

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.49) – AUGUST 2017

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
12 September 2017	TCS00694/13/600/R1234v2	Auh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	8 September 2017	First Submission
2	12 September 2017	Amended according to the IEC's comments on 12 September 2017

Unit A-C, 27/F Ford Glory Plaza 37- 39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

14 September 2017

Our ref: 7076192/L22269/AB/AW/MC/rw

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 49) – August 2017

With reference to the Monthly EM&A Report No. 49 for August 2017 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Man CHEUNG on tel. 3995 8132 or by email to man.cheung@smec.com.

Yours faithfully for and on behalf of SMEC Asia Limited

Antony WONG Independent Environmental Checker

CC	CEDD/BCP		Mr LU Pei Yu / Mr William CHEUNG	by fax: 3547 1659
	ArchSD	4	Mr William WL CHENG	by fax: 2804 6805
	AECOM	57	Mr Pat LAM / Mr Perry YAM	by email
	Ronald Lu	4	Mr Peter YAM / Mr Justin CHEUNG	by email
	CW		Mr Daniel HO	by email
	DHK	ų.	Mr Daniel ALTIER	by email
	ССКЈУ	5	Mr Vincent CHAN	by email
	KRSJV	-	Mr Matthew TSANG	by email
	Leighton		Mr Ray HO	by email
	Siemens	2	Mr Patrick LEUNG	by email
	AUES		Mr TW TAM	by email

z:\jobs\7076192 - cedd - iec for liantang heung yuen wai bcp\02 out\02_170914-01-o-l verify monthly report (september

EXECUTIVE SUMMARY

ES01 This is the **49th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 August 2017** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting	Period	
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions	
A in Onelity	1-hour TSP	9	150	
Air Quality	24-hour TSP	9	45	
Construction Noise	L _{eq(30min)} Daytime	10	50	
		WM1 & WM1-C	13 Scheduled & 1 extra	
	TT	WM2A(a) & WM2A-Cx	13 Scheduled & 5 extra	
Water Quality	Water in-situ measurement and/or sampling	WM2B & WM2B-C	(*) 13 Scheduled	
		WM3x &WM3-C	13 Scheduled & 2 extra	
		WM4, WM4-CA &WM4-CB	13 Scheduled & 4 extra	
Ecology	 Woodland compensation i) General Health condition of planted species ii) Survival of planted species 	9 Quadrats	1	
	•	Contract 2	4	
Joint Site Inspection / Audit	IEC, ET, the Contractor	Contract 3	5	
	and RE joint site	Contract 4 (#)	4	
	Environmental Inspection	Contract 6	5	
Auun	and Auditing	Contract 7	4	
		Contract SS C505 (#)	5	

Note: Extra monitoring day was due to measurement results exceedance

(#) IEC only joined one (1) event of site inspection for Contracts 4 and SS C505.

(*) Water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedance was recorded. For water quality monitoring, twenty-six (26) Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

Environmentel	Monitoring	Action I Level I	T imit		Event & Action		
Aspect	Parameters		Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			

Environmentel	Monitoring	Action	T imit	Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
	24-hour TSP	0	0	0			
Construction Noise	L _{eq(30min)} Daytime	0	0	0			
	DO	0	0	0	-		
Water Quality	Turbidity	0	14	14	The exceedances for 24, 28, 29 and 30 were under investigation.	0	The Contractors were reminded to implement water quality mitigation
	SS	0	12	12	All other exceedances were not project-related	0	measures in accordance with ISEMM of the EM&A Manual

ENVIRONMENTAL COMPLAINT

ES05 In this Reporting Period, one (1) documented environmental complaint was received by EPD regarding water quality issue for Contract 2. Investigation report (IR) for complaints revealed that it was caused by rainstorm and emergency discharge by Contract 2. The IR has completed and submitted to relevant parties for record.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES06 No environmental summons or successful prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES07 No reporting changes were made in the Reporting Period.

SITE INSPECTION

- ES08 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 18 and 25 August 2017. No non-compliance was noted during the site inspection.
- ES09 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **16**, **24** and **31** August. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at Contract 4 has been carried out by the RE, ET and the Contractor on 4, 11, 18 and 22 August 2017 in which IEC joined the site inspection on 22 August 2017. No non-compliance was noted.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **17**, **24** and **30** August 2017. No non-compliance was noted during the site inspection.
- ES12 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 15 and 25 August 2017. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on 2, 9, 16, 25 and 30 August 2017 in which IEC joined the site inspection on 25 August 2017. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES14 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES15 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES16 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES17 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	7
	2.4 CONSTRUCTION PROGRESS	7
	2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL	14
	3.2 MONITORING PARAMETERS	14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 General	26
	5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)	26
6	WATER QUALITY MONITORING	27
U	6.1 GENERAL	27
	6.2 RESULTS OF WATER QUALITY MONITORING	27
7	ECOLOGY MONITORING	31
7	7.1 GENERAL	31
8	WASTE MANAGEMENT	32
	8.1 GENERAL WASTE MANAGEMENT	32
	8.2 RECORDS OF WASTE QUANTITIES	32
9	SITE INSPECTION	33
	9.1 REQUIREMENTS	33
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	33
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	38
	10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTION	38
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	42
11	11.1 GENERAL REQUIREMENTS	42
	11.1 GENERAL REQUIREMENTS 11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	42
	11.3 Key Issues for the Coming Month	44
10		
12	CONCLUSIONS AND RECOMMENDATIONS	45
	12.1 CONCLUSIONS12.2 RECOMMENDATIONS	45 45
	12.2 RECOMMENDATIONS	45

LIST OF TABLES

TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	Construction Noise Monitoring Equipment
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	Action and Limit Levels for Air Quality Monitoring
TABLE 3-9	Action and Limit Levels for Construction Noise
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3
TABLE 6-2	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6 AND SS C505
TABLE 6-3	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6
TABLE 6-4	SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 5
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-7	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
APPENDIX F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **49th** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **31 August 2017**.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Ecology Monitoring
Section 8	Waste Management
Section 9	Site Inspections
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Mid-Vent Portal	 Adit waterproofing and lining Stud tunnel post-excavation activities and earthworks Structure connecting adit tunnel and ventilation building Ventilation building superstructure Ventilation building internal structure
North Portal	 Southbound tunnel waterproofing and lining formwork Southbound tunnel bench enlargement Southbound tunnel internal structure, backfilling and cross passage Tunnel Boring Machine (TBM) North drive excavation Northbound tunnel top heading and bench excavation, water proofing and lining North ventilation building structure Construction of retaining wall Mucking out from tunnels
South Portal	 Post-excavation tunnel activities South ventilation building superstructure and internal structure Tunnel invert, waterproofing, lining, internal structure and cross passage Construction of retaining wall Mucking out from tunnels
Admin Building	Construction of fence wall, curtain wall, drainage, internal structure, underground utilities and E&M installation

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Boundary Wall for DSD Pumping Station
 - Installation of Noise Barrier Steel Column & Panel
 - Remaining works on New Kiu Tau Footbridge
 - Mini-pile Installation
 - Noise barrier construction
 - Road works
 - Viaduct Segment Erection
 - Water Main Laying
 - Parapet installation on bridge deck
 - Construction of Profile Barrier and Planter Wall on Bridge deck
 - Drainage Work
 - Stressing of External Tendon
 - Construction of Abutment Wall

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - System design
 - E&M installation at Admin Building

Contract 5 (CV/2013/03)

2.4.5 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bridge Pier Construction
 - Bridge Segment Erection
 - Tunnel Excavation
 - Sewage Treatment Plant Construction
 - Tunnel Ventilation Building Construction
 - Slip Road/ At-grade Road/ Periphery Road Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - U-trough construction at Bridges A and E
 - Column construction at Bridges A and E
 - Abutment construction at Bridge E
 - Deck construction at Bridge B and D
 - Installation of Façade at Bridge C

Contract SS C505

2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18 and 41 construction
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab construction and Bridges Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Steel beam works for maintenance platform for PTB
- PTB backfilling works
- Elevated Walkway E1, E2, E3 and E4 construction
- Bridge deck construction for Bridges 1 5

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
 - Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

		License/Permit Status						
Item	Description	Ref. no.	Effective Date	Expiry Date				
		Contract 2	1					
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends				
2	Chemical Waste Producer Registration	<i>North Portal</i> Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends				
		<i>Mid-Vent Portal</i> Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends				
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends				
3	Water Pollution	No.WT00018374-2014	8 Oct 2014	30 Sep 2019				
	Control Ordinance -	No.: W5/1I389	28 Mar 2014	31 Mar 2019				
	Discharge License	No. WT00023063-2015	18 Dec 2015	31 Mar 2019				
		No.: W5/1I392	28 Mar 2014	31 Mar 2019				
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105	8 Jan 2014	Till Contract ends				
5	Construction Noise	GW-RN0228-17	01-Apr-2017	16-Sep-2017				
	Permit	GW-RN0288-17	26-Apr-2017	20-Oct-2017				
		GW-RN0291-17	26-Apr-2017	20-Oct-2017				
		GW-RN0318-17 GW-RN0371-17	09-May-2017 07-Jun-2017	27-Oct-2017				
		GW-RN0373-17 GW-RN0373-17	07-Jun-2017 07-Jun-2017	30-Sep-2017 30-Sep-2017				
		GW-RN0373-17 GW-RN0484-17	30-Jul-2017	20-Jan-2018				
		GW-RN0515-17 GW-RN0515-17	10-Aug-2017	01-Feb-2018				
		GW-RN0519-17	10-Aug-2017	01-Feb-2018				
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)	12 Apr 2016	11 Apr 2021				
		Contract 3						
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101	17 Jul 2013	Till Contract ends				
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01	7 Oct 2013	Till Contract ends				
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 - 2013	28 Aug 13	31 Aug 2018				
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914	2 Aug 13	Till Contract ends				

		License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
5	Construction Noise	GW-RN0040-17	25 Feb 2017	24 Aug 2017
	Permit	GW-RN0069-17	15 Feb 2017	14 Aug 2017
		GW-RN0071-17	16 Feb 2017	15 Aug 2017
		GW-RN0115-17	2 Mar 2017	26 Aug 2017
		GW-RN0161-17	1 Apr 2017	30 Sep 2017
		GW-RN0185-17	1 Apr 2017	30 Sep 2017
		(cancelled on 4 Aug 2017)		
		GW-RN0204-17	30 Mar 2017	29 Sep 2017
		GW-RN0213-17	6 Apr 2017	9 Sep 2017
		(cancelled on 4 Aug 2017)		
		GW-RN0219-17	31 Mar 201	30 Sep 2017
		GW-RN0235-17	11 Apr 2017	7 Oct 2017
		GW-RN0236-17	10 Apr 2017	16 Sep 2017
		GW-RN0302-17	30 Apr 2017	29 Oct 2017
		GW-RN0303-17	11 May 2017	10 Nov 2017
		GW-RN0342-17	28 May 2017	20 Nov 2017
		GW-RN0376-17	22 Jun 2017	21 Dec 2017
		GW-RN0378-17	22 Jun 2017	21 Dec 2017
		GW-RN0384-17	12 Jun 2017	9 Sep 2017
		GW-RN0417-17	27 Jun 2017	16 Dec 2017
		GW-RN0458-17	16 Jul 2017	18 Dec 2017
		GW-RN0477-17	28 Jul 2017	5 Jan 2018
		GW-RN0500-17	29 Aug 2017	24 Feb 2018
		GW-RN0501-17	25 Aug 2017	24 Feb 2018
		GW-RN0508-17	16 Aug 2017	15 Feb 2018
		GW-RN0510-17	16 Aug 2017	18 Nov 2018
		Contract 5		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 359338	13 May 2013	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01	8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1	8 Jun 13	30 Jun 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract
		Contract 6		
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract

		License/	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract
4	Water Pollution Control Ordinance -	No.:WT00024574-2016	31 May 2016	31 May 2021
	Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021
		No.:WT00024742-2016	14 June 2016	30 June 2021
		No.:WT00024746-2016	14 June 2016	30 June 2021
5	Construction Noise	GW-RN0361-17	1 Jun 2017	31 Aug 2017
	Permit	GW-RN0427-17	3 Jul 2017	31 Aug 2017
		GW-RW0478-17	30 Jul 2017	27 Aug 2018
		GW-RW0542-17	21 Aug 2017	20 Jan 2018
		GW-RW0428-17	28 Aug 2017	27 Feb 2018
		Contract SS C505	10110015	
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract
5	Construction Noise	GW-RN0355-17	30 May 2017	25 Nov 2017
	Permit	GW-RN0418-17(supersededbyGW-RN0499-17 on 7 Aug2017)	21 Jun 2017	15 Dec 2017
		GW-RN0499-17	7 Aug 2017	6 Oct 2017
1	Ain nollection C (1	Contract 7	21 D - 2015	T:11 4 1
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021
4	Waste Disposal Regulation - Billing	Account No. 7024129	21 Jan 2016	Till the end of Contract

		License/I	Permit Status	
Item	Description	Ref. no.	Effective Date	Expiry Date
	Account for Disposal of Construction Waste			
5	Construction Noise Permit	GW-RN0321-17	10 May 2017	4 Nov 2017
		Contract 4		
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	• 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	• Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The proposed alternative monitoring locations has updated in the revised EM&A Programme which verified by IEC and certified by ET Leader prior submitted to EPD on 10 July 2013. *Table 3-2, Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505
			Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6

 Table 3-2
 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 5-4 Impact Monitoring Stations - Water Quanty					
Station ID	Description	Designated / Loca	nates of / Alternative ation	Nature of the location	Related to the Work Contract
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

Table 3-4 Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

(#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in Sections 2.1.6, 3.1.5 and 4.1.6 of the

approved EM&A Manual and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works
 - 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5Air Quality Monitoring Equipment

Equipment Model				
24-Hr TSP				
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*			
Calibration Kit	TISCH Model TE-5025A*			
1-Hour TSP				
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &			
Poltable Dust Meter	Counter*			

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.

- 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

 Table 3-6
 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* or Rion NL-31* or Rion NL-52*
Calibrator	B&K Type 4231* or Quest QC-20* or Rion NC-74*
Portable Wind Speed Indicator	Testo Anemometer

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For

sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment	Model
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument*/ YSI 550A Multifunctional Meter/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/ 650MDS/ YSI Professional DSS
Turbidimeter	Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

Table 3-7Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

<u>1-hour TSP Monitoring</u>

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:

- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results $(L_{10} \text{ and } L_{90})$ were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.12 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.13 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

- 3.6.14 YSI PRO20 Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.15 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.16 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.17 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.18 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Monitoring Station	Action	Level (µg /m ³)	Limit l	Level (µg/m ³)
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1b	265	143		
AM2	268	149	500	260
AM3	269	145		
AM4b	267	148		
AM5a	268	143		
AM6	269	148		
AM7b	275	156		

Table 3-8Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action I	Level (µg /m ³)	Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP	
AM8	269	144			
AM9b	271	151			

Table 3-9	Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)			
Women ing Location	Time Period: 0700-1900 hours on normal weekdays				
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}			

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 *dB(A) during examination period.*

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10	Action and Limit Levels for Water Quality
------------	---

Parameter	Performance						
	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4	
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14	
(mg/L)	Limit Level	^(#) 4.19	^(**) 4.00	^(#) 4.60	^(**) 4.00	(#)4.08	
Turbidity (NTU)	Action Level	51.3	24.9	11.4	13.4	35.2	
		AND	120% of upstream control station of the same day				
	Limit Level	67.6	33.8	12.3	14.0	38.4	
		AND	130% of upstream control station of the same day				
SS (mg/L)	A	54.5	14.6	11.8	12.6	39.4	
	Action Level	AND	120% of upstream control station of the same day				
	T :	64.9	17.3	12.4	12.9	45.5	
	Limit Level	AND	130% of upstream control station of the same day				

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

^(#) The Proposed Limit Level of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

4 **AIR QUALITY MONITORING**

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *150* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

	24-hour		1-hour TSP (µg/m ³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Aug-17	32	4-Aug-17	9:34	39	39	39	
9-Aug-17	51	10-Aug-17	9:42	41	43	43	
15-Aug-17	79	16-Aug-17	9:38	41	43	41	
21-Aug-17	140	22-Aug-17	9:34	108	106	100	
26-Aug-17	91	28-Aug-17	9:41	47	44	42	
Average (Range)	79 (32 - 140)	Average (Range)		54 (39 - 108)			

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
-----------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Aug-17	57	4-Aug-17	9:31	42	36	37	
9-Aug-17	62	10-Aug-17	9:35	40	45	48	
15-Aug-17	67	16-Aug-17	9:30	44	43	37	
21-Aug-17	144	22-Aug-17	9:31	104	100	97	
26-Aug-17	115	28-Aug-17	9:46	45	49	42	
Average	89	Avera	.ge		54		
(Range)	(57 – 144)	(Rang	ge)		(36 - 104)		

Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
-----------	--

	24-hour 1-hour TSP (μ g/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Aug-17	38	6-Jul-17	9:22	37	47	39
9-Aug-17	84	12-Jul-17	9:24	36	30	29
15-Aug-17	70	18-Jul-17	9:34	33	33	38
21-Aug-17	104	24-Jul-17	9:35	66	59	60
26-Aug-17	63	29-Jul-17	13:05	63	59	62
Average (Range)	72 (38 – 104)	Average 46 (Range) (29 – 66)				

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
4-Aug-17	37	1-Aug-17	9:40	77	66	58	
10-Aug-17	38	7-Aug-17	9:46	34	46	41	
16-Aug-17	54	12-Aug-17	8:11	72	68	71	
22-Aug-17	76	18-Aug-17	9:16	73	73	69	
28-Aug-17	94	24-Aug-17	9:16	82	82	76	
		30-Aug-17	9:32	112	108	105	
Average	60	Average 73					
(Range)	(37 – 94)	(Rang	(Range) (34 – 112)				

Table 4-5	Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a
-----------	---

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
4-Aug-17	28	1-Aug-17	9:37	74	90	68	
10-Aug-17	33	7-Aug-17	9:44	41	42	38	
16-Aug-17	54	12-Aug-17	8:13	76	72	75	
22-Aug-17	137	18-Aug-17	9:24	69	69	74	
28-Aug-17	18	24-Aug-17	9:25	83	84	78	
		30-Aug-17	9:34	104	106	105	
Average	54	Average			75		
(Range)	(18 – 137)	(Range)		(38 – 106)			

Table 4-6	Summary of 24-hour and 1-hour TSP Monitoring Results – AM6
-----------	--

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
4-Aug-17	67	1-Aug-17	9:31	72	66	66	
10-Aug-17	79	7-Aug-17	9:38	35	37	35	
16-Aug-17	83	12-Aug-17	8:21	67	64	68	
22-Aug-17	143	18-Aug-17	9:34	68	70	71	
28-Aug-17	19	24-Aug-17	9:34	82	83	86	
		30-Aug-17	9:27	104	107	107	
Average (Range)	78 (19 - 143)	Average (Range)		72 (35 – 107)			

1able 4-7 Summary of 24-nour and 1-nour 1SP Monitoring Results – AM/D	Table 4-7	Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b
---	-----------	---

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
4-Aug-17	55	1-Aug-17	9:26	70	78	69	
10-Aug-17	88	7-Aug-17	9:46	40	41	44	
16-Aug-17	95	12-Aug-17	9:13	52	46	54	
22-Aug-17	67	18-Aug-17	9:50	72	70	69	
28-Aug-17	19	24-Aug-17	9:43	85	86	92	
		30-Aug-17	9:20	65	54	53	
Average (Range)	65 (19 - 95)	Average (Range)		63 (40 - 92)			

	24-hour	-hour TSP (µg	our TSP (µg/m ³)			
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
4-Aug-17	32	1-Aug-17	9:17	74	72	73
10-Aug-17	44	7-Aug-17	10:02	41	44	36
16-Aug-17	43	12-Aug-17	13:11	60	58	63
22-Aug-17	61	18-Aug-17	12:56	73	78	76
28-Aug-17	90	24-Aug-17	10:05	84	82	77
		30-Aug-17	13:01	64	66	63
Average	54	Average			66	
(Range)	(32 – 90)	(Rang	ge)		(36 - 84)	

Table 4-9	Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b
-----------	---

	24-hour	1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Aug-17	26	4-Aug-17	9:18	62	60	67	
9-Aug-17	13	10-Aug-17	9:39	39	44	37	
15-Aug-17	19	16-Aug-17	9:47	43	38	38	
21-Aug-17	56	22-Aug-17	9:40	111	108	110	
26-Aug-17	39	28-Aug-17	13:06	49	51	47	
Average (Range)	31 (13 - 56)	Average (Range)		60 (37 - 111)			

- 4.2.1 As shown in *Tables 4-1 to 4-9*, all the 1-hour and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.2 For the Action Level exceedance of 24-hour TSP monitoring recorded at AM5a on 29 July 2017. The investigation for the cause of exceedance was completed and the investigation result revealed that the exceedance was not related to the works under the Project. The completed investigation report for the exceedance is attached in *Appendix N*.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix* H and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS (NORMAL DAYTIME)

5.2.1 In the Reporting Period, a total of **50** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1	Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
4-Aug-17	55	69	61	62	65			
10-Aug-17	57	73	58	61	65			
16-Aug-17	61	75	59	60	66			
22-Aug-17	56	68	58	60	66			
28-Aug-17	57	69	58	62	66			
Limit Level	75 dB(A)							

Remarks

(*) façade correction (+3 dB(A) is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)									
Date	NM3 NM4 NM5 NM6 NM								
1-Aug-17	57	67	51	58	64				
7-Aug-17	60	61	52	59	61				
18-Aug-17	60	61	55	63	63				
24-Aug-17	61	62	61	56	64				
30-Aug-17	59	62	63	64	64				
Limit Level			75 dB(A)						

5.2.2 As shown in *Tables 5-1 and 5-2*, the noise level measured at all designated monitoring locations were below 75dB(A). Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of thirteen (13) sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM1, WM2A(a), WM3x and WM4, according to "Event and Action Plan" stipulation, 1, 5, 2 and 4 additional water quality monitoring day was conducted for WM2A(a), WM3x and WM4 respectively and theirs control stations in the reporting period.
- The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are 6.2.2 summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in Table 6-6. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

	Dissolved Oxygen Turbidity Suspended Solids										
Date		(mg/L)	gen		(NTU)		(mg/L)		mus		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB		
2-Aug-17	6.5	7.5	5.9	30.8	5.4	18.6	22.0	2.0	19.0		
4-Aug-17	6.8	7.1	5.1	34.8	5.0	15.3	26.5	5.0	17.0		
8-Aug-17	6.7	7.2	6.1	21.5	5.8	18.2	17.0	4.0	17.0		
10-Aug-17	6.4	7.2	5.4	471.5	9.8	26.6	289.5	8.0	19.5		
11-Aug-17#	#	#	#	367.5	6.9	16.5	136.0	6.0	24.0		
12-Aug-17	6.4	7.2	6.1	104.5	6.8	14.1	76.5	2.5	11.0		
14-Aug-17	6.4	6.9	5.8	22.4	4.9	15.6	18.0	6.0	11.0		
15-Aug-17#	#	#	#	15.0	4.6	8.3	18.0	3.0	13.0		
16-Aug-17	6.6	7.0	5.9	139.5	5.5	29.7	<u>99.5</u>	6.0	72.0		
17-Aug-17#	#	#	#	22.3	3.8	24.8	24.0	7.0	67.0		
18-Aug-17	4.2	4.8	5.2	29.2	9.3	17.5	26.0	6.0	15.0		
22-Aug-17	6.6	7.0	6.4	22.1	4.6	15.9	20.0	4.0	17.0		
24-Aug-17	5.9	6.1	4.8	<u>79.6</u>	22.1	30.7	38.5	5.0	16.0		
25-Aug-17#	#	#	#	17.0	5.2	14.8	12.0	2.0	13.0		
26-Aug-17	5.9	6.1	4.4	15.7	6.9	12.2	12.5	<2	11.0		
28-Aug-17	7.9	8.0	7.6	57.0	49.8	49.7	43.5	21.5	42.5		
30-Aug-17	6.5	6.6	5.3	20.7	4.6	6.6	18.5	6.0	9.5		
Remarks:											

Table 6-1 Water Quality Monitoring Results Associated of Contracts 2 and 3

Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Oualit	y Monitoring Results Associated of Contracts 6 and SS (C505
	Yuuter Yuum	j montoring neouro mosociatea er contracto o ana oo	0000

Date		d Oxygen g/L)		bidity TU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
2-Aug-17	7.4	7.9	<u>95.7</u>	51.2	87.5	61.0	
3-Aug-17#	#	#	95.4	96.7	59.0	69.0	
4-Aug-17	7.4	8.1	27.6	13.7	28.5	9.0	
8-Aug-17	7.5	8.1	13.1	14.4	6.0	5.0	
10-Aug-17	7.4	7.9	17.3	15.1	14.5	5.5	
12-Aug-17	7.4	8.8	40.0	14.1	43.0	3.0	
14-Aug-17	7.2	7.5	25.0	15.8	15.5	3.5	
16-Aug-17	7.5	8.1	20.1	12.2	15.0	5.0	
18-Aug-17	4.8	4.4	16.5	14.9	11.5	8.0	

Date		d Oxygen g/L)		oidity ΓU)	Suspend (mg	ed Solids g/L)
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C
22-Aug-17	6.2	5.8	21.3	13.1	41.0	14.0
24-Aug-17	6.3	5.7	48.8	20.6	50.0	15.5
26-Aug-17	6.4	7.0	23.3	18.8	16.0	2.5
28-Aug-17	7.2	7.6	746.5	725.5	506.0	613.5
30-Aug-17	7.3	7.8	16.4	11.4	20.0	10.0

Remarks: bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-3Water Quality Monitoring Results Associated only Contract 6

Date]	Dissolve (m	d Oxyg g/L)	gen	(NTU)					-	spended Solids (mg/L)		
Dute	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A (a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2 B- C	
2-Aug-17	6.6	6.9	*	*	905.5	706.5	*	*	621.5	417.0	*	*	
3-Aug-17#	#	#	*	*	118.5	25.2	*	*	82.0	9.0	*	*	
4-Aug-17	6.6	7.3	*	*	14.8	5.6	*	*	13.0	5.0	*	*	
5-Aug-17#	#	#	*	*	15.0	6.6	*	*	9.0	<2	*	*	
8-Aug-17	6.7	7.4	*	*	12.8	5.1	*	*	7.0	<2	*	*	
10-Aug-17	6.5	7.3	*	*	11.5	5.7	*	*	6.5	<2	*	*	
12-Aug-17	6.6	7.2	*	*	15.9	12.4	*	*	<2	<2	*	*	
14-Aug-17	6.5	7.1	*	*	8.6	6.7	*	*	7.0	3.5	*	*	
16-Aug-17	6.7	7.3	*	*	8.9	5.3	*	*	6.0	3.0	*	*	
18-Aug-17	4.5	4.8	*	*	8.0	12.5	*	*	7.0	11.5	*	*	
22-Aug-17	5.8	5.7	*	*	8.1	7.5	*	*	11.0	8.5	*	*	
24-Aug-17	5.8	5.4	*	*	75.5	11.3	*	*	51.5	3.0	*	*	
25-Aug-17#	#	#	*	*	24.5	4.0	*	*	12.0	3.0	*	*	
26-Aug-17	5.2	4.9	*	*	11.6	9.4	*	*	<2	<2	*	*	
28-Aug-17	7.6	8.0	*	*	216.5	134.5	*	*	259.5	22.0	*	*	
29-Aug-17#	#	#	*	*	86.9	19.2	*	*	77.0	30.0	*	*	
30-Aug-17	7.2	5.9	*	*	45.4	6.2	*	*	43.5	7.0	*	*	
31-Aug-17#	#	#	*	*	10.0	4.7	*	*	11.0	7.0	*	*	

Remarks:

bold with underline indicated Limit Level exceedance

[#] Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

* water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

Table 6-4 Water Quality Monitoring Results Associated Contracts 2 a

Date	Dissolved C Date (mg/L			oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
2-Aug-17	6.1	6.6	<u>114.0</u>	72.8	109.5	97.5	
3-Aug-17	#	#	12.9	12.1	6.0	45.0	
4-Aug-17	6.7	6.8	13.1	4.1	12.0	8.5	
8-Aug-17	6.5	6.8	7.3	13.7	<2	24.5	
10-Aug-17	6.5	6.8	11.4	25.4	13.0	50.0	
12-Aug-17	6.4	6.7	6.9	14.7	<2	14.5	
14-Aug-17	6.6	6.7	12.3	26.2	8.0	40.5	
16-Aug-17	7.1	6.9	7.2	12.6	3.0	24.0	
18-Aug-17	4.6	5.0	10.0	6.1	8.0	10.5	
22-Aug-17	6.6	6.6	6.5	23.6	19.5	40.5	
24-Aug-17	5.9	5.8	<u>81.3</u>	21.0	<u>95.0</u>	47.0	
25-Aug-17	#	#	10.4	7.7	10.0	14.0	
26-Aug-17	6.7	6.0	10.6	10.3	<2	33.5	
28-Aug-17	7.4	7.4	91.8	175.5	38.0	117.0	

Date		l Oxygen g/L)	Turbidity (NTU)		Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
30-Aug-17	7.3	6.8	15.6	14.1	19.5	19.0	
Remarks:	bold with und	erline indicated	Limit Level exc	ceedance			

underline indicated Limit Level exceedance

Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-5 Action and Limit (A/L) Levels Exceedance Recorded

Location		olved ygen	Turt	Turbidity		Suspended Solids		Total Exceedance		Project Related exceedance	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	
WM1	0	0	0	1	0	1	0	2	0	0	
WM2A(a)	0	0	0	6	0	6	0	12	0	0	
WM2B	0	0	0	0	0	0	0	0	0	0	
WM3x	0	0	0	2	0	1	0	3	0	0	
WM4	0	0	0	5	0	4	0	9	0	0	
No of Exceedance	0	0	0	14	0	12	0	26	0	0	

- 6.2.3 In this Reporting Period, a total of twenty-six (26) Limit Level (LL) exceedances, namely fourteen (14) LL exceedance of turbidity and twelve (12) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. The investigation for the cause of exceedances at WM2A(a) 24, 28, 29 and 30 Aug 2017 was underway. According to the investigation result, all other exceedances were concluded as non-project related.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in Appendix N.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
2 Aug 2017	WM1	NTU & SS	Muddy water was observed throughout the river course including WM1 and WM1-C and the water sampling was conducted after rain. Site inspection carried out on 3 August, it was observed that no construction activities were carried out adjacent to the river course and no adverse water quality impact was observed. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contract.
2 and 3 Aug 2017	WM2A(a)	NTU & SS	According to the weather information from HKO, it rained on 2 and 3 August 2017 and water quality throughout the river course was highly affected by the stirred up sediment and muddy runoff from the surrounding environment. On 3 August 2017, it was observed that the nylon dam was deflated and muddy water trapped in the nylon dam was flowing to downstream before the water sampling. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 2 and 3 August 2017 was related to impact of rainstorm and not caused by the works under Contract 6.

Table 6-6 Summary of Water Quality Exceedance in the Reporting Period

2 Aug 2017	WM3x	NTU & SS	Turbid water was observed throughout the channel including WM3x and WM3-C and the water quality in the exiting channel was affected by rain. Site inspection carried out on 3 and 4 August 2017, it was observed that no construction activities were carried out adjacent to the river course and no adverse water quality impact was observed. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contracts 3 and 6.
10, 11 and 12 Aug 2017	WM4	NTU & SS	During site inspection, it was observed that unknown source of muddy water attributed to their site area of Contract 3 via an underground pipe which connected from Kiu Tau Road (outside C3) to box culvert BC02 (under Contract 3). The muddy water was finally entered Ma Wat River and got detected at WM4. In our investigation, the general condition of the site area under Contracts 2 and 3 were in order and no adverse water quality impact was identified. It was considered that the exceedances were likely caused by the unknown source of muddy water attributed outside the site boundary and not related to the works under the Project.
24 Aug 2017	WM3x	NTU & SS	According to weather record from the Observatory, it was heavy rainstorm on 23 August 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Site inspection carried out on 24 and 25 August 2017, it was observed that no construction activities were carried out adjacent to the river course and no adverse water quality impact was observed. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contracts 3 and 6.
16 and 24 Aug 2017	WM4	NTU & SS	During site inspection, it was observed that unknown source of muddy water attributed to their site area of Contract 3 via an underground pipe which connected from Kiu Tau Road (outside C3) to box culvert BC02 (under Contract 3). The muddy water was finally entered Ma Wat River and got detected at WM4. In our investigation, the general condition of the site area under Contracts 2 and 3 were in order and no adverse water quality impact was identified. It was considered that the exceedances were likely caused by the unknown source of muddy water attributed outside the site boundary and not related to the works under the Project.
24, 28, 29 and 30 Aug 2017	WM2A(a)	NTU & SS	To be updated in next reporting period.

7 ECOLOGY MONITORING

7.1 GENERAL

7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval. The last ecological monitoring report (May - June 2017) was submitted to EPD on 14 July 2017. In the Reporting Period, ecological monitoring for the period of July to August 2017 was carried out on 7 and 11 August 2017. The ecological monitoring report (July to August 2017) will be submitted standalone.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

					-						-		
Type of	Conti	ract 2	Cont	ract 3	Co	ntract 4	Cont	ract 6	Co	ntract 7	Contrac	et SS C505	
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Qty.
C&D Materials (Inert) (in '000m ³)	62.4716		1.297		0		1.656		0		6.341		71.7656
Reused in this Contract (Inert) (in '000 m ³)	0.3805		0.120		0		0.432		0		2.532		3.4645
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	0.8032	C6/ NENT# & other projects approved by the ER	0		0		0		0		0		0.8032
Disposal as Public Fill (Inert) (in '000 m ³)	61.2879	Tuen Mun 38	1.059	Tuen Mun 38	0		1.224	Tuen Mun 38	0	Tuen Mun 38	3.809	ТКО 137	67.3799

Table 8-1Summary of Quantities of Inert C&D Materials for the Project

Remark #: The C&D materials were delivered to NENT for reuse by laying cover of the landfilling area.

Table 8-2

2. Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	ract 4	Con	tract 6	Cont	ract 7	Contract	t SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	318.6	Licensed collector	0	-	0		0		2.5	Licensed collector	239.72	Licensed collector	560.82
Recycled Paper / Cardboard Packing ('000kg) #	0.350	Licensed collector	0	-	0	-	0	-	0.04	Licensed collector	0.70	Licensed collector	1.09
Recycled Plastic ('000kg) #	2.410	Licensed collector	0	-	0		0		0.001	Licensed collector	0	Licensed collector	2.411
Chemical Wastes ('000kg) #	1.6840	Licensed collector	0	-	0		0		0		0		1.684
General Refuses ('000m ³)	0.1482	NENT	0.130	NENT	0		0.510	NENT	0.01	NENT	1.554	NENT	2.3522

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m³).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 18 and 25 August 2017. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follow-Up Status
04 August	• No adverse environmental issue	• NA
2017	was observed.	<u> </u>
11 August 2017	 South Portal: Earth bund should be provided to divert the surface run-off to the de-silting facilities and prevent the contaminated surface run-off overflow into the discharge outlet. 	• Earth bund has been erected to avoid the treated water being contaminated with surface runoff.
	• Housekeeping should be improved. General refuse and stagnant water cumulated on site was observed.	• Housekeeping was improved. General refuse was removed.
	• Sand bags should be provided to prevent muddy site run-off inside the manhole overflow into the public drainage.	• Not required for reminder.
18 August	Mid-Vent:	
2017	• Stagnant water cumulated on site after rain-storm should be removed to prevent mosquito breeding.	• Stagnant water was removed.
	North Portal:	
	 Sediment and mud cumulated inside the storm water buffer tank was observed. Proper maintenance for the MS Plant should be provided. Mud and sediment cumulated 	• On 1 September 2017, the Contractor deployed the crawler crane to remove the mud which cumulated inside the storm water buffer tank.
	between the MS Plant and site hoarding area should be clean to prevent mud and sediment washing out to public area during rainstorm.	• Not required for reminder.
	• Cleaning process at Loi Tung River and Ng Tung River was inspected during the site inspection.	• Not required for reminder.
25 August 2017	• Storm water buffer tank full of sediment was observed.	• The Contractor deployed the crawler crane to remove the mud which

Table 9-1Site Observations for Contract 2

	Sediemnt cumualted inside should be cleared to maintain the MS Plant functional.		cumulated inside the storm water buffer tank on 1 September 2017.
•	Sediment cumulated inside the store basin should be cleaned.	•	Not required for reminder.

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **16**, **24** and **31** August 2017. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Date	Findings / Deficiencies	Follow-Up Status
03 August 2017	• It was reminded that all the stockpiles should be covered entirely after the end of workday.	• NA
10 August 2017	 Oil stain was observed on the bridge. The contractor was advised to clean it and dispose as chemical waste. Air compressor without noise emission label was observed. The contractor was advised to provide noise emission label as soon as possible. Muddy water was observed discharging into the river. The contractor was advised to provide mitigation measure to aviod muddy water into the river. 	 Oil stain was cleaned on site. Noise emission label for the Air Compressor was provided. No muddy water discharging into river was observed.
16 August 2017	• Contaminated runoff was observed at the river near Bridge D. The Contractor should ensure the measures to prevent site runoff entering the river were properly implemented.	• Sand bag bund is provided to prevent the site runoff entering the river. Also, no surface runoff was observed during the site inspection.
24 August 2017	 A stockpile of cement bags was observed at Location AD1, the Contractor should be cover the cement bags to avoid dust emission. 	 Stockpile of cement bags was removed from site area. Last observation closed. Chemical container
	• Free standing of a chemical container was found at Location AC9, the Contractor should provide a drip tray for the chemical container.	was removed from site area. Last observation closed.
31 August 2017	• No adverse environmental issue was observed.	• NA

Table 9-2Site Observations for Contract 3

<u>Contract 4</u>

9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 4, 11, 18 and 22 August 2017 in which IEC joined the site inspection on 22 August 2017. No non-compliance was noted.

9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 7-5 Site Observations for Contract 4	Table 9-3	Site Observations	s for Contract 4
--	-----------	-------------------	------------------

Date	Findings / Deficiencies	Follow-Up Status
4 August 2017	• No adverse environmental issue was observed.	• NA
11 August 2017	• No adverse environmental issue was observed.	• NA
18 August 2017	• No adverse environmental issue was observed.	• NA
22 August 2017	• No adverse environmental issue was observed.	• NA

Contract 6

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **3**, **10**, **17**, **24** and **30** August 2017. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Date	Findings / Deficiencies	Follow-Up Status	
3 August 2017	• No adverse environmental issue was observed.	• NA	
10 August 2017	• The contractor was reminded to cover overnight stockpiles with tarpaulin sheets.	• NA	
	• The contractor was reminded to replace broken NRMM label with new one for excavator.	• NA	
17 August 2017	• Muddy trial was observed at public access road at Chuk Yuen Road. The Contractor should ensure all the vehicles are properly washed before leaving the site.	• The cleanliness of public road is well maintained.Wheels of vehicle are washed before leaving the site.	
	• The Contractor was reminded to provide water spray on haul road regularly.	• NA	
24 August 2017	• The Contractor was reminded to maintain the mitigation measures for prevention of surface run-off, such as the slope coverage and bundings.	• NA	
30 August 2017	• The Contractor was reminded to provide wheel washing facilities with proper signage at the site exit to ensure all vehicles were washed before leaving the site. (Sha Tau Kok Road AP001).	• NA	

Table 9-4Site Observations for Contract 6

Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 2, 9, 16, 25 and 30 August 2017 in which IEC joined the site inspection on 25 August 2017. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Date	Findings / Deficiencies	Follow-Up Status
2 August 2017	• The contractor was reminded to clean stagnant water within site area after raining.	• Not required for reminder.
9 August 2017	• Air compressor was observed without NRMM label a third floor of PTB. The contractor was advised to provide NRMM Label for air compressor within site area.	 NRMM label was provided for the air compressor. Last observation closed.
16 August 2017	• Oil drum was observed without drip tray at the ground near site office. The contractor was advised to place oil drum inside drip tray to avoid oil leakage.	• Drip tray was provided for oil drum next to site office. Last observation closed.
25 August 2017	 Accumulation of stagnant water was observed inside drip tray on the ground level next to PTB. The contractor was advised to clear the stagnant water and dispose as chemical waste. The contractor was reminded to clear stagnant water within site area after typhoon No.10. The contractor was reminded to dispose of construction waste regularly. 	 Stagnant water inside drip tray was removed. Last observation closed. Not required for reminder. Not required for reminder.
30 August 2017	 Chemical containers were observed without drip tray near building 4. The contractor was advised to place chemical containers inside drip tray. Stagnant water was observed inside drip tray near building 4. The contractor was advised to clear stagnant water and dispose of as chemical waste. 	 Drip tray was provided for chemical containers. Last observation closed. Stagnant water inside drip tray was removed. Last observation closed.

Table 9-5Site Observations for Contract SS C505

Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 4, 11, 15 and 25 August 2017. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* **7** that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	Follow-Up Status
4 August 2017	 Drip tray should be provided for all chemical storage on site. Stagnant water cumulated on site after 	 Chemical containers storage without drip tray were removed. Not required for
	rainstorm should be removed to prevent mosquito breeding.	reminder.
11 August 2017	• Stagnant water cumulated inside the idled sedimentation tank was observed. Stagnant water should be removed to prevent mosquito breeding.	• Stagnant water inside idled sedimentation tanks was cleared. Last observation closed.

Date	Findings / Deficiencies	Follow-Up Status	
15 August 2017	• Open stockpiles was observed without covering at work area. The contractor was advised to cover stockpiles with tarpaulin sheet to avoid dust emission.	 Stockpile was covered properly to avoid dust emission. 	
25 August 2017	• Stagnant water cumulated inside the drip tray should be cleared.	• Stagnant water cumulated inside the drip tray was cleared.	
	• C&D waste cumulated on site should be cleared more frequency,	• Not required for reminder.	

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTIONS

10.1.1 In the Reporting Period, no summons and prosecution under the EM&A Programme was lodged for all Contracts. However, one (1) documented environmental complaint was received by EPD regarding water quality issue for Contract 2. The investigation details for the complaint and status are presented below.

Investigation Result for the Documented Complaint received by EPD on 4 August 2017 (Contract 2)

- 10.1.2 A complaint was received by EPD on 4 August 2017 in respect with the matter of water pollution in Ng Tung River suspected to be caused by the nearby construction site. According to the location map provided by the complainant, the suspected construction site should be North Portal Site of Contract 2.
- 10.1.3 Joint site inspection among the RE, DHK and ET was carried out on 7 August 2017 in North Portal Site and Loi Tung stream as well as Ng Tung River for the complaint investigation. The observations during site inspection are summarized below.
 - (a) The major construction activities at North Portal Site were undertaken inside the tunnel such as tunnel excavation, internal structure, backfilling and cross passage, tunnel waterproofing and lining formwork.
 - (b) The wastewater generated by the tunnel works including groundwater were all diverted to the on-site wastewater treatment facility for de-silting treatment.
 - (c) Wastewater treatment facility was implemented in North Portal Site and it functioned properly. The wastewater after treatment was stored in a final retention tank for either reuse on site or discharge of site at the approval discharge point to Loi Tung Stream.) It was observed that treated water in the final retention tank was visually clear.
 - (d) A water retention basin served as an intermediate sand trap to de-silt runoff collected from permanent surface drains and natural terrains was constructed at mid-valley of North Portal Site. As advised by DHK, de-sludge of the water retention basin would be carried out regularly. In recent, de-sludge work was carried out and completed on 5 August 2017 to remove the silt accumulated at basin bottom after the successive rainstorm in July 2017.
 - (e) Inspection was carried out at the approved water discharge point, the discharge quality was visually in good condition. Moreover, trails of washed out soil at the vegetation slope was observed next the approval water discharge point which suspected to be caused by heavy rainstorm in July 2017.
 - (f) The water quality of Loi Tung Stream at downstream of North Portal Site was clear. It was observed that geotextile was placed on part of the Loi Tung Stream for protection of the stream and the silt was cumulated on the surface of the geotextile. However, thick layer of silt was deposited at both sides of Loi Tung Stream.
 - (g) The catchment at the end of Loi Tung Stream and Ng Tung River was cumulated with silt. As advised by DHK, removal of silt at the box culvert was conducted on 5 August 2017.
 - (h) The water quality of Ng Tung River at downstream of North Portal Site was fair. It was observed that the water was flowing in the dry flow channel and the river bed and part of the river sides were deposited with thick silt and sediment.
 - (i) Inspection was also carried out at further downstream of Ng Tung River and upstream near Man Uk Pin, it was observed that the water quality was in good condition.
- 10.1.4 As advised by the Contractor of Contract 2 (DHK), due to the continuous heavy downpour on 17 and 18 July 2017, the water level at the lowest point of the Northbound (NB) Tunnel (designed for temporary storage of rainwater during heavy rain) had reached an alarming level. To cope of the risk of flooding in the tunnel, as approved by the Project Director of DHK, emergency

discharge was activated from 09:50 to around 14:00 on 18 July 2017 following the Flooding Emergency Procedure which established by DHK in May 2017.

- 10.1.5 During the period of emergency discharge, rainwater inside the Northbound tunnel was pumped to the water basin for de-silting purpose. However, part of the water was overflow and directly discharged out of the site at the approved discharge point. An incident report for emergency discharge was submitted to EPD and AECOM subsequently. Since such incident was reported to EPD within 24 hours of its occurrence, it does not breach the Water Pollution Control Ordinance/the Effluent Discharge Licence.
- 10.1.6 According to the weather information from HKO, rainfall at 184.6mm (Red Rainstorm Warning) and 134.3mm (Amber Rainstorm Warning) were recorded on 17 and 18 July 2017 respectively. Under the influence of heavy rainstorm, Loi Tung Stream and Ng Tung River was submerged with rapid flow of muddy water which generated from the surrounding environment, vegetation slope as well as hillside run-off at upstream of North Portal Site. (Photo 16 to 22) After the rainstorm, thick layer of silt were deposited at the stream bottom and river sides. According to the inspection on 7 August 2017, trails of washed out soil at the vegetation slope was observed next the approval water discharge point which suspected to be caused by heavy rainstorm in July 2017.
- 10.1.7 In our investigation, it is considered that the complaint was related to impact of the rainstorm on 17 and 18 July 2017 and the inevitable emergency discharge of North Portal Site on 18 July 2017. In this particular case, DHK has subsequently arranged de-silting work to remove deposited silt on the affected streams. Due to occasionally bad weather after the emergency discharge, the remedial work is expected to be completed in Mid-August 2017. In our conclusion, since the incident was reported to EPD within 24 hours of its occurrence, it does not breach the Water Pollution Control Ordinance/the Effluent Discharge Licence.
- 10.1.8 In response to the complaint's concern, several follow up actions were advised as following
 - (a) As matter of good practice after emergency discharge (should such even occur in future), the responsible Contractor should promptly clean up silt deposited at the affected streams, when the weather permits and conditions are safe.
 - (b) Replace the geotextile placed in the stream for protection of the stream.
 - (c) Placing sand bag in water catchment area to preliminary de-silting.
 - (d) ET and IEC should conduct site audit/inspection after heavy rainstorm at hot spots, including locations near C2 identified in the latest complaint and other possible locations.
- 10.1.9 The statistical summary table of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

	Contract	Environmental Complaint Statistics			Project
Reporting Period	No	Frequency Cumulative		Complaint Nature	related complaint
19 May 2014 – 31 July 2017	Contract 2	0	29	 (17)Water Quality (7) Dust (4) Noise (1) dust & noise 	(5) water(2) dust(1) noise
06 Nov 2013 – 31 July 2017	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	0
16 Aug 2013 – 31 July 2017	Contract 5	0	4	(3) Dust(1) Noise	0

 Table 10-1
 Statistical Summary of Environmental Complaints

D Contrac		Envi	Project		
Reporting Period	No	Frequency	Cumulative	Complaint Nature	related complaint
16 Aug 2013 – 31 July 2017	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	(6) water (2) dust (1) Nuisance
15 Feb 2016 – 31 July 2017	Contract 7	0	1	• (1) Noise	0
16 Aug 2013 – 31 July 2017	SS C505	0	2	(1) Noise(1) dust	0
	Contract 2	1	30	 (18)Water Quality (7) Dust (4) Noise (1) dust & noise 	(1) water
	Contract 3	0	5	 (1) Dust (3) Water quality (1) Noise 	NA
1 – 31 August 2017	Contract 4	0	0	NA	NA
	Contract 6	0	32	 (23) Water Quality (6) Dust (2) Noise (1) Nuisance 	NA
	Contract 7	0	1	• (1) Noise	NA
	SS C505	0	2	(1) Noise(1) dust	NA

Table 10-2	Statistical Summary of Environmental Summons
-------------------	--

Donortin a Donio d	Contro of No	Environmental Summons Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 July 2017	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations	
06 Nov 2013 – 31 July 2017	Contract 3	0	0	NA	
16 Aug 2013 – 31 July 2017	Contract 5	0	0	NA	
16 Aug 2013 – 31 July 2017	Contract 6	0	0	NA	
15 Feb 2016 – 31 July 2017	Contract 7	0	0	NA	
16 Aug 2013 – 31 July 2017	SS C505	0	0	NA	
	Contract 2	0	1	NA	
	Contract 3	0	0	NA	
1 – 31 August 2017	Contract 4	0	0	NA	
	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

	Careford of Na	Environmental Prosecutions Statistics				
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature		
19 May 2014 – 31 July 2017	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations		
06 Nov 2013 – 31 July 2017	Contract 3	0	0	NA		
16 Aug 2013 – 31 July 2017	Contract 5	0	0	NA		
16 Aug 2013 – 31 July 2017	Contract 6	0	0	NA		
15 Feb 2016 – 31 July 2017	Contract 7	0	0	NA		
16 Aug 2013 – 31 July 2017	SS C505	0	0	NA		
	Contract 2	0	1	NA		
1 – 31 August 2017	Contract 3	0	0	NA		
	Contract 4	0	0	NA		
	Contract 6	0	0	NA		
	Contract 7	0	0	NA		
	SS C505	0	0	NA		

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract	2
-----------------	---

Contract 2	
Mid-Vent Portal	Adit tunnel water proofing and lining
	• Stud tunnel post-excavation activities and earthworks
	• Ventilation building superstructure and internal structure works
	• Structure connecting the adit tunnel, and ventilation building
	Temporary drainage system
North Portal	Construction of retaining wall, permanent drainage, footways and stairs
	• Southbound tunnel enlargement, waterproofing and lining
	• Southbound tunnel internal structure, backfilling and construction of cross passage
	• Northbound tunnel top-heading and bench excavation, waterproofing and lining
	• Erection of acoustic curtain door and tunnel door for Northbound and Southbound tunnels
	North ventilation building superstructure, internal structure and backfilling
South Portal	Post-excavation activities, earthwork and mucking out

	 Tunnel internal structure, construction of CP and tunnel backfilling South ventilation building superstructure, internal structure, UU and E&M installation Southbound and Northbound tunnel invert, waterproofing and lining Construction of retaining wall RW1, RW2a and RW2b
Admin Building	 Construction of permanent drainage and fencing wall Building internal structure, fitting out work, curtain wall, drainage, UU and E&M installation

Contract 3

- Construction of Boundary Wall for Pumping Station
- Cable detection and trail trenches
- Remaining works on New Kiu Tau Footbridge
- Noise barrier construction
- Road works
- Viaduct segment erection
- Installation of Noise Barrier steel column & panel
- Parapet Installation on bridge deck
- Drainage Work
- Mini-pile installation
- Construction of Profile barrier & Planter wall on Bridge deck
- Stressing of External Tendon
- Construction of Abutment Wall
- Trenchless excavation

Contract 4

- System design
- E&M installation at Admin Building
- E&A installation in tunnel

Contract 6

- Bridge Pier Construction
- Segment section
- Tunnel Works
- Sewage Treatment Plant Construction
- Tunnel Ventilation Building Construction
- Slip Road/At-grade Road/Periphery Road Construction

Contract 7

- U-trough and abutment construction at Bridge A and Bridge E
- Column construction at Bridge A and E
- Deck construction at Bridge B and D
- Construction of parapet wall and Façade Bridge C

Contract SS C505

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18, 23, 24 and 41 construction
- Tower crane operation
- Bridge construction works including construction of bridge column, retaining wall, pile cap, pier, abutment, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab construction and Bridges Decks
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Construction PTB non-structural wall
- Steel beam works for maintenance platform for PTB
- PTB backfilling works

- Elevated Walkway E1, E2, E3 and E4 construction
- Bridge deck construction for Bridges 1 5

11.3 KEY ISSUES FOR THE COMING MONTH

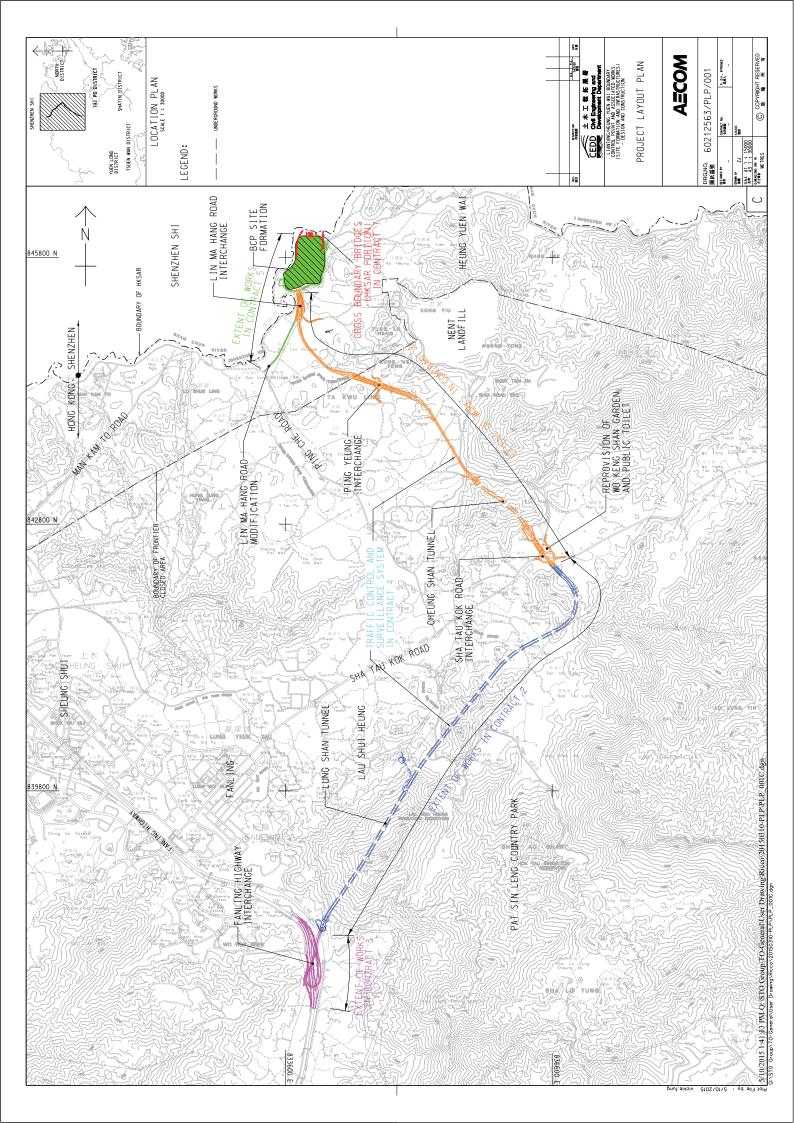
- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;
 - Ensure dust suppression measures are implemented properly;
 - Sediment catch-pits and silt removal facilities should be regularly maintained;
 - Management of chemical wastes;
 - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
 - Follow-up of improvement on general waste management issues; and
 - Implementation of construction noise preventative control measures

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

- 12.1.1 This is the **49th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 August 2017**.
- 12.1.2 For air quality monitoring, no 1-hour and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded. No NOEs or the associated corrective actions were therefore issued.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of twenty-six (26) Limit Level (LL) exceedances, namely fourteen (14) LL exceedance of turbidity and twelve (12) LL exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. The investigation for the cause of exceedances at WM2A(a) 24, 28, 29 and 30 Aug 2017 was underway. According to the investigation result, all other exceedances were concluded as non-project related.
- 12.1.5 In this Reporting Period, one (1) documented environmental complaint was received by EPD regarding water quality issue for Contract 2. Investigation report (IR) for complaints revealed that it was caused by rainstorm and emergency discharge by Contract 2. The IR has completed and submitted to relevant parties for record.
- 12.1.6 No environmental summons or successful prosecutions were recorded in the Reporting Period.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.

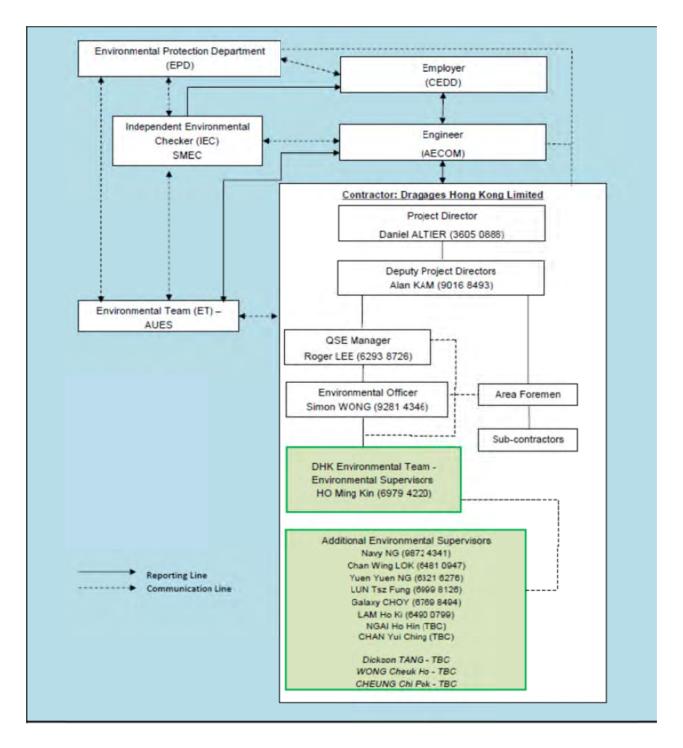
12.2 RECOMMENDATIONS


- 12.2.1 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project

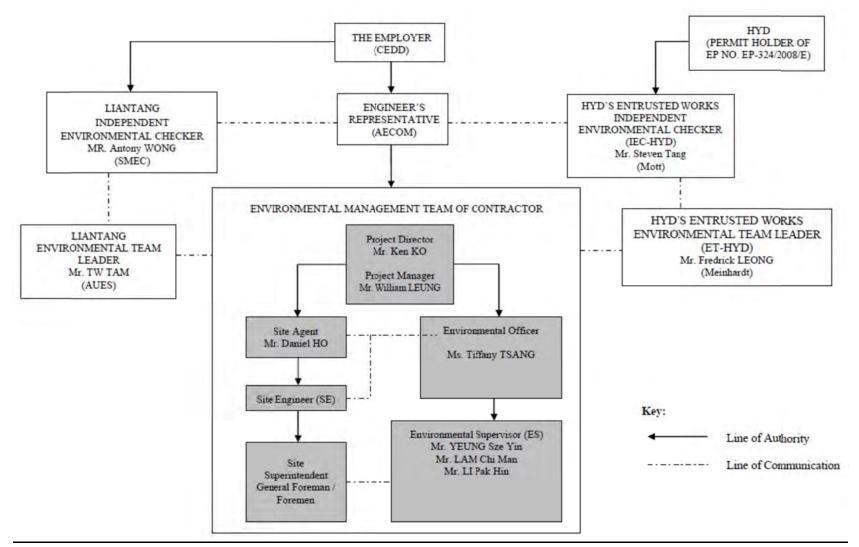
 $Z: \label{eq:loss} 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly \ EM\&A\ Report \ 49th \ (August\ 2017) \ R1234v2. \ docx$



Appendix B

Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)


Contact Details of Key	Personnel for	Contract 2 -	CV/2012/08

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Ho Ming Kin	6979 4220	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

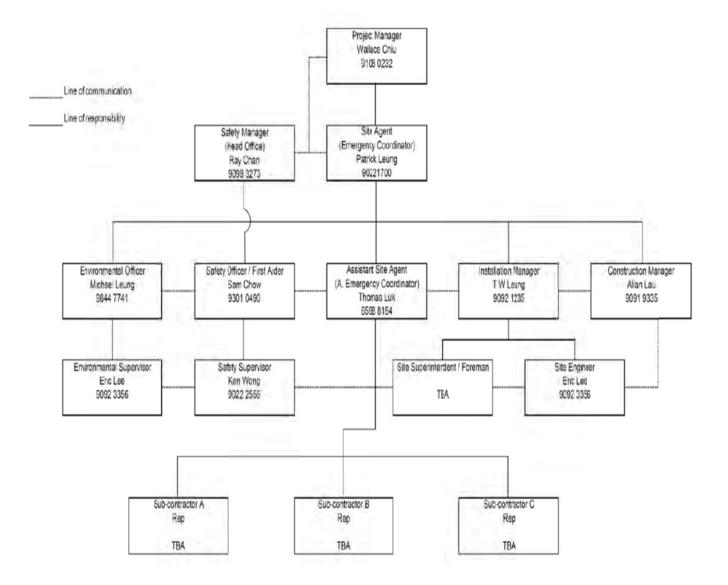
Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. DHK(Main Contractor) –Dragages Hong Kong Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.48) – July 2017

AUES

Environmental Management Organization for Contract 3 - CV/2012/09

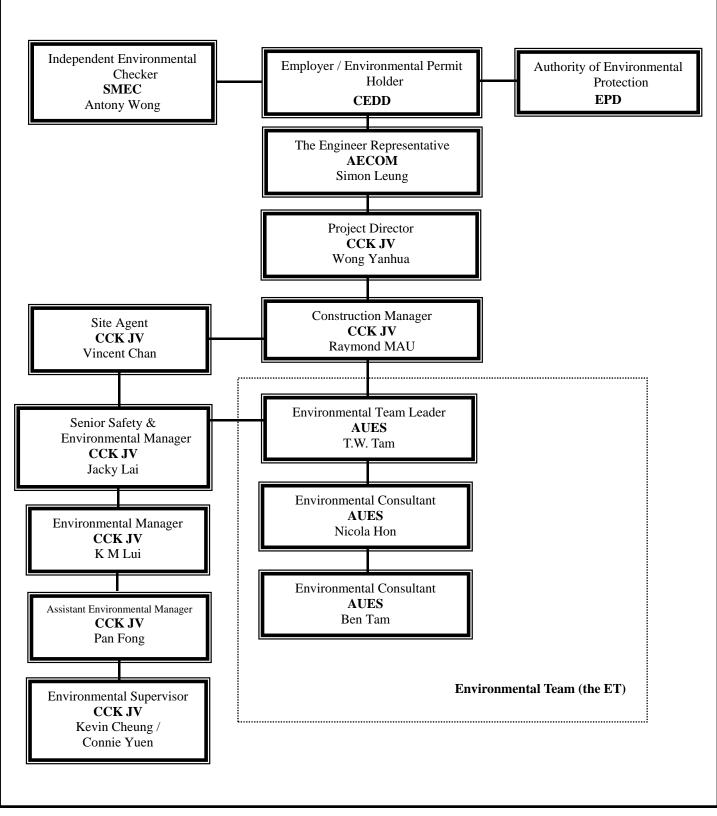

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Tiffany Tsang	2638 6115	2638 7077
Chun Wo	Environmental supervisor	Yeung Sze Yin	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Chun Wo (Main Contractor) – Chun Wo Construction Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 4 - NE/2014/02



Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3300	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Wallace Chiu	9108 0232	
Siemens	Site Agent	Patrick Leung	9022 1700	
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

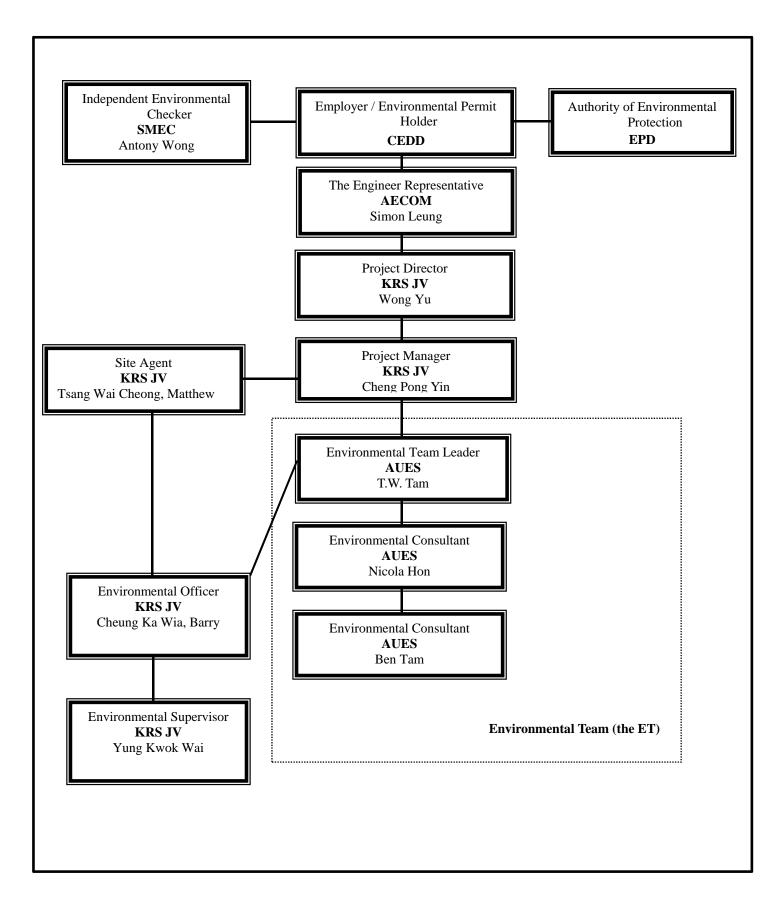
Contact Details of Key Personnel for Contract 4 - NE/2014/02

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Siemens (Main Contractor) – Siemens Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization - CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Construction Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	Jacky Lai	9654 2966	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Manager	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Kevin Cheung/ Connie Yuen	6316 6931 6117 1344	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

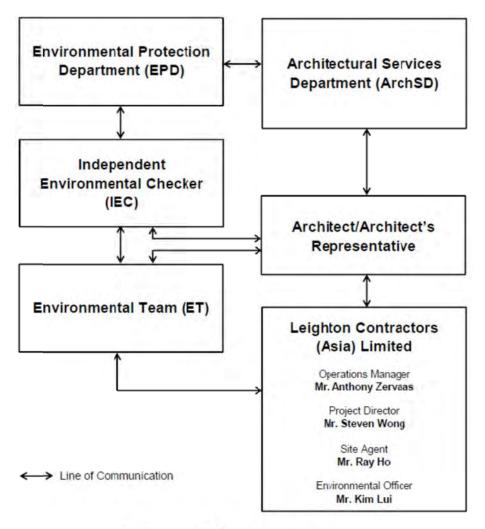
Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization -NE/2014/03


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2674 2273	2674 7732
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Cheung Ka Wia, Barry	6117 2339	2682 2783
KRSJV	Environmental Supervisor	Yung Kwok Wai	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Antony Zervaas	2823 1433	2529 8784
Leighton	Project Director	Mr. Steven Wong	2858 1519	2858 1899
Leighton	Site Agent	Mr. Ray Ho	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1069	-
Leighton	Assistant Environmental Officer	Ms. Penny Yiu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD (Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (Sep, Oct, Nov 2017) Construction Rolling Progam

Item	Construction Activites
1	Admin Bldg - Construction of permanent drainage and fence wall
	Admin Bldg - Building internal structure, fitting out work, curtain wall, drainage, UU and E&M installation
3	Mid Vent Portal - Adit tunnel waterproofing and lining
5	Mid Vent Portal - Stud tunnel post-excavation and earthwork activities
6	Mid-Vent Portal - Ventilation building superstructure and internal structure works
7	Mid Vent Portal - Structure connecting adit tunnel and ventilation building
8	Mid-Vent Portal - Temporary drainage system
9	North Portal - Construction of retaining wall, permanent drainage, footways and stairs
10	North Portal - Southbound tunnel bench enlargement, waterproofing and lining
11	North Portal - Southbound tunnel internal sturcture, backfilling and construction of cross passage
12	North Portal - Northbound tunnel top-heading and bench excavation, waterproofing and lining
13	North Portal - Erection of acoustic curtain doors for the Northbound and Southbound tunnels
14	North Portal - North ventilation building superstructure, internal structure and backfilling
15	South Portal - Post-excavation activitie, earthwork and mucking out
	Sorth Portal - Tunnel internal structure, construction of CP and tunnel backfilling
17	South Portal - South ventilation building superstructure, internal structure, UU and E&M installation
18	South Portal - Southbound and Northbound tunnel invert, waterproofing and lining
19	South Portal - Construction of retaining wall RW1, RW2a and RW2b

Contract 3

俊和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (August, September and October 2017) Construction Rolling Progam

Construction Activites										
Boundary wall construction for DSD pumping station										
Cable detection and trial trenches										
Remaining works on new Footbridge										
Noise barrier construction										
Roadworks										
Viaduct segment erection										
Water main laying works										
Installation of Noise barrier steel column & panel										
Parapet Installation on bridge deck										
Drainage Work										
Mini-pile installation										
Construction of profile barrier & Planter wall on Bridge deck										
Stressing of external tendon										
Construction of abutment wall										
Trenchless excavation										

Contract 4

Tentative Three Months (August, September and October 2017) Construction Rolling Progam

Item	Construction Activites									
1	System design									
2	E&M installation at admin building									
3	E&M installation in tunnel									

Contract 6

Tentative Three Months (August, September and October 2017) Construction Rolling Progam

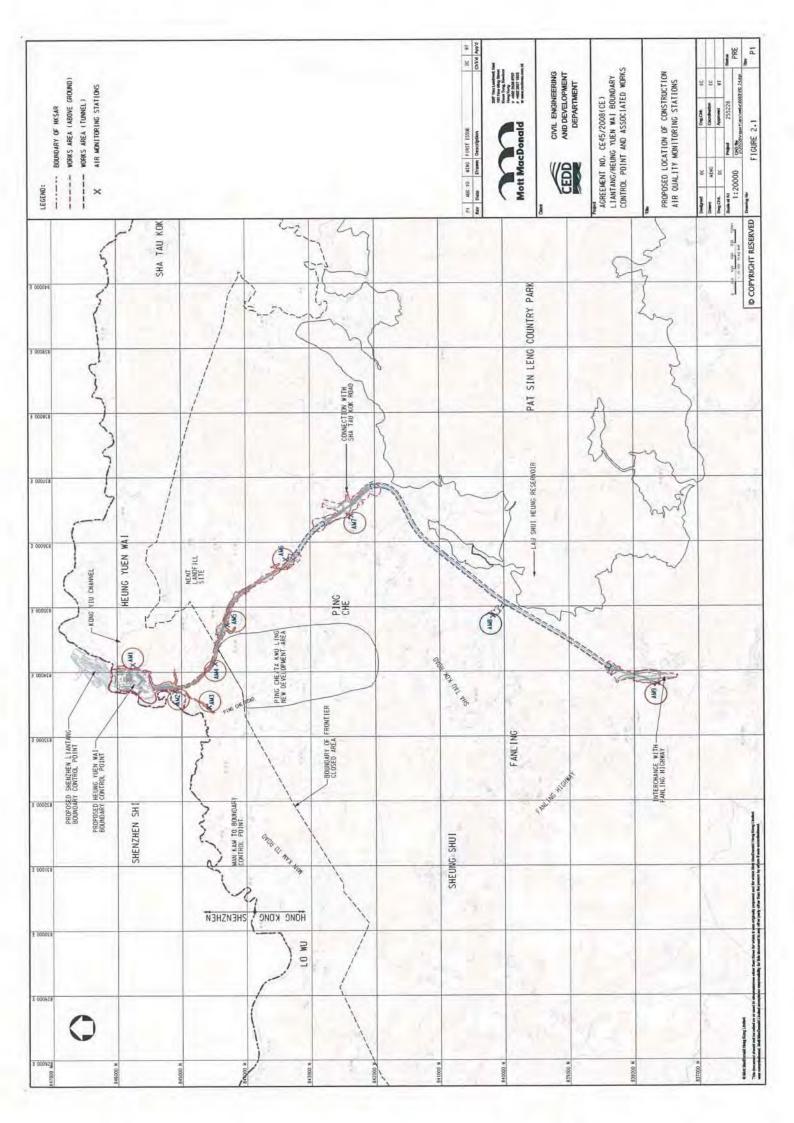
Item	Construction Activites									
1	Bridge Pier Constrcution									
2	Segment Erection									
3	Tunnel Works									
4	Sewage Treatment Plant Construction									
5	Tunnel Ventilation Building Construction									
6	Slip Road/At-grade Road/Periphery Road Construction									

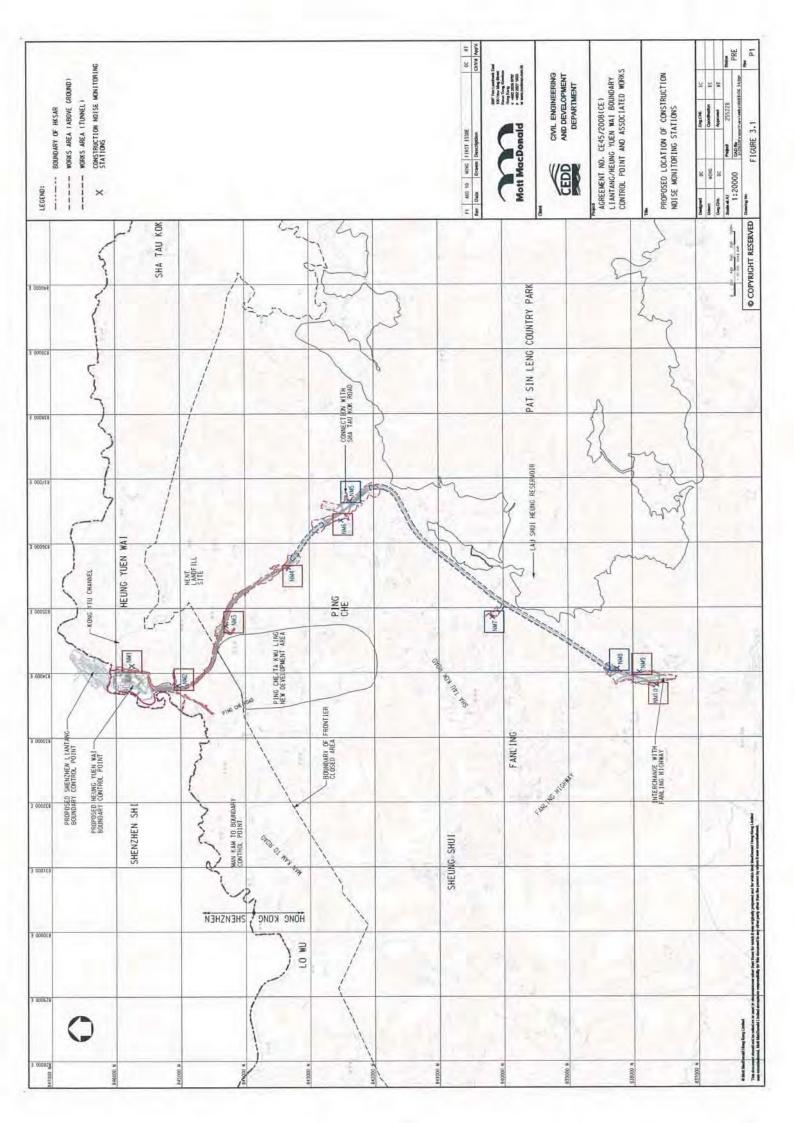
Contract 7

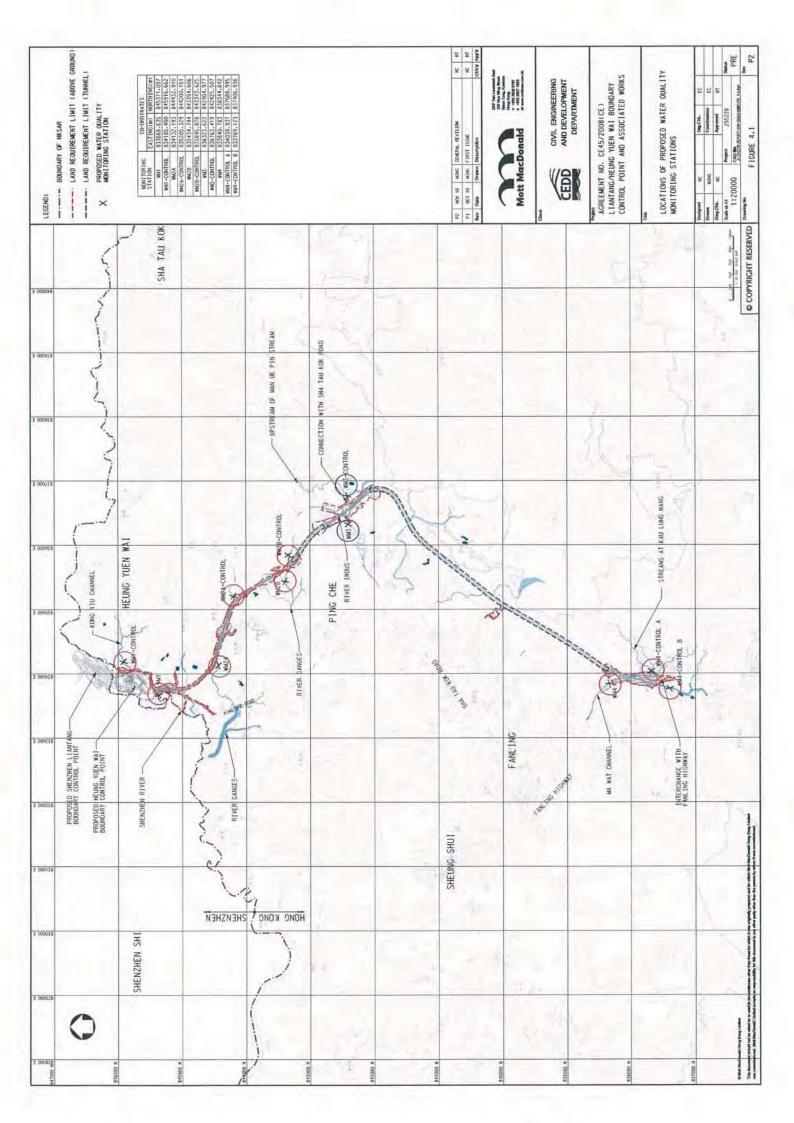
Tentative Three Months(August 2017, September 2017 and October 2017) Construction Rolling Progam

Item	Construction Activites										
1	Bridge A - U-trough and abutment										
2	ridge A - Column										
3	Bridge B - Deck										
4	Bridge C - Façade and parapet wall at roof slab										
5	Bridge D - Deck										
6	Bridge E - U-trough and abutment										
7	Bridge E - Column										

Contract SS C505

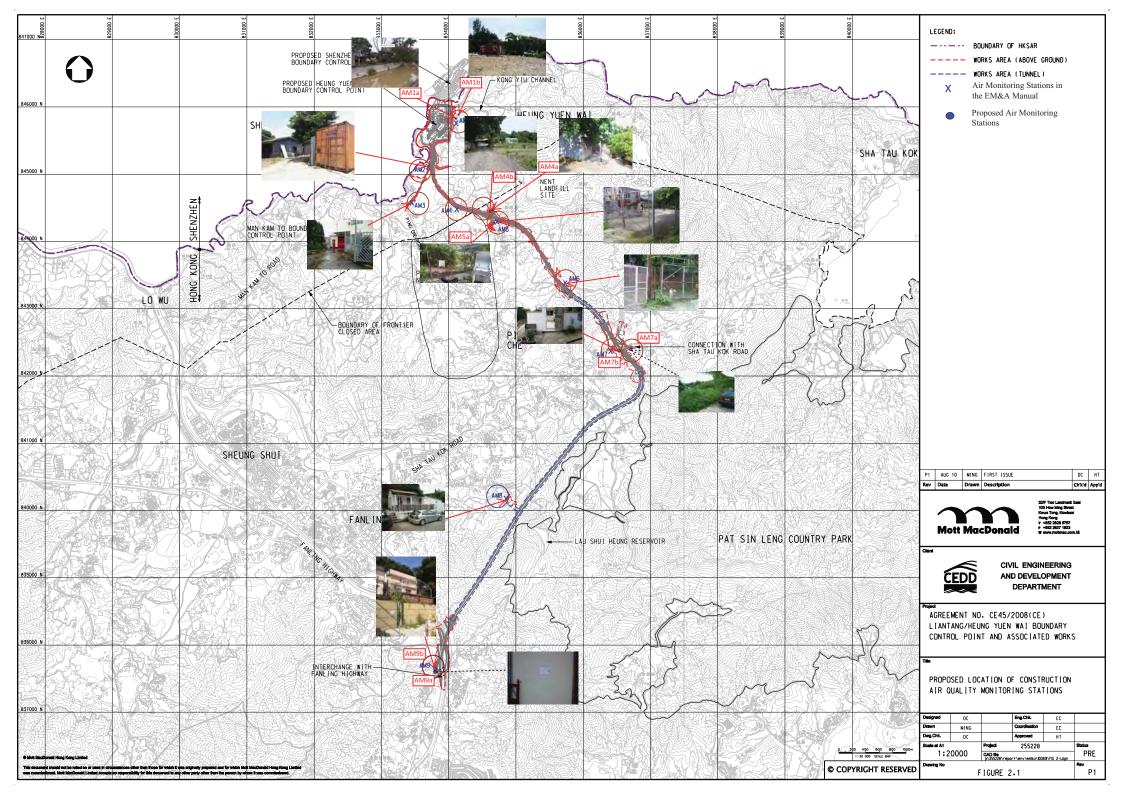

Tentative Three Months (August, September and October 2017) Construction Rolling Progam

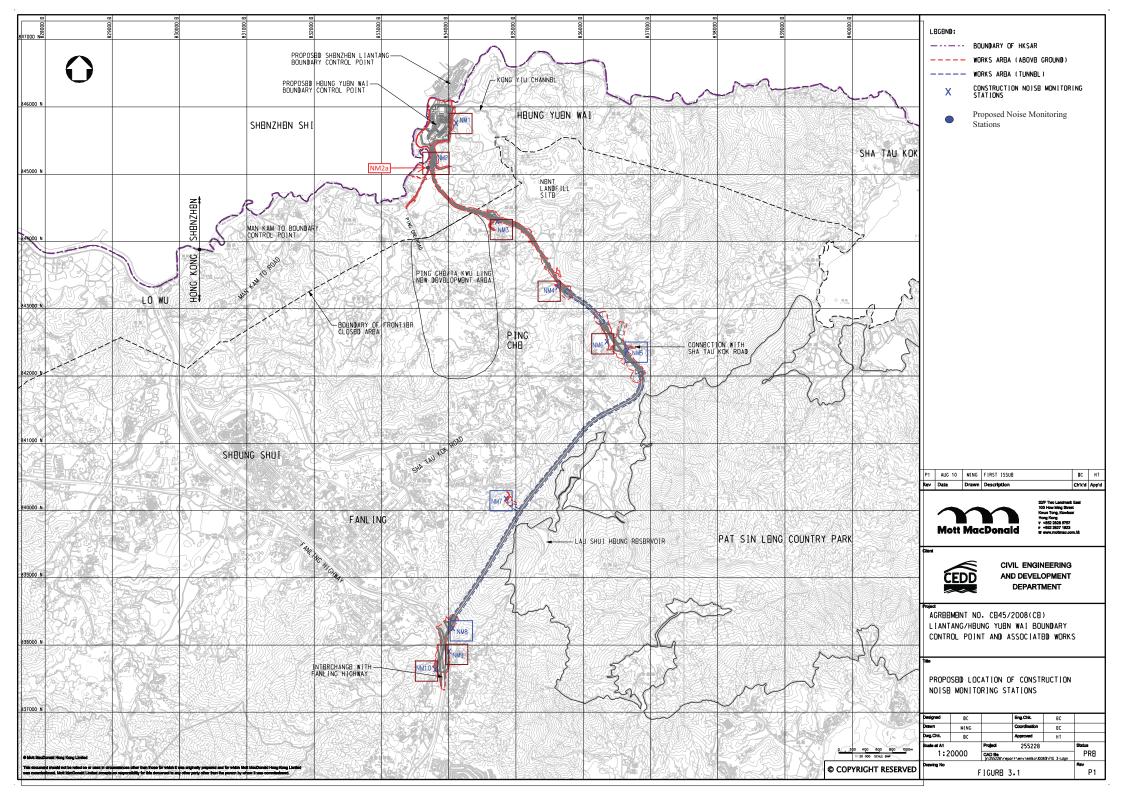

Item	Construction Activites										
1	Passenger Terminal Building - RC Superstructure Works and Non-structural Wall Construction										
2	Passenger Terminal Building - ABWF Works & MEP Installation Works										
3	Passenger Terminal Building - Southern Enterance Construction										
4	C&ED Detector Dog Base - Superstructures, External Works and Integrated ABWF & MEP Works										
5	HKPF Building and Observation Tower - Superstructures, External Works, Integrated ABWF & MEP Works										
6	Fire Station and Drill Tower - Superstructures, Integradted ABWF & MEP Works										
7	Cargo Examination Building (Inbound) - Superstructure and Integrated ABWF & MEP Works										
8	Cargo Examination Building (Outbound) - Superstructure and Integrated ABWF & MEP Works										
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Substructures, Superstructures and ABWF & MEP Works										
	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Superstructures and Integrated ABWF & MEP Works										
11	MXRVSS (Inbound) - Site Formation Works										
	MXRVSS (Outbound) - Superstructures works										
	GV Kiosk (Inbound) - Substructures and Superstructures Works										
14	GV Kiosk (Outbound) - Earthworks, Substructures and Superstructures Works										
15	Public Toilets (Outbound) - Substructure and Superstructures Works										
16	Refuse Collection Point - Superstructures Works										
	Private Car Examination Buildings - Superstructures works										
18	Irrigation Pump Room - Substructure and Superstructures works										
	Elevated Walkway (E1, E2, E3 & E4) - Structure Works										
20	Vehicular bridges 1-5 - Pilecaps / Piers / abutment / retaining walls / portal, Bridge Decks, Road and Finishes Works										
	External Works - CLP Cable & Power ON Transfer room										
22	External Works - Underground Utilities & Structures										
23	External Works - Road Works										

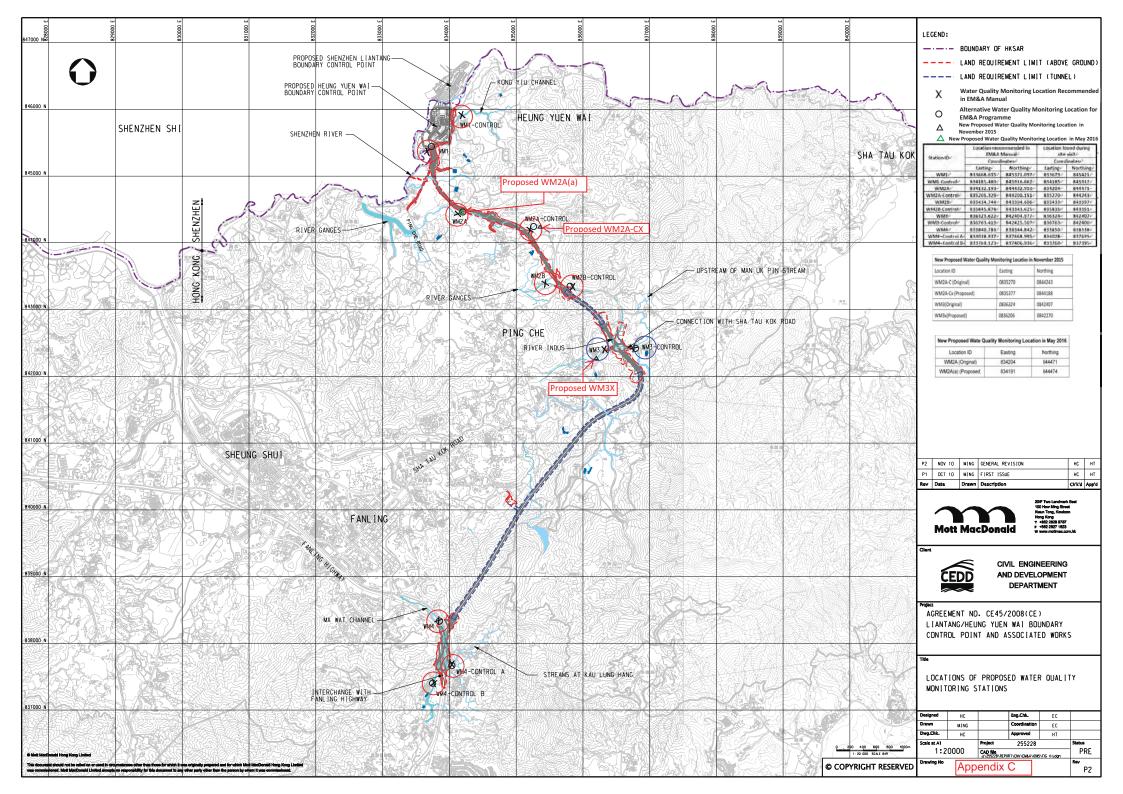


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location Location	-	ea at Tsu AM1b	ng Yuer	n Ha Village		Next Calibra	Date of Calibration:16/6/Next Calibration Date:16/8/Technician:F			
					C	ONDITIONS	5			
	Sea	a Level I Temp	Pressure perature		1005.1 29.0		Corrected Pressure (Temperature (753.825 302	
					CALIB	RATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		965 2696	
					C	ALIBRATIO	N			
Plate	H20 (L)		H20	Qstd	Ι	IC	LINE			
No. 18	(in) 5.1	(in) 5.1	(in) 10.2	(m3/min) 1.503	(chart) 52	corrected 51.44	REGRES Slope =	33.8571		
13	4.1	4.1	8.2	1.349	46	45.51	Intercept =	0.2229		
10	3.1	3.1	6.2	1.175	40	39.57	Corr. coeff. =	0.9982		
7 5	2.2 1.5	2.2 1.5	4.4	0.992	35 28	34.63				
3	1.3	1.3	3.0	0.821	28	27.70				
Calculatio	ons :									
Qstd = 1/t				l/Ta))-b]		FLOW RATE CHART				
IC = I[Sq:	rt(Pa/Pstd	l)(1 sta/ 1	a)]							
Qstd = sta	andard flo	w rate				50.00			•	
IC = correction		-	es							
I = actual m = calibi	-	-				<u>ତ</u> 40.00				
b = calibr	-	-	t			ouse				
	-		0	bration (de	<i>,</i>	30.00	/	/		
Pstd = act	ual pressi	ure durin	ig calibi	ration (mm	Hg)	40.00 40.00	4			
For subs	equent ca	alculatio	n of sai	npler flow:		00.02 ctnal				
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)						¥ 20.00				
m = samp	ler slone					10.00				
b = samp	-	ept								
I = chart 1	-									
Tav = dai		-				0.00		.000 1.5	00 2.000	
Pav = dai	ly average	e pressur	e				Standard Flow	Rate (m3/min)		

Location : Location I	_	House no AM2	ear Lin I	Ma Hang Ro		Date of Calibration: Next Calibration Date: Technician:	16/6/2017 16/8/2017 Fai So	
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure perature	· ,	1005.1 29.0		Corrected Pressure (mm Hg) Temperature (K)	753.825 302
					CALIBRA	ATION ORIF	ICE	
				Make-> Model-> Serial # ->	5025A]	· ·	.11965 0.02696
					CAL	IBRATION		
Plate No.	H20 (L) (in)	H2O (R)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION	
18	5.8	(in) 5.8	11.6	1.602	(chart) 58	57.38	Slope = 35.0342	
13	4.6	4.6	9.2	1.428	54	53.42	Intercept = 1.9520	
10	3.6	3.6	7.2	1.265	46	45.51	Corr. coeff. = 0.9969	
7	2.3	2.3	4.6	1.014	38	37.59		
5	1.4	1.4	2.8	0.794	30	29.68		
Calculatio Qstd = 1/r IC = I[Squ	n[Sqrt(H			/Ta))-b]		70.00	FLOW RATE CHART	
Pstd = act For subsection of the subsection of	ected cha chart res rator Qstd ator Qstd at temper ual press equent c Sqrt(298/ ler slope ler interc esponse	rt respon- sponse d slope l intercep cature durin sure durin alculatio (Tav)(Pav cept	t ing calibr n of san //760)]-t	pration (de ation (mm apler flow:		40.00 50.00 4000 4000 00.00 0.000 0.000	0.500 1.000 1.	500 2.000
Tav = dail Pav = dail							Standard Flow Rate (m3/min)	

Location : Location I		1 Ling Fir AM3	e Servic	ce Station			Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
					CO	NDITIONS	S
	Se	ea Level I Temp	Pressure perature	, ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBR	ATION OF	RIFICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATIO)N
Plate		H2O (R)	H20	Qstd	[(abart)	IC	LINEAR
No. 18 13 10 7 5	(in) 5.9 4.6 3.5 2.3 1.4	(in) 5.9 4.6 3.5 2.3 1.4	(in) 11.8 9.2 7.0 4.6 2.8	(m3/min) 1.616 1.428 1.248 1.014 0.794	(chart) 58 53 46 40 33	correcte 57.38 52.43 45.51 39.57 32.65	Slope = 30.2192 Intercept = 8.6443 Corr. coeff. = 0.9985
Pstd = act For subse 1/m((I)[S	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto ator Qsto l temper ual press equent c	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin alculation Tav)(Pav	a)] es t ing calil g calibr n of san	pration (de ation (mm npler flow:	g K)	Actral chart response (IC) Actra chart	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept te tempera				10.00 0.00 0.00	000 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		u Ha Villa AM4b	ige				Date of Calibration:16/6/2017Next Calibration Date:16/8/2017
					00	NDITIONS	Technician: Fai So
	Se	ea Level I Temp	Pressure perature	` ´	1005.1 29.0]	Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.5 4.4 3.5 2.2 1.4	(in) 5.4 4.4 3.5 2.2 1.4	(in) 10.9 8.8 7.0 4.4 2.8	(m3/min) 1.554 1.397 1.248 0.992 0.794	(chart) 55 50 45 36 31	corrected 54.41 49.47 44.52 35.62 30.67	$\frac{\text{REGRESSION}}{\text{Slope} = 31.8460}$ $\text{Intercept} = 4.8231$ $\text{Corr. coeff.} = 0.9987$
Pstd = acti	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto d temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercep rature dur sure durin alculatio	a)] es t ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	OO.00 50.00 40.00 00.00 00.00 20.00	FLOW RATE CHART
m = sampl b = sampl I = chart ro Tav = dail Pav = dail	ler interc esponse y averag	cept ge temper				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	· /	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBRA	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	I	IC	LINEAR
No. 18 13 10 7 5	(in) 6 4.8 3.6 2.8 1.4	(in) 6 4.8 3.6 2.8 1.4	(in) 12.0 9.6 7.2 5.6 2.8	(m3/min) 1.630 1.459 1.265 1.117 0.794	(chart) 56 48 41 35 24	corrected 55.40 47.49 40.56 34.63 23.74	$\frac{\text{REGRESSION}}{\text{Slope} = 37.5740}$ $\text{Intercept} = -6.7117$ $\text{Corr. coeff.} = 0.9983$
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K) Hg)	OO.00 50.00 50.00 00.05 30.00 20.00	FLOW RATE CHART
m = samp] b = samp] I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	/illage H	House			Date of Calibration:16/6/2017Next Calibration Date:16/8/2017Technician:Fai So
					CO	NDITIONS	S
	Se	ea Level I Temp	Pressure erature	· ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
					CALIBR	ATION OF	RIFICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATIO	N
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
<u>No.</u> 18 13	(in) 6.7 5	(in) 6.7 5	(in) 13.4 10.0	(m3/min) 1.721 1.489	(chart) 65 56	64.31 55.40	Slope = 40.0369 $Intercept = -4.9560$
10 7 5	3.8 2.6 1.3	3.8 2.6 1.3	7.6 5.2 2.6	1.299 1.077 0.765	48 35 28	47.49 34.63 27.70	
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope intercept ature dur ure durin	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	Votral chart response (C) 50.00 50.00 00.04 00.05 00.04 00.05 00.00 00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e tempera				10.00 0.00 0.00	00 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	-	House of AM7b	Loi Tur	Date of Calibration: 16/6/2017 Next Calibration Date: 16/8/2017 Technician: Fai So			
					COND	TIONS	
	Se	a Level I Temp	Pressure perature	. ,	1005.1 29.0]	Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
				C	ALIBRATI	ON ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	3.9 3.5 2.8 1.7 1.4	3.9 3.5 2.8 1.7 1.4	7.8 7.0 5.6 3.4 2.8	1.316 1.248 1.117 0.873 0.794	53 49 44 37 32	52.43 48.48 43.53 36.60 31.66	Slope = 36.8226 Intercept = 3.1544 Corr. coeff. = 0.9934
Calculatio Qstd = $1/n$	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART
Pstd = actr For subsection 1/m((I)[S m = sampl b = sampl	ndard flo octed char chart resp ator Qstd ator Qstd al temper ual press oquent ca Sqrt(298/ ler slope ler interc	ow rate et respon ponse d slope intercep ature durin ure durin alculatio Tav)(Pav	es t ring calil ng calibra n of san	oration (deg ation (mm apler flow:		50.00 Sctraal chart Sctraal chart	
I = chart r Tav = dail Pav = dail	y averag	-				0.00	0.500 1.000 1.500 Standard Flow Rate (m3/min)

Location :			age No.	4			Date of Calibration: 16/6/2017
Location I	D :	AM8					Next Calibration Date: 16/8/2017 Technician: Fai So
					COND	ITIONS	
	Se	a Level I Temp	Pressure perature	, ,	1005.1 29.0		Corrected Pressure (mm Hg) 753.825 Temperature (K) 302
				C	ALIBRATI	ON ORIFICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CALIBI	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	6 4.9 3.5 2.6 1.5	6 4.7 3.5 2.6 1.5	12.0 9.6 7.0 5.2 3.0	1.630 1.459 1.248 1.077 0.821	66 55 48 40 31	65.29 54.41 47.49 39.57 30.67	Slope = 41.8137 Intercept = -4.6472 Corr. coeff. = 0.9939
Calculatio	ons :					70.00	FLOW RATE CHART
Qstd = 1/n IC = I[Sqr Qstd = stat	t(Pa/Pstd	l)(Tstd/T		/1a))-0]		60.00	
IC = corre $I = actual o$ $m = calibr$ $b = calibration$	chart resp ator Qstd	ponse d slope				50.00 (C) esponse (C) (C) esponse (C) (C) (C) (C) (C) (C) (C) (C) (C) (C)	
Ta = actua	al tempera	ature dur	ring calil	bration (deg ation (mm)		00.00 Vectual chart res	
For subse 1/m((I)[S	-			npler flow:		¥20.00	
m = sampl b = sampl I = chart re	ler interce response	-				0.00	0.500 1.000 1.500 2.000
Tav = dail Pav = dail		-					Standard Flow Rate (m3/min)

Location : Location I		a Po Vill AM9b	age Hoi	ise No. 80			Next Calibra	alibration: ation Date: echnician:		16/6/2017 16/8/2017 Fai So
						CONDITIONS	i			
	Se	a Level I Temp	Pressure perature	, ,	1005. 29.			Corrected Pressure (mm Hg) Temperature (K)		
					CALI	BRATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		2.11965 -0.02696	
					C	CALIBRATION	١			
Plate No. 18 13 10 7 5	H20 (L) (in) 6 4.6 3.6 2.2 1.5	H2O (R) (in) 6.0 4.6 3.6 2.2 1.5	H20 (in) 12.0 9.2 7.2 4.4 3.0	Qstd (m3/min) 1.630 1.428 1.265 0.992 0.821	I (chart) 54 47 43 35 27	IC corrected 53.42 46.50 42.54 34.63 26.71	LINE REGRES Slope = Intercept = Corr. coeff. =		Ļ	
Calculatio Qstd = 1/r	ons :				21	60.00	FLOW RATE	E CHART		
IC = I[Sqr $Qstd = sta$ $IC = corre$ $I = actual$ $m = calibra$ $D = calibra$ $Ta = actua$	t(Pa/Pstd ndard flo ected char chart resp rator Qstd ator Qstd al tempera)(Tstd/Ta w rate t respone ponse l slope intercept ature duri	a)] es ing calib	pration (deg ation (mm]		50.00 40.00 30.00 30.00 20.00		, y		
For subse 1/m((I)[S	-			n pler flow:))		20.00 10.00				
m = sampl b = sampl I = chart r Tav = dail Pav = dail	ler interce esponse ly average	e tempera				0.00	0.500 1. Standard Flow F	000 Rate (m3/min	1.500)	2.000

Temperature (°C) 30.0 Temperature (K) CALIBRATION ORIFICE Make-> TISCH Model-> $5025A$ Serial # -> 1941 Qstd Slope -> Qstd Intercept -> 2.11965 Plate H20 (L)H20 (R H20 Qstd I IC CALIBRATION No. (in) (in) 0.02696 Plate H20 (L)H20 (R H20 Qstd I II 0.02696 Plate H20 (L)H20 (R H20 Qstd I II 0.02696 Plate H20 (L)H20 (R H20 Qstd I II 0.02696 II 0.02696 0.02696 II III 12.11965 II 0.02696 II 0.02696 II 0.02696 II 0.0260	Location : Location I	-	ea at Tsu AM1b	ng Yuer	n Ha Village	:		Date of Calibration:12/8/2017Next Calibration Date:12/10/2017Technician:Fai So
Temperature (°C) 30.0 Temperature (K) CALIBRATION ORIFICE Make> TISCH Model> Qstd Slope -> Qstd Intercept -> 2.11965 0.026996 Serial # -> 1941 0.026996 CALIBRATION ORIFICE CALIBRATION ORIFICE Description of the series of the ser						C	ONDITION	DNS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Se						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						CALIB	RATION C	ORIFICE
Plate H20 (L) H2O (R) H20 Qstd I IC LINEAR No. (in) (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.8 5.8 11.6 1.603 49 48.48 Slope = 31.9141 13 4.8 4.8 9.6 1.459 43 42.55 Intercept = -3.8291 10 3.8 3.8 7.6 1.300 36 35.62 Corr. coeff. = 0.9928 7 2.5 2.5 5.0 1.057 31 30.67 5 1.4 1.4 2.8 0.794 22 21.77 FLOW RATE CHART 0xtd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] 50.00 50.00 50.00 0xtd = standard flow rate 50.00 50.00 50.00 50.00 IC = corrected chart response I actual chart response 50.00 50.00 50.00					Model->	5025A		
No. (in) (in) (m3/min) (chart) corrected REGRESSION 18 5.8 5.8 11.6 1.603 49 48.48 Slope = 31.9141 13 4.8 4.8 9.6 1.459 43 42.55 Intercept = -3.8291 10 3.8 3.8 7.6 1.300 36 35.62 Corr. coeff. = 0.9928 7 2.5 2.5 5.0 1.057 31 30.67 5 1.4 1.4 2.8 0.794 22 21.77 FLOW RATE CHART Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] 60.00 FLOW RATE CHART 02std = standard flow rate 50.00 50.00 50.00 50.00 12 = actual chart response I = actual chart response 50.00 50.00 50.00 50.00 50.00						C	ALIBRATIO	TION
18 5.8 5.8 11.6 1.603 49 48.48 Slope = 31.9141 13 4.8 4.8 9.6 1.459 43 42.55 Intercept = -3.8291 10 3.8 3.8 7.6 1.300 36 35.62 Corr. coeff. = 0.9928 7 2.5 2.5 5.0 1.057 31 30.67 5 1.4 1.4 2.8 0.794 22 21.77 FLOW RATE CHART (Go.00 Galculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] 60.00								
Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] FLOW RATE CHART IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] 60.00 Qstd = standard flow rate 50.00 IC = corrected chart response 50.00	18 13 10 7	5.8 4.8 3.8 2.5	5.8 4.8 3.8 2.5	11.6 9.6 7.6 5.0	1.603 1.459 1.300 1.057	49 43 36 31	48.48 42.55 35.62 30.67	Slope = 31.9141 Intercept = -3.8291 Corr. coeff. = 0.9928
Qstd = Infloqr(Inzo(r ar std)(r std/ra)] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart response I = actual chart response								
IC = corrected chart response I = actual chart response	-				l/Ta))-b]		60.00	
	IC = corrections	cted cha	rt respon	es			50.00	0
	m = calibra b = calibra	ator Qsta itor Qstd	d slope intercep		bration (de	σK)	() 40.00 suods	
Pstd = actual pressure during calibration (mm Hg)		-		0	`	0 /	00.00 E Hart re	0
For subsequent calculation of sampler flow: 20.00 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) Image: second		-			-		Actua 20.00	
m = sampler slope b = sampler intercept I = chart response	b = sampl	er interc	ept				10.00	0
Tay – daily average temperature	Tav = dail	y averag	-					0.000 0.500 1.000 1.500 2.000

Location : Location]	-	House no AM2	ear Lin I	Ma Hang R			Date of Calibration:12/8/2017Next Calibration Date:12/10/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	. ,	1008.7 30.0		Corrected Pressure (mm Hg) 756.525 Temperature (K) 303
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20 (in)	Qstd (m3/min)	[IC corrected	LINEAR REGRESSION
No. 18	(in) 6.1	(in) 6.1	12.2	1.643	(chart) 51	50.46	Slope = 32.4327
13	4.7	4.7	9.4	1.444	46	45.51	Intercept = -2.0546
10	3.7	3.7	7.4	1.283	40	39.58	Corr. coeff. = 0.9972
7	2.3	2.3	4.6	1.014	32	31.66	
5	1.5	1.5	3.0	0.821	24	23.75	
Calculatio Qstd = 1/1		[20(Pa/Pa	td)(Tstd	/Ta))-b]			FLOW RATE CHART
IC = I[Squ	·			<i>[[</i>]		60.00	
Qstd = sta	ndard flo	ow rate				50.00	/
IC = corrections	ected cha	rt respon	es				y
I = actual		-				<u>9</u> 40.00	
m = calibration b = calibration calibration b = calibration	-	-	+			use (
	-	-		oration (de	σK)	Actual chart response (IC) 00.05 00.02 00.02	•
				ation (mm		L 30.00	
						ral cl	▲
For subse	-			npler flow:		5 20.00	
	1 1					10.00	
m = samp b = samp	_						
I = chart r		ωρι				0.00	
T = chart T Tav = dai	-	ge temper	ature			0.000	
Pav = dail		_					Standard Flow Rate (m3/min)

Location : Location I		a Ling Fir AM3	re Servio	ce Station			Date of Calibration:12/8/2017Next Calibration Date:12/10/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	. ,	1008.7 30.0		Corrected Pressure (mm Hg) 756.525 Temperature (K) 303
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R)	H20 (in)	Qstd (m3/min)	I (chart)	IC	LINEAR REGRESSION
No. 18 13 10 7 5	(in) 6.2 4.9 3.7 2.5 1.5	(in) 6.2 4.9 3.7 2.5 1.5	(in) 12.4 9.8 7.4 5.0 3.0	(m3/min) 1.656 1.474 1.283 1.057 0.821	(chart) 55 48 43 34 27	corrected 54.42 47.49 42.55 33.64 26.72	Slope = 33.1720 $Intercept = -0.7726$ $Corr. coeff. = 0.9984$
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercep rature dur ure durin	a)] es t ing calil g calibr n of san	oration (de ation (mm n pler flow:	g K)	With the second secon	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept temperat				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	ige				Date of Calibration:12/8/2017Next Calibration Date:12/10/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	` ´	1008.7 30.0		Corrected Pressure (mm Hg) 756.525 Temperature (K) 303
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	[(-1t)	IC	LINEAR
<u>No.</u> 18 13 10 7 5	(in) 6 4.8 3.7 2.3 1.5	(in) 6 4.8 3.7 2.3 1.5	(in) 12.0 9.6 7.4 4.6 3.0	(m3/min) 1.630 1.459 1.283 1.014 0.821	(chart) 52 46 40 34 24	corrected 51.45 45.51 39.58 33.64 23.75	$\frac{\text{REGRESSION}}{\text{Slope} = 32.4750}$ $\text{Intercept} = -1.5246$ $\text{Corr. coeff.} = 0.9919$
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	Actrial chart response (C) 50.00 C 40.00 C 40.	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept e tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:12/8/2017Next Calibration Date:12/10/2017Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure erature	. ,	1008.7 30.0		Corrected Pressure (mm Hg) 756.525 Temperature (K) 303
					CALIBRA	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	5.8 4.7 3.7 2.4 1.5	5.8 4.7 3.7 2.4 1.5	(III) 11.6 9.4 7.4 4.8 3.0	(inis/inin) 1.603 1.444 1.283 1.035 0.821	53 45 43 34 25	52.44 44.53 42.55 33.64 24.74	Slope = 33.7445 Intercept = -2.1685 Corr. coeff. = 0.9913
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K)	60.00 50.00 50.00 00.00 00.00 00.00 00.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept se tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	Village H	House			Date of Calibration: Next Calibration Date: Technician:	12/8/2017 12/10/2017 Fai So
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure perature	` ´	1008.7 30.0		Corrected Pressure (mm Hg) Temperature (K)	756.525 303
					CALIBRA	ATION ORIF	ICE	
				Make-> Model-> Serial # ->	5025A]		11965 0.02696
					CAL	IBRATION		
Plate		H2O (R)	H20	Qstd	[(ab art)	IC	LINEAR	
No. 18 13 10 7 5	(in) 5.7 4.6 3.6 2.3 1.5	(in) 5.7 4.6 3.6 2.3 1.5	(in) 11.4 9.2 7.2 4.6 3.0	(m3/min) 1.589 1.429 1.265 1.014 0.821	(chart) 55 50 44 36 28	corrected 54.42 49.47 43.54 35.62 27.70	REGRESSION Slope = 34.5199 Intercept = -0.0866 Corr. coeff. = 0.9989	
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope intercept ature dur ure durin alculatio	a)] es t ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K) Hg)	90.00 Grand Chart response (C)	FLOW RATE CHART	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	e tempera				10.00	0.500 1.000 1.5 Standard Flow Rate (m3/min)	00 2.000

Location : Location I		House of AM7b	Loi Tur	g Village			Date of Calibration: 12/8/2017 Next Calibration Date: 12/10/2017 Technician: Fai So		
					COND	ITIONS			
	Se	a Level I Temp	Pressure perature	. ,	1008.7 30.0		Corrected Pressure (mm Hg) 756.525 Temperature (K) 303		
				C	ALIBRATI	ON ORIFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696		
					CALIBR	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	3.8 3.1 2.6 1.7 1.1	3.9 3.5 2.8 1.7 1.1	7.7 6.6 5.4 3.4 2.2	1.308 1.212 1.097 0.873 0.705	46 43 40 32 25	45.51 42.55 39.58 31.66 24.74	Slope = 34.2568 Intercept = 1.2079 Corr. coeff. = 0.9973		
Calculatic Qstd = 1/r IC = I[Sqr Qstd = sta	n[Sqrt(Hi t(Pa/Pstd)(Tstd/T		/Ta))-b]		50.00	FLOW RATE CHART		
	chart resp ator Qstc ator Qstd al tempera	ponse l slope intercep ature dur	t [.] ing calil	pration (deg ation (mm		Actual chart response (IC) 00.056 (IC)			
For subse 1/m((I)[S	-			npler flow:		8 10.00			
m = sampl b = sampl I = chart re Tav = dail Pav = dail	ler interco esponse y averago	e temper				0.00	0.500 1.000 1.500 Standard Flow Rate (m3/min)		

Location : Location I		Гsai Vill AM8	age No.	4			Date of Calibration: 12/8/2017 Next Calibration Date: 12/10/2017 Technician: Fai Se		
					CON	DITIONS			
	Sea	a Level I Temp	Pressure perature	, ,	1008.7 30.0		Corrected Pressure (mm Hg) 756.52 Temperature (K) 30		
				C	ALIBRAT	ION ORIFICE	E		
				Make-> Model-> Serial # ->	5025A		Qstd Slope -> 2.11965 Qstd Intercept -> -0.02696		
					CALIE	BRATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 13 10 7 5	6 4.8 3.6 2.5 1.6	6 4.8 3.6 2.5 1.6	12.0 9.6 7.2 5.0 3.2	1.630 1.459 1.265 1.057 0.848	58 50 44 32 20	57.39 49.47 43.54 31.66 19.79	Slope = 47.4410 Intercept = -19.0107 Corr. coeff. = 0.9943		
Calculatio	<u> </u>	1.0	5.2	0.040		1).//	FLOW RATE CHART		
Qstd = 1/r IC = I[Squ Qstd = sta IC = corre I = actual m = calibr	t(Pa/Pstd ndard flo cted char chart resp rator Qstd	l)(Tstd/T w rate rt respon ponse l slope	es	/Ta))-b]		70.00 60.00 50.00 (j) esuge 40.00			
Pstd = act	al tempera ual pressa equent ca	ature dur ure durin alculatio	ring calil ng calibra n of san	bration (de, ation (mm npler flow:		Actual chart responsed of the second sector of the second sector of the second sector of the second sector of the second	• •		
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interce esponse y average	ept e temper	ature	"		0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)		

Location : Location I		a Po Vill AM9b	age Hoi	ise No. 80			Next Calibra	alibration: ation Date: 'echnician:	: 12/10/	/2017 /2017 Fai So
					(CONDITIONS				
	Se	a Level I Temp	Pressure perature		1008.7			Corrected Pressure (mm Hg) Temperature (K)		
					CALIE	BRATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		2.11965 -0.02696	
					С	ALIBRATION	١			
Plate No. 18 13 10 7	H20 (L) (in) 5.7 4.7 3.5 2.3	H2O (R) (in) 5.7 4.7 3.5 2.3	H20 (in) 11.4 9.4 7.0 4.6	Qstd (m3/min) 1.589 1.444 1.248 1.014	I (chart) 53 49 42 36	IC corrected 52.44 48.48 41.56 35.62	LINE <u>REGRES</u> Slope = Intercept = Corr. coeff. =)	
5	1.5	1.5	3.0	0.821	30	29.68				
Pstd = acti For subsection of the subsection of	n[Sqrt(H2 t(Pa/Pstd ndard flo octed char chart resp rator Qstd ator Qstd al tempera ual pressu equent ca Sqrt(298/ ler slope ler interce esponse)(Tstd/Ta w rate t respone oonse l slope intercept ature during alculation Tav)(Pav.	a)] es g calibra n of san /760)]-b	pration (deg ation (mm I apler flow:		60.00 50.00 40.00 30.00 20.00 10.00 0.00	0.500 1.		1.500 2.	
Tav = dail Pav = dail		_					Standard Flow F	Rate (m3/min)	

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - F Operator		Rootsmeter Orifice I.I)438320 1941	Ta (K) - Pa (mm) -	294 750.57
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.4600 1.0410 0.9280 0.8840 0.7290	3.2 6.4 7.9 8.7 12.7	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
0.9967 0.9925 0.9904 0.9894 0.9840	0.6827 0.9534 1.0672 1.1192 1.3499	1.4149 2.0010 2.2372 2.3464 2.8299	0.9957 0.9915 0.9894 0.9884 0.9830	0.6820 0.9524 1.0661 1.1181 1.3485	0.8851 1.2517 1.3995 1.4678 1.7702
Qstd slo intercep coeffici	ot (b) = lent (r) =	2.11965 -0.02696 0.99991 Pa/760)(298/Ta)]	Qa slop intercep coeffici y axis =	t (b) =	1.32729 -0.01686 0.99991 Fa/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

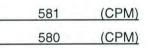
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1703462

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

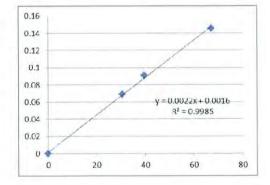
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	13025	67.2
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3586	30.6
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4709	39.6

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9992
Date of Issue	11 January 2017

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Industrial Building, Kw Location ID : Calibration Room					ıg, Kv	vai Chu	vai Chung Date of Calibration: 25-No Next Calibration Date: 25-Fe		
						COND	TIONS		
	Se	ea Level I Temp	Pressure erature		1	016.4 20.0		Corrected Pressure (mm Hg) 762.3 Temperature (K) 293	
					CALI	BRATI	ON ORIFICE		
			Calibra	Make-> Model-> tion Date->	TIS 502 14-M	25A		Qstd Slope ->2.00411Qstd Intercept ->-0.03059Expiry Date->14-Mar-17	
					(CALIBR	RATION		
Plate No.	(in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	(ch		IC corrected	LINEAR REGRESSION	
18 6.1 6.1 12.2 1.776 5 13 4.7 4.7 9.4 1.560 4 10 3.6 3.6 7.2 1.368 4 8 2.3 2.3 4.6 1.096 3			56 56.56 49 49.49 43 43.43 34 34.34 23 23.23		Slope = 35.6871 Intercept = -6.1123 Corr. coeff. = 0.9967				
Pstd = act	m[Sqrt(H rt(Pa/Psto andard flo ected chai chart res rator Qsto ator Qsto al temper rual press equent ca Sqrt(298/ oler slope oler interco	d)(Tstd/T ow rate rt respone ponse d slope intercept ature dur ure durin alculatio Tav)(Pav	a)] es ing calil g calibr n of san	bration (deg ation (mm F npler flow:		.07 .03 .05 .05 .05 .05 .02 .02 .02 .02 .02 .02 .02 .03 .03 .03 .03 .03 .03 .03 .03 .03 .03		FLOW RATE CHART	
Tav = dai Pav = dai	ly averag						1	Standard Flow Rate (m3/min)	

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366409
Equipment Ref:	EQ109
Job Order	HK1703455

Standard Equipment:

Higher Volume Sampler
AUES office (calibration room)
HVS 018
25 November 2016


Equipment Verification Results:

Testing Date:

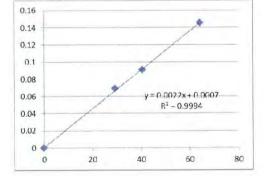
9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12487	64.4
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3433	29.3
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4815	40.5

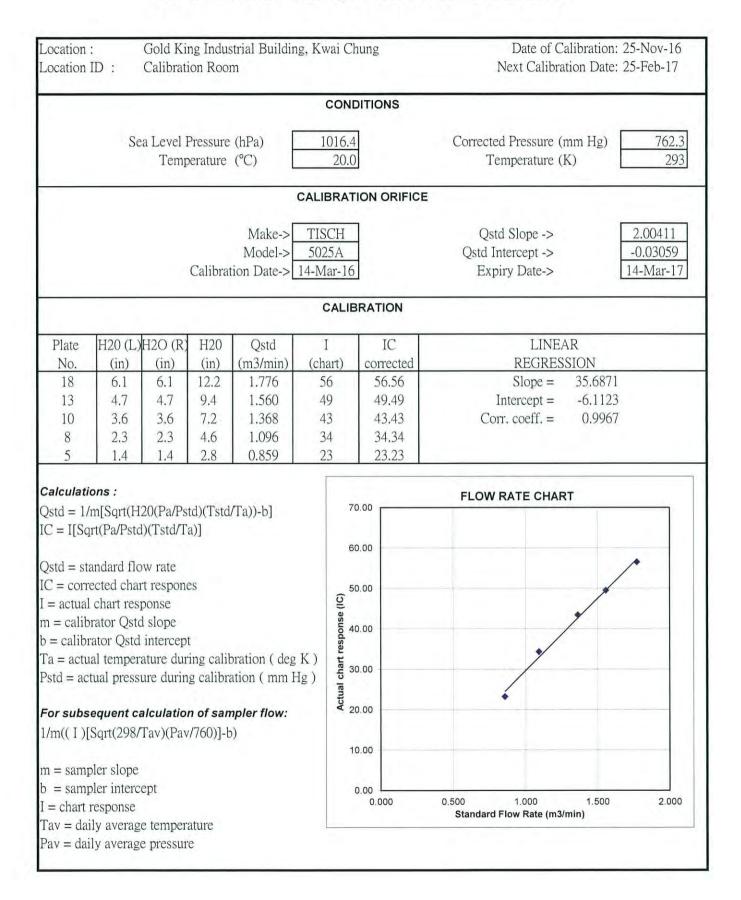
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X

Slope (K-factor):	0.0022		
Correlation Coefficient	0.9997		
Date of Issue	11 January 2017		


Remarks:

1. Strong Correlation (R>0.8)


2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

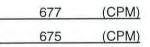
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	366410	
Equipment Ref:	EQ110	
Job Order	HK1703460	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

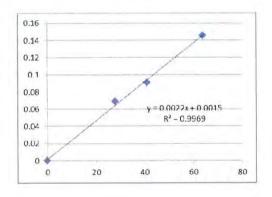
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12401	64.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3266	27.9
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4878	41.1

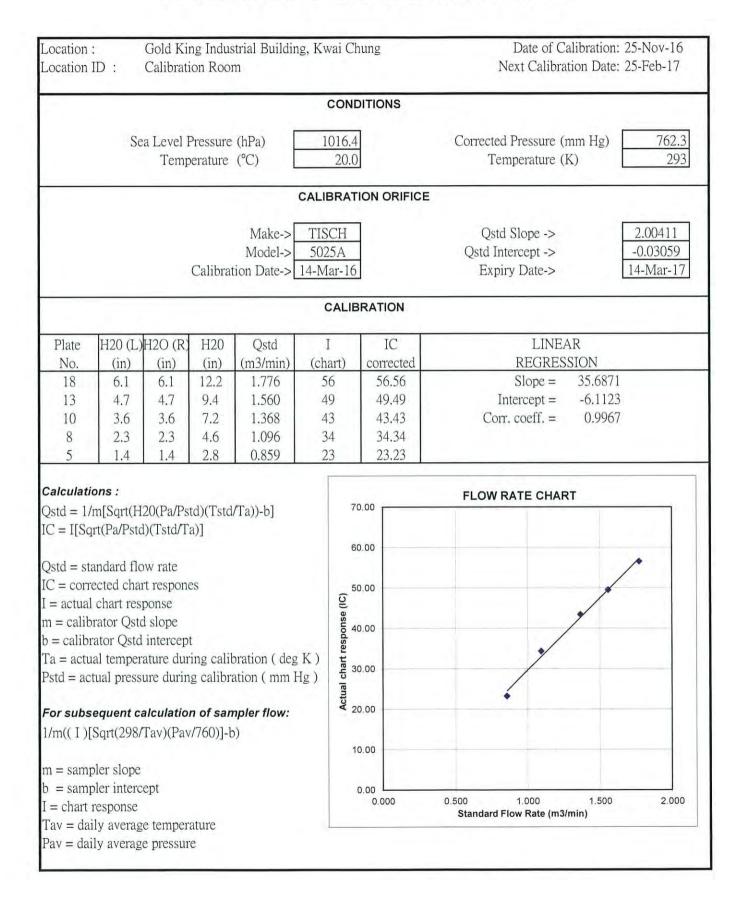
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9984
Date of Issue	11 January 2017

Remarks:

1. Strong Correlation (R>0.8)


2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

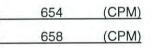
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1703461

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	_
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	25 November 2016	


Equipment Verification Results:

Testing Date:

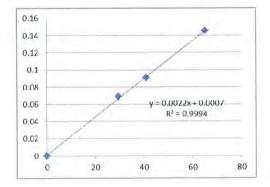
9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12647	65.3
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3476	29.7
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4876	41.0

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

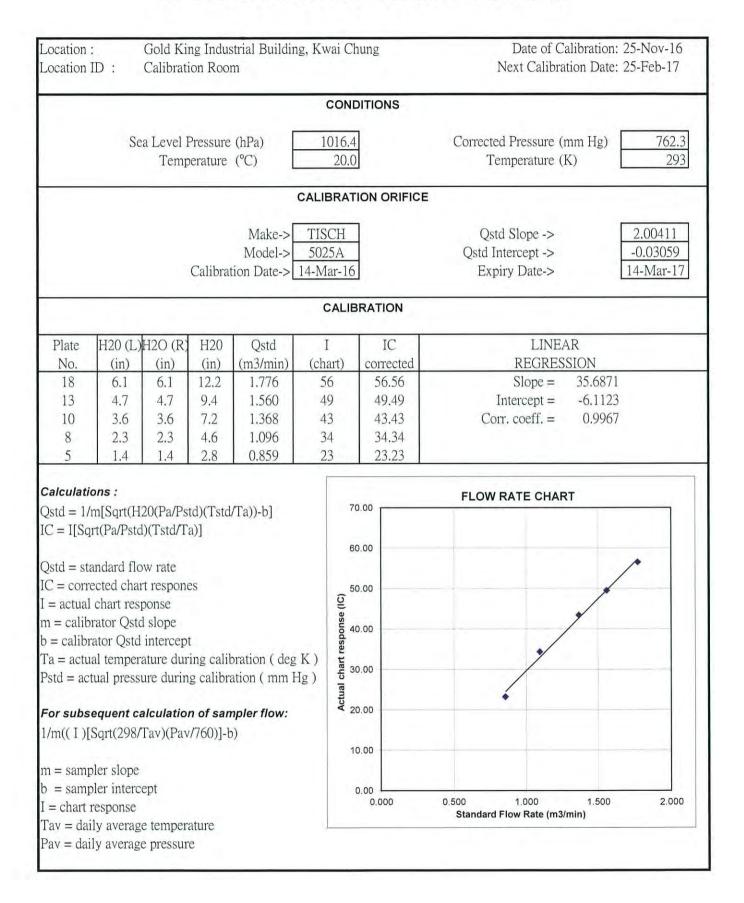
Linear Regression of Y or X

Slope (K-factor):	0.0022	
Correlation Coefficient	0.9997	
Date of Issue	11 January 2017	



Remarks:

1. Strong Correlation (R>0.8)


Factor 0.0022 should be apply for TSP monitoring 2.

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	3Y6505	
Equipment Ref:	EQ114	
Job Order	HK1703464	

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	25 November 2016

Equipment Verification Results:

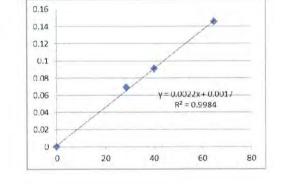
Testing Date:

9 January 2017

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
3hr14min	09:10 ~ 12:24	20.6	1016.3	0.145	12588	65.0
1hr57min	12:30 ~ 14:27	20.6	1016.3	0.069	3339	28.5
1hr58min	14:35 ~ 16:33	20.6	1016.3	0.091	4774	40.2

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>588 (CPM)</u> 587 (CPM)

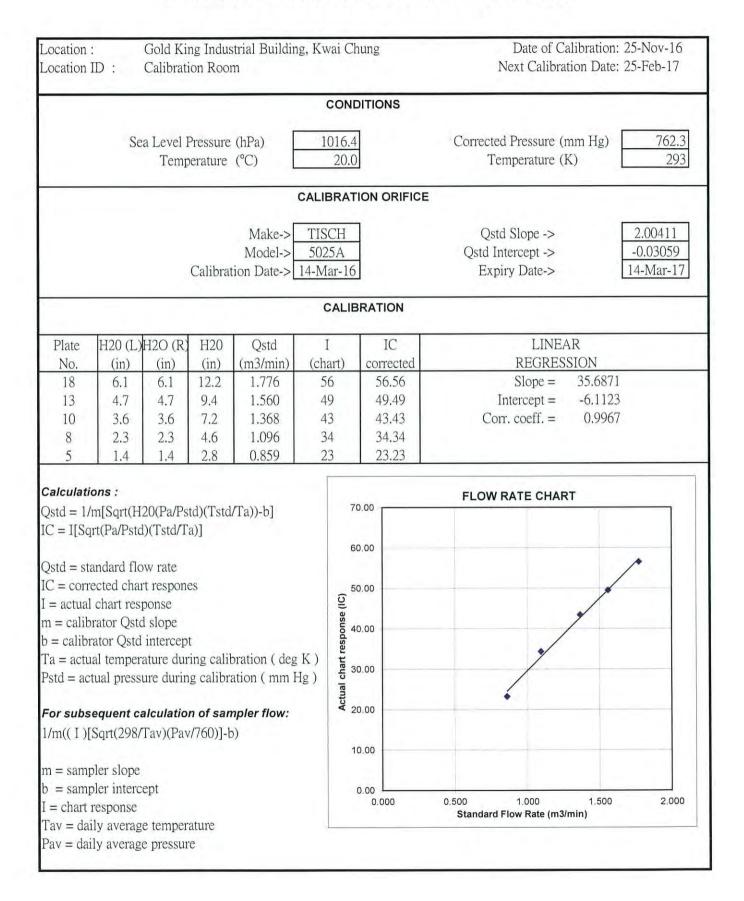
Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9992
Date of Issue	11 January 2017

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring


*If R<0.5, repair or re-verification is required for the equipment

 Operator :
 Martin Li
 Signature :
 Date :
 11 January 2017

 QC Reviewer :
 Ben Tam
 Signature :
 Date :
 11 January 2017

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

STED / 送檢項目	(Job No. / 序引編號: IC17-0924)	Date of Receipt / 收件日期: 24 April 2017
n/儀器名稱 :	Integrating Sound Level Meter (EQ006)	
rer/製造商 :	Brüel & Kjær	
/型號 :	2238	
/編號 :	2285762	
y/委託者 :	Action-United Environmental Services an Unit A, 20/F., Gold King Industrial Build	
	35-41 Tai Lin Pai Road, Kwai Chung, N.	C.
	Contraction of the second s	
	n/儀器名稱 : rer/製造商 : /型號 : /編號 :	a / 儀器名稱 : Integrating Sound Level Meter (EQ006) rer / 製造商 : Brüel & Kjær / 型號 : 2238 / 编號 : 2285762 y / 委託者 : Action-United Environmental Services an Unit A, 20/F., Gold King Industrial Build

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

	1 +	1
_	ww	1.
	HTW	ong

Technical Officer

K C/Lee Project Engineer

Certified By 核證

Date of Issue 簽發日期 :

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准+

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

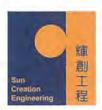
Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

	UUT	Setting		Applied	d Value	UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.1

6.1.1.2 After Self-calibration

	UUT	Setting		Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00	1	94.0	± 0.7


6.1.2 Linearity

	UUT	[Setting		Applied	d Value	UUT
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
50 - 130	LAFP	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准,

The lest equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT	Setting		Applie	d Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	A	F	94.00		94.0	Ref.
	LASP	1.1.1	S			94.1	± 0.1
	LAIP		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAFP	A	F	106.0	Continuous	106.0	Ref.
	LAFMax	1. 1. Carlos (1. Carlo 1.		200 ms	105.0	-1.0 ± 1.0
	LASP		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	LAFP	А	F	94.00	31.5 Hz	55.1	-39.4 ± 1.5
					63 Hz	68.0	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.8	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

6.3.2 C-Weighting

	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	91.5	-3.0 ± 1.5
					63 Hz	93.4	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

6.4

Time Averaging

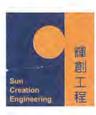
	UUT	Setting			A	oplied Valu	e		UUT	IEC 60804
Range (dB)	Parameter	Frequency Weighting	Integrating Time	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
30 - 110	LAcq	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
			0.000			1/10 ²		90	89.9	± 0.5
	1.0.0		60 sec.	1		1/103		80	79.2	± 1.0
			5 min.			1/104		70	69.2	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

04 dB + 31 5 Hz - 125 Hz	+ + 0.35 dB
	$\pm 0.20 \text{ dB}$
2 kHz - 4 kHz	: ± 0.35 dB
8 kHz	: ± 0.45 dB
12.5 kHz	: ± 0.70 dB
104 dB : 1 kHz	: ± 0.10 dB (Ref. 94 dB)
114 dB : 1 kHz	: ± 0.10 dB (Ref. 94 dB)
Burst equivalent level	: ± 0.2 dB (Ref. 110 dB continuous sound level)
	8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz

- The uncertainties are for a confidence probability of not less than 95 %.


Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

Description / 儀器名稱 : Sound Level Me Manufacturer / 製造商 : Rion Model No. / 型號 : NL-52 Serial No. / 編號 : 00142581	ter (EQ015)
Model No. / 型號 : NL-52	
Serial No / 编辑 · 00142581	
· · · · · · · · · · · · · · · · · · ·	
Supplied By / 委託者 : Action-United E	nvironmental Services and Consulting
Unit A, 20/F., G	old King Industrial Building,
35-41 Tai Lin Pa	i Road, Kwai Chung, N.T.
TEST CONDITIONS / 測試條件 Temperature / 溫度 : (23 ± 2)°C	Relative Humidity / 相對濕度 : (55±20)%
Line Voltage / 電壓 :	

DATE OF TEST / 測試日期 : 28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試		H T Wong Technical Officer			
Certified By 核證	:	K C Lee Project Engineer	Date of Issue 簽發日期	÷	2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C170048
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting				Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.3	± 1.1

6.1.2 Linearity

	UUT Setting				Applied Value		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L _A	A	Fast	94.00	1	94.3 (Ref.)	
				104.00		104.3	
				114.00		114.3	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting			Applie	Applied Value		IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	1	94.3	Ref.
6		1	Slow			94.3	± 0.3

本讀書所載校正用之測試器材均可溯源至國際標準。局部複印本讀書需先獲本質驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appl	Applied Value		IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	LA	A	Fast	94.00	63 Hz	68.1	-26.2 ± 1.5
					125 Hz	78.1	-16.1 ± 1.5
					250 Hz	85.6	-8.6 ± 1.4
					500 Hz	91.0	-3.2 ± 1.4
					1 kHz	94.3	Ref.
					2 kHz	95.5	$+1.2 \pm 1.6$
					4 kHz	95.3	$+1.0 \pm 1.6$
					8 kHz	93.3	-1.1 (+2.1 ; -3.1)
	1	11	2		12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT	Setting		Appli	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	С	Fast	94.00	63 Hz	93.4	-0.8 ± 1.5
					125 Hz	94.1	-0.2 ± 1.5
					250 Hz	94.3	0.0 ± 1.4
					500 Hz	94.3	0.0 ± 1.4
					1 kHz	94.3	Ref.
					2 kHz	94.1	-0.2 ± 1.6
					4 kHz	93.5	-0.8 ± 1.6
					8 kHz	91.4	-3.0 (+2.1 ; -3.1)
					12.5 kHz	87.9	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

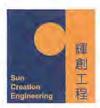
Certificate No. : C172287 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 06015

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB :	63 Hz - 125 Hz	: ± 0.35 dB
		250 Hz - 500 Hz	: ± 0.30 dB
		1 kHz	: ± 0.20 dB
		2 kHz - 4 kHz	: ± 0.35 dB
		8 kHz	: ± 0.45 dB
		12.5 kHz	: ± 0.70 dB
	104 dB :	1 kHz	: ± 0.10 dB (Ref. 94 dB)
	114 dB :	l kHz	: ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.


Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Description / 儀器名稱 : Sou	nd Level Meter (EQ067)
	ind Dever Meter (DQ007)
Manufacturer / 製造商 : Rio	n
Model No. / 型號 : NL-	31
Serial No. / 編號 : 004	10221
Supplied By / 委託者 : Act	ion-United Environmental Services and Consulting
Uni	t A, 20/F., Gold King Industrial Building,
35-	41 Tai Lin Pai Road, Kwai Chung, N.T.

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : ----

Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017 .

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	: HT Wong Technical Officer			
Certified By 核證	K C Lee Project Engineer	Date of Issue 簽發日期	÷	2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172286 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

UUT Setting		Applied Value			IEC 61672 Class 1		
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	А	Fast	94.00	1	93.1	± 1.1

6.1.2 Linearity

(1997) (1997) (1997)	UUT Setting		Applied	l Value	UUT		
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 120	LA	A	Fast	94.00	1	93.1 (Ref.)	
1.1.1				104.00		103.1	
				114.00		113.2	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

to the state	UU	T Setting	Applied	l Value	UUT	IEC 61672 Class 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	93.1	Ref.
			Slow		11.10.00	93.1	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting			Applied Value		UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	63 Hz	66.8	-26.2 ± 1.5
					125 Hz	76.9	-16.1 ± 1.5
					250 Hz	84.4	-8.6 ± 1.4
					500 Hz	89.8	-3.2 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	94.4	$+1.2 \pm 1.6$
					4 kHz	94.2	$+1.0 \pm 1.6$
					8 kHz	92.0	-1.1 (+2.1 ; -3.1)
	I concert				12.5 kHz	89.2	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Applied Value		UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	92.2	-0.8 ± 1.5
					125 Hz	92.9	-0.2 ± 1.5
			250 Hz	93.1	0.0 ± 1.4		
					500 Hz	93.1	0.0 ± 1.4
					1 kHz	93.1	Ref.
					2 kHz	93.0	-0.2 ± 1.6
					4 kHz	92.4	-0.8 ± 1.6
					8 kHz	90.2	-3.0 (+2.1;-3.1)
	1				12.5 kHz	87.3	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所戴校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

÷	Mfr's	Spec.	÷	IEC 61672 Class	1
---	-------	-------	---	-----------------	---

5 112 - 145 HL .	$\pm 0.35 \text{ dB}$
50 Hz - 500 Hz :	$\pm 0.30 \text{ dB}$
kHz :	$\pm 0.20 \text{ dB}$
kHz-4 kHz :	$\pm 0.35 \text{ dB}$
kHz :	$\pm 0.45 \text{ dB}$
2.5 kHz :	± 0.70 dB
kHz :	± 0.10 dB (Ref. 94 dB)
kHz :	\pm 0.10 dB (Ref. 94 dB)
5	50 Hz - 500 Hz : kHz : kHz - 4 kHz : kHz : kHz : 2.5 kHz : kHz :

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準・局部後印本證書需先獲本質驗所書面批准、

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172284 證書編號

coustical Calibrator (EQ082) rüel & Kjær 231	
and the second se	
231	
713428	
ction-United Environmental Services an	nd Consulting
nit A, 20/F., Gold King Industrial Build	ling,
5-41 Tai Lin Pai Road, Kwai Chung, N.	Τ.
o in the bent of frond, frind, onling, fri	
e tel.	
-	ction-United Environmental Services ar nit A, 20/F., Gold King Industrial Build

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 28 April 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong Technical Officer

K C Lee Project Engineer

Certified By 核證 Date of Issue 簽發日期 :

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory v/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 v/o 香港新界屯門興安里—號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/得真: 2744 8986 E-mail/電郵; callab@suncreation.com Website/網址; www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172284 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C163709
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.1		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172285 證書編號

目	(Job No. / 序引編號: IC17-0924)	Date of Receipt / 收件日期: 24 April 2017
1	Sound Level Calibrator (EQ088)	
:	Quest	
£	QC-20	
£	QO9090006	
2	Action-United Environmental Services an	nd Consulting
	Unit A, 20/F., Gold King Industrial Build	ling,
	35-41 Tai Lin Pai Road, Kwai Chung, N.	Τ.
		 Sound Level Calibrator (EQ088) Quest QC-20 QO9090006 Action-United Environmental Services ar Unit A, 20/F., Gold King Industrial Build

TEST CONDITIONS / 測試條件

Temperature / 溫度 : $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : (55±20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017 :

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

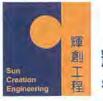
Tested By 測試

H T Wong

Technical Officer

K C Lee Project Engineer

Certified By 核證


Date of Issue 簽發日期

÷

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Fax/傳真: 2744 8986 E-mail/直郵: callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172285 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C163709
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.2	± 0.3	± 0.2
114 dB, 1 kHz	114.2		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	0.991	±2%	± 1

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C164099 證書編號

ITEM TESTED / 送檢」	項目	(Job No./序引編號: IC16-0843)	Date of Receipt / 收件日期: 15 July 2016
Description / 儀器名稱	:	Sound Calibrator	
Manufacturer / 製造商	t	Rion	
Model No. / 型號	÷	NC-74	
Serial No. / 編號	:	34657231	
Supplied By / 委託者	:	Action-United Environmental Services an Unit A, 20/F., Gold King Industrial Build	
		35-41 Tai Lin Pai Road, Kwai Chung, N.'	Т.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 27 July 2016

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

KC Lee Project Engineer

Certified By 核證 Date of Issue 簽發日期 5

28 July 2016

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 解創工程有限公司 – 校正及檢測實驗所 c/o 香港新身屯門興安里一號背口讀機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵; callab@suncreation.com Website/網址: www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C164099 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C163709 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新昇屯門興安單一號背山潤機樓四樓 Tel電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: eallab@suncreation.com Website/網址:: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>E</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR BEN TAM	WORK ORDER:	HK1731311	
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	AMENDMENT:	1	
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	SUB-BATCH:	0	
	NO. 35-41 TAI LIN PAI ROAD,	LABORATORY:	HONG KONG	
	KWAI CHUNG,	DATE RECEIVED:	20/07/2017	
	N.T., HONG KONG.	DATE OF ISSUE:	08/08/2017	

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	Pro 20
Serial No.:	12C100570
Equipment No.:	
Date of Calibration:	20 July, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms Lin Wai Yu, Iris Assistant Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Work Order:	HK1731311			
AMENDMENT:	1			1
Sub-Batch:	0			5
Date of Issue:	08/08/2017			(
Client:	ACTION UNITED ENVIRO	NMENT SERVICES AND CONSULTIN	G	
Equipment Type:	Dissolved Oxygen Meter	r .		
Brand Name:	YSI			
Model No.:	Pro 20			
Serial No.:	12C100570			
Equipment No.:				
Date of Calibration:	20 July, 2017	Date of next Calibration:	20 October, 2017	

Parameters:

Dissolved Oxygen	Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.39	2.54	+0.15
5.03	4.99	-0.04
7.41	7.53	+0.12
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition Ma	rch 2008: Working Thermometer	Calibration Procedure.
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	9.2	+0.2
20.0	20.3	+0.3
37.0	36.1	-0.9
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms Lin Wai Yu, Iris Assistant Manager - Inorganics

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung, N.T., Hong Kong <u>T</u>+852 2610 1044 <u>F</u>+852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

MR BEN TAM	1
ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	5
RM A 20/F., GOLD KING IND BLDG,	1
NO. 35- 41 TAI LIN PAI ROAD,	I
KWAI CHUNG,	1
N.T., HONG KONG	
	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING RM A 20/F., GOLD KING IND BLDG, NO. 35- 41 TAI LIN PAI ROAD, KWAI CHUNG,

WORK ORDER:	HK1731318
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	20/07/2017
DATE OF ISSUE:	27/07/2017

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	HACH
Model No.:	2100Q
Serial No.:	12060C018266
Equipment No.:	
Date of Calibration:	20 July, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vied Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order:	HK1731318			
Sub-batch:	0			1
Date of Issue:	27/07/2017			(
Client:	ACTION UNITED ENVIR	ONMENT SERVICES AND CONSULTIN	G	
Equipment Type:	Turbidimeter			
Brand Name:	НАСН			
Model No.:	2100Q			
Serial No.:	12060C018266			
Equipment No.:				
Date of Calibration:	20 July, 2017	Date of next Calibration:	20 October, 2017	

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.43	
4	4.13	+3.3
40	40.7	+1.8
80	77.7	- 2.9
400	422	+ 5.5
800	811	+1.4
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

ha de

Mr Chan Siu Ming, Vico Manager - Inorganics

ALS Technichem (HK) Pty Ltd ALS Environmental

CONTACT:	MR BEN TAM	WORK O
CLIENT:	ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	SUB-BATC
ADDRESS:	RM A 20/F., GOLDEN KING IND BLDG,	LABORAT
	NO. 35- 41 TAI LIN PAI ROAD,	DATE REC
	KWAI CHUNG,	DATE OF
	N.T., HONG KONG	

WORK ORDER:	HK1731333
SUB-BATCH:	0
LABORATORY:	HONG KONG
DATE RECEIVED:	20/07/2017
DATE OF ISSUE:	27/07/2017

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH
Description:	pH Meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1118396
Equipment No.:	
Date of Calibration:	20 July, 2017

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vieo Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order:	HK1731333		
Sub-batch:	0		
Date of Issue:	27/07/2017		(AL
Client:	ACTION UNITED ENVIRO	NMENT SERVICES AND CONSULTING	
Description:	pH Meter		
Brand Name:	AZ		
Model No.:	8685		
Serial No.:	1118396		
Equipment No.:			
Date of Calibration:	20 July, 2017	Date of next Calibration:	20 October, 2017

Parameters:

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
10		
4.0 7.0	4.1	+0.10 +0.10
10.0	10.0	0.00
	Tolerance Limit (pH Unit)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	9.8	+0.8
23.5	24.0	+ 0.5
36.5	36.0	- 0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vied Manager - Inorganics

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET	IEC	ER	Action Contracto
Action Level				
 Exceedance for one sample 	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source;	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Monitor the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
Limit Level				1
 Exceedance for one sample 	 I. Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	 Confrm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
 Exceedance for two or more consecutive samples 	1. Notify IEC, ER, Contractor	submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
	and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	the ER accordingly; 5. Monitor the implementation of remedial measures.	5. If exceedance continues consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	ET	IEC	EF	Action Contractor
Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. 	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	I. Inform IEC, ER, Contractor and EPD; <u>2. Repeat measurements to</u> confirm findings; <u>3. Increase monitoring</u> frequency; <u>4. Identify source and</u> investigate the cause of exceedance; <u>5. Carry out analysis of</u> Contractor's working procedures; <u>6. Discuss with the IEC,</u> Contractor and ER on remedial measures required; <u>7. Assess effectiveness of</u> Contractor's remedial actions and keep IEC, EPD and ER informed of the results; <u>8. If exceedance stops,</u> cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writina: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to cortinue working on that portion of work which causes the exceedance is abated.	 Take immediate action to avoid further <u>exceedance:</u> Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectivenees of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; A. Check monitoring data, all plant, equipment and Contractor; working measures with IEC and Contractor; Ensure mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of	 Discuss with ET and Contractor on the mitigation measures; Reviaw proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	exceedance. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitgation measures to be implemented; Assess the effoctiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working mathods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitgation measures to be implemented; Assess the effectiveness of the implemented mitigaton measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

 $Z: Jobs \\ 2013 \\ TCS00694 \\ 600 \\ EM\&A Report \\ Monthly EM\&A Report \\ 49th (August 2017) \\ R1234v2. docx \\ Report \\ And \\ Report \\ Report \\ And \\ Report \\ Re$

Impact Monitoring Schedule for Reporting Period – August 2017

	D (Dust M	Ionitoring		
	Date	1-hour TSP	24-hour TSP	 Noise Monitoring 	Water Quality
Tue	1-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Wed	2-Aug-17				All Water Quality Monitoring Locations
Thu	3-Aug-17		AM1b, AM2, AM3 & AM9b		
Fri	4-Aug-17	AM1b, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	5-Aug-17				
Sun	6-Aug-17				
Mon	7-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Tue	8-Aug-17				All Water Quality Monitoring Locations
Wed	9-Aug-17		AM1b, AM2, AM3 & AM9b		
Thu	10-Aug-17	AM4b, AM5, AM6, AM7b & AM8	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	11-Aug-17				
Sat	12-Aug-17	AM4b, AM5, AM6, AM7b & AM8			All Water Quality Monitoring Locations
Sun	13-Aug-17				
Mon	14-Aug-17				All Water Quality Monitoring Locations
Tue	15-Aug-17		AM1b, AM2, AM3 & AM9b		
Wed	16-Aug-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	17-Aug-17				
Fri	18-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	19-Aug-17				
Sun	20-Aug-17		AM1b, AM2, AM3 &		
Mon	21-Aug-17		AM9b		
Tue	22-Aug-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	23-Aug-17				
Thu	24-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	25-Aug-17				
Sat	26-Aug-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Sun	27-Aug-17				
Mon	28-Aug-17	AM1b, AM2, AM3 & AM9b	z AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	29-Aug-17				
Wed	30-Aug-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	31-Aug-17				

Monitoring Day Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – September 2017

	Data	Dust Mo	onitoring	Noise Menitorius	Water Orality
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Fri	1-SEP-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
SAT	2-SEP-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		
SUN	3-SEP-17				
Mon	4-SEP-17				All Water Quality Monitoring Locations
TUE	5-SEP-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
WED	6-SEP-17				
THU	7-SEP-17		AM1b, AM2, AM3 & AM9b		All Water Quality Monitoring Locations
Fri	8-SEP-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
SAT	9-SEP-17				All Water Quality Monitoring Locations
SUN	10-SEP-17				Locations
Mon	11-SEP-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
TUE	12-SEP-17	3			All Water Quality Monitoring Locations
WED	13-SEP-17		AM1b, AM2, AM3 & AM9b		
THU	14-SEP-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	15-SEP-17				
SAT	16-SEP-17	AM4b, AM5, AM6, AM7b & AM8			All Water Quality Monitoring Locations
SUN	17-SEP-17				Locations
Mon	18-SEP-17				All Water Quality Monitoring Locations
TUE	19-SEP-17		AM1b, AM2, AM3 & AM9b		
WED	20-SEP-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
THU	21-SEP-17				
Fri	22-SEP-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
SAT	23-SEP-17				
SUN	24-SEP-17				
Mon	25-SEP-17		AM1b, AM2, AM3 & AM9b		
TUE	26-SEP-17	AM1b, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
WED	27-SEP-17				
THU	28-SEP-17	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Fri	29-SEP-17				
SAT	30-SEP-17	AM1b, AM2, AM3 & AM9b	AM1b, AM2, AM3 & AM9b AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations

Monitoring Day
Sunday or Public Holiday

Appendix I

Database of Monitoring Result

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\49th (August 2017)\R1234v2.docx

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER		APSED TIN				ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	()	WEIGHT g)	DUST WEIGHT COLLECTED	$24-HR TSP (\mu g/m^3)$
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/III)
	oen Area, Tsu	0	0									-		•	
3-Aug-17	21361	13422.20	13446.34	1448.40	54	54	54.0	27.8	1001.8	1.57	2277	2.6066	2.6802	0.0736	32
9-Aug-17	21369	13446.34	13470.55	1452.60	50	52	51.0	29.6	1006.1	1.48	2154	2.6119	2.7210	0.1091	51
15-Aug-17	21401	13470.55	13494.68	1447.80	55	55	55.0	29.8	1008.4	1.83	2643	2.5711	2.7810	0.2099	79
21-Aug-17	21426	13494.68	13518.80	1447.20	56	56	56.0	31.3	1003.2	1.85	2674	2.5911	2.9654	0.3743	140
26-Aug-17	21453	13518.80	13542.97	1450.20	56	56	56.0	29.2	1006.4	1.86	2692	2.5485	2.7927	0.2442	91
AM2 - Villa	age House ne	ar Lin Ma	Hang Road												
3-Aug-17	21362	8926.40	8950.11	1422.60	30	30	30.0	27.8	1001.8	0.79	1126	2.6115	2.6755	0.0640	57
9-Aug-17	21370	8950.11	8973.88	1426.20	38	38	38.0	29.6	1006.1	1.02	1450	2.5844	2.6738	0.0894	62
15-Aug-17	21399	8973.88	8997.67	1427.40	40	40	40.0	29.8	1008.4	1.28	1833	2.5655	2.6876	0.1221	67
21-Aug-17	21427	8997.67	9021.46	1427.40	42	42	42.0	31.3	1003.2	1.34	1910	2.5933	2.8678	0.2745	144
26-Aug-17	21455	9021.46	9045.26	1428.00	42	42	42.0	29.2	1006.4	1.34	1921	2.7434	2.9651	0.2217	115
AM3 - Ta F	Kwu Ling Fir	e Service S	tation of Ta	ı Kwu Lin	g Villa	ge									
3-Aug-17	21363	10052.27	10076.27	1440.00	36	36	36.0	27.8	1001.8	0.89	1286	2.5885	2.6374	0.0489	38
9-Aug-17	21392	10076.27	10100.27	1440.00	34	34	34.0	29.6	1006.1	0.83	1190	2.5646	2.6648	0.1002	84
15-Aug-17	21400	10100.27	10124.27	1440.00	38	38	38.0	29.8	1008.4	1.16	1666	2.5569	2.6730	0.1161	70
21-Aug-17	21424	10124.27	10148.27	1440.00	36	36	36.0	31.3	1003.2	1.09	1572	2.5462	2.7092	0.1630	104
26-Aug-17	21454	10148.27	10172.27	1440.00	36	36	36.0	29.2	1006.4	1.10	1580	2.5551	2.6543	0.0992	63
AM4b - Ho	use no. 10B1	Nga Yiu H	a Village									•	•	•	•
4-Aug-17	21368	12057.53	12081.53	1440.00	38	38	38.0	27.6	1003	1.03	1484	2.5969	2.6513	0.0544	37
10-Aug-17	21398	12081.53	12105.52	1439.40	39	39	39.0	29.6	1006.1	1.06	1525	2.5654	2.6232	0.0578	38
16-Aug-17	21421	12105.52	12129.52	1440.00	38	38	38.0	29.3	1008.3	1.21	1736	2.5950	2.6891	0.0941	54
22-Aug-17	21459	12129.52	12153.51	1439.40	38	38	38.0	30.9	999.7	1.20	1724	2.7111	2.8416	0.1305	76
28-Aug-17	21486	12153.51	12177.21	1422.00	44	44	44.0	25.2	1010.2	1.40	1990	2.6487	2.8353	0.1866	94
AM5a - Pin	ig Yeung Vill	age House										•			
4-Aug-17	21367	9903.72	9927.72	1440.00	58	60	59.0	27.6	1003	1.73	2497	2.5995	2.6706	0.0711	28
10-Aug-17	21397	9927.72	9951.71	1439.40	52	55	53.5	29.6	1006.1	1.59	2284	2.5838	2.6590	0.0752	33
16-Aug-17	21420	9951.71	9975.71	1440.00	52	52	52.0	29.3	1008.3	1.59	2290	2.5901	2.7130	0.1229	54
22-Aug-17	21458	9975.71	9999.54	1429.80	52	52	52.0	30.9	999.7	1.58	2259	2.7159	3.0256	0.3097	137
28-Aug-17	21488	9999.54	10023.54	1440.00	52	52	52.0	25.2	1010.2	1.60	2307	2.6463	2.6886	0.0423	18
AM6 - Wo	Keng Shan V	illage Hous	se												
4-Aug-17	21366	8485.45	8509.45	1440.00	26	26	26.0	27.6	1003.0	0.77	1105	2.5704	2.6443	0.0739	67
10-Aug-17	21396	8509.45	8533.44	1439.40	27	27	27.0	29.6	1006.1	0.79	1138	2.5547	2.6447	0.0900	79
16-Aug-17	21419	8533.44	8557.44	1440.00	29	29	29.0	29.3	1008.3	0.83	1202	2.6037	2.7029	0.0992	83

AUES

DATE	SAMPLE NUMBER	EL	APSED TIM	n	CHAR		ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER (g)	DUST WEIGHT COLLECTED	$\begin{array}{c} 24\text{-HR TSP} \\ (\mu g/m^3) \end{array}$
	NOWIDER	INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/III)
22-Aug-17	21457	8557.44	8581.43	1439.40	32	32	32.0	30.9	999.7	0.91	1316	2.7325	2.9201	0.1876	143
28-Aug-17	21487	8581.43	8605.43	1440.00	32	32	32.0	25.2	1010.2	0.93	1336	2.6681	2.6940	0.0259	19
AM7b - Lo	i Tung Villag	ge House													
4-Aug-17	21365	17532.64	17556.63	1439.40	40	40	40.0	27.6	1003	0.99	1426	2.5688	2.6469	0.0781	55
10-Aug-17	21395	17556.63	17580.63	1440.00	40	40	40.0	29.6	1006.1	0.99	1423	2.5716	2.6970	0.1254	88
16-Aug-17	21422	17580.63	17604.63	1440.00	40	40	40.0	29.3	1008.3	1.12	1614	2.5719	2.7251	0.1532	95
22-Aug-17	21460	17604.63	17628.62	1439.40	32	32	32.0	30.9	999.7	0.88	1272	2.7089	2.7947	0.0858	67
28-Aug-17	21485	17628.62	17652.62	1440.00	40	40	40.0	25.2	1010.2	1.13	1627	2.6412	2.6723	0.0311	19
AM8 - Po F	Kat Tsai Villa	ige No. 4													
4-Aug-17	21364	11429.26	11453.26	1440.00	34	34	34.0	27.6	1003	0.92	1320	2.5802	2.6220	0.0418	32
10-Aug-17	21394	11453.26	11477.26	1440.00	36	36	36.0	29.6	1006.1	0.96	1386	2.5630	2.6240	0.0610	44
16-Aug-17	21423	11477.26	11501.25	1439.40	34	34	34.0	29.3	1008.3	1.11	1598	2.5983	2.6673	0.0690	43
22-Aug-17	21461	11501.25	11525.24	1439.40	30	30	30.0	30.9	999.7	1.02	1472	2.7164	2.8057	0.0893	61
28-Aug-17	21484	11525.24	11549.24	1440.00	36	36	36.0	25.2	1010.2	1.16	1668	2.6652	2.8147	0.1495	90
AM9b - Na	m Wa Po Vil	lage House	No. 80												
3-Aug-17	21360	18808.52	18832.51	1439.40	34	34	34.0	27.8	1001.8	1.00	1444	2.5718	2.6088	0.0370	26
9-Aug-17	21393	18832.51	18856.51	1440.00	34	34	34.0	29.6	1006.1	1.00	1443	2.5651	2.5840	0.0189	13
15-Aug-17	21418	18856.51	18880.51	1440.00	32	32	32.0	29.8	1008.4	0.89	1281	2.5994	2.6239	0.0245	19
21-Aug-17	21425	18880.51	18904.51	1440.00	34	34	34.0	31.3	1003.2	0.95	1369	2.5939	2.6707	0.0768	56
26-Aug-17	21456	18904.51	18928.51	1440.00	32	32	32.0	29.2	1006.4	0.89	1281	2.7372	2.7868	0.0496	39

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung	y Yuen	Ha Vill	age Ho	ise No.	63																
4-Aug-17	9:41	56.0	58.6	52.0	55.4	58.6	51.3	54.8	57.3	51.4	53.5	55.7	49.5	52.9	54.8	50.1	56.1	58.5	51.3	55	NA
10-Aug-17	10:12	56.6	58.0	54.1	55.9	58.0	53.3	58.6	64.3	52.9	55.1	56.9	53.2	56.4	57.7	53.8	55.8	56.8	52.1	57	NA
16-Aug-17	10:12	60.8	65.6	55.5	58.0	59.6	59.9	61.7	64.0	58.5	60.3	62.4	57.1	60.0	61.9	57.1	61.7	62.8	58.4	61	NA
0	9:36		58.8	54.5	56.4	57.9	54.4	56.2	57.8	54.0	56.5	58.2	54.1	56.4	57.9	54.6	56.5	58.1	54.4	56	NA
28-Aug-17	9:31	57.1	59.2	50.1	58.2	60.2	52.1	57.6	59.1	53.6	56.1	58.1	52.0	56.2	59.2	51.6	55.7	57.1	51.7	57	NA
NM2a - Villa	0			U	Road									-							
4-Aug-17	9:34	70.9	74.1	63.1	64.7	65.4	59.9	62.5	64.5	59.3	62.1	63.7	58.9	63.9	67.1	58.7	62.8	65.7	58.1	66	69
10-Aug-17	9:37	75.3	70.7	59.2	64.7	67.5	59.5	67.3	70.7	59.5	67.3	69.9	59.3	66.3	59.2	59.2	63.1	65.0	59.3	70	73
16-Aug-17	9:35	75.7	73.1	62.0	71.1	74.6	59.7	74.3	76.5	63.9	67.3	71.2	60.1	64.3	66.3	60.0	70.3	73.5	63.9	72	75
	10:11	70.6	74.8	63.2	62.4	64.5	59.0	62.5	63.7	58.7	63.5	67.8	58.4	63.7	65.4	57.6	61.7	63.8	56.4	65	68
28-Aug-17			68.4	58.1	66.4	68.1	57.4	66.2	68.9	58.1	65.1	67.4	56.2	57.4	69.1	57.9	68.1	69.2	58.1	66	69
NM3 - Ping Y																	1				
0	9:38		55.3	52.1	54.5	56.0	52.5	62.1	62.1	52.0	54.8	55.9	52.2	55.9	56.7	52.8	54.8	55.4	51.7	57	NA
-	10:15		64.0	54.1	58.7	62.6	53.8	56.9	58.5	53.9	58.1	61.2	54.1	59.9	57.3	54.1	56.2	57.7	54.0	60	NA
18-Aug-17			68.5	52.5	60.7	64.0	52.0	58.3	62.5	49.5	53.2	56.0	47.0	57.1	59.0	46.5	54.8	58.0	47.5	60	NA
24-Aug-17		57.7	58.5	56.0	62.2	64.0	56.0	59.7	61.5	56.0	58.2	59.0	57.0	62.6	61.5	56.0	61.2	61.0	55.5	61	NA
30-Aug-17			61.4	53.2	60.1	60.4	53.2	59.1	61.1	53.5	57.5	59.2	53.3	58.2	60.9	53.1	59.4	61.5	54.5	59	NA
NM4 - Wo K	0		0		5 0 C	57 0	447	540		12.2		<i>co r</i>	40.5	70 7	00 5	16.0			110	6	27.4
U	9:50		60.4	48.2	59.6	57.0	44.7	54.0	56.0	43.2	65.5	63.5	43.7	73.7	80.5	46.0	56.0	55.7	44.9	67	NA
7-Aug-17	9:40		56.1	50.0	63.2	62.3	49.4	58.1	55.5	48.5	62.8	60.5	49.0	61.5	64.3	49.9	56.8	58.2	50.0	61	NA
0	9:13	62.8	63.0	49.5	52.2	54.0	46.0	55.2	57.5	46.5	65.8	70.5	52.5	58.7	61.0	50.5	56.5	58.5	49.5	61	NA
0	9:13	63.5	64.5	60.0	62.0	63.5	60.0	62.5	64.0	60.0	61.7	63.5	59.5	63.1	65.0	60.0	61.7	63.0	59.5	62	NA
30-Aug-17			60.3	52.8	60.0	60.0	51.7	61.5	59.5	52.6	64.7	62.0	53.5	62.4	61.8	52.4	61.8	60.8	51.1	62	NA
NM5– Ping Y 1-Aug-17	<u> </u>	0	10use 54.9	48.0	49.4	51.8	47.2	52.0	54.1	48.0	51.2	52.3	48.1	51.4	53.0	47.9	50.6	51.3	47.2	51	NA
			55.2		51.7			51.1			52.5				55.1					52	NA
7-Aug-17 18-Aug-17	9:49	52.1 53.5	<u>55.2</u> 54.5	48.6	53.2	54.7	47.6 49.5	51.1	54.6 57.0	47.8 49.5	52.5	55.9	48.4 49.0	52.7 57.2		48.9	53.8	56.1 59.0	49.5 49.5	52	NA NA
<u> </u>				49.0		55.0						54.5			58.0	50.0	56.9				
24-Aug-17			63.5	47.5	59.0	61.0	46.0	63.6	67.0	49.0	57.1	59.0	54.0	62.7	63.0	47.5	60.8	63.5	47.0	61	NA
30-Aug-17			59.5	52.5	69.7	64.5	53.0	56.0	57.5	52.0	54.5	56.0	51.5	61.6	59.0	52.0	55.7	57.0	51.5	63	NA
<u>NM6 – Tai To</u>	0	0			58.3	61.2	52.5	57.1	50.7	50.0	591	61.4	50.0	57.0	60.3	507	50 /	61.0	51.2	58	NIA
1-Aug-17	10:31	38.7	61.4	52.9	38.3	61.3	52.5	37.1	59.7	50.0	58.1	61.4	50.9	57.2	00.3	50.7	58.4	61.8	51.2	38	NA

AUES

Date	Start Time	1 st Leq _{5mi}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
7-Aug-17	10:28	58.8	61.9	52.2	57.6	60.2	51.2	58.5	61.8	52.6	58.5	62.4	52.9	59.5	63.7	53.0	58.9	62.5	52.4	59	NA
18-Aug-17	11:17	69.3	57.5	48.0	55.4	57.0	49.5	59.0	58.5	51.0	57.3	56.0	52.0	58.0	60.0	52.0	54.9	54.5	51.0	63	NA
24-Aug-17	11:26	59.0	60.5	46.5	58.1	60.5	44.0	56.1	58.0	45.0	51.3	54.5	45.0	51.1	52.5	46.0	53.0	56.0	45.5	56	NA
30-Aug-17	10:21	62.8	66.0	54.5	70.3	73.5	57.0	57.3	59.5	53.0	57.6	59.5	54.5	58.0	60.0	54.0	58.2	59.5	55.0	64	NA
NM7 – Po Ka	nt Tsai '	Village		-						-	-					-		-		-	
1-Aug-17	11:13	69.0	70.7	54.3	65.6	62.9	54.2	60.0	61.6	54.8	56.8	58.3	54.7	59.9	60.5	54.2	60.8	61.7	55.6	64	NA
7-Aug-17	11:17	65.8	62.8	55.5	60.4	61.4	54.6	56.8	58.6	54.9	58.2	59.5	55.4	58.4	60.9	55.8	59.6	60.5	55.8	61	NA
18-Aug-17	13:01	60.7	63	48.5	67	59	47	63.3	61.5	48.5	61	58.5	47.5	55.7	59	43.5	58.8	61.5	50	63	NA
24-Aug-17	13:00	63.0	66.0	54.5	62.2	65.5	53.5	64.8	67.0	54.5	64.3	66.0	53.5	63.5	66.5	55.0	63.5	67.0	54.0	64	NA
30-Aug-17	13:11	66.6	69.0	60.0	62.2	65.0	58.5	64.2	67.5	57.0	65.7	70.5	53.5	57.3	59.5	53.5	56.7	59.0	53.0	64	NA
NM8 - Villag	e Hous	e, Tong	Hang																		
4-Aug-17	13:06	61.2	62.5	52.4	61.4	65.1	53.7	60.8	62.8	52.7	61.2	63	52.9	61.4	63.9	53.9	61.5	64.7	52.6	61	NA
10-Aug-17	11:12	57.8	62.6	49.5	58.9	62.5	50.8	57.4	62.7	50.4	59.8	63.1	50.5	58.5	62.7	50.6	57.9	62	49.2	58	NA
16-Aug-17	10:49	60.8	64.3	50.2	58.4	62.6	49	57.6	62.9	49.6	59.5	63.4	50.9	58.5	63.1	49.4	59.4	64.5	50.5	59	NA
0	11:11	58.3	64.2	50.2	56	62.7	48	59.3	64.5	49.6	58.1	63.6	49.9	57.4	63.9	49.5	59.1	64.5	50.4	58	NA
	13:01	58.4	61.2	49.2	59.1	62.4	50.1	57.4	59.2	51.2	59.2	62.1	50.6	57.1	59.2	50.1	58.4	60.3	50	58	NA
NM9 - Villag		,		<u> </u>	1			1					1								
0	10:09		65.4	58.7	61.8	64.3	58.8	63.1	66.5	59.3	62.3	64.3	58.9	61.7	64.9	58.4	63.1	65.4	58.2	62	NA
<u> </u>	10:29	61.8	64.6	58.2	60.7	63.9	58.6	61.2	64.4	58.9	62.4	65.9	58.4	60.9	64.8	57.8	60.8	64.8	57.5	61	NA
U	10:07	60.3	64.3	57.5	59.4	63.7	57.3	61.6	64.5	57.0	60.1	63.7	57.4	59.4	63.1	56.8	60.7	63.6	56.0	60	NA
U	10:29	60.2	64.2	57.2	60.5	63.4	57.3	59.0	62.8	56.6	60.2	63.4	57.9	61.6	64.3	57.4	60.2	63.2	56.9	60	NA
U	13:40		64.9	56.1	62.9	65.2	58.4	60.2	63.4	57.1	61.1	63.4	55.2	62.6	65.2	55.9	63.1	65.2	57.1	62	NA
NM10 - Nam		0			(1.0	64.0	<u>(0 1</u>	60.0	(2.2	50.5	(2)(64.0	<u>(0 1</u>	(0.7	(5.0	<u>(0 1</u>	(2.7	65.0	(0.0	(2)	<u> </u>
4-Aug-17	9:12	60.9	63.7	59.4	61.3	64.9	60.1	60.8	63.2	59.5	62.6	64.9	60.1	62.7	65.2	60.1	63.7	65.3	60.2	62	65
10-Aug-17	9:42	61.6	62.1	59.2	61.8	62.7	59.6	62.1	63.2	60.9	62.5	64.6	60.1	62.6	64.8	60.5	61.9	63.9	59.7	62	65
16-Aug-17	9:23	62.6	62.6	59.5	63.9	63.6	60.6	62.5	62.9	59.9	61.7	62.0	59.1	62.5	63.7	60.5	61.7	62.0	59.7	63	66
22-Aug-17	9:42	63.8	63.0	60.2	62.7	62.5	59.7	63.8	63.7	60.5	62.5	62.5	59.2	61.9	61.7	59.0	62.2	62.7	60.7	63	66
28-Aug-17	14:16	64.1	65.2	58.2	63.9	66.2	57.1	62.1	64.1	59.2	61.2	64.0	57.1	60.9	62.1	58.9	64.2	67.2	61.2	63	66

Water Quality Monitoring Data for Contract 6 and SS C505

Date	2-Aug-17	•				-	•	•	-	-	-	-		
Location	Time	Depth (m)	Temp (o	oC)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1-C	10:00	0.35	28.4 28.4	28.4	7.84 7.87	7.9	101.0 101.2	101.1	52.5 49.8	51.2	7.6 7.6	7.6	62 60	61.0
WM1	10:10	0.28	27.8 27.8	27.8	7.41 7.44	7.4	94.3 94.7	94.5	93.7 97.7	95.7	7.3 7.3	7.3	89 86	87.5
Date	3-Aug-17#				-	-	<u>.</u>			-	-	-		
Location	Time	Depth (m)	Temp (o	oC)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1-C	10:00	0.35							98.1 95.2	96.7		-	69 69	69.0
WM1	10:10	0.28							95.0 95.7	95.4		-	59 59	59.0
I			I									-		
Date	4-Aug-17			<i>a</i> `		- \		(2))						<i></i>
Location	Time	Depth (m)	Temp (o	oC)	DO (1	ng/L)	DO	(%)		ity (NTU)	1	H		(mg/L)
WM1-C	9:47	0.34	27	27.0	8.13 8.05	8.1	102.0 101.0	101.5	13.5 13.8	13.7	7.2 7.2	7.2	9 9	9.0
WM1	10:00	0.26	27.2 27.2	27.2	7.41 7.44	7.4	93.2 93.7	93.5	28.1 27.0	27.6	7.2 7.2	7.2	29 28	28.5
Date	8-Aug-17													
Location	Time	Depth (m)	Temp (o	oC)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	p	H	SS	(mg/L)
WM1-C	9:35	0.34	277	27.7	8.06 8.07	8.1	102.4 102.6	102.5	14.4 14.3	14.4	7.7 7.7	7.7	5 5	5.0
WM1	9:47	0.20	27.6 27.6	27.6	7.52 7.54	7.5	96.1 96.4	96.3	13.3 12.9	13.1	7.7 7.7	7.7	6 6	6.0
Date	10 Aug 17		· · ·			-	·	·	-		-		· · ·	
Location	<u>10-Aug-17</u> Time	Depth (m)	Temp (o	o C)	DO (1	ng/L)	DO	(%)	Turbidi	ity (NTU)	n	Н	22	(mg/L)
WM1-C	9:50	0.34	27.6	27.6	7.91 7.83	7.9	100.2 99.3	99.8	15.1 15.0	15.1	9.2 9.2	9.2	6 5	5.5
WM1	10:00	0.20	28.1 28.1	28.1	7.41	7.4	94.7 95.3	95.0	17.2 17.3	17.3	7.6 7.6	7.6	14 15	14.5

E

Date	12-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	10:09	0.31	29.4 29.5	29.5	8.73 8.8	8.8	114.4 116.1	115.3	13.9 14.2	14.1	9 9	9.0	3 3	3.0
WM1	10:21	0.21	28.8 28.8	28.8	7.34 7.41	7.4	95.5 96.7	96.1	39.8 40.1	40.0	8.6 8.6	8.6	46 40	43.0
Date	14-Aug-17		-		_	-	·	-	-	-	-	-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	9:40	0.34	28.3 28.3	28.3	7.49 7.51	7.5	95.8 96.1	96.0	15.6 16.0	15.8	8.6 8.6	8.6	3	3.5
WM1	9:50	0.23	27.9 27.9	27.9	7.21	7.2	92.0 92.5	92.3	26.5 23.4	25.0	8.2 8.2	8.2	16 15	15.5
Date	16-Aug-17				r	-	r		ſ	-	r		r	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	9:50	0.34	28.7 28.7	28.7	8.06 8.07	8.1	104.3 104.2	104.3	12.0 12.3	12.2	9.3 9.3	9.3	4 6	5.0
WM1	10:00	0.26	28 28	28.0	7.47 7.52	7.5	95.4 96.4	95.9	20.1 20.1	20.1	8 8	8.0	16 14	15.0
Date	18-Aug-17								-	-	-	-		
						-	1	•				•	r	

Date	18-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
	0.25	0.24	33.3	22.2	4.42	4.4	61.7	(2.0	14.7	1/1 0	9.1	0.1	8	8.0
WM1-C	9:25	0.34	33.3	33.3	4.46	4.4	62.3	62.0	15.0	14.9	9.1	9.1	8	8.0
WM1	9:35	0.24	32.4	32.4	4.74	4.8	65.3	65.7	16.9	16.5	8.4	8.4	11	11.5
VV IVI I	9.55	0.24	32.4	52.4	4.8	4.0	66.1	05.7	16.1	10.5	8.4	0.4	12	11.5

Date	22-Aug-17		-		_	-	•	•	-	-	-	-		
Location	Time	Depth (m)	Temp			mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	10.05	0.24	32.8	22.9	5.74	5 0	79.4	70.7	14.4	12.1	7.7	77	14	14.0
WM1-C	10:05	0.34	32.8	32.8	5.78	5.8	79.9	79.7	11.7	13.1	7.7	1.1	14	14.0
WM1	0.52	0.20	32.3	22.2	6.19	60	85.4	85.5	20.1	21.2	7.9	7.0	39	41.0
VV IVI I	9:52	0.20	32.3	32.3	6.2	6.2	85.5	63.5	22.4	21.5	7.9	7.9	43	41.0

24-Aug-17													
Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS	(mg/L)
9:30	0.34	31.9 31.9	31.9	5.67 5.73	5.7	77.0 77.6	77.3	21.2 19.9	20.6	7.8 7.8	7.8	16 15	15.5
9:40	0.26	27.3 27.3	27.3	6.35 6.25	6.3	81.4 80.5	81.0	48.2 49.3	48.8	7.8 7.8	7.8	50 50	50.0
26-Aug-17	-			-	-	•		-		-	-		
26-Aug-17 Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS	(mg/L)
	Depth (m) 0.31	Temp 29.7 29.7	(oC) 29.7	DO (1 7.01 7.04	mg/L) 7.0	DO 92.1 92.5	(%) 92.3	Turbidi 18.5 19.0	ty (NTU) 18.8	p 8.1 8.1	H 8.1	SS 3 2	(mg/L) 2.5
	Time 9:30	Time Depth (m) 9:30 0.34	Time Depth (m) Temp $9:30$ 0.34 $\frac{31.9}{31.9}$ $9:40$ 0.26 27.3	Time Depth (m) Temp (oC) $9:30$ 0.34 $\frac{31.9}{31.9}$ 31.9 $9:40$ 0.26 27.3 27.3	Time Depth (m) Temp (oC) DO (n) 9:30 0.34 $\frac{31.9}{31.9}$ 31.9 5.67 9:40 0.26 27.3 27.3 6.35	Time Depth (m) Temp (oC) DO (mg/L) 9:30 0.34 31.9 31.9 5.67 5.7 9:40 0.26 27.3 27.3 6.35 6.3	Time Depth (m) Temp (oC) DO (mg/L) DO 9:30 0.34 31.9 31.9 5.67 5.7 77.0 9:40 0.26 27.3 27.3 6.35 6.3 81.4	Time Depth (m) Temp (oC) DO (mg/L) DO (%) 9:30 0.34 31.9 31.9 5.67 5.7 77.0 77.3 9:40 0.26 27.3 27.3 6.35 6.3 81.4 81.0	TimeDepth (m)Temp (oC)DO (mg/L)DO (%)Turbidi9:30 0.34 $\frac{31.9}{31.9}$ 31.9 5.67 5.7 77.0 77.3 21.2 9:40 0.26 27.3 27.3 6.35 6.3 81.4 81.0 48.2	TimeDepth (m)Temp (oC)DO (mg/L)DO (%)Turbidity (NTU)9:30 0.34 $\frac{31.9}{31.9}$ 31.9 5.67 5.7 77.0 77.3 21.2 9:40 0.26 27.3 27.3 6.35 6.3 81.4 81.0 48.2 48.8	Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) p 9:30 0.34 31.9 31.9 5.67 5.7 77.0 77.3 21.2 20.6 7.8 9:40 0.26 27.3 27.3 6.35 6.3 81.4 81.0 48.2 48.8 7.8	Time Depth (m) Temp (oC) DO (mg/L) DO (%) Turbidity (NTU) pH 9:30 0.34 31.9 31.9 5.67 5.7 77.0 77.3 21.2 20.6 7.8 7.8 9:40 0.26 27.3 27.3 6.35 6.3 81.4 81.0 48.2 48.8 7.8 7.8	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Date	28-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbidi	ity (NTU)	р	H	SS	(mg/L)
WM1-C	10:30	0.26	27.1	27.1	7.64	76	95.9	95.7	734.0	725.5	8.9	8.9	618	613.5
wwii-C	10:50	0.36	27.1	27.1	7.6	/.6	95.5	93.7	717.0	125.5	8.9	0.9	609	015.5
WM1	10:40	0.35	25.9	25.9	7.25	7.2	89.2	89.2	742.0	746.5	8.4	8.4	500	506.0
VV IVI I	10.40	0.35	25.9	23.9	7.24	1.2	89.2	69.2	751.0	740.5	8.4	0.4	512	500.0

Date	30-Aug-17		-			-			-	-		-	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	0.40	0.24	27.4	27.4	7.96	7.0	100.0	0.00 C	11.3	11.4	8.1	0.1	10	10.0
WM1-C	9:40	0.34	27.4	27.4	7.66	7.8	97.1	98.6	11.5	11.4	8.1	8.1	10	10.0
WM1	0:50	0.26	26.9	26.9	7.43	7.2	93.0	92.1	16.2	16.4	7.8	7 0	20	20.0
VV IVI I	9:50	0.26	26.9	20.9	7.2	1.5	91.2	92.1	16.6	16.4	7.8	7.0	20	20.0

Remarks:

[#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 3

Date	2-Aug-17				-		-		-					-
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11:35	0.18	27.3	27.3	7.45	7.5	93.9	94.1	5.1	5.4	7.9	7.9	2	2.0
WWH-CA	11.55	0.18	27.3	21.5	7.46	7.5	94.3	94.1	5.7	5.4	7.9	7.9	2	2.0
WM4-CB	11.45	0.31	27.8	27.8	5.89	5.9	74.9	74.6	18.2	18.6	7.6	76	20	19.0
W WI4-CD	11:45	0.51	27.8	27.0	5.85	5.9	74.2	74.0	18.9	18.0	7.6	7.6	18	19.0
WM4	11.20	0.15	28	28.0	6.48	65	82.7	82.0	31.0	20.9	7.8	70	22	22.0
vv 1v14	11:20	0.15	28	28.0	6.5	6.5	83.0	82.9	30.5	30.8	7.8	7.8	22	22.0

Date	4-Aug-17				-		-		-				-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.18	27.4	27.4	7.05	7 1	88.9	89.4	5.3	5.0	7.8	7.8	4	5.0
WWI4-CA	11.50	0.18	27.4	27.4	7.1	/.1	89.8	09.4	4.8	5.0	7.8	7.0	6	5.0
WM4-CB	11.40	0.21	27.6	27.6	5.08	5 1	64.6	64.4	14.3	15.2	7.6	76	17	17.0
WM4-CD	11:40	0.31	27.6	27.0	5.06	5.1	64.1	04.4	16.2	15.3	7.6	7.6	17	17.0
WM4	11.20	0.15	28.9	28.0	6.78	6.9	88.3	00.4	34.6	24.9	7.6	7.6	26	26.5
W W14	11:20	0.15	28.9	28.9	6.8	6.8	88.5	88.4	35.0	34.8	7.6	/.6	27	26.5

Date	8-Aug-17	-	•		-	•	•		-	-	-	•	-	
Location	Time	Depth (m)	Temp) (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11:12	0.17	30.5	30.5	7.2	7.2	96.2	96.6	5.5	5.8	7.4	7.4	4	4.0
WM4-CA	11:12	0.17	30.5	50.5	7.24	1.2	97.0	90.0	6.2	5.8	7.4	7.4	4	4.0
WM4-CB	11:20	0.30	31	31.0	6.1	6.1	81.9	82.4	18.6	18.2	7.6	76	18	17.0
WM4-CD	11:20	0.30	31	51.0	6.15	6.1	82.8	02.4	17.8	16.2	7.6	/.0	16	17.0
	11.05	0.15	30	20.0	6.67	(7	88.2	007	21.5	21.5	7.6	7.6	18	17.0
WM4	11:05	0.15	30	30.0	6.72	6.7	89.1	88.7	21.5	21.5	7.6	/.0	16	17.0

Date	10-Aug-17	-	•		-	•	•		•		-	•	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11:30	0.17	28.9	28.9	7.23	7.2	94.0	94.3	10.3	9.8	8.8	8.8	9	8.0
WINI4-CA	11.50	0.17	28.9	28.9	7.26	1.2	94.6	94.5	9.4	9.8	8.8	0.0	7	8.0
WM4-CB	11:38	0.31	29.8	29.8	5.41	5 4	71.2	71.6	26.2	26.6	8.5	05	20	19.5
WM4-CD	11.56	0.51	29.8	29.0	5.46	5.4	72.0	71.6	26.9	26.6	8.5	8.5	19	19.5
WIN14	11.20	0.15	29.1	20.1	6.38	6.4	83.0	02.2	466.0	471 5	9	0.0	286	290 5
WM4	11:20	0.15	29.1	29.1	6.42	6.4	83.6	83.3	477.0	471.5	9	9.0	293	289.5

Date	11-Aug-17#									
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (I	NTU)	pH	SS	(mg/L)
WM4-CA	11:30	0.19				7.5	6.0		6	6.0
WM4-CA	11:50	0.18				6.3	6.9		6	6.0
WM4-CB	11:40	0.21				17.0	165		24	24.0
WINI4-CD	11.40	0.31				16.0	16.5		24	24.0
WM4	11.20	0.15				363.0			136	12(0
vv 1 v1 4	11:20	0.15				372.0	67.5		136	136.0

Date	12-Aug-17	-	•		-	•	-		-	-	-	•	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	12:00	0.18	30.9	30.9	7.17	7.2	96.6	96.9	6.7	69	8.7	8.7	2	25
WM4-CA	12:00	0.18	30.8	50.9	7.2	1.2	97.1	90.9	6.8	6.8	8.7	0.7	3	2.5
WM4-CB	12:20	0.34	30.8	30.8	6.04	<i>C</i> 1	81.3	82.7	14.0	141	8.6	8.6	12	11.0
WM4-CD	12:20	0.34	30.8	50.8	6.11	6.1	84.0	02.7	14.1	14.1	8.6	8.0	10	11.0
WM4	11:48	0.22	30.4	30.4	6.37	6.4	84.7	85.3	102.0	104.5	8.6	06	76	765
vv 1V14	11:48	0.23	30.4	50.4	6.41	6.4	85.8	63.5	107.0	104.5	8.6	8.6	77	76.5

Date	14-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	1:10	0.16	31.5	31.5	6.89	6.0	93.4	027	5.1	4.0	8.3	8.3	5	6.0
WM4-CA	1:10	0.10	31.5	51.5	6.92	6.9	94.0	93.7	4.8	4.9	8.3	0.5	7	6.0
WM4-CB	11.20	0.20	31.5	21.5	5.82	50	79.0	79.5	15.9	15.6	8	8.0	11	11.0
WINI4-CD	11:20	0.30	31.5	31.5	5.86	5.8	79.9	19.5	15.3	15.6	8	8.0	11	11.0
W/N/A	11.00	0.15	30.5	20.5	6.38	6.4	85.1	05 4	21.2	22.4	8.4	0.4	19	19.0
WM4	11:00	0.15	30.5	30.5	30.5 6.4	6.4	85.6	85.4	23.6	22.4	8.4	8.4	17	18.0

Date	15-Aug-17#						-		•	-	-	•	-	
Location	Time	Depth (m)	Temp (o	oC)	DO (r	ng/L)	DO	(%)	Turbi	dity (NTU)	р	H	SS	(mg/L)
WM4-CA	9:40	0.17							4.8	16			3	3.0
WM4-CA	9:40	0.17							4.5	4.6			3	5.0
WM4 CD	0.50	0.20							8.1	0.2			13	12.0
WM4-CB	9:50	0.30							8.6	8.3			13	13.0
WINAA	0.20	0.15							14.2	15.0			18	19.0
WM4	9:30	0.15							15.9	15.0			18	18.0

Date	16-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.16	29.3	20.2	6.99	7.0	91.3	01.7	4.8	5 5	8.4	8.4	5	6.0
WM4-CA	11:50	0.16	29.3	29.3	7.02	7.0	92.0	91.7	6.1	5.5	8.4	0.4	7	6.0
WM4-CB	11:40	0.21	29.9	29.9	5.9	5.9	77.6	77.9	30.2	29.7	8	8.0	75	72.0
WINI4-CD	11:40	0.31	29.9	29.9	5.92	5.9	78.2	11.9	29.1	29.7	8	8.0	69	72.0
WINAA	11.20	0.15	29.6	20.6	6.62		86.8	07.0	137.0	120 5	8.6	9.6	100	00 5
WM4	11:20	0.15	29.6	29.6	6.66	6.6	87.6	87.2	142.0	139.5	8.6	8.6	99	99.5

Date	17-Aug-17#					-	-	-
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS(mg/L)
WM4-CA	10:45	0.16				3.7 3.8		7 7.0
WM4-CA	10:43	0.10				4.0 5.8		7
WM4-CB	10:55	0.30				23.8 24.8		67 67.0
WM4-CD	10:55	0.50				25.8 24.8		67 67.0
WM4	10.25	0.15				22.3 22.3		24 24.0
vv 1v14	10:35	0.15				22.3 22.3		24 24.0

Date	18-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:30	0.17	35.3	25.2	4.79	4.8	69.3	69.5	9.6	93	8.5	8.5	7	6.0
WM4-CA	11:50	0.17	35.3	35.3	4.82	4.0	69.7	09.5	9.1	9.5	8.5	8.5	5	0.0
WM4-CB	11.45	0.20	32	32.0	5.16	5.2	71.6	71.9	17.6	17.5	8.1	0 1	16	15.0
WIVI4-CD	11:45	0.30	32	52.0	5.19	3.2	72.1	/1.9	17.3	17.5	8.1	0.1	14	15.0
	11.20	0.15	36.2	26.2	4.06	4.2	59.4	50.9	28.9	20.2	8.5	0.5	26	26.0
WM4	11:20	0.15	36.2	36.2	4.32	4.2	60.2	59.8	29.4	29.2	8.5	8.5	26	26.0

Date	22-Aug-17	-	•		-	•	-	•	•		-		-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	H	SS	(mg/L)
	11.40	0.15	32.5	20.5	6.97	7.0	95.7	05.0	4.8	1.6	8.2	0.0	5	4.0
WM4-CA	11:40	0.15	32.5	32.5	6.99	7.0	96.1	95.9	4.5	4.6	8.2	8.2	3	4.0
WM4 CD	11.50	0.20	33	22.0	6.35	6.4	86.4	96.6	15.2	15.0	7.9	7.0	18	17.0
WM4-CB	11:50	0.30	33	33.0	6.38	6.4	86.8	86.6	16.5	15.9	7.9	7.9	16	17.0
XX/N//	11.20	0.15	31.4	21.4	6.54		88.5	007	22.4	22.1	8.2	0.0	19	20.0
WM4	11:30	0.15	31.4	31.4	6.56	6.6	88.9	88.7	21.8	22.1	8.2	8.2	21	20.0

Date	24-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11.45	0.19	32	32.0	6.09	6.1	83.2	83.2	21.7	22.1	8.1	0 1	6	5.0
WM4-CA	11:45	0.18	32	52.0	6.08	6.1	83.1	03.2	22.4	22.1	8.1	0.1	4	5.0
WM4-CB	12:00	0.21	32.3	22.2	4.83	4.8	66.3	665	31.1	30.7	7.9	7.9	16	16.0
WINI4-CD	12:00	0.31	32.3	32.3	4.85	4.8	66.6	66.5	30.3	50.7	7.9	7.9	16	16.0
WM4	11.25	0.15	31	31.0	5.95	5.9	81.1	80.3	80.8	79.6	8	8.0	39	38.5
vv 1V14	11:35	0.15	31	51.0	5.81	5.9	79.5	60.5	78.3	79.0	8	0.0	38	38.5

Date	25-Aug-17#					-	•	-
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	рН	SS(mg/L)
WM4-CA	11:10	0.18				5.1 5.2		2 2.0
WM4-CA	11:10	0.18				5.4 5.2		2 2.0
WM4-CB	11:20	0.30				15.3		13 13.0
WM4-CD	11:20	0.50				14.2 14.8		13 15.0
	11.00	0.15				17.2 17.0		12 12.0
WM4	11:00	0.15				16.8 17.0		12 12.0

Date	26-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	9:07	0.19	31.3	21.2	6.1	61	82.4	82.9	6.9	6.0	8.4	8.4	<2	~2
WM4-CA	9:07	0.19	31.3	31.3	6.12	6.1	83.4	82.9	6.9	6.9	8.4	0.4	<2	<2
WM4-CB	9:27	0.21	30.4	20.4	4.38	4.4	58.2	59.1	12.0	12.2	8.1	0.1	12	11.0
WW4-CD	9:27	0.31	30.4	30.4	4.41	4.4	59.9	39.1	12.3	12.2	8.1	0.1	10	11.0
	9.51	0.21	32	22.0	5.87	5.0	80.2	01.2	15.4	157	8.8	0.0	13	10.5
WM4	8:51	0.21	32	32.0	5.91	5.9	82.1	81.2	16.0	15.7	8.8	8.8	12	12.5

Date	28-Aug-17	-	•		-	•	•		-		-	•	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	12:10	0.20	24.9	24.0	7.98	8.0	96.6	06.6	49.1	49.8	8.3	0.2	20	21.5
WWI4-CA	12:10	0.20	24.9	24.9	7.97	8.0	96.5	96.6	50.4	49.8	8.3	8.3	23	21.5
WM4 CD	12.40	0.22	25.1	25.1	7.64	76	92.7	02.7	50.3	40.7	8.2	8.2	42	42.5
WM4-CB	12:40	0.33	25.1	25.1	7.63	7.6	92.6	92.7	49.0	49.7	8.2	8.2	43	42.5
XX/N/A	12.00	0.20	25	25.0	7.87	7.0	95.2	05.2	57.8	57.0	8.3	0.2	43	42.5
WM4	12:00	0.20	25	25.0	25.0 7.85 7	7.9	95.1	95.2	56.2	57.0	8.3	8.3	44	43.5

Date	30-Aug-17													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbi	dity (NTU)	р	Н	SS	(mg/L)
WM4-CA	12.25	0.18	30.4	30.4	6.62	6.6	88.2	88.6	4.6	16	4.55	4.6	7	6.0
WM4-CA	12:35	0.18	30.4	50.4	6.67	6.6	88.9	00.0	4.7	4.6	4.72	4.0	5	0.0
WM4 CD	12.45	0.21	31.8	21.0	5.33	5.2	72.5	707	6.5	6.6	6.46		10	0.5
WM4-CB	12:45	0.31	31.8	31.8	5.35	5.3	72.8	72.7	6.8	6.6	6.78	6.6	9	9.5
W/N/A	12.20	0.15	32	22.0	6.44	65	87.7	87.8	21.3	20.7	21.3	20.7	19	10 5
WM4	12:30	0.15	32	32.0	32.0 6.46 6.5	87.9	87.8	20.1	20.7	20.1	20.7	18	18.5	

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 6

Date	2-Aug-17		_		-		-	-		-	-	-		
Location	Time	Depth (m)	Temp	(oC)	DO (I	ng/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(1	mg/L)
	10.25	0.20	27.3	27.2	6.89	60	86.9	07 4	706.0	706 5	7.40	7.4	427	417.0
WM2A-C	10:35	0.30	27.3	27.3	6.95	6.9	87.9	87.4	707.0	706.5	7.40	7.4	407	417.0
WM2A	10.20	0.21	27.3	27.2	6.54	6.6	82.4	82 0	907.0	0.05 5	7.40	7.4	607	(21 5
W WIZA	10:20	0.21	27.3	27.3	6.59	0.0	83.3	82.9	904.0	905.5	7.40	7.4	636	621.5

Date	3-Aug-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	pl	Н	SS(1	mg/L)
WM2A-C	11:00	0.28							25.3	25.2			9	9.0
WM2A-C	11:00	0.28							25.1	23.2			9	9.0
WM2A	10:20	0.21							118.0	110 5			82	92.0
www12A	10:20	0.21							119.0	118.5			82	82.0

Date	4-Aug-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(1	ng/L)
	10.40	0.29	26	26.0	7.3	7.2	89.9	00.7	5.5	5.0	7.20	7.0	5	5.0
WM2A-C	10:40	0.28	26	26.0	7.39	1.5	91.4	90.7	5.7	5.6	7.20	1.2	5	5.0
WM2A	10:25	0.20	27.4	27.4	6.6	6.6	83.4	83.9	14.7	14.8	7.10	71	13	13.0
VV IVIZA	10:23	0.20	27.4	27.4	6.67	6.6	84.3	03.9	14.8	14.0	7.10	/.1	13	15.0

Date	5-Aug-17#													
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	pl	H	SS(1	mg/L)
WM2A-C	10:15	0.34							6.5	6.6			<2	~2
WWIZA-C	10.15	0.54							6.6	0.0			<2	<2
WM2A	10:00	0.20							14.9	15.0			9	9.0
WW12A	10:00	0.20							15.1	15.0			9	9.0

Date	8-Aug-17	•				•	-			-				
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	pl	H	SS(1	ng/L)
WAAA C	10.15	0.28	26.4	26.4	7.35	7.4	91.2	01.5	5.1	5 1	7.20	7 0	<2	~2
WM2A-C	10:15	0.28	26.4	26.4	7.38	7.4	91.8	91.5	5.1	5.1	7.20	1.2	<2	<2
	10.05	0.20	28.1	20.1	6.7	67	86.1	96.6	12.6	12.0	7.40	7 4	7	7.0
WM2A	10:05	0.20	28.1	28.1	6.74	6.7	87.0	86.6	12.9	12.8	7.40	7.4	7	7.0

Date	10-Aug-17													
Location	Time	Depth (m)	Temp	(oC)	D0 (mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(1	ng/L)
WM2A-C	10:35	0.25	26.3 26.3	26.3	7.26 7.31	7.3	90.1 91.0	90.6	5.8 5.7	5.7	8.10 8.10	8.1	<2 <2	<2
WM2A	10:20	0.20	28.2 28.2	28.2	6.47 6.49	6.5	82.9 83.4	83.2	12.1 10.9	11.5	7.80 7.80	7.8	6 7	6.5
Date	12-Aug-17	·				•	<u>-</u>	<u>-</u>	<u>.</u>	-			·	
Location	Time	Depth (m)	Temp	(\mathbf{aC})		mg/L)	DO	(%)	Turbidit	y (NTU)		H	55(ng/L)
Location	Time	Depui (III)	26.5	(0C)	7.19	IIIg/L)	89.7	(%)		y (N10)	8.50			ng/L)
WM2A-C	10:49	0.31	26.5	26.5	7.19	7.2	<u>89.7</u> 90.4	90.1	12.0 12.7	12.4	8.50	8.5	<2 <2	<2
			28.1		6.56		83.9		15.7		8.50		<2	
WM2A	10:37	0.17	28.1	28.1	6.71	6.6	84.9	84.4	16.0	15.9	8.50	8.5	<2	<2
					·							·		
Date	14-Aug-17						-	-		-				
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(1	ng/L)
WM2A-C	10:10	0.20	26.9 26.9	26.9	7.08	7.1	88.3 88.9	88.6	6.7 6.7	6.7	8.10 8.10	8.1	4 3	3.5
WM2A	10:00	0.20	28.1 28.1	28.1	6.52 6.55	6.5	83.0 83.7	83.4	8.1 9.0	8.6	8.00 8.00	8.0	7 7	7.0
		•									1			
Date	16-Aug-17						-	-	•	-		-		
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(1	ng/L)
WM2A-C	10:35	0.28	26.8 26.8	26.8	7.26 7.28	7.3	90.7 91.3	91.0	5.2 5.3	5.3	7.90 7.90	7.9	3	3.0
WM2A	10:20	0.20	28.4 28.4	28.4	6.68 6.71	6.7	85.5 96.1	90.8	9.0 8.9	8.9	7.90 7.90	7.9	6 6	6.0
		L L			L	L	<u>I</u>	<u>L</u>	<u>I</u>	<u> </u>	<u></u>	<u></u>	<u> </u>	
Date	18-Aug-17				_	•	-	-	·	-		-	• •	
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(1	ng/L)
WM2A-C	10:10	0.28	33.2 33.2	33.2	4.8	4.8	64.8 64.3	64.6	12.6 12.4	12.5	8.00 8.00	8.0	11 12	11.5
WM2A	9:45	0.20	31.9 31.9	31.9	4.47	4.5	61.1 61.2	61.2	8.0 8.1	8.0	8.00 8.00	8.0	6 8	7.0

Date	22-Aug-17													
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(1	mg/L)
WM2A-C	10:35	0.25	31.7 31.7	31.7	5.67 5.64	5.7	75.4 75.1	75.3	7.4 7.5	7.5	7.40 7.40	7.4	<u>8</u> 9	8.5
WM2A	10:23	0.20	30.1 30.1	30.1	5.76 5.79	5.8	77.4 77.8	77.6	8.3 7.9	8.1	7.40 7.40	7.4	11 11	11.0
Date	24-Aug-17				<u>.</u>	<u>.</u>							<u>.</u>	
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	v (NTU)	D	H	SS(mg/L)
WM2A-C	10:30	0.28	31 31	31.0	5.36 5.39	5.4	72.1 72.4	72.3	11.3 11.3	11.3	7.80 7.80	7.8	3	3.0
WM2A	10:05	0.20	28.7 28.7	28.7	5.83 5.8	5.8	76.7 76.5	76.6	77.0 74.0	75.5	7.80 7.80	7.8	49 54	51.5
Date	25-Aug-17#				-		-		•				·	
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(1	mg/L)
WM2A-C	10:00	0.28							4.0	4.0			3	3.0
WM2A	9:50	0.20							24.8 24.2	24.5			12 12	12.0
Date	26-Aug-17						-		•			-		
Location	Time	Depth (m)	Temp	o (oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(1	mg/L)
WM2A-C	10:21	0.24	32.3 32.3	32.3	4.93 4.95	4.9	67.8 68.8	68.3	9.4 9.5	9.4	8.30 8.30	8.3	<2 <2	<2
WM2A	10:40	0.15	31.5 31.5	31.5	5.19 5.18	5.2	70.5 69.7	70.1	11.2 12.0	11.6	8.20 8.20	8.2	<2 <2	<2
Dete	<u> </u>			-	-	- -	-	-	- ·	-		-	- -	
Date Location	28-Aug-17 Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	v (NTU)	n	H	SS(mg/L)
WM2A-C	11:10	0.30	25.4 25.4	25.4	7.98	8.0	97.2 97.2	97.2	134.0 135.0	134.5	8.10 8.10	8.1	22 22 22	22.0
WM2A	10:55	0.25	25.4 25.4 25.4	25.4	7.57	7.6	92.4 92.4	92.4	222.0	216.5	8.10 8.10	8.1	268	259.5

Date	29-Aug-17#												
Location	Time	Depth (m)	Temp (o	C)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	p	H	SS(1	mg/L)
WM2A-C	11:35	0.28						19.3 19.0	19.2			30 30	30.0
WM2A	11:25	0.20						86.7 87.1	86.9			77 77	77.0

Date	30-Aug-17					•	-	-		-				
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(mg/L)
WM2A-C	10:45	0.28	31.4	31.4	5.87	5.9	79.2	79.3	6.4	60	7.90	7.9	7	7.0
W WIZA-C	10:43	0.28	31.4	51.4	5.88	5.9	79.3	79.5	5.9	6.2	7.90	7.9	7	7.0
WM2A	10.05	0.20	27.3	27.3	7.17	7.2	90.9	01.0	44.9	A5 A	7.80	7.8	45	12 5
W WIZA	10:05	0.20	27.3	27.3	7.18	1.2	91.0	91.0	45.8	45.4	7.80	1.8	42	43.5

Date	31-Aug-17#								-				
Location	Time	Depth (m)	Temp (oC)) DO (n	ng/L)	DO	(%)	Turbidit	y (NTU)	pl	H	SS(1	ng/L)
WM2A-C	11:20	0.28			_			5.0 4.4	4.7			7 7	7.0
WM2A	11:05	0.20			_			10.0 9.9	10.0			11 11	11.0

Remarks:

[#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	2-Aug-17				_	-	-	-	-		-	•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	g/L)
WM3-C	10:55	0.16	27.8 27.8	27.8	6.63 6.65	6.6	84.3 84.8	84.6	76.2 69.3	72.8	9.5 9.5	9.5	91 104	97.5
WM3	11:05	0.16	27.4 27.4	27.4	6.11 6.16	6.1	77.2 78.0	77.6	113.0 115.0	114.0	8.6 8.6	8.6	106 113	109.5
Date	3-Aug-17#		. <u></u>				<u>.</u>	-	<u>.</u>			<u>.</u>		
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(m	g/L)
			1	()	- (12.4		ľ		45	-
WM3-C	11:25	0.15							11.8	12.1			45	45.0
WM3	11:40	0.15							13.3	12.9			6	6.0
WM3	11:40	0.15							12.5	12.9			6	6.0
	·													
Date	4-Aug-17	<u> </u>												
Location	Time	Depth (m)	Temp	(oC)		mg/L)		(%)		ty (NTU)	-	H	SS(n	ng/L)
WM3-C	10:55	0.15	28.9 28.9	28.9	6.73 6.77	6.8	87.3 88.1	87.7	4.2	4.1	9.7 9.7	9.7	8 9	8.5
WM3	11:05	0.15	28.9 28.9	28.9	6.72 6.71	6.7	87.2 87.1	87.2	12.9 13.2	13.1	8.6 8.6	8.6	12 12	12.0
Date	8-Aug-17				-	-			-		-			
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(m	g/L)
			29.5	· · · ·	6.76		88.6		13.8		9.6		24	
WM3-C	10:34	0.15	29.5	29.5	6.8	6.8	89.4	89.0	13.5	13.7	9.6	9.6	25	24.5
WM3	10:42	0.15	29.2	29.2	6.49	6.5	84.3	84.7	7.5	7.3	7.4	7.4	<2	<2
VV IVIS	10.42	0.15	29.2	29.2	6.52	0.5	85.0	04.7	7.0	7.5	7.4	7.4	<2	<2
Date	10-Aug-17						-	<u>.</u>	-		-			
Location	Time	Depth (m)	Тетр	(oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	n	H	SS(m	g/L)
	-		29.6		6.78		88.9	Î.	25.9		11.3		48	0
WM3-C	10:48	0.15	29.6	29.6	6.81	6.8	89.6	89.3	24.8	25.4	11.3	11.3	52	50.0
WM3	10:55	0.15	29.3	29.3	6.51	6.5	84.8	85.3	12.0	11.4	10.3	10.3	12	13.0
VV 1V13	10.55	0.15	29.3	27.5	6.58	0.5	85.7	05.5	10.8	11.4	10.3	10.5	14	15.0

Date	12-Aug-17													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
	11.07	0.21	30.5	30.6	6.62	6.7	88.3	89.2	14.5	147	11.1	11.1	15	145
WM3-C	11:07	0.31	30.6	30.0	6.7	0.7	90.1	89.2	14.8	14.7	11.1	11.1	14	14.5
WM3	11:19	0.17	30.4	30.4	6.32	6.4	84.5	84.8	6.8	6.9	9.8	9.8	<2	<2
W W15	11.19	0.17	30.4	50.4	6.4	0.4	85.1	04.0	6.9	0.9	9.8	9.8	<2	<2

Date	14-Aug-17					-			-					
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	10.25	0.15	29.6	29.6	6.64	67	87.2	87.5	25.9	26.2	11.1	11.1	41	40.5
W M15-C	10:25	0.15	29.6	29.0	6.68	6.7	87.8	87.5	26.5	26.2	11.1	11.1	40	40.5
WM2	10:35	0.15	29.5	29.5	6.62	6.6	86.9	87.0	12.3	12.3	9.9	9.9	9	8.0
WM3	10:55	0.15	29.5	29.3	6.62	0.0	87.0	07.0	12.3	12.5	9.9	9.9	7	0.0

Date	16-Aug-17		-		-	-	-	-	-		-	•	-	
Location	Time	Depth (m)	Тетр	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(n	ng/L)
WM2 C	10.50	0.15	29.8	20.8	6.84	6.0	90.1	00.4	12.7	12.6	11.1	11.1	25	24.0
WM3-C	10:50	0.15	29.8	29.8	6.86	6.9	90.6	90.4	12.4	12.0	11.1	11.1	23	24.0
WM3	11:00	0.15	29.4	29.4	7.07	7.1	92.4	92.8	7.7	7.0	10	10.0	3	3.0
W W15	11:00	0.15	29.4	29.4	7.1	/.1	93.2	92.8	6.6	1.2	10	10.0	3	5.0

Date	18-Aug-17													
Location	Time	Depth (m)	Тетр	(oC)	DO (r	mg/L)	DO	(%)	Turbidi	y (NTU)	р	H	SS(n	ng/L)
WM3-C	10.20	0.15	33	22.0	5.03	5.0	70.1	70.2	5.8	(1	10.7	10.7	11	10.5
WM3-C	10:30	0.15	33	33.0	5.04	5.0	70.2	70.2	6.5	6.1	10.7	10.7	10	10.5
WM3	10:43	0.15	34	34.0	4.62	16	65.4	65.6	9.9	10.0	10.4	10.4	9	8.0
VV IVIS	10:45	0.15	34	54.0	4.65	4.6	65.8	03.0	10.0	10.0	10.4	10.4	7	8.0

Date	22-Aug-17		-		-	-		-	-		-		-	-
Location	Time	Depth (m)	Тетр	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	11.00	0.15	31.3	21.2	6.57		88.8	20.4	24.4	23.6	11.2	11.2	41	40.5
WM3-C	11:00	0.15	31.3	31.3	6.67	6.6	90.0	89.4	22.7	23.0	11.2	11.2	40	40.5
WM3	11:10	0.15	30.8	30.8	6.66	6.6	89.3	89.2	7.0	65	10.6	10.6	20	19.5
vv 1v15	11:10	0.15	30.8	50.8	6.63	0.0	89.1	09.2	6.0	6.5	10.6	10.0	19	19.5

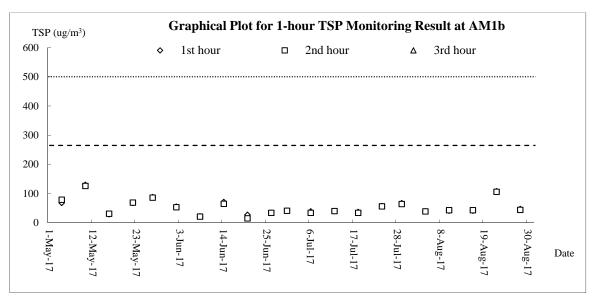
Date	24-Aug-17													
Location	Time	Depth (m)	Тетр	(oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	10.50	0.15	32.4	22.4	5.76	5.9	79.4	70.6	22.5	21.0	10.8	10.9	49	47.0
WM3-C	10:50	0.15	32.4	32.4	5.78	5.8	79.8	79.6	19.4	21.0	10.8	10.8	45	47.0
WM3	11:05	0.15	28.9	28.9	5.97	5.0	77.9	77.7	81.3	81.3	9.8	9.8	99	95.0
VV IV15	11:05	0.15	28.9	28.9	5.9	5.9	77.4	//./	81.3	01.3	9.8	9.8	91	95.0

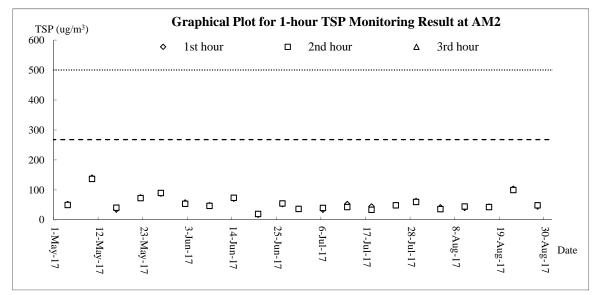
Date	25-Aug-17#			-					-	•	-		-	
Location	Time	Depth (m)	Temp (o	DC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(m	ng/L)
WM3-C	10.15	0.15							7.0	77			14	14.0
W M15-C	10:15	0.15							8.5	1.1			14	14.0
WM2	10:25	0.15							10.3	10.4			10	10.0
WM3	10:25	0.15		Ī					10.5	10.4			10	10.0

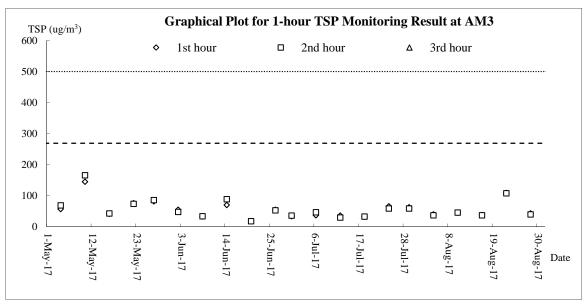
Date	26-Aug-17				_	-	-				-		-	-
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(n	ng/L)
	10.00	0.21	32.4	20.4	5.92	6.0	81.9	92 A	10.2	10.2	10.4	10.4	35	22.5
WM3-C	10:09	0.21	32.4	32.4	5.98	6.0	82.9	82.4	10.3	10.3	10.4	10.4	32	33.5
WM3	9:56	0.17	29.5	29.5	6.62	6.7	87.0	87.8	10.7	10.6	9.5	9.5	<2	-2
W WIS	9:50	0.17	29.4	29.5	6.69	0.7	88.5	07.0	10.5	10.0	9.5	9.5	<2	<2

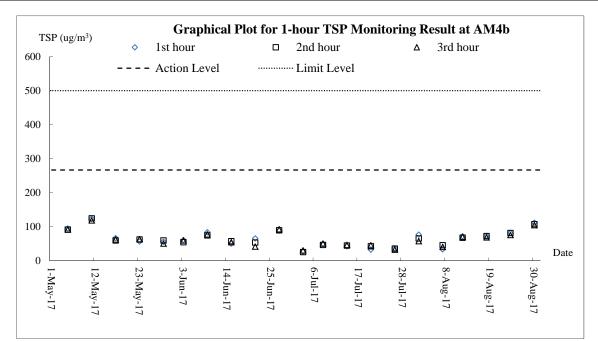
Date	28-Aug-17													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ıg/L)
	11.25	0.20	25.5	25.5	7.4	7.4	90.4	00.5	176.0	175.5	8.2	0.0	116	117.0
WM3-C	11:25	0.20	25.5	25.5	7.41	7.4	90.5	90.5	175.0	1/5.5	8.2	8.2	118	117.0
WM3	11:35	0.23	25.2	25.2	7.42	7.4	90.2	90.3	94.0	91.8	8.6	8.6	40	38.0
vv 1V13	11:55	0.23	25.2	23.2	7.44	7.4	90.3	90.5	89.6	91.8	8.6	0.0	36	38.0

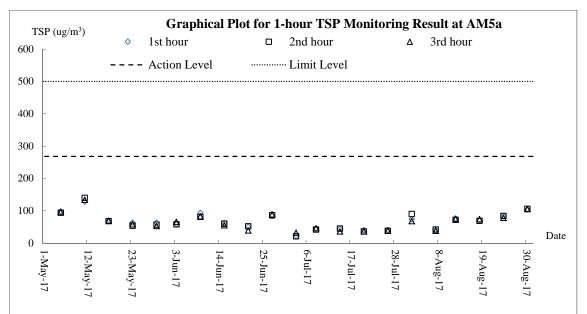
Date	30-Aug-17		-		-	-			-		-		-	-
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	11.20	0.15	30.4	20.4	6.84	6.8	90.7	00.7	14.4	14.1	10.9	10.9	18	10.0
WM3-C	11:20	0.15	30.4	30.4	6.82	0.8	90.7	90.7	13.8	14.1	10.9	10.9	20	19.0
WM3	11:40	0.15	31.3	31.3	7.31	7.2	98.2	98.4	16.0	15.6	9.2	0.2	19	19.5
VV IVIS	11:40	0.15	31.3	51.5	7.33	7.5	98.6	98.4	15.1	15.0	9.2	9.2	20	19.5

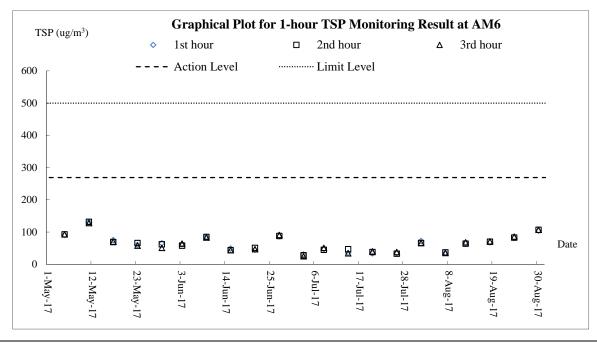

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

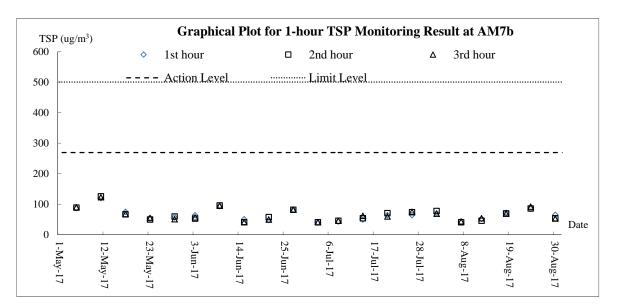

	Action Level
Limit Level	Limit Level

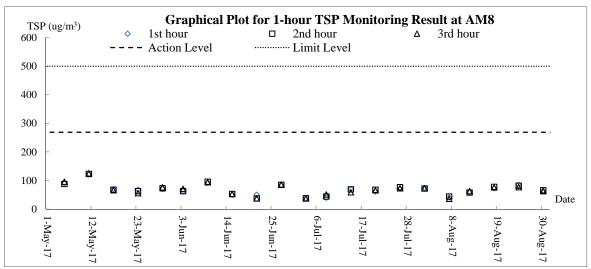

Appendix J

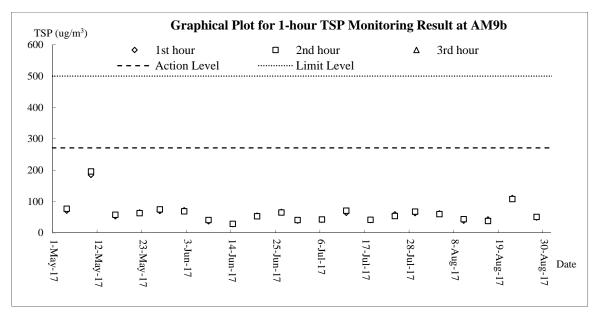

Graphical Plots for Monitoring Result

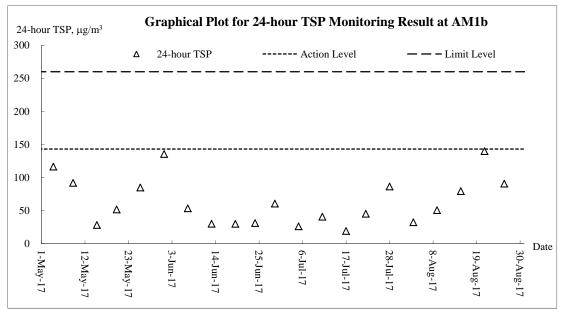

<u>Air Quality – 1-hour TSP</u>

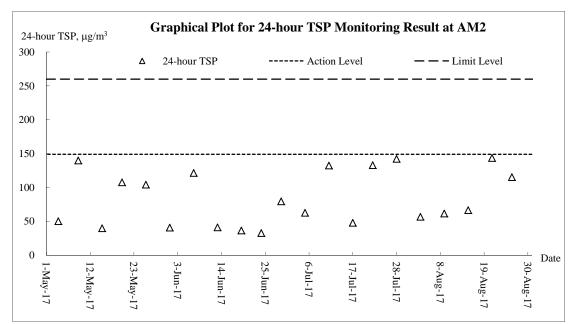


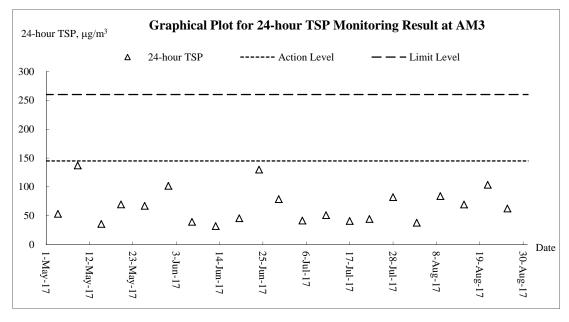


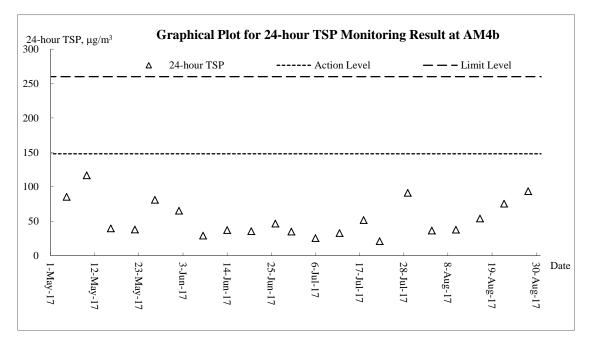


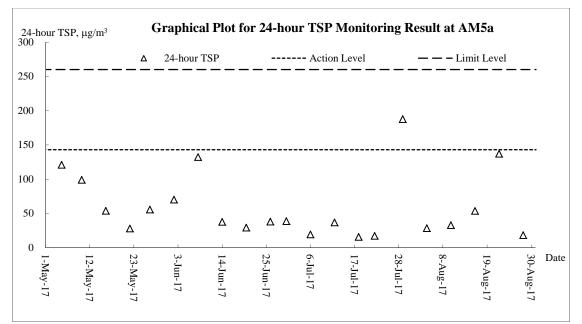


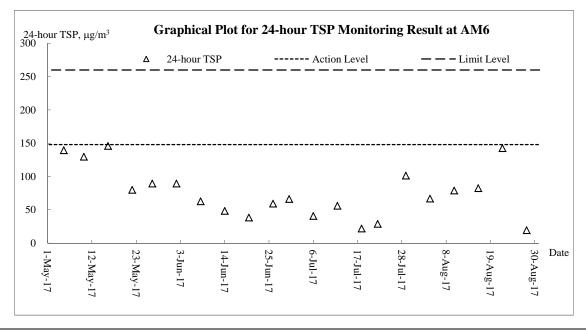


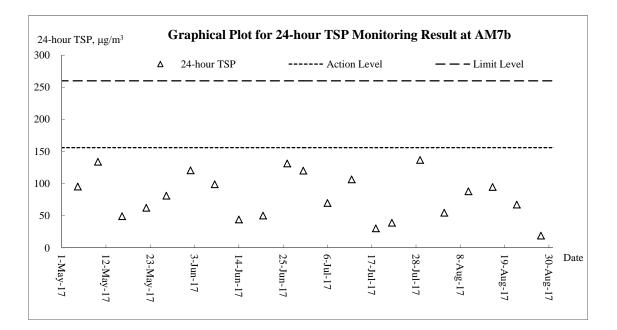


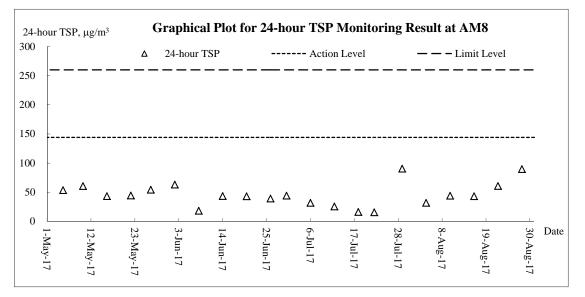


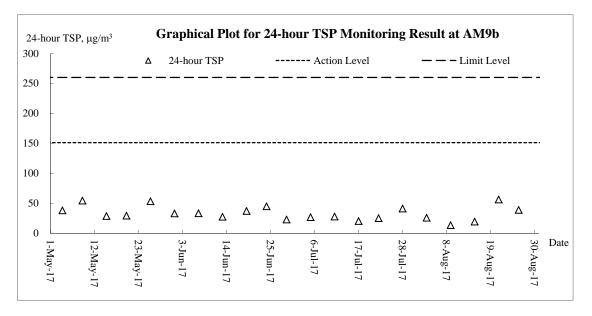


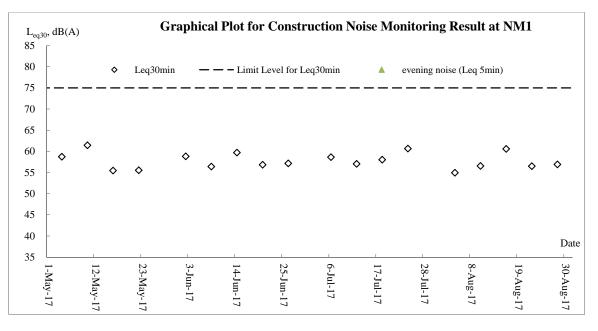

Air Quality – 24-hour TSP

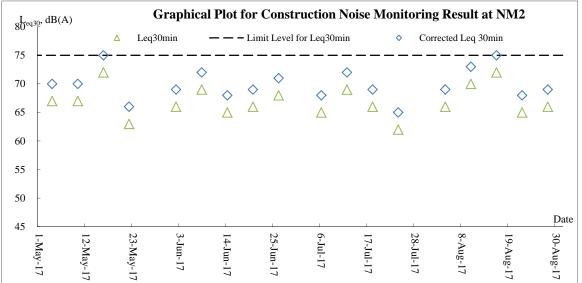


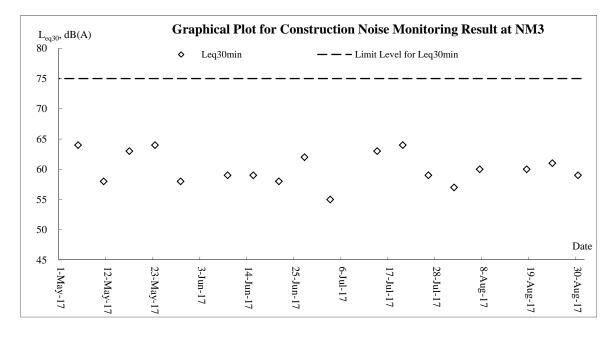


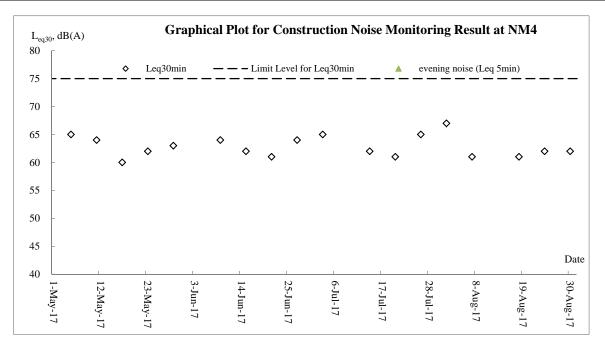


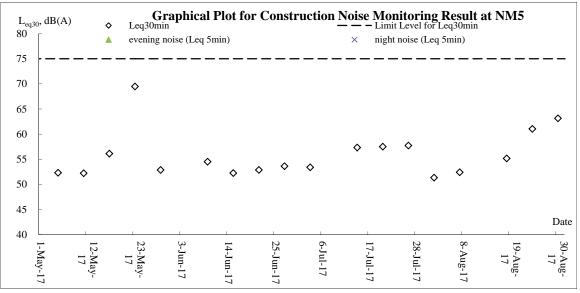


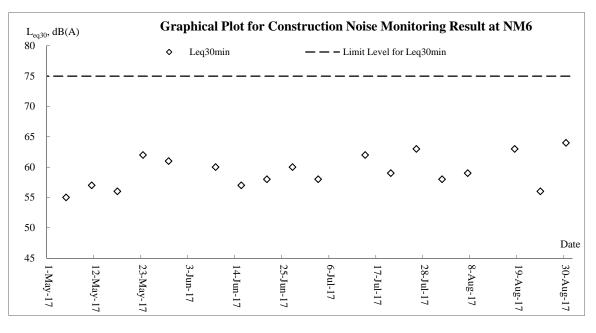


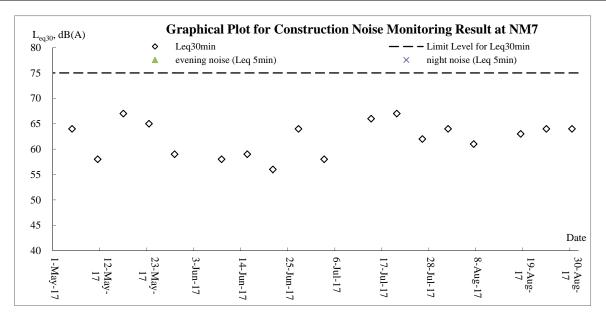


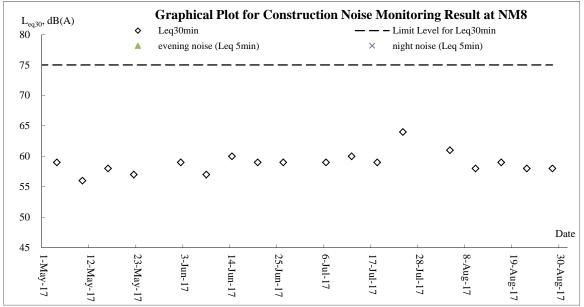


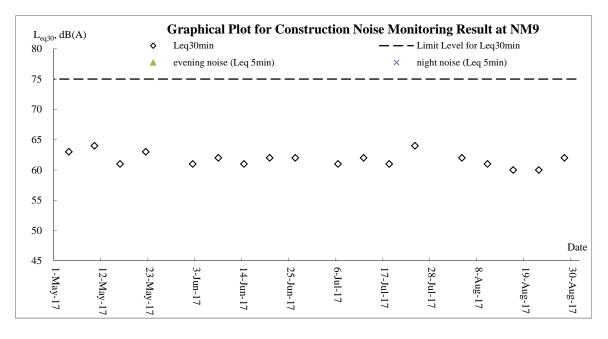


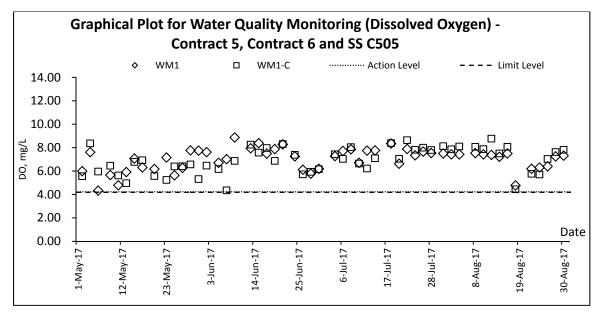

Noise

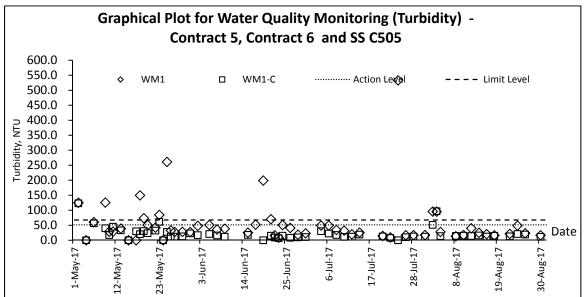




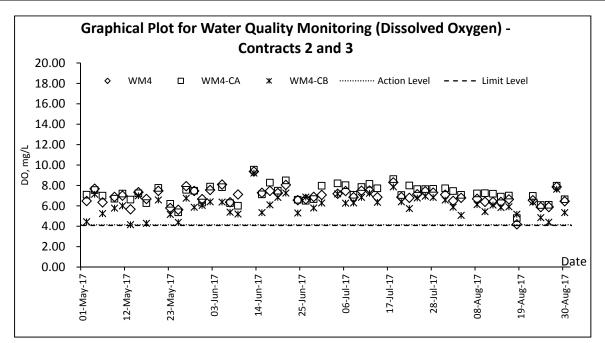


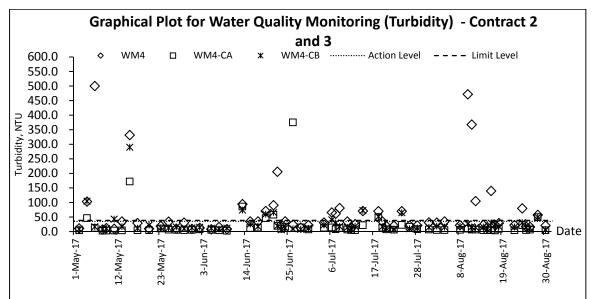


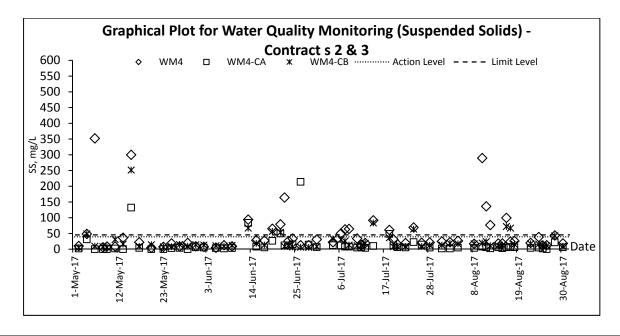


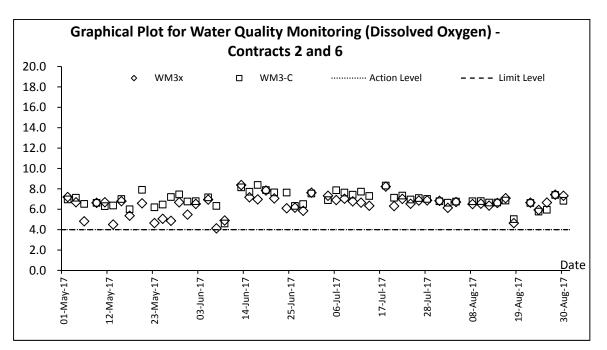


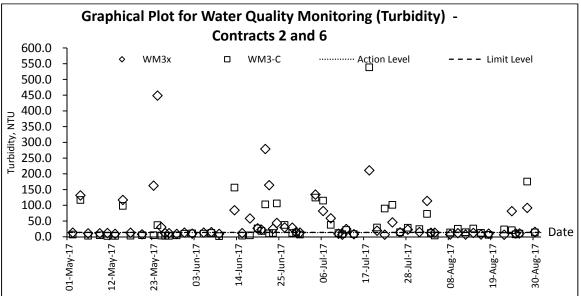
Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.49) – August 2017

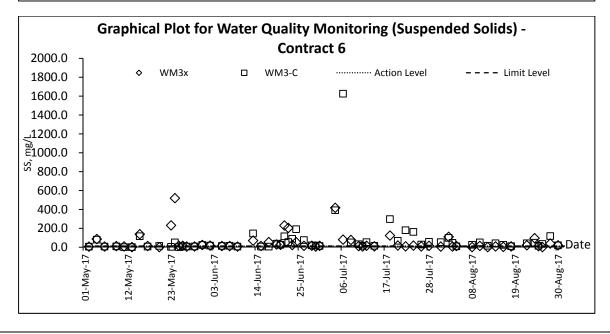

L _{eq3}	₀ , dB(A				-	ical]	Plot							oring Re			M10	
80	Г	<		Leq30mir			_			Level for L		in	0	Corrected	Leq 30)min		
		>	< (evening n	oise (Leq :	5min)		ж 1	night n	oise (Leq 5	omin)							
75																		
70	-																	
		0					~	~	0		~		0			~	~	0
65	- 0	\diamond	ο	0	0	0	0	0	\diamond	0	0	0	\diamond	0	0	0	0	0
	\diamond		0	\diamond	\$	\diamond	\$	\$	•	\$	\$	\diamond	•	\$	\diamond	\$	\$	◇
60	-		\sim		~													
55	_																	
50	-																	
																		Date
45		I		1			1		1	1		- 1		1	1			
	1- <u>N</u>	12-		23-]	3-Jun-17		14-1		25-Jun-17	6-Jul-17		17		28-Jul-17	8-Aug-17	5	10 1	30-,
.	1-May-17	May		May	In-1		14-Jun-17		Jun-	1-1		17-Jul-17		Jul-	-gn	an c'	Δ 11 6	Aug
	.17	12-May-17		23-May-17	17		-17		-17	7		17		17	17	17-134 <u>8</u> -17	r 17	30-Aug-17
		7		7													~	7

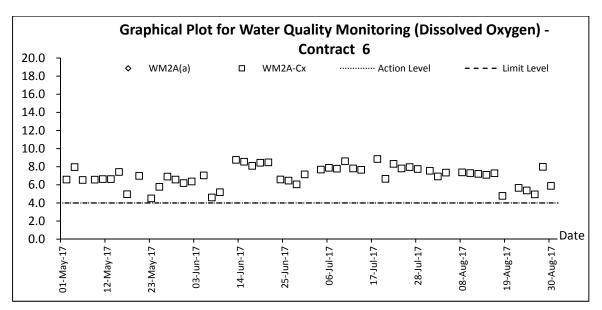

Water Quality

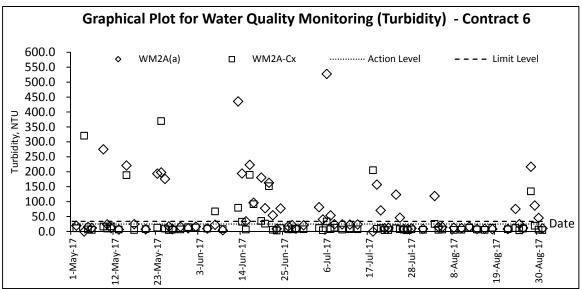


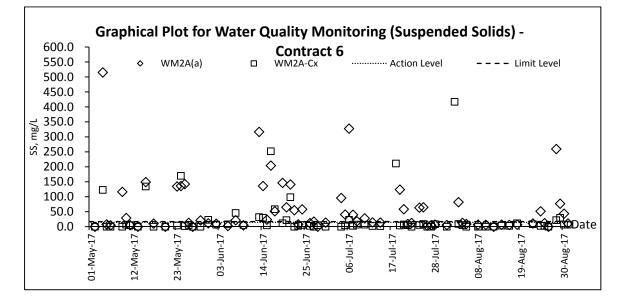












Appendix K

Meteorological Data

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.49) – August 2017

				,	Ta Kwu	Ling Statior	ı
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Aug-17	Tue	Mainly cloudy with isolated showers.	5.9	30.8	6.5	79.2	S/SW
2-Aug-17	Wed	Hot with sunny periods and isolated showers. Moderate southerly winds.	14.8	28.9	6.5	84.7	E/SE
3-Aug-17	Thu	Mainly cloudy with isolated showers.	66.7	28.4	8.5	84.2	E/NE
4-Aug-17	Fri	Moderate easterly winds, fresh at times.	19.3	28.3	5.7	86.7	E/NE
5-Aug-17	Sat	Mainly fine. Very hot	0.9	29.5	10.2	81.2	SE
6-Aug-17	Sun	Mainly fine. Very hot	0	26.9	6	75	SW
7-Aug-17	Mon	Mainly cloudy with isolated showers.	6.9	30.3	7.3	76	S/SW
8-Aug-17	Tue	Moderate easterly winds, fresh at times.	1.9	30.4	9.1	75.5	S/SW
9-Aug-17	Wed	Mainly fine. Very hot	14.3	29.8	9.6	81.2	S/SW
10-Aug-17	Thu	Hot with sunny periods and isolated showers.	11.1	29.3	8.2	83.7	S/SW
11-Aug-17	Fri	Mainly fine and hot apart from isolated showers. Moderate southeasterly winds.	3.5	30.1	8	78	S/SW
12-Aug-17	Sat	Moderate east to southeasterly winds.	0	30.2	10.2	78.5	SW
13-Aug-17	Sun	Mainly cloudy with isolated showers.	0	29.7	7	73	S/SW
14-Aug-17	Mon	Hot with sunny periods and isolated showers. Moderate southerly winds.	Trace	29.8	6.8	76	S/SW
15-Aug-17	Tue	Mainly cloudy with isolated showers.	0.2	29.5	6.4	72	S/SW
16-Aug-17	Wed	Moderate easterly winds, fresh at times.	Trace	29.6	7.6	76.5	W/SW
17-Aug-17	Thu	Mainly fine. Very hot	0	29.6	4.5	74	S/SW
18-Aug-17	Fri	Mainly fine. Very hot	0	30.1	7	73	E/NE
19-Aug-17	Sat	Mainly cloudy with isolated showers.	0	30.2	4.8	72.5	N/NW
20-Aug-17	Sun	Moderate east to southeasterly winds.	0	30.3	4.5	68	W/NW
21-Aug-17	Mon	occasionally strong on high ground, Rain	0	31.5	4.5	67	W/NW
22-Aug-17	Tue	occasionally strong on high ground, Rain	2	32.5	13.4	65.7	Ν
23-Aug-17	Wed	occasionally strong on high ground, Rain	67.1	26.7	NA	NA	NA
24-Aug-17	Thu	occasionally strong on high ground, Rain	Trace	29.9	8	78	E/SE
25-Aug-17	Fri	occasionally strong on high ground, Rain	0.1	29.1	7.5	79	E/SE
26-Aug-17	Sat	Moderate to fresh south to southeasterly winds.	6.3	29.7	19	87.5	S/SE
27-Aug-17	Sun	Tropical Cyclone Warning Signal in force.	159.2	25.6	16.4	90	SE
28-Aug-17	Mon	Cloudy with showers and a few squally thunderstorms.	98.3	25.6	8.5	92.5	E/NE
29-Aug-17	Tue	Cloudy with showers and a few squally thunderstorms.	0	28.4	5.3	73	W/NW
30-Aug-17	Wed	Cloudy with showers and a few squally thunderstorms.	0.4	29.5	6.8	76	N/NW
31-Aug-17	Thu	Cloudy with showers and a few squally thunderstorms.	4.1	29.5	4.5	75	W/NW

Appendix L

Waste Flow Table

Contract No. CV/2012/08 Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

Name of Department : CEDD

Contract No./ Work Order No. :

CV/2012/08

Appendix I - Monthly Summary Waste Flow Table for 2017

(All quantities shall be rounded off to 3 decimal places)

Month								Actual Quantities o	f Other C&D Materials	/ Wastes Generated	
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	Others (e.g. General Refuse etc.) (in '000 m3)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
January	72.9008	0.0000	2.0045	31.5900	39.3063	9.1064	144.0000	0.3600	1.9179	1.7600	0.3210
February	85.5922	0.0000	1.4413	29.9165	54.2343	8.4347	76.9000	0.3000	2.1663	4.3480	0.3365
March	36.8512	0.0000	0.5903	33.0669	3.1940	7.7980	389.2000	0.4000	1.3527	4.0720	0.4167
April	41.5646	0.0000	1.2335	33.1649	7.1663	7.9084	419.9700	0.3200	2.0268	13.0254	0.3862
May	38.2030	0.0000	0.4115	33.2084	4.5830	8.3119	476.5000	0.3700	2.7135	3.5440	0.3907
June	38.4359	0.0000	0.6721	13.5900	24.1738	8.0061	428.5000	0.3300	3.3687	4.8760	0.3265
Half-year total	313.5477	0.0000	6.3533	174.5367	132.6577	49.5655	1935.0700	2.0800	13.5459	31.6254	2.1777
July	82.0863	0.0000	1.2343	2.8380	78.0140	8.2250	441.6500	0.3200	2.0394	1.5080	0.5330
August	62.4716	0.0000	0.3805	0.8032	61.2879	8.4800	318.6000	0.3500	2.4100	1.6840	0.1482
September	0.0000										
October	0.0000										
November	0.0000										
December	0.0000										
Yearly Total	458.1056	0.0000	7.9681	178.1779	271.9597	66.2705	2695.3200	2.7500	17.9953	34.8174	2.8589

(All quantities shall be rounded off to 3 decimal places)

Year	D Materials Ge	nerated / Imported (in '	000 m3)			Actual Quantities of	of Other C&D Materials	/ Wastes Generated			
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	Others (e.g. General Refuse etc.) (in '000 m3)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	14.1300	3.9220	11.9700	16.1920	1.1696
2016	905.0989	0.0000	7.4372	427.7834	469.8783	24.8350	259.2290	3.8500	18.7262	34.2936	1.9720
2017	458.1056	0.0000	7.9681	178.1779	271.9597	66.2705	2695.3200	2.7500	17.9953	34.8174	2.8589
2018											
Total	2359.5910	0.0000	38.9574	1525.5720	795.0616	101.2791	2971.8890	10.9610	48.6985	96.1830	8.2614

Remark:

 1) Density of C&D material to be

 2) Density of General Refuse to be

2.2 metric ton/m3 1.6 metric ton/m3 3) Density of Spent Oil to be

0.88 metric ton/m3

Monthly Summary Waste Flow Table for 2017 (year)

	Actua		of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m ³)	(in '000m ³)								
Jan	1.150	0.204	0.150	0.000	0.796	1.150	0.000	0.000	0.001	0.000	0.170
Feb	1.160	0.308	0.192	0.000	0.660	0.926	0.000	0.000	0.001	0.000	0.140
Mar	2.287	0.565	0.060	0.000	1.662	1.055	0.000	0.000	0.000	0.000	0.115
Apr	1.004	0.064	0.036	0.000	0.903	0.463	0.000	0.000	0.004	0.000	0.075
May	0.497	0.005	0.120	0.000	0.372	0.050	0.767	0.000	0.000	0.000	0.105
Jun	1.249	0.150	0.150	0.000	0.948	0.008	0.000	0.000	0.000	0.000	0.135
Sub-total	7.347	1.297	0.708	0.000	5.342	3.651	0.767	0.000	0.006	0.000	0.740
Jul	1.917	0.180	0.120	0.000	1.617	0.542	0.000	0.000	0.000	0.000	0.065
Aug	1.297	0.118	0.120	0.000	1.059	0.099	0.000	0.000	0.000	0.000	0.130
Sep											
Oct											
Nov											
Dec											
Total	10.561	1.595	0.948	0.000	8.018	4.292	0.767	0.000	0.006	0.000	0.935

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is 5m³.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m^3 .

9. Assume the density of paper is 800 kg/m^3 .

Total Quantity Generated	Hard Rock and Large Broken Concrete		Reused in other	ties of C&D Diposal as Public Fill	Materials to Imported Fill	be Generate Metals	ed from the C Paper/card board packaging		Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

ltem No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works		Actual Quantities Used (m ³)	Remarks
1	Formwork for concreting the Stem wall bay4 of noise barrier NB68a	Easy handling by manpower	4.62	3.59	
2	Formwork for concreting the Stem wall bay4 of noise barrier NB67	Easy handling by manpower	4.73	3.71	
		Total Estimated Quantity of Timber Used	4.62		

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
 - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Name of Department: CEDD

Appendix A

Contract No.: <u>NE/2014/02</u>

		Actu	al Quantities of Inert C&I	Materials Generated M	onthly			Actual Quanti	ties of C&D Wastes Gene	erated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jan-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Aug-17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sep-17											
Oct-17											
Nov-17											
Dec-17											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Monthly Summary Waste Flow Table for 2017

	Forecast of Tota	al Quantities of C&D Mat	terials to be Generated fro	om the Contract*						
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500 0.000 0.000 0.000 0.500 0.000						0.500	0.200	0.000	0.000	0.200

Notes :

(1) The performance targets are given in PS Clause 1.84(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) Estimate 6.5m3 capacity per dump truck

Updated on 4 Sept 2017

Monthly Summary Waste Flow Table for <u>2017</u> (year)

Name of Person completing the record: K.M. Lui (EO)

	iangtang / Heu	-			e Formation and	d Infrastructur	e Works – C	ontract 6		Contract No.: CV	//2013/08
5	0 0	0			enerated Month				of C&D Waste	s Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	40.128	0	19.297	6.067	14.764	0	0	0.171	0	0	0.065
Feb	48.065	0	16.328	7.123	24.614	0	0	0.294	0	0	0.107
Mar	49.230	0	5.661	15.029	28.540	0	0	0.494	0	0	0.217
Apr	52.348	0	10.824	31.732	9.792	0	0	0.331	0	0.290	0.162
May	47.339	0	24.850	12.383	10.106	0	0	0	0	0	0.228
Jun	1.108	0	0	0	1.108	0	0	0.285	0	0	0.258
Sub-total	238.218	0	76.960	72.334	88.92418	0	0	1.575	0	0.29	1.037
Jul	0.934	0	0	0	0.934	0	0	0.360	0	0	0.288
Aug	1.656	0	0.432	0	1.224	0	0	0	0	0	0.510
Sep											
Oct											
Nov											
Dec											
Total	983.970	0	161.083	270.626	552.26155	53.939	0	4.708	0.007	34.045	6.687

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

Appendix I

MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works - Contract 7Contract No.:

NE/2014/03

Monthly Summary Waste Flow Table for <u>2017</u> (year)

		Actual Quan	tities of Inert C&I	O Materials Generation	ted Monthly		A	Actual Quantities of	Inert C&D Waste	s Generated Month	ly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0	0	0	0	0	0	0.1	0.05	0.001	0	0.01
Feb	0	0	0	0	0	0	0.5	0.04	0.001	0	0.015
Mar	0.822	0	0	0	0.822	0	2.2	0.04	0.001	0	0.025
Apr	1.473	0	0	0	1.473	0	3.1	0.04	0.001	0	0.02
May	1.129	0	0	0	1.129	0	4.5	0.04	0.001	0	0.03
June	0.317	0	0	0	0.317	0	4	0.04	0.001	0	0.04
Sub-total	3.741	0	0	0	3.741	0	14.4	0.25	0.006	0	0.14
July	0.931	0	0	0	0.931	0	2	0.04	0.001	0	0.025
Aug	0	0	0	0	0	0	2.5	0.04	0.001	0	0.01
Sept											
Oct											
Nov											
Dec											
Total	4.672	0	0	0	4.672	0	18.9	0.33	0.008	0	0.175

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for <u>2017</u> [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of Ine	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	3.160	0.000	2.003	0.000	1.157
Feb	1.374	0.000	0.249	0.000	1.125
Mar	0.548	0.000	0.054	0.000	0.494
Apr	4.136	0.013	1.139	0.000	2.984
May	4.201	0.000	1.191	0.000	3.010
Jun	9.813	0.000	1.317	0.000	8.496
Sub-total	23.230	0.013	5.953	0.000	17.264
Jul	9.101	0.000	1.223	0.000	7.878
Aug	6.341	0.000	2.532	0.000	3.809
Sep	-	-	-	-	-
Oct	-	-	-	-	-
Nov	-	-	-	-	-
Dec	-	-	-	-	-
Total	38.672	0.013	9.708	0.000	28.951

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Timber		Metals		Paper/ cardboard packaging		Plas (see N		Chemica	Chemical Waste		ecyclable (see Page 3)	General Refuse disposed of at Landfill
	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000kg)		(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	458.150	458.150	0.560	0.560	0.058	0.058	0.000	0.000	0.024	0.024	0.481
Feb	0.000	0.000	177.180	177.180	0.370	0.370	0.036	0.036	0.000	0.000	0.008	0.008	0.280
Mar	0.000	0.000	97.370	97.370	3.380	3.380	1.573	1.573	0.000	0.000	0.036	0.036	0.423
Apr	0.000	0.000	148.110	148.110	0.300	0.300	1.223	1.223	0.000	0.000	29.795	29.795	0.358
May	0.000	0.000	405.500	405.500	0.440	0.440	0.040	0.040	0.000	0.000	0.006	0.006	0.644
Jun	0.000	0.000	338.580	338.580	0.710	0.710	0.036	0.036	0.000	0.000	0.002	0.002	0.878
Sub-total	0.000	0.000	1624.890	1624.890	5.020	5.020	2.926	2.926	0.000	0.000	29.871	29.871	3.062
Jul	0	0	296.54	296.54	0.65	0.65	1.040	1.040	0.000	0.000	0.002	0.002	1.651
Aug	0	0	239.72	239.72	0.700	0.700	0.000	0.000	0.000	0.000	0.000	0.000	1.554
Sep	-	-	-	-	-	-	-	-	-	-	-	-	-
Oct	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	0	0	2161.150	2161.150	6.370	6.370	3.966	3.966	0.000	0.000	29.872	29.872	6.266

Architectural Services Department

Description of mod	le and details of recycling if	any for the month e.g. XX	K kg of used timber was se	ent to YY site for transform	nation into fertilizers
81.1 tons of scrap metals from LCAL and 158.62 tons of scrap metals from subcontractors were sent to Prosperity Metal Recycle Limited, Hop Hing Metal Works and Wai Hung for recycling.	700kg of papers were sent to Wai San for recycling.				

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

(2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include:	emission generated	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 Good site management The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 					
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

		intorning and Addit Mandal					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding					
		Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit.					
		Blasting					
		The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME	To minimize the	Contractors	Construction	During	EIA recommendation,
	.4.1.4 3.1	Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	construction air- borne noise impact		Work Sites	Construction	EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4 3	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

			Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation,
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

	ientai wor	nitoring and Audit Manual	Objectives of the				
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Vater Qu	uality Impa	ct (Construction)					
5.6.1.1	4.1	 Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of 	To control site runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nel.		& Main Concerns to address	measure?	measure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	-	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
		ganten ganten ganten ganten ganten	grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironmenta	al Monitc	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for th measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	-	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.		Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref. EM&A Ref. Ref.		Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to
			to address	measure?			achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3			To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste Ma	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	To minimize adverse environmental impact	Contractor	Construction works sites (general)	Construction Phase	EIA recommendation Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No.
		 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 					19/2005, Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref. EM&			Objectives of the Recommended Measure	Who to implement the	Location of the	When to implement the	What requirements or standards for the	
	nei.		& Main Concerns to address	measure?	measure	measure?	measure to achieve?	
		such odour is not anticipated to be an issue to distant sensitive receivers						
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 						
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 						
		 Designate different locations for storage of C&D material to enhance reuse 						
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 						
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 						
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 						
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction works sites (General)	Construction Phase	EIA recommendation and Waste Disposal Ordinance	
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes					
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 						
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 						
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 						
		Plan and stock construction materials carefully to minimise amount						

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-ma	il
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	18 Augus	tt 2017
Our Ref	TCS00694/13/300/F1184	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of Locations AM5a on 29 July 2017			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1140 dated 4 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl. c.c.

> Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC)

Fax: 2251 0698

By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project	CE 45/2008				
Date	29 July 2017				
Location	AM5a				
Time	00:00 to 24:00				
Parameter	24 hour TSP ($\mu g/m^3$)				
Action Level	143				
Limit Level	260				
Measured Level	188				
Exceedance	Action Level				
Investigation Results, Recommendations & Mitigation Measures	1. According to the site information provided by the Contractor of Contract 6 (CCKJV), construction activities carried out at works area adjacent to AM5a were mainly bridge segment erection at Bridge D. The monitoring location AM5a and its related works area are shown in Figure 1.				
	2. Joint site inspection by the RE, IEC, CCKJV and ET was conducted on 3 and 10 August 2017 at Bridge D for the status of environmental performance and site condition. The observations during site inspection are summarized below.				
	 (a) Dust Monitoring Station AM5a was set up next to a village house of Ping Yeung Village. The closest works area were the proposed Bridge D and Ping Yeung Interchange under Contract 6. (<i>Photo 1 and Figure 1</i>) 				
	(b) The major construction activities carried out was bridge segment erection and no dusty work and stockpile of dusty material was observed within the works area. The road surface was mostly paved with gravels to minimise generation of dust during vehicle movement. (<i>Photo 2</i>)				
	(c) There is a concrete paved public road between AM5a and Bridge D and no muddy trails and dusty material was observed on the road surface. (<i>Photo 3</i>)				
	3. As advised by CCKJV, as dust suppressive measures, watering of road surface by water tank was provided in works area and the adjoin road every day. Moreover, manual cleaning of the access road and site exit was carried out regularly to maintain the road cleanliness. (<i>Photo 4</i>)				
	4. Having reviewed the Air Quality Health Index (AQHI) recorded by EPD, the daily maximum AQHI on 29 July 2017 at the closest air monitoring station Tai Po was ranged from 4 to 10+ which indicated very moderate to serious concentration of ambient air pollutant. Based on the AQHI, it is consideration that the localized air quality was moderate to severe condition.				

5.	There were no exceedances recorded in the subsequent air quality monitoring including 1-hour and 24-hour TSP in August 2017. In our investigation, it is considered that the 24-hr TSP exceedances at AM5a on 29 July 2017 was a short-term impact and unlikely caused by the works under the project.
6.	The Contractor should continually implement the dust mitigation measures in full gear as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Anh			
Date :	18 August 2017			

Photo Record

Photo 1

Dust Monitoring Station AM5a is located in a village house of Ping Yeung Village and the closest works area under Contract 6 was the proposed Bridge D and Ping Yeung Interchange.

The major construction activities carried out was bridge segment erection and no dusty work and stockpile of dusty material was observed within the works area. The road surface was mostly paved with gravels to minimise generation of dust during vehicle movement.

Photo 3

There is a concrete paved public road between AM5a and Bridge D and no muddy trails and dusty material was observed on the road surface.

Photo 4

As dust suppressive measures, watering of road surface by water tank was provided in works area and the adjoin access road every day. Moreover, manual cleaning of the access road and site exit was carried out regularly to maintain the road cleanliness.

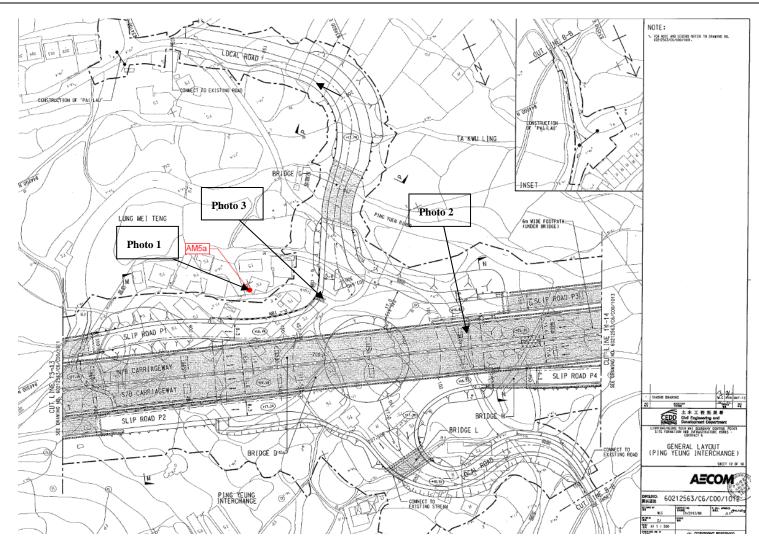


Figure 1 Location Map for Air Monitoring Location AM5a and works area under Contract

То	Mr. Vincent Chan	Fax No	By e-m	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	16 Augu	ıst 2017
Our Ref	TCS00694/13/300/ F1185	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 2 and 3 August 2017			
If you do not	raceive all pages or transmission is illegible please	contact the originat	tor on (852)	2050-6050 to re-send Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1135 dated 3 August 2017 TCS00694/13/300/F1179 dated 9 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.Mr. David Chan (EPD)Fax:2685 1155Mr. Steve Lo (CE/BCP, NTWDO, CEDD)Fax:3547 1659Mr. Simon Leung (ER of C6/ AECOM)Fax:2251 0698Mr. Antony Wong (IEC, SMEC)By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008				
Date		2 .	Aug 2017	3 Aug 2017	2 Aug 2017	3 Aug 2017
Location				WM2	A(a)	
Time			10:20	10:20	10:20	10:20
Parameter			Turbidity (I	NTU)	Suspended sol	ids (mg/L)
Action Leve	l	24.9 A	ND 120% of u station of the s	pstream control ame day	14.6 AND 120% control station of	
Limit Level	1	33.8 A	ND 130% of u station of the s	pstream control ame day	17.3 AND 130% control station of	
Measured	WM2A-C		706.5	25.2	471.0	9.0
Levels	WM2A(a)		905.5	118.5	621.5	82.0
Exceedance			tion Level	Limit Level	Limit Level	Limit Level
Investigation Recommend Mitigation N	ations &	Co Au seg <i>Fi</i> g 2. Ac	ontract 6 (CCK) agust 2017 at B gment erection. gure 1.	JV), construction ridge D (upstrear The monitoring lo site photo taken l	n provided from the activities carried out n of WM2A(a)) wer ocations and works at by the monitoring tea hroughout the river of	t during 2 and 3 e mainly bridge rea are shown in am on 2 August
		rai obs (P i	nstorm. (<i>Photo</i> served at WM2 <i>hoto 4 to 6</i>)	<i>i to 3</i>) On 2A(a) and the wa	water sampling was 3 August 2017, mu ater quality at WM2	ddy water was A-C was clear.
		Au 3 A thr sec Au mu	igust 2017 in w August 2017. oughout the r liment and mu igust 2017, it iddy water traj	hich Amber Rains Under the influe iver course was ddy runoff from was observed that	ion from HKO, it ra storm Warning Signa ence of rainstorm, the highly affected by the surrounding enve at the nylon dam we n dam was flowing	l was hoisted on he water quality the stirred up rironment. On 3 as deflated and
		4. Joint site inspection among the RE, IEC, CCKJV and ET was conducted at Bridge D and adjoin river course on 3 August 2017, the observation during the site inspection is summarized below.				
		(a)			ut at Bridge D was no discharge due to	
		(b)		iver water was sli truction work. (<i>Pl</i>	ghtly turbid even wi <i>hoto 9</i>)	thout the impact
		(c)	Wastewater tr (<i>Figure 1</i>)	eatment facilites	were properly provid	ed for Bridge D
		(d)	To minimize	the muddy runo	ff from the site, co	ncrete block as

a	
	temporary bund was provided align the river course. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff. (<i>Photo 10</i>)
	5. In our investigation, the implementation of water mitigation measures on site was in order and no adverse water quality impact was observed. It is considered that the exceedances on 2 and 3 August 2017 was related to impact of rainstorm and not caused by the works under Contract 6.
	5. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. Additional water quality monitoring were conducted on 4 and 5 August 2017 and no exceedances were recorded in both days. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Auch	
Date :	16 August 2017	

Photo Record

Photo 1

On 2 August 2017, muddy water was observed at WM2A(a) and the water sampling was conducted after rainstorm.

Photo 2

On 2 August 2017, muddy water was observed at WM2A-C and the water sampling was conducted after rainstorm.

Photo 3

The water samples collected at WM2A(a) and WM2A-C on 2 August 2017 were turbid.

Photo 4

On 3 August 2017, muddy water was observed at WM2A(a).

194

WM ZAA

644

Photo 5	Photo 6
On 3 August 2017, the water quality observed at WM2A-C was clear.	The water samples collected at WM2A(a) and WM2A-C on 3 August 2017.

Photo 7

On 3 August 2017, it was observed that the nylon dam was deflated and muddy water was flowing to downstream before the water sampling.

Photo 9

During site inspection on 3 August 2017, it was observed that the existing river water was slightly turbid even without the impact from the construction work.

Photo 8

During site inspection on 3 August 2017, construction works carried out at Bridge D was mainly segment installation and there was no discharge due to nature of works.

Photo 10

To minimize the muddy runoff from the site, concrete block as temporary bund was provided align the river course. Moreover, the slope adjacent to river course was covered with tarpaulin sheet to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1185.doc Action-United Environmental Services & Consulting

То	Mr. Vincent Chan	Fax No	By e-ma	il	
Company	CRBC-CEC-Kaden JV				
сс					
From	Nicola Hon	Date	18 Augus	st 2017	
Our Ref	TCS00694/13/300/ F1186a	No of Pages	4	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM1 on 2 August 2017				
If you do not	receive all pages or transmission is illegible please of	contact the originate	or on (852) 2	959-6059 to re-send Shoul	

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1134 dated 3 August 2017 TCS00694/13/300/F1172 dated 9 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

-	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45	5/2008	
Date		2 August 2017		
Location		WM1		
Time			10:10	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
		51.3 AND 120% of upstream control	54.5 AND 120% of upstream control	
Action Lev	el	station of the same day	station of the same day	
		67.6 AND 130% of upstream control	64.9 AND 130% of upstream control	
Limit Leve	1	station of the same day	station of the same day	
Measured	WM1-C	51.2	61.0	
Levels	WM1	95.7	87.5	
Exceedance		Limit Level	Limit Level	
Investigatio			provided from CCKJV, construction	
Results,			ust 2017 near Boundary Control Point	
Recommen	dations		onstruction of underpass and depressed	
& N	Aitigation		nd works area are shown in <i>Figure 1</i> .	
Measures		 observed throughout the river courthe water sampling was conducted. Weekly site inspection was carried on 3 August 2017, it was observed carried out adjacent to the river impact was observed. The slope river was covered with vegetation to min was observed that wastewater treatinglemented and functioned proper observed that large amount of rub gate near WM1 which suspected flue (Photo 6) 	d out by the RE, IEC, CCKJV and ET ed that no construction activities were course and no adverse water quality next to the river course and works area nimize runoff. (Photo 3) Moreover, it atment facility (AquaSed SH-20) was erly. (Photo 4 & 5) However, it was obish was cumulated near at the water ushed from upstream during rainstorm.	
		4. In our investigation, it is considered that the exceedances were resulted by the impact of rain and not due to the works under the Contract.		
		 5. According to the Event and Action, the monitoring frequency at WM1 has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. Additional monitoring was carried out on 3 and 4 August 2017 and no exceedances were triggered. Nevertheless, the Contractor should continue fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual. 		

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aug	
Date :	18 August 2017	

Photo Record

Photo 1

On 2 August 2017, muddy water was observed at WM1 and the water sampling was conducted after rainstorm.

Photo 3

Weekly site inspection was carried out by the ET on 3 August 2017, no adverse water quality impact was observed. The slope next to the river course and works area was covered with vegetation to minimize runoff.

Photo 2

On 2 August 2017, muddy water was observed at WM1-C and the water sampling was conducted after rainstorm.

Wastewater treatment facility (AquaSed SH-20) was implemented and functioned properly.

Photo 5

Wastewater treatment facility (AquaSed SH-20) was implemented and functioned properly.

Weekly site inspection was carried out by the ET on 3 August 2017, it was observed that large amount of rubbish was cumulated near at the water gate near WM1 which suspected flushed from upstream during rainstorm.

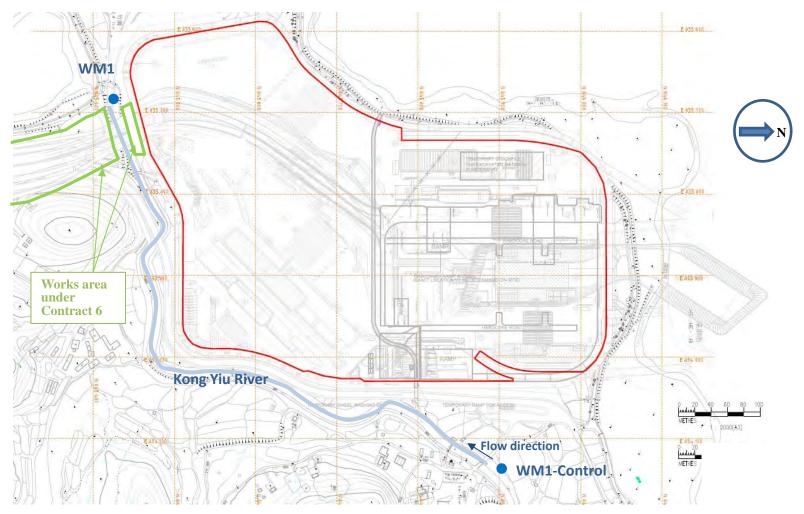


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

Z:\Jobs\2013\TCS00694\300\NOE\IR\F1186a.doc Action-United Environmental Services & Consulting

То	Mr. Jon Kitching	Fax No	2752 069	96
Company	Leighton Contractors (Asia) Limited			
сс				
From	Nicola Hon	Date	28 Augus	tt 2017
Our Ref	TCS00769/15/300/ F0217a	No of Pages	7	(Incl. cover sheet)
RE	Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities Investigation Report of Exceedance of Water Quality at Location WM1 on 2 August 2017			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:-

TCS00769/15/300/F0207 dated 3 August 2017 TCS00769/15/300/F0208 dated 9 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant Encl.

c.c.	Mr. David Chan (EPD)	Fax:	2685 1155
	Mr. William WL Cheng (ASD)		By e-mail
	Mr. Justin Cheung (Ronald Lu)		By e-mail
	Mr. Antony Wong (IEC, SMEC)		By e-mail
	Mr. Simon Leung (ER, AECOM)	Fax:	2674 7732

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Project		CE 45/2008		
Contract		SS C	505	
Location		WM1		
Date		2 Augus	t 2017	
Time		10:1	10	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Lev	പ	51.3 AND 120% of upstream control	54.5 AND 120% of upstream control	
Action Lev	ei	station of the same day	station of the same day	
Limit Leve	1	67.6 AND 130% of upstream control	64.9 AND 130% of upstream control	
		station of the same day	station of the same day	
Measured	WM1-C	51.2	61.0	
levels	WM1	95.7	87.5	
Exceedance	9	Limit Level	Limit Level	
Investigation Results, Recommen & Measures		rebar fixing, erection of formw backfilling they are illustrated in Fi active construction area were not clo	n 2 August 2017 included excavation, ork, concerting, superstructure and igure 1 . It is noted that the majority osed to Kong Yiu River. (Figure 2)	
		2. According to the field photos taken on 2 August 2017, muddy water was observed throughout the river course including WM1 and WM1-C and the water sampling was conducted after rain. (Photo 1 to 2)		
		2017, it is considered that the w construction activities was limited surface runoff would be collected be according to the temporary site generated from the site including perimeter channel and diverted to treatment before discharge. (Figure stockpile was in progress in which excavation and the runoff generation collected by the temporary site dra that the discharge point connecting p	ies and inspection records in August astewater generated from the active . (Photo 3) During rainy day, the by the temporary drainage which built drainage plan. All the wastewater runoff would be passing through the the wastewater treatment plant for 4 & 5) Moreover, exportation of the h the stockpile was compacted after ation from the stockpile would be inage as well. (Photo 6) It is noted bublic drainage was located at the west er would not flow to WM1 and its	
		4. In our investigation, it is considered the impact of the rain and unlikely d	d that the exceedances were related to ue to the works under the Contract.	
		exceedances were triggered in con was carried out on 3 and 4 Aug triggered. Nevertheless, the Contra	mit level exceedance recorded until no secutive days. Additional monitoring just 2017 and no exceedances were actor should continue fully implement recommended in the implementation	

Investigation Report on Action or Limit Level Non-compliance

Prepared By :	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Anh				
Date :	28 August 2017				

Photo 1

On 2 August 2017, muddy water was observed at WM1 and the water sampling was conducted after rainstorm.

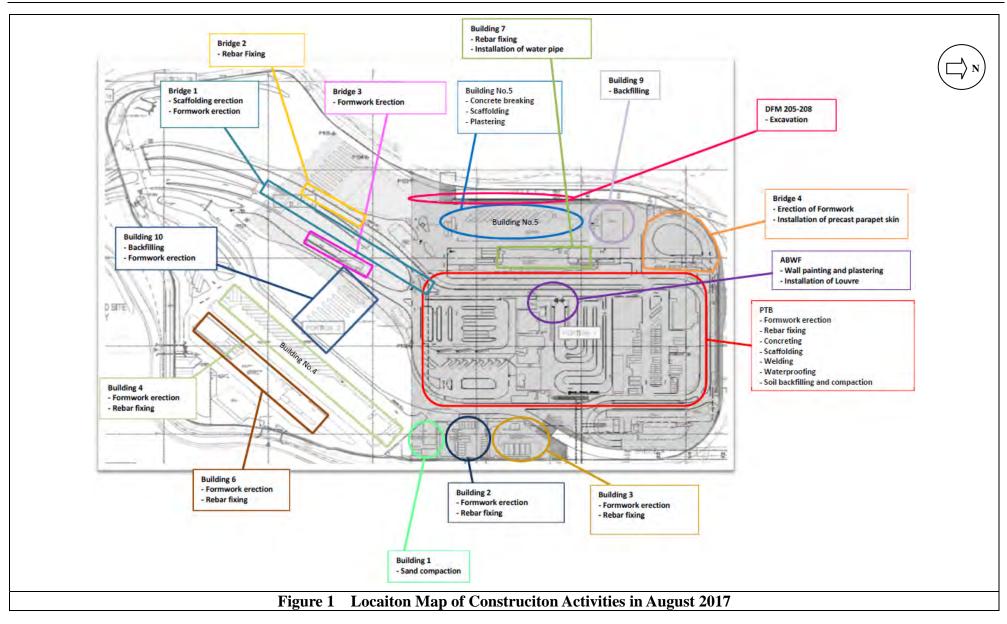
Photo 3

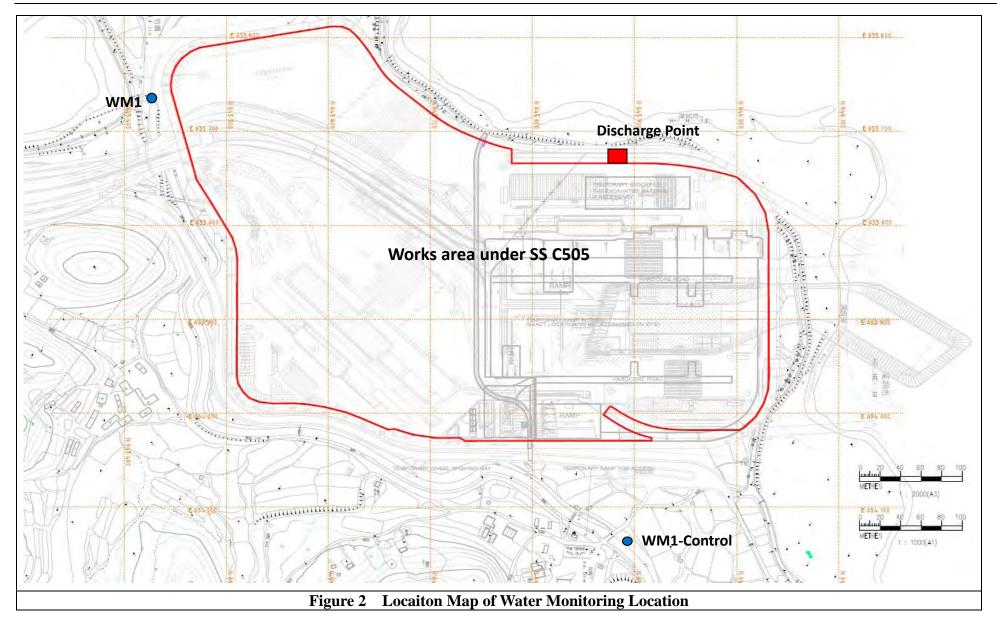
During site inspection on 2 August 2017, it was observed that wastewater generated from the active construction activities was limited.

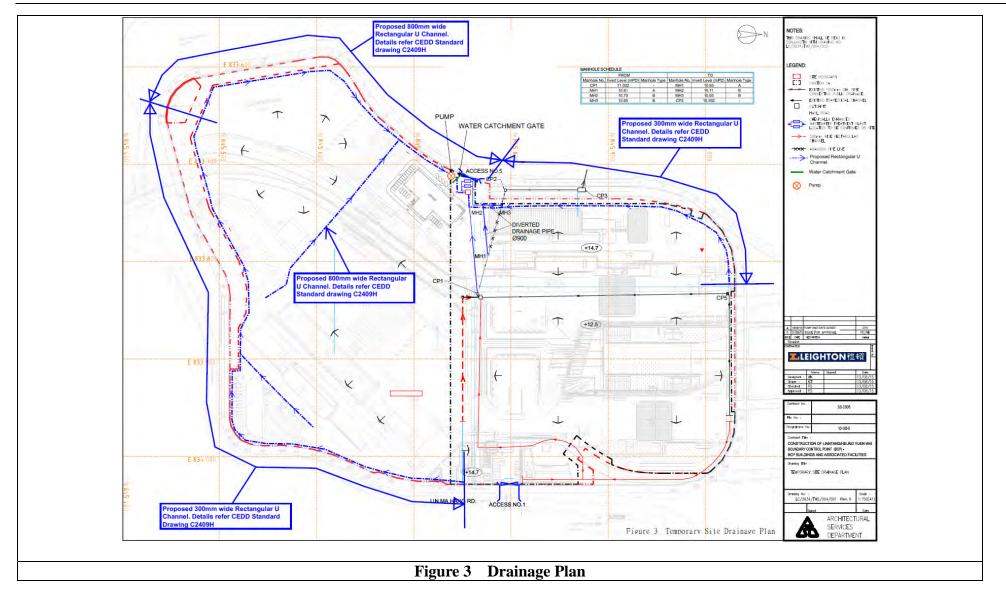
Photo 2

On 2 August 2017, muddy water was observed at WM1-C and the water sampling was conducted after rainstorm.

During rainy day, the surface runoff would be collected by the temporary drainage and all the wastewater generated from the site including runoff would be passing through the perimeter channel and diverted to the wastewater treatment plant for treatment before discharge.


Photo 5


During rainy day, the surface runoff would be collected by the temporary drainage and all the wastewater generated from the site including runoff would be passing through the perimeter channel and diverted to the wastewater treatment plant for treatment before discharge.



Exportation of the stockpile was in progress in which the stockpile was compacted after excavation and the runoff generation from the stockpile would be collected by the temporary site drainage as well.

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7	077			
Company	Chun Wo Construction Ltd						
сс							
From	Nicola Hon	Date	25 Augu	ıst 2017			
Our Ref	TCS00670/13/300/ F1194a	No of Pages	8	(Incl. cover sheet)			
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM4 on 10, 11 and 12 August 2017 (Contract 3)						

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1174 dated 10 August 2017 TCS00670/13/300/F1176 dated 11 August 2017 TCS00670/13/300/F1182 dated 14 August 2017 TCS00670/13/300/F1187 dated 17 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Lu Pei Yu (CE/BCP, NTEDO, CEDD)	Fax	3547 1659
	Mr. Alan Lee (ER of C3, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project				CE 4:	5/2008		
		10 Aug	11 Aug	12 Aug	10 Aug	11.4 17	12 Aug
Date		17	17	17	17	11 Aug 17	17
Location				W	M4		
Time		11:20	11:20	11:48	11:20	11:20	11:48
Parameter		T	urbidity (NT	U)	Suspe	ended Solids ((mg/L)
		35.2 AN	D 120% of	upstream	-	ND 120% of u	
Action Level			control station of the same day control station of the same			•	
Limit Level		38.4 AN	ID 130% of 1	upstream	45.5 Al	ND 130% of u	upstream
Lillint Level			tation of the	same day	control	station of the	same day
Measured	WM4-CA	9.8	6.9	6.8	8.0	6.0	2.5
Level	WM4-CB	26.6	16.5	14.1	19.5	24.0	11.0
	WM4	471.5	367.5	104.5	289.5	136.0	76.5
Exceedance		Limit	Limit	Limit	Limit	Limit	Limit
		Level	Level	Level	Level	Level	Level
Recommendat	 According to the site information provided by the C C3 (Chun Wo), the construction activities carried of and 12 August 2017 were mainly general site were excavation and erection of working platform which the past months and these activities would not excessive wastewater. 				es carried out eral site worl form which th would not	t on 10, 11 ks such as he same as generated	
		 According to the site photos taken by ET during monitoring on 10, 11 and 12 August 2017, turbid water was observed at impact station WM4. For control station, the water quality at WM4-CA were clear whereas at WM4-CB was slightly turbid. (Photo 1 to 9 and Figure 1) 					
	3. Upon detection of the turbidity exceedance, inspection carried out at upper part of the river course. It was of that the water flowing from box culverts ID4 and ID5 (min the site) were clear. (Photo 10 to 12 and Figure 1) How the source of muddy water detected at WM4 could identified.					s observed (middle of However,	
	 4. As advised by Chun Wo, since July 2017, they occar recorded unknown source of muddy water attributed to tharea and the muddy water was finally entered Ma Wat Rigot detected at WM4. (Photo 13 & 14) It was suspect the muddy water was via an underground pipe which cort the box culvert in Kiu Tau Road (outside C3) to BC02 Contract 3). (Figure 1) 					to their site t River and pected that connecting	
		conduce exceed potent	cted on 15 lance. The	August 20 inspected an ality impact	017 to in reas include which adja	Chun Wo an vestigate the ed BC02 and acent to the ri rized below.	cause of hotspots of
		(a) The water flowing from box culverts ID4 and ID5 (middle of the site area) were clear. (Photo 15)					
		(b) No adverse water quality impact was observed at the hotspot adjacent to the river course and the site effluent discharged					

into N	Aa Wat River was clear. (Photo 16 & 17)
suspe whicl	ly water was observed at the opening of BC02. It was cted that the muddy water was via an underground pipe a connecting the box culvert in Kiu Tau Road (outside b BC02 (under Contract 3). (Photo 18)
	ly water was observed in an open channel connecting to /at River. (Photo 19)
	open slope was fully covered by tarpaulin sheet and no f from site area was observed. (Photo 20)
the conserved server the conse	rchSD site was found in Kiu Tau Road and it is one of onstruction sites in Kiu Tau Road and adjoined Tai Wo ce Road West. Since the site could not be got in, it was nown whether the muddy water came from that ArchSD other construction sites in Kiu Tau Road or any other es. (Photo 21)
mitigation treatment runoff. 3 was in identified caused by	vestigation, Chun Wo has properly implemented water n measures such as well maintain the wastewater facilities and cover the open slope to minimize muddy In general, the condition of the site area under Contract n order and no adverse water quality impact was . It was considered that the exceedances were likely the unknown source of muddy water attributed outside pundary and not related to the works under Contract 3.
exceed st exceedan consecuti WM4 on should c measures	g to the Event and Action, the monitoring frequency at ation shall be increased to daily due to the limit level ce recorded until no exceedances were triggered in ve days. There were no exceedances triggered at 14 and 15 August 2017. However, the Contractor ontinue to implement the environmental mitigation recommended in implementation schedule in the fanual.
	 (c) Muda suspe which C3) to (d) Muda Ma W (e) The a runof (f) An A the ca Servia not ka site, a sourc 6. In our in mitigation treatment runoff. 1 3 was in identified caused by the site ba 7. According exceed st exceedant consecuti WM4 on should c

Prepared By :	Nicola Hon				
Designation :	Environmental Consultant				
Signature :	Aul				
Date :	25 August 2017				

Photo Record

Photo 1

During water quality monitoring on 10 August 2017, muddy water was observed at WM4.

Photo 3

During water quality monitoring on 10 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 2

During water quality monitoring on 10 August 2017, the water quality at WM4-CA was clear.

Photo 4

During water quality monitoring on 11 August 2017, muddy water was observed at WM4.

Photo 5 During water quality monitoring on 11 August 2017, the water quality at WM4-CA was clear.

Photo 6

During water quality monitoring on 11 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 7

During water quality monitoring on 12 August 2017, muddy water was observed at WM4.

Photo 9

During water quality monitoring on 12 August 2017, the water quality at WM4-CB was slightly turbid.

During water quality monitoring on 12 August 2017, the water quality at WM4-CA was clear.

During water quality monitoring on 10 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

Photo 11

During water quality monitoring on 11 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

Photo 12

During water quality monitoring on 12 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

Photo 13

As advised by Chun Wo, since July 2017, they occasionally recorded unknown source of muddy water attributed to their site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 15

During site inspection on 15 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site area) were clear.

Photo 17

During site inspection on 15 August 2017, it was observed that the site effluent discharged into Ma Wat River was clear.

Photo 14

As advised by Chun Wo, since July 2017, they occasionally recorded unknown source of muddy water attributed to their site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 16

During site inspection on 15 August 2017, no adverse water quality impact was observed at the hotspot adjacent to the river course.

During site inspection on 15 August 2017, muddy water was observed at the opening of BC02. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 19

During site inspection on 15 August 2017, muddy water was observed in an open channel connecting to Ma Wat River.

During site inspection on 15 August 2017, it was observed that the open slope was fully covered by tarpaulin sheet and no runoff from site area was observed.

Photo 21

An ArchSD site was found in Kiu Tau Road and it is one of the construction sites in Kiu Tau Road and adjoined Tai Wo Service Road West. Since the site could not be got in, it was not known whether the muddy water came from that ArchSD site, other construction sites in Kiu Tau Road or any other sources.

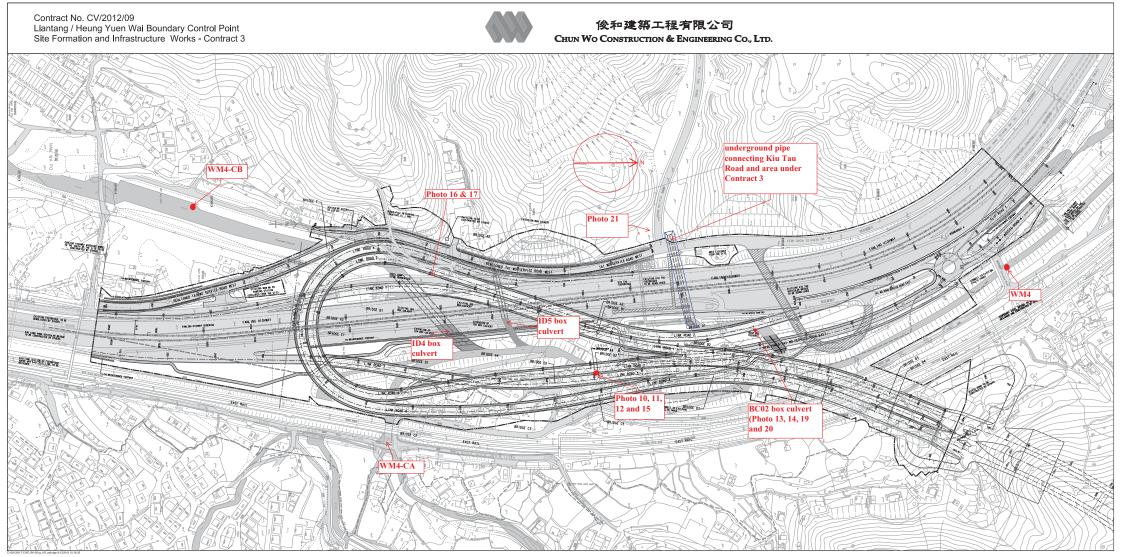


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	25 Aug	ust 2017
Our Ref	TCS00697/13/300/ F1195	No of Pages	8	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of 12 August 2017 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1175 dated 10 August 2017 TCS00670/13/300/F1177 dated 11 August 2017 TCS00670/13/300/F1183 dated 14 August 2017 TCS00670/13/300/F1188 dated 17 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Joe Yip (CE/BCP, NTEDO, CEDD/C2)	Fax:	3547 1659
	Mr. Edwin Ching (RE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project				CE	45/2008			
Date		10 Aug 11 Aug 12 Aug 10 Aug 17 11 Aug 17 12 Aug 17 17 17 17 10 Aug 17 11 Aug 17 12 Aug 17					12 Aug 17	
Location					WM4			
Time		11:20	11:20	11:48	11:20	11:20	11:48	
Parameter		Tur	bidity (NTU	U)	Suspe	nded Solids (mg/L)	
Action Level			O 120% of u	1		20% of upstr		
			tion of the s	•		on of the same		
Limit Level			D 130% of under the state of th			30% of upstr		
	WM4-CA	9.8	6.9	6.8	8.0	on of the same 6.0	2.5	
Measured	WM4-CB	26.6	16.5	14.1	19.5	24.0	11.0	
Level	WM4	471.5	367.5	104.5	289.5	136.0	76.5	
	** 1*14	Limit	Limit	Limit	Limit	Limit	Limit	
Exceedance		Level	Level	Linnt	Level	Linnt	Level	
Investigation	Results,				nation provid			
Recommendation			•		on activities c	•		
Mitigation Mea	sures				2017 included			
0					entilation buil			
		constru	ction site g	enerally has	rd paved to mi	nimize mudd	y runoff.	
		2. Accord	ing to the	site photos	taken by ET	during monit	oring on 10	
		11 and 12 August 2017, turbid water was observed at impact station WM4. For control station, the water quality at WM4-CA were clear						
		 whereas at WM4-CB was slightly turbid. (Photo 1 to 9 and Figure 1) Upon detection of the turbidity exceedance, inspection was 						
					ne river course			
			· ·	•	ulverts ID4 ar			
		were clear. (Photo 10 to 12 and Figure 1) However, the source of muddy water detected at WM4 could not be identified.						
		3. As advised by the Contractor of Contract 3 (Chun Wo), since July						
		2017, they occasionally recorded unknown source of muddy water						
		attributed to their site area and the muddy water was finally entered						
		Ma Wat River and got detected at WM4. (Photo 13 & 14) It was						
		suspected that the muddy water was via an underground pipe which						
		connecting the box culvert in Kiu Tau Road (outside C3) to BC02						
		(under	Contract 3)	. (Figure 1))			
		4. Joint site inspection by the RE, IEC and ET was conducted on 15						
		4. Joint site inspection by the RE, IEC and E1 was conducted on 15 August 2017 to investigate the cause of exceedance. The inspected						
		areas included BC02 and hotspots of potential water quality impact						
		which adjacent to the river course. The findings of the inspection are						
			rized below			-	_	
		(a) Wa	stewater tre	atment fac	ilities implem	ented in Sout	h Portal Site	
		under Contract 2 was functioned properly and the effluent discharged from the site was clear. (Photo 15 & 16)						
		(b) No adverse water quality impact was observed at the hotspot						
				ator quant	j impact was	observed at	ine noispoi	

	adjacent to the river course and the water quality at the discharge point and the adjacent channel was clear. (Photo 17)
	(c) The water flowing from box culverts ID4 and ID5 (Contract 3) were clear. (Photo 18)
	(d) Muddy water was observed at the opening of BC02. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3). (Photo 19)
	(e) Muddy water was observed in an open channel connecting to Ma Wat River. (Photo 20)
	(f) An ArchSD site was found in Kiu Tau Road and it is one of the construction sites in Kiu Tau Road and adjoined Tai Wo Service Road West. Since the site could not be got in, it was not known whether the muddy water came from that ArchSD site, other construction sites in Kiu Tau Road or any other sources. (Photo 21)
5.	. In our investigation, DHK has properly implemented water mitigation measures such as well maintain the wastewater treatment facilities and hard paved most of the site surface. In general, the condition of the South Portal Site under Contract 2 was in order and no adverse water quality impact was identified. It was considered that the exceedances were likely caused by the unknown source of muddy water attributed outside the site boundary and not related to the works under Contract 2.
6.	According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 14 and 15 August 2017. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	25 August 2017

Photo Record

Photo 7

During water quality monitoring on 12 August 2017, muddy water was observed at WM4.

Photo 8 During water quality monitoring on 12 August 2017, the water quality at WM4-CA was clear.

Photo 9

During water quality monitoring on 12 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 10

During water quality monitoring on 10 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (under Contract 3) were clear.

Photo 11

During water quality monitoring on 11 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

Photo 12

During water quality monitoring on 12 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

Photo 13

As advised by Chun Wo, since July 2017, they occasionally recorded unknown source of muddy water attributed to their site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 15

During site inspection on 15 August 2017, it was observed that wastewater treatment facilitates implemented in South Portal under Contract 2 was functioned properly.

Photo 17

No adverse water quality impact was observed at the hotspot adjacent to the river course and the water quality at the discharge point and the adjacent channel was clear.

Photo 14

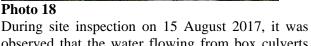

As advised by Chun Wo, since July 2017, they occasionally recorded unknown source of muddy water attributed to their site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 16

During site inspection on 15 August 2017, it was observed that wastewater treatment facilitates implemented in South Portal was functioned properly and the effluent discharged from the site was clear.

observed that the water flowing from box culverts ID4 and ID5 (Contract 3) were clear.

Photo 19

During site inspection on 15 August 2017, muddy water was observed at the opening of BC02. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 21

An ArchSD site was found in Kiu Tau Road and it is one of the construction sites in Kiu Tau Road and adjoined Tai Wo Service Road West. Since the site could not be got in, it was not known whether the muddy water came from that ArchSD site, other construction sites in Kiu Tau Road or any other sources.

During site inspection on 15 August 2017, muddy water was observed in an open channel connecting to Ma Wat River.

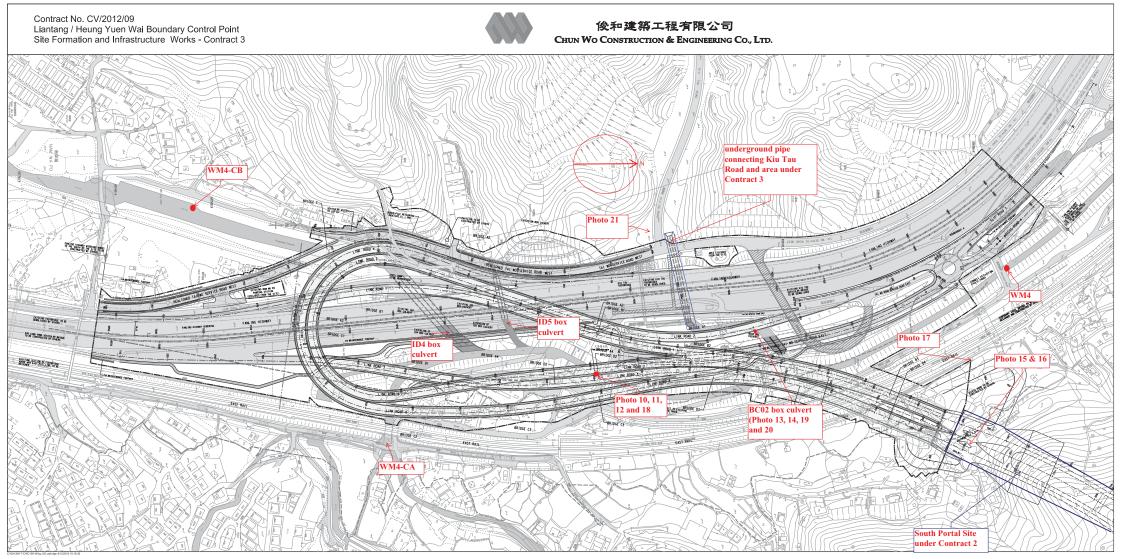


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-ma	il
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	22 August 2017	
Our Ref	TCS00694/13/300/ F1198a	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary O Investigation Report of Exceedance of W 2017 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1136 dated 3 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Steve Lo (CE/BCP, NTEDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008		
Date		2 August 2017		
Location		WM3x		
Time		11:05		
Parameter		Turbidity (NTU)		
Action Leve	el	13.4 AND 120% of upstream control station of the same day		
Limit Level	l	14.0 AND 130% of upstream control station of the same day		
Measured	WM3-C	72.8		
Level	WM3x	114.0		
Exceedance	e	Limit Level		
Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from the Contractor of C6 (CCKJV), the construction activities at South Portal and Wo Keng Shan Park (upstream of WM3x) carried out on 2 August 2017 was mainly bored pile works and construction of Bridge E. The monitoring locations and works areas are illustrated in <i>Figure 1</i> .		
		2. According to the site photo taken on 2 August 2017, turbid water was observed throughout the channel including WM3x and WM3-C and the water quality in the exiting channel was affected by rain. (<i>Photo 1 to 2</i>)		
		3. According to weather record from HKO, it rained on 2 August 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day. (<i>Photo 1 and Figure 1</i>)		
		4. Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 3 August 2017. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear. (<i>Photo 3</i>) The construction site was general in order and no adverse water quality impact was observed. (<i>Photo 4</i>) Moreover, it was observed that de-sludge of the wastewater treatment tank was conducted by the Contractor to maintain the treatment system to function efficiently. (<i>Photo 5</i>) Based on the above investigation, it is considered that the exceedances were due to rain and unlikely caused by the works under Contract 6.		
		5. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 3 and 4 August 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.		

Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.			
Prepared By :	Nicola Hon			
Designation :	Environmental Consultant			
Signature :	Anh			
Date :	22 August 2017			

Photo 1

During water sampling on 2 August 2017, muddy water was observed at WM3x.

Photo 2 During water sampling on 2 August 2017, muddy water was observed at WM3-C.

Photo 3

Joint site inspection was conducted on 3 August 2017. It was observed that wastewater treatment facilities were properly in place and the discharge water was clear.

Photo 5

Joint site inspection was conducted on 3 August 2017. It was observed that de-sludge of the wastewater treatment tank was conducted to maintain the treatment system to function efficiently.

Photo 4

Joint site inspection was conducted on 3 August 2017. The construction site was general in order and no adverse water quality impact was observed.

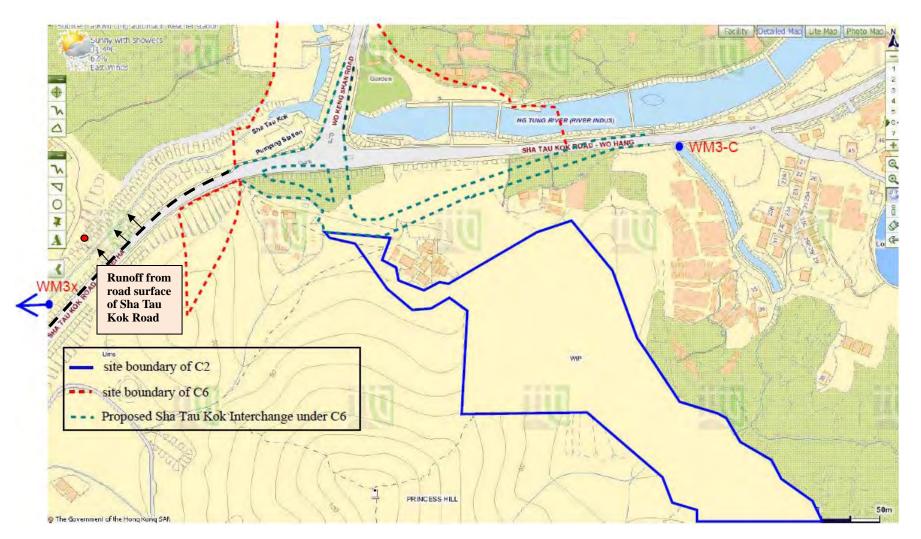


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	22 August 2017	
Our Ref	TCS00697/13/300/ F1199a	No of Pages	4	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1137 dated 3 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Raymond Leong (CE/BCP, NTWDO, CEDD)	Fax:	3547 1659
	Mr. Edwin Ching (CRE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

D • ·					
Project		CE 45/2008			
Date		2 August 2017			
Location		WM3x			
Time					
Parameter		Turbidity (NTU)			
Action Level		13.4 AND 120% of upstream control station of the same day			
Limit Level		14.0 AND 130% of upstream control station of the same day			
Measured	WM3-C	72.8			
Level	WM3x	114.0			
Exceedance	•	Limit Level			
Investigatio Results, Recommend & N Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 2 August 2017 at upstream of WM3x were building internal structure, fitting out and E&M activities, installation of curtain wall, construction of fence wall, permanent drainage and underground utilities. The relevant works area under C2 and the water monitoring locations are illustrated in Figure 1 .			
		2. According to the site photo taken on 2 August 2017, turbid water was observed throughout the channel including WM3x and WM3-C and the water quality in the exiting channel was affected by rain. (<i>Photo 1 to 2</i>)			
		3. According to weather record from HKO, it rained on 2 August 2017 and the water quality in the river course was deteriorated by rain and stirred up sediment. Moreover, it was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day. (<i>Photo 1 and Figure 1</i>)			
		4. During weekly site inspection with DHK on 4 August 2017, it was observed that wastewater generated from the construction works of Admin Building was limited and the adjacent channel was clear. (<i>Photo 3 & 4</i>) In addition that the site area of Admin Building was mostly hard paved, no adverse water quality impact was identified during site inspection. (<i>Photo 5</i>) Based on the above investigation, it is considered that the exceedances were likely to be caused by rain and not related to the works under Contract 2.			
		5. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 3 and 4 August 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.			
Prepared By	y:	Nicola Hon			
Designation	:	Environmental Consultant			
Signature :		Anh			

22 August 2017

Date :

Photo 1

During water sampling on 2 August 2017, muddy water was observed at WM3x.

Photo 2

During water sampling on 2 August 2017, muddy water was observed at WM3-C.

Photo 3

During weekly site inspection on 4 August 2017, it was observed that the river channel adjacent to the site was clear.

Photo 4

During weekly site inspection on 4 August 2017, it was observed that the river channel adjacent to the site was clear.

Photo 5

During weekly site inspection on 4 August 2017, it was observed that wastewater generated from Admin Building was limited. The site area was mostly hard paved and no adverse water quality impact was identified during site inspection.

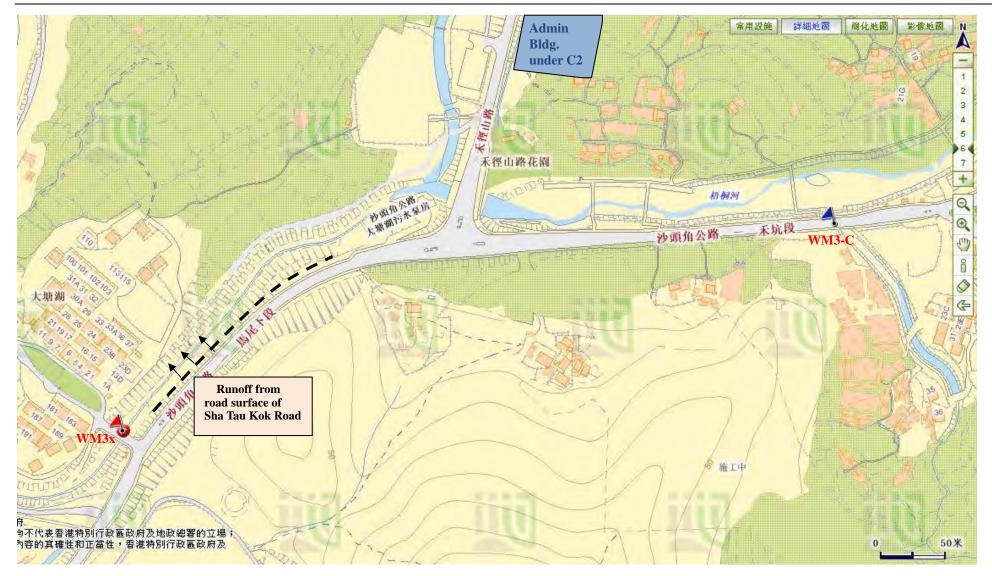


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7	077
Company	Chun Wo Construction Ltd			
сс				
From	Nicola Hon	Date	11 Septe	ember 2017
Our Ref	TCS00670/13/300/ F1223a	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of V August 2017 (Contract 3)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1196 dated 17 August 2017 TCS00670/13/300/F1206 dated 24 August 2017 TCS00670/13/300/F1208 dated 24 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Lu Pei Yu (CE/BCP, NTEDO, CEDD)	Fax	3547 1659
	Mr. Alan Lee (ER of C3, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008			
Date		16 Aug 17	24 Aug 17	16 Aug 17	
Location			WM		
Time		11:20	11:35	11:20	
Parameter		Turbidity (NTU)		Suspended Solids (mg/L)	
		35.2 AND 120%	· · · · · · · · · · · · · · · · · · ·	39.4 AND 120% of upstream	
Action Level		control station of	·	control station of the same day	
		38.4 AND 130% of upstream		45.5 AND 130% of upstream	
Limit Level		control station of	•	control station of the same day	
	WM4-CA	5.5	22.1	6.0	
Measured	WM4-CB	29.7	30.7	72.0	
Level	WM4	139.5	79.6	99.5	
Exceedance		Limit Level	Limit Level	Limit Level	
Investigation	Results,			n provided by the Contractor of	
Recommendat Mitigation Me	tions &	C3 (Chun Wo), 24 August 20 excavation and	the construction 17 were mainly erection of work hs and these a	activities carried out on 16 and general site works such as ing platform which the same as ctivities would not generated	
		 According to the site photos taken by ET during monitoring on 16 August 2017, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA was clear and at WM4-CB was slightly turbid. (Photo 1 to 3 & Figure 1) On 24 August 2017, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA and WM4-B were slightly turbid. (Photo 4 to 6 & Figure 1) Joint site inspection by the RE, IEC, Chun Wo and ET was 			
		conducted on 16 and 24 August 2017 at the potential hotspots for investigation. The findings of the inspection are summarized below.			
		 (a) On 16 August 2017, the water flowing from box culverts ID4 and ID5 (middle of the site area) were clear. (Photo 7) However, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. (Photo 8) It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3). (Figure 1) Moreover, muddy water was observed in an open channel connecting to Ma Wat River. To minimize the site runoff, the open slope was fully covered by tarpaulin sheet and no runoff from site area was observed. (Photo 9) 			
		contaminate be discharg of the viad stopped the	ed runoff from the ed into the river n uct deck surface washing activity	e morning of 16 August 2017, e deck of viaduct was found to ear Bridge D during jet washing . The Contractor immediately y and it was observed that the in the river was diluted by the	

- 11	
	river water and no spreading too far. (Photo 10) The Contractor had erected sand bags at the edge of the viaduct deck as mitigation measures. (Photo 11)
	 (c) On 24 August 2017, turbid water was observed at the control station WM4-CB and the water flowing from box culverts ID4 and ID5 (middle of the site area) were slightly turbid as well. (Photo 12 & 13) Moreover, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. (Photo 14) It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3). (Figure 1)
	(d) No adverse water quality impact was observed at the hotspot adjacent to the river course. (Photo 15 & 16)
	4. In our investigation, Chun Wo has implemented water mitigation measures such as well maintain the wastewater treatment facilities and cover the open slope to minimize muddy runoff. The deficiency found during site inspection was rectified immediately and no major water quality impact was observed. It was considered that the exceedances were likely caused by the unknown source of muddy water attributed outside the site boundary and partially related to the impact of rain and unlikely due to the works under Contract 3.
	5. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 17, 18, 25 and 26 August 2017. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul.
Date :	11 September 2017

Photo 1

During water quality monitoring on 16 August 2017, muddy water was observed at WM4.

Photo 3

During water quality monitoring on 16 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 5

During water quality monitoring on 24 August 2017, the water quality at WM4-CA was slightly turbid.

Photo 2

During water quality monitoring on 16 August 2017, the water quality at WM4-CA was clear.

Photo 4

During water quality monitoring on 24 August 2017, muddy water was observed at WM4.

Photo 6

During water quality monitoring on 24 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 7

During water quality monitoring on 16 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

On 16 August 2017, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 9

On 16 August 2017, muddy water was observed in an open channel connecting to Ma Wat River. To minimize the site runoff, the open slope was fully covered by tarpaulin sheet and no runoff from site area was observed.

Photo 10

During site inspection in the morning of 16 August 2017, contaminated runoff from the deck of viaduct was found to be discharged into the river near Bridge D during jet washing of the The Contractor viaduct deck surface. immediately stopped the washing activity and it was observed that the contaminated runoff entered in the river was diluted by the river water and no spreading too far.

Photo 11

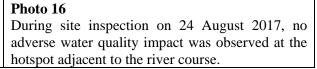
The Contractor had erected sand bags at the edge of the viaduct deck as mitigation measures.

Photo 13

On 24 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site area) were slightly turbid as well.

Photo 12

On 24 August 2017, turbid water was observed at the control station WM4-CB.


Photo 14

On 24 August 2017, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 15 During site inspection on 16 August 2017, no adverse water quality impact was observed at the hotspot adjacent to the river course.

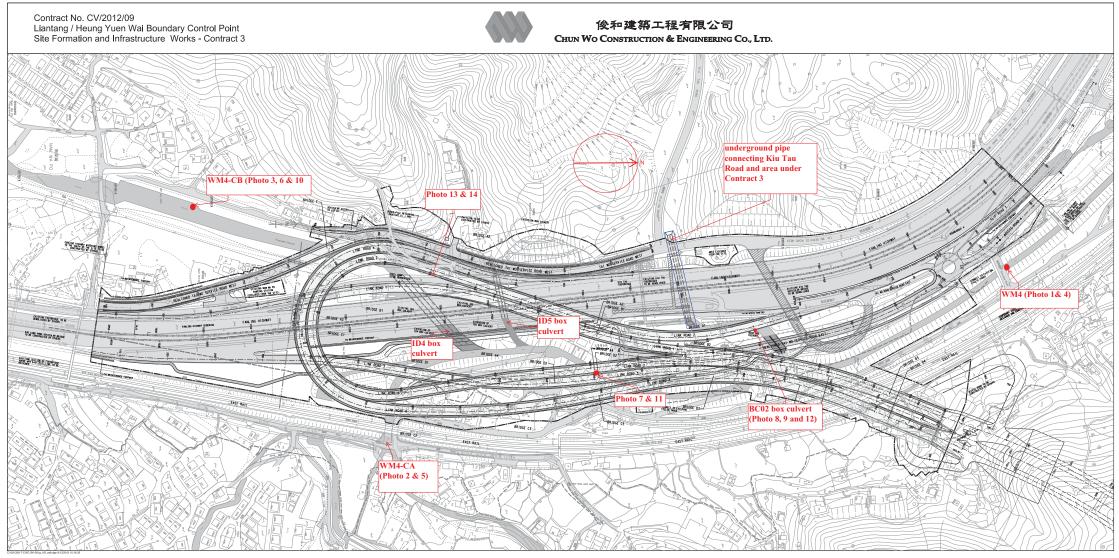


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	by e-m	ail
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	13 September 2017	
Our Ref	TCS00697/13/300/ F1224a	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of August 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1197 dated 17 August 2017 TCS00670/13/300/F1207 dated 24 August 2017 TCS00670/13/300/F1209 dated 24 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Joe Yip (CE/BCP, NTEDO, CEDD/C2)	Fax:	3547 1659
	Mr. Edwin Ching (RE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008			
Date		16 Aug 17	24 Aug 17	16 Aug 17	
Location			WM4	<u> </u>	
Time		11:20	11:35	11:20	
Parameter		Turbid	ity (NTU)	Suspended Solids (mg/L)	
Action Level			of upstream control the same day	39.4 AND 120% of upstream control station of the same day	
			38.4 AND 130% of upstream control45.5 AND 130% of upstream		
Limit Level			the same day	control station of the same day	
	WM4-CA	5.5	22.1	6.0	
Measured	WM4-CB	29.7	30.7	72.0	
Level	WM4	139.5	79.6	99.5	
Exceedance		Limit Level	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided by the Contractor of Contract 2 (DHK), construction activities carried out at South Portal Site on 16 and 24 August 2017 included tunnel excavation, lining and internal structure and ventilation building superstructure. The construction site generally hard paved to minimize muddy runoff. According to the site photos taken by ET during monitoring on 16 August 2017, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA was clear and at WM4-CB was slightly turbid. (Photo 1 to 3 & Figure 1) On 24 August 2017, turbid water was observed at impact station WM4 whereas the water quality at control stations WM4-CA and WM4-B were slightly turbid. (Photo 4 to 6 & Figure 1) Inspection was carried out at the upstream area of WM4 on 16 and 24 August 2017 for investigation. The findings of the inspection 			
		and ID5 However, attributed Ma Wat suspected which con to BC02 water wa River. To covered I observed.	ugust 2017, the water (middle area of Con it was observed that to site area and the n River and got detecto that the muddy water (under Contract 3). s observed in an oper o minimize the site re by tarpaulin sheet and (Photo 9) ugust 2017, turbid water	r flowing from box culverts ID4 htract 3) were clear. (Photo 7) unknown source of muddy water muddy water was finally entered ed at WM4. (Photo 8) It was er was via an underground pipe ert in Kiu Tau Road (outside C3) (Figure 1) Moreover, muddy in channel connecting to Ma Wat unoff, the open slope was fully d no runoff from site area was ater was observed at the control r flowing from box culverts ID4	

	 (Photo 10 & 11) Moreover, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. (Photo 12) It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3). (Figure 1)
4.	Moreover, regularly joint site inspection by the RE, DHK, IEC and ET was conducted on 18 and 25 August 2017 to assess the implementation of mitigation measures and environmental performance. The findings of the inspection are summarized below.
	 (a) Wastewater treatment facilities implemented in South Portal Site under Contract 2 was functioned properly and the effluent discharged from the site was clear. (Photo 13 & 14)
	(b) De-sludge of the wastewater treatment tank was carried out regularly to ensure the treatment system function efficiency. (Photo 15)
	(c) The construction site generally hard paved to minimize muddy runoff. No adverse water quality impact was observed at the hotspot adjacent to the river course.
5.	In our investigation, DHK has properly implemented water mitigation measures such as well maintain the wastewater treatment facilities and hard paved most of the site surface. In general, the condition of the South Portal Site under Contract 2 was in order and no adverse water quality impact was identified. It was considered that the exceedances were likely caused by the unknown source of muddy water attributed outside the site boundary and not related to the works under Contract 2.
6.	According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 17, 18, 25 and 26 August 2017. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	13 September 2017		

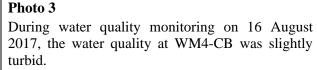


Photo 1

During water quality monitoring on 16 August 2017, muddy water was observed at WM4.

Photo 2

During water quality monitoring on 16 August 2017, the water quality at WM4-CA was clear.

During water quality monitoring on 24 August 2017, muddy water was observed at WM4.

Photo 5

During water quality monitoring on 24 August 2017, the water quality at WM4-CA was slightly turbid.

Photo 6

During water quality monitoring on 24 August 2017, the water quality at WM4-CB was slightly turbid.

Photo 7

During water quality monitoring on 16 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site) were clear.

On 16 August 2017, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 9

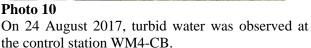

On 16 August 2017, muddy water was observed in an open channel connecting to Ma Wat River. The open slope was fully covered by tarpaulin sheet and no runoff from site area was observed.

Photo 11

On 24 August 2017, it was observed that the water flowing from box culverts ID4 and ID5 (middle of the site area) were slightly turbid as well.

On 24 August 2017, it was observed that unknown source of muddy water attributed to site area and the muddy water was finally entered Ma Wat River and got detected at WM4. It was suspected that the muddy water was via an underground pipe which connecting the box culvert in Kiu Tau Road

Photo 13

Wastewater treatment facilities implemented in South Portal Site under Contract 2 was functioned properly.

Photo 14

During site inspection on 25 August 2017, it was observed that wastewater treatment facilitates implemented in South Portal under Contract 2 was functioned properly.

Photo 15

De-sludge of the wastewater treatment tank was carried out regularly to ensure the treatment system function efficiency.

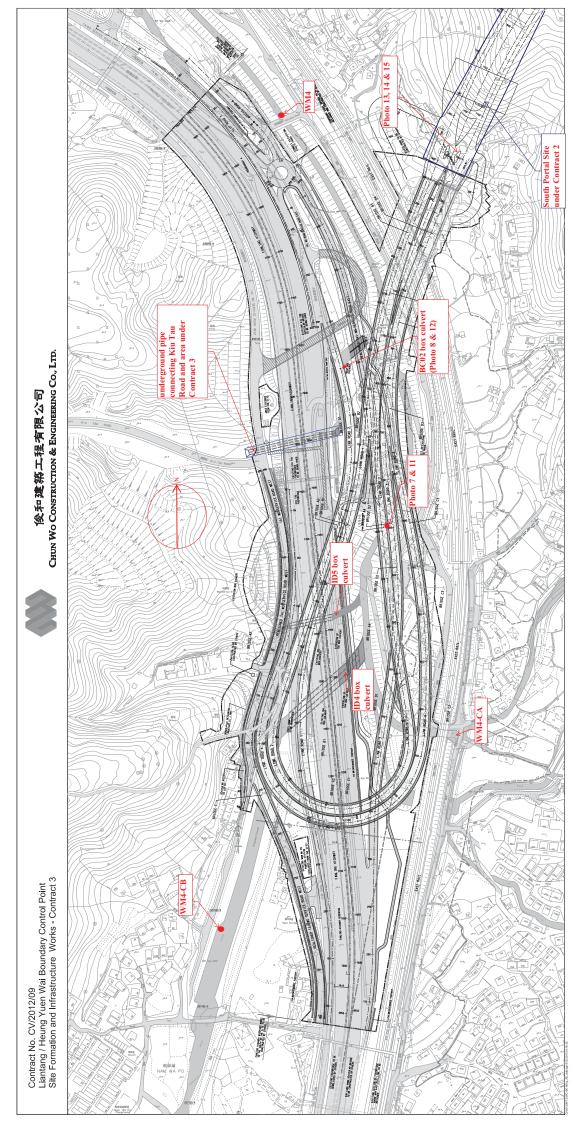


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	11 Septer	mber 2017
Our Ref	TCS00694/13/300/ F1225a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 24 August 2017 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1204 dated 24 August 2017 TCS00694/13/300/F1220 dated 31 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.	Mr. Clara U (EPD)	Fax:	2685 1133
	Mr. Steve Lo (CE/BCP, NTEDO, CEDD)	Fax:	3547 1659
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45	//2008	
Date		24 Aug		
Location		WN		
Time		11:		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Lev	el	13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Leve	1	14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Maggungd	WM3-C	21.0	47.0	
Measured Level	WM3x	81.3	95.0	
Exceedance	l	Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		 According to the site information provided from the Contractor of C6 (CCKJV), the construction activities at South Portal and Sha Tau Kok Interchange (upstream of WM3x) carried out on 24 August 2017 was mainly erection of bridge segment and construction of Bridge E. The monitoring locations and works areas are illustrated in <i>Figure 1</i>. 		
		observed at WM3x was turbid and noted that the monitored channel w road surface of Sha Tau Kok Road	on 24 August 2017, the water quality at WM3-C was slightly turbid. It was vas also received the storm water from d and the water quality at WM3x was specially during rainy day. (<i>Photo 1 to 2</i>	
			he Observatory, it was heavy rainstorm ality in the river course was deteriorated	
		on 24 August 2017 at the hotspots of	Contractor, IEC and ET was conducted of Contract 6 to assess the water quality tion. The findings of the inspection are	
		of South Portal and Sha Tau I from the wastewater treatment	vere properly in place at both works area Kok Interchange. The effluent quality facilities would be regularly checked to harge license requirement. (<i>Photo 3 &</i>	
		Kok Interchange was clear. He	g Tung River which adjacent to Sha Tau owever, cumulative silt was observed at ted to the caused by rainstorm on 23	
		(c) The water quality flowing in t Portal was clear. (<i>Photo 6</i>)	he channel connecting from the South	
		(d) The construction site was generated	al in order and no adverse water quality	

	impact was observed.
	5. Based on the above investigation, it is considered that the exceedances were due to the impact of rainstorm and unlikely caused by the works under Contract 6.
	6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 25 and 26 August 2017. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	11 September 2017

Photo 1

During water sampling on 24 August 2017, turbid water was observed at WM3x. It was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 3

Joint site inspection was conducted on 24 August 2017. It was observed that wastewater treatment facilities were properly in place at the site area of Sha Tau Kok Interchange. No adverse water quality impact was observed.

Photo 2 During water sampling on 24 August 2017, the water quality at WM3-C was slightly turbid.

Joint site inspection was conducted on 24 August 2017. It was observed that wastewater treatment facilities were properly in place at the site area of South Portal. No adverse water quality impact was observed.

Photo 5

Joint site inspection was conducted on 24 August 2017. It was observed that the water flowing in Ng Tung River was clear but cumulative silt was observed at the channel bed.

Photo 6

Joint site inspection was conducted on 24 August 2017. It was observed that the water quality flowing in the channel connecting from the South Portal was clear.

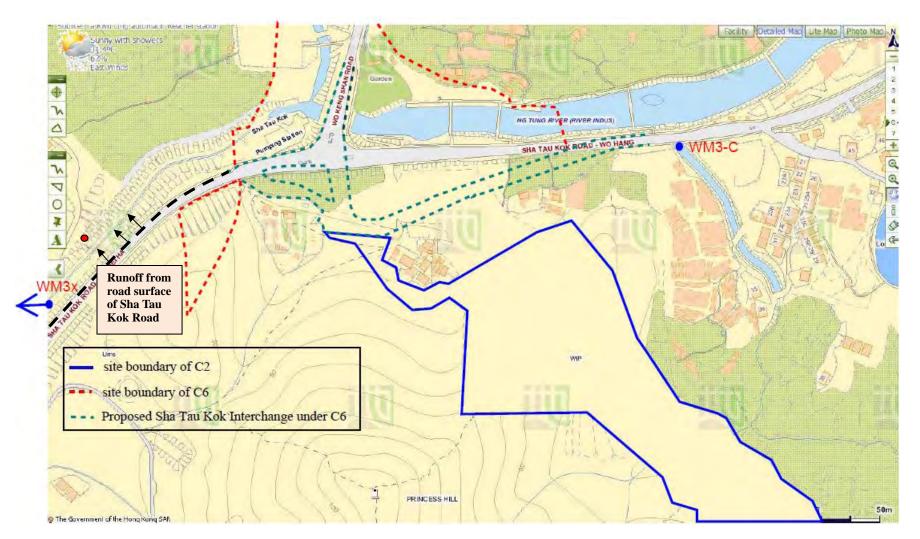


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 3	299
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	12 Sept	ember 2017
Our Ref	TCS00697/13/300/F1226	No of Pages	4	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 24 Augu 2017 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1205 dated 24 August 2017 TCS00694/13/300/F1221 dated 31 August 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c. Mr. Clara U (EPD) Fax: 2685 1133 Mr. Raymond Leong (CE/BCP, NTEDO, CEDD) Fax: 3547 1659 Mr. Edwin Ching (CRE, AECOM) Fax: 2171 3498 Mr. Antony Wong (IEC, SMEC) By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/20	08	
Date		24 August 2017		
Location		WM3x		
Time		11:05		
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
Action Level		13.4 AND 120% of upstream control station of the same day	12.6 AND 120% of upstream control station of the same day	
Limit Level		14.0 AND 130% of upstream control station of the same day	12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	21.0	47.0	
Level	WM3x	81.3	95.0	
Exceedance		Limit Level	Limit Level	
Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 24 August 2017 at upstream of WM3x were building internal structure, fitting out and E&M activities, installation of curtain wall, construction of fence wall, permanent drainage and underground utilities. The relevant works area under C2 and the water monitoring locations are illustrated in <i>Figure 1</i> .		
		2. According to the site photo taken on 24 August 2017, the water quality observed at WM3x was turbid and at WM3-C was slightly turbid. It was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day. (<i>Photo 1 to 2 and Figure 1</i>)		
		 According to weather record from the Ol 23 August 2017 and the water quality in rain and stirred up sediment. Inspectior 24 August 2017 to assess the water investigation. The findings of the inspection 	the river course was deteriorated by was carried out in upstream area on quality impact after rainstorm and	
			ng River which adjacent to Sha Tau er, cumulative silt was observed at the caused by rainstorm on 23 August	
		(b) The water quality flowing in the c Building was clear. (<i>Photo 4</i>)	channel connecting from the Admin	
		4. During weekly site inspection with DHK that wastewater generated from the constr limited and the adjacent channel was clear area of Admin Building was mostly ha impact was identified during site inspect investigation, it is considered that the exc rain and not related to the works under Co	ruction works of Admin Building was ar. (<i>Photo 5</i>) In addition that the site ard paved, no adverse water quality tion. (<i>Photo 6</i>) Based on the above ceedances were likely to be caused by	
		5. According to Event and Action, the mon increased to daily due to the limit 1 exceedances were triggered in consecutiv triggered in the monitoring result on 25 the Contractor should continually full measures as recommended in the impler mitigation measures in the EM&A Manua	evel exceedance recorded until no ve days. There were no exceedances and 26 August 2017. Nevertheless, by implement the water mitigation nentation schedule for environmental	

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	12 September 2017		

Photo 1

During water sampling on 24 August 2017, turbid water was observed at WM3x. It was noted that the monitored channel was also received the storm water from road surface of Sha Tau Kok Road and the water quality at WM3x was highly affected by the road runoff especially during rainy day.

Photo 2

During water sampling on 24 August 2017, the water quality at WM3-C was slightly turbid.

Photo 3

Joint site inspection was conducted on 24 August 2017. It was observed that the water flowing in Ng Tung River was clear but cumulative silt was observed at the channel bed.

Photo 5

During weekly site inspection on 25 August 2017, it was observed that the river channel adjacent to the site was clear.

Photo 4

Joint site inspection was conducted on 24 August 2017. It was observed that the water quality flowing in the channel connecting from the South Portal was clear.

Wastewater generated from Admin Building was limited. The site area was mostly hard paved and no adverse water quality impact was identified during site inspection.

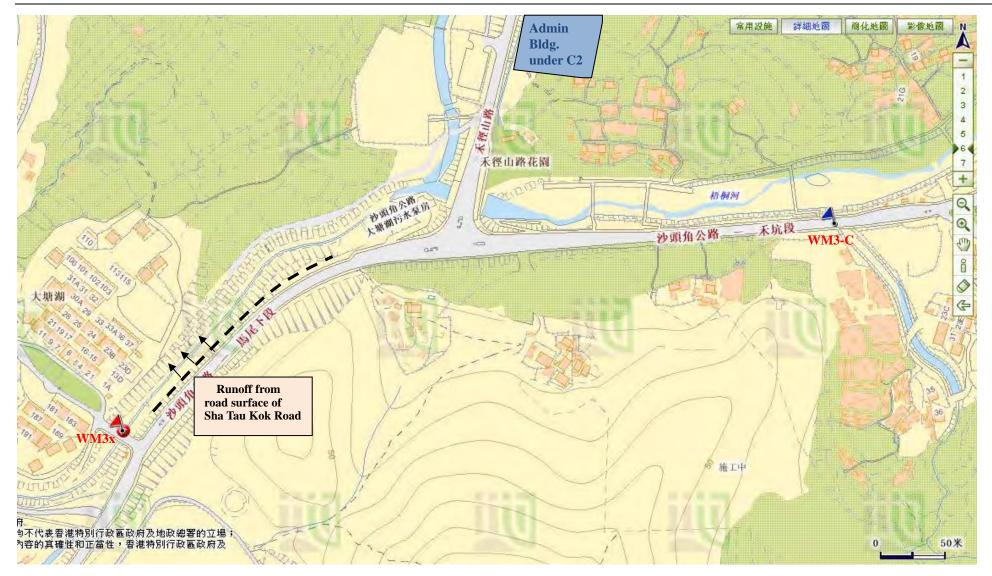


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location