

**JOB NO.: TCS00694/13** 

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT Report (No.56) – March 2018

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

DateReference No.Prepared ByCertified By16 April 2018TCS00694/13/600/R1509v3AAAAAA

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

| Version | Date          | Remarks                                                 |
|---------|---------------|---------------------------------------------------------|
| 1       | 10 April 2018 | First Submission                                        |
| 2       | 16 April 2018 | Amended according to the IEC's comment on 12 April 2018 |
| 3       | 16 April 2018 | Amended according to the IEC's comment on 16 April 2018 |



**By Email & Post** 

Our ref: 7076192/L22949/AB/AW/MCC/rw

17 April 2018

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

Attention: Mr Simon LEUNG

**Dear Sir** 

# Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 56) – March 2018

With reference to the Monthly EM&A Report No. 56 for March 2018 (Version 3) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Arthur CHIU on tel. 3995-8144 or by email to arthur.chiu@smec.com.

Yours faithfully

Antony WONG Independent Environmental Checker

| сс | CEDD/BCP<br>ArchSD | -<br>- | Mr LU Pei Yu / Mr William CHEUNG<br>Mr William WL CHENG | by fax: 3547 1659<br>by fax: 2804 6805 |
|----|--------------------|--------|---------------------------------------------------------|----------------------------------------|
|    | AECOM              | -      | Mr Pat LAM / Mr Perry YAM                               | by email                               |
|    | Ronald Lu          | 5      | Mr Peter YAM / Mr Justin CHEUNG                         | by email                               |
|    | CW                 | ×      | Mr Daniel HO                                            | by email                               |
|    | DHK                | 5      | Mr Daniel ALTIER                                        | by email                               |
|    | CCKJV              | 2      | Mr Vincent CHAN                                         | by email                               |
|    | KRSJV              | -      | Mr Matthew TSANG                                        | by email                               |
|    | Leighton           | Ξ      | Mr Ray HO                                               | by email                               |
|    | Siemens            | Ξ.     | Mr Patrick LEUNG                                        | by email                               |
|    | AUES               | ÷      | Mr TW TAM                                               | by email                               |

#### SMEC ASIA LIMITED

27/F Ford Glory Plaza 37-39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com





### **EXECUTIVE SUMMARY**

ES01 This is the **56<sup>th</sup>** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 March 2018** (hereinafter 'the Reporting Period').

#### **ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES**

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

| Environmental         | Environmental Monitoring                                                                                                               | Reporting Period                               |                            |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|--|--|
| Aspect                | Parameters / Inspection                                                                                                                | Number of Monitoring<br>Locations to undertake | <b>Total Occasions</b>     |  |  |
| Air Quality           | 1-hour TSP                                                                                                                             | 9                                              | 135                        |  |  |
| Air Quality           | 24-hour TSP                                                                                                                            | 9                                              | 50                         |  |  |
| Construction<br>Noise | L <sub>eq(30min)</sub> Daytime                                                                                                         | 10                                             | 45                         |  |  |
|                       |                                                                                                                                        | WM1 & WM1-C                                    | 14 Scheduled & 0 extra     |  |  |
|                       | Water in-situ measurement and/or sampling                                                                                              | WM2A(a) & WM2A-Cx                              | 14 Scheduled & 0 extra     |  |  |
| Water Quality         |                                                                                                                                        | WM2B & WM2B-C                                  | 14 Scheduled & 0 extra (*) |  |  |
|                       | and/or sampling                                                                                                                        | WM3x &WM3-C                                    | 14 Scheduled & 2 extra     |  |  |
|                       |                                                                                                                                        | WM4, WM4-CA &WM4-CB                            | 14 Scheduled & 0 extra     |  |  |
| Ecology               | <ul><li>Woodland compensation</li><li>i) General Health condition of planted species</li><li>ii) Survival of planted species</li></ul> | 9 Quadrats and transect                        | 0                          |  |  |
|                       |                                                                                                                                        | Contract 2                                     | 5                          |  |  |
|                       |                                                                                                                                        | Contract 3                                     | 5                          |  |  |
|                       | IEC, ET, the Contractor and                                                                                                            | Contract 4                                     | 5                          |  |  |
| Inspection /          | RE joint site Environmental                                                                                                            | Contract 6                                     | 5                          |  |  |
| Audit                 | Inspection and Auditing                                                                                                                | Contract 7                                     | 5                          |  |  |
|                       |                                                                                                                                        | Contract SS C505 (#)                           | 4                          |  |  |

Remark:

(#) IEC only joined one (1) event of site inspection for Contract SS C505.

(\*) In the whole Reporting Period, water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

#### ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedance and valid noise complaint was recorded. For water quality monitoring, a total of four (4) Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

|                         |                          | Action<br>Level | Limit<br>Level | Event & Action |                         |                                  |                       |
|-------------------------|--------------------------|-----------------|----------------|----------------|-------------------------|----------------------------------|-----------------------|
| Environmental<br>Aspect | Monitoring<br>Parameters |                 |                | NOE<br>Issued  | Investigation<br>Result | Project<br>related<br>exceedance | Corrective<br>Actions |
| Air Quality             | 1-hour TSP               | 0               | 0              | 0              |                         |                                  |                       |
| 7 III Quality           | 24-hour TSP              | 0               | 0              | 0              |                         |                                  |                       |



|                         |                                   |                 | Limit<br>Level | Event & Action |                                  |                                  |                                                              |
|-------------------------|-----------------------------------|-----------------|----------------|----------------|----------------------------------|----------------------------------|--------------------------------------------------------------|
| Environmental<br>Aspect | Monitoring<br>Parameters          | Action<br>Level |                | NOE<br>Issued  | Investigation<br>Result          | Project<br>related<br>exceedance | Corrective<br>Actions                                        |
| Construction<br>Noise   | L <sub>eq(30min)</sub><br>Daytime | 0               | 0              | 0              |                                  |                                  |                                                              |
|                         | DO                                | 0               | 0              | 0              | -                                |                                  |                                                              |
| Water Quality           | Turbidity                         | 0               | 2              | 2              | - All<br>exceedances<br>were not | 0                                | The Contractor<br>should fully<br>implement<br>water quality |
|                         | SS                                | 0               | 2              | 2              | project related.                 | 0                                | mitigation<br>measure.                                       |

ES05 Investigation Report for all water quality exceedances was completed by ET. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all the exceedances were not related to the works under the Project. Nevertheless, the Contractor was reminded to fully implement the water quality mitigation measure throughout the constriction phase as far as practicable.

#### **ENVIRONMENTAL COMPLAINT**

ES06 In this Reporting Period, two (2) documented environmental complaints were received under the EM&A programme regarding to the dust and water quality issue on Sha Tau Kok Road and Lin Ma Hang Road. The investigation for the complaint was completed by ET. The IRs revealed that the conditions of all site exits under the Project were well maintained without mud and debris and no excessive water spraying and slurry was found on the complaint roads. Since there were many other heavy vehicles apart from the project using complaint roads and mitigation measures were properly implemented by the Contractor, it is considered that the complaints were not related to the works under the Project.

#### NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES07 No environmental summons and prosecutions were recorded in the Reporting Period.

#### **REPORTING CHANGE**

ES08 No reporting changes were made in the Reporting Period.

#### SITE INSPECTION

- ES09 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 1, 9, 16, 23 and 28 March 2018. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 21 and 29 March 2018. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at Contract 4 has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 16, 19 and 28 March 2018. No non-compliance was noted.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on **2**, **8**, **15**, **22** and **29** March 2018. No non-compliance was noted during the site inspection.



- ES13 In the Reporting Period, joint site inspection for **Contract 7** to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **2**, **9**, **16**, **22** and **28** March 2018. No non-compliance was noted during the site inspection.
- ES14 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on 7, 14, 21 and 28 March 2018 in which IEC joined the site inspection on 28 March 2018. No non-compliance was noted during the site inspection.

#### **FUTURE KEY ISSUES**

- ES15 As wet season is approaching, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES16 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES17 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES18 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.



## **Table of Contents**

| 1  | INTRODUCTION                                               | 1  |
|----|------------------------------------------------------------|----|
|    | 1.1 PROJECT BACKGROUND                                     | 1  |
|    | 1.2 REPORT STRUCTURE                                       | 1  |
| 2  | PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS             | 3  |
|    | 2.1 CONSTRUCTION CONTRACT PACKAGING                        | 3  |
|    | 2.2 PROJECT ORGANIZATION                                   | 5  |
|    | 2.3 CONCURRENT PROJECTS                                    | 7  |
|    | 2.4 CONSTRUCTION PROGRESS                                  | 7  |
|    | 2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS                   | 9  |
| 3  | SUMMARY OF IMPACT MONITORING REQUIREMENTS                  | 14 |
|    | 3.1 GENERAL                                                | 14 |
|    | 3.2 MONITORING PARAMETERS                                  | 14 |
|    | 3.3 MONITORING LOCATIONS                                   | 14 |
|    | 3.4 MONITORING FREQUENCY AND PERIOD                        | 16 |
|    | 3.5 MONITORING EQUIPMENT                                   | 17 |
|    | 3.6 MONITORING METHODOLOGY                                 | 19 |
|    | 3.7 EQUIPMENT CALIBRATION                                  | 21 |
|    | 3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS                | 22 |
|    | 3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL                 | 22 |
| 4  | AIR QUALITY MONITORING                                     | 24 |
|    | 4.1 GENERAL                                                | 24 |
|    | 4.2 AIR QUALITY MONITORING RESULTS                         | 24 |
| 5  | CONSTRUCTION NOISE MONITORING                              | 27 |
| U  | 5.1 GENERAL                                                | 27 |
|    | 5.2 NOISE MONITORING RESULTS                               | 27 |
| 6  | WATER QUALITY MONITORING                                   | 28 |
| U  | 6.1 GENERAL                                                | 28 |
|    | 6.2 RESULTS OF WATER QUALITY MONITORING                    | 28 |
| _  |                                                            |    |
| 7  | ECOLOGY MONITORING                                         | 31 |
|    | 7.1 GENERAL                                                | 31 |
| 8  | WASTE MANAGEMENT                                           | 32 |
|    | 8.1 GENERAL WASTE MANAGEMENT                               | 32 |
|    | 8.2 RECORDS OF WASTE QUANTITIES                            | 32 |
| 9  | SITE INSPECTION                                            | 33 |
| -  | 9.1 REQUIREMENTS                                           | 33 |
|    | 9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH     | 33 |
| 10 | ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE                 | 37 |
| 10 | 10.1 Environmental Complaint, Summons and Prosecutions     | 37 |
|    | ,                                                          |    |
| 11 | IMPLEMENTATION STATUS OF MITIGATION MEASURES               | 40 |
|    | 11.1 GENERAL REQUIREMENTS                                  | 40 |
|    | 11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH | 40 |
|    | 11.3 KEY ISSUES FOR THE COMING MONTH                       | 42 |
| 12 | CONCLUSIONS AND RECOMMENDATIONS                            | 43 |
|    | 12.1 CONCLUSIONS                                           | 43 |
|    | 12.2 RECOMMENDATIONS                                       | 43 |



# LIST OF TABLES

| TABLE 3-1              |                                                                        |
|------------------------|------------------------------------------------------------------------|
| TABLE 3-1<br>TABLE 3-2 | SUMMARY OF EM&A REQUIREMENTS                                           |
|                        | IMPACT MONITORING STATIONS - AIR QUALITY                               |
| TABLE 3-3              | IMPACT MONITORING STATIONS - CONSTRUCTION NOISE                        |
| TABLE 3-4              | IMPACT MONITORING STATIONS - WATER QUALITY                             |
| TABLE 3-5              | AIR QUALITY MONITORING EQUIPMENT                                       |
| TABLE 3-6              | CONSTRUCTION NOISE MONITORING EQUIPMENT                                |
| TABLE 3-7              | WATER QUALITY MONITORING EQUIPMENT                                     |
| TABLE 3-8              | ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING                     |
| TABLE 3-9              | ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE                         |
| TABLE 3-10             | ACTION AND LIMIT LEVELS FOR WATER QUALITY                              |
| TABLE 4-1              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1A            |
| TABLE 4-2              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2             |
| TABLE 4-3              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3             |
| TABLE 4-4              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B            |
| TABLE 4-5              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A            |
| TABLE 4-6              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6             |
| TABLE 4-7              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7A            |
| TABLE 4-8              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8             |
| TABLE 4-9              | SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B            |
| TABLE 5-1              | SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS                       |
| TABLE 5-2              | SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS                       |
| TABLE 6-1              | SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 3       |
| TABLE 6-2              | SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6 AND SS C505 |
| TABLE 6-3              | SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 6             |
| TABLE 6-4              | SUMMARY OF WATER QUALITY MONITORING RESULTS FOR CONTRACT 2 AND 6       |
| TABLE 6-5              | ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED                      |
| TABLE 8-1              | SUMMARY OF QUANTITIES OF INERT C&D MATERIALS                           |
| TABLE 8-2              | SUMMARY OF QUANTITIES OF C&D WASTES                                    |
| TABLE 9-1              | SITE OBSERVATIONS FOR CONTRACT 2                                       |
| TABLE 9-2              | SITE OBSERVATIONS FOR CONTRACT 3                                       |
| TABLE 9-3              | SITE OBSERVATIONS FOR CONTRACT 4                                       |
| TABLE 9-4              | SITE OBSERVATIONS FOR CONTRACT 5                                       |
| TABLE 9-5              | SITE OBSERVATIONS FOR CONTRACT 6                                       |
| TABLE 9-6              | SITE OBSERVATIONS FOR CONTRACT SS C505                                 |
| TABLE 9-7              | SITE OBSERVATIONS FOR CONTRACT 7                                       |
| TABLE 10-1             | STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS                        |
| TABLE 10-2             | STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS                           |
| TABLE 10-3             | STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTION                       |
| TABLE 11-1             | ENVIRONMENTAL MITIGATION MEASURES                                      |

 TABLE 11-1
 ENVIRONMENTAL MITIGATION MEASURES



# LIST OF APPENDICES

| APPENDIX A | LAYOUT PLAN OF THE PROJECT                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------------|
| APPENDIX B | ORGANIZATION CHART                                                                                                |
| APPENDIX C | 3-MONTH ROLLING CONSTRUCTION PROGRAM                                                                              |
| APPENDIX D | DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL                                        |
| APPENDIX E | MONITORING LOCATIONS FOR IMPACT MONITORING                                                                        |
| Appendix F | CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND<br>HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY |
| APPENDIX G | EVENT AND ACTION PLAN                                                                                             |
| APPENDIX H | IMPACT MONITORING SCHEDULE                                                                                        |
| APPENDIX I | DATABASE OF MONITORING RESULT                                                                                     |
| APPENDIX J | GRAPHICAL PLOTS FOR MONITORING RESULT                                                                             |
| APPENDIX K | METEOROLOGICAL DATA                                                                                               |
| APPENDIX L | WASTE FLOW TABLE                                                                                                  |
| APPENDIX M | IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES                                                     |
| APPENDIX N | INVESTIGATION REPORT FOR EXCEEDANCE                                                                               |
| APPENDIX O | INVESTIGATION REPORT FOR COMPLAINT                                                                                |
|            |                                                                                                                   |



# **1 INTRODUCTION**

#### **1.1 PROJECT BACKGROUND**

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of *Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works*, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
  - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
  - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
  - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
  - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
  - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
  - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **56<sup>th</sup>** monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **31 March 2018**.

## **1.2 REPORT STRUCTURE**

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
  - Section 1 Introduction
  - Section 2 Project Organization and Construction Progress
  - Section 3 Summary of Impact Monitoring Requirements
  - Section 4 Air Quality Monitoring
  - Section 5 Construction Noise Monitoring
  - Section 6 Water Quality Monitoring



| Ecology Monitoring                           |
|----------------------------------------------|
| Waste Management                             |
| Site Inspections                             |
| Environmental Complaints and Non-Compliance  |
| Implementation Status of Mitigation Measures |
| Conclusions and Recommendations              |
|                                              |



# 2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

### 2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
  - Contract 2 (CV/2012/08)
  - Contract 3 (CV/2012/09)
  - Contract 4 (NE/2014/02)
  - Contract 5 (CV/2013/03)
  - Contract 6 (CV/2013/08)
  - Contract 7 (NE/2014/03)
  - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

# Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
  - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
  - construction of a ventilation adit tunnel and the mid-ventilation building;
  - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
  - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
  - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
  - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

# Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
  - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
  - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
  - widening of the existing Fanling Highway (HyD's entrustment works);
  - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
  - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

# Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
  - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.



# Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
  - site formation of about 23 hectares of land for the development of the BCP;
  - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
  - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
  - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
  - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
  - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

## Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
  - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
  - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
  - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
  - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
  - provisioning of the affected facilities including Wo Keng Shan Road garden; and
  - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

#### Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
  - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
  - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

#### ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
  - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
  - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
  - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
  - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
  - a public carpark; and



• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

## 2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

## Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

## Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

# Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

# Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
  - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
  - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
  - Facilitate ET's implementation of the EM&A programme
  - Participate in joint site inspection by the ET and IEC
  - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
  - Adhere to the procedures for carrying out complaint investigation
  - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

#### Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
  - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
  - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
  - Facilitate ET's implementation of the EM&A programme
  - Participate in joint site inspection by the ET and IEC
  - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance



- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

## The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
  - Comply with the relevant contract conditions and specifications on environmental protection
  - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
  - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
  - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
  - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
  - Implement measures to reduce impact where Action and Limit levels are exceeded
  - Adhere to the procedures for carrying out complaint investigation

## Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
  - Monitor and audit various environmental parameters as required in this EM&A Manual
  - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
  - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
  - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
  - Audit environmental conditions on site
  - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
  - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
  - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
  - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
  - Adhere to the procedures for carrying out complaint investigation



• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

## Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
  - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
  - Review and audit all aspects of the EM&A programme implemented by the ET
  - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
  - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
  - Check compliance with the agreed Event / Action Plan in the event of any exceedance
  - Check compliance with the procedures for carrying out complaint investigation
  - Check the effectiveness of corrective measures
  - Feedback audit results to ET by signing off relevant EM&A proforma
  - Check that the mitigation measures are effectively implemented
  - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
  - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
  - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

#### 2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
  - (a) Regulation of Shenzhen River Stage IV;
  - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
  - (c) Construction of BCP facilities in Shenzhen.

### 2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.



Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

| are fisted below   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mid-Vent<br>Portal | <ul> <li>Cavern internal structure and tunnel E&amp;M activities</li> <li>Construction of C&amp;C structure and permanent drainage</li> <li>Structure connecting adit and ventilation building</li> <li>Ventilation building superstructure and backfilling activities</li> <li>Ventilation building fitting out and E&amp;M installation</li> </ul>                                                                                                                                                                                                                                            |
| North Portal       | <ul> <li>Southbound and Northbound tunnel waterproofing and lining</li> <li>Construction of cross passage and internal structure</li> <li>Tunnel backfilling and E&amp;M installation</li> <li>Tunnel Boring Machine (TBM) North drive excavation and mucking out</li> <li>North ventilation building structure and internal structure</li> <li>Construction of retaining wall and permanent drainage</li> <li>Site formation and construction of slip road</li> <li>Cleansing on existing drainage system</li> <li>Construction of temporary utility bridge across the mid-platform</li> </ul> |
| South Portal       | <ul> <li>Tunnel waterproofing, lining and backfilling.</li> <li>Tunnel internal structure and cross passage</li> <li>Construction of retaining wall and backfilling activities</li> <li>South ventilation building external wall finishing, fitting out and E&amp;M installations</li> </ul>                                                                                                                                                                                                                                                                                                    |
| Admin<br>Building  | <ul> <li>Construction of fence wall and permanent drainage</li> <li>Admin building fitting out, underground utilities and E&amp;M installation</li> <li>Construction of building permanent access.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                   |

# Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
  - Cable Detection and Trial Trenches
  - Remaining Works on New Kiu Tau Footbridge
  - Noise Barrier Construction
  - Road pavement works
  - Demolition of Existing Kiu Tau Vehicular Bridge
  - Water main laying works (on Grade and on bridge deck)
  - Installation of Noise barrier steel column & panel, and sign gantry
  - Parapet Installation on bridge deck
  - Road Drainage Work
  - Construction of Profile Barrier & Planter Wall on Bridge Deck
  - Stressing of External Tendon
  - Bitumen paving on bridge deck
  - Installation of deck cell inside the bridge deck
  - Installation of movement joint on the bridge
  - Construction of Retaining Wall Behind Abutment
  - Landscaping works

# Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
  - System design and testing
  - E&M installation at Admin Building
  - E&M installation at Ventilation Building
  - High mast erection



• E&M installation at OHVD in tunnel

## Contract 5 (CV/2013/03)

2.4.5 The construction works under Contract 5 was substantially completed on 31 August 2016.

## Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
  - Bridge construction
  - Tunneling Works
  - Sewage Treatment Plant Construction
  - Tunnel Ventilation Building Construction
  - Slip Road/At-grade Road/Periphery Road Construction

## Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
  - Deck construction at Bridge A
  - Column and deck construction at Bridge E
  - Profile barrier construction at Bridges D & E
  - Installation of Façade at Bridge C
  - Installation of BMU at roof of Bridge C

## Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
  - Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 41 constructions
  - Constructions of Steel Canopies (Building no. 32, 33, 34 and 35)
  - Constructions of Master Water Meter Room 1, 2 and 3 (Building no. 42, 43, 44)
  - Tower crane operation
  - Bridge 1 5 construction works including retaining wall, road and finishes works
  - Underground drainage works, Road Works, CLP Cable laying and Landscaping
  - Formwork and falsework for PTB's slab and internal wall construction
  - Construction PTB M/F, 1/F, 2/F and Roof flat slab
  - Construction PTB non-structural wall, Underground Drainage and Utilities, Fence Wall, Southern Entrance Construction
  - Backfilling works
  - PTB Major Plant Rooms ABWF & MEP Installation, Lift and Escalator Installation by NSC
  - Integrated ABWF & MEP Works in PTB, Building no. 1, 2, 3, 4, 5, 6, 7, 11, 14, 18, 36 and 41
  - Elevated Walkway E1, E2, E3 and E4 construction
  - Tower Crane Dismantling Works

#### 2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
  - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
  - Landscape Plan
  - Topsoil Management Plan
  - Environmental Monitoring and Audit Programme
  - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
  - Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
  - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling



- Vegetation Survey Report
- Woodland Compensation Plan
- Habitat Creation Management Plan
- Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

|      |                                                                                            | License/Permit Status                                                          |          |                |                       |  |  |
|------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------|----------------|-----------------------|--|--|
| Item | Description                                                                                | Ref. no.                                                                       |          | Effective Date | Expiry Date           |  |  |
|      |                                                                                            | Contra                                                                         | et 2     |                |                       |  |  |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref No.: 368864                                                                |          | 31 Dec 2013    | Till Contract<br>ends |  |  |
| 2    | Chemical Waste<br>Producer<br>Registration                                                 | North Portal<br>Waste Producers N<br>No.5213-652-D252                          |          | 25 Mar 2014    | Till Contract<br>ends |  |  |
|      |                                                                                            | <i>Mid-Vent Portal</i><br>Waste Producers N<br>No.5213-634-D252                |          | 25 Mar 2014    | Till Contract<br>ends |  |  |
|      |                                                                                            | South Portal<br>Waste Producers N<br>No.5213-634-D252                          |          | 9 Apr 2014     | Till Contract<br>ends |  |  |
| 3    | Water Pollution<br>Control Ordinance -                                                     | No.WT00018374-2014<br>(South Portal)                                           |          | 3 Mar 2014     | 28 Feb 2019           |  |  |
|      | Discharge License                                                                          | No. WT00023<br>(North Portal)                                                  | 063-2015 | 18 Dec 2015    | 31 Mar 2019           |  |  |
|      |                                                                                            | No.: W5/1I392<br>(Admin Building)<br>No.: WT00025594-2016<br>(Mid-Vent Portal) |          | 28 Mar 2014    | 31 Mar 2019           |  |  |
|      |                                                                                            |                                                                                |          | 7 Oct 2016     | 31 Mar 2019           |  |  |
| 4    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7019105                                                            |          | 8 Jan 2014     | Till Contract<br>ends |  |  |
| 5    | Construction Noise                                                                         | GW-RN0744-17                                                                   | North    | 15-Nov-2017    | 09-May-2018           |  |  |
|      | Permit                                                                                     | GW-RN0747-17                                                                   | Portal   | 15-Nov-2017    | 09-May-2018           |  |  |
|      |                                                                                            | GW-RN0839-17                                                                   | 1        | 25-Dec-2017    | 17-Jun-2018           |  |  |
|      |                                                                                            | GW-RN0047-18                                                                   | Mid      | 05-Feb-2018    | 01-Aug-2018           |  |  |
|      |                                                                                            | GW-RN0049-18                                                                   | Vent     | 05-Feb-2017    | 31-Jul-2018           |  |  |
|      |                                                                                            | GW-RN0765-17                                                                   | South    | 01-Dec-2017    | 31-May-2018           |  |  |
|      |                                                                                            | GW-RN0601-17                                                                   | Portal   | 27-Sep-2017    | 21-Mar-2018           |  |  |
|      |                                                                                            | GW-RN0673-17                                                                   |          | 28-Oct-2017    | 27-Apr-2018           |  |  |
|      |                                                                                            | GW-RN0788-17                                                                   | ]        | 06-Dec-2017    | 05-Jun-2018           |  |  |
|      |                                                                                            | GW-RN0604-17                                                                   | Admin    | 20-Sep-2017    | 16-Mar-2018           |  |  |



|      |                                                                                            | License/Permit Status                 |                          |                             |                             |
|------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------|-----------------------------|
| Item | Description                                                                                | Ref. no.                              |                          | Effective Date              | Expiry Date                 |
|      |                                                                                            | GW-RN0142-18                          | Bldg                     | 5-Apr-2018                  | 27-Sep-2018                 |
|      |                                                                                            | GW-RN0140-18                          | Cheung<br>Shan<br>Tunnel | 3-Apr-2018                  | 22-Sep-2018                 |
| 6    | Specified Process<br>License (Mortar Plant<br>Operation)                                   | L-3-251(1)                            |                          | 12 Apr 2016                 | 11 Apr 2021                 |
|      |                                                                                            | Contrac                               | et 3                     | 1                           |                             |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref. No: 362101                       |                          | 17 Jul 2013                 | Till Contract<br>ends       |
| 2    | Chemical Waste<br>Producer<br>Registration                                                 | Waste Producers N<br>No.:5113-634-C38 |                          | 7 Oct 2013                  | Till Contract<br>ends       |
| 3    | Water Pollution<br>Control Ordinance -<br>Discharge License                                | No.:WT00016832 -                      | - 2013                   | 28 Aug 13                   | 31 Aug 2018                 |
| 4    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7017914 2 Aug 13          |                          | 2 Aug 13                    | Till Contract<br>ends       |
| 5    | Construction Noise                                                                         | GW-RN0549-17                          |                          | 6 Sep 2017                  | 5 Mar 2018                  |
|      | Permit                                                                                     | GW-RN0564-17                          |                          | 1 Oct 2017                  | 31 Mar 2018                 |
|      |                                                                                            | GW-RN0571-17                          |                          | 30 Sep 2017                 | 29 Mar 2018                 |
|      |                                                                                            | GW-RN0669-17                          |                          | 25 Oct 2017                 | 7 Apr 2018                  |
|      |                                                                                            | GW-RN0697-17 (<br>on 14 Mar 2018)     | cancelled                | 21 Nov 2017                 | cancelled on 14 Mar 2018    |
|      |                                                                                            | GW-RN0721-17                          |                          | 26 Nov 2017                 | 20 May 2018                 |
|      |                                                                                            | GW-RN0782-17                          |                          | 8 Dec 2017                  | 26 May 2018                 |
|      |                                                                                            | GW-RN0785-17                          |                          | 19 Dec 2017                 | 16 Jun 2018                 |
|      |                                                                                            | GW-RN0786-17                          |                          | 24 Dec 2017                 | 18 Jun 2018                 |
|      |                                                                                            | GW-RN0801-17                          |                          | 22 Dec 2017                 | 21 Jun 2018                 |
|      |                                                                                            | GW-RN0863-17                          |                          | 17 Jan 2018                 | 5 Jul 2018                  |
|      |                                                                                            | GW-RN0043-18                          |                          | 25 Feb 2018                 | 24 Aug 2018                 |
|      |                                                                                            | GW-RN0044-18                          |                          | 22 Feb 2018                 | 21 Aug 2018                 |
|      |                                                                                            | GW-RN0102-18<br>GW-RN0123-18          |                          | 14 Mar 2018<br>28 Mar 2018  | 31 Aug 2018<br>5 Sep 2018   |
|      |                                                                                            |                                       | + 5                      | 28 Mai 2018                 | 5 Sep 2018                  |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Contract 5<br>Ref. No: 359338         |                          | 13 May 2013                 | Till the end of<br>Contract |
| 2    | Chemical Waste<br>Producer                                                                 |                                       |                          | Till the end of<br>Contract |                             |



|      |                                                                                            | License/F                                        | Permit Status  |                             |
|------|--------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|-----------------------------|
| Item | Description                                                                                | Ref. no.                                         | Effective Date | Expiry Date                 |
|      | Registration                                                                               |                                                  |                |                             |
| 3    | Water Pollution<br>Control Ordinance -<br>Discharge License                                | No.: W5/1G44/1                                   | 8 Jun 13       | 30 Jun 2018                 |
| 4    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7017351                              | 29 Apr 13      | Till the end of<br>Contract |
|      |                                                                                            | Contract 6                                       |                |                             |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref. No: 390614                                  | 29 Jun 2015    | Till the end of<br>Contract |
| 2    | Chemical Waste<br>Producer<br>Registration                                                 | Waste Producers Number<br>No.: 5213-652-C3969-01 | 31 Aug 2015    | Till the end of<br>Contract |
| 3    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7022707                              | 9 Jul 2015     | Till the end of<br>Contract |
| 4    | Water Pollution                                                                            | No.:WT00024574-2016                              | 31 May 2016    | 31 May 2021                 |
|      | Control Ordinance -<br>Discharge License                                                   | No.:WT00024576-2016                              | 31 May 2016    | 31 May 2021                 |
|      | C C                                                                                        | No.:WT00024742-2016                              | 14 June 2016   | 30 June 2021                |
|      |                                                                                            | No.:WT00024746-2016                              | 14 June 2016   | 30 June 2021                |
| 5    | Construction Noise                                                                         | GW-RW0598-17                                     | 18 Sep 2017    | 17 Mar 2018                 |
|      | Permit                                                                                     | GW-RW0684-17                                     | 30 Oct 2017    | 29 Apr 2018                 |
|      |                                                                                            | GW-RW0668-17                                     | 16 Jan 2018    | 15 Jul 2018                 |
|      |                                                                                            | GW-RW0086-18                                     | 1 Mar 2018     | 31 Aug 2018                 |
|      |                                                                                            | GW-RW0127-18                                     | 25 Mar 2018    | 27 May 2018                 |
|      | -                                                                                          | Contract SS C505                                 |                |                             |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref. No: 390974                                  | 13 Jul 2015    | Till the end of<br>Contract |
| 2    | Chemical Waste<br>Producer<br>Registration                                                 | Waste Producer No.:<br>5213-642-L1048-07         | 16 Sep 2015    | Till the end of<br>Contract |
| 3    | Water Pollution<br>Control Ordinance -<br>Discharge License                                | No.: WT00024865-2016                             | 8 Jul 2016     | 30 Nov 2020                 |
| 4    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of                       | Account No. 7022831                              | 23 Jul 2015    | Till the end of<br>Contract |



|      |                                                                                            | License/Permit Status                 |                |                             |
|------|--------------------------------------------------------------------------------------------|---------------------------------------|----------------|-----------------------------|
| Item | Description                                                                                | Ref. no.                              | Effective Date | Expiry Date                 |
|      | Construction Waste                                                                         |                                       |                |                             |
|      |                                                                                            |                                       |                |                             |
| 5    | Construction Noise                                                                         | GW-RN0624-17                          | 6 Oct 2017     | 5 Apr 2018                  |
|      | Permit                                                                                     | GW-RN0720-17                          | 26 Nov 2017    | 25 May 2018                 |
|      |                                                                                            | GW-RN0114-18                          | 5 Apr 2018     | 4 Oct 2018                  |
|      |                                                                                            | Contract 7                            | -              |                             |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref. No: 397015                       | 21 Dec 2015    | Till the end of<br>Contract |
| 2    | Chemical Waste<br>Producer<br>Registration                                                 | Waste Producer No.: 5214-641-K3202-01 | 24 Mar 2016    | Till the end of Contract    |
| 3    | Water Pollution<br>Control Ordinance -<br>Discharge License                                | No.: WT00024422-2016                  | 10 May 2016    | 31 May 2021                 |
| 4    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7024129                   | 21 Jan 2016    | Till the end of<br>Contract |
| 5    | Construction Noise<br>Permit                                                               | GW-RN0705-17                          | 5 Nov 2017     | 4 May 2018                  |
|      | ·                                                                                          | Contract 4                            |                | ·                           |
| 1    | Air pollution<br>Control<br>(Construction Dust)<br>Regulation                              | Ref. No. 405353                       | 22 July 2016   | Till the end<br>of Contract |
| 2    | Waste Disposal<br>Regulation - Billing<br>Account for<br>Disposal of<br>Construction Waste | Account No. 7024973                   | 13 May 2016    | Till the end<br>of Contract |



# **3** SUMMARY OF IMPACT MONITORING REQUIREMENTS

## 3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

### **3.2 MONITORING PARAMETERS**

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
  - Air quality;
  - Construction noise; and
  - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

| Environmental Issue | Parameters                                                                       |
|---------------------|----------------------------------------------------------------------------------|
| Air Quality         | <ul> <li>1-hour TSP by Real-Time Portable Dust Meter; and</li> </ul>             |
| All Quality         | • 24-hour TSP by High Volume Air Sampler.                                        |
|                     | • L <sub>eq(30min)</sub> in normal working days (Monday to Saturday) 07:00-19:00 |
|                     | except public holiday; and                                                       |
| Noise               | • 3 sets of consecutive $L_{eq(5min)}$ on restricted hours i.e. 19:00 to 07:00   |
| 110150              | next day, and whole day of public holiday or Sunday                              |
|                     | • Supplementary information for data auditing, statistical results such          |
|                     | as $L_{10}$ and $L_{90}$ shall also be obtained for reference.                   |
|                     | In-situ Measurements                                                             |
|                     | <ul> <li>Dissolved Oxygen Concentration (mg/L);</li> </ul>                       |
|                     | <ul> <li>Dissolved Oxygen Saturation (%);</li> </ul>                             |
|                     | • Turbidity (NTU);                                                               |
| Water Quality       | • pH unit;                                                                       |
| ·                   | • Water depth (m); and                                                           |
|                     | • Temperature (°C).                                                              |
|                     | Laboratory Analysis                                                              |
|                     | Suspended Solids (mg/L)                                                          |

#### **3.3** MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The latest alternative monitoring locations has been updated in the revised EM&A Programme (Rev.7) which approved by EPD on 7 April 2017. *Table 3-2*, *Table 3-3* and *Table 3-4* are respectively listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

| Table 3-2 | Impact Monitoring Stations - Air Quality |
|-----------|------------------------------------------|
|           | impact from toring stations fin Quanty   |

| Station ID | Description                            | Works Area      | Related to the<br>Work Contract |
|------------|----------------------------------------|-----------------|---------------------------------|
| AM1b^      | Open area at Tsung Yuen Ha Village     | BCP             | SS C505                         |
|            |                                        |                 | Contract 7                      |
| AM2        | Village House near Lin Ma Hang Road    | LMH to Frontier | Contract 6                      |
|            |                                        | Closed Area     |                                 |
| AM3        | Ta Kwu Ling Fire Service Station of Ta | LMH to Frontier | Contract 6                      |
|            | Kwu Ling Village.                      | Closed Area     |                                 |



| Station ID        | Description                       | Works Area      | Related to the<br>Work Contract |
|-------------------|-----------------------------------|-----------------|---------------------------------|
| AM4b^             | House no. 10B1 Nga Yiu Ha Village | LMH to Frontier | Contract 6                      |
|                   |                                   | Closed Area     |                                 |
| AM5a^             | Ping Yeung Village House          | Ping Yeung to   | Contract 6                      |
|                   |                                   | Wo Keng Shan    |                                 |
| AM6               | Wo Keng Shan Village House        | Ping Yeung to   | Contract 6                      |
|                   |                                   | Wo Keng Shan    |                                 |
| AM7b <sup>@</sup> | Loi Tung Village House            | Sha Tau Kok     | Contract 2                      |
|                   |                                   | Road            | Contract 6                      |
| AM8               | Po Kat Tsai Village No. 4         | Po Kat Tsai     | Contract 2                      |
| AM9b#             | Nam Wa Po Village House No. 80    | Fanling         | Contract 3                      |

# Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

\* Proposal for the change of air quality monitoring location from AM1to AM1a was submitted to EPD on 24 March 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (6) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

(a) Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

^ Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016.

| Table 3-3 | Impact Monitoring Stations - Construction Noise |  |
|-----------|-------------------------------------------------|--|
|-----------|-------------------------------------------------|--|

| Station<br>ID | Description                                        | Works Area                             | Related to the<br>Work Contract |
|---------------|----------------------------------------------------|----------------------------------------|---------------------------------|
| NM1           | Tsung Yuen Ha Village House No. 63                 | ВСР                                    | SS C505<br>Contract 7           |
| NM2a#         | Village House near Lin Ma Hang<br>Road             | Lin Ma Hang to<br>Frontier Closed Area | Contract 6                      |
| NM3           | Ping Yeung Village House (facade facing northeast) | Ping Yeung to Wo<br>Keng Shan          | Contract 6                      |
| NM4           | Wo Keng Shan Village House                         | Ping Yeung to Wo<br>Keng Shan          | Contract 6                      |
| NM5           | Village House, Loi Tung                            | Sha Tau Kok Road                       | Contract 2,<br>Contract 6       |
| NM6           | Tai Tong Wu Village House 2                        | Sha Tau Kok Road                       | Contract 2,<br>Contract 6       |
| NM7           | Po Kat Tsai Village                                | Po Kat Tsai                            | Contract 2                      |
| NM8           | Village House, Tong Hang                           | Fanling                                | Contract 2<br>Contract 3        |
| NM9           | Village House, Kiu Tau Village                     | Fanling                                | Contract 3                      |
| NM10          | Nam Wa Po Village House No. 80                     | Fanling                                | Contract 3                      |

# Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.



| Table 5-4 Impact Monitoring Stations - water Quanty |                                      |                                                        |          |                                                                                  |                          |                        |                                    |
|-----------------------------------------------------|--------------------------------------|--------------------------------------------------------|----------|----------------------------------------------------------------------------------|--------------------------|------------------------|------------------------------------|
| Station ID                                          | Description                          | Coordinates of<br>Designated / Alternative<br>Location |          | escription Designated / Alternativ                                               |                          | Nature of the location | Related to<br>the Work<br>Contract |
|                                                     |                                      | Easting                                                | Northing |                                                                                  | contract                 |                        |                                    |
| WM1                                                 | Downstream<br>of Kong Yiu<br>Channel | 833 679                                                | 845 421  | Alternative location located<br>at upstream 51m of the<br>designated location    | SS C505<br>Contract 6    |                        |                                    |
| WM1-<br>Control                                     | Upstream of<br>Kong Yiu<br>Channel   | 834 185                                                | 845 917  | NA                                                                               | SS C505<br>Contract 6    |                        |                                    |
| WM2A                                                | Downstream<br>of River<br>Ganges     | 834 204                                                | 844 471  | Alternative location located<br>at upstream 81m of the<br>designated location    | Contract 6               |                        |                                    |
| WM2A(a)*                                            | Downstream<br>of River<br>Ganges     | 834 191                                                | 844 474  | Alternative location located<br>at upstream 70m of the<br>designated location    | Contract 6               |                        |                                    |
| WM2A-<br>Controlx#                                  | Upstream of<br>River Ganges          | 835 377                                                | 844 188  | Alternative location located<br>at upstream 160m of the<br>designated location   | Contract 6               |                        |                                    |
| WM2B                                                | Downstream<br>of River<br>Ganges     | 835 433                                                | 843 397  | NA                                                                               | Contract 6               |                        |                                    |
| WM2B-<br>Control                                    | Upstream of<br>River Ganges          | 835 835                                                | 843 351  | Alternative location located<br>at downstream 31m of the<br>designated location  | Contract 6               |                        |                                    |
| WM3x#                                               | Downstream<br>of River Indus         | 836 206                                                | 842 270  | Alternative location located<br>at downstream 180m of the<br>designated location | Contract 2<br>Contract 6 |                        |                                    |
| WM3-<br>Control                                     | Upstream of<br>River Indus           | 836 763                                                | 842 400  | Alternative location located<br>at downstream 26m of the<br>designated location  | Contract 2<br>Contract 6 |                        |                                    |
| WM4                                                 | Downstream<br>of Ma Wat<br>Channel   | 833 850                                                | 838 338  | Alternative location located<br>at upstream 11m of the<br>designated location    | Contract 2<br>Contract 3 |                        |                                    |
| WM4–<br>Control A                                   | Kau Lung<br>Hang Stream              | 834 028                                                | 837 695  | Alternative location located<br>at downstream 28m of the<br>designated location  | Contract 2<br>Contract 3 |                        |                                    |
| WM4–<br>Control B                                   | Upstream of<br>Ma Wat<br>Channel     | 833760                                                 | 837395   | Alternative location located<br>at upstream 15m of the<br>designated location    | Contract 2<br>Contract 3 |                        |                                    |

#### Table 3-4Impact Monitoring Stations - Water Quality

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: ( ) in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

(\*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

(#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

# 3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in Sections 2.1.6, 3.1.5 and 4.1.6 of the



approved EM&A Manual and presented as follows.

## Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
  - 2 1-hour TSP 3 times every six days during course of works
  - 24-hour TSP Once every 6 days during course of works.

#### Noise Monitoring

3.4.2 One set of  $L_{eq(30min)}$  as 6 consecutive  $L_{eq(5min)}$  between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for  $L_{eq(5min)}$  measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as  $L_{10}$  and  $L_{90}$  shall also be obtained for reference.

## Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

## **3.5 MONITORING EQUIPMENT**

#### Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

# Table 3-5Air Quality Monitoring Equipment

| Equipment               | Model                                                    |  |  |
|-------------------------|----------------------------------------------------------|--|--|
|                         | 24-Hr TSP                                                |  |  |
| High Volume Air Sampler | TISCH High Volume Air Sampler, HVS Model TE-5170*        |  |  |
| Calibration Kit         | TISCH Model TE-5025A*                                    |  |  |
|                         | 1-Hour TSP                                               |  |  |
| Portable Dust Meter     | Sibata LD-3B Laser Dust monitor Particle Mass Profiler & |  |  |
| Foltable Dust Meter     | Counter*                                                 |  |  |

\* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

#### Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
  - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
  - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
  - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.



- 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

#### Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Table 3-6Construction Noise Monitoring Equipment

| Equipment                     | Model                                         |
|-------------------------------|-----------------------------------------------|
| Integrating Sound Level Meter | B&K Type 2238* or Rion NL-31* or Rion NL-52*  |
| Calibrator                    | B&K Type 4231* or Quest QC-20* or Rion NC-74* |
| Portable Wind Speed Indicator | Testo Anemometer                              |

\* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

# Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
  - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
  - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For



sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

| Equipment              | Model                                                                                                                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Water Depth Detector   | Eagle Sonar or tape measures                                                                                                       |
| Water Sampler          | A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket      |
| Thermometer & DO meter | YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen<br>Instrument/ YSI 550A Multifunctional Meter*/ YSI Professional<br>DSS |
| pH meter               | YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/<br>650MDS/ YSI Professional DSS                                      |
| Turbidimeter           | Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS                                                                                |
| Sample Container       | High density polythene bottles (provided by laboratory)                                                                            |
| Storage Container      | 'Willow' 33-liter plastic cool box with Ice pad                                                                                    |

Table 3-7Water Quality Monitoring Equipment

\* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

# **3.6 MONITORING METHODOLOGY**

# **1-hour TSP Monitoring**

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
  - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
  - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
  - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

# **24-hour TSP Monitoring**

3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation, Appendix B to Part 50.* The High Volume Air Sampler (HVS) consists of the following:



- (a.) An anodized aluminum shelter;
- (b.) A 8"x10" stainless steel filter holder;
- (c.) A blower motor assembly;
- (d.) A continuous flow/pressure recorder;
- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

# Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level  $(L_{eq})$  measured in decibels dB(A). Supplementary statistical results  $(L_{10} \text{ and } L_{90})$  were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level ( $L_{eq}$ ). Leq<sub>(30min)</sub> in six consecutive Leq<sub>(5min)</sub> measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq<sub>(5min)</sub> measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

# Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

# Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 If the water level of a monitoring station is too shallow when sampling, sediment would be disturbed which affecting the accuracy of water quality monitoring. In order to avoid disturbing sediment, depth limits should be set up for the water sampling for the ease of reference. When the measured water depth of the monitoring station (both control and impact stations) is lower than 150mm, water monitoring would not be to perform at that monitoring location. Instead, the monitoring location will be moved to a temporary alternative location monitoring location based on the criteria below:-
  - (a) the alternative location should be either upstream or downstream of the original location and at the same the river/drain channel
  - (b) the alternative location should be within 15m far from the original location
  - (c) if no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated



location could not make a representative sample.

- 3.6.12 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.13 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.14 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4<sup>o</sup>C as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

## In-situ Measurement

- 3.6.15 YSI PRO20 Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.16 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.17 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.18 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

#### Laboratory Analysis

3.6.19 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

#### **3.7** EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.



### **3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS**

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

| Monitoring Station        | Action ]               | Level ( $\mu g / m^3$ ) | Limit Level (µg/m³) |             |  |
|---------------------------|------------------------|-------------------------|---------------------|-------------|--|
| <b>Monitoring Station</b> | 1-hour TSP 24-hour TSP |                         | 1-hour TSP          | 24-hour TSP |  |
| AM1b                      | 265                    | 143                     |                     |             |  |
| AM2                       | 268                    | 149                     |                     |             |  |
| AM3                       | 269                    | 145                     |                     |             |  |
| AM4b                      | 267                    | 148                     |                     | 260         |  |
| AM5a                      | 268                    | 143                     | 500                 |             |  |
| AM6                       | 269                    | 148                     |                     |             |  |
| AM7b                      | 275                    | 156                     |                     |             |  |
| AM8                       | 269                    | 144                     |                     |             |  |
| AM9b                      | 271                    | 151                     |                     |             |  |

 Table 3-8
 Action and Limit Levels for Air Quality Monitoring

| Monitoring Location                                         | Action Level                                        | Limit Level in dB(A)                    |  |
|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|--|
| Women ing Location                                          | Time Period: 0700-1900 hours on normal weekdays     |                                         |  |
| NM1, NM2a, NM3,<br>NM4, NM5, NM6,<br>NM7, NM8, NM9,<br>NM10 | When one or more documented complaints are received | 75 dB(A) <sup>Note 1 &amp; Note 2</sup> |  |

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period.

*Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.* 

| Table 3-10 | Action and Limit Levels for Water Quality |
|------------|-------------------------------------------|
|------------|-------------------------------------------|

| Davamatar | Performance  |                     |                                                             |                     |                      |                     |  |
|-----------|--------------|---------------------|-------------------------------------------------------------|---------------------|----------------------|---------------------|--|
| Parameter | criteria     | <b>WM1</b>          | WM2A(a)                                                     | WM2B                | WM3x                 | WM4                 |  |
| DO        | Action Level | <sup>(*)</sup> 4.23 | <sup>(**)</sup> 4.00                                        | <sup>(*)</sup> 4.74 | <sup>(**)</sup> 4.00 | (*)4.14             |  |
| (mg/L)    | Limit Level  | <sup>(#)</sup> 4.19 | <sup>(**)</sup> 4.00                                        | <sup>(#)</sup> 4.60 | <sup>(**)</sup> 4.00 | <sup>(#)</sup> 4.08 |  |
| Turbidity | Action Level | 51.3                | 24.9                                                        | 11.4                | 13.4                 | 35.2                |  |
|           | Action Level | AND                 | <b>AND</b> 120% of upstream control station of the same day |                     |                      |                     |  |
|           | Limit Level  | 67.6                | 33.8                                                        | 12.3                | 14.0                 | 38.4                |  |
|           |              | AND                 | 130% of upstream control station of the same day            |                     |                      |                     |  |
|           | Action Level | 54.5                | 14.6                                                        | 11.8                | 12.6                 | 39.4                |  |
|           | Action Level | AND                 | 120% of upstream control station of the same day            |                     |                      |                     |  |
| SS (mg/L) |              | 64.9                | 17.3                                                        | 12.4                | 12.9                 | 45.5                |  |
|           | Limit Level  | AND                 | 130% of ups                                                 | tream control s     | station of the s     | ame day             |  |

Remarks:

(\*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(\*\*) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

- (#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data
- 3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

# 3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system.



The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.

3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.



# 4 AIR QUALITY MONITORING

### 4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

### 4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *135* events of 1-hour TSP and *50* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

| 24-hour   |                             | 1-hour TSP (µg/m <sup>3</sup> ) |               |                         |                         |                         |
|-----------|-----------------------------|---------------------------------|---------------|-------------------------|-------------------------|-------------------------|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date                            | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |
| 6-Mar-18  | 75                          | 5-Mar-18                        | 9:26          | 55                      | 63                      | 67                      |
| 12-Mar-18 | 72                          | 10-Mar-18                       | 8:47          | 54                      | 52                      | 60                      |
| 17-Mar-18 | 68                          | 16-Mar-18                       | 9:06          | 66                      | 69                      | 66                      |
| 23-Mar-18 | 69                          | 22-Mar-18                       | 10:24         | 64                      | 67                      | 66                      |
| 29-Mar-18 | 67                          | 28-Mar-18                       | 10:04         | 80                      | 79                      | 77                      |
| Average   | 70                          | Avera                           | ge            |                         | 66                      |                         |
| (Range)   | (67 – 75)                   | (Rang                           | ge)           |                         | (52 - 80)               |                         |

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1b

| Table 4-2 | Summary of 24-hour and 1-hour TSP Monitoring Results – AM2 |
|-----------|------------------------------------------------------------|
|-----------|------------------------------------------------------------|

|           | 24-hour                     |           | 1-hour TSP (µg/m <sup>3</sup> ) |                         |                         |                         |  |
|-----------|-----------------------------|-----------|---------------------------------|-------------------------|-------------------------|-------------------------|--|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date      | Start<br>Time                   | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |
| 6-Mar-18  | 147                         | 5-Mar-18  | 9:30                            | 56                      | 61                      | 66                      |  |
| 12-Mar-18 | 142                         | 10-Mar-18 | 8:52                            | 63                      | 60                      | 66                      |  |
| 17-Mar-18 | 125                         | 16-Mar-18 | 9:11                            | 70                      | 71                      | 72                      |  |
| 23-Mar-18 | 143                         | 22-Mar-18 | 10:01                           | 61                      | 59                      | 60                      |  |
| 29-Mar-18 | 144                         | 28-Mar-18 | 9:15                            | 75                      | 79                      | 77                      |  |
| Average   | 140                         | Avera     | ge                              |                         | 66                      |                         |  |
| (Range)   | (125 – 147)                 | (Rang     | ge)                             |                         | (56 – 79)               |                         |  |

| Table 4-3 | Summary of 24-hour and 1-hour TSP Monitoring Results – AM3 |
|-----------|------------------------------------------------------------|
|-----------|------------------------------------------------------------|

|           | 24-hour                     |           | 1             | -hour TSP (µg           | y/m <sup>3</sup> )      |                         |
|-----------|-----------------------------|-----------|---------------|-------------------------|-------------------------|-------------------------|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date      | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |
| 6-Mar-18  | 56                          | 5-Mar-18  | 9:33          | 54                      | 57                      | 63                      |
| 12-Mar-18 | 69                          | 10-Mar-18 | 8:57          | 50                      | 48                      | 55                      |
| 17-Mar-18 | 55                          | 16-Mar-18 | 9:13          | 68                      | 67                      | 70                      |
| 23-Mar-18 | 100                         | 22-Mar-18 | 13:11         | 64                      | 63                      | 63                      |
| 29-Mar-18 | 79                          | 28-Mar-18 | 13:03         | 73                      | 76                      | 73                      |
| Average   | 72                          | Avera     | ge            |                         | 63                      |                         |
| (Range)   | (55 – 100)                  | (Rang     | ge)           |                         | (48 – 76)               |                         |



| Table 4-4 | Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b |
|-----------|-------------------------------------------------------------|
|           | Summary of 21 nour and 1 nour 151 womening results - 100115 |

|           | 24-hour                     | 1-hour TSP (µg/m³) |               |                         |                         |                         |  |
|-----------|-----------------------------|--------------------|---------------|-------------------------|-------------------------|-------------------------|--|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date               | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |
| 1-Mar-18  | 70                          | 3-Mar-18           | 8:52          | 63                      | 61                      | 68                      |  |
| 7-Mar-18  | 92                          | 9-Mar-18           | 9:32          | 36                      | 37                      | 41                      |  |
| 13-Mar-18 | 58                          | 15-Mar-18          | 9:38          | 40                      | 46                      | 52                      |  |
| 19-Mar-18 | 65                          | 20-Mar-18          | 10:47         | 53                      | 54                      | 52                      |  |
| 24-Mar-18 | 88                          | 26-Mar-18          | 9:52          | 73                      | 70                      | 65                      |  |
| 30-Mar-18 | 73                          |                    |               |                         |                         |                         |  |
| Average   | 74                          | Average            |               | 54                      |                         |                         |  |
| (Range)   | (58 – 92)                   | (Rang              | ge)           | (36 – 73)               |                         |                         |  |

|           | 24-hour                     |           | g/m <sup>3</sup> ) |                         |                         |                         |
|-----------|-----------------------------|-----------|--------------------|-------------------------|-------------------------|-------------------------|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date      | Start<br>Time      | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |
| 1-Mar-18  | 48                          | 3-Mar-18  | 8:54               | 65                      | 62                      | 66                      |
| 7-Mar-18  | 75                          | 9-Mar-18  | 9:29               | 33                      | 34                      | 39                      |
| 13-Mar-18 | 75                          | 15-Mar-18 | 9:36               | 43                      | 50                      | 56                      |
| 19-Mar-18 | 43                          | 20-Mar-18 | 10:03              | 50                      | 48                      | 51                      |
| 24-Mar-18 | 99                          | 26-Mar-18 | 9:50               | 65                      | 68                      | 66                      |
| 30-Mar-18 | 50                          |           |                    |                         |                         |                         |
| Average   | 65                          | Average   |                    | 53                      |                         |                         |
| (Range)   | (43 – 99)                   | (Rang     | ge)                | (33 – 68)               |                         |                         |

|           | 24-hour                     | 1-hour TSP (µg/m <sup>3</sup> ) |               |                         |                         |                         |  |
|-----------|-----------------------------|---------------------------------|---------------|-------------------------|-------------------------|-------------------------|--|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date                            | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |
| 1-Mar-18  | 103                         | 3-Mar-18                        | 9:07          | 63                      | 60                      | 64                      |  |
| 7-Mar-18  | 76                          | 9-Mar-18                        | 9:23          | 36                      | 39                      | 42                      |  |
| 13-Mar-18 | 83                          | 15-Mar-18                       | 9:28          | 50                      | 52                      | 59                      |  |
| 19-Mar-18 | 123                         | 20-Mar-18                       | 13:09         | 42                      | 54                      | 50                      |  |
| 24-Mar-18 | 119                         | 26-Mar-18                       | 9:45          | 59                      | 67                      | 81                      |  |
| 30-Mar-18 | 88                          |                                 |               |                         |                         |                         |  |
| Average   | 99                          | Average                         |               | 55                      |                         |                         |  |
| (Range)   | (76 – 123)                  | (Rang                           | ge)           | (36 - 81)               |                         |                         |  |

# Table 4-7Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b

|           | 24-hour                     | 1-hour TSP (µg/m <sup>3</sup> ) |               |                         |                         |                         |  |
|-----------|-----------------------------|---------------------------------|---------------|-------------------------|-------------------------|-------------------------|--|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date                            | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |
| 1-Mar-18  | 92                          | 3-Mar-18                        | 9:12          | 65                      | 58                      | 62                      |  |
| 7-Mar-18  | 103                         | 9-Mar-18                        | 9:03          | 44                      | 46                      | 47                      |  |
| 13-Mar-18 | 87                          | 15-Mar-18                       | 9:23          | 47                      | 51                      | 56                      |  |
| 19-Mar-18 | 106                         | 20-Mar-18                       | 9:23          | 78                      | 78                      | 82                      |  |
| 24-Mar-18 | 151                         | 26-Mar-18                       | 9:33          | 53                      | 59                      | 63                      |  |
| 30-Mar-18 | 119                         |                                 |               |                         |                         |                         |  |
| Average   | 110                         | Average                         |               | 59                      |                         |                         |  |
| (Range)   | (87 – 151)                  | (Rang                           | ge)           | (44 - 82)               |                         |                         |  |



| Table 4-8 | Summary of 24-hour and 1-hour TSP Monitoring Results – AM8 |
|-----------|------------------------------------------------------------|
|           | Summary of 21 mour and 1 mour 151 mourtoning results 11010 |

|                    | 24-hour                     | 1-hour TSP (μg/m <sup>3</sup> ) |               |                         |                         |                         |  |  |
|--------------------|-----------------------------|---------------------------------|---------------|-------------------------|-------------------------|-------------------------|--|--|
| Date               | TSP<br>(µg/m <sup>3</sup> ) | Date                            | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |  |
| 1-Mar-18           | 45                          | 3-Mar-18                        | 13:32         | 65                      | 78                      | 68                      |  |  |
| 7-Mar-18           | 24                          | 9-Mar-18                        | 13:16         | 41                      | 45                      | 45                      |  |  |
| 13-Mar-18          | 51                          | 15-Mar-18                       | 9:12          | 50                      | 53                      | 60                      |  |  |
| 19-Mar-18          | 59                          | 20-Mar-18                       | 13:18         | 77                      | 79                      | 77                      |  |  |
| 24-Mar-18          | 83                          | 26-Mar-18                       | 9:16          | 54                      | 60                      | 63                      |  |  |
| 30-Mar-18          | 58                          |                                 |               |                         |                         |                         |  |  |
| Average<br>(Range) | 53<br>(24 - 83)             | Average<br>(Range)              |               | 61<br>(41 - 79)         |                         |                         |  |  |

| Table 4-9 | Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b |
|-----------|-------------------------------------------------------------|
|           | Summary of 24-nour and 1-nour 151 monitoring (Courts – Ami) |

|           | 24-hour                     | 1-hour TSP (µg/m <sup>3</sup> ) |               |                         |                         |                         |  |
|-----------|-----------------------------|---------------------------------|---------------|-------------------------|-------------------------|-------------------------|--|
| Date      | TSP<br>(µg/m <sup>3</sup> ) | Date                            | Start<br>Time | 1 <sup>st</sup> reading | 2 <sup>nd</sup> reading | 3 <sup>rd</sup> reading |  |
| 6-Mar-18  | 57                          | 5-Mar-18                        | 10:14         | 58                      | 57                      | 64                      |  |
| 12-Mar-18 | 48                          | 10-Mar-18                       | 9:18          | 41                      | 43                      | 48                      |  |
| 17-Mar-18 | 114                         | 16-Mar-18                       | 9:35          | 49                      | 52                      | 59                      |  |
| 23-Mar-18 | 104                         | 22-Mar-18                       | 9:24          | 85                      | 88                      | 71                      |  |
| 29-Mar-18 | 79                          | 28-Mar-18                       | 9:06          | 63                      | 62                      | 62                      |  |
| Average   | 80                          | Avera                           | ge            |                         | 60                      |                         |  |
| (Range)   | (48 – 114)                  | (Rang                           | ge)           |                         | (41 – 88)               |                         |  |

- 4.2.2 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.



## 5 CONSTRUCTION NOISE MONITORING

#### 5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

#### 5.2 NOISE MONITORING RESULTS

5.2.1 In the Reporting Period, a total of **45** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

 Table 5-1
 Summary of Construction Noise Monitoring Results

|             | Construction Noise Level (L <sub>eq30min</sub> ), dB(A) |                     |            |     |                     |  |  |
|-------------|---------------------------------------------------------|---------------------|------------|-----|---------------------|--|--|
| Date        | NM1                                                     | NM2a <sup>(*)</sup> | <b>NM8</b> | NM9 | NM10 <sup>(*)</sup> |  |  |
| 5-Mar-18    | 60                                                      | 70                  | 63         | 65  | 69                  |  |  |
| 16-Mar-18   | 61                                                      | 68                  | 62         | 63  | 66                  |  |  |
| 22-Mar-18   | 58                                                      | 72                  | 56         | 58  | 59                  |  |  |
| 28-Mar-18   | 51                                                      | 68                  | 59         | 61  | 61                  |  |  |
| Limit Level |                                                         | 75 dB(A)            |            |     |                     |  |  |

Remarks

(\*) façade correction  $(+3 \ dB(A))$  is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

| Construction Noise Level (Leq30min), dB(A) |     |     |          |     |     |  |  |
|--------------------------------------------|-----|-----|----------|-----|-----|--|--|
| Date                                       | NM3 | NM4 | NM5      | NM6 | NM7 |  |  |
| 9-Mar-18                                   | 61  | 65  | 52       | 57  | 59  |  |  |
| 15-Mar-18                                  | 59  | 65  | 58       | 61  | 61  |  |  |
| 20-Mar-18                                  | 55  | 63  | 57       | 61  | 64  |  |  |
| 26-Mar-18                                  | 63  | 61  | 51       | 59  | 65  |  |  |
| 29-Mar-18                                  | 55  | 62  | 53       | 57  | 58  |  |  |
| Limit Level                                |     |     | 75 dB(A) |     |     |  |  |

5.2.2 As shown in *Tables 5-1 and 5-2*, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.



## **6 WATER QUALITY MONITORING**

#### 6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

#### 6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of **fourteen (14)** sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM3x, according to "*Event and Action Plan*" stipulation, 2 additional water quality monitoring day were conducted for WM3x and its control stations.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

| Date      | Dissolved Oxygen<br>(mg/L) |        |        | Turbidity<br>(NTU) |        |        | Suspended Solids<br>(mg/L) |        |        |
|-----------|----------------------------|--------|--------|--------------------|--------|--------|----------------------------|--------|--------|
|           | WM4                        | WM4-CA | WM4-CB | WM4                | WM4-CA | WM4-CB | WM4                        | WM4-CA | WM4-CB |
| 1-Mar-18  | 6.0                        | 8.7    | 6.3    | 6.7                | 2.4    | 6.0    | 10.5                       | 2.5    | 6.0    |
| 3-Mar-18  | 6.1                        | 8.7    | 6.2    | 8.3                | 2.2    | 8.4    | 18.0                       | 4.5    | 8.0    |
| 5-Mar-18  | 5.7                        | 7.8    | 5.8    | 12.0               | 3.4    | 6.5    | 13.0                       | <2     | 9.0    |
| 7-Mar-18  | 5.6                        | 6.8    | 5.0    | 13.1               | 2.9    | 10.1   | 12.0                       | <2     | 13.5   |
| 9-Mar-18  | 6.8                        | 9.2    | 6.9    | 15.6               | 2.3    | 11.9   | 9.0                        | <2     | 11.5   |
| 12-Mar-18 | 5.6                        | 7.3    | 5.2    | 15.6               | 3.4    | 10.2   | 15.0                       | 3.5    | 11.0   |
| 14-Mar-18 | 5.6                        | 6.2    | 4.3    | 10.5               | 7.0    | 9.2    | 9.5                        | 3.0    | 9.5    |
| 16-Mar-18 | 5.8                        | 7.0    | 5.7    | 13.8               | 5.3    | 5.2    | 26.0                       | 2.5    | 4.0    |
| 19-Mar-18 | 9.7                        | 9.1    | 7.7    | 25.7               | 2.5    | 5.6    | 37.0                       | 3.0    | 7.5    |
| 21-Mar-18 | 7.9                        | 8.9    | 8.4    | 15.1               | 1.7    | 9.0    | 22.0                       | <2     | 5.5    |
| 23-Mar-18 | 7.3                        | 8.0    | 7.5    | 32.1               | 4.3    | 8.5    | 31.5                       | 5.0    | 13.0   |
| 27-Mar-18 | 4.7                        | 7.1    | 5.3    | 21.6               | 4.7    | 6.4    | 19.5                       | 5.0    | 4.5    |
| 29-Mar-18 | 5.2                        | 6.8    | 5.1    | 17.7               | 6.3    | 11.2   | 18.5                       | 3.5    | 8.5    |
| 31-Mar-18 | 6.0                        | 7.4    | 6.8    | 14.8               | 4.9    | 7.7    | 17.5                       | 2.0    | 7.0    |

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

| Date      |      | d Oxygen<br>g/L) |      | oidity<br>ΓU) | Suspended Solids<br>(mg/L) |       |
|-----------|------|------------------|------|---------------|----------------------------|-------|
|           | WM1  | WM1-C            | WM1  | WM1-C         | WM1                        | WM1-C |
| 1-Mar-18  | 7.0  | 13.9             | 7.9  | 8.1           | 7.0                        | 3.5   |
| 3-Mar-18  | 5.8  | 13.5             | 9.2  | 7.4           | 14.0                       | 6.5   |
| 5-Mar-18  | 5.5  | 12.4             | 10.9 | 8.1           | 13.5                       | 2.5   |
| 7-Mar-18  | 6.3  | 11.7             | 14.2 | 9.2           | 16.0                       | 2.5   |
| 9-Mar-18  | 8.8  | 12.7             | 28.3 | 8.5           | 21.0                       | 3.0   |
| 12-Mar-18 | 5.7  | 10.2             | 5.3  | 5.9           | 4.0                        | 4.0   |
| 14-Mar-18 | 6.7  | 10.5             | 23.5 | 11.5          | 16.0                       | 8.5   |
| 16-Mar-18 | 4.4  | 9.8              | 26.3 | 26.6          | 13.5                       | 19.5  |
| 19-Mar-18 | 7.6  | 8.6              | 8.7  | 18.7          | 17.5                       | 16.0  |
| 21-Mar-18 | 8.4  | 8.9              | 25.5 | 13.9          | 17.0                       | 15.0  |
| 23-Mar-18 | 10.8 | 8.6              | 29.3 | 28.3          | 24.5                       | 53.0  |
| 27-Mar-18 | 4.5  | 9.5              | 5.4  | 8.2           | 3.5                        | 10.0  |
| 29-Mar-18 | 5.3  | 11.5             | 8.5  | 9.3           | 7.0                        | 4.0   |
| 31-Mar-18 | 6.5  | 8.3              | 8.2  | 12.2          | 6.0                        | 12.0  |



| Date      | D           | )issolveo<br>(mg | d Oxyge<br>g/L) | en         | Turbidity<br>(NTU) |              |      |            | Suspended Solids<br>(mg/L) |             |      |             |
|-----------|-------------|------------------|-----------------|------------|--------------------|--------------|------|------------|----------------------------|-------------|------|-------------|
| Date      | WM2A(<br>a) | WM2A-<br>Cx      | WM2B            | WM2B-<br>C | WM2A(a)            | WM2A<br>- Cx | WM2B | WM2B-<br>C | WM2A(<br>a)                | WM2A-<br>Cx | WM2B | WM2<br>B- C |
| 1-Mar-18  | 8.0         | 8.0              | *               | *          | 4.6                | 13.5         | *    | *          | 2.0                        | 4.5         | *    | *           |
| 3-Mar-18  | 7.5         | 7.8              | *               | *          | 7.9                | 14.5         | *    | *          | 3.5                        | 7.0         | *    | *           |
| 5-Mar-18  | 7.2         | 7.4              | *               | *          | 6.2                | 18.9         | *    | *          | 7.5                        | 10.5        | *    | *           |
| 7-Mar-18  | 6.9         | 6.6              | *               | *          | 7.3                | 16.8         | *    | *          | 3.0                        | 5.0         | *    | *           |
| 9-Mar-18  | 9.0         | 9.0              | *               | *          | 5.0                | 79.9         | *    | *          | <2                         | 34.5        | *    | *           |
| 12-Mar-18 | 7.1         | 7.3              | *               | *          | 5.7                | 8.8          | *    | *          | 2.5                        | 3.5         | *    | *           |
| 14-Mar-18 | 7.7         | 7.1              | *               | *          | 20.7               | 22.3         | *    | *          | 11.5                       | 10.5        | *    | *           |
| 16-Mar-18 | 6.7         | 6.0              | *               | *          | 18.3               | 21.4         | *    | *          | 11.5                       | 6.0         | *    | *           |
| 19-Mar-18 | 8.4         | 8.3              | *               | *          | 7.4                | 9.5          | *    | *          | 11.0                       | 17.0        | *    | *           |
| 21-Mar-18 | 8.8         | 8.8              | *               | *          | 13.3               | 21.8         | *    | *          | 11.0                       | 44.5        | *    | *           |
| 23-Mar-18 | 9.5         | 8.6              | *               | *          | 25.3               | 21.9         | *    | *          | 11.0                       | 22.0        | *    | *           |
| 27-Mar-18 | 7.7         | 6.1              | *               | *          | 9.7                | 19.8         | *    | *          | 6.5                        | 9.5         | *    | *           |
| 29-Mar-18 | 7.5         | 5.9              | *               | *          | 12.1               | 14.8         | *    | *          | 7.0                        | 6.5         | *    | *           |
| 31-Mar-18 | 7.5         | 9.3              | *               | *          | 10.4               | 16.0         | *    | *          | 13.0                       | 3.5         | *    | *           |

#### Table 6-3Water Quality Monitoring Results Associated only Contract 6

**Remarks:** \* water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm

| Table 6-4 | Water Quality | <b>Monitoring H</b> | <b>Results Associated</b> | Contracts 2 and 6 |
|-----------|---------------|---------------------|---------------------------|-------------------|
|           |               |                     |                           |                   |

| Date      | Dissolved<br>(mg | l Oxygen<br>g/L) | Turk<br>(N)  | oidity<br>ΓU) | Suspended Solids<br>(mg/L) |       |  |
|-----------|------------------|------------------|--------------|---------------|----------------------------|-------|--|
|           | WM3x             | WM3-C            | WM3x         | WM3-C         | WM3x                       | WM3-C |  |
| 1-Mar-18  | 8.1              | 8.2              | 24.5         | 1.6           | <u>39.5</u>                | 3.5   |  |
| 2-Mar-18  | #                | #                | 4.2          | 2.9           | 5.0                        | 4.0   |  |
| 3-Mar-18  | 7.5              | 8.3              | <u>119.0</u> | 3.5           | <u>185.0</u>               | 7.5   |  |
| 5-Mar-18  | 8.2              | 8.0              | 13.2         | 2.3           | 11.0                       | 3.5   |  |
| 6-Mar-18  | #                | #                | 4.1          | 1.7           | 6.0                        | 6.0   |  |
| 7-Mar-18  | 8.1              | 8.3              | 9.5          | 7.1           | 4.0                        | 5.0   |  |
| 9-Mar-18  | 6.6              | 9.4              | 6.6          | 3.6           | 6.0                        | 7.0   |  |
| 12-Mar-18 | 7.7              | 8.0              | 5.3          | 2.7           | 4.5                        | 2.5   |  |
| 14-Mar-18 | 6.7              | 7.4              | 9.4          | 6.6           | 7.5                        | 19.0  |  |
| 16-Mar-18 | 6.7              | 6.6              | 4.5          | 3.0           | <2                         | <2    |  |
| 19-Mar-18 | 8.4              | 8.2              | 5.9          | 9.6           | 3.5                        | 9.5   |  |
| 21-Mar-18 | 9.0              | 8.8              | 9.4          | 5.3           | <2                         | 6.0   |  |
| 23-Mar-18 | 8.7              | 8.3              | 4.9          | 5.8           | 7.0                        | 5.5   |  |
| 27-Mar-18 | 6.1              | 10.9             | 7.3          | 6.9           | 6.0                        | 12.5  |  |
| 29-Mar-18 | 6.2              | 7.1              | 23.0         | 62.1          | 12.5                       | 134.0 |  |
| 31-Mar-18 | 7.3              | 7.1              | 9.7          | 10.9          | 10.0                       | 11.0  |  |

Remarks:

<sup>#</sup> Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

bold with underline indicated Limit Level exceedance

 Table 6-5
 Action and Limit (A/L) Levels Exceedance Recorded

| Location            | Location Dissolved |    | Turbidity |    | Suspended<br>Solids |    | Total<br>Exceedance |    | Project Related<br>exceedance |    |
|---------------------|--------------------|----|-----------|----|---------------------|----|---------------------|----|-------------------------------|----|
|                     | AL                 | LL | AL        | LL | AL                  | LL | AL                  | LL | AL                            | LL |
| WM1                 | 0                  | 0  | 0         | 0  | 0                   | 0  | 0                   | 0  | 0                             | 0  |
| WM2A(a)             | 0                  | 0  | 0         | 0  | 0                   | 0  | 0                   | 0  | 0                             | 0  |
| WM2B                | 0                  | 0  | 0         | 0  | 0                   | 0  | 0                   | 0  | 0                             | 0  |
| WM3x                | 0                  | 0  | 0         | 2  | 0                   | 2  | 0                   | 4  | 0                             | 0  |
| WM4                 | 0                  | 0  | 0         | 0  | 0                   | 0  | 0                   | 0  | 0                             | 0  |
| No of<br>Exceedance | 0                  | 0  | 0         | 2  | 0                   | 2  | 0                   | 4  | 0                             | 0  |

- 6.2.3 In this Reporting Period, a total of four (4) Limit Level exceedances, namely two (2) Limit Level exceedances of turbidity and two (2) Limit Level exceedances of Suspended Solids were recorded for the Project and they are summarized in *Table 6-5*. Investigation Reports for all water quality exceedances were completed by ET. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that the exceedances recorded at WM3x were not caused by the works under the Project.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

| [-                    |          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of<br>Exceedance | Location | Exceeded<br>Parameter | Cause of Water Quality Exceedance In Brief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 and 3<br>March 2018 | WM3x     | NTU & SS              | Upon detection of the exceedances, inspection was<br>carried out at the channel adjacent to related site areas<br>of Contract 2 and Contract 6, no deteriorated water<br>quality was observed from both Sites. Moreover, weekly<br>site inspection revealed that both Contractors had<br>properly implemented water quality mitigation measures<br>and no adverse water quality impact was recorded. It is<br>considered that the exceedances were related to other<br>source of turbid water, possibly from storm water of Sha<br>Tau Kok Road or adjacent villages and not caused by<br>the works under the Project. |

 Table 6-6
 Summary of Water Quality Exceedance in the Reporting Period



## 7 ECOLOGY MONITORING

#### 7.1 GENERAL

- 7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval for the first year and the monitoring frequency would be reduced to quarterly from the second year.
- 7.1.2 The Ecology Monitoring for period of December 2017 to February 2018 was carried out on 8<sup>th</sup> and 22<sup>nd</sup> January 2018 by transects inspection and quadrat monitoring. Therefore, the Quarterly Ecological Monitoring Report (Dec 2017 Feb 2018) was submitted to EPD in March 2018 as standalone as supplementary of the EM&A Report.



#### 8 WASTE MANAGEMENT

#### 8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

#### 8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
  - Construction & Demolition (C&D) Material;
  - Chemical Waste;
  - General Refuse; and
  - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

| Type of                                                                              | Con     | tract 2                                                     | Con   | tract 3              | Co   | ntract 4             | Cont  | ract 6               | Co    | ntract 7             | Contrac |                      |            |
|--------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|-------|----------------------|------|----------------------|-------|----------------------|-------|----------------------|---------|----------------------|------------|
| Waste                                                                                | Qty.    | Disposal<br>location                                        | Qty.  | Disposal<br>location | Qty. | Disposal<br>location | Qty.  | Disposal<br>location | Qty.  | Disposal<br>location | Qty.    | Disposal<br>location | Total Qty. |
| C&D<br>Materials<br>(Inert)<br>(in '000m <sup>3</sup> )                              | 39.6460 |                                                             | 1.524 |                      | 0    |                      | 3.269 |                      | 0.005 |                      | 11.241  |                      | 55.685     |
| Reused in<br>this<br>Contract<br>(Inert)<br>(in '000 m <sup>3</sup> )                | 0       |                                                             | 0.120 |                      | 0    |                      | 1.581 |                      | 0     |                      | 0.225   |                      | 1.926      |
| Reused in<br>other<br>Contracts/<br>Projects<br>(Inert)<br>(in '000 m <sup>3</sup> ) | 3.3460  | Recycling<br>facility as<br>approved<br>alternative<br>site | 0     |                      | 0    |                      | 0.969 | NENT                 | 0     |                      | 0       |                      | 4.315      |
| Disposal as<br>Public Fill<br>(Inert)<br>(in '000 m <sup>3</sup> )                   | 36.3000 | Tuen Mun<br>38                                              | 1.263 | Tuen<br>Mun 38       | 0    |                      | 0.719 | Tuen<br>Mun 38       | 0.005 | Tuen Mun<br>38       | 10.186  | TKO<br>137           | 48.473     |

Table 8-1Summary of Quantities of Inert C&D Materials for the Project

Table 8-2Summary of Quantities of C&D Wastes for the Project

|                                                     | Cont   | tract 2              | Cont  | tract 3           | Cont | ract 4            | Con   | tract 6              | Contr | act 7              | Contract | SS C505            | Total    |
|-----------------------------------------------------|--------|----------------------|-------|-------------------|------|-------------------|-------|----------------------|-------|--------------------|----------|--------------------|----------|
| Type of Waste                                       | Qty.   | Disposal<br>location | Qty.  | Disposal location | Qty. | Disposal location | Qty.  | Disposal<br>location | Qty.  | Disposal location  | Qty.     | Disposal location  | Quantity |
| Recycled Metal<br>('000kg)#                         | 36.000 | Licensed collector   | 0     | -                 | 0    |                   | 0     |                      | 6     | Licensed collector | 220.860  | Licensed collector | 262.86   |
| Recycled Paper /<br>Cardboard Packing<br>('000kg) # | 0.3050 | Licensed collector   | 0     | -                 | 0    | -                 | 0.380 | Licensed collector   | 0.15  | Licensed collector | 0.830    | Licensed collector | 1.665    |
| Recycled Plastic<br>('000kg) #                      | 2.7000 | Licensed collector   | 0     | -                 | 0    |                   | 0     |                      | 0.001 | Licensed collector | 0.005    | Licensed collector | 2.706    |
| Chemical Wastes<br>('000kg) #                       | 9.9040 | Licensed collector   | 0     | -                 | 0    |                   | 0     |                      | 0     |                    | 0        |                    | 9.904    |
| General Refuses<br>('000m <sup>3</sup> )            | 0.6290 | NENT                 | 0.085 | NENT              | 0    |                   | 0.725 | NENT                 | 0.2   | NENT               | 2.711    | NENT               | 4.35     |

*Remark* #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ( $(000m^3)$ ).



#### 9 SITE INSPECTION

#### 9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

#### 9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

#### Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 9, 16, 23 and 28 March 2018. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

| Date             | Findings / Deficiencies                                                                                                                                                                                                                                                                                                                                                                                                                                                | Follow-Up Status                                                                                                                                                                                                                   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 March 2018     | • No adverse environmental issue was observed.                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                 |
| 9 March<br>2018  | <ul> <li>Wheel washing facility was observed out of<br/>work. The Contractor was advised to provide<br/>proper mitigation for wheel washing.<br/>(Mid-Vent)</li> <li>The Contractor was reminded to keep all pH<br/>record properly.</li> </ul>                                                                                                                                                                                                                        | <ul> <li>Wheel washing was<br/>provided at site<br/>entrance.</li> <li>Not required for<br/>reminder.</li> </ul>                                                                                                                   |
| 16 March<br>2018 | <ul> <li>Mud trails were observed at site entrance.<br/>The Contractor was advised to clean it to<br/>avoid dust emission. (Mid-Vent)</li> <li>Accumulation of construction and general<br/>waste were observed mixed together. The<br/>Contractor was advised to perform on-site<br/>sorting and dispose waste regularly.<br/>(Mid-Vent)</li> <li>The Contractor was reminded to ensure all<br/>pH value of discharge water comply with<br/>WPCO standard.</li> </ul> | <ul> <li>Each vehicle is wheel washed before leaving the MVP site and no mud trial was found at the site entrance.</li> <li>General refuses are segregated from the C&amp;D wastes.</li> <li>Not required for reminder.</li> </ul> |
| 23 March<br>2018 | <ul> <li>General refuse cumulated inside the storage pit was observed. General refuse cumulated inside the pit should be cleaned. (North Portal)</li> <li>Mud and sediment cumulated inside the store basin should be cleaned. (North Portal)</li> <li>Heavy smoke emitted from cherry picker was observed. Proper maintenance should be provided to maintain plants using on-site are in good condition. (North Portal)</li> </ul>                                    | <ul> <li>General refuses have<br/>been removed.</li> <li>The mud and<br/>sediment<br/>accumulated at the<br/>bottom of the basin<br/>has been removed.</li> </ul>                                                                  |
| 28 March<br>2018 | <ul> <li>Dry haul road was observed, the Contractor should provide water spraying to minimize dust generation from the haul road. (South Portal)</li> <li>Dirt and debris on pedestrian road at the site exit was observed. The Contractor should clean up the dusty material and maintain cleanliness. (Admin Building)</li> </ul>                                                                                                                                    | <ul> <li>The Contractor will continue to provide water spraying to minimize dust generation from the haul road.</li> <li>The dirt and debris have been removed.</li> </ul>                                                         |

Table 9-1Site Observations for Contract 2



## Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 1, 8, 15, 21 and 29 March 2018. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

| h           |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date        | <b>Findings / Deficiencies</b>                                                                                                                                                                                                                                                                                                                                                                                                           | Follow-Up Status                                                                                                                                                                                                                              |
| 1 Mar 2018  | <ul> <li>No adverse environmental issue was<br/>observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                            |
| 8 Mar 2018  | • The Contractor was reminded to maintain the sandbag bund at ID4.                                                                                                                                                                                                                                                                                                                                                                       | • Not required for reminder.                                                                                                                                                                                                                  |
| 15 Mar 2018 | • No adverse environmental issue was observed.                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                            |
| 21 Mar 2018 | <ul> <li>Water dripping form the viaduct was observed, the Contractor should properly remove any stagnant water on the viaduct after rain. (Tai Wo Service Road East)</li> <li>Excavation next to the channel was observed, the Contractor should provide mitigation measures to prevent muddy runoff entering the river channel.</li> <li>The Contractor was reminded to provide dust suppression measure during dry concern</li> </ul> | <ul> <li>Concrete bund was provided to prevent water leaking from the viaduct.</li> <li>The exposed slopes are covered with tarpaulin sheets to avoid muddy runoff entering the river channel.</li> <li>Not required for reminder.</li> </ul> |
| 29 Mar 2018 | <ul> <li>The Contractor was reminded to<br/>improve and maintain the setup of water<br/>diversion at BC02.</li> </ul>                                                                                                                                                                                                                                                                                                                    | Not required for reminder.                                                                                                                                                                                                                    |

#### Table 9-2Site Observations for Contract 3

## Contract 4

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 16, 19 and 28 March 2018. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 9-3Site Observations for Contract 4

| Date        | Findings / Deficiencies                        | Follow-Up Status |
|-------------|------------------------------------------------|------------------|
| 2 Mar 2018  | • No adverse environmental issue was observed. | • NA             |
| 9 Mar 2018  | • No adverse environmental issue was observed. | • NA             |
| 16 Mar 2018 | • No adverse environmental issue was observed. | • NA             |
| 19 Mar 2018 | • No adverse environmental issue was observed. | • NA             |
| 28 Mar 2018 | • No adverse environmental issue was observed. | • NA             |

## Contract 6

9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 2, 8, 15, 22 and 29 March 2018. No non-compliance was noted.



9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

|             | 1                                                                                                                                                                                                                    |                                                     |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Date        | Findings / Deficiencies                                                                                                                                                                                              | Follow-Up Status                                    |
| 2 Mar 2018  | • The Contractor was reminded to maintain the cleanliness at site exit and public footpath at Gate 1 and Gate 2.                                                                                                     | • Not required for reminder.                        |
| 8 Mar 2018  | • The Contractor was reminded at maintain the cleanliness at site exit in Gate 1.                                                                                                                                    | • Not required for reminder.                        |
| 15 Mar 2018 | • Dirt and debris on pedestrian road were<br>observed at Gate 1, the Contractor should<br>maintain the cleanliness at the pedestrian road<br>and ensure no surface runoff entering the<br>public area from the site. | • The pedestrian road is maintained clean and tidy. |
|             | • The Contractor was reminded to maintain and clean the U-channel for water diversion. (Location: D08)                                                                                                               | • Not required for reminder.                        |
| 22 Mar 2018 | • The Contractor was reminded to maintain cleanliness at site exit and public area.                                                                                                                                  | • Not required for reminder.                        |
| 29 Mar 2018 | • No adverse environmental issue was observed.                                                                                                                                                                       | • NA                                                |

Table 9-4Site Observations for Contract 6

#### Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 7, 14, 21 and 28 March 2018 in which IEC joined the site inspection on 28 March 2018. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5Site Observations for Contract SS C505

| Date                                      | Findings / Deficiencies                                                                                                                                                                                                                                                                        | Follow-Up Status                                                                                                    |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 28 Feb 2018<br>(last reproting<br>period) | <ul> <li>Food wastes were observed on the roof of PTB.<br/>The Contractor was advised to perform<br/>housekeeping regularly.</li> <li>The Contractor was reminded to cover<br/>stockpiles entirely after construction work.</li> </ul>                                                         | <ul> <li>Food wastes were<br/>removed and<br/>disposed properly.</li> <li>Not required for<br/>reminder.</li> </ul> |  |  |  |  |
| 7 Mar 2018                                | • The Contractor was reminded to clean the stagnant water on the ground of PTB.                                                                                                                                                                                                                | • Not required for reminder.                                                                                        |  |  |  |  |
| 14 Mar 2018                               | • No adverse environmental issue was observed.                                                                                                                                                                                                                                                 | • NA                                                                                                                |  |  |  |  |
| 21 Mar 2018                               | • Concrete breaking without water spraying was<br>observed at stockpile area. The Contractor was<br>advised to provide water spraying for dusty<br>activity to avoid dust emission.                                                                                                            | • Water spraying was implemented during concrete activity.                                                          |  |  |  |  |
| 28 Mar 2018                               | • Oil leakage was observed on the ground of 1/F<br>in front of PTB. The Contractor should clean<br>the oil leakage and dispose of as chemical<br>wastes. Besides, the Contractor should also<br>provide proper label for chemical container and<br>place chemical containers inside drip tray. | • To be followed.                                                                                                   |  |  |  |  |



#### Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 2, 9, 16, 22 and 28 March 2018. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* **7** that observed during the weekly site inspection are listed in *Table 9-6*.

| Date        | Findings / Deficiencies                                                                                                                                                                                                                                                                                    | Follow-Up Status                                                                                                       |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 2 Mar 2018  | • No adverse environmental issue was observed during site inspection.                                                                                                                                                                                                                                      | • NA.                                                                                                                  |
| 9 Mar 2018  | • The Contractor was reminded to provide<br>proper mitigation measure along site<br>boundary near Bridge E to avoid<br>potential runoff out of site.                                                                                                                                                       | • Not required for reminder.                                                                                           |
| 16 Mar 2018 | <ul> <li>Accumulation of general waste was<br/>observed on the ground. The Contractor<br/>was advised to dispose it regularly.</li> <li>Open stockpiles were observed near<br/>bridge E. The Contractor was advised to<br/>cover it to prevent dust emission.</li> </ul>                                   | <ul> <li>The scattered general waste was cleaned.</li> <li>Stockpiles are covered to prevent dust emission.</li> </ul> |
| 22 Mar 2018 | <ul> <li>The Contractor was reminded that wastewater should be treated before discharge and to comply with the discharge license. Besides, wastewater treatment facility should be provided and maintained.</li> <li>Wet season is coming, it was remidned that preventive measures for surface</li> </ul> | <ul> <li>Not required for reminder.</li> <li>Not required for reminder.</li> </ul>                                     |
|             | runoff should be enhanced and maintained.                                                                                                                                                                                                                                                                  |                                                                                                                        |
| 28 Mar 2018 | • Leakage of waste water from<br>sedimentation tank was observed near<br>site entrance. The Contractor was advised<br>to have regular maintenance on<br>sedimentation tanks near site entrance.                                                                                                            | • Proper maintenance was carried out on the sedimentation tanks.                                                       |
|             | • The Contractor was reminded to provide<br>proper mitigation measure along site<br>boundary to avoid potential runoff out of                                                                                                                                                                              | • Not required for reminder.                                                                                           |
|             | <ul> <li>site.</li> <li>The Contractor was reminded to remove sediment at discharge area near site entrance.</li> </ul>                                                                                                                                                                                    | • Not required for reminder.                                                                                           |

| Table 9-6 | <b>Site Observations</b> | for Contract 7 |
|-----------|--------------------------|----------------|
|           |                          |                |

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

#### 10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

#### **10.1** Environmental Complaint, Summons and Prosecutions

10.1.1 In the Reporting Period, two (2) documented environmental complaints were received under the EM&A program of the Project which related to dust and water quality issue. No summons and prosecution under the EM&A Programme was lodged for all Contracts. The status of the outstanding investigation report in previous months is summarized below.

| Date of complaint                                        | Complaint Detail                                                                                                                                                        | Investigation Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 January 2018<br>(pervious<br>reporting<br>period)     | A complaint was raised<br>by EPD regarding<br>observations of some<br>spoils was dropped into<br>the sea during the<br>offloading operation at<br>Cheung Sha Wan Pier.  | Investigation was carried out at Cheung Sha Wan Pier on 9<br>Feb. The IR revealed that the operation of the jetty is<br>managed by Tapbo Civil Engineering Company Limit as a<br>transfer station for unloading excavated materials from<br>various sources and it was not a newly constructed barging<br>point for the Project use. The unloaded materials of Contract<br>2 will be subsequently delivered to the designated disposal<br>ground, TM38 or TKO137. Dust mitigation measures and<br>preventive measures to avoid spoil from dropping into the sea<br>were provided during spoils offloading. It is considered that<br>no breaches of EP's conditions and improper disposal were<br>involved. |
|                                                          |                                                                                                                                                                         | The IR was completed by ET without comment by IEC which enclosed in <i>Appendix O</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 March 2018                                             | A public complaint was<br>received via 1823<br>regarding the cleanliness<br>of Lin Ma Hang Road.<br>(Dust and Water Quality)                                            | Investigation was carried out for related Contract 6, Contract<br>7 and Contract SS C505 accordingly. The IR revealed that the<br>conditions of all site exits under the project were well<br>maintained without mud and debris and no excessive water<br>spraying and slurry was found on LMH road. However, a<br>deficiency at Gate 1 under Contract 6 was observed and<br>rectified immediately without affecting the public. Since<br>there were many other heavy vehicles apart from the project<br>using LMH Road and certain number of unknown exit sites<br>without proper management along LMH Road, it is<br>considered that the complaint was not related to the works<br>under the Project.    |
|                                                          |                                                                                                                                                                         | The IR was completed by ET without comment by IEC which enclosed in <i>Appendix O</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 28 February<br>2018 (received<br>by ET on 6 Mar<br>2018) | A public complaint was<br>received from Project<br>Hotline regarding the<br>cleanliness of Sha Tau<br>Kok (STK) Road – Ma<br>Mei Ha Section (Dust<br>and Water Quality) | Investigation was carried out for related Contract 2 and<br>Contract 6 accordingly. The IR revealed that the Contractors<br>have been well maintained the wheel washing facilities and<br>no dust and soil carrying by site vehicles to STK road were<br>observed. The complaint was suspected to be caused by<br>frequent use of dump truck transporting loose material to<br>NENT and the majority of dump truck was not belong to<br>LT/HYW project.                                                                                                                                                                                                                                                    |
|                                                          |                                                                                                                                                                         | The IR was completed by ET without comment by IEC which enclosed in <i>Appendix O</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

10.1.2 The statistical summary of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.



| Table 10-1 | Statistical Summary of Environmental Complaints |
|------------|-------------------------------------------------|
|------------|-------------------------------------------------|

| Reporting                    | ng Contract Environmental Complaint Statistics |           |            | Project related                                                                                                                                                                    |                                                                                                                            |
|------------------------------|------------------------------------------------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Period                       | No                                             | Frequency | Cumulative | <b>Complaint Nature</b>                                                                                                                                                            | complaint                                                                                                                  |
| 19 May 2014 –<br>28 Feb 2018 | Contract 2                                     | 0         | 33         | <ul> <li>(18)Water Quality</li> <li>(8) Dust</li> <li>(5) Noise</li> <li>(1) dust &amp; noise</li> <li>(1) waste<br/>management</li> </ul>                                         | (6) water quality<br>(2) dust<br>(1) noise                                                                                 |
| 06 Nov 2013 –<br>28 Feb 2018 | Contract 3                                     | 0         | 6          | <ul> <li>(2) Dust</li> <li>(3) Water quality</li> <li>(1) Noise</li> </ul>                                                                                                         | 0                                                                                                                          |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 5                                     | 0         | 4          | <ul> <li>(3) Dust</li> <li>(1) Noise</li> </ul>                                                                                                                                    | 0                                                                                                                          |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 6                                     | 0         | 36         | <ul> <li>(23) Water Quality</li> <li>(8) Dust</li> <li>(3) Noise</li> <li>(1) Nuisance</li> <li>(1) Noise and dust</li> </ul>                                                      | <ul> <li>(7) water quality</li> <li>(3) dust</li> <li>(1) Nuisance</li> <li>(1) Water quality</li> <li>and dust</li> </ul> |
| 15 Feb 2016 –<br>28 Feb 2018 | Contract 7                                     | 0         | 2          | <ul> <li>(1) Noise</li> <li>(1) Water quality and dust</li> </ul>                                                                                                                  | (1) Water quality<br>and dust                                                                                              |
| 16 Aug 2013 –<br>28 Feb 2018 | SS C505                                        | 0         | 3          | <ul> <li>(1) Noise</li> <li>(1) dust</li> <li>(1) Water quality and dust</li> </ul>                                                                                                | (1) Water quality<br>and dust                                                                                              |
|                              | Contract 2                                     | 1         | 34         | <ul> <li>(18)Water Quality</li> <li>(8) Dust</li> <li>(5) Noise</li> <li>(1) dust &amp; noise</li> <li>(1) waste<br/>management</li> <li>(1) Water quality and<br/>dust</li> </ul> | NA                                                                                                                         |
|                              | Contract 3                                     | 0         | 6          | <ul> <li>(2) Dust</li> <li>(3) Water quality</li> <li>(1) Noise</li> </ul>                                                                                                         | NA                                                                                                                         |
|                              | Contract 4                                     | 0         | 0          | NA                                                                                                                                                                                 | NA                                                                                                                         |
| 1 – 31 Mar 2018              | Contract 6                                     | 2         | 38         | <ul> <li>(23) Water Quality</li> <li>(8) Dust</li> <li>(3) Noise</li> <li>(1) Nuisance</li> <li>(1) Noise and dust</li> <li>(2) Water quality and dust</li> </ul>                  | NA                                                                                                                         |
|                              | Contract 7                                     | 1         | 3          | <ul> <li>(1) Noise</li> <li>(2) Water quality and dust</li> </ul>                                                                                                                  | NA                                                                                                                         |
|                              | SS C505                                        | 1         | 4          | <ul> <li>(1) Noise</li> <li>(1) dust</li> <li>(2) Water quality and dust</li> </ul>                                                                                                | NA                                                                                                                         |

| Dan autim a Davia d          | Contract No | Environmental Summons Statistics |            |                                                                   |
|------------------------------|-------------|----------------------------------|------------|-------------------------------------------------------------------|
| <b>Reporting Period</b>      |             | Frequency                        | Cumulative | Complaint Nature                                                  |
| 19 May 2014 –<br>28 Feb 2018 | Contract 2  | 0                                |            | contravening the Water Pollution<br>Control (General) Regulations |

## Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.56) – March 2018



| Donoutine Donied             | Contro et No       | Environmental Summons Statistics |            |                  |  |
|------------------------------|--------------------|----------------------------------|------------|------------------|--|
| <b>Reporting Period</b>      | <b>Contract No</b> | Frequency                        | Cumulative | Complaint Nature |  |
| 06 Nov 2013 –<br>28 Feb 2018 | Contract 3         | 0                                | 0          | NA               |  |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 5         | 0                                | 0          | NA               |  |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 6         | 0                                | 0          | NA               |  |
| 15 Feb 2016 –<br>28 Feb 2018 | Contract 7         | 0                                | 0          | NA               |  |
| 16 Aug 2013 –<br>28 Feb 2018 | SS C505            | 0                                | 0          | NA               |  |
|                              | Contract 2         | 0                                | 1          | NA               |  |
|                              | Contract 3         | 0                                | 0          | NA               |  |
| 1 21 Mar 2010                | Contract 4         | 0                                | 0          | NA               |  |
| 1 – 31 Mar 2018              | Contract 6         | 0                                | 0          | NA               |  |
|                              | Contract 7         | 0                                | 0          | NA               |  |
|                              | SS C505            | 0                                | 0          | NA               |  |

| Table 10-3 | Statistical Summary of Environmental Prosecutions |
|------------|---------------------------------------------------|
|------------|---------------------------------------------------|

| Dementing Denied             | Contract No | Environmental Prosecutions Statistics |            |                                                                   |  |
|------------------------------|-------------|---------------------------------------|------------|-------------------------------------------------------------------|--|
| <b>Reporting Period</b>      |             | Frequency                             | Cumulative | Complaint Nature                                                  |  |
| 19 May 2014 –<br>28 Feb 2018 | Contract 2  | 0                                     | 1          | contravening the Water Pollution<br>Control (General) Regulations |  |
| 06 Nov 2013 –<br>28 Feb 2018 | Contract 3  | 0                                     | 0          | NA                                                                |  |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 5  | 0                                     | 0          | NA                                                                |  |
| 16 Aug 2013 –<br>28 Feb 2018 | Contract 6  | 0                                     | 0          | NA                                                                |  |
| 15 Feb 2016 –<br>28 Feb 2018 | Contract 7  | 0                                     | 0          | NA                                                                |  |
| 16 Aug 2013 –<br>28 Feb 2018 | SS C505     | 0                                     | 0          | NA                                                                |  |
|                              | Contract 2  | 0                                     | 1          | NA                                                                |  |
|                              | Contract 3  | 0                                     | 0          | NA                                                                |  |
| 1 – 31 Mar 2018              | Contract 4  | 0                                     | 0          | NA                                                                |  |
|                              | Contract 6  | 0                                     | 0          | NA                                                                |  |
|                              | Contract 7  | 0                                     | 0          | NA                                                                |  |
|                              | SS C505     | 0                                     | 0          | NA                                                                |  |

## 11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

#### **11.1 GENERAL REQUIREMENTS**

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

| Issues                              | Environmental Mitigation Measures                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water<br>Quality                    | • Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.                                                                                                                                                                                                                                        |
| Air Quality                         | <ul> <li>Maintain damp / wet surface on access road</li> <li>Low vehicular speed within the works areas.</li> <li>All vehicles must use wheel washing facility before off site</li> <li>Sprayed water during breaking works</li> <li>A cleaning truck was regularly performed on the public road to prevent fugitive dust emission</li> </ul>                          |
| Noise                               | <ul> <li>Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday.</li> <li>Keep good maintenance of plants</li> <li>Place noisy plants away from residence or school</li> <li>Provide noise barriers or hoarding to enclose the noisy plants or works</li> <li>Shut down the plants when not in used.</li> </ul> |
| Waste and<br>Chemical<br>Management | <ul> <li>On-site sorting prior to disposal</li> <li>Follow requirements and procedures of the "Trip-ticket System"</li> <li>Predict required quantity of concrete accurately</li> <li>Collect the unused fresh concrete at designated locations in the sites for subsequent disposal</li> </ul>                                                                        |
| General                             | The site was generally kept tidy and clean.                                                                                                                                                                                                                                                                                                                            |

 Table 11-1
 Environmental Mitigation Measures

## **11.2** TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

## Contract 2

| Contract 2      |                                                                             |
|-----------------|-----------------------------------------------------------------------------|
| Mid-Vent Portal | Construction of Cut and Cover structure and backfilling                     |
|                 | Construction of adit enlargement internal structure                         |
|                 | • Stud tunnel internal structure and E&M installation                       |
|                 | • Ventilation building superstructure, fence wall, internal fitting out and |
|                 | E&M installation                                                            |
|                 | • Structure connecting adit tunnel and ventilation building                 |
|                 | Permanent drainage and underground utilities                                |
| North Portal    | • Construction of retaining wall, permanent drainage, site formation and    |
|                 | slip road                                                                   |
|                 | • Tunnel waterproofing, lining, backfilling and E&M installation            |
|                 | Construction of cross passage and internal structure                        |
|                 | • TBM North drive excavation                                                |
|                 | • North ventilation building superstructure, internal structure and         |
|                 | backfilling                                                                 |
|                 | • Drainage cleansing and construction of temporary utility bridge across    |
|                 | the mid-platform                                                            |
| South Portal    | • Waterproofing and lining activities inside the tunnel                     |
|                 |                                                                             |



|                | • | Construction of tunnel cross passage, tunnel backfilling and E&M    |
|----------------|---|---------------------------------------------------------------------|
|                |   | installation                                                        |
|                | • | South ventilation building fitting out and E&M installation         |
|                | • | Construction of retaining walls and backfilling activities          |
| Admin Building | • | Construction of permanent drainage, permanent drainage, fence wall  |
| _              |   | and underground utilities                                           |
|                | • | Building internal structure, fitting out, E&M installation and soft |
|                |   | landscaping                                                         |

#### **Contract 3**

- Cable detection and trial trenches
- Remaining works on new Footbridge
- Noise barrier construction
- Road pavement works
- Demolition of Existing Kiu Tau Vehicular Bridge
- Water main laying works
- Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck)
- Parapet Installation on bridge deck
- Road Drainage Works
- Construction of profile barrier & Planter wall on Bridge deck
- Stressing of external tendon
- Bitumen paving on bridge deck
- Installation of deck cell light inside the bridge deck
- Installation of movement joint on the bridge
- Construction of retaining wall behind abutment
- Landscaping works

## **Contract 4**

- System design and testing
- E&M installation at Admin Building
- E&M installation at Ventilation Building
- High mast erection
- E&A installation at OHVD in tunnel

## **Contract 6**

- Bridge construction
- Tunnel Works
- Sewage Treatment Plant Construction
- Tunnel Ventilation Building Construction
- Slip Road/At-grade Road/Periphery Road Construction

## **Contract 7**

- U-trough and abutment construction at Bridge E
- Deck construction at Bridge A and E
- Profile barrier construction at Bridge B and D
- Construction of Façade and BMU at Bridge C

## **Contract SS C505**

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 41 constructions
- Constructions of Steel Canopies (Building no. 32, 33, 34 and 35)
- Constructions of Master Water Meter Room 1, 2 and 3 (Building no. 42, 43, 44)
- Tower crane operation
- Bridge 1 5 construction works including retaining wall, road and finishes works



- Steel Canopies construction
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB's slab and internal wall construction
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Construction PTB non-structural wall, Underground Drainage and Utilities, Fence Wall, Southern Entrance Construction
- Backfilling works
- PTB Major Plant Rooms ABWF & MEP Installation, Lift and Escalator Installation by NSC
- Integrated ABWF & MEP Works in PTB, Building no. 1, 2, 3, 4, 5, 6, 7, 11, 14, 18, 36 and 41
- Elevated Walkway E1, E2, E3 and E4 construction
- Tower Crane Dismantling Works

## **11.3** KEY ISSUES FOR THE COMING MONTH

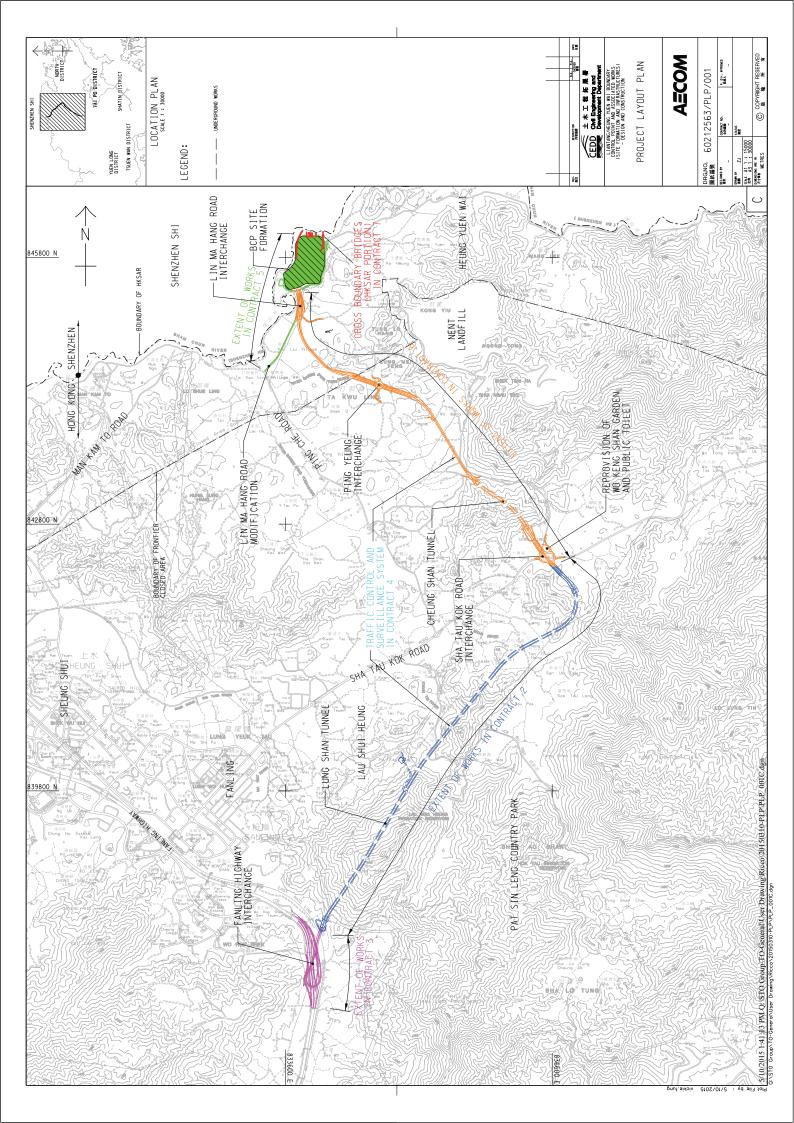
- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:
  - Implementation of control measures for rainstorm;
  - Regular clearance of stagnant water during wet season;
  - Implementation of dust suppression measures at all times;
  - Potential wastewater quality impact due to surface runoff;
  - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
  - Disposal of empty engine oil containers within site area;
  - Ensure dust suppression measures are implemented properly;
  - Sediment catch-pits and silt removal facilities should be regularly maintained;
  - Management of chemical wastes;
  - Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
  - Follow-up of improvement on general waste management issues; and
  - Implementation of construction noise preventative control measures



#### 12 CONCLUSIONS AND RECOMMENDATIONS

#### 12.1 CONCLUSIONS

- 12.1.1 This is the **56<sup>th</sup>** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 March 2018**.
- 12.1.2 For air quality monitoring, no 1-hour TSP and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of 4 LL exceedances, namely 2 LL exceedance of turbidity and 2 LL exceedances of Suspended Solids were recorded. Investigation reports revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all the exceedances were not related to the works under the Project.
- 12.1.5 In this Reporting Period, 2 environmental complaints were received regarding to the dust and water quality issue on Sha Tau Kok Road and Lin Ma Hang Road. The investigation for the complaint was completed by ET. The IRs revealed that the conditions of all site exits under the Project were well maintained without mud and debris and no excessive water spraying and slurry was found on the complaint roads. Since there were many other heavy vehicles apart from the project using complaint roads and mitigation measures were properly implemented by the Contractor, it is considered that the complaints were not related to the works under the Project.
- 12.1.6 In the Reporting Period, no environmental summons and prosecution under the EM&A Programme was lodged for all Contracts.
- 12.1.7 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.

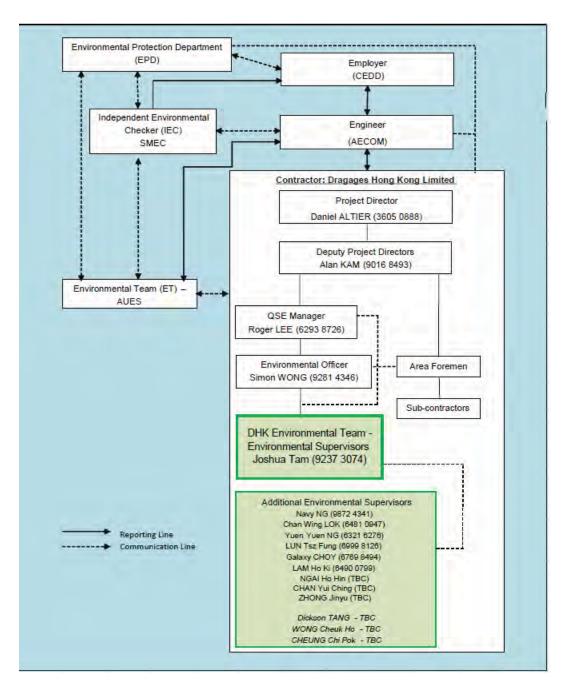

#### **12.2 Recommendations**

- 12.2.1 As wet season is approaching, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.



# Appendix A

## Layout plan of the Project






Appendix **B** 

**Organization Chart** 

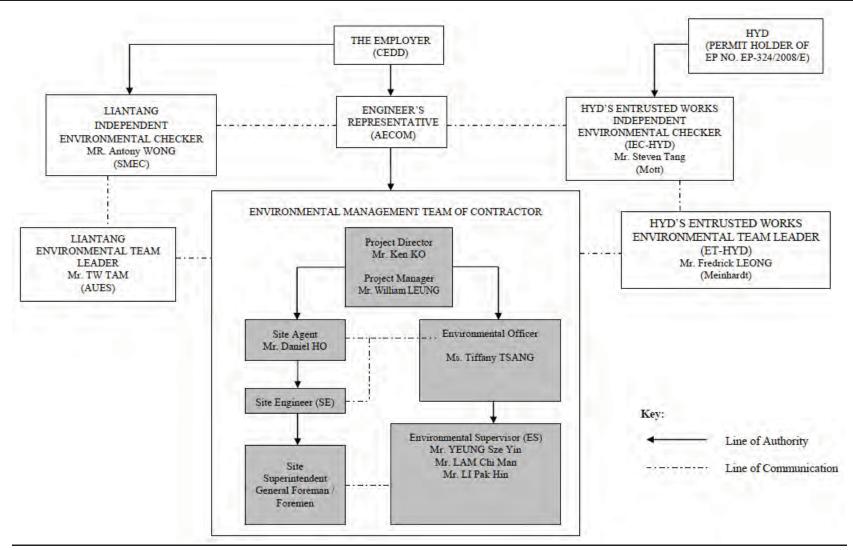




## Environmental Management Organization for Contract 2 - (CV/2012/08)



| Organization | Project Role                         | Name of Key Staff | Tel No    | Fax No.   |
|--------------|--------------------------------------|-------------------|-----------|-----------|
| AECOM        | Engineer's Representative            | Edwin Ching       | 2171 3301 | 2171 3498 |
| SMEC         | Independent Environmental<br>Checker | Antony Wong       | 3995 8120 | 3995 8101 |
| DHK          | Project Director                     | Daniel Altier     | 3605 0888 | 2171 3299 |
| DHK          | Deputy Project Manager               | Alan Kam          | 9016 8493 | 2171 3299 |
| DHK          | QSE Manager                          | Roger Lee         | 6293 8726 | 2171 3299 |
| DHK          | Environmental Officer                | Simon Wong        | 2171 3017 | 2171 3299 |
| DHK          | Environmental Supervisor             | Joshua Tam        | 9237 3074 | 2171 3299 |
| AUES         | Environmental Team Leader            | T. W. Tam         | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Nicola Hon        | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Ben Tam           | 2959 6059 | 2959 6079 |


## Contact Details of Key Personnel for Contract 2 - CV/2012/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department
 AECOM (Engineer) – AECOM Asia Co. Ltd.
 DHK(Main Contractor) –Dragages Hong Kong Ltd.
 SMEC (IEC) – SMEC Asia Limited
 AUES (ET) – Action-United Environmental Services & Consulting

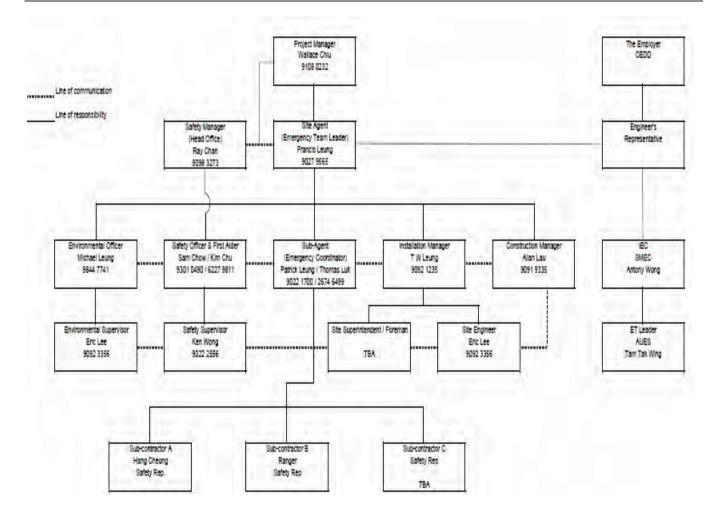
#### Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.56) – March 2018





Environmental Management Organization for Contract 3 - CV/2012/09




| Organization | Project Role                         | Name of Key Staff | Tel No    | Fax No.   |
|--------------|--------------------------------------|-------------------|-----------|-----------|
| AECOM        | Engineer's Representative            | Alan Lee          | 2171 3303 | 2171 3498 |
| SMEC         | Independent Environmental<br>Checker | Antony Wong       | 3995 8120 | 3995 8101 |
| Chun Wo      | Project Director                     | Ken Ko            | 3758 8735 | 2638 7077 |
| Chun Wo      | Project Manager                      | William Leung     | 2638 6136 | 2638 7077 |
| Chun Wo      | Site Agent                           | Daniel Ho         | 2638 6144 | 2638 7077 |
| Chun Wo      | Environmental Officer                | Tiffany Tsang     | 2638 6151 | 2638 7077 |
| Chun Wo      | Environmental supervisor             | Li Pak Hin        | 2638 6125 | 2638 7077 |
| AUES         | Environmental Team Leader            | T. W. Tam         | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Nicola Hon        | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Ben Tam           | 2959 6059 | 2959 6079 |

## Contact Details of Key Personnel for Contract 3 - CV/2012/09

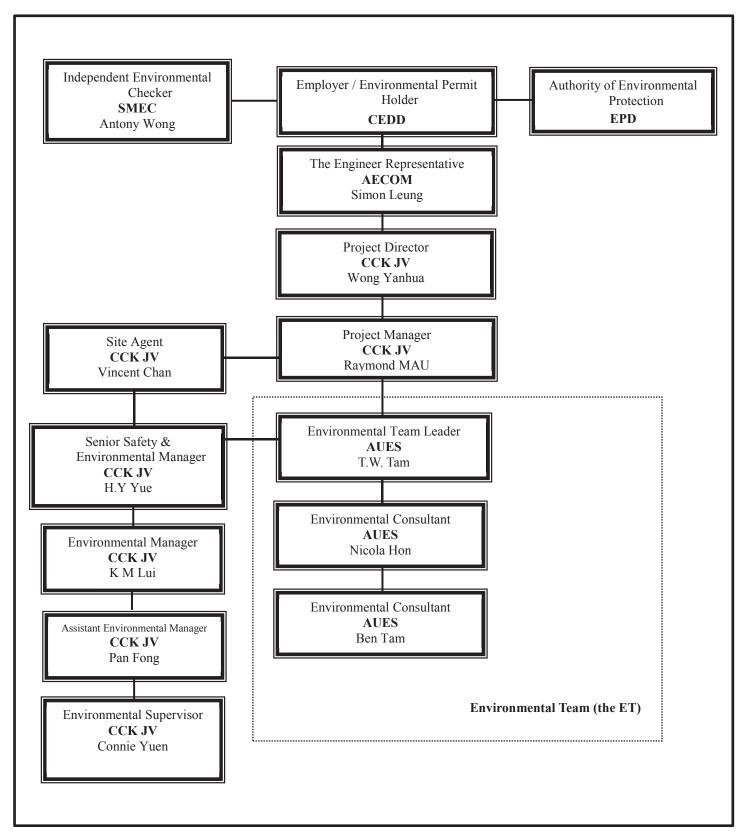
Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Chun Wo (Main Contractor) – Chun Wo Construction Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting





## Environmental Management Organization for Contract 4 - NE/2014/02




| Organization | Project Role                         | Name of Key Staff | Tel No    | Fax No.   |
|--------------|--------------------------------------|-------------------|-----------|-----------|
| AECOM        | Engineer's Representative            | Leo Lai           | 2171 3310 | 2171 3498 |
| SMEC         | Independent Environmental<br>Checker | Antony Wong       | 3995 8120 | 3995 8101 |
| Siemens      | Project Manager                      | Wallace Chiu      | 9108 0232 |           |
| Siemens      | Site Agent                           | Francis Leung     | 9027 9565 |           |
| Siemens      | Environmental Officer                | Michael Leung     | 9844 7741 |           |
| Siemens      | Environmental Supervisors            | Eric Lee          | 9092 3356 |           |
| AUES         | Environmental Team Leader            | T. W. Tam         | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Nicola Hon        | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Ben Tam           | 2959 6059 | 2959 6079 |

## Contact Details of Key Personnel for Contract 4 - NE/2014/02

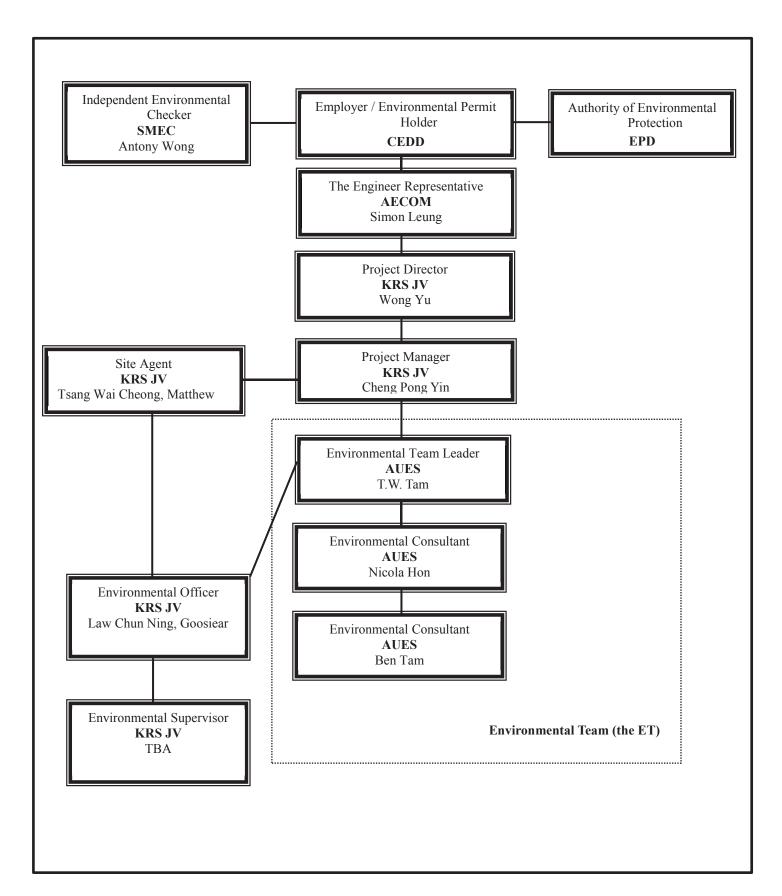
Legend:

 CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd.
 Siemens (Main Contractor) – Siemens Ltd.
 SMEC (IEC) – SMEC Asia Limited
 AUES (ET) – Action-United Environmental Services & Consulting



AUES

#### Environmental Management Organization - CV/2013/08




| Organization | Project Role                             | Name of Key Staff   | Tel No.   | Fax No.   |
|--------------|------------------------------------------|---------------------|-----------|-----------|
| AECOM        | Engineer's Representative                | Simon Leung         | 2251 0688 | 2251 0698 |
| SMEC         | Independent Environmental<br>Checker     | Antony Wong         | 3995 8120 | 3995 8101 |
| CCK JV       | Project Director                         | Wang Yanhua         | 6190 4212 |           |
| CCK JV       | Project Manager                          | Raymond Mau Sai-Wai | 9011 5340 |           |
| CCK JV       | Site Agent                               | Vincent Chan        | 9655 9404 |           |
| CCK JV       | Senior Safety & Environmental<br>Manager | H.Y. Yue            | 9185 8186 |           |
| CCK JV       | Environmental Manager                    | K M Lui             | 51138223  |           |
| CCK JV       | Assistant Environmental Manager          | Pan Fong            | 9436 9432 |           |
| CCK JV       | Environmental Supervisor                 | Connie Yuen         | 6316 6931 |           |
| AUES         | Environmental Team Leader                | TW Tam              | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant                 | Ben Tam             | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant                 | Nicola Hon          | 2959 6059 | 2959 6079 |

## Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

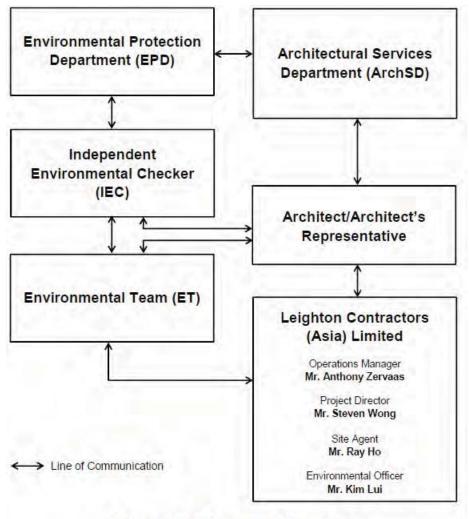
CEDD (Employer) – Civil Engineering and Development Department
 AECOM (Engineer) – AECOM Asia Co. Ltd.
 CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture
 SMEC (IEC) – SMEC Asia Limited
 AUES (ET) – Action-United Environmental Services & Consulting



Environmental Management Organization -NE/2014/03

**AUES** 




| Organization | Project Role                         | Name of Key Staff            | Tel No.   | Fax No.   |
|--------------|--------------------------------------|------------------------------|-----------|-----------|
| AECOM        | Engineer's Representative            | Kelvin lee                   | 2251 0609 | 2251 0698 |
| SMEC         | Independent Environmental<br>Checker | Antony Wong                  | 3995 8120 | 3995 8101 |
| KRSJV        | Project Director                     | Wong Yu                      | 2682 6691 | 2682 2783 |
| KRSJV        | Project Manager                      | Cheng Pong Yin               | 9023 4821 | 2682 2783 |
| KRSJV        | Site Agent                           | Tsang Wai Cheong,<br>Matthew | 9705 7536 | 2682 2783 |
| KRSJV        | Environmental Officer                | Law Chun Ning, Goosiear      | 9625 2381 | 2682 2783 |
| KRSJV        | Environmental Supervisor             | TBA                          | 6592 3084 | 2682 2783 |
| AUES         | Environmental Team Leader            | TW Tam                       | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Ben Tam                      | 2959 6059 | 2959 6079 |
| AUES         | Environmental Consultant             | Nicola Hon                   | 2959 6059 | 2959 6079 |

## Contact Details of Key Personnel for Contract 7 – NE/2014/03

## Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting





Environmental Management Organigram

**Environmental Management Organization for Contract SS C505** 



| Organization            | Project Role                                     | Name of Key Staff  | Tel No.   | Fax No.   |
|-------------------------|--------------------------------------------------|--------------------|-----------|-----------|
| ArchSD                  | Works agent for the Development<br>Bureau (DEVB) | Mr. William Cheng  | 2867 3904 | 2804 6805 |
| Ronald Lu &<br>Partners | Architect/ Architect's<br>Representative         | Mr. Justin Cheung  | 3189 9272 | 2834 5442 |
| SMEC                    | Independent Environmental<br>Checker             | Mr. Antony Wong    | 3995 8120 | 3995 8101 |
| Leighton                | Operation Manager                                | Mr. Antony Zervaas | 2823 1433 | 2529 8784 |
| Leighton                | Project Director                                 | Mr. Steven Wong    | 2858 1519 | 2858 1899 |
| Leighton                | Site Agent                                       | Mr. Ray Ho         | 2858 1519 | 2858 1899 |
| Leighton                | Environmental Officer                            | Mr. Kim Lui        | 3973 1003 | -         |
| Leighton                | Assistant Environmental Officer                  | Ms. Penny Yiu      | 3973 0818 | -         |
| AUES                    | Environmental Team Leader                        | Mr. T. W. Tam      | 2959 6059 | 2959 6079 |
| AUES                    | Environmental Consultant                         | Ms. Nicola Hon     | 2959 6059 | 2959 6079 |
| AUES                    | Environmental Consultant                         | Mr. Ben Tam        | 2959 6059 | 2959 6079 |

## Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD (Project Proponent) –Architectural Services Department
 Ronald Lu & Partners (Architect/ Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd
 Leighton (Main Contractor) – Leighton Contractors (Asia) Limited
 SMEC (IEC) – SMEC Asia Limited
 AUES (ET) – Action-United Environmental Services & Consulting



## Appendix C

## **3-month rolling construction program**



**Contract 2** 



## Tentative Three Months (March, April and May 2018) Construction Rolling Progam

| ltem | Construction Activites                                                                                   |
|------|----------------------------------------------------------------------------------------------------------|
| 1    | Admin Bldg - Construction of permanent access, permanent drainage, fence wall and underground utilities  |
| 2    | Admin Bldg - Building internal structure, fit out, E&M installation and soft landscaping                 |
| 3    | Mid Vent Portal - Construction of C&C structure and backfilling activities                               |
| 4    | Mid Vent Portal - Construction of adit enlargement internal structure                                    |
| 5    | Mid Vent Portal - Stud tunnel internal structure and E&M installation                                    |
| 6    | Mid-Vent Portal - Ventilation building superstructure, fence wall, internal fit out and E&M installation |
| 7    | Mid Vent Portal - Structure connecting adit tunnel and ventilation building                              |
| 8    | Mid-Vent Portal - Permanent drainage & underground utilities                                             |
| 9    | North Portal - Construction of retaining wall, permanent drainage, site formation and slip road          |
| 10   | North Portal - Tunnel waterproofing, lining, backfilling and E&M installation                            |
| 11   | North Portal - Construction of tunnel cross passage and internal structure                               |
| 12   | North Portal - TBM North drive breakthrough                                                              |
| 13   | North Portal - North ventilation building superstructure, internal structure and backfilling             |
| 14   | North Portal - Drainage cleansing and construction of temporary utility bridge across the mid-platform   |
| 15   | South Portal - Waterproofing and lining activities inside the tunnle.                                    |
| 16   | Sorth Portal - Construction of tunnel cross passage, tunnel backfilling and E&M installation             |
|      | South Portal - South ventilation building internal fit out and E&M installation                          |
| 18   | South Portal - Construction of retaining walls and backfilling activities                                |
|      |                                                                                                          |
|      |                                                                                                          |



**Contract 3** 



俊和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

## Tentative Three Months (March, April and May 2018) Construction Rolling Progam

| Item | Construction Activites                                                                            |
|------|---------------------------------------------------------------------------------------------------|
| 1    | Cable detection and trial trenches                                                                |
| 2    | Remaining works on new Footbridge                                                                 |
| 3    | Noise barrier construction                                                                        |
| 4    | Road pavement works                                                                               |
| 5    | Demolition of Existing Kiu Tau Vehicular Bridge                                                   |
| 6    | Water main laying works (on Grade and on bridge deck)                                             |
| 7    | Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck) |
| 8    | Parapet Installation on bridge deck                                                               |
| 9    | Road Drainage Works                                                                               |
| 10   | Construction of profile barrier & Planter wall on Bridge deck                                     |
| 11   | Stressing of external tendon                                                                      |
| 12   | Bitumen paving on bridge deck                                                                     |
| 13   | Installation of deck cell light inside the bridge deck                                            |
| 14   | Installation of movement joint on the bridge                                                      |
| 15   | Construction of retaining wall behind abutment                                                    |
| 16   | Landscaping works                                                                                 |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |
|      |                                                                                                   |



**Contract 4** 



Tentative Three Months (March, April and May 2018) Construction Rolling Progam

| Item | Construction Activites                   |
|------|------------------------------------------|
| 1    | System design and testing                |
| 2    | E&M installation at admin building       |
| 3    | E&M installation at Ventilation Building |
| 4    | E&A installation at OHVD in tunnel       |
| 5    | High mast erection                       |
|      |                                          |
|      |                                          |
|      |                                          |
|      |                                          |
|      |                                          |
|      |                                          |
|      |                                          |



**Contract 6** 



## Tentative Three Months (March, April and May 2018) Construction Rolling Progam

| Item | Construction Activites                              |
|------|-----------------------------------------------------|
| 1    | Bridge Construction                                 |
| 2    | Tunneling Works                                     |
| 3    | Sewage Treatment Plant Construction                 |
| 4    | Tunnel Ventilation Building Construction            |
| 5    | Slip Road/At-grade Road/Periphery Road Construction |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |
|      |                                                     |



**Contract 7** 



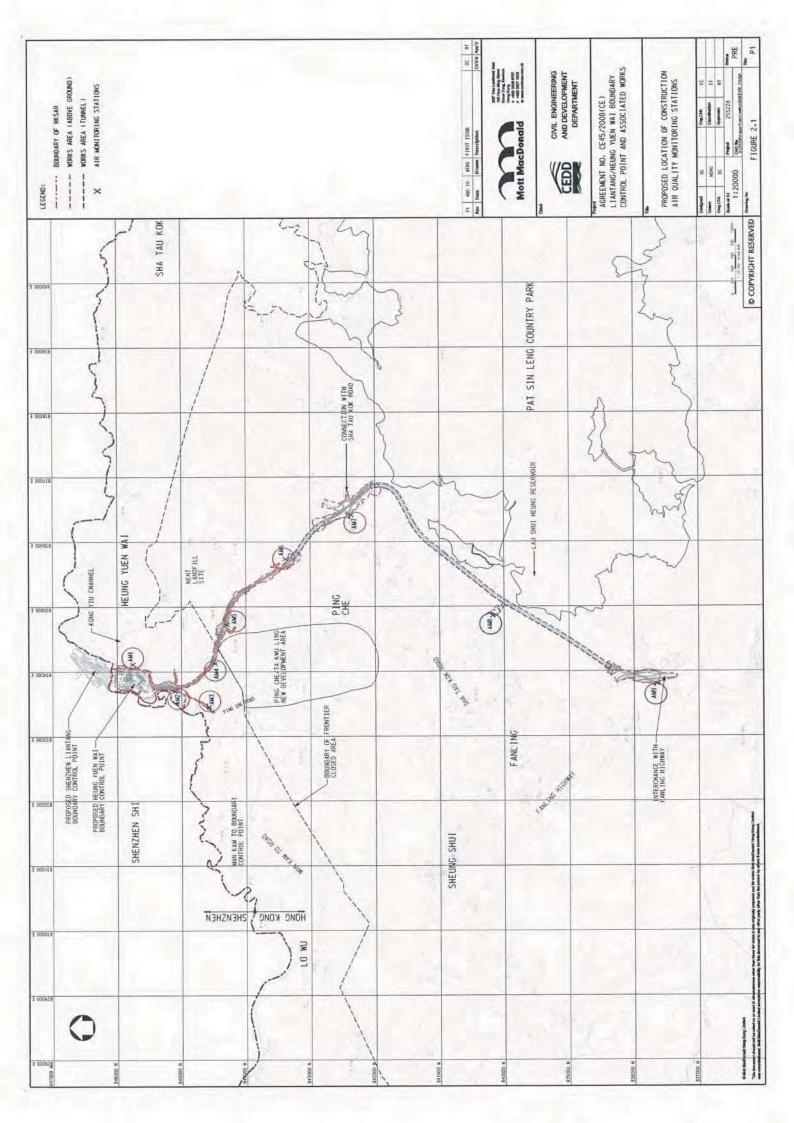
## Tentative Three Months (March, April and May 2018) Construction Rolling Progam

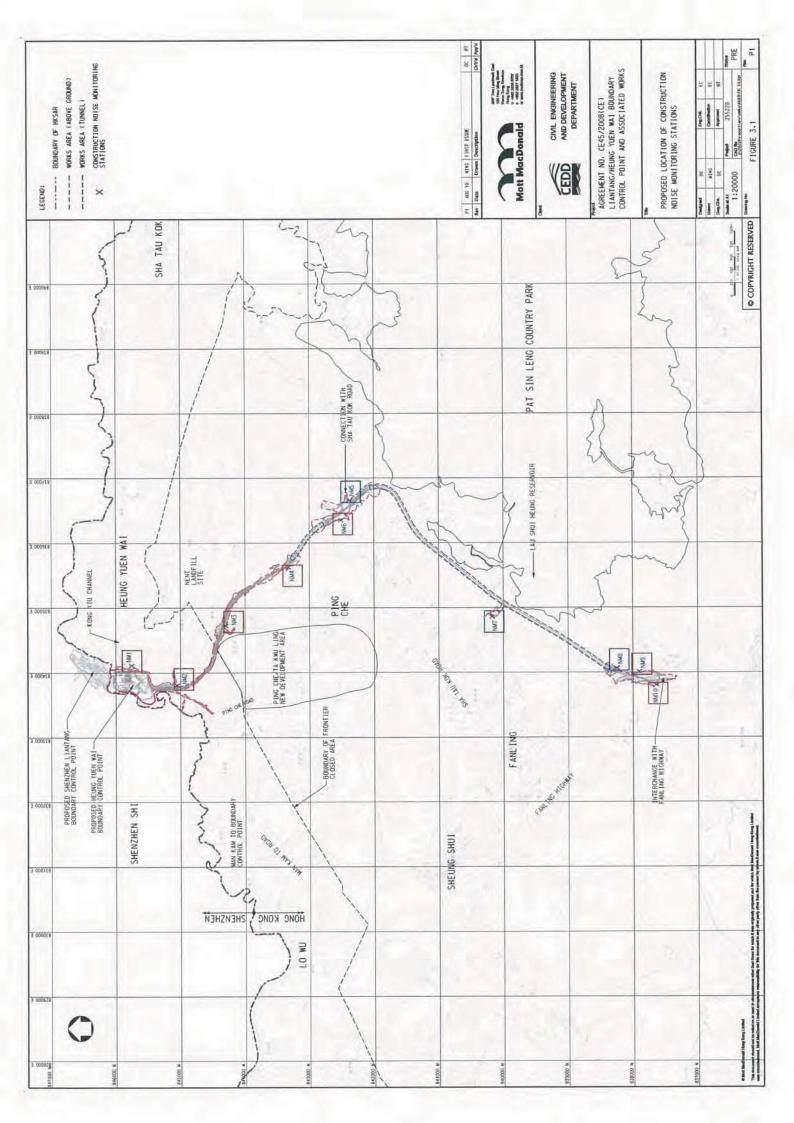
| ltem | Construction Activites                          |
|------|-------------------------------------------------|
| 1    | U-tough and abutment construction at Bridge E   |
| 2    | Deck construction at Bridge A and E             |
| 3    | Profile barrier construction at Bridges B and D |
| 4    | Construction of Façade and BMU at Bridge C      |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |
|      |                                                 |

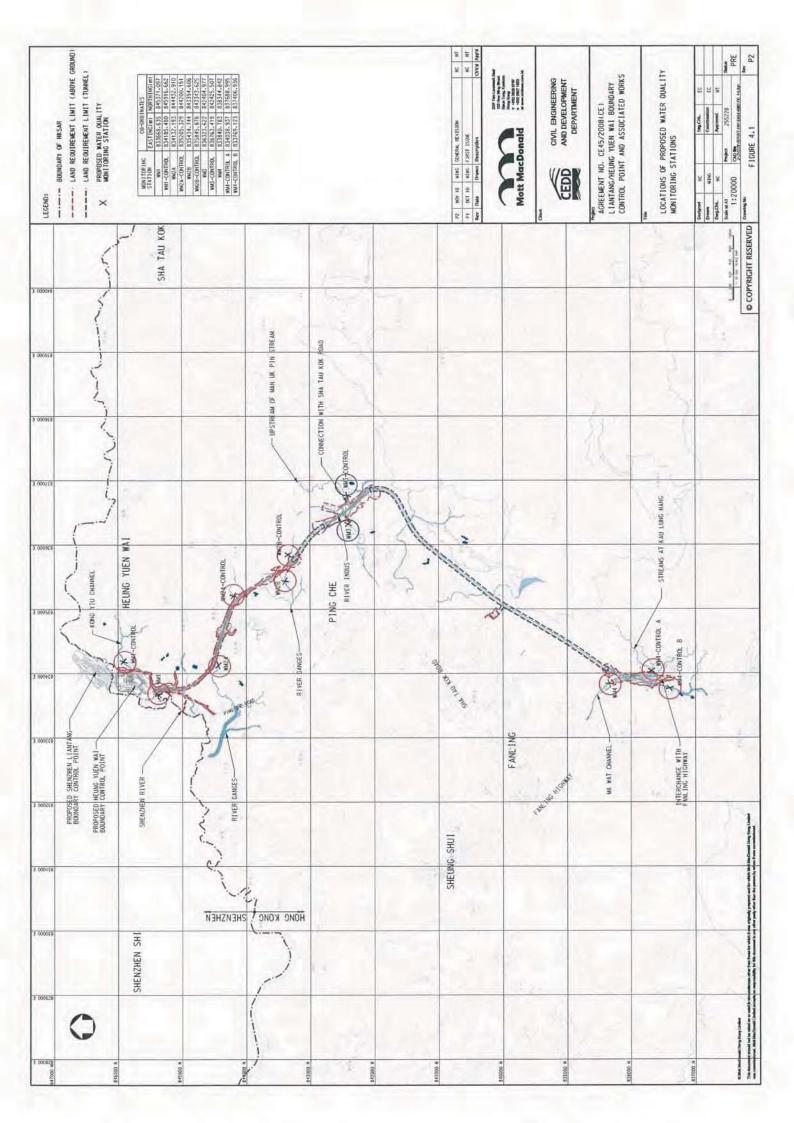


**Contract SS C505** 




#### Tentative Three Months (March, April and May 2018) Construction Rolling Progam

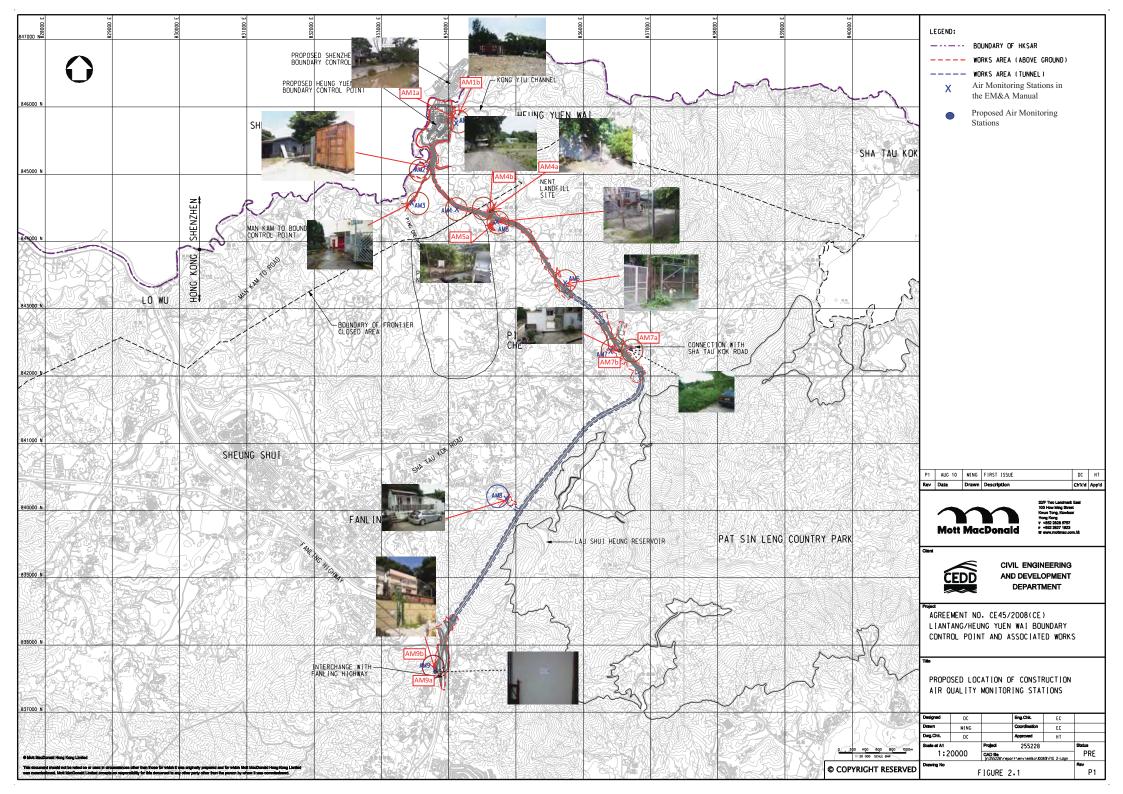

| Item        | Construction Activites                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1           | Passenger Terminal Building - Structure Works, Backfiling & Drainage, Under Ground Utilities, Fence Wall and Slab Construction        |
| 2           | Passenger Terminal Building - ABWF Works & Integrated MEP Installation, Nonstructure Wall Erection and Southern Entrance Construction |
| 3           | Passenger Terminal Building - Major Plant Rooms ABWF Works & MEP Installation, and Lift & Escalator Installation by NSC               |
| 4           | PTB Roof & Upper Roof Roofting Works - Outstanding Structure Works and Concrete Repairing                                             |
| 5           | PTB - Coach & Private Car Kiosks (Inbound) - Structures Works                                                                         |
| 6           | PTB - Private Car Examination Buildings and MXRVSS (Inbound) - Structures and Steel Structures Works, ABWF & MEP Installation         |
| 7           | C&ED Detector Dog Base - External Structure Works and Integrated ABWF & MEP Works                                                     |
| 8           | HKPF Building and Observation Tower - Structures, External Works, Integrated ABWF & MEP Works                                         |
| 9           | Fire Station and Drill Tower - Structures, External Works, Integradted ABWF & MEP Works                                               |
| 10          | Cargo Examination Building (Inbound) - Structure, Steel Structure Works, External Works and Integrated ABWF & MEP Works               |
| 11          | Cargo Examination Building (Outbound) - Steel Structure Works and Integrated ABWF & MEP Works                                         |
|             | Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Structures, External Works and Integrated ABWF & MEP Works       |
|             | Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Structures, External Works and Integrated ABWF & MEP Works      |
| -           | MXRVSS (Inbound) - Structure Works                                                                                                    |
| 15          | MXRVSS (Outbound) - Structure Works                                                                                                   |
|             | GV Kiosk (Inbound) - Structures Works, Steel Structure Works, Integrated ABWF and MEP Works                                           |
|             | GV Kiosk (Outbound) - Substructures and Structures Works, Steel Structure Works, Integrated ABWF & MEP Works                          |
|             | Public Toilets (Inbound) - Structure Works                                                                                            |
|             | Public Toilets (Outbound) - Structures Works                                                                                          |
|             | Disinsection Facilities (Inbound) - Substructure and Structure Works, Integrated ABWF & MEP Works                                     |
|             | Disinsection Facilities (Outbound) - Substructure and Structure Works                                                                 |
|             | Weigh Station - Substructure and Structure Works, Integrated ABWF and MEP Works                                                       |
|             | EUVSS & Monitoring Room - Substructure and Structure Works, Steel Structure Works                                                     |
|             | Refuse Collection Point - Structures, Integrated ABWF and MEP Works                                                                   |
|             | Traffic Control Office (Inbound) - Structure Works, Integrated ABWF and MEP Works                                                     |
|             | Traffic Control Office (Outbound) - Structure Works, Integrated ABWF and MEP Works                                                    |
|             | Inspection Post - Structure Works                                                                                                     |
|             | Guard Booth (Inbound/Outbound/Vehicle Detention Area) - Structure Works, Integrated ABWF and MEP Works                                |
|             | Steel Canopies - Structure Works                                                                                                      |
|             | Fire Hydrant Tank & Pump Room - Integrated ABWF and MEP Works                                                                         |
|             | Irrigation Pump Room - Structures works and Integrated ABWF & MEP Works                                                               |
|             | Master Water Meter Room 1,2,3 - Structures Works and Integrated ABWF and MEP Works                                                    |
|             | Elevated Walkway (E1, E2, E3 & E4) - Structures and Structural Steel Works                                                            |
|             | Vehicular bridges 1-5 - Retaining walls, Road and Finishes Works                                                                      |
|             | External Works - CLP Cable & Power ON Transfer room                                                                                   |
|             | External Works - Water Meter Room Connection (Inbound)                                                                                |
|             | External Works - Underground Utilities, Structures and Inspection (Inbound & Outbound Areas)                                          |
|             | External Works - Onderground Otimies, Structures and inspection (inboding & Outboding Areas)                                          |
|             | Bridge C (C7 Portion) - Integrated ABWF & MEP Works                                                                                   |
|             | Tower Crane Dismantling Works                                                                                                         |
|             |                                                                                                                                       |
| <b>├</b> ── |                                                                                                                                       |
| L           |                                                                                                                                       |

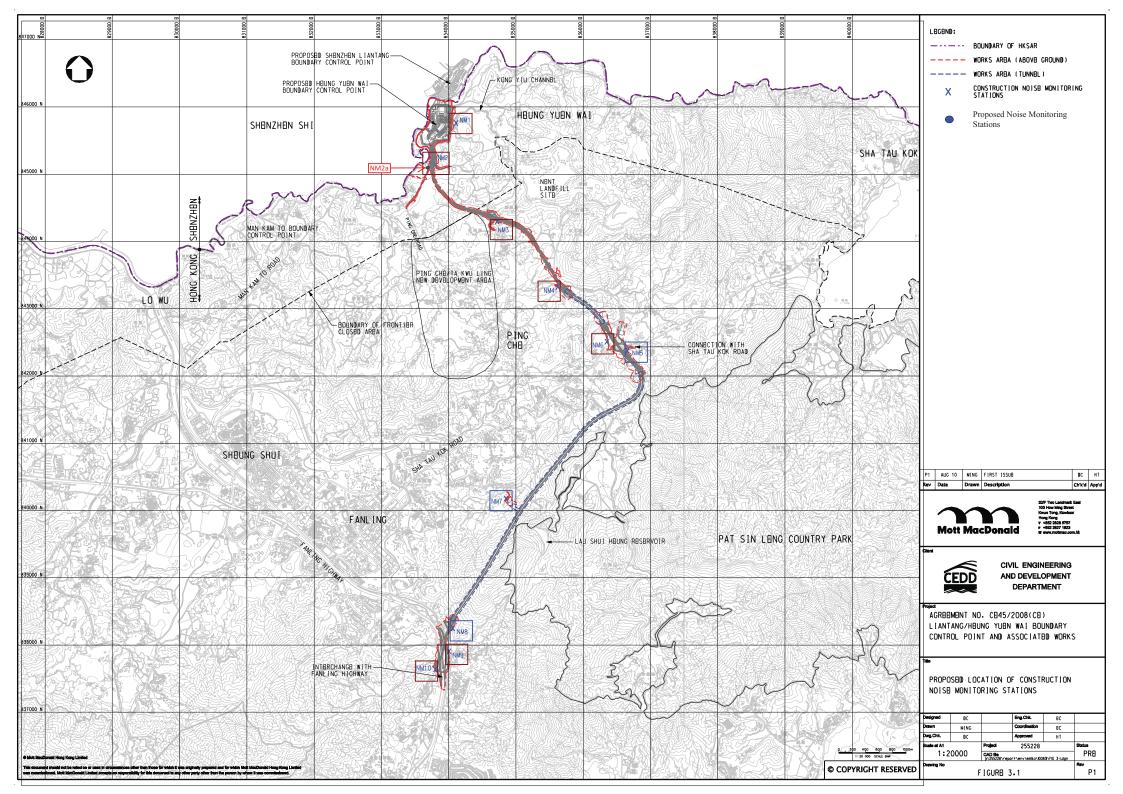


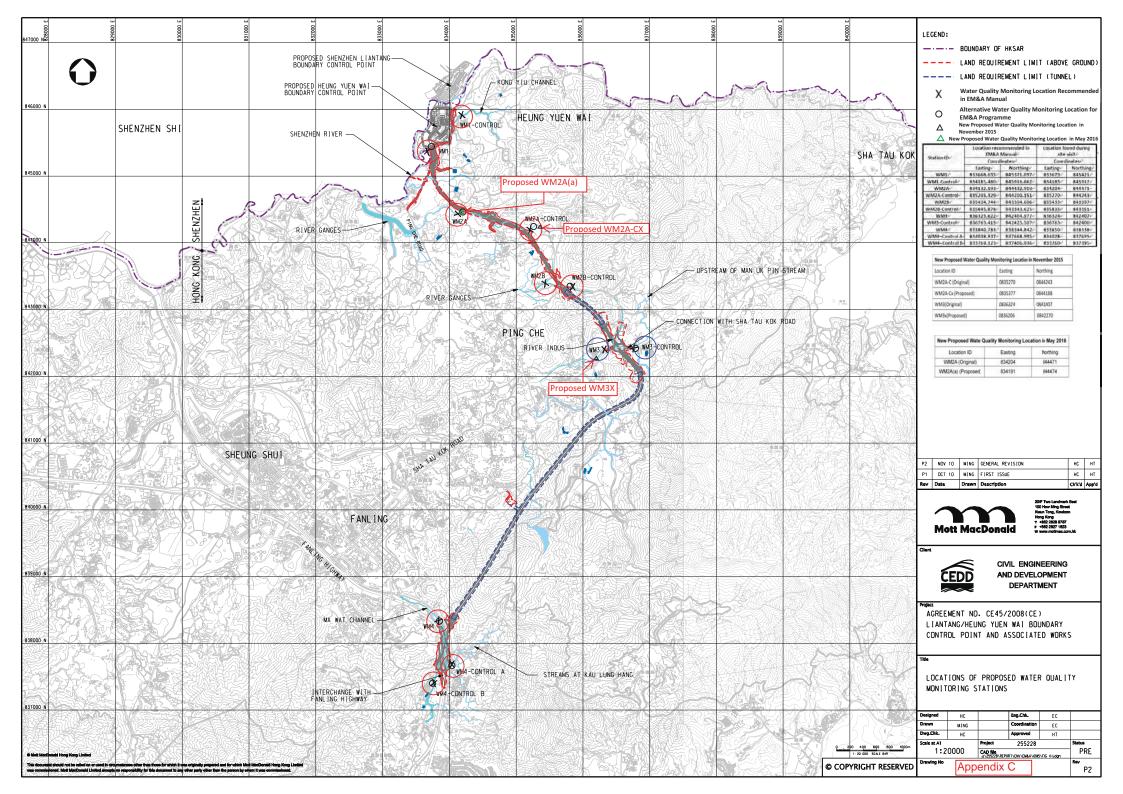

# **Appendix D**

## Designated Monitoring Locations as Recommended in the Approved EM&A Manual






# **Appendix E**

# **Monitoring Locations for Impact Monitoring**









# Appendix F

## Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

| Location :<br>Location ]                                                          |                                 | ea at Tsu<br>AM1b        | ng Yuer                  | n Ha Village                     |                      | Next Calibra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alibration:<br>tion Date:<br>echnician: |                      | 12/2/2018<br>12/4/2018<br>Fai So |              |
|-----------------------------------------------------------------------------------|---------------------------------|--------------------------|--------------------------|----------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------|--------------|
|                                                                                   |                                 |                          |                          |                                  | C                    | ONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;                                       |                      |                                  |              |
|                                                                                   | Se                              | a Level I<br>Temp        | Pressure<br>perature     |                                  | 1026.4<br>14.9       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corrected Pressure<br>Temperature       |                      |                                  | 769.8<br>288 |
|                                                                                   |                                 |                          |                          |                                  | CALIB                | RATION OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IFICE                                   |                      |                                  |              |
|                                                                                   |                                 |                          |                          | Make-><br>Model-><br>Serial # -> | 5025A                | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qstd Slope -><br>Qstd Intercept ->      |                      | 2.11965<br>-0.02696              |              |
|                                                                                   |                                 |                          |                          |                                  | C                    | ALIBRATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                       |                      |                                  |              |
| Plate                                                                             |                                 | H2O (R)                  | H20                      | Qstd                             | I                    | IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LINE                                    |                      |                                  |              |
| No.<br>18                                                                         | (in)<br>6.3                     | (in)<br>6.3              | (in)<br>12.6             | (m3/min)<br>1.727                | (chart)<br>51        | corrected 52.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REGRES<br>Slope =                       | 30.7831              |                                  |              |
| 13<br>10<br>7<br>5                                                                | 6.5<br>4.9<br>3.8<br>2.6<br>1.4 | 4.9<br>3.8<br>2.6<br>1.4 | 9.8<br>7.6<br>5.2<br>2.8 | 1.525<br>1.344<br>1.114<br>0.821 | 44<br>40<br>31<br>24 | 45.05<br>40.96<br>31.74<br>24.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intercept =<br>Corr. coeff. =           | -1.3066<br>0.9967    |                                  |              |
|                                                                                   |                                 | 1.7                      | 2.0                      | 0.021                            | 27                   | 27.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                      |                                  |              |
| <b>Calculatio</b><br>Qstd = 1/1<br>IC = I[Sq1                                     | m[Sqrt(H                        |                          |                          | l/Ta))-b]                        |                      | 60.00 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FLOW RAT                                | E CHART              |                                  |              |
| Qstd = sta<br>IC = corre<br>I = actual                                            | ected cha                       | rt respon                | es                       |                                  |                      | 50.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                      | ×                                |              |
| m = calibr<br>b = calibr                                                          | rator Qsto<br>ator Qstd         | d slope<br>intercep      |                          | bration ( de                     | gK)                  | 40.00 - 00.04 (IC) - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 00.05 - 0 |                                         |                      |                                  |              |
| Pstd = act                                                                        | tual press                      | ure durir                | ng calibi                | ration ( mm                      | 0 /                  | 00.00 chart c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ✓                                       |                      |                                  |              |
| For subsequent calculation of sampler flow:<br>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) |                                 |                          |                          |                                  |                      | 90.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                      |                                  |              |
| m = samp<br>b = samp                                                              | ler interc                      | ept                      |                          |                                  |                      | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                      |                                  |              |
| I = chart 1<br>Tav = dai<br>Pav = dai                                             | ly averag                       | _                        |                          |                                  |                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 0.500<br>Standard Flow                | .000<br>Rate (m3/min | 1.500<br>)                       | 2.000        |
|                                                                                   |                                 |                          |                          |                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                      |                                  |              |

| Location :<br>Location I                      | _                      | House no<br>AM2    | ear Lin I            | Ma Hang R                        | oad            |                                                              | Date of Calibration:12/2/2018Next Calibration Date:12/4/2018Technician:Fai So |
|-----------------------------------------------|------------------------|--------------------|----------------------|----------------------------------|----------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                               |                        |                    |                      |                                  | CO             | NDITIONS                                                     |                                                                               |
|                                               | Se                     | ea Level I<br>Temp | Pressure<br>perature | . ,                              | 1026.4<br>14.9 | -                                                            | Corrected Pressure (mm Hg) 769.8<br>Temperature (K) 288                       |
|                                               |                        |                    |                      |                                  | CALIBRA        | ATION ORIF                                                   | ICE                                                                           |
|                                               |                        |                    |                      | Make-><br>Model-><br>Serial # -> | 5025A          | ]                                                            | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696    |
|                                               |                        |                    |                      |                                  | CAL            | IBRATION                                                     |                                                                               |
| Plate<br>No.                                  |                        | H2O (R)            | H20<br>(in)          | Qstd<br>(m3/min)                 | [<br>(abort)   | IC                                                           | LINEAR<br>REGRESSION                                                          |
| 18                                            | (in)<br>6              | (in)<br>6          | 12.0                 | 1.686                            | (chart)<br>54  | corrected 55.29                                              | Slope = 30.6026                                                               |
| 13                                            | 4.9                    | 4.9                | 9.8                  | 1.525                            | 48             | 49.15                                                        | Intercept = $2.3931$                                                          |
| 10                                            | 3.7                    | 3.7                | 7.4                  | 1.327                            | 40             | 40.96                                                        | Corr. coeff. = 0.9904                                                         |
| 7<br>5                                        | 2.6                    | 2.6                | 5.2                  | 1.114                            | 35             | 35.84                                                        |                                                                               |
| 5                                             | 1.5                    | 1.5                | 3.0                  | 0.849                            | 29             | 29.69                                                        |                                                                               |
| <b>Calculatio</b><br>Qstd = 1/r<br>IC = I[Sq1 | n[Sqrt(H               |                    |                      | /Ta))-b]                         |                | 60.00                                                        | FLOW RATE CHART                                                               |
| Qstd = sta<br>IC = corre                      |                        |                    | 20                   |                                  |                | 50.00                                                        |                                                                               |
| I = actual<br>m = calibi                      | chart res<br>ator Qsto | ponse<br>d slope   |                      |                                  |                | (j) 40.00                                                    | <b>.</b>                                                                      |
|                                               | al temper              | ature dur          | ing calil            | oration ( de<br>ation ( mm       |                | <b>Actual chart response (IC)</b><br>00.05 00.05 00.05 00.05 |                                                                               |
| <b>For subse</b><br>1/m(( I )[S               | -                      |                    |                      | npler flow:                      |                | 90.00 Gtra                                                   |                                                                               |
| m = samp<br>b = samp<br>I = chart r           | ler interc             |                    |                      |                                  |                | 10.00                                                        |                                                                               |
| T = chart T<br>Tav = dail<br>Pav = dail       | y averag               | -                  |                      |                                  |                | 0.00                                                         | 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                        |

| Location :<br>Location I                                        |                                                                                                                               | ı Ling Fiı<br>AM3                                                                              | e Servio                                                   | ce Station                                            |                                       |                                                                                          | Date of Calibration:12/2/2018Next Calibration Date:12/4/2018Technician:Fai So |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                 |                                                                                                                               |                                                                                                |                                                            |                                                       | CO                                    |                                                                                          | S                                                                             |
|                                                                 | Se                                                                                                                            | ea Level I<br>Temp                                                                             | Pressure<br>perature                                       | . ,                                                   | 1026.4<br>14.9                        |                                                                                          | Corrected Pressure (mm Hg)769.8Temperature (K)288                             |
|                                                                 |                                                                                                                               |                                                                                                |                                                            |                                                       | CALIBR                                | ATION OF                                                                                 | RIFICE                                                                        |
|                                                                 |                                                                                                                               |                                                                                                |                                                            | Make-><br>Model-><br>Serial # ->                      | 5025A                                 | ]                                                                                        | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696    |
|                                                                 |                                                                                                                               |                                                                                                |                                                            |                                                       | CAL                                   | IBRATIO                                                                                  | Ν                                                                             |
| Plate                                                           |                                                                                                                               | H2O (R)                                                                                        | H20                                                        | Qstd                                                  | [<br>(abort)                          | IC                                                                                       | LINEAR                                                                        |
| No.<br>18<br>13<br>10<br>7<br>5                                 | (in)<br>6.3<br>4.7<br>3.9<br>2.4<br>1.5                                                                                       | (in)<br>6.3<br>4.7<br>3.9<br>2.4<br>1.5                                                        | (in)<br>12.6<br>9.4<br>7.8<br>4.8<br>3.0                   | (m3/min)<br>1.727<br>1.494<br>1.362<br>1.071<br>0.849 | (chart)<br>54<br>47<br>42<br>37<br>28 | correcte           55.29           48.12           43.00           37.89           28.67 | Slope = 28.9393<br>Intercept = 4.9539                                         |
| Pstd = act                                                      | n[Sqrt(H<br>t(Pa/Psto<br>ndard flo<br>ected cha<br>chart res<br>ator Qsto<br>ator Qsto<br>ator Qsto<br>at temper<br>ual press | d)(Tstd/T<br>ow rate<br>rt respond<br>ponse<br>d slope<br>l intercep<br>ature dur<br>ure durin | a)]<br>es<br>t<br>ing calil<br>g calibr<br><b>n of san</b> | oration ( de<br>ation ( mm<br>n <b>pler flow:</b>     | gK)                                   | Actinal chart response (IC)                                                              | FLOW RATE CHART                                                               |
| m = samp<br>b = samp<br>I = chart r<br>Tav = dail<br>Pav = dail | ler interc<br>esponse<br>y averag                                                                                             | ept<br>se temper                                                                               |                                                            |                                                       |                                       | 10.00<br>0.00<br>0.00                                                                    | 00 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                     |

| Location :<br>Location I                                                                                                                          |                                                                                                                                     | ı Ha Villa<br>AM4b                                                                                       | ige                                                                      |                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date of Calibration:10/2/2018Next Calibration Date:10/4/2018Technician:Fai So |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                                   |                                                                                                                                     |                                                                                                          |                                                                          |                                                               | CO                         | NDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
|                                                                                                                                                   | Se                                                                                                                                  | ea Level I<br>Temp                                                                                       | Pressure<br>perature                                                     | · /                                                           | 1017.4<br>18.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Corrected Pressure (mm Hg) 763.05<br>Temperature (K) 291                      |
|                                                                                                                                                   |                                                                                                                                     |                                                                                                          |                                                                          |                                                               | CALIBR                     | ATION OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IFICE                                                                         |
|                                                                                                                                                   |                                                                                                                                     |                                                                                                          |                                                                          | Make-><br>Model-><br>Serial # ->                              | 5025A                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696    |
|                                                                                                                                                   |                                                                                                                                     |                                                                                                          |                                                                          |                                                               | CAL                        | IBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                             |
| Plate<br>No.                                                                                                                                      | (in)                                                                                                                                | H2O (R)<br>(in)                                                                                          | H20<br>(in)                                                              | Qstd<br>(m3/min)                                              | I<br>(chart)               | IC<br>corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
| 18<br>13<br>10<br>7<br>5                                                                                                                          | 6<br>4.7<br>3.7<br>2.4<br>1.5                                                                                                       | 6<br>4.7<br>3.7<br>2.4<br>1.5                                                                            | 12.0<br>9.4<br>7.4<br>4.8<br>3.0                                         | 1.670<br>1.479<br>1.314<br>1.061<br>0.841                     | 61<br>54<br>50<br>42<br>31 | 61.85<br>54.76<br>50.70<br>42.59<br>31.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Slope = $35.3270$<br>Intercept = $3.2919$<br>Corr. coeff. = $0.9930$          |
| <b>Calculatic</b><br>Qstd = 1/r<br>IC = I[Sqr<br>Qstd = sta<br>IC = corre<br>I = actual<br>m = calibr<br>b = calibra<br>Ta = actua<br>Pstd = actu | ns :<br>n[Sqrt(H<br>t(Pa/Psto<br>ndard flo<br>cted cha<br>chart res<br>ator Qsto<br>ator Qsto<br>ator Qsto<br>l temper<br>ual press | 20(Pa/Ps<br>d)(Tstd/T<br>ow rate<br>rt respond<br>ponse<br>d slope<br>intercep<br>ature dur<br>ure durin | td)(Tstd.<br>a)]<br>es<br>t<br>ing calib<br>g calibra<br><b>n of san</b> | /Ta))-b]<br>pration ( deg<br>ation ( mm<br><b>apler flow:</b> | g K )                      | 70.00<br>60.00<br>50.00<br>50.00<br>00.04<br>00.04<br>00.05<br>00.04<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00 | FLOW RATE CHART                                                               |
| m = samp<br>b = samp<br>I = chart r<br>Tav = dail<br>Pav = dail                                                                                   | ler interc<br>esponse<br>y averag                                                                                                   | e tempera                                                                                                |                                                                          |                                                               |                            | 10.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                      |

| Location :<br>Location I                                        | _                                                                                                               | eung Villa<br>AM5a                                                                             | age Hou                                                | se                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date of Calibration:10/2/2018Next Calibration Date:10/4/2018Technician:Fai So |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                 |                                                                                                                 |                                                                                                |                                                        |                                                       | CO                         | NDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
|                                                                 | Se                                                                                                              | ea Level I<br>Temp                                                                             | Pressure<br>erature                                    | ` ´                                                   | 1017.4<br>18.0             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Corrected Pressure (mm Hg) 763.05<br>Temperature (K) 291                      |
|                                                                 |                                                                                                                 |                                                                                                |                                                        |                                                       | CALIBRA                    | ATION ORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FICE                                                                          |
|                                                                 |                                                                                                                 |                                                                                                |                                                        | Make-><br>Model-><br>Serial # ->                      | 5025A                      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696    |
|                                                                 |                                                                                                                 |                                                                                                |                                                        |                                                       | CAL                        | IBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
| Plate<br>No.                                                    |                                                                                                                 | H2O (R)                                                                                        | H20<br>(in)                                            | Qstd<br>(m3/min)                                      | I<br>(chart)               | IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LINEAR<br>REGRESSION                                                          |
| 18<br>13<br>10<br>7<br>5                                        | (in)<br>6.5<br>5<br>4<br>2.5<br>1.5                                                                             | (in)<br>6.5<br>5<br>4<br>2.5<br>1.5                                                            | (iii)<br>13.0<br>10.0<br>8.0<br>5.0<br>3.0             | (m3/min)<br>1.738<br>1.525<br>1.366<br>1.082<br>0.841 | 50<br>42<br>38<br>29<br>23 | corrected<br>50.70<br>42.59<br>38.53<br>29.41<br>23.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Slope = $30.3411$<br>Intercept = $-2.8525$<br>Corr. coeff. = $0.9977$         |
| Pstd = act                                                      | n[Sqrt(H<br>t(Pa/Psto<br>ndard flo<br>cted cha<br>chart res<br>ator Qsto<br>ator Qsto<br>il temper<br>ual press | d)(Tstd/Ta<br>ow rate<br>rt respond<br>ponse<br>d slope<br>intercept<br>ature dur<br>ure durin | a)]<br>es<br>ing calib<br>g calibra<br><b>n of san</b> | pration ( deg<br>ation ( mm<br><b>apler flow:</b>     | g K )<br>Hg )              | 900.00<br>500.00<br>500.00<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05<br>900.05 | FLOW RATE CHART                                                               |
| m = samp<br>b = samp<br>I = chart r<br>Tav = dail<br>Pav = dail | ler interc<br>esponse<br>y averag                                                                               | ept<br>e tempera                                                                               |                                                        |                                                       |                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                        |

| Location :<br>Location I                                        |                                                                                                                 | ng Shan V<br>AM6                                                                              | Village H                                              | House                                             |                |                                                                      | Date of Calibration:10/2/2018Next Calibration Date:10/4/2018Technician:Fai So |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|----------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                 |                                                                                                                 |                                                                                               |                                                        |                                                   | CO             | NDITIONS                                                             |                                                                               |
|                                                                 | Se                                                                                                              | ea Level I<br>Temp                                                                            | Pressure<br>erature                                    | ` ´                                               | 1017.4<br>18.0 | -                                                                    | Corrected Pressure (mm Hg) 763.05<br>Temperature (K) 291                      |
|                                                                 |                                                                                                                 |                                                                                               |                                                        |                                                   | CALIBR         | ATION OR                                                             | IFICE                                                                         |
|                                                                 |                                                                                                                 |                                                                                               |                                                        | Make-><br>Model-><br>Serial # ->                  | 5025A          | ]                                                                    | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696    |
|                                                                 |                                                                                                                 |                                                                                               |                                                        |                                                   | CAL            | IBRATIO                                                              | N                                                                             |
| Plate                                                           |                                                                                                                 | H2O (R)                                                                                       | H20                                                    | Qstd<br>(m3/min)                                  | [<br>(chart)   | IC<br>corrected                                                      | LINEAR<br>d REGRESSION                                                        |
| 18<br>13<br>10<br>7<br>5                                        | 134.84.89.61.49550103.73.77.41.3144372.62.65.21.10431                                                           |                                                                                               |                                                        |                                                   |                |                                                                      | Slope = 40.8144 $Intercept = -10.6594$ $Corr. coeff. = 0.9915$                |
| Pstd = act                                                      | n[Sqrt(H<br>t(Pa/Psto<br>ndard flo<br>cted cha<br>chart res<br>ator Qsto<br>ator Qsto<br>il temper<br>ual press | d)(Tstd/T<br>ow rate<br>rt respond<br>ponse<br>d slope<br>intercept<br>ature dur<br>ure durin | a)]<br>es<br>ing calib<br>g calibra<br><b>n of san</b> | pration ( deg<br>ation ( mm<br><b>apler flow:</b> |                | 70.00<br>60.00<br>50.00<br>40.00<br>00.04<br>00.02<br>20.00<br>20.00 | FLOW RATE CHART                                                               |
| m = samp<br>b = samp<br>I = chart r<br>Tav = dail<br>Pav = dail | ler interc<br>esponse<br>y averag                                                                               | ept<br>e tempera                                                                              |                                                        |                                                   |                | 10.00<br>0.00<br>0.00                                                | 0 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                      |

| Location :<br>Location 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                       | House of<br>AM7b                                                                                        | Loi Tur                                                | Date of Calibration: 10/2/2018<br>Next Calibration Date: 10/4/2018<br>Technician: Fai So |                            |                                                                                           |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                         |                                                        |                                                                                          | COND                       | TIONS                                                                                     |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Se                                                                                                                                                                      | a Level I<br>Temp                                                                                       | Pressure<br>perature                                   | . ,                                                                                      | 1017.4<br>18.0             | 1                                                                                         | Corrected Pressure (mm Hg) 763.05<br>Temperature (K) 291                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                         |                                                        | C                                                                                        | ALIBRATI                   | ON ORIFICE                                                                                |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                         |                                                        | Make-><br>Model-><br>Serial # ->                                                         | 5025A                      | ]                                                                                         | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                         |                                                        |                                                                                          | CALIBR                     | RATION                                                                                    |                                                                            |
| Plate<br>No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H20 (L)<br>(in)                                                                                                                                                         | H2O (R)<br>(in)                                                                                         | H20<br>(in)                                            | Qstd<br>(m3/min)                                                                         | I<br>(chart)               | IC<br>corrected                                                                           | LINEAR<br>REGRESSION                                                       |
| 18<br>13<br>10<br>7<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4<br>4.9<br>3.9<br>2.3<br>1.5                                                                                                                                         | 6.4<br>4.9<br>3.9<br>2.3<br>1.5                                                                         | 12.8<br>9.8<br>7.8<br>4.6<br>3.0                       | 1.724<br>1.510<br>1.349<br>1.039<br>0.841                                                | 59<br>54<br>48<br>41<br>32 | 59.83<br>54.76<br>48.67<br>41.57<br>32.45                                                 | Slope = 30.2259<br>Intercept = 8.3833<br>Corr. coeff. = 0.9933             |
| Pstd = act<br>For subsection of the subsection of | n[Sqrt(H<br>t(Pa/Pstd<br>ndard flo<br>ected char<br>chart resp<br>rator Qstd<br>al temper<br>ual press<br>equent ca<br>Sqrt(298/<br>ler slope<br>ler interco<br>esponse | )(Tstd/T<br>w rate<br>t respon-<br>conse<br>l slope<br>intercep<br>ature durin<br>alculatio<br>Tav)(Pav | a)]<br>es<br>t<br>ing calibra<br>n of san<br>v/760)]-t | pration ( dej<br>ation ( mm<br><b>apler flow:</b>                                        |                            | 70.00<br>60.00<br>60.00<br><b>Ctrial chart response</b><br>(C)<br>00.00<br>00.00<br>0.000 | FLOW RATE CHART                                                            |
| l = chart r<br>Tav = dail<br>Pav = dail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ly average                                                                                                                                                              | -                                                                                                       |                                                        |                                                                                          |                            |                                                                                           |                                                                            |

| Location :<br>Location :                                                                 |                                                      | Гsai Vill<br>AM8                            | age No.                                   |                                                       | Date of Calibration: 10/2/2018<br>Next Calibration Date: 10/4/2018<br>Technician: Fai So |                                                                                           |                                                                                                                 |
|------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                          |                                                      |                                             |                                           |                                                       | CONI                                                                                     | DITIONS                                                                                   |                                                                                                                 |
|                                                                                          | Se                                                   | a Level I<br>Temp                           | Pressure<br>perature                      | , ,                                                   | 1017.4<br>18.0                                                                           |                                                                                           | Corrected Pressure (mm Hg) 763.05<br>Temperature (K) 291                                                        |
|                                                                                          |                                                      |                                             |                                           | C                                                     | ALIBRAT                                                                                  | ION ORIFICE                                                                               | 1                                                                                                               |
|                                                                                          |                                                      |                                             |                                           | Make-><br>Model-><br>Serial # ->                      | 5025A                                                                                    | ]                                                                                         | Qstd Slope ->         2.11965           Qstd Intercept ->         -0.02696                                      |
|                                                                                          |                                                      |                                             |                                           |                                                       | CALIE                                                                                    | BRATION                                                                                   |                                                                                                                 |
| Plate                                                                                    | H20 (L)                                              |                                             |                                           | Qstd                                                  | [<br>(abort)                                                                             | IC                                                                                        | LINEAR                                                                                                          |
| No.<br>18<br>13<br>10<br>7<br>5                                                          | (in)<br>5.9<br>5<br>3.8<br>2.4<br>1.6                | (in)<br>5.9<br>5<br>3.8<br>2.4<br>1.6       | (in)<br>11.8<br>10.0<br>7.6<br>4.8<br>3.2 | (m3/min)<br>1.656<br>1.525<br>1.332<br>1.061<br>0.868 | (chart)<br>60<br>51<br>42<br>31<br>21                                                    | corrected           60.84           51.71           42.59           31.43           21.29 | $\frac{\text{REGRESSION}}{\text{Slope} = 48.3070}$ $\text{Intercept} = -20.6674$ $\text{Corr. coeff.} = 0.9970$ |
| Calculatio                                                                               |                                                      |                                             |                                           | •                                                     |                                                                                          |                                                                                           | FLOW RATE CHART                                                                                                 |
| Qstd = 1/t $IC = I[Square I]$ $Qstd = sta$ $IC = corrected I = actual$ $m = calibration$ | rt(Pa/Pstd<br>andard flo<br>ected char<br>chart resp | l)(Tstd/T<br>ow rate<br>rt respon-<br>ponse | a)]                                       | /Ta))-b]                                              |                                                                                          | 50.00<br>50.00                                                                            |                                                                                                                 |
| Pstd = act                                                                               | al tempera<br>ual pressi                             | ature dur<br>ure durin                      | ring calil<br>Ig calibra                  | oration ( de<br>ation ( mm<br><b>apler flow:</b>      |                                                                                          | O0.00 <b>Actual chart response (C)</b>                                                    |                                                                                                                 |
| 1/m((I))<br>m = samp                                                                     |                                                      | Tav)(Pav                                    | r/760)]-b                                 | ))                                                    |                                                                                          | 10.00                                                                                     |                                                                                                                 |
| b = samp<br>I = chart i<br>Tav = dai<br>Pav = dai                                        | esponse<br>ly average                                | e temper                                    |                                           |                                                       |                                                                                          | 0.00                                                                                      | 0.500 1.000 1.500 2.000<br>Standard Flow Rate (m3/min)                                                          |

| Location : Nam Wa Po Village House No. 80<br>Location ID : AM9b                                                                                                                                               |                                 |                                 |                                   |                                           |                                                    |                                           | Next Calibra                             | alibration:<br>ation Date:<br>echnician: |                     | 12/2/2018<br>12/4/2018<br>Fai So |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|---------------------|----------------------------------|
|                                                                                                                                                                                                               |                                 |                                 |                                   |                                           | (                                                  | CONDITIONS                                |                                          |                                          |                     |                                  |
| Sea Level Pressure (hPa)1026.4Temperature (°C)14.9                                                                                                                                                            |                                 |                                 |                                   |                                           |                                                    |                                           | Corrected Pressure (<br>Temperature (    |                                          |                     | 769.8<br>288                     |
|                                                                                                                                                                                                               |                                 |                                 |                                   |                                           | CALIE                                              | BRATION ORI                               | FICE                                     |                                          |                     |                                  |
| Make-> <u>TISCH</u><br>Model-> <u>5025A</u><br>Serial # -> <u>1941</u>                                                                                                                                        |                                 |                                 |                                   |                                           | 5025A                                              | ]                                         | Qstd Slope -><br>Qstd Intercept ->       |                                          | 2.11965<br>-0.02696 |                                  |
|                                                                                                                                                                                                               |                                 |                                 |                                   |                                           | С                                                  |                                           | I                                        |                                          |                     |                                  |
| Plate<br>No.                                                                                                                                                                                                  | (in)                            | H2O (R)<br>(in)                 | (in)                              | Qstd<br>(m3/min)                          | I<br>(chart)                                       | IC<br>corrected                           | LINE.<br>REGRES                          | SION                                     |                     |                                  |
| 18<br>13<br>10<br>7<br>5                                                                                                                                                                                      | 6.3<br>5.1<br>3.8<br>2.4<br>1.6 | 6.3<br>5.1<br>3.8<br>2.4<br>1.6 | 12.6<br>10.2<br>7.6<br>4.8<br>3.2 | 1.727<br>1.556<br>1.344<br>1.071<br>0.877 | 55<br>49<br>41<br>36<br>27                         | 56.32<br>50.17<br>41.98<br>36.86<br>27.65 | Slope =<br>Intercept =<br>Corr. coeff. = | 32.0888<br>0.3969<br>0.9921              |                     |                                  |
| <b>Calculatic</b><br>Qstd = 1/r<br>IC = I[Sqr                                                                                                                                                                 | m[Sqrt(H                        |                                 |                                   | /Ta))-b]                                  |                                                    | 60.00                                     | FLOW RATE                                | CHART                                    | /                   |                                  |
| Qstd = standard flow rate<br>IC = corrected chart respones<br>I = actual chart response<br>m = calibrator Qstd slope<br>b = calibrator Qstd intercept<br>Ta = actual temperature during calibration ( deg K ) |                                 |                                 |                                   | ; K )                                     | 00.05<br>90.00<br>90.05<br>90.05<br>90.05<br>90.02 |                                           | •                                        |                                          |                     |                                  |
| Pstd = actual pressure during calibration (mm Hg)<br>For subsequent calculation of sampler flow:<br>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)                                                                        |                                 |                                 |                                   | Actual cha                                |                                                    |                                           |                                          |                                          |                     |                                  |
| m = sampler slope<br>b = sampler intercept<br>I = chart response<br>Tav = daily average temperature<br>Pav = daily average pressure                                                                           |                                 |                                 |                                   | 10.00                                     | 0.500 1.<br>Standard Flow R                        | 000<br>Rate (m3/min)                      | 1.500<br>)                               | 2.000                                    |                     |                                  |



TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

#### ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

| Date - F<br>Operator  |                            | 7 Rootsmeter<br>Orifice I.I |                                      | )438320<br>1941                                | Ta (K) -<br>Pa (mm) -            | 294<br>- 750.57                      |
|-----------------------|----------------------------|-----------------------------|--------------------------------------|------------------------------------------------|----------------------------------|--------------------------------------|
| PLATE<br>OR<br>Run #  | VOLUME<br>START<br>(m3)    | VOLUME<br>STOP<br>(m3)      | DIFF<br>VOLUME<br>(m3)               | DIFF<br>TIME<br>(min)                          | METER<br>DIFF<br>Hg<br>(mm)      | ORFICE<br>DIFF<br>H2O<br>(in.)       |
| 1<br>2<br>3<br>4<br>5 | NA<br>NA<br>NA<br>NA<br>NA | NA<br>NA<br>NA<br>NA<br>NA  | 1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1.4600<br>1.0410<br>0.9280<br>0.8840<br>0.7290 | 3.2<br>6.4<br>7.9<br>8.7<br>12.7 | 2.00<br>4.00<br>5.00<br>5.50<br>8.00 |

#### DATA TABULATION

| Vstd                                           | (x axis)<br>Qstd                               | (y axis)                                            | Va                                             | (x axis)<br>Qa                                 | (y axis)                                       |
|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 0.9967<br>0.9925<br>0.9904<br>0.9894<br>0.9840 | 0.6827<br>0.9534<br>1.0672<br>1.1192<br>1.3499 | 1.4149<br>2.0010<br>2.2372<br>2.3464<br>2.8299      | 0.9957<br>0.9915<br>0.9894<br>0.9884<br>0.9830 | 0.6820<br>0.9524<br>1.0661<br>1.1181<br>1.3485 | 0.8851<br>1.2517<br>1.3995<br>1.4678<br>1.7702 |
| Qstd slc<br>intercep<br>coeffici               | ent (b) =                                      | 2.11965<br>-0.02696<br>0.99991<br>Pa/760) (298/Ta)] | Qa slop<br>intercep<br>coeffici                | t (b) =                                        | 1.32729<br>-0.01686<br>0.99991                 |

#### CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

 $Qstd = 1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = 1/m{[SQRT H2O(Ta/Pa)] - b}

## **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

| Туре:          | Laser Dust monitor |
|----------------|--------------------|
| Manufacturer:  | Sibata LD-3B       |
| Serial No.     | 2X6145             |
| Equipment Ref: | EQ105              |
| Job Order      | HK1815073          |

#### Standard Equipment:

| Standard Equipment:     | Higher Volume Sampler          |
|-------------------------|--------------------------------|
| Location & Location ID: | AUES office (calibration room) |
| Equipment Ref:          | HVS 018                        |
| Last Calibration Date:  | 1 December 2017                |
|                         |                                |

## **Equipment Verification Results:**

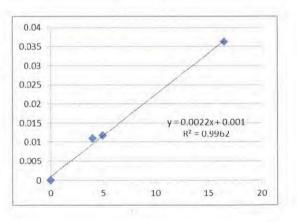
Testing Date:

5 January 2018

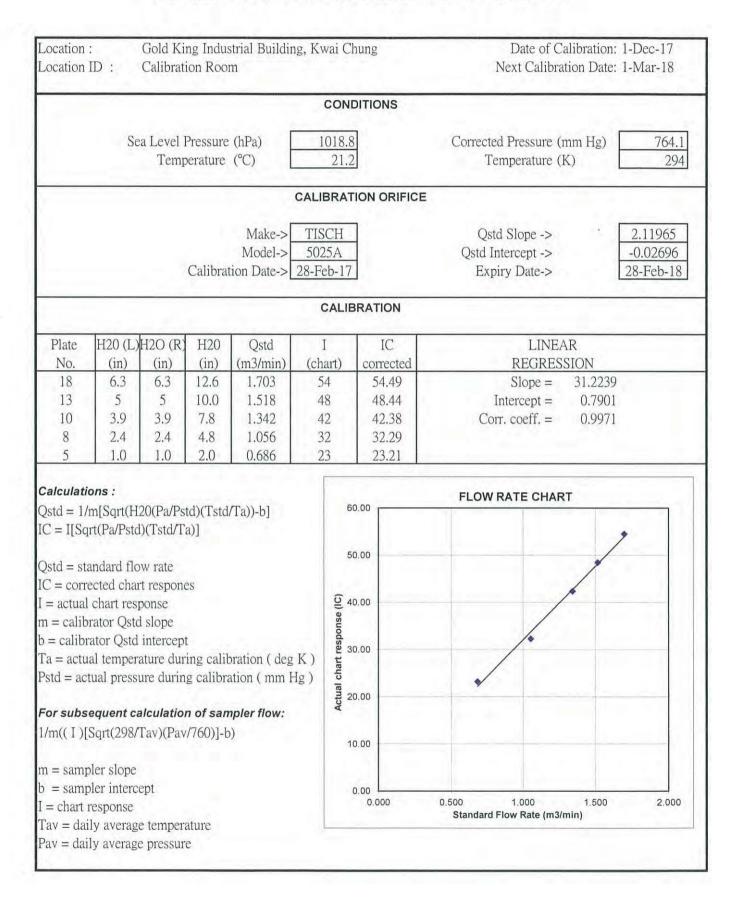
| Hour     | Time          | Mean<br>Temp °C | Mean<br>Pressure<br>(hPa) | Concentration in mg/m <sup>3</sup><br>(Standard Equipment) | Total Count<br>(Calibrated Equipment) | Count/Minute<br>(Total<br>Count/60min) |
|----------|---------------|-----------------|---------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2hr07min | 10:27 ~ 12:34 | 19.3            | 1015.3                    | 0.011                                                      | 511                                   | 4.0                                    |
| 2hr01min | 12:38 ~ 14:39 | 19.3            | 1015.3                    | 0.012                                                      | 598                                   | 4.9                                    |
| 2hr08min | 14:42 ~ 16:50 | 19.3            | 1015.3                    | 0.036                                                      | 2111                                  | 16.5                                   |

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>583 (CPM)</u> 583 (CPM)

#### Linear Regression of Y or X


| Slope (K-factor):       | 0.0022         |  |  |
|-------------------------|----------------|--|--|
| Correlation Coefficient | 0.9981         |  |  |
| Date of Issue           | 9 January 2018 |  |  |




1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

\*If R<0.5, repair or re-verification is required for the equipment



| Operator : M    | artin Li | Signature : | the | Date :   | 9 January 2018 |
|-----------------|----------|-------------|-----|----------|----------------|
| QC Reviewer : _ | Ben Tam  | Signature : | \$6 | Date : _ | 9 January 2018 |



## **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

| Туре:          | Laser Dust monitor |
|----------------|--------------------|
| Manufacturer:  | Sibata LD-3B       |
| Serial No.     | 366409             |
| Equipment Ref: | EQ109              |
| Job Order      | HK1815078          |

#### Standard Equipment:

| Standard Equipment:     | Higher Volume Sampler          |
|-------------------------|--------------------------------|
| Location & Location ID: | AUES office (calibration room) |
| Equipment Ref:          | HVS 018                        |
| Last Calibration Date:  | 1 December 2017                |
|                         |                                |

#### **Equipment Verification Results:**

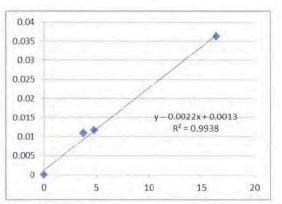
Testing Date:

5 January 2018

| Hour     | Time          | Mean<br>Temp °C | Mean<br>Pressure<br>(hPa) | Concentration in mg/m <sup>3</sup><br>(Standard Equipment) | Total Count<br>(Calibrated Equipment) | Count/Minute<br>(Total<br>Count/60min) |
|----------|---------------|-----------------|---------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2hr07min | 10:27 ~ 12:34 | 19.3            | 1015.3                    | 0.011                                                      | 474                                   | 3.7                                    |
| 2hr01min | 12:38 ~ 14:39 | 19.3            | 1015.3                    | 0.012                                                      | 577                                   | 4.8                                    |
| 2hr08min | 14:42 ~ 16:50 | 19.3            | 1015.3                    | 0.036                                                      | 2097                                  | 16.4                                   |

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 520 (CPM) 521 (CPM)

#### Linear Regression of Y or X


| Slope (K-factor):       | 0.0022         |  |  |
|-------------------------|----------------|--|--|
| Correlation Coefficient | 0.9967         |  |  |
| Date of Issue           | 9 January 2018 |  |  |

### Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

\*If R<0.5, repair or re-verification is required for the equipment





## **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

| Туре:          | Laser Dust monitor |
|----------------|--------------------|
| Manufacturer:  | Sibata LD-3B       |
| Serial No.     | 366410             |
| Equipment Ref: | EQ110              |
| Job Order      | HK1815072          |

#### Standard Equipment:

| Standard Equipment:     | Higher Volume Sampler          | 1 |
|-------------------------|--------------------------------|---|
| Location & Location ID: | AUES office (calibration room) |   |
| Equipment Ref:          | HVS 018                        |   |
| Last Calibration Date:  | 1 December 2017                |   |
|                         |                                |   |

#### **Equipment Verification Results:**

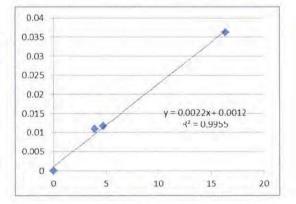
Testing Date:

5 January 2018

| Hour     | Time          | Mean<br>Temp °C | Mean<br>Pressure<br>(hPa) | Concentration in mg/m <sup>3</sup><br>(Standard Equipment) | Total Count<br>(Calibrated Equipment) | Count/Minute<br>(Total<br>Count/60min) |
|----------|---------------|-----------------|---------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2hr07min | 10:27 ~ 12:34 | 19.3            | 1015.3                    | 0.011                                                      | 498                                   | 3.9                                    |
| 2hr01min | 12:38 ~ 14:39 | 19.3            | 1015.3                    | 0.012                                                      | 571                                   | 4.7                                    |
| 2hr08min | 14:42 ~ 16:50 | 19.3            | 1015.3                    | 0.036                                                      | 2095                                  | 16.4                                   |

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 670 (CPM) 669 (CPM)

#### Linear Regression of Y or X


| Slope (K-factor):       | 0.0022         |
|-------------------------|----------------|
| Correlation Coefficient | 0.9977         |
| Date of Issue           | 9 January 2018 |

## 1.12

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring \*If R<0.5, repair or re-verification is required for the equipment





| Location : Gold King Industrial Building, Kwai<br>Location ID : Calibration Room |                                                                                                                                     |                                                                                                                                             |                                                  |                                                               |                           |                                                                     | ng                                                           |                       | Date of Calibra<br>ext Calibration I |                                  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------------------------------|----------------------------------|
|                                                                                  |                                                                                                                                     |                                                                                                                                             |                                                  |                                                               |                           | CONDI                                                               | TIONS                                                        |                       |                                      |                                  |
|                                                                                  | Se                                                                                                                                  | ea Level F<br>Temp                                                                                                                          | Pressure<br>perature                             |                                                               | 1                         | 018.8<br>21.2                                                       |                                                              |                       | Pressure (mm H<br>perature (K)       | Ig) 764.1<br>294                 |
|                                                                                  |                                                                                                                                     |                                                                                                                                             |                                                  |                                                               | CALI                      | BRATIC                                                              | ON ORIFICE                                                   |                       |                                      |                                  |
|                                                                                  |                                                                                                                                     | -7.8                                                                                                                                        | Calibra                                          | Make-><br>Model-><br>tion Date->                              | 502                       | SCH<br>25A<br>eb-17                                                 |                                                              | Qstd Inte             | Slope -><br>ercept -><br>7 Date->    | 2.11965<br>-0.02696<br>28-Feb-18 |
|                                                                                  |                                                                                                                                     | 1                                                                                                                                           |                                                  |                                                               | (                         | CALIBR                                                              | ATION                                                        |                       |                                      |                                  |
| Plate<br>No.<br>18<br>13<br>10<br>8<br>5                                         | H20 (L)<br>(in)<br>6.3<br>5<br>3.9<br>2.4<br>1.0                                                                                    | H2O (R)<br>(in)<br>6.3<br>5<br>3.9<br>2.4<br>1.0                                                                                            | H20<br>(in)<br>12.6<br>10.0<br>7.8<br>4.8<br>2.0 | Qstd<br>(m3/min)<br>1.703<br>1.518<br>1.342<br>1.056<br>0.686 | (cha<br>5-<br>4<br>4<br>3 | 54                                                                  | IC<br>corrected<br>54.49<br>48.44<br>42.38<br>32.29<br>23.21 | Inte                  | ercept = 0.7                         | 1<br>2239<br>7901<br>9971        |
| Pstd = act                                                                       | m[Sqrt(H<br>andard flc<br>ected chau<br>chart resp<br>rator Qstd<br>al temper<br>tual press<br>equent ca<br>Sqrt(298/<br>pler slope | d)(Tstd/Ta<br>ow rate<br>art respone<br>sponse<br>d slope<br>l intercept<br>rature during<br>sure during<br><b>alculation</b><br>/Tav)(Pav. | a)]<br>es<br>t<br>ring calibra<br>n of san       | bration ( deg<br>ration ( mm F<br>mpler flow:                 |                           | 60.00<br>50.00<br>50.00<br>40.00<br>30.00<br>90.00<br>10.00<br>0.00 |                                                              | FLOW RA               | ATE CHART                            |                                  |
| I = chart 1<br>Tav = dai<br>Pav = dai                                            | response<br>ily averag                                                                                                              | ge tempera                                                                                                                                  |                                                  |                                                               | 5                         |                                                                     | 0.000                                                        | 0.500<br>Standard Flo | 1.000 1.<br>ow Rate (m3/min)         | 500 2.000                        |

| Location : Gold King Industrial Building, Kwai Chu<br>Location ID : Calibration Room                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                         |                                                                                                |                                                            |                                              |                     |                                                             | 5                      |                                    | Date of Calibrati<br>t Calibration Da |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|---------------------|-------------------------------------------------------------|------------------------|------------------------------------|---------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                |                                                            |                                              |                     | CONDITI                                                     | ONS                    |                                    |                                       | -                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Se                                                                                                                                                      | ea Level I<br>Temp                                                                             | Pressure<br>perature                                       |                                              | 1                   | 018.8<br>21.2                                               |                        |                                    | ressure (mm Hg<br>erature (K)         | e) 764.1<br>294                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                |                                                            |                                              | CALIE               | BRATION                                                     | ORIFICE                |                                    |                                       |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                | Calibra                                                    | Make-><br>Model-><br>tion Date->             | TIS<br>502<br>28-Fe | 25A                                                         |                        | Qstd SI<br>Qstd Intero<br>Expiry 1 | cept ->                               | 2.11965<br>-0.02696<br>28-Feb-18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                |                                                            |                                              | C                   | CALIBRA                                                     | TION                   |                                    |                                       |                                  |
| Plate<br>No.<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H20 (L)<br>(in)<br>6.3                                                                                                                                  | H2O (R)<br>(in)<br>6.3                                                                         | H20<br>(in)<br>12.6                                        | Qstd<br>(m3/min)<br>1.703                    | I<br>(ch:<br>5      | art) co                                                     | IC<br>rrected<br>54.49 |                                    | LINEAR<br>REGRESSION                  | 239                              |
| 13<br>10<br>8<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135510.01.5184103.93.97.81.342482.42.44.81.0563                                                                                                         |                                                                                                |                                                            |                                              |                     | 2 42.38 Corr. coeff. = 0.99<br>2 32.29                      |                        |                                    |                                       |                                  |
| IC = I[Sq $Qstd = sta$ $IC = corrected and a corrected and$ | m[Sqrt(H<br>rt(Pa/Psto<br>andard flo<br>ected chai<br>chart res<br>rator Qsto<br>ator Qsto<br>al temper<br>tual press<br><b>equent c</b> a<br>Sqrt(298/ | d)(Tstd/T;<br>ow rate<br>rt respone<br>ponse<br>d slope<br>intercept<br>ature dur<br>ure durin | a)]<br>es<br>t<br>ing calil<br>g calibr<br>n <b>of san</b> | oration ( deg<br>ation ( mm F<br>npler flow: | 10 C 10 C           | 60.00<br>50.00<br>40.00<br>30.00<br>90.00<br>90.00<br>10.00 |                        | FLOW RAT                           | TE CHART                              | /                                |
| m = sampler slope<br>b = sampler intercept<br>I = chart response<br>Tav = daily average temperature<br>Pav = daily average pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                         |                                                                                                |                                                            |                                              | 0.00<br>0.          | 000                                                         |                        | .000 1.50<br>Rate (m3/min)         | 00 2.000                              |                                  |

## **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

| Type:          | Laser Dust monitor |
|----------------|--------------------|
| Manufacturer:  | Sibata LD-3B       |
| Serial No.     | 3Y6503             |
| Equipment Ref: | EQ112              |
| Job Order      | HK1815077          |

#### Standard Equipment:

| Standard Equipment:     | Higher Volume Sampler          |
|-------------------------|--------------------------------|
| Location & Location ID: | AUES office (calibration room) |
| Equipment Ref:          | HVS 018                        |
| Last Calibration Date:  | 1 December 2017                |
|                         |                                |

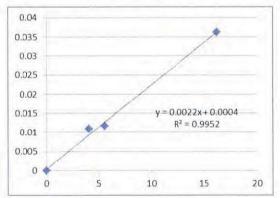
#### **Equipment Verification Results:**

Testing Date:

5 January 2018

| Hour     | Time          | Mean<br>Temp °C | Mean<br>Pressure<br>(hPa) | Concentration in mg/m <sup>3</sup><br>(Standard Equipment) | Total Count<br>(Calibrated Equipment) | Count/Minute<br>(Total<br>Count/60min) |
|----------|---------------|-----------------|---------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2hr07min | 10:27 ~ 12:34 | 19.3            | 1015.3                    | 0.011                                                      | 521                                   | 4.1                                    |
| 2hr01min | 12:38 ~ 14:39 | 19.3            | 1015.3                    | 0.012                                                      | 674                                   | 5.6                                    |
| 2hr08min | 14:42 ~ 16:50 | 19.3            | 1015.3                    | 0.036                                                      | 2077                                  | 16.3                                   |

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 661 (CPM) 661 (CPM)


#### Linear Regression of Y or X

| Slope (K-factor):       | 0.0022         |  |  |
|-------------------------|----------------|--|--|
| Correlation Coefficient | 0.9976         |  |  |
| Date of Issue           | 9 January 2018 |  |  |



1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring \*If R<0.5, repair or re-verification is required for the equipment







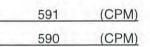
## **Equipment Verification Report (TSP)**

#### **Equipment Calibrated:**

| Туре:          | Laser Dust monitor |
|----------------|--------------------|
| Manufacturer:  | Sibata LD-3B       |
| Serial No.     | 3Y6505             |
| Equipment Ref: | EQ114              |
| Job Order      | HK1815074          |

#### Standard Equipment:

| Standard Equipment:     | Higher Volume Sampler          |  |
|-------------------------|--------------------------------|--|
| Location & Location ID: | AUES office (calibration room) |  |
| Equipment Ref:          | HVS 018                        |  |
| Last Calibration Date:  | 1 December 2017                |  |
|                         |                                |  |


#### **Equipment Verification Results:**

Testing Date:

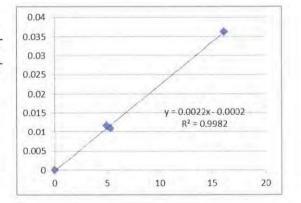
5 January 2018

| Hour     | Time          | Mean<br>Temp °C | Mean<br>Pressure<br>(hPa) | Concentration in mg/m <sup>3</sup><br>(Standard Equipment) | Total Count<br>(Calibrated Equipment) | Count/Minute<br>(Total<br>Count/60min) |
|----------|---------------|-----------------|---------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------------|
| 2hr07min | 10:27 ~ 12:34 | 19.3            | 1015.3                    | 0.011                                                      | 677                                   | 5.3                                    |
| 2hr01min | 12:38 ~ 14:39 | 19.3            | 1015.3                    | 0.012                                                      | 601                                   | 5.0                                    |
| 2hr08min | 14:42 ~ 16:50 | 19.3            | 1015.3                    | 0.036                                                      | 2064                                  | 16.2                                   |

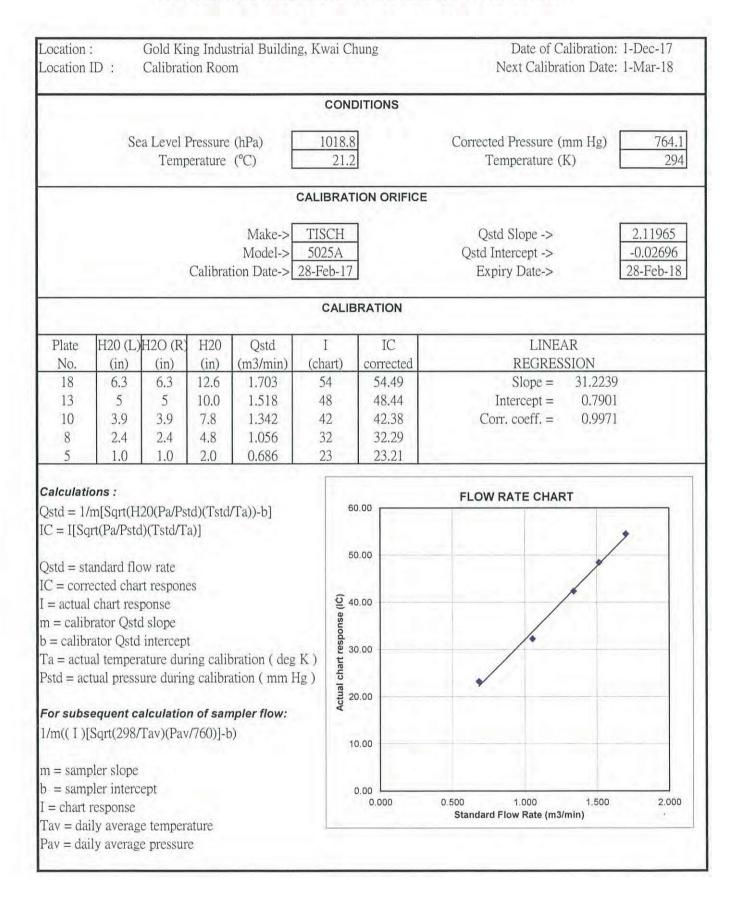
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)



#### Linear Regression of Y or X


| Slope (K-factor):       |  |
|-------------------------|--|
| Correlation Coefficient |  |
| Date of Issue           |  |

| _ | 0.0022         |
|---|----------------|
|   | 0.9991         |
| 2 | 9 January 2018 |


#### Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring \*If R<0.5, repair or re-verification is required for the equipment









Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C174097 證書編號

| 目 | (Job No./序引編號: IC17-0924)                                                                                                     | Date of Receipt / 收件日期: 14 July 2017                                                                                                  |
|---|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| : | Sound Level Meter                                                                                                             |                                                                                                                                       |
| : | Rion                                                                                                                          |                                                                                                                                       |
| : | NL-52                                                                                                                         |                                                                                                                                       |
| : | 00464681                                                                                                                      |                                                                                                                                       |
| : | Action-United Environmental Services an<br>Unit A, 20/F., Gold King Industrial Build<br>35-41 Tai Lin Pai Road, Kwai Chung, N | ing,                                                                                                                                  |
|   | 【目<br>:<br>:<br>:                                                                                                             | <ul> <li>Sound Level Meter</li> <li>Rion</li> <li>NL-52</li> <li>00464681</li> <li>Action-United Environmental Services ar</li> </ul> |

# TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 :

Relative Humidity / 相對濕度 :  $(55 \pm 20)\%$ 

# TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 22 July 2017 +

#### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

| hingt.       |  |
|--------------|--|
| H T Wong     |  |
| m 1 1 1 0 00 |  |

Technical Officer

K C Lee Engineer

Certified By 核證

Date of Issue 簽發日期

•

25 July 2017

The text equipment used for calibration are traceable to the Nation Standards as specified in flin, vertificate. This certificate shall not be reproduced except in full, without the print written active will of this laboration

本演出所成校正用之测试器材也可测测至网際信用。局部泡印本点書語先後本質驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e'o 4 F. Tsing Shan Wan Exchange Building, I Hung On Lane, Juen Mun: New Territories, Hung Kong MIM ( PV 11時12) 이 - 校正 没检测的1000

en 评选新得追问的安排。就否问清极被四被

billingh 2927 1606 Fib. 1913) 2744 8986 F-mail digit, callable ammenium com-Website fight www.suncreation.com



Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C174097 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C170048 PA160023

- Test procedure : MA101N. 5.
- 6. Results :
- 6.1 Sound Pressure Level
- Reference Sound Pressure Level 6.1.1

|               | UUT      | Setting                |                   | Applie        | d Value        | UUT             | IEC 61672             |
|---------------|----------|------------------------|-------------------|---------------|----------------|-----------------|-----------------------|
| Range<br>(dB) | Function | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130      | LA       | A                      | Fast              | 94.00         | 1              | 93.7            | ±1.1                  |

#### 6.1.2 Linearity

|               | UUT Setting Applied Value |                        |                   | UUT           |                |                 |
|---------------|---------------------------|------------------------|-------------------|---------------|----------------|-----------------|
| Range<br>(dB) | Function                  | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) |
| 30 - 130      | LA                        | A                      | Fast              | 94.00         | 1              | 93.7 (Ref.)     |
|               |                           | 1.1.1.1.1.1.1.1        | 1.000             | 104.00        |                | 103.7           |
|               |                           |                        |                   | 114.00        |                | 113.7           |

IEC 61672 Class 1 Spec. :  $\pm$  0.6 dB per 10 dB step and  $\pm$  1.1 dB for overall different.

#### 6.2 Time Weighting

| UUT Setting   |                |                        | Setting           |               | Applied Value  |                 | IEC 61672             |
|---------------|----------------|------------------------|-------------------|---------------|----------------|-----------------|-----------------------|
| Range<br>(dB) | Function       | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130      | L <sub>A</sub> | A                      | Fast              | 94.00         | 1              | 93.7            | Ref.                  |
|               | -              |                        | Slow              |               |                | 93.7            | ± 0.3                 |

本治書所載校正用之調試器材均可溯源于國際標準。局部物理本治書記先獲本實踐的書面批准。

- Sure Creation Cogeneering Limited Calibration & Testing Laboratory 276-477, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kung 1860) 1 W (18122) 过一校记:及检测的保证的 平衡 第二语 研究:10799(及201-3874)(1))等的使用的理想

- Tel/This 2937 2006 E-mod/E0/ calldocennercation.com Website #24 www.sumercation.com Fax 49/11 2744 8086

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be remoduced except in full, without the prowritten approval of this laboratory



輝創工程有限公司 Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C174097 證書編號

#### 6.3 Frequency Weighting

#### A-Weighting 6.3.1

|                           | UUT Setting |                        |                   |               | Applied Value |                 | IEC 61672             |
|---------------------------|-------------|------------------------|-------------------|---------------|---------------|-----------------|-----------------------|
| Range<br>(dB)             | Function    | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.         | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130 L <sub>A</sub> A | A           | Fast                   | 94.00             | 63 Hz         | 67.4          | $-26.2 \pm 1.5$ |                       |
|                           | - 10        | 1.5.2.1                | 100000            |               | 125 Hz        | 77.5            | $-16.1 \pm 1.5$       |
|                           |             |                        |                   |               | 250 Hz        | 85.0            | $-8.6 \pm 1.4$        |
|                           |             |                        |                   |               | 500 Hz        | 90.4            | $-3.2 \pm 1.4$        |
|                           |             |                        |                   |               | 1 kHz         | 93.7            | Ref.                  |
|                           |             |                        |                   |               | 2 kHz         | 94.9            | $+1.2 \pm 1.6$        |
|                           |             |                        |                   |               | 4 kHz         | 94.7            | $+1.0 \pm 1.6$        |
|                           |             |                        |                   |               | 8 kHz         | 92.6            | -1.1 (+2.1 ; -3.1)    |
|                           |             |                        |                   |               | 12.5 kHz      | 89.2            | -4.3 (+3.0 ; -6.0)    |

#### 6.3.2 C-Weighting

|                             | UUT      | Setting                                                                                                         | / ?               | Appli         | ied Value      | UUT             | IEC 61672             |
|-----------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------|----------------|-----------------|-----------------------|
| Range<br>(dB)               | Function | Frequency<br>Weighting                                                                                          | Time<br>Weighting | Level<br>(dB) | Freq.          | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130 L <sub>C</sub> C F | Fast     | 94.00                                                                                                           | 63 Hz             | 92.8          | $-0.8 \pm 1.5$ |                 |                       |
|                             |          |                                                                                                                 |                   |               | 125 Hz         | 93.5            | $-0.2 \pm 1.5$        |
|                             | 10 - C   |                                                                                                                 |                   |               | 250 Hz         | 93.7            | $0.0 \pm 1.4$         |
|                             |          |                                                                                                                 |                   |               | 500 Hz         | 93.7            | 0.0 ± 1.4             |
|                             |          |                                                                                                                 |                   |               | l kHz          | 93.7            | Ref.                  |
|                             |          | 1.1                                                                                                             |                   |               | 2 kHz          | 93.5            | $-0.2 \pm 1.6$        |
|                             |          | 15 L L L                                                                                                        |                   |               | 4 kHz          | 92.9            | $-0.8 \pm 1.6$        |
|                             |          |                                                                                                                 |                   |               | 8 kHz          | 90.7            | -3.0 (+2.1 ; -3.1)    |
|                             |          | the second se | 140 mm            |               | 12.5 kHz       | 87.3            | -6.2 (+3.0 ; -6.0)    |

The test sequences used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本遗告所藏技证用之调试器材均可调源至调照惯理。局部执印本遗告需先遗本贸验所当面批准。

Sun Creation Engineering Limited - Calibration & Tasting Laboratory c.o. 4.7. Tang Shan Wan Exchange Building, 1 Hing On Lane, Tuen Man, New Territories, Hong Kong 例例 1 程行視257d - 校正及接測評驗所 a.o. 否注他们例如2011 - 就注注的機械的解释 Tel 组成2, 2027.260% Fax/程行, 2744.8986 E-mail 距倒, callaborance.com Website.潮研 www.suncesation.com



# Certificate of Calibration 校正證書

Certificate No.: C174097 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 07619

- Mfr's Spec. : IEC 61672 Class 1

| - Uncertainties of Applied Value :                                                                             | 94 dB : | 63 Hz - 125 Hz  | : ± 0.35 dB                        |
|----------------------------------------------------------------------------------------------------------------|---------|-----------------|------------------------------------|
| a second a second s |         | 250 Hz - 500 Hz | : ± 0.30 dB                        |
|                                                                                                                |         | 1 kHz           | : ± 0.20 dB                        |
|                                                                                                                |         | 2 kHz - 4 kHz   | : ± 0.35 dB                        |
|                                                                                                                |         | 8 kHz           | : ± 0.45 dB                        |
|                                                                                                                |         | 12.5 kHz        | : ± 0.70 dB                        |
|                                                                                                                | 104 dB: | 1 kHz           | : ± 0.10 dB (Ref. 94 dB)           |
|                                                                                                                | 114 dB: | 1 kHz           | $\pm 0.10 \text{ dB}$ (Ref. 94 dB) |
|                                                                                                                |         |                 |                                    |

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this cartificate. This contificate shall not be reproduced except in hill, without the prior written approval of this laboratory.

本證書所被從正用之測試器材均可測度至國際標準。局部復用本證得需先進本實驗所書面批准。

San Creation Engineering Lumited - Calibration & Testing Laboratory e/o 4/F, Tsing Shau Wan Exchange Building, 1 Hung On Lane, Tuen Man, New Territories, Hong Kong 解的11/F/F/印度会记录 - 校正/友任意的行動的6 e/o: 齐行委员任WEPT的专家们一般1711和18(据9948)

TeOTELS: 2007-2608 Fax-10/II 2744-8986 Consult/III callabia supercation.com Website (001) www.suncreation.com



Sun Creation Engineering Limited

**Calibration and Testing Laboratory** 

# Certificate of Calibration 校正證書

:

Certificate No. : C172288 證書編號

Date of Receipt / 收件日期: 24 April 2017

| ITEM | TESTED | /送檢項目 |
|------|--------|-------|
|------|--------|-------|

# (Job No. / 序引編號: IC17-0924)

Description / 儀器名稱 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者

Integrating Sound Level Meter (EQ006) Brüel & Kjær 2238 2285762 Action-United Environmental Services and Consulting Unit A, 20/F., Gold King Industrial Building,

35-41 Tai Lin Pai Road, Kwai Chung, N.T.

## TEST CONDITIONS / 測試條件

Temperature / 溫度 :  $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 :  $(55 \pm 20)\%$ 

# TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 28 April 2017

## TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

NSW H T Wong

Technical Officer

K C/Lee Project Engineer

Certified By 核證

Date of Issue 簽發日期

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先復本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司-校正及檢測實驗所 c/0 香港新界屯門興安里一號青山灣機樓四樓 E-mail/電郵; callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606 Fax/傅真: 2744 8986



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
  - 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
  - 3. The results presented are the mean of 3 measurements at each calibration point.
  - 4. Test equipment :

Equipment ID CL280 CL281 <u>Description</u> 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C170048 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

|               | UUT       | Setting                | Applied           | UUT           |                |                 |
|---------------|-----------|------------------------|-------------------|---------------|----------------|-----------------|
| Range<br>(dB) | Parameter | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) |
| 50 - 130      | LAFP      | A                      | F                 | 94.00         | 1              | 94.1            |

# 6.1.1.2 After Self-calibration

| UUT           |                  | Setting                | 1.00              | Applie        | d Value        | UUT             | IEC 60651            |
|---------------|------------------|------------------------|-------------------|---------------|----------------|-----------------|----------------------|
| Range<br>(dB) | Parameter        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Type 1 Spec.<br>(dB) |
| 50 - 130      | L <sub>AFP</sub> | A                      | F                 | 94.00         | 1              | 94.0            | ± 0.7                |

6.1.2 Linearity

| UUT Setting   |           |                        |                   | Applied Value |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UUT             |
|---------------|-----------|------------------------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Range<br>(dB) | Parameter | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reading<br>(dB) |
| 50 - 130      | LAFP      | A                      | F                 | 94.00         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94.0 (Ref.)     |
|               |           |                        |                   | 104.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104.0           |
|               |           |                        | 1                 | 114.00        | 1. The second se | 114.0           |

IEC 60651 Type 1 Spec. :  $\pm$  0.4 dB per 10 dB step and  $\pm$  0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準、局部複印本證書需先獲本實驗所書面批准、

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The lest equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

# 6.2 Time Weighting

#### 6.2.1 Continuous Signal

|               | UUT Setting      |                        | Applied Value     |               | UUT            | IEC 60651       |                      |
|---------------|------------------|------------------------|-------------------|---------------|----------------|-----------------|----------------------|
| Range<br>(dB) | Parameter        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Type 1 Spec.<br>(dB) |
| 50 - 130      | LAFP             | A                      | F                 | 94.00         | 1              | 94.0            | Ref.                 |
|               | L <sub>ASP</sub> |                        | S                 |               |                | 94.1            | ± 0.1                |
|               | LAIP             |                        | I                 |               |                | 94.1            | ± 0.1                |

# 6.2.2 Tone Burst Signal (2 kHz)

|               | UUT       | Setting                |                   | App           | lied Value        | UUT             | IEC 60651            |
|---------------|-----------|------------------------|-------------------|---------------|-------------------|-----------------|----------------------|
| Range<br>(dB) | Parameter | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Burst<br>Duration | Reading<br>(dB) | Type 1 Spec.<br>(dB) |
| 30 - 110 LAFP | LAFP      | A                      | F                 | 106.0         | Continuous        | 106.0           | Ref.                 |
|               | LAFMax    | he Carlo I             | 1.00              |               | 200 ms            | 105.0           | $-1.0 \pm 1.0$       |
|               | LASP      |                        | S                 |               | Continuous        | 106.0           | Ref.                 |
|               | LASMax    |                        |                   |               | 500 ms            | 102.0           | $-4.1 \pm 1.0$       |

# 6.3 Frequency Weighting

## 6.3.1 A-Weighting

|               | UUT       | Setting                |                   | Appli         | ed Value | UUT             | IEC 60651            |
|---------------|-----------|------------------------|-------------------|---------------|----------|-----------------|----------------------|
| Range<br>(dB) | Parameter | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.    | Reading<br>(dB) | Type 1 Spec.<br>(dB) |
| 50 - 130      | LAFP      | AFP A                  | F                 | 94.00         | 31.5 Hz  | 55.1            | $-39.4 \pm 1.5$      |
|               |           |                        |                   |               | 63 Hz    | 68.0            | $-26.2 \pm 1.5$      |
|               |           |                        |                   |               | 125 Hz   | 77.8            | $-16.1 \pm 1.0$      |
|               |           |                        |                   |               | 85.3     | $-8.6 \pm 1.0$  |                      |
|               |           |                        |                   |               | 500 Hz   | 90.8            | $-3.2 \pm 1.0$       |
|               |           |                        |                   |               | 1 kHz    | 94.0            | Ref.                 |
|               |           |                        |                   |               | 2 kHz    | 95.2            | $+1.2 \pm 1.0$       |
|               |           |                        |                   |               | 4 kHz    | 95.0            | $+1.0 \pm 1.0$       |
|               |           |                        |                   |               | 8 kHz    | 92.9            | -1.1 (+1.5 ; -3.0)   |
|               |           |                        |                   |               | 12.5 kHz | 89.8            | -4.3 (+3.0 ; -6.0)   |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書面批准。



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172288 證書編號

# 6.3.2 C-Weighting

|               | UUT              | Setting                |                   | Appli         | ed Value       | UUT             | IEC 60651            |
|---------------|------------------|------------------------|-------------------|---------------|----------------|-----------------|----------------------|
| Range<br>(dB) | Parameter        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.          | Reading<br>(dB) | Type 1 Spec.<br>(dB) |
| 50 - 130      | L <sub>CFP</sub> | C                      | F                 | 94.00         | 31.5 Hz        | 91.5            | $-3.0 \pm 1.5$       |
|               |                  | 2 mar 1                |                   | 63 Hz         | 93.4           | $-0.8 \pm 1.5$  |                      |
|               |                  |                        |                   | 125 Hz        | 125 Hz 93.9 -0 | $-0.2 \pm 1.0$  |                      |
|               |                  |                        |                   | 250 Hz        | 94.1           | $0.0 \pm 1.0$   |                      |
|               |                  |                        |                   |               | 500 Hz         | 94.1            | $0.0 \pm 1.0$        |
|               |                  |                        |                   |               | 1 kHz          | 94.1            | Ref.                 |
|               |                  |                        |                   |               | 2 kHz          | 93.9            | $-0.2 \pm 1.0$       |
|               |                  |                        |                   |               | 4 kHz          | 93.2            | $-0.8 \pm 1.0$       |
|               |                  |                        |                   |               | 8 kHz          | 91.0            | -3.0 (+1.5 ; -3.0)   |
|               |                  |                        |                   |               | 12.5 kHz       | 87.9            | -6.2 (+3.0; -6.0)    |

#### 6.4

Time Averaging

|               | UUT       | Setting                |                     | Applied Value      |                           |                         |                        |                             | UUT             | IEC 60804               |
|---------------|-----------|------------------------|---------------------|--------------------|---------------------------|-------------------------|------------------------|-----------------------------|-----------------|-------------------------|
| Range<br>(dB) | Parameter | Frequency<br>Weighting | Integrating<br>Time | Frequency<br>(kHz) | Burst<br>Duration<br>(ms) | Burst<br>Duty<br>Factor | Burst<br>Level<br>(dB) | Equivalent<br>Level<br>(dB) | Reading<br>(dB) | Type 1<br>Spec.<br>(dB) |
| 30 - 110      | LAcq      | LAce A 10 sec.         | 4                   | 1                  | 1/10                      | 110.0                   | 100                    | 100.0                       | ± 0.5           |                         |
|               |           |                        | CONTRACTOR OF       |                    |                           | 1/10 <sup>2</sup>       |                        | 90                          | 89.9            | ± 0.5                   |
|               |           |                        | 60 sec.             | 1                  | al de la                  | 1/103                   |                        | 80                          | 79.2            | ± 1.0                   |
|               |           |                        | 5 min.              |                    |                           | 1/104                   |                        | 70                          | 69.2            | ±1.0                    |

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

| - Uncertainties of Applied Value : | 94 dB : 31.5 Hz - 125 Hz<br>250 Hz - 500 Hz<br>1 kHz<br>2 kHz - 4 kHz<br>8 kHz<br>12.5 kHz<br>104 dB : 1 kHz<br>114 dB : 1 kHz |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|                                    |                                                                                                                                |  |

- The uncertainties are for a confidence probability of not less than 95 %.

#### Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



Sun Creation Engineering Limited

**Calibration and Testing Laboratory** 

# Certificate of Calibration 正證書

Certificate No. : C172287 證書編號

| 頁目 | (Job No. / 序引編號: IC17-0924)               | Date of Receipt / 收件日期: 24 April 2017                                                                                                                                                       |
|----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :  | Sound Level Meter (EQ015)                 |                                                                                                                                                                                             |
| 1  | Rion                                      |                                                                                                                                                                                             |
| :  | NL-52                                     |                                                                                                                                                                                             |
| :  | 00142581                                  |                                                                                                                                                                                             |
| :  | Action-United Environmental Services an   | nd Consulting                                                                                                                                                                               |
|    | Unit A, 20/F., Gold King Industrial Build | ling,                                                                                                                                                                                       |
|    | 35-41 Tai Lin Pai Road, Kwai Chung, N.    | Τ.                                                                                                                                                                                          |
| _  | ,                                         |                                                                                                                                                                                             |
| 当此 | ANX/H-                                    |                                                                                                                                                                                             |
|    |                                           | <ul> <li>Sound Level Meter (EQ015)</li> <li>Rion</li> <li>NL-52</li> <li>00142581</li> <li>Action-United Environmental Services at<br/>Unit A, 20/F., Gold King Industrial Build</li> </ul> |

Temperature / 溫度 :  $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : (55±20)%

#### TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017

# TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

| Tested By<br>測試    | : HT Wong<br>Technical Officer   |                       |   |            |
|--------------------|----------------------------------|-----------------------|---|------------|
| Certified By<br>核證 | :<br>K C Lee<br>Project Engineer | Date of Issue<br>簽發日期 | 4 | 2 May 2017 |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

| Equipment ID | Description                         | Certificate No. |
|--------------|-------------------------------------|-----------------|
| CL280        | 40 MHz Arbitrary Waveform Generator | C170048         |
| CL281        | Multifunction Acoustic Calibrator   | PA160023        |

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

|               | UUT Setting    |                        |                   |               | d Value        | UUT             | IEC 61672             |
|---------------|----------------|------------------------|-------------------|---------------|----------------|-----------------|-----------------------|
| Range<br>(dB) | Function       | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130      | L <sub>A</sub> | A                      | Fast              | 94.00         | 1              | 94.3            | ± 1.1                 |

#### 6.1.2 Linearity

|               | UUT Setting    |                        |                   |               | Applied Value  |                 |  |
|---------------|----------------|------------------------|-------------------|---------------|----------------|-----------------|--|
| Range<br>(dB) | Function       | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) |  |
| 30 - 130      | L <sub>A</sub> | A                      | Fast              | 94.00         | 1              | 94.3 (Ref.)     |  |
| 1 - 2 - I     |                |                        |                   | 104.00        |                | 104.3           |  |
|               |                |                        |                   | 114.00        |                | 114.3           |  |

IEC 61672 Class 1 Spec. :  $\pm$  0.6 dB per 10 dB step and  $\pm$  1.1 dB for overall different.

#### 6.2 Time Weighting

|               | UUT      | Setting                |                   | Applied Value |                | Applied Value   |                       | UUT | IEC 61672 |
|---------------|----------|------------------------|-------------------|---------------|----------------|-----------------|-----------------------|-----|-----------|
| Range<br>(dB) | Function | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Class 1 Spec.<br>(dB) |     |           |
| 30 - 130      | LA       | A                      | Fast              | 94.00         | 1              | 94.3            | Ref.                  |     |           |
|               |          | 1                      | Slow              |               |                | 94.3            | ± 0.3                 |     |           |

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所 c/o 香港新界屯門興安里一號背山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

# 6.3 Frequency Weighting

# 6.3.1 A-Weighting

|               | UUT Setting |                        |                   | Appl          | ied Value | UUT             | IEC 61672             |
|---------------|-------------|------------------------|-------------------|---------------|-----------|-----------------|-----------------------|
| Range<br>(dB) | Function    | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.     | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130      | LA          | A                      | Fast              | 94.00         | 63 Hz     | 68.1            | $-26.2 \pm 1.5$       |
|               | 1112        | 10.000                 |                   |               | 125 Hz    | 78.1            | $-16.1 \pm 1.5$       |
|               |             |                        |                   |               | 250 Hz    | 85.6            | $-8.6 \pm 1.4$        |
|               |             |                        |                   |               | 500 Hz    | 91.0            | $-3.2 \pm 1.4$        |
|               |             |                        |                   |               | 1 kHz     | 94.3            | Ref.                  |
|               |             |                        |                   |               | 2 kHz     | 95.5            | $+1.2 \pm 1.6$        |
|               | 1           |                        |                   |               | 4 kHz     | 95.3            | $+1.0 \pm 1.6$        |
|               |             |                        |                   |               | 8 kHz     | 93.3            | -1.1 (+2.1 ; -3.1)    |
|               | 1           | 11                     | b t               |               | 12.5 kHz  | 89.9            | -4.3 (+3.0 ; -6.0)    |

# 6.3.2 C-Weighting

|               | UUT Setting                              |                                          |                   | Appli         | Applied Value |                 | IEC 61672             |
|---------------|------------------------------------------|------------------------------------------|-------------------|---------------|---------------|-----------------|-----------------------|
| Range<br>(dB) | Function                                 | Frequency<br>Weighting                   | Time<br>Weighting | Level<br>(dB) | Freq.         | Reading<br>(dB) | Class 1 Spec.<br>(dB) |
| 30 - 130      | L <sub>C</sub>                           | C                                        | Fast              | 94.00         | 63 Hz         | 93.4            | $-0.8 \pm 1.5$        |
|               |                                          | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                   |               | 125 Hz        | 94.1            | $-0.2 \pm 1.5$        |
|               |                                          |                                          |                   |               | 250 Hz        | 94.3            | 0.0 ± 1.4             |
|               |                                          |                                          |                   |               | 500 Hz        | 94.3            | 0.0 ± 1.4             |
|               |                                          |                                          |                   |               | 1 kHz         | 94.3            | Ref.                  |
|               |                                          |                                          |                   |               | 2 kHz         | 94.1            | $-0.2 \pm 1.6$        |
|               |                                          |                                          |                   |               | 4 kHz         | 93.5            | $-0.8 \pm 1.6$        |
|               | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                                          |                   |               | 8 kHz         | 91.4            | -3.0 (+2.1 ; -3.1)    |
|               |                                          |                                          |                   |               | 12.5 kHz      | 87.9            | -6.2 (+3.0 ; -6.0)    |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部被印本證書需先獲本實驗所書面批准。



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172287 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 06015

- Mfr's Spec. : IEC 61672 Class 1

| - Uncertainties of Applied Value : | 94 dB : 63 Hz - 125 Hz | : ± 0.35 dB                        |
|------------------------------------|------------------------|------------------------------------|
| Second Children and                | 250 Hz - 500 Hz        | : ± 0.30 dB                        |
|                                    | 1 kHz                  | : ± 0.20 dB                        |
|                                    | 2 kHz - 4 kHz          | : ± 0.35 dB                        |
|                                    | 8 kHz                  | : ± 0.45 dB                        |
|                                    | 12.5 kHz               | $\pm 0.70 \text{ dB}$              |
|                                    | 104 dB : 1 kHz         | $\pm 0.10 \text{ dB}$ (Ref. 94 dB) |
|                                    | 114 dB : 1 kHz         | $\pm 0.10 \text{ dB}$ (Ref. 94 dB) |
|                                    |                        |                                    |

- The uncertainties are for a confidence probability of not less than 95 %.

#### Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No.: C172286 證書編號

| TEM TESTED / 送檢I   | 頁目 | (Job No./序引編號: IC17-0924)                                                            | Date of Receipt / 收件日期: 24 April 2017 |
|--------------------|----|--------------------------------------------------------------------------------------|---------------------------------------|
| Description / 儀器名稱 | :  | Sound Level Meter (EQ067)                                                            |                                       |
| Manufacturer / 製造商 | ;  | Rion                                                                                 |                                       |
| Model No. / 型號     | :  | NL-31                                                                                |                                       |
| Serial No. / 編號    | 1  | 00410221                                                                             |                                       |
| Supplied By / 委託者  | :  | Action-United Environmental Services an<br>Unit A, 20/F., Gold King Industrial Build |                                       |
|                    |    | 35-41 Tai Lin Pai Road, Kwai Chung, N.                                               | C.                                    |

## TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (55 ± 20)%

# TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 28 April 2017

# TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

| Tested By<br>測試    |   | Wong<br>cal Officer |                   |   |            |
|--------------------|---|---------------------|-------------------|---|------------|
| Certified By<br>核證 | K | http://             | e of Issue<br>發日期 | : | 2 May 2017 |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 翻創工程有限公司 – 校正及檢測實驗所 c/o 香港新昇屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Certificate No.

C170048 PA160023

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

|               | UUT Setting |                        |                   |               | UUT Setting Applied Value |                 |               |  | UUT | IEC 61672 Class 1 |
|---------------|-------------|------------------------|-------------------|---------------|---------------------------|-----------------|---------------|--|-----|-------------------|
| Range<br>(dB) | Mode        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz)            | Reading<br>(dB) | Spec.<br>(dB) |  |     |                   |
| 30 - 120      | LA          | A                      | Fast              | 94.00         | 1                         | 93.1            | ± 1.1         |  |     |                   |

#### 6.1.2 Linearity

|               | UUT Setting Applied Value |                        |                   |               | UUT            |                 |
|---------------|---------------------------|------------------------|-------------------|---------------|----------------|-----------------|
| Range<br>(dB) | Mode                      | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) |
| 30 - 120      | LA                        | A                      | Fast              | 94.00         | 1              | 93.1 (Ref.)     |
|               |                           |                        |                   | 104.00        |                | 103.1           |
|               |                           |                        |                   | 114.00        |                | 113.2           |

IEC 61672 Class 1 Spec. :  $\pm$  0.6 dB per 10 dB step and  $\pm$  1.1 dB for overall different.

#### 6.2 Time Weighting

| 2000          | UU   | T Setting              |                   | Applied       | l Value        | UUT             | IEC 61672 Class 1 |
|---------------|------|------------------------|-------------------|---------------|----------------|-----------------|-------------------|
| Range<br>(dB) | Mode | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.<br>(kHz) | Reading<br>(dB) | Spec.<br>(dB)     |
| 30 - 120      | LA   | A                      | Fast              | 94.00         | 1              | 93.1            | Ref.              |
|               |      |                        | Slow              |               | 11. 10         | 93.1            | ± 0.3             |

本證書所載校正用之測試器材均可溯源至國際標準。局部視印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

# 6.3 Frequency Weighting

# 6.3.1 A-Weighting

|               | UUT Setting |                        |                   | Appl          | lied Value | UUT             | IEC 61672 Class 1  |
|---------------|-------------|------------------------|-------------------|---------------|------------|-----------------|--------------------|
| Range<br>(dB) | Mode        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.      | Reading<br>(dB) | Spec.<br>(dB)      |
| 30 - 120      | LA          | A                      | Fast              | 94.00         | 63 Hz      | 66.8            | $-26.2 \pm 1.5$    |
|               |             | 1.1.2.1.1              |                   |               | 125 Hz     | 76.9            | $-16.1 \pm 1.5$    |
|               |             |                        |                   |               | 250 Hz     | 84.4            | $-8.6 \pm 1.4$     |
|               |             |                        |                   |               | 500 Hz     | 89.8            | $-3.2 \pm 1.4$     |
|               |             |                        |                   |               | 1 kHz      | 93.1            | Ref.               |
|               |             |                        |                   |               | 2 kHz      | 94.4            | $+1.2 \pm 1.6$     |
|               |             |                        |                   | 1.1           | 4 kHz      | 94.2            | $+1.0 \pm 1.6$     |
|               |             |                        |                   |               | 8 kHz      | 92.0            | -1.1 (+2.1 ; -3.1) |
|               |             |                        |                   |               | 12.5 kHz   | 89.2            | -4.3 (+3.0 ; -6.0) |

# 6.3.2 C-Weighting

|               | UUT Setting |                        | Appl              | ied Value     | UUT      | IEC 61672 Class 1 |                    |
|---------------|-------------|------------------------|-------------------|---------------|----------|-------------------|--------------------|
| Range<br>(dB) | Mode        | Frequency<br>Weighting | Time<br>Weighting | Level<br>(dB) | Freq.    | Reading<br>(dB)   | Spec.<br>(dB)      |
| 30 - 120      | Lc          | С                      | Fast              | 94.00         | 63 Hz    | 92.2              | $-0.8 \pm 1.5$     |
|               |             |                        |                   |               | 125 Hz   | 92.9              | $-0.2 \pm 1.5$     |
|               | (           |                        |                   |               | 250 Hz   | 93.1              | $0.0 \pm 1.4$      |
|               | 1           |                        |                   |               | 500 Hz   | 93.1              | $0.0 \pm 1.4$      |
|               |             |                        |                   |               | 1 kHz    | 93.1              | Ref.               |
|               |             |                        |                   |               | 2 kHz    | 93.0              | $-0.2 \pm 1.6$     |
|               | 1           |                        | 1 1               |               | 4 kHz    | 92.4              | $-0.8 \pm 1.6$     |
|               |             |                        | A                 |               | 8 kHz    | 90.2              | -3.0 (+2.1;-3.1)   |
|               | 1           |                        |                   |               | 12.5 kHz | 87.3              | -6.2 (+3.0 ; -6.0) |

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所戴枝正用之測試器材均可溯源至國際標準。局部複印本證書醫先獲本實驗所書面批准。



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172286 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

- Mfr's Spec. : IEC 61672 Class 1

| - Uncertainties of Applied Value : | 94 dB  | : 63 Hz - 125 Hz<br>250 Hz - 500 Hz |                          |
|------------------------------------|--------|-------------------------------------|--------------------------|
|                                    |        | 1 kHz                               |                          |
|                                    |        | 2 kHz - 4 kHz                       | : $\pm 0.35 \text{ dB}$  |
|                                    |        | 8 kHz                               | : $\pm 0.45 \text{ dB}$  |
|                                    |        | 12.5 kHz                            | : ± 0.70 dB              |
|                                    | 104 dB | : 1 kHz                             | : ± 0.10 dB (Ref. 94 dB) |
|                                    | 114 dB | : 1 kHz                             | : ±0.10 dB (Ref. 94 dB)  |
|                                    |        |                                     |                          |

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準,局部被印本證書需先獲本實驗所書面批准,

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.



Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172284 證書編號

| (DO082)                                                                                                                    |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| oustical Calibrator (EQ082)                                                                                                |                                                                                                            |
| iel & Kjær                                                                                                                 |                                                                                                            |
| 31                                                                                                                         |                                                                                                            |
| 13428                                                                                                                      |                                                                                                            |
| tion-United Environmental Services and<br>it A, 20/F., Gold King Industrial Buildi<br>41 Tai Lin Pai Road, Kwai Chung, N.T | ng,                                                                                                        |
| i<br>3<br>1:<br>ii                                                                                                         | el & Kjær<br>1<br>3428<br>ion-United Environmental Services and<br>t A, 20/F., Gold King Industrial Buildi |

#### TEST CONDITIONS / 測試條件

Temperature / 溫度 :  $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 :  $(55 \pm 20)\%$ 

# TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017

#### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Project Engineer

Certified By 核證

Date of Issue 簽發日期

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Tel/電話: 2927 2606 Fax/傳真: 2744 8986



Sun Creation Engineering Limited Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172284 證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement 1. of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 **TST150A** 

Description Certificate No. C163709 Universal Counter Multifunction Acoustic Calibrator PA160023 Measuring Amplifier C161175

- 4 Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT<br>Nominal Value | Measured Value<br>(dB) | Mfr's Spec.<br>(dB) | Uncertainty of Measured Value<br>(dB) |
|----------------------|------------------------|---------------------|---------------------------------------|
| 94 dB, 1 kHz         | 94.0                   | ± 0.2               | ± 0.2                                 |
| 114 dB, 1 kHz        | 114.1                  |                     |                                       |

#### Frequency Accuracy 52

| UUT Nominal Value | Measured Value | Mfr's                      | Uncertainty of Measured Value |
|-------------------|----------------|----------------------------|-------------------------------|
| (kHz)             | (kHz)          | Spec.                      | (Hz)                          |
| 1                 | 1.000 0        | $1 \text{ kHz} \pm 0.1 \%$ | ± 0.1                         |

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准



Sun Creation Engineering Limited

**Calibration and Testing Laboratory** 

# Certificate of Calibration 校正證書

Certificate No. : C172285 證書編號

| 頁目 | (Job No./序引編號: IC17-0924)                 | Date of Receipt / 收件日期: 24 April 2017                                                                                                                                                             |
|----|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :  | Sound Level Calibrator (EQ088)            |                                                                                                                                                                                                   |
| :  | Quest                                     |                                                                                                                                                                                                   |
| :  | QC-20                                     |                                                                                                                                                                                                   |
| :  | QO9090006                                 |                                                                                                                                                                                                   |
| :  | Action-United Environmental Services an   | nd Consulting                                                                                                                                                                                     |
|    | Unit A, 20/F., Gold King Industrial Build | ling,                                                                                                                                                                                             |
|    | 35-41 Tai Lin Pai Road, Kwai Chung, N.    | .Т.                                                                                                                                                                                               |
|    |                                           |                                                                                                                                                                                                   |
|    |                                           | <ul> <li>Sound Level Calibrator (EQ088)</li> <li>Quest</li> <li>QC-20</li> <li>QO9090006</li> <li>Action-United Environmental Services a<br/>Unit A, 20/F., Gold King Industrial Build</li> </ul> |

#### TEST CONDITIONS / 測試條件

Temperature / 溫度 :  $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : (55 ± 20)%

#### TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 28 April 2017 :

# TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K / Lee Project Engineer

Certified By 核證

Date of Issue 簽發日期

2 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 鄰創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號青山灣機樓四樓 E-mail/直郵: callab@suncreation.com Website/網址; www.suncreation.com Tel/電話: 2927 2606 Fax/傳真: 2744 8986



Sun Creation Engineering Limited

Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C172285 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC163709CL281Multifunction Acoustic CalibratorPA160023TST150AMeasuring AmplifierC161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT<br>Nominal Value | Measured Value<br>(dB) | Mfr's Spec.<br>(dB) | Uncertainty of Measured Value<br>(dB) |
|----------------------|------------------------|---------------------|---------------------------------------|
| 94 dB, 1 kHz         | 94.2                   | ± 0.3               | ± 0.2                                 |
| 114 dB, 1 kHz        | 114.2                  |                     |                                       |

## 5.2 Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's | Uncertainty of Measured Value |
|-------------------|----------------|-------|-------------------------------|
| (kHz)             | (kHz)          | Spec. | (Hz)                          |
| 1                 | 0.991          | ±2%   | ± 1                           |

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

#### Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



# Certificate of Calibration 校正證書

Certificate No. : C174095 證書編號

| ITEM TESTED                                               |                                                                               | C17-0924) Date of Receipt / 收件日期: 14 July 2017    |
|-----------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|
| Description / 儀暑                                          |                                                                               |                                                   |
| Manufacturer / 製                                          |                                                                               |                                                   |
| Model No. / 型號<br>Serial No. / 編號                         |                                                                               |                                                   |
| Supplied By / 委言                                          |                                                                               | ental Services and Consulting                     |
| Supplied by / He                                          | Unit A, 20/F., Gold King                                                      |                                                   |
|                                                           | 35-41 Tai Lin Pai Road,                                                       |                                                   |
| <b>TEST CONDIT</b><br>Temperature / 溫<br>Line Voltage / 衝 |                                                                               | Relative Humidity / 相對濕度 : (55 ± 20)%             |
| Calibration check                                         | s                                                                             |                                                   |
| DATE OF TEST                                              | Γ/測試日期 : 22 July 2017                                                         |                                                   |
| TEST RESULT                                               | S/測試結果                                                                        |                                                   |
|                                                           | to the particular unit-under-test only.                                       |                                                   |
|                                                           | ot exceed manufacturer's specification.<br>etailed in the subsequent page(s). |                                                   |
| The results are us                                        | claned in the subsequent page(3).                                             |                                                   |
|                                                           | ent used for calibration are traceable to                                     |                                                   |
|                                                           |                                                                               | strative Region Standard & Calibration Laboratory |
|                                                           | ologies / Keysight Technologies<br>/arz Laboratory, Germany                   |                                                   |
|                                                           | Service Center, USA                                                           |                                                   |
|                                                           |                                                                               |                                                   |
|                                                           |                                                                               |                                                   |
| Tested By                                                 | . Itraud                                                                      |                                                   |
| 測試                                                        | H T Wong                                                                      |                                                   |
|                                                           | Technical Officer                                                             |                                                   |
|                                                           | 2                                                                             |                                                   |
| Certified By                                              | ·                                                                             | Date of Issue : 25 July 2017                      |

The test symptoment und for califoration are traceable to the bearing Standards as specified to this wortfinity. This certificant half not be republiced except in thil wortfinity or prowritten approval of the falsonators

簽發日期

和意思所被任何认识就是相关的问题的现乎问题的原则。這次說真的本語書語及與本語解釋者而且用。

核證

Sun Creation Franciscum Limited - Californitian & Tosting Laboration (co. 1). Cong Shan Wan Exchange Franking (Ching On Lane, Com Man, New Territories, Hang Kom, 60(0) (CA) (10022-01), 12(1) (24) (00170007) area (27)(2007) 9002000 - 40 (21)(22)(00100000) area (27)(2007) 9002000 - 40 (21)(22)(00100000) Tel (2007) 9027 (2000) 1 are M4TE 2734 (2006) 1 anal (0.00) composition come. Website (2007) 160 (2007) 9027 (2000) 1 area (2017) 2734 (2006) 1 anal (0.00) composition come. Website (2007) 160 (2007) (2007) (2000) 1 area (2007) (2007)

Wetwire #Blife www.samersamo.com

K C Lee Engineer



Calibration and Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C174095 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C173864 PA160023 C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT           | Measured Value | Mfr's Spec. | Uncertainty of Measured Value |
|---------------|----------------|-------------|-------------------------------|
| Nominal Value | (dB)           | (dB)        | (dB)                          |
| 94 dB, 1 kHz  | 94.1           | ± 0.3       | ± 0.2                         |

#### 5.2 Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's       | Uncertainty of Measured Value |
|-------------------|----------------|-------------|-------------------------------|
| (kHz)             | (kHz)          | Spec.       | (Hz)                          |
| 1                 | 1.001          | 1 kHz ± 1 % | ± 1                           |

Remark : The uncertainties are for a confidence probability of not less than 95 %.

#### Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The two sequences and the collimation or more ble to the Namon handlich to specified in the settiment. This section will not be expended entering in bill willow the prior will a specified in the settiment of the laborator.

本語。210 核核点111、230点(2111)0130点(至1802)000 。后面出版11本语言完成本式版符片面出出。



ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| CONTACT: | MR BEN TAM                                        | WORK ORDER:    | HK1818150     |
|----------|---------------------------------------------------|----------------|---------------|
| CLIENT:  | ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING | SUB- BATCH:    | 0             |
| ADDRESS: | RM A 20/F., GOLD KING IND BLDG,                   | LABORATORY:    | HONG KONG     |
|          | NO. 35- 41 TAI LIN PAI ROAD,                      | DATE RECEIVED: | 23- Feb- 2018 |
|          | KWAI CHUNG,                                       | DATE OF ISSUE: | 02- Mar- 2018 |
|          | N.T., HONG KONG.                                  |                |               |

# **COMMENTS**

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

| Scope of Test:       | Dissolved Oxygen and Temperature |
|----------------------|----------------------------------|
| Equipment Type:      | Dissolved Oxygen Meter           |
| Brand Name:          | YSI                              |
| Model No.:           | 550A                             |
| Serial No.:          | 16A104433                        |
| Equipment No.:       |                                  |
| Date of Calibration: | 27 February, 2018                |

# <u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vice Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| Work Order:<br>Sub- Batch:<br>Date of Issue:<br>Client: | HK1818150<br>0<br>02- Mar- 2018<br>ACTION UNITED ENVIRON | NMENT SERVICES AND CONSULTING | 5            | AL |
|---------------------------------------------------------|----------------------------------------------------------|-------------------------------|--------------|----|
| Equipment Type:                                         | Dissolved Oxygen Meter                                   |                               |              |    |
| Brand Name:                                             | YSI                                                      |                               |              |    |
| Model No.:                                              | 550A                                                     |                               |              |    |
| Serial No.:                                             | 16A104433                                                |                               |              |    |
| Equipment No.:                                          |                                                          |                               |              |    |
| Date of Calibration:                                    | 27 February, 2018                                        | Date of next Calibration:     | 27 May, 2018 |    |

## Parameters:

# Dissolved Oxygen Method Ref: APHA (21st edition), 4500O: G

| Expected Reading (mg/L) | Displayed Reading (mg/L) | Tolerance (mg/L) |
|-------------------------|--------------------------|------------------|
|                         |                          |                  |
| 2.42                    | 2.37                     | - 0.05           |
| 5.55                    | 5.47                     | - 0.08           |
| 8.58                    | 8.41                     | - 0.17           |
|                         |                          |                  |
|                         | Tolerance Limit (mg/L)   | ±0.20            |

#### Temperature

# Method Ref: Section 6 of International Accreditation New Zealand Technical

# Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.Expected Reading (°C )Displayed Reading (°C )Tolerance (°C )10.510.8+0.321.521.3-0.239.038.8-0.2Tolerance Limit (°C)

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganics



ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| CONTACT: | MR BEN TAM                                        | WORK ORDER:    | HK1818146     |
|----------|---------------------------------------------------|----------------|---------------|
| CLIENT:  | ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING | SUB- BATCH:    | 0             |
| ADDRESS: | RM A 20/F., GOLD KING IND BLDG,                   | LABORATORY:    | HONG KONG     |
|          | NO. 35- 41 TAI LIN PAI ROAD,                      | DATE RECEIVED: | 23- Feb- 2018 |
|          | KWAI CHUNG,                                       | DATE OF ISSUE: | 02- Mar- 2018 |
|          | N.T., HONG KONG                                   |                |               |

# **COMMENTS**

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

| Scope of Test:       | Turbidity         |
|----------------------|-------------------|
| Equipment Type:      | Turbidimeter      |
| Brand Name:          | HACH              |
| Model No.:           | 2100Q             |
| Serial No.:          | 12060C018266      |
| Equipment No.:       |                   |
| Date of Calibration: | 27 February, 2018 |

# **NOTES**

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| Work Order:<br>Sub- batch:<br>Date of Issue:<br>Client:     | HK1818146<br>0<br>02- Mar- 2018<br>ACTION UNITED ENVIRONM | IENT SERVICES AND CONSULTING |              |
|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------|--------------|
| Equipment Type:<br>Brand Name:<br>Model No.:<br>Serial No.: | Turbidimeter<br>HACH<br>2100Q<br>12060C018266             |                              |              |
| Equipment No.:<br>Date of Calibration:                      | <br>27 February, 2018                                     | Date of next Calibration:    | 27 May, 2018 |

# Parameters:

Turbidity

# Method Ref: APHA 21st Ed. 2130B

| Expected Reading (NTU) | Displayed Reading (NTU) | Tolerance (%) |
|------------------------|-------------------------|---------------|
|                        |                         |               |
| 0                      | 0.32                    |               |
| 4                      | 4.28                    | +7.0          |
| 40                     | 38                      | - 5.0         |
| 80                     | 84                      | +5.0          |
| 400                    | 377                     | - 5.8         |
| 800                    | 751                     | - 6.1         |
|                        |                         |               |
|                        | Tolerance Limit (%)     | ±10.0         |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vieo Manager - Inorganics



ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| CONTACT: | MR BEN TAM                                        | WORK ORDER:    | HK1818147     |
|----------|---------------------------------------------------|----------------|---------------|
| CLIENT:  | ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING | SUB- BATCH:    | 0             |
| ADDRESS: | RM A 20/F., GOLDEN KING IND BLDG,                 | LABORATORY:    | HONG KONG     |
|          | NO. 35- 41 TAI LIN PAI ROAD,                      | DATE RECEIVED: | 23- Feb- 2018 |
|          | KWAI CHUNG,                                       | DATE OF ISSUE: | 02- Mar- 2018 |
|          | N.T., HONG KONG                                   |                |               |

# <u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principals as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

| Scope of Test:       | рН                |
|----------------------|-------------------|
| Description:         | pH Meter          |
| Brand Name:          | AZ                |
| Model No.:           | 8685              |
| Serial No.:          | 1141943           |
| Equipment No.:       |                   |
| Date of Calibration: | 27 February, 2018 |

# <u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vice Manager - Inorganics

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

# **REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION**

| Work Order:<br>Sub- batch:<br>Date of Issue:<br>Client: | HK1818147<br>0<br>02- Mar- 2018<br>ACTION UNITED ENVIRONMENT SER | VICES AND CONSULTING      |    |
|---------------------------------------------------------|------------------------------------------------------------------|---------------------------|----|
| Description:                                            | pH Meter                                                         |                           |    |
| Brand Name:                                             | AZ                                                               |                           |    |
| Model No.:                                              | 8685                                                             |                           |    |
| Serial No.:                                             | 1141943                                                          |                           |    |
| Equipment No.:<br>Date of Calibration:                  | <br>27 February, 2018                                            | Date of next Calibration: | 27 |



May, 2018

# Parameters:

pH Value

#### Method Ref: APHA (21st edition), 4500H:B

| Expected Reading (pH Unit) | Displayed Reading (pH Unit) | Tolerance (pH unit) |
|----------------------------|-----------------------------|---------------------|
|                            |                             |                     |
| 4.0                        | 4.1                         | +0.10               |
| 7.0                        | 6.9                         | - 0.10              |
| 10.0                       | 9.8                         | - 0.20              |
|                            |                             |                     |
|                            | Tolerance Limit (pH Unit)   | ±0.20               |

#### Temperature

# Jre Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

| Expected Reading (°C ) | Displayed Reading (°C ) | Tolerance (°C ) |
|------------------------|-------------------------|-----------------|
|                        |                         |                 |
| 11.0                   | 11.5                    | + 0.5           |
| 21.0                   | 21.0                    | +0.0            |
| 39.0                   | 38.0                    | - 1.0           |
|                        |                         |                 |
|                        | Tolerance Limit (°C)    | ±2.0            |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vice Manager - Inorganics



Hong Kong Accreditation Service 香港認可處

# **Certificate of Accreditation**

認可證書

This is to certify that 特此證明

# ALS TECHNICHEM (HK) PTY LIMITED

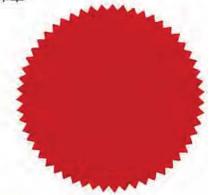
11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

# HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作


# Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:



Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

# ∟ 000552



Appendix G

**Event and Action Plan** 



# **Event and Action Plan for Air Quality**

| Event                                                                          | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IEC                                                                                                                                                                                                                                                                                                                                                        | ER                                                                                                                                                                                                                                                                                                               | Action<br>Contracto                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action Louis                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                  | Contracto                                                                                                                                                                                                                                                                                         |
| Action Level<br>1. Exceedance<br>for one sample                                | <ol> <li>Identify source,<br/>investigate the causes of<br/>exceedance and propose<br/>remedial measures;</li> <li>Inform IEC and ER;</li> <li>Repeat measurement to<br/>confirm finding;</li> <li>Increase monitoring<br/>frequency to daily.</li> </ol>                                                                                                                                                                                                                                       | 1. Check monitoring data<br>submitted by ET;<br>2. Check Contractor's<br>working method.                                                                                                                                                                                                                                                                   | 1. Notify Contractor.                                                                                                                                                                                                                                                                                            | <ol> <li>Rectify any<br/>unacceptable<br/>practice;</li> <li>Amend working<br/>methods if<br/>appropriate.</li> </ol>                                                                                                                                                                             |
| 2. Exceedance<br>for two or more<br>consecutive<br>samples                     | <ol> <li>Identify source;</li> <li>Inform IEC and ER;</li> <li>Advise the ER on the<br/>effectiveness of the<br/>proposed remedial<br/>measures;</li> <li>Repeat measurements to<br/>confirm findings;</li> <li>Increase monitoring<br/>frequency to daily;</li> <li>Discuss with IEC and<br/>Contractor on remedial<br/>actions required;</li> <li>If exceedance continues,<br/>arrange meeting with<br/>IEC and ER;</li> <li>If exceedance stops,<br/>cease additional monitoring.</li> </ol> | <ol> <li>Check monitoring data<br/>submitted by ET;</li> <li>Check Contractor's<br/>working method;</li> <li>Discuss with ET and<br/>Contractor on possible<br/>remedial measures;</li> <li>Advise the ET on the<br/>effectiveness of the<br/>proposed remedial<br/>measures;</li> <li>Monitor the<br/>implementation of remedial<br/>measures.</li> </ol> | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial<br/>measures properly<br/>implemented.</li> </ol>                                                                                                                                   | <ol> <li>Submit proposals<br/>for remedial to ER<br/>within 3 working<br/>days of notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Amend proposal i<br/>appropriate.</li> </ol>                                                                                                |
| Limit Level                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  | and the second                                                                                                                                                                                                                                                                                    |
| 1. Exceedance<br>for one sample                                                | <ol> <li>I. Identify source,<br/>investigate the causes of<br/>exceedance and propose<br/>remedial measures;</li> <li>Inform ER, Contractor and<br/>EPD;</li> <li>Repeat measurement to<br/>confirm finding;</li> <li>Increase monitoring<br/>frequency to daily;</li> <li>Assess effectiveness of<br/>Contractor's remedial<br/>actions and keep IEC, EPD<br/>and ER informed of<br/>the results.</li> </ol>                                                                                   | <ol> <li>Check monitoring data<br/>submitted by ET;</li> <li>Check Contractor's<br/>working method;</li> <li>Discuss with ET and<br/>Contractor on possible<br/>remedial measures;</li> <li>Advise the ER on the<br/>effectiveness of the<br/>proposed remedial<br/>measures;</li> <li>Monitor<br/>theimplementation of<br/>remedial measures.</li> </ol>  | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>Ensure remedial<br/>measures properly<br/>implemented.</li> </ol>                                                                                                                                   | <ol> <li>Take immediate<br/>action to avoid<br/>further<br/>exceedance;</li> <li>Submit proposals<br/>for remedial actions<br/>to IEC within 3<br/>working days of<br/>notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Amend proposal i<br/>appropriate,</li> </ol>           |
| <ol> <li>Exceedance<br/>for two or more<br/>consecutive<br/>samples</li> </ol> | 1. Notify IEC, ER, Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | submitted by ET;<br>2. Check Contractor's<br>working method;<br>3. Discuss amongst ER,<br>ET, and Contractor on<br>the potential remedial<br>actions;<br>4. Review Contractor's<br>remedial actions<br>whenever necessary to<br>assure their                                                                                                               | <ol> <li>Confirm receipt of<br/>notification of failure<br/>in writing;</li> <li>Notify Contractor;</li> <li>In consolidation<br/>with the IEC, agree<br/>with the Contractor<br/>on the remedial<br/>measures to be<br/>implemented;</li> <li>Ensure remedial<br/>measures properly<br/>implemented;</li> </ol> | <ol> <li>Take immediate<br/>action to avoid<br/>further exceedance;</li> <li>Submit proposals<br/>for remedial actions<br/>to IEC within 3<br/>working days of<br/>notification;</li> <li>Implement the<br/>agreed proposals;</li> <li>Resubmit<br/>proposals if problem<br/>still not</li> </ol> |
|                                                                                | and ER to discuss the<br>remedial actions to be taken;<br>7. Assess effectiveness of<br>Contractor's remedial<br>actions and keep IEC, EPD<br>and ER informed of<br>the results;<br>8. If exceedance stops,<br>cease additional monitoring.                                                                                                                                                                                                                                                     | the ER accordingly;<br>5. Monitor the<br>implementation of remedial<br>measures.                                                                                                                                                                                                                                                                           | 5. If exceedance<br>continues, consider<br>what portion of the<br>work is responsible<br>and instruct the<br>Contractor to stop<br>that portion of work<br>until the exceedance<br>is abated.                                                                                                                    | under control;<br>5. Stop the relevant<br>portion of works as<br>determined by the<br>ER until the<br>exceedance is<br>abated.                                                                                                                                                                    |



# **Event and Action Plan for Construction Noise**

| Event           | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IEC                                                                                                                                                                                                                                                          | ER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Action<br>Contractor                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action<br>Level | <ol> <li>Notify ER, IEC and<br/>Contractor;</li> <li>Carry out investigation;</li> <li>Report the results of<br/>investigation to the IEC, ER<br/>and Contractor;</li> <li>Discuss with the IEC and<br/>Contractor on remedial<br/>measures required;</li> <li>Increase monitoring<br/>frequency to check<br/>mitigation effectiveness.</li> </ol>                                                                                                                                                                                                     | 1. Review the<br>investigation results<br>submitted by the ET;<br>2. Review the proposed<br>remedial measures by<br>the Contractor and<br>advise the ER<br>accordingly;<br>3. Advise the ER on the<br>effectiveness of the<br>proposed remedial<br>measures. | Confirm receipt of     notification of failure in     writing;     Z. Notify Contractor;     J. In consolidation with the     IEC, agree with the     Contractor on the remedial     measures to be     implemented;     A. Supervise the     implementation of remedial     measures.                                                                                                                                                                                                                              | <ol> <li>Submit noise<br/>mitigation proposals to<br/>IEC and ER;</li> <li>Implement noise<br/>mitigation proposals.</li> </ol>                                                                                                                                                                                                                                                                           |
| Limit<br>Level  | 1. Inform IEC, ER,<br>Contractor and EPD;<br>2. Repeat measurements to<br>confirm findings;<br>3. Increase monitoring<br>frequency;<br>4. Identify source and<br>investigate the cause of<br>exceedance;<br>5. Carry out analysis of<br>Contractor's working<br>procedures;<br>6. Discuss with the IEC,<br>Contractor and ER on<br>remedial measures<br>required;<br>7. Assess effectiveness of<br>Contractor's remedial<br>actions and keep IEC, EPD<br>and ER informed of the<br>results;<br>8. If exceedance stops,<br>cease additional monitoring. | 1. Discuss amongst ER,<br>ET, and Contractor on<br>the ootential remedial<br>actions;<br>2. Review Contractor's<br>remedial actions<br>whenever necessary to<br>assure their effectiveness<br>and advise the ER<br>accordingly.                              | <ol> <li>Confirm receipt of<br/>notification of failure in<br/>writino:</li> <li>Notify Contractor;</li> <li>In consolidation with the<br/>IEC, agree with the<br/>Contractor on the remedial<br/>measures to be<br/>implemented;</li> <li>Supervise the<br/>implementation of remedial<br/>measures;</li> <li>If exceedance continues,<br/>consider stopping the<br/>Contractor to continue<br/>working on that portion of<br/>work which causes the<br/>exceedance until the<br/>exceedance is abated.</li> </ol> | 1. Take immediate<br>action to avoid further<br>exceedance:<br>2. Submit proposals for<br>remedial actions to IEC<br>and ER within 3<br>working days of<br>notification;<br>3. Implement the<br>agreed proposals;<br>4. Submit further<br>proposal if problem still<br>not under<br>control;<br>5. Stop the relevant<br>portion of works as<br>instructed by the ER<br>until the exceedance is<br>abated. |



# **Event and Action Plan for Water Quality**

| EVENT                                                                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action level<br>being<br>exceeded by<br>one sampling<br>day                                 | <ol> <li>Repeat in-situ<br/>measurement to<br/>confirm findings;</li> <li>Identify reasons for<br/>non-compliance and<br/>sources of impact;</li> <li>Inform IEC and<br/>Contractor;</li> <li>Check monitoring<br/>data, all plant,<br/>equipment and<br/>Contractor's working<br/>methods;</li> <li>Discuss mitigation<br/>measures with IEC<br/>and Contractor;</li> <li>Repeat measurement<br/>on next day of<br/>exceedance.</li> </ol>                                                                                                                                                                  | IEC<br>1. Discuss with ET and<br>Contractor on the<br>mitigation measures;<br>2. Review proposals on<br>mitigation measures<br>submitted by Contractor<br>and advise the ER<br>accordingly;<br>3. Assess the<br>effectiveness of the<br>implemented mitigation<br>measures                          | ER<br>1. Discuss with IEC on<br>the proposed<br>mitigation measures;<br>2. Make agreement on<br>the mitigation<br>measures to be<br>implemented;<br>3. Assess the<br>effectiveness of the<br>implemented<br>mitigation measures                                                                                                                                                                                                                                                                                                                                | CONTRACTOR<br>1. Inform the ER and confirm<br>notification of the non-<br>compliance in writing;<br>2. Rectify unacceptable<br>practice;<br>3. Cheok all plant and<br>equipment;<br>4. Consider changes of<br>working methods;<br>5. Discuss with ET and IEC<br>and propose mitigation<br>measures to IEC and ER;<br>6. Implement the agreed<br>mitigation measures.                                                                                                                                                                       |
| Action Level<br>being<br>exceeded by<br>more than<br>two<br>consecutive<br>sampling<br>days | <ol> <li>Repeat in-situ<br/>measurement to<br/>confirm findings;</li> <li>Identify reasons for<br/>non-compliance and<br/>sources of impact;</li> <li>Inform IEC and<br/>Contractor;</li> <li>Check monitoring<br/>data, all plant,<br/>equipment and<br/>Contractor's working<br/>measures with IEC<br/>and Contractor;</li> <li>Ensure mitigation<br/>measures with IEC<br/>and Contractor;</li> <li>Ensure mitigation<br/>measures are<br/>implemented;</li> <li>Prepare to increase<br/>the monitoring<br/>frequency to daily;</li> <li>Repeat measurement<br/>on next day of<br/>exceedance,</li> </ol> | <ol> <li>Discuss with ET and<br/>Contractor on the<br/>mitigation measures;</li> <li>Review proposals on<br/>mitigation measures<br/>submitted by Contractor<br/>and advise the ER<br/>accordingly;</li> <li>Assess the<br/>effectiveness of the<br/>implemented mitigation<br/>measures</li> </ol> | <ol> <li>Discuss with IEC on<br/>the proposed<br/>mitigation measures;</li> <li>Make agreement on<br/>the mitigation<br/>measures to be<br/>implemented;</li> <li>Assess the<br/>effectiveness of the<br/>implemented<br/>mitigation measures</li> </ol>                                                                                                                                                                                                                                                                                                       | <ol> <li>Inform the ER and confirm<br/>notification of the non-<br/>compliance in writing;</li> <li>Rectify unacceptable<br/>practice;</li> <li>Check all plant and<br/>equipment;</li> <li>Consider changes of<br/>working methods;</li> <li>Discuss with ET and IEC<br/>and propose mitigation<br/>measures to IEC and ER<br/>writing and the agreed<br/>mitigation measures.</li> </ol>                                                                                                                                                 |
| Limit Level<br>being<br>exceeded by<br>one sampling<br>day                                  | <ol> <li>Repeat in-situ<br/>measurement to<br/>confirm findings;</li> <li>Identify reasons for<br/>non-compliance and<br/>sources of impact;</li> <li>Inform IEC,<br/>Contractor and EPD;</li> <li>Check monitoring<br/>data, all plant,<br/>equipment and<br/>Contractor's working<br/>methods;</li> <li>Discuss mitigation<br/>measures with IEC,<br/>ER and Contractor;</li> <li>Ensure mitigation<br/>measures are<br/>implemented;</li> <li>Increase the<br/>monitoring frequency<br/>to daily until no<br/>exceedance of Limit</li> </ol>                                                              | <ol> <li>Discuss with ET and<br/>Contractor on the<br/>mitigation measures;</li> <li>Review proposals on<br/>mitigation measures<br/>submitted by Contractor<br/>and advise the ER<br/>accordingly;</li> <li>Assess the effectiveness<br/>of the implemented<br/>mitigation measures</li> </ol>     | <ol> <li>Discuss with IEC, ET<br/>and Contractor on the<br/>proposed mitigation<br/>measures;</li> <li>Request Contractor to<br/>critically review the<br/>working methods;</li> <li>Make agreement on<br/>the mitigation<br/>measures to be<br/>implemented;</li> <li>Assess the<br/>affectiveness of the<br/>implemented<br/>mitigation measures</li> </ol>                                                                                                                                                                                                  | <ol> <li>Inform the ER and confirm<br/>notification of the non-<br/>compliance in writing;</li> <li>Rectify unacceptable<br/>practice;</li> <li>Check all plant and<br/>equipment;</li> <li>Consider changes of<br/>working methods;</li> <li>Discuss with ET, IEC and<br/>ER and propose mitigatio<br/>measures to IEC and ER<br/>within 3 working days;</li> <li>Implement the agreed<br/>mitigation measures.</li> </ol>                                                                                                                |
| Limit level<br>being<br>exceeded by<br>more than<br>one<br>consecutive<br>sampling<br>days  | Level. 1. Repeat in-situ<br>measurement to<br>confirm findings; 2. Identify reasons for<br>non-compliance and<br>sources of impact; 3. Inform IEC, Contractor<br>and EPD; 4. Check monitoring<br>data, all plant,<br>equipment and<br>Contractor's working<br>methods; 5. Discuss mitigation<br>measures with IEC,<br>ER and Contractor; 6. Ensure mitigation<br>measures are<br>implemented; 7. Increase the<br>monitoring frequency<br>to daily until no<br>exceedance of Limit<br>Level for two<br>consecutive days.                                                                                      | <ol> <li>Discuss with ET and<br/>Contractor on the<br/>mitigation measures;</li> <li>Review proposals on<br/>mitigation measures<br/>submitted by Contractor<br/>and advise the ER<br/>accordingly;</li> <li>Assess the effectiveness<br/>of the implemented<br/>mitigation measures.</li> </ol>    | <ol> <li>Discuss with IEC, ET<br/>and Contractor on the<br/>proposed mitigation<br/>measures;</li> <li>Request Contractor to<br/>critically review the<br/>working methods;</li> <li>Make agreement on<br/>the mitigation<br/>measures to be<br/>implemented;</li> <li>Assess the<br/>effectiveness of the<br/>implemented<br/>mitigation measures;</li> <li>Consider and instruct,<br/>if necessary, the<br/>Contractor to slow<br/>down or to stop all or<br/>part of the construction<br/>activities until no<br/>exceedance of Limit<br/>Level.</li> </ol> | <ol> <li>Inform the ER and confirm<br/>notification of the non-<br/>compliance in writing;</li> <li>Recity unacceptable<br/>practice;</li> <li>Check all plant and<br/>equipment;</li> <li>Consider changes of<br/>working methods;</li> <li>Discuss with ET, IEC and<br/>ER and propose mitigatio<br/>measures to IEC and ER<br/>within 3 working days;</li> <li>Implement the agreed<br/>mitigation measures;</li> <li>As directed by the ER, to<br/>slow down or to stop all of<br/>part of the construction<br/>activities.</li> </ol> |



# Appendix H

# **Impact Monitoring Schedule**

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\56th (March 2018)\R1509v3.docx



#### **Impact Monitoring Schedule for Reporting Period – March 2018**

| Date |           | Dust Monitoring               |                               | Noise Meridening              |                                           |
|------|-----------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------|
|      |           | 1-hour TSP                    | 24-hour TSP                   | Noise Monitoring              | Water Quality                             |
| Thu  | 1-Mar-18  |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Fri  | 2-Mar-18  |                               |                               |                               | 0                                         |
| Sat  | 3-Mar-18  | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                               | All Water Quality<br>Monitoring Locations |
| Sun  | 4-Mar-18  |                               |                               |                               |                                           |
| Mon  | 5-Mar-18  | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 | All Water Quality<br>Monitoring Locations |
| Tue  | 6-Mar-18  |                               | AM1b, AM2, AM3<br>& AM9b      |                               |                                           |
| Wed  | 7-Mar-18  |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Thu  | 8-Mar-18  |                               |                               |                               |                                           |
| Fri  | 9-Mar-18  | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | NM3, NM4, NM5,<br>NM6 & NM7   | All Water Quality<br>Monitoring Locations |
| Sat  | 10-Mar-18 | AM1b, AM2, AM3<br>& AM9b      |                               |                               |                                           |
| Sun  | 11-Mar-18 |                               |                               |                               |                                           |
| Mon  | 12-Mar-18 |                               | AM1b, AM2, AM3<br>& AM9b      |                               | All Water Quality<br>Monitoring Locations |
| Tue  | 13-Mar-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                                           |
| Wed  | 14-Mar-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Thu  | 15-Mar-18 | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | NM3, NM4, NM5,<br>NM6 & NM7   |                                           |
| Fri  | 16-Mar-18 | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 | All Water Quality<br>Monitoring Locations |
| Sat  | 17-Mar-18 |                               | AM1b, AM2, AM3<br>& AM9b      |                               |                                           |
| Sun  | 18-Mar-18 |                               |                               |                               |                                           |
| Mon  | 19-Mar-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Tue  | 20-Mar-18 |                               |                               |                               |                                           |
| Wed  | 21-Mar-18 | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | NM3, NM4, NM5,<br>NM6 & NM7   | All Water Quality<br>Monitoring Locations |
| Thu  | 22-Mar-18 | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 |                                           |
| Fri  | 23-Mar-18 |                               | AM1b, AM2, AM3<br>& AM9b      |                               | All Water Quality<br>Monitoring Locations |
| Sat  | 24-Mar-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                                           |
| Sun  | 25-Mar-18 |                               |                               |                               |                                           |
| Mon  | 26-Mar-18 | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | NM3, NM4, NM5,<br>NM6 & NM7   |                                           |
| Tue  | 27-Mar-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Wed  | 28-Mar-18 | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 |                                           |
| Thu  | 29-Mar-18 | AM4b, AM5, AM6,<br>AM7b & AM8 | AM1b, AM2, AM3<br>& AM9b      |                               | All Water Quality<br>Monitoring Locations |
| Fri  | 30-Mar-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                                           |
| Sat  | 31-Mar-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |

Monitoring Day Sunday or Public Holiday



## Impact Monitoring Schedule for next Reporting Period – April 2018

| Date |           | Dust Monitoring               |                               |                               |                                           |
|------|-----------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------|
|      |           | 1-hour TSP                    | 24-hour TSP                   | Noise Monitoring              | Water Quality                             |
| Sun  | 1-Apr-18  |                               |                               |                               |                                           |
| Mon  | 2-Apr-18  |                               |                               |                               |                                           |
| Tue  | 3-Apr-18  | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 | All Water Quality<br>Monitoring Locations |
| Wed  | 4-Apr-18  | AM4b, AM5, AM6,<br>AM7b & AM8 | & AM9b                        | NM3, NM4, NM5,<br>NM6 & NM7   |                                           |
| Thu  | 5-Apr-18  |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Fri  | 6-Apr-18  |                               |                               |                               |                                           |
| Sat  | 7-Apr-18  |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Sun  | 8-Apr-18  |                               |                               |                               |                                           |
| Mon  | 9-Apr-18  | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 | All Water Quality<br>Monitoring Locations |
| Tue  | 10-Apr-18 | AM4b, AM5, AM6,<br>AM7b & AM8 | & AM9b                        | NM3, NM4, NM5,<br>NM6 & NM7   |                                           |
| Wed  | 11-Apr-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Thu  | 12-Apr-18 |                               |                               |                               |                                           |
| Fri  | 13-Apr-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Sat  | 14-Apr-18 | AM1b, AM2, AM3<br>& AM9b      |                               |                               |                                           |
| Sun  | 15-Apr-18 |                               |                               |                               |                                           |
| Mon  | 16-Apr-18 | AM4b, AM5, AM6,<br>AM7b & AM8 | AM1b, AM2, AM3<br>& AM9b      | NM3, NM4, NM5,<br>NM6 & NM7   | All Water Quality<br>Monitoring Locations |
| Tue  | 17-Apr-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                                           |
| Wed  | 18-Apr-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Thu  | 19-Apr-18 |                               |                               |                               |                                           |
| Fri  | 20-Apr-18 | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 | All Water Quality<br>Monitoring Locations |
| Sat  | 21-Apr-18 | AM4b, AM5, AM6,<br>AM7b & AM8 | AM1b, AM2, AM3<br>& AM9b      |                               |                                           |
| Sun  | 22-Apr-18 |                               |                               |                               |                                           |
| Mon  | 23-Apr-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               | All Water Quality<br>Monitoring Locations |
| Tue  | 24-Apr-18 |                               |                               |                               |                                           |
| Wed  | 25-Apr-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |
| Thu  | 26-Apr-18 | AM1b, AM2, AM3<br>& AM9b      |                               | NM1, NM2a, NM8,<br>NM9 & NM10 |                                           |
| Fri  | 27-Apr-18 | AM4b, AM5, AM6,<br>AM7b & AM8 | AM1b, AM2, AM3<br>& AM9b      | NM3, NM4, NM5,<br>NM6 & NM7   | All Water Quality<br>Monitoring Locations |
| Sat  | 28-Apr-18 |                               | AM4b, AM5, AM6,<br>AM7b & AM8 |                               |                                           |
| Sun  | 29-Apr-18 |                               |                               |                               |                                           |
| Mon  | 30-Apr-18 |                               |                               |                               | All Water Quality<br>Monitoring Locations |

Monitoring Day Sunday or Public Holiday



Appendix I

**Database of Monitoring Result** 



## 24-hour TSP Monitoring Data

| NUMB         NUTIAL         FINAL         (min)         MIX         AVG         (°)         (m <sup>2</sup> /min)         (std m <sup>2</sup> )         INITIAL         FINAL         (°)           ANIB - Open Area, Tsug Yuen Ha Village         (min)                                                                                                                                                                                                      | DATE        | SAMPLE<br>NUMBER |             | APSED TIN    |         |          | -   | DING | AVG<br>TEMP | AVG AIR<br>PRESS | STANDARD<br>FLOW RATE | AIR<br>VOLUME         | (§      |        | COLLECTED | 24-HR TSP $(\mu g/m^3)$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-------------|--------------|---------|----------|-----|------|-------------|------------------|-----------------------|-----------------------|---------|--------|-----------|-------------------------|
| 6-Mar-18         2231         14319.47         1431.64         1451.40         38         38.0         19.8         101.7         1.29         1873         2.6611         2.8019         0.1408           12-Mar-18         22321         1433.66         14367.85         1451.40         38         38.0         19.6         1019         1.29         1875         2.6611         2.8014         0.1366           23-Mar-18         22305         14416.17         1450.20         38         38.0         19.8         1015         1.29         1868         2.6782         2.8003         0.1268           23-Mar-18         22370         14416.17         1442.00         38         38.0         19.8         1017.2         1.44         2058         2.6594         2.7887         0.1293           2-Mar-18         22320         980.07         983.007         983.85         1428.00         46         46.0         19.8         1017.2         1.44         2058         2.6548         2.9579         0.3031           12-Mar-18         22340         980.07         9853.85         1426.80         48         48.40         19.6         1019         1.51         12153         2.6781         2.9846         0.3065 <td></td> <td></td> <td>INITIAL</td> <td>FINAL</td> <td>(min)</td> <td>MIN</td> <td>MAX</td> <td>AVG</td> <td>(°C)</td> <td>(hPa)</td> <td>(m<sup>3</sup>/min)</td> <td>(std m<sup>3</sup>)</td> <td>INITIAL</td> <td>FINAL</td> <td>(g)</td> <td>(µg/III )</td> |             |                  | INITIAL     | FINAL        | (min)   | MIN      | MAX | AVG  | (°C)        | (hPa)            | (m <sup>3</sup> /min) | (std m <sup>3</sup> ) | INITIAL | FINAL  | (g)       | (µg/III )               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           |                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6-Mar-18    |                  | 14319.47    | 14343.66     |         |          |     |      |             |                  |                       |                       | 2.6611  |        | 0.1408    | 75                      |
| 23-Mar-18         22418         14392.00         14416.17         1450.20         38         38         38.0         20.5         1018.4         1.29         1870         2.6594         2.7887         0.1293           29-Mar-18         2230         14416.17         14440.28         1446.60         37         37         37.0         22.9         1014.3         1.25         1807         2.6594         2.7887         0.1293           6-Mar-18         22320         980.07         9853.85         1428.00         46         46         40.0         19.8         1017.2         1.44         2058         2.6548         2.9779         0.3031           12-Mar-18         22320         9830.07         9853.85         1425.00         44         44         44.0         19.8         1015         1.37         1957         2.6633         2.9072         0.2437           23-Mar-18         22371         9901.38         1925.18         1428.00         44         44.0         0.25         1018.4         1.37         1961         2.7015         2.9818         0.2803           29-Mar-18         22319         10965.33         10989.34         1440.00         36         36         36.0         19.8                                                                                                                                                                                                                                                                         | 12-Mar-18   |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 72                      |
| 29-Mar-18         22370         14416.17         14440.28         1446.60         37         37         37.0         22.9         1014.3         1.25         1807         2.6788         2.8003         0.1215           AM2 - Village House near Lin M Hang Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 68                      |
| AM2 - Village House near Lin Ma Hang Road         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A                                                                                                                                                                                                                                                                                                                                                                                     |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 69                      |
| 6-Mar-18         22350         9806.27         983.087         1428.00         46         46         46.0         19.8         1017.2         1.44         2058         2.6548         2.9579         0.3031           12-Mar-18         22300         983.85         1426.80         48         48         48.0         19.6         1019         1.51         2153         2.6781         2.9846         0.3065           17-Mar-18         2234         9877.60         1920.138         1426.80         44         44.0         20.5         1018.4         1.37         1961         2.7015         2.9818         0.2802           29-Mar-18         22349         9901.38         1426.80         44         44.0         20.5         1018.4         1.37         1961         2.7015         2.9818         0.2803           29-Mar-18         22349         10941.33         10965.33         1440.00         36         36         30.0         19.8         1017.2         1.09         1564         2.6546         2.7418         0.0872           12-Mar-18         22331         1095.33         1440.60         36         36.36         2.0         1015         1.08         1563         2.6732         2.7577         <                                                                                                                                                                                                                                                                   | 29-Mar-18   | 22370            | 14416.17    | 14440.28     | 1446.60 | 37       | 37  | 37.0 | 22.9        | 1014.3           | 1.25                  | 1807                  | 2.6788  | 2.8003 | 0.1215    | 67                      |
| 12-Mar-18         22320         9830.07         9853.85         1426.80         48         48         0.105         1.51         2.153         2.6781         2.9846         0.3065           17-Mar-18         22304         9853.85         9877.60         1425.00         44         44         44.0         2.05         1018.4         1.37         1957         2.6635         2.9072         0.2437           23-Mar-18         22371         9901.38         1925.18         1426.80         44         44         44.0         2.05         1018.4         1.37         1950         2.6632         2.9014         0.2802           AM3 - Ta Kvu Ling Fire Service Station of Ta Kwu Ling Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AM2 - Villa | 0                | ar Lin Ma   | 0            |         | -        |     |      |             |                  |                       | -                     | -       | -      |           |                         |
| 17-Mar-18       22304       9853.85       9877.60       1425.00       44       44       44.0       19.8       1015       1.37       1957       2.6635       2.9072       0.2437         23-Mar-18       22334       9877.60       9901.38       1426.80       44       44       40.0       20.5       1018.4       1.37       1961       2.7015       2.9818       0.2803         29-Mar-18       223371       9901.38       1925.18       1428.00       44       44       40.0       22.9       1014.3       1.37       1950       2.6802       2.9604       0.2802         29-Mar-18       22319       10941.33       10965.33       1440.00       36       36       36.0       19.8       1017.2       1.09       1564       2.6546       2.7418       0.0872         12-Mar-18       22303       10989.34       11013.35       1440.60       36       36       36.0       19.8       1015       1.08       1563       2.6732       2.7597       0.0865         23-Mar-18       22331       1103.35       11440.60       36       36       36.0       2.9       1014.3       1.08       1553       2.6734       2.7960       0.1226         23-Mar-18                                                                                                                                                                                                                                                                                                                                                      | 6-Mar-18    |                  | 9806.27     |              |         |          |     |      |             |                  |                       |                       | 2.6548  | 2.9579 | 0.3031    | 147                     |
| 23-Mar-18         22234         9877.60         9901.38         1426.80         44         44         44.0         20.5         1018.4         1.37         1961         2.7015         2.9818         0.2803           AM3 - Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-Mar-18   | 22320            | 9830.07     | 9853.85      | 1426.80 | 48       | 48  | 48.0 | 19.6        | 1019             | 1.51                  | 2153                  | 2.6781  | 2.9846 | 0.3065    | 142                     |
| 29-Mar-18         22371         9901.38         9925.18         1428.00         44         44         44.0         22.9         1014.3         1.37         1950         2.6802         2.9604         0.2802           AM3 - Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 125                     |
| AM3 - Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village         6           6-Mar-18         22349         10941.33         10965.33         1440.00         36         36         36.0         19.8         1017.2         1.09         1564         2.6546         2.7418         0.0872           12-Mar-18         22319         10965.33         10989.34         1440.60         36         36.0         19.8         1019         0.88         1265         2.6737         2.7607         0.0870           17-Mar-18         22233         11013.35         1440.60         36         36.0         19.8         1015         1.08         1563         2.6732         2.7597         0.0865           23-Mar-18         222372         11037.35         1440.00         36         36.0         22.9         1014.3         1.08         1553         2.6734         2.7960         0.1226           AM4b - House no. 10B1 Nga Yiu Ha Village         1         104.3         1.08         1553         2.6734         2.7960         0.1226           1-Mar-18         22353         12919.40         12943.40         1440.00         44         44.0         21.3         1012.5         1.16         1670         2.6657         2.7832         0                                                                                                                                                                                                                                           |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 143                     |
| 6-Mar-18       22349       10941.33       10965.33       1440.00       36       36       36.0       19.8       1017.2       1.09       1564       2.6546       2.7418       0.0872         12-Mar-18       22319       10965.33       10989.34       1440.60       30       30       30.0       19.6       1019       0.88       1265       2.6737       2.7607       0.0870         17-Mar-18       22303       10989.34       11013.35       1440.00       35       35       35.0       105       1.08       1563       2.6732       2.7597       0.0865         23-Mar-18       22372       11037.35       1140.00       36       36       36.0       2.9       1014.3       1.08       1553       2.6734       2.7900       0.1226         AM4b - House no. 10B1 Nga Yiu Ha Village       1       1016.7       1.16       1670       2.6657       2.7832       0.1175         7-Mar-18       22317       12967.40       1440.00       44       44.0       19.1       1016.7       1.16       1670       2.6657       2.7832       0.1175         13-Mar-18       22300       12967.40       1440.60       44       44.0       12.1       1016.7       1.16                                                                                                                                                                                                                                                                                                                                                | 29-Mar-18   | 22371            | 9901.38     | 9925.18      | 1428.00 | 44       | 44  | 44.0 | 22.9        | 1014.3           | 1.37                  | 1950                  | 2.6802  | 2.9604 | 0.2802    | 144                     |
| 12-Mar-18       22319       10965.33       10989.34       1440.60       30       30       30.0       19.6       1019       0.88       1265       2.6737       2.7607       0.0870         17-Mar-18       22303       10989.34       11013.35       1440.60       36       36       36.0       19.8       1015       1.08       1563       2.6732       2.7597       0.0865         23-Mar-18       22333       11013.35       11037.35       1440.00       36       36       36.0       22.9       1014.3       1.08       1553       2.6734       2.7597       0.0865         29-Mar-18       22372       11037.35       11061.36       1440.00       36       36       36.0       22.9       1014.3       1.08       1553       2.6734       2.7960       0.1226         AM4b - House no. 10B1 Nga Yiu Ha Village       1       104.3       1.012.5       1.16       1670       2.6657       2.7832       0.1175         7-Mar-18       22317       12943.40       12967.40       1440.00       44       44.0       20.9       1016.7       1.16       1676       2.6657       2.7832       0.1175         13-Mar-18       22300       12967.40       12991.41       14                                                                                                                                                                                                                                                                                                                                    | AM3 - Ta k  | Kwu Ling Fir     | e Service S | tation of Ta | Kwu Lin | g Villag | ge  |      |             |                  |                       |                       |         |        |           |                         |
| 17-Mar-18       22303       10989.34       11013.35       1440.60       36       36       36.0       19.8       1015       1.08       1563       2.6732       2.7597       0.0865         23-Mar-18       22233       11013.35       1103.735       1440.00       35       35       35.0       20.5       1018.4       1.05       1513       2.6766       2.8282       0.1516         29-Mar-18       22372       11037.35       11061.36       1440.60       36       36.0       22.9       1014.3       1.08       1553       2.6734       2.7960       0.1226         AM4b - House no. 10B1 Nga Yiu Ha Village          1.016.7       1.16       1670       2.6657       2.7832       0.1175         1-Mar-18       22317       12943.40       12967.40       1440.00       44       44.0       20.9       1016.7       1.17       1680       2.6755       2.8302       0.1547         13-Mar-18       22300       12967.40       12991.41       1440.60       44       44.0       22       1014.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13005.42       1440.60       44 <td>6-Mar-18</td> <td>22349</td> <td>10941.33</td> <td>10965.33</td> <td>1440.00</td> <td>36</td> <td>36</td> <td>36.0</td> <td>19.8</td> <td>1017.2</td> <td>1.09</td> <td>1564</td> <td>2.6546</td> <td>2.7418</td> <td>0.0872</td> <td>56</td>                                                                                                       | 6-Mar-18    | 22349            | 10941.33    | 10965.33     | 1440.00 | 36       | 36  | 36.0 | 19.8        | 1017.2           | 1.09                  | 1564                  | 2.6546  | 2.7418 | 0.0872    | 56                      |
| 23-Mar-18       22233       11013.35       11037.35       1440.00       35       35       35.0       20.5       1018.4       1.05       1513       2.6766       2.8282       0.1516         29-Mar-18       22372       11037.35       11061.36       1440.60       36       36       36.0       22.9       1014.3       1.08       1553       2.6764       2.8282       0.1516         AM4b - House no. 10B1 Nga Yiu Ha Vilage       1       1.08       1553       2.6734       2.7960       0.1226         AM4b - House no. 10B1 Nga Yiu Ha Vilage       1       1.016.7       1.16       1670       2.6657       2.7832       0.1175         7-Mar-18       22317       12943.40       12967.40       1440.00       44       44.0       20.9       1016.7       1.16       1676       2.6657       2.7832       0.1547         13-Mar-18       22300       12967.40       12991.41       1440.60       44       44.0       22       1014.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13015.42       1440.60       44       44.0       22       1014.7       1.16       1676       2.6600       2.8080 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>69</td></t<>                                                                                                                                                              |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 69                      |
| 29-Mar-18       22372       11037.35       11061.36       1440.60       36       36       36.0       22.9       1014.3       1.08       1553       2.6734       2.7960       0.1226         AM4b - House no. 10B1 Nga Yiu Ha Village       1-Mar-18       22353       12919.40       12943.40       1440.00       44       44       44.0       21.3       1012.5       1.16       1670       2.6657       2.7832       0.1175         7-Mar-18       22317       12943.40       12967.40       1440.00       44       44.0       19.1       1016.7       1.17       1680       2.6755       2.8302       0.1547         13-Mar-18       22300       12967.40       12991.41       1440.60       44       44.0       22       1014.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13015.42       1440.60       44       44.0       22       1014.7       1.16       1676       2.6692       2.7672       0.0980         24-Mar-18       22429       13015.42       13039.43       1440.60       44       44.0       22       1014.7       1.16       1676       2.6874       2.8103       0.1229 <td< td=""><td>17-Mar-18</td><td></td><td>10989.34</td><td></td><td></td><td></td><td></td><td></td><td>19.8</td><td></td><td></td><td></td><td>2.6732</td><td>2.7597</td><td>0.0865</td><td>55</td></td<>                                                                                                                                 | 17-Mar-18   |                  | 10989.34    |              |         |          |     |      | 19.8        |                  |                       |                       | 2.6732  | 2.7597 | 0.0865    | 55                      |
| AM4b - House no. 10B1 Nga Yiu Ha Village         1-Mar-18       22353       12919.40       12943.40       1440.00       44       44       0       21.3       1012.5       1.16       1670       2.6657       2.7832       0.1175         7-Mar-18       22317       12943.40       12967.40       1440.00       44       44       0       19.1       1016.7       1.17       1680       2.6755       2.8302       0.1547         13-Mar-18       22300       12967.40       12991.41       1440.60       44       44.0       20.9       1016.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13015.42       1440.60       44       44.0       22       1014.7       1.16       1676       2.6692       2.7672       0.0980         24-Mar-18       22429       13015.42       13039.43       1440.60       40       45       45.5       21.1       1018.9       1.12       1615       2.6600       2.8080       0.1420         30-Mar-18       22376       13039.43       13063.16       1423.80       45       45.0       23.5       1015.4       1.19       1687       2.6874       2.8103                                                                                                                                                                                                                                                                                                                                                |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 100                     |
| 1-Mar-18         22353         12919.40         12943.40         1440.00         44         44         44.0         21.3         1012.5         1.16         1670         2.6657         2.7832         0.1175           7-Mar-18         22317         12943.40         12967.40         1440.00         44         44         44.0         19.1         1016.7         1.17         1680         2.6755         2.8302         0.1547           13-Mar-18         22300         12967.40         12991.41         1440.60         44         44.0         22         1016.7         1.16         1676         2.6692         2.7672         0.0980           19-Mar-18         22308         12991.41         13015.42         1440.60         44         44.0         22         1014.7         1.16         1670         2.6831         2.7913         0.1082           24-Mar-18         22429         13015.42         13039.43         1440.60         40         45         45.0         23.5         1015.4         1.19         1687         2.6874         2.8103         0.1229           AM5a - Ping Yeung Village House         I         Intervert         Intervert         Intervert         Intervert         Intervert         Intervert                                                                                                                                                                                                                                                   |             |                  |             |              | 1440.60 | 36       | 36  | 36.0 | 22.9        | 1014.3           | 1.08                  | 1553                  | 2.6734  | 2.7960 | 0.1226    | 79                      |
| 7-Mar-18       22317       12943.40       12967.40       1440.00       44       44       44.0       19.1       1016.7       1.17       1680       2.6755       2.8302       0.1547         13-Mar-18       22300       12967.40       12991.41       1440.60       44       44       0.20.9       1016.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13015.42       1440.60       44       44.0       22       1014.7       1.16       1670       2.6831       2.7913       0.1082         24-Mar-18       22429       13015.42       13039.43       1440.60       40       45       42.5       21.1       1018.9       1.12       1615       2.6600       2.8080       0.1420         30-Mar-18       22376       13039.43       13063.16       1423.80       45       45       45.0       23.5       1015.4       1.19       1687       2.6874       2.8103       0.1229         AMSa - Ping Yeung Village House       I       I       1016.7       1.29       1889       2.6875       2.8292       0.1417         13-Mar-18       22316       11766.01       1467.00       32       32       <                                                                                                                                                                                                                                                                                                                                         | AM4b - Ho   | use no. 10B1     | Nga Yiu H   | a Village    |         |          |     |      |             |                  |                       |                       |         |        |           |                         |
| 13-Mar-18       22300       12967.40       12991.41       1440.60       44       44.       0       20.9       1016.7       1.16       1676       2.6692       2.7672       0.0980         19-Mar-18       22308       12991.41       13015.42       1440.60       44       44.       0       22       1014.7       1.16       1670       2.6831       2.7913       0.1082         24-Mar-18       22429       13015.42       13039.43       1440.60       40       45       42.5       21.1       1018.9       1.12       1615       2.6660       2.8080       0.1420         30-Mar-18       22376       13039.43       13063.16       1423.80       45       45       45.0       23.5       1015.4       1.19       1687       2.6874       2.8103       0.1229         AM5a - Ping Yeung Village House       I       Infection       1.1741.56       11766.01       1467.00       32       32       32.0       21.3       1012.5       1.15       1694       2.6735       2.7546       0.0811         7-Mar-18       22316       11766.01       1467.00       32       32       32.0       21.3       1012.5       1.15       1694       2.6735       2.7546       0.0                                                                                                                                                                                                                                                                                                                                     |             |                  |             |              |         |          |     |      |             |                  |                       |                       | 2.6657  | 2.7832 |           | 70                      |
| 19-Mar-18       22308       12991.41       13015.42       1440.60       44       44       44.0       22       1014.7       1.16       1670       2.6831       2.7913       0.1082         24-Mar-18       22429       13015.42       13039.43       1440.60       40       45       42.5       21.1       1018.9       1.12       1615       2.6600       2.8080       0.1420         30-Mar-18       22376       13039.43       13063.16       1423.80       45       45       45.0       23.5       1015.4       1.19       1687       2.6874       2.8103       0.1229         AM5a - Ping Yeung Village House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 92                      |
| 24-Mar-182242913015.4213039.431440.60404542.521.11018.91.1216152.66602.80800.142030-Mar-182237613039.4313063.161423.80454545.023.51015.41.1916872.68742.81030.1229AM5a - Ping Yeung Village House1-Mar-182235411741.5611766.011467.0032323232.021.31012.51.1516942.67352.75460.08117-Mar-182231611766.0111790.331459.20363636.019.11016.71.2918892.68752.82920.141713-Mar-182230111790.3311814.721463.404040.020.91016.71.4220832.66932.82620.156919-Mar-182230711814.7211839.161466.404040.0221014.71.4220822.68542.77420.088824-Mar-182242811839.1611863.631468.203636.021.11018.91.2918962.65702.84500.188030-Mar-182239611863.631188.111468.803636.023.51015.41.2818872.65642.75070.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 58                      |
| 30-Mar-18       22376       13039.43       13063.16       1423.80       45       45       45.0       23.5       1015.4       1.19       1687       2.6874       2.8103       0.1229         AM5a - Ping Yeung Village House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 65                      |
| AM5a - Ping Yeung Village House           1-Mar-18         22354         11741.56         11766.01         1467.00         32         32         32.0         21.3         1012.5         1.15         1694         2.6735         2.7546         0.0811           7-Mar-18         22316         11766.01         11790.33         1459.20         36         36         36.0         19.1         1016.7         1.29         1889         2.6875         2.8292         0.1417           13-Mar-18         22301         11790.33         11814.72         1463.40         40         40.0         20.9         1016.7         1.42         2083         2.6693         2.8262         0.1569           19-Mar-18         22307         11814.72         11839.16         1466.40         40         40.0         22         1014.7         1.42         2082         2.6854         2.7742         0.0888           24-Mar-18         22428         11839.16         11863.63         1468.20         36         36.0         21.1         1018.9         1.29         1896         2.6570         2.8450         0.1880           30-Mar-18         22396         11863.63         1188.811         1468.80         36         36.0                                                                                                                                                                                                                                                                      |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 88                      |
| 1-Mar-18       22354       11741.56       11766.01       1467.00       32       32       32.0       21.3       1012.5       1.15       1694       2.6735       2.7546       0.0811         7-Mar-18       22316       11766.01       11790.33       1459.20       36       36       36.0       19.1       1016.7       1.29       1889       2.6875       2.8292       0.1417         13-Mar-18       22301       11790.33       11814.72       1463.40       40       40.0       20.9       1016.7       1.42       2083       2.6693       2.8262       0.1569         19-Mar-18       22307       11814.72       11839.16       1466.40       40       40.0       22       1014.7       1.42       2082       2.6854       2.7742       0.0888         24-Mar-18       22428       11839.16       11863.63       1468.20       36       36.0       21.1       1018.9       1.29       1896       2.6570       2.8450       0.1880         30-Mar-18       22396       11863.63       11868.11       1468.80       36       36.0       23.5       1015.4       1.28       1887       2.6564       2.7507       0.0943                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |             | 13063.16     | 1423.80 | 45       | 45  | 45.0 | 23.5        | 1015.4           | 1.19                  | 1687                  | 2.6874  | 2.8103 | 0.1229    | 73                      |
| 7-Mar-18         22316         11766.01         11790.33         1459.20         36         36         36.0         19.1         1016.7         1.29         1889         2.6875         2.8292         0.1417           13-Mar-18         22301         11790.33         11814.72         1463.40         40         40.0         20.9         1016.7         1.42         2083         2.6693         2.8262         0.1569           19-Mar-18         22307         11814.72         11839.16         1466.40         40         40.0         22         1014.7         1.42         2082         2.6854         2.7742         0.0888           24-Mar-18         22428         11839.16         11863.63         1468.20         36         36.0         21.1         1018.9         1.29         1896         2.6570         2.8450         0.1880           30-Mar-18         22396         11863.63         11888.11         1468.80         36         36.0         23.5         1015.4         1.28         1887         2.6564         2.7507         0.0943                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           |                         |
| 13-Mar-18       22301       11790.33       11814.72       1463.40       40       40.0       20.9       1016.7       1.42       2083       2.6693       2.8262       0.1569         19-Mar-18       22307       11814.72       11839.16       1466.40       40       40.0       22       1014.7       1.42       2083       2.6693       2.8262       0.1569         24-Mar-18       22428       11839.16       11863.63       1468.20       36       36.0       21.1       1018.9       1.29       1896       2.6570       2.8450       0.1880         30-Mar-18       22396       11863.63       11888.11       1468.80       36       36.0       23.5       1015.4       1.28       1887       2.6564       2.7507       0.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 48                      |
| 19-Mar-182230711814.7211839.161466.40404040.0221014.71.4220822.68542.77420.088824-Mar-182242811839.1611863.631468.20363636.021.11018.91.2918962.65702.84500.188030-Mar-182239611863.6311888.111468.80363636.023.51015.41.2818872.65642.75070.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-Mar-18    |                  | 11766.01    |              |         | 36       | 36  | 36.0 | 19.1        |                  |                       |                       | 2.6875  |        | 0.1417    | 75                      |
| 24-Mar-18         22428         11839.16         11863.63         1468.20         36         36         36.0         21.1         1018.9         1.29         1896         2.6570         2.8450         0.1880           30-Mar-18         22396         11863.63         11888.11         1468.80         36         36.0         23.5         1015.4         1.28         1887         2.6564         2.7507         0.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 75                      |
| 30-Mar-18         22396         11863.63         11888.11         1468.80         36         36.0         23.5         1015.4         1.28         1887         2.6564         2.7507         0.0943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19-Mar-18   |                  |             |              |         |          |     |      |             |                  |                       |                       | 2.6854  |        |           | 43                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |             |              |         |          |     |      |             |                  |                       |                       |         |        |           | 99                      |
| AM6 We Keng Shan Village House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |             |              | 1468.80 | 36       | 36  | 36.0 | 23.5        | 1015.4           | 1.28                  | 1887                  | 2.6564  | 2.7507 | 0.0943    | 50                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AM6 - Wo    | Keng Shan V      | illage Hous | se           |         |          |     |      |             |                  |                       |                       |         |        |           |                         |
| 1-Mar-18 22345 9349.49 9373.49 1440.00 30 30 30.0 21.3 1012.5 1.00 1441 2.6748 2.8225 0.1477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-Mar-18    | 22345            | 9349.49     | 9373.49      | 1440.00 | 30       | 30  | 30.0 | 21.3        | 1012.5           | 1.00                  | 1441                  | 2.6748  | 2.8225 | 0.1477    | 103                     |



| DATE       | SAMPLE<br>NUMBER | EL.        | APSED TIN | ſE      | CHAF | RT REA | ADING | AVG<br>TEMP | AVG AIR<br>PRESS | STANDARD<br>FLOW RATE | AIR<br>VOLUME | FILTER ( |        | DUST WEIGHT<br>COLLECTED | 24-HR TSP     |
|------------|------------------|------------|-----------|---------|------|--------|-------|-------------|------------------|-----------------------|---------------|----------|--------|--------------------------|---------------|
|            | NUMBER           | INITIAL    | FINAL     | (min)   | MIN  | MAX    | AVG   | (°C)        | (hPa)            | $(m^3/min)$           | $(std m^3)$   | INITIAL  | FINAL  | (g)                      | $(\mu g/m^3)$ |
| 7-Mar-18   | 22315            | 9373.49    | 9397.49   | 1440.00 | 30   | 30     | 30.0  | 19.1        | 1016.7           | 1.00                  | 1447          | 2.6879   | 2.7981 | 0.1102                   | 76            |
| 13-Mar-18  | 22324            | 9397.49    | 9421.51   | 1441.20 | 30   | 30     | 30.0  | 20.9        | 1016.7           | 1.00                  | 1445          | 2.6625   | 2.7823 | 0.1198                   | 83            |
| 19-Mar-18  | 22308            | 9421.51    | 9445.51   | 1440.00 | 30   | 30     | 30.0  | 22.0        | 1014.7           | 1.00                  | 1441          | 2.6875   | 2.8649 | 0.1774                   | 123           |
| 24-Mar-18  | 22394            | 9445.51    | 9469.52   | 1440.60 | 30   | 30     | 30.0  | 21.1        | 1018.9           | 1.00                  | 1445          | 2.6748   | 2.8464 | 0.1716                   | 119           |
| 30-Mar-18  | 22377            | 9469.52    | 9493.52   | 1440.00 | 32   | 32     | 32.0  | 23.5        | 1015.4           | 1.05                  | 1509          | 2.6679   | 2.8000 | 0.1321                   | 88            |
| AM7b - Loi | i Tung Villag    | ge House   |           |         |      |        |       |             |                  |                       |               |          |        |                          |               |
| 1-Mar-18   | 22346            | 18396.42   | 18420.43  | 1440.60 | 40   | 40     | 40.0  | 21.3        | 1012.5           | 1.05                  | 1518          | 2.6676   | 2.8072 | 0.1396                   | 92            |
| 7-Mar-18   | 22352            | 18420.43   | 18444.43  | 1440.00 | 44   | 44     | 44.0  | 19.1        | 1016.7           | 1.20                  | 1721          | 2.6556   | 2.8328 | 0.1772                   | 103           |
| 13-Mar-18  | 22302            | 18444.43   | 18468.45  | 1441.20 | 46   | 46     | 46.0  | 20.9        | 1016.7           | 1.26                  | 1813          | 2.6817   | 2.8397 | 0.1580                   | 87            |
| 19-Mar-18  | 22368            | 18468.45   | 18492.44  | 1439.40 | 44   | 44     | 44.0  | 19.6        | 1014.9           | 1.19                  | 1717          | 2.6708   | 2.8531 | 0.1823                   | 106           |
| 24-Mar-18  | 21561            | 18492.44   | 18516.46  | 1441.20 | 43   | 43     | 43.0  | 21.1        | 1018.9           | 1.16                  | 1670          | 2.8049   | 3.0572 | 0.2523                   | 151           |
| 30-Mar-18  | 22374            | 18516.46   | 18540.46  | 1440.00 | 42   | 42     | 42.0  | 23.5        | 1015.4           | 1.12                  | 1609          | 2.6612   | 2.8527 | 0.1915                   | 119           |
| AM8 - Po k | Kat Tsai Villa   | ige No. 4  |           |         |      |        |       |             |                  |                       |               |          |        |                          |               |
| 1-Mar-18   | 22347            | 12293.73   | 12317.73  | 1440.00 | 32   | 32     | 32.0  | 21.3        | 1012.5           | 1.09                  | 1576          | 2.6761   | 2.7472 | 0.0711                   | 45            |
| 7-Mar-18   | 22318            | 12317.73   | 12341.74  | 1440.60 | 26   | 26     | 26.0  | 19.1        | 1016.7           | 0.97                  | 1401          | 2.6825   | 2.7157 | 0.0332                   | 24            |
| 13-Mar-18  | 22323            | 12341.74   | 12365.75  | 1440.60 | 34   | 34     | 34.0  | 20.9        | 1016.7           | 1.14                  | 1639          | 2.6811   | 2.7640 | 0.0829                   | 51            |
| 19-Mar-18  | 22369            | 12365.75   | 12389.76  | 1440.60 | 36   | 36     | 36.0  | 19.6        | 1014.9           | 1.18                  | 1701          | 2.6703   | 2.7702 | 0.0999                   | 59            |
| 24-Mar-18  | 22383            | 12389.76   | 12413.77  | 1440.60 | 34   | 34     | 34.0  | 21.1        | 1018.9           | 1.14                  | 1640          | 2.6629   | 2.7997 | 0.1368                   | 83            |
| 30-Mar-18  | 22375            | 12413.77   | 12437.77  | 1440.00 | 32   | 32     | 32.0  | 23.5        | 1015.4           | 1.09                  | 1573          | 2.6794   | 2.7709 | 0.0915                   | 58            |
| AM9b - Na  | m Wa Po Vil      | lage House | No. 80    |         |      |        |       |             |                  |                       |               |          |        |                          |               |
| 6-Mar-18   | 22348            | 19696.53   | 19720.53  | 1440.00 | 36   | 36     | 36.0  | 19.8        | 1017.2           | 1.12                  | 1615          | 2.6651   | 2.7565 | 0.0914                   | 57            |
| 12-Mar-18  | 22322            | 19720.53   | 19744.54  | 1440.60 | 36   | 36     | 36.0  | 19.6        | 1019             | 1.12                  | 1618          | 2.6726   | 2.7499 | 0.0773                   | 48            |
| 17-Mar-18  | 22306            | 19744.54   | 19768.54  | 1440.00 | 30   | 32     | 31.0  | 19.8        | 1015             | 0.96                  | 1387          | 2.6690   | 2.8267 | 0.1577                   | 114           |
| 23-Mar-18  | 22355            | 19768.54   | 19792.54  | 1440.00 | 32   | 32     | 32.0  | 20.5        | 1018.4           | 0.99                  | 1433          | 2.6667   | 2.8153 | 0.1486                   | 104           |
| 29-Mar-18  | 22373            | 19792.54   | 19816.54  | 1440.00 | 34   | 34     | 34.0  | 22.9        | 1014.3           | 1.05                  | 1514          | 2.6764   | 2.7965 | 0.1201                   | 79            |



## Construction Noise Monitoring Results, dB(A)

| Date         | Start<br>Time | 1 <sup>st</sup><br>Leq <sub>5min</sub> | L10    | L90       | 2 <sup>nd</sup><br>Leq <sub>5min</sub> | L10  | L90  | 3 <sup>nd</sup><br>Leq <sub>5min</sub> | L10  | L90  | 4 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | 5 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | 6 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | Leq30 | façade<br>correction |
|--------------|---------------|----------------------------------------|--------|-----------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|-------|----------------------|
| NM1 - Tsung  |               |                                        | ige Ho | use No. ( |                                        |      |      | 20431111                               |      |      | 2043                                   |      |      | LeeqSillin                             |      |      | 20931111                               |      |      | I     | correction           |
| 5-Mar-18     | 9:40          | 59.9                                   | 61.3   | 54.6      | 60.2                                   | 62.2 | 55.2 | 59.0                                   | 61.3 | 54.7 | 60.3                                   | 62.1 | 55.1 | 61.6                                   | 63.1 | 56.4 | 59.2                                   | 61.4 | 54.7 | 60    | NA                   |
| 16-Mar-18    | 9:33          | 59.0                                   | 61.0   | 55.6      | 59.3                                   | 61.9 | 55.7 | 58.4                                   | 60.6 | 55.3 | 59.1                                   | 61.9 | 55.7 | 64.8                                   | 69.1 | 58.3 | 58.4                                   | 60.6 | 55.4 | 61    | NA                   |
| 22-Mar-18    | 10:31         | 56.5                                   | 58.7   | 52.9      | 56.9                                   | 59.5 | 52.8 | 57.5                                   | 59.4 | 53.5 | 59.8                                   | 62.3 | 54.4 | 58.2                                   | 60.5 | 54.6 | 58.6                                   | 61.3 | 54.2 | 58    | NA                   |
| 28-Mar-18    | 10:08         | 45.7                                   | 48.6   | 37.8      | 47.5                                   | 51.1 | 40.0 | 48.7                                   | 52.0 | 36.9 | 52.9                                   | 57.8 | 36.7 | 50.5                                   | 54.7 | 40.9 | 55.6                                   | 52.8 | 40.9 | 51    | NA                   |
| NM2a - Villa | ge Hou        | ise near                               | Lin Ma | a Hang I  | Road                                   |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 5-Mar-18     | 10:22         | 72.7                                   | 68.3   | 53.8      | 64.7                                   | 69.7 | 55.1 | 64.8                                   | 69.1 | 54.2 | 65.8                                   | 69.0 | 55.2 | 63.7                                   | 70.4 | 54.3 | 62.2                                   | 70.3 | 54.1 | 67    | 70                   |
| 16-Mar-18    | 9:25          | 65.6                                   | 65.7   | 50.8      | 61.6                                   | 66.0 | 49.3 | 62.0                                   | 66.6 | 47.3 | 67.8                                   | 68.7 | 49.5 | 61.2                                   | 64.6 | 51.3 | 64.7                                   | 66.7 | 52.3 | 65    | 68                   |
| 22-Mar-18    | 11:30         | 75.8                                   | 76.4   | 51.8      | 59.7                                   | 63.0 | 52.4 | 63.9                                   | 68.7 | 54.6 | 65.4                                   | 66.8 | 52.6 | 68.4                                   | 72.3 | 58.7 | 61.9                                   | 65.1 | 51.0 | 69    | 72                   |
| 28-Mar-18    | 9:17          | 70.9                                   | 72.1   | 50.4      | 58.7                                   | 59.6 | 50.3 | 54.2                                   | 56.9 | 48.9 | 58.4                                   | 62.6 | 50.2 | 66.1                                   | 67.4 | 56.3 | 62.3                                   | 66.4 | 52.6 | 65    | 68                   |
| NM3 - Ping Y | leung V       | Village H                              | 1      |           |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 9-Mar-18     | 9:32          | 61.9                                   | 64.8   | 54.2      | 60.4                                   | 63.4 | 54.1 | 59.9                                   | 63.8 | 52.7 | 60.6                                   | 64.9 | 53.1 | 59.9                                   | 63.2 | 53.7 | 60.2                                   | 64.4 | 54.4 | 61    | NA                   |
| 15-Mar-18    | 9:34          | 60.6                                   | 60.1   | 53.3      | 59.2                                   | 61.7 | 53.6 | 58.4                                   | 61.0 | 53.9 | 59.1                                   | 62.2 | 54.5 | 57.4                                   | 59.4 | 53.9 | 58.1                                   | 61.1 | 54.8 | 59    | NA                   |
| 20-Mar-18    | 9:11          | 54.8                                   | 58.6   | 50.1      | 56.4                                   | 59.1 | 50.6 | 54.8                                   | 58.7 | 49.5 | 54.3                                   | 57.2 | 49.4 | 55.2                                   | 59.7 | 48.8 | 55.6                                   | 60.3 | 50.1 | 55    | NA                   |
|              | 9:42          | 56.3                                   | 57.1   | 50.8      | 62.3                                   | 62.3 | 54.4 | 67.6                                   | 67.8 | 51.4 | 64.9                                   | 62.9 | 52.0 | 57.2                                   | 58.2 | 49.8 | 58.6                                   | 63.0 | 50.4 | 63    | NA                   |
|              | 13:08         | 54.8                                   | 60.2   | 49.6      | 55.3                                   | 59.7 | 49.1 | 54.5                                   | 58.5 | 50.2 | 53.6                                   | 57.2 | 50.3 | 54.2                                   | 59.8 | 49.6 | 54.5                                   | 60.7 | 50.5 | 55    | NA                   |
| NM4 - Wo K   |               | an Villag                              |        |           |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
|              | 10:08         | 67.4                                   | 68.3   | 52.3      | 66.4                                   | 67.0 | 52.6 | 68.0                                   | 70.1 | 52.7 | 62.2                                   | 61.6 | 48.5 | 60.6                                   | 60.5 | 48.9 | 63.2                                   | 62.7 | 50.0 | 65    | NA                   |
| 15-Mar-18    | 10:11         | 65.6                                   | 67.1   | 51.1      | 62.9                                   | 64.7 | 51.4 | 66.5                                   | 67.5 | 51.7 | 65.7                                   | 66.9 | 50.5 | 63.7                                   | 65.8 | 49.6 | 64.2                                   | 66.7 | 50.9 | 65    | NA                   |
| 20-Mar-18    | 13:33         | 61.7                                   | 64.4   | 54.8      | 64.3                                   | 66.6 | 53.2 | 63.9                                   | 66.3 | 54.2 | 63.1                                   | 65.4 | 54.3 | 62.2                                   | 67.6 | 55.9 | 64.8                                   | 68.2 | 56.9 | 63    | NA                   |
| 26-Mar-18    | 10:24         | 62.9                                   | 65.9   | 52.8      | 62.2                                   | 64.4 | 52.9 | 64.3                                   | 64.5 | 52.2 | 58.8                                   | 60.7 | 51.5 | 56.0                                   | 59.0 | 51.9 | 58.0                                   | 61.4 | 51.7 | 61    | NA                   |
| 29-Mar-18    | 11:21         | 61.6                                   | 64.8   | 54.9      | 62.2                                   | 64.7 | 53.8 | 62.5                                   | 65.9 | 53.8 | 62.8                                   | 66.9 | 52.1 | 61.7                                   | 64.8 | 53.6 | 62.2                                   | 66.5 | 54.1 | 62    | NA                   |
| NM5– Ping Y  | eung V        | illage H                               | ouse   | -         |                                        |      |      |                                        |      |      |                                        |      | -    |                                        |      | -    |                                        |      | -    | -     |                      |
| 9-Mar-18     | 9:13          | 51.6                                   | 54.8   | 46.2      | 51.3                                   | 55.9 | 47.5 | 52.6                                   | 54.9 | 46.4 | 53.5                                   | 56.8 | 46.1 | 52.6                                   | 55.3 | 46.7 | 51.9                                   | 55.1 | 45.3 | 52    | NA                   |
| 15-Mar-18    | 10:40         | 57.6                                   | 60.9   | 50.2      | 60.0                                   | 64.1 | 49.4 | 53.3                                   | 54.4 | 48.3 | 62.1                                   | 55.6 | 48.9 | 52.9                                   | 55.5 | 48.0 | 52.3                                   | 54.7 | 46.2 | 58    | NA                   |
| 20-Mar-18    | 9:38          | 56.9                                   | 60.5   | 52.0      | 56.0                                   | 58.5 | 52.0 | 57.0                                   | 60.0 | 53.0 | 57.1                                   | 59.5 | 52.0 | 56.7                                   | 59.5 | 51.5 | 56.6                                   | 59.5 | 52.0 | 57    | NA                   |
| 26-Mar-18    | 9:39          | 51.9                                   | 53.4   | 47.4      | 52.5                                   | 53.8 | 47.8 | 49.8                                   | 51.7 | 45.7 | 50.9                                   | 53.2 | 45.8 | 51.2                                   | 53.6 | 47.8 | 50.2                                   | 52.9 | 45.7 | 51    | NA                   |
| 29-Mar-18    | 10:38         | 51.7                                   | 56.4   | 49.4      | 52.8                                   | 55.3 | 49.6 | 52.6                                   | 54.9 | 49.7 | 53.2                                   | 56.8 | 48.3 | 53.9                                   | 56.7 | 49.7 | 52.2                                   | 55.3 | 48.5 | 53    | NA                   |
| NM6 – Tai To | ong Wu        | ı Village                              | House  | 2         |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 9-Mar-18     | 10:08         | 56.5                                   | 61.7   | 52.4      | 56.8                                   | 60.3 | 52.9 | 55.3                                   | 59.7 | 51.8 | 56.1                                   | 62.5 | 51.8 | 55.3                                   | 60.4 | 51.9 | 58.6                                   | 59.2 | 52.3 | 57    | NA                   |
| 15-Mar-18    | 11:18         | 62.1                                   | 64.5   | 55.4      | 61.6                                   | 63.7 | 57.5 | 62.3                                   | 63.2 | 56.9 | 59.7                                   | 62.2 | 55.8 | 58.3                                   | 61.2 | 53.3 | 60.3                                   | 62.2 | 54.5 | 61    | NA                   |
| 20-Mar-18    | 10:37         | 62.7                                   | 61.0   | 51.5      | 53.5                                   | 54.5 | 51.0 | 63.2                                   | 62.0 | 53.0 | 55.4                                   | 56.0 | 52.0 | 53.4                                   | 55.0 | 50.5 | 65.3                                   | 67.0 | 51.0 | 61    | NA                   |



| Date         | Start<br>Time | 1 <sup>st</sup><br>Leq <sub>5min</sub> | L10     | L90    | 2 <sup>nd</sup><br>Leq <sub>5min</sub> | L10  | L90  | 3 <sup>nd</sup><br>Leq <sub>5min</sub> | L10  | L90  | 4 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | 5 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | 6 <sup>th</sup><br>Leq <sub>5min</sub> | L10  | L90  | Leq30 | façade<br>correction |
|--------------|---------------|----------------------------------------|---------|--------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|----------------------------------------|------|------|-------|----------------------|
| 26-Mar-18    | 10:19         | 57.8                                   | 59.0    | 51.1   | 59.4                                   | 63.0 | 53.4 | 57.7                                   | 61.1 | 51.6 | 60.9                                   | 64.0 | 52.5 | 58.5                                   | 61.3 | 51.7 | 59.2                                   | 62.8 | 50.5 | 59    | NA                   |
| 29-Mar-18    | 10:01         | 56.6                                   | 60.8    | 52.3   | 57.9                                   | 61.4 | 53.6 | 56.4                                   | 60.9 | 54.3 | 55.8                                   | 61.9 | 49.2 | 56.6                                   | 62.5 | 50.3 | 57.6                                   | 62.4 | 51.8 | 57    | NA                   |
| NM7 – Po Ka  | at Tsai       | Village                                |         | -      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 9-Mar-18     | 13:25         | 58.6                                   | 61.9    | 53.4   | 57.8                                   | 60.6 | 53.2 | 57.9                                   | 58.4 | 52.6 | 58.3                                   | 59.1 | 52.2 | 59.1                                   | 60.7 | 53.4 | 60.2                                   | 61.9 | 52.6 | 59    | NA                   |
| 15-Mar-18    | 11:11         | 58.8                                   | 60.4    | 55.4   | 59.6                                   | 60.6 | 55.8 | 59.5                                   | 62.9 | 55.9 | 65.6                                   | 65.4 | 54.4 | 60.8                                   | 61.6 | 54.0 | 56.2                                   | 58.9 | 54.2 | 61    | NA                   |
| 20-Mar-18    | 13:13         | 67.3                                   | 70.0    | 59.5   | 62.7                                   | 65.0 | 59.0 | 63.0                                   | 65.0 | 59.0 | 62.9                                   | 65.0 | 59.0 | 63.1                                   | 65.5 | 58.0 | 61.9                                   | 63.5 | 57.0 | 64    | NA                   |
| 26-Mar-18    | 13:34         | 60.6                                   | 61.7    | 54.4   | 56.8                                   | 58.6 | 54.7 | 67.7                                   | 68.5 | 56.8 | 68.6                                   | 71.6 | 54.9 | 61.2                                   | 59.5 | 52.4 | 63.2                                   | 62.4 | 54.0 | 65    | NA                   |
| 29-Mar-18    | 9:06          | 56.9                                   | 60.7    | 52.4   | 57.6                                   | 60.3 | 53.4 | 56.8                                   | 59.2 | 54.1 | 56.5                                   | 61.7 | 53.3 | 59.2                                   | 59.9 | 54.1 | 58.8                                   | 62.2 | 53.6 | 58    | NA                   |
| NM8 - Villag | ge Hous       | e, Tong                                | Hang    |        |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 5-Mar-18     | 13:02         | 59.6                                   | 60      | 50.5   | 60                                     | 62.5 | 52.5 | 59.8                                   | 60   | 54.3 | 63.1                                   | 68.5 | 52   | 63.6                                   | 68   | 53   | 65.9                                   | 70   | 53   | 63    | NA                   |
| 16-Mar-18    | 11:02         | 63.6                                   | 68.4    | 51.1   | 61.9                                   | 65.8 | 49.4 | 62.1                                   | 66.4 | 50.5 | 60.7                                   | 66.8 | 50.8 | 58.5                                   | 65.7 | 49.9 | 61.1                                   | 67.5 | 50.5 | 62    | NA                   |
| 22-Mar-18    | 10:49         | 57.2                                   | 60.2    | 43.9   | 55.9                                   | 57.8 | 45.2 | 56.8                                   | 61.6 | 45.8 | 55.5                                   | 61.7 | 46.7 | 55                                     | 60.4 | 43.6 | 55.9                                   | 57.9 | 45.4 | 56    | NA                   |
| 28-Mar-18    | 9:16          | 59.3                                   | 61.2    | 52.3   | 58.2                                   | 62.3 | 51.1 | 59.3                                   | 62.1 | 56.3 | 56.3                                   | 60.3 | 48.3 | 56.3                                   | 58.7 | 47.3 | 61.2                                   | 65.4 | 51.2 | 59    | NA                   |
| NM9 - Villag | ge Hous       | e, Kiu T                               | au Vill | lage   |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 5-Mar-18     | 11:17         | 61.2                                   | 63.5    | 56.5   | 61.3                                   | 62.5 | 57.0 | 63.4                                   | 66.0 | 57.0 | 62.1                                   | 65.5 | 51.0 | 70.6                                   | 70.5 | 52.5 | 64.3                                   | 67.0 | 51.0 | 65    | NA                   |
| 16-Mar-18    | 10:21         | 62.1                                   | 63.2    | 58.2   | 62.6                                   | 63.7 | 58.7 | 63.8                                   | 64.6 | 59.1 | 61.2                                   | 63.6 | 58.1 | 62.1                                   | 64.3 | 59.2 | 63.0                                   | 65.3 | 60.3 | 63    | NA                   |
| 22-Mar-18    | 10:06         | 59.2                                   | 63.9    | 52.6   | 58.0                                   | 63.2 | 52.1 | 58.0                                   | 60.7 | 52.5 | 57.6                                   | 59.7 | 51.7 | 55.9                                   | 55.6 | 52.0 | 58.1                                   | 61.2 | 53.0 | 58    | NA                   |
| 28-Mar-18    | 10:09         | 61.3                                   | 64.3    | 53.4   | 62.4                                   | 63.4 | 53.6 | 58.4                                   | 60.4 | 51.3 | 58.3                                   | 62.3 | 48.6 | 57.1                                   | 61.4 | 50.9 | 63.2                                   | 65.1 | 51.1 | 61    | NA                   |
| NM10 - Nam   |               | 8                                      | 1       | No. 80 |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |                                        |      |      |       |                      |
| 5-Mar-18     | 10:21         | 65.1                                   | 67.0    | 61.0   | 61.6                                   | 63.0 | 60.0 | 61.6                                   | 63.0 | 59.5 | 65.9                                   | 68.5 | 55.5 | 71.0                                   | 72.0 | 62.5 | 65.4                                   | 68.5 | 57.5 | 66    | 69                   |
| 16-Mar-18    | 9:34          | 61.7                                   | 63.4    | 59.2   | 64.6                                   | 66.7 | 61.1 | 63.6                                   | 65.2 | 60.4 | 62.0                                   | 64.4 | 59.1 | 63.1                                   | 65.2 | 60.4 | 64.7                                   | 65.6 | 60.0 | 63    | 66                   |
| 22-Mar-18    | 9:19          | 56.7                                   | 58.7    | 54.2   | 56.6                                   | 58.5 | 54.2 | 55.8                                   | 57.2 | 54.1 | 56.3                                   | 58.1 | 54.5 | 56.0                                   | 57.7 | 53.8 | 56.0                                   | 58.2 | 53.2 | 56    | 59                   |
| 28-Mar-18    | 11:28         | 58.4                                   | 59.3    | 52.3   | 57.2                                   | 60.3 | 55.3 | 57.6                                   | 58.3 | 52.2 | 59.3                                   | 61.1 | 51.3 | 55.2                                   | 58.1 | 53.2 | 59.2                                   | 60.2 | 51.4 | 58    | 61                   |



### Water Quality Monitoring Data for Contract 6 and SS C505

| Date     | 1-Mar-18  |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
|----------|-----------|-----------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|-----------------------|------------------------------------------------------|
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | pН                    | SS(mg/L)                                             |
| WM1-C    | 10:00     | 0.15      | $     \begin{array}{c}       20.5 \\       20.5     \end{array}     $ 20.5 | <u>13.84</u><br>13.86<br>13.9                                                         | $\begin{array}{c c} 153.4 \\ \hline 153.6 \end{array} 153.5$ | 8.0<br>8.2<br>8.1                     | 7.5 7.5               | $\frac{4}{3}$ 3.5                                    |
| WM1      | 9:50      | 0.15      | <u>19.6</u><br><u>19.6</u><br>19.6                                         | 7<br>6.99<br>7.0                                                                      | <u>76.4</u><br>76.2<br>76.3                                  | <u>7.9</u><br>7.9<br>7.9              | 7.7 7.7               | 7 7.0                                                |
| Date     | 3-Mar-18  |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | pН                    | SS(mg/L)                                             |
|          |           |           |                                                                            | 12.54                                                                                 | 155.0                                                        | 74                                    | 7.4                   | 7                                                    |
| WM1-C    | 8:57      | 0.21      | 22.1 22.1                                                                  | 13.4 15.5                                                                             | 153.2 154.2                                                  | 7.3                                   | 7.4 7.4               | 6.5                                                  |
| WM1      | 8:45      | 0.20      | $\frac{22}{22}$ 22.0                                                       | 5.78<br>5.8<br>5.8                                                                    | <u>65.4</u><br><u>65.4</u><br><u>65.4</u>                    | <u>9.1</u><br>9.2 9.2                 | 7.3 7.3               | 14 14.0                                              |
|          |           |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Date     | 5-Mar-18  |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | рН                    | SS(mg/L)                                             |
| WM1-C    | 9:40      | 0.15      | $\begin{array}{c c} 23.5 \\ \hline 23.5 \end{array}$ 23.5                  | 12.34 12.4                                                                            | <u>145.0</u><br>145.2 145.1                                  | <u>8.1</u><br>8.1<br>8.1              | 7.5 7.5               | $\frac{3}{2}$ 2.5                                    |
| WM1      | 9:55      | 0.15      | <u>23.2</u><br>23.2 23.2                                                   | <u>5.55</u><br>5.54 5.5                                                               | <u>64.8</u><br>64.7 64.8                                     | $\frac{10.8}{10.9}$ 10.9              | 7.2 7.2               | $\frac{14}{13}$ 13.5                                 |
|          |           |           |                                                                            |                                                                                       |                                                              |                                       | ,                     |                                                      |
| Date     | 7-Mar-18  |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | pН                    | SS(mg/L)                                             |
| WM1-C    | 9:55      | 0.15      | <u>22.8</u><br>22.8 22.8                                                   | 11.73 11.62 11.7                                                                      | $\begin{array}{c c} 133.1 \\ \hline 132.1 \end{array} 132.6$ | <u>9.1</u><br>9.2 9.2                 | $\frac{7.9}{7.9}$ 7.9 | $\frac{3}{2}$ 2.5                                    |
| WM1      | 9:45      | 0.15      | $\begin{array}{c c} 21.1 \\ 21.1 \end{array}$ 21.1                         | 6.32<br>6.28 6.3                                                                      | 70.9<br>70.6<br>70.8                                         | <u>13.5</u><br>14.8 14.2              | 7.7 7.7               | $\frac{17}{15}$ 16.0                                 |
|          |           |           | Г – Г                                                                      | •                                                                                     | 1                                                            |                                       | I.                    |                                                      |
| Date     | 9-Mar-18  |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | pН                    | SS(mg/L)                                             |
| WM1-C    | 10:00     | 0.15      | 13.5<br>13.5<br>13.5                                                       | 12.82<br>12.63 12.7                                                                   | <u>121.8</u><br>120.6 121.2                                  | <u>8.6</u><br>8.4 8.5                 | 7.3 7.3               | 3 3.0                                                |
| WM1      | 9:50      | 0.15      | <u>13.7</u><br>13.7<br>13.7                                                | 8.84<br>8.77<br>8.8                                                                   | 84.8<br>84.3<br>84.6                                         | 27.6<br>28.9<br>28.3                  | 7.2 7.2               | $\begin{array}{c c} 21 \\ 21 \\ 21 \end{array}$ 21.0 |
|          |           |           | · · ·                                                                      | · · ·                                                                                 | · · ·                                                        | · · · · · · · · · · · · · · · · · · · | L                     | · · ·                                                |
| Date     | 12-Mar-18 |           |                                                                            |                                                                                       |                                                              |                                       |                       |                                                      |
| Location | Time      | Depth (m) | Temp (oC)                                                                  | DO (mg/L)                                                                             | DO (%)                                                       | Turbidity (NTU)                       | pН                    | SS(mg/L)                                             |
| WM1-C    | 9:40      | 0.15      | <u>19.2</u><br><u>19.2</u><br>19.2                                         | $     \begin{array}{c c}       10.19 \\       10.19 \\       10.2     \end{array}   $ | $\begin{array}{c c} 111.9 \\ 112.1 \end{array} 112.0$        | <u>5.9</u><br><u>5.8</u> 5.9          | 7.5 7.5               | 4 4.0                                                |

63.6

64.0

4.9 5.7

63.8

7.1

7.1

7.1

5.3

4

4

4.0

0.18

WM1

9:50

22 22 22

22.0

5.66

5.7

5.7



| Date     | 14-Mar-18 |           |      |        |       |       |       |       |         |           |     |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|-------|-------|---------|-----------|-----|-----|----|--------|
| Location | Time      | Depth (m) | Temp | 0 (0C) | DO (r | ng/L) | DO    | (%)   | Turbidi | ity (NTU) | р   | H   | SS | (mg/L) |
| WM1-C    | 0:50      | 0.17      | 21.1 | 21.1   | 10.55 | 10.5  | 118.3 | 1176  | 11.3    | 11.5      | 7.2 | 7.2 | 9  | 05     |
| WINIT-C  | 9:50      | 0.17      | 21.1 | 21.1   | 10.39 | 10.5  | 116.9 | 117.6 | 11.6    | 11.5      | 7.2 | 1.2 | 8  | 0.3    |
| WM1      | 9:40      | 0.20      | 21.2 | 21.2   | 6.73  | 67    | 75.7  | 75.6  | 23.1    | 22.5      | 7   | 7.0 | 15 | 16.0   |
| VV IVI I | 9.40      | 0.20      | 21.2 | 21.2   | 6.7   | 0./   | 75.4  | /5.0  | 23.8    | 23.3      | 7   | /.0 | 17 | 16.0   |

| Date     | 16-Mar-18 |           |      |        |       |       |       |       |        |           |     |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|-------|-------|--------|-----------|-----|-----|----|--------|
| Location | Time      | Depth (m) | Temp | o (oC) | DO (1 | ng/L) | DO    | (%)   | Turbid | ity (NTU) | p   | H   | SS | (mg/L) |
| WM1-C    | 0:40      | 0.15      | 21.8 | 21.0   | 9.88  | 0.8   | 114.2 | 112.0 | 25.8   | 26.6      | 7.2 | 7.2 | 20 | 10.5   |
| W WIT-C  | 9:40      | 0.15      | 21.8 | 21.8   | 9.81  | 9.0   | 113.4 | 113.8 | 27.4   | 26.6      | 7.2 | 1.2 | 19 | 19.3   |
| WM1      | 10:00     | 0.18      | 21.8 | 21.0   | 4.4   | 4.4   | 50.1  | 50.0  | 26.1   | 26.3      | 7.2 | 7.2 | 14 | 12.5   |
| VV IVI I | 10.00     | 0.10      | 21.8 | 21.0   | 4.37  | 4.4   | 49.9  | 30.0  | 26.4   | 20.5      | 7.2 | 1.2 | 13 | 15.5   |

| Date     | 19-Mar-18 |           |      |        |       |       |       |       |         |           |      |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|-------|-------|---------|-----------|------|-----|----|--------|
| Location | Time      | Depth (m) | Temp | ) (0C) | DO (r | ng/L) | DO    | (%)   | Turbidi | ity (NTU) | р    | H   | SS | (mg/L) |
| WM1-C    | 10:00     | 0.10      | 24.4 | 24.4   | 8.62  | 8.6   | 103.2 | 102.2 | 18.6    | 18.7      | 7.73 | 77  | 18 | 16.0   |
| WWIT-C   | 10.00     | 0.19      | 24.4 | 24.4   | 8.64  | 0.0   | 103.1 | 103.2 | 18.7    | 10./      | 7.74 | 1.1 | 14 | 10.0   |
| WM1      | 10:38     | 0.15      | 24   | 24.0   | 7.65  | 7.6   | 90.8  | 90.8  | 8.7     | 07        | 8.06 | Q 1 | 14 | 17.5   |
| VV IVI I | 10.36     | 0.15      | 24   | 24.0   | 7.64  | /.6   | 90.8  | 90.8  | 8.6     | 0./       | 8.07 | 0.1 | 21 | 17.5   |

| Date     | 21-Mar-18 |           |      |        |       |       |       |       |         |          |      |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|-------|-------|---------|----------|------|-----|----|--------|
| Location | Time      | Depth (m) | Temp | ) (0C) | DO (1 | ng/L) | DO    | (%)   | Turbidi | ty (NTU) | р    | H   | SS | (mg/L) |
| WM1-C    | 10.29     | 0.21      | 21.5 | 21.5   | 8.93  | 8.0   | 101.1 | 101.2 | 14.5    | 13.0     | 7.59 | 7.6 | 14 | 15.0   |
| W WIT-C  | 10:38     | 0.21      | 21.5 | 21.3   | 8.92  | 8.9   | 101.2 | 101.2 | 13.2    | 15.9     | 7.58 | /.0 | 16 | 15.0   |
| WM1      | 11.12     | 0.19      | 21.2 | 21.2   | 8.28  | Q /   | 93.6  | 94.8  | 26.2    | 25.5     | 7.04 | 7.0 | 16 | 17.0   |
| VV IVI I | 11.12     | 0.19      | 21.2 | 21.2   | 8.52  | 0.4   | 95.9  | 94.0  | 24.8    | 23.3     | 7.05 | 7.0 | 18 | 17.0   |

| Date     | 23-Mar-18 |           |      |              |       |       |       |       |         |           |     |     |    |        |
|----------|-----------|-----------|------|--------------|-------|-------|-------|-------|---------|-----------|-----|-----|----|--------|
| Location | Time      | Depth (m) | Temp | ) (0C)       | DO (I | ng/L) | DO    | (%)   | Turbidi | ity (NTU) | р   | H   | SS | (mg/L) |
| WM1 C    | 10:09     | 0.17      | 23.5 | 22.5         | 8.73  | 96    | 102.6 | 101 7 | 27.8    | 202       | 7.9 | 7.0 | 51 | 52.0   |
| WM1-C    | 10.09     | 0.17      | 23.5 | 23.3         | 8.55  | 8.6   | 100.7 | 101.7 | 28.8    | 28.3      | 7.7 | /.0 | 55 | 53.0   |
| WM1      | 10:46     | 0.10      | 23.3 | <b>1</b> 2.2 | 11.21 | 10.8  | 129.4 | 124.1 | 28.4    | 29.3      | 7.1 | 7.2 | 24 | 24.5   |
| VV IVI I | 10.40     | 0.19      | 23.3 | 23.3         | 10.43 | 10.8  | 118.8 | 124.1 | 30.2    | 29.5      | 7.2 | 1.2 | 25 | 24.5   |

| Date     | 27-Mar-18 |           |      |        |       |       |       |       |        |           |     |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|-------|-------|--------|-----------|-----|-----|----|--------|
| Location | Time      | Depth (m) | Temp | 0 (0C) | DO (r | ng/L) | DO    | (%)   | Turbid | ity (NTU) | р   | H   | SS | (mg/L) |
| WM1-C    | 9:37      | 0.15      | 22.4 | 22.4   | 9.51  | 95    | 109.5 | 109.9 | 8.2    | 8.2       | 7.6 | 7.6 | 11 | 10.0   |
| wini e   | 9.51      | 0.15      | 22.4 | 22.7   | 9.53  | 7.5   | 110.2 | 107.7 | 8.1    | 0.2       | 7.6 | 7.0 | 9  | 10.0   |
| WM1      | 9:55      | 0.20      | 22.5 | 22.5   | 4.53  | 45    | 52.1  | 52.2  | 5.1    | 5.4       | 6.7 | 67  | 3  | 35     |
| VV 1VI 1 | 9.55      | 0.20      | 22.5 | 22.3   | 4.55  | 4.5   | 52.3  | 52.2  | 5.8    | 5.4       | 6.7 | 6./ | 4  | 5.5    |



| Date<br>Location | 29-Mar-18<br>Time | Depth (m)    | Temp | $\mathbf{v}(\mathbf{nC})$ | DO (I | mg/L) | DO    | (%)   | Turbidi | ity (NTU) | n   | H   | SS | (mg/L) |
|------------------|-------------------|--------------|------|---------------------------|-------|-------|-------|-------|---------|-----------|-----|-----|----|--------|
| Location         | TIME              | Deptii (iii) | 22.1 |                           | 11.5  |       | 121.0 | ( /0) | 0.2     |           | 6 7 |     | 4  |        |
| WM1-C            | 9:45              | 0.15         | 22.1 | 22.1                      | 11.49 | 11.5  | 131.0 | 131.5 | 9.2     | 9.3       | 6.7 | 6.7 | 4  | 4.0    |
| WM1              | 9:35              | 0.20         | 23.6 | 23.6                      | 5.31  | 5.3   | 62.3  | 62.4  | 9.6     | 8.5       | 6.4 | 6.4 | 8  | 7.0    |
| WMI              | 9:35              | 0.20         | 23.6 | 23.6                      | 5.31  | 5.3   | 62.4  | 62.4  | 7.4     | 8.5       | 6.4 | 6.4 | 6  |        |

| Date     | 31-Mar-18 |           |      |        |       |       |      |      |         |          |     |     |    |        |
|----------|-----------|-----------|------|--------|-------|-------|------|------|---------|----------|-----|-----|----|--------|
| Location | Time      | Depth (m) | Tem  | o (oC) | DO (r | ng/L) | DO   | (%)  | Turbidi | ty (NTU) | р   | H   | SS | (mg/L) |
| WM1-C    | 9:40      | 0.15      | 21.9 | 21.9   | 8.33  | 8.3   | 99.6 | 99.8 | 12.1    | 12.2     | 7   | 7.0 | 12 | 12.0   |
|          | 20        | 0.10      | 21.9 | -1.9   | 8.35  | 0.5   | 99.9 | ,,   | 12.2    |          | 7   | /.0 | 12 | 12.0   |
| WM1      | 9:30      | 0.16      | 24.1 | 24.1   | 6.54  | 6.5   | 79.7 | 79.6 | 7.3     | 8.2      | 6.8 | 6.8 | 6  | 6.0    |
|          |           |           | 24.1 |        | 6.51  |       | 79.4 |      | 9.1     |          | 6.8 |     | 6  |        |



|          | Water Quality Monitoring Data for Contract 2 and 3           1-Mar-18 |            |                                                           |                                |                                 |                                                                                                                |                                                        |                                                                                                                        |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------|------------|-----------------------------------------------------------|--------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Date     |                                                                       | Darith (m) | Tamm (aC)                                                 |                                |                                 | T                                                                                                              | 11                                                     | $SS(m \sigma/\mathbf{I})$                                                                                              |  |  |  |  |  |  |
| Location | Time                                                                  | Depth (m)  | Temp (oC)           22.4         22.4                     | <b>DO (mg/L)</b><br>8.66       | <b>DO (%)</b><br>99.8 00.8      | Turbidity (NTU)2.42.4                                                                                          | <b>pH</b><br>7.2 7.2                                   | SS(mg/L)                                                                                                               |  |  |  |  |  |  |
| WM4-CA   | 11:20                                                                 | 0.15       | 22.4                                                      | 8.66 8.7                       | 99.7 99.8                       | 2.4                                                                                                            | 7.2                                                    | 3 2.5                                                                                                                  |  |  |  |  |  |  |
| WM4-CB   | 11:35                                                                 | 0.30       | $\begin{array}{c c} 22.6 \\ \hline 22.6 \end{array}$ 22.6 | <u>6.31</u><br><u>6.27</u> 6.3 | 73.3 73.1                       | <u>6.0</u><br>6.0 6.0                                                                                          | 7.2 7.2 7.2                                            | <u>7</u><br><u>5</u><br><u>6.0</u>                                                                                     |  |  |  |  |  |  |
| WM4      | 11:10                                                                 | 0.15       | <u>21.1</u><br>21.1 21.1                                  | 5.98<br>5.94 6.0               | <u>67.5</u><br>66.6 67.1        | <u>6.7</u><br><u>6.6</u> 6.7                                                                                   | $\begin{array}{c c} 7.3 \\ \hline 7.3 \end{array}$ 7.3 | $11 \\ 10 $ 10.5                                                                                                       |  |  |  |  |  |  |
| Date     | 3-Mar-18                                                              |            |                                                           |                                |                                 |                                                                                                                |                                                        |                                                                                                                        |  |  |  |  |  |  |
| Location | Time                                                                  | Depth (m)  | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                          | Turbidity (NTU)                                                                                                | pН                                                     | SS(mg/L)                                                                                                               |  |  |  |  |  |  |
| WM4-CA   | 10:49                                                                 | 0.19       | $\begin{array}{c c} 23.5\\ \hline 23.5 \end{array}$ 23.5  | <u>8.64</u><br>8.67 8.7        | 101.6<br>102.3 102.0            | 2.1 2.2 2.2                                                                                                    | 7.3 7.3                                                | <u>5</u><br>4.5                                                                                                        |  |  |  |  |  |  |
| WM4-CB   | 11:08                                                                 | 0.29       | $\begin{array}{c c} 23.1 \\ \hline 23.1 \end{array}$ 23.1 | 6.15<br>6.17<br>6.2            | 71.0 71.4 71.4                  | 8.3<br>8.4<br>8.4                                                                                              | 7 7.0                                                  | 7 8.0                                                                                                                  |  |  |  |  |  |  |
| WM4      | 10:37                                                                 | 0.24       | 22.5<br>22.5<br>22.5                                      | 6.15<br>6.13<br>6.1            | 71.3 70.8 71.1                  | <u>8.2</u><br>8.4<br>8.3                                                                                       | 7.3         7.3           7.3         7.3              | $\frac{19}{17}$ 18.0                                                                                                   |  |  |  |  |  |  |
|          |                                                                       |            | · · · · ·                                                 | · · · · ·                      | · · · · · ·                     |                                                                                                                |                                                        |                                                                                                                        |  |  |  |  |  |  |
| Date     | 5-Mar-18                                                              |            |                                                           |                                |                                 |                                                                                                                |                                                        |                                                                                                                        |  |  |  |  |  |  |
| Location | Time                                                                  | Depth (m)  | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                          | Turbidity (NTU)                                                                                                | рН                                                     | SS(mg/L)                                                                                                               |  |  |  |  |  |  |
| WM4-CA   | 11:28                                                                 | 0.15       | $\frac{25}{25}$ 25.0                                      | 7.86 7.8                       | <u>95.0</u><br>94.6 94.8        | <u>3.5</u><br><u>3.3</u> 3.4                                                                                   | 7 7.0                                                  | $\frac{<2}{<2}$ <2                                                                                                     |  |  |  |  |  |  |
| WM4-CB   | 11:35                                                                 | 0.30       | $\begin{array}{c c} 25.3 \\ \hline 25.3 \end{array}$ 25.3 | 5.82<br>5.8<br>5.8             | 71.2 71.0                       | <u>6.4</u><br><u>6.5</u> 6.5                                                                                   | 7.1 7.1                                                | <u>10</u><br><u>8</u> 9.0                                                                                              |  |  |  |  |  |  |
| WM4      | 11:20                                                                 | 0.15       | 23.8<br>23.8<br>23.8                                      | <u>5.7</u><br>5.67 5.7         | <u>67.3</u><br>67.0 67.2        | $\frac{11.9}{12.0}$ 12.0                                                                                       | 7.1 7.1                                                | $12 \\ 14 $ 13.0                                                                                                       |  |  |  |  |  |  |
|          |                                                                       |            |                                                           | 1                              |                                 |                                                                                                                |                                                        |                                                                                                                        |  |  |  |  |  |  |
| Date     | 7-Mar-18                                                              |            | -                                                         |                                |                                 |                                                                                                                |                                                        | -                                                                                                                      |  |  |  |  |  |  |
| Location | Time                                                                  | Depth (m)  | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                          | Turbidity (NTU)                                                                                                | pН                                                     | SS(mg/L)                                                                                                               |  |  |  |  |  |  |
| WM4-CA   | 11:35                                                                 | 0.15       | 21.6 21.6 21.6                                            | <u>6.81</u><br><u>6.85</u> 6.8 | 76.6<br>77.0<br>76.8            | $\frac{3.0}{2.7}$ 2.9                                                                                          | 7.4 7.4                                                | <2 <2 <2                                                                                                               |  |  |  |  |  |  |
| WM4-CB   | 11:45                                                                 | 0.30       | $\frac{21.6}{21.6}$ 21.6                                  | $\frac{5.03}{4.99}$ 5.0        | <u>56.4</u><br><u>56.0</u> 56.2 | <u>9.7</u><br>10.1 10.1                                                                                        | 7.1 7.1                                                | <u>14</u><br>13<br>13.5                                                                                                |  |  |  |  |  |  |
| WM4      | 11:25                                                                 | 0.15       | <u>21.4</u><br>21.4 21.4                                  | 5.61<br>5.61 5.6               | <u>62.8</u><br>62.8 62.8        | <u>13.1</u><br>13.0 13.1                                                                                       | 7.2 7.2 7.2                                            | $\frac{13}{11}$ 12.0                                                                                                   |  |  |  |  |  |  |
| Date     | 9-Mar-18                                                              |            | · ·                                                       | · ·                            | · · · ·                         | ·                                                                                                              | · ·                                                    | · · ·                                                                                                                  |  |  |  |  |  |  |
| Location | Time                                                                  | Depth (m)  | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                          | Turbidity (NTU)                                                                                                | pН                                                     | SS(mg/L)                                                                                                               |  |  |  |  |  |  |
| WM4-CA   | 12:05                                                                 | 0.15       | $18 \\ 18 \\ 18 \\ 18.0$                                  | 9.24<br>9.23<br>9.2            | <u>95.1</u><br>95.1<br>95.1     | $\begin{array}{c c} \hline 2.6 \\ \hline 2.1 \\ \hline \end{array} \begin{array}{c} 2.3 \\ \hline \end{array}$ | 7.3<br>7.3<br>7.3                                      | $\begin{array}{c c} \hline \\ \hline $ |  |  |  |  |  |  |
| WM4-CB   | 12:20                                                                 | 0.28       | <u>19.1</u><br>19.1<br>19.1                               | 6.86<br>6.9<br>6.9             | 70.8<br>71.2<br>71.0            | $\begin{array}{c} 2.1 \\ 12.0 \\ 11.8 \end{array} $ 11.9                                                       | 7 7.0                                                  | $11 \\ 12 \\ 11.5$                                                                                                     |  |  |  |  |  |  |
| WM4      | 11:55                                                                 | 0.15       | $     18.2 \\     18.2 \\     18.2     18.2 $             | <u>6.77</u><br><u>6.82</u> 6.8 | <u>69.9</u><br>70.3<br>70.1     | <u>15.1</u><br>16.1 15.6                                                                                       | 7.1<br>7.1<br>7.1                                      | $\frac{8}{10}$ 9.0                                                                                                     |  |  |  |  |  |  |

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\56th (March 2018)\R1509v3.docx



| Date       | 12-Mar-18 |           |                                                                                           |                                   |                                    |                                 |                                           |                                    |
|------------|-----------|-----------|-------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|---------------------------------|-------------------------------------------|------------------------------------|
| Location   | Time      | Depth (m) | Temp (oC)                                                                                 | DO (mg/L)                         | DO (%)                             | Turbidity (NTU)                 | pН                                        | SS(mg/L)                           |
| WM4-CA     | 11:05     | 0.15      | 21.4 21.4                                                                                 | 7.27 7.31 7.3                     | <u>81.7</u><br>82.1 81.9           | $\frac{3.7}{3.0}$ 3.4           | 7.2 7.2                                   | $\frac{4}{3}$ 3.5                  |
| WM4-CB     | 11:10     | 0.30      | <u>21.7</u><br>21.7 21.7                                                                  | <u>5.2</u><br>5.28 5.2            | <u>58.8</u><br><u>59.5</u> 59.2    | $\frac{10.9}{9.5}$ 10.2         | 7.1 7.1                                   | $\frac{12}{10}$ 11.0               |
| WM4        | 11:00     | 0.15      | 22.1 22.1                                                                                 | 5.57<br>5.56<br>5.6               | <u>62.3</u><br>62.4 62.4           | <u>15.8</u><br>15.4 15.6        | 7.1 7.1                                   | $\frac{14}{16}$ 15.0               |
|            |           |           |                                                                                           |                                   |                                    |                                 |                                           |                                    |
| Date       | 14-Mar-18 |           |                                                                                           |                                   |                                    |                                 |                                           | 00( (T)                            |
| Location   | Time      | Depth (m) | Temp (oC)                                                                                 | DO (mg/L)                         | <b>DO (%)</b>                      | Turbidity (NTU)                 | pH                                        | SS(mg/L)                           |
| WM4-CA     | 11:35     | 0.15      | $\begin{array}{c c} 20.5 \\ \hline 20.5 \\ \hline \end{array} 20.5 \end{array} 20.5$      | <u>6.13</u><br><u>6.17</u> 6.2    | <u>67.8</u><br><u>68.3</u> 68.1    | $\frac{7.3}{6.7}$ 7.0           | 7.2         7.2           7.2         7.2 | $\frac{3}{3}$ 3.0                  |
| WM4-CB     | 11:45     | 0.31      | $     \begin{array}{c}       20.8 \\       20.8     \end{array}     $ 20.8                | <u>4.32</u><br><u>4.36</u><br>4.3 | <u>48.1</u><br><u>48.4</u><br>48.3 | <u>9.3</u><br>9.0 9.2           | <u>6.9</u><br><u>6.9</u> 6.9              | $\frac{10}{9}$ 9.5                 |
| WM4        | 11:25     | 0.16      | 20.7 20.7                                                                                 | <u>5.59</u><br><u>5.6</u> 5.6     | <u>62.3</u><br>62.5 62.4           | <u>11.2</u><br>9.7 10.5         | 7.2 7.2                                   | $\frac{9}{10}$ 9.5                 |
|            |           |           |                                                                                           |                                   |                                    |                                 |                                           |                                    |
| Date       | 16-Mar-18 |           | -                                                                                         |                                   |                                    |                                 |                                           |                                    |
| Location   | Time      | Depth (m) | Temp (oC)                                                                                 | DO (mg/L)                         | DO (%)                             | Turbidity (NTU)                 | рН                                        | SS(mg/L)                           |
| WM4-CA     | 12:15     | 0.15      | <u>24.7</u><br>24.7 24.7                                                                  | <u>6.97</u><br>7.02<br>7.0        | <u>83.7</u><br>84.3<br>84.0        | <u>5.1</u><br><u>5.6</u><br>5.3 | 7.5 7.5                                   | $\frac{3}{2}$ 2.5                  |
| WM4-CB     | 12:25     | 0.30      | $\begin{array}{r} 25.4 \\ \hline 25.4 \end{array}$ 25.4                                   | <u>5.64</u><br><u>5.67</u> 5.7    | <u>68.2</u><br>68.5 68.4           | <u>5.1</u><br><u>5.4</u> 5.2    | 7.2 7.2                                   | $\frac{4}{4}$ 4.0                  |
| WM4        | 12:07     | 0.15      | 23.9<br>23.9<br>23.9                                                                      | <u>5.77</u><br>5.75 5.8           | <u>68.1</u><br>67.8 68.0           | <u>15.0</u><br>12.5 13.8        | 7.6 7.6                                   | $\frac{27}{25}$ 26.0               |
|            |           |           |                                                                                           |                                   | 1 1                                |                                 |                                           |                                    |
| Date       | 19-Mar-18 |           |                                                                                           |                                   |                                    |                                 |                                           |                                    |
| Location   | Time      | Depth (m) | Temp (oC)                                                                                 | DO (mg/L)                         | DO (%)                             | Turbidity (NTU)                 | рН                                        | SS(mg/L)                           |
| WM4-CA     | 11:25     | 0.15      | <u>24.9</u><br>24.9 24.9                                                                  | <u>9.12</u><br>9.16 9.1           | <u>109.9</u><br>110.1 110.0        | $\frac{2.7}{2.3}$ 2.5           | 7 7.0                                     | $\frac{3}{3}$ 3.0                  |
| WM4-CB     | 12:00     | 0.30      | 24.8<br>24.8<br>24.8                                                                      | 7.66<br>7.75<br>7.7               | <u>91.9</u><br>92.7 92.3           | <u>5.7</u><br>5.5 5.6           | <u>6.7</u><br><u>6.7</u> 6.7              | <u>8</u><br>7 7.5                  |
| WM4        | 11:00     | 0.15      | $\begin{array}{c c} 25 \\ \hline 25 \\ \hline 25 \\ \end{array}$ 25.0                     | <u>9.61</u><br>9.72 9.7           | <u>117.1</u><br>118.5 117.8        | <u>25.4</u><br>25.9 25.7        | 7.2 7.2 7.2                               | $\frac{38}{36}$ 37.0               |
| <b>D</b> ( | A1 N4 10  |           |                                                                                           | J J                               |                                    |                                 |                                           |                                    |
| Date       | 21-Mar-18 | <b>D</b>  | $\mathbf{T}_{\mathbf{r}}$                                                                 |                                   | $\mathbf{DO}(0/0)$                 |                                 |                                           | $\Omega\Omega(m_{\pi}/\mathbf{I})$ |
| Location   | Time      | Depth (m) | Temp (oC)           23.6         22.6                                                     | <b>DO (mg/L)</b><br>8.89          | <b>DO (%)</b><br>104.8             | Turbidity (NTU)1.71.7           | <b>pH</b>                                 | SS(mg/L)                           |
| WM4-CA     | 12:16     | 0.15      | 23.6 25.0                                                                                 | 8.87 8.9                          | 104.7                              | 1.7                             | 7 7.0                                     | <2 <2                              |
| WM4-CB     | 13:00     | 0.29      | $\begin{array}{c c} 23.3 \\ \hline 23.3 \\ \hline \end{array} 23.3 \\ \hline \end{array}$ | 8.35<br>8.48<br>8.4               | <u>97.1</u><br>98.2 97.7           | <u>9.1</u><br>8.9 9.0           | <u>6.5</u><br><u>6.5</u> 6.5              | $\frac{6}{5}$ 5.5                  |
| WM4        | 12:30     | 0.15      | $\begin{array}{c c} 22.6 \\ \hline 22.6 \end{array}$ 22.6                                 | 7.91<br>7.92<br>7.9               | <u>91.6</u><br>92.0 91.8           | <u>14.7</u><br>15.5 15.1        | <u>6.6</u><br>6.6 6.6                     | $\frac{22}{22}$ 22.0               |

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\56th (March 2018)\R1509v3.docx



| Date     | 23-Mar-18 |            |                                                                     |                                                   |                             |                          |                          |                         |
|----------|-----------|------------|---------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--------------------------|--------------------------|-------------------------|
| Location | Time      | Depth (m)  | Temp (oC)                                                           | DO (mg/L)                                         | DO (%)                      | Turbidity (NTU)          | pН                       | SS(mg/L)                |
| WM4-CA   | 12;16     | 0.15       | <u>24.1</u><br>24.1 24.1                                            | 8.04<br>8.03<br>8.0                               | <u>104.2</u><br>104.1       | 4.3 4.3                  | 7.61<br>7.61<br>7.6      | 5 5.0                   |
| WM4-CB   | 12:28     | 0.29       | <u>24.7</u><br>24.7 24.7                                            | 7.55         7.5           7.52         7.5       | <u>96.6</u><br>96.7 96.7    | 8.3<br>8.6<br>8.5        | 7.1 7.1                  | 14 13.0                 |
| WM4      | 11:49     | 0.19       | $\frac{25}{25}$ 25.0                                                | 7.34<br>7.34<br>7.3                               | <u>95.1</u><br>95.0 95.1    | <u>32.3</u><br>31.9 32.1 | 7.4 7.4                  | $\frac{33}{30}$ 31.5    |
| Date     | 27-Mar-18 |            |                                                                     |                                                   |                             |                          |                          |                         |
| Location | Time      | Depth (m)  | Temp (oC)                                                           | DO (mg/L)                                         | DO (%)                      | Turbidity (NTU)          | pH                       | SS(mg/L)                |
| WM4-CA   | 12:20     | 0.15       | $\begin{array}{c c} 26.6 \\ \hline 26.6 \\ \hline \end{array}$ 26.6 | 7.1 7.1 7.1                                       | 82.7<br>82.8<br>82.8        | <u>4.4</u><br>5.1 4.7    | 7.2 7.2                  | <u>6</u> 5.0            |
| WM4-CB   | 12:25     | 0.30       | 24.6<br>24.6 24.6                                                   | 5.32<br>5.37<br>5.3                               | <u>63.5</u><br>64.1 63.8    | <u>6.6</u><br>6.2 6.4    | 7.1 7.1                  | 5 4.5                   |
| WM4      | 12:10     | 0.15       | 23.8<br>23.8<br>23.8                                                | <u>4.75</u><br>4.71 4.7                           | <u>57.2</u><br>56.8 57.0    | <u>21.7</u><br>21.5 21.6 | 7.2<br>7.2<br>7.2<br>7.2 | <u>19</u><br>20 19.5    |
| Date     | 29-Mar-18 |            |                                                                     |                                                   |                             |                          |                          |                         |
| Location | Time      | Depth (m)  | Temp (oC)                                                           | DO (mg/L)                                         | DO (%)                      | Turbidity (NTU)          | pH                       | SS(mg/L)                |
| WM4-CA   | 13:25     | 0.15       | <u>24.9</u><br>24.9 24.9                                            | 6.82<br>6.84<br>6.8                               | <u>82.2</u><br>82.5<br>82.4 | <u>6.6</u><br>6.0 6.3    | 7.4 7.4                  | 3 3.5                   |
| WM4-CB   | 13:38     | 0.31       | 25.6<br>25.6<br>25.6                                                | <u>5.1</u><br>5.11 5.1                            | <u>62.2</u><br>62.3 62.3    | $\frac{11.4}{10.9}$ 11.2 | 6.9<br>6.9<br>6.9        | <u>9</u><br>8 8.5       |
| WM4      | 13:15     | 0.15       | <u>24.1</u><br>24.1 24.1                                            | 5.16<br>5.17 5.2                                  | <u>61.4</u><br>61.6 61.5    | <u>17.4</u><br>18.0 17.7 | 7.1 7.1                  | <u>18</u><br>19<br>18.5 |
|          |           |            |                                                                     |                                                   |                             |                          |                          |                         |
| Date     | 31-Mar-18 | Darith (m) | Tomm (oC)                                                           | $\mathbf{DO}(\mathbf{m}_{\mathbf{Z}}/\mathbf{I})$ | <b>DO</b> (0/)              | T                        | 11                       | SS(ma/L)                |
| Location | Time      | Depth (m)  | <b>Temp (oC)</b>                                                    | <b>DO (mg/L)</b><br>7.33 7.4                      | <b>DO (%)</b><br>88.1 88.7  | Turbidity (NTU)5.94.0    | <b>PH</b>                | SS(mg/L)                |
| WM4-CA   | 11:15     | 0.15       | 25 25.0                                                             | 7.43                                              | 89.2 88.7                   | 3.9 4.9                  | 7.4                      | 2 2.0                   |
| WM4-CB   | 11:30     | 0.31       | 23.9<br>23.9<br>23.9                                                | <u>6.83</u><br><u>6.85</u> 6.8                    | <u>81.1</u><br>81.4 81.3    | 7.8<br>7.6<br>7.7        | 7.1<br>7.1<br>7.1        | 7 7.0                   |
| WM4      | 11:00     | 0.15       | <u>24.7</u><br>24.7 24.7                                            | <u>6.02</u><br>6.05 6.0                           | 73.2 73.3                   | $\frac{13.2}{16.3}$ 14.8 | 7.6 7.6                  | <u>18</u><br>17 17.5    |



Water Quality Monitoring Data for Contract 6

| Date             | 1-Mar-18                |           |                      |                 |              |       |              |       |               |         |              |     |                                           |       |
|------------------|-------------------------|-----------|----------------------|-----------------|--------------|-------|--------------|-------|---------------|---------|--------------|-----|-------------------------------------------|-------|
| Location         | Time                    | Depth (m) | Temp                 | (oC)            | DO (1        | mg/L) | DO           | (%)   | Turbidit      | y (NTU) |              | Н   | SS(1                                      | ng/L) |
| WM2A-C           | 10:25                   | 0.25      | 19.1<br>19.1         | 19.1            | 7.97<br>7.95 | 8.0   | 85.6<br>85.3 | 85.5  | 13.5<br>13.4  | 13.5    | 7.30         | 7.3 | 5 4                                       | 4.5   |
| WM2A             | 10:10                   | 0.15      | 18.9<br>18.9         | 18.9            | 8.01<br>8    | 8.0   | 86.3<br>86.1 | 86.2  | 4.5<br>4.6    | 4.6     | 7.40<br>7.40 | 7.4 | 2<br>2                                    | 2.0   |
|                  |                         |           |                      |                 |              |       |              |       |               |         |              |     |                                           |       |
| Date             | 3-Mar-18                |           |                      |                 | DO           |       |              | (0 () | <b>m</b> 1.11 |         | 1            |     |                                           |       |
| Location         | Time                    | Depth (m) | Temp                 | (oC)            | DO (1        | mg/L) | DO           | (%)   |               | y (NTU) |              | H   | <u>`</u>                                  | ng/L) |
| WM2A-C           | 9:27                    | 0.28      | 20.1<br>20.1         | 20.1            | 7.83<br>7.82 | 7.8   | 86.1<br>85.5 | 85.8  | 14.5<br>14.4  | 14.5    | 7.30<br>7.30 | 7.3 | <u>8</u><br>6                             | 7.0   |
| WM2A             | 9:14                    | 0.17      | 20.7<br>20.7         | 20.7            | 7.45<br>7.47 | 7.5   | 83.0<br>84.0 | 83.5  | 7.8<br>7.9    | 7.9     | 7.40<br>7.40 | 7.4 | 3 4                                       | 3.5   |
| Date             | 5-Mar-18                |           |                      |                 |              |       |              |       |               |         |              |     |                                           |       |
| Location         | Time                    | Depth (m) | Temp                 | (oC)            | DO (1        | mg/L) | DO           | (%)   | Turbidit      | y (NTU) | p            | Н   | SS(1                                      | ng/L) |
| WM2A-C           | 10:35                   | 0.28      | 21.6<br>21.6         | 21.6            | 7.42         | 7.4   | 83.8<br>83.6 | 83.7  | 18.8<br>18.9  | 18.9    | 7.40         | 7.4 | 10<br>11                                  | 10.5  |
| WM2A             | 10:25                   | 0.15      | 21.0<br>21.8<br>21.8 | 21.8            | 7.18         | 7.2   | 81.9<br>81.8 | 81.9  | 6.1<br>6.2    | 6.2     | 7.30         | 7.3 | 7<br>8                                    | 7.5   |
| Date<br>Location | <b>7-Mar-18</b><br>Time | Depth (m) | Temp                 | (oC)            | DO (1        | mg/L) | DO           | (%)   | Turbidit      | y (NTU) | p            | Н   | SS(1                                      | ng/L) |
| WM2A-C           | 10:35                   | 0.26      | 21.4<br>21.4         | 21.4            | 6.62<br>6.61 | 6.6   | 73.8<br>73.9 | 73.9  | 16.2<br>17.3  | 16.8    | 7.40         | 7.4 | 55                                        | 5.0   |
| WM2A             | 10:05                   | 0.15      | 21.5<br>21.5         | 21.5            | 6.84<br>6.95 | 6.9   | 76.8<br>77.7 | 77.3  | 7.4<br>7.2    | 7.3     | 7.50<br>7.50 | 7.5 | 33                                        | 3.0   |
| Date             | 9-Mar-18                |           |                      |                 |              |       |              |       |               |         |              |     |                                           |       |
| Location         | Time                    | Depth (m) | Temp                 | $(0\mathbf{C})$ | DO (1        | mg/L) | DO           | (%)   | Turbidit      | v (NTU) | n            | Н   | SS(                                       | ng/L) |
| WM2A-C           | 10:25                   | 0.25      | 14.1<br>14.1         | 14.1            | 8.93<br>9.03 | 9.0   | 86.1<br>86.7 | 86.4  | 79.9<br>79.8  | 79.9    | 7.50<br>7.50 | 7.5 | 35<br>34                                  | 34.5  |
| WM2A             | 10:10                   | 0.15      | <u>15.7</u><br>15.7  | 15.7            | 8.95<br>8.96 | 9.0   | 88.9<br>89.2 | 89.1  | 5.1<br>5.0    | 5.0     | 7.40         | 7.4 | < <u>&lt;</u><br>< <u>2</u><br>< <u>2</u> | <2    |
| Date             | 12-Mar-18               |           |                      |                 |              |       |              |       |               |         |              |     |                                           |       |
| Location         | Time                    | Depth (m) | Temp                 | (0C)            | DO (1        | mg/L) | DO           | (%)   | Turbidit      | y (NTU) | n            | Н   | SS(                                       | ng/L) |
| WM2A-C           | 10:10                   | 0.20      | 17.6<br>17.6         | 17.6            | 7.29         | 7.3   | 77.8         | 77.8  | 8.7<br>8.8    | 8.8     | 7.20         | 7.2 | $\begin{array}{c} 3 \end{array}$          | 3.5   |
| WM2A             | 9:56                    | 0.15      | 17.9<br>17.9<br>17.9 | 17.9            | 7.14         | 7.1   | 77.7         | 77.7  | 5.7<br>5.7    | 5.7     | 7.20         | 7.2 | 3<br>2                                    | 2.5   |



| Date             | 14-Mar-18                |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
|------------------|--------------------------|-----------|--------------------------------------------------------------------------------------|--------------|------------------|----------------|------------|--------------|---------|--------------|----------|-----------------|-------|
| Location         | Time                     | Depth (m) | Temp (oC)                                                                            | DO (1        | mg/L)            | DO             | (%)        | Turbidit     | y (NTU) |              | pН       | SS(             | mg/L) |
| WM2A-C           | 10:20                    | 0.28      | <u>19.9</u><br>19.9 19.9                                                             | 7.16         | 7.1              | 78.3<br>78.1   | 78.2       | 22.3<br>22.3 | 22.3    | 7.20         | 7.2      | 10<br>11        | 10.5  |
| WM2A             | 10:00                    | 0.17      | $\begin{array}{c c} 20.8 \\ \hline 20.8 \\ \hline \end{array} 20.8 \end{array} 20.8$ | 7.71<br>7.7  | 7.7              | 84.2<br>84.4   | 84.3       | 22.1<br>19.2 | 20.7    | 7.20<br>7.20 | 7.2      | 12<br>11        | 11.5  |
|                  | 1 C M 10                 |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
| Date             | 16-Mar-18                | Depth (m) | Temp (oC)                                                                            |              | mg/L)            | DO             | (0/)       | Turkidit     | y (NTU) |              | pН       | 550             | mg/L) |
| Location         | Time                     |           | 20.5                                                                                 | 6.04         |                  | 67.6           |            | 21.6         |         | 7.30         |          | 5               | Ŭ /   |
| WM2A-C           | 10:50                    | 0.26      | 20.5                                                                                 | 6.05         | 6.0              | 67.8           | 67.7       | 21.2         | 21.4    | 7.30         | 7.3      | 7               | 6.0   |
| WM2A             | 10:25                    | 0.16      | <u>21.1</u><br>21.1 21.1                                                             | 6.71<br>6.71 | 6.7              | 75.4<br>75.5   | 75.5       | 18.0<br>18.6 | 18.3    | 6.90<br>6.90 | 6.9      | <u>11</u><br>12 | 11.5  |
| Dete             | 10 Mar. 10               |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
| Date<br>Location | <b>19-Mar-18</b><br>Time | Depth (m) | Temp (oC)                                                                            |              | mg/L)            | DO             | (0/2)      | Turbidit     | y (NTU) |              | pН       | SS(             | mg/L) |
|                  |                          |           | 24.1                                                                                 | 8.34         |                  | 99.2           |            | 9.5          | Í       | 7.98         |          | 25              |       |
| WM2A-C           | 16:01                    | 0.17      | 24.1 24.1                                                                            | 8.33         | 8.3              | 99.1           | 99.2       | 9.5          | 9.5     | 7.97         | 8.0      | 9               | 17.0  |
| WM2A             | 11:39                    | 0.26      | <u>24.4</u><br>24.4 24.4                                                             | 8.4<br>8.39  | 8.4              | 100.5<br>100.6 | 100.6      | 7.3<br>7.4   | 7.4     | 7.72<br>7.71 | 7.7      | <u>9</u><br>13  | 11.0  |
|                  | <b>31 M</b> 10           |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
| Date<br>Location | 21-Mar-18<br>Time        | Depth (m) | Temp (oC)                                                                            |              | mg/L)            | DO             | $(0/_{-})$ | Turbidit     | V(NTU)  |              | pН       | SS(             | mg/L) |
|                  |                          |           | 21.6                                                                                 | 8.75         | Г <sup>о</sup> ́ | 99.3           |            | 22.9         |         | 7.26         | <u> </u> | 25              | Ŭ /   |
| WM2A-C           | 14:09                    | 0.27      | 21.6 21.6                                                                            | 8.76         | 8.8              | 99.3           | 99.3       | 20.6         | 21.8    | 7.26         | - 7.3    | 64              | 44.5  |
| WM2A             | 13:35                    | 0.24      | $\frac{21.6}{21.6}$ 21.6                                                             | 8.81<br>8.81 | 8.8              | 100.1<br>100.1 | 100.1      | 13.5<br>13.1 | 13.3    | 7.56<br>7.55 | 7.6      | 9<br>13         | 11.0  |
|                  | <b>AA bE</b> 40          |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
| Date             | 23-Mar-18                |           | <b>T</b> ( <b>C</b> )                                                                | DO (         |                  | DO             | (0 / )     | TT 1 ' 1'    |         | 1            | 11       | 00/             |       |
| Location         | Time                     | Depth (m) | Temp (oC)                                                                            |              | mg/L)            | DO 4           | (%)        |              | y (NTU) |              | pН       |                 | mg/L) |
| WM2A-C           | 13:05                    | 0.21      | <u>22.9</u><br>22.7 22.8                                                             | 8.65<br>8.51 | 8.6              | 99.4<br>97.6   | 98.5       | 21.5<br>22.2 | 21.9    | 8.60<br>8.80 | 8.7      | 21<br>23        | 22.0  |
| WM2A             | 13:34                    | 0.23      | <u>22.9</u><br>22.8 22.9                                                             | 9.59<br>9.36 | 9.5              | 109.6<br>107.1 | 108.4      | 25.0<br>25.6 | 25.3    | 8.40<br>8.30 | 8.4      | 10<br>12        | 11.0  |
| D-t-             | 27 Mar 10                |           |                                                                                      |              |                  |                |            |              |         |              |          |                 |       |
| Date<br>Location | <b>27-Mar-18</b><br>Time | Depth (m) | Temp (oC)                                                                            |              | mg/L)            | DO             | (0/2)      | Turbidit     | V (NTU) |              | pН       | CC/             | mg/L) |
|                  |                          |           | 20.7                                                                                 | 6.07         |                  | 67.7           |            | 19.8         | Í       | 7.10         |          | 9               | Ŭ /   |
| WM2A-C           | 10:45                    | 0.26      | 20.7                                                                                 | 6.03         | 6.1              | 67.6           | 67.7       | 19.7         | 19.8    | 7.10         | - 7.1    | 10              | 9.5   |
| WM2A             | 10:10                    | 0.16      | <u>21.9</u><br>21.9 21.9                                                             | 7.74<br>7.72 | 7.7              | 87.4<br>87.3   | 87.4       | 9.1<br>10.3  | 9.7     | 6.90<br>6.90 | 6.9      | 6<br>7          | 6.5   |



| Date             | 29-Mar-18                |                   |                  |                |               |              |             |              |                  |                 |           |       |                     |              |
|------------------|--------------------------|-------------------|------------------|----------------|---------------|--------------|-------------|--------------|------------------|-----------------|-----------|-------|---------------------|--------------|
| Location         | Time                     | Depth (m)         | Temp             | Temp (oC)      |               | mg/L)        | DO          | (%)          | Turbidit         | y (NTU)         | р         | Н     | SS(                 | mg/L)        |
| WM2A-C           | 10:10                    | 0.28              | 21               | 21.0           | 5.87          | 5.0          | 66.1        | 66.2         | 14.6             | 14.8            | 6.80      | 6.8   | 6                   | 6.5          |
| W WIZA-C         | 10.10                    | 0.28              | 21               | 21.0           | 5.86          | 5.9          | 66.2        | 00.2         | 14.9             | 14.0            | 6.80      | 0.8   | 7                   | 6.5          |
| WM2A             | 10:00                    | 0.16              | 21.4             | 21.4           | 7.53          | 7.5          | 84.8        | 84.9         | 12.9             | 12.1            | 6.80      | 6.8   | 7                   | 7.0          |
| W WIZA           | 10.00                    | 0.10              | 21.4             | 21.4           | 7.54          | 7.5          | 85.0        | 04.7         | 11.3             | 12.1            | 6.80      | 0.0   | 7                   | 7.0          |
|                  |                          |                   | 21.1             |                | 7.51          |              | 05.0        |              | 11.0             |                 | 0.00      |       | ,                   |              |
|                  |                          |                   | 21.1             |                | 7.51          |              | 00.0        |              | 11.0             |                 |           |       |                     |              |
| Date             | 31-Mar-18                |                   | 21,1             |                | 7.51          | 1            | 00.0        | 1            |                  | 1               |           | 1     |                     | 1            |
| Date<br>Location | <b>31-Mar-18</b><br>Time | Depth (m)         |                  | o (oC)         |               | mg/L)        |             | (%)          |                  | y (NTU)         | p         | H     | SS(                 | mg/L)        |
| Location         | Time                     |                   |                  |                |               |              |             |              |                  | Í               | 1         | 1     | SS(                 |              |
| Location         |                          | Depth (m)<br>0.28 | Temp             | o (oC)<br>22.0 | DO (1         | mg/L)<br>9.3 | DO          | (%)<br>115.3 | Turbidit         | y (NTU)<br>16.0 | р         | Н 6.7 | SS(<br>3<br>4       | mg/L)<br>3.5 |
| <b>x</b>         | Time                     |                   | Temp<br>22<br>22 |                | DO (1<br>9.32 |              | DO<br>115.2 |              | Turbidit<br>16.1 | Í               | р<br>6.70 | 1     | SS(<br>3<br>4<br>13 |              |



### Water Quality Monitoring Data for Contract 2 and 6

| Date     | 1-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
|----------|----------|-----------|------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------------|-----------------------|----------------------|
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | рН                    | SS(mg/L)             |
| WM3-C    | 10:40    | 0.15      | $\begin{array}{c c} 23.6 \\ \hline 23.6 \end{array}$ 23.6                    | <u>8.23</u><br>8.22 8.2 | <u>97.3</u><br>97.2 97.3 | $\frac{1.6}{1.5}$ 1.6    | 7.4 7.4               | 3 3.5                |
| WM3      | 10:55    | 0.15      | <u>21.1</u><br>21.1 21.1                                                     | 8.05<br>8.06<br>8.1     | <u>90.2</u><br>90.2 90.2 | <u>24.2</u><br>24.7 24.5 | $\frac{7.5}{7.5}$ 7.5 | $\frac{38}{41}$ 39.5 |
|          |          |           |                                                                              |                         |                          |                          |                       |                      |
| Date     | 2-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | рН                    | SS(mg/L)             |
| WM3-C    | 10:00    | 0.15      | <u>24.2</u><br>24.2 24.2                                                     |                         |                          | 2.8<br>2.9<br>2.9        |                       | 4 4.0                |
| WM3      | 10:15    | 0.15      | 21.8<br>21.8<br>21.8                                                         |                         |                          | <u>4.3</u><br>4.0 4.2    |                       | <u>5</u><br>5<br>5.0 |
| Date     | 3-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | pН                    | SS(mg/L)             |
|          |          |           | 24                                                                           | 8 26                    | 0.00                     | 2.4                      | 7.2                   | 0                    |
| WM3-C    | 9:59     | 0.19      | 24 24.0                                                                      | 8.3 8.3<br>7.52         | 99.4 98.7                | 3.5 3.5                  | 7.2                   | 7 7.5                |
| WM3      | 9:44     | 0.15      | 21.7 21.8                                                                    | 7.54 7.5                | 86.4 86.1                | 120.0 119.0              | 7 7.0                 | 190 185.0            |
| Date     | 5-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | pН                    | SS(mg/L)             |
|          |          |           | 25                                                                           | 9.05                    | 007                      |                          | 76                    | 2                    |
| WM3-C    | 11:00    | 0.15      | 25 23.0                                                                      | 8.01 8.0                | 98.3 98.3                | 2.3 2.3                  | 7.6                   | 4 3.3                |
| WM3      | 10:50    | 0.15      | $\frac{23.5}{23.5}$ 23.5                                                     | 8.21 8.2                | <u>96.7</u><br>96.3 96.5 | 13.4 13.2                | <u>8</u><br>8.0       | 11 11.0              |
| Date     | 6-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | pН                    | SS(mg/L)             |
| WM3-C    | 11:59    | 0.15      | $\begin{array}{c c} 23 \\ \hline 23 \\ \hline 23 \\ \hline \end{array}$ 23.0 |                         |                          | <u>1.7</u><br>1.6 1.7    |                       | <u>6</u> 6.0         |
| WM3      | 11:45    | 0.15      | 22.5 22.5                                                                    |                         |                          | 3.9 4.1                  |                       | 6 60                 |
| ,, 1115  | 11.10    | 0.10      | 22.5 22.5                                                                    |                         |                          | 4.3 4.1                  |                       | 6 0.0                |
| Date     | 7-Mar-18 |           |                                                                              |                         |                          |                          |                       |                      |
| Location | Time     | Depth (m) | Temp (oC)                                                                    | DO (mg/L)               | DO (%)                   | Turbidity (NTU)          | рН                    | SS(mg/L)             |
|          | 1        |           | 22.2 22.2                                                                    | 8.25 8.2                | 93.9 93.9                | 7.5 7.1                  | 8.8 0.0               | 5 50                 |
| WM3-C    | 10:50    | 0.15      | 22.2 22.2                                                                    | 8.25 8.3                | 93.8 95.9                | 6.7 7.1                  | 8.8                   | 5 5.0                |



| Date     | 9-Mar-18  |           |                                                           |                                |                             |                                 |                              |                                                 |
|----------|-----------|-----------|-----------------------------------------------------------|--------------------------------|-----------------------------|---------------------------------|------------------------------|-------------------------------------------------|
| Location | Time      | Depth (m) | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                      | Turbidity (NTU)                 | pН                           | SS(mg/L)                                        |
| WM3-C    | 11:01     | 0.21      | 19.1 19.1                                                 | 9.22 9.4                       | 96.9 98.0                   | 3.8 3.6                         | 8.5 8.7                      | 8 7.0                                           |
| wind c   | 11.01     | 0.21      | 19.1                                                      | 9.49                           | 99.1                        | 3.4                             | 8.9                          | 6                                               |
| WM3      | 11:15     | 0.15      | <u>19.7</u><br>19.7 19.7                                  | <u>6.61</u><br><u>6.62</u> 6.6 | 72.5<br>72.9<br>72.7        | <u>6.8</u><br><u>6.5</u> 6.6    | <u>8.3</u><br>8.3 8.3        | 5 6.0                                           |
|          |           |           |                                                           |                                | , _, _                      |                                 |                              | ,                                               |
| Date     | 12-Mar-18 |           |                                                           |                                |                             |                                 |                              |                                                 |
| Location | Time      | Depth (m) | Temp (oC)                                                 | DO (mg/L)                      | DO (%)                      | Turbidity (NTU)                 | pН                           | SS(mg/L)                                        |
| WM3-C    | 10:25     | 0.17      | $\begin{array}{c c} 22.1 \\ \hline 22.1 \end{array}$ 22.1 | 7.96<br>7.97 8.0               | <u>90.4</u><br>90.5 90.5    | $\frac{2.5}{3.0}$ 2.7           | 8.8<br>8.8<br>8.8            | $\frac{2}{3}$ 2.5                               |
| WM3      | 10:32     | 0.15      | $\frac{20.6}{20.6}$ 20.6                                  | 7.67<br>7.75<br>7.7            | <u>84.6</u><br>85.5 85.1    | <u>5.3</u><br><u>5.3</u><br>5.3 | <u>7.9</u><br>7.9<br>7.9     | <u>5</u><br>4 4.5                               |
|          |           |           |                                                           | • •                            |                             | • • •                           |                              |                                                 |
| Date     | 14-Mar-18 | Donth (m) | Tomm (of)                                                 | DO(ma/L)                       | DO (%)                      | Turbidity (NTU)                 | pH                           | SS(mg/L)                                        |
| Location | Time      | Depth (m) | Temp (oC)           23         22.0                       | <b>DO (mg/L)</b><br>7.35       | 010                         | 60                              | 00                           | SS(mg/L)                                        |
| WM3-C    | 10:38     | 0.16      | 23 23.0                                                   | 7.42                           | 85.4 85.1                   | 7.3 0.0                         | 8.8 0.0                      | 20 19.0                                         |
| WM3      | 10:50     | 0.15      | <u>21.7</u><br>21.7 21.7                                  | <u>6.68</u><br><u>6.69</u> 6.7 | 75.0 75.1                   | <u>9.1</u><br>9.7 9.4           | <u>8.2</u><br>8.2<br>8.2     | 7 7.5                                           |
|          |           |           |                                                           |                                |                             |                                 |                              |                                                 |
| Date     | 16-Mar-18 | Denth (m) | $\mathbf{T}$                                              |                                |                             |                                 |                              | $\mathbf{SS}(\mathbf{u},\mathbf{u}'\mathbf{I})$ |
| Location | Time      | Depth (m) | Temp (oC)                                                 | DO (mg/L)                      | <b>DO (%)</b><br>79.8 70.8  | Turbidity (NTU)                 | <b>pH</b>                    | SS(mg/L)                                        |
| WM3-C    | 11:35     | 0.15      | $\frac{25}{25}$ 25.0                                      | 6.62<br>6.61 6.6               | 79.7 79.8                   | $\frac{3.0}{3.0}$ 3.0           | <u>8.4</u><br>8.4 8.4        | $\frac{<2}{<2}$ <2                              |
| WM3      | 11:45     | 0.15      | $\frac{24}{24}$ 24.0                                      | <u>6.71</u><br><u>6.69</u> 6.7 | <u>79.8</u><br>79.6<br>79.7 | 4.3 4.5                         | <u>8.1</u><br>8.1<br>8.1     | $\frac{<2}{<2}$ <2                              |
|          |           |           |                                                           |                                |                             |                                 |                              |                                                 |
| Date     | 19-Mar-18 |           |                                                           |                                |                             |                                 | TT                           |                                                 |
| Location | Time      | Depth (m) | Temp (oC)           24.5         24.5                     | <b>DO (mg/L)</b><br>8.23       | <b>DO (%)</b><br>98.9       | Turbidity (NTU)9.6              | <b>pH</b><br>9.4 0.4         | SS(mg/L)                                        |
| WM3-C    | 11:30     | 0.16      | 24.5 24.5                                                 | 8.23 8.2                       | 98.9                        | 9.6 9.6                         | 9.4 9.4                      | 9 9.5                                           |
| WM3      | 10:45     | 0.15      | $\frac{24}{24}$ 24.0                                      | <u>8.43</u><br>8.43 8.4        | 100.2<br>100.3 100.3        | <u>5.9</u><br><u>5.9</u> 5.9    | <u>6.1</u><br><u>6.1</u> 6.1 | 3 3.5                                           |
| _        |           |           |                                                           |                                |                             |                                 |                              | I                                               |
| Date     | 21-Mar-18 |           |                                                           |                                |                             |                                 | TT                           |                                                 |
| Location | Time      | Depth (m) | Temp (oC)                                                 | <b>DO (mg/L)</b>               | <b>DO (%)</b>               | Turbidity (NTU)                 | <b>pH</b>                    | SS(mg/L)                                        |
| WM3-C    | 10:30     | 0.16      | $\begin{array}{c} 22.3 \\ \hline 22.3 \end{array}$ 22.3   | <u>8.79</u><br>8.81<br>8.8     | 101.5<br>101.6<br>101.6     | <u>5.2</u><br><u>5.4</u> 5.3    | <u>8.05</u><br>8.08<br>8.1   | <u>4</u> 6.0                                    |
|          |           |           | 21.5 21.5                                                 | 8.97                           | 101.7                       | 9.4 0.4                         | 7.5 7.5                      | <2                                              |



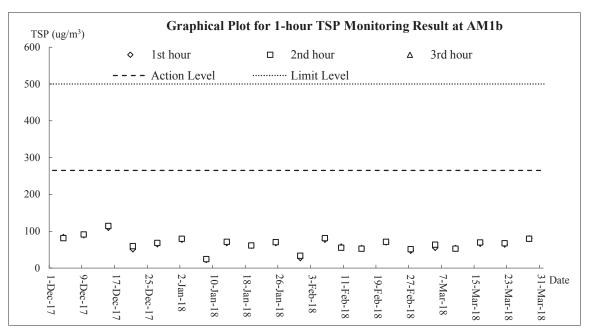
| Date     | 23-Mar-18 |           |      |      |       |       |       |       |          |         |      |     |      |       |
|----------|-----------|-----------|------|------|-------|-------|-------|-------|----------|---------|------|-----|------|-------|
| Location | Time      | Depth (m) | Temp | (0C) | DO (1 | mg/L) | DO    | (%)   | Turbidit | y (NTU) | р    | Η   | SS(n | ng/L) |
| WM3-C    | 11.50     | 0.16      | 24   | 24.0 | 8.29  | 0.2   | 98.7  | 98.7  | 5.8      | 5 0     | 8.94 | 8.9 | 5    | 5.5   |
| W W15-C  | 11:50     | 0.10      | 24   | 24.0 | 8.29  | 0.3   | 98.7  | 98.7  | 5.8      | 3.8     | 8.94 | 0.9 | 6    | 3.5   |
| WM3      | 11:30     | 0.15      | 23.1 | 22.1 | 8.66  | 07    | 101.3 | 101.3 | 4.9      | 10      | 8.85 | 8.9 | 6    | 7.0   |
| W IVIS   | 11.50     | 0.15      | 23.1 | 23.1 | 8.66  | 0.7   | 101.3 | 101.5 | 4.9      | 4.9     | 8.85 | 0.9 | 8    | 7.0   |

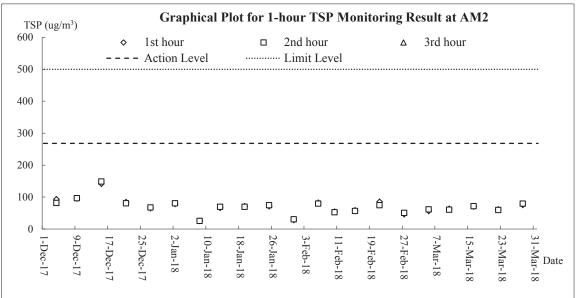
| Date     | 27-Mar-18 |           |      |      |       |       |       |       |          |         |     |     |      |       |
|----------|-----------|-----------|------|------|-------|-------|-------|-------|----------|---------|-----|-----|------|-------|
| Location | Time      | Depth (m) | Temp | (0C) | DO (1 | ng/L) | DO    | (%)   | Turbidit | y (NTU) | р   | Н   | SS(n | ıg/L) |
| WM3-C    | 11.30     | 0.16      | 24.6 | 24.6 | 10.78 | 10.9  | 128.6 | 129.8 | 6.9      | 6.0     | 6.6 | 6.6 | 13   | 12.5  |
| W W15-C  | 11.50     | 0.10      | 24.6 | 24.0 | 11.04 | 10.9  | 130.9 | 129.8 | 7.0      | 6.9     | 6.6 | 0.0 | 12   | 12.3  |
| WM3      | 11:45     | 0.15      | 27.3 | 27.2 | 6.09  | 6.1   | 76.1  | 76.2  | 6.9      | 7.2     | 6.7 | 67  | 5    | 6.0   |
| VV IVIS  | 11.43     | 0.15      | 27.3 | 21.5 | 6.11  | 6.1   | 76.3  | /0.2  | 7.8      | 7.5     | 6.7 | 6./ | 7    | 0.0   |

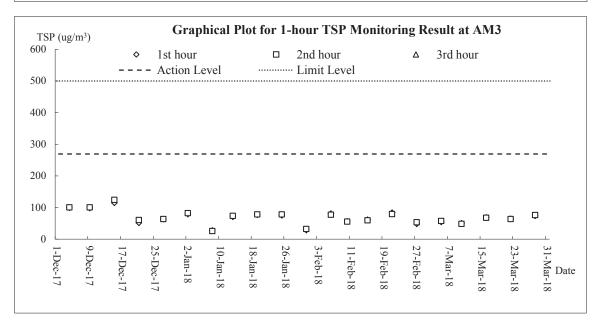
| Date     | 29-Mar-18 |           |      |      |       |       |      |      |          |         |     |     |      |       |
|----------|-----------|-----------|------|------|-------|-------|------|------|----------|---------|-----|-----|------|-------|
| Location | Time      | Depth (m) | Тетр | (0C) | DO (1 | ng/L) | DO   | (%)  | Turbidit | y (NTU) | р   | Η   | SS(n | ng/L) |
| WM3-C    | 10:30     | 0.16      | 25.2 | 25.2 | 7.02  | 7 1   | 83.2 | 83.6 | 59.3     | 62.1    | 7.8 | 7.0 | 128  | 134.0 |
| WIND-C   | 10.50     | 0.16      | 25.2 | 23.2 | 7.08  | /.1   | 83.9 | 83.0 | 64.9     | 62.1    | 7.8 | /.0 | 140  | 134.0 |
| WM3      | 10:45     | 0.15      | 24.6 | 24.6 | 6.16  | 6.2   | 73.8 | 73.0 | 21.1     | 23.0    | 7.6 | 7.6 | 13   | 12.5  |
| VV IVI 5 | 10.45     | 0.15      | 24.6 | 24.0 | 6.17  | 0.2   | 73.9 | 13.9 | 24.8     | 23.0    | 7.6 | 7.0 | 12   | 12.3  |

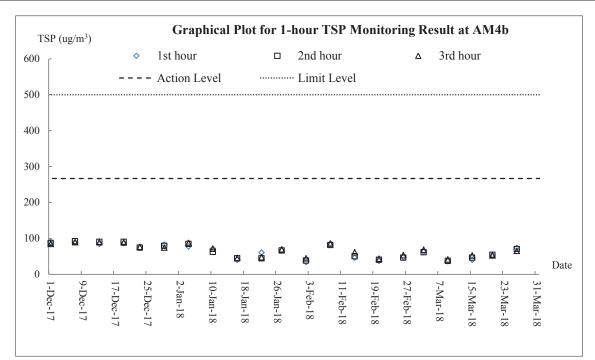
| Date     | 31-Mar-18 |           |           |      |           |     |        |      |                 |      |     |     |          |      |
|----------|-----------|-----------|-----------|------|-----------|-----|--------|------|-----------------|------|-----|-----|----------|------|
| Location | Time      | Depth (m) | Temp (oC) |      | DO (mg/L) |     | DO (%) |      | Turbidity (NTU) |      | рН  |     | SS(mg/L) |      |
| WM3-C    | 10:20     | 0.15      | 25.8      | 25.9 | 7         | 7.1 | 85.4   | 85.0 | 10.9            | 10.9 | 7.9 | 7.0 | 10       | 11.0 |
| WIND-C   | 10.20     | 0.15      | 25.8      | 23.8 | 7.11      | /.1 | 86.3   | 83.9 | 94              | 10.9 | 7.9 | 7.9 | 12       | 11.0 |
| WM3      | 10:29     | 0.15      | 24.5      | 24.5 | 7.35      | 7.2 | 87.7   | 976  | 9.9             | 07   | 6.8 | 6.8 | 10       | 10.0 |
| VV IVI S | 10.29     | 0.15      | 24.5      | 24.3 | 7.33      | 1.5 | 87.5   | 87.0 | 9.6             | 9.7  | 6.8 | 0.0 | 10       | 10.0 |

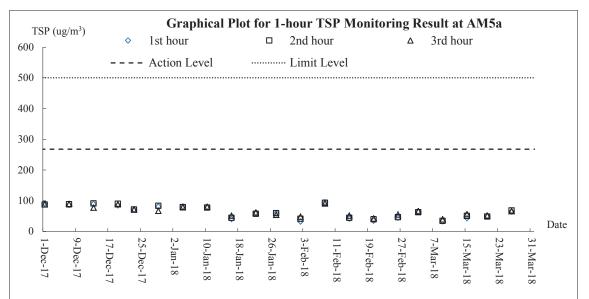
Remarks:

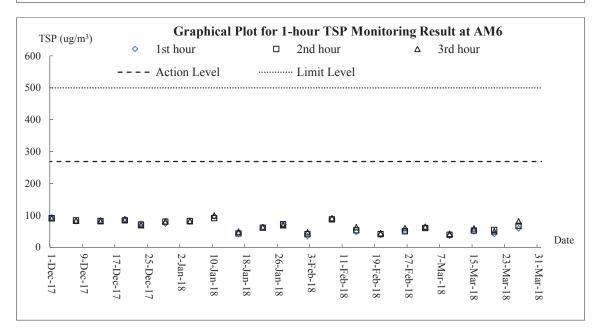

<sup>#</sup> Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.


| Action Level |
|--------------|
| Limit Level  |

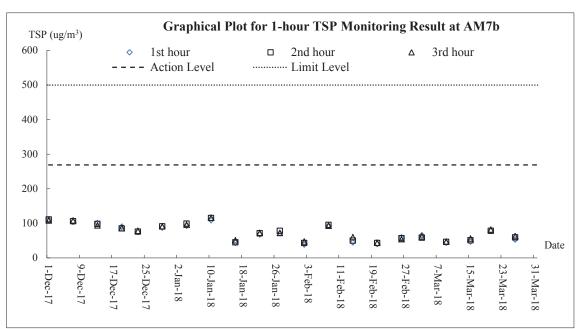

## Appendix J

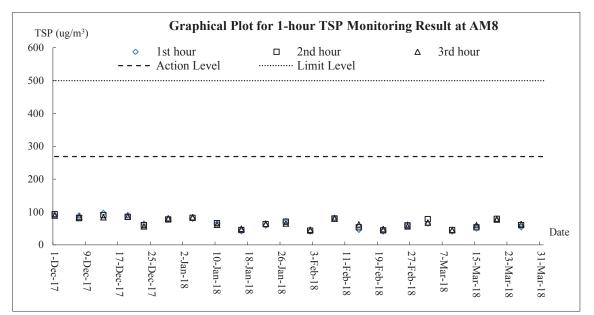

## **Graphical Plots for Monitoring Result**

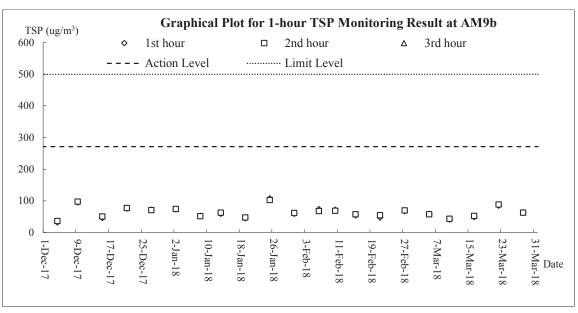

## <u>Air Quality – 1-hour TSP</u>



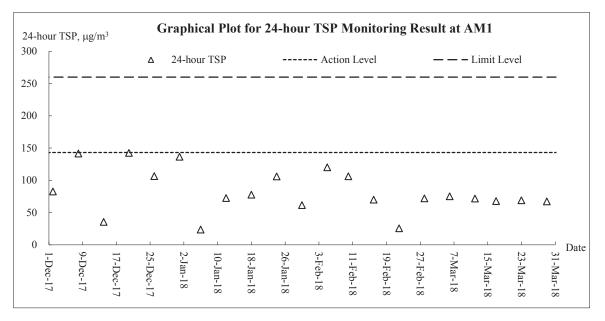


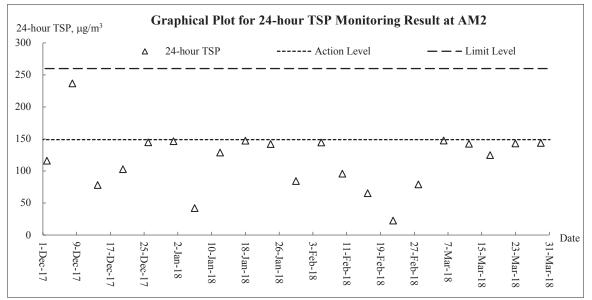



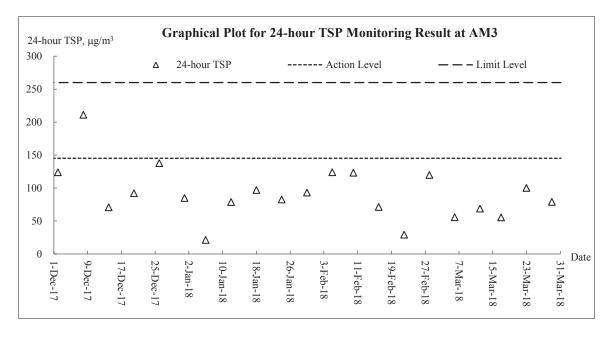



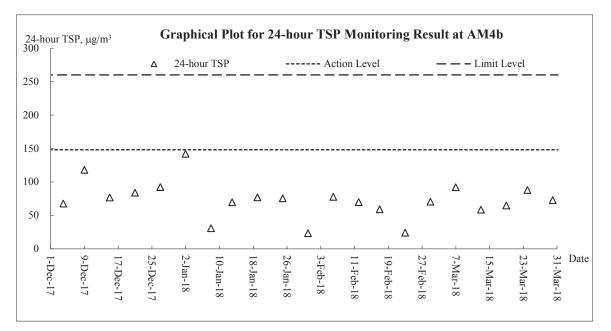



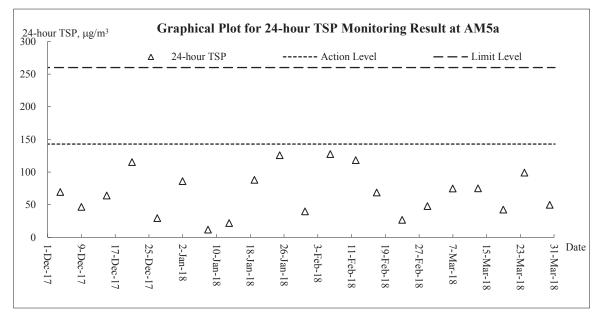


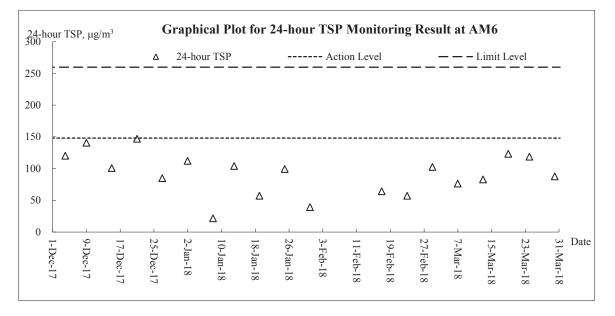



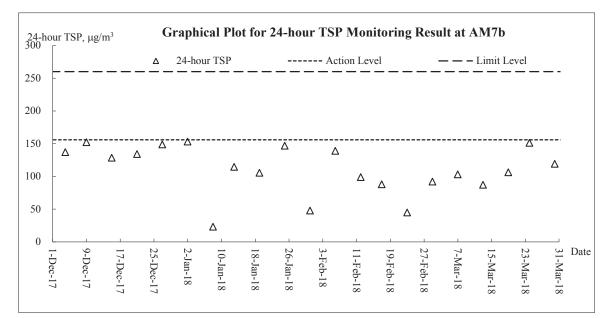



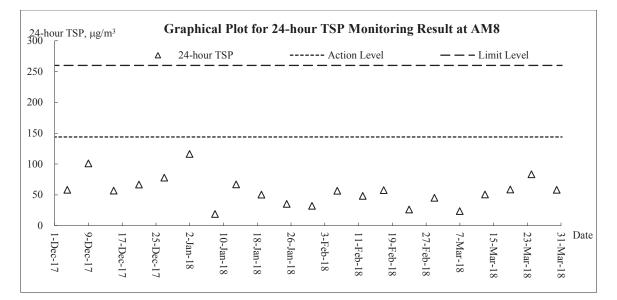



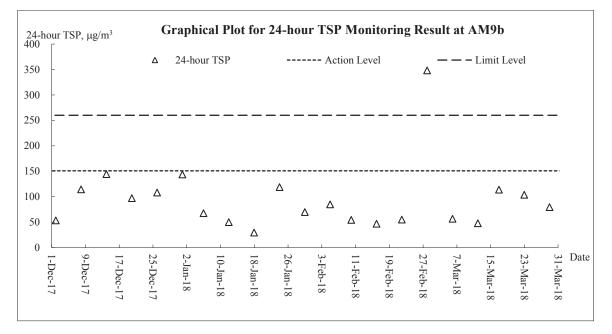





## Air Quality – 24-hour TSP

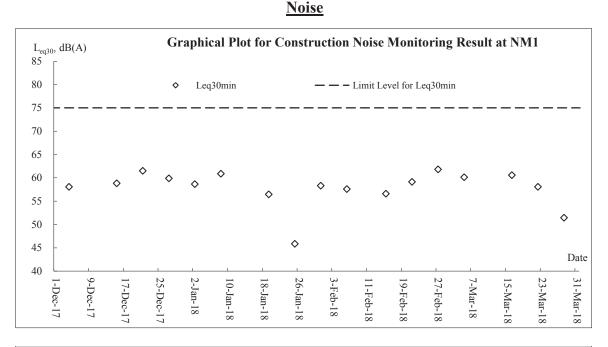


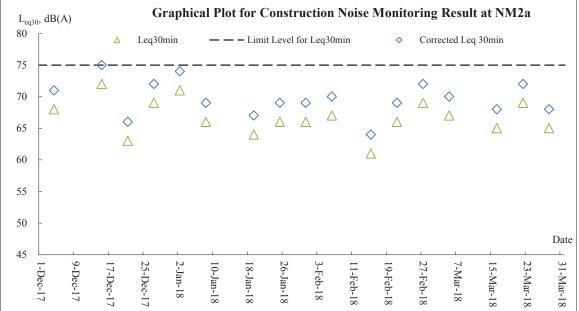



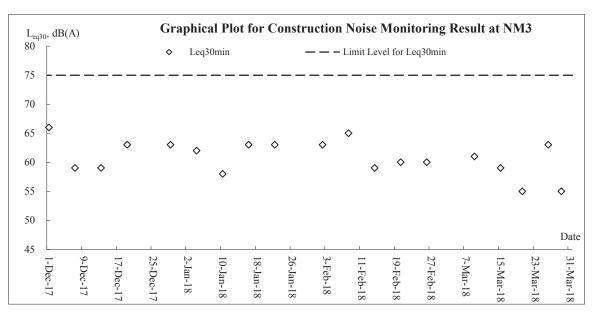



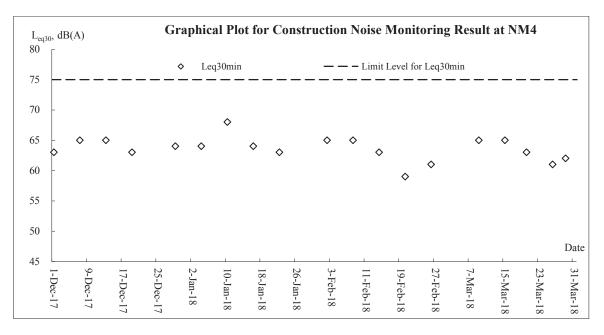



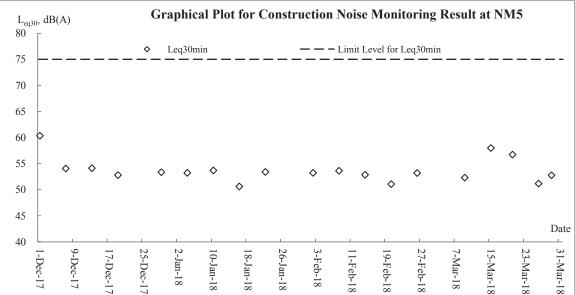


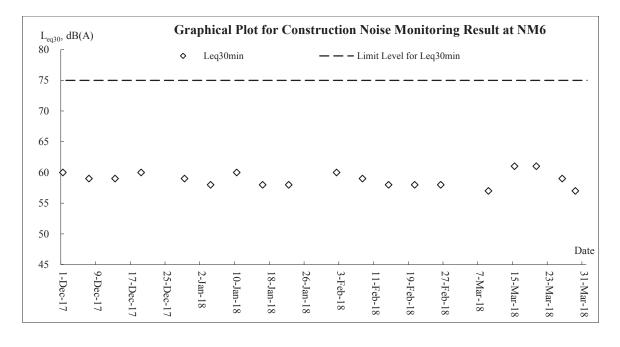



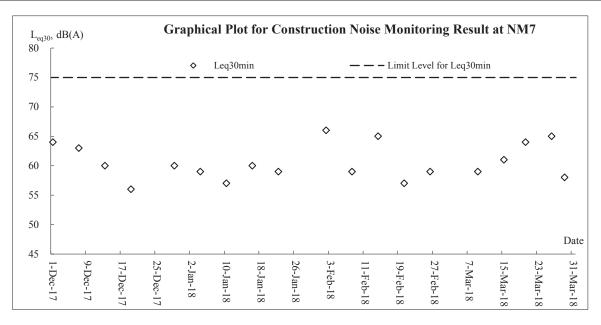



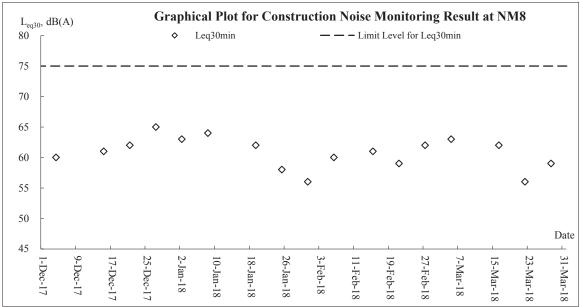



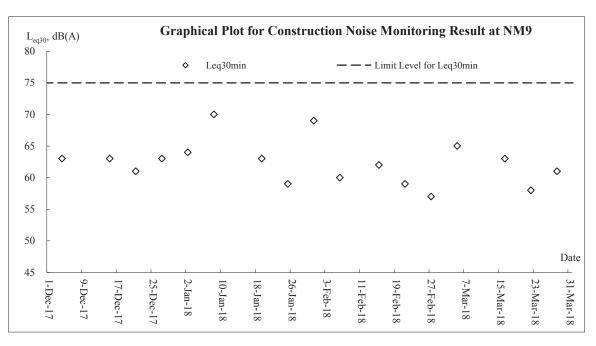





Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\56th (March 2018)\R1509v3.docx



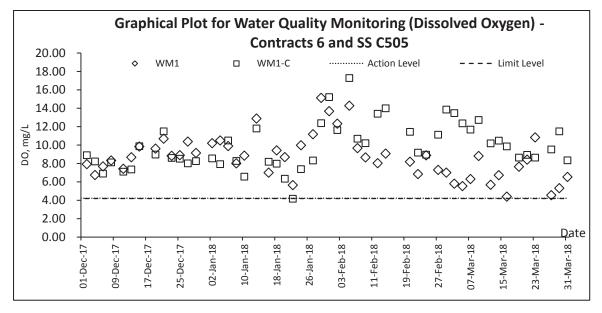



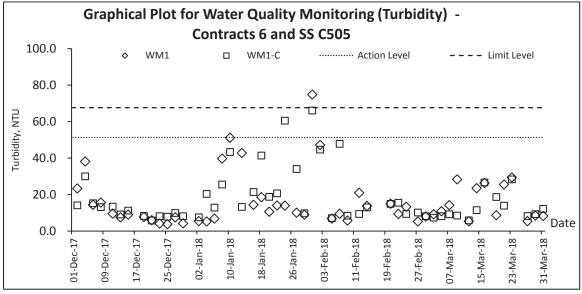



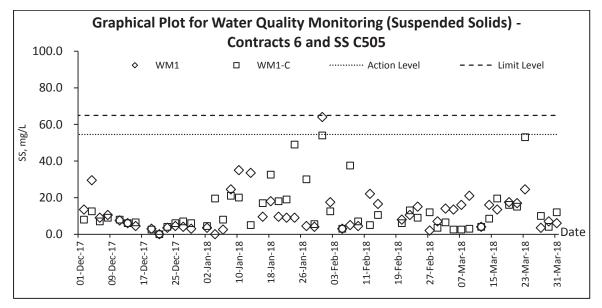



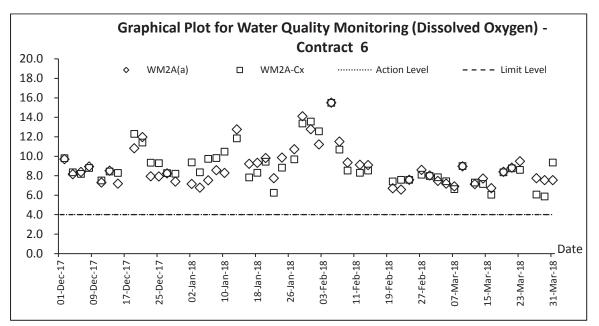


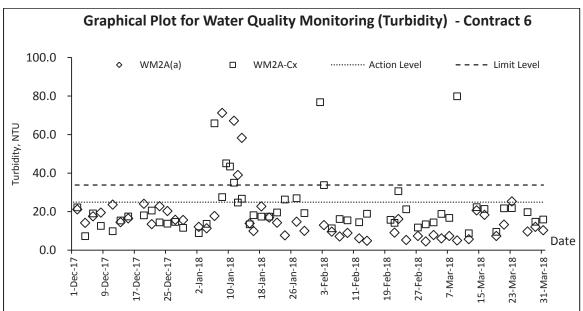


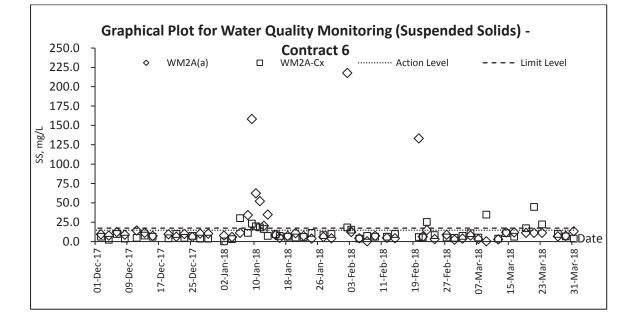



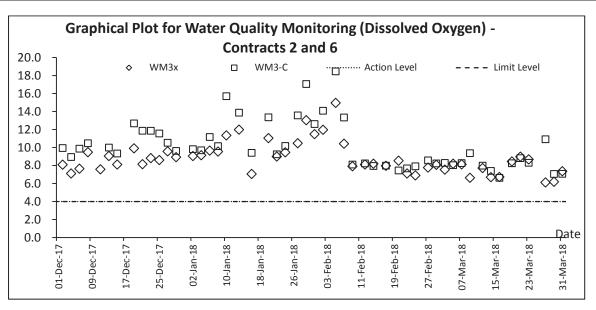



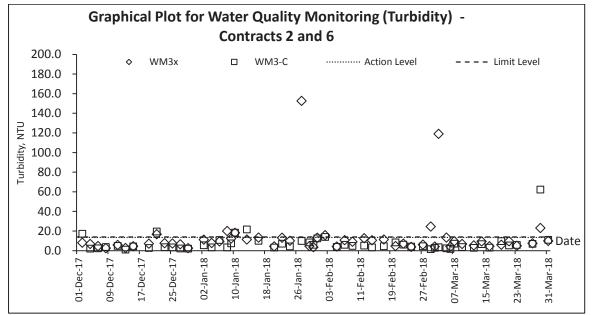


| L <sub>eq</sub> | <sub>30</sub> , dB(A | <b>A</b> ) | Graphical Plot for Construction Noise Monitoring Result at NM10 |    |           |                                |             |           |           |            |    |           |           |           |          |                |           |           |
|-----------------|----------------------|------------|-----------------------------------------------------------------|----|-----------|--------------------------------|-------------|-----------|-----------|------------|----|-----------|-----------|-----------|----------|----------------|-----------|-----------|
| 80              |                      |            | ♦ Leq30min                                                      |    |           | — — — Limit Level for Leq30min |             |           |           |            | 0  | Corre     | cted Leq  | 30min     |          |                |           |           |
| 75              |                      |            |                                                                 |    |           |                                | · <b></b> - |           |           |            |    |           |           |           |          | · <b>_</b> _ · |           |           |
| 70              | -                    |            |                                                                 |    |           |                                |             |           |           |            |    |           |           |           | 0        |                |           |           |
| 65              | 0                    |            | 0<br>♦                                                          |    |           | 0<br>♦                         | 0           | 0         |           | 0          |    | 0         |           |           | \$       | 0              |           |           |
| 60              | \$                   |            | ~                                                               | 0  | 0         | ~                              | \$          | \$        | 0         | $\diamond$ |    | \$        | 0<br>♦    |           |          | $\diamond$     |           | 0         |
|                 |                      |            |                                                                 | \$ | \$        |                                |             |           | \$        |            | 0  |           | ·         | 0         |          |                | 0<br>♦    | \$        |
| 55              | -                    |            |                                                                 |    |           |                                |             |           |           |            | \$ |           |           | \$        |          |                | ·         |           |
| 50              | -                    |            |                                                                 |    |           |                                |             |           |           |            |    |           |           |           |          |                |           | Date      |
| 45              |                      | - 9-       |                                                                 |    | - 25      | - 2-                           | - 10        | - 18      | - 26      | <br>မှ     |    |           | - 19      | - 27      | - 7-     | - 10           | - 23      | L         |
|                 | 1-Dec-17             | 9-Dec-17   | 17-Dec-17                                                       |    | 25-Dec-17 | 2-Jan-18                       | 10-Jan-18   | 18-Jan-18 | 26-Jan-18 | 3-Feb-18   |    | 11_Feh_18 | 19-Feb-18 | 27-Feb-18 | 7-Mar-18 | 15-Mar-18      | 23-Mar-18 | 31-Mar-18 |
|                 | 7                    | 7          | 17                                                              |    | 17        |                                | 8           | ~         | 8         |            | Ċ  | ×         | 8         | 8         | ~        | 18             | 18        | 18        |

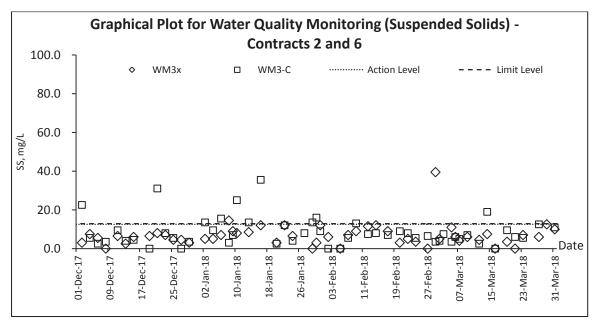

## Water Quality

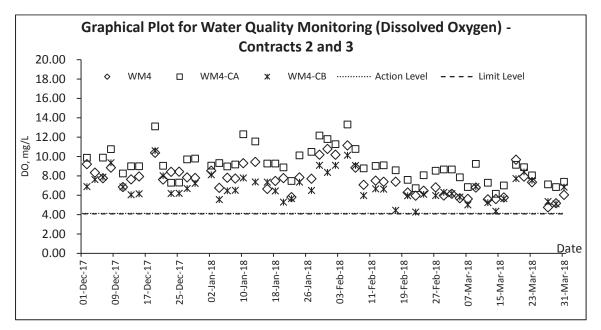


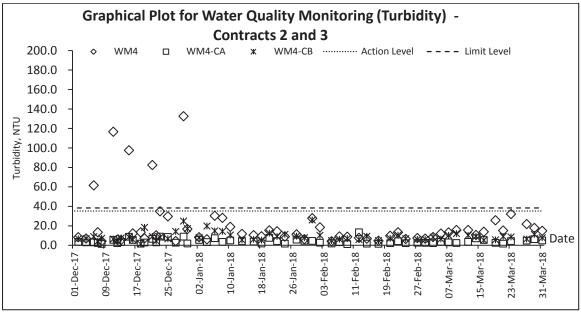


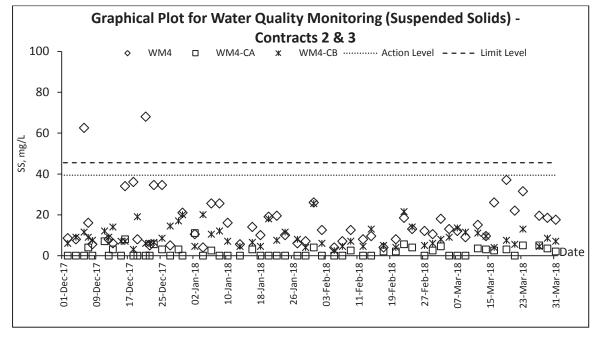





Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\56th (March 2018)\R1509v3.docx














# Appendix K

## **Meteorological Data**

|           |     |                                                                         |                           | ,                         | Ta Kwu                  | Ling Statior                        | 1                 |
|-----------|-----|-------------------------------------------------------------------------|---------------------------|---------------------------|-------------------------|-------------------------------------|-------------------|
| Date      |     | Weather                                                                 | Total<br>Rainfall<br>(mm) | Mean Air<br>Temp.<br>(°C) | Wind<br>Speed<br>(km/h) | Mean<br>Relative<br>Humidity<br>(%) | Wind<br>Direction |
| 1-Mar-18  | Thu | Fresh to strong easterly winds.                                         | 0                         | 21                        | 9                       | 81.5                                | SE                |
| 2-Mar-18  | Fri | Fresh to strong easterly winds.                                         | Trace                     | 23.6                      | 9.7                     | 72.5                                | E/NE              |
| 3-Mar-18  | Sat | Fresh to strong easterly winds.                                         | 0                         | 23.2                      | 7.9                     | 81                                  | Е                 |
| 4-Mar-18  | Sun | Fresh to strong easterly winds.                                         | Trace                     | 23.7                      | 6.6                     | 88                                  | Е                 |
| 5-Mar-18  | Mon | Fresh to strong easterly winds.                                         | 0                         | 25.7                      | 6.5                     | 77.7                                | E/SE              |
| 6-Mar-18  | Tue | Cloudy with one or two rain patches.                                    | Trace                     | 19.8                      | 10.1                    | 79.2                                | NE                |
| 7-Mar-18  | Wed | Becoming cold progressively.                                            | Trace                     | 19.8                      | 12                      | 72.5                                | E/NE              |
| 8-Mar-18  | Thu | Cloudy with a few rain patches.                                         | 20.3                      | 15.3                      | 9.7                     | 79.5                                | N/NW              |
| 9-Mar-18  | Fri | Fine and dry. Moderate to fresh north to northeasterly winds.           | 0                         | 14.3                      | 11.6                    | 46.2                                | N/NW              |
| 10-Mar-18 | Sat | Fine and dry. Moderate easterly winds.                                  | 0                         | 14.6                      | 8.1                     | 52.3                                | E/NE              |
| 11-Mar-18 | Sun | Fine and dry. Moderate easterly winds.                                  | 0                         | 17.6                      | 7.5                     | 56.7                                | E/NE              |
| 12-Mar-18 | Mon | Fine. Dry in the afternoon. Moderate easterly winds.                    | 0                         | 19.6                      | 6.9                     | 69.7                                | E/NE              |
| 13-Mar-18 | Tue | Fine. Dry in the afternoon. Moderate easterly winds.                    | 0                         | 20.7                      | 6.4                     | 73                                  | E/NE              |
| 14-Mar-18 | Wed | Mainly cloudy with a few showers. Moderate easterly winds.              | 2.4                       | 19.5                      | 8.2                     | 82.5                                | E/NE              |
| 15-Mar-18 | Thu | Fine and dry. Moderate to fresh northerly winds.                        | Trace                     | 21.8                      | 4.4                     | 81.2                                | N/NW              |
| 16-Mar-18 | Fri | Fine and dry. Moderate easterly winds.                                  | 0                         | 23                        | 5                       | 74.5                                | Е                 |
| 17-Mar-18 | Sat | Fine and dry. Moderate easterly winds.                                  | Trace                     | 20.2                      | 6.9                     | 79.6                                | E/NE              |
| 18-Mar-18 | Sun | Fine. Dry in the afternoon. Moderate easterly winds.                    | Trace                     | 21.9                      | 8.6                     | 82.5                                | E/NE              |
| 19-Mar-18 | Mon | Fine. Dry in the afternoon. Moderate easterly winds.                    | Trace                     | 22.8                      | 6.9                     | 83                                  | E/NE              |
| 20-Mar-18 | Tue | Fine and dry. Moderate to fresh northerly winds.                        | Trace                     | 19                        | 8.2                     | 76.7                                | N/NW              |
| 21-Mar-18 | Wed | Fine and dry. Moderate to fresh northerly winds.                        | 0                         | 17.8                      | 10.7                    | 46                                  | N/NW              |
| 22-Mar-18 | Thu | Moderate easterly winds, fresh at times.                                | 0                         | 16.9                      | 5.3                     | 62.5                                | E/NE              |
| 23-Mar-18 | Fri | Fine at first                                                           | 0                         | 19.3                      | 7.1                     | 59.7                                | E/NE              |
| 24-Mar-18 | Sat | Fine and dry. Moderate to fresh northerly winds.                        | Trace                     | 21.1                      | 7.5                     | 61.3                                | E/NE              |
| 25-Mar-18 | Sun | Mainly cloudy with sunny periods. Moderate east to northeasterly winds. | Trace                     | 21.8                      | 8                       | 60.7                                | E/NE              |
| 26-Mar-18 | Mon | Sunny periods in the afternoon. Light winds.                            | 0                         | 22.5                      | 5.5                     | 65.7                                | E/SE              |
| 27-Mar-18 | Tue | Mainly fine. Warm in the afternoon.                                     | 0                         | 22                        | 6                       | 73.5                                | SW                |
| 28-Mar-18 | Wed | Mainly fine. Warm in the afternoon.                                     | 0                         | 23.2                      | 7                       | 73                                  | E/NE              |
| 29-Mar-18 | Thu | Hot and dry in the afternoon. Light winds.                              | 0                         | 22.3                      | 6.5                     | 70.1                                | E/NE              |
| 30-Mar-18 | Fri | Mainly fine.                                                            | 0                         | 24.3                      | 6.9                     | 72.1                                | E/NE              |
| 31-Mar-18 | Sat | Mainly fine.                                                            | 0                         | 24.4                      | 6.8                     | 72.3                                | E/NE              |

Appendix L

Waste Flow Table



### Contract No. CV/2012/08 Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

Name of Department : CEDD

Contract No./ Work Order No. :

CV/2012/08

## Appendix I - Monthly Summary Waste Flow Table for 2018

(All quantities shall be rounded off to 3 decimal places)

| Month           | Actual Quantities of Inert C&D Materials Generated / Imported (in '000 m3) |                                                                      |                           |                             |                            |                          |             | Actual Quantities of Other C&D Materials / Wastes Generated |                    |                |                                |  |  |  |
|-----------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------|--------------------------|-------------|-------------------------------------------------------------|--------------------|----------------|--------------------------------|--|--|--|
|                 | Total Quantities<br>Generated                                              | Broken Concrete<br>(including rock for recycling<br>into aggregates) | Reused in the<br>Contract | Reused in Other<br>Projects | Disposed as Public<br>Fill | Imported C&D<br>Material | Metal       | Paper/ Cardboard<br>Packaging                               | Plastic (Recycled) | Chemical Waste | General Refuse<br>(in '000 m3) |  |  |  |
|                 | [a+b+c+d)                                                                  | (a)                                                                  | (b)                       | (c)                         | (d)                        |                          | (in '000kg) | (in '000kg)                                                 | (in '000kg)        | (in '000kg)    | (in '000m3)                    |  |  |  |
| January         | 86.6400                                                                    | 0.0000                                                               | 0.0000                    | 5.2900                      | 81.3500                    | 1.6570                   | 45.0000     | 0.3100                                                      | 2.8000             | 4.5760         | 0.6575                         |  |  |  |
| February        | 33.2700                                                                    | 0.0000                                                               | 0.0000                    | 3.6700                      | 29.6000                    | 1.3470                   | 32.0000     | 0.2500                                                      | 2.4000             | 1.9500         | 0.2850                         |  |  |  |
| March           | 39.6460                                                                    | 0.0000                                                               | 0.0000                    | 3.3460                      | 36.3000                    | 1.3380                   | 36.0000     | 0.3050                                                      | 2.7000             | 9.9040         | 0.6290                         |  |  |  |
| April           | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| May             | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| June            | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| Half-year total | 159.5560                                                                   | 0.0000                                                               | 0.0000                    | 12.3060                     | 147.2500                   | 4.3420                   | 113.0000    | 0.8650                                                      | 7.9000             | 16.4300        | 1.5715                         |  |  |  |
| July            | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| August          | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| September       | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| October         | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| November        | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| December        | 0.0000                                                                     |                                                                      |                           |                             |                            |                          |             |                                                             |                    |                |                                |  |  |  |
| Yearly Total    | 159.5560                                                                   | 0.0000                                                               | 0.0000                    | 12.3060                     | 147.2500                   | 4.3420                   | 113.0000    | 0.8650                                                      | 7.9000             | 16.4300        | 1.5715                         |  |  |  |

| Year  | Actual Quantities of Inert C&D Materials Generated / Imported (in '000 m3) |                                                                         |                           |                             |                            |                          |             | Actual Quantities of Other C&D Materials / Wastes Generated |                    |                |                                |  |  |
|-------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|-----------------------------|----------------------------|--------------------------|-------------|-------------------------------------------------------------|--------------------|----------------|--------------------------------|--|--|
|       | Total Quantities<br>Generated                                              | Broken Concrete<br>(including rock for<br>recycling into<br>aggregates) | Reused in the<br>Contract | Reused in Other<br>Projects | Disposed as Public<br>Fill | Imported C&D<br>Material | Metal       | Paper/ Cardboard<br>Packaging                               | Plastic (Recycled) | Chemical Waste | General Refuse<br>(in '000 m3) |  |  |
|       | [a+b+c+d)                                                                  | (a)                                                                     | (b)                       | (c)                         | (d)                        |                          | (in '000kg) | (in '000kg)                                                 | (in kg)            | (in '000kg)    | (in '000m3)                    |  |  |
| 2013  | 0.0000                                                                     | 0.0000                                                                  | 0.0000                    | 0.0000                      | 0.0000                     | 0.0000                   | 220.6270    | 0.0000                                                      | 0.0000             | 0.0000         | 0.0000                         |  |  |
| 2014  | 425.4406                                                                   | 0.0000                                                                  | 2.7362                    | 376.3945                    | 46.3099                    | 5.6245                   | 3.2100      | 0.4390                                                      | 0.0070             | 10.8800        | 2.2609                         |  |  |
| 2015  | 570.9459                                                                   | 0.0000                                                                  | 20.8159                   | 543.2162                    | 6.9138                     | 4.5492                   | 37.6310     | 3.9220                                                      | 11.9700            | 16.1920        | 1.1696                         |  |  |
| 2016  | 905.0989                                                                   | 0.0000                                                                  | 7.4372                    | 427.7834                    | 469.8783                   | 24.8350                  | 430.5200    | 3.8500                                                      | 18.7262            | 34.2936        | 1.9720                         |  |  |
| 2017  | 741.9482                                                                   | 0.0000                                                                  | 8.0385                    | 175.6792                    | 558.2305                   | 78.3865                  | 1681.8000   | 4.0700                                                      | 30.5175            | 48.7906        | 5.9610                         |  |  |
| 2018  | 159.5560                                                                   | 0.0000                                                                  | 0.0000                    | 12.3060                     | 147.2500                   | 4.3420                   | 113.0000    | 0.8650                                                      | 7.9000             | 16.4300        | 1.5715                         |  |  |
| Total | 2802.9896                                                                  | 0.0000                                                                  | 39.0278                   | 1535.3794                   | 1228.5825                  | 117.7372                 | 2486.7880   | 13.1460                                                     | 69.1207            | 126.5862       | 12.9350                        |  |  |

Remark:

Density of C&D material to be
 Density of General Refuse to be

2.2metric ton/m31.6metric ton/m3

3) Density of Spent Oil to be

0.88 metric ton/m3

(All quantities rounded off to 3 decimal places)

### Monthly Summary Waste Flow Table for 2018 (year)

|           | Actua                    | l Quantities             | of Inert C&D             | Materials G              | enerated Mo              | onthly                   | Actual                   | Quantities o             | f C&D Wastes             | Generated            | Monthly                  |
|-----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------|--------------------------|
|           |                          | Hard Rock                |                          |                          |                          |                          |                          |                          |                          |                      |                          |
|           | Total                    | and Large                | Reused in                | Reused in                | Disposed                 |                          |                          | Paper/                   |                          |                      | Others, e.g.             |
| Month     | Quantity                 | Broken                   | the                      | other                    | as Public                | Imported                 |                          | cardboard                |                          | Chemical             | general                  |
|           | Generated                | Concrete                 | Contract                 | Projects                 | Fill                     | Fill                     | Metals                   | packaging                | Plastics                 | Waste                | refuse                   |
|           | (in '000m <sup>3</sup> ) | (in m <sup>3</sup> ) | (in '000m <sup>3</sup> ) |
| Jan       | 3.089                    | 0.304                    | 0.060                    | 0.000                    | 2.725                    | 0.923                    | 0.000                    | 0.000                    | 0.000                    | 0.000                | 0.150                    |
| Feb       | 2.697                    | 0.256                    | 0.150                    | 0.000                    | 2.292                    | 1.144                    | 0.000                    | 0.000                    | 0.000                    | 0.000                | 0.095                    |
| Mar       | 1.524                    | 0.141                    | 0.120                    | 0.000                    | 1.263                    | 0.211                    | 0.000                    | 0.000                    | 0.000                    | 0.000                | 0.085                    |
| Apr       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| May       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Jun       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Sub-total | 7.310                    | 0.701                    | 0.330                    | 0.000                    | 6.279                    | 2.278                    | 0.000                    | 0.000                    | 0.000                    | 0.000                | 0.330                    |
| Jul       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Aug       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Sep       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Oct       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Nov       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Dec       |                          |                          |                          |                          |                          |                          |                          |                          |                          |                      |                          |
| Total     | 7.310                    | 0.701                    | 0.330                    | 0.000                    | 6.279                    | 2.278                    | 0.000                    | 0.000                    | 0.000                    | 0.000                | 0.330                    |

**Note:** 1. Assume the density of soil fill is 2 ton/m<sup>3</sup>.

2. Assume the density of rock and broken concrete is  $2.5 \text{ ton/m}^3$ .

3. Assume each truck of C&D wastes is  $5m^3$ .

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is  $7,850 \text{ kg/m}^3$ .

8. Assume the density of plastic is  $941 \text{ kg/m}^3$ .

9. Assume the density of paper is  $800 \text{ kg/m}^3$ .

|                                | Forecast of Total Quantities of C&D Materials to be Generated from the Contract |                           |                                |                           |                          |                          |                                  |                          |                          |                                      |  |  |
|--------------------------------|---------------------------------------------------------------------------------|---------------------------|--------------------------------|---------------------------|--------------------------|--------------------------|----------------------------------|--------------------------|--------------------------|--------------------------------------|--|--|
| Total<br>Quantity<br>Generated | Hard Rock and<br>Large Broken<br>Concrete                                       | Reused in<br>the Contract | Reused in<br>other<br>Projects | Diposal as<br>Public Fill | Imported<br>Fill         | Metals                   | Paper/card<br>board<br>packaging | Plastics<br>(see Note 3) | Chemical<br>Waste        | Others,<br>e.g.<br>general<br>refuse |  |  |
| (in '000m <sup>3</sup> )       | (in '000m <sup>3</sup> )                                                        | (in '000m <sup>3</sup> )  | (in '000m <sup>3</sup> )       | (in '000m <sup>3</sup> )  | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> )         | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> )             |  |  |
| 52.5                           | 5.2                                                                             | 12.3                      | 0.0                            | 35.0                      | 41.8                     | 5.0                      | 1.0                              | 1.0                      | 0.5                      | 44.8                                 |  |  |

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m<sup>3</sup>.

### SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

### Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

| Item No. | Description of Works Process or Activity<br>[see note (a) below] | Justifications for Using Timber in<br>Temporary Construction Works |       | Actual<br>Quantities<br>Used (m <sup>3</sup> ) | Remarks                               |
|----------|------------------------------------------------------------------|--------------------------------------------------------------------|-------|------------------------------------------------|---------------------------------------|
|          | Formwork for Construction of Retaining<br>Wall NB67              | Easy handling by manpower                                          | 81.85 | 81.85                                          |                                       |
|          |                                                                  | Total Estimated Quantity of Timber<br>Used                         | 81.85 |                                                | · · · · · · · · · · · · · · · · · · · |

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
  - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

### Name of Department: CEDD

#### Appendix A

#### Contract No.: <u>NE/2014/02</u>

|        |                             | Actu                                   | al Quantities of Inert C&D | Materials Generated N       | Ionthly                  |                          | Actual Quantities of C&D Wastes Generated Monthly |                               |                          |                |                                |  |
|--------|-----------------------------|----------------------------------------|----------------------------|-----------------------------|--------------------------|--------------------------|---------------------------------------------------|-------------------------------|--------------------------|----------------|--------------------------------|--|
| Month  | Total Quantity<br>Generated | Hard Rock and Large<br>Broken Concrete | Reused in the Contract     | Reused in other<br>Projects | Disposed as Public Fill  | Imported Fill            | Metals                                            | Paper/ cardboard<br>packaging | Plastics<br>(see Note 3) | Chemical Waste | Others, e.g. general<br>refuse |  |
|        | (in '000m <sup>3</sup> )    | (in '000m <sup>3</sup> )               | (in '000m <sup>3</sup> )   | (in '000m <sup>3</sup> )    | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> ) | (in '000 kg)                                      | (in '000kg)                   | (in '000kg)              | (in '000kg)    | (in '000m <sup>3</sup> )       |  |
| 2016   | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |
| 2016   | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |
| Jan-18 | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |
| Feb-18 | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |
| Mar-18 | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |
| Apr-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| May-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Jun-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Jul-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Aug-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Sep-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Oct-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Nov-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Dec-18 |                             |                                        |                            |                             |                          |                          |                                                   |                               |                          |                |                                |  |
| Total  | 0.000                       | 0.000                                  | 0.000                      | 0.000                       | 0.000                    | 0.000                    | 0.000                                             | 0.000                         | 0.000                    | 0.000          | 0.000                          |  |

#### Monthly Summary Waste Flow Table for 2018

|                             | Forecast of Total Quantities of C&D Materials to be Generated from the Contract* |                          |                             |                          |                          |              |                            |                          |                |                             |
|-----------------------------|----------------------------------------------------------------------------------|--------------------------|-----------------------------|--------------------------|--------------------------|--------------|----------------------------|--------------------------|----------------|-----------------------------|
| Total Quantity<br>Generated | Hard Rock and Large<br>Broken Concrete                                           | Reused in the Contract   | Reused in other<br>Projects | Disposed as Public Fill  | Imported Fill            | Metals       | Paper/ cardboard packaging | Plastics<br>(see Note 3) | Chemical Waste | Others, e.g. general refuse |
| (in '000m <sup>3</sup> )    | (in '000m <sup>3</sup> )                                                         | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> )    | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> ) | (in '000 kg) | (in '000kg)                | (in '000kg)              | (in '000kg)    | (in '000m <sup>3</sup> )    |
| 0.500                       | 0.000                                                                            | 0.000                    | 0.000                       | 0.500                    | 0.000                    | 0.500        | 0.200                      | 0.000                    | 0.000          | 0.200                       |

Notes :

(1) The performance targets are given in PS Clause 1.84(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) Estimate 6m3 capacity per dump truck

### Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Liangtang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 6

| – Contract 6             | Contract No.: CV/2013/08 |
|--------------------------|--------------------------|
| Actual Quantities of C&D | Wastes Generated Monthly |

|           | A                              | ctual Quantitie                              | s of Inert C&I           | O Materials G                  | enerated Month             | ly                       | Actual Quantities of C&D Wastes Generated Monthly |                                  |                          |                   |                                   |  |
|-----------|--------------------------------|----------------------------------------------|--------------------------|--------------------------------|----------------------------|--------------------------|---------------------------------------------------|----------------------------------|--------------------------|-------------------|-----------------------------------|--|
| Month     | Total<br>Quantity<br>Generated | Hard Rock<br>and Large<br>Broken<br>Concrete | Reused in the Contract   | Reused in<br>other<br>Projects | Disposed as<br>Public Fill | Imported Fill            | Metals                                            | Paper/<br>cardboard<br>packaging | Plastics<br>(see Note 3) | Chemical<br>Waste | Others, e.g.<br>general<br>refuse |  |
|           | (in '000m <sup>3</sup> )       | (in '000m <sup>3</sup> )                     | (in '000m <sup>3</sup> ) | (in '000m <sup>3</sup> )       | (in '000m <sup>3</sup> )   | (in '000m <sup>3</sup> ) | (in '000 kg)                                      | (in '000kg)                      | (in '000kg)              | (in '000kg)       | (in '000 m <sup>3</sup> )         |  |
| Jan       | 4.152                          | 0                                            | 0.629                    | 1.947                          | 1.576                      | 0                        | 0                                                 | 0.240                            | 0                        | 0                 | 0.892                             |  |
| Feb       | 2.740                          | 0                                            | 0.867                    | 0.544                          | 1.329                      | 0                        | 0                                                 | 0.402                            | 0                        | 0                 | 0.578                             |  |
| Mar       | 3.269                          | 0                                            | 1.581                    | 0.969                          | 0.719                      | 0                        | 0                                                 | 0.380                            | 0                        | 0                 | 0.725                             |  |
| Apr       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| May       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Jun       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Sub-total | 10.161                         | 0.000                                        | 3.077                    | 3.460                          | 3.624                      | 0.000                    | 0.000                                             | 1.022                            | 0.000                    | 0.000             | 2.195                             |  |
| Jul       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Aug       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Sep       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Oct       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Nov       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Dec       |                                |                                              |                          |                                |                            |                          |                                                   |                                  |                          |                   |                                   |  |
| Total     | 1008.555                       | 0.000                                        | 166.304                  | 274.103                        | 568.149                    | 53.939                   | 0.000                                             | 7.401                            | 0.007                    | 34.045            | 10.946                            |  |

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

### MONTHLY SUMMARY WASTE FLOW TABLE

Name of Department: CEDD

 
 Contract Title:
 Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 7
 Contract No.:
 NE/2014/03

### Monthly Summary Waste Flow Table for <u>2018</u> (year)

|           |                             | Actual Quan                               | tities of Inert C&I       | D Materials Generat         | ted Monthly                |               | Act         | ual Quantities of No         | on-Inert C&D Wa         | stes Generated Mor | nthly                          |
|-----------|-----------------------------|-------------------------------------------|---------------------------|-----------------------------|----------------------------|---------------|-------------|------------------------------|-------------------------|--------------------|--------------------------------|
| Month     | Total Quantity<br>Generated | Hard Rock and<br>Large Broken<br>Concrete | Reused in the<br>Contract | Reused in other<br>Projects | Disposed as<br>Public Fill | Imported Fill | Metals      | Paper/cardboard<br>packaging | Plastic<br>(see Note 3) | Chemical Waste     | Others, e.g.<br>general refuse |
|           | (in '000m <sup>3</sup> )    | (in '000m3)                               | (in '000m3)               | (in '000m3)                 | (in '000m3)                | (in '000m3)   | (in '000kg) | (in '000kg)                  | (in '000kg)             | (in '000kg)        | (in '000m3)                    |
| Jan       | 0.015                       | 0                                         | 0                         | 0                           | 0.015                      | 0             | 14.5        | 0.5                          | 0.001                   | 0                  | 0.15                           |
| Feb       | 0                           | 0                                         | 0                         | 0                           | 0                          | 0             | 9           | 0.18                         | 0.001                   | 0                  | 0.13                           |
| Mar       | 0.005                       | 0                                         | 0                         | 0                           | 0.005                      | 0             | 6           | 0.15                         | 0.001                   | 0                  | 0.2                            |
| Apr       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| May       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| June      |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Sub-total | 0.02                        | 0                                         | 0                         | 0                           | 0.02                       | 0             | 29.5        | 0.83                         | 0.003                   | 0                  | 0.48                           |
| July      |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Aug       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Sept      |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Oct       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Nov       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Dec       |                             |                                           |                           |                             |                            |               |             |                              |                         |                    |                                |
| Total     | 0.02                        | 0                                         | 0                         | 0                           | 0.02                       | 0             | 29.5        | 0.83                         | 0.003                   | 0                  | 0.480                          |

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material. Appendix I

### Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

### Monthly Summary Waste Flow Table for 2018 [year] [to be submitted not later than the 15<sup>th</sup> day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

|           |                                                 | Actual Quantities of In                | ert Construction Waste Ge     | enerated Monthly                |                                   |
|-----------|-------------------------------------------------|----------------------------------------|-------------------------------|---------------------------------|-----------------------------------|
| Month     | (a)=(b)+(c)+(d)+(e)<br>Total Quantity Generated | (b)<br>Broken Concrete<br>(see Note 4) | (c)<br>Reused in the Contract | (d)<br>Reused in other Projects | (e)<br>Disposed of as Public Fill |
|           | (in '000m <sup>3</sup> )                        | (in '000m <sup>3</sup> )               | (in '000m <sup>3</sup> )      | (in '000m <sup>3</sup> )        | (in '000m <sup>3</sup> )          |
| Jan       | 5.298                                           | 0.646                                  | 0.160                         | 0.000                           | 4.492                             |
| Feb       | 7.243                                           | 0.572                                  | 0.320                         | 0.000                           | 6.351                             |
| Mar       | 11.241                                          | 0.831                                  | 0.225                         | 0.000                           | 10.186                            |
| Apr       |                                                 |                                        |                               |                                 |                                   |
| May       |                                                 |                                        |                               |                                 |                                   |
| Jun       |                                                 |                                        |                               |                                 |                                   |
| Sub-total | 23.782                                          | 2.049                                  | 0.705                         | 0.000                           | 21.028                            |
| Jul       |                                                 |                                        |                               |                                 |                                   |
| Aug       |                                                 |                                        |                               |                                 |                                   |
| Sep       |                                                 |                                        |                               |                                 |                                   |
| Oct       |                                                 |                                        |                               |                                 |                                   |
| Nov       |                                                 |                                        |                               |                                 |                                   |
| Dec       |                                                 |                                        |                               |                                 |                                   |
| Total     | 23.782                                          | 2.049                                  | 0.705                         | 0.000                           | 21.028                            |

### Architectural Services Department

Form No. D/OI.03/09.002

|           |             |          |             |           | Actual Qua | ntities of Nor             | n-inert Constr | uction Waste             | Generated M | onthly         |           |                          |                                              |
|-----------|-------------|----------|-------------|-----------|------------|----------------------------|----------------|--------------------------|-------------|----------------|-----------|--------------------------|----------------------------------------------|
| Month     | Tim         | lber     | Ме          | Metals    |            | Paper/ cardboard packaging |                | Plastics<br>(see Note 3) |             | Chemical Waste |           | ecyclable<br>see Page 3) | General Refuse<br>disposed of at<br>Landfill |
|           | (in '000kg) |          | (in '000kg) |           | (in '0     | 00kg)                      | (in '0         | 00kg)                    | (in '0      | 00kg)          | (in '0    | 00kg)                    | (in '000m <sup>3</sup> )                     |
|           | generated   | recycled | generated   | recycled  | generated  | recycled                   | generated      | recycled                 | generated   | recycled       | generated | recycled                 | generated                                    |
| Jan       | 0.000       | 0.000    | 375.870     | 375.870   | 0.220      | 0.220                      | 0.032          | 0.032                    | 0.000       | 0.000          | 0.000     | 0.000                    | 1.918                                        |
| Feb       | 0.000       | 0.000    | 720.120     | 720.120   | 0.000      | 0.000                      | 0.000          | 0.000                    | 0.000       | 0.000          | 0.000     | 0.000                    | 2.223                                        |
| Mar       | 0.000       | 0.000    | 220.860     | 220.860   | 0.830      | 0.830                      | 0.005          | 0.005                    | 0.000       | 0.000          | 0.005     | 0.005                    | 2.711                                        |
| Apr       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| May       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Jun       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Sub-total | 0.000       | 0.000    | 1,316.850   | 1,316.850 | 1.050      | 1.050                      | 0.037          | 0.037                    | 0.000       | 0.000          | 0.005     | 0.005                    | 6.852                                        |
| Jul       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Aug       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Sep       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Oct       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Nov       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Dec       |             |          |             |           |            |                            |                |                          |             |                |           |                          |                                              |
| Total     | 0.000       | 0.000    | 1,316.850   | 1,316.850 | 1.050      | 1.050                      | 0.037          | 0.037                    | 0.000       | 0.000          | 0.005     | 0.005                    | 6.852                                        |

### Architectural Services Department

| Description of mod                                                                                      | le and details of recycling if | any for the month e.g. XX                                                                                                                               | K kg of used timber was se                                                                               | ent to YY site for transform | ation into fertilizers |
|---------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|------------------------|
| 5.0 kg of cans and 5.0 kg<br>of plastic bottles were<br>sent to Lau Choi Kee Co.<br>Ltd. for recycling. | 850.0 kg of scrap metal        | 220.86 tons of scrap<br>metals were sent to<br>Prosperity Metal<br>Recycle Ltd., Hop Hing<br>Metal Works and Win<br>Link Trading Ltd. for<br>recycling. | 1,661.60 tons of broken<br>concrete were sent to<br>Tailor Recycled<br>Aggregates Ltd. for<br>recycling. |                              |                        |

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

(2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) Broken concrete for recycling into aggregates.

(5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to  $6.5 \text{ m}^3$  by volume.

## Appendix M

**Implementation Schedule for Environmental Mitigation Measures** 



| EIA Ref.  | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address                                          | Who to<br>implement<br>the<br>measure? | Location of the measure     | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve?                  |
|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------------|--------------------------------------------------------------------------------------|
| Air Quali | ty Impact (  | Construction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                        |                             |                                      |                                                                                      |
| 3.6.1.1   | 2.1          | <ul> <li>General Dust Control Measures</li> <li>The following dust suppression measures should be implemented:</li> <li>Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities</li> <li>80% of stockpile areas should be covered by impervious sheets</li> <li>Speed of trucks within the site should be controlled to about 10 km/hr</li> <li>All haul roads within the site should be paved to avoid dust</li> </ul> | To minimize<br>adverse dust<br>emission generated<br>from various<br>construction<br>activities of the<br>works sites | Contractor                             | Construction<br>Works Sites | During<br>Construction               | EIA Recommendation<br>and Air Pollution<br>Control (Construction<br>Dust) Regulation |
|           |              | emission due to vehicular movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       |                                        |                             |                                      |                                                                                      |
| 3.6.1.2   | 2.1          | <b>Best Practice for Dust Control</b><br>The relevant best practices for dust control as stipulated in the Air<br>Pollution Control (Construction Dust) Regulation should be adopted to<br>further reduce the construction dust impacts of the Project. These best<br>practices include:<br><i>Good site management</i>                                                                                                                                                                                                                                                                      | To minimize<br>adverse dust<br>emission generated<br>from various<br>construction<br>activities of the<br>works sites | Contractor                             | Construction<br>Works Sites | During<br>Construction               | EIA Recommendation<br>and Air Pollution<br>Control (Construction<br>Dust) Regulation |
|           |              | <ul> <li>The Contractor should maintain high standard of housekeeping to<br/>prevent emission of fugitive dust.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                        |                             |                                      |                                                                                      |
|           |              | <ul> <li>Loading, unloading, handling and storage of raw materials, wastes<br/>or by-products should be carried out in a manner so as to<br/>minimize the release of visible dust emission.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                        |                             |                                      |                                                                                      |
|           |              | <ul> <li>Any piles of materials accumulated on or around the work areas<br/>should be cleaned up regularly.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                        |                             |                                      |                                                                                      |
|           |              | <ul> <li>Cleaning, repair and maintenance of all plant facilities within the<br/>work areas should be carried out in a manner minimizing<br/>generation of fugitive dust emissions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                        |                             |                                      |                                                                                      |
|           |              | <ul> <li>The material should be handled properly to prevent fugitive dust<br/>emission before cleaning.</li> <li>Disturbed Parts of the Roads</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                        |                             |                                      |                                                                                      |
|           |              | <ul> <li>Each and every main temporary access should be paved with</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                        |                             |                                      |                                                                                      |



| EIA Ref. | EM&A | Recommended Mitigation Measures                                                                                                                                                                                                                               | Objectives of the<br>Recommended<br>Measure | Who to<br>implement | Location of the | When to implement the | What requirements<br>or standards for th |
|----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|-----------------|-----------------------|------------------------------------------|
|          | Ref. |                                                                                                                                                                                                                                                               | & Main Concerns<br>to address               | the<br>measure?     | measure         | measure?              | measure to achieve?                      |
|          |      | concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or                                                                                                                                                                 |                                             |                     |                 |                       |                                          |
|          |      | <ul> <li>Unpaved parts of the road should be sprayed with water or a dust<br/>suppression chemical so as to keep the entire road surface wet.</li> </ul>                                                                                                      |                                             |                     |                 |                       |                                          |
|          |      | Exposed Earth                                                                                                                                                                                                                                                 |                                             |                     |                 |                       |                                          |
|          |      | Exposed earth should be properly treated by compaction,<br>hydroseeding, vegetation planting or seating with latex, vinyl,<br>bitumen within six months after the last construction activity on the<br>site or part of the site where the exposed earth lies. |                                             |                     |                 |                       |                                          |
|          |      | Loading, Unloading or Transfer of Dusty Materials                                                                                                                                                                                                             |                                             |                     |                 |                       |                                          |
|          |      | <ul> <li>All dusty materials should be sprayed with water immediately prior<br/>to any loading or transfer operation so as to keep the dusty<br/>material wet.</li> </ul>                                                                                     |                                             |                     |                 |                       |                                          |
|          |      | Debris Handling                                                                                                                                                                                                                                               |                                             |                     |                 |                       |                                          |
|          |      | <ul> <li>Any debris should be covered entirely by impervious sheeting or<br/>stored in a debris collection area sheltered on the top and the three<br/>sides.</li> </ul>                                                                                      |                                             |                     |                 |                       |                                          |
|          |      | <ul> <li>Before debris is dumped into a chute, water should be sprayed so<br/>that it remains wet when it is dumped.</li> </ul>                                                                                                                               |                                             |                     |                 |                       |                                          |
|          |      | Transport of Dusty Materials                                                                                                                                                                                                                                  |                                             |                     |                 |                       |                                          |
|          |      | <ul> <li>Vehicle used for transporting dusty materials/spoils should be<br/>covered with tarpaulin or similar material. The cover should extend<br/>over the edges of the sides and tailboards.</li> </ul>                                                    |                                             |                     |                 |                       |                                          |
|          |      | Wheel washing                                                                                                                                                                                                                                                 |                                             |                     |                 |                       |                                          |
|          |      | Vehicle wheel washing facilities should be provided at each<br>construction site exit. Immediately before leaving the construction<br>site, every vehicle should be washed to remove any dusty<br>materials from its body and wheels.                         |                                             |                     |                 |                       |                                          |
|          |      | Use of vehicles                                                                                                                                                                                                                                               |                                             |                     |                 |                       |                                          |
|          |      | Immediately before leaving the construction site, every vehicle<br>should be washed to remove any dusty materials from its body<br>and wheels.                                                                                                                |                                             |                     |                 |                       |                                          |
|          |      | Where a vehicle leaving the construction site is carrying a load of<br>dusty materials, the load should be covered entirely by clean<br>impervious sheeting to ensure that the dusty materials do not leak<br>from the vehicle.                               |                                             |                     |                 |                       |                                          |



| EIA Ref.  | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address                                     | Who to<br>implement<br>the<br>measure? | Location of the measure    | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve? |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------------------|---------------------------------------------------------------------|
|           |              | <ul> <li>Where a site boundary adjoins a road, street, service lane or other<br/>area accessible to the public, hoarding of not less than 2.4m high<br/>from ground level should be provided along the entire length of<br/>that portion of the site boundary except for a site entrance or exit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                        |                            |                                      |                                                                     |
|           |              | <ul> <li>Blasting</li> <li>The areas within 30m from the blasting area should be wetted with water prior to blasting.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                        |                            |                                      |                                                                     |
| Air Quali | ty Impact (  | Operation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                        |                            |                                      |                                                                     |
| 3.5.2.2   | 2.2          | <ul> <li>The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site:</li> <li>The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work.</li> <li>Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission.</li> <li>Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity.</li> <li>Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs.</li> </ul> | To minimize<br>potential odour<br>impact from<br>operation of the<br>proposed sewage<br>treatment work at<br>BCP | DSD                                    | BCP                        | Operation<br>Phase                   | EIA recommendation                                                  |
| Noise Im  | pact (Cons   | truction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                        |                            |                                      |                                                                     |
| 4.4.1.4   | 3.1          | Adoption of Quieter PME<br>Use of the recommended quieter PME such as those given in the<br>BS5228: Part 1:2009 and presented in <b>Table 4.14</b> , which can be found<br>in Hong Kong.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To minimize the<br>construction air-<br>borne noise impact                                                       | Contractors                            | Construction<br>Work Sites | During<br>Construction               | EIA recommendation,<br>EIAO and Noise<br>Control Ordinance<br>(NCO) |



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address | Who to<br>implement<br>the<br>measure? | Location of the measure    | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve? |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------------------|---------------------------------------------------------------------|
| 4.4.1.4  | 3.1          | Use of Movable Noise Barrier<br>The use of movable barrier for certain PME can further alleviate the<br>construction noise impacts. In general, a 5 dB(A) reduction for movable<br>PME and 10 dB(A) for stationary PME can be achieved depending on<br>the actual design of the movable noise barrier. The Contractor shall be<br>responsible for design of the movable noise barrier with due<br>consideration given to the size of the PME and the requirement for<br>intercepting the line of sight between the NSRs and PME. Barrier<br>material with surface mass in excess of 7 kg/m <sup>2</sup> is recommended to<br>achieve the predicted screening effect. | To minimize the<br>construction air-<br>borne noise impact                   | Contractors                            | Construction<br>Work Sites | During<br>Construction               | EIA recommendation,<br>EIAO and NCO                                 |
| 4.4.1.4  | 3.1          | Use of Noise Enclosure/ Acoustic Shed<br>The use of noise enclosure or acoustic shed is to cover stationary PME<br>such as air compressor and concrete pump. With the adoption of the<br>noise enclosure, the PME could be completely screened, and noise<br>reduction of 15 dB(A) can be achieved according to the GW-TM.                                                                                                                                                                                                                                                                                                                                           | To minimize the<br>construction air-<br>borne noise impact                   | Contractors                            | Construction<br>Work Sites | During<br>Construction               | EIA recommendation,<br>EIAO and NCO                                 |
| 4.4.1.4  | 3.1          | <b>Use of Noise Insulating Fabric</b><br>Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.                                                                                                                                                                                                                                                                                              | To minimize the<br>construction air-<br>borne noise impact                   | Contractors                            | Construction<br>Work Sites | During<br>Construction               | EIA recommendation,<br>EIAO and NCO                                 |



|                                                          | EM&A         |                                                                                                                                                                                    | Objectives of the                                                               | Who to                                                    |                                                                        |                          | What requirements                   |
|----------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|--------------------------|-------------------------------------|
| EIA Ref.                                                 | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                    | Recommended<br>Measure                                                          | implement<br>the                                          | Location of the measure                                                | When to<br>implement the | or standards for the measure to     |
|                                                          | nei.         |                                                                                                                                                                                    | & Main Concerns<br>to address                                                   | measure?                                                  | measure                                                                | measure?                 | achieve?                            |
| 4.4.1.4                                                  | 3.1          | Good Site Practice                                                                                                                                                                 | To minimize the                                                                 | Contractors                                               | Construction                                                           | During                   | EIA recommendation,<br>EIAO and NCO |
|                                                          |              | The good site practices listed below should be followed during each phase of construction:                                                                                         | construction air-<br>borne noise impact                                         |                                                           | Work Sites                                                             | Construction             |                                     |
|                                                          |              | • Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;                                                  |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | <ul> <li>Silencers or mufflers on construction equipment should be utilized<br/>and should be properly maintained during the construction<br/>programme;</li> </ul>                |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | • Mobile plant, if any, should be sited as far from NSRs as possible;                                                                                                              |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | <ul> <li>Machines and plant (such as trucks) that may be in intermittent<br/>use should be shut down between work periods or should be<br/>throttled down to a minimum;</li> </ul> |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | • Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and                        |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | • Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.                          |                                                                                 |                                                           |                                                                        |                          |                                     |
| Noise Im                                                 | pact (Oper   | ation)                                                                                                                                                                             |                                                                                 |                                                           |                                                                        |                          |                                     |
|                                                          |              | Road Traffic Noise                                                                                                                                                                 |                                                                                 |                                                           |                                                                        |                          |                                     |
| Table<br>4.42<br>and<br>Figure<br>4.20.1<br>to<br>4.20.4 | 3.2          | Erection of noise barrier/ enclosure along the viaduct section.                                                                                                                    | To minimize the<br>road traffic noise<br>along the<br>connecting road of<br>BCP | Contractor                                                | Loi Tung and<br>Fanling<br>Highway<br>Interchange                      | Before<br>Operation      | EIAO and NCO                        |
|                                                          |              | Fixed Plant Noise                                                                                                                                                                  |                                                                                 |                                                           |                                                                        |                          |                                     |
| Table<br>4.46                                            | 3.2          | Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.                                                              | To minimize the<br>fixed plant noise<br>impact                                  | Managing<br>Authority of<br>the buildings /<br>Contractor | BCP,<br>Administration<br>Building and all<br>ventilation<br>buildings | Before<br>Operation      | EIA recommendation,<br>EIAO and NCO |



| EIA Ref.                   | EM&A | nitoring and Audit Manual Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Objectives of the<br>Recommended<br>Measure                                                                | Who to implement                                          | Location of the                                                        | When to implement the | What requirements<br>or standards for the                                          |
|----------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|
|                            | Ref. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | & Main Concerns<br>to address                                                                              | the<br>measure?                                           | measure                                                                | measure?              | measure to achieve?                                                                |
| 4.5.2.4                    | 3.2  | <ul> <li>The following noise reduction measures shall be considered as far as practicable during operation:</li> <li>Choose quieter plant such as those which have been effectively silenced;</li> <li>Include noise levels specification when ordering new plant (including chillier and E/M equipment);</li> <li>Locate fixed plant/louver away from any NSRs as far as practicable;</li> <li>Locate fixed plant in walled plant rooms or in specially designed enclosures;</li> <li>Locate noisy machines in a basement or a completely separate building;</li> <li>Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and</li> <li>Develop and implement a regularly scheduled plant maintenance</li> </ul>                                                                                                                          | To minimize the<br>fixed plant noise<br>impact                                                             | Managing<br>Authority of<br>the buildings /<br>Contractor | BCP,<br>Administration<br>Building and all<br>ventilation<br>buildings | Before<br>Operation   | EIAO and NCO                                                                       |
|                            |      | programme so that equipment is properly operated and serviced<br>in order to maintain a controlled level of noise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                           |                                                                        |                       |                                                                                    |
| <u>water QL</u><br>5.6.1.1 | 4.1  | ct (Construction) Construction site runoff and drainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To control site                                                                                            | Contractor                                                | Construction                                                           | Construction          | Practice Note for                                                                  |
| 0.0.1.1                    | 4.1  | <ul> <li>Construction site runon and drainage</li> <li>The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:</li> <li>At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be</li> </ul> | runoff and<br>drainage; prevent<br>high sediment<br>loading from<br>reaching the<br>nearby<br>watercourses | Contractor                                                | Works Sites                                                            | Phase                 | Professional Persons<br>on Construction Site<br>Drainage (ProPECC<br>Note PN 1/94) |

 The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.



| EIA Ref. | EM&A<br>Ref. | <b>Recommended Mitigation Measures</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Objectives of the<br>Recommended<br>Measure | Who to<br>implement<br>the | Location of the measure | When to implement the | What requirements<br>or standards for the<br>measure to |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|-------------------------|-----------------------|---------------------------------------------------------|
|          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | & Main Concerns<br>to address               | measure?                   | incusure                | measure?              | achieve?                                                |
|          |              | Temporary ditches should be provided to facilitate the runoff<br>discharge into stormwater drainage system through a sediment/silt<br>trap. The sediment/silt traps should be incorporated in the<br>permanent drainage channels to enhance deposition rates, if<br>practical.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                            |                         |                       |                                                         |
|          | •            | Sand/silt removal facilities such as sand/silt traps and sediment<br>basins should be provided to remove sand/silt particles from runoff<br>to meet the requirements of the TM standards under the WPCO.<br>The design of efficient silt removal facilities should be based on the<br>guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may<br>vary depending upon the flow rate. The detailed design of the<br>sand/silt traps should be undertaken by the Contractor prior to the<br>commencement of construction.                                                                                                                                                                                                                                                               |                                             |                            |                         |                       |                                                         |
|          | •            | All drainage facilities and erosion and sediment control structures<br>should be regularly inspected and maintained to ensure proper and<br>efficient operation at all times and particularly during rainstorms.<br>Deposited silt and grit should be regularly removed, at the onset of<br>and after each rainstorm to ensure that these facilities are<br>functioning properly at all times.                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                            |                         |                       |                                                         |
|          | •            | Measures should be taken to minimize the ingress of site drainage<br>into excavations. If excavation of trenches in wet periods is<br>necessary, they should be dug and backfilled in short sections<br>wherever practicable. Water pumped out from foundation<br>excavations should be discharged into storm drains via silt removal<br>facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                            |                         |                       |                                                         |
|          | •            | If surface excavation works cannot be avoided during the wet<br>season (April to September), temporarily exposed slope/soil<br>surfaces should be covered by tarpaulin or other means, as far as<br>practicable, and temporary access roads should be protected by<br>crushed stone or gravel, as excavation proceeds. Interception<br>channels should be provided (e.g. along the crest/edge of the<br>excavation) to prevent storm runoff from washing across exposed<br>soil surfaces. Arrangements should always be in place to ensure<br>that adequate surface protection measures can be safely carried<br>out well before the arrival of a rainstorm. Other measures that need<br>to be implemented before, during and after rainstorms are<br>summarized in ProPECC Note PN 1/94. |                                             |                            |                         |                       |                                                         |



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures               | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address | Who to<br>implement<br>the<br>measure? | Location of the measure | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve? |
|----------|--------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------------------|
|          |              | the erosive potential of surface water flows. |                                                                              |                                        |                         |                                      |                                                                     |

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

| 5.6.1.1 | 4.1 | Good site practices for works within water gathering grounds             | To minimize water   | Contractor | Construction     | Construction | ProPECC Note PN |
|---------|-----|--------------------------------------------------------------------------|---------------------|------------|------------------|--------------|-----------------|
|         |     | The following conditions should be complied, if there is any works to be | quality impacts to  |            | Works Sites      | Phase        | 1/94            |
|         |     | carried out within the water gathering grounds:                          | the water gathering |            | within the water |              |                 |
|         |     |                                                                          | grounds             |            | gathering        |              |                 |

255228/ENL/ENL/61/C December 2010



| nvironment | tal Monito   | pring and Audit Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                        |                         |                                      |                                                                     |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------------------|
| EIA Ref.   | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address | Who to<br>implement<br>the<br>measure? | Location of the measure | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve? |
|            | •            | Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                        | grounds                 |                                      |                                                                     |
|            | •            | No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.                                                                                                                                                                                                                                                                                                 |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | All surplus spoil should be removed from water gathering grounds as soon as possible.                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Regular cleaning of silt traps should be carried out to ensure proper operation at all time.                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Facilities for washing the wheels of vehicles before leaving the site should be provided.                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Any construction plant which causes pollution to catchwaters or<br>catchments due to the leakage of oil or fuel should be removed off<br>site immediately.                                                                                                                                                                                                                                                                                                                               |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | No maintenance activities which may generate chemical wastes<br>should be undertaken in the water gathering grounds. Vehicle<br>maintenance should be confined to designated paved areas only<br>and any spillages should be cleared up immediately using<br>absorbents and waste oils should be collected in designated tanks<br>prior to disposal off site. All storm water run-off from these areas<br>should be discharged via oil/petrol separators and sand/silt removal<br>traps. |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Any soil contaminated with fuel leaked from plant should be<br>removed off site and the voids arising from removal of<br>contaminated soil should be replaced by suitable material approved<br>by the Director of Water Supplies.                                                                                                                                                                                                                                                        |                                                                              |                                        |                         |                                      |                                                                     |
|            | •            | Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                        |                         |                                      |                                                                     |

Drainage plans should be submitted for approval by the Director of



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Objectives of the<br>Recommended<br>Measure                          | Who to<br>implement<br>the | Location of the measure                            | Implement the | What requirements<br>or standards for the<br>measure to |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|----------------------------------------------------|---------------|---------------------------------------------------------|
|          | non          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | & Main Concerns<br>to address                                        | measure?                   | mououro                                            | measure?      | achieve?                                                |
|          |              | Water Supplies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                            |                                                    |               |                                                         |
|          |              | <ul> <li>An unimpeded access through the waterworks access road should<br/>always be maintained.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |                            |                                                    |               |                                                         |
|          |              | <ul> <li>Earthworks near catchwaters or streamcourses should only be<br/>carried out in dry season between October and March,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                            |                                                    |               |                                                         |
|          |              | <ul> <li>Advance notice must be given before the commencement of works<br/>on site quoting WSD's approval letter reference.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                            |                                                    |               |                                                         |
| 5.6.1.2  | 4.1          | Good site practices of general construction activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To minimize water                                                    | Contractor                 | All construction                                   | Construction  | EIA Recommendation                                      |
|          |              | Construction solid waste, debris and refuse generated on-site should<br>be collected, handled and disposed of properly to avoid entering any<br>nearby stormwater drain. Stockpiles of cement and other construction<br>materials should be kept covered when not being used.                                                                                                                                                                                                                                                    | ring any<br>struction<br>ch have<br>solvents<br>s should<br>nds of a |                            | works sites                                        | phase         |                                                         |
|          |              | Oils and fuels should only be stored in designated areas which have<br>pollution prevention facilities. To prevent spillage of fuels and solvents<br>to any nearby stormwater drain, all fuel tanks and storage areas should<br>be provided with locks and be sited on sealed areas, within bunds of a<br>capacity equal to 110% of the storage capacity of the largest tank. The<br>bund should be drained of rainwater after a rain event.                                                                                     |                                                                      |                            |                                                    |               |                                                         |
| 5.6.1.3  | 4.1          | Sewage effluent from construction workforce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | To minimize water                                                    | Contractor                 | All construction                                   | Construction  | EIA Recommendation                                      |
|          |              | Temporary sanitary facilities, such as portable chemical toilets, should<br>be employed on-site where necessary to handle sewage from the<br>workforce. A licensed contractor should be employed to provide<br>appropriate and adequate portable toilets and be responsible for<br>appropriate disposal and maintenance.                                                                                                                                                                                                         | quality impacts                                                      |                            | works sites with<br>on-site sanitary<br>facilities | phase         | and Water Pollution<br>Control Ordinance<br>(WPCO)      |
| 5.6.1.4  | 4.1          | Hydrogeological Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To minimize water                                                    | Contractor                 | Construction                                       | Construction  | EIA Recommendation                                      |
|          |              | Grout injection works would be conducted before blasting, for sealing a<br>limited area around the tunnel with a grout of a suitable strength for<br>controlling the potential groundwater inflows. The pre-injection grouting<br>method would be supplemented by post-injection grouting where<br>necessary to further enhance the groundwater inflow control. On-site<br>treatment for the groundwater ingress pumped out would be required<br>to remove any contamination by grouting materials before discharge<br>off-site. | or<br>g<br>e<br>d                                                    |                            | works sites of<br>the drill and<br>blast tunnel    | phase         | and WPCO                                                |
| Water Qu | ality Impa   | ct (Operation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |                            |                                                    |               |                                                         |
|          |              | No mitigation measure is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                            |                                                    |               |                                                         |
|          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                            |                                                    |               |                                                         |



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                     | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address | Who to<br>implement<br>the<br>measure? | Location of the measure                                                | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve?                                                                      |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Sewage   | and Sewera   | age Treatment Impact (Construction)                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
| 6.7      | 5            | The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.                                                                                                                                                                                                                                                       | To minimize water<br>quality impacts                                         | Contractor                             | All construction<br>works sites with<br>on-site sanitary<br>facilities | Construction phase                   | EIA recommendation<br>and WPCO                                                                                                           |
| Sewage a | and Sewera   | age Treatment Impact (Operation)                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
| 6.6.3    | 5            | Sewage generated by the BCP and Chuk Yuen Village Resite will be<br>collected and treated by the proposed on-site sewage treatment facility<br>using Membrane Bioreactor treatment with a portion of the treated<br>wastewater reused for irrigation and flushing within the BCP.                                                                                                                   | To minimize water<br>quality impacts                                         | DSD                                    | BCP                                                                    | Operation<br>phase                   | EIA recommendation<br>and WPCO                                                                                                           |
| 6.5.3    | 5            | Sewage generated from the Administration Building will be discharged to the existing local sewerage system.                                                                                                                                                                                                                                                                                         | To minimize water<br>quality impacts                                         | DSD                                    | Administration<br>Building                                             | Operation<br>phase                   | EIA recommendation and WPCO                                                                                                              |
| Waste M  | anagement    | t Implication (Construction)                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
| 7.6.1.1  | 6            | <b>Good Site Practices</b><br>Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include: | To minimize<br>adverse<br>environmental<br>impact                            | Contractor                             | Construction<br>works sites<br>(general)                               | Construction<br>Phase                | EIA recommendation<br>Waste Disposal<br>Ordinance; Waste<br>Disposal (Chemical<br>Wastes) (General)<br>Regulation; and<br>ETWB TC(W) No. |
|          |              | <ul> <li>Nomination of an approved person, such as a site manager, to be<br/>responsible for good site practices, arrangements for collection and<br/>effective disposal to an appropriate facility, of all wastes generated<br/>at the site</li> </ul>                                                                                                                                             |                                                                              |                                        |                                                                        |                                      | 19/2005,<br>Environmental<br>Management on<br>Construction Site                                                                          |
|          |              | <ul> <li>Training of site personnel in proper waste management and<br/>chemical handling procedures</li> </ul>                                                                                                                                                                                                                                                                                      |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
|          |              | <ul> <li>Provision of sufficient waste disposal points and regular collection<br/>of waste</li> </ul>                                                                                                                                                                                                                                                                                               |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
|          |              | <ul> <li>Dust suppression measures as required under the Air Pollution<br/>Control (Construction Dust) Regulation should be followed as far as<br/>practicable. Appropriate measures to minimise windblown litter and<br/>dust/odour during transportation of waste by covering trucks or in<br/>enclosed containers</li> </ul>                                                                     |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |
|          |              | <ul> <li>General refuse shall be removed away immediately for disposal. As</li> </ul>                                                                                                                                                                                                                                                                                                               |                                                                              |                                        |                                                                        |                                      |                                                                                                                                          |



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                 | Objectives of the<br>Recommended<br>Measure | Who to<br>implement<br>the | Location of the measure  | When to implement the | What requirements<br>or standards for the<br>measure to |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|--------------------------|-----------------------|---------------------------------------------------------|
|          | nei.         |                                                                                                                                                                                                                                                                                                                 | & Main Concerns<br>to address               | measure?                   | measure                  | measure?              | achieve?                                                |
|          |              | such odour is not anticipated to be an issue to distant sensitive receivers                                                                                                                                                                                                                                     |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Provision of wheel washing facilities before the trucks leaving the<br/>works area so as to minimise dust introduction from public road</li> </ul>                                                                                                                                                     |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Covers and water spraying system should be provided for the<br/>stockpiled C&amp;D material to prevent dust impact or being washed<br/>away</li> </ul>                                                                                                                                                 |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Designate different locations for storage of C&amp;D material to<br/>enhance reuse</li> </ul>                                                                                                                                                                                                          |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Well planned programme for transportation of C&amp;D material to<br/>lessen the off-site traffic impact. Well planned delivery programme<br/>for offsite disposal and imported filling material such that adverse<br/>noise impact from transporting of C&amp;D material is not anticipated</li> </ul> |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Site practices outlined in ProPECC PN 1/94 "Construction Site<br/>Drainage" should be adopted as far as practicable, such as<br/>cleaning and maintenance of drainage systems regularly</li> </ul>                                                                                                     |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Provision of cover for the stockpile material, sand bag or earth<br/>bund as barrier to prevent material from washing away and<br/>entering the drains</li> </ul>                                                                                                                                      |                                             |                            |                          |                       |                                                         |
| .6.1.2   | 6            | Waste Reduction Measures                                                                                                                                                                                                                                                                                        | To reduce the                               | Contractor                 | Construction             | Construction          | EIA recommendation                                      |
|          | -            | Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:                               | quantity of wastes                          |                            | works sites<br>(General) | Phase                 | and Waste Disposal<br>Ordinance                         |
|          |              | <ul> <li>Segregation and storage of different types of waste in different<br/>containers, skips or stockpiles to enhance reuse or recycling of<br/>materials and their proper disposal</li> </ul>                                                                                                               |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Encourage collection of aluminium cans by providing separate<br/>labelled bins to enable this waste to be segregated from other<br/>general refuse generated by the work force</li> </ul>                                                                                                              |                                             |                            |                          |                       |                                                         |
|          |              | <ul> <li>Proper storage and site practices to minimise the potential for<br/>damage or contamination of construction materials</li> </ul>                                                                                                                                                                       |                                             |                            |                          |                       |                                                         |
|          |              | Plan and stock construction materials carefully to minimise amount                                                                                                                                                                                                                                              |                                             |                            |                          |                       |                                                         |



| EIA Ref. | EM&A<br>Ref. | Recommended Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Objectives of the<br>Recommended<br>Measure<br>& Main Concerns<br>to address                                            | Who to<br>implement<br>the<br>measure? | Location of the measure                  | When to<br>implement the<br>measure? | What requirements<br>or standards for the<br>measure to<br>achieve?                                                                                     |
|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |              | of waste generated and avoid unnecessary generation of waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to address                                                                                                              |                                        |                                          |                                      |                                                                                                                                                         |
|          |              | <ul> <li>In addition to the above measures, specific mitigation measures<br/>are recommended below for the identified waste arising to minimise<br/>environmental impacts during handling, transportation and disposal<br/>of these wastes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |                                        |                                          |                                      |                                                                                                                                                         |
| 7.6.1.3  | 6            | <b>C&amp;D Materials</b><br>In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below: | To minimize<br>impacts resulting<br>from C&D material                                                                   | Contractor                             | Construction<br>Works Sites<br>(General) | Construction<br>Phase                | EIA recommendation;<br>Waste Disposal<br>Ordinance; and<br>ETWB TCW No.<br>31/2004                                                                      |
|          |              | <ul> <li>A Waste Management Plan should be prepared and implemented<br/>in accordance with ETWB TC(W) No. 19/2005 Environmental<br/>Management on Construction Site; and</li> <li>In order to monitor the disposal of C&amp;D material and solid wastes<br/>at public filling facilities and landfills, and to control fly-tipping, a<br/>trip-ticket system (e.g. ETWB TCW No. 31/2004) should be<br/>included.</li> </ul>                                                                                                                                                                                                                           |                                                                                                                         |                                        |                                          |                                      |                                                                                                                                                         |
| 7.6.1.4  | 6            | <b>General refuse</b><br>General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.                                                                                                                                                                                                                                                                                       | To minimize<br>impacts resulting<br>from collection and<br>transportation of<br>general refuse for<br>off-site disposal | Contractor                             | Construction<br>works sites<br>(General) | Construction<br>phase                | Waste Disposal<br>Ordinance and Public<br>Health and Municipal<br>Services Ordinance -<br>Public Cleansing and<br>Prevention of<br>Nuisances Regulation |
| 7.6.1.5  | 6            | <b>Chemical waste</b><br>If chemical wastes are produced at the construction site, the Contractor<br>will be required to register with the EPD as a chemical waste producer<br>and to follow the guidelines stated in the <i>Code of Practice on the</i><br><i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality<br>containers compatible with the chemical wastes should be used, and<br>incompatible chemicals should be stored separately. Appropriate labels<br>should be securely attached on each chemical waste container<br>indicating the corresponding chemical characteristics of the chemical                         | To minimize<br>impacts resulting<br>from collection and<br>transportation of<br>chemical waste for<br>off-site disposal | Contractor                             | Construction<br>works sites<br>(General) | Construction<br>phase                | Waste Disposal<br>(Chemical Waste)<br>(General) Regulation<br>and Code of Practice<br>on the Packaging,<br>Labelling and Storage<br>of Chemical Wastes  |

## Appendix N

## **Investigation Report for Exceedance**



### **Fax Cover Sheet**

| То      | Mr. Roger Lee                                                                                                                                                                                                | Fax No      | 2717 3 | 3299                |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------------------|--|--|
| Company | Dragages Hong Kong Limited                                                                                                                                                                                   |             |        |                     |  |  |
| cc      |                                                                                                                                                                                                              |             |        |                     |  |  |
| From    | Nicola Hon                                                                                                                                                                                                   | Date        | 22 Mar | rch 2018            |  |  |
| Our Ref | TCS00697/13/300/ <b>F1496a</b>                                                                                                                                                                               | No of Pages | 5      | (Incl. cover sheet) |  |  |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works<br>Investigation Report of Exceedance of Water Quality at Location WM3x on 1 and<br>March 2018 (Contract 2) |             |        |                     |  |  |
|         |                                                                                                                                                                                                              | -           |        |                     |  |  |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1474 dated 1 March 2018 TCS00694/13/300/F1478 dated 5 March 2018 TCS00694/13/300/F1484 dated 8 March 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting** 

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD)Fax:2685 1133Mr. Edwin Ching (CRE, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail



# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

| Project                                                                  |      | CE 45/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                      |                                                                              |  |
|--------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| Date                                                                     |      | 1 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 March 2018                                                                                                          | 1 March 2018                                                                         | 3 March 2018                                                                 |  |
| Location                                                                 |      | 1 11100 011 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WM3x                                                                                                                  | 1 10100 2010                                                                         | 2010                                                                         |  |
| Time                                                                     |      | 10:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9:44                                                                                                                  | 10:55                                                                                | 9:44                                                                         |  |
| Parameter                                                                |      | Turbidity (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NTU)                                                                                                                  | Suspended So                                                                         | lids (mg/L)                                                                  |  |
|                                                                          |      | 13.4 AND 120% of u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       | 12.6 AND 120% of upstream                                                            |                                                                              |  |
| Action Level                                                             |      | station of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       | control station of                                                                   | f the same day                                                               |  |
| Limit Level                                                              |      | 14.0 AND 130% of upstr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       | 12.9 AND 130%                                                                        |                                                                              |  |
|                                                                          |      | of the sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       | control station of                                                                   | ,                                                                            |  |
|                                                                          | М3-С | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                                                                                                   | 3.5                                                                                  | 7.5                                                                          |  |
|                                                                          | M3x  | 24.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119.0                                                                                                                 | 39.5                                                                                 | 185.0                                                                        |  |
| Exceedance                                                               |      | Limit Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit Level                                                                                                           | Limit Level                                                                          | Limit Level                                                                  |  |
| Investigation<br>Results,<br>Recommendations<br>& Mitigation<br>Measures |      | 1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 1 and 3 March 2018 at upstream of WM3x were construction of fence wall and permanent drainage, fitting out and underground utilities for Admin Building and tunnel works at North Portal Site. The relevant works area under C2 and the water monitoring locations are illustrated in <i>Figure 1</i> .                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                                      |                                                                              |  |
|                                                                          |      | turbid water was ob<br>clear. It was noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e photo taken on 1 M<br>tly turbid and at WM<br>pserved at WM3 wh<br>that the channel of<br>Road and the adjacent     | A3-C was clear. Or<br>ile the water quality<br>WM3x also received                    | at WM3-C was<br>the storm water                                              |  |
|                                                                          |      | 3. Joint site inspections with AECOM, IEC, DHK and ET were carried out on 23 February. At Admin Building Site, it was observed that site area was mostly hard paved and wastewater generated from the construction works was limited. The adjacent channel and catch pit receiving the wastewater from Admin Building and upstream area were clear and no adverse water quality impact was identified during site inspection. ( <i>Photos 5 to 7</i> ) Inspection was carried out at North Portal Site on 23 February and 1 March 2018, it was observed wastewater treatment facilities were in place properly, and the water quality outside the discharge point at downstream Loi Tung Stream was visually clear. ( <i>Photos 8 &amp; 9</i> ) |                                                                                                                       |                                                                                      |                                                                              |  |
|                                                                          |      | 4. Based on the above related to other sou Contract 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | investigation, it is c<br>irce of turbid water                                                                        |                                                                                      |                                                                              |  |
|                                                                          |      | exceedances were tr<br>triggered in the mor<br>Contractor should co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | due to the limit l<br>iggered in consecutiv<br>itoring result on 2 a<br>ontinually fully impl<br>the implementation s | evel exceedance re<br>ve days. There were<br>nd 5 March 2018.<br>ement the water mit | corded until no<br>e no exceedances<br>Nevertheless, the<br>igation measures |  |
| Prepared By :                                                            |      | Nicola Hon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                       |                                                                                      |                                                                              |  |
| Designation :                                                            |      | Environmental Consultant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                       |                                                                                      |                                                                              |  |
| Signature :                                                              |      | Auh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |                                                                                      |                                                                              |  |
| Date :                                                                   |      | 22 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                                                      |                                                                              |  |



### **Photo Record**



Photo 1

During water sampling on 1 March 2018, the water quality observed at WM3x was slightly turbid.



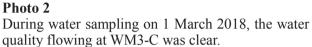





Photo 3

During water sampling on 3 March 2018, the water quality observed at WM3x was turbid.



### Photo 5

At Admin Building Site, it was observed that site area was mostly hard paved and wastewater generated from the construction works was limited.



### Photo 4

During water sampling on 3 March 2018, the water quality flowing at WM3-C was clear.





The adjacent channel and catch pit receiving the wastewater from Admin Building and upstream area were clear and no adverse water quality impact was identified during site inspection.





#### Photo 7

The adjacent channel and catch pit receiving the wastewater from Admin Building and upstream area were clear and no adverse water quality impact was identified during site inspection.





Joint site inspection was conducted on 23 February 2018, the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.



### Photo 9

Joint site inspection was conducted on 1 March 2018, the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

## AUES

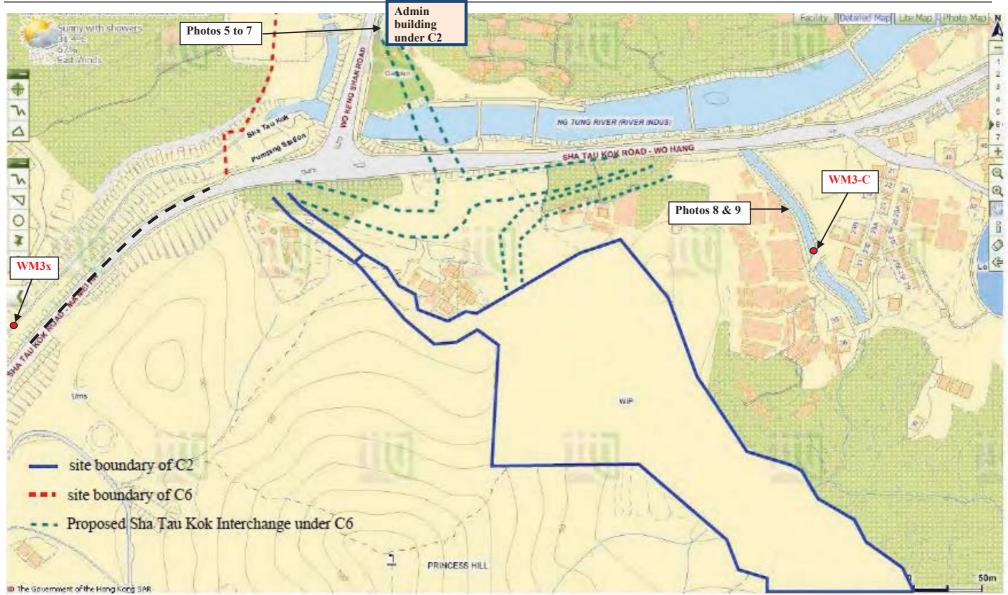



Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location



| То      | Mr. Vincent Chan                                                                                                                                                                                               | Fax No      | By e-ma  | il                  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|---------------------|--|--|
| Company | CRBC-CEC-Kaden JV                                                                                                                                                                                              |             |          |                     |  |  |
| сс      |                                                                                                                                                                                                                |             |          |                     |  |  |
| From    | Nicola Hon                                                                                                                                                                                                     | Date        | 20 March | 2018                |  |  |
| Our Ref | TCS00694/13/300/ <b>F1495</b>                                                                                                                                                                                  | No of Pages | 6        | (Incl. cover sheet) |  |  |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works<br>Investigation Report of Exceedance of Water Quality at Location WM3x on 1 and 3<br>March 2018 (Contract 6) |             |          |                     |  |  |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1473 dated 1 March 2018 TCS00694/13/300/F1477 dated 5 March 2018 TCS00694/13/300/F1483 dated 8 March 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting** 

Nicola Hon Environmental Consultant Encl.

c.c.

Ms. Clara U (EPD) Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC) 
 Fax:
 2685 1133

 Fax:
 2251 0698

 By email



### Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

| Project                                                                  |       | CE 45/2008                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                       |                                                                          |                    |
|--------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|--------------------|
| Date                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                               | 1 March 2018                      |                                                       |                                                                          | 3 March 2018       |
| Location                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                               | WM3x                              |                                                       |                                                                          |                    |
| Time                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                               | 10:55                             | 9:44                                                  | 10:55                                                                    | 9:44               |
| Parameter                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                               | Turbidity (                       | (NTU)                                                 | Suspended Sc                                                             | olids (mg/L)       |
| Action Lev                                                               | al    | 13.4 AND 120% of upstream control                                                                                                                                                                                                                                                                                                                                                             |                                   | 12.6 AND 120% of upstream control                     |                                                                          |                    |
| Action Lev                                                               | ei    |                                                                                                                                                                                                                                                                                                                                                                                               | station of the                    | 2                                                     | station of the same day                                                  |                    |
| Limit Leve                                                               | 1     | 1                                                                                                                                                                                                                                                                                                                                                                                             | 4.0 AND 130% of u                 |                                                       | 12.9 AND 130% of                                                         | upstream control   |
|                                                                          | [     | station of the same day                                                                                                                                                                                                                                                                                                                                                                       |                                   | station of the same day                               |                                                                          |                    |
| Measured                                                                 | WM3-C |                                                                                                                                                                                                                                                                                                                                                                                               | 1.6                               | 3.5                                                   | 3.5                                                                      | 7.5                |
| Level                                                                    | WM3x  |                                                                                                                                                                                                                                                                                                                                                                                               | 24.45                             | 119.0                                                 | 39.5                                                                     | 185.0              |
| Exceedance                                                               | e     |                                                                                                                                                                                                                                                                                                                                                                                               | Limit Level                       | Limit Level                                           | Limit Level                                                              | Limit Level        |
| Investigation<br>Results,<br>Recommendations<br>& Mitigation<br>Measures |       | 1. According to the site information provided by the Contractor of C6 (CCKJV), the construction activities at South Portal Site (upstream of WM3x) carried out on 1 and 3 March 2018 was mainly tunnel excavation and erection of bridge segment. The monitoring locations and works areas are illustrated in <i>Figure 1</i> .                                                               |                                   |                                                       |                                                                          |                    |
|                                                                          |       | 2. According to the site photo taken on 1 March 2018, the water quality observed at WM3x was slightly turbid and at WM3-C was clear. On 3 March 2018, turbid water was observed at WM3 while the water quality at WM3-C was clear. It was noted that the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages. ( <i>Photos 1 to 4 and Figure 1</i> ) |                                   |                                                       |                                                                          |                    |
|                                                                          |       | 3.                                                                                                                                                                                                                                                                                                                                                                                            | it was observed that              | at the water quality                                  | inel adjacent to site a<br>in the channel of Sou<br>ity was noted from S | th Portal Site was |
|                                                                          |       | 4.                                                                                                                                                                                                                                                                                                                                                                                            | on 2 March 2018 t                 |                                                       | Contractor, IEC and E<br>ronmental performane<br>w:-                     |                    |
|                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                               |                                   | eatment facilities at<br>nt was clear. ( <i>Photo</i> | t South Portal were 7 and 8)                                             | function properly  |
|                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                               | (b) Site hoarding site area was a |                                                       | was installed and no                                                     | o runoff from the  |
|                                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                               | (c) The constructi impact was ob  |                                                       | in order and no adve                                                     | erse water quality |
|                                                                          |       | 5.                                                                                                                                                                                                                                                                                                                                                                                            |                                   | re investigation, it is<br>the works under Co         | s considered that the contract 6.                                        | exceedances were   |
|                                                                          |       | 6.                                                                                                                                                                                                                                                                                                                                                                                            | increased to daily                |                                                       | onitoring frequency a<br>level exceedance r<br>onsecutive days.          |                    |



|                      | exceedances triggered in the monitoring result on 2 and 5 March 2018.<br>Nevertheless, the Contractor should continually fully implement the water<br>mitigation measures as recommended in the implementation schedule for<br>environmental mitigation measures in the EM&A Manual. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Action to be taken   | The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.                                                                                                  |
| Prepared By :        | Nicola Hon                                                                                                                                                                                                                                                                           |
| <b>Designation</b> : | Environmental Consultant                                                                                                                                                                                                                                                             |
| Signaturo -          | 1 0                                                                                                                                                                                                                                                                                  |

Signature :

Date :

| Au L          |  |
|---------------|--|
| 20 March 2018 |  |



### **Photo Record**



#### Photo 1

During water sampling on 1 March 2018, the water quality observed at WM3x was slightly turbid.



**Photo 2** During water sampling on 1 March 2018, the water quality flowing at WM3-C was clear.



### Photo 3

During water sampling on 3 March 2018, the water quality observed at WM3x was turbid.



### Photo 5

On 1 March 2018, it was observed that the water quality in the channel of South Portal Site was clear and no deteriorated water quality was noted from South Portal Site.

During water sampling on 3 March 2018, the water quality flowing at WM3-C was clear.





On 3 March 2018, it was observed that the water quality in the channel of South Portal Site was clear and no deteriorated water quality was noted from South Portal Site.



| Photo 7                                               | Photo 8                                           |
|-------------------------------------------------------|---------------------------------------------------|
| Joint site inspection was conducted on 2 March        | Joint site inspection was conducted on 2 March    |
| 2018. It was observed that wastewater treatment       | 2018. It was observed that wastewater treatment   |
| facilities at South Portal were function properly and | facilities at South Portal were function properly |
| the effluent was clear.                               | and the effluent was clear.                       |






Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

## Appendix O

## **Investigation Report for Complaint**



| То      | Mr. Roger Lee (DHK)                                                                                                | Fax No      | By e-ma | ail                 |
|---------|--------------------------------------------------------------------------------------------------------------------|-------------|---------|---------------------|
| Company | Dragages Hong Kong Limited                                                                                         |             |         |                     |
| cc      |                                                                                                                    |             |         |                     |
| From    | Nicola Hon                                                                                                         | Date        | 6 March | 2018                |
| Our Ref | TCS00694/13/300/ <b>F1454c</b>                                                                                     | No of Pages | 7       | (Incl. cover sheet) |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary (<br>Investigation Report for Complaint on S<br>Pier |             |         |                     |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Enclosed please find the investigation report for the captioned for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting** 

Nicola Hon Environmental Consultant

Encl.

c.c.

| Ms. Clara U (EPD)                       | Fax: | 2685 1133 |
|-----------------------------------------|------|-----------|
| Mr. Raymond Leong (CE/BCP, NTEDO, CEDD) | Fax: | 3547 1659 |
| Mr. Edwin Ching (RE, AECOM)             | Fax: | 2171 3498 |
| Mr. Antony Wong (IEC, SMEC)             |      | By email  |

## Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

# Investigation Report on Environmental Complaint / Enquires

| Compleint Lee No           | CE 45/2008 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Complaint Log No.          | CE 45/2008 – 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| <b>Received Date by ET</b> | 29 January 2018 and 12 February 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| <b>Related Contracts</b>   | Contract 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Complaint Details          | <ul> <li>(a) A complaint was received by RE on 24 January 2018 from EPD regarding observations of some of the spoil was dropped into the sea during the offloading operation at Cheung Sha Wan Pier.</li> <li>(b) On 12 February 2018, supplementary document was provided by RE from EPD regarding the operation of the Cheung Sha Wan Pier and suspicion of delivery of excavated materials to the Mainland China. The queries within the scope of investigation are shown below:- <ul> <li>(i) 此新建的卸泥碼頭是否包含在CEDD工程項目環評報告之 建築廢料管理計劃內經公眾諮詢及環保署長批准? 那個 部門、顧問公司或承建商管理?</li> <li>(ii) 上述工程是否合法在其工地範圍以外或公眾堆填區以外地 方進行裝卸、轉運建築廢料,有何措施監管?何人監管?</li> <li>(iii) 運卸過程中塵土飛揚,建築廢料掉入海中是否違法?貴署 會否執法?</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| <b>Complaint Location</b>  | Cheung Sha Wan Pier (CSW Pier)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Date of Complaint          | 24 January 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Environmental<br>Aspect    | Waste Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Complainant                | Undisclosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <b>Complaint Route</b>     | From EPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Investigation Result       | <ol> <li>A complaint was received by RE on 24 January 2018 from EPD regarding observations of some of the spoil was dropped into the sea during the offloading operation at CSW Pier. On 12 February 2018, supplementary document was provided by RE from EPD regarding the operation of the CSW Pier and suspicion of delivery of excavated materials to the Mainland China. The complaint location is located within Yuen Fat Wharf in Cheung Sha Wan where provides logistics services including cargo and goods transportation, distribution center management, etc. A section of the jetty has been rented and operated by Contractor of Contract 2 (hereinafter "DHK")'s Subcontractor as transfer station for unloading excavated materials from various sources including Contract 2. The location of the CSW Pier is shown in <i>Figure 1</i>.</li> <li>Upon receipt of the complaint, joint site inspection by RE, IEC, DHK and ET was carried out on 9<sup>th</sup> February 2018 at Cheung Sha Wan Pier. The observations during the site investigation are summarized in below.</li> <li>Operation of the Jetty         <ul> <li>(a) To efficiently manage the excavated materials generated from the Project, an updated Waste Management Plan (Rev. H) was made by DHK in November 2017 to include an alternative way for delivering the excavated materials to public fill banks not only by trucks but also by barges. The Waste</li> </ul> </li></ol> |  |  |

|                    | Management Plan (Rev. H) was submitted to EPD on 1 <sup>st</sup><br>November 2017 after certification by ETL and verification by<br>IEC. EPD has issued comments on the plan to DHK on 5 <sup>th</sup><br>January 2018 and revision was made by DHK on 24 <sup>th</sup><br>February 2018. IEC provided comments to DHK on the<br>revised WMP on 6 <sup>th</sup> March 2018 and the WMP is currently<br>being further revised by the DHK.                                                                                                        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b)                | A section of jetty in Yuen Fat Wharf has been rented and<br>operated by Tapbo Civil Engineering Company Limit as a<br>transfer station for unloading and transferring excavated<br>materials from various sources including Contract 2. The<br>unloaded materials of Contract 2 will be subsequently<br>delivered to the designated disposal ground, TM38 or<br>TKO137, which mainly used on Sundays and Public<br>Holidays. The jetty is also used by other projects in<br>weekdays, Sundays and Public Holidays.                              |
| (c)                | During the site investigation on 9 <sup>th</sup> February 2018, it was<br>observed that the tipping hall of the jetting (area of unloading<br>from trucks to barges) was enclosed with top and two sides to<br>minimise fugitive dust emission. ( <i>Photo 2</i> ) Water sprinklers<br>were also provided as dust suspension measures. ( <i>Photo 3</i> )                                                                                                                                                                                       |
| (d)                | To avoid the spoil from dropping into the sea through the gap<br>between the barge and jetting, each barge was closely<br>oriented to the berth and dropping height was minimized.<br>( <i>Photo 4</i> ). Moreover, erection of tarpaulin on the opposite<br>site of the barge was provided to avoid spoil spurting out<br>( <i>Photo 5</i> ).                                                                                                                                                                                                  |
| (e)                | In regard to the excavated materials delivery by vessel to the Fill Banks, specific vessel chits have been applied by DHK under trip-ticket system (TTS) ( <i>Photo 6</i> ). As advised by DHK, each barge currently deployed is registered with CEDD for delivery of spoils to TM38/TKO137. Transfer of spoil from one barge to another barge in the middle of the sea is not required. In additional, unloading operation onto registered barges are closely supervised by DHK and its Subcontractor's supervisor to avoid such maloperation. |
| De                 | livery of Excavated Materials to Mainland China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RE<br>mate<br>base | 12 February 2018, supplementary document was provided by<br>from EPD regarding suspicion of delivery of excavated<br>erials to the Mainland China. Investigation was carried out<br>end on the documented record by DHK and findings are<br>marized in below.                                                                                                                                                                                                                                                                                   |
| (a)                | On 11 <sup>th</sup> November 2017, DHK submitted a proposal to RE to deliver the TBM excavated materials, as 'commodity' which outside the ambit of Waste Disposal Ordinance, to Mainland China (Zhongshan, 中山翠亨新區西二圍) and the materials will be used as backfilling in public project administered by Mainland China Local Government Authority (中山翠新區 公共建設局).                                                                                                                                                                                 |
| (b)                | As part of the proposal, a trial run was carried out on 13 <sup>th</sup> January 2018 under supervision by RE's inspectorate in order to ensure that all operational procedures were satisfactorily demonstrated and relevant statutory requirements were                                                                                                                                                                                                                                                                                       |

|   | fulfilled. In the trial run, the materials were transferred from<br>a local derrick barge to a Mainland Chinese self-propelled<br>closed-bottom vessel berthed side by side at the jetty and not<br>in the middle of the sea. The spoils condition were<br>semi-wet, no mitigation measure for dust suppression was<br>considered necessary. The two barges were berthed closely<br>to ensure no material dropping into the sea. ( <i>Photo 7 and</i><br><i>Figure 1</i> ) The work was carefully and closely supervised to<br>ensure no material dropping into the sea and no nuisance<br>caused.  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | . In our investigation, the operation of the jetty is managed by Tapbo<br>Civil Engineering Company Limit as a transfer station for<br>unloading excavated materials from various sources and it was not<br>a newly constructed barging point for the Project use. The<br>unloaded materials of Contract 2 will be subsequently delivered to<br>the designated disposal ground, TM38 or TKO137. According to<br>the EIA and EM&A programme, the route of waste disposal was<br>not taken into account, therefore, no breaches of EP's conditions<br>and improper disposal were considered involved. |
| 5 | . In our site investigation, the sub-Contractor of DHK has<br>implemented dust mitigation measures and spoils handling<br>procedure for the unloading operation at the jetty. There was no<br>evidence showing the spoil being transferred from barge to barge<br>in the middle of the sea. Nevertheless, DHK was reminded to<br>strictly follow the WMP, trip-ticket system and well maintain the<br>performance of their sub-Contractor in the regard of the dust<br>mitigation measures during spoil unloading procedure.                                                                        |

| Prepared By : _ | Nicola Hon               |  |
|-----------------|--------------------------|--|
| Designation :   | Environmental Consultant |  |
| Signature :     | Aul                      |  |
| Date :          | 6 March 2018             |  |

Date :

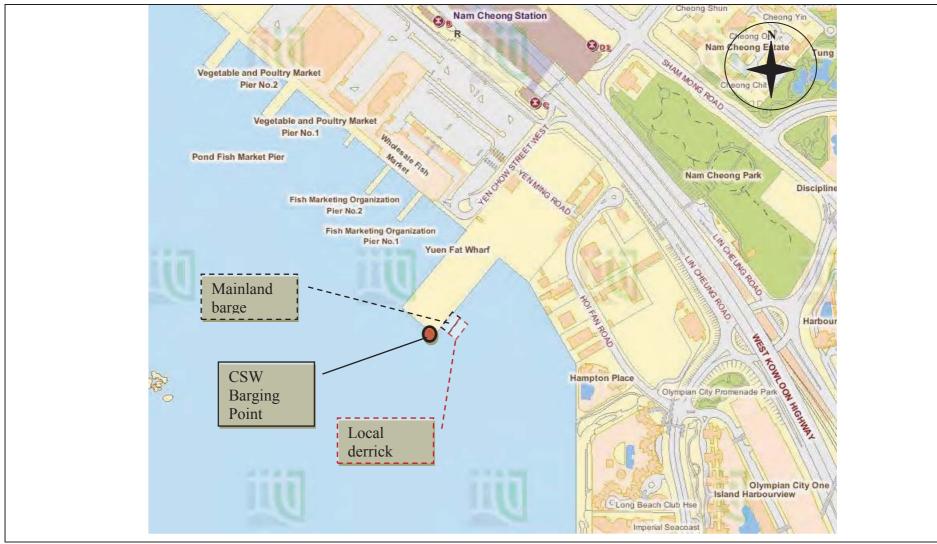
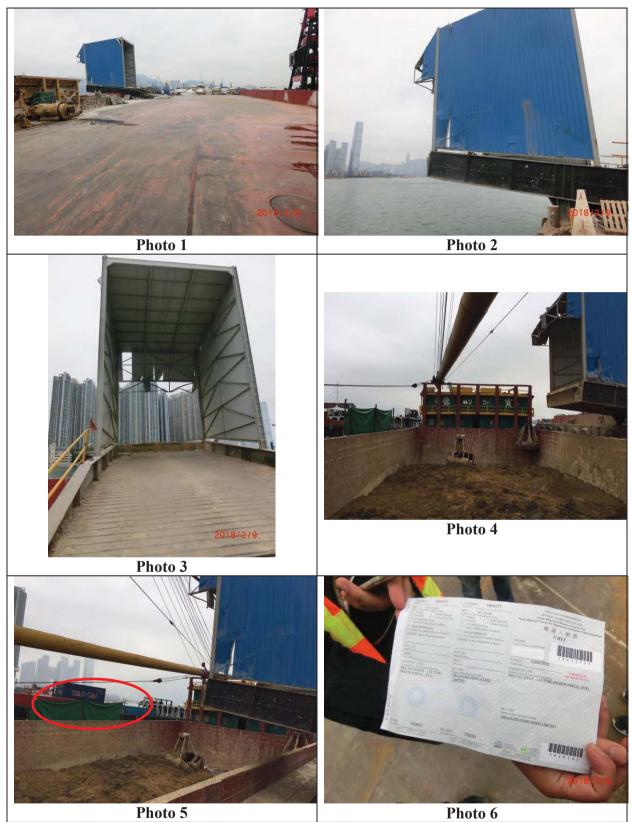




Figure 1The Complaint Location - Barging Point

# **Photo Record**







| То      | Mr. Vincent Chan                                                                                                  | Fax No      | By email |                     |
|---------|-------------------------------------------------------------------------------------------------------------------|-------------|----------|---------------------|
| Company | CRBC-CEC-Kaden JV                                                                                                 |             |          |                     |
| сс      |                                                                                                                   |             |          |                     |
| From    | Nicola Hon                                                                                                        | Date        | 15 March | 2018                |
| Our Ref | TCS00694/13/300/F1490a                                                                                            | No of Pages | 8        | (Incl. cover sheet) |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary C<br>Investigation Report for Environmental<br>Road |             |          |                     |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear all,

Enclosed please find the investigation report for the captioned for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

| C.C. | Ms. Clara U (EPD)                                                | Fax: | 2685 1133             |
|------|------------------------------------------------------------------|------|-----------------------|
|      | Mr. Steve Lo (CE/BCP, NDO, CEDD)                                 | Fax: | 3547 1659             |
|      | Mr. Simon Leung (ER of C6, AECOM)<br>Mr. Antony Wong (IEC, SMEC) | Fax: | 2551 0698<br>By email |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Environmental Complaint / Enquires</u>

| Log No.                     | CE 45/2008 – 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Received Date by ET         | 6 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Contract under              | pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Investigation               | Contract 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Complaint Details           | 於打鼓嶺蓮塘口岸工程一帶,由燈柱編號 GD2263 至 GD2365 道路,每<br>天都有大量重型泥頭車及工程車輛出入地盤,進出車輛經常沒有清洗乾<br>淨就出入道口,導致該地方經常佈滿地泥濘或灑水車灑水後到處泥漿,<br>對居民影響甚遠,空氣質數極差,此問題已對居民影響甚久,煩請貴處<br>盡快跟進                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Location                    | Lin Ma Hang (LMH) Road between light post GD2263 and GD2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Date of Complaint           | 4 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| <b>Environmental Aspect</b> | Muddy water and Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Complainant                 | undisclosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Complaint Route             | Via 1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Investigation Result        | <ol> <li>A public complaint was received via 1823 on 4 March 2018 regarding<br/>the cleanliness of Lin Ma Hang Road and the complaint location is<br/>shown in <i>Figure 1</i>. Based on the complaint details, the concerns of the<br/>complainant related to the EM&amp;A issues are summarized below:-         <ul> <li>(a) Large amount of dump trucks running on Lin Ma Hang Road</li> </ul> </li> </ol>                                                                                                                                                        |  |  |  |
|                             | <ul> <li>(a) Earge union of any events from the first of any from the first of a causing dirt and debris accumulated on the road. Road washing by water tanker causing muddy water and slurry and the cleanliness of public road in between lamp posts GD2263 and GD2365 and some construction site exits was unsatisfactory.</li> <li>(b) The air quality of Lin Ma Hang Road was deteriorated by the dirt and debris which affecting the nearby villagers.</li> </ul>                                                                                              |  |  |  |
|                             | 2. Joint site inspection by RE, IEC, Contractor of C6 (CCKJV) and ET was carried out on 8 March 2017 along the concerned section of LMH Road and construction site exits for complaint investigation. The observations during site inspection are summarized in below.                                                                                                                                                                                                                                                                                               |  |  |  |
|                             | <ul> <li>(a) Starting from Ta Kwu Ling Police Station towards Lin Ma Hang, there were 8 unknown site exits found along LMH Road which all not belong to any Contracts of LT/HYW Project. The conditions of these site exits were generally fair and two of them were dusty. It was observed that mud and debris were cumulated on the kerbs and middle of LMH road. The maintenance party/ ownership of these site exits are unknown. (<i>Photos 1 to 8 and Figure 1</i>)</li> </ul>                                                                                 |  |  |  |
|                             | <ul> <li>(b) There were 3 vehicular site exits under LT/C6, namely "Bridge D", "Chuk Yuen Road" and "Bridge Y", along part of the concerned LMH Road. For these three site exits, wheel washing facilities were provided and properly maintained by CCKJV to avoid carrying of dust and soil to public road by site vehicles. The wastewater generated from wheel washing was directed to catchpit/ AquaSed for de-silting. The condition of these site exit and adjoined LMH Road was kept clear of mud and debris. (<i>Photos 9 to 12 and Figure 1</i>)</li> </ul> |  |  |  |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

## Investigation Report on Environmental Complaint / Enquires

|                      | <ul> <li>(c) There were 3 vehicular site exits to access BCP works area, namely Gate 1, Gate 2 and Gate 3. All three gates area were shared by Contract SS C505 Contractor (Leighton) and LT/C6 Contractor. Gate 1 and Gate 2 are not in use most of the time whereas Gate 3 is the main access currently maintained by SS C505 Contractor. Wheel washing facilities were provided for all Gates exit. It was observed that offloading of sub base was conducted at Gate 1 and some of sub base was dropped on the footpath at the site exit. CCKJV was immediately clear the muddy trails and maintain the cleanliness of the site exit properly. (<i>Photos 13 &amp; 14</i>) Beside, the condition of Gates 2 and 3 were satisfactory which kept clear of mud and debris. (<i>Photos 15 &amp; 16 and Figure 2</i>)</li> </ul> |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>(d) CCKJV has deployed water tanker continuously running along LMH Road in every normal working day as dust suppression measures. Moreover, road sweeper was also deployed on LMH Road in order to remove debris and gravels on road surface and minimize generation of muddy water during rain. No over-water spraying and slurry was observed after road washing. (<i>Photos 17 to 18</i>) The route of water tanker and road sweeper are fully covered complaint area which shown in <i>Figure 1</i>.</li> </ul>                                                                                                                                                                                                                                                                                                    |
|                      | 3. In addition, monitoring programme was executed under the project to closely monitor the air quality at the air sensitive receivers and immediate action would be undertaken in case of exceedance. Having reviewed the air quality monitoring results in February 2018, no exceedances were triggered at the air quality monitoring locations AM1, AM2 and AM3 which located along Lin Ma Hang Road. It is considered that the dust impact arising from the project was within acceptable level.                                                                                                                                                                                                                                                                                                                             |
|                      | 4. In our investigation, the conditions of all site exits were well maintained without mud and debris. The deficiency observed at Gate 1 was rectified immediately without affecting the public. Water spraying by water tanker on LMH is the major dust mitigation measures to suppress the fugitive dust when vehicle travelling on the road. During our regular inspection, no excessive water spraying and slurry was found on LMH road. Since there were many other heavy vehicles apart from the project using LMH Road and certain number of unknown exit sites without proper management along LMH Road, it is considered that the complaint was not related to the works under the Project.                                                                                                                            |
|                      | 5. Since the site arrangement is subject change all the time, the ET will keep closely inspect the site condition and cleanliness of adjoined roads in subsequent weekly site inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Prepared By :</b> | Nicola Hon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Designation :        | Environmental Consultant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8                    | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Signature :          | Au La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Date :               | 15 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Late i               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Photo Record



#### Photo 1 (Unknown Exit 1)

The condition of unknown site exit 1 was fair but some mud and debris were found on the kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 3 (Unknown Exit 3)

The condition of unknown site exit 3 was fair but some mud and debris were found on the kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 5 (Unknown Exit 5)

The condition of unknown site exit 5 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



# **Photo 2 (Unknown Exit 2)** The condition of unknown site exit 2 was dusty in which mud and debris were found at site exit and kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 4 (Unknown Exit 4)

The condition of unknown site exit 4 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 6 (Unknown Exit 6)

The condition of unknown site exit 6 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 7 (Unknown Exit 7)

The condition of unknown site exit 7 was dusty in which mud and debris were found at site exit and kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 9 (Bridge D Site Exit under LT/C6)

Wheel washing facilities were provided for Bridge D site exit and properly maintained by CCKJV. A bund was provided to prevent muddy water from flowing out of the site.



**Photo 11 (Chuk Yuen Rd Site exit under LT/C6)** Wheel washing facilities were provided for Chuk Yuen Rd site exit and properly maintained by CCKJV. The condition of Chuk Yuen Rd Site Exit and adjoined LMH road was satisfactory without mud and debris.



**Photo 8 (Unknown Exit 8)** The condition of unknown site exit 8 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



**Photo 10 (Bridge D Site Exit under LT/C6)** The condition of Bridge D Site Exit under LT/C6 and adjoined LMH road was satisfactory without mud and debris.



**Photo 12 (Bridge Y Site Exit under LT/C6)** Wheel washing facilities were provided for Bridge Y site exit and properly maintained by CCKJV. The condition of Bridge Y site exit and adjoined LMH road was satisfactory without mud and debris.



#### Photo 13 (Gate 1)

Wheel washing facilities were provided for Gate 1 site exit which maintained by CCKJV. It was observed that offloading of sub base was conducted at Gate 1 and some of sub base was dropped on the footpath at the site exit.



#### Photo 15 (Gate 2)

Wheel washing facilities were provided for Gate 2 site exit and properly maintained by CCKJV. The condition of Gate 2 and adjoined LMH road was satisfactory without mud and debris.



#### Photo 17

During the regular site inspection, it was observed that the road surface of LMH Road was wetted by water bowsers to suppress fugitive dust. No over-water spraying and slurry was observed after road washing.



**Photo 13 (Gate 1)** CCKJV was immediately clear the muddy trails and maintain the cleanliness of the site exit properly.



#### Photo 16 (Gate 3)

Wheel washing facilities were provided for Gate 2 site exit and properly maintained by Leighton. The condition of Gate 3 and adjoined LMH road was satisfactory without mud and debris.



#### Photo 18

Road sweeper was also deployed by CCKJV to enhance the road cleaning work in order to remove debris and gravels on road surface.



Figure 1 The site exits along Lin Ma Hang Road

#### Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

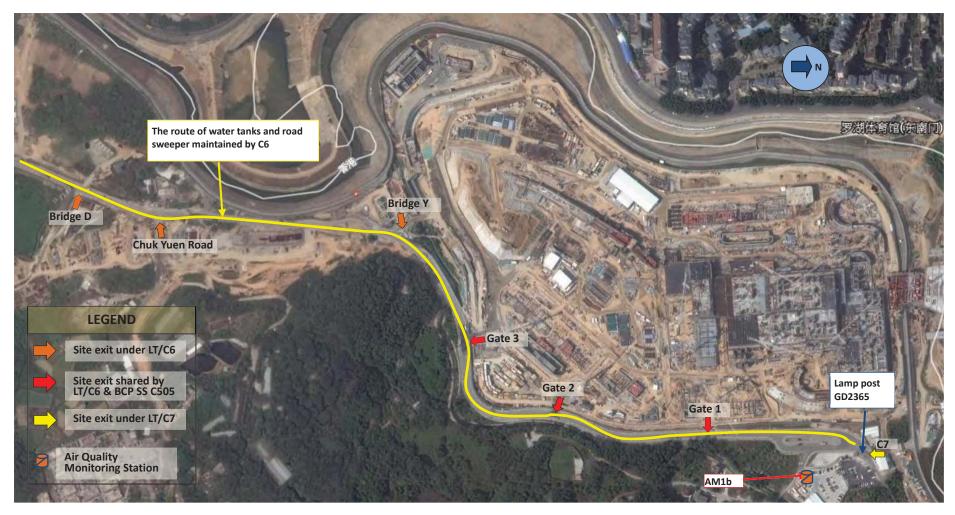



Figure 2 Location Plan for Site exits along Lin Ma Hang Road



| То      | Mr. Matthew Tsang                                                                                                           | Fax No      | By ema  | il                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------------------|
| Company | KRSJV                                                                                                                       |             |         |                     |
| сс      |                                                                                                                             |             |         |                     |
| From    | Nicola Hon                                                                                                                  | Date        | 15 Marc | h 2018              |
| Our Ref | TCS00694/13/300/F1489a                                                                                                      | No of Pages | 6       | (Incl. cover sheet) |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary<br>Investigation Report for Environmenta<br>Road (Contract 7) |             |         |                     |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear all,

Enclosed please find the investigation report for the captioned for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.

| Ms. Clara U (EPD)                    | Fax: | 2685 1133 |
|--------------------------------------|------|-----------|
| Mr. Michael Chan (CE/BCP, NDO, CEDD) | Fax: | 3547 1659 |
| Mr. Simon Leung (ER of C7, AECOM)    | Fax: | 2551 0698 |
| Mr. Antony Wong (IEC, SMEC)          |      | By email  |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Environmental Complaint / Enquires</u>

| Log No.                | CE 45/2008 – 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Received Date by ET    | 6 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Related Contract       | Contract 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| under Investigation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Complaint Details      | 於打鼓嶺蓮塘口岸工程一帶,由燈柱編號 GD2263 至 GD2365 道路,每<br>天都有大量重型泥頭車及工程車輛出入地盤,進出車輛經常沒有清洗乾<br>淨就出入道口,導致該地方經常佈滿地泥濘或灑水車灑水後到處泥漿,<br>對居民影響甚遠,空氣質數極差,此問題已對居民影響甚久,煩請貴處<br>盡快跟進                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Location               | Lin Ma Hang Road (LMH Road)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Date of Complaint      | 4 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Environmental Aspect   | Muddy water and Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Complainant            | undisclosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <b>Complaint Route</b> | Via 1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Investigation Result   | 1. A public complaint was received via 1823 on 4 March 2018 regarding the cleanliness of Lin Ma Hang Road and the complaint location is shown in <i>Figure 1</i> . Based on the complaint details, the concerns of the complainant related to the EM&A issues are summarized below:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                        | <ul> <li>(a) Large amount of dump trucks running on Lin Ma Hang Road causing dirt and debris accumulated on the road. Water tanker caused muddy water and slurry while washing on Lin Ma Hang Road. The cleanliness of public road in between lamp posts GD2263 and GD2365 and some construction site exits was unsatisfactory.</li> <li>(b) The air quality of Lin Ma Hang Road was deteriorated by the dirt and debris which affecting the nearby villagers.</li> </ul>                                                                                                                                                                                                                                                                                                         |  |
|                        | 2. There were 3 works contracts along LMH Road namely, LT/C6 and LT/C7 under CEDD and Contract SS C505 under ASD, and the location plan is shown in <i>Figures 1 &amp; 2</i> . This Investigation Report is prepared for LT/C7 to address the complainant concerns as described in "Complaint Details'. According to the photo provided by the complainant, muddy trails were observed at the site exit of Contract 7. ( <i>Photo 1</i> ) Upon receipt of the complaint, joint site inspection by RE, IEC and ET was carried out on 8 <sup>th</sup> March 2018 and also on 9 <sup>th</sup> March 2018 with Contractor of C7 (KRSJV) for complaint investigation. The observations during site inspection on 8 <sup>th</sup> & 9 <sup>th</sup> March 2018 are summarized in below. |  |
|                        | <ul> <li>(a) There was only one vehicular site exit under Contract 7 to access<br/>BCP works area. Wheel washing facilities including water jet were<br/>provided at exit site and wheel washing was carried out on a<br/>concrete ground before leaving the site. (<i>Photo 2</i>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        | (b) During investigation conducted by RE, IEC and ET on 8 <sup>th</sup> March 2018, it was observed that the site exit of Contract 7 and the adjoined LMH road near lamp post GD2365 was kept clear of mud and debris. ( <i>Photos 3 &amp; 4</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

# Investigation Report on Environmental Complaint / Enquires

| I  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (c) Subsequent joint site inspection was conducted among RE, IEC, KRSJV and ET on 9 <sup>th</sup> March 2018. It was observed that wheel washing facilities and the related wastewater treatment system were properly maintained. No muddy trails and debris was observed at the site exit and adjoined LMH Road and the cleanliness at the site exit and adjoined LMH road was satisfactory. ( <i>Photo 5 &amp; 6</i> )                                                                       |
| 3. | Furthermore, monitoring programme was executed under the project to closely monitor the air quality at the ASR and immediate action would be undertaken in case of exceedance. Having reviewed the air quality monitoring results in February 2018, no exceedances were triggered at the air quality monitoring location AM1b which located near BCP. It is considered that the dust impact arising from the project was within acceptable level.                                              |
| 4. | In our investigation, no cumulated muddy water and mud trails were<br>observed at the site exit under Contract 7 and adjoined LMH Road<br>during our inspections. It is considered that deficiency of complaint<br>was a single incident and KRSJV was strongly reminded to maintain the<br>daily operation of the wheel washing facilities and a clear warning sign<br>should be erected at the site exit to remind the vehicle driver to carry out<br>wheel washing before leaving the site. |
| 5. | Nevertheless, the Contractor should continue fully implement and<br>maintain the wheel washing procedure and dust mitigation measures as<br>recommended in the implementation schedule for environmental<br>mitigation measures in the EM&A Manual.                                                                                                                                                                                                                                            |

| Prepared By :        | Nicola Hon<br>Environmental Consultant |  |
|----------------------|----------------------------------------|--|
| <b>Designation</b> : |                                        |  |
| Signature :          | Aul                                    |  |
| Date :               | 15 March 2018                          |  |

#### **Photo Record**



#### Photo 1

According to the photo provided by the complainant, muddy trails were observed at the site exit of Contract 7.



#### Photo 3

During investigation conducted on 8<sup>th</sup> March 2018, it was observed that the site exit of Contract 7 and the adjoined LMH road near lamp post GD2365 was kept clear of mud and debris.



#### Photo 5

During site inspection on 9 March 2018, it was observed that wheel washing facilities and wastewater treatment system were properly maintained.



#### Photo 2

There was only one vehicular site exit under Contract 7 to access BCP works area. Wheel washing facilities including water jet were provided at exit site and wheel washing was carried out on a concrete ground before leaving the site.



#### Photo 4

During investigation conducted on 8<sup>th</sup> March 2018, it was observed that the site exit of Contract 7 and the adjoined LMH road near lamp post GD2365 was kept clear of mud and debris.



#### Photo 6

During site inspection on 9 March 2018, no muddy trails and debris was observed at the site exit and adjoined LMH Road.



Figure 1 The site exits along Lin Ma Hang Road

#### Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

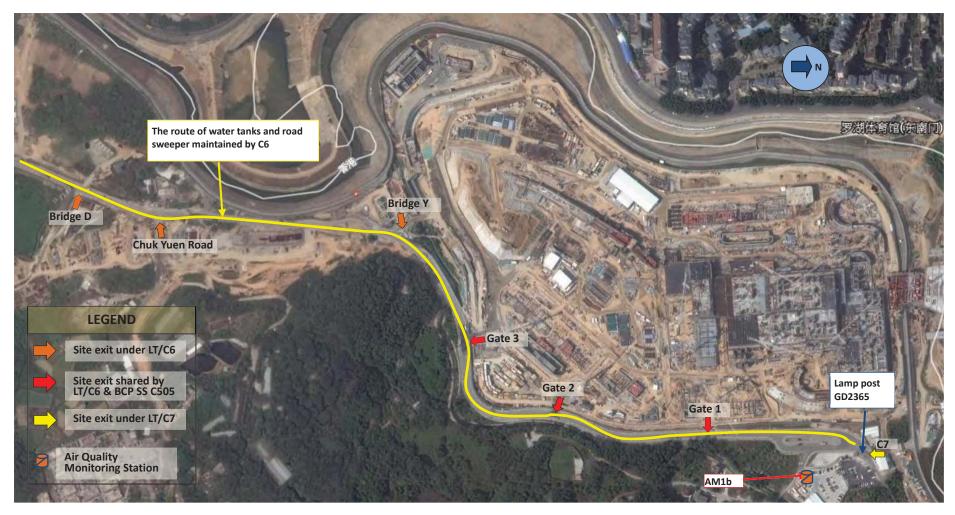



Figure 2 Location Plan for Site exits along Lin Ma Hang Road



**Fax Cover Sheet** 

| То      | Mr. Jon Kitching                                                                                                                                                                                                                                                       | Fax No       | 2752 06  | 96                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------------------|
| Company | Leighton Contractors (Asia) Limited                                                                                                                                                                                                                                    |              |          |                     |
| сс      |                                                                                                                                                                                                                                                                        |              |          |                     |
| From    | Nicola Hon                                                                                                                                                                                                                                                             | Date         | 28 March | n 2018              |
| Our Ref | TCS00769/15/300/ <b>F0257a</b>                                                                                                                                                                                                                                         | No of Pages  | 9        | (Incl. cover sheet) |
| RE      | Architectural Services Department (ArchSD) Contract No: SS C505<br>Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP<br>Buildings and Associated Facilities<br>Investigation Report for Environmental Complaint of Cleanliness of Lin Ma Hang |              |          |                     |
|         | Road                                                                                                                                                                                                                                                                   | Complaint of | cicumit  | ss of Line training |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear all,

Enclosed please find the investigation report for the captioned for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.

| Ms. Clara U (EPD)             | Fax: | 2685 1133 |
|-------------------------------|------|-----------|
| Mr. William WL Cheng (ASD)    |      | By e-mail |
| Mr. Justin Cheung (Ronald Lu) |      | By e-mail |
| Mr. Antony Wong (IEC, SMEC)   |      | By e-mail |
| Mr. Simon Leung (ER, AECOM)   | Fax: | 2674 7732 |

#### Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities

| Log No                             | SS C505 – 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Log No.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Received Date by ET                | 6 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| RelatedContractunder Investigation | Contract SS C505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Complaint Details                  | 於打鼓嶺蓮塘口岸工程一帶,由燈柱編號 GD2263 至 GD2365 道路,每<br>天都有大量重型泥頭車及工程車輛出入地盤,進出車輛經常沒有清洗乾<br>淨就出入道口,導致該地方經常佈滿地泥濘或灑水車灑水後到處泥漿,<br>對居民影響甚遠,空氣質數極差,此問題已對居民影響甚久,煩請貴處<br>盡快跟進                                                                                                                                                                                                                                                                                                                                                                              |  |
| Location                           | Lin Ma Hang (LMH) Road between light post GD2263 and GD2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Date of Complaint                  | 4 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <b>Environmental Aspect</b>        | Muddy water and Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Complainant                        | undisclosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Complaint Route                    | by 1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Investigation Result               | <ol> <li>A public complaint was received by 1823 on 4 March 2018 regarding<br/>the cleanliness of Lin Ma Hang Road and the complaint location is<br/>shown in <i>Figures 1 &amp; 2</i>. Based on the complaint details, the concerns<br/>of the complainant related to the EM&amp;A issues are summarized below:-</li> </ol>                                                                                                                                                                                                          |  |
|                                    | <ul> <li>(a) Large amount of dump trucks running on Lin Ma Hang Road causing dirt and debris accumulated on the road. Road washing by water tanker causing muddy water and slurry and the cleanliness of public road in between lamp posts GD2263 and GD2365 and some construction site exits was unsatisfactory.</li> <li>(b) The air quality of Lin Ma Hang Road was deteriorated by the dirt and debris which affecting the nearby villagers.</li> </ul>                                                                           |  |
|                                    | 2. There were 3 works contracts along LMH Road namely, LT/C6 and LT/C7 under CEDD and Contract SS C505 under ASD, and the location plan is shown in <i>Figures 1 &amp; 2</i> . This Investigation Report is prepared for Contract SS C505 to address the complainant concerns as described in "Complaint Details'. Upon receipt of the complaint, joint site inspection by RE, IEC and ET was carried out on 8 <sup>th</sup> March 2018 for complaint investigation. The observations during site inspection are summarized in below. |  |
|                                    | <ul> <li>(a) Starting from Ta Kwu Ling Police Station towards Lin Ma Hang, there were 8 unknown site exits found along LMH Road which all not belong to any Contracts of LT/HYW Project. The conditions of these site exits were generally fair and two of them were dusty. It was observed that mud and debris were cumulated on the kerbs and middle of LMH road. The maintenance party/ ownership of these site exits are unknown. (<i>Photos 1 to 8 and Figure 1</i>)</li> </ul>                                                  |  |
|                                    | (b) There were 3 vehicular site exits to access BCP works area, namely<br>Gate 1, Gate 2 and Gate 3. All three gates area were shared by<br>Contract SS C505 Contractor (Leighton) and LT/C6 Contractor.                                                                                                                                                                                                                                                                                                                              |  |

#### Investigation Report on Environmental Complaint / Enquires

#### Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities

|                                               | Gate 1 and Gate 2 are not in use most of the time and maintained by LT/C6, whereas Gate 3 is the main access currently maintained by SS C505 Contractor.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c)                                           | Wheel washing facilities were provided for all Gates exits. It was<br>observed that LT/C6 Contractor was offloading of sub base at Gate<br>1 and some of sub base was dropped on the footpath at the site exit.<br>They immediately cleared the muddy trails and maintained the<br>cleanliness of the site exit properly. ( <i>Photos 9 &amp; 10</i> ) Beside, the<br>condition of Gates 2 and 3 were satisfactory which kept clear of<br>mud and debris. ( <i>Photos 11 &amp; 12 and Figure 2</i> )                                                                        |
| (d)                                           | Both Contractor of LT/C6 and Contract SS C505 have deployed water tanker continuously running along LMH Road in every normal working day as dust suppression measures. Moreover, LT/C6 has been deployed road sweeper on LMH Road in order to remove debris and gravels on road surface and minimize generation of muddy water during rain. No over-water spraying and slurry was observed after road washing. ( <i>Photos 13 to 14</i> ) The route of water tanker provided by LT/C6 and Contract SS C505 are shown in <i>Figure 1</i> .                                   |
| mo<br>uno<br>mo<br>the<br>is o                | onitoring programme was executed under the project to closely<br>nitor the air quality at the ASR and immediate action would be<br>lertaken in case of exceedance. Having reviewed the air quality<br>nitoring results in February 2018, no exceedances were triggered at<br>air quality monitoring location AM1b which located near BCP. It<br>considered that the dust impact arising from the project was within<br>the project was within the project.                                                                                                                  |
| obs<br>Ro<br>is t<br>veł<br>veł<br>unł<br>cor | our investigation, no cumulated muddy water and mud trails were<br>served at the site exit under Contract SS C505 and adjoined LMH<br>ad during our inspections. Water spraying by water tanker on LMH<br>he major dust mitigation measures to suppress the fugitive dust when<br>hicle travelling on the road. Since there were many other heavy<br>hicles apart from the project using LMH Road and certain number of<br>known exit sites without proper management along LMH Road, it is<br>hisdered that the complaint was not related to the works under the<br>bject. |
| cur<br>tho<br>wo<br>cha                       | confirmed by Contract SS C505's construction teams, Gate 1 & 2 are<br>rently totally blocked as there are road and UU works by LT/C6 near<br>se two areas and therefore no more vehicles from Contract SSC505<br>uld pass through Gate 1 or 2. As the site arrangement is subject<br>inge all the time, the ET will keep closely inspect the site condition<br>I cleanliness of adjoined roads in subsequent weekly site inspection.                                                                                                                                        |

### Investigation Report on Environmental Complaint / Enquires

#### Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities

Investigation Report on Environmental Complaint / Enquires

Prepared By : Designation :

Nicola Hon Environmental Consultant

Signature :

Date :

Anh

28 March 2018

#### Photo Record



#### Photo 1 (Unknown Exit 1)

The condition of unknown site exit 1 was fair but some mud and debris were found on the kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 3 (Unknown Exit 3)

The condition of unknown site exit 3 was fair but some mud and debris were found on the kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 5 (Unknown Exit 5)

The condition of unknown site exit 5 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



# **Photo 2 (Unknown Exit 2)** The condition of unknown site exit 2 was dusty in which mud and debris were found at site exit and kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 4 (Unknown Exit 4)

The condition of unknown site exit 4 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 6 (Unknown Exit 6)

The condition of unknown site exit 6 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 7 (Unknown Exit 7)

The condition of unknown site exit 7 was dusty in which mud and debris were found at site exit and kerbs of LMH road. The maintenance party/ ownership of the site exit is unknown.



#### Photo 9 (Gate 1)

Wheel washing facilities were provided for Gate 1 site exit which maintained by CCKJV. It was observed that offloading of sub base was conducted at Gate 1 and some of sub base was dropped on the footpath at the site exit.



**Photo 11 (Gate 2)** Wheel washing facilities were provided for Gate 2 site exit and properly maintained by CCKJV. The condition of Gate 2 and adjoined LMH road was satisfactory without mud and debris.



#### Photo 8 (Unknown Exit 8)

The condition of unknown site exit 8 was fair but some mud and debris were found on the kerbs and middle of LMH road. The maintenance party/ ownership of the site exit is unknown.



**Photo 10 (Gate 1)** CCKJV was immediately clear the muddy trails and maintain the cleanliness of the site exit properly.



#### Photo 12 (Gate 3)

Wheel washing facilities were provided for Gate 2 site exit and properly maintained by Leighton. The condition of Gate 3 and adjoined LMH road was satisfactory without mud and debris.



#### Photo 13

During the regular site inspection, it was observed that the road surface of LMH Road was wetted by water bowsers to suppress fugitive dust. No over-water spraying and slurry was observed after road washing.



Photo 14

Road sweeper was also deployed to enhance the road cleaning work in order to remove debris and gravels on road surface.

Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities



Figure 1 The site exits along Lin Ma Hang Road

#### Architectural Services Department (ArchSD) Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities

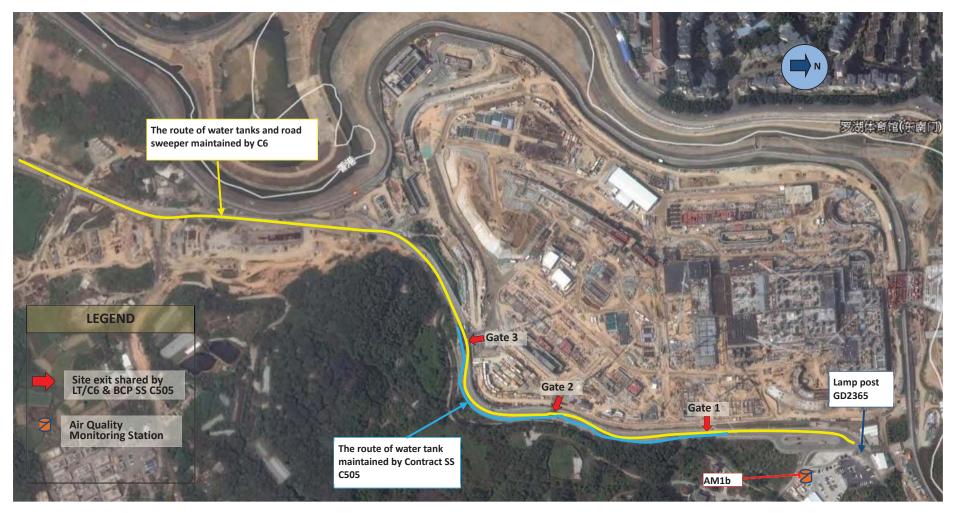



Figure 2 Location Plan for Site exits along Lin Ma Hang Road



**Fax Cover Sheet** 

| То      | Mr. Vincent Chan<br>Mr. Roger Lee (DHK)                                                                                                                                                                        | Fax No      | By emai | il                  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------------------|
| Company | CRBC-CEC-Kaden JV<br>Dragages Hong Kong Limited                                                                                                                                                                |             |         |                     |
| сс      |                                                                                                                                                                                                                |             |         |                     |
| From    | Nicola Hon                                                                                                                                                                                                     | Date        | 19 Marc | h 2018              |
| Our Ref | TCS00694/13/300/F1492a                                                                                                                                                                                         | No of Pages | 7       | (Incl. cover sheet) |
| RE      | Agreement No. CE 45/2008<br>Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works<br>Investigation Report for Environmental Complaint of Cleanliness of Sha Tau Kok<br>Road – Ma Mei Ha Section |             |         |                     |

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear all,

Enclosed please find the investigation report for the captioned for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

| c.c. | Ms. Clara U (EPD)                     | Fax: | 2685 1133 |
|------|---------------------------------------|------|-----------|
|      | Mr. Raymond Leong (CE/BCP, NDO, CEDD) | Fax: | 3547 1659 |
|      | Mr. Steve Lo (CE/BCP, NDO, CEDD/C6)   | Fax: | 3547 1659 |
|      | Mr. Edwin Ching (ER of C2, AECOM)     | Fax: | 2171 3498 |
|      | Mr. Simon Leung (ER of C6, AECOM)     | Fax: | 2551 0698 |
|      | Mr. Antony Wong (IEC, SMEC)           |      | By email  |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Environmental Complaint / Enquires</u>

| Log No.                                 | CE 45/2008 - 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Received Date by ET                     | 6 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Related Contract                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| under Investigation                     | Contract 2 and Contract 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Complaint Details                       | 投訴人致電工程熱線反映,沙頭角公路馬尾下段沿路骯髒及大塵,地盤<br>出口濕滑及滿佈泥水,水馬亦不清潔。"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Location                                | Sha Tau Kok (STK) Road – Ma Mei Ha Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Date of Complaint                       | 28 February 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Environmental Aspect                    | Muddy water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Complainant                             | unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ^                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Complaint Route<br>Investigation Result | <ol> <li>Via Project Hotline</li> <li>A public complaint was received from Project Hotline on 28 February 2018 regarding the cleanliness of Sha Tau Kok (STK) Road – Ma Mei Ha Section as described in "Complaint Details". The complaint location Sha Tau Kok Road - Ma Mei Ha Section and location plan of the related project site are shown in <i>Figure 1</i>.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         | 2. Joint site inspection was carried out by RE, IEC, Contractors and ET on 8 <sup>th</sup> March 2018 on STK Road and related construction site exit under Contract 2 (LT/C2) and Contract 6 (LT/C6) for complaint investigation. The investigation was focusing on the environmental concerns about dust and wastewater issue and the cleanliness of the water filled road barrier was out of the scope of EM&A programme. The observations during the site inspection are summarized in below.                                                                                                                                                                                                                                                                         |  |
|                                         | <ul> <li>(a) There was a temporary road side work area under LT/C6 located at Tai Tong Wu adjoined to STK Road for underground utility investigation work. (<i>Photo 1</i>) There was no exportation of spoil involved in that works area and manual sweeping would be deployed to maintain the cleanliness of the temporary work area. During the inspection, it was observed that the condition of STK was not dusty and no muddy water/ slurry was found near the works area. (<i>Photo 2</i>) However, road debris was observed at both middle and edges of the STK road which suspected to be caused by frequent use of dump truck transporting loose material to NENT and the majority of dump truck was not belong to LT/HYW project. (<i>Photo 3</i>)</li> </ul> |  |
|                                         | <ul> <li>(b) The vehicle site exit of North Portal Site Area (LT/C2) was located on STK Road. Wheel washing facilities was provided within the construction site and site vehicle was cleaned prior leaving the site. (<i>Photo 4</i>) Cut-off drain was in place at the site exit to intercept site runoff from flowing to STK road. No muddy water/ slurry was found at the site exit after the wheel washing facilities. However, mud and debris was observed at both middle and edges of the exiting STK road which suspected to be caused by frequent use of dump truck transporting loose material to NENT and the majority of dump truck was not belong to LT/HYW project. (<i>Photo 5</i>)</li> </ul>                                                            |  |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

# Investigation Report on Environmental Complaint / Enquires

| r |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>(c) Another vehicle site exit for LT/C2 was Admin Building which located on Wo Keng Shan (WKS) Road. Wheel washing facilities was provided at the concrete ground within the construction site. (<i>Photo 6</i>) The wastewater from wheel washing was collected by a pit and pumped to wastewater treatment facility. No muddy water/slurry was found at the site exit after the wheel washing facilities. (<i>Photo 7</i>) Moreover, no muddy trails and dust and soil carrying by site vehicles to public road were observed outside the site exit. (<i>Photo 8</i>)</li> </ul>                                                                                                                                         |
|   | <ul> <li>(d) There was no site exit belong to LT/C6 on STK Road and the main vehicle site exit for works area of Contract 6 was located on Wo Keng Shan (WKS) Road. Wheel washing facilities was provided concrete ground within the construction site and no muddy water/slurry was found at the site exit after the wheel washing facilities. (<i>Photos 9 &amp; 10</i>) No muddy trails and dust and soil carrying by site vehicles to public road were observed outside the site exit. (<i>Photo 11</i>)</li> </ul>                                                                                                                                                                                                             |
|   | <ul> <li>(e) Road washing/ cleaning by water tanker was provided along Wo Keng Shan Road to Sha Tau Kok Road as dust suppression measures. The condition of STK Road after road washing was in normal condition without excessive water/ slurry on road surface. (<i>Photo 12</i>) As advised by both Contractors, road washing was carried out in every normal working day (Mon-Sat), except for rainy day. Moreover, road sweeping has been deployed on the concerned roads twice a week to maintain cleanliness of the roads.</li> </ul>                                                                                                                                                                                         |
|   | 3. In addition, monitoring programme was executed under the project to closely monitor the air quality at the air sensitive receivers and immediate action would be undertaken in case of exceedance. Having reviewed the air quality monitoring results in the recent months on January and February 2018, no exceedances were triggered at the air quality monitoring location AM7b which located outside North Portal Site of Contract 2 and adjacent to the concern STK Road. It is considered that the dust impact arising from the project was within acceptable level.                                                                                                                                                       |
|   | In our investigation, the Contractors have been well maintained the wheel washing facilities and no dust and soil carrying by site vehicles to STK road were observed. Having inspected the existing condition of STK Road and WKS Road which far from the construction site, soil and debris were also found at the middle and edges of the road which suspected to be caused by frequent use of dump truck transporting loose material to NENT and the majority of dump truck was not belong to LT/HYW project. Therefore, it is considered that the complaint was not valid to the project. In particular dry season, ET will closely monitor the implementation of dust mitigation measures in the subsequent site inspections. |

# Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Environmental Complaint / Enquires</u>

| Prepared By :<br>Designation : | Nicola Hon<br>Environmental Consultant |  |  |
|--------------------------------|----------------------------------------|--|--|
| Signature :                    | Aug                                    |  |  |
| Date :                         | 19 March 2018                          |  |  |

#### Photo Record



#### Photo 1

There was a temporary road side work area under LT/C6 located at Tai Tong Wu adjoined to STK Road for underground utility investigation work.



#### Photo 3

Road debris was observed at both middle and edges of the STK road which suspected to be caused by frequent use of vehicle.



#### Photo 5 (North Portal under C2)

No muddy water/ slurry was found at the site exit after the wheel washing facilities. However, mud and debris was observed at both middle and edges of the STK road which suspected to be caused by frequent use of vehicle.



#### Photo 2

It was observed that the condition of STK Road was not dusty and no muddy water/ slurry was found near the works area.



**Photo 4 (North Portal under C2)** The vehicle site exit of North Portal Site Area (LT/C2) was located on STK Road. Wheel washing was provided within the construction site to ensure all site vehicles were washed prior leaving the site.



**Photo 6 (Admin Building under C2)** Another vehicle site exit for LT/C2 was Admin Building which located on Wo Keng Shan (WKS) Road. Wheel washing facilities was provided at the concrete ground within the construction site.



**Photo 7** (Admin Building under C2) No muddy water/ slurry was found at the site exit after the wheel washing facilities.



**Photo 9 (South Portal under C6)** Wheel washing facilities was provided concrete ground within the construction site.



**Photo 8** (Admin Building under C2) No muddy trails and dust and soil carrying by site vehicles to public road were observed outside the site exit.



**Photo 10 (South Portal under C6)** No muddy water/ slurry was found at the site exit after the wheel washing facilities.



**Photo 11 (South Portal under C6)** The overall view of the Wo Keng Shan Road from the site exit for both South Portal and no muddy trails and dust and soil carrying by site vehicles to public road were observed.





Road washing/ cleaning by water tanker was provided along Wo Keng Shan Road to Sha Tau Kok Road as dust suppression measures. The condition of STK Road after road washing was in normal condition without excessive water/ slurry on road surface.

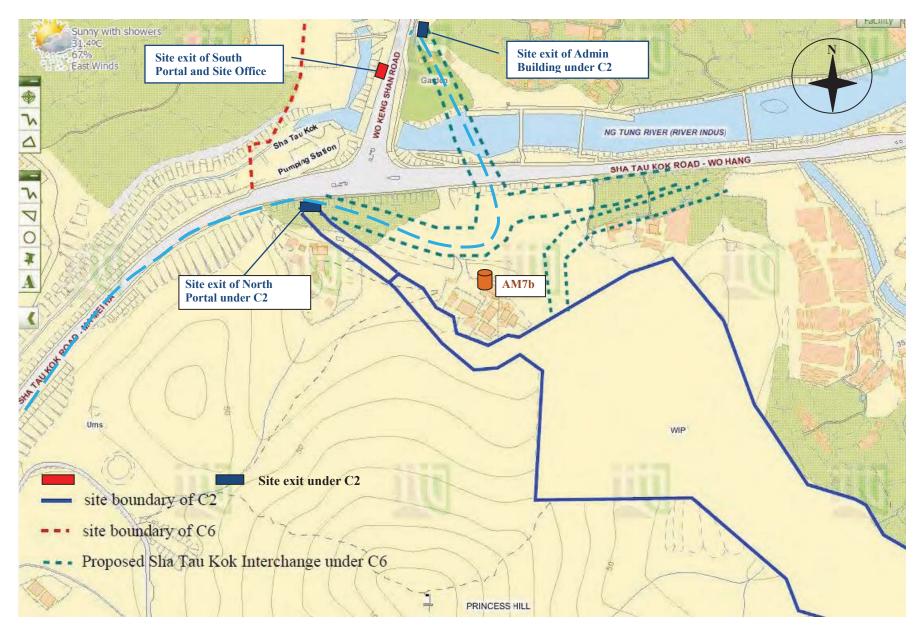



Figure1: Complaint Location and the work area of Contract 2 and Contract 6