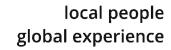


JOB NO.: TCS00694/13

AGREEMENT NO. CE 45/2008 (CE) LIANTANG/ HEUNG YUEN WAI BOUNDARY CONTROL POINT AND ASSOCIATED WORKS

MONTHLY ENVIRONMENTAL MONITORING AND AUDIT REPORT (No.71) – JUNE 2019


PREPARED FOR
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
(CEDD)

Date Reference No. Prepared By Certified By

12 July 2019 TCS00694/13/600/R2120v3

Nicola Hon Tam Tak Wing (Environmental Consultant) (Environmental Team Leader)

Version	Date	Remarks
1	9 July 2019	First Submission
2	12 July 2019	Amended against IEC's comments on 10 July 2019
3	12 July 2019	Amended against IEC's comments on 12 July 2019

Our ref:

7076192/L24780/AW/MCC/rw

15 July 2019

AECOM 8/F, Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T.

By Email & Post

Attention: Mr Owen NG

Dear Sir

Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Independent Environmental Checker – Investigation
Monthly EM&A Report (No. 71) – June 2019

With reference to the Monthly EM&A Report No. 71 for June 2019 (Version 2) certified by the ET Leader, please be noted that we have no adverse comments on the captioned submission. We herewith verify the captioned submission in accordance with Condition 5.4 of the Environmental Permit No. EP-404/2011/D.

Thank you for your attention and please do not hesitate to contact the undersigned on tel. 3995-8120 or by email to antony.wong@smec.com; or our Mr Arthur CHIU on tel. 3995-8144 or by email to arthur.chiu@smec.com.

Yours faithfully

Antony WONG

Independent Environmental Checker

cc CEDD/BCP - Mr LU Pei Yu / Mr William CHEUNG by fax: 3547 1659 ArchSD - Mr William WL CHENG by fax: 2804 6805

AECOM - Mr Pat LAM / Mr Perry YAM by email
Ronald Lu - Mr Peter YAM / Mr Justin CHEUNG by email
CW - Mr Ken Lun by email

DHK - Mr Alan KAM by email
CCKJV - Mr Vincent CHAN by email
KRSJV - Mr Matthew TSANG by email

Leighton - Mr Ray HO by email
Siemens - Mr Patrick LEUNG by email
AUES - Mr TW TAM by email

SMEC ASIA LIMITED

27/F Ford Glory Plaza
37-39 Wing Hong Street
Cheung Sha Wan, Kowloon, Hong Kong
T+852 3995 8100 F+852 3995 8101 E hongkong@smec.com
www.smec.com

EXECUTIVE SUMMARY

ES01 This is the **71**st monthly EM&A report presenting the monitoring results and inspection findings for the reporting period from **1 to 30 June 2019** (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

- ES02 To facilitate the project management and implementation, Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project is divided to seven CEDD contracts including Contract 2 (CV/2012/08), Contract 3 (CV/2012/09), Contract 4 (NE/2014/02), Contract 5 (CV/2013/03), Contract 6 (CV/2013/08) and Contract 7 (NE/2014/03) and an ArshSD contract (Contract SS C505).
- ES03 In the Reporting Period, the major construction works under Liantang/Heung Yuen Wai Boundary Control Point and Associated Works of the Project included Contract 2, Contract 3, Contract 4, Contract 6, Contract 7 and Contract SS C505. Environmental monitoring activities under the EM&A programme in the Reporting Period are summarized in the following table.

Environmental	Environmental Monitoring	Reporting Period			
Aspect	Parameters / Inspection	Number of Monitoring Locations to undertake	Total Occasions		
Air Quality	1-hour TSP	9	135		
All Quality	24-hour TSP	9	45		
Construction Noise	L _{eq(30min)} Daytime	10	40		
		WM1 & WM1-C	12 Scheduled & 0 extra		
	Water in-situ measurement and/or sampling	WM2A(a) & WM2A-Cx	12 Scheduled & 1 extra		
Water Quality		WM2B & WM2B-C	12 Scheduled & 0 extra (*)		
		WM3x &WM3-C	12 Scheduled & 0 extra		
		WM4, WM4-CA &WM4-CB	12 Scheduled & 0 extra		
Ecology	Woodland compensationi) General Health condition of planted speciesii) Survival of planted species	9 Quadrats and transect	0		
		Contract 2	4		
		Contract 3	4		
	IEC, ET, the Contractor and	Contract 4	4		
Inspection / Audit	RE joint site Environmental	Contract 6	4		
Audit	Inspection and Auditing	Contract 7	4		
		Contract SS C505 (#)	4		

Remark: (#) IEC only joined one (1) event of site inspection for Contract SS C505.

ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE

ES04 In the Reporting Period, no construction noise exceedance and valid noise complaint was recorded. For air quality monitoring, no exceedance of 1-hour and 24-hour TSP was recorded. Furthermore, two Limit Level exceedances were recorded during water quality monitoring. The summary of exceedance in the Reporting Period is shown below.

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Air Quality	1-hour TSP	0	0	0			
7 m Quanty	24-hour TSP	0	0	0			

^(*) In whole Reporting Period, water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm)

				Event & Action			
Environmental Aspect	Monitoring Parameters	Action Level	Limit Level	NOE Issued	Investigation Result	Project related exceedance	Corrective Actions
Construction Noise	$\begin{array}{c} L_{eq(30min)} \\ Daytime \end{array}$	0	0	0			
	DO	0	0	0			
Water Quality	Turbidity	0	0	0	Not project related.		N/A
	SS	1	1	2			

ES05 There were two (2) Limit Level exceedances recorded in water quality monitoring. Investigation has been undertaken by ET and investigation result revealed that the Contractor had implemented the water quality mitigation measures, in view of inflow of muddy water was observed from upstream of control station, it was concluded that the exceedances were not related to the works under the Project.

ENVIRONMENTAL COMPLAINT

ES06 In this Reporting Period, no environmental complaint was received.

NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES07 No environmental summons and prosecutions were recorded in the Reporting Period.

REPORTING CHANGE

ES08 The project (except for the BCP building complex) was commenced on 26 May 2019. In view of the partial commencement of operation to be considered as the same as the commencement of operation for the entire project, all relevant requirements as stipulated in the EP and the approved EIA report (including the EM&A Manual) for the commencement of operation of the Project shall be strictly complied with. The implementation status of mitigation measures for operation phase in the Reporting Period will be presented in the Report.

SITE INSPECTION

- ES09 In this Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 2* has been carried out by the RE, IEC, ET and the Contractor on **6, 14, 21 and 28 June 2019**. No non-compliance was noted during the site inspection.
- ES10 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 3* has been carried out by the RE, IEC, ET and the Contractor on **6, 13, 19 and 27 June 2019**. No non-compliance was noted during the site inspection.
- ES11 In the Reporting Period, joint site inspection to evaluate the site environmental performance at Contract 4 has been carried out by the RE, IEC, ET and the Contractor on 6, 10, 21 and 28 June 2019. No non-compliance was noted.
- ES12 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract 6* has been carried out by the RE, IEC, ET and the Contractor on **6**, **13**, **20** and **27** June **2019**. No non-compliance was noted during the site inspection.
- ES13 In the Reporting Period, joint site inspection for **Contract 7** to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6**, **13**, **18** and **28 June 2019**. No non-compliance was noted during the site inspection.
- ES14 In the Reporting Period, joint site inspection to evaluate the site environmental performance at *Contract SS C505* has been carried out by the RE, ET and the Contractor on **5**, **12**, **19** and **26**

June 2019 in which IEC joined the site inspection on **19 June 2019**. No non-compliance was noted during the site inspection.

FUTURE KEY ISSUES

- ES15 During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual.
- ES16 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- ES17 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- ES18 Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.

Table of Contents

1	INTRODUCTION	1
	1.1 PROJECT BACKGROUND	1
	1.2 REPORT STRUCTURE	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
	2.1 CONSTRUCTION CONTRACT PACKAGING	3
	2.2 PROJECT ORGANIZATION	5
	2.3 CONCURRENT PROJECTS	5 7
	2.4 CONSTRUCTION PROGRESS	7
	2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS	9
3	SUMMARY OF IMPACT MONITORING REQUIREMENTS	12
	3.1 GENERAL	12
	3.2 MONITORING PARAMETERS	12
	3.3 MONITORING LOCATIONS	12
	3.4 MONITORING FREQUENCY AND PERIOD	14
	3.5 MONITORING EQUIPMENT	15
	3.6 MONITORING METHODOLOGY	17
	3.7 EQUIPMENT CALIBRATION	19
	3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS	19
	3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL	20
4	AIR QUALITY MONITORING	21
	4.1 GENERAL	21
	4.2 AIR QUALITY MONITORING RESULTS	21
5	CONSTRUCTION NOISE MONITORING	24
	5.1 GENERAL	24
	5.2 Noise Monitoring Results	24
6	WATER QUALITY MONITORING	25
U	6.1 GENERAL	25
	6.2 RESULTS OF WATER QUALITY MONITORING	25
7		
7	ECOLOGY MONITORING 7.1 GENERAL	28 28
8	WASTE MANAGEMENT	29
	8.1 GENERAL WASTE MANAGEMENT	29
	8.2 RECORDS OF WASTE QUANTITIES	29
9	SITE INSPECTION	30
	9.1 REQUIREMENTS	30
	9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH	30
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	33
10	10.1 ENVIRONMENTAL COMPLAINT, SUMMONS AND PROSECUTIONS	33
11	,	
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	36
	11.1 GENERAL REQUIREMENTS 11.2 TENTATIVE CONSTRUCTION A CTIVITIES IN THE COMING MONTH.	36
	11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH 11.3 KEY ISSUES FOR THE COMING MONTH	36 37
12	CONCLUSIONS AND RECOMMENDATIONS	39
	12.1 CONCLUSIONS	39
	12.2 RECOMMENDATIONS	39

LIST OF TABLES

TABLE 2-1	STATUS OF ENVIRONMENTAL LICENSES AND PERMITS OF THE CONTRACTS
TABLE 3-1	SUMMARY OF EM&A REQUIREMENTS
TABLE 3-2	IMPACT MONITORING STATIONS - AIR QUALITY
TABLE 3-3	IMPACT MONITORING STATIONS - CONSTRUCTION NOISE
TABLE 3-4	IMPACT MONITORING STATIONS - WATER QUALITY
TABLE 3-5	AIR QUALITY MONITORING EQUIPMENT
TABLE 3-6	CONSTRUCTION NOISE MONITORING EQUIPMENT
TABLE 3-7	WATER QUALITY MONITORING EQUIPMENT
TABLE 3-8	ACTION AND LIMIT LEVELS FOR AIR QUALITY MONITORING
TABLE 3-9	ACTION AND LIMIT LEVELS FOR CONSTRUCTION NOISE
TABLE 3-10	ACTION AND LIMIT LEVELS FOR WATER QUALITY
TABLE 4-1	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM1C
TABLE 4-2	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM2
TABLE 4-3	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM3
TABLE 4-4	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM4B
TABLE 4-5	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM5A
TABLE 4-6	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM6
TABLE 4-7	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM7B
TABLE 4-8	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM8
TABLE 4-9	SUMMARY OF 24-HOUR AND 1-HOUR TSP MONITORING RESULTS – AM9B
TABLE 5-1	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 5-2	SUMMARY OF CONSTRUCTION NOISE MONITORING RESULTS
TABLE 6-1	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 2 AND 3
TABLE 6-2	WATER QUALITY MONITORING RESULTS ASSOCIATED OF CONTRACTS 6 AND SS C505
TABLE 6-3	WATER QUALITY MONITORING RESULTS ASSOCIATED ONLY CONTRACT 6
TABLE 6-4	WATER QUALITY MONITORING RESULTS ASSOCIATED CONTRACTS 2 AND 6
Table 6-5	ACTION AND LIMIT (A/L) LEVELS EXCEEDANCE RECORDED
TABLE 6-6	SUMMARY OF WATER QUALITY EXCEEDANCE IN THE REPORTING PERIOD
TABLE 8-1	SUMMARY OF QUANTITIES OF INERT C&D MATERIALS FOR THE PROJECT
TABLE 8-2	SUMMARY OF QUANTITIES OF C&D WASTES FOR THE PROJECT
TABLE 9-1	SITE OBSERVATIONS FOR CONTRACT 2
TABLE 9-2	SITE OBSERVATIONS FOR CONTRACT 3
TABLE 9-3	SITE OBSERVATIONS FOR CONTRACT 4
TABLE 9-4	SITE OBSERVATIONS FOR CONTRACT 6
Table 9-5	SITE OBSERVATIONS FOR CONTRACT SS C505
Table 9-6	SITE OBSERVATIONS FOR CONTRACT 7
TABLE 10-1	STATISTICAL SUMMARY OF ENVIRONMENTAL COMPLAINTS
TABLE 10-2	STATISTICAL SUMMARY OF ENVIRONMENTAL SUMMONS
TABLE 10-3	STATISTICAL SUMMARY OF ENVIRONMENTAL PROSECUTIONS
TABLE 11-1	ENVIRONMENTAL MITIGATION MEASURES

LIST OF APPENDICES

APPENDIX A	LAYOUT PLAN OF THE PROJECT
APPENDIX B	ORGANIZATION CHART
APPENDIX C	3-MONTH ROLLING CONSTRUCTION PROGRAM
APPENDIX D	DESIGNATED MONITORING LOCATIONS AS RECOMMENDED IN THE APPROVED EM&A MANUAL
APPENDIX E	MONITORING LOCATIONS FOR IMPACT MONITORING
APPENDIX F	CALIBRATION CERTIFICATE OF MONITORING EQUIPMENT AND HOKLAS-ACCREDITATION CERTIFICATE OF THE TESTING LABORATORY
APPENDIX G	EVENT AND ACTION PLAN
APPENDIX H	IMPACT MONITORING SCHEDULE
APPENDIX I	DATABASE OF MONITORING RESULT
APPENDIX J	GRAPHICAL PLOTS FOR MONITORING RESULT
APPENDIX K	METEOROLOGICAL DATA
APPENDIX L	WASTE FLOW TABLE
APPENDIX M	IMPLEMENTATION SCHEDULE FOR ENVIRONMENTAL MITIGATION MEASURES
APPENDIX N	INVESTIGATION REPORT FOR EXCEEDANCE (NO APPLICABLE)
APPENDIX O	INVESTIGATION REPORT FOR COMPLAINT
APPENDIX P	IMPLEMENTATION STATUS OF MITIGATION MEASURES FOR OPERATION PHASE
APPENDIX Q	IMPLEMENTATION STATUS OF WATER QUALITY MITIGATION MEASURES

1 INTRODUCTION

1.1 PROJECT BACKGROUND

- 1.1.1 Civil Engineering and Development Department is the Project Proponent and the Permit Holder of Agreement No. CE 45/2008 (CE) Liantang / Heung Yuen Wai Boundary Control Point and Associated Works, which is a Designated Project to be implemented under Environmental Permit number EP-404/2011/D granted on 20 January 2017.
- 1.1.2 The Project consists of two main components: Construction of a Boundary Control Point (hereinafter referred as "BCP"); and Construction of a connecting road alignment. Layout plan of the Project is shown in *Appendix A*.
- 1.1.3 The proposed BCP is located at the boundary with Shenzhen near the existing Chuk Yuen Village, comprising a main passenger building with passenger and cargo processing facilities and the associated customs, transport and ancillary facilities. The connecting road alignment consists of six main sections:
 - 1) Lin Ma Hang to Frontier Closed Area (FCA) Boundary this section comprises at-grade and viaducts and includes the improvement works at Lin Ma Hang Road;
 - 2) Ping Yeung to Wo Keng Shan this section stretches from the Frontier Closed Area Boundary to the tunnel portal at Cheung Shan and comprises at-grade and viaducts including an interchange at Ping Yeung;
 - 3) North Tunnel this section comprises the tunnel segment at Cheung Shan and includes a ventilation building at the portals on either end of the tunnel;
 - 4) Sha Tau Kok Road this section stretches from the tunnel portal at Wo Keng Shan to the tunnel portal south of Loi Tung and comprises at-grade and viaducts including an interchange at Sha Tau Kok and an administration building;
 - 5) South Tunnel this section comprises a tunnel segment that stretches from Loi Tung to Fanling and includes a ventilation building at the portals on either end of the tunnel as well as a ventilation building in the middle of the tunnel near Lau Shui Heung;
 - 6) Fanling this section comprises the at-grade, viaducts and interchange connection to the existing Fanling Highway.
- 1.1.4 Action-United Environmental Services & Consulting has been commissioned as an Independent ET to implement the relevant EM&A program in accordance with the approved EM&A Manual, as well as the associated duties. As part of the EM&A program, the baseline monitoring has carried out between 13 June 2013 and 12 July 2013 for all parameters including air quality, noise and water quality before construction work commencement. The Baseline Monitoring Report summarized the key findings and the rationale behind determining a set of Action and Limit Levels (A/L Levels) from the baseline data. Also, the Project baseline monitoring report which verified by the IEC has been submitted to EPD on 16 July 2013 for endorsement. The major construction works of the Project was commenced on 16 August 2013 in accordance with the EP Section 5.3 stipulation.
- 1.1.5 This is **71**st monthly EM&A report presenting the monitoring results and inspection findings for reporting period from **1** to **30 June 2019**.

1.2 REPORT STRUCTURE

1.2.1 The Monthly Environmental Monitoring and Audit (EM&A) Report is structured into the following sections:-

Section 1 Introduction

Section 2 Project Organization and Construction Progress

Section 3 Summary of Impact Monitoring Requirements

Section 4 Air Quality Monitoring

Section 5 Construction Noise Monitoring

Section 6 Water Quality Monitoring

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

Section 7	Ecology Monitoring
Section 8	Waste Management
Section 9	Site Inspections
Section 10	Environmental Complaints and Non-Compliance
Section 11	Implementation Status of Mitigation Measures
Section 12	Conclusions and Recommendations

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

2.1 CONSTRUCTION CONTRACT PACKAGING

- 2.1.1 To facilitate the project management and implementation, the Project would be divided by the following contracts:
 - Contract 2 (CV/2012/08)
 - Contract 3 (CV/2012/09)
 - Contract 4 (NE/2014/02)
 - Contract 5 (CV/2013/03)
 - Contract 6 (CV/2013/08)
 - Contract 7 (NE/2014/03)
 - ArchSD Contract No. SS C505
- 2.1.2 The details of each contracts is summarized below and the delineation of each contracts is shown in *Appendix A*.

Contract 2 (CV/2012/08)

- 2.1.3 Contract 2 has awarded in December 2013 and construction work was commenced on 19 May 2014. Major Scope of Work of the Contract 2 is listed below:
 - construction of an approximately 5.2km long dual two-lane connecting road (with about 0.4km of at-grade road and 4.8km of tunnel) connecting the Fanling Interchange with the proposed Sha Tau Kok Interchange;
 - construction of a ventilation adit tunnel and the mid-ventilation building:
 - construction of the north and south portal buildings of the Lung Shan Tunnel and their associated slope works;
 - provision and installation of ventilation system, E&M works and building services works for Lung Shan tunnel and Cheung Shan tunnel and their portal buildings;
 - construction of Tunnel Administration Building adjacent to Wo Keng Shan Road and the associated E&M and building services works; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 3 (CV/2012/09)

- 2.1.4 Contract 3 was awarded in July 2013 and construction work was commenced on 5 November 2013. Major Scope of Work of the Contract 3 is listed below:
 - construction of four link roads connecting the existing Fanling Highway and the south portal of the Lung Shan Tunnel;
 - realignment of the existing Tai Wo Service Road West and Tai Wo Service Road East;
 - widening of the existing Fanling Highway (HyD's entrustment works);
 - demolishing existing Kiu Tau vehicular bridge and Kiu Tau footbridge and reconstruction of the existing Kiu Tau Footbridge (HyD's entrustment works); and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 4 (NE/2014/02)

- 2.1.5 Contract 4 has awarded in mid-April 2016 and construction work was commenced on 2 May 2017. The scope of work of the Contract 4 includes:
 - design, supply, delivery, installation, testing and commissioning of a traffic control and surveillance system for the connecting road linking up the Liantang / Heung Yuen Wai Boundary Control Point and the existing Fanling Highway.

Contract 5 (CV/2013/03)

- 2.1.6 Contract 5 has awarded in April 2013 and construction work was commenced in August 2013. Major Scope of Work of the Contract 5 is listed below:
 - site formation of about 23 hectares of land for the development of the BCP;
 - construction of an approximately 1.6 km long perimeter road at the BCP including a 175m long depressed road;
 - associated diversion/modification works at existing local roads and junctions including Lin Ma Hang Road;
 - construction of pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provision of resite area with supporting infrastructure for reprovisioning of the affected village houses; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 6 (CV/2013/08)

- 2.1.7 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. Major Scope of Work of the Contract 6 would be included below:
 - construction of an approximately 4.6km long dual two-lane connecting road (with about 0.6km of at-grade road, 3.3km of viaduct and 0.7km of tunnel) connecting the BCP with the proposed Sha Tau Kok Road Interchange and the associated ventilation buildings;
 - associated diversion/modification works at access roads to the resite of Chuk Yuen Village;
 - provision of sewage collection, treatment and disposal facilities for the BCP and the resite of Chuk Yuen Village;
 - construction of a pedestrian subway linking the BCP to Lin Ma Hang Road;
 - provisioning of the affected facilities including Wo Keng Shan Road garden; and
 - construction of associated footpath, slopes, retaining structures, drainage, sewerage, waterworks, landscaping works and other ancillary works.

Contract 7 (NE/2014/03)

- 2.1.8 Contract 7 has awarded in December 2015 and the construction works of Contract 7 was commenced on 15 February 2016. Major Scope of Work of the Contract 7 would be included below:
 - construction of the Hong Kong Special Administrative Region (HKSAR) portion of four vehicular bridge
 - construction of one pedestrian bridge crossing Shenzhen (SZ) River (cross boundary bridges)

ArchSD Contract No. SS C505

- 2.1.9 SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. Major Scope of Work of the SS C505 would be included below:
 - passenger-related facilities including processing kiosks and examination facilities for private cars and coaches, passenger clearance building and halls, the interior fitting works for the pedestrian bridge crossing Shenzhen River, etc.;
 - cargo processing facilities including kiosks for clearance of goods vehicles, customs inspection platforms, X-ray building, etc.;
 - accommodation for the facilities inside of the Government departments providing services in connection with the BCP:
 - transport-related facilities inside the BCP including road networks, public transport interchange, transport drop-off and pick-up areas, vehicle holding areas and associated road furniture etc;
 - a public carpark; and

• other ancillary facilities such as sewerage and drainage, building services provisions and electronic systems, associated environmental mitigation measure and landscape works.

2.2 PROJECT ORGANIZATION

2.2.1 The project organization is shown in *Appendix B*. The responsibilities of respective parties are:

Civil Engineering and Development Department (CEDD)

2.2.2 CEDD is the Project Proponent and the Permit Holder of the EP of the development of the Project and will assume overall responsibility for the project. An Independent Environmental Checker (IEC) shall be employed by CEDD to audit the results of the EM&A works carried out by the ET.

<u>Architectural Services Department (ArchSD)</u>

2.2.3 ArchSD acts as the works agent for Development Bureau (DEVB), for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) – BCP Buildings and Associated Facilities

Environmental Protection Department (EPD)

2.2.4 EPD is the statutory enforcement body for environmental protection matters in Hong Kong.

Ronald Lu & Partners (Hong Kong) Ltd (The Architect)

- 2.2.5 Ronald Lu & Partners (Hong Kong) Ltd is appointed by ArchSD as an Architect for Contract SS C505 Liantang/ Heung Yuen Wai Boundary Control Point (BCP) BCP Buildings and Associated Facilities. It responsible for overseeing the construction works of Contract SS C505 and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the Architect with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors' and ET's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance
 - Adhere to the procedures for carrying out complaint investigation
 - Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulation of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

Engineer or Engineers Representative (ER)

- 2.2.6 The ER is responsible for overseeing the construction works and for ensuring that the works are undertaken by the Contractor in accordance with the specification and contract requirements. The duties and responsibilities of the ER with respect to EM&A are:
 - Monitor the Contractors' compliance with contract specifications, including the implementation and operation of the environmental mitigation measures and their effectiveness
 - Monitor Contractors's, ET's and IEC's compliance with the requirements in the Environmental Permit (EP) and EM&A Manual
 - Facilitate ET's implementation of the EM&A programme
 - Participate in joint site inspection by the ET and IEC
 - Oversee the implementation of the agreed Event / Action Plan in the event of any exceedance

- Adhere to the procedures for carrying out complaint investigation
- Liaison with DSD, Engineer/Engineer's Representative, ET, IEC and the Contractor of the "Construction of the DSD's Regulaiton of Shenzhen River Stage 4 (RSR 4)" Project discussing regarding the cumulative impact issues.

The Contractor(s)

- 2.2.7 There will be one contractor for each individual works contract. Once the contractors are appointed, EPD, ET and IEC will be notified the details of the contractor.
- 2.2.8 The Contractor for Contracts under CEDD should report to the ER. For ArchSD Contract, the Contractor should report to the Architect or Architect's Representative (AR). The duties and responsibilities of the Contractor are:
 - Comply with the relevant contract conditions and specifications on environmental protection
 - Employ an Environmental Team (ET) to undertake monitoring, laboratory analysis and reporting of EM &A Facilitate ET's monitoring and site inspection activities
 - Participate in the site inspections by the ET and IEC, and undertake any corrective actions
 - Provide information / advice to the ET regarding works programme and activities which may contribute to the generation of adverse environmental impacts
 - Submit proposals on mitigation measures in case of exceedances of Action and Limit levels in accordance with the Event / Action Plans
 - Implement measures to reduce impact where Action and Limit levels are exceeded
 - Adhere to the procedures for carrying out complaint investigation

Environmental Team (ET)

- 2.2.9 Once the ET is appointed, the EPD, CEDD, ER, Architect and IEC will be notified the details of the ET.
- 2.2.10 The ET shall not be in any way an associated body of the Contractor(s), and shall be employed by the Project Proponent/Contractor to conduct the EM&A programme. The ET should be managed by the ET Leader. The ET Leader shall be a person who has at least 7 years' experience in EM&A and has relevant professional qualifications. Suitably qualified staff should be included in the ET, and resources for the implementation of the EM&A programme should be allocated in time under the Contract(s), to enable fulfillment of the Project's EM&A requirements as specified in the EM&A Manual during construction of the Project. The ET shall report to the Project Proponent and the duties shall include:
 - Monitor and audit various environmental parameters as required in this EM&A Manual
 - Analyse the environmental monitoring and audit data, review the success of EM&A programme and the adequacy of mitigation measures implemented, confirm the validity of the EIA predictions and identify any adverse environmental impacts arising
 - Carry out regular site inspection to investigate and audit the Contractors' site practice, equipment/plant and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems
 - Monitor compliance with conditions in the EP, environmental protection, pollution prevention and control regulations and contract specifications
 - Audit environmental conditions on site
 - Report on the environmental monitoring and audit results to EPD, the ER, the Architect, the IEC and Contractor or their delegated representatives
 - Recommend suitable mitigation measures to the Contractor in the case of exceedance of Action and Limit levels in accordance with the Event and Action Plans
 - Liaise with the IEC on all environmental performance matters and timely submit all relevant EM&A proforma for approval by IEC
 - Advise the Contractor(s) on environmental improvement, awareness, enhancement measures etc., on site
 - Adhere to the procedures for carrying out complaint investigation

• Liaison with the client departments, Engineer/Engineer's Representative, ET, IEC and the Contractor(s) of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

Independent Environmental Checker (IEC)

- 2.2.11 One IEC will be employed for this Project. Once the IEC is appointed, EPD, ER, the Architect and ET will be notified the details of the IEC.
- 2.2.12 The Independent Environmental Checker (IEC) should not be in any way an associated body of the Contractor or the ET for the Project. The IEC should be employed by the Permit Holder (i.e., CEDD) prior to the commencement of the construction of the Project. The IEC should have at least 10 years' experience in EM&A and have relevant professional qualifications. The appointment of IEC should be subject to the approval of EPD. The IEC should:
 - Provide proactive advice to the ER and the Project Proponent on EM&A matters related to the project, independent from the management of construction works, but empowered to audit the environmental performance of construction
 - Review and audit all aspects of the EM&A programme implemented by the ET
 - Review and verify the monitoring data and all submissions in connection with the EP and EM&A Manual submitted by the ET
 - Arrange and conduct regular, at least monthly site inspections of the works during construction phase, and ad hoc inspections if significant environmental problems are identified
 - Check compliance with the agreed Event / Action Plan in the event of any exceedance
 - Check compliance with the procedures for carrying out complaint investigation
 - Check the effectiveness of corrective measures
 - Feedback audit results to ET by signing off relevant EM&A proforma
 - Check that the mitigation measures are effectively implemented
 - Verify the log-book(s) mentioned in Condition 2.2 of the EP, notify the Director by fax, within one working day of receipt of notification from the ET Leader of each and every occurrence, change of circumstances or non-compliance with the EIA Report and/or the EP, which might affect the monitoring or control of adverse environmental impacts from the Project
 - Report the works conducted, the findings, recommendation and improvement of the site inspections, after reviewing ET's and Contractor's works, and advices to the ER and Project Proponent on a monthly basis
 - Liaison with the client departments, Engineer/Engineer's Representative, the Architect, ET, IEC and the Contractor of the concurrent projects as listed under Section 2.3 below regarding the cumulative impact issues.

2.3 CONCURRENT PROJECTS

- 2.3.1 The concurrent construction works that may be carried out include, but not limited to, the following:
 - (a) Regulation of Shenzhen River Stage IV;
 - (b) Widening of Fanling Highway Tai Hang to Wo Hop Shek Interchange Contract No. HY/2012/06;
 - (c) Construction of BCP facilities in Shenzhen.

2.4 CONSTRUCTION PROGRESS

2.4.1 In the Reporting Period, the major construction activity conducted under the Project is located in Contracts 2, 3, 6, 7 and SS C505 and they are summarized in below. Moreover, 3-month rolling construction program for all the current contracts is enclosed in *Appendix C*.

Contract 2 (CV/2012/08)

2.4.2 The contract commenced in May 2014. In this Reporting Period, construction activities conducted are listed below:

Mid-Vent Portal	External reinstatement works and soft landscaping works
North Portal	External backfilling and reinstatementLandscaping works
South Portal	External backfilling and reinstatementLandscaping works

Contract 3 (CV/2012/09)

- 2.4.3 The Contract commenced in November 2013. In this Reporting Period, construction activities conducted are listed below:
 - Cable detection
 - Noise barrier construction
 - Road pavement works
 - Water main laying works (on Grade)
 - Installation of Noise barrier panel (on Grade)
 - Road Drainage Works
 - Construction of Pavilion and Pai Lau
 - Construction of Slope works
 - Landscaping works

Contract 4 (NE/2014/02)

- 2.4.4 The Contract was awarded in mid-April 2016 and the construction work was commenced on 2 May 2017. In this Reporting Period, construction activities conducted are listed below:
 - OPT & DLP of control room, TCSS & PA

Contract 5 (CV/2013/03)

2.4.5 The construction works under Contract 5 was substantially completed on 31 August 2016.

Contract 6 (CV/2013/08)

- 2.4.6 Contract 6 has awarded in June 2015 and construction work was commenced on 23 October 2015. In this Reporting Period, construction activities conducted are listed below:
 - Water Pipe Connection Work
 - Sewage Treatment Plant Construction
 - Road Construction
 - Landscaping

Contract 7 (NE/2014/03)

- 2.4.7 Contract 7 has awarded in December 2015 and construction work was commenced on 15 February 2016. In this Reporting Period, construction activities conducted are listed below:
 - Noise barrier construction at Bridge D & E
 - Parapet installation at Bridge A & E
 - Drainage cleaning and CCTV inspection at perimeter road
 - Shenzhen River Reinstatement
 - Landscape Softwork at Portion Z

Contract SS C505

- 2.4.8 Contract SS C505 has awarded in July 2015 and construction work was commenced on 1 September 2015. In this Reporting Period, construction activities conducted are listed below:
 - Building no. 1 18, 25 40 constructions, including structure & substructure works,

integrated ABWF & MEP Works

- Building no. 20 PTB structure works, ABWF Works & MEP Installation
- Building no. 20 PTB External Works including Building 21-24
- Bridge C Integrated ABWF & MEP Installation Works (C7 Portion)
- Bridge 1 Phase 3 retaining wall, bridge decks 1B RC works, road and finishes works
- Bridge 2 to 5 Phase 3 road and finishes works
- External Works Water Meter Room Connection (Inbound & outbound)
- External Utilities Works UU works for phase 2 FS inspection & DSD inspection
- External Road & Pavement Works for inbound Phase 1 FS inspection (concrete pavement) & for Phase 2 FS inspection
- External Landscape Inbound & Outbound Area
- Testing & Commissioning Phase 1, 2 & 3
- FS Inspection Phase 1 & 2

2.5 SUMMARY OF ENVIRONMENTAL SUBMISSIONS

- 2.5.1 In according to the EP, the required documents have submitted to EPD which listed in below:
 - Project Layout Plans of Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Landscape Plan
 - Topsoil Management Plan
 - Environmental Monitoring and Audit Programme
 - Baseline Monitoring Report (TCS00690/13/600/R0030v3) for the Project
 - Waste Management Plan of the Contracts 2, 3, 4, 5, 6, 7 and SS C505
 - Contamination Assessment Plan (CAP) and Contamination Assessment Report (CAR) for Po Kat Tsai, Loi Tung and the workshops in Fanling
 - Vegetation Survey Report
 - Woodland Compensation Plan
 - Habitat Creation and Management Plan
 - Wetland Compensation Plan
- 2.5.2 Summary of the relevant permits, licenses, and/or notifications on environmental protection for the Project of each contracts are presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits of the Contracts

		License/Permit Status					
Item	Description	Ref. no.	Effective Date	Expiry Date			
Contract 2							
1	Air pollution Control (Construction Dust) Regulation	Ref No.: 368864	31 Dec 2013	Till Contract ends			
2	Chemical Waste Producer Registration	North Portal Waste Producers Number: No.5213-652-D2523-01	25 Mar 2014	Till Contract ends			
		Mid-Vent Portal Waste Producers Number: No.5213-634-D2524-01	25 Mar 2014	Till Contract ends			
		South Portal Waste Producers Number: No.5213-634-D2526-01	9 Apr 2014	Till Contract ends			
3	Water Pollution Control Ordinance - Discharge License	No.WT00018374-2014 (South Portal)	8 Oct 2014	30 Sep 2019			
4	Waste Disposal Regulation - Billing Account for Disposal of	Account No. 7019105	8 Jan 2014	Till Contract ends			

		License/Permit Status					
Item	Description	Ref. no.		Effective Date	Expiry Date		
		Kei, iio.			r J		
	Construction Waste						
	Construction Noise	GW-RN0180-19 S	South	3-Apr-2019	30-Jun-2019		
	Permit	GW-RN0183-19	Portal	3-Apr-2019	30-Jun-2019		
		Contract 3					
1	Air pollution Control	Ref. No: 362101		17 Jul 2013	Till Contract		
	(Construction Dust) Regulation				ends		
2	Chemical Waste	Waste Producers Num	her [.]		Till Contract		
	Producer Registration	No.:5113-634-C3817-		7 Oct 2013	ends		
3	Water Pollution Control	No.:WT00032188 – 20	018	20 Sep 2018	31 Aug 2023		
	Ordinance - Discharge						
4	License Waste Disposal	Account No. 7017914		2 Aug 2013	Till Contract		
4	Regulation - Billing	Account No. /01/914		2 Aug 2013	ends		
	Account for Disposal of						
	Construction Waste	CW DN0050 10		25 F 1 2010	24.4 2010		
	Construction Noise Permit	GW-RN0058-19		25 Feb 2019	24 Aug 2019		
		GW-RN0064-19		06 Mar 2019	05 Sep 2019		
		GW-RN0067-19		22 Feb 2019	21 Aug 2019		
		GW-RN0208-19		6 Apr 2019	5 Oct 2019		
		GW-RN0310-19		26 May 2019	25 Nov 2019		
		GW-RN0312-19		26 May 2019	25 Nov 2019		
		GW-RN0313-19 Contract 6		26 May 2019	25 Nov 2019		
1	Air pollution Control	Ref. No: 390614		29 Jun 2015	Till the end of		
_	(Construction Dust)				Contract		
	Regulation						
2	Chemical Waste Producer Registration	Waste Producers No.: 5213-652-C3969-	Number	31 Aug 2015	Till the end of Contract		
3	Waste Disposal	Account No. 7022707	-01	9 Jul 2015	Till the end of		
	Regulation - Billing	Account No. 7022707		7 Jul 2013	Contract		
	Account for Disposal of						
4	Construction Waste Water Pollution Control	No.:WT00024574-201	6	21 May 2016	21 May 2021		
4	Ordinance - Discharge			31 May 2016	31 May 2021		
	License	No.:WT00024576-201	.6	31 May 2016	31 May 2021		
		No.:WT00024742-201	.6	14 June 2016	30 June 2021		
		No.:WT00024746-2016		14 June 2016	30 June 2021		
	<u> </u>	Contract SS C5					
1	Air pollution Control	Ref. No: 390974		13 Jul 2015	Till the end of		
	(Construction Dust) Regulation				Contract		
2	Chemical Waste	Waste Producer	No.:	16 Sep 2015	Till the end of		
	Producer Registration	5213-642-L1048-07	110	10 Sep 2013	Contract		
3	Water Pollution Control	No.: WT00024865-20	16	8 Jul 2016	30 Nov 2020		
_	Ordinance - Discharge		-				

		License/l	Permit Status		
Item	Description	Ref. no.	Effective Date	Expiry Date	
	License				
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7022831	23 Jul 2015	Till the end of Contract	
5	Construction Noise	GW-RN0298-19	9 May 2019	8 Jul 2019	
	Permit	GW-RN0422-19	20 Jun 2019	19 Aug 2019	
		Contract 7			
1	Air pollution Control (Construction Dust) Regulation	Ref. No: 397015	21 Dec 2015	Till the end of Contract	
2	Chemical Waste Producer Registration	Waste Producer No.: 5214-641-K3202-01	24 Mar 2016	Till the end of Contract	
3	Water Pollution Control Ordinance - Discharge License	No.: WT00024422-2016	10 May 2016	31 May 2021	
4	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024129	21 Jan 2016	Till the end of Contract	
		Contract 4			
1	Air pollution Control (Construction Dust) Regulation	Ref. No. 405353	22 July 2016	Till the end of Contract	
2	Waste Disposal Regulation - Billing Account for Disposal of Construction Waste	Account No. 7024973	13 May 2016	Till the end of Contract	

3 SUMMARY OF IMPACT MONITORING REQUIREMENTS

3.1 GENERAL

- 3.1.1 The Environmental Monitoring and Audit requirements are set out in the Approved EM&A manual. Environmental issues such as air quality, construction noise and water quality were identified as the key issues during the construction phase of the Project.
- 3.1.2 A summary of construction phase EM&A requirements are presented in the sub-sections below.

3.2 MONITORING PARAMETERS

- 3.2.1 The EM&A program of construction phase monitoring shall cover the following environmental issues:
 - Air quality;
 - Construction noise; and
 - Water quality
- 3.2.2 A summary of the monitoring parameters is presented in *Table 3-1*.

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP by Real-Time Portable Dust Meter; and
All Quality	24-hour TSP by High Volume Air Sampler.
	 L_{eq(30min)} in normal working days (Monday to Saturday) 07:00-19:00 except public holiday; and
Noise	• 3 sets of consecutive L _{eq(5min)} on restricted hours i.e. 19:00 to 07:00
TVOISC	next day, and whole day of public holiday or Sunday
	Supplementary information for data auditing, statistical results such
	as L_{10} and L_{90} shall also be obtained for reference.
	In-situ Measurements
	 Dissolved Oxygen Concentration (mg/L);
	• Dissolved Oxygen Saturation (%);
	Turbidity (NTU);
Water Quality	• pH unit;
	Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (mg/L)

3.3 MONITORING LOCATIONS

3.3.1 The designated monitoring locations as recommended in the *EM&A Manual* are shown in *Appendix D*. As the access to some of the designated monitoring locations was questionable due to safety reason or denied by the landlords, alternative locations therefore have had proposed. The latest alternative monitoring locations has been updated in the revised EM&A Programme (Rev.7) which approved by EPD on 7 April 2017. Besides, in view of Location AM1b was demolished and returned to the landlord on 27 April 2018, alterative location AM1c was proposed by ET and approved by EPD on 26 November 2018. *Table 3-2, Table 3-3 and Table 3-4* listed the air quality, construction noise and water quality monitoring locations for the Project and a map showing these monitoring stations is presented in *Appendix E*.

Table 3-2 Impact Monitoring Stations - Air Quality

Station ID	Description	Works Area	Related to the Work Contract
AM1c (*)	Open area of Tsung Yuen Ha Village	BCP	SS C505
	No. 63		Contract 7
AM2	Village House near Lin Ma Hang Road	LMH to Frontier	Contract 6
	_	Closed Area	

Station ID	Description	Works Area	Related to the Work Contract
AM3	Ta Kwu Ling Fire Service Station of Ta Kwu Ling Village.	LMH to Frontier Closed Area	Contract 6
AM4b^	House no. 10B1 Nga Yiu Ha Village	LMH to Frontier Closed Area	Contract 6
AM5a^	Ping Yeung Village House	Ping Yeung to Wo Keng Shan	Contract 6
AM6	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
AM7b [@]	Loi Tung Village House	Sha Tau Kok Road	Contract 2 Contract 6
AM8	Po Kat Tsai Village No. 4	Po Kat Tsai	Contract 2
AM9b#	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of air quality monitoring location from AM9a to AM9b was submitted to EPD on 4 Nov 2013 after verified by the IEC and it was approved by EPD (EPD's ref.: (15) in EP 2/N7/A/52 Pt.10 dated 8 Nov 2013).

Table 3-3 Impact Monitoring Stations - Construction Noise

Station ID	Description	Works Area	Related to the Work Contract
NM1	Tsung Yuen Ha Village House No. 63	ВСР	SS C505 Contract 7
NM2a#	Village House near Lin Ma Hang Road	Lin Ma Hang to Frontier Closed Area	Contract 6
NM3	Ping Yeung Village House (facade facing northeast)	Ping Yeung to Wo Keng Shan	Contract 6
NM4	Wo Keng Shan Village House	Ping Yeung to Wo Keng Shan	Contract 6
NM5	Village House, Loi Tung	Sha Tau Kok Road	Contract 2, Contract 6
NM6	Tai Tong Wu Village House 2	Sha Tau Kok Road	Contract 2, Contract 6
NM7	Po Kat Tsai Village	Po Kat Tsai	Contract 2
NM8	Village House, Tong Hang	Fanling	Contract 2 Contract 3
NM9	Village House, Kiu Tau Village	Fanling	Contract 3
NM10	Nam Wa Po Village House No. 80	Fanling	Contract 3

[#] Proposal for the change of construction noise monitoring location from NM2 to NM2a was verified by the IEC on 6 May 2016 and was effective on 9 May 2016.

Table 3-4 Impact Monitoring Stations - Water Quality

Station ID	Description	Coordinates of Designated / Alternative Location		Nature of the location	Related to the Work
		Easting	Northing		Contract
WM1	Downstream of Kong Yiu	833 679	845 421	Alternative location located at upstream 51m of the	SS C505 Contract 6

[@] Proposal for the change of air quality monitoring location from AM7a to AM7b was submitted to EPD on 4 June 2014 after verified by the IEC. It was approved by EPD (EPD's ref.: (7) in EP 2/N7/A/52 Pt.12 dated 9 Jun 2014).

[^] Proposal for change of air quality monitoring locations was enclosed in the updated EM&A Programme which approval by EPD on 29 Mar 2016. Besides, Location AM1b was temporary suspended (24-hour TSP monitoring) since 27 April 2018 as the rented land was demolished and returned to the landlord.

^{*} Revised proposal for alterative location AM1c was submitted to EPD on 31 October 2018 after verified by the IEC and it was approved by EPD (EPD's ref.: () in Ax (1) to EP 2/N7/A/52 Pt.26 dated 26 November 2018)

Station ID	Description		of Designated ve Location	Nature of the location	Related to the Work
		Easting	Northing		Contract
	Channel			designated location	
WM1- Control	Upstream of Kong Yiu Channel	834 185	845 917	NA	SS C505 Contract 6
WM2A	Downstream of River Ganges	834 204	844 471	Alternative location located at upstream 81m of the designated location	Contract 6
WM2A(a)*	Downstream of River Ganges	834 191	844 474	Alternative location located at upstream 70m of the designated location	Contract 6
WM2A- Controlx#	Upstream of River Ganges	835 377	844 188	Alternative location located at upstream 160m of the designated location	Contract 6
WM2B	Downstream of River Ganges	835 433	843 397	NA	Contract 6
WM2B- Control	Upstream of River Ganges	835 835	843 351	Alternative location located at downstream 31m of the designated location	Contract 6
WM3x#	Downstream of River Indus	836 206	842 270	Alternative location located at downstream 180m of the designated location	Contract 2 Contract 6
WM3- Control	Upstream of River Indus	836 763	842 400	Alternative location located at downstream 26m of the designated location	Contract 2 Contract 6
WM4	Downstream of Ma Wat Channel	833 850	838 338	Alternative location located at upstream 11m of the designated location	Contract 2 Contract 3
WM4– Control A	Kau Lung Hang Stream	834 028	837 695	Alternative location located at downstream 28m of the designated location	Contract 2 Contract 3
WM4– Control B	Upstream of Ma Wat Channel	833760	837395	Alternative location located at upstream 15m of the designated location	Contract 2 Contract 3

Note: EPD has approved the revised EM&A Programme (Rev.7) which proposed that (1) if the measured water depth of the monitoring station is lower than 150 mm, alternative location based on the criteria were selected to perform water monitoring; and (2) If no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample in accordance with the updated EM&A Programme (Rev. 07) (Section 4.1.4) (EPD ref.: () in EP2/N7/A/52 Ax(1) Pt.20 dated 7 April 2017)

3.4 MONITORING FREQUENCY AND PERIOD

The requirements of impact monitoring are stipulated in *Sections 2.1.6*, *3.1.5* and *4.1.6* of the approved *EM&A Manual* and presented as follows.

Air Quality Monitoring

- 3.4.1 Frequency of impact air quality monitoring is as follows:
 - 1-hour TSP 3 times every six days during course of works
 - 24-hour TSP Once every 6 days during course of works.

Noise Monitoring

^(*) Proposal for the change of water monitoring location from WM2A to WM2A(a) was verified by the IEC and it was approved by EPD. (EPD's ref. (10) in EP 2/N7/A/52 Pt.19)

^(#) Proposal for the change of water quality monitoring location (WM3x and WM2A-Cx was included in the EM&A Programme Rev .05 which approved by EPD on 29 March 2016 (EPD ref.: (3) in EP2/N7/A/52 Ax(1) Pt.19)

3.4.2 One set of $L_{eq(30min)}$ as 6 consecutive $L_{eq(5min)}$ between 0700-1900 hours on normal weekdays and once every week during course of works. If construction work necessary to carry out at other time periods, i.e. restricted time period (19:00 to 07:00 the next morning and whole day on public holidays) (hereinafter referred as "the restricted hours"), additional weekly impact monitoring for $L_{eq(5min)}$ measurement shall be employed during respective restricted hours periods.. Supplementary information for data auditing, statistical results such as L_{10} and L_{90} shall also be obtained for reference.

Water Quality Monitoring

3.4.3 The water quality monitoring frequency shall be 3 days per week during course of works. The interval between two sets of monitoring shall not be less than 36 hours.

3.5 MONITORING EQUIPMENT

Air Quality Monitoring

- 3.5.1 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.* If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve.
- 3.5.2 The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.
- 3.5.3 All equipment to be used for air quality monitoring is listed in *Table 3-5*.

Table 3-5 Air Quality Monitoring Equipment

Equipment Model				
24-Hr TSP				
High Volume Air Sampler	TISCH High Volume Air Sampler, HVS Model TE-5170*			
Calibration Kit	TISCH Model TE-5025A*			
	1-Hour TSP			
Portable Dust Meter Sibata LD-3B Laser Dust monitor Particle Mass Profile Counter*				

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

Wind Data Monitoring Equipment

- 3.5.4 According to the approved EM&A Manual, wind data monitoring equipment shall also be provided and set up for logging wind speed and wind direction near the dust monitoring locations. The equipment installation location shall be proposed by the ET and agreed with the IEC. For installation and operation of wind data monitoring equipment, the following points shall be observed:
 - 1) The wind sensors should be installed 10 m above ground so that they are clear of obstructions or turbulence caused by buildings.
 - 2) The wind data should be captured by a data logger. The data shall be downloaded for analysis at least once a month.
 - 3) The wind data monitoring equipment should be re-calibrated at least once every six months.
 - 4) Wind direction should be divided into 16 sectors of 22.5 degrees each.
- 3.5.5 ET has liaised with the landlords of the successful granted HVS installation premises. However, the owners rejected to provide premises for wind data monitoring equipment installation.
- 3.5.6 Under this situation, the ET proposed alternative methods to obtain representative wind data. Meteorological information as extracted from "the Hong Kong Observatory Ta Kwu Ling Station" is alternative method to obtain representative wind data. For Ta Kwu Ling Station, it is located

nearby the Project site. Moreover, this station is located at 15m above mean sea level while its anemometer is located at 13m above the existing ground which in compliance with the general setting up requirement. Furthermore, this station also can be to provide the humidity, rainfall, and air pressure and temperature etc. meteorological information. In Hong Kong of a lot development projects, weather information extracted from Hong Kong Observatory is common alternative method if weather station installation not allowed.

Noise Monitoring

- 3.5.7 Sound level meter in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.
- 3.5.8 Noise monitoring equipment to be used for monitoring is listed in *Table 3-6*.

Table 3-6 Construction Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	B&K Type 2238* and Rion NL-52*
Calibrator	Rion NC-75*
Portable Wind Speed Indicator	Testo Anemometer

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.5.9 Sound level meters listed above comply with the *International Electrotechnical Commission Publications 651: 1979 (Type 1)* and *804: 1985 (Type 1)* specifications, as recommended in TM issued under the NCO. The acoustic calibrator and sound level meter to be used in the impact monitoring will be calibrated yearly.

Water Quality Monitoring

- 3.5.10 DO and water temperature should be measured in-situ by a DO/temperature meter. The instrument should be portable and weatherproof using a DC power source. It should have a membrane electrode with automatic temperature compensation complete with a cable. The equipment should be capable of measuring:
 - a DO level in the range of 0-20 mg/l and 0-200% saturation; and
 - a temperature of between 0 and 45 degree Celsius.
- 3.5.11 A portable pH meter capable of measuring a range between 0.0 and 14.0 should be provided to measure pH under the specified conditions accordingly to the APHA Standard Methods.
- 3.5.12 The instrument should be portable and weatherproof using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU.
- 3.5.13 A portable, battery-operated echo sounder or tape measure will be used for the determination of water depth at each designated monitoring station as appropriate.
- 3.5.14 A water sampler e.g. Kahlsico Water Sampler, which is a transparent PVC cylinder with capacity not less than 2 litres, will be used for water sampling if water depth over than 0.5m. For sampling from very shallow water depths e.g. <0.5 m, water sample collection will be directly from water surface below 100mm use sampling plastic bottle to avoid inclusion of bottom sediment or humus. Moreover, Teflon/stainless steel bailer or self-made sampling buckets maybe used for water sampling. The equipment used for sampling will be depended the sampling location and depth situations.
- 3.5.15 Water samples for laboratory measurement of SS will be collected in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to the laboratory in the

same day as the samples were collected.

- 3.5.16 Analysis of suspended solids should be carried out in a HOKLAS or other accredited laboratory. Water samples of about 1L should be collected at the monitoring stations for carrying out the laboratory suspended solids determination. The SS determination work should start within 24 hours after collection of the water samples. The SS analyses should follow the *APHA Standard Methods 2540D* with Limit of Reporting of 2 mg/L.
- 3.5.17 Water quality monitoring equipment used in the impact monitoring is listed in *Table 3-7*. Suspended solids (SS) analysis is carried out by a local HOKLAS-accredited laboratory, namely *ALS Technichem (HK) Pty Ltd*.

Table 3-7 Water Quality Monitoring Equipment

Equipment Model	
Water Depth Detector	Eagle Sonar or tape measures
Water Sampler	A 2-litre transparent PVC cylinder with latex cups at both ends or teflon/stainless steel bailer or self-made sampling bucket
Thermometer & DO meter	YSI Professional Plus /YSI PRO20 Handheld Dissolved Oxygen Instrument*/ YSI 550A Multifunctional Meter/ YSI Professional DSS
pH meter	YSI Professional Plus / AZ8685 pH pen-style meter*/ YSI 6820/650MDS/ YSI Professional DSS
Turbidimeter Hach 2100Q*/YSI 6820/650MDS/YSI Professional DSS	
Sample Container	High density polythene bottles (provided by laboratory)
Storage Container	'Willow' 33-liter plastic cool box with Ice pad

^{*} Instrument was used in the Reporting Period and the calibration certificate could be referred in Appendix F.

3.6 MONITORING METHODOLOGY

1-hour TSP Monitoring

- 3.6.1 The 1-hour TSP monitor was a brand named "Sibata LD-3B Laser Dust monitor Particle Mass Profiler & Counter" which is a portable, battery-operated laser photometer. The 1-hour TSP meter provides a real time 1-hour TSP measurement based on 90° light scattering. The 1-hour TSP monitor consists of the following:
 - (a.) A pump to draw sample aerosol through the optic chamber where TSP is measured;
 - (b.) A sheath air system to isolate the aerosol in the chamber to keep the optics clean for maximum reliability; and
 - (c.) A built-in data logger compatible with Windows based program to facilitate data collection, analysis and reporting.
- 3.6.2 The 1-hour TSP meter is used within the valid period as follow manufacturer's Operation and Service Manual.

24-hour TSP Monitoring

- 3.6.3 The equipment used for 24-hour TSP measurement is Tisch Environmental, Inc. Model TE-5170 TSP high volume air sampling system, which complied with *EPA Code of Federal Regulation*, *Appendix B to Part 50*. The High Volume Air Sampler (HVS) consists of the following:
 - (a.) An anodized aluminum shelter:
 - (b.) A 8"x10" stainless steel filter holder;
 - (c.) A blower motor assembly;
 - (d.) A continuous flow/pressure recorder;
 - (e.) A motor speed-voltage control/elapsed time indicator;
 - (f.) A 7-day mechanical timer, and
 - (g.) A power supply of 220v/50 Hz

- 3.6.4 The HVS is operated and calibrated on a regular basis in accordance with the manufacturer's instruction using Tisch Calibration Kit Model TE-5025A. Calibration would carry out in two month interval.
- 3.6.5 24-hour TSP is collected by the ET on filters of HVS and quantified by a local HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (ALS), upon receipt of the samples. The ET keep all the sampled 24-hour TSP filters in normal air conditioned room conditions, i.e. 70% RH (Relative Humidity) and 25°C, for six months prior to disposal.

Noise Monitoring

- Noise measurements were taken in terms of the A-weighted equivalent sound pressure level (L_{eq}) measured in decibels dB(A). Supplementary statistical results (L_{10} and L_{90}) were also obtained for reference.
- 3.6.7 During the monitoring, all noise measurements would be performed with the meter set to FAST response and on the A-weighted equivalent continuous sound pressure level (L_{eq}). $Leq_{(30min)}$ in six consecutive $Leq_{(5min)}$ measurements will use as the monitoring parameter for the time period between 0700-1900 hours on weekdays; $Leq_{(5min)}$ measurements would be used as monitoring parameter for other time periods (e.g. during restricted hours), if necessary.
- 3.6.8 Prior of noise measurement, the accuracy of the sound level meter is checked using an acoustic calibrator generating a known sound pressure level at a known frequency. The checking is performed before and after the noise measurement.

Water Quality

3.6.9 Water quality monitoring is conducted at the designated or alternative locations. The sampling procedures with the in-situ monitoring are presented as below:

Sampling Procedure

- 3.6.10 A Digital Global Positioning System (GPS) is used to identify the designated monitoring stations prior to water sampling. A portable, battery-operated echo sounder or tape measurement is used for the determination of water depth at each station. At each station, water sample would be collected from 0.1m below water surface or the water surface to prevent the river bed sediment for stirring.
- 3.6.11 If the water level of a monitoring station is too shallow when sampling, sediment would be disturbed which affecting the accuracy of water quality monitoring. In order to avoid disturbing sediment, depth limits should be set up for the water sampling for the ease of reference. When the measured water depth of the monitoring station (both control and impact stations) is lower than 150mm, water monitoring would not be to perform at that monitoring location. Instead, the monitoring location will be moved to a temporary alternative location monitoring location based on the criteria below:-
 - (a) the alternative location should be either upstream or downstream of the original location and at the same the river/drain channel
 - (b) the alternative location should be within 15m far from the original location
 - (c) if no suitable alternative location could be found within 15m far from the original location, the sampling at that location will be cancelled since sampling at too far from the designated location could not make a representative sample.
- 3.6.12 The sample container will be rinsed with a portion of the water sample. The water sample then will be transferred to the high-density polythene bottles as provided by the laboratory, labeled with a unique sample number and sealed with a screw cap.
- 3.6.13 Before sampling, general information such as the date and time of sampling, weather condition as well as the personnel responsible for the monitoring would be recorded on the field data sheet.

3.6.14 A 'Willow' 33-liter plastic cool box packed with ice will be used to preserve the water samples prior to arrival at the laboratory for chemical determination. The water temperature of the cool box is maintained at a temperature as close to 4°C as possible without being frozen. Samples collected are delivered to the laboratory upon collection.

In-situ Measurement

- 3.6.15 YSI PRO20 Handheld Dissolved Oxygen Instrument is used for water in-situ measures, which automates the measurements and data logging of temperature, dissolved oxygen and dissolved oxygen saturation.
- 3.6.16 A portable AZ Model 8685 is used for in-situ pH measurement. The pH meter is capable of measuring pH in the range of 0 14 and readable to 0.1.
- 3.6.17 A portable Hach 2100Q Turbidimeter is used for in-situ turbidity measurement. The turbidity meter is capable of measuring turbidity in the range of 0 1000 NTU.
- 3.6.18 All in-situ measurement equipment are calibrated by HOKLAS accredited laboratory of three month interval.

Laboratory Analysis

3.6.19 All water samples analyzed Suspended Solids (SS) will be carried out by a local HOKLAS-accredited testing laboratory (ALS Technichem (HK) Pty Ltd HOKLAS registration no. 66). SS determination using *APHA Standard Methods 2540D* as specified in the *EM&A Manual* will start within 48 hours of water sample receipt.

3.7 EQUIPMENT CALIBRATION

- 3.7.1 Calibration of the HVS is performed upon installation and thereafter at bimonthly intervals in accordance with the manufacturer's instruction using the certified standard calibrator (TISCH Model TE-5025A). Moreover, the Calibration Kit would be calibrated annually. The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.7.2 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment would be checked before and after each monitoring event. Annually calibration with the High Volume Sampler (HVS) in same condition would be undertaken by the Laboratory.
- 3.7.3 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.7.4 All water quality monitoring equipment would be calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.7.5 The calibration certificates of all monitoring equipment used for the impact monitoring program in the Reporting Period and the HOKLAS accredited certificate of laboratory are attached in *Appendix F*.

3.8 DERIVATION OF ACTION/LIMIT (A/L) LEVELS

3.8.1 The baseline results form the basis for determining the environmental acceptance criteria for the impact monitoring. According to the approved Environmental Monitoring and Audit Manual, the air quality, construction noise and water quality criteria were set up, namely Action and Limit levels are listed in *Tables 3-8*, *3-9* and *3-10*.

Table 3-8 Action and Limit Levels for Air Quality Monitoring

Monitoring Station	Action Level (μg /m³)		Limit Level (μg/m³)	
Monitoring Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP

Monitoring Station	Action Level (μg /m³)		Limit l	Level (µg/m³)
Momentum Station	1-hour TSP	24-hour TSP	1-hour TSP	24-hour TSP
AM1c	265	143		
AM2	268	149		
AM3	269	145		
AM4b	267	148		
AM5a	268	143	500	260
AM6	269	148		
AM7b	275	156		
AM8	269	144		
AM9b	271	151		

Table 3-9 Action and Limit Levels for Construction Noise

Monitoring Location	Action Level	Limit Level in dB(A)	
Within the Location	Time Period: 0700-1900 hours on normal weekdays		
NM1, NM2a, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10	When one or more documented complaints are received	75 dB(A) ^{Note 1 & Note 2}	

Note 1: Acceptable Noise Levels for school should be reduced to 70 dB(A) and 65 dB(A) during examination period.

Note 2: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the NCA have to be followed.

Table 3-10 Action and Limit Levels for Water Quality

Danamatan	Performance	Monitoring Location						
Parameter	criteria	WM1	WM2A(a)	WM2B	WM3x	WM4		
DO	Action Level	(*)4.23	(**)4.00	(*)4.74	(**)4.00	(*)4.14		
(mg/L)	Limit Level	^(#) 4.19	(**)4.00	^(#) 4.60	(**)4.00	(#)4.08		
Turbidity	Action Level	51.3	24.9	11.4	13.4	35.2		
		AND	120% of upstream control station of the same day					
(NTU)	Limit Level	67.6	33.8	12.3	14.0	38.4		
	Lillit Level	AND	130% of upstream control station of the same day					
	Action Level	54.5	14.6	11.8	12.6	39.4		
CC (ma/I)	Action Level	AND	120% of upstream control station of the same day					
SS (mg/L)	Limit Level	64.9	17.3	12.4	12.9	45.5		
		AND	130% of ups	tream control s	tation of the s	ame day		

Remarks:

3.8.2 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan which presented in *Appendix G*.

3.9 DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.9.1 All monitoring data will be handled by the ET's in-house data recording and management system. The monitoring data recorded in the equipment will be downloaded directly from the equipment at the end of each monitoring day. The downloaded monitoring data will input into a computerized database maintained by the ET. The laboratory results will be input directly into the computerized database and checked by personnel other than those who input the data.
- For monitoring parameters that require laboratory analysis, the local laboratory shall follow the QA/QC requirements as set out under the HOKLAS scheme for the relevant laboratory tests.

^(*) The Proposed Action Level of Dissolved Oxygen is adopted to be used 5%-ile of baseline data

^(**) The Proposed Action & Limit Level of Dissolved Oxygen is used 4mg/L

^(#) The Proposed Limit Level of Dissolved Oxygen is adopted to be used 1%-ile of baseline data

4 AIR QUALITY MONITORING

4.1 GENERAL

- 4.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505. Hence, air quality monitoring was performed at all designated locations.
- 4.1.2 The air quality monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

4.2 AIR QUALITY MONITORING RESULTS

4.2.1 In the Reporting Period, a total of 135 events of 1-hour TSP and 45 events 24-hours TSP monitoring were carried out and the monitoring results are summarized in Tables 4-1 to 4-9. The detailed 24-hour TSP monitoring data are presented in Appendix I and the relevant graphical plots are shown in Appendix J.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1c

24-hou		1-hour TSP (µg/m³)						
Date	TSP $(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
6-Jun-19	51	3-Jun-19	13:19	57	60	63		
12-Jun-19	24	8-Jun-19	9:11	60	55	67		
18-Jun-19	23	14-Jun-19	13:16	38	39	37		
24-Jun-19	28	20-Jun-19	9:26	34	39	42		
29-Jun-19	28	26-Jun-19	13:08	75	76	73		
Average (Range)	31 (23 – 51)	Avera (Rang	_		54 (34 – 76)			

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour	1-hour TSP (μg/m³)					
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jun-19	45	3-Jun-19	13:14	61	63	66	
12-Jun-19	56	8-Jun-19	9:18	56	71	88	
18-Jun-19	65	14-Jun-19	13:13	47	51	49	
24-Jun-19	32	20-Jun-19	9:30	42	46	49	
29-Jun-19	56	26-Jun-19	9:26	83	86	84	
Average (Range)	51 (32 – 65)	Avera (Rang	•		63 (42 – 88)		

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour	1-hour TSP (μg/m³)					
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
6-Jun-19	38	3-Jun-19	13:11	58	60	64	
12-Jun-19	78	8-Jun-19	9:21	64	51	60	
18-Jun-19	14	14-Jun-19	13:10	53	52	51	
24-Jun-19	86	20-Jun-19	9:33	40	44	46	
29-Jun-19	29	26-Jun-19	9:18	81	79	78	
Average	49	Average		59			
(Range)	(14 - 86)	(Rang	ge)		(40 - 81)		

Table 4-4 Summary of 24-hour and 1-hour TSP Monitoring Results – AM4b

	24-hour	1-hour TSP (μg/m³)					
Date	$TSP (\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Jun-19	37	4-Jun-19	9:04	82	83	80	
8-Jun-19	31	10-Jun-19	12:27	48	51	54	
14-Jun-19	25	15-Jun-19	9:46	79	81	86	
20-Jun-19	23	21-Jun-19	9:28	41	45	48	
26-Jun-19	49	27-Jun-19	13:20	59	63	65	
Average	33	Average		64			
(Range)	(23 - 49)	(Rang	(Range)		(41 - 86)		

Table 4-5 Summary of 24-hour and 1-hour TSP Monitoring Results – AM5a

	24-hour		1	-hour TSP (μg	g/m ³)	
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading
3-Jun-19	31	4-Jun-19	9:08	80	77	79
8-Jun-19	62	10-Jun-19	12:25	45	47	50
14-Jun-19	41	15-Jun-19	9:54	76	78	80
20-Jun-19	46	21-Jun-19	9:26	37	41	47
26-Jun-19	31	27-Jun-19	13:17	61	63	67
Average	42	Average		62		
(Range)	(31 - 62)	(Rang	ge)		(37 - 80)	

Table 4-6 Summary of 24-hour and 1-hour TSP Monitoring Results – AM6

	24-hour	1-hour TSP (μg/m³)					
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Jun-19	78	4-Jun-19	9:14	76	78	71	
8-Jun-19	58	10-Jun-19	12:18	48	50	53	
14-Jun-19	97	15-Jun-19	13:53	89	92	95	
20-Jun-19	46	21-Jun-19	9:20	41	43	46	
26-Jun-19	54	27-Jun-19	13:11	66	70	72	
Average (Range)	67 (46 – 97)	Avera (Rang	•		66 (41 – 95)		

Table 4-7 Summary of 24-hour and 1-hour TSP Monitoring Results – AM7b

	24-hour		1	-hour TSP (μg/m³)			
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	
3-Jun-19	37	4-Jun-19	9:22	74	76	79	
8-Jun-19	26	10-Jun-19	12:35	51	54	56	
14-Jun-19	51	15-Jun-19	9:48	52	52	53	
20-Jun-19	31	21-Jun-19	12:24	49	53	48	
26-Jun-19	40	27-Jun-19	9:30	64	71	66	
Average	37	Average		60			
(Range)	(26-51)	(Rang	ge)		(48–79)		

Table 4-8 Summary of 24-hour and 1-hour TSP Monitoring Results – AM8

	24-hour		1-hour TSP (μg/m³)				
Date	TSP (μg/m³)	Date	Start Time	1 st reading	2 nd reading	3 rd reading	

3-Jun-19	28	4-Jun-19	9:29	80	78	80
8-Jun-19	10	10-Jun-19	12:45	45	48	51
14-Jun-19	41	15-Jun-19	13:51	49	51	49
20-Jun-19	18	21-Jun-19	12:32	46	49	53
26-Jun-19	32	27-Jun-19	13:15	59	64	62
Average	26	Average		58		
(Range)	(10 - 41)	(Range)		(45 - 80)		

Table 4-9 Summary of 24-hour and 1-hour TSP Monitoring Results – AM9b

	24-hour	1-hour TSP (μg/m ³)						
Date	TSP $(\mu g/m^3)$	Date	Start Time	1 st reading	2 nd reading	3 rd reading		
6-Jun-19	23	3-Jun-19	9:26	62	67	65		
12-Jun-19	26	8-Jun-19	9:43	34	34	38		
18-Jun-19	12	14-Jun-19	9:30	47	43	42		
24-Jun-19	34	20-Jun-19	12:41	37	40	44		
29-Jun-19	33	26-Jun-19	13:10	70	72	70		
Average	26	Average		51				
(Range)	(12 - 34)	(Rang	ge)	(34 - 72)				

- 4.2.2 As shown in *Tables 4-1 to 4-9*, all the 1-hour and 24-hour TSP monitoring results were below the Action/Limit Levels. No Notification of Exceedance (NOE) was issued in this Reporting Period.
- 4.2.3 The meteorological data during the impact monitoring days are summarized in *Appendix K*.

5 CONSTRUCTION NOISE MONITORING

5.1 GENERAL

- 5.1.1 In the Reporting Period, construction works under the project have been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and noise monitoring was performed at all designated locations.
- 5.1.2 The noise monitoring schedule is presented in *Appendix H* and the monitoring results are summarized in the following sub-sections.

5.2 Noise Monitoring Results

5.2.1 In the Reporting Period, a total of **40** events noise measurements were carried out at the designated locations. The sound level meter was set in 1m from the exterior of the building façade including noise monitoring locations NM1, NM3, NM4, NM5, NM6, NM7, NM8 and NM9. Therefore, no façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines. However, free-field status were performed at NM2a and NM10 and façade correction (+3 dB(A)) has added according to the requirement in this month. The noise monitoring results at the designated locations are summarized in *Tables 5-1 and 5-2*. The detailed noise monitoring data are presented in *Appendix I* and the relevant graphical plots are shown in *Appendix J*.

Table 5-1 Summary of Construction Noise Monitoring Results

Construction Noise Level (L _{eq30min}), dB(A)								
Date	NM1	NM2a ^(*)	NM8	NM9	NM10 ^(*)			
3-Jun-19	59	65	59	65	66			
14-Jun-19	58	67	58	66	68			
20-Jun-19	55	67	62	60	63			
26-Jun-19	58	71	61	64	66			
Limit Level	Limit Level 75 dB(A)							

Remarks

Table 5-2 Summary of Construction Noise Monitoring Results

	Construction Noise Level (L _{eq30min}), dB(A)									
Date	NM3	NM4	NM5	NM6	NM7					
4-Jun-19	56	61	50	56	58					
10-Jun-19	58	63	52	58	60					
21-Jun-19	57	62	53	58	60					
27-Jun-19	59	63	62	62	65					
Limit Level		75 dB(A)								

5.2.2 As shown in *Tables 5-1 and 5-2*, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint (which triggered Action Level exceedance) was recorded in the Reporting Period.

façade correction (+3 dB(A)) is added according to acoustical principles and EPD guidelines

6 WATER QUALITY MONITORING

6.1 GENERAL

6.1.1 In the Reporting Period, construction works under the project has been commenced in Contracts 2, 3, 4, 6, 7 and Contract SS C505 and water quality monitoring was performed at all designated locations. The water quality monitoring schedule is presented in *Appendix H*. The monitoring results are summarized in the following sub-sections.

6.2 RESULTS OF WATER QUALITY MONITORING

- 6.2.1 In the Reporting Period, a total of **twelve (12)** sampling days were scheduled to carry out for all designated locations with their control stations. Since exceedance was recorded at WM2A(a), according to "Event and Action Plan" stipulation, 1 additional water quality monitoring day was conducted for WM2A(a) and its control station.
- 6.2.2 The key monitoring parameters including Dissolved Oxygen, Turbidity and Suspended Solids are summarized in *Tables 6-1 to 6-5*. Breaches of water quality monitoring criteria are shown in *Table 6-6*. Detailed monitoring database including in-situ measurements and laboratory analysis data are shown in *Appendix I* and the relevant graphical plot are shown in *Appendix J*.

Table 6-1 Water Quality Monitoring Results Associated of Contracts 2 and 3

Date	Dis	solved Oxy (mg/L)	ygen		Turbidity (NTU)	,	Suspended Solids (mg/L)			
	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	WM4	WM4-CA	WM4-CB	
3-Jun-19	6.6	4.7	5.8	11.4	1.1	12.1	9.5	<2	7.0	
5-Jun-19	6.4	4.7	5.6	5.4	1.6	8.8	4.5	<2	11.0	
8-Jun-19	8.1	7.4	4.6	16.6	1.6	3.9	4.5	<2	9.0	
10-Jun-19	6.5	4.4	5.7	2.6	1.1	5.8	4.0	<2	8.0	
12-Jun-19	7.6	2.1	6.1	7.3	0.1	7.4	7.0	2.0	9.0	
14-Jun-19	7.9	3.5	7.1	9.4	1.2	8.6	6.5	<2	6.0	
17-Jun-19	7.2	4.0	5.8	3.1	1.1	6.5	7.5	<2	8.5	
19-Jun-19	7.7	4.1	6.6	2.2	0.3	6.3	3.5	<2	9.0	
21-Jun-19	7.2	4.2	6.8	4.0	0.3	4.9	4.0	<2	7.5	
24-Jun-19	6.9	4.7	4.1	12.2	1.7	9.4	8.5	<2	6.5	
26-Jun-19	9.3	4.3	6.0	19.5	1.6	16.6	12.5	<2	11.5	
28-Jun-19	7.8	7.9	5.8	136.5	326.5	32.3	116.5	230.5	22.5	

Table 6-2 Water Quality Monitoring Results Associated of Contracts 6 and SS C505

Date	Dissolved Oxygen (mg/L)			oidity FU)	Suspended Solids (mg/L)		
	WM1	WM1-C	WM1	WM1-C	WM1	WM1-C	
3-Jun-19	6.4	6.2	471.5	406.0	227.5	200.0	
5-Jun-19	7.8	6.5	21.5	17.2	17.5	11.5	
8-Jun-19	7.3	7.3	15.4	7.8	22.0	5.5	
10-Jun-19	7.3	7.4	16.1	7.9	13.0	4.0	
12-Jun-19	7.6	7.0	17.1	18.6	15.0	12.5	
14-Jun-19	7.4	7.2	22.7	18.6	14.5	12.0	
17-Jun-19	7.7	7.4	12.7	9.6	14.5	3.5	
19-Jun-19	7.4	7.0	15.9	10.7	18.5	6.5	
21-Jun-19	6.8	6.3	104.0	91.0	151.5	129.5	
24-Jun-19	7.2	6.7	31.0	13.9	28.0	5.0	
26-Jun-19	7.0	6.4	271.0	230.0	192.0	204.5	
28-Jun-19	7.9	7.5	20.4	13.1	13.0	3.0	

Table 6-3 Water Quality Monitoring Results Associated only Contract 6

	D	issolve	d Oxyg	en	Turbidity				Suspended Solids			
Date	(mg/L)			(NTU)			(mg/L)					
	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B- C

Date	Dissolved Oxygen (mg/L)				Turbidity (NTU)				Suspended Solids (mg/L)			
Date	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B- C	WM2A(a)	WM2A- Cx	WM2B	WM2B-
3-Jun-19	6.9	7.2	*	*	23.5	17.3	*	*	14.0	11.5	*	*
5-Jun-19	6.8	7.0	*	*	24.8	9.5	*	*	14.5	3.5	*	*
8-Jun-19	7.0	7.5	*	*	18.2	7.5	*	*	10.0	3.0	*	*
10-Jun-19	6.7	7.5	*	*	18.4	7.3	*	*	8.5	2.5	*	*
12-Jun-19	7.9	8.0	*	*	18.3	2.7	*	*	11.5	2.0	*	*
14-Jun-19	7.5	7.3	*	*	24.1	10.3	*	*	12.0	5.0	*	*
17-Jun-19	7.3	8.0	*	*	18.9	5.7	*	*	11.0	2.0	*	*
19-Jun-19	7.7	7.8	*	*	17.1	6.0	*	*	9.5	3.0	*	*
21-Jun-19	7.4	7.5	*	*	24.3	7.8	*	*	14.0	4.5	*	*
24-Jun-19	7.4	6.7	*	*	24.7	9.1	*	*	8.0	2.0	*	*
26-Jun-19	8.1	8.7	*	*	179.0	25.7	*	*	145.0	17.5	*	*
27-Jun-19#	#	#	*	*	20.8	19.1	*	*	15.0	16.0	*	*
28-Jun-19	6.8	8.0	*	*	24.4	16.1	*	*	10.5	8.5	*	*

Remarks: * water sampling was unable to carry out at WM2B and WM2B-C due to shallow water (water depth under 150mm

(#) Additional water quality monitoring was conducted according to "event and Action Plan" stipulation. Bold and underlined indicated Limit Level exceedance.

Table 6-4 Water Quality Monitoring Results Associated Contracts 2 and 6

Date		d Oxygen g/L)		oidity FU)	_	ed Solids g/L)
	WM3x	WM3-C	WM3x	WM3-C	WM3x	WM3-C
3-Jun-19	6.6	6.5	8.0	26.6	7.0	14.0
5-Jun-19	6.1	5.8	6.1	8.8	4.0	2.5
8-Jun-19	7.2	6.0	3.6	4.7	10.5	<2
10-Jun-19	7.2	5.9	3.1	4.7	4.0	3.0
12-Jun-19	7.1	7.0	5.7	5.9	7.5	3.0
14-Jun-19	6.9	7.3	11.9	11.1	8.5	5.0
17-Jun-19	7.4	5.6	1.7	5.8	<2	2.5
19-Jun-19	7.3	6.2	6.0	6.1	6.5	3.0
21-Jun-19	7.4	5.0	3.9	5.7	4.5	2.0
24-Jun-19	7.4	4.5	13.2	7.6	12.5	2.0
26-Jun-19	7.8	7.6	16.0	73.1	10.5	66.5
28-Jun-19	7.1	5.6	7.3	10.5	4.0	2.0

Table 6-5 Action and Limit (A/L) Levels Exceedance Recorded

Location		olved ygen	Turbidity		Suspended Solids		Total Exceedance		Project Related exceedance	
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
WM1	0	0	0	0	0	0	0	0	0	0
WM2A(a)	0	0	0	1	0	1	0	2	0	0
WM2B	0	0	0	0	0	0	0	0	0	0
WM3x	0	0	0	0	0	0	0	0	0	0
WM4	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	1	0	1	0	2	0	0

6.2.3 In this Reporting Period, there were two (2) Limit Level exceedances of Turbidity and Suspended Solids recorded for the Project and they are summarized in *Table 6-5*. NOE was issued to relevant parties upon confirmation of the monitoring result. The investigation results and summary of exceedances are summarized in *Table 6-6*. The details of the completed investigation reports for the exceedances are attached in *Appendix N*.

Table 6-6 Summary of Water Quality Exceedance in the Reporting Period

Date of Exceedance	Location	Exceeded Parameter	Cause of Water Quality Exceedance In Brief
29 and 30 May 2019	WM2A(a)	SS	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpauling that for any allowed the providing tarpauling that the providing tarpauling the providing tarpauling tarpauling the providing tarpauling t
(Last reporting Period)			sheet for open slope and surface to minimize muddy runoff. It is considered that the exceedances were related to the inflow of muddy water from upstream of the
			project after rainstorm and unlikely caused by the works under the Project.
26 June 2019	WM2A(a)	Turbidity & SS	In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. It is considered that the exceedances were related to the inflow of muddy water from upstream of the project after rainstorm and unlikely caused by the works under the Project.

7 ECOLOGY MONITORING

7.1 GENERAL

- 7.1.1 Ecology monitoring for woodland compensation was shall be conducted at bi-monthly interval for the first year and the monitoring frequency would be reduced to quarterly from the second year.
- 7.1.2 The Ecology Monitoring for period of March 2019 to May 2019 was carried out on 23th and 24th April 2019 by transects inspection and quadrat monitoring. The Quarterly Ecological Monitoring Report (March to May 2019) was verified by IEC on 13 June 2019 and it has been submitted as a stand-alone copy to supplement the EM&A Report on 14 June 2019.

8 WASTE MANAGEMENT

8.1 GENERAL WASTE MANAGEMENT

8.1.1 Waste management was carried out in accordance with the Waste Management Plan (WMP) for each contract.

8.2 RECORDS OF WASTE QUANTITIES

- 8.2.1 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil.
- 8.2.2 The quantities of waste for disposal in this Reporting Period are summarized in *Tables 8-1* and 8-2 and the Monthly Summary Waste Flow Table is shown in *Appendix L*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials for the Project

Type of	Cor	tract 2	Con	tract 3	Con	tract 4	Contract 6		C	Contract 7 Contra		et SS C505	
Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Total Qty.
C&D Materials (Inert) (in '000m³)	0.3100	1	1.345		0		1.1760		0.845		1.605		5.281
Reused in this Contract (Inert) (in '000 m ³)	0	1	0	1	0		0		0	+	0		0
Reused in other Contracts/ Projects (Inert) (in '000 m³)	0	I	0	I	0	1	0.315	Reused at NENT#	0	-1	0	1	0.315
Disposal as Public Fill (Inert) (in '000 m ³)	0.3100	Tuen Mun 38	1.345	Tuen Mun 38	0	1	0.861	Tuen Mun 38	0.845	Tuen Mun 38	1.541	TKO 137	4.902

[#] Approved alternative site

Table 8-2 Summary of Quantities of C&D Wastes for the Project

	Cont	tract 2	Cont	tract 3	Contract 4		Contract 6		Contract 7		Contract SS C505		Total
Type of Waste	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Qty.	Disposal location	Quantity
Recycled Metal ('000kg)#	0		0	-	0		0		0.1	Licensed collector	234.170	Licensed collector	234.27
Recycled Paper / Cardboard Packing ('000kg) #	0		0	-	0	-	0.270	Licensed collector	0.1	Licensed collector	0.570	Licensed collector	0.94
Recycled Plastic ('000kg)#	0		0	-	0	-	0		0.001	Licensed collector	1.580	Licensed collector	1.581
Chemical Wastes ('000kg)#	0		0	-	0		0		0		0		0
General Refuses ('000m ³)	0.0535	NENT	0.115	NENT	0		0.307	NENT	0.1	NENT	1.664	NENT	2.2395

Remark #: Unit of recycled metal, recycled paper/ cardboard packing and recycled plastic under Contract 3 was in $('000m^3)$ while the unit of chemical wastes for Contract 3 was in $('m^3)$.

9 SITE INSPECTION

9.1 REQUIREMENTS

9.1.1 According to the approved EM&A Manual, the environmental site inspection shall be formulation by ET Leader. Weekly environmental site inspections should carry out to confirm the environmental performance.

9.2 FINDINGS / DEFICIENCIES DURING THE REPORTING MONTH

Contract 2

- 9.2.1 In the Reporting Period, joint site inspection for Contract 2 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6, 14, 21 and 28 June 2019**. No non-compliance was noted.
- 9.2.2 The findings / deficiencies of *Contract 2* that observed during the weekly site inspection are listed in *Table 9-1*.

Table 9-1 Site Observations for Contract 2

Date	Findings / Deficiencies	Follow-Up Status		
6 June 2019	• The Contractor was reminded to treat the	 Not required for 		
	wastewater before discharge.	reminder.		
14 June 2019	The Contractor was reminded to provide water	• Not required for		
	spraying during the cutting works.	reminder.		
21 June 2019	No adverse environmental issue was observed.	• NA		
28 June 2019	• The Contractor was reminded to wash the	• Not required for		
	wheel thoroughly before leaving the site.	reminder.		

Contract 3

- 9.2.3 In the Reporting Period, joint site inspection for Contract 3 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6**, **13**, **19** and **27** June **2019**. No non-compliance was noted.
- 9.2.4 The findings / deficiencies of *Contract 3* that observed during the weekly site inspection are listed in *Table 9-2*.

Table 9-2 Site Observations for Contract 3

Date	Findings / Deficiencies	Follow-Up Status
6 June 2019	 Generator without NRMM label was observed near WWTS1. The Contractor should provide proper NRMM label on generator. Silt was observed on bike path, the Contractor should clean up the silt and maintain the bike path in tidy condition. (TWSRE) 	NRMM label was provided.Silt was removed.
13 June 2019	 Muddy trails was observed at TWSRW site exit. The Contractor should clean the muddy trails and maintain site exit clean. Free standing chemical containers were 	Muddy trails were removed.Chemical
	observed at TWSRW. The Contractor should provide drip tray underneath the containers to prevent land contamination.	containers were removed.
19 June 2019	• Free standing chemical container was observed at TWSRE. The Contractor should provide drip tray underneath the container to prevent land contamination.	Drip tray was provided.
27 June 2019	The Contractor was reminded to prevent muddy	Not required for

Date	Findings / Deficiencies	Follow-Up Status
	water outflow to public road.	reminder.

- 9.2.5 In the Reporting Period, joint site inspection for Contract 4 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6, 10, 21 and 28 June 2019**. No non-compliance was noted.
- 9.2.6 The findings / deficiencies of *Contract 4* that observed during the weekly site inspection are listed in *Table 9-3*.

Table 9-3 Site Observations for Contract 4

Date	Findings / Deficiencies	Follow-Up Status
6 June 2019	No adverse environmental issue was observed.	• NA
10 June 2019	No adverse environmental issue was observed.	• NA
21 June 2019	No adverse environmental issue was observed.	• NA
28 June 2019	No adverse environmental issue was observed.	• NA

Contract 6

- 9.2.7 In the Reporting Period, joint site inspection for Contract 6 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6, 13, 20 and 27 June 2019**. No non-compliance was noted.
- 9.2.8 The findings / deficiencies of *Contract 6* that observed during the weekly site inspection are listed in *Table 9-4*.

Table 9-4 Site Observations for Contract 6

Date	Findings / Deficiencies	Follow-Up Status		
6 June 2019	No adverse environmental issue was observed.	• NA		
13 June 2019	No adverse environmental issue was observed.	• NA		
20 June 2019	Muddy water discharge from site was observed at Bridge Y. The Contractor should remove silt regularly and provide proper mitigation measure to prevent muddy water discharge.	• Silt was removed and proper mitigation measure was provide.		
27 June 2019	No adverse environmental issue was observed.	• NA		

Contract SS C505

- 9.2.9 In the Reporting Period, joint site inspection for Contract SS C505 to evaluate the site environmental performance has been carried out by the RE, ET and the Contractor on 5, 12, 19 and 26 June 2019 in which IEC joined the site inspection on 19 June 2019. No non-compliance was noted.
- 9.2.10 The findings / deficiencies of *Contract SS C505* that observed during the weekly site inspection are listed in *Table 9-5*.

Table 9-5 Site Observations for Contract SS C505

Date	Findings / Deficiencies	Follow-Up Status		
5 June 2019	• The Contractor was reminded to provide anti mosquito measure on site.	Not required for reminder.		

Date	Findings / Deficiencies	Follow-Up Status
	The Contractor was reminded to maintain good housekeeping on site.	Not required for reminder.
12 June 2019	Accumulation of C&D waste was observed at building 2. The Contractor should dispose C&D waste regularly to prevent accumulation.	Waste disposal was conducted regularly.
19 June 2019	 The Contractor was reminded to remove the stagnant water cumulated over on-site after rain. The Contractor was reminded to provide sufficient dust mitigation measures for the dusty work such as cement mixing and breaking. 	 Not required for reminder. Not required for reminder.
26 June 2019	 The Contractor was reminded to repair/replace the broken water barrier. The Contractor was reminded to remove the stagnant water regularly. 	 Not required for reminder. Not required for reminder.

- 9.2.11 In the Reporting Period, joint site inspection for Contract 7 to evaluate the site environmental performance has been carried out by the RE, IEC, ET and the Contractor on **6, 13, 18 and 28 June 2019**. No non-compliance was noted.
- 9.2.12 The findings / deficiencies of *Contract* 7 that observed during the weekly site inspection are listed in *Table 9-6*.

Table 9-6 Site Observations for Contract 7

Date	Findings / Deficiencies	Follow-Up Status
6 June 2019	• The Contractor was reminded to maintain haul road clean and tidy.	• Not required for reminder.
13 June 2019	• The Contractor was reminded to dispose general refuse regularly.	Not required for reminder.
18 June 2019	No adverse environmental issue was observed.	• NA
28 June 2019	No adverse environmental issue was observed.	• NA

9.2.13 General housekeeping such as daily site tidiness and cleanliness should be maintained for all Contracts. Furthermore, the Contractors were reminded to implement Waste Management Plan of the Project.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.1 Environmental Complaint, Summons and Prosecutions

- 10.1.1 In the Reporting Period, no environmental complaints, summons and prosecution under the EM&A Programme was lodged for all Contracts.
- The statistical summary of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Reporting	Contract	Env	rironmental Co	mplaint Statistics	Project related
Period	No	Frequency	Cumulative	Complaint Nature	complaint
19 May 2014 – 31 May 2019	Contract 2	0	38	 (19)Water Quality (10) Dust (6) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	(7) water quality (3) dust (1) noise
31 May 2019	Contract 3	0	10	 (3) Dust (3) Water quality (2) Noise (2) site cleanliness (dust & water quality) 	(1) site cleanliness (dust & water quality)
16 Aug 2013 – 31 May 2019	Contract 4	0	0	NA	NA
16 Aug 2013 _	Contract 6	0	45	 (24) Water Quality (12) Dust (3) Noise (1) Nuisance (1) Noise and dust (3) Water quality and dust (1) Water quality and noise 	(8) water quality (3) dust (1) nuisance (1) water quality and dust (1) water quality and noise
15 Feb 2016 – 31 May 2019	Contract 7	0	4	(1) Noise(3) Water quality and dust	(1) water quality and dust
16 Aug 2013 – 31 May 2019	SS C505	0	7	 (1) Noise (2) dust (3) Water quality and dust (1) Water quality 	(1) water quality and dust
1 – 30 June	Contract 2	0	38	 (19)Water Quality (10) Dust (6) Noise (1) dust & noise (1) waste management (1) Water quality and dust 	NA
2019 -	Contract 3	0	10	(3) Dust(3) Water quality(2) Noise(2) site cleanliness	NA
				(dust & water quality)	

Reporting	Contract	Env	rironmental Co	mplaint Statistics	Project related
Period	No	Frequency	Cumulative	Complaint Nature	complaint
	Contract 6	0	45	 (24) Water Quality (12) Dust (3) Noise (1) Nuisance (1) Noise and dust (3) Water quality and dust (1) Water quality and noise 	NA
	Contract 7	0	4	• (1) Noise • (3) Water quality and dust	NA
	SS C505	0	7	 (1) Noise (2) dust (3) Water quality and dust (1) Water quality 	NA

Table 10-2 Statistical Summary of Environmental Summons

Domontino Dominal	Contract No	Environmental Summons Statistics				
Reporting Period	Contract No	Frequency Cumulative		Complaint Nature		
19 May 2014 – 31 May 2019	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations		
06 Nov 2013 – 31 May 2019	Contract 3	0	0	NA		
16 Aug 2013 – 31 May 2019	Contract 5	0	0	NA		
16 Aug 2013 – 31 May 2019	Contract 6	0	0	NA		
15 Feb 2016 – 31 May 2019	Contract 7	0	0	NA		
16 Aug 2013 – 31 May 2019	SS C505	0	0	NA		
	Contract 2	0	1	NA		
	Contract 3	0	0	NA		
1 20 I 2010	Contract 4	0	0	NA		
1 – 30 June 2019	Contract 6	0	0	NA		
	Contract 7	0	0	NA		
	SS C505	0	0	NA		

 Table 10-3
 Statistical Summary of Environmental Prosecutions

Domontino Dominal	Company of No.	Environmental Prosecutions Statistics			
Reporting Period	Contract No	Frequency	Cumulative	Complaint Nature	
19 May 2014 – 31 May 2019	Contract 2	0	1	contravening the Water Pollution Control (General) Regulations	
06 Nov 2013 – 31 May 2019	Contract 3	0	0	NA	
16 Aug 2013 – 31 May 2019	Contract 5	0	0	NA	
16 Aug 2013 – 31 May 2019	Contract 6	0	0	NA	
15 Feb 2016 – 31 May 2019	Contract 7	0	0	NA	
16 Aug 2013 – 31 May 2019	SS C505	0	0	NA	
1 – 30 June 2019	Contract 2	0	1	NA	

Reporting Period	Combract No.	Environmental Prosecutions Statistics			
	Contract No	Frequency	Cumulative	Complaint Nature	
	Contract 3	0	0	NA	
	Contract 4	0	0	NA	
	Contract 6	0	0	NA	
	Contract 7	0	0	NA	
	SS C505	0	0	NA	

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.1 GENERAL REQUIREMENTS

- 11.1.1 The environmental mitigation measures that recommended in the Implementation Schedule for Environmental Mitigation Measures (ISEMM) in the approved EM&A Manual covered the issues of dust, noise, water and waste and they are summarized presented in *Appendix M*.
- All contracts under the Project shall be implementing the required environmental mitigation measures according to the approved EM&A Manual as subject to the site condition. Environmental mitigation measures generally implemented by Contracts 2, 3, 4, 6, 7 and Contract SS C505 in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures					
Water	• Wastewater to be treated by the wastewater treatment facilities i.e.					
Quality	sedimentation tank or similar facility before discharge.					
Air Quality	 Maintain damp / wet surface on access road 					
	Low vehicular speed within the works areas.					
	All vehicles must use wheel washing facility before off site					
	Sprayed water during breaking works					
	• A cleaning truck was regularly performed on the public road to prevent					
	fugitive dust emission					
Noise	• Restrain operation time of plants from 07:00 to 19:00 on any working da					
	except for Public Holiday and Sunday.					
	Keep good maintenance of plants					
	Place noisy plants away from residence or school					
	 Provide noise barriers or hoarding to enclose the noisy plants or works 					
	Shut down the plants when not in used.					
Waste and	On-site sorting prior to disposal					
Chemical	Follow requirements and procedures of the "Trip-ticket System"					
Management	* * *					
	• Collect the unused fresh concrete at designated locations in the sites for					
	subsequent disposal					
General	The site was generally kept tidy and clean.					

- 11.1.3 The project (except for the BCP building complex) was commenced on 26 May 2019. In view of the partial commencement of operation to be considered as the same as the commencement of operation for the entire project, all relevant requirements as stipulated in the EP and the approved EIA report (including the EM&A Manual) for the commencement of operation of the Project shall be strictly complied with.
- The implementation status of mitigation measures for operation phase in the Reporting Period are summarized in *Appendix P*.
- During Rainy season, the contractors should pay special attention on water quality mitigation measures and fully implement according to the ISEMM of the EM&A Manual, in particular to prevent muddy water or other water pollutants from site surface overflow to public area should be properly maintained. The implementation of water quality mitigation measures conducted by the Contractors are shown in *Appendix Q*.

11.2 TENTATIVE CONSTRUCTION ACTIVITIES IN THE COMING MONTH

11.2.1 As advised by the ER, the construction works under Contract 5 was substantially completed on 31 August 2016. Construction activities for other Contracts in the coming month are listed below:

Co	ntr	ac	t	2

Mid-Vent Portal	External reinstatement and landscaping works
- 01001	

North Portal	•	External backfill, reinstatement and landscaping works
South Portal	•	External backfill, reinstatement and landscaping works

- Cable detection
- Noise barrier construction
- Road pavement works
- Water main laying works (on Grade)
- Installation of Noise barrier panel (on Grade)
- Road Drainage Works
- Construction of Pavilion and Pai Lau
- Construction of Slope works
- Landscaping works

Contract 4

• TCSS & FVMS installation at Fanling highway

Contract 6

- Water Pipe Connection Work
- Sewage Treatment Plant Construction
- Road Construction
- Landscaping

Contract 7

- Noise barrier construction at Bridge D and E
- Parapet installation at Bridge A & E
- Street lighting and CCTV installation at perimeter road
- Shenzhen River reinstatement
- Landscape Softwork at Portion Z

Contract SS C505

- Building no. 4 7, 10 13, 16 17, 27, 32 35, 37 40 constructions, including integrated ABWF & MEP Works
- Building no. 20 PTB structure works, ABWF Works & MEP Installation
- Building no. 20 PTB External Works including Building 23-24
- Bridge C Integrated ABWF & MEP Installation Works (C7 Portion)
- Bridge 1 to 2 Phase 3 road and finishes works
- External Works Water Meter Room Connection (Inbound & Outbound)
- External Utilities Works DSD inspection
- External Road & Pavement Works for inbound Phase 1 FS inspection concrete pavement) & for Phase 2 FS inspection
- External Landscape Inbound & Outbound Area
- Testing & Commissioning Phase 1, 2 & 3
- FS Inspection Phase 2 & 3

11.3 KEY ISSUES FOR THE COMING MONTH

- 11.3.1 Key issues to be considered in the coming month for Contracts 2, 3, 4, 6, 7 and SS C505 include:
 - Implementation of control measures for rainstorm;
 - Regular clearance of stagnant water during wet season;
 - Implementation of dust suppression measures at all times;
 - Potential wastewater quality impact due to surface runoff;
 - Potential fugitive dust quality impact due from the dry/loose/exposure soil surface/dusty material;
 - Disposal of empty engine oil containers within site area;

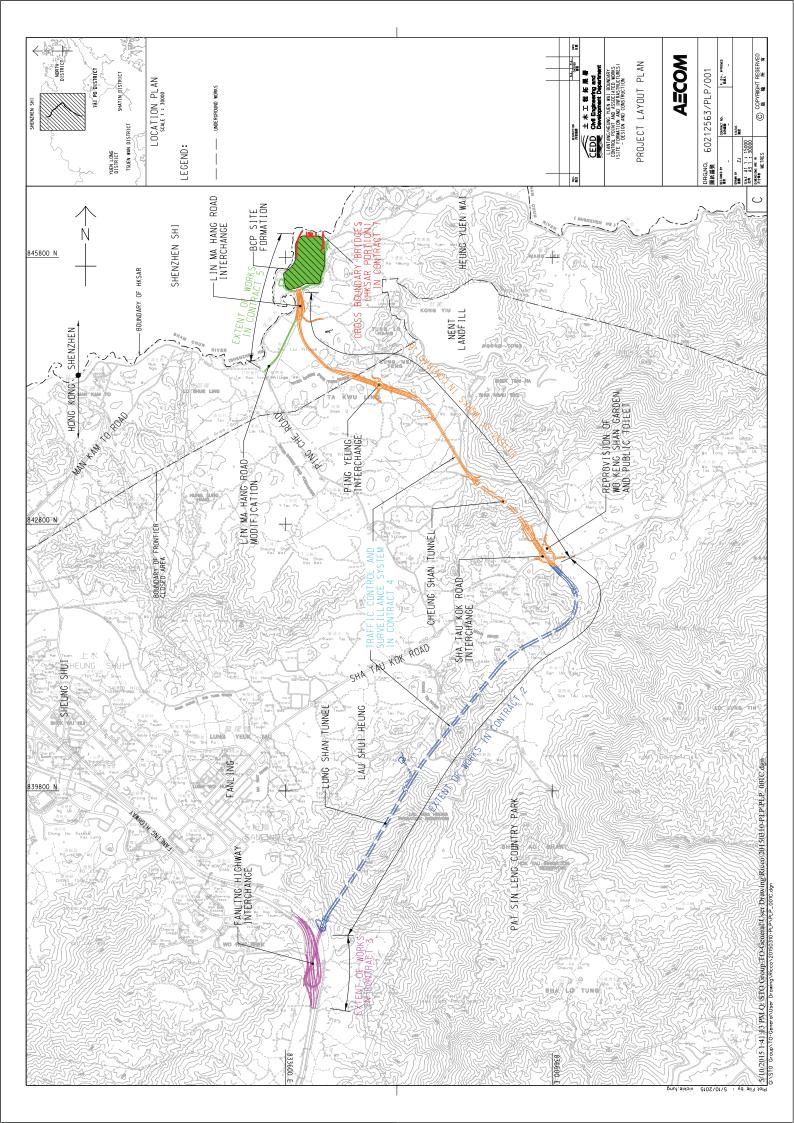
Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

- Ensure dust suppression measures are implemented properly;
- Sediment catch-pits and silt removal facilities should be regularly maintained;
- Management of chemical wastes;
- Discharge of site effluent to the nearby wetland, stockpiling or disposal of materials, and any dredging or construction area at this area are prohibited;
- Follow-up of improvement on general waste management issues; and
- Implementation of construction noise preventative control measures
- 11.3.2 The project (except for the BCP building complex) was commenced on 26 May 2019. All relevant requirements as stipulated in the EP and the approved EIA report (including the EM&A Manual) for the commencement of operation of the Project shall be strictly complied with.
- During Rainy season, the contractors should pay special attention on water quality mitigation measures and fully implement according to the ISEMM of the EM&A Manual, in particular to prevent muddy water or other water pollutants from site surface overflow to public area should be properly maintained. The statuses of implemented water quality mitigation measures for the project are shown in *Appendix Q*.

12 CONCLUSIONS AND RECOMMENDATIONS

12.1 CONCLUSIONS

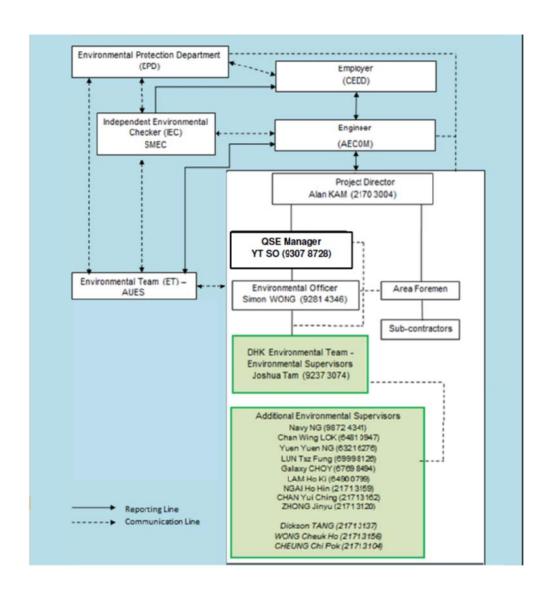
- 12.1.1 This is the **71**st monthly EM&A report presenting the monitoring results and inspection findings for the Reporting Period from **1** to **30 June 2019**.
- 12.1.2 The project (except for the BCP building complex) was commenced on 26 May 2019. In view of the partial commencement of operation to be considered as the same as the commencement of operation for the entire project, all relevant requirements as stipulated in the EP and the approved EIA report (including the EM&A Manual) for the commencement of operation of the Project shall be strictly complied with. The implementation status of mitigation measures for operation phase in the Reporting Period will be presented in the Report.
- 12.1.3 For air quality monitoring, no 1-hour TSP and 24-hour TSP monitoring results triggered the Action /Limit Level was recorded.
- 12.1.4 In the Reporting Period, no construction noise measurement results that exceeded the Limit Level were recorded. Moreover, no valid noise complaint (which triggered an Action Level) exceedance was recorded.
- 12.1.5 There were two (2) Limit Level exceedances recorded in water quality monitoring. Investigation has been undertaken by ET and investigation result revealed that the Contractor had implemented the water quality mitigation measures, in view of inflow of muddy water was observed from upstream of control station, it was concluded that the exceedances were not related to the works under the Project.
- 12.1.6 In this Reporting Period, no environmental complaints were received. Moreover, no summons and prosecution under the EM&A Programme was lodged in the Reporting Period.
- During the Reporting Period, weekly joint site inspection by the RE, IEC, ET with the relevant Main-contractor were carried out for Contracts 2, 3, 4, 6 and 7 in accordance with the EM&A Manual stipulation. For Contract SS C505, weekly joint site inspection was carried out by the RE, IEC, ET and main-contractor whereas IEC performed monthly site inspection. No non-compliance observed during the site inspection.


12.2 RECOMMENDATIONS

- During wet season, preventive measures for muddy water or other water pollutants from site surface flow to local stream such as Kong Yiu Channel, Ma Wat Channel, Ping Yuen River, Kwan Tei River or public area should be properly maintained. The Contractors should paid special attention on water quality mitigation measures and fully implement according ISEMM of the EM&A Manual.
- 12.2.2 In addition, all effluent discharge shall be ensure to fulfill Technical Memorandum of Effluent Discharged into Drainage and Sewerage Systems, inland and Coastal Waters criteria or discharge permits stipulation.
- 12.2.3 Construction noise would be a key environmental issue during construction work of the Project. Noise mitigation measures such as using quiet plants should be implemented in accordance with the EM&A requirement.
- Since most of construction sites under the Project are located adjacent to villages, the Contractors should fully implement air quality mitigation measures to reduce construction dust emission.
- 12.2.5 Furthermore, daily cleaning and weekly tidiness shall be properly performed and maintained. In addition, mosquito control should be kept to prevent mosquito breeding on site.

Appendix A

Layout plan of the Project



Appendix B

Organization Chart

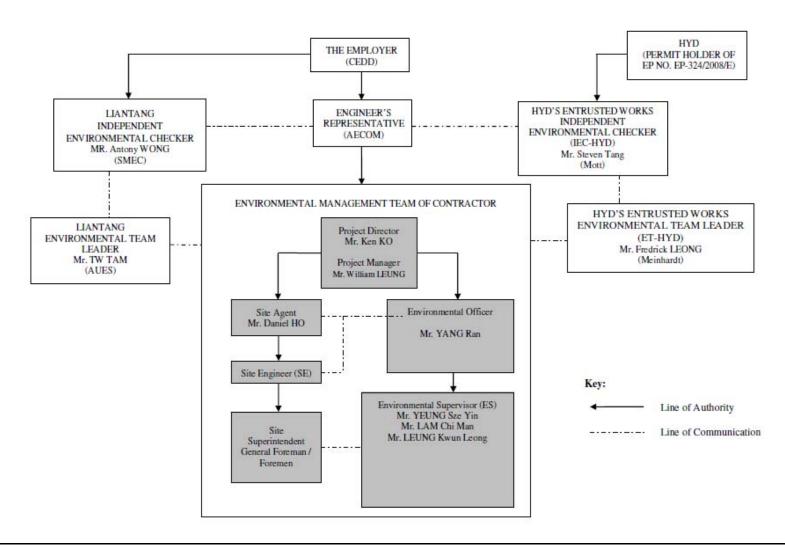
Environmental Management Organization for Contract 2 - (CV/2012/08)

Contact Details of Key Personnel for Contract 2 - CV/2012/08

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Edwin Ching	2171 3301	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
DHK	Project Director	Alan Kam	2170 3004	2171 3299
DHK	QSE Manager	Y. T. So	9307 8728	2171 3299
DHK	Environmental Officer	TBA	TBA	TBA
DHK	Environmental Supervisor	Joshua Tam	9237 3074	2171 3299
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:

CEDD (Employer) – Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

DHK(Main Contractor) –Dragages Hong Kong Ltd.

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 3 - CV/2012/09

Contact Details of Key Personnel for Contract 3 - CV/2012/09

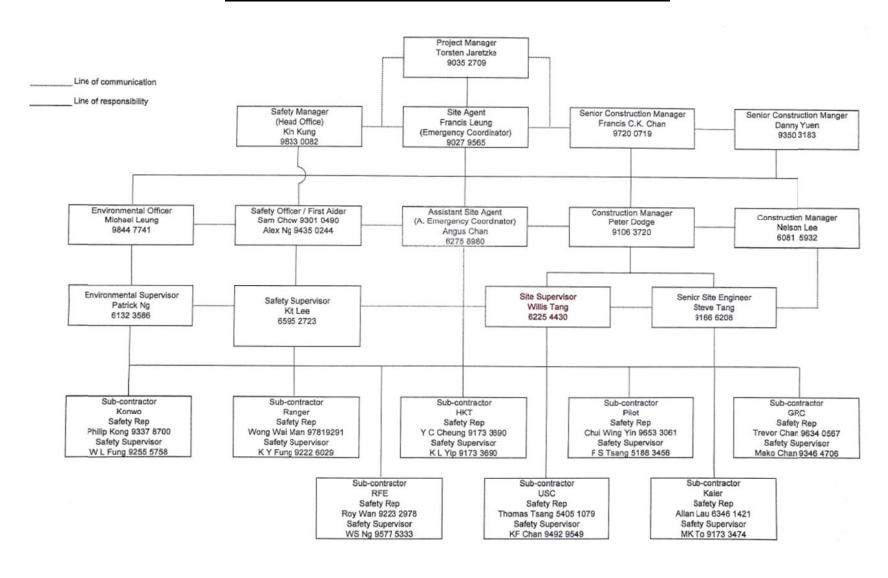
Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Alan Lee	2171 3303	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Chun Wo	Project Director	Ken Ko	3758 8735	2638 7077
Chun Wo	Project Manager	William Leung	2638 6136	2638 7077
Chun Wo	Site Agent	Daniel Ho#	2638 6144	2638 7077
Chun Wo	Environmental Officer	Mr. YANG Ran	2638 6151	2638 7077
Chun Wo	Environmental Supervisor	Frankie Leung	2638 6125	2638 7077
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

[#] Site Agent Mr Daniel Ho was replaced by Mr Ken Lun in July 2019.

Legend:

CEDD (Employer) - Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.


Chun Wo (Main Contractor) - Chun Wo Construction Ltd.

SMEC (IEC) – SMEC Asia Limited

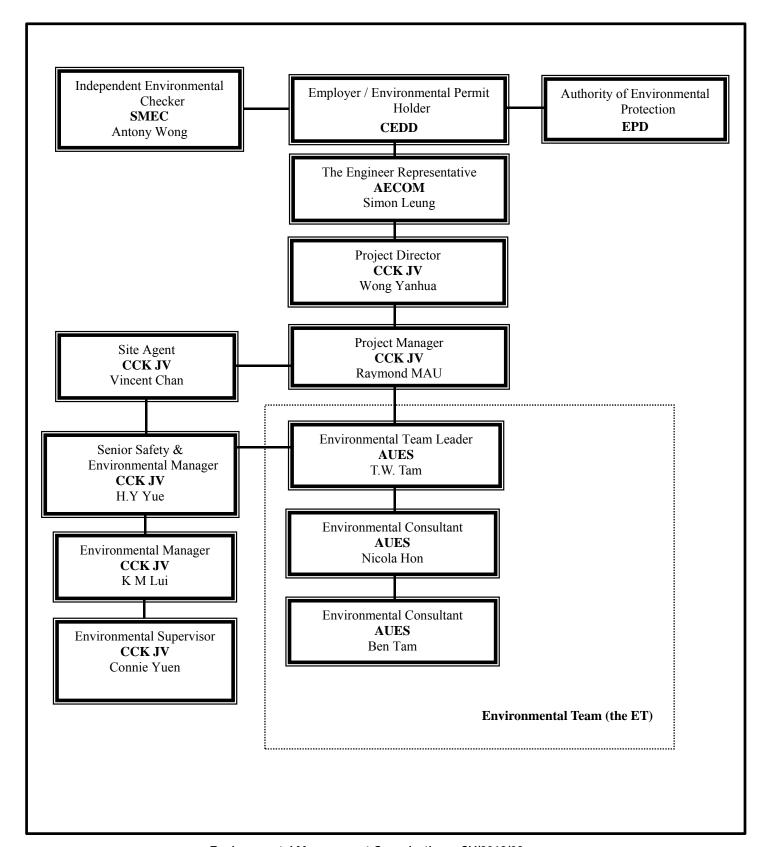
AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract 4 - NE/2014/02

Contact Details of Key Personnel for Contract 4 - NE/2014/02

Organization	Project Role	Name of Key Staff	Tel No	Fax No.
AECOM	Engineer's Representative	Leo Lai	2171 3310	2171 3498
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
Siemens	Project Manager	Torsetn Jaretzke	9444 5577	
Siemens	Site Agent	Francis C K Chan		
Siemens	Environmental Officer	Michael Leung	9844 7741	
Siemens	Environmental Supervisors	Eric Lee	9092 3356	
AUES	Environmental Team Leader	T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079

Legend:


CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

Siemens (Main Contractor) – Siemens Ltd.

SMEC (IEC) – SMEC Asia Limited

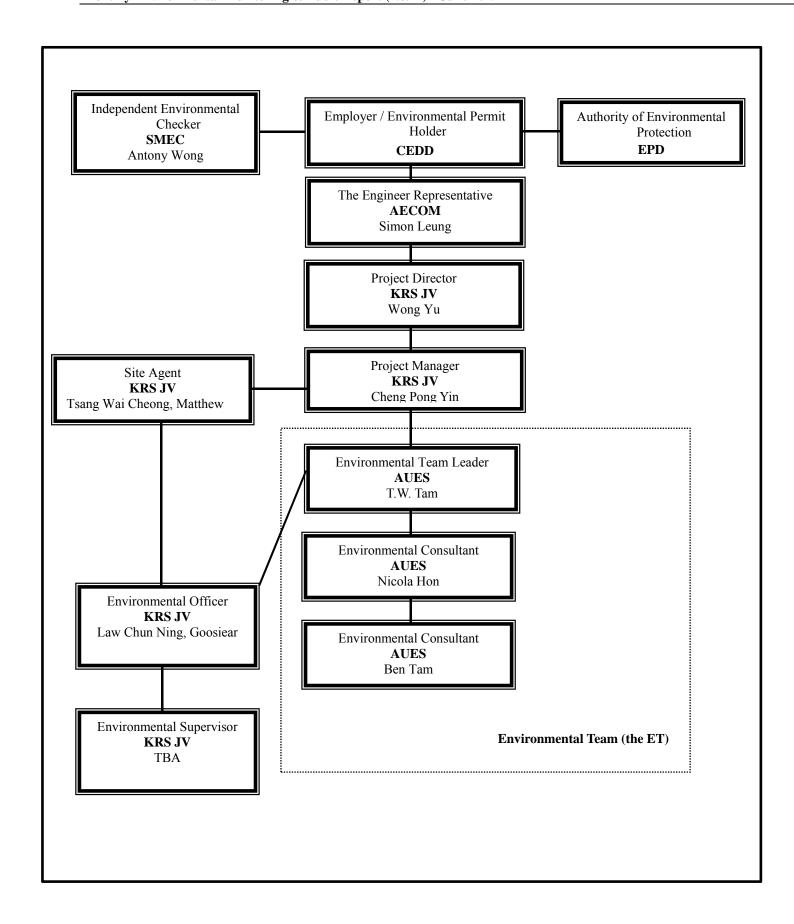
AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization - CV/2013/08

Contact Details of Key Personnel for Contract 6 - CV/2013/08

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Owen Ng	2251 0688	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
CCK JV	Project Director	Wang Yanhua	6190 4212	
CCK JV	Project Manager	Raymond Mau Sai-Wai	9011 5340	
CCK JV	Site Agent	Vincent Chan	9655 9404	
CCK JV	Senior Safety & Environmental Manager	H.Y. Yue	9185 8186	
CCK JV	Environmental Manager	K M Lui	5113 8223	
CCK JV	Environmental Supervisor	Connie Yuen	6316 6931	
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:


CEDD (Employer) – Civil Engineering and Development Department

AECOM (Engineer) – AECOM Asia Co. Ltd.

CCK JV (Main Contractor) – CRBE-CEC-Kaden Joint Venture

SMEC (IEC) – SMEC Asia Limited

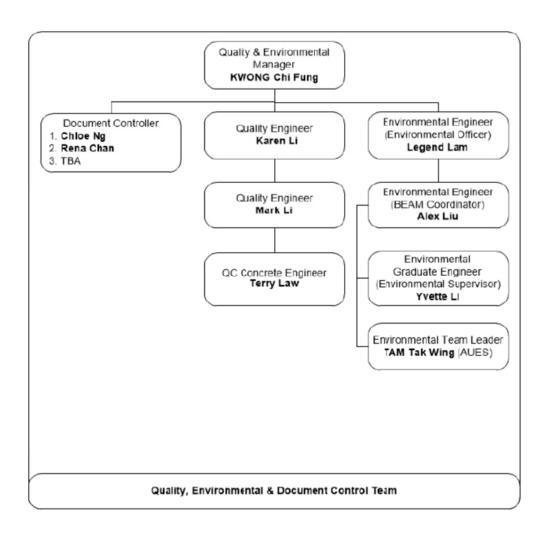
AUES (ET) – Action-United Environmental Services & Consulting

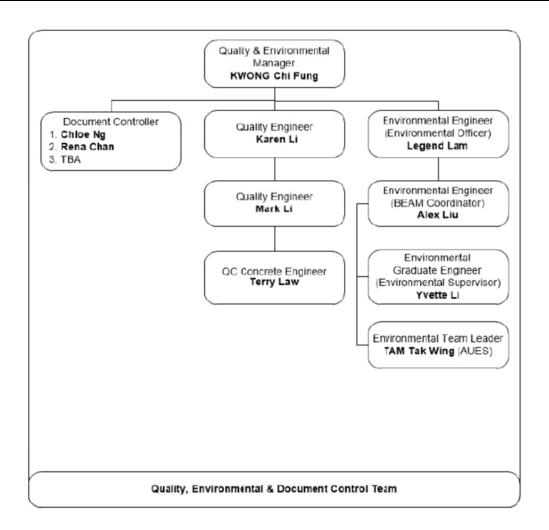
Environmental Management Organization -NE/2014/03

Contact Details of Key Personnel for Contract 7 – NE/2014/03

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
AECOM	Engineer's Representative	Kelvin lee	2251 0609	2251 0698
SMEC	Independent Environmental Checker	Antony Wong	3995 8120	3995 8101
KRSJV	Project Director	Wong Yu	2682 6691	2682 2783
KRSJV	Project Manager	Cheng Pong Yin	9023 4821	2682 2783
KRSJV	Site Agent	Tsang Wai Cheong, Matthew	9705 7536	2682 2783
KRSJV	Environmental Officer	Law Chun Ning, Goosiear	9625 2381	2682 2783
KRSJV	Environmental Supervisor	TBA		
AUES	Environmental Team Leader	TW Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ben Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Nicola Hon	2959 6059	2959 6079

Legend:


CEDD (Employer) – Civil Engineering and Development Department


AECOM (Engineer) – AECOM Asia Co. Ltd.

KRS JV (Main Contractor) –Kwan On-Richwell-SCG Joint Venture

SMEC (IEC) – SMEC Asia Limited

AUES (ET) – Action-United Environmental Services & Consulting

Environmental Management Organization for Contract SS C505

Contact Details of Key Personnel for Contract SS C505

Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
ArchSD	Works agent for the Development Bureau (DEVB)	Mr. William Cheng	2867 3904	2804 6805
Ronald Lu & Partners	Architect/ Architect's Representative	Mr. Justin Cheung	3189 9272	2834 5442
SMEC	Independent Environmental Checker	Mr. Antony Wong	3995 8120	3995 8101
Leighton	Operation Manager	Mr. Antony Zervaas	2823 1433	2529 8784
Leighton	Project Director	Mr. Steven Wong	2858 1519	2858 1899
Leighton	Site Agent	Mr. Ray Ho	2858 1519	2858 1899
Leighton	Environmental Officer	Mr. Legend Lam	3973 1003	-
Leighton	Assistant Environmental Officer	Mr. Alex Liu	3973 0818	-
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Environmental Consultant	Mr. Ben Tam	2959 6059	2959 6079

Legend:

ArchSD (Project Proponent) – Architectural Services Department

Ronald Lu & Partners (Architect/Architect's Representative) – Ronald Lu & Partners (Hong Kong) Ltd

Leighton (Main Contractor) – Leighton Contractors (Asia) Limited

SMEC (IEC) – SMEC Asia Limited

Appendix C

3-month rolling construction program

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/08

Main Contractor: Dragages Hong Kong Ltd

Tentative Three Months (Jun 2019 - Aug 2019) Construction Rolling Progam

Item	Construction Activites
1	Mid-Vent Portal - External reinstatement and landscaping works
2	South Portal - External backfilling, reinstatement and landscaping works.
3	North Portal - External backfilling, reinstatement and landscaping works.

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2012/09

Main Contractor: Chun Wo Construction Ltd

Tentative Three Months (June 2019, July 2019 and August 2019) Construction Rolling Progam

Item	Construction Activites
1	Cable detection
2	Noise barrier construction
3	Road pavement works
4	Water main laying works (on Grade)
5	Installation of Noise barrier panel (on Grade)
6	Road Drainage Works
7	Construction of Pavilion and Pai Lau
8	Construction of Slope works
9	Landscaping works

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: NE/2014/02 Main Contractor: Siemens Ltd.

Tentative Three Months (June 2019, July 2019 and August 2019) Construction Rolling Programme

Item	Construction Activites
1	OPT & DLP of control room, TCSS & PA
2	TCSS & FVMS installation at Fanling highway

Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: CV/2013/08

Main Contractor: CRBE-CEC-Kaden Joint Venture

Tentative Three Months (June 2019, July 2019 and Aug 2019) Construction Rolling Progam

Item	Construction Activites
1	Water Pipe Connection Work
	Sewage Treatment Plant Construction
	Road Construction
4	Landscaping

Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

Contract 7

Liantang / Heung Yuen Wai Boundary Control Point and Associated Works

CEDD Contract No: NE/2014/03

Main Contractor: Kwan On-Richwell-SCG Joint Venture

均安 - 顯豐機械 - 上海建工 聯營 g Kwan On - Richwell - SCG JV

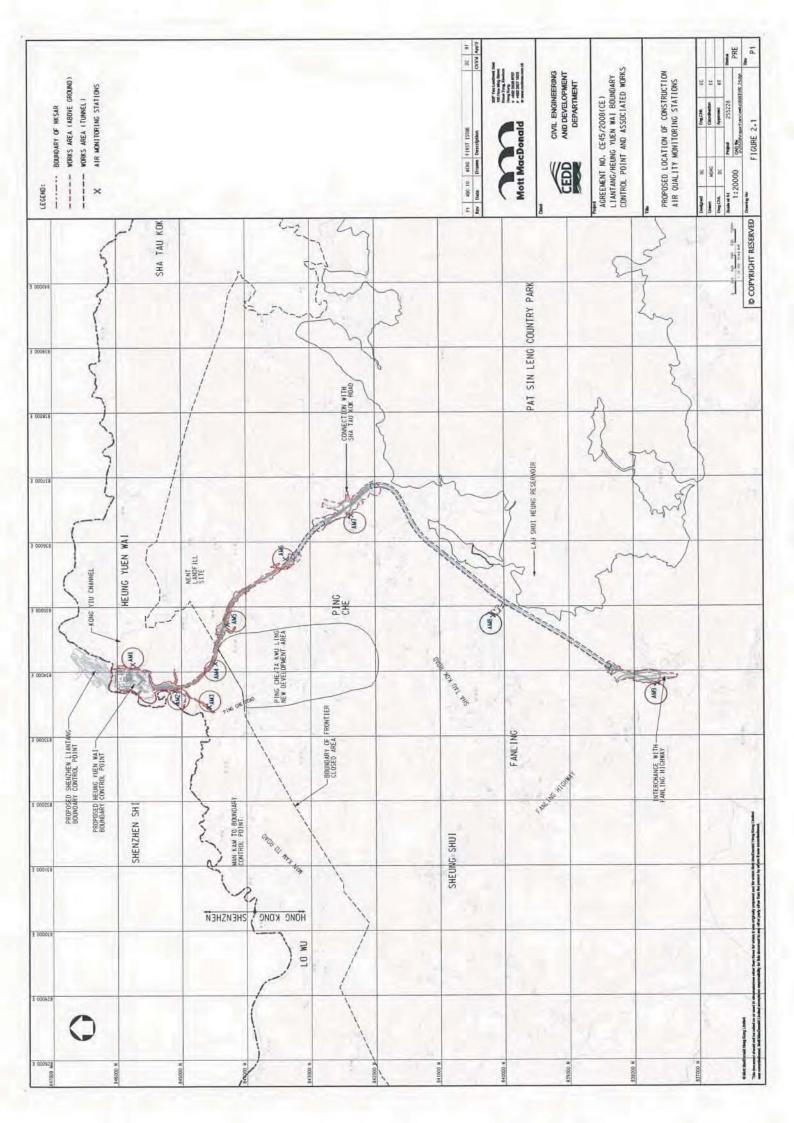
Tentative Three Months(June, July and August 2019) Construction Rolling Progam

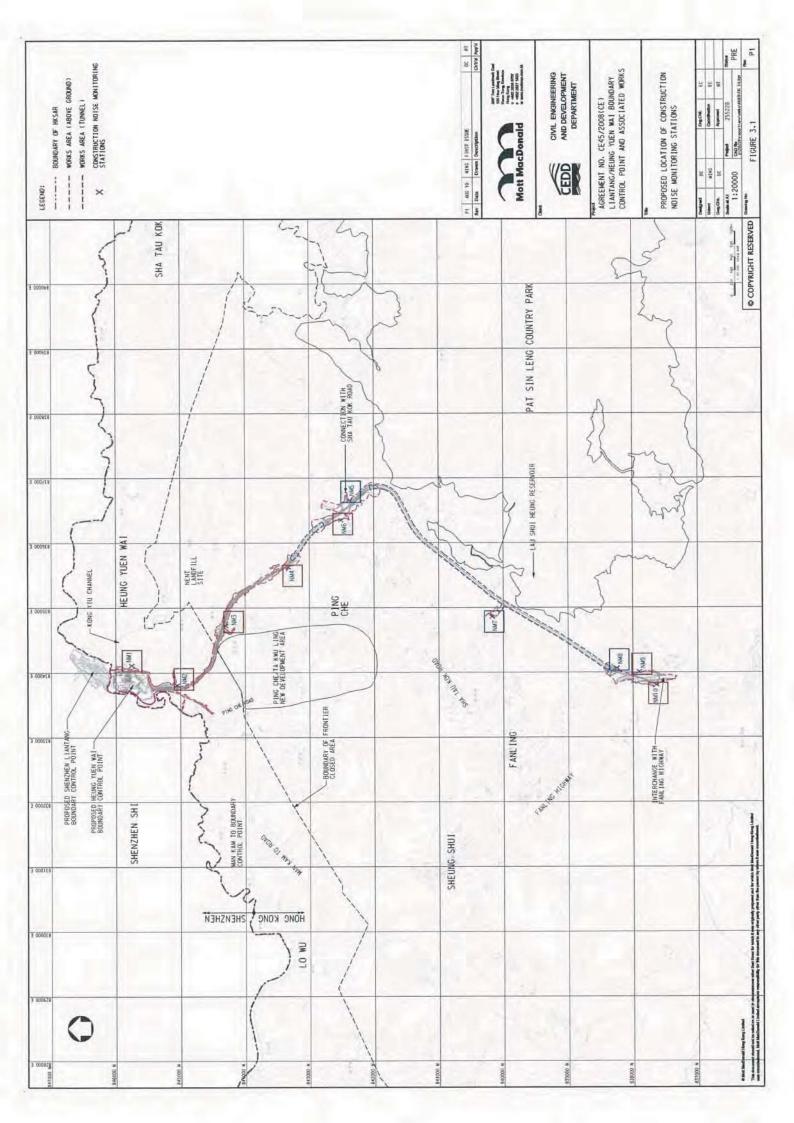
Item	Construction Activites											
1	Bridge A - Parapet Construction											
	Bridge B - Parapet Construction											
	Bridge D - Parapet Construction											
	Bridge D - Noise Barrier Construction											
	Bridge E - Parapet Construction											
	Bridge E - Noise Barrier Construction											
	Perimeter Road - Drainage and Watermains											
	Perimeter Road - Bitumen Pavement											
	Perimeter Road - Boundary Fencing											
	Portion A - Shenzhen River Reinstatement											
11	Portion Z - Landscape Softwork											

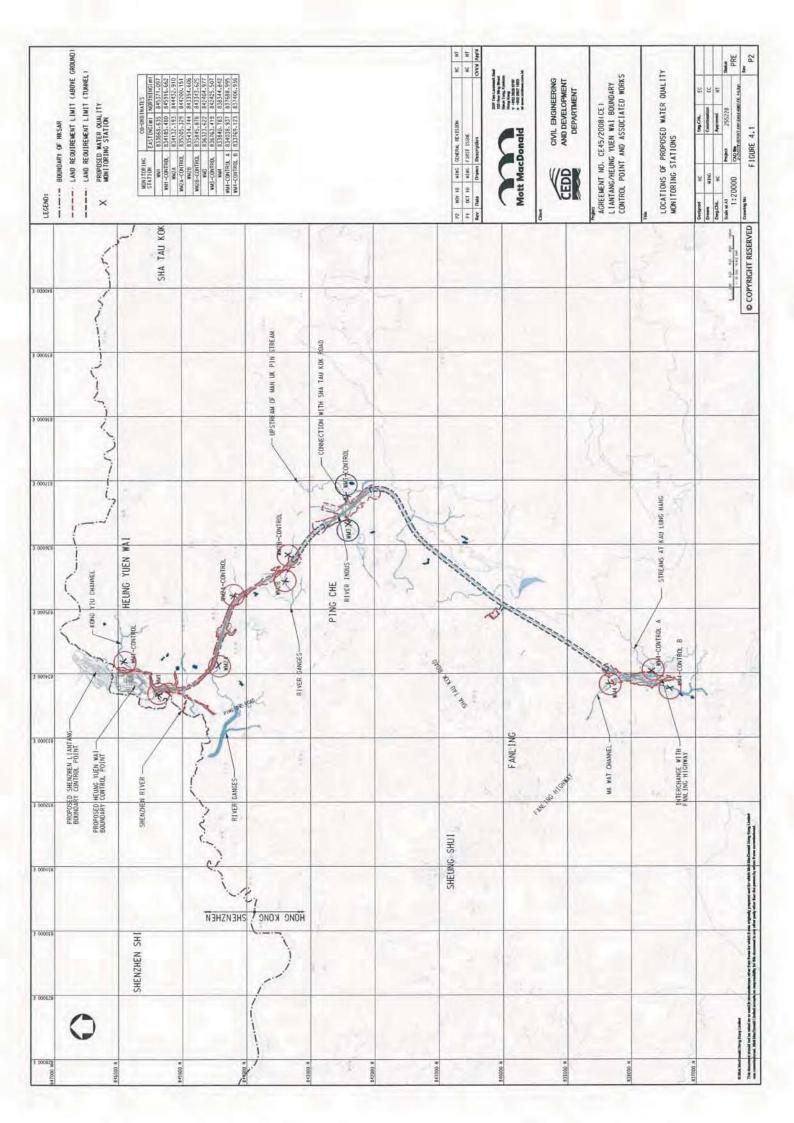
Agreement No. CE 45/2008 (CE)
Liantang/Heung Yuen Wai Boundary Control Point and Associated Works
Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

Contract SS C505

Main Contractor: Leighton

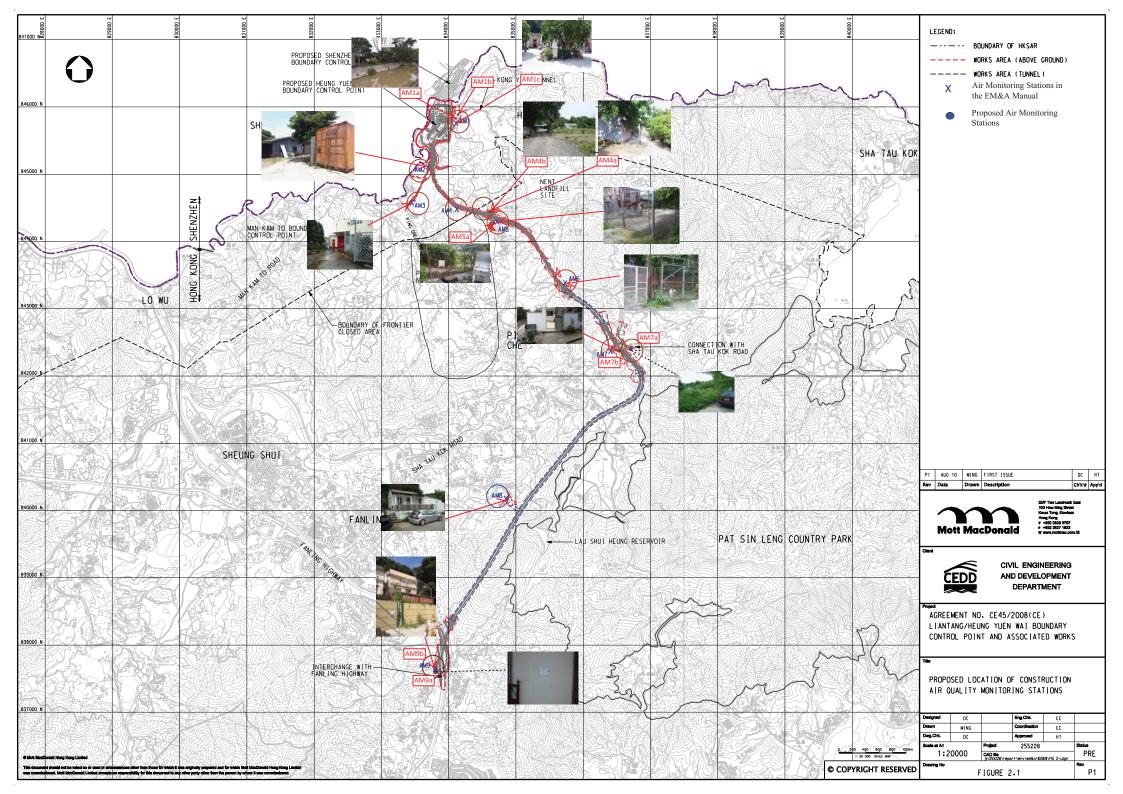


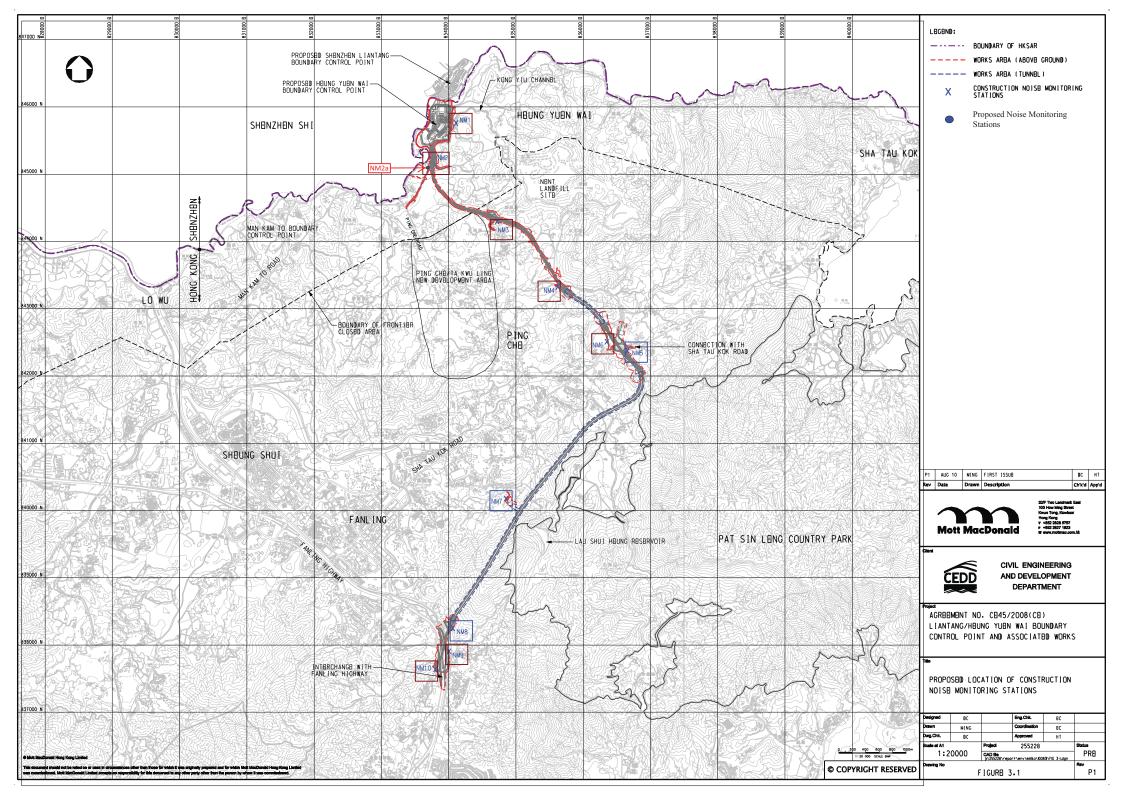

Tentative Three Months (June, July & August 2019) Construction Rolling Progam

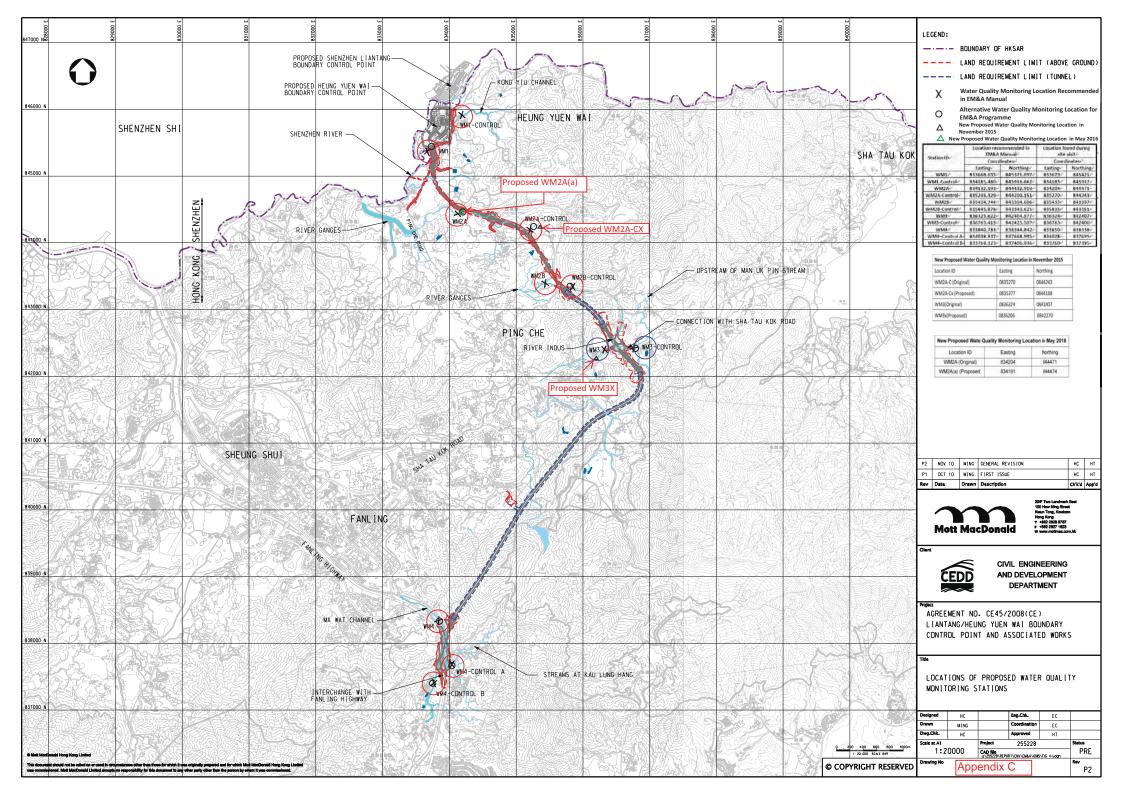

Item	Construction Activites											
1	Passenger Terminal Building (PTB) Structure Works - G/F Backfiling & Drainage, Under Ground Utilities, Fence Wall and On Grade Slab											
2	PTB - ABWF Works & MEP Installation - Front/Back of House Area, External Staircases, Hall Block External Façade, Southern Entrance											
2	Construction, Major Plant Rooms & EAC Doors											
3	PTB - External Works incl. Building 21-24, M/F External Wall (Ewall), Roof & Upper Roof Roofing Works, Podium Coach Canopy, 21&22											
3	(C&PC KIOSKS) & 23&24 (PC Examination Building & MXRVSS), Podium Open Area & Ambulance Canopy / Glazed Canopy											
4	Bridge C Integrated ABWF and MEP Installation Works (C7 Portion) - Arrival & Departure Hall, Staircases, Test & Commissioning											
5	Bldg 1 - C&ED Detector Dog Base Phase 1 - Integrated ABWF & MEP Works at G/F, R/F & External											
	Bldg 2 - HKPF Building and Observation Tower Phase 1 - External Works including Drainage & Utilities and ABWF works, Integrated ABWF											
6	& MEP Works from G/F to 3/F, Observation Tower (including Lift)											
7	Bigg 3 - Fire Station and Drill Tower Phase 1 - External Ground Finishes works, integrated ABWF & MEP Works from G/F to UK/F & Drill											
/	Tower											
8	Bldg 4 - Cargo Examination Building (Inbound) Phase 1 - External Works at G/F under Steel Roof, Integrated ABWF & MEP Works from											
	G/F to R/F & Loading Dock											
9	Bldg 5 - Cargo Examination Building (Outbound) Phase 2 - External Works at G/F under Steel Roof, Integrated ABWF & MEP Works at G/F											
10	to R/F & Loading Dock											
10	Bldg 6 - Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Inbound) Phase 1 - Integrated ABWF & MEP Works from G/F to R/F Bldg 7 - Fixed X-ray Vehicle Inspection System (FXRVIS) Buildings (Outbound) Phase 2 - External Works, Integrated ABWF & MEP Works											
11	from G/F to 1/F & Roof works											
12	Bldg 8 - MXRVSS (Inbound) Phase 2 - Integrated ABWF and MEP Works at G/F & R/F											
13	Bidg 9 - MXRVSS (Outbound) Phase 2 - Structure Works at G/F, Integrated ABWF and MEP Works at G/F & Envelope											
	, , ,											
14	Bldg 10 - GV Kiosk (Inbound) Phase 2 - On-Grade Slab, Integrated ABWF and MEP Works at G/F & R/F											
15	Bldg 11 - GV Kiosk (Outbound) Phase 2 - On-Grade Slab, Integrated ABWF & MEP Works at G/F & R/F											
16	Bldg 12 - Public Toilets (Inbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
17	Bldg 13 - Public Toilets (Outbound) Phase 2 - Integrated ABWF and MEP Works at G/F & R/F											
18	Bldg 14 - Disinsection Facilities (Inbound) Phase 2 - Integrated ABWF & MEP Works at G/F & Envelope											
19	Bldg 15 - Disinsection Facilities (Outbound) Phase 2 - Integrated ABWF & MEP Works at G/F & Envelope											
20	Bldg 16 - Weigh Station Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
21	Bldg 17 - EUVSS & Monitoring Room Phase 2 - Structure Works, Integrated ABWF & MEP Works at G/F & R/F											
22	Bldg 18 - Refuse Collection Point Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
23	Bldg 25 - Traffic Control Office (Inbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
24	Bldg 26 - Traffic Control Office (Outbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
25	Bldg 27 - Inspection Post Phase 2 - Integrated ABWF and MEP Work at G/F & Envelope											
26	Bldg 28 - Guard Booth (Inbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
27	Bldg 29 - Guard Booths (Vehicle Detention Area) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
28	Bldg 30 - Guard Booth (Outbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
29	Bldg 31 - Guard Booth (Inbound) Phase 2 - Integrated ABWF and MEP Works at G/F & Envelope											
30	Bldg 32/33/34/35 Phase 2 - Steel Canopy 1 to 4 Integrated ABWF and MEP Works											
31	Bldg 37/38/39/40 - Elevated Walkways (E1, E2, E3 & E4) Phase 2 - ABWF and BS Works											
32	Vehicular Bridge 1 Phase 3 - Retaining walls, Bridge Decks 1B RC works, Road and Finishes Works											
33	Vehicular Bridges 2, 3, 4 & 5 Phase 3 - Road and Finishes Works											
34	External Works - Water Meter Room Connection (inbound & outbound)											
35	External Willities Works - UU works for phase 2 FS inspection & DSD inspection											
36	External Road & Pavement Works - for inbound - Phase 1 FS inspection (concrete pavement) & for Phase 2 FS inspection											
37	External Landscape - Inbound & Outbound area											
	Testing & Commissioning (T&C) and FSD/SCCU Inspection Phase 1											
38	T&C - FSD, HKPF, CBI, FXI, DOG & BIdg 36											
	FS Inspection & SCCU Inspection & Handover											
	Testing & Commissioning (T&C) and FSD/SCCU Inspection Phase 2											
39	T&C - CBO, FXO, Inbound & Outbound Groups											
	FS Inspection - EVA, Inbound & Outbound Groups											
40	Testing & Commissioning (T&C) and FSD Inspection Phase 3											
70	T&C - EVA & PTB											

Appendix D

Designated Monitoring Locations as Recommended in the Approved EM&A Manual







Appendix E

Monitoring Locations for Impact Monitoring

Appendix F

Calibration Certificate of Monitoring Equipment and HOKLAS-accreditation Certificate of the Testing Laboratory

Location : Open area at Tsung Yuen Ha Village

Date of Calibration: 24/5/2019

Location ID : AM1c

Next Calibration Date: 24/7/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1011
24.8

Corrected Pressure (mm Hg)
Temperature (K)

	758.25
•	298

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept -> 2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.651	50	49.96	Slope = 32.2632
13	5.1	5.1	10.2	1.522	44	43.96	Intercept = -4.1095
10	3.8	3.8	7.6	1.314	38	37.97	Corr. coeff. = 0.9966
7	2.3	2.3	4.6	1.022	30	29.98	
5	1.5	1.5	3.0	0.826	22	21.98	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

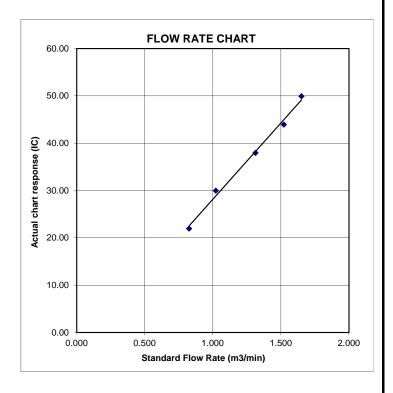
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House near Lin Ma Hang Road Date of Calibration: 4/4/2019
Location ID: AM2 Next Calibration Date: 4/6/2019
Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1016.7 Corrected Pressure (mm Hg) 762.525
Temperature (°C) 21.7 Temperature (K) 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5	5	10.0	1.519	54	54.39	Slope = 33.8823
13	4.3	4.3	8.6	1.409	48	48.35	Intercept = 2.0076
10	3.4	3.4	6.8	1.253	44	44.32	Corr. coeff. = 0.9920
7	2	2	4.0	0.961	36	36.26	
5	1.4	1.4	2.8	0.804	28	28.20	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

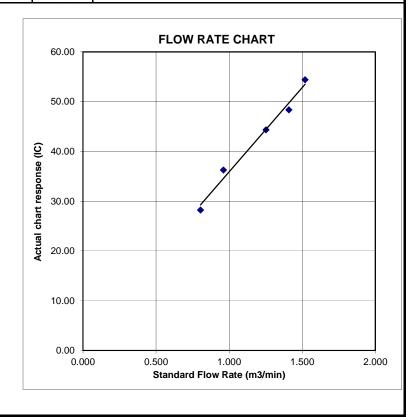
m = calibrator Qstd slope

b = calibrator Ostd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House near Lin Ma Hang Road Date of Calibration: 4/6/2019
Location ID: AM2 Next Calibration Date: 4/8/2019
Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1008.6 Corrected Pressure (mm Hg) 756.45 Temperature (°C) 28.0 Temperature (K) 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.0968 -0.00065

CALIBRATION

D1-4-	1120 (L)	1120 (D)	1100	0-4-1	т	IC	I INICAD
Plate	H20 (L)	H2O (R)	H20	Qstd	1	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.512	54	53.60	Slope = 33.5253
13	4.3	4.3	8.6	1.389	48	47.65	Intercept = 2.4196
10	3.3	3.3	6.6	1.217	44	43.68	Corr. coeff. = 0.9926
7	2	2	4.0	0.947	36	35.74	
5	1.4	1.4	2.8	0.793	28	27.79	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

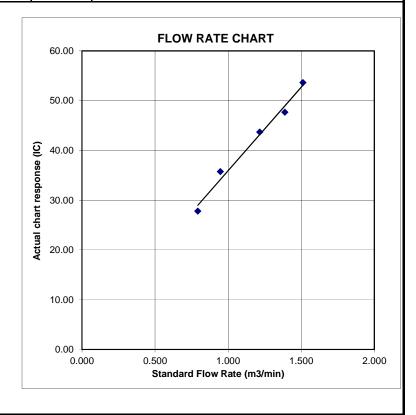
m = calibrator Qstd slope

b = calibrator Ostd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ta Kwu Ling Fire Service StationDate of Calibration:4/4/2019Location ID : AM3Next Calibration Date:4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1016.7 Corrected Pressure (mm Hg) 762.525 Temperature (°C) 21.7 Temperature (K) 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20(L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.664	54	54.39	Slope = 29.1960
13	4.9	4.9	9.8	1.504	48	48.35	Intercept = 5.0545
10	3.7	3.7	7.4	1.307	42	42.30	Corr. coeff. = 0.9962
7	2.3	2.3	4.6	1.031	36	36.26	
5	1.4	1.4	2.8	0.804	28	28.20	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

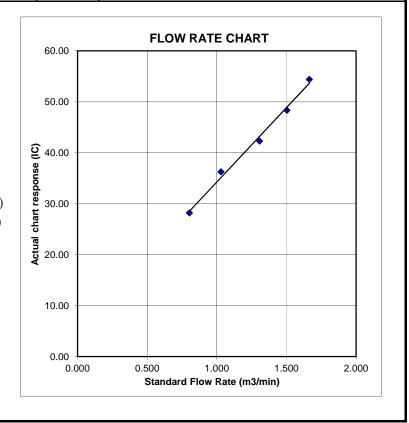
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ta Kwu Ling Fire Service StationDate of Calibration:4/6/2019Location ID : AM3Next Calibration Date:4/8/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1008.6 Corrected Pressure (mm Hg) 756.45 Temperature (°C) 28.0 Temperature (K) 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	ПЭО (Т.)	H2O (R)	H20	Oatd	T	IC	LINEAR
Flate	П20 (L,)n20 (K)	ПZU	Qstd	1	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.640	54	53.60	Slope = 29.2874
13	5	5	10.0	1.497	48	47.65	Intercept = 4.6515
10	3.7	3.7	7.4	1.288	42	41.69	Corr. coeff. = 0.9969
7	2.4	2.4	4.8	1.038	36	35.74	
5	1.4	1.4	2.8	0.793	28	27.79	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

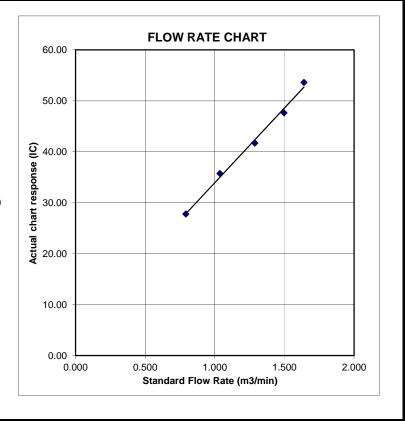
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nga Yiu Ha Village

Location ID: AM4b

Date of Calibration: 4/4/2019

Next Calibration Date: 4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1016.7 Corrected Pressure (mm Hg) 762.52 Temperature (°C) 21.7 Temperature (K) 29

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
ı	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6	6	12.0	1.664	56	56.41	Slope = 31.3308
	13	4.9	4.9	9.8	1.504	50	50.36	Intercept = 3.6562
	10	3.7	3.7	7.4	1.307	44	44.32	Corr. coeff. = 0.9989
	7	2.4	2.4	4.8	1.053	36	36.26	
ı	5	1.5	1.5	3.0	0.832	30	30.22	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

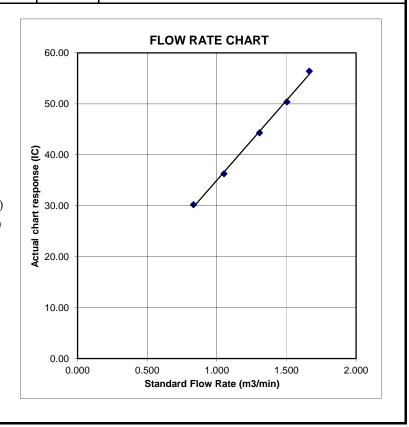
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nga Yiu Ha VillageDate of Calibration:4/6/2019Location ID: AM4bNext Calibration Date:4/8/2019

Technician:

Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1008.6

Corrected Pressure (mm Hg)
Temperature (K)

756.45 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Pla	ate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
N	lo.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
1	.8	6	6	12.0	1.640	56	55.59	Slope = 30.9131
1	.3	4.9	4.9	9.8	1.482	50	49.63	Intercept = 4.1550
1	.0	3.8	3.8	7.6	1.305	44	43.68	Corr. coeff. = 0.9983
,	7	2.3	2.3	4.6	1.016	36	35.74	
	5	1.5	1.5	3.0	0.820	30	29.78	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

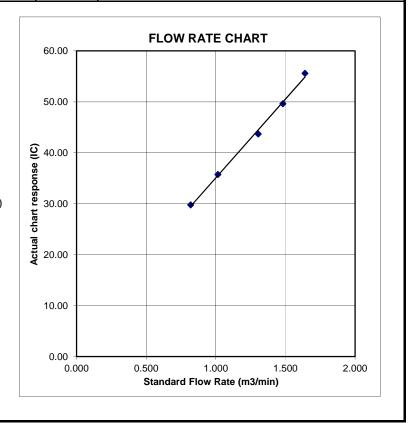
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Ping Yeung Village House

Location ID: AM5a

Date of Calibration: 4/4/2019

Next Calibration Date: 4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1016.7 21.7

Corrected Pressure (mm Hg)
Temperature (K)

762.525 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2() (R)	H20	Qstd	T	IC	LINEAR
				_	1	iC	
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.5	5.5	11.0	1.594	52	52.38	Slope = 35.9208
13	4.4	4.4	8.8	1.425	46	46.33	Intercept = -4.3843
10	3.2	3.2	6.4	1.216	40	40.29	Corr. coeff. = 0.9958
7	2.1	2.1	4.2	0.985	32	32.23	
5	1.3	1.3	2.6	0.775	22	22.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

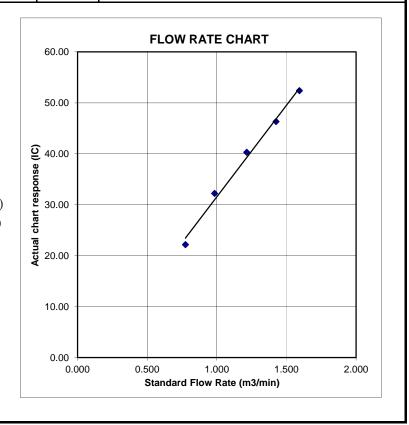
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location : Ping Yeung Village HouseDate of Calibration:4/6/2019Location ID : AM5aNext Calibration Date:4/8/2019

Technician:

Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1008.6

Corrected Pressure (mm Hg)
Temperature (K)

756.45 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

L								
	Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	5.5	5.5	11.0	1.570	52	51.62	Slope = 36.7932
	13	4.4	4.4	8.8	1.405	46	45.66	Intercept = -5.4250
	10	3.1	3.1	6.2	1.179	40	39.71	Corr. coeff. = 0.9911
	7	2.1	2.1	4.2	0.971	32	31.77	
	5	1.4	1.4	2.8	0.793	22	21.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

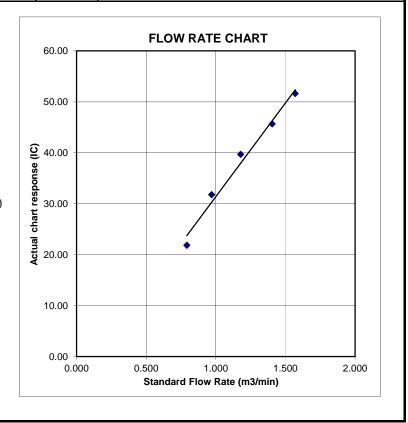
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Wo Keng Shan Village House Date of Calibration: 4/4/2019
Location ID: AM6 Next Calibration Date: 4/6/2019
Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) 1016.7 Corrected Pressure (mm Hg) 762.525 Temperature (°C) 21.7 Temperature (K) 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.535	53	53.38	Slope = 30.9993
13	4.4	4.4	8.8	1.425	48	48.35	Intercept = 4.9067
10	3.5	3.5	7.0	1.271	43	43.31	Corr. coeff. = 0.9932
7	2	2	4.0	0.961	36	36.26	
5	1.3	1.3	2.6	0.775	28	28.20	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

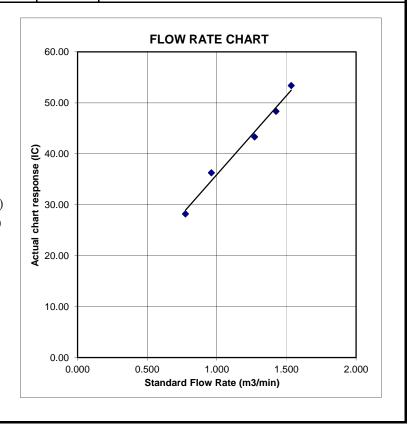
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Wo Keng Shan Village House Date of Calibration: 4/6/2019
Location ID: AM6 Next Calibration Date: 4/8/2019
Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1008.6

Corrected Pressure (mm Hg)
Temperature (K)

756.45 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.2	5.2	10.4	1.527	53	52.61	Slope = 30.7587
13	4.4	4.4	8.8	1.405	48	47.65	Intercept = 5.1387
10	3.4	3.4	6.8	1.235	43	42.69	Corr. coeff. = 0.9951
7	2	2	4.0	0.947	36	35.74	
5	1.3	1.3	2.6	0.764	28	27.79	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

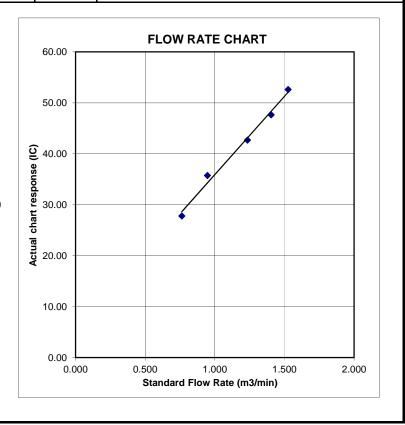
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Village House of Loi Tung Village

Date of Calibration: 4/4/2019

Location ID: AM7b

Next Calibration Date: 4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1016.7 21.7

Corrected Pressure (mm Hg)
Temperature (K)

762.525 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.664	60	60.44	Slope = 39.4665
13	4.6	4.6	9.2	1.457	52	52.38	Intercept = -4.6940
10	3.4	3.4	6.8	1.253	46	46.33	Corr. coeff. = 0.9974
7	2.3	2.3	4.6	1.031	36	36.26	
5	1.4	1.4	2.8	0.804	26	26.19	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

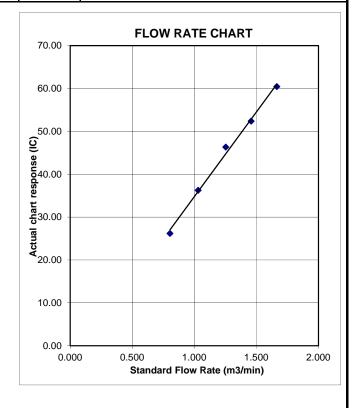
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Village House of Loi Tung Village

Date of Calibration: 4/6/2019

Location ID: AM7b

Next Calibration Date: 4/8/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1008.6 28.0

Corrected Pressure (mm Hg)
Temperature (K)

756.45 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6	6	12.0	1.640	60	59.56	Slope = 39.7743
13	4.5	4.5	9.0	1.421	52	51.62	Intercept = -5.0215
10	3.5	3.5	7.0	1.253	46	45.66	Corr. coeff. = 0.9987
7	2.3	2.3	4.6	1.016	36	35.74	
5	1.4	1.4	2.8	0.793	26	25.81	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

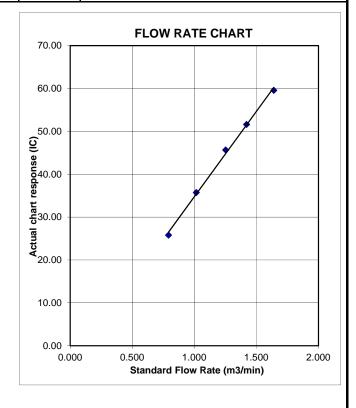
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Po Kat Tsai Village No. 4

Location ID: AM8

Date of Calibration: 4/4/2019

Next Calibration Date: 4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1016.7 21.7

Corrected Pressure (mm Hg)
Temperature (K)

762.525 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968

CALIBRATION

ı								
	Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
	No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
	18	6.5	6.5	13.0	1.732	54	54.39	Slope = 37.7296
	13	4.7	4.7	9.4	1.473	48	48.35	Intercept = -8.8144
	10	3.7	3.7	7.4	1.307	42	42.30	Corr. coeff. = 0.9919
	7	2.3	2.3	4.6	1.031	30	30.22	
	5	1.4	1.4	2.8	0.804	20	20.15	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

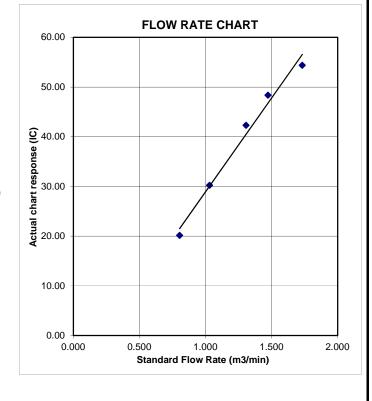
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Po Kat Tsai Village No. 4

Location ID: AM8

Date of Calibration: 4/6/2019

Next Calibration Date: 4/8/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1008.6 28.0

Corrected Pressure (mm Hg)
Temperature (K)

756.45 301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept ->

2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.4	6.4	12.8	1.694	54	53.60	Slope = 38.2119
13	4.7	4.7	9.4	1.452	48	47.65	Intercept = -9.3219
10	3.8	3.8	7.6	1.305	42	41.69	Corr. coeff. = 0.9946
7	2.3	2.3	4.6	1.016	30	29.78	
5	1.4	1.4	2.8	0.793	20	19.85	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

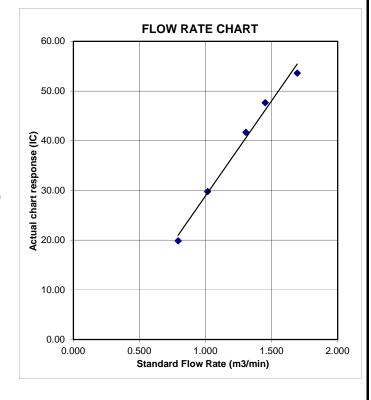
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nam Wa Po Village House No. 80

Date of Calibration: 4/4/2019

Location ID: AM9b

Next Calibration Date: 4/6/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1016.7 21.7 Corrected Pressure (mm Hg)
Temperature (K)

762.525 295

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.5	6.5	13.0	1.732	54	54.39	Slope = 28.7387
13	4.6	4.6	9.2	1.457	49	49.36	Intercept = 5.7786
10	3.8	3.8	7.6	1.325	44	44.32	Corr. coeff. = 0.9937
7	2.3	2.3	4.6	1.031	34	34.25	
5	1.3	1.3	2.6	0.775	28	28.20	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

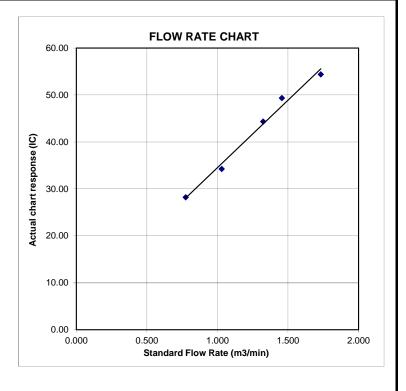
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Nam Wa Po Village House No. 80

Date of Calibration: 4/6/2019

Location ID: AM9b

Next Calibration Date: 4/8/2019

Technician: Eric

CONDITIONS

Sea Level Pressure (hPa)1008.6Corrected Pressure (mm Hg)756.45Temperature (°C)28.0Temperature (K)301

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1941

Qstd Slope -> Qstd Intercept -> 2.0968 -0.00065

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.5	6.5	13.0	1.707	54	53.60	Slope = 27.7729
13	4.7	4.7	9.4	1.452	49	48.64	Intercept = 7.1923
10	3.8	3.8	7.6	1.305	44	43.68	Corr. coeff. = 0.9969
7	2	2	4.0	0.947	34	33.75	
5	1.3	1.3	2.6	0.764	28	27.79	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

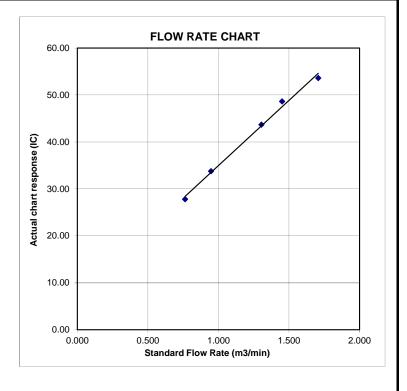
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

TE-5025A

RECALIBRATION
DUE DATE:

February 5, 2020

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 5, 2019

Rootsmeter S/N: 438320

Ta: 293
Pa: 753.1

Ϋ́

Operator: Jim Tisch

mm Hg

Calibration Model #:

Calibrator S/N: 1941

4	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
	1	1	2	1	1.4830	3.2	2.00
	2	3	4	1	1.0430	6.4	4.00
	3	5	6	1	0.9300	7.9	5.00
	4	7	8	1	0.8870	8.7	5.50
	5	9	10	1	0.7320	12.7	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
1.0036	0.6767	1.4197	0.9958	0.6714	0.8821					
0.9993	0.9581	2.0078	0.9915	0.9506	1.2475					
0.9973	1.0723	2.2448	0.9895	1.0640	1.3947					
0.9962	1.1231	2.3544	0.9884	1.1144	1.4628					
0.9908	1.3536	2.8395	0.9831	1.3431	1.7642					
	m= 2.09680			m=	1.31298					
QSTD	b=	-0.00065	QA	b=	-0.00040					
	r=	0.99999		6 r=	0.99999					

Calculations								
Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va= ΔVol((Pa-ΔP)/Pa)							
Qstd= Vstd/ΔTime	Qa= Va/ΔTime							
For subsequent flow rate calculations:								
Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} - b \right)$	$\mathbf{Qa} = 1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$							

Standard Conditions								
Tstd: 298.15 °K								
Pstd:	760 mm Hg							
	Key							
ΔH: calibrate	ΔH: calibrator manometer reading (in H2O)							
ΔP: rootsmeter manometer reading (mm Hg)								
Ta: actual absolute temperature (°K)								
Pa: actual barometric pressure (mm Hg)								
b: intercept								
m: slope	m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C185605

證書編號

Date of Receipt / 收件日期: 26 September 2018

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0867)

Description / 儀器名稱

Sound Level Meter (EQ011)

Manufacturer / 製造商

Rion NL-52

Model No. / 型號 Serial No. / 編號

01121362

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 October 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C Lee Engineer

Certified By

H C Chan

Date of Issue 簽發日期

19 October 2018

核證

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185605

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280

40 MHz Arbitrary Waveform Generator

C180024

CL281

Multifunction Acoustic Calibrator

CDK1806821

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied	d Value	UUT	IEC 61672
Range	Range Function Frequency Time				Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	1	93.7	± 1.1

6.1.2 Linearity

	UU	Γ Setting	Applied	d Value	UUT	
Range	Function	Frequency Time		Level	Freq.	Reading
(dB)		Weighting Weighting		(dB)	(kHz)	(dB)
30 - 130	L_A	A	Fast	94.00	1	93.7 (Ref.)
			104.00		103.7	
21	,			114.00		113.7

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

		Applie	d Value	UUT	IEC 61672		
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_{A}	A	Fast	94.00	1	93.7	Ref.
			Slow			93.7	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

E-mail/電郵: callab@suncreation.com

Fax/傳真: (852) 2744 8986

Tel/電話: (852) 2927 2606

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate of Calibration 校正證書

Certificate No.: C185605

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

71- Weighting										
	UUT	Setting		Applied Value		UUT	IEC 61672			
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.			
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)			
30 - 130	L_A	A	Fast	94.00	63 Hz	67.4	-26.2 ± 1.5			
					125 Hz	77.5	-16.1 ± 1.5			
					250 Hz	85.0	-8.6 ± 1.4			
					500 Hz	90.5	-3.2 ± 1.4			
					1 kHz	93.7	Ref.			
					2 kHz	94.9	$+1.2 \pm 1.6$			
					4 kHz	94.7	$+1.0 \pm 1.6$			
					8 kHz	92.7	-1.1 (+2.1; -3.1)			
					12.5 kHz	89.3	-4.3 (+3.0 ; -6.0)			

6.3.2 C-Weighting

C Weighting		Satting		Applied Value		UUT	IEC 61672
	UUT Setting				eu vaiue		
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L_{C}	С	Fast	94.00	63 Hz	92.8	-0.8 ± 1.5
					125 Hz	93.5	-0.2 ± 1.5
					250 Hz	93.7	0.0 ± 1.4
					500 Hz	93.7	0.0 ± 1.4
					1 kHz	93.7	Ref.
					2 kHz	93.5	-0.2 ± 1.6
					4 kHz	92.9	-0.8 ± 1.6
					8 kHz	90.8	-3.0 (+2.1; -3.1)
					12.5 kHz	87.3	-6.2 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Certificate of Calibration 校正證書

Certificate No.: C185605

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 12912

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : ~94~dB~:63~Hz - $125~Hz~:\pm\,0.35~dB$

250 Hz - 500 Hz : $\pm 0.30 \text{ dB}$ 1 kHz : $\pm 0.20 \text{ dB}$ 2 kHz - 4 kHz : $\pm 0.35 \text{ dB}$ 8 kHz : $\pm 0.45 \text{ dB}$ 12.5 kHz : $\pm 0.70 \text{ dB}$

104 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

E-mail/電郵: callab@suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/

輝創工程有限公司

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C183441

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0867)

Date of Receipt / 收件日期: 13 June 2018

Description / 儀器名稱

Integrating Sound Level Meter (EQ008)

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2238

Serial No. / 編號

2285690

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

23 June 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

Certified By 核證

Date of Issue 簽發日期

29 June 2018

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C183441

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test from 6.1.1.2 to 6.4.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

C180024

PA160023

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

	UUT S	Setting	Applied	Value	UUT	
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.2

6.1.1.2 After Self-calibration

	UUT Setting					UUT	IEC 60651
Range Parameter Frequency Time				Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L _{AFP}	A	F	94.00	1	94.1	± 0.7

6.1.2 Linearity

Tel/電話: (852) 2927 2606

2111000110)						
	UU	Γ Setting		Applie	d Value	UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	50 - 130 L _{AFP}		F	94.00	1	94.1 (Ref.)
				104.00		104.1
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Fax/傳真: (852) 2744 8986

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C183441

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Range Parameter Frequency Time		Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	- 130 L _{AFP} A		F	94.00	1	94.1	Ref.
	L_{ASP}		S			94.2	± 0.1
	L_{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L_{AFP}	A	F	106.0	Continuous	106.0	Ref.
	L_{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L_{ASP}		S		Continuous	106.0	Ref.
	L_{ASMax}				500 ms	102.0	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

TT WORKING		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	31.5 Hz	54.8	-39.4 ± 1.5
					63 Hz	68.0	-26.2 ± 1.5
					125 Hz	77.9	-16.1 ± 1.0
					250 Hz	85.4	-8.6 ± 1.0
					500 Hz	90.8	-3.2 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
					8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	89.9	-4.3 (+3.0 ; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C183441

證書編號

6.3.2 C-Weighting

		Setting		Applie	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	-	(dB)	(dB)
50 - 130	L_{CFP}	C	F	94.00	31.5 Hz	91.2	-3.0 ± 1.5
					63 Hz	93.3	-0.8 ± 1.5
					125 Hz	93.9	-0.2 ± 1.0
					250 Hz	94.1	0.0 ± 1.0
					500 Hz	94.1	0.0 ± 1.0
					1 kHz	94.1	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.3	-0.8 ± 1.0
					8 kHz	91.1	-3.0 (+1.5; -3.0)
					12.5 kHz	88.0	-6.2 (+3.0; -6.0)

6.4 Time Averaging

		Setting		Applied Value					UUT	IEC 60804
Range	Parameter	Frequency	Integrating	Frequency	Burst	Burst	Burst	Equivalent	Reading	Type 1
(dB)		Weighting	Time	(kHz)	Duration	Duty	Level	Level	(dB)	Spec.
					(ms)	Factor	(dB)	(dB)		(dB)
30 - 110	L_{Aeq}	A	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
						$1/10^{2}$		90	89.7	± 0.5
			60 sec.			1/10 ³		80	79.7	± 1.0
			5 min.			1/104		70	69.7	± 1.0

ks: - UUT Microphone Model No.: 4188 & S/N: 2812705

- Mfr's Spec. : IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.35 dB

12.5 kHz : \pm 0.70 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C186448

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0867)

Date of Receipt / 收件日期: 8 November 2018

Description / 儀器名稱

Sound Calibrator (EQ089)

Manufacturer / 製造商

Rion

Model No. / 型號

NC-75

Serial No. / 編號

34680623

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

24 November 2018

TEST RESULTS / 測試結果

DATE OF TEST / 測試日期

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

Certified By 核證

Lee Engineer Date of Issue 簽發日期

27 November 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 松正證書

Certificate No.:

C186448

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A

<u>Description</u>
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C183775 CDK1806821 C181288

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.25	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	$1 \text{ kHz} \pm 0.1 \%$	± 0.1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1908931 WORK ORDER CONTACT : MR BEN TAM

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH **ADDRESS**

> : 25-FEB-2019 DATE RECEIVED KWAI CHUNG, N.T. HONG KONG

: 4-MAR-2019 DATE OF ISSUE

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1908931 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1908931-001	S/N: 3Y6505	AIR	25-Feb-2019	S/N: 3Y6505

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6505

Equipment Ref: EQ114

Job Order HK1908931

Standard Equipment:

Standard Equipment: High Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 21 December 2018

Equipment Verification Results:

Testing Date: 7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2318	18.3
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1433	11.0
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5022	39.7

Sensitivity Adjustment Scale Setting (Before Calibration) 602 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 602 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9957

 Date of Issue
 14 January 2019

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: Martin Li Signature: Date: 14 January 2019

QC Reviewer: Ben Tam Signature: Date: 14 January 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Dec-18

Location ID: Calibration Room Next Calibration Date: 21-Mar-19

CONDITIONS

Sea Level Pressure (hPa)

1016.1 Temperature (°C) 22.4

Corrected Pressure (mm Hg) Temperature (K)

762.075 295

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date->

2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.7	5.7	11.4	1.699	56	56.32	Slope = 34.0074
13	4.4	4.4	8.8	1.495	51	51.29	Intercept = -0.4093
10	3.4	3.4	6.8	1.317	45	45.26	Corr. coeff. = 0.9972
8	2.3	2.3	4.6	1.086	36	36.21	
5	1.4	1.4	2.8	0.851	28	28.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

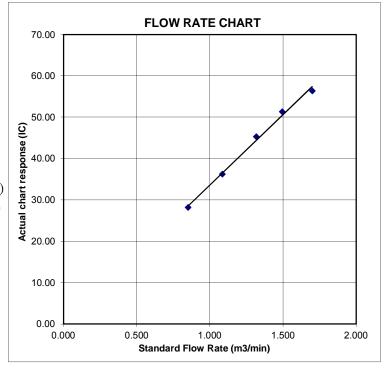
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762				
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392				
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854				
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530				
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524				
	m=	2.02017		m=	1.26500				
QSTD	b=	-0.03691	QA	b=	-0.02263				
	r=	0.99988		r=	0.99988				

Calculations							
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)				
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime				
For subsequent flow rate calculations:							
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$				

Standard Conditions							
Tstd:	298.15 °K						
Pstd:	760 mm Hg						
	Key						
ΔH: calibrator manometer reading (in H2O)							
ΔP: rootsmeter manometer reading (mm Hg)							
Ta: actual absolute temperature (°K)							
Pa: actual ba	Pa: actual barometric pressure (mm Hg)						
b: intercept							
m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1908930 WORK ORDER CONTACT : MR BEN TAM

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH **ADDRESS**

> : 25-FEB-2019 DATE RECEIVED KWAI CHUNG, N.T. HONG KONG

: 4-MAR-2019 DATE OF ISSUE

PROJECT NO. OF SAMPLES : 1 CLIENT ORDER

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1908930 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1908930-001	S/N: 3Y6503	AIR	25-Feb-2019	S/N: 3Y6503

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 3Y6503

Equipment Ref: EQ112

Job Order HK1908930

Standard Equipment:

Standard Equipment: High Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 21 December 2018

Equipment Verification Results:

Testing Date: 7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2403	19.0
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1577	12.1
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5129	40.5

Sensitivity Adjustment Scale Setting (Before Calibration) 655 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 655 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9975

 Date of Issue
 14 January 2019

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.1 —					
0.09				*	
0.08					
0.07			$-\!\!\!/\!\!\!-$		
0.06			/		
0.05					
0.04			y = 0.002	2x + 0.0027	—
0.03			R ² =	0.9951	
0.02	-/-				
0.01	/				
0 🍑				1	
0	10	20	30	40	50

Operator : Martin Li Signature : Date : 14 January 2019

QC Reviewer: Ben Tam Signature: Date: 14 January 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Dec-18

Location ID: Calibration Room Next Calibration Date: 21-Mar-19

CONDITIONS

Sea Level Pressure (hPa)

1016.1 Temperature (°C) 22.4

Corrected Pressure (mm Hg) Temperature (K)

762.075 295

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date->

2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.7	5.7	11.4	1.699	56	56.32	Slope = 34.0074
13	4.4	4.4	8.8	1.495	51	51.29	Intercept = -0.4093
10	3.4	3.4	6.8	1.317	45	45.26	Corr. coeff. = 0.9972
8	2.3	2.3	4.6	1.086	36	36.21	
5	1.4	1.4	2.8	0.851	28	28.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

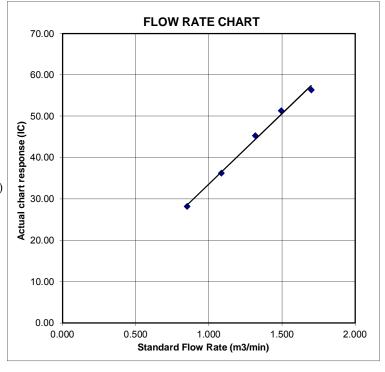
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762				
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392				
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854				
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530				
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524				
	m=	2.02017		m=	1.26500				
QSTD	b=	-0.03691	QA	b=	-0.02263				
	r=	0.99988		r=	0.99988				

Calculations							
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)				
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime				
For subsequent flow rate calculations:							
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$				

Standard Conditions							
Tstd:	298.15 °K						
Pstd:	760 mm Hg						
	Key						
	or manometer reading (in H2O)						
ΔP: rootsme	ter manometer reading (mm Hg)						
	osolute temperature (°K)						
Pa: actual ba	Pa: actual barometric pressure (mm Hg)						
b: intercept							
m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT : MR BEN TAM WORK ORDER : HK1908929

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS : RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH :

KWAI CHUNG, N.T. HONG KONG

DATE RECEIVED : 25-FEB-2019

DATE OF ISSUE : 4-MAR-2019

PROJECT : --- NO. OF SAMPLES : 1

CLIENT ORDER : --

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1908929 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

	ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
Ī	HK1908929-001	S/N: 366410	AIR	25-Feb-2019	S/N: 366410

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 366410

Equipment Ref: EQ110

Job Order HK1908929

Standard Equipment:

Standard Equipment: High Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 21 December 2018

Equipment Verification Results:

Testing Date: 7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2377	18.8
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1522	11.6
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5117	40.4

Sensitivity Adjustment Scale Setting (Before Calibration) 674 (CPM)

Sensitivity Adjustment Scale Setting (After Calibration) 674 (CPM)

Linear Regression of Y or X

Slope (K-factor): 0.0022

Correlation Coefficient 0.9967

Date of Issue <u>14 January 2019</u>

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 10 20 30 40 50

Operator: Martin Li Signature: Date: 14 January 2019

QC Reviewer : Ben Tam Signature : Date : 14 January 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Dec-18

Location ID: Calibration Room Next Calibration Date: 21-Mar-19

CONDITIONS

Sea Level Pressure (hPa)

1016.1 Temperature (°C) 22.4

Corrected Pressure (mm Hg) Temperature (K)

762.075 295

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date->

2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.7	5.7	11.4	1.699	56	56.32	Slope = 34.0074
13	4.4	4.4	8.8	1.495	51	51.29	Intercept = -0.4093
10	3.4	3.4	6.8	1.317	45	45.26	Corr. coeff. = 0.9972
8	2.3	2.3	4.6	1.086	36	36.21	
5	1.4	1.4	2.8	0.851	28	28.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

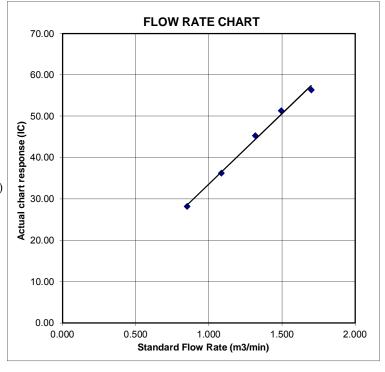
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762				
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392				
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854				
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530				
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524				
	m=	2.02017		m=	1.26500				
QSTD	b=	-0.03691	QA	b=	-0.02263				
	r=	0.99988		r=	0.99988				

Calculations								
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)					
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime					
	For subsequent flow rate calculations:							
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$					

Standard Conditions							
Tstd:	298.15 °K						
Pstd:	760 mm Hg						
	Key						
	or manometer reading (in H2O)						
ΔP: rootsme	ter manometer reading (mm Hg)						
	osolute temperature (°K)						
Pa: actual ba	Pa: actual barometric pressure (mm Hg)						
b: intercept							
m: slope							

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1908928 WORK ORDER CONTACT : MR BEN TAM

CLIENT : ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

: RM A 20/F., GOLD KING IND BLDG, NO. 35-41 TAI LIN PAI ROAD, SUB-BATCH **ADDRESS**

> : 25-FEB-2019 DATE RECEIVED KWAI CHUNG, N.T. HONG KONG

: 4-MAR-2019 DATE OF ISSUE

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on an as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories Position

Richard Fung General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1908928 WORK ORDER

SUB-BATCH

: 1 : ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING CLIENT

PROJECT

ALS Lab	Client's Sample ID		Sample Date	External Lab Report No.
טו		Туре		
HK1908928-001	S/N: 366409	AIR	25-Feb-2019	S/N: 366409

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 366409

Equipment Ref: EQ109

Job Order HK1908928

Standard Equipment:

Standard Equipment: High Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 21 December 2018

Equipment Verification Results:

Testing Date: 7 January 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/60min)
2hr07min	09:01 ~ 11:08	18.5	1021.4	0.045	2419	19.1
2hr11min	11:13 ~ 13:24	18.5	1021.4	0.032	1698	13.0
2hr07min	13:30 ~ 15:37	18.5	1021.4	0.089	5066	40.0

Sensitivity Adjustment Scale Setting (Before Calibration) 517 (CPM)
Sensitivity Adjustment Scale Setting (After Calibration) 517 (CPM)

Linear Regression of Y or X

 Slope (K-factor):
 0.0022

 Correlation Coefficient
 0.9991

 Date of Issue
 14 January 2019

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 0.0022 should be apply for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0.1						
0.09					*	
0.08					/	
0.07				-/-		
0.06				/		
0.05						
0.04			/		x + 0.0016	
0.03		_		$R^2 = 0$.9982	
0.02		/-				
0.01						
0 4		1	-	-	1	
	0	10	20	30	40	50

Operator: Martin Li Signature: Date: 14 January 2019

QC Reviewer : Ben Tam Signature : Date : 14 January 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 21-Dec-18

Location ID: Calibration Room Next Calibration Date: 21-Mar-19

CONDITIONS

Sea Level Pressure (hPa)

1016.1 Temperature (°C) 22.4

Corrected Pressure (mm Hg) Temperature (K)

762.075 295

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date->

2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.7	5.7	11.4	1.699	56	56.32	Slope = 34.0074
13	4.4	4.4	8.8	1.495	51	51.29	Intercept = -0.4093
10	3.4	3.4	6.8	1.317	45	45.26	Corr. coeff. = 0.9972
8	2.3	2.3	4.6	1.086	36	36.21	
5	1.4	1.4	2.8	0.851	28	28.16	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

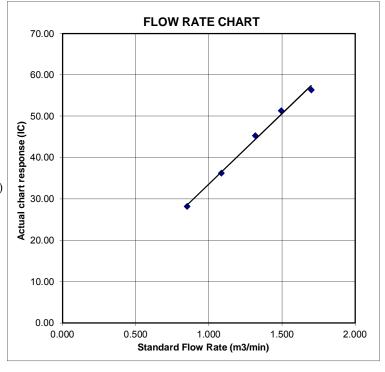
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762	
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392	
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854	
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530	
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524	
	m=	2.02017		m=	1.26500	
QSTD	b=	-0.03691	QA	b=	-0.02263	
	r=	0.99988		r=	0.99988	

Calculations				
Vstd=	ΔVoI((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/ΔTime	Qa= Va/ΔTime		
For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

Standard Conditions				
Tstd: 298.15 °K				
Pstd:	760 mm Hg			
	Key			
ΔH: calibrator manometer reading (in H2O)				
ΔP: rootsmeter manometer reading (mm Hg)				
Ta: actual absolute temperature (°K)				
Pa: actual barometric pressure (mm Hg)				
b: intercept				
m: slope				

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: BEN TAM WORK ORDER: HK1915086

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS: RM A 20/F., GOLD KING IND BLDG, SUB-BATCH: C

NO. 35-41 TAI LIN PAI ROAD, LABORATORY: HONG KONG KWAI CHUNG, N.T. HONG KONG DATE RECEIVED: 09-Apr-2019

DATE OF ISSUE: 15-Apr-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Dissolved Oxygen and Temperature

Equipment Type: Dissolved Oxygen Meter

Brand Name: YSI
Model No.: Pro 20
Serial No.: 12C100570

Equipment No.: --

Date of Calibration: 11-Apr-2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Si

 $This\ report\ may\ not\ be\ reproduced\ except\ with\ prior\ written\ approval\ from\ ALS\ Technichem\ (HK)\ Pty\ Ltd.$

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1915086

SUB-BATCH: 0

DATE OF ISSUE: 15-Apr-2019

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Dissolved Oxygen Meter

Brand Name: YSI
Model No.: Pro 20
Serial No.: 12C100570

Equipment No.: --

Date of Calibration: 11-Apr-2019 Date of Next Calibration: 11-Jul-2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
8.20	8.27	+0.07
6.04	5.93	-0.11
2.63	2.47	-0.16
	Tolerance Limit (mg/L)	±0.20

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	10.5	+1.0
22.0	22.3	+0.3
40.0	39.7	-0.3
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico

Manager - Inorganic

Ma Shi

Page 2 of 2

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: BEN TAM WORK ORDER: HK1918009

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS: RM A 20/F., GOLD KING IND BLDG, SUB-BATCH: (

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T. HONG KONG

DATE GE ISSUE:

OR May 2010

DATE OF ISSUE: 08-May-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: pH Value and Temperature

Equipment Type: pH meter

Brand Name: AZ
Model No.: 8685
Serial No.: 1118396

Equipment No.: --

Date of Calibration: 06-May-2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ms. Lin Wai Yu

Assistant Manager - Inorganic

 $This\ report\ may\ not\ be\ reproduced\ except\ with\ prior\ written\ approval\ from\ ALS\ Technichem\ (HK)\ Pty\ Ltd.$

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1918009

SUB-BATCH: 0

DATE OF ISSUE: 08-May-2019

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: pH meter

Brand Name: AZ
Model No.: 8685
Serial No.: 1118396

Equipment No.: --

Date of Calibration: 06-May-2019 Date of Next Calibration: 06-Aug-2019

PARAMETERS:

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.2	+0.20
7.0	6.8	-0.20
10.0	10.0	+0.00
	Tolerance Limit (pH unit)	±0.20

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.5	10.1	+0.6
19.0	19.8	+0.8
38.5	39.2	+0.7
	Tolerance Limit (°C)	±2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

/ 0

Ms. Lin Wai Yu

Assistant Manager - Inorganic

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: BEN TAM WORK ORDER: HK1915093

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND

CONSULTING

ADDRESS: RM A 20/F., GOLD KING IND BLDG, SUB-BATCH: C

NO. 35-41 TAI LIN PAI ROAD, LABORATORY: HONG KONG KWAI CHUNG, N.T. HONG KONG DATE RECEIVED: 09-Apr-2019

DATE OF ISSUE: 15-Apr-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Turbidity

Equipment Type: Turbidimeter

Brand Name: Hach Model No.: 2100Q

Serial No.: 12060C18266

Equipment No.: --

Date of Calibration: 10-Apr-2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Si

 $This\ report\ may\ not\ be\ reproduced\ except\ with\ prior\ written\ approval\ from\ ALS\ Technichem\ (HK)\ Pty\ Ltd.$

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER: HK1915093

SUB-BATCH: 0

DATE OF ISSUE: 15-Apr-2019

CLIENT: ACTION UNITED ENVIRONMENT SERVICES AND CONSULTING

Equipment Type: Turbidimeter

Brand Name: Hach Model No.: 2100Q

Serial No.: 12060C18266

Equipment No.: --

Date of Calibration: 10-Apr-2019 Date of Next Calibration: 10-Jul-2019

PARAMETERS:

Turbidity Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.15	-
4	4.33	+8.3
40	43.3	+8.2
80	81.2	+1.5
400	362	-9.5
800	746	-6.8
	Tolerance Limit (%)	±10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sign

Mr Chan Siu Ming, Vico Manager - Inorganic

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇、國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

註冊號碼:

Registration Number : HOKLAS 066

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix G

Event and Action Plan

Event and Action Plan for Air Quality

Event	E	T	IEC	Acti
Action Level				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	Check monitoring desubmitted by ET; Check Contractor's working method.	ta 1. Notify Contro	ractor. 1. Rectify any unacceptable practice; 2. Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	1. Identify source; 2. Inform IEC and ER; 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring.	4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Monitor the implementation of remeasures. measures.	notification of fin writing; 2. Notify Control 3. Ensure remembers proprimplemented.	failure for remedial to ER within 3 working ractor; days of notification edial 2. Implement the
Limit Level 1. Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor at EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.	Contractor on possible remedial measures; 4. Advise the ER on the effectiveness of the proposed remedial measures; 5. Monitor	notification of f in writing; 2. Notify Contr 3. Ensure rem measures prop implemented.	failure action to avoid further ractor; exceedance; exceedance; 2. Submit proposa
Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contract and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IE	submitted by ET; 2. Check Contractor's working method; 3. Discuss amongst EET, and Contractor on the polential remedial actions; 4. Review Contractor's remedial actions whenever necessary to assure their	notification of f in writing; 2. Notify Contr 3. In consolida with the IEC, a with the Contra on the remedia measures to b implemented; 4. Ensure rem measures prop	failure action to avoid further exceedanc ractor; 2. Submit proposa for remedial action agree to IEC within 3 actor working days of notification; 3. Implement the agreed proposals; aedial 4. Resubmit
remed 7. Ass Contra action and E the rea 8. If each	dial actions to be taken; 5. dess effectiveness of immediator's remedial medians and keep IEC, EPD R informed of	Monitor the plementation of remedial easures.	5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to slop that portion of work until the exceedance is abated.	under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Construction Noise

Event	ET	IEC	ER	Action Contractor
Action Level	1. Notify ER, IEC and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC, ER and Contractor; 4. Discuss with the IEC and Contractor on remedial measures required; 5. Increase monitoring frequency to check mitigation effectiveness.	Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures.	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, ER, Contractor and EPD; 2. Repeat measurements to confirm findings; 3. Increase monitoring frequency; 4. Identify source and investigate the cause of exceedance; 5. Carry out analysis of Contractor's working procedures; 6. Discuss with the IEC, Contractor and ER on remedial measures required; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops,	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly.	1. Confirm receipt of notification of failure in writing: 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Supervise the implementation of remedial measures; 5. If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated.	1. Take immediate action to avoid further exceedance: 2. Submit proposals for remedial actions to IEC and ER within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Water Quality

EVENT	ET	IEC	ER	ACTION CONTRACTOR
Action level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action Level being exceeded by more than two consecutive sampling days	1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods. 5. Discuss mitigation measures with IEC and Contractor; 6. Ensure mitigation measures are implemented; 7. Propare to increase the monitoring frequency to daily; 8. Repeat measurement on next day of	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 2 working daus. Implement the agreed mitigation measures.
Limit Level being exceeded by one sampling day	exceedance. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assoss the effectiveness of the implemented mitigation measures	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one consecutive sampling day's	Level. 1. Repeat in-situ measurement to confirm findings; 2. Identify reasons for non-compliance and sources of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically revisw the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to slop all or part of the construction activities until no exceedance of Limit Level.	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures; 7. As directed by the ER, to slow down or to stop all or part of the construction activities.

Appendix H

Impact Monitoring Schedule

Impact Monitoring Schedule for Reporting Period – June 2019

	Doto	Dust Mo	onitoring	Naisa Manidanina	Weten Onelite
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Sat	1-Jun-19				
Sun	2-Jun-19				
Mon	3-Jun-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	4-Jun-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Wed	5-Jun-19				All Water Quality Monitoring Locations
Thu	6-Jun-19		AM1c, AM2, AM3 & AM9b		
Fri	7-Jun-19				
Sat	8-Jun-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		All Water Quality Monitoring Locations
Sun	9-Jun-19				
Mon	10-Jun-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	11-Jun-19		ANTI: ANTO ANTO C		All Water Quality Monitoring
Wed	12-Jun-19		AM1c, AM2, AM3 & AM9b		All water Quality Monitoring Locations
Thu	13-Jun-19				
Fri	14-Jun-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	15-Jun-19	AM4b, AM5, AM6, AM7b & AM8			
Sun	16-Jun-19				
Mon	17-Jun-19				All Water Quality Monitoring Locations
Tue	18-Jun-19		AM1c, AM2, AM3 & AM9b		
Wed	19-Jun-19				All Water Quality Monitoring Locations
Thu	20-Jun-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Fri	21-Jun-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	22-Jun-19				
Sun Mon	23-Jun-19 24-Jun-19		AM1c, AM2, AM3 &		All Water Quality Monitoring
Tue	25-Jun-19		AM9b		Locations
Wed	26-Jun-19	AM1c, AM2, AM3 &	AM4b, AM5, AM6,	NM1, NM2a, NM8,	All Water Quality Monitoring
Thu	27-Jun-19	AM9b AM4b, AM5, AM6, AM7b & AM8	AM7b & AM8	NM9 & NM10 NM3, NM4, NM5, NM6 & NM7	Locations
Fri	28-Jun-19	AWI/D & AIVIO		NIVIO & NIVII	All Water Quality Monitoring Locations
Sat	29-Jun-19		AM1c, AM2, AM3 & AM9b		
Sun	30-Jun-19				

Monitoring Day
Sunday or Public Holiday

Impact Monitoring Schedule for next Reporting Period – July 2019

	Date	Dust Mo	onitoring	Naisa Manidanina	Water Or alite
	Date	1-hour TSP	24-hour TSP	Noise Monitoring	Water Quality
Mon	1-Jul-19				
Tue	2-Jul-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Wed	3-Jul-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Thu	4-Jul-19				All Water Quality Monitoring Locations
Fri	5-Jul-19		AM1c, AM2, AM3 & AM9b		
Sat	6-Jul-19				All Water Quality Monitoring Locations
Sun	7-Jul-19				
Mon	8-Jul-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Tue	9-Jul-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	
Wed	10-Jul-19				All Water Quality Monitoring Locations
Thu	11-Jul-19		AM1c, AM2, AM3 & AM9b		
Fri	12-Jul-19				All Water Quality Monitoring Locations
Sat	13-Jul-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8		
Sun	14-Jul-19			NA	
Mon	15-Jul-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Tue	16-Jul-19		AM1c, AM2, AM3 &		All Water Quality Monitoring
Wed	17-Jul-19		AM9b		Locations
Thu	18-Jul-19	ANGI. ANGO ANGO O	ANGAL ANG ANG	NIMI NIMI NIMI	All Water One l'a Manifestion
Fri	19-Jul-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	All Water Quality Monitoring Locations
Sat	20-Jul-19	AM4b, AM5, AM6, AM7b & AM8			
Sun	21-Jul-19				
Mon	22-Jul-19				All Water Quality Monitoring Locations
Tue	23-Jul-19		AM1c, AM2, AM3 & AM9b		
Wed	24-Jul-19				All Water Quality Monitoring Locations
Thu	25-Jul-19	AM1c, AM2, AM3 & AM9b	AM4b, AM5, AM6, AM7b & AM8	NM1, NM2a, NM8, NM9 & NM10	
Fri	26-Jul-19	AM4b, AM5, AM6, AM7b & AM8		NM3, NM4, NM5, NM6 & NM7	All Water Quality Monitoring Locations
Sat	27-Jul-19				
Sun	28-Jul-19		AM1c, AM2, AM3 &		All Water Quality Monitoring
Mon	29-Jul-19		AM1c, AM2, AM3 & AM9b		Locations
Tue	30-Jul-19	AM1c, AM2, AM3 &	AM4b, AM5, AM6,	NM1, NM2a, NM8,	All Water Quality Monitoring
Wed	31-Jul-19	AM1c, AM2, AM3 & AM9b	AM7b & AM8	NM1, NM2a, NM16, NM9 & NM10	Locations

Monitoring Day
Sunday or Public Holiday

Appendix I

Database of Monitoring Result

24-hour TSP Monitoring Data

DATE	SAMPLE NUMBER		APSED TIM			RT REA		AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME		g)	DUST WEIGHT COLLECTED	24-HR TSP (μg/m³)
		INITIAL	FINAL	(min)	MIN	MAX	AVG	(℃)	(hPa)	(m ³ /min)	(std m ³)	INITIAL	FINAL	(g)	(µg/ III)
AM1c – Oper					T	T	T .						T	T	
6-Jun-19	24253	16097.55	16121.55	1440.00	22	22	22.0	30.2	1010.4	0.80	1155	2.6799	2.7393	0.0594	51
12-Jun-19	24269	16121.55	16145.55	1440.00	25	25	25.0	27.5	1005.3	0.90	1290	2.6797	2.7109	0.0312	24
18-Jun-19	24292	16145.55	16169.14	1415.40	26	26	26.0	28.6	1008.1	0.93	1311	2.6673	2.6969	0.0296	23
24-Jun-19	24335	16169.14	16193.14	1440.00	25	25	25.0	28.6	1004.7	0.89	1288	2.6414	2.6776	0.0362	28
29-Jun-19	24345	16193.14	16217.13	1439.40	25	25	25.0	31	1001.6	0.89	1281	2.6265	2.6626	0.0361	28
AM2 - Villag	ge House ne	ar Lin Ma	Hang Road												
6-Jun-19	24254	11704.47	11728.69	1453.20	38	38	38.0	30.2	1010.2	1.05	1526	2.6501	2.7185	0.0684	45
12-Jun-19	24270	11728.69	11752.90	1452.60	25	25	25.0	27.5	1005.3	0.67	970	2.6681	2.7227	0.0546	56
18-Jun-19	24313	11752.90	11777.13	1453.80	32	32	32.0	28.6	1008.1	0.87	1271	2.6273	2.7096	0.0823	65
24-Jun-19	24334	11777.13	11801.24	1446.60	32	32	32.0	28.6	1004.7	0.87	1262	2.6458	2.6865	0.0407	32
29-Jun-19	24346	11801.26	11825.46	1452.00	32	32	32.0	31	1001.6	0.87	1259	2.6319	2.7025	0.0706	56
AM3 - Ta Kv	wu Ling Fir	e Service S	tation of Ta	Kwu Lin	g Villa	ge									
6-Jun-19	24255	12837.74	12861.74	1440.00	25	25	25	30.2	1010.2	0.69	988	2.6511	2.6882	0.0371	38
12-Jun-19	24283	12861.74	12885.74	1440.00	25	25	25	27.5	1005.3	0.69	991	2.6614	2.739	0.0776	78
18-Jun-19	24314	12885.74	12909.74	1440.00	25	25	25	28.6	1008.1	0.69	990	2.6281	2.642	0.0139	14
24-Jun-19	24333	12909.74	12933.74	1440.00	25	25	25	28.6	1004.7	0.69	988	2.6407	2.7255	0.0848	86
29-Jun-19	24347	12933.74	12957.74	1440.00	56	56	56	31	1001.6	1.72	2482	2.6209	2.6938	0.0729	29
AM4b - Hous	se no. 10B1	Nga Yiu H	a Village									•			
3-Jun-19	24252	14823.52	14847.50	1438.80	38	38	38.0	27.5	1007.3	1.09	1565	2.6540	2.7112	0.0572	37
8-Jun-19	24260	14847.50	14871.50	1440.00	38	38	38.0	30.1	1008.5	1.08	1557	2.6566	2.7056	0.0490	31
14-Jun-19	24288	14871.50	14895.50	1440.00	38	38	38.0	28.4	1002.4	1.08	1557	2.6620	2.7016	0.0396	25
20-Jun-19	24320	14895.50	14919.50	1440.00	28	28	28.0	30.1	1006.9	0.76	1096	2.6166	2.6421	0.0255	23
26-Jun-19	24341	14919.50	14943.50	1440.00	28	28	28.0	28.6	1004	0.76	1097	2.6290	2.6830	0.0540	49
AM5a - Ping	Yeung Vill	age House										•			
3-Jun-19	24251	13667.71	13691.70	1439.40	28	28	28.0	27.5	1007.3	0.90	1290	2.6688	2.7090	0.0402	31
8-Jun-19	24261	13691.70	13715.78	1444.80	20	20	20.0	30.1	1008.5	0.69	990	2.6593	2.7211	0.0618	62
14-Jun-19	24287	13715.78	13739.89	1446.60	20	20	20.0	28.4	1002.4	0.69	991	2.6647	2.7054	0.0407	41
20-Jun-19	24321	13739.89	13764.01	1447.20	20	20	20.0	30.1	1006.9	0.68	991	2.6269	2.6729	0.0460	46
26-Jun-19	24340	13764.01	13788.07	1443.60	20	20	20.0	28.6	1004	0.69	989	2.6288	2.6590	0.0302	31
AM6 - Wo K	eng Shan V	illage Hous	se						•						
3-Jun-19	24222	11269.14	11293.14	1440.00	30	30	30.0	27.5	1007.3	0.80	1156	2.6730	2.7633	0.0903	78
8-Jun-19	24262	11293.14	11317.14	1440.00	32	32	32.0	30.1	1008.5	0.86	1241	2.6665	2.7391	0.0726	58
14-Jun-19	24286	11317.14	11341.11	1438.20	34	34	34.0	28.4	1002.4	0.93	1332	2.6574	2.7866	0.1292	97

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

DATE	SAMPLE NUMBER		APSED TIM	ИΕ			ADING	AVG TEMP	AVG AIR PRESS	STANDARD FLOW RATE	AIR VOLUME	FILTER V	g)	DUST WEIGHT COLLECTED	24-HR TSP (μg/m³)
	NUMBER	INITIAL	FINAL	(min)	MIN	MAX	AVG	$(^{\circ}\mathbb{C})$	(hPa)	(m³/min)	(std m ³)	INITIAL	FINAL	(g)	(μg/III)
20-Jun-19	24322	11341.11	11365.11	1440.00	32	32	32.0	30.1	1006.9	0.86	1240	2.6373	2.6945	0.0572	46
26-Jun-19	24339	11365.11	11389.11	1440.00	34	34	34.0	28.6	1004.0	0.93	1334	2.6350	2.7077	0.0727	54
AM7b - Loi	Tung Villag	e House													
3-Jun-19	24221	20315.53	20339.53	1440.00	44	44	44	27.5	1007.3	1.23	1765	2.6734	2.7389	0.0655	37
8-Jun-19	24263	20339.53	20363.53	1440.00	44	44	44	30.1	1008.5	1.22	1758	2.6641	2.7091	0.0450	26
14-Jun-19	24284	20363.53	20387.53	1440.00	44	44	44	28.4	1002.4	1.22	1757	2.6484	2.7377	0.0893	51
20-Jun-19	24323	20387.53	20411.53	1440.00	44	44	44	30.1	1006.9	1.22	1756	2.6427	2.6978	0.0551	31
26-Jun-19	24338	20411.53	20435.53	1440.00	40	42	41	28.6	1004	1.15	1650	2.6194	2.6855	0.0661	40
AM8 - Po Ka	ıt Tsai Villa	ge No. 4													
3-Jun-19	24220	14212.93	14236.93	1440.00	32	32	32.0	27.5	1007.3	1.08	1549	2.6705	2.7133	0.0428	28
8-Jun-19	24264	14236.93	14260.93	1440.00	30	30	30.0	30.1	1008.5	1.02	1470	2.6696	2.685	0.0154	10
14-Jun-19	24285	14260.93	14284.93	1440.00	54	54	54.0	28.4	1002.4	1.64	2364	2.6619	2.7588	0.0969	41
20-Jun-19	24324	14284.93	14308.93	1440.00	60	60	60.0	30.1	1006.9	1.80	2586	2.639	2.6868	0.0478	18
26-Jun-19	24337	14308.93	14332.93	1440.00	42	44	43.0	28.6	1004	1.36	1955	2.6193	2.6819	0.0626	32
AM9b - Nam	Wa Po Vil	lage House	No. 80												
6-Jun-19	24243	21584.47	21608.47	1440.00	22	23	22.5	27.3	1006.7	0.55	785	2.6670	2.6847	0.0177	23
12-Jun-19	24256	21608.47	21632.45	1438.80	25	25	25.0	27.5	1005.3	0.63	912	2.6650	2.6888	0.0238	26
18-Jun-19	24315	21632.45	21656.45	1440.00	22	22	22.0	28.6	1008.1	0.53	758	2.6128	2.6220	0.0092	12
24-Jun-19	24336	21656.45	21680.44	1439.40	20	22	21.0	29.1	1006.2	0.49	704	2.6314	2.6554	0.0240	34
29-Jun-19	24359	21680.44	21704.43	1439.40	22	22	22.0	29.5	1001.6	0.52	752	2.6260	2.6509	0.0249	33

Construction Noise Monitoring Results, dB(A)

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
NM1 - Tsung	Yuen H		House N	No. 63	4011111			10			10			20			10				
3-Jun-19	11:31	57.6	59.5	53.8	58.2	60.2	53.6	57.6	59.7	53.9	57.6	59.5	53.1	58.8	59.8	54.2	63.1	61.7	54.0	59	NA
14-Jun-19	13:48	56.2	59.6	53.5	59.5	61.1	54.7	58.7	59.5	57.4	58.5	60.5	56.6	57.5	58.9	56.9	55.7	57.1	54.1	58	NA
20-Jun-19	9:31	56.8	59.1	52.5	53.0	55.0	50.5	54.6	57.0	50.5	55.3	57.3	52.1	54.8	56.8	51.3	55.2	57.1	52.1	55	NA
26-Jun-19	10:09	58.8	61.9	58.4	57.0	59.6	54.5	56.6	58.1	54.5	58.2	61.2	55.6	59.2	53.9	60.8	56.9	58.8	54.5	58	NA
NM2a - Villag	e House	near Lin	Ma Ha	ng Road	l																
3-Jun-19	10:58	66.4	65.2	51.9	60.6	62.3	52.9	59.7	63.3	52.2	60.0	62.6	50.6	61.2	63.7	51.0	62.2	63.4	51.8	62	65
14-Jun-19	13:14	66.6	68.4	53.8	64.0	69.4	55.7	59.6	58.6	48.3	62.9	52.9	60.1	65.6	65.7	50.8	62.4	64.1	59.9	64	67
20-Jun-19	10:12	66.9	65.5	55.0	61.5	64.6	55.6	65.4	67.5	56.4	63.1	67.1	55.2	62.2	65.7	54.2	62.3	65.9	55.7	64	67
26-Jun-19	11:13	72.6	77.2	63.6	63.2	65.1	52.8	68.1	71.0	62.5	66.6	69.3	60.3	67.2	66.6	58.5	66.4	68.5	58.5	68	71
NM3 - Ping Ye					T								1							1	
4-Jun-19	13:03	56.9	60.5	49.0	54.5	58.0	46.0	53.6	56.5	48.0	54.8	58.5	47.0	56.3	60.0	48.5	57.4	60.0	51.0	56	NA
10-Jun-19	11:36	59.6	61.3	53.0	57.2	59.3	53.2	59.6	62.7	53.7	54.8	57.5	53.2	58.7	61.0	52.0	57.7	60.2	53.2	58	NA
21-Jun-19 27-Jun-19	11:20	60.6 59.0	62.3 59.0	53.2 50.5	56.8 59.3	55.6	53.8	58.6	60.3	53.2	54.2 59.7	55.2	52.3 53.3	55.1 58.6	56.1	53.0 53.5	55.7 57.6	56.2	52.3 52.3	57 59	NA NA
	13:36			30.3	39.3	60.3	51.4	61.5	61.8	52.8	39.7	60.7	33.3	38.0	59.4	33.3	37.0	58.7	32.3	39	NA
NM4 - Wo Kei 4-Jun-19	13:37	Village H 58.3	60.5	48.5	59.9	61.7	46.5	62.6	64.9	47.0	57.3	61.0	47.5	62.4	65.2	46.5	61.0	64.5	47.5	61	NA
10-Jun-19	11:45	56.8	58.0	49.6	63.5	68.7	48.2	63.5	62.5	49.9	65.6	65.0	51.1	60.9	62.2	50.6	62.6	63.2	50.6	63	NA NA
21-Jun-19	11:31	56.6	57.9	49.5	63.3	68.7	48.8	63.5	65.3	50.1	57.3	64.8	50.5	62.2	65.2	46.6	62.6	63.3	49.9	62	NA
27-Jun-19	14:13	64.9	65.1	50.1	63.2	64.7	49.3	65.6	62.6	48.5	63.5	64.6	48.9	57.5	62.9	47.8	54.4	61.5	46.9	63	NA
NM5– Ping Ye				00.1	05.2	0,	.,.5	00.0	02.0		03.0	00	.0.5	07.0	02.5	.,.0	<i>U</i>	01.0		0.5	
4-Jun-19	14:13	50.2	51.5	46.5	50.2	51.0	47.5	50.1	52.0	48.0	49.4	51.0	47.5	50.1	51.5	48.0	50.8	52.5	48.5	50	NA
10-Jun-19	14:17	51.8	53.5	47.8	52.5	53.2	47.1	50.8	51.3	46.5	52.1	53.6	44.6	52.5	52.2	44.2	54.2	55.6	45.3	52	NA
21-Jun-19	13:14	53.3	55.6	50.0	53.4	55.1	49.3	54.2	56.5	50.0	55.1	56.3	49.2	52.5	53.6	48.7	51.0	53.5	48.2	53	NA
27-Jun-19	9:44	60.9	61.5	60.1	61.3	63.1	60.2	62.7	63.7	61.2	61.2	62.0	60.4	62.1	63.4	60.8	62.3	63.4	61.6	62	NA
NM6 – Tai Tor	ng Wu V	/illage Ho	use 2																		
4-Jun-19	14:45	55.7	58.5	49.5	56.3	59.5	49.0	56.9	60.5	46.5	55.2	58.0	47.5	57.7	58.5	48.0	56.0	59.0	55.0	56	NA
10-Jun-19	14:56	58.6	61.4	52.5	58.1	61.9	52.2	57.2	59.4	50.4	58.0	61.5	50.5	58.2	61.4	52.7	57.5	60.6	49.4	58	NA
21-Jun-19	13:51	57.2	59.1	51.2	58.6	62.7	53.6	56.5	60.4	52.3	57.1	61.5	51.5	58.5	61.6	52.3	58.1	60.5	52.0	58	NA
27-Jun-19	10:51	60.1	60.8	59.4	60.7	61.8	59.8	61.0	62.2	59.5	62.5	64.0	61.3	62.0	62.7	61.0	62.2	63.1	61.0	62	NA
NM7 - Po Kat	Tsai Vi	llage																			
4-Jun-19	14:24	59.3	62.0	48.0	57.4	59.5	50.0	54.4	56.5	47.5	59.3	61.5	51.5	56.8	58.0	52.0	56.1	58.5	49.0	58	NA
10-Jun-19	14:43	60.9	63.3	54.5	55.2	60.3	52.7	64.8	65.6	53.6	58.9	64.6	53.2	58.4	62.5	53.1	57.4	60.0	54.1	60	NA
21-Jun-19	13:26	59.7	62.0	48.1	57.7	59.5	49.9	61.3	58.8	47.5	61.4	50.8	55.5	58.8	62.2	53.3	57.5	60.8	49.8	60	NA
27-Jun-19	13:24	63.8	64.5	63.2	64.1	65.0	63.2	64.0	64.6	63.5	65.3	67.0	63.4	64.8	66.0	64.0	64.9	66.0	63.9	65	NA
NM8 - Village	House,	Tong Ha	ng																		
3-Jun-19	11:00	58.9	60.3	57.8	58.8	59.4	57.3	59.6	60.3	56.5	58.3	59.9	56.3	57.5	58.1	56.9	57.9	59.2	56.4	59	NA
14-Jun-19	14:20	59.1	60.9	46.1	57.5	59	55	58.1	58.7	54.1	57	58.9	50.5	58.6	63.4	54.1	59.8	60	54.3	58	NA

Agreement No. CE 45/2008 (CE) Liantang/Heung Yuen Wai Boundary Control Point and Associated Works Monthly Environmental Monitoring & Audit Report (No.71) – June 2019

Date	Start Time	1 st Leq _{5min}	L10	L90	2 nd Leq _{5min}	L10	L90	3 nd Leq _{5min}	L10	L90	4 th Leq _{5min}	L10	L90	5 th Leq _{5min}	L10	L90	6 th Leq _{5min}	L10	L90	Leq30	façade correction
20-Jun-19	14:49	61.5	66.9	51.3	59.2	64.5	50.1	60.5	65.9	51	61.9	66.5	51.2	63.6	68.8	49.7	61.8	65.7	47.2	62	NA
26-Jun-19	11:02	60.1	60.8	59.6	64.6	66.8	59	63.1	64.7	57.8	59.2	59.3	57.4	57.5	57.8	57.1	58.7	59.2	57.6	61	NA
NM9 - Village	House,	Kiu Tau	Village																		
3-Jun-19	10:17	63.4	64.7	62.3	63.8	68.0	56.2	63.4	66.0	60.8	63.7	65.5	60.2	62.4	63.4	61.3	62.7	64.0	61.4	65	NA
14-Jun-19	15:35	63.5	65.3	61.2	65.8	67.3	59.5	57.9	59.1	56.3	63.1	68.0	54.0	65.8	68.5	60.5	62.8	63.5	55.9	66	NA
20-Jun-19	14:06	59.9	61.5	54.4	58.2	59.1	53.0	58.8	59.5	52.8	59.9	60.9	53.0	60.3	60.8	53.5	59.5	60.9	53.5	60	NA
26-Jun-19	10:13	63.2	64.2	62.3	63.1	64.1	61.8	63.1	63.7	62.6	63.1	63.9	62.2	63.3	64.2	62.6	64.2	65.1	61.4	64	NA
NM10 - Nam	Wa Po V	Village Ho	use No.	. 80																	
3-Jun-19	9:29	63.0	64.5	61.5	62.5	65.5	57.4	62.8	63.9	61.8	63.1	64.0	62.0	63.5	64.1	62.9	61.7	64.2	59.8	63	66
14-Jun-19	15:00	64.2	65.7	62.5	60.3	62.0	57.9	61.6	63.5	58.3	65.5	67	63.5	62.8	63.7	59.6	64.5	66.0	59.5	65	68
20-Jun-19	13:18	60.7	61.0	57.6	59.4	61.3	57.2	60.5	61.0	58.3	60.7	61.5	58.1	60.3	60.6	57.0	59.0	60.8	56.2	60	63
26-Jun-19	9:19	63.4	64.5	62.6	63.0	64.0	62.3	63.2	63.7	62.7	63.3	63.9	62.8	62.5	63.3	61.7	62.2	63.1	61.4	63	66

Water Quality Monitoring Data for Contract 6 and SS C505

Date	3-Jun-19	•	-			-	5		-	•	-	•		
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C	11:10	0.20	26.6	26.6	6.19	()	77.2	77.0	401.0	406.0	7.5	7.5	197	200.0
WM1-C	11:10	0.30	26.6	20.0	6.2	6.2	77.2	11.2	411.0	406.0	7.5	7.5	203	200.0
WM1	11:00	0.25	26.8	26.8	6.43	6.1	80.5	80.7	474.0	471.5	7.7	77	224	227.5
VV IVI I	11.00	0.23	26.8	20.8	6.46	6.4	80.9	80.7	469.0	4/1.3	7.7	7.7	231	221.3

Date	5-Jun-19													
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbidi	ity (NTU)	р	Н	SS	(mg/L)
WM1 C	11.10	0.20	28	20.0	6.53	6.5	83.6	02.7	17.1	17.2	7.3	7.2	11	11.5
WMI-C	WM1-C 11:10	0.30	28	28.0	6.55	0.5	83.7	83.7	17.2	17.2	7.3	7.3	12	11.5
WM1	11:00	0.25	26.7	26.7	7.75	7.0	97.1	07.2	22.3	21.5	7.4	7.4	18	17.5
VV IVI I	11.00	0.23	26.7	20.7	7.76	7.8	97.2	91.2	20.6	21.3	7.4	7.4	17	17.3

Date	8-Jun-19													
Location	Time	Depth (m)	Temp	Temp (oC)		mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	12.10	0.20	29.3	20.2	7.34	7.2	95.8	05.0	7.8	7.0	7.3	7.2	5	<i>5 5</i>
WM1-C	13:10	0.30	29.3	29.3	7.33	7.3	95.7	95.8	7.7	7.8	7.3	1.3	6	5.5
W/M 1	12.00	0.25	27.5	27.5	7.33	7.2	92.3	02.2	15.1	15 /	7.4	7.4	22	22.0
WM1	13:00	0.25	27.5	27.3	7.32	7.3	92.2	92.3	15.6	15.4	7.4	7.4	22	22.0

Date	10-Jun-19													
Location	Time	Depth (m)	Tem	p (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM1-C 11:05	11.05	0.20	29.2	29.2	7.36	7.4	96.0	96.0	7.9	7.0	7.39	7.4	4	4.0
WMI-C	WM1-C 11:05	0.30	29.2	29.2	7.35	7.4	96.0	90.0	7.8	7.9	7.39	7.4	4	4.0
WM1	10:55	0.25	27.5	27.5	7.3	7.2	92.6	02.7	16.0	16.1	7.35	7.4	13	13.0
VV IVI I	10.55	0.23	27.5	27.3	7.32	7.3	92.8	92.7	16.1	10.1	7.35	7.4	13	13.0

Date	12-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	10.55	0.20	25.4	25.4	7.01	7.0	85.4	05.4	18.4	10.6	7.63	7.0	12	12.5
WM1-C	10:55	0.30	25.4	25.4	7	7.0	85.3	85.4	18.8	18.6	7.63	7.0	13	12.3
WM1	10:50	0.20	25.4	25.4	7.63	7.6	92.8	92.7	16.8	17.1	8.24	0.2	15	15.0
VV IVI I	10.30	0.20	25.4	23.4	7.62	7.6	92.6	92.7	17.3	17.1	8.24	8.2	15	13.0

Date	14-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	10.55	0.21	27.6	27.6	7.14	7.3	89.6	00.0	18.0	18.6	6.3	(2	11	12.0
WM1-C	10:55	0.31	27.6	27.0	7.21	1.2	90.3	90.0	19.1	18.0	6.3	6.3	13	12.0
WM1	10:50	0.28	26.8	26.8	7.34	7.4	93.1	93.6	23.4	22.7	7.1	7.1	13	1.4.5
VV IVI I	10.30	0.28	26.8	20.8	7.42	7.4	94.0	93.0	22.0	22.1	7.1	7.1	16	14.3

Date	17-Jun-19		-		-	-		•	-	•		•		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	11:15	0.30	26.5	26.5	7.43	7.4	92.3	92.0	9.6	9.6	8.15	44.8	3	2.5
WWIT-C	11.13	0.30	26.5	20.3	7.39	7.4	91.7	92.0	9.5	9.0	81.5	44.0	4	3.3
WM1	11:05	0.30	25.9	25.0	7.67	77	94.4	94.5	12.6	12.7	8.72	8.7	14	14.5
VV IVI I	11.03	0.30	25.9	23.9	7.68	7.7	94.5	94.3	12.7	12.7	8.72	0.7	15	14.3

Date	19-Jun-19		-		_	•	•	•	-		•	•	•	•
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ity (NTU)	p	H	SS	(mg/L)
WM1-C	10:50	0.20	27.5	27.5	6.97	7.0	88.2	88.2	10.7	10.7	7.86	7.0	6	6.5
WWIT-C	10.30	0.30	27.5	27.3	6.96	7.0	88.1	88.2	10.6	10.7	7.86	7.9	7	0.3
WM1	10:40	0.15	26.4	26.4	7.4	7.4	91.9	01.0	15.9	15.0	8.22	0.2	18	18.5
VV IVI I	10.40	0.13	26.4	∠0.4	7.39	7.4	91.8	91.9	15.8	13.9	8.22	0.2	19	10.3

Date	21-Jun-19	•	-			-	-		-	•	-	•		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1 C	10.50	0.20	28.5	20.5	6.3	(2	81.2	01.2	89.7	01.0	7.93	7.0	130	120.5
WM1-C	10:50	0.30	28.5	28.5	6.3	6.3	81.2	81.2	92.2	91.0	7.93	7.9	129	129.5
WM1	10.40	0.25	28.3	20.2	6.83	(0	87.7	07.7	102.1	104.0	7.65	7.7	151	151.5
W IVI I	10:40	0.25	28.3	28.3	6.83	6.8	87.7	87.7	105.8	104.0	7.65	/./	152	151.5

Date	24-Jun-19	•	-			-	-	•	-		•	•	-	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS	(mg/L)
WM1 C	10.55	0.20	28.9	20.0	6.66	(7	86.8	96.0	13.5	13.0	6.9	(0	5	5.0
WM1-C	10:55	0.30	28.9	28.9	6.67	6.7	86.9	86.9	14.2	13.9	6.9	6.9	5	5.0
WM1	10:45	0.15	28.9	28.9	7.21	7.2	93.3	92.9	29.6	21.0	8.6	0.6	28	28.0
VV IVI I	10.43	0.13	28.9	28.9	7.18	1.2	92.5	92.9	32.3	31.0	8.6	8.6	28	28.0

Date	26-Jun-19	•	-			-	-		•	•	-	•	5	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM1-C	11.00	0.25	26.8	26.8	6.41	C 1	80.3	90.2	229.0	220.0	6.5	(5	210	204.5
WMI-C	11:00	0.35	26.8	20.8	6.4	6.4	80.3	80.3	231.0	230.0	6.5	6.5	199	204.5
3373.41	10.50	0.20	26.8	26.0	6.99	7.0	87.4	97.6	270.0	271.0	6.8	(0	194	102.0
WM1	10:50	0.30	26.8	26.8	7.02	7.0	87.7	87.0	272.0	271.0	6.8	6.8	190	192.0

Date	28-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM1-C	11:05	0.30	26.7	26.7	7.54	7.5	94.7	94.8	12.9	12.1	6.4	6.1	3	2.0
WWIT-C	11.03	0.30	26.7	20.7	7.55	7.3	94.8	94.8	13.3	13.1	6.4	6.4	3	3.0
WM1	10:50	0.20	26.7	26.7	7.93	7.0	98.7	98.8	20.6	20.4	7	7.0	13	13.0
VV IVI I	10.30	0.20	26.7	20.7	7.94	7.9	98.8	90.0	20.2	20.4	7	7.0	13	13.0

Water Quality Monitoring Data for Contract 2 and 3

Date	3-Jun-19	•	•				•	•	•	•	•	•		-
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	р	Н	SS	(mg/L)
WM4-CA	14:45	0.13	26.2	26.2	4.7	4.7	58.1	58.1	0.9	1.1	7.2	7.2	<2	/2
WW4-CA	14.43	0.13	26.2	20.2	4.71	4.7	58.0	36.1	1.2	1.1	7.2	1.2	<2	~2
WM4-CB	15:00	0.28	27.8	27.8	5.82	5 0	74.1	74.2	11.6	12.1	7.1	7.1	7	7.0
WIVI4-CD	13.00	0.28	27.8	27.8	5.82	3.8	74.3	74.2	12.6	12.1	7.1	7.1	7	7.0
3373.4.4	14.40	0.20	27.2	27.2	6.6	((83.3	02.4	11.6	11.4	7.2	7.3	10	0.5
WM4	14:40	0.20	27.2	21.2	6.61	6.6	83.5	83.4	11.1	11.4	7.2	1.2	9	9.5

Date	5-Jun-19						•	•	•	•	•	•		
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	14:30	0.12	27.4	27.4	4.67	47	59.1	59.1	1.6	1.6	7.5	7.5	<2	-2
W M4-CA	14.30	0.13	27.4	27.4	4.66	4.7	59.1	39.1	1.6	1.0	7.5	1.3	<2	<u>\</u> 2
WM4 CD	14.40	0.20	30	30.0	5.56	5 (75.3	75.4	8.7	0.0	7.4	7.4	11	11.0
WM4-CB	14:40	0.28	30	30.0	5.57	5.6	75.4	/3.4	8.8	8.8	7.4	7.4	11	11.0
WM4	14.15	0.20	29.5	29.5	6.4	6.1	84.5	016	5.3	5.1	7.4	7.4	5	1.5
W W14	14:15	0.20	29.5	29.3	6.42	6.4	84.6	84.6	5.5	3.4	7.4	7.4	4	4.5

Date	8-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	p	H	SS	(mg/L)
WM4-CA	14:30	0.13	25.5	25.5	7.4	7.4	89.1	89.2	1.5	1.6	8.2	8.2	<2	/2
WM4-CA	14.30	0.13	25.5	23.3	7.41	7.4	89.2	89.2	1.6	1.6	8.2	8.2	<2	~2
WM4-CB	14.45	0.26	27.9	27.9	4.6	16	57.4	58.3	3.9	3.0	7.6	7.6	9	9.0
WIVI4-CB	14:45	0.20	27.9	21.9	4.64	4.6	59.2	36.3	3.9	3.9	7.6	7.6	9	9.0
WM4	14:25	0.20	27.5	27.5	8.11	0 1	101.2	101.3	16.5	16.6	8	8.0	5	1.5
VV 1V14	14.23	0.20	27.5	27.3	8.13	8.1	101.3	101.3	16.7	10.0	8	8.0	4	4.5

Date	10-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbid	ity (NTU)	p	H	SS	(mg/L)
WM4-CA	16:05	0.13	26.6	26.6	4.44	4.4	55.2	54.8	1.1	1.1	7.45	7.5	<2	-2
WW14-CA	10.03	0.13	26.6	20.0	4.37	4.4	54.4	34.0	1.1	1.1	7.45	7.5	<2	<2
WM4-CB	16:15	0.27	29.8	29.8	5.7	5 7	75.0	74.9	5.8	5.8	7.25	7.2	8	8.0
WW4-CB	10.13	0.27	29.8	29.8	5.67	3.7	74.8	/4.9	5.9	3.8	7.25	7.3	8	8.0
WM4	16:00	0.20	28.8	28.8	6.54	6.5	84.8	84.9	2.6	2.6	7.61	7.6	4	4.0
W W14	10.00	0.20	28.8	28.8	6.55	6.5	84.9	84.9	2.6	2.6	7.61	7.6	4	4.0

Date	12-Jun-19													
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM4-CA	14:25	0.12	26.4	26.4	2.25	2.1	27.8	26.2	0.1	0.1	7.17	7.2	2	2.0
WW4-CA	14.23	0.13	26.4	26.4	1.98	2.1	24.6	20.2	0.1	0.1	7.17	1.2	<2	2.0
WM4-CB	14:40	0.28	27.6	27.6	6.18	6.1	78.4	77.7	7.3	7.4	7.23	7.2	9	9.0

			27.6		6.07		77.0		7.5		7.23		9	
3373.44	14:20	0.20	26.9	26.0	7.62	7.6	95.4	05.3	7.3	7.2	7.7	7.7	7	7.0
WM4	14:20	0.20	26.9	26.9	7.6	7.6	95.1	95.5	7.3	7.3	7.7	7.7	7	7.0

Date	14-Jun-19		•								•			-
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	p.	H	SS	(mg/L)
WM4-CA	13:35	0.13	29.2	29.2	3.46	2.5	44.6	44.7	1.2	1.2	6.6	6.6	<2	-2
W WI4-CA	13.33	0.13	29.2	29.2	3.48	3.3	44.8	44./	1.1	1.2	6.6	6.6	<2	~2
WM4 CD	12.50	0.20	29.9	29.9	7.14	7.1	93.7	93.7	9.0	9.6	6.6	((6	(0
WM4-CB	13:50	0.30	29.9	29.9	7.12	7.1	93.6	93.7	8.2	8.6	6.6	6.6	6	6.0
WM4	12.20	0.20	29.2	29.2	7.84	7.0	102.0	102.2	9.2	0.4	6.8	6.0	7	6.5
W IVI4	13:30	0.20	29.2	29.2	7.87	7.9	102.3	102.2	9.6	9.4	6.8	6.8	6	6.5

Date	17-Jun-19													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	р	H	SS	(mg/L)
WM4-CA	14:30	0.13	26.5	26.5	4.07	4.0	50.5	50.1	1.1	1.1	7.58	7.6	<2	-2
WM4-CA	14.30	0.13	26.5	20.3	4.01	4.0	49.7	30.1	1.1	1.1	7.58	7.6	<2	<u>\</u>
WM4-CB	1.4.45	0.25	27	27.0	5.79	50	72.6	72.4	6.7	6.5	7.44	7.4	9	0.5
W M4-CB	14:45	0.23	27	27.0	5.75	3.8	72.1	12.4	6.4	6.5	7.44	7.4	8	8.5
WM4	14:25	0.20	26.7	26.7	7.22	7.2	90.0	89.3	3.0	2.1	7.73	77	8	7.5
W IVI4	14.23	0.20	26.7	20.7	7.12	1.2	88.6	89.3	3.3	3.1	7.73	7.7	7	7.3

Date	19-Jun-19													
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbid	lity (NTU)	p	Н	SS	(mg/L)
WM4-CA	13:50	0.13	26.8	26.8	4.17	11	52.2	51.9	0.3	0.3	7.48	7.5	<2	/2
WW4-CA	15.50	0.13	26.8	20.8	4.12	4.1	51.5	31.9	0.3	0.3	7.48	7.3	<2	<u>\</u> 2
WM4-CB	14:05	0.28	30.8	30.8	6.59	6.6	88.4	88.2	6.3	6.2	7.36	7.4	9	9.0
WW4-CB	14.03	0.28	30.8	30.8	6.56	6.6	88.0	00.2	6.3	6.3	7.36	7.4	9	9.0
3373.4.4	12.40	0.20	28.8	20.0	7.75	77	100.5	100.5	2.2	2.2	7.8	7.0	4	2.5
WM4	13:40	0.20	28.8	28.8	7.73	7.7	100.4	100.5	2.2	2.2	7.8	7.8	3	3.3

Date	21-Jun-19	-	•				•		•	•	-	•		
Location	Time	Depth (m)	Temp	o (oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM4-CA	14:55	0.13	26.8	26.8	4.16	4.2	52.0	51.9	0.3	0.3	7.62	7.6	<2	\sim
WM4-CA	14.55	0.13	26.8	20.8	4.14	4.2	51.7	31.9	0.3	0.5	7.62	7.0	<2	<2
WM4-CB	15:10	0.26	31.4	31.4	6.77	6.8	91.7	91.6	4.9	4.9	7.37	7.4	7	7.5
WWI4-CB	13.10	0.20	31.4	31.4	6.75	0.8	91.5	91.0	4.9	4.9	7.37	7.4	8	7.3
3373.4.4	14.50	0.20	29.7	29.7	7.23	7.2	95.2	95.0	4.0	4.0	7.77	7.8	4	4.0
WM4	14:50	0.20	29.7	29.7	7.2	1.2	94.8	93.0	4.0	4.0	7.77	7.8	4	4.0

Date	24-Jun-19					•					•			,
Location	Time	Depth (m)	Temp	o (oC)	DO (ı	mg/L)	DO	(%)	Turbid	ity (NTU)	p]	H	SS	(mg/L)
WM4-CA	14:15	0.13	26.9	26.9	4.68	4.7	58.8	59.2	1.8	1.7	6.8	6.8	<2	<2

			26.9		4.74		59.6		1.7		6.8		<2	
WM4-CB	14:25	0.28	27.8	27.9	4.1	4.1	51.9	52.0	9.2	0.4	6.6	6.6	7	6.5
WW4-CB	14.23	0.28	27.8	27.8	4.11	4.1	52.0	32.0	9.5	9.4	6.6	6.6	6	0.5
WM4	14:05	0.20	26.7	26.7	6.87	6.9	85.5	85.6	12.7	12.2	6.7	67	8	0.5
W W14	14.03	0.20	26.7	20.7	6.88	0.9	85.6	83.0	11.7	12.2	6.7	6./	9	8.3

Date	26-Jun-19					-	•				-	•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	р	H	SS	(mg/L)
WM4-CA	14:05	0.14	25.9	25.9	4.3	1.2	51.9	52.1	1.7	1.6	6.8	6.8	<2	-2
WW4-CA	14.03	0.14	25.9	23.9	4.33	4.3	52.3	32.1	1.6	1.6	6.8	0.8	<2	~2
WM4-CB	14:20	0.35	26.2	26.2	5.98	6.0	74.3	74.6	16.0	16.6	6.8	6.8	11	11.5
WW4-CB	14.20	0.33	26.2	20.2	6.04	0.0	74.9	74.0	17.2	16.6	6.8	0.8	12	11.5
WWW	14.00	0.20	24.6	24.6	9.26	0.2	110.0	110.1	18.9	10.5	6.9	(0	13	12.5
WM4	14:00	0.20	24.6	24.6	9.28	9.3	110.1	110.1	20.0	19.5	6.9	6.9	12	12.5

Date	28-Jun-19		•			-	•	-	•	•	-	•	•	
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbid	ity (NTU)	р	Н	SS	(mg/L)
WM4-CA	14:15	0.18	21.6	21.6	7.94	7.9	96.3	96.4	324.0	326.5	6.5	6.5	233	230.5
WW4-CA	14.13	0.18	21.6	21.0	7.95	7.9	96.4	90.4	329.0	320.3	6.5	6.5	228	230.3
WM4-CB	14:40	0.28	24.3	24.3	5.83	5.8	71.2	71.2	31.5	32.3	6.3	6.2	22	22.5
W WI4-CB	14.40	0.28	24.3	24.3	5.85	3.8	71.4	/1.3	33.0	32.3	6.3	6.3	23	22.3
WM4	14:25	0.25	26.8	26.8	7.84	7.8	95.6	95.6	137.0	136.5	6.6	6.6	118	116.5
vv 1V14	14.23	0.23	26.8	20.8	7.83	7.8	95.6	93.0	136.0	130.3	6.6	6.6	115	110.3

Water Quality Monitoring Data for Contract 6

Date	3-Jun-19	-				•		•	•				•	-
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbio	dity (NTU)	p.	Н	SS(mg/L)
WM2A-C	14:00	0.25	25.4	25.4	7.21	7.2	88.0	88.0	17.1	17.2	7.40	7.4	12	11.5
W MZA-C	14.00	0.23	25.4	23.4	7.2	1.2	87.9	88.0	17.5	17.3	7.40	7.4	11	11.3
WM2A	12.20	0.15	26.5	26.5	6.88	(0	85.5	95.6	24.6	22.5	7.20	7.2	14	14.0
WMZA	13:20	0.15	26.5	26.5	6.89	6.9	85.6	85.6	22.4	23.5	7.20	1.2	14	14.0

Date	5-Jun-19						-							
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbi	dity (NTU)	p	Н	SS(mg/L)
WM2A-C	11:55	0.30	27.9 27.9	27.9	6.96 6.99	7.0	86.2 86.5	86.4	9.6 9.3	9.5	7.40 7.40	7.4	3	3.5
WM2A	11:30	0.15	27.9 27.9	27.9	6.81 6.82	6.8	86.9 87.0	87.0	24.9 24.7	24.8	7.40 7.40	7.4	14 15	14.5

Date	8-Jun-19	-			_	•	-	•	•	-		-	•	-
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbio	dity (NTU)	p	Н	SS(mg/L)
WM2A-C	13:35	0.30	26.7 26.7	26.7	7.46 7.47	7.5	91.4 91.5	91.5	7.4 7.6	7.5	7.40 7.40	7.4	3	3.0
WM2A	13:25	0.15	27 27	27.0	7.01	7.0	84.1 84.2	84.2	18.0 18.3	18.2	7.30 7.30	7.3	10 10	10.0

Date	10-Jun-19	-				•		•	•			-	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbio	lity (NTU)	p	Н	SS(1	mg/L)
WM2A-C	11:40	0.28	25.7 25.7	25.7	7.47 7.46	7.5	91.5 91.4	91.5	7.2	7.3	7.42 7.42	7.4	3	2.5
WM2A	11:30	0.15	27 27	27.0	6.68 6.68	6.7	83.8 83.8	83.8	18.2 18.5	18.4	7.32 7.32	7.3	8 9	8.5

Date	12-Jun-19	•				•		•	•			•		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbio	dity (NTU)	p	Н	SS(1	mg/L)
WM2A-C	11:50	0.28	24.3 24.3	24.3	7.98 7.97	8.0	95.3 95.2	95.3	2.8 2.7	2.7	7.61 7.61	7.6	2 2	2.0
WM2A	11:25	0.13	25.1 25.1	25.1	7.93 7.92	7.9	96.2 96.1	96.2	18.2 18.3	18.3	7.58 7.58	7.6	11 12	11.5

Date	14-Jun-19	•				•			•			•		
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbio	dity (NTU)	p	Н	SS(1	mg/L)
WM2A-C	11:25	0.30	26.8	26.8	7.35	7.2	92.1	92.0	10.1	10.3	6.80	6.9	6	5.0
W MZA-C	11.23	0.30	26.8	20.8	7.34	7.3	91.9	92.0	10.4	10.3	6.80	6.8	4	5.0
11/1 / 2 A	11.10	0.15	26.8	26.0	7.46	7.5	93.3	02.4	23.9	24.1	6.40	6.4	12	12.0
WM2A	11:10	0.15	26.8	26.8	7.47	7.5	93.5	93.4	24.2	24.1	6.40	6.4	12	12.0

Data	17-Jun-19	•					-		-				· · · · · · · · · · · · · · · · · · ·	
Date Location	Time	Depth (m)	Temr	o (oC)	DO (mg/L)	DO	(%)	Turbid	lity (NTU)	pl	П	\$50	mg/L)
WM2A-C	12:15	0.25	24.7 24.7	24.7	8 7.99	8.0	96.3 96.1	96.2	5.7	5.7	7.71 7.71	7.7	<2 2	2.0
WM2A	11:40	0.15	25.5 25.5	25.5	7.3 7.31	7.3	89.1 89.0	89.1	18.8	18.9	7.70	7.7	12	11.0
<u>. </u>		Ţ	20.0	Ļ	7.51	<u></u>	02.0		10.9		7.70	•	10 [
Date	19-Jun-19													
Location	Time	Depth (m)	Temp	o (oC)	DO (1	mg/L)	DO	(%)	Turbid	lity (NTU)	p]	Н	SS(1	mg/L)
WM2A-C	11:40	0.30	25 25	25.0	7.79 7.78	7.8	94.4 94.3	94.4	5.9 6.0	6.0	7.60 7.60	7.6	3 3	3.0
WM2A	11:20	0.14	25.7 25.7	25.7	7.77	7.7	95.0 94.2	94.6	16.9 17.2	17.1	7.54 7.54	7.5	9	9.5
Date	21-Jun-19	-			-	<u>.</u>	.	<u> </u>						
Location	Time	Depth (m)	Temp) (oC)	DO (mg/L)	DO	(%)	Turbid	lity (NTU)	pl	Н	\$\$(1	mg/L)
WM2A-C	11:25	0.26	25.6 25.6	25.6	7.48 7.46	7.5	91.5 91.2	91.4	7.8	7.8	7.80 7.80	7.8	5 4	4.5
WM2A	11:10	0.13	26.1 26.1	26.1	7.45	7.4	92.0 91.7	91.9	24.0	24.3	7.67	7.7	14	14.0
Date	24-Jun-19			-	-	•		•						
Location	Time	Depth (m)		(oC)		mg/L)		(%)		ity (NTU)	p]	Η		mg/L)
WM2A-C	11:50	0.30	28.3 28.3	28.3	6.68	6.7	85.9 86.9	86.4	8.9 9.4	9.1	6.70	6.7	2 2	2.0
WM2A	11:30	0.13	28.9 28.9	28.9	7.43 7.46	7.4	96.2 96.7	96.5	24.9	24.7	6.50 6.50	6.5	8	8.0
Date	26-Jun-19	-			-									
Location	Time	Depth (m)	Temr	o (oC)	DO (mg/L)	DO	(%)	Turbid	lity (NTU)	pl	Н	SS(mg/L)
WM2A-C	11:45	0.30	23.7 23.7	23.7	8.75 8.74	8.7	104.2 104.1	104.2	25.0 26.3	25.7	7.00	7.0	18 17	17.5
WM2A	11:30	0.15	25.2 25.2	25.2	8.05 8.08	8.1	98.0 98.2	98.1	177.0 181.0	179.0	7.00	7.0	142	145.0
			23.2		0.00		70.2		101.0		7.00		170	
Date	27-Jun-19#	<u> </u>					г				<u>-</u>		<u>, </u>	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)		lity (NTU)	pl	Н		mg/L)
WM2A-C	13:50	0.25							19.3 18.9	19.1			16 16	16.0
WM2A	13:30	0.15							21.3	20.8			15 15	15.0

Date	28-Jun-19	-	•			•	-	•	•			-	•	
Location	Time	Depth (m)	Temp	o (oC)	DO (1	ng/L)	DO	(%)	Turbi	dity (NTU)	p	Н	SS(mg/L)
WM2A-C	11:55	0.25	26	26.0	8	8.0	99.4	99.5	15.9	16.1	6.20	6.2	8	8.5
WWIZA-C	11.55	0.23	26	20.0	8.02	8.0	99.5	99.3	16.3	10.1	6.20	6.2	9	6.5
3373 42 A	11.20	0.15	27.9	27.9	6.77	(9	86.9	97.0	24.2	24.4	6.10	(1	11	10.5
WM2A	11:30	0.15	27.9	27.9	6.78	6.8	87.0	87.0	24.5	24.4	6.10	6.1	10	10.5

Remarks: ** Additional water quality monitoring for the parameters with Action/Limit Level exceedance triggered only.

Action Level
Limit Level

Water Quality Monitoring Data for Contract 2 and 6

Date	3-Jun-19	•			_	•			•	-		•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidit	ty (NTU)	p	Н	SS(mg/L)
WW. 12 -	14.15	0.15	26.1	26.1	6.46	(5	79.7	70.7	25.6	26.6	7.3	7.2	14	140
WM3-c	14:15	0.15	26.1	26.1	6.44	0.3	79.6	79.7	27.5	26.6	7.3	7.3	14	14.0
WM3	14:25	0.20	25.7	25.7	6.58	6.6	80.7	81.0	7.9	8.0	7.3	7.2	7	7.0
VV IVI.3	14.23	0.20	25.7	23.7	6.6	0.6	81.2	01.0	8.1	0.0	7.3	7.3	7	7.0

Date	5-Jun-19	•							•	-	•	•	•	•
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(mg/L)
WM2 -	12.20	0.12	27.6	27.6	5.81	<i>5</i> 0	73.7	72.0	8.4	0 0	7.4	7.4	2	2.5
WM3-c	13:20	0.13	27.6	27.6	5.82	5.8	73.8	73.8	9.1	8.8	7.4	7.4	3	2.3
W/M2	13:40	0.18	28.1	28.1	6.1	6.1	84.2	84.4	6.0	6.1	7.4	7.4	4	4.0
WM3	13.40	0.18	28.1	26.1	6.17	6.1	84.6	04.4	6.2	0.1	7.4	7.4	4	4.0

Date	8-Jun-19	•	-				•	5	•	-	-	•	•	•
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(mg/L)
WM3-c	14:00	0.12	27.6	27.6	6	6.0	75.7	75.8	4.8	4.7	7.5	7.5	<2	-2
W W13-C	14.00	0.13	27.6	27.6	6.01	6.0	75.8	73.8	4.6	4./	7.5	7.3	<2	<u>\</u> 2
WM3	14:05	0.20	27.2	27.2	7.23	7.2	91.0	01.1	3.6	2.6	7.7	77	10	10.5
W WIS	14.03	0.20	27.2	21.2	7.24	1.2	91.1	91.1	3.6	3.6	7.7	7.7	11	10.5

Date	10-Jun-19	•			_	•	•	5	•	•	5	•		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	p	H	SS (1	mg/L)
WM3-c	14:20	0.12	27.5	27.5	5.96	5.0	75.5	75.3	4.7	4.7	7.51	7.5	3	2.0
W W13-C	14:20	0.13	27.5	27.3	5.92	3.9	75.0	13.3	4.6	4./	7.51	1.5	3	3.0
WM3	14:25	0.18	27.2	27.2	7.24	7.2	91.1	91.1	3.0	2.1	7.7	77	4	4.0
W IVI 5	14.23	0.18	27.2	21.2	7.22	1.2	91.0	91.1	3.2	3.1	7.7	7.7	4	4.0

Date	12-Jun-19	•	-						•	•	-	•	•	
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	p	H	SS(mg/L)
WM3-c	12.15	0.10	25.5	25.5	6.99	7.0	85.4	85.3	5.9	5.0	7.45	7.5	3	2.0
W W15-C	12:15	0.10	25.5	23.3	6.97	7.0	85.1	83.3	5.9	3.9	7.45	7.3	3	3.0
WM3	12:25	0.20	25.2	25.2	7.15	7.1	86.8	86.5	5.7	5.7	7.6	7.6	7	7.5
W IVI3	12.23	0.20	25.2	23.2	7.1	7.1	86.2	80.3	5.8	3.7	7.6	7.6	8	7.3

Date	14-Jun-19	•	-		_	•	•		•	-	•	•	-	
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	p	Н	SS(mg/L)
WM3-c	11:40	0.15	27.6	27.6	7.28	7.2	92.2	92.1	11.1	11.1	6.8	6.8	5	5.0
W W15-C	11.40	0.13	27.6	27.0	7.26	7.3	91.9	92.1	11.1	11.1	6.8	0.8	5	5.0
WM3	11:50	0.20	28.2	28.2	6.94	6.9	88.9	89.0	11.8	11.0	6.7	67	9	0.5
W IVI3	11.30	0.20	28.2	20.2	6.91	0.9	89.1	89.0	12.0	11.9	6.7	6.7	8	8.5

Date	17-Jun-19	•				•	•		•	-	-	•		
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	Н	SS(1	ng/L)
WM3-c	13:35	0.14	25.8	25.8	5.64	5.6	69.3	69.3	5.7	5.8	7.45	7.5	2	2.5
W W13-C	13.33	0.14	25.8	23.8	5.63	5.6	69.2	09.3	5.9	3.6	7.45	7.3	3	2.3
117.42	12.50	0.20	25.7	25.7	7.44	7.4	91.2	01.1	1.7	1.7	7.72	7.7	<2	-2
WM3	13:50	0.20	25.7	25.7	7.43	7.4	91.0	91.1	1.7	1./	7.72	1.7	<2	<2

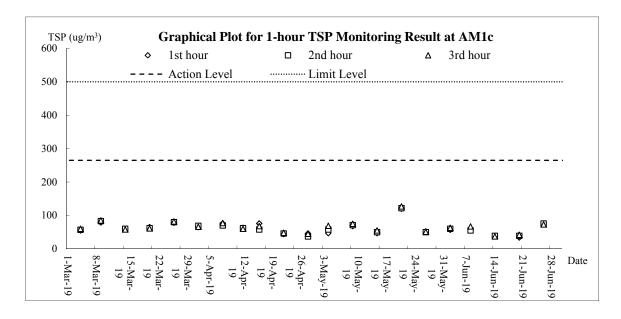
Date	19-Jun-19	•					•		•	•	5	•		
Location	Time	Depth (m)	Temp	(oC)	DO (1	ng/L)	DO	(%)	Turbidi	ty (NTU)	р	H	SS(1	mg/L)
WM2 -	11.55	0.14	27.2	27.2	6.18	()	77.8	77.5	6.0	(1	7.46	7.5	3	2.0
WM3-c	11:55	0.14	27.2	21.2	6.13	0.2	77.1	11.3	6.2	6.1	7.46	7.3	3	3.0
W/M2	12.05	0.20	26.7	26.7	7.31	7.2	90.8	00.7	6.0	6.0	7.86	7.9	6	6.5
WM3	12:05	0.20	26.7	20.7	7.29	7.3	90.5	90.7	6.0	6.0	7.86	7.9	7	6.5

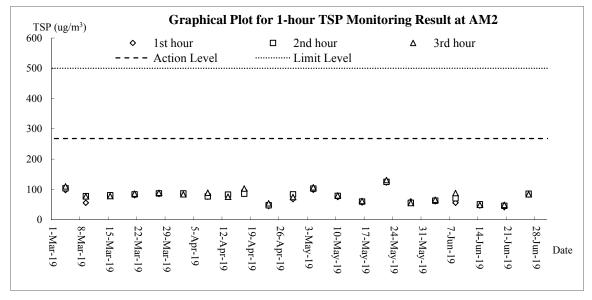
Date	21-Jun-19	•				•				-	5	•		
Location	Time	Depth (m)	Temp	(oC)	DO (1	mg/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(1	mg/L)
WM2 -	14.15	0.12	27.8	27.0	5.04	5.0	64.1	63.9	5.7	5.7	7.61	7.6	2	2.0
WM3-c	14:15	0.13	27.8	27.8	5	5.0	63.7	03.9	5.7	3.7	7.61	7.6	2	2.0
WM2	14:25	0.20	28.1	28.1	7.43	7.4	93.9	02.0	4.0	3.0	7.77	7.8	4	1.5
WM3	14:25	0.20	28.1	20.1	7.42	7.4	93.8	93.9	3.9	3.9	7.77	7.8	5	4.5

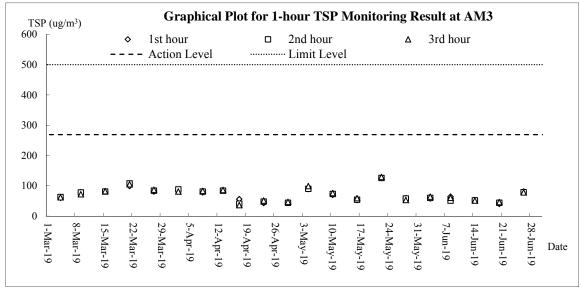
Date	24-Jun-19	•	-									•		
Location	Time	Depth (m)	Temp	(oC)	DO (r	ng/L)	DO	(%)	Turbidit	y (NTU)	р	H	SS(1	mg/L)
WM2 -	12.20	0.14	27.5	27.5	4.47	1 5	56.6	42.0	7.4	7.6	6.7	67	<2	2.0
WM3-c	13:30	0.14	27.5	27.5	.5 4.53	4.5	27.3	42.0	7.8	7.6	6.7	0.7	2	2.0
WM2	13:40	0 0.20	28.4		7.43	7.4	94.7	94.8	13.2	13.2	6.8	6.0	12	12.5
WM3			28.4	20.4	7.44	7.4	94.8		13.1		6.8	0.8	13	12.3

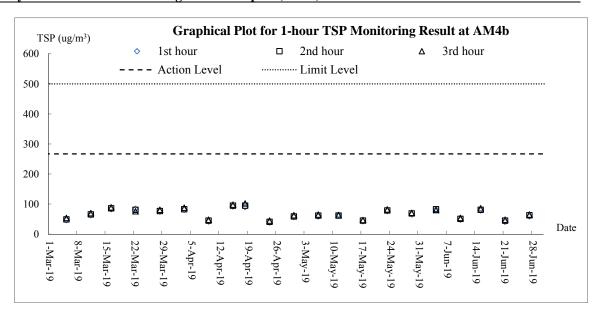
Date	26-Jun-19	•	-			•	•	5	•	•	5	•	-	•
Location	Time	Depth (m)	Temp	Temp (oC)		DO (mg/L)		DO (%)		Turbidity (NTU)		pН		mg/L)
WM3-c	13:20	0.15	24.9	24.9	7.55	7.6	91.1	01.3	72.7	72.1	6.9	6.9	66	66.5
W W13-C	13.20	0.13	24.9	24.9	7.59	7.0	91.5	91.3	73.5	/3.1	6.9	0.9	67	66.5
WM2	12.40	0.20	25.2	25.2	7.85	7.0	94.1	04.0	15.5	16.0	6.8	(0	11	10.5
WM3	13:40	0.20	25.2	25.2	7.84	93.9	94.0	16.5	16.0	6.8	6.8	10	10.5	

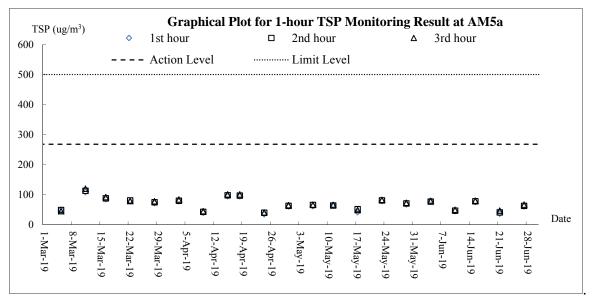
Date	28-Jun-19													
Location	Time	Depth (m)	Temp	(oC)	DO (ı	ng/L)	DO	(%)	Turbidit	ty (NTU)	р	H	SS(mg/L)
WM3-c	12.20	0.13	25.9	25.9	5.74	5.6	71.1	70.5	10.4	10.5	6.5	6.5	2	2.0
W W15-C	13:30	0.13	25.9	23.9	5.55	3.6	69.8	70.3	10.6	10.5	6.5	6.5	2	2.0
WM3	13:40	0.20	26.1	26.1	7.1	7.1	89.0	89.1	7.0	7.2	6.4	6.1	4	4.0
W IVI3	13.40	0.20	26.1	20.1	7.11	/.1	89.1	09.1	7.5	7.3	6.4	6.4	4	4.0

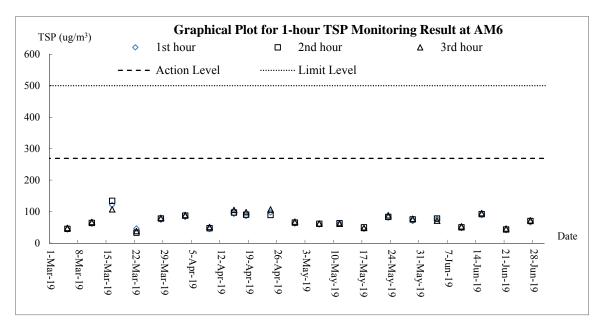


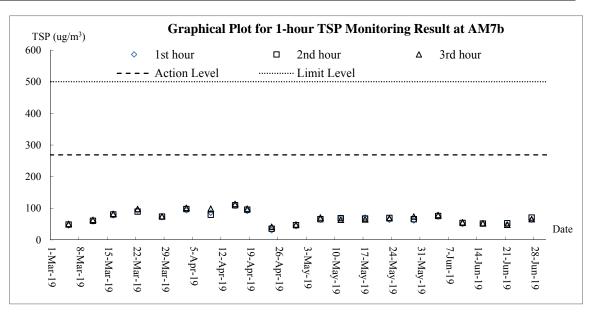

Appendix J

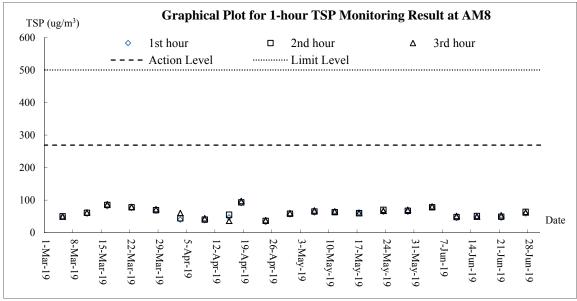

Graphical Plots for Monitoring Result

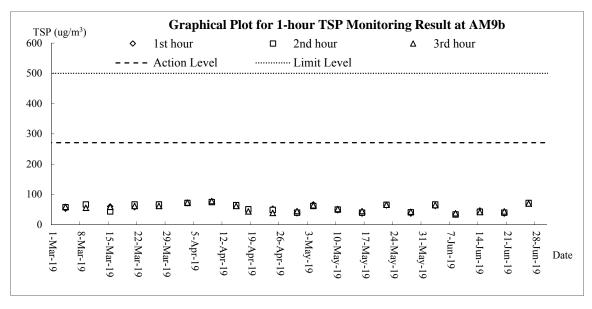

Air Quality - 1-hour TSP

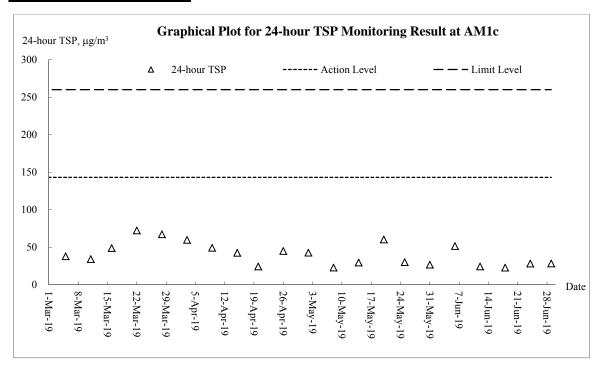


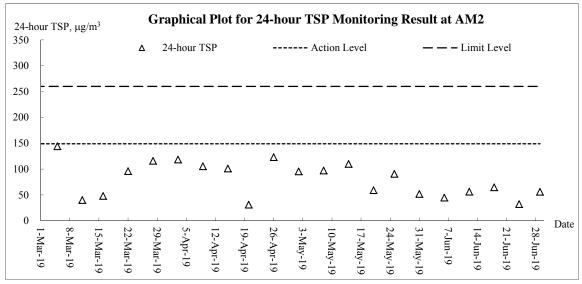


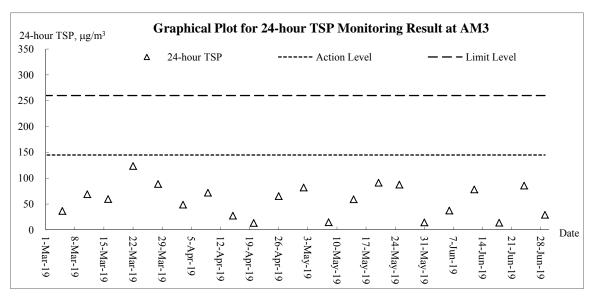


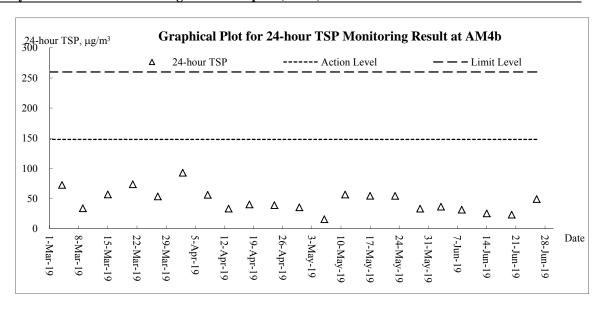


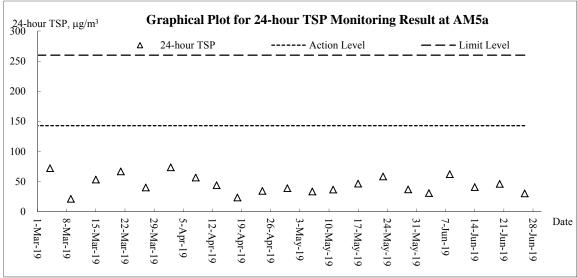


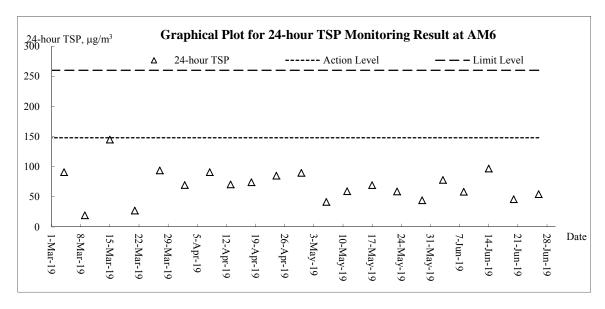


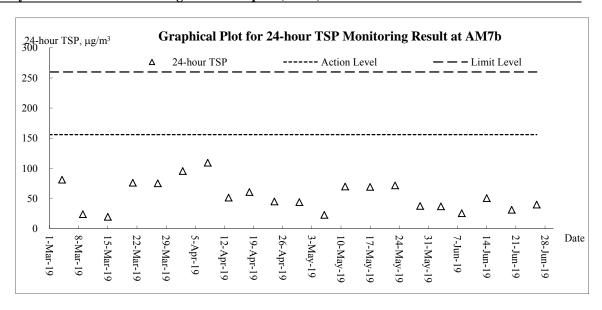


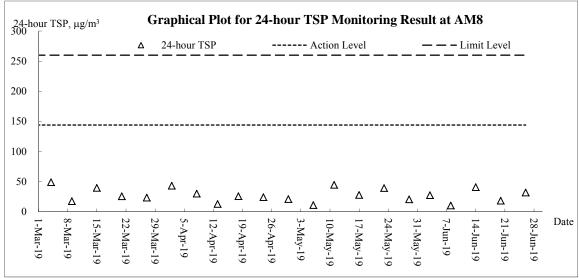


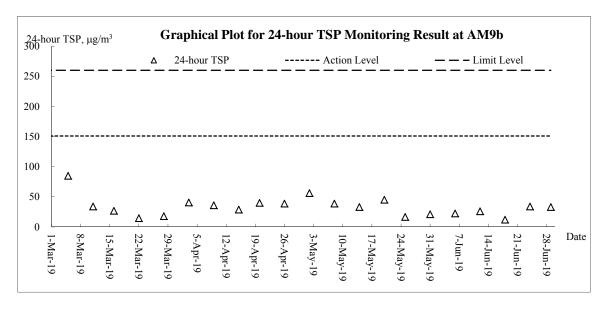

Air Quality - 24-hour TSP

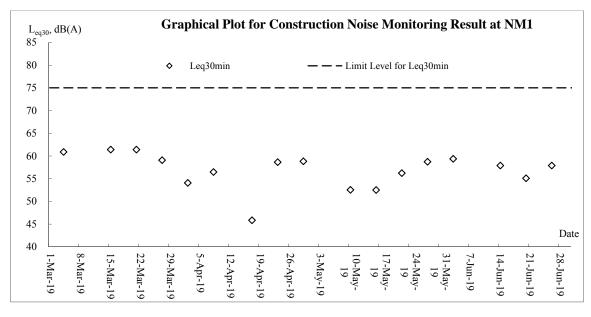


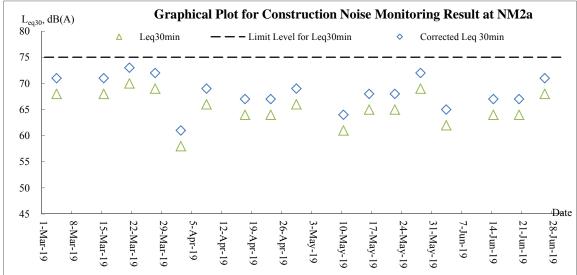


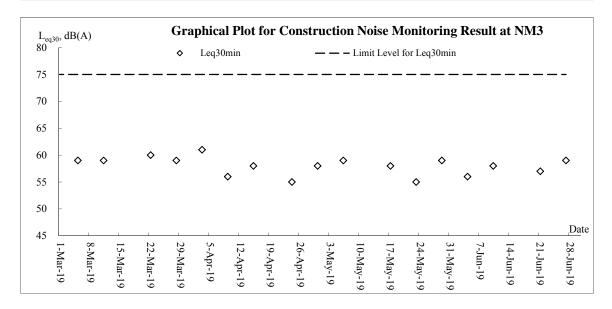


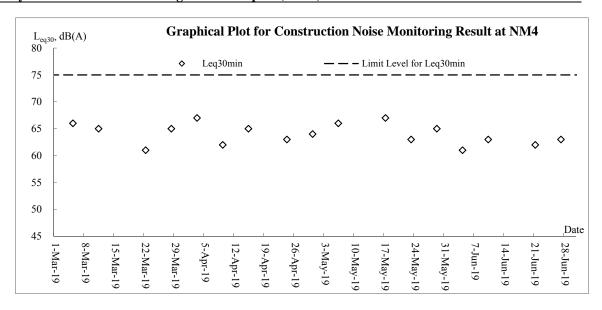


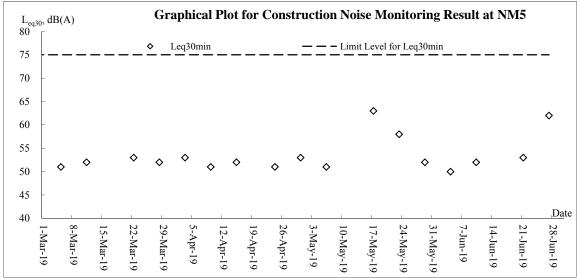


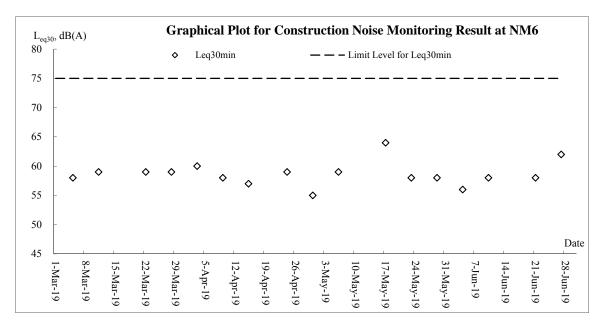


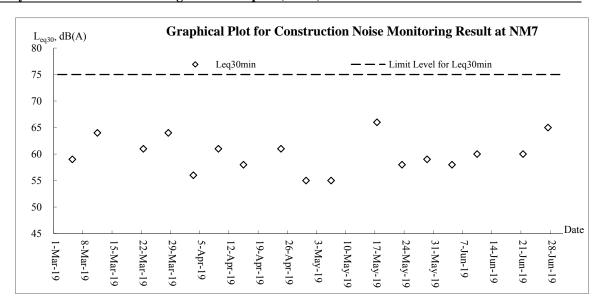


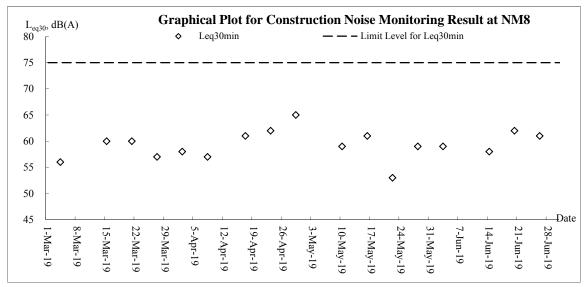


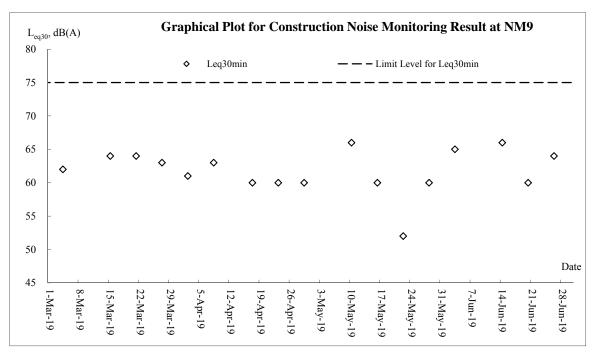

Noise

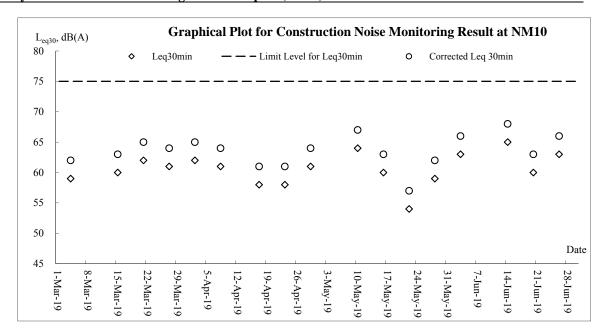


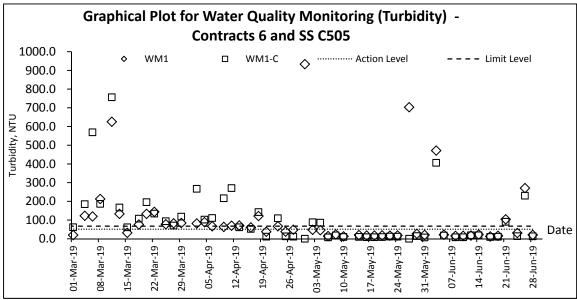


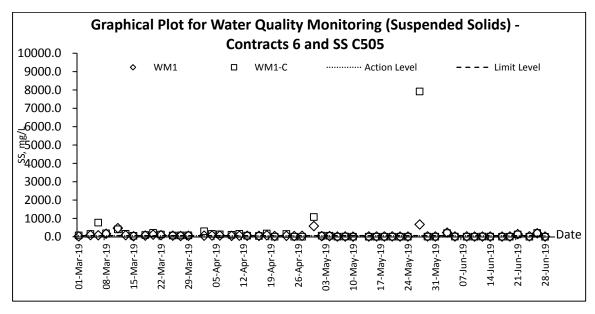


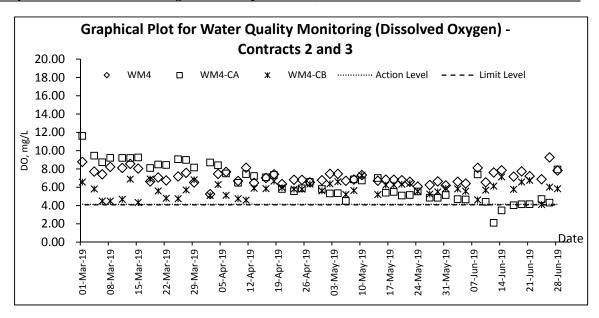


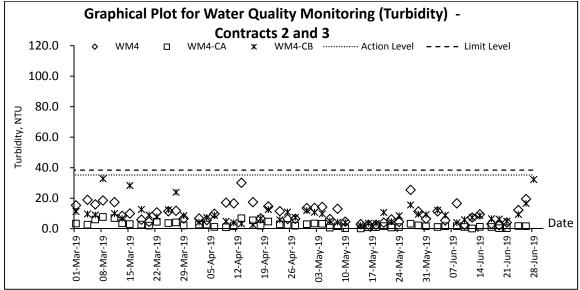


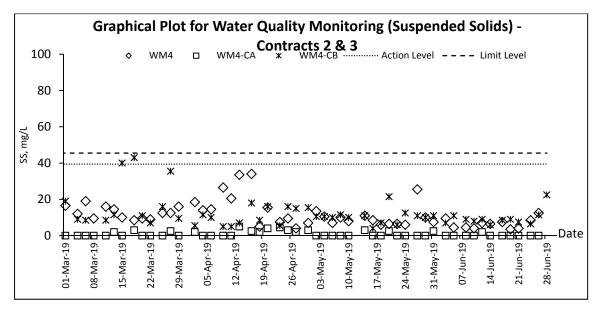


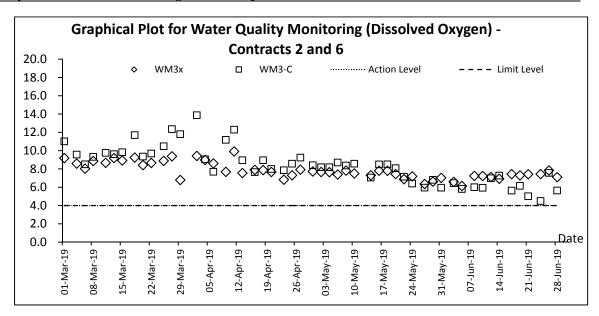


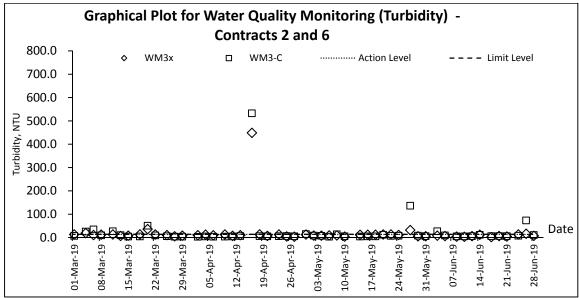


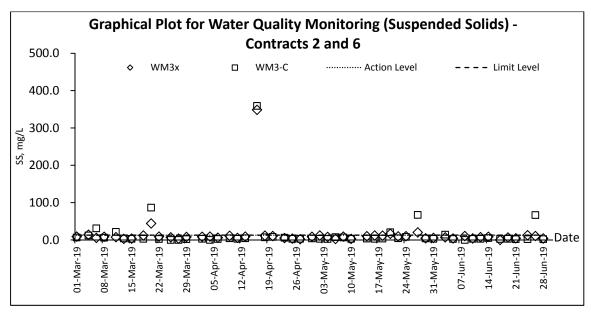

Water Quality

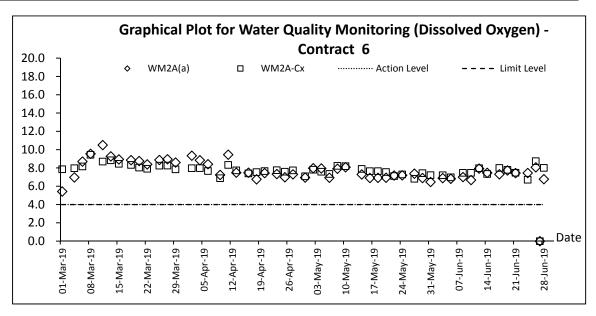


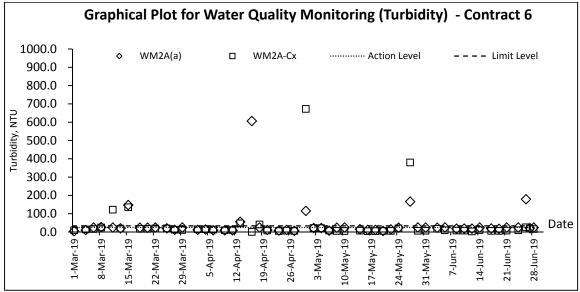


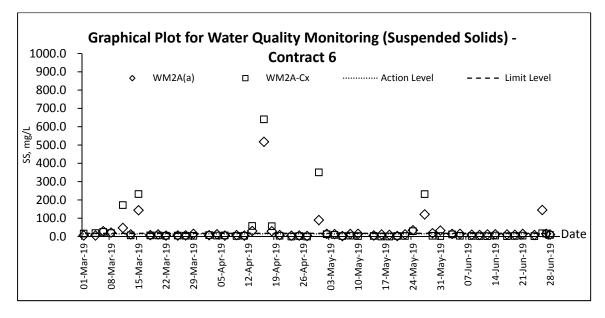












Appendix K

Meteorological Data

				Ta Kwu Ling Station						
Date		Weather	Total Rainfall (mm)	Mean Air Temp. (°C)	Wind Speed (km/h)	Mean Relative Humidity (%)	Wind Direction			
1-Jun-19	Sat	Mainly cloudy with a few showers.	32.6	27.8	10.5	79.2	SW			
2-Jun-19	Sun	Moderate south to southwesterly winds, occasionally fresh offshore at first.	3	28.4	9.2	80.5	SW			
3-Jun-19	Mon	More showers with isolated thunderstorms	34.1	27.6	7.5	83.5	S/SW			
4-Jun-19	Tue	Hot with sunny intervals and isolated thunderstorms	38.1	28.5	7.8	83.7	W/SW			
5-Jun-19	Wed	Mainly cloudy with isolated showers. Sunny periods tomorrow.	0	29.5	9.2	77.5	E/SE			
6-Jun-19	Thu	Mainly cloudy with a few showers.	Trace	29.2	8.2	77.5	S/SW			
7-Jun-19	Fri	Moderate south to southwesterly winds, occasionally fresh offshore at first.	0	29.5	10.5	79	S/SW			
8-Jun-19	Sat	Hot with sunny intervals and isolated thunderstorms	1.1	29.3	11.2	72.5	S/SW			
9-Jun-19	Sun	Hot with sunny intervals and isolated thunderstorms	4.1	29.7	13	71.5	S/SW			
10-Jun-19	Mon	Cloudy with showers and squally thunderstorms.	3.3	28.2	10.1	80	S/SW			
11-Jun-19	Tue	Cloudy with showers and occasional squally thunderstorms.	111.6	26.6	9.1	92.5	Е			
12-Jun-19	Wed	Mainly cloudy with occasional showers and a few thunderstorms.	1.5	26	8	89.5	Е			
13-Jun-19	Thu	Mainly cloudy with showers and squally thunderstorms.	55.8	27.9	9.7	88.7	E/SE			
14-Jun-19	Fri	Hot with sunny intervals and isolated thunderstorms	16.5	28.4	6.5	75.5	N			
15-Jun-19	Sat	There will be isolated thunderstorms later.	Trace	26.9	10.2	77.2	Е			
16-Jun-19	Sun	Moderate east to southeasterly winds	0	28	14.4	73.5	Е			
17-Jun-19	Mon	Mainly cloudy with a few showers.	4.7	28.1	11.5	84.5	Е			
18-Jun-19	Tue	Mainly cloudy with a few showers. Hot with sunny periods tomorrow	11.1	29.2	7.8	82.5	E/SE			
19-Jun-19	Wed	Hot with sunny periods and a few showers.	14	29.1	5.5	83	E/SE			
20-Jun-19	Thu	Mainly fine apart from isolated showers. Very hot in the afternoon.	0.5	29.6	7.6	80	S/SW			
21-Jun-19	Fri	Very hot during the day with a maximum temperature	0.7	Maintenan ce	8.2	Maintenan ce	S/SW			
22-Jun-19	Sat	Hot with sunny periods and a few showers.	0.7	30.4	8	77.7	SW			
23-Jun-19	Sun	Mainly fine apart from isolated showers. Very hot in the afternoon.	3.2	30	7	79.2	SW			
24-Jun-19	Mon	Cloudy with showers and a few squally thunderstorms.	16.8	27.6	7	82.7	S/SW			
25-Jun-19	Tue	Sunny periods and one or two showers	35.4	26.9	5.5	86.5	E/SE			
26-Jun-19	Wed	Mainly cloudy tonight. Light to moderate southerly winds. Outlook:	0.9	28.5	5	88	E/SE			
27-Jun-19	Thu	Very hot with isolated thunderstorms in the afternoon.	3.5	29.2	6.4	82.5	E/SE			
28-Jun-19	Fri	Very hot with sunny periods in the afternoon.	2.2	29.3	6.1	83.5	E/SE			
29-Jun-19	Sat	Mainly cloudy with a few showers.	0.6	29.7	7.2	81.5	E/SE			
30-Jun-19	Sun	Mainly cloudy with showers and squally thunderstorms.	33.1	30.1	8.1	79.5	E/SE			

Appendix L

Waste Flow Table

Contract No. CV/2012/08
Liantang/ Heung Yuen Wai Boundary Control Point Site Formation and Infrastructure Works – Contract 2

Name of Department :	CEDD	Contract No./ Work Order No. :	CV/2012/08

Appendix G - Monthly Summary Waste Flow Table for 2019

(All quantities shall be rounded off to 3 decimal places)

Month		Actual Quantities	of Inert C&D Mater	ials Generated / Impo	orted (in '000 m3)			Actual Quantities of	Other C&D Material	s / Wastes Generated	
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	General Refuse (in '000 m3)
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in kg)	(in '000kg)	(in '000m3)
January	8.1000	0.0000	0.0000	1.5360	6.5640	0.0000	0.0000	0.0000	0.0000	9.4000	0.3000
February	1.5710	0.0000	0.0000	0.2000	1.3710	0.0000	0.0000	0.0000	0.0000	0.0000	0.1060
March	0.9600	0.0000	0.0000	0.0000	0.9600	0.0000	0.0000	0.0000	0.0000	0.0000	0.0620
April	1.4100	0.0000	0.0000	0.0000	1.4100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1247
May	0.9960	0.0000	0.0000	0.0000	0.9960	0.0000	0.0000	0.0000	0.0000	0.0000	0.1390
June	0.3100	0.0000	0.0000	0.0000	0.3100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0535
Half-year total	13.3470	0.0000	0.0000	1.7360	11.6110	0.0000	0.0000	0.0000	0.0000	9.4000	0.7852
July	0.0000										
August	0.0000										
September	0.0000										
October	0.0000										
November	0.0000										
December	0.0000										
Yearly Total	13.3470	0.0000	0.0000	1.7360	11.6110	0.0000	0.0000	0.0000	0.0000	9.4000	0.7852

Year		Actual Quantitie	s of Inert C&D Mater	ials Generated / Impo	rted (in '000 m3)		Actual Quantities of Other C&D Materials / Wastes Generated					
	Total Quantities Generated	Broken Concrete (including rock for recycling into aggregates)	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported C&D Material	Metal	Paper/ Cardboard Packaging	Plastic (Recycled)	Chemical Waste	General Refuse (in '000 m3)	
	[a+b+c+d)	(a)	(b)	(c)	(d)		(in '000kg)	(in '000kg)	(in kg)	(in '000kg)	(in '000m3)	
2013	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	220.6270	0.0000	0.0000	0.0000	0.0000	
2014	425.4406	0.0000	2.7362	376.3945	46.3099	5.6245	3.2100	0.4390	0.0070	10.8800	2.2609	
2015	570.9459	0.0000	20.8159	543.2162	6.9138	4.5492	37.6310	3.9220	11.9700	16.1920	1.1696	
2016	905.0989	0.0000	7.4372	427.7834	469.8783	24.8350	430.5200	3.8500	18.7262	34.2936	1.9720	
2017	741.9482	0.0000	8.0385	175.6792	558.2305	78.3865	1681.8000	4.0700	30.5175	48.7906	5.9610	
2018	268.1000	0.0000	0.0000	31.3490	236.7584	13.0110	326.0200	3.0570	27.0700	100.8100	7.1200	
2019	13.3470	0.0000	0.0000	1.7360	11.6110	0.0000	0.0000	0.0000	0.0000	9.4000	0.7852	
Total	2924.8806	0.0000	39.0278	1556.1584	1329.7019	126.4062	2699.8080	15.3380	88.2907	220.3662	19.2687	

Remark:

Density of C&D material to be
 Density of General Refuse to be

metric ton/m3
metric ton/m3

2.2

1.6

3) Density of Spent Oil to be

0.88 metric ton/m3

(All quantities rounded off to 3 decimal places)

Name of Department: CEDD Contract No.: CV/2012/09

Monthly Summary Waste Flow Table for 2019 (year)

	Actua	 Quantities	of Inert C&D	Materials G	enerated Mo	onthly	Actual	Quantities o	f C&D Wastes	Generated	Monthly
Month	Total	Hard Rock and Large	Reused in	Reused in	Disposed	lautad		Paper/		Chamian.	Others, e.g.
	Quantity	Broken	the	other	as Public	Imported	Motolo	cardboard	Diagrica	Chemical	general
	Generated 3	Concrete	Contract	Projects 3	Fill "	Fill "	Metals	packaging	Plastics	Waste	refuse
	(in '000m°)	(in '000m ³)	(in '000m°)	(in '000m°)	(in '000m ³)	(in m³)	(in '000m³)				
Jan	2.937	0.927	0.000	0.000	2.010	0.997	0.000	0.000	0.000	0.000	0.145
Feb	4.659	0.841	0.000	0.000	3.818	0.030	0.000	0.000	0.000	0.000	0.075
Mar	5.146	0.376	0.000	0.000	4.770	0.000	0.000	0.000	0.000	0.000	0.075
Apr	0.787	0.138	0.006	0.000	0.644	0.000	0.000	0.000	0.000	0.000	0.145
May	4.291	0.414	0.000	0.000	3.877	0.000	0.000	0.000	0.000	0.000	0.180
Jun	1.345	0.000	0.000	0.000	1.345	0.301	0.000	0.000	0.000	0.000	0.115
Sub-total	19.166	2.696	0.006	0.000	16.464	1.328	0.000	0.000	0.000	0.000	0.735
Jul											
Aug											
Sep											
Oct											
Nov											
Dec											
Total	19.166	2.696	0.006	0.000	16.464	1.328	0.000	0.000	0.000	0.000	0.735

Note:

- 1. Assume the density of soil fill is 2 ton/m³.
- 2. Assume the density of rock and broken concrete is 2.5 ton/m³.
- 3. Assume each truck of C&D wastes is 5m³.
- 4. The inert C&D materials except slurry and bentonite are disposed at Tuen Mun 38.
- 5. The slurry and bentonite are disposed at Tseung Kwun O 137.
- 6. The non-inert C&D wastes are disposed at NENT.
- 7. Assume the density of metal is 7,850 kg/m³.
- 8. Assume the density of plastic is 941 kg/m³.
- 9. Assume the density of paper is 800 kg/m³.

Name of Department: CEDD Contract No.: NE/2014/02

Monthly Summary Waste Flow Table for 2016- 2019

		Actu	al Quantities of Inert C&I	Materials Generated N	Monthly			Actual Quanti	ties of C&D Wastes Gen	erated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.049	0.000	0.000	0.030
Jan-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.035	0.000	0.000
Apr-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
May-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun-19	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jul-19											
Aug-19											
Sep-19											
Oct-19											
Nov-19				-							
Dec-19											
Total	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.049	0.035	0.000	0.030

	Forecast of Tot	al Quantities of C&D Ma	terials to be Generated fr	om the Contract*						
Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
0.500	0.000	0.000	0.000	0.500	0.000	0.500	0.200	0.000	0.000	0.200

Notes:

- (1) The performance targets are given in PS Clause 1.84(14).
- (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Sites.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.
- (4) Estimate 6m3 capacity per dump truck

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Name of Person completing the record: K.M. Lui (EO)

Project : Li	angtang / Heung	Yuen Wai Bou	ndary Control l	Point Site Form	ructure Works –	orks – Contract 6 Contract No.: CV/2013/08			2013/08		
		Actual Quantit	ies of Inert C&	D Materials Ger	nerated Monthly		Ac	tual Quantities	of C&D Waste	s Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 m ³)
Jan	25.725	0	0	0.385	16.126	9.214	0	0.233	0	0	0.521
Feb	17.959	0	0	0.280	11.168	6.511	0	0	0	0	0.278
Mar	11.076	0	0	0.842	10.234	0	0	0.339	0	0	0.580
Apr	7.2850	0	0	0.689	6.596	0	0	0.463	0	0	0.389
May	4.0900	0	0	0.009	4.081	0	0	0	0	0	0.468
Jun	1.1760	0	0	0.315	0.861	0	0	0.270	0	0	0.307
Sub-total	67.311	0.000	0.000	2.520	49.066	15.725	0.000	1.305	0.000	0.000	2.543
Jul		0	0	0	0	0	0	0	0	0	0
Aug		0	0	0	0	0	0	0	0	0	0
Sep		0	0	0	0	0	0	0	0	0	0
Oct		0	0	0	0	0	0	0	0	0	0
Nov		0	0	0	0	0	0	0	0	0	0
Dec		0	0	0	0	0	0	0	0	0	0
Total	1103.920	0.000	166.627	286.273	635.297	111.037	0.000	12.446	0.007	34.045	21.393

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging materials.
- (3) Broken concrete for recycling into aggregates.

MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.:

NE/2014/03

Name of Departn	nent: CEDD			2788.6
				1394
Contract Title	Liantang/ Heung Yuen Wai Boundary Control Point	Contract No.	NIE/2014/02	

Contract Title:

Site Formation and Infrastructure Works – Contract 7

Monthly Summary Waste Flow Table for 2019 (year)

		Actual Quan	tities of Inert C&I	Materials General	ted Monthly		Act	ual Quantities of No	on-Inert C&D Was	stes Generated Mor	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastic (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000m3)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m3)
Jan	1.919	0.95	0	0	1.919	0	6.7	0.1	0.001	0	0.1
Feb	2.035	1.386	0	1.386	0.649	0	1.2	0.1	0.001	0	0.1
Mar	0.591	0.282	0	0.282	0.309	0	4.7	0.1	0.001	0	0.1
Apr	1.729	0.335	0	0.335	1.394	0	7.1	0.1	0.001	0	0.3
May	2.076	0	0	0	2.076	0	0.4	0.1	0.001	0	0.1
June	0.845	0	0	0	0.845	0	0.1	0.1	0.001	0	0.1
Sub-total	9.195	2.953	0	2.003	7.192	0	20.2	0.6	0.006	0	0.8
July											
Aug											
Sept											
Oct											
Nov											
Dec											
Total	9.195	2.953	0	2.003	7.192	0	20.2	0.6	0.006	0	0.800

Notes: (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

⁽²⁾ Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

A	rchitecti	ıral Se	rvices D	Department	
	ıcınıcı	ui ai sc	I VICES D	thai until	

Form No. D/OI.03/09.002

Contract No. / Works Order No.: - SSC505

Monthly Summary Waste Flow Table for 2019 [year] [to be submitted not later than the 15th day of each month following reporting month]

(All quantities shall be rounded off to 3 decimal places.)

	Actual Quantities of Inert Construction Waste Generated Monthly											
Month	(a)=(b)+(c)+(d)+(e) Total Quantity Generated	(b) Broken Concrete (see Note 4)	(c) Reused in the Contract	(d) Reused in other Projects	(e) Disposed of as Public Fill							
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)							
Jan	4.815	1.963	0.160	0.000	2.691							
Feb	4.609	0.598	0.150	0.000	3.861							
Mar	4.233	0.300	0.026	0.000	3.907							
Apr	2.852	0.141	0.013	0.000	2.698							
May	3.936	0.120	0.013	0.000	3.803							
Jun	1.605	0.065	0.000	0.000	1.541							
Sub-total	22.049	3.188	0.362	0.000	18.499							
Jul												
Aug												
Sep												
Oct												
Nov												
Dec	_											
Total	22.049	3.188	0.362	0.000	18.499							

Architectural Services Department

Form No. D/OI.03/09.002

					Actual Qua	ntities of Nor	-inert Constr	uction Waste	Generated M	onthly			
Month	Tim	lber	Me	tals	Paper/ ca packa		Plas (see N		Chemica	al Waste		ecyclable see Page 3)	General Refuse disposed of at Landfill
	(in '0	00kg)	(in '0	00kg)	(in '00	00kg)	(in '0	00kg)	(in '0	00kg)	(in '0	00kg)	(in '000m ³)
	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated	recycled	generated
Jan	0.000	0.000	238.550	238.550	0.290	0.290	0.950	0.950	0.000	0.000	0.000	0.000	1.417
Feb	1.510	1.510	0.000	0.000	0.410	0.410	2.660	2.660	0.000	0.000	0.000	0.000	1.157
Mar	1.900	1.900	337.420	337.420	0.360	0.360	1.330	1.330	0.000	0.000	0.000	0.000	1.586
Apr	0.560	0.560	116.170	116.170	0.610	0.610	3.330	3.330	0.000	0.000	0.000	0.000	1.190
May	0.000	0.000	77.277	77.277	0.540	0.540	0.400	0.400	0.000	0.000	0.000	0.000	1.086
Jun	0.000	0.000	234.170	234.170	0.570	0.570	1.580	1.580	0.000	0.000	0.000	0.000	1.664
Sub-total	3.970	3.970	1,003.587	1,003.587	2.780	2.780	10.250	10.250	0.000	0.000	0.000	0.000	8.100
Jul													
Aug													
Sep		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
Oct													
Nov													
Dec													
Total	3.970	3.970	1,003.587	1,003.587	2.780	2.780	10.250	10.250	0.000	0.000	0.000	0.000	8.100

Description of mod	Description of mode and details of recycling if any for the month e.g. XX kg of used timber was sent to YY site for transformation into fertilizers								
129.240 tons of broken concrete were sent to Tailor Recycled Aggregates Ltd. for recycling.	570.0 kg of paper were sent to Lau Choi Kee Papers Co. Ltd. for recycling.	1,580.0 kg of plastic barrier were sent 3R HK International Eco- action Ltd	234.170 ton of scrap metal were sent to Fung Sun Metal Ltd. for recycling.						

Notes:

- (1) The performance targets are given in the Particular Specification on Environmental Management Plan.
- (2) The waste flow table shall also include construction waste that are specified in the Contract to be imported for use at the site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (4) Broken concrete for recycling into aggregates.
- (5) If necessary, use the conversion factor: 1 full load of dumping truck being equivalent to 6.5 m³ by volume.

Architectural Services Department

Form No. D/OI.03/09.002

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract									
Total Quantity Generated	Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed of as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastics	Chemical Waste	General refuse
(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
302.452	14.132	49.216	0.000	179.730	61.373	19,686.892	19.336	20.903	5.000	39.266

Appendix M

Implementation Schedule for Environmental Mitigation Measures

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	illeasure	measure?	achieve?
Air Quali	ty Impact (Construction)					
3.6.1.1	2.1	 General Dust Control Measures The following dust suppression measures should be implemented: Frequent water spraying for active construction areas (4 times per day for active areas in Po Kak Tsai and 8 times per day for all other active areas), including areas with heavy construction and slope cutting activities 80% of stockpile areas should be covered by impervious sheets Speed of trucks within the site should be controlled to about 10 km/hr All haul roads within the site should be paved to avoid dust 	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		emission due to vehicular movement					
3.6.1.2	2.1	Best Practice for Dust Control The relevant best practices for dust control as stipulated in the Air Pollution Control (Construction Dust) Regulation should be adopted to further reduce the construction dust impacts of the Project. These best practices include: Good site management	To minimize adverse dust emission generated from various construction activities of the works sites	Contractor	Construction Works Sites	During Construction	EIA Recommendation and Air Pollution Control (Construction Dust) Regulation
		 The Contractor should maintain high standard of housekeeping to prevent emission of fugitive dust. Loading, unloading, handling and storage of raw materials, wastes or by-products should be carried out in a manner so as to minimize the release of visible dust emission. 					
		 Any piles of materials accumulated on or around the work areas should be cleaned up regularly. Cleaning, repair and maintenance of all plant facilities within the work areas should be carried out in a manner minimizing generation of fugitive dust emissions. 					
		 The material should be handled properly to prevent fugitive dust emission before cleaning. Disturbed Parts of the Roads Each and every main temporary access should be paved with 					

LITVITOTITIC	intai mom	toring and Addit Mandai					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?

concrete, bituminous hardcore materials or metal plates and kept clear of dusty materials; or

 Unpaved parts of the road should be sprayed with water or a dust suppression chemical so as to keep the entire road surface wet.

Exposed Earth

Exposed earth should be properly treated by compaction, hydroseeding, vegetation planting or seating with latex, vinyl, bitumen within six months after the last construction activity on the site or part of the site where the exposed earth lies.

Loading, Unloading or Transfer of Dusty Materials

 All dusty materials should be sprayed with water immediately prior to any loading or transfer operation so as to keep the dusty material wet.

Debris Handlina

- Any debris should be covered entirely by impervious sheeting or stored in a debris collection area sheltered on the top and the three sides.
- Before debris is dumped into a chute, water should be sprayed so that it remains wet when it is dumped.

Transport of Dusty Materials

 Vehicle used for transporting dusty materials/spoils should be covered with tarpaulin or similar material. The cover should extend over the edges of the sides and tailboards.

Wheel washing

Vehicle wheel washing facilities should be provided at each construction site exit. Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.

Use of vehicles

- Immediately before leaving the construction site, every vehicle should be washed to remove any dusty materials from its body and wheels.
- Where a vehicle leaving the construction site is carrying a load of dusty materials, the load should be covered entirely by clean impervious sheeting to ensure that the dusty materials do not leak from the vehicle.

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		Site hoarding Where a site boundary adjoins a road, street, service lane or other area accessible to the public, hoarding of not less than 2.4m high from ground level should be provided along the entire length of that portion of the site boundary except for a site entrance or exit. Blasting The areas within 30m from the blasting area should be wetted with water prior to blasting.					
Air Quali	ty Impact (Operation)					
3.5.2.2	2.2	 The following odour containment and control measures will be provided for the proposed sewage treatment work at the BCP site: The treatment work will be totally enclosed. Negative pressure ventilation will be provided within the enclosure to avoid any fugitive odorous emission from the treatment work. Further odour containment will be achieved by covering or confining the sewage channels, sewage tanks, and equipment with potential odour emission. Proper mixing will be provided at the equalization and sludge holding tanks to prevent sewage septicity. Chemical or biological deodorisation facilities with a minimum odour removal efficiency of 90% will be provided to treat potential odorous emissions from the treatment plant including sewage channels / tanks, filter press and screening facilities so as to minimize any potential odour impact to the nearby ASRs. 	To minimize potential odour impact from operation of the proposed sewage treatment work at BCP	DSD	BCP	Operation Phase	EIA recommendation
Noise Imp	pact (Cons						
4.4.1.4	3.1	Adoption of Quieter PME Use of the recommended quieter PME such as those given in the BS5228: Part 1:2009 and presented in Table 4.14, which can be found in Hong Kong.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and Noise Control Ordinance (NCO)

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.4.1.4	3.1	Use of Movable Noise Barrier The use of movable barrier for certain PME can further alleviate the construction noise impacts. In general, a 5 dB(A) reduction for movable PME and 10 dB(A) for stationary PME can be achieved depending on the actual design of the movable noise barrier. The Contractor shall be responsible for design of the movable noise barrier with due consideration given to the size of the PME and the requirement for intercepting the line of sight between the NSRs and PME. Barrier material with surface mass in excess of 7 kg/m² is recommended to achieve the predicted screening effect.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Enclosure/ Acoustic Shed The use of noise enclosure or acoustic shed is to cover stationary PME such as air compressor and concrete pump. With the adoption of the noise enclosure, the PME could be completely screened, and noise reduction of 15 dB(A) can be achieved according to the GW-TM.	To minimize the construction airborne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO
4.4.1.4	3.1	Use of Noise Insulating Fabric Noise insulating fabric can be adopted for certain PME (e.g. drill rig, pilling auger etc). The insulating fabric should be lapped such that there are no openings or gaps on the joints. Technical data from manufacturers state that by using the Fabric, a noise reduction of over 10 dB(A) can be achieved on noise level.	To minimize the construction air-borne noise impact	Contractors	Construction Work Sites	During Construction	EIA recommendation, EIAO and NCO

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
	nei.		& Main Concerns to address	measure?	ilicasuic	measure?	achieve?
4.4.1.4	3.1	Good Site Practice	To minimize the	Contractors	Construction	During	EIA recommendation
		The good site practices listed below should be followed during each phase of construction:	construction air- borne noise impact		Work Sites	Construction	EIAO and NCO
		 Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; 					
		 Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction programme; 					
		• Mobile plant, if any, should be sited as far from NSRs as possible;					
		 Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; 					
		 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and 					
		 Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 					
Noise Im	pact (Oper	ation)					
		Road Traffic Noise					
Table 4.42 and Figure 4.20.1	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road traffic noise along the connecting road of BCP	Contractor	Loi Tung and Fanling Highway Interchange	Before Operation	EIAO and NCO
4.20.4							
		Fixed Plant Noise					
Table 4.46	3.2	Specification of the maximum allowable sound power levels of the proposed fixed plants during daytime and night-time.	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIA recommendation EIAO and NCO

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
			to address	measure?			acmeve?
4.5.2.4	3.2	 The following noise reduction measures shall be considered as far as practicable during operation: Choose quieter plant such as those which have been effectively silenced; Include noise levels specification when ordering new plant (including chillier and E/M equipment); Locate fixed plant/louver away from any NSRs as far as practicable; Locate fixed plant in walled plant rooms or in specially designed enclosures; Locate noisy machines in a basement or a completely separate building; Install direct noise mitigation measures including silencers, acoustic louvers and acoustic enclosure where necessary; and Develop and implement a regularly scheduled plant maintenance programme so that equipment is properly operated and serviced in order to maintain a controlled level of noise. 	To minimize the fixed plant noise impact	Managing Authority of the buildings / Contractor	BCP, Administration Building and all ventilation buildings	Before Operation	EIAO and NCO
Water Qu	uality Impac	et (Construction)					
5.6.1.1	4.1	Construction site runoff and drainage The site practices outlined in ProPECC Note PN 1/94 should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. The following measures are recommended to protect water quality and when properly implemented should be sufficient to adequately control site discharges so as to avoid water quality impacts:	To control site runoff and drainage; prevent high sediment loading from reaching the nearby	Contractor	Construction Works Sites	Construction Phase	Practice Note for Professional Persons on Construction Site Drainage (ProPECC Note PN 1/94)
		At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities. The design of the temporary on-site drainage system should be undertaken by the Contractor prior to the commencement of construction.	watercourses				
		The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas.					

EIA Ref. EM&A Ref.

Recommended Mitigation Measures

Objectives of the Recommended Measure & Main Concerns to address

Who to implement the measure?

Location of the measure

When to implement the measure?

What requirements or standards for the measure to achieve?

Temporary ditches should be provided to facilitate the runoff discharge into stormwater drainage system through a sediment/silt trap. The sediment/silt traps should be incorporated in the permanent drainage channels to enhance deposition rates, if practical.

- Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM standards under the WPCO. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC Note PN 1/94. Sizes may vary depending upon the flow rate. The detailed design of the sand/silt traps should be undertaken by the Contractor prior to the commencement of construction.
- All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit should be regularly removed, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.
- Measures should be taken to minimize the ingress of site drainage into excavations. If excavation of trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable. Water pumped out from foundation excavations should be discharged into storm drains via silt removal facilities.
- If surface excavation works cannot be avoided during the wet season (April to September), temporarily exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Interception channels should be provided (e.g. along the crest/edge of the excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC Note PN 1/94.
- The overall slope of the site should be kept to a minimum to reduce

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement	Location of the	When to implement the	What requirements or standards for the
	Ref.		& Main Concerns to address	the measure?	measure	measure?	measure to achieve?
		the erosive potential of surface water flows.	·				
		All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facility should be provided at construction site exit where practicable. Wash-water should have sand and silt settled out and removed regularly to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.					
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.					
		Manholes (including newly constructed ones) should be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and stormwater runoff being directed into foul sewers.					
		■ Precautions should be taken at any time of the year when rainstorms are likely. Actions should be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC Note PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events, especially for areas located near steep slopes.					
		■ Bentonite slurries used in piling or slurry walling should be reconditioned and reused wherever practicable. Temporary enclosed storage locations should be provided on-site for any unused bentonite that needs to be transported away after all the related construction activities are completed. The requirements in ProPECC Note PN 1/94 should be adhered to in the handling and disposal of bentonite slurries.					
5.6.1.1	4.1	Good site practices for works within water gathering grounds	To minimize water	Contractor	Construction	Construction	ProPECC Note PN
		The following conditions should be complied, if there is any works to be carried out within the water gathering grounds:	quality impacts to the water gathering grounds		Works Sites within the water gathering	Phase	1/94

Objectives of the What requirements Who to Recommended When to **Recommended Mitigation Measures** EM&A implement Location of the or standards for the Measure EIA Ref. implement the Ref. the measure measure to measure? & Main Concerns measure? achieve? to address grounds

- Adequate measures should be implemented to ensure no pollution or siltation occurs to the catchwaters and catchments.
- No earth, building materials, oil or fuel, soil, toxic materials or any materials that may possibly cause contamination to water gathering grounds are allowed to be stockpiled on site.
- All surplus spoil should be removed from water gathering grounds as soon as possible.
- Temporary drains with silt traps should be constructed at the site boundary before the commencement of any earthworks.
- Regular cleaning of silt traps should be carried out to ensure proper operation at all time.
- All excavated or filled surfaces which have the risk of erosion should always be protected form erosion.
- Facilities for washing the wheels of vehicles before leaving the site should be provided.
- Any construction plant which causes pollution to catchwaters or catchments due to the leakage of oil or fuel should be removed off site immediately.
- No maintenance activities which may generate chemical wastes should be undertaken in the water gathering grounds. Vehicle maintenance should be confined to designated paved areas only and any spillages should be cleared up immediately using absorbents and waste oils should be collected in designated tanks prior to disposal off site. All storm water run-off from these areas should be discharged via oil/petrol separators and sand/silt removal traps.
- Any soil contaminated with fuel leaked from plant should be removed off site and the voids arising from removal of contaminated soil should be replaced by suitable material approved by the Director of Water Supplies.
- Provision of temporary toilet facilities and use of chemicals or insecticide of any kind are subject to the approval of the Director of Water Supplies.
- Drainage plans should be submitted for approval by the Director of

5.6.1.2 4.			Measure & Main Concerns to address	implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
5.6.1.2 4.		Water Supplies.					
5.6.1.2 4.		An unimpeded access through the waterworks access road should always be maintained.					
5.6.1.2 4.		 Earthworks near catchwaters or streamcourses should only be carried out in dry season between October and March, 					
5.6.1.2 4.		Advance notice must be given before the commencement of works on site quoting WSD's approval letter reference.					
	l.1	Good site practices of general construction activities	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Construction solid waste, debris and refuse generated on-site should be collected, handled and disposed of properly to avoid entering any nearby stormwater drain. Stockpiles of cement and other construction materials should be kept covered when not being used.	quality impacts		works sites	phase	
		Oils and fuels should only be stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to any nearby stormwater drain, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. The bund should be drained of rainwater after a rain event.					
5.6.1.3 4.	l.1	Sewage effluent from construction workforce	To minimize water	Contractor	All construction	Construction	EIA Recommendation
		Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	quality impacts		works sites with on-site sanitary facilities	phase	and Water Pollution Control Ordinance (WPCO)
5.6.1.4 4.	l.1	Hydrogeological Impact	To minimize water	Contractor	Construction	Construction	EIA Recommendation
		Grout injection works would be conducted before blasting, for sealing a limited area around the tunnel with a grout of a suitable strength for controlling the potential groundwater inflows. The pre-injection grouting method would be supplemented by post-injection grouting where necessary to further enhance the groundwater inflow control. On-site treatment for the groundwater ingress pumped out would be required to remove any contamination by grouting materials before discharge off-site.	quality impacts		works sites of the drill and blast tunnel	phase	and WPCO
Nater Qualit	ity Impac	t (Operation)					
·							

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure	Who to implement the	Location of the measure	When to implement the	What requirements or standards for the measure to
			& Main Concerns to address	measure?		measure?	achieve?
Sewage a	and Sewera	age Treatment Impact (Construction)					
6.7	5	The sewage generated by the on-site workforce should be collected in chemical toilets and disposed of off-site by a licensed waste collector.	To minimize water quality impacts	Contractor	All construction works sites with on-site sanitary facilities	Construction phase	EIA recommendation and WPCO
Sewage a	and Sewera	age Treatment Impact (Operation)					
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be collected and treated by the proposed on-site sewage treatment facility using Membrane Bioreactor treatment with a portion of the treated wastewater reused for irrigation and flushing within the BCP.	To minimize water quality impacts	DSD	BCP	Operation phase	EIA recommendation and WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged to the existing local sewerage system.	To minimize water quality impacts	DSD	Administration Building	Operation phase	EIA recommendation and WPCO
Waste M	anagement	Implication (Construction)					
7.6.1.1	6	Good Site Practices Adverse impacts related to waste management such as potential hazard, air, odour, noise, wastewater discharge and public transport as mentioned in section 3.4.7.2 (ii)(c) of the Study Brief are not expected to arise, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities include:	To minimize adverse environmental impact	Contractor	Construction works sites (general)	Construction Phase	EIA recommendation Waste Disposal Ordinance; Waste Disposal (Chemical Wastes) (General) Regulation; and ETWB TC(W) No.
		Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site					19/2005, Environmental Management on Construction Site
		 Training of site personnel in proper waste management and chemical handling procedures 					
		 Provision of sufficient waste disposal points and regular collection of waste 					
		 Dust suppression measures as required under the Air Pollution Control (Construction Dust) Regulation should be followed as far as practicable. Appropriate measures to minimise windblown litter and dust/odour during transportation of waste by covering trucks or in enclosed containers 					
		 General refuse shall be removed away immediately for disposal. As 					

Environme	ental Mon	itoring and Audit Manual					
EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Who to implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
		such odour is not anticipated to be an issue to distant sensitive receivers	'				
		Provision of wheel washing facilities before the trucks leaving the works area so as to minimise dust introduction from public road					
		 Covers and water spraying system should be provided for the stockpiled C&D material to prevent dust impact or being washed away 					
		 Designate different locations for storage of C&D material to enhance reuse 					
		Well planned programme for transportation of C&D material to lessen the off-site traffic impact. Well planned delivery programme for offsite disposal and imported filling material such that adverse noise impact from transporting of C&D material is not anticipated					
		■ Site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be adopted as far as practicable, such as cleaning and maintenance of drainage systems regularly					
		 Provision of cover for the stockpile material, sand bag or earth bund as barrier to prevent material from washing away and entering the drains 					
7.6.1.2	6	Waste Reduction Measures	To reduce the	Contractor	Construction	Construction	EIA recommendation
		Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:	quantity of wastes		works sites (General)	Phase	and Waste Disposal Ordinance
		 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal 					
		Encourage collection of aluminium cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force					
		 Proper storage and site practices to minimise the potential for damage or contamination of construction materials 					
		■ Plan and stock construction materials carefully to minimise amount					

EIA Ref.	EM&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measure Who to implement the		Location of the	When to implement the	What requirements or standards for the
			& Main Concerns to address	measure?	measure	measure?	measure to achieve?
		of waste generated and avoid unnecessary generation of waste					
		In addition to the above measures, specific mitigation measures are recommended below for the identified waste arising to minimise environmental impacts during handling, transportation and disposal of these wastes.					
7.6.1.3	6	C&D Materials	To minimize	Contractor	Construction	Construction	EIA recommendation;
		In order to minimise impacts resulting from collection and transportation of C&D material for off-site disposal, the excavated materials should be reused on-site as backfilling material as far as practicable. The surplus rock and other inert C&D material would be disposed of at the Government's Public Fill Reception Facilities (PFRFs) at Tuen Mun Area 38 for beneficial use by other projects in the HKSAR as the last resort. C&D waste generated from general site clearance and tree felling works would require disposal to the designated landfill site. Other mitigation requirements are listed below:	impacts resulting from C&D material		Works Sites (General)	Phase	Waste Disposal Ordinance; and ETWB TCW No. 31/2004
		 A Waste Management Plan should be prepared and implemented in accordance with ETWB TC(W) No. 19/2005 Environmental Management on Construction Site; and 					
		In order to monitor the disposal of C&D material and solid wastes at public filling facilities and landfills, and to control fly-tipping, a trip-ticket system (e.g. ETWB TCW No. 31/2004) should be included.					
7.6.1.4	6	General refuse General refuse should be stored in enclosed bins or compaction units separated from other C&D material. A reputable waste collector is to be employed by the Contractor to remove general refuse from the site separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter. To minimate impacts from contractor is to transposit the separately. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' litter.		Contractor	Construction works sites (General)	Construction phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance - Public Cleansing and Prevention of Nuisances Regulation
7.6.1.5	6	Chemical waste If chemical wastes are produced at the construction site, the Contractor will be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical	To minimize impacts resulting from collection and transportation of chemical waste for off-site disposal	Contractor	Construction works sites (General)	Construction phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

Appendix N

Investigation Report for Exceedance

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

cc

From Nicola Hon Date 19 June 2019

Our Ref TCS00694/13/300/F2108a No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 29

and 31 May 2019

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F2093 dated 10 June 2019

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Ms. Clara U (EPD) Fax: 2685 1133

Mr. Owen Ng (ER of C6/AECOM) Fax: 2251 0698
Mr. Antony Wong (IEC, SMEC) By email

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works Investigation Report on Action or Limit Level Non-compliance

Project	CE 45/2008			
Date	29 May 2019	31 May 2019		
Location	1	WM2A(a)		
Time	11:20	11:30		
Parameter	Suspended Solids (mg/L)			
Action Level	14.6 AND 120% of upstream control station of the same day			
Limit Level	17.3 AND 130% of upstream control station of the same day			
Measured WM2A-C	3.5	2.5		
Levels WM2A(a)	18.0	32.5		
Exceedance	Limit Level	Limit Level		
Investigation Results, Recommendations & Mitigation Measures	1. According to the site information provided by the Contractor of Contract 6 (CCKJV), construction activities carried out on 29 to 31 May 2019 at Bridge D (upstream of WM2A(a)) was mainly paving block and pedestrian walkway construction. The monitoring locations and work boundary are shown in <i>Figure 1</i> .			
	2. According to the site photo taken by the monitoring team on 29 and 31 May 2019, the water quality at WM2A was slightly turbid while at WM2A-C was clear. (<i>Photos 1 to 4</i>)			
	3. According to the weather information from the Observatory, heavy rainstorm was recorded on 27 and 28 May 2019 and showery condition on 29 to 30 May 2019. The water quality of the water course was highly affected by the stirred up sediment and runoff from the surrounding environment even outside the site area. On 28 May 2019, inflow of muddy water was observed from upstream of WM2A-C which affecting the water quality of the river course in subsequent days. (<i>Photo 5</i>)			
	conducted on 30 May 2018 a performance and implementation that, as water quality mitigation tarpaulin sheet as far as practically the state of the s	among the RE, IEC, CCKJV and ET were t Bridge D to audit the site environmental ion of mitigation measures. It was observed in measures, open slopes were covered with cable to minimize muddy runoff. (<i>Photo 6</i>) or generated from construction works was better water quality observed.		
	measures such as providing ta minimize muddy runoff. It related to the inflow of mudd	had implemented water quality mitigation rpaulin sheet for open slope and surface to is considered that the exceedances were y water from upstream of the project after by the works under the Project.		
	monitoring shall be increased necessity of additional monitor	d Action Plan, the frequency of water to daily when exceedance recorded. The ring is relying on the turbidity result since it we were no additional monitoring conducted		

on 30 May 2019 and 1 June 2019 as no turbidity exceedance recorded at previous day. Moreover, there were no turbidity and SS exceedances recorded at subsequent monitoring on 3 and 5 June 2019. Nevertheless, the Contractor should continue implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By:	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Aula	
Date :	19 June 2019	

Photo Record

Photo 1On 29 May 2019, the water quality at WM2A was slightly turbid.

Photo 2On 29 May 2019, the water quality at WM2A-C was clear.

Photo 3On 31 May 2019, the water quality at WM2A was slightly turbid.

Photo 4
On 31 May 2019, the water quality at WM2A-C was clear

During water sampling on 28 May 2019, inflow of muddy water was observed from upstream of WM2A-C which affecting the water quality of the river course in subsequent days.

Photo 6Open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.

Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Fax Cover Sheet

To Mr. Vincent Chan Fax No By e-mail

Company CRBC-CEC-Kaden JV

cc

From Nicola Hon Date 12 July 2019

Our Ref TCS00694/13/300/F2134a No of Pages 5 (Incl. cover sheet)

RE Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works

Investigation Report of Exceedance of Water Quality at Location WM2A(a) on 26

June 2019

If you do not receive all pages, or transmission is illegible, please contact the originator on (852) 2959-6059 to re-send. Should this facsimile be sent to the wrong fax number, would receiver please destroy this copy and notify Action-United Environmental Services & Consulting immediately. Thank you.

Dear Sir,

Further to the Notification of Exceedance (NOE) ref.:

TCS00694/13/300/F2118 dated 28 June 2019 TCS00694/13/300/F2119 dated 02 July 2019

Please find attached the "Investigation Report on Action or Limit Level Non-compliance" referenced above for your follow up action.

Should you have any queries or need further information, please do not hesitate to contact us or the undersigned at **Tel: 2959-6059 or Fax: 2959-6079**.

Yours Faithfully, For and on Behalf of

Action-United Environmental Services & Consulting

Nicola Hon

Environmental Consultant

Encl.

c.c. Ms. Clara U (EPD)

Mr. Owen Ng (ER of C6/ AECOM) Fax: 2251 0698
Mr. Antony Wong (IEC, SMEC) By email

Fax:

2685 1133

Agreement No. CE 45/2008

Liantang/ Heung Yuen Wai Boundary Control Point and Associated Works <u>Investigation Report on Action or Limit Level Non-compliance</u>

Project		CE 45/01	008		
Date		CE 45/2008			
Location		26 June 2019 WM2 A(2)			
Time		WM2A(a) 11:30			
Parameter		Turbidity (NTU) Suspended Solids (mg/L)			
		• ` '	14.6 AND 120% of upstream control		
Action Leve	el 	station of the same day	station of the same day		
Limit Level		33.8 AND 130% of upstream control 17.3 AND 17.			
		station of the same day station of the same day 25.7 17.5			
Levels		179.0	145.0		
Exceedance	` '				
Measured Levels WM2A-C WM2A(a) Exceedance Investigation Results, Recommendations & Mitigation Measures		1. According to the site information provided by the Contractor of Contract 6 (CCKJV), construction activities carried out on 26 June 2019 at Bridge D (upstream of WM2A(a)) was mainly paving block and pedestrian walkway construction. The monitoring locations and work boundary are shown in <i>Figure 1</i> . 2. According to the site photo taken by the monitoring team on 26 June 2019, the water quality at WM2A was turbid while at WM2A-C was slightly turbid. (<i>Photos 1 to 2</i>) 3. According to the weather information from the Observatory, heavy rainstorm (total rainfall of 35.4mm) was recorded on 25 June 2019. The water quality of the water course was highly affected by the stirred up sediment and runoff from the surrounding environment even outside the site area. As advised by CCKJV, in the early morning of 26 June 2019, inflow of muddy water was observed from upstream of WM2A-C which affecting the water quality of the river course. (<i>Photo 3 and Figure 1</i>) 4. Weekly joint site inspections among the RE, IEC, CCKJV and ET were conducted on 27 June 2019 at Bridge Y to audit the site environmental performance and implementation of mitigation measures. It was observed that no discharge of turbid water within site area. Besides, according to information provided by the Contractor, as water quality mitigation measures, open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff. (<i>Photo 4</i>) It was noted that wastewater generated from construction works was limited and there were no adverse water quality observed. 5. In our investigation, CCKJV had implemented water quality mitigation measures such as providing tarpaulin sheet for open slope and surface to minimize muddy runoff. It is considered that the exceedances were			
1		unlikely caused by the works under the 6. According to the Event and Action	•		

monitoring shall be increased to daily when exceedance recorded. There were no exceedances recorded at subsequent monitoring on 27 and 28 June 2019. Nevertheless, the Contractor should continue implement the water mitigation measures as recommended in the implementation schedule for environmental mitigation measures in the EM&A Manual.

Prepared By :	Nicola Hon	
Designation :	Environmental Consultant	
Signature :	Auli	
Date:	12 July 2019	

Photo Record

Photo 1On 26 June 2019, the water quality at WM2A was turbid.

Photo 2On 26 June 2019, the water quality at WM2A-C was slightly turbid.

Photo 3
As advised by CCKJV, in the early morning of 26
June 2019, inflow of muddy water was observed
from upstream of WM2A-C which affecting the
water quality of the river course.

Photo 4
Open slopes were covered with tarpaulin sheet as far as practicable to minimize muddy runoff.



Figure 1 Location Map for Water Quality Monitoring Locations WM2A(a), WM2A-Control and work area under Contract

Appendix O

Investigation Report for Complaint (Not Applicable)

Appendix P

Implementation Status of Mitigation Measures for Operation Phase

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
			Air Quality Impact (Operation)						
3.11	3.5.2.2	2.2	The sewage treatment plant installed for the Project shall be installed at	To minimize	BCP not yet in	DSD	ВСР	Operation Phase	EIA
			the location shown in Figure 3 of the EP and the plant shall be designed	potential odour	operation				recommendati
			with the following odour containment and control measures:	impact from					on
			Negative Pressure Ventilation	operation of the					
			(a) The treatment plant shall be totally enclosed with negative pressure	proposed sewage					
			ventilation to avoid odorous emission from the treatment works. The	treatment work at					
			tanks will be connected to deodorisation facilities designed for a	BCP					
			minimum removal of 90% directly to eliminate odour problem.						
			Total Containment of Sewage Channels						
			(a) air-tight cover shall be installed to sewage channels, sewage tanks,						
			and equipment with potential odour emission and the trapped gases						
			shall be collected by air handling equipment for containing and						
			directing odorous gases to deodorisation facilities.						
			(b) Gravity sewer, equalization and sludge holding tanks shall be						
			designed with suitable sewer distance and retention time to prevent						
			sewage septicity.						
			3. Deodorisation						
			(a) Deodorisation facilities at the sewage treatment plant shall be						
			designed with a minimum odour removal efficiency of 90%.						
			Noise Impact (Operation)						
			Road Traffic Noise						
3.5	Table	3.2	Erection of noise barrier/ enclosure along the viaduct section.	To minimize the road	Implemented	Contractor	Loi Tung and	Before Operation	EIAO and NCO
3.7	4.42 and		- To mitigate the traffic noise impact arising from the operation of the	traffic noise along			Fanling		
	Figure		Project, the noise mitigation measures shall be implemented in	the connecting road			Highway		
	4.20.1 to		accordance with Fig 4, 5, 6 and 7 attached to the EP, or otherwise	of BCP			Interchange		
	4.20.4		approved by the Director subject to the submission of a Noise						
			Mitigation Plan by the Permit Holder to cater for the final layout and						
			design of the Project.						
			- To reduce collisions from birds, the design of noise barriers shall						
			avoid/minimize the use of transparent / reflective materials or adopt						
			bird-friendly design on such surfaces.						
			Fixed Plant Noise						
	Table	3.2	Specification of the maximum allowable sound power levels of the	To minimize the	BCP not yet in	Managing	BCP, Administration	n Before Operation	EIA

EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
4.46		proposed fixed plants during daytime and night-time.	fixed plant noise	operation;	Authority of the	Building and a	II	recommendation,
			impact	Administration	buildings /	ventilation buildi	ngs	EIAO and NCO
				Building and all	Contractor			
				ventilation building	S			
				(Implemented)				
4.5.2.4	3.2	The following noise reduction measures shall be considered as far as	To minimize the fixed	BCP not yet in	Managing Authority of	BCP, Administrat	tion Before Operation	EIAO and NCO
		practicable during operation:	plant noise impact	operation;	the buildings /	Building and a	II	
		■ Choose quieter plant such as those which have been effectively		Administration	Contractor	ventilation buildir	ngs	
		silenced;		Building and all				
		■ Include noise levels specification when ordering new plant		ventilation				
		(including chillier and E/M equipment);		buildings				
		■ Locate fixed plant/louver away from any NSRs as far as		(Implemented)				
		practicable;						
		■ Locate fixed plant in walled plant rooms or in specially designed						
		enclosures;						
		■ Locate noisy machines in a basement or a completely separate						
		building;						
		Install direct noise mitigation measures including silencers,						
		acoustic louvers and acoustic enclosure where necessary; and						
		Develop and implement a regularly scheduled plant maintenance						
		programme so that equipment is properly operated and serviced						
		in order to maintain a controlled level of noise.						
	W	/ater Quality Impact (Operation)						
		No mitigation measure is required.						
	S	ewage and Sewerage Treatment Impact (Operation)						
6.6.3	5	Sewage generated by the BCP and Chuk Yuen Village Resite will be	To minimize water	BCP not yet i	n DSD	BCP	Operation phase	EIA
		collected and treated by the proposed on-site sewage treatment facility	quality impacts	operation				recommenda
		using Membrane Bioreactor treatment with a portion of the treated						ion and
		wastewater reused for irrigation and flushing within the BCP.						WPCO
6.5.3	5	Sewage generated from the Administration Building will be discharged	To minimize water	Implemented	d DSD	Administratio	Operation phase	EIA
		to the existing local sewerage system.	quality impacts			n Building		recommenda
								ion
								and WPCO

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implemer the measure?	nt Location of the V measure	Vhen to implement the measure?	What requirements or standards for the measure to achieve?
		V	Vaste Management (Operation Phase)						
	7.6.2.1	6	General refuse General refuse should be collected on daily basis and delivered to the refuse collection point accordingly. A reputable waste collector should be employed to remove general refuse regularly to avoid odour nuisance or pest and vermin problem. Recycling containers are recommended to be provided to encourage recycling of aluminium cans and waste paper.	To minimize impacts resulting from collection and transportation of general refuse for off-site disposal	BCP not yet in operation	Managing Authority of the BCP	BCP and its Associated facilities	Operation phase	Waste Disposal Ordinance and Public Health and Municipal Services Ordinance – Public Cleansing and Prevention of Nuisances Regulation
	7.6.2.2	6	 ■ Register with the EPD as a chemical waste producer should be made and guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes should be followed. ■ Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. Licensed collector should be deployed to transport and dispose of the chemical wastes, to the licensed Chemical Waste Treatment Centre, or licensed facilities, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. 	I	BCP not yet in operation	Managing Authority of the BCP	BCP and its associated facilities	Operation phase	Waste Disposal (Chemical Waste) (General) Regulation and Code of Practice on the Packaging Labelling and Storage of Chemical Wastes
				Eco	logical Impact				
	9.8	8	Mitigation to Anthropogenic Disturbance Buffer planting shall be provided for screening the proposed structures and associated facilities. Install screen hoarding to minimize disturbance to wildlife in construction phase.	To screen the Proposed structures and associated facilities.	Implemented	Contractors	In proximity to propos new development structures and associated facilities	Operation.	
	9.8	8	Mitigation to Habitat Fragmentation ■ Landscape fragmentation should be kept to a minimum and key wildlife routes preserved as far as possible (i.e. OM1 of EM&A Manual Chapter 10).	To minimize the obstruction on wildlife movement	Implemented	Contractors	All viaduct sections	Operation pha	ase EIA Recommendation

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
			 Provision of landscape plantings (i.e. OM3-7 of EM&A M Chapter 10) 	lanual					
		L	andscape, Visual and Glare Impact						
3.8	11.6.3 – Table 11.16 (OM1)	10	Detailed Design Considerations Detailed design of development components should aim to reduce landscape footprint and visibility of structures. The area allowed for any development components should be reduced to a practical minimum.	To reduce architectural footprint on the land and minimize visibility of structures.	Implemented	Detailed designer/ Consultants	Proposed ne developmen structures.		
3.8	11.6.3 – Table 11.16 (OM2)	10	Aesthetically Pleasing Design The form, textures, finishes and colours of the proposed development components should be compatible with the existing surroundings. Light earthy tone colours such as shades of green, shades of grey, shades of brown and off-white may be utilised where technically feasible to reduce the visibility of the development components, including all roadwork, buildings and noise barriers etc. To further improve visual amenity, natural building materials such as stone and timber, should be preferably adopted for architectural features, where technically feasible.	To reduce visibility of structures and increase their compatibility with the surrounding	Implemented	Detailed designer/ Consultants	Proposed ne developmen structures.	g g	
3.6 3.8 4.1	11.6.3 – Table 11.16 (OM3)	10	Compensatory Planting All compensatory planting of trees is to be carried out in accordance with ETWB TCW No. 03/2006. Section 9 (Ecology) contains further details of the compensatory planting specifically for woodland. A total woodland compensation area of 18.6 ha is proposed. In view of the maturity of the secondary woodland impacted, a higher compensation ratio is proposed and details can be found in the proposed Woodland Compensation Plan in Appendix 9.4. For key LRs containing substantial numbers of affected trees, Table 11.15a gives an approximation of the number of trees to be planted to compensate for the trees felled in each of these key LRs.	To compensate for loss of trees and some shrubs due to the Project.	(implementation of woodland compensation is ongoing)	Contractors	Proposed ne developmen structures.	-	EIA recommenda ion and ETWB TCV No. 03/2006

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
			associated road works, on the peripheries of both BCP and						
			the Middle Ventilation building for such planting. This area of						
			compensatory shrub and ground cover planting is						
			approximately 21 ha in size over the whole project area.						
			In addition, a Wetland Compensation Area (WCA) is						
			proposed to compensate for some wet areas of farmland and						
			shrubby grassland on lowland Section 9 (Ecology) contains						
			further details of the WCA with Figure 9.28 showing a						
			conceptual plan of the area. Details of the Wetland						
			Compensation Plan (WCP) would be formulated and						
			provided under a Habitat Creation						
3	11.6.3 –	10	Buffer Tree Planting	To screen the proposed	Implemented	Contractors	In proximity to	During Construction/	EIA
	Table		Tree planting shall be provided to screen the proposed	structures and associated			proposed nev	v Operation Phase	recommendat
	11.16		structures and associated facilities. In addition, the	facilities including roads.			development		ion
	11.16 (OM4)		compensatory shrub and ground cover planting detailed in				structures and	d	
			OM3 will provide screening and improve compatibility with				associated		
			the surrounding environment.				facilities.		
3	11.6.3 –	10	Aesthetic Improvement Planting - Viaduct Structure	To soften the hard edges on the	Implemented	Contractors	Viaduct Structu	re. During Construction/	EIA
	Table		Planters will be provided for trailer planting to soften the hard,	viaduct and maximize greening				Operation Phase	recommendat
	11.16		straight edges of the viaduct. Where space allows for	opportunity.				•	ion
	(OM5)		planters, climbers are proposed to cover vertical, hard						
			surfaces of the piers.						
	11.6.3 –	10	Landscaped Slope	To prevent soil erosion and	Implemented	Contractors	Construction S	ite During Construction/	EIA
	Table		Where existing hillside slopes are anticipated to be modified	reduce visible impact of			Works.	Operation Phase	recommendat
	11.16		(eg cut slope at the portals of the tunnel sections and	man-made slopes.					ion <i>GEO</i>
	(OM7)		embankments along the alignment) the final slope surface						Publication
			will be landscaped by hydroseeding, tree or shrub planting						No. 1/2009
			where slope gradient allows.						and <i>ETWB</i> <i>TCW No.</i>
									17/2000
3	11.6.3 –	10	Green Roof	To reduce exposure to untreated	Implemented	Contractors	Proposed nev	v During Construction/	EIA
	Table	. •	Green roofing should be established on proposed buildings	concrete surfaces, reduce visual		22	buildings.	Operation Phase	recommendat
	11.16		to reduce exposure to untreated concrete surfaces and	impact to VSRs at high levels			zanan 190.	Sporanon i naco	ion
			mitigate visual impact to VSRs at high levels.	paor to volto at mgm lovolo					1011

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
				opportunity.					
3.8	11.6.3 – Table 11.16 (OM9)	10	Vertical Greening Vertical planting should be established to soften the hard, vertical surfaces of the proposed development components. These components will include walls of administration and ventilation buildings, retaining walls and road abutments.	To reduce visible impact of proposed new structures and facilities and maximize greening opportunity.	Implemented	Contractors	Proposed ne developmen structures.	-	EIA recommendat ion
3.8	11.6.3 – Table 11.16 (OM10)	10	Roadside Amenity Planting Roadside amenity planting should be provided, to enhance the landscape and visual quality of the existing and proposed transport routes and car parks.	To soften edges of the proposed engineer structures and associated facilities and enhance the landscape and visual quality of the existing and proposed road.	Implemented	Contractors	Proposed ne developmen structures.	-	EIA recommendat ion
3.8	11.6.3 – Table 11.16 (OM11)	10	Reinstatement Certain areas unavoidably disturbed by the Project will be reprovisioned. The Chuk Yuen Village within the BCP area will be resited to a designed location before commencement of the Project. Further details on the 'Re-site of Chuk Yuen Village' are discussed in Section 11.8. Existing farmland, rural built/open storage areas and industrial/factory areas will not be reinstated but such areas affected should be conditioned to suit future land use. For reinstatement involving planting measures, refer to other mitigation measures e.g. for woodland/shrubby grassland/vegetated slopes, see CM1, CM2, OM3, OM7. For watercourse, see CM6.	Particularly aimed at temporarily disturbed areas, to reduce long term impact on landscape.	Implemented	Contractors	Construction S Works.	ite During Construction/ Operation Phase	EIA recommendat ion
3.8	11.6.3 – Table 11.16 (OM12)	10	Light Control Street and night time lighting glare will be controlled to minimize glare impact to adjacent VSRs during the operation stage. Outdoor lighting for the Project shall be designed to reduce glare impact on nearby dwellings. For this purpose, light housing with full-cut-off designs which reflect light totally downward and better design of light shielding are examples that can be considered.	To minimize glare impact to adjacent VSRs.	Implemented	Contractors	Lit areas arou proposed new developmen buildings and along roads	v Phrase t	EIA recommendat ion

EP Ref.	EIA Ref.	EM &A Ref	Recommended Mitigation Measures	Objectives of the Recommended Measure & Main Concerns to address	Implementation Status	Who to Implement the measure?	Location of the measure	When to implement the measure?	What requirements or standards for the measure to achieve?
3.8	11.6.3 - Table 11.16 (OM13)	10	Reprovisioned LCSD Garden The Open Space of Wo Keng Shan public garden falls within the Project Site and will be reprovisioned to reprovide the amenities of the garden on a one to one basis e.g. existing trees, benches etc will be re-provided in the new garden. The proposed location of the reprovisioned garden is near the existing location and shown on Figure 11.7.4 and this is subject to confirmation by CEDD and LCSD.	To compensate for loss of Open Space due to the Project.	Implemented	Contractors	Contractors Nea existing Wo Ken Shan public garden, subject confirmation by CEDD and LCS	og Operation Phase	EIA recommendat ion

Appendix Q

Implementation Status of Water Quality mitigation Measures

N/A

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(2)-20190606 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: / Contract 7 IEC Contract No. SMEC Date: 6 June 2019 ER AECOM Time: ET AUES 1530 Environmental EP-404/2011/D Contractor Dragages **Permit** PART A: **GENERAL INFORMATION** Weather: Cloudy 0C Sunny Fine Rainy Temperature: 33 **Humidity:** High Moderate $\sqrt{}$ Low $\sqrt{}$ Wind: Strong Breeze Light Calm **Observation/ Issues/ Reminder Recorded on Site:** No adverse environmental issue was observed. The Contractor was reminded to treat the water before discharge. Status of Water Quality Mitigation Measures: Hydroseeding was applied on the exposed slope. Photo recorded for the Recification

Humidity:

Wind:

High

Strong

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(2)-20190614 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: IEC Contract No. / Contract 7 SMEC Date: 14 June 2019 ER AECOM Time: 0930 ET AUES Environmental EP-404/2011/D Contractor Dragages **Permit** PART A: **GENERAL INFORMATION** Cloudy 0C Weather: Sunny Fine Rainy Temperature: 30

 $\sqrt{}$

 \square

Calm

Observation/ Issues/ Reminder Recorded on Site:

Moderate

Breeze

- No adverse environmental issue was observed.

- The Contractor was reminded to provide water spraying during the cutting works.

Low

Light

Status of Water Quality Mitigation Measures:

The water flowing from the permanent drainage was clear.

The footing of site hoard was sealed and no adverse water quality impact was observed.

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(2)-20190621 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: Contract No. / Contract 7 **IEC** SMEC Date: 21 June 2019 ER AECOM Time: 0930 ET AUES Environmental EP-404/2011/D Contractor Dragages **Permit** PART A: **GENERAL INFORMATION** Weather: Cloudy Rainy 32 0C Sunny Fine Temperature: $\sqrt{}$ **Humidity:** High Moderate Low Wind: Strong Breeze Light Calm **Observation/ Issues/ Reminder Recorded on Site:** No adverse environmental issue was observed.

Status of Water Quality Mitigation Measures:

Hydroseeding was applied on the exposed slope.

The water flowing from the permanent drainage was clear.

Photo recorded for the Recification
N/A

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(2)-20190628 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: / Contract 7 IEC Contract No. **SMEC** Date: 28 June 2019 ER AECOM Time: 0930 ET AUES Environmental EP-404/2011/D Contractor Dragages **Permit** PART A: **GENERAL INFORMATION** Weather: Cloudy Rainy 0C Sunny Fine Temperature: 29 $\sqrt{}$ **Humidity:** High Moderate Low \square Wind: Strong Breeze Light Calm

Observation/ Issues/ Reminder Recorded on Site:

- No adverse environmental issue was observed.
- The Contractor was reminded to wash the wheel thoroughly before leaving the site.

Status of Water Quality Mitigation Measures:

The footing of site hoard was sealed and no adverse water quality impact was observed.

Hydroseeding was applied on the exposed slope.

AUES

Checklist No: CE45/2008-(3)-20190606

SMEC

AUES

AECOM

Chun Wo

Inspected by:

Contractor

IEC

ER

ET

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

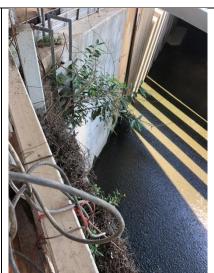
Contract No. / Contract 7
Date: 6 June 2019

Time: 0945

Environmental

EP- 404/2011/D

Permit										
PART A:	GENE	RAL INF	ORMATION							
Weather:	Sunny		Fine	Cloudy		Rainy	Temperature:	32	^{0}C	
Humidity:	High		Moderate	Low						
Wind:	Strong		Breeze	Light	$\overline{\checkmark}$	Calm				


Observation / Issues/ Reminder Recorded on Site:

- Generator without NRMM label was observed near WWTS1. The Contractor should provide preper NRMM label on generator.
- Silt was observed on bike path, the Contractor should clean up the silt and maintain the bike path in tidy condition. (TWSRE)

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

The discharge from wastewater treatment facility was clear

NRMM label was provided for the generator.

Silt was removed by water tanker.

Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Project:

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

Contract No. / Contract 7 Date: 13 June 2019

Time: 1300 Environmental EP-404/2011/D

Permit

Inspected by: **IEC SMEC ER** AECOM ET AUES Contractor Chun Wo

Checklist No: CE45/2008-(3)-20190613

PART A: **GENERAL INFORMATION** 0C Weather: Sunny Fine Cloudy Rainy Temperature: 28 **Humidity:** High $\overline{\mathbf{A}}$ Moderate Low Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

- Muddy trails was observed at TWSRW site exit. The Contractor should clean the muddy trails and maintain site exit clean.
- Free standing chemical containers were observed at TWSRW. The Contractor should provide drip tray underneath the containers to prevent land contamination.

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

The discharge from wastewater treatment facility was

Muddy trails were removed.

Chemical containers were placed on drip tray.

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

/ Contract 7 Contract No. Date: 19 June 2019

Time: 1000

Environmental EP-404/2011/D

Permit PART A:

Humidity:

Checklist No: CE45/2008-(3)-20190619

Inspected by:

IEC SMEC ER AECOM ET

AUES Contractor Chun Wo

0C Weather: Sunny Fine Cloudy Rainy Temperature: 29

> High Moderate $\sqrt{}$ Low

Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

GENERAL INFORMATION

Free standing chemical container was observed at TWSRE. The Contractor should provide drip tray underneath the container to prevent land contamination.

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

Daily checking of discharge quality was implemented.

Drip tray was provided.

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(3)-20190627

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

/ Contract 7 Contract No. Date: 27 June 2019 Time: 1000

Environmental EP-404/2011/D

Permit

Inspected by: IEC SMEC ER AECOM

ET AUES

Contractor Chun Wo

PART A: **GENERAL INFORMATION** $\sqrt{}$ Cloudy 0C Weather: Sunny Fine Rainy Temperature: 32 $\sqrt{}$ **Humidity:** High Moderate Low $\sqrt{}$ Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

The Contractor was reminded to prevent muddy water outflow to public road.

Status of Water Quality Mitigation Measures:

The water quality of the channel adjacent to the site was clear.

Daily checking of discharge quality was implemented.

Photo recorded for the Recification

N/A

AUES

Project:	Ag	reement	t No. CE 45/20 Control Point	08 (CE)	Checklist No: <u>CE45/2008-(4)-2019060</u>					<u>)6</u>			
Project Contract N Date: Time: Environme Permit	o. / G 6.	ontract 2 Contract June 201	? / Contract 3 / -7 19	Inspected by: IEC SMEC ER AECOM ET AUES Contractor SIEMENS									
PART A:	GENE	RAL INF	FORMATION										
Weather: Humidity: Wind:	Sunny High Strong		Fine Moderate Breeze	□ ☑ □	Cloudy Low Light	☑	Rainy Calm		Tempe	erature:	32	°C	
Observat	ion / les	uoe/ D	eminder Re	cordo	d on Sito:								
- No ad	lverse er	nvironm	nental issue v	was ob	served.								
Status of	Water (Quality	Mitigation	Measu	res:								
Status of Water Quality Mitigation Measures: The site office was hard paved and no adverse water quality impact was observed.													
Photo re	corded f	or the	Recification	1									
N/A													

AUES

Project:				t No. CE 45/20 Control Point			n Wai	Checklist No: <u>CE45/2008-(4)-20190610</u>					
Project Contract No Date: Time: Environme Permit	/ Co 10 . 14:0	itract i intract June 2	? / Contract 3 / - 7 019		Inspected by: IEC SMEC ER AECOM ET AUES Contractor SIEMENS								
PART A:	GI	ENEF	RAL IN	FORMATION									
Weather: Humidity: Wind:	Sur High Stro	h		Fine Moderate Breeze	☑	Cloudy Low Light		Rainy Calm		Tempe	erature:	29	°C
Observat	ion /	Iss	ues/ F	Reminder Re	corde	d on Site:							
Status of	Wat	er Q	uality	Mitigation	Measu	res:							
The site of	ffice	wass	hard	paved and n	o adve	rse water q	uality im	npact wa	s obse	erved.			
Photo recorded for the Recification													
N/A													

AUES

Project:				t No. CE 45/200 Control Point			en Wai	Checklist No: <u>CE45/2008-(4)-20190621</u>					<u>21</u>	
Date: Time:	Contract No. Date: Time: Environmental Permit			8 / Contract 3 / (<i>7</i> 019 011/D	Contrac	ct 4 / Contrac	t 5 / Cont	tract 6	IEC ER ET		SMEC AECO AUES SIEME	М		
PART A:	G	ENER A	L INF	FORMATION										
Weather: Humidity: Wind:	Sur Hig Stro	h		Fine Moderate Breeze		Cloudy Low Light	☑ □	Rainy Calm		Tempe	erature:	33	°C	
Observat	ion /	leem	se/ R	Reminder Re	corde	d on Site:								
- No ad	verse	envi	ronm	nental issue v	vas ob	served.								
Status of	Wat	er Qu	ality	Mitigation I	Measu	ires:								
The site of	office	was h	nard	paved and no	o adve	erse water q	uality in	npact wa	s obse	erved.				
Photo red	cord	ed for	the	Recification	1									
N/A														

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(6)-20190606

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

Contract No. / Contract 7
Date: 6 June 2019
Time: 14:00

Environmental EP- 404/2011/D

Permit

Inspected by:

IEC SMEC AECOM

ET AUES

Contractor CRBC-CEC-Kaden JV

PART A: GENERAL INFORMATION

Weather: Sunny ☑ Fine □ Cloudy □ Rainy □ Temperature: 33 °C

Humidity: High Moderate Low $\sqrt{}$ Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

No adverse environmental issue was observed during the site inspection

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

Expose surface was covered by tarpaulin sheet or other means.

Photo recorded for the Recification

Nil

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(4)-20190628 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: Contract No. / Contract 7 IEC SMEC Date: 28 June 2019 ER AECOM Time: 14:30 ET AUES Environmental EP-404/2011/D Contractor SIEMENS **Permit** PART A: **GENERAL INFORMATION** Weather: Fine Cloudy Rainy 0C Sunny Temperature: 33 **Humidity**: High Moderate Low $\sqrt{}$ \square Wind: Strong Breeze Light Calm **Observation / Issues/ Reminder Recorded on Site:** No adverse environmental issue was observed. **Status of Water Quality Mitigation Measures:** The site office was hard paved and no adverse water quality impact was observed. Photo recorded for the Recification N/A

AUES

AECOM

CRBC-CEC-Kaden JV

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai
Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6
Contract No. / Contract 7

Checklist No: CE45/2008-(6)-20190613

Inspected by:
IEC SMEC

Contract No. / Contract 7
Date: 13 June 2019

Time: 09:30

Environmental Permit

EP- 404/2011/D

PART A:	GENERAL INFORMATION										
Weather:	Sunny		Fine		Cloudy	\square	Rainy		Temperature:	27	^{0}C
Humidity:	High		Moderate	\square	Low						
Wind:	Strong		Breeze		Light		Calm				

Observation / Issues/ Reminder Recorded on Site:

No adverse environmental issue was observed during the site inspection

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

ER

ET

Contractor

No wastewater flowing from the site to public road was observed.

Photo recorded for the Recification

N/A

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai

Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

Contract No. / Contract 7
Date: 20 June 2019
Time: 14:00

Environmental EP- 404/2011/D

Permit

Checklist No: CE45/2008-(6)-20190620

PART A:	GENERAL INFORMATION											
Weather:	Sunny	\square	Fine		Cloudy		Rainy		Temperature:	32	^{0}C	
Humidity :	High		Moderate		Low							
Wind:	Strong		Breeze		Light		Calm					

Observation / Issues/ Reminder Recorded on Site:

Discharge water with insuffiencet treatment was observed at Bridge Y. The Contractor should provide adquate treamtent for the wastewater genearted from the site.

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

Wastewater treatment facility was properly implemented and bund was installed to prevent wastewater from wheel washing flowing to public area.

Sedimentation was enhanced for the silt removal.

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai
Boundary Control Point and Associated Works

Project Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6

Inspected by:

Contract No. / Contract 7
Date: 27 June 2019

Time: 14:00

Environmental EP- 404/2011/D

Permit

| ISPECTED BY: | ISPE

PART A: **GENERAL INFORMATION** Weather: Cloudy Rainy 31 0C Sunny Fine Temperature: $\overline{\mathbf{A}}$ **Humidity:** High Moderate Low $\sqrt{}$ Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

No adverse environmental issue was observed during the site inspection.

Status of Water Quality Mitigation Measures:

Wastewater treatment facility was properly implemented.

No wastewater flowing from the site to public area was observed.

Photo recorded for the Recification

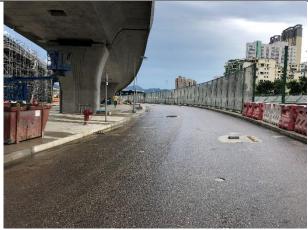
Nil

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(7)-20190606 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: / Contract 7 IEC Contract No. SMEC Date: 6 June 2019 ER AECOM Time: 14:30 ET AUES **Environmental** EP-404/2011/D Contractor **KRSJV** Permit PART A: **GENERAL INFORMATION** Cloudy 0C Weather: Sunny Fine Rainy Temperature: 33 **Humidity:** High Moderate $\sqrt{}$ Low Wind: Strong Breeze Light Calm **Observation / Issues/ Reminder Recorded on Site:** No adverse environmental issue was observed. The Contractor was reminded to maintain haul road clean and tidy. **Status of Water Quality Mitigation Measures:** Perimeter channel to collect site runoff. Photo recorded for the Recification N/A

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(7)-20190613 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: Contract No. / Contract 7 IEC SMEC Date: 13 June 2019 ER AECOM Time: 10:30 EΤ AUES Environmental EP-404/2011/D Contractor **KRSJV** Permit PART A: **GENERAL INFORMATION** Weather: Fine Cloudy ablaRainy 27 0C Sunny Temperature: **Humidity:** High $\overline{\mathbf{A}}$ Moderate Low \square Wind: Strong Breeze Light Calm


Observation / Issues/ Reminder Recorded on Site:

- No adverse environmental issue was observed.
- The Contractor was reminded to dispose general refuse regularly.

Status of Water Quality Mitigation Measures:

Perimeter channel to collect site runoff.

The site area was hard paved and no adverse water quality impact was observed.

Photo recorded for the Recification						
N/A						

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(7)-20190618 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: Contract No. / Contract 7 IEC SMEC Date: 18 June 2019 ER AECOM Time: 14:30 EΤ AUES **Environmental** EP-404/2011/D Contractor **KRSJV Permit** PART A: **GENERAL INFORMATION** Weather: Fine Cloudy ablaRainy 29 0C Sunny Temperature: **Humidity:** High Moderate $\sqrt{}$ Low \square Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

No adverse environmental issue was observed.

Status of Water Quality Mitigation Measures:

Perimeter channel to collect site runoff.

The site area was hard paved and no adverse water quality impact was observed.

AUES

Project: Agreement No. CE 45/2008 (CE) - Liantang/Heung Yuen Wai Checklist No: CE45/2008-(7)-20190628 **Boundary Control Point and Associated Works Project** Contract 2 / Contract 3 / Contract 4 / Contract 5 / Contract 6 Inspected by: Contract No. / Contract 7 IEC SMEC Date: 28 June 2019 ER AECOM Time: 15:30 EΤ AUES Environmental EP-404/2011/D Contractor **KRSJV** Permit PART A: **GENERAL INFORMATION** Cloudy Rainy 0C Weather: Sunny Fine Temperature: 32 **Humidity:** High Moderate Low \square Wind: Strong Breeze Light Calm

Observation / Issues/ Reminder Recorded on Site:

No adverse environmental issue was observed.

Status of Water Quality Mitigation Measures:

The site area was hard paved and no adverse water quality impact was observed.

Hydroseeding/ plantation was provided on the slope surfaces to minimize muddy surface run-off during rain storm.

Photo recorded for the Recification	
NI/A	
N/A	

AUES

Checklist No: <u>SSC50</u>5- 20190605 Project: ArchSD Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – Inspected by: BCP Buildings and Associated Facilities IEC Date: 5 June 2019 AR ArchSD 10:00 ΕT Time: AUES **Environmental** EP-404/2011/D EO Leighton **Permit** Contractor Leighton PART A: **GENERAL INFORMATION** $\overline{\mathbf{A}}$ ^{0}C Weather: Sunny Fine Cloudy Rainy Temperature: 31

Observations/ Issues/ Reminder Recorded on Site:

Moderate

Breeze

- No adverse environmental issue was observed.

High

Strong

Humidity:

Wind:

- The Contractor was reminded to provide anti mosquito measure on site.

Low

Light

- The Contractor was reminded to maintain good housekeeping on site.

Status of Water Quality Mitigation Measures:

The site area at site entrance was hard paved and no adverse water quality impact was observed.

Calm

Wastewater treatment facility was implemented at work area near Site Office.

hoto recorded for the Recification	
l/A	

AUES

Project: ArchSD Contract No: SS C505 Construction of Checklist No: SSC505- 20190612

Liantang/Heung Yuen Wai Boundary Control Point (BCP) - Inspected by:

BCP Buildings and Associated Facilities

Date: 12 June 2019 Time: 10:00

Environmental EP- 404/2011/D Permit

 IEC

 AR
 ArchSD

 ET
 AUES

 EO
 Leighton

 Contractor
 Leighton

PART A: GENERAL INFORMATION

Weather: Sunny □ Fine ☑ Cloudy □ Rainy □ Temperature: 28 °C

Humidity: High ☑ Moderate □ Low □

Wind: Strong □ Breeze □ Light ☑ Calm □

Observations/ Issues/ Reminder Recorded on Site:

- No adverse environmental issue was observed.
- Accumulation of C&D waste was observed at building 2. The Contractor should dispose C&D waste regularly to prevent accumulation.

Status of Water Quality Mitigation Measures:

The site area was hard paved and no adverse water quality impact was observed.

Wastewater treatment facility was implemented at work area near Site Office.

Waste disposal was conducted regularly.

AUES

Checklist No: <u>SSC50</u>5- 20190619 Project: ArchSD Contract No: SS C505 Construction of Liantang/Heung Yuen Wai Boundary Control Point (BCP) – Inspected by: BCP Buildings and Associated Facilities IEC **SMEC** 19 June 2019 AR Date: ArchSD AUES Time: 09:30 ET **Environmental** EP- 404/2011/D EO Leighton **Permit** Contractor Leighton PART A: **GENERAL INFORMATION** 0C Weather: Sunny Fine Cloudy Rainy Temperature: 31

 $\sqrt{}$

Observations/ Issues/ Reminder Recorded on Site:

Moderate

Breeze

- No adverse environmental issue was observed.

High

Strong

Humidity:

Wind:

- The Contractor was reminded to remove the stagnant water cumulated over on-site after rain.

Low

Light

- The Contractor was reminded to provide sufficient dust mitigation measures for the dusty work such as cement mixing and breaking.

Status of Water Quality Mitigation Measures:

The site area was hard paved and no adverse water quality impact was observed.

Calm

Wastewater treatment facility was implemented at work area near Site Office.

AUES

Project: ArchSD Contract No: SS C505 Construction of Checklist No: SSC505- 20190626 Liantang/Heung Yuen Wai Boundary Control Point (BCP) – Inspected by: BCP Buildings and Associated Facilities IEC 26 June 2019 AR Date: ArchSD ΕT Time: 10:00 AUES **Environmental** EP-404/2011/D EO Leighton **Permit** Contractor Leighton PART A: **GENERAL INFORMATION** 0C Weather: Sunny Fine Cloudy Rainy Temperature: 29

 \square

Observations/ Issues/ Reminder Recorded on Site:

Moderate

Breeze

- No adverse environmental issue was observed.

High

Strong

Humidity:

Wind:

- The Contractor was reminded to repair/replace the broken water barrier.

Low

Light

- The Contractor was reminded to remove the stagnant water regularly.

Status of Water Quality Mitigation Measures:

The site area was hard paved and no adverse water quality impact was observed.

Calm

Wastewater treatment facility was implemented at work area near Site Office.