0.26	30.1	30.1	6.08	6.1	82.6	82.9	39.5	41.0	8.1	8.1	46	45.0

Date	28-Jun-17	•	•			-	•	•	•	•	•	•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	9:40	0.34	33.1	33.1	5.91	5.9	82.1	92.2	9.1	9.4	9.1	0.1	6	6.0
WWII-C	9.40	0.34	33.1	33.1	5.94	3.9	82.4	62.3	9.7	9.4	9.1	9.1	6	6.0
3373.4.1	0.50	0.26	31.7	21.7	5.76	5 0	78.4	70.6	18.8	10.6	8.3	0.2	29	20.5
WM1	9:50	0.26	31.7	31.7	5.79	5.8	78.7	78.6	18.4	18.6	8.3	8.3	30	29.5

Date	30-Jun-17	•	•		_	-	•	•	•		•	•	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	9:35	0.24	31.6	21.6	6.12	6.2	82.8	83.1	10.4	10.5	7.9	7.0	7	7.0
WWIT-C	9.33	0.34	31.6	31.6	6.18	6.2	83.4	65.1	10.6	10.3	7.9	7.9	7	7.0
WM1	9:45	0.26	30.4	30.4	6.15	6.2	81.7	82.3	23.0	23.2	8	8.0	31	30.0
VV IVI I	9.43	0.26	30.4	30.4	6.24	6.2	82.9	82.3	23.4	23.2	8	8.0	29	30.0

Remarks: **Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 3

Date	2-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.18	29.8	29.8	7.89	7.0	103.0	103.1	7.7	7.6	8.3	9.2	5	5.0
WW4-CA	11.30	0.16	29.8	29.6	7.88	7.9	103.1	103.1	7.5	7.0	8.3	8.3	5	3.0
WM4-CB	11:45	0.31	30.4	30.4	6.39	6.1	85.4	85.5	14.5	14.0	7.9	7.0	14	13.0
WW4-CB	11:43	0.51	30.4	30.4	6.4	6.4	85.6	83.3	15.3	14.9	7.9	7.9	12	15.0
3373.44	11.20	0.15	29.6	20.6	7.53	7.6	99.2	00.6	13.4	10.5	8.9	9.0	8	7.5
WM4	11:20	0.15	29.6	29.6	7.59	7.6	99.9	99.6	11.5	12.5	8.9	8.9	7	7.5

Date	5-Jun-17													
Location	Time	Depth (m)	Temp	p (oC)	DO (1	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	13:10	0.15	30.9	30.9	7.85	7.8	105.5	105.4	5.8	5.6	8.3	0.2	4	2.5
WW4-CA	15:10	0.13	30.9	30.9	7.81	7.0	105.3	103.4	5.4	3.0	8.3	8.3	3	3.3
WM4-CB	13:25	0.31	31.9	31.9	6.37	6.1	87.2	87.4	11.3	11.5	8	8.0	12	11.0
WW4-CD	15:25	0.51	31.9	31.9	6.37	6.4	87.5	67.4	11.7	11.5	8	8.0	10	11.0
3373.4.4	12.00	0.15	33	22.0	8	0.1	100.4	106.4	7.8	7.0	8.4	0.4	5	4.5
WM4	13:00	0.15	33	33.0	8.18	8.1	112.3	106.4	7.7	7.8	8.4	8.4	4	4.5

Date	7-Jun-17		•		-							•	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:25	0.18	32.7	32.7	6.31	6.2	86.7	86.5	4.8	1.2	8.8	8.8	<2	2.0
WWH-CA	11.23	0.16	32.7	32.1	6.23	6.3	86.2	80.5	3.8	4.3	8.8	0.0	2	2.0
WM4-CB	11:40	0.31	32.8	32.8	5.35	5.1	75.1	75.5	9.1	0.2	8.3	0.2	9	9.5
WIVI4-CB	11:40	0.51	32.8	32.6	5.4	5.4	75.9	73.3	9.4	9.2	8.3	8.3	10	9.3
33/3/4/	11.10	0.15	33.1	22.1	6.3	C 4	87.9	99.6	15.6	15.5	9.2	0.2	13	12.5
WM4	11:10	0.15	33.1	33.1	6.41	6.4	89.3	88.6	15.3	15.5	9.2	9.2	12	12.5

Date	9-Jun-17		•			•	-	•	•	-	•			
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:15	0.15	33.4	33.4	6.01	6.0	83.9	84.0	2.7	2.7	8.4	8.4	2	3.5
WWI4-CA	12.13	0.15	33.4	33.4	6.02	0.0	84.1	64.0	2.6	2.7	8.4	0.4	5	3.3
WM4-CB	12:25	0.31	34.1	34.1	5.18	5.2	73.4	73.8	12.0	12.1	8.1	8.1	12	12.0
WWI4-CB	12.23	0.31	34.1	34.1	5.22	3.2	74.2	73.6	12.1	12.1	8.1	0.1	12	12.0
WM4	12:05	0.15	33.3	33.3	7.09	7.1	99.4	99.9	8.7	0.1	8.5	0.5	10	9.0
VV IVI4	12:03	0.13	33.3	33.3	7.15	7.1	100.3	99.9	8.1	6.4	8.5	8.5	8	9.0

Date	13-Jun-17		٠			•	•		•	•	•	٠	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (ı	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:00	0.20	24.6	24.6	9.59	9.6	115.1	114.7	82.8	86.1	8.2	8.2	81	83.5
W WI4-CA	12:00	0.20	24.6	24.0	9.51	9.0	114.2	114.7	89.3	80.1	8.2	8.2	86	83.3
WM4-CB	12:10	0.37	24.9	24.9	9.19	9.2	110.8	110.9	74.6	73.8	8.2	8.2	65	67.0
WW4-CD	12:10	0.57	24.9	24.9	9.24	9.2	111.0	110.9	73.0	73.6	8.2	8.2	69	67.0
WMA.	11.50	0.20	24.4	24.4	9.53	9.4	114.1	112.3	93.8	94.1	8.2	8.2	94	94.0
VV 1V14	WM4 11:50	0.20	24.4	24.4	9.21	9.4	110.5	112.5	94.3	94.1	8.2	8.2	94	94.0

Date	15-Jun-17							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)

WM4-CA	11:25	0.20	30.5	30.5	7.16	7.1	93.7	93.4	12.7	12.1	8.2	0.2	9	8.0
WWI4-CA	11:55	0.20	30.5	30.3	7.09	7.1	93.1	93.4	11.4	12.1	8.2	0.2	7	8.0
WM4-CB	11:47	0.31	29.3	29.3	5.35	5.2	70.4	70.3	25.8	25.9	7.9	7.0	19	18.5
WW4-CD	11:47	0.51	29.3	29.3	5.32	3.3	70.2	70.3	25.9	23.9	7.9	7.9	18	16.3
WM4	11:30	0.15	28.6	28.6	7.27	7.2	93.4	93.7	34.8	34.9	8.1	0.1	29	28.0
W W14	11:50	0.13	28.6	28.0	7.29	7.3	93.9	93.7	34.9	34.9	8.1	0.1	27	28.0

Date	17-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:24	0.17	25.1	25.2	8.22	8.3	100.1	50.9	13.4	12.7	7.9	7.9	6	5.5
WW4-CA	11:24	0.17	25.2	23.2	8.34	6.5	1.7	30.9	14.0	13.7	7.9	7.9	5	3.3
WM4-CB	11:39	0.37	26.2	26.2	6.06	6.1	75.1	75.8	16.7	17.1	7.8	7.8	13	13.5
WW4-CB	11:59	0.57	26.1	20.2	6.14	6.1	76.4	73.6	17.5	17.1	7.8	7.8	14	13.3
33/3.4.4	11.00	0.47	26	26.0	7.43	7.5	91.5	01.6	34.7	24.0	7.7	7.7	28	27.0
WM4	11:00	0.47	26	26.0	7.51	7.5	91.7	91.6	35.1	34.9	7.7	7.7	26	27.0

Date	19-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turb	idity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11:35	0.20	26.8	26.8	7.51	7.5	95.1	95.0	46.9	46.0	8.1	8.1	27	26.5
WW4-CA	11:55	0.20	26.8	20.8	7.46	1.5	94.9	93.0	45.1	40.0	8.1	0.1	26	20.3
WM4-CB	11:48	0.32	26.9	26.9	6.81	6.8	85.4	85.6	61.1	59.9	7.8	7.8	56	56.5
WWI4-CB	11.40	0.32	26.9	20.9	6.84	0.8	85.7	65.0	58.7	39.9	7.8	7.0	57	30.3
33/3/4/	11.20	0.16	27.1	27.1	7.34	7.2	92.1	01.7	70.2	70.6	8	9.0	64	(5.0
WM4	11:30	0.16	27.1	27.1	7.18	7.3	91.3	91.7	71.0	70.6	8	8.0	66	65.0

Date	21-Jun-17		•	-	_	•	-	·	•	-	•	•	-	
Location	Time	Depth (m)	Temp	p (oC)	DO (ı	mg/L)	DO	(%)	Turbi	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:05	0.20	25	25.0	8.52	8.5	103.3	103.5	60.8	58.0	7.9	7.9	50	50.0
WM4-CA	12:03	0.20	25	23.0	8.47	8.3	103.6	105.5	55.1	38.0	7.9	7.9	50	30.0
WM4-CB	12:15	0.35	26.1	26.1	7.25	7.2	89.6	89.7	62.9	65.8	7.9	7.9	53	52.5
WM4-CB	12:15	0.33	26.1	20.1	7.26	7.3	89.7	89.7	68.7	05.8	7.9	7.9	54	53.5
XX/X (4	12.00	0.16	25.6	25.6	8.04	0.1	98.4	98.6	90.0	00.6	7.7	7.7	79	70.0
W IVI4	WM4 12:00	0.16	25.6	25.6	8.06	8.1	98.7	98.0	91.2	90.6	7.7	7.7	79	79.0

Date	22-Jun-17#		•	<u> </u>		•	•	•		
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity	(NTU)	pН	SS	(mg/L)
WM4-CA	11:15	0.18				18.7	19.4		12	12.0
WWI4-CA	11.13	0.16				20.0	19.4		12	12.0
WM4-CB	11:40	0.31				19.0	19.5		9	9.0
W WI4-CD	11:40	0.51				19.9	19.3		9	9.0
WM4	11:10	0.15				204.0	205 5		164	164.0
VV 1V14	11:10	0.13				207.0	205.5		164	164.0

Date	23-Jun-17#									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity	(NTU)	pН	SS	S(mg/L)
WM4-CA	11:40	0.18				9.1	0.4		12	12.0
WW4-CA	11:40	0.16				9.7	9.4		12	12.0
WM4-CB	11:50	0.31				6.6	6.6		12	12.0

						6.6			12	
WM4	11.20	0.15				24.2	24.4		26	26.0
W W14	11:30	0.15				24.5	24.4		26	26.0

Date	24-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbi	idity (NTU)	p	H	SS	(mg/L)
WM4-CA	11:10	0.18	31.2	31.2	6.57	6.6	88.6	89.0	17.2	16.8	8.5	9.5	15	15.5
W WI4-CA	11:10	0.18	31.2	31.2	6.63	6.6	89.3	89.0	16.4	10.8	8.5	8.3	16	13.3
WM4-CB	11.05	0.21	31.3	31.3	5.26	5.3	71.3	71.8	12.2	10.2	8.1	0.1	7	7.0
WW4-CD	11:25	0.31	31.3	31.3	5.33	3.3	72.3	/1.6	12.4	12.3	8.1	8.1	7	7.0
33/3.4.4	11.00	0.15	31.1	21.1	6.59		88.8	88.5	35.0	25.1	8.6	9.6	35	24.0
WM4 11	11:00	0.15	31.1	31.1	6.54	6.6	88.1	88.5	35.1	35.1	8.6	8.6	33	34.0

Date	26-Jun-17		•				-	_				•		
Location	Time	Depth (m)	Temp	p (oC)	DO (1	mg/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.18	32.7	32.7	6.41	6.5	88.9	89.9	373.0	375.0	8.7	9.7	205	214.0
WWI4-CA	11.30	0.16	32.7	32.7	6.58	6.5	90.8	69.9	377.0	373.0	8.7	0.7	223	214.0
WM4-CB	11:40	0.31	30.6	30.6	6.89	6.0	92.2	91.8	10.2	9.8	8.2	0.2	6	6.5
WWI4-CB	11.40	0.31	30.6	30.0	6.83	6.9	91.4	91.0	9.5	9.8	8.2	0.2	7	6.5
3373.4.4	11:20	0.15	32	32.0	6.64	67	90.9	91.2	24.3	23.9	8.8	8.8	13	12.5
WM4	11:20	0.13	32	32.0	6.67	6.7	91.4	91.2	23.5	23.9	8.8	0.0	12	12.3

Date	28-Jun-17		•		_	·	=	-	·	-	·	•	-	,
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbi	idity (NTU)	p	H	SS	(mg/L)
WM4-CA	11:45	0.18	31.9	31.9	6.67	6.7	91.2	91.1	16.0	14.5	8.5	9.5	15	14.5
WM4-CA	11:43	0.18	31.9	31.9	6.65	0.7	91.0	91.1	12.9	14.3	8.5	8.5	14	14.3
WM4-CB	11:55	0.31	32.7	32.7	5.75	5.8	79.4	80.0	8.1	8.0	8.2	8.2	7	6.0
WIVI4-CD	11:55	0.51	32.7	32.7	5.83	3.8	80.6	80.0	8.0	8.0	8.2	0.2	5	0.0
WM4	11.25	0.15	31.2	31.2	6.89	6.0	92.4	93.1	12.9	13.3	8.5	9.5	13	12.5
W M4	11:35	0.15	31.2	31.2	6.87	6.9	93.8	93.1	13.6	13.3	8.5	8.5	12	12.5

Date	30-Jun-17				_	-	•		•	=	•	•	-	=
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turb	idity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:55	0.16	29.4	29.4	7.99	8.0	105.0	104.8	7.6	7.4	8.7	8.7	6	6.5
WW4-CA	11:33	0.10	29.4	29.4	7.95	6.0	104.6	104.8	7.2	7.4	8.7	0.7	7	0.3
WM4-CB	12:05	0.31	29.7	29.7	6.29	6.3	82.8	82.7	11.9	11.5	7.9	7.9	8	8.5
WWI4-CB	12:03	0.51	29.7	29.7	6.27	0.3	82.6	02.7	11.0	11.5	7.9	7.9	9	6.3
WM4	11:50	0.15	32.2	32.2	7.09	7.1	94.6	94.4	21.0	21.8	8.9	8.9	30	31.0
vv IVI4	11.30	0.13	32.2	32.2	7.05	7.1	94.2	74.4	22.5	21.0	8.9	6.9	32	31.0

Remarks: "Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 6

Date	2-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ıg/L)
WM2A-C	10.25	0.28	29.1	29.1	6.39	C 4	81.3	81.2	13.0	12.2	8.00	9.0	6	7.0
WM2A-C	10:25	0.28	29.1	29.1	6.33	6.4	81.1	81.2	13.6	13.3	8.00	8.0	8	7.0
WM2A	10:15	0.20	28.2	28.2	6.81	67	87.7	97.1	16.6	16.3	8.20	0.2	11	10.0
VV IVIZA	10:13	0.20	28.2	20.2	6.64	6.7	86.4	87.1	15.9	10.5	8.20	8.2	9	10.0

Date	5-Jun-17	-	-		_	•	•	•	-	-	-	•	•	
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ıg/L)
WM2A-C	11:10	0.28	27.2	27.2	7.07	7.0	89.5	89.3	9.8	9.6	7.80	7.8	8	8.0
WWIZA-C	11:10	0.28	27.2	21.2	7	7.0	89.1	69.3	9.4	9.0	7.80	7.8	8	8.0
WM2A	10:55	0.20	28.7	28.7	7.05	7.1	91.8	92.0	9.9	9.9	7.80	7.0	3	2.5
VV IVIZA	10:33	0.20	28.7	20.7	7.06	7.1	92.2	92.0	9.9	9.9	7.80	7.8	2	2.3

Date	7-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(m	ng/L)
WM2A-C	10:20	0.28	30.6	30.6	4.56	16	61.5	61.9	65.9	67.1	8.20	8.2	46	46.0
WWIZA-C	10:20	0.28	30.6	30.0	4.62	4.6	62.3	61.9	68.3	07.1	8.20	0.2	46	40.0
WM2A	10:03	0.20	31.1	21.1	5.42	5 1	73.2	73.2	22.5	22.5	8.10	8.1	23	21.5
W WIZA	10:03	0.20	31.1	31.1	5.41	5.4	73.1	13.2	22.5	22.3	8.10	0.1	20	21.5

Date	9-Jun-17						•		•			•		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2A-C	11:05	0.27	28.7	28.7	5.22	5.2	69.4	69.1	7.8	8.0	8.00	8.0	5	5.5
WWZA-C	11:03	0.27	28.7	28.7	5.14	3.2	68.8	09.1	8.2	8.0	8.00	8.0	6	3.3
WM2A	10.45	0.20	30.9	20.0	5.33	5.2	72.9	70.2	4.6	4.2	8.10	0.1	5	1.5
W M ZA	10:45	0.20	30.9	30.9	5.21	5.5	71.6	72.3	4.0	4.3	8.10	8.1	4	4.5

Date	13-Jun-17	-	-		_	•	•	•	-	-	-	•	•	•
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2A-C	10.55	0.20	24.8	24.8	8.7	0.7	104.9	105.4	81.5	70.2	8.50	9.7	33	22.0
WM2A-C	10:55	0.30	24.8	24.8	8.79	8.7	105.9	105.4	76.8	79.2	8.80	8.7	31	32.0
WM2A	10:40	0.28	25.3	25.3	8.22	0.2	99.9	100.1	438.0	425 E	8.50	8.5	324	216.5
WWIZA	10:40	0.28	25.3	23.3	8.24	8.2	100.2	100.1	433.0	435.5	8.50	6.3	309	316.5

Date	14-Jun-17#												
Location	Time	Depth (m)	Temp (c	oC) DO	(mg/L)	DO	(%)	Turbidit	y (NTU)	рI	I	SS(m	ng/L)
WM2A-C	10:45	0.30						33.8 31.2	32.5			30 30	30.0
WM2A	10:30	0.22						193.0 195.0	194.0			136 136	136.0

D. (15 1 15	_	-		=		•		-	-	-	•	•	•
Date Location	15-Jun-17 Time	Depth (m)	Temp	2 (oC)	DO (1	ma/L)	DO	(%)	Turbidit	y (NTU)	n	H	SS(r	ng/L)
		• ` ′	25.4		8.54		104.9		6.8	Ī	8.00		5	
WM2A-C	10:25	0.28	25.4	25.4	8.55	8.5	104.8	104.9	6.6	6.7	8.00	8.0	4	4.5
XX/X 42 A	10:05	0.20	27.1	27.1	6.61		84.7	94.6	33.6	24.2	7.80	7.0	23	23.5
WM2A	10:05	0.20	27.1	27.1	6.55	6.6	84.4	84.6	34.8	34.2	7.80	7.8	24	23.5
Date	16 1 17#	-	-		_				- -	-	-			•
Location	16-Jun-17# Time	Depth (m)	Temp	. (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(r	ng/L)
Location		Deptii (iii)	Tellip	(00)	DO (1	llig/L)	DO	(70)	186.0	Ť	р. 	11	252	Ī
WM2A-C	11:30	0.30							193.0	189.5			252	252.0
W/M2 A	11.15	0.24							218.0	223.0			204	204.0
WM2A	11:15	0.24							228.0	223.0			204	204.0
5 1	45.7.45													
Date	17-Jun-17 Time	Donth (m)	Temp	· (°C)	DO (1		DO	(0/)	Tunkidit	y (NTU)	p	II	CC/m	ng/L)
Location	Time	Depth (m)	25.4	(00)	8.03		99.7	(%)	89.2	y (NTU)	7.80		57	ng/L)
WM2A-C	9:54	0.34	25.4	25.4	8.14	8.1	108.5	104.1	93.1	91.2	7.80	7.8	60	58.5
			25.5		7.3		89.4		99.1		8.00		51	
WM2A	9:38	0.21	25.5	25.5	7.25	7.3	88.5	89.0	93.4	96.3	8.00	8.0	52	51.5
- -		-	_	<u> </u>	_	-	-	-	-	-	-	-	•	•
Date	19-Jun-17	r			r		r		r =		T		T	
Location	Time	Depth (m)		o (oC)	DO (1	mg/L)	DO	(%)		y (NTU)	7.00	H		ng/L)
WM2A-C	10:25	0.30	24.8 24.8	24.8	8.45 8.41	8.4	102.6 102.3	102.5	33.1 37.3	35.2	7.90 7.90	7.9	11	11.5
********	10.10	0.00	25.4	27.1	8.07	0.4	98.6	00.7	186.0	100	7.90	- 0	146	
WM2A	10:10	0.22	25.4	25.4	8.04	8.1	98.3	98.5	175.0	180.5	7.90	7.9	147	146.5
										-				_
Date	20-Jun-17#	D 4 ()						(0/)		(A LITTLE)	<u> </u>			
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L) I	DO	(%)		y (NTU)	p.	H		ng/L)
WM2A-C	10:45	0.30							28.0 24.2	26.1			22 22	22.0
									79.3				65	
WM2A	11:00	0.20							76.3	77.8			65	65.0
-		-		•	•	•	•	•	•	•	<u>.</u>		•	-
Date	21-Jun-17												1	
	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)		y (NTU)	p	Н		ng/L)
Location	Time	- F ()					103.3		152.0		7.80		102	
	10:20	0.30	25.4 25.4	25.4	8.47 8.48 7.92	8.5	103.4	103.4	151.0	151.5	7.80 7.80	7.8	95 144	98.5

Date	22-Jun-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(r	ng/L)
WM2A-C	10:30	0.28							6.1 5.4	5.7			<2 <2	<2
WM2A	10:20	0.20							53.9 54.0	54.0		_	55 55	55.0
Date	23-Jun-17#			-	_		•		-	<u>-</u>	_	•	•	•
Location	Time	Depth (m)	Temp	o (oC)	DO (mg/L)	DO	(%)		ty (NTU)	p	Н		mg/L)
WM2A-C	10:50	0.28							3.2	3.2		=	3 3	3.0
WM2A	10:45	0.20							8.5 9.4	8.9		=	8 8	8.0
Date	24-Jun-17	-	-				•		-	-	•	•	•	•
Location	Time	Depth (m)	Temr	o (oC)	DO (mg/L)	DO	(%)	Turbidit	ty (NTU)	n	H	SS(t	ng/L)
WM2A-C	10:05	0.28	28.2 28.2	28.2	6.93 6.24	6.6	88.9 89.3	89.1	11.4 11.1	11.3	7.90 7.90	7.9	7 5	6.0
WM2A	9:55	0.20	28.8 28.8	28.8	6.24 6.19	6.2	80.7 80.2	80.5	79.2 75.0	77.1	7.80 7.80	7.8	57 59	58.0
Date	26-Jun-17													
Date Location	26-Jun-17 Time	Depth (m)	Temp	o (oC)	DO (mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(1	ng/L)
		Depth (m) 0.28	Temp 28.1 28.1	28.1	DO (1 6.47 6.44	mg/L)	DO 85.1 85.0	(%)	Turbidit 7.3 7.1	y (NTU) 7.2	7.80 7.80	Й 7.8	SS(1 3 3	mg/L) 3.0
Location	Time		28.1		6.47		85.1	`	7.3		7.80		3	1
Location WM2A-C WM2A	Time 10:35 10:25	0.28	28.1 28.1 33.8	28.1	6.47 6.44 4.89	6.5	85.1 85.0 68.8	85.1	7.3 7.1 17.6	7.2	7.80 7.80 7.90	7.8	3 3 12	3.0
Location WM2A-C	Time 10:35	0.28	28.1 28.1 33.8 33.8	28.1	6.47 6.44 4.89	6.5	85.1 85.0 68.8	85.1 69.0	7.3 7.1 17.6 17.5	7.2	7.80 7.80 7.90 7.90	7.8	3 3 12 12	3.0
Location WM2A-C WM2A Date	Time 10:35 10:25 26-Jun-17#	0.28	28.1 28.1 33.8	28.1	6.47 6.44 4.89 4.9	6.5	85.1 85.0 68.8 69.2	85.1 69.0	7.3 7.1 17.6 17.5	7.2	7.80 7.80 7.90 7.90	7.8	3 3 12 12	3.0
Location WM2A-C WM2A Date Location	Time 10:35 10:25 26-Jun-17# Time	0.28 0.20 Depth (m)	28.1 28.1 33.8 33.8	28.1	6.47 6.44 4.89 4.9	6.5	85.1 85.0 68.8 69.2	85.1 69.0	7.3 7.1 17.6 17.5 Turbidit 7.0	7.2 17.6 	7.80 7.80 7.90 7.90	7.8	3 3 12 12 12 12 SS(1	3.0 12.0 mg/L)
Location WM2A-C WM2A Date Location WM2A-C WM2A-C WM2A	Time 10:35 10:25 26-Jun-17# Time 10:30 10:10	0.28 0.20 Depth (m) 0.28	28.1 28.1 33.8 33.8	28.1	6.47 6.44 4.89 4.9	6.5	85.1 85.0 68.8 69.2	85.1 69.0	7.3 7.1 17.6 17.5 Turbidit 7.0 7.0 20.2	7.2 17.6 y (NTU) 7.0	7.80 7.80 7.90 7.90	7.8	3 3 12 12 12 12 SS(1 <2 <2 <2 17	3.0 - 12.0 - mg/L) <2
Date Location WM2A-C WM2A Date Location WM2A-C WM2A-C Date	Time 10:35 10:25 26-Jun-17# Time 10:30 10:10 28-Jun-17	0.28 0.20 Depth (m) 0.28 0.20	28.1 28.1 33.8 33.8 Temp	28.1 33.8 0 (oC)	6.47 6.44 4.89 4.9	6.5 4.9 mg/L)	85.1 85.0 68.8 69.2	85.1 69.0 (%)	7.3 7.1 17.6 17.5 Turbidit 7.0 7.0 20.2 22.6	7.2 17.6 2y (NTU) 7.0 21.4	7.80 7.80 7.90 7.90	7.8 7.9 H	3 3 12 12 12 12 SS(t	3.0 - 12.0 - mg/L) - <2 - 17.0
Location WM2A-C WM2A Date Location WM2A-C WM2A-C WM2A	Time 10:35 10:25 26-Jun-17# Time 10:30 10:10	0.28 0.20 Depth (m) 0.28	28.1 28.1 33.8 33.8 Temp	28.1	6.47 6.44 4.89 4.9 DO (1)	6.5	85.1 85.0 68.8 69.2 DO	85.1 69.0 (%)	7.3 7.1 17.6 17.5 Turbidit 7.0 7.0 20.2 22.6 Turbidit	7.2 17.6 y (NTU) 7.0	7.80 7.80 7.90 7.90	7.8	3 3 12 12 12 12 12 17 17 SS(1	3.0 - 12.0 - mg/L) <2
Date Location WM2A-C WM2A Date Location WM2A-C WM2A-C Date	Time 10:35 10:25 26-Jun-17# Time 10:30 10:10 28-Jun-17	0.28 0.20 Depth (m) 0.28 0.20	28.1 28.1 33.8 33.8 Temp	28.1 33.8 0 (oC)	6.47 6.44 4.89 4.9	6.5 4.9 mg/L)	85.1 85.0 68.8 69.2	85.1 69.0 (%)	7.3 7.1 17.6 17.5 Turbidit 7.0 7.0 20.2 22.6	7.2 17.6 2y (NTU) 7.0 21.4	7.80 7.80 7.90 7.90	7.8 7.9 H	3 3 12 12 12 12 SS(t	3.0 - 12.0 - mg/L) - <2 - 17.0

Date	30-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM2A-C	10:40	0.28	26.8	26.8	7.18	7.2	92.1	91.8	7.6	7.5	8.00	8.0	<2	-2
WWZA-C	10:40	0.28	26.8	20.8	7.12	1.2	91.5	91.8	7.4	7.3	8.00	8.0	<2	<2
WM2A	10:30	0.20	29.4	29.4	7.35	7.4	96.3	96.5	21.3	20.9	7.80	7.8	14	14.0
WWIZA	10:50	0.20	29.4	29.4	7.37	7.4	96.7	90.3	20.4	20.9	7.80	7.8	14	14.0

Remarks:

^{*}Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	2-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
WM2 C	10.40	0.15	29.5	20.5	6.77	6.9	88.8	90.0	11.8	10.0	9.2	0.2	14	16.0
WM3-C	10:40	0.15	29.5	29.5	6.81	6.8	89.2	89.0	9.9	10.9	9.2	9.2	18	16.0
WM3	10:50	0.15	29.8	29.8	6.46	6.5	85.3	85.6	10.5	9.9	8.3	0.2	18	16.0
WWIS	10.50	0.13	29.8	29.0	6.58	6.5	85.8	83.0	9.4	9.9	8.3	8.3	14	10.0

Date	5-Jun-17	•	•		_	•	-		•	-	•	-		•
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
WM3-C	11:28	0.15	30.1	30.1	7.13	7.2	94.5	95.0	9.6	9.9	10.4	10.4	13	12.0
W W15-C	11:28	0.15	30.1	30.1	7.2	1.2	95.5	93.0	10.2	9.9	10.4	10.4	11	12.0
WM3	11:48	0.15	32.1	22.1	7	7.0	95.1	95.0	12.9	13.2	9.4	9.4	13	12.0
VV 1V13	11:48	0.13	32.1	32.1	6.9	7.0	94.9	93.0	13.4	13.2	9.4	9.4	11	12.0

Date	7-Jun-17	•			-	•	-		-			-	-	•
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(n	ng/L)
WM3-C	10.29	0.15	30.7	30.7	6.3	6.3	85.2	85.5	11.3	12.4	9.4	0.4	14	15.0
WWIS-C	10:38	0.15	30.7	30.7	6.35	0.3	85.8	63.3	13.4	12.4	9.4	9.4	16	13.0
WM3	10:55	0.15	31	31.0	4.12	4.1	55.6	55.8	15.0	14.8	8.9	8.9	11	11.0
VV IVIS	10:55	0.13	31	31.0	4.13	4.1	55.9	22.0	14.5	14.8	8.9	0.9	11	11.0

Date	9-Jun-17	•					-		•	•	•	-		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(m	ıg/L)
WM3-C	11.20	0.15	32	32.0	4.59	1.6	62.9	63.0	2.2	2.0	10.5	10.5	6	6.0
WWIS-C	11:20	0.15	32	32.0	4.61	4.6	63.1	05.0	1.9	2.0	10.5	10.5	6	6.0
W/M2	11:30	0.15	33.2	33.2	4.88	4.9	64.3	64.5	9.3	0.1	9.5	9.5	7	6.5
WM3	11:50	0.13	33.2	33.2	4.91	4.9	64.7	04.3	8.9	9.1	9.5	9.3	6	6.5

Date	13-Jun-17	•					-							
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
WM3-C	11.15	0.26	24.3	24.3	8.16	0 1	97.7	97.7	162.0	1565	8.9	9.0	141	145.5
WWI3-C	11:15	0.26	24.3	24.3	8.13	8.1	97.6	97.7	151.0	156.5	8.9	8.9	150	143.3
WM3	11.25	0.25	24.5	24.5	8.38	8.4	100.6	100.6	78.9	84.5	8.4	8.4	69	69.5
W IVIS	11:25	0.23	24.5	24.3	8.37	0.4	100.5	100.6	90.1	04.3	8.4	0.4	70	09.3

Date	15-Jun-17	•			-	•	-		-	-	•	-	-	•
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:45	0.15	28.6	28.6	7.71	77	99.8	100.0	4.1	2.7	10.2	10.2	6	6.5
WWIS-C	10:43	0.13	28.6	28.0	7.72	7.7	100.1	100.0	3.4	3.7	10.2	10.2	7	0.5
WM3	11:00	0.15	29.1	29.1	7.19	7.2	94.0	93.9	11.9	11.0	9	0.0	12	12.0
W IVIS	11:00	0.15	29.1	29.1	7.16	1.2	93.8	93.9	11.7	11.6	9	9.0	12	12.0

Date	17-Jun-17	•			-	•	-			-	•	-		•
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:11	0.17	25.5	25.5	8.36	8.4	102.2	102.7	4.4	15	7.5	7.5	6	5.0
WWIS-C	10:11	0.17	25.5	23.3	8.41	0.4	103.1	102.7	4.6	4.5	7.5	1.5	4	3.0
WM3	10:25	0.20	26	26.0	6.95	7.0	85.8	86.0	58.9	58.2	7.7	7.7	53	54.0
WWI	10:23	0.20	26	20.0	6.99	7.0	86.1	80.0	57.4	50.2	7.7	7.7	55	54.0

Date	19-Jun-17	•	•				•		-	•		-		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	10:40	0.16	26.4	26.4	7.89	7.9	98.0	97.9	24.8	26.7	8.6	9.6	36	37.0
WWI3-C	10:40	0.16	26.4	20.4	7.87	7.9	97.7	97.9	28.5	26.7	8.6	8.6	38	37.0
W/M2	10.52	0.16	27.2	27.2	6.86	7.8	86.3	86.1	28.4	27.1	8.9	8.9	28	28.5
WM3	10:52	0.16	27.2	21.2	8.82	7.0	85.8	80.1	25.8	27.1	8.9	8.9	29	26.3

Date	20-Jun-17#				.	,	<u>-</u>		
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(m	ıg/L)
WM3-C	10.15	0.16				18.1		25	25.0
WWIS-C	10:15	0.16				19.1		25	25.0
WM3	10:30	0.16				21.8		25	25.0
WWIS	10:30	0.16				22.8		25	23.0

Date	21-Jun-17				-	•	-	•	-	-	•	-		•
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM3-C	10.55	0.16	25.7	25.7	7.63	7.7	93.9	94.1	107.0	103.0	8.8	0 0	111	1115
W W13-C	10:55	0.16	25.7	23.1	7.67	7.7	94.3	94.1	98.9	103.0	8.8	8.8	118	114.5
WM2	11.15	0.10	25.6	25.6	7.08	7.1	86.6	86.4	280.0	279.0	8.4	8.4	239	230.0
WM3	11:15	0.18	25.6	23.0	7.05	7.1	86.2	80.4	278.0	2/9.0	8.4	0.4	221	230.0

Date	22-Jun-17#	-					· ·	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM3-C	10:45	0.15				9.3		54 54.0
WWI3-C	10:43	0.13				12.2		54
WM3	10:55	0.15				165.0		204 204.0
WWIS	10:33	0.13				163.0		204.0

Date	23-Jun-17#				•		<u>.</u>	<u>-</u>	
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(n	ng/L)
WM3-C	11:00	0.15				12.2		88	88.0
WWI3-C	11:00	0.13				11.9		88	88.0
WM3	11.10	0.15				26.0		22	22.0
WWIS	11:10	0.13				24.2		22	22.0

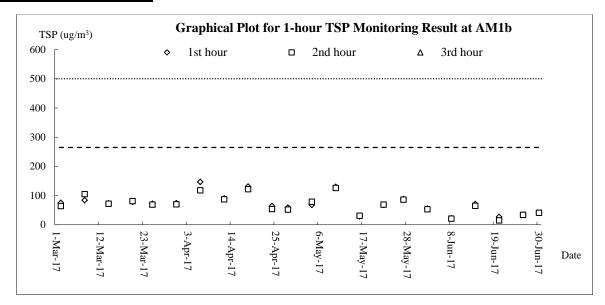
Date	24-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM2 C	10.24	0.15	28.6	20.6	7.65	7.6	98.9	00.0	107.0	106.0	9.1	9.1	197	100.5
WM3-C	10:24	0.15	28.6	28.6	7.63	7.6	99.1	99.0	105.0	106.0	9.1	9.1	184	190.5
WM3	10:32	0.15	30.8	30.8	6.05	6.1	81.2	81.8	44.6	44.2	9	9.0	52	52.5
WWIS	10:52	0.13	30.8	30.8	6.15	0.1	82.4	01.0	43.7	44.2	9	9.0	53	32.3

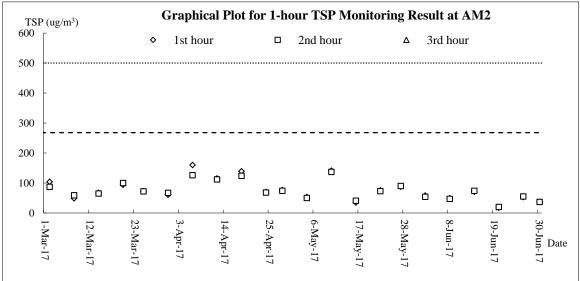
Date	26-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(n	ng/L)
WM2 C	10.55	0.15	31.7	21.7	6.31	(2	86.0	96.2	36.5	27.7	10.3	10.2	76	745
WM3-C	10:55	0.15	31.7	31.7	6.35	6.3	86.6	86.3	38.8	37.7	10.3	10.3	73	74.5
W/M2	11.05	0.15	31.5	31.5	6.16	6.2	83.9	83.7	30.0	29.6	9.5	9.5	13	13.5
WM3	11:05	0.15	31.5	31.3	6.14	0.2	83.5	65.7	29.2	29.0	9.5	9.5	14	13.3

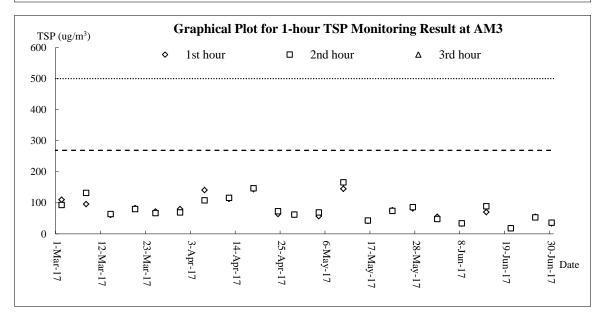
Date	28-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
WM2 C	10.20	0.15	31	21.0	6.46	<i>(</i> 5	86.8	97.6	13.0	12.1	10.5	10.5	19	10.5
WM3-C	10:30	0.15	31	31.0	6.55	6.5	88.3	87.6	11.2	12.1	10.5	10.5	18	18.5
WM3	10.20	0.15	32.2	32.2	5.84	5.8	80.1	80.1	26.4	29.0	9.9	9.9	16	15.0
W IVIS	10:20	0.15	32.2	32.2	5.85	3.6	80.1	80.1	31.6	29.0	9.9	9.9	14	13.0

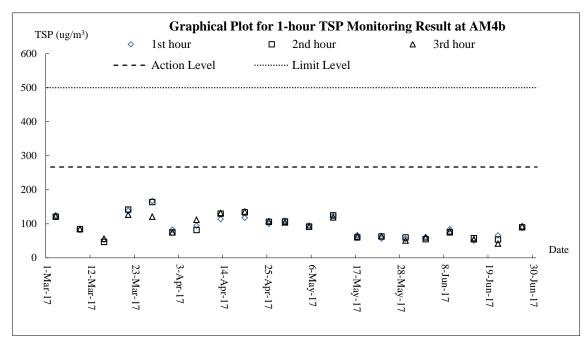
Date	29-Jun-17#												
Location	Time	Depth (m)	Temp (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p]	Н	SS(n	ng/L)
WM3-C	0.25	0.15						13.4	12.2			17	17.0
WWIS-C	9:35	0.15						13.1	13.3			17	17.0
WM3	9:30	0.15						15.0	14.9			6	6.0
VV 1V15	9.30	0.13						14.7	14.9			6	0.0

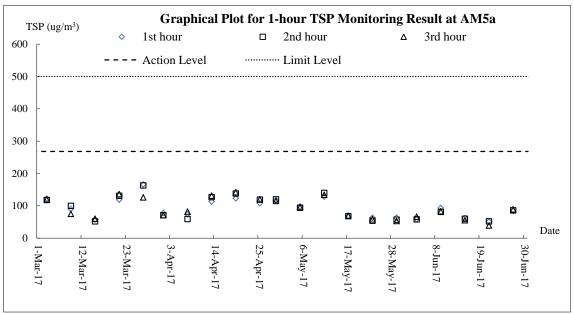
Date	30-Jun-17													
Location	Time	Depth (m)	Temp	(oC)	DO (ı	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
WM2 C	11.10	0.15	29.5	29.5	7.57	7.5	99.7	00.5	7.9	7.1	7.6	7.6	12	12.0
WM3-C	11:10	0.15	29.5	29.5	7.52	7.5	99.3	99.5	6.3	7.1	7.6	7.6	12	12.0
WM3	11.20	0.15	30.6	30.6	7.6	7.6	101.8	102.1	13.4	12.4	8	8.0	14	14.0
VV IVIS	11:20	0.13	30.6	30.0	7.66	7.0	102.4	102.1	13.3	15.4	8	8.0	14	14.0

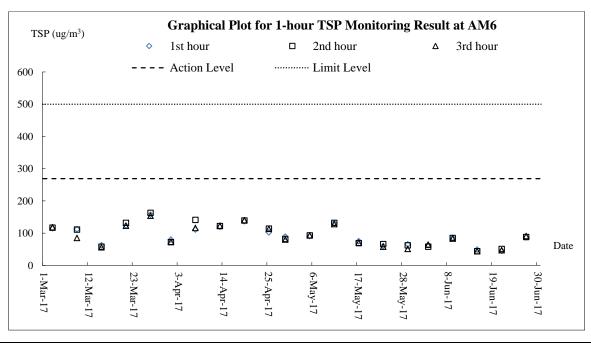

Remarks: **Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

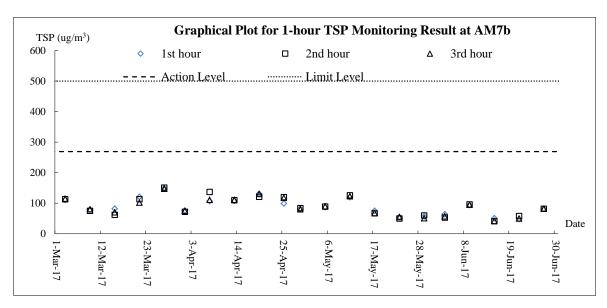

Action Level
Limit Level

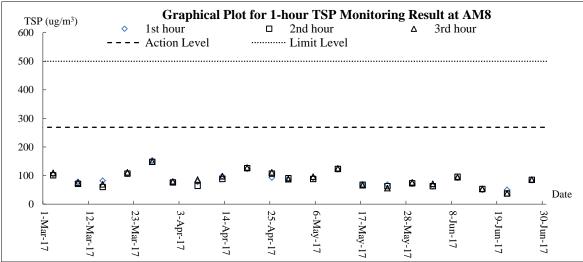

Appendix J

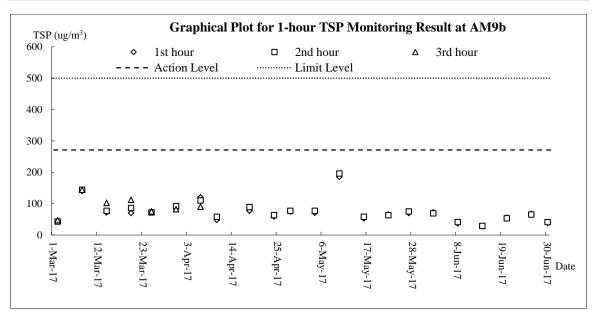

Graphical Plots for Monitoring Result

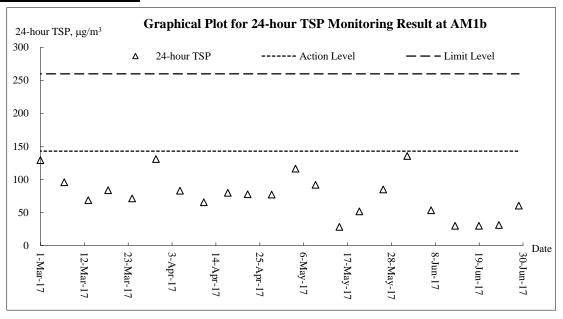

Air Quality - 1-hour TSP

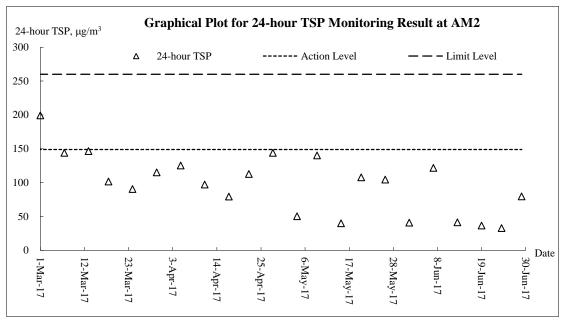


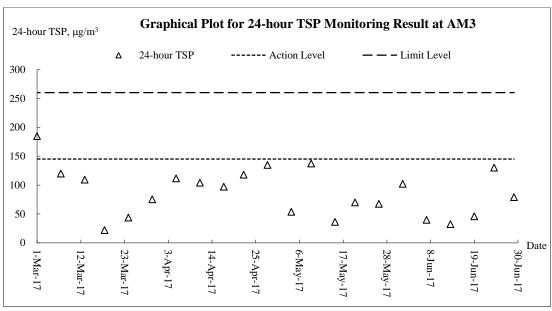


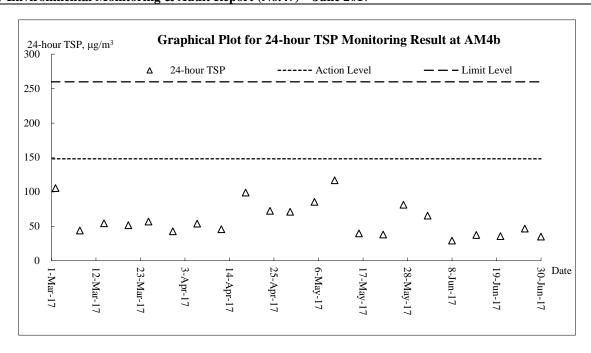


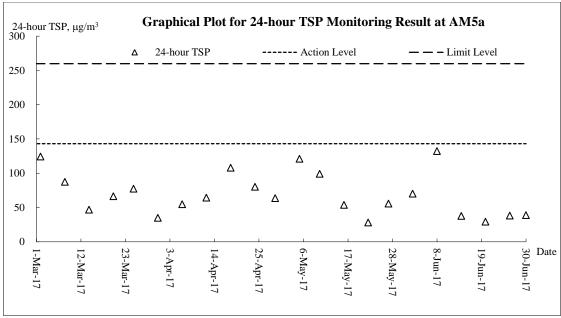


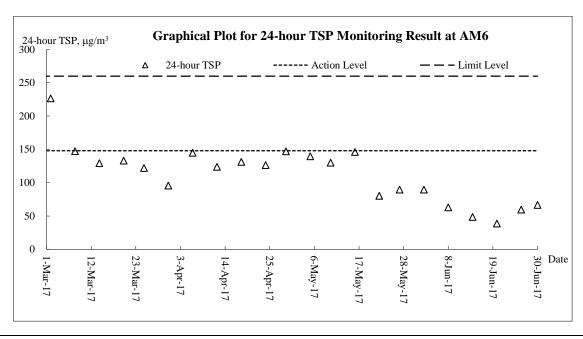


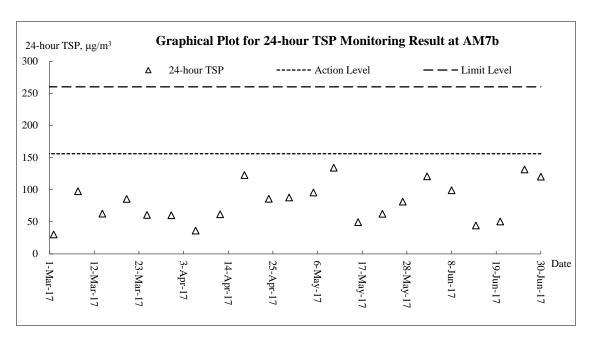


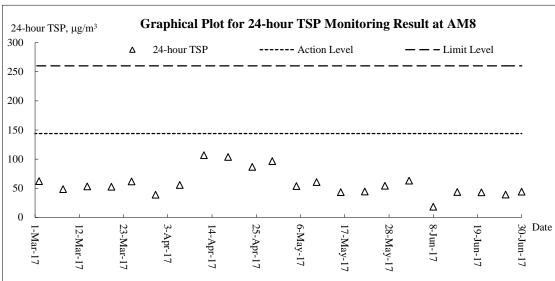


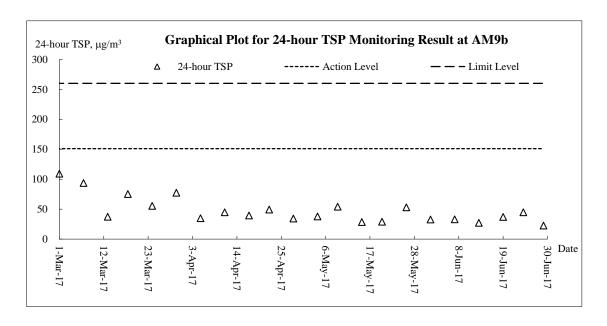


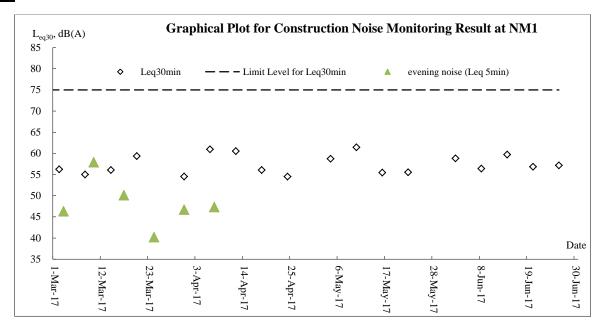

Air Quality – 24-hour TSP

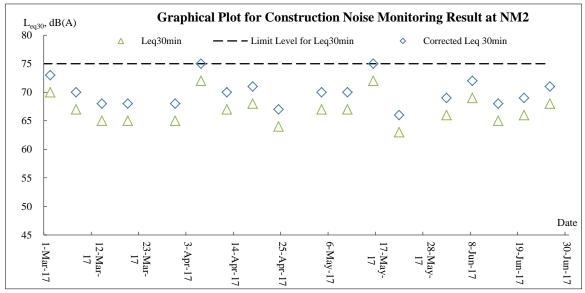


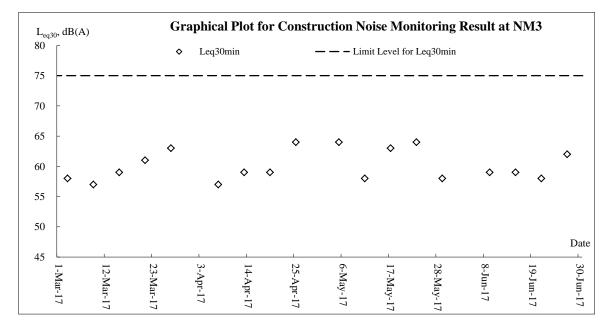


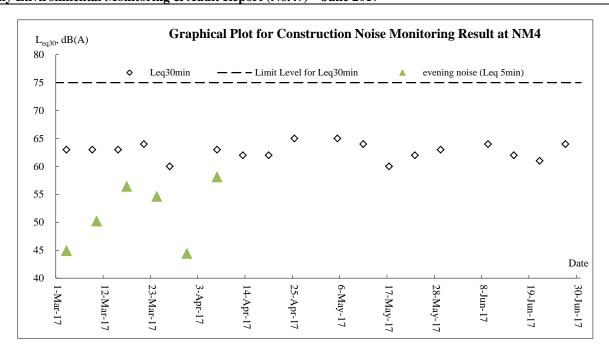


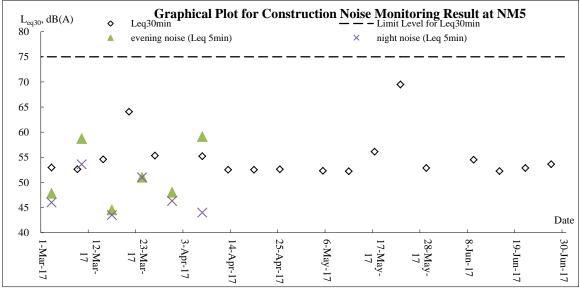


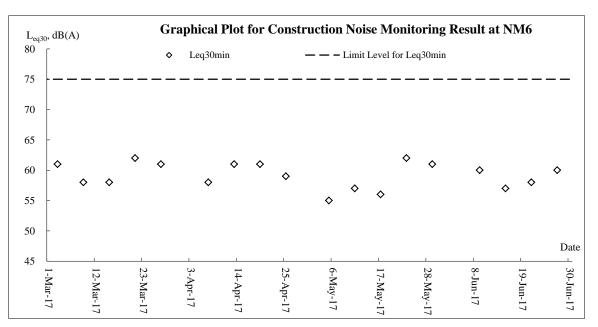


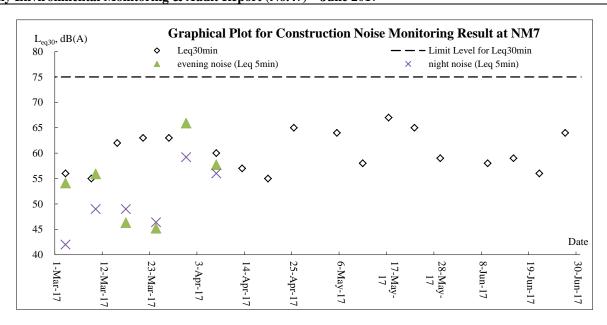


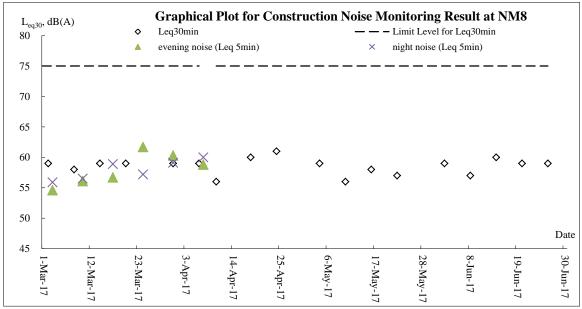


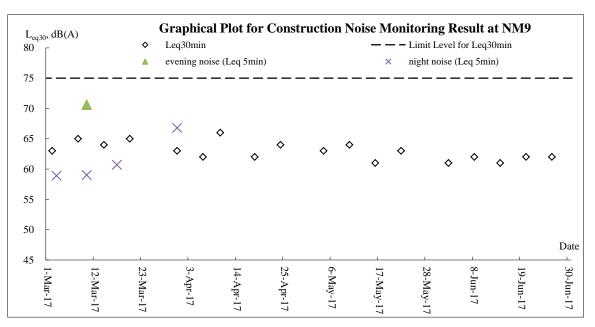


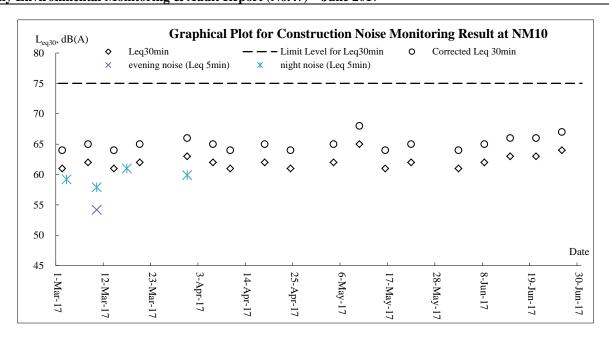

Noise

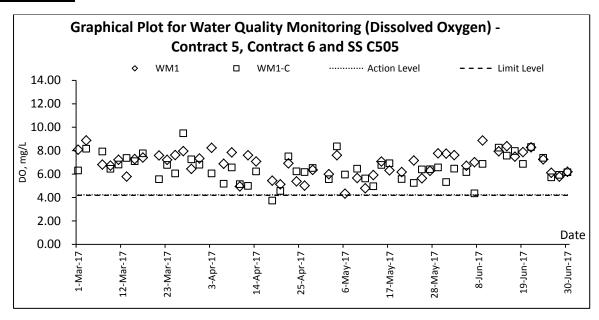


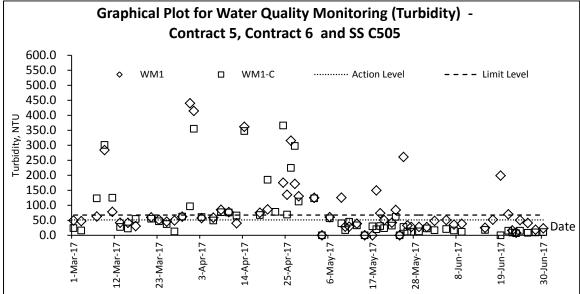


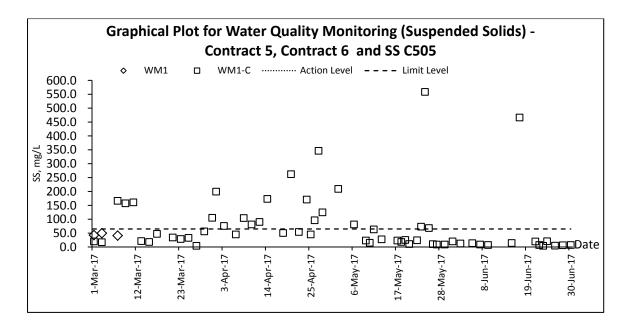


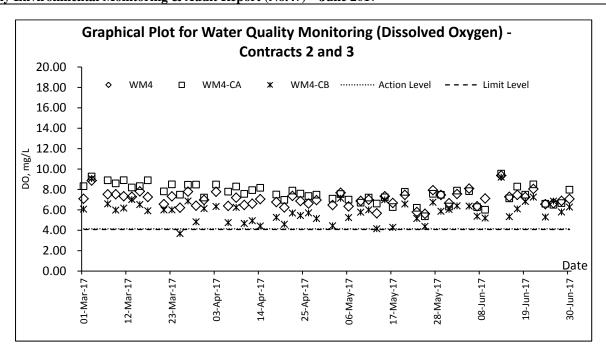


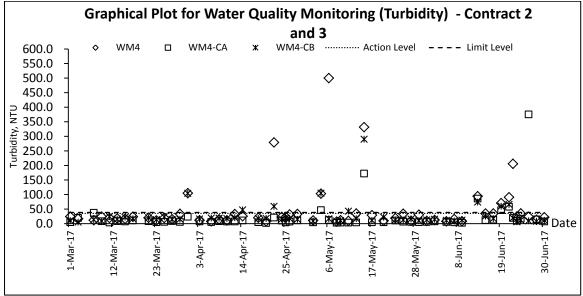


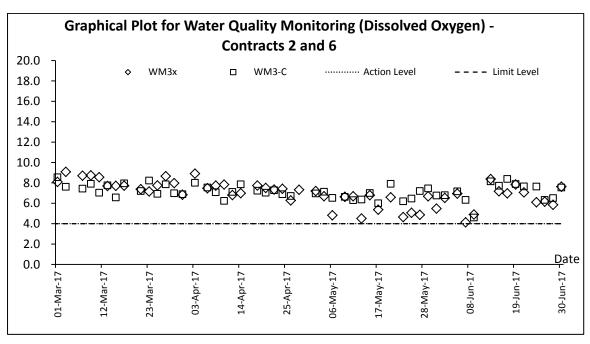


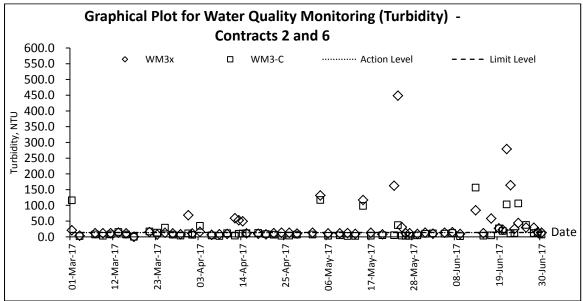


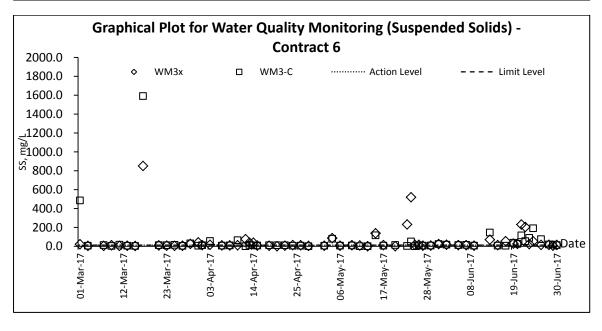


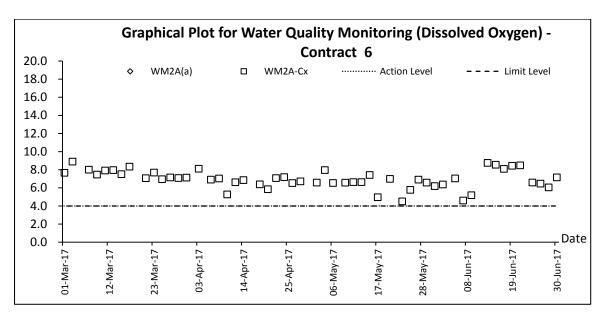


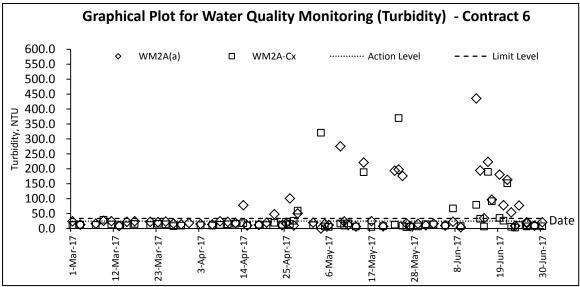

Water Quality

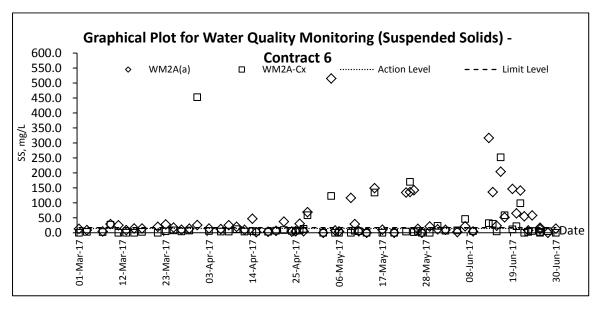


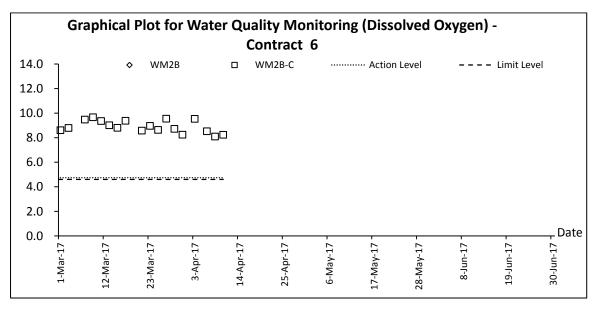


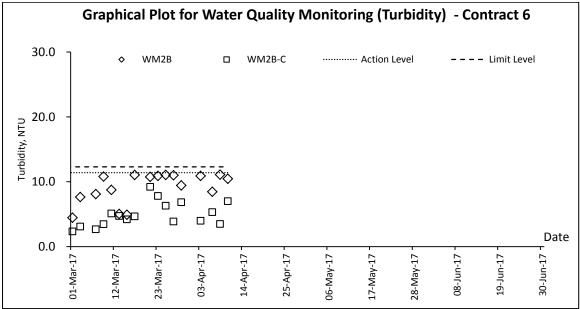


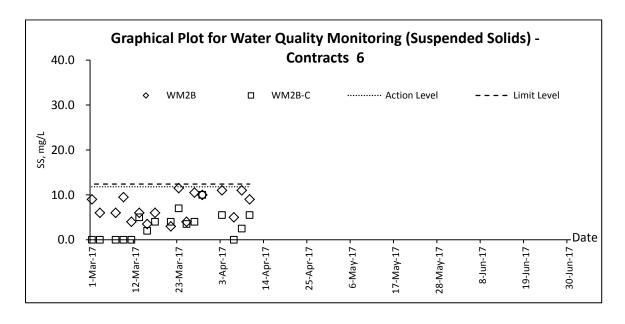












Appendix K

Meteorological Data

				,	Ta Kwu	Ling Station	<u> </u>
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Jun-17	Thu	Moderate southwesterly winds.	Trace	29.3	9.1	81.5	S/SW
2-Jun-17	Fri	Hot during the day.	Trace	30.2	10.4	76.7	S/SW
3-Jun-17	Sat	Sunny periods and isolated showers. Hot during the day.	0	30.9	20.5	78.9	SE
4-Jun-17	Sun	Sunny periods and isolated showers. Hot during the day.	Trace	30	5.7	78.2	Е
5-Jun-17	Mon	Moderate southwesterly winds.	Trace	31.2	8.6	72	E/SE
6-Jun-17	Tue	Hot during the day.	Trace	31	7.2	75	E/SE
7-Jun-17	Wed	Moderate southwesterly winds.	4.3	29.6	7.1	75.5	E/SE
8-Jun-17	Thu	Hot during the day.	0	30.1	7	77.5	E/NE
9-Jun-17	Fri	Sunny periods and isolated showers. Hot during the day.	1.1	30.9	8.5	74	E/NE
10-Jun-17	Sat	Sunny periods and isolated showers. Hot during the day.	Trace	30.3	11.2	80.2	SE
11-Jun-17	Sun	Moderate southwesterly winds.	Trace	30.5	5.5	72	E/NE
12-Jun-17	Mon	Hot during the day.	37.7	28.4	10.8	80.5	NE
13-Jun-17	Tue	Sunny periods and isolated showers. Hot during the day.	219.4	25.4	10.5	93.7	SW
14-Jun-17	Wed	Sunny periods and isolated showers. Hot during the day.	15.6	26.6	5	88.2	S/SE
15-Jun-17	Thu	Moderate southwesterly winds.	14.5	28.8	8.6	80	S/SW
16-Jun-17	Fri	Hot during the day.	13.5	27.5	7.6	87.5	S/SW
17-Jun-17	Sat	Sunny periods and isolated showers.	13.8	25.1	15.8	80.5	S/SW
18-Jun-17	Sun	Hot during the day.	24.2	26.1	6.4	90	S/SW
19-Jun-17	Mon	Moderate southwesterly winds.	32.6	27.2	9	83.7	E/SE
20-Jun-17	Tue	Hot during the day.	24.8	26.2	6.5	82	E/SE
21-Jun-17	Wed	Sunny periods and isolated showers. Hot during the day.	95.9	27.8	6.5	84.7	E/SE
22-Jun-17	Thu	Sunny periods and isolated showers. Hot during the day.	Trace	29.4	7.3	75.5	E/SE
23-Jun-17	Fri	Moderate southwesterly winds.	10.5	29.7	9.5	82.5	SE
24-Jun-17	Sat	Hot during the day.	18.3	29.1	11.5	85.3	S/SW
25-Jun-17	Sun	Sunny periods and isolated showers.	4.2	29.2	7.4	75	S/SW
26-Jun-17	Mon	Light to moderate southerly winds.	0.1	29.9	8.2	75.5	S/SW
27-Jun-17	Tue	Mainly fine and hot apart from isolated showers	1.3	30.3	5	82	S
28-Jun-17	Wed	Hot with sunny periods.	0	29.4	6.5	74.7	S
29-Jun-17	Thu	Moderate southeasterly winds.	0	29.2	6.3	73.5	S/SW
30-Jun-17	Fri	There will be isolated showers and thunderstorms.	0	28.7	4.5	78.5	E/NE

Appendix L

Waste Flow Table

APPENDIX G: MONTHLY SUMMARY WASTE FLOW TABLE

	1										
		Actual Quantiti	ies of Inert C&D	Materials Gen	erated Monthly	7	Act	tual Quantities	of C&D Wastes	Generated Mo	onthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill*	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse#
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m ³)
Jan	72.9008	0.0000	2.0045	31.5900	39.3063	9.1064	144.0000	0.3600	1.9179	1.7600	0.3210
Feb	85.5921	0.0000	1.4413	29.9165	54.2343	8.4347	76.9000	0.3000	2.1663	4.3480	0.3365
Mar	36.8034	0.0000	0.5425	33.0669	3.1940	7.7980	389.2000	0.4000	1.3527	4.0720	0.4167
Apr	40.2518	0.0000	2.1348	30.9507	7.1663	7.9084	203.0000	0.3200	2.0268	13.0254	0.3862
May	38.2923	0.0000	0.5009	33.2084	4.5830	8.3119	134.8000	0.3700	1.8659	3.5440	0.3907
June	14.5546	0.0000	0.5364	13.5970	0.4212	7.3349	97.3600	0.3000	1.6730	1.6840	0.1745
Sub-total	288.3950	0.0000	7.1604	172.3295	108.9051	48.8943	1045.2600	2.0500	11.0026	28.4334	2.0256
July											
Aug											
Sep											
Oct											
Nov											
Dec											
Sub-total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	288.3950	0.0000	7.1604	172.3295	108.9051	48.8943	1045.2600	2.0500	11.0026	28.4334	2.0256

FOR: <u>2017</u>

- (1) The performance targets are given in PS 1.100(14)(a)
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials.
- (5) Assumption: 1m³ of inert material weight 2.2 tonne 1m3 of non-inert material weight 1.6 tonne 1m3 of chemical waste weight 0.88 tonne

	Forecast of Total Quantities of C&D Materials to be Generated from the Project												
Forecast		II 1D 1 0						D /	Plastics				
Made at	Total Quantity	Hard Rock & Large Broken	Reused in the	Reused in other	Disposed as	Imported Fill	Metals	Paper/ cardboard		Chemicals	Others, e.g.		
the End of	Generated	Concrete	Contract	Projects	Public Fill	imported i in	Wictais	packaging	(see Note 3)	Waste	general refuse		
the Project								F88					
Month-	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m3)		
Year													
Dec-14	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609		
Dec-15	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	11.9700	16.1920	1.1696		
Dec-16	905.8375	0.0000	7.7367	427.7834	470.3174	24.8350	259.2290	3.8500	18.7262	34.2936	1.9720		
Dec-17	288.3950	0.0000	7.1604	172.3295	108.9051	48.8943	1045.2600	2.0500	11.0026	28.4334	2.0256		
Dec-18													
Total:	2,190.62	0.00	38.45	1,519.72	632.45	83.90	1,321.83	10.26	41.71	89.80	7.43		

Name of Department: CEDD Contract No.: CV/2012/09

Monthly Summary Waste Flow Table for 2017 (year)

	Actua	Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
Month	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
WIOIILII	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m³)	(in '000m ³)								
Jan	1.150	0.204	0.150	0.000	0.796	1.150	0.000	0.000	0.001	0.000	0.170
Feb	1.160	0.308	0.192	0.000	0.660	0.926	0.000	0.000	0.001	0.000	0.140
Mar	2.287	0.565	0.060	0.000	1.662	1.055	0.000	0.000	0.000	0.000	0.115
Apr	1.004	0.064	0.036	0.000	0.903	0.463	0.000	0.000	0.004	0.000	0.075
May	0.497	0.005	0.120	0.000	0.372	0.050	0.767	0.000	0.000	0.000	0.105
Jun	1.249	0.150	0.150	0.000	0.948	0.008	0.000	0.000	0.000	0.000	0.135
Sub-total	7.347	1.297	0.708	0.000	5.342	3.651	0.767	0.000	0.006	0.000	0.740
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	7.347	1.297	0.708	0.000	5.342	3.651	0.767	0.000	0.006	0.000	0.740

- 1. Assume the density of soil fill is 2 ton/m³.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m³.
- 3. Assume each truck of C&D wastes is 5m³.
- 4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.
- 5. The slurry and bentonite are disposed at Tseung Kwun O 137.
- 6. The non-inert C&D wastes are disposed at NENT.
- 7. Assume the density of metal is 7,850 kg/m³.
- 8. Assume the density of plastic is 941 kg/m³.

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract													
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Diposal as Public Fill	Imported Fill	Metals	Paper/card board packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse				
(in '000m ³)	(in '000m³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)				
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8				

- (1) The performance targets are given in PS Clause 6(14).
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

Item No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works	_	Actual Quantities Used (m³)	Remarks
1	Formwork for concreting the Stem wall bay4 of noise barrier NB66	Easy handling by manpower	4.87	3.27	
')	Formwork for concreting the Stem wall bay4 of noise barrier NB68a	Easy handling by manpower	5.24	4.34	
		Total Estimated Quantity of Timber Used	10.11		

- (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
- (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Name of Department: CEDD Contract No.: NE/2014/02

Monthly Summary Waste Flow Table for 2017

		Actu	al Quantities of Inert C&I	Materials Generated M	onthly			Actual Quanti	ties of C&D Wastes Gen	erated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul-16											
Aug-17											
Sep-17											
Oct-17											
Nov-17											
Dec-17											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	Forecast of Tota	al Quantities of C&D Mat	terials to be Generated fro	om the Contract*						
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500	0.000	0.000	0.000	0.500	0.500	0.200	0.000	0.000	0.200	

Notes:

- (1) The performance targets are given in PS Clause 1.84(14).
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
- (4) Estimate 6.5m3 capacity per dump truck

Updated on 4 June 2017

Monthly Summary Waste Flow Table for 2017 (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Li	angtang / Heung	Yuen Wai Bou	ndary Control I	Point Site Form	ucture Works –	Contract 6			Works – Contract 6 Contract No.: CV/2013/08			
		Actual Quantit	ies of Inert C&	D Materials Ge	nerated Monthly		Ac	tual Quantities	of C&D Waste	s Generated Mo	nthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)	
Jan	40.128	0	19.297	6.067	14.764	0	0	0.171	0	0	0.065	
Feb	48.065	0	16.328	7.123	24.614	0	0	0.294	0	0	0.107	
Mar	49.230	0	5.661	15.029	28.540	0	0	0.494	0	0	0.217	
Apr	52.348	0	10.824	31.732	9.792	0	0	0.331	0	0.290	0.162	
May	47.339	0	24.850	12.383	10.106	0	0	0	0	0	0.228	
Jun	1.108	0	0	0	1.108	0	0	0	0	0	0.258	
Sub-total	238.218	0	76.960	72.334	88.92418	0	0	1.29	0	0.29	1.037	
Jul												
Aug												
Sep												
Oct												
Nov												
Dec										_		
Total	981.380	0	160.651	270.626	550.10318	53.939	0	4.063	0.007	34.045	5.889	

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.
- (3) Broken concrete for recycling into aggregates.

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Departi	ment: CEDD		
Contract Title:	Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 7	Contract No.:	NE/2014/03

Monthly Summary Waste Flow Table for <u>2017</u> (year)

		Actual Quan	tities of Inert C&I	Materials Genera	ted Monthly		A	actual Quantities of	Inert C&D Waste	s Generated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0.1	0.05	0.001	0	0.01
Feb	0	0	0	0	0	0	0.5	0.04	0.001	0	0.015
Mar	0.822	0	0	0	0.822	0	2.2	0.04	0.001	0	0.025
Apr	1.473	0	0	0	1.473	0	3.1	0.04	0.001	0	0.02
May	1.129	0	0	0	1.129	0	4.5	0.04	0.001	0	0.03
June	0.317	0	0	0	0.317	0	4	0.04	0.001	0	0.04
Sub-total	3.741	0	0	0	3.741	0	14.4	0.25	0.006	0	0.14
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	3.741	0	0	0	3.741	0	14.4	0.25	0.006	0	0.14

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for 2017 [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of Inc	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	3.160	0.000	2.003	0.000	1.157
Feb	1.374	0.000	0.249	0.000	1.125
Mar	0.548	0.000	0.054	0.000	0.494
Apr	3.136	0.013	0.139	0.000	2.984
May	3.010	0.000	0.191	0.000	3.010
Jun	8.813	0.000	0.317	0.000	8.496
Sub-total	20.039	0.013	2.762	0.000	17.264
Jul	-	-	-	-	-
Aug	-	-	-	-	-
Sep	-	-	-	-	-
Oct	-	-	-	-	-
Nov	-	-	-	-	-
Dec	-	-	-	-	-
Total	20.039	0.013	2.762	0.000	17.264

					Actual Quar	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	iber	Metals		1	Paper/ cardboard packaging		Plastics (see Note 3)		al Waste	Other Recyclable Materials (see Page 3)		General Refuse disposed of at Landfill
	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	458.150	458.150	0.560	0.560	0.058	0.058	0.000	0.000	0.024	0.024	0.481
Feb	0.000	0.000	177.180	177.180	0.370	0.370	0.036	0.036	0.000	0.000	0.008	0.008	0.280
Mar	0.000	0.000	97.370	97.370	3.380	3.380	1.573	1.573	0.000	0.000	0.036	0.036	0.423
Apr	0.000	0.000	148.110	148.110	0.300	0.300	1.223	1.223	0.000	0.000	29.795	29.795	0.358
May	0.000	0.000	405.500	405.500	0.440	0.440	0.040	0.040	0.000	0.000	0.006	0.006	0.644
Jun	0.000	0.000	338.580	338.580	0.710	0.710	0.036	0.036	0.000	0.000	0.002	0.002	0.878
Sub-total	0.000	0.000	1624.890	1624.890	5.020	5.020	2.926	2.926	0.000	0.000	29.871	29.871	3.062
Jul	-	-	-	-	-	-	-	-	-	-	-	-	-
Aug	-	-	-	ı	-	-	-	ı	ı	ı	-	-	-
Sep	-	-	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-		-	-
Total	0.000	0.000	1624.890	1624.890	5.020	5.020	2.926	2.926	0.000	0.000	29.871	29.871	3.062

Description of mod	e and details of recycling if	any for the month e.g. XX	K kg of used timber was se	ent to YY site for transform	nation into fertilizers
2kg of cans and 0.71tons of paper were sent to Kong Han and Wai San for recycling.	36kg of plastics bottles were sent to Action Health for recycling.	338.58 tons of scrap metals were sent to Wah Lee for recycling			

- (1)
- The performance targets are given in the Particular Specification on Environmental Management Plan.

 The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site. (2)
- Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material. (3)
- Broken concrete for recycling into aggregates. (4)
- If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m³ by volume. (5)

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	ilicasuic	measure?	achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include: Good site management	emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		Any piles of materials accumulated on or around the work areas should be cleaned up regularly.					
		Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions.					
		The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads					
		■ Each and every main temporary access should be paved with					

Objectives of the What requirements Who to Recommended When to **Recommended Mitigation Measures** EM&A implement Location of the or standards for the EIA Ref. Measure implement the Ref. the measure measure to measure? & Main Concerns measure? achieve? to address

concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or

 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet.

Exposed Earth

Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.

Loading, Unloading or Transfer of Dusty Materials

 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet.

Debris Handlina

- Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides.
- Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.

Transport of Dusty Materials

 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.

Wheel washing

Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.

Use of vehicles

- Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.
- Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. Blasting The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Qualit	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Imp	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	To minimize the construction air-borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m² is recommended to achieve the predicted screening effect.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	measure?		measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation,
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		 Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; 					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and 					
		 Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 					
Noise Im	pact (Oper	ration)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
4.20.4		Fixed Plant Noice					
Table	3.2	Fixed Plant Noise Specification of the maximum allowable sound power levels of the	To minimize the	Managing	BCP,	Before	EIA recommendation,
4.46	J. <u>C</u>	proposed fixed plants during daytime and night-time.	fixed plant noise impact	Authority of the buildings / Contractor	Administration Building and all ventilation buildings	Operation	EIAO and NCO

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	ilicasuic	measure?	achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Water Ou	uolity Impo	programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise.					
		ct (Construction)					5 1 11 1
5.6.1.1	4.1	Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:	To control site runoff and drainage; prevent high sediment loading from reaching the nearby waters were site.	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)
		At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of construction.	watercourses				
		The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.					

EIA Ref. EM&A Ref.

Recommended Mitigation Measures

Objectives of the Recommended Measure & Main Concerns to address

Who to implement the measure?

Location of the measure

When to implement the measure?

What requirements or standards for the measure to achieve?

Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.

- Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.
- All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.
- Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.
- If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.
- The overall slope of the site should be kept to a minimum to reduce

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		the erosive potential of surface water flows.	·				
		All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.					
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.					
		Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.					
		■ Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.					
		■ Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.					
5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be carried out within the water gathering grounds:	quality impacts to the water gathering grounds		Works Sites within the water gathering	Phase	1/94

Objectives of the What requirements Who to Recommended When to **Recommended Mitigation Measures** EM&A implement Location of the or standards for the Measure EIA Ref. implement the Ref. the measure measure to measure? & Main Concerns measure? achieve? to address grounds Adequate measures should be implemented to ensure no pollution

- or siltation occurs to the catchwaters and catchments.
- No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.
- All surplus spoil should be removed from water gathering grounds as soon as possible.
- Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.
- Regular cleaning of silt traps should be carried out to ensure proper operation at all time.
- All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.
- Facilities for washing the wheels of vehicles before leaving the site should be provided.
- Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.
- No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.
- Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.
- Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.
- Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			& Main Concerns to address	measure?		measure?	achieve?
		Water Supplies.					
		An unimpeded access through the waterworks access road should always be maintained.					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference.					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impac	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	measure?	measure	measure?	achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	Implication (Construction)					
7.6.1.1	6	Good Site Practices Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	To minimize adverse environmental impact	Contractor	Construction works sites (general)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No.
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					19/2005, Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		■ Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated					
		■ Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
7.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	illeasure	measure?	achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials	To minimize	Contractor	Construction	Construction	EIA recommendation;
		In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	impacts resulting from C&D material		Works Sites (General)	Phase	Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and 					
		In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included.					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

cc

From Nicola Hon Date 16 June 2017

Our Ref TCS00694/13/300/F1027 No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 23,

25 and 29 May 2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F0994 dated 23 May 2017 TCS00694/13/300/F1002 dated 26 May 2017 TCS00694/13/300/F1009 dated 7 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Steve Lo (CE/BCP, NTWDO, CEDD)

Mr. Simon Leung (ER of C6/ AECOM)

Fax: 3547 1659

Fax: 2251 0698

Mr. Antony Wong (IEC, SMEC)

By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project				CE 45/2008		
Date		23 May 2017	25 May 2017	23 May 2017	25 May 2017	29 May 2017
Location		WM2A(a)				
Time		11:25	9:53	11:25	9:53	10:35
Parameter		Turbidity (NTU)		Suspended solids (mg/L)		
Action Level		24.9 AND 120% of upstream control station of the same day		14.6 AND 120% of upstream control station of the same day		
Limit Level		33.8 AND 130% of upstream control station of the same day		17.3 AND 130% of upstream control station of the same day		
Measured	WM2A-C	12.9	9.6	4.0	2.0	<2
Levels	WM2A(a)	193.5	176.0	134.5	142.5	21.0
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out during 23 to 29 May 2017 at Bridge D (upstream of WM2A(a)) were mainly bridge segment erection. The monitoring locations and works area are shown in Figure 1. According to the site photo taken by the monitoring team on 23 May 2017, turbid water was observed at WM2A(a) whereas the water quality at WM2A-C were clear. (<i>Photo 1 & 2</i>) On 25 and 29 May 2017, the water quality at WM2A-C was clear whereas at WM2A(a) was slightly turbid. (<i>Photo 3 to 6</i>) 				
		3. According to the weather information from HKO, there were successive rainy days on 21 to 24 May 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 23 May 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. (<i>Photo 7 & 8</i>) On 25 May 2017, trails of washed out soil from the vegetation slopes were observed after rain. (<i>Photo 3</i>) Moreover, no unusual phenomenon was observed on 29 May 2017.				
		the water	mitigation m	easures were	cted at Bridge I properly imple mmarized below	mented. The
					mainly bridge so re of works. (Ph	
		(b) Waster (Figur		facilites were p	properly provide	d for Bridge D
		tempor	rary bund was	provided align	m the site, con the river course the site. More	

adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff. (*Photo 10 to 12*)

- 5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 23 May 2017 was caused by the rainstorm and the exceedances on 25 and 29 May 2017 were due to residual impact of rain and not due to works under Contract 6.
- 6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 26, 27 and 31 May 2017 and there were no exceedances. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon			
Designation:	Environmental Consultant			
Signature :	Aula			
Date:	16 June 2017			

Photo Record

Photo 1On 23 May 2017, turbid water was observed at WM2A(a).

Photo 2
On 23 May 2017, the water quality observed at WM2A-C was clear.

On 25 May 2017, the water quality observed at WM2A(a) was slightly turbid. Moreover, trails of washed out soil from the vegetation slope were observed after rain.

Photo 4On 25 May 2017, the water quality observed at WM2A-C was clear.

Photo 5
On 29 May 2017, water quality observed at WM2A(a) was slightly turbid.

Photo 6On 29 May 2017, the water quality observed at WM2A-C was clear.

Photo 7

On 23 May 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 8

On 23 May 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 9

During site inspection in May 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 10

The slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Photo 11

The slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Photo 12

No turbid runoff and discharge was made from the site.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Nicola Hon Date 19 June 2017

Our Ref TCS00694/13/300/F1028 No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3x on 23, 24,

25 and 26 May 2017 (Contract 6)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1003 dated 26 May 2017 TCS00694/13/300/F1010 dated 7 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Steve Lo (CE/BCP, NTWDO, CEDD)

Mr. Simon Leung (ER of C6/ AECOM)

Mr. Antony Wong (IEC, SMEC)

Fax: 3547 1659

Ext. 2251 0698

By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project					CE 45/2008					
Date		23 May 2017	24 May 2017	25 May 2017	23 May 2017	24 May 2017	25 May 2017	26 May 2017		
Location		WM3x								
Time		9:30	11:00	11:10	9:30	11:00	11:10	9:30		
Parameter			Turbidity (NTU)				Suspended Solids (mg/L)			
			D 120% of u				` • /	ol station		
Action Lev	el	control station of the same day				12.6 AND 120% of upstream control station of the same day				
Limit Leve	1	14.0 AND 130% of upstream			12.9 AND 130% of upstream control station					
Limit Leve	<u>I</u>	control s	tation of the	same day		of the sar	ne day	•		
Measured	WM3-C	5.1	37.1	3.8	2.5	50.0	<2	10.0		
Level	WM3x	162.5	448.5	30.6	230.5	519.0	15.0	15.0		
Exceedance	e	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level		
Results, Recommendations & Mitigation Measures		 (CCKJV), the construction activities at South Portal and Wo Keng Shan Park (upstream of WM3x) carried out on 23 to 26 May 2017 was mainly bored pile works and construction of Bridge E. The monitoring locations and works areas are illustrated in <i>Figure 1</i>. 2. According to the site photo on 23 and 25 May 2017, turbid water was observed at WM3x while the water quality at WM3-C was clear. On 24 May 2017, water sampling was carried out during rain and muddy water was observed throughout the channel including WM3x and WM3-C. Moreover, the water quality at both WM3x and WM3-C was clear on 26 May 2017. (<i>Photo 1 to 8</i>) 								
		 Inspection was carried out at upstream of the site on 23 May 2017, it was observed that muddy water was flowing from upstream of the site and the source of muddy water was probably came from the adjacent village. (<i>Photo 9</i>) According to weather data record from HKO, there was heavy rainstorm (rainfall 273.6mm) on 24 May 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day. (<i>Photo 10</i>) Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 25 May and 1 June 2017 for investigation. It was observed that wastewater treatment facilities were properly in place and the discharge water 								
		was c and no invest were u 5. Accor increa	lear. (<i>Photo</i> o adverse waigation, it is unlikely caused ding to Even sed to daily	ater quality considered ed by the w	The consi impact was that the exc orks under C n, the monitone limit leve	truction site s observed. ceedances on	Was general Based on to 23 to 26 Marcy at WM3x general was general	l in order the above May 2017 thas been until no		

	triggered in the monitoring result on 27 and 29 May 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:

Nicola Hon

Designation:

Environmental Consultant

Signature:

19 June 2017

Photo Record

Photo 1
Turbid water was observed at WM3x on 23 May 2017.

Photo 2
During water sampling on 23 May 2017, the water quality at WM3-C was clear.

Photo 3
Turbid water was observed at WM3x on 24 May 2017.

Photo 4During water sampling on 24 May 2017, the water quality at WM3-C was turbid.

Photo 5
Turbid water was observed at WM3x on 25 May 2017.

Photo 6During water sampling on 25 May 2017, the water quality at WM3-C was clear.

Photo 7During water sampling on 26 May 2017, the water quality at WM3x was clear.

Photo 8
During water sampling on 26 May 2017, the water quality at WM3-C was clear.

Photo 9
On 23 May 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

As observed on 25 May 2017, the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 11
Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 25 May 2017 for investigation. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear.

Photo 12
Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 1 June 2017 for investigation. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear.

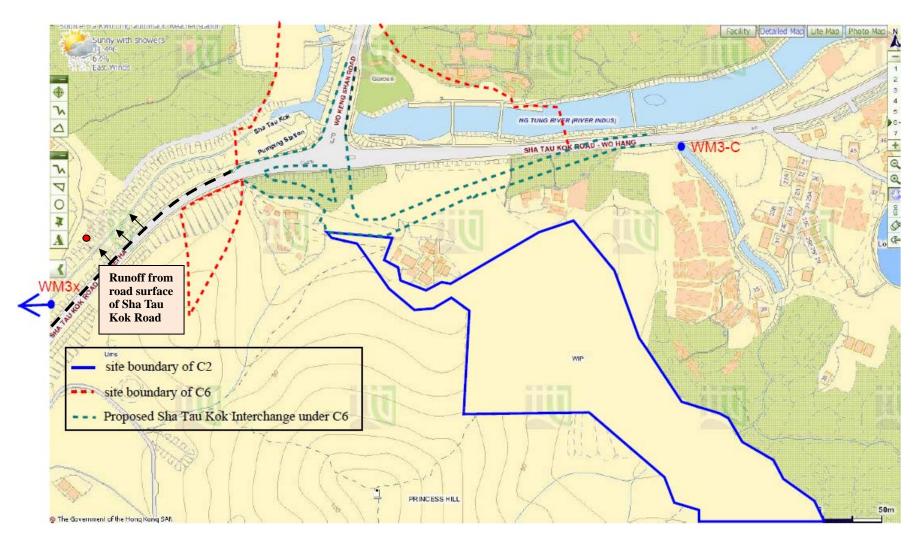


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

cc

From Nicola Hon Date 21 June 2017

Our Ref TCS00697/13/300/F1029a No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3x on 23, 24, 25

and 26 May 2017 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1004 dated 26 May 2017 TCS00694/13/300/F1011 dated 7 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Raymond Leong (CE/BCP, NTWDO, CEDD) Fax: 3547 1659
Mr. Edwin Ching (CRE, AECOM) Fax: 2171 3498
Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project				CE.	45/2008				
Date		23 May	24 May	25 May	23 May	24 May	25 May	26 May	
		2017 2017 2017 2017 2017 2017 2017							
Location		WM3x							
Time		9:30	11:00	11:10	9:30	11:00	11:10	9:30	
Parameter			Curbidity (NTU	,		ispended So	` ` ` `		
Action Leve	l	13.4 AND 120% of upstream control station of the same day			12.6 AND 120% of upstream control station of the same day				
Limit Level		14.0 AND 130% of upstream control			12.9 AND 130% of upstream control				
Zimit Ecver	T		on of the same			tation of the		T	
Measured	WM3-C	5.1	37.1	3.8	2.5	50.0	<2	10.0	
Level	WM3x	162.5	448.5	30.6	230.5	519.0	15.0	15.0	
Exceedance	e	Limit	Limit	Limit	Limit	Limit	Limit	Limit	
Investigation	nn .	Level 1. Accordi	Level	Level information p	Level	Level	Level	Level	
Results, Recommendations & Mitigation Measures		the construction activities carried out on 23 to 26 May 2017 at upstream of WM3x were construction of fence wall, building internal structure, curtain wall, underground utilities and Façade work at Admin Building. The relevant works area under C2 and the water monitoring locations are illustrated in Figure 1.							
		2. According to the site photo on 23 and 25 May 2017, turbid water was observed at WM3x while the water quality at WM3-C was clear. On 24 May 2017, water sampling was carried out during rain and muddy water was observed throughout the channel including WM3x and WM3-C. Moreover, the water quality at both WM3x and WM3-C was clear on 26 May 2017. (<i>Photo 1 to 8</i>)							
		adjacent Moreove was obs source of 11) Ac (rainfall was dete the mon Sha Tau	to the site er, inspection erved that mu of muddy wat ecording to we 273.6mm) or eriorated by raitored channe Kok Road ar	ction by DH was clear on was carried or ddy water wa er was probate eather data rec a 24 May 201 ain and stirred I was also rec and the water q during rainy of	23 and 25 at at upstreams flowing froly came from H 7 and the way up sediment their	May 201 m of the site om upstream om the adja KO, there water quality orm water f M3x was hi	7. (Photo e on 23 Mar m of the sit cent village was heavy y in the riv yer, it was r from road s	y 2017, it e and the e. (<i>Photo</i> rainstorm er course noted that surface of	
		4. During weekly site inspection with DHK in May 2017, it was observed wastewater generated from the construction works of Admin Building limited. In addition that the site area of Admin Building was mostly paved, no adverse water quality impact was identified during site inspection (<i>Photo 13</i>) Based on the above investigation, it is considered the exceedances on 23 to 26 May 2017 were unlikely caused by the works Contract 2.					ding was stly hard aspection. that the		
		 According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 27 and 29 May 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual. 							

Prepared By: Nicola Hon

Designation: Environmental Consultant

Signature: 21 June 2017

Photo Record

Photo 1
Turbid water was observed at WM3x on 23 May 2017.

Photo 2
During water sampling on 23 May 2017, the water quality at WM3-C was clear.

Photo 3
Turbid water was observed at WM3x on 24 May 2017.

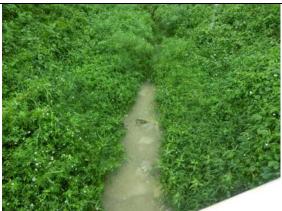


Photo 4
During water sampling on 24 May 2017, the water quality at WM3-C was turbid.

Photo 5
Turbid water was observed at WM3x on 25 May 2017.

Photo 6
During water sampling on 25 May 2017, the water quality at WM3-C was clear.

Photo 7
During water sampling on 26 May 2017, the water quality at WM3x was clear.

Photo 8During water sampling on 26 May 2017, the water quality at WM3-C was clear.

Photo 9During regular inspection by DHK, it was reported that the river channel adjacent to the site was clear on 23 May 2017.

During regular inspection by DHK, it was reported that the river channel adjacent to the site was clear on 25 May 2017.

Photo 11
On 23 May 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 12
As observed on 25 May 2017, the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 13

During weekly site inspection in May 2017, it was observed that wastewater generated from the construction works of Admin Building was limited. In addition that the site area of Admin Building was mostly hard paved, no adverse water quality impact was identified during site inspection.

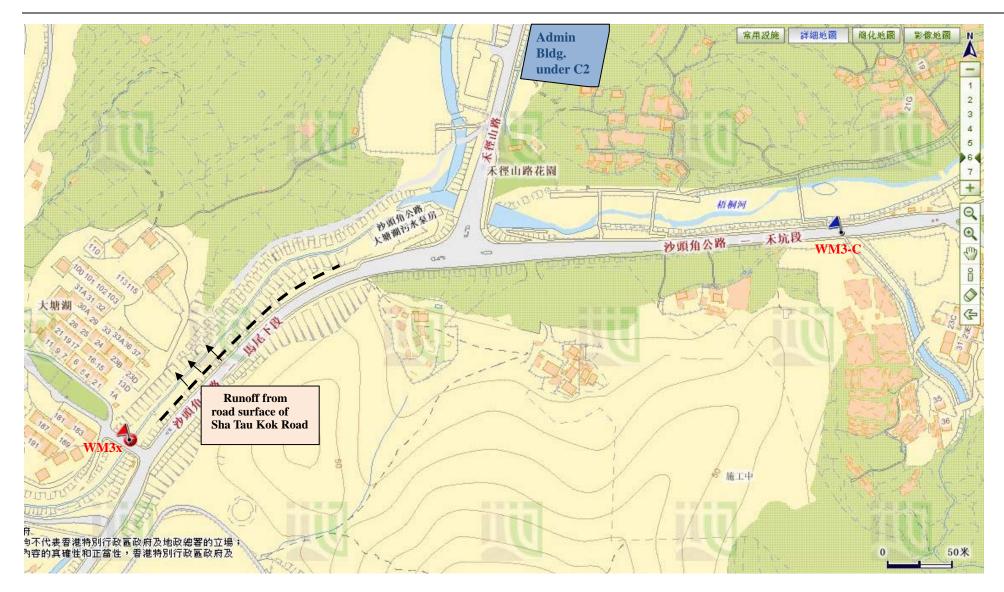


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Nicola Hon Date 16 June 2017

Our Ref TCS00694/13/300/F1026 No of Pages 4 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM1 on 25 May

2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1001 dated 26 May 2017 TCS00694/13/300/F1021 dated 7 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008				
Date		25 May 2017				
Location		WM1				
Time						
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)			
A stion I am	al	51.3 AND 120% of upstream control	54.5 AND 120% of upstream control			
Action Lev	ei	station of the same day	station of the same day			
Limit Leve	1	67.6 AND 130% of upstream control	64.9 AND 130% of upstream control			
Limit Leve	1	station of the same day	station of the same day			
Measured	WM1-C	27.6	68.0			
Levels	WM1	261.0	229.0			
Exceedance	e	Limit Level	Limit Level			
Investigation	on	1. According to the site information	provided from CCKJV, construction			
Results,		activities carried out during 25 M	ay 2017 near Boundary Control Point			
Recommen		(BCP) at upstream of WM1 was co	onstruction of underpass and depressed			
& N	Mitigation	road. The monitoring locations as	nd works area are shown in Figure 1.			
		2. According to the field photos taken on 25 May 2017, muddy water was observed at WM1 and the water quality at WM1-C was slightly turbid. (Photo 1 to 2) Moreover, it was observed that large amount of rubbish cumulated at the water gate near WM1 and the muddy water was stagnant at the river channel.				
		3. Weekly site inspection was carried out by the ET on 25 May 2017, it was observed that no construction activities were carried out adjacent to the river course and no adverse water quality impact was observed. (Photo 3) Wastewater treatment facility was implemented. (Photo 4) However, since large amount of rubbish was cumulated near at the water gate near WM1, the muddy water generated from rain was stagnant and could not flow to further downstream. (Photo 5)				
		4. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contract.				
		has been increased to daily due t until no exceedances were trigge monitoring was carried out on 26 were triggered. Nevertheless, t implement the water mitigation	on, the monitoring frequency at WM1 of the limit level exceedance recorded ered in consecutive days. Additional and 27 May 2017 and no exceedances the Contractor should continue fully measures as recommended in the ronmental mitigation measures in the			

Prepared By:	Nicola Hon				
Designation:	Environmental Consultant				
Signature :	Aula				
Date:	16 June 2017				

Photo Record

Photo 1On 25 May 2017, muddy water and rubbish was observed and cumulated at WM1.

Photo 2 On 25 May 2017, the water quality at WM1-C was slightly turbid.

Photo 3
Weekly site inspection was carried out by the ET on 25 May 2017, it was observed that the main construction activity was construction of underpass and depressed road. Wastewater treatment facility was implemented and no adverse water quality impact was recorded.

Photo 4
Wastewater treatment facility with AquaSed SH-20 was implemented.

As observed during site inspection on 25 May 2017, since large amount of rubbish was cumulated near at the water gate near WM1, the muddy water generated under rain was stagnant and could not flow to downstream.

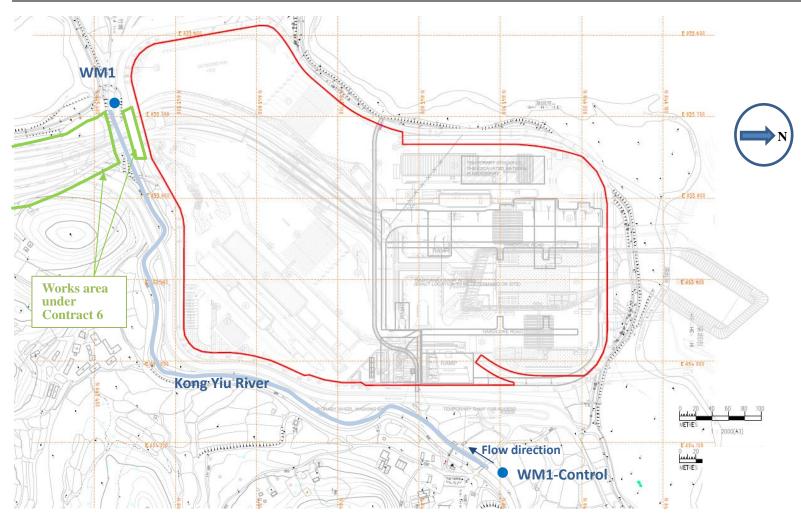


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

Fax Cover Sheet

To Mr. Jon Kitching Fax No 2752 0696

Company Leighton Contractors (Asia) Limited

cc

From Nicola Hon Date 13 June 2017

Our Ref TCS00769/15/300/**F0194** No of Pages 9 (Incl. cover sheet)

RE Architectural Services Department (ArchSD) Contract No: SS C505

Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) - BCP

Buildings and Associated Facilities

Investigation Report of Exceedance of Water Quality at Location WM1 on 15, 17, 18,

19, 23 and 25 May 2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:-

TCS00769/15/300/F0186 dated 18 May 2017 TCS00769/15/300/F0188 dated 23 May 2017 TCS00769/15/300/F0189 dated 26 May 2017 TCS00769/15/300/F0192 dated 1 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155 Mr. William WL Cheng (ASD) By e-mail

Mr. William WL Cheng (ASD)

Mr. Justin Cheung (Ronald Lu)

Mr. Antony Wong (IEC, SMEC)

Mr. Simon Leung (ER, AECOM)

By e-mail

By e-mail

By e-mail

By e-mail

By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008						
Contract		SS C505						
Location		WM1						
Date		17 May 2017	18 May 2017	19 May 2017	23 May 2017	25 May 2017		
Time		11:35	10:40	9:50	11:35	9:40		
Parameter	•	Turbidity (NTU)						
Action Le				•	station of the sam	•		
Limit Leve					station of the sam			
Measure WM1-C		29.9	20.3	30.7	61.2	27.6		
d Levels	WM1	over range	149.5	73.5	84.4	68.0		
Exceedance	ee	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level		
Date		15 May 2017	17 May 2017	18 May 2017	19 May 2017	25 May 2017		
Time		11:45	11:35	10:40	9:50	9:40		
Parameter				pended Solids (n				
Action Lev					station of the sam			
Limit Leve				î	station of the sam			
Measure d Levels	WM1-C WM1	1015.0 1465.0	23.0 875.0	18.0 126.0	25.0 58.0	261.0 229.0		
	ı							
Exceedance Investigati		Limit Level 1. According	Limit Level	Limit Level	Action Level ed by the Contract	Limit Level		
Results, Recomment & N Measures	ndations Aitigation	 construction activities carried out during 15 to 25 May 2017 included rebar fixing, erection of formwork, concerting, superstructure and backfilling they are illustrated in Figure 1. It is noted that the majority active construction area were not closed to Kong Yiu River. (Figure 2) 2. According to the field photos taken on 15 May 2017, muddy water was observed throughout the river channel including WM1-C and WM1. On 17, 18, 19, 23 and 25 May 2017, muddy water was observed at WM1 and the water quality at WM1-C was slightly turbid. (Photo 1 to 12) On the monitoring days, it was observed that large amount of rubbish cumulated at the water gate near WM1 and the muddy water was stagnant at the river channel. (Photo 13) 3. According to the rainfall record from HKO, there was rainstorm (rainfall 						
		 38.5mm) on 15 May 2017. The water quality throughout the river course was deteriorated due to rain and stir up sediment at the river bed. Moreover, soil erosion from surrounding environmental may also be occurred which influencing the water quality of river course. During the rainstorm, large amount of rubbish was brought from upstream and cumulated at the water gate near WM1. 4. In view of the construction activities and inspection records in May 2017, wastewater generated from the active construction activities were limited. (Photo 14) If water discharge is required, it will follow the temporary site drainage plan in which wastewater would be diverted to the perimeter channel and then collected to the wastewater treatment plant for treatment before discharge. (Photo 15 and Figure 3) It is noted that the discharge point connecting public drainage was located at the west of the site and the discharge water would not flow to WM1 and its upstream. (Figure 3) Moreover, it was observed that the slopes of the filling material stockpile 						

- which located at southern boundary were covered with impervious sheeting to minimise muddy runoff. (**Photo 16**)
- 5. In our investigation, it is considered that the exceedances were likely related to the impact of the rain and not due to the works under the Contract.
- 6. According to the Event and Action, the monitoring frequency at WM1 has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. Additional monitoring was carried out on 20 and 24 May 2017 and no exceedances were triggered. Nevertheless, the Contractor should continue fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aula
Date :	13 June 2017

Photo 1On 15 May 2017, muddy water and rubbish was observed and cumulated at WM1.

Photo 2On 15 May 2017, muddy water was observed at WM1-C.

Photo 3
On 17 May 2017, muddy water and rubbish was observed and cumulated at WM1.

Photo 4On 17 May 2017, the water quality at WM1-C was slightly turbid.

Photo 5On 18 May 2017, muddy water and rubbish was observed and cumulated at WM1.

Photo 6On 18 May 2017, the water quality at WM1-C was slightly turbid.

Photo 7
On 19 May 2017, muddy water and rubbish was observed and cumulated at WM1.

On 19 May 2017, the water quality at WM1-C was slightly turbid.

Photo 9 On 23 May 2017, muddy water and rubbish was observed and cumulated at WM1.

Photo 10On 23 May 2017, the water quality at WM1-C was slightly turbid.

Photo 11 On 25 May 2017, muddy water and rubbish was observed and cumulated at WM1.

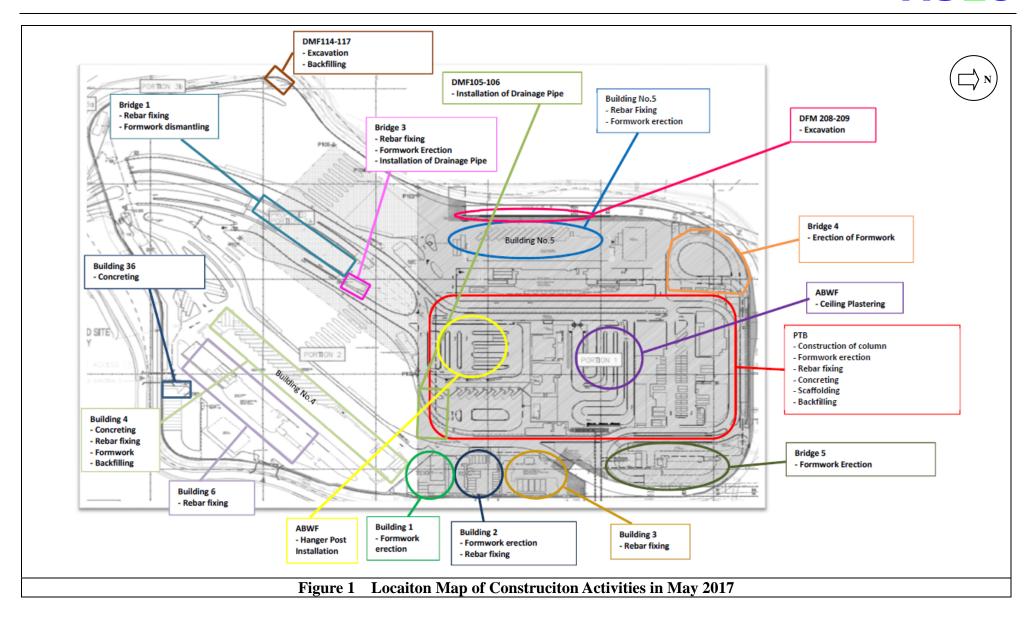
On 25 May 2017, the water quality at WM1-C was slightly turbid.

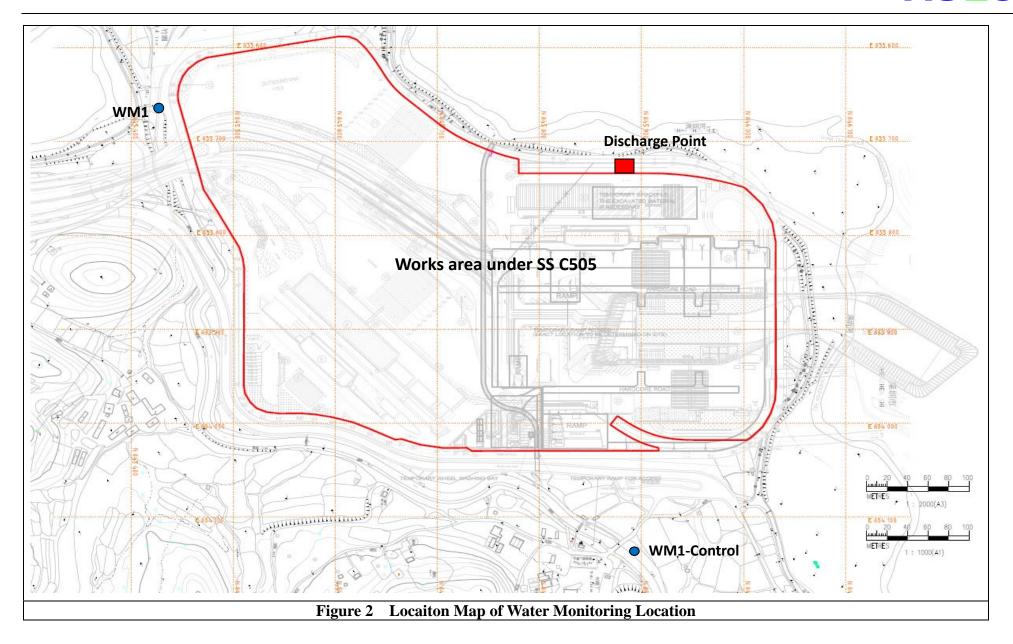
Photo 13

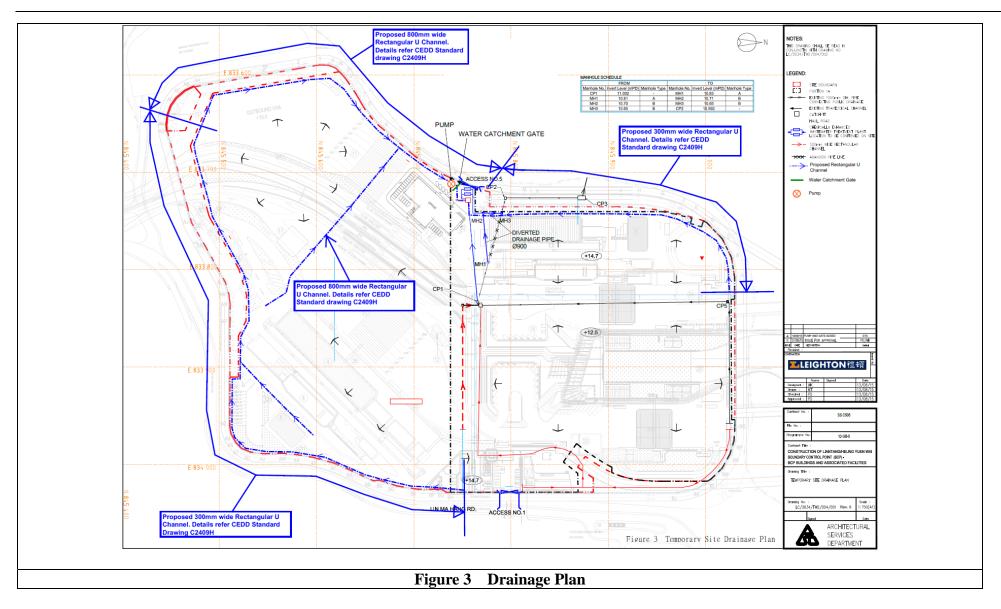
Large amount of rubbish was observed cumulated at the water gate near WM1 and the muddy water generated under rain was stagnant at the river channel.

Photo 14

During site inspection in May 2017, it was observed that wastewater generated from the active construction activities was limited.


Photo 15


If water discharge is required, it will follow the temporary site drainage plan in which wastewater would be diverted to the perimeter channel and then collected to the wastewater treatment plant for treatment before discharge.


Photo 16

The slopes of the filling material stockpile which located at southern boundary were properly covered with impervious sheeting to minimise muddy runoff.

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

cc

From Nicola Hon Date 27 June 2017

Our Ref TCS00694/13/300/F1055 No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 13,

14 and 15 June 2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1032 dated 15 June 2017 TCS00694/13/300/F1045 dated 21 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Steve Lo (CE/BCP, NTWDO, CEDD)

Mr. Simon Leung (ER of C6/ AECOM)

Fax: 3547 1659

Fax: 2251 0698

Mr. Antony Wong (IEC, SMEC)

By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE	45/2008			
<u> </u>		13 Jun	14 Jun	15 Jun	45/2008 13 Jun	14 Jun	15 Jun	
Date		2017	2017	2017	2017	2017	2017	
Location				WN	M2A(a)			
Time		10:40	10:30	10:05	10:40	10:30	10:05	
Parameter		Tı	arbidity (NTI	J)	Suspe	ended solids (n	ng/L)	
Action Leve	1		D 120% of utation of the			14.6 AND 120% of upstream control station of the same day		
Limit Level			D 130% of utation of the			17.3 AND 130% of upstream control station of the same day		
Measured	WM2A-C	79.2	32.5	6.7	32.0	30.0	4.5	
Levels	WM2A(a)	435.5	194.0	34.2	316.5	136.0	23.5	
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Contract June 20 segmen Figure 1 2. Accordi June 20 at WM2 water q turbid. (3. Accordi rainy da on 13 . highly surroun the nylo was flow 4. During 2017, th observa (a) Cor and (b) Was (Figure 1) (c) The wat (d) The	the 6 (CCKJV) 17 at Bridget erection. The struction in the sit 17, muddy we 2A-C were the struction at 18 to 19 to), construction of the monitoring of the stirred upon the stirred upon the stirred upon the stirred and the stirred and the stirred in the stirred upon the stirred upon the stirred in the stirred upon the s	n by the monierved at WM2. (Photo 1 to clear whereas that ion from HI in which red requality through p sediment and 15 June muddy water ato 7 & 8) tion conducted sures were protein is summand to nature of the sure were protein in the conducted sures were proper that is the conducted sures are the conducted sures	toring team of A(a) were made works area and toring team of A(a) and the variate WM2A(a) KO, there were ainstorm signate mout the rivered muddy rund 2017, it was of trapped in the poperly implementated below. By bridge segmentated below. The works of the works of the was clear and the was clear and the was flattened below.	ng 13 to 15 ainly bridge are shown in n 13 and 14 water quality ne 2017, the was slightly e successive al was issued course was off from the abserved that e nylon dam in 15 June ented. The nent erection 9) for Bridge D d no adverse by rainstorm	

slope was noted. (Photo 11)

- (e) To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.
- 5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 13 June 2017 was caused by the rainstorm and the exceedances on 14 and 15 June 2017 were due to residual impact of rain and not due to works under Contract 6.
- 6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 16 and 17 June 2017 and there were no exceedances. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon			
Designation:	Environmental Consultant			
Signature :	Aula			
Date:	27 June 2017			

Photo Record

Photo 1On 13 June 2017, muddy water was observed at WM2A(a).

Photo 2On 13 June 2017, the water quality observed at WM2A-C was turbid.

Photo 3On 14 June 2017, muddy water was observed at WM2A(a).

Photo 4On 14 June 2017, the water quality observed at WM2A-C was turbid.

Photo 5
On 15 June 2017, water quality observed at WM2A(a) was slightly turbid.

Photo 6On 15 June 2017, the water quality observed at WM2A-C was clear.

Photo 7

On 14 June 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 8

On 15 June 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 9

During site inspection on 15 June 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 10

During site inspection on 15 June 2017, it was observed that the water quality in the existing river course was clear and no adverse water quality impact was observed.

Photo 11

During site inspection on 15 June 2017, it was observed the vegetation adjacent to the river course was flattened by rainstorm and signs of washed out soil from vegetation slope was noted.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

Nicola Hon Date 5 July 2017 From

Our Ref TCS00694/13/300/F1069 No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3x on 17, 21,

22, 23 and 28 June 2017 (Contract 6)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1035 dated 19 June 2017

TCS00694/13/300/F1041 dated 21 June 2017

TCS00694/13/300/F1049 dated 23 June 2017

TCS00694/13/300/F1058 dated 27 June 2017

TCS00694/13/300/F1063 dated 29 June 2017

TCS00694/13/300/F1069 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

> Mr. Steve Lo (CE/BCP, NTWDO, CEDD) Fax: 3547 1659 Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project					CE 4	15/2008			
Date		17 Jun 2017	21 Jun 2017	22 Jun 2017	23 Jun 2017	28 Jun 2017	17 Jun 2017	21 Jun 2017	22 Jun 2017
Location			<u> </u>		l .	M3x			
Time		10:25	11:15	10:55	11:10	10:20	10:25	11:15	10:55
Parameter			Tur	bidity (N	TU)		•		ds (mg/L)
Action Leve	el	13.4 AN	D 120% c	of upstreame de same de		station of	upstrea	the same	l station of day
Limit Level	l	14.0 AN	D 130% c	of upstreame de same d		station of	upstrea	9 AND 13 m control the same	l station of
Measured	WM3-C	4.5	103.0	10.8	12.1	12.1	5.0	114.5	54.0
Level	WM3x	58.2	279.0	164.0	24.1	29.0	54.0	230.0	204.0
Exceedance	:	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Results, Recommen & N Measures	dations Iitigation	(CCK (upstr pile v works) 2. Accor observ June 2 observ the was	JV), the ceam of Works and areas are ding to the wed at WI 2017, water wed throught	onstruction (M3x) can construct illustrated e site pho (M3x whill er sampling thout the dy at both	on activitied out of cition of Is d in <i>Figur</i> oto taken of the water ag was carechannel in WM3x at	es at South I on 17 to 28 Bridge E. The 1. on 17 and 2 er quality a ried out duricluding WM	Portal and June 201 The monital June 20 June 20 June 20 June 20 June 20 June 3	Wo Keng 7 was matering local 17, turbic C was clean 13 muddy WM3-C.	ctor of C6 g Shan Park ainly bored cations and I water was ar. On 21 y water was Moreover, I on 23 and
		on 17 from record and th up see receiv water during 4. Week in Jui proper constr was of exceed	the adjact from Hk as water quality a grainy day ly joint sine 2017. In plact the structure of the structure	2 June 20 of the site ent village CO, there uality in the doreover, orm water the WM3x of (Photo) the inspect It was one and the end was generated the was generated the was generated to the end to the was generated to t	on the same and the same and the same and the same and the river continuous from road was high same and the s	s observed ource of mu (11 to 13) cessive rain ourse was outed that the distributed surface of the contracted of the contracted of the contracted of the contracted outer that was the contracted of the contracted of the contracted outer that was the contracted outer than the contracted oute	that mudd addy wate Accord y days on deteriorate e monitor of Sha Ta by the ro or, IEC an rater treat clear. (Pa adverse tion, it is	y water was pro- ling to was 17 to 21 ed by rained channed water unoffed ET was ment facilitate thoto 15 a water qual consider	itoring days was flowing bably came eather data June 2017 and stirred el was also bad and the f especially s conducted ilities were and 16) The ality impact ted that the for caused by

	5. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 24, 26, 29 and 30 June 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Aula				
Date :	5 July 2017				

Photo Record

Photo 1Muddy water was observed at WM3x on 17 June 2017.

Photo 2During water sampling on 17 June 2017, the water quality at WM3-C was clear.

Photo 3
Muddy water was observed at WM3x on 21 June 2017.

Photo 4During water sampling on 21 June 2017, muddy water was observed at WM3-C.

Photo 5
Muddy water was observed at WM3x on 22 June 2017.

Photo 6
During water sampling on 22 June 2017, the water quality at WM3-C was slightly turbid.

Photo 7
During water sampling on 23 June 2017, the water quality at WM3x was slightly turbid.

Photo 8
During water sampling on 23 June 2017, the water quality at WM3-C was slightly turbid.

Photo 9
During water sampling on 28 June 2017, the water quality at WM3x was slightly turbid.

During water sampling on 28 June 2017, the water quality at WM3-C was slightly turbid.

Photo 11
On 17 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 12
On 21 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 13

On 22 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 15

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted in June 2017. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear. The construction site was general in order and no adverse water quality impact was observed.

Photo 14

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 16

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted in June 2017. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear. The construction site was general in order and no adverse water quality impact was observed.

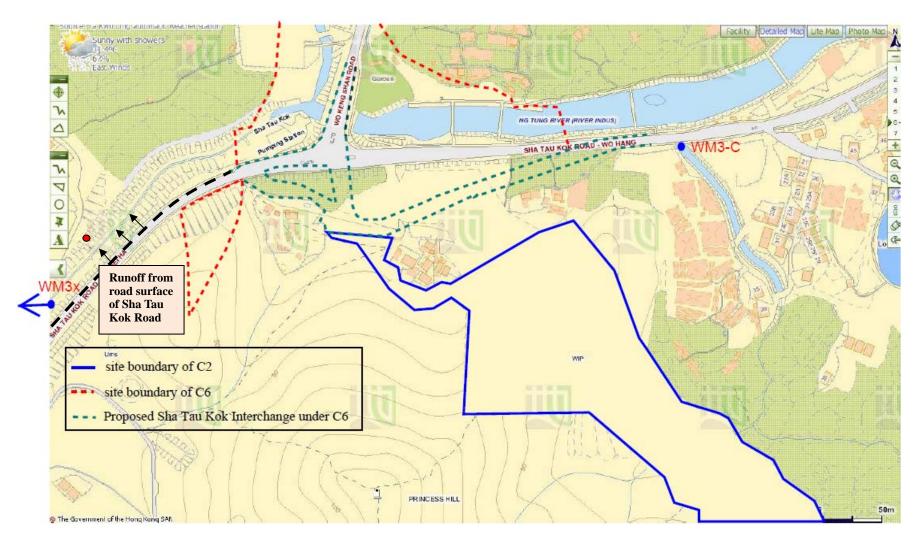


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

 \mathbf{cc}

From Nicola Hon **Date** 6 July 2017

7 Our Ref TCS00697/13/300/F1074 No of Pages (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM3x on 17, 21, 22,

23 and 28 June 2017 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1036 dated 19 June 2017

TCS00694/13/300/F1042 dated 21 June 2017

TCS00694/13/300/F1050 dated 23 June 2017

TCS00694/13/300/F1059 dated 27 June 2017

TCS00694/13/300/F1064 dated 29 June 2017

TCS00694/13/300/F1070 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

Mr. David Chan (EPD) Fax: 2685 1155 c.c.

> Mr. Raymond Leong (CE/BCP, NTWDO, CEDD) Fax: 3547 1659 Mr. Edwin Ching (CRE, AECOM) Fax: 2171 3498 Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project					45/2008				
Date	17 Jun 2017	21 Jun 2017	22 Jun 2017	23 Jun 2017	28 Jun 2017	17 Jun 2017	21 Jun 2017	22 Jun 2017	
Location				7	VM3x				
Time	10:25	11:15	10:55	11:10	10:20	10:25	10:25 11:15 10:55		
Parameter		Tu	rbidity (N	TU)		Suspe	nded Solids	s (mg/L)	
Action Level	13.4 AN		of upstreamed he same d	m control st	tation of		ND 120% of the station of the		
Limit Level	14.0 AN			m control st	tation of		ND 130% of		
T			he same d		10.1		tation of the	· · · · · · · · · · · · · · · · · · ·	
Measured WM3-C	4.5	103.0	10.8	12.1	12.1	5.0	114.5	54.0	
Level WM3x	58.2	279.0	164.0	24.1	29.0	54.0	230.0	204.0	
Exceedance	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Results, Recommendations & Mitigation Measures	WM wall, under wall, under 2. According to be 2017 observed the value on 1 from from from from water sedir receil quality day. 4. During waster limit the sequality above by the second concrete exception.	ax were undergree undergree C2 and ording to reved at W water served throwater qual 2017. (P) ection wa 7, 21 and upstream the adjace. HKO, the quality ment. Moved the state at WM (Photo 14) ewater geed and the site area at y impact to evaluate t	construction depends on the site point was in the site point and it is ampling ughout the ity at both the force of the site and it is a site of the site o	on of fencities and Emonitoring hoto taken le the water was carrie e channel in WM3x ar 100) out at upstr 2017, it was the and the e. (Photo I successive iver course it was nor from road ighly affect pection with rom the cost channel was Building tified during sconsidered tract 2. If Action, the eto the le ered in corrections with the cost channel was a building tified during the considered tract 2.	te wall, be &M acti- locations on 17 and quality and out du including and WM3-0 ream of the as observe source of 1 to 13) rainy day as was det ted that surface of the determinant was most ag site insignation of the monitor of the m	uilding int vities. The are illustrated 22 June at WM3-C wing rain at WM3x and C was slighted that must muddy was According as on 17 to be a considered at the monitor of Sha Tau I works of Photo 15 and I works of Photo 15 and I works of C was a considered at the monitor of Sha Tau I works of Photo 15 and I works of C	ernal structure relevant ted in Figur 2017, turbid was clear. and muddyd WM3-C. It turbid of the mond water was progress to weather of 21 June 2 by rain and ored channed Kok Road at Sespecially 7, it was off Admin B & 16) In a seved, no addition 17) It was were unlined at WM mee recorded were no element of the were no element with the service were not element with the service were	upstream of ture, curtain works area re 1. d water was On 21 June water was Moreover, on 23 and 28 ditoring days was flowing bably came data record 017 and the distirred upel was also nd the water during rainy bserved that uilding was addition that liverse water Based on the ikely caused 3x has been ed until no exceedances June 2017.	

Prepared By: _	Nicola Hon					
Designation:	Environmental Consultant					
Signature :	Aula					
Date :	6 July 2017					

Photo Record

Photo 1 Muddy water was observed at WM3x on 17 June 2017.

Photo 2 During water sampling on 17 June 2017, the water quality at WM3-C was clear.

Photo 3
Muddy water was observed at WM3x on 21 June

Photo 4
During water sampling on 21 June 2017, muddy water was observed at WM3-C.

Photo 5
Muddy water was observed at WM3x on 22 June 2017.

Photo 6
During water sampling on 22 June 2017, the water quality at WM3-C was slightly turbid.

Photo 7During water sampling on 23 June 2017, the water quality at WM3x was slightly turbid.

Photo 8
During water sampling on 23 June 2017, the water quality at WM3-C was slightly turbid.

Photo 9During water sampling on 28 June 2017, the water quality at WM3x was slightly turbid.

Photo 10 During water sampling on 28 June 2017, the water quality at WM3-C was slightly turbid.

Photo 11
On 17 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 12
On 21 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

Photo 13On 22 June 2017, muddy water flowing from upstream of the site was observed and the source was probably came from the adjacent village.

The monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 15
During regular inspection by DHK, it was reported that the river channel adjacent to the site was clear on 16 June 2017.

Photo 16
During regular inspection by DHK, it was reported that the river channel adjacent to the site was clear on 30 June 2017.

Photo 17
During weekly site inspection in June 2017, it was observed that wastewater generated from Admin Building was limited. The site area was mostly hard paved and no adverse water quality impact was identified during site inspection.

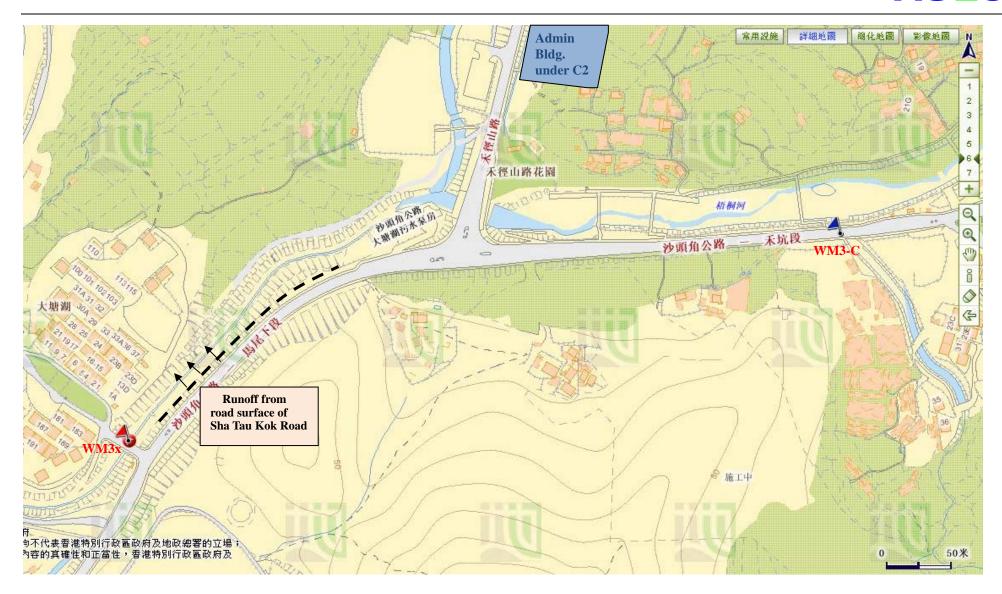


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Fax Cover Sheet

2685 1155

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

 \mathbf{cc}

From Nicola Hon Date 3 July 2017

Our Ref TCS00694/13/300/F1075 No of Pages 4 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM1 on 21 June

2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1040 dated 21 June 2017 TCS00694/13/300/F1065 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax:

Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project	CE 45	5/2008				
Date	21 June 2017					
Location	WM1					
Time	9:	55				
Parameter	Turbidity (NTU)	Suspended Solids (mg/L)				
Action Level	51.3 AND 120% of upstream control	54.5 AND 120% of upstream control				
Action Level	station of the same day	station of the same day				
Limit Level	67.6 AND 130% of upstream control	64.9 AND 130% of upstream control				
<u>.</u>	station of the same day	station of the same day				
Measured WM1-0		19.5				
Levels WM1	70.0	72.5				
Exceedance	Limit Level	Limit Level				
Investigation Results, Recommendations & Mitigation	activities carried out during 21 Ju (BCP) at upstream of WM1 was co	n provided from CCKJV, construction in 2017 near Boundary Control Point construction of underpass and depressed and works area are shown in Figure 1.				
Measures	2. According to the field photos taken on 21 June 2017, muddy water was observed at WM1 and the water quality at WM1-C was slightly turbid. (Photo 1 to 2) Moreover, it was observed that the rubbish flushing from upstream was stuck at the water gate near WM1 and the muddy water generated by rain was stagnant and could not flow to downstream. (Photo 3)					
	3. Weekly site inspection was carried out by the ET in June 2017, it was observed that no construction activities were carried out adjacent to the river course and no adverse water quality impact was observed. (Photo 4) Moreover, wastewater treatment facility with AquaSed SH-20 was implemented on site. (Photo 5) However, it was observed that large amount of rubbish was cumulated near at the water gate near WM1. (Photo 6)					
	4. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contract.					
	has been increased to daily due t until no exceedances were trigg monitoring was carried out on 22 were triggered. Nevertheless, t implement the water mitigation	on, the monitoring frequency at WM1 of the limit level exceedance recorded ered in consecutive days. Additional and 23 June 2017 and no exceedances the Contractor should continue fully measures as recommended in the ronmental mitigation measures in the				

Prepared By:	Nicola Hon Environmental Consultant				
Designation:					
Signature :	Anh				
Date :	3 July 2017				

Photo Record

Photo 1On 21 June 2017, muddy water was observed at WM1.

Photo 2 On 21 June 2017, the water quality at WM1-C was slightly turbid.

Photo 3
On 21 June 2017, it was observed that the rubbish flushing from upstream was stuck at the water gate near WM1 and the muddy water generated by rain was stagnant and could not flow to downstream.

Weekly site inspection was carried out by the ET in June 2017, it was observed that the main construction activity was construction of underpass and depressed road. No adverse water quality impact was observed.

Photo 5Wastewater treatment facility with AquaSed SH-20 was implemented.

Photo 6
Weekly site inspection was carried out by the ET in June 2017. It was observed that large amount of rubbish was cumulated near at the water gate near WM1.

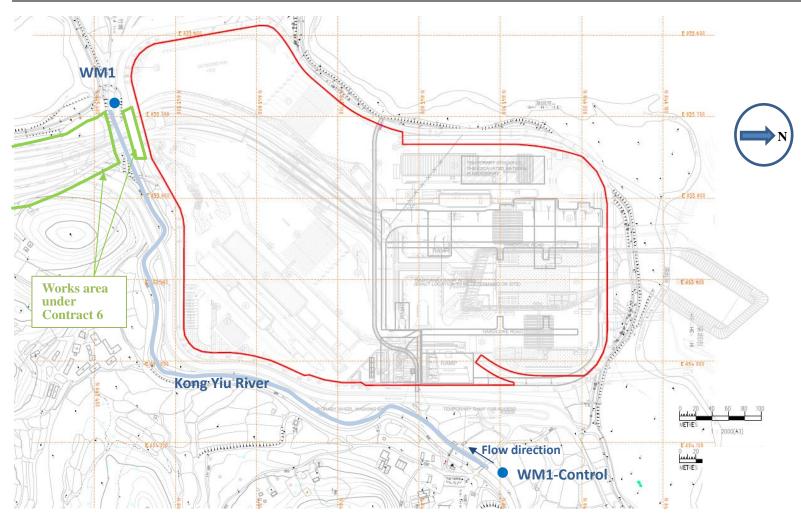


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

To Mr. Jon Kitching Fax No 2752 0696

Company Leighton Contractors (Asia) Limited

cc

From Nicola Hon Date 4 July 2017

Our Ref TCS00769/15/300/F0200 No of Pages 6 (Incl. cover sheet)

RE Architectural Services Department (ArchSD) Contract No: SS C505

Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) - BCP

Buildings and Associated Facilities

Investigation Report of Exceedance of Water Quality at Location WM1 on 21 June

2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:-

TCS00769/15/300/F0189 dated 21 June 2017 TCS00769/15/300/F0199 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. William WL Cheng (ASD)

Mr. Justin Cheung (Ronald Lu)

Mr. Antony Wong (IEC, SMEC)

Mr. Simon Leung (ER, AECOM)

By e-mail

By e-mail

By e-mail

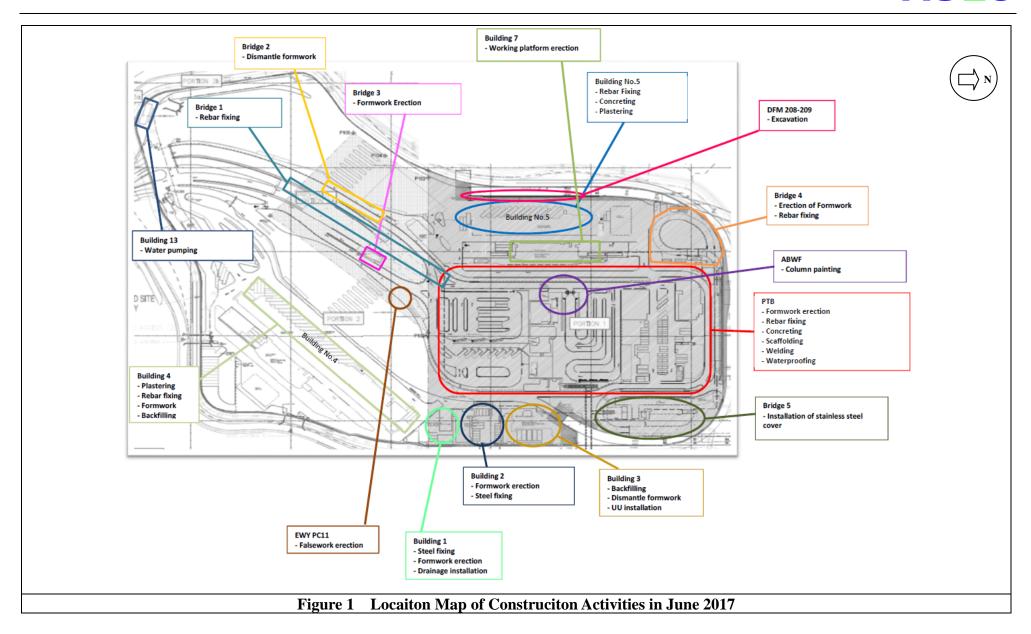
Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008					
Contract		SS C	505				
Location		WM1					
Date		21 June	2017				
Time		9:5	5				
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)				
A ation I av	al	51.3 AND 120% of upstream control	54.5 AND 120% of upstream control				
Action Lev	ei	station of the same day	station of the same day				
Limit Leve	1	67.6 AND 130% of upstream control	64.9 AND 130% of upstream control				
Limit Leve		station of the same day	station of the same day				
Measured	WM1-C	15.0	19.5				
levels	WM1	70.0	72.5				
Exceedance	e	Limit Level	Limit Level				
Investigation Results, Recomment & M Measures		1. According to the site information provided by the Contractor, the major construction activities carried out on 21 June 2017 included excavation, rebar fixing, erection of formwork, concerting, superstructure and backfilling they are illustrated in Figure 1 . It is noted that the majority active construction area were not closed to Kong Yiu River. (Figure 2)					
		2. According to the field photos taken on 21 June 2017, muddy water was observed at WM1 and the water quality at WM1-C was slightly turbid. (Photo 1 to 2) Moreover, it was observed that the rubbish flushing from upstream was stuck at the water gate near WM1 and the muddy water generated by rain was stagnant and could not flow to downstream. (Photo 3)					
		3. In view of the construction activities and inspection records in June 2017, wastewater generated from the active construction activities were limited. (Photo 4) If water discharge is required, it will follow the temporary site drainage plan in which wastewater would be diverted to the perimeter channel and then collected to the wastewater treatment plant for treatment before discharge. (Figure 3) It is noted that the discharge point connecting public drainage was located at the west of the site and the discharge water would not flow to WM1 and its upstream. (Figure 3)					
		4. In our investigation, it is considered that the exceedances were related the impact of the rain and unlikely due to the works under the Contract.					
		5. According to the Event and Action, the monitoring frequency at WM1 has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. Additional monitoring was carried out on 22 and 23 June 2017 and no exceedances were triggered. Nevertheless, the Contractor should continue fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.					

Prepared By :	Nicola Hon					
Designation :	Environmental Consultant					
Signature :	Aula					
Date :	4 July 2017					
	-					

Photo 1 On 21 June 2017, muddy water was observed at WM1.


Photo 2On 21 June 2017, the water quality at WM1-C was slightly turbid.

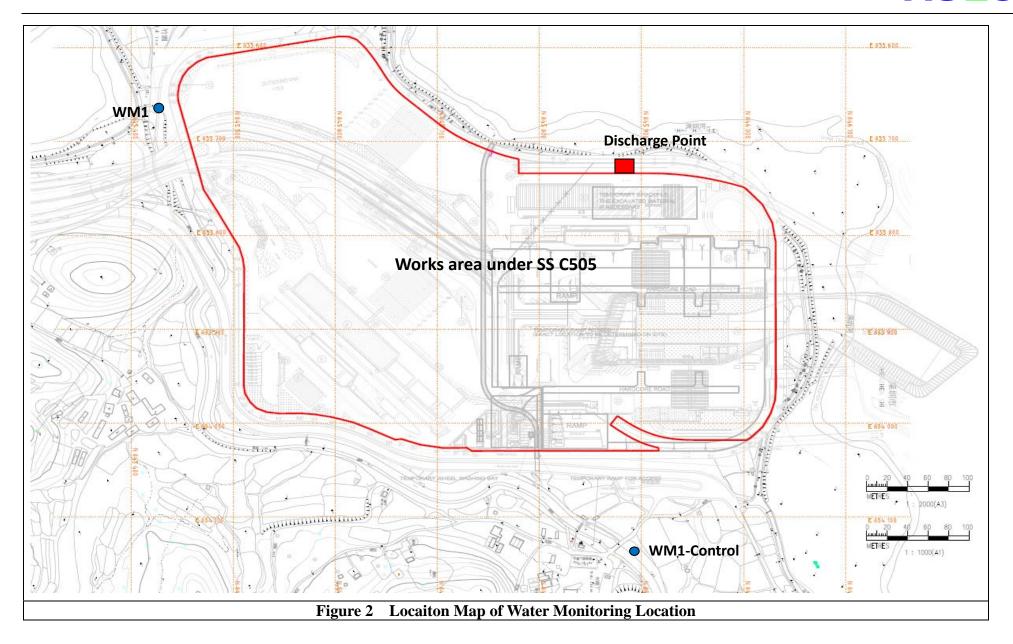
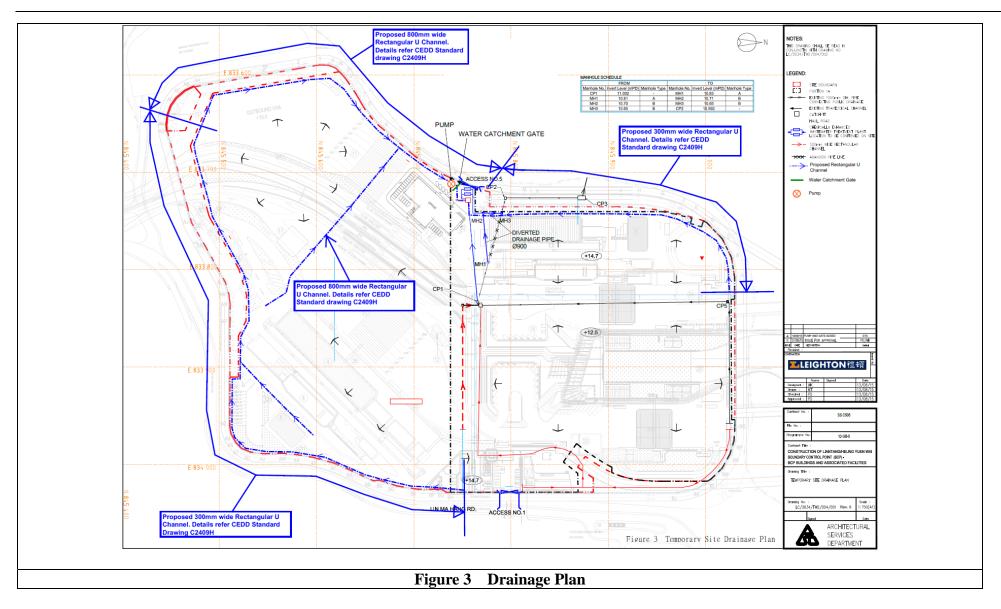


Photo 3
On 21 June 2017, it was observed that the rubbish flushing from upstream was stuck at the water gate near WM1 and the muddy water generated by rain was stagnant and could not flow to downstream.



During site inspection in June 2017, it was observed that wastewater generated from the active construction activities was limited.

Fax Cover Sheet

To Mr. Daniel Ho **Fax No 2638 7077**

Company Chun Wo Construction Ltd

cc

From Nicola Hon Date 4 July 2017

Our Ref TCS00670/13/300/F1076a No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM4 on 21 and 22

2017 (Contract 3)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1043 dated 21 June 2017

TCS00670/13/300/F1047 dated 23 June 2017

TCS00670/13/300/F1066 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Lu Pei Yu (CE/BCP, NTEDO, CEDD/C3)

Mr. Alan Lee (ER of C3, AECOM)

Mr. Antony Wong (IEC, SMEC)

Fax

2171 3498

By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008						
Date		21 Jun 2017	22 Jun 2017	21 Jun 2017	22 Jun 2017			
Location				M4				
Time		12:00	11:10	12:00	11:10			
Parameter			Turbidity (NTU) Suspended Solids (mg					
			0% of upstream	•	0% of upstream			
Action Level			of the same day		of the same day			
			% of upstream		% of upstream			
Limit Level			of the same day		of the same day			
	WM4-CA	58.0	19.4	50.0	12.0			
Measured	WM4-CB	65.8	19.5	53.5	9.0			
Level	WM4	90.6	205.5	79.0	164.0			
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level			
Investigation	Results,				the Contractor of			
Recommendat	,		Vo), the constructi					
Mitigation Me			7 were mainly gen					
g			of working plat					
			I these activities					
		wastewater.						
			.1 2 11		4 21 I			
		2. According to the site record by the monitoring team on 21 June						
		2017, muddy water was observed throughout the channel						
		including WM4, WM4-CA and WM4-CB. (Photo 1 to 3 and						
		Figure 1) On 22 June 2017, turbid water was observed at WM4						
		while the water quality at WM4-CA and WM4-CB was slightly turbid. (Photo 4 to 6 and Figure 1)						
		turbid. (Photo 4 to 6 and Figure 1)						
		3. According to the rainfall record from HKO, there was rainstorm						
		(95.9mm) on 21 June 2017. The water quality throughout the						
		water channel was deteriorated by the stirred up sediment and						
		runoff from the surrounding environment.						
		4. During weekly site inspection by ET on 21 June 2017 at the						
			adjacent to river					
			observed with the					
			ractor. (Photo 7)					
		-			_			
			djacent to river of		was generally in			
		order and no abnormal situation under the Contract was						
		identified.						
			5. In our investigation, it is considered that exceedances on 21 and					
			17 were unlikely	related to the	works under the			
		Contract.						
		6. According to	o the Event and A	ction, the monito	ring frequency at			
			on shall be increa					
			recorded until n	•				
			days. In view of					
			ices were triggered					
			he Contractor sh					
		environment			commended in			
			tion schedule in the					
		promontat						

Prepared By: _	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Aul				
Date :	3 July 2017				

Photo Record

Photo 1Turbid water was observed at WM4 on 21 June 2017.

Photo 2
Turbid water was observed at WM4-CA on 21
June 2017.

Photo 3
Turbid water was observed at WM4-CB on 21
June 2017.

Photo 4Turbid water was observed at WM4 on 22 June 2017.

The water quality at WM4-CB was slightly turbid on 22 June 2017.

Photo 6The water quality at WM4-CC was slightly turbid on 22 June 2017.

Photo 7

During weekly site inspection by ET on 21 June 2017 at the works area adjacent to river channel, no adverse water quality impact was observed with the mitigation measures implemented by the Contractor.

Photo 8

During weekly site inspection by ET on 21 June 2017, it was observed that the stockpile and slope adjacent to river channel was covered to minimize muddy runoff.

Contract No. CV/2012/09 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

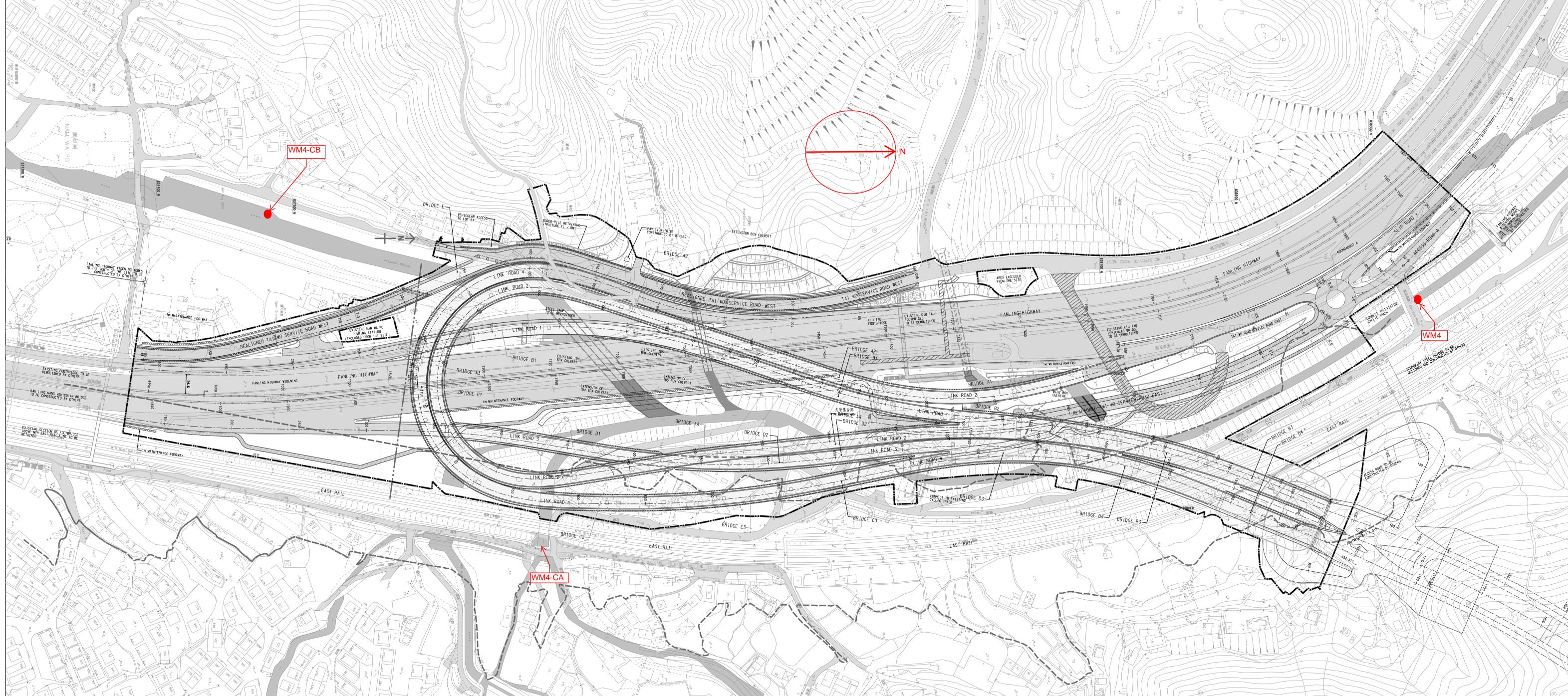


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

To Mr. Roger Lee Fax No 2717 3299

Company Dragages Hong Kong Limited

 \mathbf{cc}

From Nicola Hon Date 4 July 2017

Our Ref TCS00697/13/300/F1077a No of Pages 6 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM4 on 21 and 22

June 2017 (Contract 2)

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1044 dated 21 June 2017

TCS00670/13/300/F1048 dated 23 June 2017

TCS00670/13/300/F1067 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Joe Yip (CE/BCP, NTWDO, CEDD/C2) Fax: 3547 1659 Mr. Edwin Ching (CER, AECOM) Fax: 2171 3498

Mr. Antony Wong (IEC, SMEC)

By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

		,	action or Limit Le	evel Non-complian			
Project		CE 45/2008					
Date		21 Jun 2017	22 Jun 2017	21 Jun 2017	22 Jun 2017		
Location				WM4			
Time		12:00	11:10	12:00	11:10		
Parameter		Turbidi	ity (NTU)	Suspended	Solids (mg/L)		
Action Level		35.2 AND 120% of upstream control station of the same day		39.4 AND 120% of upstream control station of the same day			
Limit Level	Limit Level		38.4 AND 130% of upstream control station of the same day		45.5 AND 130% of upstream control station of the same day		
	WM4-CA	58.0	19.4	50.0	12.0		
Measured	WM4-CB	65.8	19.5	53.5	9.0		
Level	WM4	90.6	205.5	79.0	164.0		
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level		
Investigation Recommendati Mitigation Mea		Contract 2 on 21 and building su minimize r. 2. According 2017, mud	(DHK), constructive 22 June 2017 incomperstructure. The conddy runoff. to the site record dy water was observed.	ion activities carried luded tunnel excava construction site gend by the monitorinerved throughout the	y the Contractor of d out at South Portal ation and ventilation herally hard paved to g team on 21 June he channel including and Figure 1) On		

- 2. According to the site record by the monitoring team on 21 June 2017, muddy water was observed throughout the channel including WM4, WM4-CA and WM4-CB. (**Photo 1 to 3 and Figure 1**) On 22 June 2017, turbid water was observed at WM4 while the water quality at WM4-CA and WM4-CB was slightly turbid. (**Photo 4 to 6 and Figure 1**)
- 3. According to the rainfall record from HKO, there was rainstorm (95.9mm) on 21 June 2017. The water quality throughout the water channel was deteriorated by the stirred up sediment and runoff from the surrounding environment.
- 4. During weekly site inspection at South Portal by ET in June 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water was visually clear. (**Photo 7 to 9**) The site condition was generally in order and no adverse water quality impacts and abnormal situation under the Contract were identified. (**Photo 10**) In our investigation, it is considered that exceedances on 21 and 22 June were unlikely related to the works under the Contract.
- 5. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. In view of the subsequent monitoring result, no exceedances were triggered at WM4 on 23 and 24 June 2017. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By:

Nicola Hon

Designation:

Environmental Consultant

Signature:

4 July 2017

Photo Record

Photo 1Turbid water was observed at WM4 on 21 June 2017.

Photo 2Turbid water was observed at WM4-CA on 21 June 2017.

Photo 3
Turbid water was observed at WM4-CB on 21 June 2017.

Photo 4
Turbid water was observed at WM4 on 22 June 2017.

The water quality at WM4-CB was slightly turbid on 22 June 2017.

Photo 6
The water quality at WM4-CC was slightly turbid on 22 June 2017.

Photo 7

During weekly site inspection at South Portal by ET on 2 June 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water from the site was clear.

Photo 8

During weekly site inspection at South Portal by ET on 9 June 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water from the site was clear.

Photo 9

During weekly site inspection at South Portal by ET on 16 June 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water from the site was clear.

Photo 10

During weekly site inspection at South Portal by ET in June 2017, tunnel excavation and of ventilation building superstructure was in progress. The site condition was generally in order and no adverse water quality impacts and abnormal situation under the Contract were identified.

Contract No. CV/2012/09 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

俊和建築工程有限公司 Chun Wo Construction & Engineering Co., Ltd.

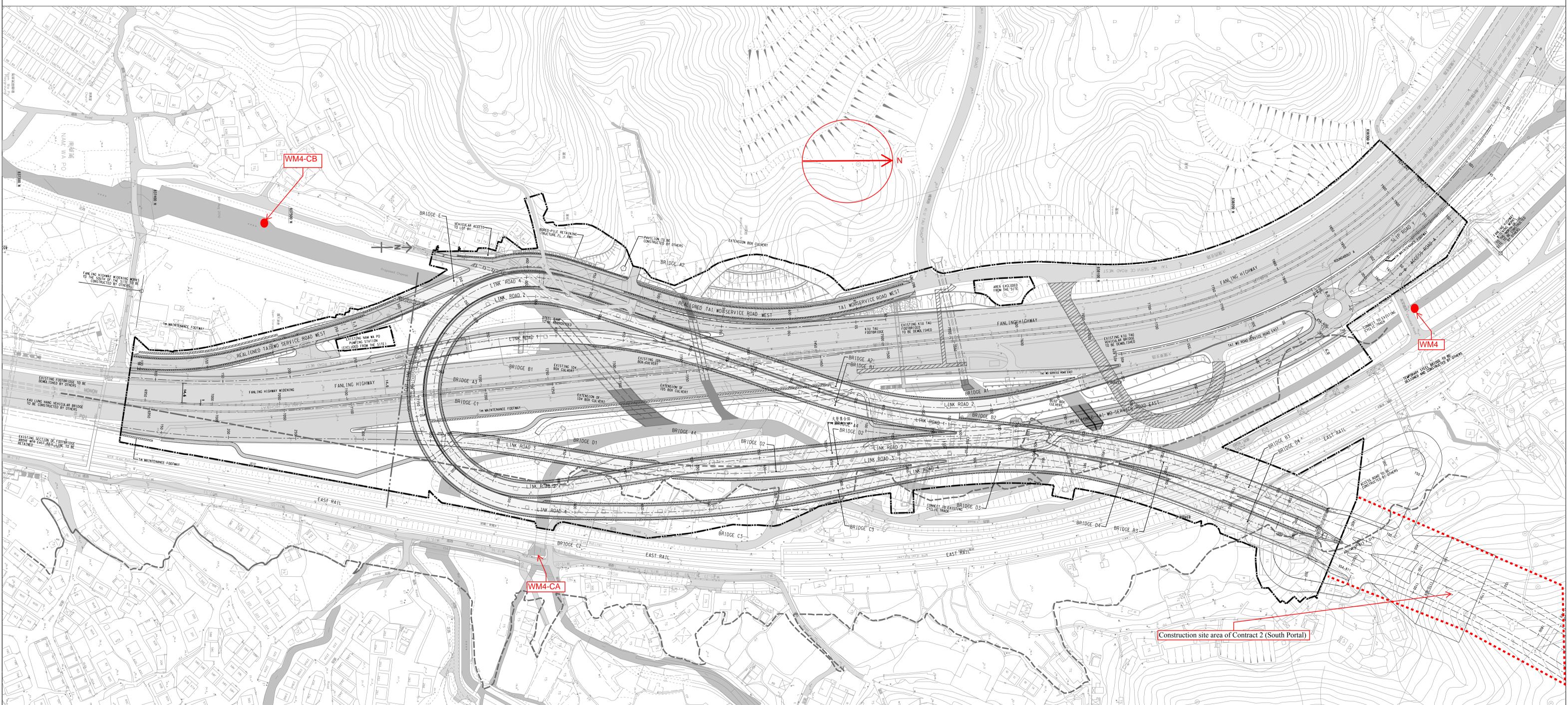


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

Fax No To Mr. Vincent Chan By e-mail

Company **CRBC-CEC-Kaden JV**

cc

From Nicola Hon **Date** 3 July 2017

Our Ref TCS00694/13/300/F1078 No of Pages (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 19,

20, 21 and 22 June 2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1034 dated 19 June 2017

TCS00694/13/300/F1039 dated 21 June 2017

TCS00694/13/300/F1046 dated 23 June 2017

TCS00694/13/300/F1057 dated 27 June 2017

TCS00694/13/300/F1068 dated 29 June 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

Mr. David Chan (EPD) Fax: 2685 1155 c.c.

Mr. Steve Lo (CE/BCP, NTWDO, CEDD) Fax: 3547 1659 Mr. Simon Leung (ER of C6/ AECOM) Fax: 2251 0698 Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/200	8			
Date	19 Jun 2017	20 Jun 2017	22 Jun 2017	19 Jun 2017	20 Jun 2017	21 Jun 2017	22 Jun 2017	
Location	2017	WM2A(a)						
Time	10:10	11:00	10:20	10:10	11:00	10:05	10:20	
Parameter	Т	Turbidity (NTU)			Suspended solids (mg/L)			
Action Level		24.9 AND 120% of upstream control station of the same day			14.6 AND 120% of upstream control station of the same day			
Limit Level		33.8 AND 130% of upstream control station of the same day		17.3 AND 130% of upstream control station of the same day				
Measured WM2A-		26.1	5.7	11.5	22.0	98.5	<2	
Levels WM2A	(a) 180.5	77.8	54.0	146.5	65.0	141.0	55.0	
Exceedance	Limit Level		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	
Investigation Resures Recommendations Mitigation Measures	Confusion June segma Figural 2. According June at Was June was 3. According cour from observation observation (a) (b) (c) (c) (c) (c) (d)	 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out during 19 to 22 June 2017 at Bridge D (upstream of WM2A(a)) were mainly bridge segment erection. The monitoring locations and works area are shown in Figure 1. According to the site photo taken by the monitoring team on 19, 20 and 2 June 2017, muddy water was observed at WM2A(a) and the water quality at WM2A-C were either turbid or slightly turbid. (<i>Photo 1 to 6</i>) On 22 June 2017, the water quality at WM2A-C was clear whereas at WM2A(a was slightly turbid. (<i>Photo 7 & 8</i>) According to the weather information from HKO, there were successive rainy days on 19 to 21 June 2017. The water quality throughout the rive course was highly affected by the stirred up sediment and muddy runof from the surrounding environment. On 19 and 22 June 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. (<i>Photo 9 & 10</i>) During weekly joint site inspection conducted at Bridge D on 22 June 2017, the water mitigation measures were properly implemented. The observation during the site inspection is summarized below. (a) Construction works at Bridge D was mainly bridge segment erection and there was no discharge due to nature of works. (<i>Photo 11</i>) (b) Wastewater treatment facilites were properly provided for Bridge I (<i>Figure 1</i>) (c) The water quality in the existing river course was turbid withou impact from the construction activities (<i>Photo 12 to 13</i>) 					ng 19 to 22 hinly bridge re shown in 9, 20 and 21 vater quality 6) On 22 at WM2A(a) e successive out the river uddy runoff 017, it was apped in the on 22 June ented. The ment erection 11) or Bridge D	

adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff. (*Photo 14*)

- 5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 19, 20 and 21 June 2017 was caused by the rainstorm and the exceedances on 22 June 2017 were due to residual impact of rain and not due to works under Contract 6.
- 6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 23 June 2017 and there were no exceedances. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon	
Designation:	Environmental Consultant	
Signature :	Aul	
Date:	3 July 2017	

Photo Record

Photo 1On 19 June 2017, muddy water was observed at WM2A(a).

Photo 2On 19 June 2017, the water quality observed at WM2A-C was slightly turbid.

Photo 3On 20 June 2017, muddy water was observed at WM2A(a).

Photo 4On 20 June 2017, the water quality observed at WM2A-C was turbid.

Photo 5
On 21 June 2017, muddy water was observed at WM2A(a).

Photo 6
On 21 June 2017, the water quality observed at WM2A-C was turbid.

Photo 7
On 22 June 2017, water quality observed at WM2A(a) was slightly turbid.

Photo 8
On 22 June 2017, the water quality observed at WM2A-C was clear.

On 19 June 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

On 22 June 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

During site inspection on 22 June 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 12 (before the nylon dam)

During site inspection 22 June 2017, it was observed that the water quality in existing river course was slightly turbid without impact from the construction activities.

Photo 13 (after the nylon dam)

During site inspection 22 June 2017, it was observed that the water quality in existing river course was slightly turbid without impact from the construction activities.

Photo 14

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

cc

From Nicola Hon Date 11 July 2017

Our Ref TCS00694/13/300/F1092 No of Pages 7 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 24

and 27 June 2017

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1054 dated 26 June 2017 TCS00694/13/300/F1084a dated 11 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Mr. David Chan (EPD) Fax: 2685 1155

Mr. Steve Lo (CE/BCP, NTWDO, CEDD)

Mr. Simon Leung (ER of C6/ AECOM)

Mr. Antony Wong (IEC, SMEC)

Fax: 3547 1659

Ext. 2251 0698

By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008					
Date		24 Jun 2017		24 Jun 2017	27 Jun 2017		
Location				WM2A(a)			
Time			9:55	9:55	10:10		
Parameter		Turb	idity (NTU)	Suspended solids (mg/L)			
Action Level		24.9 AND 120% of upstream control station of the same day		14.6 AND 120% of upstream control station of the same day			
Limit Level			130% of upstream on of the same day	17.3 AND 130% of upstream control station of the same day			
Measured	WM2A-C		11.3	6.0	<2		
Levels	WM2A(a)		77.1	58.0	17.0		
Exceedance		Limit Level		Limit Level	Action Level		
Investigation Recommend Mitigation M	ations &	1. According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out during 24 and 27 June 2017 at Bridge D (upstream of WM2A(a)) were mainly bridge segment erection. The monitoring locations and works area are shown in Figure 1.					
		2. According to the site photo taken by the monitoring team on 24 June 2017, muddy water was observed at WM2A(a) and the water quality at WM2A-C was clear. (<i>Photo 1 to 2</i>) On 27 June 2017, the water quality at WM2A-C was clear whereas at WM2A(a) was slightly turbid. (<i>Photo 3 to 4</i>)					
		3. According to the weather information from HKO, there were successive rainy days on 23 to 25 June 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 24 June 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. (<i>Photo 5</i>) No abnormal phenomenon was observed on 27 June 2017.					
		the wat	er mitigation mea	pection conducted at I sures were properly aspection is summarize			
				Bridge D was mainly bege due to nature of wor	oridge segment erection rks. (<i>Photo 6</i>)		
			tewater treatment fa ure 1)	acilites were properly	provided for Bridge D		
		temp runo adja	oorary bund was pr ff and discharge wa	ovided align the river as made from the site was covered with tarp	ite, concrete block as course and no turbid Moreover, the slope aulin sheet to minimize		
		5. In our ir	nvestigation, the imp	plementation of water mitigation measures on			

site was in order and no adverse water quality impact was observed. It is considered that the exceedances was due to natural variation and unlikely caused by the works under Contract 6.

6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Water quality monitoring were

monitoring is increase to daily. Water quality monitoring were conducted on 28 and 29 June 2017 and there were no exceedances. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon		
Designation:	Environmental Consultant		
Signature :	Auli		
Date:	11 July 2017		

Photo Record

Photo 1On 24 June 2017, muddy water was observed at WM2A(a).

Photo 2
On 24 June 2017, the water quality observed at WM2A-C was clear.

Photo 3On 27 June 2017, the water quality observed at WM2A-C was slightly turbid.

Photo 4On 27 June 2017, the water quality observed at WM2A-C was clear.

Photo 5
On 24 June 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

During site inspection in June 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 7

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Photo 8

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract