

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT Report (No.48) – July 2017

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
10 August 2017	TCS00694/13/600/R1132v2	Auh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	8 August 2017	First Submission
2	10 August 2017	Amended according to the IEC's comment on 9 August 2017

Unit A-C, 27/F Ford Glory Plaza 37- 39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

14 August 2017

Our ref: 7076192/L22137/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 48) – July 2017

With reference to the Monthly EM&A Report No. 48 for July 2017 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG

Independent Environmental Checker

СС	CEDD/BCP		Mr LU Pei Yu / Mr William CHEUNG	by fax: 3547 1659
	ArchSD	÷	Mr William WL CHENG	by fax: 2804 6805
	AECOM		Mr Pat LAM / Mr Perry YAM	by email
	Ronald Lu	÷	Mr Peter YAM / Mr Justin CHEUNG	by email
	CW	10	Mr Daniel HO	by email
	DHK	*	Mr Daniel ALTIER	by email
	CCKJV	Ē	Mr Vincent CHAN	by email
	KRSJV	-	Mr Matthew TSANG	by email
	Leighton	75	Mr Jon KITCHING	by email
	Siemens	-	Mr Michael LEUNG	by email
	AUES		Mr TW TAM	by email

\\hksmecdf01\share\jobs\7076192 - cedd - iec for liantang heung yuen wai bcp\02 out\02_170814-01-o-l verify monthly

EXECUTIVE SUMMARY

ES01 This is the **48th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 July 2017** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period			
Aspect	Environmental Monitoring Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions		
Air Quality	1-hour TSP	9	135		
Air Quality	24-hour TSP	9	45		
Construction Noise	L _{eq(30min)} Daytime	10	40		
		WM1 & WM1-C	13 Scheduled & 0 extra		
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	13 Scheduled & 6 extra		
Water Quality		WM2B & WM2B-C	(*) 13 Scheduled		
		WM3x &WM3-C	13 Scheduled & 1 extra		
		WM4, WM4-CA &WM4-CB	13 Scheduled & 3 extra		
Ecology	 Woodland compensation i) General Health condition of planted species ii) Survival of planted species 	9 Quadrats	0		
	•	Contract 2	4		
Joint Site Inspection / Audit	IEC, ET, the Contractor	Contract 3	4		
	and RE joint site	Contract 4 (#)	4		
	Environmental Inspection	Contract 6	4		
	and Auditing	Contract 7	4		
		Contract SS C505 (#)	4		

Note: Extra monitoring day was due to measurement results exceedance

(#) IEC only joined one (1) event of site inspection for Contracts 4 and SS C505.

(*) Water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no construction noise exceedance was recorded. For air quality monitoring, one (1) Action Level exceedance of 24-hour TSP was recorded at AM5a. Furthermore, for water quality monitoring, twenty-eight (28) Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

Ensinen maal	Manitanina	Monitoring Action		Event & Action			
Aspect	Parameters			NOE Issued	Investigation Result	Project related exceedance	Corrective Actions

Environmental	Monitoring	Action	tion Limit Event & Action				
Aspect	Monitoring Parameters	Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			
7 in Quanty	24-hour TSP	1	0	1	In progress	In progress	TBA
Construction Noise	L _{eq(30min)} Daytime	0	0	0			
	DO	0	0	0	-		
Water Quality	Turbidity	0	13	13	All exceedances were not	0	The Contractors were reminded to implement water quality mitigation
	SS	0	15	15	project-related	0	measures in accordance with ISEMM of the EM&A Manual

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, no environmental complaint was received under the EM&A programme.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 As notified by the RE in the Reporting Period, a summons (ref. no. FLS7210/2017 dated 20 June 2017) was issued to the Contractor of Contract 2 (Dragages Hong Kong Limited) for contravening the Water Pollution Control (General) Regulations. During hearing on 25 July 2017, DHK pleaded guilty to the EPD summons – failing to report discharge within 24 hours of its occurrence. Therefore, a summons and prosecutions was registered for Contract 2 under the EM&A programme in the Reporting Period.

REPORTING CHANGE

ES07 No reporting changes were made in the Reporting Period.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 21 and 28 July 2017. No non-compliance was noted during the site inspection.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 19 and 27 July 2017. No non-compliance was noted during the site inspection.
- ES10 In the Reporting, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 7, 14, 21 and 24 July 2017 in which IEC joined the site inspection on 24 July 2017. No non-compliance was noted.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 July 2017. No non-compliance was noted during the site inspection.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract* 7 has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 18 and 28 July 2017. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on **5**, **12**, **19 and 26**

July 2017 in which IEC joined the site inspection on **26 July 2017**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES14 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES15 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES16 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES17 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	7
	2.4 CONSTRUCTION PROGRESS	7
	2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL	14
	3.2 MONITORING PARAMETERS	14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 GENERAL	26
	5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)	26
6	WATER QUALITY MONITORING	27
-	6.1 GENERAL	27
	6.2 RESULTS OF WATER QUALITY MONITORING	27
7	ECOLOGY MONITORING	32
,	7.1 GENERAL	32
0		
8	WASTE MANAGEMENT	33 33
	8.1 GENERAL WASTE MANAGEMENT8.2 RECORDS OF WASTE QUANTITIES	33 33
9	SITE INSPECTION	34
	9.1 REQUIREMENTS	34
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	34
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	38
	10.1 Environmental Complaint, Summons and Prosecution	38
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	41
		41
		41
	11.3 KEY ISSUES FOR THE COMING MONTH	43
12	CONCLUSIONS AND RECOMMENDATIONS	ЛЛ
14		
		44
10 11 12	 10.1 Environmental Complaint, Summons and Prosecution IMPLEMENTATION STATUS OF MITIGATION MEASURES 11.1 GENERAL REQUIREMENTS 11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH 	38 41 41 43 44 44

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-7	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
Appendix D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
Appendix F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/C granted on 12 March 2015 and the latest Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **48th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **31 July 2017**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1IntroductionSection 2Project Organization and Construction ProgressSection 3Summary of Impact Monitoring RequirementsSection 4Air Quality MonitoringSection 5Construction Noise Monitoring

Section 6	Water Quality Monitoring
Section 7	Ecology Monitoring
Section 8	Waste Management
Section 9	Site Inspections
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Mid-Vent Portal	 Adit waterproofing and lining Stud tunnel post-excavation activities and earthworks Structure connecting adit tunnel and ventilation building Ventilation building superstructure Ventilation building internal structure
North Portal	 Southbound tunnel waterproofing and lining formwork Southbound tunnel bench enlargement Southbound tunnel internal structure, backfilling and cross passage Tunnel Boring Machine (TBM) North drive excavation Northbound tunnel top heading and bench excavation, water proofing and lining North ventilation building structure Construction of retaining wall Mucking out from tunnels
South Portal	 Southbound tunnel Drill & Blast Excavation South ventilation building superstructure and internal structure Tunnel invert, waterproofing, lining, internal structure and cross passage Construction of retaining wall Mucking out from tunnels
Admin Building	• Construction of fence wall, drainage, internal structure, underground utilities and E&M installation

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Boundary Wall for DSD Pumping Station
 - Installation of Noise Barrier Steel Column & Panel
 - Remaining works on New Kiu Tau Footbridge
 - Mini-pile Installation
 - Noise barrier construction
 - Pipe Jacking Works for DN2200 Water Mains
 - Road works
 - Viaduct Segment Erection
 - Water Main Laying
 - Parapet installation
 - Planter Wall Construction
 - Construction of Profile Barrier on Viaduct deck
 - Drainage Work
 - Stressing of External Tendon
 - Construction of Abutment Wall

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - System design
 - E&M installation at Admin Building

Contract 5 (CV/2013/03)

2.4.5 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bored Piling
 - Bridge Pier Construction
 - Bridge Segment Erection
 - Tunnel Excavation
 - Sewage Treatment Plant Construction
 - Tunnel Ventilation Building Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - U-trough construction at Bridges A and E
 - Abutment construction at Bridge E
 - Column construction at Bridges A, B and D
 - Roof floor construction at Bridge C

Contract SS C505

2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:

- Building no. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 18, 26, 30, 36 and 41 construction
- Site Formation works for Building No. 14, 16, 25, 26 and 27
- ABWF Works for Building no.36
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab construction and Bridge Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Elevated Walkway E1, E2, E3 and E4 construction
- Bridge deck construction for Bridges 1 5

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:

- Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
- Landscape Plan
- Topsoil Management Plan
- Environmental Monitoring and Audit Programme
- Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
- Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
- Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
- Vegetation Survey Report
- Woodland Compensation Plan
- Habitat Creation Management Plan
- Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

T /		License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
		Contract 2		
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends
2	Chemical Waste Producer Registration	<i>North Portal</i> Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends
		<i>Mid-Vent Portal</i> Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392	28 Mar 2014	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0228-17	01-Apr-2017	16-Sep-2017
5	Permit	GW-RN0288-17	26-Apr-2017	20-Oct-2017
		GW-RN0291-17	26-Apr-2017	20-Oct-2017
		GW-RN0318-17	09-May-2017	27-Oct-2017
		GW-RN0371-17	07-Jun-2017	30-Sep-2017
		GW-RN0373-17	07-Jun-2017	30-Sep-2017
		GW-RN0484-17	30-Jul-2017	20-Jan-2018
		GW-RN0515-17	10-Aug-2017	01-Feb-2018
		GW-RN0519-17	10-Aug-2017	01-Feb-2018
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12 Apr 2016	11 Apr 2021
		Contract 3		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013	28 Aug 13	31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	2 Aug 13	Till Contract ends
5	Construction Noise	GW-RN0021-17	19 Jan 2017	8 Jul 2017

Item	Description	License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	Permit	GW-RN0029-17	19 Jan 2017	8 Jul 2017
		GW-RN0040-17	25 Feb 2017	24 Aug 2017
		GW-RN0066-17	3 Feb 2017	15 Jul 2017
		GW-RN0069-17	15 Feb 2017	14 Aug 2017
		GW-RN0070-17	3 Feb 2017	15 Jul 2017
		GW-RN0071-17	16 Feb 2017	15 Aug 2017
		GW-RN0084-17	8 Feb 2017	15 Jul 2017
		GW-RN0096-17	19 Feb 2017	10 Jul 2017
		GW-RN0111-17	26 Feb 2017	30 Jul 2017
		GW-RN0115-17	2 Mar 2017	26 Aug 2017
		GW-RN0161-17	1 Apr 2017	30 Sep 2017
		GW-RN0168-17 (cancelled on 13 Jul 2017)	2 Apr 2017	25 Sep 2017
		GW-RN0185-17	1 Apr 2017	30 Sep 2017
		GW-RN0204-17	30 Mar 2017	29 Sep 2017
		GW-RN0213-17	6 Apr 2017	9 Sep 2017
		GW-RN0219-17	31 Mar 201	30 Sep 2017
		GW-RN0235-17	11 Apr 2017	7 Oct 2017
		GW-RN0236-17	10 Apr 2017	16 Sep 2017
		GW-RN0302-17	30 Apr 2017	29 Oct 2017
		GW-RN0303-17	11 May 2017	10 Nov 2017
		GW-RN0305-17	30 Apr 2017	30 Jul 2017
		GW-RN0342-17	28 May 2017	20 Nov 2017
		GW-RN0376-17	22 Jun 2017	21 Dec 2017
		GW-RN0378-17	22 Jun 2017	21 Dec 2017
		GW-RN0384-17	12 Jun 2017	9 Sep 2017
		GW-RN0417-17	27 Jun 2017	16 Dec 2017
		GW-RN0458-17	16 Jul 2017	18 Dec 2017
		GW-RN0477-17	28 Jul 2017	5 Jan 2018
1	Ain nollution Control	Contract 5 Ref. No: 359338	12 Mars 2012	Till the end of
1	Air pollution Control (Construction Dust) Regulation	Kel. INC: 559558	13 May 2013	Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract
		Contract 6	I	l
1	Air pollution Control	Ref. No: 390614	29 Jun 2015	Till the end of

T		License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	(Construction Dust) Regulation			Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract
4	Water Pollution	No.:WT00024574-2016	31 May 2016	31 May 2021
	Control Ordinance - Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021
		No.:WT00024742-2016	14 June 2016	30 June 2021
		No.:WT00024746-2016	14 June 2016	30 June 2021
5	Construction Noise	GW-RN0126-17	3 Mar 2017	27 Aug 2017
	Permit	GW-RN0361-17	1 Jun 2017	31 Aug 2017
		GW-RN0421-17	20 Jun 2017	19 Dec 2017
		GW-RN0427-17	3 Jul 2017	31 Aug 2017
		GW-RW0478-17	30 Jul 2017	27 Aug 2018
		Contract SS C505	1	
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract
5	Construction Noise	GW-RN0355-17	30 May 2017	25 Nov 2017
	Permit	GW-RN0418-17	21 Jun 2017	15 Dec 2017
		Contract 7		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract

Itom	Description	License/I	License/Permit Status			
Item	Description	Ref. no.	Effective Date	Expiry Date		
5	Construction Noise Permit	GW-RN0321-17	10 May 2017	4 Nov 2017		
		Contract 4				
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract		
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract		

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	• 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2, Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

 Table 3-2
 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 5-4 Impact Monitoring Stations - water Quanty					
Station ID	Description	Designated / Loca	nates of / Alternative ation	Nature of the location	Related to the Work Contract
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

Table 3-4 Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

(#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in Sections 2.1.6, 3.1.5 and 4.1.6 of the

approved EM&A Manual and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works
 - 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5Air Quality Monitoring Equipment

Equipment	Model		
24-Hr TSP			
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*		
Calibration Kit	TISCH Model TE-5025A*		
1-Hour TSP			
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &		
ronable Dust Meter	Counter*		

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.

- 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

 Table 3-6
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31* or Rion NL-52*
Calibrator	B&K Type 4231* or Quest QC-20* or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For

sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument/ YSI 550A Multifunctional Meter*/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ 650MDS/ YSI Professional DSS
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

 Table 3-7
 Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results $(L_{10} \text{ and } L_{90})$ were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\48th (July 2017)\R1132v2.docx

- 3.6.14 YSI 550A Multifunctional Meter is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Monitoring Station	Action	Level (µg /m ³)	Limit Level (µg/m ³)	
Womening Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1b	265	143		
AM2	268	149		
AM3	269	145		
AM4b	267	148	500	260
AM5a	268	143		
AM6	269	148		
AM7b	275	156		

 Table 3-8
 Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action I	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AM8	269	144			
AM9b	271	151			

Table 3-9	Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)			
Monitoring Location	Time Period: 0700-1900 hours on normal weekdays				
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}			

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 *dB(A) during examination period.*

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10	Action and Limit Levels for Water Quality
------------	---

Parameter	Performance	Monitoring Location					
	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4	
DO	Action Level	^(*) 4.23	(**)4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14	
(mg/L)	Limit Level	^(#) 4.19	^(**) 4.00	^(#) 4.60	^(**) 4.00	(#)4.08	
Turbidity (NTU)	Action Level	51.3	24.9	11.4	13.4	35.2	
		AND	120% of upstream control station of the same day				
	Limit Level	67.6	33.8	12.3	14.0	38.4	
		AND	130% of upstream control station of the same day				
SS (mg/L)		54.5	14.6	11.8	12.6	39.4	
	Action Level	AND	120% of upstream control station of the same day				
	Limit Lanal	64.9	17.3	12.4	12.9	45.5	
	Limit Level	AND	130% of upst	tream control s	station of the s	ame day	

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

(#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4 **AIR QUALITY MONITORING**

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *135* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Jul-17	26	6-Jul-17	9:27	39	34	35	
11-Jul-17	41	12-Jul-17	9:28	40	40	42	
17-Jul-17	19	18-Jul-17	9:40	37	34	36	
22-Jul-17	45	24-Jul-17	9:32	57	56	59	
28-Jul-17	86	29-Jul-17	13:00	67	64	68	
Average	43	Average			47		
(Range)	(19 – 86)	(Range)		(34 – 68)			

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Jul-17	63	6-Jul-17	9:24	34	40	36	
11-Jul-17	133	12-Jul-17	9:31	53	43	38	
17-Jul-17	48	18-Jul-17	9:36	45	34	31	
22-Jul-17	133	24-Jul-17	9:29	48	49	56	
28-Jul-17	142	29-Jul-17	13:04	63	60	64	
Average	104	Average			46		
(Range)	(48 - 142)	(Range)		(31-64)			

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Jul-17	42	6-Jul-17	9:22	37	47	39	
11-Jul-17	51	12-Jul-17	9:24	36	30	29	
17-Jul-17	41	18-Jul-17	9:34	33	33	38	
22-Jul-17	44	24-Jul-17	9:35	66	59	60	
28-Jul-17	82	29-Jul-17	13:05	63	59	62	
Average (Range)	52 (41 - 82)	Average (Range)		46 (29 - 66)			

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jul-17	26	3-Jul-17	9:46	27	26	31	
12-Jul-17	33	8-Jul-17	8:47	50	47	51	
18-Jul-17	52	14-Jul-17	10:06	43	45	47	
22-Jul-17	21	20-Jul-17	9:27	33	43	46	
29-Jul-17	91	26-Jul-17	9:23	37	36	33	
Average	45	Average			40		
(Range)	(21 - 91)	(Range)		(26 – 51)			

	24-hour 1-hour TSP (μg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-Jul-17	19	3-Jul-17	10:01	22	21	32
12-Jul-17	37	8-Jul-17	8:49	45	42	46
18-Jul-17	16	14-Jul-17	10:08	44	45	36
22-Jul-17	17	20-Jul-17	9:29	40	36	36
29-Jul-17	188	26-Jul-17	9:25	40	38	39
Average	55	Average 37				
(Range)	(16 - 188)	(Range) (21 – 46)				
		indicated Acti		ceedance	()	

Remarks: bold and italic indicated Action Level exceedance

Table 4-6	Summary of 24-hour and 1-hour TSP Monitoring Results – AM6
-----------	--

Date	24-hour	1-hour TSP (μg/m ³)					
	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jul-17	41	3-Jul-17	9:26	30	28	25	
12-Jul-17	56	8-Jul-17	9:01	47	45	51	
18-Jul-17	22	14-Jul-17	10:14	35	47	34	
22-Jul-17	29	20-Jul-17	9:35	34	38	40	
29-Jul-17	101	26-Jul-17	9:36	34	33	38	
Average (Range)	50 (22 - 101)	Avera (Rang	•		37 (25 - 51)		

Table 4-7	Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b
-----------	---

	24-hour	ır 1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jul-17	70	3-Jul-17	9:48	40	41	41	
12-Jul-17	107	8-Jul-17	9:42	43	46	46	
18-Jul-17	30	14-Jul-17	9:20	50	54	62	
22-Jul-17	39	20-Jul-17	9:43	64	71	60	
29-Jul-17	137	26-Jul-17	9:21	64	74	75	
Average	77	Average		55			
(Range)	(30 - 137)	(Range)		(40 – 75)			

Table 4-8	Summary of 24-hour and 1-hour TSP Monitoring Results – AM8
-----------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jul-17	32	3-Jul-17	13:55	38	38	37	
12-Jul-17	26	8-Jul-17	13:38	40	44	51	
18-Jul-17	16	14-Jul-17	13:09	70	69	59	
22-Jul-17	15	20-Jul-17	13:09	62	68	66	
29-Jul-17	90	26-Jul-17	13:11	72	77	73	
Average (Range)	36 (15 - 90)	Avera (Rang	•		58 (37 – 77)		

	24-hour		1	1-hour TSP (µg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Jul-17	26	6-Jul-17	9:04	42	43	30	
11-Jul-17	28	12-Jul-17	9:26	64	71	72	
17-Jul-17	20	18-Jul-17	9:12	41	42	42	
22-Jul-17	25	24-Jul-17	9:00	59	54	58	
28-Jul-17	41	29-Jul-17	9:16	63	68	65	
Average (Range)	28 (20 - 41)	Average 54 (Range) (30 - 72)					

- 4.2.1 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP monitoring results were below the Action/Limit Levels. For 24-hour TSP monitoring, an Action Level exceedance was recorded at AM5a on 29 July 2017. Notification of Exceedance (NOE) was issued to relevant parties on 4 August 2017 and the investigation for the cause of exceedance is underway.
- 4.2.2 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

5.2.1 In the Reporting Period, a total of **40** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1Summary of Construction Noise M	Ionitoring Results
--	---------------------------

Construction Noise Level (L _{eq30min}), dB(A)							
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)		
6-Jul-17	59	68	59	61	65		
12-Jul-17	57	72	60	62	66		
18-Jul-17	58	69	59	61	65		
24-Jul-17	61	65	64	64	67		
Limit Level	75 dB(A)						

Remarks

(*) façade correction $(+3 \ dB(A))$ is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)									
Date	NM3	NM4	NM5	NM6	NM7				
3-Jul-17	55	65	53	58	58				
14-Jul-17	63	62	57	62	66				
20-Jul-17	64	61	58	59	67				
26-Jul-17	59	65	58	63	62				
Limit Level			75 dB(A)						

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM2A(a), WM3x and WM4, according to *"Event and Action Plan"* stipulation, 6, 1 and 3 additional water quality monitoring day was conducted for WM2A(a), WM3x and WM4 respectively and theirs control stations in the reporting period.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

	Water Quality Montoring Results Associated of Confidence 2 and 5										
Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)		Suspended Solids (mg/L)				
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB		
4-Jul-17	7.2	8.2	7.2	30.9	13.0	23.1	22.0	12.5	32.5		
6-Jul-17	7.5	8.0	6.3	65.6	14.1	40.5	50.0	12.0	30.5		
7-Jul-17	#	#	#	<u>61.1</u>	8.1	29.8	<u>63.0</u>	8.0	26.0		
8-Jul-17#	6.9	7.1	6.3	<u>80.7</u>	12.2	17.6	<u>64.5</u>	8.0	13.0		
10-Jul-17	7.5	7.8	6.8	34.5	7.1	14.2	34.0	5.0	11.0		
11-Jul-17#	#	#	#	12.5	5.2	7.7	13.0	6.0	12.0		
12-Jul-17	7.5	8.2	7.2	25.4	4.7	18.0	19.5	4.0	19.0		
14-Jul-17	6.9	7.7	6.4	70.4	21.9	72.6	91.5	10.0	83.5		
18-Jul-17	8.3	8.6	7.9	70.0	49.8	51.4	<u>61.0</u>	48.5	36.5		
19-Jul-17#	#	#	#	35.1	13.0	16.8	31.0	12.0	8.0		
20-Jul-17	6.9	7.1	6.4	19.6	7.6	11.6	15.5	6.0	8.0		
22-Jul-17	6.8	8.0	5.7	19.7	6.4	8.3	19.5	5.5	8.5		
24-Jul-17	7.1	7.6	6.8	70.0	22.8	65.0	69.0	22.5	64.0		
26-Jul-17	7.4	7.6	6.9	20.5	16.7	9.8	20.5	14.5	9.0		
28-Jul-17	7.3	7.7	6.8	21.2	8.2	12.4	21.5	5.0	12.5		
31-Jul-17	7.1	7.7	6.6	31.3	7.2	14.6	24.5	2.0	13.0		

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

Remarks: bold with underline indicated Limit Level exceedance

Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Quality Monitoring Results Associated of Contracts 6 and SS C505
-----------	--

Date		d Oxygen g/L)		bidity TU)	Suspended Solids (mg/L)					
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C				
4-Jul-17	7.3	7.4	49.0	30.0	47.0	37.5				
6-Jul-17	7.7	7.0	49.2	22.2	53.5	24.5				
8-Jul-17	7.9	8.0	34.2	17.4	24.5	8.0				
10-Jul-17	6.7	6.6	32.0	11.0	33.5	7.0				
12-Jul-17	7.7	6.2	19.7	11.8	20.5	6.5				
14-Jul-17	7.8	7.1	25.6	18.9	24.0	6.5				
18-Jul-17	8.3	8.4	743.5	825.5	527.5	746.5				
20-Jul-17	6.6	7.0	14.2	12.8	11.0	13.0				
22-Jul-17	7.9	8.6	9.4	7.5	10.0	5.0				
24-Jul-17	7.3	7.8	533.0	over range	278.5	676.5				

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.48) – July 2017

Date		l Oxygen g/L)		oidity ΓU)	Suspend (mg	ed Solids g/L)
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C
26-Jul-17	7.7	8.0	16.6	10.0	14.0	6.5
28-Jul-17	7.5	7.8	17.0	12.5	12.5	8.0
31-Jul-17	7.5	8.1	17.3	11.8	14.0	4.0

Table 6-3	Water Quality Monitoring Results Associated only Contract 6
-----------	---

Date]	Dissolve (m	d Oxyg g/L)	gen	Turbidity (NTU)				Suspended Solids (mg/L)			
Date	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C
4-Jul-17	7.6	7.7	*	*	<u>81.4</u>	11.5	*	*	<u>96.0</u>	<2	*	*
5-Jul-17#	#	#	*	*	40.5	4.3	*	*	40.5	4.5	*	*
6-Jul-17	7.5	7.9	*	*	527.5	33.5	*	*	327.5	23.0	*	*
7-Jul-17#	#	#	*	*	53.9	7.5	*	*	40.0	3.0	*	*
8-Jul-17	7.5	7.8	*	*	24.3	12.4	*	*	<u>18.5</u>	7.0	*	*
10-Jul-17	7.3	8.6	*	*	23.8	6.4	*	*	28.0	7.0	*	*
12-Jul-17	6.5	7.8	*	*	23.0	7.7	*	*	14.5	2.5	*	*
14-Jul-17	7.7	7.7	*	*	23.5	7.5	*	*	14.0	2.0	*	*
18-Jul-17	8.5	8.8	*	*	overr ange	205.0	*	*	<u>1490.0</u>	211.0	*	*
19-Jul-17#	#	#	*	*	157.0	8.6	*	*	124.0	4.0	*	*
20-Jul-17	7.1	6.7	*	*	70.7	11.3	*	*	58.5	7.5	*	*
21-Jul-17#	#	#	*	*	10.8	4.5	*	*	9.0	5.0	*	*
22-Jul-17	7.7	8.3	*	*	12.3	4.7	*	*	12.5	<2	*	*
24-Jul-17	7.2	7.8	*	*	123.5	10.6	*	*	63.5	6.0	*	*
25-Jul-17#	#	#	*	*	46.4	7.6	*	*	65.0	9.0	*	*
26-Jul-17	7.4	8.0	*	*	8.3	6.1	*	*	3.5	<2	*	*
27-Jul-17#	#	#	*	*	8.0	4.2	*	*	5.0	<2	*	*
28-Jul-17	7.2	7.7	*	*	10.3	7.2	*	*	7.0	8.5	*	*
31-Jul-17	6.9	7.5	*	*	8.8	5.4	*	*	5.5	<2	*	*

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

* water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

Date	Dissolved (mg	•0		oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
4-Jul-17	7.3	6.9	134.2	124.6	417.0	391.0	
6-Jul-17	6.9	7.9	82.0	115.0	80.0	1625.0	
8-Jul-17	7.0	7.6	<u>58.9</u>	37.8	76.5	50.0	
10-Jul-17	6.8	7.4	9.7	12.1	11.5	30.5	
11-Jul-17#	#	#	6.8	8.5	7.0	15.0	
12-Jul-17	6.7	7.7	24.6	21.6	15.0	53.0	
14-Jul-17	6.3	7.3	8.1	8.3	9.0	14.0	
18-Jul-17	8.2	8.3	211.0	538.5	123.5	297.0	
20-Jul-17	6.3	7.1	19.4	29.5	17.5	67.0	
22-Jul-17	7.0	7.3	6.6	89.8	9.0	179.0	
24-Jul-17	6.5	7.0	45.9	101.5	16.0	161.0	
26-Jul-17	6.9	7.1	13.7	14.6	8.0	27.0	
28-Jul-17	6.9	7.0	22.8	28.9	14.0	56.5	
31-Jul-17	6.8	6.8	15.0	24.5	6.0	52.5	

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Location		olved ygen	Turk	oidity	_	ended lids		otal edance	•	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	0	0	0	0	0	0	0
WM2A(a)	0	0	0	8	0	10	0	18	0	0
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	1	0	1	0	2	0	0
WM4	0	0	0	4	0	4	0	8	0	0
No of Exceedance	0	0	0	13	0	15	0	28	0	0

 Table 6-5
 Action and Limit (A/L) Levels Exceedance Recorded

- 6.2.3 In this Reporting Period, a total of twenty-eight (28) Limit Level (LL) exceedances, namely thirteen (13) LL exceedance of turbidity and fifteen (15) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. According to the investigation result, all the exceedances were concluded as non-project related.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
4, 5, 6 and 7 July 2017	WM2A(a)	NTU & SS	There were successive rainy days on 4 to 7 July 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. Trails of washing out soil from the vegetation slope adjacent to the river course were observed. In addition, during 4 to 7 July 2017, the Contractor observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances were partially caused by the rainstorm as well as the suspected turbid water attributed by construction works by others.
8 and 10 July 2017	WM2A(a)	NTU & SS	It rained on 8 July 2017 and the water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances were partially caused by the rainstorm as well as the suspected turbid water attributed by construction works by others.
6, 7 and 8 July 2017	WM4	NTU & SS	There were consecutive rainy days on 6 to 8 July 2017. The water quality throughout the water channel was deteriorated by the stirred up sediment and runoff from the surrounding environment. During weekly site inspection at the works area adjacent to river channel, no adverse water quality impact was observed with the

 Table 6-6
 Summary of Water Quality Exceedance in the Reporting Period

			mitigation measures implemented by the Contractor. However, turbid water was observed in the existing river channel under the influence of rain. The site condition was generally in order and no abnormal situation under the Contract was identified. In our investigation, it is considered that exceedances were related to the impact of rain and unlikely related to the works under the Contracts 2 and 3.
8 July 2017	WM3x	NTU & SS	It rained on 8 July 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day. The construction site was general in order and no adverse water quality impact was observed. Based on the above investigation, it is considered that the exceedances were due to rain and unlikely caused by the works under Contract 6.
18, 19 and 20 July 2017	WM2A(a)	NTU & SS	There were successive rainy days on 18 to 20 July 2017 in which Amber rainstorm signal was issued on 18 July 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 19 and 20 July 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances were due to residual impact of rain and not due to works under Contract 6.
18 July 2017	WM4	NTU & SS	There was heavy rainstorm (total rainfall at 134.3mm) 18 July 2017. The water quality throughout the water channel was therefore deteriorated by the stirred up sediment and runoff from the surrounding environment. During weekly site inspection at the works area adjacent to river channel, no adverse water quality impact was observed with the mitigation measures implemented by the Contractor. However, turbid water was observed in the existing river by the impact of rain. Besides, the site condition was generally in order and no abnormal situation under the Contract was identified. In our investigation, it is considered that exceedances were related to the impact of rain and unlikely related to the work under the Contracts 2 and 3.
24 and 25 July 2017	WM2A(a)	NTU & SS	There was heavy rainstorm on 23 July 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. The muddy water was trapped at the nylon dam which deflated in the morning on 24 July 2017. In addition, during 24 and 25 July 2017, the Contractor observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed. In our investigation, the

	implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances were partially caused by the rainstorm as well as the
	suspected turbid water attributed by construction works by others.

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval. The last ecological monitoring report (May - June 2017) was submitted to EPD on 14 July 2017. In the Reporting Period, ecological monitoring was not necessary to be carried out.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Type of	Conti	act 2	Conti	ract 3	Co	ntract 4	Cont	ract 6	Co	ntract 7	Contrac	et SS C505	
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Qty.
C&D Materials (Inert) (in '000m ³)	56.6085		1.917		0	-	0.934		0.931		8.101		68.4915
Reused in this Contract (Inert) (in '000 m ³)	0.8453		0.120		0		0		0		0.223		1.1883
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	20.1780	C6/ NENT# & other projects approved by the ER	0		0		0		0	-	0		20.178
Disposal as Public Fill (Inert) (in '000 m ³)	35.5852	Tuen Mun 38	1.617	Tuen Mun 38	0		0.934	Tuen Mun 38	0.931	Tuen Mun 38	7.878	ТКО 137	46.9452

Table 8-1Summary of Quantities of Inert C&D Materials for the Project

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2

2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	ract 4	Cont	tract 6	Cont	ract 7	Contract	SS C505	Total	
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Qty. Disposal location		Disposal location	Quantity	
Recycled Metal ('000kg) #	374.330	Licensed collector	0	-	0		0		2	Licensed collector	296.540	Licensed collector	672.87	
Recycled Paper / Cardboard Packing ('000kg) #	0.300	Licensed collector	0	-	0	-	0	-	0.04	Licensed collector	0.650	Licensed collector	0.99	
Recycled Plastic ('000kg) #	2.180	Licensed collector	0	-	0		0		0.001	Licensed collector	1.040	Licensed collector	3.221	
Chemical Wastes ('000kg) #	2.844	Licensed collector	0	-	0	-	0		0		0		2.844	
General Refuses ('000m ³)	0.1970	NENT	0.065	NENT	0		0.288	NENT	0.025	NENT	1.651	NENT	2.226	

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ((000m^3)).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 21 and 28 July 2017. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follow-Up Status
7 July 2017	• Tubid water discharging from the outlet was observed. De-silting facilities should be improved to make sure all water discharge from site should comply with license requirement. (Admin-building)	• The Contractor de-sludged sedimentation tank, and make sure wastewater treatment facilities operated efficient
14 July 2017	• No adverse environmental issue was observed.	• NA
21 July 2017	• As a reminder, stagnant water cumulated on site after rainstorm should be removed to prevent mosquito breeding. (South Portal)	• Not required for reminder.
28 July 2017	• No adverse environmental issue was observed.	• NA

Table 9-1Site Observations for Contract 2

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 19 and 27 July 2017. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Table 9-2Site Observations for Contract 3

Date	Findings / Deficiencies	Follow-Up Status				
6 July 2017	• No adverse environmental issue was observed.	• NA				
13 July 2017	• It was reminded that stockpile or cement bags should be covered entirely to prevent dust emission and surface runoff.	• NA				
19 July 2017	• Accumulation of stagnant water observed at the bridge. The contractor was advised to clear the stagnant water to avoid mosquito breeding.	• Mosquito control measure was applied on the stagnant water.				
27 July 2017	• Broken cement bags placed next to the gully were observed. The Contractor should remove the cements bags to prevent generation of turbid water and water pollution. (Tai Wo	• The broken cement bags were removed away from the gully.				

Date	Findings / Deficiencies	Follow-Up Status			
	 Service Road West) Free standing chemical containers were observed, the Contractor should provide drip tray underneath to prevent leaking on ground. (Tai Wo Service Road East). The Contractor was reminded to cover the entire slope next to the river course with impervious sheet to minimize muddy runoff. 	chemical containers were placed on drip trays.			

Contract 4

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 7, 14, 21 and 24 July 2017 in which IEC joined the site inspection on 24 July 2017. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Date	Findings / Deficiencies	Follow-Up Status
7 July 2017	• No adverse environmental issue was observed.	• NA
14 July 2017	• No adverse environmental issue was observed.	• NA
21 July 2017	• No adverse environmental issue was observed.	• NA
24 July 2017	• No adverse environmental issue was observed.	• NA

Table 9-3Site Observations for Contract 4

<u>Contract 6</u>

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 July 2017. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Table 9-4Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status
6 July 2017	• No adverse environmental issue was observed.	• NA
13 July 2017	• Free standing chemical container was observed in North Portal, the Contractor should provide drip tray for the chemical container.	• The free-standing chemical container was removed from site.
20 July 2017	• No adverse environmental issue was observed.	• NA
27 July 2017	• No adverse environmental issue was observed.	• NA

Contract SS C505

9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 5, 12, 19 and 26 July 2017 in which IEC joined the site inspection on 26 July 2017. No non-compliance was noted.

9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5Site Observations for Contract SS C505

Date	Findings / Deficiencies Follow-Up Stat						
5 July 2017	 Accumulation of waste was observed on the ground. The contractor was advised to dispose the waste regularly. The contractor was reminded to clean stagnant water within work area of PTB. 	•	Accumulation of waste was disposed regularly. Not required for reminder.				
12 July 2017	• Construction waste was observed on the ground of PTB and PTB East. The contractor was advised to dispose construction wastes regularly.	•	Construction waste was disposed regularly.				
	• Stagnant water was observed at the drip tray under air compressor at PTB West. The contractor was advised to clear the stagnant water to avoid mosquito breeding.	•	Stagnant water at the drip tray was removed.				
	• Chemical containers were observed without drip tray at site entrance area. The contractor was advised to place chemical containers inside drip tray.	•	Chemical containers was removed from site area.				
	• The contractor was reminded to clean stagnant water within site area.	•	Not required for reminder.				
19 July 2017	 Chemical containers outside drip tray were observed at work area of PTB. The contractor was advised to place chemical containers inside drip tray. The contractor was reminded to clear stagnant water within site area after raining. 	•	Chemical containers were placed inside drip tray. Last observation closed. Not required for reminder.				
26 July 2017	• The contractor was reminded to clear stagnant water at work area of building 1 to avoid mosquito breeding.	•	Not required for reminder.				

Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 7, 14, 18 and 28 July 2017. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* **7** that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	F	'ollow-Up Status
7 July 2017	• As a reminder, stagnant water cumulated inside the drip tray after rainstorm should be removed.		Not required for reminder.
14 July 2017	• Drip tray should be provided for all chemical storage on-site.		The chemical containers were removed from site.
18 July 2017	• No adverse environmental issue was observed.	•	NA
28 July 2017	• No adverse environmental issue was observed.	•	NA

Table 9-6Site Observations for Contract 7

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecutions

10.1.1 In the Reporting Period, no environmental complaint under the EM&A programme was received. However, as notified by the RE in the Reporting Period, a summons (ref. no. FLS7210/2017 dated 20 June 2017) was issued to the Contractor of Contract 2 (Dragages Hong Kong Limited) for contravening the Water Pollution Control (General) Regulations. The summons details is presented in following

> "On 29 December 2016 at the construction site for CEDD contract no: CV/2012/08 Liantang/ Heung Yuen Wai boundary Control Site formation & Infrastructure Works – Contract 2 at Mid Vent Portal at Po Kat Tsai Road, Lau Shui Heung, North District, New Territories, did contravene the provision of the licence, numbered WT00025594-2016 granted on 7 October 2016 under the Water Pollution Control Ordinance, Cap. 358, namely by failing to notify and explain to the Authority within 24 hours upon the occurrence of an accidental discharge or any emergency bypass or an overflow of untreated effluent or an operation upset which places the discharge in a temporary state of non-compliance with the licence as required by condition c6.2 of the licence, the purpose of which was as specified in Regulation 17B(2) (K) of the Water Pollution Control (General) Regulation, Cap. 358."

- 10.1.2 During hearing on 25 July 2017, DHK pleaded guilty to the EPD summons failing to report discharge within 24 hours of its occurrence. Therefore, a summons and prosecutions was registered for Contract 2 under the EM&A programme in the Reporting Period.
- 10.1.3 The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

	~	Envi	ronmental Co	mplaint Statistics	Project
Reporting Period	Contract No	Frequency		Complaint Nature	related complaint
19 May 2014 – 30 June 2017	Contract 2	0	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	(5) water(2) dust(1) noise
06 Nov 2013 – 30 June 2017	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	0
16 Aug 2013 – 30 June 2017	Contract 5	0	4	 (3) Dust (1) Noise 	0
16 Aug 2013 – 30 June 2017	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	(6) water (2) dust (1) Nuisance
15 Feb 2016 – 30 June 2017	Contract 7	0	1	• (1) Noise	0
16 Aug 2013 – 30 June 2017	SS C505	0	2	 (1) Noise (1) dust 	0
1 – 31 July 2017	Contract 2	0	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	NA
·	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	NA

 Table 10-1
 Statistical Summary of Environmental Complaints

	Contract	Envi	ronmental Co	mplaint Statistics	Project
Reporting Period	No	Frequency	Cumulative	Complaint Nature	related complaint
	Contract 4	0	0	NA	NA
	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	NA
	Contract 7	0	1	• (1) Noise	NA
	SS C505	0	2	(1) Noise(1) dust	NA

Table 10-2 Statistical Summary of Environmental Summons

Donorting Doriod	Contract No	Environmental Summons Statistics				
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature		
19 May 2014 – 30 June 2017	Contract 2	0	0	NA		
06 Nov 2013 – 30 June 2017	Contract 3	0	0	NA		
16 Aug 2013 – 30 June 2017	Contract 5	0	0	NA		
16 Aug 2013 – 30 June 2017	Contract 6	0	0	NA		
15 Feb 2016 – 30 June 2017	Contract 7	0	0	NA		
16 Aug 2013 – 30 June 2017	SS C505	0	0	NA		
	Contract 2	1	1	contravening the Water Pollution Control (General) Regulations		
1 21 July 2017	Contract 3	0	0	NA		
1 – 31 July 2017	Contract 4	0	0	NA		
	Contract 6	0	0	NA		
	Contract 7	0	0	NA		
	SS C505	0	0	NA		

Donorting Daried	Contract No	Environmental Prosecutions Statistics				
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature		
19 May 2014 – 30 June 2017	Contract 2	0	0	NA		
06 Nov 2013 – 30 June 2017	Contract 3	0	0	NA		
16 Aug 2013 – 30 June 2017	Contract 5	0	0	NA		
16 Aug 2013 – 30 June 2017	Contract 6	0	0	NA		
15 Feb 2016 – 30 June 2017	Contract 7	0	0	NA		
16 Aug 2013 – 30 June 2017	SS C505	0	0	NA		

	Contract 2	1	1	contravening the Water Pollution Control (General) Regulations
1 21 $J_{1}J_{2}$ 2017	Contract 3	0	0	NA
1 – 31 July 2017	Contract 4	0	0	NA
	Contract 6	0	0	NA
	Contract 7	0	0	NA
	SS C505	0	0	NA

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures							
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.							
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission 							
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used. 							
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal 							
General	The site was generally kept tidy and clean.							

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract	2
-----------------	---

Contract 2	
Mid-Vent Portal	Adit tunnel water proofing and lining
	• Stud tunnel post-excavation activities and earthworks
	• Ventilation building superstructure and internal structure works
	• Structure connecting the adit tunnel, and ventilation building
	Temporary drainage system
North Portal	Southbound tunnel enlargement, waterproofing and lining
	• Southbound tunnel internal structure, backfilling and construction of
	cross passage
	• Northbound tunnel top-heading and bench excavation, waterproofing
	and lining
	• Erection of acoustic curtain door and tunnel door for Northbound and
	Southbound tunnels
	North ventilation building superstructure, internal structure and
	backfilling
South Portal	• Southbound and Northbound D&B excavation and mucking out
	• Tunnel internal structure, construction of CP and tunnel backfilling
	• South ventilation building superstructure, internal structure, UU and

		E&M installation
	•	Southbound and Northbound tunnel invert, waterproofing and lining
Admin Building	•	Construction of permanent drainage and fencing wall
_	•	Building internal structure, fitting out work, curtain wall, drainage, UU
		and E&M installation

Contract 3

- Construction of Boundary Wall for Pumping Station
- Installation of Noise Barrier steel column & panel
- Remaining works on New Kiu Tau Footbridge
- Mini-pile Installation Works
- Noise barrier construction
- Pier / Pier Table construction
- Pipe Jacking Works DN2200 Water Mains
- Road works
- Viaduct segment erection
- Water Main Laying
- Parapet Installation
- Planter wall construction
- Construction of Profile barrier on Viaduct Deck
- Drainage Work
- Stressing of External Tendon
- Construction of Abutment Wall

Contract 4

- System design
- E&M installation at Admin Building
- E&A installation in tunnel

Contract 6

- Bored Piling
- Bridge Pier Construction
- Segment section
- Sewage Treatment Plant Construction
- Tunnel Works
- Tunnel Ventilation Building Construction

Contract 7

- U-trough and abutment construction at Bridge A and Bridge E
- Column construction at Bridge A and E
- Deck construction at Bridge B and D
- Construction of parapet wall and Façade Bridge C

Contract SS C505

- Building no. 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 18, 36 and 41 construction
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab construction and Bridges Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Elevated Walkway E1, E2, E3 and E4 construction
- Bridge deck construction for Bridges 1 5

11.3 Key Issues for the Coming Month

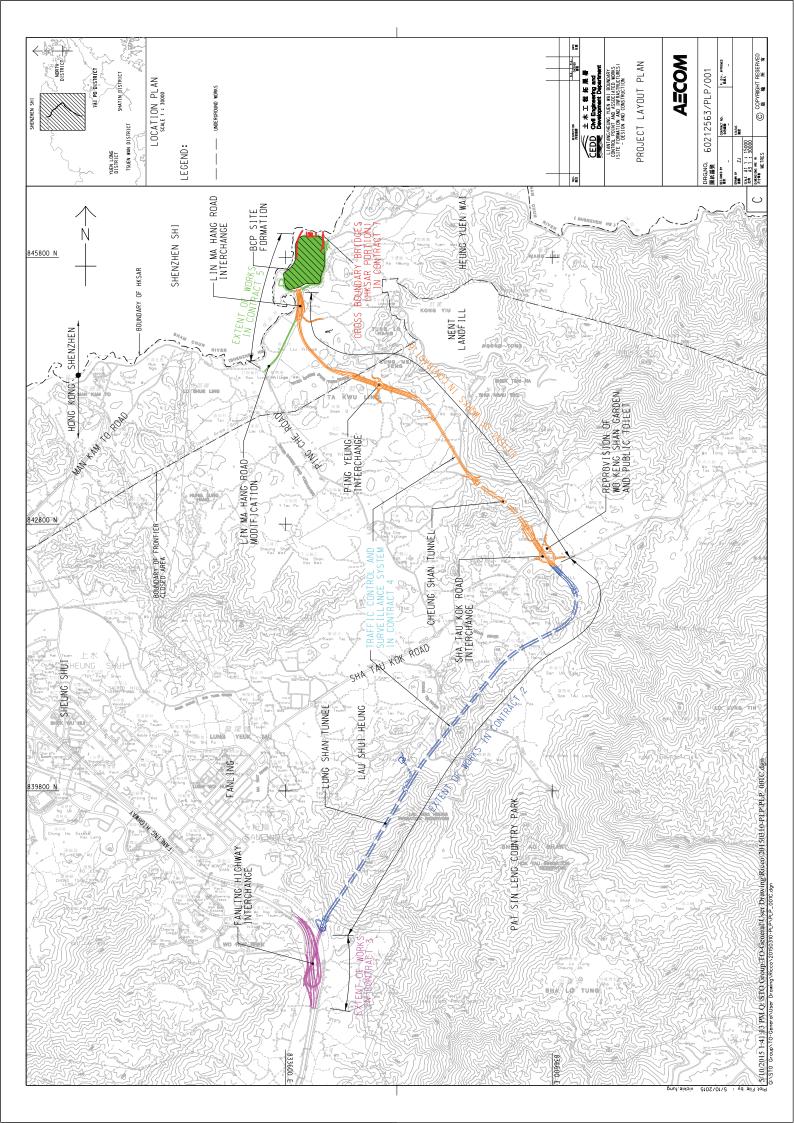
11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:

- Implementation of control measures for rainstorm;
- Regular clearance of stagnant water during wet season;
- Implementation of dust suppression measures at all times;
- Potential wastewater quality impact due to surface runoff;
- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

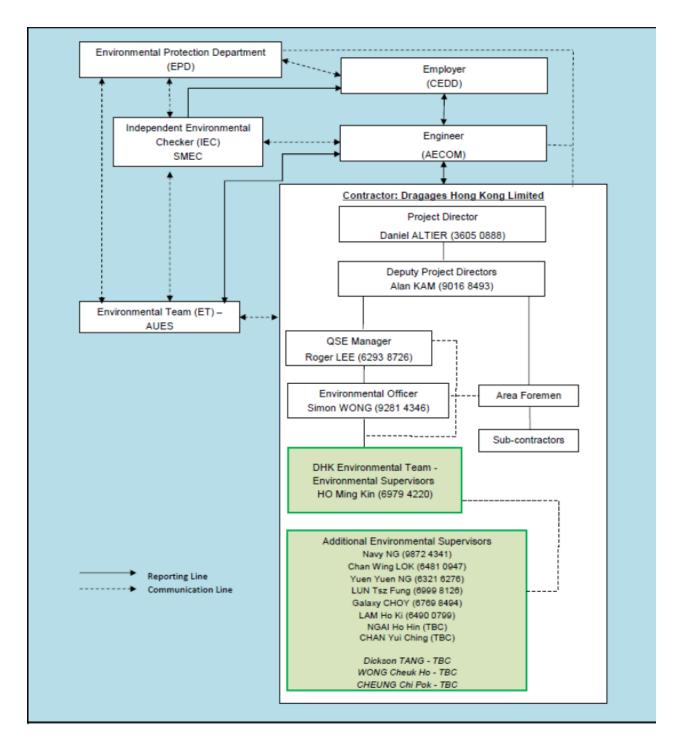
- 12.1.1 This is the **48th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 July 2017**.
- 12.1.2 For air quality monitoring, no 1-hour monitoring results triggered the Action or Limit Levels were recorded. For 24-hour TSP monitoring, an Action Level exceedance was recorded at AM5a on 29 July 2017. Notification of Exceedance (NOE) was issued to relevant parties on 4 August 2017 and the investigation for the cause of exceedance is underway.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of twenty-eight (28) Limit Level (LL) exceedances, namely thirteen (13) LL exceedance of turbidity and fifteen (15) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. According to the investigation result, all the exceedances were concluded as non-project related.
- 12.1.5 In this Reporting Period, no environmental complaint was received under the EM&A programme.
- 12.1.6 As notified by the RE in the Reporting Period, a summons (ref. no. FLS7210/2017 dated 20 June 2017) was issued to the Contractor of Contract 2 (Dragages Hong Kong Limited) for contravening the Water Pollution Control (General) Regulations. During hearing on 25 July 2017, DHK pleaded guilty to the EPD summons failing to report discharge within 24 hours of its occurrence. Therefore, a summons and prosecutions was registered for Contract 2 under the EM&A programme in the Reporting Period.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- 12.2.1 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

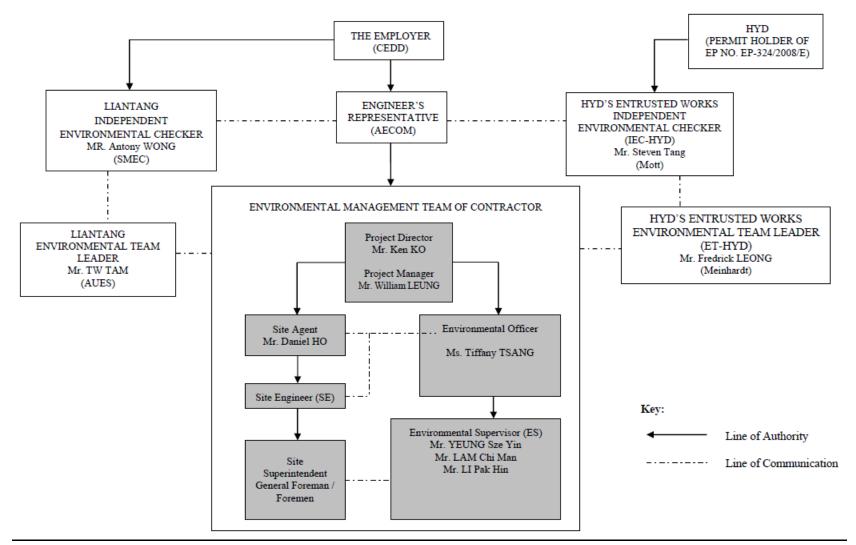
Layout plan of the Project



Appendix B

Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)

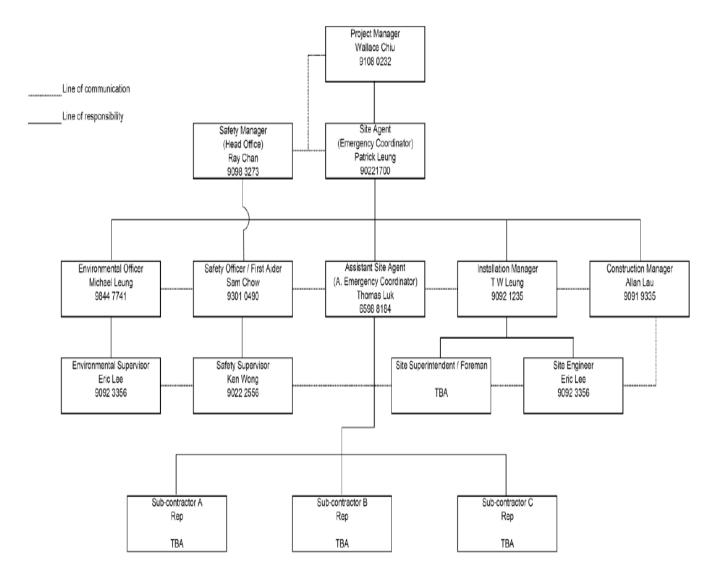

Contact Details of Key Personnel for Contract 2 - CV/2012/08
--

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Ho Ming Kin	6979 4220	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. DHK(Main Contractor) –Dragages Hong Kong Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

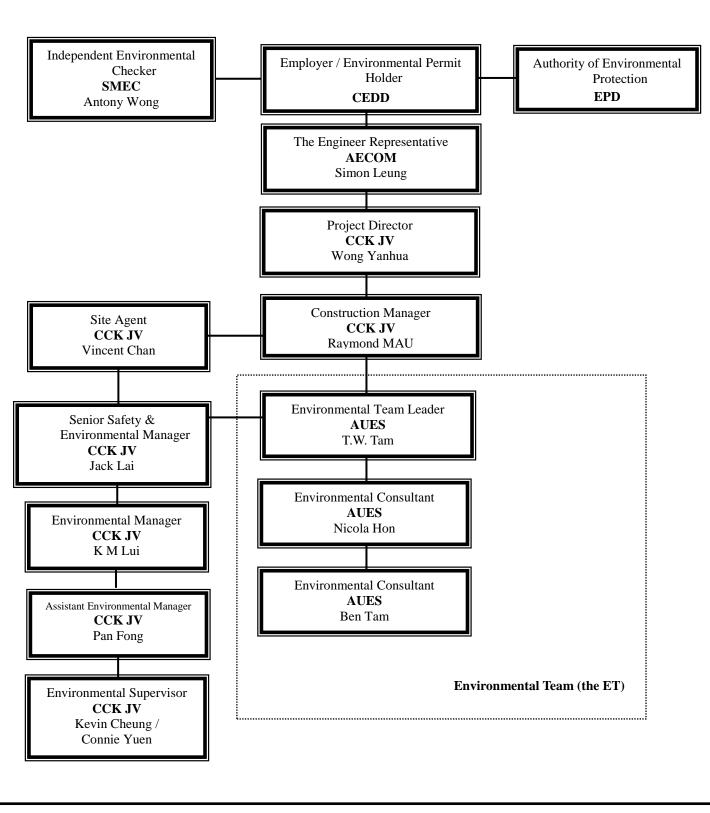

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Tiffany Tsang	2638 6115	2638 7077
Chun Wo	Environmental supervisor	Yeung Sze Yin	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Chun Wo (Main Contractor) – Chun Wo Construction Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 4 - NE/2014/02



Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Wallace Chiu	9108 0232	
Siemens	Site Agent	Patrick Leung	9022 1700	
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 4 - NE/2014/02

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Siemens (Main Contractor) – Siemens Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization - CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Jack Lao	9654 2966	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Manager	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

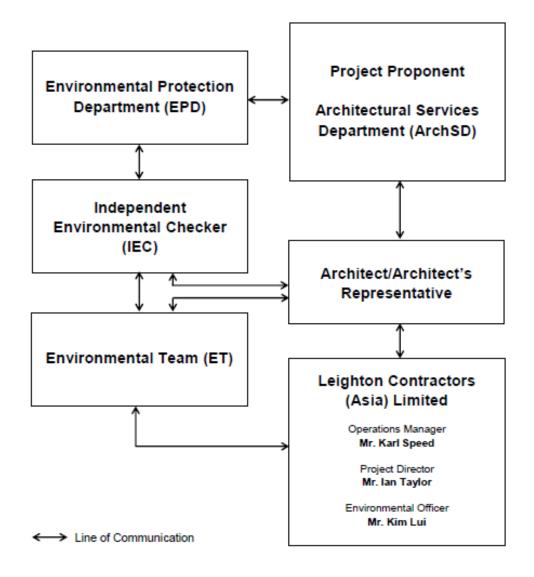
Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization -NE/2014/03


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Karl Speed	2823 1433	25298784
Leighton	Project Director	Mr. Ian Taylor	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD (Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/ Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (Aug, Sep, Oct 2017) Construction Rolling Progam

Item	Construction Activites
1	Admin Bldg - Construction of permanent drainage and fence wall
2	Admin Bldg - Building internal structure, fitting out work, curtain wall, drainage, UU and E&M installation
	Mid Vent Portal - Adit tunnel waterproofing and lining
5	Mid Vent Portal - Stud tunnel post-excavation and earthwork activities
	Mid-Vent Portal - Ventilation building superstructure and internal structure works
7	Mid Vent Portal - Structure connecting adit tunnel and ventilation building
8	Mid-Vent Portal - Temporary drainage system
9	North Portal - Southbound tunnel bench enlargement, waterproofing and lining
10	North Portal - Southbound tunnel internal sturcture, backfilling and construction of cross passage
11	North Portal - Northbound tunnel top-heading and bench excavation, waterproofing and lining
12	North Portal - Erection of acoustic curtain doors for the Northbound and Southbound tunnels
13	North Portal - North ventilation building superstructure, internal structure and backfilling
14	South Portal - Southbound tunnel D&B excavation and mucking out
15	Sorth Portal - Tunnel internal structure, construction of CP and tunnel backfilling
16	South Portal - South ventilation building superstructure, internal structure, UU and E&M installation
17	South Portal - Southbound and Northbound tunnel invert, waterproofing and lining

Contract 3

後和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (July, August and September 2017) Construction Rolling Progam

Item	Construction Activites
1	Boundary wall construction for DSD pumping station
2	Cable Detection and Trial Trenches
3	Remaining Works on New Kiu Tau Footbridge
4	Noise Barrier Construction
5	Pier Table Construction
6	Roadworks
7	Viaduct Segment Erection
8	Water Main Laying Works
9	Gabion Wall Construction
10	Installation of Noise Barrier Steel Column and Panel
11	Pre-drilling for Noise Barrier
12	Pit Construction for Heading Works
13	Parapet Installation
14	Planter Wall Construction
15	Drainage Work
16	Mini-pile Installation
17	Construction of Profile Barrier on Viaduct deck
18	Stressing of External Tendon
19	Construction of Abutment Wall

Contract 4

Tentative Three Months (July, August and September 2017) Construction Rolling Progam

Item	Construction Activites										
1	System design										
2	E&M installation at admin building										
3	E&M installation in tunnel										

Contract 6

Tentative Three Months (July, August and September 2017) Construction Rolling Progam

Construction Activites
Bored Piling
Bridge Pier Constrcution
Segment Erection
Tunnel Works
Sewage Treatment Plant Construction
Tunnel Ventilation Building Construction

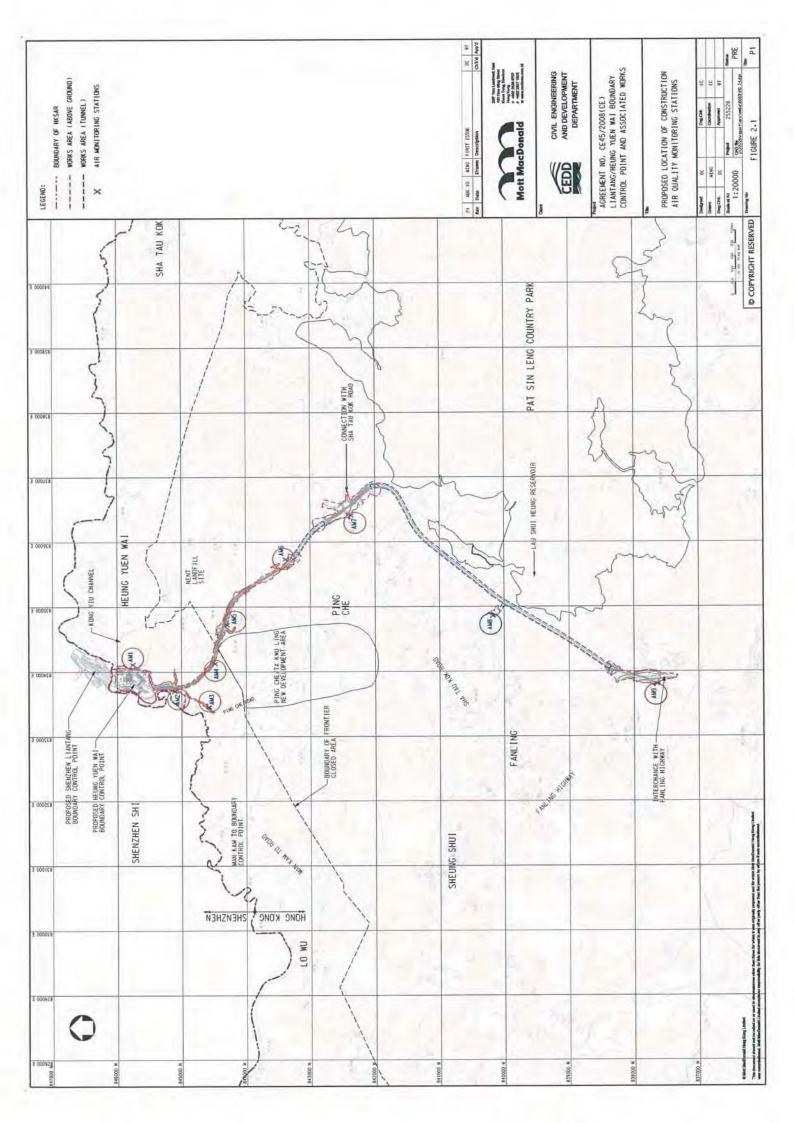
Contract 7

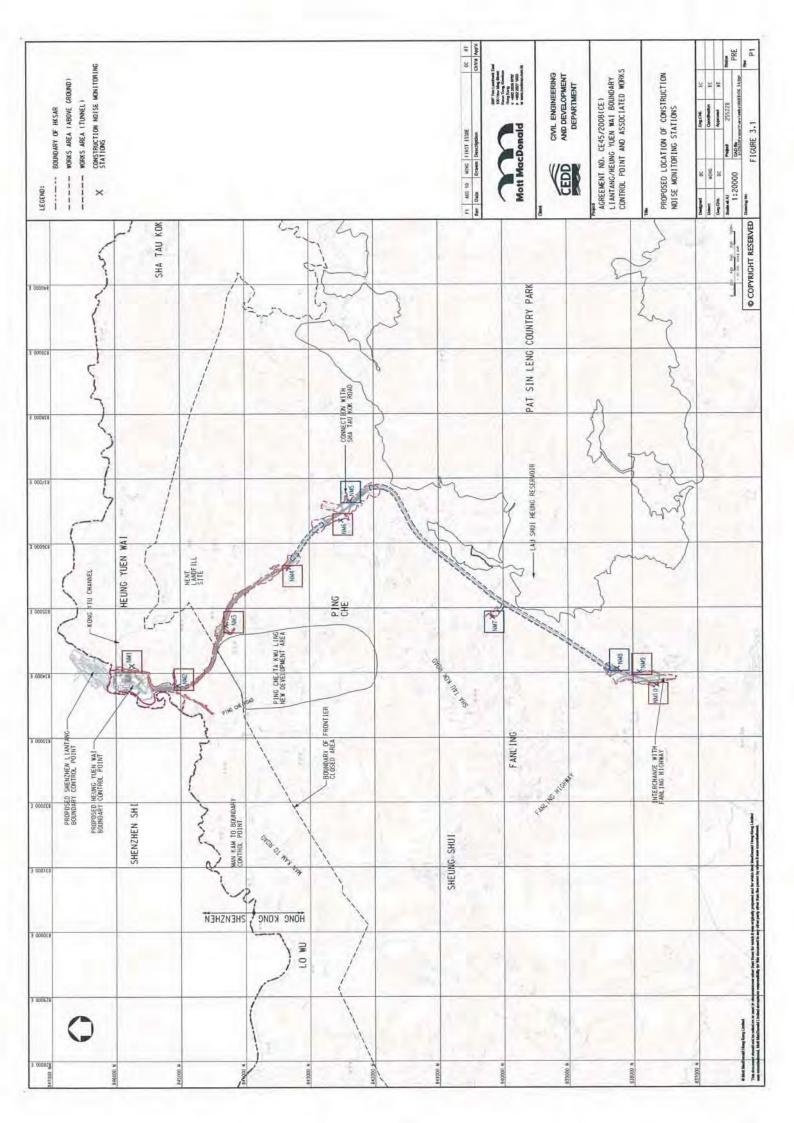
◆ 夏 约安 - 顯豐機械 - 上海建工 聯營 號 Kwan On - Richwell - SCG JV

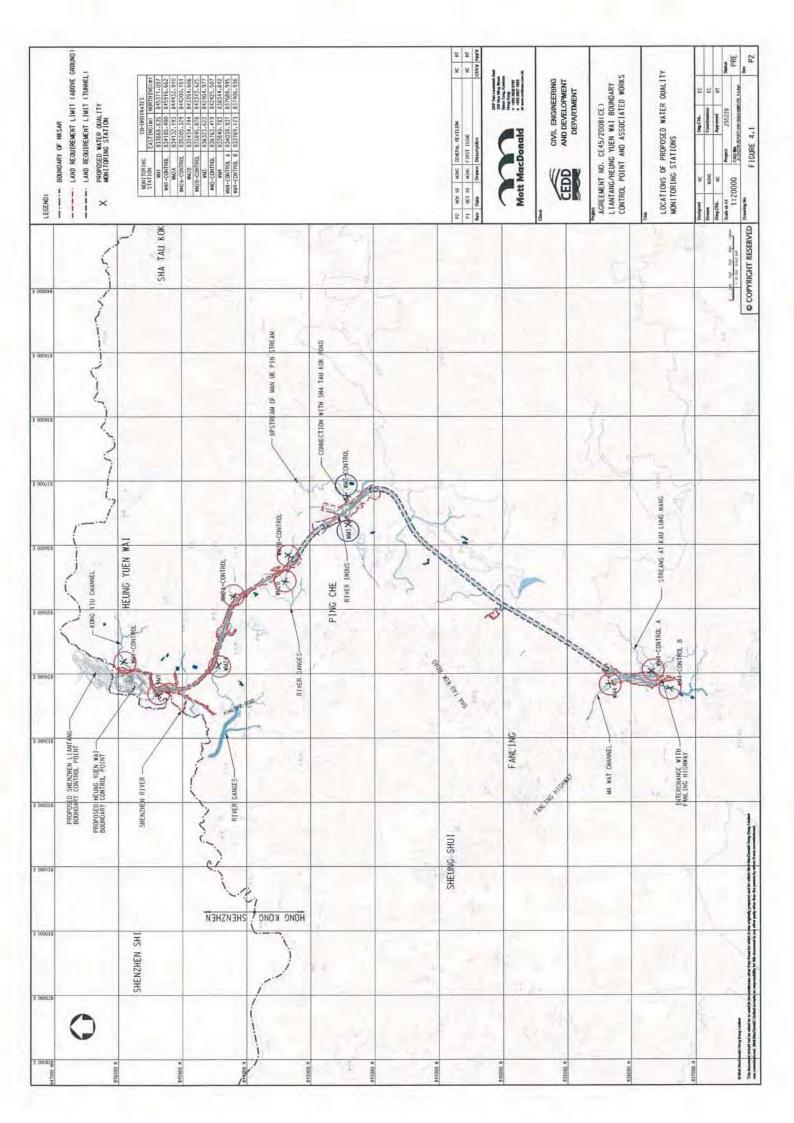
Tentative Three Months(July 2017, August 2017 and September 2017) Construction Rolling Progam

Item	Construction Activites
1	Bridge A - U-trough and abutment
2	Bridge A - Column
3	Bridge B - Deck
4	Bridge C - Façade and parapet wall at roof slab
5	Bridge D - Deck
6	Bridge E - U-trough and abutment
7	Bridge E - Column

Contract SS C505

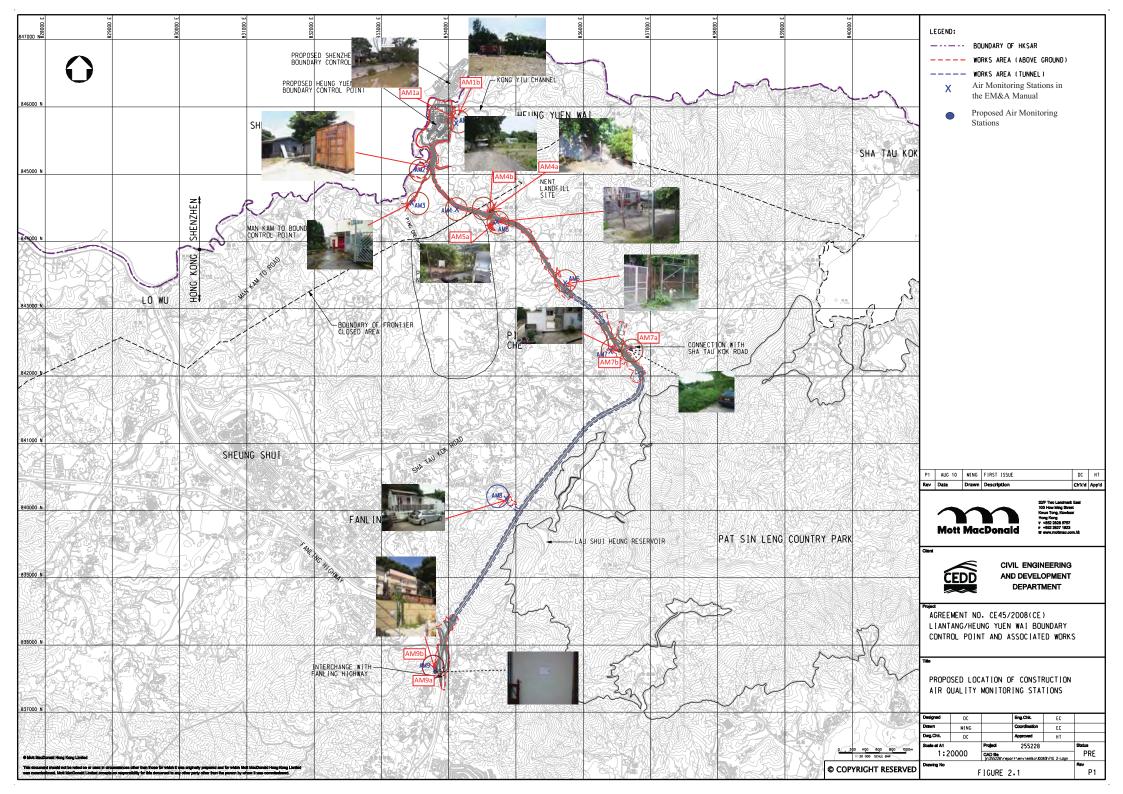

Tentative Three Months (July, August and September 2017) Construction Rolling Progam

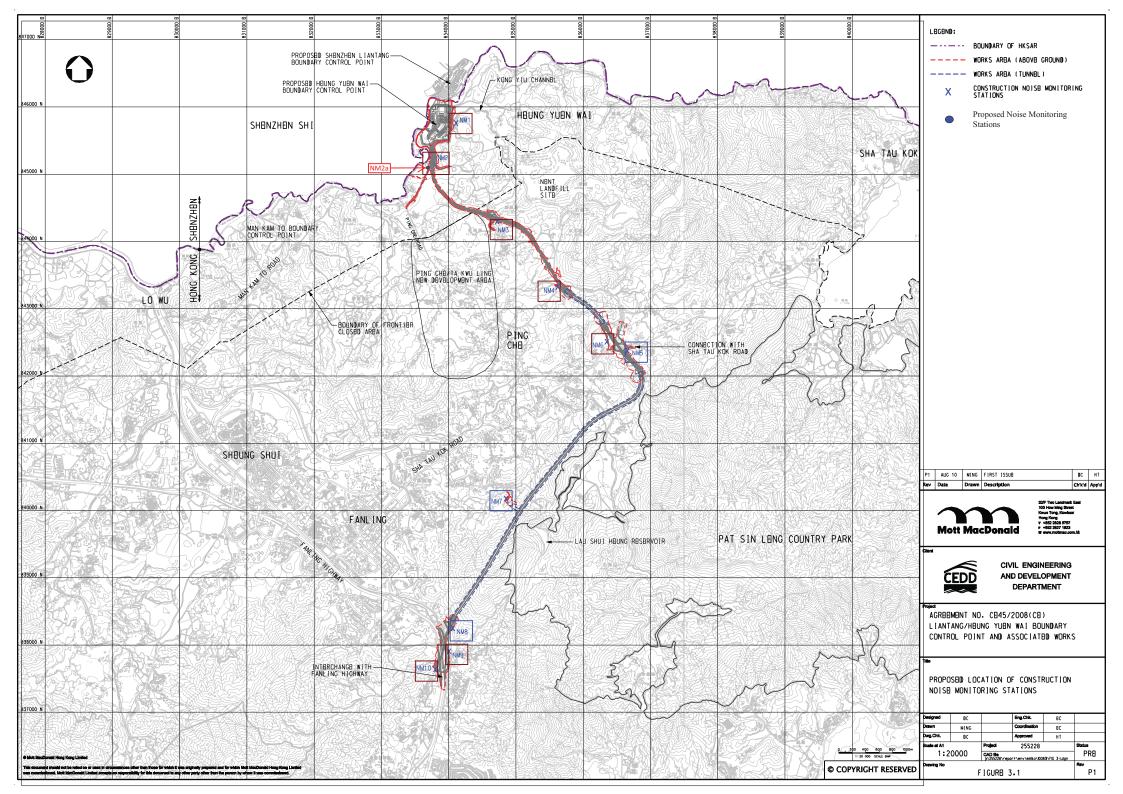

Item	Construction Activites
1	Passenger Terminal Building - RC Superstructure Works
2	Passenger Terminal Building - ABWF Works & MEP Installation Works
3	Passenger Terminal Building - Southern Enterance Construction
4	C&ED Detector Dog Base - Superstructures and Integrated ABWF & MEP Works
5	HKPF Building and Observation Tower - Superstructures, External Works, Integrated ABWF & MEP Works
6	Fire Station and Drill Tower - Superstructures, Integradted ABWF & MEP Works
	Cargo Examination Building (Inbound) - Superstructure and Integrated ABWF & MEP Works
	Cargo Examination Building (Outbound) - Superstructure and Integrated ABWF & MEP Works
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, Superstructures and ABWF & MEP Works
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Superstructures and Integrated ABWF & MEP Works
	GV Kiosk (Inbound) - Substructures and Superstructures Works
	GV Kiosk (Outbound) - Earthworks, Substructures and Superstructures Works
	Public Toilets (Outbound) - Substructure and Superstructures Works
	MXRVSS (Outbound) - Superstructures works
	Refuse Collection Point - Superstructures Works
	Irrigation Pump Room - Substructure and Superstructures works
	Elevated Walkway (E1, E2, E3 & E4) - Structure Works
	Vehicular bridges 1-5 - Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks, Road and Finishes Works
	External Works - CLP Cable & Power ON Transfer room
	External Works - Underground Utilities & Structures
21	External Works - Road Works

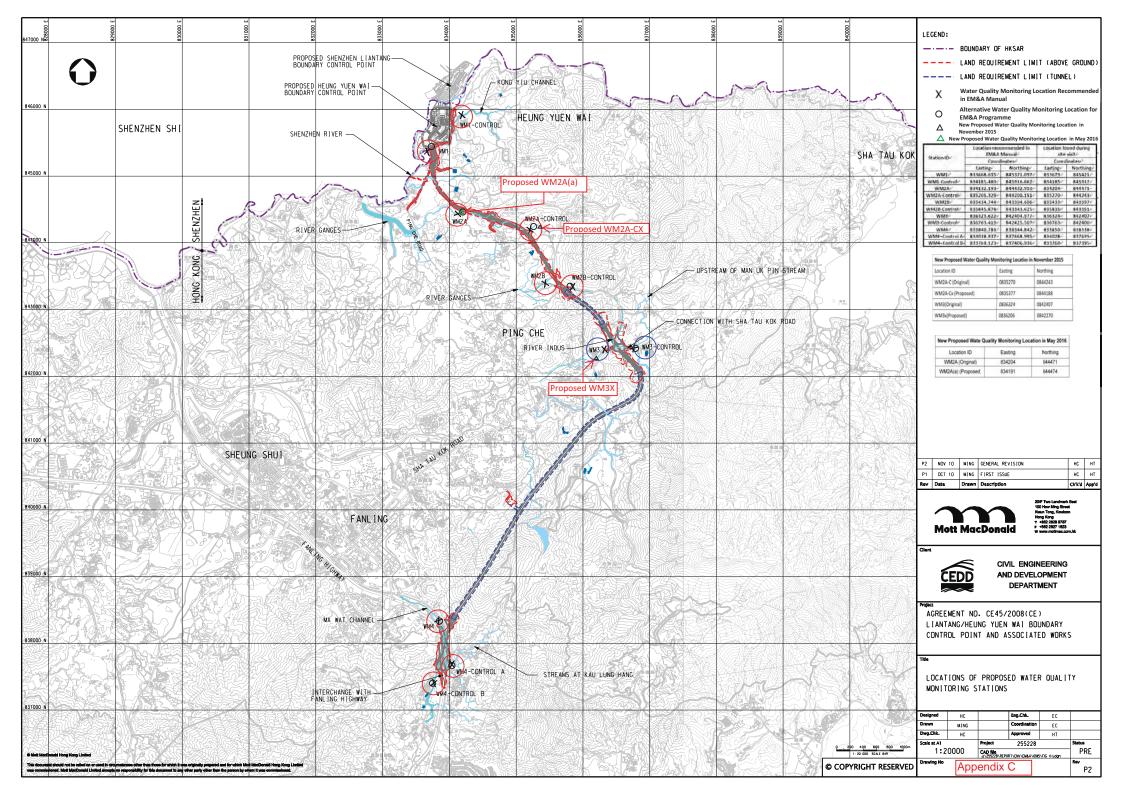


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Location :	_	House ne AM2	ear Lin I	Ma Hang Ro	oad		Date of Calibration:16/6/20Next Calibration Date:16/8/20Technician:Fai \$	17
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure perature	. ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.8 Temperature (K) 30	25 02
					CALIBRA	ATION ORIF	FICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696	
					CAL	IBRATION		
Plate No.	H20 (L) (in))H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION	
18	5.8	5.8	11.6	1.602	<u>(chart)</u> 58	57.38	Slope = 35.0342	
13	4.6	4.6	9.2	1.428	54	53.42	Intercept = 1.9520	
10	3.6	3.6	7.2	1.265	46	45.51	Corr. coeff. = 0.9969	
7	2.3	2.3	4.6	1.014	38	37.59		
5	1.4	1.4	2.8	0.794	30	29.68		
Calculatio Qstd = 1/1 IC = I[Sq:	n[Sqrt(H			/Ta))-b]		70.00	FLOW RATE CHART	
Qstd = sta						60.00		
IC = correct I = actual m = calibri	chart res	sponse	es			5 0.00		
b = calibr	-	-	t			350 40.00		
	-		-	oration (de ation (mm		Actual chart response (IC)		
For subs 1/m((I)[\$	-			npler flow:		Actual 40.00		
m = samp	_					10.00		
b = samp I = chart r		Jepi				0.00		
T = chart T Tav = dai Pav = dai	ly averag					0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	0

Temperature (°C) 29.0 Temperature (K) CALIBRATION ORIFICE Make-> TISCH Model-> Qstd Slope -> 2.11965 Model-> $5025A$ Serial # -> Qstd Intercept -> -0.02696 CALIBRATION Plate H20 (L)H2O (R H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.1 5.1 10.2 1.503 52 51.44 Slope = 33.8571 13 4.1 4.1 8.2 1.349 46 45.51 Intercept = 0.2229 0.2299 10 3.1 3.1 6.2 1.175 40 39.57 Corr. coeff. = 0.9982	6/2017 8/2017 Fai So			Location : Open area at Tsung Yuen Ha Village Location ID : AM1b												
Temperature (°C) 29.0 Temperature (K) CALIBRATION ORIFICE Make-> $TISCHModel-> 5025ASerial # -> 1941 Qstd Slope -> 2.11965-0.02696 Vertical State Plate H20 (L)H2O (R) H20 Qstd I IC LINEARREGRESSION 18 5.1 5.1 10.2 1.503 52 51.44 Slope = 33.8571 13 4.1 4.1 8.2 1.349 46 45.51 Intercept = 0.2229 10 3.1 3.1 6.2 1.175 40 39.57 Corr. coeff. = 0.9982 $					ONDITIONS	С										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>53.825</u> 302															
Model-> 5025A Serial # -> Qstd Intercept -> -0.02696 Qstd Intercept -> CALIBRATION Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.1 5.1 10.2 1.503 52 51.44 Slope = 33.8571 13 4.1 4.1 8.2 1.349 46 45.51 Intercept = 0.2229 10 3.1 3.1 6.2 1.175 40 39.57 Corr. coeff. = 0.9982				IFICE	RATION OR	CALIB										
Plate H20 (L)H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.1 5.1 10.2 1.503 52 51.44 Slope = 33.8571 13 4.1 4.1 8.2 1.349 46 45.51 Intercept = 0.2229 10 3.1 3.1 6.2 1.175 40 39.57 Corr. coeff. = 0.9982							Model-> 5025A									
No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.1 5.1 10.2 1.503 52 51.44 Slope = 33.8571 13 4.1 4.1 8.2 1.349 46 45.51 Intercept = 0.2229 10 3.1 3.1 6.2 1.175 40 39.57 Corr. coeff. = 0.9982				N	ALIBRATIO	C										
185.15.110.21.5035251.44Slope = 33.8571 134.14.18.21.3494645.51Intercept = 0.2229 103.13.16.21.1754039.57Corr. coeff. = 0.9982																
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)	33.8571 0.2229	Slope = Intercept =	51.44 45.51 39.57 34.63	52 46 40 35	1.503 1.349 1.175 0.992	10.2 8.2 6.2 4.4	5.1 4.1 3.1 2.2	5.1 4.1 3.1 2.2	18 13 10 7					
Calculations :																
Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] $IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]$ 60.00 FLOW RATE CHART			TE CHART	FLOW RAT	60.00		l/Ta))-b]				-					
Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope		/							rt respon ponse d slope	cted char chart resp ator Qsto	C = correction = actual of m = calibration					
Ta = actual temperature during calibration (deg K) $\frac{6}{5}$ 20.00			/		- 00.08 - Chart response	,	b = calibrator Qstd intercept									
For subsequent calculation of sampler flow: 20.00 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) 1/m(1)[Sqrt(298/Tav)(Pav/760)]-b)					Actua Actua	For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)										
m = sampler slope b = sampler intercept I = chart response					10.00 -											
Tay – daily average temperature	2.000								_	y average	Γav = dail					

Location : Location I		ı Ling Fiı AM3	e Servio	ce Station		NDITIONO	Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
	Se	ea Level I Temp	Pressure erature	. ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
				Make-> Model-> Serial # ->	TISCH 5025A	ATION ORI	Second State 2.11965 Qstd Slope -> 2.002696
					CAL	IBRATION	
Plate No. 18 13 10	H20 (L) (in) 5.9 4.6 3.5	H2O (R) (in) 5.9 4.6 3.5	H20 (in) 11.8 9.2 7.0	Qstd (m3/min) 1.616 1.428 1.248	I (chart) 58 53 46	IC corrected 57.38 52.43 45.51	LINEAR REGRESSION Slope = 30.2192 Intercept = 8.6443 Corr. coeff. = 0.9985
10 7 5	2.3 1.4	5.5 2.3 1.4	4.6 2.8	1.248 1.014 0.794	40 40 33	45.51 39.57 32.65	Coll. coell. = 0.9985
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo ccted cha chart res ator Qsto ator Qsto ator Qsto at temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercep ature dur ure durin	a)] es t ing calil g calibr n of san	oration (de ation (mm n pler flow:	g K)	Vectral chart response (C)	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e temper				10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	ige				Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	` ` `	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
No. 18 13	(in) 5.5 4.4	(in) 5.4 4.4	(in) 10.9 8.8	(m3/min) 1.554 1.397	(chart) 55 50	corrected 54.41 49.47	REGRESSION Slope = 31.8460 Intercept = 4.8231
10 7 5	3.5 2.2 1.4	3.5 2.2 1.4	7.0 4.4 2.8	1.248 0.992 0.794	45 36 31	44.52 35.62 30.67	Corr. coeff. = 0.9987
CalculaticQstd = 1/rIC = I[SqrQstd = staIC = correI = actualm = calibrb = calibraTa = actuaPstd = actua	ons : n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto d temper ual press	20(Pa/Ps d)(Tstd/T ow rate rt respond ponse d slope intercept rature dur ure durin alculatio	td)(Tstd. a)] es ing calib g calibra n of san	/Ta))-b] pration (deg ation (mm	g K)	Conception (C)	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e tempera				10.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	` ´	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBRA	ATION ORIF	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	I (-lt)	IC	LINEAR
No. 18 13 10 7 5	(in) 6 4.8 3.6 2.8 1.4	(in) 6 4.8 3.6 2.8 1.4	(in) 12.0 9.6 7.2 5.6 2.8	(m3/min) 1.630 1.459 1.265 1.117 0.794	(chart) 56 48 41 35 24	corrected 55.40 47.49 40.56 34.63 23.74	$\frac{\text{REGRESSION}}{\text{Slope} = 37.5740}$ $\text{Intercept} = -6.7117$ $\text{Corr. coeff.} = 0.9983$
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K) Hg)	Goto Actual chart response (IC) 20000 20000 20000 20000	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Wo Keng Shan Village House Location ID : AM6		Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
	CONDITIONS	
	<u>95.1</u> 99.0	Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
CALI	BRATION ORI	FICE
Make-> TISCH Model-> 5025A Serial # -> 1941		Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
	CALIBRATION	
Plate H20 (L)H2O (R) H20 Qstd I	IC	LINEAR
No. (in) (in) (m3/min) (char) 18 6.7 6.7 13.4 1.721 65 13 5 5 10.0 1.489 56 10 3.8 3.8 7.6 1.299 48 7 2.6 2.6 5.2 1.077 35 5 1.3 1.3 2.6 0.765 28	64.31 55.40	REGRESSION Slope = 40.0369 Intercept = -4.9560 Corr. coeff. = 0.9901
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K)	70.00 60.00 50.00 (j) estudo se 40.00	FLOW RATE CHART
Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure	40.00 volume 4000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		House of AM7b	ÈLoi Tur	Date of Calibration: 16/6/2017 Next Calibration Date: 16/8/2017 Technician: Fai So			
					COND	TIONS	
	Se	a Level I Temp	Pressure perature	. ,	1005.1 29.0]	Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
				C	ALIBRATI	ON ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CALIBR	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	3.9 3.5 2.8 1.7 1.4	3.9 3.5 2.8 1.7 1.4	7.8 7.0 5.6 3.4 2.8	1.316 1.248 1.117 0.873 0.794	53 49 44 37 32	52.43 48.48 43.53 36.60 31.66	Slope = 36.8226 Intercept = 3.1544 Corr. coeff. = 0.9934
Calculatio Qstd = 1/r IC = I[Sqr	n[Sqrt(H		td)(Tstd			60.00	FLOW RATE CHART
Qstd = sta IC = corre I = actual m = calibrb = calibraTa = actuaPstd = actua	ndard flo cted char chart resp ator Qstd ator Qstd l temper ual press	ow rate et respon ponse d slope intercep ature dur ure durin	es t ting calil g calibra n of san	pration (de ation (mm ppler flow:		00.02 00.04 00.04 00.05 Vectoral chart Vectoral chart Ve	
m = sampl b = sampl I = chart re Tav = dail	ler slope ler interc esponse y averag	ept e temper	ature	"		0.00	0.500 1.000 1.500 Standard Flow Rate (m3/min)
Pav = dail		-				L	

Location :			age No.	4			Date of Calibration: 16/6/2017
Location I	D :	AM8					Next Calibration Date: 16/8/2017 Technician: Fai So
					COND	ITIONS	
	Sea	a Level I Temp	Pressure perature	· ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
				C	ALIBRATI	ON ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CALIBI	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	6 4.9 3.5 2.6 1.5	6 4.7 3.5 2.6 1.5	12.0 9.6 7.0 5.2 3.0	1.630 1.459 1.248 1.077 0.821	66 55 48 40 31	65.29 54.41 47.49 39.57 30.67	Slope = 41.8137 Intercept = -4.6472 Corr. coeff. = 0.9939
Calculatio Qstd = 1/r	ons :					70.00	FLOW RATE CHART
IC = I[Sqr $Qstd = sta$ $IC = corre$ $I = actual$ $m = calibra$ $b = calibra$	t(Pa/Pstd ndard flo ected char chart resp ator Qstd ator Qstd	l)(Tstd/T ow rate et respond ponse d slope intercep	a)] es t	bration (de	c K)	60.00 50.00 (C) 60.00 (C) 0.00 0.00 0.00	
Pstd = act	ual pressi	ure durin	ig calibra	ation (mm)		Actual Character and Character	
1/m((I)[S	•			-			
m = sampl b = sampl I = chart r Tav = dail	ler interce esponse	-	ature			0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)
Pav = dail		-			L		

Location : Nam Wa Po Village House No. 80 Location ID : AM9b							Date of C Next Calibra T			16/6/2017 16/8/2017 Fai So
						CONDITIONS				
Sea Level Pressure (hPa)1005.Temperature (°C)29.0							Corrected Pressure (Temperature (753.825 302
					CALIE	BRATION OR	IFICE			
Make-> <u>TISCH</u> Model-> <u>5025A</u> Serial # -> <u>1941</u>]	Qstd Slope -> Qstd Intercept ->		2.11965 -0.02696	
					C	CALIBRATION	1			
Plate No. 18 13 10 7 5	H20 (L) (in) 6 4.6 3.6 2.2 1.5	H2O (R) (in) 6.0 4.6 3.6 2.2 1.5	H20 (in) 12.0 9.2 7.2 4.4 3.0	Qstd (m3/min) 1.630 1.428 1.265 0.992 0.821	I (chart) 54 47 43 35 27	IC corrected 53.42 46.50 42.54 34.63 26.71	LINE, <u>REGRES</u> Slope = Intercept = Corr. coeff. =			
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]				60.00	FLOW RATE	CHART				
Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)						50.00 (C) 30.00 90.00 90.00 90.00 90.00		× / ×		
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)				90.02 YCtra						
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure					0.00	0.500 1. Standard Flow R	000 Rate (m3/min	1.500)	2.000	

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Fe Operator		Rootsmeter Orifice I.I		438320 1941	Ta (K) - Pa (mm) -	294 - 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	======================================	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4600 1.0410 0.9280 0.8840 0.7290	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Oa	(y axis)
				va	Qa 	
0.9967	0.6827	1.4149		0.9957	0.6820	0.8851
0.9925	0.9534	2.0010 2.2372	CONCEPTION OF	0.9915	0.9524	1.2517
0.9894	1.1192	2.3464		0.9894	1.0661	1.3995
0.9840	1.3499	2.8299		0.9830	1.3485	1.7702
Qstd slop intercept coefficie	t (b) =	2.11965 -0.02696 0.99991	ner	Qa slope intercept coefficie	z (b) =	1.32729 -0.01686 0.99991
y axis =	SQRT [H2O (I	Pa/760) (298/5	y axis =	SQRT [H20 (7	Га/Ра)]	

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b \}$

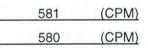
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor			
Manufacturer:	Sibata LD-3B			
Serial No.	2X6145			
Equipment Ref:	EQ105			
Job Order	HK1703462			

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

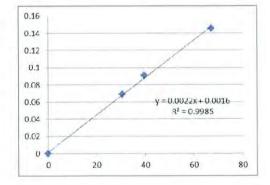
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	13025	67.2
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3586	30.6
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4709	39.6

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9992		
Date of Issue	11 January 2017		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room								Date of Calibration: 25-Nov-16 Next Calibration Date: 25-Feb-17		
						COND	TIONS			
	Se	ea Level I Temp	Pressure erature		1	016.4 20.0		Corrected Pressure (mm Hg) 762.3 Temperature (K) 293		
					CALI	BRATI	ON ORIFICE			
Make-> TIS Model-> 502 Calibration Date-> 14-M						25A	Qstd Slope ->2.00411Qstd Intercept ->-0.03059Expiry Date->14-Mar-17			
					(CALIBR	RATION			
Plate No.	(in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch		IC corrected	LINEAR REGRESSION		
18 13 10 8 5	6.1 4.7 3.6 2.3 1.4	6.1 4.7 3.6 2.3 1.4	12.2 9.4 7.2 4.6 2.8	1.776 1.560 1.368 1.096 0.859	4 4 3	1011 Concerted 56 56.56 49 49.49 43 43.43 34 34.34 23 23.23		Slope = 35.6871 Intercept = -6.1123 Corr. coeff. = 0.9967		
Pstd = act	m[Sqrt(H rt(Pa/Psto andard flo ected chai chart res rator Qsto ator Qsto al temper rual press equent ca Sqrt(298/ oler slope oler interco	d)(Tstd/T ow rate rt respone ponse d slope intercept ature dur ure durin alculatio Tav)(Pav	a)] es ing calil g calibr n of san	bration (deg ation (mm F npler flow:		.07 .03 .05 .05 .05 .05 .02 .02 .02 .02 .02 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03		FLOW RATE CHART		
Tav = dai Pav = dai	ly averag						1	Standard Flow Rate (m3/min)		

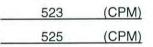
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	366409	
Equipment Ref:	EQ109	
Job Order	HK1703455	

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
25 November 2016


Equipment Verification Results:

Testing Date:

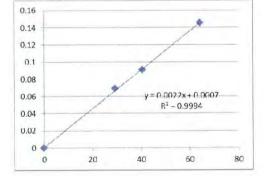
9 January 2017

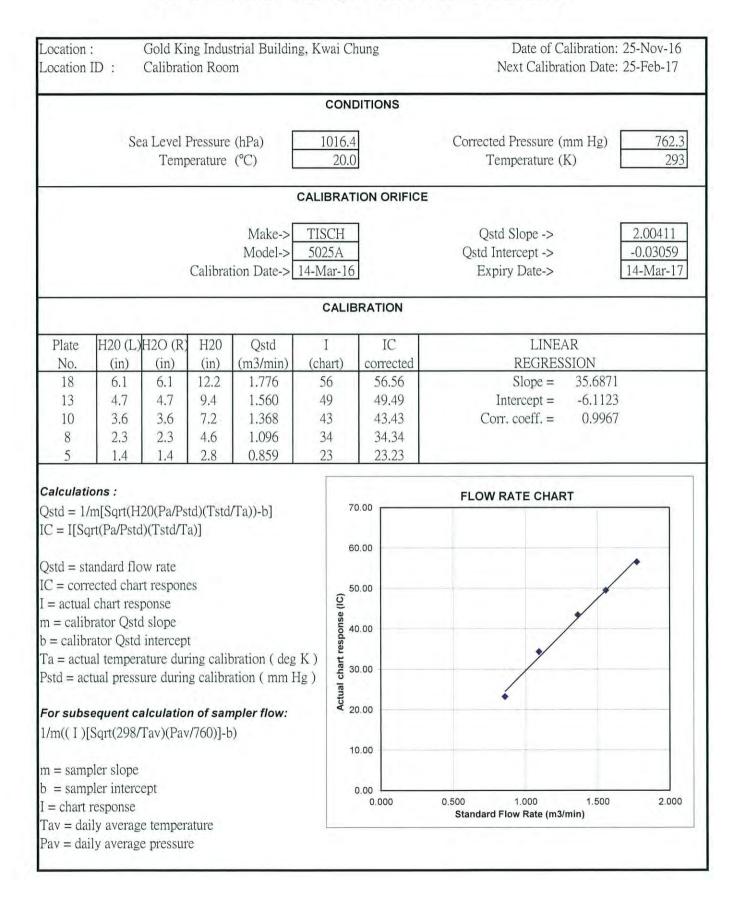
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12487	64.4
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3433	29.3
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4815	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):	0.0022		
Correlation Coefficient	0.9997		
Date of Issue	11 January 2017		


Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

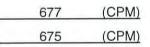
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	366410	
Equipment Ref:	EQ110	
Job Order	HK1703460	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

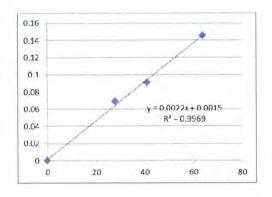
Testing Date:

9 January 2017

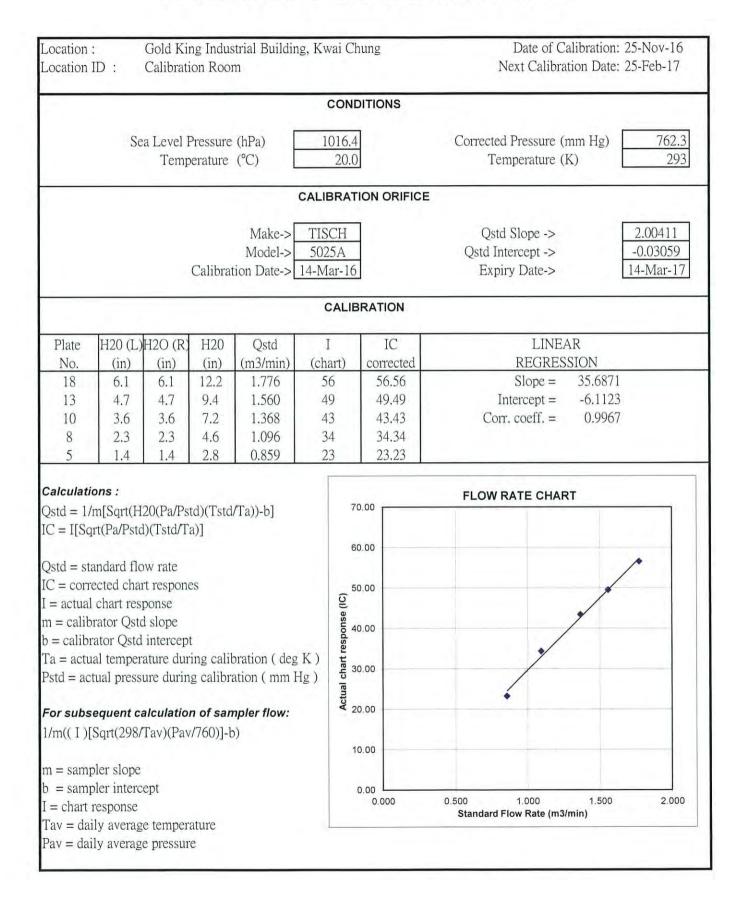
Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12401	64.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3266	27.9
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4878	41.1

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022	
Correlation Coefficient	0.9984	
Date of Issue	11 January 2017	

Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

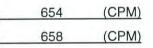
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1703461

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	_
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

Testing Date:

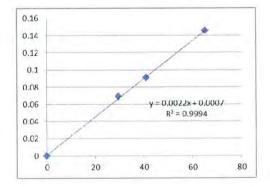
9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12647	65.3
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3476	29.7
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4876	41.0

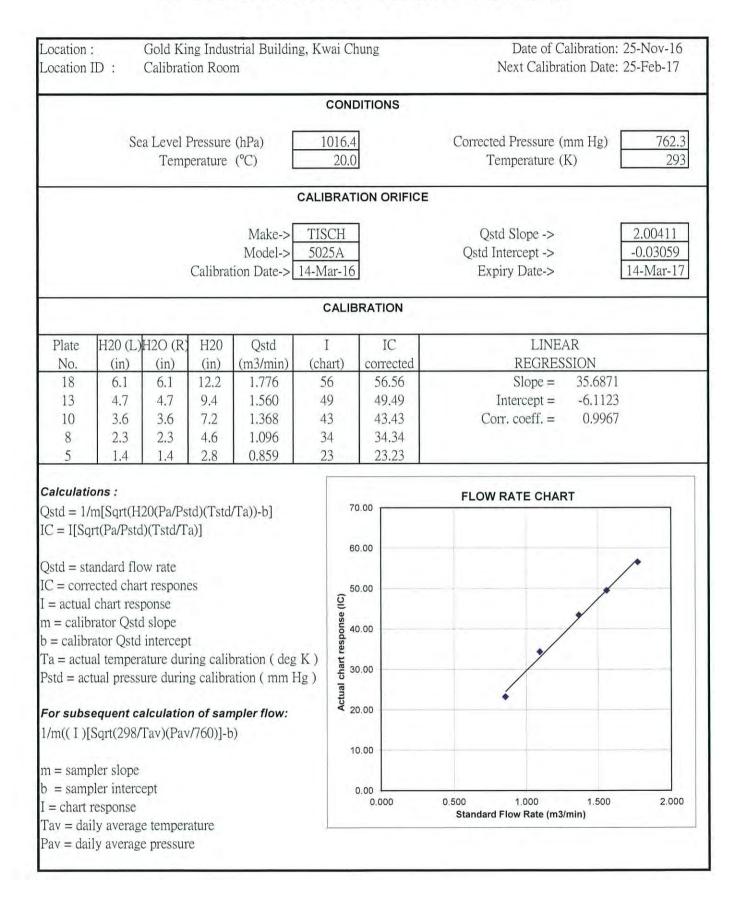
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):	0.0022
Correlation Coefficient	0.9997
Date of Issue	11 January 2017



Remarks:


1. Strong Correlation (R>0.8)

Factor 0.0022 should be apply for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	3Y6505	
Equipment Ref:	EQ114	
Job Order	HK1703464	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	25 November 2016

Equipment Verification Results:

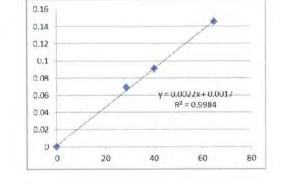
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12588	65.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3339	28.5
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4774	40.2

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>588 (CPM)</u> 587 (CPM)

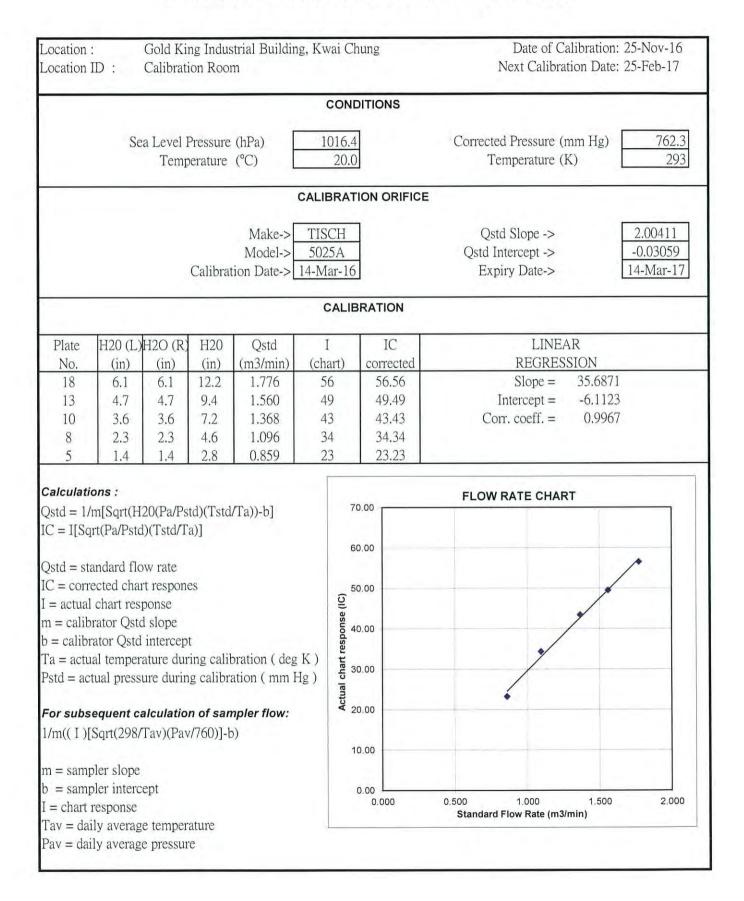
Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9992		
Date of Issue	11 January 2017		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring


*If R<0.5, repair or re-verification is required for the equipment

 Operator :
 Martin Li
 Signature :
 Date :
 11 January 2017

 QC Reviewer :
 Ben Tam
 Signature :
 Date :
 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Certificate No. : C172288 證書編號

ITEM TESTED / 送檢項	目員	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期: 24 April 2017
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ006)	
Manufacturer / 製造商	:	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285762	
Supplied By / 委託者	:	Action-United Environmental Services and G	Consulting
		Unit A, 20/F., Gold King Industrial Building	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	
	HAT'S P	A time for	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany

:

- Fluke Everett Service Center, USA

Tested By 測試

int.	7
 wing	1.
НТW	ong

Technical Officer

K C/Lee Project Engineer

Certified By 核證

Date of Issue 簽發日期 :

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

	UUTS	Setting		Applied	l Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT Setting				Applie	d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UUT	Г Setting		Applied	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.0	Ref.
	L _{ASP}		S			94.1	± 0.1
	L _{AIP}		Ι			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Level Burst		Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	Α	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S	Continuous		106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting			Appli	ed Value	UUT	IEC 60651	
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5
					63 Hz	68.0	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 60651		
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.	
(dB)		Weighting	Weighting	(dB)	-	(dB)	(dB)	
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5	
					63 Hz	93.4	-0.8 ± 1.5	
					125 Hz	93.9	-0.2 ± 1.0	
					250 Hz	94.1	0.0 ± 1.0	
					500 Hz	94.1	0.0 ± 1.0	
					1 kHz	94.1	Ref.	
					2 kHz	93.9	-0.2 ± 1.0	
					4 kHz	93.2	-0.8 ± 1.0	
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)	
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)	

6.4

Time Averaging

		Setting		Applied Value			e		UUT	IEC 60804
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	LAcq	А	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/10 ²		90	89.9	± 0.5
			60 sec.			1/10 ³		80	79.2	± 1.0
			5 min.			1/104		70	69.2	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	94 dB : 31.5 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz	: $\pm 0.30 \text{ dB}$: $\pm 0.20 \text{ dB}$: $\pm 0.35 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB) $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	Burst equivalent level	$\pm 0.2 \text{ dB}$ (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

	ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	 (Job No. / 序引編號: IC17-0924) Sound Level Meter (EQ015) Rion NL-52 00142581 Action-United Environmental Services Unit A, 20/F., Gold King Industrial Bu 35-41 Tai Lin Pai Road, Kwai Chung, 	uilding,)17
	TEST CONDITIONS / 測 Temperature / 溫度 : (2 Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ± 20))%
_	TEST SPECIFICATIONS Calibration check	/ 測試規範		
-	DATE OF TEST / 測試日算	期 : 28 April 2017		
,	TEST RESULTS / 測試結: The results apply to the part The results do not exceed m The results are detailed in th	icular unit-under-test only. anufacturer's specification.		
		tory, Germany		
	Tested By : 測試	H T Wong Technical Officer		
	Certified By : 核證		Pate of Issue : 2 May 2017 簽發日期	

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 E-mail/電郵: callab@suncreation.com Fax/傳真: 2744 8986 Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied Value		UUT	IEC 61672
Range Function Frequency Time				Level	Freq.	Reading	Class 1 Spec.
(dB) Weighting Weighting		(dB)	(kHz)	(dB)	(dB)		
30 - 130	L _A	A	Fast	94.00	1	94.3	± 1.1

6.1.2 Linearity


	UU	Г Setting	Applied	d Value	UUT	
Range	Function	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 130	L _A	А	Fast	94.00	1	94.3 (Ref.)
	Di anti,			104.00		104.3
				114.00		114.3

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

	UUT	Setting		Applied Value		UUT	IEC 61672
Range Function Frequency Time		Level	Freq.	Reading	Class 1 Spec.		
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	Α	Fast	94.00	1	94.3	Ref.
			Slow			94.3	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appli	ied Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Level Freq.		Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L _A	А	Fast	94.00	63 Hz	68.1	-26.2 ± 1.5
					125 Hz	78.1	-16.1 ± 1.5
					250 Hz	85.6	-8.6 ± 1.4
					500 Hz	91.0	-3.2 ± 1.4
					1 kHz	94.3	Ref.
					2 kHz	95.5	$+1.2 \pm 1.6$
					4 kHz	95.3	$+1.0 \pm 1.6$
					8 kHz	93.3	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

		Setting		Appli	ed Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Level Freq.		Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L _C	С	Fast	94.00	63 Hz	93.4	-0.8 ± 1.5
					125 Hz	94.1	-0.2 ± 1.5
					250 Hz	94.3	0.0 ± 1.4
					500 Hz	94.3	0.0 ± 1.4
					1 kHz	94.3	Ref.
					2 kHz	94.1	-0.2 ± 1.6
					4 kHz	93.5	-0.8 ± 1.6
					8 kHz	91.4	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 06015

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB :	63 Hz - 125 Hz 250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz	: $\pm 0.35 \text{ dB}$: $\pm 0.30 \text{ dB}$: $\pm 0.20 \text{ dB}$: $\pm 0.35 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$
	104 dB : 114 dB :	1 kHz	$\pm 0.10 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB) : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :		ilding,					
TEST CONDITIONS / 測記 Temperature / 溫度 : (2: Line Voltage / 電壓 :		Relative Humidity / 相對濕度 : (55 ± 20)%					
TEST SPECIFICATIONS / 測試規範 Calibration check							
DATE OF TEST / 測試日期 : 28 April 2017							

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	: HT Wong Technical Officer		
Certified By 核證	: KCLee Project Engineer	Date of Issue : 簽發日期	2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- Sound Pressure Level 6.1
- 6.1.1 Reference Sound Pressure Level

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.1	± 1.1

6.1.2 Linearity

	UU	JT Setting		Applied	Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	L _A	A	Fast	94.00	1	93.1 (Ref.)
				104.00		103.1
				114.00		113.2

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

Time Weighting 6.2

	UU	T Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	93.1	Ref.
			Slow			93.1	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

		Γ Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	63 Hz	66.8	-26.2 ± 1.5
					125 Hz	76.9	-16.1 ± 1.5
					250 Hz	84.4	-8.6 ± 1.4
					500 Hz	89.8	-3.2 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	94.4	$+1.2 \pm 1.6$
					4 kHz	94.2	$+1.0 \pm 1.6$
					8 kHz	92.0	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.2	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.2	-0.8 ± 1.5
					125 Hz	92.9	-0.2 ± 1.5
					250 Hz	93.1	0.0 ± 1.4
					500 Hz	93.1	0.0 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.3	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	: :	$\pm 0.30 \text{ dB}$
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	:	$\pm 0.35 \text{ dB}$
		8 kHz	:	$\pm 0.45 \text{ dB}$
		12.5 kHz	:	$\pm 0.70 \text{ dB}$
	104 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C172284 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期:	24 April 2017	
Description / 儀器名稱 :	Acoustical Calibrator (EQ082)			
Manufacturer / 製造商 :	Brüel & Kjær			
Model No. / 型號 :	4231			
Serial No. / 編號 :	2713428			
Supplied By / 委託者 :	Supplied By / 委託者 : Action-United Environmental Services and Consulting			
	Unit A, 20/F., Gold King Industrial Bu			
	35-41 Tai Lin Pai Road, Kwai Chung,	IN.1.		
Temperature / 溫度 : (2) Line Voltage / 電壓 :	3 ± 2)°C	Relative Humidity / 相對濕度 :	(55 ± 20)%	
TEST SPECIFICATIONS	/ 測試規範			
Calibration check				
DATE OF TEST / 測試日其	月 : 28 April 2017			
TEST RESULTS / 測試結學	 콘			
The results apply to the parti	cular unit-under-test only			

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

Κd

H T Wong Technical Officer

ee Project Engineer

Certified By 核證

Date of Issue 簽發日期

•

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606

Certificate No. : C172284 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C163709
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	$1 \text{ kHz} \pm 0.1 \%$	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C172285 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號:IC17-0924)	Date of Receipt / 收件日期: 24 April 2017	
Description / 儀器名稱	:	Sound Level Calibrator (EQ088)		
Manufacturer / 製造商	:	Quest		
Model No. / 型號	:	QC-20		
Serial No. / 編號	:	QO9090006		
Supplied By / 委託者	:	Action-United Environmental Services and G	Consulting	
		Unit A, 20/F., Gold King Industrial Building	, ,	
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.		
TEST CONDITIONS / 測試條件				

IESI CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}$ C Line Voltage / 電壓 : ----

Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017 1

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	:H T Wong Technical Officer			
Certified By 核證	: K C Lee Project Engineer	Date of Issue 簽發日期	:	2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172285 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C163709
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- Test procedure : MA100N. 4.
- 5. Results :
- 5.1 Sound Level Accuracy

1				
	UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
	Nominal Value	(dB)	(dB)	(dB)
	94 dB, 1 kHz	94.2	± 0.3	± 0.2
	114 dB, 1 kHz	114.2		

Frequency Accuracy 52

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.991	± 2 %	± 1

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Certificate No. : C164099 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	 (Job No. / 序引編號: IC16-0843) Sound Calibrator Rion NC-74 34657231 Action-United Environmental Services Unit A, 20/F., Gold King Industrial Bui 35-41 Tai Lin Pai Road, Kwai Chung, N 	lding,		
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : Relative Humidity / 相對濕度 : (55 ± 20)%				

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 27 July 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

KC Lee Project Engineer

Certified By 核證 Date of Issue 簽發日期 :

28 July 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新昇屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C164099 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

h

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新昇屯門興安里一號青山灣機樓四樓 Tel電話: 2927 2606 Fax/傅真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM	WORK ORDER:	HK1720724
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	SUB-BATCH:	0
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	LABORATORY:	HONG KONG
	NO. 35-41 TAI LIN PAI ROAD,	DATE RECEIVED:	17/05/2017
	KWAI CHUNG,	DATE OF ISSUE:	24/05/2017
	N.T., HONG KONG.		

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	19 May, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Work Order: Sub-Batch: Date of Issue: Client:	HK1720724 0 24/05/2017 ACTION UNITED ENVIRON	MENT SERVICES AND CONSULTING		ALS
Equipment Type:	Dissolved Oxygen Meter			
Brand Name:	YSI			
Model No.:	550A			
Serial No.:	16A104433			
Equipment No.:				
Date of Calibration:	19 May, 2017	Date of next Calibration:	19 August, 2017	

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500O: G

inethod Kel. Al HA (21st cutton), 45000. G				
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)		
4.34	4.4	+0.06		
6.06	5.99	-0.07		
7.93	7.84	-0.09		
	Tolerance Limit (mg/L)	±0.20		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
8.0	8.5	+0.5
21.0	21.7	+0.7
37.0	36.5	-0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

CONTACT:	MR BEN TAM	WORK ORDER:	HK1720727
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	SUB-BATCH:	0
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	LABORATORY:	HONG KONG
	NO. 35-41 TAI LIN PAI ROAD,	DATE RECEIVED:	17/05/2017
	KWAI CHUNG,	DATE OF ISSUE:	24/05/2017
	N.T., HONG KONG		

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	HACH
Model No.:	2100Q
Serial No.:	11030C008499
Equipment No.:	
Date of Calibration:	19 May, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Work Order: Sub-batch: Date of Issue: Client:	HK1720727 0 24/05/2017 ACTION UNITED ENVIRONM	ENT SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.:	Turbidimeter HACH 2100Q 11030C008499 		
Date of Calibration:	19 May, 2017	Date of next Calibration:	19 August, 2017

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.16	
4	3.76	-6.0
40	38.3	-4.3
80	80.3	+0.4
400	396	-1.0
800	787	-1.6
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

CONTACT:	MR BEN TAM	WORK ORDER:	HK1720721
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	SUB-BATCH:	0
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,	LABORATORY:	HONG KONG
	NO. 35-41 TAI LIN PAI ROAD,	DATE RECEIVED:	17/05/2017
	KWAI CHUNG,	DATE OF ISSUE:	24/05/2017
	N.T., HONG KONG		

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pН
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1064457
Equipment No.:	
Date of Calibration:	19 May, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: Sub-batch: Date of Issue: Client:	HK1720721 0 24/05/2017 ACTION UNITED ENVIRONMENT SER	VICES AND CONSULTING	
Description:	pH Meter		
Brand Name:	AZ		
Model No.:	8685		
Serial No.:	1064457		
Equipment No.:			
Date of Calibration:	19 May, 2017	Date of next Calibration:	19

August, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.1	+0.10
7.0	6.8	-0.20
10.0	9.9	-0.10
	Tolerance Limit (pH Unit)	±0.20

Temperature

e Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
6.5	7.0	+0.5
22.0	22.5	+0.5
38.0	37.2	-0.8
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event				Action
Action Level	ET	IEC	ER	Contractor
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit Level				
 Exceedance for one sample 	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2. Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	I	IEC	ER	
Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; A. Supervise the implementation of remedial measures.	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	I. Inform IEC, ER, Contractor and EPD; <u>2. Repeat measurements to</u> confirm findings; J. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writino: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	 Take immediate action to avoid further <u>exceedance</u>: Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT				ACTION
Action level being exceeded by one sampling day	ET 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. Repeat measurement on next day of exceedance.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	ER 1. Discuss with IEC on the proposed mitigation measures; 2. Make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures	CONTRACTOR 1. Inform the ER and confirm notification of the non- compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER; 6. Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working mathods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER writin 2 working clave; Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	 exceedance. Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Lovel. Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for Reporting Period – July 2017

	D (Dust M	onitoring			
	Date	1-hour TSP	24-hour TSP	- Noise Monitoring	Water Quality	
Sat	1-Jul-17					
Sun	2-Jul-17					
Mon	3-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7		
Tue	4-Jul-17				All Water Quality Monitoring Locations	
Wed	5-Jul-17		AM1b, AM2, AM3 & AM9b			
Thu	6-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	, NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Fri	7-Jul-17					
Sat	8-Jul-17	AM4b, AM5, AM6, AM7b & AM8			All Water Quality Monitoring Locations	
Sun	9-Jul-17					
Mon	10-Jul-17				All Water Quality Monitoring Locations	
Tue	11-Jul-17		AM1b, AM2, AM3 & AM9b			
Wed	12-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	, NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Thu	13-Jul-17					
Fri	14-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Sat	15-Jul-17					
Sun	16-Jul-17					
Mon	17-Jul-17		AM1b, AM2, AM3 & AM9b			
Tue	18-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	, NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Wed	19-Jul-17					
Thu	20-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Fri	21-Jul-17					
Sat	22-Jul-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations	
Sun	23-Jul-17					
Mon	24-Jul-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Tue	25-Jul-17					
Wed	26-Jul-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Thu	27-Jul-17					
Fri	28-Jul-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations	
Sat	29-Jul-17	AM1b, AM2, AM3 & AM9b		,		
Sun	30-Jul-17					
Mon	31-Jul-17				All Water Quality Monitoring Locations	

Monitoring Day
Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – August 2017

	Date	Dust M	onitoring	Noise Meritering	Water Orality
	Date	1-hour TSP	24-hour TSP	 Noise Monitoring 	Water Quality
Tue	1-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Wed	2-Aug-17				All Water Quality Monitoring Locations
Thu	3-Aug-17		AM1b, AM2, AM3 & AM9b		
Fri	4-Aug-17	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	5-Aug-17				
Sun	6-Aug-17				
Mon	7-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Tue	8-Aug-17				All Water Quality Monitoring Locations
Wed	9-Aug-17		AM1b, AM2, AM3 & AM9b		
Thu	10-Aug-17	AM4b, AM5, AM6, AM7b & AM8	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	11-Aug-17				
Sat	12-Aug-17	AM4b, AM5, AM6, AM7b & AM8			All Water Quality Monitoring Locations
Sun	13-Aug-17				
Mon	14-Aug-17				All Water Quality Monitoring Locations
Tue	15-Aug-17		AM1b, AM2, AM3 & AM9b		
Wed	16-Aug-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	17-Aug-17				
Fri	18-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	19-Aug-17				
Sun	20-Aug-17				
Mon	21-Aug-17		AM1b, AM2, AM3 & AM9b		
Tue	22-Aug-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	23-Aug-17				
Thu	24-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	25-Aug-17				
Sat	26-Aug-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	27-Aug-17				
Mon	28-Aug-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	29-Aug-17				
Wed	30-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	31-Aug-17				

Monitoring Day Sunday or Public Holiday

Appendix I

Database of Monitoring Result

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly\ EM\&A\ Report \ 48th\ (July\ 2017) \ R1132v2. docx$

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER	ELAPSED TIME			CHART READING			AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WEIGHT (g)		DUST WEIGHT COLLECTED	24-HR TSP $(\mu g/m^3)$	
		INITIAL FINAL		(min)	MIN MAX AVG			(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/III)	
AM1b – Open Area, Tsung Yuen Ha Village																
5-Jul-17	21248	13301.37	13325.50	1447.80	55	55	55.0	26.5	1009.3	1.61	2332	2.8473	2.9083	0.0610	26	
11-Jul-17	21252	13325.50	13349.67	1450.20	54	54	54.0	29.5	1010.1	1.57	2282	2.8493	2.9422	0.0929	41	
17-Jul-17	21278	13349.67	13373.78	1446.60	54	54	54.0	26.2	1008.9	1.58	2288	2.6292	2.6730	0.0438	19	
22-Jul-17	21286	13373.78	13397.99	1452.60	54	54	54.0	29.2	1008.8	1.57	2286	2.6417	2.7449	0.1032	45	
28-Jul-17	21333	13397.99	13422.20	1452.60	52	52	52.0	30.3	1003.6	1.51	2191	2.6486	2.8380	0.1894	86	
AM2 - Village House near Lin Ma Hang Road																
5-Jul-17	21249	8807.53	8831.25	1423.20	36	36	36.0	26.5	1009.3	0.97	1377	2.8519	2.9382	0.0863	63	
11-Jul-17	21253	8831.25	8855.03	1426.80	34	34	34.0	29.5	1010.1	0.91	1293	2.8707	3.0420	0.1713	133	
17-Jul-17	21259	8855.03	8878.81	1426.80	34	34	34.0	26.2	1008.9	0.91	1299	2.6465	2.7088	0.0623	48	
22-Jul-17	21285	8878.81	8902.62	1428.60	36	36	36.0	29.2	1008.8	0.96	1375	2.6184	2.8013	0.1829	133	
28-Jul-17	21332	8902.62	8926.40	1426.80	36	36	36.0	30.3	1003.6	0.96	1367	2.6202	2.8147	0.1945	142	
AM3 - Ta K	Kwu Ling Fir	e Service S	tation of Ta	ı Kwu Linş	g Villa	ge										
5-Jul-17	21205	9932.28	9956.28	1440.00	36	36	36.0	26.5	1009.3	0.90	1296	2.8486	2.9028	0.0542	42	
11-Jul-17	21254	9956.28	9980.28	1440.00	36	36	36.0	29.5	1010.1	0.89	1288	2.8601	2.9260	0.0659	51	
17-Jul-17	21258	9980.28	10004.28	1440.00	34	34	34.0	26.2	1008.9	0.83	1201	2.6645	2.7138	0.0493	41	
22-Jul-17	21287	10004.28	10028.28	1440.00	35	35	35.0	29.2	1008.8	0.86	1241	2.6230	2.6782	0.0552	44	
28-Jul-17	21334	10028.28		1439.40	39	39	39.0	30.3	1003.6	0.99	1421	2.6350	2.7520	0.1170	82	
	use no. 10B1		<u> </u>													
6-Jul-17	21301	11937.53	11961.54	1440.60	38	38	38.0	27	1008.1	1.03	1491	2.6089	2.6471	0.0382	26	
12-Jul-17	21255	11961.54	11985.54	1440.00	40	40	40.0	29.6	1011	1.09	1575	2.6609	2.7129	0.0520	33	
18-Jul-17	21282	11985.54		1440.00	38	38	38.0	25.7	1011.2	1.04	1496	2.6363	2.7138	0.0775	52	
22-Jul-17	21329	12009.54		1440.00	38	38	38.0	27.9	1005.5	1.03	1485	2.6336	2.6650	0.0314	21	
29-Jul-17	21355	12033.54	12057.53	1439.40	38	38	38.0	30.8	999.9	1.02	1472	2.5791	2.7135	0.1344	91	
AM5a - Pin	g Yeung Vill															
6-Jul-17	21300	9783.74	9807.74	1440.00	52	52	52.0	27	1008.1	1.55	2238	2.6330	2.6762	0.0432	19	
12-Jul-17	21256	9807.74	9831.74	1440.00	50	50	50.0	29.6	1011	1.50	2157	2.6143	2.6938	0.0795	37	
18-Jul-17	21283	9831.74	9855.74	1440.00	48	48	48.0	25.7	1011.2	1.45	2093	2.6536	2.6866	0.0330	16	
22-Jul-17	21328	9855.74	9879.73	1439.40	50	50	50.0	27.9	1005.5	1.50	2156	2.5999	2.6372	0.0373	17	
29-Jul-17	21356	9879.73	9903.72	1439.40	56	56	56.0	20.8	999.9	1.67	2403	2.5649	3.0159	0.4510	188	
AM6 - W0	Keng Shan V	illage Hou	se													

DATE	SAMPLE NUMBER	EL	APSED TIN	ſE	CHART READING			AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WEIGHT (g)		DUST WEIGHT COLLECTED	24-HR TSP	
NOMBE		INITIAL	FINAL	(min)	MIN MAX		AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$	
6-Jul-17	21227	8365.46	8389.47	1440.60	25	25	25.0	27.0	1008.1	0.74	1073	2.8544 2.8982		0.0438	41	
12-Jul-17	21257	8389.47	8413.47	1440.00	25	25	25.0	29.6	1011.0	0.74	1070	2.6436 2.7036		0.0600	56	
18-Jul-17	21284	8413.47	8437.47	1440.00	25	25	25.0	25.7	1011.2	0.75	1075	2.6211 2.6447		0.0236	22	
22-Jul-17	21330	8437.47	8461.46	1439.40	26	26	26.0	27.9	1005.5	0.77	1105	2.6687 2.7007		0.0320	29	
29-Jul-17	21358	8461.46	8485.45	1439.40	30	30	30.0	30.8	999.9	0.86	1239	2.5930	2.7186	0.1256	101	
AM7b - Loi Tung Village House																
6-Jul-17	21221	17412.65	17436.65	1440.00	40	40	40.0	27	1008.1	0.99	1432	2.8408	2.9410	0.1002	70	
12-Jul-17	21224	17436.65	17460.65	1440.00	40	40	40.0	29.6	1011	0.99	1427	2.8535	3.0057	0.1522	107	
18-Jul-17	21280	17460.65	17484.65	1440.00	40	40	40.0	25.7	1011.2	1.00	1437	2.6554	2.6991	0.0437	30	
22-Jul-17	21327	17484.65	17508.64	1439.40	40	40	40.0	27.9	1005.5	0.99	1427	2.6419	2.6978	0.0559	39	
29-Jul-17	21357	17508.64	17532.64	1440.00	38	38	38.0	30.8	999.9	0.93	1339	2.5727	2.7560	0.1833	137	
AM8 - Po K	Kat Tsai Villa	ige No. 4														
6-Jul-17	21220	11309.28	11333.28	1440.00	34	34	34.0	27	1008.1	0.92	1324	2.8382	2.8802	0.0420	32	
12-Jul-17	21223	11333.28	11357.27	1439.40	36	36	36.0	29.6	1011	0.96	1388	2.8588	2.8943	0.0355	26	
18-Jul-17	21281	11357.27	11381.27	1440.00	34	34	34.0	25.7	1011.2	0.92	1328	2.6309	2.6522	0.0213	16	
22-Jul-17	21326	11381.27	11405.27	1440.00	36	36	36.0	27.9	1005.5	0.96	1389	2.6380	2.6595	0.0215	15	
29-Jul-17	21359	11405.27	11429.26	1439.40	38	38	38.0	30.8	999.9	1.01	1447	2.5812	2.7120	0.1308	90	
AM9b - Na	m Wa Po Vil	lage House	No. 80			-	-									
5-Jul-17	21247	18688.52	18712.52	1440.00	32	32	32.0	26.5	1009.3	0.95	1363	2.8701	2.9062	0.0361	26	
11-Jul-17	21251	18712.52	18736.53	1440.60	30	30	30.0	29.5	1010.1	0.88	1267	2.8524	2.8873	0.0349	28	
17-Jul-17	21279	18736.53	18760.53	1440.00	30	30	30.0	26.2	1008.9	0.88	1273	2.6585	2.6841	0.0256	20	
22-Jul-17	21325	18760.53	18784.52	1439.40	30	30	30.0	29.2	1008.8	0.88	1266	2.6430	2.6746	0.0316	25	
28-Jul-17	21331	18784.52	18808.52	1440.00	30	30	30.0	30.3	1003.6	0.88	1261	2.6345	2.6862	0.0517	41	

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5mi}	L10	L90	$\begin{array}{c} 2^{nd} \\ Leq_{5min} \end{array}$	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung Yuen Ha Village House No. 63																					
6-Jul-17	9:35	58.8	59.2	55.0	57.4	58.4	54.5	58.5	59.8	55.4	59.6	59.9	55.8	58.6	58.5	54.4	58.6	58.0	54.2	59	NA
12-Jul-17	9:44	55.8	57.4	52.4	55.6	57.7	52.6	57.7	61.6	52.8	58.5	62.1	52.4	57.4	61.7	52.8	56.5	60.9	52.9	57	NA
18-Jul-17	10:46	58.6	59.2	55.3	57.7	58.3	54.4	58.2	59.4	55.7	57.4	59.7	55.5	57.6	59.5	55.1	58.5	59.7	55.6	58	NA
24-Jul-17	12:57	57.7	58.5	56.0	62.2	64.0	56.0	59.7	61.5	56.0	58.2	59.0	57.0	62.6	61.5	56.0	61.2	61.0	55.5	61	NA
NM2a - Village House near Lin Ma Hang Road																					
6-Jul-17	10:16		68.1	53.2	63.1	66.7	53.6	62.7	63.5	52.5	62.5	60.7	52.9	59.5	60.1	52.4	64.9	67.3	54.7	65	68
12-Jul-17	9:51	73.3	69.4	61.1	66.8	69.3	54.3	69.0	72.1	56.5	66.3	69.0	53.4	64.2	67.8	53.6	62.4	65.6	52.8	69	72
	11:21	71.9	67.2	53.1	62.2	63.7	52.7	63.4	64.5	52.5	63.8	64.6	52.6	64.1	65.7	53.8	63.0	64.7	53.9	66	69
	13:36		64.5	60.0	62.0	63.5	60.0	62.5	64.0	60.0	61.7	63.5	59.5	63.1	65.0	60.0	61.7	63.0	59.5	62	65
NM3 - Ping Yeung Village House																					
	11:08		56.9	51.4	54.1	57.2	52.6	53.8	57.8	51.9	54.1	56.8	52.4	55.9	57.2	53.1	57.7	59.2	51.8	55	NA
14-Jul-17	9:48	65.0	68.3	51.7	65.2	63.7	52.0	62.1	63.7	52.4	63.6	64.3	52.6	60.4	62.1	51.2	61.5	63.9	51.4	63	NA
	10:04	63.2	63.1	52.3	62.9	63.5	51.2	64.2	64.5	52.4	63.2	63.9	51.2	65.6	65.2	52.0	62.9	63.4	51.6	64	NA
	9:57	60.5	62.6	53.1	55.2	55.2	53.4	59.7	61.0	52.6	58.9	60.8	53.2	56.7	58.0	52.1	58.2	59.2	53.9	59	NA
NM4 - Wo K	0		0		65.0	60.0	= + 2	650	<u> </u>	55.0	66.0			<1 7	50.5	52.2	50.0	60.0	50.0	- -	
	11:23		68.8	55.6	65.8	68.8	54.3	65.8	69.2	57.2	66.9	67.7	55.6	61.7	59.7	52.2	59.9	60.0	50.3	65	NA
	10:30		60.4	54.1	64.3	63.3	53.6	60.6	58.9	52.8	61.5	60.8	53.5	62.8	61.7	54.8	61.1	60.5	53.6	62	NA
	10:51		58.1	51.6	60.5	60.2	51.9	61.3	60.6	52.4	60.9	59.5	51.5	62.4	59.7	52.7	60.0	58.7	51.1	61	NA
	10:41	65.6	64.3	52.2	65.3	61.0	51.4	62.5	61.3	51.0	64.2	63.5	52.2	65.9	63.4	52.9	63.7	62.8	51.7	65	NA
NM5–Ping Y	0		1	40.0	527	<i></i>	40.0	52.5	545	40.1	526	55.0	40.7	52.0	560	50.0	741	<u> </u>	50 4	52	NT A
	11:13		54.2	48.2	53.7	55.7	49.0	52.5	54.5	48.1	53.6	55.8	49.7	53.9	56.0	50.0	54.1	57.5	50.4	53	NA
	10:00		60.0	51.5	57.2	59.0	52.0	57.4	59.5	50.5	53.3	55.0	50.0	55.3	58.0	50.5	57.9	59.5	51.5	57	NA
20-Jul-17	9:39	57.5	58.0	47.5	54.7	54.5	47.0	57.9	60.5	51.0	59.0	62.0	50.0	57.9	60.0	47.0	56.9	60.5	49.5	58	NA
26-Jul-17	9:34	53.2	54.5	48.5	53.3	55.0	48.0	59.4	62.0	47.5	60.1	64.0	48.0	57.1	56.5	48.0	58.6	60.5	48.5	58	NA
NM6 – Tai To	0	0	r	r	500	(1.0	47 1	505	(15	49.2	57.6	(2.0	40.7	59.0	(2.7	40.0	574	(2.0	40.4	50	NT A
	10:33		61.8	53.3	58.8	61.9	47.1	58.5	61.5	48.2	57.6	62.9	48.7	58.9	63.7	49.0	57.4	62.9	48.4	58	NA
	10:51	63.5	65.0	51.0	52.7	54.0	49.0	54.8	55.5	50.5	55.8	57.0	51.0	54.3	55.5	52.0	67.2	72.0	51.5	62	NA
	10:25		59.5	51.5	58.0	61.0	51.5	58.5	61.0	52.5	60.6	63.0	53.5	58.6	61.5	51.5	57.9	60.5	52.0	59	NA
	10:25		65.0	53.5	66.9	71.5	54.0	59.1	62.5	53.0	59.6	60.5	52.5	58.2	61.0	52.0	60.7	63.5	55.5	63	NA
NM7 – Po Ka		0	59.2	51.2	59.0	50.7	55 1	59.2	(0.7	55.0	50.0	(0.7	55.5	50.2	(2.5	525	59.4	(2.5	511	50	
3-Jul-17	13:38	57.4	58.2	51.3	58.0	59.7	55.1	58.2	60.7	55.2	59.0	60.7	55.5	59.3	62.5	53.5	58.4	62.5	54.4	58	NA

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
14-Jul-17	13:17	68.4	71.0	58.5	66.9	64.5	59.5	62.3	64.0	60.0	62.1	63.5	60.0	63.7	66.5	59.0	66.4	68.5	60.0	66	NA
20-Jul-17	13:11	62.5	66.0	53.0	70.9	75.0	53.0	67.9	71.0	59.0	63.5	66.5	55.5	66.3	70.5	57.0	60.3	61.0	52.5	67	NA
26-Jul-17	13:15	63.0	65.5	54.0	56.8	58.5	53.5	60.5	60.0	53.5	63.7	59.5	53.5	64.2	65.0	56.5	62.9	63.5	56.0	62	NA
NM8 - Villag	ge Hous	e, Tong	g Hang	2	-					-	<u>. </u>			-		-				-	-
6-Jul-17	11:26	59.4	65.2	50.3	58.9	64.9	50.5	58.5	64.4	50.7	57.8	63.8	49.6	59.2	65.1	49.5	58.7	64.4	49.4	59	NA
12-Jul-17	9:27	58.9	62.3	54	58.5	62.5	54.2	60.1	64.2	56	61.2	65	57.2	59.7	63.7	56	59.5	64	56.5	60	NA
18-Jul-17	13:53	59.3	65.6	50.2	58.4	64.9	50.5	57.8	64.5	50.6	58.6	64.7	50.9	59.5	64.1	50.1	58.7	63.5	49.7	59	NA
24-Jul-17	10:41	61.9	63.5	50.5	62.3	66.5	46.5	67.1	68	46.5	65.6	68.5	44	57.9	61.5	43	64.5	67	43.5	64	NA
NM9 - Villag	ge Hous	e, Kiu '	Tau Vill	age	-					-				-		_	-	-		-	-
6-Jul-17	13:16	60.3	61.0	57.4	60.8	64.7	57.0	59.8	63.3	56.3	60.8	64.5	57.4	61.7	64.8	57.5	60.4	63.7	57.6	61	NA
12-Jul-17`	10:01	62.3	67.0	58.2	62.7	66.5	57.5	61.5	65.0	56.3	62.7	66.2	58.9	63.0	67.0	58.3	62.2	66.5	57.7	62	NA
18-Jul-17	14:28	61.6	64.2	58.2	60.8	63.6	58.5	61.1	64.8	58.7	60.5	63.4	58.5	59.4	62.8	57.9	59.4	62.9	57.4	61	NA
24-Jul-17	9:55	63.0	66.0	54.5	62.2	65.5	53.5	64.8	67.0	54.5	64.3	66.0	53.5	63.5	66.5	55.0	63.5	67.0	54.0	64	NA
NM10 - Nam	n Wa Po	o Villag	e House	No. 80	-					-				-		_	-	-		-	-
6-Jul-17	13:51	61.5	63.0	59.7	61.9	63.3	60.3	62.4	63.6	60.9	61.5	62.9	59.8	62.8	63.1	60.5	61.7	62.4	59.6	62	65
12-Jul-17	10:39	62.2	66.4	57.9	63.3	67.0	57.5	62.5	67.2	58.0	63.2	67.5	57.8	62.0	66.1	58.3	62.5	66.2	58.3	63	66
18-Jul-17	15:02	62.3	63.2	60.2	62.7	63.2	60.8	61.2	62.7	59.4	62.1	63.0	60.0	63.7	63.6	60.5	61.2	62.5	59.9	62	65
24-Jul-17	9:06	61.9	63.5	50.5	62.3	66.5	46.5	67.1	68.0	46.5	65.6	68.5	44.0	57.9	61.5	43.0	64.5	67.0	43.5	64	67

Water Quality Monitoring Data for Contract 6 and SS C505

Date	4-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WM1-C	12:41	0.27	25.6	25.6	7.43	74	90.9	90.9	29.9	30.0	7.78	70	39	27 F
WMI-C	12:41	0.27	25.6	25.0	7.43	7.4	90.9	90.9	30.0	20.0	7.78	7.0	36	37.5
WM1	13:03	0.25	26	26.0	7.27	7.2	89.7	89.7	48.9	49.0	7.85	70	50	47.0
VVIII	12:02	0.25	26	20.0	7.27	7.5	89.6	09.7	49.1	49.0	7.85	7.9	44	47.0

Date	6-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	0.50	0.24	30.1	20.1	7.09	7.0	93.9	02.2	23.7	22.2	8.3	0.2	24	24 5
WM1-C	9:50	0.34	30.1	30.1	6.98	7.0	92.4	93.2	20.6	22.2	8.3	8.3	25	24.5
WM1	10.00	0.27	28.2	28.2	7.71	77	97.9	98.0	48.2	40.2	8	8.0	48	Г <u>Э</u> Г
VVIVII	10:00	0.27	28.2	28.2	7.72	7.7	98.0	98.0	50.1	49.2	8	8.0	59	53.5

Date	8-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS((mg/L)
WM1-C	11:28	0.33	26.2	26.2	7.53	8.0	93.2	94.0	17.0	17.4	8.4	0.1	8	8.0
WMI-C	11.20	0.55	26.1	20.2	8.54	0.0	94.7	94.0	17.8	17.4	8.4	8.4	8	0.0
WM1	11:07	0.30	25.9	25.9	7.81	7.9	96.2	96.7	33.9	34.2	8.5	8.5	24	24.5
VVIMIT	11:07	0.50	25.9	25.9	7.9	7.9	97.2	90.7	34.5	34.2	8.5	0.5	25	24.5

Date	10-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	0.25	0.24	31	21.0	6.62	6.6	87.8	00.0	10.9	11.0	8.2	0.2	7	7.0
WM1-C	9:35	0.34	31	31.0	6.66	6.6	88.1	88.0	11.1	11.0	8.2	8.2	7	7.0
WM1	0.45	0.26	29	29.0	6.7	6.7	87.1	87.2	32.5	32.0	8.1	8.1	33	33.5
VVIVII	9:45	0.26	29	29.0	6.71	0.7	87.2	07.2	31.4	32.0	8.1	0.1	34	22.2

Date	12-Jul-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WM1-C	10:00	0.34	33	33.0	6.25	6.2	86.7	86.2	11.2	11.8	8.2	8.2	6	6.5
WM1-C	10:00	0.54	33	55.0	6.18	0.2	85.7	00.2	12.3	11.0	8.2	0.2	7	0.5
WM1	10:15	0.26	27.8	27.8	7.72	77	98.4	98.7	18.4	19.7	8	8.0	21	20.5
VVIVI1	10.15	0.20	27.8	27.0	7.77	7.7	98.9	90.7	21.0	19.7	8	0.0	20	20.5

Date	14-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WM1-C	10.20	0.24	30	20.0	7.19	7 1	95.3	04.2	20.1	10.0	8.2	8.2	6	сг
WMI-C	10:20	0.34	30	30.0	6.99	7.1	93.2	94.3	17.7	18.9	8.2	ð.Z	7	6.5
WM1	10:25	0.26	27.7	27.7	7.76	7.8	98.6	98.7	25.5	25.6	8.1	8.1	25	24.0
VVIVI1	10.25	0.20	27.7	27.7	7.77	7.0	98.8	90.7	25.6	23.0	8.1	0.1	23	24.0

Date	18-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	10,10	0.40	25.1	25.1	8.7	0 /	105.8	10F 7	814.0	825.5	8.6	8.6	749	746 5
WM1-C	10:10	0.40	25.1	25.1	8.07	8.4	105.6	105.7	837.0	025.5	8.6	0.0	744	746.5
WM1	10:20	0.30	24.8	24.8	8.37	8.3	101.1	100.9	745.0	743.5	8.2	8.2	525	527.5
VVIVII	10:20	0.30	24.8	24.0	8.32	0.5	100.7	100.9	742.0	743.5	8.2	0.2	530	527.5

Date	20-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	D0 (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	0.45	0.24	27.1	77.1	7.03	7.0	90.1	00.1	12.9	12.0	8.4	0.4	12	12.0
WM1-C	9:45	0.34	27.1	27.1	7.05	7.0	90.1	90.1	12.6	12.8	8.4	8.4	14	13.0
14/141	0.55	0.26	28.4	28.4	6.66	6.6	86.4	86.0	14.7	14.2	8.2	0.7	12	11.0
WM1	9:55	0.26	28.4	20.4	6.59	6.6	85.5	0.00	13.6	14.2	8.2	8.2	10	11.0

Date	22-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	Н	SS(mg/L)
	0.10	0.24	27.5	27 E	8.63	8.6	111.4	110.0	7.4	75	8.7	8.7	4	ΕO
WM1-C	9:10	0.34	27.5	27.5	8.64	0.0	108.5	110.0	7.6	7.5	8.7	0.7	6	5.0
WM1	9:20	0.23	26.8	26.8	7.87	7.9	98.7	98.8	9.5	9.4	8.1	8.1	10	10.0
VVI*I1	9.20	0.25	26.8	20.0	7.89	7.9	98.9	90.0	9.3	9.4	8.1	0.1	10	10.0

Date	24-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WM1-C	9:37	0.34	27	27.0	7.83	7.8	98.1	97.9	over	over range	8.4	8.4	671	676.5
WMI-C	9:57	0.54	27	27.0	7.8	7.0	97.7	97.9	range	over range	8.4	0.4	682	0/0.5
WM1	9:50	0.28	26.9	26.9	7.33	7.3	91.8	92.0	528.0	533.0	7.7	77	270	278.5
VVIVII	9:50	0.28	26.9	20.9	7.35	/.5	92.1	92.0	538.0	553.0	7.7	/./	287	270.5

Date	26-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (n	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	0.25	0.24	27.5	27.5	7.99	0.0	100.7	100.7	9.9	10.0	8.7	8.7	7	сг
WM1-C	9:35	0.34	27.5	27.5	7.99	8.0	100.6	100.7	10.0	10.0	8.7	0.7	6	6.5
WM1	9:45	0.26	27	27.0	7.64	7.7	95.8	96.1	17.1	16.6	8.2	8.2	13	14.0
VVIVII	9:45	0.20	27	27.0	7.67	7.7	96.3	90.1	16.0	10.0	8.2	0.2	15	14.0

Date	28-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
	0.25	0.25	27.3	27.2	7.82	7.8	98.2	97.9	12.6	10 E	7.7	77	7	<u>ه ۸</u>
WM1-C	9:25	0.35	27.3	27.5	7.77	7.0	97.6	97.9	12.3	12.5	7.7	/./	9	8.0
WM1	9:35	0.26	27	27.0	7.54	75	94.4	94.6	16.4	17.0	8	8.0	12	12.5
VVIVII	9:55	0.20	27	27.0	7.54	7.5	94.7	94.0	16.4 17.5	17.0	8	0.0	13	12.5

Date	31-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(mg/L)
	0.20	0.24	28.4	20 4	8.14	0.1	104.4	104.2	11.6	11.0	7.9	7.9	4	4.0
WM1-C	9:30	0.34	28.4	28.4	8.1	8.1	103.9	104.2	11.9	11.8	7.9	7.9	4	4.0
WM1	9:38	0.24	28	28.0	7.48	75	95.6	95.8	17.6	17.3	7.4	74	14	14.0
VVIVII	9.30	0.24	28	20.0	7.52	7.5	96.0	95.0	16.9	17.5	7.4	7.4	14	14.0

Water Quality Monitoring Data for Contract 2 and 3

Date	4-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
	12.27	0.20	27.6	27.6	8.18	0.2	103.8	104.2	12.3	12.0	8.4	0.4	13	10 F
WM4-CA	13:27	0.29	27.6	27.6	8.24	8.2	104.7	104.3	13.6	13.0	8.4	8.4	12	12.5
WM4-CB	13:04	0.24	28.4	20.4	7.11	7.2	91.4	01.0	22.8	22.1	8.3	8.3	33	22 Г
WIM4-CD	13:04	0.34	28.4	28.4	7.24	1.2	92.3	91.9	23.4	23.1	8.3	8.5	32	32.5
WM4	14.10	0.26	27.9	27.0	7.16	7 2	91.3	02.1	30.3	20.0	7.9	7.0	22	22.0
VVI44	14:10	0.36	27.9	27.9	7.21	7.2	92.9	92.1	31.4	30.9	7.9	7.9	22	22.0

Date	6-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	Н	SS(mg/L)
	11.52	0.10	27.2	27.2	8.09	0.0	102.6	102.1	13.9	14 1	8.3	0.2	11	12.0
WM4-CA	11:53	0.19	27.2	27.2	7.97	8.0	101.5	102.1	14.2	14.1	8.3	8.3	13	12.0
WM4-CB	12.10	0.21	30.3	20.2	6.23	6.2	82.9	83.3	40.7	40 F	8.2	0.2	30	20 F
WIM4-CD	12:15	0.31	30.3	30.3	6.3	6.3	83.7	83.3	40.3	40.5	8.2	8.2	31	30.5
	11.45	0.16	27.1	27.1	7.45	7 5	93.9	04.0	62.2		8.4	0.4	49	F0 0
WM4	11:45	0.16	27.1	27.1	7.46	7.5	94.0	94.0	69.0	65.6	8.4	8.4	51	50.0

Date	7-Jul-17#									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity	(NTU)	рН	SS(mg/L)
	0.10	0.10				8.2	0.1		8	0.0
WM4-CA	9:10	0.18				7.9	8.1		8	8.0
	0.20	0.21				29.6	20.9		26	26.0
WM4-CB	9:20	0.31				29.9	29.8		26	26.0
	0.05	0.15				60.3	C1 1		63	C 2 0
WM4	9:05	0.15				61.8	61.1		63	63.0

Date	8-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
WM4-CA	9:17	0.24	27.9	27.9	7.06	7.1	90.3	90.9	12.5	12.2	8.1	8.1	8	8.0

			27.9		7.11		91.5		11.9		8.1		8	
WM4-CB	9:34	0.24	27	27.0	6.27	6.2	78.7	79.1	17.4	17.6	7.8	7.8	13	12.0
WIM4-CD	9.34	0.34	27	27.0	6.31	6.3	79.5	79.1	17.8	17.0	7.8	7.0	13	13.0
	0.50	0.27	29.8	29.8	6.8	6.0	89.6	90.1	81.5	80.7	8	0.0	63	64.5
WM4	8:59	0.37	29.8	29.0	6.91	6.9	90.5	90.1	79.9	00.7	8	8.0	66	04.5

Date	10-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	H	SS(mg/L)
WM4-CA	11:25	0.16	28.3	ר <u>סר</u>	7.92	7.8	102.3	101.7	6.0	71	8.2	0.2	5	ΓO
WM4-CA	11.25	0.16	28.3	28.3	7.77	7.0	101.0	101.7	8.1	7.1	8.2	8.2	5	5.0
WM4-CB	11:35	0.31	30.2	30.2	6.81	6.8	89.9	90.2	14.7	14.2	7.9	7.9	11	11.0
WIM4-CD	11.55	0.51	30.2	50.2	6.86	0.0	90.5	90.2	13.6	14.2	7.9	7.9	11	11.0
WM4	11:15	0.15	29.9	29.9	7.5	7.5	98.5	98.4	33.7	34.5	8.1	0.1	34	34.0
VVIVI4	11.15	0.15	29.9	29.9	7.47	7.5	98.3	90.4	35.2	2.40	8.1	8.1	34	0.40

Date	11-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	Н	SS(mg/L)
WM4-CA	9:25	0.18							4.3	5.2			6	6.0
WM4-CA	9:25	0.16							6.1	5.2			6	0.0
WM4-CB	9:40	0.31							8.1	7.7			12	12.0
WIM4-CD	9.40	0.51							7.4	/./			12	12.0
WM4	9:15	0.15							12.4	12.5			13	12.0
VVI*I4	9:15	0.15							12.6	12.5			13	13.0

Date	12-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
WM4-CA	12:05	0.10	27.8	27.0	8.33	0.2	106.3	104 F	5.0	47	8.4	0.4	4	4.0
WIM4-CA	12:05	0.18	27.8	27.8	7.97	8.2	102.6	104.5	4.4	4.7	8.4	8.4	4	4.0
	12.15	0.21	29.1	20.1	7.24	7.2	94.3	04.2	19.0	10.0	8.1	0.1	19	10.0
WM4-CB	12:15	0.31	29.1	29.1	7.23	7.2	94.2	94.3	17.0	18.0	8.1	8.1	19	19.0
	11.55	0.15	29.5	20 5	7.56	7 5	98.6	07.0	28.0	25.4	8.7	0.7	19	10 F
WM4	11:55	0.15	29.5	29.5	7.44	7.5	97.1	97.9	22.7	25.4	8.7	8.7	20	19.5

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\48th (July 2017)\R1132v2.docx

Date	14-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
WM4-CA	12.10	0.10	29.3	20.2	7.75		101.4	101 1	21.9	21.0	8.6	0.6	9	10.0
₩₩4-CA	13:10	0.18	29.3	29.3	7.7	7.7	100.8	101.1	21.9	21.9	8.6	8.6	11	10.0
WM4-CB	13:20	0.21	30.6	20.6	6.34	6.4	84.6	84.8	71.4	72.6	8.2	8.2	84	02 E
WIM4-CD	15:20	0.31	30.6	30.6	6.36	6.4	84.9	04.0	73.7	72.6	8.2	0.2	83	83.5
	12.00	0.15	31.3	21.2	6.97	6.0	93.5	02.2	72.3	70.4	9	0.0	93	01 5
WM4	13:00	0.15	31.3	31.3	6.73	6.9	91.1	92.3	68.5	70.4	9	9.0	90	91.5

Date	18-Jul-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	p	Н	SS(mg/L)
WM4-CA	12:25	0.20	24.7	24.7	8.63	8.6	103.7	103.7	50.5	49.8	8.2	8.2	49	10 E
WIM4-CA	12:25	0.20	24.7	24.7	8.62	0.0	103.7	105.7	49.1	49.0	8.2	0.2	48	48.5
WM4-CB	12:35	0.35	25.3	25.3	7.87	7.9	96.0	96.0	51.2	51.4	8	8.0	35	36.5
WIM4-CD	12:55	0.55	25.3	25.5	7.86	7.9	96.0	90.0	51.6	51.4	8	0.0	38	20.2
WM4	12:15	0.19	24.8	24.0	8.29	8.3	100.3	100.5	72.5	70.0	8.1	0.1	60	61.0
VVI*14	12.15	0.18	24.8	24.8	8.31	0.5	100.6	100.5	67.4	70.0	8.1	8.1	62	01.0

Date	19-Jul-17#								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
	11.10	0.20				13.2 13.0		12	12.0
WM4-CA	11:10	0.20				12.7 13.0		12	12.0
	11.20	0.21				16.0 16.9		8	0.0
WM4-CB	11:30	0.31				17.5 16.8		8	8.0
	11.05	0.15				35.0 25.1		31	21.0
WM4 1	11:05	0.15				35.2 35.1		31	31.0

Date	20-Jul-17													
Location	Time	Depth (m)	Temp	Temp (oC)		ng/L)	DO	(%)	Turbic	lity (NTU)	р	Η	SS(mg/L)
	12.20	0.10	28.5	20 5	7.07	71	92.4	02.4	7.5	7.6	8.5	0 5	6	6.0
WM4-CA	12:20	0.18	28.5	28.5	7.05	7.1	92.4	92.4	7.7	7.6	8.5	8.5	6	6.0

	12,20	0.21	30	20.0	6.41	6.4	85.0	94.0	11.5	11.6	8.2	0.2	8	0.0
WM4-CB	12:30	0.31	30	30.0	6.38	6.4	84.7	84.9	11.6	11.0	8.2	8.2	8	8.0
	12,10	0.15	30.6	20.6	6.82	6.0	90.5	01.0	19.2	10.6	8.6	0 C	15	155
WM4	12:10	0.15	30.6	30.6	6.9	6.9	91.5	91.0	19.9	19.6	8.6	8.6	16	15.5

Date	22-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS((mg/L)
WM4-CA	13:15	0.18	27.8	27.8	7.96	8.0	100.5	100.8	6.5	6.4	8.1	8.1	5	5.5
WM4-CA	15:15	0.16	27.8	27.0	8.04	0.0	101.1	100.0	6.4	0.4	8.1	0.1	6	5.5
	12.25	0.21	27.9	27.0	5.72	гл	72.2	70 F	8.2	0.2	8.5	0 5	8	ог
WM4-CB	13:25	0.31	27.9	27.9	5.76	5.7	72.8	72.5	8.5	8.3	8.5	8.5	9	8.5
	12.00	0.15	27.3	27.2	6.8	6.0	86.1	05.0	20.6	10.7	8.3	0.2	20	10 F
WM4 13	13:00	0.15	27.3	27.3	6.77	6.8	85.6	85.9	18.8	19.7	8.3	8.3	19	19.5

Date	24-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbio	lity (NTU)	р	н	SS((mg/L)
	11.10	0.10	26.8	26.9	7.63	7.6	95.1		23.0	22.0	7.2	7 0	22	22 Г
WM4-CA	11:10	0.18	26.8	26.8	7.66	7.6	95.6	95.4	22.6	22.8	7.2	7.2	23	22.5
WM4-CB	11:20	0.21	28	28.0	6.68	6.0	85.3	96.4	66.0		7	7.0	66	64.0
WM4-CD	11:20	0.31	28	28.0	6.87	6.8	87.5	86.4	63.9	65.0	7	7.0	62	64.0
	11.05	0.10	27.4	27.4	7.12	7 1	89.8	00.1	68.2	70.0	7.3	7.2	68	60.0
WM4 11:05	11:05	0.15	27.4	27.4	7.16	7.1	90.4	90.1	71.8	70.0	7.3	7.3	70	69.0

Date	26-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
	11.40	0.10	28.2	20.2	7.62	7.6	97.5	98.0	16.8	16.7	7.5	7 5	14	14 5
WM4-CA	11:40	0.18	28.2	28.2	7.67	7.6	98.4	98.0	16.5	16.7	7.5	7.5	15	14.5
	12.00	0.21	29.6	20.6	6.92	6.0	90.6	01.1	10.2	0.9	7.3	7 2	9	0.0
WM4-CB	12:00	0.31	29.6	29.6	6.97	6.9	91.5	91.1	9.4	9.8	7.3	7.3	9	9.0
	11.25	0.15	28.6	20.6	7.43	7.4	96.0	06.2	21.9	20 Г	7.6	7.6	21	20 Г
WM4	11:35	0.15	28.6	28.6	7.44	7.4	96.3	96.2	19.0	20.5	7.6	7.6	20	20.5

Date	28-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
WM4-CA	11:00	0.19	28.8	28.8	7.64	7.7	98.8	99.2	8.4	0 7	8.3	8.3	5	5.0
WM4-CA	11:00	0.18	28.8	20.0	7.69	/./	99.6	99.2	8.0	8.2	8.3	0.5	5	5.0
WM4-CB	11:05	0.31	29.7	29.7	6.82	6.8	89.3	89.4	12.7	12.4	8.2	8.2	12	12.5
WIM4-CD	11:05	0.51	29.7	29.7	6.83	0.0	89.5	09.4	12.0	12.4	8.2	0.2	13	12.5
10/04/2	10.50	0.15	28.9	28.9	7.28	7.3	94.0	94.3	22.9	21.2	8.4	0.4	21	21 E
WM4 10:50	0.15	28.9	26.9	7.31	7.5	94.6	94.3	19.4	21.2	8.4	8.4	22	21.5	

Date	31-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (r	ng/L)	DO	(%)	Turbic	lity (NTU)	р	н	SS(mg/L)
	11:20	0.17	29.2	20.2	7.72		100.4	100.7	7.3	7 0	6.7	67	2	2.0
WM4-CA	11:20	0.17	29.2	29.2	7.73	7.7	100.9	100.7	7.0	7.2	6.7	6.7	2	2.0
WM4-CB	11:30	0.20	29.7	29.7	6.56	6.6	85.2	96.0	15.0	14.6	6.7	6.7	13	12.0
WIM4-CD	11:50	0.30	29.7	29.7	6.58	0.0	86.7	86.0	14.2	14.6	6.7	0.7	13	13.0
	11.15	0.15	29.2	20.2	7.08	7 1	92.3	02.0	31.6	21.2	7	7.0	24	24 5
WM4	11:15	0.15	29.2	29.2	7.11	7.1	93.2	92.8	30.9	31.3	7	7.0	25	24.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 6

Date	4-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	11:32	0.27	24.6	24.6	7.69	7.7	97.3	97.2	11.5	11.5	8.30	8.3	<2	<2
WIMZA-C	11.52	0.27	24.6	24.0	7.67	/./	97.1	97.2	11.4	11.5	8.30	0.5	<2	<2
	11.45	0.22	25.7	25.2	7.57	7.6	92.8	02.0	81.5	01 4	8.10	0.1	94	06.0
WM2A	11:45	0.22	25.7	25.7	7.57	7.6	92.8	92.8	81.3	81.4	8.10	8.1	98	96.0

Date	5-Jul-17#													
Location	Time	Depth (m)	Temp (o	oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Η	SS(mg/L)
WM2A-C	10:41	0.26							4.2	4.3			5	4.5
									4.3				4	
WM2A	10:28	0.19							40.6	40.5			40	40.5
WMZA	10.28	0.19							40.3	40.5			41	40.5

Date	6-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	sS(r	ng/L)
WM2A-C	10:35	0.30	26.1 26.1	26.1	7.91 7.84	7.9	98.1 97.4	97.8	33.3 33.6	33.5	7.90 7.90	7.9	24 22	23.0
WM2A	10:20	0.21	26.4 26.4	26.4	7.52 7.48	7.5	93.7 93.3	93.5	516.0 539.0	527.5	7.90 7.90	7.9	323 332	327.5

Date	7-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	10:25	0.28				-			7.1 7.9	7.5			3 3	3.0
WM2A	10:05	0.20				-			52.7 55.0	53.9			40 40	40.0

Date	8-Jul-17													
Location	Time	Depth (m)	Temp) (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	10:31	0.34	26.4	26.4	7.74	7.8	95.8	96.5	12.4	12.4	9.10	9.1	7	7.0
WIMZA-C	10:51	0.54	26.4	20.4	7.8	7.0	97.1	90.5	12.4	12.4	9.10	9.1	7	7.0
WM2A	10:45	0.21	26.2	26.2	7.43	7 5	92.0	93.0	24.5	24.3	8.80	8.8	18	18.5
₩₩ZA	10:45	0.21	26.1	20.2	7.51	7.5	93.9	95.0	24.1	24.5	8.80	0.0	19	10.5

Date	10-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (I	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(mg/L)
WM2A-C	10:10	0.28	25.3	25.3	8.59	8.6	104.4	104.5	6.1	6.4	7.90	70	7	7.0
WMZA-C	10:10	0.20	25.3	25.5	8.6	0.0	104.5	104.5	6.6	6.4	7.90	7.9	7	7.0
WM2A	10:00	0.20	26.6	26.6	7.31	7.3	91.8	91.5	23.2	23.8	8.00	8.0	28	28.0
WIMZA	10:00	0.20	26.6	26.6	7.23	7.5	91.1	91.5	24.3	23.0	8.00	0.0	28	28.0

Date	12-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	1) OC	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(r	ng/L)
	10.45	0.28	25.9	25.9	7.58	7.8	95.7	97.8	7.6	77	7.90	70	2	2 5
WIMZA-C	WM2A-C 10:45	0.20	25.9	25.9	8.02	7.0	99.9	97.0	7.9	/./	7.90	7.9	3	2.5
WM2A	10:30	0.20	31.5	31.5	6.55	6 5	85.4	85.1	22.2	23.0	7.90	70	14	14.5
WMZA	10:50	0.20	31.5	51.5	6.44	6.5	84.7	05.1	23.8	25.0	7.90	7.9	15	14.5

Date	14-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	ng/L)
WM2A-C	11:05	0.28	26.4	26.4	7.65	77	96.2	96.3	7.5	7 5	8.00	8.0	2	2.0
₩₩ZA-C	11:05	0.20	26.4	20.4	7.66	7.7	96.4	90.5	7.4	7.5	8.00	0.0	2	2.0
14/142.4	10.25	0.20	28.4	20.4	7.73	77	99.3	00.2	22.1	<u>ээ г</u>	8.00	0.0	14	14.0
WM2A	10:35	0.20	28.4	28.4	7.71	/./	99.2	99.3	24.8	23.5	8.00	8.0	14	14.0

Date	18-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	10:40	0.24	24.4	24.4	8.83	8.8	105.9	106.1	203.0	205.0	8.10	8.1	204	211.0
WMZA-C	10:40	0.34	24.4	24.4	8.86	0.0	106.3	100.1	207.0	205.0	8.10	0.1	218	211.0
	10.20	0.20	24.7	24.7	8.51	ог	102.3	102.1	overange		7.90	7.0	1430	1490.0
WM2A 10:30	0.28	24.7	24.7	8.48	8.5	101.9	102.1	overange	overrange	7.90	7.9	1550	1490.0	

Date	19-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(r	ng/L)
WM2A-C	10:00	0.28				-			7.9 9.3	8.6			4 4	4.0
WM2A	9:35	0.20				-			159.0 155.0	157.0			124 124	124.0

Date	20-Jul-17													
Location	Time	Depth (m)	Temp	(oC)		mg/L)		(%)	Turbidi	ty (NTU)		H	SS(I	mg/L)
WM2A-C	10:25	0.28	29.2 29.2	29.2	6.62 6.69	6.7	86.0 86.9	86.5	11.4 11.1	11.3	8.00 8.00	8.0	7 8	7.5
WM2A	10:05	0.20	26.8 26.8	26.8	7.16 7.07	7.1	90.6 90.0	90.3	69.4 72.0	70.7	8.20 8.20	8.2	59 58	58.5
Date	21-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	ity (NTU)	р	Н	SS(I	mg/L)
WM2A-C	9:50	0.28							4.7 4.3	4.5			5	5.0
WM2A	9:35	0.20							10.9 10.7	10.8			9 9	9.0
		11				1								
Date	22-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	ity (NTU)	р	Н	SS(I	mg/L)
WM2A-C	9:50	0.28	25.7 25.7	25.7	8.26 8.34	8.3	101.0 101.7	101.4	4.7 4.7	4.7	7.20 7.20	7.2	<2 <2	<2
WM2A	9:35	0.20	26.5 26.5	26.5	7.65 7.73	7.7	95.1 95.7	95.4	12.2 12.4	12.3	7.50 7.50	7.5	12 13	12.5
		1												
Date	24-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)		(%)	Turbidi	ty (NTU)		Н		mg/L)
WM2A-C	10:15	0.28	25.4 25.4	25.4	7.77 7.83	7.8	94.6 95.5	95.1	10.0 11.2	10.6	7.10 7.10	7.1	5 7	6.0
WM2A	10:00	0.20	26 26	26.0	7.23 7.26	7.2	88.9 89.4	89.2	123.0 124.0	123.5	7.30 7.30	7.3	66 61	63.5
		11												
Date	25-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	9:50	0.28				-			7.4 7.9	7.6			9 9	9.0
WM2A	9:35	0.20				-		-	47.3 45.4	46.4			65 65	65.0

Date	26-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	10:25	0.28	25.6 25.6	25.6	7.94 7.97	8.0	97.2 97.8	97.5	6.4 5.8	6.1	7.30	7.3	<2 <2	<2
WM2A	9:55	0.20	26.5 26.5	26.5	7.4 7.43	7.4	91.7 92.2	92.0	8.1 8.5	8.3	7.70 7.70	7.7	4 3	3.5
Date	27-Jul-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (I	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
WM2A-C	10:30	0.28							4.1 4.4	4.2			<2 <2	<2
WM2A	10:15	0.20				_		_	8.0 8.0	8.0			5 5	5.0
Date	28-Jul-17													
							-		-					
Location	Time	Depth (m)	Temp	(oC)	D0 (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(I	mg/L)
Location WM2A-C	Time 9:53	Depth (m) 0.28	Temp 25.4 25.4	0 (0C) 25.4	DO (1 7.72 7.76	mg/L) 7.7	DO 93.9 94.6	(%) 94.3	Turbidi 7.3 7.1	ty (NTU) 7.2	р 7.80 7.80	H 7.8	SS(1 8 9	ng/L) 8.5
			25.4		7.72		93.9		7.3		7.80		8	
WM2A-C	9:53	0.28	25.4 25.4 26.5	25.4	7.72 7.76 7.15	7.7	93.9 94.6 88.8	94.3	7.3 7.1 10.6	7.2	7.80 7.80 7.80	7.8	8 9 6	8.5
WM2A-C WM2A	9:53 9:40	0.28	25.4 25.4 26.5	25.4 26.5	7.72 7.76 7.15 7.19	7.7	93.9 94.6 88.8 89.4	94.3	7.3 7.1 10.6 9.9	7.2	7.80 7.80 7.80 7.80	7.8	8 9 6 8	8.5
WM2A-C WM2A Date	9:53 9:40 31-Jul-17	0.28	25.4 25.4 26.5 26.5	25.4 26.5	7.72 7.76 7.15 7.19	7.7	93.9 94.6 88.8 89.4	94.3	7.3 7.1 10.6 9.9	7.2	7.80 7.80 7.80 7.80	7.8 7.8	8 9 6 8	8.5 7.0

Remarks:

[#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	4-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ig/L)
WM3-C	15:11	0.15	25.5	142.0	6.89	6.9	84.4	84.4	123.5	124.6	8.7	8.7	377	391.0
WIMD-C	15.11	0.15	258.5	142.0	6.89	0.9	84.3	04.4	125.6	124.0	8.7	0.7	405	291.0
WM3	14:54	0.30	25.9	25.9	7.33	70	90.0	90.1	133.6	134.2	8.9	8.9	395	417.0
VV1*15	14:54	0.50	25.9	25.9	7.32	7.5	90.2	90.1	134.7	134.2	8.9	0.9	439	417.0

Date	6-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ıg/L)
	10.55	0.16	27.2	27.2	7.86	7.9	98.8	98.9	117.0	110.0	11.3	11.2	1670	1625.0
WM3-C	10:55	0.16	27.2	27.2	7.87	7.9	98.9	98.9	113.0	115.0	11.3	11.5	1580	1625.0
WM3	11,10	0.16	26.2	26.2	6.91	6.0	85.6		84.5	02.0	9.8	0.0	81	00.0
VVI ^v I3	11:10	0.16	26.2	26.2	6.9	6.9	85.5	85.6	79.4	82.0	9.8	9.8	79	80.0

Date	8-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(n	ng/L)
WM3-C	10:18	0.21	27.1	27.2	7.6	76	95.5	96.2	37.2	37.8	11	11.0	52	50.0
WM3-C	10:10	0.21	27.2	27.2	7.68	7.6	96.8	90.2	38.4	37.0	11	11.0	48	50.0
14/14/2	10:07	0.15	26.7	26.7	7	7.0	87.8	88.4	58.3	EQ 0	8.3	0.2	78	76.5
WM3	10:07	0.15	26.7	20.7	7.07	7.0	88.9	00.4	59.4	58.9	8.3	8.3	75	70.5

Date	10-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ıg/L)
WM3-C	10.25	0.15	28.2	28.2	7.46	74	96.1	95.8	13.8	12.1	11.1	11 1	29	20 F
₩13-C	10:35	0.15	28.2	28.2	7.39	7.4	95.4	95.8	10.3	12.1	11.1	11.1	32	30.5
WM3	10.4F	0.15	29.3	29.3	6.77	6.9	86.9	87.0	9.3	0.7	9.4	9.4	11	11 E
00142	10:45	0.15	29.3	29.5	6.78	6.8	87.0	07.0	10.0	9.7	9.4	9.4	12	11.5

Date	11-Jul-17#								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(n	ng/L)
WM3-C	10:20	0.15				7.0 8.5		15	15.0
VVM5-C	10:20	0.15				9.9		15	15.0
WM3	10:10	0.15				7.4 6.8		7	7.0
	10:10	0.15				6.2 0.0		7	7.0

Date	12-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM3-C	11.00	0.15	28.8	28.8	7.73	77	100.1	100.1	22.1	21.6	11.3	11.2	53	F2 0
W113-C	11:00	0.15	28.8	28.8	7.72	/./	100.1	100.1	21.1	21.6	11.3	11.3	53	53.0
WM3	11:10	0.15	28.6	28.6	6.66	6.7	85.4	85.4	25.2	24.6	10.2	10.2	14	15.0
VVIVIS	11.10	0.15	28.6	20.0	6.64	0.7	85.3	05.4	24.0	24.0	10.2	10.2	16	15.0

Date	14-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(m	ng/L)
WM3-C	11.25	0.15	30.4	20.4	7.34	7 2	98.0	07.6	8.9	0.2	11.4	11 /	14	14.0
VVI13-C	11:35	0.15	30.4	30.4	7.26	7.5	97.1	97.6	7.7	8.3	11.4	11.4	14	14.0
WM3	11:50	0.15	32.1	32.1	6.35	6.3	85.5	85.4	9.1	8.1	10.5	10.5	9	9.0
001012	11.50	0.15	32.1	52.1	6.34	0.5	85.3	05.4	7.2	0.1	10.5	10.5	9	9.0

Date	18-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(m	ng/L)
WM3-C	11.40	0.20	24.6	24.6	8.34	0.2	100.1	99.9	542.0	<u>гро г</u>	9.3	0.2	305	207.0
₩13-C	11:40	0.20	24.6	24.6	8.3	8.3	99.6	99.9	535.0	538.5	9.3	9.3	289	297.0
WM3	11.50	0.25	24.5	24 5	8.24	0.2	99.1	00.0	209.0	211.0	8.5	ог	124	100 F
VVI ^v I3	11:50	0.25	24.5	24.5	8.21	8.2	98.8	99.0	213.0	211.0	8.5	8.5	123	123.5

Date	20-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(m	ıg/L)
	10.50	0.15	28.9	20.0	7.14	7 1	93.0	02.0	29.5	20 Г	10.7	10.7	64	67.0
WM3-C	10:50	0.15	28.9	28.9	7.12	/.1	92.9	93.0	29.4	29.5	10.7	10.7	70	67.0
WM3	11:00	0.15	29.3	29.3	6.28	6.3	81.3	81.8	17.9	19.4	10.1	10.1	17	17.5
VV115	11:00	0.15	29.3	29.3	6.34	0.5	82.2	01.0	20.8	19.4	10.1	10.1	18	17.5

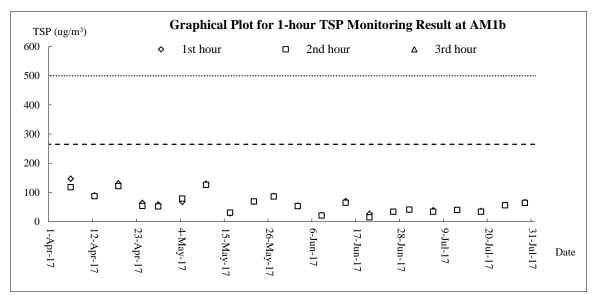
Date	22-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ıg/L)
WM3-C	10:30	0.15	28.5	28.5	7.33	7 2	94.7	94.8	90.1	89.8	8.3	8.3	185	179.0
W113-C	10:30	0.15	28.5	28.5	7.35	7.5	94.9	94.8	89.5	89.8	8.3	8.5	173	179.0
WM3	10:40	0.15	27.4	27.4	6.98	7.0	88.1	88.7	6.6	6.6	8.7	8.7	8	0.0
VVIVIS	10:40	0.15	27.4	27.4	7.06	7.0	89.3	00.7	6.7	6.6	8.7	0.7	10	9.0

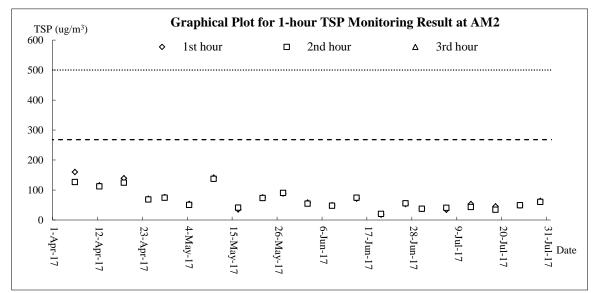
Date	24-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ıg/L)
WM3-C	10.40	0.16	27.2	27.2	6.93	7.0	87.2	07 7	101.0	101 F	7.3	7.2	167	161.0
W113-C	10:40	0.16	27.2	27.2	6.98	7.0	88.2	87.7	102.0	101.5	7.3	7.3	155	161.0
WM3	10:50	0.15	26.6	26.6	6.52	6 5	81.0	01 2	45.7	45.9	7.8	7.8	17	16.0
2141AA	10:50	0.15	26.6	20.0	6.56	6.5	81.6	81.3	46.0	45.9	7.8	7.0	15	10.0

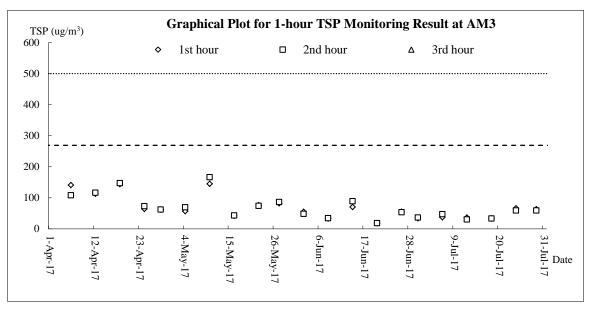
Date	26-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Η	SS(m	ng/L)
WM3-C	10:55	0.15	29.2	29.2	7.08	7 1	92.7	93.0	13.7	14.6	9.4	0.4	28	27.0
WM3-C	10.55	0.15	29.2	29.2	7.11	7.1	93.2	95.0	15.4	14.6	9.4	9.4	26	27.0
14/14/2	11.05	0.15	28.2	28.2	6.83	6.0	87.6	88.1	13.9	12.7	8.5	0 5	7	0 0
WM3	11:05	0.15	28.2	20.2	6.88	6.9	88.6	00.1	13.5	13.7	8.5	8.5	9	8.0

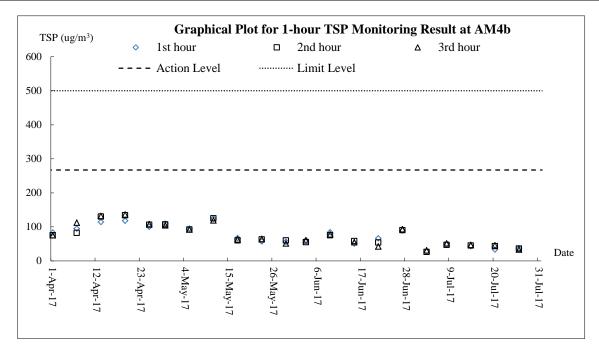
Date	28-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ıg/L)
WM3-C	10.15	0.15	29	20.0	6.98	7.0	90.7	01.2	30.3	20.0	8.7	07	57	ГСГ
WM3-C	10:15	0.15	29	29.0	7.04	7.0	91.9	91.3	27.4	28.9	8.7	8.7	56	56.5
WM3	10:25	0.15	28.1	28.1	6.87	6.9	87.8	87.8	24.5	22.8	8.8	8.8	13	14.0
CININ	10:25	0.15	28.1	20.1	6.86	0.9	87.7	07.0	21.1	22.0	8.8	0.0	15	14.0

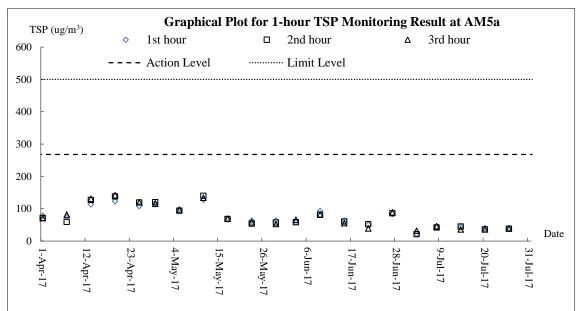
Date	31-Jul-17													
Location	Time	Depth (m)	Temp	(oC)	DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ıg/L)
	10.25	0.15	29.3	20.2	6.76	6.0	88.3	00.0	26.6	24 F	7.5	7 5	56	го г
WM3-C	10:25	0.15	29.3	29.3	6.81	6.8	89.3	88.8	22.4	24.5	7.5	7.5	49	52.5
WM3	10:40	0.15	28.7	28.7	6.8	6.0	87.9	88.3	14.7	15.0	8	0.0	5	6.0
VVI*13	10:40	0.15	28.7	28.7	6.85	6.8	88.7	88.5	15.3	15.0	8	8.0	7	6.0

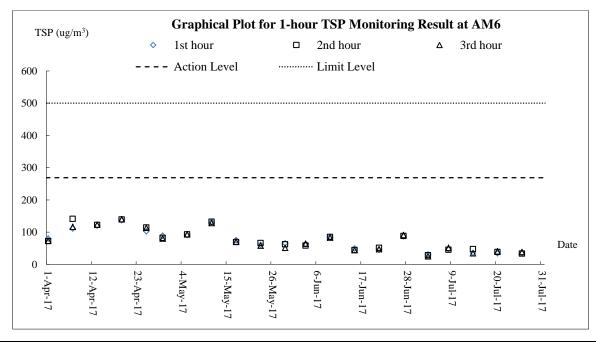

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

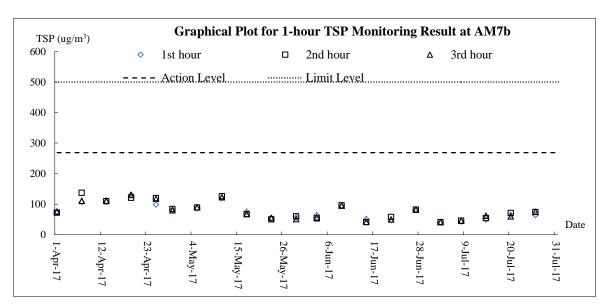

Action Level
Limit Level

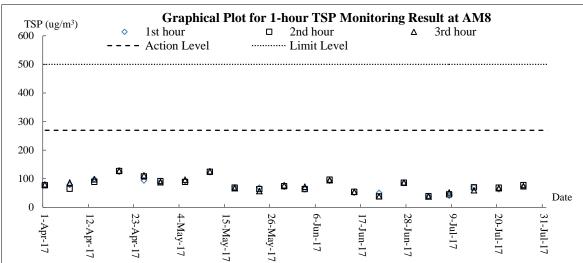

Appendix J

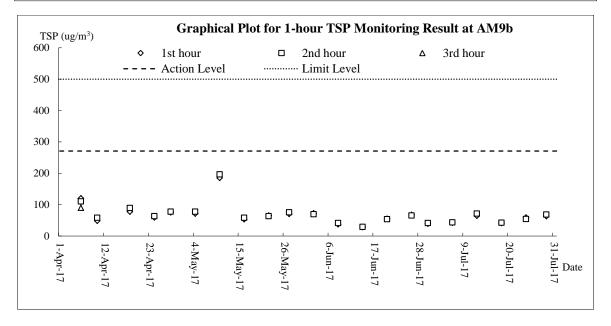

Graphical Plots for Monitoring Result

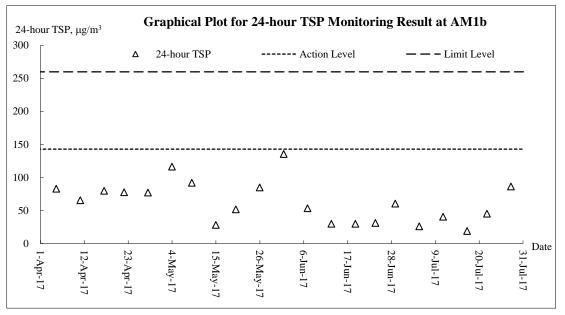

<u>Air Quality – 1-hour TSP</u>

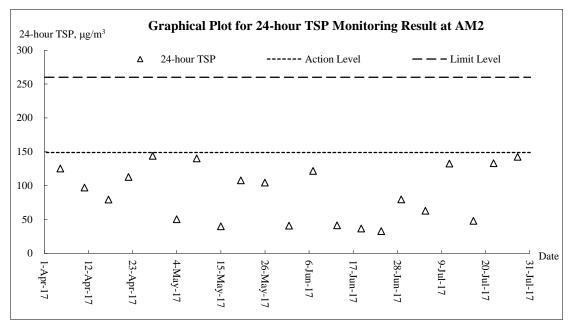


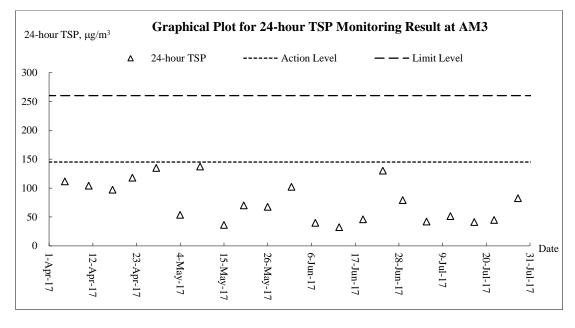


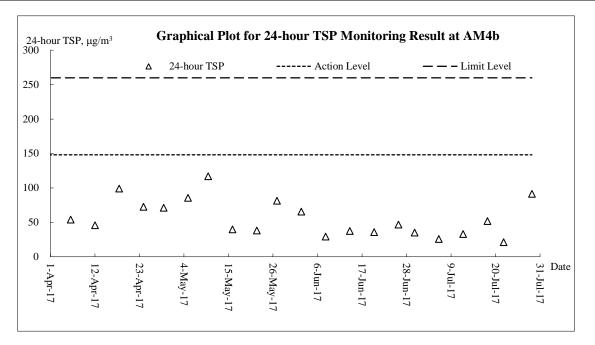


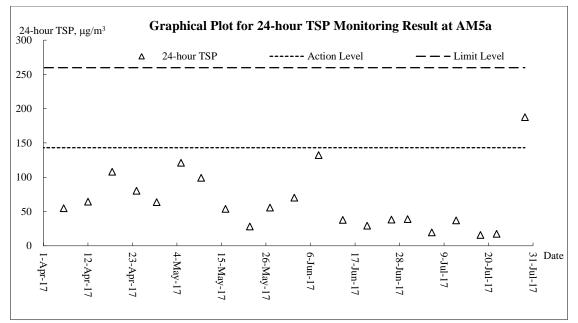


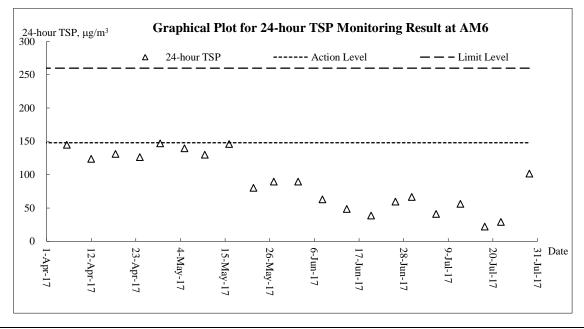


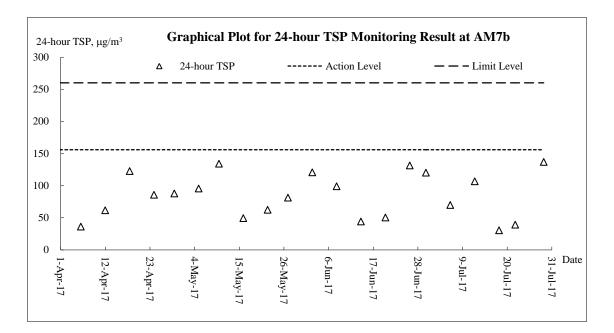


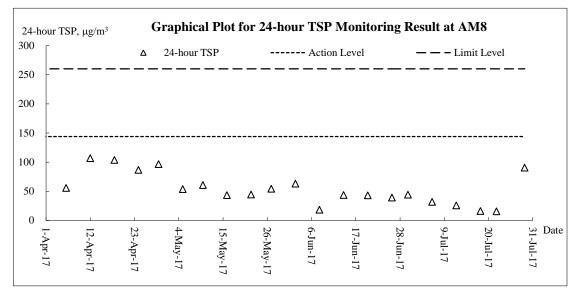


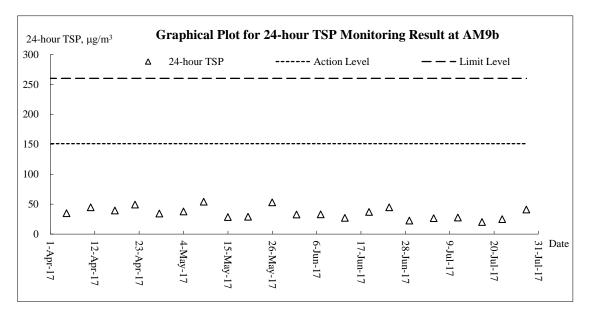


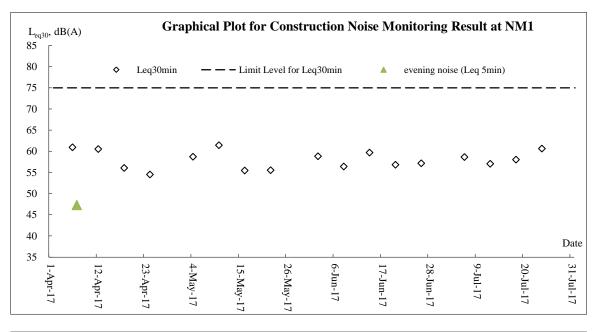

Air Quality – 24-hour TSP

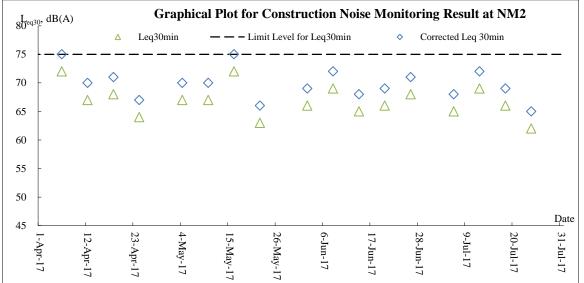


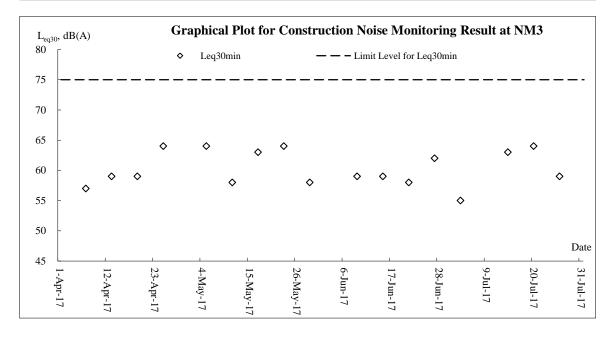


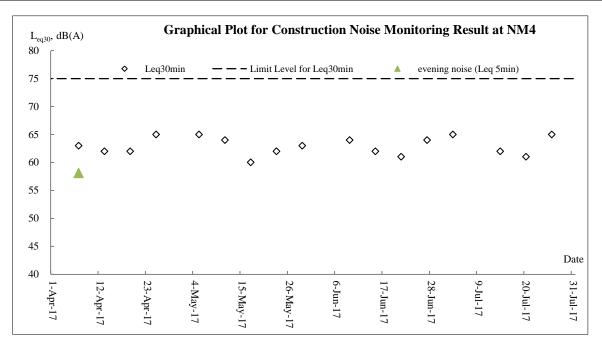


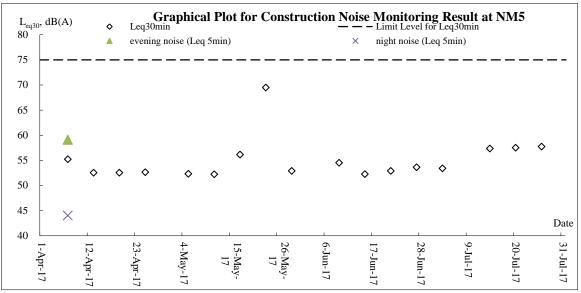


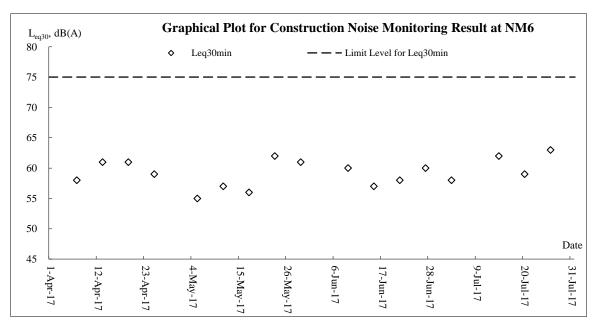


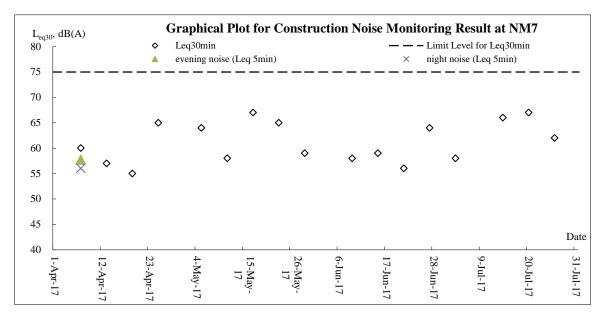


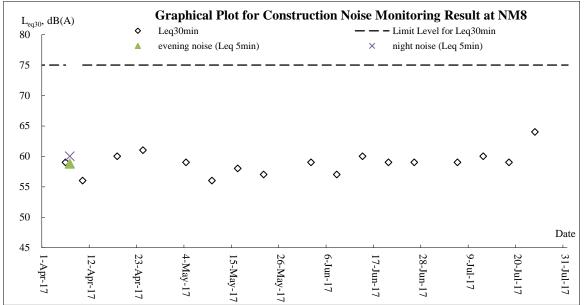


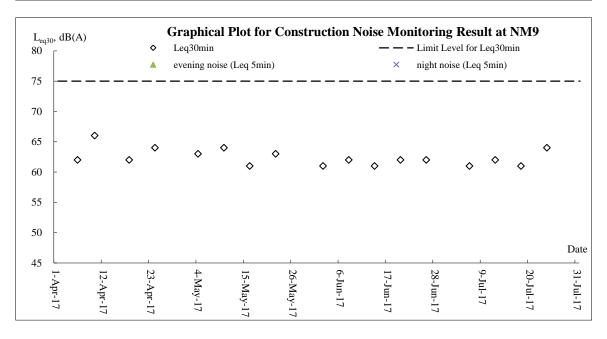


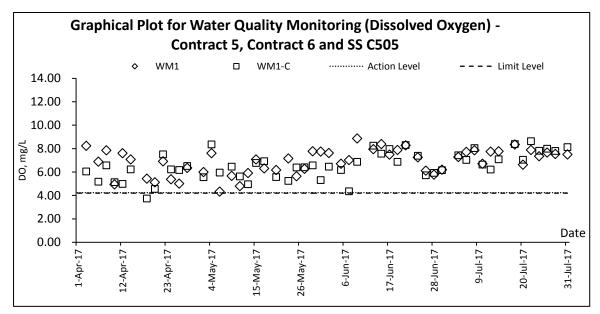

Noise

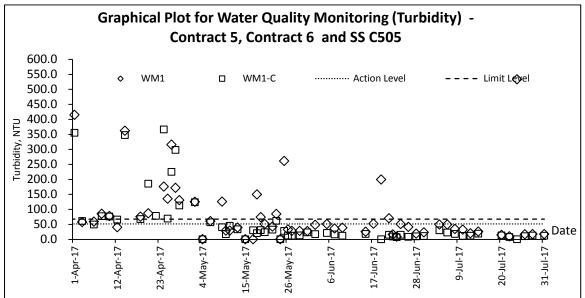


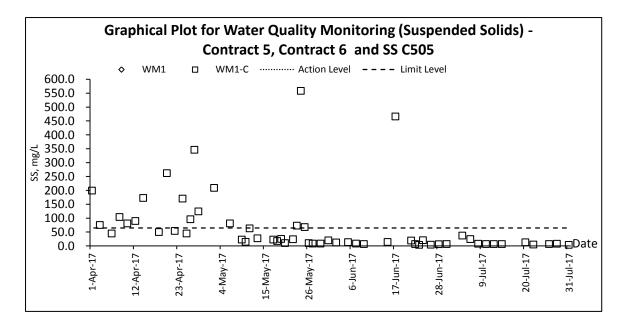


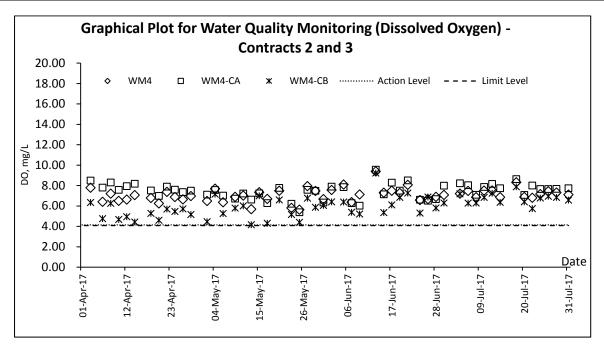


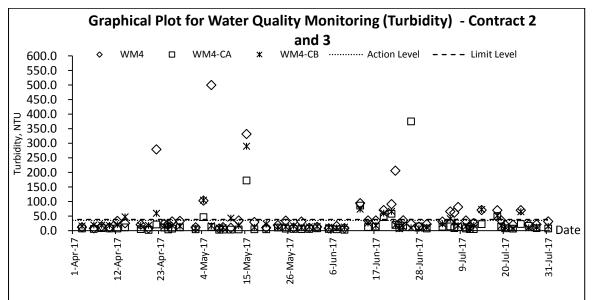


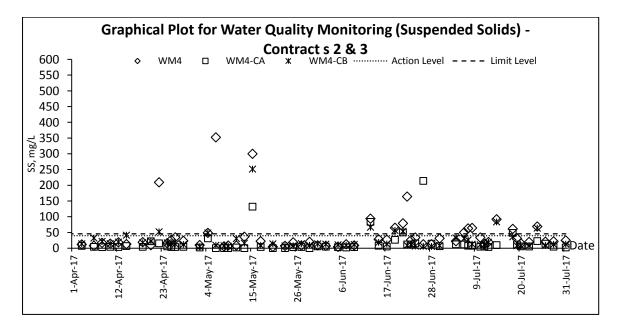


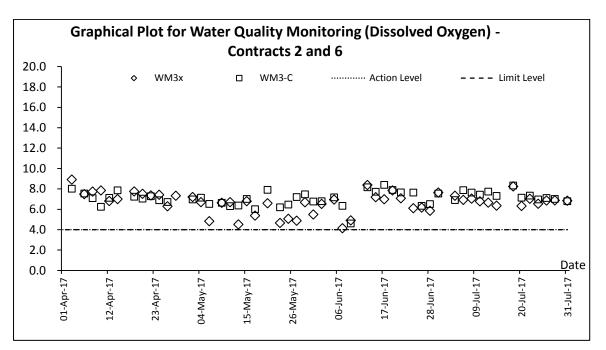


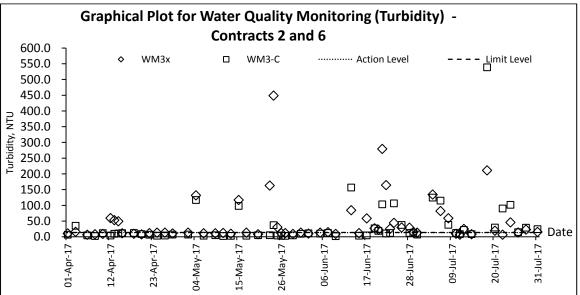


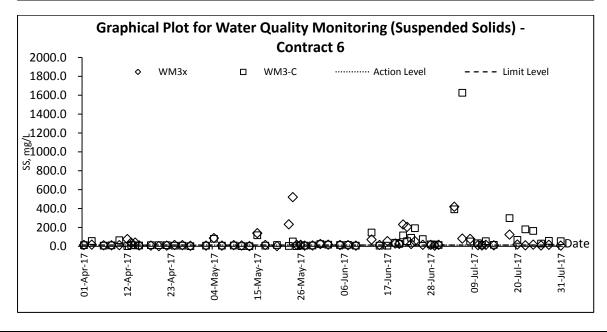

L _{eq30} ,	dB(A)	(Graphical I	Plot fo	or Const	ruction N	loise Mo	nitoring	g Result at	NM10	
80	♦ ×	Leq30min	ise (Leq 5min)	 — — Limit Level for Leq30min x night noise (Leq 5min) 				O Corrected Leq 30min			
75											
70 -			o					_			
65 -	° 0	° ₀	0 \$	0	0	o 0	0 0 ♦ ♦	0 ♦	o ⁰	0 ○	
60 -	<u> </u>	<u>ه</u>	\$	\$	\$	۰ ⁽	v v		۰ ×	\$	
55 -											
50 -											
45			1	1	1	1	1	I			Date
	- 12-Apr-17	- 23-Apr-17	- 4-May-17	15-May-17	- 26-May-17	- 6-Jun-17	- 17-Jun-17	- 28-Jun-17	- 9-Jul-17	- 20-Jul-17	31-Jul-17

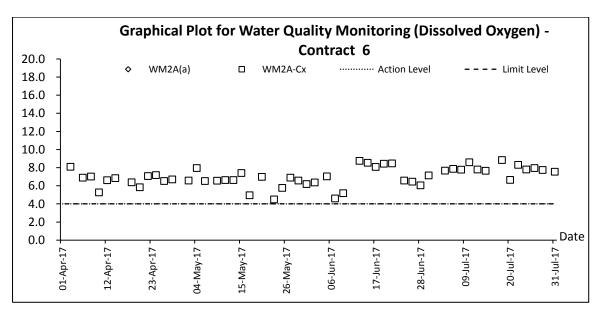

Water Quality

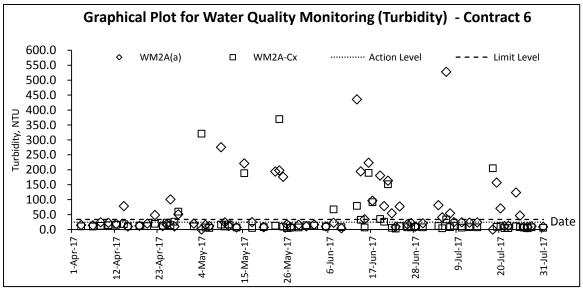


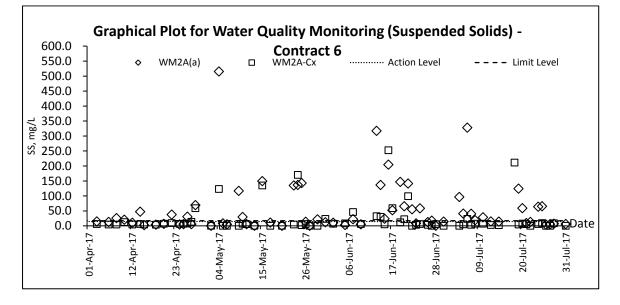


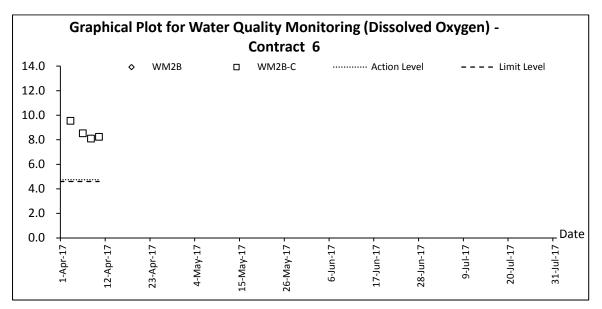


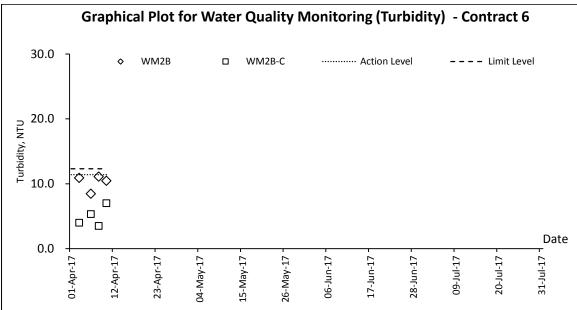


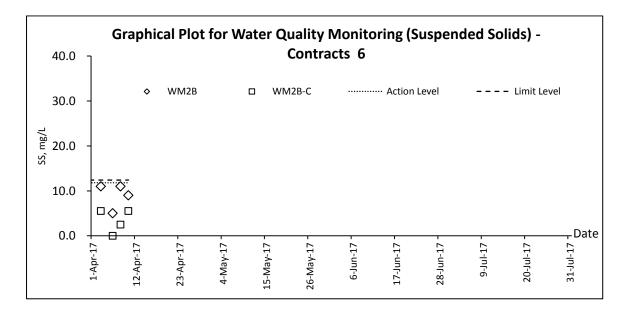









Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\48th (July 2017)\R1132v2.docx



Appendix K

Meteorological Data

				Ta Kwu Ling Station					
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction		
1-Jul-17	Sat	Mainly cloudy with isolated showers.	7.4	29.1	12.5	81.5	S/SE		
2-Jul-17	Sun	Hot with sunny periods and isolated showers. Moderate southerly winds.	8.8	28.5	11.5	84.7	E/SE		
3-Jul-17	Mon	Mainly cloudy with isolated showers.	8.4	27.2	4.9	88.7	E/SE		
4-Jul-17	Tue	Moderate easterly winds, fresh at times.	32.3	27.4	7.5	85.5	E/NE		
5-Jul-17	Wed	Mainly fine. Very hot	27.5	28.9	8.5	80	E/NE		
6-Jul-17	Thu	Mainly fine. Very hot	16.3	28	8.7	85.5	E/NE		
7-Jul-17	Fri	Mainly cloudy with isolated showers.	35.8	28.2	8.6	79.5	S/SE		
8-Jul-17	Sat	Moderate easterly winds, fresh at times.	12.8	27.6	14.5	90.5	S/SE		
9-Jul-17	Sun	Mainly fine. Very hot	1.2	29.2	7.8	74	S/SW		
10-Jul-17	Mon	Hot with sunny periods and isolated showers.	0.6	28.9	7.3	76	S/SW		
11-Jul-17	Tue	Mainly fine and hot apart from isolated showers. Moderate southeasterly winds.	0	29.7	7.5	74.4	E/SE		
12-Jul-17	Wed	Moderate east to southeasterly winds.	Trace	29.6	5.5	77.2	E/NE		
13-Jul-17	Thu	Mainly cloudy with isolated showers.	Trace	29.7	8.2	75.5	E/NE		
14-Jul-17	Fri	Hot with sunny periods and isolated showers. Moderate southerly winds.	2.3	29.9	9	75.7	E/NE		
15-Jul-17	Sat	Mainly cloudy with isolated showers.	8.8	29	11.2	85.8	E/NE		
16-Jul-17	Sun	Moderate easterly winds, fresh at times.	21	27.9	11.3	86	E/NE		
17-Jul-17	Mon	Mainly fine. Very hot	184.6	27.1	16.5	88	E/NE		
18-Jul-17	Tue	Mainly fine. Very hot	134.3	26.7	6.5	88.7	E/NE		
19-Jul-17	Wed	Mainly cloudy with isolated showers.	12.6	28.2	7.1	75	E/NE		
20-Jul-17	Thu	Moderate easterly winds, fresh at times.	2	29.4	8.2	78	E/NE		
21-Jul-17	Fri	Mainly fine. Very hot	0.2	29.8	7.5	77	E/NE		
22-Jul-17	Sat	Mainly fine. Very hot	3.3	30	11.5	81.5	E/NE		
23-Jul-17	Sun	Moderate east to southeasterly winds.	46.5	26.5	7.5	90.7	E/NE		
24-Jul-17	Mon	Mainly cloudy with isolated showers.	3.3	28.4	7.7	84.7	E/NE		
25-Jul-17	Tue	Hot with sunny periods and isolated showers. Moderate southerly winds.	Trace	29.4	6.5	77.5	E/NE		
26-Jul-17	Wed	Mainly cloudy with isolated showers.	0	29.3	6.5	76	E/NE		
27-Jul-17	Thu	Moderate easterly winds, fresh at times.	Trace	28.7	5.2	80.5	E/NE		
28-Jul-17	Fri	Mainly fine. Very hot	0	30.4	5.5	71	E/NE		
29-Jul-17	Sat	Very hot with sunny intervals	0	31.6	10.5	72.5	E/NE		
30-Jul-17	Sun	Moderate to fresh west to southwesterly winds,	0	32	5.3	66.7	W/SW		
31-Jul-17	Mon	Very hot with sunny intervals	0	31.3	7	72.5	SW		

Appendix L

Waste Flow Table

Contract No. CV/2012/08 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

APPENDIX G: MONTHLY SUMMARY WASTE FLOW TABLE

FOR: <u>2017</u>

	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill*	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse#		
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m ³)		
Jan	72.9008	0.0000	2.0045	31.5900	39.3063	9.1064	144.0000	0.3600	1.9179	1.7600	0.3210		
Feb	85.5921	0.0000	1.4413	29.9165	54.2343	8.4347	76.9000	0.3000	2.1663	4.3480	0.3365		
Mar	36.8512	0.0000	0.5903	33.0669	3.1940	7.7980	389.2000	0.4000	1.3527	4.0720	0.4167		
Apr	41.5647	0.0000	1.2335	33.1649	7.1663	7.9084	419.9700	0.3200	2.0268	13.0254	0.3862		
May	38.2029	0.0000	0.4115	33.2084	4.5830	8.3119	476.5000	0.3700	2.7135	3.5440	0.3907		
June	38.6829	0.0000	0.9191	13.5900	24.1738	7.3349	428.5000	0.3000	2.0648	4.8760	0.3265		
Sub-total	313.7946	0.0000	6.6002	174.5367	132.6577	48.8943	1935.0700	2.0500	12.2420	31.6254	2.1776		
July	56.6085	0.0000	0.8453	20.1780	35.5852	7.4497	374.3300	0.3000	2.1800	2.8440	0.1970		
Aug													
Sep													
Oct													
Nov													
Dec													
Sub-total	56.6085	0.0000	0.8453	20.1780	35.5852	7.4497	374.3300	0.3000	2.1800	2.8440	0.1970		
Total	370.4031	0.0000	7.4455	194.7147	168.2429	56.3440	2309.4000	2.3500	14.4220	34.4694	2.3746		

Notes:

(1) The performance targets are given in PS 1.100(14)(a)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials.

(5) Assumption: 1m³ of inert material weight 2.2 tonne 1m3 of non-inert material weight 1.6 tonne 1m3 of chemical waste weight 0.88 tonne

Monthly Summary Waste Flow Table for 2017 (year)

	Actua		of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m³)	(in '000m ³)								
Jan	1.150	0.204	0.150	0.000	0.796	1.150	0.000	0.000	0.001	0.000	0.170
Feb	1.160	0.308	0.192	0.000	0.660	0.926	0.000	0.000	0.001	0.000	0.140
Mar	2.287	0.565	0.060	0.000	1.662	1.055	0.000	0.000	0.000	0.000	0.115
Apr	1.004	0.064	0.036	0.000	0.903	0.463	0.000	0.000	0.004	0.000	0.075
May	0.497	0.005	0.120	0.000	0.372	0.050	0.767	0.000	0.000	0.000	0.105
Jun	1.249	0.150	0.150	0.000	0.948	0.008	0.000	0.000	0.000	0.000	0.135
Sub-total	7.347	1.297	0.708	0.000	5.342	3.651	0.767	0.000	0.006	0.000	0.740
Jul	1.917	0.180	0.120	0.000	1.617	0.542	0.000	0.000	0.000	0.000	0.065
Aug											
Sep											
Oct											
Nov											
Dec											
Total	9.264	1.477	0.828	0.000	6.959	4.193	0.767	0.000	0.006	0.000	0.805

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is $5m^3$.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m^3 .

Total Quantity Generated	Hard Rock and Large Broken Concrete	Forecast of T Reused in the Contract	Reused in other	ties of C&D Diposal as Public Fill	Materials to Imported Fill	be Generate Metals	ed from the C Paper/card board packaging		Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

ltem No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works		Actual Quantities Used (m ³)	Remarks
	Formwork for concreting the Stem wall bay4 of noise barrier NB68a	Easy handling by manpower	4.92	3.68	
		Total Estimated Quantity of Timber Used	4.92		

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
 - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Name of Department: CEDD

Appendix A

Contract No.: <u>NE/2014/02</u>

		Actu	al Quantities of Inert C&I	Materials Generated M	onthly			Actual Quanti	ties of C&D Wastes Gen	erated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug-17											
Sep-17											
Oct-17											
Nov-17											
Dec-17											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Monthly Summary Waste Flow Table for 2017

	Reused in the Contract Disposed as Public Fill Importe									
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500	0.000	0.000	0.000	0.500	0.000	0.500	0.200	0.000	0.000	0.200

Notes :

(1) The performance targets are given in PS Clause 1.84(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) Estimate 6.5m3 capacity per dump truck

Updated on 1 Aug 2017

Monthly Summary Waste Flow Table for <u>2017</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Liangtang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 6

Contract No.: CV/2013/08

		Actual Quantit	ies of Inert C&l	D Materials Ger	nerated Monthly		Act	tual Quantities	of C&D Wastes	s Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
							(; 1000 l)	(1.10001)	(see Note 3)	(* 10001)	
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	$(in '000 m^3)$
Jan	40.128	0	19.297	6.067	14.764	0	0	0.171	0	0	0.065
Feb	48.065	0	16.328	7.123	24.614	0	0	0.294	0	0	0.107
Mar	49.230	0	5.661	15.029	28.540	0	0	0.494	0	0	0.217
Apr	52.348	0	10.824	31.732	9.792	0	0	0.331	0	0.290	0.162
May	47.339	0	24.850	12.383	10.106	0	0	0	0	0	0.228
Jun	1.108	0	0	0	1.108	0	0	0.285	0	0	0.258
Sub-total	238.218	0	76.960	72.334	88.92418	0	0	1.575	0	0.29	1.037
Jul	0.934	0	0	0	0.93437	0	0	0	0	0	0.288
Aug											
Sep											
Oct											
Nov											
Dec											
Total	982.314	0	160.651	270.626	551.03755	53.939	0	4.348	0.007	34.045	6.177

Notes:

(1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

Appendix I

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works – Contract 7Contract No.:

NE/2014/03

Monthly Summary Waste Flow Table for <u>2017</u> (year)

		Actual Quan	tities of Inert C&I	O Materials Genera	ted Monthly		A	Actual Quantities of	Inert C&D Waste	s Generated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0.1	0.05	0.001	0	0.01
Feb	0	0	0	0	0	0	0.5	0.04	0.001	0	0.015
Mar	0.822	0	0	0	0.822	0	2.2	0.04	0.001	0	0.025
Apr	1.473	0	0	0	1.473	0	3.1	0.04	0.001	0	0.02
May	1.129	0	0	0	1.129	0	4.5	0.04	0.001	0	0.03
June	0.317	0	0	0	0.317	0	4	0.04	0.001	0	0.04
Sub-total	3.741	0	0	0	3.741	0	14.4	0.25	0.006	0	0.14
July	0.931	0	0	0	0.931	0	2	0.04	0.001	0	0.025
Aug											
Sept											
Oct											
Nov											
Dec											
Total	4.672	0	0	0	4.672	0	16.4	0.29	0.007	0	0.165

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

SC505

Monthly Summary Waste Flow Table for <u>2017</u> [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of Inc	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	3.160	0.000	2.003	0.000	1.157
Feb	1.374	0.000	0.249	0.000	1.125
Mar	0.548	0.000	0.054	0.000	0.494
Apr	3.136	0.013	0.139	0.000	2.984
May	3.010	0.000	0.191	0.000	3.010
Jun	8.813	0.000	0.317	0.000	8.496
Sub-total	20.039	0.013	2.762	0.000	17.264
Jul	8.101	0.000	0.223	0.000	7.878
Aug	-	-	-	-	-
Sep	-	-	-	-	-
Oct	-	-	-	-	-
Nov	-	-	-	-	-
Dec	-	-	-	-	-
Total	28.140	0.013	2.985	0.000	25.142

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ıber	Me	tals	Paper/ ca packa		Plas (see N		Chemica	al Waste	Mate	ecyclable erials age 3)	General Refuse disposed of at Landfill
	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	458.150	458.150	0.560	0.560	0.058	0.058	0.000	0.000	0.024	0.024	0.481
Feb	0.000	0.000	177.180	177.180	0.370	0.370	0.036	0.036	0.000	0.000	0.008	0.008	0.280
Mar	0.000	0.000	97.370	97.370	3.380	3.380	1.573	1.573	0.000	0.000	0.036	0.036	0.423
Apr	0.000	0.000	148.110	148.110	0.300	0.300	1.223	1.223	0.000	0.000	29.795	29.795	0.358
May	0.000	0.000	405.500	405.500	0.440	0.440	0.040	0.040	0.000	0.000	0.006	0.006	0.644
Jun	0.000	0.000	338.580	338.580	0.710	0.710	0.036	0.036	0.000	0.000	0.002	0.002	0.878
Sub-total	0.000	0.000	1624.890	1624.890	5.020	5.020	2.926	2.926	0.000	0.000	29.871	29.871	3.062
Jul	0.000	0.000	296.540	296.540	0.650	0.650	1.040	1.040	0.000	0.000	0.002	0.002	1.651
Aug	-	-	-	-	-	-	-	-	-	-	-	-	-
Sep	-	-	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	0.000	0.000	1921.430	1921.430	5.670	5.670	3.966	3.966	0.000	0.000	29.872	29.872	4.713

Description of mod	e and details of recycling if	any for the month e.g. X	X kg of used timber was se	ent to YY site for transform	ation into fertilizers
1.5kg of cans were sent to Kong Hung for recycling.	650 kg of papers were sent to Wai San for recycling .	40kg of plastic bottles were sent to Action Health for recycling.	1000kg of plastic barrier were sent to Forest Hill for recycling.	114.45 tons of scrap metals from LCAL and 182.09 tons of scrap metals from subcontractors were sent for recycling.	

Notes: (1)

The performance targets are given in the Particular Specification on Environmental Management Plan. The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site. (2)

Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material. (3)

Broken concrete for recycling into aggregates. (4)

If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m³ by volume. (5)

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include:	To minimize adverse dust emission generated from various construction activities of the	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 Good site management The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 	works sites				
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding					
		Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
		Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation, EIAO and NCO
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

	ientai wor	nitoring and Audit Manual	Objectives of the				
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirement or standards for th measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Vater Qu	uality Impa	ct (Construction)					
5.6.1.1	4.1	 Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of 	To control site runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.		Objectives of the Recommended Measure	Who to implement the	Location of the	When to implement the	What requirements or standards for the measure to
	nel.		& Main Concerns to address	measure?	measure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	•	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
		g'	grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironmenta	al Monitc	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	-	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			to address	measure?			achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices	To minimize	Contractor	Construction	Construction	EIA recommendation
		Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	adverse environmental impact		works sites (general)	Phase	Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No. 19/2005,
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A	EM&A Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	Implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
	-	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	a quantity of wastes e n		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-n	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	24 July	2017
Our Ref	TCS00694/13/300/ F1106	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of 6, 7 July 2017			
If you do not	receive all pages or transmission is illegible please of	contact the originat	tor on (852)	2959-6059 to re-send Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1081 dated 6 July 2017 TCS00694/13/300/F1087 dated 10 July 2017 TCS00694/13/300/F1101 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project					CE 45	5/2008			
Date		4 Jul 2017	5 Jul 2017	6 Jul 2017	7 Jul 2017	4 Jul 2017	5 Jul 2017	6 Jul 2017	7 Jul 2017
Location					WM	2A(a)			
Time		11:45	10:28	10:20	10:05	11:45	10:28	10:20	10:05
Parameter			Turbidity	(NTU)		S	uspended s	olids (mg/	L)
Action Level	l	24.9 ANE sta	0 120% of tion of the				ND 120% o station of th		
Limit Level		33.8 ANE sta	0 130% of the			17.3 AND 130% of upstream control station of the same day			
Measured	WM2A-C	11.5	4.3	33.5	7.5	<2	4.5	23.0	3.0
Levels	WM2A(a)	81.4	40.5	527.5	53.9	96.0	40.5	327.5	40.0
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Mitigation Measures		erection 2. Accorr July 2 WM2.	on. The m ding to th 017, the A-C was	onitoring ne site ph water qua clear. (locations oto taken ality at W On 6 July	and works by the m M2A(a) v 2017, m	were main s area are sl onitoring t vas slightly uddy wate C was turbi	hown in F eam on 4 turbid w r was obs	<i>igure 1</i> . 5 and 7 hereas at served at
		rainy course from t from (<i>Photo</i> that c upstre course 4. During	days on 4 e was high the surrou the veget o 1 & 3) construction am of WM e was obse g weekly	to 7 Jul hly affect nding em ation slop In addi on works M2A(a) a erved. (<i>i</i> joint site	y 2017. ed by the vironment pe adjacention, durin by othe nd dischar Photo 9 & inspectio	The wate stirred up Moreo nt to the ng 4 to 7 r Contrac rge of turb 10 & Fig n conduc	ted at Brid	and mudd of washing se were of CCKJV carried ou to the exit ge D on	the river dy runoff g out soil observed. observed tt at the ting river 6 and 13
		July 2 The of (a) Co an (b) W (F (c) To te ru	2017, the bservation onstruction of there w (astewater <i>Gigure 1</i>) of minimize mporary (1) noff and	water m a during th n works a as no disc treatmen ze the m bund was discharge	itigation the site inspective site inspective site inspective site inspective site inspective site site site site site site site sit	measures pection is D was ma to nature were pro off from a lign th le from th	were prop summarize ainly bridg of works. (operly prov the site, e river cou he site. Math tarpaulin	erly impl d below. e segment (<i>Photo 11</i>) ided for 1 concrete urse and 1 loreover, 1	emented. erection Bridge D block as to turbid the slope

muddy runoff. (Photo 12)
5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 4 to 7 July 2017 was partially caused by the rainstorm as well as the suspected turbid water attributed by construction works by others.
6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 8 and 10 July 2017 and exceedances were also recorded. The Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Auch	
Date :	24 July 2017	

Photo Record

Photo 1

On 4 July 2017, water quality observed at WM2A(a) was slightly turbid. Moreover, trails of washing out soil from the vegetation slope adjacent to the river course were observed.

WM2A(a) was slightly turbid.

On 4 July 2017, the water quality observed at WM2A-C was clear.

Photo 4

Moreover, trails

On 5 July 2017, the water quality observed at WM2A-C was clear.

On 5 July 2017, water quality observed at

of washing out soil from the vegetation slope

adjacent to the river course were observed.

Photo 5 On 6 July 2017, muddy water was observed at WM2A(a).

On 6 July 2017, the water quality observed at WM2A-C was turbid.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1106.doc Action-United Environmental Services & Consulting

Photo 7 On 7 July 2017, muddy water was observed at WM2A(a).

Photo 9

During 4 to 7 July 2017, CCKJV observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed.

Photo 8

On 7 July 2017, the water quality observed at WM2A-C was clear.

Photo 10

During 4 to 7 July 2017, CCKJV observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed.

AUES

Photo 11

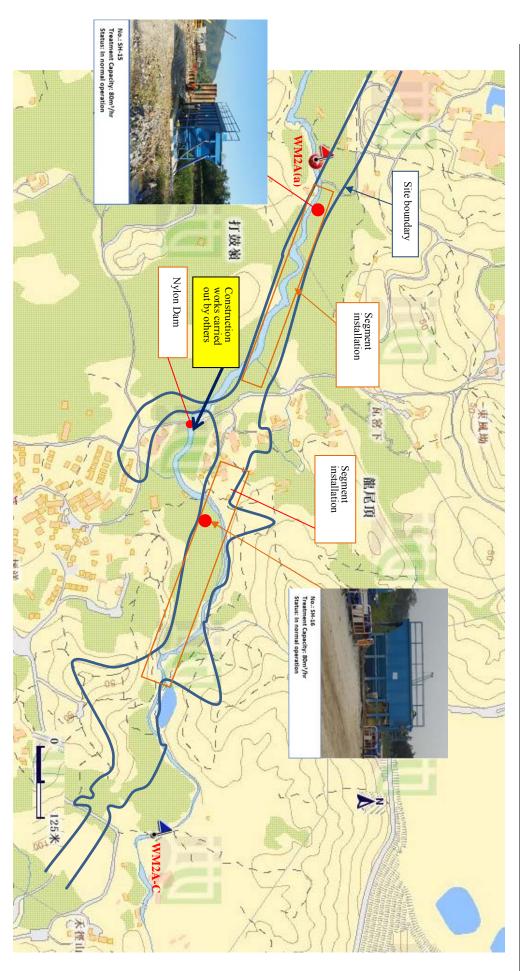

During site inspection on 6 and 13 July 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 12

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

AUES

То	Mr. Vincent Chan	Fax No	By e-n	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	25 July	2017
Our Ref	TCS00694/13/300/ F1107	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 8 and 10 July 2017			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1104 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008		
Date		8 July 2017 10 July 2017		
Location		WM2A(a)		
Time		10:45 10:00		
Parameter		Suspended solids (mg/L)		
Action Level	l	14.6 AND 120% of upstream control station of the same day		
Limit Level		17.3 AND 130% of upstream control station of the same day		
Measured	WM2A-C	7.0 2.5		
Levels	WM2A(a)	28.0 17.0		
Exceedance		Limit Level Action Level		
Investigation Recommend Mitigation M	ations &	1. According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 8 and 10 July 2017 at Bridge D (upstream of WM2A(a)) were mainly bridge segment erection. The monitoring locations and works area are shown in <i>Figure 1</i> .		
		2. According to the site photo taken by the monitoring team on 8 and 10 July 2017, the water quality at WM2A-C was clear whereas the water quality observed at WM2A(a) slightly cloudy. (<i>Photo 1 to 4</i>)		
		3. According to the weather information from HKO, it rained on 8 July 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. No abnormal phenomenon was observed on 10 July 2017.		
		4. During weekly joint site inspection conducted at Bridge D in July 2017, the water mitigation measures were properly implemented. The observation during the site inspection is summarized below.		
		 (a) Construction works at Bridge D was mainly bridge segment erection and there was no discharge due to nature of works. (<i>Photo 5</i>) 		
		(b) Wastewater treatment facilites were properly provided for Bridge D (<i>Figure 1</i>)		
		(c) To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff. (<i>Photo 6 to 7</i>)		
		5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances was due to natural variation and unlikely caused by the works under Contract 6.		
		6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Since the SS result required 5working days to process, the need for repeated measurement could only rely on the result of turbidity which is in-situ measurement. There were no repeated		

monitoring on 11 and 13 July 2017 as no exceedance of turbidity recorded
at the day before. Moreover, there were no exceedances recorded on 12
and 14 July 2017. Nevertheless, the Contractor should continually
implement the water mitigation measures as recommended in the
implementation schedule for environmental mitigation measures in the
EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Auch
Date :	25 July 2017

Photo Record

Photo 1

On 8 July 2017, the water quality observed at WM2A(a) was slightly turbid.

Photo 3

On 10 July 2017, the water quality observed at WM2A(a) was slightly turbid.

Photo 5

During site inspection in July 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 2

On 8 July 2017, the water quality observed at WM2A-C was clear.

Photo 4

On 10 July 2017, the water quality observed at WM2A-C was clear.

Photo 6

To minimize the muddy runoff from the site, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course and no turbid runoff and discharge was made from the site. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1107.doc Action-United Environmental Services & Consulting

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7	077
Company	Chun Wo Construction Ltd			
сс				
From	Nicola Hon	Date	25 July	2017
Our Ref	TCS00670/13/300/ F1108a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of July 2017 (Contract 3)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1082 dated 6 July 2017 TCS00670/13/300/F1088 dated 10 July 2017 TCS00670/13/300/F1099 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Lu Pei Yu (CE/BCP, NTEDO, CEDD/C3)	Fax	3547 1659
Mr. Alan Lee (ER of C3, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Project				CE 44	5/2008		
Date		6 Jul 17	7 Jul 17	8 Jul 17	6 Jul 17	7 Jul 17	8 Jul 17
Location			, , , , , , , , , , , , , , , , , , , ,		M4	, 541 1 /	5 741 17
Time		11:45	9:05	8:59	11:45	9:05	8:59
Parameter			urbidity (NT			ended Solids (
			D 120% of			ND 120% of 1	
Action Level			tation of the	•		station of the	
			D 130% of 1	2		$\sqrt{D 130\%}$ of u	
Limit Level			tation of the	1		station of the	*
	WM4-CA	14.1	8.1	12.2	12.0	8.0	8.0
Measured Level	WM4-CB	40.5	29.8	17.6	30.5	26.0	13.0
Level	WM4	65.6	61.1	80.7	50.0	63.0	64.5
Exceedance		Limit	Limit	Limit	Limit	Limit	Limit
Exceedance		Level	Level	Level	Level	Level	Level
Investigation Recommendat Mitigation Me		 According to the site information provided by the Contractor of C3 (Chun Wo), the construction activities carried out on 6 to 8 July 2017 were mainly general site works such as excavation and erection of working platform which the same as the past months and these activities would not generated excessive wastewater. According to the site record by the monitoring team on 6 and 7 July 2017, turbid water was observed at both impact station WM4 and control station WM4-CB whereas the water quality in other control station WM4-CA was clear. (Photo 1 to 6 and Figure 1) On 8 July 2017, turbid water was observed at WM4 while the water quality at WM4-CA and WM4-CB was either slightly turbid or clear. (Photo 7 to 9 and Figure 1) 					
		3. According to the rainfall record from HKO, there were consecutive rainy days on 6 to 8 July 2017. The water quality throughout the water channel was deteriorated by the stirred up sediment and runoff from the surrounding environment.					
		 4. During weekly site inspection by ET on 6 July 2017 at the works area adjacent to river channel, no adverse water quality impact was observed with the mitigation measures implemented by the Contractor. However, turbid water was observed in the existing river channel under the influence of rain. (Photo 10) Moreover, it was observed that the slope adjacent to river channel was covered with tarpaulin sheet to minimize muddy runoff. (Photo 11) The site condition was generally in order and no abnormal situation under the Contract was identified. 					
		2017 i investi impact	5. In view of the subsequent monitoring results on 10 and 11 July 2017 in non-rainy, there were no exceedances triggered. In our investigation, it is considered that exceedances were related to the impact of rain and unlikely related to the works under the Contract.				
		exceed exceed consed	l station sha lance record cutive days.	ll be increa led until n There w	sed to dail o exceedan vere no ex	monitoring fr y due to the nces were tr ceedances tr r, the Contra	limit level riggered in riggered at

Investigation Report on Action or Limit Level Non-compliance

	continue to implement the environmental mitigation measures	
	recommended in implementation schedule in the EM&A Manual.	

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul.
Date :	25 July 2017

Photo Record

Photo 1

Turbid water was observed at WM4 on 6 July 2017.

On 6 July 2017, the water quality at WM4-CA was clear.

Photo 3

Turbid water was observed at WM4-CB on 6 July 2017.

On 7 July 2017, the water quality at WM4-CA was clear.

Photo 4

Turbid water was observed at WM4 on 7 July 2017.

Photo 6 Turbid water was observed at WM4-CB on 7 July 2017.

Photo 7

Turbid water was observed at WM4 on 8 July 2017.

Photo 9 On 8 July 2017, the water quality at WM4-CA was slightly turbid.

Photo 8

On 8 July 2017, the water quality at WM4-CA was clear.

During weekly site inspection by ET on 6 July 2017 at the works area adjacent to river channel, no adverse water quality impact was observed with the mitigation measures implemented by the Contractor. However, turbid water was observed in the existing river channel under the influence of rain.

Photo 11

During weekly site inspection by ET on 6 July 2017, it was observed that the slope adjacent to river channel was covered with tarpaulin sheet to minimize muddy runoff.

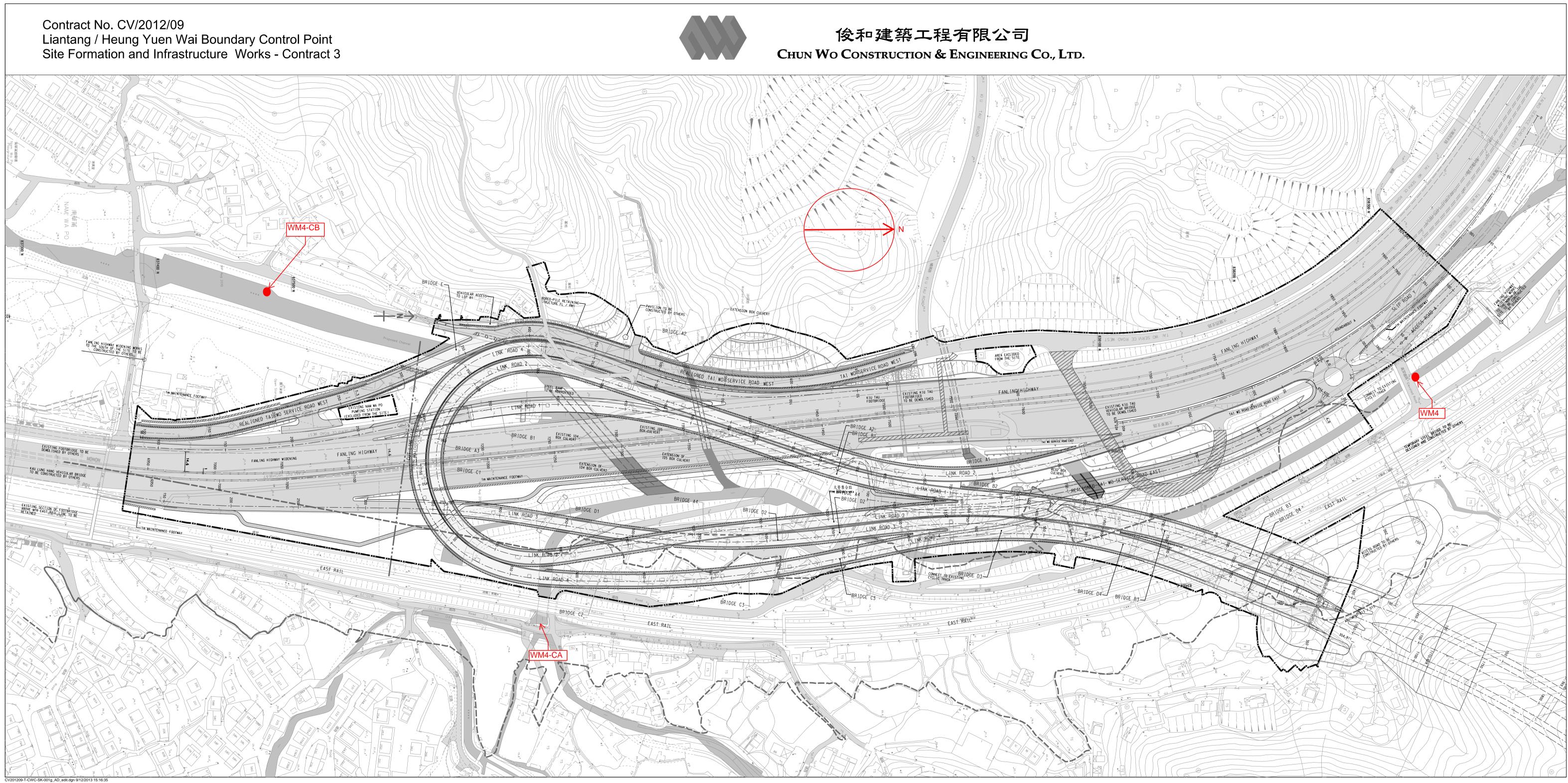


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	3299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	21 July	2017
Our Ref	TCS00697/13/300/ F1109	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of July 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1083 dated 6 July 2017 TCS00670/13/300/F1089 dated 10 July 2017 TCS00670/13/300/F1100 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Joe Yip (CE/BCP, NTWDO, CEDD/C2)	Fax:	3547 1659
	Mr. Edwin Ching (CER, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project	CE 45/2008						
Date		6 Jul 17	7 Jul 17	8 Jul 17	6 Jul 17	7 Jul 17	8 Jul 17
Location					WM4		
Time		11:45	9:05	8:59	11:45	9:05	8:59
Parameter		Tu	bidity (NTU	J)	Susper	nded Solids (1	mg/L)
Action Level			D 120% of unition of the s			20% of upstr n of the same	
Limit Level			D 130% of unition of the s	1		30% of upstron 30% of upstron 30% of the same	
	WM4-CA	14.1	8.1	12.2	12.0	8.0	8.0
Measured Level	WM4-CB	40.5	29.8	17.6	30.5	26.0	13.0
Level	WM4	65.6	61.1	80.7	50.0	63.0	64.5
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Recommendatio Mitigation Mea		Contrac on 6 to structur site gen	et 2 (DHK), 8 July 201 re and vent herally hard	construction 7 included ilation bui paved to m	nation provide on activities ca tunnel excav lding superstr inimize muddy	arried out at a ation, lining ucture. The y runoff.	South Portal and internal construction
		 According to the site record by the monitoring team on 6 and 7 July 2017, turbid water was observed at both impact station WM4 and control station WM4-CB whereas the water quality in other control station WM4-CA was clear. (Photo 1 to 6 and Figure 1) On 8 July 2017, turbid water was observed at WM4 while the water quality at WM4-CA and WM4-CB was either slightly turbid or clear. (Photo 7 to 9 and Figure 1) 					
		3. According to the rainfall record from HKO, there were consecutive rainy days on 6 to 8 July 2017. The water quality throughout the water channel was deteriorated by the stirred up sediment and runoff from the surrounding environment.					
		 4. During weekly site inspection at South Portal by ET on 7 July 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water was visually clear. (Photo 10) The site condition was generally in order and no adverse water quality impacts and abnormal situation under the Contract were identified. Moreover, DHK daily record on 6 and 8 July 2017 shown that the discharge quality in South Portal were in acceptable condition. (Photo 11 & 12) 					
		5. In view of the subsequent monitoring results on 10 and 11 July 2017 in non-rainy, there were no exceedances triggered. In our investigation, it is considered that exceedances were related to the impact of rain and unlikely related to the works under the Contract.					
		exceed exceeda consect 10 and implem	station sha ance record tive days. 11 July 20 aent the env	all be incre ded until There wer 17. Howe rironmental	Action, the eased to daily no exceedant re no exceedant ever, the Contri- mitigation m e EM&A Man	due to the ces were t ces triggered cactor should easures record	limit level riggered in at WM4 on continue to

Prepared By :	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Anh				
Date :	21 July 2017				

Photo Record

Photo 1Photo 2Turbid water was observed at WM4 on 6 July
2017.On 6 July 2017, the water quality at WM4-CA
was clear.

Photo 3 Turbid water was observed at WM4-CB on 6 July 2017.

Photo 4 Turbid water was observed at WM4 on 7 July 2017.

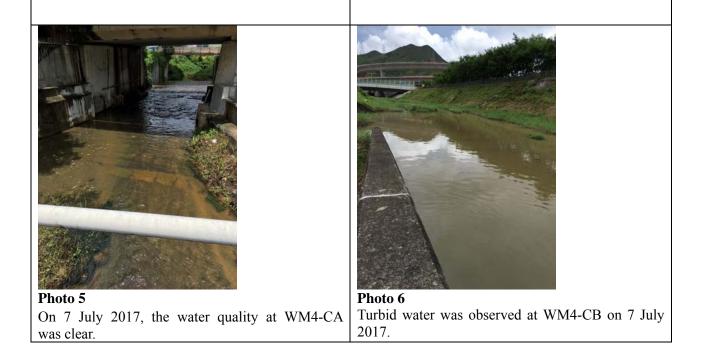
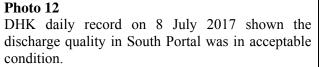


Photo 7

Turbid water was observed at WM4 on 8 July 2017.

Photo 8 On 8 July 2017, the water quality at WM4-CA was clear.

Photo 9 On 8 July 2017, the water quality at WM4-CA was slightly turbid.



During weekly site inspection at South Portal by ET on 7 July 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water from the site was clear.

Photo 11 DHK daily record on 6 July 2017 shown the discharge quality in South Portal was in acceptable condition.

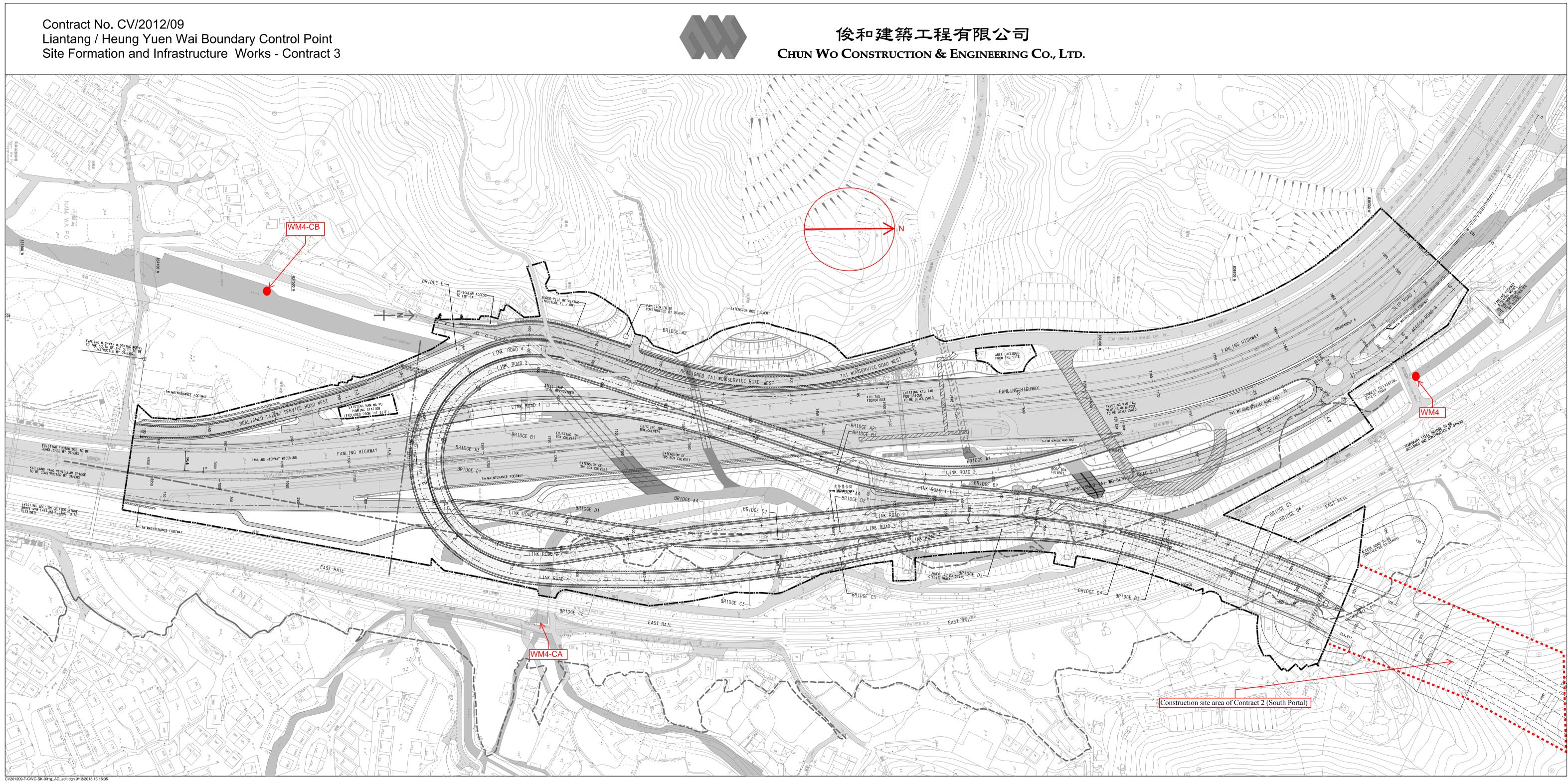


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	25 July	2017
Our Ref	TCS00694/13/300/ F1110	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of V 2017 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1090 dated 10 July 2017 TCS00694/13/300/F1102 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

C.C.	

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CF 4	5/2008	
Date		CE 45/2008 8 July 2017		
Location		WM3x		
Time):07	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Lev	el	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Leve	1	14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	37.8	50.0	
Level	WM3x	58.9	76.5	
Exceedance	e	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of C6 (CCKJV), the construction activities at South Portal and Wo Keng Shan Park (upstream of WM3x) carried out on 8 July 2017 was mainly bored pile works and construction of Bridge E. The monitoring locations and works areas are illustrated in <i>Figure 1</i>. According to the site photo taken on 8 July 2017, turbid water was observed 		
		throughout the channel including WM3x and WM3-C and the water quality in the exiting channel was affected by rain. (<i>Photo 1 to 2</i>)		
		water quality in the river course v sediment. Moreover, it was noted received the storm water from road	HKO, it rained on 8 July 2017 and the was deteriorated by rain and stirred up I that the monitored channel was also d surface of Sha Tau Kok Road and the y affected by the road runoff especially	
		in July 2017. It was observed th properly in place and the discha construction site was general in ord was observed. Based on the above	, Contractor, IEC and ET was conducted hat wastewater treatment facilities were arge water was clear. (<i>Photo 3</i>) The der and no adverse water quality impact e investigation, it is considered that the d unlikely caused by the works under	
		increased to daily due to the lim exceedances were triggered in conse triggered in the monitoring result of the Contractor should continually	monitoring frequency at WM3x has been nit level exceedance recorded until no ecutive days. There were no exceedances on 10 and 11 July 2017. Nevertheless, fully implement the water mitigation plementation schedule for environmental Manual.	

Action to be taken	The Contractor is reminded to fully implement the water mitigation measures recommended in the implementation schedule for environmental mitigatimeasures in the EM&A Manual.		
Prepared By :	Nicola Hon		
rieparcu Dy .			
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	25 July 2017		

Photo Record

Photo 1

During water sampling on 8 July 2017, muddy water was observed at WM3x. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 3

Weekly joint site inspection by RE, Contractor, IEC and ET was conducted in July 2017. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear. The construction site was general in order and no adverse water quality impact was observed.

During water sampling on 8 July 2017, muddy water was observed at WM3-C.

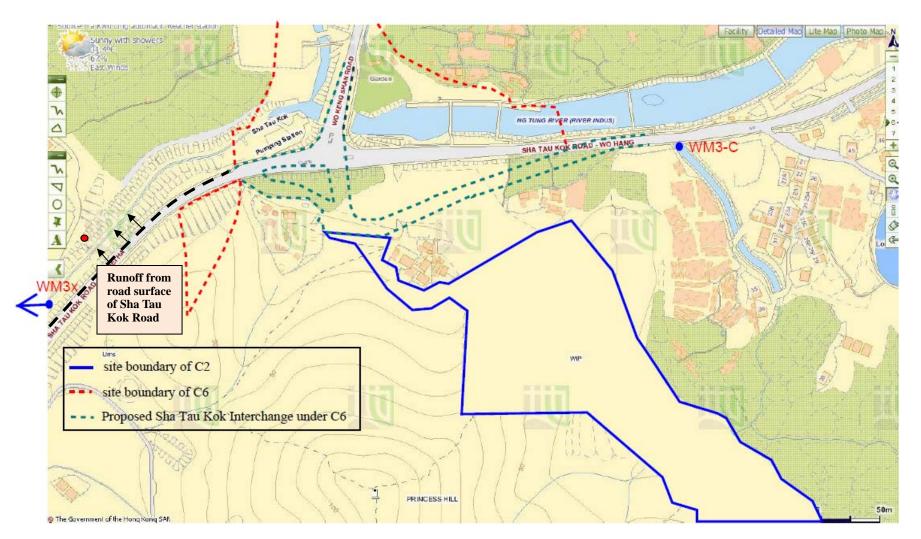


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	99
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	8 August	2017
Our Ref	TCS00697/13/300/ F1111a	No of Pages	4	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1091 dated 10 July 2017 TCS00694/13/300/F1103 dated 14 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.Mr. David Chan (EPD)Fax:2685 1155Mr. Raymond Leong (CE/BCP, NTWDO, CEDD)Fax:3547 1659Mr. Edwin Ching (CRE, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project	cE 45/2008			
Date		8 July 2017		
Location		WM3	X	
Time		10:0′	7	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level	l	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Level		14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	37.8	50.0	
Level	WM3x	58.9	76.5	
Exceedance		Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 were building internal structure, fitting curtain wall, construction of fence wall utilities. The relevant works area locations are illustrated in Figure 1. 2. According to the site photo taken on 8 throughout the channel including WM3 the exiting channel was affected by rain 3. According to weather record from HKC quality in the river course was deterior Moreover, it was noted that the monitor water from road surface of Sha Tau Ko was highly affected by the road runoff e 4. During regular inspection by DHK, if 	on 8 July 2017 at upstream of WM3x out and E&M activities, installation of l, permanent drainage and underground under C2 and the water monitoring 3 July 2017, turbid water was observed ex and WM3-C and the water quality in . (<i>Photo 1 to 2</i>) 0, it rained on 8 July 2017 and the water by rain and stirred up sediment. red channel was also received the storm k Road and the water quality at WM3x especially during rainy day. (<i>Photo 1</i>) t was reported that the river channel	
		 adjacent to the site was clear on 8 July investigation, it is considered that the unlikely related to the works under Com 5. According to Event and Action, the maincreased to daily due to the limit exceedances were triggered in consecutriggered in the monitoring result on 10 Contractor should continually fully im 	(<i>Photo 3</i>) Based on the above exceedances were caused by rain and tract 2.	
Prepared By	y:	Nicola Hon		

r repared by :	
Designation :	Environmental Consultant
Signature :	Auch
Date :	8 August 2017

Photo Record

Photo 1

During water sampling on 8 July 2017, muddy water was observed at WM3x. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 3

During regular inspection by DHK, it was reported that the river channel adjacent to the site was clear on 8 July 2017.

Photo 2

During water sampling on 8 July 2017, muddy water was observed at WM3-C.

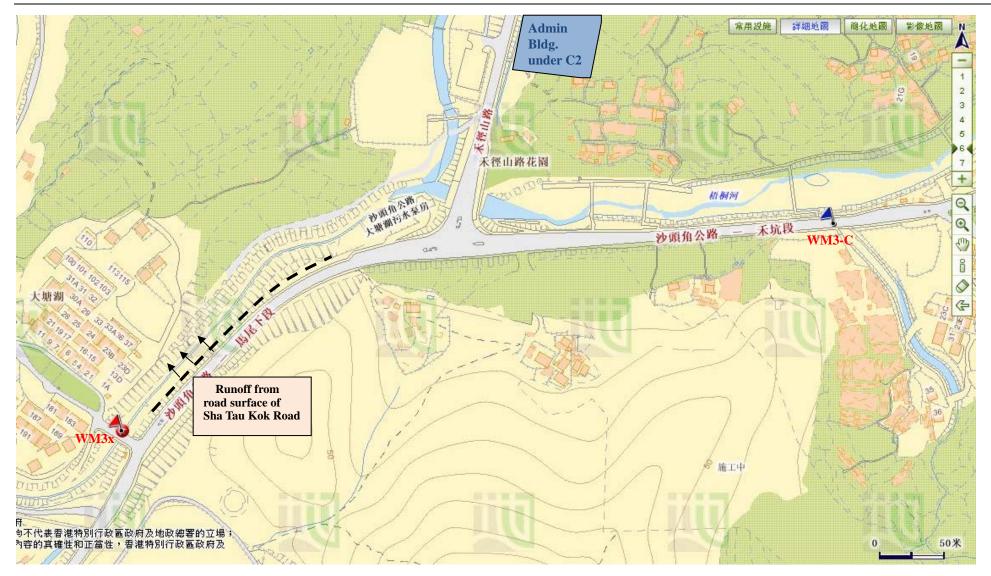


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	3 August	t 2017
Our Ref	TCS00694/13/300/ F1123	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 18, 19 and 20 July 2017			
	Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of	Water Quality	v at Locat	ion WM2A(a) on

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1112 dated 19 July 2017 TCS00694/13/300/F1116 dated 24 July 2017 TCS00694/13/300/F1120 dated 26 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008					
Date		18 Jul 2017	19 Jul 2017	20 Jul 2017	18 Jul 2017	19 Jul 2017	20 Jul 2017
Location			WM2A(a)				
Time		10:30	9:35	10:05	10:30	9:35	10:05
Parameter		Т	urbidity (NTU	()	Susp	pended solids	s (mg/L)
Action Level			120% of upstre on of the same			ND 120% of station of the	
Limit Level			130% of upstre on of the same			ND 130% of station of the	
Measured	WM2A-C	205.0	8.6	11.3	211.0	4.0	7.5
Levels	WM2A(a)	Over range	157.0	70.7	1490.0	124.0	58.5
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation Recommenda Mitigation M	ations &	 Accordi Contrac July 20 segmen <i>Figure</i> Accordi 2017, r course i Accordi rainy da Signal v river co runoff from th (<i>Photo</i> dam wa flowing During 2017, th 	ing to the sit t 6 (CCKJV), 17 at Bridge t erection. The	e information construction D (upstream monitoring l photo taken muddy water 2A(a) and Wl y 2017, mud at WM2A-C w her informati 0 July 2017 18 July 2017 19 affected by punding envir lope adjacen 9 and 20 July d muddy wa n. (<i>Photo 7 &</i> site inspection ation measure	n provided activities c of WM24 ocations an by the mo- was obser M2A-C dur dy water w was clear. (. on from HI in which A 7. The wa y the stirrea ronment. T t to the riv 2017, it w ater trappe es were pro-	from the (arried out du A(a)) were r d works area onitoring tean rved through ring rainstorm vas observed Photo 3 to 6) KO, there we mber Rainst ater quality the d up sediment rails of was ver course w as observed to d in the nythere operly impler	Contractor of rring 18 to 20 nainly bridge are shown in m on 18 July nout the river n. (<i>Photo 1 &</i> at WM2A(a)) ere successive orm Warning nroughout the nt and muddy hing out soil ere observed. that the nylon lon dam was D on 20 July nented. The
		erec 9) (b) Loc	nstruction wor ction and there ose sediment w <i>oto 10</i>)	was no discl	harge due t	o nature of w	vorks. (Photo
		(c) The	e existing river	water was sl	ightly turbi	d without the	e impact from

	the construction work. (Photo 11)
	(d) Wastewater treatment facilities were properly provided for Bridge D (<i>Figure 1</i>)
	(e) To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff. (<i>Photo 12</i>)
5.	In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 18 to 20 July 2017 was related to impact of rainstorm and not caused by the works under Contract 6.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 21 and 22 July 2017 and no exceedances were recorded in both days. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Anh	
Date :	3 August 2017	

Photo Record

Photo 1

On 18 July 2017, muddy water with rapid water flow was observed at WM2A(a).

Photo 3

On 19 July 2017, water quality observed at WM2A(a) was slightly turbid. Moreover, trails of washing out soil from the vegetation slope adjacent to the river course were observed.

Photo 2

On 18 July 2017, muddy water with rapid water flow was observed at WM2A-C.

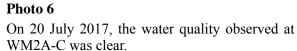

On 19 July 2017, the water quality observed at WM2A-C was clear.

Photo 5

On 20 July 2017, muddy water was observed at WM2A(a). Moreover, trails of washing out soil from the vegetation slope adjacent to the river course were observed.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1123.doc Action-United Environmental Services & Consulting

Photo 7

On 19 July 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 9

During site inspection on 20 July 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 11

During site inspection on 20 July 2017, it was observed that the existing river water was slightly turbid without the impact from the construction work.

Photo 8

On 20 July 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream.

Photo 10

During site inspection on 20 July 2017, loose sediment was observed at river bed after nylon dam deflated.

Photo 12

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1123.doc Action-United Environmental Services & Consulting

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1123.doc Action-United Environmental Services & Consulting

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7077
Company	Chun Wo Construction Ltd		
сс			
From	Nicola Hon	Date	26 July 2017
Our Ref	TCS00670/13/300/ F1124	No of Pages	5 (Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of 2017 (Contract 3)		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1113 dated 19 July 2017 TCS00670/13/300/F1121 dated 26 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)Fax:2685 1155Mr. Lu Pei Yu (CE/BCP, NTEDO, CEDD/C3)Fax3547 1659Mr. Alan Lee (ER of C3, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45	5/2008	
Date		18 July 2017		
Location		WM4		
Time		12:15		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level		35.2 AND 120% of upstream	39.4 AND 120% of upstream	
		control station of the same day	control station of the same day	
Limit Level		38.4 AND 130% of upstream	45.5 AND 130% of upstream	
		control station of the same day	control station of the same day	
Measured	WM4-CA WM4-CB	<u>49.8</u> 51.4	48.5 36.5	
Level	WM4-CD WM4	70.0	<u> </u>	
Exceedance	VV IVI4	Limit Level	Limit Level	
Investigation	Results,		tion provided by the Contractor of	
Recommendat			on activities of the construction site	
Mitigation Me		were idled on 18 July 2017 due		
		2017, turbid water was ol including both impact and WM4-CA and WM4-CB and t during rain. Moreover, it was	by the monitoring team on 18 July beserved throughout the channel control station namely WM4, the water sampling was carried out s observed that the water quality in in. (Photo 1 to 3 and Figure 1)	
		rainstorm (total rainfall at 134 quality throughout the water of	ord from HKO, there was heavy 4.3mm) 18 July 2017. The water channel was therefore deteriorated and runoff from the surrounding	
		works area adjacent to river impact was observed with the by the Contractor. (Photo observed in the existing river	n by ET on 19 July 2017 at the channel, no adverse water quality mitigation measures implemented 4) However, turbid water was by the impact of rain. (Photo 5) generally in order and no abnormal as identified.	
		-	onsidered that exceedances were and unlikely related to the works	
		exceed station shall be increa exceedance recorded until ne consecutive days. There w WM4 on 19 and 20 July 2017, continue to implement the en	ction, the monitoring frequency at sed to daily due to the limit level o exceedances were triggered in ere no exceedances triggered at . However, the Contractor should nvironmental mitigation measures on schedule in the EM&A Manual.	

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Aul		
Date :	25 July 2017		

Photo Record

Photo 1

Turbid water was observed at WM4 on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

Photo 3

Turbid water was observed at WM4-CB on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

Photo 2

Turbid water was observed at WM4-CA on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

During weekly site inspection by ET on 19 July 2017 at the works area adjacent to river channel, no adverse water quality impact was observed with the mitigation measures implemented by the Contractor.

NA

Photo 5

During weekly site inspection by ET on 19 July 2017, turbid water was observed in the existing river channel by the impact of rain.

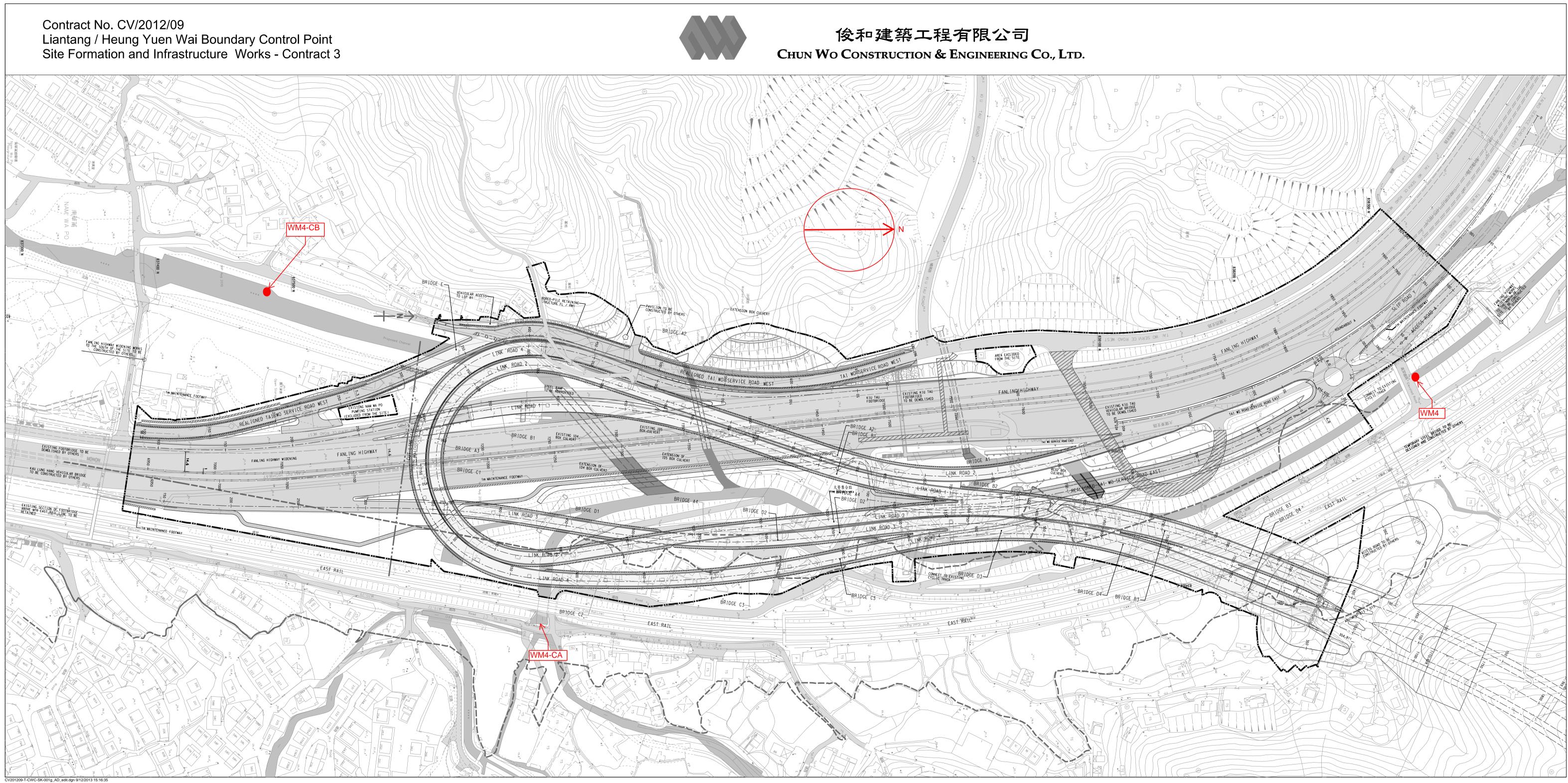


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	26 July 2	2017
Our Ref	TCS00697/13/300/ F1125	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1114 dated 19 July 2017 TCS00670/13/300/F1122 dated 26 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Joe Yip (CE/BCP, NTWDO, CEDD/C2)	Fax:	3547 1659
	Mr. Edwin Ching (CER, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date		18.	July 2017			
Location		· · · · · · · · · · · · · · · · · · ·	WM4			
Time			12:15			
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)			
Action Level		35.2 AND 120% of upstream control station of the same day39.4 AND 120% of upstream control station of the same day				
Limit Level		38.4 AND 130% of upstream control station of the same day	45.5 AND 130% of upstream control station of the same day			
M	WM4-CA	49.8	48.5			
Measured Level	WM4-CB	51.4	36.5			
	WM4	70.0	61.0			
Exceedance		Limit Level	Limit Level			
Investigation Recommendatio Mitigation Mea		1 According to the site information morning her the Contractor of				
		2. According to the site record by the monitoring team on 18 July 2017, turbid water was observed throughout the channel including both impact and control station namely WM4, WM4-CA and WM4-CB and the water sampling was carried out during rain. Moreover, it was observed that the water quality in channel was deteriorated by rain. (Photo 1 to 3 and Figure 1)				
		rainstorm (total rainfall at 1 quality throughout the water	ecord from HKO, there was heavy (34.3mm) 18 July 2017. The water channel was therefore deteriorated by noff from the surrounding environment.			
		 4. During weekly site inspection at South Portal by ET on 21 July 2017 it was observed the wastewater treatment facility implemented on site was function properly and the discharge water was visually clear (Photo 4) Moreover, de-sludge of the sedimentation tank was observed which ensure the sedimentation capacity and efficiency (Photo 5) The site condition was generally in order and no adverse water quality impacts and abnormal situation under the Contract were identified. 				
		5. In our investigation, it is considered that exceedances were related to the impact of rain and unlikely related to the works under the Contract.				
		6. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 19 and 20 July 2017. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.				

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Anh			
Date :	26 July 2017			

Photo Record

Photo 1

Turbid water was observed at WM4 on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

Photo 3

Turbid water was observed at WM4-CB on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

Photo 2

Turbid water was observed at WM4-CA on 18 July 2017 and water sampling was carried out during rain. It was observed that the water quality in channel was deteriorated by rain.

Photo 4

During weekly site inspection at South Portal by ET on 21 July 2017, it was observed the wastewater treatment facility implemented on site was function properly and the discharge water from the site was clear.

Photo 5

During weekly site inspection at South Portal by ET on 21 July 2017, de-sludge of the sedimentation tank was observed which ensure the sedimentation capacity and efficiency.

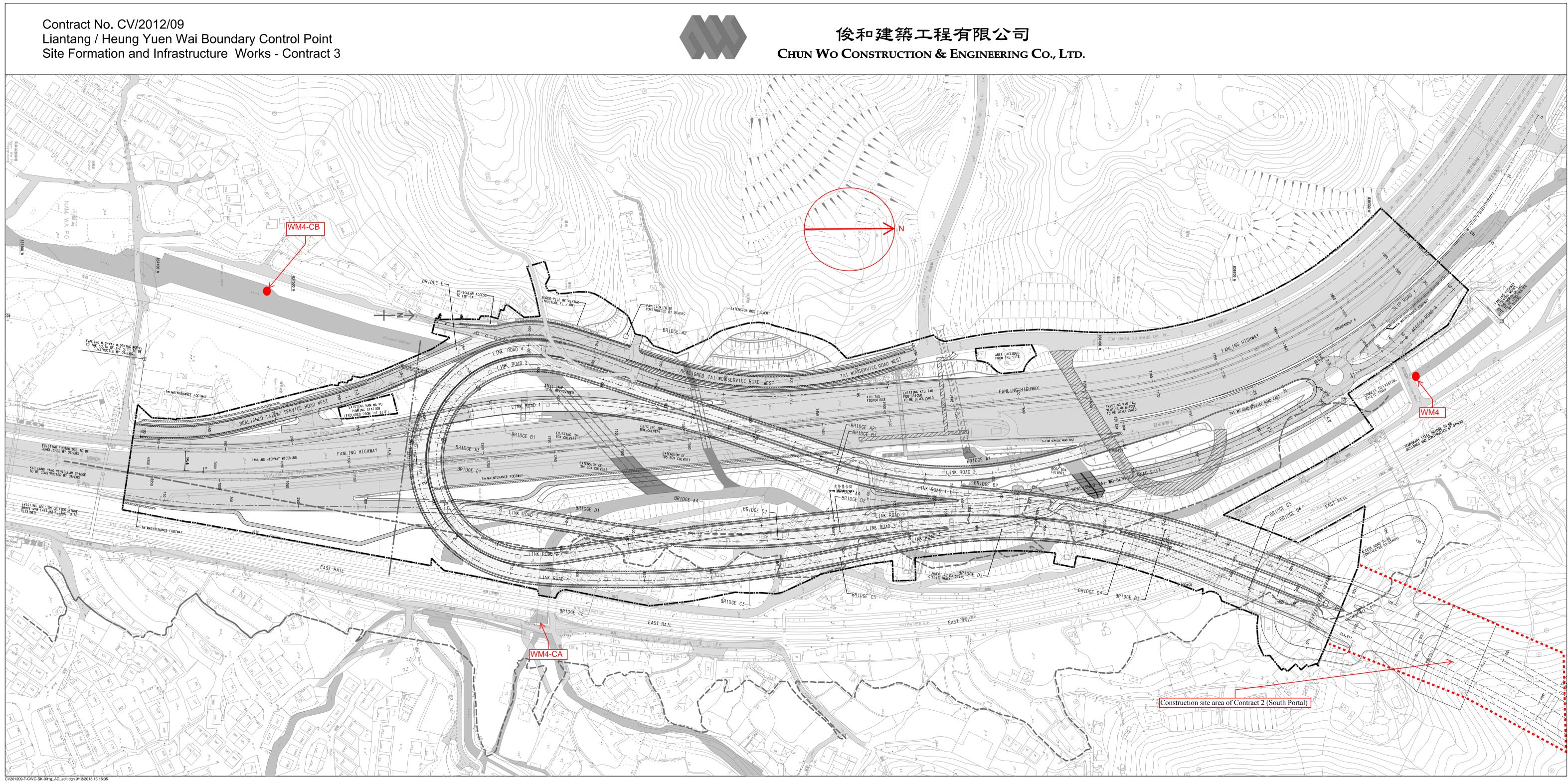


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	3 Augus	t 2017
Our Ref	TCS00694/13/300/ F1133	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of and 25 July 2017			
If you do not i	receive all pages, or transmission is illegible, please	contact the originat	or on (852) 2	2959-6059 to re-send. Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1116 dated 24 July 2017 TCS00694/13/300/F1126 dated 26 July 2017 TCS00694/13/300/F1130 dated 31 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Mr. David Chan (EPD)	Fax:	2685 1155
Mr. Steve Lo (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008			
Date					25 July 2017
Location			WM	2A(a)	
Time		10:00	9:35	10:00	9:35
Parameter		Turbidi	ty (NTU)	Suspended	solids (mg/L)
Action Level	l		of upstream control he same day	14.6 AND 120% station of	of upstream control the same day
Limit Level			of upstream control he same day		of upstream control the same day
Measured	WM2A-C	10.6	7.6	6.0	9.0
Levels	WM2A(a)	123.5	46.4	63.5	65.0
Exceedance		Limit Level	Limit Level	Limit Level	Limit Level
Investigatior Recommend Mitigation M	ations &	 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 24 and 25 July 2017 at Bridge D (upstream of WM2A(a)) were mainly bridge segment erection. The monitoring locations and works area are shown in <i>Figure 1</i>. According to the site photo taken by the monitoring team on 24 and 25 July 2017, muddy water was observed at WM2A(a) whereas at WM2A-C was clear. (<i>Photo 1 to 4</i>) 			
		3. According to the weather information from HKO, there was heavy rainstorm on 23 July 2017. The water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. The muddy water was trapped at the nylon dam which deflated in the morning on 24 July 2017. (<i>Photo 5 & 6</i>) In addition, during 24 and 25 July 2017, CCKJV observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed. (<i>Photo 7 & 8 & Figure 1</i>)			
		4. During weekly joint site inspection conducted at Bridge D on 27 July 2017, the water mitigation measures were properly implemented. The observation during the site inspection is summarized below.			
		(a) Construction works at Bridge D was mainly bridge segment erection and there was no discharge due to nature of works. (<i>Photo 9</i>)			
		(b) Wastewater treatment facilities were properly provided for Bridge D (<i>Figure 1</i>)			
		temporary slope adja	ize the muddy run bund was provided acent to river course muddy runoff. (Pha	l align the river co e was covered with	ourse Moreover, the
		site was in ord	gation, the implement ler and no adverse wat the exceedances of	ater quality impact	

caused by the rainstorm as well as the suspected turbid water attributed by construction works by others.
6. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 26 and 27 July 2017 and no exceedances were recorded. The Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Nicola Hon		
sultant		
A		

Photo Record

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1133.doc Action-United Environmental Services & Consulting

Photo 7

During 24 and 25 July 2017, CCKJV observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed.

Photo 8

During 24 and 25 July 2017, CCKJV observed that construction works by other Contractor was carried out at the upstream of WM2A(a) and discharge of turbid water into the exiting river course was observed.

Photo 9

During site inspection on 27 July 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 10

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

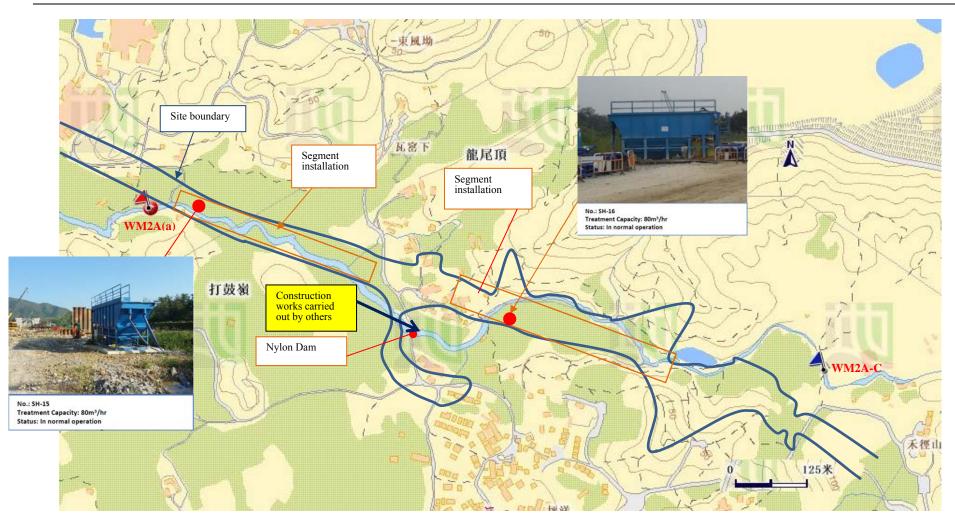


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1133.doc Action-United Environmental Services & Consulting