

JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (NO.60) – JULY 2018

PREPARED FOR CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT (CEDD)

Date	Reference No.	Prepared By	Certified By
13 August 2018	TCS00694/13/600/R1719v2	Anh	Am

Nicola Hon (Environmental Consultant) Tam Tak Wing (Environmental Team Leader)

Version	Date	Remarks
1	9 August 2018	First Submission
2	13 August 2018	Amended according IEC's comments on 9 August 2018

By Email & Post

Our ref: 7076192/L23361/AB/AW/MCC/rw

14 August 2018

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

Attention: Mr Simon LEUNG

Dear Sir

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Independent Environmental Checker – Investigation Monthly EM&A Report (No. 60) – July 2018

With reference to the Monthly EM&A Report No. 60 for July 2018 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Arthur CHIU on tel. 3995-8144 or by email to arthur.chiu@smec.com.

Yours faithfully

Antony WONG Independent Environmental Checker

сс	CEDD/BCP	<u> </u>	Mr LU Pei Yu / Mr William CHEUNG	by fax: 3547 1659
	ArchSD	÷	Mr William WL CHENG	by fax: 2804 6805
	AECOM	<u> </u>	Mr Pat LAM / Mr Perry YAM	by email
	Ronald Lu	÷	Mr Peter YAM / Mr Justin CHEUNG	by email
	CW	÷	Mr Daniel HO	by email
	DHK	-	Mr Daniel ALTIER	by email
	CCKJV	Ē	Mr Vincent CHAN	by email
	KRSJV	-	Mr Matthew TSANG	by email
	Leighton		Mr Ray HO	by email
	Siemens	0e	Mr Patrick LEUNG	by email
	AUES	÷	Mr TW TAM	by email

SMEC ASIA LIMITED 27/F Ford Glory Plaza 37-39 Wing Hong Street Cheung Sha Wan, Kowloon, Hong Kong T +852 3995 8100 F +852 3995 8101 E hongkong@smec.com www.smec.com

EXECUTIVE SUMMARY

ES01 This is the **60th** monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 31 July 2018** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period			
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions		
Air Quality	1-hour TSP	9	135		
All Quality	24-hour TSP	9	45		
Construction Noise	L _{eq(30min)} Daytime	10	45		
		WM1 & WM1-C	13 Scheduled & 3 extra		
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	13 Scheduled & 8 extra		
Water Quality		WM2B & WM2B-C	13 Scheduled & 0 extra (*)		
		WM3x &WM3-C	13 Scheduled & 7 extra		
		WM4, WM4-CA &WM4-CB	13 Scheduled & 1 extra		
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats and transect	0		
	*	Contract 2	4		
		Contract 3	4		
	IEC, ET, the Contractor and	Contract 4	4		
Inspection /	RE joint site Environmental	Contract 6	4		
Audit	Inspection and Auditing	Contract 7	4		
		Contract SS C505 (#)	4		

Remark: (#) IEC only joined one (1) event of site inspection for Contract SS C505.

(*) In the whole Reporting Period, water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no air quality and construction noise exceedance and valid noise complaint was recorded. For water quality monitoring, a total of fifty-five (55) Limit Level exceedances were recorded under the Project. The summary of exceedance in the Reporting Period is shown below.

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			
	24-hour TSP	0	0	0			

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Construction Noise	L _{eq(30min)} Daytime	0	0	0			
	DO	0	0	0	-		
Water Quality	Turbidity	0	26	26			The Contractor should fully
	SS	0	29	29	Refer to ES.05		implement water quality mitigation measure.

ES05 Investigation Reports for water quality exceedances have been conducted by ET accordingly. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM1, WM2A(a) and WM4 as well as the exceedances recorded at WM3x during 3 to 18 July 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. The investigation report for exceedances at WM3x on 30 July are still underway by ET and the investigation result will be presented in next Monthly EM&A Report.

ENVIRONMENTAL COMPLAINT

ES06 In this Reporting Period, no environmental complaints were received under the EM&A programme.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES07 No environmental summons and prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES08 No reporting changes were made in the Reporting Period.

SITE INSPECTION

- ES09 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 July 2018. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on 5, 12, 18 and 26 July 2018. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at Contract 4 has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 23 July 2018. No non-compliance was noted.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on 5, 12, 19 and 26 July 2018. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection for **Contract 7** to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6**, **13**, **17** and **27** July **2018**. No non-compliance was noted during the site inspection.
- ES14 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on 4, 11, 18 and 25

July 2018 in which IEC joined the site inspection on **25 July 2018**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES15 During rainy season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- ES16 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES17 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES18 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	7
	2.4 CONSTRUCTION PROGRESS2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	7 9
_		
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	14
	3.1 GENERAL3.2 MONITORING PARAMETERS	14 14
	3.3 MONITORING LOCATIONS	14
	3.4 MONITORING FREQUENCY AND PERIOD	16
	3.5 MONITORING EQUIPMENT	17
	3.6 MONITORING METHODOLOGY	19
	3.7 EQUIPMENT CALIBRATION	21
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	21
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	22
4	AIR QUALITY MONITORING	23
	4.1 GENERAL	23
	4.2 AIR QUALITY MONITORING RESULTS	23
5	CONSTRUCTION NOISE MONITORING	26
	5.1 GENERAL	26
	5.2 NOISE MONITORING RESULTS	26
6	WATER QUALITY MONITORING	27
	6.1 GENERAL	27
	6.2 RESULTS OF WATER QUALITY MONITORING	27
7	ECOLOGY MONITORING	32
	7.1 GENERAL	32
8	WASTE MANAGEMENT	33
U	8.1 GENERAL WASTE MANAGEMENT	33
	8.2 RECORDS OF WASTE QUANTITIES	33
9	SITE INSPECTION	34
,	9.1 REQUIREMENTS	34
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	34
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	39
10	10.1 Environmental Complaint, Summons and Prosecutions	39
11		
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES 11.1GENERAL REQUIREMENTS	41 41
	11.1 GENERAL REQUIREMENTS 11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH	41 41
	11.3 KEY ISSUES FOR THE COMING MONTH	43
10		
12	CONCLUSIONS AND RECOMMENDATIONS 12.1 CONCLUSIONS	45 45
	12.1 CONCLUSIONS 12.2 RECOMMENDATIONS	43

LIST OF TABLES

TABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACTS
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1C
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7B
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 2 AND 3
TABLE 6-2	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 6 AND SS C505
TABLE 6-3	WATER QUALITY MONITORING RESULTS ASSOCIATED ONLY CONTRACT 6
TABLE 6-4	WATER QUALITY MONITORING RESULTS ASSOCIATED CONTRACTS 2 AND 6
TABLE 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS FOR THE PROJECT
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES FOR THE PROJECT
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
TABLE 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
TABLE 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTIONS
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
APPENDIX F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between **13 June 2013** and **12 July 2013** for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on **16 July 2013** for endorsement. The major construction works of the Project was commenced on **16 August 2013** in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is 60th monthly EM&A report presenting the monitoring results and inspection findings for reporting period from 1 to 31 July 2018.

1.2 REPORT STRUCTURE

- 1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-
 - Section 1 Introduction
 - Section 2 Project Organization and Construction Progress
 - Section 3 Summary of Impact Monitoring Requirements
 - Section 4 Air Quality Monitoring
 - Section 5 Construction Noise Monitoring
 - Section 6 Water Quality Monitoring

Section 7	Ecology Monitoring
Section 8	Waste Management
Section 9	Site Inspections
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building;
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP;
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 **PROJECT ORGANIZATION**

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

Architectural Services Department (ArchSD)

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities.

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

are listed below	•
Mid-Vent Portal	 Cavern internal structure and tunnel E&M activities Construction of C&C structure and permanent drainage Structure connecting adit and ventilation building Construction of fence wall and portal backfilling Ventilation building fitting out and E&M installation
North Portal	 Installation of VE panel inside the tunnel Construction of cross passage and internal structure Tunnel backfilling and E&M installation North ventilation building structure and internal structure Construction of retaining wall and permanent drainage Site formation and construction of slip road Construction of connecting structure between the tunnel and the NVB
South Portal	 Installation of E&M and VE panel inside the tunnel Construction of tunnel internal structure and cross passage Portal backfilling activities and construction of slip road SVB external wall finishing and fit out E&M installation and T&C for ventilation fan inside the SVB Soft landscaping work
Admin Building	 External works finishing Internal fit out, permanent drainage and E&M installation. Soft landscaping work.

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Cable Detection and Trial Trenches
 - Remaining Works on new Kiu Tau Footbridge
 - Noise Barrier Construction
 - Road pavement works
 - Water main laying works (on Grade and on bridge deck)
 - Installation of Noise barrier steel column & panel, and sign gantry
 - Parapet Installation on bridge deck
 - Road Drainage Work
 - Construction of Profile Barrier & Planter Wall on Bridge Deck
 - Bitumen paving on bridge deck
 - Installation of deck cell inside the bridge deck
 - Installation of movement joint on the bridge
 - Construction of Retaining Wall
 - Landscaping works

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - E&M installation at Admin Building
 - E&M installation at Ventilation Building
 - E&M installation at OHVD in tunnel

Contract 5 (CV/2013/03)

2.4.5 The construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Bridge construction
 - Tunneling Works
 - Sewage Treatment Plant Construction
 - Tunnel Ventilation Building Construction
 - Slip Road/At-grade Road/Periphery Road Construction

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - Abutment and deck construction at Bridge E
 - Profile barrier construction at Bridges A, B, D & E
 - Installation of Façade at Bridge C
 - Installation of BMU at roof at Bridge C
 - Waterproofing works at roof of Bridge C
 - Drainage and watermains at perimeter road
 - Bitumen pavement perimeter road

Contract SS C505

2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:

- Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, and 41 constructions
- Constructions of Steel Canopies (Building no. 32, 33, 34 and 35)
- Construction of Fire Hydrant Tank & Pump Room (Building 36)
- Constructions of Master Water Meter Room 1, 2 and 3 (Building no. 42, 43, 44)
- Tower crane operation
- Bridge 1 5 construction works including retaining wall, road and finishes works
- Underground drainage works, Road Works, CLP Cable laying and Landscaping
- Formwork and falsework for PTB' s slab and internal wall construction
- Construction PTB M/F, 1/F, 2/F and Roof flat slab
- Construction PTB non-structural wall, Underground Drainage and Utilities, Fence Wall, on Grade Ground Slab and Paving
- PTB Southern Entrance Construction & Curtain Wall Installation
- Backfilling works
- PTB Major Plant Rooms ABWF & MEP Installation, Lift and Escalator Installation by NSC
- Integrated ABWF & MEP Works in PTB, Building no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 36 and 41
- Elevated Walkway E1, E2, E3 and E4 construction

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
 - Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po

Kat Tsai, Loi Tung and the workshops in Fanling

- Vegetation Survey Report
- Woodland Compensation Plan
- Habitat Creation Management Plan
- Wetland Compensation Plan

2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

			License/	Permit Status	
Item	Description	Ref. no.		Effective Date	Expiry Date
		Contra	et 2		
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864		31 Dec 2013	Till Contract ends
2	Chemical Waste Producer Registration	North Portal Waste Producers N No.5213-652-D252		25 Mar 2014	Till Contract ends
		<i>Mid-Vent Portal</i> Waste Producers N No.5213-634-D252		25 Mar 2014	Till Contract ends
		South Portal Waste Producers N No.5213-634-D252		9 Apr 2014	Till Contract ends
3	Water Pollution Control Ordinance -	No.WT00018374-2 (South Portal)	2014	3 Mar 2014	28 Feb 2019
	Discharge License	No. WT00023 (North Portal)	063-2015	18 Dec 2015	31 Mar 2019
		No.: W5/1I392		28 Mar 2014	31 Mar 2019
		(Admin Building)			
		No.: WT00025 (Mid-Vent Portal)	594-2016	7 Oct 2016	31 Mar 2019
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7019105		8 Jan 2014	Till Contract ends
5	Construction Noise	GW-RN0211-18	North	10-May-2018	09-Nov-2018
	Permit	GW-RN0212-18	Portal	10-May-2018	09-Nov-2018
		GW-RN0307-18		18-Jun-2018	17-Dec-2018
		GW-RN0047-18	Mid	05-Feb-2018	01-Aug-2018
		GW-RN0049-18	Vent	05-Feb-2018	31-Jul-2018
		GW-RN0400-18		06-Aug-2018	01-Feb-2019
		GW-RN0401-18		06-Aug-2018	31-Jan-2019
		GW-RN0238-18	South	01-Jun-2018	30-Nov-2018
		GW-RN0110-18	Portal	22-Mar-2018	21-Sep-2018
	GW-RN0176-18			30-Apr-2018	27-Oct-2018

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

		License/Permit Status			
Item	Description	Ref. no.		Effective Date	Expiry Date
		GW-RN0253-18		06-Jun-2018	05-Dec-2018
		GW-RN0142-18	Admin Bldg	5-Apr-2018	27-Sep-2018
		GW-RN0140-18	Cheung Shan Tunnel	3-Apr-2018	22-Sep-2018
6	Specified Process License (Mortar Plant Operation)	L-3-251(1)		12 Apr 2016	11 Apr 2021
		Contra	ct 3	15 1 1 2 2 4 2	T '''
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 362101		17 Jul 2013	Till Contract ends
2	Chemical Waste Producer Registration	Waste Producers Number: No.:5113-634-C3817-01		7 Oct 2013	Till Contract ends
3	Water Pollution Control Ordinance - Discharge License	No.:WT00016832 – 2013		28 Aug 13	31 Aug 2018
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017914		2 Aug 13	Till Contract ends
5	Construction Noise	GW-RN0863-17		17 Jan 2018	5 Jul 2018
	Permit	GW-RN0043-18		25 Feb 2018	24 Aug 2018
		GW-RN0044-18		22 Feb 2018	21 Aug 2018
		GW-RN0102-18		14 Mar 2018	31 Aug 2018
		GW-RN0123-18		28 Mar 2018	5 Sep 2018
		GW-RN0259-18		19 Jun 2018	17 Dec 2018
		GW-RN0305-18		22 Jun 2018	17 Dec 2018
		GW-RN0366-18		9 Jul 2018	18 Dec 2018
		GW-RN0361-18		15 Jul 2018	18 Dec 2018
		GW-RN0388-18	- 4 F	25 Aug 2018	24 Feb 2019
1	Air pollution	Contra Ref. No: 359338	ct 5	13 May 2013	Till the end of
	Control (Construction Dust) Regulation	Kel. INU. 339338		15 may 2015	Contract
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-642-S3735-01		8 Jun 2013	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: W5/1G44/1		8 Jun 13	30 Jun 2018

		License/Permit Status				
Item	Description	Ref. no.	Effective Date	Expiry Date		
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7017351	29 Apr 13	Till the end of Contract		
	1	Contract 6	I			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390614	29 Jun 2015	Till the end of Contract		
2	Chemical Waste Producer Registration	Waste Producers Number No.: 5213-652-C3969-01	31 Aug 2015	Till the end of Contract		
3	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022707	9 Jul 2015	Till the end of Contract		
4	Water Pollution	No.:WT00024574-2016	31 May 2016	31 May 2021		
	Control Ordinance - Discharge License	No.:WT00024576-2016	31 May 2016	31 May 2021		
		No.:WT00024742-2016	14 June 2016	30 June 2021		
		No.:WT00024746-2016	14 June 2016	30 June 2021		
5	Construction Noise	GW-RW0668-17	16 Jan 2018	15 Jul 2018		
	Permit	GW-RW0086-18	1 Mar 2018	31 Aug 2018		
		GW-RW0121-18	30 Apr 2018	29 Oct 2018		
	A 1 11 41	Contract SS C505	12 1 1 2015			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 390974	13 Jul 2015	Till the end of Contract		
2	Chemical Waste Producer Registration	Waste Producer No.: 5213-642-L1048-07	16 Sep 2015	Till the end of Contract		
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024865-2016	8 Jul 2016	30 Nov 2020		
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract		
5	Construction Noise Permit	GW-RN0114-18	5 Apr 2018	4 Oct 2018		
		GW-RN0198-18	8 May 2018	7 Nov 2018		
1	Air pollution	Contract 7 Ref. No: 397015	21 Dec 2015	Till the end of		
1	Air pollution Control (Construction Dust)	KUL INU. 39/013	21 Dec 2015	Contract		

		License/Permit Status		
Item	Description	Ref. no.	Effective Date	Expiry Date
	Regulation			
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract
5	Construction Noise Permit	GW-RN0206-18	8 May 2018	4 Nov 2018
	•	Contract 4		
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	 1-hour TSP by Real-Time Portable Dust Meter; and
	 24-hour TSP by High Volume Air Sampler.
	• L _{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00
	except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
INDISC	next day, and whole day of public holiday or Sunday
	• Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	 Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Water Quality	• pH unit;
	• Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The latest alternative monitoring locations has been updated in the revised EM&A Programme (Rev.7) which approved by EPD on 7 April 2017. Besides, in view of Location AM1b was demolished and returned to the landlord on 27 April 2018, alterative location AM1c was proposed by ET. The proposal for alterative location AM1c which verified by IEC 5 June 2018 has been submitted to EPD for approval on 6 June 2018. EPD issued comments on 16 July 2018 and the proposal is under revision by ET. *Table 3-2, Table 3-3* and *Table 3-4* listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Table 3-2	Impact Monitoring Stations - Air Quality
-----------	---

Station ID	Description	Works Area	Related to the Work Contract
AM1b^	Open area at Tsung Yuen Ha Village	BCP	SS C505 Contract 7

Station ID	Description	Works Area	Related to the Work Contract
AM1c(*)	Open area of Tsung Yuen Ha Village	BCP	SS C505
	No. 63		Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
		Closed Area	
AM3	Ta Kwu Ling Fire Service Station of Ta	LMH to Frontier	Contract 6
	Kwu Ling Village.	Closed Area	
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier	Contract 6
		Closed Area	
AM5a^	Ping Yeung Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM6	Wo Keng Shan Village House	Ping Yeung to	Contract 6
		Wo Keng Shan	
AM7b [@]	Loi Tung Village House	Sha Tau Kok	Contract 2
		Road	Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

@ Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[^] Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016. Besides, Location AM1b was temporary suspended (24-hour TSP monitoring) since 27 April 2018 as the rented land was demolished and returned to the landlord.

* Proposal for alterative location AM1c which verified by the IEC on 5 June 2018 was submitted to EPD on 6 June 2018. EPD issued comments on 16 July 2018 and the proposal is under revision by ET

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	BCP	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

 Table 3-3
 Impact Monitoring Stations - Construction Noise

Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Station ID	Description	Coordinates of Designated / Alternative Location		Nature of the location	Related to the Work	
		Easting Northing			Contract	
WM1	Downstream of Kong Yiu Channel	833 679	845 421	Alternative location located at upstream 51m of the designated location	SS C505 Contract 6	
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6	
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6	
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6	
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6	
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6	
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6	
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6	
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6	
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3	
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3	
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3	

Table 3-4	Impact Monitoring Stations - Water Quality
	Impact Monitoring Stations - Water Quanty

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

- (*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)
- (#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6, 3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works

• 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Equipment	Model		
	24-Hr TSP		
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*		
Calibration Kit	TISCH Model TE-5025A*		
	1-Hour TSP		
Portable Dust Meter	Sibata LD-3B Laser Dust monitor Particle Mass Profiler &		
Fortable Dust Meter	Counter*		

Table 3-5Air Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.

3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Equipment	Model	
Integrating Sound Level Meter	B&K Type 2238* and Rion NL-31*	
Calibrator	Rion NC-74*	
Portable Wind Speed Indicator	Testo Anemometer	

Table 3-6 Construction Noise Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.

- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the same day as the samples were collected.
- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Equipment Model				
Water Depth Detector	Eagle Sonar or tape measures			
Water SamplerA 2-litre transparent PVC cylinder with latex cups at both ends teflon/stainless steel bailer or self-made sampling bucket				
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument/ YSI 550A Multifunctional Meter*/ YSI Professional DSS			
pH meter YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 682 650MDS/ YSI Professional DSS				
Turbidimeter Hach 2100Q*/ YSI 6820/ 650MDS/ YSI Professional DSS				
Sample Container High density polythene bottles (provided by laboratory)				
Storage Container	'Willow' 33-liter plastic cool box with Ice pad			

Table 3-7Water Quality Monitoring Equipment

* Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

<u>1-hour TSP Monitoring</u>

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter;
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;

- (e.) A motor speed-voltage control/elapsed time indicator;
- (f.) A 7-day mechanical timer, and
- (g.) A power supply of 220v/50 Hz
- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- 3.6.6 Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). Leq_(30min) in six consecutive Leq_(5min) measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; Leq_(5min) measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 If the water level of a monitoring station is too shallow when sampling, sediment would be disturbed which affecting the accuracy of water quality monitoring. In order to avoid disturbing sediment, depth limits should be set up for the water sampling for the ease of reference. When the measured water depth of the monitoring station (both control and impact stations) is lower than 150mm, water monitoring would not be to perform at that monitoring location. Instead, the monitoring location will be moved to a temporary alternative location monitoring location based on the criteria below:-
 - (a) the alternative location should be either upstream or downstream of the original location and at the same the river/drain channel
 - (b) the alternative location should be within 15m far from the original location
 - (c) if no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample.
- 3.6.12 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.

- 3.6.13 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.
- 3.6.14 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4^oC as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

<u>In-situ Measurement</u>

- 3.6.15 YSI 550A Multifunctional Meter is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.16 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.17 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.18 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.19 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8, 3-9* and *3-10*.

Table 3-8	Action and Limit Levels for Air Quality Monitoring
-----------	--

Monitoring Station	Action Level (µg /m ³)		Limit Level (µg/m ³)		
Monitoring Station	1-hour TSP	1-hour TSP 24-hour TSP		24-hour TSP	
AM1c	265	143			
AM2	268	149			
AM3	269	145		260	
AM4b	267	148			
AM5a	268	143	500		
AM6	269	148			
AM7b	275	156			
AM8	269	144			
AM9b	271	151			

 Table 3-9
 Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)			
Women ing Location	Time Period: 0700-1900 hours on normal weekdays				
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}			

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and65 dB(A) during examination period.

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

D (Performance		Ma	Monitoring Location			
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4	
DO	Action Level	^(*) 4.23	^(**) 4.00	^(*) 4.74	^(**) 4.00	^(*) 4.14	
(mg/L)	Limit Level	^(#) 4.19	(**)4.00	^(#) 4.60	^(**) 4.00	^(#) 4.08	
Turbidity (NTU)	Action Level	51.3	24.9	11.4	13.4	35.2	
		AND 120% of upstream control station of the same day					
	Limit Level	67.6	33.8	12.3	14.0	38.4	
		AND	AND 130% of upstream control station of the same day				
	Action Level	54.5	14.6	11.8	12.6	39.4	
SS (mg/L)	Action Level	AND	120% of upstream control station of the same day				
		64.9	17.3	12.4	12.9	45.5	
	Limit Level	AND	130% of ups	tream control s	station of the s	ame day	

 Table 3-10
 Action and Limit Levels for Water Quality

Remarks:

(*) The Proposed <u>Action Level</u> of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

(#) The Proposed <u>Limit Level</u> of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- 3.9.2 For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

^{3.8.2} Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

4 AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of *135* events of 1-hour TSP and *45* events 24-hours TSP monitoring were carried out and the monitoring results are summarized in *Tables 4-1 to 4-9*. The detailed 24-hour TSP monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

•						
	24-hour	1-hour TSP (μg/m ³)			$(/m^3)$	
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-Jul-18	35	3-Jul-18	9:46	53	54	62
12-Jul-18	17	9-Jul-18	9:00	45	43	43
18-Jul-18	22	14-Jul-18	9:06	67	64	67
24-Jul-18	20	20-Jul-18	11:00	59	56	57
30-Jul-18	38	26-Jul-18	9:23	45	40	43
Average (Range)	26 (17-38)	Average (Range)			53 (40 - 67)	

Table 4-1Summary of 24-hour and 1-hour TSP Monitoring Results – AM1c

Table 4-2Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour 1-hour TSP (µg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-Jul-18	122	3-Jul-18	9:41	55	58	64
12-Jul-18	109	9-Jul-18	9:21	49	44	41
18-Jul-18	63	14-Jul-18	9:06	67	64	67
24-Jul-18	66	20-Jul-18	10:45	89	60	39
30-Jul-18	105	26-Jul-18	9:27	43	42	42
Average (Range)	93 (63 - 122)	Average (Range)			55 (39 - 89)	

	24-hour	1-hour TSP (µg/m³)				
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
6-Jul-18	55	3-Jul-18	9:37	52	57	63
12-Jul-18	24	9-Jul-18	13:02	48	50	51
18-Jul-18	34	14-Jul-18	9:06	67	64	67
24-Jul-18	33	20-Jul-18	14:15	61	45	27
30-Jul-18	74	26-Jul-18	12:49	47	49	52
Average (Range)	44 (24 – 74)	Average (Range)			53 (27 - 67)	

24-hour 1-hour TSP (µg/m ³)				g/m ³)		
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
5-Jul-18	27	6-Jul-18	9:26	58	66	69
11-Jul-18	69	12-Jul-18	9:26	44	43	46
17-Jul-18	47	18-Jul-18	9:32	21	22	25
23-Jul-18	29	24-Jul-18	9:18	27	43	37
28-Jul-18	28	30-Jul-18	9:23	68	54	63
Average (Range)	40 (27-69)	Average (Range)			46 (21 - 69)	

Table 4-5	Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a
-----------	---

	24-hour	1-hour TSP (μg/m ³)						
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
5-Jul-18	21	6-Jul-18	9:23	53	55	64		
11-Jul-18	49	12-Jul-18	9:23	43	45	46		
17-Jul-18	45	18-Jul-18	9:29	21	20	23		
23-Jul-18	31	24-Jul-18	9:19	26	41	35		
28-Jul-18	36	30-Jul-18	9:38	86	88	67		
Average	36	Average 48		48				
(Range)	(21 – 49)	(Rang	ge)		(20 - 88)			

	24-hour	1-hour TSP (µg/m³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
5-Jul-18	41	6-Jul-18	9:17	58	54	64	
11-Jul-18	104	12-Jul-18	9:16	44	46	51	
17-Jul-18	62	18-Jul-18	9:21	23	25	32	
23-Jul-18	35	24-Jul-18	9:32	31	31	40	
28-Jul-18	44	30-Jul-18	10:12	69	81	71	
Average (Range)	57 (35 – 104)	Average (Range)		48 (23 - 81)			

Table 4-7	Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b
-----------	---

	24-hour	1-hour TSP (μg/m ³)						
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
5-Jul-18	34	6-Jul-18	9:07	60	63	67		
11-Jul-18	93	12-Jul-18	9:21	70	69	67		
17-Jul-18	78	18-Jul-18	9:32	59	62	62		
23-Jul-18	60	24-Jul-18	9:35	54	68	67		
28-Jul-18	77	30-Jul-18	9:26	45	35	36		
Average	68	Average		59				
(Range)	(34 – 93)	(Rang	ge)		(35–70)			

Table 4-8	Summary of 24-hour and 1-hour TSP Monitoring Results – AM8	
-----------	--	--

	24-hour		1-hour TSP (μg/m ³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
5-Jul-18	32	6-Jul-18	8:52	58	63	66		
11-Jul-18	70	12-Jul-18	13:09	68	64	65		
17-Jul-18	65	18-Jul-18	13:14	62	64	64		
23-Jul-18	46	24-Jul-18	13:25	61	61	59		
28-Jul-18	57	30-Jul-18	13:20	42	53	48		
Average	54	Avera	0		60			
(Range)	(32 - 70)	(Rang	ge)		(42 - 68)			

Table 4-9Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b
--

	24-hour		1-hour TSP (μg/m³)					
Date	TSP (µg/m ³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
6-Jul-18	31	3-Jul-18	9:12	54	56	61		
12-Jul-18	32	9-Jul-18	9:27	46	47	51		
18-Jul-18	29	14-Jul-18	9:36	59	56	60		
24-Jul-18	31	20-Jul-18	9:24	39	40	40		
30-Jul-18	25	26-Jul-18	10:30	53	52	47		
Average (Range)	30 (25 - 32)	Avera (Rang	•		51 (39 - 61)			

4.2.2 As shown in *Tables 4-1 to 4-9*, all the 1-hour TSP and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.

4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 NOISE MONITORING RESULTS

5.2.1 In the Reporting Period, a total of **45** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1	Summary of Construction Noise Monitoring Res	ults

Construction Noise Level (Leq30min), dB(A)							
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)		
3-Jul-18	60	70	61	62	66		
9-Jul-18	65	73	60	61	65		
20-Jul-18	53	71	60	61	69		
26-Jul-18	53	67	68	68	68		
Limit Level			75 dB(A)				

Remarks

(*) façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

 Table 5-2
 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)							
Date	NM3	NM4	NM5	NM6	NM7		
6-Jul-18	58	66	52	59	63		
12-Jul-18	60	64	57	58	59		
18-Jul-18	59	62	55	59	58		
24-Jul-18	64	65	49	62	64		
30-Jul-18	55	61	51	59	53		
Limit Level			75 dB(A)				

^{5.2.2} As shown in *Tables 5-1 and 5-2*, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 **RESULTS OF WATER QUALITY MONITORING**

- 6.2.1 In the Reporting Period, a total of **thirteen (13)** sampling days was scheduled to carry out for all designated locations with their control stations. Since exceedances were recorded at WM1, WM2A(a), WM3x and WM4, according to "*Event and Action Plan*" stipulation, **3**, **8**, **7** and **1** additional water quality monitoring day were conducted for WM1, WM2A(a), WM3x and WM4 respectively and their control stations.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

	water Quality Montoring Results Associated of Contracts 2 and 0								
Date	Dissolved Oxygen (mg/L)			Turbidity (NTU)			Suspended Solids (mg/L)		
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB
3-Jul-18	6.7	7.5	6.1	133.5	23.1	87.2	95.0	21.0	64.0
4-Jul-18#	#	#	#	23.2	6.5	17.0	17.0	5.0	9.0
5-Jul-18	6.9	7.6	5.9	42.5	8.0	38.7	33.5	4.5	31.0
7-Jul-18	7.0	8.1	4.8	16.3	4.3	8.0	10.5	3.5	7.0
9-Jul-18	6.8	7.4	5.5	23.6	12.1	13.1	12.0	2.0	7.0
12-Jul-18	6.9	7.2	6.1	16.6	4.2	10.4	18.0	3.0	10.5
14-Jul-18	7.7	7.5	5.6	34.2	11.0	18.4	24.0	9.0	13.5
16-Jul-18	7.3	7.6	5.9	32.3	5.8	12.8	29.0	7.0	9.0
18-Jul-18	7.3	7.8	6.4	34.3	8.9	19.0	21.5	4.0	9.5
20-Jul-18	7.2	7.5	6.5	12.0	4.8	8.1	11.5	5.5	6.5
24-Jul-18	7.0	7.6	6.4	16.0	5.6	10.4	15.5	5.0	9.0
26-Jul-18	7.4	7.6	6.1	35.1	6.0	15.2	39.0	8.5	17.0
28-Jul-18	7.1	7.8	6.2	13.4	4.0	8.3	10.5	5.0	8.0
30-Jul-18	6.8	7.5	6.3	20.3	6.0	9.2	10.5	2.5	7.5

 Table 6-1
 Water Quality Monitoring Results Associated of Contracts 2 and 3

Remarks: bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Table 6-2	Water Quality Monitoring Results Associated of Contracts 6 and SS C505
	Water Quality Monitoring Results Associated of Contracts 0 and 55 C505

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
3-Jul-18	7.0	7.5	20.4	56.8	21.0	95.5	
5-Jul-18	6.8	8.2	21.8	30.7	13.0	13.0	
7-Jul-18	6.7	7.2	<u>100.6</u>	16.6	<u>69.0</u>	8.0	
9-Jul-18	6.7	8.1	29.1	13.6	22.0	9.0	
10-Jul-18#	#	#	37.2	22.7	25.0	17.0	
12-Jul-18	6.9	7.1	43.9	25.5	35.0	16.5	
14-Jul-18	7.0	7.1	<u>637.0</u>	266.5	<u>409.5</u>	155.0	
16-Jul-18	7.7	7.4	<u>217.0</u>	24.8	171.5	24.0	
17-Jul-18#	#	#	45.9	19.4	49.0	12.0	
18-Jul-18	7.3	7.3	160.5	180.0	113.0	127.5	
19-Jul-18	#	#	29.4	38.0	26.0	32.0	
20-Jul-18	7.1	7.6	19.7	17.1	19.5	15.0	

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.60) – July 2018

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
24-Jul-18	6.9	7.4	27.0	18.3	24.0	18.5	
26-Jul-18	7.2	7.3	23.4	25.7	22.5	22.5	
28-Jul-18	7.0	7.5	18.9	11.4	16.0	10.5	
30-Jul-18	7.2	7.6	18.1	12.1	14.5	9.0	

Remarks: bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)				Suspended Solids (mg/L)			
	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B- C
3-Jul-18	7.1	7.5	*	*	<u>Over</u> Range	128.0	*	*	<u>1016.5</u>	94.0	*	*
4-Jul-18#	#	#	*	*	305.0	33.7	*	*	173.0	22.0	*	*
5-Jul-18	7.0	7.6	*	*	102.5	14.6	*	*	80.0	3.0	*	*
6-Jul-18#	#	#	*	*	24.8	4.9	*	*	<u>30.0</u>	<2	*	*
7-Jul-18	8.1	7.6	*	*	16.1	11.2	*	*	11.0	2.5	*	*
9-Jul-18	7.0	7.5	*	*	13.5	11.9	*	*	6.5	3.0	*	*
12-Jul-18	6.9	7.2	*	*	<u>194.5</u>	8.6	*	*	121.0	9.5	*	*
13-Jul-18#	#	#	*	*	437.5	76.9	*	*	304.0	24.0	*	*
14-Jul-18	7.7	7.7	*	*	<u>192.0</u>	30.2	*	*	118.0	25.0	*	*
16-Jul-18	7.4	7.7	*	*	263.5	10.2	*	*	173.5	6.0	*	*
17-Jul-18#	#	#	*	*	37.4	6.4	*	*	25.0	6.0	*	*
18-Jul-18	7.4	7.9	*	*	<u>411.5</u>	8.1	*	*	259.5	4.0	*	*
19-Jul-18#	#	#	*	*	37.6	6.7	*	*	<u>40.0</u>	6.0	*	*
20-Jul-18	7.1	7.6	*	*	260.0	7.9	*	*	242.5	6.5	*	*
21-Jul-18#	#	#	*	*	101.8	8.8	*	*	75.0	6.0	*	*
23-Jul-18#	#	#	*	*	86.1	10.7	*	*	<u>59.0</u>	7.0	*	*
24-Jul-18	7.0	7.3	*	*	718.5	14.5	*	*	358.0	9.0	*	*
25-Jul-18#	#	#	*	*	23.4	6.1	*	*	21.0	8.0	*	*
26-Jul-18	8.0	7.4	*	*	22.6	10.7	*	*	22.0	8.0	*	*
28-Jul-18	7.9	7.6	*	*	24.7	10.6	*	*	32.0	2.5	*	*
30-Jul-18	7.4	7.5	*	*	14.4	11.6	*	*	10.5	5.0	*	*

Remarks: * water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm

Bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance

Table 6-4	Water Quality Monitoring Results Associated Contracts 2 and 6

Date		d Oxygen g/L)		oidity ΓU)	Suspended Solids (mg/L)			
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C		
3-Jul-18	6.2	7.5	212.5	48.8	123.0	93.0		
4-Jul-18#	#	#	53.9	5.7	46.0	7.0		
5-Jul-18	6.4	7.1	13.0	3.5	12.5	5.0		
6-Jul-18#	#	#	19.0	7.0	22.0	10.0		
7-Jul-18	6.8	4.8	30.0	26.0	19.0	33.5		
9-Jul-18	6.8	8.1	239.0	9.7	204.5	7.0		
10-Jul-18#	#	#	13.0	5.5	13.0	3.0		
11-Jul-18#	#	#	10.3	4.1	10.0	6.0		
12-Jul-18	6.8	6.8	6.7	13.5	7.5	32.0		
14-Jul-18	6.7	7.1	42.3	24.9	24.0	35.0		

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.60) – July 2018

Date		d Oxygen g/L)	Turb (N)	oidity ΓU)	Suspended Solids (mg/L)		
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C	
16-Jul-18	6.7	7.4	27.0	17.3	19.5	29.0	
17-Jul-18#	#	#	12.3	9.5	12.0	5.0	
18-Jul-18	6.7	7.2	<u>87.3</u>	23.6	71.5	31.5	
19-Jul-18#	#	#	8.6	10.5	13.0	20.0	
20-Jul-18	7.1	7.0	13.1	5.0	12.5	23.0	
24-Jul-18	6.2	6.8	7.8	6.5	6.5	8.0	
26-Jul-18	6.7	7.0	11.0	3.8	10.0	15.0	
28-Jul-18	7.0	7.2	13.3	2.6	9.5	8.0	
30-Jul-18	6.7	6.8	<u>130.0</u>	9.7	<u>108.0</u>	8.5	
31-Jul-18	#	#	8.6	3.3	9.0	9.0	

Remarks: bold and underline indicated Limit Level exceedance

(#) Additional water quality monitoring at the exceeded location(s) due to two consecutive monitoring days indicated Limit Level exceedance.

Location		olved ygen	Turt	oidity	-	ended lids		otal edance	•	t Related edance
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	3	0	3	0	6	0	0
WM2A(a)	0	0	0	14	0	18	0	32	0	0
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	8	0	7	0	15	0	0 (#)
WM4	0	0	0	1	0	1	0	2	0	0
No of Exceedance	0	0	0	26	0	29	0	55	0	0

 Table 6-5
 Action and Limit (A/L) Levels Exceedance Recorded

The exceedances at WM3x on 30 July 2018 are still under investigation.

- 6.2.3 In this Reporting Period, a total of fifty-five (55) Limit Level exceedances, namely twenty-six (26) Limit Level exceedance of turbidity and twenty-nine (29) Limit Level exceedances of Suspended Solids were recorded for the Project and they are summarized in Table 6-5. Investigation Reports for water quality exceedances have been conducted by ET accordingly. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM1, WM2A(a) and WM4 as well as the exceedances recorded at WM3x during 3 to 18 July 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. The investigation report for exceedances at WM3x on 30 July are still underway by ET and the investigation result will be presented in next Monthly EM&A Report.
- 6.2.4 NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
3, 4 and 5 July 2018	WM2A(a)	Turbidity & SS	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedances on 3 July 2018 were due to rainstorm and the exceedances on 4 to 5 July were related to the residual impact after rainstorm and not caused by the works under the Project.

 Table 6-6
 Summary of Water Quality Exceedance in the Reporting Period

P		1	
6 July 2018	WM2A(a)	SS	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedance on 6 July 2018 was related to the residual impact after rainstorm and not caused by the works under the Project.
			In our investigation, Chun Wo had implemented water quality mitigation measures properly and no adverse water quality impact was observed during the site inspections. Since inflow of muddy water was observed from outside the site boundary, it is considered that the exceedances were unlikely caused by the works under Contract 3.
3 July 2018	WM4	Turbidity & SS	Besides, DHK has properly implemented water mitigation measures such as well maintain the wastewater treatment facilities and hard paved most of the site surface. In general, the condition of the South Portal Site under Contract 2 was in order and no adverse water quality impact was identified. Since inflow of muddy water was observed from outside the site boundary, it was considered that the exceedances were not related to the works under Contract 2.
3, 4, 6 and 9			In our investigation, DHK had implemented and well maintained the wastewater treatment facilities and no adverse water quality impact was identified during site inspection. In view of the external source of muddy water observed due to rainstorm, it is considered that the exceedances were related to other source of turbid water and not caused by the works under Contract 2.
July 2018		SS	CCKJV had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from from Sha Tau Kok Road water and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and external source of muddy water and unlikely caused by the works under Contract 6.
			In our investigation, DHK had implemented and maintained the wastewater treatment facilities and no adverse water quality impact was identified during site inspection. In view of the external source of muddy water observed, it is considered that the exceedances were not caused by the works under Contract 2.
10 July 2018	y 2018 WM3x SS		CCKJV had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from from Sha Tau Kok Road water and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and external source of muddy water and unlikely caused by the works under Contract 6.
7, 14 and 16 July 2018	WM1	Turbidity & SS	In our investigation, the water quality mitigation implemented and site condition was generally in order, it was considered that exceedances were related to the impact of rain and not due to the works under Contract 6 and Contract SS C505.
12, 13, 14, 16 and 17 July 2018	WM2A(a)	Turbidity & SS	During the period of 12 to 16 July 2018, CCKJV observed that the subcontractor of CLP was discharging wastewater at improper location, which causing muddy water getting into the river course. CCKJV have advised the subcontractor of CLP to stop discharging the water at improper location until

			further improvement. No improper discharge by the subcontractor of CLP was observed by CCKJV since 17 July 2018.
			In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. Since improper discharge by other parties was observed and successive heavy rainstorm happened, it is considered that the exceedances were related to the rainstorm and improper discharge by other parties and not caused by the works under the Project.
18, 19, 20 and 21 July 2018	WM2A(a)	Turbidity & SS	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedances on 18 to 20 July 2018 were resulted by rainstorm and the exceedances on 21 July 2018 were related to the residual impact after rain and not caused by the works under the Project.
14&16 July 2018	WM3x	Turbidity	In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from Sha Tau Kok Road and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and unlikely caused by the works under Contract 6.
18 July 2018	WM3x	Turbidity & SS	In our investigation, CCKJV had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from Sha Tau Kok Road and the adjacent villages during rainy day, it is considered that the exceedances were likely related to the rainstorm and external source of muddy water and unlikely caused by the works under Contract
23, 24, 25, 26 & 28 July 2018	WM2A(a)	Turbidity & SS	In our investigation, the Contractor had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedances on were resulted by rainstorm/ residual impact after rain and not caused by the works under the Project.
30 July 2018	WM3x	Turbidity & SS	The investigation is underway by ET and the investigation findings will be presented in next Reporting Period.

7 ECOLOGY MONITORING

7.1 GENERAL

- 7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval for the first year and the monitoring frequency would be reduced to quarterly from the second year.
- 7.1.2 The last Quarterly Ecological Monitoring Report (March to May 2018) was submitted to EPD in June 2018 in standalone copy as supplementary of the EM&A Report. There was no ecological monitoring conducted in the Reporting Period.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 **RECORDS OF WASTE QUANTITIES**

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Type of	Con	tract 2	Con	tract 3	Co	ntract 4	Cont	ract 6	Co	ntract 7	Contrac		
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Qty.
C&D Materials (Inert) (in '000m ³)	6.0440		1.520		0		1.512		0.5		11.637		21.213
Reused in this Contract (Inert) (in '000 m ³)	0		0.476		0		0		0		0.282		0.758
Reused in other Contracts/ Projects (Inert) (in '000 m ³)	0.5840	Recycling facility as approved alternative site	0		0		0.816	NENT	0	-	0		1.400
Disposal as Public Fill (Inert) (in '000 m ³)	5.4600	Tuen Mun 38	0.783	Tuen Mun 38	0		0.696	Tuen Mun 38	0.5	Tuen Mun 38	11.304	TKO 137	18.743

Table 8-1Summary of Quantities of Inert C&D Materials for the Project

Table 8-2Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Cont	ract 4	Con	tract 6	Contr	act 7	Contract	SS C505	Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	30.750	Licensed collector	0	-	0		0		2.5	Licensed collector	218.990	Licensed collector	252.240
Recycled Paper / Cardboard Packing ('000kg) #	0.2750	Licensed collector	0	-	0	-	1.608	Licensed collector	0.1	Licensed collector	0.280	Licensed collector	2.263
Recycled Plastic ('000kg)#	2.100	Licensed collector	0	-	0		0		0.001	Licensed collector	0		2.101
Chemical Wastes ('000kg)#	1.5840	Licensed collector	0	-	0		0		0		0		1.584
General Refuses ('000m ³)	0.8810	NENT	0.135	NENT	0		0.846	NENT	0.2	NENT	3.146	NENT	5.208

Remark #: Unit of recycled metal, recycled paper/ cardboard packing, recycled plastic and chemical waste for Contract 3 was in ('000m³) while the unit of chemical waste for Contract 3 was in ('m³).

9 SITE INSPECTION

9.1 **REQUIREMENTS**

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 27 July 2018. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Date	Findings / Deficiencies	Follow-Up Status
6 July 2018	• No adverse environmental issue was observed.	• NA.
13 July 2018	• Supsected leakage of unknown chemical from the boundary South Portal Site to the public drain was observed. The Contractor was advised to provide mitigation measure to prevent chemical getting into the drainage system and clean the chemical leakage properly. (South Portal)	• Proper mitigation measure was provided for site boundary.
	• Muddy runoff from site boundary to public road was observed. The Contractor should place sandbags at the site boundary to prevent site runoff to public road and the stream. (Admin Building)	• Proper mitigation was provided along site boundary.
	• The Contractor was reminded to provide proper mitigation measure to prevent muddy discharge from South Portal Site.	• Not required for reminder.
20 July 2018	• pH value of discharge water was observed out of range (6-9). The Contractor should ensure all discharge water compiled with WPCO standard prior to discharge. (North Portal)	• pH value of discharge water is within the range (6-9).
27 July 2018	 Site runoff into the drainage system was observed at South Portal. The Contractor should maintain the sand bag bunds to prevent surface runoff. Muddy trails and insufficient wheel washing 	 The wastewater treatment facility has been relocated and the discharge point has been blocked. Wheel washing
	facilities were observed at site entrance of Mid Vent. The Contractor should clean up the muddy trails and provide wheel washing facility at the site exit properly.	facility was provided, and muddy trails were cleaned.

Table 9-1Site Observations for Contract 2

Contract 3

9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 5, 12, 18 and 26 July 2018. No non-compliance was noted.

9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Date	Findings / Deficiencies	Follow-Up Status
5 July 2018	 The Contractor was reminded to clean stagnant water within site area after raining. The Contractor was reminded to tidy up the construction materials near stream of BC 02 and have maintenance on covering of the slope. 	 Not required for reminder. Not required for reminder.
12 July 2018	• Construction material and not enough runoff mitigation measure were observed near temporary draining system (BC02). The contractor should clean the construction material and provide proper mitigation to prevent muddy runoff.	The construction materials were removed and water quality mitigation measures were properly provided.
18 July 2018	• The Contractor was reminded that the muddy water cumulated after rain should be treated by wastewater treatment facility prior discharge off site.	• Not required for reminder.
26 July 2018	• Turbid discharge without proper treatment was observed, the Contractor should ensure all wastewater generated from the site are treated by wastewater treatment facility prior to discharge off site. (Locaiton:BC02)	• The pipe was not in use.

Table 9-2Site Observations for Contract 3

<u>Contract 4</u>

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 20 and 23 July 2018. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 9-3Site Observations for Contract 4

Date	Findings / Deficiencies	Follow-Up Status
6 July 2018	• No adverse environmental issue was observed.	• NA
13 July 2018	• No adverse environmental issue was observed.	• NA
20 July 2018	• No adverse environmental issue was observed.	• NA
23 July 2018	• No adverse environmental issue was observed.	• NA

Contract 6

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 5, 12, 19 and 26 July 2018. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

1 able 9-4	Site Observations for Contract o	
Date	Findings / Deficiencies	Follow-Up Status
5 July 2018	 The Contractor was reminded to clean the general waste on the ground of Bridge Y. The Contractor was reminded to maintain the public road surface at Don Don Shan to free of dusty materials. 	 Not required for reminder. Not required for reminder.
12 July 2018	• General refuse was obseved cumuated on the ground of BridgeY. The Contractor should dispose the waste more frequently and maintance the site in tidy and clean condition.	• General refuse was removed.
	• Uncovered stockpile was obseved near the stream in D01. The Contractor should cover the stockpile with tarpaulin sheets to prevent muddy runoff.	• The stockpiles were covered with tarpaulin sheets.
	• The Wetsep in Don Don Shan was observed not in operation. The Contractor should ensure the Wetsep function properly. Moreover, the wastewater generated from wheel washing should be directed to the wastewater treatment facility properly in order to maintain the public road cleanliness.	• Wastewater was diverted to a proper wastewater treatment facility and the public road was maintained cleanliness.
19 July 2018	• Muddy runoff from site area to the stream was observed at bridge Y. The Contractor was advised to provide bunding to ensure no site runoff from the site without proper treatment.	• Tempoary bunding was provided to mmiminze the risk of site runoff flowing into the stream.
	 The Contractor was reminded to remove stagnant water in opposite of bridge Y. The Contractor was reminded to maintain diversion system in Don Don Shan and Chuk Yuen village. 	 Not required for reminder. Not required for reminder.
26 July 2018	• The Contractor was reminded to maintain the access road in clean and tide condition. (Don Don Shan)	• Not required for reminder.

Table 9-4Site Observations for Contract 6

Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 4, 11, 18 and 25 July 2018 in which IEC joined the site inspection on 25 July 2018. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status
4 July 2018	 Chemical containers were observed on the rood floor of building 5. The Contractor should place chemical containers inside drip tray to avoid leakage. The Contractor was reminded to clear 	was removed. Last observation closed.
	stagnant water within site area.	reminder.
11 July 2018	• Cement grouting was observed at first floor	• Proper shelter area for

Date	Findings / Deficiencies	Follow-Up Status
	 of PTB. The Contractor should provide shelter area with three side and top for cement grouting activity. The Contractor was reminded to enhance house-keeping within site area. The Contractor was reminded to spray water during dusty construction activity. 	 cement grouting was provided on site. Last observation closed. Not required for reminder. Not required for reminder.
18 July 2018	• The Contractor was reminded to clear the stagnant water within site area after rain storm.	• Not required for reminder.
25 July 2018	 Muddy trails were observed at the site entrance of Gate 3 and public road. The Contractor should clean the muddy trails and ensure no muddy trails presence on the public road. The Contractor was reminded to remove the stagnant water regularly to prevent mosquito 	 Muddy trails were cleaned and no muddy trail presence on the public road Not required for reminder.
	 bleeding. The Contractor was reminded to cover opened cement bags with tarpaulin sheets. 	• Not required for reminder.

Contract 7

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on 6, 13, 17 and 27 July 2018. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* 7 that observed during the weekly site inspection are listed in *Table 9-6*.

Date	Findings / Deficiencies	Follow-Up Status
6 July 2018	 Broken sandbags were observed at the boundary (location: Bridge E) The Contractor was advised to replace the sandbags prevent surface runoff. The contractor was reminded to maintain 	 The broken sandbags was removed and replaced by a large rock. Not required for
13 July 2018	 the sedimentation tank regularly. The contractor was reminded to provide proper mitigation to prevent surface runoff (bridge E). The contractor was reminded to clean stagnant water regularly to prevent mosquito bleeding. 	 reminder. General refuse was disposed regularly. Not required for reminder.
17 July 2018	 The contractor was reminded to review the wastewater treatment system. The contractor was reminded to clean stagnant water regularly. 	• Not required for reminder.
27 July 2018	 Uncovered stockpile was observed on the ground near to site boundary at bridge E. The Contractor should cover it with tarpaulin sheet to avoid dust emission and muddy runoff. The Contractor was reminded to maintain 	To be followed.Not required for

Table 9-6Site Observations for Contract 7

Date	Findings / Deficiencies	Follow-Up Status
	wastewater treatment system function properly and ensure wastewater was treated by wastewater treatment system prior to discharge.	reminder.

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecutions

- 10.1.1 In the Reporting Period, no environmental complaints were received under the EM&A program of the Project. Moreover, no summons and prosecution under the EM&A Programme was lodged for all Contracts. The status of the outstanding investigation report in previous months is summarized below.
- 10.1.2 The statistical summary of environmental complaint is presented in *Tables 10-1, 10-2* and *10-3*.

Table 10-1	0-1 Statistical Summary of Environmental Complaints					
Reporting	Contract	Env	vironmental Co	mplaint Statistics	Project related	
Period	No	Frequency	Cumulative	Complaint Nature	complaint	
19 May 2014 – 30 June 2018	Contract 2	0	35	 (19)Water Quality (8) Dust (5) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	(7) water quality (2) dust (1) noise	
06 Nov 2013 – 30 June 2018	Contract 3	0	6	 (2) Dust (3) Water quality (1) Noise 	0	
16 Aug 2013 – 30 June 2018	Contract 5	0	4	 (3) Dust (1) Noise 	0	
16 Aug 2013 – 30 June 2018	Contract 6	0	38	 (23) Water Quality (8) Dust (3) Noise (1) Nuisance (1) Noise and dust (2) Water quality and dust 	(7) water quality (3) dust (1) Nuisance (1) Water quality and dust	
15 Feb 2016 – 30 June 2018	Contract 7	0	3	 (1) Noise (2) Water quality and dust 	(1) Water quality and dust	
16 Aug 2013 – 30 June 2018	SS C505	0	5	 (1) Noise (1) dust (2) Water quality and dust (1) Water quality 	(1) Water quality and dust	
	Contract 2	0	35	 (19)Water Quality (8) Dust (5) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	NA	
1 – 31 July 2018	Contract 3	0	6	 (2) Dust (3) Water quality (1) Noise 	NA	
	Contract 4	0	0	NA	NA	
	Contract 6	0	38	 (23) Water Quality (8) Dust (3) Noise (1) Nuisance (1) Noise and dust (2) Water quality and dust 	NA	

 Table 10-1
 Statistical Summary of Environmental Complaints

Reporting	Contract	Env	ironmental Co	Project related	
Period	No	Frequency	Cumulative	Complaint Nature	complaint
	Contract 7	0	3	 (1) Noise (2) Water quality and dust 	NA
	SS C505	0	5	 (1) Noise (1) dust (2) Water quality and dust (1) Water quality 	NA

Table 10-2 Statistical Summary of Environmental Summons

Donouting Doniod	Contract No	Environmental Summons Statistics		
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature
19 May 2014 – 30 June 2018	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations
06 Nov 2013 – 30 June 2018	Contract 3	0	0	NA
16 Aug 2013 – 30 June 2018	Contract 5	0	0	NA
16 Aug 2013 – 30 June 2018	Contract 6	0	0	NA
15 Feb 2016 – 30 June 2018	Contract 7	0	0	NA
16 Aug 2013 – 30 June 2018	SS C505	0	0	NA
	Contract 2	0	1	NA
	Contract 3	0	0	NA
1 21 July 2019	Contract 4	0	0	NA
1 – 31 July 2018	Contract 6	0	0	NA
	Contract 7	0	0	NA
	SS C505	0	0	NA

Table 10-3 Statistical Summary of Environmental Prosecutions

Derection Derical	Contant No	Environmental Prosecutions Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 30 June 2018	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations	
06 Nov 2013 – 30 June 2018	Contract 3	0	0	NA	
16 Aug 2013 – 30 June 2018	Contract 5	0	0	NA	
16 Aug 2013 – 30 June 2018	Contract 6	0	0	NA	
15 Feb 2016 – 30 June 2018	Contract 7	0	0	NA	
16 Aug 2013 – 30 June 2018	SS C505	0	0	NA	
	Contract 2	0	1	NA	
	Contract 3	0	0	NA	
1 21 1 2010	Contract 4	0	0	NA	
1 – 31 July 2018	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- 11.1.2 All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 5, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Issues	Environmental Mitigation Measures
Water Quality	• Wastewater to be treated by the wastewater treatment facilities i.e. sedimentation tank or similar facility before discharge.
Air Quality	 Maintain damp / wet surface on access road Low vehicular speed within the works areas. All vehicles must use wheel washing facility before off site Sprayed water during breaking works A cleaning truck was regularly performed on the public road to prevent fugitive dust emission
Noise	 Restrain operation time of plants from 07:00 to 19:00 on any working day except for Public Holiday and Sunday. Keep good maintenance of plants Place noisy plants away from residence or school Provide noise barriers or hoarding to enclose the noisy plants or works Shut down the plants when not in used.
Waste and Chemical Management	 On-site sorting prior to disposal Follow requirements and procedures of the "Trip-ticket System" Predict required quantity of concrete accurately Collect the unused fresh concrete at designated locations in the sites for subsequent disposal
General	The site was generally kept tidy and clean.

 Table 11-1
 Environmental Mitigation Measures

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Contract 2

Contract 2	
Mid-Vent Portal	Construction of external structure and backfilling activities
	Finishing on adit enlargement internal structure
	• Stud tunnel internal structure and backfilling activities
	Building fit out and E&M installation
North Portal	• Construction of retaining wall, permanent drainage, site formation and
	slip road
	• Tunnel backfilling, VE panel and E&M installation
	Construction of tunnel cross passage and internal structure
	• North ventilation building superstructure, internal structure and
	backfilling
	• De-silting the existing drainage system
South Portal	• Construction of tunnel cross passage, tunnel backfilling and E&M
	installation
	• South ventilation building fit out and E&M installation
	Backfilling and construction of slip road
	• Dismantling of site office and water treatement system

Admin Building • Building fit out, permanent drainage and E&M installation and soft landscaping works

Contract 3

- Cable detection and trial trenches
- Remaining works on new Footbridge
- Noise barrier construction
- Road pavement works
- Water main laying works (on Grade and on bridge deck)
- Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck)
- Parapet Installation on bridge deck
- Road Drainage Works
- Construction of profile barrier & Planter wall on Bridge deck
- Bitumen paving on bridge deck
- Installation of deck cell light inside the bridge deck
- Installation of movement joint on the bridge
- Construction of retaining wall
- Landscaping works

Contract 4

- E&M installation at Admin Building
- E&M installation at Ventilation Building
- E&A installation at OHVD in tunnel
- High mast erection
- Sign fabrication & installation

Contract 6

- Bridge construction
- Tunnel Works
- Sewage Treatment Plant Construction
- Tunnel Ventilation Building Construction
- Slip Road/At-grade Road/Periphery Road Construction

Contract 7

- Profile barrier construction at Bridges A, B, D and E
- Construction of Façade and BMU at Bridge C
- Waterproofing and drainage works at Roof of Bridge C
- Drainage and watermains at perimeter road
- Bitumen pavement at perimeter road

Contract SS C505

- Passenger Terminal Building (PTB) G/F Structure Works, Backfiling & Drainage, Under Ground Utilities, Fence Wall and On Grade Slab
- PTB ABWF Works & MEP Installation Front/Back of House Area ABWF Works & MEP Installation, External Staircases, Hall Block External Façade, Southern Entrance Construction
- PTB Major Plant Room ABWF Works & MEP Installation from G/F to 2/F, E&MF Major Plant Rooms ABWF Works & MEP Installation, Lift & Escalator Installation by NSC (Sigma), MVAC Works, Plumbling & Drainage Works and LPG Installation
- PTB External Works incl. Building 21-24, Roof & Upper Roof Roofing Works,
- PTB M/F External Wall Structure & ABWF Works
- PTB Roof & Upper Roof Roofing Works Structure Works and Concrete Repair, Waterproofing, BMU System & Fall Arrest System, Soft and Hard Landscaping
- PTB Podium Coach Canopy Coach Canopy Construction & MEP Installation

- PTB Coach & Private Car Kiosks (Inbound / East) Superstructure, ABWF Works, MEP Installation
- PTB Private Car Examination Buildings and MXRVSS (Inbound / East) Superstructure, ABWF works, MEP Installation
- PTB Podium Open Area Waterproofing, paving works, hard and soft landscaping
- PTB Ambulance Canopy / Glazed Canopy
- Bridge C (C7 Portion) Integrated ABWF & MEP Installation Works (C7 Portion)
- C&ED Detector Dog Base Integrated ABWF & MEP G/F & R/F Works
- HKPF Building and Observation Tower External Works, Integrated ABWF & MEP Works
- Fire Station and Drill Tower External Works, Integradted ABWF & MEP Works
- Cargo Examination Building (Inbound) External Works, Integrated ABWF & MEP Works
- Cargo Examination Building (Outbound) External Works, Integrated ABWF & MEP Works
- Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) Structures, External Works, Integrated ABWF & MEP Works
- Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) Structures, External Works and Integrated ABWF & MEP Works
- MXRVSS (Inbound) Structure Works, Integrated ABWF and MEP Works
- MXRVSS (Outbound) Structure Works, Integrated ABWF and MEP Works
- GV Kiosk (Inbound) On-Grade Slab Construction, Steel Structure Works, Integrated ABWF and MEP Works, End User Rooms
- GV Kiosk (Outbound) Structures Works, On-Grade Slab Construction, Steel Structure Works, Integrated ABWF & MEP Works, End User Rooms
- Public Toilets (Inbound) Structure Works, Integrated ABWF and MEP Works
- Public Toilets (Outbound) Structures Works, Integrated ABWF and MEP Works
- Disinsection Facilities (Inbound) Structure Works, Integrated ABWF & MEP Works
- Disinsection Facilities (Outbound) Substructure and Structure Works, Integrated ABWF & MEP Works
- Weigh Station Integrated ABWF and MEP Works
- EUVSS & Monitoring Room Structure Works, Integrated ABWF & MEP Works
- Refuse Collection Point Integrated ABWF and MEP Works
- Traffic Control Office (Inbound) Structure Works, Integrated ABWF and MEP Works
- Traffic Control Office (Outbound) Structure Works, Integrated ABWF and MEP Works
- Inspection Post Structure Works, Integrated ABWF and MEP Work
- Guard Booth (Inbound/Outbound/Vehicle Detention Area) Structure Works, Integrated ABWF and MEP Works
- Steel Canopies Structure Works, Integrated ABWF and MEP Works
- Fire Hydrant Tank & Pump Room Integrated ABWF and MEP Works
- Irrigation Pump Room Integrated ABWF & MEP Works
- Master Water Meter Room 1,2,3 Structures Works and Integrated ABWF and MEP Works
- Elevated Walkway (E1, E2, E3 & E4) Structures Works, ABWF and BS Works
- Vehicular bridges 1-5 Retaining walls, Road and Finishes Works
- External Works CLP Cable & Power ON Transfer room
- External Works Water Meter Room Connection
- External Works Underground Utilities, Structures and Inspection (Inbound & Outbound Areas)
- External Works Landscape Works
- Landscape Inbound Area
- Testing & Commissioning (T&C) and FSD/SCCU Inspection DOG, HKPF, FSD, CBI, EVA and SFH T&C

11.3 KEY ISSUES FOR THE COMING MONTH

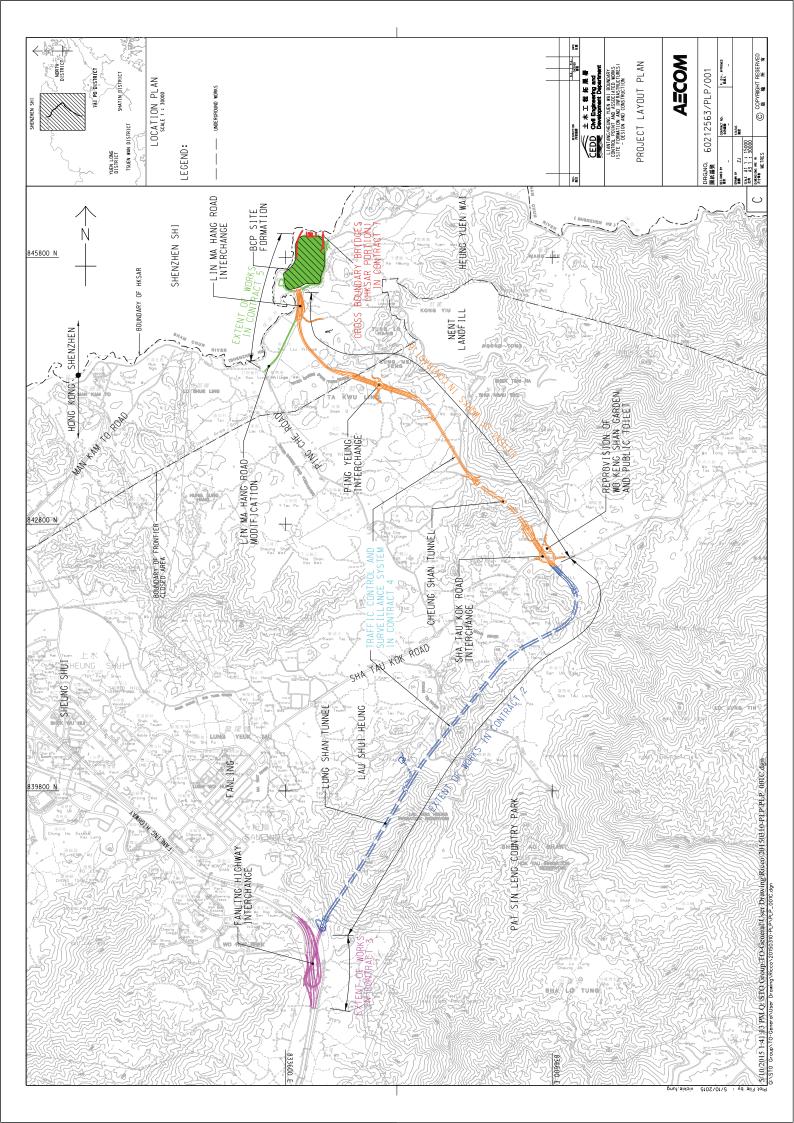
11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:

- Implementation of control measures for rainstorm;
- Regular clearance of stagnant water during wet season;
- Implementation of dust suppression measures at all times;
- Potential wastewater quality impact due to surface runoff;
- Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
- Disposal of empty engine oil containers within site area;
- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

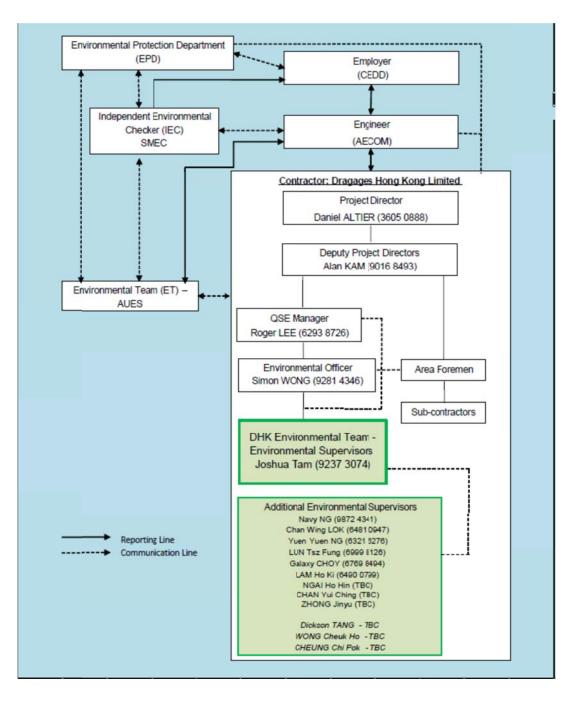
- 12.1.1 This is the **60th** monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **31 July 2018**.
- 12.1.2 For air quality monitoring, no 1-hour TSP and 24-hour TSP monitoring results triggered the Action or Limit Levels were recorded.
- 12.1.3 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint which triggered an Action Level exceedance was recorded.
- 12.1.4 For water quality monitoring, a total of 55 LL exceedances, namely 26 LL exceedance of turbidity and 29 LL exceedances of SS were recorded. Investigation Reports for water quality exceedances have been conducted by ET accordingly. Investigation results revealed that the Contractor had properly implemented water quality mitigation measures such as well-maintained the wastewater treatment facility and covered the expose area with impervious sheet. It was concluded that all exceedances recorded at WM1, WM2A(a) and WM4 as well as the exceedances recorded at WM3x during 3 to 18 July 2018 were related to the rainstorm or external inflow of muddy water and unlikely caused by the works under the Project. The investigation result will be presented in next Monthly EM&A Report.
- 12.1.5 In this Reporting Period, no environmental complaints, environmental summons and prosecution were received under the EM&A programme.
- 12.1.6 During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- 12.2.1 During rainy season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual, in particular for working areas near Ma Wat Channel and Ping Yuen River.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- 12.2.4 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project



Appendix **B**

Organization Chart

Environmental Management Organization for Contract 2 - (CV/2012/08)



Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3301	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Daniel Altier	3605 0888	2171 3299
DHK	Deputy Project Manager	Alan Kam	9016 8493	2171 3299
DHK	QSE Manager	Roger Lee	6293 8726	2171 3299
DHK	Environmental Officer	Simon Wong	2171 3017	2171 3299
DHK	Environmental Supervisor	Joshua Tam	9237 3074	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 2 - CV/2012/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. DHK(Main Contractor) –Dragages Hong Kong Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3303	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho	2638 6144	2638 7077
Chun Wo	Environmental Officer	Tiffany Tsang (#)	2638 6151	2638 7077
Chun Wo	Environmental supervisor	Frankie Leung	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 3 - CV/2012/09

Remark: (#) The key staff for Environmental Officer has left her position on 10 July 2018 and her replacement will be included in next Reporting Month.

Legend:

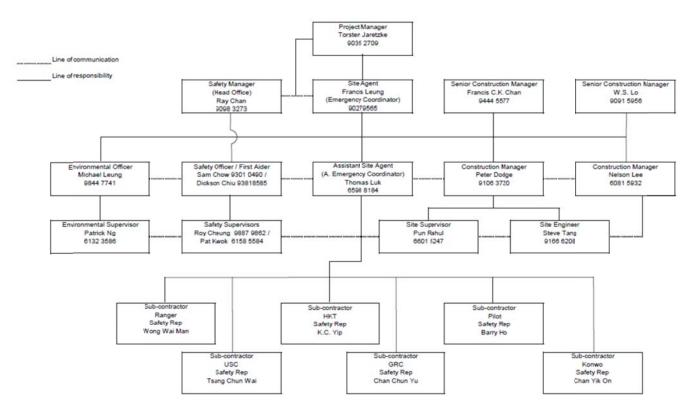
CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

Chun Wo (Main Contractor) – Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

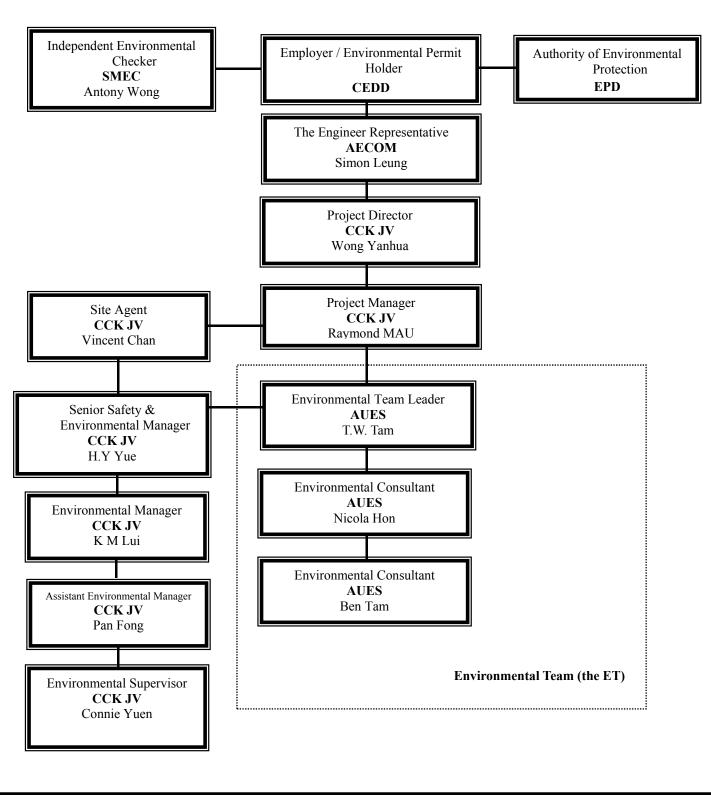
AUES (ET) – Action-United Environmental Services & Consulting


Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.60) – July 2018

Contract No. NE/2014/02 (C4)

Site Safety and Environmental Organizational Chart

As of 31 Jul 2018


Environmental Management Organization for Contract 4 - NE/2014/02

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Leo Lai	2171 3310	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Torsetn Jaretzke	9035 2709	
Siemens	Site Agent	Francis Leung	9027 9565	
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

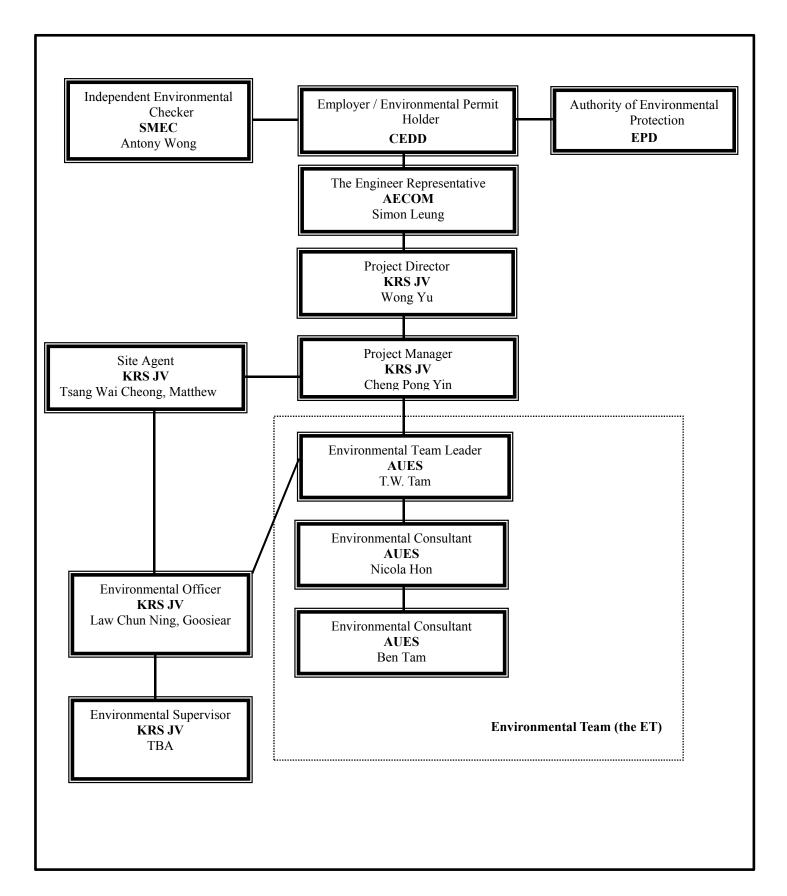
Contact Details of Key Personnel for Contract 4 - NE/2014/02

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. Siemens (Main Contractor) – Siemens Ltd. SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization – CV/2013/08



Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Simon Leung	2251 0688	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Project Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	H.Y. Yue	9185 8186	
CCK JV	Environmental Manager	K M Lui	51138223	
CCK JV	Assistant Environmental Manager	Pan Fong	9436 9432	
CCK JV	Environmental Supervisor	Connie Yuen	6316 6931	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

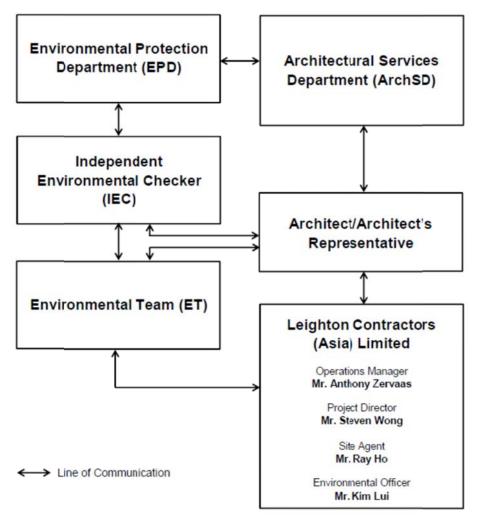
Contact Details of Key Personnel for Contract 6 - CV/2013/08

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

AUES

Environmental Management Organization -NE/2014/03


Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Kelvin lee	2251 0609	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Law Chun Ning, Goosiear	9625 2381	2682 2783
KRSJV	Environmental Supervisor	TBA	6592 3084	2682 2783
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Legend:

CEDD (Employer) – Civil Engineering and Development Department AECOM (Engineer) – AECOM Asia Co. Ltd. KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture SMEC (IEC) – SMEC Asia Limited AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organigram

Environmental Management Organization for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Antony Zervaas	2823 1433	2529 8784
Leighton	Project Director	Mr. Steven Wong	2858 1519	2858 1899
Leighton	Site Agent	Mr. Ray Ho	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Kim Lui	3973 1003	-
Leighton	Assistant Environmental Officer	Mr. Alex Liu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Contact Details of Key Personnel for Contract SS C505

Legend:

ArchSD (Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) –Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Appendix C

3-month rolling construction program

Contract 2

Tentative Three Months (Jul, August, September 2018) Construction Rolling Progam

ltem	Construction Activites		
1	Admin Bldg - Building fit out, permanent drainage, E&M installation and soft landscaping works		
2	Mid Vent Portal - Construction of external structure and backfilling activities		
3	Mid Vent Portal - Finishing on adit enlargement internal structure		
4	Mid Vent Portal - Stud tunnel internal structure and backfilling activities		
5	Mid-Vent Portal - Building fit out and E&M installation		
8	North Portal - Construction of retaining wall, permanent drainage and slip road		
9	North Portal - Tunnel backfilling, VE panel and E&M installation		
10	North Portal - Construction of tunnel cross passage and internal structure		
11	North Portal - North ventilation building superstructure, internal structure and backfilling		
12	North Portal - Desilting the existing drainage system		
14	Sorth Portal - Construction of tunnel internal structure, tunnel backfilling and E&M installation		
15	South Portal - South ventilation building fit out and E&M installation		
16	South Portal - Backfilling and construction of slip road		
17	South Portal - Dismantling of site office and water treatement system		

Contract 3

俊和建築工程有限公司 CHUN WO CONSTRUCTION & ENGINEERING CO., LTD.

Tentative Three Months (July, August and September 2018) Construction Rolling Progam

Item	Construction Activites
1	Cable detection and trial trenches
2	Remaining works on new Footbridge
3	Noise barrier construction
4	Road pavement works
5	Water main laying works (on Grade and on bridge deck)
6	Installation of Noise barrier steel column & panel, and sign gantry (on Grade and on bridge deck)
7	Parapet Installation on bridge deck
8	Road Drainage Works
9	Construction of profile barrier & Planter wall on Bridge deck
10	Bitumen paving on bridge deck
11	Installation of deck cell light inside the bridge deck
12	Installation of movement joint on the bridge
13	Construction of retaining wall
14	Landscaping works
	ļ

Contract 4

Tentative Three Months (July, August and Septemebr 2018) Construction Rolling Progam

Item	Construction Activites										
1	E&M installation at admin building										
2	E&M installation at Ventilation Building										
3	E&A installation at OHVD in tunnel										
4	High mast erection										
5	Sign fabricaiton and Installation										

Contract 6

Tentative Three Months (July, August and September 2018) Construction Rolling Progam

Item	Construction Activites											
	Bridge Construction;											
	Tunneling Works;											
	Sewage Treatment Plant Construction;											
4	Tunnel Ventilation Buildings Construction;											
5	Slip Road/At-grade Road/Periphery Road Construction.											

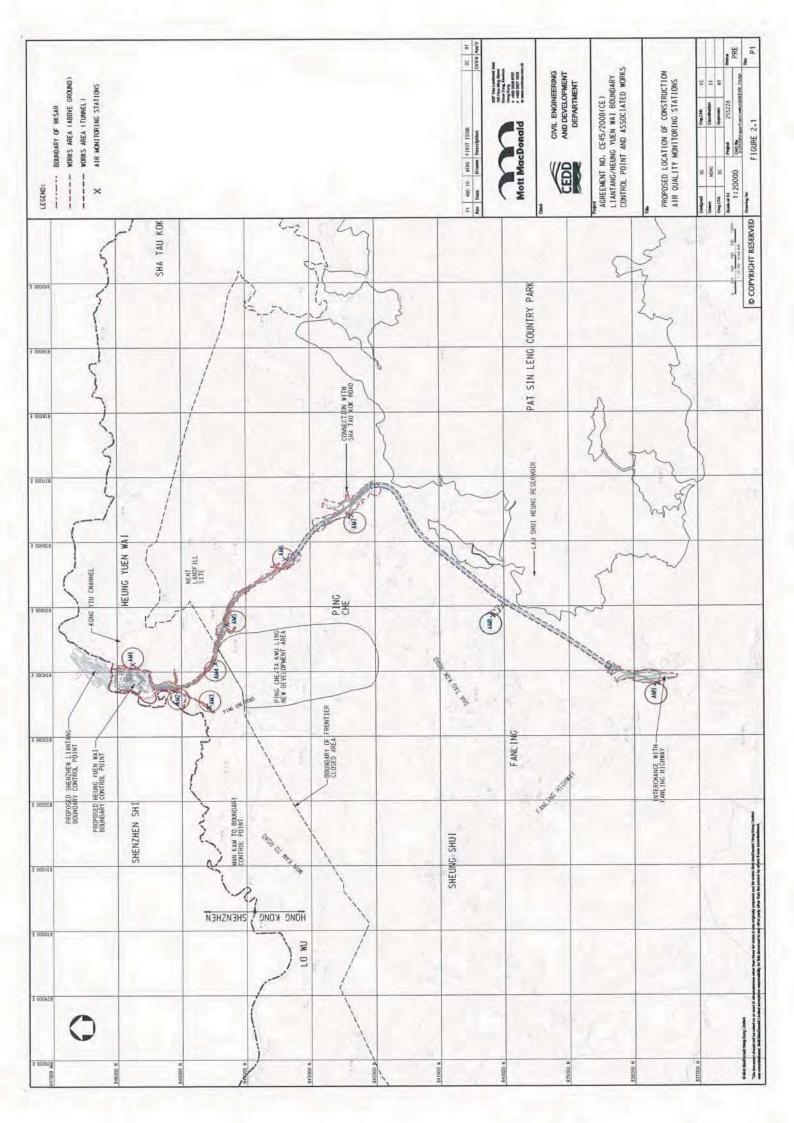
Contract 7

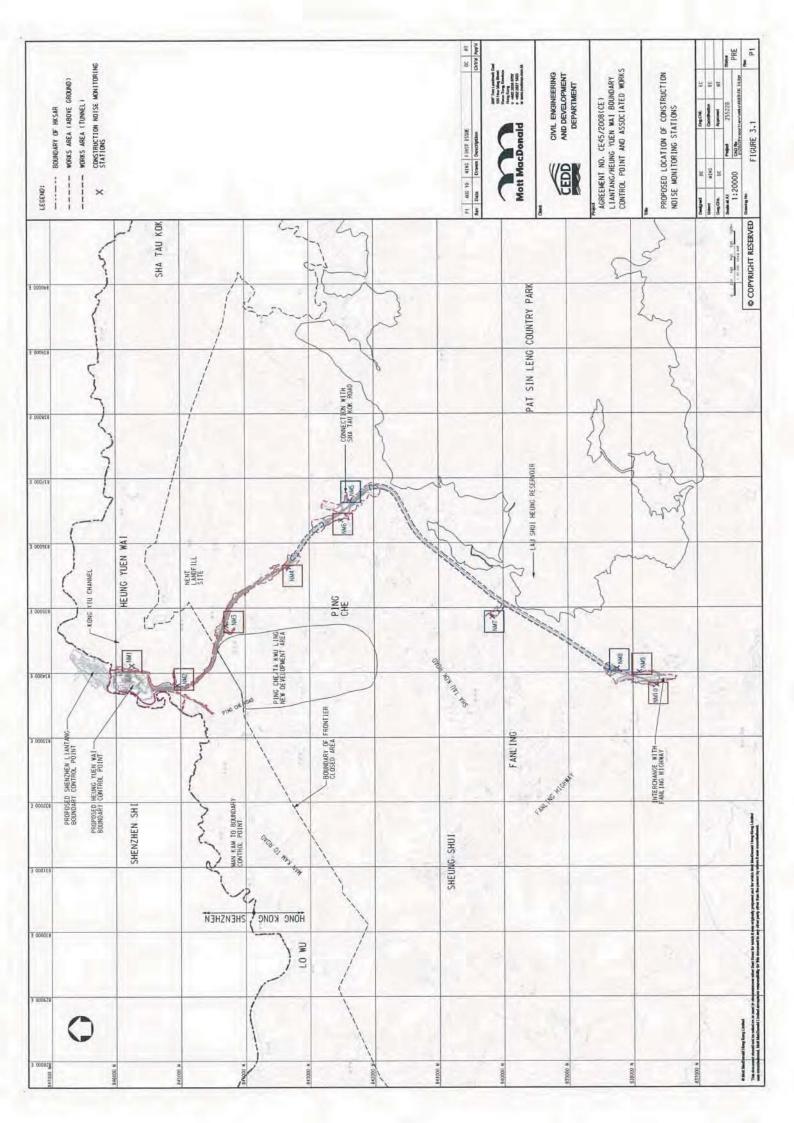
◆ 變 ♀
● 均安 - 顯豐機械 - 上海建工 聯營
Kwan On - Richwell - SCG JV

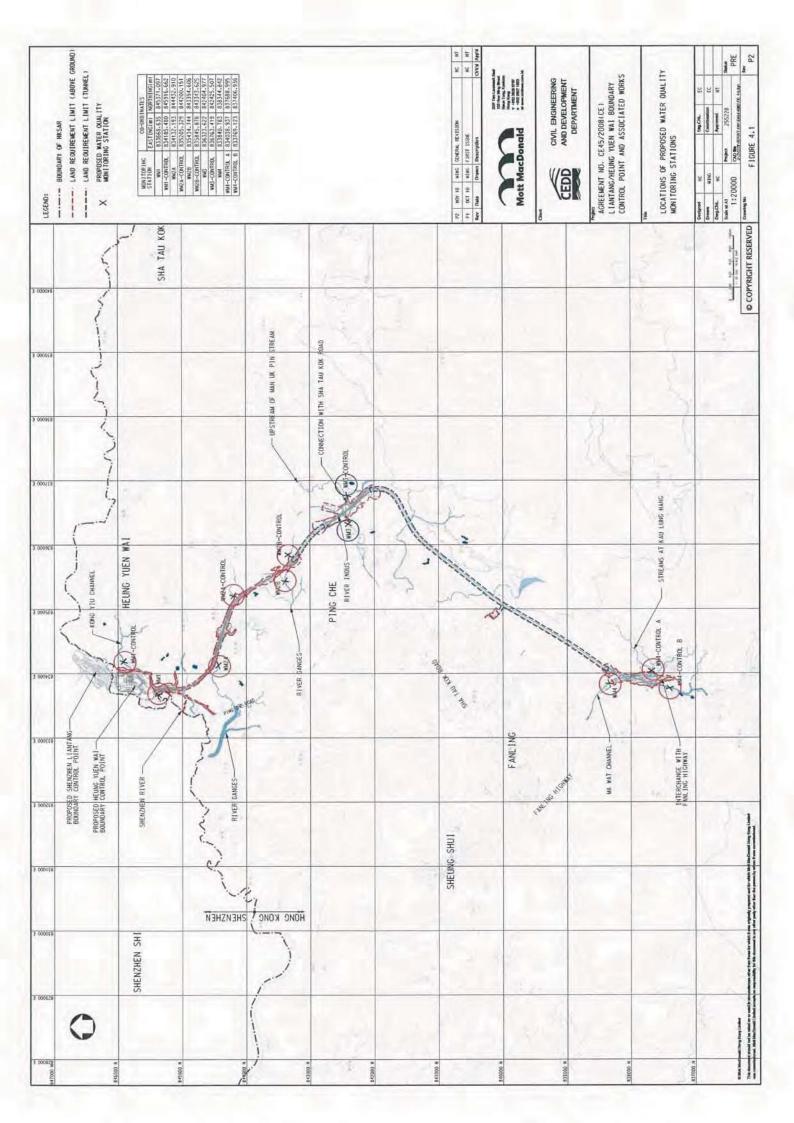
Tentative Three Months(July, August and September 2018) Construction Rolling Progam

ltem	Construction Activites									
1	Bridge A - Profile Barrier									
2	Bridge B - Profile Barrier									
	ridge C - Façade and BMU at roof slab									
4	Bridge C - Waterproofing & Drainage at roof slab									
	Bridge C - Green Roof System									
6	Bridge D - Profile Barrier									
7	Bridge D - Noise Barrier Construction									
	Bridge E - Profile Barrier									
9	Bridge E - Noise Barrier Construction									
	Perimeter Road - Drainage and Watermains									
11	Perimeter Road - Bitumen Pavement									

Contract SS C505

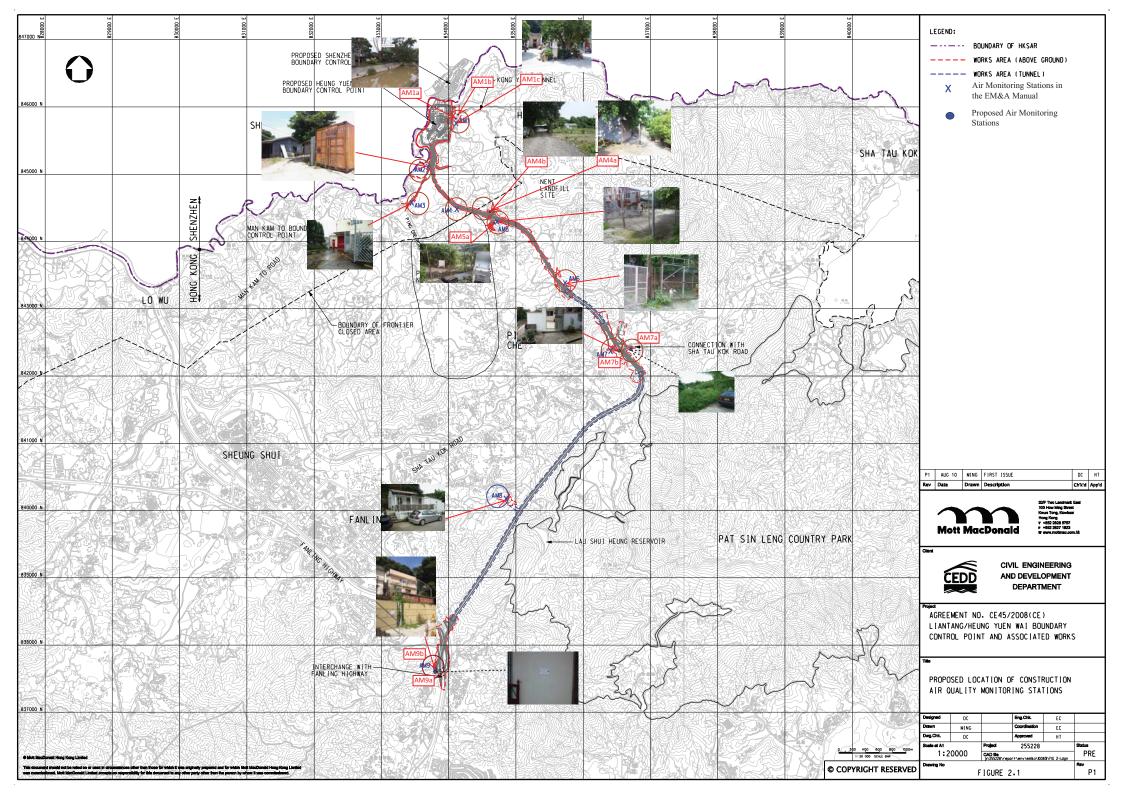

Tentative Three Months (July, August and September 2018) Construction Rolling Progam


Item	Construction Activites
1	Passenger Terminal Building (PTB) G/F - Structure Works, Backfiling & Drainage, Under Ground Utilities, Fence Wall
T	and On Grade Slab
2	PTB ABWF Works & MEP Installation - Front/Back of House Area ABWF Works & MEP Installation, External Staircase
2	Hall Block External Façade, Southern Entrance Construction
	PTB Major Plant Room ABWF Works & MEP Installation from G/F to 2/F, E&MF Major Plant Rooms ABWF Works &
3	MEP Installation, Lift & Escalator Installation by NSC (Sigma), MVAC Works, Plumbling & Drainage Works and LPG
4	Installation
	PTB External Works incl. Building 21-24, Roof & Upper Roof Roofing Works,
5	PTB M/F External Wall Structure & ABWF Works
6	PTB Roof & Upper Roof Roofing Works - Structure Works and Concrete Repair, Waterproofing, BMU System & Fall
_	Arrest System, Soft and Hard Landscaping
	PTB Podium Coach Canopy - Coach Canopy Construction & MEP Installation
8	PTB - Coach & Private Car Kiosks (Inbound / East) - Superstructure, ABWF Works, MEP Installation
9	PTB - Private Car Examination Buildings and MXRVSS (Inbound / East) - Superstructure, ABWF works, MEP Installatio
10	PTB - Podium Open Area - Waterproofing, paving works, hard and soft landscaping
11	PTB - Ambulance Canopy / Glazed Canopy
12	Bridge C (C7 Portion) - Integrated ABWF & MEP Installation Works (C7 Portion)
13	C&ED Detector Dog Base - Integrated ABWF & MEP G/F & R/F Works
14	HKPF Building and Observation Tower - External Works, Integrated ABWF & MEP Works
15	Fire Station and Drill Tower - External Works, Integradted ABWF & MEP Works
16	Cargo Examination Building (Inbound) - External Works, Integrated ABWF & MEP Works
17	Cargo Examination Building (Outbound) - External Works, Integrated ABWF & MEP Works
18	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) - Structures, External Works, Integrated ABWF & MEP Works
19	Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) - Structures, External Works and Integrated
	ABWF & MEP Works
	MXRVSS (Inbound) - Structure Works, Integrated ABWF and MEP Works
21	MXRVSS (Outbound) - Structure Works, Integrated ABWF and MEP Works
22	GV Kiosk (Inbound) - On-Grade Slab Construction, Steel Structure Works, Integrated ABWF and MEP Works, End Use Rooms
22	GV Kiosk (Outbound) - Structures Works, On-Grade Slab Construction, Steel Structure Works, Integrated ABWF & M
23	Works, End User Rooms
24	Public Toilets (Inbound) - Structure Works, Integrated ABWF and MEP Works
25	Public Toilets (Outbound) - Structures Works, Integrated ABWF and MEP Works
26	Disinsection Facilities (Inbound) - Structure Works, Integrated ABWF & MEP Works
27	Disinsection Facilities (Outbound) - Substructure and Structure Works, Integrated ABWF & MEP Works
28	Weigh Station - Integrated ABWF and MEP Works
29	EUVSS & Monitoring Room - Structure Works, Integrated ABWF & MEP Works
30	Refuse Collection Point - Integrated ABWF and MEP Works
31	Traffic Control Office (Inbound) - Structure Works, Integrated ABWF and MEP Works
32	Traffic Control Office (Outbound) - Structure Works, Integrated ABWF and MEP Works
33	Inspection Post - Structure Works, Integrated ABWF and MEP Work
34	Guard Booth (Inbound/Outbound/Vehicle Detention Area) - Structure Works, Integrated ABWF and MEP Works
35	Steel Canopies - Structure Works, Integrated ABWF and MEP Works
	Fire Hydrant Tank & Pump Room - Integrated ABWF and MEP Works
	Irrigation Pump Room - Integrated ABWF & MEP Works

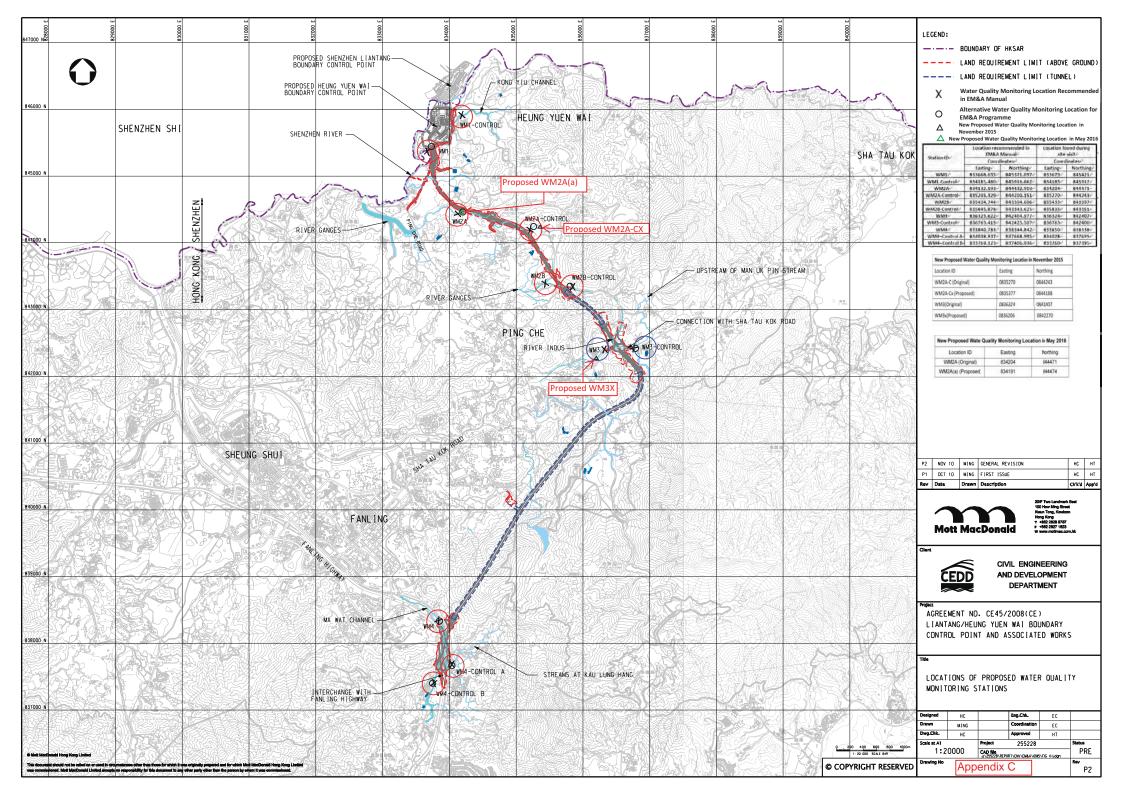


Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location Location		ea at Tsun AM1c	g Yuen	Ha Village			Next Calibra	alibration: tion Date: echnician:		28/5/2018 28/7/2018 Eric
					C	ONDITIONS				
	Se	a Level I Temp	Pressure erature		1009 30.3		Corrected Pressure Temperature			756.75 303
					CALIB	RATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		2.02017 -0.03691	
					C	ALIBRATION	I			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINE REGRES			
18 13 10 7 5	5.5 4.4 3.4 2.2 1.3	-6.7 -5.6 -4.6 -3.4 -2.5	12.2 10.0 8.0 5.6 3.8	1.728 1.567 1.403 1.177 0.973	51 45 40 32 26	50.44 44.51 39.56 31.65 25.72	Slope = Intercept = Corr. coeff. =	32.7488 -6.4736 0.9994		
Calculati Qstd = 1/: IC = I[Sq	m[Sqrt(H			d/Ta))-b]		60.00	FLOW RAT	E CHART		
	ected chai chart res rator Qsto ator Qstd al temper	rt respon- ponse l slope intercep ature dur	t ring cali	ibration (de		50.00 (j) 40.00 es wood se 30.00				
	equent ca	alculatio	n of sai	ration (mm mpler flow: b)	Hg)	Actral Control Part E		•		
m = samp b = samp I = chart 1 Tav = dai	oler interc response		ature			0.00	0 0 500		1 500	2000
Pav = dai		-				0.00	0 0.500 Standard Flow	.000 Rate (m3/min	1.500 I)	2.000

Location : Location 1		ea at Tsun AM1c	g Yuen	Ha Village				Calibration: ration Date: Technician:	:	26/7/2018 26/9/2018 Eric
					С	ONDITIONS				
	Se	a Level I Temp	Pressure perature		1006.5 29.6		Corrected Pressure Temperature			754.875 303
					CALIB	RATION OR	IFICE			
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->		2.02017 -0.03691	
					C	ALIBRATION	I			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected		EAR ESSION		
18 13 10 7 5	5.6 4.4 3.4 2.2 1.3	5.6 4.4 3.4 2.2 1.3	11.2 8.8 6.8 4.4 2.6	1.657 1.471 1.295 1.045 0.808	46 42 36 30 22	45.49 41.54 35.60 29.67 21.76	Slope = Intercept = Corr. coeff. =	-0.3045	5	
Calculatio Qstd = 1/1 IC = I[Sq1	m[Sqrt(H			l/Ta))-b]		50.00	FLOW R	ATE CHART	-	
Qstd = sta IC = corre I = actual m = calibrb = calibrTa = actua	andard flo ected cha chart res rator Qsto ator Qsto al temper	ow rate rt respon ponse d slope l intercep rature dui	es t ring cali	bration (de ation (mm	<i>U</i> ,	45.00 40.00 35.00 35.00 00.02 25.00 20.00 20.00 15.00				
For subs 1/m((I)[\$	•			mpler flow: b)		10.00				
m = samp b = samp I = chart 1	ler interc					10.00 5.00				
Tav = dai Pav = dai	ly averag	-				0.00 L 0.00		1.000 ow Rate (m3/m	1.500 in)	2.000

Location : Location I	_	House ne AM2	ear Lin I	Ma Hang R			Date of Calib Next Calibration Tech		9/6/2018 9/8/2018 Fai So
					CC	ONDITIONS			
	Se	a Level I Temp	Pressure erature	. ,	999.1 28.6]	Corrected Pressure (mm Temperature (K)	Hg)	749.325 302
					CALIBR	ATION ORI	FICE		
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> Qstd Intercept ->	2.020 -0.036	
					CA	LIBRATION			
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSIC		
18 13	5.5 4.3	5.5 4.3	11.0 8.6	1.639 1.451	50 44	49.35 43.43	-	2.9618 4.4771	
10	4.5 3.3	4.3 3.3	8.0 6.6	1.431	38	43.43 37.51	-	0.9996	
7	2.1	2.1	4.2	1.020	30	29.61		0.7770	
5	1.3	1.3	2.6	0.806	22	21.71			
Calculatic Qstd = 1/r IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CH	IART	
Qstd = sta						50.00		/	
IC = corre I = actual m = calibr	chart res ator Qsto	ponse d slope				() 40.00			
	l temper	ature dur	ing cali	bration (de ation (mm		Actual chart response 00.05 00.07			
For subse 1/m((I)[S	-			npler flow:		Actual Ac	• • • • • • • • • • • • • • • • • • •		
m = sample b = sample	ler interc	ept				10.00			
I = chart r Tav = dail Pav = dail	y averag					0.00	0 0.500 1.000 Standard Flow Rate	1.500 (m3/min)	2.000

Location : Location I		u Ling Fir AM3	e Servic	ce Station			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
	Se	ea Level I Temp	Pressure erature	. ,	CO 999.1 28.6		Corrected Pressure (mm Hg) 749.325 Temperature (K) 302
				Make-> Model-> Serial # ->	TISCH 5025A		Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	Ν
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR d REGRESSION
18 13 10 7 5	5.5 4.4 3.4 2.3 1.3	5.5 4.4 3.4 2.3 1.3	(iii) 11.0 8.8 6.8 4.6 2.6	1.639 1.468 1.292 1.066 0.806	50 46 40 34 26	49.35 45.40 39.48 33.56 25.66	Slope = 28.6872 Intercept = 2.7120 Corr. coeff. = 0.9990
Calculatic Qstd = 1/r IC = I[Sqr	n[Sqrt(H			/Ta))-b]		60.00	FLOW RATE CHART
Qstd = sta IC = corre I = actual m = calibr b = calibra	cted cha chart res ator Qsto	rt respone ponse d slope				50.00 (0) 40.00 bouse	
				oration (de ation (mm	g K) Hg)	Actual chart response (IC) 00.05 00.02	
For subse 1/m((I)[S	-			npler flow:		20.00 ¥	
m = samp b = samp	-					10.00	
I = chart r Tav = dail Pav = dail	y averag	-				0.00	00 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ı Ha Villa AM4b	ige				Date of Calibration:9/6/201Next Calibration Date:9/8/201Technician:Fai S	18
					CO	NDITIONS		
	Se	ea Level I Temp	Pressure erature	` ´	999.1 28.6		Corrected Pressure (mm Hg) 749.32 Temperature (K) 30	
					CALIBRA	ATION ORIF	FICE	
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691	
					CAL	IBRATION		
Plate	. ,	H2O (R)	H20	Qstd	[(alcout)	IC	LINEAR	
No. 18 13 10 7 5	(in) 5.5 4.8 3.8 2.2 1.3	(in) 5.5 4.8 3.8 2.2 1.3	(in) 11.0 9.6 7.6 4.4 2.6	(m3/min) 1.639 1.532 1.365 1.043 0.806	(chart) 52 46 40 32 24	corrected 51.32 45.40 39.48 31.58 23.69	$\frac{\text{REGRESSION}}{\text{Slope} = 31.4046}$ $\text{Intercept} = -1.8086$ $\text{Corr. coeff.} = 0.9932$	
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo ccted cha chart res rator Qsto ator Qsto ator Qsto al temper ual press	d)(Tstd/Ta ow rate rt respond ponse d slope l intercept ature dur ure durin alculatio	a)] es ing calib g calibra n of san	pration (deg ation (mm apler flow:	g K) Hg)	Actrial chart response (C)	FLOW RATE CHART	
m = samp b = samp I = chart r Tav = dail Pav = dail	ler slope ler interc esponse y averag	ept se tempera	ature			0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	

Location : Location I	_	eung Villa AM5a	age Hou	se			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	` ´	999.1 28.6		Corrected Pressure (mm Hg)749.325Temperature (K)302
					CALIBR	ATION ORIF	ICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate		H2O (R)	H20	Qstd	Ι	IC	LINEAR
No. 18 13 10 7 5	(in) 5.8 4.9 3.4 2.1 1.4	(in) 5.8 4.9 3.4 2.1 1.4	(in) 11.6 9.8 6.8 4.2 2.8	(m3/min) 1.682 1.548 1.292 1.020 0.836	(chart) 42 38 30 22 18	corrected 41.45 37.51 29.61 21.71 17.77	$\frac{\text{REGRESSION}}{\text{Slope} = 28.4657}$ $\text{Intercept} = -6.6993$ $\text{Corr. coeff.} = 0.9986$
Pstd = act For subse 1/m((I)[S	n[Sqrt(H t(Pa/Psto ndard flo ected cha chart res rator Qsto ator Qsto ator Qsto al temper ual press equent c Sqrt(298/	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin alculation Tav)(Pav	a)] es t ing calit g calibra n of san	pration (deg ation (mm apler flow:		50.00 40.00 30.00 20.00 10.00	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse ly averag	ept te tempera				0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

Location : Location I		ng Shan V AM6	Village H	House			Date of Calibration:9/6/2018Next Calibration Date:9/8/2018Technician:Fai So
					CO	NDITIONS	
	Se	ea Level I Temp	Pressure perature	· /	999.1 28.6		Corrected Pressure (mm Hg) 749.325 Temperature (K) 302
					CALIBR	ATION ORI	FICE
				Make-> Model-> Serial # ->	5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691
					CAL	IBRATION	
Plate No.	H20 (L) (in)	H2O (R)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION
18 13 10 7 5	$ \begin{array}{c} (11)\\ 5.4\\ 4.2\\ 3.2\\ 2\\ 1.3 \end{array} $	(in) 5.4 4.2 3.2 2 1.3	$ \begin{array}{c} (11)\\ 10.8\\ 8.4\\ 6.4\\ 4.0\\ 2.6\\ \end{array} $	(m3/mm) 1.624 1.434 1.254 0.995 0.806	54 46 42 30 24	53.30 45.40 41.45 29.61 23.69	Slope = 36.3047 Intercept = -5.7026 Corr. coeff. = 0.9963
Pstd = act	n[Sqrt(H t(Pa/Psto ndard flo cted cha chart res ator Qsto ator Qsto il temper ual press	d)(Tstd/T ow rate rt respond ponse d slope l intercept ature dur ure durin	a)] es t ing calit g calibra n of san	pration (deg ation (mm n pler flow:	g K)	Gorood Actual chart response (IC) 50.00 00.05 30.00 00.02 20.00 00.02	FLOW RATE CHART
m = samp b = samp I = chart r Tav = dail Pav = dail	ler interc esponse y averag	ept te tempera				10.00 0.00 0.000	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

	Decation : Village House of Loi Tung Village Decation ID : AM7b						Date of Calibration: 9/6/2018 Next Calibration Date: 9/8/2018 Technician: Fai So		
					COND	TIONS			
	Se	a Level I Temp	Pressure perature	. ,	999.1 28.6]	Corrected Pressure (mm Hg) 749.325 Temperature (K) 302		
				C	ALIBRATI	ON ORIFICE	E		
Make-> <u>TISCH</u> Model-> <u>5025A</u> Serial # -> <u>1612</u>					5025A]	Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CALIBR	RATION			
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)	I (chart)	IC corrected	LINEAR REGRESSION		
18 5.5 5.5 11.0 1.639 56 13 4.3 4.3 8.6 1.451 50 10 3.4 3.4 6.8 1.292 43 7 2.2 2.2 4.4 1.043 33					50 43	55.27 49.35 42.44 32.57 24.68	Slope = 37.5797 Intercept = -5.9717 Corr. coeff. = 0.9989		
Calculatio Qstd = 1/r IC = I[Squ	o ns : n[Sqrt(H	20(Pa/Ps	td)(Tstd			60.00	FLOW RATE CHART		
Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow:				ation (mm	. ,	00.05 00.04 00.04 00.05 Vectoral chart vectoral			
1/m((I)[S	-			-		10.00			
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure						0.00	0 0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)		

Location : Po Kat Tsai Village No. 4 Location ID : AM8					Date of Calibration: 9/6/2018			
Location I	D: 1	AM8					Next Calibration Date: 9/8/2018 Technician: Fai So	
					CONE	DITIONS		
	Sea Level Pressure (hPa)999.3Temperature (°C)28.0						Corrected Pressure (mm Hg) 749.325 Temperature (K) 302	
				C	ALIBRAT	ION ORIFICE		
Make-> TISCH Model-> 5025A Serial # -> 1612						Qstd Slope -> 2.02017 Qstd Intercept -> -0.03691		
					CALIB	RATION		
Plate H20 (L)H2O (R) H20 Qstd I						IC corrected	LINEAR REGRESSION	
18 13 10 7 5	134.64.69.21.50050103.43.46.81.2924472.12.14.21.02032				58 50 44	57.25 49.35 43.43 31.58 21.71	Slope = 41.4013 Intercept = -11.6316 Corr. coeff. = 0.9960	
Calculatio		1.1	2.0	0.050		21.71	FLOW RATE CHART	
Qstd = 1/r IC = I[Sqr	t(Pa/Pstd)	(Tstd/T		/Ta))-b]		60.00		
Qstd = sta IC = corre I = actual m = calibr	cted chart chart resp	respon onse	es			50.00 (C)		
b = calibrator Qstd stope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg)						40.00 40.00 a chart responsed and chart respon		
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)				-		Actual 20.00		
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure				,		0.00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)	

Location : Nam Wa Po Village House No. 80 Location ID : AM9b		Date of Calibration: Next Calibration Date: Technician:			9/6/2018 9/8/2018 Fai So
	CONDITIONS				
Sea Level Pressure (hPa)999Temperature (°C)28	<u>9.1</u> 3.6	Corrected Pressure (mm Hg) Temperature (K)			749.325 302
CAL	IBRATION ORI	FICE			
Make-> TISCH Model-> 5025A Serial # -> 1612		Qstd Slope -> Qstd Intercept ->		2.02017 0.03691	
	CALIBRATION	I			
Plate H20 (L) H2O (R) H20 Qstd I No. (in) (in) (in) (m3/min) (chart 18 5.5 5.5 11.0 1.639 53 13 4.2 4.2 8.4 1.434 46 10 3.2 3.2 6.4 1.254 41 7 2 2 4.0 0.995 31 5 1.3 1.3 2.6 0.806 22	IC corrected 52.31 45.40 40.47 30.60 21.71	LINE <u>REGRES</u> Slope = Intercept = Corr. coeff. =			
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]	60.00	FLOW RATE	CHART		
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow:	50.00 Attrain chart response OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.05 OU.06 OU.06 OU.06 OU.06 OU.06 OU.06 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.06 OU.06 OU.06 OU.06 OU.06 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07 OU.07		*		
<pre>1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure</pre>	10.00 0.00 0.000	0.500 1. Standard Flow R		1.500	2.000

RECALIBRATION DUE DATE: February 13, 2019

Environmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion			
Cal. Date:	February 13, 2018 Rootsr			meter S/N:	438320	Ta:	293	°К	
Operator:	Jim Tisch					Pa:	Pa: 763.3		
Calibration	Model #:	TE-5025A	Calil	prator S/N:	1612				
			Mal Plant	A) (- 1	ATI	AD	A11		
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	∆H (in H2O)		
	1	1	2	(113)	1.3970	3.2	2.00		
	2	3	4	- 1	1.0000	6.3	4.00		
	3	5	6	1	0.8900	7.9	5.00		
	4	7	8	1	0.8440	8.7	5.50		
	5	9	10	1	0.7010	12.6	8.00		
				Data Tabula	tion				
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstc}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$		
	(m3)	(x-axis)	(y-ax	(is)	Va	(x-axis)	(y-axis)		
	1.0172	0.7281	1.42	93	0.9958	0.7128	0.8762		
	1.0130	1.0130	2.02	and the second se	0.9917	0.9917	1.2392		
	1.0109	1.1358	2.25		0.9896	1.1120	1.3854		
	1.0098	1.1964	2.37	A PERSON NEW YORK OF THE PARTY	0.9886	1.1713	1.4530		
	1.0046	1.4331	2.85 2.02 (0.9835	1.4030 m=	1.7524 1.26500	4	
	QSTD	m= b=	-0.03		QA	b=	-0.02263	1	
	QSID	r=	0.999		QA	r=	0.99988		
				Calculatio	ns			1	
	Vstd=	∆Vol((Pa-∆P)/Pstd)(Tstd/T			ΔVol((Pa-Δ	P)/Pa)	1	
	Qstd=	Vstd/∆Time			Qa= Va/∆Time				
			For subsequ	uent flow ra	ent flow rate calculations:				
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-t$				Qa= $1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$				
	Standard	Conditions							
Tstd		CONTRACTOR AND A CONTRACTOR OF A DATA OF				RECA	LIBRATION		
Pstd	1	mm Hg			LIS FPA rec	ommends a	nnual recalibrati	on per 1998	
AH: calibrat		Key ter reading (in H2O)		US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,				
		eter reading			1				
Ta: actual a	bsolute tem	perature (°K)		Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in				
		ressure (mm	Hg)		1		ere, 9.2.17, page		
b: intercept	t								
m: slope									

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cor TOLL FREE: (877)263-761(FAX: (513)467-900

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	2X6145
Equipment Ref:	EQ105
Job Order	HK1815073

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

Equipment Verification Results:

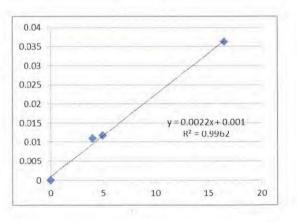
Testing Date:

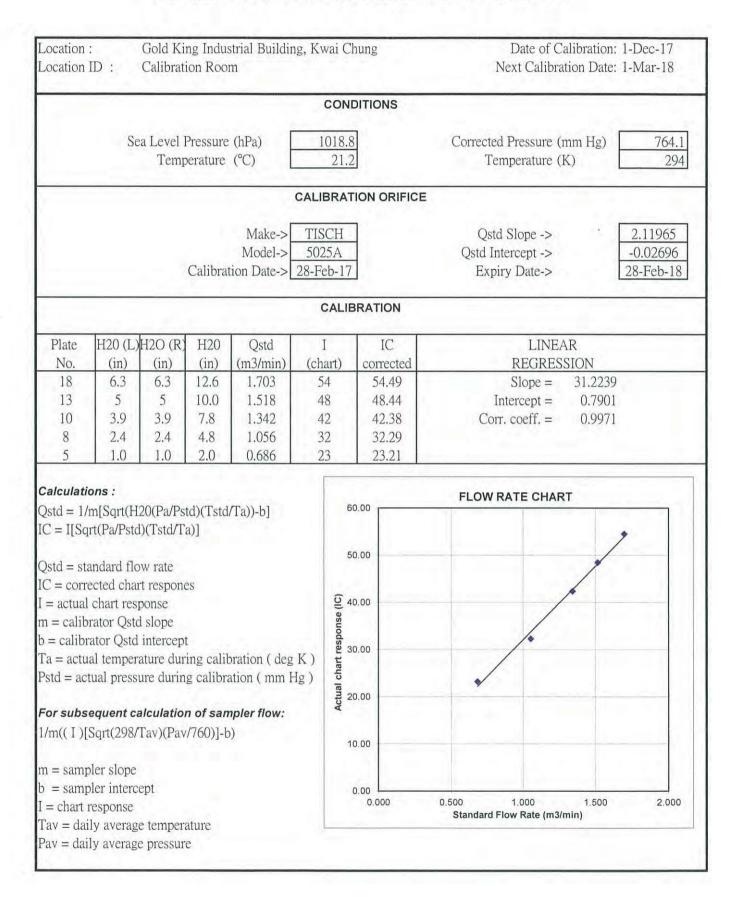
5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	511	4.0
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	598	4.9
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2111	16.5

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) <u>583 (CPM)</u> 583 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022
Correlation Coefficient	0.9981
Date of Issue	9 January 2018


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator : M	artin Li	Signature :	the	Date :	9 January 2018
QC Reviewer : _	Ben Tam	Signature :	\$6	Date : _	9 January 2018

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366409
Equipment Ref:	EQ109
Job Order	HK1815078

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

Equipment Verification Results:

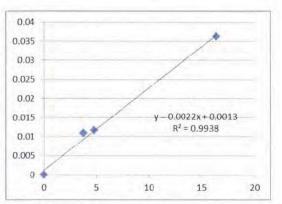
Testing Date:

5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	474	3.7
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	577	4.8
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2097	16.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 520 (CPM) 521 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9967		
Date of Issue	9 January 2018		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	366410
Equipment Ref:	EQ110
Job Order	HK1815072

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	1
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	1 December 2017	

Equipment Verification Results:

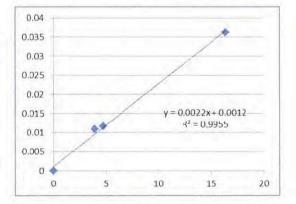
Testing Date:

5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	498	3.9
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	571	4.7
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2095	16.4

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 670 (CPM) 669 (CPM)

Linear Regression of Y or X


Slope (K-factor):	0.0022		
Correlation Coefficient	0.9977		
Date of Issue	9 January 2018		

1.12

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

Location : Location 1		Gold Kir Calibrati	1.00	strial Buildin m		Date of Calibrati ext Calibration Da				
						CONDI	TIONS			
	Se	ea Level F Temp	Pressure perature		1	1018.8 21.2			Pressure (mm Hg perature (K)	g) 764.1 294
					CALI	BRATIC	ON ORIFICE			
		-7.8	Calibra	Make-> Model-> tion Date->	502	SCH 25A eb-17	-0.0 Qstd Intercept -> -0.0			2.11965 -0.02696 28-Feb-18
		1			(CALIBR	ATION			
Plate No. 18 13 10 8 5	H20 (L) (in) 6.3 5 3.9 2.4 1.0	H2O (R) (in) 6.3 5 3.9 2.4 1.0	H20 (in) 12.6 10.0 7.8 4.8 2.0	Qstd (m3/min) 1.703 1.518 1.342 1.056 0.686	(cha 5 4 4 3	I (54) (54) (54) (54) (54) (54) (54) (54)	IC corrected 54.49 48.44 42.38 32.29 23.21	Inte	LINEAR <u>REGRESSION</u> Slope = 31.22 ercept = 0.79 coeff. = 0.99	901
Pstd = act For subsection 1/m((I)[S m = samp	m[Sqrt(H andard flc ected chau chart resp rator Qstd al temper tual press equent ca Sqrt(298/ pler slope	d)(Tstd/Ta ow rate art respone sponse d slope l intercept rature during sure during alculation /Tav)(Pav.	a)] es t ing calibra n of san	bration (deg ration (mm F mpler flow:	100 m	0.00 50.00 50.00 40.00 9.00 9.00 9.00 0.01	00 00 00 00 00 00	FLOW RA	ATE CHART	
b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure							0.000	0.500 Standard Flo	1.000 1.50 ow Rate (m3/min)	00 2.000

Location Location		Gold Kin Calibrati		Date of Calibration: 1-Dec-17 Next Calibration Date: 1-Mar-18						
						CONDITI	ONS			-
Sea Level Pressure (hPa) 10 Temperature (°C)									Corrected Pressure (mm Hg) 764.1 Temperature (K) 294	
				1	CALIE	BRATION	ORIFICE			
Make-> TIS Model-> 502 Calibration Date-> 28-Fe							Qstd Intercept -> -0.0			2.11965 -0.02696 28-Feb-18
					C	CALIBRA	TION			
Plate No. 18	No. (in) (in) (in) (m3/min) (cha			art) co	IC prected 54.49		LINEAR REGRESSION Slope = 31.2239			
13 10 8 5	5 3.9 2.4 1.0	5 3.9 2.4 1.0	10.0 7.8 4.8 2.0	1.518 1.342 1.056 0.686	4 3	44 48.44 42 42.38 32 32.29 23 23.21		Intercept = 0.7901 Corr. coeff. = 0.9971		
IC = I[Sq $Qstd = sta$ $IC = corrected and a corrected and$	m[Sqrt(H rt(Pa/Psto andard flo ected cha chart res rator Qsto ator Qsto al temper tual press equent co Sqrt(298/	d)(Tstd/T; ow rate rt respone ponse d slope intercept ature dur ure durin	a)] es ing calil g calibr n of san	oration (deg ation (mm F npler flow:	10 C 10 C	60.00 50.00 40.00 90.00 90.00 90.00 90.00 90.00		FLOW RAT	E CHART	/
m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure					0.00 0.	000	0.500 1. Standard Flow	.000 1.50 Rate (m3/min)	0 2.000	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6503
Equipment Ref:	EQ112
Job Order	HK1815077

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	1 December 2017

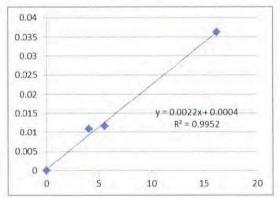
Equipment Verification Results:

Testing Date:

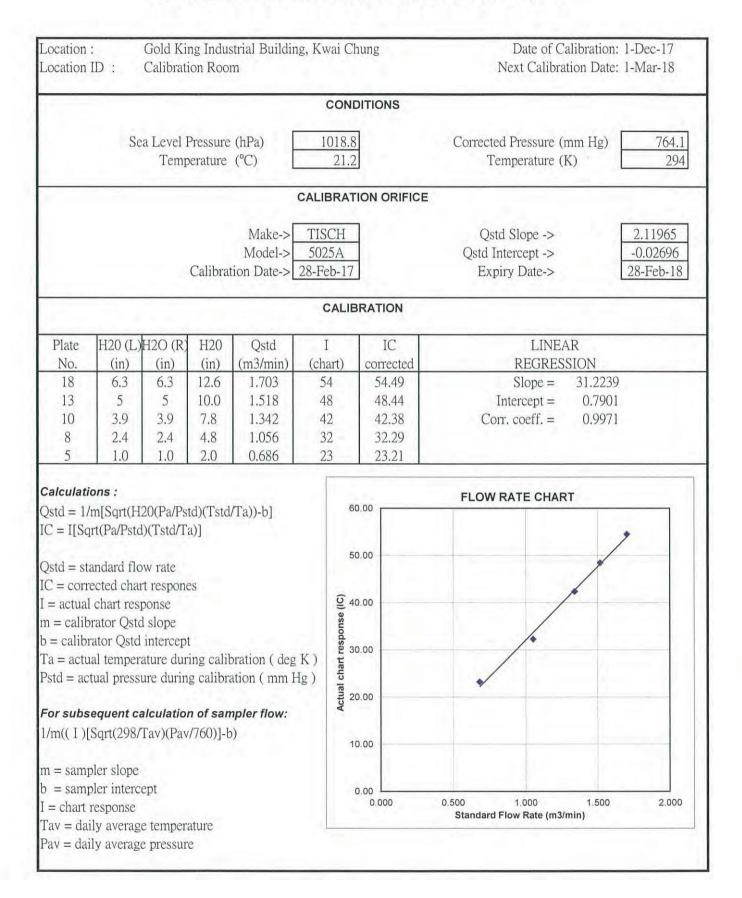
5 January 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	521	4.1
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	674	5.6
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2077	16.3

Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration) 661 (CPM) 661 (CPM)


Linear Regression of Y or X

Slope (K-factor):	0.0022		
Correlation Coefficient	0.9976		
Date of Issue	9 January 2018		


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

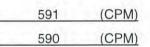
Equipment Verification Report (TSP)

Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	3Y6505
Equipment Ref:	EQ114
Job Order	HK1815074

Standard Equipment:

Standard Equipment:	Higher Volume Sampler	
Location & Location ID:	AUES office (calibration room)	
Equipment Ref:	HVS 018	
Last Calibration Date:	1 December 2017	


Equipment Verification Results:

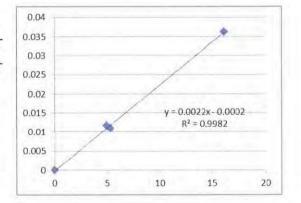
Testing Date:

5 January 2018

Hour	Time	Proceiro		Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	10:27 ~ 12:34	19.3	1015.3	0.011	677	5.3
2hr01min	12:38 ~ 14:39	19.3	1015.3	0.012	601	5.0
2hr08min	14:42 ~ 16:50	19.3	1015.3	0.036	2064	16.2

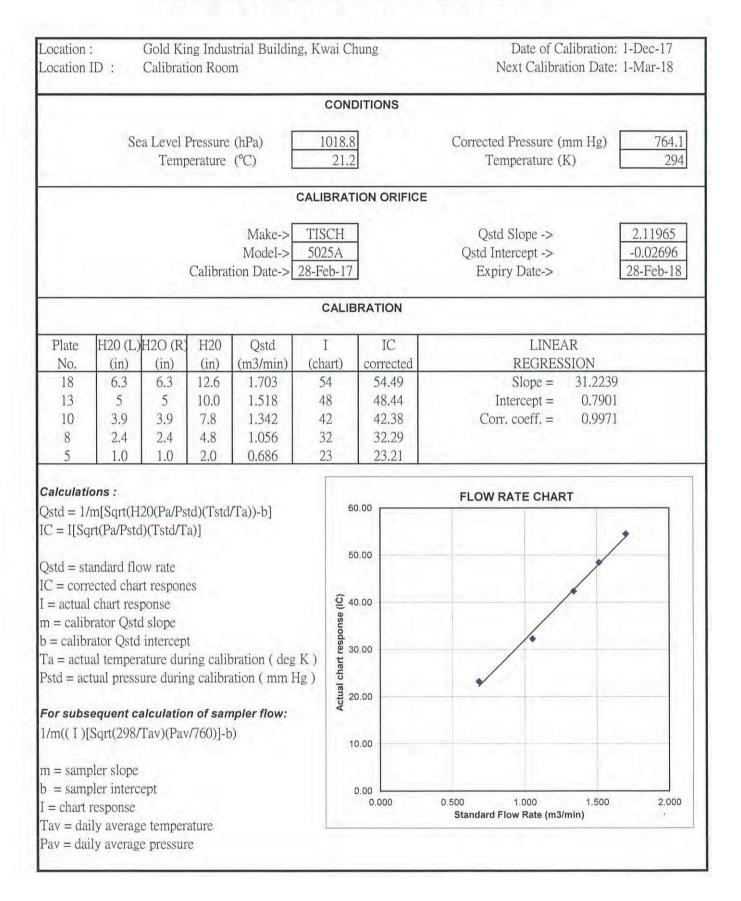
Sensitivity Adjustment Scale Setting (Before Calibration) Sensitivity Adjustment Scale Setting (After Calibration)

Linear Regression of Y or X


Slope (K-factor):	
Correlation Coefficient	
Date of Issue	

_	0.0022
	0.9991
2	9 January 2018

Remarks:


1. Strong Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring *If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Certificate No. : C183441 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號:IC18-0867)	Date of Receipt / 收件日期: 13 June 2018
Description / 儀器名稱	:	Integrating Sound Level Meter (EQ008)	
Manufacturer / 製造商	:	Brüel & Kjær	
Model No. / 型號	:	2238	
Serial No. / 編號	:	2285690	
Supplied By / 委託者	:	Action-United Environmental Services and C	Consulting
		Unit A, 20/F., Gold King Industrial Building,	,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 23 June 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	: K C Lee Engineer			
Certified By 核證	: <u>Ocn Un C</u> H C Chan Engineer	Date of Issue 簽發日期	:	29 June 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C183441 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment IDDescriptionCL28040 MHz Arbitrary Waveform GeneratorCL281Multifunction Acoustic Calibrator	<u>Certificate No.</u> C180024 PA160023
---	---

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

	UUT S	Setting	Applied	Value	UUT	
Range	Parameter	Frequency	Level	Freq.	Reading	
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.2

6.1.1.2 After Self-calibration

UUT Setting					d Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.1	± 0.7

6.1.2 Linearity

	UUT	Г Setting	Applied	d Value	UUT	
Range	Parameter	Frequency Time		Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.1 (Ref.)
				104.00		104.1
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No.: C183441 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

UUT Setting				Applie	d Value	UUT	- IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	А	F	94.00	1	94.1	Ref.
	L _{ASP}		S			94.2	± 0.1
	L _{AIP}		Ι			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level Freq.		Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
					63 Hz	68.0	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C183441 證書編號

6.3.2 C-Weighting

C-weighting											
	UUT	Setting		Applie	ed Value	UUT	IEC 60651				
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.				
$(d\bar{B})$		Weighting	Weighting	(dB)		(dB)	(dB)				
50 - 130	L _{CFP}	С	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5				
					63 Hz	93.3	-0.8 ± 1.5				
					125 Hz	93.9	-0.2 ± 1.0				
					250 Hz	94.1	0.0 ± 1.0				
					500 Hz	94.1	0.0 ± 1.0				
					1 kHz	94.1	Ref.				
					2 kHz	93.9	-0.2 ± 1.0				
					4 kHz	93.3	-0.8 ± 1.0				
					8 kHz	91.1	-3.0 (+1.5 ; -3.0)				
					12.5 kHz	88.0	-6.2 (+3.0 ; -6.0)				

6.4 Time Averaging

UUT Setting					A		UUT	IEC 60804		
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	L _{Aeq}	А	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
						$1/10^{2}$		90	89.7	± 0.5
			60 sec.			$1/10^{3}$		80	79.7	± 1.0
			5 min.			1/10 ⁴		70	69.7	± 1.0

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

Burst equivalent level $: \pm 0.2 \text{ dB}$ (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C183086 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號:IC18-0867)	Date of Receipt / 收件日期:29 May 2018
Description / 儀器名稱 :	Integrating Sound Level Meter (EQ009)	
Manufacturer / 製造商 :	Brüel & Kjær	
Model No. / 型號 :	2238	
Serial No. / 編號 :	2285722	
Supplied By / 委託者 :	Action-United Environmental Services and C	Consulting
	Unit A, 20/F., Gold King Industrial Building	,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T.	

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50±25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 10 June 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試	: KCLee Engineer			
Certified By 核證	: <u>Chan Man</u> CA H C Chan Engineer	Date of Issue 簽發日期	:	11 June 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory

c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司一校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C183086 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

<u>Equipment ID</u>	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C180024
CL281	Multifunction Acoustic Calibrator	PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Self-calibration

UUT Setting				Applied	Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT Setting					Applied Value		IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	А	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UUT	Г Setting	Applied	d Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L _{AFP}	А	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 — 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司 **Sun Creation Engineering Limited**

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183086 證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

		Applied Value		UUT	IEC 60651					
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.			
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)			
50 - 130	L _{AFP}	А	F	94.00	1	94.0	Ref.			
	L _{ASP}		S			94.1	± 0.1			
	L _{AIP}		Ι			94.1	± 0.1			

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		App	lied Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level Burst		Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L _{AFP}	А	F	106.0	Continuous	106.0	Ref.
	L _{AFMax}				200 ms	104.9	-1.0 ± 1.0
	L _{ASP}		S		Continuous	106.0	Ref.
	L _{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	-	(dB)	(dB)
50 - 130	L _{AFP}	А	F	94.00	31.5 Hz	54.5	-39.4 ± 1.5
					63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.0
					250 Hz	85.3	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5 ; -3.0)
					12.5 kHz	89.7	-4.3 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 — 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Certificate No. : C183086 證書編號

6.3.2 <u>C-Weighting</u>

	UUT	Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L _{CFP}	C	F	94.00	31.5 Hz	90.9	-3.0 ± 1.5
					63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.1	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
			×.		12.5 kHz	87.7	-6.2 (+3.0 ; -6.0)

6.4 <u>Time Averaging</u>

	UUT Setting				Aj		UUT	IEC 60804			
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1	
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.	
					(ms)	Factor	(dB)	(dB)		(dB)	
30 - 110	L _{Aeq}	А	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5	
						$1/10^{2}$		90	90.0	± 0.5	
			60 sec.			$1/10^{3}$		80	79.0	± 1.0	
			5 min.			1/104		70	69.1	± 1.0	

Remarks : - UUT Microphone Model No. : 4188 & S/N : 2658547

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value :	250 Hz - 500 Hz 1 kHz 2 kHz - 4 kHz 8 kHz 12.5 kHz 104 dB : 1 kHz 114 dB : 1 kHz	: $\pm 0.30 \text{ dB}$: $\pm 0.20 \text{ dB}$: $\pm 0.35 \text{ dB}$: $\pm 0.45 \text{ dB}$: $\pm 0.70 \text{ dB}$: $\pm 0.10 \text{ dB}$ (Ref. 94 dB) : $\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB : 1 kHz	
	Burst equivalent level	$\pm 0.2 \text{ dB}$ (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C182472 證書編號

ITEM TESTED / 送檢項目	(Job No. / 序引編號:IC18-0867)	Date of Receipt / 收件日期:26 April 2018
Description / 儀器名稱 :	Sound Level Meter (EQ067)	
Manufacturer / 製造商 :	Rion	
Model No. / 型號 :	NL-31	
Serial No. / 編號 :	00410221	
Supplied By / 委託者 :	Action-United Environmental Services and	d Consulting
	Unit A, 20/F., Gold King Industrial Buildi	ng,
	35-41 Tai Lin Pai Road, Kwai Chung, N.T	Γ.

TEST CONDITIONS / 測試條件

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期 : 12 May 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證 Date of Issue 簽發日期 15 May 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986

Website/網址: www.suncreation.com

:

Certificate No. : C182472 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281

Description 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator <u>Certificate No.</u> C180024 PA160023

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level
- 6.1.1.1 Before Adjustment

	UU	JT Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	92.9	± 1.1

6.1.1.2 After Adjustment

	UU	JT Setting		Applied Value		UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	U	UT Setting		Applied	Value	UUT
Range	Mode	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
30 - 120	LA	А	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.1

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

- Sun Creation Engineering Limited Calibration & Testing Laboratory
- c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 — 校正及檢測實驗所

- c/o 香港新界屯門興安里一號四樓
- Tel/電話: (852) 2927 2606 Fax/傅真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C182472 證書編號

6.2 Time Weighting

	UU	JT Setting		Applied	Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 120	L _A	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

		T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 120	L _A	А	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.6$
					4 kHz	95.1	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1 ; -3.1)
					12.5 kHz	90.0	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UU	T Setting		Appl	ied Value	UUT	IEC 61672 Class 1
Range	Mode	Frequency	Time	Level	Freq.	Reading	Spec.
(dB)		Weighting	Weighting	(dB)	-	(dB)	(dB)
30 - 120	L _C	С	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.6
					4 kHz	93.3	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1 ; -3.1)
					12.5 kHz	88.1	-6.2 (+3.0 ; -6.0)

```
Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com
```

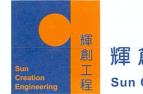
The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Certificate No. : C182472 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 319734

- Mfr's Spec.	:	IEC	61672	Class	1
---------------	---	-----	-------	-------	---

- Uncertainties of Applied Value :	94 dB	: 63 Hz - 125 Hz	:	$\pm 0.35 \text{ dB}$
		250 Hz - 500 Hz	: :	$\pm 0.30 \text{ dB}$
		1 kHz	:	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	:	$\pm 0.35 \text{ dB}$
		8 kHz	:	$\pm 0.45 \text{ dB}$
		12.5 kHz	:	$\pm 0.70 \text{ dB}$
	104 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)
	114 dB	: 1 kHz	:	± 0.10 dB (Ref. 94 dB)


- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183260 證書編號

Description / 儀器名稱	:	Sound Calibrator (EQ083)
Manufacturer / 製造商	:	Rion
Model No. / 型號	:	NC-74
Serial No. / 編號	:	34246492
Supplied By / 委託者	:	Action-United Environmental Services and Consulting
		Unit A, 20/F., Gold King Industrial Building,
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : --- Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 18 June 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By : 核證

Date of Issue 簽發日期

:

20 June 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com Page 1 of 2

Certificate No. : C183260 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A <u>Description</u> Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier <u>Certificate No.</u> C173864 PA160023 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.001	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C183261 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號:IC18-0867)	Date of Receipt / 收件日期: 12 June 2018
Description / 儀器名稱	:	Sound Calibrator (EQ086)	
Manufacturer / 製造商	:	Rion	
Model No. / 型號	:	NC-74	
Serial No. / 編號	:	34657230	
Supplied By / 委託者	:	Action-United Environmental Services and G	Consulting
		Unit A, 20/F., Gold King Industrial Building	у Э
		35-41 Tai Lin Pai Road, Kwai Chung, N.T.	
TECT CONDITIONS /	माञ्च	A first 1 fts	
TEST CONDITIONS / 🕅	則討	v1床1十	

Temperature / 溫度 : (23 ± 2)°C Line Voltage / 電壓 : ---

Relative Humidity / 相對濕度 : (50 ± 25)%

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 18 June 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

:	word .
	H T Wong

٢

Technical Officer

Certified By : K C Lee Engineer

Date of Issue 簽發日期 :

20 June 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Certificate No. : C183261 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID CL130 CL281 TST150A Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier Certificate No. C173864 PA160023 C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.002	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831632
ADDRESS:	RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG, N.T. HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED:	0 HONG KONG 25-May-2018 31-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	31-May-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen and Temperature
Equipment Type:	Dissolved Oxygen Meter
Brand Name:	YSI
Model No.:	550A
Serial No.:	16A104433
Equipment No.:	
Date of Calibration:	30 May, 2018

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831632		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 31-May-2018 ACTION UNITED ENVIRONME	ENT SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Dissolved Oxygen Meter YSI 550A 16A104433 30 May, 2018	Date of Next Calibration:	30 August, 2018

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.42	2.51	+0.09
4.93	4.87	-0.06
7.54	7.42	-0.12
	Tolerance Limit (mg/L)	±0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.3	+0.3
20.5	21.1	+0.6
39.0	38.5	-0.5
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ms. Lin Wai Yu Assistant Manager - Inorganic

c —

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831630
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	SUB-BATCH:	0
	NO. 35-41 TAI LIN PAI ROAD,	LABORATORY:	HONG KONG
	KWAI CHUNG,	DATE RECEIVED:	25-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	31-May-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	pH Value and Temperature
Equipment Type:	pH meter
Brand Name:	AZ
Model No.:	8685
Serial No.:	1141943
Equipment No.:	
Date of Calibration:	30 May, 2018

.....

. -

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831630		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 31-May-2018 ACTION UNITED ENVIRONMENT	SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	pH meter AZ 8685 1141943 30 May, 2018	Date of Next Calibration:	30 August, 2018
PARAMETERS:			
pH Value	Method Ref: APHA (21st edition)		
	Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
	4.0	4.2	+0.20
	7.0	6.9	-0.10
	10.0	9.8	-0.20
		Tolerance Limit (pH unit)	±0.20
Temperature		tional Accreditation New Zealand T h 2008: Working Thermometer Ca	
	Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
	11.0	11.8	+0.8
	21.0	22.2	+1.2
	38.5	37.9	-0.6

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Tolerance Limit (°C)

Ms. Lin Wai Yu Assistant Manager - Inorganic

±2.0

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR BEN TAM ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING	WORK ORDER:	HK1831623
ADDRESS:	RM A 20/F., GOLD KING IND BLDG,	SUB-BATCH:	0
	NO. 35-41 TAI LIN PAI ROAD,	LABORATORY:	HONG KONG
	KWAI CHUNG,	DATE RECEIVED:	25-May-2018
	N.T., HONG KONG.	DATE OF ISSUE:	01-Jun-2018

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Turbitidy
Equipment Type:	Turbidimeter
Brand Name:	Hach
Model No.:	2100Q
Serial No.:	12060C18266
Equipment No.:	
Date of Calibration:	30 May, 2018

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu Assistant Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:	HK1831623		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 01-Jun-2018 ACTION UNITED ENVIRONMENT	SERVICES AND CONSULTING	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.: Date of Calibration:	Turbidimeter Hach 2100Q 12060C18266 30 May, 2018	Date of Next Calibration:	30 August, 2018
PARAMETERS:			
PARAMETERS: Turbidity	Method Ref: APHA (21st edition),	, 2130B	
	Method Ref: APHA (21st edition), Expected Reading (NTU)	, 2130B Displayed Reading (NTU)	Tolerance (%)
			Tolerance (%)
	Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%) +9.3
	Expected Reading (NTU) 0	Displayed Reading (NTU) 0.14	
	Expected Reading (NTU) 0 4	Displayed Reading (NTU) 0.14 4.37	+9.3

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

863 Tolerance Limit (%)

800

5

Ms. Lin Wai Yu Assistant Manager - Inorganic

+7.9

±10.0

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 –《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025 : 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date : 5 May 2009 簽發日期:二零零九年五月五日

Registration Number : HCKLAS 066 註冊號碼:

Date of First Registration : 15 September 1995 首次註冊日期:一九九五年九月十五日

∟ 000552

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	ET		IEC		ER	Action Contracto
Action Level						
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring submitted by ET; Check Contractor's working method. 		1. Notify Contra	ctor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring submitted by ET; Check Contractor's working method; Discuss with ET ar Contractor on possib remedial measures; Advise the ET on t effectiveness of the proposed remedial measures; Monitor the implementation of remeasures. 	s Id Ie	 Confirm recein notification of fain writing; Notify Contrains; Ensure remote measures properimplemented. 	ilure ctor; dial	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
Limit Level	cease additional monitoring.					
 Exceedance for one sample 	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring submitted by ET; Check Contractor' working method; Discuss with ET at Contractor on possib remedial measures; Advise the ER on effectiveness of the proposed remedial measures; Monitor theimplementation of remedial measures. 	s nd le	 Confirm receination of fain writing; Notify Contra Ensure remeineasures properimplemented. 	ilure ctor; dial	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal i appropriate.
 Exceedance for two or more consecutive samples 	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC 	 Check monitoring submitted by ET; Check Contractor? Discuss amongst I Discuss amongst I Discuss amongst I And Contractor of the potential remedia actions; Review Contractor remedial actions whenever necessary assure their effectiveness and ad 	s ER, n J ťs to	 Confirm recein notification of fa in writing; Notify Contra In consolidati with the IEC, ag with the Contrac on the remedial measures to be implemented; Ensure remedian measures proper implemented; 	ilure ctor; on ree ctor	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not
7. Ass Contra action	R to discuss the the E dial actions to be taken; 5. Mo bess effectiveness of imple actor's remedial meas s and keep IEC, EPD R informed of	R accordingly; onitor the mentation of remedial sures.	what p work is and ins Contra	ceedance les, consider ortion of the responsible struct the ctor to stop rtion of work	5. Sto portion determ ER un	control; p the relevant n of works as nined by the til the dance is

until the exceedance

is abated.

8. If exceedance stops,

cease additional monitoring.

Event and Action Plan for Construction Noise

Event	ET	IEC	8	Action Contractor
Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. 	Review the investigation results submitted by the ET; Z. Review the proposed remedial measures by the Contractor and advise the ER accordingly; S. Advise the ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures.	 Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	Confirm receipt of notification of failure in writino: Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further <u>exceedance:</u> 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	 Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working Descuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures tobe implemented; Assess the effectiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	acceedance. Repeat in-situ measurement to confirm findings; Identify reasons for non-compliance and sources of impact; Inform IEC, Contractor and EPD; Contractor and EPD; Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Lovel	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effoctiveness of the implemented mitigation measures 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling days	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to slow down or to slow all or part of the construction activities until no exceedance of Limit Level. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigatio measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the ER, to slow down or to stop all of part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for Reporting Period – July 2018

	D (Dust Mo	onitoring	NT - NF - // •		
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality	
Sun	1-Jul-18					
Mon	2-Jul-18					
Tue	3-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Wed	4-Jul-18					
Thu	5-Jul-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations	
Fri	6-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7		
Sat	7-Jul-18				All Water Quality Monitoring Locations	
Sun	8-Jul-18					
Mon	9-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Tue	10-Jul-18					
Wed	11-Jul-18		AM4b, AM5, AM6, AM7b & AM8			
Thu	12-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Fri	13-Jul-18					
Sat	14-Jul-18	AM1c, AM2, AM3 & AM9b			All Water Quality Monitoring Locations	
Sun	15-Jul-18					
Mon	16-Jul-18				All Water Quality Monitoring Locations	
Tue	17-Jul-18		AM4b, AM5, AM6, AM7b & AM8			
Wed	18-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Thu	19-Jul-18					
Fri	20-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Sat	21-Jul-18					
Sun	22-Jul-18					
Mon	23-Jul-18		AM4b, AM5, AM6, AM7b & AM8			
Tue	24-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Wed	25-Jul-18					
Thu	26-Jul-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations	
Fri	27-Jul-18					
Sat	28-Jul-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations	
Sun	29-Jul-18					
Mon	30-Jul-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations	
Tue	31-Jul-18					

Monitoring Day Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – August 2018

		Dust M	onitoring		
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Wed	1-Aug-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Thu	2-Aug-18				
Fri	3-Aug-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sat	4-Aug-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b		
Sun	5-Aug-18				
Mon	6-Aug-18				All Water Quality Monitoring Locations
Tue	7-Aug-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	
Wed	8-Aug-18				All Water Quality Monitoring Locations
Thu	9-Aug-18		AM4b, AM5, AM6, AM7b & AM8		
Fri	10-Aug-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	11-Aug-18				Docutions
Sun	12-Aug-18				
Mon	13-Aug-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	14-Aug-18				
Wed	15-Aug-18		AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Thu	16-Aug-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	
Fri	17-Aug-18				All Water Quality Monitoring Locations
Sat	18-Aug-18	AM1c, AM2, AM3 & AM9b			
Sun	19-Aug-18				
Mon	20-Aug-18				All Water Quality Monitoring Locations
Tue	21-Aug-18		AM4b, AM5, AM6, AM7b & AM8		
Wed	22-Aug-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Thu	23-Aug-18				
Fri	24-Aug-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	25-Aug-18				
Sun	26-Aug-18				
Mon	27-Aug-18		AM4b, AM5, AM6, AM7b & AM8		
Tue	28-Aug-18	AM4b, AM5, AM6, AM7b & AM8	AM1c, AM2, AM3 & AM9b	NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Wed	29-Aug-18				
Thu	30-Aug-18	AM1c, AM2, AM3 & AM9b		NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Fri	31-Aug-18				

Monitoring Day Sunday or Public Holiday

Appendix I

Database of Monitoring Result

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\60th (July 2018)\R1719v2.docx

24-hour TSP Monitoring Data

DATE SAMPLE NUMBER		EL	CHART READING			AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WEIGHT (g)		DUST WEIGHT COLLECTED	$\begin{array}{c} 24\text{-HR TSP} \\ (\mu g/m^3) \end{array}$		
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL FINAL		(g)	(µg/111)
	en Area, Tsu	8	8				1 1					1	1		
6-Jul-18	22926	14706.54	14730.54	1440.00	30	30	30.0	30.1	1002.6	1.10	1586	2.6805 2.7367		0.0562	35
12-Jul-18	22952	14730.54	14754.54	1440.00	28	28	28.0	30	1003.3	1.04	1500	2.6821 2.7079		0.0258	17
18-Jul-18	22964	14754.54	14778.54	1440.00	25	25	25.0	27.7	1003.9	0.95	1374	2.6695	2.7003	0.0308	22
24-Jul-18	23007	14778.54	14802.52	1438.80	28	28	28.0	29.8	1003.6	1.04	1499	2.6659	2.6953	0.0294	20
30-Jul-18	23021	14802.52		1440.00	26	26	26.0	30.4	1005.6	0.93	1337	2.6625	2.7131	0.0506	38
AM2 - Village House near Lin Ma Hang Road															
6-Jul-18	22927		10350.97	1447.20	32	32	32.0	30.1	1002.6	1.09	1582	2.6719	2.8654	0.1935	122
12-Jul-18	22951	10350.97		1432.80	36	36	36.0	30	1003.3	1.21	1739	2.6757	2.8646	0.1889	109
18-Jul-18	22961	10374.85	10398.76	1434.60	32	32	32.0	27.7	1003.9	1.10	1575	2.6714	2.7700	0.0986	63
24-Jul-18	23006		10422.69	1435.80	33	33	33.0	29.8	1003.6	1.12	1614	2.6491	2.7557	0.1066	66
30-Jul-18	23017	10422.69	10446.63	1436.40	34	34	34.0	30.4	1005.6	1.15	1658	2.6555	2.8294	0.1739	105
AM3 - Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village															
6-Jul-18	22928	11445.29	11469.29	1440.00	34	34	34.0	30.1	1002.6	1.07	1547	2.6799	2.7652	0.0853	55
12-Jul-18	22950	11469.29	11493.29	1440.00	38	38	38.0	30	1003.3	1.21	1746	2.6750	2.7161	0.0411	24
18-Jul-18	22962	11493.29	11517.29	1440.00	32	32	32.0	27.7	1003.9	1.01	1455	2.6570	2.7065	0.0495	34
24-Jul-18	23005	11517.29	11541.29	1440.00	34	34	34.0	29.8	1003.6	1.08	1549	2.6757	2.7261	0.0504	33
30-Jul-18	23016	11541.29	11565.29	1440.00	32	32	32.0	30.4	1005.6	1.01	1450	2.6650	2.7720	0.1070	74
AM4b - Ho	use no. 10B1	Nga Yiu H	la Village										•		
5-Jul-18	22945	13445.22	13469.22	1440.00	34	34	34.0	30	1002.3	1.13	1621	2.6659	2.7095	0.0436	27
11-Jul-18	22881	13469.22	13493.22	1440.00	40	40	40.0	29.6	1001.8	1.31	1893	2.6886	2.8184	0.1298	69
17-Jul-18	22960	13493.22	13517.22	1440.00	40	40	40.0	30	1002.4	1.31	1892	2.6455	2.7340	0.0885	47
23-Jul-18	23003	13517.22	13541.22	1440.00	40	40	40.0	28.4	1001.8	1.32	1896	2.6700	2.7252	0.0552	29
28-Jul-18	23015	13541.22	13565.22	1440.00	40	40	40.0	30.2	1006.7	1.32	1895	2.6637	2.7172	0.0535	28
AM5a - Pin	g Yeung Vill	lage House													
5-Jul-18	22944	12278.86	12303.29	1465.80	30	30	30.0	30	1002.3	1.27	1869	2.6824	2.7220	0.0396	21
11-Jul-18	22914	12303.29	12327.65	1461.60	28	28	28.0	29.6	1001.8	1.21	1763	2.6777	2.7640	0.0863	49
17-Jul-18	22958	12327.65	12352.03	1462.80	35	35	35.0	30	1002.4	1.45	2118	2.6661	2.7612	0.0951	45
23-Jul-18	23004	12352.03	12376.49	1467.60	40	40	40.0	28.4	1001.8	1.62	2384	2.6598	2.7343	0.0745	31
28-Jul-18	23014	12376.49	12400.97	1468.80	38	38	38.0	30.2	1006.7	1.55	2283	2.6551	2.7363	0.0812	36
AM6 - Wo	Keng Shan V	illage Hous	se												

AUES

DATE	SAMPLE	EL	APSED TIM	CHART READING			AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER WEIGHT (g)		DUST WEIGHT COLLECTED	24-HR TSP	
	NUMBER	INITIAL	NITIAL FINAL		MIN	IN MAX AV		(°C)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	$(\mu g/m^3)$
5-Jul-18	22943	9877.57	9901.57	1440.00	30	30	30 30.0		1002.3	0.97	1400	2.6689 2.7268		0.0579	41
11-Jul-18	22946	9901.57	9925.57	1440.00	30	30	30.0	29.6	1001.8	0.97	1400	2.6735	2.8190	0.1455	104
17-Jul-18	22958	9925.57	9949.56	1439.40	26	26	26.0	30.0	1002.4	0.86	1243	2.6577	2.7353	0.0776	62
23-Jul-18	23002	9949.56	9973.56	1440.00	30	30	30.0	28.4	1001.8	0.97	1403	2.6895	2.7390	0.0495	35
28-Jul-18	23013	9973.56	9997.56	1440.00	30	30	30.0	30.2	1006.7	0.97	1402	2.6652	2.7275	0.0623	44
AM7b - Loi	7b - Loi Tung Village House														
5-Jul-18	22930	18924.27	18948.27	1440.00	42	42	42.0	30	1002.3	1.26	1816	2.6758	2.7377	0.0619	34
11-Jul-18	22948	18948.27	18972.27	1440.00	42	42	42.0	29.6	1001.8	1.26	1817	2.6646	2.8334	0.1688	93
17-Jul-18	22957	18972.27	18996.27	1440.00	42	42 42 42.0		30	1002.4	1.26	1816	2.6536	2.7947	0.1411	78
23-Jul-18	23001	18996.27	19020.27	1440.00	40	40	40.0	28.8	1006	1.21	1746	2.6756	2.7802	0.1046	60
28-Jul-18	22936	19020.27	19044.27	1440.00	40	40	40.0	30	1006.7	1.21	1744	2.6969	2.8316	0.1347	77
	Kat Tsai Villa					•						•			
5-Jul-18	22929	12821.92	12845.92	1440.00	36	36	36.0	30	1002.3	1.14	1640	2.6693	2.7218	0.0525	32
11-Jul-18	22947	12845.92	12869.92	1440.00	45	45	45.0	29.6	1001.8	1.35	1949	2.6801	2.8162	0.1361	70
17-Jul-18	22956	12869.92	12893.92	1440.00	35	35	35.0	30	1002.4	1.11	1605	2.6605	2.7651	0.1046	65
23-Jul-18	23000	12893.92	12917.92	1440.00	36	36	36.0	28.4	1001.8	1.14	1643	2.6717	2.7471	0.0754	46
28-Jul-18	23012	12917.92	12942.16	1454.40	35	35	35.0	30	1006.7	1.12	1624	2.6655	2.7580	0.0925	57
AM9b - Na	m Wa Po Vi	llage House	e No. 80												
6-Jul-18	22925	20200.62	20224.62	1440.00	34	34	34.0	30.1	1002.6	1.10	1583	2.6907	2.7392	0.0485	31
12-Jul-18	22949	20224.62	20248.62	1440.00	44	44	44.0	30	1003.3	1.37	1977	2.6678	2.7311	0.0633	32
18-Jul-18	22963	20248.62	20272.62	1440.00	44	44	44.0	29.8	1003.6	1.37	1978	2.6766	2.7340	0.0574	29
24-Jul-18	22980	20272.62	20296.62	1440.00	32	32	32.0	28.7	1005	1.05	1509	2.6644	2.7107	0.0463	31
30-Jul-18	23008	20296.62	20320.63	1440.60	32	32	32.0	28.7	1004.7	1.05	1510	2.6580	2.6955	0.0375	25

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung Yuen Ha Village House No. 63																					
3-Jul-18	10:37	61.3	64.4	58.0	60.3	63.8	57.0	58.8	61.9	58.4	59.3	62.0	57.0	60.5	62.1	57.5	59.3	62.1	57.3	60	NA
9-Jul-18	9:03	62.6	65.5	57.5	64.6	65.5	56.0	59.4	61.0	55.5	63.3	66.5	58.0	68.4	71.5	58.5	65.4	69.0	57.5	65	NA
20-Jul-18	12:00	52.5	54.0	50.8	53.0	53.8	50.3	50.9	52.3	49.6	55.3	60.0	49.8	52.2	53.5	49.6	52.5	54.5	49.7	53	NA
26-Jul-18	9:20	60.2	51.0	46.5	48.3	50.5	45.5	49.7	51.5	45.5	46.3	47.0	45.0	46.7	48.5	45.0	45.7	46.0	45.0	53	NA

Date	Start	1^{st}	L10	L90	2 nd	L10	L90	3 nd	L10	L90	4 th	L10	L90	5 th	L10	L90	6 th	L10	L90	Leq30	façade
	Time	Leq _{5min}			Leq _{5min}	110	170	Leq _{5min}	110	L70	Leq _{5min}	110	170	Leq _{5min}	110	170	Leq _{5min}	LIU	L70	Lequ	correction
NM2a - Villa	Ŭ			<u> </u>		(2.2	50 0	64.5	(5.0	50.0	(2.4	(1.7	50.5	(2)((2.2	50 0	(1.2	<u> </u>	51.4	67	
3-Jul-18	9:51	72.6	68.2	53.4	60.4	63.2	52.8	64.5	65.2	52.9	63.4	64.7	52.5	62.6	63.2	52.0	64.2	64.4	51.4	67	70
9-Jul-18	9:53	72.3	75.5 71.2	63.0	71.0	74.0	63.5	71.5	75.0	64.5	68.8	72.5	61.0	67.8	69.0	61.5	68.0	70.0	63.0 63.4	70 68	73 71
20-Jul-18 26-Jul-18	12:57 10:07	71.0 63.9	64.0	59.0 52.0	66.3 65.8	70.4	58.8 52.0	67.4 65.3	70.9 66.0	57.1 51.5	67.7 61.1	70.6	62.7 51.5	68.0 60.7	70.3 64.5	63.2 51.5	66.3 61.6	<u>68.4</u> 61.0	52.0	68 64	67
NM3 - Ping Y				32.0	03.8	/0.0	32.0	03.5	00.0	31.3	01.1	02.3	51.5	00.7	04.3	31.3	01.0	01.0	32.0	04	07
6-Jul-18	9:37	58.6	60.4	52.9	58.1	62.0	52.8	56.2	58.9	52.5	57.6	59.4	52.4	58.9	60.8	52.8	56.2	58.9	51.0	58	NA
12-Jul-18	10:53	59.8	60.5	53.1	60.7	60.1	53.7	59.5	60.0	53.1	61.6	61.2	53.2	60.8	60.3	53.5	59.0	59.3	52.6	60	NA
12-Jul-18	10:34	58.2	61.1	53.0	59.8	62.7	54.7	60.3	62.2	53.7	59.2	61.6	53.7	57.2	59.4	53.0	58.5	60.4	53.0	59	NA
24-Jul-18	10:14	64.3	67.0	54.5	63.8	66.5	58.0	64.3	67.0	57.5	64.0	67.0	56.0	65.2	68.0	58.5	64.2	67.0	56.5	64	NA
30-Jul-18	10:10		55.8	48.5	53.9	53.5	47.8	54.6	57.6	47.9	56.2	59.9	47.8	55.3	53.6	48.1	55.0	58.6	48.8	55	NA
NM4 - Wo K	eng Sh			se	I						<u> </u>		I	<u> </u>			11		1	<u> </u>	
6-Jul-18	10:15	63.6	63.4	51.2	57.3	68.6	52.1	66.7	62.0	52.8	65.9	63.3	63.9	68.4	69.2	53.2	66.2	66.4	52.2	66	NA
12-Jul-18	11:32	65.6	64.9	52.1	62.2	62.8	53.5	66.3	65.9	53.9	65.0	64.4	52.5	63.4	63.3	51.6	61.0	62.3	51.6	64	NA
18-Jul-18	11:13	61.6	60.1	51.3	60.4	60.7	51.3	62.6	61.6	51.6	64.0	63.9	52.1	63.7	62.2	52.7	60.1	61.5	52.5	62	NA
24-Jul-18	11:03	64.9	67.5	59.0	66.1	69.0	59.0	65.4	68.5	58.0	63.1	66.0	56.0	65.4	68.0	58.5	65.0	68.0	57.5	65	NA
30-Jul-18	10:10		63.1	56.0	62.7	63.8	51.2	54.3	57.5	50.0	62.1	61.8	50.6	58.1	56.2	49.6	54.8	57.5	50.5	61	NA
NM5– Ping Y			1 1		r			1			1 1		1	11			1 1		r	1	
6-Jul-18	11:26	51.6	53.8	47.3	51.4	53.9	47.0	52.2	54.1	47.1	50.6	52.4	46.8	50.8	52.2	46.1	52.9	53.3	47.1	52	NA
12-Jul-18	11:20	58.1	60.2	54.0	57.9	60.1	49.9	56.9	58.6	52.8	57.2	59.8	53.6	55.4	58.5	50.0	56.6	59.2	51.5	57	NA
18-Jul-18	10:05	56.3	59.6	48.9	51.4	52.0	47.9	50.7	54.4	46.6	47.7	49.2	46.1	59.5	63.4	49.4	50.9	53.1	47.5	55	NA
24-Jul-18	9:35	43.4	46.2	37.1	55.7	59.3	40.2	45.2	47.2	37.7	43.2	46.5	36.0	45.6	48.7	38.3	41.7	44.8	36.9	49	NA
30-Jul-18	10:16	50.8	48.0	46.5	47.3	48.0	45.5	56.5	48.0	45.5	47.2	47.5	46.5	47.0	47.5	45.5	45.8	46.0	45.0	51	NA
NM6 – Tai To		U	1 1		- co -							<u> </u>									
6-Jul-18	10:53	59.3	61.8	54.6	60.7	62.5	52.3	59.0	62.0	54.1	57.4	60.3	52.6	58.8	61.1	51.7	60.2	62.3	52.0	59	NA
12-Jul-18	10:18	51.0	54.3	43.3	53.2	56.7	44.6	52.5	56.1	44.4	55.7	58.6	46.5	63.2	65.8	54.5	57.1	62.6	44.8	58	NA
18-Jul-18	10:53	56.8	59.8	50.3	58.5	61.6	50.6	56.9	59.3	50.7	60.1	61.8	51.2	56.6	60.8	48.0	61.5	62.9	50.3	59	NA
24-Jul-18	10:38	52.3	55.4	46.0	56.3	55.7	45.9	52.2	54.2	47.0	54.4	55.7	46.0	53.4	54.3	46.6	68.8	64.6	53.7	62	NA
30-Jul-18	11:16	66.9	48.0	45.5	46.7	47.5	45.5	47.7	48.5	46.0	46.8	48.0	45.5	46.7	47.5	45.5	46.8	47.5	45.5	59	NA
<u>NM7 – Po Ka</u>	r			545	61.0	67.1	54.0	60.0	(0.1			(1.2		65.0	(7.1		(0.1	6.5.4	55.0	(2)	
6-Jul-18	13:09	61.4	67.3	54.7	61.0	65.1	54.3	60.3	62.1	57.5	62.8	64.3	55.1	65.8	67.4	56.2	63.1	65.4	55.3	63	NA
12-Jul-18	13:07	53.7	61.3	50.1	54.8	59.2	50.3	62.3	65.9	50.8	57.8	63.2	50.2	60.7	64.5	49.8	56.3	64.1	48.7	59	NA
18-Jul-18	13:16	58.4	60.9	51.2	57.3	60.3	49.9	54.4	58.6	47.5	58.5	61.5	48.2	56.2	58.8	51.3	60.2	51.0	53.8	58	NA
24-Jul-18	13:30	59.8	60.9	52.2	68.5	70.6	53.4	58.1	61.3	61.6	63.1	66.2	53.7	64.4	64.7	52.4	59.0	58.8	48.5	64	NA

AUES

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
30-Jul-18	13:32	53.2	55.0	50.0	53.6	55.5	50.5	55.7	59.5	48.5	51.2	51.5	47.0	48.3	49.5	46.0	53.1	53.0	46.5	53	NA
NM8 - Villag	ge Hous	se, Tong	Hang																		
3-Jul-18	14:48	59.8	61.6	50.2	61.6	57.8	51.7	60.9	65.4	51.3	62.4	68.2	52	58.2	63.3	50.2	59.3	64.2	50	61	NA
9-Jul-18	11:00	60.8	65	51.5	59.9	61	50	61.2	66	51	59.7	64.5	51.5	59.7	65.5	51	57.4	61.5	50.5	60	NA
20-Jul-18	11:03	60	64	50.5	59.6	58.5	51.5	60.9	65.5	50.5	60.2	65.5	50	56.7	55	50	60.7	67	51	60	NA
26-Jul-18	11:26	62.2	63.7	59.5	61.5	64.3	58.4	71.7	73.4	63.1	71.9	75.4	58.6	58.9	60.4	56.9	62.7	64.9	57.8	68	NA
NM9 - Villag	ge Hous	se, Kiu T	au Vill	age																	
3-Jul-18	14:01	62.9	65.5	57.0	60.5	63.3	56.0	62.5	65.0	56.8	61.5	63.4	57.6	63.7	66.1	58.3	61.5	64.7	58.8	62	NA
9-Jul-18	10:16	60.8	61.0	57.5	60.2	62.0	57.5	59.2	61.0	56.0	60.0	62.5	57.0	61.4	63.5	58.0	61.1	63.5	58.5	61	NA
20-Jul-18	10:20	60.4	62.0	56.5	61.8	66.5	56.5	60.3	62.5	56.5	62.0	65.5	57.0	61.2	62.5	56.5	61.6	65.0	56.5	61	NA
26-Jul-18	12:27	69.2	72.3	60.3	67.6	71.3	60.0	67.9	71.4	59.9	67.2	71.0	58.0	63.1	66.0	56.5	69.6	73.2	58.6	68	NA
NM10 - Nam	wa Po	o Village	House	No. 80																	
3-Jul-18	14:48	62.5	63.2	61.8	61.9	62.6	60.0	64.4	65.9	60.6	63.4	65.5	59.7	63.7	66.9	60.8	62.4	64.9	61.9	63	66
9-Jul-18	9:28	61.4	62.5	59.5	62.8	61.0	57.5	62.4	62.0	58.0	61.3	60.5	56.5	61.1	61.0	57.5	62.1	62.0	57.5	62	65
20-Jul-18	9:35	60.6	61.5	58.0	60.1	61.5	58.0	59.8	60.0	58.0	60.2	61.5	58.0	70.5	70.5	58.5	69.7	72.0	60.0	66	69
26-Jul-18	10:30	63.3	65.1	56.4	61.7	63.2	59.5	61.3	62.7	59.6	61.3	62.7	59.6	71.0	72.6	58.5	61.7	62.5	59.3	65	68

			Water	Quality M	lonitoring D	ata for C	contract 6	and SS C	<u>505</u>					
Date	3-Jul-18	-	-				-		-		-		-	
Location	Time	Depth (m)		p (oC)	DO (m	ig/L)		(%)	Turbidity	(NTU)	pН			(mg/L)
WM1-C	10:05	0.34	27.5 27.5	27.5	7.46	7.5	94.4 94.4	94.4	59.2 54.3	56.8	7.1	7.1	99 92	95.5
WM1	9:45	0.20	27.3 27.3	27.3	7 7.01	7.0	88.3 88.5	88.4	20.1 20.6	20.4	6.8 6.8	6.8	22 20	21.0
Date	5-Jul-18	-			_		-	•	-		-		-	
Location	Time	Depth (m)	Tem	p (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН		SS	(mg/L)
WM1-C	10:15	0.35	27.3 27.3	27.3	7.26 9.19	8.2	91.4 91.7	91.6	30.9 30.4	30.7	7.1	7.1	12 14	13.0
WM1	10:10	0.25	27.5 27.5	27.5	6.84 6.85	6.8	86.4 86.4	86.4	21.5 22.0	21.8	7.3 7.3	7.3	12 14	13.0
Date	7-Jul-18	-					-		-			-	-	
Location	Time	Depth (m)		p (oC)	DO (m	g/L)		(%)	Turbidity	(NTU)	pН		SS	(mg/L)
WM1-C	10:25	0.25	27.7 27.7	27.7	7.24	7.2	92.6 91.6	92.1	16.5 16.6	16.6	7.4 7.4	7.4	8 8	8.0
WM1	10:15	0.25	28.2 28.2	28.2	6.53 6.77	6.7	83.3 87.1	85.2	104.0 97.2	100.6	7.7 7.7	7.7	70 68	69.0
Date	9-Jul-18	-	•		-		-	•	-		-	•		
Location	Time	Depth (m)	Tem	p (oC)	DO (m	ig/L)	DO	(%)	Turbidity	(NTU)	pН		SS	(mg/L)
WM1-C	10:30	0.25	28 28	28.0	8.25 7.97	8.1	105.6 101.7	103.7	13.8 13.4	13.6	7.3 7.3	7.3	8 10	9.0
WM1	10:20	0.25	28.1 28.1	28.1	6.66 6.65	6.7	84.7 84.9	84.8	29.3 28.9	29.1	7.5 7.5	7.5	22 22	22.0
	r	·	• •		-		-	•	-		-			
Date	10-Jul-18 #	F	r		F		r	•	r	-	r	-		
Location	Time	Depth (m)	Tem	p (oC)	DO (m	ig/L)	DO	(%)	Turbidity	(NTU)	pН	1		(mg/L)
WM1-C	10:48	0.34							22.6 22.7	22.7		-	17 17	17.0
WM1	10:40	0.25							36.8 37.5	37.2			25 25	25.0
Det	10 1 1 10	-					-		-		-			
Date	12-Jul-18 Time	Donth (m)	Torre	\mathbf{r}	DO (a/L)	DO	(%)	Truchidia	(NTL)			66	(mg/I)
Location WM1-C	Time 11:00	Depth (m) 0.34	29.1 29.1	p (oC) 29.1	DO (m 7.06 7.09	g/L) 7.1	91.8 92.4	92.1	Turbidity 26.0 25.0	25.5	pH 6.9 6.9	6.9	16 17	(mg/L) 16.5
WM1	10:50	0.25	29.1 28.7 28.7	- 28.7	6.84 6.87	6.9	92.4 88.3 89.0	88.7	45.2 42.6	43.9	6.9 7.1 7.1	7.1	36 34	35.0
	1	1	28.7	1	0.8/	1	89.0		42.0		/.1	1	34	

Date	14-Jul-18													
Location	Time	Depth (m)	Tem	o (oC)	DO (m	g/L)	DO	(%)	Turbidity	v (NTU)	рН	-	SS	(mg/L)
	10.05	0.25	26.9	26.0	7.1	7.1	88.9	20.5	265.0	266.5	7.2	7.2	149	155.0
WM1-C	10:05	0.35	26.9	26.9	7.18	/.1	90.1	89.5	268.0	266.5	7.2	1.2	161	155.0
W/M1	0.55	0.50	26.8	26.0	6.97	7.0	87.2	87.5	636.0	(27.0	7.1	7 1	405	400 5
WM1	9:55	0.50	26.8	26.8	7	7.0	87.8	07.5	638.0	637.0	7.1	/.1	414	409.5

Date	16-Jul-18													
Location	Time	Depth (m)	Tem) (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН	-	SS	(mg/L)
WM1 C	10.40	0.24	27.6	27.6	7.38	7.4	92.5	02.7	25.3	24.9	7	7.0	23	24.0
WM1-C	10:40	0.34	27.6	27.0	7.38	7.4	92.9	92.7	24.3	24.8	7	7.0	25	24.0
W/M1	10.20	0.20	27	27.0	7.7	77	96.2	06.0	217.0	217.0	7.4	74	173	1715
WM1	10:30	0.30	27	27.0	7.7	1.1	95.7	96.0	217.0	217.0	7.4	/.4	170	171.5

Date	17-Jul-18 #								
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pН	SS	S(mg/L)
	0.40	0.24				19.2		12	12.0
WM1-C	9:40	0.34				19.2 19.4		12	12.0
W/M1	9:30	0.25				46.1 45.9		49	49.0
WM1	9.50	0.23				45.6 43.9		49	49.0

Date	18-Jul-18													
Location	Time	Depth (m)	Tem) (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН	-	SS	(mg/L)
WM1 C	10.20	0.20	26.9	26.9	7.31	7 2	91.6	01.7	184.0	190.0	7.1	7 1	126	127.5
WM1-C	10:20	0.30	26.9	20.9	7.32	1.5	91.8	91./	176.0	180.0	7.1	/.1	129	127.5
WM1	10:10	0.30	26.8	26.8	7.25	7.2	90.7	90.9	165.0	160.5	7.1	7 1	114	113.0
VV IVI I	10.10	0.30	26.8	20.8	7.27	1.5	91.1	90.9	156.0	100.5	7.1	/.1	112	115.0

Date	19-Jul-18 #										
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO ((%)	Turbidity	(NTU)	pН	SS	(mg/L)
	12.10	0.25					37.7	28.0		32	22.0
WM1-C	13:10	0.35					38.2	38.0		32	32.0
WM1	13:00	0.30					28.8	29.4		26	26.0
VV IVI I	15.00	0.30					29.9	29.4		26	20.0

Date	20-Jul-18													
Location	Time	Depth (m)	Tem	p (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН		SS	(mg/L)
WM1-C	10.15	0.60	26.9	26.0	7.63	7(95.5	95.4	16.7	171	7.2	7.2	15	15.0
WINIT-C	10:15	0.60	26.9	26.9	7.61	/.6	95.2	95.4	17.5	17.1	7.2	1.2	15	15.0
WM1	10:45	0.80	27.1	27.1	7.1	7 1	89.2	89.3	19.1	19.7	7.1	7 1	20	19.5
WM1	10.43	0.80	27.1	27.1	7.11	/.1	89.4	09.5	20.3	19.7	7.1	/.1	19	19.5

Date	24-Jul-18													
Location	Time	Depth (m)	Temj) (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН	-	SS	(mg/L)
	10.20	0.25	28.5	20.5	7.36	7.4	94.5	04.7	18.6	10.2	7.4	7.4	18	19.5
WM1-C	10:30	0.25	28.5	28.5	7.38	7.4	94.9	94.7	18.0	18.3	7.4	7.4	19	18.5
	10:20	0.25	28.2	28.2	6.87	6.0	87.8	88.5	26.8	27.0	7.5	75	23	24.0
WM1	10.20	0.23	28.2	20.2	6.95	6.9	89.2	00.3	27.2	27.0	7.5	1.5	25	24.0

Date	26-Jul-18													
Location	Time	Depth (m)	Tem) (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН	-	SS	(mg/L)
WM1 C	10.05	0.25	28.8	20.0	7.33	7.2	94.9	05.2	25.1	25.7	7.3	7.2	22	22.5
WM1-C	10:05	0.25	28.8	28.8	7.35	1.5	95.4	95.2	26.2	25.7	7.3	1.5	23	22.5
W/M1	9:55	0.25	28.2	28.2	7.19	7.2	92.2	92.4	24.3	23.4	7.3	7.2	22	22.5
WM1	9.55	0.23	28.2	20.2	7.2	1.2	92.6	92.4	22.4	23.4	7.3	1.5	23	22.3

Date	28-Jul-18													
Location	Time	Depth (m)	Tem	o (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	рН	-	SS	(mg/L)
WM1-C	9:45	0.25	28.6	28.6	7.48	7.5	96.3	065	11.3	11.4	7.4	7.4	10	10.5
WMT-C	9:45	0.25	28.6	28.0	7.5	7.5	96.6	96.5	11.5	11.4	7.4	7.4	11	10.5
W/M1	0.35	0.25	28	28.0	7.02	7.0	89.8	89.9	18.7	18.9	7.2	7.2	16	16.0
WM1	9.55	0.23	28	28.0	7.03	7.0	89.9	69.9	19.0	18.9	7.2	1.2	16	10.0

Date	30-Jul-18													
Location	Time	Depth (m)	Tem	p (oC)	DO (m	g/L)	DO	(%)	Turbidity	(NTU)	pН	-	SS	(mg/L)
WM1 C	0.55	0.25	28.4	29.4	7.67	7.6	98.5	09.4	12.1	12.1	7.2	7.2	9	0.0
WM1-C	9:55	0.25	28.4	28.4	7.62	/.0	98.3	98.4	12.0	12.1	7.2	1.2	9	9.0
WM1	9:45	0.25	28.1	28.1	7.16	7.2	91.4	91.8	18.5	18.1	8.2	02	15	14.5
vv IVI I	7.43	0.23	28.1	20.1	7.19	1.2	92.1	91.0	17.6	10.1	8.2	0.2	14	14.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 3

Date	3-Jul-18				_	-	•		•	-	-	•		
Location	Time	Depth (m)	Temp) (oC)	DO (1	ng/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	13:30	0.20	26.8	26.8	7.47	7.5	93.3	93.4	23.5	23.1	7	7.0	22	21.0
WM4-CA	15.50	0.20	26.8	20.8	7.46	1.5	93.5	95.4	22.7	23.1	7	7.0	20	21.0
WM4-CB	13:45	0.30	27.7	27.7	6.11	6.1	77.6	77.7	86.4	87.2	6.9	6.9	63	64.0
WWH-CD	15.45	0.30	27.7	21.1	6.12	0.1	77.8	11.1	87.9	07.2	6.9	0.9	65	04.0
WM4	13:20	0.27	27.6	27.6	6.64	6.7	84.3	84.5	141.0	133.5	6.8	6.8	94	95.0
VV 1V14	13.20	0.27	27.6	27.0	6.66	0.7	84.6	04.3	126.0	155.5	6.8	0.0	96	93.0
										-				
Date	4-Jul-18 #	-	•				-		-	•	-			
Location	Time	Depth (m)	Tem) (0C)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	[p]	Н	SS	(mg/L)
			Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid 6.3		p]	H	SS	
Location WM4-CA	Time 11:10	Depth (m) 0.15	Тет	o (oC)	DO (1	ng/L)	DO	(%)		ity (NTU) 6.5	p	H	SS 5 5	(mg/L) 5.0
WM4-CA	11:10	0.15	Temp	o (oC)	DO (1	ng/L)	DO	(%)	6.3 6.7 16.7	6.5	p	H	SS 5 5 9	5.0
			Temp	o (oC)	DO (1	ng/L)	DO	(%)	6.3 6.7		p]	H	5 5	
WM4-CA	11:10	0.15	Tem	o (oC)		ng/L)		(%)	6.3 6.7 16.7	6.5	p	H	5 5 9	5.0

Date	5-Jul-18													
Location	Time	Depth (m)	Temp) (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:10	0.15	27.2	27.2	7.6	76	95.8	96.0	8.9	8.0	7.5	7.5	4	4.5
WM4-CA	12.10	0.15	27.2	21.2	7.63	7.0	96.1	90.0	8.0	8.0	7.5	7.5	5	4.3
WM4-CB	12.20	0.20	28.3	20.2	5.88	5.9	75.5	75.0	40.3	29.7	7.3	7.2	31	21.0
WM4-CB	12:20	0.30	28.3	28.3	5.93	5.9	76.3	75.9	37.1	38.7	7.3	1.5	31	31.0
WM4	12:00	0.20	28.3	20.2	6.84	()	87.2	87.4	42.2	42.5	7.4	7.4	32	22.5
vv 1v14	12.00	0.20	28.3	28.3	6.86	6.9	87.5	07.4	42.7	42.5	7.4	7.4	35	33.5

Date	7-Jul-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	12:10	0.14	27.6	27.6	8.07	0 1	104.5	104.6	4.5	4.2	7.3	7.2	4	35
WM4-CA	12.10	0.14	27.6	27.0	8.09	0.1	104.7	104.0	4.1	4.3	7.3	7.5	3	5.5
WM4-CB	12:20	0.25	28.6	28.6	4.72	4.8	60.9	61.6	7.9	8.0	7.1	7 1	6	7.0
WINI4-CD	12.20	0.23	28.6	28.0	4.85	4.0	62.3	61.6	8.2	8.0	7.1	/.1	8	7.0
WM4	12:00	0.15	28.4	28.4	6.91	7.0	85.2	05 5	16.0	16.2	7.5	75	10	10.5
vv 1V14	12.00	0.15	28.4	20.4	7.04	7.0	85.7	85.5	16.5	16.3	7.5	7.5	11	10.5

Date	9-Jul-18							-			-		-	
Location	Time	Depth (m)	Temp			ng/L)	DO	(%)	Turbid	lity (NTU)	р	Н	SS	(mg/L)
WM4-CA	11.55	0.14	29.2	29.2	7.37	74	95.9	96.2	11.9	12.1	7.1	7 1	2	2.0
wivi4-CA	11.55	0.14	29.2	29.2	7.41	7.4	96.5	90.2	12.3	12.1	7.1	/.1	2	2.0

WM4-CB	12:00	0.25	30.2 30.2	30.2	5.44 5.5	5.5	72.7 73.0	72.9	13.6 12.6	13.1	6.9 6.9	6.9	7	7.0
WM4	11:45	0.15	29.5 29.5	29.5	6.82 6.81	6.8	89.6 89.4	89.5	23.6 23.5	23.6	6.9 6.9	6.9	13 11	12.0

Date	12-Jul-18	-						-			-			
Location	Time	Depth (m)	Temp) (oC)	DO (1	ng/L)	DO	(%)	Turbid	lity (NTU)	р	Н	SS	(mg/L)
WM4-CA	12:55	0.14	31.4	31.4	7.21	70	97.7	98.0	4.6	4.2	7.5	75	3	3.0
WM4-CA	12.33	0.14	31.4	51.4	7.23	1.2	98.3	98.0	3.8	4.2	7.5	7.5	3	5.0
WM4-CB	12.00	0.25	32.5	22.5	6.06	(1	83.7	84.0	10.2	10.4	7.1	7.1	11	10.5
WIVI4-CD	13:00	0.25	32.5	32.5	6.09	6.1	84.3	84.0	10.5	10.4	7.1	/.1	10	10.5
WM4	12:45	0.15	31.2	31.2	6.89	6.9	93.1	93.7	17.0	16.6	7.6	7.6	18	18.0
vv 1V14	12.45	0.15	31.2	51.2	6.93	0.9	94.2	93./	16.2	10.0	7.6	/.0	18	18.0

Date	14-Jul-18													
Location	Time	Depth (m)	Temp) (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	11:25	0.20	26.6	26.6	7.5	7.5	93.0	93.4	11.3	11.0	7.2	7.2	9	9.0
WM4-CA	11.23	0.20	26.6	20.0	7.52	1.5	93.8	95.4	10.6	11.0	7.2	1.2	9	9.0
WMA CD	11.20	0.20	27.7	27.7	5.57	5 (70.7	71.1	18.1	10.4	7	7.0	13	12.5
WM4-CB	11:30	0.30	27.7	27.7	5.61	5.6	71.4	/1.1	18.7	18.4	7	7.0	14	13.5
WM4	11:15	0.22	27.2	27.2	8.23	77	88.8	90.1	33.7	24.2	7.2	7.2	24	24.0
vv 1v14	11.15	0.22	27.2	27.2	7.1	1.1	89.4	89.1	34.6	34.2	7.2	1.2	24	24.0

Date	16-Jul-18													
Location	Time	Depth (m)	Temp) (oC)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:10	0.18	27.2	27.2	7.6	7.6	95.6	96.0	5.7	5.8	7	7.0	6	7.0
WW4-CA	12.10	0.16	27.2	21.2	7.65	7.0	96.4	90.0	6.0	5.0	7	7.0	8	7.0
WM4-CB	12:20	0.30	28.7	28.7	5.83	5.9	75.2	75.6	12.6	12.8	6.9	6.9	9	9.0
WW4-CD	12.20	0.50	28.7	20.7	5.87	5.9	76.0	/3.0	13.0	12.8	6.9	0.9	9	9.0
3373.44	12.00	0.22	27.7	27.7	7.31	7.2	93.0	02.2	32.6	22.2	7	7.0	30	20.0
WM4	12:00	0.22	27.7	27.7	7.34	1.5	93.3	93.2	32.0	32.3	7	7.0	28	29.0

Date	18-Jul-18	-				-			-		-	•	-	
Location	Time	Depth (m)	Temp) (0C)	DO (I	mg/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	12:15	0.20	26.2	26.2	7.79	7.8	96.5	97.2	10.1	8.9	7.1	7 1	4	4.0
W WI4-CA	12.13	0.20	26.2	20.2	7.8	/.0	97.8	97.2	7.6	0.9	7.1	/.1	4	4.0
WM4-CB	12:30	0.30	27.3	27.3	6.34	6.4	87.1	87.3	18.9	19.0	6.9	6.9	9	9.5
WIVI4-CD	12.50	0.50	27.3	27.5	6.36	6.4	87.5	07.5	19.1	19.0	6.9	0.9	10	9.5
WM4	12.05	0.20	26.8	26.9	7.32	7.2	91.6	01.0	33.9	24.2	7	7.0	21	21.5
W 1V14	12:05	0.20	26.8	26.8	7.33	1.5	91.9	91.8	34.6	34.3	7	7.0	22	21.5

Date	20-Jul-18													
Location	Time	Depth (m)	Temp) (oC)	DO (I	ng/L)		(%)	Turbid	lity (NTU)	р	H	SS((mg/L)
WM4-CA	12:25	0.15	28.3 28.3	28.3	7.47 7.49	7.5	95.6 96.3	96.0	4.7 5.0	4.8	7 7	7.0	6 5	5.5
WM4-CB	12:35	0.28	29.6 29.6	29.6	6.49 6.51	6.5	85.3 85.7	85.5	8.7 7.6	8.1	7 7	7.0	76	6.5
WM4	12:15	0.18	28.9 28.9	28.9	7.22 7.25	7.2	93.7 94.3	94.0	12.4 11.6	12.0	7 7	7.0	11 12	11.5
Date	24-Jul-18	-	-	-	-	-	-	-		-	-	-		
Location	Time	Depth (m)	Tomr) (oC)	DO (I	$\frac{1}{m\sigma/I}$	DO	(%)	Turbid	lity (NTU)	n	H	55	(mg/L)
		• • •	28.7		7.58		97.3		5.5	• • •	8.2		5	
WM4-CA	12:15	0.15	28.7	28.7	7.61	7.6	98.1	97.7	5.7	5.6	8.2	8.2	5	5.0
WM4-CB	12:25	0.25	<u>30</u> <u>30</u>	30.0	6.38 6.39	6.4	84.2 84.4	84.3	10.5 10.3	10.4	7.7	7.7	9	9.0
WM4	12:10	0.18	29.4 29.4	29.4	7.02	7.0	91.5 92.2	91.9	16.9 15.0	16.0	8.1 8.1	8.1	16 15	15.5
Date	26-Jul-18		•	•	•		÷	•		•	•	•	• • •	
Location	Time	Depth (m)	Temp) (0C)	DO (I	ng/L)	DO	(%)	Turbid	lity (NTU)	р	Н	SS((mg/L)
WM4-CA	11:20	0.15	29.1 29.1	29.1	7.58 7.6	7.6	98.8 99.2	99.0	6.9 5.1	6.0	7.4 7.4	7.4	9 8	8.5
WM4-CB	11:30	0.30	30.8 30.8	30.8	6.08 6.1	6.1	81.4 82.0	81.7	16.3 14.1	15.2	7.1	7.1	17 17	17.0
WM4	11:10	0.20	29.7 29.7	29.7	7.06 7.81	7.4	92.9 93.5	93.2	35.0 35.2	35.1	7.3 7.3	7.3	39 39	39.0
+ r			•	<u> </u>	• 	-	• •			<u>.</u>	•		· ·	
Date	28-Jul-18		1		1						ň		1	
Location	Time	Depth (m)) (0C)	DO (I	ng/L)		(%)		lity (NTU)	F	H		(mg/L)
WM4-CA	11:10	0.14	29.1 29.1	29.1	7.74 7.78	7.8	100.8 101.3	101.1	4.2 3.9	4.0	7 7	7.0	5 5	5.0
WM4-CB	11:20	0.22	31.3 31.3	31.3	6.18 6.2	6.2	83.1 83.5	83.3	8.3 8.3	8.3	6.9 6.9	6.9	<u>8</u> 8	8.0
WM4	11:00	0.20	29.6	29.6	7.09 7.12	7.1	93.1	93.5	12.1	13.4	7	7.0	11 10	10.5

Date	30-Jul-18													
Location	Time	Depth (m)	Temp	o (oC)	DO (I	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM4-CA	11:55	0.13	30.3	30.3	7.53	7.5	100.1	100.1	6.0	6.0	7.5	75	2	2.5
WM4-CA	11.55	0.15	30.3	50.5	7.53	1.5	100.1	100.1	6.0	6.0	7.5	1.5	3	2.5
WM4 CD	12:00	0.22	32.3	32.3	6.29	()	86.4	96.6	8.8	9.2	7.3	7.2	7	7.5
WM4-CB	12:00	0.22	32.3	32.3	6.3	6.3	86.7	86.6	9.6	9.2	7.3	1.5	8	7.5
WM4	11.45	0.15	30.7	20.7	6.79	6.8	90.8	01.0	20.0	20.2	7.3	7.2	11	10.5
vv 1v14	11:45	0.15	30.7	30.7	6.81	0.8	91.1	91.0	20.5	20.3	7.3	1.5	10	10.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

3-Jul-18

Date

Water Quality Monitoring Data for Contract 6

Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS((mg/L)
WM2A-C	10:45	0.28	27.1 27.1	27.1	7.54 7.55	7.5	94.6 94.9	94.8	121.0 135.0	128.0	7.30 7.30	7.3	94 94	94.0
WM2A(a)	10:20	0.23	27.3 27.3	27.3	7.08 7.1	7.1	89.3 89.6	89.5	Over Range	overrange	8.90 8.90	8.9	1040 993	1016.5
Date	4-Jul-18 #	·	<u>-</u>			<u>.</u>	<u>.</u>	-	-	<u> </u>		<u>.</u>	<u> </u>	-
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)		y (NTU)	р	H		mg/L)
WM2A-C	9:50	0.25				-			33.6 33.7	33.7		-	22 22	22.0
WM2A(a)	9:40	0.20				-			309.0 301.0	305.0		-	173 173	173.0
Date	5-Jul-18													
Location	Time	Depth (m)	Temp	(oC)		mg/L)		(%)	Turbidit	y (NTU)		Н	SS(mg/L)
WM2A-C	10:45	0.28	26 26	26.0	7.61 7.63	7.6	93.9 94.0	94.0	14.4 14.7	14.6	7.30 7.30	7.3	4 2	3.0
WM2A(a)	10:30	0.20	27.4 27.4	27.4	6.96 7.01	7.0	87.7 88.2	88.0	102.0 103.0	102.5	7.30 7.30	7.3	83 77	80.0
Date	6-Jul-18 #				-			-	-					-
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)		y (NTU)	p	Н		(mg/L)
WM2A-C	10:15	0.25				-			5.0 4.9	4.9		-	<2 <2	<2
	a - a		i l			-			24.7 24.9	24.8		-	<u>30</u> <u>30</u>	30.0
WM2A(a)	9:50	0.20											50	
WM2A(a) Date	9:50	0.20						-		· · · · ·				<u>-</u>
Date		0.20 Depth (m)	Тетр	(oC)	DO (mg/L)	DO	(%)	-	y (NTU)	p	Ĥ	•	mg/L)
Date Location	7-Jul-18	· · · · ·	26.5 26.5	(oC) 26.5	DO (1 7.56 7.57	mg/L) 7.6	DO 93.1 93.2	(%) 93.2	-	y (NTU) 11.2	7.40 7.40	H 7.4	•	mg/L) 2.5
Date Location WM2A-C	7-Jul-18 Time	Depth (m)	26.5		7.56		93.1		Turbidit		7.40	ſ	SS(
Date Location WM2A-C WM2A(a)	7-Jul-18 Time 11:05	Depth (m) 0.25	26.5 26.5 27.5	26.5	7.56 7.57 8.22	7.6	93.1 93.2 96.5	93.2	Turbidit 11.1 11.2 16.5	11.2	7.40 7.40 7.30	7.4	SS(2 3 12	2.5
Date Location WM2A-C WM2A(a) Date	7-Jul-18 Time 11:05 10:35	Depth (m) 0.25	26.5 26.5 27.5	26.5 27.5	7.56 7.57 8.22 8.07	7.6	93.1 93.2 96.5 95.6	93.2	Turbidit 11.1 11.2 16.5 15.6	11.2	7.40 7.40 7.30 7.30	7.4	SS(2 3 12 10	2.5
Location WM2A-C WM2A(a)	7-Jul-18 Time 11:05 10:35 9-Jul-18	Depth (m) 0.25 0.20	26.5 26.5 27.5 27.5	26.5 27.5	7.56 7.57 8.22 8.07	7.6	93.1 93.2 96.5 95.6	93.2	Turbidit 11.1 11.2 16.5 15.6	11.2 16.1	7.40 7.40 7.30 7.30	7.4	SS(2 3 12 10	2.5

 $Z: Jobs \ 2013 \ CS00694 \ 600 \ EM\&A\ Report \ Monthly \ EM\&A\ Report \ 2018 \ 60th \ (July\ 2018) \ R1719v2. docx$

Date	12-Jul-18					•	-	-	-	-	-	-	•	
Location	Time	Depth (m)	Temp	o (oC)	DO ((mg/L)	DC	0 (%)	Turbidit	ty (NTU)	р	Н	SS(mg/L)
WM2A-C	11:35	0.22	26.8 26.8	26.8	7.23 7.24	7.2	90.1 90.5	90.3	8.6 8.6	8.6	7.40 7.40	7.4	<u>9</u> 10	9.5
WM2A(a)	11:15	0.20	28.3 28.3	28.3	6.91 6.93	6.9	88.5 89.0	88.8	189.0 200.0	194.5	6.80 6.80	6.8	120 122	121.0
Data	12 1.1 10 #					<u>.</u>		-	-	-	-		·	
Date Location	13-Jul-18 # Time	Depth (m)	Temp	(αC)		(mg/L)	DC	(%)	Turbidit	ty (NTU)	n	H	SS(mg/L)
	Time	Deptil (III)	Temp	(UC)	DO((IIIg/L)	DC	(70)	77.9		p	п	24	
WM2A-C	10:05	0.28				-			75.9	76.9			24	24.0
WM2A(a)	9:45	0.22				_		-	431.0 444.0	437.5			304 304	304.0
Date	14-Jul-18 #			-	-		-	-	-		-		-	
Location	Time	Depth (m)	Temr	(oC)	DO	(mg/L)	DC	(%)	Turbidit	ty (NTU)	n	H	SS	mg/L)
WM2A-C	10:30	0.28	25.7	25.7	7.62	7.7	93.3 94.2	93.8	30.8 29.6	30.2	7.30 7.30	7.3	26 24	25.0
WM2A(a)	10:15	0.22	25.7 26.4 26.4	26.4	7.32 8.17	- 7.7	94.2 90.8 91.6	91.2	<u>189.0</u> 195.0	192.0	7.30	7.3	122 114	118.0
		·						. <u> </u>						
Date	16-Jul-18		T	((()	DO	(/T)		(0)						/ T \
Location	Time	Depth (m)	Temp	(oC)		(mg/L)		(%)		ty (NTU)		H		mg/L)
WM2A-C	11:00	0.28	25.1 25.1	25.1	7.72 7.76	- 7.7	93.8 94.4	94.1	9.5 10.9	10.2	7.10 7.10	7.1	75	6.0
WM2A(a)	10:50	0.20	26.3 26.3	26.3	7.34 7.38	7.4	90.7 91.5	91.1	260.0 267.0	263.5	7.20 7.20	7.2	174 173	173.5
Date	17-Jul-18 #	·				·	·	-	-		-		·	
Location	Time	Depth (m)	Temp	(nC)	DO	mg/L)	DC	(%)	Turbidit	ty (NTU)	n	H	550	mg/L)
WM2A-C	10:00	0.25	Tom	(00)					6.5	6.4	P		6 6	6.0
WM2A(a)	9:50	0.20				_		-	6.4 37.3 37.4	37.4			6 25 25	25.0
l		Į		<u></u>	<u> </u>	<u> </u>	<u> </u>	Į	37.4			<u>.</u>	23	
Date	18-Jul-18	. <u></u>												
Location	Time	Depth (m)	Temp	(oC)		(mg/L)		(%)		ty (NTU)		Н	SS(mg/L)
WM2A-C	10:50	0.30	25.5 25.5	25.5	7.83	7.9	95.6 96.2	95.9	7.7	8.1	7.10	7.1	4	4.0

96.2

92.2

92.8

7.4

8.5

394.0

429.0

92.5

7.10

7.30

7.30

411.5

4

268

251

259.5

7.3

0.25

WM2A(a)

10:30

25.5

26.5

26.5

7.89

7.42

7.45

26.5

Date	19-Jul-18 #										
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (I	NTU)	pH	I	SS(mg/L)
WM2A-C	13:30	0.25	#DIV/0!			6.5	6.7			6	6.0
W W127 C	15.50	0.23	#D17/0:			7.0	0.7			6	0.0
WM2A(a)	13:18	0.22	#DIV/0!			38.3	37.6			40	40.0
WW12A(a)	15.10	0.22	#D1v/0!			36.9	37.0			40	40.0

Date	20-Jul-18		-							-				
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(mg/L)
WM2A-C	11:30	0.25	26	26.0	7.57	76	92.9	93.3	7.7	7.9	7.10	7.1	6	6.5
WMZA-C	11.50	0.23	26	20.0	7.61	/.0	93.6	95.5	8.2	7.9	7.10	/.1	7	6.5
WM2A(a)	11:10	0.20	27.4	27.4	7.09	7 1	89.3	89.6	268.0	260.0	7.20	7.2	244	242.5
w WIZA(a)	11.10	0.20	27.4	27.4	7.11	/.1	89.8	89.0	252.0	200.0	7.20	1.2	241	242.5

Date	21-Jul-18 #								-				
Location	Time	Depth (m)	Temp (oC	C) DO (mg/L)	DO	(%)	Turbidit	y (NTU)	pl	Н	SS(mg/L)
WM2A-C	10:15	0.25						8.5	8.8			6	6.0
	10.15	0.25						9.0	0.0			6	0.0
WM2A(a)	10:00	0.20						106.0	101.8			75	75.0
$vv_1v_12A(a)$	10.00	0.20						97.5	101.0			75	73.0

Date	23-Jul-18 #													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	pl	H	SS(mg/L)
WM2A-C	11:20	0.25							10.3 11.0	10.7			7 7	7.0
WM2A(a)	11:12	0.20							85.7 86.5	86.1			59 59	59.0

Date	24-Jul-18	-				-	-	-	-	-				
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(mg/L)
WM2A-C	11:05	0.25	26.3	26.5	7.3	7.2	90.3	90.6	14.6	14.5	7.50	7.5	8	9.0
WMZA-C	11.03	0.23	26.7	20.5	7.32	7.5	90.8	90.0	14.4	14.5	7.50	7.5	10	9.0
	10.45	0.20	27.6	27.6	6.97	7.0	88.2	99.6	698.0	719.5	7.70	7 7	372	259.0
WM2A(a)	10:45	0.20	27.6	27.0	6.99	7.0	89.0	88.6	739.0	718.5	7.70	1.1	344	358.0

Date	25-Jul-18 #					-		-						
Location	Time	Depth (m)	Temp ((oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(mg/L)
WM2A-C	10:15	0.25							5.9	6.1			8	8.0
WMZA-C	10.15	0.23							6.2	0.1			8	8.0
WM2A(a)	10:05	0.20							23.6	23.4			21	21.0
$vv_1v_12A(a)$	10.05	0.20							23.2	23.4			21	21.0

Date	26-Jul-18													
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	р	Н	SS(mg/L)
WM2A-C	10.20	0.25	26.2	26.2	7.37	7.4	91.1	01.4	10.8	10.7	7.30	7.2	8	8.0
WM2A-C	10:30	0.25	26.2	26.2	7.4	/.4	91.7	91.4	10.6	10.7	7.30	1.5	8	8.0
W M 2 A (a)	10.20	0.29	26	26.0	7.97	8.0	95.2	05.2	22.9	22.6	8.80	0.0	21	22.0
WM2A(a)	10:20	0.28	26	26.0	7.96	8.0	95.2	95.2	22.2	22.6	8.80	8.8	23	22.0

Date	28-Jul-18							-						
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidit	y (NTU)	p	Η	SS(mg/L)
WM2A-C	10:10	0.20	26 26	26.0	7.59 7.62	7.6	93.5 93.9	93.7	10.6 10.5	10.6	6.70 6.70	6.7	3	2.5
WM2A(a)	9:55	0.20	24.3 24.3	24.3	7.93 7.93	7.9	94.7 94.7	94.7	24.6 24.7	24.7	9.30 9.30	9.3	31 33	32.0

Date	30-Jul-18		-					-	-	-				
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(mg/L)
WM2A-C	10:45	0.25	26.1	26.1	7.51	75	92.5	92.9	11.2	11.6	7.30	7.2	5	5.0
WWIZA-C	10.45	0.25	26.1	20.1	7.55	7.5	93.2	92.9	11.9	11.6	7.30	7.5	5	5.0
WM2A(a)	10:30	0.20	27	27.0	7.33	7.4	91.8	92.1	13.9	14.4	7.30	7.2	11	10.5
$vv_1v_12A(a)$	10.50	0.20	27	27.0	7.37	7.4	92.3	92.1	14.9	14.4	7.30	7.5	10	10.5

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	3-Jul-18	-					•		•					-
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
WM3-C	11:10	0.18	27.9 27.9	27.9	7.47 7.47	7.5	95.2 95.2	95.2	49.6 47.9	48.8	3.3 3.3	3.3	93 93	93.0
WM3x	11:20	0.20	27.4 27.4	27.4	6.21 6.23	6.2	78.4 78.7	78.6	207.0 218.0	212.5	4.6 4.6	4.6	122 124	123.0
Date	4-Jul-18 #						-							
Location	Time	Depth (m)	Тетр	(oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	p	Н	SS(n	ng/L)
WM3-C	10:15	0.15		(***)					5.5 5.9	5.7		-	7 7	7.0
WM3x	10:25	0.20				-			52.8 55.0	53.9		-	46 46	46.0
Date	5-Jul-18					-	-			<u>.</u>		-		
Location	Time	Depth (m)	Temp	(oC)		mg/L)	DO	(%)		ty (NTU)		Н	SS(n	ng/L)
WM3-C	11:10	0.15	28.7 28.7	28.7	7.09 7.11	7.1	91.6 91.8	91.7	3.8 3.3	3.5	10.6 10.6	10.6	5 5	5.0
WM3x	11:30	0.20	27.7 27.7	27.7	6.33 6.4	6.4	80.5 81.7	81.1	12.8 13.2	13.0	8.2 8.2	8.2	12 13	12.5
Date	6-Jul-18 #													-
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
WM3-C	10:45	0.15				-			6.9 7.0	7.0		-	10 10	10.0
WM3x	11:00	0.16				-			19.4 18.5	19.0		-	22 22	22.0
Date	7-Jul-18					·				-		·		
Location	Time	Depth (m)	Temp	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(n	ng/L)
WM3-C	11:30	0.15	29 29	29.0	7.29 2.3	4.8	95.0 94.6	94.8	25.5 26.5	26.0	4.5 4.5	4.5	35 32	33.5
WM3x	11:40	0.15	27.6 27.6	27.6	6.79 6.75	6.8	86.1 87.2	86.7	30.2 29.8	30.0	6.2 6.2	6.2	18 20	19.0

Date	9-Jul-18	-					-							
Location	Time	Depth (m)	Temp	(0C)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(n	ng/L)
WM3-C	11.10	0.15	28.7	28.7	8.19	0 1	106.2	105.5	9.6	0.7	4.2	4.2	7	7.0
WIND-C	11:10	0.15	28.7	20.7	8.1	0.1	104.8	105.5	9.7	9.7	4.2	4.2	7	7.0
WM3x	11:20	0.20	27.9	27.9	6.74	60	85.8	86.3	241.0	239.0	6.1	6.1	204	204.5
W IVI 5 X	11.20	0.20	27.9	21.9	6.85	6.8	86.7	80.5	237.0	239.0	6.1	6.1	205	204.5

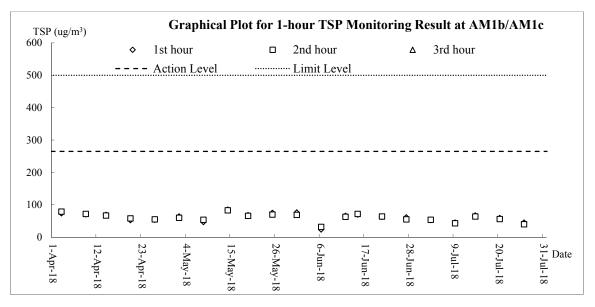
Date	10-Jul-18 #	-				·						•		-
Location	Time	Depth (m)	Temp	(0C)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	р	Η	SS(m	ng/L)
WM3-C	11:15	0.15				-			6.6	5.5		-	3	3.0
WW19-C	11.15	0.15							4.4	5.5			3	5.0
WM3x	11:10	0.15				_			12.8	13.0		-	13	13.0
									13.2				13	
Date	11-Jul-18 #		<u> </u>											
Location	Time	Depth (m)	Тетр	(oC)	DO (mg/L)	DO	(%)	Turbidi	y (NTU)	р	Н	SS(m	ng/L)
WM3-C	11:40	0.14	· · · ·	()					3.9 4.4	4.1	•	_	6	6.0
WM3x	11:30	0.15				-			10.2 10.3	10.3		-	10 10	10.0
	-											·		
Date	12-Jul-18	-			1						1			
Location	Time	Depth (m)	Temp	(0C)		mg/L)	DO	(%)	Turbidi	y (NTU)		H	SS(m	ig/L)
WM3-C	12:00	0.14	30	30.0	6.84	6.8	90.6	90.8	14.5	13.5	10.5	10.5	33	32.0
			30		6.85		91.0		12.5		10.5		31	
WM3x	12:10	0.15	29.2 29.2	29.2	6.92 6.66	6.8	84.5 87.2	85.9	6.5 7.0	6.7	8.4 8.4	8.4	7 8	7.5
			29.2		0.00		07.2		7.0		0.4		0	
Date	14-Jul-18	•			•	•								
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(m	ng/L)
WM3-C	10:45	0.15	27.3	27.3	7.14	7.1	90.1	90.3	24.4	24.9	7.2	7.2	34	35.0
www.wijj-c	10.45	0.15	27.3	21.5	7.15	/.1	90.4	90.5	25.4	24.9	7.2	1.2	36	35.0
WM3x	10:55	0.20	26.5	26.5	6.66	6.7	82.9	82.8	42.1	42.3	7.3	7.3	24	24.0
			26.5		6.65		82.7		42.5		7.3	,	24	
Date	16-Jul-18				•	-	•	•	•	·	-	-		
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	y (NTU)	р	H	SS(m	g/L)
			27.5	<u> </u>	7.46		94.4		17.4	í í í	6.7		28	
WM3-C	11:20	0.16	27.5	27.5	7.41	7.4	93.6	94.0	17.2	17.3	6.7	6.7	30	29.0
WM3x	11:30	0.20	26.4	26.4	6.68	6.7	85.9	85.6	26.4	27.0	6.9	6.9	20	19.5
WINDA	11.50	0.20	26.4	20.4	6.74	0.7	85.3	05.0	27.6	27.0	6.9	0.7	19	17.5
Date	17-Jul-18 #						·		·	<u>.</u>	-			
Location	Time	Depth (m)	Temp	(oC)	DO (mg/L)	DO	(%)	Turbidi	v (NTU)	D	H	SS(m	g/L)
			F	<u> </u>		<i>,</i>			9.9	, í	r		5	
WM3-C	10:15	0.15				1		1	9.2	9.5		1	5	5.0
WM3x	10:25	0.18							12.1	12.3			12	12.0
VV IVIJX	10.23	0.10				1			12.4	12.3		1	12	12.0

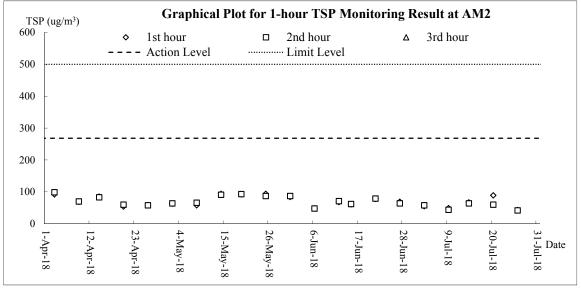
Date	18-Jul-18							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	11:15	0.20	<u>27.5</u> 27.5 27.5	7.16 7.2	<u>90.6</u> 91.2 90.9	<u>24.7</u> 22.4 23.6	<u>10.2</u> 10.2 10.2	<u>32</u> 31.5
WM3x	11:25	0.25	<u>26.5</u> 26.5 26.5	<u>6.67</u> <u>6.68</u> 6.7	<u>83.4</u> 83.7 83.6	88.0 86.6 87.3	7.8 7.8 7.8	72 71 71.5
Date	19-Jul-18 #							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	13:40	0.15				$\begin{array}{c c} 11.1 \\ 10.0 \\ \end{array} 10.5$		$\begin{array}{c c} 20 \\ \hline 20 \\ \hline 20 \\ \end{array}$
WM3x	13:50	0.17				<u>9.1</u> 8.2 8.6		$13 \\ 13 \\ 13.0$
Date	20-Jul-18							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	11:45	0.15	28.7 28.7 28.7	6.96 6.99 7.0	<u>90.1</u> 90.8 90.5	<u>4.3</u> 5.7 5.0	7.1 7.1 7.1	$\begin{array}{c c} 23 \\ \hline 23 \\ \hline 23 \\ \end{array} \qquad 23.0$
WM3x	11:55	0.20	28.5 28.5 28.5	7.09 7.1 7.1 7.1	<u>91.2</u> 91.4 91.3	<u>12.9</u> 13.2 13.1	7.23 7.2 7.2 7.2	<u>13</u> 12 12.5
Date	24-Jul-18							
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	11:25	0.15	<u>29.2</u> 29.2 29.2	6.82 6.87 6.8	<u>88.9</u> 89.7 89.3	<u>6.3</u> 6.7 6.5	$ \begin{array}{c c} 10.3 \\ 10.3 \\ 10.3 \end{array} $ 10.3	<u>9</u> 7 8.0
WM3x	11:35	0.15	28.5 28.5 28.5	<u>6.21</u> 6.23 6.2	79.9 80.4 80.2	7.3 8.2 7.8	8.8 8.8 8.8	<u>7</u> 6.5
Date	26-Jul-18		· · · · · · · · · · · · · · · · · · ·	· · ·	•	· ·	•	•
Location	Time	Depth (m)	Temp (oC)	DO (mg/L)	DO (%)	Turbidity (NTU)	pH	SS(mg/L)
WM3-C	10:45	0.15	<u>29.1</u> 29.1 29.1	7.02 7.04 7.0	<u>91.4</u> 91.9 91.7	<u>4.6</u> 3.1 3.8	9.9 9.9 9.9	<u>16</u> 14 15.0
WM3x	10:55	0.15	28.1 28.1 28.1	<u>6.71</u> <u>6.74</u> 6.7	85.4 86.1 85.8	<u>11.1</u> 10.9 11.0	7.7 7.7 7.7	<u>11</u> 9 10.0

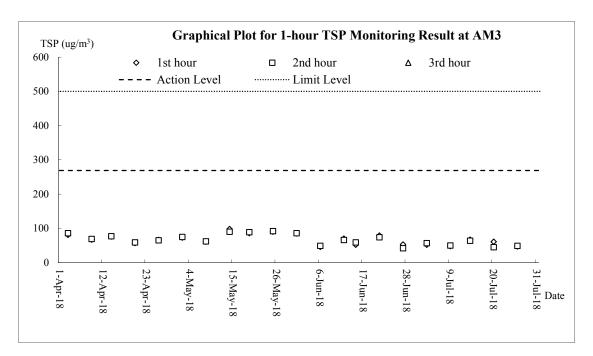
Date	28-Jul-18													
Location	Time	Depth (m)	Тетр	(0C)	DO (I	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	Н	SS(n	ng/L)
	10.25	0.15	29.2	20.2	7.36	7.2	92.6	02.0	2.9	2.6	8.2	0.2	8	8.0
WM3-C	10:25	0.15	29.2	29.2	7.12	1.2	93.2	92.9	2.2	2.0	8.2	8.2	8	8.0
WM3x	10:35	0.15	29.4	29.4	6.95	7.0	90.9	91.0	13.3	12.2	7.9	7.0	10	9.5
WIVI5X	10.55	0.15	29.4	29.4	6.96	7.0	91.1	91.0	13.3	15.5	7.9	7.9	9	9.5

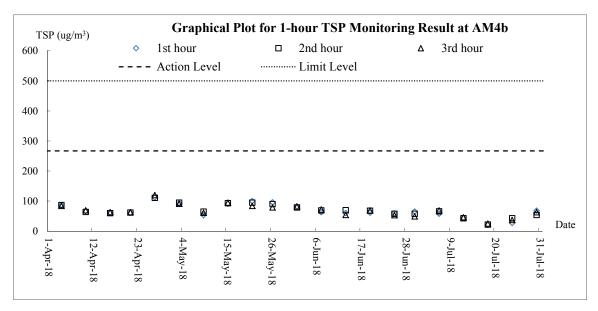
Date	30-Jul-18													
Location	Time	Depth (m)	Тетр	(oC)	DO (I	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(n	ng/L)
	11.10	0.12	32.2	22.2	6.83	(9	93.8	04.0	9.7	0.7	7.1	7 1	9	9.5
WM3-C	11:10	0.13	32.2	32.2	6.85	6.8	94.2	94.0	9.6	9.7	7.1	/.1	8	8.5
WM3x	11.15	0.15	29.2	29.2	6.72	67	87.4	87.7	130.0	120.0	7.4	7.4	111	100.0
VV IVIJX	11:15	0.15	29.2	29.2	6.75	6./	87.9	07.7	130.0	130.0	7.4	7.4	105	108.0

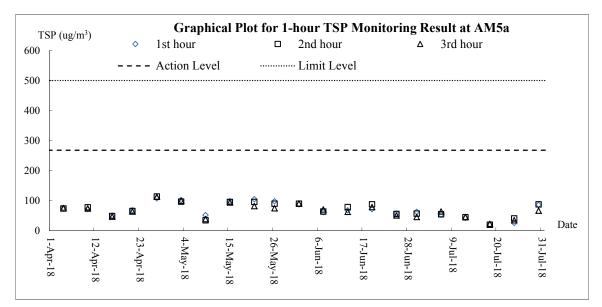
Date	31-Jul-18 #													
Location	Time	Depth (m)	Temp	(oC)	DO (I	ng/L)	DO	(%)	Turbidit	y (NTU)	p	Н	SS(n	ng/L)
	0.55	0.14							3.3	2.2			9	0.0
WM3-C	9:55	0.14							3.4	3.3			9	9.0
WM3x	9:45	0.15							8.7	8.6			9	9.0
vv 1v15X	7.43	0.15							8.6	0.0			9	9.0

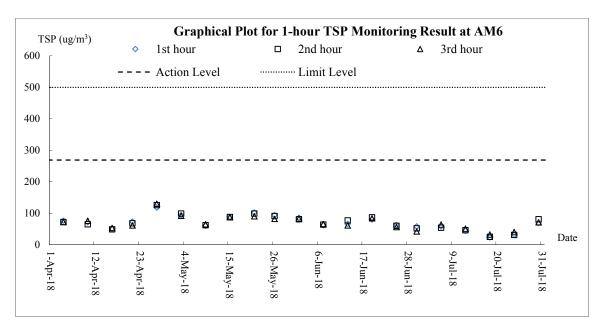

Remarks: [#] Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

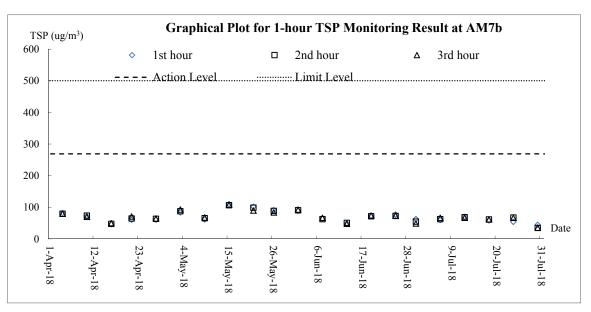

Action Level
Limit Level

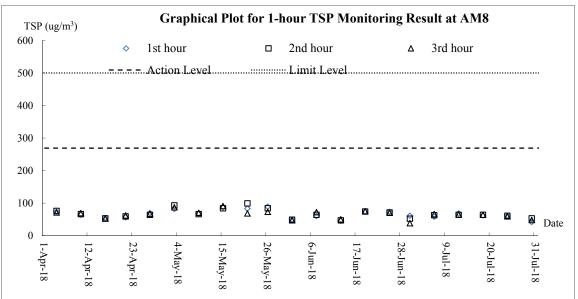

Appendix J

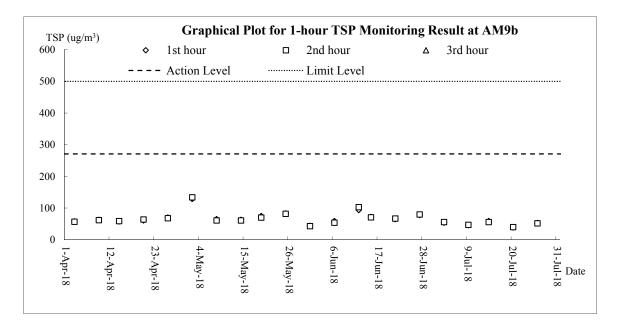

Graphical Plots for Monitoring Result

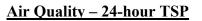

<u>Air Quality – 1-hour TSP</u>

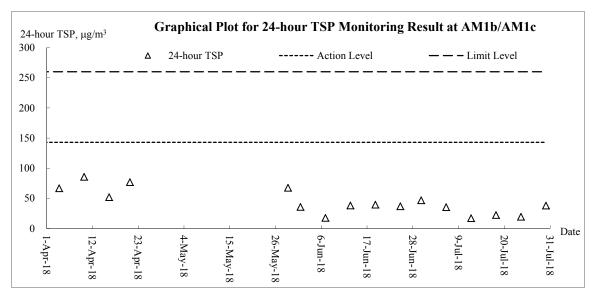


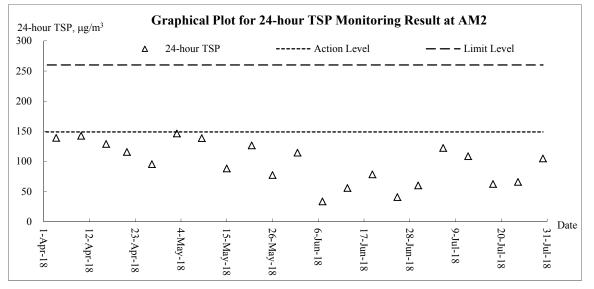


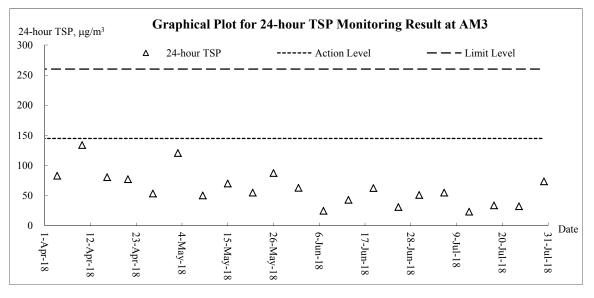


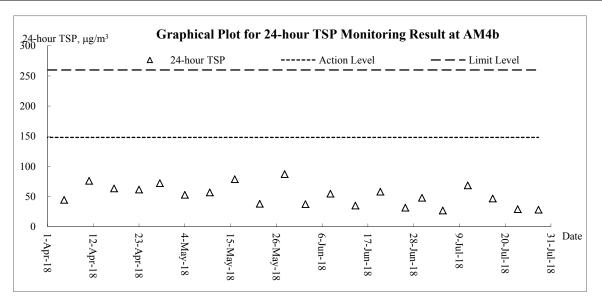


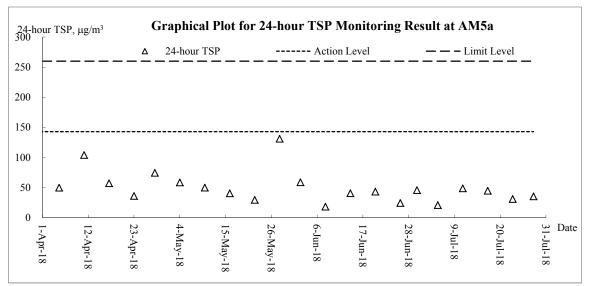


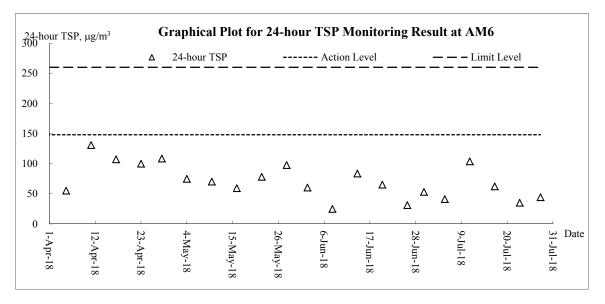

Z:\Jobs\2013\TCS00694\600\EM&A Report\Monthly EM&A Report\2018\60th (July 2018)\R1719v2.docx

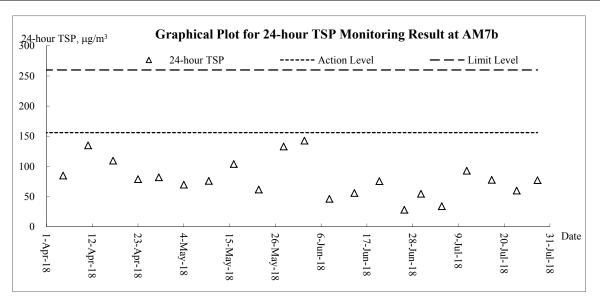


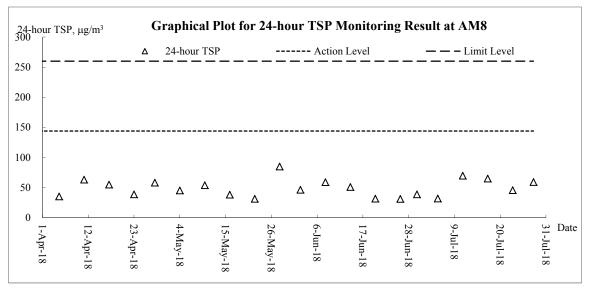


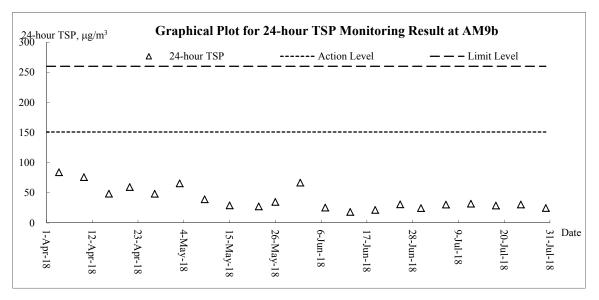


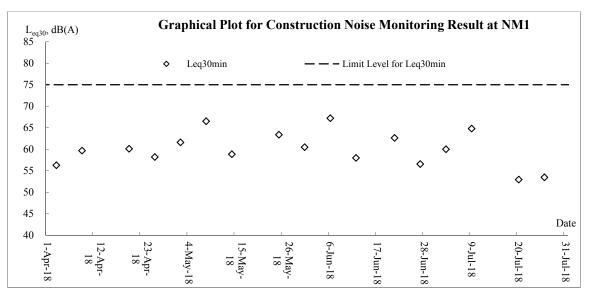


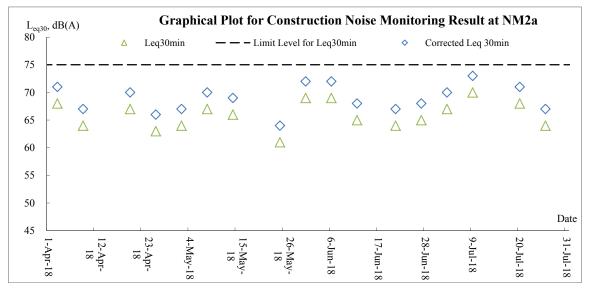


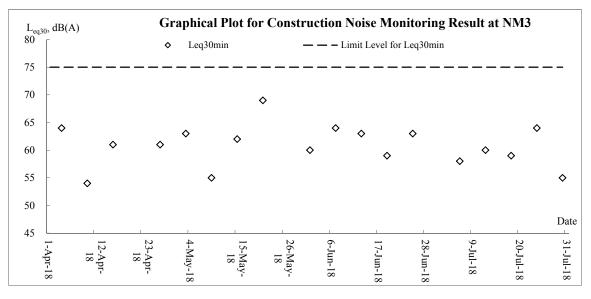


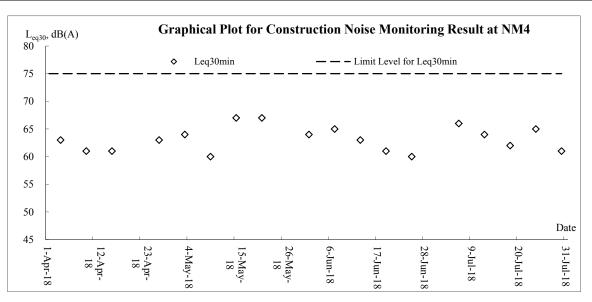


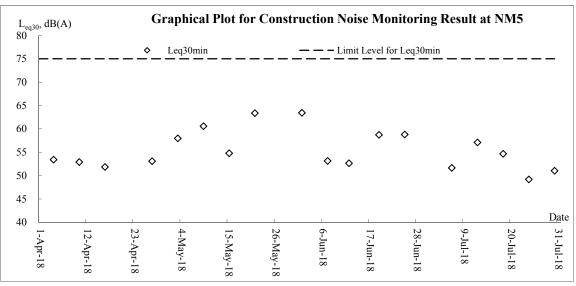


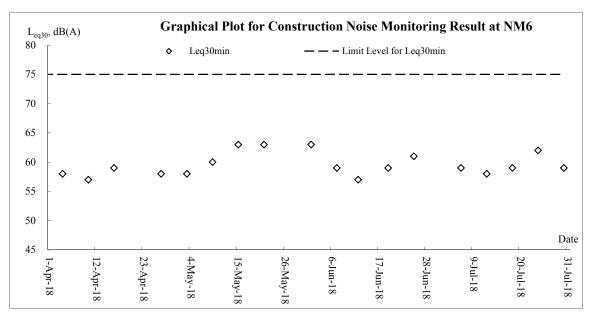


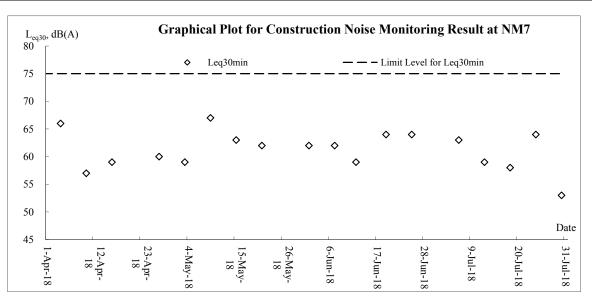


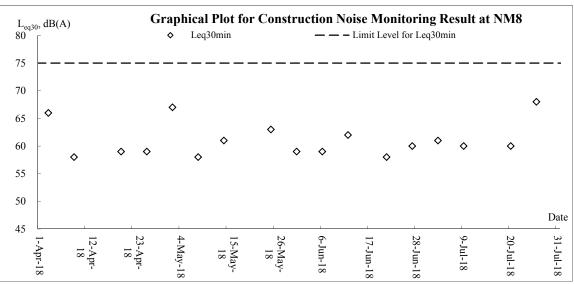


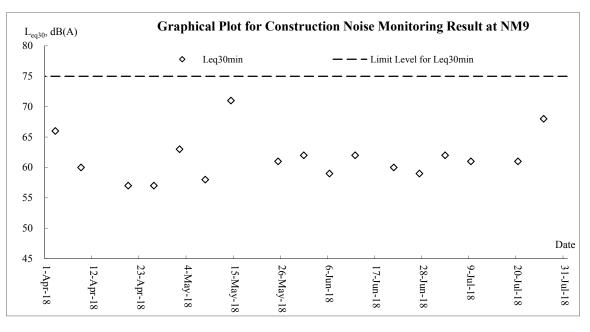


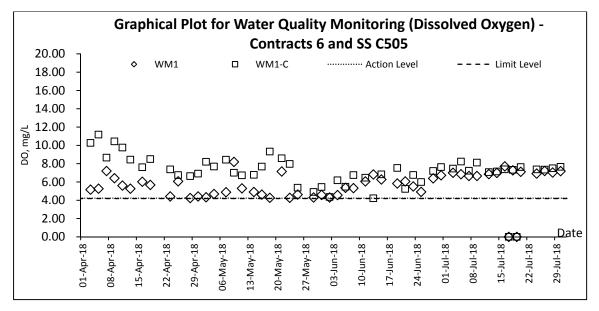


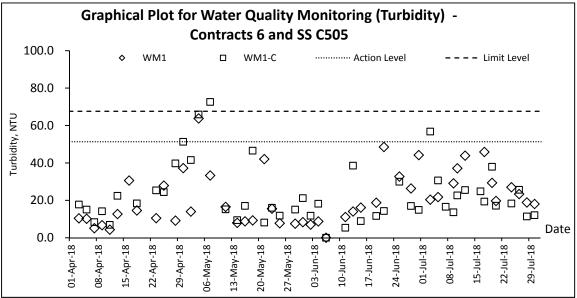

<u>Noise</u>

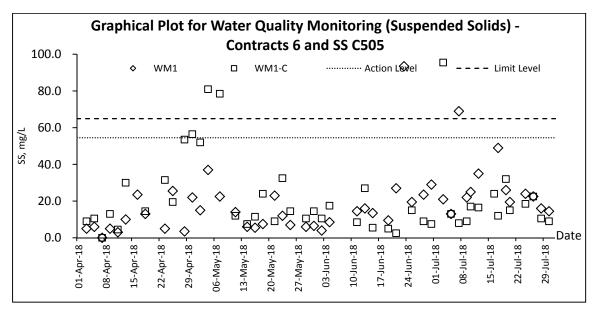


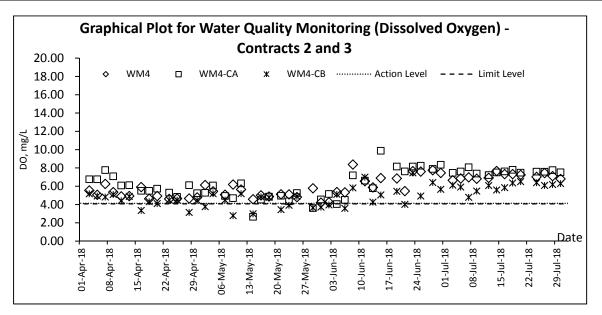


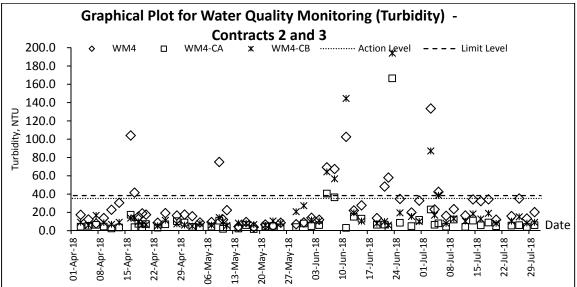


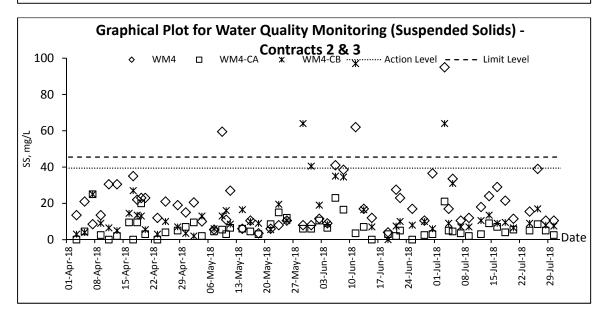


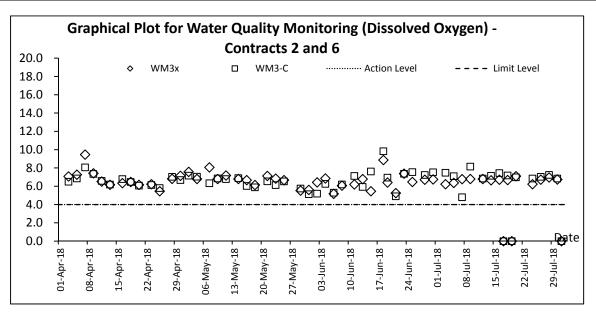


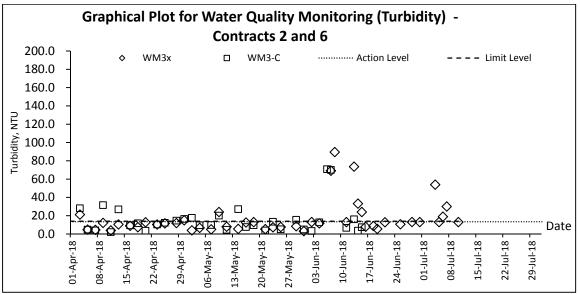


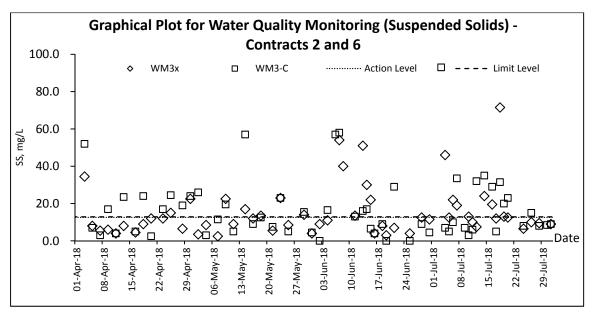

L _{eq3}	₀ , dB(A	A)		G	raphi	ical	Plot fo	or Cons	truc	ction	Noi	se N	Ioni	itorir	ıg R	esult a	t NM1	0
80	[\$	Leq30	min	_	L	imit Leve	l for L	.eq30n	nin		0	Cor	rected	Leq 30n	nin	
75																		
70 65 60 55	• •	0 ♦	0 \$	0 ♦	0	o ♦	0 ♦	0 ♦	0 ♦	0 ♦	o ♦		0 ♦	o ♦	0 ♦	0 ♦	0 ♦	0 ♦
50	_				\$													Date
45	1-Apr-18	- 12-Apr-18	-	- 23-Apr-18	- 4-May-18		- 15-May-18	- 26-May-18		- 6-Jun-18		- 17-Jun-18		- 28-Jun-18		- 9-Jul-18	- 20-Jul-18	31-Jul-18

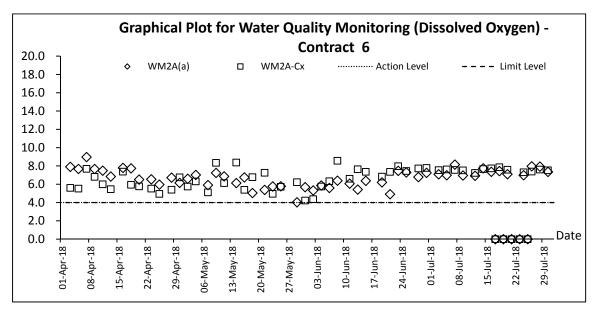

Water Quality

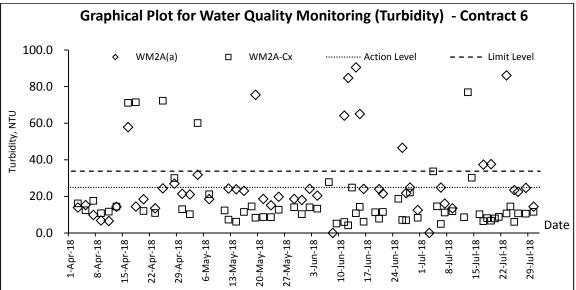


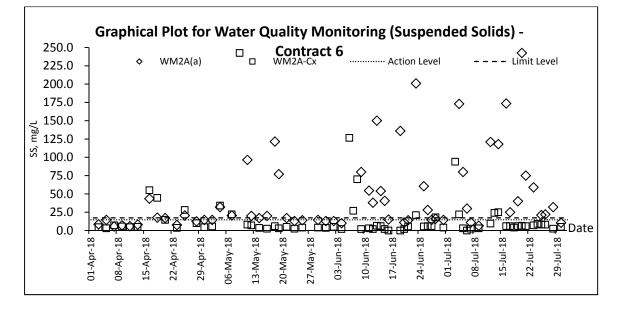












Appendix K

Meteorological Data

				,	Ta Kwu	Ling Station	1
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction
1-Jul-18	Sun	Sunny intervals and one or two showers.	4.2	29.7	9.1	82.1	SE
2-Jul-18	Mon	Sunny intervals and one or two showers.	2.1	29.4	7.8	81.2	S/SE
3-Jul-18	Tue	Sunny intervals and one or two showers.	15.4	28.6	9	85.5	S
4-Jul-18	Wed	Hot with sunny periods during the day.	3.4	29.4	9.4	81.2	S
5-Jul-18	Thu	Sunny periods and isolated showers.	1.5	28.7	6.2	86.7	E/SE
6-Jul-18	Fri	Very hot in the afternoon.	5	29.1	6.9	77.7	E/SE
7-Jul-18	Sat	Sunny periods and one or two showers.	5.2	28.7	7.2	78.1	Е
8-Jul-18	Sun	Hot with sunny periods during the day.	14.4	28.9	9.6	78.7	E/NE
9-Jul-18	Mon	Moderate easterly winds,	11.3	28.8	9.6	77.5	E/NE
10-Jul-18	Tue	Mainly fine and hot.	1.3	30.2	7.6	75	E/NE
11-Jul-18	Wed	Mainly fine. Very hot in the afternoon.	0	29.6	6.5	73.7	SW
12-Jul-18	Thu	Moderate to fresh east to southeasterly winds.	Trace	30.2	8.3	74.5	E/NE
13-Jul-18	Fri	Cloudy with showers and a few squally thunderstorms.	50.4	26.9	8.4	89.7	E/NE
14-Jul-18	Sat	A few showers at first. Moderate to fresh	52.7	28	9.0	89.9	NE
15-Jul-18	Sun	Mainly cloudy with sunny intervals.	67.4	26.6	30	88.2	E/NE
16-Jul-18	Mon	Mainly cloudy tonight. Moderate to fresh easterly winds,	5.8	28.6	11.3	78.2	E/NE
17-Jul-18	Tue	Mainly cloudy with a few showers	6.5	30	7.7	75.7	E/NE
18-Jul-18	Wed	Mainly cloudy with a few showers and isolated thunderstorms.	29.6	28	13	83.7	E/NE
19-Jul-18	Thu	Mainly cloudy with isolated showers	17.3	29.3	12	75	E/NE
20-Jul-18	Fri	Very hot with sunny periods during the day tomorrow.	7.1	28.7	7.6	83.5	E/NE
21-Jul-18	Sat	Sunny intervals and occasional showers.	0	29.5	7.6	84.7	SW
22-Jul-18	Sun	A few squally thunderstorms later.	Trace	29	16.5	78	S/SW
23-Jul-18	Mon	Moderate south to southeasterly winds	30.8	28.3	8.4	82.5	E/NE
24-Jul-18	Tue	Mainly cloudy with a few showers and isolated squally thunderstorms.	0.1	29.3	6.5	85	E/SE
25-Jul-18	Wed	Hot with sunny periods during the day tomorrow	2.7	29.4	8.5	84	E/NE
26-Jul-18	Thu	Mainly cloudy with one or two showers. Isolated thunderstorms at first.	3.4	29.1	9	80.2	E/NE
27-Jul-18	Fri	Mainly fine and very hot apart from isolated showers.	0.3	28.3	6	80	S/SE
28-Jul-18	Sat	Mainly fine and very hot apart from isolated showers.	0	29.3	7	80.2	SE
29-Jul-18	Sun	Mainly fine and very hot	0	29	5.4	77	S/SW
30-Jul-18	Mon	Mainly fine and very hot apart from isolated showers.	0	29.3	7.4	74.5	W/SW
31-Jul-18	Tue	Very hot with sunny periods	3.3	29.5	7.7	77.5	SW

Appendix L

Waste Flow Table

Contract No. CV/2012/08 Liantang / Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

APPENDIX G: MONTHLY SUMMARY WASTE FLOW TABLE

FOR: <u>2018</u>

	Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill*	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse#
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m ³)
Jan	86.6400	0.0000	0.0000	5.2900	81.3500	1.6570	45.0000	0.3100	2.8000	4.5760	0.6575
Feb	33.2700	0.0000	0.0000	3.6700	29.6000	1.3470	32.0000	0.2500	2.4000	1.9500	0.2850
Mar	39.7600	0.0000	0.0000	3.4600	36.3000	1.3380	36.0000	0.3050	2.7000	9.8560	0.6290
Apr	55.5979	0.0000	0.0000	3.3680	52.2299	1.2470	33.7800	0.3240	2.5000	0.0000	0.5748
May	12.9815	0.0000	0.0000	4.6780	8.3035	1.1470	30.1400	0.3040	2.6000	44.9600	0.7056
June	9.0720	0.0000	0.0000	3.1910	5.8810	1.2200	31.7800	0.2870	2.3000	0.1760	0.7534
Sub-total	237.3214	0.0000	0.0000	23.6570	213.6644	7.9560	208.7000	1.7800	15.3000	61.5180	3.6053
July	6.0440	0.0000	0.0000	0.5840	5.4600	1.4570	30.7500	0.2750	2.1000	1.5840	0.8810
Aug	0.0000										
Sep	0.0000										
Oct	0.0000										
Nov	0.0000										
Dec	0.0000										
Sub-total	6.0440	0.0000	0.0000	0.5840	5.4600	1.4570	30.7500	0.2750	2.1000	1.5840	0.8810
Total	243.3654	0.0000	0.0000	24.2410	219.1244	9.4130	239.4500	2.0550	17.4000	63.1020	4.4863

Notes:

(1) The performance targets are given in PS 1.100(14)(a)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the amount of C&D materials.

(5) Assumption: $1m^3$ of inert material weight 2.2 tonne 1m3 of non-inert material weight 1.6 tonne 1m3 of chemical waste weight 0.88 tonne

Contract No. CV/2012/08 Liantang / Heung Yuen Wai Boundary Crossing Control Point Site Formation and Infrastructure Works – Contract 2

				Forecast of To	tal Quantities of	C&D Materials	to be Generated t	from the Project			
Forecast		Hard Rock &						Paper/	Plastics		
Made at	Total Quantity	Large Broken		Reused in other	Disposed as	Imported Fill	Metals	cardboard		Chemicals	Others, e.g.
the End of	Generated	Concrete	Contract	Projects	Public Fill	1		packaging	(see Note 3)	Waste	general refuse
the Project											
Month-	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000m3)
Year											
Dec-13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	220.6270	0.0000	0.0000	0.0000	0.0000
Dec-14	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609
Dec-15	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	37.6310	3.9220	11.9700	16.1920	1.1696
Dec-16	905.0989	0.0000	7.4372	427.7834	469.8783	24.8350	430.5200	3.8500	18.7262	34.2936	1.9720
Dec-17	741.9482	0.0000	8.0385	175.6792	558.2305	78.3865	1681.8000	4.0700	30.5175	48.7906	5.9610
Dec-18	243.3654	0.0000	0.0000	24.2410	219.1244	9.4130	239.4500	2.0550	17.4000	63.1020	4.4863
Total	2886.7990	0.0000	39.0278	1547.3144	1300.4569	122.8082	2613.2380	14.3360	78.6207	173.2582	15.8498

Monthly Summary Waste Flow Table for 2018 (year)

	Actua	al Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
		Hard Rock									
	Total	and Large	Reused in	Reused in	Disposed			Paper/			Others, e.g.
Month	Quantity	Broken	the	other	as Public	Imported		cardboard		Chemical	general
	Generated	Concrete	Contract	Projects	Fill	Fill	Metals	packaging	Plastics	Waste	refuse
	(in '000m ³)	(in m ³)	(in '000m ³)								
Jan	3.089	0.304	0.060	0.000	2.725	0.923	0.000	0.000	0.000	0.000	0.150
Feb	2.697	0.256	0.150	0.000	2.292	1.144	0.000	0.000	0.000	0.000	0.095
Mar	1.524	0.141	0.120	0.000	1.263	0.211	0.000	0.000	0.000	0.000	0.085
Apr	2.880	0.786	0.360	0.000	1.734	0.788	0.000	0.000	0.000	0.000	0.125
May	1.164	0.290	0.101	0.000	0.773	0.185	0.000	0.000	0.000	0.000	0.150
Jun	0.862	0.082	0.515	0.000	0.265	0.000	0.000	0.000	0.000	0.000	0.110
Sub-total	12.216	1.859	1.306	0.000	9.051	3.251	0.000	0.000	0.000	0.000	0.715
Jul	1.520	0.261	0.476	0.000	0.783	0.039	0.000	0.000	0.000	0.000	0.135
Aug											
Sep											
Oct											
Nov											
Dec											
Total	13.736	2.120	1.782	0.000	9.834	3.290	0.000	0.000	0.000	0.000	0.850

Note: 1. Assume the density of soil fill is 2 ton/m³.

2. Assume the density of rock and broken concrete is 2.5 ton/m^3 .

3. Assume each truck of C&D wastes is $5m^3$.

4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.

5. The slurry and bentonite are disposed at Tseung Kwun O 137.

6. The non-inert C&D wastes are disposed at NENT.

7. Assume the density of metal is $7,850 \text{ kg/m}^3$.

8. Assume the density of plastic is 941 kg/m³.

9. Assume the density of paper is 800 kg/m^3 .

Total Quantity Generated	tal Hard Rock and ntity Large Broken the Contrac		Reused in other	Reused in other Public Fill		Materials to be Generate Imported Fill Metals			Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
52.5	5.2	12.3	0.0	35.0	41.8	5.0	1.0	1.0	0.5	44.8

Notes: (1) The performance targets are given in PS Clause 6(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

(4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works if equal to or exceed 50,000 m³.

SUMMARY TABLE FOR WORK PROCESSES OR ACTIVITIES REQUIRING TIMBER FOR TEMPORARY WORKS

Contract No.: <u>CV/2012/09</u>

Contract Title: Liantang /Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works - Contract 3

Item No.	Description of Works Process or Activity [see note (a) below]	Justifications for Using Timber in Temporary Construction Works	Est. Quantities of Timber Used (m ³)	Actual Quantities Used (m ³)	Remarks
1	Formwork for Construction of Retaining Wall NB70	Easy handling by manpower	30.00	30.00	
2	Formwork for Construction of Retaining Wall NB72	Easy handling by manpower	63.52	63.52	
3	Formwork for Construction of Retaining Wall NB73	Easy handling by manpower	227.59	227.59	
4	Formwork for Construction of Retaining Wall NB71	Easy handling by manpower	17.00	17.00	
5	Formwork for Construction of Retaining Wall FR32	Easy handling by manpower	39.36	39.36	
6	Formwork for Construction of High Mast	Easy handling by manpower	36.00	36.00	
7	Formwork for Construction of Drainage	Easy handling by manpower	220.00	220.00	
		Total Estimated Quantity of Timber Used	633.47		

- Notes: (a) The Contractor shall list out all the work items requiring timber for use in temporary construction works. Several minor work items may be grouped into one for ease of updating.
 - (b) The summary table shall be submitted to the Engineer's Representative monthly together with the Waste Flow Table for review and monitoring in accordance with the PS Clause 25.24(11)..

Name of Department: CEDD

Actual Quantities of Inert C&D Materials Generated Monthly Actual Quantities of C&D Wa Hard Rock and Large Total Quantity Reused in other Paper/ cardboard Plastics Month Reused in the Contract Disposed as Public Fill Imported Fill Metals Generated Broken Concrete Projects packaging (see Note (in '000 kg) (in '000kg) (in '000k $(in '000m^3)$ (in '000m³) $(in '000m^3)$ $(in '000m^3)$ (in '000m³) (in '000m³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2016 0.000 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Jan-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Feb-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Mar-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Apr-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 May-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Jun-18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Jul-18 0.000 0.000 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 Total 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Monthly Summary Waste Flow Table for 2018

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract*									
Total Quantity Generated	I Reused in the Contract I I Disposed as Public Fill I Imported Fill		Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse			
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500	0.000	0.000	0.000	0.500	0.000	0.500	0.200	0.000	0.000	0.200

Notes :

(1) The performance targets are given in PS Clause 1.84(14).

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.

(3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

(4) Estimate 6m3 capacity per dump truck

Appendix A

Contract No.: NE/2014/02

astes Gene	erated Monthly	
es e 3)	Chemical Waste	Others, e.g. general refuse
kg)	(in '000kg)	(in '000m ³)
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000
)	0.000	0.000

Monthly Summary Waste Flow Table for <u>2018</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : L	iangtang / Heu	ng Yuen Wai	Boundary Con	trol Point Site	Formation and	Infrastructure	Works - Co	ntract 6		Contract No.: CV	//2013/08
	A	ctual Quantitie	es of Inert C&I	O Materials G	enerated Month	ly	Actua	al Quantities of	of C&D Waste	es Generated M	lonthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	4.152	0	0.629	1.947	1.576	0	0	0.240	0	0	0.892
Feb	2.740	0	0.867	0.544	1.329	0	0	0.402	0	0	0.578
Mar	3.269	0	1.581	0.969	0.719	0	0	0.380	0	0	0.725
Apr	2.901	0	0.255	1.955	0.691	0	0	0.360	0	0	0.921
May	3.194	0	0.068	1.964	1.162	0	0	0.384	0	0	1.340
Jun	2.206	0	0	0.9775	1.228	0	0	0.270	0	0	0.714
Sub-total	18.462	0.000	3.400	8.357	6.705	0.000	0.000	2.036	0.000	0.000	5.170
Jul	1.512	0	0	0.816	0.696	0	0	1.608	0	0	0.846
Aug											
Sep											
Oct											
Nov											
Dec											
Total	1018.368	0.000	166.627	279.816	571.926	53.939	0.000	10.023	0.007	34.045	14.767

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.

(3) Broken concrete for recycling into aggregates.

MONTHLY SUMMARY WASTE FLOW TABLE

NE/2014/03

Name of Department: CEDD

Contract Title:Liantang/ Heung Yuen Wai Boundary Control Point
Site Formation and Infrastructure Works - Contract 7Contract No.:

Monthly Summary Waste Flow Table for <u>2018</u> (year)

		Actual Quan	tities of Inert C&I	O Materials Genera	ted Monthly		Act	ual Quantities of No	on-Inert C&D Wa	stes Generated Mor	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	0.015	0	0	0	0.015	0	14.5	0.5	0.001	0	0.15
Feb	0	0	0	0	0	0	9	0.18	0.001	0	0.13
Mar	0.005	0	0	0	0.005	0	6	0.15	0.001	0	0.2
Apr	1.1	0	0	0	1.1	0	6.6	0.22	0.001	0	0.3
May	0.077	0	0	0	0.077	0	1.3	0.15	0.001	0	0.1
June	0	0	0	0	0	0	6	0.4	0.001	0	0.05
Sub-total	1.197	0	0	0	1.197	0	43.4	1.6	0.006	0	0.93
July	0.5	0	0	0	0.5	0	2.5	0.1	0.001	0	0.2
Aug											
Sept											
Oct											
Nov											
Dec											
Total	1.697	0	0	0	1.697	0	45.9	1.7	0.007	0	1.130

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

Appendix I

Architectural Services Department

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

C505

Monthly Summary Waste Flow Table for 2018 [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

		Actual Quantities of In	ert Construction Waste Ge	nerated Monthly	
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	5.298	0.646	0.160	0.000	4.492
Feb	7.243	0.572	0.320	0.000	6.351
Mar	11.241	0.831	0.225	0.000	10.186
Apr	3.717	1.458	0.257	0.000	2.002
May	5.346	0.788	0.300	0.000	4.258
Jun	6.828	0.661	0.376	0.000	5.792
Sub-total	39.672	4.956	1.638	0.000	33.079
Jul	11.637	0.051	0.282	0.000	11.304
Aug					
Sep					
Oct					
Nov					
Dec					
Total	51.309	5.007	1.920	0.000	44.382

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	n-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	ıber	Me	Metals		Paper/ cardboard packaging		Plastics (see Note 3)		al Waste		ecyclable see Page 3)	General Refuse disposed of at Landfill
	(in '000kg)		(in '000kg)		(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	375.870	375.870	0.220	0.220	0.032	0.032	0.000	0.000	0.000	0.000	1.918
Feb	0.000	0.000	720.120	720.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.223
Mar	0.000	0.000	220.860	220.860	0.830	0.830	0.005	0.005	0.000	0.000	0.005	0.005	2.711
Apr	0.000	0.000	202.130	202.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.470
May	0.000	0.000	294.330	294.330	0.000	0.000	0.042	0.042	0.000	0.000	0.000	0.000	2.490
Jun	0.000	0.000	242.170	242.170	0.990	0.990	0.000	0.000	1.200	0.000	0.000	0.000	2.997
Sub-total	0.000	0.000	2,055.480	2,055.480	2.040	2.040	0.079	0.079	1.200	0.000	0.005	0.005	14.809
Jul	0.000	0.000	218.990	218.990	0.280	0.280	0.000	0.000	0.000	0.000	0.000	0.000	3.146
Aug													
Sep													
Oct													
Nov													
Dec													
Total	0.000	0.000	2,274.470	2,274.470	2.320	2.320	0.079	0.079	1.200	0.000	0.005	0.005	17.955

Description of mod	Description of mode and details of recycling if any for the month e.g. XX kg of used timber was sent to YY site for transformation into fertilizers										
218.99 tons of scrap metals were sent to Wai Hung Metal Ltd., Global Metal Ltd., Hing Lung Metal Ltd., for recycling	Aggregates Ltd. for	280.0 kg of paper were sent to Lau Choi Kee Papers Co. Ltd. for recycling.									

Notes: (1) The performance targets are given in the Particular Specification on Environmental Management Plan.

- (2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) Broken concrete for recycling into aggregates.
- (5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m^3 by volume.

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
<u>Air Quali</u>	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include: <i>Good site management</i>	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. 					
		 Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. 					
		 Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads 					
		 Each and every main temporary access should be paved with 					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for th
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or					
		 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet. 					
		Exposed Earth					
		Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.					
		Loading, Unloading or Transfer of Dusty Materials					
		 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet. 					
		Debris Handling					
		 Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides. 					
		 Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped. 					
		Transport of Dusty Materials					
		 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards. 					
		Wheel washing					
		Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Use of vehicles					
		Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.					
		Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		 Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. 					
		 Blasting The areas within 30m from the blasting area should be wetted with water prior to blasting. 					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Im	pact (Cons	truction)					
4.4.1.4	3.1	Adoption of Quieter PME Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14 , which can be found in Hong Kong.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m ² is recommended to achieve the predicted screening effect.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air- borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

	EM&A		Objectives of the	Who to			What requirements
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Recommended Measure	implement the	Location of the measure	When to implement the	or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation, EIAO and NCO
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	
		• Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		• Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and					
		• Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities.					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1 to 4.20.4	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation, EIAO and NCO

EIA Ref.	EM&A	nitoring and Audit Manual Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
		programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise.					
<u>water QL</u> 5.6.1.1	4.1	ct (Construction) Construction site runoff and drainage	To control site	Contractor	Construction	Construction	Practice Note for
0.0.1.1	4.1	 Construction site runon and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts: At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be 	runoff and drainage; prevent high sediment loading from reaching the nearby watercourses	Contractor	Works Sites	Phase	Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)

 The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.

construction.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	measure?	incusure	measure?	achieve?
		Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.					
	•	Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.					
	•	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.					
	•	Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.					
	•	If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		the erosive potential of surface water flows.					

All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.

- Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.
- Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.
- Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.
- Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.

5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be	quality impacts to		Works Sites	Phase	1/94
		carried out within the water gathering grounds:	the water gathering		within the water		
			grounds		gathering		

255228/ENL/ENL/61/C December 2010

nvironment	tal Monito	pring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
	•	Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.			grounds		
	•	No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.					
	•	All surplus spoil should be removed from water gathering grounds as soon as possible.					
	•	Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.					
	•	Regular cleaning of silt traps should be carried out to ensure proper operation at all time.					
	•	All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.					
	•	Facilities for washing the wheels of vehicles before leaving the site should be provided.					
	•	Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.					
	•	No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.					
	•	Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.					
	•	Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.					

Drainage plans should be submitted for approval by the Director of

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	Implement the	What requirements or standards for the measure to
	non		& Main Concerns to address	measure?	mououro	measure?	achieve?
		Water Supplies.					
		 An unimpeded access through the waterworks access road should always be maintained. 					
		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
		 Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference. 					
5.6.1.2	4.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	ring any struction ch have solvents s should nds of a		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3	4.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4	4.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	or g e d		works sites of the drill and blast tunnel	phase	and WPCO
Water Qu	ality Impa	ct (Operation)					
		No mitigation measure is required.					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
Sewage	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste M	anagement	t Implication (Construction)					
7.6.1.1	6	Good Site Practices Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	To minimize adverse environmental impact	Contractor	Construction works sites (general)	Construction Phase	EIA recommendation Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No.
		 Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site 					19/2005, Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	measure	measure?	achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers					
		 Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road 					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		 Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated 					
		 Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly 					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
	-	Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		 Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force 					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		of waste generated and avoid unnecessary generation of waste	to address				
		 In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes. 					
7.6.1.3	6	C&D Materials In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	To minimize impacts resulting from C&D material	Contractor	Construction Works Sites (General)	Construction Phase	EIA recommendation; Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included. 					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i> Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

То	Mr. Vincent Chan	Fax No	By e-n	nail		
Company	CRBC-CEC-Kaden JV					
сс						
From	Nicola Hon	Date	23 July	2018		
Our Ref	TCS00694/13/300/ F1665b	No of Pages	6	(Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 23, 25 and 26 June 2018					
If you do not	reactive all pages on transmission is illegible please.	contact the originat	on on (852)	2050 6050 to me and Should		

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1633 dated 25 June 2018 TCS00694/13/300/F1641 dated 27 June 2018 TCS00694/13/300/F1643 dated 29 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/2008	
Date			23 Jun 2018	25 Jun 2018	26 Jun 2018
Location				WM2A(a)	
Time			11:55	10:45	11:45
Parameter			Turbidit	ty (NTU) / Suspended solid	s (mg/L)
Action Lev	el			of upstream control station of upstream control station	
Limit Leve	1			of upstream control station of upstream control station	
Measured	WM2A-C		101.5 / 21.0	18.7 / 5.5	7.1 / 6.0
Levels	WM2A(a)		586.0 / 201.0	106.5 / 60.5	46.6 / 28.0
Exceedance	e		Limit Level	Limit Level	Limit Level
Levels WM2A(a) Exceedance Investigation Results, Recommendations & Mitigation Measures		1. 2. 3.	Contract 6 (CCKJV) 2018 at Bridge D construction. The n <i>Figure 1</i> . According to the site sampling on 23 June river course includin 2018, the water qual quality was observed According to the w Rainstorm Warning S The water quality th stirred up sediment surrounding environ 2018, deflation of D generated by the stir flowing to downstrea that the water quality However, some sedin may potentially affect	ite information provided , construction activities can (upstream of WM2A(a nonitoring locations and wo e photos taken by the mon e 2018, muddy water was g control and impact statio ity at control station was y at impact station was sligh veather information from Signal was issued during of roughout the river course under rapid flow and nent even outside the const Nylon Dam was observed rred up sediment accumul am. (<i>Photo 7</i>) On 26 Juny y at intermediate of the site nent was observed cumula t the water quality at the do ions among the RE, IEC 1 21 June 2018 as well as	ried out on 23 to 26 June a)) were mainly bridge bork boundary are shown in itoring team during water observed throughout the ons. On 25 and 26 June visually clear while water tly turbid. (<i>Photos 1 to 6</i>) the Observatory, Amber laytime on 23 June 2018. Was deteriorated by the muddy runoff from the ruction site. On 25 June 1 and muddy water was ated at the river bed and ne 2018, it was observed te was in good condition. ted at the river bed which winstream. (<i>Photo 8</i>) C, CCKJV and ET were by ET and CCKJV on 25

	no discharge due to nature of works.
	(b) Wastewater treatment facilities were properly provided for Bridge D (<i>Figure 1</i>)
	(c) There was no adverse water quality impact observed in the related works area during the site inspection and the site condition was general in order.
	(d) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 9 & 10</i>)
5.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There were no adverse water quality impact observed in Bridge D during the site inspection and the site condition was general in order. Therefore, it is considered that the exceedances on 23 June 2018 were related to the heavy rainstorm and exceedances on 25 and 26 June 2018 were likely related to sediment cumulated at the river bed downstream of the Nylon dam and not caused by the works under the Project.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were no exceedances recorded on 27 and 28 June 2018. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	23 July 2018

Photo Record

Photo 1

On 23 June 2018, muddy water was observed at WM2A(a).

WM2A-C was turbid.

On 23 June 2018, the water quality observed at

Photo 3

On 25 June 2018, the water quality observed at WM2A(a) was slightly turbid.

Photo 5 On 26 June 2018, the water quality observed at WM2A(a) was slightly turbid. Photo 4

On 25 June 2018, the water quality observed at WM2A-C was clear.

Photo 6 On 26 June 2018, the water quality observed at WM2A-C was clear.

Photo 7

On 25 June 2018, deflation of Nylon Dam was observed and muddy water was generated by the stirred up sediment accumulated at the river bed and flowing to downstream.

Photo 8

On 26 June 2018, it was observed that the water quality at intermediate of the site was in good condition. However, some sediment was observed cumulated at the river bed downstream of the Nylon Dam which may potentially the water quality at the downstream.

Photo 9

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

Photo 10

As water quality mitigation measures, open slopes were hard paved as far as practicable to minimize muddy runoff.

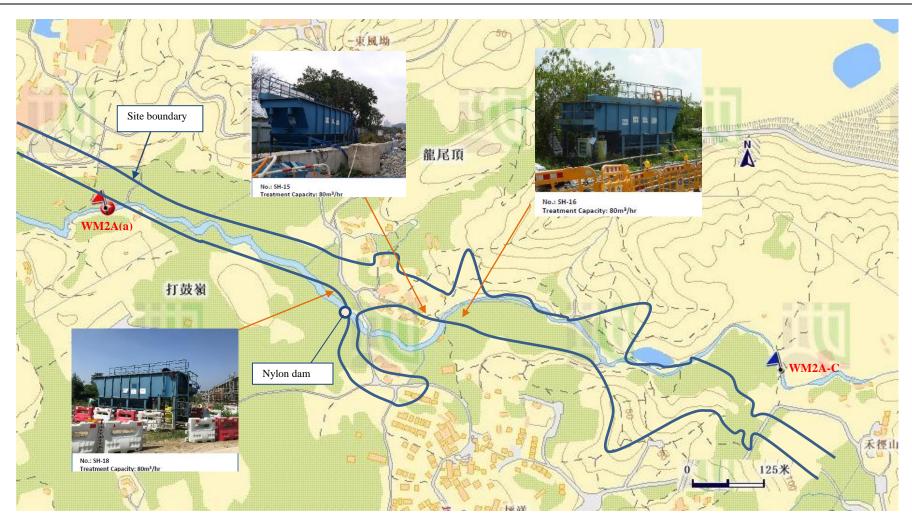


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-mail		
Company	CRBC-CEC-Kaden JV				
сс					
From	Nicola Hon	Date	2 August 2018		
Our Ref	TCS00694/13/300/ F1690	No of Pages	11 (Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 3, 4, 5 and 6 July 2018				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1650 dated 6 June 2018 TCS00694/13/300/F1662 dated 10 June 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/2008	
Date			3 July 2018	4 July 2018	5 July 2018
Location				WM2A(a)	
Time			10:20	8:40	10:30
Parameter			Turbic	lity (NTU) / Suspended soli	ids (mg/L)
Action Leve	el			% of upstream control static % of upstream control static	
Limit Level				% of upstream control static % of upstream control static	
Measured	WM2A-C		128.0 / 94.0	33.5 / 22.0	14.6 / 3.0
Levels	WM2A(a)	01	ver range / 1016.5	305.0 / 173.0	102.5 / 80.0
Exceedance	•		Limit Level / Limit Level	Limit Level / Limit Level	Limit Level / Limit Level
Exceedance Investigation Results, Recommendations & Mitigation Measures		2. 3. 4.	2018 at Bridge construction. The <i>Figure 1</i> . According to the si sampling on 3 July course including rainstorm. During that water quality a quality at WM2A-C According to the w of 15.4mm was rec rain, the water qual the stirred up se environment even of was observed that trapped at the N construction site an slowly. (<i>Photos 7 to</i>) Inspection on the SH-18 were carried It was observed that were function prop generally in good of	D (upstream of WM2A monitoring locations and w te photos taken by the mo 2018, muddy water was ob WM2A(a) and WM2A-C water sampling on 4 and 5 t impact station WM2A(a) was visually clear (<i>Photos</i> eather information from the orded on 3 July 2018. Un ity throughout the river con- diment and muddy runc- outside the construction site muddy water generated u ylon Dam which located d muddy water treatment facil out by CCKJV on 4 July t the wastewater treatment perly and effluent at both condition. (<i>Photos 9 to 12</i>)	carried out on 3 to 5 July (a)) were mainly bridge work boundary are shown in anitoring team during water beerved throughout the river C under the influence of July 2018, it was observed was turbid while the water (a 1 to 6) e Observatory, total rainfall nder the influence of heavy urse was highly affected by off from the surrounding . On 4 and 5 July 2018, it under rainstorm was being d at intermediate of the lowing to downstream area lities including SH-16 and 2018 upon the exceedance. facilities SH-16 and SH-18 n treatment facilities were e) As advised by CCKJV, not in operation and only
		5.	·	nspections among the RE,	IEC, CCKJV and ET were

	conducted on 5 July 2018 to audit the site environmental performance and implementation of mitigation measures, the observation during the site inspection is summarized below.
	(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.
	(b) Wastewater treatment facilities were properly provided for Bridge D (<i>Figure 1</i>)
	(c) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 13 & 14</i>)
6.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedances on 3 July 2018 were due to rainstorm the exceedances on 4 to 5 July were related to the residual impact after rainstorm and not caused by the works under the Project.
7.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There was SS exceedance recorded on 6 July 2018 and another investigation will be provided. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Anh
Date :	2 August 2018

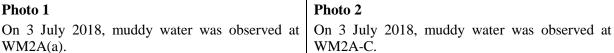


Photo Record

Photo 1

Photo 7

On 4 July 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

Photo 9

Inspection on the wastewater treatment facilities including SH-16 was carried out by CCKJV on 4 July 2018 upon the exceedance.

Photo 11

Inspection on the wastewater treatment facilities including SH-18 was carried out by CCKJV on 4 July 2018 upon the exceedance.

Photo 8

On 5 July 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

Photo 10

It was observed that the wastewater treatment facilities SH-16 was function properly and effluent was generally in good condition.

Photo 12 It was observed that the wastewater treatment facilities SH-18 was function properly and effluent was generally in good condition.

Photo 13

As water quality mitigation measures, open slopes were hard paved as far as practicable to minimize muddy runoff.

Photo 14

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

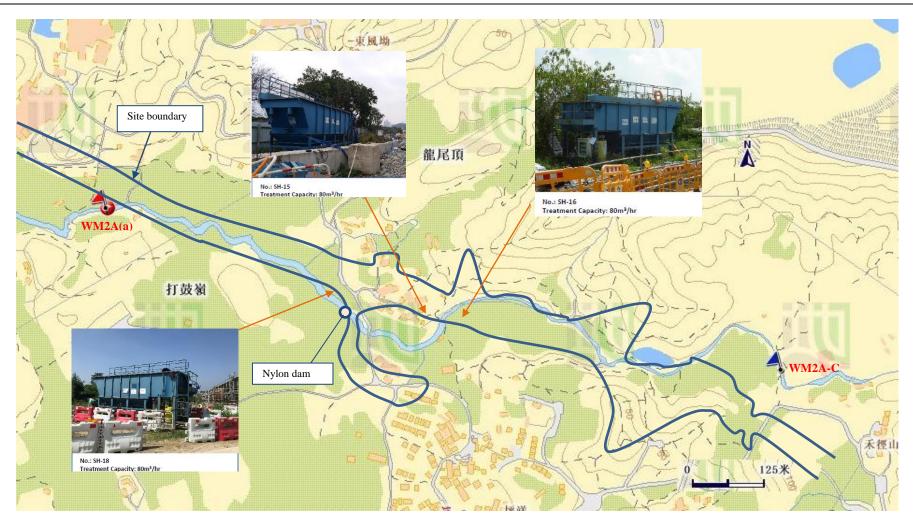


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008		
Date		6 July 2018		
Location		WM2A(a)		
Time		9:50		
Parameter		Suspended solids (mg/L)		
Action Leve	el	14.6 AND 120% of upstream control station of the same day		
Limit Leve	l	17.3 AND 130% of upstream control station of the same day		
Measured Levels	WM2A-C	<2.0		
Levels	WM2A(a)	30.0		
Exceedance	e	Limit Level		
Investigation Recomment Mitigation		 According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 6 July 2018 at Bridge D (upstream of WM2A(a)) were mainly bridge construction. The monitoring locations and work boundary are shown in <i>Figure 1</i>. 		
		2. According to the site photos taken by the monitoring team during water sampling on 6 July 2018, it was observed that water quality at impact station WM2A(a) was slightly turbid while the water quality at WM2A-C was visually clear. (<i>Photos 1 & 2</i>)		
		3. According to the weather information from the Observatory, there were a few showers on 6 July 2018. Due to successive rainy days from 3 to 6 July, turbid water generated under rainstorm was observed trapped at the Nylon Dam which located at intermediate of the construction site and muddy water has been flowing to downstream area slowly. (<i>Photo 3</i>)		
		4. Weekly joint site inspections among the RE, IEC, CCKJV and ET were conducted on 5 July 2018 to audit the site environmental performance and implementation of mitigation measures, the observation during the site inspection is summarized below.		
		(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.		
		(b) Wastewater treatment facilities were properly provided for Bridge D and funcation properly. (<i>Figure 1</i>)		
		(c) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 4 & 5</i>)		
		5. In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedance on 6 July 2018 was related to the residual impact after rainstorm and not		

	caused by the works under the Project.
6	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There were no exceedances recorded on 7 and 9 July 2018. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Auch		
Date :	2 August 2018		
-			

Photo 1

On 6 July 2018, water quality observed at WM2A(a) was slightly turbid.

Photo 3

There were a few showers on 6 July 2018, turbid water generated under rain was observed trapped at the Nylon Dam which located at intermediate of the construction site and muddy water has been flowing to downstream area slowly.

Photo 2

On 6 July 2018, the water quality observed at WM2A-C was clear.

Photo 4

As water quality mitigation measures, open slopes were hard paved as far as practicable to minimize muddy runoff.

Photo 5

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as

practicable to minimize muddy runoff.

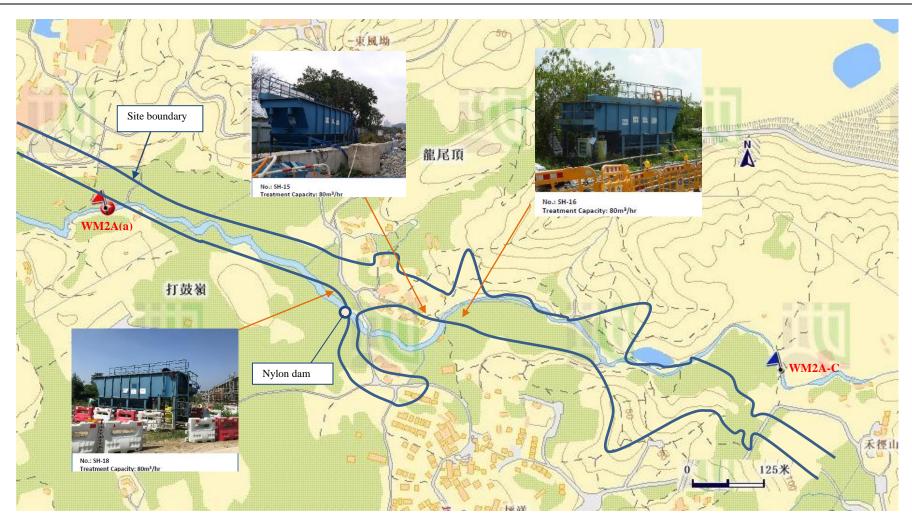


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Roger Lee	Fax No	by e-ma	ıil
Company	Dragages Hong Kong Limited			
cc				
From	Nicola Hon	Date	23 July 2	018
Our Ref	TCS00670/13/300/ F1691a	No of Pages	5	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of W (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1649 dated 6 July 2018 TCS00670/13/300/F1661 dated 10 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Edwin Ching (RE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 44	5/2008	
Date			y 2018	
Location			M4	
Time			:25	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
		35.2 AND 120% of upstream	39.4 AND 120% of upstream	
Action Level		control station of the same day	control station of the same day	
		38.4 AND 130% of upstream	45.5 AND 130% of upstream	
Limit Level		control station of the same day	control station of the same day	
N 1	WM4-CA	23.1	21.0	
Measured Level	WM4-CB	87.2	64.0	
Level	WM4	133.5	95.0	
Exceedance		Limit Level	Limit Level	
Investigation			tion provided by the Contractor of	
Recommendations & Mitigation Measures		Contract 2 (DHK), construction activities carried out at South Portal Site (SP) on 3 July 2018 included tunnel internal work, construction of retaining wall and backfilling and south ventilation building external wall finishing and E&M installation. (<i>Figure 1</i>) The construction site was generally hard paved to minimize muddy runoff.		
		2. According to the site photos taken by ET on 3 July 2018, turbid water was observed throughout the channel including impact station WM4 and control stations WM4-CA and WM4-CB. (Photos 1 to 3 & Figure 1)		
		was unknown source of muddy underground pipe from box cu to BC02 (under Contract 3). there was heavy rainstorm on of the river channel was deteri	or of Contract 3 reported that there y water attributed to site area via an alvert in Kiu Tau Road (outside C3) (Photo 4 & Figure 1) Moreover, 3 July 2018 and the water quality orated by the rainfall and stirred up ace runoff from the environmental	
		conducted on 6 July 2018. treatment facilities impleme functioned properly and the di site was mostly hard paved a was erected along the site bou runoff and prevent it from fl	by the RE, DHK, IEC and ET was It was observed that wastewater inted in South Portal Site was scharge was clear. (Photo 5) The ind site hoarding with sealed foots andary to minimize muddy surface owing outside the site. (Photo 6) it was observed adjacent to the river	
		mitigation measures such a treatment facilities and hard p general, the condition of the was in order and no adverse v In view of inflow of muddy w	has properly implemented water s well maintain the wastewater baved most of the site surface. In South Portal Site under Contract 2 vater quality impact was identified. ater was observed from outside the red that the exceedances were not ntract 2.	

	6.	According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 4 and 5 July 2018. However, the Contractor should
		continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul
Date :	23 July 2018

Photo 1

During water quality monitoring on 3 July 2018, turbid water was observed at WM4.

Photo 3 During water quality monitoring on 3 July 2018, the water quality at WM4-CB was turbid.

Photo 2

During water quality monitoring on 3 July 2018, the water quality at WM4-CA was turbid.

Photo 4

On 3 July 2018, the Contractor of Contract 3 reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02 (under Contract 3).

Photo 5

During site inspection on 6 July 2018, it was observed that wastewater treatment facilities implemented in South Portal Site was functioned properly and the discharge was clear.

Photo 6

Site hoarding with sealed foots was erected along the site boundary to minimize muddy surface runoff and prevent it from flowing outside the site.

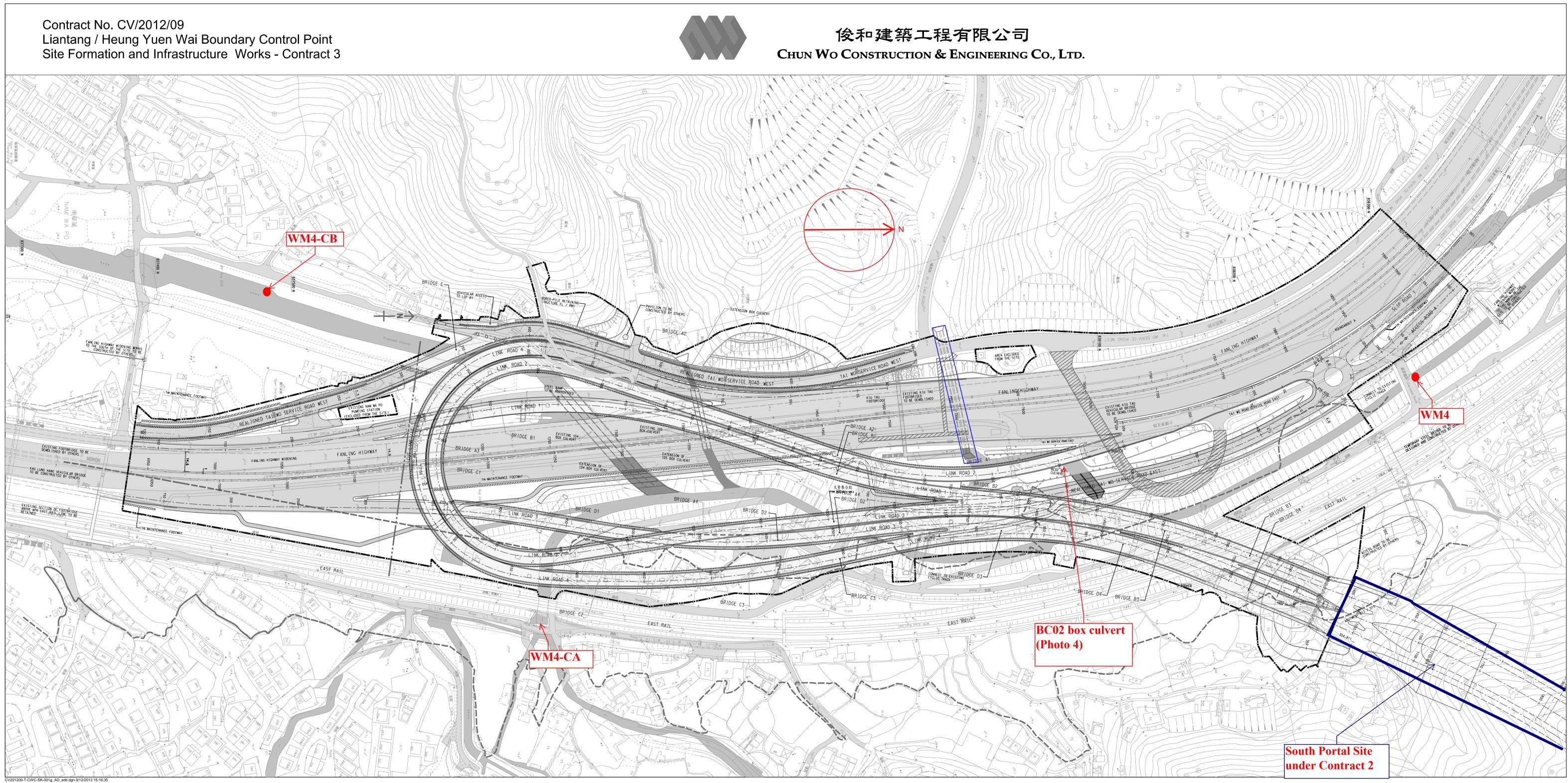


Figure 1. Location of Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Daniel Ho	Fax No	2638 7	077
Company	Chun Wo Construction Ltd			
сс				
From	Nicola Hon	Date	23 July	2018
Our Ref	TCS00670/13/300/ F1692a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of V (Contract 3)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Ho,

Further to the Notification of Exceedance (NOE) reference of the following.

TCS00670/13/300/F1648 dated 6 July 2018 TCS00670/13/300/F1660 dated 10 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD)	Fax:	2685 1133
Mr. Alan Lee (ER of C3, AECOM)	Fax:	2171 3498
Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project	Project CE 45/2008			
Date		3 July 2	2018	
Location		WM	4	
Time		13:2	0	
Parameter		Turbidity (NTU)	Suspended Solids (mg/L)	
		35.2 AND 120% of upstream	39.4 AND 120% of upstream	
Action Level		control station of the same day	control station of the same day	
.		38.4 AND 130% of upstream	45.5 AND 130% of upstream	
Limit Level		control station of the same day	control station of the same day	
	WM4-CA	23.1	21.0	
Measured	WM4-CB	87.2	64.0	
Level	WM4	133.5	95.0	
Exceedance		Limit Level	Limit Level	
Investigation	Results,	1. According to the site information		
Recommenda			activities carried out on 3 July	
Mitigation M			ch as excavation, construction of	
iningation in	leubui eb		orks. Water quality mitigation	
			p minimize the impact by the	
		construction works.	s impact by the	
		2. According to the site photos tak		
		•	t the channel including impact	
			tions WM4-CA and WM4-CB.	
		(Photos 1 to 3 & Figure 1)		
		3. On 3 July 2018, Chun Wo reported that there was unknown		
		source of muddy water attributed to site area via an underground		
		•	Tau Road (outside C3) to BC02	
			Figure 1) Moreover, there was	
			and the water quality of the river	
		• •	rainfall and stirred up sediment	
			n the environmental even outside	
		the site area.		
		4 Joint site inspection by the DE H	EC. Chur We and ET was somiad	
		4. Joint site inspection by the RE, II		
		inspection are summarized below	restigation. The findings of the <i>v</i> .	
		*		
		(a) Inflow of fitted water from was observed at Control Stat	upstream of the construction site ion WM4-CB. (Photo 5)	
		(b) The water flowing through	Box Culvert BC02 was clear but	
			ud was observed at channel bed,	
			d by the inflow of muddy water	
		from previous days. (Photo 6		
			ersion flow at BC02 was clear, no	
		adjacent to the diversion flow	t was observed at the works area $(\mathbf{Photo} 7)$	
		-		
			ities implemented on-site were	
			adverse water quality impact was	
		observed.		
		(e) As water quality mitigation	measures, the exposed surface	
		· · · ·	sheet as far as practicable to	
1			r in r in r	

minimize muddy runoff. (Photo 8)
5. In our investigation, the Contractor had implemented water quality mitigation measures properly and no adverse water quality impact was observed during the site inspections. In viewing of inflow of muddy water from outside the site boundary on 3 July 2018, it is considered that the exceedances were unlikely caused by the works under Contract 3.
6. According to the Event and Action, the monitoring frequency at exceed station shall be increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered at WM4 on 4 and 5 July 2018. However, the Contractor should continue to implement the environmental mitigation measures recommended in implementation schedule in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Aul
Date :	23 July 2018

Photo 1

During water quality monitoring on 3 July 2018, turbid water was observed at WM4.

Photo 3

During water quality monitoring on 3 July 2018, the water quality at WM4-CB was turbid.

Photo 5

During site inspection on 5 July 2018, Inflow of muddy water from upstream of the construction site was observed at Control Station WM4-CB.

Photo 2

During water quality monitoring on 3 July 2018, the water quality at WM4-CA was turbid.

On 3 July 2018, Chun Wo reported that there was unknown source of muddy water attributed to site area via an underground pipe from box culvert in Kiu Tau Road (outside C3) to BC02.

Photo 6

During site inspection on 5 July 2018, the water flowing through Box Culvert BC02 was clear but trace amount of sediment/ mud was observed at channel bed, which suspected to be caused by the inflow of muddy water from previous days.

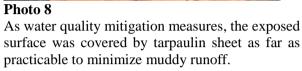


Photo 7

During site inspection 5 July 2018, the water quality in the diversion flow at BC02 was clear, no adverse water quality impact was observed at the works area adjacent to the diversion flow.

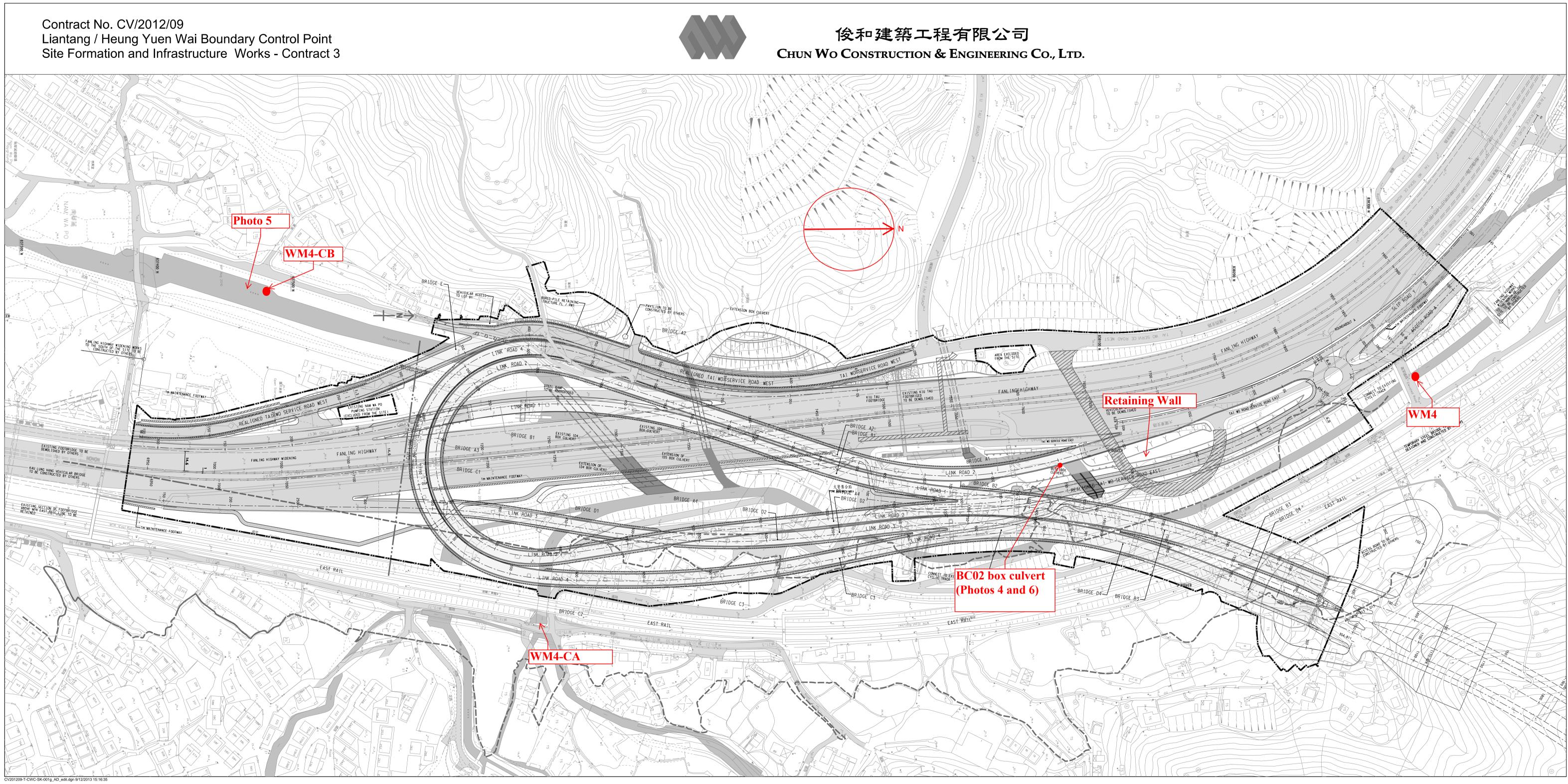


Figure 1. Location of Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	25 July	2018
Our Ref	TCS00694/13/300/ F1693a	No of Pages	12	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 3, 4, 6, 9 and 10 July 2018 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1651 dated 6 July 2018 TCS00694/13/300/F1657 dated 9 July 2018 TCS00694/13/300/F1664 dated 10 July 2018 TCS00694/13/300/F1673 dated 16 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

c.c.

Nicola Hon Environmental Consultant Encl.

Ms. Clara U (EPD)Fax:2685 1133Mr. Simon Leung (ER of C6/ AECOM)Fax:2251 0698Mr. Antony Wong (IEC, SMEC)By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project	CE 45/2008			
Date	3 July 2018	4 July 2018	6 July 2018	9 July 2018
Location	5		WM3x	2
Time	11:20	10:25	11:00	11:20
Parameter		Turbidity (NTU) /	Suspended Solids (mg/	L)
Action Level		ND 120% of upstream	m control station of the um control station of the	same day /
Limit Level	14.0 Al	ND 130% of upstream	m control station of the m control station of the	same day /
Measured WM3-C	48.8 / 93.0	5.7 / 7.0	7.0 / 10.0	9.7 / 7.0
Level WM3x	93.0 / 123.0	53.9 / 46.0	19.0 / 22.0	239.0 / 204.5
Exceedance	Limit Level / Limit Level	Limit Level / Limit Level	Limit Level / Limit Level	Limit Level / Limit Level
	 According to the site information provided by the Contractor of (CCKJV), the construction activities carried out at South Portal (upstream of WM3x) on 3 to 9 July 2018 included construction of Sh Kok Interchange and road diversion. The monitoring locations and vareas are illustrated in <i>Figure 1</i>. According to the site photo taken on 3 July 2018, turbid water was obs at WM3x and WM3-C under the influence of heavy rainstorm. D water sampling on 4, 6 and 9 July 2018, the water quality at WM3-C appeared clear while turbid/ slightly turbid water was observed at W (<i>Photos 1 to 8 and Figure 1</i>) It was noted that the channel of WM3: received the storm water from Sha Tau Kok Road and the adjacent villa According to the weather information from the Observatory, there successive rainy days during 3 to 9 July 2018, in which heavy rainf 15.4mm and 11.3mm were recorded on 3 and 9 July 2018 respectively. water quality throughout the river course was highly affected by the s up sediment and muddy runoff from the surrounding environment outside the construction site. Upon detection of the exceedance on 4, 6 and 9 July 2018, inspection carried out at the river channel crossing of works area of Contract 6 was (<i>Photos 9 to 11</i>) Moreover, as reported by the CCKJV, inflow of the water was occasionally observed from the open channel which receiving stormwater from the Sha Tau Kok Road. (<i>Photo 12 and Figure 1</i>) Weekly joint site inspection by RE, Contractor, IEC and ET was conditional provide the target of the storm water from the Sha Tau Kok Road. 		t South Portal Site istruction of Sha Tau locations and works d water was observed rainstorm. During ality at WM3-C was observed at WM3x. annel of WM3x also ie adjacent villages. ervatory, there were ich heavy rainfall of 8 respectively. The ffected by the stirred g environment even 2018, inspection was of Contract 6 and it contract 6 was clear. JV, inflow of turbid l which receiving the <i>Figure 1</i>) d ET was conducted hance. The findings	

	(c) The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel. (<i>Photo 16</i>)(d) The construction site was general in order and no adverse water quality
	 impact was observed. 6. In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from from Sha Tau Kok Road water and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and external source of muddy water and unlikely caused by the works under Contract 6.
	7. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 7, 11 and 12 July 2018. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	25 July 2018		

Photo 1

During water sampling on 3 July 2018, the water quality observed at WM3x was turbid.

Photo 2

During water sampling on 3 July 2018, the water quality flowing at WM3-C was turbid.

Photo 7

During water sampling on 9 July 2018, the water quality observed at WM3x was turbid.

Photo 9

Upon detection of the exceedance on 4 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 11

Upon detection of the exceedance on 9 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 8

During water sampling on 9 July 2018, the water quality flowing at WM3-C was clear.

Upon detection of the exceedance on 6 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 12

As reported by the CCKJV, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road.

Photo 13

Joint site inspection was conducted on 5 July 2018. It was observed that wastewater treatment facilities at South Portal were function properly.

Photo 14

Wastewater treatment facilities at South Portal were function properly and the effluent was clear.

Photo 15

The site area adjacent to the stream was completely sealed to minimize the risk of site runoff flowing into the exiting stream.

Photo 16

The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel.

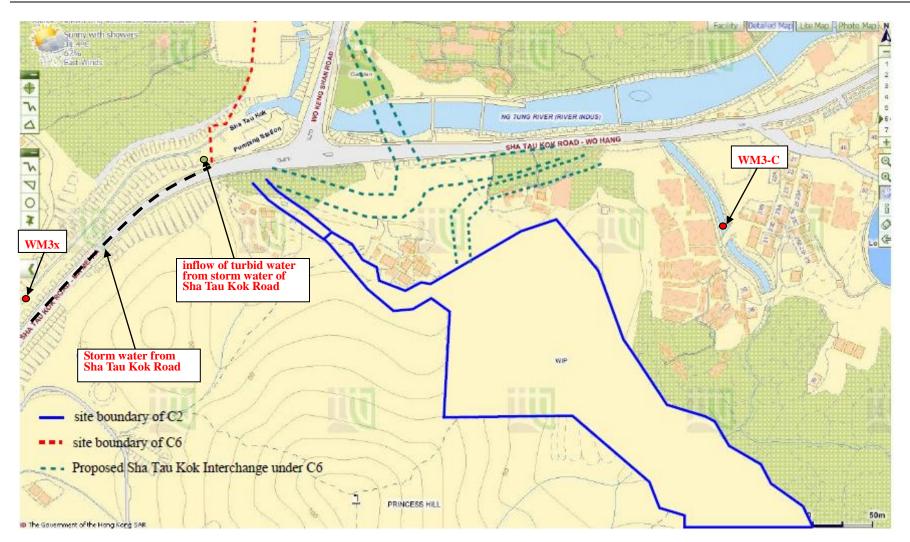


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008	
Date		10 July 2018	
Location		WM3x	
Time		11:10	
Parameter		Suspended Solids (mg/L)	
Action Lev	el	12.6 AND 120% of upstream control station of the same day	
Limit Leve		12.9 AND 130% of upstream control station of the same day	
Measured	WM3-C	3.0	
Level	WM3x	13.0	
Exceedance	6	Limit Level	
Investigation Results, Recommenn & N Measures		1. According to the site information provided by the Contractor of C6 (CCKJV), the construction activities carried out at South Portal Site (upstream of WM3x) on 10 July 2018 included construction of Sha Tau Kok Interchange and road diversion. The monitoring locations and works areas are illustrated in <i>Figure 1</i> .	
		 According to the site photo taken on 10 July 2018, the water quality at WM3-C was clear while slightly turbid water was observed at WM3x. (<i>Photos 1 and 2 & Figure 1</i>) It was noted that the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages. 	
		3. According to the weather information from the Observatory, there was few showers on 10 July 2018. As reported by the CCKJV, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road. (<i>Photo 3 & Figure 1</i>)	
		4. Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 5 July 2018 to audit the site environmental performance. The findings of the inspection are summarized below:-	
		(a) Wastewater treatment facilities at South Portal were function properly and the effluent was clear. (<i>Photos 4</i>)	
		(b) The site area adjacent to the stream was completely sealed to minimize the risk of site runoff flowing into the exiting stream. (<i>Photo 5</i>)	
		(c) The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel. (<i>Photo 6</i>)	
		(d) The construction site was general in order and no adverse water quality impact was observed.	
		5. In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from from Sha Tau Kok Road water and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and	

	 external source of muddy water and unlikely caused by the works under Contract 6. 6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 11 and 12 July 2018. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual. 	
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.	
Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aul	
Date :	25 July 2018	

Photo 1

During water sampling on 10 July 2018, the water quality observed at WM3x was slightly turbid.

Photo 2

During water sampling on 10 July 2018, the water quality flowing at WM3-C was clear.

Photo 3

As reported by the CCKJV, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road.

Photo 5

The site area adjacent to the stream was completely sealed to minimize the risk of site runoff flowing into the exiting stream.

Photo 4

Joint site inspection was conducted on 5 July 2018. It was observed that wastewater treatment facilities at South Portal were function properly.

Photo 6

The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel.

Z:\Jobs\2013\TCS00694\300\IR\F1693a.doc Action-United Environmental Services & Consulting

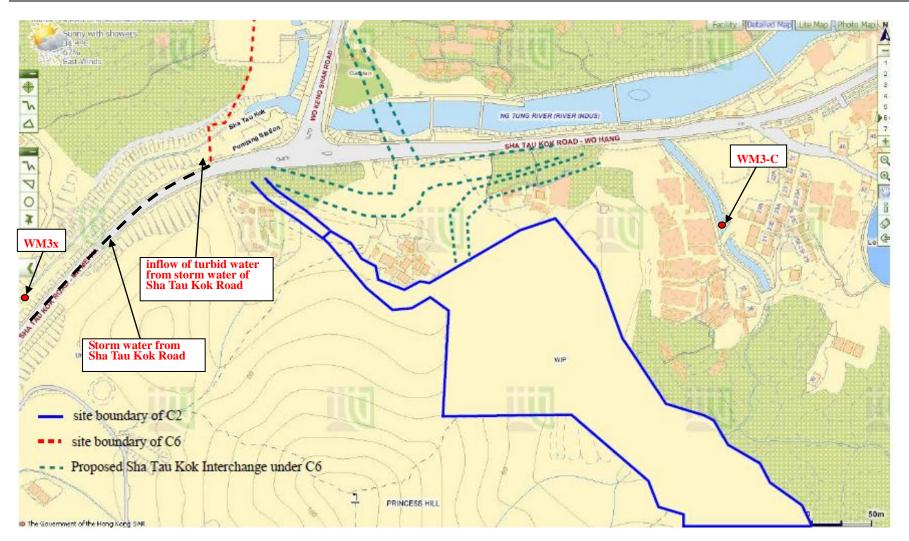


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No		2717 3299	
Company	Dragages Hong Kong Limited				
сс					
From	Nicola Hon	Date	25 July	2018	
Our Ref	TCS00697/13/300/ F1694a	No of Pages	11	(Incl. cover sheet)	
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM3x on 3, 4, 6, 9 and 10 July 2018 (Contract 2)				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1652 dated 6 July 2018 TCS00694/13/300/F1658 dated 9 July 2018 TCS00694/13/300/F1664 dated 10 July 2018 TCS00694/13/300/F1689 dated 19 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD)Fax:2685 1133Mr. Edwin Ching (CRE, AECOM)Fax:2171 3498Mr. Antony Wong (IEC, SMEC)By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008			
Date		3 July 2018	4 July 2018	6 July 2018	9 July 2018
Location			W	M3x	•
Time		11:20	10:25	11:00	11:20
Parameter				spended Solids (mg/L	
Action Level	l			control station of the s	
				control station of the s	
Limit Level	1			control station of the s	
Measured	WM3-C	48.8 / 93.0	5.7 / 7.0	7.0 / 10.0	9.7 / 7.0
Level	WM3x	93.0 / 123.0	53.9 / 46.0	19.0 / 22.0	239.0 / 204.5
Exceedance	9	Limit Level / Limit Level	Limit Level / Limit Level	Limit Level / Limit Level	Limit Level / Limit Level
Investigatio Results, Recommen & M Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 3 to 9 July 2018 at North Portal Site included tunnel internal work and construction of slip road, retaining wall and			
		 According to the site photo taken on 3 July 2018, turbid water was observed WM3x and WM3-C under the influence of heavy rainstorm. During wate sampling on 4, 6 and 9 July 2018, the water quality at WM3-C was appeared clear while turbid/ slightly turbid water was observed at WM3x. (<i>Photos 1 to and Figure 1</i>) It was noted that the channel of WM3x also received the stort water from Sha Tau Kok Road and the adjacent villages. 			orm. During water M3-C was appeared M3x. (<i>Photos 1 to 8</i>)
		3. According to the weather information from the Observatory, there we successive rainy days during 3 to 9 July 2018, in which heavy rainfall			ch heavy rainfall of 8 respectively. The ted by the stirred up nent even outside the actor of Contract 6, open channel which
		July 2018. It North Portal Si downstream Lo Building Site, 1 generated from	was observed waster ite properly, and the v oi Tung Stream was vi the recent condition of	, IEC, DHK and ET w water treatment facilit vater quality outside th isually clear. (<i>Photos 1</i> of site area was hard parks was limited. The <i>12 & 13</i>)	ies were in place at ne discharge point at 0 & 11) At Admin aved and wastewater
		wastewater tre identified durin water observed	eatment facilities and ng site inspection.	had implemented and d no adverse water In view of the extern t is considered that the vater and not caused the	quality impact was al source of muddy e exceedances were
		increased to o	daily due to the lin	monitoring frequency nit level exceedance ecutive days. There y	recorded until no

triggered in the monitoring result on 7, 11 and 12 July 2018. Nevertheless,
the Contractor should continually fully implement the water mitigation
measures as recommended in the implementation schedule for environmental
mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Aug.		
Date :	25 July 2018		

Photo 1

During water sampling on 3 July 2018, the water quality observed at WM3x was turbid.

Photo 2

During water sampling on 3 July 2018, the water quality flowing at WM3-C was turbid.

Photo 3

During water sampling on 4 July 2018, the water quality observed at WM3x was turbid.

Photo 4 During water sampling on 4 July 2018, the water quality flowing at WM3-C was clear.

Photo 5Photo 6During water sampling on 6 July 2018, the water
quality observed at WM3x was slightly turbid.During water sampling on 6 July 2018, the water
quality flowing at WM3-C was clear.

Photo 7

During water sampling on 9 July 2018, the water quality observed at WM3x was turbid.

Photo 9

As reported by the Contractor of Contract 6, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road.

Photo 8

During water sampling on 9 July 2018, the water quality flowing at WM3-C was clear.

Photo 10

During site inspection on 6 July 2018, it was observed wastewater treatment facilities were in place properly.

Photo 11

During site inspection on 6 July 2018, it was observed the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

Photo 12 At Admin Bui

At Admin Building Site, the recent condition of site area was hard paved and wastewater generated from the construction works was limited.

Photo 13 At Admin Building Site, the water quality at the adjacent channel was clear on 6 July 2018.

AUES

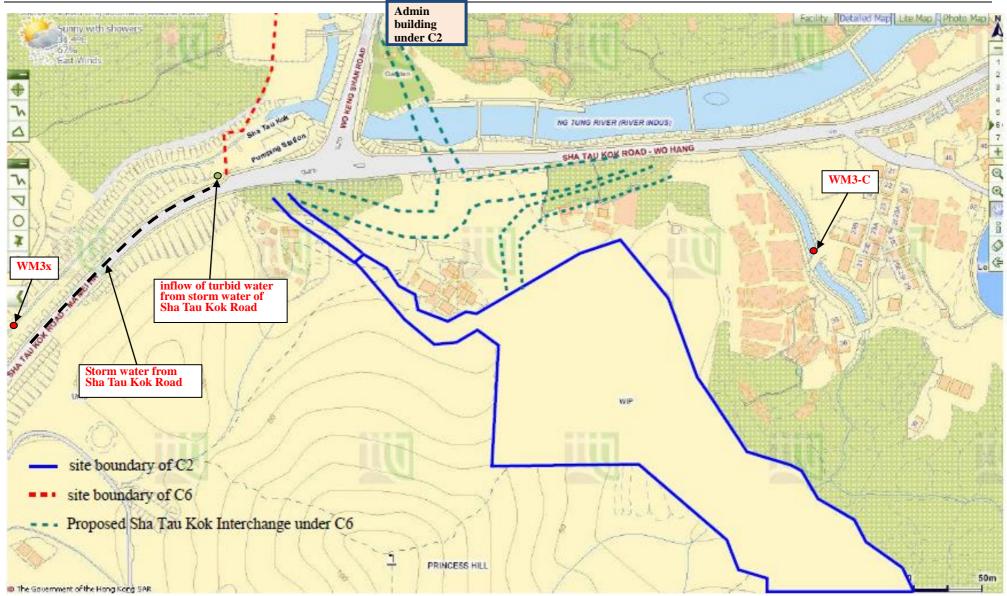


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Drojost			
Project Date	CE 45/2008 10 July 2018		
Location	WM3x		
Time	11:10		
Parameter	Suspended Solids (mg/L)		
Action Level	12.6 AND 120% of upstream control station of the same day		
Limit Level	12.9 AND 130% of upstream control station of the same day		
Measured WM3-C	3.0		
Level WM3x	13.0		
Exceedance	Limit Level		
Investigation			
Results, Recommendations & Mitigation Measures	1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 10 July 2018 at North Portal Site included tunnel internal work and construction of slip road, retaining wall and permanent drainage and ventilation building while construction of permanent drainage and fitting out and construction of car park were conducted at Admin Building Site. The relevant works area under C2 and the water monitoring locations are illustrated in <i>Figure 1</i> .		
	 According to the site photo taken on 10 July 2018, the water quality at WM3-C was clear while slightly turbid water was observed at WM3x. (<i>Photos 1 & 2 and Figure 1</i>) It was noted that the channel of WM3x also received the storm water from Sha Tau Kok Road and the adjacent villages. 		
	3. According to the weather information from the Observatory, there were a few showers on 10 July 2018. As reported by the Contractor of Contract 6, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road. (<i>Photo 3 & Figure 1</i>)		
	4. Joint site inspection with AECOM, IEC, DHK and ET was carried out on 6 July 2018. It was observed wastewater treatment facilities were in place at North Portal Site properly, and the water quality outside the discharge point at downstream Loi Tung Stream was visually clear. (<i>Photos 4 & 5</i>) At Admin Building Site, the recent condition of site area was hard paved and wastewater generated from the construction works was limited. The water quality at the adjacent channel was clear. (<i>Photos 6 & 7</i>)		
	5. In our investigation, the Contractor had implemented and maintained the wastewater treatment facilities and no adverse water quality impact was identified during site inspection. In view of the external source of muddy water observed, it is considered that the exceedances were related to other source of turbid water and not caused by the works under Contract 2.		
	6. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 11 and 12 July 2018. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.		
Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Auli		

25 July 2018

Date :

Photo Record

Photo 1

During water sampling on 10 July 2018, the water quality observed at WM3x was slightly turbid.

Photo 3

As reported by the Contractor of Contract 6, inflow of turbid water was occasionally observed from the open channel which receiving the stormwater from the Sha Tau Kok Road.

Photo 2

During water sampling on 10 July 2018, the water quality flowing at WM3-C was clear.

Photo 4

During site inspection on 6 July 2018, it was observed wastewater treatment facilities were in place properly.

Photo 5

During site inspection on 6 July 2018, it was observed the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

Photo 6 At Admin Building Site, the recent condition of site area was hard paved and wastewater generated from the construction works was limited.

At Admin Building Site, the water quality at the adjacent channel was clear on 6 July 2018.

AUES

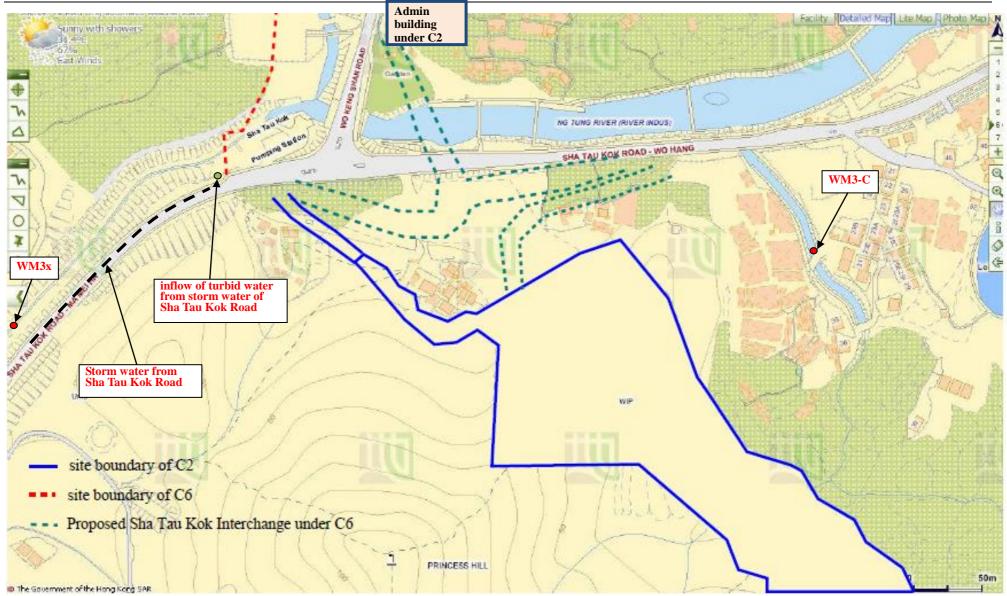


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-m	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	31 July	2018
Our Ref	TCS00694/13/300/ F1695a	No of Pages	6	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of W 16 July 2018			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the following Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1656 dated 9 July 2018 TCS00694/13/300/F1671 dated 16 July 2017 TCS00694/13/300/F1687 dated 19 July 2017

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project CE 45/2008 Date 7 July 2018 14 July 2018 16 July 2018 7 July 2018 14 July 2018 16 July 2018 Location WM1 Time 10:20 9:55 10:30 10:20 9:55 10:30 Parameter Turbidity (NTU) Suspended Solids (mg/L) Action Level 51.3 AND 120% of upstream control station of the same day 54.5 AND 120% of upstream control station of the same day Limit Level 67.6 AND 130% of upstream control 64.9 AND 130% of upstream control	18						
LocationWM1Time10:209:5510:3010:209:5510:ParameterTurbidity (NTU)Suspended Solids (mg/L)Action Level51.3 AND 120% of upstream control station of the same day54.5 AND 120% of upstream control station of the same dayLimit Level67.6 AND 130% of upstream control64.9 AND 130% of upstream control							
Time10:209:5510:3010:209:5510:ParameterTurbidity (NTU)Suspended Solids (mg/L)Action Level51.3 AND 120% of upstream control station of the same day54.5 AND 120% of upstream control station of the same dayLimit Level67.6 AND 130% of upstream control64.9 AND 130% of upstream control	30						
ParameterTurbidity (NTU)Suspended Solids (mg/L)Action Level51.3 AND 120% of upstream control station of the same day54.5 AND 120% of upstream con station of the same dayLimit Level67.6 AND 130% of upstream control64.9 AND 130% of upstream con	50						
Action Level51.3 AND 120% of upstream control station of the same day54.5 AND 120% of upstream con station of the same dayLimit Level67.6 AND 130% of upstream control64.9 AND 130% of upstream con							
Action Levelstation of the same daystation of the same dayLimit Level67.6 AND 130% of upstream control64.9 AND 130% of upstream control	ntrol						
Limit Level 67.6 AND 130% of upstream control 64.9 AND 130% of upstream co							
	ontrol						
station of the same day station of the same day							
Measured WM1-C 16.6 266.5 24.8 8.0 155.0 24	.0						
Levels WM1 100.6 637.0 217.0 69.0 409.5 172	l . 5						
ExceedanceLimitLimitLimitLimitLimit	nit						
Level Level Level Level Level Level Level							
Investigation 1. According to the site information provided from CCKJV, constru							
Results, activities carried out on 7, 14 and 16 July 2018 at Bridge Y (near V							
Recommendations include construction of retaining wall and drainage system at Brid	ge Y.						
& Mitigation The monitoring locations and works area are shown in <i>Figure 1</i> .							
Measures 2. According to the field photos taken on 7, 14 and 16 July 2018, 1							
water was observed at WM1 while the water quality at WM1-C	was						
turbid / slightly turbid. (Photos 1 to 6)							
3. According to the weather information from the Observatory, there w	vere a						
few showers on 7 and 16 July 2018. Moreover, heavy rainstorm							
total rainfall of 52.7mm was recorded on 14 July 2018. The	water						
quality throughout the river course was highly affected by the stirr							
sediment and muddy runoff from the surrounding environment othe							
the construction site.							
4. Joint site inspection was carried out by the RE, IEC, CCKJV and E							
	and 12 July 2018. The observation during the site inspections were						
summarized below.	summarized below.						
(a) Based on the site condition and construction activities, waste	(a) Based on the site condition and construction activities, wastewater						
	generated from the works was limited and no adverse water quality impact contributed to W/M was absorbed (D betor 7 c c)						
impact contributed to WM1 was observed. (Photos 7 & 8)							
(b) During the weekly site inspection on 12 July 2018, unco	vered						
	stockpile and general refuse cumulated on the ground of Bridge Y						
near D01 were observed. The general refuse and stockpile had	near D01 were observed. The general refuse and stockpile had been						
removed from site immediately after the inspection. There was	-						
trace amount of rainfall recorded on 12 July 2018 and D01							
close to the stream, the water quality impacts arising from the							
deficiencies were therefore considered neglected.(c) Wheel washing was carried out on the paved ground to minimize th							
							generation of muddy water and temporary bunding was provided to
	minimize the risk of site runoff flowing into the stream. (Photos 9 &						
10)							
5. In our investigation, the water quality mitigation implemented for Bridge							
	Y and site condition was generally in order, it was considered that						
	exceedances were related to the impact of rain and not due to the works						
under Contract 6.	under Contract 6.						

6.	According to the Event and Action, the monitoring frequency at WM1
	has been increased to daily due to the limit level exceedance recorded
	until no exceedances were triggered in consecutive days. Additional
	monitoring was carried out on 17 and 18 July 2018 and no exceedances
	were triggered. Nevertheless, the Contractor should continue fully
	implement the water mitigation measures as recommended in the
	implementation schedule for environmental mitigation measures in the
	EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	31 July 2018		

Photo Record

Photo 1

On 7 July 2018, turbid water was observed at WM1 and the water flow is very slow.

Photo 2 On 7 July 2018, the water quality at WM1-C was slightly turbid.

Photo 3

On 14 July 2018, turbid water was observed at WM1.

Photo 4 On 14 July 2018, turbid water was observed at WM1-C.

Photo 5 On 16 July 2018, turbid water was observed at WM1.

Photo 6 On 16 July 2018, the water quality at WM1-C was slightly turbid.

During site inspection on 5 and 12 July 2018, according to the site condition and construction activities, wastewater generated from the works was limited.

Photo 9 Wheel washing was carried out on the paved ground.

Photo 8

During site inspection on 5 and 12 July 2018, no adverse water quality impact was observed and contributed to WM1.

Photo 10 Temporary bunding was provided to minimize the risk site runoff flowing into the stream.

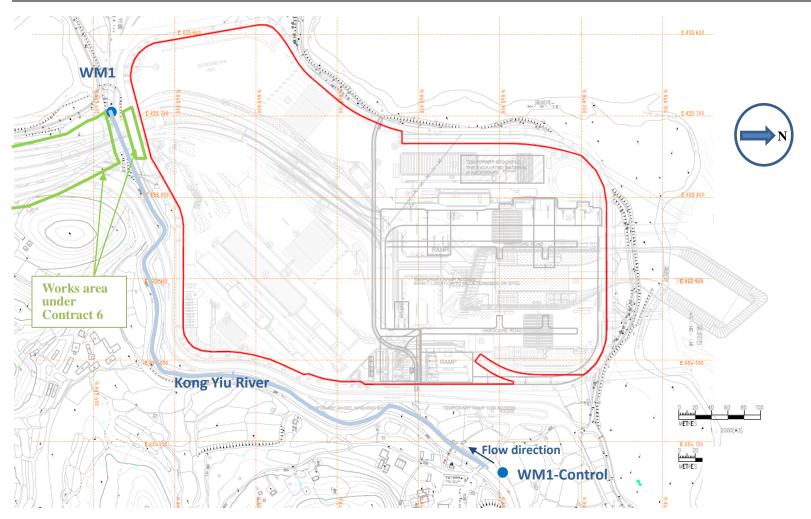


Figure 1 Location Map for Water Quality Monitoring Locations WM1 and WM1-C

То	Mr. Alex Liu	Fax No	2752 069	96
Company	Leighton Contractors (Asia) Limited			
сс				
From	Nicola Hon	Date	8 August	2018
Our Ref	TCS00769/15/300/ F0274a	No of Pages	8	(Incl. cover sheet)
RE	Architectural Services Department (Arc Construction of Liantang/Heung Yuen Buildings and Associated Facilities Investigation Report of Exceedance of V 16 July 2018	Wai Boundar	y Control	Point (BCP) – BCP

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref. of following:-

TCS00769/15/300/F0270 dated 9 July 2018 TCS00769/15/300/F0271 dated 16 July 2018 TCS00769/15/300/F0273 dated 19 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

c.c.

Nicola Hon Environmental Consultant Encl.

Ms. Clara U (EPD)	Fax:	2685 1133
Mr. William WL Cheng (ASD)		By e-mail
Mr. Justin Cheung (Ronald Lu)		By e-mail
Mr. Antony Wong (IEC, SMEC)		By e-mail
Mr. Simon Leung (ER, AECOM)	Fax:	2674 7732

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

		ort on Action		(2000]
Project	CE 45/2008					
Contract	SS C505					
Location			WN			
Date	7 July 2018	14 July 2018	16 July 2018	7 July 2018	14 July 2018	16 July 2018
Time	10:20	9:55	10:30	10:20	9:55	10:30
Parameter		urbidity (NTU)		-	nded Solids (-
Action Level		20% of upstre		54.5 AND 120% of upstream control		
	station of the same day			station of the same day		
Limit Level	67.6 AND 130% of upstream control			64.9 AND 130% of upstream control		
		on of the same		station of the same day		
Measured WM1-C	16.6	266.5	24.8	8.0	155.0	24.0
levels WM1	100.6	<u>637.0</u>	217.0	69.0	409.5	171.5
Exceedance	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level	Limit Level
Investigation		g to the site ir				
Results, Recommendations & Mitigation Measures	rebar fixing	ed out on 7 are illustrated te boundary	formwork, in Figure 1 .	concerting, The water		
	 According to the field photos taken on 7, 14 and 16 July 2018, turbi water was observed at WM1 while the water quality at WM1-C was turbi / slightly turbid. (Photos 1 to 6) 					
	 According to the weather information from the Observatory, there were few showers on 7 and 16 July 2018. Moreover, heavy rainstorm wi total rainfall of 52.7mm was recorded on 14 July 2018. The wat quality throughout the river course was highly affected by the stirred u sediment and muddy runoff from the surrounding environment other that the construction site. 					nstorm with The water ne stirred up
	4. During inspection on 11 and 18 July 2018, the site observation and implementation of mitigation measures are summarized below.					
	(a) According to the site observation, wastewater generated from the construction activities was limited. (Photo 7)					
 (b) Wheel washing facility was implemented at the site exit (Gate 3), ditch was constructed to collect the wastewater generated by whe washing for recycling purpose. (Photo 8) As advised by LCAL, r water would be discharge to the drainage at Lin Ma Hang Road. 					ed by wheel y LCAL, no	
(c) No site runoff flowing from the site to public area was obse (Photo 9)					as observed.	
(d) The wastewater treatment facilities were implemented as p temporary site drainage plan. (Photos 10 and 11 and Figure 3)					·	
 (e) During rainy day, the surface runoff from the site will be collected the temporary drainage which built according to the temporary drainage plan. All wastewater generated from the site will p through the perimeter channel and divert to the wastewater treatm facilities for treatment prior to discharge. (Photo 12 & Figure 3) 					mporary site the will pass ter treatment ligure 3)	
	5. In our i	nvestigation,	the implem	entation of v	water quality	y mitigation

Investigation Report on Action or Limit Level Non-compliance

implemented and site condition was generally in order, it was considered that exceedances were related to the impact of rain and not due to the works under Contract SS C505.
6. According to the Event and Action, the monitoring frequency at WM1 has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. Additional monitoring was carried out on 17 and 18 July 2018 and no exceedances were triggered. Nevertheless, the Contractor should continue fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Anh		
Date :	8 August 2018		

On 7 July 2018, turbid water was observed at WM1 and the water flow is very slow.

Photo 2

On 7 July 2018, the water quality at WM1-C was slightly turbid.

Photo 3

On 14 July 2018, turbid water was observed at WM1.

On 16 July 2018, turbid water was observed at WM1.

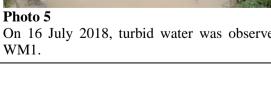


Photo 4

On 14 July 2018, turbid water was observed at WM1-C.

Photo 6 On 16 July 2018, the water quality at WM1-C was slightly turbid.

During site inspection on 11 July 2018, it was observed that wastewater generated from the active construction activities was limited.

Photo 8

Wheel washing facility was implemented at the site exit (Gate 3), a ditch was constructed to collect the wastewater generated by wheel washing for recycling purpose.

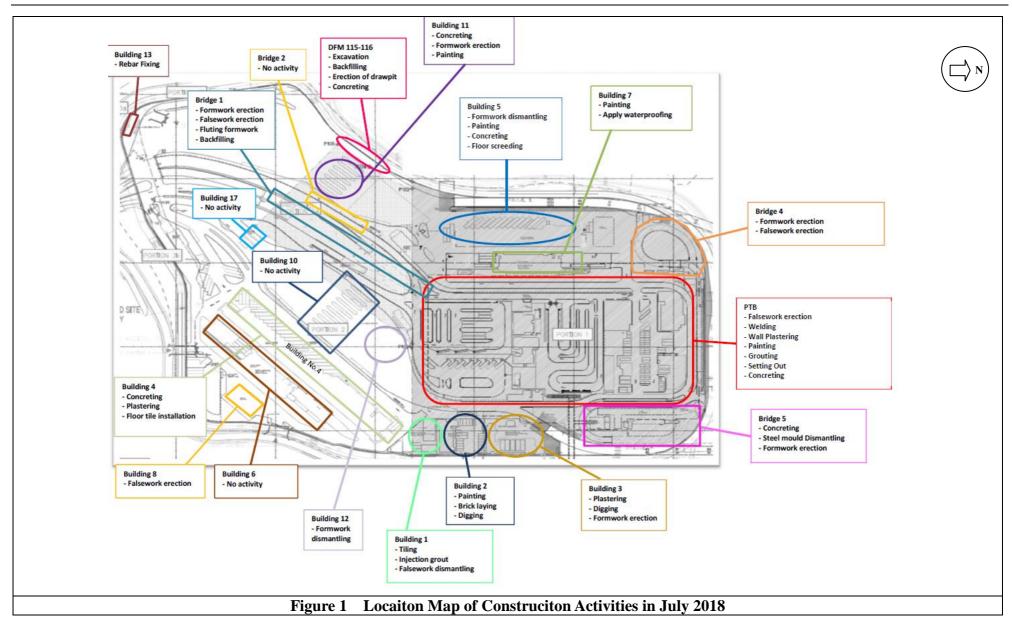
Photo 9

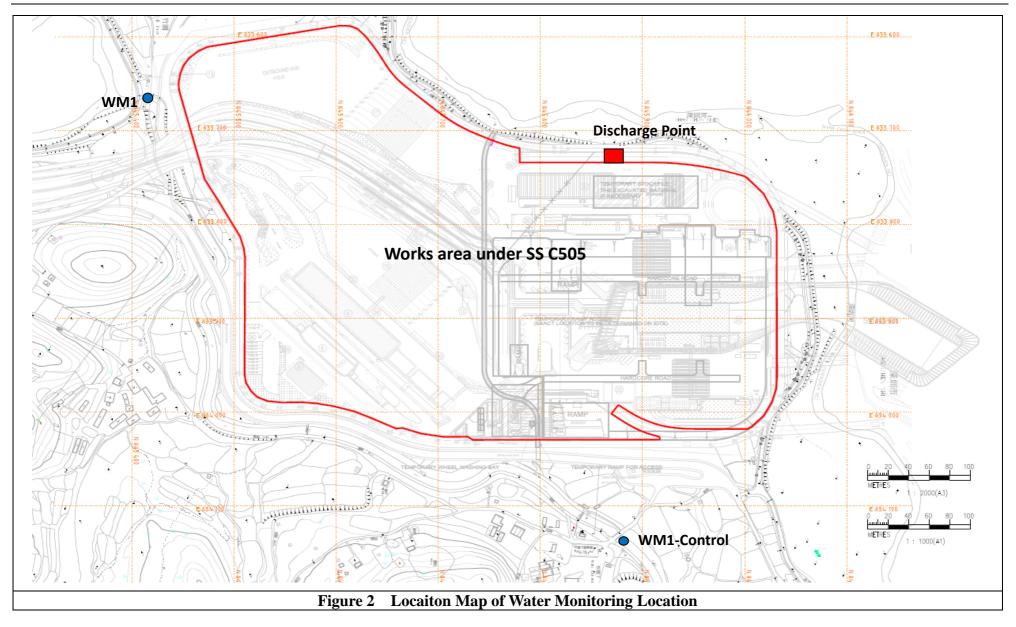
During site inspection at the site exit on 18 July 2018, no site runoff flowing from the site to public area was observed.

Photo 10

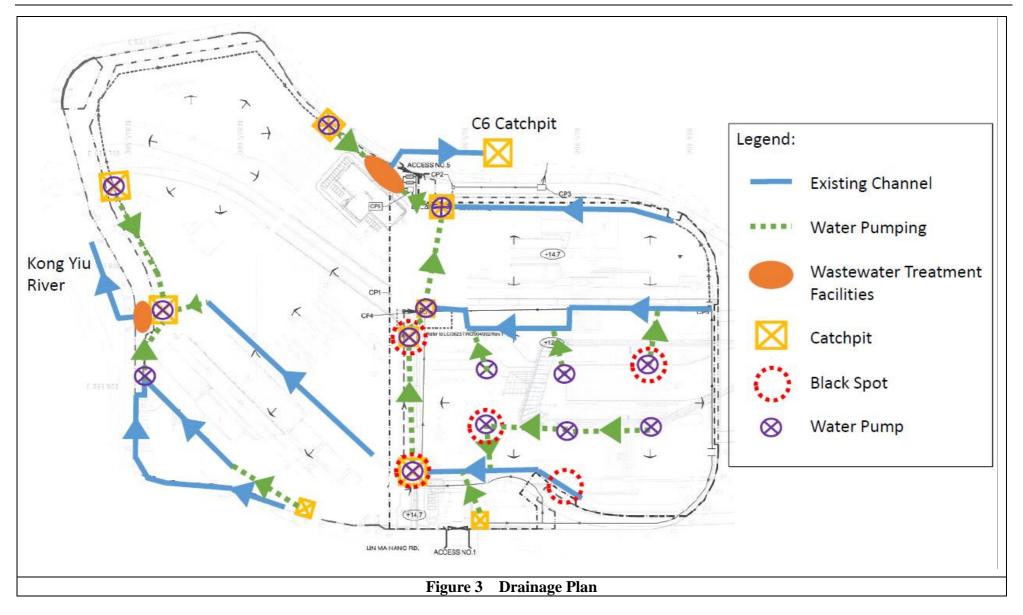
The wastewater treatment facilities were implemented as per the drainage plan.

Photo 11


The wastewater treatment facilities were implemented as per the temporary site drainage plan.


Photo 12

During rainy day, the surface runoff from the site will be collected by the temporary drainage which built according to the temporary site drainage plan. All wastewater generated from the site will pass through the perimeter channel and divert to the wastewater treatment facilities for treatment prior to discharge.


AUES

AUES

То	Mr. Vincent Chan	Fax No	By e-n	nail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	10 Aug	ust 2018
Our Ref	TCS00694/13/300/ F1690	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Investigation Report of Exceedance of 13, 14, 16 and 17 July 2018			
If you do not	reactive all pages or transmission is illegible plage	contact the originat	on on (852)	2050 6050 to record Should

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1668 dated 12 July 2018 TCS00694/13/300/F1669 dated 12 July 2018 TCS00694/13/300/F1672 dated 16 July 2018 TCS00694/13/300/F1681 dated 17 July 2018 TCS00694/13/300/F1686 dated 19 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Developed						
Project				CE 45/2008		
Date		12 July 2018	13 July 2018	14 July 2018	16 July 2018	17 July 2018
Location			[WM2A(a)	1	1
Time		11:15	9:45	10:15	10:50	9:50
Parameter			Turbidity (NT	U) / Suspended	solids (mg/L)	
Action Leve	el	24.9 A 14.6 A	ND 120% of up ND 120% of up	stream control st ostream control s	ation of the sam station of the sam	e day / ne day
Limit Level	l			stream control st stream control s		
Measured	WM2A-C	8.6 / 9.5	76.9 / 24.0	30.2 / 25.0	10.2 / 6.0	6.4 / 6.0
Levels	WM2A(a)	194.5 / 121.0	437.5 / 304.0	192.0 / 118.0	263.5 / 173.5	37.4 / 25.0
Exceedance Investigation Results, Recommendations & Mitigation Measures		Contract 6 July 2018 construction	at Bridge D (on. The monitor	Limit Level / Limit Level formation prov struction activiti upstream of W oring locations a	es carried out d M2A(a)) were	uring 12 to 17 mainly bridge
		sampling of at impact WM2A-C 2018, mud water qualit 3. According successive rainfalls of Under the course was from the s On 13 and under rain- intermedia	to the site phot on 12, 16 and 17 station WM2A was visually cle dy water was of ity at WM2A-C to the weather heavy rainstorn f 50.4mm, 52.7 influence of hea s highly affected surrounding envi- t 14 July 2018, storm was being te of the constru-	os taken by the 7 July 2018, it w (a) was turbid ar. During wat bserved at impa was slightly turb information from m on 13, 14 an mm and 67.4mm vy rain, the wat l by the stirred u vironment even it was observed g trapped at the action site and r	vas observed that I while the wa ter sampling on ct station WM2 bid. (<i>Photos 1 to</i> m the Observato d 15 July 2018 m were recorde ter quality throu up sediment and outside the con d that muddy w Nylon Dam wl nuddy water has	t water quality ater quality at 13 and 14 July A(a) while the 10) ory, there were 8 and the total d respectively. ghout the river muddy runoff instruction site. vater generated hich located at
		been hand activities t CCKJV o wastewated the river of CLP to st	led over to CL here. (<i>Figure 1</i>) observed that t r at improper loc ourse. (<i>Photo 13</i>) op discharging	13 July 2018, particular particul	ractor of CLP beriod of 12 to or of CLP wa using muddy wa re advised the su nproper location	got some site 16 July 2018, as discharging ter getting into abcontractor of n until further

	observed by CCKJV since 17 July 2018.
5.	Weekly joint site inspections among the RE, IEC, CCKJV and ET were conducted on 12 July 2018 at the site area of Bridge D to audit the site environmental performance and implementation of mitigation measures, the observation during the site inspection is summarized below.
	(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.
	(b) Wastewater treatment facilities were properly provided for Bridge D (<i>Figure 1</i>)
	(c) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photos 14 & 15</i>)
6.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. Since improper discharge by other parties was observed and successive heavy rainstorm happened on 13, 14 and 15 July 2018, it is considered that the exceedances were related to the rainstorm and improper discharge by other parties and not caused by the works under the Project.
7.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There was SS exceedance recorded on 18 and 19 July 2018 and another investigation will be provided. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Auch
Date :	10 August 2018

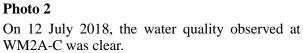

Photo Record

Photo 1

On 12 July 2018, muddy water was observed at WM2A(a).

Photo 3

WM2A(a).

On 13 July 2018, muddy water was observed at WM2A(a).

On 13 July 2018, the water quality observed at WM2A-C was slightly turbid.

On 14 July 2018, the water quality observed at On 14 July 2018, muddy water was observed at WM2A-C was slightly turbid.

Z:\Jobs\2013\TCS00694\300\IR\F1696a.doc Action-United Environmental Services & Consulting

On 16 July 2018, muddy water was observed at WM2A(a).

Photo 9

On 17 July 2018, muddy water was observed at WM2A(a).

Photo 11

On 13 July 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

Photo 8

On 16 July 2018, the water quality observed at WM2A-C was clear.

Photo 10

On 17 July 2018, the water quality observed at WM2A-C was clear.

Photo 12

On 14 July 2018, it was observed that muddy water from upstream after rainstorm was being trapped at the Nylon Dam which located at intermediate of the construction site.

Z:\Jobs\2013\TCS00694\300\IR\F1696a.doc Action-United Environmental Services & Consulting

During the period of 12 to 16 July 2018, CCKJV observed that the subcontractor of CLP was discharging wastewater at improper location, which causing muddy water getting into the river course.

Photo 14

As water quality mitigation measures, open slopes were hard paved as far as practicable to minimize muddy runoff.

Photo 15

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

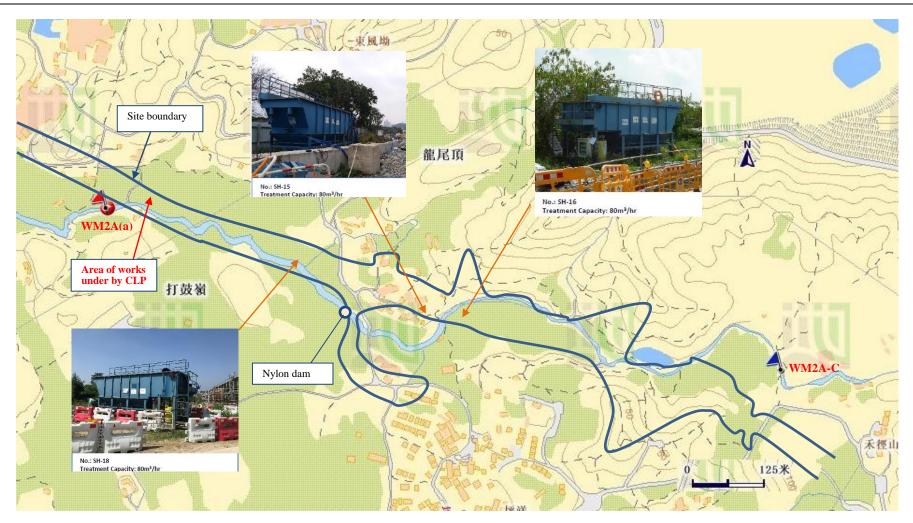


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-ma	ail
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	6 August	2018
Our Ref	TCS00694/13/300/ F1710	No of Pages	7	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 18,19, 20 and 21 July 2018			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1683 dated 19 July 2018 TCS00694/13/300/F1698 dated 24 June 2018 TCS00694/13/300/F1699 dated 20 July 2018 TCS00694/13/300/F1702 dated 30 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.

Ms. Clara U (EPD) Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC) Fax: 2685 1133 Fax: 2251 0698 By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report on Action or Limit Level Non-compliance

Project		CE 45/2008			
Date		18 July 2018	19 July 2018	20 July 2018	21 July 2018
Location			WM2A	A(a)	
Time		10:30	13:18	11:10	10:00
Parameter		Т	urbidity (NTU) / Susp	ended solids (mg/L)	
Action Leve	el		120% of upstream cor 120% of upstream co		
Limit Level	l		130% of upstream cor 130% of upstream co		
Measured	WM2A-C	8.1 / 4.0	6.7 / 6.0	7.9 / 6.5	8.8 / 6.0
Levels	WM2A(a)	411.5 / 259.5	37.6 / 40.0	260.0 / 242.5	101.8 / 75.0
Exceedance	2	Limit Level /	Limit Level /	Limit Level /	Limit Level /
	on Results,	Limit Level	Limit Level	Limit Level	Limit Level
Recommend Mitigation	dations &	1. According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 18 to 21 July 2018 at Bridge D (upstream of WM2A(a)) were mainly bridge construction. The monitoring locations and work boundary are shown in <i>Figure 1</i> .			
		 According to the site photos taken by the monitoring team during water sampling on 18, 19, 20 and 21 July 2018, muddy water were observed at WM2A(a) while the water quality at WM2A-C were appeared to be clear. (<i>Photos 1 to 8</i>) 			
		been successiv 7.1mm were r the influence of was highly aff surrounding en 20 July 2018, water was ger Thick sedimen dam. (<i>Photos</i> rainstorm was	the weather information we rainy days and tot ecorded on 18, 19 and of heavy rain, the wate ected by the stirred up nvironment even outsid deflation of Nylon of herated by the stirred int was observed at th 9 to 12) On 19 July observed trapped at the ving to downstream are	al rainfall of 29.6m d 20 July 2018 resp er quality throughou sediment and mudd de the construction dam was observed up sediment under e river bed after de 2018, muddy water he Nylon Dam and	nm, 17.3mm and bectively. Under it the river course by runoff from the site. On 18 and in which muddy rapid water flow. eflation of Nylon r generated under the muddy water
		SH-18 were c exceedances. SH-16 and SH facilities were advised by C	the wastewater treatmarried out by CCKJV It was observed that I-18 were function pro- e generally in good CKJV, wastewater treatmart only stand-by on site.	⁷ on 18 and 21 Jul the wastewater tro operly and effluent condition. (<i>Photos</i>	y 2018 upon the eatment facilities at both treatment <i>14 to 17)</i> As
		5. Weekly joint s	site inspections among	g the RE, IEC, CCK	GV and ET were

conducted on 19 July 2018 to audit the site environmental performance and implementation of mitigation measures, the observation during the site inspection is summarized below.
(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.
(b) Wastewater treatment facilites were properly provided for Bridge D (<i>Figure 1</i>)
(c) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photo 18</i>)
5. In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection. It is considered that the exceedances on 18 to 20 July 2018 were resulted by rainstorm and the exceedances on 21 July 2018 were related to the residual impact after rain and not caused by the works under the Project.
7. According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There was SS exceedance recorded on 23 and 24 July 2018 and another investigation will be provided. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	Auch
Date :	6 August 2018

Photo Record

Photo 1

On 18 July 2018, muddy water was observed at WM2A(a).

<image>

On 18 July 2018, it was observed that water quality at WM2A-C appeared to be clear.

Photo 3

On 19 July 2018, muddy water was observed at WM2A(a).

Photo 5 On 20 July 2018, muddy water was observed at WM2A(a). On 19 July 2018, it was observed that water quality at WM2A-C appeared to be clear.

Photo 6 On 20 July 2018, it was observed that water quality at WM2A-C appeared to be clear.

Z:\Jobs\2013\TCS00694\300\IR\F1710.doc Action-United Environmental Services & Consulting

On 21 July 2018, muddy water was observed at WM2A(a).

Photo 9

On 18 July 2018, deflation of Nylon dam was observed and muddy water was generated by the stirred up sediment under rapid water flow.

Photo 11

On 20 July 2018, deflation of Nylon dam was observed and muddy water was generated by the stirred up sediment under rapid water flow.

Photo 8

On 21 July 2018, it was observed that water quality at WM2A-C appeared to be clear.

Photo 10

Thick sediment was observed at the river bed after deflation of Nylon Dam on 18 July 2018.

Photo 12 Thick sediment was observed at the river bed after deflation of Nylon Dam 20 July 2018.

Z:\Jobs\2013\TCS00694\300\IR\F1710.doc Action-United Environmental Services & Consulting

On 19 July 2018, muddy water generated under rainstorm was observed trapped at the Nylon Dam and the muddy water have been flowing to downstream area slowly.

Photo 15

Inspection on the wastewater treatment facilities SH-16 was carried out on 21 July 2018 and it was observed that SH-16 was function properly and effluent was generally in good condition..

Photo 17

Inspection on the wastewater treatment facilities SH-18 was carried out on 21 July 2018 and it was observed that SH-18 was function properly and effluent was generally in good condition.

Photo 14

Inspection on the wastewater treatment facilities SH-16 was carried out on 18 July 2018 and it was observed that SH-16 was function properly and effluent was generally in good condition.

Photo 16

Inspection on the wastewater treatment facilities SH-18 was carried out on 18 July 2018 and it was observed that SH-18 was function properly and effluent was generally in good condition.

Photo 18

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

То	Mr. Vincent Chan	Fax No	By e-ma	il
Company	CRBC-CEC-Kaden JV			
сс				
From	Nicola Hon	Date	3 August	2018
Our Ref	TCS00694/13/300/ F1713a	No of Pages	10	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of and 18 July 2018 (Contract 6)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1673 dated 16 July 2018 TCS00694/13/300/F1684 dated 16 July 2018 TCS00694/13/300/F1704 dated 30 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant Encl.

c.c.

Ms. Clara U (EPD) Mr. Simon Leung (ER of C6/ AECOM) Mr. Antony Wong (IEC, SMEC) Fax: 2685 1133 Fax: 2251 0698 By email

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008		
Date		14 July 2018	16 July 2018	
Location		WM3x		
Time		10:55	11:30	
Parameter		Turbi	dity (NTU)	
Action Leve	el	13.4 AND 120% of upstrea	m control station of the same day	
Limit Leve	l	14.0 AND 130% of upstrea	m control station of the same day	
Measured	WM3-C	24.9	17.3	
Level	WM3x	42.3	27.0	
Exceedance	e	Limit Level	Limit Level	
Investigatio Results, Recommen & N Measures		1. According to the site information provided by the Contractor of C6 (CCKJV), the construction activities carried out at South Portal Site (upstream of WM3x) on 14 and 16 July 2018 included construction of Sha Tau Kok Interchange and road diversion. The monitoring locations and works areas are illustrated in <i>Figure 1</i> .		
		2. According to the site photo taken on 14 and 16 July 2018, turbid water was observed at WM3x while the water quality at WM3-C was slightly turbid. It was observed that the water flowing in the channel of WM3x was very rapid under the impact after rainstorm. Moreover, it was noted that the channel of WM3x also receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid. (<i>Photos 1 to 4 & Figure 1</i>)		
	3. According to the weather information from the Observatory, a trainfall of 52.7mm and 5.8mm were recorded on 14 and 16 July respectively. Under the impact of rainstorm, the water quality through the river channel was highly affected by the stirred up sediment and runoff from the surrounding environment even outside the construction			
		carried out at the river channel c	e on 14 and 16 July 2018, inspection was prossing of works area of Contract 6 and it g from site area of Contract 6 was clear.	
			RE, Contractor, IEC and ET was conducted environmental performance. The findings below:-	
		(a) Wastewater treatment faciliti and the effluent was clear. (<i>Pl</i>	es at South Portal were function properly <i>hoto</i> 7)	
			stream was completely sealed to minimize into the exiting stream. (<i>Photo 8</i>)	
			o the river channel was covered with e generation of muddy runoff flowing into	

	(d) The construction site was general in order and no adverse water quality impact was observed.
	6. In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from Sha Tau Kok Road and the adjacent villages during rainy days, it is considered that the exceedances were likely related to the rainstorm and unlikely caused by the works under Contract 6.
	7. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were exceedances triggered in the monitoring result on 18 July 2018 and another investigation will be provided. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Prepared By :	Nicola Hon
Designation :	Environmental Consultant

Designation :	Environmental Consultant
Signature :	Auch
Date :	3 August 2018

Photo Record

Photo 1

During water sampling on 14 July 2018, the water quality observed at WM3x was turbid and the water flowing in the channel was very rapid under the impact after rainstorm. It also was noted that the channel of WM3x receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid.

Photo 3

During water sampling on 16 July 2018, the water quality observed at WM3x was turbid and the water flowing in the channel was very rapid under the impact after rainstorm. It also was noted that the channel of WM3x receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid.

During water sampling on 14 July 2018, the water quality flowing at WM3-C was slightly turbid. It was observed that the water flowing in the river course was very rapid under the impact after rainstorm.

During water sampling on 16 July 2018, the water quality flowing at WM3-C was slightly turbid. It was observed that the water flowing in the river course was very rapid under the impact after rainstorm.

Photo 5

Upon detection of exceedance on 14 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 7

Joint site inspection was conducted on 12 July 2018. It was observed that wastewater treatment facilities at South Portal were function properly.

Photo 9

The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel.

Photo 6

Upon detection of exceedance on 16 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 8

The site area adjacent to the stream was completely sealed to minimize the risk of site runoff flowing into the exiting stream.

Z:\Jobs\2013\TCS00694\300\IR\F1713a.doc Action-United Environmental Services & Consulting

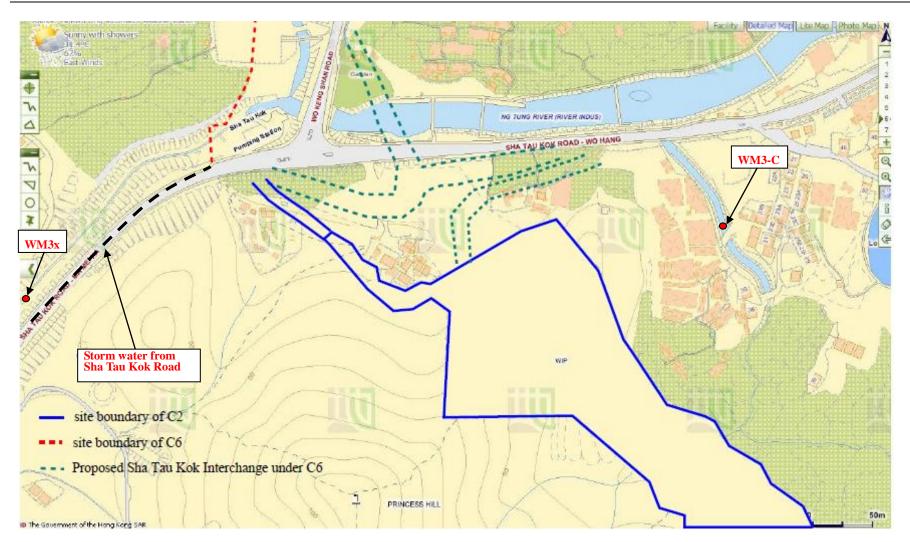


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008
Project Date		18 July 2018
Location		WM3x
Time		11:25
Parameter		Turbidity (NTU) / Suspended Solids (mg/L)
Action Lev	el	13.4 AND 120% of upstream control station of the same day / 12.6 AND 120% of upstream control station of the same day
Limit Leve	1	14.0 AND 130% of upstream control station of the same day / 12.9 AND 130% of upstream control station of the same day
Measured	WM3-C	23.6 / 31.5
Level	WM3x	87.3 / 71.5
Exceedance	e	Limit Level / Limit Level
Investigation Recommen Mitigation	dations &	1. According to the site information provided by the Contractor of C6 (CCKJV), the construction activities carried out at South Portal Site (upstream of WM3x) on 18 July 2018 included construction of Sha Tau Kok Interchange and road diversion. The monitoring locations and works areas are illustrated in <i>Figure 1</i> .
		2. According to the site photo taken on 18 July 2018, muddy water was observed at WM3x while the water quality at WM3-C was slightly turbid. It was observed that the water flowing in the channel of WM3x was very rapid under the impact after rainstorm. Moreover, it was noted that the channel of WM3x also receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid. (<i>Photos 1 to 2 & Figure 1</i>)
		3. According to the weather information from the Observatory, a total rainfall of 29.6mm was recorded on 18 July 2018. Under the impact of rainstorm, the water quality throughout the river channel was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site.
		4. Upon detection of the exceedance on 18 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear. (<i>Photo 3</i>)
		5. Weekly joint site inspection by RE, Contractor, IEC and ET was conducted on 19 July 2018 to audit the site environmental performance. The findings of the inspection are summarized below:-
		 (a) Wastewater treatment facilities at South Portal were function properly and the effluent was clear. (<i>Photos 4</i>)
		(b) Site hoarding was erected and completely sealed to minimize the risk of site runoff flowing out of the site and get into the stream. (<i>Photo 5</i>)
		(c) The exposed slope next to the river channel was covered with

	impervious sheet to minimize generation of muddy runoff flowing into the channel. (<i>Photo 6</i>)
	(d) The construction site was general in order and no adverse water quality impact was observed.
	6. In our investigation, the Contractor had implemented water quality mitigation measures and no adverse water quality impact was observed during site inspection. Since inflow of turbid water was observed from Sha Tau Kok Road water and the adjacent villages during rainy day, it is considered that the exceedances were likely related to the rainstorm and external source of muddy water and unlikely caused by the works under Contract 6.
	7. According to Event and Action, the monitoring frequency at WM3x has been increased to daily due to the limit level exceedance recorded until no exceedances were triggered in consecutive days. There were no exceedances triggered in the monitoring result on 19 and 20 July 2018. Nevertheless, the Contractor should continually fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Action to be taken	The Contractor is reminded to fully implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.
Prepared By :	Nicola Hon
Designation :	Environmental Consultant
Signature :	And

Date :

3 August 2018

Photo 1

During water sampling on 18 July 2018, muddy water was observed at WM3x.

Photo 3

Upon detection of the exceedance on 18 July 2018, inspection was carried out at the river channel crossing of works area of Contract 6 and it was observed that water flowing from site area of Contract 6 was clear.

Photo 5

Site hoarding was erected and completely sealed to minimize the risk of site runoff flowing out of the site and get into the stream.

During water sampling on 18 July 2018, the water quality flowing at WM3-C was slightly turbid.

Photo 4

Joint site inspection was conducted on 19 July 2018. It was observed that the wastewater treatment facilities at South Portal were function properly and the effluent was clear

Photo 6

The exposed slope next to the river channel was covered with impervious sheet to minimize generation of muddy runoff flowing into the channel.

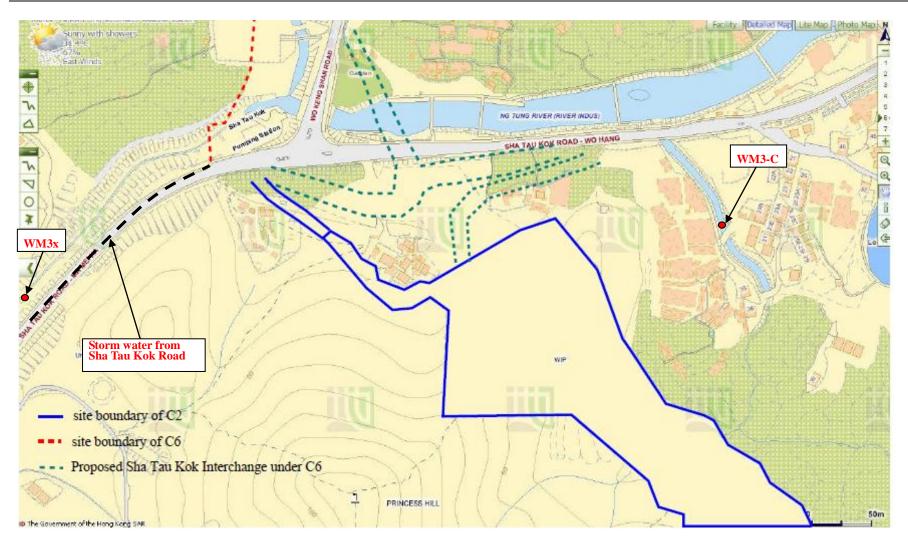


Figure 1 Location Map for Works Area under Contract 6 and Water Quality Monitoring Location

Fax Cover Sheet

То	Mr. Roger Lee	Fax No	2717 32	99
Company	Dragages Hong Kong Limited			
сс				
From	Nicola Hon	Date	8 August	2018
Our Ref	TCS00697/13/300/ F1714a	No of Pages	10	(Incl. cover sheet)
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary (Investigation Report of Exceedance of W 18 July 2018 (Contract 2)			

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Mr. Lee,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1674 dated 16 July 2018 TCS00694/13/300/F1685 dated 16 July 2018 TCS00694/13/300/F1705 dated 30 July 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of **Action-United Environmental Services & Consulting**

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Edwin Ching (CRE, AECOM)	Fax:	2171 3498
	Mr. Antony Wong (IEC, SMEC)		By e-mail

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project			CE 4	5/2008		
Date			14 July 2018	16 July 2018		
Location						
Time			10:55 11:30			
Parameter				ty (NTU)		
Action Level			13.4 AND 120% of upstream	control station of the same day		
Limit Level			14.0 AND 130% of upstream control station of the same day			
Measured Level	WM3-C		24.9	17.3		
	WM3x		42.3	27.0		
Exceedance			Limit Level	Limit Level		
Investigation Results, Recommendations & Mitigation Measures		1.	the construction activities carried ou Site included tunnel internal work drainage and ventilation building wh fitting out and construction of car pa	ovided from the Contractor of C2 (DHK), at on 14 and 16 July 2018 at North Portal and construction of slip road, permanent ile construction of permanent drainage and rk were conducted at Admin Building Site.		
		2.	observed at WM3x while the water was observed that the water flowing under the impact after rainstorm. M WM3x also receiving the storm v	ording to the site photo taken on 14 and 16 July 2018, turbid water was erved at WM3x while the water quality at WM3-C was slightly turbid. It observed that the water flowing in the channel of WM3x was very rapid er the impact after rainstorm. Moreover, it was noted that the channel of 13x also receiving the storm water from Sha Tau Kok Road and the cent villages which appeared turbid. (<i>Photos 1 to 4 & Figure 1</i>)		
		3.	of 52.7mm and 5.8mm were record Under the impact of rainstorm, the	on from the Observatory, a total of rainfall ded on 14 and 16 July 2018 respectively. water quality throughout the river channel up sediment and muddy runoff from the de the construction site.		
		4.		IEC, DHK and ET were carried out on 13 plementation of water quality mitigation		
				were in place at North Portal Site properly, e discharge point at downstream Loi Tung o 5)		
				cent condition of site area was hard paved the construction works was limited. The nnel was clear. (<i>Photo 6</i>)		
			observed during rain. Based on into the adjacent channel and t	runoff from site exit to public road was the site condition, no site runoff entering he drainage system nearby was observed. andbag barrier at the site exit of to prevent by $7 \& 8$)		
		5.	wastewater treatment facilities and identified during site inspection. I water observed due to rainstorm, it	had implemented and well maintained the d no adverse water quality impact was In view of the external source of muddy t is considered that the exceedances were vater and not caused by the works under		

	increased to daily due exceedances were trigger triggered in the monitorin will be provided. New implement the water	Action, the monitoring frequency at WM3x has been to the limit level exceedance recorded until no red in consecutive days. There were exceedances ng result on 18 July 2018 and another investigation ertheless, the Contractor should continually fully mitigation measures as recommended in the for environmental mitigation measures in the EM&A
Prepared By :	Nicola Hon	_
Designation :	Environmental Consultant	_
Signature :	Anh	
Date :	8 August 2018	-

Photo 1

During water sampling on 14 July 2018, the water quality observed at WM3x was turbid and the water flowing in the channel was very rapid under the impact after rainstorm. It also was noted that the channel of WM3x receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid.

Photo 3

During water sampling on 16 July 2018, the water quality observed at WM3x was turbid and the water flowing in the channel was very rapid under the impact after rainstorm. It also was noted that the channel of WM3x receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid.

During water sampling on 14 July 2018, the water quality flowing at WM3-C was slightly turbid. It was observed that the water flowing in the river course was very rapid under the impact after rainstorm.

During water sampling on 16 July 2018, the water quality flowing at WM3-C was slightly turbid. It was observed that the water flowing in the river course was very rapid under the impact after rainstorm.

Photo 5

During site inspection on 12 July 2018, it was observed wastewater treatment facilities were in place properly and water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

Photo 7

During site inspection at Admin Building Site on 12 July 2018, site runoff from site exit to public road was observed.

During site inspection at Admin Building Site on 12 July 2018, it was observed that the water quality at the adjacent channel was clear.

As water quality mitigation measures, DHK immediately stacked up sandbag barrier at the site exit of to prevent site runoff to public road.

AUES

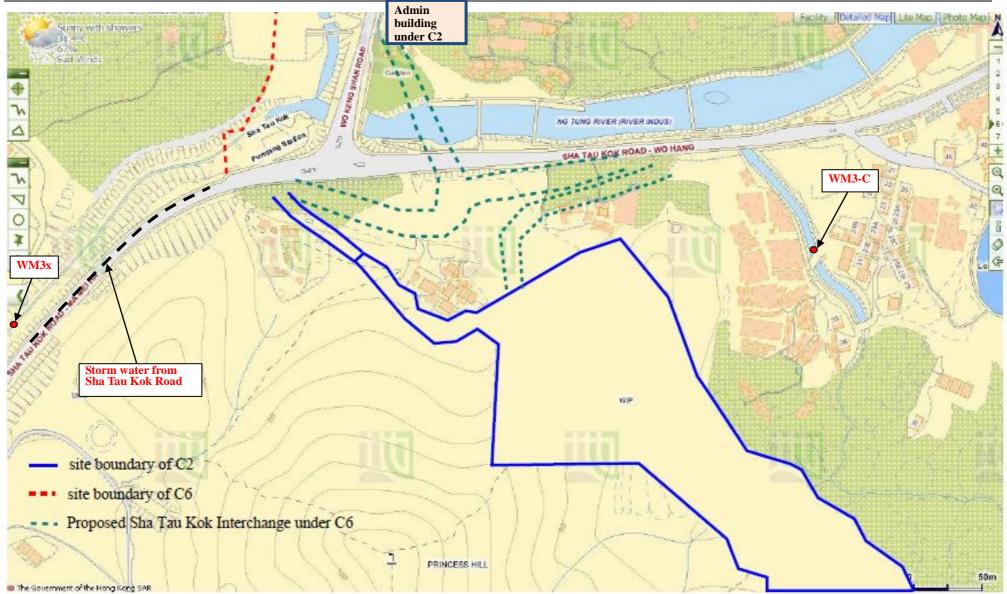


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/2008
Date		18 July 2018
Location		WM3x
Time		11:25
Parameter		Turbidity (NTU) / Suspended Solids (mg/L)
Action Level	l	13.4 AND 120% of upstream control station of the same day / 12.6 AND 120% of upstream control station of the same day
Limit Level		14.0 AND 130% of upstream control station of the same day / 12.9 AND 130% of upstream control station of the same day
Measured	WM3-C	23.6 / 31.5
Level	WM3x	87.3 / 71.5
Exceedance	e e e e e e e e e e e e e e e e e e e	Limit Level / Limit Level
Investigatio Results, Recommen & M Measures		1. According to the site information provided from the Contractor of C2 (DHK), the construction activities carried out on 18 July 2018 at North Portal Site included tunnel internal work and construction of slip road, permanent drainage and ventilation building while construction of permanent drainage and fitting out and construction of car park were conducted at Admin Building Site. The relevant works area under C2 and the water monitoring locations are illustrated in <i>Figure 1</i> .
		2. According to the site photo taken on 18 July 2018, muddy water was observed at WM3x while the water quality at WM3-C was slightly turbid. It was observed that the water flowing in the channel of WM3x was very rapid under the impact after rainstorm. Moreover, it was noted that the channel of WM3x also receiving the storm water from Sha Tau Kok Road and the adjacent villages which appeared turbid. (<i>Photos 1 to 2 & Figure 1</i>)
		3. According to the weather information from the Observatory, a total rainfall of 29.6mm was recorded on 18 July 2018. Under the impact of rainstorm, the water quality throughout the river channel was highly affected by the stirred up sediment and muddy runoff from the surrounding environment even outside the construction site.
		4. Joint site inspections with AECOM, IEC, DHK and ET were carried out on 20 July 2018, the observation and implementation of water quality mitigation measures are summarized below.
		 (a) Wastewater treatment facilities were in place at North Portal Site properly, and the water quality outside the discharge point at downstream Loi Tung Stream was visually clear. (<i>Photos 3 & 4</i>) However, the pH value of the discharge water was found slightly below the limit. DHK immediately adjust the setting of the acid dosage and ensure the pH value return to acceptable range.
		(b) At Admin Building Site, the recent condition of site area was hard paved and wastewater generated from the construction works was limited. The water quality at the adjacent channel was clear. (<i>Photo 5</i>)
		(c) As water quality mitigation measures, DHK has stacked up sandbag barrier at the site exit of to prevent site runoff to public road. (<i>Photo 6</i>)
		5. In our investigation, the Contractor had implemented and maintained the wastewater treatment facilities and no adverse water quality impact was identified during site inspection. In view of the external source of muddy water observed, it is considered that the exceedances were related to other source of turbid water and not caused by the works under Contract 2.
		6. According to Event and Action, the monitoring frequency at WM3x has been

	increased to daily due exceedances were trigger triggered in the monitorin Contractor should contin as recommended in the in measures in the EM&A M	ed in consecutive of ng result on 19 and ually fully implem nplementation school	lays. There w l 20 July 2018. ent the water 1	vere no exceedances Nevertheless, the mitigation measures
Prepared By :	Nicola Hon	_		
Designation :	Environmental Consultant	_		
Signature :	Aul			
Date :	8 August 2018	-		

Photo 1

During water sampling on 18 July 2018, muddy water was observed at WM3x.

Photo 3

During site inspection on 20 July 2018, it was observed wastewater treatment facilities were in place properly.

Photo 5

At Admin Building Site, the water quality at the adjacent channel was clear on 20 July 2018.

Photo 2

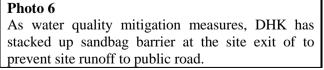

During water sampling on 18 July 2018, the water quality flowing at WM3-C was slightly turbid.

Photo 4

During site inspection on 20 July 2018, it was observed the water quality outside the discharge point at downstream Loi Tung Stream was visually clear.

AUES

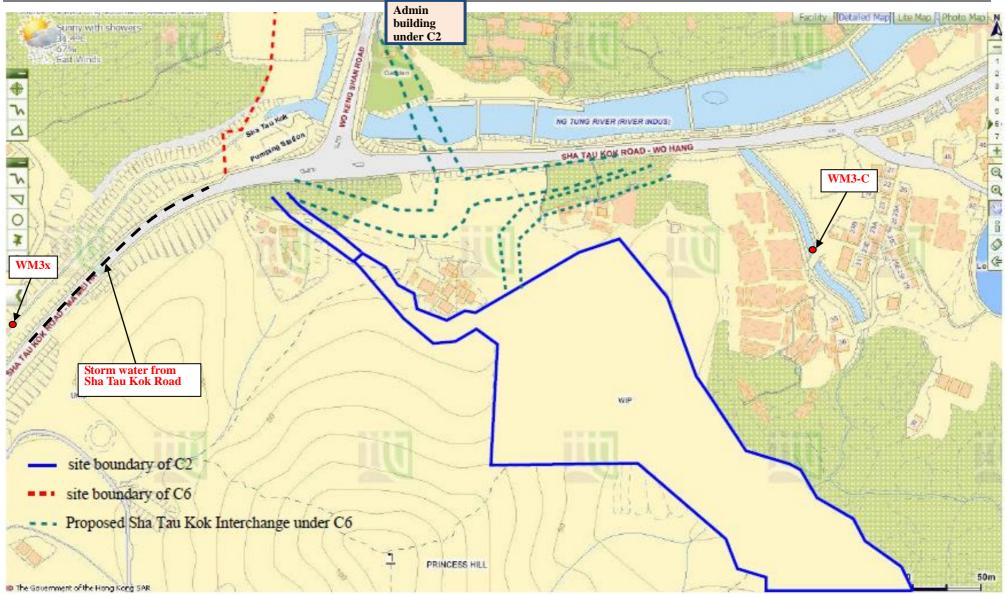


Figure 1 Location Map for Works Area under Contract 2 and Water Quality Monitoring Location

То	Mr. Vincent Chan	Fax No	By e-mail		
Company	CRBC-CEC-Kaden JV				
сс					
From	Nicola Hon	Date	13 August 2018		
Our Ref	TCS00694/13/300/ F1712a	No of Pages	11 (Incl. cover sheet)		
RE	Agreement No. CE 45/2008 Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 23, 24, 25, 26 and 28 July 2018				

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F1698 dated 24 July 2018 TCS00694/13/300/F1703 dated 30 July 2018 TCS00694/13/300/F1711 dated 2 August 2018

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at Tel: 2959-6059 or Fax: 2959-6079.

Yours Faithfully, For and on Behalf of Action-United Environmental Services & Consulting

Nicola Hon Environmental Consultant

Encl.

c.c.	Ms. Clara U (EPD)	Fax:	2685 1133
	Mr. Simon Leung (ER of C6/ AECOM)	Fax:	2251 0698
	Mr. Antony Wong (IEC, SMEC)		By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project			CE 45/20	08
Date			23 July 2018	24 July 2018
Location			WM2A(a)	
Time			11:12	10:45
Parameter			Turbidity (NTU) / Susper	nded solids (mg/L)
Action Leve	el		24.9 AND 120% of upstream contr 14.6 AND 120% of upstream cont	rol station of the same day / rol station of the same day
Limit Level	l		33.8 AND 130% of upstream contr 17.3 AND 130% of upstream cont	
Measured	WM2A-C		10.7 / 7.0	14.5 / 9.0
Levels	WM2A(a)		86.1 / 59.0	718.5 / 358.0
Exceedance	,		Limit Level /	Limit Level /
			Limit Level	Limit Level
Recommen	Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided from the Contractor of Contract 6 (CCKJV), construction activities carried out on 23 and 24 July 2018 at Bridge D (upstream of WM2A(a)) were mainly bridge construction. The monitoring locations and work boundary are shown in <i>Figure 1</i> .	
		2.	According to the site photos taken by sampling on 23 July 2018, muddy wate the water quality at WM2-C was sligh on 24 July 2018, it was observed th WM2A(a) was turbid while the water clear. (<i>Photos 1 to 4</i>) In addition, in CCKJV reported that inflow of muddy of WM2A-C. (<i>Photo 5</i>)	er was observed at WM2A(a) while tly turbid. During water sampling hat water quality at impact station quality at WM2A-C was visually the early morning of 23 July 2018,
		3.	According to the weather information heavy rainstorm on 23 July 2018 an Under the influence of heavy rain, the course was highly affected by the stirr from the surrounding environment e On 23 and 24 July 2018, muddy was observed trapped at the Nylon Dam w construction site and muddy water has slowly. (<i>Photos 6 to 7</i>)	the total rainfall was 30.8mm. water quality throughout the river red up sediment and muddy runoff even outside the construction site. ter generated under rainstorm was which located at intermediate of the
		4.	Weekly joint site inspections among t conducted on 19 July 2018 at works environmental performance and imple the observation during the site inspection	area of Bridge D to audit the site ementation of mitigation measures,
			(a) Bridge construction work was car	ried out at Bridge D and there was

· · · ·	
	no discharge due to nature of works.
	(b) Wastewater treatment facilites were provided for Bridge D and funciton properly (<i>Figure 1</i>)
	(c) As water quality mitigation measures, open slopes were covered with tarpaulin sheet or hard paved as far as practicable to minimize muddy runoff. (<i>Photo 8</i>)
5.	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slopes and surface to minimize muddy runoff. There was no adverse water quality impact observed during the site inspection at works area of Bridge D. It is considered that the exceedances on 23 July 2018 were resulted by rainstorm and the exceedances on 24 July 2018 were related to the residual impact after rain and not caused by the works under the Project.
6.	According to the Event and Action Plan, the frequency of water monitoring is increase to daily. There was SS exceedance recorded on 25 and 26 July 2018 and another investigation will be provided. Nevertheless, the Contractor should continually implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon		
Designation :	Environmental Consultant		
Signature :	Aul		
Date :	10 August 2018		

Photo 1

On 23 July 2018, muddy water was observed at WM2A(a).

Photo 2

On 23 July 2018, the water quality observed at WM2A-C was slightly turbid.

Photo 3

On 24 July 2018, muddy water was observed at WM2A(a).

Photo 5

In the early morning of 23 July 2018, CCKJV reported that inflow of muddy water was observed from upstream of WM2A-C.

Photo 4

On 24 July 2018, the water quality observed at WM2A-C was clear.

Photo 6

On 23 July 2018, muddy water generated under rainstorm was observed trapped at the Nylon Dam which located at intermediate of the construction site and muddy water has been flowing to downstream area slowly.

Photo 7

On 24 July 2018, muddy water generated under rainstorm was observed trapped at the Nylon Dam which located at intermediate of the construction site and muddy water has been flowing to downstream area slowly.

Photo 8

As water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project				CE 45/2008			
Date			25 July 2018	26 July 2018	28 July 2018		
Location			WM2A(a)				
Time			10:05	10:20	9:55		
Parameter	Parameter			Suspended solids (mg/L)			
Action Level			14.6 AND 120% of upstream control station of the same day				
Limit Level	l		17.3 AND 130% of upstream control station of the same day				
Measured Levels			8.0	8.0	2.5		
Levels	WM2A(a)	21.0		22.0	32.0		
Exceedance	lance		Limit Level	Limit Level	Limit Level		
Investigatio Recommend Mitigation					rried out on 25 to 28 July a)) were mainly bridge		
		 According to the site photos taken by the monitoring team during sampling on 25, 26 and 28 July 2018, it was observed that water qua impact station WM2A(a) was slightly turbid while the water qual WM2A-C was visually clear. (<i>Photos 1 & 6</i>) 		served that water quality at			
		3. Weekly joint site inspections among the RE, IEC, CCKJV and ET wer conducted on 26 July 2018 at works area of Bridge D to audit the site environmental performance and implementation of mitigation measure the observation during the site inspection is summarized below.			Bridge D to audit the site on of mitigation measures,		
			(a) Bridge construction work was carried out at Bridge D and there was no discharge due to nature of works.				
			(b) Wastewater treatment facilities were properly provided for Bridge and funcation properly. (<i>Figure 1</i>)				
				<pre>lity mitigation measures, open t or hard paved as far as pract s 7 & 8)</pre>			
		4.	measures such as minimize muddy observed during considered that th	on, CCKJV had implemented providing tarpaulin sheet for runoff. There was no adve the site inspection at works he exceedances on 25, 26 an ks under the Project.	open slope and surface to erse water quality impact area of Bridge D. It is		
		5.	monitoring is included and the days to process, the	e Event and Action Plan, rease to daily. Since the SS ne need for repeated measuren which is in-situ measurement	result required 5 working nent could only rely on the		

monitoring on 27 and 29 July 2018 as no exceedance of turbidity recorded
at the day before. Moreover, there were no exceedances recorded on 30
July and 1 August 2018. Nevertheless, the Contractor should continually
implement the water mitigation measures as recommended in the
implementation schedule for environmental mitigation measures in the
EM&A Manual.

Nicola Hon			
Environmental Consultant			
Aul			
10 August 2018			

Photo 1

On 25 July 2018, water quality observed at WM2A(a) was slightly turbid.

On 25 July 2018, the water quality observed at WM2A-C was clear.

Photo 3

On 26 July 2018, water quality observed at WM2A(a) was slightly turbid.

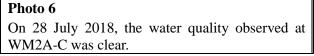

Photo 5 On 28 July 2018, water quality observed at WM2A(a) was slightly turbid.

Photo 4

On 26 July 2018, the water quality observed at WM2A-C was clear.

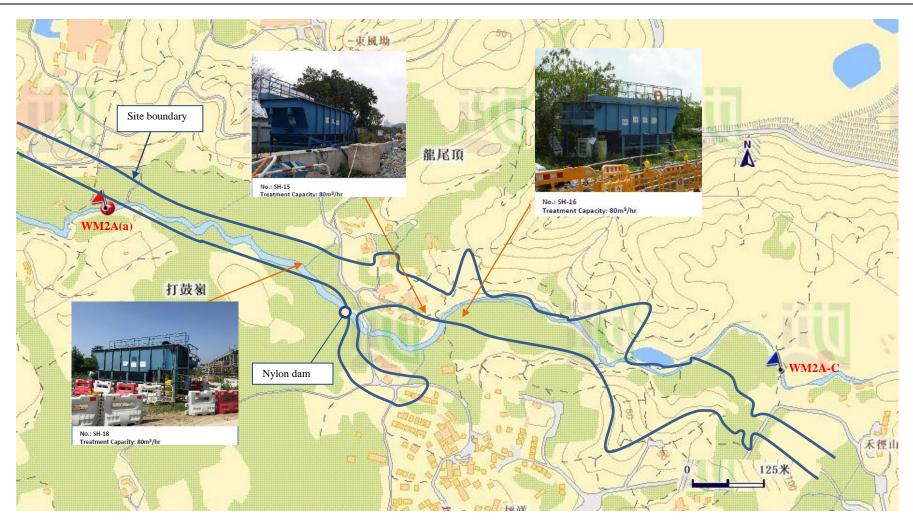


Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract 6