MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK

(No. EP-349/2009/N)

Commissioning Test Report

- Part I Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)
- Part II Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings
- Part III Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building North (SPN) and ERS Plant Building South (SPS)
- Part IV Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)
- Part V Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

Part VI - Train Noise

Verified by	:	(Eric Ching)			
Position	:	Independent Environmental Checker			
Date	:	12 Can 2010			

MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK

(No. EP-349/2009/N)

Commissioning Test Report

- Part I Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)
- Part II Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings
- Part III Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building North (SPN) and ERS Plant Building South (SPS)
- Part IV Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)
- Part V Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

Part VI - Train Noise

Certified by	:	Belly			
		(Raymond Wong)			
Position	•	Environmental Team Leader			
Date	:	12 September 2018			

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

MTR Corporation

May 2018

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

1 Introduction

The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Project (hereinafter known as "XRL") covers a 26km long underground rail line on dedicated tracks that run between the terminus in West Kowloon and the boundary at Huanggang, where connects with the XRL Mainland section. XRL Project also includes the construction of ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).

The Environmental Impact Assessment (EIA) Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/M) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 25 June 2018.

This report is prepared with reference to EP Condition 2.36, "The Permit Holder shall, no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational airborne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents".

MTR Corporation has prepared the Commissioning Test Report for Fixed Plant Noise for the noise measurement to show the compliance of noise criteria in accordance with the EIA Report and the EP; also the noise measurement for investigation of any tonal, impulsive and intermittent characteristics from the fixed plant noise sources. This report presents the noise measurement methodology, calculated Sound Power Levels from noise measurements, results of noise measurement for the fixed plant noise sources installed at Kwai Chung Ventilation Building (KCV) and confirming any characteristics of tonality, impulsiveness and intermittency. For the fixed plant noise verification at the other ventilation buildings and West Kowloon Terminal (WKT) areas, separate reports would be submitted.

2 Noise Criteria

2.1 Fixed Plant Noise Criteria in EIA

With reference to the IND-TM under the Noise Control Ordinance (NCO), the relevant acceptable noise levels (ANL) where determined based on the area sensitivity rating (ASR). The fixed plant noise criteria for the representative noise sensitive receivers (NSRs) were determined in EIA as follow (whichever is lower):

5dB(A) below the appropriate ANL set out in the IND-TM (the ANL-5dB(A) criterion);
 or

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

• The prevailing background noise levels where the prevailing background noise level is 5dB(A) below the appropriate ANL (i.e. ANL-5dB(A))

The noise criteria above were determined for planning purpose. While for operation, the fixed plant noise is controlled by a Noise Abatement Notices system governed by the NCO.

The fixed plant noise criteria for the NSR along the XRL alignment in KCV area, with the latest status of representative NSR, are presented in **Table 2.1** below. Appropriate corrections in tonal, impulsive or intermittent characteristics should be applied, where applicable, in accordance with IND-TM during the commissioning test.

Table 2.1 Summary of Fixed Plant Noise Criteria

	Description	Area Sensitivity	Noise Criteria, dB(A) (a)	
NSR		Rating (ASR) ^(a)	Day and Evening	Night-time
			Time	
Kwai Chung Ve	ntilation Building (KCV) (I	Figure 2.1)		
KC1	Kwai Oi House, Kwai	В	60	50
	Fong Estate			

Note:

(a) ASR and noise criteria either follow that defined in the EIA Report or relevant application for variation of environmental permit (VEP-377/2012) where appropriate.

Fixed plant noise sources include: ventilation fans for building services, and plenum for tunnel ventilation, which are generally located inside plant rooms. Noise generated from indoor fixed plants would be emitted through louvres. The worst case scenario is when all eligible fixed plants at the same location operating concurrently under "normal scenario" for XRL operation during daytime and evening time periods; and night-time period, respectively. The worst case scenario was considered for compliance check against the fixed plant noise criteria and the noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs.

Table 2.2 below summarised the information of the fixed plant noise sources and the layout plan is shown in **Figure 2.2**

Table 2.2 Summary of Fixed Plant Noise Sources

Source Location	Direction Facing	Louvre ID
Kwai Chung Ventilation Building (KCV) (Figure 2.2)		
Tunnel ventilation shaft	North	N1
FS control room/Corridor/Irrigation pump room	North	N2
UPS room	North	N3
LV switch room	North	N4
Air compression receiver room	North	N5
Smoke extraction fan	North	N6
Fresh air louvre	East	E1

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

Source Location	Direction	Louvre ID
	Facing	
Kwai Chung Ventilation Building (KCV) (Figure .		
Exhaust air louvre	East	E2
Staircase pressurization fan room	East	E3
Tunnel ventilation shaft	South	S1
P&D pump and tank room	South	S2
MCC room	South	S3
TECS control room	South	S4
Tunnel ventilation shaft	West	W1
Tunnel ventilation shaft	West	W2
Staircase pressurization fan room	West	W3
Smoke extraction make-up room	West	W4

3 Methodology

3.1 Noise Measurement for the Fixed Plants

Noise measurements to obtain the noise levels of the fixed plants were undertaken by Supreme Acoustics Research Limited, GAS Joint Venture and ATAL Building Services Engineering Ltd. The commissioning tests were carried out by qualified persons possessing at least 7 years of noise control experience and a corporate member of Hong Kong Institute of Acoustics or equivalent in accordance with S3.22 of the XRL EM&A Manual.

3.1.1 Methodology

Three measurement methods, namely Method 1 (at or near NSR), Method 2 (Far Field) and Method 3 (Near Field), have been developed based on NCO-TM, basic acoustic principles and ISO 3746-2010: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using an enveloping measurement surface over a reflecting plane, respectively. Given the fixed plant noise sources are steady, all proposed methods could be adopted for all types of fixed plant source depending on the site environment/constraints that might affect the possibility to obtain valid results, considerations including but not limited to:

- Background noise with less influence to the measured noise levels
- Free of obstacles between measurement location and noise source
- Accessibility and Safety Concerns

Considering the reliability of data collection, i.e., results not influenced by the above-mentioned considerations, and the measurement efficiency on site, the selection of methodology was prioritized based on efficient measurement as Method 1 (at or near NSR) > Method 2 (Far Field) > Method 3 (Near Field). For Kwai Chung Ventilation Building (KCV), considering there are other building structures between the NSR and noise sources, also the heavily trafficked Kwai Chung Road was immediately in front of the NSR; obtaining valid results using Method 1 was considered unlikely. As such, only Method 2 and Method 3 were

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

considered applicable. Method used for each louvre is presented in Appendix A3. Details of the measurement methodology are shown in **Appendix A1**.

Method 1 - Measuring Sound Pressure Level at NSR or Near NSR

- Measurement at NSR or near NSR at distance D away from the louvre, where D was
 at least two times the largest dimension b of the louvre and rounded up to integer,
 i.e.: D≥2b
- The microphone was pointing toward the louvre and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre was switched OFF
- The sound pressure level (SPL) at NSR or near NSR was determined by the following equation:

Background corrected $L_p = L_p + BG - [20logD + 8]$ (if applicable) + façade correction (if applicable)

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

BG is the background correction factor, in dB(A);

D is separation between the center of louvre or surface of the plant and the microphone, in metres.

Method 2 - Measuring Sound Power Level by Far Field Method for Louvres or for Plants

- The microphone was positioned at the perpendicular distance D away from the center of the louvre or the surface of the plant, where D was at least two times the largest dimension b of the louvre or plant and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the center of the louvre/combined louvre area or the center the plant; and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from the louvre or plant was switched OFF
- The sound power level (SWL) of the louvre or the plant was determined, based on basic acoustic principles, by the following equation:

$$L_w = L_p + 20logD$$
, center +8 + BG

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

D,center is separation between the center of louvre or plant and the microphone, in metres;

BG is the background correction factor, in dB(A).

Method 3 – Measuring Sound Power Level by Near Field Method for Louvres or for Plants

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

- A right parallelepiped hypothetical measurement box for each louvre or each surface of a plant was determined according to ISO 3746, with each side being spaced a distance *D* from the corresponding side of the louvre or plant
- Each of the 5 planes of the measurement box was subdivided into equal-sized rectangular grids, the length of each side of the grids should be less than or equal to 3 times of distance D, i.e. grid length $\leq 3D$
- The microphone was pointing toward the center of each grid, and a measurement was taken for each grid during the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre or plant was switched OFF
- The SWL of the louvre or the plant was determined by the following equation:

$$L_w = L_p + 10log(S) - K_{1A} - K_{2A}$$

Where

 L_p is the averaged measured L_{eq} of all measurement points, in dB(A);

S is the total surface area over the measurement box (total 5 planes), in m²;

 K_{1A} is the background correction factor as described in ISO 3746:2010, in dB(A);

 K_{2A} is the environmental correction for sound absorption and reflection as described in *ISO 3746:2010*, in dB(A).

Except for Method 3, which was adopted with reference to ISO 3746; the noise sources measured using Method 1 or Method 2 were considered steady if the difference between the maximum and minimum Leq is less than or equal to 1dB(A), ie, $\leq 1dB(A)$; average Leq was therefore considered. Otherwise, the maximum Leq would be adopted for SWL determination as a conservative approach.

3.1.2 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.1**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2a**.

Table 3.1 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	NTi XL2	5011
	NTi XL2	5617
	NTi XL2	6240
	Casella CEL-63X	5044655
Calibrator	BSWA TECH CA111	320248
	Casella CEL-120/1	5060836

Before and after each series of measurements, a calibration check was carried out on the sound level meter by the calibrator. The difference between the readings made before and after each series of measurements shall be less than or equal to 1.0 dB.

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

3.1.3 Measurement Schedule

The noise measurements were carried out during daytime, evening time and night-time periods, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.2**.

Table 3.2 Measurement Schedule

Location	Date	Time
KCV	25 - 26 April 2017	22:00 - 04:00
	22 September 2017	18:00 – 21:30
	6 October 2017	15:30 – 16:00

3.2 Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

3.2.1 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.3**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2b**.

Table 3.3 Noise Measurement Equipment

Equipment	Model	Serial Number	
Sound Level Meter	Larson Davis 831	0002594	
Calibrator	B&K 4231	2084888	

3.2.2 Measurement Parameters

With reference to the IND-TM, the noise measurement was conducted at the representative NSR for $L_{Aeq (30min)}$, in one-third octave band under the worst case scenario, ie, "normal scenario" during daytime and evening time periods; and night-time period, respectively.

The fixed plant noise sources will be operated steadily and continuously, and therefore no intermittency and impulsiveness are expected at the NSR. However, the characteristics of intermittency and impulsiveness will be recorded, if any, based on observation during measurement.

2 sets of background noise level, L_{Aeq (Smin)}, and in one-third octave band, were measured at each measurement location when all fixed plant noise sources were not in operation.

3.2.3 Measurement Location

The noise measurement was carried out at the first layer of NSRs for the concerned area. For KCV, the representative NSR is Kwai Oi House, Kwai Fong Estate (KC1). The measurement location is shown in **Figure 2.1**.

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

3.2.4 Measurement Schedule

The noise measurements were carried out at the monitoring location for KCV, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.4**.

Table 3.4 Measurement Schedule

Location	Date
KCV	13 - 14 February 2018

4 Measurement Results

4.1 The Noise Levels of Fixed Plant Noise Sources

The noise levels measured under the worst case scenario are determined and presented in **Table 4.1**. Details of the measurement results are shown in **Appendix A3**.

Table 4.1 Summary of Sound Power Levels for Fixed Plants

Works Area	Direction Facing/ Elevation	Calculated SWL L _{Aeq} , dB(A)		
KCV	North N1	95		
	North N2	78		
	North N3	72		
	North N4	89		
	North N5	81		
	North N6 ^(a)	99		
	East E1	71		
	East E2	67		
	East E3 ^(a)	89		
	South S1	94		
	South S2	77		
	South S3	87		
	South S4 ^(a)	100		
	West W1	91		
	West W2	89		
	West W3 ^(a)	85		
	West W4 ^(a)	110		

Note:

(a) The plant would be operated during day and evening time only under normal scenario.

A compliance check against the fixed plant noise criteria at NSR was conducted. The cumulative noise levels from noise sources were assessed to ensure the compliance with the noise criterion. **Table 4.2** shows the results, details of the calculation are also given in **Appendix A3**.

Table 4.2 Cumulative Fixed Plant Noise at NSR

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
KC1	Ventilation Shaft for N/B ^(a) and Building Service	46	33	60	50	Υ	Υ
KC1	Ventilation Shaft for S/B ^(a) and Building Service	46	33	60	50	Υ	Υ

Note:

(a) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

4.2 The Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

Noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs were conducted under the normal scenarios during daytime and evening, and during night-time, respectively and summarised in **Table 4.3** below. In each scenario, two sets of noise measurements, L_{Aeq(30min)}, in one-third octave band, were carried out to confirm that the difference in the measured noise levels with and without operation of fixed plant noise sources were less than 3.0 dB(A). That means the fixed plant noise sources from the ventilation building are not considered as significant noise sources at the NSR. Noise measurements at NSR KC1 (Kwai Oi House, Kwai Fong Estate) were dominated by road traffic noise; characteristics of tonality, impulsiveness and intermittency due to the fixed plant noise sources from KCV was not noticeable during the measurement. Detailed results of noise measurements are shown in **Appendix A4**.

Table 4.3 Noise measurement Results at NSR

NSR	Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Difference between Measured Noise Level and Background Level, dB(A), (< 3 or >= 3)
KC1	Day and Evening Time	63.8 (22:01 – 22:31) 63.7 (22:31 – 23:01)	63.5 (21:12 –:28)	< 3
	Night- time	63.1 (23:39 – 00.09) 62.5 (00:10 – 00:40)	61.2 (00:46 –01:02)	< 3

As the differences between measured noise levels and background levels are all less than 3.0 dB(A), it was unable to obtain reliable corrected noise levels at the NSRs and corrections for tonality, impulsiveness or intermittency were therefore not applicable.

Commissioning Test Report for the Fixed Plant Noise at Kwai Chung Ventilation Building (KCV)

5 Conclusions

To fulfil the XRL EP condition 2.36, the fixed plant noise verification were undertaken and the measurement results indicated all the fixed plant noise levels in KCV are in compliance with the fixed plant noise criteria.

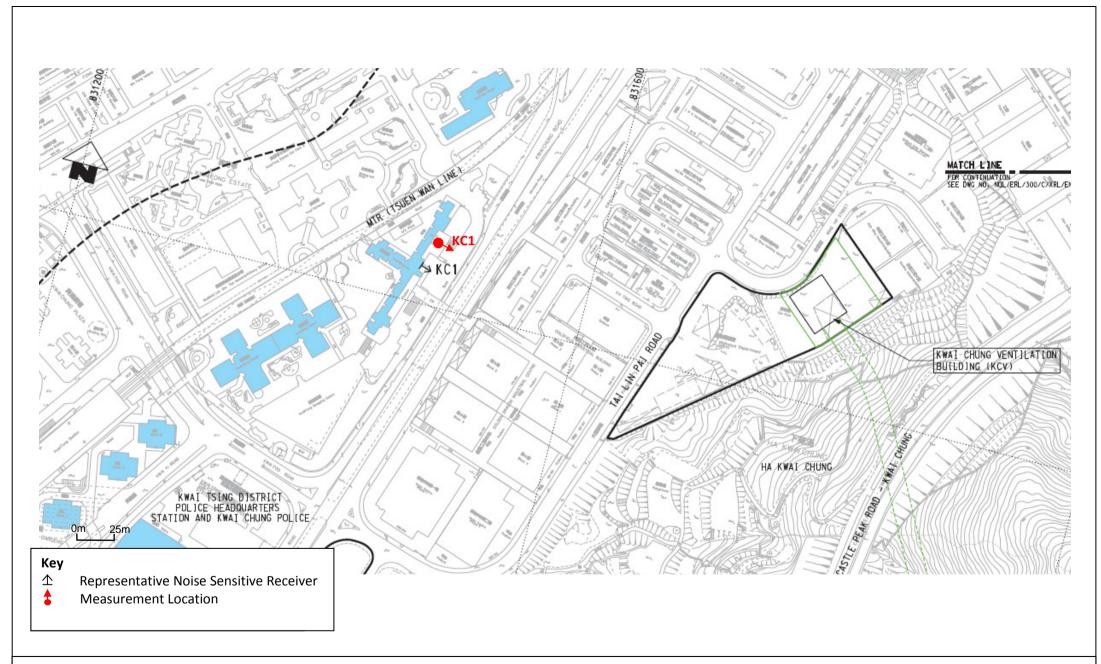


Figure 2.1 – Representative Noise Sensitive Receiver (NSR) and Noise Measurement Location for KCV

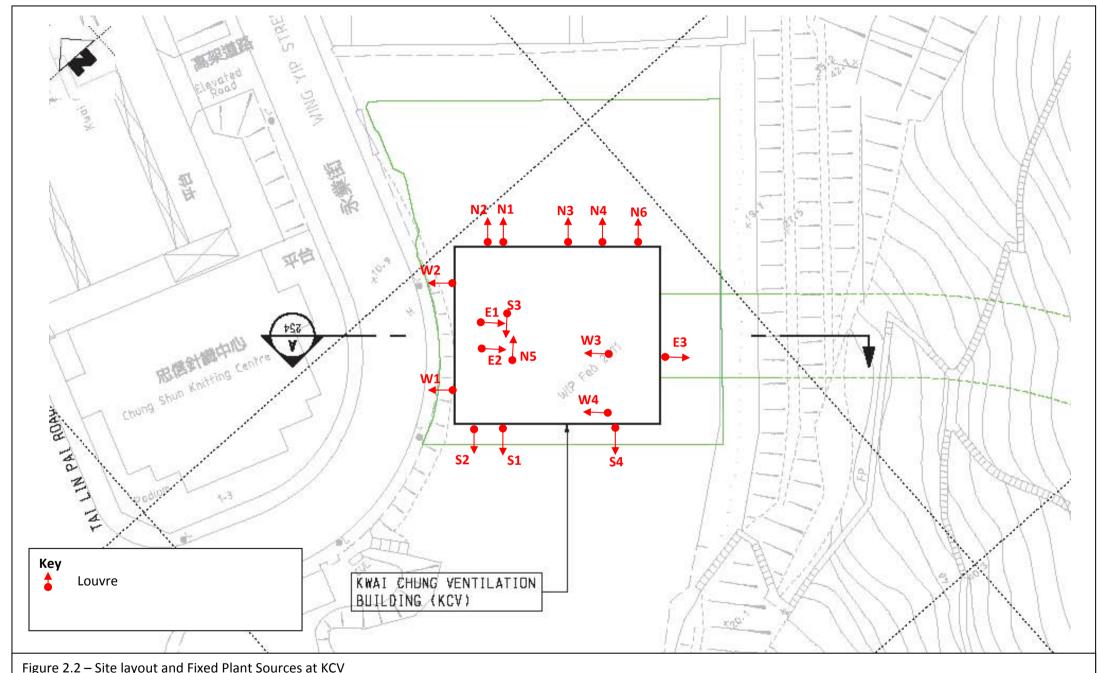


Figure 2.2 – Site layout and Fixed Plant Sources at KCV

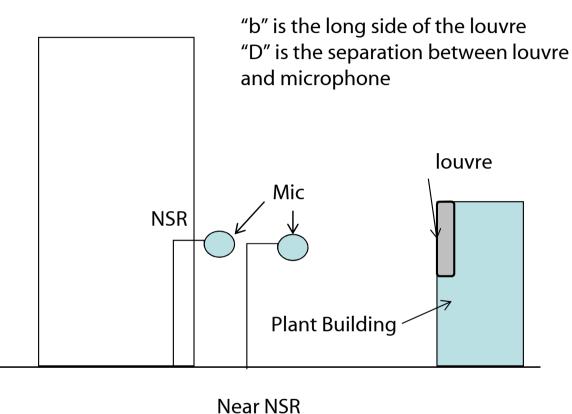
Appendix A1 –Measurement Methodology

XRL Fixed Plant Noise Test Plan

BY: MTR XRL Env Team

Summary of Testing Methodology

Method	Standard	No of repeated measurement	No of measurement point	Measurement distance, D	To Verify
Method 1 (NSR Method)	NCO - TM	3 sets of Leq 1min	Depend on number of NSRs nearby	At the most affected NSR or near NSR	ANL-5 or Background Prevailing
Method 2 (Far Field Method)	Basic Acoustic Principle	3 sets of Leq 1min	1 (for louvre/plant with uniform plane source)	D ≧2b and roundup to integer	ANL-5 or Background Prevailing
Method 3 (Near Field Method)	Developed based on ISO3746:2010	1 set of Leq 10s ^(a) /1min	Depend on the size of the louvre/plant and the measurement distance should follow guideline in ISO3746	At least 1m from the louvre opening/plant (unless otherwise specified)	ANL-5 or Background Prevailing

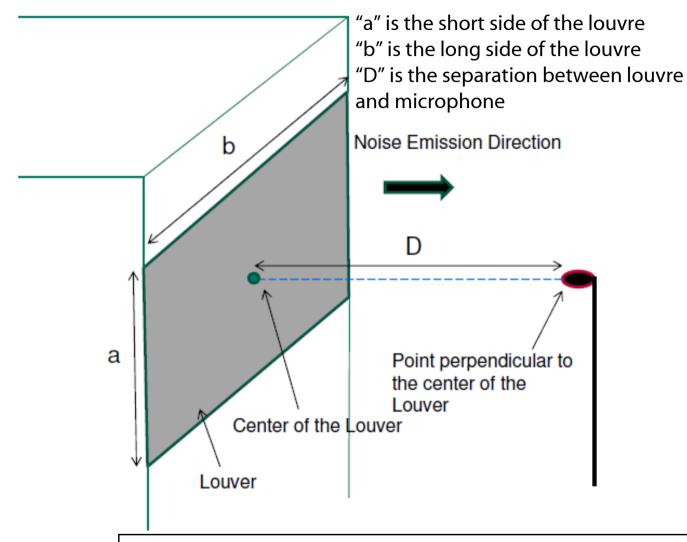

Note:

(a) If fixed plant items are operated at their noisiest operating modes and are steady during measurement, 10-second will be adopted for the duration of measurement.

MTR Corporation Page 2

Method 1 – Sound Pressure Level at NSR or Near NSR for louvre or Plant

- Based on NCO TM
- The locations of measurement points are depended on the site situation
- 3.0 dB façade correction should be considered if the location of measurement point is not at assessment point as defined in NCO-TM
- "D" must be greater than 2b and roundup to integer
- Detail calculation of the SPL should refer to the NCO-TM.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


Background corrected SPL = Mean $L_{Aeq1min}$ + BG - [20log (D) +8] (if applicable) + façade correction (if applicable)

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

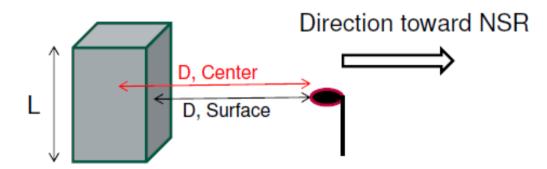
MTR Corporation Page 3

Method 2 – Far Field Sound Power Testing Method for louvre

- Based on basic acoustic principle
- "D" must be greater than 2b and roundup to integer, i.e.: D≧2b
- The microphone must point to the center of the louvre.
- At least 3 sets of LAeq, 1min should be obtained
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 +BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach


MTR

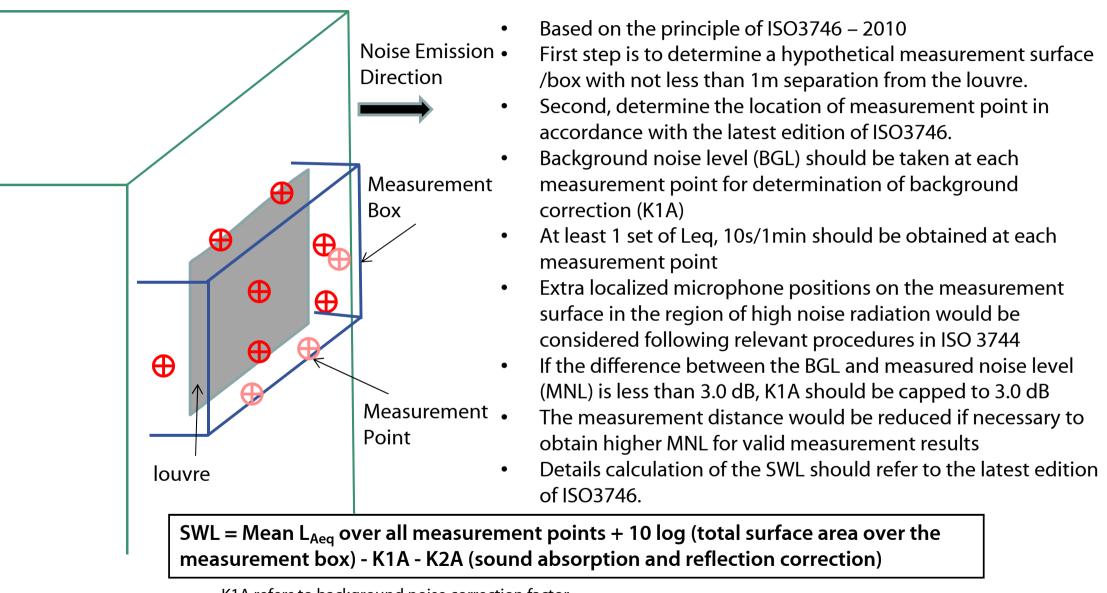
Method 2 – Far Field Sound Power Testing Method for Plant

"L" is the longest side of the plant item

"D, Center" is the separation between center of the plant item and microphone

"D, Surface" is the separation between surface of the plant item and microphone

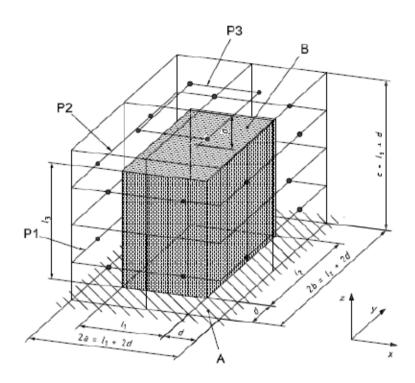
- "D, Surface" must be greater than twice of L
 (2L) and roundup to integer
- The microphone must be pointing to the center of the plant
- At least 3 sets of LAeq, 1min should be obtained at each measurement point.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 + BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

MTR Corporation Page 5

Method 3 – Near Field Sound Power Testing Method for louvre



K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR

MTR Corporation

Method 3 – Near Field Sound Power Testing Method for Plant

Kev

- Based on ISO 3746
- The locations of measurement points are depended on the size of the plant, which cannot be easily generalised (See figure on the left for example).
- Extra localized microphone positions on the measurement surface in the region of high noise radiation would be considered following relevant procedures in ISO 3744
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, K1A should be capped to 3.0 dB
- The measurement distance would be reduced if necessary to obtain higher MNL for valid measurement results
- Detail calculation of the SWL should refer to the latest edition of ISO 3746.

SWL = Mean L_{Aeq} over all measurement points + 10 log (total surface area over the measurement box) - K1A - K2A (sound absorption and reflection correction)

K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR Corporation Page 7

End

MTR Corporation Page 8

Appendix A2 – Ca	libration Certifica	tes	

Appendix A2a – (Fixed Plants)	Calibration Certifi	cates (Noise Me	asurement for th	e

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 6240 Capsule Serial Number: 9498

• Certificate Issued: 10 January 2017

• Certificate Number: 42745-6240-M2230

Results: PASSED

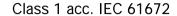
(for detailed report see next page)

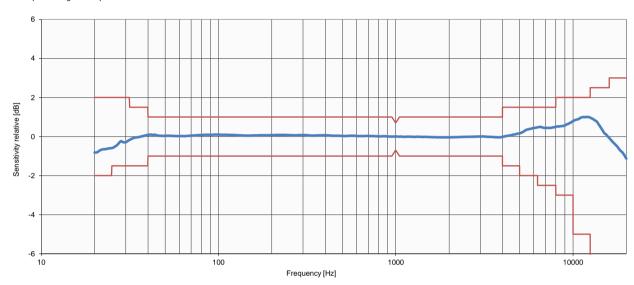
Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan


Date: 10 January 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 6240 Capsule Serial Number: 9498

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	lz, 114 dBSPL	actual 43.3 mV/Pa	uncertainty ¹ ±2.85%
Test Conditions:	Temperature:	27.2 °C	±0.5 °C
	Relative Humidity:	39.5 %	±2%

• Calibration Equipment Used:

Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland

Air Pressure:

- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

calibration

±0.25 kPa

95.94 kPa

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5011 Capsule Serial Number: 7698

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5011-M2230

Results: PASSED

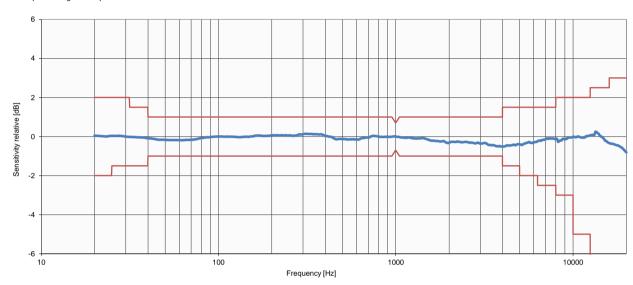
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan **ww.nti-aud**io.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5011 Capsule Serial Number: 7698

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	Hz, 114 dBSPL	actual 46.5 mV/Pa	calibration uncertainty ¹ ±2.85%
• Test Conditions:	Temperature: Relative Humidity: Air Pressure:	21.1 °C 47.2 % 97.4 kPa	±0.5 °C ±2% ±0.25 kPa

• Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5617 Capsule Serial Number: 8507

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5617-M2230

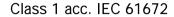
Results: PASSED

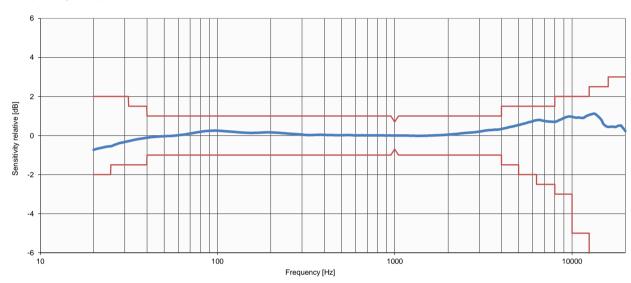
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102


LI\† 9494 Schaan www.nti-audio.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5617 Capsule Serial Number: 8507

Detailed Calibration Test Results:

Frequency response:

calibration actual uncertainty Sensitivity @ 1 kHz, 114 dBSPL 48.1 mV/Pa ±2.85%

• Test Conditions: Temperature: 24.6 °C ± 0.5 °C Relative Humidity: 43.6 % $\pm 2\%$ Air Pressure: 97.65 kPa ± 0.25 kPa

Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Calibration Chart

BSWA-IV-C021-03-0048A

INVESTIGATION AND AND AND AND AND AND AND AND AND AN			
Sound Calibrator model	CAUL		
Serial Number	20248		
Appearance	OK		
Power Supply	1.5V LR6 (AA battery) x2		
Sound Pressure Level	13.93 / 114.02 dB		
Frequency	1000.5 / 1000.5 Hz		
THD (@1000Hz)	0.39 / 0.95 %		

Copying and using select parts, or tampering with this document without the permission of BSWA is forbidden!

BSWA Technology Ltd.

www.bswa-tech.com

This equipment was calibrated at the following ambient conditions:

Temperature:23 °CHumidity:35 %RHPressure:1025 hPa

This equipment is qualified!

Calibrated

Date

Appendix A2b – Calibration Certificates (Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs)

Calibration Certificate

Certificate No. 706817

Page of

3 Pages

Customer: Supreme Acoustics Research Limited.

Address: Rm3915, Hong Kong Plaza, 188 Connaught Road West, Hong Kong

Order No.: Q72718

Date of receipt

13-Jul-17

Item Tested

Description : Sound Level Meter

Manufacturer: Larson Davis

I.D.

: SLM No.1

Wodel

: 831

Serial No.

: 0002594

Test Conditions

Date of Test:

25-Jul-17

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672.

Test Results

All results were within the IEC 61672 Type 1 or manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

703741

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by

Approved by:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date:

25-Jul-17

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 706817

Page 2 of 3 Pages

Results:

1. Self-generated noise: 20.3 dBA (Mfr's Spec ≤ 19 dBA)

2. Acoustical signal test

	UUT Setting			* * * * * * * * * * * * * * * * * * * *
Range (dB)	Frequency Weighting	Time Weighting	Applied Value (dB)	UUT Reading (dB)
20-140	A	F·	94.0	94.0
		S		94.0
	C	 . F		94.0
	Z	F		94.0
	A	F	114.0	114.1
		S		114.1
	C	F		114.1
	Z	F		114.1

IEC 61672 Class 2 Spec. : \pm 1.4 dB

Uncertainty: ± 0.1 dB

3 Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Class 2 Spec.
31.5 Hz	-39.6	$-39.4 \text{ dB}, \pm 3.5 \text{ dB}$
63 Hz	-26.3	$-26.2 \text{ dB}, \pm 2.5 \text{ dB}$
125 Hz	-16.3	- 16.1 dB, ± 2.0 dB
250 Hz	-8.8	- 8.6 dB, ± 1.9 dB
500 Hz	-3.3	- 3.2 dB, ± 1.9 dB
1 kHz	0.0 (Ref)	0 dB, ± 1.4 dB
2 kHz	+1.4	+ 1.2 dB, ± 2.6 dB
4 kHz	+1.9	+ 1.0 dB, ± 3.6 dB
8 kHz	+1.8	- 1.1 dB, ± 5.6 dB
16 kHz	-1.3	- 6.6 dB , $+ 6.0 \text{ dB} \sim \infty \text{ dB}$

Uncertainty: $\pm 0.1 \text{ dB}$

Calibration Certificate

Certificate No. 706817

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

		T IT IT	D:ffauanaa	IEC 61672
UUT	Applied	UUT	Difference	
Setting	Value (dB)	Reading (dB)	(dB)	Class 2 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
C	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT Reading (dB)	Difference (dB)	IEC 61672 Class 2 Spec.
Fast	Value (dB) 94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	

Uncertainty: ± 0.1 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 024 hPa.
- 4. Power Supply Check: OK
- 5. Preamplifier model: PRM831, S/N: 019083
- 6. Microphone model: 377B02 , S/N : 126167
- 7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

Calibration Certificate

Certificate No. 707077

2 Pages Page

Customer: Supreme Acoustics Research Limited.

Address: Rm3915, Hong Kong Plaza, 188 Connaught Road West, Hong Kong

Order No.: Q72409

Date of receipt

20-Jul-17

Item Tested

Description: Sound Level Calibrator

Manufacturer: B&K

I.D.

: No.003

Model

: Type 4231

Serial No.

: 2084888

Test Conditions

Date of Test:

24-Jul-17

Supply Voltage

 $(23 \pm 3)^{\circ}C$ Ambient Temperature:

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02, IEC 60942.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	<u>Description</u>	Cert. No.	<u>Traceable to</u>
S014	Spectrum Analyzer	707126	NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	703741	NIM-PRC & SCL-HKSAR
S041	Universal Counter	607883	SCL-HKSAR
S206	Sound Level Meter	605757	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by

Approved by:

24-Jul-17

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 707077

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.
94	94.1	± 0.4 dB
114	114.2	

Uncertainty : $\pm 0.1 \text{ dB}$

2. Short-term Level Fluctuation: 0.0 dB

IEC 60942 Class 1 Spec. : ± 0.1 dB

Uncertainty: $\pm 0.01 \text{ dB}$

3. Frequency

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 60942 Class 1 Spec.
1	0.999 9	± 1 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.6 %

IEC 60942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 023 hPa.

----- END -----

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] ^(v)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	10.03	12.30	3	3	499.2	67.8	53.6	14.2	67.8	95	309	10	30			
			FS control room/Corridor /Irrigation pump room	N2	L	Υ	2.00	0.80	2	4	n/a	60.3	57.1	3.2	57.5	78	309	10	13			
			UPS room	N3	L	Υ	0.80	1.00	2	2	n/a	60.5	57.1	3.4	57.8	72	309	10	7			
			LV switch room	N4	L	Υ	5.00	1.00	2	10	n/a	62.2	57.1	5.1	60.6	89	309	10	24			
			Air compression receiver room	N5	L	Υ	1.20	0.80	2	3	n/a	63.9	55.5	8.4	63.2	81	284	10	17			
			Smoke extraction fan	N6	L	Υ	4.60	3.60	3	1	61.4	81.6	60.4	21.2	81.6	99	309	10	34			
			Fresh air louvre	E1	L	Υ	3.50	3.60	3	0.5	29.8	59.7	57.8	1.9	56.7	71	284	10	7			
		Ventilation	Exhaust air louvre	E2	L	Υ	2.80	2.20	3	0.5	19.2	57.5	57.8	-0.3	54.5	67	284	10	3			
кс1	House, Kwai	Shaft for N/B (i) and	Staircase pressurization fan room	E3	L	Υ	2.40	3.00	2	6	n/a	65.2	53.2	12	65.2	89	307	10	24	46	60	0
	Fong Estate	Building Service	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	11.45	12.30	3	3	533.8	66.4	56.2	10.2	66.4	94	284	-				
			P&D pump and tank room	S2	L	Υ	1.00	1.00	2	2	n/a	65.4	61.2	4.2	63.3	77	284	10	13			
			MCC room	S3	L	Υ	1.50	1.00	2	3	n/a	69.6	55.5	14.1	69.6	87	284	10	23			
			TECS control room	S4	L	Υ	2.00	1.00	2	4	n/a	80.4	60.6	19.8	80.4	100	284	10	36			
			Tunnel ventilation shaft	W1	L	N ⁽ⁱ⁾	7.08	4.70	3	3	282.6	66.1	54.1	12	66.1	91	284	-				
			Tunnel ventilation shaft	W2	L	Υ	7.08	2.60	3	3	242.5	65.2	52.3	12.9	65.2	89	299	10	24			
			Staircase pressurization fan room	W3	L	Υ	2.40	2.00	2	5	n/a	64.2	58.3	5.9	62.9	85	299	10	20			
			Smoke extraction make-up room	W4	L	Υ	2.40	3.00	2	6	n/a	86.4	58.3	28.1	86.4	110	299	10	45			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	10.03	12.30	3	3	499.2	67.8	53.6	14.2	67.8	95	309	-				
			FS control room/Corridor /Irrigation pump room	N2	L	Υ	2.00	0.80	2	4	n/a	60.3	57.1	3.2	57.5	78	309	10	13			
			UPS room	N3	L	Υ	0.80	1.00	2	2	n/a	60.5	57.1	3.4	57.8	72	309	10	7			
			LV switch room	N4	L	Υ	5.00	1.00	2	10	n/a	62.2	57.1	5.1	60.6	89	309	10	24			
			Air compression receiver room	N5	L	Υ	1.20	0.80	2	3	n/a	63.9	55.5	8.4	63.2	81	284	10	17			
			Smoke extraction fan	N6	L	Υ	4.60	3.60	3	1	61.4	81.6	60.4	21.2	81.6	99	309	10	34			
			Fresh air louvre	E1	L	Υ	3.50	3.60	3	0.5	29.8	59.7	57.8	1.9	56.7	71	284	10	7			
		Ventilation	Exhaust air louvre	E2	L	Υ	2.80	2.20	3	0.5	19.2	57.5	57.8	-0.3	54.5	67	284	10	3			
KC1	House, Kwai Fong	Shaft for S/B ⁽ⁱ⁾ and Building	Staircase pressurization fan room	E3	L	Υ	2.40	3.00	2	6	n/a	65.2	53.2	12.0	65.2	89	307	10	24	46	60	0
	Estate	Service	Tunnel ventilation shaft	S1	L	Υ	11.45	12.30	3	3	533.8	66.4	56.2	10.2	66.4	94	284	10	30			
			P&D pump and tank room	S2	L	Υ	1.00	1.00	2	2	n/a	65.4	61.2	4.2	63.3	77	284	10	13			
			MCC room	S3	L	Υ	1.50	1.00	2	3	n/a	69.6	55.5	14.1	69.6	87	284	10	23			

						Louvre	Size (m)							Background							
NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	ment	of	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] ^(v)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
		TECS control room	S4	L	Υ	2.00	1.00	2	4	n/a	80.4	60.6	19.8	80.4	100	284	10	36			
		Tunnel ventilation shaft	W1	L	Υ	7.08	4.70	3	3	282.6	66.1	54.1	12.0	66.1	91	284	10	27			
		Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	7.08	2.60	3	3	242.5	65.2	52.3	12.9	65.2	89	299	-				
		Staircase pressurization fan room	W3	L	Υ	2.40	2.00	2	5	n/a	64.2	58.3	5.9	62.9	85	299	10	20			
		Smoke extraction make-up room	W4	L	Υ	2.40	3.00	2	6	n/a	86.4	58.3	28.1	86.4	110	299	10	45			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)		I					Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	of Measurement Box, S (m²)	Measured L _{Aeq} [dB(A)] (iv)	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] (vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	10.03	12.30	3	3	499.2	67.8	53.6	14.2	67.8	95	309	10	30			
			FS control room/Corridor /Irrigation pump room	N2	L	Υ	2.00	0.80	2	4	n/a	60.3	57.1	3.2	57.5	78	309	10	13			
			UPS room	N3	L	Υ	0.80	1.00	2	2	n/a	60.5	57.1	3.4	57.8	72	309	10	7			
			LV switch room	N4	L	Υ	5.00	1.00	2	10	n/a	62.2	57.1	5.1	60.6	89	309	10	24			
			Air compression receiver room	N5	L	Υ	1.20	0.80	2	3	n/a	63.9	55.5	8.4	63.2	81	284	10	17			
			Smoke extraction fan	N6	L	N ⁽ⁱⁱ⁾	4.60	3.60	3	1	61.4	81.6	60.4	21.2	81.6	99	309	-				
	Kwai Oi	Ventilation	Fresh air louvre	E1	L	Υ	3.50	3.60	3	0.5	29.8	59.7	57.8	1.9	56.7	71	284	10	7			
	House,	Shaft for	Exhaust air louvre	E2	L	Υ	2.80	2.20	3	0.5	19.2	57.5	57.8	-0.3	54.5	67	284	10	3			
KC1	Kwai Fong	N/B ⁽ⁱ⁾ and Building	pressurization fan	E3	L	N ⁽ⁱⁱ⁾	2.40	3.00	2	6	n/a	65.2	53.2	12	65.2	89	307	-		33	50	0
	Estate	Service	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	11.45	12.30	3	3	533.8	66.4	56.2	10.2	66.4	94	284	-				
			P&D pump and tank room	S2	L	Υ	1.00	1.00	2	2	n/a	65.4	61.2	4.2	63.3	77	284	10	13			
			MCC room	S3	L	Υ	1.50	1.00	2	3	n/a	69.6	55.5	14.1	69.6	87	284	10	23			
			TECS control room	S4	L	N (ii)	2.00	1.00	2	4	n/a	80.4	60.6	19.8	80.4	100	284	-				
			Tunnel ventilation shaft	W1	L	N ⁽ⁱ⁾	7.08	4.70	3	3	282.6	66.1	54.1	12	66.1	91	284	-				
			Tunnel ventilation shaft	W2	L	Υ	7.08	2.60	3	3	242.5	65.2	52.3	12.9	65.2	89	299	10	24			
			pressurization fan	W3	Ĺ	N ⁽ⁱⁱ⁾	2.40	2.00	2	5	n/a	64.2	58.3	5.9	62.9	85	299	-				
			Smoke extraction make-up room	W4	L	N ⁽ⁱⁱ⁾	2.40	3.00	2	6	n/a	86.4	58.3	28.1	86.4	110	299	-				
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	10.03	12.30	3	3	499.2	67.8	53.6	14.2	67.8	95	309	-				
			FS control room/Corridor /Irrigation pump room	N2	L	Υ	2.00	0.80	2	4	n/a	60.3	57.1	3.2	57.5	78	309	10	13			
			UPS room	N3	L	Υ	0.80	1.00	2	2	n/a	60.5	57.1	3.4	57.8	72	309	10	7			
			LV switch room	N4	L	Υ	5.00	1.00	2	10	n/a	62.2	57.1	5.1	60.6	89	309	10	24			
			Air compression receiver room	N5	L	Υ	1.20	0.80	2	3	n/a	63.9	55.5	8.4	63.2	81	284	10	17			
			Smoke extraction fan	N6	L	N ⁽ⁱⁱ⁾	4.60	3.60	3	1	61.4	81.6	60.4	21.2	81.6	99	309	-				
1	Kwai Oi	Ventilation	Fresh air louvre	E1	L	Y	3.50	3.60	3	0.5	29.8	59.7	57.8	1.9	56.7	71	284	10	7			
1	House,	Shaft for	Exhaust air louvre	E2	L	Y	2.80	2.20	3	0.5	19.2	57.5	57.8	-0.3	54.5	67	284	10	3	22		
KC1	Kwai Fong	S/B ⁽ⁱ⁾ and Building	pressurization fan Tunnel ventilation	E3	L	N ⁽ⁱⁱ⁾	2.40	3.00	2	6	n/a	65.2	53.2	12.0	65.2	89	307	-		33	50	0
	Estate	Service	shaft P&D pump and tank	S1	L	Y	11.45	12.30	3	3	533.8	66.4	56.2	10.2	66.4	94	284	10	30			
			room MCC room	S2 S3	L	Y	1.00	1.00	2	2	n/a n/a	65.4	55.5	4.2 14.1	63.3	77 87	284	10	13 23			
1			TECS control room	55 S4	L	N (ii)	2.00	1.00	2	4	n/a	80.4	60.6	19.8	80.4	100	284	-	23			
I	l	ı		54		14	2.00	1.00	<u> </u>	1 -	11/4	00.4	00.0	13.0	00.4	100	204					ı I

						Louvre	Size (m)			Surface Area				Background		Distance form					
NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	ment	of	Measured	Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
		Tunnel ventilation shaft	W1	L	Υ	7.08	4.70	3	3	282.6	66.1	54.1	12.0	66.1	91	284	10	27			
		Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	7.08	2.60	3	3	242.5	65.2	52.3	12.9	65.2	89	299	-				
		pressurization fan	W3	L	N ⁽ⁱⁱ⁾	2.40	2.00	2	5	n/a	64.2	58.3	5.9	62.9	85	299	-				
		Smoke extraction make-up room	W4	L	N ⁽ⁱⁱ⁾	2.40	3.00	2	6	n/a	86.4	58.3	28.1	86.4	110	299	-				

Remarks:

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

KCV - Noise Measurement Result - data

				Location /	
		Scenario		measurement	
Description Tunnel ventilation shaft	Louvre ID N1	Normal	Method 3	Point 1	LAeq [dB] 65.8
Tunner ventriation shart	NI	Normal	3	Point 2	65.7
	NI	Normal	3	Point 3	67.3
	NI	Normal	3	Point 4	68.3
	NI	Normal	3	Point 5	68.9
	NI	Normal	3	Point 6	68.6
	NI	Normal	3	Point 7	68.3
	NI	Normal	3	Point 8	67
	NI	Normal	3	Point 9	68.3
	NI	Normal	3	Point 10	68.4
	NI	Normal	3	Point 11	68.4
	NI	Normal	3	Point 12	68.4
	NI	Normal	3	Point 13	68.4
	NI	Normal	3	Point 14	67.5
	NI	Normal	3	Point 15	67
	NI	Normal	3	Point 16	67.5
	NI	Normal		AVERAGE	67.8
FS control room/Corridor /Irrigation	N2	Normal	2	measurement 1	60.3
pump room	N2 N2	Normal	2	measurement 2	
	N2	Normal	2	measurement 3	60.3
	N2 N2	Normai	2	measurement 3	60.2
UPS room	N3	Normal	2	measurement 1	60.3 60.6
UPS foom	N3	Normal	2	measurement 2	60.6
	N3	Normal	2	measurement 3	60.3
	N3		-	measurement 5	60.5
LV switch room	N4	Normal	2	measurement 1	62.4
L v Switch foolii	N4	Normal	2	measurement 2	62.1
	N4	Normal	2	measurement 3	62.1
	N4				62.2
Air compression receiver room	N5	Normal	2	measurement 1	63.8
	N5	Normal	2	measurement 2	63.9
	N5	Normal	2	measurement 3	64.0
	N5				63.9
Smoke extraction fan	N6	Normal	3	Point 1	82.4
	N6	Normal	3	Point 2	81.7
	N6	Normal	3	Point 3	77.8
	N6	Normal	3	Point 4	80.4
	N6	Normal	3	Point 5	82.7
	N6	Normal	3	Point 6	84.1
	N6	Normal	3	Point 7	87
	N6	Normal	3	Point 8	85.1
	N6 N6	Normal Normal	3	Point 9 Point 10	79.6 80.6
			3	Point 10 Point 11	
	N6 N6	Normal Normal	3	Point 12	80.3 77.7
	N6	Normal	3	Point 13	76.3
	N6	Normal	3	Point 14	74.8
	N6	Normal	3	Point 15	77.1
	N6	Normal	3	Point 16	77.4
	N6	Normal		AVERAGE	81.6
Fresh air louvre	El	Normal	3	Point 1	59.8
	El	Normal	3	Point 2	59.7
	El	Normal	3	Point 3	59.5
	El	Normal		AVERAGE	59.7
Exhaust air louvre	E2	Normal	3	Point 1	58.1
	E2	Normal	3	Point 2	57.6
	E2	Normal	3	Point 3	56.7
	E2	Normal		AVERAGE	57.5
Staircase pressurization fan room	E3	Normal	2	measurement 1	65.2
	E3	Normal	2	measurement 2	65.2
	E3	Normal	2	measurement 3	65.1
	E3				65.2
Tunnel ventilation shaft	S1	Normal	3	Point 1	68.2
	S1 S1	Normal Normal	3	Point 2 Point 3	67.5
	SI	Normal Normal	3	Point 3 Point 4	66.1 66.7
	S1	Normal	3	Point 4 Point 5	66.4
	S1 S1	Normal Normal	3	Point 5 Point 6	66.4 65.2
	SI	Normal	3	Point 7	65.4
	SI	Normal	3	Point 8	66.6
	SI	Normal	3	Point 9	65.5
	SI	Normal	3	Point 10	67.1
	S1	Normal	3	Point 11	67
	S1	Normal	3	Point 12	63.5
	SI	Normal		AVERAGE	66.4

P&D pump and tank room	S2	Normal	2	measurement 1	65.5
	S2	Normal	2	measurement 2	65.4
	S2	Normal	2	measurement 3	65.2
	S2				65.4
MCC room	S3	Normal	2	measurement 1	69.6
	S3	Normal	2	measurement 2	69.8
	S3	Normal	2	measurement 3	69.5
	S3				69.6
TECS control room	S4	Normal	2	measurement 1	80.4
	S4	Normal	2	measurement 2	80.4
	S4	Normal	2	measurement 3	80.4
	S4				80.4
Tunnel ventilation shaft	W1	Normal	3	Point 1	66.3
	W1	Normal	3	Point 2	67.2
	W1	Normal	3	Point 3	66
	W1	Normal	3	Point 4	64.1
	W1	Normal	3	Point 5	64
	W1	Normal	3	Point 6	65.4
	W1	Normal	3	Point 7	66.6
	W1	Normal	3	Point 8	66.7
	W1	Normal	3	Point 9	67.4
	W1	Normal	3	Point 10	67
	W1	Normal	3	Point 11	66.2
	W1	Normal	3	Point 12	64.6
	W1	Normal		AVERAGE	66.1
Tunnel ventilation shaft	W2	Normal	3	Point 1	62.6
	W2	Normal	3	Point 2	65.4
	W2	Normal	3	Point 3	66.1
	W2	Normal	3	Point 4	66.5
	W2	Normal	3	Point 5	66.3
	W2	Normal	3	Point 6	66.1
	W2	Normal	3	Point 7	64.5
	W2	Normal	3	Point 8	62
	W2	Normal		AVERAGE	65.2
Staircase pressurization fan room	W3	Normal	2	measurement 1	64.2
rinition tun room	W3	Normal	2	measurement 2	64.1
	W3	Normal	2	measurement 3	64.2
	W3				64.2
Smoke extraction make-up room	W4	Normal	2	measurement 1	86.5
Smoke extraction make-up room	W4	Normal	2	measurement 2	86.4
	W4	Normal	2	measurement 3	86.4
	W4				86.4

Appendix A4 - Measurement Results at NSRs

NSR	Scenario	Measurement Type	Start Time	End Time	L _{aeq} , dB(A)
		Background Noise Levels	13/02/2018 21:12	13/02/2018 21:17	63.3
	1	background Noise Levels	13/02/2018 21:23	13/02/2018 21:28	63.6
	1	Measured Noise Levels	13/02/2018 22:01	13/02/2018 22:31	63.8
VC1		ivieasureu Noise Leveis	13/02/2018 22:31	13/02/2018 23:01	63.7
KC1		Background Noise Levels	14/02/2018 00:46	14/02/2018 00:51	61.6
	2	background Noise Levels	14/02/2018 00:57	14/02/2018 01:02	60.8
	2	Measured Noise Levels	13/02/2018 23:39	14/02/2018 00:09	63.1
		ivieasureu ivoise Leveis	14/02/2018 00:10	14/02/2018 00:40	62.5

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

MTR Corporation

May 2018

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

1 Introduction

The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Project (hereinafter known as "XRL") covers a 26km long underground rail line on dedicated tracks that run between the terminus in West Kowloon and the boundary at Huanggang, where connects with the XRL Mainland section. XRL Project also includes the construction of ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).

The Environmental Impact Assessment (EIA) Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/M) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 25 June 2018.

This report is prepared with reference to EP Condition 2.36, "The Permit Holder shall, no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational airborne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents".

MTR Corporation has prepared the Commissioning Test Report for Fixed Plant Noise for the noise measurement to show the compliance of noise criteria in accordance with the EIA Report and the EP; also the noise measurement for investigation of any tonal, impulsive and intermittent characteristics from the fixed plant noise sources. This report presents the noise measurement methodology, calculated Sound Power Levels from noise measurements, results of noise measurement for the fixed plant noise sources installed at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings and confirming any characteristics of tonality, impulsiveness and intermittency. For the fixed plant noise verification at the other ventilation buildings and West Kowloon Terminal (WKT) areas, separate reports would be submitted.

2 Noise Criteria

2.1 Fixed Plant Noise Criteria in EIA

With reference to the IND-TM under the Noise Control Ordinance (NCO), the relevant acceptable noise levels (ANL) where determined based on the area sensitivity rating (ASR). The fixed plant noise criteria for the representative noise sensitive receivers (NSRs) were determined in EIA as follow (whichever is lower):

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

- 5dB(A) below the appropriate ANL set out in the IND-TM (the ANL-5dB(A) criterion);
 or
- The prevailing background noise levels where the prevailing background noise level is 5dB(A) below the appropriate ANL (i.e. ANL-5dB(A))

The noise criteria above were determined for planning purpose. While for operation, the fixed plant noise is controlled by a Noise Abatement Notices system governed by the NCO.

The fixed plant noise criteria for the NSRs along the XRL alignment in PHV, NCV and MKV area, with the latest status of representative NSRs, are presented in **Table 2.1** below. Appropriate corrections in tonal, impulsive or intermittent characteristics should be applied, where applicable, in accordance with IND-TM during the commissioning test.

Table 2.1 Summary of Fixed Plant Noise Criteria

NSR	Description	Area Sensitivity	Noise Crite	ria, dB(A) ^(a)
		Rating (ASR) ^(a)	Day and Evening Time	Night-time
Pat Heung Ve	ntilation Building (PHV) (F	igure 2.1)		
PH1	Sheung Tsuen Village House	A	49	43
PH1a	Sheung Tsuen Village House	A	49	43
PH1b	Sheung Tsuen Village House	А	49	43
PH4	Sheung Tsuen Village House	А	49	43
PH4a	Sheung Tsuen Village House	Α	49	43
Nam Cheong	Ventilation Building (NCV)	(Figure 2.2)		·
NC10	St. Margaret's Coeducational English Secondary & Primary School	В	60	50
NC11	Tack Ching Girls' Secondary School	В	60	50
NC11e	Planned development (Site 6) Block 1	В	60	50
NC11f	Planned development (Site 6) Block 1	В	60	50
NC11g	Planned development (Site 6) Block 2	В	60	50
NC11h	Planned development (Site 6) Block 2	В	60	50
NC16	Tower 3 Aqua Marine	С	65	55
Mongkok Wes	st Ventilation Building (MI	(V) (Figure 2.3)		
MK1	Yau Ma Tei Catholic Primary School (Hoi	В	60	_(b)

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

NSR	Description	Area Sensitivity	Noise Criteria	, dB(A) ^(a)
		Rating (ASR) ^(a)	Day and Evening Time	Night-time
	Wang Road)			
MK3	Charming Garden Block 11	В	60	50

Note:

- (a) ASR and noise criteria either follow that defined in the EIA Report or relevant application for variation of environmental permit (VEP-377/2012) where appropriate.
- (b) There would be no noise sensitive use at MK1 during night-time period.

Fixed plant noise sources include: ventilation fans for building services, and plenum for tunnel ventilation, which are generally located inside plant rooms. Noise generated from indoor fixed plants would be emitted through louvres. The worst case scenario is when all eligible fixed plants at the same location operating concurrently under "normal scenario" for XRL operation during daytime and evening time periods; and night-time period, respectively. The worst case scenario was considered for compliance check against the fixed plant noise criteria and the noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs.

Table 2.2 below summarised the information of the fixed plant noise sources and the layout plan is shown in **Figures 2.1** to **2.3a**.

Table 2.2 Summary of Fixed Plant Noise Sources

Source Location	Direction	Louvre ID	
	Facing		
Pat Heung Ventilation Building (PHV) (Figure	2.1)		
Tunnel ventilation shaft	North	N1	
FS control room	North	N2	
P&D pump and tank room	North	N3	
Air duct riser	North	N4	
Pressurization fan room	North	N5	
Tunnel ventilation shaft	East	E1	
Tunnel ventilation shaft	East	E2	
Pressurization fan room	East	E3	
Smoke extract make-up fan room	East	E4	
Tunnel ventilation shaft	South	S1	
UPS room	South	S2	
SER	South	S3	
MCC room	South	S4	
Smoke extraction fan room	South	S5	
ABBCS room	West	W1	
Smoke extraction fan room	West	W2	
Nam Cheong Ventilation Building (NCV) (Figu	re 2.2)		
Tunnel ventilation shaft	North	N1	
FS Control Room	North	N2	

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

Source Location	Direction	Louvre ID
	Facing	
E&M Service Area 8	North	N3
Tunnel ventilation shaft	East	E1
E&M Service Area 10	South	S1
E&M Service Area 10	South	S2
E&M Service Area 9	South	S3
Dog house	West	S4
LV Switch Room	West	W1
Mongkok West Ventilation Building (MKV) (Figu	ıres 2.3 and 2.3a)	
Tunnel ventilation shaft	North	N1
Tunnel ventilation shaft	North	N2
EVS	North	N3
Harmonic Filter Room	East	E1
Harmonic Filter Room	East	E2
25kV Switch Room	East	E3
SVS	East	E4
Staircase Pressurization Fan Room 2	South	S1
Staircase Pressurization Fan Room 1	South	S2
Battery and Charge Room	South	S3
Harmonic Filter Room	South	S4
Fire Pump room (Electrical)	West	W1
FHP	North	FHP-N1

3 Methodology

3.1 Noise Measurement for the Fixed Plants

Noise measurements to obtain the noise levels of the fixed plants were undertaken by Supreme Acoustics Research Limited, GAS Joint Venture and ATAL Building Services Engineering Ltd. The commissioning tests were carried out by qualified persons possessing at least 7 years of noise control experience and a corporate member of Hong Kong Institute of Acoustics or equivalent in accordance with S3.22 of the XRL EM&A Manual.

3.1.1 Methodology

Three measurement methods, namely Method 1 (at or near NSR), Method 2 (Far Field) and Method 3 (Near Field), have been developed based on NCO-TM, basic acoustic principles and ISO 3746-2010: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using an enveloping measurement surface over a reflecting plane, respectively. Given the fixed plant noise sources are steady, all proposed methods could be adopted for all types of fixed plant source depending on the site environment/constraints that might affect the possibility to obtain valid results, considerations including but not limited to:

- Background noise with less influence to the measured noise levels
- Free of obstacles between measurement location and noise source
- Accessibility and Safety Concerns

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

Considering the reliability of data collection, i.e. results not influenced by the above-mentioned considerations, and the measurement efficiency on site, the selection of methodology was prioritized based on efficient measurement as Method 1 (at or near NSR) > Method 2 (Far Field) > Method 3 (Near Field). However, various considerations which may affect the validity of results using Method 1 were taken in account, such as the distances between fixed plants and NSRs at PHV and NCV, some of the NSRs at PHV and NCV are too far away, some of the NSRs at PHV and NCV could not meet at least two times of the largest dimension from louvre etc. For MKV, considering there are other building structures between the NSR and noise sources, also the heavily trafficked Hoi Wang Road was immediately in front of the NSRs; obtaining valid results using Method 1 was considered unlikely. As such, only Method 2 and Method 3 were considered applicable. Method used for each louvre is presented in Appendix A3. Details of the measurement methodology are shown in **Appendix A1**.

Method 1 – Measuring Sound Pressure Level at NSR or Near NSR

- Measurement at NSR or near NSR at distance D away from the louvre, where D was
 at least two times the largest dimension b of the louvre and rounded up to integer,
 i.e.: D≥2b
- The microphone was pointing toward the louvre and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre was switched OFF
- The sound pressure level (SPL) at NSR or near NSR was determined by the following equation:

Background corrected $L_p = L_p + BG - [20logD + 8]$ (if applicable) + façade correction (if applicable)

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

BG is the background correction factor, in dB(A);

D is separation between the center of louvre or surface of the plant and the microphone, in metres.

Method 2 – Measuring Sound Power Level by Far Field Method for Louvres or for Plants

- The microphone was positioned at the perpendicular distance D away from the center of the louvre or the surface of the plant, where D was at least two times the largest dimension b of the louvre or plant and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the center of the louvre/combined louvre area or the center the plant; and three measurements were taken when the noise source from the louvre was switched ON

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

- Background noise level was taken when the noise source from the louvre or plant was switched OFF
- The sound power level (SWL) of the louvre or the plant was determined, based on basic acoustic principles, by the following equation:

$$L_w = L_p + 20logD$$
, center +8 + BG

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

D,center is separation between the center of louvre or plant and the microphone, in metres;

BG is the background correction factor, in dB(A).

Method 3 - Measuring Sound Power Level by Near Field Method for Louvres or for Plants

- A right parallelepiped hypothetical measurement box for each louvre or each surface of a plant was determined according to ISO 3746, with each side being spaced a distance *D* from the corresponding side of the louvre or plant
- Each of the 5 planes of the measurement box was subdivided into equal-sized rectangular grids, the length of each side of the grids should be less than or equal to 3 times of distance D, i.e. grid length $\leq 3D$
- The microphone was pointing toward the center of each grid, and a measurement was taken for each grid during the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre or plant was switched OFF
- The SWL of the louvre or the plant was determined by the following equation:

$$L_w = L_p + 10log(S) - K_{1A} - K_{2A}$$

Where

 L_p is the averaged measured L_{eq} of all measurement points, in dB(A);

S is the total surface area over the measurement box (total 5 planes), in m²;

 K_{1A} is the background correction factor as described in ISO 3746:2010, in dB(A);

 K_{2A} is the environmental correction for sound absorption and reflection as described in *ISO 3746:2010*, in dB(A).

Except for Method 3, which was adopted with reference to ISO 3746; the noise sources measured using Method 1 or Method 2 were considered steady if the difference between the maximum and minimum Leq is less than or equal to 1dB(A), ie, $\leq 1dB(A)$; average Leq was therefore considered. Otherwise, the maximum Leq would be adopted for SWL determination as a conservative approach.

3.1.2 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.1**. The instruments complied with International Electrotechnical Commission Publications

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2**.

Table 3.1 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	NTi XL2	5011
	NTi XL2	5617
	NTi XL2	6240
	Casella CEL-63X	5044655
Calibrator	BSWA TECH CA111	320248
	Casella CEL-120/1	5060836

Before and after each series of measurements, a calibration check was carried out on the sound level meter by the calibrator. The difference between the readings made before and after each series of measurements shall be less than or equal to 1.0 dB.

3.1.3 Measurement Schedule

The noise measurements were carried out during daytime, evening time and night-time periods, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.2**.

Table 3.2 Measurement Schedule

Location	Date	Time
PHV	10 – 11 August 2017	22:00 – 05:00
	8 September 2017	10:30 – 15:00
	13 September 2017	10:30 – 12:00
NCV	19 – 20 July 2017	22:00 - 04:00
	20 – 21 October 2017	23:00 - 04:00
	9 November 2017	23:30 - 04:00
MKV	9 – 10 May 2017	22:00 - 02:00
	25 – 26 July 2017	22:00 - 02:00
	21 November 2017	23:00 - 04:00
	4 December 2017	10:00 – 12:00

3.2 Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

3.2.1 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.3**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2**.

Table 3.3 Noise Measurement Equipment

Equipment	Model	Serial Number			

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

Sound Level Meter	d Level Meter Casella CEL-63X	
Calibrator	Casella CEL-120/1	5060836

3.2.2 Measurement Parameters

With reference to the IND-TM, the noise measurement was conducted at the representative NSR for $L_{Aeq\,(30min)}$, in one-third octave band under the worst case scenario, ie, "normal scenario" during daytime and evening time periods; and night-time period, respectively.

The fixed plant noise sources will be operated steadily and continuously, and therefore no intermittency and impulsiveness are expected at the NSR. However, the characteristics of intermittency and impulsiveness will be recorded, if any, based on observation during measurement.

2 sets of background noise level, L_{Aeq (Smin)}, and in one-third octave band, were measured at each measurement location when all fixed plant noise sources were not in operation.

3.2.3 Measurement Location

The noise measurement was carried out at the first layer of NSRs for the concerned areas. The measurement locations are summarised in Table 3.4 and shown in **Figures 2.1 to 2.3**.

Table 3.4 Measurement Schedule

Location	NSR	Description		
PHV	PH1a Sheung Tsuen Village House			
	PH1b	Sheung Tsuen Village House		
	PH4	Sheung Tsuen Village House		
NCV	NC11	Tack Ching Girls' Secondary School		
	NC11f ^(a)	Planned development (Site 6), Block 1		
	NC11g ^(a)	Planned development (Site 6), Block 2		
MKV	MK1	Yau Ma Tei Catholic Primary School (Hoi Wan Road)		

Note:

(a) The actual measurement location was selected based on the latest building layout.

3.2.4 Measurement Schedule

The noise measurements were carried out at the monitoring location for PHV, NCV and MKV, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.5**.

Table 3.5 Measurement Schedule

Location	Date
PHV	2-3 May 2018
NCV	15-16 May 2018
MKV	10-11 May 2018

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

4 Measurement Results

4.1 The Noise Levels of Fixed Plant Noise Sources

The noise levels measured under the worst case scenario are determined and presented in **Table 4.1**. Details of the measurement results are shown in **Appendix A3**.

Table 4.1 Summary of Sound Power Levels for Fixed Plants

Table 4.1	Summary of Sound Power Levels for Fi	
Works Area	Direction Facing/ Elevation	Calculated SWL L _{Aeq} , dB(A)
PHV	North N1	78
	North N2	61
	North N3	72
	North N4	74
	North N5 ^(a)	74
	East E1	79
	East E2	78
	East E3 ^(a)	77
	East E4 ^(a)	83
	South S1	80
	South S2 ^(a)	80
	South S3	64
	South S4	62
	South S5 ^(a)	81
	West W1	66
	West W2 ^(a)	85
NCV	North N1	81
	North N2	67
	North N3	78
	East E1	82
	South S1	72
	South S2	72
	South S3 ^(a)	69
	South S4	82
	West W1	74
MKV	North N1	86
	North N2	87
	North N3	80
	East E1	78
	East E2 ^(a)	72
	East E3	73
	East E4	79
	South S1 ^(a)	74
	South S2 ^(a)	75
	South S3	85
	South S4	72
	West W1	90
	North FHP-N1	84

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

Note:

(a) The plant would be operated during day and evening time only under normal scenario.

A compliance check against the fixed plant noise criteria at NSR was conducted. The cumulative noise levels from noise sources were assessed to ensure the compliance with the noise criterion. **Table 4.2** shows the results, details of the calculation are also given in **Appendix A3**.

Table 4.2 Cumulative Fixed Plant Noise at NSR

		Cumulat dB	tive SPL,	Noise C	-	Compliar	nce (Y/N)
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
PH1	Ventilation Shaft for N/B ^(a) and Building Service	44	29	49	43	Y	Y
PH1	Ventilation Shaft for S/B ^(a) and Building Service	45	38	49	43	Y	Y
PH1a	Ventilation Shaft for N/B ^(a) and Building Service	46	31	49	43	Y	Y
PH1a	Ventilation Shaft for S/B ^(a) and Building Service	47	40	49	43	Y	Y
PH1b	Ventilation Shaft for N/B ^(a) and Building Service	42	33	49	43	Y	Y
PH1b	Ventilation Shaft for S/B ^(a) and Building Service	43	39	49	43	Y	Y
PH4	Ventilation Shaft for N/B ^(a) and Building Service	42	36	49	43	Y	Y
PH4	Ventilation Shaft for S/B ^(a) and Building Service	42	32	49	43	Y	Y
PH4a	Ventilation Shaft for N/B ^(a) and Building Service	38	35	49	43	Y	Y
PH4a	Ventilation Shaft for S/B ^(a) and Building Service	36	31	49	43	Y	Y
NC10	Ventilation Shaft for N/B ^(a) and Building Service	36	36	60	50	Y	Y
NC10	Ventilation Shaft	35	35	60	50	Υ	Υ

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

	Cumulative S dB(A)			Noise C	=	Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
	for S/B ^(a) and Building Service						
NC11	Ventilation Shaft for N/B ^(a) and Building Service	37	33	60	50	Y	Y
NC11	Ventilation Shaft for S/B ^(a) and Building Service	38	36	60	50	Y	Y
NC11e	Ventilation Shaft for N/B ^(a) and Building Service	46	43	60	50	Y	Υ
NC11e	Ventilation Shaft for S/B ^(a) and Building Service	46	42	60	50	Y	Υ
NC11f	Ventilation Shaft for N/B ^(a) and Building Service	46	45	60	50	Y	Y
NC11f	Ventilation Shaft for S/B ^(a) and Building Service	45	43	60	50	Y	Υ
NC11g	Ventilation Shaft for N/B ^(a) and Building Service	48	47	60	50	Y	Υ
NC11g	Ventilation Shaft for S/B ^(a) and Building Service	39	38	60	50	Y	Y
NC11h	Ventilation Shaft for N/B ^(a) and Building Service	47	47	60	50	Y	Y
NC11h	Ventilation Shaft for S/B ^(a) and Building Service	39	38	60	50	Y	Υ
NC16	Ventilation Shaft for N/B ^(a) and Building Service	32	28	65	55	Y	Y
NC16	Ventilation Shaft for S/B ^(a) and Building Service	33	31	65	55	Y	Y
MK1	Ventilation Shaft for N/B ^(a) and Building Service	39	_(p)	60	-	Y	-
MK1	Ventilation Shaft for S/B ^(a) and Building Service	40	_(b)	60	-	Y	-

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

		Cumulat dB	-	Noise C		Compliar	nce (Y/N)
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
MK3	Ventilation Shaft for N/B ^(a) and Building Service	37	35	60	50	Υ	Υ
MK3	Ventilation Shaft for S/B ^(a) and Building Service	37	36	60	50	Y	Υ

Note:

- (a) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (b) There would be no noise sensitive use at MK1 during night-time period.

4.2 The Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

Noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs were conducted under the normal scenarios during daytime and evening, and during night-time, respectively and summarised in **Table 4.3** below. In each scenario, two sets of noise measurements, $L_{\text{Aeq(30min)}}$, in one-third octave band, were carried out to confirm that the difference in the measured noise levels with and without operation of fixed plant noise sources were less than 3.0 dB(A). That means the fixed plant noise sources from the ventilation building are not considered as significant noise sources at the NSR. Noise measurements at PHV, NCV and MKV were dominated by the community noise and road traffic noise along Sham Mong Road and Hoi Wang Road, respectively; characteristics of tonality, impulsiveness and intermittency due to the fixed plant noise sources from the ventilation buildings was not noticeable during the measurement. Detailed results of noise measurements are shown in **Appendix A4**.

Table 4.3 Noise measurement Results at NSR

NSR	Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Difference between Measured Noise Level and Background Level, dB(A), (< 3.0 or >= 3.0)
PH1a	Day and Evening Time	51.7 (22:19 – 22:49) 50.4 (22:50 – 23:20)	52.8 (21:56 -22:06)	< 3.0
	Night- time	49.9 (23:28 – 23:58) 49.1 (23:58 – 00:28)	48.8 (00:47 – 00:57)	< 3.0
PH1b	Day and Evening Time	46.6 (22:23 – 22:53) 46.4 (22:53 – 23:23)	45.9 (22:00 – 22:10)	< 3.0
	Night- time	46.7 (23:38 – 00:08) 47.1 (00:08 – 00:38)	46.5 (00:44 – 00:55)	< 3.0
PH4	Day and Evening	45.9 (22:20 – 22:50) 45.1 (22:51 – 23:21)	46.5 (21:56 – 22:09)	< 3.0

Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings

NSR	Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Difference between Measured Noise Level and Background Level, dB(A), (< 3.0 or >= 3.0)
	Time			
	Night- time	44.7 (23:26 – 23:56) 44.9 (00:02 – 00:32)	42.8 (00:48 – 01:00)	< 3.0
NC11	Day and Evening Time	65.9 (22:30 – 23:00) 65.3 (23:02 – 23:32)	65.5 (21:40 – 21:59)	< 3.0
	Night- time	66.4 (23:38 – 00:08) 66.3 (00:09 – 00:39)	64.2 (00:44 – 00:55)	< 3.0
NC11f	Day and Evening Time	60.3 (22:23 - 22:53) 59.6 (22:55 - 23:25)	59.9 (22:01 - 22:12)	< 3.0
	Night- time	58.9 (23:31 - 00:01) 58.8 (00:02 - 00:32)	57.4 (00:38 - 00:49)	< 3.0
NC11g	Day and Evening Time	60.5 (22:22 – 22:52) 59.5 (22:53 – 23:23)	60.3 (21:51 – 22:12)	< 3.0
	Night- time	59.0 (23:31 – 00:01) 58.7 (00:01 – 00:31)	57.3 (00:39 – 00:49)	< 3.0
MK1	Day and Evening Time	64.3 (21:54 – 22:24) 63.3 (22:25 – 22:55)	63.8 (21:24 – 21:40)	< 3.0
	Night- time	58.5 (00:47 – 01:17) 57.2 (01:20 – 01:50)	60.8 (00:00 – 00:14)	< 3.0

As the differences between measured noise levels and background levels are all less than 3.0 dB(A), it was unable to obtain reliable corrected noise levels at the NSRs and corrections for tonality, impulsiveness or intermittency were therefore not applicable.

5 Conclusions

To fulfil the XRL EP condition 2.36, the fixed plant noise verification were undertaken and the measurement results indicated all the fixed plant noise levels in PHV, NCV and MKV are in compliance with the fixed plant noise criteria.

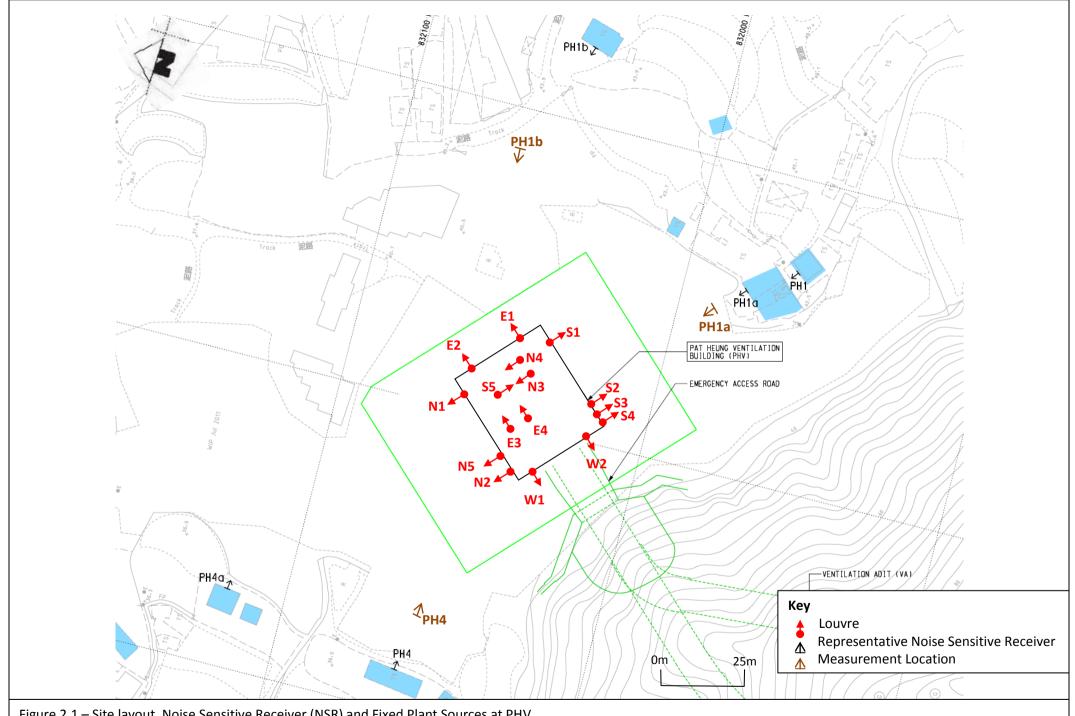


Figure 2.1 – Site layout, Noise Sensitive Receiver (NSR) and Fixed Plant Sources at PHV

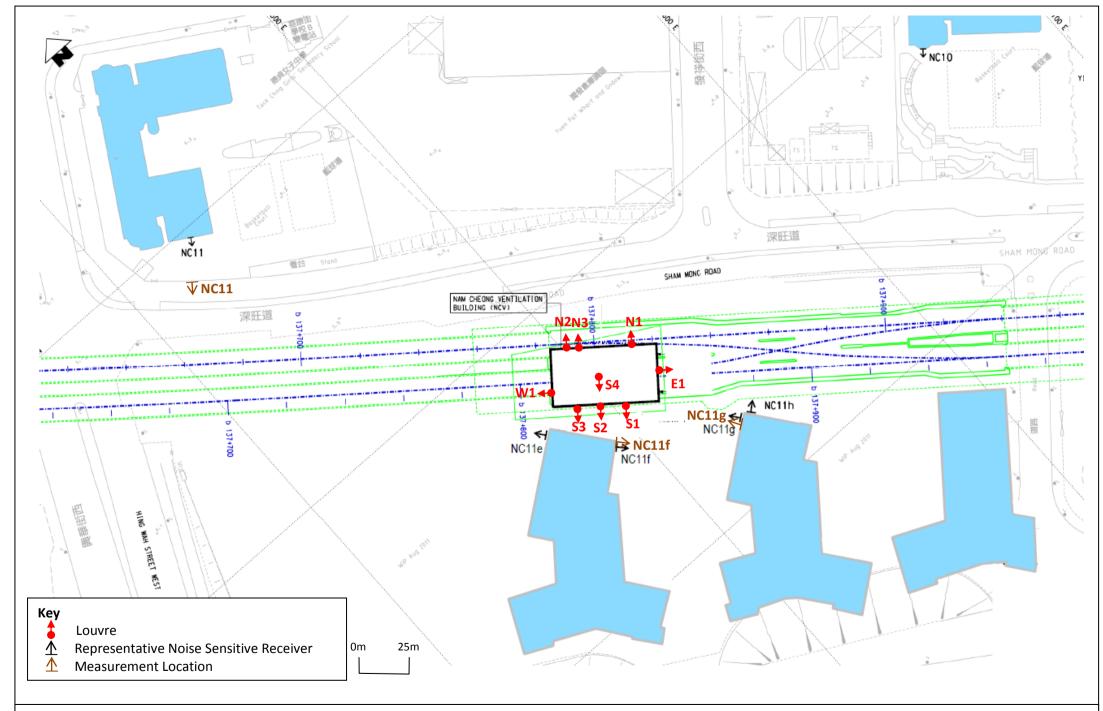


Figure 2.2 – Site layout, Noise Sensitive Receiver (NSR) and Fixed Plant Sources at NCV

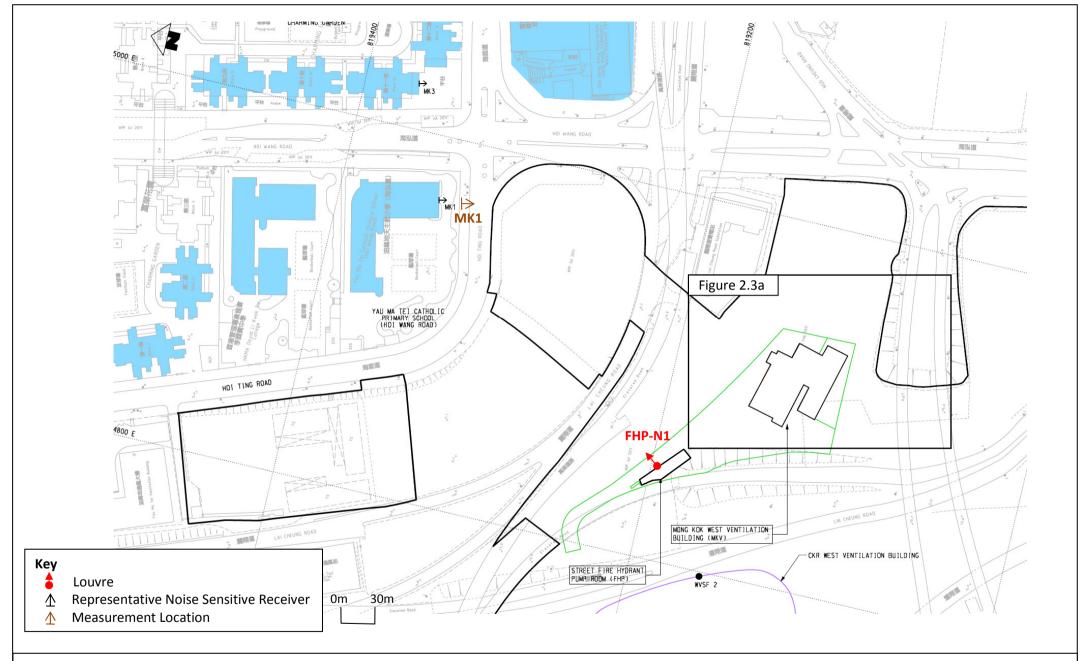


Figure 2.3 – Site layout, Noise Sensitive Receiver (NSR) and Fixed Plant Sources at MKV

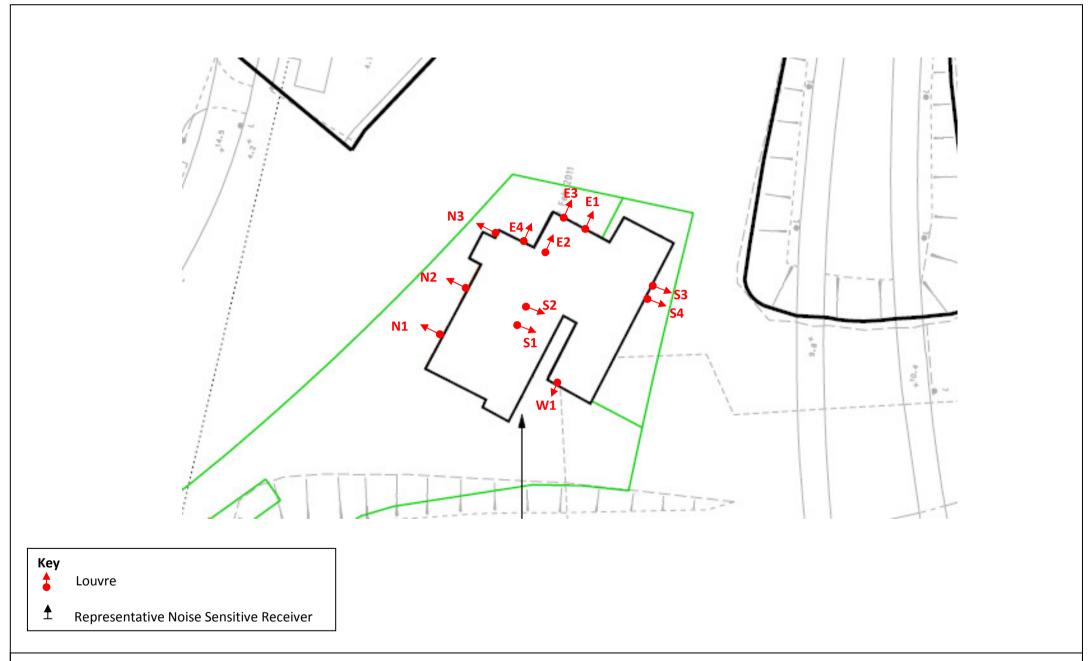


Figure 2.3a – Site layout, Noise Sensitive Receiver (NSR) and Fixed Plant Sources at MKV

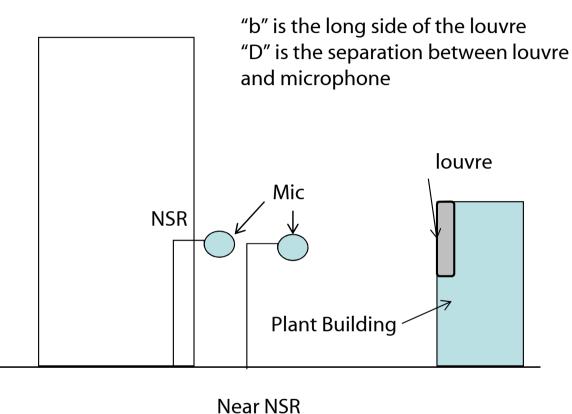
Appendix A1 –Me	easurement Metho	odology	

XRL Fixed Plant Noise Test Plan

BY: MTR XRL Env Team

Summary of Testing Methodology

Method	Standard	No of repeated measurement	No of measurement point	Measurement distance, D	To Verify
Method 1 (NSR Method)	NCO - TM	3 sets of Leq 1min	Depend on number of NSRs nearby	At the most affected NSR or near NSR	ANL-5 or Background Prevailing
Method 2 (Far Field Method)	Basic Acoustic Principle	3 sets of Leq 1min	1 (for louvre/plant with uniform plane source)	D ≧2b and roundup to integer	ANL-5 or Background Prevailing
Method 3 (Near Field Method)	Developed based on ISO3746:2010	1 set of Leq 10s ^(a) /1min	Depend on the size of the louvre/plant and the measurement distance should follow guideline in ISO3746	At least 1m from the louvre opening/plant (unless otherwise specified)	ANL-5 or Background Prevailing

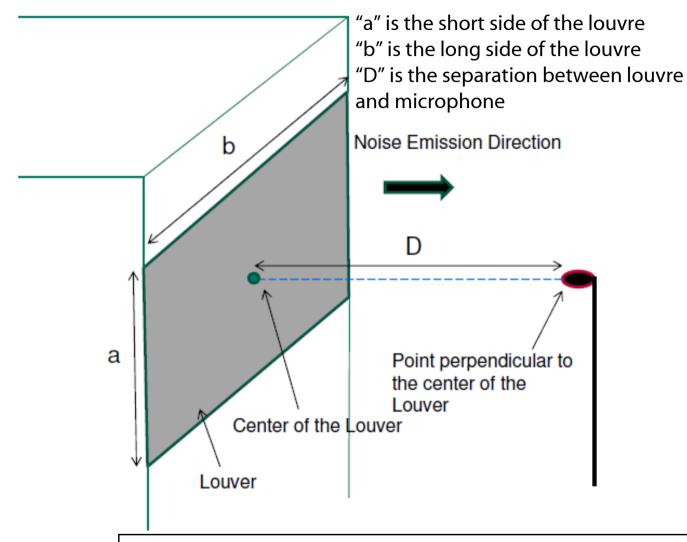

Note:

(a) If fixed plant items are operated at their noisiest operating modes and are steady during measurement, 10-second will be adopted for the duration of measurement.

MTR Corporation Page 2

Method 1 – Sound Pressure Level at NSR or Near NSR for louvre or Plant

- Based on NCO TM
- The locations of measurement points are depended on the site situation
- 3.0 dB façade correction should be considered if the location of measurement point is not at assessment point as defined in NCO-TM
- "D" must be greater than 2b and roundup to integer
- Detail calculation of the SPL should refer to the NCO-TM.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


Background corrected SPL = Mean $L_{Aeq1min}$ + BG - [20log (D) +8] (if applicable) + façade correction (if applicable)

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

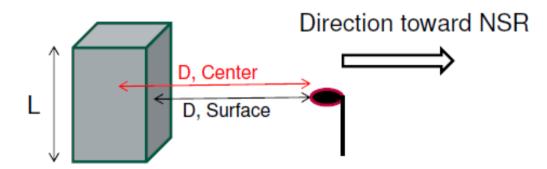
MTR Corporation Page 3

Method 2 – Far Field Sound Power Testing Method for louvre

- Based on basic acoustic principle
- "D" must be greater than 2b and roundup to integer, i.e.: D≧2b
- The microphone must point to the center of the louvre.
- At least 3 sets of LAeq, 1min should be obtained
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than
 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 +BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach


MTR

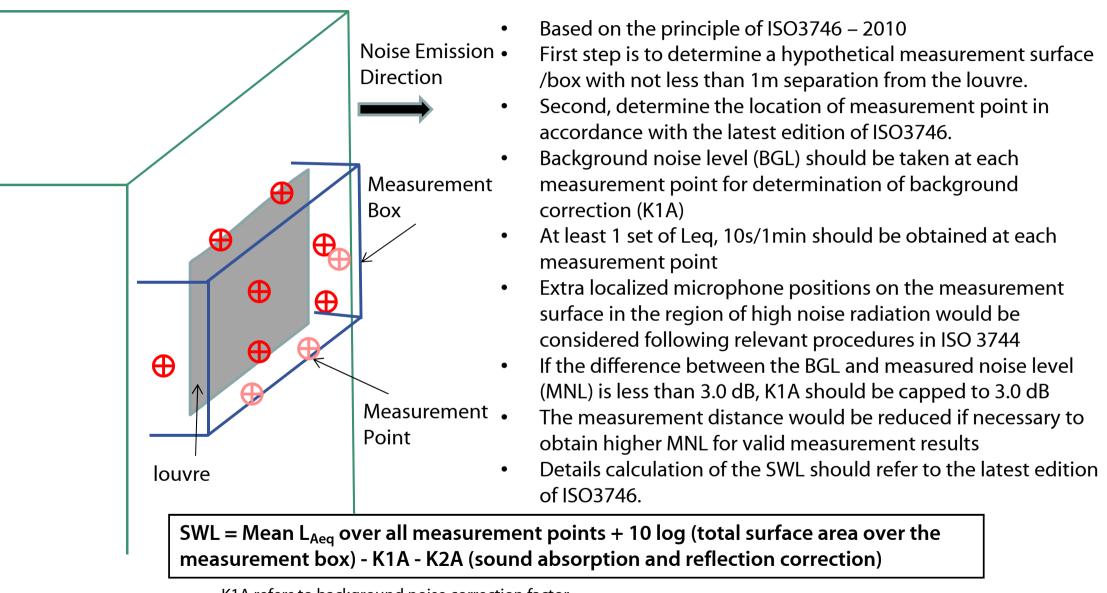
Method 2 – Far Field Sound Power Testing Method for Plant

"L" is the longest side of the plant item

"D, Center" is the separation between center of the plant item and microphone

"D, Surface" is the separation between surface of the plant item and microphone

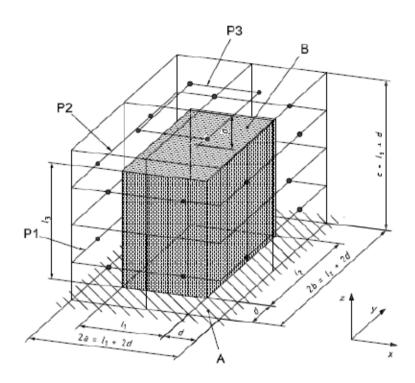
- "D, Surface" must be greater than twice of L
 (2L) and roundup to integer
- The microphone must be pointing to the center of the plant
- At least 3 sets of LAeq, 1min should be obtained at each measurement point.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 + BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

MTR Corporation Page 5

Method 3 – Near Field Sound Power Testing Method for louvre



K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR

MTR Corporation

Method 3 – Near Field Sound Power Testing Method for Plant

Kev

- Based on ISO 3746
- The locations of measurement points are depended on the size of the plant, which cannot be easily generalised (See figure on the left for example).
- Extra localized microphone positions on the measurement surface in the region of high noise radiation would be considered following relevant procedures in ISO 3744
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, K1A should be capped to 3.0 dB
- The measurement distance would be reduced if necessary to obtain higher MNL for valid measurement results
- Detail calculation of the SWL should refer to the latest edition of ISO 3746.

SWL = Mean L_{Aeq} over all measurement points + 10 log (total surface area over the measurement box) - K1A - K2A (sound absorption and reflection correction)

K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR Corporation Page 7

End

MTR Corporation Page 8

Appendix A2 – Ca	libration Certifica	tes	

Certificate No.

704083

Page

4 Pages

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682

Date of receipt

8-May-17

Item Tested

Description : Sound Level Meter

Manufacturer: CASELLA

LD.

: CBSM0103

Model

; CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 11-May-17

Supply Voltage

Ambient Temperature:

(23 ± 3)°C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

701036

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by:

Kin Wong

Approved by:

Alan Chu

This Certificate is issued by

Hong Kong Calibration Ltd.

Date:

11-May-17

Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 704083

Page 2 of 4 Pages

Results:

1. Self-generated noise: 0.2 dBA (Mfr's Spec (Electrical) ≤ 17.5 dBA)

2. Acoustical signal test

	UUT Se	etting	madaren (1600) er sang prima prima kanaka sa sa sang sa pakab pilah pilah pilah pilah badi mada mada kana kan Para Pilah hiji sa sang pilah sa sang prima pilah sa		* 1* 1.05
Range (dB)	Frequency Weighting	Time Weighting	Octave Filter	Applied Value (dB)	UUT Reading (dB)
0-140	A	Til	OFF	94.0	93.8
0-1-10		S	OFF		93.8
			OFF		94.0
	Z	Tet	OFF	P	93.8
	A]-i	1/1		93.8
	A	[m]	1/3	1-9A	93.8
	A	Total To	OFF	114.0	113.8
	1	S	OFF	Notes and the second se	113.8
	C C	And the state of t	OFF		113.8
	Z	300	OFF	Product	113.8
	A	Į.	1/1	Mary Control	113.9
	A	F	1/3	o-ago	113.8

IEC 61672 Type 1 Spec. : ± 1.1 dB

Uncertainty: $\pm 0.3 \text{ dB}$

3 Electrical signal tests of frequency weightings (A weighting)

	Attenuation (dB)	IEC 61672 Type 1 Spec.
Frequency		And the state of t
31.5 Hz	-39.4	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.1	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- 8.6 dB, ±1 dB
500 Hz	-3.2	- 3.2 dB, ± 1.4 dB
l kHz	0.0 (Ref)	0 dB, ± 1.1 dB
2 kHz	+1.3	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+0.9	+ 1.0 dB, ± 1.6 dB
8 kHz	~1.4	$-1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-9.5	$-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty: ± 0.1 dB

Certificate No. 704083

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

	de contraction of the contract in a finding to prove the principle of the contract to the cont		And the state of t	Avenue programment and and an address of the property of the p	IEC 61672
	THIT	Applied	UUT	Difference	* 400 AV
	Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
-	A	94.0	93.8 (Ref.)	sp. ed	± 0.4 dB
-		94.0	94.0	+0.2	
i	Z.	94.0	93.8	0.0	

4.2 Time Weighting (A-weighted)

	And a second	the state of the property of the state of th	The state of the s	1170 (1(00
THIT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	93.8 (Ref.)	man week	± 0.3 dB
Slow	94.0	93.8	0.0	
Time-averaging	94.0	93.8	0.0	

Uncertainty: ± 0.1 dB

5. Filter Characteristics

5.1 1/1 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.5	<- 61
250 Hz	-43.7	< - 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		Life and
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	< 4 17.5
4 kHz	-66.0	< - 42
8 kHz	-62.1	<- 61

Uncertainty: ± 0.25 dB

Certificate No. 704083

Page 4 of 4 Pages

5.2 1/3 - Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
777)	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)	per sign	
1 122 KHz	-3.6	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	<- 17.5
1 887 kHz	-50.7	< - 42
3.070 kHz	-72.5	< - 61

Uncertainty: ± 0.25 dB

Remarks: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa

4. Preamplifier model : CEL-495 , S/N : 002374.

5. Firmware Version: 129-086. Power Supply Check: OK

7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

and derivated that fight film that that that the EVD field that that was need that that pair pair film.

Certificate No.

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682 Date of receipt

Item Tested

Description ; Sound Level Calibrator

Manufacturer : Casella

Model : CEL-120/1

lla I.D.

Serial No.

: CBSM0103 : 5060836

of

2 Pages

8-May-17

Test Conditions

Date of Test: 11-May-17

Supply Voltage : --

Page

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: IEC 60942, F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	<u>Description</u>	Cert. No.	Traceable to
S014	Spectrum Analyzer	605758	NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	701036	NIM-PRC & SCL-HKSAR
S041	Universal Counter	607883	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by ;

Kin Wong

Approved by:

Alan Chu

this Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 11-May-17

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwal Chung, NT,Hong Kong, Tel: 2425-8801 | Fax: 2425-8646

Certificate No. 704084

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)		IEC 60942 Class 1 Spec.
94	94.2	± 0.4 dB
114	114.2	-1 V.** (L)

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation : $0.0~\mathrm{dB}$

IEC 60942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

The state of the s			
TITITO XI 1 XX 1			
UUI Nominal Value (kHz)	Maschied Auby Arter	TEO COO IO OI	
was been a fact and	ivieasured value (kHz)	IEC 60942 Class 1 Spec.	
4	the state of the s	TO VOTIA CIGOD I DUCC.	
!	1,000		
		+1%	
And the second s			

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.2 %

IEC 60942 Class 1 Spec. : < 3 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa.

the see and the self can self see that the END and the sec only see the sec on see the sec

Certificate No. 804865

4 Pages Page of

Customer: ATAL Engineering Ltd

Address: 13/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q81893

Date of receipt

16-May-18

Item Tested

Description: Sound Level Meter

Manufacturer: CASELLA

I.D.

Model

: CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 18-May-18 **Ambient Temperature:**

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

 $(23 \pm 3)^{\circ}C$

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification. (where applicable) The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

803357

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by

Elva Chong

Approved by:

18-May-18

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 804865

Page 2 of 4 Pages

Results:

1. Self-generated noise: 23.2 dBA

2. Acoustical signal test

	UUT S				
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
0-140	A	F	OFF	94.0	93.3
		S	OFF		93.3
	С	F	OFF		93.3
,	Z	F	OFF		93.3
	A	F	1/1		93.3
	A	F	1/3		93.3
	A	F	OFF	114.0	113.4
		S	OFF		113.4
	С	F	OFF		113.4
	Z	F	OFF		113.4
	A	F	1/1		113.4
	A	F	1/3		113.4

IEC 61672 Type 1 Spec. : \pm 1.1 dB

Uncertainty: ± 0.3 dB

3 Electrical signal tests of frequency weightings (A weighting)

pec.
3
lB
dB
lB
dB
dB
dB
dB
3.1 dB
17.0 dB

Uncertainty: ± 0.1 dB

Certificate No. 804865

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT Setting	Applied Value (dB)	UUT Reading (dB)	Difference (dB)	IEC 61672 Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty: $\pm 0.1 \text{ dB}$

5. Filter Characteristics

$5.1 \quad 1/1 - Octave Filter$

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.4	<- 61
250 Hz	-43.7	<- 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	<- 17.5
4 kHz	-65.4	<- 42
8 kHz	- 61.9	<- 61

Uncertainty: ± 0.25 dB

Certificate No. 804865

Page 4 of 4 Pages

5.2 1/3 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
772 Hz	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)		
1.122 kHz	-3.7	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	< - 17.5
1.887 kHz	-50.7	<- 42
3.070 kHz	-72.4	<- 61

Uncertainty: $\pm 0.25 \text{ dB}$

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 006 hPa
- 4. Preamplifier model: CEL-495, S/N: 002374
- 5. Firmware Version: 129-08 6. Power Supply Check: OK
- 7. The UUT was adjusted with the supplied sound calibrator at the reference sound pressure level before the calibration.

----- END -----

Certificate No. 804866

Page

1

of

2 Pages

Customer: ATAL Engineering Ltd

Address: 13/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q81893

Date of receipt

16-May-18

Item Tested

Description: Sound Level Calibrator

Manufacturer: Casella

I.D.

Model

: CEL-120/1

Serial No.

: 5060836

Test Conditions

Date of Test: 18-May-18

 $(23 \pm 3)^{\circ}C$

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: IEC 60942, F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Cert. No. Equipment No. Description 707126 S014 Spectrum Analyzer Sound Level Calibrator 803357 S240

Traceable to

NIM-PRC & SCL-HKSAR NIM-PRC & SCL-HKSAR

S041

Universal Counter

802061

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Elva Chong

Approved by:

Date:

18-May-18

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Certificate No. 804866

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.
94.0	94.3	± 0.4 dB
114.0	114.3	

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation: 0.0 dB

IEC 60942 Class 1 Spec. : \pm 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 60942 Class 1 Spec.
1	1.000	± 1 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.2 %

IEC 60942 Class 1 Spec. : < 4 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 006 hPa.

----- END -----

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 6240 Capsule Serial Number: 9498

• Certificate Issued: 10 January 2017

• Certificate Number: 42745-6240-M2230

Results: PASSED

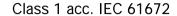
(for detailed report see next page)

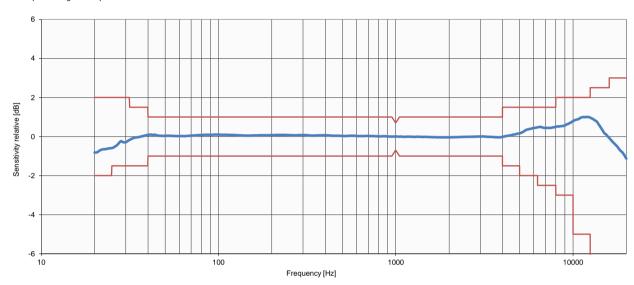
Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan


Date: 10 January 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 6240 Capsule Serial Number: 9498

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	lz, 114 dBSPL	actual 43.3 mV/Pa	uncertainty ¹ ±2.85%
Test Conditions:	Temperature:	27.2 °C	±0.5 °C
	Relative Humidity:	39.5 %	±2%

• Calibration Equipment Used:

Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland

Air Pressure:

- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

calibration

±0.25 kPa

95.94 kPa

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5011 Capsule Serial Number: 7698

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5011-M2230

Results: PASSED

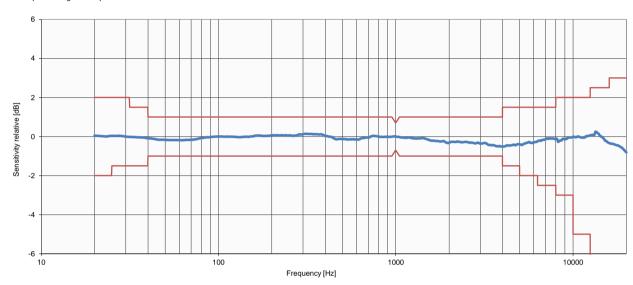
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan **ww.nti-aud**io.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5011 Capsule Serial Number: 7698

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	Hz, 114 dBSPL	actual 46.5 mV/Pa	calibration uncertainty ¹ ±2.85%
• Test Conditions:	Temperature: Relative Humidity: Air Pressure:	21.1 °C 47.2 % 97.4 kPa	±0.5 °C ±2% ±0.25 kPa

• Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5617 Capsule Serial Number: 8507

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5617-M2230

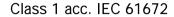
Results: PASSED

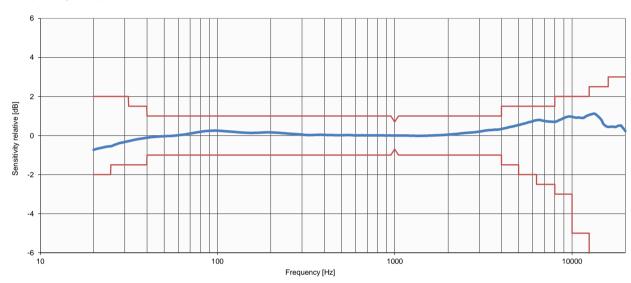
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102


LI\† 9494 Schaan www.nti-audio.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5617 Capsule Serial Number: 8507

Detailed Calibration Test Results:

Frequency response:

calibration actual uncertainty Sensitivity @ 1 kHz, 114 dBSPL 48.1 mV/Pa ±2.85%

• Test Conditions: Temperature: 24.6 °C ± 0.5 °C Relative Humidity: 43.6 % $\pm 2\%$ Air Pressure: 97.65 kPa ± 0.25 kPa

Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Calibration Chart

BSWA-IV-C021-03-0048A

Sound Calibrator model	CAILL
Serial Number	T160.C
Appearance	<u>OK</u>
Power Supply	1.5V LR6 (AA battery) x2
Sound Pressure Level	93.92/ 114.04 dB
Frequency	1000.5/ 1000.5 Hz
THD (@1000Hz)	0.23 / 0.80 %

Copying and using select parts, or tampering with this document without the permission of BSWA is forbidden!

BSWA Technology Ltd.

www.bswa-tech.com

This equipment was calibrated at the following ambient conditions:

Temperature: ユ3 °C
Humidity: ユス %RH
Pressure: / o 2 5 hPa

This equipment is qualified!

Calibrated

2016-11-15

Date

		1	1	1	ı	l I	Louvre Size (m)		1				I	I	Beelvaneund		ı							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Background Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]		
			Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	113	10	22					
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	113	10	5					
			P&D pump and tank	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	86	10	18					
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	86	10	20		1			
			Pressurization fan room	N5	L	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	113	10	18					
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	86	-	-					
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	106	10	22					
PH1	Tsuen Village	N/B ⁽ⁱ⁾ and Building Service	Pressurization fan room	E3	L.	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	106	10	21	44	49	0		
	House		Smoke extract make-up fan room	E4	Ĺ	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	100	10	28					
			Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	81	-	-					
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	81	0	37					
			SER	S3	L	Y	0.70	0.70	2	2 n/a 51.1 45.3 5.8 49.8 64 81	0	21		4										
			MCC room Smoke extraction	S4 S5	L	Y	0.50 5.80	0.50 1.90	3	1	n/a 53.8	55.3 64.1	50.2 45.3	5.1 18.8	53.7 64.1	62 81	100	0	19 36					
			fan room ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	105	0	21					
			Smoke extraction fan room	W2	L	Y	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	86	0	41					
			Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	95	10	23					
				-	FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	95	10	6			
				P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	69	10	20				
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	69	10	22					
			Pressurization fan room	N5	L	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	95	10	19					
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	69	-	-					
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	88	10	24					
PH1a	Tsuen Village	N/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	88	10	23	46	49	0		
	House	Building Service	Smoke extract make-up fan room	E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	10	30					
			Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	63	-	-					
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	63	0	39					
			SER	\$3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	63	0	23					
			MCC room Smoke extraction	S4 S5	L	Y	0.50 5.80	0.50 1.90	3	1	n/a 53.8	55.3 64.1	50.2 45.3	5.1 18.8	53.7 64.1	62 81	63 82	0	21 38					
			fan room	35 W1		Y	1.10	1.00	2	3		51.1	45.5	4	48.9	66	86	0	22					
			ABBCS room Smoke extraction	W1 W2	L L	Y	7.00	1.00	3	1	n/a 60.9	66.9	47.5	19.4	66.9	85	74	0	43					
\vdash			fan room Tunnel ventilation	N1	L	Y	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	116	10	22					
			shaft	INT		'	13.33	3.03	ر	ر	455.5	33.3	43.3	4.4	31.3	70	110	10	22			 		

							Louvre Size (m		ze (m)						Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	120	10	4			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	97	10	17			
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	97	10	19			
			Pressurization fan room	N5	L	Y	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	120	10	17			
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	92	-	-			
	Sheung	Ventilation	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	108	0	32			
PH1b	Teuen	Shaft for N/B (i) and	Pressurization fan	E3	L	Y	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	118	0	31	42	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Y	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	118	0	37			
			Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	92	-	-			
			UPS room	S2	L	Y	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	102	0	35	,		
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	104	0	19			
			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	105	0	17			
			Smoke extraction fan room	S5	L	Y	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	0	35			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	122	10	9			
			Smoke extraction fan room	W2	L	Υ	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	122	10	28			
			Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	86	0	34			
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	80	0	18			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	110	0	26			
			Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	110	0	28			
			Pressurization fan room	N5	L	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	80	0	31			
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	114	-	-			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	98	10	23			
PH4	Tsuen Village	N/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	82	10	24	42	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	10	30			
			Tunnel ventilation shaft	S1	L	N (i)	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	113	-	-			
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	96	10	25			
			SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	96	10	9			
			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	96	10	7			
			Smoke extraction fan room	S 5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	10	25			
			ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	90	0	22			
			Smoke extraction fan room	W2	L	Y	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	102	0	40			
			Tunnel ventilation shaft	N1	L	Y	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	99	0	33			
			FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	99	0	16			
			P&D pump and tank room	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	120	0	25			
I			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	120	0	27			l

							Louvre	Size (m)							Background		-·· .					
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	for line of		Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Pressurization fan room	N5	L	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	100	0	29			
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	123	-	-			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	103	10	23			
PH4a	Tsuen Village	N/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	102	10	22	38	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	103	10	28			
			Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	131	1	-			
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	131	10	23			
			SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	131	10	7			
			MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	131	10	5			
			Smoke extraction fan room	S 5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	102	10	26			
			ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	101	10	11			
			Smoke extraction fan room	W2	L	Υ	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	125	10	28			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

Property						I		Louvre	Size (m)	I					l	Background							
Part		NSR		Description	1	Louvre?	operation?				ment Distance,	of Measurement		Background	L _{Aeq}	Corrected Measured L _{Aeq,mea}	SWL L _{Aeq}	Noise Source to NSR, D _N	for line of sight, LoS	SPL at NSR	SPL at NSR	Evening Time Criteria	
American Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition Composition					N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	113	-	-			
March Marc				FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	113	10	5			
Part					N3	Ĺ	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	86	10	18			
March Marc				Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	86	10	20			
Part					N5	Ĺ	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	113	10	18			
Market M					E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	86	10	25			
Part Village		Sheung			E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	106	-	-			
Mouring Mour	PH1	l .	S/B ⁽ⁱ⁾ and		E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	106	10	21	45	49	0
Phila Sile Color Vision Sile Color Visio					E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	100	10	28			
Secondary Seco					S1	Ĺ	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	81	0	37			
Machine Secretarian Secr				UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	81	0	37			
Some extraction SS L Y S80 190 3 1 S38 64.1 45.3 18.8 64.1 81 100 0 36				SER		L			0.70		2	n/a											
Prilar Farmon So C T So So So So So So So					S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	81	0	19			
ABCS room W1 L Y 1.10 1.00 2 3 1 60.9 66.9 47.5 1.94 66.9 85 86 0 0 1.0					S 5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	100	0	36			
Second S				ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	105	0	21			
Sheurg S					W2	L	Υ	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	86	0	41			
PHIA PRO pump and tank room					N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	95	-	-			
PHIA Figure Fluid Cut-				FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	95	10	6			
Phila Phila Phila Pressurization fan NS L Y 2.20 2.70 2 6 N/a 51.2 43.8 7.4 50.3 74 95 10 19					N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	69	10	20			
PHIA Figure Fig					N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	69	10	22			
Sheur Sheur Sheur Sheur Tunnel vertilation Sheur				room	N5	L	Y	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	95	10	19			
Sheurg Tsuen varieties of Skeing State of Skeing State of Skein State of Skein State of Skein Sk				shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	69	10	27			
Village House Hous		_		shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	88	-	0			
Note Service Tanke-up fan room E4	PH1a	Village		room	E3	L	Y	2.30	2.10	2		n/a	55	43.8	11.2	55	77	88	10	23	47	49	0
Shaft S1 L Y 15.15 5.05 3 3 426.9 55.7 50.5 5.2 54.1 80 63 0 39 UPS room S2 L Y 2.5 1.1 2 5 n/a 59.0 50.0 9 58.4 80 63 0 39 SER S3 L Y 0.70 0.70 2 2 n/a 51.1 45.3 5.8 49.8 64 63 0 23 MCC room S4 L Y 0.50 0.50 2 1 n/a 55.3 50.2 5.1 53.7 62 63 0 21 Smoke extraction fan room W1 L Y 1.10 1.00 2 3 n/a 51.1 47.1 4 48.9 66 86 0 22 Smoke extraction fan room W2 L Y 7.00 1.90 3 1 60.9 66.9 47.5 19.4 66.9 85 74 0 43		House	louse	make-up fan room																			
SER S3 L Y 0.70 0.70 2 2 n/a 51.1 45.3 5.8 49.8 64 63 0 23 MCC room S4 L Y 0.50 0.50 2 1 n/a 55.3 50.2 5.1 53.7 62 63 0 21 Smoke extraction fan room S5 L Y 5.80 1.90 3 1 53.8 64.1 45.3 18.8 64.1 81 82 0 38 ABBCS room W1 L Y 1.10 1.00 2 3 n/a 51.1 47.1 4 48.9 66 86 0 22 Smoke extraction fan room W2 L Y 7.00 1.90 3 1 60.9 66.9 47.5 19.4 66.9 85 74 0 43				shaft																			
MCC room S4 L Y 0.50 0.50 2 1 n/a 55.3 50.2 5.1 53.7 62 63 0 21 Smoke extraction fan room S5 L Y 5.80 1.90 3 1 53.8 64.1 45.3 18.8 64.1 81 82 0 38 ABBCS room W1 L Y 1.10 1.00 2 3 n/a 51.1 47.1 4 48.9 66 86 0 22 Smoke extraction fan room W2 L Y 7.00 1.90 3 1 60.9 66.9 47.5 19.4 66.9 85 74 0 43 Tunnel ventilation N1 L N (0) 1553 5.05 3 3 433 53.9 49.5 44. 51.9 78 116 2 78	1																						
Smoke extraction fan room	1																						
ABBCS room W1 L Y 1.10 1.00 2 3 n/a 51.1 47.1 4 48.9 66 86 0 22 Smoke extraction fan room W2 L Y 7.00 1.90 3 1 60.9 66.9 47.5 19.4 66.9 85 74 0 43 Tunnel ventilation N1 L N (i) 1553 5.05 3 3 433 53.9 49.5 4.4 51.9 78 116				Smoke extraction																			
Smoke extraction fan room W2 L Y 7.00 1.90 3 1 60.9 66.9 47.5 19.4 66.9 85 74 0 43 Tunnel ventilation N1 L N (i) 1553 5.05 3 3 433 539 49.5 4.4 51.9 78 116					W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	86	0	22			
Tunnel ventilation N1 N0 1553 5.05 3 3 433 3 539 49.5 4.4 51.9 78 116 - -				Smoke extraction																			
				Tunnel ventilation	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	116	-	-			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	120	10	4			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	97	10	17			
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	97	10	19			
			Pressurization fan room	N5	L	Y	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	120	10	17			
			Tunnel ventilation shaft	E1	L	Y	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	92	0	35			
	Sheung	Ventilation	Tunnel ventilation shaft	E2	L	N (i)	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	108	-	-			
PH1b	Tsuen Village	Shaft for S/B (i) and	Pressurization fan	E3	L	Y	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	118	0	31	43	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Y	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	118	0	37			
			Tunnel ventilation shaft	S1	L	Y	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	92	0	36			
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	102	0	35			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	104	0	19			
			MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	105	0	17			
			Smoke extraction fan room	S5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	0	35			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	122	10	9			
			Smoke extraction fan room	W2	L	Υ	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	122	10	28			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	86	-	-			
			FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	80	0	18			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	110	0	26			
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	110	0	28			
			Pressurization fan room	N5	L	Y	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	80	0	31			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	114	10	23			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N (i)	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	98	-	-			
PH4	Tsuen Village	S/B (i) and	Pressurization fan room	E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	82	10	24	42	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	10	30			
			Tunnel ventilation shaft	S1	L	Y	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	113	10	24			
			UPS room	S2	L	Y	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	96	10	25			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	96	10	9			
			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	96	10	7			
			Smoke extraction fan room	S5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	10	25			
			ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	90	0	22			
			Smoke extraction fan room	W2	L	Y	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	102	0	40			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	99	-	-			
			FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	99	0	16			
			P&D pump and tank room	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	120	0	25			
			Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	120	0	27			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Maica Courca	for line of	SPI at NSR	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Pressurization fan room	N5	L	Υ	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	100	0	29			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	123	10	22			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	103	-	-			
PH4a	Tsuen Village	$\ensuremath{\mathrm{S/B}}^{\mbox{\ (i)}}$ and	Pressurization fan room	E3	L	Υ	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	102	10	22	36	49	0
	House	Building Service	Smoke extract make-up fan room	E4	L	Υ	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	103	10	28			
			Tunnel ventilation shaft	S1	L	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	131	10	23			
			UPS room	S2	L	Υ	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	131	10	23			
			SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	131	10	7			
			MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	131	10	5			
			Smoke extraction fan room	S5	L	Υ	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	102	10	26			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	101	10	11			
			Smoke extraction fan room	W2	L	Υ	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	125	10	28			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

NSR						Louvre	Size (m)	1				I		Background		1					
	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
		Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	113	10	22			
		FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	113	10	5			
		P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	86	10	18			
		Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	86	10	20			
		Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	113	-	-			
		Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	86	-	-			
Sheun	Ventilation	To a self-resident	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	106	10	22			
PH1 Tsuen	N/R (i) and	Pressurization fan	E3	L	N (ii)	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	106	-	-	29	43	0
Village		Smoke extract make-up fan room	E4	L	N (ii)	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	100	-	-			
		Tunnel ventilation	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	81	-	-			
		UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	81	-	-			
		SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	81	0	21			
		MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	81	0	19			
	N S	Smoke extraction fan room	S5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	100	-	-			
		ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	105	0	21			
	S	Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	86	-	-			
		Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	95	10	23			
		FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	95	10	6			
		P&D pump and tank room	N3	٦	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	69	10	20			
		Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	69	10	22			
		Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	95	-	-			
		Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	69	-	-			
Sheung	Ventilation	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	88	10	24			
PH1a Tsuen Village	N/B " and	Pressurization fan room	E3	L	N ⁽ⁱⁱ⁾	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	88	-	-	31	43	0
House		Smoke extract make-up fan room	E4	L	N (ii)	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	-	-			
	Service	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	63	-	-			
		UPS room	S2	L	N ⁽ⁱⁱ⁾	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	63		-			
		SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	63	0	23			
		MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	63	0	21			
		Smoke extraction fan room	S 5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	82	-	-			
		ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	86	0	22			
		Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	74		-			
		Tunnel ventilation shaft	N1	L	Υ	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	116	10	22			

						T I	Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m²)	Measured L _{Aeq} [dB(A)]		Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	120	10	4			
			P&D pump and tank	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	97	10	17			
			Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	97	10	19			
			Pressurization fan room	N5	L	N (ii)	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	120	-	-			
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	92	-	-			
	Sheung	Ventilation	T	E2	L	Y	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	108	0	32	•		
PH1b	Tsuen Village	Shaft for N/B (i) and	Droccurization fan	E3	L	N (ii)	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	118	-	-	33	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N (ii)	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	118	-	-			
			Tunnel ventilation shaft	S1	L	N (i)	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	92	-	0			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	102	-	-	•		
			SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	104	0	19			
			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	105	0	17			
			Smoke extraction fan room	S5	L	N (ii)	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	-	-			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	122	10	9			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	122	-	-			
			Tunnel ventilation shaft	N1	L	Y	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	86	0	34			
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	80	0	18			
			P&D pump and tank room	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	110	0	26			
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	110	0	28			
			Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	80	-	-			
			Tunnel ventilation shaft	E1	L	N (i)	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	114	-	-			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	98	10	23			
PH4	Tsuen Village	N/B (i) and	Pressurization fan room	E3	L	N (ii)	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	82	-	-	36	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N (ii)	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82		-			
			Tunnel ventilation shaft	S1	L	N (i)	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	113		-			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	96	-	-			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	96	10	9			
			MCC room Smoke extraction	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	96	10	7			
			fan room	S5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	-	-			
			ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	90	0	22			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	102	-	-			
			Tunnel ventilation shaft	N1	L	Y	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	99	0	33			
			FS control room	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	99	0	16			
			P&D pump and tank room	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	120	0	25			
I	l	I	Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	120	0	27			ı I

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)		Distance from Noise Source to NSR, D _N [m]	for line of		Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	100	-	-			
			Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	123	-	-			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	Ĺ	Υ	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	103	10	23			
PH4a	Tsuen Village	N/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	N ⁽ⁱⁱ⁾	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	102	-	-	35	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N ⁽ⁱⁱ⁾	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	103	-	-			
			Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	131	-	-			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	131	-	-			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	131	10	7			
			MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	131	10	5			
			Smoke extraction fan room	S5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	102	-	-			
			ABBCS room	W1	Ĺ	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	101	10	11			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	125	1	-			

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	113	-	-			
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	113	10	5			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	86	10	18			
			Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	86	10	20			
			Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	113	-	-			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	86	10	25			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	106	-	-			
PH1	Tsuen Village	S/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	N ⁽ⁱⁱ⁾	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	106	-	-	38	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N ⁽ⁱⁱ⁾	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	100	-	-			
			Tunnel ventilation shaft	S1	L	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	81	0	37			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	81	-	-			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	81	0	21			
			MCC room Smoke extraction	S4 S5	L	Y N ⁽ⁱⁱ⁾	0.50 5.80	0.50 1.90	3	1	n/a 53.8	55.3 64.1	50.2 45.3	5.1 18.8	53.7 64.1	62 81	81 100	-	19			
			fan room ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	105	0	21	•		
			Smoke extraction	W2	L	N (ii)					60.9		47.1									
			fan room Tunnel ventilation				7.00	1.90	3	1		66.9		19.4	66.9	85	86	-	-			
			shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	95	-	-			
			FS control room P&D pump and tank	N2	L	Y	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	95	10	6			
			room Air duct riser	N3 N4	L	Y	2.20 5.70	1.70 2.50	3	5	n/a 59.1	52.9 57.7	49.7 51.7	3.2 6	50.1 56.4	72 74	69 69	10	20			
			Pressurization fan			N (ii)												10		•		
			room Tunnel ventilation	N5 E1	L	Y	2.20 8.28	2.70 5.05	3	6 3	n/a 309.7	51.2 55.1	43.8	7.4 6.7	50.3	74 79	95 69	10	27			
		Ventilation	shaft Tunnel ventilation	E2	L	N (i)	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	88	-	-			
PH1a	Sheung Tsuen	Shaft for S/B (i) and	shaft Pressurization fan	E3	L	N (ii)	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	88		_	40	43	0
11120	Village House	Building	room Smoke extract	E4	L	N (ii)	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	-	-		45	Ü
		Service	make-up fan room Tunnel ventilation	S1	L	Y	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	63	0	39			
			shaft UPS room	S2	L	N ⁽ⁱⁱ⁾	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	63	_	_			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	63	0	23			
1			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	63	0	21			
			Smoke extraction fan room	S5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	82	-	-			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	86	0	22			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	74	-	-			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	116	-	-			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	120	10	4			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	97	10	17			
			Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	97	10	19			
			Pressurization fan room	N5	L	N (ii)	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	120	-	-			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	92	0	35			
	Sheung	Ventilation	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	108	-	-			
PH1b	Teuen	Shaft for S/B (i) and	Pressurization fan room	E3	L	N (ii)	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	118	-	-	39	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N ⁽ⁱⁱ⁾	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	118	-	-			
			Tunnel ventilation shaft	S1	L	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	92	0	36			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	102	-	-	,		
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	104	0	19			
			MCC room	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	105	0	17			
			Smoke extraction fan room	S5	L	N (ii)	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	-	-			
			ABBCS room	W1	L	Υ	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	122	10	9			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	122	-	-			
			Tunnel ventilation shaft	N1	L	N (i)	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	86	-	-			
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	80	0	18			
			P&D pump and tank room	N3	L	Υ	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	110	0	26			
			Air duct riser	N4	L	Y	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	110	0	28			
			Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	80	-	-			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	114	10	23			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	98	-	-			
PH4	Tsuen Village	S/B (i) and	Pressurization fan room	E3	L	N ⁽ⁱⁱ⁾	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	82	-	-	32	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N ⁽ⁱⁱ⁾	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	82	-	-			
			Tunnel ventilation shaft	S1	L	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	113	10	24			
			UPS room	S2	L	N ⁽ⁱⁱ⁾	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	96	-	-			
			SER	S3	L	Y	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	96	10	9			
			MCC room Smoke extraction	S4	L	Y	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	96	10	7			
			fan room	S5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	108	-	-			
			ABBCS room	W1	L	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	90	0	22			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	102	-	-			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	15.53	5.05	3	3	433.3	53.9	49.5	4.4	51.9	78	99	-	-			
			FS control room	N2	L	Υ	0.50	0.50	2	1	n/a	55	50.4	4.6	53.2	61	99	0	16			
			P&D pump and tank room	N3	L	Y	2.20	1.70	2	5	n/a	52.9	49.7	3.2	50.1	72	120	0	25			
I	I	l	Air duct riser	N4	L	Υ	5.70	2.50	3	1	59.1	57.7	51.7	6	56.4	74	120	0	27			l

							Louvre	Size (m)							Background		-··					
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of		Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	2.20	2.70	2	6	n/a	51.2	43.8	7.4	50.3	74	100	-	-			
			Tunnel ventilation shaft	E1	L	Υ	8.28	5.05	3	3	309.7	55.1	48.4	6.7	54.1	79	123	10	22			
	Sheung	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	8.28	5.05	3	3	309.7	54.8	50.5	4.3	52.8	78	103	-	-			
PH4a	Tsuen Village	S/B ⁽ⁱ⁾ and	Pressurization fan room	E3	L	N ⁽ⁱⁱ⁾	2.30	2.10	2	5	n/a	55	43.8	11.2	55	77	102	-	-	31	43	0
	House	Building Service	Smoke extract make-up fan room	E4	L	N ⁽ⁱⁱ⁾	1.80	2.40	2	5	n/a	60.8	43.8	17	60.8	83	103	-	-			
			Tunnel ventilation shaft	S1	L	Υ	15.15	5.05	3	3	426.9	55.7	50.5	5.2	54.1	80	131	10	23			
			UPS room	S2	L	N (ii)	2.5	1.1	2	5	n/a	59.0	50.0	9	58.4	80	131	-	-			
			SER	S3	L	Υ	0.70	0.70	2	2	n/a	51.1	45.3	5.8	49.8	64	131	10	7			
			MCC room	S4	L	Υ	0.50	0.50	2	1	n/a	55.3	50.2	5.1	53.7	62	131	10	5			
			Smoke extraction fan room	S 5	L	N ⁽ⁱⁱ⁾	5.80	1.90	3	1	53.8	64.1	45.3	18.8	64.1	81	102	-	-			
			ABBCS room	W1	Ĺ	Y	1.10	1.00	2	3	n/a	51.1	47.1	4	48.9	66	101	10	11			
			Smoke extraction fan room	W2	L	N ⁽ⁱⁱ⁾	7.00	1.90	3	1	60.9	66.9	47.5	19.4	66.9	85	125	-	-			

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

	Т			ſ	ſ		Louvro	Size (m)		1	ſ	l			B1				1			
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Background Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	141	0	19			
			E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	141	0	30			
	St. Margaret's Coeducational	Ventilation	Tunnel ventilation																			
NC10	English	Shaft for N/B (i) and	shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	137	0	34	36	60	0
	Secondary & Primary	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	151	10	13	30		
	School		E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	151	10	13			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	151	10	10			
			Dog house LV Switch Room	S4 W1	L	Y	0.80	0.80	3	2	N/A 19.0	67.8 61.7	56.5 54	11.3 7.7	67.8 60.9	82 74	170 164	10 10	22 15			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	-	-			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	136	0	19			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	136	0	30			
NC11	Tack Ching Girls'	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	163	10	23	37	60	0
	Secondary School	Building Service	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	135	10	14	<i>3,</i>		
			E&M Service Area 10	S2	L	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	135	10	14			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	135	10	11			
			Dog house	S4	L	Y	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	133	0	35			
-			LV Switch Room Tunnel ventilation	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	128	0	27			
			shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	30	-	-			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	30	10	22			
	Planned	Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	30	10	33			
NC11e	develonment	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	32	10	37	46	60	0
NCITE	Planned development (site 6), Block 1 (vi) Planned development (site 6), Block Buildi	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	20	10	31	40	60	U
		Jei vice	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	13	10	35			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	9	10	35			
			Dog house	S4	L	Υ	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	16	10	43			
-			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	11	10	38			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	29	- 10	-			
1			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	29	10	23			
		Ventilation	E&M Service Area 8 Tunnel ventilation	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	29	10	34			
NC11f		$\ensuremath{\text{N/B}}^{\ensuremath{\text{(i)}}}$ and	shaft	E1	L	Y	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	21	10	41	46	60	0
		Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	13	10	35			
		Service	E&M Service Area 10	S2	L		7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	8	10	39			
			E&M Service Area 9 Dog house	S3 S4	L I	Y	5.90 0.8	1.40 0.8	3	2	49.5 N/A	55.3 67.8	55.1 56.5	0.2 11.3	52.3 67.8	69 82	11 25	10 10	33 39			
	1 1		50 ₅ .1003C	34			0.0	0.0	-		11/75	07.0	30.3	11.5	07.0	02	25	10			I	

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	20	10	33			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	-				
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	50	10	18			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	50	10	29			
NC11g	Planned development	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	33	0	47	48	60	0
NCIIg	(site 6), Block 2	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	45	0	34	40	00	O
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	0	28			
			Dog house	S4	L	Υ	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	66	10	31			
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	71	10	22			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	-	-			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	55	10	17			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	55	10	28			
NC11h	Planned development	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	34	0	46	47	60	0
	(site 6), Block 2	Building Service	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	47	0	34			
		Service	E&M Service Area 10	S2	Ĺ	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	Y	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62 77	0	28			
			Dog house	S4 W1	L	Y	0.8	0.80	3	1	N/A 19.0	67.8 61.7	56.5 54	11.3 7.7	67.8 60.9	82 74	72	10 10	29 22			
			LV Switch Room Tunnel ventilation	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	239	-	-			
			shaft FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	239	0	14			
		Ventilation	E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	239	0	25			
		Ventilation Shaft for	Tunnel ventilation shaft	E1	L	Y	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	261	10	19			
NC16	Marine	N/B ⁽ⁱ⁾ and Building Service	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	230	10	10	32	65	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	230	10	10			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	230	10	7			
			Dog house	S4	L	Υ	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	225	0	30			
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	225	0	22			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

(vi) A canopy with acoustic lining will be provided at the southern façade of NCV for screening the fixed plant noise from the southern louvres to Block 1.

				1	Ī	l l	Louvro	Size (m)		I	I	Ī			Da alsa: ¹							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Background Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation	N1	L	Υ	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	0	33			
			shaft FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	141	0	19			
			E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	141	0	30			
	St. Margaret's Coeducational	Ventilation		145	_	'	3.10	5.01	,	-	04.8	01.2	33.8	3.4	33.7	76	141	-	30			
NC10	English	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	137	-	-	35	60	0
NCIU	Secondary & Primary	Building Service	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	151	10	13	33	60	U
	School	50.7.00	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	151	10	13			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	151	10	10			
			Dog house	\$4 W1	L	Y	0.8	0.8	3	2	N/A 19.0	67.8	56.5	11.3 7.7	67.8 60.9	82 74	170 164	10 10	22 15			
-			LV Switch Room Tunnel ventilation				0.80	0.80				61.7	54									
			shaft	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	0	33			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	136	0	19			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	136	0	30			
NC11	Tack Ching Girls'	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	163	-	-	38	60	0
	Secondary School	Building	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	135	10	14			
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	135	10	14			
			E&M Service Area 9	S3	L	Y	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	135	10	11			
			Dog house LV Switch Room	\$4 W1	L	Y Y	0.80	0.8	3	2	N/A 19.0	67.8 61.7	56.5 54	11.3 7.7	67.8 60.9	82 74	133 128	0	35 27			
			Tunnel ventilation	N1		Y	18.30	5.65	3	3			54	3.2	54.4	81	30	10				
			shaft		L						498.8	57.2							36			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	30	10	22			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	30	10	33			
NC11e	development	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	32	-	-	46	60	0
	(site 6), Block 1 ^(vi)	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	20	10	31			
1		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	13	10	35			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	9	10	35			
			Dog house	S4	L	Y	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	16	10	43			
			LV Switch Room Tunnel ventilation	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	11	10	38			
			shaft	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	29	10	37			
1			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	29	10	23			
	Planned	Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	29	10	34			
NC11f	develonment	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	21	-	-	45	60	0
	1 (vi)	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	13	10	35			
1			E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	8	10	39			
1			E&M Service Area 9	S3	L	Y	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	11	10	33			
I	1 1		Dog house	S4	L	Y	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	25	10	39		I	1 1

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	20	10	33			
			Tunnel ventilation shaft	N1	L	Υ	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	10	32			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	50	10	18			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	50	10	29			
NC11g	Planned	Shaft for S/B ⁽ⁱ⁾ and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	33	-	-	39	60	0
NCIIg	(site 6), Block 2	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	45	0	34	33	00	O
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	0	28			
			Dog house	S4	L	Υ	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	66	10	31			
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	71	10	22			
			Tunnel ventilation shaft	N1	L	Υ	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	10	32			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	55	10	17			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	55	10	28			
NC11h	Planned development	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	34	-	-	39	60	0
	(site 6), Block 2	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	47	0	34			
		Service	E&M Service Area 10	S2	Ĺ	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	Y	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62 77	0	28			
			Dog house	S4 W1	L	Y	0.8	0.80	3	1	N/A 19.0	67.8 61.7	56.5 54	11.3 7.7	67.8 60.9	82 74	72	10 10	29 22			
			LV Switch Room Tunnel ventilation	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	239	0	28			
			shaft FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	239	0	14			
			E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	239	0	25			
	Tower 3 Aqua	Shaft for	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	261	-	-	22		
NC16	Marine	S/B ⁽ⁱ⁾ and Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	230	10	10	33	65	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	230	10	10			
			E&M Service Area 9	S3	L	Υ	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	230	10	7			
			Dog house	S4	L	Υ	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	225	0	30			
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	225	0	22			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

(vi) A canopy with acoustic lining will be provided at the southern façade of NCV for screening the fixed plant noise from the southern louvres to Block 1.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vI)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	141	0	19			
	St. Margaret's	Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	141	0	30			
	Coeducational English	Shaft for	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	137	0	34	0.5	=0	
NC10	Secondary & Primary	N/B (i) and Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	151	10	13	36	50	0
	School	Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	151	10	13			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	151	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	170	-	-			
			LV Switch Room Tunnel ventilation	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	164	10	15			
			shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	136	0	19			
		Ventilation	E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	136	0	30			
NC11	Tack Ching Girls'	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	163	10	23	33	50	0
IVCII	Secondary School	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	135	10	14	33	30	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	135	10	14			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	135	-	-			
			Dog house	S4 W1	L	N ⁽ⁱⁱ⁾	0.8	0.8	3	2	N/A 19.0	67.8	56.5	11.3	67.8	82 74	133	-	- 27			
			LV Switch Room Tunnel ventilation shaft	N1	L L	N N	0.80 18.30	0.80 5.65	3	3	498.8	61.7 57.2	54 54	7.7 3.2	60.9 54.4	81	128 30	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	30	10	22			
			E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	30	10	33			
	Planned	Ventilation Shaft for	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	32	10	37			
NC11e	(site 6), Block 1 (vii)	N/B ⁽ⁱ⁾ and Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	20	10	31	43	50	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	13	10	35			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	9	-	0			
			Dog house	S4	L	N (ii)	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	16	-	0			
			LV Switch Room Tunnel ventilation	W1 N1	L	Y N	0.80 18.30	0.80 5.65	3	3	19.0 498.8	61.7 57.2	54 54	7.7 3.2	60.9 54.4	74 81	11 29	10	38			
			shaft FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	29	10	23			
			E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	29	10	34			
	Planned	Ventilation Shaft for	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	21	10	41			
NC11f	(site 6), Block	N/B ⁽ⁱ⁾ and Building	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	13	10	35	45	50	0
	1	Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	8	10	39			
			E&M Service Area 9	S3	L	N (ii)	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	11	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	25	-	-			
	1 1		LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	20	10	33			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	50	10	18			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	50	10	29			
NC11g	Planned development	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	33	0	47	47	50	0
NCIIg	(site 6), Block 2	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	45	0	34	47	30	U
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	66	-	-			
			LV Switch Room	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	71	10	22			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	-	-			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	55	10	17			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	55	10	28			
NC11h	Planned development	Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Y	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	34	0	46	47	50	0
NCIIII	(site 6), Block 2	Building	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	47	0	34	47	30	U
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	N (ii)	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	-	-			
			Dog house	S4	L	N (ii)	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	77	-	-			
			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	72	10	22			
			Tunnel ventilation shaft	N1	L	N	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	239	-	-			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	239	0	14			
		Ventilation	E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	239	0	25			
NC1C		Shaft for N/B (i) and	Tunnel ventilation shaft	E1	L	Υ	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	261	10	19	20		0
NC16	Marine	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	230	10	10	28	55	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	230	10	10			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	230	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	225	-	-			
Pomark			LV Switch Room	W1	L	Υ	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	225	0	22			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) The plant would be operated during day and evening time only under normal scenario.

(iii) Method 2 Far field method for Louvres or Plants
Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

(vii) A canopy with acoustic lining will be provided at the southern façade of NCV for screening the fixed plant noise from the southern louvres to Block 1.

				1			Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vI)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	0	33			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	141	0	19			
	St. Margaret's	Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	141	0	30			
	Coeducational English	Shaft for	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	137	-	-			_
NC10	Secondary & Primary	S/B ⁽ⁱ⁾ and Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	151	10	13	35	50	0
	School	Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	151	10	13			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	151	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	170	-	-			
			LV Switch Room	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	164	10	15			
			Tunnel ventilation shaft	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	141	0	33			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	136	0	19			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	136	0	30			
NC11	Tack Ching Girls'	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	163	-	-	36	50	0
IVCII	Secondary School	Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	135	10	14	30	30	
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	135	10	14			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	135	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	133	-	-			
			LV Switch Room Tunnel ventilation	W1 N1	L	Y	0.80 18.30	0.80 5.65	3	3	19.0 498.8	61.7 57.2	54 54	7.7 3.2	60.9 54.4	74 81	128 30	10	27 36			
			shaft FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	30	10	22			
			E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	30	10	33			
	development	Ventilation Shaft for	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	32	-	-			
NC11e	(site 6), Block 1 (vii)	S/B ⁽ⁱ⁾ and Building	E&M Service Area 10	S1	L	Υ	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	20	10	31	42	50	0
		Service	E&M Service Area 10	S2	L	Υ	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	13	10	35			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	9	-	-			
			Dog house	S4	L	N (ii)	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	16	-	-			
			LV Switch Room Tunnel ventilation	W1 N1	L	Y	0.80 18.30	0.80 5.65	3	3	19.0 498.8	61.7 57.2	54 54	7.7 3.2	60.9 54.4	74 81	11 29	10 10	38 37			
			shaft																			
			FS Control Room	N2	_ L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	29	10	23			1
	Planned	Ventilation	E&M Service Area 8 Tunnel ventilation	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	29	10	34			
NC11f	development (site 6), Block	Shaft for S/B (i) and	shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	21	-	-	43	50	0
	1 (vii)	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	13	10	35			
			E&M Service Area 10	S2	L	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	8	10	39			
			E&M Service Area 9	S3	L	N (ii)	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	11	-	-			
			Dog house	S4 W1	L	N ⁽ⁱⁱ⁾ Y	0.8	0.80	3	2	N/A 19.0	67.8 61.7	56.5	11.3 7.7	67.8 60.9	82 74	25 20	10	- 22			
ı	1 1		LV Switch Room	WI	L	Y	0.80	0.80	3	1	19.0	61.7	54	1.1	60.9	/4	20	10	33			I

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vI)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	10	32			
			FS Control Room	N2	L	Υ	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	50	10	18			
		Ventilation	E&M Service Area 8	N3	L	Υ	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	50	10	29			
NC11g	Planned development	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	33	-	-	38	50	0
NCIIg	(site 6), Block 2	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	45	0	34	30	30	
		Service	E&M Service Area 10	S2	L	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	66	-	-			
			LV Switch Room	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	71	10	22			
			Tunnel ventilation shaft	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	50	10	32			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	55	10	17			
		Ventilation	E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	55	10	28			
NC11h	Planned development	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	34	-	-	38	50	0
IVCIIII	(site 6), Block 2	Building	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	47	0	34	36	30	0
		Service	E&M Service Area 10	S2	L	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	55	0	32			
			E&M Service Area 9	S3	L	N ⁽ⁱⁱ⁾	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	62	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	77	-	-			
<u> </u>			LV Switch Room	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	72	10	22			
			Tunnel ventilation shaft	N1	L	Y	18.30	5.65	3	3	498.8	57.2	54	3.2	54.4	81	239	0	28			
			FS Control Room	N2	L	Y	2.44	0.55	3	1	25.3	54.8	49.6	5.2	53.2	67	239	0	14			
		Ventilation	E&M Service Area 8	N3	L	Y	3.16	5.61	3	1	64.8	61.2	55.8	5.4	59.7	78	239	0	25			
NC16	Tower 3 Aqua	Shaft for S/B (i) and	Tunnel ventilation shaft	E1	L	N	17.45	6.18	3	1	214.4	60.7	55.9	4.8	59	82	261	-	-	31	55	0
1,010	Marine	Building Service	E&M Service Area 10	S1	L	Y	1.56	1.86	3	1	28.6	59.5	55.8	3.7	57.1	72	230	10	10	51	33	
		service	E&M Service Area 10	S2	L	Y	7.86	1.86	3	1	65.5	57.2	56.9	0.3	54.2	72	230	10	10			
			E&M Service Area 9	S3	L	N (ii)	5.90	1.40	3	1	49.5	55.3	55.1	0.2	52.3	69	230	-	-			
			Dog house	S4	L	N ⁽ⁱⁱ⁾	0.8	0.8	2	2	N/A	67.8	56.5	11.3	67.8	82	225	-	-			
			LV Switch Room	W1	L	Y	0.80	0.80	3	1	19.0	61.7	54	7.7	60.9	74	225	0	22			

 $(i) \ Tunnel \ ventilation \ would \ only \ be \ operated \ for either \ northbound \ (N/B) \ or \ southbound \ (S/B) \ direction \ under \ normal \ scenario.$

(ii) The plant would be operated during day and evening time only under normal scenario.

(iii) Method 2 Far field method for Louvres or Plants
Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

(vii) A canopy with acoustic lining will be provided at the southern façade of NCV for screening the fixed plant noise from the southern louvres to Block 1.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	202	0	35			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	202	-	-			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	61.5	58.6	2.9	58.5	80	202	0	29			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	222	0	26			
	Yau Ma Tei		Harmonic Filter Room	E2	L	Υ	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	207	0	21			
	Catholic	Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	217	0	21			
	Primary	Shaft for	SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	207	0	28			
MK1	School (Hoi Wang	N/B ⁽ⁱ⁾ and Building Service	Staircase Pressuraization Fan Room 2	S1	L	Υ	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	207	10	13	39	60	0
	Road)		Staircase Pressuraization Fan Room 1	S2	L	Υ	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	207	10	14			
			Battery and Charge Room	S3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	237	10	23			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	237	10	10			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	227	10	28			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	189	0	33			
			Tunnel ventilation shaft	N1	L	Υ	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	268	0	32			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	268	-	-			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	61.5	58.6	2.9	58.5	80	268	0	26			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	265	0	25			
		M4! -4!	Harmonic Filter Room	E2	L	Υ	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	252	0	19			
		Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	260	0	20			
1	Charming		SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	252	0	26			
МКЗ	Garden Block 11	N/B ⁽ⁱ⁾ and Building Service	Staircase Pressuraization Fan Room 2	S1	L	Υ	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	252	10	11	37	60	0
			Staircase Pressuraization Fan Room 1	S2	L	Υ	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	252	10	12			
			Battery and Charge Room	S3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	282	10	21			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	282	10	8			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	275	10	26			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	249	0	31			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

⁽ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

⁽iii) Results are averaged from the measured noise levels.

⁽iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

⁽v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	202	-	-			
			Tunnel ventilation shaft	N2	L	Υ	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	202	0	36			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	61.5	58.6	2.9	58.5	80	202	0	29			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	222	0	26			
	Yau Ma Tei		Harmonic Filter Room	E2	L	Υ	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	207	0	21			
	Catholic	Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	217	0	21			
	Primary	Shaft for	SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	207	0	28			
MK1	School (Hoi Wang	S/B (i) and Building Service	Staircase Pressuraization Fan Room 2	S1	L	Υ	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	207	10	13	40	60	0
	Road)		Staircase Pressuraization Fan Room 1	S2	L	Υ	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	207	10	14			
			Battery and Charge Room	S3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	237	10	23			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	237	10	10			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	227	10	28			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	189	0	33			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	268	-	-			
			Tunnel ventilation shaft	N2	L	Υ	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	268	0	33			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	61.5	58.6	2.9	58.5	80	268	0	26			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	265	0	25			
		Mantilation	Harmonic Filter Room	E2	L	Υ	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	252	0	19			
		Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	260	0	20			
1	Charming		SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	252	0	26	2-	60	
МКЗ	Garden Block 11	S/B ⁽ⁱ⁾ and Building Service	Staircase Pressuraization Fan Room 2	S1	L	Υ	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	252	10	11	37	60	0
			Staircase Pressuraization Fan Room 1	S2	L	Υ	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	252	10	12			
			Battery and Charge Room	S 3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	282	10	21			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	282	10	8			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	275	10	26			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	249	0	31			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

⁽ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

⁽iii) Results are averaged from the measured noise levels.

⁽iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

⁽v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

Night Time Fixed Plant Noise at NSR

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	ment	ivieasurement	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	SWL L _{Aeq}	Distance from Noise Source to NSR, D _N [m]	for line of		Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	268	0	32			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	268	•	-			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	58.6	49.7	8.9	58	79	268	0	25			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	265	0	25			
			Harmonic Filter Room	E2	L	N ⁽ⁱⁱ⁾	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	252	-	0			
		Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	260	0	20			
			SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	252	0	26			
МКЗ	Garden Block 11	N/B ⁽ⁱ⁾ and Building Service	Staircase Pressuraization Fan Room 2	S1	L	N ⁽ⁱⁱ⁾	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	252	-	-	35	50	0
			Staircase Pressuraization Fan Room 1	S2	L	N ⁽ⁱⁱ⁾	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	252	-	-			
			Battery and Charge Room	S3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	282	10	21			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	282	10	8			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	275	10	26			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	249	-	-			

Remarks:

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (y) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

Night Time Fixed Plant Noise at NSR

							Louvre	Size (m)			Conference America				Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)		of		Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of		Cumulative SPL at NSR [dB(A)]	Night Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	10.00	8.00	3	3	404.0	60.8	53.7	7.1	59.9	86	268	-	-			
			Tunnel ventilation shaft	N2	L	Υ	10.00	8.00	3	3	404.0	62.5	56	6.5	61.4	87	268	0	33			
			EVS	N3	L	Υ	1.70	6.96	3	2	129.1	58.6	49.7	8.9	58	79	268	0	25			
			Harmonic Filter Room	E1	L	Υ	1.24	1.24	2	3	N/A	62.3	56.9	5.4	60.8	78	265	0	25			
			Harmonic Filter Room	E2	L	N ⁽ⁱⁱ⁾	9.90	1.70	3	1	75.2	56.3	55.6	0.7	53.3	72	252	-	0			
		Ventilation	25kV Switch Room	E3	L	Υ	0.75	0.75	2	2	N/A	61.1	56.9	4.2	59	73	260	0	20			
	Charming	Shaft for	SVS	E4	L	Υ	1.70	8.70	3	2	146.0	59.6	55.6	4	57.4	79	252	0	26			
МКЗ	Garden Block 11	S/B ⁽ⁱ⁾ and Building Service	Staircase Pressuraization Fan Room 2	S1	L	N ⁽ⁱⁱ⁾	5.90	1.20	3	1	47.5	58.2	52.7	5.5	56.8	74	252	-	-	36	50	0
			Staircase Pressuraization Fan Room 1	S2	L	N ⁽ⁱⁱ⁾	5.90	1.20	3	1	47.5	59.2	52.7	6.5	58.1	75	252	-	-			
			Battery and Charge Room	S3	L	Υ	1.0	1.0	3	1	21.0	71.3	57.8	13.5	71.3	85	282	10	21			
			Harmonic Filter Room	S4	L	Υ	2.10	0.90	3	1	25.9	58.7	52.7	6	57.4	72	282	10	8			
			Fire Pump room (Electrical)	W1	L	Υ	1.00	1.00	3	1	21.0	77.1	61.4	15.7	77.1	90	275	10	26			
			FHP	FHP-N1	L	Υ	0.80	0.80	2	2	N/A	69.6	53.8	15.8	69.6	84	249	-	-			

Remarks:

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (y) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
Tunnel ventilation shaft	N1	Normal	3	Point 1	53.6
Tunner ventuation snart	N1	Normal	3	Point 2	56.9
	N1	Normal	3	Point 3	56.9
	N1	Normal	3	Point 4	55.9
	N1	Normal	3	Point 5	52.8
	N1	Normal	3	Point 6	51
	N1	Normal	3	Point 7	51.9
	N1	Normal	3	Point 8	52.4
	N1	Normal	3	Point 9	52.5
	N1 N1	Normal Normal	3	Point 10 Point 11	54.8 55.9
	N1	Normal	3	Point 12	54.1
	N1	Normal	3	Point 13	51.6
	N1	Normal	3	Point 14	51.1
	N1	Normal	3	Point 15	51.8
	N1	Normal	3	Point 16	52
	N1	Normal		AVERAGE	53.9
FS control room	N2	Normal	2	measurement 1	55.6
	N2	Normal	2	measurement 2	54.7
	N2	Normal	2	measurement 3	54.7
	N2	N. I	2	AVERAGE	55.0
P&D pump and tank room	N3 N3	Normal Normal	2 2	measurement 1	52.9
	N3	Normal	2	measurement 2 measurement 3	52.8
	N3	rvormai	2	AVERAGE	53.1
Air duct riser	N4	Normal	3	Point 1	52.9 58.2
All duct lises	N4	Normal	3	Point 2	58.5
	N4	Normal	3	Point 3	58.4
	N4	Normal	3	Point 4	60.2
	N4	Normal	3	Point 5	58.4
	N4	Normal	3	Point 6	58.9
	N4	Normal	3	Point 7	56.7
	N4	Normal	3	Point 8	55.1
	N4	Normal	3	Point 9	55.5
	N4 N4	Normal Normal	3	Point 10 Point 11	56.5
	N4 N4	Normal	3	Point 12	56.6
	N4	Normal	3	Point 13	56.0 57.5
	N4	Normal	3	Point 14	57.9
	N4	Normal	3	Point 15	58.0
	N4	Normal	3	Point 16	58.1
	N4			AVERAGE	57.7
Pressurization fan room	N5	Normal	2	measurement 1	51.2
	N5	Normal	2	measurement 2	51.2
	N5	Normal	2	measurement 3	51.2
	N5	N1	2	AVERAGE	51.2
Tunnel ventilation shaft	E1	Normal	3	Point 1	53.7
	EI El	Normal Normal	3	Point 2 Point 3	58.2 58.3
	E1	Normal	3	Point 4	50.8
	E1	Normal	3	Point 5	52.1
	E1	Normal	3	Point 6	52.9
	E1	Normal	3	Point 7	55.4
	E1	Normal	3	Point 8	56.5
	E1	Normal	3	Point 9	56.8
	E1	Normal	3	Point 10	52
	E1	Normal	3	Point 11	52.5
	E1	Normal	3	Point 12	53
	E1	N. I	2	AVERAGE	55.1
Tunnel ventilation shaft	E2	Normal	3	Point 1	56.8
	E2 E2	Normal Normal	3	Point 2 Point 3	57.4 55.4
	E2	Normal	3	Point 4	54
	E2	Normal	3	Point 5	51.7
	E2	Normal	3	Point 6	51.8
	E2	Normal	3	Point 7	55.4
	E2	Normal	3	Point 8	52.7
	E2	Normal	3	Point 9	56.6
	E2	Normal	3	Point 10	53.1
	E2	Normal	3	Point 11	53.5
	E2	Normal	3	Point 12	53.9
	E2			AVERAGE	54.8
Pressurization fan room	E3	Normal	2	measurement 1	54.7
	E3	Normal	2 2	measurement 2	55.5
	E3	Normal	4	measurement 3	54.9

Description	Louvre ID	Scenario	Method	Location / measurement	LAeq [dB]
0 1 4 4 1	E3			AVERAGE	55.0
Smoke extract make-up	E4	Normal	2	measurement 1	60.7
fan room	E4	Normal	2	measurement 2	60.9
	E4	Normal	2	measurement 3	60.9
	E4	1,0111111	_	AVERAGE	60.8
Tunnel ventilation shaft	S1	Normal	3	Point 1	53.9
Tunner ventuation shart	S1	Normal	3	Point 2	57.9
	S1	Normal	3	Point 3	59.4
	S1	Normal	3	Point 4	57.7
	S1	Normal	3	Point 5	54.1
	S1	Normal	3	Point 6	52.6
	S1	Normal	3	Point 7	53.7
	S1	Normal	3	Point 8	52.8
	S1	Normal	3	Point 9	54.5
	S1	Normal	3	Point 10	54.7
	S1	Normal	3	Point 11	54.7
	S1	Normal	3	Point 12	55.8
	S1	Normal	3	Point 13	56.7
	S1	Normal	3	Point 14	56
	S1	Normal	3	Point 15	56
	S1	Normal	3	Point 16	53.4
	S1			AVERAGE	55.7
UPS room	S2	Normal	2	measurement 1	59.0
	S2	Normal	2	measurement 2	59.0
	S2	Normal	2	measurement 3	58.9
	S2			AVERAGE	59.0
SER	S3	Normal	2	measurement 1	49.6
	S3	Normal	2	measurement 2	50.2
	S3	Normal	2	measurement 3	51.1
	S3			MAX	51.1
MCC room	S4	Normal	2	measurement 1	55.6
	S4	Normal	2	measurement 2	55.2
	S4	Normal	2	measurement 3	55.0
	S4			AVERAGE	55.3
Smoke extraction fan					
room	S5	Normal	3	Point 1	67
	S5	Normal	3	Point 2	64.4
	S5	Normal	3	Point 3	60.7
	S5	Normal	3	Point 4	66.1
	S5	Normal	3	Point 5	64.2
	S5	Normal	3	Point 6	61.2
	S5	Normal	3	Point 7	65.6
	S5	Normal	3	Point 8	63.5
	S5	Normal	3	Point 9	60.2
	S5	Normal	3	Point 10	61.2
	S5	Normal	3	Point 11	60.7
	S5	Normal	3	Point 12	60.3
	S5	Normal	3	Point 13	63.7
	S5	Normal	3	Point 14	64.3
	S5	Normal Normal	3	Point 15	66.5 65.7
	S5 S5	Nomiai	3	Point 16 AVERAGE	
, PD CC	W1	Normal	2	measurement 1	64.1
ABBCS room	W1	Normal	2	measurement 2	51.4
	W1	Normal	2	measurement 3	51.2
	W1	rvormai	2	AVERAGE	50.8
0 1 4 6 6	***1			TVERTOE	51.1
Smoke extraction fan	W2	Normal	3	Point 1	64.9
room	W2	Normal	3	Point 2	64.0
	W2	Normal	3	Point 3	64.8
	W2	Normal	3	Point 4	68.3 66.4
	W2	Normal	3	Point 5	
	W2	Normal	3	Point 6	69.3
	W2 W2	Normal	3	Point 7	69.9
	W2	Normal	3	Point 8	63.7
	W2 W2	Normal	3	Point 9	66.6 68.2
	W2 W2	Normal	3	Point 10	68.2
	W2 W2	Normal	3	Point 11	63.0
	W2 W2	Normal	3	Point 12	62.7
	W2 W2	Normal	3	Point 13	64.1
	W2	Normal	3	Point 14	65.1 67.6
	W2 W2	Normal	3	Point 15	67.6
	W2	Normal	3	Point 16	68.5
	W2		-	AVERAGE	68.0 66.9
				-	00.9

PHV - Noise Measurement Result - data

Description	I ID	C	Method	Location / measurement	T. A (4D)
-	Louvre ID N1	Scenario Normal	Method 3	Point 1	LAeq [dB] 53.6
Tunnel ventilation shaft	NI	Normal	3	Point 2	56.9
	NI	Normal	3	Point 3	56.9
	NI	Normal	3	Point 4	55.9
	NI	Normal	3	Point 5	52.8
	NI	Normal	3	Point 6	51
	NI	Normal	3	Point 7	51.9
	NI	Normal	3	Point 8	52.4
	NI	Normal	3	Point 9	52.5
	NI	Normal	3	Point 10	54.8
	NI NI	Normal Normal	3	Point 11 Point 12	55.9 54.1
	NI NI	Normal	3	Point 12 Point 13	51.6
	NI NI	Normal	3	Point 13 Point 14	51.0
	NI	Normal	3	Point 15	51.8
	NI	Normal	3	Point 16	52
	NI	Normal		AVERAGE	53.9
FS control room	N2	Normal	2	measurement 1	55.6
	N2	Normal	2	measurement 2	54.7
	N2	Normal	2	measurement 3	54.7
	N2			AVERAGE	55.0
P&D pump and tank room	N3	Normal	2	measurement 1	52.9
	N3	Normal	2	measurement 2	52.8
	N3	Normal	2	measurement 3	53.1
	N3			AVERAGE	52.9
Air duct riser	N4 N4	Normal Normal	3	Point 1 Point 2	58.2
	N4 N4	Normal	3	Point 2 Point 3	58.5
	N4 N4	Normal	3	Point 4	58.4
	N4	Normal	3	Point 5	60.2 58.4
	N4	Normal	3	Point 6	58.9
	N4	Normal	3	Point 7	56.7
	N4	Normal	3	Point 8	55.1
	N4	Normal	3	Point 9	55.5
	N4	Normal	3	Point 10	56.5
	N4	Normal	3	Point 11	56.6
	N4	Normal	3	Point 12	56.0
	N4	Normal	3	Point 13	57.5
	N4	Normal	3	Point 14	57.9
	N4 N4	Normal	3	Point 15 Point 16	58.0
	N4 N4	Normal	3	AVERAGE	58.1
	N5	Normal	2	measurement 1	57.7
Pressurization fan room	N5	Normal	2	measurement 2	51.2 51.2
	N5	Normal	2	measurement 3	51.2
	N5			AVERAGE	51.2
Tunnel ventilation shaft	El	Normal	3	Point 1	53.7
	El	Normal	3	Point 2	58.2
	El	Normal	3	Point 3	58.3
	El	Normal	3	Point 4	50.8
	El	Normal	3	Point 5	52.1
	El	Normal	3	Point 6	52.9
	EI EI	Normal	3	Point 7	55.4
	EI	Normal Normal	3	Point 8 Point 9	56.5 56.8
	FI	Normal	3	Point 9 Point 10	30.8 52
	El	Normal	3	Point 11	52.5
	El	Normal	3	Point 12	53
	El			AVERAGE	55.1
Tunnel ventilation shaft	E2	Normal	3	Point 1	56.8
	E2	Normal	3	Point 2	57.4
	E2	Normal	3	Point 3	55.4
	E2	Normal	3	Point 4	54
	E2	Normal	3	Point 5	51.7
	E2	Normal	3	Point 6	51.8
	E2	Normal	3	Point 7	55.4
	E2	Normal	3	Point 8	52.7
	E2 E2	Normal Normal	3	Point 9 Point 10	56.6 53.1
	E2 E2	Normal	3	Point 10 Point 11	53.1
	E2 E2	Normal	3	Point 11 Point 12	53.5
	E2 E2	. «Ormali	-	AVERAGE	54.8
Pressurization fan room	E3	Normal	2	measurement 1	54.8 54.7
i ressurization fan 100m	E3	Normal	2	measurement 2	55.5
	E3	Normal	2	measurement 3	54.9
					5

Description	Louvre ID	Scenario	Method		LAeq [dB]
	E3			AVERAGE	55.0
Smoke extract make-up fan room	E4	Normal	2	measurement 1	60.7
ran room	E4	Normal	2	measurement 2	60.9
	E4	Normal	2	measurement 3	60.9
	E4			AVERAGE	60.8
Tunnel ventilation shaft	S1 S1	Normal Normal	3	Point 1 Point 2	53.9 57.9
	SI SI	Normal	3	Point 2 Point 3	59.4
	SI	Normal	3	Point 4	57.7
	S1	Normal	3	Point 5	54.1
	S1	Normal	3	Point 6	52.6
	S1 S1	Normal Normal	3	Point 7 Point 8	53.7 52.8
	SI	Normal	3	Point 9	54.5
	SI	Normal	3	Point 10	54.7
	S1	Normal	3	Point 11	54.7
	S1	Normal	3	Point 12	55.8
	S1	Normal	3	Point 13	56.7
	S1 S1	Normal Normal	3	Point 14 Point 15	56 56
	SI SI	Normal	3	Point 16	53.4
	S1	Norman	,	AVERAGE	55.7
UPS room	S2	Normal	2	measurement 1	59.0
	S2	Normal	2	measurement 2	59.0
	S2	Normal	2	measurement 3	58.9
	S2			AVERAGE	59.0
SER	S3 S3	Normal Normal	2	measurement 1 measurement 2	49.6 50.2
	S3	Normal	2	measurement 3	50.2 51.1
	S3			AVERAGE	50.3
MCC room	S4	Normal	2	measurement 1	55.6
	S4	Normal	2	measurement 2	55.2
	S4 S4	Normal	2	measurement 3 AVERAGE	55.0
	54			AVERAGE	55.3
Smoke extraction fan room	S5	Normal	3	Point 1	67
Toom	S5	Normal	3	Point 2	64.4
	S5	Normal	3	Point 3	60.7
	S5	Normal	3	Point 4	66.1
	S5 S5	Normal	3	Point 5 Point 6	64.2 61.2
	S5	Normal Normal	3	Point 7	65.6
	S5	Normal	3	Point 8	63.5
	S5	Normal	3	Point 9	60.2
	S5	Normal	3	Point 10	61.2
	S5	Normal	3	Point 11	60.7
	S5 S5	Normal Normal	3	Point 12 Point 13	60.3
	S5	Normal	3	Point 14	64.3
	S5	Normal	3	Point 15	66.5
	S5	Normal	3	Point 16	65.7
	S5			AVERAGE	64.1
ABBCS room	W1	Normal	2	measurement 1	51.4
	W1 W1	Normal Normal	2	measurement 2 measurement 3	51.2
	W1	Normai	2	AVERAGE	50.8 51.1
Smoke extraction fan				TTERRIGE	
room	W2	Normal	3	Point 1	64.9
	W2	Normal	3	Point 2	64.8
	W2 W2	Normal	3	Point 3 Point 4	68.3
	W2 W2	Normal Normal	3	Point 4 Point 5	66.4
	W2 W2	Normal	3	Point 6	69.3 69.9
	W2	Normal	3	Point 7	63.7
	W2	Normal	3	Point 8	66.6
	W2	Normal	3	Point 9	68.2
	W2	Normal	3	Point 10	63.0
	W2 W2	Normal	3	Point 11 Point 12	62.7
	W2 W2	Normal Normal	3	Point 12 Point 13	64.1
	W2 W2	Normal	3	Point 14	65.1 67.6
	W2	Normal	3	Point 15	68.5
	W2	Normal	3	Point 16	68.0
	W2			AVERAGE	66.9

NCV - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
Tunnel ventilation shaft	NI	Normal	3	Point 1	59.5
	NI	Normal	3	Point 2	60.7
	NI	Normal	3	Point 3	60.8
	NI	Normal	3	Point 4	60.7
	NI	Normal	3	Point 5	60.6
	NI	Normal	3	Point 6	61.1
			-		
	NI	Normal	3	Point 7	60.8
	NI	Normal	3	Point 8	59.1
	NI	Normal	3	Point 9	61.7
	NI	Normal	3	Point 10	62.2
	NI	Normal	3	Point 11	61.6
	NI	Normal	3	Point 12	61.7
	NI	Normal	3	Point 13	61.1
	NI	Normal	3	Point 14	60.4
	NI	Normal	3	Point 15	60.1
	NI	Normal	3	Point 16	58.6
			-		
	NI	Normal	3	Point 17	59.4
	NI	Normal	3	Point 18	61.5
	NI	Normal	3	Point 19	61.8
	N1	Normal	3	Point 20	60.9
	NI	Normal	3	Point 21	63.1
	NI	Normal	3	Point 22	62.8
	NI	Normal	3	Point 23	62.7
	NI	Normal	3	Point 24	63.9
	NI	Normal	3	Point 25	61.3
	NI	Normal	3	Point 26	60.6
	NI	Normal	3	Point 27	60.2
			-		
	NI	Normal	3	Point 28	60.2
	NI	Normal	3	Point 29	59.7
	NI	Normal	3	Point 30	59.8
	N1	Normal	3	Point 31	59.1
	NI	Normal	3	Point 32	58.4
	NI	Normal	3	Point 33	57.3
	NI	Normal	3	Point 34	58.8
	NI	Normal	3	Point 35	58.6
	NI	Normal	3	Point 36	58.5
	NI	Normal	3	Point 37	60.4
	NI	Normal	3	Point 38	59.6
	NI NI		3		
		Normal		Point 39	60.8
	NI	Normal	3	Point 40	60.7
	NI	Normal	3	Point 41	56.4
	NI			AVERAGE	60.7
FS Control Room	N2	Normal	3	Point 1	54.3
	N2	Normal	3	Point 2	54.6
	N2	Normal	3	Point 3	55.1
	N2	Normal	3	Point 4	54.6
	N2	Normal	3	Point 5	55.1
	N2	Normal	3	Point 6	54.9
	N2	Normal	3	Point 7	54.0
	N2 N2		3	Point 8	55.9
		Normal	3		
	N2			AVERAGE	54.8
E&M Service Area 8	N3	Normal	3	Point 1	60.6
	N3	Normal	3	Point 2	64.7
	N3	Normal	3	Point 3	56.7
	N3	Normal	3	Point 4	62.9
	N3	Normal	3	Point 5	61.4
	N3	Normal	3	Point 6	61.5
	N3	Normal	3	Point 7	59.5
	N3	Normal	3	Point 8	63.8
	N3		3	Point 9	61.2
		Normal			
	N3	Normal	3	Point 10	57.1
	N3	Normal	3	Point 11	57.9
	N3	Normal	3	Point 12	61.4
	N3	Normal	3	Point 13	62.5
	N3	Normal	3	Point 14	60.3
	N3	Normal	3	Point 15	60.5
	N3	Normal	3	Point 16	58.9
	N3			AVERAGE	61.2
Tunnel ventilation shaft	EI.	Normal	3	Point I	58.8
i umici ventnation shaft	El	Normal	3	Point 2	58.4
	El	Normal	3	Point 3	57.8
	El	Normal	3	Point 4	57.2
	El	Normal	3	Point 5	55.7
	El	Normal	3	Point 6	56.6
	El	Normal	3	Point 7	56.3

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
	El	Normal	3	Point 8	57.4
	El	Normal	3	Point 9	57.5
	El	Normal	3	Point 10	59
	El	Normal	3	Point 11	58
	E1	Normal	3	Point 12	57.1
	El	Normal	3	Point 13	55.5
	El	Normal	3	Point 14	55.7
	El	Normal	3	Point 15	56.1
	El	Normal	3	Point 16	56.4
	EI	. 10111111		AVERAGE	57.2
Tunnel ventilation shaft	SI	Normal	3	Point 1	57.6
rumer ventuation share	SI	Normal	3	Point 2	58.2
	SI	Normal	3	Point 3	57.5
	S1	Normal	3	Point 4	59.2
	S1	Normal	3	Point 5	59.4
	SI	Normal	3	Point 6	58.5
	SI	Normal	3	Point 7	57.3
	S1	Normal	3	Point 8	60.8
	S1	Normal	3	Point 9	60.8
	SI	Normal	3	Point 10	58.4
	SI	Normal	3	Point 11	62.2
	S1	Normal	3	Point 12	61.1
	S1			AVERAGE	59.5
E&M Service Area 10	S2	Normal	3	Point 1	55.8
	S2	Normal	3	Point 2	55.0
	S2	Normal	3	Point 3	56.2
	S2	Normal	3	Point 4	58.4
	S2	Normal	3	Point 5	57.9
	S2	Normal	3	Point 6	57.8
	S2	Normal	3	Point 7	56.7
	S2	Normal	3	Point 8	57.8
	S2	Normal	3	Point 9	57.7
	S2.	Normal	3	Point 10	58.4
	S2	Normal	3	Point 11	56.5
	S2	Normal	3	Point 12	57.4
	S2.	Normal	3	Point 13	58.6
	S2	Normal	3	Point 14	57.1
	S2	Normal	3	Point 15	57.3
	S2.	Normal	3	Point 16	56.3
	S2			AVERAGE	57.3
E&M Service Area 9	S3	Normal	3	Point 1	54.9
	S3	Normal	3	Point 2	56.2
	S3	Normal	3	Point 3	54.9
	S3	Normal	3	Point 4	55.0
	S3	Normal	3	Point 5	56.7
	S3	Normal	3	Point 6	55.9
	S3	Normal	3	Point 7	55.6
	S3	Normal	3	Point 8	54.8
	S3	Normal	3	Point 9	54.6
	S3	Normal	3	Point 10	55.3
	S3	Normal	3	Point 11	55.6
	S3	Normal	3	Point 12	55.6
	S3	Normal	3	Point 13	55.3
	S3	Normal	3	Point 14	54.3
	S3	Normal	3	Point 15	55.3
	S3	Normal	3	Point 16	53.8
	S3			AVERAGE	55.3
Dog house	S4	Normal	2	measurement 1	67.8
	S4	Normal	2	measurement 2	67.8
	S4	Normal	2	measurement 3	67.8
	S4			AVERAGE	67.8
LV Switch Room	W1	Normal	3	Point 1	61
	W1	Normal	3	Point 2	62.9
	WI	Normal	3	Point 3	61.5
	W1	Normal	3	Point 4	62.1
	W1	Normal	3	Point 5	60.7
	W1			AVERAGE	61.7

MKV - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
Tunnel ventilation shaft	NI	Normal	3	Point 1	59.7
	NI	Normal	3	Point 2	63.7
	NI	Normal	3	Point 3	63.7
	NI	Normal	3	Point 4	58
	NI	Normal	3	Point 5	59
	NI	Normal	3	Point 6	60.8
	NI	Normal	3	Point 7	60.6
	NI	Normal	3	Point 8	59
	NI	Normal	3	Point 9	60.3
	NI	Normal	3	Point 10	59.8
	NI	Normal	3	Point 11	59.5
	NI	Normal	3	Point 12	61
	NI			AVERAGE	60.8
Tunnel ventilation shaft	N2	Normal	3	Point 1	62.9
	N2	Normal	3	Point 2	63.6
	N2	Normal	3	Point 3	63.8
	N2	Normal	3	Point 4	63.6
	N2	Normal	3	Point 5	61.8
	N2	Normal	3	Point 6	62.0
	N2	Normal	3	Point 7	61.9
	N2	Normal	3	Point 8	61.1
	N2	Normal	3	Point 9	61.6
	N2	Normal	3	Point 10	62.4
	N2	Normal	3	Point 11	62.2
	N2	Normal	3	Point 12	62.1
	N2			AVERAGE	62.5
EVS	N3	Normal	3	Point 1	59.5
	N3	Normal	3	Point 2	60.1
	N3	Normal	3	Point 3	61.3
	N3	Normal	3	Point 4	60.3
	N3	Normal	3	Point 5	63.2
	N3	Normal	3	Point 6	63.2
	N3	Normal	3	Point 7	61.8
	N3	Normal	3	Point 8	61.5
	N3			AVERAGE	61.6
Harmonic Filter Room					
Harmonic Filter Room	El	Normal	2	measurement 1	62.3
	El	Normal	2	measurement 2	62.3
	El	Normal	2	measurement 3	62.3
	El			AVERAGE	62.3
Harmonic Filter Room	E2				54.5
Thirmonic Trice Room		Normal	3	Point 1	
	E2	Normal	3	Point 2	54.6
	E2 E2	Normal	3	Point 3	56.7
	E2 E2	Normal	3	Point 4	57.1
	E2 E2	Normal Normal	3	Point 5 Point 6	58.8
	E2 E2		3	Point 6 Point 7	56.5
	E2 E2	Normal Normal	3	Point 8	54.5
	E2 E2	Normal	3	Point 9	55.4
	E2 E2	Normal	3	Point 9 Point 10	57.4
	E2	Normal	3	Point 11	56.1
	E2	Normal	3	Point 12	56.0
	E2	Normal	3	Point 13	56.9
	E2	Normal	3	Point 14	55.2 55.4
	E2	Normal	3	Point 15	
	E2	Normal	3	Point 16	55.1
	E2	Normal	3	Point 17	56.2
	E2	Normal	3	Point 18	51.7
	F2	Normal	3	Point 19	58.7 57.1
	E2	Normal	3	Point 20	56.6
	E2		-	AVERAGE	56.3
25kV Switch Room	E3	Normal	2	measurement 1	56.3 60.9
23K+ SWIICH KOOIH	E3	Normal	2	measurement 2	61
	E3	Normal	2	measurement 3	61.3
	E3			AVERAGE	61.1
SVS	E4	Normal	3	Point 1	59.4
ava	E4	Normal	3	Point 2	60.3
	E4	Normal	3	Point 3	60.6
	E4	Normal	3	Point 4	60.7
	E4	Normal	3	Point 5	61.5
	E4	Normal	3	Point 6	61
	E4	Normal	3	Point 7	59.6
	E4	Normal	3	Point 8	57
	E4	Normal	3	Point 9	57.6
	-			,	27.0

Description	_			Location / measurement	
Description	Louvre ID E4	Scenario Normal	Method 3	Point 10	LAeq [dB] 57.6
	E4 E4	Normal	3	Point 11 AVERAGE	57.2
Staticase pressuratzation	S1	Normal	3	Point 1	59.6 55.7
Ean Daam 7	SI	Normal	3	Point 2	56.2
	SI	Normal	3	Point 3	61.3
	SI	Normal	3	Point 4	57.7
	SI	Normal	3	Point 5	57.9
	S1	Normal	3	Point 6	58.8
	S1	Normal	3	Point 7	58.6
	S1	Normal	3	Point 8	57.9
	S1	Normal	3	Point 9	59.5
	S1	Normal	3	Point 10	60.2
	S1	Normal	3	Point 11	58.1
	S1	Normal	3	Point 12	59
	SI	Normal	3	Point 13	55.4
	SI	Normal Normal	3	Point 14 Point 15	56.3
	S1 S1	Normal	3	Point 15 Point 16	56.6 57
	S1 S1	Normal	3	AVERAGE	
Staticase Fressuraization	S2	Normal	3	Point 1	58.2
Enn Dann 1	S2	Normal	3	Point 2	60.5 59.5
	S2	Normal	3	Point 3	55.8
	S2	Normal	3	Point 4	55.8 56.9
	S2	Normal	3	Point 5	57.5
	S2	Normal	3	Point 6	59.8
	S2	Normal	3	Point 7	61.1
	S2	Normal	3	Point 8	59.6
	S2	Normal	3	Point 9	59.2
	S2	Normal	3	Point 10	59.5
	S2	Normal	3	Point 11	59.9
	S2	Normal	3	Point 12	57.4
	S2	Normal	3	Point 13	58.4
	S2	Normal	3	Point 14	57.9
	S2 S2	Normal Normal	3	Point 15 Point 16	61.1
	S2	Normai	3	AVERAGE	59.9
	32			AVERAGE	59.2
Battery and Charge Roon	1 S3	Normal	3	Point 1	70.2
	S3	Normal	3	Point 2	73.7
	S3	Normal	3	Point 3	71.5
	S3	Normal	3	Point 4	70.1
	S3	Normal	3	Point 5	69.7
	S3			AVERAGE	71.3
TECS control room	S4	Normal	3	Point 1	59.5
	S4	Normal	3	Point 2	55.8
	S4	Normal	3	Point 3	57.5
	S4	Normal	3	Point 4	59.6
	S4	Normal	3	Point 5	57.4
	S4	Normal	3	Point 6	58.4
	S4	Normal	3	Point 7	57.9
	S4 S4	Normal	3	Point 8 AVERAGE	61.1
rue rump toom	W1	Normal	3	Point 1	58.7 78
(Elastrical)	WI	Normal	3	Point 1 Point 2	77.6
	W1	Normal	3	Point 3	77.4
	W1	Normal	3	Point 4	76
	WI	Normal	3	Point 5	75.9
	W1			AVERAGE	77.1
FHP	FHP-N1	Normal	2	measurement 1	69.9
	FHP-N1	Normal	2	measurement 2	69.4
	FHP-N1	Normal	2	measurement 3	69.6
	FHP-N1			AVERAGE	69.6

Appendix A4 -	· Measurement	Results at NSR	s	

NSR	Scenario	Measurement Type	Start Time	End Time	L _{Aeq} , dB(A)
	Day and	Background Noise Levels	21:56	22:01	52.6
	Evening	Background Noise Levels	22:01	22:06	53.0
	Time	Measured Noise Levels	22:19	22:49	51.7
PH1a	Tillic	Wicasarea Woise Eevels	22:50	23:20	50.4
11114		Background Noise Levels	00:47	00:52	49.3
	Night-	Background Worse Levels	00:52	00:57	48.2
	time	Measured Noise Levels	23:28	23:58	49.9
		Wicasarea Woise Eevels	23:58	00:28	49.1
	Day and	Background Noise Levels	22:00	22:05	46.1
	Evening	Buckground Worse Levels	22:05	22:10	45.7
	Time	Measured Noise Levels	22:23	22:53	46.6
PH1b			22:53	23:23	46.4
		Background Noise Levels*	00:44	00:49	45.2
	Night-	Background Police Levels	00:50	00:55	47.8
	time	Measured Noise Levels	23:38	00:08	46.7
		Wedsared Worse Levels	00:08	00:38	47.1
	Day and	Background Noise Levels	21:56	22:02	46.7
	Evening	_ 350. 54.14 110.56 26.46.15	22:03	22:09	46.2
	Time	Measured Noise Levels	22:20	22:50	45.9
PH4	Time	Wedsared Worse Levels	22:51	23:21	45.1
		Background Noise Levels	00:48	00:53	42.5
	Night-	Buckground Holse Levels	00:54	01:00	43.0
	time	Measured Noise Levels	23:26	23:56	44.7
		Wiedsared Wolse Levels	00:02	00:32	44.9
	Day and	Background Noise Levels	21:40	21:45	65.7
	Evening	background Noise Levels	21:54	21:59	65.3
	Time	Measured Noise Levels	22:30	23:00	65.9
NC11		Wicasarea Woise Ecveis	23:02	23:32	65.3
WCII		Background Noise Levels Measured Noise Levels	00:44	00:49	63.9
	Night-		00:50	00:55	64.4
	time		23:38	00:08	66.4
		Wiedsared Wolse Levels	00:09	00:39	66.3
	Day and	Background Noise Levels	22:01	22:06	60.0
	Evening	240.8.04.14.10.00 2010.0	22:07	22:12	59.8
	Time	Measured Noise Levels	22:23	22:53	60.3
NC11f			22:55	23:25	59.6
		Background Noise Levels	00:38	00:43	57.4
	Night-	240.8.04.14.10.00 2010.0	00:44	00:49	57.4
	time	Measured Noise Levels	23:31	00:01	58.9
			00:02	00:32	58.8
	Day and	Background Noise Levels	21:51	21:56	60.4
	Evening		22:07	22:12	60.1
	Time	Measured Noise Levels	22:22	22:52	60.5
NC11g			22:53	23:23	59.5
6		Background Noise Levels	00:39	00:44	56.7
	Night-		00:44	00:49	57.9
time	Measured Noise Levels	23:31	00:01	59.0	
		caca.caoioc Ecveio	00:01	00:31	58.7
Day and Evening	Background Noise Levels	21:24	21:29	63.9	
	23.0.23.0.10.00 2070.0	21:35	21:40	63.6	
	Time	Measured Noise Levels	21:54	22:24	64.3
MK1		caca.caoioc Ecveio	22:25	22:55	63.3
		Background Noise Levels	00:00	00:05	62.2
	Night-	Dasing Fourier House Ecress	00:09	00:14	59.4
	time	Measured Noise Levels	00:47	01:17	58.5
			01:20	01:50	57.2

On-site observations indicated there was no noticeable noise during 00:44 – 00:49 and community noise emitted from NSR PH1b during 00:50-00:55, therefore there were differences in noise levels between the two periods.

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

MTR Corporation

July 2018

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

1 Introduction

The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Project (hereinafter known as "XRL") covers a 26km long underground rail line on dedicated tracks that run between the terminus in West Kowloon and the boundary at Huanggang, where connects with the XRL Mainland section. XRL Project also includes the construction of ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).

The Environmental Impact Assessment (EIA) Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/M) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 25 June 2018.

This report is prepared with reference to EP Condition 2.36, "The Permit Holder shall, no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational airborne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents".

MTR Corporation has prepared the Commissioning Test Report for Fixed Plant Noise for the noise measurement to show the compliance of noise criteria in accordance with the EIA Report and the EP; also the noise measurement for investigation of any tonal, impulsive and intermittent characteristics from the fixed plant noise sources. This report presents the noise measurement methodology, calculated Sound Power Levels from noise measurements, results of noise measurement for the fixed plant noise sources installed at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS); and confirming any characteristics of tonality, impulsiveness and intermittency. For the fixed plant noise verification at the other ventilation buildings and West Kowloon Terminal (WKT) areas, separate reports would be submitted.

2 Noise Criteria

2.1 Fixed Plant Noise Criteria in EIA

With reference to the IND-TM under the Noise Control Ordinance (NCO), the relevant acceptable noise levels (ANL) where determined based on the area sensitivity rating (ASR).

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

The fixed plant noise criteria for the representative noise sensitive receivers (NSRs) were determined in EIA as follow (whichever is lower):

- 5dB(A) below the appropriate ANL set out in the IND-TM (the ANL-5dB(A) criterion);
 or
- The prevailing background noise levels where the prevailing background noise level is 5dB(A) below the appropriate ANL (i.e. ANL-5dB(A))

The noise criteria above were determined for planning purpose. While for operation, the fixed plant noise is controlled by a Noise Abatement Notices system governed by the NCO.

The fixed plant noise criteria for the NSRs along the XRL alignment in MPV, NTV, SMV, SPN and SPS area, with the latest status of representative NSRs, are presented in **Table 2.1** below. Appropriate corrections in tonal, impulsive or intermittent characteristics should be applied, where applicable, in accordance with IND-TM during the commissioning test.

Table 2.1 Summary of Fixed Plant Noise Criteria

NSR	Description	Area Sensitivity	Noise Criteria, dB(A) (a)		
		Rating (ASR) (a)	Day and	Night-time	
			Evening		
			Time		
Mai Po Ventila	tion Building (MPV) (Figu	re 2.1)			
MP1	House 5 Phase A	В	60	50	
	Royal Palms				
MP5	Proposed	Α	51	45	
	Comprehensive				
	Development at Wo				
	Shang Wai				
MP6	Planned village house	В	60	50	
	at Village Zone				
	Ventilation Building (NT)	/) (Figure 2.2)	T	,	
NT1	Yau Tam Mei Village	Α	55	44	
4.5	House				
NT1a (b)	Yau Tam Mei Village	Α	55	44	
	House				
NT4	Yau Tam Mei Village	Α	55	44	
41)	House				
NT4a ^(b)	Yau Tam Mei Village	Α	55	44	
	House				
NT4b (b)	Yau Tam Mei Village	A	55	44	
	House				
	tilation Building (SMV) (F	igure 2.3)		,	
SM1	Sau Shan House,	В	60	50	
	Cheung Shan Estate				
SM4	Shui Hong Nursing	В	60	50	
	Home				
ERS Plant Build	ing - North (SPN) (Figure	2.4)			

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

NSR	Description	Area Sensitivity	Noise Criteria	Noise Criteria, dB(A) (a)	
		Rating (ASR) (a)	Day and	Night-time	
			Evening		
			Time		
SS6	No.32 Leung Uk Tsuen	В	52	45	
SS7	Leung Uk Tsuen	В	49	47	
	Village House				
SS10	DD110 LOT462, Wang	В	49	47	
	Toi Shan				
SS12	265 Kam Tai Road	В	49	47	
SS15	Abandoned village	В	49	47	
	house in Shek Kong				
ERS Plant Build	ling - South (SPS) (Figure)	2.5)			
SS2	Nam Hing Lei Village	В	49	39	
	House				
SS4	Leung Uk Tsuen	В	49	40	
	Village House				
SS5	51A Leung Uk Tsuen	В	52	45	
SS11a	Lueng Uk Tsuen	В	52	50	
	Squats				
SS14	Planned village house	В	49	47	
	at Village Zone				
SS20 (b)	Village house in Shek	В	49	40	
	Kong				

Note:

- (a) ASR and noise criteria either follow that defined in the EIA Report or relevant application for variation of environmental permit (VEP-377/2012) where appropriate.
- (b) These are representative NSRs additional to those identified in the EIA Report which the ASR and noise criteria are defined in Environmental Review Report for the application for variation of environmental permit (VEP-377-2012).

Fixed plant noise sources include: ventilation fans for building services, and plenum for tunnel ventilation, which are generally located inside plant rooms. Noise generated from indoor fixed plants would be emitted through louvres. The worst case scenario is when all eligible fixed plants at the same location operating concurrently under "normal scenario" for XRL operation during daytime and evening time periods; and night-time period, respectively. The worst case scenario was considered for compliance check against the fixed plant noise criteria and the noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs.

Table 2.2 below summarised the information of the fixed plant noise sources and the layout plan is shown in **Figures 2.1** to **2.5a**.

Table 2.2 Summary of Fixed Plant Noise Sources

Source Location	Direction Facing	Louvre ID
Mai Po Ventilation Building (MPV) (Figure 2.1)		

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Source Location	Direction	Louvre ID
	Facing	
ECS duct	North	N1
FS control room	North	N2
LV switch room	North	N3
Tunnel ventilation shaft	East	E1
Tunnel ventilation shaft	South	S1
Tunnel ventilation shaft	South	S2
Tunnel ventilation shaft	West	W1
Air Release Louvre	West	W2
Ngau Tam Mei Ventilation Building (NTV) (Figur	re 2.2)	
Tunnel ventilation shaft	North	N1
Tunnel ventilation shaft	North	N2
CTER	North	N3
ECS duct	North	N4
Tunnel ventilation shaft	East	E1
Tunnel ventilation shaft	East	E2
Tunnel ventilation shaft	South	S1
Tunnel ventilation shaft	South	S2
LV switch room	South	S3
LV switch room	South	S4
LV switch room	South	S5
Exhaust Air Duct	South	S6
UPS Room Fresh Air Intake	West	W1
Shing Mun Ventilation Building (SMV) (Figure 2.	.3)	•
Tunnel ventilation shaft	North	N1
FS inlet	North	N2
MCC room	North	N3
Exhaust air louvre	North	N4
Staircase pressurization fan room	North	N5
UPS room	East	E1
LV switch room	East	E2
Fresh air louvre	East	E3
Staircase pressurization fan room 1	East	E4
Staircase pressurization fan room 2	East	E5
Tunnel ventilation shaft	South	S1
Sprinkler & FS pump room	South	S2
Air compressor receiver room	South	S3
Tunnel ECS control room	South	S4
Staircase pressurization fan room	South	S5
Tunnel ventilation shaft	West	W1
Tunnel ventilation shaft	West	W2
SPS air release louvre	West	W3
Track section cabin room	West	W4
ERS Plant Building - North (SPN) (Figures 2.4 an		
Tunnel Ventilation Shaft	North	N1
	1	

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Source Location	Direction Facing	Louvre ID
Dog House	North	N3
Tunnel Ventilation Shaft	East	E1
T.ECS Control Room	East	E2
Dog House	East	E3
Tunnel Ventilation Shaft	South	S1
Tunnel Ventilation Shaft	South	S2
Tunnel Ventilation Shaft	West	W1
ABBCS Room	West	W2
ERS Plant Building - South (SPS) (Figures 2.5	and 2.5a)	·
Tunnel Ventilation Shaft	North	N1
Tunnel Ventilation Shaft	North	N2
Dog House	North	N3
Tunnel Ventilation Shaft	East	E1
Air Compressor Receiver Room	East	E2
T.ECS Control Room	East	E3
Dog House	East	E4
Dog House	East	E5
Tunnel Ventilation Shaft	South	S1
Tunnel Ventilation Shaft	South	S2
Dog House	South	S3
Tunnel Ventilation Shaft	West	W1
Building Service Control Room	West	W2
MCC Room	West	W3
Dog House	West	W4

3 Methodology

3.1 Noise Measurement for the Fixed Plants

Noise measurements to obtain the noise levels of the fixed plants were undertaken by Supreme Acoustics Research Limited, GAS Joint Venture and ATAL Building Services Engineering Ltd. The commissioning tests were carried out by qualified persons possessing at least 7 years of noise control experience and a corporate member of Hong Kong Institute of Acoustics or equivalent in accordance with S3.22 of the XRL EM&A Manual.

3.1.1 Methodology

Three measurement methods, namely Method 1 (at or near NSR), Method 2 (Far Field) and Method 3 (Near Field), have been developed based on NCO-TM, basic acoustic principles and ISO 3746-2010: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using an enveloping measurement surface over a reflecting plane, respectively. Given the fixed plant noise sources are steady, all proposed methods could be adopted for all types of fixed plant source depending on the site environment/constraints that might affect the possibility to obtain valid results, considerations including but not limited to:

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

- Background noise with less influence to the measured noise levels
- Free of obstacles between measurement location and noise source
- Accessibility and Safety Concerns

Considering the reliability of data collection, i.e. results not influenced by the abovementioned considerations, and the measurement efficiency on site, the selection of methodology was prioritized based on efficient measurement as Method 1 (at or near NSR) > Method 2 (Far Field) > Method 3 (Near Field). However, various considerations which may affect the validity of results using Method 1 were taken in account, such as the distances between fixed plants and NSRs at MPV and SPN/SPS are too far away (at least 66m for MPV, 120m for SPN and 159m for SPS) and some of these NSRs are screened by noise barriers (e.g. MP1, SS4, SS11a, SS15, SS20), under Proposed Comprehensive Development at Wo Shang Wai, Yuen Long (EP No: EP-311/2008/E) and under the Project at Shek Kong Stabling Sidings respectively (refer to Figures 2.1, 2.4 and 2.5); where the background noise at NSRs would mask the fixed plant noises from MPV and SPN/SPS. NSRs at NTV has no appropriate accessible location which meets the minimum distance requirement, etc. For SMV, considering there are heavy traffic and bus stops along Cheung Pei Shan Estate Road West immediately in front of the NSRs; obtaining valid results using Method 1 was considered unlikely. As such, only Method 2 and Method 3 were considered applicable. Method used for each louvre is presented in Appendix A3. Details of the measurement methodology are shown in **Appendix A1**.

Method 1 – Measuring Sound Pressure Level at NSR or Near NSR

- Measurement at NSR or near NSR at distance D away from the louvre, where D was at least two times the largest dimension b of the louvre and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the louvre and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre was switched OFF
- The sound pressure level (SPL) at NSR or near NSR was determined by the following equation:

Background corrected $L_p = L_p + BG - [20logD + 8]$ (if applicable) + façade correction (if applicable)

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

BG is the background correction factor, in dB(A);

D is separation between the center of louvre or surface of the plant and the microphone, in metres.

Method 2 - Measuring Sound Power Level by Far Field Method for Louvres or for Plants

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

- The microphone was positioned at the perpendicular distance D away from the center of the louvre or the surface of the plant, where D was at least two times the largest dimension D of the louvre or plant and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the center of the louvre/combined louvre area or the center the plant; and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from the louvre or plant was switched OFF
- The sound power level (SWL) of the louvre or the plant was determined, based on basic acoustic principles, by the following equation:

$$L_w = L_p + 20logD$$
, center +8 + BG

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

D,center is separation between the center of louvre or plant and the microphone, in metres;

BG is the background correction factor, in dB(A).

Method 3 - Measuring Sound Power Level by Near Field Method for Louvres or for Plants

- A right parallelepiped hypothetical measurement box for each louvre or each surface of a plant was determined according to ISO 3746:2010, with each side being spaced a distance *D* from the corresponding side of the louvre or plant
- Each of the 5 planes of the measurement box was subdivided into equal-sized rectangular grids, the length of each side of the grids should be less than or equal to 3 times of distance D, i.e. grid length ≤3D
- The microphone was pointing toward the center of each grid, and a measurement was taken for each grid during the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre or plant was switched OFF
- The SWL of the louvre or the plant was determined by the following equation:

$$L_w = L_p + 10log(S) - K_{1A} - K_{2A}$$

Where

 L_p is the averaged measured L_{eq} of all measurement points, in dB(A);

S is the total surface area over the measurement box (total 5 planes), in m²;

 K_{1A} is the background correction factor as described in ISO 3746:2010, in dB(A);

 K_{2A} is the environmental correction for sound absorption and reflection as described in *ISO 3746:2010*, in dB(A).

Except for Method 3, which was adopted with reference to ISO 3746:2010; the noise sources measured using Method 1 or Method 2 were considered steady if the difference between

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

the maximum and minimum Leq is less than or equal to 1dB(A), ie, $\leq 1dB(A)$; average Leq was therefore considered. Otherwise, the maximum Leq would be adopted for SWL determination as a conservative approach.

3.1.2 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.1**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2**.

Table 3.1 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	NTi XL2	5011
	NTi XL2	5617
	NTi XL2	6240
	Casella CEL-63X	5044655
Calibrator	BSWA TECH CA111	320248
	Casella CEL-120/1	5060836

Before and after each series of measurements, a calibration check was carried out on the sound level meter by the calibrator. The difference between the readings made before and after each series of measurements shall be less than or equal to 1.0 dB.

3.1.3 Measurement Schedule

The noise measurements were carried out during daytime, evening time and night-time periods, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.2**.

Table 3.2 Measurement Schedule

Location	Date	Time
MPV	9-10, 11-12 Oct 2017	22:00 - 06:00
	13 Oct 2017	10:00 - 12:00
	22 Nov 2017	00:00 - 06:00
NTV	30 Aug 2017	18:00 – 22:00
	11 Oct 2017	11:00 – 16:00
	12, 14 Dec 2017	14:00 – 20:00
SMV	27-28 Apr 2017	22:00 – 05: 00
	15 Nov 2017	14:00 – 17:00
SPN	20–21 Apr 2017	00:00 - 03:00
	1 Dec 2017	10:30 – 12:00
SPS	20–21 Apr 2017	00:00 - 03:00
	1 Dec 2017	14:00 – 16:00
	10 Jan 2018	16:00 – 18:00

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

3.2 Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

3.2.1 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.3**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2**.

Table 3.3 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	Casella CEL-63X	5044655
	Bruel & Kjaer 2250-L	2701830
	Bruel & Kjaer 2250	2704790
	NTi XL2	5011
	NTi XL2	5617
	NTi XL2	6240
Calibrator	Casella CEL-120/1	5060836
	BSWA TECH CA111	320248

3.2.2 Measurement Parameters

With reference to the IND-TM, the noise measurement was conducted at the representative NSR for $L_{Aeq\,(30min)}$, in one-third octave band under the worst case scenario, ie, "normal scenario" during daytime and evening time periods; and night-time period, respectively.

The fixed plant noise sources will be operated steadily and continuously, and therefore no intermittency and impulsiveness are expected at the NSR. However, the characteristics of intermittency and impulsiveness will be recorded, if any, based on observation during measurement.

2 sets of background noise level, L_{Aeq (5min)}, and in one-third octave band, were measured at each measurement location when all fixed plant noise sources were not in operation.

3.2.3 Measurement Location

The noise measurement was carried out at the first layer of NSRs for the concerned areas. The measurement locations are summarised in Table 3.4 and shown in **Figures 2.1** to **2.5**.

Table 3.4 Measurement Locations

Location	NSR	Description		
MPV	MP1	House 5 Phase A Royal Palms		
	MP5	Proposed Comprehensive Development at Wo Shang Wai		
	MP6	Planned village house at Village Zone		
NTV	NT1a	Yau Tam Mei Village House		
	NT4a	Yau Tam Mei Village House		

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Location	NSR	Description	
SMV SM1 Sau Shan Ho		Sau Shan House, Cheung Shan Estate	
	SM4	Shui Hong Nursing House	
SPN	SS7	Leung Uk Tsuen Village House	
	SS10	DD110 LOT 452, Wang Toi Shan	
	SS15 ^(a)	Abandoned village house in Shek Kong	
SPS	SS11a ^(a)	Leung Uk Tsuen Squats	
	SS20 ^(a)	Village house in Shek Kong	

Note:

(a) Certain direction of the ventilation shaft is totally or partially screened by the proposed noise barriers at Shek Kong Stabling Sidings (SSS).

3.2.4 Measurement Schedule

The noise measurements were carried out at the monitoring location for MPV, NTV, SMV, SPN and SPS, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.5**. Sample measurement photos of MPV, NTV, SMV, SPN and SPS are shown in **Appendix A3**.

Table 3.5 Measurement Schedule

Location	Date
MPV	25 – 26 Apr 2018
NTV	17 – 18 May 2018
SMV	8 – 9 Jun 2018
SPN	24 – 25 May 2018
SPS	24 – 25 May 2018

4 Measurement Results

4.1 The Noise Levels of Fixed Plant Noise Sources

The noise levels measured under the worst case scenario are determined and presented in **Table 4.1**. Details of the measurement results are shown in **Appendix A3**.

Table 4.1 Summary of Sound Power Levels for Fixed Plants

Works Area	Direction Facing/ Elevation	Calculated SWL L _{Aeq} , dB(A)
MPV	North N1 ^(a)	67
	North N2	69
	North N3	72
	East E1	74
	South S1	74
	South S2	75
	West W1	70
	West W2 ^(a)	69
NTV	North N1	72

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Works Area	Direction Facing/ Elevation	Calculated SWL L _{Aeq} , dB(A)		
	North N2	69		
	North N3	61		
	North N4 ^(a)	73		
	East E1	77		
	East E2	72		
	South S1	78		
	South S2	78		
	South S3 ^(a) South S4 ^(a)	71		
	South S5 ^(a)	71		
	South S6 ^(a)	76 88		
	West W1 (a)	82		
SMV	North N1	80		
SIVIV	North N2	63		
	North N3	77		
	North N4	61		
	North N5 ^(a)	74		
	East E1 (a)	89		
	East E2	89		
	East E3	62		
	East E4 (a)	74		
	East E5 (a)	67		
	South S1	89		
	South S2	84		
	South S3	86		
	South S4	86		
	South S5 ^(a)	68		
	West W1	76		
	West W2	76		
	West W3 ^(a)	97		
	West W4	78		
SPN	North N1	84		
	North N2	84		
	North N3	66		
	East E1	85		
	East E2	64		
	East E3	68		
	South S1	90		
	South S2	89		
	West W1	87		
	West W2	72		
SPS	North N1	88		
	North N2	90		
	North N3	71		

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Works Area	Direction Facing/ Elevation	Calculated SWL L _{Aeq} , dB(A)
	East E1	84
	East E2	90
	East E3	89
	East E4	78
	East E5	76
	South S1	82
	South S2	84
	South S3	82
	West W1	84
	West W2	76
	West W3	80
	West W4	74

Note:

(a) The plant would be operated during day and evening time only under normal scenario.

A compliance check against the fixed plant noise criteria at NSR was conducted. The cumulative noise levels from noise sources were assessed to ensure the compliance with the noise criterion. **Table 4.2** shows the results, details of the calculation are also given in **Appendix A3**.

Table 4.2 Cumulative Fixed Plant Noise at NSR

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
MP1	Ventilation Shaft and Building Service	29	28	60	50	Y	Y
MP5	Ventilation Shaft and Building Service	34	33	51	45	Y	Y
MP6	Ventilation Shaft and Building Service	35	35	60	50	Y	Y
NT1	Ventilation Shaft for N/B ^(a) and Building Service	42	36	55	44	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	43	40	55	44	Y	Y
NT1a	Ventilation Shaft for N/B ^(a) and Building Service	43	40	55	44	Y	Y
	Ventilation Shaft	44	42	55	44	Υ	Υ

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

		Cumulat dB		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
	for S/B ^(a) and						
	Building Service						
NT4	Ventilation Shaft for N/B ^(a) and Building Service	44	42	55	44	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	42	36	55	44	Y	Υ
NT4a	Ventilation Shaft for N/B ^(a) and Building Service	44	42	55	44	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	42	37	55	44	Y	Y
NT4b	Ventilation Shaft for N/B ^(a) and Building Service	40	36	55	44	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	41	38	55	44	Y	Y
SM1	Ventilation Shaft for N/B ^(a) and Building Service	56	49	60	50	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	56	49	60	50	Y	Y
SM4	Ventilation Shaft for N/B ^(a) and Building Service	59	47	60	50	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	59	45	60	50	Y	Y
SS6	Ventilation Shaft for N/B ^(a) and Building Service	39	39	52	45	Y	Y
	Ventilation Shaft for S/B ^(a) and Building Service	41	41	52	45	Y	Y
SS7	Ventilation Shaft for N/B ^(a) and Building Service	39	39	49	47	Y	Y
	Ventilation Shaft for S/B ^(a) and	41	41	49	47	Υ	Υ

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
	Building Service						
SS10	Ventilation Shaft for N/B ^(a) and	36	36	49	47	Υ	Υ
	Building Service						
	Ventilation Shaft for S/B (a) and	35	35	49	47	Y	Υ
6649	Building Service						
SS12	Ventilation Shaft for N/B (a) and	36	36	49	47	Υ	Υ
	Building Service						
	Ventilation Shaft for S/B ^(a) and Building Service	33	33	49	47	Υ	Υ
SS15 ^(b)	Ventilation Shaft						
2212.	for N/B ^(a) and Building Service	39	39	49	47	Y	Υ
	Ventilation Shaft for S/B ^(a) and	42	42	49	47	Y	Υ
222	Building Service						
SS2	Ventilation Shaft for N/B (a) and	32	32	49	39	Y	Υ
	Building Service Ventilation Shaft for S/B (a) and	31	31	49	39	Y	Υ
SS4 ^(b)	Building Service						
	Ventilation Shaft for N/B ^(a) and Building Service	35	35	49	40	Y	Υ
	Ventilation Shaft for S/B ^(a) and Building Service	35	35	49	40	Y	Υ
SS5	Ventilation Shaft for N/B ^(a) and Building Service	43	43	52	45	Y	Υ
	Ventilation Shaft for S/B ^(a) and Building Service	43	43	52	45	Y	Υ
SS11a ^(b)	Ventilation Shaft for N/B ^(a) and Building Service	42	42	52	50	Y	Υ
	Ventilation Shaft for S/B ^(a) and Building Service	40	40	52	50	Υ	Υ

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Source Location	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
SS14	Ventilation Shaft						
	for N/B ^(a) and	40	40	49	47	Y	Υ
	Building Service						
	Ventilation Shaft						
	for S/B ^(a) and	40	40	49	47	Υ	Υ
	Building Service						
SS20 ^(b)	Ventilation Shaft						
	for N/B ^(a) and	36	36	49	40	Υ	Υ
	Building Service						
	Ventilation Shaft						
	for S/B (a) and	36	36	49	40	Υ	Υ
	Building Service						

Note:

- (a) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario for NTV, SMV, SPN and SPS. Tunnel ventilation would be operated for both northbound (N/B) and southbound (S/B) direction under normal scenario for MPV.
- (b) Certain direction of the ventilation shaft is totally or partially screened by the proposed noise barriers at SSS.

4.2 The Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

Noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs were conducted under the normal scenarios during daytime and evening, and during night-time, respectively and summarised in **Table 4.3** below. In each scenario, two sets of noise measurements, L_{Aeq(30min)}, in one-third octave band, were carried out to confirm that the difference in the measured noise levels with and without operation of fixed plant noise sources were less than 3.0 dB(A). That means the fixed plant noise sources from the ventilation buildings and the plant buildings are not considered as significant noise sources at the NSR. Noise measurements at NTV and some NSRs at SPN/SPS (e.g. SS11a, SS15 and SS20) were dominated by community noise; MPV, SMV and some NSRs at SPN/SPS (e.g. SS7, SS10) were dominated by the road traffic noise along Castle Peak Road – Mai Po and San Tin Highway, Cheung Pei Shan Estate Road West and Kam Tin Road, respectively; characteristics of tonality, impulsiveness and intermittency due to the fixed plant noise sources from the ventilation buildings was not noticeable during the measurement. Detailed results of noise measurements are shown in **Appendix A4**.

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

Table 4.3 Noise measurement Results at NSR

	1	Surement Results at N.	Difference between	
NSR	Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Measured Noise Level and Background Level, dB(A), (< 3.0 or >= 3.0)
MP1	Day and Evening Time	49.0 (22:45 – 23:15) 48.4 (00:25 – 00:55)	48.9 (22:00 – 22:20)	< 3.0
	Night- time	49.0 (01:00 – 01:30) 49.7 (01:30 – 02:00)	49.6 (02:10 – 02:20)	< 3.0
MP5	Day and Evening Time	48.1 (22:45 – 23:15) 48.9 (00:25 – 00:55)	46.7 (22:00 – 22:20)	< 3.0
	Night- time	49.8 (01:00 – 01:30) 48.4 (01:30 – 02:00)	47.8 (02:05 – 02:20)	< 3.0
MP6	Day and Evening Time	48.7 (22:45 – 23:15) 46.4 (00:25 – 00:55)	48.5 (22:00 – 22:20)	< 3.0
	Night- time	48.4 (01:00 – 01:30) 47.6 (01:30 – 02:00)	47.1 (02:05 – 02:15)	< 3.0
NT1a	Day and Evening Time	52.0 (23:25 – 23:55) 52.8 (23:56 – 00:26)	52.2 (23:08 – 23:18)	< 3.0
	Night- time	46.9 (00:28 – 00:58) 45.7 (01:03 – 01:33)	44.0 (01:54 – 02:14)	< 3.0
NT4a	Day and Evening Time	50.8 (23:24 – 23:54) 52.5 (23:55 – 00:25)	52.1 (23:13 – 23:23)	< 3.0
	Night- time	52.8 (00:32 – 01:02) 53.2 (01:03 – 01:33)	52.6 (01:40 – 01:50)	< 3.0
SM1	Day and Evening Time	64.2 (22:39 – 23:09) 64.3 (23:10 – 23:40)	65.1 (22:12 – 22:27)	< 3.0
	Night- time	61.3 (23:42 – 00:12) 60.9 (00:13 – 00:43)	59.7 (00:49 – 00:59)	< 3.0
SM4	Day and Evening Time	60.6 (22:30 – 23:00) 59.4 (23:00 – 23:30)	60.4 (21:45 – 21:55)	< 3.0
	Night- time	56.6 (23:34 – 00:04) 56.7 (00:04 – 00:34)	55.6 (00:39 – 00:49)	< 3.0
SS7	Day and Evening Time	50.7 (23:43 – 00:13) 48.5 (00:13 – 00:43)	50.2 (23:30 – 23:40)	< 3.0
	Night- time	47.9 (00:50 – 01:20) 47.2 (01:20 – 01:50)	46.9 (02:25 – 02:40)	< 3.0
SS10	Day and	58.9 (23:42 – 00:12)	57.2 (23:18 – 23:28)	< 3.0

Commissioning Test Report for the Fixed Plant Noise at Mai Po (MPV), Ngau Tam Mei (NTV) and Shing Mun (SMV) Ventilation Buildings; ERS Plant Building – North (SPN) and ERS Plant Building – South (SPS)

NSR	Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Difference between Measured Noise Level and Background Level, dB(A), (< 3.0 or >= 3.0)
	Evening Time	56.8 (00:12 – 00:42)		
	Night- time	55.5 (00:46 – 01:16) 55.8 (01:16 – 01:46)	54.4 (02:24 – 02:34)	< 3.0
SS15	Day and Evening Time	47.7 (23:43 – 00:13) 47.6 (00:13 – 00:43)	49.0 (22:33 – 22:43)	< 3.0
	Night- time	48.4 (00:50 – 01:20) 48.4 (01:20 – 01:50)	48.8 (02:25 – 02:35)	< 3.0
SS11a	Day and Evening Time	48.3 (23:52 – 00:22) 48.3 (00:22 – 00:52)	46.9 (23:15 – 23:33)	< 3.0
	Night- time	47.6 (00:55 – 01:25) 45.5 (01:25 – 01:55)	46.7 (02:43 – 02:53)	< 3.0
SS20	Day and Evening Time	57.1 (23:42 – 00:12) 57.3 (00:14 – 00:44)	57.5 (23:04 – 23:15)	< 3.0
	Night- time	57.1 (00:46 – 01:16) 57.1 (01:17 – 01:47)	57.5 (02:24 – 02:35)	< 3.0

Note:

- (a) The noise levels at NSRs were dominated either by community noise or road traffic noise; the fixed plants from the ventilation buildings and the plant buildings were not considered as significant noise sources at the NSR.
- (b) The scenarios were arranged for the purpose of testing and commissioning only. The scenario under "day and evening time" would not happen after 2300 during the operation phase.

As the differences between measured noise levels and background levels are all less than 3.0 dB(A), it was unable to obtain reliable corrected noise levels at the NSRs and corrections for tonality, impulsiveness or intermittency were therefore not applicable.

5 Conclusions

To fulfil the XRL EP condition 2.36, the fixed plant noise verification were undertaken and the measurement results indicated all the fixed plant noise levels in MPV, NTV, SMV, SPN and SPS are in compliance with the fixed plant noise criteria.

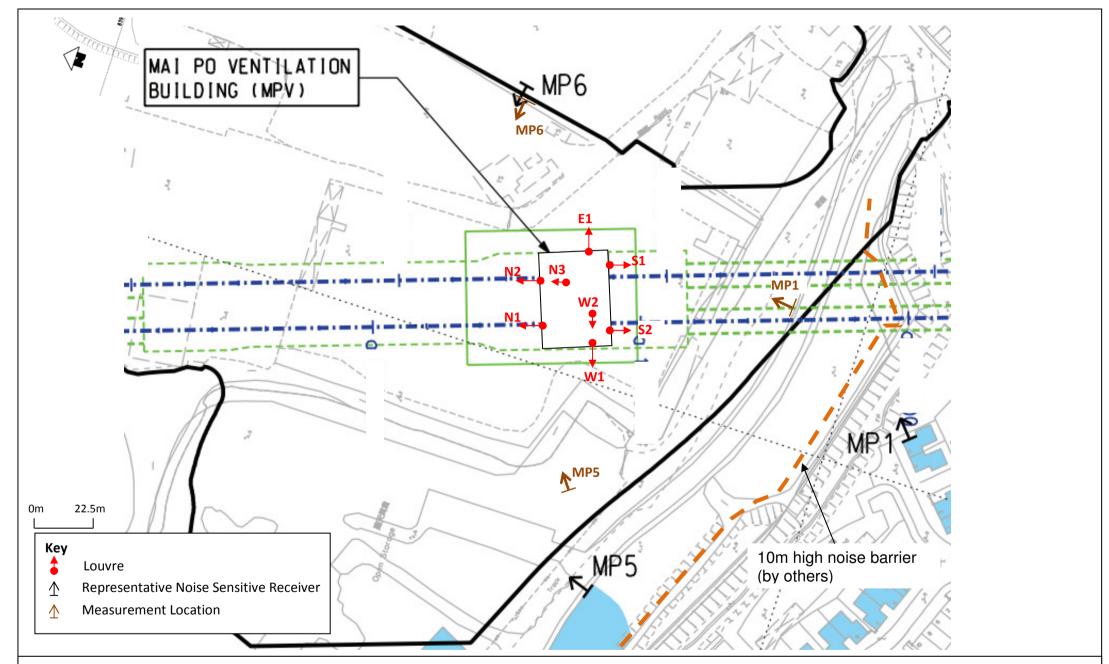


Figure 2.1 – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at MPV

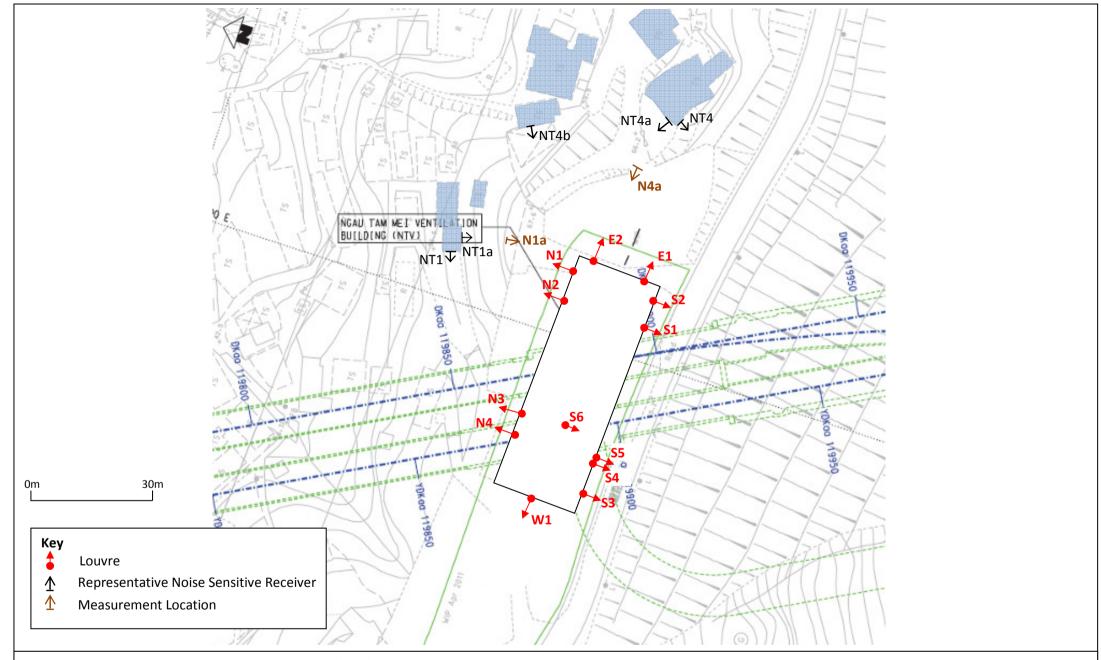


Figure 2.2 – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at NTV

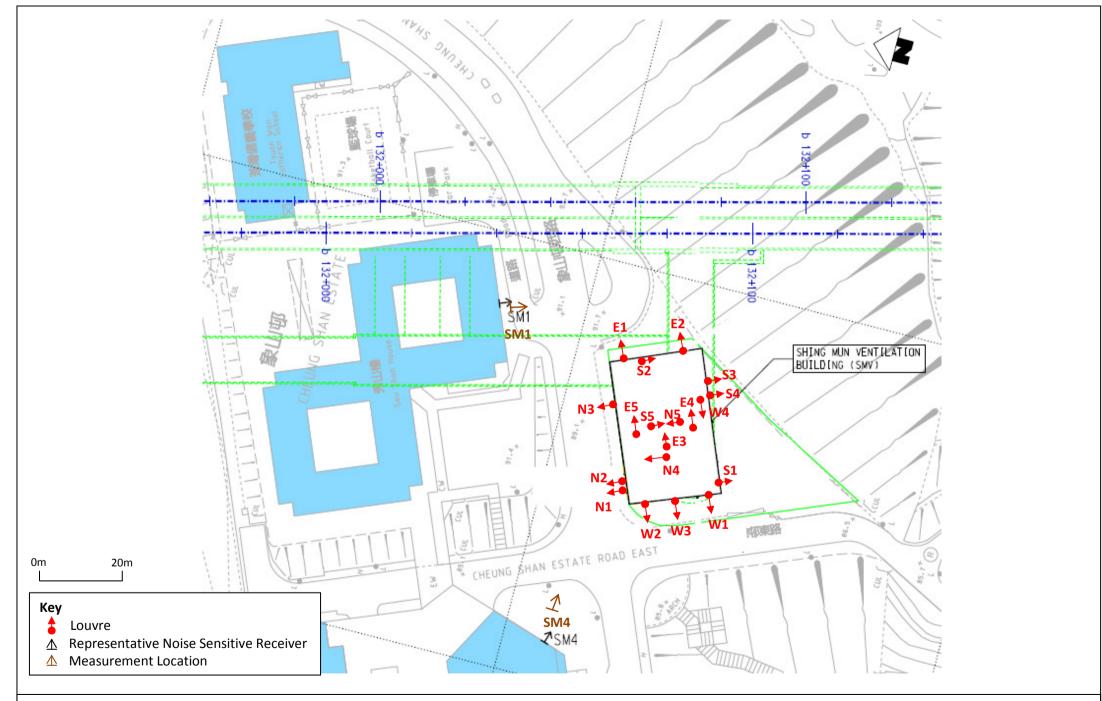


Figure 2.3 – Site layout, Noise Sensitive Receiver (NSR) and Fixed Plant Sources at SMV

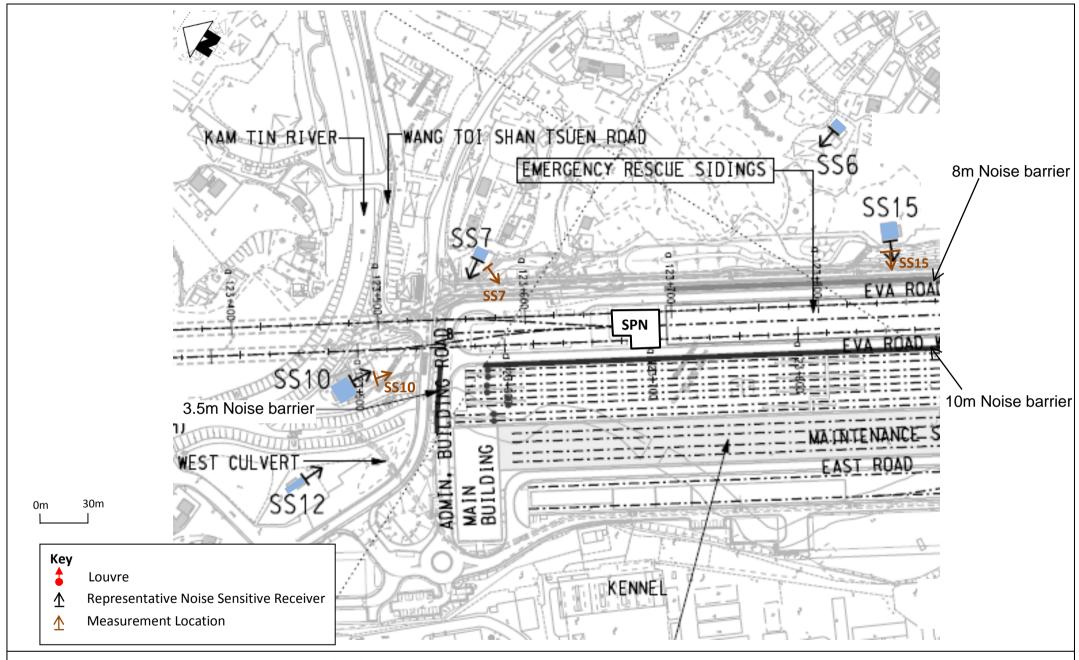


Figure 2.4 – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at SPN

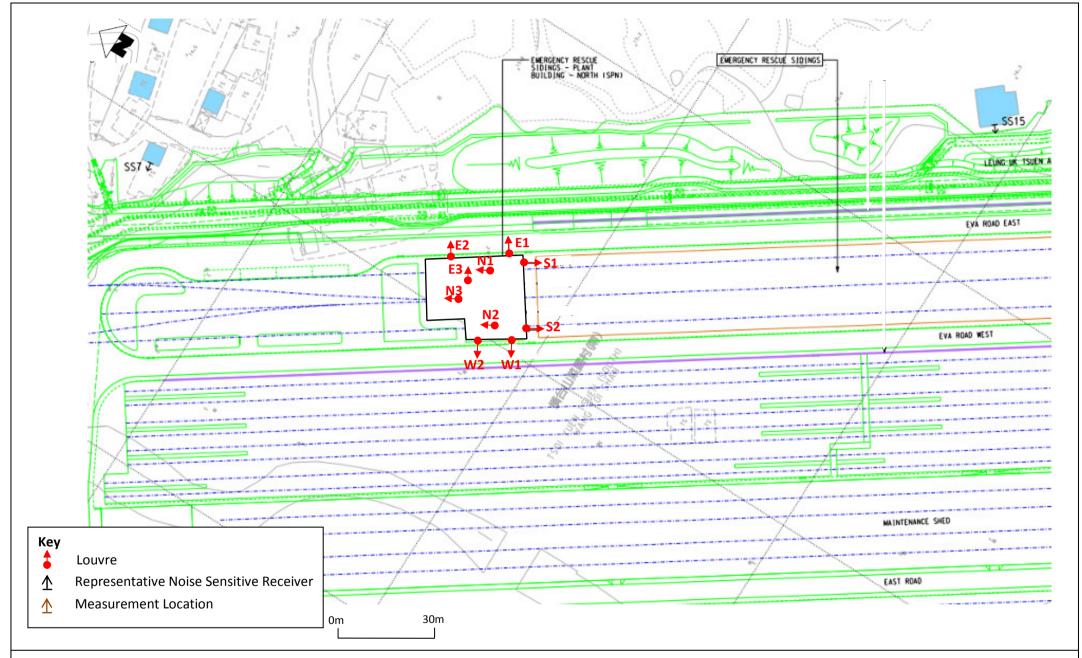


Figure 2.4a – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at SPN

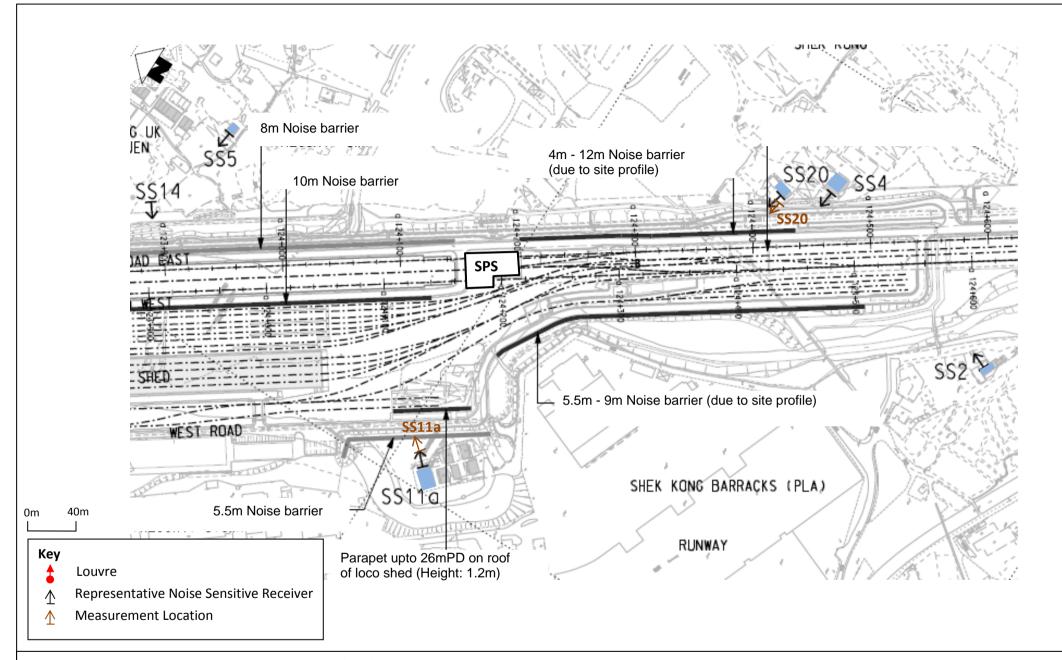


Figure 2.5 – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at SPS

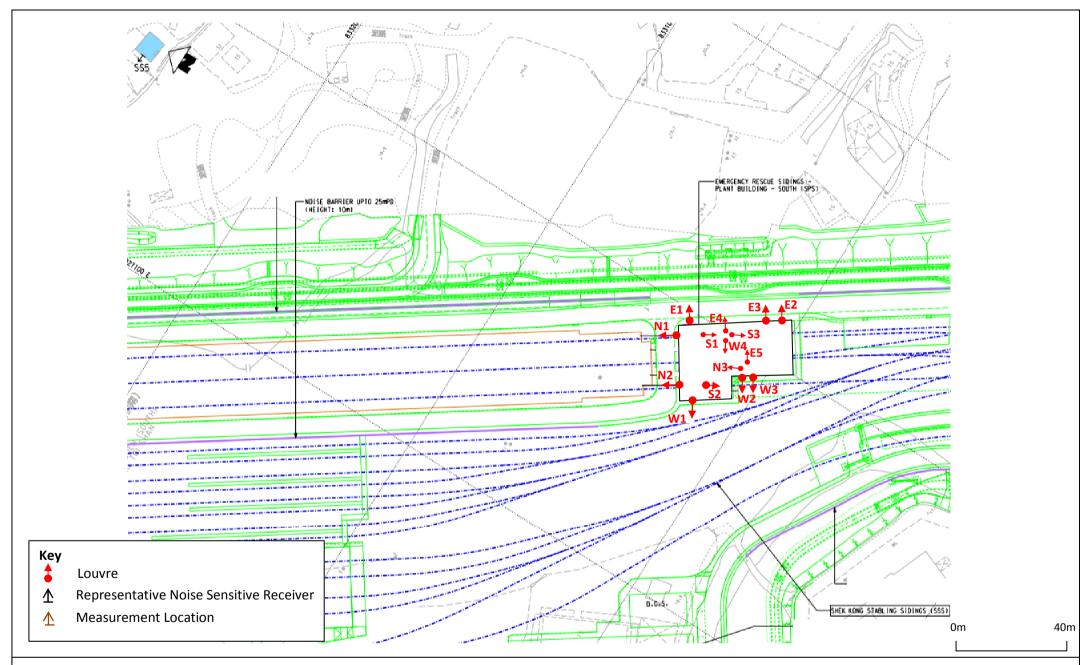


Figure 2.5a – Representative Noise Sensitive Receiver (NSR), Noise Measurement Location and Fixed Plant Sources at SPS

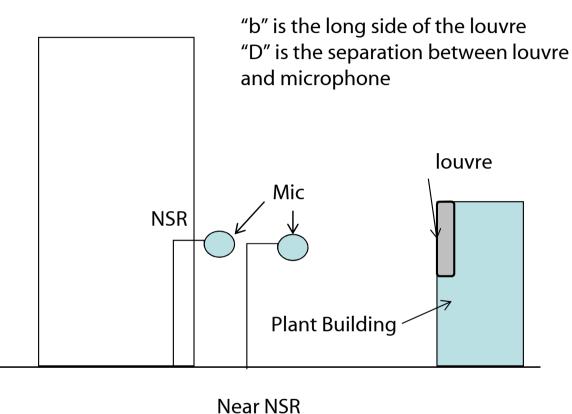
Α	Appendix A1	-Measurem	ent Metho	dology		

XRL Fixed Plant Noise Test Plan

BY: MTR XRL Env Team

Summary of Testing Methodology

Method	Standard	No of repeated measurement	No of measurement point	Measurement distance, D	To Verify
Method 1 (NSR Method)	NCO - TM	3 sets of Leq 1min	Depend on number of NSRs nearby	At the most affected NSR or near NSR	ANL-5 or Background Prevailing
Method 2 (Far Field Method)	Basic Acoustic Principle	3 sets of Leq 1min	1 (for louvre/plant with uniform plane source)	D ≧2b and roundup to integer	ANL-5 or Background Prevailing
Method 3 (Near Field Method)	Developed based on ISO3746:2010	1 set of Leq 10s ^(a) /1min	Depend on the size of the louvre/plant and the measurement distance should follow guideline in ISO3746	At least 1m from the louvre opening/plant (unless otherwise specified)	ANL-5 or Background Prevailing

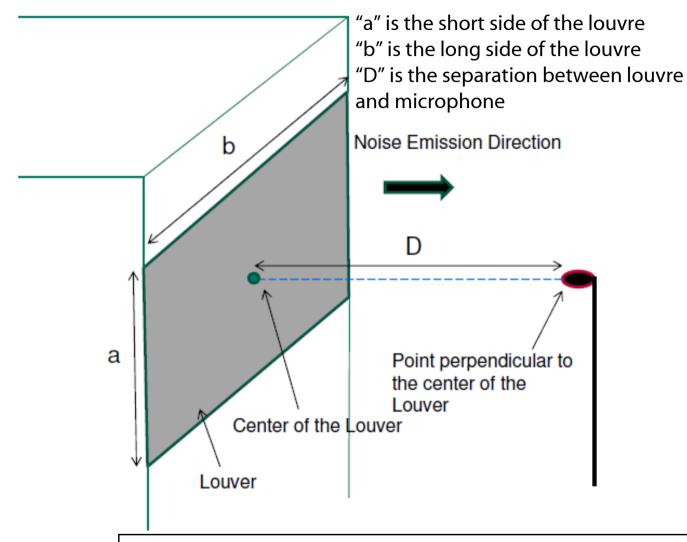

Note:

(a) If fixed plant items are operated at their noisiest operating modes and are steady during measurement, 10-second will be adopted for the duration of measurement.

MTR Corporation Page 2

Method 1 – Sound Pressure Level at NSR or Near NSR for louvre or Plant

- Based on NCO TM
- The locations of measurement points are depended on the site situation
- 3.0 dB façade correction should be considered if the location of measurement point is not at assessment point as defined in NCO-TM
- "D" must be greater than 2b and roundup to integer
- Detail calculation of the SPL should refer to the NCO-TM.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


Background corrected SPL = Mean $L_{Aeq1min}$ + BG - [20log (D) +8] (if applicable) + façade correction (if applicable)

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

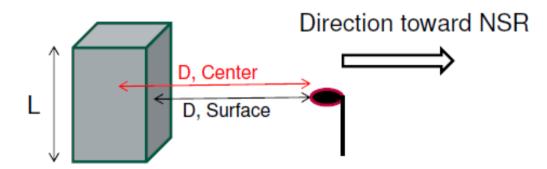
MTR Corporation Page 3

Method 2 – Far Field Sound Power Testing Method for louvre

- Based on basic acoustic principle
- "D" must be greater than 2b and roundup to integer, i.e.: D≧2b
- The microphone must point to the center of the louvre.
- At least 3 sets of LAeq, 1min should be obtained
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than
 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 +BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach


MTR

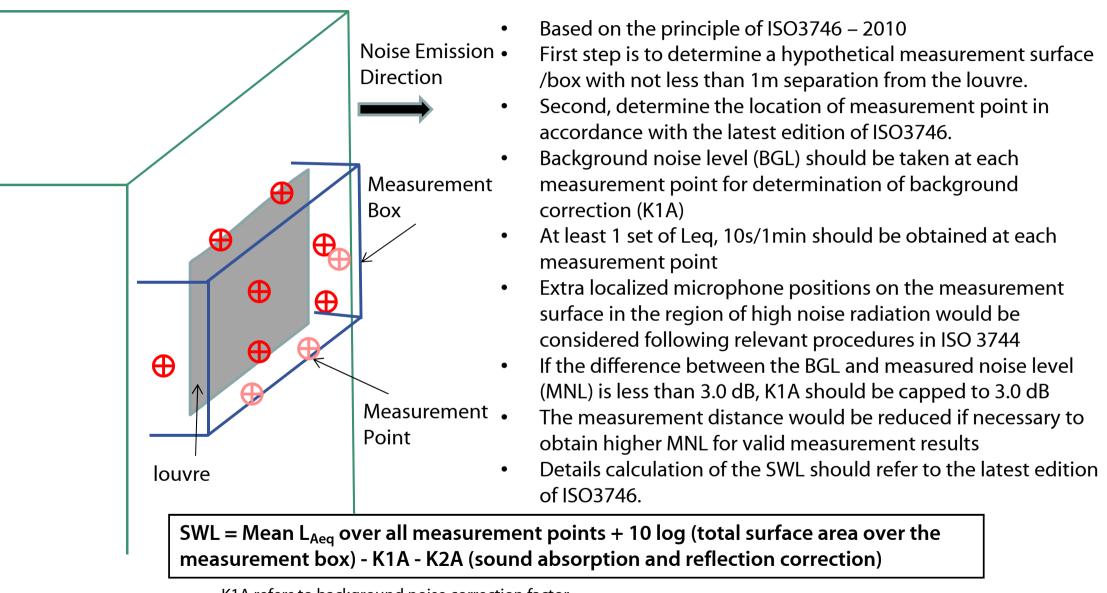
Method 2 – Far Field Sound Power Testing Method for Plant

"L" is the longest side of the plant item

"D, Center" is the separation between center of the plant item and microphone

"D, Surface" is the separation between surface of the plant item and microphone

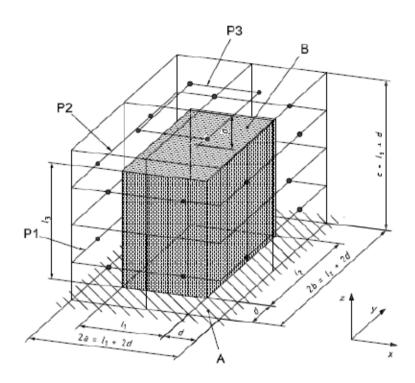
- "D, Surface" must be greater than twice of L
 (2L) and roundup to integer
- The microphone must be pointing to the center of the plant
- At least 3 sets of LAeq, 1min should be obtained at each measurement point.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 + BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

MTR Corporation Page 5

Method 3 – Near Field Sound Power Testing Method for louvre



K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR

MTR Corporation

Method 3 – Near Field Sound Power Testing Method for Plant

Kev

- Based on ISO 3746
- The locations of measurement points are depended on the size of the plant, which cannot be easily generalised (See figure on the left for example).
- Extra localized microphone positions on the measurement surface in the region of high noise radiation would be considered following relevant procedures in ISO 3744
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, K1A should be capped to 3.0 dB
- The measurement distance would be reduced if necessary to obtain higher MNL for valid measurement results
- Detail calculation of the SWL should refer to the latest edition of ISO 3746.

SWL = Mean L_{Aeq} over all measurement points + 10 log (total surface area over the measurement box) - K1A - K2A (sound absorption and reflection correction)

K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR Corporation Page 7

End

MTR Corporation Page 8

Appendix A2 – Ca	alibration Certific	ates	

Certificate No.

704083

Page

4 Pages

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682

Date of receipt

8-May-17

Item Tested

Description : Sound Level Meter

Manufacturer: CASELLA

LD.

: CBSM0103

Model

; CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 11-May-17

Supply Voltage

Ambient Temperature:

(23 ± 3)°C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

701036

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by:

Kin Wong

Approved by:

Alan Chu

This Certificate is issued by

Hong Kong Calibration Ltd.

Date:

11-May-17

Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 704083

Page 2 of 4 Pages

Results:

1. Self-generated noise: 0.2 dBA (Mfr's Spec (Electrical) ≤ 17.5 dBA)

2. Acoustical signal test

	UUT Se	etting	madaren (1600) er sang prima prima kanaka sa sa sang sa pakab pilah pilah pilah pilah badi mada mada kana kan Badi sa		* 1* 1.00
Range (dB)	Frequency Weighting	Time Weighting	Octave Filter	Applied Value (dB)	UUT Reading (dB)
0-140	A	Til	OFF	94.0	93.8
0-1-10		S	OFF		93.8
			OFF		94.0
	Z	Tet	OFF	P	93.8
	A]-i	1/1		93.8
	A	[m]	1/3	1-9A	93.8
	A	Total To	OFF	114.0	113.8
	1	S	OFF	Notes and the second se	113.8
	C C	And the state of t	OFF		113.8
	Z	300	OFF	Product	113.8
	A	Į.	1/1	Mary Control	113.9
	A	F	1/3	o-ago	113.8

IEC 61672 Type 1 Spec. : ± 1.1 dB

Uncertainty: $\pm 0.3 \text{ dB}$

3 Electrical signal tests of frequency weightings (A weighting)

	Attenuation (dB)	IEC 61672 Type 1 Spec.
Frequency		And the state of t
31.5 Hz	-39.4	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.1	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- 8.6 dB, ±1 dB
500 Hz	-3.2	- 3.2 dB, ± 1.4 dB
l kHz	0.0 (Ref)	0 dB, ± 1.1 dB
2 kHz	+1.3	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+0.9	+ 1.0 dB, ± 1.6 dB
8 kHz	~1.4	$-1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-9.5	$-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty: ± 0.1 dB

Certificate No. 704083

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

	de contraction of the contract in a state of the contract in t		And the state of t	Avenue programment and and an address of the property of the p	IEC 61672
	THIT	Applied	UUT	Difference	7 den 40 o
	Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
-	A	94.0	93.8 (Ref.)	sp. ed	± 0.4 dB
-		94.0	94.0	+0.2	
i	Z.	94.0	93.8	0.0	

4.2 Time Weighting (A-weighted)

	And a second	the state of the property of the state of th	The state of the s	1170 (1(00
THIT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	93.8 (Ref.)	man week	± 0.3 dB
Slow	94.0	93.8	0.0	
Time-averaging	94.0	93.8	0.0	

Uncertainty: ± 0.1 dB

5. Filter Characteristics

5.1 1/1 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.5	<- 61
250 Hz	-43.7	< - 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		Life and
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	< 4 17.5
4 kHz	-66.0	< - 42
8 kHz	-62.1	<- 61

Uncertainty: ± 0.25 dB

Certificate No. 704083

Page 4 of 4 Pages

5.2 1/3 - Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
777)	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)	per sign	
1 122 KHz	-3.6	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	<- 17.5
1 887 kHz	-50.7	< - 42
3.070 kHz	-72.5	< - 61

Uncertainty: ± 0.25 dB

Remarks: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa

4. Preamplifier model : CEL-495 , S/N : 002374.

5. Firmware Version: 129-086. Power Supply Check: OK

7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

and derived that fight film that that that the self- EMD . And that were not not that their pail that

Certificate No.

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682 Date of receipt

Item Tested

Description ; Sound Level Calibrator

Manufacturer : Casella

Model: CEL-120/1

lla I.D.

Serial No.

: CBSM0103 : 5060836

of

2 Pages

8-May-17

Test Conditions

Date of Test: 11-May-17

Supply Voltage : --

Page

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: IEC 60942, F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	<u>Description</u>	Cert. No.	Traceable to
S014	Spectrum Analyzer	605758	NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	701036	NIM-PRC & SCL-HKSAR
S041	Universal Counter	607883	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by ;

Kin Wong

Approved by:

Alan Chu

this Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 11-May-17

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwal Chung, NT,Hong Kong, Tel: 2425-8801 | Fax: 2425-8646

Certificate No. 704084

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)		IEC 60942 Class 1 Spec.
94	94.2	± 0.4 dB
114	114.2	-1 V.** (L)

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation : $0.0~\mathrm{dB}$

IEC 60942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

The state of the s			
TITITO XI 1 XX 1			
UUI Nominal Value (kHz)	Maschied Auby Arter	TEO COO IO OI	
was been a fact and	ivieasured value (kHz)	IEC 60942 Class 1 Spec.	
4	the state of the s	TO VOTIA CIGOD I DUCC.	
Į į	1,000		
		+1%	

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.2 %

IEC 60942 Class 1 Spec. : < 3 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa.

the see and the self can self see that the END and the sec only see the sec on see the sec

Certificate No. 804865

4 Pages Page of

Customer: ATAL Engineering Ltd

Address: 13/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q81893

Date of receipt

16-May-18

Item Tested

Description: Sound Level Meter

Manufacturer: CASELLA

I.D.

Model

: CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 18-May-18 **Ambient Temperature:**

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

 $(23 \pm 3)^{\circ}C$

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification. (where applicable) The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

803357

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by

Elva Chong

Approved by:

18-May-18

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 804865

Page 2 of 4 Pages

Results:

1. Self-generated noise: 23.2 dBA

2. Acoustical signal test

UUT Setting					
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
0-140	A	F	OFF	94.0	93.3
		S	OFF		93.3
	С	F	OFF		93.3
,	Z	F	OFF		93.3
	A	F	1/1		93.3
	A	F	1/3		93.3
	A	F	OFF	114.0	113.4
		S	OFF		113.4
	С	F	OFF		113.4
	Z	F	OFF		113.4
	A	F	1/1		113.4
	A	F	1/3		113.4

IEC 61672 Type 1 Spec. : \pm 1.1 dB

Uncertainty: ± 0.3 dB

3 Electrical signal tests of frequency weightings (A weighting)

pec.
3
lB
dB
lB
dB
dB
dB
dB
3.1 dB
17.0 dB

Uncertainty: ± 0.1 dB

Certificate No. 804865

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT Setting	Applied Value (dB)	UUT Reading (dB)	Difference (dB)	IEC 61672 Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty: $\pm 0.1 \text{ dB}$

5. Filter Characteristics

$5.1 \quad 1/1 - Octave Filter$

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.4	<- 61
250 Hz	-43.7	<- 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	<- 17.5
4 kHz	-65.4	<- 42
8 kHz	- 61.9	<- 61

Uncertainty: ± 0.25 dB

Certificate No. 804865

Page 4 of 4 Pages

5.2 1/3 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
772 Hz	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)		
1.122 kHz	-3.7	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	< - 17.5
1.887 kHz	-50.7	<- 42
3.070 kHz	-72.4	<- 61

Uncertainty: $\pm 0.25 \text{ dB}$

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 006 hPa
- 4. Preamplifier model: CEL-495, S/N: 002374
- 5. Firmware Version: 129-08 6. Power Supply Check: OK
- 7. The UUT was adjusted with the supplied sound calibrator at the reference sound pressure level before the calibration.

----- END -----

Certificate No. 804866

Page

1

of

2 Pages

Customer: ATAL Engineering Ltd

Address: 13/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q81893

Date of receipt

16-May-18

Item Tested

Description: Sound Level Calibrator

Manufacturer: Casella

I.D.

Model

: CEL-120/1

Serial No.

: 5060836

Test Conditions

Date of Test: 18-May-18

 $(23 \pm 3)^{\circ}C$

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: IEC 60942, F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Cert. No. Equipment No. Description 707126 S014 Spectrum Analyzer Sound Level Calibrator 803357 S240

Traceable to

NIM-PRC & SCL-HKSAR NIM-PRC & SCL-HKSAR

S041

Universal Counter

802061

SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Elva Chong

Approved by:

18-May-18

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Certificate No. 804866

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.
94.0	94.3	± 0.4 dB
114.0	114.3	

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation: 0.0 dB

IEC 60942 Class 1 Spec. : \pm 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 60942 Class 1 Spec.
1	1.000	± 1 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.2 %

IEC 60942 Class 1 Spec. : < 4 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1 006 hPa.

----- END -----

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 6240 Capsule Serial Number: 9498

• Certificate Issued: 10 January 2017

• Certificate Number: 42745-6240-M2230

Results: PASSED

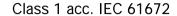
(for detailed report see next page)

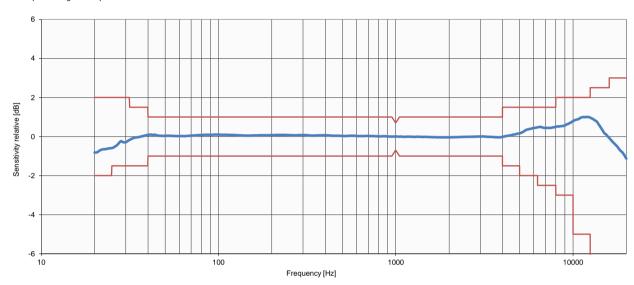
Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan


Date: 10 January 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 6240 Capsule Serial Number: 9498

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	lz, 114 dBSPL	actual 43.3 mV/Pa	uncertainty ¹ ±2.85%
Test Conditions:	Temperature:	27.2 °C	±0.5 °C
	Relative Humidity:	39.5 %	±2%

• Calibration Equipment Used:

Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland

Air Pressure:

- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

calibration

±0.25 kPa

95.94 kPa

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5011 Capsule Serial Number: 7698

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5011-M2230

Results: PASSED

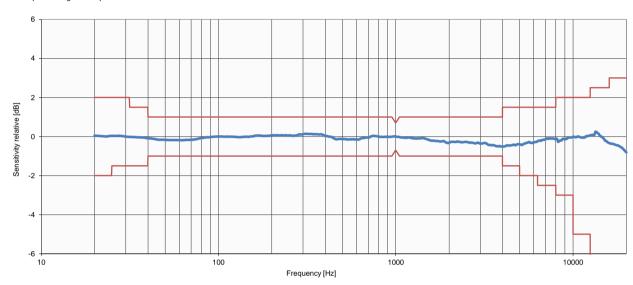
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

-I\f 9494 Schaan **ww.nti-aud**io.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5011 Capsule Serial Number: 7698

Detailed Calibration Test Results:

Frequency response:

Sensitivity @ 1 kF	Hz, 114 dBSPL	actual 46.5 mV/Pa	calibration uncertainty ¹ ±2.85%
• Test Conditions:	Temperature: Relative Humidity: Air Pressure:	21.1 °C 47.2 % 97.4 kPa	±0.5 °C ±2% ±0.25 kPa

• Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 5617 Capsule Serial Number: 8507

• Certificate Issued: 24 March 2017

• Certificate Number: 42818-5617-M2230

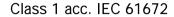
Results: PASSED

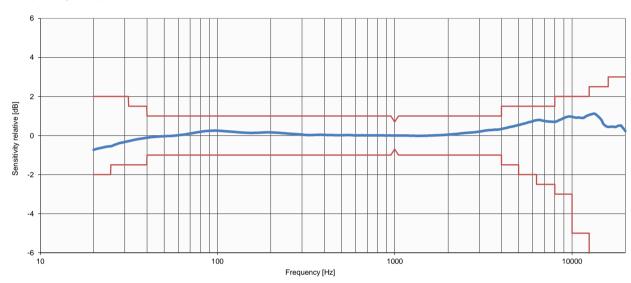
(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102


LI\† 9494 Schaan www.nti-audio.com Date: 24 March 2017


Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 5617 Capsule Serial Number: 8507

Detailed Calibration Test Results:

Frequency response:

calibration actual uncertainty Sensitivity @ 1 kHz, 114 dBSPL 48.1 mV/Pa ±2.85%

• Test Conditions: Temperature: 24.6 °C ± 0.5 °C Relative Humidity: 43.6 % $\pm 2\%$ Air Pressure: 97.65 kPa ± 0.25 kPa

Calibration Equipment Used:

- Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland
- NTi Audio FX100, S/No. 11094 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

Calibration Chart

BSWA-IV-C021-03-0048A

Sound Calibrator model	CAILL
Serial Number	T160.C
Appearance	<u>OK</u>
Power Supply	1.5V LR6 (AA battery) x2
Sound Pressure Level	93.92/ 114.04 dB
Frequency	1000.5/ 1000.5 Hz
THD (@1000Hz)	0.23 / 0.80 %

Copying and using select parts, or tampering with this document without the permission of BSWA is forbidden!

BSWA Technology Ltd.

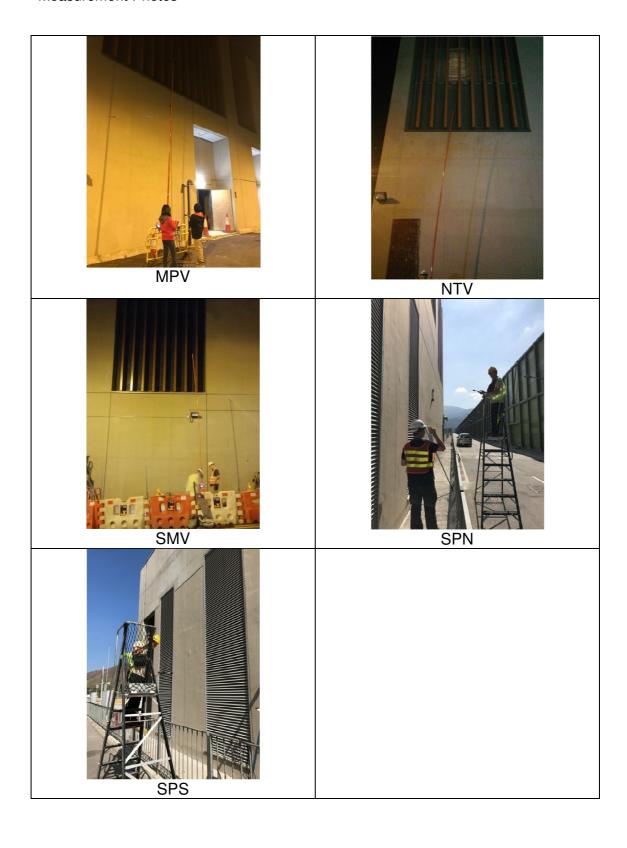
www.bswa-tech.com

This equipment was calibrated at the following ambient conditions:

Temperature: ユ3 °C
Humidity: ユス %RH
Pressure: / o 2 5 hPa

This equipment is qualified!

Calibrated


2016-11-15

Date

Aį	ppendix A3 –	Fixed Plant No	oise Summary		

Measurement Photos

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			ECS duct	N1	L	Υ	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	141	5	14			
			FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	150	5	15			
			LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	House 5 Phase A	Ventilation Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	136	10	16			
MP1	Royal Palms	Building	Tunnel ventilation shaft	S1	L	Υ	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	130	5	22	29	60	0
	Paims	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	121	5	23			
			Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	123	0	23			
			Air Release Louvre	W2	L	Υ	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	123	0	22			
			ECS duct	N1	L	Υ	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	101	10	12			
	Proposed		FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	116	10	13			
	Compreh		LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	ensive Develop	Ventilation Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	125	10	17			
MP5	ment at	Building	Tunnel ventilation shaft	S1	L	Y	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	119	0	27	34	51	0
	Shang	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	97	0	30			
	Wai		Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	88	0	26			
			Air Release Louvre	W2	L	Υ	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	97	0	24			
			ECS duct	N1	L	Y	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	88	0	23			
			FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	73	0	27			
1			LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	Planned village	Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	68	0	32			
MP6	house at Village	Building Service	Tunnel ventilation shaft	S1	L	Υ	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	75	5	26	35	60	0
	Zone	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	95	5	25			
			Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	99	10	15			
\perp			Air Release Louvre	W2	L	Υ	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	86	10	15			

Remarks:

(i) Tunnel ventilation would be operated for both northbound (N/B) and southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants
Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

Night Time Fixed Plant Noise at NSR

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			ECS duct	N1	L	N (ii)	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	141	-	-			
			FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	150	5	15			
			LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	House 5 Phase A	Ventilation Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	136	10	16			
MP1	Royal	Building	Tunnel ventilation shaft	S1	L	Υ	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	130	5	22	28	50	0
	Palms	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	121	5	23			
			Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	123	0	23			
			Air Release Louvre	W2	L	N (ii)	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	123	-	-			
			ECS duct	N1	L	N (ii)	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	101	-	-			
	B		FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	116	10	13			
	Proposed Compreh		LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	ensive Develop	Ventilation Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	125	10	17			
MP5	ment at	Building	Tunnel ventilation shaft	S1	L	Υ	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	119	0	27	33	45	0
	Wo Shang	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	97	0	30			
	Wai		Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	88	0	26			
			Air Release Louvre	W2	L	N (ii)	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	97	-	-			
			ECS duct	N1	L	N ⁽ⁱⁱ⁾	1.20	1.00	2	3	n/a	49.9	42.4	7.5	49	67	88	-	-			
			FS control room	N2	L	Υ	0.80	0.80	2	2	n/a	54.8	44.4	10.4	54.8	69	73	0	27			
			LV switch room	N3	L	Υ	7.00	3.00	3	1	73.0	54.9	49.9	5	53.2	72	150	5	18			
	Planned village	ge Shaft and	Tunnel ventilation shaft	E1	L	Υ	12.68	5.93	3	1	161.5	54.4	51.1	3.3	51.7	74	68	0	32			
MP6	house at Village	Building	Tunnel ventilation shaft	S1	L	Υ	8.28	5.93	3	1	117.8	55.1	49.7	5.4	53.6	74	75	5	26	35	50	0
	Zone	Service	Tunnel ventilation shaft	S2	L	Υ	9.48	5.93	3	1	129.7	54.8	46.9	7.9	54	75	95	5	25			
			Tunnel ventilation shaft	W1	L	Υ	13.00	5.93	3	1	164.7	50.2	46.3	3.9	47.9	70	99	10	15			
			Air Release Louvre	W2	L	N (ii)	1.20	0.60	3	1	19.9	57.6	52.8	4.8	55.9	69	86	-	-			

Remarks:

(i) Not used

(ii) The plant would be operated during day and evening time only under normal scenario.

(iii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	30	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	30	-	-			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	43	0	23			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	45	0	35			
		Ventilation	Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	45	5	34			
NT1	Yau Tam Mei	Shaft for N/B (i) and	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	33	-	-	42	55	0
	Village House	Building Service	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	10	29	72	33	Ü
		Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	10	29			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	67	10	19			
			LV switch room	S4	L	Y	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	62	10	20			
			LV switch room	S5	L	Y	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	62	10	25			
			Exhaust Air Duct	S6	L	Y	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	10	39			
			UPS Room Fresh Air Intake	W1	L	Y	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	62	10	31			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	29	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	29	-	-			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	45	0	23			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	48	0	34			
		Ventilation	Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	43	0	39			
NT1a	Yau Tam Mei	Shaft for N/B (i) and	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	32	-	-	43	55	0.0
14120	Village House	Building Service	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	49	10	29	43	33	0.0
		Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	49	10	29			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	70	10	19			
1			LV switch room	S4	L	Y	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	63	10	20			
1			LV switch room	S5	L	Y	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	63	10	25			
1			Exhaust Air Duct UPS Room Fresh Air	S6	L	Y	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	10	39			
-			Intake Tunnel ventilation	W1	L	Y	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	65	10	31			
			shaft Tunnel ventilation	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	44	-	-			
			shaft CTER	N2 N3	L	N ⁽ⁱ⁾	12.50 0.80	2.20 1.60	3	0.5	193.1 9.1	49.6 54.2	46.6 53.2	3	46.6 51.2	69 61	50 80	5	13			
1			ECS duct	N4	L	Y	2.60	2.20	3	1	36.9	58.5	53.2	5.3	51.2	73	86	5	24			
			Tunnel ventilation	E1	L	Y	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	40	0	40			
	Yau Tam Mei	Ventilation Shaft for	shaft Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	40	-	-			
NT4	Village House	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	5	34	44	55	0
	riouse	Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	5	35			
			LV switch room	S3	L	Y	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	5	22			
•									· -										-			ı

		1	l I			1	Louvre	Size (m)	1	1		I			Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			LV switch room	S4	L	Υ	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	5	22			
			LV switch room	S5	L	Υ	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	5	27			
			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	5	40			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	97	10	27			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	42	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	-	-			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	80	5	13			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	85	5	24			
		Ventilation	Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	39	0	40			
	Yau Tam Mei	Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	39	-	-	44		0
NT4a	Village House	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	5	34	44	55	0
		Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	5	35			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	5	22			
			LV switch room	S4	L	Υ	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	5	22			
			LV switch room	S5	L	Υ	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	5	27			
			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	5	40			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	96	10	27			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	36	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	43	-	-			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	70	0	19			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	75	0	30			
		M	Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	44	5	34			
	Yau Tam Mei	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	35	-	-			
NT4b	Village House	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	55	10	28	40	55	0
		Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	10	29			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	90	10	17			
			LV switch room	S4	L	Y	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	81	10	18			
			LV switch room	S5	L	Y	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	81	10	23			
			Exhaust Air Duct	S6	L	Y	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	70	10	36			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	90	10	28			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

		1			1		Louvre	Size (m)	I						Background			I				
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)] (iv)	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	30	0	37			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	30	0	34			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	43	0	23			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	45	0	35			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	45	-	-			
NT1	Yau Tam Mei	Shaft for S/B (i) and	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	33	5	32	43	55	0
	Village House	Building Service	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-	-			
		Scrvice	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	-	-			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	67	10	19			
			LV switch room	S4	L	Υ	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	62	10	20			
			LV switch room	S5	L	Υ	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	62	10	25			
			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	10	39			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	62	10	31			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	29	0	38			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	29	0	35			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	45	0	23			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	48	0	34			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	43	-	-			
NT1a	Yau Tam Mei	Shaft for S/B (i) and	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	32	0	37	44	55	0.0
	Village House	Building Service	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	49	-	-			
		Jeivice	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	49	-	-			
1			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	70	10	19			
1			LV switch room	S4	L	Υ	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	63	10	20			
1			LV switch room	S5	L	Y	1.20	3.80	3	1 -	36.6	60.2	39.4	20.8	60.2	76	63	10	25			
			Exhaust Air Duct UPS Room Fresh Air	S6 W1	L	Y	3.00	0.73 2.00	2	5 6	n/a n/a	66.2 59.3	44.9 51.8	21.3 7.5	66.2 58.4	88 82	50 65	10 10	39 31			
\vdash			Intake Tunnel ventilation	N1	L	Y	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	44	5	29			
			shaft Tunnel ventilation	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	5	25			
			shaft CTER	N3	<u> </u>	Y	0.80		3	0.5				1			80	5	13			
			ECS duct	N3 N4	L	Y	2.60	1.60 2.20	3	1	9.1 36.9	54.2 58.5	53.2 53.2	5.3	51.2 57	61 73	80 86	5	24			
			Tunnel ventilation	E1	L	N (i)	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	73	40	-	-			
	Yau Tam Mei	Ventilation Shaft for	shaft Tunnel ventilation	E2	L	Y	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	40	0	35			
NT4	Village House	S/B ⁽ⁱ⁾ and Building	shaft Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-	-	42	55	0
	House	Service	Tunnel ventilation shaft	S2	L	N (i)	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	-	-			
		1	LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	5	22			

		l	1		l	1	Louvre	Size (m)	l	l		l			Background		I					1
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, 5 (m ²)	Measured L _{Aeq} [dB(A)] (iv)	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	_	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			LV switch room	S4	L	Υ	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	5	22			
			LV switch room	S5	L	Υ	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	5	27			
			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	5	40			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	97	10	27			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	42	5	30			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	5	25			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	80	5	13			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	85	5	24			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	39	-	-			
NT4a	Yau Tam Mei	Shaft for S/B (i) and	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	39	0	35	42	55	0
IN 14a	Village House	Building	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-	-	42	55	0
		Service	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	-	-			
			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	5	22			
			LV switch room	S4	ī	Y	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	5	22			
			LV switch room	S5	L	Υ	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	5	27			
			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	5	40			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	96	10	27			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	36	0	36			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	43	0	31			
1			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	70	0	19			
			ECS duct	N4	L	Υ	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	75	0	30			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	44	-	-			
NITAL	Yau Tam Mei	Shaft for	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	35	5	31	44		0
NT4b	Village House	S/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	55	-	-	41	55	0
		Service	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	-	-			
1			LV switch room	S3	L	Υ	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	90	10	17			
			LV switch room	S4	L	Y	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	81	10	18			
			LV switch room	S5	L	Y	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	81	10	23			
1			Exhaust Air Duct	S6	L	Υ	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	70	10	36			
			UPS Room Fresh Air Intake	W1	L	Υ	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	90	10	28			

 $(i) \ Tunnel \ ventilation \ would \ only \ be \ operated \ for \ either \ northbound \ (N/B) \ or \ southbound \ (S/B) \ direction \ under \ normal \ scenario.$

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)		Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] (vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	30	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	30	-	-			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	43	0	23			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	45	-	-			
		Ventilation	Tunnel ventilation shaft	E1	L	Y	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	45	5	34			
NT:	Yau Tam Mei	Shaft for N/B (i) and	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	33	-	-	36	44	0
	Village House	Building Service	Tunnel ventilation shaft	S1	L	Y	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	10	29			
		Scriec	Tunnel ventilation shaft	S2	L	Υ (11)	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	10	29			
			LV switch room	S3 S4	L	N (ii)	3.30	2.20 3.80	3	1	41.3	54.6	39.4	15.2 15.2	54.6 54.6	71 71	67	-	-			
			LV switch room LV switch room	S5	L	N (ii)	2.10 1.20	3.80	3	1	43.6 36.6	54.6 60.2	39.4 39.4	20.8	60.2	76	62 62	-	-			
			Exhaust Air Duct	S6	L	N (ii)	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	-	-			
			UPS Room Fresh Air	W1	L	N (ii)	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	62	-	-			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	29	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	29	-	-			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	45	0	23			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	48	-	-			
			Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	43	0	39			
	Yau Tam Mei	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	N (i)	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	32	1	-			
NT1	Village House	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	49	10	29	40	44	0.0
		Service	Tunnel ventilation shaft	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	49	10	29			
			LV switch room	S3	L	N ⁽ⁱⁱ⁾	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	70	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	63	-	-			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	63	-	-			
			Exhaust Air Duct	S6	L	N (ii)	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	-	-			
			UPS Room Fresh Air Intake	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	65	-	-			
			Tunnel ventilation shaft Tunnel ventilation	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	44	-	-			
			shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	-	- 12			
			CTER ECS duct	N3 N4	L	Y N ⁽ⁱⁱ⁾	0.80 2.60	1.60 2.20	3	0.5	9.1 36.9	54.2 58.5	53.2 53.2	5.3	51.2 57	61 73	80 86	5	13			
			Tunnel ventilation	E1	L	Y	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	40	0	40			
	Yau Tam	Ventilation Shaft for	Tunnel ventilation	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	40	-	-			
NT	Village	N/B (i) and Building	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	5	34	42	44	0
	House	Service	Tunnel ventilation	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	5	35			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	-	-			
•	1	1	L										1	1	1					1		1

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m²)		Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			LV switch room	S5	L	N ⁽ⁱⁱ⁾	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	-	-			
			Exhaust Air Duct	S6	L	N ⁽ⁱⁱ⁾	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	-	-			
			UPS Room Fresh Air Intake	W1	L	N (ii)	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	97	-	-			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	42	-	-			
			Tunnel ventilation shaft	N2	L	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	-	-			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	80	5	13			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	85	-	-			
		Ventilation	Tunnel ventilation shaft	E1	L	Υ	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	39	0	40			
NT4a	Yau Tam Mei	Shaft for N/B (i) and	Tunnel ventilation shaft Tunnel ventilation	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	39	-	-	42	44	0
	Village House	Building Service	shaft Tunnel ventilation	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	5	34			
			shaft	S2	L	Υ (0)	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	5	35			
			LV switch room	S3	L .	N ⁽ⁱⁱ⁾	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	-	-			
		LV	LV switch room	S4	L	N ⁽ⁱⁱ⁾	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85 85	-	-			
			LV switch room	S5 S6	L	N (ii)	1.20 2.40	3.80 0.73	2	5	36.6	60.2 66.2	39.4 44.9	20.8	60.2 66.2	76 88	80					
			Exhaust Air Duct UPS Room Fresh Air	W1	L	N (ii)	3.00	2.00	2	6	n/a n/a	59.3	51.8	7.5	58.4	82	96	-	-			
			Tunnel ventilation	N1	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	36	-	_			
			shaft Tunnel ventilation	N2	_	N ⁽ⁱ⁾	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	43	_				
			shaft															0	10			
			CTER ECS duct	N3 N4	L	Y N ⁽ⁱⁱ⁾	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	70	0	19			
			Tunnel ventilation	E1	L	Y	5.08	9.00	3	2	36.9 206.3	58.5 54.1	53.2 45.9	5.3 8.2	57 53.4	73 77	75 44	5	34			
	Yau Tam	Shaft for	Tunnel ventilation shaft	E2	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	35	-	-			
NT4b	Village	N/B (i) and Building	Tunnel ventilation shaft	S1	L	Υ	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	55	10	28	36	44	0
	House	Service	Tunnel ventilation	S2	L	Υ	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	10	29			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	90	_	_			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	81		_			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	81		-			
			Exhaust Air Duct	S6	L	N (ii)	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	70	-	-			
			UPS Room Fresh Air Intake	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	90	-	-			
	lea.		IIILake																			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) The plant would be operated during day and evening time only under normal scenario.

(iii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)		Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	Y	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	30	0	37			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	30	0	34			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	43	0	23			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	45	-	-			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	45	-	-			
	Yau Tam Mei	Shaft for	Tunnel ventilation shaft	E2	L	Y	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	33	5	32	40		
NT1	Village House	S/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-		40	44	0
	110430	Service	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	-	-			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	67	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	62	-	-			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	62	-	-			
			Exhaust Air Duct	S6	L	N ⁽ⁱⁱ⁾	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	-	-			
			UPS Room Fresh Air Intake	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	62	-	-			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	29	0	38			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	29	0	35			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	45	0	23			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	48	-	-			
		Ventilation	Tunnel ventilation shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	43	-	-			
NT1a	Yau Tam Mei	Shaft for S/B (i) and	shaft	E2	L	Y	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	32	0	37	42	44	0.0
IVIIA	Village House	Building	Tunnel ventilation shaft	S1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	49	-	-	42	44	0.0
		Service	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	49	-	-			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	70	-				
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	63	-	-			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	63	-	-			
			Exhaust Air Duct UPS Room Fresh Air	S6	L	N ⁽ⁱⁱ⁾	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	50	-	-			
			Intake Tunnel ventilation	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	65	-	-			
			shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	44	5	29			
			Tunnel ventilation shaft	N2	L	Y	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	5	25			
			CTER	N3	L	Y(ii)	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	80	5	13			
			ECS duct Tunnel ventilation	N4	L	N ⁽ⁱⁱ⁾	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	86	-	-			
	V	Ventilation	shaft	E1	L	N ⁽ⁱ⁾	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	40	-	-			
NT4	Yau Tam Mei	Shaft for S/B (i) and	Tunnel ventilation shaft	E2	L	Y	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	40	0	35	36	44	0
,	Village House	Building	Tunnel ventilation shaft	\$1	L	N ⁽ⁱ⁾	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-	-	30		
		Service	Tunnel ventilation shaft	S2	L	N ⁽ⁱ⁾	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	-	-			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	-	-			
ı		1	LV switch room	S5	L	N ⁽ⁱⁱ⁾	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	-	-			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Corrected	Calculated SWL L _{Aeq} [dB(A)] (vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Exhaust Air Duct	S6	L	N (ii)	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	-	-			
			UPS Room Fresh Air Intake	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	97	-	-			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	42	5	30			
			Tunnel ventilation shaft	N2	L	Υ	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	50	5	25			
			CTER	N3	L	Υ	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	80	5	13			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	85	-	-			
		Ventilation	Tunnel ventilation shaft	E1	L	N (i)	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	39	-	-			
NTA	Yau Tam Mei	Shaft for S/B (i) and	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	39	0	35	27	44	0
NT4a	Village House	Building	Tunnel ventilation shaft	S1	L	N (i)	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	50	-	-	37	44	0
		Service	Tunnel ventilation shaft	S2	L	N (i)	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	43	-	-			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	92	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	85	-	-			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	85	-	-			
			Exhaust Air Duct	S6	L	N ⁽ⁱⁱ⁾	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	80	-	-			
			UPS Room Fresh Air Intake	W1	L	N (ii)	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	96	-	-			
			Tunnel ventilation shaft	N1	L	Υ	3.88	9.00	3	2	185.9	51	46.6	4.4	49	72	36	0	36			
			Tunnel ventilation shaft	N2	L	Y	12.50	2.20	3	2	193.1	49.6	46.6	3	46.6	69	43	0	31			
			CTER	N3	L	Y	0.80	1.60	3	0.5	9.1	54.2	53.2	1	51.2	61	70	0	19			
			ECS duct	N4	L	N (ii)	2.60	2.20	3	1	36.9	58.5	53.2	5.3	57	73	75	-	-			
			Tunnel ventilation shaft	E1	L	N (i)	5.08	9.00	3	2	206.3	54.1	45.9	8.2	53.4	77	44	-	-			
	Yau Tam Mei	Ventilation Shaft for	Tunnel ventilation shaft	E2	L	Υ	5.08	9.00	3	2	206.3	51.5	48.5	3	48.5	72	35	5	31			
NT4b	Village House	S/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	N (i)	12.51	2.20	3	2	193.2	55.5	44.6	10.9	55.5	78	55	-	-	38	44	0
	House	Service	Tunnel ventilation shaft	S2	L	N (i)	3.88	9.00	3	2	185.9	55.9	46.9	9	55.3	78	50	-	-			
			LV switch room	S3	L	N (ii)	3.30	2.20	3	1	41.3	54.6	39.4	15.2	54.6	71	90	-	-			
			LV switch room	S4	L	N (ii)	2.10	3.80	3	1	43.6	54.6	39.4	15.2	54.6	71	81	-	-			
			LV switch room	S5	L	N (ii)	1.20	3.80	3	1	36.6	60.2	39.4	20.8	60.2	76	81	-	-			
			Exhaust Air Duct	S6	L	N (ii)	2.40	0.73	2	5	n/a	66.2	44.9	21.3	66.2	88	70	-	-			
			UPS Room Fresh Air Intake	W1	L	N ⁽ⁱⁱ⁾	3.00	2.00	2	6	n/a	59.3	51.8	7.5	58.4	82	90	-	-			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) The plant would be operated during day and evening time only under normal scenario.

(iii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

				1		1	Louvre	Size (m)	1	<u> </u>					Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, <i>LoS</i> [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N (i)	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	48	0	41			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	48	0	24			
			MCC room	N3	L	Υ	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	30	0	42			
			Exhaust air louvre	N4	L	Υ	1.00	4.60	3	1	39.0	48.4	49.1	-0.7	45.4	61	50	0	22			
			Staircase pressurization fan room	N5	L	Υ	1.00	3.00	3	1	31.0	61.7	58.8	2.9	58.7	74	42	0	37			
			UPS room	E1	L	Υ	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	29	0	55			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	38	0	44			
			Fresh air louvre Staircase pressurization fan room 1	E3	L	Y	2.60	3.20	3	0.5	39.6 24.5	49.1 62.6	49.1 58.8	3.8	60.3	74	42	0	25 36			
	Sau Shan House,	Ventilation Shaft for	Staircase	E5	L	Υ	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	38	0	30			
SM1	Cheung	N/B (i) and	Tunnel ventilation	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	62	-	-	56	60	0
	Shan Estate	Building Service	shaft Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	30	10	39			
			Air compressor	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	48	10	37			
			receiver room Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	48	10	37			
			Staircase pressurization fan room	S5	L	Υ	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	48	10	19			
			Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	-	-			
			Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	57	10	26			
			SPS air release louvre	W3	L	Υ	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	60	10	46			
			Track section cabin room	W4	L	Υ	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	48	10	29			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	39	0	43			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	39	0	26			
1			MCC room	N3	L	Υ	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	50	0	38			
			Exhaust air louvre Staircase pressurization fan	N4 N5	L	Y	1.00	3.00	3	1	39.0 31.0	48.4 61.7	49.1 58.8	-0.7 2.9	45.4 58.7	61 74	42	0	35			
			room UPS room	E1	L	Y	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	63	10	38			
1			LV switch room	E2	L	Y	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	70	10	29			
1			Fresh air louvre	E3	L	Υ	2.60	2.60	3	1	39.6	49.1	49.1	0	46.1	62	48	10	13			
			Staircase pressurization fan room 1	E4	L	Y	2.90	3.20	3	0.5	24.5	62.6	58.8	3.8	60.3	74	52	10	25			
	Shui	Ventilation Shaft for	Staircase pressurization fan room 2	E5	L	Y	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	46	10	19			
SM4	Hong Nursing	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	55	-	-	59	60	0

						Louvre	Size (m)							Background							
NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)		Height	Method (ii)		of Measurement		Average Background L _{Aeq} [dB(A)]		_		Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
Home	Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	62	10	33			
		Air compressor receiver room	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	60	10	35			
		Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	60	10	35			
		Staircase pressurization fan room	S 5	L	Υ	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	60	10	17			
		Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	48	-	-			
		Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	39	0	39			
		SPS air release louvre	W3	L	Υ	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	45	0	59			
		Track section cabin room	W4	L	Y	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	48	10	29			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N (i)	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	48	-	-			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	48	0	24			
			MCC room	N3	L	Υ	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	30	0	42			
			Exhaust air louvre	N4	L	Υ	1.00	4.60	3	1	39.0	48.4	49.1	-0.7	45.4	61	50	0	22			
			Staircase pressurization fan room	N5	L	Υ	1.00	3.00	3	1	31.0	61.7	58.8	2.9	58.7	74	42	0	37			
			UPS room	E1	L	Υ	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	29	0	55			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	38	0	44			
			Staircase pressurization fan	E3 E4	L	Y	2.60	3.20	3	0.5	39.6 24.5	49.1 62.6	49.1 58.8	3.8	46.1 60.3	62 74	42	0	25 36			
		Ventilation	room 1 Staircase pressurization fan	E5	L	Υ	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	38	0	30			
SM1	House, Cheung Shan	Shaft for S/B ⁽ⁱ⁾ and Building	room 2 Tunnel ventilation shaft	S1	L	Y	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	62	10	38	56	60	0
	Estate	Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	30	10	39			
			Air compressor	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	48	10	37			
			receiver room Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	48	10	37			
			Staircase pressurization fan room	S5	L	Υ	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	48	10	19			
			Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	10	25			
			Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	57	-	-			
			SPS air release louvre	W3	L	Υ	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	60	10	46			
			Track section cabin room Tunnel ventilation	W4	L	Υ	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	48	10	29			
			shaft	N1	L	N ⁽ⁱ⁾	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	39	-	-			
1			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	39	0	26			
1			MCC room	N3 N4	L	Y	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	50	0	38			
			Exhaust air louvre Staircase pressurization fan room	N4 N5	L	Y	1.00	3.00	3	1	39.0 31.0	61.7	49.1 58.8	-0.7 2.9	45.4 58.7	61 74	42	0	35			
1			UPS room	E1	L	Υ	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	63	10	38			
1			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	70	10	29			
1			Fresh air louvre	E3	L	Υ	2.60	2.60	3	1	39.6	49.1	49.1	0	46.1	62	48	10	13			
			Staircase pressurization fan room 1	E4	L	Y	2.90	3.20	3	0.5	24.5	62.6	58.8	3.8	60.3	74	52	10	25			
	Shui	Ventilation Shaft for	Staircase pressurization fan room 2	E5	L	Υ	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	46	10	19			
SM4	Hong Nursing	S/B ⁽ⁱ⁾ and Building		S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	55	10	39	59	60	0

							Louvre	Size (m)							Background							
ı	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)		of		Average Background L _{Aeq} [dB(A)]		_		Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
	Home	Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	62	10	33			
			Air compressor receiver room	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	60	10	35			
			Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	60	10	35			
			Staircase pressurization fan room	S 5	L	Υ	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	60	10	17			
			Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	48	0	37			
			Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	39	-	-			
			SPS air release louvre	W3	L	Υ	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	45	0	59			
			Track section cabin room	W4	L	Y	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	48	10	29			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

							Louvre	Size (m)							Background							
I	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]			Calculated SWL L _{Aeq} [dB(A)] (vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N (i)	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	48	0	41			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	48	0	24			
			MCC room	N3	L	Υ	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	30	0	42			
			Exhaust air louvre	N4	L	Υ	1.00	4.60	3	1	39.0	48.4	49.1	-0.7	45.4	61	50	0	22			
			Staircase pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	1.00	3.00	3	1	31.0	61.7	58.8	2.9	58.7	74	42	-	-			
			UPS room	E1	L	N (ii)	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	29	-	0			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	38	0	44			
			Fresh air louvre	E3	L	Υ	2.60	2.60	3	1	39.6	49.1	49.1	0	46.1	62	42	0	25			
			Staircase pressurization fan room 1	E4	L	N ⁽ⁱⁱ⁾	2.90	3.20	3	0.5	24.5	62.6	58.8	3.8	60.3	74	47	-	-			
	House,	Ventilation Shaft for	Staircase pressurization fan room 2	E5	L	N ⁽ⁱⁱ⁾	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	38	-	-			
11	Cheung Shan	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	62	-	-	49	50	0.0
	Estate	Service	Sprinkler & FS pump room	S2	L	Y	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	30	10	39			
			Air compressor receiver room	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	48	10	37			
			Tunnel ECS control room	S4	L	Y	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	48	10	37			
			Staircase pressurization fan	\$5	L	N ⁽ⁱⁱ⁾	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	48	-	-			
			room Tunnel ventilation	W1	L	Y	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	_	-			
			shaft Tunnel ventilation	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	57	10	26			
			shaft SPS air release	W3	L	N (ii)	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	60	-	-			
			louvre Track section cabin	W4	L	Y	2.00	0.80		1	24.8	63.7		11.9		78	48	10	29			
_			room Tunnel ventilation						3				51.8		63.7							
			shaft	N1	L	N ⁽ⁱ⁾	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	39	0	43			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	39	0	26			
			MCC room	N3	L	Y	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	50	0	38			
			Exhaust air louvre	N4	L	Y	1.00	4.60	3	1	39.0	48.4	49.1	-0.7	45.4	61	42	0	24			
			Staircase pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	1.00	3.00	3	1	31.0	61.7	58.8	2.9	58.7	74	48	-	-			
			UPS room	E1	L	N (ii)	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	63	-	-			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	70	10	29			
			Fresh air louvre Staircase pressurization fan room 1	E3	L	N (ii)	2.60	3.20	3	0.5	39.6 24.5	49.1 62.6	49.1 58.8	3.8	46.1 60.3	74	48 52	10 -	- 13			
	Shui Hong	Ventilation Shaft for	Staircase pressurization fan room 2	E5	L	N ⁽ⁱⁱ⁾	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	46	-	-			
Λ4	Nursing	N/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	55	-	-	47	50	0.0

N	ISR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Louvre Width	Size (m) Height	Method (iii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Background Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
	Home	Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	62	10	33			
			Air compressor receiver room	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	60	10	35			
			Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	60	10	35			
			Staircase pressurization fan room	S 5	L	N (ii)	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	60	-	-			
			Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	-	-			
			Tunnel ventilation shaft	W2	L	N (i)	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	39	0	39			
			SPS air release louvre	W3	L	N ⁽ⁱⁱ⁾	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	45	-	-			
			Track section cabin room	W4	L	Υ	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	60	0	37			

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

				1	1	1	Louvre	Size (m)	ī	<u> </u>				1	Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, <i>LoS</i> [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel ventilation shaft	N1	L	N (i)	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	48	-	-			
			FS inlet	N2	L	Υ	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	48	0	24			
			MCC room	N3	L	Υ	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	30	0	42			
			Exhaust air louvre	N4	L	Υ	1.00	4.60	3	1	39.0	48.4	49.1	-0.7	45.4	61	50	0	22			
			Staircase pressurization fan room	N5	L	N ⁽ⁱⁱ⁾	1.00	3.00	3	1	31.0	61.7	58.8	2.9	58.7	74	42	-	-			
			UPS room	E1	L	N ⁽ⁱⁱ⁾	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	29	-	-			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	38	0	44			
			Staircase pressurization fan	E3 E4	L	N (ii)	2.60	3.20	3	0.5	39.6 24.5	49.1 62.6	49.1 58.8	3.8	60.3	74	42 47	-	25 -			
	Sau Shan House,	Ventilation Shaft for	room 1 Staircase pressurization fan room 2	E5	L	N ⁽ⁱⁱ⁾	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	38	-	-			
SM1	Cheung	S/B (i) and	Tunnel ventilation shaft	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	62	10	38	49	50	0.0
	Shan Estate	Building Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	30	10	39			
			Air compressor	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	48	10	37			
			receiver room Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	48	10	37			
			Staircase pressurization fan room	S5	L	N (ii)	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	48	-	-			
			Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	10	25			
			Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	57	-	-			
			SPS air release louvre	W3	L	N (ii)	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	60	-	-			
			Track section cabin room	W4	L	Υ	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	48	0	39			
			Tunnel ventilation shaft	N1	L	N ⁽ⁱ⁾	9.09	12.25	2	25	n/a	46.2	42.1	4.1	44.1	80	39	-	-			
1			FS inlet	N2	L	Y	1.00	0.70	3	1	19.5	52.6	54.5	-1.9	49.6	63	39	0	26			
1			MCC room	N3	L	Y	2.80	1.00	3	1	30.0	62.6	48.4	14.2	62.6	77	50	0	38			
			Exhaust air louvre Staircase pressurization fan room	N4 N5	L	Y N ⁽ⁱⁱ⁾	1.00	3.00	3	1	39.0 31.0	61.7	49.1 58.8	-0.7 2.9	45.4 58.7	74	42	-	-			
			UPS room	E1	L	N (ii)	2.80	2.00	3	1	36.8	72.9	48	24.9	72.9	89	63	-	-			
			LV switch room	E2	L	Υ	2.70	1.20	3	1	30.8	66.3	51.2	15.1	66.3	81	70	10	29			
1			Fresh air louvre	E3	L	Υ	2.60	2.60	3	1	39.6	49.1	49.1	0	46.1	62	48	10	13			
			Staircase pressurization fan room 1	E4	L	N (ii)	2.90	3.20	3	0.5	24.5	62.6	58.8	3.8	60.3	74	52	-	-			
	Shui	Ventilation Shaft for	Staircase pressurization fan room 2	E5	L	N (ii)	2.90	3.20	3	1	45.7	53.9	52.5	1.4	50.9	67	46	-	-			
SM4	Hong Nursing	S/B ⁽ⁱ⁾ and Building	Tunnel ventilation shaft	S1	L	Υ	9.09	11.40	2	23	n/a	55.7	51	4.7	53.9	89	55	10	39	45	50	0.0

						Louvre	Size (m)							Background							
ISR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	ment	ivieasurement	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]		Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] (vi)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
nome	Service	Sprinkler & FS pump room	S2	L	Υ	1.20	1.20	2	3	n/a	66.8	48.2	18.6	66.8	84	62	10	33			
		Air compressor receiver room	S3	L	Υ	2.20	1.20	3	1	28.2	71	51.2	19.8	71	86	60	10	35			
		Tunnel ECS control room	S4	L	Υ	3.40	1.20	3	1	34.5	70.8	51.8	19	70.8	86	60	10	35			
		Staircase pressurization fan room	S 5	L	N ⁽ⁱⁱ⁾	1.00	2.20	3	1	27.0	55.9	52.5	3.4	53.2	68	60		-			
		Tunnel ventilation shaft	W1	L	Υ	5.88	6.20	2	13	n/a	48.6	45.2	3.4	45.9	76	64	0	35			
		Tunnel ventilation shaft	W2	L	N ⁽ⁱ⁾	5.88	6.20	2	13	n/a	47.6	43.2	4.4	45.6	76	39	-	-			
		SPS air release louvre	W3	L	N ⁽ⁱⁱ⁾	1.50	1.20	2	3	n/a	79.4	56.4	23	79.4	97	45	-	-			
		Track section cabin room	W4	L	Y	2.00	0.80	3	1	24.8	63.7	51.8	11.9	63.7	78	60	0	37			

- (i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.
- (ii) The plant would be operated during day and evening time only under normal scenario.
- (iii) Method 2 Far field method for Louvres or Plants
- Method 3 Near field method for Louvres or Plants
- (iv) Results are averaged from the measured noise levels.
- (v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.
- (vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

			I				Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	176	-	-			
			Tunnel Ventilation	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	189	10	23			
			Shaft Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	180	10	6			
		Ventilation	Tunnel Ventilation	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	170	-	-			
SS6	No. 32 Leung Uk	Shaft for N/B (i) and	Shaft T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	176	0	14	39	52	0
	Tsuen	Building	Dog House	E3	L	Y	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	176	0	18			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	169	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	181	0	39			
			Tunnel Ventilation	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	190	10	26			
			Shaft ABBCS Room	W2	L	Y	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	190	10	11			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	120	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	127	0	37			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	115	0	20			
	Leung Uk	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	121	-	-			
SS7	Tsuen Village	N/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	116	0	18	39	49	0
	House	Building Service	Dog House	E3	L	Y	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	116	0	22			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	127	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	133	10	32			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	132	10	30			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	127	10	15			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	205	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	203	0	33			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	200	0	15			
	DD110	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	208	-	-			
SS10	LOT 482, Wang Toi	N/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	198	5	8	36	49	0
		Building	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	203	5	12			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	213	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	212	10	27			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	204	5	31			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	194	5	16			

							Louvre S	Size (m)							Background		- · · · · ·					
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] ^(iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	to NSR, D _N	for line of sight, <i>LoS</i> [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	258	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	253	0	31			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	255	0	13			
	255 Kam Tai Road	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	263	-	-			
SS12		(1)	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	258	10	1	36	49	0
	iai koad	Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	255	10	5			
			Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	255	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	259	10	26			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	252	0	34			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	247	0	19			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	172	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	177	10	24			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	177	10	6			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	165	-	-			
SS15 ^{(v}	ed village 5 ^(vi) house in Shek	f:\	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	170	5	9	39	49	0
	Shek Kong	Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	167	5	14			
	Kong	30.1.00	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	164	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	169	0	39			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	174	10	27			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	176	10	12			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

		l					Louvre	Size (m)							Background							
1	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	176	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	189	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	180	10	6			
	N- 22	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	170	0	35			
SS6	No. 32 Leung Uk	S/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	176	0	14	41	52	0
	Tsuen	Building	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	176	0	18			
		Service	Tunnel Ventilation Shaft	S1	Ĺ	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	169	0	40			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	181	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	190	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	190	10	11			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	120	0	37			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	127	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	115	0	20			
	Leung Uk St	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	121	0	38			
SS7	Tsuen Village	S/B ⁽ⁱ⁾ and	T.ECS Control Room	E2	L.	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	116	0	18	41	49	0
	House	Building Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	116	0	22			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	127	10	33			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	133	-	-			
			Tunnel Ventilation Shaft	W1	Ĺ	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	132	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	127	10	15			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	205	0	33			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	203	-	-			
	DD110		Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	200	0	15			
		Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	208	5	29			
SS10	LOT 482, Wang Toi	S/B (i) and Building	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	198	5	8	35	49	0
	Shan	Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	203	5	12			
		33. 1100	Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	213	10	28			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	212	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	204	-	-			
<u></u>		<u> </u>	ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	194	5	16			

							Louvre	Size (m)		Ī.,					Background		n:					
ı	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	258	0	31			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	253	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	255	0	13			
		Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	263	10	22			
SS12	255 Kam Tai Road	S/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	258	10	1	33	49	0
		_	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	255	10	5			
		Service Tu	Tunnel Ventilation Shaft	S1	Ĺ.	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	255	10	27			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	259	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	252	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	247	0	19			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	172	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	177	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	177	10	6			
	Abandon ed village	n Ventilation	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	165	5	31			
SS15 ^(vi)		se in S/B (i) and	T.ECS Control Room	E2	L	Y	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	170	5	9	42	49	0
	Kong		Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	167	5	14			
		Kong Service	Tunnel Ventilation Shaft	S1	L	Y	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	164	0	41			
			Tunnel Ventilation Shaft	S2	L,	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	169	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	174	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	176	10	12			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)							Background							
1	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Noise Source to NSR, D _N	Correction for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	176	-				
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	189	10	23			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	180	10	6			
		Ventilation	Tunnel Ventilation Shaft	E1	Ĺ	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	170	-	-			
SS6	No. 32 Leung Uk	Shaft for N/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	176	0	14	39	45	0
	Tsuen	Building	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	176	0	18			
		Service	Tunnel Ventilaion Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	169	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	181	0	39			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	190	10	26			
		A	ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	190	10	11			
		A T S	Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	120	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	127	0	37			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	115	0	20			
	Leung Uk	Ventilation	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	121	-	-			
SS7	Tsuen Village	Shaft for N/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	116	0	18	39	47	0
	House	Building	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	116	0	22			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	127		-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	133	10	32			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	132	10	30			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	127	10	15			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	205	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	203	0	33			
	Wang Ioi		Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	200	0	15			
		Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	208	-	-			
SS10		N/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	198	5	8	36	47	0
	Shan	Building Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	203	5	12			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	213	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	212	10	27			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	204	5	31			
	L]	ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	194	5	16			

							Louvre S	Size (m)		Ī.,					Background		n:					
ı	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method	ment	l of	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] ^(v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)			Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	258	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	253	0	31			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	255	0	13			
		Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	263	-	-			
SS12	255 Kam Tai Road		T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	258	10	1	36	47	0
		Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	255	10	5			
		Service	Tunnel Ventilation Shaft	S1	L.	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	255	-	-			
			Tunnel Ventilation Shaft	S2	L.	Y	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	259	10	26			
			Tunnel Ventilation Shaft	W1	L	Y	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	252	0	34			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	247	0	19			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	172	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	177	10	24			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	177	10	6			
	Abandon ed village		Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	165	-	-			
SS15 ^(vii)	house in Shek	N/B ⁽ⁱ⁾ and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	170	5	9	39	47	0
	Kong	Building Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	167	5	14			
		Service T	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	164	-	-			
		Tunr Shafi	Tunnel Ventilation Shaft	S2	L	Y	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	169	0	39			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	174	10	27			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	176	10	12			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Not used.

(iii) Method 2 Far field method for Louvres or Plants Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre S	Size (m)			Confess Anna				Background		Distance from	C				
ı	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)] (iii)	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	176	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	189	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	180	10	6			
		Ventilation	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	170	0	35			
SS6	No. 32 Leung Uk	Shaft for S/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	176	0	14	41	45	0
	Tsuen	Building	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	176	0	18			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	169	0	40			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	181	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	190	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	190	10	11			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	120	0	37			
		Tui Sha	Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	127	-	-			
		Sha Do	Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	115	0	20			
	Leung Uk	Ventilation Tu	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	121	0	38			
SS7	Tsuen Village	Ventilation To Shaft for S/B (i) and T.	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	116	0	18	41	47	0
	House	Building Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	116	0	22			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	127	10	33			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	133	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	132	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	127	10	15			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	205	0	33			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	203	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	200	0	15			
	0 DD110 S LOT 482, Wang Toi Shan	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	208	5	29			
SS10		S/B (i) and	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	198	5	8	35	47	0
		Building Service	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	203	5	12			
			Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	213	10	28			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	212	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	204	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	194	5	16			

							Louvre :	Size (m)							Background		s					
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	of Measurement Box, S (m²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	to NSR, D _N	for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	258	0	31			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	253	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	255	0	13			
		Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	263	10	22			
SS12	255 Kam Tai Road		T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	258	10	1	33	47	0
		Service	Dog House Tunnel Ventilation	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	255	10	5			
			Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	255	10	27			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	259	-	-			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	252	-	-			
			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	247	0	19			
			Tunnel Ventilation Shaft	N1	L	Υ	5.88	2.85	2	12	N/A	54.8	45.1	9.7	54.3	84	172	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	5.86	2.85	2	12	N/A	55.3	48.5	6.8	54.3	84	177	-	-			
			Dog House	N3	L	Υ	4.80	1.20	3	0.5	20.8	56	53	3	53	66	177	10	6			
	Abandon ed village	Ventilation Shaft for	Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	56	48.6	7.4	55.1	85	165	5	31			
SS15 ^(vii)	house in Shek	Shaft for S/B (i) and Building	T.ECS Control Room	E2	L	Υ	0.80	2.50	3	0.5	11.6	56.1	54.7	1.4	53.1	64	170	5	9	42	47	0
	Kong	-	Dog House	E3	L	Υ	2.80	1.20	3	1	31.4	56.0	55.6	0.4	53	68	167	5	14			
			Tunnel Ventilation Shaft	S1	L	Υ	9.35	6.50	2	19	N/A	56.3	43.8	12.5	56.3	90	164	0	41			
		Γ <u>S</u>	Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.8	42.8	13	55.8	89	169	-	-			
		Tu Sh	Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	3	3	283.7	62.9	45	17.9	62.9	87	174	-	-			
Pomark			ABBCS Room	W2	L	Υ	1.00	4.00	3	0.5	17.0	59.7	50	9.7	59.2	72	176	10	12			

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Not used.

(iii) Method 2 Far field method for Louvres or Plants Method 3 Near field method for Louvres or Plants

(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre S	Size (m)							Background		n:					
N	SR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)]	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	448	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	443	10	22			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	443	10	3			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	443	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	443	10	22			
	No. 32	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	430	10	21			
SS2	Leung Uk	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	430	10	10	32	49	0
	Tsuen	Building Service	Dog House Tunnel Ventilation	E5 S1	L	Y N ⁽ⁱ⁾	1.70 5.88	1.70 2.85	2	12	N/A N/A	56.9 54.3	50.3 49.7	6.6 4.6	55.8 52.5	76 82	425 439	10	8			
			Shaft Tunnel Ventilation	S2	L	Y	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	435	0	26			
			Shaft Dog House	S3	L	Y	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	425	0	24			
			Tunnel Ventilation Shaft	W1	L	Y	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	437	0	26			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	435	0	18			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	435	0	22			
			Dog House	W4	L	Y	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	437	0	16			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	314	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	315	10	25			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	300	10	6			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	307	-	-			
		M4!!-4!	Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	297	5	31			
6.33	Leung Uk Tsuen	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	297	5	30			
SS4 ^(vi)	Village		Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	295	5	19	35	49	0
	House	Building Service	Dog House Tunnel Ventilation	E5	L	Y	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	300	5	16			
		Service	Shaft Tunnel Ventilation	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	305	-	-			
			Shaft Dog House	S2 S3	L	Y	5.28 1.30	6.50 1.20	2	13	N/A N/A	56 62.1	51.8 50.3	4.2 11.8	53.9 62.1	84	308 295	5	24			
			Tunnel Ventilation	33 W1	L	Y	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	312	10	19			
			Shaft Building Service	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	312	10	11			
			Control Room MCC Room	W3	L	Y	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	312	10	15			
		<u> </u>	Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	312	10	9		<u> </u>	
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	227	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	236	0	38			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	240	0	18			

							Louvre	Size (m)	1		1				Background		1					
ı	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	228	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	235	0	38			
	51A	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	233	0	37			
SS5	Leung Uk	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	230	0	26	43	52	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	233	0	24			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	235	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	244	10	21			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	230	10	20			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	243	10	21			
			Building Service Control Room	W2	L .	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	248	10	13 17			
			MCC Room	W3 W4	L L	Y	0.80 1.30	2.98 1.20	3	3	29.5 N/A	65 57.4	50.9 50.3	14.1 7.1	65 56.5	80 74	248 230	10 10	17			
			Dog House Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A N/A	55.2	46.8	8.4	54.5	88	176	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	160	0	41			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	160	0	22			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	186	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	186	10	30			
	Leung Uk		T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	186	10	29			
SS11a ^(vi)		N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	180	10	18	42	52	0
	Squats	Building Service	Dog House Tunnel Ventilation	E5	L	Y	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	180	10	16			
		Service	Shaft Tunnel Ventilation	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	180	-	-			
			Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	163	10	25			
			Dog House Tunnel Ventilation	S3	L	Y	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	180	10	22			
			Shaft Building Service	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	159	5	30			
			Control Room	W2	L	Y	0.80	2.98	3	1	29.5 29.5	61.4	50.9 50.9	10.5 14.1	61.4	76 80	165	5	22			
			MCC Room	W3 W4	L	Y		2.98	3	3		65			65		165	5	26 19			
			Dog House Tunnel Ventilation	W4 N1	L	N ⁽ⁱ⁾	9.35	1.20 6.50	2	19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	180 272	-	- 19			
			Shaft Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	276	0	36			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	290	0	17			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	274	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	300	0	35			
	Planned village	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	300	0	34			

							Louvre	Size (m)							Background							
N	ISR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
SS14	house at	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	281	0	24	40	49	0
	Village	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	286	0	22			
	Zone	Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	281	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	285	10	20			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	286	10	18			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	285	10	20			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	290	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	292	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	286	10	10			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	271	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	274	10	26			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	280	10	7			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	264	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	250	5	32			
	Village	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	250	5	31			
SS20 ^(vi)	house at Shek	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	258	5	20	36	49	0
		Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	258	5	18			
	Kong	Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	263	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	286	5	25			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	258	5	24			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	270	10	20			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	283	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	283	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	258	10	11			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants
Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)			1				Daakanaund							
N	SR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Background Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, <i>LoS</i> [dB(A)] ^(vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	448	10	20			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	443		-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	443	10	3			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	443	10	16			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	443	10	22			
	No. 32	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	430	10	21			
SS2	Leung Uk	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	430	10	10	31	49	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	425	10	8			
		Service	Tunnel Ventilation Shaft Tunnel Ventilation	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	439	0	24			
			Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	435	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	425	0	24			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	437	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	435	0	18			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	435	0	22			
			Dog House Tunnel Ventilation	W4 N1	L	Y	9.35	6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	437 314	10	16 23			
			Shaft Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	315	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	300	10	6			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	307	5	24			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	297	5	31			
	Leung Uk	Ventilation Shaft for		E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	297	5	30			
SS4 ^(vi)	Tsuen Village	S/B ⁽ⁱ⁾ and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	295	5	19	35	49	0
	House	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	300	5	16			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	305	5	22			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	308	-	-			
			Dog House Tunnel Ventilation	S3	L	Y	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	295	5	23			
			Shaft Building Service	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	312	-	-			
			Control Room MCC Room	W2 W3	L	Y	0.80	2.98	3	1	29.5 29.5	61.4	50.9 50.9	10.5 14.1	61.4 65	76 80	312 312	10	11 15			
		<u></u>	Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	312	10	9			
			Tunnel Ventilation Shaft	N1	L	Υ	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	227	0	36			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	236	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	240	0	18			

							Louvre S	Size (m)							Background							
N	SR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] ^(v)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)] (vi)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	228	0	32			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	235	0	38			
	51A	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	233	0	37			
SS5	Leung Uk	S/B ⁽ⁱ⁾ and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	230	0	26	43	52	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	233	0	24			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	235	10	20			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	244	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	230	10	20			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	243	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	248	10	13			
			MCC Room	W3	L	Y	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	248	10	17			
			Dog House Tunnel Ventilation Shaft	W4 N1	L	Y	9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	230 176	10 0	12 38			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	160	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	160	0	22			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	186	10	24			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	186	10	30			
	Leung Uk	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	186	10	29			
SS11a ^(vi)	Tsuen	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	180	10	18	40	52	0
	Squats	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	180	10	16			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	180	10	22			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	163	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	180	10	22			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	159	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	165	5	22			
			MCC Room	W3	L	Y	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	165	5	26			
			Dog House Tunnel Ventilation	W4 N1	L	Y	1.30 9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	180 272	5 0	19 34			
			Shaft Tunnel Ventilation	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	276	-	-			
			Shaft Dog House	N3	L	Y	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	290	0	17			
			Tunnel Ventilation	E1	L	Y	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	274	0	30			
			Shaft Air Compressor	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	300	0	35			
	Planned village	Ventilation Shaft for	Receiver Room T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	300	0	34			
	ugc		<u> </u>	!		ı l			.	l	·	ı	ı		ı		·				1	ı I

							Louvre S	Size (m)							Background							
N	ISR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (ii)	ment	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (iv)	Calculated SWL L _{Aeq} [dB(A)] (v)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Day and Evening Time Criteria [dB(A)]	Exceedance [dB(A)]
SS14	house at	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	281	0	24	40	49	0
	Village	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	286	0	22			
	Zone	Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	281	10	18			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	285	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	286	10	18			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	285	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	290	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	292	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	286	10	10			
			Tunnel Ventilation Shaft	N1	L	Υ	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	271	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	274	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	280	10	7			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	264	5	26			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	250	5	32			
	Village	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	250	5	31			
SS20 ^(vi)	house at Shek	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	258	5	20	36	49	0
		Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	258	5	18			
	Kong	Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	263	5	24			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	286	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	258	5	24			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	270	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	283	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	283	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	258	10	11			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants

(iii) Results are averaged from the measured noise levels.

(iv) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(v) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre S	Size (m)		Manaur	Cumface Ar				Background		Distance fr - · · ·	Connection				
N	SR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	448	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	443	10	22			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	443	10	3			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	443	-	-			
		M4! -4!	Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	443	10	22			
	No. 32	Ventilation Shaft for	T.ECS Control Room	E3	L	Y	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	430	10	21	22		
SS2	Leung Uk	N/B (i) and	Dog House	E4	L	Y	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	430	10	10	32	39	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	425	10	8			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	439	-	-			
			Tunnel Ventilation Shaft	S2	L	Y	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	435	0	26			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	425	0	24			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	437	0	26			
			Building Service Control Room	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	435	0	18			
			MCC Room	W3	L		0.80	2.98		1	29.5	65	50.9	14.1	65	80	435	0	22			
-			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	437	0	16			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	314	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	315	10	25			
			Dog House Tunnel Ventilation	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	300	10	6			
			Shaft Air Compressor	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	307	-	-			
		Ventilation	Receiver Room	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	297	5	31			
SS4 ^(vii)	Leung Uk Tsuen	Shaft for N/B (i) and	T.ECS Control Room Dog House	E3 E4	L	Y	1.60	0.85 1.20	2	4	N/A N/A	69.9 59	60.7 50.3	9.2 8.7	69.3 58.4	89 78	297 295	5	30 19	35	40	0
	Village	Building	Dog House	E5	L	Y	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	300	5	16	-5		
	House	Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	305	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	308	5	24			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	295	5	23			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	312	10	19			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	312	10	11			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	312	10	15			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	312	10	9			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	227	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	236	0	38			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	240	0	18			

							Louvre	Size (m)							Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)] (iii)	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, <i>LoS</i> [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	228	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	235	0	38			
	51A	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	233	0	37			
SS5	Leung Uk	N/B ⁽ⁱ⁾ and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	230	0	26	43	45	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	233	0	24			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	235	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	244	10	21			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	230	10	20			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	243	10	21			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	248	10	13			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	248	10	17			
			Dog House Tunnel Ventilation	W4 N1	L	Y N ⁽ⁱ⁾	1.30 9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	230 176	10	- 12			
			Shaft Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	160	0	41			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	160	0	22			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	186	-	-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	186	10	30			
	Leung Uk	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	186	10	29			
SS11a ^{(vi}		N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	180	10	18	42	50	0
	Squats	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	180	10	16			
		Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	180	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	163	10	25			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	180	10	22			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	159	5	30			
			Building Service Control Room	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	165	5	22			
1			MCC Room	W3	L	Y	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	165	5	26			
			Dog House Tunnel Ventilation	W4 N1	L	Y N ⁽ⁱ⁾	1.30 9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	180 272	-	19 -			
			Shaft Tunnel Ventilation	N2	L	Y	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	276	0	36			
			Shaft Dog House	N3	L	Y	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	290	0	17			
			Tunnel Ventilation	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	274	-	-			
			Shaft Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	300	0	35			
	Planned village	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	300	0	34			

Night Time Fixed Plant Noise at NSR

							Louvre S	Size (m)							Background							
r	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]		Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
SS14	house at	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	281	0	24	40	47	0
	Village	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	286	0	22			
	Zone	Service	Tunnel Ventilation Shaft	S1	L	N ⁽ⁱ⁾	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	281	-	-			
			Tunnel Ventilation Shaft	S2	L	Υ	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	285	10	20			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	286	10	18			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	285	10	20			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	290	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	292	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	286	10	10			
			Tunnel Ventilation Shaft	N1	L	N ⁽ⁱ⁾	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	271	-	-			
			Tunnel Ventilation Shaft	N2	L	Υ	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	274	10	26			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	280	10	7			
			Tunnel Ventilation Shaft	E1	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	264		-			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	250	5	32			
	Village	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	250	5	31			
SS20 ^(vii)	Shek	N/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	258	5	20	36	40	0
	Kong	Building Service	Dog House Tunnel Ventilation	E5 S1	L	Y N ⁽ⁱ⁾	1.70 5.88	1.70 2.85	2	12	N/A N/A	56.9 54.3	50.3 49.7	6.6 4.6	55.8 52.5	76 82	258 263	5	18			
			Shaft Tunnel Ventilation	S2	L	Y	5.28	6.50	2	13	N/A	56	51.8	4.0	53.9	84	286	5	25			
			Shaft		L						•								_			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	258	5	24			
			Tunnel Ventilation Shaft	W1	L	Υ	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	270	10	20			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	283	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	283	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	258	10	11			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Not used.
(iii) Method 2 Far field method for Louvres or Plants

Method 3 Near field method for Louvres or Plants (iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

							Louvre	Size (m)		l					Background							
N	SR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] ^(v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	N1	L	Υ	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	448	10	20			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	443	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	443	10	3			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	443	10	16			
		M4! -4!	Air Compressor Receiver Room	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	443	10	22			
	No. 32	Ventilation Shaft for	T.ECS Control Room	E3	L	Y	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	430	10	21		20	
SS2	Leung Uk	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	430	10	10	31	39	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	425	10	8			
		Service	Tunnel Ventilation Shaft	S1	L	Y	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	439	0	24			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	435	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	425	0	24			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	437	-	-			
			Building Service Control Room	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	435	0	18 22			
			MCC Room	W3			0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	435	0				
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	437	0	16			
			Tunnel Ventilation Shaft	N1	L	Y	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	314	10	23			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	315	-	-			
			Dog House	N3	L	Y	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	300	10	6			
			Tunnel Ventilation Shaft	E1	L	Y	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	307	5	24			
		Ventilation	Air Compressor Receiver Room	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	297	5	31			
SS4 ^(vii)	Leung Uk Tsuen	Shaft for S/B (i) and	T.ECS Control Room Dog House	E3 E4	L	Y	1.60	0.85 1.20	2	4	N/A N/A	69.9 59	60.7 50.3	9.2 8.7	69.3 58.4	89 78	297 295	5 5	30 19	35	40	0
334	Village	Building	Dog House	E5	L	Y	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	300	5	16	33	40	Ů
	House	Service	Tunnel Ventilation Shaft	S1	L	Y	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	305	5	22			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	308	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	295	5	23			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	312	-	-			
			Building Service Control Room	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	312	10	11			
1		1	MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	312	10	15]
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	312	10	9			
			Tunnel Ventilation Shaft	N1	L	Y	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	227	0	36			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	236	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	240	0	18			

							Louvre S	Size (m)				Ī			Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] (v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	Correction for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	228	0	32			
			Air Compressor Receiver Room	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	235	0	38			
	51A	Ventilation Shaft for	T.ECS Control Room	E3	L	Y	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	233	0	37			
SS5	Leung Uk	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	230	0	26	43	45	0
	Tsuen	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	233	0	24			
		Service	Tunnel Ventilation Shaft	S1	L	Y	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	235	10	20			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	244	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	230	10	20			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	243	-	-			
			Building Service Control Room	W2	L	Y	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	248	10	13			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	248	10	17			
			Dog House Tunnel Ventilation	W4 N1	L	Y	1.30 9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	230 176	10 0	12 38			
			Shaft Tunnel Ventilation	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	160	-	-			
			Shaft Dog House	N3	L	Y	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	160	0	22			
			Tunnel Ventilation	E1	L	Y	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	186	10	24			
			Shaft Air Compressor	E2	L	Y	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	186	10	30			
	Leung Uk	Ventilation Shaft for	Receiver Room T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	186	10	29			
SS11a ^{(vii}	Tsuen	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	180	10	18	40	50	0
	Squats	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	180	10	16			
		Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	180	10	22			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	163	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	180	10	22			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	159	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	165	5	22			
			MCC Room	W3	L	Y	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	165	5	26			
			Dog House Tunnel Ventilation	W4 N1	L	Y	9.35	1.20 6.50	2	3 19	N/A N/A	57.4 55.2	50.3 46.8	7.1 8.4	56.5 54.5	74 88	180 272	5 0	19 34			
			Shaft Tunnel Ventilation	N1 N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	272	-	-			
			Shaft Dog House	N3		Y	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	290	0	17			
			Tunnel Ventilation	E1	L	Y	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	274	0	30			
			Shaft Air Compressor	E2		Y	0.80	2.98	3	13	29.5	75.1	60.7	14.4	75.1	90	300	0	35			
		Ventilation	Receiver Room T.ECS Control Room	E3	L	Y	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	300	0	34			
I	village	Shaft for			<u> </u>					<u> </u>	L '''		- ***				l	l				I I

Night Time Fixed Plant Noise at NSR

							Louvre	Size (m)		L					Background							
	NSR	Noise Source	Description	Louvre ID	Plant or Louvre? (P/L)	In operation? (Y/N)	Width	Height	Method (iii)	Measure- ment Distance, D _M (m)	Surface Area of Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Average Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq,mea} [dB(A)] ^(v)	Calculated SWL L _{Aeq} [dB(A)] ^(vi)	Distance from Noise Source to NSR, D _N [m]	for line of sight, LoS [dB(A)] (vii)	Corrected SPL at NSR [dB(A)]	Cumulative SPL at NSR [dB(A)]	Night-Time Criteria [dB(A)]	Exceedance [dB(A)]
SS14	house at	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	281	0	24	40	47	0
	Village	Building	Dog House	E5	L	Υ	1.70	1.70	2	4	N/A	56.9	50.3	6.6	55.8	76	286	0	22			
	Zone	Service	Tunnel Ventilation Shaft	S1	L	Υ	5.88	2.85	2	12	N/A	54.3	49.7	4.6	52.5	82	281	10	18			
			Tunnel Ventilation Shaft	S2	L	N ⁽ⁱ⁾	5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	285	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	286	10	18			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	285	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	290	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	292	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	286	10	10			
			Tunnel Ventilation Shaft	N1	L	Υ	9.35	6.50	2	19	N/A	55.2	46.8	8.4	54.5	88	271	10	24			
			Tunnel Ventilation Shaft	N2	L	N ⁽ⁱ⁾	9.37	6.50	2	19	N/A	57.1	48.2	8.9	56.5	90	274	-	-			
			Dog House	N3	L	Υ	1.70	1.70	2	4	N/A	53.9	50.3	3.6	51.4	71	280	10	7			
			Tunnel Ventilation Shaft	E1	L	Υ	5.28	6.50	2	13	N/A	55.8	51.8	4	53.6	84	264	5	26			
			Air Compressor Receiver Room	E2	L	Υ	0.80	2.98	3	1	29.5	75.1	60.7	14.4	75.1	90	250	5	32			
	Village house at	Ventilation Shaft for	T.ECS Control Room	E3	L	Υ	1.60	0.85	2	4	N/A	69.9	60.7	9.2	69.3	89	250	5	31			
SS20 ^(vii)	Shek	S/B (i) and	Dog House	E4	L	Υ	1.30	1.20	2	4	N/A	59	50.3	8.7	58.4	78	258	5	20	36	40	0
	Kong	Building Service	Dog House Tunnel Ventilation	E5 S1	L L	Y	1.70 5.88	1.70 2.85	2	12	N/A N/A	56.9 54.3	50.3 49.7	6.6 4.6	55.8 52.5	76 82	258 263	5	18 24			
			Shaft Tunnel Ventilation			N ⁽ⁱ⁾							_					_				
			Shaft	S2	L		5.28	6.50	2	13	N/A	56	51.8	4.2	53.9	84	286	-	-			
			Dog House	S3	L	Υ	1.30	1.20	2	4	N/A	62.1	50.3	11.8	62.1	82	258	5	24			
			Tunnel Ventilation Shaft	W1	L	N ⁽ⁱ⁾	5.28	6.50	2	50	N/A	43.3	37.6	5.7	41.9	84	270	-	-			
			Building Service Control Room	W2	L	Υ	0.80	2.98	3	1	29.5	61.4	50.9	10.5	61.4	76	283	10	12			
			MCC Room	W3	L	Υ	0.80	2.98	3	1	29.5	65	50.9	14.1	65	80	283	10	16			
			Dog House	W4	L	Υ	1.30	1.20	2	3	N/A	57.4	50.3	7.1	56.5	74	258	10	11			

Remarks:

(i) Tunnel ventilation would only be operated for either northbound (N/B) or southbound (S/B) direction under normal scenario.

(ii) Not used.

(iii) Method 2 Far field method for Louvres or Plants
Method 3 Near field method for Louvres or Plants
(iv) Results are averaged from the measured noise levels.

(v) If the difference between the background and the measured noise level is less than 3.0 dB, background noise correction factor should be capped to 3.0 dB.

(vi) The calculation of SWL is in accordance with the methodology described in Section 3.1.1 and Appendix A1 of the Report. For Method 3, K2A was not claimed in the calculation.

(vii) A negative correction of 10dB(A) and 5dB(A) has been adopted to the direction facing of the ventilation shaft totally and partially screened by the proposed noise barriers at SSS respectively.

MPV - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
ECS duct	NI	Normal	2	measurement 1	49.7
	NI NI	Normal Normal	2	measurement 2 measurement 3	50.4
	NI	Normal	2	AVERAGE	49.7 49.9
ES control room	N2	Normal	2	measurement 1	54.7
	N2	Normal	2	measurement 2	55.0
	N2	Normal	2	measurement 3	54.8
I V switch room	N2 N3	Normal Normal	3	AVERAGE Point 1	54.8
LV switch room	N3 N3	Normal	3	Point 1 Point 2	54.1
	N3	Normal	3	Point 3	55.5 56.0
	N3	Normal	3	Point 4	54.9
	N3	Normal	3	Point 5	54.6
	N3	Normal	3	Point 6	54.2
	N3 N3	Normal Normal	3	Point 7 Point 8	54.1
	N3	Normal	3	Point 9	54.8 56.2
	N3	Normal	3	Point 10	55.5
	N3	Normal	3	Point 11	55.0
	N3	Normal	3	Point 12	54.0
	N3 N3	Normal Normal	3	Point 13 Point 14	53.0
	N3 N3	Normal	3	Point 14 Point 15	55.0
	N3	Normal	3	Point 16	55.2 55.2
	N3	Normal		AVERAGE	54.9
Tunnel ventilation shaft	El	Normal	3	Point 1	53.4
	El	Normal	3	Point 2	52.9
	EI EI	Normal Normal	3	Point 3 Point 4	52.8
	EI	Normal	3	Point 4 Point 5	53.1
	El	Normal	3	Point 6	54.2 57.2
	El	Normal	3	Point 7	57.3
	El	Normal	3	Point 8	56.6
	El	Normal	3	Point 9	56.1
	El El	Normal Normal	3	Point 10 Point 11	54.9
	EI	Normal	3	Point 11 Point 12	54.5
	El	Normal	3	Point 13	56.3 52.0
	El	Normal	3	Point 14	53.1
	El	Normal	3	Point 15	55.2
	El	Normal	3	Point 16	55.5
	El El	Normal Normal	3	Point 17 Point 18	54.7
	El	Normal	3	Point 18 Point 19	55.1 51.5
	El	Normal	3	Point 20	52.2
	E1	Normal	3	Point 21	53.7
	E1	Normal	3	Point 22	54.5
	EI EI	Normal Normal	3	Point 23 Point 24	54.6
	El	Normal	3	Point 24 Point 25	52.4 53.8
	El	Normal	3	Point 26	54.2
	El	Normal	3	Point 27	54.4
	El	Normal	3	Point 28	54.1
	El	Normal	3	Point 29 Point 30	53.6
	El El	Normal Normal	3	Point 30 Point 31	50.9
	El	Normal	,	AVERAGE	51.2 54.4
Tunnel ventilation shaft	SI	Normal	3	Point 1	56.5
	SI	Normal	3	Point 2	57.2
	S1	Normal	3	Point 3	55
	SI SI	Normal Normal	3	Point 4 Point 5	55 56.7
	SI	Normal	3	Point 6	57.1
	SI	Normal	3	Point 7	58.5
	SI	Normal	3	Point 8	56
	SI	Normal	3	Point 9	57
	SI SI	Normal Normal	3	Point 10 Point 11	55.6 55.8
	SI SI	Normal Normal	3	Point 11 Point 12	55.8 55.1
	S1	Normal	3	Point 13	55.2
	SI	Normal	3	Point 14	52.8
	S1	Normal	3	Point 15	54.2
	S1	Normal	3	Point 16	55.6
	SI SI	Normal Normal	3	Point 17 Point 18	54.9 53.6
	SI SI	Normal	3	Point 18 Point 19	53.6
	SI	Normal	3	Point 20	51.9

	S1	Normal	3	Point 21	52.9
	S1	Normal	3	Point 22	53
	S1	Normal	3	Point 23	53.2
	S1	Normal	3	Point 24	52.2
	S1	Normal	3	Point 25	52.3
	S1	Normal	3	Point 26	51.4
	SI	Normal		AVERAGE	55.1
Tunnel ventilation shaft	S2	Normal	3	Point 1	56
	S2	Normal	3	Point 2	55
	S2	Normal	3	Point 3	55.2
	S2	Normal	3	Point 4	55.9
	S2	Normal	3	Point 5	56
	S2	Normal	3	Point 6	56.2
	S2	Normal	3	Point 7	56.2
	S2	Normal	3	Point 8	54.8
	S2	Normal	3	Point 9	54.9
	S2	Normal	3	Point 10	55.6
	S2	Normal	3	Point 11	55.1
	S2	Normal	3	Point 12	56.3
	S2	Normal	3	Point 13	55
	S2	Normal	3	Point 14	55.8
	S2	Normal	3	Point 15	53.9
	S2	Normal	3	Point 16	55.2
	S2	Normal	3	Point 17	55.6
	S2	Normal	3	Point 18	55.1
	S2	Normal	3	Point 19	55.8
	S2	Normal	3	Point 20	51.7
	S2	Normal	3	Point 21	53.7
	S2	Normal	3	Point 22	51
	S2	Normal	3	Point 23	53.4
	S2	Normal	3	Point 24	52.1
	S2	Normal	3	Point 25	52.5
	S2	Normal	3	Point 26	51.2
	S2	Normal		AVERAGE	54.8
Tunnel ventilation shaft	WI	Normal	3	Point 1	52.3
runner ventuation snart	WI	Normal	3	Point 2	51.8
	W1	Normal	3	Point 3	51.5
	WI	Normal	3	Point 4	50.6
	WI	Normal	3	Point 5	49.6
	WI	Normal	3	Point 6	50.5
	WI	Normal	3	Point 7	49.3
	WI	Normal	3	Point 8	50.5
	WI	Normal	3	Point 9	51.5
	WI	Normal	3	Point 10	52.4
	WI	Normal	3	Point 11	52.5
	WI	Normal	3	Point 12	50.9
	WI	Normal	3	Point 13	50.5
	WI	Normal	3	Point 14	50.4
	WI	Normal	3	Point 15	51.5
	WI	Normal	3	Point 16	51.2
	WI	Normal	3	Point 17	51.5
	WI	Normal	3	Point 18	50.8
	WI	Normal	3	Point 19	51.4
	WI	Normal	3	Point 20	48.2
	WI	Normal	3	Point 21	50.1
	W1 W1	Normal	3	Point 21 Point 22	49.6
	WI	Normal	3	Point 23	50.2
	WI	Normal	3	Point 24	47.6
	WI	Normal	3	Point 25	47.0
	WI	Normal	3	Point 26	46
	WI	Normal	3	Point 27	46.6
	WI	Normal	3	Point 28	47.2
	W1	Normal	3	Point 29	47.3
	WI	Normal	3	Point 30	48.7
	W1 W1	Normal	3	Point 30 Point 31	46.4
	W1	Normal	,	AVERAGE	
	W1 W2	Normal	3	AVERAGE Point 1	50.2
Air Release Louvre	W2 W2	Normal Normal	3	Point 1 Point 2	57.6
			3		
	W2	Normal	-	Point 3	57.9
	W2	Normal	3	Point 4	57.2
	W2	Normal		Point 5	57.9
	W2 W2	Normal	3	Point 6	57
		Normal	3	Point 7	58.1
	W2	Normal	3	Point 8	57.7
	W2	Normal		AVERAGE	57.6

NTV - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
Tunnel ventilation shaft	N1	Normal	3	Point 1	50.8
	N1	Normal	3	Point 2	50.8
	N1	Normal	3	Point 3	51.1
	N1	Normal	3	Point 4	51.1
	N1	Normal	3	Point 5	51.2
	N1	Normal	3	Point 6	51.1
	N1	Normal	3	Point 7	51
	N1	Normal	3	Point 8 Point 9	50.7 51.1
	N1	Normal Normal	3	Point 9 Point 10	51.1
	N1	Normal	3	Point 11	51.5
	N1 N1	Normal	3	Point 12	51.6
	N1	Normal	3	Point 13	51.2
	N1	Normal	3	Point 14	51
	N1	Normal	3	Point 15	50.3
	N1	Normal	3	Point 16	50
	N1	Normal		AVERAGE	51.0
Tunnel ventilation shaft	N2	Normal	3	Point 1	49.9
	N2	Normal	3	Point 2	49.6
	N2	Normal	3	Point 3	50
	N2	Normal Normal	3	Point 4 Point 5	50 49.9
	N2	Normal	3	Point 6	49.7
	N2 N2	Normal	3	Point 7	50.1
	N2 N2	Normal	3	Point 8	49.8
	N2 N2	Normal	3	Point 9	49.6
	N2	Normal	3	Point 10	49.7
	N2	Normal	3	Point 11	49.9
	N2	Normal	3	Point 12	49.7
	N2	Normal	3	Point 13	49.6
	N2	Normal	3	Point 14	49.7
	N2	Normal	3	Point 15	48.3
	N2	Normal	3	Point 16	48.1
	N2	Normal	3	AVERAGE Point 1	49.6
CTER	N3 N3	Normal Normal	3	Point 1 Point 2	53.9
	N3	Normal	3	Point 3	52.7 56.5
	N3	Normal	3	Point 4	53.5
	N3	Normal	3	Point 5	53.2
	N3	Normal		AVERAGE	54.2
ECS duct	N4	Normal	3	Point 1	58.2
	N4	Normal	3	Point 2	58.7
	N4	Normal	3	Point 3	57.9
	N4	Normal	3	Point 4	58.8
	N4	Normal	3	Point 5	57.9
	N4 N4	Normal	3	Point 6	58.1
	N4 N4	Normal Normal	3	Point 7 Point 8	58.4
	N4 N4	Normal	3	Point 8 Point 9	56.8
	N4	Normal	3	Point 10	59.6 58.7
	N4	Normal	3	Point 11	58.6
	N4	Normal	3	Point 12	59.9
	N4	Normal		AVERAGE	58.5
Tunnel ventilation shaft	E1	Normal	3	Point 1	52.5
	E1	Normal	3	Point 2	52.7
	E1	Normal	3	Point 3	53.8
	E1	Normal	3	Point 4	53.3
	E1 F1	Normal Normal	3	Point 5 Point 6	53.6
	E1		3		53.7
	E1	Normal Normal	3	Point 7 Point 8	49.9 53.6
	E1	Normal	3	Point 9	55.8
	E1	Normal	3	Point 10	53.9
	E1	Normal	3	Point 11	54.8
	E1	Normal	3	Point 12	54.7
	E1	Normal	3	Point 13	55.6
	E1	Normal	3	Point 14	55.4
	E1	Normal	3	Point 15	55.0
	E1	Normal	3	Point 16	54.4
	E1 E2	Normal	3	AVERAGE Point 1	54.1 52.5
Tunnel ventilation shaft	E2 E2		3	Point 1 Point 2	52.5 53.6
	E2 E2	Normal Normal	3	Point 2 Point 3	53.6
	E2 E2	Normal	3	Point 3 Point 4	53.7
	E2	Normal	3	Point 5	53.7
	E2	Normal	3	Point 6	50.9
	E2	Normal	3	Point 7	50.7
	E2	Normal	3	Point 8	50.9
	E2	Normal	3	Point 9	50.1
	E2	Normal	3	Point 10	50.3
	E2	Normal	3	Point 11	47.9
	E2	Normal	3	Point 12	48.6

	E2	Normal	3	Point 13	50.6
	E2	Normal	3	Point 14	50.8
	E2	Normal	3	Point 15	50.7
	E2	Normal	3	Point 16	50.7
	E2	Normal		AVERAGE	51.5
Tunnel ventilation shaft	S1	Normal	3	Point 1	54.1
	S1	Normal	3	Point 2	53.6
	S1	Normal	3	Point 3	55.1
	S1	Normal	3	Point 4	54.7
	SI	Normal	3	Point 5	54.2
	S1	Normal	3	Point 6	52.3
	S1	Normal	3	Point 7	57.9
	S1	Normal	3	Point 8	54.8
	S1	Normal	3	Point 9	56.6
	S1	Normal	3	Point 10	57
	S1	Normal	3	Point 11	57.8
	S1	Normal	3	Point 12	54.4
	S1	Normal	3	Point 12 Point 13	54.5
	S1				
	S1	Normal Normal	3	Point 14 Point 15	54.3 56
	S1	Normal	3	Point 16	56
	S1	Normal		AVERAGE	55.5
Tunnel ventilation shaft	S2	Normal	3	Point 1	54.2
	S2	Normal	3	Point 2	54.8
	S2	Normal	3	Point 3	55.0
	S2	Normal	3	Point 4	55.6
	S2	Normal	3	Point 5	55.4
	S2	Normal	3	Point 6	55.4
	S2	Normal	3	Point 7	56.6
	S2	Normal	3	Point 8	55.4
	S2	Normal	3	Point 9	56.0
	S2	Normal	3	Point 10	54.1
	S2	Normal	3	Point 11	59.4
	S2	Normal	3	Point 12	57.4
	S2	Normal	3	Point 13	55.0
	S2	Normal	3	Point 14	55.0
	S2	Normal	3	Point 15	55.9
	S2	Normal	3	Point 16	
	S2	Normal	3	AVERAGE	55.0
	S2 S3	Normal	3	Point 1	55.9
LV switch room					54.3
	S3	Normal	3	Point 2	55.0
	S3	Normal	3	Point 3	55.1
	S3	Normal	3	Point 4	56.2
	S3	Normal	3	Point 5	52.4
	S3	Normal	3	Point 6	53.1
	S3	Normal	3	Point 7	53.8
	S3	Normal	3	Point 8	55.5
	S3	Normal	3	Point 9	54.2
	S3	Normal	3	Point 10	55.4
	S3	Normal	3	Point 11	54.2
	S3	Normal	3	Point 12	54.6
	S3	Normal		AVERAGE	54.6
LV switch room	S4	Normal	3	Point 1	54.2
L v switch foolii	S4	Normal	3	Point 2	55.0
	S4	Normal	3	Point 3	55.1
	S4	Normal	3	Point 4	56.2
	S4	Normal	3	Point 5	
	S4	Normal	3	Point 6	52.4 53.1
	S4	Normal	3	Point 7	
	S4	Normal	3	Point 8	53.8
	S4 S4	Normal	3	Point 8 Point 9	55.4
					54.1
	S4 S4	Normal Normal	3	Point 10 Point 11	55.4
					54.1
	S4	Normal	3	Point 12	54.6
	S4	Normal		AVERAGE	54.6
LV switch room	S5	Normal	3	Point 1	58.6
	S5	Normal	3	Point 2	61.9
	S5	Normal	3	Point 3	57.7
	S5	Normal	3	Point 4	60.9
	S5	Normal	3	Point 5	59.5
	S5	Normal	3	Point 6	60.6
	S5	Normal	3	Point 7	59.5
	S5	Normal	3	Point 8	60.7
	S5	Normal	3	Point 9	60.4
	S5	Normal	3	Point 10	59.5
	S5	Normal	3	Point 11	59.5 59.7
	S5	Normal	3	Point 12	61.4
	S5	Normal	,	AVERAGE	
	S6	Normal	2	measurement 1	60.2
Exhaust Air Duct	S6	Normal	2	measurement 1 measurement 2	66.1
	S6 S6	Normal	2		66.2
	50	. 101111111	2	measurement 3	66.3
	S6	Normal		AVERAGE	66.2
UPS Room Fresh Air Intake	W1	Normal	2	measurement 1	59.5
	W1	Normal	2	measurement 2	59.2
	W1	Normal	2	measurement 3	59.2
	W1	Normal		AVERAGE	59.3

SMV - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method	measurement	LAeq [dB]
Tunnel ventilation shaft	N1	Normal	2	measurement 1	46.2
	N1	Normal	2	measurement 2	46.3
	N1	Normal Normal	2	measurement 3 AVERAGE	46.2
FS inlet	N1 N2	Normal	3	Point 1	46.2 54.7
FS inlet	N2 N2	Normal	3	Point 2	53
	N2	Normal	3	Point 3	53.6
	N2	Normal	3	Point 4	50.5
	N2	Normal	3	Point 5	48.8
	N2	Normal Normal	3	AVERAGE Point 1	52.6 61.4
MCC room	N3	Normal	3	Point 1 Point 2	61.4
	N3 N3	Normal	3	Point 3	62
	N3	Normal	3	Point 4	62.1
	N3	Normal	3	Point 5	63.8
	N3	Normal	3	Point 6	63.3
	N3	Normal Normal	3	Point 7 Point 8	62.3 62.5
	N3 N3	Normal	3	AVERAGE	62.6
Exhause air louvre	N4	Normal	3	Point 1	50.5
Exhibite in fourte	N4	Normal	3	Point 2	46.3
	N4	Normal	3	Point 3	48
	N4	Normal	3	Point 4	48.1
	N4	Normal Normal	3	Point 5 Point 6	46.8 47.3
	N4 N4	Normal	3	Point 7	47.3
	N4	Normal	3	Point 8	48.4
	N4	Normal	3	Point 9	48.7
	N4	Normal	3	Point 10	48.8
	N4	Normal	3	Point 11	49.8
	N4	Normal Normal	3	AVERAGE Point 1	48.4 61.1
L30	N5 N5	Normal	3	Point 2	61.9
	N5	Normal	3	Point 3	62.5
	N5	Normal	3	Point 4	62.2
	N5	Normal	3	Point 5	61.4
	N5	Normal	3	Point 6	61.5
	N5	Normal Normal	3	Point 7 Point 8	61.3
	N5 N5	Normai	3	roint o	61.7
UPS room	E1	Normal	3	Point 1	68.6
CI D IOOM	E1	Normal	3	Point 2	70.5
	E1	Normal	3	Point 3	74
	El	Normal	3	Point 4	74.7
	E1	Normal Normal	3	Point 5 Point 6	70.9 68.4
	E1 E1	Normal	3	Point 7	68.7
	EI	Normal	3	Point 8	72.6
	El	Normal	3	Point 9	77.4
	E1	Normal	3	Point 10	74.9
	El	Normal Normal	3	Point 11 Point 12	73.1 69.7
	E1 E1	Normal	3	AVERAGE	
LV switch room	E1 E2	Normal	3	Point 1	72.9 67.3
L' switch foom	E2	Normal	3	Point 2	64.8
	E2	Normal	3	Point 3	63.8
	E2	Normal	3	Point 4	65.9
	E2	Normal Normal	3	Point 5 Point 6	70.2 66.6
	E2 E2	Normal	3	Point 6 Point 7	65.9
	E2	Normal	3	Point 8	68.8
	E2	Normal	3	Point 9	66
	E2	Normal	3	Point 10	62.7
	E2	Normal	3	Point 11	61.7
	E2 E2	Normal Normal	3	Point 12 AVERAGE	64.6
Fresh air louvre	E2 E3	Normal	3	Point 1	66.3 49.9
riesii aii iouvic	E3	Normal	3	Point 2	49.2
	E3	Normal	3	Point 3	48.7
	E3	Normal	3	Point 4	48.8
	E3	Normal Normal	3	Point 5 Point 6	48.6
	E3	Normal	3	Point 6 Point 7	51.7 47.2
	E3	Normal	3	Point 8	47.4
	E3	Normal	3	Point 9	46.6
	E3	Normal	3	Point 10	48.1
	E3	Normal	3	Point 11	47.2
	E3	Normal Normal	3	Point 12 AVERAGE	51.7
Staircase pressurization fan	E3				49.1
room 1		Normal	3	Point 1	61.9
	E4	Normal Normal	3	Point 2 Point 3	61.9 60.7
	E4 E4	Normal	3	Point 3 Point 4	60.7
	E4 E4	Normal	3	Point 5	63.3

	E4	Normal	3	Point 6	61.5
	E4	Normal	3	Point 7	61.7
	E4	Normal	3	Point 8	64.6
	E4	Normal	3	Point 9	64.7
	E4	Normal	3	Point 10	61.2
	E4	Normal	3	Point 11	62.2
	E4	Normal	3	Point 12	61.7
	E4	Normal		AVERAGE	62.6
Staircase pressurization fan					02.0
mom 2	E5	Normal	3	Point 1	53.8
	E5	Normal	3	Point 2	53.4
	E5	Normal	3	Point 3	52.3
	E5	Normal	3	Point 4	54.4
	E5	Normal	3	Point 5	58
	E5	Normal	3	Point 6	52.3
	E5	Normal	3	Point 7	54.1
	E5	Normal	3	Point 8	54.4
	E5	Normal	3	Point 9	52.9
	E5	Normal	3	Point 10	52
	E5	Normal	3	Point 11	52.1
	E5	Normal	3	Point 12	52.8
	E5	Normal	,	AVERAGE	53.9
	E5 S1	Normal	2	measurement 1	55.2
Tunnel ventilation shaft		Norman	2	measurement 2	56
	S1		2	measurement 3	55.9
	S1	Normal	-	AVERAGE	
	S1	Normal	2	measurement 1	55.7 66.8
Sprinkler & FS pump room	S2	Normal	2		66.9
	S2	Normal Normal		measurement 2 measurement 3	
	S2		2	measurement 3 AVERAGE	66.8
	S2	Normal		AVERAGE	66.8
Air compressor receiver room	S3	Normal	3	Point 1	67.7
	S3	Normal	3	Point 2	70
	S3	Normal	3	Point 3	73.1
	S3	Normal	3	Point 4	73
	S3	Normal	3	Point 5	70.1
	S3	Normal	3	Point 6	66.3
	S3	Normal	3	Point 7	66
	S3	Normal	3	Point 8	68.8
	S3	Normal	3	Point 9	71.5
	S3	Normal	3	Point 10	76
	S3	Normal	3	Point 11	69.4
	S3	Normal	3	Point 12	67.7
	S3	Normal		AVERAGE	71.0
Air compressor receiver room	1 S4	Normal	3	Point 1	67.9
	S4	Normal	3	Point 2	73.5
	S4	Normal	3	Point 3	72.5
	S4	Normal	3	Point 4	73.6
	S4	Normal	3	Point 5	69.2
	S4	Normal	3	Point 6	63.4
	S4	Normal	3	Point 7	63.5
	S4	Normal	3	Point 8	68.5
	S4	Normal	3	Point 9	73.5
	S4	Normal	3	Point 10	72.9
	S4	Normal	3	Point 11	69
	S4	Normal	3	Point 12	66.5
	S4	Normal		AVERAGE	70.8
Staircase pressurization fan					
room	S5	Normal	3	Point 1	55.8
	S5	Normal	3	Point 2	55.0
	S5	Normal	3	Point 3	55.9
	S5	Normal	3	Point 4	55.0
	S5	Normal	3	Point 5	55.4
	S5	Normal	3	Point 6	56.8
	S5	Normal	3	Point 7	55.5
	S5	Normal	3	Point 8	57.4
	S5	Normal		AVERAGE	55.9
Tunnel ventilation shaft	W1	Normal	2	measurement 1	48.7
Tunner ventuation snart	W1		2	measurement 2	48.8
	WI		2	measurement 3	48.8
	W1 W1	Normal		AVERAGE	48.4
Tunnel ventilation shaft	W1 W2	Normal	2	measurement 1	48.6
runner ventuation snart	W2 W2	Normal	2	measurement 2	47.4
	W2 W2	Normal	2	measurement 3	47.4
	W2 W2	Normal	-	AVERAGE	47.4
SPS air release louvre	W2 W3	Normal	2	measurement 1	79.3
51 5 an rerease fourte	W3 W3	Normal	2	measurement 2	79.3
		Normal	2	measurement 3	79.5
	W3	Normal	-	AVERAGE	
	W3	vormal		AVERAGE	79.4
			3	Point 1	64.9
Track section cabin room	W4				64.4
Track section cabin room		Normal			
Track section cabin room	W4	Normal	3	Point 2	
Track section cabin room	W4 W4	Normal Normal	3	Point 3	60.2
Track section cabin room	W4 W4 W4	Normal Normal Normal	3 3 3	Point 3 Point 4	60.2 64.6
Track section cabin room	W4 W4 W4 W4	Normal Normal Normal	3 3 3	Point 3 Point 4 Point 5	60.2 64.6 64.1
Track section cabin room	W4 W4 W4 W4 W4	Normal Normal Normal Normal	3 3 3 3	Point 3 Point 4 Point 5 Point 6	60.2 64.6 64.1 64.3
Track section cabin room	W4 W4 W4 W4 W4 W4	Normal Normal Normal Normal Normal	3 3 3 3 3 3	Point 3 Point 4 Point 5 Point 6 Point 7	60.2 64.6 64.1 64.3 62.3
Track section cabin room	W4 W4 W4 W4 W4 W4 W4	Normal Normal Normal Normal Normal Normal	3 3 3 3	Point 3 Point 4 Point 5 Point 6 Point 7 Point 8	60.2 64.6 64.1 64.3 62.3 62.6
Track section cabin room	W4 W4 W4 W4 W4 W4	Normal Normal Normal Normal Normal	3 3 3 3 3 3	Point 3 Point 4 Point 5 Point 6 Point 7	60.2 64.6 64.1 64.3 62.3

SPN - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method		Aeq [dB]
Tunnel Ventilation Shaft	N1	Normal	2	Measurement 1	54.8
	N1	Normal	2	Measurement 2	54.9
	N1	Normal	2	Measurement 3	54.8
	N1 N2	Normal Normal	2	AVERAGE Measurement 1	54.8
Tunnel Ventilation Shaft	N2 N2	Normal	2	Measurement 1 Measurement 2	54.9 55.3
	N2	Normal	2	Measurement 3	55.7
	N2	Normal		AVERAGE	55.3
Dog House	N3	Normal	3	Point 1	56.2
	N3 N3	Normal	3	Point 2 Point 3	56.8
	N3 N3	Normal Normal	3	Point 3 Point 4	55.8 55.0
	N3	Normal	3	Point 5	56.1
	N3	Normal	3	Point 6	56.7
	N3	Normal	3	Point 7	56.3
	N3	Normal	3	Point 8	55.9
	N3 N3	Normal Normal	3	Point 9 Point 10	56.0
	N3	Normal	3	Point 11	56.2 56.3
	N3	Normal	3	Point 12	55.7
	N3	Normal	3	Point 13	54.6
	N3	Normal	3	Point 14	55.4
	N3 N3	Normal Normal	3	Point 15 Point 16	56.1
	N3	Normal	3	AVERAGE	56.0 56.0
Tunnel Ventilation Shaft	E1	Normal	2	Measurement 1	55.0
rumer ventuation snart	E1	Normal	2	Measurement 2	55.9
	E1	Normal	2	Measurement 3	56.1
	E1	Normal		AVERAGE	56.0
T.ECS Control Room	E2 E2	Normal Normal	3	Point 1 Point 2	54.7
	E2	Normal	3	Point 3	54.6 56.7
	E2	Normal	3	Point 4	57.1
	E2	Normal	3	Point 5	56.5
	E2	Normal	3	Point 6	55.2
	E2 E2	Normal Normal	3	Point 7 Point 8	55.4
	E2 E2	Normal	3	AVERAGE	57.4 56.1
Dog House	E3	Normal	3	Point 1	55.5
	E3	Normal	3	Point 2	56.1
	E3	Normal	3	Point 3	55.2
	E3	Normal	3	Point 4	56
	E3	Normal	3	Point 5 Point 6	56.1 55.2
	E3	Normal Normal	3	Point 6 Point 7	55.2 56.6
	E3	Normal	3	Point 8	56.4
	E3	Normal	3	Point 9	55.6
	E3	Normal	3	Point 10	54.8
	E3	Normal	3	Point 11	57.1
	E3	Normal	3	Point 12	56.3
Tunnel Ventilation Shaft	E3 S1	Normal Normal	2	AVERAGE Measurement 1	56.0 56.2
runner ventuation snart	S1	Normal	2	Measurement 2	56.3
	S1	Normal	2	Measurement 3	56.3
	S1	Normal		AVERAGE	56.3
Tunnel Ventilation Shaft	S2	Normal	2	Measurement 1	55.8
	S2 S2	Normal Normal	2	Measurement 2 Measurement 3	55.7 55.8
	S2	Normal	-2	AVERAGE.	55.8
Tunnel Ventilation Shaft	W1	Normal	3	Point 1	62.8
	W1	Normal	3	Point 2	63
	W1	Normal	3	Point 3	62.6
	W1	Normal	3	Point 4	62.2
	W1	Normal Normal	3	Point 5	63.2
	W1	Normal	3	Point 7	63.6
	W1	Normal	3	Point 8	62.4
	W1	Normal	3	Point 9	63.5
	W1	Normal	3	Point 10	62.6
	W1	Normal	3	Point 11	62.3
	W1 W1	Normal Normal	3	Point 12 AVERAGE	63.3
ABBCS Room	W1 W2	Normal	3	Point 1	62.9 60
	W2	Normal	3	Point 2	60
	W2	Normal	3	Point 3	60.8
	W2	Normal	3	Point 4	59.5
	W2	Normal	3	Point 5	58.1
	W2 W2	Normal Normal	3	Point 6 Point 7	59.9 59.6
	W2 W2	Normal	3	Point 8	59.4
	W2	Normal		AVERAGE	59.7

SPS - Noise Measurement Result - data

				Location /	
Description	Louvre ID	Scenario	Method		LAeq [dB]
Tunnel Ventilation Shaft	NI	Normal	2	measurement 1	55.4
	NI	Normal	2	measurement 2	54.9
	NI	Normal	2	measurement 3	55.4
	NI	Normal		AVERAGE	55.2
Tunnel Ventilation Shaft	N2	Normal	2	measurement 1	57.0
	N2 N2	Normal Normal	2	measurement 2	57.1
	N2 N2	Normal	2	measurement 3 AVERAGE	57.2
p	N3	Normal	2	measurement 1	57.1
Dog House	N3	Normal	2	measurement 2	54.1 53.7
	N3	Normal	2	measurement 3	53.8
	N3	Normal		AVERAGE	53.9
Tunnel Ventilation Shaft	El	Normal	2	measurement 1	55.8
	El	Normal	2	measurement 2	55.7
	El	Normal	2	measurement 3	56
	El	Normal		AVERAGE	55.8
Air Compressor Receiver Room			_		
Koom	E2 E2	Normal Normal	3	Point 1 Point 2	77.1 76.5
	E2	Normal	3	Point 2 Point 3	76.3 75.4
	E2	Normal	3	Point 4	76.6
	E2	Normal	3	Point 5	73.3
	E2	Normal	3	Point 6	74.2
	E2	Normal	3	Point 7	74.2
	E2	Normal	3	Point 8	70.5
	E2	Normal		AVERAGE	75.1
T.ECS Control Room	E3	Normal	2	measurement 1	70.1
	E3	Normal	2	measurement 2	69.8
	E3	Normal	2	measurement 3	69.7
p	E3	Normal	2	measurement 1	69.9
Dog House	E4	Normal	2	measurement 2	59.0 57.9
	E4	Normal	2	measurement 2 measurement 3	57.3
	E4	Normal		AVERAGE	59.0
Dog House	E5	Normal	2	measurement 1	56.9
	E5	Normal	2	measurement 2	55.2
	E5	Normal	2	measurement 3	55.0
	E5	Normal		AVERAGE	56.9
Tunnel Ventilation Shaft	S1	Normal	2	measurement 1	54.3
	S1 S1	Normal Normal	2 2	measurement 2 measurement 3	54.4 54.3
	SI	Normal	2	AVERAGE	54.3
Tunnel Ventilation Shaft	S2.	Normal	2	measurement 1	54.3
Tullier ventuation shart	S2	Normal	2	measurement 2	55.9
	S2	Normal	2	measurement 3	56.0
	S2	Normal		AVERAGE	56.0
Dog House	S3	Normal	2	measurement 1	62.1
	S3	Normal	2	measurement 2	61.6
	S3	Normal	2	measurement 3	60.9
Tunnel ventilation shaft	S3 W1	Normal Normal	2	AVERAGE measurement 1	62.1 43.1
Tunner ventuation snart	WI	Normal	2	measurement 2	43.1
	WI	Normal	2	measurement 3	43.6
	W1	Normal		AVERAGE	43.3
Building Service Control					
Room	W2	Normal	3	Point 1	66.1
	W2	Normal	3	Point 2	63.4
	W2	Normal	3	Point 3	62
	W2	Normal	3	Point 4	61
	W2 W2	Normal	3	Point 5	56.9
	W2 W2	Normal Normal	3	Point 6 Point 7	57.4 57.2
	W2 W2	Normal	3	Point 8	56.2
	W2	Normal	,	AVERAGE	61.4
MCC Room	W3	Normal	3	Point 1	67.6
20011	W3	Normal	3	Point 2	66.9
	W3	Normal	3	Point 3	66.9
	W3	Normal	3	Point 4	67.0
	W3	Normal	3	Point 5	61.0
	W3	Normal	3	Point 6	61.5
	W3	Normal	3	Point 7	60.6
	W3 W3	Normal Normal	3	Point 8 AVERAGE	60.4
Dog House	W4	Normal	2	measurement 1	65.0 57.4
Dog House	W4	Normal	2	measurement 2	57.4 57.0
					51.0

W4	Normal	2	measurement 3	56.2
W4	Normal		AVERAGE	57.4

Арр	oendix A4 – M	easurement Re	sults at NSRs	
••				

Appendix A4 - Measurement Results at NSRs

NSR	Scenario	Measurement Type	Start Time*	End Time*	L _{Aeq} , dB(A)	
		Background Noise Levels	22:00	22:05	49.0	
	Day and Evening Time	Day and	Backgi outla Noise Levels	22:15	22:20	48.8
		Measured Noise Levels	22:45	23:15	49.0	
MP1		ivieasureu ivoise Leveis	00:25	00:55	48.4	
IVIPI		Background Noise Levels	02:10	02:15	49.0	
	Night time	Background Noise Levels	02:15	02:20	50.1	
	Night-time	Management Nation Lovels	01:00	01:30	49.0	
		Measured Noise Levels	01:30	02:00	49.7	
		5 1 181 1 1	22:00	22:05	46.6	
	Day and	Background Noise Levels	22:15	22:20	46.8	
	Evening Time	A A	22:45	23:15	48.1	
		Measured Noise Levels	00:25	00:55	48.9	
MP5			02:05	02:10	46.8	
		Background Noise Levels	02:15	02:20	48.8	
	Night-time		01:00	01:30	49.8	
		Measured Noise Levels	01:30	02:00	48.4	
			22:00	22:05	48.4	
	Day and	Background Noise Levels	22:15	22:20	48.6	
	Evening Time		22:45	23:15	48.7	
	2.0	Measured Noise Levels	00:25	00:55	46.4	
MP6			02:05	02:10	47.9	
		Background Noise Levels	02:10	02:15	46.3	
	Night-time	Night-time				
		Measured Noise Levels	01:00	01:30	48.4	
				01:30	02:00	47.6
	D	Background Noise Levels	23:08	23:13	52.6	
	Day and		23:13	23:18	51.8	
NT1a Evening	Evening Time	Measured Noise Levels	23:25	23:55	52.0	
			23:56	00:26	52.8	
		Background Noise Levels	01:54	01:59	44.0	
Night-time	Night-time		02:09	02:14	44.0	
		Measured Noise Levels	00:28	00:58	46.9	
				01:03	01:33	45.7
	Day and Evening Time		Background Noise Levels	23:13	23:18	51.7
		Dueing: Garria 110.00 Ze 10.0	23:18	23:23	52.4	
		Measured Noise Levels	23:24	23:54	50.8	
NT4a		Weasured Worse Levers	23:55	00:25	52.5	
INT 4a		Background Noise Levels	01:40	01:45	52.5	
	Night-time —	Background Noise Levels	01:45	01:50	52.7	
	Night-time	Measured Noise Levels	00:32	01:02	52.8	
		Measured Noise Levels	01:03	01:33	53.2	
		Packground Noise Levels	22:12	22:17	65.1	
	Day and	Background Noise Levels	22:22	22:27	65.0	
	Evening Time	Manager Alaina Land	22:39	23:09	64.2	
C	_	Measured Noise Levels	23:10	23:40	64.3	
SM1		Dealers 1811	00:49	00:54	61.2	
	[Background Noise Levels	00:54	00:59	58.2	
	Night-time		23:42	00:12	61.3	
		Measured Noise Levels	00:13	00:43	60.9	
			21:45	21:50	60.6	
	Day and	Background Noise Levels	21:50	21:55	60.1	
	Evening Time		22:30	23:00	60.6	
		Measured Noise Levels	23:00	23:30	59.4	
SM4			00:39	00:44	56.2	
		Background Noise Levels	00:44	00:49	55.0	
	Night-time					
		Measured Noise Levels	23:34	00:04	56.6	
			00:04	00:34	56.7	

NSR	Scenario	Measurement Type	Start Time*	End Time*	L _{Aeq} , dB(A)
		Declaration Naise Levels	23:30	23:35	50.2
	Day and	Background Noise Levels	23:35	23:40	50.2
	Evening Time	Measured Noise Levels	23:43	00:13	50.7
CC7		Measured Noise Leveis	00:13	00:43	48.5
SS7		Packground Noise Loyals	02:25	02:30	47.3
	Nimbe dian	Background Noise Levels	02:35	02:40	46.5
	Night-time	Nanagara di Nasiana Laurala	00:50	01:20	47.9
		Measured Noise Levels	01:20	01:50	47.2
		Dealisses de Naisse Laviale	23:18	23:23	56.4
	Day and	Background Noise Levels	23:23	23:28	58.0
	Evening Time		23:42	00:12	58.9
		Measured Noise Levels	00:12	00:42	56.8
SS10		Deal and addition to the	02:24	02:29	55.7
	No. 1. c	Background Noise Levels	02:29	02:34	53.0
	Night-time		00:46	01:16	55.5
		Measured Noise Levels	01:16	01:46	55.8
			22:33	22:38	49.0
	Day and	and Background Noise Levels	22:38	22:43	48.9
	Evening Time		23:43	00:13	47.7
	SS15 Night-time	Measured Noise Levels	00:13	00:43	47.6
SS15			02:25	02:30	48.7
		Background Noise Levels	02:30	02:35	48.9
			00:50	01:20	48.4
		Measured Noise Levels	01:20	01:50	48.4
			23:15	23:20	46.1
	Day and	Background Noise Levels	23:28	23:33	47.7
	Evening Time		23:52	00:22	48.3
		Measured Noise Levels	00:22	00:52	48.3
SS11a			02:43	02:48	46.8
		Background Noise Levels	02:48	02:53	46.5
	Night-time		00:55	01:25	47.6
		Measured Noise Levels	01:25	01:55	45.5
			23:04	23:09	57.7
	Day and	Background Noise Levels	23:10	23:15	57.2
	Evening Time		23:42	00:12	57.1
		Measured Noise Levels	00:14	00:44	57.3
SS20			02:24	02:29	57.6
		Background Noise Levels	02:30	02:35	57.3
	Night-time		00:46	01:16	57.1
		Measured Noise Levels	01:17	01:47	57.1

Note:

The scenarios were arranged for the purpose of testing and commissioning only. The scenario under "day and evening time" would not happen after 2300 during the operation phase.

MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK (No. EP-349/2009/M)

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Verified by	: -	(Eric Ching)
Position	:	Independent Environmental Checker
Date	:	15 Aug. 18

MTR Corporation Limited

HONG KONG SECTION OF GUANGZHOU – SHENZHEN – HONG KONG EXPRESS RAIL LINK (No. EP-349/2009/M)

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Certified by	:	Gelly
		(Raymond Wong)
Position	:	Environmental Team Leader
Date	:	15 August 2018

011,0

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

MTR Corporation

August 2018

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

1 Introduction

The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Project (hereinafter known as "XRL") covers a 26km long underground rail line on dedicated tracks that run between the terminus in West Kowloon and the boundary at Huanggang, where connects with the XRL Mainland section. XRL Project also includes the construction of ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).

The Environmental Impact Assessment (EIA) Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/M) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 25 June 2018.

This report is prepared with reference to EP Condition 2.36, "The Permit Holder shall, no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational air-borne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents".

A Commissioning Test Report for Fixed Plant Noise at West Kowloon Station (WEK) (formerly named as West Kowloon Terminus) and Public Transport Interchange (PTI) has been prepared to confirm the compliance of noise criteria in accordance with the fixed plant noise levels in accordance with the application for variation of an environmental permit No. VEP-407/2013 and its attached documents. This report presents the noise measurement methodology, results of noise measurement for the fixed plant noise sources installed at WEK and PTI, calculated Sound Power Levels from noise measurements having due regard to the characteristics of tonality, impulsiveness and intermittency.

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

2 Noise Criteria

2.1 Fixed Plant Noise Criteria in EIA

With reference to the IND-TM under the Noise Control Ordinance (NCO), the relevant acceptable noise levels (ANL) where determined based on the area sensitivity rating (ASR). The fixed plant noise criteria for the representative noise sensitive receivers (NSRs) were determined in EIA as follow (whichever is lower):

- 5dB(A) below the appropriate ANL set out in the IND-TM (the ANL-5dB(A) criterion);
- The prevailing background noise levels where the prevailing background noise level is 5dB(A) below the appropriate ANL (i.e. ANL-5dB(A))

The noise criteria above were determined for planning purpose, while during operations; the fixed plant noise is controlled by a Noise Abatement Notices system governed by the NCO.

According to the fixed plant noise assessment in the Environmental Review Report (ERR)¹ for supporting the application for variation of an environmental permit No. VEP-407/2013, there would be two operation scenarios which are Day 1 Scenario (before occupation of West Kowloon Cultural District (WKCD)) and Day 2 Scenario (upon occupation of WKCD). Under Day 2 Scenario, the building structures with fixed plant noise sources of WEK located at WKCD would be fully integrated with the future WKCD development such that they would be encapsulated by future WKCD's building blocks. In such case, the noise sources as well as their locations would be different from Day 1 Scenario, and as the detailed design of WKCD has not been confirmed yet during the commissioning test, it is impossible to conduct assessment for the uncertain Day 2 Scenario. Therefore, this commissioning test has been conducted to confirm the noise compliance for Day 1 Scenario only. To ensure the compliance of fixed plant noise criteria for Day 2 Scenario upon occupation of the WKCD building(s) that would encapsulate VS 6, VS 7, PVS 6 and VS6-4, MTR will maintain continuous dialogue with the West Kowloon Cultural District Authority regarding the future noise sensitive development in WKCD. Relevant information of Day 2 Scenario to show compliance would be submitted, when the detailed design of WKCD development is confirmed and finalized. The fixed plant noise sources and the representative NSRs for Day 1 Scenario are shown in Figure 2.1.

The fixed plant noise criteria for the representative NSR in West Kowloon area under Day 1 Scenario are presented in **Table 2.1** below. Appropriate corrections in tonal, impulsive or intermittent characteristics should be applied to the results of noise measurement, where applicable, in accordance with IND-TM.

Table 2.1 Summary of Fixed Plant Noise Criteria (Day 1 Scenario)

-

¹ Environmental Review Report – Design Changes in Mong Kok West Ventilation Building, West Kowloon Terminus and Its Associated Building Elements, June 2013.

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

NSR ID	Description	Area	Noise Criteria,	L _{eq,30min} dB(A) (a)
		Sensitivity Rating (ASR) (a)	Day and Evening Time	Night-time
West Kowlooi	<u> </u> n Station (WEK) and its ass	<u>l</u> ociated building ei	 ements (Figure 2	
WK3	Man King Building, 46 - 48 Man Wui Street (South façade)	В	60	50
WK3a	Man King Building, 46 - 48 Man Wui Street (West façade)	В	60	50
WK4	Tower 6, Sorrento (East façade)	В	60	50
WK7a	Tsim Sha Tsui Fire Station	С	65	55
WK8a	Tower 6, The Waterfront	В	60	50
WK11a	Tower 3, The Austin (formerly named as Planned Development)	В	60	50
WK12a	Tower 5, Grand Austin (formerly named as Planned Development)	В	60	50
WK14	Moon Tower, The Arch	В	60	50
WK14a	Star Tower, The Arch	В	60	50
WK18	Hindu Temple	С	65	55

Note:

(a) ASR and noise criteria follow that defined in the relevant application for variation of environmental permit (VEP-407/2013) and its attached documents.

Major fixed plant noise sources at WEK and PTI include PTI ventilation, station ventilation, other electrical mechanical equipment, and tunnel ventilation, which are generally located inside plant rooms, except for fans in PTI. They would be operating concurrently under "normal scenario" for XRL operation during both daytime and evening time, and night-time period, as the worst case scenario. The worst case scenario was considered for compliance check against the fixed plant noise criteria and the noise measurement was conducted to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs.

Table 2.2 below summarised the information of the fixed plant noise sources and the layout plans are shown in **Figure 2.2A – 2.2E**.

Table 2.2 Summary of Fixed Plant Noise Sources in WEK and PTI

Location	Noise Source	Louvre ID
West Kowloon Station (WEK) and Public Transport Interchange (PTI) (Figures 2.2A – 2.2E)		
West Kowloon Plant	WKP (formerly	WKP-U1-E6PN-03A Section 1
Building (WKP)	named as TVS 3)	WKP-U1-E6PN-03A Section 2

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Location	Noise Source	Louvre ID
		WKP-U1-E6PN-06A
		WKP-U1-E6PN-04A
		WKP-U1-E6VS-02
		WKP-U1-E6PN-09
	EAA (formerly	WKT-VS3N-1
	named as VS 3	
	North)	
West Kowloon Station	VS 3	WKT-VS3-1
(WEK)		WKT-VS3-2
		WKT-VS3-3
		WKT-VS3-4
		WKT-VS3-5
		WKT-VS3-6A
		WKT-VS3-6B
		WKT-VS3-7
		WKT-VS3-8
	VS 2 East	WKT-VS2E-1
		WKT-VS2E-2
		WKT-VS2E-3
	VS 4	WKT-VS4-1
		WKT-VS4-3
		WKT-VS4-4
	VS 5	WKT-VS5-1
		WKT-VS5-2
		WKT-VS5-4
	VS 2 West	WKT-VS2W-1
		WKT-VS2W-2A
		WKT-VS2W-2B
		WKT-VS2W-2C
		WKT-VS2W-3
	VS 1	WKT-VS1-1
		WKT-VS1-2
		WKT-VS1-3
		WKT-VS1-4
West Kowloon Cultural	VS 6	WKT-VS6-1
District (WKCD)		WKT-VS6-2A
		WKT-VS6-2B
		WKT-VS6-3A
		WKT-VS6-3B
		WKT-VS6-4
		WKT-VS6-5A
		WKT-VS6-5B
		WKT-VS6-6A
		WKT-VS6-6B
		WKT-VS6-7A
		WKT-VS6-7B
	PVS 6	WKT-PVS6-1
	PVS 6	WKI-PVS6-1

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Location	Noise Source	Louvre ID
		WKT-PVS6-2
		WKT-PVS6-3A
		WKT-PVS6-3B
		WKT-PVS6-4
	VS6-4 (formerly	WKT-G-G15VS-01A
	named as TVS 1)	WKT-G-G15VS-01B
		WKT-G-G15VS-01C
		WKT-G-G15VS-03A Section 1
		WKT-G-G15VS-03A Section 2
	VS 7	WKT-G-D14VS-03A
		WKT-G-D14VS-04A
		WKT-VS7-1A
		WKT-VS7-1B
		WKT-VS7-2
		WKT-VS7-3
Public Transport	PTI Ventilation	L-01
Interchange (PTI)	Shaft	L-02
		L-03
		L-03a
		L-06
		L-07
		L-08
		L-08a
		L-10
		L-11
		L-12
		L-13
		L-14
		L-15a
		L-15b
		L-21
		L-22
		L-23
		L-24
		L-28
		L-29
		L-30
		L-31

3 Methodology

3.1 Noise Measurement for the Fixed Plants

Noise measurements to obtain the noise levels of the fixed plants were undertaken by Supreme Acoustics Research Limited, GAS Joint Venture, Gammon-Leighton Joint Venture and Wilson Acoustics Ltd. The commissioning tests were carried out by qualified persons

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

possessing at least 7 years of noise control experience and a corporate member of Hong Kong Institute of Acoustics or equivalent in accordance with S3.22 of the XRL EM&A Manual.

3.1.1 Methodology

Three measurement methods, namely Method 1 (at or near NSR), Method 2 (Far Field) and Method 3 (Near Field), have been developed based on NCO-TM, basic acoustic principles and ISO 3746-2010: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using an enveloping measurement surface over a reflecting plane, respectively. Given the fixed plant noise sources are steady, all proposed methods could be adopted for all types of fixed plant source depending on the site environment/constraints that might affect the possibility to obtain valid results, considerations including but not limited to:

- Background noise with less influence to the measured noise levels
- Free of obstacles between measurement location and noise source
- Accessibility and Safety Concerns

For WEK and PTI, considering the background noise dominated by the road traffic noise from Jordan Road, Lin Cheung Road, Road D1A, Austin Road West, and Canton Road were immediately in front of the NSRs; obtaining valid results using Method 1 was considered unlikely. As such, only Method 2 and Method 3 were considered applicable. Method used for each louvre is presented in Appendix A3. Details of the measurement methodology are shown in **Appendix A1**.

Method 1 - Measuring Sound Pressure Level at NSR or Near NSR

- Measurement at NSR or near NSR at distance D away from the louvre, where D was at least two times the largest dimension b of the louvre and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the louvre and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre was switched OFF
- The sound pressure level (SPL) at NSR or near NSR was determined by the following equation:

Background corrected $L_p = L_p + BG - [20logD + 8]$ (if applicable) + façade correction (if applicable)

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

BG is the background correction factor, in dB(A);

D is separation between the center of louvre or surface of the plant and the microphone, in metres.

Method 2 - Measuring Sound Power Level by Far Field Method for Louvres or for Plants

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

- The microphone was positioned at the perpendicular distance D away from the center of the louvre or the surface of the plant, where D was at least two times the largest dimension D of the louvre or plant and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the center of the louvre/combined louvre area or the center the plant; and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from the louvre or plant was switched OFF
- The sound power level (SWL) of the louvre or the plant was determined, based on basic acoustic principles, by the following equation:

$$L_w = L_p + 20logD$$
, center +8 + BG

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

D,center is separation between the center of louvre or plant and the microphone, in metres:

BG is the background correction factor, in dB(A).

Method 3 - Measuring Sound Power Level by Near Field Method for Louvres or for Plants

- A right parallelepiped hypothetical measurement box for each louvre or each surface of a plant was determined according to ISO 3746, with each side being spaced a distance *D* from the corresponding side of the louvre or plant
- Each of the 5 planes of the measurement box was subdivided into equal-sized rectangular grids, the length of each side of the grids should be less than or equal to 3 times of distance D, i.e. grid length $\leq 3D$
- The microphone was pointing toward the center of each grid, and a measurement was taken for each grid during the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre or plant was switched OFF
- The SWL of the louvre or the plant was determined by the following equation:

$$L_w = L_p + 10log(S) - K_{1A} - K_{2A}$$

Where

 L_p is the averaged measured L_{eq} of all measurement points, in dB(A);

S is the total surface area over the measurement box (total 5 planes), in m²;

 K_{1A} is the background correction factor as described in ISO 3746:2010, in dB(A);

 K_{2A} is the environmental correction for sound absorption and reflection as described in *ISO 3746:2010*, in dB(A).

Except for Method 3, which was adopted with reference to ISO 3746; the noise sources measured using Method 1 or Method 2 were considered steady if the difference between the maximum and minimum Leq is less than or equal to 1dB(A), ie, $\leq 1dB(A)$; average Leq was

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

therefore considered. Otherwise, the maximum Leq would be adopted for SWL determination as a conservative approach.

3.1.2 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.1**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2a**.

Table 3.1 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	Rion NL-52	00564841
	Rion NL-31	00593586
	SVAN 955	15234
	SVAN 958	20890
	SVAN 958	59120
	SVAN 958	59121
	SVAN 959	11228
Calibrator	Rion NC-74	34984065
	SV30A	29088

Before and after each series of measurements, a calibration check was carried out on the sound level meter by the calibrator. The difference between the readings made before and after each series of measurements shall be less than or equal to 1.0 dB.

3.1.3 Measurement Schedule

The noise measurements were carried out during daytime, evening time and night-time periods, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in **Table 3.2**.

Table 3.2 Measurement Schedule

Location	Date	Daytime and Evening Time / Night-time
PTI	10 – 11 May 2018	Night-time
	20 May 2018	Daytime and Evening
		Time
	30 May 2018	Daytime and Evening
		Time
	30 – 31 May 2018	Night-time
WEK	29 – 30 May 2018	Night-time
	31 May – 1 June 2018	Night-time
	5 – 6 June 2018	Night-time
	14-15 June 2018	Night-time
	21-22 June 2018	Night-time

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Location	Date	Daytime and Evening
		Time / Night-time
	23-24 June 2018	Night-time
	25-26 June 2018	Night-time
	26-27 June 2018	Night-time
	27-28 June 2018	Night-time
	30 June-1 July 2018	Night-time
	1-2 July 2018	Night-time
	6-7 July 2018	Night-time
	9-10 July 2018	Night-time
	18-19 July 2018	Night-time
	25-26 July 2018	Night-time

3.2 Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

3.2.1 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in **Table 3.3**. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in **Appendix A2b**.

Table 3.3 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	B&K 2250	2551242
	B&K 2250	2551244
	B&K 2250	2718890
	B&K 2250-L	2741137
	B&K 2250-L	2701819
	B&K 2250-L	2701830
	B&K 2250-L	2718884
	NTI Audio M2230	6240
Calibrator	B&K 4231	1858983
	B&K 4231	2725557

3.2.2 Measurement Parameters

With reference to the IND-TM, the noise measurement was conducted at the representative NSRs for $L_{Aeq~(30min)}$, in one-third octave band under the worst case scenario, i.e., "normal scenario" during night-time period at which with minimal influence from traffic noise.

The fixed plant noise sources will be operated steadily and continuously, and therefore no intermittency and impulsiveness are expected at the NSRs. However, the characteristics of intermittency and impulsiveness will be recorded, if any, based on observation during measurement.

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

2 sets of background noise level, L_{Aeq (5min)}, and in one-third octave band, were measured at each measurement location when all fixed plant noise sources were not in operation.

3.2.3 Measurement Location and Date

Based on the representative NSRs as listed in **Table 2.1** for WEK and PTI, some of the representative NSRs were selected for noise measurement. The selected representative NSRs include WK3a, WK4, WK7a, WK8a, WK11, WK12a, WK14 and WK14a. WK18 is a planned NSR and thus no measurement was conducted at this planned NSR for checking of any characteristics of tonality, impulsiveness and intermittency. The measurement location is shown in **Figure 2.1**.

The noise measurement was carried out at the selected existing representative NSRs (**Table 4.3** refers) on 6 and 7 Jul 2018 during which the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario.

4 Measurement Results

4.1 The Noise Levels of Fixed Plant Noise Sources

The noise levels measured under the worst case scenario are determined and presented in **Table 4.1**. Details of the measurement results are shown in **Appendix A3**.

Table 4.1 Summary of Sound Power Levels for Fixed Plants

Location Noise Sources		Louvre ID	Calculated SWL L _{Aeq} , dB(A)
		WKP-U1-E6PN-03A Section 1	82
	WKP(forme	WKP-U1-E6PN-03A Section 2	80
	rly named	WKP-U1-E6PN-06A	69
WKP	as TVS 3)	WKP-U1-E6PN-04A	83
VVKP		WKP-U1-E6VS-02	66
		WKP-U1-E6PN-09	74
	EAA (formerly named as VS 3 North)	WKT-VS3N-1	80
		WKT-VS3-1	67
		WKT-VS3-2	67
		WKT-VS3-3	72
		WKT-VS3-4	72
WEK	VS 3	WKT-VS3-5	69
		WKT-VS3-6A	66
		WKT-VS3-6B	67
		WKT-VS3-7	65
		WKT-VS3-8	66

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Location	Noise Sources	Louvre ID	Calculated SWL L _{Aeq} , dB(A)
	VS 2 East	WKT-VS2E-1	72
		WKT-VS2E-2	69
		WKT-VS2E-3	69
		WKT-VS4-1	79
	VS 4	WKT-VS4-3	73
		WKT-VS4-4	74
		WKT-VS5-1	70
	VS 5	WKT-VS5-2	92
		WKT-VS5-4	79
		WKT-VS2W-1	75
		WKT-VS2W-2A	68
	VS 2 West	WKT-VS2W-2B	70
		WKT-VS2W-2C	70
		WKT-VS2W-3	76
		WKT-VS1-1	67
	VC 1	WKT-VS1-2	72
	VS 1	WKT-VS1-3	72
		WKT-VS1-4	75
		WKT-VS6-1	77
		WKT-VS6-2A	60
		WKT-VS6-2B	62
		WKT-VS6-3A	62
		WKT-VS6-3B	66
	VC C	WKT-VS6-4	75
	VS 6	WKT-VS6-5A	76
		WKT-VS6-5B	76
		WKT-VS6-6A	65
		WKT-VS6-6B	70
		WKT-VS6-7A	69
		WKT-VS6-7B	63
		WKT-PVS6-1	63
WKCD		WKT-PVS6-2	68
	PVS 6	WKT-PVS6-3A	69
		WKT-PVS6-3B	73
		WKT-PVS6-4	72
		WKT-G-G15VS-01A	75
	VSC 4	WKT-G-G15VS-01B	76
	VS6-4 (formerly	WKT-G-G15VS-01C	74
	named as	WKT-G-G15VS-03A	72
	TVS 1)	Section 1	12
	1 1 1 1 1	WKT-G-G15VS-03A Section 2	73
		WKT-G-D14VS-03A	81
	VS 7	WKT-G-D14VS-04A	78
	""	WKT-VS7-1A	77

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

Location Noise Sources		Louvre ID	Calculated SWL L _{Aeq} , dB(A)		
		WKT-VS7-1B	74		
		WKT-VS7-2	69		
		WKT-VS7-3	80		
		L-01	83		
		L-02	79		
		L-03	81		
		L-03a	80		
		L-06	75		
		L-07	69		
		L-08	72		
		L-08a	69		
		L-10	86		
		L-11	84		
	PTI	L-12	84		
PTI	Ventilation	L-13	90		
	Shaft	L-14	88		
		L-15a	86		
		L-15b	82		
		L-21	75		
		L-22	76		
		L-23	78		
		L-24	78		
		L-28	72		
		L-29	79		
		L-30	75		
		L-31	83		

A compliance check against the fixed plant noise criteria at NSRs was conducted. The cumulative noise levels from noise sources were assessed to ensure the compliance with the noise criteria. **Table 4.2** show the results, details of the calculation are also given in **Appendix A3**.

Table 4.2 Cumulative Fixed Plant Noise Levels at Representative NSRs under Day 1
Operation

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR ID	Description	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
WK3	Man King Building, 46-48 Man Wui Street (South facade)	46	46	60	50	Y	Y

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)

		Cumulati dB(A)	Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR ID	Description	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time	
WK3a	Man King Building, 46-48 Man Wui Street (West facade)	48	48	60	50	Y	Y	
WK4	Tower 6, Sorrento (East facade)	47	47	60	50	Y	Υ	
WK7a	Tsim Sha Tsui Fire Station	41	41	65	55	Υ	Υ	
WK8a	Tower 6, The Waterfront	46	46	60	50	Υ	Υ	
WK11a	Tower 3, The Austin	45	45	60	50	Υ	Υ	
WK12a	Tower 5, Grand Austin	47	47	60	50	Υ	Υ	
WK14	Moon Tower, The Arch	41	41	60	50	Υ	Υ	
WK14a	Star Tower, The Arch	41	41	60	50	Υ	Υ	
WK18	Hindu Temple	55	N/A ^(a)	65	55	Υ	Υ	

Note:

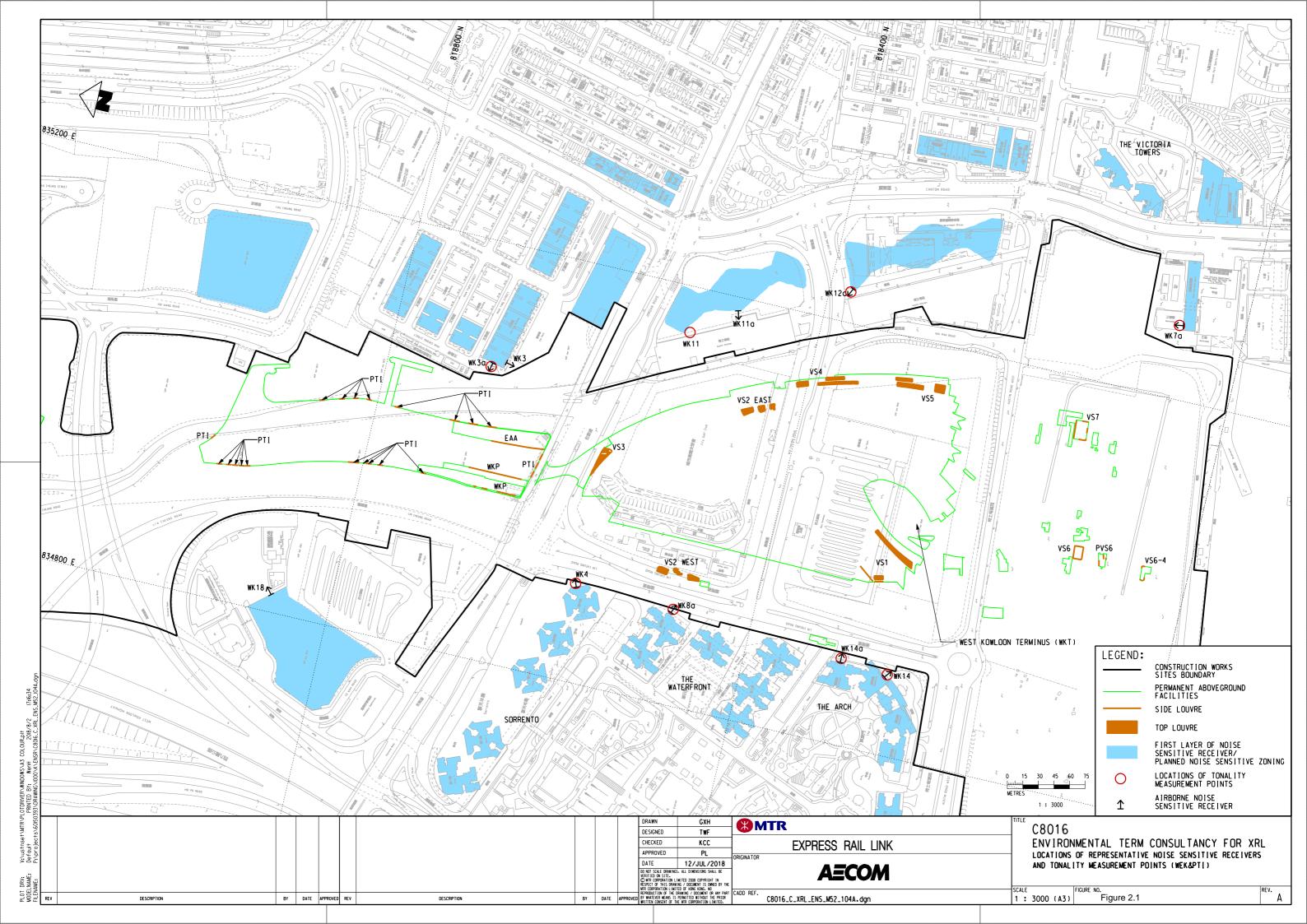
(a) No sensitive use at WK18 during night-time period.

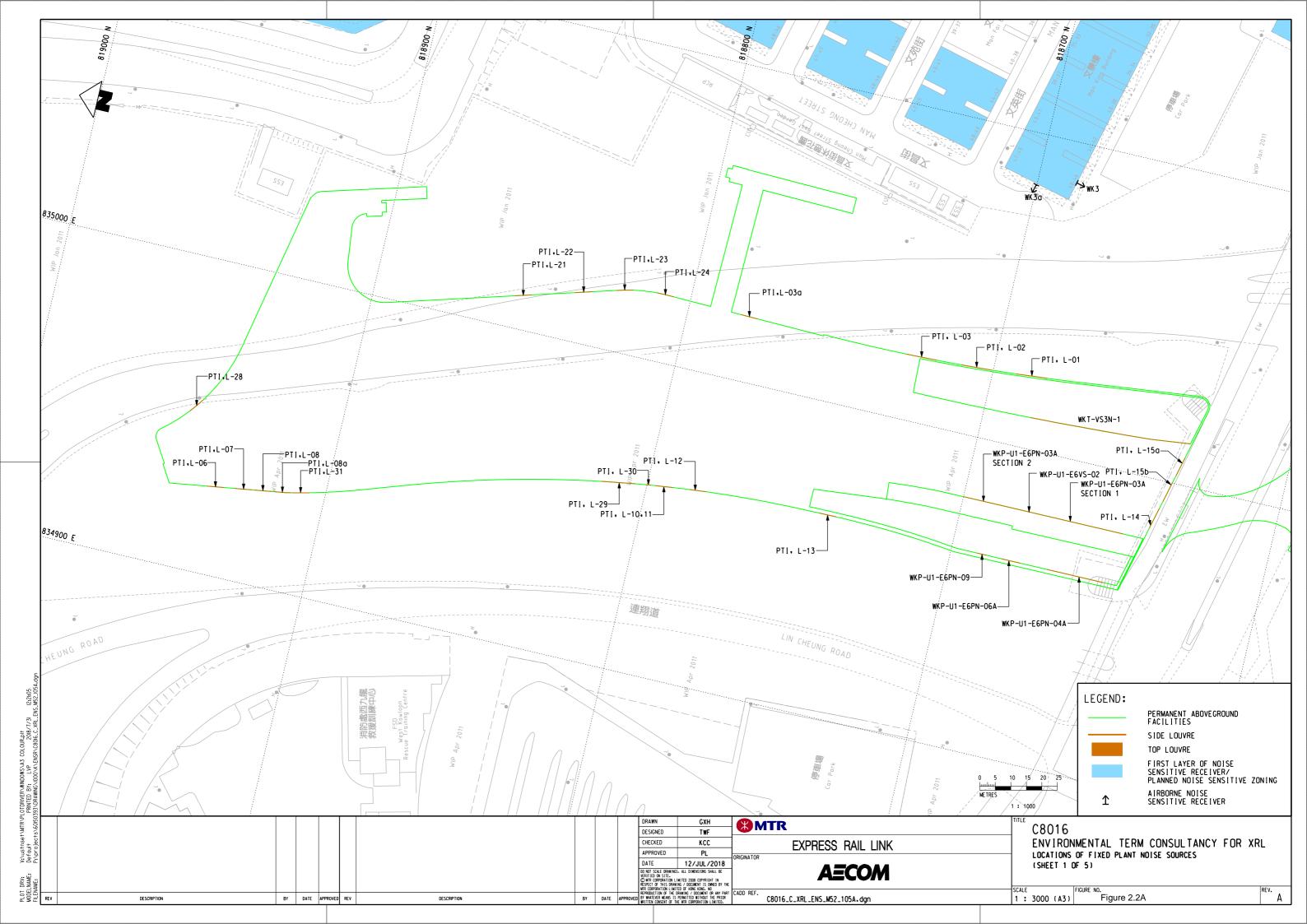
4.2 The Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

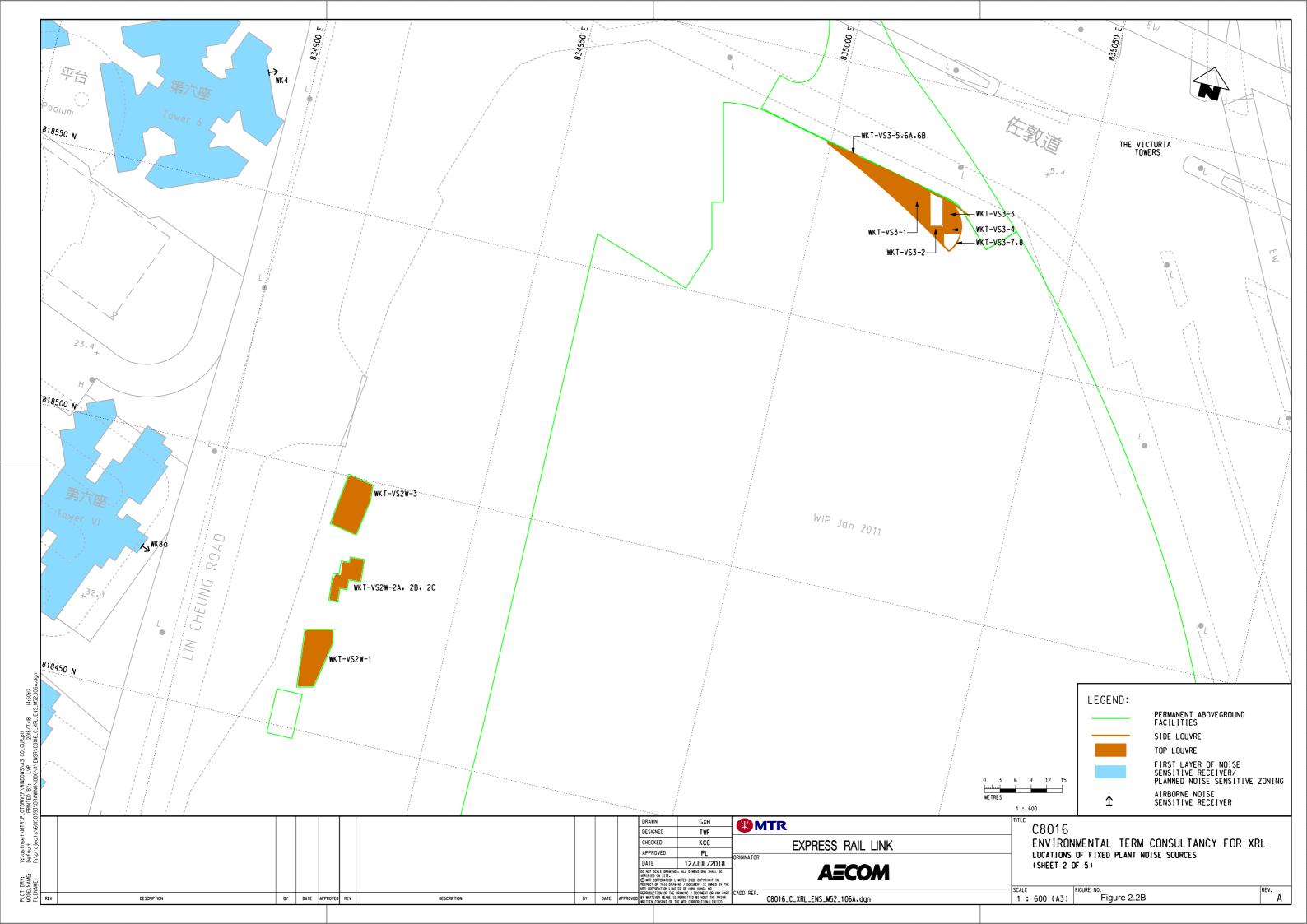
Noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs were conducted under the normal scenarios during night-time period. Measurement results are summarised in **Table 4.3** below. Two sets of noise measurements, $L_{Aeq(30min)}$, in one-third octave band, were carried out to confirm that the difference in the measured noise levels with and without operation of fixed plant noise sources were less than 3.0 dB(A). That means fixed plant noise sources are not considered as significant noise sources at the NSRs.

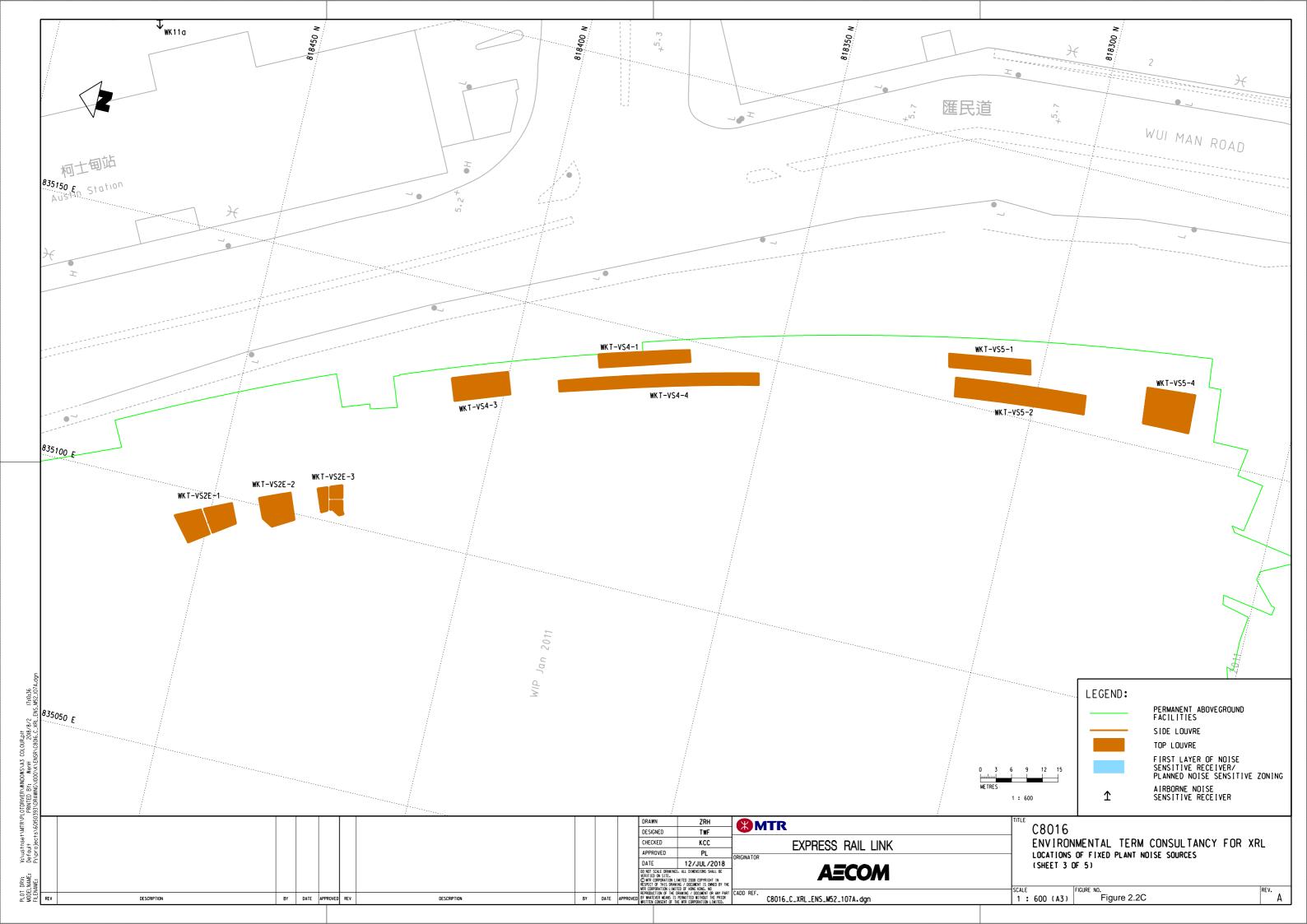
Noise measurements at the selected representative NSRs were dominated by road traffic noise; characteristics of tonality, impulsiveness and intermittency due to the fixed plant noise sources from fixed plant noise sources in West Kowloon was not noticeable during the measurement. Detailed results of noise measurements are shown in **Appendix A4**.

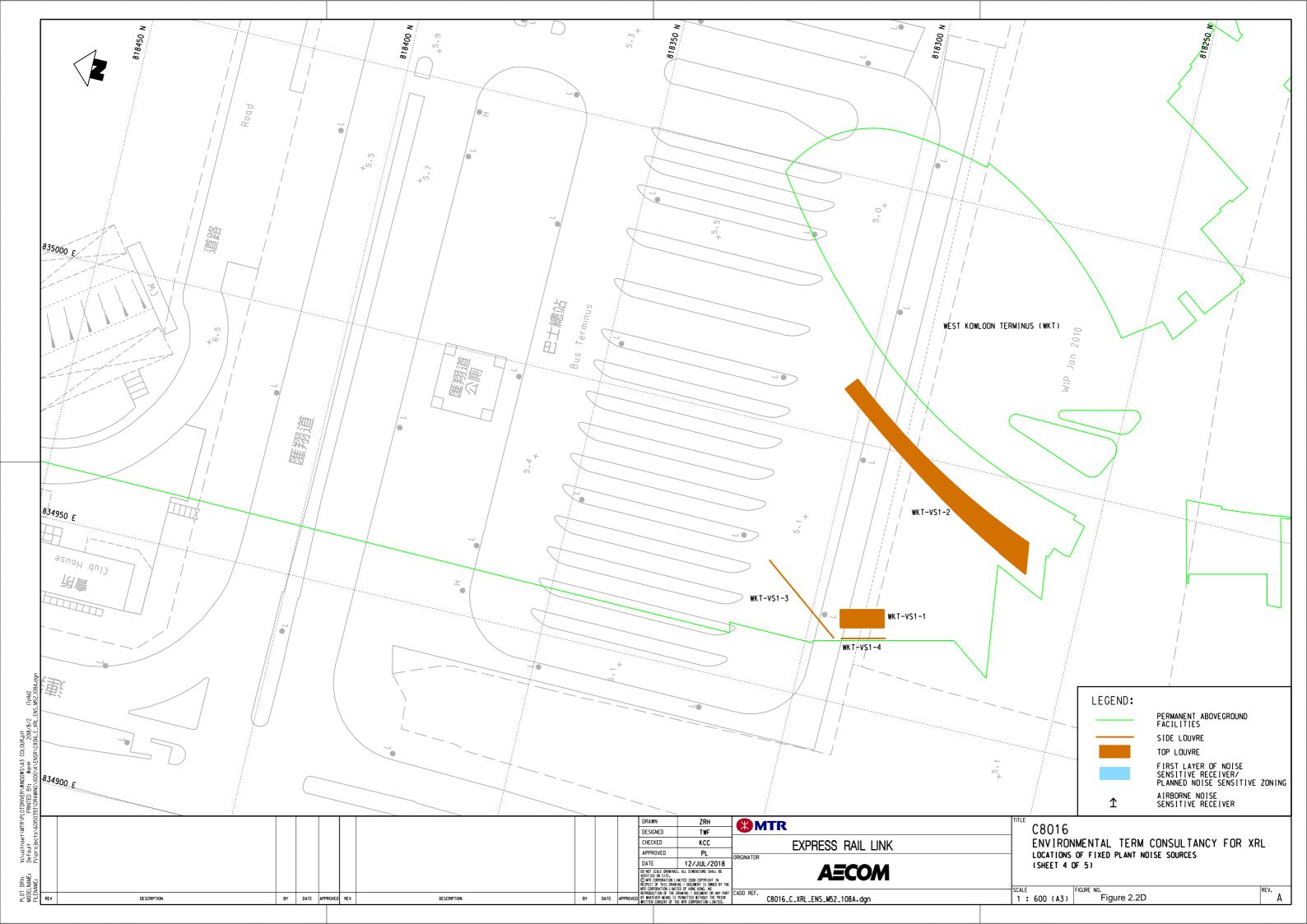
Table 4.3 Noise measurement Results at NSR Under Scenario 1

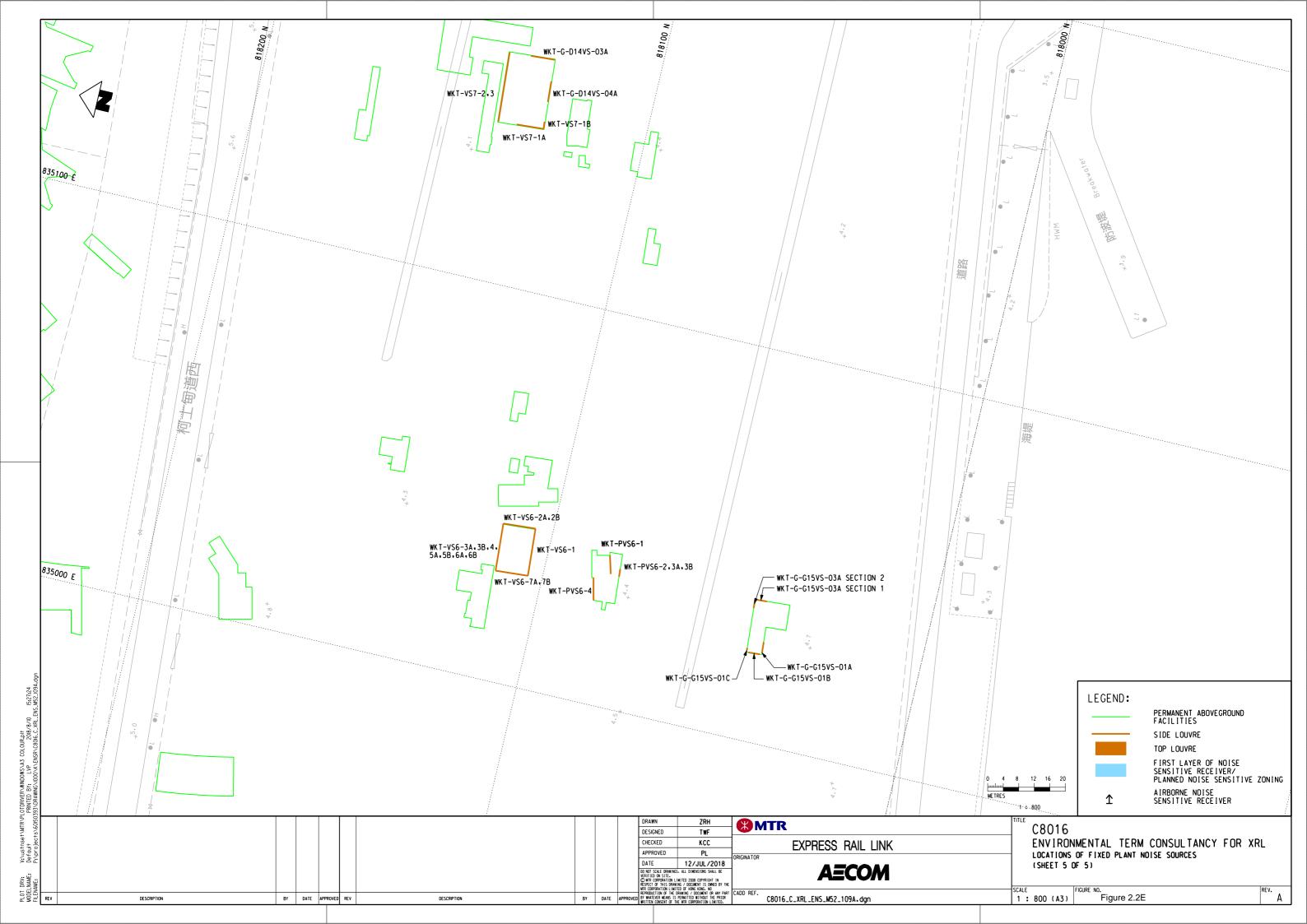

Commissioning Test Report for the Fixed Plant Noise at West Kowloon Station (WEK) and Public Transport Interchange (PTI)


NSR	Time Period	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement time)	Difference between Measured Noise Level and Background Level, dB(A), (< 3 or >= 3)
WK3a	Night-time	54.9 (23:46-00:16) 54.3 (00:22-00:52)	55.1 (01:13-1:34)	< 3
WK4	Night-time	60.4 (00:02-00:32) 60.2 (12:32-01:02)	59.5 (01:17-01:27)	< 3
WK7a	Night-time	56.2 (23:52-00:22) 56.0 (00:23-00:53)	54.4 (01:20-01:41)	< 3
WK8a	Night-time	58.4 (23:52-'00:22) 56.9 (00:22-00:52)	57.3 (01:24-01:34)	< 3
WK11	Night-time	58.5 (23:54-00:24) 58.0 (00:24-00:54)	56.7 (01:16-01:36)	< 3
WK12a	Night-time	52.4 (23:53-00:23) 51.4 (00:23-00:53)	50.0 (01:13-01:33)	< 3
WK14	Night-time	56.0 (23:51-00:22) 54.3 (00:22-00:52)	54.5 (01:12-01:33)	< 3
WK14a	Night-time	56.4 (00:00-00:30) 56.0 (00:30-01:00)	56.1 (01:13-01:33)	< 3


As the differences between measured noise levels and background levels are all less than 3.0 dB(A), it was unable to obtain reliable corrected noise levels at the NSRs and corrections for tonality, impulsiveness or intermittency were therefore not applicable.


5 Conclusions

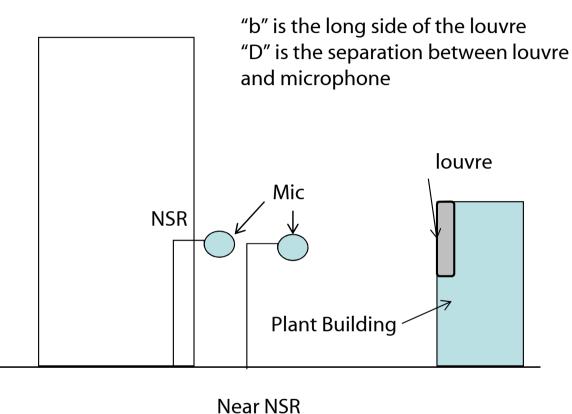

To fulfil the XRL EP condition 2.36, the fixed plant noise verification were undertaken and the measurement results indicated all the fixed plant noise levels in WEK and PTI are in compliance with the fixed plant noise criteria.



Α	Appendix A1	–Measureme	ent Method	lology		

Summary of Testing Methodology

Method	Standard	No of repeated measurement	No of measurement point	Measurement distance, D	To Verify
Method 1 (NSR Method)	NCO - TM	3 sets of Leq 1min	Depend on number of NSRs nearby	At the most affected NSR or near NSR	ANL-5 or Background Prevailing
Method 2 (Far Field Method)	Basic Acoustic Principle	3 sets of Leq 1min	1 (for louvre/plant with uniform plane source)	D ≧2b and roundup to integer	ANL-5 or Background Prevailing
Method 3 (Near Field Method)	Developed based on ISO3746:2010	1 set of Leq 10s ^(a) /1min	Depend on the size of the louvre/plant and the measurement distance should follow guideline in ISO3746	At least 1m from the louvre opening/plant (unless otherwise specified)	ANL-5 or Background Prevailing

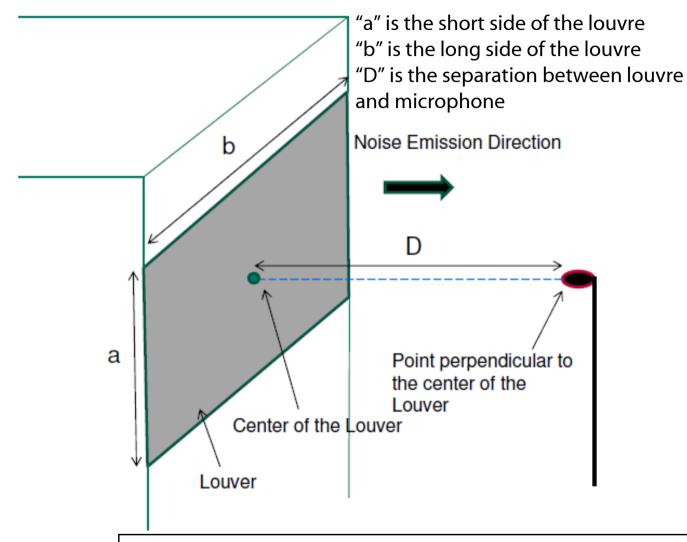

Note:

(a) If fixed plant items are operated at their noisiest operating modes and are steady during measurement, 10-second will be adopted for the duration of measurement.

MTR Corporation Page 2

Method 1 – Sound Pressure Level at NSR or Near NSR for louvre or Plant

- Based on NCO TM
- The locations of measurement points are depended on the site situation
- 3.0 dB façade correction should be considered if the location of measurement point is not at assessment point as defined in NCO-TM
- "D" must be greater than 2b and roundup to integer
- Detail calculation of the SPL should refer to the NCO-TM.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


Background corrected SPL = Mean $L_{Aeq1min}$ + BG - [20log (D) +8] (if applicable) + façade correction (if applicable)

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

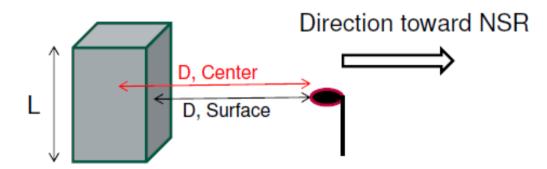
MTR Corporation Page 3

Method 2 – Far Field Sound Power Testing Method for louvre

- Based on basic acoustic principle
- "D" must be greater than 2b and roundup to integer, i.e.: D≧2b
- The microphone must point to the center of the louvre.
- At least 3 sets of LAeq, 1min should be obtained
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than
 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 +BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach


MTR

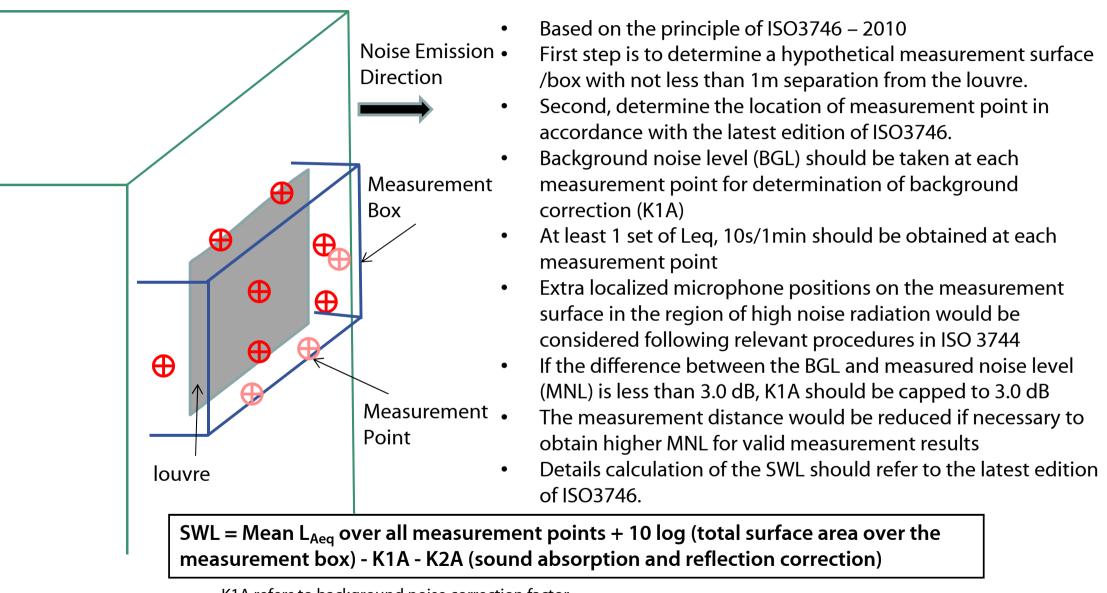
Method 2 – Far Field Sound Power Testing Method for Plant

"L" is the longest side of the plant item

"D, Center" is the separation between center of the plant item and microphone

"D, Surface" is the separation between surface of the plant item and microphone

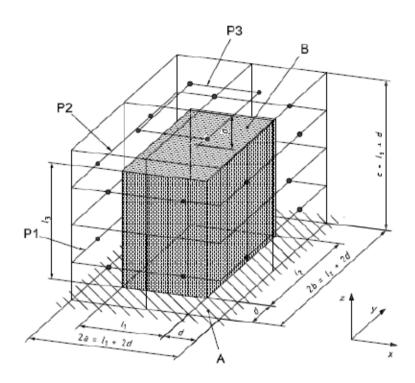
- "D, Surface" must be greater than twice of L
 (2L) and roundup to integer
- The microphone must be pointing to the center of the plant
- At least 3 sets of LAeq, 1min should be obtained at each measurement point.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB


SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 + BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

MTR Corporation Page 5

Method 3 – Near Field Sound Power Testing Method for louvre



K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

MTR

MTR Corporation

Method 3 – Near Field Sound Power Testing Method for Plant

Kev

- Based on ISO 3746
- The locations of measurement points are depended on the size of the plant, which cannot be easily generalised (See figure on the left for example).
- Extra localized microphone positions on the measurement surface in the region of high noise radiation would be considered following relevant procedures in ISO 3744
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, K1A should be capped to 3.0 dB
- The measurement distance would be reduced if necessary to obtain higher MNL for valid measurement results
- Detail calculation of the SWL should refer to the latest edition of ISO 3746.

SWL = Mean L_{Aeq} over all measurement points + 10 log (total surface area over the measurement box) - K1A - K2A (sound absorption and reflection correction)

K1A refers to background noise correction factor
K2A refers to environmental correction for sound absorption and reflection

MTR Corporation Page 7

Appendix A2 – Ca	alibration Certific	ates	

Appendix A2a – Fixed Plants)	Calibration Certific	ates (Noise Mea	surement for the

CALIBRATION CERTIFICATE

Certificate Information

Certificate Number MLCN180200S **Date of Issue** 6-Feb-2018

Customer Information

Wilson Acoustics Limited **Company Name**

Address Unit 601, Block A, Shatin Industrial Centre,

Yuen Shun Circuit, Shatin, N. T.

Equipment-under-Test (EUT)

Sound Level Meter Description

Manufacturer Svantek **SVAN 955 Model Number**

15234 Serial Number **Equipment Number**

Calibration Particular

Date of Calibration 6-Feb-2018

4231(MLTE008) / PA160059 / 20-May-2018 Calibration Equipment

MLCG00, MLCG15 **Calibration Procedure**

Calibration Conditions Laboratory Temperature

Relative Humidity $55\% \pm 25\%$ Stabilizing Time Over 3 hours **EUT**

Warm-up Time 10 minutes **Power Supply** Internal battery

Calibration data were detailed in the continuation pages. **Calibration Results**

Approved By & Date

K.O. Lo

23 °C ± 5 °C

6-Feb-2018

Statements

- Calibration equipment used for this calibration are traceable to national / international standards.
- The results on this Calibration Certificate only relate to the values measured at the time of the calibration and the uncertainties quoted will not include allowance for the EUT long term drift, variation with environmental changes, vibration and shock during transportation, overloading, mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.
- MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.
- The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the prior written approval of MaxLab Calibration Centre Limited.

Page 1 of 2

Certificate No. MLCN180200S

Calibratio	n Data										
Parameter	Frequency Weighting	Range (dB)	Time Weighting	EU Read	100	Standa Readi	38854	EUT E	crror	Calibra Uncerta	
SPL	Α	25 - 130	F	94	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	94	dB	94.0	dB	0.0	dB	0.2	dB
			I	94	dB	94.0	dB	0.0	dB	0.2	dB
1000	С	25 - 130	F	94	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	94	dB	94.0	dB	0.0	dB	0.2	dB
			I	94	dB	94.0	dB	0.0	dB	0.2	dB
	Z	25 - 130	F	94	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	94	dB	94.0	dB	0.0	dB	0.2	dB
			I	94	dB	94.0	dB	0.0	dB	0.2	dB
	A	25 - 130	F	114	dB	114.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	114	dB	114.0	dB	0.0	dB	0.2	dB
			I	114	dB	114.0	dB	0.0	dB	0.2	dB
	C	25 - 130	F	114	dB	114.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	114	dB	114.0	dB	0.0	dB	0.2	dB
		الرجائلات	I	114	dB	114.0	dB	0.0	dB	0.2	dB
	Z	25 - 130	F	114	dB	114.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)		S	114	dB	114.0	dB	0.0	dB	0.2	dB
			I	114	dB	114.0	dB	0.0	dB	0.2	dB

- END -

Calibrated By: Date:

Patrick

6-Feb-2018

Checked By:

K.O. Lo 6-Feb-2018

Page 2 of 2

Date:

CALIBRATION CERTIFICATE

Certificate Inform	nation	是是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一	
Date of Issue	23-Jun-2017	Certificate Number	MLCN171137S

Customer Information

Wilson Accoustics Limited Company Name

Unit 601, Block A, Shatin Industrial Centre, Address

> Yuen Shun Circuit, Shatin, N. T., Hong Kong

Equipment-under-Test (EUT)

Sound & Vibration Analyser Description

Manufacturer Svantek **SVAN 958 Model Number** Serial Number 20890 **Equipment Number**

Calibration Particular

23-Jun-2017 Date of Calibration

4231(MLTE008) / PA160059 / 20-May-2018 **Calibration Equipment**

Calibration Procedure MLCG00, MLCG15

Calibration Conditions Temperature Laboratory

EUT

55% ± 25% Relative Humidity Over 3 hours Stabilizing Time

10 minutes Warm-up Time

Power Supply Internal battery

Calibration Results Calibration data were detailed in the continuation pages.

Approved By & Date

K.O. Lo

23 °C ± 5 °C

 Calibration equipment used for this calibration are traceable to national / international standards.
 The results on this Calibration Certificate only relate to the values measured at the time of the calibration and the uncertainties quoted will not include allowance for the EUT long term drift, variation with environmental changes, vibration and shock during transportation, overloading, mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.

MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.

The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the

prior written approval of MaxLab Calibration Centre Limited.

Page 1 of 2

23-Jun-2017

Certificate NoMLCN171137S

Calibration	Data	Const.							
Channel / Mode	Filter / Detector	Rang	ge	EUT Readi		Stand		EUT Error	Calibration Uncertainty
CH4 / Sound	A / FAST	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1 dB	0.2 dB
				114.1	dB	114.0	dB	0.1 dB	0.2 dB
	C / FAST	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1 dB	
				114.1	dB	114.0	dB	0.1 dB	0.2 dB
	LIN / FAST	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1 dB	0.2 dB
				114.1	dB	114.0	dB	0.1 dB	0.2 dB
	A / SLOW	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	0.2 dB
	C / SLOW	105	dB	94.0	dB	94.0	dB	0.0 dB	
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	0.2 dB
	LIN / SLOW	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	
	A / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0 dB	0.2 dB
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	
	C / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0 dB	
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	
	LIN / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0 dB	
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1 dB	0.2 dB

- END -

Calibrated By: Date:

Patrick

Checked By: Date:

K.O. Lo 23-Jun-2017

23-Jun-2017

Page 2 of 2

FACTORY CALIBRATION DATA OF THE SVAN 958 No. 59120

SOUND LEVEL METER

1. CALIBRATION

(electrical)

LEVEL METER; Filter: LIN; Input signal =114.0dB, f_{sin} =1kHz

	Range 105dB Indication [dB] Error [dB] 113.99 -0.01 113.98 -0.02 113.98 -0.02	05dB	Range	30dB
	Indication [dB]	Error [dB]	Indication [dB]	Errer [dB]
Channel I	113.99	-0.01	114.02	0.02
Channel 2	113.98	-0.02	114.03	0.03
Channel 3	113.98	-0.02	114.03	0.03
Channel 4	113.98	-0.02	114.02	0.02

2. CALIBRATION

(acoustical)

LEVEL METER; Range: 130 dB; Reference frequency: 1000Hz;

Filter	LIN		A				
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel 1	114.0	0.0	114.0	0.0	114.0		
Channel 2	114.0	0.0	114.0	0.0		0.0	
Channel 3	114.0	0.0			114.0	0.0	
Channel 4	114.0		114.0	0.0	114.0	0.0	
Chamici 4	114.0	0.0	114.0	0.0	114.0	0.0	

Calibration measured with the microphone SVANTEK type SV22 No. 4013604. Calibration factor: -0.4dB

3. LINEARITY TEST* (electrical)

LEVEL METER; Range: 105 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	24.0	30.0	40.0	60.0	80.0	100.0	114.0
Channel 1	Error [dB]	0.24	0.11	0.04	-0.0i	0.00	0.01	0.01
Channel 2	Error [dB]	0.28	0.10	0.04	-0.01	0.00	0.01	0.01
Channel 3	Error [dB]	0.20	0.10	0.04	-0.01	0.00	0.01	0.01
Channel 4	Error [dB]	0.21	0.09	0.04	-0.01	0.00	0.01	0.01

LEVEL METER; Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	45.0	50.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.09	0.07	0.03	0.00	0.01	0.00	0.01
Channel 2	Error [dB]	0.10	0.06	0.03	0.00	0.01	0.00	0.01
Channel 3	Error [dB]	0.03	0.05	0.02	0.01	0.01	0.01	0.02
Channel 4	Error [dB]	0.00	0.04	0.02	0.00	0.01	0.00	0.02

1/3 OCTAVE (1kHz); Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	35.0	40.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.39	0.15	0.03	0.01	0.01	0.00	0.01
Channel 2	Error [dB]	0.37	0.14	0.03	0.01	0.01	-0.00	0.02
Channel 3	Error [dB]	0.23	0.05	0.03	0.00	0.01	0.00	0.02
Channel 4	Error [dB]	0.23	0.03	0.02	0.01	0.01	0.00	0.01

4. TONEBURST RESPONSE' (electrical)

LEVEL METER; Characteristic: A; f sin= 4000 Hz; Burst duration: 2s;

Range: 105dB; Equivalent input steady level = 112dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	l	0.5	0.25
			Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.9	97.9	94.0	91.0	87.9	84.9
		1	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.8	97.9	94.0	90.9	87.9	84.9
		2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
	Fast		Indication [dB]	112.0	111.9	111.0	109.4	107.1	103.7	100.8	97.9	93.9	90.9	87.9	84.8
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.9	97.9	94.0	91.0	87.9	84.9
		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
MAX			Indication [dB]	109.9	108.0	104.6	101.8	98.9	95.0	92.0	89.0	85.0	-	-	-
		1	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	-
			Indication [dB]	109.9	107.9	104.6	101.8	98.9	95.0	92.0	89.0	85.0		-	-
		2	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		-
	Slow		Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9			-
		3	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	-
			Indication [dB]	109.9	108.0	104.6	101.8	98.9	95.0	92.0	89.0	85.0			
		4	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		
			Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	82.0	78.9	75.9
		1	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	81.9	78.9	75.5
-		2	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
SEL	19970		Indication [dB]	111.8	108.9	105.0	102.0	98.9	95.0	92.0	88.9	84.9	81.9	78.9	75.8
		3	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	82.0	78.9	75.5
		4	Errer [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1

Range: 105dB; Equivalent input steady level = 52dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5			
		1	Indication [dB]	52.0	51.9	51.0	49.4	47.2	43.7	40.8	37.9			
		1	Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0			
		_	Indication [dB]	52.0	51.9	51.0	49.4	47.1	43.7	40.8	37.9			
		2	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0			
	Fast	3	Indication [dB]	51.9	51.9	51.0	49.3	47.1	43.6	40.8	37.9			
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0			
		4	Indication [dB]	52.0	51.9	51.0	49.4	47.2	43.7	40.8	37.9			
		4	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	0.0	-0.1	-0.0			
MAX		1	Indication [dB]	49.9	47.9	44.6	41.8	38.9	35.0	32.0	29.0			
		1	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0			
	Slow		Indication [dB]	49.9	47.9	44.6	41.8	38.9	34.9	31.9	29.1			
		2	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.1			
	Slow		Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	29.0			
		3	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	0.0	0.1			
					4	Indication [dB]	49.9	47.9	44.6	41.8	38.9	35.0	32.1	29.0
		4	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	0.0	0.1	0.0			
			Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.1	32.1	29.2			
		1	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	0.2			
	SEL -		Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.0	32.0	29.2			
		2	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	0.2			
SEL		_	Indication [dB]	51.8	48.9	45.0	41.9	38.9	35.0	32.0	29.1			
		3	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	0.1			
			Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.1	32.1	29.1			
		4	Error [dB]	-0.2	0.0	0.0	-0.0	0.0	0.1	0.1	0.1			

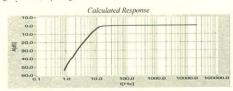
Range: 105dB; Equivalent input steady level = 34dB

Result	Detector	Ch.	Duration [ms]	1000	500
			Indication [dB]	34.1	34.0
		1	Error [dB]	0.0	0.0
		2	Indication [dB]	34.1	33.9
	Fast	- 2	Error [dB]	0.0	-0.0
	rast	3	Indication [dB]	34.0	33.9
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	34.0	33.9
MAX		-	Error [dB]	-0.0	-0.1
MAA		1	Indication [dB]	32.0	30.1
			Error [dB]	-0.1	0.1
		2	Indication [dB]	32.0	30.0
	Slow	- 2	Error [dB]	-0.1	0.1
	Slow	3	Indication [dB]	31.9	29.9
		3	Error [dB]	-0.1	0.1
		4	Indication [dB]	31.9	30.0
		*	Error [dB]	-0.1	0.0
		1	Indication [dB]	33.9	31.2
			Error [dB]	-0.1	0.1
		2	Indication [dB]	33.9	31.1
SEL		2	Error [dB]	-0.1	0.1
SEL	- 1	2	Indication [dB]	33.8	31.1
		3	Error [dB]	-0.2	0.1
		4	Indication [dB]	33.8	31.1
		4	Error [dB]	-0.2	0.0

Range: 130dB; Equivalent input steady level = 134dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
			Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.9
		1	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.9
	Fast	- 2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
	rast	3	Indication [dB]	134.0	133.9	133.0	131.4	129.1	125.7	122.8	119.9	115.9	112.9	109.9	106.8
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.9	119.9	116.0	113.0	109.9	106.9
MAX		4	Error [dB]	-0.0	0.0	0.0	0.0	129.2	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
MAA			Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	-
		1	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
		2	Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0		-	
	Slow	2	Errer [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	(*)	-	-
	Slow	3	Indication [dB]	131.9	129.9	126.5	123.8	120.8	116.9	113.9	110.9	106.9	*	-	
		ે	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	(*)		
		4	Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0		-	
		*	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	-
			Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	104.0	100.9	97.9
		1	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.1	-0.1
		2	Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	103.9	100.9	97.9
SEL		2	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
SEL	-	3	Indication [dB]	133.8	130.9	127.0	124.0	121.0	117.0	114.0	110.9	107.0	103.9	100.9	97.8
		3	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	104.0	100.9	97.9
		*	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1

Range: 130dB; Equivalent input steady level = 74dB


Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5
		1	Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
		1	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.0
			Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
		2	Error [dB]	0.0	0.0	73.0	0.0	-0.0	-0.0	-0.0	0.0
	Fast	3	Indication [dB]	73.9	73.9	73.0	71.3	69.1	65.6	62.8	59.9
		3	Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0
		4	Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
MAX		1	Indication [dB]	71.9	69.9	66.6	63.8	60.9	57.0	54.0	51.0
		1	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
		2	Indication [dB]	71.9	69.9	66.5	63.8	60.9	56.9	54.0	51.0
	CI	1	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	0.0	0.0
	Slow	3	Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	54.0	51.0
		3	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.1
			Indication [dB]	71.9	69.9	66.6	63.8	60.9	57.0	54.0	51.0
		4	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	0.1
			Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.1	51.1
		1	Error [dB]	-0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.1
			Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.0	51.1
om		2	Error [dB]	-0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.1
SEL		3	Indication [dB]	73.8	70.9	67.0	63.9	61.0	57.0	54.0	51.0
		3	Error [dB]	-0.2	-0.0	0.0	-0.0	0.0	0.0	0.0	0.0
			Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.0	51.1
		4	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	0.1

Range: 130dB; Equivalent input steady level = 54dB

Result	Detector	Ch.	Duration [ms]	1000	500
			Indication [dB]	54.1	53.5
		1	Error [dB]	0.0	-0.0
		2	Indication [dB]	54.0	53.9
	Fast	2	Error [dB]	-0.0	-0.0
	rast	3	Indication [dB]	54.0	53.9
		3	Error [dB]	0.1	0.1
		4	Indication [dB]	54.0	54.0
MAX		4	Error [dB]	0.0	0.1
MAA		1	Indication [dB]	52.0	50.0
			Error [dB]	-0.1	0.1
		2	Indication [dB]	51.9	50.0
	Slow	2	Error [dB]	-0.1	0.1
	Slow	3	Indication [dB]	51.9	49.9
			Error [dB]	-0.0	0.1
			Indication [dB]	51.9	50.0
		4	Error [dB]	-0.1	0.1
			Indication [dB]	53.9	51.1
		1	Error [dB]	-0.1	0.1
		2	Indication [dB]	53.9	51.1
SEL		3	Error [dB]	-0.2	0.1
SEL	-		Indication [dB]	53.8	51.0
	3 Error [dB]		Error [dB]	-0.1	0.1
		4	Indication [dB]	53.9	51.1
		4	Error [dB]	-0.1	0.1

6. FREQUENCY RESPONSE (electrical)

LEVEL METER; Filter: Z; Range: 130 dB; Input signal =135 dB;

Measured Response with Preamplifier SV12 (f-frequency, An-attenuation in channel n)

f[Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB
10	3.2	3.2	3.2	3.2	250	0.0	0.0	-0.0	0.0
12.5	1.4	1.4	1.4	1.4	500	0.0	0.0	-0.0	0.0
16	0.5	0.5	0.5	0.5	1000	0.0	0.0	-0.0	0.0
20	0.1	0.1	0.1	0.1	2000	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	4000	0.0	0.0	0.0	0.0
31.5	-0.0	-0.0	-0.0	-0.0	8000	0.0	0.0	0.0	0.0
63	-0.0	-0.0	-0.0	-0.0	16000	0.0	0.0	0.0	-0.0
125	0.0	0.0	-0.0	0.0	20000	-0.0	0.0	0.0	-0.1

All frequencies are nominal center values for the 1/3 octave bands

7. INTERNAL NOISE LEVEL' (electrical)

LEVEL METER; Range: 105 dB, Back-light - off; Calibration factor: 0dB

	Filter	Z	A	C
Channel 1	Level [dB]	14.7	13.3	12.6
Channel 2	Level [dB]	17.4	13.0	12.3
Channel 3	Level [dB]	17.8	11.7	11.1
Channel 4	Level [dB]	14.9	11.8	12.4

^{*} measured with preamplifier SVANTEK type SV12 No. 1771.

VIBRATION LEVEL METER

1. CALIBRATION

(electrical)

LEVEL METER; Filter: HP10; Input signal = 140.0dB (10.0 m/s²), f_{ssn}=79,6Hz

	Range 1	45dB	Range	170dB
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]
Channel 1	139.98	-0.02	140.03	0.03
Channel 2	139.99	-0.01	140.04	0.04
Channel 3	139.98	-0.02	140.04	0.04
Channel 4	139.98	-0.02	140.03	0.03

2. CALIBRATION

(vibrational)

LEVEL METER; Range: 145dB; Input signal: 120dB;

Filter	HPI HPI0		Wd		Wm		Wh			
	Indication [dB]	Error [dB]								
Channel 1	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1
Channel 2	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1
Channel 3	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.7	0.1
Channel 4	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1

Calibration measured with the accelerometer DYTRAN type 3185D No. 2975. Calibration factor: -0.3dB

3. FREQUENCY RESPONSE (electrical)

1/3 OCTAVE; Filter: HP; Range: 170 dB; input=175 dB;

				· recibilité	a respo	me (1-)1e	quency, A	ri-anerui	allon in	nanner	n)			
	A1[dB]	A2[dB]			f[Hz]	AI[dB]	A2 [dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
0.8	0.21	0.21	0.20	0.21	5	0.01	0.01	0.01	0.02	500	0.00	0.00	0.00	0.00
1	0.12	0.12	0.12	0.12	6.3	0.01	0.01	0.01	0.01	1000	0.00	0.00	0.00	0.00
1.25	0.09	0.09	0.09	0.09	8	0.01	0.01	0.01	0.01	2000	0.00	0.00	0.00	0.00
1.6	0.04	0.04	0.04	0.05	16	0.00	0.00	0.00	0.00	4000	0.01	0.02	0.02	0.01
2	0.04	0.04	0.03	0.04	31.5	-0.01	0.00	-0.01	0.00	8000	0.04	0.04	0.05	0.02
2.5	0.02	0.02	0.02	0.03	63	0.00	0.00	0.00	0.00	16000	0.02	0.02	0.04	-0.04
3.15	0.03	0.03	0.03	0.03	125	0.00	0.00	0.00	0.00	20000	-0.01	0.00	0.02	-0.07
4	0.03	0.03	0.03	0.03	250	0.00	0.00	-0.01	0.00				0.04	0.07

All frequencies are nominal center values for the 1/3 octave bands

4. INTERNAL NOISE LEVEL (electrical)

LEVEL METER func.; Range: 145 dB; Back-light - off

	Filter	HPI	HP10	Wd	Wm	Wh
Channel 1	Indication [dB]	54.4	52.1	42.2	39.0	36.5
Channel 2	Indication [dB]	55.0	52.5	42.5	39.0	36.5
Channel 3	Indication [dB]	53.2	50.2	42.7	38.8	36.8
Channel 4	Indication [dB]	54.9	52.7	42.9	39.4	37.1

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
22 °C	31 %	1004 hPa

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
1.	SVANTEK	SVAN 401	100	Signal generator
2.	SVANTEK	SVAN 912A	15900	Sound & Vibration Analyser
3.	KEITHLEY	2000	0910165	Digital multimeter
4.	SVANTEK	SV30A	24563	Acoustic calibrator
5.	SVANTEK	ST02	-	Microphone equivalent electrical impedance (18pF)
6.	DYTRAN	3233A	747	Reference accelerometer

CONFORMITY & TEST DECLARATION

- 1. Herewith Svantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.
- 2. Tracebility of the calibration is guarantied by the above mentioned ISO9001 procedures.
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.
- 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Pawel Bednarczyk

Test date: 2016-09-20

FACTORY CALIBRATION DATA OF THE SVAN 958 No. 59121

SOUND LEVEL METER

1. CALIBRATION

(electrical)

LEVEL METER; Filter: LIN; Input signal =114.0dB, fsin=1kHz

	Range 1	05dB	Range	30dB
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]
Channel 1	113.98	-0.02	114.02	0.02
Channel 2	113.97	-0.03	114.02	0.02
Channel 3	113,97	-0.03	114.02	0.02
Channel 4	113.97	-0.03	114.02	0.02

2. CALIBRATION* (acoustical)

LEVEL METER; Range: 130 dB; Reference frequency: 1000Hz;

Filter	LIN		A		C		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel I	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 2	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 3	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 4	114.0	0.0	114.0	0.0	114.0	0.0	

Calibration measured with the microphone SVANTEK type SV22 No. 4013604. Calibration factor: -0.4dB

3. LINEARITY TEST (electrical)

LEVEL METER; Range: 105 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	24.0	30.0	40.0	60.0	80.0	100.0	114.0
Channel I	Error [dB]	0.32	0.13	0.04	-0.01	0.00	0.01	0.01
Channel 2	Error [dB]	0.29	0.11	0.04	-0.01	0.00	0.01	0.01
Channel 3	Error [dB]	0.25	0.09	0.04	-0.01	0.00	0.01	0.01
Channel 4	Error [dB]	0.35	0.11	0.03	-0.01	-0.00	0.01	0.01

LEVEL METER; Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	45.0	50.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.07	0.09	0.04	0.01	0.01	0.00	0.01
Channel 2	Error [dB]	0.09	0.10	0.04	0.01	0.01	0.00	0.01
Channel 3	Error [dB]	0.00	0.01	0.00	0.01	0.01	0.00	0.01
Channel 4	Error [dB]	-0.02	0.00	0.01	0.01	0.01	0.00	0.01

1/3 OCTAVE (1kHz); Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	35.0	40.0	60.0	80.0	100.0	120.0	135.0
Channel I	Error [dB]	0.32	0.11	0.03	0.00	0.00	-0.01	0.00
Channel 2	Error [dB]	0.34	0.11	0.03	0.00	0.01	0.00	0.01
Channel 3	Error [dB]	0.30	0.07	0.03	0.00	0.01	0.00	0.01
Channel 4	Error [dB]	0.28	0.08	0.04	0.00	0.01	-0.01	-0.00

4. TONEBURST RESPONSE* (electrical)

LEVEL METER; Characteristic: A; f sin= 4000 Hz; Burst duration: 2s;

Range: 105dB; Equivalent input steady level = 112dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
		,	Indication [dB]	111.9	111.9	111.0	109.3	107.1	103.6	100.8	97.9	93.9	90.9	87.8	84.8
		1	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	111.9	111.8	110.9	109.3	107.1	103.6	100.8	97.8	93.9	90.9	87.8	84.8
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
	rast	3	Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.8	97.9	94.0	90.9	87.9	84.9
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
		4	Indication [dB]	111.9	111.9	111.0	109.3	107.1	103.6	100.8	97.9	93.9	90.9	87.8	84.8
MAX		4	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
MAA		,	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9			-
		1	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	*		
		2	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9		3.5	175
	Slow	2	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		(*)	150
	Slow	3	Indication [dB]	110.0	107.9	104.6	101.8	98.9	95.0	92.0	89.0	85.0		-	
		3	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0			-
		4	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9		•	-
		4	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		127
		,	Indication [dB]	111.9	108.9	104.9	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
		1	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	111.9	108.9	104.9	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
SEL		- 2	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
SEL	-	3	Indication [dB]	112.0	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	81.9	78.9	75.9
		3	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
		4	Indication [dB]	111.9	108.9	105.0	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
		4	Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1

Range 105dB; Equivalent input steady level = 52dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5
		1	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.8	37.9
		'	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0
		2	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.7	37.8
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0
	rast	3	Indication [dB]	52.0	51.9	51.0	49.4	47.1	43.7	40.8	37.9
		,	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0
		4	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.8	37.9
MAX		*	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0
MAA		1	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	28.9
		1	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	0.0	-0.0	0.0
		2	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	28.9
	Slow	1 - 1	Error [dB]	0.0	1.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0
	Slow	low 3	Indication [dB]	50.0	47.9	44.6	41.8	38.8	35.0	31.9	29.0
			Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	0.0	-0.0	0.0
		4	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	29.2
		4	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.3
		1	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.1
		1	Errer [dB]	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2
		2	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.0
SEL		- 2	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.1	0.1	0.1
SEL		3	Indication [dB]	52.0	49.0	45.0	42.0	39.0	35.0	32.0	29.1
		3	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.1	0.1	0.2
		4	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.1
		1	Error [dB]	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2

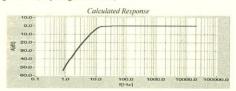
Range: 105dB, Equivalent input steady level = 34dB

Result	Detector	Ch.	Duration [ms]	1000	500
		1	Indication [dB]	34.0	33.9
		ı	Error [dB]	0.0	-0.0
		2	Indication [dB]	34.0	33.9
	Fast	2	Error [dB]	-0.0	0.0
	rast	3	Indication [dB]	34.0	33.9
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	34.0	33.9
MAX		7	Error [dB]	0.0	0.0
MAN		1	Indication [dB]	32.0	30.0
		· ·	Error [dB]	0.0	0.1
		2	Indication [dB]	32.0	30.0
	Slow		Error [dB]	0.0	1.0
	Slow	3	Indication [dB]	32.0	29.9
		3	Error [dB]	0.0	0.1
- 1		4	Indication [dB]	31.9	30.1
1		4	Error [dB]	0.0	0.3
		ī	Indication [dB]	34.0	31.1
- 1		1	Error [dB]	0.0	0.1
		2	Indication [dB]	34.0	31.1
SEL		2	Error [dB]	0.0	0.1
SEL		3	Indication [dB]	34.0	31.1
		3	Error [dB]	0.0	0.1
		4	Indication [dB]	34.0	31.0
		4	Error [dB]	0.0	0.1

Range: 130dB; Equivalent input steady level = 134dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2		0.5	0.25
		1	Indication [dB]	133.9	133.8	132.9	131.3	129.1	125.6	122.8	119.8	115.9	112.9	109.8	106.8
		'	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	133.9	133.8	132.9	131.3	129.1	125.6	122.8	119.8	115.9	112.9	109.8	106.8
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
	1 ast	3	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.9
		-	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.9	133.9	133.0	131.3	129.1	125.6	122.8	119.9	115.9	112.9	109.8	106.8
MAX		- 2	Errer [dB]	0.0	0.0	0.0	0.0	129.1	-0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
		1	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9	-	-	-
			Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	-
		2	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9	-	-	
	Slow	~	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0			
	0.0	3	Indication [dB]	132.0	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	-
			Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
		4	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9			
		- 15	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		
		1	Indication [dB]	133.9	130.9	126.9	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
			Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	133.9	130.9	126.9	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
SEL			Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		3	Indication [dB]	134.0	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	103.9	100.9	97.9
	-		Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.9	130.9	127.0	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
			Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.1	-0.1

Range: 130dB; Equivalent input steady level = 74dB


Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5
			Indication [dB]	73.9	73.8	72.9	71.3	69.1	65.6	62.8	59.8
		1	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
			Indication [dB]	73.9	73.8	72.9	71.3	69.1	65.6	62.8	59.8
		2	Error [dB]	-0.0	0.0	72.9	0.0	-0.0	-0.0	-0.0	0.0
	Fast	3	Indication [dB]	74.0	73.9	73.0	71.4	69.1	65.7	62.8	59.9
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0
			Indication [dB]	73.9	73.9	72.9	71.3	69.1	65.6	62.8	59.8
		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
MAX			Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	54.0	50.9
		1	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0
	2		Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	53.9	51.0
		2	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.1
	Slow	Slow 3	Indication [dB]	72.0	69.9	66.5	63.8	60.9	56.9	54.0	50.9
	3		Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
			Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	53.9	50.9
		4	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
			Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		1	Error [dB]	-0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	0.1
			Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		2	Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0	0.1
SEL	-		Indication [dB]	74.0	71.0	67.0	64.0	61.0	57.0	54.0	51.0
	3	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.0	0.0	0.1	
		- 2	Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		4	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.0	0.0	0.1

Range: 130dB; Equivalent input steady level = 54dB

Result	Detector	Ch.	Duration [ms]	1000	500
			Indication [dB]	54.0	53.9
		'	Error [dB]	0.0	0.1
		2	Indication [dB]	54.0	53.8
	Fast	2	Error [dB]	0.1	-0.0
	rast	3	Indication [dB]	54.0	53.9
		3	Error [dB]	0.0	-0.0
		4	Indication [dB]	53.9	53.9
MAX		4	Error [dB]	-0.0	0.0
MAX			Indication [dB]	52.0	49.9
			Error [dB]	0.0	0.1
	Slow	2	Indication [dB]	52.0	49.9
			Error [dB]	0.0	0.1
		Slow	2	Indication [dB]	52.0
		3	Error [dB]	0.0	0.1
		4	Indication [dB]	51.9	50.0
		*	Error [dB]	-0.0	0.1
		1	Indication [dB]	54.0	51.0
		1	Error [dB]	0.0	0.1
		2	Indication [dB]	54.0	51.0
CEI		2	Error [dB]	0.0	0.0
SEL	(/	3	Indication [dB]	54.0	51.0
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	54.0	51.0
		4	Error [dB]	-0.0	0.0

6. FREQUENCY RESPONSE (electrical)

LEVEL METER; Filter: Z; Range: 130 dB; Input signal =135 dB;

Measured Response with Preamplifier SV12 (f-frequency, An-attenuation in channel n)

f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]	f[Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
10	3.2	3.2	3.2	3.2	250	0.0	-0.0	-0.0	0.0
12.5	1.4	1.4	1.4	1.4	500	0.0	-0.0	0.0	0.0
16	0.5	0.5	0.5	0.5	1000	0.0	0.0	0.0	0.0
20	0.1	0.1	0.1	0.1	2000	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	4000	0.0	0.0	0.0	0.0
31.5	-0.0	-0.0	-0.0	-0.0	8000	0.0	0.0	0.0	0.0
63	-0.0	-0.0	-0.0	-0.0	16000	0.0	0.0	0.0	0.0
125	0.0	-0.0	-0.0	-0.0	20000	0.0	0.0	0.1	0.0

All frequencies are nominal center values for the 1/3 octave bands

7. INTERNAL NOISE LEVEL' (electrical)

LEVEL METER; Range: 105 dB; Back-light - off; Calibration factor: 0dB

	Filter	Z	A	C
Channel I	Level [dB]	14.2	11.6	11.8
Channel 2	Level [dB]	13.2	10.7	10.8
Channel 3	Level [dB]	13.9	11.2	11.8
Channel 4	Level [dB]	14.0	11.4	11.3

* measured with preamplifier SVANTEK type SV12 No. 1771.

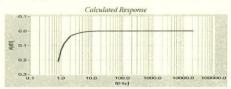
VIBRATION LEVEL METER

1. CALIBRATION (electrical)

LEVEL METER; Filter: HP10; Input signal =140.0dB (10.0 m/s²), f_{sin}=79,6Hz

	Range 1	45dB	Range 170dB		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel 1	139.99	-0.01	140.03	0.03	
Channel 2	139.98	-0.02	140.02	0.02	
Channel 3	139.98	-0.02	140.03	0.03	
Channel 4	139.98	-0.02	140.02	0.02	

2. CALIBRATION (vibrational)


LEVEL METER; Range: 145dB; Input signal: 120dB;

Filter	HPI		HP1	HP10		Wd			Wh	
	Indication [dB]	Error [dB]								
Channel 1	119.8	-0.2	119.8	-0.2	106.0	-0.2	102.2	0.1	110.7	0.1
Channel 2	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110,7	0.1
Channel 3	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.6	0.1
Channel 4	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.7	0.1

Calibration measured with the accelerometer DYTRAN type 3185D No. 2975. Calibration factor: -0.3dB

3. FREQUENCY RESPONSE (electrical)

1/3 OCTAVE; Filter: HP; Range: 170 dB; input=175 dB;

Measured Response (f-frequency, An-attenuation in channel n)

						0.0	1				*			
f[Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]	f[Hz]	A1[dB]	A2 [dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
0.8	0.18	0.19	0.18	0.18	5	0.01	0.01	0.01	0.01	500	-0.01	-0.01	-0.01	-0.01
-1	0.13	0.13	0.13	0.13	6.3	-0.00	-0.00	-0.00	-0.00	1000	-0.01	-0.00	-0.01	-0.00
1.25	0.08	0.08	0.07	0.08	8	-0.00	-0.00	-0.00	-0.00	2000	-0.01	-0.00	-0.01	-0.00
1.6	0.06	0.07	0.06	0.06	16	-0.01	-0.00	-0.01	-0.00	4000	-0.00	0.01	-0.00	0.01
2	0.04	0.05	0.04	0.05	31.5	-0.01	-0.01	-0.01	-0.01	8000	0.03	0.04	0.03	0.03
2.5	0.01	0.02	0.01	0.02	63	-0.01	-0.00	-0.01	-0.00	16000	0.01	0.02	0.03	0.02
3.15	-0.00	-0.00	-0.00	-0.00	125	-0.01	-0.01	-0.01	-0.01	20000	0.01	0.02	0.04	0.03
4	-0.00	0.01	-0.00	0.01	250	-0.01	-0.01	-0.01	-0.01					

All frequencies are nominal center values for the 1/3 octave bands

4. INTERNAL NOISE LEVEL (electrical)

LEVEL METER func.; Range: 145 dB; Back-light - off

	Filter	HP1	HP10	Wd	Wm	Wh
Channel 1	Indication [dB]	53.7	51.0	42.4	39.4	36.2
Channel 2	Indication [dB]	54.8	52.5	42.5	38.5	36.3
Channel 3	Indication [dB]	53.0	50.3	42.7	39.4	36.9
Channel 4	Indication [dB]	54.8	52.6	42.7	39.1	36.7

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure		
22 °C	31 %	1004 hPa		

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
1.	SVANTEK	SVAN 401	100	Signal generator
2.	SVANTEK	SVAN 912A	15900	Sound & Vibration Analyser
3.	KEITHLEY	2000	0910165	Digital multimeter
4.	SVANTEK	SV30A	24563	Acoustic calibrator
5.	SVANTEK	ST02		Microphone equivalent electrical impedance (18pF)
6.	DYTRAN	3233A	747	Reference accelerometer

CONFORMITY & TEST DECLARATION

- 1. Herewith Svantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.
- 2. Tracebility of the calibration is guarantied by the above mentioned ISO9001 procedures.
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.
- 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Pawel Bednarczyk P.M.

P.m

Test date: 2016-09-20

CALIBRATION CERTIFICATE

Certificate Informati	on	A STATE OF THE		Market	
Date of Issue	7-May-2018		Certificate	Number	MLCN180789S
Customer Informatio	n				TO BEAT
Company Name Address	Wilson Accous Unit 601, Block Yuen Shun Cire Shatin, N. T., Hong Kong	A, Shatin Industrial Co	ntre,		
Equipment-under-Te	est (EUT)	ROSENSON.			
Description Manufacturer Model Number Serial Number Equipment Number	Sound & Vibra Svantek SVAN 959 11228	tion Analyser			
Calibration Particula	ır		的 是 "我对于是		
Date of Calibration Calibration Equipment	7-May-2018 4231(MLTE00	8) / PA160059 / 20-May	r-2018	,	
Calibration Procedure	MLCG00, ML	CG15			
Calibration Conditions	Laboratory	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours 10 minutes Internal battery		
Calibration Results	Contract Con	a were detailed in the co results were within EUT	and the second second second second		

Approved By & Date

K.O. Lo

7-May-2018

- Calibration equipment used for this calibration are traceable to national / international standards.
- * The results on this Calibration Certificate only relate to the values measured at the time of the calibration and the uncertainties quoted will not include allowance for the EUT long term drift, variation with environmental changes, vibration and shock during transportation, overloading, mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.
- MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.
 The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the prior written approval of MaxLab Calibration Centre Limited.

Page 1 of 2

Certificate No.

MLCN180789S

Calibration Data Weighting / Time	Range	EUT Reading	Standard Reading	E	UT I	Error	Calibration Uncertainty			EUT cificati	ion
A / FAST	LOW	93.9 dB	94.0 dI	3 -(0.1	dB	0.2 dI	3	±	0.7	dB
(1 kHz Input)		113.9 dB	114.0 dI	3 -(0.1	dB	0.2 dl	3	±	0.7	dB
	HIGH	94.0 dB	94.0 dI	3 (0.0	dB	0.2 dl	3	±	0.7	dB
		113.9 dB	114.0 dI	3 -(0.1	dB	0.2 dl	3	±	0.7	dB
C / FAST	LOW	94.0 dB	94.0 dI	3 (0.0	dB	0.2 dl	В	±	0.7	dB
(1 kHz Input)		113.9 dB	114.0 dI	3 -	0.1	dB	0.2 dl	В	±	0.7	dB
	HIGH	94.0 dB	94.0 dl	3	0.0	dB	0.2 dl	В	±	0.7	dB
		113.9 dB	114.0 dl	3 -	0.1	dB	0.2 dl	В	±	0.7	dB
Z / FAST	LOW	94.0 dB	94.0 dl	3	0.0	dB	0.2 dl	В	±	0.7	dB
(1 kHz Input)		113.9 dB	114.0 dl	3 -	0.1	dB	0.2 dl	В	±	0.7	dB
	HIGH	94.0 dB	94.0 dl	3	0.0	dB	0.2 d	_	±	0.7	dB
		113.9 dB	114.0 dl	3 -	0.1	dB	0.2 d	В	±	0.7	dB
A / SLOW	LOW	93.9 dB	94.0 dl	3 -	0.1	dB	0.2 d	_	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 dl	3 -	0.1	dB	0.2 d	_	±	0.7	dB
C / SLOW	LOW	94.0 dB	94.0 dl	3	0.0	dB	0.2 d	В	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 dl	3 -	0.1	dB	0.2 d	В	土	0.7	dB
Z / SLOW	LOW	94.0 dB	94.0 dl	3	0.0	dB	0.2 d	-	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 d	3 -	0.1	dB	0.2 d	_	±	0.7	dB
A / IMPULSE	LOW	93.9 dB	94.0 d	3 -	0.1	dB	0.2 d	_	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 d	3 -	0.1	dB	0.2 d	_	±	0.7	dB
C / IMPULSE	LOW	94.0 dB	94.0 d	3	0.0	dB	0.2 d	_	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 d	3 -	0.1	dB	0.2 d	В	±	0.7	dB
Z / IMPULSE	LOW	94.0 dB	94.0 d	3	0.0	dB	0.2 d	В	±	0.7	dB
(1 kHz Input)	HIGH	113.9 dB	114.0 d	3 -	0.1	dB	0.2 d	В	\pm	0.7	dB

- END -

Calibrated By:

Date:

Dan 7-May-2018

Date:

Checked By:

K.O. Lo 7-May-2018

Page 2 of 2

CALIBRATION CERTIFICATE

Certificate Information				NE CHIOCOST
Date of Issue	5-Mar-2018		Certificate Nu	mber MLCN180297S
Customer Informatio	n			
Company Name	Wilson Accoust	ics Limited		
Address	Unit 601, Block	A, Shatin Industrial Co	entre,	
	Yuen Shun Circ	uit,		
	Shatin, N. T.,			
	Hong Kong			
Equipment-under-Te	st (EUT)			
Description	Acoustic Calibr	ator		
Manufacturer	Svantek			
Model Number	SV 30A			
Serial Number	29088			
Equipment Number				
Calibration Particula	r			STATE OF STATE
Date of Calibration	5-Mar-2018			
Calibration Equipment	4231(MLTE008	3) / PA160059 / 20-May	7-18	
1 1	1351(MLTE049) / MLEC17/06/02 / 6-	Jun-18	
Calibration Procedure	MLCG00, MLC	CG15		
Calibration Conditions	Laboratory	Temperature	23 °C ± 5 °C	
		Relative Humidity	55% ± 25%	
	EUT	Stabilizing Time	Over 3 hours	
		Warm-up Time	Not applicable	
		Power Supply	Internal battery	
Calibration Results		were detailed in the co	1 0	
	All calibration r	results were within EUT	specification.	
Approved By & Date				
			K.O. Lo	5-Mar-201
Statements	1000	18 (S) 18 (S) 45 (S)		
* Calibration equipment used				
			t the time of the calibration and the	
mishandling, misuse, and th			hanges, vibration and shock during	transportation, overloading,
			resulting from the use of the EUT.	
* The copy of this Certificate	is owned by MaxLab	Calibration Centre Limited.	No part of this Certificate may be	
written approval of MaxLab	Calibration Centre L	imited.		

Page 1 of 2

Certificate No.

MLCN180297S

libration Da	ta									
EUT Setting		Standard Read	ding	EUT Er	ror	Calibrati Uncertain	100000		EUT cificat	ion
94	dB	93.7 dI	В	0.3	dB	0.15	dB	±	0.3	dI
114	dB	113.7 dF	R	0.3	dB	0.15	dB	±	0.3	d

- END -

Calibrated By:

Date:

Patrick 5-Mar-18 Checked By:

K.O. Lo 5-Mar-18

Date:

Page 2 of 2

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C181756

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0613)

Date of Receipt / 收件日期: 20 March 2018

Description/儀器名稱

Sound Calibrator

Manufacturer/製造商

Rion

Model No. / 型號 Serial No. / 編號

NC-74 34984065

Supplied By / 委託者

Gammon Construction Limited

28/F., Devon House, Taikoo Place, 979 King's Road, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

5 April 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies

- Rohde & Schwarz Laboratory, Germany

- Fluke Everett Service Center, USA

Tested By

測試

K/C Lee

Certified By 核證

H C Chan Engineer

Date of Issue 簽發日期

10 April 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory 本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Fax/傳真: (852) 2744 8986 Tel/電話: (852) 2927 2606

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited **Calibration & Testing Laboratory**

Certificate of Calibration 校正證書

Certificate No.: C181756

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

3. Test equipment:

> Equipment ID CL130 **CL281** TST150A

Description Universal Counter Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No. C173864 PA160023 C181288

Test procedure: MA100N. 4.

5. Results:

Sound Level Accuracy 5.1

UUT Nominal Value	Measured Value (dB)	Mfr's Spec.	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

Frequency Accuracy 5.2

UUT Nominal Value (kHz)	Measured Value (kHz)	Mfr's Spec.	Uncertainty of Measured Value (Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited **Calibration & Testing Laboratory**

Certificate of Calibration 校正證書

Certificate No.: C181757

 $(50 \pm 25)\%$

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0613)

Date of Receipt / 收件日期: 20 March 2018

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NL-31 00593586

Supplied By / 委託者

Gammon Construction Limited

28/F., Devon House, Taikoo Place, 979 King's Road, Hong Kong

TEST CONDITIONS/測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 : $(23 \pm 2)^{\circ}$ C

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

5 April 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- Agilent Technologies / Keysight Technologies

- Rohde & Schwarz Laboratory, Germany

- Fluke Everett Service Center, USA

Tested By 測試

C Lee igineer

H C Chan

Date of Issue

10 April 2018

Certified By 核證

Engineer

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 一 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Sun Creation Engineering Limited
Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C181757

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration was performed before the test.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID CL280 CL281

<u>Description</u>
40 MHz Arbitrary Waveform Generator
Multifunction Acoustic Calibrator

Certificate No. C180024 PA160023

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

UUT Setting			Applied	l Value	UUT	IEC 61672 Class 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	L	A	Fast	94.00	1	93.6	± 1.1

6.1.2 Linearity

	UUT Setting			Applied	Value	UUT	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 120	LA	A	Fast	94.00	1	93.6 (Ref.)	
				104.00		103.6	
				114.00		113.6	

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

UUT Setting			Applied	Value	UUT	IEC 61672 Class 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	93.6	Ref.
			Slow			93.6	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 89

Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 2 of 3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C181757

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

veignting		T Setting		Applied Value		UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
0 - 120	LA	A	Fast	94.00	63 Hz	67.2	-26.2 ± 1.5
					125 Hz	77.3	-16.1 ± 1.5
					250 Hz	84.8	-8.6 ± 1.4
					500 Hz	90.3	-3.2 ± 1.4
					1 kHz	93.6	Ref.
					2 kHz	94.9	$+1.2 \pm 1.6$
					4 kHz	94.7	$+1.0 \pm 1.6$
					8 kHz	92.6	-1.1 (+2.1; -3.1)
					12.5 kHz	89.7	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

C-Weighting		T Setting		Applied Value		UUT	IEC 61672 Class 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	$L_{\mathbf{C}}$	C	Fast	94.00	63 Hz	92.7	-0.8 ± 1.5
	-0				125 Hz	93.4	-0.2 ± 1.5
					250 Hz	93.6	0.0 ± 1.4
					500 Hz	93.6	0.0 ± 1.4
					1 kHz	93.6	Ref.
				100	2 kHz	93.5	-0.2 ± 1.6
					4 kHz	92.9	-0.8 ± 1.6
					8 kHz	90.7	-3.0 (+2.1; -3.1)
					12.5 kHz	87.9	-6.2 (+3.0; -6.0)

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 316111

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 H

 $\begin{array}{lll} : 63 \ Hz - 125 \ Hz & : \ \pm 0.35 \ dB \\ 250 \ Hz - 500 \ Hz & : \ \pm 0.30 \ dB \\ 1 \ kHz & : \ \pm 0.20 \ dB \\ 2 \ kHz - 4 \ kHz & : \ \pm 0.35 \ dB \\ 8 \ kHz & : \ \pm 0.45 \ dB \\ \end{array}$

12.5 kHz : ± 0.70 dB 104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note: Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C181756

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-0613)

Date of Receipt / 收件日期: 20 March 2018

Description / 儀器名稱

Sound Calibrator

Manufacturer / 製造商

Rion

Model No. / 型號 Serial No. / 編號

NC-74 34984065

Supplied By / 委託者

Gammon Construction Limited

28/F., Devon House, Taikoo Place, 979 King's Road, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

5 April 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

Certified By 核證

H C Chan

Date of Issue 簽發日期

Website/網址: www.suncreation.com

10 April 2018

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C181756

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A Description
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C173864 PA160023 C181288

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.3	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value	
(kHz)	(kHz)	Spec.	(Hz)	
1	1.000	1 kHz ± 1 %	± 1	

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Tel/電話: (852) 2927 2606

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate, This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. :

C172620

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-1051)

Date of Receipt / 收件日期: 10 May 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商 Model No./型號

Rion NL-52

Serial No. / 編號

00564841

Supplied By / 委託者

Gammon E&M Limited

(E&M Svc) 28/F., Devon House, Taikoo Place, 979 King's Road,

Quarry Bay, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 : (55 ± 20)%

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

16 May 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Fluke Everett Service Center, USA
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany

Tested By 測試

Technical Officer

Certified By 核證

K C Lee Engineer Date of Issue 簽發日期

17 May 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本讀書所載校正用之測試器材均可溯源至國際標準。局部複印本讀書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C172620

證書編號

- Ι. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280 CL281

Description

Certificate No.

40 MHz Arbitrary Waveform Generator

C170048

Multifunction Acoustic Calibrator

PA 160023

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class Spec.
30 - 130	LA	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting		Applie	d Value	UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 130	L_A	A	Fast	94.00	1	94.0 (Ref.)	
				104.00		104.1	
				114.00		114.1	

IEC 61672 Class | Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

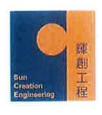
6.2 Time Weighting

	UUT Setting			Applie	d Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class Spec.
30 - 130	L_A	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory


c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 校正及檢測實驗所

c/o 香港新界屯門與安里一號青山灣機樓四樓 Tel/電話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C172620

證書編號

Frequency Weighting 6.3

A-Weighting 6.3.1

-weighting		Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class Spec. (dB)
30 - 130	L _A	Α	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.8	-3.2 ± 1.4
					l kHz	94.0	Ref.
					2 kHz	95.2	+1.2 ± 1.6
					4 kHz	95.0	+1.0 ± 1.6
					8 kHz	93.0	-1.1 (+2.1; -3.1)
			_		12.5 kHz	89.6	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UUT Setting		Applied Value		UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec (dB)
30 - 130	Lc	С	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
20 .20	(125 Hz	93.8	-0.2 ± 1.5
	1				250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					l kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.1	-3.0 (+2.1; -3.1)
					12.5 kHz	87.6	-6.2 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. :

C172620

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 09479

- Mfr's Spec. : IEC 61672 Class I

- Uncertainties of Applied Value: 94 dB : 63 Hz - 125 Hz $: \pm 0.35 dB$

> 250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz - 4 kHz $: \pm 0.35 dB$ 8 kHz $: \pm 0.45 \, dB$ 12.5 kHz $: \pm 0.70 \text{ dB}$

104 dB: 1 kHz $\pm 0.10 \, dB \, (Ref. 94 \, dB)$ 114 dB 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

⁻ The uncertainties are for a confidence probability of not less than 95 %.

Appendix A2b – Calibration Certificates (Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs)

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

16CA0914 02-01

Page

2

Item tested

Description:

Sound Level Meter (Type 1) B & K Microphone B & K Preamp B & K

of

Manufacturer: Type/Model No.: Serial/Equipment No.:

2250 2551242

4189 2985292 ZC0032

Adaptors used:
Item submitted by

Customer Name:

MTR Corporation

Address of Customer:

8/F, Fo Tan Railway House, Fo Tan, N.T. Hong Kong

Request No.: Date of receipt:

14-Sep-2016

Date of test:

19-Sep-2016

Reference equipment used in the calibration

Description:

ator

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator Model: B&K 4226 DS 360 DS 360

2288444 33873 61227

18-Jun-2017 18-Apr-2017 18-Apr-2017 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1000 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997
and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

eng Jun Qi

Actual Measurement data are documented on worksheets.

Huang Jia

Approved Signatory:

Date:

19-Sep-2016

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co , Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港货竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA0914 02-01

Page

of

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 19-Sep-2016 End -

Checked by:

Date:

Lam Tze Wai 19-Sep-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to required accuracy level.

© Soils & Malerials Engineering Co., Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No :

16CA1025 02-03

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp

Manufacturer: Type/Model No.: B&K 2250

B&K 4189

B&K ZC0032

Serial/Equipment No.: Adaptors used:

2551244

2550229

5051

Item submitted by

Customer Name:

MTR Corporation

Address of Customer:

8/F, Fo Tan Railway House, Fo Tan, N.T. Hong Kong

Request No .:

Date of receipt:

25-Oct-2016

Date of test:

26-Oct-2016

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator

B&K 4226 DS 360 DS 360

2288444 33873

61227

18-Jun-2017 18-Apr-2017 18-Apr-2017

CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

22 + 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2. replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Hwang Jian Wiln/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

27-Oct-2016

Company Chop:

Comments: The results reported in this pertificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港 黄竹 坑 道 3 7 號 利 建 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA1025 02-03

Page

of

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
3	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip
Date: 26-Oct-2016

End -

Lam Tze Wai

Date:

Checked by:

27-Oct-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co , Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0902 02-02

Page

1

2

Item tested

Description:

Sound Level Meter (Type 1) B & K Microphone

Preamp B & K

of

Manufacturer: Type/Model No.:

В & К 2250 B & K 4950

ZC0032

Serial/Equipment No.: Adaptors used:

2718890

2827088

24967

Item submitted by

Customer Name:

Anewr Consulting Limited

Address of Customer:

Unit 517, 5/F Tower A, Regent Centre, 63 Wo Yip Hop Road, Kwai Chung

Request No.:

Date of receipt:

02-Sep-2017

Date of test:

09-Sep-2017

Reference equipment used in the calibration

Description:

Model: B&K 4226 Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator

DS 360 DS 360 2288444 33873

61227

08-Sep-2018 25-Apr-2018 01-Apr-2018 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

09-Sep-2017

Company Chop:

综合試驗 综合試驗 有限公司 。 第705 * OLI L

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0902 02-02

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Calf ganarated paigs	A	Pass	0.3	
Self-generated noise	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Lilleality larige for Leq	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
requeries weightings	Ĉ	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
Time treigitimige	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
3 3	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
5,5,15255,00,151	Leq	Pass	0.4	

Acoustic tests 2.

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

Response to associated sound calibrator 3,

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Checked by:

Date: 09-Sep-2017

ung Chi Yip 09-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港货竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	16CA1025 02-01		Page	1	of	2
Item tested			THE PERSON NAMED IN COLUMN TO A STATE OF THE PERSON NAMED IN COLUMN TO STATE OF THE PERSON NAMED	•		
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Mete B & K 2250-L 2741137	er (Type 1)	Microphone B & K 4189 2680937		Preamp B & K ZC0032 14982	
Item submitted by	* We was and are arrived and	THE ROLL SELECTION CO. IN CO. S. CO.			* -	
Customer Name: Address of Customer: Request No.: Date of receipt:	MTR Corporation 8/F., Fo Tan Raily - 25-Oct-2016	vay House, Fo Tan, N.	T., Hong Kong			
Date of test:	26-Oct-2016	entellett att gifte plan mit i sod et it et stadet entermennen i in delen delenfer i in et sentre gebreite				
Reference equipment	used in the calib	ration			dender fahrend ennand gert yn	A section () p
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227	Expiry Date: 18-Jun-2017 18-Apr-2017 18-Apr-2017		Traceable CIGISMED CEPREI CEPREI	
Ambient conditions	* V * 1		TO THE PARTY OF TH		**************	- 14.10.4
Temperature: Relative humidity: Air pressure:	22 ± 1 °C 55 ± 10 % 1005 ± 5 hPa					

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jiar Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

27-Oct-2016

Company Chop:

SENGIMERORS AND THE SENGIAL A

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港货竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

16CA1025 02-01

Page

0

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
· - ·	C	Pass	8.0	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	
Donnana ta associata	d agoing dealth age.			

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by

Fung Chi Yip 26-Oct-2016 2000 20 80

Checked by:

Date:

Lam Tze Wai

Date:

2016

27-Oct-2016

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co . Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-1522)

Date of Receipt / 收件日期: 30 June 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2250-L 2701830

Serial No./編號 Supplied By / 委託者

ANewR Consulting Limited

Unit 517, 5/F., Tower A, Regent Centre,

63 Wo Yi Hop Road, Kwai Chung, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

11 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C Lee

Engineer

Certified By

核證

H C Chan

Engineer

Date of Issue 簽發日期

12 July 2017

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator

Multifunction Acoustic Calibrator

C170048

PA160023

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT Setting		Applie	d Value	UUT Reading
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT S	UUT Setting		Applied Value		IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT Setting		Applied Value		UUT Reading	
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)	
		104.00	1 -	104.0	
		114.00		114.0	

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

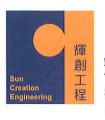
證書編號

6.2 Time Weighting

UUT Setting		Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)	1		94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting


UUT Setting Applie		d Value	UUT Reading	IEC 61672 Class 1 Spec.	
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.8	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
			4 kHz	94.9	$+1.0 \pm 1.6$
		1	8 kHz	92.5	-1.1(+2.1; -3.1)
			12.5 kHz	89.5	-4.3(+3.0; -6.0)

6.3.2 C-Weighting

UUT S	UUT Setting		Applied Value		IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5
			125 Hz	93.8	-0.2 ± 1.5
			250 Hz	94.0	0.0 ± 1.4
			500 Hz	94.0	0.0 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	93.8	-0.2 ± 1.6
			4 kHz	93.1	-0.8 ± 1.6
			8 kHz	90.7	-3.0 (+2.1; -3.1)
			12.5 kHz	87.5	-6.2 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載核正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

Remarks: - UUT Microphone Model No.: 4950 & S/N: 2678779

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0615 01-01

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp

Manufacturer: Type/Model No.:

Adaptors used:

B&K 2250-L **B&K** 4950

B&K ZC0032

Serial/Equipment No.:

2718884

2698644

13482

Item submitted by

Customer Name:

Anewr Consulting Limited

Address of Customer:

Unit 517, 5/F Tower A, Regent Centre, 63 Wo Yip Hop Road, Kwai Chung

Request No .:

Date of receipt:

15-Jun-2017

Date of test:

26-Jun-2017

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444

17-Jun-2018

CIGISMEC

Signal generator

DS 360

33873 61227

25-Apr-2018 01-Apr-2018 **CEPREI** CEPREI

Ambient conditions

Temperature:

23 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

27-Jun-2017

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0615 01-01

Page

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
lest.	Subtest.	Otatao.	oncortainty (ab)	
Self-generated noise	A	Pass	0.3	
3 3	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
September 1 Septem	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	A C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
(1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPĽ	Pass	0.3	
	Leq	Pass	0.4	
	₩			

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
and problems of the second of the second related to the second re	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Lai Sheng Jie 26-Jun-2017

Checked by:

Date:

Fung Chi Yip 27-Jun-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0114 02-02

Page

1

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp

of

Manufacturer: Type/Model No.: В & К 2250-L B & K 4950 2678777 B & K ZC0032 12538

Serial/Equipment No.: Adaptors used:

2701819

-

-

Item submitted by

Customer Name:

Anewr Consulting Limited

Address of Customer:

Unit 517, 5/F Tower A, Regent Centre, 63 Wo Yip Hop Road, Kwai Chung

Request No.:

Date of receipt:

14-Jan-2017

Date of test:

18-Jan-2017

Reference equipment used in the calibration

Description:

tion:

Model: B&K 4226 Serial No.

Expiry Date: 18-Jun-2017

Traceable to:

Multi function sound calibrator Signal generator

DS 360 DS 360 2288444 33873 61227

18-Apr-2017 18-Apr-2017 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

Signal generator

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

19-Jan-2017

Company Chop:

SENGINECOLUMN (ROLLING COMMANDE COMMAN

H<u>uang</u> Jian Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0114 02-02

Page

2

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

T4-	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Test:	Suprest.	Otatus.		
Self-generated noise	Α	Pass	0.3	
och generatea nelee	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Emounty range for any	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
, , , , , , , , , , , , , , , , , , , ,	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
CTOOUG ITIMOSTIC	Leq	Pass	0.4	

Acoustic tests 2,

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Coverage
Factor

Response to associated sound calibrator 3,

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 8-Jan-2017 End

Checked by:

Lam Tze Wai

19-Jan-2017 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Manufacturer Calibration Certificate

The following instrument has been tested and calibrated to the manufacturer specifications. The calibration is traceable in accordance with ISO/IEC 17025 covering all instrument functions.

• Device Type: M2230 Measurement Microphone

consisting of

MA220 Serial Number: 6240 Capsule Serial Number: 9498

• Certificate Issued: 10 January 2017

• Certificate Number: 42745-6240-M2230

Results: PASSED

(for detailed report see next page)

Tested by: M.Frick

Signature:

Stamp: In alten Riet 102

Li\f 9494 Schaan www.nti-audio.com Date: 10 January 2017

Calibration of: M2230 Measurement Microphone

MA220 Serial Number: 6240 Capsule Serial Number: 9498

Detailed Calibration Test Results:

Frequency response:

Class 1 acc. IEC 61672

Sensitivity @ 1 kHz, 114 dBSPL		actual 43.3 mV/Pa	uncertainty ¹ ±2.85%
Test Conditions:	Temperature:	27.2 °C	±0.5 °C

Calibration Equipment Used:

Norsonic Sound Calibrator, Type 1251, S/No. 30930
 Last Calibration: 05.12.2016, Next Calibration: 05.12.2018
 Calibrated by Metas, Switzerland

Relative Humidity:

Air Pressure:

- NTi Audio FX100, S/No. 11094
 Last Calibration: 16.08.2016, Next Calibration: 16.08.2017
 Calibrated by NTi Audio meeting product specifications
- MTG MV203, S/No. 0630 / Mic Capsule, MK221 S./No. 16502 Last Calibration: 30.11.2015, Next Calibration: 30.11.2017 Calibrated by MTG, Germany

calibration

±2%

±0.25 kPa

39.5 %

95.94 kPa

¹ The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k=2, providing a level of confidence of approximately 95%. The uncertainty evaluation has been carried out in accordance with the regulations of the GUM.

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0524 04-04

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: B & K 4231

Serial/Equipment No.:

1858983

Adaptors used:

Item submitted by

Curstomer:

MTR Corporation Ltd.

Address of Customer:

Request No. Date of receipt:

24-May-2018

Date of test:

25-May-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

 $50 \pm 10 \%$

Air pressure: 1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
- 2 The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate

lun Qi

Feng

Approved Signatory:

Date:

28-May-2018

Company Chop:

Comments: The results reported in this ce/tificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP156-1/Issue 1/Rev.D/01/03/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0524 04-04

Page:

2

of

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 μPa)
Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.86	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.010 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency =999.84 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Fung Chi Yip 25-May-2018

Checked by:

Date:

Shek Kwong Tat 28-May-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP156-2/Issue 1/Rev C/01/05/2005

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0524 04-03

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: B & K 4231

Serial/Equipment No.: Adaptors used:

2725557

Item submitted by

Curstomer:

MTR Corporation Ltd.

Address of Customer:

Request No.: Date of receipt:

24-May-2018

Date of test:

25-May-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3 The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate

Approved Signatory:

Date: 28-May-2018

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0524 04-03

Page:

of

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 μPa)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Silowii	Level Setting	Sound Flessule Level	
Hz	dB	dB	dB
1000	94.00	93.94	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.015 dB

Estimated expanded uncertainty

0.005 dB

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency =1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4. Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

End

Fung Chi Yip \ 25-May-2018

Checked by:

Date:

Shek Kwong Tat 28-May-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev C/01/05/2005

Αį	ppendix A3 –	Fixed Plant N	oise Summary	<i>(</i>	

Appendix A3 Result Summary Table

				Louvr	e Size			Measured	Average	Difference	Background	A	Calaviata
Source ID	Louvre ID	Plant / Louvre	Method ⁽¹⁾	Width (mm)	Height (mm)	Measurement Distance(m)	Measurement Box Area (S)	Noise Level L _{Aeq} [dB(A)]	Background LAeq [dB(A)]	LAeq [dB(A)]	Corrected Measured LAeq [dB(A)]	Area Corr.	Calculate d SWL
	WKP-U1-E6PN-03A Section 1	Louvre	3	28200	4600	3	631.3	56.2	52.5	3.7	53.8	28.0	82
	WKP-U1-E6PN-03A Section 2	Louvre	3	21950	6500	3	592.1	55.0	52.5	2.5	52.0	27.7	80
WIZD	WKP-U1-E6PN-06A	Louvre	3	5600	10920	0.25	78.4	52.9	51.6	1.3	49.9	18.9	69
WKP	WKP-U1-E6PN-04A	Louvre	3	18900	9285	1	300.2	60.6	57.3	3.3	57.9	24.8	83
	WKP-E6PVS-02	Louvre	3	3000	5400	0.5	36.0	53.7	54.5	-0.8	50.7	15.6	66
	WKP-U1-E6PN-09	Louvre	3	1600	5000	0.5	24.2	63.0	61.4	1.6	60.0	13.8	74
EAA	WKT-VS3N-1	Louvre	3	51365	4430	1	462.7	56.0	52.7	3.3	53.3	26.7	80
	WKT-VS3-1	Louvre	3	3000	1500	1	34.5	55.0	54.4	0.6	52.0	15.4	67
	WKT-VS3-2	Louvre	3	1000	3000	1	31.0	55.0	55.5	-0.5	52.0	14.9	67
	WKT-VS3-3	Louvre	3	4570	3400	1	59.4	57.0	53.7	3.3	54.3	17.7	72
	WKT-VS3-4	Louvre	3	5540	23780	1	261.0	51.0	50.2	0.8	48.0	24.2	72
VS3	WKT-VS3-5	Louvre	3	24350	2500	1	125.6	51.0	49.7	1.3	48.0	21.0	69
	WKT-VS3-6A	Louvre	3	2360	2500	1	37.3	53.0	51.5	1.5	50.0	15.7	66
	WKT-VS3-6B	Louvre	3	2784	2500	1	40.1	54.0	51.4	2.6	51.0	16.0	67
	WKT-VS3-7	Louvre	3	685	2500	1	26.5	54.0	51.6	2.4	51.0	14.2	65
	WKT-VS3-8	Louvre	3	3330	2500	1	43.6	53.0	51.7	1.3	50.0	16.4	66
	WKT-VS2E-1	Louvre	3	12000	6000	1	156.0	53.0	52.9	0.1	50.0	21.9	72
VS2E	WKT-VS2E-2	Louvre	3	6244	5965	1	98.1	52.0	51.7	0.3	49.0	19.9	69
	WKT-VS2E-3	Louvre	3	5139	6028	1	87.6	53.0	50.8	2.2	50.0	19.4	69
	WKT-VS4-1	Louvre	3	28535	2185	1	134.2	60.0	56.7	3.3	57.3	21.3	79
VS4	WKT-VS4-3	Louvre	3	11020	4505	1	123.7	55.0	54.4	0.6	52.0	20.9	73
	WKT-VS4-4	Louvre	3	38730	2485	1	190.2	54.0	59.1	-5.1	51.0	22.8	74
	WKT-VS5-1	Louvre	3	17988	2617	1	99.5	53.0	52.9	0.1	50.0	20.0	70
VS5	WKT-VS5-2	Louvre	3	25373	3880	1	227.5	69.0	55.8	13.2	68.8	23.6	92
	WKT-VS5-4	Louvre	3	9383	4500	1	115.0	61.0	59.8	1.2	58.0	20.6	79
	WKT-VS2W-1	Louvre	3	10600	4892	1	98.6	58.0	55.6	2.4	55.0	19.9	75
	WKT-VS2W-2A	Louvre	3	4700	1200	1	41.2	55.0	54.7	0.3	52.0	16.1	68
VS2W	WKT-VS2W-2B	Louvre	3	4700	1200	1	41.2	57.0	55.4	1.6	54.0	16.1	70
	WKT-VS2W-2C	Louvre	3	3800	2200	1	44.4	57.0	54.3	2.7	54.0	16.5	70
	WKT-VS2W-3	Louvre	3	9602	4358	1	109.7	59.0	56.6	2.4	56.0	20.4	76
	WKT-VS1-1	Louvre	3	8550	3707	1	90.8	50.0	48.5	1.5	47.0	19.6	67
	WKT-VS1-2	Louvre	3	4400	34100	1	316.0	50.0	49.5	0.5	47.0	25.0	72
VS1	WKT-VS1-3	Louvre	3	10500	7925	1	168.9	53.0	50.3	2.7	50.0	22.3	72
	WKT-VS1-4	Louvre	3	19183	7925	1	228.1	54.0	54.0	0.0	51.0	23.6	75
	WKT-VS6-1	Louvre	3	5500	11100	2	241.9	56.0	52.2	3.8	53.7	23.8	77
	WKT-VS6-2A	Louvre	3	1100	2100		27.1	49.0	47.3	1.7	46.0	14.3	60
	WKT-VS6-2B	Louvre	3	1100	3800		35.8	49.0	47.9	1.1	46.0	15.5	62
	WKT-VS6-3A	Louvre	3	3370	3575		51.8	48.0	49.0	-1.0	45.0	17.1	62
	WKT-VS6-3B	Louvre	3	3370	2775		45.9	52.0	52.0	0.0	49.0	16.6	66
	WKT-VS6-4	Louvre	3	1800	8360		58.1	59.0	53.5	5.5	57.6	17.6	75
VS6	WKT-VS6-5A	Louvre	3	3350	1615	1	37.3	61.0	51.4	9.6	60.5	15.7	76
	WKT-VS6-5B	Louvre	3	2000	5495	-	53.0	60.0	54.4	5.6	58.6	17.2	76
	WKT-VS6-6A	Louvre	3	400	1250		12.3	57.0	55.9	1.1	54.0	10.9	65
	WKT-VS6-6B	Louvre	3	400	1250		12.3	60.0	52.7	7.3	59.1	10.9	70
	WKT-VS6-7A	Louvre	3	8050	8725		149.3	50.0	48.9	1.1	47.0	21.7	69
	WKT-VS6-7B	Louvre	3	5300	1850		33.8	51.0	48.9	2.1	48.0	15.3	63

Appendix A3 Result Summary Table

				Louvr	e Size	Measurement	Massurament	Measured	Average Background	Difference	Background Corrected	Aroo	Calculate
Source ID	Louvre ID	Plant / Louvre	Method ⁽¹⁾	Width (mm)	Height (mm)	Distance(m)	Measurement Box Area (S)	Noise Level L _{Aeq} [dB(A)]	LAeq [dB(A)]	LAeq [dB(A)]	Measured LAeq [dB(A)]	Area Corr.	d SWL
	WKT-PVS6-1	Louvre	3	500	1000		18.5	53.0	51.7	1.3	50.0	12.7	63
	WKT-PVS6-2	Louvre	3	350	1200		18.6	57.0	51.2	5.8	55.7	12.7	68
PVS6	WKT-PVS6-3A	Louvre	3	400	1970	1	22.3	58.0	54.0	4.0	55.8	13.5	69
	WKT-PVS6-3B	Louvre	3	1600	6550		55.1	58.0	54.3	3.7	55.6	17.4	73
	WKT-PVS6-4	Louvre	3	5350	2650		41.5	57.0	49.0	8.0	56.3	16.2	72
	WKT-G-G15VS-01A	Louvre	3	2725	7450	2	149.7	56.3	52.9	3.4	53.6	21.8	75
	WKT-G-G15VS-01B	Louvre	3	2940	7450	2	153.0	56.1	51.5	4.6	54.3	21.8	76
VS6-4	WKT-G-G15VS-01C	Louvre	3	600	7450	2	116.9	55.1	50.6	4.5	53.2	20.7	74
	WKT-G-G15VS-03A Section 1	Louvre	3	3075	10000	1	95.1	55.5	52.5	3.0	52.5	19.8	72
	WKT-G-G15VS-03A Section 2	Louvre	3	2250	10000	1	83.5	55.2	50.0	5.2	53.6	19.2	73
	WKT-G-D14VS-03A	Louvre	3	6150	15600	3	464.9	56.8	53.5	3.3	54.1	26.7	81
	WKT-G-D14VS-04A	Louvre	3	5350	17700	1	198.9	56.6	51.9	4.7	54.8	23.0	78
VS7	WKT-VS7-1A	Louvre	3	6800	15045	2	325.1	54.0	50.1	3.9	51.7	25.1	77
V5/	WKT-VS7-1B	Louvre	3	2500	15045	2	226.0	53.0	50.7	2.3	50.0	23.5	74
	WKT-VS7-2	Louvre	3	2350	15425	4	119.3	51.0	50.1	0.9	48.0	20.8	69
	WKT-VS7-3	Louvre	3	10000	18250	1	307.5	58.0	54.7	3.3	55.3	24.9	80
	1.04	1		8000	2250	2	148.0	60.8	56.0	4.8	59.1	21.7	00
	L-01	Louvre	3	8000	2250	2	148.0	59.0	56.0	3.0	56.0	21.7	83
	L-02	Louvre	3	8000	2250	2	148.0	59.6	55.4	4.2	57.6	21.7	79
	L-03	Louvre	3	8000	2250	2	148.0	60.7	55.4	5.3	59.3	21.7	81
	L-03a	Louvre	3	9000	2000	2	154.0	59.9	56.0	3.9	57.7	21.9	80
	L-06	Louvre	2	1000	1000	2	N/A	62.7	57.6	5.1	61.1	N/A	75
	L-07	Louvre	2	1000	1000	2	N/A	57.7	53.9	3.8	55.4	N/A	69
	L-08	Louvre	2	1000	1000	2	N/A	59.2	53.9	5.3	57.7	N/A	72
	L-08a	Louvre	2	1000	1000	2	N/A	57.4	53.9	3.5	54.8	N/A	69
	L-10	Louvre	3	6000	2250	2	127.5	65.9	58.8	7.1	65.0	21.1	86
	L-11	Louvre	3	6000	2250	2	127.5	64.5	58.8	5.7	63.1	21.1	84
	L-12	Louvre	3	6000	2250	2	127.5	64.4	58.8	5.6	63.0	21.1	84
				6000	2250	2	127.5	62.8	56.8	6.0	61.5	21.1	
				6000	2250	2	127.5	62.4	56.8	5.6	61.0	21.1	
PTI	L-13	Louvre	3	6000	2250	2	127.5	64.5	56.8	7.7	63.7	21.1	90
				6000	2250	2	127.5	62.3	56.8	5.5	60.9	21.1	1
				6000	2250	2	127.5	61.3	56.8	4.5	59.4	21.1	1
	L-14	Louvre	3	7350	2250	2	141.3	66.6	56.8	9.8	66.1	21.5	88
	L-15a	Louvre	3	6600	2250	2	133.7	65.7	56.8	8.9	65.1	21.3	86
	L-15b	Louvre	3	6600	2250	2	133.7	62.3	56.8	5.5	60.9	21.3	82
	L-21	Louvre	3	8500	2000	2	149.0	56.5	53.4	3.1	53.6	21.7	75
	L-22	Louvre	3	8500	2000	2	149.0	56.9	53.4	3.5	54.3	21.7	76
	L-23	Louvre	3	8500	2000	2	149.0	59.2	56.0	3.2	56.4	21.7	78
	L-24	Louvre	3	8500	2000	2	149.0	59.4	56.0	3.4	56.7	21.7	78
	L-28	Louvre	3	7000	2000	2	134.0	54.2	51.2	3.0	51.2	21.3	72
	L-29	Louvre	3	7000	2000	2	134.0	60.7	57.7	3.0	57.7	21.3	79
	L-30	Louvre	3	7000	2000	2	134.0	57.1	54.0	3.1	54.2	21.3	75
	L-31	Louvre	3	7000	2000	2	134.0	63.3	57.7	5.6	61.9	21.3	83

^{(1) 2:} Far-field measurement; 3: Near-field measurement.

⁽²⁾ For near field measurement, if the difference between measures noise level (MNL) and the average background noise level is 3dB(A) or less then 3dB(A), a -3dB(A) will be applie to the MNL as the background corrected measured noise level. If the difference is greater than 3dB(A), the formula 10*LOG10(10^(MNL/10)-10^(BGN/10)) will be applied. For far field measurement, the SWL is calculated by the following equation: SWL = SPL + 20log D + 8 + K1A, where D is the separation between the louvre and the microphone, in meter; K1A is the background noise correction factor as described in ISO 3746:2010

⁽³⁾ P2 louvre, which was identified in the ERR for "Design Changes in Mon Kok West Ventilation Buildings, West Kowloon Terminus and Its Associated Building Elements" in 2013, does not connected to any mechanical plant and therefore it was not included in the assessment.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK3	46-48 Man King Building (South	WKP	WKP-U1-E6PN-03ASection 1	108	82	0	36		
	facade)		WKP-U1-E6PN-03ASection 2		80	0	35		
			WKP-U1-E6PN-06A	122	69	10	12		
			WKP-U1-E6PN-04A	125	83	10	26		
			WKP-E6PVS-02	106	66	0	21		
			WKP-U1-E6PN-09	122	74	10	17		
		EAA	WKT-VS3N-1	77	80	10	27		
		VS 3	WKT-VS3-1	127	67	0	20		
			WKT-VS3-2	128	67	0	20		
			WKT-VS3-3	124	72	0	25		
			WKT-VS3-4	126	72	0	25		
			WKT-VS3-5	129	69	0	22		
			WKT-VS3-6A	129	66	0	19		
			WKT-VS3-6B	129	67	0	20		
			WKT-VS3-7	124	65	0	18		
		VO 0 F 4 0 T	WKT-VS3-8	124	66	0	19		
		VS 2 EAST	WKT-VS2E-1	233	72	0	20		
			WKT-VS2E-2	246	69	0	16		
		VO 4(3)	WKT-VS2E-3	256	69 73	0	16		
		VS 4 ⁽³⁾	WKT-VS4-3	283	73 75	0	19		
		VS 2 WEST	WKT-VS2W-1	247 247	75 68	0 0	22 15		
			WKT-VS2W-2A	247 247	70		17		
			WKT-VS2W-2B WKT-VS2W-2C		70 70	0 0	17		
				257	76				
		PTI	WKT-VS2W-3 L-01	271	83	0 0	22 42		
		PII	L-01 L-02	63 68	79	0	37		
			L-02 L-03	76	79 81		33		
			L-03 L-03a	76 117	80	5 5	29		
			L-06	297	75	10	11		
			L-06 L-07	289	69	10	5		
			L-07 L-08	283	72	10	8		
			L-08a	263 277	69	10	5		
			L-10	167	86	10	27		
			L-10	167	84	10	25		
			L-12	159	84	10	25		
			L-13	134	90	10	32		
			L-14	108	88	10	32		
			L-15a	100	86	10	31		
			L-15b	93	82	10	28		
			L-21	185	75	5	20		
			L-22	166	76	5	22		
			L-23	153	78	5	24		
			L-24	140	78	5	25		
			L-28	295	78 72	10	8		
			L-29	178	72 79	10	19		
			L-30	171	75	10	15		
			L-31	272	83	10	19	46	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ^{(2) (3)} , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-	time								
WK3	46-48 Man King Building (South	WKP	WKP-U1-E6PN-03ASection 1	108	82	0	36		
	facade)		WKP-U1-E6PN-03ASection 2	106	80	0	35		
			WKP-U1-E6PN-06A	122	69	10	12		
			WKP-U1-E6PN-04A	125	83	10	26		
			WKP-E6PVS-02	106	66	0	21		
			WKP-U1-E6PN-09	122	74	10	17		
		EAA	WKT-VS3N-1	77	80	10	27		
		VS 3	WKT-VS3-1	127	67	0	20		
			WKT-VS3-2	128	67	0	20		
			WKT-VS3-3	124	72	0	25		
			WKT-VS3-4	126	72	0	25		
			WKT-VS3-5	129	69	0	22		
			WKT-VS3-6A	129	66	0	19		
			WKT-VS3-6B	129	67	0	20		
			WKT-VS3-7	124	65	0	18		
			WKT-VS3-8	124	66	0	19		
		VS 2 EAST	WKT-VS2E-1	233	72	0	20		
			WKT-VS2E-2	246	69	0	16		
			WKT-VS2E-3	256	69	0	16		
		VS 4 ⁽³⁾	WKT-VS4-3	283	73	0	19		
		VS 2 WEST	WKT-VS2W-1	247	75	0	22		
			WKT-VS2W-2A	247	68	0	15		
			WKT-VS2W-2B	247	70	0	17		
			WKT-VS2W-2C	257	70	0	17		
			WKT-VS2W-3	271	76	0	22		
		PTI	L-01	63	83	0	42		
			L-02	68	79	0	37		
			L-03	76	81	5	33		
			L-03a	117	80	5	29		
			L-06	297	75	10	11		
			L-07	289	69	10	5		
			L-08	283	72	10	8		
			L-08a	277	69	10	5		
			L-10	167	86	10	27		
			L-11	167	84	10	25		
			L-12	159	84	10	25		
			L-13	134	90	10	32		
			L-14	108	88	10	32		
			L-15a	100	86	10	31		
			L-15b	93	82	10	28		
			L-21	185	75	5	20		
			L-22	166	76	5	22		
			L-23	153	78	5	24		
			L-24	140	78	5	25		
			L-28	295	72	10	8		
1			L-29	178	79	10	19		
			L-30	171	75	10	15		
			L-31	272	83	10	19	46	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

3) WKT-VS4-1 and WKT-VS4-4 are located at more than 300m from NSR WK3, and therefore they are not included in the assessment.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK3a	46-48 Man King Building (West facade)	WKP	WKP-U1-E6PN-03ASection 1	107	82	0	36		
	,		WKP-U1-E6PN-03ASection 2	100	80	0	35		
			WKP-U1-E6PN-06A	118	69	10	13		
			WKP-U1-E6PN-04A	124	83	10	26		
			WKP-E6PVS-02	102	66	0	21		
			WKP-U1-E6PN-09	116	74	10	18		
		EAA	WKT-VS3N-1	78	80	10	27		
		VS 3	WKT-VS3-1	139	67	0	19		
			WKT-VS3-2	141	67	0	19		
			WKT-VS3-3	136	72	0	24		
			WKT-VS3-4	139	72	0	24		
			WKT-VS3-5	140	69	0	21		
			WKT-VS3-6A	140	66	0	18		
			WKT-VS3-6B	140	67	0	19		
			WKT-VS3-7	137	65	0	17		
			WKT-VS3-8	137	66	0	18		
		VS 2 EAST	WKT-VS2E-1	251	72	0	19		
			WKT-VS2E-2	264	69	0	16		
			WKT-VS2E-3	274	69	0	15		
		VS 2 WEST	WKT-VS2W-1	257	75	0	22		
			WKT-VS2W-2A	257	68	0	15		
			WKT-VS2W-2B	257	70	0	17		
			WKT-VS2W-2C	267	70	0	16		
			WKT-VS2W-3	282	76	0	22		
		PTI	L-01	58	83	0	43		
			L-02	58	79	0	39		
			L-03	62	81	0	40		
			L-03a	98	80	0	35		
			L-06	278	75	10	11		
			L-07	270	69	10	5		
			L-08	265	72	10	9		
			L-08a	259	69	10	6		
			L-10	150	86	10	27		
			L-11	150	84	10	25		
			L-12	143	84	10	26		
			L-13	122	90	10	33		
			L-14	111	88	10	32		
			L-15a	104	86	10	31		
			L-15b	99	82	10	27		
			L-21	166	75	0	26		
			L-21 L-22	147	76	0	28		
			L-23	134	78	0	30		
			L-24	122	78	0	31		
			L-24 L-28	277	78 72	10	8		
			L-29	161	72 79	10	20		
			L-30	154	79 75	10	20 16		
			L-30 L-31	253	83	10	20	48	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-t	ime								
WK3a	46-48 Man King Building (West facade)	WKP	WKP-U1-E6PN-03ASection 1	107	82	0	36		
			WKP-U1-E6PN-03ASection 2		80	0	35		
			WKP-U1-E6PN-06A	118	69	10	13		
			WKP-U1-E6PN-04A	124	83	10	26		
			WKP-E6PVS-02	102	66	0	21		
			WKP-U1-E6PN-09	116	74	10	18		
		EAA	WKT-VS3N-1	78	80	10	27		
		VS 3	WKT-VS3-1	139	67	0	19		
			WKT-VS3-2	141	67	0	19		
			WKT-VS3-3	136	72	0	24		
			WKT-VS3-4	139	72	0	24		
			WKT-VS3-5	140	69	0	21		
			WKT-VS3-6A	140	66	0	18		
			WKT-VS3-6B	140	67	0	19		
			WKT-VS3-7	137	65	0	17		
			WKT-VS3-8	137	66	0	18		
		VS 2 EAST	WKT-VS2E-1	251	72	0	19		
			WKT-VS2E-2	264	69	0	16		
			WKT-VS2E-3	274	69	0	15		
		VS 2 WEST	WKT-VS2W-1	257	75	0	22		
			WKT-VS2W-2A	257	68	0	15		
			WKT-VS2W-2B	257	70	0	17		
			WKT-VS2W-2C	267	70	0	16		
			WKT-VS2W-3	282	76	0	22		
		PTI	L-01	58	83	0	43		
			L-02	58	79	0	39		
			L-03	62	81	0	40		
			L-03a	98	80	0	35		
			L-06	278	75	10	11		
			L-07	270	69	10	5		
			L-08	265	72	10	9		
			L-08a	259	69	10	6		
			L-10	150	86	10	27		
			L-11	150	84	10	25		
			L-12	143	84	10	26		
			L-13	122	90	10	33		
			L-14	111	88	10	32		
			L-15a	104	86	10	31		
			L-15b	99	82	10	27		
			L-21	166	75	0	26		
			L-22	147	76	0	28		
I			L-23	134	78	0	30		
I			L-24	122	78	0	31		
			L-28	277	70 72	10	8		
			L-29	161	79	10	20		
			L-30	154	75	10	16		
			L-31	253	83	10	20	48	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

_	and Evening Time ower 6, Sorrento (East façade)	WKP EAA VS 3	WKP-U1-E6PN-03ASection 1 WKP-U1-E6PN-03ASection 2 WKP-U1-E6PN-06A WKP-U1-E6PN-04A WKP-E6PVS-02 WKP-U1-E6PN-09 WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	122 144 127 108 135 135 147	82 80 69 83 66 74 80	10 10 0 0 10	25 22 22 37 8 26	
WK4 To	ower 6, Sorrento (East façade)	EAA	WKP-U1-E6PN-03ASection 2 WKP-U1-E6PN-06A WKP-U1-E6PN-04A WKP-E6PVS-02 WKP-U1-E6PN-09 WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	144 127 108 135 135 147	80 69 83 66 74	10 0 0 10	22 22 37 8	
			WKP-U1-E6PN-06A WKP-U1-E6PN-04A WKP-E6PVS-02 WKP-U1-E6PN-09 WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	127 108 135 135 147	69 83 66 74	0 0 10	22 22 37 8	
			WKP-U1-E6PN-04A WKP-E6PVS-02 WKP-U1-E6PN-09 WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	108 135 135 147	83 66 74	0 10	37 8	
			WKP-E6PVS-02 WKP-U1-E6PN-09 WKT-VS3-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	135 135 147	66 74	10	8	
			WKP-U1-E6PN-09 WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	135 147	74			
			WKT-VS3N-1 WKT-VS3-1 WKT-VS3-2 WKT-VS3-3	147		0	26	
			WKT-VS3-1 WKT-VS3-2 WKT-VS3-3		80			
		VS 3	WKT-VS3-2 WKT-VS3-3	119		0	32	
			WKT-VS3-3		67	0	20	
				129	67	0	20	
				131	72	0	25	
			WKT-VS3-4	131	72	0	25	
			WKT-VS3-5	110	69	10	13	
			WKT-VS3-6A	110	66	10	10	
			WKT-VS3-6B	110	67	10	11	
			WKT-VS3-7	133	65	10	8	
			WKT-VS3-8	133	66	10	9	
		VS 2 EAST	WKT-VS2E-1	235	72	0	20	
			WKT-VS2E-2	246	69	0	16	
			WKT-VS2E-3	255	69	0	16	
		VS 4 ⁽³⁾	WKT-VS4-3	291	73	0	19	
		VS 2 WEST	WKT-VS2W-1	85	75	0	31	
			WKT-VS2W-2A	85	68	5	19	
			WKT-VS2W-2B	85	70	5	21	
			WKT-VS2W-2C	99	70	5	20	
			WKT-VS2W-3	113	76	5	25	
		VS 1 ⁽³⁾	WKT-VS1-1	293	67	0	13	
			WKT-VS1-3	281	72	5	13	
			WKT-VS1-4	293	75	5	16	
		PTI ⁽³⁾	L-01	171	83	10	23	
		FII	L-02	183	79	10	19	
			L-03	195	81	10	20	
			L-03 L-03a	242	80	10	17	
			L-06	363	75	0	0	
			L-07	354	69	0	Ö	
			L-08	348	72	0	Ö	
			L-08a	342	69	0	Ö	
			L-10	230	86	0	34	
			L-11	230	84	0	32	
			L-12	220	84	0	32	
			L-13	181	90	0	40	
			L-13 L-14	113	88	0	42	
			L-14 L-15a	120	86	0	39	
			L-15b	127	82	0	35	
			L-130 L-22	287	76	10	12	
			L-22 L-23	207 277	78	10	14	
			L-23 L-24	266	78	10	14	
			L-24 L-29	244	78 79	0	26	
			L-29 L-30	∠44	79	U	/D	

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-ti									
WK4	Tower 6, Sorrento (East façade)	WKP	WKP-U1-E6PN-03ASection 1	122	82	10	25		
			WKP-U1-E6PN-03ASection 2		80	10	22		
			WKP-U1-E6PN-06A	127	69	0	22		
			WKP-U1-E6PN-04A	108	83	0	37		
			WKP-E6PVS-02	135	66	10	8		
			WKP-U1-E6PN-09	135	74	0	26		
		EAA	WKT-VS3N-1	147	80	0	32		
		VS 3	WKT-VS3-1	119	67	0	20		
			WKT-VS3-2	129	67	0	20		
			WKT-VS3-3	131	72	0	25		
			WKT-VS3-4	131	72	0	25		
			WKT-VS3-5	110	69	10	13		
			WKT-VS3-6A	110	66	10	10		
			WKT-VS3-6B	110	67	10	11		
			WKT-VS3-7	133	65	10	8		
			WKT-VS3-8	133	66	10	9		
		VS 2 EAST	WKT-VS2E-1	235	72	0	20		
			WKT-VS2E-2	246	69	0	16		
			WKT-VS2E-3	255	69	0	16		
		VS 4 ⁽³⁾	WKT-VS4-3	291	73	0	19		
		VS 2 WEST	WKT-VS2W-1	85	75	0	31		
			WKT-VS2W-2A	85	68	5	19		
			WKT-VS2W-2B	85	70	5	21		
			WKT-VS2W-2C	99	70	5	20		
			WKT-VS2W-3	113	76	5	25		
		VS 1 ⁽³⁾	WKT-VS1-1	293	67	0	13		
			WKT-VS1-3	281	72	5	13		
			WKT-VS1-4	293	75	5	16		
		PTI ⁽³⁾	L-01	171	83	10	23		
		FII	L-02	183	79	10	19		
			L-03	195	81	10	20		
			L-03	242	80	10	17		
			L-05a	363	75	0	0		
			L-07	354	69	0	0		
			L-07 L-08	348	72	0	0		
						0	0		
			L-08a	342	69				
			L-10	230	86	0	34		
			L-11	230	84	0	32		
			L-12	220	84	0	32		
			L-13	181	90	0	40		
			L-14	113	88	0	42		
			L-15a	120	86	0	39		
			L-15b	127	82	0	35		
			L-22	287	76	10	12		
			L-23	277	78	10	14		
			L-24	266	78	10	14		
			L-29	244	79	0	26		
			L-30	235	75	0	23	47	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

3) WKT-VS4-1 WKT-VS4-4, WKT-VS1-2 and PTI L-31 are located at more than 300m from NSR WK4, and therefore they are not included in the assessment.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK 7a	Tsim Sha Tsui Fire Station	VS 5	WKT-VS5-1	270	70	10	6		
			WKT-VS5-2	266	92	0	39		
			WKT-VS5-4	238	79	0	26		
		VS 6	WKT-VS6-1	239	77	0	24		
			WKT-VS6-2A	234	60	0	8		
			WKT-VS6-2B	234	62	0	10		
			WKT-VS6-3A	241	62	10	0		
			WKT-VS6-3B	241	66	10	3		
			WKT-VS6-4	241	75	10	12		
			WKT-VS6-5A	241	76	10	13		
			WKT-VS6-5B	241	76	10	13		
			WKT-VS6-6A	241	65	10	2		
			WKT-VS6-6B	241	70	10	7		
			WKT-VS6-7A	246	69	10	6		
			WKT-VS6-7B	246	63	10	0		
		PVS6	WKT-PVS6-1	235	63	10	1		
			WKT-PVS6-2	236	68	0	16		
			WKT-PVS6-3A	236	69	0	17		
			WKT-PVS6-3B	236	73	0	21		
			WKT-PVS6-4	242	72	10	9		
		VS6-4	WKT-G-G15VS-01A	247	75	10	12		
			WKT-G-G15VS-01B	249	76	10	13		
			WKT-G-G15VS-01C	248	74	5	16		
			WKT-G-G15VS-03ASection 1		72	0	20		
			WKT-G-G15VS-03A Section 2		73	0	21		
		VS 7	WKT-G-D14VS-03A	130	81	0	34		
			WKT-G-D14VS-04A	135	78	0	30		
			WKT-VS7-1A	145	77	10	19		
			WKT-VS7-1B	142	74	0	26		
			WKT-VS7-2	142	69	10	11		
			WKT-VS7-3	142	80	10	22	41	65

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-	time								
WK 7a	Tsim Sha Tsui Fire Station	VS 5	WKT-VS5-1	270	70	10	6		
			WKT-VS5-2	266	92	0	39		
			WKT-VS5-4	238	79	0	26		
		VS 6	WKT-VS6-1	239	77	0	24		
			WKT-VS6-2A	234	60	0	8		
			WKT-VS6-2B	234	62	0	10		
			WKT-VS6-3A	241	62	10	0		
			WKT-VS6-3B	241	66	10	3		
			WKT-VS6-4	241	75	10	12		
			WKT-VS6-5A	241	76	10	13		
			WKT-VS6-5B	241	76	10	13		
			WKT-VS6-6A	241	65	10	2		
			WKT-VS6-6B	241	70	10	7		
			WKT-VS6-7A	246	69	10	6		
			WKT-VS6-7B	246	63	10	0		
		PVS6	WKT-PVS6-1	235	63	10	1		
			WKT-PVS6-2	236	68	0	16		
			WKT-PVS6-3A	236	69	0	17		
			WKT-PVS6-3B	236	73	0	21		
			WKT-PVS6-4	242	72	10	9		
		VS6-4	WKT-G-G15VS-01A	247	75	10	12		
			WKT-G-G15VS-01B	249	76	10	13		
			WKT-G-G15VS-01C	248	74	5	16		
			WKT-G-G15VS-03ASection 1		72	0	20		
			WKT-G-G15VS-03A Section 2		73	0	21		
		VS 7	WKT-G-D14VS-03A	130	81	0	34		
			WKT-G-D14VS-04A	135	78	0	30		
			WKT-VS7-1A	145	77	10	19		
			WKT-VS7-1B	142	74	0	26		
			WKT-VS7-2	142	69	10	11		
			WKT-VS7-3	142	80	10	22	41	55

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK8a	Tower 6, The Waterfront	WKP	WKP-U1-E6PN-03ASection 1	205	82	10	21		
			WKP-U1-E6PN-03ASection 2	232	80	10	18		
			WKP-U1-E6PN-06A	216	69	0	17		
			WKP-U1-E6PN-04A	195	83	0	32		
			WKP-E6PVS-02	220	66	10	4		
			WKP-U1-E6PN-09	225	74	0	22		
		EAA	WKT-VS3N-1	223	80	0	28		
		VS 3	WKT-VS3-1	159	67	0	18		
			WKT-VS3-2	163	67	0	18		
			WKT-VS3-3	166	72	0	23		
			WKT-VS3-4	165	72	0	23		
			WKT-VS3-5	155	69	10	10		
			WKT-VS3-6A	155	66	10	7		
			WKT-VS3-6B	155	67	10	8		
			WKT-VS3-7	168	65	10	6		
			WKT-VS3-8	168	66	10	7		
		VS 2 EAST	WKT-VS2E-1	204	72	0	21		
			WKT-VS2E-2	211	69	0	18		
			WKT-VS2E-3	217	69	0	17		
		VS 4	WKT-VS4-1	272	79	0	25		
			WKT-VS4-3	250	73	0	20		
			WKT-VS4-4	270	74	0	20		
		VS 2 WEST	WKT-VS2W-1	39	75	0	38		
			WKT-VS2W-2A	39	68	0	31		
			WKT-VS2W-2B	39	70	0	33		
			WKT-VS2W-2C	36	70	0	34		
			WKT-VS2W-3	35	76	0	40		
		VS 1	WKT-VS1-1	201	67	0	16		
			WKT-VS1-2	221	72	0	20		
			WKT-VS1-3	189	72	Ö	21		
			WKT-VS1-4	200	75	Ö	24		
		PTI	L-01	249	83	10	20		
			L-02	263	79	10	16		
			L-03	279	81	10	17		
			L-13	275	90	0	36		
			L-14	188	88	Ö	37		
			L-15a	192	86	ő	35		
			L-15b	195	82	0	31	46	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-t	ime								
WK8a	Tower 6, The Waterfront	WKP	WKP-U1-E6PN-03ASection 1	205	82	10	21		
			WKP-U1-E6PN-03ASection 2	232	80	10	18		
			WKP-U1-E6PN-06A	216	69	0	17		
			WKP-U1-E6PN-04A	195	83	0	32		
			WKP-E6PVS-02	220	66	10	4		
			WKP-U1-E6PN-09	225	74	0	22		
		EAA	WKT-VS3N-1	223	80	0	28		
		VS 3	WKT-VS3-1	159	67	0	18		
			WKT-VS3-2	163	67	0	18		
			WKT-VS3-3	166	72	0	23		
			WKT-VS3-4	165	72	0	23		
			WKT-VS3-5	155	69	10	10		
			WKT-VS3-6A	155	66	10	7		
			WKT-VS3-6B	155	67	10	8		
			WKT-VS3-7	168	65	10	6		
			WKT-VS3-8	168	66	10	7		
		VS 2 EAST	WKT-VS2E-1	204	72	0	21		
			WKT-VS2E-2	211	69	0	18		
			WKT-VS2E-3	217	69	0	17		
		VS 4	WKT-VS4-1	272	79	0	25		
			WKT-VS4-3	250	73	0	20		
			WKT-VS4-4	270	74	0	20		
		VS 2 WEST	WKT-VS2W-1	39	75	0	38		
			WKT-VS2W-2A	39	68	0	31		
			WKT-VS2W-2B	39	70	0	33		
			WKT-VS2W-2C	36	70	0	34		
			WKT-VS2W-3	35	76	0	40		
		VS 1	WKT-VS1-1	201	67	0	16		
			WKT-VS1-2	221	72	0	20		
			WKT-VS1-3	189	72	0	21		
			WKT-VS1-4	200	75	0	24		
		PTI	L-01	249	83	10	20		
			L-02	263	79	10	16		
			L-03	279	81	10	17		
			L-13	275	90	0	36		
			L-14	188	88	0	37		
			L-15a	192	86	Ö	35		
I			L-15b	195	82	0	31	46	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK11a	a Tower 3, The Austin (formerly named	WKP	WKP-U1-E6PN-03ASection 1	272	82	0	28		
	as Planned Development)		WKP-U1-E6PN-03ASection 2	292	80	0	26		
	•		WKP-U1-E6PN-06A	297	69	10	5		
			WKP-U1-E6PN-04A	282	83	10	19		
			WKP-E6PVS-02	283	66	0	12		
		EAA	WKT-VS3N-1	252	80	10	17		
		VS 3	WKT-VS3-1	195	67	0	16		
			WKT-VS3-2	183	67	0	17		
			WKT-VS3-3	184	72	0	22		
			WKT-VS3-4	181	72	0	22		
			WKT-VS3-5	206	69	10	8		
			WKT-VS3-6A	206	66	10	5		
			WKT-VS3-6B	206	67	10	6		
			WKT-VS3-7	181	65	0	15		
			WKT-VS3-8	181	66	0	16		
		VS 2 EAST	WKT-VS2E-1	93	72	0	28		
			WKT-VS2E-2	93	69	0	25		
			WKT-VS2E-3	94	69	0	24		
		VS 4	WKT-VS4-1	112	79	0	33		
			WKT-VS4-3	91	73	0	29		
			WKT-VS4-4	117	74	0	28		
		VS 5	WKT-VS5-1	172	70	0	20		
			WKT-VS5-2	179	92	0	42		
			WKT-VS5-4	207	79	0	28		
		VS 2 WEST	WKT-VS2W-1	257	75	0	22		
			WKT-VS2W-2A	257	68	0	15		
			WKT-VS2W-2B	257	70	0	17		
			WKT-VS2W-2C	255	70	0	17		
			WKT-VS2W-3	258	76	0	23		
		VS 1	WKT-VS1-1	288	67	0	13		
		-	WKT-VS1-2	273	72	0	18		
			WKT-VS1-3	279	72	10	8		
			WKT-VS1-4	291	75	10	11		
		PTI	L-01	262	83	0	30		
			L-02	277	79	0	25		
			L-03	292	81	0	27		
			L-14	251	88	Ö	35		
			L-15a	242	86	Ö	33		
			L-15b	234	82	Õ	30	45	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-t	ime								
WK11a	Tower 3, The Austin (formerly named	WKP	WKP-U1-E6PN-03ASection 1	272	82	0	28		
	as Planned Development)		WKP-U1-E6PN-03ASection 2	292	80	0	26		
			WKP-U1-E6PN-06A	297	69	10	5		
			WKP-U1-E6PN-04A	282	83	10	19		
			WKP-E6PVS-02	283	66	0	12		
		EAA	WKT-VS3N-1	252	80	10	17		
		VS 3	WKT-VS3-1	195	67	0	16		
			WKT-VS3-2	183	67	0	17		
			WKT-VS3-3	184	72	0	22		
			WKT-VS3-4	181	72	0	22		
			WKT-VS3-5	206	69	10	8		
			WKT-VS3-6A	206	66	10	5		
			WKT-VS3-6B	206	67	10	6		
			WKT-VS3-7	181	65	0	15		
			WKT-VS3-8	181	66	0	16		
		VS 2 EAST	WKT-VS2E-1	93	72	0	28		
			WKT-VS2E-2	93	69	0	25		
			WKT-VS2E-3	94	69	0	24		
		VS 4	WKT-VS4-1	112	79	0	33		
			WKT-VS4-3	91	73	0	29		
			WKT-VS4-4	117	74	0	28		
		VS 5	WKT-VS5-1	172	70	0	20		
			WKT-VS5-2	179	92	Ö	42		
			WKT-VS5-4	207	79	0	28		
		VS 2 WEST	WKT-VS2W-1	257	75	0	22		
			WKT-VS2W-2A	257	68	0	15		
			WKT-VS2W-2B	257	70	Ö	17		
			WKT-VS2W-2C	255	70	Ö	17		
			WKT-VS2W-3	258	76	Ö	23		
		VS 1	WKT-VS1-1	288	67	Ö	13		
		, ,	WKT-VS1-2	273	72	Ö	18		
			WKT-VS1-3	279	72	10	8		
			WKT-VS1-4	291	75	10	11		
		PTI	L-01	262	83	0	30		
		1 11	L-02	277	79	0	25		
			L-02 L-03	292	81	0	25 27		
			L-14	251	88	0	35		
			L-14 L-15a	242	86	0	33		
			L-15a L-15b	234	82	0	30	45	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK12	K12a Tower 5, Grand Austin (formerly named VS 3		WKT-VS3-1	292	67	0	13		
	as Planned Development)		WKT-VS3-2	281	67	0	13		
			WKT-VS3-3	282	72	0	18		
			WKT-VS3-4	279	72	0	18		
			WKT-VS3-7	280	65	0	11		
			WKT-VS3-8	280	66	0	12		
		VS 2 EAST	WKT-VS2E-1	152	72	0	23		
			WKT-VS2E-2	141	69	0	21		
			WKT-VS2E-3	134	69	0	21		
		VS 4	WKT-VS4-1	85	79	0	35		
			WKT-VS4-3	100	73	0	28		
			WKT-VS4-4	88	74	0	30		
		VS 5	WKT-VS5-1	99	70	0	25		
			WKT-VS5-2	107	92	0	46		
			WKT-VS5-4	126	79	0	32		
		VS 1	WKT-VS1-1	277	67	0	13		
			WKT-VS1-2	253	72	0	19		
			WKT-VS1-3	272	72	10	8		
			WKT-VS1-4	281	75	10	11		
		VS 7	WKT-G-D14VS-03A	259	81	0	28		
			WKT-G-D14VS-04A	265	78	10	15		
			WKT-VS7-1A	265	77	10	14		
			WKT-VS7-1B	268	74	10	10		
			WKT-VS7-2	254	69	0	16		
			WKT-VS7-3	254	80	0	27	47	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-	time								
WK12	a Tower 5, Grand Austin (formerly named	VS 3	WKT-VS3-1	292	67	0	13		
	as Planned Development)		WKT-VS3-2	281	67	0	13		
			WKT-VS3-3	282	72	0	18		
			WKT-VS3-4	279	72	0	18		
			WKT-VS3-7	280	65	0	11		
			WKT-VS3-8	280	66	0	12		
		VS 2 EAST	WKT-VS2E-1	152	72	0	23		
			WKT-VS2E-2	141	69	0	21		
			WKT-VS2E-3	134	69	0	21		
		VS 4	WKT-VS4-1	85	79	0	35		
			WKT-VS4-3	100	73	0	28		
			WKT-VS4-4	88	74	0	30		
		VS 5	WKT-VS5-1	99	70	0	25		
			WKT-VS5-2	107	92	0	46		
			WKT-VS5-4	126	79	0	32		
		VS 1	WKT-VS1-1	277	67	0	13		
			WKT-VS1-2	253	72	0	19		
			WKT-VS1-3	272	72	10	8		
			WKT-VS1-4	281	75	10	11		
		VS 7	WKT-G-D14VS-03A	259	81	0	28		
			WKT-G-D14VS-04A	265	78	10	15		
			WKT-VS7-1A	265	77	10	14		
			WKT-VS7-1B	268	74	10	10		
			WKT-VS7-2	254	69	0	16		
			WKT-VS7-3	254	80	0	27	47	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytin	ne and Evening Time								
WK14	Moon Tower, The Arch	VS 2 EAST	WKT-VS2E-1	288	72	0	18		
	,		WKT-VS2E-2	284	69	0	15		
			WKT-VS2E-3	281	69	0	15		
		VS 4	WKT-VS4-1	290	79	0	25		
			WKT-VS4-3	292	73	0	19		
			WKT-VS4-4	285	74	0	20		
		VS 5	WKT-VS5-1	285	70	0	16		
			WKT-VS5-2	279	92	0	38		
			WKT-VS5-4	282	79	0	25		
		VS 2 WEST	WKT-VS2W-1	239	75	10	12		
			WKT-VS2W-2A	239	68	10	5		
			WKT-VS2W-2B	239	70	10	7		
			WKT-VS2W-2C	226	70	10	8		
			WKT-VS2W-3	210	76	10	15		
		VS 1	WKT-VS1-1	94	67	0	23		
		70.	WKT-VS1-2	119	72	0	25		
			WKT-VS1-3	99	72	Õ	27		
			WKT-VS1-4	90	75	Ö	31		
		VS 6	WKT-VS6-1	221	77	10	15		
		VO 0	WKT-VS6-2A	222	60	10	0		
			WKT-VS6-2B	222	62	10	0		
			WKT-VS6-2B	215	62	0	10		
			WKT-VS6-3B	215	66	0	14		
			WKT-VS6-3B WKT-VS6-4	215	75	0	23		
			WKT-VS6-5A	215	76	0	24		
			WKT-VS6-5A WKT-VS6-5B	215	76 76	0	24		
			WKT-VS6-6A	215	65	0	13		
			WKT-VS6-6B	215	70	0	18		
			WKT-VS6-7A	214	69	0	17		
			WKT-VS6-7A WKT-VS6-7B	214	63	0	11		
		PVS6		237	63	0			
		PV56	WKT-PVS6-1	237	68	10	10		
			WKT-PVS6-2				5		
			WKT-PVS6-3A	238	69	10	6		
			WKT-PVS6-3B	238	73	10	10		
		1/00 4	WKT-PVS6-4	230	72	0	20		
		VS6-4	WKT-G-G15VS-01A	264	75	10	12		
			WKT-G-G15VS-01B	261	76 74	0	23		
			WKT-G-G15VS-01C	260	74	0	21		
			WKT-G-G15VS-03ASection 1	268	72	10	8		
			WKT-G-G15VS-03A Section 2		73	0	19		
		VS 7	WKT-VS7-1A	294	77	0	23		
			WKT-VS7-1B	297	74	10	10		
			WKT-VS7-2	298	69	0	15		
			WKT-VS7-3	298	80	0	26	41	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-t	ime								
WK14	Moon Tower, The Arch	VS 2 EAST	WKT-VS2E-1	288	72	0	18		
			WKT-VS2E-2	284	69	0	15		
			WKT-VS2E-3	281	69	0	15		
		VS 4	WKT-VS4-1	290	79	0	25		
			WKT-VS4-3	292	73	0	19		
			WKT-VS4-4	285	74	0	20		
		VS 5	WKT-VS5-1	285	70	0	16		
			WKT-VS5-2	279	92	0	38		
			WKT-VS5-4	282	79	0	25		
		VS 2 WEST	WKT-VS2W-1	239	75	10	12		
			WKT-VS2W-2A	239	68	10	5		
			WKT-VS2W-2B	239	70	10	7		
			WKT-VS2W-2C	226	70	10	8		
			WKT-VS2W-3	210	76	10	15		
		VS 1	WKT-VS1-1	94	67	0	23		
		٧٥١	WKT-VS1-1	119	72	0	25		
			WKT-VS1-2 WKT-VS1-3	99	72	0	27		
			WKT-VS1-3 WKT-VS1-4	90	72 75	0	31		
		VS 6	WKT-VS6-1	221	73 77	10	15		
		V3 6	WKT-VS6-2A	222	60	10	0		
			WKT-VS6-2A WKT-VS6-2B	222	62	10			
							0		
			WKT-VS6-3A	215	62	0	10		
			WKT-VS6-3B	215	66	0	14		
			WKT-VS6-4	215	75	0	23		
			WKT-VS6-5A	215	76	0	24		
			WKT-VS6-5B	215	76	0	24		
			WKT-VS6-6A	215	65	0	13		
			WKT-VS6-6B	215	70	0	18		
			WKT-VS6-7A	214	69	0	17		
			WKT-VS6-7B	214	63	0	11		
		PVS6	WKT-PVS6-1	237	63	0	10		
			WKT-PVS6-2	238	68	10	5		
			WKT-PVS6-3A	238	69	10	6		
			WKT-PVS6-3B	238	73	10	10		
			WKT-PVS6-4	230	72	0	20		
		VS6-4	WKT-G-G15VS-01A	264	75	10	12		
I			WKT-G-G15VS-01B	261	76	0	23		
I			WKT-G-G15VS-01C	260	74	0	21		
			WKT-G-G15VS-03ASection 1		72	10	8		
			WKT-G-G15VS-03A Section 2		73	0	19		
		VS7	WKT-VS7-1A	294	77	Ö	23		
			WKT-VS7-1B	297	74	10	10		
			WKT-VS7-2	298	69	0	15		
			WKT-VS7-3	298	80	0	26	41	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 Fixed Plant Noise Impact Assessment

NSR Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Noise Criteria, dB(A)
Daytime and Evening Time								
WK14a Star Tower, The Arch	VS 3	WKT-VS3-2	299	67	0	12		
	VS 2 EAST	WKT-VS2E-1	255	72	0	19		
		WKT-VS2E-2	253	69	0	16		
		WKT-VS2E-3	251	69	0	16		
	VS 4	WKT-VS4-1	270	79	0	25		
		WKT-VS4-3	267	73	0	19		
		WKT-VS4-4	265	74	0	21		
	VS 5	WKT-VS5-1	276	70	0	16		
		WKT-VS5-2	271	92	0	38		
		WKT-VS5-4	279	79	0	25		
	VS 2 WEST	WKT-VS2W-1	192	75	0	24		
		WKT-VS2W-2A	192	68	0	17		
		WKT-VS2W-2B	192	70	0	19		
		WKT-VS2W-2C	179	70	0	20		
		WKT-VS2W-3	163	76	0	27		
	VS 1	WKT-VS1-1	86	67	0	23		
		WKT-VS1-2	116	72	0	26		
		WKT-VS1-3	85	72	0	28		
		WKT-VS1-4	82	75	0	32		
	VS 6	WKT-VS6-1	254	77	0	24		
		WKT-VS6-2A	254	60	10	0		
		WKT-VS6-2B	254	62	10	0		
		WKT-VS6-3A	247	62	0	9		
		WKT-VS6-3B	247	66	0	13		
		WKT-VS6-4	247	75	0	22		
		WKT-VS6-5A	247	76	0	23		
		WKT-VS6-5B	247	76	0	23		
		WKT-VS6-6A	247	65	0	12		
		WKT-VS6-6B	247	70	0	17		
		WKT-VS6-7A	247	69	0	16		
		WKT-VS6-7B	247	63	0	10		
	PVS6	WKT-PVS6-1	271	63	0	9		
		WKT-PVS6-2	273	68	10	4		
		WKT-PVS6-3A	273	69	10	5		
		WKT-PVS6-3B	273	73	10	9		
		WKT-PVS6-4	265	72	0	19		
	VS6-4	WKT-G-G15VS-01B	300	76	0	21		
		WKT-G-G15VS-01C	298	74	0	20	41	60

NSR No. Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-time								
WK14a Star Tower, The Arch	VS 3	WKT-VS3-2	299	67	0	12		
·	VS 2 EAST	WKT-VS2E-1	255	72	0	19		
		WKT-VS2E-2	253	69	0	16		
		WKT-VS2E-3	251	69	0	16		
	VS 4	WKT-VS4-1	270	79	0	25		
		WKT-VS4-3	267	73	0	19		
		WKT-VS4-4	265	74	0	21		
	VS 5	WKT-VS5-1	276	70	0	16		
		WKT-VS5-2	271	92	0	38		
		WKT-VS5-4	279	79	0	25		
	VS 2 WEST	WKT-VS2W-1	192	75	0	24		
		WKT-VS2W-2A	192	68	0	17		
		WKT-VS2W-2B	192	70	0	19		
		WKT-VS2W-2C	179	70	0	20		
		WKT-VS2W-3	163	76	0	27		
	VS 1	WKT-VS1-1	86	67	0	23		
		WKT-VS1-2	116	72	0	26		
		WKT-VS1-3	85	72	0	28		
		WKT-VS1-4	82	75	0	32		
	VS 6	WKT-VS6-1	254	77	0	24		
		WKT-VS6-2A	254	60	10	0		
		WKT-VS6-2B	254	62	10	0		
		WKT-VS6-3A	247	62	0	9		
		WKT-VS6-3B	247	66	0	13		
		WKT-VS6-4	247	75	0	22		
		WKT-VS6-5A	247	76	Ō	23		
		WKT-VS6-5B	247	76	0	23		
		WKT-VS6-6A	247	65	Ö	12		
		WKT-VS6-6B	247	70	Ö	17		
		WKT-VS6-7A	247	69	0	16		
		WKT-VS6-7B	247	63	Ö	10		
	PVS6	WKT-PVS6-1	271	63	Ö	9		
	1 700	WKT-PVS6-2	273	68	10	4		
		WKT-PVS6-3A	273	69	10	5		
		WKT-PVS6-3B	273	73	10	9		
		WKT-PVS6-4	265	73 72	0	19		
	VS6-4	WKT-G-G15VS-01B	300	72 76	0	21		
	V 30-4	WKT-G-G15VS-01C	298	76 74	0	20	41	50

Remark:

1) Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.

2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the louvre.

Appendix A3 **Fixed Plant Noise Impact Assessment**

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Daytime Nois Criteria, dB(A
Daytime	e and Evening Time								
VK18	Hindu Temple ⁽³⁾	MKV ⁽⁴⁾	East E1	288	78	10	14		
			East E2	296	72	10	8		
			East E3	293	73	10	9		
			East E4	300	79	10	0		
			South S1	291	74	0	20		
			South S2	292	75	0	21		
			South S3	272	85	0	31		
			South S4	272	72	Ö	18		
			West W1	279	90	0	36		
		CKR ⁽⁴⁾	WVSF 3	246	104	0	51		
		CKK	WVSF 4	299	104	0	49		
			WVSF 4 WVSF 5	299	104	0	50		
		WKP	WKP-U1-E6PN-03ASection 1						
		WKP	WKP-U1-E6PN-03ASection 1		82	10	19		
					80	10	18		
			WKP-U1-E6PN-06A	230	69	0	17		
			WKP-U1-E6PN-04A	248	83	0	30		
			WKP-E6PVS-02	242	66	10	3		
			WKP-U1-E6PN-09	223	74	0	22		
		EAA	WKT-VS3N-1	273	80	0	26		
		PTI	L-01	267	83	10	19		
			L-02	254	79	10	16		
			L-03	243	81	10	18		
			L-03a	216	80	10	18		
			L-06	132	75	0	28		
			L-07	128	69	0	22		
			L-08	126	72	0	25		
			L-08a	124	69	0	22		
			L-10	156	86	0	37		
			L-11	156	84	0	35		
			L-12	162	84	0	35		
			L-13	187	90	0	39		
			L-14	278	88	10	24		
			L-15a	286	86	10	22		
			L-15b	293	82	10	18		
			L-21	191	75	0	24		
			L-22	198	76	10	15		
			L-23	204	78	10	17		
			L-24	208	78	10	17		
			L-24 L-28	158	76 72	0	23		
					72				
			L-29	148	79 75	0	31		
			L-30	153	75	0	26		
			L-31	122	83	0	36	55	60

NSR No.	Description	ID	Louvre ID (contractor)	Distance, m ⁽¹⁾	SWL, dB(A)	Correction for line of sight ⁽²⁾ , dB(A)	SPL, dB(A)	Total SPL, dB(A)	Night-time Noise Criteria, dB(A)
Night-	time								
WK18	Hindu Temple ⁽³⁾	MKV ⁽⁴⁾	East E2	296	72	10	8		
	·		East E3	293	73	10	9		
			South S3	272	85	0	31		
			South S4	272	72	0	18		
			West W1	279	90	0	36		
		CKR ⁽⁴⁾	WVSF 3	246	104	0	51		
			WVSF 4	299	104	0	49		
			WVSF 5	290	104	0	50		
		WKP	WKP-U1-E6PN-03ASection 1	255	82	10	19		
			WKP-U1-E6PN-03ASection 2	233	80	10	18		
			WKP-U1-E6PN-06A	230	69	0	17		
			WKP-U1-E6PN-04A	248	83	0	30		
			WKP-E6PVS-02	242	66	10	3		
			WKP-U1-E6PN-09	223	74	0	22		
		EAA	WKT-VS3N-1	273	80	0	26		
		PTI	L-01	267	83	10	19		
			L-02	254	79	10	16		
			L-03	243	81	10	18		
			L-03a	216	80	10	18		
			L-06	132	75	0	28		
			L-07	128	69	0	22		
			L-08	126	72	0	25		
			L-08a	124	69	0	22		
			L-10	156	86	0	37		
			L-11	156	84	0	35		
			L-12	162	84	0	35		
			L-13	187	90	0	39		
			L-14	278	88	10	24		
			L-15a	286	86	10	22		
			L-15b	293	82	10	18		
			L-21	191	75	0	24		
			L-22	198	76	10	15		
			L-23	204	78	10	17		
			L-24	208	78	10	17		
			L-28	158	72	0	23		
			L-29	148	79	0	31		
			L-30	153	75	0	26		
			L-31	122	83	0	36	N/A	55

Remark:

¹⁾ Fixed plant noise sources at a distance of over 300m from a noise sensitive receiver are considered to have an insignificant noise impact and are therefore not assessed.
2) A negative correction of 10 dB(A) has been adopted to the direction facing of the ventilation shaft totally screened by buildings and negative correction of 5 dB(A) for NSR do not have direct line of sight to the 3) No sensitive uses at WK18 during night-time period.

⁴⁾ SWL of noise sources at CKR are taken from "Environmental Review Report – Design Changes in Mong Kok West Ventilation Building, West Kowloon Terminus and Its Associated Building Elements, June 2013", while SWL of noise sources at MKV are taken from "Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) - Commissioning Test Report for the Fixed Plant Noise at Pat Heung (PHV), Nam Cheong (NCV) and Mongkok West (MKV) Ventilation Buildings, May 2018".

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	-Aeq (GD)
VKP	WKP-U1-E6PN-03A Section 1	Normal Normal	3	point 1	56.
	WKP-U1-E6PN-03A Section 1 WKP-U1-E6PN-03A Section 1	Normal	3	point 2 point 3	57. 57.
	WKP-U1-E6PN-03A Section 1	Normal	3	point 4	57.
	WKP-U1-E6PN-03A Section 1	Normal	3	point 5	54.
	WKP-U1-E6PN-03A Section 1	Normal	3	point 6	54.
	WKP-U1-E6PN-03A Section 1	Normal	3	point 7	55
	WKP-U1-E6PN-03A Section 1	Normal	3	point 8	56
	WKP-U1-E6PN-03A Section 1 WKP-U1-E6PN-03A Section 1	Normal	3	point 9	55
	WKP-U1-E6PN-03A Section 1	Normal Normal	3	point 10 point 11	56 56
	WKP-U1-E6PN-03A Section 1	Normal	3	point 12	56
	WKP-U1-E6PN-03A Section 1	Normal	3	point 13	56
	WKP-U1-E6PN-03A Section 1	Normal	3	point 14	55
	WKP-U1-E6PN-03A Section 1	Normal	3	point 15	56
	WKP-U1-E6PN-03A Section 1	Normal	3	point 16	54
	WKP-U1-E6PN-03A Section 1	Normal	3	point 17	56
	WKP-U1-E6PN-03A Section 1 WKP-U1-E6PN-03A Section 1	Normal Normal	3	point 18 point 19	56 55
	WKP-U1-E6PN-03A Section 1	Normal	3	point 20	56
	WKF-01-E0FN-03A Section 1	Nomai	3	AVERAGE	56
	WKP-U1-E6PN-03A Section 2	Normal	3	point 1	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 2	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 3	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 4	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 5	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 6	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 7	53
	WKP-U1-E6PN-03A Section 2 WKP-U1-E6PN-03A Section 2	Normal Normal	3	point 8 point 9	52 52
	WKP-U1-E6PN-03A Section 2	Normal	3	point 9 point 10	52 54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 10	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 12	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 13	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 14	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 15	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 16	54
	WKP-U1-E6PN-03A Section 2	Normal	3	point 17	57
	WKP-U1-E6PN-03A Section 2	Normal	3	point 18	55
	WKP-U1-E6PN-03A Section 2	Normal	3	point 19	56
	WKP-U1-E6PN-03A Section 2	Normal	3	point 20 AVERAGE	56 55
	WKP-U1-E6PN-06A	Normal	3	point 1	52
	WKP-U1-E6PN-06A	Normal	3	point 2	52
	WKP-U1-E6PN-06A	Normal	3	point 3	52
	WKP-U1-E6PN-06A	Normal	3	point 4	51
	WKP-U1-E6PN-06A	Normal	3	point 5	53
	WKP-U1-E6PN-06A	Normal	3	point 6	52
	WKP-U1-E6PN-06A	Normal	3	point 7	53
	WKP-U1-E6PN-06A	Normal	3	point 8	53
	WKP-U1-E6PN-06A	Normal	3	point 9	54
	WKP-U1-E6PN-04A	Normal	3	AVERAGE point 1	52
	WKP-U1-E6PN-04A	Normal	3	point 2	61
	WKP-U1-E6PN-04A	Normal	3	point 3	61
	WKP-U1-E6PN-04A	Normal	3	point 4	58
	WKP-U1-E6PN-04A	Normal	3	point 5	58
	WKP-U1-E6PN-04A	Normal	3	point 6	59
	WKP-U1-E6PN-04A	Normal	3	point 7	59
	WKP-U1-E6PN-04A	Normal	3	point 8	60
	WKP-U1-E6PN-04A	Normal	3	point 9	59
	WKP-U1-E6PN-04A	Normal	3	point 10	60
	WKP-U1-E6PN-04A	Normal	3	point 11	61
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal Normal	3 3	point 12 point 13	61 60
	WKP-U1-E6PN-04A	Normal	3	point 14	61
	WKP-U1-E6PN-04A	Normal	3	point 15	60
	WKP-U1-E6PN-04A	Normal	3	point 16	60
	WKP-U1-E6PN-04A	Normal	3	point 17	62
	WKP-U1-E6PN-04A	Normal	3	point 18	63
	WKP-U1-E6PN-04A	Normal	3	point 19	63
	WKP-U1-E6PN-04A	Normal	3	point 20	63
	WKP-U1-E6PN-04A	Normal	3	point 21	62
	WKP-U1-E6PN-04A	Normal	3	point 22	60 58
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal Normal	3	point 23 point 24	58 59
	WKP-U1-E6PN-04A	Normal	3	point 24 point 25	61
	WKP-U1-E6PN-04A	Normal	3	point 26	59
	WKP-U1-E6PN-04A	Normal	3	point 27	58
	WKP-U1-E6PN-04A	Normal	3	point 28	59
	WKP-U1-E6PN-04A	Normal	3	point 29	59
	WKP-U1-E6PN-04A	Normal	3	point 30	58
	WKP-U1-E6PN-04A	Normal	3	point 31	59
	WKP-U1-E6PN-04A	Normal	3	point 32	59
	WKP-U1-E6PN-04A	Normal	3	point 33	61
	WKP-U1-E6PN-04A	Normal	3	point 34	58
	WKP-U1-E6PN-04A	Normal	3	point 35	61
	WKP-U1-E6PN-04A	Normal	3	point 36	60
	WKP-U1-E6PN-04A	Normal	3	point 37	61
	WKP-U1-E6PN-04A	Normal	3	point 38	60 59
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal Normal	3	point 39 point 40	59 60
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal	3	point 40 point 41	61
	WKP-U1-E6PN-04A	Normal	3	point 42	60
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal	3	point 42 point 43	61
	WKP-U1-E6PN-04A	Normal	3	point 44	60
	WKP-U1-E6PN-04A	Normal	3	point 45	59
	0. =0111 07/1		3	point 45	61
	WKP-U1-E6PN-04A	Normai			
	WKP-U1-E6PN-04A WKP-U1-E6PN-04A	Normal Normal		point 47	
			3 3 3	l'	60

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKP-U1-E6PN-04A	Normal	3	point 50	59.
	WKP-E6PVS-02	Normal	3	AVERAGE point 1	60 . 54.
	WKP-E6PVS-02	Normal	3	point 2	53.
	WKP-E6PVS-02	Normal	3	point 3	52.
	WKP-E6PVS-02	Normal	3	point 4	53.
	WKP-E6PVS-02 WKP-E6PVS-02	Normal Normal	3 3	point 5 point 6	52. 53.
	WKP-E6PVS-02	Normal	3	point 7	54.
	WKP-E6PVS-02	Normal	3	point 8	54.
	WKP-E6PVS-02	Normal	3	point 9	51.
	WKP-E6PVS-02	Normal	3	point 10	51.
	WKP-E6PVS-02	Normal	3	point 11	52.
	WKP-E6PVS-02 WKP-E6PVS-02	Normal Normal	3	point 12 point 13	51. 55.
	WKP-E6PVS-02	Normal	3	point 14	54
	WKP-E6PVS-02	Normal	3	point 15	53
	WKP-E6PVS-02	Normal	3	point 16	54
	WKP-E6PVS-02	Normal	3	point 17	55
	WKP-E6PVS-02 WKP-E6PVS-02	Normal Normal	3	point 18 point 19	55 55
	WKP-E6PVS-02	Normal	3	point 19	54
	WKP-E6PVS-02	Normal	3	point 21	53
	WKP-E6PVS-02	Normal	3	point 22	54
	WKP-E6PVS-02	Normal	3	point 23	53
	WKP-E6PVS-02	Normal	3	point 24	53
	WKP-E6PVS-02	Normal	3	point 25	52
	WKP-E6PVS-02 WKP-E6PVS-02	Normal Normal	3 3	point 26	53 54
	WKP-E6PVS-02 WKP-E6PVS-02	Normal	3	point 27 point 28	54 54
	WKP-E6PVS-02	Normal	3	point 29	53
	WKP-E6PVS-02	Normal	3	point 30	53
	WKP-E6PVS-02	Normal	3	point 31	52
	WKP-E6PVS-02	Normal	3	point 32	53
	WKP-U1-E6PN-09	Normal	3	AVERAGE point 1	53
	WKP-U1-E6PN-09	Normal	3	point 2	60
	WKP-U1-E6PN-09	Normal	3	point 3	62
	WKP-U1-E6PN-09	Normal	3	point 4	59
	WKP-U1-E6PN-09	Normal	3	point 5	64
	WKP-U1-E6PN-09	Normal	3	point 6	63
	WKP-U1-E6PN-09 WKP-U1-E6PN-09	Normal	3	point 7	65 60
	WKP-U1-E6PN-09	Normal Normal	3	point 8 point 9	65
	WKP-U1-E6PN-09	Normal	3	point 10	61
	WKP-U1-E6PN-09	Normal	3	point 11	62
	WKP-U1-E6PN-09	Normal	3	point 12	65
	WKP-U1-E6PN-09	Normal	3	point 13	64
	WKP-U1-E6PN-09 WKP-U1-E6PN-09	Normal Normal	3 3	point 14 point 15	63 60
	WKP-U1-E6PN-09	Normal	3	point 16	64
	WKP-U1-E6PN-09	Normal	3	point 17	61
	WKP-U1-E6PN-09	Normal	3	point 18	59
	WKP-U1-E6PN-09	Normal	3	point 19	63
	WKP-U1-E6PN-09	Normal	3	point 20	61
	WKP-U1-E6PN-09	Normal	3	point 21	62
	WKP-U1-E6PN-09	Normal	3	point 22	64
	WKP-U1-E6PN-09 WKP-U1-E6PN-09	Normal Normal	3	point 23 point 24	62 62
	WKP-U1-E6PN-09	Normal	3	point 25	62
	6 / 26 / 76	TTOTTICAL		AVERAGE	63
AA	WKT-VS3N-1	Normal	3	point 1	54
	WKT-VS3N-1	Normal	3	point 2	53
	WKT-VS3N-1	Normal	3	point 3	53
	WKT-VS3N-1	Normal	3	point 4	55
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3 3	point 5	54 54
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 6 point 7	54
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 8	56
	WKT-VS3N-1	Normal	3	point 9	56
	WKT-VS3N-1	Normal	3	point 10	57
	WKT-VS3N-1	Normal	3	point 11	57
	WKT-VS3N-1	Normal	3	point 12	55
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 13 point 14	54 56
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 14 point 15	56
	WKT-VS3N-1	Normal	3	point 16	55
	WKT-VS3N-1	Normal	3	point 17	56
	WKT-VS3N-1	Normal	3	point 18	56
	WKT-VS3N-1	Normal	3	point 19	53
	WKT-VS3N-1	Normal	3	point 20	54
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 21 point 22	53 54
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 23	53
	WKT-VS3N-1	Normal	3	point 24	56
	WKT-VS3N-1	Normal	3	point 25	53
	WKT-VS3N-1	Normal	3	point 26	54
	WKT-VS3N-1	Normal	3	point 27	52
	WKT-VS3N-1	Normal	3	point 28	53
	WKT-VS3N-1	Normal	3	point 29 point 30	55 53
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 30 point 31	53
	WKT-VS3N-1	Normal	3	point 32	56
	WKT-VS3N-1	Normal	3	point 33	56
	WKT-VS3N-1	Normal	3	point 34	56
	WKT-VS3N-1	Normal	3	point 35	56
	WKT-VS3N-1	Normal	3	point 36	56
	WKT-VS3N-1	Normal	3	point 37	56
	WILL MOON !	I k y			
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 38 point 39	57 58

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS3N-1	Normal	3	point 41	58.
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 42 point 43	55. 54.
	WKT-VS3N-1	Normal	3	point 43	54.
	WKT-VS3N-1	Normal	3	point 45	55.
	WKT-VS3N-1	Normal	3	point 46	53.
	WKT-VS3N-1	Normal	3	point 47	53.
	WKT-VS3N-1	Normal	3	point 48	56.
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 49 point 50	55. 54.
	WKT-VS3N-1	Normal	3	point 50	54.
	WKT-VS3N-1	Normal	3	point 52	55.
	WKT-VS3N-1	Normal	3	point 53	55.
	WKT-VS3N-1	Normal	3	point 54	54.
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 55	54. 52.
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 56 point 57	55.
	WKT-VS3N-1	Normal	3	point 58	55.
	WKT-VS3N-1	Normal	3	point 59	55.
	WKT-VS3N-1	Normal	3	point 60	53.
	WKT-VS3N-1	Normal	3	point 61	53.
	WKT-VS3N-1	Normal	3	point 62	55.
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 63 point 64	53. 53.
	WKT-VS3N-1	Normal	3	point 65	55.
	WKT-VS3N-1	Normal	3	point 66	54.
	WKT-VS3N-1	Normal	3	point 67	55.
	WKT-VS3N-1	Normal	3	point 68	57.
	WKT-VS3N-1	Normal	3	point 69	57.
	WKT-VS3N-1	Normal	3	point 70	56.
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3 3	point 71 point 72	56 56
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 72 point 73	56
	WKT-VS3N-1 WKT-VS3N-1	Normal	3	point 74	55
	WKT-VS3N-1	Normal	3	point 75	56
	WKT-VS3N-1	Normal	3	point 76	54
	WKT-VS3N-1	Normal	3	point 77	54
	WKT-VS3N-1	Normal	3	point 78	53
	WKT-VS3N-1	Normal	3	point 79	53
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 80 point 81	53 53
	WKT-VS3N-1	Normal	3	point 82	53
	WKT-VS3N-1	Normal	3	point 83	53
	WKT-VS3N-1	Normal	3	point 84	52
	WKT-VS3N-1	Normal	3	point 85	53
	WKT-VS3N-1	Normal	3	point 86	55
	WKT-VS3N-1	Normal	3	point 87	52
	WKT-VS3N-1 WKT-VS3N-1	Normal Normal	3	point 88 point 89	54 57
	WKT-VS3N-1	Normal	3	point 99	56
	WKT-VS3N-1	Normal	3	point 91	57.
	WKT-VS3N-1	Normal	3	point 92	58.
	WKT-VS3N-1	Normal	3	point 93	57
	WKT-VS3N-1	Normal	3	point 94	57
	WKT-VS3N-1	Normal	3	point 95	58
	WKT-VS3N-1	Normal	3	point 96 AVERAGE	55 5
S 3	WKT-VS3-1	Normal	3	point 1	53
	WKT-VS3-1	Normal	3	point 2	52
	WKT-VS3-1	Normal	3	point 3	56
	WKT-VS3-1	Normal	3	point 4	55
	WKT-VS3-1	Normal	3	point 5	54
	WKT-VS3-1	Normal	3	point 6	53
	WKT-VS3-1 WKT-VS3-1	Normal Normal	3 3	point 7 point 8	54 55
	WKT-VS3-1	Normal	3	point 9	53
	WKT-VS3-1	Normal	3	point 10	53
				AVERAGE	5
	WKT-VS3-2	Normal	3	point 1	55
	WKT-VS3-2	Normal	3	point 2	53
	WKT-VS3-2 WKT-VS3-2	Normal Normal	3	point 3	54 56
	WKT-VS3-2 WKT-VS3-2	Normal	3 3	point 4 point 5	56
	WKT-VS3-2 WKT-VS3-2	Normal	3	point 6	55
	WKT-VS3-2	Normal	3	point 7	54
	WKT-VS3-2	Normal	3	point 8	54
				AVERAGE	5
	WKT-VS3-3	Normal	3	point 1	57
	WKT-VS3-3	Normal	3	point 2	59 56
	WKT-VS3-3 WKT-VS3-3	Normal Normal	3 3	point 3 point 4	56 56
	WKT-VS3-3 WKT-VS3-3	Normal	3	point 5	56
	WKT-VS3-3	Normal	3	point 6	57
	WKT-VS3-3	Normal	3	point 7	56
	WKT-VS3-3	Normal	3	point 8	56
	WKT-VS3-3	Normal	3	point 9	56
	WKT-VS3-3	Normal	3	point 10	56 57
	WKT-VS3-3	Normal	3	point 11	57 56
	WKT-VS3-3 WKT-VS3-3	Normal Normal	3 3	point 12 point 13	56 56
	WKT-VS3-3 WKT-VS3-3	Normal	3	point 14	55
	WKT-VS3-3	Normal	3	point 15	56
	WKT-VS3-3	Normal	3	point 16	59
				AVERAGE	
	WKT-VS3-4	Normal	3	point 1	51
	WKT-VS3-4	Normal	3	point 2	51
	WKT-VS3-4	Normal	3	point 3	49
	WKT-VS3-4	Normal	3	point 4	51
	MUZT MOO 4	N '		point 5	51
	WKT-VS3-4 WKT-VS3-4	Normal Normal	3 3	point 6	51

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS3-4	Normal	3	point 8	51
	WKT-VS3-4	Normal	3	point 9	51
	WKT-VS3-4 WKT-VS3-4	Normal	3	point 10	50
	WKT-VS3-4 WKT-VS3-4	Normal Normal	3	point 11 point 12	49 48
	WKT-VS3-4	Normal	3	point 13	52
	WKT-VS3-4	Normal	3	point 14	51
	WKT-VS3-4	Normal	3	point 15	51
	WKT-VS3-4	Normal	3	point 16	49
	WKT-VS3-4	Normal	3	point 17	50
	WKT-VS3-4	Normal	3	point 18	51
	WKT-VS3-4	Normal	3	point 19	51
	WKT-VS3-4	Normal	3	point 20	50
	WKT-VS3-4	Normal	3	point 21	49
	WKT-VS3-4	Normal	3	point 22	51
	WKT-VS3-4	Normal	3	point 23	52
	WKT-VS3-4 WKT-VS3-4	Normal Normal	3 3	point 24	48
	WKT-VS3-4	Normal	3	point 25 point 26	50
	WKT-VS3-4	Normal	3	point 27	51
	WKT-VS3-4	Normal	3	point 28	52
	WKT-VS3-4	Normal	3	point 29	49
	WKT-VS3-4	Normal	3	point 30	51
	WKT-VS3-4	Normal	3	point 31	51
	WKT-VS3-4	Normal	3	point 32	52
	WKT-VS3-4	Normal	3	point 33	51
	WKT-VS3-4	Normal	3	point 34	49
	WKT-VS3-4	Normal	3	point 35	50
	WKT-VS3-4	Normal	3	point 36	50
	WKT-VS3-4	Normal	3	point 37	49
	WKT-VS3-4	Normal	3	point 38	50
	WKT-VS3-4	Normal	3	point 39	49
	WKT-VS3-4 WKT-VS3-4	Normal Normal	3 3	point 40	48
				point 41	50
	WKT-VS3-4 WKT-VS3-4	Normal Normal	3	point 42 point 43	49 53
	WKT-VS3-4	Normal	3	point 44	48
	WKT-VS3-4	Normal	3	point 45	50
	WKT-VS3-4	Normal	3	point 46	49
	WKT-VS3-4	Normal	3	point 47	49
	WKT-VS3-4	Normal	3	point 48	51
	WKT-VS3-4	Normal	3	point 49	51
	WKT-VS3-4	Normal	3	point 50	52
	WKT-VS3-4	Normal	3	point 51	50
				AVERAGE	
	WKT-VS3-5	Normal	3	point 1	53
	WKT-VS3-5 WKT-VS3-5	Normal Normal	3 3	point 2 point 3	52 50
	WKT-VS3-5	Normal	3	point 3	5
	WKT-VS3-5	Normal	3	point 4	52
	WKT-VS3-5	Normal	3	point 6	52
	WKT-VS3-5	Normal	3	point 7	50
	WKT-VS3-5	Normal	3	point 8	51
	WKT-VS3-5	Normal	3	point 9	52
	WKT-VS3-5	Normal	3	point 10	53
	WKT-VS3-5	Normal	3	point 11	50
	WKT-VS3-5	Normal	3	point 12	50
	WKT-VS3-5	Normal	3	point 13	50
	WKT-VS3-5	Normal	3	point 14	49
	WKT-VS3-5	Normal	3	point 15	50
	WKT-VS3-5	Normal	3	point 16	50
	WKT-VS3-5 WKT-VS3-5	Normal Normal	3 3	point 17 point 18	52 51
	WKT-VS3-5	Normal	3	point 19	52
	WKT-VS3-5 WKT-VS3-5	Normal	3	point 19	52
	WKT-VS3-5	Normal	3	point 20	5.
	WKT-VS3-5	Normal	3	point 21	5
	WKT-VS3-5	Normal	3	point 23	5
	WKT-VS3-5	Normal	3	point 24	5
	WKT-VS3-5	Normal	3	point 25	50
	WKT-VS3-5	Normal	3	point 26	50
	WKT-VS3-5	Normal	3	point 27	50
	WKT-VS3-5	Normal	3	point 28	5′
	WKT-VS3-5	Normal	3	point 29	50
	WKT-VS3-5	Normal	3	point 30	5
	WKT-VS3-5	Normal	3	point 31	50
	MIXT VC2 CA	Normal	2	AVERAGE	F.
	WKT-VS3-6A WKT-VS3-6A	Normal Normal	3 3	point 1 point 2	52 52
	WKT-VS3-6A	Normal	3	point 3	55
	WKT-VS3-6A	Normal	3	point 3	53
	WKT-VS3-6A	Normal	3	point 4	55
	WKT-VS3-6A	Normal	3	point 6	54
	WKT-VS3-6A	Normal	3	point 7	52
	WKT-VS3-6A	Normal	3	point 8	54
	WKT-VS3-6A	Normal	3	point 9	53
	WKT-VS3-6A	Normal	3	point 10	52
	WKT-VS3-6A	Normal	3	point 11	50
	WKT-VS3-6A	Normal	3	point 12	51
				AVERAGE	
	WKT-VS3-6B	Normal	3	point 1	54
	WKT-VS3-6B	Normal	3	point 2	54
	WKT-VS3-6B	Normal	3	point 3	55
	WKT-VS3-6B	Normal	3	point 4	54
	WKT-VS3-6B	Normal	3	point 5	53
	WKT-VS3-6B	Normal	3	point 6	53
	WKT-VS3-6B	Normal	3	point 7	53
	WKT-VS3-6B	Normal	3 3	point 8	54
	WILL LIGO OF			point 9	54
	WKT-VS3-6B WKT-VS3-6B	Normal Normal	3	point 10	52

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS3-6B	Normal	3	point 12	53.9
	WKT-VS3-7	Normal	3	AVERAGE point 1	5 6.3
	WKT-VS3-7	Normal	3	point 2	55.0
	WKT-VS3-7	Normal	3	point 3	54.9
	WKT-VS3-7	Normal	3	point 4	52.
	WKT-VS3-7 WKT-VS3-7	Normal Normal	3	point 5 point 6	54.9 54.9
	WKT-VS3-7	Normal	3	point 7	53.4
	WKT-VS3-7	Normal	3	point 8	52.
	WIKT VCC 0	Normal	2	AVERAGE	54
	WKT-VS3-8 WKT-VS3-8	Normal Normal	3	point 1 point 2	54.2 52.4
	WKT-VS3-8	Normal	3	point 3	54.
	WKT-VS3-8	Normal	3	point 4	51.9
	WKT-VS3-8 WKT-VS3-8	Normal Normal	3 3	point 5	52. 52.
	WKT-VS3-8	Normal	3	point 6 point 7	50.
	WKT-VS3-8	Normal	3	point 8	52.
	WKT-VS3-8	Normal	3	point 9	54.
	WKT-VS3-8 WKT-VS3-8	Normal Normal	3	point 10 point 11	54. 51.
	WKT-VS3-8	Normal	3	point 12	52.
				AVERAGE	5
VS 2 EAST	WKT-VS2E-1	Normal	3	point 1	54.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3 3	point 2 point 3	55. 54.
	WKT-VS2E-1	Normal	3	point 4	55.
	WKT-VS2E-1	Normal	3	point 5	54.
	WKT-VS2E-1	Normal	3	point 6	52.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3	point 7	53. 52.
	WKT-VS2E-1 WKT-VS2E-1	Normal	3	point 8 point 9	52. 52.
	WKT-VS2E-1	Normal	3	point 10	51.
	WKT-VS2E-1	Normal	3	point 11	52.
	WKT-VS2E-1	Normal	3	point 12	51.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3	point 13 point 14	51. 50.
	WKT-VS2E-1	Normal	3	point 15	50.
	WKT-VS2E-1	Normal	3	point 16	50.
	WKT-VS2E-1	Normal	3	point 17	51.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3	point 18 point 19	51. 51.
	WKT-VS2E-1	Normal	3	point 70	53.
	WKT-VS2E-1	Normal	3	point 21	51.
	WKT-VS2E-1	Normal	3	point 22	52.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3	point 23 point 24	52. 52.
	WKT-VS2E-1	Normal	3	point 25	52. 50.
	WKT-VS2E-1	Normal	3	point 26	51.
	WKT-VS2E-1	Normal	3	point 27	51.
	WKT-VS2E-1 WKT-VS2E-1	Normal Normal	3	point 28	52.
	WKT-VS2E-1	Normal	3	point 29 point 30	51.5 52.5
	WKT-VS2E-1	Normal	3	point 31	52.
	WIKE VICOE O	Named	0	AVERAGE	50
	WKT-VS2E-2 WKT-VS2E-2	Normal Normal	3	point 1 point 2	53. 54.
	WKT-VS2E-2	Normal	3	point 3	54.
	WKT-VS2E-2	Normal	3	point 4	53.
	WKT-VS2E-2	Normal	3	point 5	53.
	WKT-VS2E-2 WKT-VS2E-2	Normal Normal	3	point 6 point 7	53. 51.
	WKT-VS2E-2	Normal	3	point 7	51.
	WKT-VS2E-2	Normal	3	point 9	51.
	WKT-VS2E-2	Normal	3	point 10	51.
	WKT-VS2E-2 WKT-VS2E-2	Normal Normal	3	point 11 point 12	51. 51.
	WKT-VS2E-2	Normal	3	point 13	50.
	WKT-VS2E-2	Normal	3	point 14	52.
	WKT-VS2E-2	Normal	3	point 15	51.
	WKT-VS2E-2 WKT-VS2E-2	Normal Normal	3 3	point 16 point 17	50. 51.
	WKT-VS2E-2 WKT-VS2E-2	Normal	3	point 18	51. 52.
	WKT-VS2E-2	Normal	3	point 19	52.
	WKT-VS2E-2	Normal	3	point 20	52.
	WKT-VS2E-2	Normal	3	point 21 AVERAGE	52. 5
	WKT-VS2E-3	Normal	3	point 1	52.
	WKT-VS2E-3	Normal	3	point 2	53.
	WKT-VS2E-3	Normal	3	point 3	53.
	WKT-VS2E-3	Normal	3	point 4	53.
	WKT-VS2E-3 WKT-VS2E-3	Normal Normal	3	point 5 point 6	53. 51.
	WKT-VS2E-3	Normal	3	point 7	53.
	WKT-VS2E-3	Normal	3	point 8	51.
	WKT-VS2E-3	Normal	3	point 9	53.
	WKT-VS2E-3 WKT-VS2E-3	Normal Normal	3	point 10 point 11	52. 53.
	WKT-VS2E-3 WKT-VS2E-3	Normal	3	point 12	53. 52.
	WKT-VS2E-3	Normal	3	point 13	53.
	WKT-VS2E-3	Normal	3	point 14	53.
	WKT-VS2E-3	Normal Normal	3 3	point 15	52. 52
	WKT-VS2E-3 WKT-VS2E-3	Normal	3	point 16 point 17	52. 53.
	WKT-VS2E-3	Normal	3	point 18	53.
	WKT-VS2E-3	Normal	3	point 19	52.
	WKT-VS2E-3	Normal	3	point 20	51.
	WKT-VS2E-3	Normal	3	point 21 AVERAGE	51. 5
	WKT-VS4-1	Normal	3	point 1	5 9.

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS4-1	Normal	3	point 2	59
	WKT-VS4-1	Normal	3	point 3	59
	WKT-VS4-1	Normal	3	point 4	60
	WKT-VS4-1	Normal	3	point 5	60
	WKT-VS4-1	Normal	3	point 6	59
	WKT-VS4-1	Normal	3	point 7	60
	WKT-VS4-1	Normal	3	point 8	61
	WKT-VS4-1	Normal	3	point 9	59
	WKT-VS4-1	Normal	3	point 10	60
	WKT-VS4-1	Normal	3	point 11	60
	WKT-VS4-1	Normal	3	point 12	58
	WKT-VS4-1	Normal	3	point 13	60
	WKT-VS4-1	Normal	3	point 14	60
	WKT-VS4-1	Normal	3	point 15	58
	WKT-VS4-1	Normal	3	point 16	60
	WKT-VS4-1	Normal	3	point 17	60
	WKT-VS4-1	Normal	3	point 17	58
		Normal		l'	
	WKT-VS4-1		3	point 19	60
	WKT-VS4-1	Normal	3	point 20	60
	WKT-VS4-1	Normal	3	point 21	58
	WKT-VS4-1	Normal	3	point 22	6
	WKT-VS4-1	Normal	3	point 23	61
	WKT-VS4-1	Normal	3	point 24	59
	WKT-VS4-1	Normal	3	point 25	6
	WKT-VS4-1	Normal	3	point 26	6
	WKT-VS4-1	Normal	3	point 27	59
	WKT-VS4-1	Normal	3	point 28	61
	WKT-VS4-1	Normal	3	point 29	6
	WKT-VS4-1	Normal	3	point 30	61
	WKT-VS4-1	Normal	3	point 30	6
	VVIX.1-VO1	Inoilliai	Ĭ	AVERAGE	6
	WKT V64 3	Marea	2		
	WKT-VS4-3	Normal	3	point 1	56
	WKT-VS4-3	Normal	3	point 2	57
	WKT-VS4-3	Normal	3	point 3	54
	WKT-VS4-3	Normal	3	point 4	5
	WKT-VS4-3	Normal	3	point 5	55
	WKT-VS4-3	Normal	3	point 6	55
	WKT-VS4-3	Normal	3	point 7	5
	WKT-VS4-3	Normal	3	point 8	5
	WKT-VS4-3	Normal	3	point 9	56
	WKT-VS4-3	Normal	3	point 10	50
	WKT-VS4-3	Normal	3	point 11	53
	WKT-VS4-3	Normal	3	point 12	52
	WKT-VS4-3	Normal	3	point 13	54
	WKT-VS4-3	Normal	3	point 14	5
	WKT-VS4-3 WKT-VS4-3	Normal		'	54
			3	point 15	
	WKT-VS4-3	Normal	3	point 16	5
	WKT-VS4-3	Normal	3	point 17	5
	WKT-VS4-3	Normal	3	point 18	54
	WKT-VS4-3	Normal	3	point 19	54
	WKT-VS4-3	Normal	3	point 20	54
	WKT-VS4-3	Normal	3	point 21	54
	WKT-VS4-3	Normal	3	point 22	50
	WKT-VS4-3	Normal	3	point 23	5
	WKT-VS4-3	Normal	3	point 24	54
	WKT-VS4-3	Normal	3	point 25	50
	WKT-VS4-3	Normal	3	point 26	5
	WKT-VS4-3	Normal	3	point 27	54
	WKT-VS4-3	Normal	3	point 28	52
		Normal	3	· ·	
	WKT-VS4-3			point 29	54
	WKT-VS4-3	Normal	3	point 30	5
	WKT-VS4-3	Normal	3	point 31	5
			1	AVERAGE	
	WKT-VS4-4	Normal	3	point 1	54
	WKT-VS4-4	Normal	3	point 2	54
	WKT-VS4-4	Normal	3	point 3	53
	WKT-VS4-4	Normal	3	point 4	54
	WKT-VS4-4	Normal	3	point 5	54
	WKT-VS4-4	Normal	3	point 6	52
	WKT-VS4-4	Normal	3	point 7	53
	WKT-VS4-4	Normal	3	point 8	54
	WKT-VS4-4	Normal	3	point 9	52
	WKT-VS4-4	Normal	3	point 10	5.
				·	
	WKT-VS4-4	Normal	3	point 11	54
	WKT-VS4-4	Normal	3	point 12	55
	WKT-VS4-4	Normal	3	point 13	53
	WKT-VS4-4	Normal	3	point 14	53
	WKT-VS4-4	Normal	3	point 15	53
	WKT-VS4-4	Normal	3	point 16	54
	WKT-VS4-4	Normal	3	point 17	54
	WKT-VS4-4	Normal	3	point 18	5
	WKT-VS4-4	Normal	3	point 19	54
	WKT-VS4-4	Normal	3	point 20	54
	WKT-VS4-4	Normal	3	point 21	5
	WKT-VS4-4	Normal	3	point 22	5
	WKT-VS4-4	Normal	3	point 23	5.
				l'	
	WKT-VS4-4	Normal	3	point 24	50
	WKT-VS4-4	Normal	3	point 25	53
	WKT-VS4-4	Normal	3	point 26	54
	WKT-VS4-4	Normal	3	point 27	54
	WKT-VS4-4	Normal	3	point 28	5
	WKT-VS4-4	Normal	3	point 29	54
	WKT-VS4-4	Normal	3	point 30	54
	WKT-VS4-4	Normal	3	point 30	55
			2	l'	
	WKT-VS4-4	Normal	3	point 32	52
	MAZE MOA		3	point 33	52
	WKT-VS4-4	Normal		1	
	WKT-VS4-4	Normal	3	point 34	54
	WKT-VS4-4 WKT-VS4-4	Normal Normal	3 3	point 35	54 52
	WKT-VS4-4 WKT-VS4-4 WKT-VS4-4	Normal	3 3 3	l'	54 52 52
	WKT-VS4-4 WKT-VS4-4	Normal Normal	3 3	point 35	54 52

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS4-4	Normal	3	point 39	54
	WKT-VS4-4	Normal	3	point 40	54
	WKT-VS4-4	Normal	3	point 41	53
	WKT-VS4-4	Normal	3	point 42	51
	WKT-VS4-4	Normal	3	point 43	52
	WKT-VS4-4	Normal	3	point 44	53
	WKT-VS4-4	Normal	3	point 45	53
	WKT-VS4-4	Normal	3	point 46 AVERAGE	52
/S 5	WKT-VS5-1	Normal	3	point 1	51
	WKT-VS5-1	Normal	3	point 2	52
	WKT-VS5-1	Normal	3	point 3	51
	WKT-VS5-1	Normal	3	point 4	51
	WKT-VS5-1	Normal	3	point 5	53
	WKT-VS5-1	Normal	3	point 6	53
	WKT-VS5-1	Normal	3	point 7	52
	WKT-VS5-1	Normal	3	point 8	53
	WKT-VS5-1	Normal	3	point 9	52
	WKT-VS5-1	Normal	3	point 10	53
	WKT-VS5-1	Normal	3	point 11	53
	WKT-VS5-1	Normal	3	point 12	55
	WKT-VS5-1	Normal	3	point 13	56
	WKT-VS5-1	Normal	3	point 14	53
	WKT-VS5-1	Normal	3	point 15	53
	WKT-VS5-1	Normal	3	point 16	52
	WKT-VS5-1	Normal	3	point 17	53
	WIKT VOE O	Nemed	2	AVERAGE	0.5
	WKT-VS5-2 WKT-VS5-2	Normal Normal	3 3	point 1	65 66
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 2	
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 3 point 4	66
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 4 point 5	68
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 5	68
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 7	69
	WKT-VS5-2	Normal	3	point 8	70
	WKT-VS5-2	Normal	3	point 9	69
	WKT-VS5-2	Normal	3	point 10	68
	WKT-VS5-2	Normal	3	point 11	64
	WKT-VS5-2	Normal	3	point 12	64
	WKT-VS5-2	Normal	3	point 13	65
	WKT-VS5-2	Normal	3	point 14	69
	WKT-VS5-2	Normal	3	point 15	69
	WKT-VS5-2	Normal	3	point 16	68
	WKT-VS5-2	Normal	3	point 17	69
	WKT-VS5-2	Normal	3	point 18	68
	WKT-VS5-2	Normal	3	point 19	69
	WKT-VS5-2	Normal	3	point 20	68
	WKT-VS5-2	Normal	3	point 21	68
	WKT-VS5-2	Normal	3	point 22	65
	WKT-VS5-2	Normal	3	point 23	68
	WKT-VS5-2	Normal	3	point 24	6
	WKT-VS5-2	Normal	3	point 25	69
	WKT-VS5-2	Normal	3	point 26	70
	WKT-VS5-2	Normal	3	point 27	70
	WKT-VS5-2	Normal	3	point 28	69
	WKT-VS5-2	Normal	3	point 29	70
	WKT-VS5-2	Normal	3	point 30	70
	WKT-VS5-2	Normal	3 3	point 31	72
	WKT-VS5-2	Normal Normal		point 32	73
	WKT-VS5-2 WKT-VS5-2	Normal	3 3	point 33	67 7
		Normal		point 34	
	WKT-VS5-2 WKT-VS5-2	Normal	3 3	point 35 point 36	67 69
		Normal	3	· ·	
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 37 point 38	70
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 39	70
	WKT-VS5-2 WKT-VS5-2	Normal	3	point 40	7
	WKT-VS5-2	Normal	3	point 40	70
	WKT-VS5-2	Normal	3	point 42	7
	WKT-VS5-2	Normal	3	point 43	72
	WKT-VS5-2	Normal	3	point 44	69
				AVERAGE	
	WKT-VS5-4	Normal	3	point 1	58
	WKT-VS5-4	Normal	3	point 2	6′
	WKT-VS5-4	Normal	3	point 3	58
	WKT-VS5-4	Normal	3	point 4	57
	WKT-VS5-4	Normal	3	point 5	57
	WKT-VS5-4	Normal	3	point 6	56
	WKT-VS5-4	Normal	3	point 7	59
	WKT-VS5-4	Normal	3	point 8	51
	WKT-VS5-4	Normal	3	point 9	60
	WKT-VS5-4	Normal	3	point 10	59
	WKT-VS5-4	Normal	3	point 11	58
	WKT-VS5-4	Normal	3	point 12	57
	WKT-VS5-4	Normal	3	point 13	64
	WKT-VS5-4	Normal	3	point 14	65
	WKT-VS5-4	Normal	3	point 15	61
	WKT-VS5-4	Normal	3	point 16	59
	WKT-VS5-4	Normal	3	point 17	63
	WKT-VS5-4	Normal	3	point 18	65
	WKT-VS5-4	Normal	3	point 19	60
	WKT-VS5-4	Normal	3	point 20	59
				AVERAGE	
S 2 WEST	WKT-VS2W-1	Normal	3	point 1	58
	WKT-VS2W-1	Normal	3	point 2	59
	WKT-VS2W-1	Normal	3	point 3	58
	WKT-VS2W-1	Normal	3	point 4	59
	WKT-VS2W-1	Normal	3	point 5	58
	WKT-VS2W-1	Normal	3	point 6	59
	WKT-VS2W-1	Normal	3	point 7	59

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS2W-1	Normal	3	point 9	60
	WKT-VS2W-1	Normal	3	point 10	59
	WKT-VS2W-1	Normal	3	point 11	55
	WKT-VS2W-1	Normal	3	point 12	56
	WKT-VS2W-1	Normal	3	point 13	56
	WKT-VS2W-1	Normal	3	point 14	56
	WKT-VS2W-1	Normal	3	point 15	56
	WKT-VS2W-1	Normal	3	point 16	56
	WKT-VS2W-1	Normal	3	point 17	56
	WKT-VS2W-1	Normal	3	point 18	58
	WKT-VS2W-1	Normal	3	point 19	58
	VVICI - V 02 VV - 1	Ivoimai	J	AVERAGE	
	WKT-VS2W-2A	Normal	3	point 1	56
	WKT-VS2W-2A	Normal	3	'	56
				point 2	
	WKT-VS2W-2A	Normal	3	point 3	55
	WKT-VS2W-2A	Normal	3	point 4	55
	WKT-VS2W-2A	Normal	3	point 5	56
	WKT-VS2W-2A	Normal	3	point 6	56
	WKT-VS2W-2A	Normal	3	point 7	56
	WKT-VS2W-2A	Normal	3	point 8	55
	WKT-VS2W-2A	Normal	3	point 9	54
	WKT-VS2W-2A	Normal	3	point 10	54
	WKT-VS2W-2A	Normal	3	point 11	54
	WKT-VS2W-2A	Normal	3	point 12	55
	WKT-VS2W-2A	Normal	3	point 13	56
				'	
	WKT-VS2W-2A	Normal	3	point 14	55
	WKT-VS2W-2A	Normal	3	point 15	53
	WKT-VS2W-2A	Normal	3	point 16	53
				AVERAGE	
	WKT-VS2W-2B	Normal	3	point 1	57
	WKT-VS2W-2B	Normal	3	point 2	57
	WKT-VS2W-2B	Normal	3	point 3	56
	WKT-VS2W-2B	Normal	3	point 4	56
	WKT-VS2W-2B	Normal	3	point 5	57
	WKT-VS2W-2B	Normal	3	point 6	56
	WKT-VS2W-2B	Normal	3	point 7	59
				'	
	WKT-VS2W-2B	Normal	3	point 8	58
	WKT-VS2W-2B	Normal	3	point 9	55
	WKT-VS2W-2B	Normal	3	point 10	57
	WKT-VS2W-2B	Normal	3	point 11	55
	WKT-VS2W-2B	Normal	3	point 12	55
	WKT-VS2W-2B	Normal	3	point 13	56
	WKT-VS2W-2B	Normal	3	point 14	56
	WKT-VS2W-2B	Normal	3	point 15	55
	WKT-VS2W-2B	Normal	3	point 16	55
		1101111611		AVERAGE	
	WKT-VS2W-2C	Normal	3	point 1	56
	WKT-VS2W-2C	Normal	3	point 2	57
	WKT-VS2W-2C	Normal	3	point 3	57
				'	
	WKT-VS2W-2C	Normal	3	point 4	58
	WKT-VS2W-2C	Normal	3	point 5	55
	WKT-VS2W-2C	Normal	3	point 6	57
	WKT-VS2W-2C	Normal	3	point 7	56
	WKT-VS2W-2C	Normal	3	point 8	57
	WKT-VS2W-2C	Normal	3	point 9	57
	WKT-VS2W-2C	Normal	3	point 10	56
	WKT-VS2W-2C	Normal	3	point 11	56
	WKT-VS2W-2C	Normal	3	point 12	57
				AVERAGE	
	WKT-VS2W-3	Normal	3	point 1	57
	WKT-VS2W-3	Normal	3	point 2	56
				'	57
	WKT-VS2W-3	Normal	3	point 3	
	WKT-VS2W-3	Normal	3	point 4	57
	WKT-VS2W-3	Normal	3	point 5	58
	WKT-VS2W-3	Normal	3	point 6	58
	WKT-VS2W-3	Normal	3	point 7	58
	WKT-VS2W-3	Normal	3	point 8	56
	WKT-VS2W-3	Normal	3	point 9	58
	WKT-VS2W-3	Normal	3	point 10	58
	WKT-VS2W-3	Normal	3	point 11	55
	WKT-VS2W-3	Normal	3	point 12	58
	WKT-VS2W-3	Normal	3	point 13	57
	WKT-VS2W-3	Normal	3	point 14	57
	WKT-VS2W-3	Normal	3	point 15	58
	WKT-VS2W-3 WKT-VS2W-3	Normal	3	'	6
				point 16	
	WKT-VS2W-3	Normal	3	point 17	60
	WKT-VS2W-3	Normal	3	point 18	60
	WKT-VS2W-3	Normal	3	point 19	60
	WKT-VS2W-3	Normal	3	point 20	6
	WKT-VS2W-3	Normal	3	point 21	62
	WKT-VS2W-3	Normal	3	point 22	60
	WKT-VS2W-3	Normal	3	point 23	59
	WKT-VS2W-3	Normal	3	point 24	60
	WKT-VS2W-3	Normal	3	point 25	61
	WKT-VS2W-3	Normal	3	point 26	60
	VVIX.1 - V O Z VV - O	inomai	Ĭ	AVERAGE	00
. 1	\\\\KT\\\C4_4	NIc1	2		
51	WKT-VS1-1	Normal	3	point 1	48
	WKT-VS1-1	Normal	3	point 2	48
	WKT-VS1-1	Normal	3	point 3	51
	WKT-VS1-1	Normal	3	point 4	49
	WKT-VS1-1	Normal	3	point 5	48
	WKT-VS1-1	Normal	3	point 6	49
	WKT-VS1-1	Normal	3	point 7	49
	WKT-VS1-1	Normal	3	point 7	49
				l'	
	WKT-VS1-1	Normal	3	point 9	50
	_			point 10	50
	WKT-VS1-1	Normal	3	Politic 10	
	_	Normal Normal	3	point 11	
	WKT-VS1-1		3	l'	50
	WKT-VS1-1 WKT-VS1-1	Normal Normal	3 3	point 11 point 12	50 50
	WKT-VS1-1 WKT-VS1-1 WKT-VS1-1	Normal	3	point 11	50 50 48 49

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS1-1	Normal	3	point 16	49.
	WKT-VS1-1 WKT-VS1-1	Normal Normal	3	point 17 point 18	50. 50.
	WKT-VS1-1	Normal	3	point 19	50.
	WKT-VS1-1	Normal	3	point 20	50.
				AVERAGE	5
	WKT-VS1-2	Normal	3	point 1	49.
	WKT-VS1-2	Normal Normal	3	point 2	50. 50.
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 3 point 4	50. 50.
	WKT-VS1-2	Normal	3	point 5	49.
	WKT-VS1-2	Normal	3	point 6	49.
	WKT-VS1-2	Normal	3	point 7	49.
	WKT-VS1-2	Normal	3	point 8	49.
	WKT-VS1-2	Normal	3	point 9	48
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 10 point 11	49 49
	WKT-VS1-2	Normal	3	point 12	48
	WKT-VS1-2	Normal	3	point 13	49
	WKT-VS1-2	Normal	3	point 14	50
	WKT-VS1-2	Normal	3	point 15	50
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 16	50
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 17 point 18	50 50
	WKT-VS1-2	Normal	3	point 19	50
	WKT-VS1-2	Normal	3	point 70	50
	WKT-VS1-2	Normal	3	point 21	49
	WKT-VS1-2	Normal	3	point 22	50
	WKT-VS1-2	Normal	3	point 23	50
	WKT-VS1-2	Normal	3	point 24	50
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 25 point 26	50 51
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 27	51
	WKT-VS1-2	Normal	3	point 28	50
	WKT-VS1-2	Normal	3	point 29	49
	WKT-VS1-2	Normal	3	point 30	50
	WKT-VS1-2	Normal	3	point 31	50
	WKT-VS1-2	Normal	3	point 32	50
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 33 point 34	49 49
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 35	49
	WKT-VS1-2	Normal	3	point 36	49
	WKT-VS1-2	Normal	3	point 37	49
	WKT-VS1-2	Normal	3	point 38	49
	WKT-VS1-2	Normal	3	point 39	49
	WKT-VS1-2	Normal	3	point 40	49
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 41 point 42	50 51
	WKT-VS1-2	Normal	3	point 43	49
	WKT-VS1-2	Normal	3	point 44	50
	WKT-VS1-2	Normal	3	point 45	49
	WKT-VS1-2	Normal	3	point 46	48
	WKT-VS1-2	Normal	3	point 47	48
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 48 point 49	49. 48.
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 49	49
	WKT-VS1-2	Normal	3	point 51	49
	WKT-VS1-2	Normal	3	point 52	49.
	WKT-VS1-2	Normal	3	point 53	48
	WKT-VS1-2	Normal	3	point 54	49
	WKT-VS1-2	Normal	3	point 55	50
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3 3	point 56 point 57	50 49
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 58	49
	WKT-VS1-2	Normal	3	point 59	48
	WKT-VS1-2	Normal	3	point 60	50
	WKT-VS1-2	Normal	3	point 61	49
	WKT-VS1-2	Normal	3	point 62	48
	WKT-VS1-2	Normal	3	point 63	48
	WKT-VS1-2 WKT-VS1-2	Normal Normal	3	point 64 point 65	47 47
	WKT-VS1-2 WKT-VS1-2	Normal	3	point 65	48
	WKT-VS1-2	Normal	3	point 67	49
	WKT-VS1-2	Normal	3	point 68	48
	WKT-VS1-2	Normal	3	point 69	48
	WKT-VS1-2	Normal	3	point 70	48
	WKT-VS1-2	Normal	3	point 71 AVERAGE	48 5
	WKT-VS1-3	Normal	3	point 1	50
	WKT-VS1-3	Normal	3	point 2	52
	WKT-VS1-3	Normal	3	point 3	51
	WKT-VS1-3	Normal	3	point 4	52
	WKT-VS1-3	Normal	3	point 5	49
	WKT-VS1-3	Normal	3	point 6	53
	WKT-VS1-3 WKT-VS1-3	Normal Normal	3	point 7 point 8	53 52
	WKT-VS1-3 WKT-VS1-3	Normal	3	point 8	52
	WKT-VS1-3	Normal	3	point 9	51.
	WKT-VS1-3	Normal	3	point 11	50.
	WKT-VS1-3	Normal	3	point 12	49
	WKT-VS1-3	Normal	3	point 13	51
	WKT-VS1-3	Normal	3	point 14	51.
	WKT-VS1-3	Normal	3	point 15	53.
	WKT-VS1-3 WKT-VS1-3	Normal Normal	3	point 16 point 17	54 52
	WKT-VS1-3 WKT-VS1-3	Normal	3	point 17 point 18	52
	WKT-VS1-3	Normal	3	point 19	50
	WKT-VS1-3	Normal	3	point 70	52
	i			l'	52
	WKT-VS1-3 WKT-VS1-3	Normal Normal	3	point 21 point 22	54

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
· · · · ·	WKT-VS1-3	Normal	3	point 24	52
	WKT-VS1-3	Normal	3	point 25	53
	WKT-VS1-3	Normal	3	point 26	54
	WKT-VS1-3	Normal	3	point 27	53
	WKT-VS1-3	Normal	3	point 28	54
	WKT-VS1-3	Normal	3	point 29	52
	WKT-VS1-3	Normal	3	point 30	52
	WKT-VS1-3	Normal	3	point 31	55
	WKT-VS1-3	Normal	3	point 32	55
	WKT-VS1-3	Normal	3	point 33	53
		Normal		l'	
	WKT-VS1-3		3	point 34	55
	WKT-VS1-3	Normal	3	point 35	53
	WKT-VS1-3	Normal	3	point 36	54
	WKT-VS1-3	Normal	3	point 37	54
	WKT-VS1-3	Normal	3	point 38	51
	WKT-VS1-4	Normal	3	AVERAGE point 1	57
	WKT-VS1-4	Normal	3	point 2	56
	WKT-VS1-4	Normal	3	point 3	56
	WKT-VS1-4	Normal	3	point 4	52
	WKT-VS1-4	Normal	3	point 5	54
				l'	
	WKT-VS1-4	Normal	3	point 6	53
	WKT-VS1-4	Normal	3	point 7	53
	WKT-VS1-4	Normal	3	point 8	53
	WKT-VS1-4	Normal	3	point 9	53
	WKT-VS1-4	Normal	3	point 10	53
	WKT-VS1-4	Normal	3	point 11	52
	WKT-VS1-4	Normal	3	point 12	50
	WKT-VS1-4	Normal	3	point 13	58
	WKT-VS1-4	Normal	3	point 14	57
	WKT-VS1-4	Normal	3	point 15	51
	WKT-VS1-4	Normal	3	l'	52
				point 16	
	WKT-VS1-4	Normal	3	point 17	54
	WKT-VS1-4	Normal	3	point 18	54
	WKT-VS1-4	Normal	3	point 19	51
	WKT-VS1-4	Normal	3	point 20	53
	WKT-VS1-4	Normal	3	point 21	53
	WKT-VS1-4	Normal	3	point 22	53
	WKT-VS1-4	Normal	3	point 23	53
	WKT-VS1-4	Normal	3	point 24	52
	WKT-VS1-4	Normal	3	point 25	53
	WKT-VS1-4	Normal	3	point 26	53
	WKT-VS1-4	Normal	3	point 27	53
	WKT-VS1-4	Normal	3	point 28	53
				· ·	
	WKT-VS1-4	Normal	3	point 29	53
	WKT-VS1-4	Normal	3	point 30	55
	WKT-VS1-4	Normal	3	point 31	52
	WKT-VS1-4	Normal	3	point 32	52
	WKT-VS1-4	Normal	3	point 33	53
	WKT-VS1-4	Normal	3	point 34	52
	WKT-VS1-4	Normal	3	point 35	52
	WKT-VS1-4	Normal	3	point 36	52
	WKT-VS1-4	Normal	3	point 37	51
	WKT-VS1-4	Normal	3	point 38	53
				AVERAGE	
6 6	WKT-VS6-1	Normal	3	point 1	57
	WKT-VS6-1	Normal	3	point 2	55
	WKT-VS6-1	Normal	3	point 3	56
	WKT-VS6-1	Normal	3	point 4	58
	WKT-VS6-1	Normal	3	point 5	57
	WKT-VS6-1	Normal	3	point 6	58
	WKT-VS6-1	Normal	3	point 7	55
	WKT-VS6-1	Normal	3	l'	54
				point 8	
	WKT-VS6-1 WKT-VS6-1	Normal	3	point 9	54
		N1		l'	
		Normal	3	point 10	54
	WKT-VS6-1	Normal	3 3	point 10 point 11	54 53
	WKT-VS6-1 WKT-VS6-1	Normal Normal	3 3 3	point 10 point 11 point 12	54 53 55
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal	3 3 3 3	point 10 point 11 point 12 point 13	54 53 55 56
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal Normal	3 3 3 3 3	point 10 point 11 point 12	54 53 55 56 54
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal	3 3 3 3 3 3	point 10 point 11 point 12 point 13	54 53 55 56 54 54
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal Normal	3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16	54 53 55 56 54 54 55
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal Normal Normal	3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15	54 53 55 56 54 54 55
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal Normal Normal	3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16	54 53 55 56 54 54 55
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1	Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE	54 53 55 56 54 54 55
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1	54 53 55 56 54 54 55 47
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2	54 53 55 56 54 54 55 47 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3	54 55 56 54 54 55 47 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5	54 55 56 54 54 55 47 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6	54 53 55 56 54 55 47 48 49 48 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7	54 53 55 56 54 55 47 48 49 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8	54 55 56 54 55 54 47 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9	54 55 56 54 55 54 47 48 48 49 49 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10	54 53 55 56 54 55 54 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 11	54 53 55 56 54 55 55 47 48 49 49 49 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 11 point 12	54 53 55 56 54 55 55 47 48 49 49 49 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 11	54 53 55 56 54 55 55 47 48 49 49 49 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 11 point 12	54 53 55 56 54 54 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1	54 53 55 56 54 54 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2	54 53 55 56 54 54 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3	54 53 55 56 54 54 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 12 point 12 point 3 point 4	54 53 55 56 54 54 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 11 point 12 AVERAGE point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 12 point 12 point 2 point 3 point 4 point 5	54 53 55 56 54 55 54 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 12 point 12 point 3 point 4	54 53 55 56 54 55 54 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 11 point 12 AVERAGE point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 12 point 12 point 2 point 3 point 4 point 5	54 53 55 56 54 55 54 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 10 point 11 point 11 point 12 AVERAGE point 12 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 12 point 2 point 3 point 4 point 5 point 6 point 7	54 53 55 56 54 55 55 48 48 48 48 48 48 48 48 48 48 48 48 48
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 10 point 11 point 12 AVERAGE point 12 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8	54 53 55 56 54 55 54 48 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 10 point 11 point 12 AVERAGE point 11 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 1 point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9	54 53 55 56 54 55 54 48 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 5 point 6 point 7 point 8 point 9 point 10 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10	54 53 55 56 54 55 54 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 1 point 1 point 1 point 1 point 1 point 1 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 10 point 11	54 53 55 56 54 54 55 47 48 48 48 48 48 48 49 49 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 17 point 8 point 9 point 10 point 10 point 11 point 12	54 53 55 56 54 55 55 47 48 48 48 48 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 1 point 1 point 1 point 1 point 1 point 1 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 10 point 11	54 53 55 56 54 54 55 47 48 49 49 48 48 48 49 49 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49
	WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-1 WKT-VS6-2A WKT-VS6-2B	Normal	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	point 10 point 11 point 12 point 13 point 14 point 15 point 16 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 11 point 12 AVERAGE point 1 point 2 point 3 point 4 point 5 point 6 point 7 point 8 point 9 point 10 point 10 point 17 point 8 point 9 point 10 point 10 point 11 point 12	54 53 55 56 54 54 55 47 48 49 49 48 48 48 49 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49

scription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	-Aeq (GD)
	WKT-VS6-3A	Normal	3	point 4	48.
	WKT-VS6-3A	Normal	3	point 5	47.
	WKT-VS6-3A	Normal	3	point 6	48.
	WKT-VS6-3A	Normal	3	point 7	49.
	WKT-VS6-3A WKT-VS6-3A	Normal Normal	3	point 8	49. 48.
	WKT-VS6-3A WKT-VS6-3A	Normal	3	point 9 point 10	47.
	WKT-VS6-3A	Normal	3	point 10	47
	WKT-VS6-3A	Normal	3	point 12	48
	WICH-VOO-5A	Normal	3	AVERAGE	4
	WKT-VS6-3B	Normal	3	point 1	53
	WKT-VS6-3B	Normal	3	point 7	53
	WKT-VS6-3B	Normal	3	point 3	52
	WKT-VS6-3B	Normal	3	point 4	52
	WKT-VS6-3B	Normal	3	point 5	51
	WKT-VS6-3B	Normal	3	point 6	52
	WKT-VS6-3B	Normal	3	point 7	51
	WKT-VS6-3B	Normal	3	point 8	52
	WKT-VS6-3B	Normal	3	point 9	52
	WKT-VS6-3B	Normal	3	point 10	52
	WKT-VS6-3B	Normal	3	point 11	51
	WKT-VS6-3B	Normal	3	point 12	51
				AVERAGE	5
	WKT-VS6-4	Normal	3	point 1	62
	WKT-VS6-4	Normal	3	point 2	65
	WKT-VS6-4	Normal	3	point 3	61
	WKT-VS6-4	Normal	3	point 4	60
	WKT-VS6-4	Normal	3	point 5	57
	WKT-VS6-4 WKT-VS6-4	Normal	3	point 6	63
	WKT-VS6-4 WKT-VS6-4	Normal	3	point 7	56
	WKT-VS6-4 WKT-VS6-4	Normal	3	point 7	56
			3	l'	
	WKT-VS6-4	Normal Normal		point 9	59 63
	WKT-VS6-4	Normal	3	point 10	63 54
	WKT-VS6-4			point 11	
	WKT-VS6-4	Normal	3	point 12	52
	WKT-VS6-4	Normal	3	point 13	54
	WKT-VS6-4	Normal	3	point 14	54
	WKT-VS6-4	Normal	3	point 15	51
	WKT-VS6-4	Normal	3	point 16	51
	WKT-VS6-4	Normal	3	point 17	57
	WKT-VS6-4	Normal	3	point 18	52
				AVERAGE	5
	WKT-VS6-5A	Normal	3	point 1	58
	WKT-VS6-5A	Normal	3	point 2	61
	WKT-VS6-5A	Normal	3	point 3	56
	WKT-VS6-5A	Normal	3	point 4	60
	WKT-VS6-5A	Normal	3	point 5	57
	WKT-VS6-5A	Normal	3	point 6	63
	WKT-VS6-5A	Normal	3	point 7	60
	WKT-VS6-5A	Normal	3	point 8	63
	WKT-VS6-5A	Normal	3	point 9	59
	WKT-VS6-5A	Normal	3	point 10	60
	WKT-VS6-5A	Normal	3	point 11	61
	WKT-VS6-5A	Normal	3	point 12	58
				AVERAGE	6
	WKT-VS6-5B	Normal	3	point 1	61
	WKT-VS6-5B	Normal	3	point 2	52
	WKT-VS6-5B	Normal	3	point 3	62
	WKT-VS6-5B	Normal	3	point 4	62
	WKT-VS6-5B	Normal	3	point 5	56
	WKT-VS6-5B	Normal	3	point 6	61
	WKT-VS6-5B	Normal	3	point 7	52
	WKT-VS6-5B	Normal	3	point 8	53
	WKT-VS6-5B	Normal	3	point 9	54
	WKT-VS6-5B	Normal	3	point 10	54
	WKT-VS6-5B	Normal	3	point 10	63
	WKT-VS6-5B WKT-VS6-5B	Normal	3	point 12	61
	WKT-VS6-5B WKT-VS6-5B	Normal	3	point 12	60
	WKT-VS6-5B WKT-VS6-5B	Normal	3	point 13	62
	WKT-VS6-5B WKT-VS6-5B	Normal	3	point 14 point 15	58
	WKT-VS6-5B WKT-VS6-5B	Normal	3	point 16	56
		Taomai		AVERAGE	6
	WKT-VS6-6A	Normal	3	point 1	59
	WKT-VS6-6A WKT-VS6-6A	Normal	3	point 2	59
	WKT-VS6-6A WKT-VS6-6A	Normal	3	point 3	54
	WKT-VS6-6A WKT-VS6-6A	Normal	3	point 4	54
	**************************************	INOIIIIAI		AVERAGE	54
	WKT-VS6-6B	Normal	3	point 1	64
	WKT-VS6-6B	Normal	3	point 2	58
	WKT-VS6-6B	Normal	3	point 3	53
	WKT-VS6-6B	Normal	3	point 4	53
	VVIXI - V OU-UD	INUITIAI	3	AVERAGE	6
	WKT-VS6 74	NI n une - I	2		
	WKT-VS6-7A	Normal	3	point 1	50 51
	WKT-VS6-7A	Normal	3	point 2	51
	WKT-VS6-7A	Normal	3	point 3	52
	WKT-VS6-7A	Normal	3	point 4	49
	WKT-VS6-7A	Normal	3	point 5	47
	WKT-VS6-7A	Normal	3	point 6	51
	WKT-VS6-7A	Normal	3	point 7	51
	WKT-VS6-7A	Normal	3	point 8	51
	WKT-VS6-7A	Normal	3	point 9	50
	WKT-VS6-7A	Normal	3	point 10	50
	WKT-VS6-7A	Normal	3	point 11	49
	WKT-VS6-7A	Normal	3	point 12	50
	WKT-VS6-7A	Normal	3	point 13	49
	WKT-VS6-7A	Normal	3	point 14	51
	WKT-VS6-7A WKT-VS6-7A	Normal	3	point 15	50
	144 LV 1-4 20-1 H			point 15	50
	\/\KT_\/\S6_7^	Mormal			. 50
	WKT-VS6-7A	Normal	3	l'	
	WKT-VS6-7A WKT-VS6-7A WKT-VS6-7A	Normal Normal Normal	3 3	point 17 point 18	49. 52.

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-VS6-7A	Normal	3	point 20	50.
	WKT-VS6-7A	Normal	3	point 21	48.
	WKT-VS6-7A WKT-VS6-7A	Normal Normal	3	point 22 point 23	50. 49.
	WKT-VS6-7A	Normal	3	point 24	50.
	WKT-VS6-7A	Normal	3	point 25	49.
	WKT-VS6-7A	Normal	3	point 26	49.
	WKT-VS6-7A	Normal	3	point 27	50.
	WKT-VS6-7A	Normal	3	point 28	49.
	WKT-VS6-7A	Normal	3	point 29	50.
	WKT-VS6-7A	Normal	3	point 30	49.
	WKT-VS6-7A	Normal	3	point 31	49.
	WKT-VS6-7A	Normal	3	point 32	49.
	WIKT VOC 7D	Newsel	2	AVERAGE	5
	WKT-VS6-7B WKT-VS6-7B	Normal Normal	3	point 1 point 2	51. 52.
	WKT-VS6-7B	Normal	3	point 3	51.
	WKT-VS6-7B	Normal	3	point 4	50.
	WKT-VS6-7B	Normal	3	point 5	51.
	WKT-VS6-7B	Normal	3	point 6	51.
	WKT-VS6-7B	Normal	3	point 7	50.
	WKT-VS6-7B	Normal	3	point 8	49
				AVERAGE	5
PVS6	WKT-PVS6-1	Normal	3	point 1	53.
	WKT-PVS6-1	Normal	3	point 2	52.
	WKT-PVS6-1	Normal	3	point 3	53.
	WKT-PVS6-1	Normal	3	point 4	52.
	WKT-PVS6-1	Normal	3	point 5	52.
	WKT-PVS6-2	Normal	3	AVERAGE	55.
	WKT-PVS6-2 WKT-PVS6-2	Normal Normal	3	point 1 point 2	55
	WKT-PVS6-2 WKT-PVS6-2	Normal	3	point 2 point 3	57
	WKT-PVS6-2	Normal	3	point 3	58
	WKT-PVS6-2	Normal	3	point 4	58
	WKT-PVS6-2	Normal	3	point 6	58
	WKT-PVS6-2	Normal	3	point 7	54.
	WKT-PVS6-2	Normal	3	point 8	55.
				AVERAGE	5
	WKT-PVS6-3A	Normal	3	point 1	58.
	WKT-PVS6-3A	Normal	3	point 2	57.
	WKT-PVS6-3A	Normal	3	point 3	59
	WKT-PVS6-3A	Normal	3	point 4	57
	WKT-PVS6-3A	Normal Normal	3	point 5 point 6	58.
	WKT-PVS6-3A WKT-PVS6-3A	Normal	3 3	point 7	57. 57.
	WKT-PVS6-3A	Normal	3	point 7	58.
	WIKI 1 VOO 6/K	Tromai	Ü	AVERAGE	5
	WKT-PVS6-3B	Normal	3	point 1	58.
	WKT-PVS6-3B	Normal	3	point 2	58.
	WKT-PVS6-3B	Normal	3	point 3	59.
	WKT-PVS6-3B	Normal	3	point 4	59.
	WKT-PVS6-3B	Normal	3	point 5	56.
	WKT-PVS6-3B	Normal	3	point 6	57.
	WKT-PVS6-3B	Normal	3	point 7	57.
	WKT-PVS6-3B	Normal	3	point 8	56.
	WKT-PVS6-3B WKT-PVS6-3B	Normal Normal	3	point 9 point 10	54. 56.
	WKT-PVS6-3B	Normal	3	point 10	61.
	WKT-PVS6-3B	Normal	3	point 12	61.
	WKT-PVS6-3B	Normal	3	point 13	57.
	WKT-PVS6-3B	Normal	3	point 14	58.
	WKT-PVS6-3B	Normal	3	point 15	56.
	WKT-PVS6-3B	Normal	3	point 16	56.
				AVERAGE	5
	WKT-PVS6-4	Normal	3	point 1	56.
	WKT-PVS6-4	Normal	3	point 2	57.
	WKT-PVS6-4	Normal	3	point 3	56.
	WKT-PVS6-4	Normal	3	point 4	54.
	WKT-PVS6-4	Normal	3	point 5	57.
	WKT-PVS6-4 WKT-PVS6-4	Normal Normal	3 3	point 6	59. 56.
	WKT-PVS6-4 WKT-PVS6-4	Normal	3	point 7 point 8	56.
	VK1-PVS0-4	Normai	3	AVERAGE	55.
/S6-4	WKT-G-G15VS-01A	Normal	3	point 1	57.
. 50 7	WKT-G-G15VS-01A	Normal	3	point 1	57.
	WKT-G-G15VS-01A	Normal	3	point 3	57.
	WKT-G-G15VS-01A	Normal	3	point 4	57
	WKT-G-G15VS-01A	Normal	3	point 5	57
	WKT-G-G15VS-01A	Normal	3	point 6	57
	WKT-G-G15VS-01A	Normal	3	point 7	55
	WKT-G-G15VS-01A	Normal	3	point 8	55
	WKT-G-G15VS-01A	Normal	3	point 9	54
	WKT-G-G15VS-01A	Normal	3	point 10	54
	WKT-G-G15VS-01A	Normal	3	point 11	54
	WKT-G-G15VS-01A	Normal	3	point 12 AVERAGE	55. 56
	WKT-G-G15VS-01B	Normal	3		56 .
	WKT-G-G15VS-01B	Normal	3	point 1 point 2	57
	WKT-G-G15VS-01B	Normal	3	point 3	57
	WKT-G-G15VS-01B	Normal	3	point 4	57
	WKT-G-G15VS-01B	Normal	3	point 5	55
	WKT-G-G15VS-01B	Normal	3	point 6	55
	WKT-G-G15VS-01B	Normal	3	point 7	55
	WKT-G-G15VS-01B	Normal	3	point 8	54
	WKT-G-G15VS-01B	Normal	3	point 9	54
	WKT-G-G15VS-01B	Normal	3	point 10	55
	WKT-G-G15VS-01B	Normal	3	point 11	54
	WKT-G-G15VS-01B	Normal	3	point 12	55
	WWW 0 01010 01B				
	WKT-G-G15VS-01C	Normal	3	AVERAGE	56

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-G-G15VS-01C	Normal	3	point 3	54
	WKT-G-G15VS-01C	Normal	3	point 4	54
	WKT-G-G15VS-01C WKT-G-G15VS-01C	Normal Normal	3	point 5 point 6	55 55
	WKT-G-G15VS-01C	Normal	3	point 7	55
	WKT-G-G15VS-01C	Normal	3	point 8	55
				AVERAGE	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 1	55
	WKT-G-G15VS-03A Section 1 WKT-G-G15VS-03A Section 1	Normal Normal	3	point 2 point 3	55 55
	WKT-G-G15VS-03A Section 1	Normal	3	point 4	55 54
	WKT-G-G15VS-03A Section 1	Normal	3	point 5	54
	WKT-G-G15VS-03A Section 1	Normal	3	point 6	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 7	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 8	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 9	55
	WKT-G-G15VS-03A Section 1 WKT-G-G15VS-03A Section 1	Normal Normal	3	point 10 point 11	55 55
	WKT-G-G15VS-03A Section 1	Normal	3	point 12	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 13	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 14	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 15	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 16	54
	WKT-G-G15VS-03A Section 1	Normal	3	point 17	56
	WKT-G-G15VS-03A Section 1 WKT-G-G15VS-03A Section 1	Normal Normal	3	point 18	56
	WKT-G-G15VS-03A Section 1	Normal	3	point 19 point 20	56 55
	WKT-G-G15VS-03A Section 1	Normal	3	point 20	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 22	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 23	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 24	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 25	55
	WKT-G-G15VS-03A Section 1	Normal	3	point 26	55
	WKT-G-G15VS-03A Section 2	Normal	3	AVERAGE point 1	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 2	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 3	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 4	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 5	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 6	56
	WKT-G-G15VS-03A Section 2	Normal	3	point 7	55
	WKT-G-G15VS-03A Section 2 WKT-G-G15VS-03A Section 2	Normal Normal	3	point 8 point 9	55 54
	WKT-G-G15VS-03A Section 2	Normal	3	point 9	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 11	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 12	54
	WKT-G-G15VS-03A Section 2	Normal	3	point 13	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 14	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 15	54
	WKT-G-G15VS-03A Section 2	Normal	3	point 16	54
	WKT-G-G15VS-03A Section 2 WKT-G-G15VS-03A Section 2	Normal Normal	3	point 17 point 18	54 55
	WKT-G-G15VS-03A Section 2	Normal	3	point 19	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 20	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 21	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 22	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 23	55
	WKT-G-G15VS-03A Section 2	Normal	3	point 24	55
	WKT-G-G15VS-03A Section 2 WKT-G-G15VS-03A Section 2	Normal	3	point 25	55
	WK1-G-G15VS-03A Section 2	Normal	3	point 26 AVERAGE	55 55
S 7	WKT-G-D14VS-03A	Normal	3	point 1	57
	WKT-G-D14VS-03A	Normal	3	point 2	56
	WKT-G-D14VS-03A	Normal	3	point 3	57
	WKT-G-D14VS-03A	Normal	3	point 4	57
	WKT-G-D14VS-03A	Normal	3	point 5	56
	WKT-G-D14VS-03A WKT-G-D14VS-03A	Normal Normal	3	point 6	56
	WKT-G-D14VS-03A WKT-G-D14VS-03A	Normal	3	point 7 point 8	55 56
	WKT-G-D14VS-03A	Normal	3	point 9	56
	WKT-G-D14VS-03A	Normal	3	point 3	56
	WKT-G-D14VS-03A	Normal	3	point 11	56
	WKT-G-D14VS-03A	Normal	3	point 12	55
	WKT-G-D14VS-03A	Normal	3	point 13	57
	WKT-G-D14VS-03A	Normal	3	point 14	58
	WKT-G-D14VS-03A WKT-G-D14VS-03A	Normal Normal	3	point 15 point 16	55 58
	WKT-G-D14VS-03A	Normal	3	point 17	56
	WKT-G-D14VS-03A	Normal	3	point 17	56
	WKT-G-D14VS-03A	Normal	3	point 19	55
	WKT-G-D14VS-03A	Normal	3	point 20	55
		1		AVERAGE	56
	WKT-G-D14VS-04A	Normal	3	point 1	56
	WKT-G-D14VS-04A	Normal	3	point 2	56
	WKT-G-D14VS-04A WKT-G-D14VS-04A	Normal Normal	3	point 3 point 4	56 56
	WKT-G-D14VS-04A	Normal	3	point 4 point 5	56
	WKT-G-D14VS-04A	Normal	3	point 6	56
	WKT-G-D14VS-04A	Normal	3	point 7	56
	WKT-G-D14VS-04A	Normal	3	point 8	56
	WKT-G-D14VS-04A	Normal	3	point 9	56
	WKT-G-D14VS-04A	Normal	3	point 10	56
	WKT-G-D14VS-04A	Normal	3	point 11	56
	WKT-G-D14VS-04A	Normal	3	point 12	56
	WKT-G-D14VS-04A	Normal	3	point 13	56
	WKT-G-D14VS-04A	Normal	3	point 14	56
	WKT-G-D14VS-04A WKT-G-D14VS-04A	Normal Normal	3	point 15 point 16	56 56
	WKT-G-D14VS-04A	Normal	3	point 17	56
		Normal	3	point 17	56
	WKT-G-D14VS-04A	INUITIAI	0		J.C.

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	WKT-G-D14VS-04A	Normal	3	point 20	56
	\\\\\XT\\\OZ\4\^	N1	2	AVERAGE	56
	WKT-VS7-1A WKT-VS7-1A	Normal Normal	3	point 1	51 53
	WKT-VS7-1A WKT-VS7-1A	Normal	3	point 2 point 3	54
	WKT-VS7-1A	Normal	3	point 4	54
	WKT-VS7-1A	Normal	3	point 5	54
	WKT-VS7-1A	Normal	3	point 6	52
	WKT-VS7-1A	Normal	3	point 7	52
	WKT-VS7-1A	Normal	3	point 8	51
	WKT-VS7-1A	Normal	3	point 9	52
	WKT-VS7-1A WKT-VS7-1A	Normal Normal	3	point 10 point 11	49 53
	WKT-VS7-1A WKT-VS7-1A	Normal	3	point 12	51
	WKT-VS7-1A	Normal	3	point 13	54
	WKT-VS7-1A	Normal	3	point 14	52
	WKT-VS7-1A	Normal	3	point 15	52
	WKT-VS7-1A	Normal	3	point 16	52
	WKT-VS7-1A	Normal	3	point 17	56
	WKT-VS7-1A	Normal	3	point 18	55
	WKT-VS7-1A	Normal	3	point 19	55
	WKT-VS7-1A	Normal	3	point 20 AVERAGE	55
	WKT-VS7-1B	Normal	3	point 1	51
	WKT-VS7-1B	Normal	3	point 2	51
	WKT-VS7-1B	Normal	3	point 3	52
	WKT-VS7-1B	Normal	3	point 4	54
	WKT-VS7-1B	Normal	3	point 5	56
	WKT-VS7-1B	Normal	3	point 6	53
	WKT-VS7-1B	Normal	3	point 7	51
	WKT-VS7-1B	Normal	3	point 8	50
	WKT-VS7-1B	Normal	3	point 9	51
	WKT-VS7-1B	Normal	3	point 10	51
	WKT-VS7-1B	Normal	3	point 11	50
	WKT-VS7-1B WKT-VS7-1B	Normal Normal	3	point 12 point 13	54 51
	WKT-VS7-1B WKT-VS7-1B	Normal	3	point 14	54
	WKT-VS7-1B	Normal	3	point 15	51
	WKT-VS7-1B	Normal	3	point 16	51
	WKT-VS7-1B	Normal	3	point 17	52
	WKT-VS7-1B	Normal	3	point 18	54
	WKT-VS7-1B	Normal	3	point 19	53
	WKT-VS7-1B	Normal	3	point 20	54
				AVERAGE	;
	WKT-VS7-2	Normal	3	point 1	51
	WKT-VS7-2	Normal	3	point 2	51
	WKT-VS7-2 WKT-VS7-2	Normal Normal	3	point 3 point 4	52 53
	WKT-VS7-2	Normal	3	point 5	51
	WKT-VS7-2	Normal	3	point 6	51
	WKT-VS7-2	Normal	3	point 7	49
	WKT-VS7-2	Normal	3	point 8	54
	WKT-VS7-2	Normal	3	point 9	53
	WKT-VS7-2	Normal	3	point 10	50
	WKT-VS7-2	Normal	3	point 11	49
	WKT-VS7-2	Normal	3	point 12	48
	WKT-VS7-2	Normal	3	point 13	50
	WKT-VS7-2	Normal	3	point 14	49
	WKT-VS7-2 WKT-VS7-2	Normal Normal	3	point 15 point 16	48
	WKT-VS7-2 WKT-VS7-2	Normal	3	point 17	49
	WKT-VS7-2	Normal	3	point 17	50
	WKT-VS7-2	Normal	3	point 19	52
	WKT-VS7-2	Normal	3	point 20	51
	WKT-VS7-2	Normal	3	point 21	50
	WKT-VS7-2	Normal	3	point 22	50
	WKT-VS7-2	Normal	3	point 23	52
	WKT-VS7-2	Normal	3	point 24	51
	WKT-VS7-2	Normal	3	point 25	51
	WKT-VS7-2	Normal	3	point 26	50
	WKT-VS7-2 WKT-VS7-2	Normal Normal	3 3	point 27 point 28	51 51
	VVIX1-VOI-2	Nomai		AVERAGE	51
	WKT-VS7-3	Normal	3	point 1	53
	WKT-VS7-3	Normal	3	point 2	57
	WKT-VS7-3	Normal	3	point 3	57
	WKT-VS7-3	Normal	3	point 4	56
	WKT-VS7-3	Normal	3	point 5	56
	WKT-VS7-3	Normal	3	point 6	56
	WKT-VS7-3	Normal	3	point 7	57
	WKT-VS7-3	Normal	3	point 8	58
	WKT-VS7-3	Normal	3	point 9	57
	WKT-VS7-3 WKT-VS7-3	Normal Normal	3	point 10 point 11	53 55
	WKT-VS7-3	Normal	3	point 12	59
	WKT-VS7-3	Normal	3	point 13	59
	WKT-VS7-3	Normal	3	point 14	58
	WKT-VS7-3	Normal	3	point 15	57
	WKT-VS7-3	Normal	3	point 16	55
	WKT-VS7-3	Normal	3	point 17	55
	WKT-VS7-3	Normal	3	point 18	56
		Normal	3	point 19	60
	WKT-VS7-3		3	point 20	60
	WKT-VS7-3 WKT-VS7-3	Normal			
		Normal Normal	3	point 21	59
	WKT-VS7-3 WKT-VS7-3 WKT-VS7-3	Normal Normal	3	point 22	
	WKT-VS7-3 WKT-VS7-3	Normal Normal Normal	3 3 3	l'	57
	WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3	Normal Normal Normal Normal	3 3 3	point 22 point 23 point 24	57 56 58
	WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3	Normal Normal Normal Normal Normal	3 3 3 3 3	point 22 point 23 point 24 point 25	57 56 58 62
	WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3 WKT-VS7-3	Normal Normal Normal Normal	3 3 3	point 22 point 23 point 24	59 57 56 58 62 60 56

	WKT-VS7-3 WKT-VS7-3 WKT-VS7-3	Normal			L _{Aeq} (dB)
			3	point 29	57
		Normal Normal	3	point 30 point 31	58 57
	WKT-VS7-3	Normal	3	point 32	59
	WKT-VS7-3	Normal	3	point 33	55
	WKT-VS7-3	Normal	3	point 34	57
	WKT-VS7-3	Normal	3	point 35	59
	WKT-VS7-3	Normal	3	point 36	59
	WKT-VS7-3 WKT-VS7-3	Normal Normal	3	point 37	56
	WKT-VS7-3	Normal	3	point 38 point 39	58 58
	WKT-VS7-3	Normal	3	point 40	57
	WKT-VS7-3	Normal	3	point 41	59
	WKT-VS7-3	Normal	3	point 42	59
	WKT-VS7-3	Normal	3	point 43	57
	WKT-VS7-3	Normal	3	point 44	53
	WKT-VS7-3	Normal	3	point 45	56
	WKT-VS7-3 WKT-VS7-3	Normal Normal	3	point 46 point 47	55 59
	WKT-VS7-3	Normal	3	point 48	60
	WKT-VS7-3	Normal	3	point 49	56
	WKT-VS7-3	Normal	3	point 50	55
				AVERAGE	
ГІ	L-01	Normal	3	point 1	61
	L-01	Normal	3	point 2	60
	L-01	Normal	3	point 3	60
	L-01	Normal	3	point 4	60
	L-01 L-01	Normal Normal	3	point 5	60
	L-01 L-01	Normal	3	point 6 point 7	61
	L-01	Normal	3	point 8	61
	L-01	Normal	3	point 9	60
	L-01	Normal	3	point 10	56
	L-01	Normal	3	point 11	61
	L-01	Normal	3	point 12	63
				AVERAGE	60
	L-01 L-01	Normal	3	point 1	60
	L-01	Normal Normal	3	point 2 point 3	57 61
	L-01	Normal	3	point 4	58
	L-01	Normal	3	point 5	57
	L-01	Normal	3	point 6	57
	L-01	Normal	3	point 7	58
	L-01	Normal	3	point 8	58
	L-01	Normal	3	point 9	57
	L-01	Normal	3	point 10	58
	L-01 L-01	Normal Normal	3	point 11 point 12	59 60
	L-01	Normal	3	AVERAGE	59
	L-02	Normal	3	point 1	58
	L-02	Normal	3	point 2	59
	L-02	Normal	3	point 3	59
	L-02	Normal	3	point 4	59
	L-02	Normal	3	point 5	59
	L-02 L-02	Normal Normal	3	point 6 point 7	59 59
	L-02	Normal	3	point 7	61
	L-02	Normal	3	point 9	59
	L-02	Normal	3	point 10	59
	L-02	Normal	3	point 11	59
	L-02	Normal	3	point 12	59
	1.00			AVERAGE	59
	L-03	Normal	3	point 1	60
	L-03 L-03	Normal Normal	3 3	point 2 point 3	61 61
	L-03	Normal	3	point 4	60
	L-03	Normal	3	point 5	61
	L-03	Normal	3	point 6	62
	L-03	Normal	3	point 7	59
	L-03	Normal	3	point 8	61
	L-03	Normal	3	point 9	58
	L-03	Normal	3	point 10	60
	L-03 L-03	Normal	3	point 11	61 59
	L-03	Normal	3	point 12 AVERAGE	60
	L-03a	Normal	3	point 1	60
	L-03a	Normal	3	point 2	59
	L-03a	Normal	3	point 3	59
	L-03a	Normal	3	point 4	59
	L-03a	Normal	3	point 5	61
	L-03a	Normal	3	point 6	60
	L-03a	Normal	3	point 7	60
	L-03a	Normal Normal	3 3	point 8	59 59
	L-03a L-03a	Normal	3	point 9 point 10	60
	L-03a L-03a	Normal	3	point 11	59
		, voimai		AVERAGE	59
	L-06	Normal	2	measurement 1	62
	L-06	Normal	2	measurement 2	62
	L-06	Normal	2	measurement 3	62
		Normal	2	measurement 4	63
	L-06		2	measurement 5	63
	L-06 L-06	Normal	_		
	L-06 L-06 L-06	Normal	2	measurement 6	62
	L-06 L-06 L-06 L-06	Normal Normal	2 2	measurement 6 measurement 7	62 62
	L-06 L-06 L-06 L-06 L-06	Normal Normal Normal	2 2 2	measurement 6 measurement 7 measurement 8	62 62 62
	L-06 L-06 L-06 L-06 L-06 L-06	Normal Normal Normal Normal	2 2 2 2	measurement 6 measurement 7 measurement 8 measurement 9	62 62 62 62
	L-06 L-06 L-06 L-06 L-06	Normal Normal Normal	2 2 2	measurement 6 measurement 7 measurement 8 measurement 9 measurement 10	62 62 62 62 61
	L-06 L-06 L-06 L-06 L-06 L-06	Normal Normal Normal Normal	2 2 2 2	measurement 6 measurement 7 measurement 8 measurement 9	62 62 62 62

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	L-07	Normal	2	measurement 4	57.
	L-07	Normal	2	measurement 5	57.
	L-07	Normal Normal	2	measurement 6	58. 58.
	L-07	Normal	2	measurement 7	58. 58.
	L-07 L-07	Normal	2	measurement 8 measurement 9	58. 58.
	L-07	Normal	2	measurement 10	58.
	L-07	Normal	2	AVERAGE	57.
	L-08	Normal	2	measurement 1	61.
	L-08	Normal	2	measurement 2	61.
	L-08	Normal	2	measurement 3	60
	L-08	Normal	2	measurement 4	60
	L-08	Normal	2	measurement 5	59
	L-08	Normal	2	measurement 6	58
	L-08	Normal	2	measurement 7	57
	L-08	Normal	2	measurement 8	56
	L-08	Normal	2	measurement 9	56
	L-08	Normal	2	measurement 10	55
				AVERAGE	59
	L-08a	Normal	2	measurement 1	55
	L-08a	Normal	2	measurement 2	55
	L-08a	Normal	2	measurement 3	55
	L-08a	Normal	2	measurement 4	56
	L-08a	Normal	2	measurement 5	57
	L-08a	Normal	2	measurement 6	57
	L-08a	Normal	2	measurement 7	58
	L-08a	Normal	2	measurement 8	58
	L-08a	Normal	2	measurement 9	58
	L-08a	Normal	2	measurement 10	58
			<u>l</u>	AVERAGE	57
	L-10	Normal	3	point 1	66
	L-10	Normal	3	point 2	66
	L-10	Normal	3	point 3	66
	L-10	Normal	3	point 4	64
	L-10	Normal	3	point 5	66
	L-10	Normal	3	point 6	67
	L-10	Normal	3	point 7	66
	L-10	Normal	3	point 8	64
	L-10	Normal	3	point 9	66
	L-10	Normal	3	point 10	66
	L-10	Normal	3	point 11	64
	L-10	Normal	3	point 12	64
				AVERAGE	65
	L-11	Normal	3	point 1	64
	L-11	Normal	3	point 2	66
	L-11	Normal	3	point 3	63
	L-11	Normal	3	point 4	64
	L-11	Normal	3	point 5	64
	L-11	Normal	3	point 6	63
	L-11	Normal	3	point 7	62
	L-11	Normal	3	point 8	62
	L-11	Normal	3	point 9	65
	L-11	Normal	3	point 10	64
	L-11	Normal	3	point 11	64
	L-11	Normal	3	point 12	65
				AVERAGE	64
	L-12	Normal	3	point 1	64
	L-12	Normal	3	point 2	63
	L-12	Normal	3	point 3	64
	L-12	Normal	3	point 4	64
	L-12	Normal	3	point 5	65
	L-12	Normal	3	point 6	64
	L-12	Normal	3	point 7	65
	L-12	Normal	3	point 8	64
	L-12	Normal	3	point 9	64
	L-12	Normal	3	point 10	63
	L-12	Normal	3	point 11	63
	L-12	Normal	3	point 12	63
				AVERAGE	64
	L-13	Normal	3	point 1	66
	L-13	Normal	3	point 2	64
	L-13	Normal	3	point 3	61
	L-13	Normal	3	point 4	61
	L-13	Normal	3	point 5	61
	L-13	Normal	3	point 6	61
	L-13	Normal	3	point 7	61
	L-13	Normal	3	point 8	62
	L-13	Normal	3	point 9	61
	L-13	Normal	3	point 10	62
	L-13	Normal	3	point 11	63
	L-13	Normal	3	point 12	61
			Ì	AVERAGE	62
	L-13	Normal	3	point 1	62
	L-13	Normal	3	point 2	62
	L-13	Normal	3	point 3	61
	L-13	Normal	3	point 4	62
	L-13	Normal	3	point 5	63
	L-13	Normal	3	point 6	61
	L-13	Normal	3	point 7	61
	L-13	Normal	3	point 7	63
	L-13	Normal	3	point 9	61
	L-13 L-13	Normal	3	point 9 point 10	62
	L-13 L-13			l'	
		Normal	3	point 11	61
	L-13	Normal	3	point 12	63.
	1.40	ļ., .		AVERAGE	62
	L-13	Normal	3	point 1	65
	L-13	Normal	3	point 2	63
	L-13	Normal	3	point 3	64
		i a c		In a last A	64.
	L-13	Normal	3	point 4	
	L-13 L-13 L-13	Normal Normal Normal	3 3 3	point 4 point 5 point 6	66

escription	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	L-13	Normal	3	point 7	63.
	L-13	Normal	3	point 8	64.
	L-13	Normal	3	point 9	63.
	L-13	Normal	3	point 10	62.
	L-13	Normal	3	point 11	64.
	L-13	Normal	3	point 12	65.
	L-13	Normal	3	AVERAGE	64 . 61.
	L-13 L-13	Normal	3	point 1 point 2	62.
	L-13	Normal	3	point 3	62.
	L-13	Normal	3	point 4	62.
	L-13	Normal	3	point 5	62.
	L-13	Normal	3	point 6	62.
	L-13	Normal	3	point 7	61
	L-13	Normal	3	point 8	63
	L-13	Normal	3	point 9	63
	L-13	Normal	3	point 10	62
	L-13	Normal	3	point 11	62
	L-13	Normal	3	point 12	61
				AVERAGE	62
	L-13	Normal	3	point 1	60
	L-13	Normal	3	point 2	59
	L-13	Normal	3	point 3	62
	L-13	Normal	3	point 4	62
	L-13	Normal	3	point 5	61
	L-13	Normal	3	point 6	62
	L-13	Normal	3	point 7	61
	L-13	Normal	3	point 8	62
	L-13	Normal	3	point 9	62
	L-13	Normal	3	point 10	59
	L-13	Normal	3	point 11	61
	L-13	Normal	3	point 12	59
	3	Normal		AVERAGE	61
	L-14	Normal	3	point 1	66
	L-14	Normal	3	point 2	66
	L-14	Normal	3	point 3	65
	L-14	Normal	3	point 4	66
	L-14	Normal	3	point 5	66
	L-14	Normal	3	point 6	64
	L-14	Normal	3	point 7	67
	L-14	Normal	3	point 7	65
	L-14	Normal	3	point 9	66
	L-14	Normal	3	point 10	67
	L-14	Normal	3	point 10	68
	L-14	Normal	3	point 12	66
	L-14	Norman	3	AVERAGE	66
	L-15a	Normal	3	point 1	64
	L-15a	Normal	3	point 2	67
	L-15a	Normal	3	point 3	64
	L-15a	Normal	3	point 4	63
	L-15a	Normal	3	point 5	64
	L-15a	Normal	3	point 6	67
	L-15a	Normal	3	point 7	67
	L-15a	Normal	3	point 8	65
	L-15a	Normal	3	point 9	66
	L-15a	Normal	3	point 9	65
	L-15a	Normal	3	point 10	65
	L-15a	Normal	3	point 12	65
	2 100	Normal	J	AVERAGE	65
	L-15b	Normal	3	point 1	58
	L-15b	Normal	3	point 2	64
	L-15b	Normal	3	point 3	60
	L-15b	Normal	3	point 4	61
	L-15b	Normal	3	point 5	61
	L-15b L-15b	Normal	3	point 6	61
	L-15b	Normal	3	point 7	61
	L-15b	Normal	3	point 8	61
	L-15b	Normal	3	point 9	62
	L-15b	Normal	3	point 9	64
	L-15b	Normal	3	point 10	62
	L-15b	Normal	3	point 12	63
	52			AVERAGE	62
	L-21	Normal	3	point 1	56
	L-21	Normal	3	point 2	56
	L-21	Normal	3	point 3	56
	L-21	Normal	3	point 4	56
	L-21	Normal	3	point 5	56
	L-21	Normal	3	point 6	55
	L-21	Normal	3	point 7	56
	L-21	Normal	3	point 8	56
	L-21	Normal	3	point 9	56
	L-21	Normal	3	point 10	56
	L-21	Normal	3	point 11	56
			1	AVERAGE	56
	L-22	Normal	3	point 1	56
	L-22	Normal	3	point 2	56
	L-22	Normal	3	point 3	57
	L-22	Normal	3	point 4	56
	L-22	Normal	3	point 5	56
	L-22	Normal	3	point 6	57
	L-22	Normal	3	point 7	57
	L-22	Normal	3	point 8	56
	L-22	Normal	3	point 9	57
	L-22	Normal	3	point 10	56
	L-22	Normal	3	point 11	56
				AVERAGE	56
	L-23	Normal	3	point 1	58
		IN I I	3	point 2	58
	L-23	Normal		l'	
	L-23 L-23 L-23	Normal Normal	3	point 3 point 4	59 59

WEK - Noise Measurement Result - data

Description	Louvre ID	Scenario	Method ⁽¹⁾	Location/ Measurement	L _{Aeq} (dB)
	L-23	Normal	3	point 6	59.1
	L-23	Normal	3	point 7	59.0
	L-23	Normal	3	point 8	59.6
	L-23	Normal	3	point 9	59.5
	L-23	Normal	3	point 10	59.7
	L-23	Normal	3	point 11	59.5
				AVERAGE	59.2
	L-24	Normal	3	point 1	59.0
	L-24	Normal	3	point 2	59.1
	L-24	Normal	3	point 3	59.6
	L-24	Normal	3	point 4	58.8
	L-24	Normal	3	point 5	59.4
	L-24	Normal	3	point 6	59.5
	L-24	Normal	3	point 7	59.5
	L-24	Normal	3	point 8	59.5
	L-24	Normal	3	point 9	59.9
	L-24	Normal	3	point 10	59.4
	L-24	Normal	3	point 11	59.0
				AVERAGE	59.4
	L-28	Normal	3	point 1	54.0
	L-28	Normal	3	point 2	54.8
	L-28	Normal	3	point 3	54.3
	L-28	Normal	3	point 4	54.9
	L-28	Normal	3	point 5	54.4
	L-28	Normal	3	point 6	54.1
	L-28	Normal	3	point 7	52.3
	L-28	Normal	3	point 8	54.4
		. Torritar		AVERAGE	54.2
	L-29	Normal	3	point 1	61.2
	L-29	Normal	3	point 2	60.2
	L-29	Normal	3	point 3	60.0
	L-29	Normal	3	point 4	60.8
	L-29	Normal	3	point 5	61.3
	L-29	Normal	3	point 6	60.4
	L-29	Normal	3	point 7	60.4
	L-29	Normal	3	point 7	61.1
	L-29	Normai	3	AVERAGE	60.7
	L-30	Normal	3	point 1	56.7
	L-30	Normal	3	· ·	56.7
	L-30	Normal	3	point 2 point 3	56. <i>7</i> 56.8
		Normal		l'	
	L-30		3	point 4	57.4 56.5
	L-30	Normal	3	point 5	56.5
	L-30	Normal	3	point 6	57.7
	L-30	Normal	3	point 7	57.8
	L-30	Normal	3	point 8	56.8 57.1
	L-31	Normal	3	AVERAGE point 1	62.6
	L-31	Normal	3	point 2	62.7
	L-31	Normal	3	point 3	64.2
	L-31		3	I.*	
		Normal		point 4	64.1
	L-31	Normal	3	point 5	62.4
	L-31	Normal	3	point 6	62.5
	L-31	Normal	3	point 7	62.6
	L-31	Normal	3	point 8	64.7
			1	AVERAGE	63.3

(1): 2: Far-field measurement; 3: Near-field measurement.

Appendix A4 - Measurement Results at NSRs

NSR	Scenario	Measurement Type	Start Time	End Time	L _{Aeq} , dB(A)
WK3a -		Packground Noise Lovels	7-Jul-2018 01:13	7-Jul-2018 01:23	56.5
	Night time	Background Noise Levels	7-Jul-2018 01:24	7-Jul-2018 01:34	53.8
Rooftop of	Night-time	Measured Noise Levels	6-Jul-2018 23:46	7-Jul-2018 00:16	54.9
Man King Building		ivieasurea noise Leveis	7-Jul-2018 00:22	7-Jul-2018 00:52	54.3
WK4 -		Packground Noise Loyels	7-Jul-2018 01:17	7-Jul-2018 01:22	59.4
Refuge Floor (17/F),	Night time	Background Noise Levels	7-Jul-2018 01:22	7-Jul-2018 01:27	59.5
	Night-time	Measured Noise Levels	7-Jul-2018 00:02	7-Jul-2018 00:32	60.4
The Sorrento		ivieasured ivoise Leveis	7-Jul-2018 00:32	7-Jul-2018 01:02	60.2
WK7a -		Packground Noise Lovels	7-Jul-2018 01:20	7-Jul-2018 01:30	54.1
	Night time	Background Noise Levels	7-Jul-2018 01:31	7-Jul-2018 01:41	54.7
Top Level,	Night-time	Measured Noise Levels	6-Jul-2018 23:52	7-Jul-2018 00:22	56.2
TST Fire Station		ivieasured noise Leveis	7-Jul-2018 00:23	7-Jul-2018 00:53	56.0
WK8a -		Packground Noise Lovels	7-Jul-2018 01:24	7-Jul-2018 01:29	56.8
	Night time	Background Noise Levels	7-Jul-2018 01:29	7-Jul-2018 01:34	57.9
Podium,	Night-time	Measured Noise Levels	6-Jul-2018 23:52	7-Jul-2018 00:22	58.4
The Waterfront		ivieasureu noise Leveis	7-Jul-2018 00:22	7-Jul-2018 00:52	56.9
WK11 -		Packground Noise Lovels	7-Jul-2018 01:16	7-Jul-2018 01:26	57.5
Refuge Floor	Night time	Background Noise Levels	7-Jul-2018 01:26	7-Jul-2018 01:36	55.8
(Top Level),	Night-time	Measured Noise Levels	6-Jul-2018 23:54	7-Jul-2018 00:24	58.5
T5, The Austin		ivieasureu noise Leveis	7-Jul-2018 00:24	7-Jul-2018 00:54	58.0
WK12a -		Packground Noise Lovels	7-Jul-2018 01:13	7-Jul-2018 01:23	49.9
Refuge Floor	Night time	Background Noise Levels	7-Jul-2018 01:23	7-Jul-2018 01:33	50.0
(Top Level),	Night-time	Maggurad Naisa Layals	6-Jul-2018 23:53	7-Jul-2018 00:23	52.4
T5, Grand Austin		Measured Noise Levels	7-Jul-2018 00:23	7-Jul-2018 00:53	51.4
WK14 -		Dealeground Noise Levels	7-Jul-2018 01:12	7-Jul-2018 01:22	55.3
Refuge Floor (29/F),	Night time	Background Noise Levels	7-Jul-2018 01:23	7-Jul-2018 01:33	53.6
Moon Tower,	Night-time	Maggurad Naiga Layala	6-Jul-2018 23:51	7-Jul-2018 00:21	56.0
The Arch		Measured Noise Levels	7-Jul-2018 00:22	7-Jul-2018 00:52	54.3
WK14a -		Dealeground Noise Levels	7-Jul-2018 01:13	7-Jul-2018 01:23	56.9
Refuge Floor (19/F),	Night time	Background Noise Levels	7-Jul-2018 01:23	7-Jul-2018 01:33	55.3
Star Tower,	Night-time	Maggired Noise Levels	7-Jul-2018 00:00	7-Jul-2018 00:30	56.4
The Arch		Measured Noise Levels	7-Jul-2018 00:30	7-Jul-2018 01:00	56.0

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

MTR Corporation

August 2018

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

1 Introduction

The Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Project (hereinafter known as "XRL") covers a 26km long underground rail line on dedicated tracks that run between the terminus in West Kowloon and the boundary at Huanggang, where connects with the XRL Mainland section. XRL Project also includes the construction of ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).

The Environmental Impact Assessment (EIA) Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/M) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 25 June 2018.

This report is prepared with reference to EP Condition 2.36, "The Permit Holder shall, no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational air-borne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents".

A Commissioning Test Report for Fixed Plant Noise at Shek Kong Stabling Sidings has been prepared to confirm the compliance of noise criteria in accordance with the operational airborne noise levels in accordance with the application for variation of an environmental permit No. VEP-377/2012 and its attached documents. This report presents the noise measurement methodology, results of noise measurement for the fixed plant noise sources installed at Shek Kong Stabling Sidings (SSS), calculated Sound Power Levels from noise measurements having due regard to the characteristics of tonality, impulsiveness and intermittency. Given that operation arrangement of tunnel ventilation fans at ERS Plant Building – South (SPS) / ERS Plant Building - North (SPN) still follows those discussed in approved XRL EIA Report (Note 2 of Table 5.10 of EIA Report refers), no cumulative fixed plant noise impact is anticipated as major fixed plant noise sources at SSS and SPS/SPN would not be operated at the same time. For the fixed plant noise verification at the ventilation buildings including SPS and SPN and West Kowloon Station (WEK), separate reports would be submitted.

2 Noise Criteria

2.1 Fixed Plant Noise Criteria in EIA

With reference to the IND-TM under the Noise Control Ordinance (NCO), the relevant acceptable noise levels (ANL) where determined based on the area sensitivity rating (ASR).

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

The fixed plant noise criteria for the representative noise sensitive receivers (NSRs) were determined in EIA as follow (whichever is lower):

- 5dB(A) below the appropriate ANL set out in the IND-TM (the ANL-5dB(A) criterion);
 or
- The prevailing background noise levels where the prevailing background noise level is 5dB(A) below the appropriate ANL (i.e. ANL-5dB(A))

The noise criteria above were determined for planning purpose, while during operations; the fixed plant noise is controlled by a Noise Abatement Notices system governed by the NCO.

The representative NSRs which are located within 300m assessment area were identified in the Environmental Review Report for the Proposed Design Changes at Shek Kong Stabling Sidings, September 2012 (ERR-SSS) for variation of environmental permit (VEP-377/2012). Description of the NSRs and the corresponding fixed plant noise criteria are presented in Table 2.1 below. Appropriate corrections in tonal, impulsive or intermittent characteristics should be applied to the results of noise measurement, where applicable, in accordance with IND-TM.

Table 2.1 Summary of Fixed Plant Noise Criteria

	Description	Area	Noise Criteria, L	_{eq, 30min} dB(A) ^(a)
NSR		Sensitivity	Day and	Night-time
		Rating (ASR) ^(a)	Evening Time	
Shek Ko	ong Stabling Sidings (SSS) (Figur	e 2.1)		
SS2	Nam Hing Lei Village House	В	49	39
SS4	Leung Uk Tsuen Village House	В	49	40
SS5	51A Leung Uk Tsuen	В	52	45
SS6	32 Leung Uk Tsuen	В	52	45
SS7	Leung Uk Tsuen Village	В	49	47
337	House	Ь	77	77
SS10	DD110 LOT 482, Wang Toi	В	49	47
3310	Shan	D	17	17
SS11a	Leung Uk Tsuen Squats	В	52	50
SS12	265 Kam Tai Road	В	49	47
SS14	Planned village house at	В	49	47
3317	Village Zone	Ь	77	77
SS15	Abandoned village house in	В	49	47
3313	Shek Kong	D	77	77
SS20	Village house in Shek Kong	В	49	40

Note:

(a) ASR and noise criteria follow that defined in Table 3.12 of ERR-SSS.

Major fixed plant noise sources at SSS include gantry crane, air handling units (AHU), cooling towers, chillers, compressors, train wash plant, train idling and shunting. For both indoor and outdoor fixed plants, they would be operating concurrently under "normal scenario" for XRL operation during daytime and evening time periods; and night-time period, respectively under the worst case scenario. The worst case scenario was considered for compliance check against

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

the fixed plant noise criteria and the noise measurement was conducted to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs.

Table 2.2 below summarised the information of the fixed plant noise sources and the layout plan is shown in Figures 2.2 and 2.3. All the fixed noise sources identified in the ERR-SSS have been covered in this Report.

Table 2.2 Summary of Fixed Plant Noise Sources

Noise Source	Location	Indoor / Outdoor				
Shek Kong Stabling Sidings (SSS)						
Gantry crane	Ground level of P-way sidings	Outdoor				
Train Wash Plant	Ground level of SSS	Outdoor				
AHU (RMS-AHU-4001 to	Roof of Running Maintenance Shed	Outdoor				
4016)						
Ventilation louvres	G/F, 1/F and 2/F of SSS Main	Outdoor				
(SMB.GL.L.004,	Building					
SMB.GL.L.005,						
SMB.U2.L.001B &						
SMB.U1.L.003B)						
Chiller	Roof of SSS Main Building	Indoor ^(a)				
Cooling Towers	Roof of SSS Main Building	Outdoor				
Compressor	1/F of SSS Main Building	Indoor ^(a)				
Train Idling	Running Maintenance Shed and	Indoor and				
	Sidings	Outdoor				
Train Shunting at 25kph	Sidings	Outdoor				

Note:

3 Methodology

3.1 Noise Measurement for the Fixed Plants

Noise measurements to obtain the noise levels of the fixed plants were undertaken by National Railway Product Quality Supervision and Inspection Center (鐵道部產品質量監督檢驗中心), GAS Joint Venture and ATAL Building Services Engineering Ltd. The commissioning tests were carried out by qualified persons possessing at least 7 years of noise control experience and a corporate member of Hong Kong Institute of Acoustics or equivalent in accordance with S3.22 of the XRL EM&A Manual.

3.1.1 Methodology

Three measurement methods for stationary fixed plant sources, namely Method 1 (at or near NSR), Method 2 (Far Field) and Method 3 (Near Field), have been developed based on NCO-TM, basic acoustic principles and ISO 3746-2010: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using

⁽a) Both chiller and compressor are fully enclosed inside the building and have insignificant noise contribution based on the on-site observations. Therefore, they are excluded in the noise measurement and the subsequent fixed plant noise calculation.

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

an enveloping measurement surface over a reflecting plane, respectively. Given the fixed plant noise sources are steady, all proposed methods could be adopted for all types of fixed plant source depending on the site environment/constraints that might affect the possibility to obtain valid results, considerations including but not limited to:

- Background noise with less influence to the measured noise levels
- Free of obstacles between measurement location and noise source
- Accessibility and Safety Concerns

For Shek Kong Stabling Sidings (SSS), considering there are building structures including noise barriers, SSS main building or maintenance shed between the NSR and noise sources such that there are no direct line of sight between most of the fixed plant and NSRs, also the fact that background noise environment (Table 4.3 refers) in this area (i.e. mainly due to heavily trafficked Kam Tin Road or natural ambient sound) is found to be higher than the noise criteria presented in Table 2.1, obtaining valid results using Method 1 was considered unlikely. As such, only Method 2 and Method 3 were considered applicable. Details of the measurement methodology are shown in Appendix A1.

Method 1 – Measuring Sound Pressure Level at NSR or Near NSR

- Measurement at NSR or near NSR at distance *D* away from the louvre, where D was at least two times the largest dimension b of the louvre and rounded up to integer, i.e.: *D*≥2*b*
- The microphone was pointing toward the louvre and three measurements were taken when the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre was switched OFF
- The sound pressure level (SPL) at NSR or near NSR was determined by the following equation:

Background corrected $L_p = L_p + BG - [20logD + 8]$ (if applicable) + façade correction (if applicable)

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

BG is the background correction factor, in dB(A);

 ${\it D}$ is separation between the center of louvre or surface of the plant and the microphone, in metres.

Method 2 – Measuring Sound Power Level by Far Field Method for Louvres or for Plants

- The microphone was positioned at the perpendicular distance D away from the center of the louvre or the surface of the plant, where D was at least two times the largest dimension b of the louvre or plant and rounded up to integer, i.e.: $D \ge 2b$
- The microphone was pointing toward the center of the louvre/combined louvre area or the center the plant; and three measurements were taken when the noise source from the louvre was switched ON

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

- Background noise level was taken when the noise source from the louvre or plant was switched OFF
- The sound power level (SWL) of the louvre or the plant was determined, based on basic acoustic principles, by the following equation:

$$L_w = L_p + 20logD,center + 8 + BG$$

Where

 L_p is the average $L_{eq,1min}$ of all measurements, in dB(A);

D,center is separation between the center of louvre or plant and the microphone, in metres;

BG is the background correction factor, in dB(A).

Method 3 – Measuring Sound Power Level by Near Field Method for Louvres or for Plants

- A right parallelepiped hypothetical measurement box for each louvre or each surface of a plant was determined according to ISO 3746:2010, with each side being spaced a distance *D* from the corresponding side of the louvre or plant
- Each of the 5 planes of the measurement box was subdivided into equal-sized rectangular grids, the length of each side of the grids should be less than or equal to 3 times of distance D, i.e. grid length $\leq 3D$
- The microphone was pointing toward the center of each grid, and a measurement was taken for each grid during the noise source from the louvre was switched ON
- Background noise level was taken when the noise source from louvre or plant was switched OFF
- The SWL of the louvre or the plant was determined by the following equation:

$$L_w = L_p + 10log(S) - K_{1A} - K_{2A}$$

Where

 L_p is the averaged measured L_{eq} of all measurement points, in dB(A);

S is the total surface area over the measurement box (total 5 planes), in m²;

 K_{1A} is the background correction factor as described in ISO 3746:2010, in dB(A);

 K_{2A} is the environmental correction for sound absorption and reflection as described in *ISO 3746:2010*, in dB(A).

Except for Method 3, which was adopted with reference to ISO 3746:2010; the noise sources measured using Method 1 or Method 2 were considered steady if the difference between the maximum and minimum L_{eq} is less than or equal to 1dB(A), i.e., \leq 1dB(A); average L_{eq} was therefore considered. Otherwise, the maximum L_{eq} would be adopted for SWL determination as a conservative approach.

For the noise induced by train movement, noise measurement was conducted at a distance of 25m from the rail center and at a height of 3.5m above top of rail according to the specification of China Railway High-Speed (CRH) train. For train idling noise, noise measurement was conducted at a distance of 7.5m from the rail center and at a height of

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

1.2m above top of rail according to the specification of CRH train, which was discussed in the ERR-SSS for assessment.

3.1.2 Measurement Equipment

The sound level meters and calibrators used for noise measurements are listed in Table 3.1. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in Appendix A2a.

Table 3.1 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	Lutron SL-4022	I.328198
	B&K 2250	2704790
	Casella CEL-63X	5044655
	LMS SCADAS Mobile 05	53102514
Calibrator	Casella CEL-120/1	5060836
	B&K 4231	1858983

Before and after each series of measurements, a calibration check was carried out on the sound level meter by the calibrator. The difference between the readings made before and after each series of measurements shall be less than or equal to 1.0 dB.

3.1.3 Measurement Schedule

The noise measurements were carried out during daytime, evening time and night-time periods, where the fixed plant items were operated steadily and continuously at their noisiest operating mode under normal scenario. The noise measurement schedule is shown in Table 3.2.

Table 3.2 Measurement Schedule

Noise Source	Date	Time
Gantry crane	21 Dec 2015, 3 Aug 2016	10:30 – 17:00
Train Wash Plant	20 Jun 2018	10:30 – 17:00
AHU (RMS-AHU-4001 to 4016)	20 Jul 2017	10:30 – 17:00
Cooling Towers	_(1)	_(1)
Ventilation louvres	27 Jul 2017	23:00 – 01:00
(SMB.GL.L.004, SMB.GL.L.005,	4 Aug 2017	10:30 – 17:00
SMB.U2.L.001B &		
SMB.U1.L.003B)		
Train Idling	3 Mar, 25 Jun and 12 Jul	10:30 – 17:00
	2014	
Train Shunting at 25kph	3 Mar, 25 Jun and 12 Jul	10:30 – 17:00
	2014	

Note:

(1) Commissioning test was conducted by the Manufacturer.

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

3.2 Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

3.2.1 Measurement Equipment

The sound level meters and calibrators used for noise measurements at NSRs are listed in Table 3.3. The instruments complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) or equivalent international standards. Calibration certificates are shown in Appendix A2b.

Table 3.3 Noise Measurement Equipment

Equipment	Model	Serial Number
Sound Level Meter	B&K 2250-L	2718884
	Casella CEL-63X	5044655
	B&K 2250-L	2701830
	B&K 2250	2749852
	B&K 2250	2718890
	B&K 2250	2704790
Calibrator	B&K 4231	1858983

3.2.2 Measurement Parameters

With reference to the IND-TM, the noise measurement was conducted at the representative NSR for $L_{Aeq~(30min)}$, in one-third octave band under the worst case scenario, ie, "normal scenario" during daytime and evening time periods; and night-time period, respectively.

The fixed plant noise sources will be operated steadily and continuously, and therefore no intermittency and impulsiveness are expected at the NSR. However, the characteristics of intermittency and impulsiveness will be recorded, if any, based on observation during measurement.

2 sets of background noise level, $L_{Aeq (5min)}$, were measured at each measurement location when all fixed plant noise sources were not in operation.

3.2.3 Measurement Scenarios

The noise measurement were conducted in 2 operation scenarios as identified in Table 3.6 of ERR-SSS¹.

Table 3.4 Operation Scenarios in SSS

Train Operation	Operation Scenarios in SSS
Night-time Train Movement/Operation	After 0030 hours2 short haul movements within SSS

¹ Environmental Review Report for the Proposed Design Changes at Shek Kong Stabling Sidings (September 2012) for supporting the variation of an environmental permit No. VEP-377/2012.

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

Train Operation	Operation Scenarios in SSS
activities at SSS (during a 30 minute period)	 1 long haul train idling in the covered running maintenance shed Continuous operation of AHU and compressors
Daytime and Evening Time Train movement/operation activities at SSS (during a 30 minute period)	 6 short haul movements within SSS 1 short haul train idling on stabling track Loading of maintenance train (on gantry crane) Train wash operating Continuous operation of AHU and compressors

3.2.4 Measurement Location and Date

Based on the representative NSRs as listed in Table 2.1 for SSS, some of the representative NSRs have been selected for noise measurement. The selected representative NSRs include SS7 – Leung Uk Tsuen Village House, SS10 – DD110 LOT 482, Wang Toi Shan, SS11a - Leung Uk Tsuen Squats, SS12 - 265 Kam Tai Road, SS15 - Abandoned village house in Shek Kong and SS20 - Village house in Shek Kong. The measurement location is shown in Figures 2.2 and 2.3.

The noise measurement was carried out at the selected representative NSRs (Table 4.3 refers) on 20 – 21 Jun 2018, during which the fixed plant items were operated steadily and continuously at their noisiest operating mode under operation scenarios as listed in Table 3.4 above.

4 Measurement Results

4.1 The Noise Levels of Fixed Plant Noise Sources

The noise levels measured under the worst case scenario are determined and presented in Table 4.1. Details of the measurement results are shown in Appendix A3.

Table 4.1 Summary of Noise Levels for Fixed Plants

Location	Fixed Plant Noise Source	Calculated SWL L _{Aeq} / L _{max} / Sound Pressure Level, dB(A)
SSS	Short Haul Shunting	L _{max} 69 dB(A)
		(at 25m setback from track centre,
		3.5m from rail top)
	Long Haul Shunting	L _{max} 69 dB(A)
		(at 25m setback from track centre,
		3.5m from rail top)
Short Haul Idling		SPL L _{eq} 70 dB(A)
		(at 7.5m setback from track centre,
		1.2m from rail top)
	Gantry Crane	SWL 90.0 dB(A)
	Train Wash Plant	L _{eq} 61.8 dB(A)
		(at 6m from source under full wash
		scenario)

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

Location	Fixed Plant Noise Source	Calculated SWL L _{Aeq} / L _{max} / Sound Pressure Level, dB(A)
	Cooling Tower ⁽¹⁾	SWL 82 dB(A)
	RMS-AHU-4001 ⁽²⁾	SWL 76 dB(A)
	RMS-AHU-4002	SWL 75 dB(A)
	RMS-AHU-4003	SWL 75 dB(A)
	RMS-AHU-4004	SWL 72 dB(A)
	RMS-AHU-4005	SWL 72 dB(A)
	RMS-AHU-4006	SWL 72 dB(A)
	RMS-AHU-4007	SWL 74 dB(A)
	RMS-AHU-4008	SWL 72 dB(A)
	RMS-AHU-4009	SWL 76 dB(A)
	RMS-AHU-4010	SWL 74 dB(A)
	RMS-AHU-4011	SWL 72 dB(A)
	RMS-AHU-4012	SWL 72 dB(A)
	RMS-AHU-4013	SWL 77 dB(A)
	RMS-AHU-4014	SWL 76 dB(A)
	RMS-AHU-4015	SWL 77 dB(A)
	RMS-AHU-4016	SWL 76 dB(A)
	SMB.GL.L.004	SWL 77 dB(A)
	SMB.GL.L.005	SWL 74 dB(A)
	SMB.U1.L.003B	SWL 75 dB(A)
	SMB.U2.L.001B	SWL 70 dB(A)

Note

- (1) A total of 3 Cooling towers are on the roof level of SSS Main Building and will operate simultaneously during day and evening time, while only 1 cooling tower will operate during night-time.
- (2) A total of 16 AHUs (total 8 groups) are on the roof of Running Maintenance Shed and only 8 AHUs (one of each group) will operate 24-hour. As a conservative approach, the maximum SWL of each group AHU is adopted in the noise calculation.

A compliance check against the fixed plant noise criteria at NSR was conducted. The cumulative noise levels from noise sources were assessed to ensure the compliance with the noise criterion. Table 4.2 shows the results, details of the calculation are also given in Appendix A3.

Table 4.2 Cumulative Fixed Plant Noise at NSR

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Description	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
SS2	Nam Hing Lei Village House	36	35	49	39	Υ	Υ
SS4	Leung Uk Tsuen Village House	37	32	49	40	Υ	Υ

Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

		Cumulative SPL, dB(A)		Noise Criteria, dB(A)		Compliance (Y/N)	
NSR	Description	Day and Evening Time	Night- time	Day and Evening Time	Night- time	Day and Evening Time	Night- time
SS5	51A Leung Uk Tsuen	43	35	52	45	Υ	Υ
SS6	32 Leung Uk Tsuen	43	34	52	45	Υ	Υ
SS7	Leung Uk Tsuen Village House	46	41	49	47	Υ	Υ
SS10	DD110 LOT 482, Wang Toi Shan	44	38	49	47	Υ	Υ
SS11a	Leung Uk Tsuen Squats	44	41	52	50	Υ	Υ
SS12	265 Kam Tai Road	45	39	49	47	Υ	Υ
SS14	Planned village house at Village Zone	46	37	49	47	Υ	Υ
SS15	Abandoned village house in Shek Kong	47	38	49	47	Y	Υ
SS20	Village house in Shek Kong	40	36	49	40	Υ	Υ

4.2 The Characteristics of Tonality, Impulsiveness and Intermittency at NSRs

Noise measurement to confirm any characteristics of tonality, impulsiveness and intermittency at the identified NSRs were conducted under the normal operation scenarios during daytime and evening, and during night-time, respectively as specified in Table 3.4. Measurement results are summarised in Table 4.3 below. In each operation scenario, two sets of noise measurements, $L_{Aeq(30min)}$ were carried out to confirm that the difference in the measured noise levels with and without operation of fixed plant noise sources were less than 3.0 dB(A). That means the fixed plant noise sources are not considered as significant noise sources at the NSRs.

Noise measurements at the selected representative NSRs were dominated by road traffic noise or natural ambient sound; characteristics of tonality, impulsiveness and intermittency from fixed plant noise sources in SSS was not noticeable during the measurement. Detailed results of noise measurements are shown in Appendix A4.

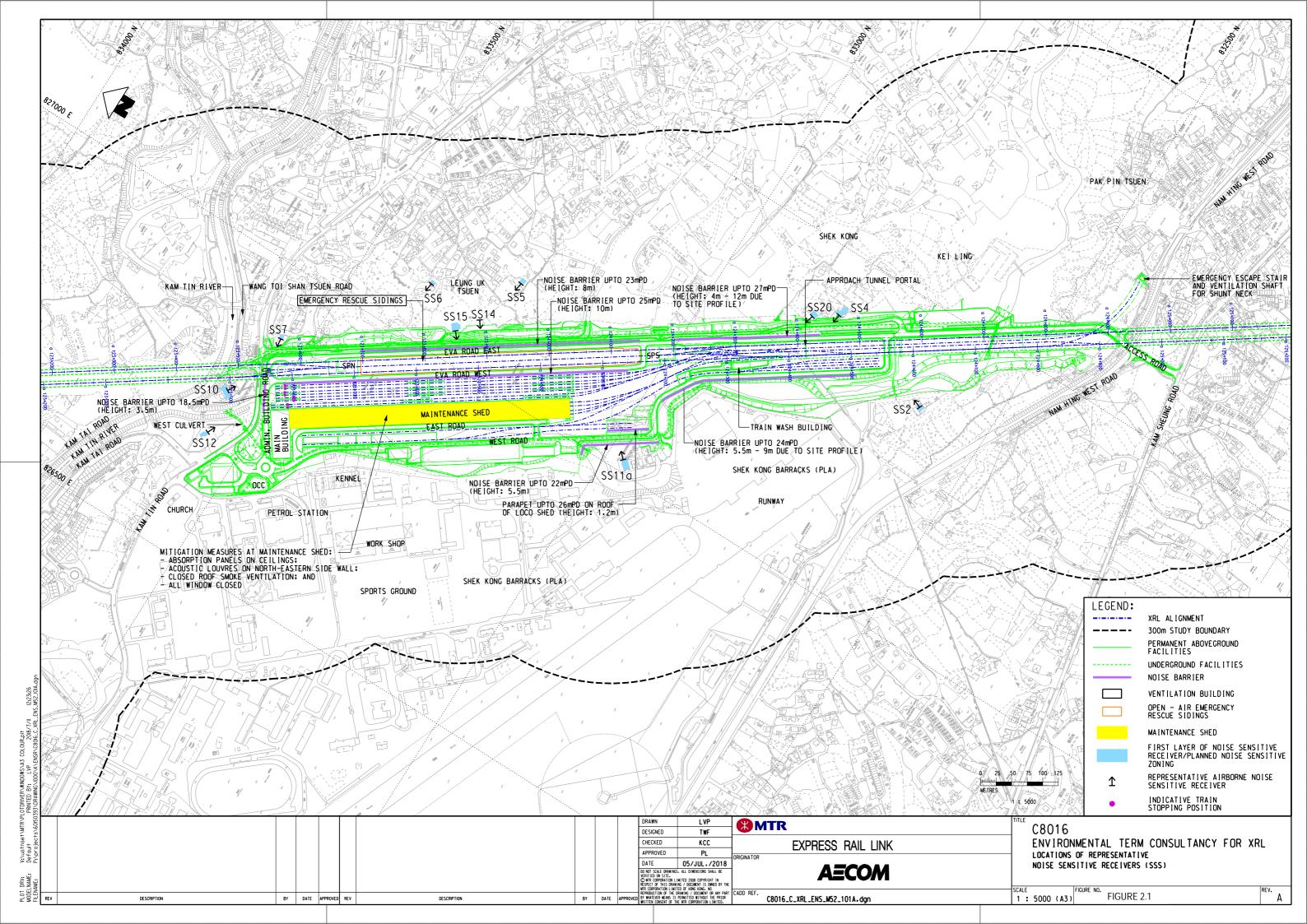
Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

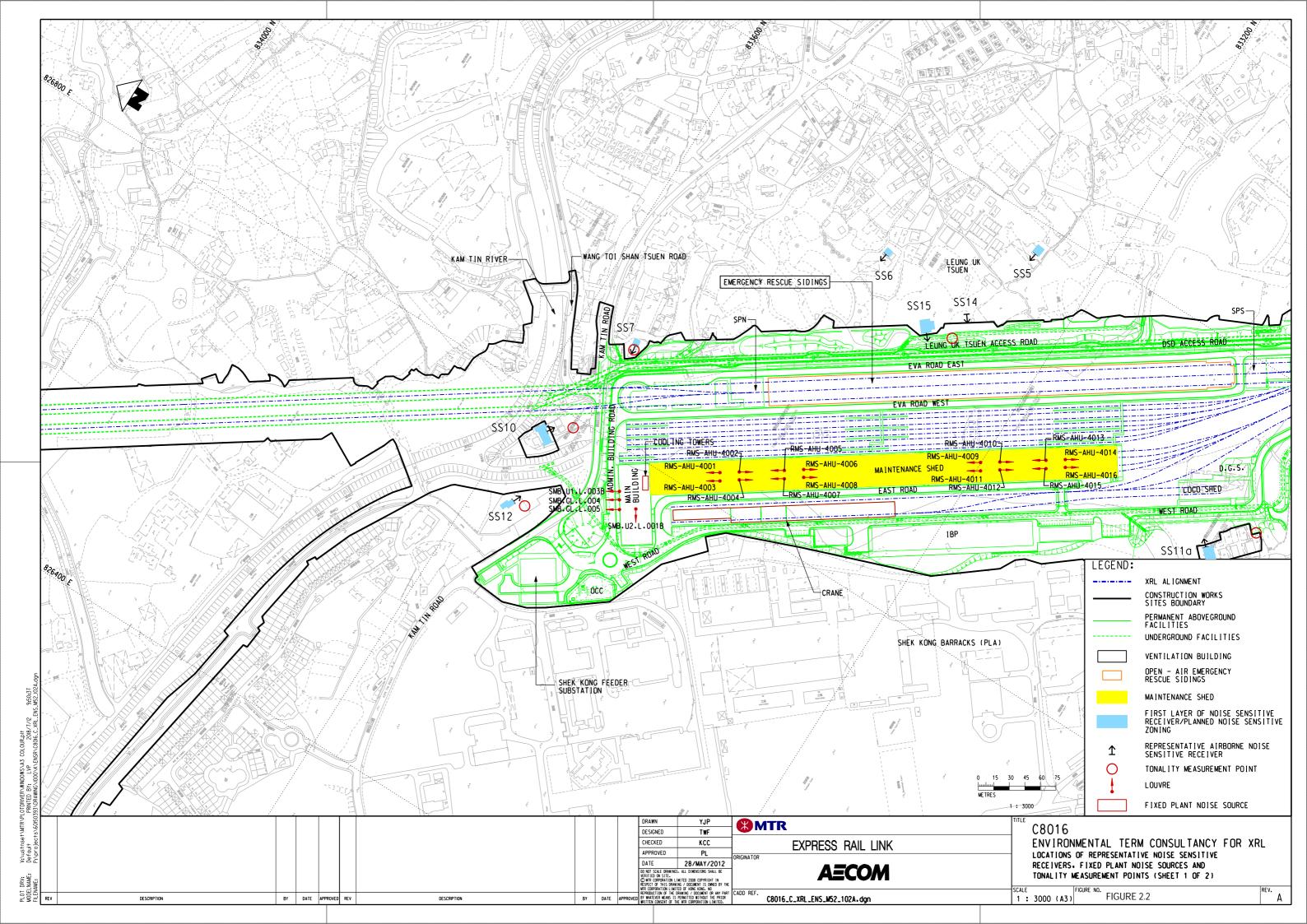
Table 4.3 Noise measurement Results at Representative NSRs

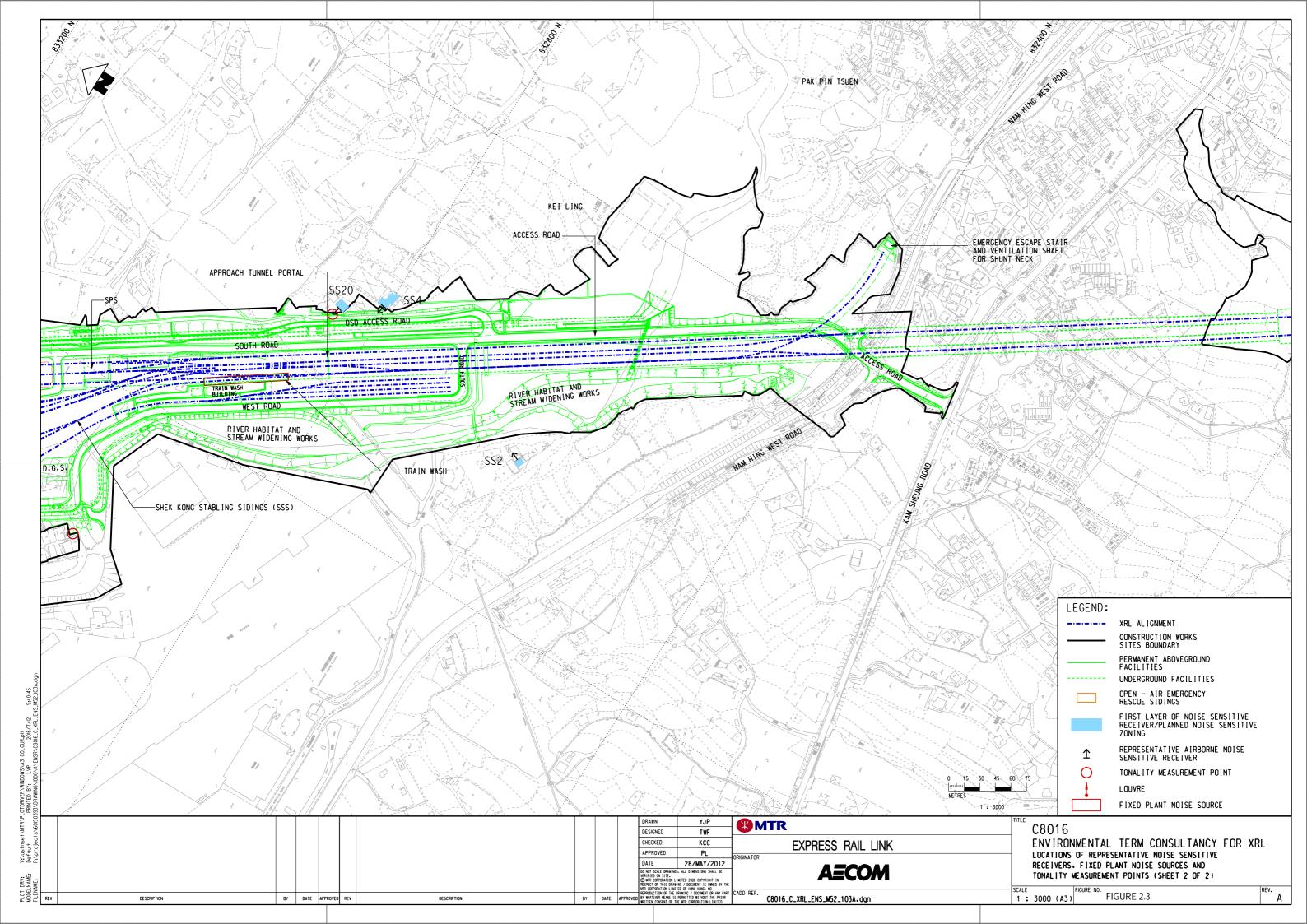
NSR ⁽¹⁾	Operation Scenario	Measured Noise Level L _{Aeq(30min)} , dB(A), (measurement time ⁽²⁾⁽³⁾)	Averaged Background Level L _{Aeq(5min)} , dB(A), (measurement period ⁽²⁾⁽³⁾)	Difference between Measured Noise Level and Background Level, (< 3 or >= 3 dB(A))
SS7	Daytime Train movement / operation activities at SSS	51.8 (22:58 – 23:28) 50.4 (23:28 – 23:58)	52.0 (22:20 –22:30)	< 3
337	Night-time Train Movement / Operation activities at SSS	50.6 (00:24 – 00:54) 51.5 (00:54 – 01:24)	50.3 (01:30 –01:44)	< 3
SS10	Daytime Train movement / operation activities at SSS	68.5 (22:58 – 23:28) 66.9 (23:28 – 23:58)	68.9 (22:22 –22:37)	< 3
3010	Night-time Train Movement / Operation activities at SSS	65.9 (00:24 – 00:54) 66.2 (00:54 – 01:24)	66.5 (00:07 –00:17)	< 3
SS11a	Daytime Train movement / operation activities at SSS	52.7 (22:58 – 23:28) 53.2 (23:28 – 23:58)	51.4 (22:14 –22:52)	< 3
3311d	Night-time Train Movement / Operation activities at SSS	52.2 (00:24 – 00:54) 51.2 (00:54 – 01:24)	51.9 (00:09 –00:23)	< 3
SS12	Daytime Train movement / operation activities at SSS	67.6 (22:58 – 23:28) 66.3 (23:28 – 23:58)	69.0 (22:34 –22:49)	< 3
3312	Night-time Train Movement / Operation activities at SSS	65.4 (00:24 – 00:54) 64.4 (00:54 – 01:24)	65.9 (00:10 –00:20)	< 3
SS15	Daytime Train movement / operation activities at SSS	57.4 (22:58 – 23:28) 57.3 (23:28 – 23:58)	57.3 (22:05 –22:16)	< 3
3313	Night-time Train Movement / Operation activities at SSS	57.8 (00:24 – 00:54) 57.9 (00:54 – 01:24)	57.5 (00:07 –00:18)	< 3
SS20 ·	Daytime Train movement / operation activities at SSS	54.6 (22:58 – 23:28) 54.5 (23:28 – 23:58)	54.2 (22:35 –22:46)	< 3
	Night-time Train Movement / Operation activities at SSS	54.4 (00:24 – 00:54) 54.5 (00:54 – 01:24)	54.5 (00:07 –00:23)	< 3

Notes:

- (1) Noise environment at SS7, SS10 and SS12 was dominated by heavily trafficked Kam Tin Road, while Background noise environment at SS11a, SS15 and SS20 was dominated by natural ambient sound.
- (2) The measurements were conducted between evening-time to night-time (i.e. 2200 0130), which is considered as a representative period due to relatively lower background noise level. The measurement results of both operation scenarios were therefore less affected by background noise.


Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL) Commissioning Test Report for the Fixed Plant Noise at Shek Kong Stabling Sidings (SSS)

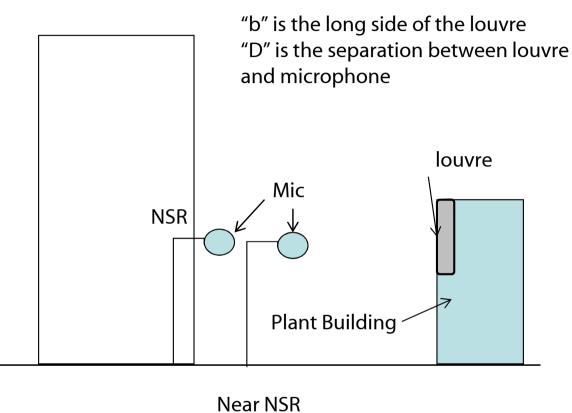

(3) Fixed plant noise was inaudible at all NSRs. In addition, based on site observations, the measured noise levels were dominated by the background noise including traffic noise or natural ambient sound. Due to fluctuation of background noise, it is possible the "Averaged Background Noise Level" presented in Table 4.3 is higher than the "Measured Noise Level".


As the differences between measured noise levels and background levels are all less than 3.0 dB(A), it was unable to obtain reliable corrected noise levels at the NSRs and corrections for tonality, impulsiveness or intermittency were therefore not applicable.

5 Conclusions

To fulfil the XRL EP condition 2.36, the fixed plant noise verification were undertaken and the measurement results indicated all the fixed plant noise levels in SSS are in compliance with the fixed plant noise criteria.

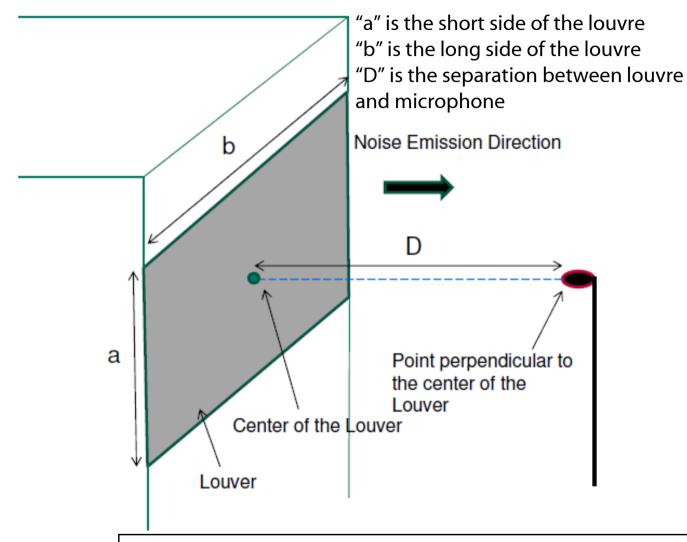
Summary of Testing Methodology


Method	Standard	No of repeated measurement	No of measurement point	Measurement distance, D	To Verify
Method 1 (NSR Method)	NCO - TM	3 sets of Leq 1min	Depend on number of NSRs nearby	At the most affected NSR or near NSR	ANL-5 or Background Prevailing
Method 2 (Far Field Method)	Basic Acoustic Principle	3 sets of Leq 1min	1 (for louvre/plant with uniform plane source)	D ≧2b and roundup to integer	ANL-5 or Background Prevailing
Method 3 (Near Field Method)	Developed based on ISO3746:2010	1 set of Leq 10s ^(a) /1min	Depend on the size of the louvre/plant and the measurement distance should follow guideline in ISO3746	At least 1m from the louvre opening/plant (unless otherwise specified)	ANL-5 or Background Prevailing

Note:

(a) If fixed plant items are operated at their noisiest operating modes and are steady during measurement, 10-second will be adopted for the duration of measurement.

Method 1 – Sound Pressure Level at NSR or Near NSR for louvre or Plant


- Based on NCO TM
- The locations of measurement points are depended on the site situation
- 3.0 dB façade correction should be considered if the location of measurement point is not at assessment point as defined in NCO-TM
- "D" must be greater than 2b and roundup to integer
- Detail calculation of the SPL should refer to the NCO-TM.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB

Background corrected SPL = Mean $L_{Aeq1min}$ + BG - [20log (D) +8] (if applicable) + façade correction (if applicable)

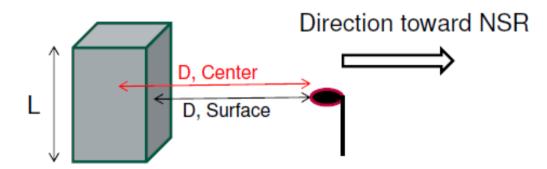
if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

Method 2 – Far Field Sound Power Testing Method for louvre

- Based on basic acoustic principle
- "D" must be greater than 2b and roundup to integer, i.e.: D≥2b
- The microphone must point to the center of the louvre.
- At least 3 sets of LAeq, 1min should be obtained
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 +BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach

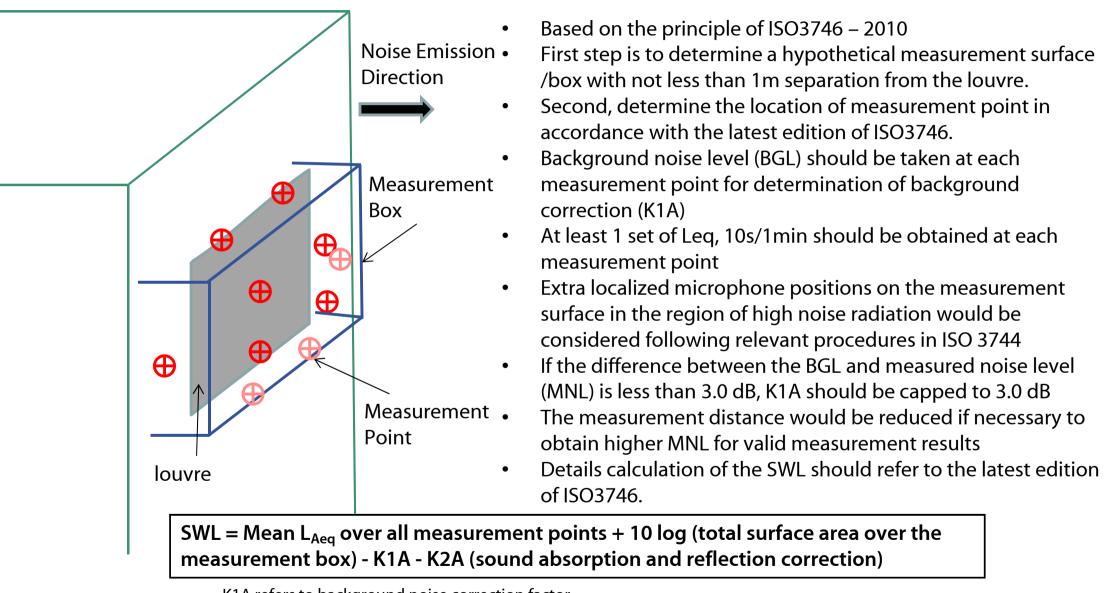

MTR

Method 2 – Far Field Sound Power Testing Method for Plant

"L" is the longest side of the plant item

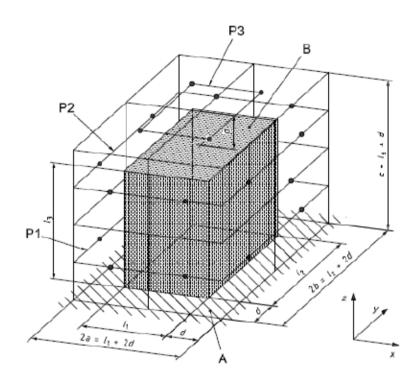
"D, Center" is the separation between center of the plant item and microphone

"D, Surface" is the separation between surface of the plant item and microphone


- "D, Surface" must be greater than twice of L
 (2L) and roundup to integer
- The microphone must be pointing to the center of the plant
- At least 3 sets of LAeq, 1min should be obtained at each measurement point.
- Background noise level (BGL) should be taken for determination of background correction (BG)
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, BG should be capped to 3.0 dB

SWL (Sound Power Level) = Mean measured $L_{Aeq1min}$ + 20 log (D, center) + 8 + BG

if the difference between the maximum and minimum Leq >1dB(A); maximum Leq would be adopted as a conservative approach


Method 3 – Near Field Sound Power Testing Method for louvre

K1A refers to background noise correction factor K2A refers to environmental correction for sound absorption and reflection

Method 3 – Near Field Sound Power Testing Method for Plant

Kev

- Based on ISO 3746
- The locations of measurement points are depended on the size of the plant, which cannot be easily generalised (See figure on the left for example).
- Extra localized microphone positions on the measurement surface in the region of high noise radiation would be considered following relevant procedures in ISO 3744
- If the difference between the BGL and measured noise level (MNL) is less than 3.0 dB, K1A should be capped to 3.0 dB
- The measurement distance would be reduced if necessary to obtain higher MNL for valid measurement results
- Detail calculation of the SWL should refer to the latest edition of ISO 3746.

SWL = Mean L_{Aeq} over all measurement points + 10 log (total surface area over the measurement box) - K1A - K2A (sound absorption and reflection correction)

K1A refers to background noise correction factor
K2A refers to environmental correction for sound absorption and reflection

Appendix A2a Fixed Plants)	– Calibration Certificat	es (Noise Measurei	ment for the
,			

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C152985

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC15-1132)

Date of Receipt / 收件日期: 19 May 2015

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Lutron

Model No. / 型號 Serial No. / 編號

SL-4022 I.328198

Supplied By / 委託者

The Jardine Engineering Corporation, Limited

5/F., Tower A, Manulife Financial Centre, 223-231 Wai Yip Street, Kwun Tong, Kowloon

TEST CONDITIONS / 測試條件

Temperature / 温度 :

Relative Humidity / 相對濕度 :

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

30 May 2015

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Tested By

測試

K C Lee

Certified By

核證

Project Engineer

K M/Wu

Date of Issue 簽發日期

3 June 2015

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C152985

證書編號

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL281

Description

Multifunction Acoustic Calibrator

Certificate No.

DC130171

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UUT Setting	g	Applied Value		UUT	IEC 61672
Range	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)	Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
60 - 100	A	F	94.00	1	93.9	± 1.1

6.1.2 Linearity

	UUT Setting			d Value	UUT	
Range (dB)	Frequency Weighting	Time Weighting	Level Freq. (dB) (kHz)		Reading (dB)	
90 - 130	A	F	94.00	1	94.1 (Ref.)	
			104.00		104.1	
			114.00		114.2	

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

	UUT Setting			d Value	UUT	IEC 61672
Range (dB)	Frequency Weighting	Time Weighting	Level Freq. (dB) (kHz)		Reading (dB)	Class 1 Spec. (dB)
60 - 100	A	F	94.00	1	93.9	Ref.
		S			93,9	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C152985

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting		Applied Value		UUT	IEC 61672
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
60 - 100	A	F	94.00	63 Hz	68.7	-26.2 ± 1.5
	1			125 Hz	78.4	-16.1 ± 1.5
				250 Hz	85.7	-8.6 ± 1.4
				500 Hz	90.9	-3.2 ± 1.4
				1 kHz	93.9	Ref.
				2 kHz	94.8	+1.2 ± 1.6
				4 kHz	93.9	$+1.0 \pm 1.6$

6.3.2 C-Weighting

	UUT Setting		Applied Value		UUT	IEC 61672
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
60 - 100	C	F	94.00	63 Hz	93.1	-0.8 ± 1.5
				125 Hz	93.8	-0.2 ± 1.5
				250 Hz	93.9	0.0 ± 1.4
				500 Hz	93.9	0.0 ± 1.4
				1 kHz	93.8	Ref.
				2 kHz	93.3	-0.2 ± 1.6
31		174	12	4 kHz	92.0	-0.8 ± 1.6

Remarks : - Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : $\pm 0.35 \text{ dB}$

250 Hz - 500 Hz ; ± 0.30 dB

1 kHz : \pm 0.20 dB 2 kHz - 4 kHz : \pm 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

114 dB : 1 kHz : $\pm 0.10 \text{ dB} \text{ (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-1522)

Date of Receipt / 收件日期: 30 June 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號 Serial No. / 編號

2250

Supplied By / 委託者

2704790 :

ANewR Consulting Limited

Unit 517, 5/F., Tower A, Regent Centre,

63 Wo Yi Hop Road, Kwai Chung, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

11 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C/Lee Engineer

Certified By

核證

H C Chan Engineer

Date of Issue

12 July 2017

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

Multifunction Acoustic Calibrator

C170048

PA160023

Test procedure: MA101N.

6. Results:

5.

- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT Setting Range (dB) Main		Applie	d Value	UUT Reading
		Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT Setting		Applie	d Value	UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT Setting		Applied Value		UUT Reading
Range (dB)	Main	Level (dB) Freq. (kHz)		(dB)
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)
	, , ,	104.00		104.0
		114.00	1	114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

Time Weighting 6.2

UUT Setting		g Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)			94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

A-weighting					
UUT S	etting	Applied Value		UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.7	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
			4 kHz	95.0	$+1.0 \pm 1.6$
			8 kHz	92.9	-1.1(+2.1; -3.1)
			12.5 kHz	89.3	-4.3(+3.0; -6.0)

6.3.2 C-Weighting


UUT S	etting	Applie	d Value	UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5
			125 Hz	93.8	-0.2 ± 1.5
			250 Hz	94.0	0.0 ± 1.4
			500 Hz	94.0	0.0 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	93.8	-0.2 ± 1.6
			4 kHz	93.2	-0.8 ± 1.6
387			8 kHz	91.0	-3.0 (+2.1; -3.1)
			12.5 kHz	87.4	-6.2 (+3.0 ; -6.0)

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

c/o 香港新界屯門興安里一號青山灣機樓四樓

Tel/電話: 2927 2606 Fax/傳真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C173768

證書編號

Remarks: - UUT Microphone Model No.: 4189 & S/N: 2695392

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Certificate No.

704083

Page

4 Pages

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682

Date of receipt

8-May-17

Item Tested

Description : Sound Level Meter

Manufacturer: CASELLA

LD.

: CBSM0103

Model

; CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 11-May-17

Supply Voltage

Ambient Temperature:

(23 ± 3)°C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

701036

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by:

Kin Wong

Approved by:

Alan Chu

This Certificate is issued by

Hong Kong Calibration Ltd.

Date:

11-May-17

Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646 The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

E

Certificate No. 704083

Page 2 of 4 Pages

Results:

1. Self-generated noise: 0.2 dBA (Mfr's Spec (Electrical) ≤ 17.5 dBA)

2. Acoustical signal test

and with grain the grain control to the control to	UUT Se	etting			* 14 1020
Range (dB)	Frequency Weighting	Time Weighting	Octave Filter	Applied Value (dB)	UUT Reading (dB)
0-140	A	The state of the s	OFF	94.0	93.8
0-1-10		S	OFF		93.8
	C		OFF		94.0
	Z	Tel	OFF	AATA	93.8
	A		1/1	e-mark	93.8
	A	m m	1/3	Name of the state	93.8
	A	Total To	OFF	114.0	113.8
		S	OFF	,	113.8
	C C	And the state of t	OFF	A-17-0-	113.8
	Z	300	OFF		113.8
	A	Į.	1/1	Although	113.9
	A	-	1/3	ny-iman'	113.8

IEC 61672 Type 1 Spec. : \pm 1.1 dB

Uncertainty: $\pm 0.3 \text{ dB}$

3 Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.4	- 39.4 dB, ± 2 dB
63 Hz	-26.2	- 26.2 dB, ± 1.5 dB
125 Hz	-16.1	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- 8.6 dB, ± 1 dB
500 Hz	-3.2	$-3.2 \text{ dB}, \pm 1.4 \text{ dB}$
1 KI-IZ	0.0 (Ref)	0 dB, ± 1.1 dB
2 kHz	+1.3	+ 1.2 dB, ± 1.6 dB
4 kHz	+0.9	+ 1.0 dB, ± 1.6 dB
8 kHz	-1.4	$-1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-9.5	$-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty: ± 0.1 dB

Certificate No. 704083

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

			Anna bree programment and animal annual property of the programme and the programme	IEC 61672
IIIIT	Applied	UUT	Difference	4.4
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	93.8 (Ref.)	sys and	± 0.4 dB
	94.0	94.0	+0.2	
	94.0	93.8	0.0	

4.2 Time Weighting (A-weighted)

	And a second	the state of the property of the state of th	The state of the s	1170 (1(00
THIT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	93.8 (Ref.)	man week	± 0.3 dB
Slow	94.0	93.8	0.0	
Time-averaging	94.0	93.8	0.0	

Uncertainty: ± 0.1 dB

5. Filter Characteristics

5.1 1/1 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.5	< - 61
250 Hz	-43.7	< - 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		5.00 MIC
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	< - 17.5
4 kHz	-66.0	< - 42
8 kHz	-62.1	< - 61

Uncertainty: $\pm 0.25 \text{ dB}$

Certificate No. 704083

Page 4 of 4 Pages

5.2 1/3 - Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
777)	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)	per sign	
1 122 KHz	-3.6	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	<- 17.5
1 887 kHz	-50.7	< - 42
3.070 kHz	-72.5	< - 61

Uncertainty: ± 0.25 dB

Remarks: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa

4. Preamplifier model : CEL-495 , S/N : 002374.

5. Firmware Version: 129-086. Power Supply Check: OK

7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END

北京航天计量测试技术研究所

四国前天 Beijing Aerospace Institute for Metrology and Measurement Technology

证 书 编 号: NO.JZ3f2012-01-0122 CERTIFICATE No.:

PAGE 1 OF 12 PAGES

校准证书

CERTIFICATE OF CALIBRATION

委托方 CLIENT

南车青岛四方机车车辆股份有限公司

NAME

地 址:

ADDRESS.

计量器具 MEASURING INSTRUMENTS

名称:

型号: SCM05

编号: 53102514

NAME:

TYPE:

制造者:

LMS

MANUFACTURER:

核验人: 本Ż 签发人: INSPECTOR: 本Ż APPROVED SIGNATORS

接收日期:	2012	年	01	月	04	
RECEIVED DATE		YEAR		MONTH		DAY
校准日期:	2012	年	01	Я	05	
CAL. DATE		YEAR		MONTH		DAY
建议下次校准日期:	2013	年	01	月	05	
NEXT TIME TO CALIBRATION:		YEAR		MONTH		DAY

本结果仅对所校准样品有效,证书未经本实验室批准,不得部分复印。

These results apply only to the calibrated sample, this certificate can't be partly copied without authorization.

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

北京航天计量测试技术研究所

四国航天 Beijing Aerospace Institute for Metrology and Measurement Technology

证 书 编 号: NO.JZ3f2012-01-0122

PAGE 2 OF 12 PAGES

CERTIFICATE No.:

本实验室是法定计量检定机构(包括被授权的计量检定机构)

This body is an institute of legal verification (including authorization body)

授权单位: 国防科学技术工业委员会

Authorization body: Committee of Science and Technology Industry of National Defence (CSTIND)

授权证书号: XK 国防-TLTG-1-003

Authorized certificate No.: XK 国防-JLJG-1-003

测量溯源性的说明: 国家计量基准

A statement of Measurement traceability: National Metrology Standards

校准所使用的计量标准 STANDARD OF MEASUREMENT USED IN THE CALIBRATION

名 称: 直流电压校准仪 5440A

NAME:

测量 范围: DCV:0.1mV~1000V

MEASURING RANGE:

扩展(或合成标准)不确定度(或准确度): 电压: ±0.01%

EXPANDED (OR COMBINE STANDARD) UNCERTAINTY (OR ACCURACY):

计量标准证书号:

TD3f2011-6-0090

CERTIFICATE NO.:

有效期至: 2012

年

月

VALID DATE TO:

MONTH

Н DAY

校准所依据的技术文件(编号、名称)

BASIS OF CALIBRATION (CODE, NAME)

TIG 1048-95 数据采集系统校准规范

校准的环境条件; 限制使用条件和测量范围

ENVIROMENTAL CONDITION IN THE CALIBRATION, LIMITING CONDITION IN USE AND MEASURING RANGE

温度 Temperature:

24 $^{\circ}$ C

源度 Moisture:

%RH 19

限制使用条件和测量范围 Limiting condition in use and measuring range:

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing

P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

证 书 编 号: NO.JZ3f2012-01-0122 CERTIFICATE No.:

PAGE 3 OF 12 PAGES

校准结果

RESULTS OF CALIBRATION

模拟量输入直流电压采集准确度

关19人里、111	へ且狐电压ス	大米1 出阴戊					
通道	量程/V	标准值 /V	示值/V	通道	量程/V	标准值/٧	示值/V
1	0.316	0.3	0.300	2	0.316	0.3	0.300
		0.2	0.200		egin of February and	0. 2	0.200
		0.1	0.100	The state of the s		0.1	0.100
-		0	0.000			0	0.000
	1	0.8	0.800	-	1	0.8	0.800
		0.5	0.500		¥.2	0.5	0.500
		0.3	0.300			0.3	0.300
5		0	0.000			0	0.000
	3. 16	-3	3. 000		3. 16	3	3.000
		2	2.000			2	2.000
		1	1.000	· ·		1	1.000
		0	0.000			0	0.000
3.4	10	8	8.000	j Šau	10	8	8.000
		5	5. 000			5	5.000
mpy and anomaly		2	2.000			2	2.000
To the state of th	-	0	0.000			0	0.000
2/5 3	0.316	0.3	0. 300	4 -	0.316	0.3	0.300
	The second secon	0.2	0.200			0.2	0.200
	Principle of the Control of the Cont	0.1	0.100			0.1	0.100
	A Common () [14] Fig.	0	0.000	TO SECULIAR		0	0.000
		0.8	0.800		1.	0.8	0.800
					4. 1.7		

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

Address: No. 1 South DahongmenRoad , Beijing P.O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

ùE	+3	编	号:	NO.JZ3f2012-01-0122

第 4 页 共 12 页

ATE No.:				PAGI	E 4 OF	12 PAGES
	0.5	0.500			0.5	0.500
	0.3	0.300			0.3	0.300
	0	0.000	4		0	0.000
3.16	3	3.000		3. 16	3	3.000
	2	2.000			2	2.000
	1	1.000	And the state of t		7	1.000
	0	0.000			0	0.000
10	8	8.000	# N	10	8	8.000
	5	5. 000			5	5.000
Open and appropriate to the control of the control	2	2.000			2	2.000
	0	0.000			0	0.000
0.316	0.3	0.300	6	0.316	0.3	0.300
	0.2	0. 200		and an analysis of the second	0.2	0.200
	0.1	0.100			0.1	0.100
	0	0.000			0	0.000
	0.8	0.800		1	0.8	0.800
	0.5	0.500			0.5	0.500
	0.3	0.300	,		0.3	0.300
	0 (1)	0.000			0	0.000
3. 16	3	3.001		3.16	3	3.001
	2	2.001			2	2.000
	1	1.000			· 1	1.000
	0	0.000			0 .,	0.000
10	8	8.002		10	8	8.002
-	5	5. 001			5	5.001
	2	2.000			2	2. 000
	0	0.000			0	0.000
	3.16	0.5 0.3 0 3.16 3 2 1 0 10 8 5 2 0 0 0.316 0.3 0.2 0.1 0 0.1 0 0.8 0.5 0.3 0.5 0.3 0 3.16 3 2 1 0 3.16 3 2 1 0 3.16 3 2 0 3.16 3 2 0 3.16 3 2	0.5 0.500 0.3 0.300 0 0.000 3.16 3 1 1.000 0 0.000 10 8 8.000 5 5 5.000 2 2.000 0 0.000 0.3 0.300 0 0.000 1 0.8 0.5 0.500 0.3 0.300 0 0.000 3.16 3 3 3.001 2 2.001 1 1.000 0 0.000 10 8 8 0.002 5 5.001 2 2.000 0 0.000	0.5 0.500 0.3 0.300 0 0.000 3.16 3 1 1.000 0 0.000 10 8 8.000 0.000 2 2.000 0 0.000 0.3 0.300 0 0.000 0 0.000 1 0.8 0.5 0.500 0 0.000 3.16 3 3.001 2 2.001 1 1 1.000 0 0.000 10 8 8.002 5 5.001 2 2.000 0.000	0.5 0.500 0.3 0.300 0 0.000 3.16 3.000 1 1.000 0 0.000 10 8 8.000 10 5 5.000 2 2.000 0 0.000 0.316 0.3 0.2 0.200 0.1 0.100 0 0.000 1 0.8 0.800 1 0 0.000 3.16 3 3.001 3.16 2 2.001 1 1.000 0 0.000 10 8 8.002 10 5 5.001 2 2.000	0.5 0.500 0.5 0.3 0.300 0.3 0 0.000 0 3.16 3 3.000 3.16 2 2.000 2 1 1.000 1 0 0.000 0 10 8 8.000 10 8 8.000 10 8 2 2.000 2 2 0 0.000 0 0 0.316 0.3 0.300 6 0.316 0.3 0.2 0.200 0.2 0.2 0.1 0.100 0.1 0.1 0 0.000 0 0 1 0.8 0.800 1 0.8 0.2 0.000 0 0 0 3.16 3 3.001 3.16 3 1 0.000 0 0 0 1 0.000 0 0 0 3.16 3 3.001 3.16 3 2

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

编号: NO.JZ3f2012-01-0122 证书

第 5 页 共 12 页

	CATE No.:	···				E 5 OF	12 PAGES
7	0.316	0.3	0.300	8	0.316	0.3	0.300
		0.2	0.200			0.2	0.200
		0.1	0.100			0.1	0.100
		0	0.000			0	0.000
	1	0.8	0.800		1	0.8	0.800
		0. 5	0.500	:		0.5	0.500
		0.3	0.300			0.3	0.300
		0	0.000			0	0.000
	3.16	3	3.001		3. 16	3	3.001
The second secon		2	2.001			2	2.000
		:1	1.000		. 19	1	1.000
		0	0.000			0 ,	0.000
	10	8	8.003	-	10	8	8.002
		5	5. 002			5	5.001
		2	2.001		3.5	2	2.000
		0	0.000			0,,,,,	0.000
9	0.316	0.3	0.300	10	0. 316	0.3	0.300
		0.2	0.200		* 1	0.2	0.200
		0. 1	0.100	h 2		0.1	0.099
	- No. 2	0	0.000			0	0.000
	1	0.8	0.800		1	0.8	0.800
, A. A.		0, 5	0. 500			0.5	0.500
		0.3	0.300		3.1	0.3	0.300
		0	0.000	To the state of th		0	0.000
	3. 16	3	3.001		3. 16	3	3.000
		2	2.000			2	2.000
		1	1.000		1,222	1	1.000

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing

P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

证 书 编 号: NO.JZ3f2012-01-0122

第 6 页 共 12 页

CERTIFIC	ATE No.:	.32312012-01				E 6 OF 1	2 PAGES
		0	0.000	Ana.		0	0.000
	10	8	8.002		10	8	8.001
		5	5.001	The second secon		5	5.001
		2	2.001			2	2.000
		0 0	0.000	-		0	0.000
11	0.316	0.3	0.300	12	0.316	0.3	0.300
		0.2	0. 200			0.2	0. 200
		0.1	0.100			0.1	0.099
		0	0.000			0	0.000
and the second of the second o	1	0.8	0.800		1	0.8	0.800
	The state of the s	0.5	0.500			0.5	0.500
		0.3	0.300			0.3	0.300
		0	0.000			0	0.000
	3.16	3	3.000		3. 16	3	3.001
i de la companya de l		2	2.000	7 .40x		2	2.000
		1	1.000			1	1.000
ETT AT BEDATING BOTH THE PARTY OF THE PARTY	and the state of t	0	0.000			0	0.000
	10	8	8.001		10	8	8.001
		5	5. 000			5	5.000
		2	2.000			2	2.000
		0	0.000	- Andrews - Andr	- The state of the	0	0.000
13	0.316	0.3	0.300	14	0.316	0.3	0.300
		0. 2	0.200			0. 2	0.200
	-	0.1	0.100			0.1	0.099
***************************************		0	0.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	0	0.000
	The state of the s	0,8	0.800	The second secon	The state of the s	0.8	0.800
Tra	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5	0.500	Management		0. 5	0.499

地址:北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

ìŒ 书 编 号: NO.JZ3f2012-01-0122 第 7 页 共 12 页

	ATE No.:				PAGI		12 PAGES
	1474 21#	0.3	0.300			0.3	0. 299
		0	0.000			0	0.000
	3. 16	3	3.000		3. 16	3	3.000
		2	2.000			2	2.000
**************************************		- Temporal Property Control of Co	1.000			1	0.999
		0	0.000			0	0.000
	10	8	8.001		10	8	8.000
		5	5.001			5	4. 999
		2	2.000			2	1.999
		0	0.000			0	0.000
15	0.316	0.3	0.300	16	0. 316	0.3	0.300
		0.2	0.200			0.2	0.200
		0.1	0.100			0.1	0.100
ordina di dia mandria di di anche di d		0	0.000			0	0.000
	1	0.8	0.800		1 4	0.8	0.800
		0.5	0.500			0.5	0.500
		0.3	0.300			0.3	0.300
		0	0.000			0	0.000
	3.16	3 🔩	3.000		3.16	3	3.001
en e		2	2.000	2		2 .	2,000
		1	1.000	prije		1	1.000
*s *:	A Lat	O	0.000	The state of the s		0	0.000
	10	8	8.001	and the state of t	10	8	8. 002
		5	5.000			5	5.001
		2	2.000	11 11 11 11 11 11 11 11 11 11 11 11 11		2	2.001
A33 (A4) - A4 -		0	0.000		#1 s	0	0.000
17	0.316	0.3	0.300	18	0.316	0.3	0.300

地址:北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

ùΕ	#3	编	믕	:	NO.JZ3f2012-01-0122	
ODE	THEFT	Y A STORY	25			

共 12 页 第 8 页

CERTIFIC	CATE No				PAG	E 8 OF	12 PAGES
		0.2	0. 200			0.2	0. 200
		0.1	0.100			0.1	0.100
***************************************		0	0.000			0	0.000
	1	0.8	0.800		- Commission of the Commission	0.8	0.800
		0.5	0.500			0. 5	0.500
		0.3	0.300			0.3	0.300
	1	0	0.000		-	0	0.000
	3. 16	3	3.000	100	3. 16	. 3	3.001
		2	2.000			2	2.000
		1	1.000	- Indiana de la companya de la compa		1	1.000
	:.	0	0.000			0	0.000
	10	8	8. 002		10	8 ,	8.002
		5	5. 001			5	5.000
		2	2.001			2	2.000
	4.	0	0.000			0	0.000
19	0.316	0.3	0.300	20	0.316	0.3	0.300
***************************************		0.2	0. 200			0.2	0.200
.a.		0.1	0.100			0. 1	0.100
***		0	0.000			0	0.000
	1	0.8	0.800		1 1 1	0.8	0.800
		0.5	0.500			0.5	0.500
		0.3	0.300			0.3	0.300
	The state of the s	0	0.000		- The state of the	0 ,,,	0.000
	3. 16	3	3.001		3.16	3	3.000
		2	2.000	-7	An and a second	2	2.000
		1	1.000			- F	1.000
		0 : 3	0.000			0	0.000
	Transaction and the		I 190	I.	1		1

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

Address: No. 1 South DahongmenRoad , Beijing

P. O. Box: 9200-24 Beijing China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

证 书 编 号: NO.JZ3f2012-01-0122

第 9 页 共 12 页

ATE No.:		1 0122	-	PAGE	9 OF 1	2 PAGES
10	8	8. 002		10	8	8.003
	5	5.001			5	5.002
	2	2.000			2	2.001
	0	0.000			0	0.000
0.316	0.3	0.300	22	0.316	0.3	0.300
	0.2	0.200			0.2	0. 200
	0.1	0.100			0.1	0.100
	0	0.000			0	0.000
1	0.8	0.800			0.8	0.800
	0.5	0.500			0.5	0.500
	0.3	0.300			0.3	0.300
	0	0.000			0	0.000
3.16	3	3.001		3.16	3	3.001
	2	2.000			2	2.000
	1	1.000			1	1.000
	0	0.000			0	0.000
10	8	8.001		10	8	8.001
	5	5.001			5	5. 001
	2	2.001			2	2.000
	0	0.000			0	0.000
0.316	0.3	0.300	24	0.316	0.3	0.300
	0.2	0. 200			0.2	0.200
1 1 2 1	0.1	0.100		The state of the s	0.1	0.099
object of the	0	0.000	h.		0	0.000
	0.8	0.800		1	0.8	0.800
	0.5	0. 500	. :		0.5	0.500
	0.3	0.300			0.3	0.300
	0.316 10 3.16 10	10 8 5 2 0 0.316 0.3 0.1 0 1 0.8 0.5 0.3 0 3.16 3 2 1 0 10 8 5 2 0 0 0.316 0.3 0 10 0 10 0 10 0 10 0 10 0 10 0 10	10 8 8.002 5 5.001 2 2.000 0 0.000 0.316 0.3 0.300 0.1 0.100 0 0.000 1 0.8 0.800 0 0.500 0 0.000 3.16 3 3.001 2 2.000 1 1.000 0 0.000 10 8 8.001 5 5.001 2 2.001 0 0.000 0.316 0.3 0.300 0.2 0.200 0.1 0.100 0 0.000 1 0.8 0.800 0.5 0.500	10 8 8.002 5 5.001 2 2.000 0 0.000 0.316 0.3 0.300 22 0.2 0.200 0.000 0 0.000 0.000 1 0.8 0.800 0 0.500 0.000 3 0.300 0.000 1 1.000 0.000 1 1.000 0.000 10 8 8.001 5 5.001 0.000 0 0.000 0.000 0 0.300 24 0.2 0.200 0.100 0 0.000 0.000 1 0.8 0.800 0.5 0.500	10 8 8.002 10 5 5.001 10 2 2.000 0.000 0 0.300 22 0.316 0.2 0.200 0.316 0.316 0.316 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	10 8 8.002 10 8 5 5.001 5 2 2.000 2 0 0.000 0 0.316 0.3 0.300 22 0.316 0.3 0.2 0.200 0.2 0.2 0.2 0.1 0.100 0.1 0.1 0.1 0 0.000 0 0 0 1 0.8 0.800 1 0.8 0.5 0.500 0.5 0.3 0.3 0.300 0.3 0.3 0 0.000 0 0 3.16 3 3.001 3.16 3 2 2.000 2 2 1 1.000 1 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.000 0 0 0 0.200 0 0 0 0.000 0 0<

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

#3 编 号: NO.JZ3f2012-01-0122 第 10 页 共 12 页

CERTIFIC.	ATE No.:				PAGI	E 10 OF	12 PAGES
		0	0.000			0	0.000
	3.16	3,	3.000		3.16	3	3.000
700		2	2.000			2	2.000
		, demands	1.000			To a second	1.000
		0	0,000			0	0.000
	10	8	8.001		10	8	8.001
-		5	5.000			5	5. 000
		2	2.000			2	2.000
		0	0.000			0 ,	0.001
25	0.316	0.3	0.300	26	0.316	0.3	0.300
jin e	· · ·	0.2	0. 200			0.2	0.200
		0.1	0.100			0.1	0.100
		0	0.000			0	0.000
	1	0.8	0.800		1 1	0.8	0.800
	2.4	0.5	0.500			0.5	0.500
		0.3	0.300		i	0.3	0.300
		0	0.000			0	0.000
	3.16	3	3.000		3. 16	3	3.000
	The second secon	2	2.000	The state of the s		2	2.000
		1	1.000			1	1.000
-		0	0.000	The version of the ve		0	0.000
	10	8	8.001		10	8	8.001
		5	5. 001			5	5.001
	the second facilities and the second facilities and the second facilities are second for the second facilities and the second facilities are second for the second facilities and the second facilities are second for the second facilities and the second facilities are second for the second facilities are sec	2	2.000		=	2	2.000
	And Commission of the Commissi	0	0.000		-	0	0.000
27	0.316	0.3	0.300	28	0.316	0.3	0.300
		0.2	0.200			0.2	0.200

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

编号: NO.JZ3f2012-01-0122 ìŒ #3

第 11 页 共 12 页

CERTIFIC	CATE No.:				PAG	E 11 OF	12 PAGES
	A	0.1	0.100	1 1 1 1 1 1 1 1 1		0. 1	0.100
		0,	0.000			0	0.000
	***************************************	0.8	0.800		1	0.8	0.800
.:		0.5	0.500			0.5	0.500
·		0.3	0.300			0.3	0.300
		0	0.000	and the second s		0	0.000
	3.16	3	3.001		3. 16	3	3.000
		2 (4)	2.000			2	1.999
:i		T	1.000			1	0. 999
, , , , , , , , , , , , , , , , , , ,		0	0.000			0	0.000
	10	8	8.001		10	8	8.000
		5	5. 001	1		5	5. 000
		2	2. 000			2	2.000
		0	0.000			0	0.000
29	0.316	0.3	0.300	30	0.316	0.3	0.300
		0.2	0.200			0.2	0. 200
		0. 1	0.099			0.1	0.100
***************************************		0	0.000			0	0.000
	1	0.8	0.800	7.7. 3.7. 5.8.8.	1	0.8	0.800
		0. 5	0.500	:.	81	0.5	0.500
MASS		0.3	0.300			0.3	0.300
		0	0.000			0	0.000
	3, 16	3 :	3.001		3. 16	3 .	3.000
***************************************		2	2.000			2	2.000
		1.	1.000			1	1.000
		0	0.000			0	0.000
	10	8	8.001		10	8	8.001

地址:北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China. Zip: 100076

Tel:86-10-68383637, 86-10-68756349

证书 号: NO.JZ3f2012-01-0122 第 12 页 共 12 页

CERTIFIC	ATE No:				PAG	E 12 OF	12 PAGES
	4.5	5	5.001			5	5. 001
		2	2.001			2	2.000
		0	0.000			0	0.000
31	0.316	0.3	0.300	32	0.316	0.3	0.300
		0.2	0.200			0.2	0. 200
odice v roomine manifest en	-	0.1	0.099			0.1	0.100
		0	0.000			0	0.000
	1	0.8	0.800		1	0.8	0.800
	fag.	0.5	0.500			0.5	0.500
		0.3	0.300			0.3	0.300
		0	0.000	*2.		0	0.000
	3. 16	3	3.000	4.1 2.1	3. 16	3	3.000
		2	2.000			2	2.000
in an ann an a		1	1.000			1	1.000
7.734 7.744		0	0.000			0	0.000
j.	10	8	8.001	Maria de la compansión de La compansión de la compa	10	8	8.001
		5	5. 000	The state of the s		5	5.000
		2	2. 000	oo dhaaaqaa aa		2	2.000
		0 💆	0.000			0	0.000
				L			

以下空白

地址: 北京丰台区东高地南大红门路一号

通讯: 北京 9200 信箱 24 分箱 邮政编码: 100076

电话: 010-68383637, 010-68756349

传真: 010-68383627

网址: http://www.102.com.cn

Address: No. 1 South DahongmenRoad , Beijing P. O. Box: 9200-24, Beijing , China Zip: 100076

Tel:86-10-68383637, 86-10-68756349

ificate No.

Customer: 宏業承造有限公司

Address : 沙田火炭坳背灣街61-63號盈力工業大廈203室

Order No.: Q71682 Date of receipt

8-May-17

2 Pages

Item Tested

Description: Sound Level Calibrator

Manufacturer: Casella

LD.

: CBSM0103

Model

: CEL-120/1

Serial No.

: 5060836

of

Test Conditions

Date of Test: 11-May-17

Supply Voltage : --

Page

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: IEC 60942, F21, Z02.

Test Results

All results were within the IEC 60942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	<u>Description</u>	Cert. No.	Traceable to
S014	Spectrum Analyzer	605758	NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	701036	NIM-PRC & SCL-HKSAR
S041	Universal Counter	607883	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :

Approved by:

Alan Chu

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 11-May-17

Unit &B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwal Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 704084

Page 2 of 2 Pages

Results:

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.
94	94.2	+ 0.4 dB
114	114.2	1. V. of U(1)

Uncertainty: ± 0.2 dB

2. Short-term Level Fluctuation : $0.0~\mathrm{dB}$

IEC 60942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

3. Frequency

The state of the s			
TITITO XI 1 XX 1			
UUI Nominal Value (kHz)	Maschied Auby Arter	TEO COO IO OI	
was been a fact and	ivieasured value (kHz)	IEC 60942 Class 1 Spec.	
4	the state of the s	TO VOTIA CIGOD I DUCC.	
!	1,000		
		+1%	
And the second s			

Uncertainty: $\pm 3.6 \times 10^{-6}$

4. Total Distortion : < 0.2 %

IEC 60942 Class 1 Spec. : < 3 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1029 hPa.

the me can be sell and sell and see END and the way only one was now now and the

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0524 04-04

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: B & K 4231

Serial/Equipment No.:

4231 1858983

Adaptors used:

_

Item submitted by

Curstomer:

MTR Corporation Ltd.

Address of Customer:

-

Request No.:
Date of receipt:

24-May-2018

Date of test:

25-May-2018

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	20-Apr-2019	SCL
Preamplifier	B&K 2673	2743150	27-Apr-2019	CEPREI
Measuring amplifier	B&K 2610	2346941	08-May-2019	CEPREI
Signal generator	DS 360	33873	24-Apr-2019	CEPREI
Digital multi-meter	34401A	US36087050	23-Apr-2019	CEPREI
Audio analyzer	8903B	GB41300350	23-Apr-2019	CEPREI
Universal counter	53132A	MY40003662	24-Apr-2019	CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

50 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- 1, The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

lun Qi

Feng

Approved Signatory:

Date:

28-May-2018

Company Chop:

SENGINEIR SENGI

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

© Soils & Materials Engineering Co., Ltd

Form No CARP156-1/Issue 1/Rev D/01/03/2007

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0524 04-04

Page:

of

2

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 µPa)
Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.86	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.010 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency =999.84 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

Checked by:

Date:

Date:

25-May-2018

28-May-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP156-2/Issue 1/Rev C/01/05/2005

Appendix A2b – Calibration Certificates (Noise Measurement to Confirm Any Characteristics of Tonality, Impulsiveness and Intermittency at NSRs)

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0902 02-02

Page

1

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Preamp B & K

of

Manufacturer: Type/Model No.: B & K 2250 B & K 4950

ZC0032

Serial/Equipment No.: Adaptors used:

2718890

2827088

24967

Item submitted by

Customer Name:

Anewr Consulting Limited

Address of Customer:

Unit 517, 5/F Tower A, Regent Centre, 63 Wo Yip Hop Road, Kwai Chung

Request No.:

Date of receipt:

02-Sep-2017

Date of test:

09-Sep-2017

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator B&K 4226 DS 360 DS 360 2288444 33873

61227

08-Sep-2018 25-Apr-2018 01-Apr-2018 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure: 50 ± 10 % 1010 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

09-Sep-2017

Company Chop:

SENGINESONS SENGI

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0902 02-02

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
0.1/		Pass	0.3	
Self-generated noise	A	910 TANANTI	0.8	
	C	Pass	1.6	
	Lin	Pass	2.5	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
3	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
ACTION CONTROL OF THE	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
heropean in Total To Anton Total State (Constitution of Constitution of Consti	Leq	Pass	0.4	

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date: 09-Sep-2017

End

Checked by:

Date:

Fung Chi Yip 09-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

2250

Serial No.

2718890

Date 09-Sep-2017

Microphone Preamp type: type: 4950 ZC0032 Serial No. Serial No. 2827088 24967

Report: 17CA0902 02-02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

12.2

dB dB

Noise level in C weighting

12.8

Noise level in Lin

17.9 dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Deference/Franceted lovel	Actual	level	Tolerance	Devia	tion
Reference/Expected level	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 2 of 5

Sound level me	ter type:	2250		Serial No.	2718890	Date	09-Sep-2017
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	2827088 24967	Report	17CA0902 02-02
34.0		34.1	34.1	0.7		0.1	0.1
33.0		33.1	33.1	0.7		0.1	0.1
32.0		32.1	32.0	0.7		0.1	0.0
31.0		31.0	31.0	0.7		0.0	0.0
30.0		30.1	30.1	0.7		0.1	0.1

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20.140	30.0	30.1	0.7	0.1
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	÷	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	0.0	54.6	1.5	1.5	0.0
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	0.0	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0
requency weig	hting C:						
Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	0.0	90.9	1.5	1.5	-0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	eter type:	2250		Serial No.	2718890		Date	09-Sep-2017		
Microphone Preamp				Serial No. Serial No.		2827088 24967				: 17CA0902 02-02
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0			
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0			
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0			
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0			
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0			
12590.0	94.0	87.8	-0.3	87.4	3.0	6.0	-0.1			

-			1	
Frac	uency	MAIC	htina	In.
1100	ucity	WCIG	HUHY	L.II I.

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	0.0	94.0	1.5	1.5	0.0
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

^{*}Deviation = Actual level - (Expected level + Correction of electrical response)

The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1712-21. The maximum expanded uncertainty of correction of electrical response is 0.29 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+		dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Carl Contract of the Contract		A DATA ORDER A TRANSPORTE AND A TRANSPORT AND			
Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

e:

2250 4950 Serial No.

2718890

Date 0

09-Sep-2017

Microphone Preamp type:

4950 ZC0032 Serial No. Serial No. 2827088 24967

Report: 17CA0902 02-02

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities:

(Weighting Z, set the generator signal to single, LZPeak)

ivo polaridoo.	((Troighting 2, out the generalist e.g. at the			
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation	
dB	dB	dB	+/- dB	dB	
119.0	119.0	119.2	2.0	0.2	
				± 1	

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.4	2.0	0.4

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

40 Hz

Burst repetition frequency: Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	118.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1
Repeated at 100 Hz				
Ref. Level	Repeated burst indication		Tolerance	Deviation

Ref. Level		Repeated burst indication		Tolerance	Deviation	
	dB	Expected (dB)	Actual (dB)	+/- dB	dB	
	120.0	117.3	117.2	1.0	-0.1	

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

ration of tone burst.	1 1113					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	ŭ
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

ä

2250 Serial No.

2718890

Date 09-Sep-2017

Microphone Preamp type: type: 4950 Serial No. ZC0032 Serial No.

2827088 24967

Report: 17CA0902 02-02

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	88.0	58.0	58.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	88.0	68.0	68.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

	0		AND THE PROPERTY OF THE PARTY O	provented and an arrangement of the second	
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
134.3	133.3	130.3	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as follow The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

10 sec

Level reduced by	Expected level	Actual level	Tolerance	Deviation
1 dB	dB	dB	dB	dB
140.3	100.3	100.2	2.2	-0.1
	1 dB	1 dB dB	1 dB dB dB	1 dB dB dB

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.3	1.0	1.0	0.4
8000	92.9	91.9	1.5	3.0	-1.0

----END-----

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0615 01-01

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1)

Microphone

Preamp

Type/Model No.:

B&K 2250-L **B&K** 4950

B&K ZC0032

Serial/Equipment No.:

2718884

2698644

13482

Adaptors used:

Item submitted by

Customer Name:

Anewr Consulting Limited

Address of Customer:

Unit 517, 5/F Tower A, Regent Centre, 63 Wo Yip Hop Road, Kwai Chung

Request No .:

Date of receipt:

15-Jun-2017

Date of test:

26-Jun-2017

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

17-Jun-2018

CIGISMEC

Signal generator Signal generator DS 360 DS 360

33873 61227

25-Apr-2018 01-Apr-2018 **CEPREI** CEPREI

Ambient conditions

Test specifications

Temperature:

23 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

27-Jun-2017

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0615 01-01

Page

1, **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Secretaria de la constitución de	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
The William Co.	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
and the second statement of the second decided at the second sec	Weighting A at 8000 Hz	Pass	0.5	

3. Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Lai Sheng Jie 26-Jun-2017

Checked by:

Date:

Fung Chi Yip

27-Jun-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

2250-L

Serial No.

2718884

Date

26-Jun-2017

Microphone Preamp type: type: 4950 ZC0032 Serial No. Serial No. 2698644 13482

Report: 17CA0615 01-01

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

dB

Noise level in A weighting

14.2

Noise level in C weighting

16.2 dB

Noise level in Lin

23.3 dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	l level	Tolerance	ce Deviatio	
Reference/Expected level	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 2 of 5

Sound level me	eter type:	2250-L		Serial No.	2718884	Date	e 26-Jun-2017
Microphone Preamp	type:	4950 ZC0032		Serial No. Serial No.	2698644 13482	Rep	ort: 17CA0615 01-01
34.0		34.0	34.0	0.7		0.0	0.0
33.0		33.0	33.0	0.7		0.0	0.0
32.0		32.1	32.1	0.7		0.1	0.1
31.0		31.1	31.0	0.7		0.1	0.0
30.0		30.1	30.1	0.7		0.1	0.1

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
00 440	30.0	30.1	0.7	0.1
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Sales and the sales and the sales are sales	The Table Street I	0.04000
Fraguanav	woighting	7 /\·
Frequency	WEIGHTUNG	7.

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	ice(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	N/A	54.6	1.5	1.5	0.0
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.3	1.0	1.0	-0.1
501.2	94.0	90.8	0.0	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0
requency weig	hting C:						
Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	15 ±2 0 40	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	N/A	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	eter type:	2250-L		Serial No.	271	8884	Date	26-Jun-2017
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	269 134	8644 82	Report	: 17CA0615 01-01
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	1
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.4	3.0	6.0	-0.1	

12000.0	0 1.0	0,.0		550 S S			
requency weig	hting Lin:						
Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerar	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	N/A	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590 0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

^{*}Deviation = Actual level - (Expected level + Correction of electrical response)

The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1853-11. The maximum expanded uncertainty of correction of electrical response is 0.3 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+		dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

o orginal to continuous.	(The state of the s			
Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
dB	dB	dB	+	78	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

).

2250-L 4950 Serial No. Serial No. Serial No. 2718884

Date 26-Jun-2017

Microphone Preamp type: type: 4950 ZC0032 2698644 13482

Report: 17CA0615 01-01

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities:

(Weighting L, set the generator signal to single, Lcpeak)

polaritioo.	(****) = 1 = 1 = 1 = 1		J ' ' '	
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.0	2.0	0.0
	<u>- </u>			

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.2	2.0	0.2

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

Domintion

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	118.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	t indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.1	2.0	-0.1
Repeated at 100 Hz				
Ref. Level	Repeated bu	rst indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	117.3	117.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

i attori or torio barot.						
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
*	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 **SMECLab**

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

2250-L

Serial No.

2718884

26-Jun-2017

Microphone Preamp type: type: 4950 ZC0032

Serial No. Serial No. 2698644 13482

Report: 17CA0615 01-01

Date

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leq:

0 0		1.50			
Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	88.0	58.0	57.9	1.7	-0.1

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	88.0	68.0	67.9	1.7	-0.1

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation	
at overload (dB)	1 dB	3 dB	dB	dB	dB	
136.3	135.3	132.3	3.0	1.0	0.0	

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as follow The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference rar

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
143.3	142.3	102.3	102.2	2.2	-0.1

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	ice (dB)	Deviation
Hz	dB	Measured (dB)	+	<u>12</u> 8 8 220 - V	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	93.0	1.5	3.0	0.1

-----END-----

Certificate No. 804865

4 Pages Page of

Customer: ATAL Engineering Ltd

Address: 13/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q81893

Date of receipt

16-May-18

Item Tested

Description: Sound Level Meter

Manufacturer: CASELLA

I.D.

Model

: CEL-63X

Serial No.

: 5044655

Test Conditions

Date of Test: 18-May-18 **Ambient Temperature:**

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 61672, IEC 61260.

 $(23 \pm 3)^{\circ}C$

Test Results

All results were within the IEC 61672 Type 1 or IEC 61260 Class 1 specification. (where applicable) The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C170120

SCL-HKSAR

S240

Sound Level Calibrator

803357

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by

Elva Chong

Approved by:

18-May-18

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 804865

Page 2 of 4 Pages

Results:

1. Self-generated noise: 23.2 dBA

2. Acoustical signal test

	UUT S	etting			
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
0-140	A	F	OFF	94.0	93.3
		S	OFF		93.3
	С	F	OFF		93.3
,	Z	F	OFF		93.3
	A	F	1/1		93.3
	A	F	1/3		93.3
	A	F	OFF	114.0	113.4
		S	OFF		113.4
	С	F	OFF		113.4
	Z	F	OFF		113.4
	A	F	1/1		113.4
	A	F	1/3		113.4

IEC 61672 Type 1 Spec. : \pm 1.1 dB

Uncertainty: ± 0.3 dB

3 Electrical signal tests of frequency weightings (A weighting)

pec.
3
lB
dB
lB
dB
dB
dB
dB
3.1 dB
17.0 dB

Uncertainty: ± 0.1 dB

Certificate No. 804865

Page 3 of 4 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT Setting	Applied Value (dB)	UUT Reading (dB)	Difference (dB)	IEC 61672 Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty: $\pm 0.1 \text{ dB}$

5. Filter Characteristics

$5.1 \quad 1/1 - Octave Filter$

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
125 Hz	-61.4	<- 61
250 Hz	-43.7	<- 42
500 Hz	-21.2	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref)		
1.414 kHz	-3.8	- 2 ~ - 5
2 kHz	-24.2	<- 17.5
4 kHz	-65.4	<- 42
8 kHz	- 61.9	<- 61

Uncertainty: ± 0.25 dB

Certificate No. 804865

Page 4 of 4 Pages

5.2 1/3 – Octave Filter

Frequency	Attenuation (dB)	IEC 61260 Class 1 (dB)
326 Hz	-61.3	<- 61
530 Hz	-46.3	< - 42
772 Hz	-22.1	<- 17.5
891 Hz	-3.6	+ 0.3 ~ - 5.0
1 kHz (Ref)		
1.122 kHz	-3.7	+ 0.3 ~ - 5.0
1.296 kHz	-23.3	< - 17.5
1.887 kHz	-50.7	<- 42
3.070 kHz	-72.4	<- 61

Uncertainty: $\pm 0.25 \text{ dB}$

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 006 hPa
- 4. Preamplifier model: CEL-495, S/N: 002374
- 5. Firmware Version: 129-08 6. Power Supply Check: OK
- 7. The UUT was adjusted with the supplied sound calibrator at the reference sound pressure level before the calibration.

----- END -----

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-1522)

Date of Receipt / 收件日期: 30 June 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號 Serial No. / 編號 2250-L 2701830

Supplied By / 委託者

ANewR Consulting Limited

Unit 517, 5/F., Tower A, Regent Centre,

63 Wo Yi Hop Road, Kwai Chung, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

11 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C Lee Engineer

Certified By 核證 H.C. Chan

H C Chan

Date of Issue 簽發日期 12 July 2017

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator

C170048

Multifunction Acoustic Calibrator

PA160023

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT	Setting	Applie	UUT Reading	
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT Setting		Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT	Setting	Applied Value		UUT Reading
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)
		104.00	1 -	104.0
		114.00		114.0

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

6.2 Time Weighting

UUT Setting		UUT Setting Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)	1		94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT S	etting	Applie	d Value	UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.8	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
			4 kHz	94.9	$+1.0 \pm 1.6$
			8 kHz	92.5	-1.1(+2.1; -3.1)
			12.5 kHz	89.5	-4.3(+3.0; -6.0)

6.3.2 C-Weighting

UUT S	etting	Applie	d Value	UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5
			125 Hz	93.8	-0.2 ± 1.5
			250 Hz	94.0	0.0 ± 1.4
			500 Hz	94.0	0.0 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	93.8	-0.2 ± 1.6
			4 kHz	93.1	-0.8 ± 1.6
			8 kHz	90.7	-3.0 (+2.1; -3.1)
			12.5 kHz	87.5	-6.2 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載核正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173769

證書編號

Remarks: - UUT Microphone Model No.: 4950 & S/N: 2678779

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz: ± 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No :

18CA0524 04-01

Page

of

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Manufacturer: Type/Model No.: **B&K**

B & K

Preamp B & K ZC0032

Serial/Equipment No.:

2250 2749852 4950 2717593

08-Sep-2018

Adaptors used:

14333

Item submitted by

Customer Name:

MTR Corporation Ltd.

Address of Customer:

Request No.:

Date of receipt:

24-May-2018

Date of test:

28-May-2018

Reference equipment used in the calibration

Description: Multi function sound calibrator

Signal generator Signal generator

Model: B&K 4226

DS 360 DS 360 Serial No. 2288444 33873

24-Apr-2019 61227 23-Apr-2019

Expiry Date: Traceable to:

CIGISMEC CEPREI CEPREL

Ambient conditions

Temperature:

21 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1, and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Feng unai

Approved Signatory:

Date:

28-May-2018

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0524 04-01

Page

0

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 28-May-2018

End

Checked by:

Date:

8hek Kwong Tat 28-May-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC17-1522)

Date of Receipt / 收件日期: 30 June 2017

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Brüel & Kjær

Model No. / 型號

2250

Serial No. / 編號

2704790 :

Supplied By / 委託者

ANewR Consulting Limited

Unit 517, 5/F., Tower A, Regent Centre,

63 Wo Yi Hop Road, Kwai Chung, N.T. Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

11 July 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C/Lee Engineer

Certified By 核證

written approval of this laboratory

H C Chan

Date of Issue 簽發日期

12 July 2017

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using laboratory acoustic calibrator was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C170048

Multifunction Acoustic Calibrator

PA160023

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Self-calibration

UUT	Setting	Applie	d Value	UUT Reading
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)
20 - 140	LAF (SPL)	94.00	1	94.1

6.1.1.2 After Self-calibration

UUT S	Setting	Applie	d Value	UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT	Setting	Applied Value		UUT Reading	
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	
20 - 140	LAF (SPL)	94.00	1	94.0 (Ref.)	
		104.00		104.0	
		114.00		114.0	

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C173768

證書編號

6.2 Time Weighting

UUT	Setting	Applied Value		UUT Reading	IEC 61672 Class 1
Range (dB)	Main	Level (dB)	Freq. (kHz)	(dB)	Spec. (dB)
20 - 140	LAF (SPL)	94.00	1	94.0	Ref.
	LAS (SPL)			94.0	± 0.3

6.3 Frequency Weighting

A-Weighting 6.3.1

A-Weighting					
UUT S	etting	Applie	d Value	UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)
20 - 140	LAF (SPL)	94.00	63 Hz	67.8	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.5
			250 Hz	85.3	-8.6 ± 1.4
			500 Hz	90.7	-3.2 ± 1.4
			1 kHz	94.0	Ref.
			2 kHz	95.2	$+1.2 \pm 1.6$
			4 kHz	95.0	$+1.0 \pm 1.6$
			8 kHz	92.9	-1.1(+2.1; -3.1)
			12.5 kHz	89.3	-4.3(+3.0; -6.0)

6.3.2 C-Weighting

UUT S	etting	Applied Value		Applied Value		UUT Reading	IEC 61672 Class 1 Spec.
Range (dB)	Main	Level (dB)	Freq.	(dB)	(dB)		
20 - 140	LCF (SPL)	94.00	63 Hz	93.2	-0.8 ± 1.5		
			125 Hz	93.8	-0.2 ± 1.5		
			250 Hz	94.0	0.0 ± 1.4		
			500 Hz	94.0	0.0 ± 1.4		
			1 kHz	94.0	Ref.		
			2 kHz	93.8	-0.2 ± 1.6		
			4 kHz	93.2	-0.8 ± 1.6		
180			8 kHz	91.0	-3.0 (+2.1; -3.1)		
			12.5 kHz	87.4	-6.2 (+3.0 ; -6.0)		

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: (

C173768

證書編號

Remarks: - UUT Microphone Model No.: 4189 & S/N: 2695392

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

18CA0524 04-04

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K 4231

Type/Model No.: Serial/Equipment No.:

1858983

Adaptors used:

Item submitted by

Curstomer:

MTR Corporation Ltd.

Address of Customer:

Request No.

Date of receipt:

24-May-2018

Date of test:

25-May-2018

Reference equipment used in the calibration

Model:	Serial No.	Expiry Date:	Traceable to:
B&K 4180	2412857	20-Apr-2019	SCL
B&K 2673	2743150	27-Apr-2019	CEPREI
B&K 2610	2346941	08-May-2019	CEPREI
DS 360	33873	24-Apr-2019	CEPREI
34401A	US36087050	23-Apr-2019	CEPREI
8903B	GB41300350	23-Apr-2019	CEPREI
53132A	MY40003662	24-Apr-2019	CEPREI
	B&K 2673 B&K 2610 DS 360 34401A 8903B	B&K 4180 2412857 B&K 2673 2743150 B&K 2610 2346941 DS 360 33873 34401A US36087050 8903B GB41300350	B&K 4180 2412857 20-Apr-2019 B&K 2673 2743150 27-Apr-2019 B&K 2610 2346941 08-May-2019 DS 360 33873 24-Apr-2019 34401A US36087050 23-Apr-2019 8903B GB41300350 23-Apr-2019

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity:

 $50 \pm 10 \%$

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
- 2 The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate

lun Qi

Feng

Approved Signatory:

Date:

28-May-2018

Company Chop:

Comments: The results reported in this ce/tificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No CARP156-1/Issue 1/Rev.D/01/03/2007

港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0524 04-04

Page:

of

2

Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

			(Output level in dB re 20 µPa)
Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	93.86	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.010 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency =999.84 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7%

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Fung Chi Yip

25-May-2018

Checked by:

Date:

Date:

28-May-2018

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No CARP156-2/Issue 1/Rev C/01/05/2005

SEL for SSS Calculation derived from specification

		Assumed Speed for starting	25m setback	25m setback	15m setback
	Train Length	from standstill	Lmax^	SEL*	SEL
CRH train	m	km/h	dB(A)	dB(A)	dB(A)
Short haul	214	25	69	83.9	86.1
Long hual	427	25	69	86.9	89.1

Remark ^: The Lmax of 75 dB(A) as indicated in the ERR-SSS represented the design criteria of China Railway High-speed (CRH) train when starting from standstill in open section under XRL Contract 840 for rolling stock, while Lmax of 69 dB(A) presented in this Report is the actual measurement result of XRL Contract 840 CRH train under the same specified operation mode.

Remark *: The formula shown below is employed to convert Lmax to SEL.

 $SEL = Lmax + 10log(len/S) - 10log((4D/len)/[4(D/len)^2+1] + 2tan^{-1}(len/2D)) + 10.5$

where SEL = Sound Pressure Level

len = Length of propulsion cars or train, in m

S = Train speed, in km/h

D = Distance, in m

Leq Reference for SSS Calculation

	Setback	Leq
SSS Event	m	dB(A)
1 Trains Idle outdoor ^	7.5	70
1 Train Wash #	6	62

Remark ^: The Leg(30mins) is calculated based on the measured Leg 78dB(A) for the first 5 mins and Leg 58dB(A) for the remaining 25 mins.

Remark #: Measurement result at 6m setback from the full wash operation .

SWL Reference for SSS Calculation

	SWL	Height
SSS Event	dB(A)	m
Crane Operation	90	3.0

SSS Event	Train Type	Train Length	Max 30 minutes volume of tra in SSS (V/30min)		
		m	Day	Night	24hr
Shunting (single	Short Train	214	6	2	5
movement)	Long Train	427	0	0	0
Idle outdoor	Short Train	214	1	0	1
idle odtaooi	Long Train	427	0	0	0
Idle in Shed	Short Train	214	0	0	0
iule III Sileu	Long Train	427	0	1	1

SSS Calculation of Sound Power Level for Idling Trains in Maintenance Shed

SPL of Idling Train at 7.5m setback outdoor

Leq dB(A) 70

Ref: Contract 840 PS clause 4.3.5.1 - 4.3.5.4

Legend:

Lw: Sound Power Level dB re 10-12 W

SPL (or Lp): Sound Pressure Level dB re $20\mu Pa$ α : Absorption coefficient of wall/ceiling/opening

Abs Panel: Absorption Panel

S: Surface area

R: Room constant

r: Setback from train inside the shed for obtaining sufficient constant reverberant field

Q: Directivity factor

Line Source Power of the Short Train

	Line source	Line source		
	power	power for		
Train length	density	whole train		
L	Lw/L	Lw		
m	dB(A)	dB(A)		
214	82.4	105.7		
	L m	Train length power density L Lw/L m dB(A)		

Ref: Transportation Noise Reference Book equation 2.19

Step 2 SPL of Idling Train in Reverberant Shed Shed Internal Dimension

	Length L	Width W	Height H			
m	450	28.5	9			
feet	1476.4	93.5	29.5			

Absorption coefficient

Absorption coemicient					
			Acoustic		
Material	Painting	Open End	Ceiling		
C	0.1	1.0	0.5		

Internal walls inside the shed

internal walls inside the shed									
Side	Wall	Open Er	nd at Exit	Closed	End Wall	Cei	ling	Flo	oor
S	α	S	α	S	α	S	α	S	α
LxH		WxH		WxH		LxW		LxW	
							Acoustic		
sq feet	Painting	sq feet	Open End	sq feet	Painting	sq feet	Ceiling	sq feet	Painting
43593.8	0.1	2760.9	1.0	2760.9	0.1	138047.2	0.5	138047.2	0.1

Room Absorption				
Total S	Total Sα	Average α	R	
sq feet				
368803.9	94584.1	0.256	127208.1	

		SPL/Intensity of Idling Train in Reverberant Shed	
r	Q	Lp	
feet		dB(A)	
30	2	78.7	Direct Ref
(=10m)		71.2	Reverberent
		GE O	Bayarbarant Intensit

Formula: general equation for calculating sound pressure from sound power in reverberant room

Total Intensity

Step 3

Intensity of One Idling Short Train at Gate & Louvre

Split into 7

Split parts for long train Leq dB(A) dB(A) dB(A) dB(A)

78.9 -8.5 70.4 73.4 (+3dB for long train)

Total Lw for One Idling Short Train at Gate of Shed

Door Width	Door Height	no. of Door	S	Lw
W	Н	n	WxHxn	
m	m		sq m	dB(A)
3.6	7	4	100.8	93.5

Total Lw for One Idling Short Train at One Set of Side Louvre of Shed

		no. of		
Window	Window	Window for		
Width	Height	one set	S	Lw
W	Н	n	WxHxn	
m	m		sq m	dB(A)
0.9	1.4	27	34.0	88.7

Remark: Louvre on side wall of shed are divided into seven sets. Each set contains 3 X 9 pieces of Louvre.

Total Lw for One Idling Short Train at One Set of Roof Operable Skylight of Shed

Total En for One lang onort Train at One Oct of Roof Operas					
		no. of			
Skylight	Skylight	Skylight for			
Width	Length	one set	S	Lw	
W	L	n	WxLxn		
m	m		sq m	dB(A)	
1.6	5.6	14	125.4	0.0	

Remark: Roof louvre of shed are divided into seven sets. Each set contains 14 pieces of louvre.

Ancillary Table for SSS Calculation Angle Correction Factor for angle between shed gate direction to NSR

raigic correction ractor for angle be						
Angle	Loss	Gradient				
Degree	dB	dB/degree				
0	0	0.111				
45	5	0.078				
90	8.5	0.144				
135	15	0.200				
165	21	0.200				

SSS Calculation a	t NSR SS	2	Mitig	ated			Ba	rrier height (m)=	9											
		Ground	Ī							Shunti	Idle in	Idle				Criteria				
NSR SS2	No. of	Level	Hr	ASR				Result:		ng	shed	outside		Wash	Total	Leq	Status			
332	Storey 1	mPD 20.5	m 1.5	В				After 0030	Leq, day Leq, night	31.4 26.6	0.0 34.0	30.8	19.2	32.0	36.3 34.7	49 39	OK OK			
									Leq, 24hr Lmax	30.3 36.4	29.2 34.0	29.1 30.8	17.4 19.2	30.2 32.0	35.8 36.4					
Shunting					Remark: p	olus 10log(2	2) is for con	verting of Leq(30			34.0	30.6	15.2	32.0	30.4					
						At NSR,														
				(1)	for 30min (2)	no shield (3)										(4)		At NSR, incl façade	(5)	(6)
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq	Lmax	Shadow zone
Track 1 Short Train	1	m 101	Deg 11.5	15m 86.1	NSR 65.9	NSR 33.3		Barrier	mPD 14	m 9	m 47	m 54	m 1.2	m 101.2	m 0.4	14.4	14.4	21.9	NSR 36.4	Yes
Track Folicit Fram	2	191	8.4	86.1	61.7	29.1		Barrier	15	9	73	118	1.2	191.1	0.3	13.5	13.5	18.6	32.7	Yes
Track 2 Short Train	1 2	96 221	11.5 16.8	86.1 86.1	66.1 64.1	33.5 31.5		Barrier Barrier	14 15	9	42 27	54 194	1.2 1.2	96.2 221.1	0.5 1.0	15.0 15.0	15.0 15.0	21.5 19.5	36.1 33.3	Yes Yes
							eters and re	emark for equation				_								
											1									
			L		L					L	L	L	L							
	At NSR, incl façade							-												
	Leq	Lmax																		
Move to shunting track	23.5	NSR 36.4												\vdash		+				
Return to stabling track	23.6	36.1																		
A	t NSR, incl faça	ade N	loise crite	ria												1				
	Leq		Leq	Status		Lmax														
	Total			03		NSR														
1 short train Day: 6 short			49	OK		36.4				-										
Night: 2 short			39	OK		36.4														
Idling in Shed																				
						AL NOD														
				Directi		At NSR, no shield												At NSR, incl		
				on		(8)	Louvre											façade		
		Hor D	Exit Angle	Correct ion (7)	Lw	Leq	Reductio n	Shield	Track Level	НЬ	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq		Shadow zone
		m	Deg			NSR	dB		mPD	m	m	m	m	m	m					
at Gate at Side Louvre 1		558 590	1.9	0.2	93.5 88.7	30.3 25.3	-9		15 15		558 590	-		558.0 590.0	7.0	0.0	0.0	33.3 19.3		-
at Side Louvre 2		655	-	0	88.7	24.4	-9	-	15		655			655.0	7.0	0.0	0.0	18.4		-
at Side Louvre 3 at Side Louvre 4		719 783	-	0	88.7 88.7	23.6 22.9	-9 -9		15 15		719 783			719.0 783.0	7.0	0.0	0.0	17.6 16.9		-
at Side Louvre 5		848	-	0	88.7	22.2	-9	-	15		848			848.0	7.0	0.0	0.0	16.2		-
at Side Louvre 6 at Side Louvre 7		912 976		0	88.7 88.7	21.5 21.0	-9 -9		15 15		912 976			912.0 976.0	7.0 7.0	0.0	0.0	15.5 15.0		-
at Roof Skylight 1		591	-	6	0.0	-69.4	-	-	15		591			591.0	7.0	0.0	0.0	-66.4		-
at Roof Skylight 2 at Roof Skylight 3		655 719	- 1	6	0.0	-70.3 -71.1	-		15 15		655 719			655.0 719.0	7.0 7.0	0.0	0.0	-67.3 -68.1		-
at Roof Skylight 4		784	-	6	0.0	-71.9	-	-	15		784			784.0	7.0	0.0	0.0	-68.9		-
at Roof Skylight 5 at Roof Skylight 6		848 912	- 1	6	0.0	-72.6 -73.2	-		15 15		848 912			848.0 912.0	7.0	0.0	0.0	-69.6 -70.2		-
at Roof Skylight 7		977	-	6	0.0	-73.8	-	-	15		977		1	977.0	7.0	0.0	0.0	-70.8		-
A	t NSR, incl faça	ade N	loise crite	ria																
	Leq		Leq	Status		Lmax														
1 long train	Total 34.0					NSR 34.0		-						$\vdash \exists$		<u> </u>		<u> </u>		
Day: 0 long	0.0		49	OK		0.0														
Night: 1 long	34.0		39	OK		34.0				-										
Idling outside	Day	' 	1			I	I					1					' 			
						At NSR,														
					for 30min	no shield, 1hr												At NSR, incl façade		
		Hor D	Angle	Leq	Leq	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	Leq, day		Shadow zone
1 Short Train		m 72	Deg 3	7.5m 70	NSR 42.8	NSR 42.8		Barrier	mPD 15	m 9	m 33	m 39	m 1.2	m 72.2	m 0.7	15.0	15.0	30.8		Yes
	Dec																			
Others	Day																			
						At NSR, no shield,												At NSR, incl		
		Hor D	1	1.00	for 30min	1hr		Crist.	Track Laws	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade		Chado
		m m	Leq 6m	Lw	Leq NSR	Leq NSR		Shield	Track Level mPD	m m	m	m	m	m	m			Leq, day		Shadow zone
Crane Car Wash		773 268	62	90	24.2 29.0	24.2 29.0		Loco Shed	15 15	10.2	274 268	499	3	773.0 268.1	0.1 6.9	8.0 0.0	8.0 0.0	19.2 32.0		Yes
oui TTabii		208	02		29.0	29.0			15		∠08			200.1	6.9	0.0	0.0	32.0		-
			<u> </u>								! _	<u> </u>		$\vdash \exists$		<u> </u>				
	Legend:								Remark for E	quations	i:									
	Hr: Height of h			er				-	(1): plus 3dB is	to adjus	t SEL fro				-	<u> </u>				
	Hor D: Horizon Angle: Angle of	of View								rsion to I	Leq: Leq	= SEL + 1	10 log V -	35.6 ref: F	TA Guidance	Manual Table	5-2 Rail vehic	le ;		
	Hb: Height of I Dsb: Horizonta			SOURCE 1	n harrier				plus 10log(2) is (4): Barrier effe							<u> </u>				
	Dbr: Horizonta	al distance fr	om barrie						(5): Ref: Trans	portation	Noise R	eference l	Book equ	ation 15.2						
	Hs: Height of r D: Direct path		-						(6): To check v								orrection for	of louvre to NSR		
	P: Path differe	nce=Shielde		D					(8): general eq	uation fo	r calculat	ing sound	pressure	from sou	nd power in f	ree field.	OTTOGRAPH TO TO	o. louvie (U INON		
	A barrier: Barr IL barrier: Barr								(9): Wheel Squ	ieal is ad	lded to th	e required	d segmen	nts, such a	s turnout and	curve.				
	pe partiel. Dall	iioi iuss (uB	1		1	1	1		1	1	1	1				1	1	1	1	1

SSS Calculation a	+ NCD CC	4	Mitic	atod		1	D-	and a section of the	40	forder Son		-145DF		1	Mak baselan			(OO P.D.)		
555 Calculation a	I NOK SO		Mitig	ated			Ва	rrier height (m)=	12); equiva	lent to 5m	high barrier	top at 27mPD o	on ground leve	22mPD)		
NSR	No. of	Ground Level	Hr	ASR				Result:		Shunti ng	Idle in shed	ldle outside	Crane	Wash	Total	Criteria Leq	Status			
SS4	Storey	mPD	m						Leq, day	35.4	0.0	32.1	13.3	24.1	37.3	49	ОК			
	1	22.9	1.5	В				After 0030		30.6	26.4	0.0	- 44.5	- 22.2	32.0	40	OK			
									Leq, 24hr Lmax	34.3 40.5	21.7 26.4	30.3 32.1	11.5	22.3 24.1	36.1 40.5					
Shunting					Remark: p	plus 10log(2	2) is for con	verting of Leq(30												
						At NSR,												At NSR, incl		
					for 30min													façade		
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	Leq	Lmax NSR	Shadow zone?
Track 1 Short Train	1a	m 50	Deg 16.1	15m 86.1	NSR 70.4	37.8		Barrier	mPD 13.3	m 12	m 20	m 30	m 1.2	m 51.0	m 1.8	15.0	15.0	25.8	40.5	Yes
	1b	50	6.6	86.1	66.5	33.9		Barrier	14.2	12	20	30	1.2	50.8	2.0	15.0	15.0	21.9	36.6	Yes
Track 2 Short Train	2	50	1.8	86.1	60.9	28.3		Barrier	15	12	20	30	1.2	50.7	2.2	15.0	15.0	16.3	31.0	Yes
Track 2 Short Train	1a 1b	50 50	16.1 6.6	86.1 86.1	70.4 66.5	37.8 33.9		Barrier Barrier	13.3 14.2	12 12	20 20	30 30	1.2 1.2	51.0 50.8	1.8 2.0	15.0 15.0	15.0 15.0	25.8 21.9	40.5 36.6	Yes Yes
	2	50	1.8	86.1	60.9	28.3		Barrier	15	12	20	30	1.2	50.7	2.2	15.0	15.0	16.3	31.0	Yes
				Remark	: For legen	d of param	eters and re	emark for equation	ns, please refe	rs to the I	bottom of	spreadsh	neet.							
																				\perp
																				+ -
<u> </u>	At NSR, incl façade																			
	Leq	Lmax														1				+
		NSR																		
Move to shunting track	27.6	40.5																		
Return to stabling track	27.6	40.5																		
At	t NSR, incl faça	de N	loise crite	eria																
	1		1	Ctatus		1														
	Leq Total		Leq	Status		Lmax NSR														
1 short train																				
Day: 6 short			49	ОК		40.5														
Night: 2 short	30.6		40	OK		40.5														
Idling in Shed																				
Idling in Shed				Directi														At NSD incl		
Idling in Shed				Directi		At NSR, no shield												At NSR, incl façade		
Idling in Shed			Fuit	on		At NSR,	Louvre													
Idling in Shed		Hor D	Exit Angle		Lw	At NSR,	Louvre Reductio n	Shield	Track Level	Нь	Dsb	Dbr	Hs	D	P	A barrier	IL barrier			Shadow zone?
		m	Angle Deg	On Correct ion		At NSR, no shield Leq NSR	Reductio n dB		mPD	m	m	m	m	m	m			façade Leq		
at Gate		m 468	Angle Deg 16.4	Correct ion	93.5	At NSR, no shield Leq NSR 30.2	Reductio n dB	Barrier	mPD 15	m 12	m 363	m 105	m 3.5	m 468.0	m 0.1	8.0	8.0	Leq 25.2		Yes
at Gate at Side Louvre 1		m 468 496	Angle Deg	On Correct ion		At NSR, no shield Leq NSR	Reductio n dB		mPD 15 15	m 12 12	m 363 370	m 105 126	m 3.5 3.8	m 468.0 496.0	m			Leq 25.2 13.2		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3		m 468 496 557 619	Angle Deg 16.4	0n Correct ion 1.8 0 0 0	93.5 88.7 88.7 88.7	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9	Reductio n dB - -9 -9	Barrier Barrier Barrier Barrier	mPD 15 15 15 15	m 12 12 12 12	m 363 370 416 462	m 105 126 141 157	3.5 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0	m 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8	8.0 7.7 7.2 6.8	25.2 13.2 12.6 12.1		Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 468 496 557 619 681	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	m 12 12 12 12 12	m 363 370 416 462 510	m 105 126 141 157 171	m 3.5 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0	0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4	8.0 7.7 7.2 6.8 6.4	25.2 13.2 12.6 12.1 11.7		Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 468 496 557 619 681 743	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3	Reductio n dB - -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 12 12 12 12 12 12	m 363 370 416 462 510 560	m 105 126 141 157 171 183	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0	m 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1	8.0 7.7 7.2 6.8 6.4 6.1	Leq 25.2 13.2 12.6 12.1 11.7 11.2		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7		m 468 496 557 619 681 743 805 867	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12	m 363 370 416 462 510 560 610 657	m 105 126 141 157 171	m 3.5 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6	12.6 12.1 11.2 10.8 10.4		Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Side Side Side Side Side Side Side		m 468 496 557 619 681 743 805 867 499	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0	12.6 12.1 11.2 10.8 10.4 -65.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2		m 468 496 557 619 681 743 805 867 499 560	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 80.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0	10.8 10.4 -66.0 466.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3		m 468 496 557 619 681 743 805 867 499 560 622 683	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0	Reduction n dB 9 - 9 - 9 - 9 - 9 - 9 - 9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0	13.2 12.6 12.1 11.7 11.2 10.8 10.4 -65.0 -66.9 -67.7		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 468 496 557 619 681 743 805 867 499 560 622 683 745	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -69.9 -70.7 -71.4	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 4 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5		m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 468 496 557 619 681 743 805 867 499 560 622 683 745	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -69.9 -70.7 -71.4	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	NSR, incl faça	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6		m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 -68.0 -69.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 26.4 0.0	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 26.4 0.0	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 26.4 0.0	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.9 -67.7 -68.4 -69.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 -66.0 -66.0 -67.7 -68.4 -69.1 -69.8 At NSR, incl		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 -69.0 -69.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4 At NSR, no shield, no shield.	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12	m 363 370 416 462 510 657 660 610 657 499 560 622 683 745 807 870	m 105 126 141 157 171 183 195 210	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 681.0 867.0 499.1 867.1 807.1 870.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195	m 3.5 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 681.0 743.0 805.0 867.0 499.1 560.1 622.1 683.1 745.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 -66.0 -66.0 -67.7 -68.4 -69.1 -69.8 At NSR, incl		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield Leq NSR 30.2 26.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	m 363 370 416 462 510 560 610 657 499 560 622 683 745 807	m 105 126 141 157 171 183 195 210 Dbr	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 468.0 496.0 557.0 619.0 743.0 805.0 867.0 867.0 867.0 867.0 867.0 867.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 8	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 25.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m363 363 370 416 462 510 560 610 657 499 662 683 745 870	m 105 126 141 157 171 183 195 210 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 m	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 622.1 887.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 8 at Roof Skylight 4 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 25.4	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m363 363 370 416 462 510 560 610 657 499 662 683 745 870	m 105 126 141 157 171 183 195 210 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 m	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 622.1 887.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.1 23.3 22.6 22.0 -68.0 -69.9 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4 At NSR, no shield, 1hr Leq NSR 44.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m363 363 370 416 462 510 560 610 657 499 662 683 745 870	m 105 126 141 157 171 183 195 210 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 m	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 622.1 887.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -65.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield, 1hr Leq NSR 26.4 44.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m363 363 370 416 462 510 560 610 657 499 662 683 745 870	m 105 126 141 157 171 183 195 210 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 m	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 622.1 8877.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day 32.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield, 1hr Leq NSR 26.4 At NSR, 25.8 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8 At NSR, no shield, 1hr Leq NSR 44.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m363 363 370 416 462 510 560 610 657 499 662 683 745 870	m 105 126 141 157 171 183 195 210 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 m	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 622.1 8877.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -65.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 6 at Roof Skylight 8 at	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	On Correct ion 1.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield Leq NSR 30.2 26.8 25.8 24.9 24.1 23.3 22.6 22.0 -68.0 -69.0 -69.0 -70.7 -71.4 -72.1 -72.8 Lmax NSR 26.4 0.0 26.4 At NSR, no shield, 1hr Leq NSR 44.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	ms 363 370 416 462 510 510 510 510 510 510 510 510 510 510	05 126 141 157 171 183 195 210 Dbr m 93	m 3.5 3.8 3.8 3.8 3.8 3.8 1.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 743.0 805.0 807.1 870.1 870.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.1 1.1 1.1	façade Leq 25.2 13.2 12.6 12.1 11.7 11.2 10.8 10.4 -66.0 -66.0 -66.9 -67.7 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day 32.1 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 26.4 0.0 26.4 Day	m 468 496 557 619 681 743 805 867 499 560 622 683 745 807 870 de N	Angle Deg 16.4	0n Correct ion 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	At NSR, no shield, 1hr Leq NSR 26.4 At NSR, 25.8 24.1 23.3 22.6 22.0 -68.0 -69.0 -70.7 -71.4 -72.1 -72.8 At NSR, no shield, 1hr Leq NSR 44.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	ms 363 370 416 462 462 510 560 610 560 622 683 745 870	05 126 141 157 171 183 195 210 Dbr m 93	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 1.8 1.2	m 468.0 496.0 557.0 619.0 743.0 805.0 743.0 805.0 743.0 807.1 870.1 807.1 870.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.0 7.7 7.2 6.8 6.4 6.1 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8.0 7.7 7.2 6.8 6.4 6.1 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0	façade Leq 25.2 13.2 12.6 12.1 11.7 10.8 10.4 -66.0 -66.9 -66.9 -68.4 -69.1 -69.8 At NSR, incl façade Leq, day 32.1		Yes Yes Yes Yes Yes Yes Yes Yes Yes

SSS Calculation a	t NSR SS	5	Mitig	ated			Ba	rrier height (m)=	10											
ooo carcaranon a	l Hort Go	Ground	www	uiou			Da	mer neight (m)=	10	Shunti	Idle in	ldle				Criteria				
NSR	No. of	Level	Hr	ASR				Result:		ng	shed	outside	Crane	Wash	Total	Leq	Status			
SS5	Storey	mPD	m 7.5	D				A44= 0020	Leq, day	38.0	0.0	41.1	21.0	28.6	43.0	52	OK			
	3	17.3	7.5	В				After 0030	Leq, night Leq, 24hr	33.2 36.9	28.7	0.0 39.3	19.3	26.9	34.5 41.5	45	ОК			
									Lmax	41.3	28.7	41.1	21.0	28.6	41.3					
Shunting	I	l	l	1	Remark: p	olus 10log(2	2) is for con	verting of Leq(30	min) to Leq(1h	r).						I			1	
						At NSR,												At NSR, incl		
	Segment	Hor D	Angle	SEL	for 30min SEL	no shield Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade Leq	Lmax	Shadow zone?
	9	m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	1 2	146	28.3	86.1	68.2	35.6		Barrier	15	10	2	144	1.2	146.3	6.8	15.0	15.0	23.6	37.9	Yes
	3	146 146	61.1 28.7	86.1 86.1	71.5 68.2	38.9 35.6		Barrier Barrier	15 15	10 10	2	144 144	1.2 1.2	146.3 146.3	6.8	15.0 15.0	15.0 15.0	26.9 23.6	41.3 38.0	Yes Yes
	4	119	20.8	86.1	67.7	35.1		Barrier2	15	8	23	96	1.2	119.3	0.7	15.0	15.0	23.1	37.6	Yes
Track 2 Short Train	1 2	182 182	23.8 61.1	86.1 86.1	66.5 70.6	33.9 38.0		Barrier Barrier	15 15	10 10	38 38	144 144	1.2 1.2	182.2 182.2	0.8	15.0 15.0	15.0 15.0	21.9 26.0	36.0 40.1	Yes Yes
	3	182	28.7	86.1	67.3	34.7		Barrier	15	10	38	144	1.2	182.2	0.8	15.0	15.0	22.7	36.8	Yes
	4	123	20.8	86.1	67.6	35.0		Barrier2	15	8	27	96	1.2	123.3	0.6	15.0	15.0	23.0	37.5	Yes
				Remark	: For legen	d of parame	eters and re	emark for equation	ns, please refe	rs to the I	bottom of	spreadsh	neet "SS2	2".						
				\vdash										\Box						
																				+
	At NSR, incl façade													l T]	Ţ	7
	Leq	Lmax																		
		NSR						_									_			
Move to shunting track Return to stabling track	30.6 29.7	41.3 40.1																		
At	NSR, incl faça	de N	oise crite	ria																
	Leq		Leq	Status		Lmax														
	Total					NSR														
1 short train Day: 6 short			52	OK		41.3														
Night: 2 short	33.2		45	ОК		41.3														
Idling in Shad																				
Idling in Shed				 																
Idling in Shed				Directi		At NSR,												At NSR, incl		
Idling in Shed				Directi		At NSR, no shield	Louvre											At NSR, incl façade		
Idling in Shed		Hor D	Exit Angle	on Correct	Lw	no shield	Reductio	Shield	Track Level	Нь	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade		Shadow zone?
Idling in Shed		Hor D	Exit Angle Deg	on	Lw	At NSR, no shield		Shield	Track Level mPD	Hb m	Dsb m	Dbr m	Hs m	D m	P m	A barrier	IL barrier	façade Leq		Shadow zone?
at Gate		m 212	Angle Deg 108.7	Correct ion	93.5	Leq NSR 27.7	Reductio n dB	Barrier	mPD 15	m 10	m 110	m 102	m 3.5	m 212.1	m 0.1	8.2	8.2	Leq 22.5		Yes
at Gate at Side Louvre 1		m 212 189	Angle Deg	Correct ion	93.5 88.7	Leq NSR 27.7 35.2	Reductio n dB - -9	Barrier Barrier	mPD 15 15	m 10 10	m 110 89	m 102 100	m 3.5 3.8	m 212.1 189.1	m 0.1 0.1	8.2 9.0	8.2 9.0	Leq 22.5 20.2		Yes Yes
at Gate		m 212	Angle Deg 108.7	Correct ion	93.5	Leq NSR 27.7	Reductio n dB	Barrier	mPD 15	m 10	m 110	m 102	m 3.5	m 212.1	m 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6	8.2 9.0 9.0 8.6	22.5 20.2 20.2 19.8		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 212 189 188 208 244	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 27.7 35.2 35.3 34.4 33.0	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	m 10 10 10 10	m 110 89 89 99 116	m 102 100 99 109 128	m 3.5 3.8 3.8 3.8 3.8	m 212.1 189.1 188.1 208.1 244.1	m 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9	8.2 9.0 9.0 8.6 7.9	22.5 20.2 20.2 19.8 19.1		Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3		m 212 189 188 208	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7	Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5	Reductio n dB - -9 -9 -9 -9	Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 10 10 10 10 10	m 110 89 89 99 116 138	m 102 100 99 109 128 152	m 3.5 3.8 3.8 3.8 3.8 3.8	m 212.1 189.1 188.1 208.1 244.1 290.1	m 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9	8.2 9.0 9.0 8.6 7.9	Leq 22.5 20.2 20.2 19.8 19.1 18.3		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7		m 212 189 188 208 244 290 341 397	Angle Deg 108.7	01	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188	m 102 100 99 109 128 152 180 209	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Side Side Side Side Side Side Side		m 212 189 188 208 244 290 341 397 203	Angle Deg 108.7	0 11.2 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188	m 102 100 99 109 128 152 180 209 99	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7		m 212 189 188 208 244 290 341 397	Angle Deg 108.7	01	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188	m 102 100 99 109 128 152 180 209	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1	Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4		m 212 189 188 208 244 290 341 397 203 202 221 255	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 36.4 33.0 31.5 30.1 28.8 -60.1 -60.9	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113	m 102 100 99 109 128 152 180 209 99 108 125	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0	Leq 22.5 20.2 20.2 20.2 19.8 19.1 18.3 19.1 16.7 -57.2 -57.1 -57.9		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 212 189 188 208 244 290 341 397 203 202 221 255 299	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130	m 102 100 99 109 128 152 180 209 99 108 125 146	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	18.3 17.4 16.7 -57.9 -59.1 -60.5		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4		m 212 189 188 208 244 290 341 397 203 202 221 255	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 36.4 33.0 31.5 30.1 28.8 -60.1 -60.9	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113	m 102 100 99 109 128 152 180 209 99 108 125	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0	Leq 22.5 20.2 20.2 20.2 19.8 19.1 18.3 19.1 16.7 -57.2 -57.1 -57.9		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NCD bette	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	Leq	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.9 -62.1 -60.9 -62.1 -63.5 -64.9 -66.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correction 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.9 -62.5 -64.9 -66.1 Lmax NSR 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correction 11.2 0 0 0 0 0 0 0 6 6 6 6 6 6 6 7 11 Status	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correction 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.9 -62.5 -64.9 -66.1 Lmax NSR 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correction 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.7 -60.1 -60.1 -60.1 -60.1 -60.1 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	0n Correction 11.2 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.9 -62.5 -64.9 -66.1 Lmax NSR 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 116 138 161 188 104 103 113 130 153	m 102 100 99 109 128 152 180 209 99 108 125 146 171	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 189.1 188.1 208.1 244.1 290.1 341.1 397.0 203.0 202.0 221.0 255.0 299.0 349.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	16,7 16,7 16,7 16,7 16,7 16,7 16,7 16,7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1100 89 89 99 91 116 138 161 188 104 103 113 130 153 178 207	m 102 99 109 128 152 180 209 99 99 108 125 146 171 197	m, 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 188.1 188.1 188.1 208.1 188.1 208.1 341.1 290.1 341.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.9 -57.1 -60.5 -61.9 -63.1 At NSR, incl façade		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 118 104 103 113 130 153 178 207	m 102 99 109 109 128 152 180 209 99 99 108 125 146 171 197	m, 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 188.1 188.1 188.1 208.1 188.1 208.1 188.1 209.1 188.1 209.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -60.5 -61.9 -63.1 At NSR, incl		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1100 89 89 99 91 116 138 161 188 104 103 113 130 153 178 207	m 102 99 109 128 152 180 209 99 99 108 125 146 171 197	m, 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 212.1 188.1 188.1 188.1 208.1 188.1 208.1 341.1 290.1 341.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341.1 41.1 290.1 341	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.9 -57.1 -60.5 -61.9 -63.1 At NSR, incl façade		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7 Day	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.7 60.1 -60.1 -60.1 -60.1 -60.1 -60.1 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 104 103 130 153 207	m 102 109 99 109 128 152 180 209 99 108 125 146 177 197	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 204.1 204.1 41.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 202.0 499.0 494.0 0 698.1 299.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 6	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq. day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.7 60.1 -60.1 -60.1 -60.1 -60.1 -60.1 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 104 103 130 153 207	m 102 109 99 109 128 152 180 209 99 108 125 146 177 197	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 204.1 204.1 41.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 202.0 499.0 494.0 0 698.1 299.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 6	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq. day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7 Day	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.9 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR 53.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 104 103 130 153 207	m 102 109 99 109 128 152 180 209 99 108 125 146 177 197	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 204.1 204.1 41.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 202.0 499.0 494.0 0 698.1 299.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 6	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq, day 41.1		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7 Day	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.1 -60.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, NSR 53.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 104 103 130 153 207	m 102 109 99 109 128 152 180 209 99 108 125 146 177 197	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 204.1 204.1 41.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 44.1 299.1 202.0 499.0 494.0 0 698.1 299.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 699.0 6	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq. day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7 Day	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.7 60.1 -60.1 -60.1 -60.1 -60.1 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR 53.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 161 133 146 103 130 153 207	m 102 100 100 100 100 100 100 100 100 100	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 10.1 11.1 10.1 11.1	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 203.0 202.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.9 -57.1 -57.9 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq, day 41.1		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 6 at Roof Skylight 7 Attribute 1 brown 1	Leq Total 28.7 0.0 28.7 Day	m 212 189 289 188 208 244 290 3411 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	on Correct ion 11.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 36.3 34.4 33.0 31.5 30.1 28.8 -60.1 -60.1 -60.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR 53.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 161 133 153 153 207	m 102 100 100 100 100 100 100 100 100 100	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 11.2 11.2 11.2	m 212.1 188.1 188.1 188.1 188.1 208.1 341.1 290.1 341.1 188.1 290.1 341.1 17.2 244.1 17.2 27.1 27.1 27.1 27.1 27.1 27.1 27	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 6.1 0.0 0.0 0.0 0.0 0.0 0.0 1.1 L barrier	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.2 -57.1 -57.9 -59.1 -60.5 -61.9 -63.1 At NSR, incl façade Leq, day 41.1 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 28.7 0.0 28.7 Day	m 212 189 188 208 244 290 341 397 203 202 221 255 299 349 404 de N	Angle Deg 108.7	0n Correct ion 11.2 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 27.7 35.2 35.3 34.4 33.0 31.5 30.1 28.7 60.1 -60.1 -60.1 -60.1 -60.1 -62.1 -63.5 -64.9 -66.1 Lmax NSR 28.7 0.0 28.7 At NSR, no shield, 1hr Leq NSR 53.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 110 89 89 99 91 116 138 161 133 146 103 130 153 207	m 102 100 100 100 100 100 100 100 100 100	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 10.1	m 212.1 188.1 188.1 188.1 298.1 341.1 299.1 203.0 202.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	8.2 9.0 9.0 8.6 7.9 7.2 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8.2 9.0 9.0 8.6 7.9 7.2 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 22.5 20.2 20.2 19.8 19.1 18.3 17.4 16.7 -57.9 -57.1 -57.9 -60.5 -61.9 -63.1 At NSR, incl façade Leq, day 41.1		Yes

SSS Calculation a	t NSR SS	6	Mitig	ated			Ra	rrier height (m)=	10											
ooo carcaranon a	l Hort GG	Ground	······································	lutou			Da	mer neight (m)=	10	Shunti	Idle in	ldle				Criteria				
NSR	No. of	Level	Hr	ASR				Result:		ng	shed	outside	Crane	Wash	Total	Leq	Status			
SS6	Storey	mPD	m					4/1 0000	Leq, day	37.5	0.0	42.0	22.3	26.0	43.4	52	OK			
	2	15.3	4.5	В				After 0030	Leq, night Leq, 24hr	32.8 36.4	23.6 18.9	0.0 40.2	20.5	24.3	33.3 41.9	45	OK			
									Lmax	41.4	23.6	42.0	22.3	26.0	42.0					
Shunting	I	l			Remark: p	olus 10log(2	2) is for con	verting of Leq(30	min) to Leq(1h	r).						I				
						At NSR,												At NSR, incl		
	Segment	Hor D	Angle	SEL	for 30min SEL	no shield Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade Leq	Lmax	Shadow zone?
	9	m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	1 2	153	66.8	86.1	71.7	39.1		Barrier	15	10	4	149	1.2	153.0	5.7	15.0	15.0	27.1	41.4	Yes
	3	153 153	39.1 16.2	86.1 86.1	69.4 65.6	36.8 33.0		Barrier Barrier	15 15	10 10	4	149 149	1.2 1.2	153.0 153.0	5.7 5.7	15.0 15.0	15.0 15.0	24.8 21.0	39.1 35.3	Yes Yes
	4	124	11.6	86.1	65.0	32.4		Barrier2	15	8	22	102	1.2	124.1	1.0	15.0	15.0	20.4	34.9	Yes
Track 2 Short Train	1 2	188 188	61 39.1	86.1 86.1	70.4 68.5	37.8 35.9		Barrier Barrier	15 15	10 10	39 39	149 149	1.2 1.2	188.0 188.0	1.0	15.0 15.0	15.0 15.0	25.8 23.9	39.9 38.0	Yes Yes
	3	188	16.2	86.1	64.7	32.1		Barrier	15	10	39	149	1.2	188.0	1.0	15.0	15.0	20.1	34.1	Yes
	4	129	11.6	86.1	64.8	32.3		Barrier2	15	8	27	102	1.2	129.1	0.8	15.0	15.0	20.3	34.7	Yes
				Remark	: For legen	d of param	eters and re	emark for equation	ns, please refe	rs to the b	oottom of	spreadsh	eet "SS2	2".						
														\Box						
-																				+
	At NSR, incl façade													l T					I	1
	Leq	Lmax																		
		NSR						-												
Move to shunting track Return to stabling track	30.2 29.2	41.4 39.9																		
rtotam to otabiling track	20.2	00.0																		
At	NSR, incl faça	de N	oise crite	eria																
	Leq		Leq	Status		Lmax														
	Total					NSR														
1 short train Day: 6 short			52	OK		41.4														
Night: 2 short	32.8		45	ОК		41.4														
Lellin or in Oh and																				
Idling in Shed										1										
idiing in Shed				Directi		At NSR,												At NSR, incl		
iding in Shed				Directi on		At NSR, no shield	Louvre											At NSR, incl façade		
iding in Sned		Hor D	Exit Angle	on Correct		no shield	Reductio	Shield	Track Level	НЬ	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade		Shadow zone?
tuling in Shed		Hor D	Exit Angle Deg	on	Lw	At NSR, no shield		Shield	Track Level mPD	Hb m	Dsb m	Dbr m	Hs m	D m	P m	A barrier	IL barrier			Shadow zone?
at Gate		m 296	Angle Deg 135.8	Correct ion	Lw 93.5	Leq NSR 20.9	Reductio n dB	Barrier	mPD 15	m 10	m 150	m 146	m 3.5	m 296.0	m 0.2	11.8	11.8	Leq		Yes
at Gate at Side Louvre 1		m 296 263	Angle Deg	Correct ion	93.5 88.7	Leq NSR 20.9 32.3	Reductio n dB - -9	Barrier Barrier	mPD 15 15	m 10 10	m 150 121	m 146 142	m 3.5 3.8	m 296.0 263.0	m 0.2 0.3	11.8 12.2	11.8 12.2	Leq 12.1 14.2		Yes Yes
at Gate		m 296	Angle Deg 135.8	Correct ion	Lw 93.5	Leq NSR 20.9	Reductio n dB	Barrier	mPD 15	m 10	m 150	m 146	m 3.5	m 296.0	m 0.2 0.3 0.3 0.3	11.8 12.2 12.9 13.4	11.8 12.2 12.9 13.4	12.1 14.2 14.9 15.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 296 263 224 198 192	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 20.9 32.3 33.7 34.8 35.1	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	m 10 10 10 10	m 150 121 103 91 88	m 146 142 121 107 104	m 3.5 3.8 3.8 3.8 3.8	m 296.0 263.0 224.0 198.0 192.0	m 0.2 0.3 0.3 0.3 0.3	11.8 12.2 12.9 13.4 13.5	11.8 12.2 12.9 13.4 13.5	12.1 14.2 14.9 15.4 15.5		Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3		m 296 263 224 198 192 207	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7	Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4	Reductio n dB - -9 -9 -9 -9	Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 10 10 10 10 10	m 150 121 103 91 88 95	m 146 142 121 107 104 112	m 3.5 3.8 3.8 3.8 3.8 3.8	m 296.0 263.0 224.0 198.0 192.0 207.0	m 0.2 0.3 0.3 0.3 0.3 0.3	11.8 12.2 12.9 13.4 13.5 13.2	11.8 12.2 12.9 13.4 13.5 13.2	12.1 14.2 14.9 15.4 15.5 15.2		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7		m 296 263 224 198 192 207 238 281	Angle Deg 135.8	00 Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129	m 146 142 121 107 104 112 129 152	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9	12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Side Side Side Side Side Side Side		m 296 263 224 198 192 207 238 281 273	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129	m 146 142 121 107 104 112 129 152 137	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9	12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7		m 296 263 224 198 192 207 238 281	Angle Deg 135.8	00 Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129	m 146 142 121 107 104 112 129 152	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9	12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4		m 296 263 224 198 192 207 238 281 273 236 212 206	Angle Deg 135.8	00 Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117	m 146 142 121 107 104 112 129 152 137 119 107	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4	12.1 14.2 14.9 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 296 263 224 198 192 207 238 281 273 236 212 206 220	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.3 -60.8	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1	12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4		m 296 263 224 198 192 207 238 281 273 236 212 206	Angle Deg 135.8	00 Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117	m 146 142 121 107 104 112 129 152 137 119 107	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4	12.1 14.2 14.9 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6		m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.6 -60.8	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	NSR, incl faça	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.6 -60.8	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	Leq	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 20.9 32.3 33.7 34.8 36.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -60.5 -60.3 -60.8 -62.0 -63.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 20.9 32.3 33.7 34.8 36.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 23.6 0.0	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -60.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.3 -62.0 -63.3 Lmax NSR 23.6 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 23.6 0.0	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 35.1 -60.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291	Angle Deg 135.8	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.3 -62.0 -63.3 Lmax NSR 23.6 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102	m 146 142 121 107 104 112 129 152 137 119 107 104 111 126	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 263.0 224.0 198.0 192.0 207.0 238.0 281.0 273.1 236.1 212.1 206.1 220.1	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	12.1 14.2 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield,	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102 102 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	m 296.0 286.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 2281.0 277.1 236.1 226.1 220.1 291.0 291	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 13.9 5.4 5.9 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -66.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 211 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.5 -60.3 -62.0 -63.3 Lmax NSR 0.0 23.6 At NSR, no shield, no shield, Leq Leq	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 129 109 119 129 136 117 105 109 124 145 109 124 145	m 146 142 121 107 104 112 129 137 119 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 296.0 198.0 224.0 198.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 287.0 297.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.1 0.1 0.1 0.1 0.1 0.0	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.7 -64.0 -64.6 -65.5 At NSR, incl		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield,	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 88 95 109 129 136 117 105 102 102 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	m 296.0 286.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 2281.0 277.1 236.1 226.1 220.1 291.0 291	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 13.9 5.4 5.9 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -66.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6 Day	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Lr Lr Lr Lr Lr NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 188 95 109 129 136 117 105 109 124 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 227.0 277.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Lr Lr Lr Lr Lr NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 188 95 109 129 136 117 105 109 124 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 227.0 277.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6 Day	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 36.4 33.2 31.8 -62.7 -61.5 -60.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Lr Lr LR NSR 54.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 188 95 109 129 136 117 105 109 124 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 227.0 277.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day 42.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6 Day	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 36.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, NSR, no shield, NSR, no shield,	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 103 91 188 95 109 129 136 117 105 109 124 145	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 227.0 238.0 227.0 277.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.9	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -65.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6 Day	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 O O O O O O O O O	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Leq	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 121 103 91 88 95 109 122 136 117 105 105 m 34	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 11.2 11.2	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 207.0 238.0 207.0 273.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -66.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day 42.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Attribute 1 at Roof Skylight 1 at Roof Skylight 8 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 8 at Roof	Leq Total 23.6 0.0 23.6 Day	m 296 263 263 224 198 192 207 238 281 273 236 220 250 291 de N	Angle Deg 135.8	On Correct ion 15.2 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -60.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 121 103 91 88 95 109 110 105 102 109 1145 145 105 10 104 117 105 107 107 107 107 107 107 107 107 107 107	m 146 142 121 107 104 112 129 107 104 111 126 146 Dbr m 149	m, 3.5, 3.8, 3.8, 3.8, 3.8, 3.8, 10.1, 10.	m 296.0 224.0 198.0 224.0 198.0 207.0 238.0 0 27.1 226	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 13.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2 A barrier	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -66.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day 42.0 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 All 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 23.6 0.0 23.6 Day	m 296 263 224 198 192 207 238 281 273 236 212 206 220 250 291 de N	Angle Deg 135.8	0n Correct ion 15.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 20.9 32.3 33.7 34.8 35.1 34.4 33.2 31.8 -62.7 -61.5 -60.3 -60.8 -62.0 -63.3 Lmax NSR 23.6 0.0 23.6 At NSR, no shield, 1hr Leq	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 150 121 121 103 91 88 95 109 122 136 117 105 105 m 34	m 146 142 121 107 104 112 129 137 119 107 104 111 126 146	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 11.2 11.2	m 296.0 296.0 198.0 224.0 198.0 207.0 238.0 207.0 238.0 207.0 273.1 236.1 226.	m 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	11.8 12.2 12.9 13.4 13.5 13.2 12.6 11.9 5.4 5.9 6.3 6.4 6.1 5.7 5.2	façade Leq 12.1 14.2 14.9 15.4 15.5 15.2 14.6 13.9 -66.1 -64.3 -63.8 -63.7 -64.0 -64.6 -65.5 At NSR, incl façade Leq, day 42.0 At NSR, incl façade		Yes

Second	SSS Calculation a	t NSR SS	7	Mitig	ated	1	1	Ra	rrier height (m)=	10											
Part	ooo carculation a	I NON OO		wiiig	atcu			Ба	mer neight (m)=	10	Shunti	Idlo in	Idlo				Critoria				
Part	NSR	No. of		Hr	ASR				Result:					Crane	Wash	Total		Status			
Section Part	SS7																				
Part		2	13.6	4.5	В				After 0030								47	OK			
Thi																					
Control Cont	Shunting					Remark: p	olus 10log(2	2) is for con	verting of Leq(30												
Control Cont							A+ NCD												At NCD in al		
Mathematical Math						for 30min															
Mathematical Math		Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	Leq		Shadow zone?
Conting																					
Control Cont	Track 1 Short Train																				
Mathematical Math																					
Part		4			86.1	62.0	29.4		Barrier	15	10					6.0					Yes
	Track 2 Short Train																				
Mathematical Math		3	109	3.1				eters and re								1.3	15.0	15.0	15.3	29.0	res
Mathematical Property										, p											
Mathematical Property																					
Mathematical Property																					
Mathematical Property																					
Mathematical Property																	 				
Mathematical Property																					
Mathematical Property																					
Mathematical Property																					
Mathematical Property				-	-							-					-				
Mathematical Property		At NSR incl				-	-										-				
Mathematic mathemati						<u>L</u>	<u>L</u>			<u></u>							<u> </u>	<u></u>			
Marie mate subsiding from the mate subsidiary from the mate																					
Control Cont																					
Marche M																					
Composition	Return to stabling track	29.1	42.4																		
Table Tabl	At	t NSR, incl faça	de N	loise crite	ria																
Table Tabl																					
Section Sect				Leq	Status																
May 1	1 short train						Non														
Infoling in Sheet Info				49	OK		44.2														
Part	Night: 2 short	33.2		47	ОК		44.2														
Part	Latting on the Object																				
Part	laling in Shea																				
Composition Property Proper				1	ĺ																
No.							At NSR,														
Mathematical Math							At NSR, no shield	Louvre													
ar date of the property of the				Exit	on		At NSR, no shield														
## Section			Hor D	Angle	on Correct	Lw	no shield	Reductio n	Shield								A barrier	IL barrier	façade		Shadow zone?
## Sile Louve 2 137	404		m	Angle Deg	On Correct ion		no shield Leq NSR	Reductio n dB	Shield	mPD		m			m	m			façade Leq		
## Siske Lowne 10			m 475	Angle Deg 164.4	Correct ion	93.5	Leq NSR 11.0	Reductio n dB	-	mPD 15		m 475			m 475.0	m 3.1	0.0	0.0	façade Leq 14.0		-
## Side Louves 6 150 20 20 8.7 34.8 34.8 34.8 39 150			m 475 440	Angle Deg 164.4	Correct ion	93.5 88.7	Leq NSR 11.0 27.9	Reductio n dB - -9	-	mPD 15 15		m 475 440			m 475.0 440.0	m 3.1 3.1	0.0	0.0	Leq 14.0 21.9		-
## Sisk Lowne 1	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3		m 475 440 378 317	Angle Deg 164.4	0n Correct ion 20.9 0 0 0	93.5 88.7 88.7 88.7	Leq NSR 11.0 27.9 29.2 30.7	Reductio n dB - -9 -9	-	mPD 15 15 15 15		m 475 440 378 317			m 475.0 440.0 378.0 317.0	m 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7		-
as Side Louvee 7 100	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 475 440 378 317 258	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 11.0 27.9 29.2 30.7 32.5	Reduction n dB 9 - 9 - 9 - 9	-	mPD 15 15 15 15 15		m 475 440 378 317 258			m 475.0 440.0 378.0 317.0 258.0	3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5		
at Roof Skylight 1	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 475 440 378 317 258 202	Angle Deg 164.4	0n Correct ion 20.9 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6	Reductio n dB - -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15		m 475 440 378 317 258 202			m 475.0 440.0 378.0 317.0 258.0 202.0	m 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6		-
at Roof Skylight 2 323 5 6 0.0 6-57 7 5 15 323 5 321 0.0 0	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6		m 475 440 378 317 258 202 153	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0	Reductio n dB - -9 -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15 15		m 475 440 378 317 258 202 153			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0		-
at Roof Skylight 4 25	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6		m 475 440 378 317 258 202 153 120	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2	Reductio n dB - -9 -9 -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15 15 15		m 475 440 378 317 258 202 153 120			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2		
at Roof Skylight 5 1.0	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2		m 475 440 378 317 258 202 153 120 444 383	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7	Reduction n dB 9 - 9 - 9 - 9 - 9 - 9 - 9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 444.0 383.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7		
at Roof Skylight 6 164 6 0,0 -58.3 . . . 15 164 . 130	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3		m 475 440 378 317 258 202 153 120 444 383 323	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2	Reduction n dB	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 444.0 383.0 323.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7		
## A NSR, inc 133 13	at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3		m 475 440 378 317 258 202 153 153 120 444 383 323 265	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5	Reduction n dB	-	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15		m 475 440 378 317 258 202 153 120 444 383 323 265			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 444.0 383.0 323.0 265.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 33.2 -63.9 -62.7 -61.2 -59.5		
Leq	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3		m 475 440 378 317 258 202 153 120 444 383 323 265 211	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5	Reduction n dB	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 444.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5		
Leq	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5		m 475 440 378 317 258 202 153 120 444 383 323 265 211 164	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Total Tota	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7		m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Total Tota	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Day: 0 long Night: 1 long 37.2 47 68 47 48 58 47 48 47 48 48 48 48 4	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7		m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.5 -64.2 -62.5 -64.2 -62.5 -58.3 -56.5	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Might: 1 for or o	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	00 Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Idling outside Day	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 6 6 6 6 6 6 6 7 status	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -66.2 -60.5 -56.5 Lmax NSR 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
At NSR, incl At N	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 37.2 0.0	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -66.5 -64.2 -62.5 -63.3 -56.5 Lmax NSR 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
At NSR, incl At N	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 37.2 0.0	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -66.5 -64.2 -62.5 -63.3 -56.5 Lmax NSR 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Company Comp	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -66.5 -64.2 -62.5 -63.3 -56.5 Lmax NSR 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Composition	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.6 -65.7 -64.2 -66.9 -65.7 -64.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 22.5 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5		
Hor D Angle Leq Leq Leq Shield Track Level Hb Dsb Dr Hs Dsb Dr Hs Dsb P Abarrier Leq. day Leq. day Leq. day Shadow zone?	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5 Lmax NSR NSR 37.2 At NSR,	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -55.3 -53.5		
1 Short Train 105 83.9 70 55.7 55.7 105 105 105 1.4 15.0 15.0 15.0 14.0 15.0	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Angle Deg 164.4	0n Correction 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 475 440 378 317 258 202 153 120 444 383 323 265 211			m 475.0 440.0 378.0 317.0 258.0 202.0 153.0 120.0 383.0 323.0 265.0 211.0	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5		
Others Day At NSR, no Shield, for 30min At NSR, no Shield, for 30min Shield Track Level Hb Ds Dp At NSR, ind façade	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 133 de N	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5 Lmax NSR NSR no shield, no shield, Leq Leq	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -		mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 323 225 211 164 133	Dbr	Hs	m 475.0 444.0 378.0 378.0 317.0 202.0 153.0 202.0 153.0 153.0 202.0 1444.0 133.0 202.0 164.0 164.0 170.0 164.0 170	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5		
At NSR, no shield, for 30min 1	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Ai 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -66.2 -66.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day		
At NSR, no shield, for 30min 1	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Ai 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -66.2 -66.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day		
Respond	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -66.2 -66.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day		
Crane	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -66.2 -66.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day		
Hor D Leq Leq Leq Shield Track Level Hb Dsb Dr Hs D P A barrier Leq (day Shadow zone?	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR 55.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day 43.7		
Crane m 14m NSR NSR MSR mPD m	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	on Correct ion 20.9 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 C C C C	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.7 -64.2 -66.5 -65.3 -56.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, hSR 55.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 475 440 378 317 258 202 153 120 444 383 323 265 211 164 133	Dbr	Hs m	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day 43.7		
Crane 166 90 37.6 37.6 Mainten Shed 15 10.1 21 145 3 166.0 1.3 15.0 15.0 25.6 9 Yes	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 150 150 160 170 170 170 170 170 170 170 170 170 17	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -60.5 -58.3 -56.5 Lmax NSR NSR no shield, 1hr Leq NSR 55.7 At NSR, no shield, 1hr	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb m	m 475 470 378 317 440 378 317 258 202 153 323 265 211 164 133 Dsb m 34	Dbr m 71	Hs m	m 475.0 444.0 378.0 377.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 202.0 153.0 202.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day 43.7		Shadow zone?
Car Wash 764 62 19.9 19.9 Vent Build 15 13.1 170 594 3 764.0 0.4 14.0 14.0 8.9 Yes	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 153 120 444 383 265 211 164 133 de N	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0	no shield Leq NSR 11.0 27.9 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -66.5 -69.3 -65.5 -58.5 Lmax NSR 37.2 0.0 37.2 At NSR, no shield, 1hr Leq NSR 55.7	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb m 10	m 475 440 378 317 317 258 202 153 202 144 383 265 211 164 133	Dbr m 71	Hs m 1.2	m 475.0 444.0 378.0 377.0 153.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day 43.7		Shadow zone?
	at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long idling outside	Leq Total 37.2 0.0 37.2 Day	m 475 440 378 317 258 202 158 120 444 383 323 265 211 164 133 de N	Angle Deg 164.4	0n Correct ion 20.9 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 90.0	no shield Leq NSR 11.0 27.9 29.2 30.7 32.5 34.6 37.0 39.2 -66.9 -65.7 -64.2 -62.5 -60.5 -58.3 -56.5 Lmax NSR NSR no shield, 1hr Leq NSR 55.7 At NSR, no shield, 1hr Leq NSR 37.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield Shield Mainten' Shed	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb m 10.1	m 475 476 378 317 317 258 202 153 323 265 211 164 133 Dsb m 34	Dbr m 71	Hs m 1.2	m 475.0 444.0 378.0 377.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 153.0 202.0 202.0 153.0 202.	m 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 14.0 21.9 23.2 24.7 26.5 28.6 31.0 33.2 -63.9 -62.7 -61.2 -59.5 -57.5 -55.3 -53.5 At NSR, incl façade Leq, day 43.7 At NSR, incl façade Leq, day		Shadow zone? Yes

SSS Coloulation of	A NCD CC	10	BAisi a	atad										1		I	ı			
SSS Calculation a	t NSK SS		Mitig	ated			Barri	ier height (m)=	3.5											
NSR	No. of	Ground Level	Hr	ASR				Result:		Shunti ng	Idle in shed	ldle outside	Crane	Wash	Total	Criteria Leq	Status			
SS10	Storey	mPD	m						Leq, day	36.7	0.0	42.3	26.3	21.9	43.5	49	ОК			
	1	11.5	1.5	В				After 0030		31.9	25.5	0.0	-	-	32.8	47	OK			
									Leq, 24hr Lmax	35.6 43.7	20.8	40.5 42.3	24.5 26.3	20.2	41.9 43.7					
Shunting					Remark: p	olus 10log(2	2) is for conve	erting of Leq(30			20.0	42.3	20.3	21.9	45.7					
_																				
					for 30min	At NSR, no shield												At NSR, incl façade		
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	Leq	Lmax	Shadow zone?
		m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	.,
Track 1 Short Train Track 2 Short Train	1	39 4	25 2.7	86.1 86.1	73.4 73.6	40.8 41.0		Barrier Barrier	15 15	3.5 3.5	21	18 2	1.2 1.2	39.1 5.1	0.8 3.8	15.0 15.0	15.0 15.0	28.8 29.0	43.5 43.7	Yes Yes
							eters and rem	nark for equatio												
																				+
																				1
																1				+
																				+
	At NSR, incl																			1
	façade																			
	Leq	Lmax																		+
Move to shunting track	28.8	NSR 43.5																		+
Return to stabling track	29.0	43.7																		
_																				
At	NSR, incl faça	de N	loise crite	ria																
	Leq		Leq	Status		Lmax														
	Total					NSR														
1 short train	31.9																			
Day: 6 short	36.7		49	OK		43.7														
Night: 2 short	31.9		47	OK		43.7														
Idling in Shed										ļ.										
				Directi on		At NSR, no shield												At NSR, incl façade		
							Louvre											-		
		Hor D	Exit Angle	Correct ion	Lw	Leq	Reductio n	Shield	Track Level	Hb	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq		Shadow zone?
		m	Deg	1011		NSR	dB	Officia	mPD	m	m	m	m	m	m	Abairie	IL Darrier	Loq		Griddow Zorie :
at Gate		554	174.1	22.8	93.5	7.8	-	Barrier	15	3.5	492	62	3.5	554.0	0.2	11.5	11.5	-0.7		Yes
at Side Louvre 1		519	-	0	88.7	26.4	-9	Barrier	15	3.5	457						11.4			Yes
at Side Louvre 2		456	-		88.7						457	62	3.8	519.0	0.2	11.4		9.0		
at Side Louvre 3 at Side Louvre 4				0		27.6	-9	Barrier	15	3.5	394	62	3.8	456.0	0.2	11.3	11.3	10.2		Yes
at Side Louvre 5		392	-	0	88.7	28.9	-9	Barrier	15	3.5 3.5	394 330	62 62	3.8 3.8	456.0 392.0	0.2 0.2	11.3 11.2	11.3 11.2	10.2 11.7		Yes
at Side Louvre 6		392 328 264								3.5	394	62	3.8	456.0	0.2	11.3	11.3	10.2		
at Cida I a 7		328 264 201	-	0 0 0	88.7 88.7 88.7 88.7	28.9 30.4 32.3 34.7	-9 -9 -9	Barrier Barrier Barrier Barrier	15 15 15 15	3.5 3.5 3.5 3.5 3.5	394 330 266 202 139	62 62 62 62 62	3.8 3.8 3.8 3.8 3.8	456.0 392.0 328.1 264.1 201.1	0.2 0.2 0.2 0.2 0.2	11.3 11.2 11.0 10.7 10.2	11.3 11.2 11.0 10.7 10.2	10.2 11.7 13.4 15.6 18.5		Yes Yes Yes Yes
at Side Louvre 7		328 264 201 139		0 0 0 0	88.7 88.7 88.7 88.7 88.7	28.9 30.4 32.3 34.7 37.9	-9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier	15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76	62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 3.8	456.0 392.0 328.1 264.1 201.1 139.1	0.2 0.2 0.2 0.2 0.2 0.2 0.1	11.3 11.2 11.0 10.7 10.2 9.0	11.3 11.2 11.0 10.7 10.2 9.0	10.2 11.7 13.4 15.6 18.5 22.9		Yes Yes Yes Yes Yes Yes
at Roof Skylight 1		328 264 201 139 521	-	0 0 0 0 0	88.7 88.7 88.7 88.7 88.7 0.0	28.9 30.4 32.3 34.7 37.9 -68.3	-9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459	62 62 62 62 62 63 62	3.8 3.8 3.8 3.8 3.8 3.8 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1	0.2 0.2 0.2 0.2 0.2 0.2 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0	10.2 11.7 13.4 15.6 18.5 22.9		Yes Yes Yes Yes Yes Yes Yes Yes
at Roof Skylight 1 at Roof Skylight 2		328 264 201 139 521 457		0 0 0 0 0 0 6	88.7 88.7 88.7 88.7 88.7	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2	-9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395	62 62 62 62 62 63 62 62	3.8 3.8 3.8 3.8 3.8 3.8 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6	10.2 11.7 13.4 15.6 18.5 22.9 -75.3		Yes Yes Yes Yes Yes Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4		328 264 201 139 521 457 393 330		0 0 0 0 0	88.7 88.7 88.7 88.7 88.7 0.0	28.9 30.4 32.3 34.7 37.9 -68.3	-9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459	62 62 62 62 62 63 62	3.8 3.8 3.8 3.8 3.8 3.8 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1	0.2 0.2 0.2 0.2 0.2 0.2 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0	10.2 11.7 13.4 15.6 18.5 22.9		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5		328 264 201 139 521 457 393 330 267		0 0 0 0 0 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5	-9 -9 -9 -9 -9 - -	Barrier	15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -72.0 -69.7 -66.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6		328 264 201 139 521 457 393 330 267 204		0 0 0 0 0 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6		328 264 201 139 521 457 393 330 267		0 0 0 0 0 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5	-9 -9 -9 -9 -9 - -	Barrier	15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -72.0 -69.7 -66.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6		328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	Leq	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.2 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 25.5	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6 8	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long	Leq Total 25.5	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6 8	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6 8	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143		0 0 0 0 0 6 6 6 6 6 6 6 8	88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 At NSR, no shield,	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 7 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205 79	62 62 62 62 63 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.1 264.1 139.1 139.1 139.1 139.1 139.1 139.1 1457.2 267.3 130.2 267.3 143.5	0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143	Leq Angle	0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 7 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 At NSR, no shield,	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 205	62 62 62 62 62 63 62 62 62 62 62 62 63	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	456.0 392.0 328.1 264.1 201.1 139.1 521.1 457.2 393.2 330.2 267.3 204.4	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 8 8 8 8 8 8 9 8 9 8 9 8	88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 268 79 141 79	62 62 62 62 62 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.0 392.1 264.1 201.1 392.1 201.1 393.1 264.1 143.5 21.1 143.5 21.1 143.5 204.4 143.5 204.5 204.5 204.5 204.5 204.5 20	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 1288 79 79	62 62 62 62 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.0 1264.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 1457.2 207.3 393.2 207.4 4143.5 207.4 207.3 207.4 207.3 207.4 207.3 207.4 207	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 1288 79 79	62 62 62 62 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.0 1264.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 1457.2 207.3 393.2 207.4 4143.5 207.4 207.3 207.4 207.3 207.4 207.3 207.4 207	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 1288 79 79	62 62 62 62 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.0 1264.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 1457.2 207.3 393.2 207.4 4143.5 207.4 207.3 207.4 207.3 207.4 207.3 207.4 207	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143	oise crite Leq 49 47	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 No.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR 54.3	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 76 459 395 331 1288 79 79	62 62 62 62 62 62 62 62 62 63 64	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	456.0 392.0 392.0 392.0 1264.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 139.1 201.1 1457.2 207.3 393.2 207.4 4143.5 207.4 207.3 207.4 207.3 207.4 207.3 207.4 207	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.3 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143 de N Hor D m 34	Leq 49 47 Angle Deg 19.8	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 0 0 0 0 0	88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR 54.3 At NSR, no shield, 1hr	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 395 395 395 205 141 79	62 62 62 62 63 64 62 62 62 62 63 64 Dbr m 18	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	456.0 392.0 392.0 392.1 264.1 193.1 264.1 193.1 264.1 193.1 261.1 193.1 521.1 193.1 521.1 1457.2 393.2 204.4 143.5 193.1 264.1 143.5 193.1 264.1 143.5 193.1 264.1 143.5 193.1	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1 At NSR, incl façade Leq, day 42.3		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143 de N	Leq Angle Deg 19.8	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 8 Maria OK OK	88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -64.4 -62.5 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq Ihr Leq	-9 -9 -9 -9 -9 - - -	Barrier	15	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 355 205 205 207 79 Dsb m 16	62 62 62 62 62 63 62 62 62 62 63 64 04	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	456.0 392.0 392.0 392.1 264.1 201.1 139.1 264.1 139.1 267.1 201.1 139.1 267.3 393.2 267.3 393.2 267.3 393.2 267.3 393.2 267.3 393.2 267.3 443.5 267.3 443.5 267.3	0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.3 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1		Yes
at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 25.5 0.0 25.5 Day	328 264 201 139 521 457 393 330 267 204 143 de N Hor D m 34	Leq 49 47 Angle Deg 19.8	0 0 0 0 0 6 6 6 6 6 6 6 6 6 7 0 0 0 0 0	88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	28.9 30.4 32.3 34.7 37.9 -68.3 -67.2 -65.9 -60.2 -57.1 Lmax NSR 25.5 0.0 25.5 At NSR, no shield, 1hr Leq NSR 54.3 At NSR, no shield, 1hr	-9 -9 -9 -9 -9 - - -	Barrier	15 15 15 15 15 15 15 15 15 15 15 15 15 1	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	394 330 266 202 139 395 395 395 205 141 79	62 62 62 62 63 64 62 62 62 62 63 64 Dbr m 18	3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	456.0 392.0 392.0 392.1 264.1 193.1 264.1 193.1 264.1 193.1 261.1 193.1 521.1 193.1 521.1 1457.2 393.2 204.4 143.5 193.1 264.1 143.5 193.1 264.1 143.5 193.1 264.1 143.5 193.1	0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	11.3 11.2 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	11.3 11.2 11.0 11.0 10.7 10.2 9.0 10.0 9.6 9.1 8.4 7.1 4.5 0.0	10.2 11.7 13.4 15.6 18.5 22.9 -75.3 -73.8 -72.0 -69.7 -66.7 -61.7 -54.1 At NSR, incl façade Leq, day 42.3		Yes

SSS Calculation a	t NSR SS	11a	Mitig	ated			Ra	rrier height (m)=	5.5											
ooo carcaranon a	THOIR GO		wiining	l			Da	mer neight (m)=	0.0	Chumti	lella in	lalla.				Cuitania				
NSR	No. of	Ground Level	Hr	ASR				Result:		Shunti ng	Idle in shed	ldle outside	Crane	Wash	Total	Criteria Leq	Status			
SS11a	Storey	mPD	m						Leq, day	41.0	0.0	40.0	24.8	28.8	43.7	52	OK			
	2	15	4.5	В				After 0030	Leq, night	36.2	38.7	0.0	-	-	40.7	50	OK			
									Leq, 24hr Lmax	39.9 45.8	34.0 38.7	38.2 40.0	23.0	27.1 28.8	42.9 45.8					
Shunting		1			Remark: p	plus 10log(2	2) is for con	verting of Leq(30			30.7	40.0	24.0	20.0	45.6					
									, ,											
					for 30min	At NSR, no shield												At NSR, incl façade		
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq	Lmax	Shadow zone?
		m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	1	94	22.8	86.1	69.2	36.6		Barrier	15	5.5	64	30	1.2	94.1	0.1	8.4	8.4	31.2	45.8	Yes
Track 2 Short Train	2	85 141	67.8 38.2	86.1 86.1	74.3 69.6	41.7 37.0		Loco Shed Mainten' Shed	15 15	10.2 10.1	48 39	37 102	1.2 1.2	85.1 141.0	1.2	15.0 15.0	15.0 15.0	29.7 25.0	44.4 39.4	Yes Yes
	2	141	15	86.1	65.6	33.0		Barrier	15	5.5	115	26	1.2	141.0	0.1	6.3	6.3	29.7	44.0	Yes
	3	122	67.8	86.1	72.8	40.2		Loco Shed	15	10.2	80	42	1.2	122.0	0.8	15.0	15.0	28.2	42.6	Yes
				Remark	: For legen	d of param	eters and re	emark for equation	ns, please refe	rs to the I	bottom of	spreadsh	eet "SS2	2".						
<u> </u>						1														+
						-														+
<u> </u>	At NSR, incl					1														+
	façade																			
	Leq	Lmax				1														
Mayor to about the stand	22.5	NSR		1		1														
Move to shunting track Return to stabling track	33.5 32.8	45.8 44.0				1								\vdash						+
Return to stabiling track	32.0	44.0																		
At	t NSR, incl faça	de N	loise crite	eria																
	1		1	Ctatua		Lman														
	Leq Total		Leq	Status		Lmax NSR														
1 short train						NOIC														
Day: 6 short	41.0		52	ОК		45.8														
Night: 2 short	36.2		50	OK		45.8														
Idling in Shad				1																
Idling in Shed) 																	
Idling in Shed				Directi		At NSR,												At NSR, incl		
Idling in Shed				Directi on		At NSR, no shield	Louvre											At NSR, incl façade		
Idling in Shed			Exit	on Correct		no shield	Louvre Reductio											façade		
Idling in Shed		Hor D	Angle	on	Lw	no shield	Reductio n	Shield	Track Level	НЬ	Dsb	Dbr	Hs	D	P	A barrier	IL barrier			Shadow zone?
		m	Angle Deg	On Correct ion		no shield Leq NSR	Reductio n dB		mPD	m	m	m	m	m	m			façade Leq		
at Gate at Side Louvre 1		m 117	Angle	on Correct	Lw 93.5 88.7	Leq NSR 38.9	Reductio n dB	Shield Barrier Barrier	mPD 15	m 5.5	m 81	m 36	m 3.5	m 117.0		A barrier 4.4 3.6	4.4	façade		Yes
at Gate		m	Angle Deg 48	Correction 5.2	93.5	no shield Leq NSR	Reductio n dB	Barrier	mPD	m	m	m	m	m	m 0.0	4.4		façade Leq 37.5		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3		m 117 132 188 247	Angle Deg 48	5.2 0 0	93.5 88.7 88.7 88.7	Leq NSR 38.9 38.3 35.3 32.9	Reduction ndB - -9 -9	Barrier Barrier Barrier Barrier	mPD 15 15 15 15	5.5 5.5 5.5 5.5	81 83 125 184	m 36 49 63 63	3.5 3.8 3.8 3.8	m 117.0 132.0 188.0 247.0	m 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3	4.4 3.6 2.7 2.3	1		Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 117 132 188 247 308	Angle Deg 48 -	5.2 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 38.9 38.3 35.3 32.9 31.0	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	5.5 5.5 5.5 5.5 5.5 5.5	m 81 83 125 184 245	m 36 49 63 63 63	m 3.5 3.8 3.8 3.8 3.8	m 117.0 132.0 188.0 247.0 308.0	m 0.0 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1	4.4 3.6 2.7 2.3 2.1	1		Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 4		m 117 132 188 247 308 370	Angle Deg 48	5.2 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5	m 81 83 125 184 245 306	m 36 49 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8	m 117.0 132.0 188.0 247.0 308.0 370.0	m 0.0 0.0 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9	4.4 3.6 2.7 2.3 2.1 1.9	1 Leq 27.5 28.8 26.5 24.6 22.9 21.5		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 117 132 188 247 308	Angle Deg 48	5.2 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 38.9 38.3 35.3 32.9 31.0	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	5.5 5.5 5.5 5.5 5.5 5.5	m 81 83 125 184 245	m 36 49 63 63 63	m 3.5 3.8 3.8 3.8 3.8	m 117.0 132.0 188.0 247.0 308.0	m 0.0 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1	4.4 3.6 2.7 2.3 2.1	1		Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1		m 117 132 188 247 308 370 432 494	Angle Deg 48	5.2 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 8.4 8.4 5.5	m 81 83 125 184 245 306 267 330 98	m 36 49 63 63 63 64 165 164 43	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3	37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6		Yes Yes Yes Yes Yes Yes Yes Yes Yes No
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1		m 117 132 188 247 308 370 432 494 141	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 80.0 0.0	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8	Reduction dB 9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 6.6 8.4 8.4 5.5 5.5	m 81 83 125 184 245 306 267 330 98	m 36 49 63 63 63 64 165 164 43 59	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0	12.9 Leq 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3		m 117 132 188 247 308 370 432 494 141 194 252	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 6.6 8.4 8.4 5.5 5.5 5.5 5.5	m 81 83 125 184 245 306 267 330 98 135	m 36 49 63 63 64 165 164 43 59 63	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0	13.6 -54.0 -59.0		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2		m 117 132 188 247 308 370 432 494 141	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 80.0 0.0	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8	Reduction dB 9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 6.6 8.4 8.4 5.5 5.5	m 81 83 125 184 245 306 267 330 98	m 36 49 63 63 63 64 165 164 43 59	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0	12.9 Leq 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 4 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5		m 117 132 188 247 308 370 432 494 141 194 252 312 373 434	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -60.9 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4		m 117 132 188 247 308 370 432 494 141 194 252 312 373	Angle Deg 48	5.2 0 0 0 0 0 0 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 35.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249	m 36 49 63 63 63 64 165 164 43 59 63 63 63	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0	137.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -60.9		Yes Yes Yes Yes Yes Yes Yes Yes No No No No No Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	NSD indiferen	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -60.9 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	NSR, incl faça	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -60.9 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6	Leq	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	5.2 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 38.9 38.3 35.3 35.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7 -67.9 Lmax	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -60.9 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	5.2 0 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -63.9 -66.4 -66.7 -67.9	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield NSR 38.9 38.3 38.3 35.3 32.9 31.0 28.0 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7 -67.9 Lmax NSR 38.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 38.7 0.0	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	5.2 0 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -63.9 -66.4 -66.7 -67.9	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 38.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 Al	Leq Total 38.7 0.0	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 38.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Alt 1 long train Day: 0 long Night: 1 long	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 38.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	13.6 28.8 28.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.0 -67.0 -69.0 -67.0 -67.9 Lmax NSR 38.7 0.0 At NSR, no shield,	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310	m 36 49 63 63 63 64 165 164 43 59 63 63 63 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 117.0 132.0 188.0 247.0 308.0 370.0 432.0 494.0 141.1 194.1 252.1 312.1 373.0 434.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 38.3 35.3 32.9 31.0 29.4 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 249 310 370 432	m 36 49 63 63 64 185 59 63 63 64 64	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 373 434 496 de N	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 38.9 38.3 32.9 31.0 28.0 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR NSR 0.0 38.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier IMPD IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 349 340 432	m 36 49 63 63 64 165 63 63 64 64 64 64	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 188.0 1247.0 188.0 370.0 432.0 494.0 1441.1 194.1 194.1 373.0 434.0 496.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.0 -65.0 -65.9 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 249 310 432	m 36 49 63 63 63 64 165 63 63 64 64 64	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 38.9 38.3 32.9 31.0 28.0 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR NSR 0.0 38.7	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 189 349 340 432	m 36 49 63 63 64 165 63 63 64 64 64 64	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 188.0 1247.0 188.0 370.0 432.0 494.0 1441.1 194.1 194.1 373.0 434.0 496.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.0 -65.0 -65.9 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 249 310 432	m 36 49 63 63 63 64 165 63 63 64 64 64	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 38.3 32.9 31.0 28.0 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 249 310 432	m 36 49 63 63 63 64 165 63 63 64 64 64 0Dbr m	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 26.0 -65.0 -65.9 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	m 81 83 125 184 245 306 267 330 98 135 249 310 432	m 36 49 63 63 63 64 165 63 63 64 64 64 0Dbr m	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 434 494 141 194 496 de N	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 38.9 38.3 38.3 35.3 32.9 31.0 28.0 26.9 -57.0 -59.8 -62.0 -63.9 -66.4 -66.7 -67.9 Lmax NSR 38.7 At NSR, no shield, shield	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 1.5 1.5	m 81 83 125 184 245 306 267 330 98 135 189 249 310 432 Dsb m 9	m 36 49 63 63 63 64 43 563 64 64 64 Dbr m 102	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 117.0 1132.0 1188.0 247.0 188.0 370.0 188.0 1494.0 1494.0 1494.1 194.1 194.1 194.1 194.1 197.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 0.0 0.0 0.0 0.1 0.1 A barrier	4.4 3.6 2.7 2.3 2.1 1.9 7.6 0.0 0.0 0.0 0.1 0.1 IL barrier	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day 40.0		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 29.4 28.0 -65.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR 1hr Leq Leq Limax NSR 10 Shield, 1hr Leq Leq Limax Limax NSR 10 Shield, 1hr Leq Leq Limax	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier IMPD Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 1.5 1	m 81 83 83 125 184 98 125 184 98 135 189 189 189 189 189 189 189 189 189 189	m 6 3 6 3 6 3 6 4 165 5 6 3 6 3 6 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 6 6	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 10.1	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 0.1	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day 40.0		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 8 at	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correct ion	93.5 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 38.9 38.3 35.3 32.9 31.0 28.0 28.0 26.9 -57.0 -59.8 -62.0 -65.4 -66.7 -67.9 -67.9 -68.7 -67.9 -68.7 -67.9 -68.8 -68.7 -68.8 -68.7 -67.9 -68.8 -68	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 1.5 5.5 1.5 1	m 81 83 125 184 98 195 196 197 198 198 199 199 199 199 199 199 199 199	m 36 49 63 63 63 64 165 56 63 63 64 64 10 10 10 10 10 10 10 10 10 10 10 10 10	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 110	m 117.0 132.0 188.0 247.0 188.0 370.0 432.0 141.1 194.1 194.1 194.1 111.0 194.1 111.0 194.1 111.0 194.1 111.0 194.1 194.	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.0 0.1 0.1 A barrier	4.4 3.6 2.7 2.3 2.1 1.9 7.6 7.3 0.0 0.0 0.0 0.1 0.1 IL barrier	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -60.9 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day 40.0 At NSR, incl façade Leq, day		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 Al 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 38.7 0.0 38.7 Day	m 117 132 188 247 308 370 432 494 141 194 252 312 373 434 496 de N	Angle Deg 48	On Correction	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 38.9 38.3 35.3 32.9 31.0 29.4 28.0 29.4 28.0 -65.0 -65.4 -66.7 -67.9 Lmax NSR 38.7 0.0 38.7 At NSR, no shield, 1hr Leq NSR 1hr Leq Leq Limax NSR 10 Shield, 1hr Leq Leq Limax Limax NSR 10 Shield, 1hr Leq Leq Limax	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 1.5 1	m 81 83 83 125 184 98 125 184 98 135 189 189 189 189 189 189 189 189 189 189	m 6 3 6 3 6 3 6 4 165 5 6 3 6 3 6 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 6 6	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 11.1 10.1	m 117.0 1132.0 1188.0 247.0 1188.0 370.0 432.0 1181.1 1194	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0	4.4 3.6 2.7 2.3 2.1 1.9 7.6 0.0 0.0 0.0 0.1 0.1 A barrier	4.4 3.6 2.7 2.3 2.1 1.9 7.6 0.0 0.0 0.0 0.1 0.1 IL barrier	façade Leq 37.5 28.8 26.5 24.6 22.9 21.5 14.4 13.6 -54.0 -56.8 -59.0 -62.4 -63.8 -65.0 At NSR, incl façade Leq, day 40.0		Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No No Yes

SSS Calculation a	t NSR SS	12	Mitig	ated			Ва	rrier height (m)=	3.5											
		Ground								Shunti	Idle in	Idle				Criteria				
NSR	No. of	Level	Hr	ASR				Result:		ng	shed	outside	Crane	Wash	Total	Leq	Status			
SS12	Storey 2	mPD 12.3	m 4.5	В				After 0030	Leq, day Leq, night	37.6 32.8	0.0 34.2	43.7 0.0	26.1	6.6	44.7 36.6	49 47	OK OK			
	_	12.0	1.0					71101 0000	Leq, 24hr	36.5	29.4	41.9	24.4	4.8	43.2		J. C			
Chumting					December	101) '- (Lmax	44.4	34.2	43.7	26.1	6.6	44.4					
Shunting		1	1		Remark: p	olus 10log(2	2) is for con	verting of Leq(30	min) to Leq(1h	r).										
					for 30min	At NSR, no shield												At NSR, incl façade		
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq	Lmax	Shadow zone?
		m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	2	53 53	9.2 11.2	86.1 86.1	67.7 68.6	35.1 36.0		Barrier Main Bldg	15 15	3.5 14.6	18 34	35 19	1.2 1.2	53.0 53.0	0.2 6.5	10.8 15.0	10.8 15.0	27.3 24.0	42.0 38.7	Yes Yes
Track 2 Short Train	1	68	15.2	86.1	68.8	36.2		Barrier	15	3.5	26	42	1.2	68.0	0.1	9.4	9.4	29.8	44.4	Yes
	2	68	10.3	86.1	67.1	34.5		Main Bldg emark for equation	15	14.6	48	20	1.2	68.0	5.6	15.0	15.0	22.5	37.2	Yes
				Remark	c. For legen	u oi parame	elers and re	mark for equalic	ons, piease rere	is to the	DOLLOTTI OI	spreausi	BEEL 332	2.						
			-	-	-					1	1									+
	At NSR, incl																			_
	façade																			
	Leq	Lmax		1	1															+
Move to shunting track	28.9	NSR 42.0																		
Return to stabling track	30.5	44.4																		
Δ.	NSR, incl faça	de N	loise crite	ria																
A																				
	Leq Total		Leq	Status		Lmax NSR														
1 short train	32.8					NSK														
Day: 6 short			49	ОК		44.4														
Night: 2 short	32.8		47	OK		44.4														
Idling in Shed																				
Idling in Shed				Directi		At NSR												At NSR, incl		
Idling in Shed				Directi		At NSR, no shield												At NSR, incl façade		
Idling in Shed			Exit				Louvre Reductio													
Idling in Shed		Hor D	Angle	on		no shield	Reductio n	Shield	Track Level	Нь	Dsb	Dbr	Hs	D	P	A barrier	IL barrier			Shadow zone?
Idling in Shed		Hor D m	Angle Deg	On Correct ion	t	no shield	Reductio	Shield -	Track Level mPD	Hb m	Dsb m 585	Dbr m	Hs m	D m 585.0	P m 1.8	A barrier	IL barrier	façade		Shadow zone?
at Gate at Side Louvre 1		m 585 552	Angle Deg 178.5	Correction	93.5 88.7	Leq NSR 6.4 25.9	Reductio n dB - -9	Shield - -	mPD 15 15		m 585 552			m 585.0 552.0	m 1.8 1.8	0.0	0.0	Leq 9.4 19.9		
at Gate at Side Louvre 1 at Side Louvre 2		m 585 552 488	Angle Deg 178.5	Correction 23.7 0	93.5 88.7 88.7	Leq NSR 6.4 25.9 27.0	Reductio n dB - -9 -9	-	mPD 15 15 15		m 585 552 488			m 585.0 552.0 488.0	m 1.8 1.8	0.0 0.0 0.0	0.0 0.0 0.0	9.4 19.9 21.0		-
at Gate at Side Louvre 1		m 585 552	Angle Deg 178.5	Correction	93.5 88.7	Leq NSR 6.4 25.9	Reductio n dB - -9	-	mPD 15 15		m 585 552			m 585.0 552.0	m 1.8 1.8	0.0	0.0	Leq 9.4 19.9		-
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 585 552 488 423 359 295	Angle Deg 178.5	23.7 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3	Reductio n dB - -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15		m 585 552 488 423 359 295			m 585.0 552.0 488.0 423.0 359.0 295.0	m 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3		-
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5		m 585 552 488 423 359 295 230	Angle Deg 178.5	23.7 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5	Reductio n dB -9 -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15 15		m 585 552 488 423 359 295 230			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0	m 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3 27.5		-
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1		m 585 552 488 423 359 295 230 166 552	Angle Deg 178.5	23.7 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3	Reductio n dB - -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15		m 585 552 488 423 359 295 230 166 552			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0	m 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3		-
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1		m 585 552 488 423 359 295 230 166 552 488	Angle Deg 178.5	23.7 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8	Reduction n dB 9 - 9 - 9 - 9 - 9 - 9 - 9 -	-	mPD 15 15 15 15 15 15 15 15 15 15 15 15		m 585 552 488 423 359 295 230 166 552 488			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3		m 585 552 488 423 359 295 230 166 552	Angle Deg 178.5	23.7 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8	Reductio n dB - -9 -9 -9 -9 -9 -9 -9	-	mPD 15 15 15 15 15 15 15 15 15 15 15		m 585 552 488 423 359 295 230 166 552			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 585 552 488 423 359 295 230 166 552 488 424 359 295	Angle Deg 178.5	23.7 0 0 0 0 0 0 0 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -65.1 -63.4	Reduction n dB	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 4 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231	Angle Deg 178.5	23.7 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -65.1 -63.4 -61.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correct ion 23.7 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -65.1 -63.4	Reduction n dB	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correct ion 23.7 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 80.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -65.1 -63.4 -61.3	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correct ion 23.7 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -65.1 -63.4 -61.3 -58.5	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correct ion 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -66.5 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 34.2 0.0	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correct ion 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long	Leq Total 34.2 0.0 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 A	Leq Total 34.2 0.0	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.8 -67.8 -66.5 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 19.9 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long	Leq Total 34.2 0.0 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 1		m 585 552 488 423 359 295 230 166 552 488 424 359 295 231			m 585.0 552.0 488.0 423.0 359.0 295.0 230.0 166.0 552.0 488.0 424.0 359.0 295.0 231.0	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -60.4 -58.3 -55.5		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long	Leq Total 34.2 0.0 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, ther	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -		mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m	m 585 562 488 423 359 295 230 166 552 488 424 359 295 231 167	m	m	m 585.0 552.0 488.0 423.0 359.0 195.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long	Leq Total 34.2 0.0 34.2	m 588 552 488 423 359 295 230 166 552 488 424 359 295 295 231 167 de N	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR NSR no shield, no shield, Leq Leq	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	-	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 5885 5522 488 423 239 295 230 166 552 488 424 167	Dbr	Hs	m 585.0 552.0 488.0 423.0 295.0 1552.0 166.0 552.0 166.0 1552.0 166.0 1552.0 167.0 1	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long	Leq Total 34.2 0.0 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, ther	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -		mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m	m 585 562 488 423 359 295 230 166 552 488 424 359 295 231 167	m	m	m 585.0 552.0 488.0 423.0 359.0 195.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	B.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 368.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 585; 552 488 423 359 295 230 6552 488 423 359 295 167	Dbr	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq. day		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	B.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 368.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 585; 552 488 423 359 295 230 6552 488 423 359 295 167	Dbr	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq. day		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	B.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 368.8 -67.8 -66.5 -66.5 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 0.0 34.2 At NSR, co shield, 1hr Leq NSR 50.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 585; 552 488 423 359 295 230 6552 488 423 359 295 167	Dbr	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq, day 43.7		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR 50.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 585; 552 488 423 359 295 230 6552 488 423 359 295 167	Dbr	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq, day 43.7		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	\$ 1.5 kg 1	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 368.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR 50.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb	m 585; 552 488 423 359 295 230 6552 488 423 359 295 167	Dbr m 42	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq, day 43.7		
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 1 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	On Correct ion	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 36.3 -68.8 -67.8 -66.5 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR 50.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb m	m 5885 552 488 423 359 295 520 186 752 488 424 359 295 652 488 6552 488 6552 6552 6552 6552 6552 6552 6552 65	Dbr m	Hs m	m 585.0 552.0 488.0 295.0 166.0 552.0 180.0 167.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq, day 43.7		Shadow zone? Yes Shadow zone?
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 A 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 34.2 0.0 34.2 Day	m 585 552 488 423 359 295 230 166 552 488 424 359 295 231 167 de N	Angle Deg 178.5	0n Correction 23.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 1.5 kg 1	no shield Leq NSR 6.4 25.9 27.0 28.2 29.6 31.3 33.5 368.8 -67.8 -65.1 -63.4 -61.3 -58.5 Lmax NSR 34.2 0.0 34.2 At NSR, no shield, 1hr Leq NSR 50.1	Reduction dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Shield	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	Hb m 3.5	m 5857 552 488 423 359 295 230 166 552 488 424 423 167 167	Dbr m 42	Hs m 1.2	m 585.0 552.0 488.0 295.0 166.0 552.0 166.0 166.0 552.0 166.	m 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 9.4 19.9 21.0 22.2 23.6 25.3 27.5 30.3 -65.8 -64.8 -63.5 -62.1 -60.4 -58.3 -55.5 At NSR, incl façade Leq, day 43.7		Shadow zone?

SSS Calculation a	t NSR SS	14	Mitig	ated			Ba	rrier height (m)=	10											
		Ground								Shunti	Idle in	ldle				Criteria				
NSR SS14	No. of Storey	Level	Hr m	ASR				Result:	Leq, day	ng 40.5	shed 0.0	outside 44.2	Crane 24.1	Wash 23.5	Total 45.8	Leq 49	Status			
	3	17	7.5	В				After 0030	Leq, night	35.8	31.6	0.0		-	37.2	47	ОК			
									Leq, 24hr Lmax	39.4 44.7	26.9 31.6	42.5 44.2	22.3	21.7 23.5	44.4 44.7					
Shunting					Remark: p	olus 10log(2	2) is for con	verting of Leq(30									' I			
						At NSR,												At NSR, incl		
	Segment	Hor D	Angle	SEL	for 30min SEL	no shield Leq		Shield	Track Level	НЬ	Dsb	Dbr	Hs	D	P	A barrier	IL barrier	façade Leq	Lmax	Shadow zone?
		m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	2	93 93	62.8 80.2	86.1 86.1	73.6 74.7	41.0 42.1		Barrier Barrier	15 15	10 10	3	90 90	1.2 1.2	93.4 93.4	5.9 5.9	15.0 15.0	15.0 15.0	29.0 30.1	43.6 44.7	Yes Yes
	3	93	3.8	86.1	61.4	28.8		Barrier2	15	8	51	42	1.2	93.4	0.1	8.6	8.6	23.2	37.8	Yes
Track 2 Short Train	1 2	128 128	56.9 80.2	86.1 86.1	71.8 73.3	39.2 40.7		Barrier Barrier	15 15	10 10	38 38	90 90	1.2 1.2	128.3 128.3	0.7	15.0 15.0	15.0 15.0	27.2 28.7	41.6 43.1	Yes Yes
	3	128	3.8	86.1	60.0	27.4		Barrier2	15	8	86	42	1.2	128.3	0.0	3.6	3.6	26.8	41.3	Yes
				Remark	For legen	d of parame	eters and re	emark for equation	ns, please refe	rs to the I	oottom of	spreadsh	neet "SS2	2".						
	At NSR, incl			<u> </u>										$\vdash \exists$		-			·	
	façade																			
	Leq	Lmax NSR																		
Move to shunting track	33.1	44.7																		
Return to stabling track	32.4	43.1																		
At	NSR, incl faça	ade N	loise crite	ria																
	Leq		Leq	Status		Lmax														
	Total		Luq	Ottatao		NSR														
1 short train Day: 6 short	35.8 40.5		49	OK		44.7														
Night: 2 short	35.8		47	OK		44.7														
Idling in Shed																				
Idling in Shed																				
Idling in Shed				Directi on		At NSR, no shield												At NSR, incl façade		
Idling in Shed			Exit	on		At NSR, no shield	Louvre Reductio													
Idling in Shed		Hor D	Exit Angle		Lw	no shield	Reductio n	Shield	Track Level	НЬ	Dsb	Dbr	Hs	D	P	A barrier	IL barrier			Shadow zone?
		m	Angle Deg	on Correct ion		no shield Leq NSR	Reductio		mPD	m	m	m	m	m	m			façade Leq		
at Gate at Side Louvre 1		m 206 173	Angle Deg 134.7	Correct ion	93.5 88.7	Leq NSR 24.2 36.0	Reductio n dB - -9	Barrier Barrier	mPD 15 15	m 10 10	m 147 116	m 59 57	m 3.5 3.8	m 206.1 173.1	m 0.1 0.1	6.2 7.1	6.2 7.1	Leq 21.1 22.9		Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2		m 206 173 140	Angle Deg 134.7	Correct ion 15.0 0	93.5 88.7 88.7	Leq NSR 24.2 36.0 37.8	Reductio n dB - -9 -9	Barrier Barrier Barrier	mPD 15 15 15	m 10 10	m 147 116 94	m 59 57 46	m 3.5 3.8 3.8	m 206.1 173.1 140.1	m 0.1 0.1 0.1	6.2 7.1 7.9	6.2 7.1 7.9	Leq 21.1 22.9 23.9		Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 206 173 140 133 155	Angle Deg 134.7	0n Correct ion 15.0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 24.2 36.0 37.8 38.3 36.9	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier	mPD 15 15 15 15 15	m 10 10 10 10	m 147 116 94 89 104	m 59 57 46 44 51	m 3.5 3.8 3.8 3.8 3.8	m 206.1 173.1 140.1 133.1 155.1	0.1 0.1 0.1 0.1 0.1	6.2 7.1 7.9 8.1 7.5	6.2 7.1 7.9 8.1 7.5	21.1 22.9 23.9 24.2 23.5		Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 206 173 140 133 155 196	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 10 10 10 10 10	m 147 116 94 89 104 131	m 59 57 46 44 51 65	m 3.5 3.8 3.8 3.8 3.8 3.8	m 206.1 173.1 140.1 133.1 155.1 196.1	m 0.1 0.1 0.1 0.1 0.1 0.1	6.2 7.1 7.9 8.1 7.5 6.6	6.2 7.1 7.9 8.1 7.5 6.6	Leq 21.1 22.9 23.9 24.2 23.5 22.3		Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 206 173 140 133 155	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	m 10 10 10 10	m 147 116 94 89 104	m 59 57 46 44 51 65 82 101	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 206.1 173.1 140.1 133.1 155.1	0.1 0.1 0.1 0.1 0.1	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1	121.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0		Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1		m 206 173 140 133 155 196 248 304 184	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129	m 59 57 46 44 51 65 82 101 55	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3	21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7		m 206 173 140 133 155 196 248 304	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203	m 59 57 46 44 51 65 82 101	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1	121.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3		m 206 173 140 133 155 196 248 304 184 153 147	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -58.5	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117	m 59 57 46 44 51 65 82 101 55 46 44 50	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3	Leq 21.1 22.9 23.9 24.2 23.5 22.3 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3		m 206 173 140 133 155 196 248 304 184 153 147	Angle Deg 134.7	00 Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107	m 59 57 46 44 51 65 82 101 55 46 44	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3	14,24		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 206 173 140 133 155 196 248 304 184 153 147	Angle Deg 134.7	00 Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -58.5 -60.3	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117	m 59 57 46 44 51 65 82 101 55 46 44 50 61	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	121.1 22.9 23.5 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -55.7 -55.7 -57.5		Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 206 173 140 133 155 196 248 304 184 153 147 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -58.5 -60.3 -62.2	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7		m 206 173 140 133 155 196 248 304 184 153 147 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -58.5 -60.2 -63.9	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -67.3 -68.5 -60.3 462.2 -63.9 Lmax	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At	Leq Total 31.6	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 8	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 24.2 36.0 37.8 36.9 34.9 32.9 31.1 -59.3 -57.3 -58.5 -60.3 -62.2 -63.9 Lmax NSR 31.6	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -67.3 -68.5 -60.3 462.2 -63.9 Lmax	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 31.6 0.0 31.6	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR 31.6	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At I long train Day: 0 long	Leq Total 31.6 0.0	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 31.6 0.0 31.6	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 134.7	0n Correct ion 15.0 0 0 0 0 0 0 0 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR 31.6	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	14,24 Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 31.6 0.0 31.6	m 206 173 140 133 155 196 248 304 184 153 147 206 256 311	Angle Deg 134.7	on Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6 At NSR, no shield, 1hr	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 129 107 103 117 145 180 218	m 59 57 46 44 51 65 82 101 76 61 76 93	m, 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 196.1 248.1 184.0 153.0 147.0 256.0 311.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 31.6 0.0 31.6	m 206 173 140 133 155 196 248 304 184 153 147 167 206 256 311	Angle Deg 1347	on Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -58.5 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 117 145	m 59 57 46 44 51 65 82 101 55 46 44 50 61 76	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 133.1 155.1 196.1 248.1 304.1 184.0 153.0 147.0 206.0 256.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.3 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 21.1 56.6 -55.0 -56.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 31.6 0.0 31.6	m 2006 173 140 133 155 196 248 304 184 153 147 206 256 311 1dde N	Angle Deg 134.7	on Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR NSR no shield, no shield, no shield, Leq	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 128 128	m 59 57 46 44 45 51 65 82 101 76 50 61 76 93	m, 3.5 s 3.8	m 206.1 173.1 140.1 133.1 196.1 248.1 196.1 248.1 167.0 206.0 256.0 311.0	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6 Day	m 206 173 140 133 155 196 248 304 184 153 147 206 311 dde N	Angle Deg 134.7	On Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -58.5 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 121 122 123 122 127 145 128 1218 128 128 128 128 128 128 128 12	m 59 57 46 44 51 51 65 82 101 76 93 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 173.1 140.1 155.0 156.1 156.1 156.1 156.1 156.1 156.1 156.1 156.1 157.0 167.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq. day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6	m 206 173 140 133 155 196 248 304 184 153 147 206 311 dde N	Angle Deg 134.7	On Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR NSR 31.6 0.0 31.6 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 121 122 123 122 127 145 128 1218 128 128 128 128 128 128 128 12	m 59 57 46 44 51 51 65 82 101 76 93 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 173.1 140.1 155.0 156.1 156.1 156.1 156.1 156.1 156.1 156.1 156.1 157.0 167.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq. day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6 Day	m 206 173 140 133 155 196 248 304 184 153 147 206 311 dde N	Angle Deg 134.7	On Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -57.5 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6 At NSR, no shield, ther Leq NSR 56.2	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 121 122 123 122 127 145 128 1218 128 128 128 128 128 128 128 12	m 59 57 46 44 51 51 65 82 101 76 93 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 173.1 140.1 155.0 156.1 156.1 156.1 156.1 156.1 156.1 156.1 156.1 157.0 167.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq, day 44.2		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6 Day	m 206 173 140 133 155 196 248 304 184 153 147 206 311 1de N	Angle Deg 1347	On Correct ion 15.0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -60.3 -62.2 -63.9 Lmax NSR 0.0 31.6 At NSR, no shield, 1hr Leq NSR 56.2 At NSR, no shield, 1hr	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 103 104 117 145 180 218	m 59 57 46 44 45 10 10 10 10 10 10 10 10 10 10 10 10 10	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 206.1 173.1 140.1 173.1 140.1 155.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 1.2 0.2 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 1. barrier	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq, day 44.2		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6 Day	m 206 173 140 133 155 196 248 304 184 153 147 206 311 dde N	Angle Deg 134.7	On Correct ion 15.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.3 -57.5 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6 At NSR, no shield, ther Leq NSR 56.2	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 121 122 123 122 127 145 128 1218 128 128 128 128 128 128 128 12	m 59 57 46 44 51 51 65 82 101 76 93 Dbr m	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 206.1 173.1 140.1 173.1 140.1 155.0 156.1 156.1 156.1 156.1 156.1 156.1 156.1 156.1 157.0 167.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 0.2	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -55.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq, day 44.2		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 31.6 0.0 31.6 Day	m 206 173 140 133 155 196 248 304 184 153 147 206 311 dde N Hor D	Angle Deg 1347	On Correct ion 15.0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 24.2 36.0 37.8 38.3 36.9 34.9 32.9 31.1 -59.3 -57.7 -57.5 -60.3 -62.2 -63.9 Lmax NSR 31.6 0.0 31.6 At NSR, no shield, 1hr Leq NSR 56.2	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 147 116 94 89 104 131 166 203 129 107 107 117 145 218	m 59 57 46 44 45 10 10 10 10 10 10 10 10 10 10 10 10 10	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 206.1 173.1 140.1 173.1 140.1 155.0 156.1 156.1 156.1 156.1 156.1 156.1 156.1 157.0 167.0 206.0 167.0 167.0 206.0 167.0 167.0 206.0 167.	m 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 1.2 0.2 0.2 0.2 0.2	6.2 7.1 7.9 8.1 7.5 6.6 5.7 5.1 0.3 0.3 0.3 0.2 0.2 0.2 1. barrier	façade Leq 21.1 22.9 23.9 24.2 23.5 22.3 21.1 20.0 -56.6 -55.0 -54.7 -57.5 -59.4 -61.0 At NSR, incl façade Leq, day 44.2		Yes

SSS Calculation a	t NSR SS	15	Mitig	ated			Ва	ırrier height (m)=	10											
		Ground								Shunti	Idle in	ldle				Criteria				
NSR SS45	No. of	Level	Hr	ASR				Result:	Law day	ng	shed	outside		Wash	Total	Leq	Status			
SS15	Storey 3	mPD 15.7	7.5	В				After 0030	Leq, day Leq, night	41.0 36.2	0.0 29.6	45.2 0.0	25.2	13.9	46.6 37.1	49 47	OK OK			
									Leq, 24hr	39.9	24.9	43.5	23.5	12.2	45.1					
Shunting					Remark: p	olus 10log(2	2) is for con	verting of Leq(30	Lmax Omin) to Leq(1h	47.1 r).	29.6	45.2	25.2	13.9	47.1					
						At NSR,												At NSR, incl		
					for 30min	no shield												façade		
	Segment	Hor D m	Angle Deg	SEL 15m	SEL NSR	Leq NSR		Shield	Track Level mPD	Hb m	Dsb m	Dbr m	Hs m	D m	P m	A barrier	IL barrier	Leq	Lmax NSR	Shadow zone?
Track 1 Short Train	1	78	116.9	86.1	77.1	44.5		Barrier	15	10	4	74	1.2	78.3	5.4	15.0	15.0	32.5	47.1	Yes
	3	78 78	22.5 9.8	86.1 86.1	69.9 66.3	37.3 33.7		Barrier Barrier	15 15	10 10	4	74 74	1.2 1.2	78.3 78.3	5.4 5.4	15.0 15.0	15.0 15.0	25.3 21.7	40.0 36.4	Yes Yes
	4	78	3	86.1	61.2	28.6		Barrier2	15	8	51	27	1.2	78.3	0.1	9.6	9.6	21.9	36.6	Yes
Track 2 Short Train	1 2	113 113	110.3 22.5	86.1 86.1	75.2 68.3	42.6 35.7		Barrier Barrier	15	10 10	39 39	74 74	1.2	113.2 113.2	0.8	15.0 15.0	15.0 15.0	30.6 23.7	45.1 38.2	Yes Yes
	3	113	9.8	86.1	64.7	32.1		Barrier	15 15	10	39	74	1.2	113.2	0.8	15.0	15.0	20.1	34.6	Yes
	4	113	3	86.1	59.5	27.0		Barrier2	15	8	86	27	1.2	113.2	0.1	5.8	5.8	24.2	38.7	Yes
				Remark	: For legen	d or parame	eters and re	emark for equation	ons, piease rere	rs to the	bottom of	spreadsr	neet 55.	2.						
				-							-			\vdash						
<u> </u>	At NSR, incl																			+
-	façade	I mer		-																
	Leq	Lmax NSR																		
Move to shunting track	33.8	47.1																		
Return to stabling track	32.4	45.1																		
At	NSR, incl faça	de N	oise crite	ria																
	Leq		Leq	Status		Lmax														
	Total					NSR														
1 short train Day: 6 short	36.2 41.0		49	OK		47.1														
Night: 2 short	36.2		47	ОК		47.1														
Idling in Shed																				
Idling in Shed																				
Idling in Shed				Directi on		At NSR, no shield												At NSR, incl façade		
Idling in Shed			Exit	on		At NSR, no shield	Louvre Reductio													
Idling in Shed		Hor D	Exit Angle		Lw	no shield	Reductio n	Shield	Track Level	Нь	Dsb	Dbr	Hs	D	P	A barrier	IL barrier			Shadow zone?
		m	Angle Deg	Correct ion		no shield Leq NSR	Reductio n dB	Shield	mPD	m	m	m	m	m	m			façade Leq		
Idling in Shed at Gate at Side Louvre 1			Angle	on Correct	Lw 93.5 88.7	Leq NSR 21.8 35.3	Reductio n dB - -9				m 177 141				m 0.1 0.1	8.5 9.0	8.5 9.0	façade		Shadow zone? Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2		m 222 187 142	Angle Deg 143.8	Correction 16.8 0	93.5 88.7 88.7	Leq NSR 21.8 35.3 37.7	Reductio n dB - -9 -9	Shield Barrier Barrier Barrier	mPD 15 15 15	m 10 10	m 177 141 107	m 45 46 35	m 3.5 3.8 3.8	m 222.0 187.1 142.1	m 0.1 0.1 0.2	8.5 9.0 10.2	8.5 9.0 10.2	Leq 16.3 20.3 21.5		Yes Yes Yes
at Gate at Side Louvre 1		m 222 187	Angle Deg 143.8	Correction 16.8	93.5 88.7	Leq NSR 21.8 35.3	Reductio n dB - -9	Shield Barrier Barrier	mPD 15 15	m 10 10	m 177 141	m 45 46	m 3.5 3.8	m 222.0 187.1	m 0.1 0.1	8.5 9.0	8.5 9.0	Leq 16.3 20.3		Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 222 187 142 118 126 161	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 10 10 10 10 10	m 177 141 107 89 95 122	m 45 46 35 29 31 39	m 3.5 3.8 3.8 3.8 3.8 3.8	m 222.0 187.1 142.1 118.1 126.1 161.1	m 0.1 0.1 0.2 0.2 0.2 0.1	8.5 9.0 10.2 10.9 10.7 9.6	8.5 9.0 10.2 10.9 10.7 9.6	16.3 20.3 21.5 22.4 22.1 21.0		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5		m 222 187 142 118 126 161 211	Angle Deg 143.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7	Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10	m 177 141 107 89 95 122 160	m 45 46 35 29 31 39 51	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0	m 0.1 0.2 0.2 0.2 0.1 0.1	8.5 9.0 10.2 10.9 10.7 9.6 8.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5	16.3 20.3 21.5 22.4 22.1 21.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 222 187 142 118 126 161	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 10 10 10 10 10	m 177 141 107 89 95 122	m 45 46 35 29 31 39	m 3.5 3.8 3.8 3.8 3.8 3.8	m 222.0 187.1 142.1 118.1 126.1 161.1	m 0.1 0.1 0.2 0.2 0.2 0.1	8.5 9.0 10.2 10.9 10.7 9.6	8.5 9.0 10.2 10.9 10.7 9.6	16.3 20.3 21.5 22.4 22.1 21.0		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1		m 222 187 142 118 126 161 211 267 196	Angle Deg 143.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8	Reduction dB 9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153	m 45 46 35 29 31 39 51 65 43 34	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0	m 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1		m 222 187 142 118 126 161 211 267 196	Angle Deg 143.8	00 Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8	Reduction n dB 9 - 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202	m 45 46 35 29 31 39 51 65 43	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8	16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4		m 222 187 142 118 126 161 211 267 196 154 132 139 172	Angle Deg 143.8	00 Correct ion 16.8 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7	Reduction n dB	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103	m 45 46 35 29 31 39 51 65 43 34 29 30 37	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9	8.5 9.0 10.2 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9	16.3 20.3 21.5 22.4 22.1 19.8 18.7 -60.7 -59.3 -58.4 -60.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5		m 222 187 142 118 126 161 267 196 154 132	Angle Deg 143.8	00 Correction 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9	Reduction n dB9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120	m 45 46 35 29 31 39 51 65 43 34 29 30	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7		m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7 -60.8	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	16.3 20.3 21.5 22.4 22.1 19.8 18.7 -60.7 -59.3 -58.4 -60.0		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7 -60.8	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7 -60.8 -62.7	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	00	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -56.4 -56.9 -56.9 -62.7	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At At 1 long train Day: 0 long	Leq Total 29.6 0.0	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -59.8 -60.8 -62.7 Lmax NSR 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7	Leq Total 29.6	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 21.8 35.3 37.7 36.6 34.3 32.2 -59.8 -56.4 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At At 1 long train Day: 0 long	Leq Total 29.6 0.0	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -59.8 -60.8 -62.7 Lmax NSR 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -59.8 -60.8 -62.7 Lmax NSR 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -58.8 -60.0 -61.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6	Reduction n dB 9 - 9 - 9 - 9 - 9	Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 109 135	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 118.1 126.1 161.1 211.0 267.0 196.0 154.0 132.0 139.0 172.0 219.0	m 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.3 3.5	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 219 273 de N	Angle Deg 143.8	on Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 34.3 35.7 55.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 1hr Leq NSR	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 95 122 160 202 2153 120 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 196.0 197.1 198.0 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 273 172 219 273 de N	Angle Deg 143.8	0n Correct ion 16.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -59.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 11.1 Leq	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 177 141 107 89 95 122 160 202 153 120 103 103 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1	m 222.0 187.1 142.1 142.1 118.1 126.1 161.1 121.0 267.0 154.0 132.0 132.0 172.0 273.0	m 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6	m 222 187 142 118 126 161 211 267 196 154 132 219 273 de N	Angle Deg 143.8	on Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 34.3 35.7 55.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 1hr Leq NSR	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 95 122 160 202 2153 120 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 196.0 197.1 198.0 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6 Day	m 222 187 142 118 126 161 211 267 196 154 132 219 273 de N	Angle Deg 143.8	on Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 33.2 -59.8 -57.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 1hr Leq NSR 57.2	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 95 122 160 202 2153 120 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 196.0 197.1 198.0 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6 Day	m 222 187 142 118 126 161 211 267 196 154 132 219 273 de N	Angle Deg 143.8	on Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, NSR, NSR, no shield, NSR, NSR, NSR, NSR, NSR, NSR, NSR, NSR	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 95 122 160 202 2153 120 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 196.0 197.1 198.0 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day 45.2		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6 Day	m 222 187 142 118 126 161 211 267 196 154 132 219 273 de N	Angle Deg 143.8	on Correct ion 16.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -57.8 -56.4 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, NSR, NSR, no shield, NSR, NSR, NSR, NSR, NSR, NSR, NSR, NSR	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 95 122 160 202 2153 120 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 29 30 37 48 59	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 196.0 197.1 198.0 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 5 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 6 at Roof Skylight 7 At This Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 8 at Roof Skyligh	Leq Total 29.6 0.0 29.6 Day	m 222 187 142 118 126 161 211 172 173 174 175 175 175 175 175 175 175 175 175 175	Angle Deg 143.8	On Correct ion 16.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 32.2 -59.8 -56.4 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 1hr Leq NSR 57.2	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m	m 1777 141 107 89 122 160 202 215 120 103 109 135 171 214	m 45 46 35 29 31 39 51 65 43 34 48 59 Dbr m 75	m 3.5 3.8 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 11.1 10.1 11.1 10.1 11.1 10.1 11.1 10.1 11.1 10.1 11.1 10.1 11.1 10.1	m 222.0 187.1 142.1 118.1 126.1 157.1 126.1 157.1 126.1 158.1 126.1 159.0 159.0 159.0 159.0 159.0 159.0 159.0 159.0 159.0 172.0 159.0 172.0 159.0 172.0 159.0 172.0 159.0 172.0 159.0 172.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0 4.9 4.3 1.0 4.9 4.3 1.0 4.9 4.3 1.0 4.9 4.3 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day 45.2 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 29.6 0.0 29.6 Day	m 222 187 142 118 126 161 211 267 196 154 132 139 172 219 273 de N	Angle Deg 143.8	0n Correction 16.8 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0	no shield Leq NSR 21.8 35.3 37.7 39.3 38.7 36.6 34.3 38.7 55.8 -57.8 -56.9 -58.7 -60.8 -62.7 Lmax NSR 29.6 0.0 29.6 At NSR, no shield, 1hr Leq NSR 57.2	Reduction n dB 9 - 9 - 9 - 9 - 9	Shield Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 10 10 10 10 10 10 10 10 10 10 10 10 10	m 1777 141 107 89 122 160 202 2153 120 109 135 171 214	## 45	m 3.5 3.8 3.8 3.8 3.8 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10	m 222.0 187.1 142.1 188.1 126.1 188.1 198.	m 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	8.5 9.0 10.2 10.9 10.7 9.6 8.5 7.5 3.8 4.5 5.0 4.9 4.3 3.5 3.0	façade Leq 16.3 20.3 21.5 22.4 22.1 21.0 19.8 18.7 -60.7 -59.3 -58.4 -60.0 -61.3 -62.8 At NSR, incl façade Leq, day 45.2		Yes

SSS Calculation a	+ NCD CC	20	Mitia	atad			D-		40	forder Son		-145DI			. Mak handan			(00 ··· PD)	1	
555 Calculation a	t NSK SS		Mitig	ated			Ва	rrier height (m)=	12				D; equiva	alent to 5m	n high barrier	top at 27mPD o	n ground level	22mPD)		
NSR	No. of	Ground Level	Hr	ASR				Result:		Shunti ng	Idle in shed	ldle outside	Crane	Wash	Total	Criteria Leq	Status			
SS20	Storey	mPD	m						Leq, day	38.6	0.0	32.8	16.9	27.9	39.9	49	OK			
	2	22.2	4.5	В				After 0030	Leq, night Leq, 24hr	33.8 37.5	30.8 26.0	0.0 31.0	15.2	26.2	35.6 38.9	40	OK			
									Lmax	43.9	30.8	32.8	16.9	27.9	43.9					
Shunting			ĺ	ĺ	Remark: p	olus 10log(2	e) is for con	verting of Leq(30	min) to Leq(1h	r).	ı		l	1 1						
					for 30min	At NSR, no shield												At NSR, incl façade		
	Segment	Hor D	Angle	SEL	SEL	Leq		Shield	Track Level	Hb	Dsb	Dbr	Hs	D	Р	A barrier	IL barrier	Leq	Lmax	Shadow zone?
		m	Deg	15m	NSR	NSR			mPD	m	m	m	m	m	m				NSR	
Track 1 Short Train	1a 1b	52 52	36.4 18.6	86.1 86.1	73.8 70.8	41.2 38.2		Barrier Barrier	14.2 14.2	12 12	21 21	31 31	1.2 1.2	53.2 53.2	1.4	15.0 15.0	15.0 15.0	29.2 26.2	43.9 41.0	Yes Yes
	2	52	2.5	86.1	62.1	29.5		Barrier	15	12	21	31	1.2	53.0	1.6	15.0	15.0	17.5	32.2	Yes
Track 2 Short Train	1a 1b	57 57	36.4 12.1	86.1 86.1	73.4 68.6	40.8 36.0		Barrier Barrier	14.2 14.2	12 12	26 26	31 31	1.2 1.2	58.1 58.1	1.0	15.0 15.0	15.0 15.0	28.8 24.0	43.5 38.7	Yes Yes
	2	57	5.7	86.1	65.3	32.7		Barrier	15	12	26	31	1.2	58.0	1.2	15.0	15.0	20.7	35.4	Yes
				Remark	For legen	d of parame	eters and re	emark for equation	ns, please refe	rs to the I	oottom of	spreadsh	neet.							
-	-								-						-		-			
	At NSR, incl																			
	façade Leq	Lmax																		
		NSR																		
Move to shunting track	31.1	43.9																		
Return to stabling track	30.5	43.5																		
At	NSR, incl faça	ide N	loise crite	ria																
	Leq		Leq	Status		Lmax														
	Total					NSR														
1 short train	33.8		40	OV		40.0														
Day: 6 short Night: 2 short	38.6 33.8		49 40	OK OK		43.9 43.9														
, in the second																				
Idling in Shed																				
Idling in Shed				Directi		At NSR,												At NSR, incl		
Idling in Shed				Directi on		At NSR, no shield	Louvre											At NSR, incl façade		
Idling in Shed		Hor D	Exit	on Correct	lw	no shield	Reductio	Shield	Track Lavel	Нь	Deb	Dhr	Не	D	D	A barrier	II barrier	façade		Shadow zone?
Idling in Shed		Hor D	Exit Angle Deg	on	Lw			Shield	Track Level	Hb m	Dsb m	Dbr m	Hs m	D m	P m	A barrier	IL barrier			Shadow zone?
at Gate		m 418	Angle Deg 18.7	Correct ion	93.5	Leq NSR 31.0	Reductio n dB	Barrier	mPD 15	m 12	m 320	m 98	m 3.5	m 418.1	m 0.0	4.3	4.3	Leq		Yes
at Gate at Side Louvre 1		m 418 445	Angle Deg	Correction 2.1	93.5 88.7	Leq NSR 31.0 27.8	Reductio n dB - -9	Barrier Barrier	mPD 15 15	m 12 12	m 320 328	m 98 117	m 3.5 3.8	m 418.1 445.1	m 0.0 0.0	4.3 4.2	4.3 4.2	Leq 29.7 17.5		Yes Yes
at Gate		m 418	Angle Deg 18.7	Correct ion	93.5	Leq NSR 31.0	Reductio n dB	Barrier	mPD 15	m 12	m 320	m 98	m 3.5	m 418.1	m 0.0	4.3	4.3	Leq		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4		m 418 445 506 567 629	Angle Deg 18.7	2.1 0 0 0	93.5 88.7 88.7 88.7 88.7	Leq NSR 31.0 27.8 26.7 25.7 24.8	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15	m 12 12 12 12 12	m 320 328 376 423 470	98 117 130 144 159	m 3.5 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0	m 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2	4.3 4.2 3.8 3.5 3.2	29.7 17.5 16.9 16.2 15.6		Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5		m 418 445 506 567 629 691	Angle Deg 18.7	2.1 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7	Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0	Reductio n dB - -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15	m 12 12 12 12 12 12	m 320 328 376 423 470 516	m 98 117 130 144 159 175	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0	m 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0	4.3 4.2 3.8 3.5 3.2 3.0	29.7 17.5 16.9 16.2 15.6		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7		m 418 445 506 567 629 691 753 815	Angle Deg 18.7	2.1 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5	Reduction n dB 9 - 9 - 9 - 9	Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12	m 320 328 376 423 470 516 562 608	98 117 130 144 159	m 3.5 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6	16.9 15.0 14.4 13.9		Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1		m 418 445 506 567 629 691 753 815 449	Angle Deg 18.7	2.1 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0	Reductio n dB - -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 449.2	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0	29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1		m 418 445 506 567 629 691 753 815	Angle Deg 18.7	2.1 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5	Reductio n dB - -9 -9 -9 -9 -9 -9	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6	16.9 15.0 14.4 13.9		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3		m 418 445 506 567 629 691 753 815 449 510 571 632	Angle Deg 18.7	00 Correct ion 2.1 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 449.2 510.1 571.1 632.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0	15.6 15.0 15.0 16.2 15.6 15.0 15.0 15.0 15.0 15.0 16.2 16.2 16.2 16.2 16.3 16.9 16.9 16.9		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 4		m 418 445 506 567 629 691 753 815 449 510 571 632 694	Angle Deg 18.7	2.1 0 0 0 0 0 0 0 0 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 449.2 510.1 571.1 632.1 694.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0	16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6		m 418 445 506 567 629 691 753 815 449 510 571 632	Angle Deg 18.7	00 Correct ion 2.1 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 449.2 510.1 571.1 632.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0	15.6 15.0 15.0 16.2 15.6 15.0 15.0 15.0 15.0 15.0 16.2 16.2 16.2 16.2 16.3 16.9 16.9 16.9		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	MSD incl.for-	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	2.1 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.0 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	NSR, incl faça	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.0 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	2.1 0 0 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7		m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 30.8 0.0	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 C Correct Corre	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7	Leq Total 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 6 6 6 6 6 6 6 8	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At	Leq Total 30.8 0.0	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 C Correct Corre	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 6 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 C Correct Corre	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 25.6-67.0 -68.2 -69.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	15.0 14.4 13.9 -66.2 -66.1 -67.8 -68.6		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 6 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	0n Correct ion 2.1 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 C Correct Corre	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 24.0 -68.2 -67.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8 -68.6 -69.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 6 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 510 571 632 694 756 818	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, hield	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 510 571 632 694 756 818	m 98 1117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 449.2 510.1 632.1 694.1 756.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 6.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 6 at Roof Skylight 7	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 24.0 -68.2 -67.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 470 516 562 608 449 510 571 632 694 756	m 98 117 130 144 159 175 191	m 3.5 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 815.0 815.0 571.1 632.1 694.1 756.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8 -68.6 -69.3		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 3 at Side Louvre 4 at Side Louvre 6 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818 dde N	Angle Deg 18.7	0n Correct ion 2.11 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR NSR 30.8 0.0 30.8 At NSR, no shield, 11.1 Leq	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	m 320 328 376 423 376 516 562 608 449 510 571 632 694 818	98 117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	m 418.1 445.1 506.1 567.1 157.	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 6.0 0.0 0.0 0.0 0.0 0.0 0.0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 24.0 -68.2 -67.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m 320 328 376 423 376 516 562 608 510 571 756 818 Dsb m	98 117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 m	m 418.1 445.1 506.1 507.1 629.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 694.1 632.1 694.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8 -68.6 -69.3 At NSR, incl façade Leq. day		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 1 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -69.0 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR 44.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m 320 328 376 423 376 516 562 608 510 571 756 818 Dsb m	98 117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 m	m 418.1 445.1 506.1 507.1 629.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 694.1 632.1 694.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8 -68.6 -69.3 At NSR, incl façade Leq. day		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 445 506 567 629 691 753 815 449 510 571 632 694 756 818	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 24.0 -68.2 -67.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR 44.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	m 320 328 376 423 376 516 562 608 510 571 756 818 Dsb m	98 117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 m	m 418.1 445.1 506.1 507.1 629.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 694.1 694.	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.0 -67.8 -68.6 -69.3 At NSR, incl façade Leq, day 32.8		Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 445 506 567 629 691 756 818 de N	Angle Deg 18.7	On Correct ion 2.11	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -69.0 -68.2 -69.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, NSR	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12 12 10 11 10 10 10	m 320 328 376 423 376 423 470 516 562 608 449 510 571 576 818 818 818 818 818 818 818 818 818 81	98 117 130 144 159 175 191 207	3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 1.2	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 891.0 753.0 891.0 753.0 815.0 449.2 510.1 575.1 832.1 894.1 756.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6 11.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.1 1.1	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3 At NSR, incl façade Leq, day 32.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 445 506 567 629 691 753 815 449 510 632 694 756 818 de N	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 6 6 6 6 6	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR 44.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 320 328 376 423 376 423 470 516 562 562 694 818 8	98 117 130 144 159 175 191 207	Hs m 1.2	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.1 632.1 694.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3 At NSR, incl façade Leq, day 32.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 5 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 1 at Roof Skylight 3 at Roof Skylight 4 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 7 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 448 445 506 567 629 691 753 815 449 510 571 632 694 756 818 dde N	Angle Deg 18.7	on Correct ion 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.5 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 25.7 24.8 24.0 23.2 22.5 -69.0 -68.2 -69.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR 44.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 1	m 12 12 12 12 12 12 12	m 320 328 376 423 376 457 470 516 562 698 4818 571 571 632 694 675 675 675 675 675 675 675 675 675 675	98 117 130 144 159 175 191 207	m 3.5 3.8 3.8 3.8 3.8 3.8 1.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	m 418.1 445.1 506.1 567.1 162.0 162.	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6 11.6 11.6 10.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 A barrier	4.3 4.2 3.8 3.5 3.2 3.0 2.8 2.6 0.0 0.0 0.0 0.0 0.0 0.0 1.1 IL barrier	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3 At NSR, incl façade Leq, day 32.8 At NSR, incl façade Leq, day		Yes
at Gate at Side Louvre 1 at Side Louvre 2 at Side Louvre 2 at Side Louvre 3 at Side Louvre 4 at Side Louvre 6 at Side Louvre 6 at Side Louvre 7 at Roof Skylight 1 at Roof Skylight 2 at Roof Skylight 3 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 5 at Roof Skylight 6 at Roof Skylight 1 At 1 long train Day: 0 long Night: 1 long Idling outside	Leq Total 30.8 0.0 30.8 Day	m 418 445 506 567 629 691 753 815 449 510 632 694 756 818 de N	Angle Deg 18.7	On Correct ion 2.11	93.5 88.7 88.7 88.7 88.7 88.7 88.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	no shield Leq NSR 31.0 27.8 26.7 24.8 24.0 23.2 22.5 -67.0 -68.2 -69.1 -70.0 -70.8 -71.6 -72.3 Lmax NSR 30.8 0.0 30.8 At NSR, no shield, 1hr Leq NSR 44.8	Reduction n dB	Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier Barrier	mPD 15 15 15 15 15 15 15 15 15 15 15 15 15	m 12 12 12 12 12 12 12	m 320 328 376 423 376 423 470 516 562 562 694 818 8	98 117 130 144 159 175 191 207	Hs m 1.2	m 418.1 445.1 506.1 567.1 629.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.0 753.0 691.1 632.1 694.1 818.1	m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6	4.3 4.2 3.8 3.5 3.2 3.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.3 4.2 3.8 3.5 3.2 3.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.1 1.1	façade Leq 29.7 17.5 16.9 16.2 15.6 15.0 14.4 13.9 -64.0 -65.2 -66.1 -67.8 -68.6 -69.3 At NSR, incl façade Leq, day 32.8		Yes Yes Yes Yes Yes Yes Yes Yes Yes

Commissioning Test - SSS Calculation Result for Fixed Plant at NSR

		Shur	nting		Tr	ain Idlir	ng in Sh	ed	Tr	ain Idlin	g outsi	de	(Crane O	peration)		Car Wa	ashing		Loc	o Shunt	ing + ld	ling		То	tal	
NCD	Leq,	Leq,	Leq,		Leq,	Leq,	Leq,		Leq,	Leq,	Leq,		Leq,	Leq,	Leq,		Leq,	Leq,	Leq,		Leq,	Leq,	Leq,		Leq,	Leq,	Leq,	
NSR	day dB(A)	night dB(A)	24h dB(A)	Lmax dB(A)	day dB(A)	night dB(A)	24h dB(A)	Lmax dB(A)	day dB(A)	night dB(A)	24h	Lmax dB(A)	day	night dB(A)	24h dB(A)	Lmax dB(A)	day dB(A)	night dB(A)	24h dB(A)	Lmax dB(A)	day dB(A)	night dB(A)	24h dB(A)	Lmax dB(A)	day dB(A)	night dB(A)	24h dB(A)	Lmax dB(A)
	` '		. ,	· ` ´	UB(A)	, ,		` ,	. ,	UB(A)	dB(A)	, ,	dB(A)	UD(A)		. ,		UD(A)	, ,	. ,	UD(A)	UD(A)	. ,	` ,		. ,		` ,
SS2	31.4	26.6	30.3	36.4	-	34.0	29.2	34.0	30.8	-	29.1	30.8	19.2	-	17.4	19.2	32.0	-	30.2	32.0	-	-	35.4	53.0	36.3	34.7	38.0	53.0
SS4	35.4	30.6	34.3	40.5	-	26.4	21.7	26.4	32.1		30.3	32.1	13.3	-	11.5	13.3	24.1	-	22.3	24.1	-	1	37.9	55.4	37.3	32.0	40.1	55.4
SS5	38.0	33.2	36.9	41.3	1	28.7	23.9	28.7	41.1	-	39.3	41.1	21.0	-	19.3	21.0	28.6	-	26.9	28.6	-	-	37.7	54.9	43.0	34.5	42.9	54.9
SS6	37.5	32.8	36.4	41.4		23.6	18.9	23.6	42.0	-	40.2	42.0	22.3	-	20.5	22.3	26.0	-	24.3	26.0	-	-	31.4	45.0	43.4	33.3	42.2	45.0
SS7	38.0	33.2	36.9	44.2	-	37.2	32.4	37.2	43.7	1	41.9	43.7	25.6	-	23.8	25.6	8.9	-	7.1	8.9	-	1	26.0	49.1	44.7	38.6	43.6	49.1
SS10	36.7	31.9	35.6	43.7	1	25.5	20.8	25.5	42.3	1	40.5	42.3	26.3	-	24.5	26.3	21.9	-	20.2	21.9	ı	1	29.2	47.7	43.5	32.8	42.1	47.7
SS11a	41.0	36.2	39.9	45.8	1	38.7	34.0	38.7	40.0	1	38.2	40.0	24.8	-	23.0	24.8	28.8	-	27.1	28.8	ı	1	39.2	61.0	43.7	40.7	44.4	61.0
SS12	37.6	32.8	36.5	44.4	-	34.2	29.4	34.2	43.7	-	41.9	43.7	26.1	-	24.4	26.1	6.6	-	4.8	6.6	-	-	29.1	45.0	44.7	36.6	43.4	45.0
SS14	40.5	35.8	39.4	44.7	1	31.6	26.9	31.6	44.2	1	42.5	44.2	24.1	-	22.3	24.1	23.5	-	21.7	23.5	ı	ı	35.1	50.7	45.8	37.2	44.8	50.7
SS15	41.0	36.2	39.9	47.1	-	29.6	24.9	29.6	45.2		43.5	45.2	25.2	-	23.5	25.2	13.9	-	12.2	13.9	1	1	34.6	53.1	46.6	37.1	45.5	53.1
SS20	38.6	33.8	37.5	43.9	-	30.8	26.0	30.8	32.8	-	31.0	32.8	16.9	-	15.2	16.9	27.9	-	26.2	27.9	-	-	40.1	59.1	39.9	35.6	42.5	59.1

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS2	Daytime and	Train Movement + Idling Noise			1						
	Evening	+ Gantry Crane + Train Wash(4)									
	-	,						36.3			
		Cooling Tower (3 nos.)	1010			-	3	-			
		RMS-AHU-4001	940			-	3	-			
		RMS-AHU-4003	940			-	3	-			
		RMS-AHU-4005	878			-	3	-			
		RMS-AHU-4007	878			-	3	-			
		RMS-AHU-4009	691	76.0	-10	-	3	-			
		RMS-AHU-4012	669			-	3	-			
		RMS-AHU-4013	627	77.0		-	3	-			
		RMS-AHU-4015	627	77.0		-	3	-			
		SMB.GL.L.004	1040			-	3	-			
		SMB.GL.L.005	1040	74.0	-10	-	3	-			
		SMB.U1.L.003B	1040			-	3	-			
		SMB.U2.L.001B	1020	70.0	-10	-	3	-	36	49	Yes
	Nightime	Train Movement + Idling		•			•				
		Noise ⁽⁴⁾						34.7			
		Cooling Tower (1 nos.)	1010	82.0	0	-	3	-			
		RMS-AHU-4001	940	76.0	-10	-	3	-			
		RMS-AHU-4003	940	75.0	-10	-	3	-			
		RMS-AHU-4005	878	72.0	-10	-	3	-			
		RMS-AHU-4007	878	74.0	-10	-	3	-			
		RMS-AHU-4009	691	76.0	-10	-	3	-			
		RMS-AHU-4012	669	72.0	-10	-	3	-			
		RMS-AHU-4013	627	77.0	-10	-	3	-			
		RMS-AHU-4015	627	77.0		-	3	-			
		SMB.GL.L.004	1040	77.0	-10	-	3	-			
		SMB.GL.L.005	1040	74.0	-10	-	3	-			
		SMB.U1.L.003B	1040	75.0	-10		3				
		SMB.U2.L.001B	1020	70.0	-10	-	3	-	35	39	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m (5)	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) ⁽²⁾	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS4	Daytime and	Train Movement + Idling Noise									
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						37.3			
		Cooling Tower (3 nos.)	892			-	3	-			
		RMS-AHU-4001	829	76.0	-10	-	3	-			
		RMS-AHU-4003	830	75.0	-10	-	3	-			
		RMS-AHU-4005	769		-10	-	3	-			
		RMS-AHU-4007	771	74.0	-10	-	3	-			
		RMS-AHU-4009	584	76.0	-10	-	3	-			
		RMS-AHU-4012	564			-	3	-			
		RMS-AHU-4013	521	77.0		-	3	-			
		RMS-AHU-4015	524			-	3	-			
		SMB.GL.L.004	927	77.0		-	3	-			
		SMB.GL.L.005	927	74.0	-10	-	3	-			
		SMB.U1.L.003B	927			-	3	-			
		SMB.U2.L.001B	912	70.0	-10	-	3	-	37	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						32.0			
		Cooling Tower (1 nos.)	892	82.0	0	-	3	-			
		RMS-AHU-4001	829			-	3	-			
		RMS-AHU-4003	830	75.0	-10	-	3	-			
		RMS-AHU-4005	769			-	3	-			
		RMS-AHU-4007	771	74.0	-10	-	3	-			
		RMS-AHU-4009	584	76.0	-10	-	3	-			
		RMS-AHU-4012	564	72.0	-10	-	3	-			
		RMS-AHU-4013	521	77.0	-10	-	3	-			
		RMS-AHU-4015	524	77.0	-10	-	3	-			
	1	SMB.GL.L.004	927	77.0		-	3	-			
		SMB.GL.L.005	927	74.0	-10	-	3	-			
	1	SMB.U1.L.003B	927	75.0		-	3	-			
	1	SMB.U2.L.001B	912	70.0	-10	-	3	-	32	40	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m (5)	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS5	Daytime and	Train Movement + Idling Noise									
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						43.0			
		Cooling Tower (3 nos.)	419			-	3	-			
		RMS-AHU-4001	365			-	3	-			
		RMS-AHU-4003	369			-	3	-			
		RMS-AHU-4005	315			-	3	-			
		RMS-AHU-4007	320			-	3	-			
		RMS-AHU-4009	206			-54.3	3	14.7			
		RMS-AHU-4012	208			-54.4	3	10.6			
		RMS-AHU-4013	198			-53.9		16.1			
		RMS-AHU-4015	205			-54.2	3	15.8			
		SMB.GL.L.004	460			-	3	-			
		SMB.GL.L.005	460			-	3	-			
		SMB.U1.L.003B	454			-	3	-		=0	.,
	N II ada di ana	SMB.U2.L.001B	457	70.0	-10	-	3	-	43	52	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						34.5			
		Cooling Tower (1 nos.)	419		0	-	3	-			
		RMS-AHU-4001	365			-	3	-			
		RMS-AHU-4003	369			-	3	-			
		RMS-AHU-4005	315			-	3	-			
		RMS-AHU-4007	320			-	3	-			
		RMS-AHU-4009	206			-54.3		14.7			
		RMS-AHU-4012	208			-54.4	3	10.6			
		RMS-AHU-4013	198			-53.9		16.1			
		RMS-AHU-4015	205			-54.2	3	15.8			
		SMB.GL.L.004	460			-	3	-			
1		SMB.GL.L.005	460			-	3	-			
		SMB.U1.L.003B	454			-	3	-			.,
		SMB.U2.L.001B	457	70.0	-10	-	3	-	35	45	Yes

	Train Movement + Idling Noise + Gantry Crane + Train Wash ⁽⁴⁾ Cooling Tower (3 nos.) RMS-AHU-4001 RMS-AHU-4003 RMS-AHU-4005 RMS-AHU-4007 RMS-AHU-4007 RMS-AHU-4012	301 264 265 227	86.8 76.0 75.0	0						
	Cooling Tower (3 nos.) RMS-AHU-4001 RMS-AHU-4003 RMS-AHU-4005 RMS-AHU-4007 RMS-AHU-4009	264 265 227	76.0		_1					
	RMS-AHU-4001 RMS-AHU-4003 RMS-AHU-4005 RMS-AHU-4007 RMS-AHU-4009	264 265 227	76.0		_		43.4			
	RMS-AHU-4003 RMS-AHU-4005 RMS-AHU-4007 RMS-AHU-4009	265 227				3	-			
	RMS-AHU-4005 RMS-AHU-4007 RMS-AHU-4009	227	75.0	-10	-56.4	3	12.6			
	RMS-AHU-4007 RMS-AHU-4009			-10	-56.5	3	11.5			
	RMS-AHU-4009		72.0	-10	-55.1	3	9.9			
		233	74.0	-10	-55.3	3	11.7			
	PMS-AHIL/012	221	76.0	-10	-54.9	3	14.1			
	INNO ALIO TO IZ	237	72.0	-10	-55.5	3	9.5			
	RMS-AHU-4013	250	77.0	-10	-56.0	3	14.0			
	RMS-AHU-4015	259	77.0	-10	-56.3	3	13.7			
	SMB.GL.L.004	343	77.0	-10	-	3	-			
	SMB.GL.L.005	343	74.0	-10	-	3	-			
	SMB.U1.L.003B	336	75.0	-10	-	3	-			
Nightime	SMB.U2.L.001B	344	70.0	-10	-	3	-	43	52	Yes
	Train Movement + Idling Noise ⁽⁴⁾						33.3			
	Cooling Tower (1 nos.)	301	82.0	0		3	33.3			
	RMS-AHU-4001	264	76.0		-56.4	3	12.6			
	RMS-AHU-4003	265	75.0	-10	-56.5	3	11.5			
	RMS-AHU-4005	205	72.0	-10	-55.1	3	9.9			
	RMS-AHU-4007	233	74.0	-10	-55.3	3	11.7			
	RMS-AHU-4009	221	76.0	-10	-54.9	3	14.1			
	RMS-AHU-4012	237	72.0	-10	-55.5	3	9.5			
	RMS-AHU-4013	250		-10	-56.0	3	14.0			
	RMS-AHU-4015	259	77.0	-10	-56.3	3	13.7			
		343	77.0	-10	-30.3	3	13.7			
		343		-10		3				
	SMB.GL.L.004	336	75.0	-10		3				
		344	70.0			3		34	45	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS7	Daytime and	Train Movement + Idling Noise		•			•				
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						44.7			
		Cooling Tower (3 nos.)	114	86.8	0	-49.1	3	40.7			
		RMS-AHU-4001	142			-51.0	3	18.0			
		RMS-AHU-4003	149	75.0	-10	-51.5	3	16.5			
		RMS-AHU-4005	186		-10	-53.4	3	11.6			
		RMS-AHU-4007	191	74.0	-10	-53.6	3	13.4			
		RMS-AHU-4009	353				3	-			
		RMS-AHU-4012	377	72.0			3	-			
		RMS-AHU-4013	414			-	3	-			
		RMS-AHU-4015	417		-10	-	3	-			
		SMB.GL.L.004	140		-10	-50.9		19.1			
		SMB.GL.L.005	140			-50.9		16.1			
		SMB.U1.L.003B	129			-50.2		17.8			
		SMB.U2.L.001B	156	70.0	-10	-51.9	3	11.1	46	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						38.6			
		Cooling Tower (1 nos.)	114		0	-49.1	3	35.9			
		RMS-AHU-4001	142		-10	-51.0		18.0			
		RMS-AHU-4003	149		-10	-51.5		16.5			
		RMS-AHU-4005	186			-53.4		11.6			
		RMS-AHU-4007	191	74.0		-53.6		13.4			
		RMS-AHU-4009	353			-	3	-			
		RMS-AHU-4012	377	72.0	-10	-	3	-			
		RMS-AHU-4013	414			-	3	-			
		RMS-AHU-4015	417			-	3	-			
		SMB.GL.L.004	140			-50.9		19.1			
		SMB.GL.L.005	140		-10	-50.9		16.1			
		SMB.U1.L.003B	129		-10	-50.2	3	17.8			
		SMB.U2.L.001B	156	70.0	-10	-51.9	3	11.1	41	47	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m (5)	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS10	Daytime and	Train Movement + Idling Noise									
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						43.5			
		Cooling Tower (3 nos.)	104	86.8	-10	-48.3	3	31.5			
		RMS-AHU-4001	172			-52.7	3	16.3			
		RMS-AHU-4003	174	75.0	-10	-52.8	3	15.2			
		RMS-AHU-4005	232	72.0	-10	-55.3	3	9.7			
		RMS-AHU-4007	234	74.0		-55.4	3	11.6			
		RMS-AHU-4009	419	76.0	-10	-	3	-			
		RMS-AHU-4012	441	72.0	-10	-	3	-			
		RMS-AHU-4013	482			-	3	-			
		RMS-AHU-4015	482	77.0	-10	-	3	-			
		SMB.GL.L.004	95	77.0	0	-47.6	3	32.4			
		SMB.GL.L.005	95	74.0	0	-47.6	3	29.4			
		SMB.U1.L.003B	89	75.0	0	-47.0	3	31.0			
		SMB.U2.L.001B	103	70.0	-10	-48.3	3	14.7	44	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						32.8			
		Cooling Tower (1 nos.)	104		-10	-48.3	3	26.7			
		RMS-AHU-4001	172	76.0		-52.7	3	16.3			
		RMS-AHU-4003	174			-52.8	3	15.2			
		RMS-AHU-4005	232			-55.3		9.7			
		RMS-AHU-4007	234			-55.4	3	11.6			
		RMS-AHU-4009	419			-	3	-			
		RMS-AHU-4012	441	72.0		-	3	-			
		RMS-AHU-4013	482	77.0		-	3	-			
		RMS-AHU-4015	482		-10	-	3	-			
		SMB.GL.L.004	95		0	-47.6	3	32.4			
		SMB.GL.L.005	95		0	-47.6	3	29.4			
		SMB.U1.L.003B	89		0	-47.0	3	31.0			
		SMB.U2.L.001B	103	70.0	-10	-48.3	3	14.7	38	47	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS11a	Daytime and	Train Movement + Idling Noise									
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						43.7			
		Cooling Tower (3 nos.)	529			-	3	-			
		RMS-AHU-4001	470		-10	-	3	-			
		RMS-AHU-4003	467	75.0		-	3	-			
		RMS-AHU-4005	408	72.0	-10	-	3	-			
		RMS-AHU-4007	406			-	3	-			
		RMS-AHU-4009	227	76.0		-55.1	3	13.9			
		RMS-AHU-4012	205	72.0	-10	-54.2	3	10.8			
		RMS-AHU-4013	170	77.0	-10	-52.6	3	17.4			
		RMS-AHU-4015	167	77.0	-10	-52.5	3	17.5			
		SMB.GL.L.004	559	77.0	-10	-	3	-			
		SMB.GL.L.005	559	74.0	-10	-	3	-			
		SMB.U1.L.003B	561	75.0	-10	-	3	-			
		SMB.U2.L.001B	547	70.0	-10	-	3	-	44	52	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						40.7			
		Cooling Tower (1 nos.)	529			-	3	-			
		RMS-AHU-4001	470	76.0	-10	-	3	-			
		RMS-AHU-4003	467	75.0	-10		3	-			
		RMS-AHU-4005	408	72.0		-	3	-			
		RMS-AHU-4007	406	74.0	-10	-	3	-			
		RMS-AHU-4009	227	76.0	-10	-55.1	3	13.9			
		RMS-AHU-4012	205	72.0	-10	-54.2	3	10.8			
		RMS-AHU-4013	170	77.0	-10	-52.6	3	17.4			
	1	RMS-AHU-4015	167	77.0	-10	-52.5	3	17.5			
	1	SMB.GL.L.004	559	77.0	-10	-	3	-			
		SMB.GL.L.005	559			-	3	-			
1	1	SMB.U1.L.003B	561	75.0	-10	-	3	-			
1	1	SMB.U2.L.001B	547	70.0	-10	-	3	-	41	50	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS12	Daytime and	Train Movement + Idling Noise		•							
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						44.7			
		Cooling Tower (3 nos.)	140	86.8	-10	-50.9	3	28.9			
		RMS-AHU-4001	211	76.0		-54.5	3	14.5			
		RMS-AHU-4003	211	75.0	-10	-54.5	3	13.5			
		RMS-AHU-4005	272	72.0	-10	-56.7	3	8.3			
		RMS-AHU-4007	272	74.0	-10	-56.7	3	10.3			
		RMS-AHU-4009	459				3	-			
		RMS-AHU-4012	481	72.0		-	3	-			
		RMS-AHU-4013	523				3	-			
		RMS-AHU-4015	523		-10	-	3	-			
		SMB.GL.L.004	112		0	-49.0		31.0			
		SMB.GL.L.005	112			-49.0		28.0			
		SMB.U1.L.003B	112			-49.0		29.0			
		SMB.U2.L.001B	116	70.0	-10	-49.3	3	13.7	45	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						36.6			
		Cooling Tower (1 nos.)	140	82.0	-10	-50.9	3	24.1			
		RMS-AHU-4001	211	76.0	-10	-54.5	3	14.5			
		RMS-AHU-4003	211	75.0	-10	-54.5	3	13.5			
		RMS-AHU-4005	272			-56.7	3	8.3			
		RMS-AHU-4007	272			-56.7	3	10.3			
		RMS-AHU-4009	459			-	3	-			
		RMS-AHU-4012	481	72.0	-10	-	3	-			
		RMS-AHU-4013	523			-	3	-			
		RMS-AHU-4015	523			-	3	-			
		SMB.GL.L.004	112			-49.0		31.0			
		SMB.GL.L.005	112			-49.0	3	28.0			
		SMB.U1.L.003B	112		0	-49.0	3	29.0			
		SMB.U2.L.001B	116	70.0	-10	-49.3	3	13.7	39	47	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) ⁽¹⁾	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS14	Daytime and	Train Movement + Idling Noise									
	Evening	+ Gantry Crane + Train Wash(4)									
	-							45.8			
		Cooling Tower (3 nos.)	334	86.8	0	-	3	-			
		RMS-AHU-4001	278	76.0	-10	-56.9	3	12.1			
		RMS-AHU-4003	282	75.0	-10	-57.0	3	11.0			
		RMS-AHU-4005	228	72.0		-55.2	3	9.8			
		RMS-AHU-4007	233	74.0		-55.3	3	11.7			
		RMS-AHU-4009	147	76.0		-51.3	3	17.7			
		RMS-AHU-4012	157	72.0		-51.9	3	13.1			
		RMS-AHU-4013	165			-52.3	3	17.7			
		RMS-AHU-4015	171	77.0		-52.7	3	17.3			
		SMB.GL.L.004	374	77.0		-	3	-			
		SMB.GL.L.005	374			-	3	-			
		SMB.U1.L.003B	369	75.0		-	3	-			
		SMB.U2.L.001B	370	70.0	-10	-	3	-	46	49	Yes
	Nightime	Train Movement + Idling									
		Noise ⁽⁴⁾						37.2			
		Cooling Tower (1 nos.)	334			-	3	-			
		RMS-AHU-4001	278			-56.9	3	12.1			
		RMS-AHU-4003	282			-57.0	3	11.0			
		RMS-AHU-4005	228	72.0		-55.2	3	9.8			
		RMS-AHU-4007	233			-55.3	3	11.7			
		RMS-AHU-4009	147	76.0		-51.3	3	17.7			
		RMS-AHU-4012	157	72.0		-51.9	3	13.1			
		RMS-AHU-4013	165			-52.3	3	17.7			
		RMS-AHU-4015	171	77.0		-52.7	3	17.3			
		SMB.GL.L.004	374			-	3	-			
		SMB.GL.L.005	374			-	3	-			
		SMB.U1.L.003B	369	75.0		-	3	-			
		SMB.U2.L.001B	370	70.0	-10	-	3	-	37	47	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) (2)	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS15	Daytime and	Train Movement + Idling Noise				•					
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						46.6			
		Cooling Tower (3 nos.)	289	86.8		-57.2	3	32.6			
		RMS-AHU-4001	237	76.0	-10	-55.5	3	13.5			
		RMS-AHU-4003	239			-55.6	3	12.4			
		RMS-AHU-4005	185	72.0	-10	-53.3	3	11.7			
		RMS-AHU-4007	190	74.0	-10	-53.6	3	13.4			
		RMS-AHU-4009	136			-50.7	3	18.3			
		RMS-AHU-4012	151	72.0	-10	-51.6	3	13.4			
		RMS-AHU-4013	171	77.0	-10	-52.7	3	17.3			
		RMS-AHU-4015	176			-52.9	3	17.1			
		SMB.GL.L.004	330	77.0		-	3	-			
		SMB.GL.L.005	330		-10	-	3	-			
		SMB.U1.L.003B	324			-	3	-			
		SMB.U2.L.001B	323	70.0	-10	-	3	-	47	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						37.1			
		Cooling Tower (1 nos.)	289			-57.2	3	27.8			
		RMS-AHU-4001	237	76.0		-55.5	3	13.5			
		RMS-AHU-4003	239			-55.6	3	12.4			
		RMS-AHU-4005	185			-53.3	3	11.7			
		RMS-AHU-4007	190			-53.6	3	13.4			
		RMS-AHU-4009	136			-50.7	3	18.3			
		RMS-AHU-4012	151	72.0		-51.6	3	13.4			
		RMS-AHU-4013	171	77.0		-52.7	3	17.3			
		RMS-AHU-4015	176			-52.9	3	17.1			
		SMB.GL.L.004	330			-	3	-			
		SMB.GL.L.005	330	74.0		-	3	-			
		SMB.U1.L.003B	324	75.0		-	3	-			
		SMB.U2.L.001B	323	70.0	-10	-	3	-	38	47	Yes

Noise Assessment Points	Time Period	Plant item	Distance, m ⁽⁵⁾	SWL, dB(A)	Correction for line of sight, dB(A) (1)	Distance Correction, dB(A) ⁽²⁾	Façade Correction, dB(A)	Corrected SPL ⁽³⁾ , dB(A)	Total SPL, dB(A)	Noise Criteria, dB(A)	Compliance (Yes/No)
SS20	Daytime and	Train Movement + Idling Noise		•			•				
	Evening	+ Gantry Crane + Train Wash ⁽⁴⁾						39.9			
		Cooling Tower (3 nos.)	846	86.8	0	-	3	-			
		RMS-AHU-4001	784	76.0	-10	-	3	-			
		RMS-AHU-4003	786	75.0	-10	-	3	-			
		RMS-AHU-4005	723		-10	-	3	-			
		RMS-AHU-4007	725		-10	-	3	-			
		RMS-AHU-4009	540			-	3	-			
		RMS-AHU-4012	521	72.0		-	3	-			
		RMS-AHU-4013	478			-	3	-			
		RMS-AHU-4015	480		-10	-	3	-			
		SMB.GL.L.004	882		-10	-	3	-			
		SMB.GL.L.005	882			-	3	-			
		SMB.U1.L.003B	880			-	3	-			
		SMB.U2.L.001B	874	70.0	-10	-	3	-	40	49	Yes
	Nightime	Train Movement + Idling Noise ⁽⁴⁾						35.6			
		Cooling Tower (1 nos.)	846	82.0	0	-	3	-			
		RMS-AHU-4001	784		-10	-	3	-			
		RMS-AHU-4003	786	75.0	-10	-	3	-			
		RMS-AHU-4005	723			-	3	-			
		RMS-AHU-4007	725			-	3	-			
		RMS-AHU-4009	540			-	3	-			
		RMS-AHU-4012	521	72.0	-10	-	3	-			
		RMS-AHU-4013	478			-	3	-			
		RMS-AHU-4015	480			-	3	-			
		SMB.GL.L.004	882			-	3	-			
		SMB.GL.L.005	882		-10	-	3	-			
		SMB.U1.L.003B	880		-10	-	3	-			
1		SMB.U2.L.001B	874	70.0	-10	-	3	-	36	40	Yes

Remark:

(1) A negative correction of 10 dB(A) has been adopted to the louvers that the direction facing is totally screened by buildings.

(2) Since the setback distance of the Assessment Point is larger than the longest dimension of louver divided by pi, the noise emission from that louvre would be considered as point source. Thus, the calculation would not take into account of the dimensions of louvers. (i.e. Dist. Corr. = -20log(r)-8).

(3) There will be insignificant noise contribution from the noise sources located more than 300m from the NSRs, and thus no calculation is made for these noise sources.

(4) Results refer to "Commissioning Test - SSS Calculation Result for Fixed Plant at NSR".

(5) For NSR which its distance to the plant item exceeds 300m assessment area, it is excluded from the fixed plant noise calculation.

Commissioning Test - SSS Fixed Plant Noise Calculation Summary

		Douting Night time									То	tal	Crit	eria	Excee	dence
NSR	Use	Address	ASR	No. of Storey		Daytime Backgroun d incl façade	Criteria Leq, day	Night time Backgroun d incl façade	Criteria Leq, night		Leq, day	Leq, night	Leq, day	Leq, night	Leq, day	Leq, night
					mPD	dB(A)	dB(A)	dB(A)	dB(A)		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
SS2		Nan Hing Lane, Wang Toi Shan, Pat Heung, N.T.	В	1	20.5	49	49	39	39		36	35	49	39	1	-
SS4	Residential	Leung Uk Tsuen Village House	В	1	22.9	49	49	40	40		37	32	49	40	-	-
SS5	Residential	Pat Heung, N. I.	В	3	17.3	52	52	45	45		43	35	52	45	-	-
SS6	Residential	Kam Tin Road, N.T.	В	2	15.3	52	52	45	45		43	34	52	45	1	-
SS7	Residential	Leung Uk Tsuen, Wang Toi Shan, Kam Tin Road, N.T.	В	2	13.6	49	49	47	47		46	41	49	47	ı	-
SS10	Residential	DD110 LOT 482, Wang Toi Shan Choi Yuen Tsuen, Wang Toi Shan, Pat Heung, N.T.	В	1	11.5	49	49	47	47		44	38	49	47	-	-
SS11a	Residential	Potential Development (20m setback from fence), Wang Toi Shan, Kam Tin Road, N.T.	В	2	15.0	52	52	50	50		44	41	52	50	-	-
SS12	Residential	265 Kam Tai Road, Wang Toi Shan, Pat Heung, N.T.	В	2	12.3	49	49	47	47		45	39	49	47	-	-
SS14	Residential	Village Zone West Boundary, Leung Uk Tsuen, Wang Toi Shan, Pat Heung, N.T.	В	3	17.0	49	49	47	47		46	37	49	47	-	-
SS15	Residential	Abandoned Shek Kong village house	В	3	15.7	49	49	47	47		47	38	49	47	-	-
SS20	Residential	Shek Kong village house	В	2	22.2	49	49	40	40		40	36	49	40	-	-

Summary of Fixed Plant Noise Source

		Plant or	In		re Size m)		Measurement	Surface Area of		Average		Background	Calculated
Description	ID	Louvre? (P/L/NA)	Operation ? (Y/N)	Width	Height	Method (1)	Distance, D_M	Measurement Box, S (m ²)	Measured L _{Aeq} [dB(A)]	Background L _{Aeq} [dB(A)]	Difference L _{Aeq} [dB(A)]	Corrected Measured L _{Aeq} [dB(A)]	SWL L _{Aeq} [dB(A)] ⁽³⁾
Gantry Crane	-	Р	Υ	-	-	2	3	-	72.5	-	-	-	90
Train Wash	-	Р	Y	-	-	2	6	-	61.8	-	-	-	85
Cooling Tower	-	Р	Y	-	-	2	15	-	50.0	-	-	-	82
AHU ⁽⁴⁾	RMS-AHU-4001	L	Υ	2.5	2	2	5	-	55.1	49.8	5.3	53.6	76
	RMS-AHU-4002	L	Y	2.5	2	2	5	-	54.7	49.8	4.9	53.0	75
	RMS-AHU-4003	L	Υ	2.5	2	2	5	-	54.7	49.8	4.9	53.0	75
	RMS-AHU-4004	L	Υ	2.5	2	2	5	-	53.2	49.8	3.4	50.5	72
	RMS-AHU-4005	L	Υ	2.5	2	2	5	-	53.2	49.8	3.4	50.5	72
	RMS-AHU-4006	L	Y	2.5	2	2	5	-	53.2	49.8	3.4	50.5	72
	RMS-AHU-4007	L	Y	2.5	2	2	5	-	54.2	49.8	4.4	52.2	74
	RMS-AHU-4008	L	Y	2.5	2	2	5	-	52.8	49.8	3.0	49.8	72
	RMS-AHU-4009	L	Υ	2.5	2	2	5	-	55.1	49.8	5.3	53.6	76
	RMS-AHU-4010	L	Y	2.5	2	2	5	-	54.2	49.8	4.4	52.2	74
	RMS-AHU-4011	L	Υ	2.5	2	2	5	-	53.1	49.8	3.3	50.4	72
	RMS-AHU-4012	L	Y	2.5	2	2	5	-	51.6	45.0	6.6	50.5	72
	RMS-AHU-4013	L	Y	2.5	2	2	5	-	55.4	45.0	10.4	55.4	77
	RMS-AHU-4014	L	Y	2.5	2	2	5	-	54.9	45.0	9.9	54.4	76
	RMS-AHU-4015	L	Υ	2.5	2	2	5	-	55.4	45.0	10.4	55.4	77
	RMS-AHU-4016	L	Υ	2.5	2	2	5	-	54.2	45.2	9.0	53.6	76
Ventilation Louvres	SMB.GL.L.004	L	Υ	3.5	1.6	3	1	38	62.5	55.8	6.7	61.5	77
	SMB.GL.L.005	L	Y	3.5	1.2	3	1	35	60.2	55.8	4.4	58.2	74
	SMB.U1.L.003B	L	Υ	2	2	3	0.5	15	64.2	55.8	8.4	63.5	75
	SMB.U2.L.001B	L	Υ	2	1.8	2	4	-	51.7	46.3	5.4	50.2	70

Note:

⁽¹⁾ Method 2: Far-field measurement; Method 3: Near-field measurement.

⁽²⁾ It is confirmed that the measurement distance between the noise emitting parts of concerned plant items (e.g. gantry crane and train wash) and the microphone are greater than twice of the longest side of the plant items. The hoist of the gantry crane is about 0.5m x 0.5m x 1m, while the moving part of the train wash plant is about 0.5m x 0.5m x 3m. However, due to site constraints, the noise measurement of cooling towers is considered less representative. The SWL of cooling tower provided by the manufacturer is therefore adopted for calculation.

⁽³⁾ Calculated SWL for far-field method = Max. Measured SPL + 20log*D* + 8 + background noise correction; Calculated SWL for near-field method = Max. Measured SPL + 10logS + background noise correction (4) A total of 16 AHUs (total 8 groups) are on the roof of Running Maintenance Shed and only 8 AHUs (one of each group) will operate 24-hour. As a conservative approach, the maximum SWL of each group AHU is adopted in the noise calculation. Please note there is no direct line-of-sight between all AHUs and NSRs as they are totally screened by noise barriers at site boundary or SSS main building or the maintenance shed.

SSS - Noise Measurement Result - data

Description	Louvre ID	Scenario	Method ⁽²⁾	Location/ Measurement	L (dB)
Gantry Crane	-	Normal	2	measurement 1	70.4
Janus Janus	-	Normal	2	measurement 2	66.6
	-	Normal	2	measurement 3	72.5
				MAXIMUM	72.5
Train Wash	-	Normal	2	measurement 1	61.6
	-	Normal	2 2	measurement 2	62.1
	-	Normal	2	measurement 3 AVERAGE	61.7 61.8
Cooling Tower ⁽¹⁾	-	Normal	3	N/A	N/A
AHU ⁽³⁾	RMS-AHU-4001	Normal	2	measurement 1	55.4
71110		Normal	2	measurement 2	54.6
		Normal	2	measurement 3	55.3
				AVERAGE	55.1
	RMS-AHU-4002	Normal	2	measurement 1	54.9
		Normal	2	measurement 2	54.6
		Normal	2	measurement 3 AVERAGE	54.7 54.7
	RMS-AHU-4003	Normal	2	measurement 1	54.7 54.8
	14WIG 7411G 400G	Normal	2	measurement 2	54.9
		Normal	2	measurement 3	54.4
				AVERAGE	54.7
	RMS-AHU-4004	Normal	2	measurement 1	53.6
		Normal	2	measurement 2	52.9
		Normal	2	measurement 3	52.9
	DMC ALIII 4005	No was al	-	AVERAGE	53.2
	RMS-AHU-4005	Normal Normal	2 2	measurement 1 measurement 2	52.9 53.3
		Normal	2	measurement 3	53.3 53.4
		Normal		AVERAGE	53.2
	RMS-AHU-4006	Normal	2	measurement 1	53.0
		Normal	2	measurement 2	53.1
		Normal	2	measurement 3	53.3
				AVERAGE	53.2
	RMS-AHU-4007	Normal	2	measurement 1	54.2
		Normal	2	measurement 2	53.8
		Normal	2	measurement 3 AVERAGE	54.7
	RMS-AHU-4008	Normal	2	measurement 1	54.2 53.1
	14WIO 74110 4000	Normal	2	measurement 2	52.8
		Normal	2	measurement 3	52.3
				AVERAGE	52.8
	RMS-AHU-4009	Normal	2	measurement 1	55.4
		Normal	2	measurement 2	54.6
		Normal	2	measurement 3	55.3
	RMS-AHU-4010	Normal	2	AVERAGE measurement 1	55.1 54.0
	KIVIS-AUU-4010	Normal	2	measurement 2	54.3
		Normal	2	measurement 3	54.2
			_	AVERAGE	54.2
	RMS-AHU-4011	Normal	2	measurement 1	52.8
		Normal	2	measurement 2	53.2
		Normal	2	measurement 3	53.2
	DMC ALUL 1010	Nig	—	AVERAGE	53.1
	RMS-AHU-4012	Normal Normal	2 2	measurement 1 measurement 2	51.6 51.2
		Normal	2	measurement 3	51.2 52.1
		Nomai		AVERAGE	51.6
	RMS-AHU-4013	Normal	2	measurement 1	54.8
		Normal	2	measurement 2	55.7
		Normal	2	measurement 3	55.5
			1	AVERAGE	55.4
	RMS-AHU-4014	Normal	2	measurement 1	55.0
		Normal	2	measurement 2	54.8
		Normal	2	measurement 3 AVERAGE	54.9
	RMS-AHU-4015	Normal	2	measurement 1	54.9 55.3
	11WIS-ALIU-4013	Normal	2	measurement 2	55.3 55.4
		Normal	2	measurement 3	55.4 55.4
			I -	AVERAGE	55.4
	RMS-AHU-4016	Normal	2	measurement 1	54.2
		Normal	2	measurement 2	54.0
		Normal	2	measurement 3	54.4
				AVERAGE	54.2

SSS - Noise Measurement Result - data

	1				
Description	Louvre ID	Scenario	Method ⁽²⁾	Location/ Measurement	L _{Aeq} (dB)
Ventilation Louvres	SMB.GL.L.004	Normal	3	measurement 1	64.1
		Normal	3	measurement 2	62.0
		Normal	3	measurement 3	60.8
		Normal	3	measurement 4	64.1
		Normal	3	measurement 5	61.9
		Normal	3	measurement 6	60.7
		Normal	3	measurement 7	63.8
		Normal	3	measurement 8	63.7
		Normal	3	measurement 9	61.3
		Normal	3	measurement 10	62.9
		Normal	3	measurement 11	58.5
		Normal	3	measurement 12	62.5
				AVERAGE	62.5
	SMB.GL.L.005	Normal	3	measurement 1	58.6
		Normal	3	measurement 2	61.9
		Normal	3	measurement 3	57.7
		Normal	3	measurement 4	60.9
		Normal	3	measurement 5	59.5
		Normal	3	measurement 6	60.6
		Normal	3	measurement 7	59.5
		Normal	3	measurement 8	60.7
		Normal	3	measurement 9	60.4
		Normal	3	measurement 10	59.5
		Normal	3	measurement 11	59.7
		Normal	3	measurement 12	61.4
				AVERAGE	60.2
	SMB.U1.L.003B	Normal	3	measurement 1	63.0
		Normal	3	measurement 2	63.3
		Normal	3	measurement 3	63.9
		Normal	3	measurement 4	63.6
		Normal	3	measurement 5	64.6
		Normal	3	measurement 6	65.1
		Normal	3	measurement 7	64.2
		Normal	3	measurement 8	65.4
		Normal	3	measurement 9	63.1
		Normal	3	measurement 10	64.4
		Normal	3	measurement 11	64.9
		Normal	3	measurement 12	63.6
		Normal	3	AVERAGE	64.2
	SMB.U2.L.001B	Normal	2	measurement 1	51.7
		Normal	2	measurement 2	50.0
		Normal	2	measurement 3	50.2
				MAXIMUM	51.7

Remark:

^{(1):} Commissioning test was conducted by the Manufacturer.

^{(2): 2:} Far-field measurement; 3: Near-field measurement.

^{(3):} A total of 16 AHUs (total 8 groups) are on the roof of Running Maintenance Shed and only 8 AHUs (one of each group) will operate 24-hour. As a conservative approach, the maximum SWL of each group AHU is adopted in the noise calculation.

NSR	Scenario	Measurement Type	Start Tir	ne	End Tim	ne	L _{Aeq,} dB(A)
		Background Noise Levels	20/06/2018	22:20	20/06/2018	22:25	51.5
	1	backyround Noise Levels	20/06/2018	22:25	20/06/2018	22:30	52.4
	'	Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	51.8
SS7		Ivicasuled Noise Leveis	20/06/2018	23:28	20/06/2018	23:58	50.4
337		Background Noise Levels	21/06/2018	01:30	21/06/2018	01:35	48.8
	2	Dackground Noise Levels	21/06/2018	01:39	21/06/2018	01:44	51.4
	2	Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	50.6
		Ivicasuled Noise Leveis	21/06/2018	00:54	21/06/2018	01:24	51.5
		Background Noise Levels	20/06/2018	22:22	20/06/2018	22:27	67.7
	1	Dackground Noise Levels	20/06/2018	22:32	20/06/2018	22:37	69.8
	'	Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	68.5
SS10		Wicasarca Noise Ecveis	20/06/2018	23:28	20/06/2018	23:58	66.9
3310		Background Noise Levels	21/06/2018	00:07	21/06/2018	00:12	66.5
	2	Dading out to 140130 Ec vois	21/06/2018	00:12	21/06/2018	00:17	66.5
		Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	65.9
		Wicasarca Noise Ecveis	21/06/2018	00:54	21/06/2018	01:24	66.2
		Background Noise Levels	20/06/2018	22:14	20/06/2018	22:19	51.1
	1	Dackground Noise Ecvers	20/06/2018	22:47	20/06/2018	22:52	51.7
	'	Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	52.7
SS11a			20/06/2018	23:28	20/06/2018	23:58	53.2
33114		Background Noise Levels	21/06/2018	00:09	21/06/2018	00:14	52.0
	2	Dading out to 140130 Ec vois	21/06/2018	00:18	21/06/2018	00:23	51.8
	_	Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	52.2
			21/06/2018	00:54	21/06/2018	01:24	51.2
	1	Background Noise Levels	20/06/2018	22:34	20/06/2018	22:39	69.3
		Buongi curia reciso Ecrois	20/06/2018	22:44	20/06/2018	22:49	68.6
		Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	67.6
SS12			20/06/2018	23:28	20/06/2018	23:58	66.3
	2	Background Noise Levels	21/06/2018		21/06/2018	00:15	65.7
			21/06/2018	00:15	21/06/2018	00:20	66.1
		Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	65.4
			21/06/2018	00:54	21/06/2018	01:24	64.4
		Background Noise Levels	20/06/2018	22:05	20/06/2018	22:10	57.1
	1		20/06/2018	22:11	20/06/2018	22:16	57.4
		Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	57.4
SS15			20/06/2018	23:28	20/06/2018	23:58	57.3
		Background Noise Levels	21/06/2018	00:07	21/06/2018	00:12	57.5
	2		21/06/2018	00:13	21/06/2018	00:18	57.5
		Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	57.8
			21/06/2018		21/06/2018	01:24	57.9
		Background Noise Levels	20/06/2018	22:35	20/06/2018	22:40	54.1
	1		20/06/2018		20/06/2018	22:46	54.2
		Measured Noise Levels	20/06/2018	22:58	20/06/2018	23:28	54.6
SS20			20/06/2018	23:28	20/06/2018	23:58	54.5
		Background Noise Levels	21/06/2018	00:07	21/06/2018	00:12	54.6
	2	<u> </u>	21/06/2018		21/06/2018	00:23	54.3
		Measured Noise Levels	21/06/2018	00:24	21/06/2018	00:54	54.4
Noto			21/06/2018	00:54	21/06/2018	01:24	54.5

Note

⁽¹⁾ The measurements were conducted between evening-time to night-time (i.e. 2200 – 0130), which is considered as a representative period due to relatively lower background noise level. The measurement results of both operation scenarios were therefore less affected by background noise.

⁽²⁾ Fixed plant noise was inaudible at all NSRs. In addition, based on site observations, the measured noise levels were dominated by the background noise including traffic noise or natural ambient sound. Due to fluctuation of background noise, it is possible the "Averaged Background Noise Level" presented above is higher than the "Measured Noise Level".

MTR Corporation Limited

Consultancy Agreement No. C8016

Environmental Term Consultancy for Express Rail Link

Commissioning Test Report for Train Noise

September 2018

	Name	Signature
Prepared & Checked:	Angela Tong	And
Reviewed & Approved:	Josh Lam	Amila
	Y I	V

Version:	D	Date:	12 September 2018

This Report is prepared for MTR Corporation Limited and is given for its sole benefit in relation to and pursuant to Consultancy Agreement No. C8016 and may not be disclosed to, quoted to or relied upon by any person other than MTR Corporation Limited without our prior written consent. No person (other than MTR Corporation Limited) into whose possession a copy of this Report comes may rely on this Report without our express written consent and MTR Corporation Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

8/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong

Tel: (852) 3922 9000 Fax: (852) 3922 9797 www.aecom.com

Table of Content

			Page
1	INTRO	ODUCTION	1
	1.1 1.2	Background Purpose of This Report	
	1.3	Structure of This Report	
2	TRAIN	N OPERATION PARAMETERS DURING COMMISSIONING TEST	2
	2.1	Train System	
	2.2	Train Speed Profile	
	2.3 2.4	Train Operation Schedule and Frequency Evaluation of Railway Noise Levels from Measurement Results of Commissionii Tests	ng
3	OPER	RATIONAL GROUND-BORNE RAILWAY NOISE COMMISSIONING TEST	4
	3.1	Operational Ground-borne Railway Noise Criteria	4
	3.2	Ground-borne Noise Measurement Locations	4
	3.3	Measurement Instrumentation and Procedures	
	3.4	Measurement Parameters	6
	3.5	Data Analysis and Evaluation of Ground-borne Railway Noise Impact	
	3.6	Measurement Results of Commissioning Test	7
4	OPER	RATIONAL AIRBORNE RAILWAY NOISE COMMISSIONING TEST	10
	4.1	Operational Airborne Railway Noise Criteria	
	4.2	Airborne Noise Measurement Locations for Commissioning Test	
	4.3	Measurement Instrumentation, Parameters and Procedures	
	4.4	Data Analysis and Evaluation of Airborne Railway Noise Impact	
	4.5	Measurement Results of Commissioning Test	12
5	CONC	CLUSION	15
List o	f Tables	S .	
Table		Details of Train Operation during Commissioning Test	
Table		Maximum Train Frequency per 30 Minutes in EP Condition 2.27	
Table	2.3	Train Frequency – Hourly and Per 30 Minutes under Additional Train Ope Scenarios	eration
Table	3.1	Operational Ground-borne Railway Noise Criteria	
Table	3.2	Selected GBNSRs for Commissioning Test	
Table		Measurement Instrumentation	
Table	3.4	Ground-Borne Railway Noise Calculation Results (Without Background Corrduring Daytime/Evening Period (0700 - 02300 hrs)	ection)
Table	3.5	Ground-Borne Railway Noise Calculation Results (Without Background Correduring Night-time period (2300-0700 hrs)	ection)
Table	4.1	Operational Airborne Railway Noise Criteria	
Table	4.2	Selected ABNSRs for Commissioning Test	
Table		Measurement Instrumentation	
Table	4.4	Airborne Railway Noise Calculation Results (Without Background Correction) Daytime/Evening Period (0700-2300 hrs)	during
Table	4.5	Airborne Railway Noise Calculation Results (Without Background Correction) Night-time period (2300-0700 hrs)	during

AECOM Asia Co. Ltd. i September 2018

List of Figures

C8016/C/XRL/ACM/M53/101 - 104 Location of Selected GBNSRs for Commissioning Test Location of Selected ABNSRs for Commissioning Test

List of Appendices

Appendix A1	Excerpt of Updated Operational Ground-borne Noise Prediction Report (August 2013)
Appendix A2	Excerpt of Environmental Review Report for the Proposed Design Changes at Shek
	Kong Stabling Sidings (September 2012)
Appendix A3	Excerpt of Noise Review Report for Additional Train Operation Scenario (August 2018)
Appendix B	Excerpt of Annex E of MTR South Island Line (East) - Operational Air-borne Noise
	Performance Test Report
Appendix C	Calibration Certificates of Monitoring Equipment
Appendix D1	Ground-borne Noise Measurement - Photograph of Typical Measurement Setup
Appendix D2	Photographs of Selected ABNSRs
Appendix D3	Airborne Noise Measurement - Photographs of Measurement Setup
Appendix E	Ground-borne Noise Measurement Results and Detailed Calculation
Appendix F	Airborne Noise Measurement Results and Detailed Calculation

AECOM Asia Co. Ltd. ii September 2018

1 INTRODUCTION

1.1 Background

- 1.1.1 The "Hong Kong Section of Guangzhou-Shenzhen-Hong Kong Express Rail Link (XRL)" Project (hereinafter known as "the Project") covers a 26km long underground rail line on a dedicated track that runs from the terminus in West Kowloon to the boundary at Huanggang, where is connect with the XRL Mainland section. XRL Project also covers ventilation buildings, emergency access points, stabling sidings and maintenance facilities and an emergency rescue siding (ERS) (formerly known as rescue emergency station).
- 1.1.2 An Environmental Impact Assessment (EIA) study for the Project was conducted in accordance with the EIA Study Brief No. ESB-197/2008. The EIA study concluded that the Project would be environmentally acceptable with the implementation of mitigation measures.
- 1.1.3 The EIA Report (Register No.: AEIA-143/2009) was approved on 28 September 2009 by the Director of Environmental Protection (DEP) under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an environmental permit (EP) was granted on 16 October 2009 (EP No: EP-349/2009) for the construction and operation of the Project. Variations of environmental permit (VEP) were subsequently applied and the latest Environmental Permit (EP No: EP-349/2009/N) (hereinafter known as "the EP") was issued by Director of Environmental Protection (DEP) on 20 August 2018.
- 1.1.4 As stipulated in EP Condition 2.36, "The Permit Holder, shall no later than two weeks before the commencement of the operation of the Project, deposit with the Director a Commissioning Test Report to confirm the compliance of the operational air-borne and ground-borne noise levels in accordance with the EIA Report and the application for variation of an environmental permit No. VEP-377/2012 and its attached documents.", MTR Corporation Limited (MTR) therefore has commissioned AECOM Asia Co. Ltd to carry out the operational airborne and ground-borne railway noise commissioning test.
- 1.1.5 Commissioning tests were conducted at the selected airborne noise sensitive receivers (ABNSRs) on 29 and 30 December 2017, while ground-borne noise commissioning tests were conducted at the ground-borne noise sensitive receivers (GBNSRs) on 29 and 30 December 2017, 12, 22 and 27 June, and 23 July 2018.

1.2 Purpose of This Report

1.2.1 This Report presents the measurement results of the commissioning tests at the selected measurement locations, and the operational ground-borne and airborne railway noise levels evaluated based on the measurement results to demonstrate the compliance of these noise levels with the relevant noise criteria in the EIA Report and the document attached to the application for VEP-377/2012, i.e. Environmental Review Report for the Proposed Design Changes at Shek Kong Stabling Sidings (September 2012)¹ (SSS ERR).

1.3 Structure of This Report

- 1.3.1 This Report comprises the following sections:
 - Section 1 presents the background information.
 - Section 2 presents the train operation parameters during commissioning tests.
 - Section 3 presents the details of the commissioning tests on operational ground-borne railway noise.
 - Section 4 presents the details of the commissioning tests on operational airborne railway noise.
 - · Section 5 presents the overall conclusion.

AECOM Asia Co. Ltd. 1 September 2018

¹ Environmental Review Report for the Proposed Design Changes at Shek Kong Stabling Sidings was submitted to support variation of an environmental permit No. VEP-377/2012 in September 2012.

2 TRAIN OPERATION PARAMETERS DURING COMMISSIONING TEST

2.1 Train System

- 2.1.1 China Railway High-Speed (CRH) trains with two types of train (i.e. long and short trains) will be used in XRL. Both long (not more than 430m in length) and short trains (not more than 241m in length) will be provided by the relevant operation entities, but only short trains (i.e. CRH 380) were available for noise measurement during commissioning test. Long trains would be equipped with equipment similar to short trains and thus the noise performance of long trains would be similar to short train with major different in train length correction factor. Correction factor accounting for train length has been adopted to evaluate the noise contribution from the operation of long train for daytime operational ground-borne and airborne noise prediction.
- 2.1.2 According to Section 2.2.5 in Appendix 2.1A of Updated Operational Ground-borne Noise Prediction Report (August 2013)² (OGBNPR) (**Appendix A1** refers), the loading/unloading condition would only have an insignificant effect on the dynamic load and on force density level (FDL). In addition, Annex E of MTR South Island Line (East) Operational Air-borne Noise Performance Test Report (**Appendix B** refers), train loading has no significant effect on airborne noise emission of service train. Thus, unloaded trains were employed during commissioning test.

2.2 Train Speed Profile

2.2.1 The speed profile for the train operation as adopted in OGBNPR is presented in **Appendix A1**. According to the speed profile, the maximum operation speed of the Project is 200kph. The train speed profile during commissioning test followed the speed profile with maximum operation speed up to 200kph.

2.3 Train Operation Schedule and Frequency

2.3.1 The airborne noise commissioning test was conducted on 29 and 30 December 2017, while the ground-borne noise commissioning tests were conducted on 29 and 30 December 2017, 12, 22 and 27 June, and 23 July 2018. Details of the train operation during commissioning test are summarized in **Table 2.1**.

Table 2.1 Details of Train Operation during Commissioning Test

Date and Time	Train Type	Direction	No. of train passby
From 2300 hr, 29 Dec 2017 to 0130 hr, 30	Short Train	Northbound (from West Kowloon Station to Futian Station)	3
Dec 2017	Short Irain	Southbound (from Futian Station to West Kowloon Station)	4
From 1130 hr to 1430	Short Train	Northbound (from West Kowloon Station to Futian Station)	6
hr, 12 Jun 2018	Short Halli	Southbound (from Futian Station to West Kowloon Station)	7
From 1100 hr to 1600	Short Train	Short Train Northbound (from West Kowloon Station to Futian Station)	
hr, 22 Jun 2018	Onort Hain	Southbound (from Futian Station to West Kowloon Station)	3
From 1100 hr to 1600	Short Train	Northbound (from West Kowloon Station to Futian Station)	4
hr, 27 Jun 2018	Short Halli	Southbound (from Futian Station to West Kowloon Station)	3
From 1330 hr to 1700	Short Train	Northbound (from West Kowloon Station to Futian Station)	3
hr, 23 Jul 2018	Short Hall	Southbound (from Futian Station to West Kowloon Station)	4

² Pursuant to EP Condition 2.26, an Updated Ground-borne Noise Prediction Report was deposited to DEP in August 2013.

AECOM Asia Co. Ltd. 2 September 2018

2.4 Evaluation of Railway Noise Levels from Measurement Results of Commissioning Tests

- 2.4.1 Assumptions of train operation for evaluating ground-borne and airborne railway noise from noise measurement results of commissioning tests are same as those developed and adopted in OGBNPR and SSS ERR (**Appendices A1** and **A2** refers) respectively. Additional train operation Scenarios were developed according to the recent discussion with relevant operation entities in Mainland. A Noise Review Report for Additional Train Operation Scenarios (August 2018) (NRR) which was prepared to demonstrate the noise compliance associated with additional train operation scenarios was approved by EPD on 5 September 2018.
- 2.4.2 The train operation schedules and frequencies for noise evaluation as extracted from the above-mentioned documents are shown in **Table 2.2** and **Table 2.3**.

Table 2.2 Maximum Train Frequency per 30 Minutes in EP Condition 2.27

Time Period	Direction	Train Type				
		Short Haul Train	Long Haul Train			
Day & Evening time	Northbound	7	2			
Lvorning time	Southbound	6	2			
Night-time	Northbound	3	0			
	Southbound	3	0			

Table 2.3 Train Frequency – Hourly and Per 30 Minutes under Additional Train Operation Scenarios

				No. of Train Frequency Hourly Window			
Time Deviced	Direction	Hourly Frequency			no. in 30	Other 30 mins	
Time Period	Direction	Short Train	Long Train	Short Train	Long Train	Short Train	Long Train
Day &	Northbound	9	6	5	3	4	3
Evening time	Southbound	6	6	3	3	3	3
Scenario 1A							
Night time	Northbound	2	2	2	1	0	1
Night-time	Southbound	2	2	2	1	0	1
Scenario 1B							
Night time	Northbound	2	1	1	0	1	1
Night-time	Southbound	2	2	1	2	1	0

2.4.3 Details of the ground-borne and airborne railway noise commissioning tests are presented in **Section 3** and **4** of this Report respectively.

AECOM Asia Co. Ltd. 3 September 2018

3 OPERATIONAL GROUND-BORNE RAILWAY NOISE COMMISSIONING TEST

3.1 Operational Ground-borne Railway Noise Criteria

3.1.1 The operational ground-borne railway noise criteria as stipulated in the EIA Report and the OGBNPR are presented in **Table 3.1** below

Table 3.1 Operational Ground-borne Railway Noise Criteria

Ground-borne Noise Sensitive	Ground-borne Railway Noise Criteria (L _{eq, 30min} , dB(A))						
Receivers (GBNSR) Description	Day and Evening Periods (0700 to 2300 hrs)			Night-time Period (2300 to 0700 hrs)			
	Α	В	С	Α	В	С	
Churches/temples, schools, medical clinics, libraries, courts and performing arts	50	55	60	40	45	50	
Domestic premises, hotels and hospitals							

3.2 Ground-borne Noise Measurement Locations

- 3.2.1 Locations of representative GBNSRs for conducting ground-borne railway noise commissioning tests have been preliminarily selected and listed in Table 4.2 of XRL EM&A Manual. They are GN3, GN5, GN7, GN8 and GN31 as listed in Table 3.2 below. These GBNSRs were predicted with the highest construction ground-borne noise levels and relatively higher operational ground-borne railway noise levels. According to the results in Table 2.9 of OGBNPR (Appendix A1 refers), the predicted operational ground-borne railway noise levels at GN31 are higher than other NSRs along the northern section of XRL. The predicted noise levels at GN3, GN5 and GN8 are among the highest levels of those NSRs along the southern section of XRL. GBNSR, GN11a, predicted with the highest noise levels among the NSRs along the southern section has not been selected for noise commissioning test because it was still under construction during the commissioning period.
- 3.2.2 As indicated in Section 4.18 of the XRL EM&A Manual, the ground-borne railway noise commissioning test should not be limited to the above selected locations. Further review on the locations for noise commissioning tests have been conducted. The review found that GN38 and GN42 should be included for commissioning tests as these GBNSRs are located directly above the railway tunnels and in areas with higher noise sensitivity. These additional locations proposed by the ET Leader were agreed by the IEC and EPD.
- 3.2.3 Access to the buildings was obtained from the property managements/owners/occupants for conducting site visits and noise measurement. Identifications of suitable locations within the building for noise measurement were also conducted and agreed with property managements/owners/occupants during the site visits prior to the commencement of commissioning test. The agreed ground-borne noise measurement locations were generally on either the lowest floor of the building with GBNSRs or lower floor if consent for entering the GBNSRs could not be obtained from the owners/occupants. Based on the measurement situations, a correction factor to account for floor-to-floor attenuation was applied accordingly to the measurement results for projection of the ground-borne noise level at the GBNSRs (See Section 3.5).
- 3.2.4 Details of the selected GBNSRs for the ground-borne railway noise commissioning test is summarised in **Table 3.2** and their locations are shown in **Figure Nos. C8016/C/XRL/ACM/M53/101 104**.

AECOM Asia Co. Ltd. 4 September 2018

Table 3.2 Selected GBNSRs for Commissioning Test

GBNSR	Lasstian	Floor with	Uee	ACD	Criterion, dB(A)	
No.	Location	Measurement Equipment	Use	ASR	Leq _{, 30min} (day)	Leq, 30min (night)
GN3	Yaumati Catholic Primary School (Hoi Wang Road)	1/F	Educational Institution	В	55	_(1)
GN5	Tower 5 Phase 1 Park Avenue	2/F	Residential	В	55	45
GN7	Tai Fung Building (Block F) Cosmopolitan Estates (2)	1/F	Residential	В	55	45
GN8	Chung Yew Building	G/F ⁽⁴⁾	Residential	В	55	45
GN31	DD110 LOT 482, Wang Toi Shan	G/F	Residential	В	55	45
GN38 ⁽³⁾	45 Wai Tsai Tsuen	G/F	Residential	Α	50	40
GN42 ⁽³⁾	House A77Maple Garden	1/F ⁽⁵⁾	Residential	А	50	40

Notes:

- (1) Educational institutions are considered to be noise sensitive during daytime and evening only.
- (2) Ground-borne noise measurement was conducted at Tai Shing Shopping Centre during commissioning test as consent could not be obtained for accessing NSRs on the lowest sensitive floor in Tai Fung Building. Tai Shing Shopping Centre is located on the same podium structure of Tai Fung Building and is directly above the railway tunnels. The measurement instrument was located on 1/F of Tai Shing Shopping Centre which is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.
- (3) Apart from the representative GBNSRs selected in XRL EM&A Manual for noise measurement during commissioning test, GN38 and GN42 are the additional noise monitoring locations.
- (4) Consent could not be obtained for accessing 1/F of GN8, which was the lowest floor with GBNSRs. Measurement was therefore conducted at G/F of GN8, and thus floor-to-floor attenuation (i.e. -2dB(A)) was applied to the measurement result.
- (5) Measurement instrument was placed on the 1/F of GN42 due to disturbance from the occupant(s) on G/F. As G/F is the lowest noise sensitive floor and therefore a floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

3.3 Measurement Instrumentation and Procedures

- 3.3.1 According to the requirements of the Technical Memorandum (TM) issued under the NCO, sound level meters adopted for measurement comply with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications and other noise measuring and analysis instrumentation are of a comparable professional quality. Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements were accepted as valid with the difference between the calibration levels obtained before and after each noise measurement was less than 1.0 dB.
- 3.3.2 The measurement instruments adopted for the ground-borne noise commissioning test met the above requirements and are listed in **Table 3.3**. The calibration records of the instruments are provided in **Appendix C**.

AECOM Asia Co. Ltd. 5 September 2018

Table 3.3	Measurement Instrumentation

Instrument	Brand and Model No.
Sound & Vibration Analyzer	Svantek SVAN 958, SVAN 958A
Microphone & Preamplifier	PCB 378B02
Accelerometer	PCB 393A03
Acoustic Calibrator	Svantek SV30A, Larson Davis CAL200
Vibration Calibrator	IMI 699A02

3.3.3 All ground-borne noise measurements were conducted indoor inside the buildings, with microphones and an accelerometer set up at each selected monitoring location. The microphones were placed inside a room at around 1.2m above floor level at all selected GBNSR locations, except GN7 of which measurement point inside electric meter room with limited clearance due to safety concern, and the accelerometer was placed on floor. The vibration levels collected from accelerometer were used to determine the train passby. Photograph showing typical measurement setup is provided in **Appendix D1**. The windows of the room were kept closed during the noise measurements.

3.4 Measurement Parameters

- 3.4.1 Noise levels (including Leq) and vibration levels were measured and logged at 1 second interval for the necessary periods at each GBNSR location. The periods need to cover at least three passbys of northbound trains, three passbys of southbound trains (i.e. no less than 6 passbys in total) and over 60 seconds' background noise level, at 30 seconds ahead of each passby. Site observation was carried out during background and train passby noise measurement in order to detect whether the noise measurements were affected by other extraneous noise and to determine the representative of the measured noise levels.
- 3.4.2 Typically, train passby duration including head-tail period was determined when train noise was being perceived. However, if noise of train passby could not be perceived, it would be determined when there was an increase of vibration levels recorded by the accelerometer placed at the testing location. Vibration levels above background generally indicate train passby and its duration was checked against the train running schedule provided by MTR Corporation. Vibration levels were therefore extracted for identification of train passby time and duration when train noise could not be perceived.

3.5 Data Analysis and Evaluation of Ground-borne Railway Noise Impact

- 3.5.1 The collected noise data of train passbys and the evaluation of ground-borne noise impact $(L_{eq,30min})$ followed the steps as presented below.
 - Train passby data was extracted according to the perception of train noise, or recorded vibration levels and train running schedule provided by MTR. Noise level during a passby event was considered representative if the noise measurement was not affected by other extraneous noise.
 - ii. Background noise level was determined from averaging the noise level of over 60 seconds' measurement, at 30 second ahead of each passby. Background noise level was considered representative if the noise measurement was not affected by other extraneous noise.
 - iii. As the measured event noise levels would be used for further evaluation of L_{Aeq,30min} to check against the relevant noise criteria in the OGBNPR, the measured event noise level should be corrected to account for the contribution from background. If the difference between the noise level during a passby event and the corresponding background noise level is equal to or greater than 3.0 dB(A), the measurements indicate that the event noise level is equal to or above the background noise level. In this case, the background corrected noise level could be determined by the following equation:

$$L_{eq,passby} = 10 \times log \left(10^{\text{Leq,during passby/10}} - 10^{\text{Leq,background/10}}\right)$$

Where $L_{eq,during\ passby}$ is the noise level during train passby, dB(A) $L_{eq,backgroung}$ is the background noise level, dB(A)

AECOM Asia Co. Ltd. 6 September 2018

 $L_{eq,passby}$ is the background corrected noise level, dB(A)

If the difference between the noise level during the passby event and the background noise level is less than 3.0 dB(A), the measurements indicate that the event noise level is below the background noise level and the accuracy of the above equation would be reduced and any background correction, if made, should only be regarded as approximate. In such case, as a conservative approach, no background correction would be applied for the measured noise level during the passby event.

iv. Sound Exposure Level (SEL) for northbound and southbound trains was determined by the following equation:

For Short Trains:

$$SEL_{North,short} = L_{eq,passby,north} + 10 \times log(T_{north})$$

 $SEL_{South,short} = L_{eq,passby,south} + 10 \times log(T_{south})$

Where T is the train passby duration, second

For Long Trains:

$$\begin{split} SEL_{North,long} &= SEL_{North,short} + 10 \times log \left(\frac{Len_{long}}{Len_{ref}} \right) \\ SEL_{South,long} &= SEL_{South,short} + 10 \times log \left(\frac{Len_{long}}{Len_{ref}} \right) \end{split}$$

Where T is the train passby duration, second
Len_{long} is length of long train, meter
Len_{ref} is length of the train during commissioning test (i.e. short train), meter

v. Ground-borne railway noise level (L_{eq,30min}) for compliance check was determined by the following equations:

For Daytime/Evening:

$$\begin{split} L_{eq,30min} &= 10 \times log \left(10^{(SEL_{North,long}+10 \times log(N_{North,long})-10 \times log(1800)+Attfloor)/10} \right. \\ &\quad + 10^{(SEL_{South,long}+10 \times log(N_{South,long})-10 \times log(1800)+Attfloor))/10} \\ &\quad + 10^{(SEL_{North,short}+10 \times log(N_{North,short})-10 \times log(1800)+Attfloor)/10} \\ &\quad + 10^{(SEL_{South,short}+10 \times log(N_{South,short})-10 \times log(1800)+Attfloor)/10} \end{split}$$

Where N north/south, short is number of short train passby in 30 minutes

Att_{floor} is floor-to-floor attenuation of +/-2 dB(A) per floor for the measurement which was not be able to be conducted at the lowest floor with NSRs

For Night-time:

$$\begin{split} L_{eq,30min} = 10 \times log & \big(10^{(SEL_{North,short}+10 \times log \left(N_{North,short}\right)-10 \times log (1800) + Attfloor)/10} \\ & + 10^{(SEL_{South,short}+10 \times log \left(N_{South,short}\right)-10 \times log (1800) + Attfloor)/10} \big) \end{split}$$

3.6 Evaluation Results of Commissioning Test

3.6.1 As discussed in **Section 3.5.1 (iii)**, correction for background noise would generally be adopted to account for the contribution of background noise. During the course of measurement, train noise could not be perceived at the measurement locations during train passby. As shown in the time history and noise measurement results recorded at the measurement locations (**Appendix E** refers), the background noise levels were in general similar to the measured noise

AECOM Asia Co. Ltd. 7 September 2018

levels during train passby. Some background noise levels were even higher than the measured noise levels during train passby. In such cases, the change of noise levels during train passby were likely due to fluctuation of background noise instead of the ground-borne railway noise. Since most measured noise levels during train passby were less than 3 dB(A) above the background noise levels, as a conservative approach, all the measured noise levels during train passby were not corrected for background noise in evaluating the ground-borne railway noise level (i.e. with inclusion of background noise) for noise criteria compliance check. It is anticipated that the actual operational ground-borne railway noise levels at the GBNSRs would be substantially lower than the evaluation results. Based on this conservative approach, the evaluated operational ground-borne railway noise levels, with the inclusion of background noise, at all the selected GBNSRs comply with the noise criteria in both daytime/evening and night-time periods.

3.6.2 The evaluation results during daytime/evening and night-time periods according to different operational scenarios (**Table 2.2** and **Table 2.3** refer) are summarised in **Table 3.4** and **Table 3.5** respectively. Measurement results and detailed calculations are provided in **Appendix E**.

Table 3.4 Ground-Borne Railway Noise Calculation Results (Without Background Correction) during Daytime/Evening Period (0700 - 02300 hrs)

	Noise L Leq 30min		rne Railway .evel ⁽¹⁾ , ., dB(A)			
GBNSR No.	Location	Scenario: EP Condition 2.27 Scenario: Additional Train Operation Scenario		Noise Criterion, L _{eq 30min} , dB(A)	Compliance (Y/N)	
GN3	Yaumati Catholic Primary School (Hoi Wang Road)	<28	<28	55	Y	
GN5	Tower 5 Phase 1 Park Avenue	<30	<29	55	Υ	
GN7	Tai Fung Building (Block F) Cosmopolitan Estates	<36	<36	55	Y	
GN8	Chung Yew Building	<29	<29	55	Υ	
GN31	DD110 LOT 482, Wang Toi Shan	<32	<32	55	Y	
GN38	45 Wai Tsai Tsuen	<30	<29	50	Y	
GN42	House A77 Maple Garden	<29	<29	50	Y	

Note

AECOM Asia Co. Ltd. 8 September 2018

⁽¹⁾ Since most measured noise levels during train passby were less than 3dB(A) above the background noise levels, as a conservative approach, all the measured noise levels during train passby were not corrected for background noise in evaluating the L_{eq,30min}. It is therefore anticipated that the actual operational ground-borne railway noise levels at the GBNSRs would be substantially lower than the evaluation results.

Table 3.5 Ground-Borne Railway Noise Calculation Results (Without Background Correction) during Night-time period (2300-0700 hrs)

		Ground-b	orne Railway I ⁽¹⁾ , L _{eq 30min} , dB(A	Noise		
GBNSR No.	Location	Scenario: EP Condition 2.27	Scenario: Additional Train Operation Scenario 1A	Scenario: Additional Train Operation Scenario 1B	Criterion, L _{eq 30min} , dB(A)	Compliance (Y/N)
GN3	Yaumati Catholic Primary School (Hoi Wang Road)	N.A. ⁽²⁾	N.A.	N.A.	N.A.	N.A.
GN5	Tower 5 Phase 1 Park Avenue	<24	<25	<24	45	Y
GN7	Tai Fung Building (Block F) Cosmopolitan Estates	<30	<32	<30	45	Υ
GN8	Chung Yew Building	<24	<25	<24	45	Y
GN31	DD110 LOT 482, Wang Toi Shan	<27	<28	<26	45	Υ
GN38	45 Wai Tsai Tsuen	<24	<25	<24	40	Y
GN42	House A77 Maple Garden	<23	<25	<23	40	Υ

Notes:

3.6.3 Based on the findings of commissioning test, the actual operational ground-borne railway noise levels at the GBNSRs would be substantially lower than the evaluation results and it is concluded that no adverse impact is anticipated at the GBNSRs in both daytime/evening and night-time periods. Therefore no further mitigation measures will be required. While additional noise mitigation measures are not required based on the commissioning test results, flexibility has been allowed in the design for the implementation of further noise mitigation measures including extending low noise trackform to deal with any unforeseeable impact to any noise sensitive receiver pursuant to EP Condition 2.31.

AECOM Asia Co. Ltd. 9 September 2018

⁽¹⁾ Since most measured noise levels during train passby were less than 3dB(A) above the background noise levels, as a conservative approach, all the measured noise levels during train passby were not corrected for background noise in evaluating the L_{eq,30min}. It is therefore anticipated that the actual operational ground-borne railway noise levels at the GBNSRs would be substantially lower than the evaluation results.

⁽²⁾ N.A.- Not Applicable as there is no sensitive use at school during night-time period.

4 OPERATIONAL AIRBORNE RAILWAY NOISE COMMISSIONING TEST

4.1 Operational Airborne Railway Noise Criteria

4.1.1 The operational airborne railway noise criteria stipulated in the SSS ERR are shown in **Table** 4.1.

Table 4.1 Operational Airborne Railway Noise Criteria

	Airborne Railway Noise Criteria								
	L _{eq, 30min} , dB(A)					L _{max} , dB(A)			
ABNSR Description	Day and Evening Periods (0700 to 2300 hrs)		Night-time Period (2300 to 0700 hrs)		Night-time Period (2300 to 0700 hrs)				
	Α	В	C	Α	В	С	Α	В	C
Churches/temples, schools, medical clinics, libraries, courts and performing arts	60	65	70	50	55	60	85	85	85
Domestic premises, hotels and hospitals	60	65	70	50	55	60	85	85	85

4.2 Airborne Noise Measurement Locations for Commissioning Test

- 4.2.1 The airborne railway noise commissioning test should be performed at the potentially worst affected noise sensitive receivers as listed in Table 3.6 of XRL EM&A Manual (i.e. SS7, SS10 and SS15).
- 4.2.2 Site visit was conducted at the selected airborne noise sensitive receivers (ABNSRs) to identify suitable locations for airborne noise measurement. Photographs taken during site visit are presented in **Appendix D2**. As observed on site, there is no sensitive use at the upper floor of SS10 and the lower floor of SS10 is totally screened by its boundary wall (**Appendix D2** refers). In addition, SS10 is located at more than 200m from the ERS, it is therefore considered that noise measurement at SS7 and SS15 would be adequate for noise compliance check and thus noise measurement was not conducted at SS10. This proposed updated monitoring locations was approved by the ER and agreed by the IEC and EPD.
- 4.2.3 Details of the selected ABNSRs for airborne railway noise commissioning test is summarised in **Table 4.2** and their locations are shown in **Figure Nos. C8016/C/XRL/ACM/M53/105**.

Table 4.2 Selected ABNSRs for Commissioning Test

Monitoring Station	ABNSR Leastion	Haa	ACD	Criterion, dB(A)		
No. ⁽¹⁾	NO I		ASR	Leq, 30min (day)	Leq, 30min (night)	
ON1	SS7	Leung Uk Tsuen Village House	Residential	В	65	55
ON3	SS15	Leung Uk Tsuen Squats	Residential	В	65	55

Note:

4.3 Measurement Instrumentation, Parameters and Procedures

4.3.1 The sound level meters used for the airborne railway noise commissioning test comply with the prevailing International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) and other noise measuring and analysis instrumentation are of a comparable professional quality. The measurement instruments adopted for airborne railway noise commissioning test are provided in **Table 4.3** and the calibration records of the instruments are provided in **Appendix C**.

AECOM Asia Co. Ltd. 10 September 2018

⁽¹⁾ Monitoring Station no. as identified in Table 3.6 of XRL EM&A Manual.

Table 4.3 Measurement Instrumentation

Instrument	Model No.			
Integrating Sound Level Meter	B&K Brand Type 2250 (Serial No. 3001291)			
Integrating obtains Level Weter	B&K Brand Type 2270 (Serial No. 2644597)			
Calibrator	B&K 4231 (Serial No. 3006428)			
Calibrator	B&K 4231 (Serial No. 3014024)			

- 4.3.2 During the noise measurement, the following procedures were followed:
 - Sound level meters were set at each selected ABNSRs with the microphone positioned at 1m exterior of SS7 (i.e. facade measurement) and about 2m exterior of SS15 (i.e. free-field measurement).
 - Parameter such as frequency weighting, the weighting and noise descriptors were set as follows:

Frequency weighting : ATime weighting : Fast

- Noise Descriptors : Leq with 1 second or shorter logging interval and Lmax,

together with L10 and L90 as reference

- Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements were accepted as valid as the difference between the calibration levels obtained before and after the noise measurement is less than 1.0 dB.
- The sound level meter logged the noise level continuously. In post-processing, noise level of each train passby was extracted from raw data as a single event. The definition of train passby measurement period (including head-tail period) was determined during the period when train noise was perceived, together with the recorded noise levels. Noise levels above background generally indicate train passby and its duration would be checked against the marking of train passby time. Background noise was also recorded during the whole measurement outside the train passby time.
- Details were recorded when any intrusive noise was observed for determining the representative of the measured noise levels.
- Weather was recorded during the airborne railway noise commissioning test. It was cloudy and the wind speed was less than 5ms⁻¹ during the measurement.

4.4 Data Analysis and Evaluation of Airborne Railway Noise Impact

- 4.4.1 The collected noise data of train passbys and the evaluation of airborne noise impact (L_{eq,30min}) followed the steps as presented below.
 - Train passby data was extracted according to the perception of train noise, together with the recorded noise levels and the marked train passby time. Noise level during a passby event was considered representative if the noise measurement was not affected by other extraneous noise.
 - ii. Background noise level was determined from averaging the noise level of over 60 seconds' measurement, at 30 seconds ahead of each passby. The background noise level was considered representative if the noise measurement was not affected by other extraneous noise.
 - iii. As the measured event noise levels would be used for further evaluation of L_{Aeq,30min} to check against the relevant noise criteria in the SSS ERR, the measured event noise level should be corrected to account for the contribution from background. If the difference between the noise level during the passby event and the background noise level is equal to or greater than 3.0 dB(A), the measurements indicate that the event noise level is equal to or above the background noise level. In this case, the background corrected noise level could be determined by the following equation:

AECOM Asia Co. Ltd. 11 September 2018

$$L_{eq,passby} = 10 \times log \left(10^{Leq,during \ passby/10} - 10^{Leq,background/10}\right)$$

Where $L_{eq,during\ passby}$ is the noise level during train passby, dB(A) $L_{eq,background}$ is the background noise level, dB(A) $L_{eq,passby}$ is the background corrected noise level, dB(A)

If the difference between the noise level during the passby event and the background noise level is less than 3.0 dB(A), the measurements indicate that the event noise level is below the background noise level and the accuracy of the above equation would be reduced and any background correction, if made, should only be regarded as approximate. In such case, as a conservative approach, no background correction would be applied for the measured noise level during the passby event.

iv. Sound Exposure Level (SEL) for northbound and southbound trains was determined by the following equation:

For Short Trains:

$$SEL_{North,short} = L_{eq,passby,north} + 10 \times log(T_{north})$$

 $SEL_{South,short} = L_{eq,passby,south} + 10 \times log(T_{south})$

Where T is the train passby duration, second

For Long Trains:

$$\begin{split} SEL_{North,long} &= SEL_{North,short} + 10 \times log \left(\frac{Len_{long}}{Len_{ref}} \right) \\ SEL_{South,long} &= SEL_{South,short} + 10 \times log \left(\frac{Len_{long}}{Len_{ref}} \right) \end{split}$$

Where T is the train passby duration, second

Len_{long} is length of long train, meter

Len_{ref} is length of the train during commissioning test (i.e. short train), meter

v. Airborne railway noise level (Leq,30min) for compliance check was determined by the following equations:

For Daytime/Evening:

$$\begin{split} L_{eq,30min} = 10 \times log \left(10^{(SEL_{North,long} + 10 \times log(N_{North,long}) - 10 \times log(1800) + FacCorr)/10} \right. \\ &+ 10^{(SEL_{South,long} + 10 \times log(N_{South,long}) - 10 \times log(1800) + FacCorr)/10} \\ &+ 10^{(SEL_{North,short} + 10 \times log(N_{North,short}) - 10 \times log(1800) + FacCorr)/10} \\ &+ 10^{(SEL_{South,short} + 10 \times log(N_{South,short}) - 10 \times log(1800) + FacCorr)/10} \\ \end{split}$$

Where N north/south, short is number of short train passby in 30 minutes FacCorr is a façade correction of +3 dB(A) which was included in the measurement results when the measurement was conducted in free-field conditions

For Night-time:

$$\begin{split} L_{eq,30min} = 10 \times log & \big(10^{(SEL_{North,short} + 10 \times log(N_{North,short}) - 10 \times log(1800) + FacCorr)/10} \\ & + 10^{(SEL_{South,short} + 10 \times log(N_{South,short}) - 10 \times log(1800) + FacCorr)/10} \big) \end{split}$$

4.5 Evaluation Results of Commissioning Test

4.5.1 As discussed in **Section 4.4.1 (iii)**, correction for background noise would generally be adopted to account for the contribution of background noise. As shown in the noise measurement

AECOM Asia Co. Ltd. 12 September 2018

results presented in Appendix F, most measured noise levels during train passby at SS7 and SS15 were higher than the background noise levels, but some of them were less than 3 dB(A) above the background noise levels. There are also two measured event noise levels even slightly lower than the background noise levels. In this case, the change of noise levels during train passby were likely due to fluctuation of background noise instead of the airborne railway noise. Since some measured noise levels during train passby were less than 3 dB(A) above the background noise levels, as a conservative approach, all the measured noise level during train passby were not corrected for background noise in evaluating the airborne railway noise level (i.e. with inclusion of background noise) for noise criteria compliance check. It is anticipated that the actual operational airborne railway noise levels at the ABNSRs would still be lower than the evaluation results. Based on this conservative approach, the evaluated operational airborne railway noise levels, with the inclusion of background noise, at all the selected ABNSRs comply with the criteria in both daytime/evening and night-time periods. The evaluation results during daytime/evening and night-time periods based on different operational scenarios (Table 2.2 and Table 2.3 refer) are summarised in Table 4.4 and Table 4.5. Measurement results and detailed calculations are provided in Appendix F.

Table 4.4 Airborne Railway Noise Calculation Results (Without Background Correction) during Daytime/Evening Period (0700-2300 hrs)

		Airborne Railwa L _{eq 30min}		Noise	
ABNSR No.	Location	Scenario: EP Condition 2.27	Scenario: Crite Additional Train		Compliance (Y/N)
SS7	Leung Uk Tsuen Village House	<38	<38	65	Y
SS15	Leung Uk Tsuen Squats	<51	<50	65	Y

Note:

Table 4.5 Airborne Railway Noise Calculation Results (Without Background Correction) during Night-time period (2300-0700 hrs)

		Airbor	Noi Critei dB(rion,				
ABNSR No.	Location	Scenario: EP Condition 2.27	Scenario: Additional Train Operation Scenario 1A	Scenario: Additional Train Operation Scenario 1B	L _{max}	L _{eq,} 30min	L _{max}	Compliance (Y/N)
SS7	Leung Uk Tsuen Village House	<33	<34	<33	53	55	85	Υ
SS15	Leung Uk Tsuen Squats	<45	<46	<44	60	55	85	Υ

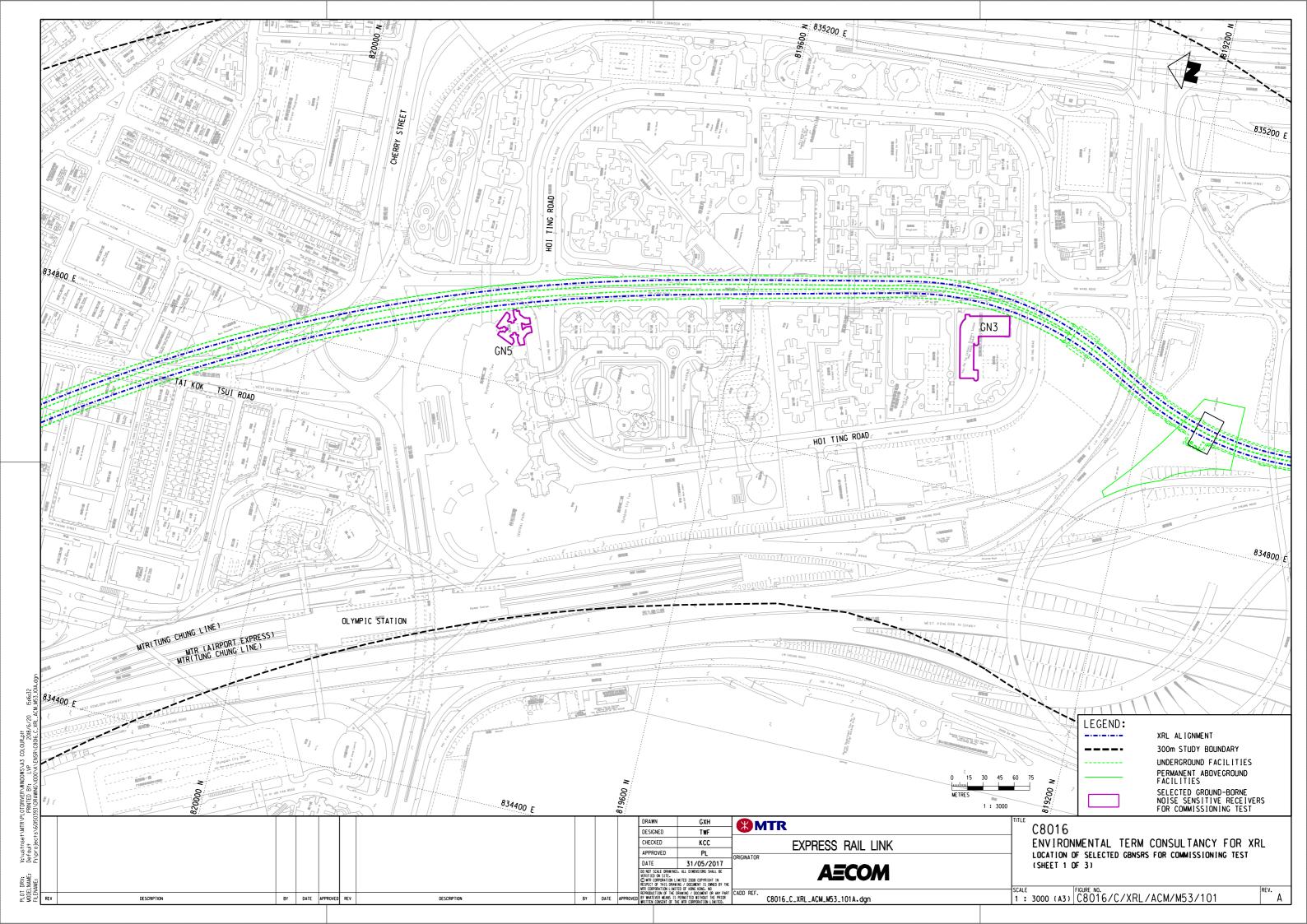
Note:

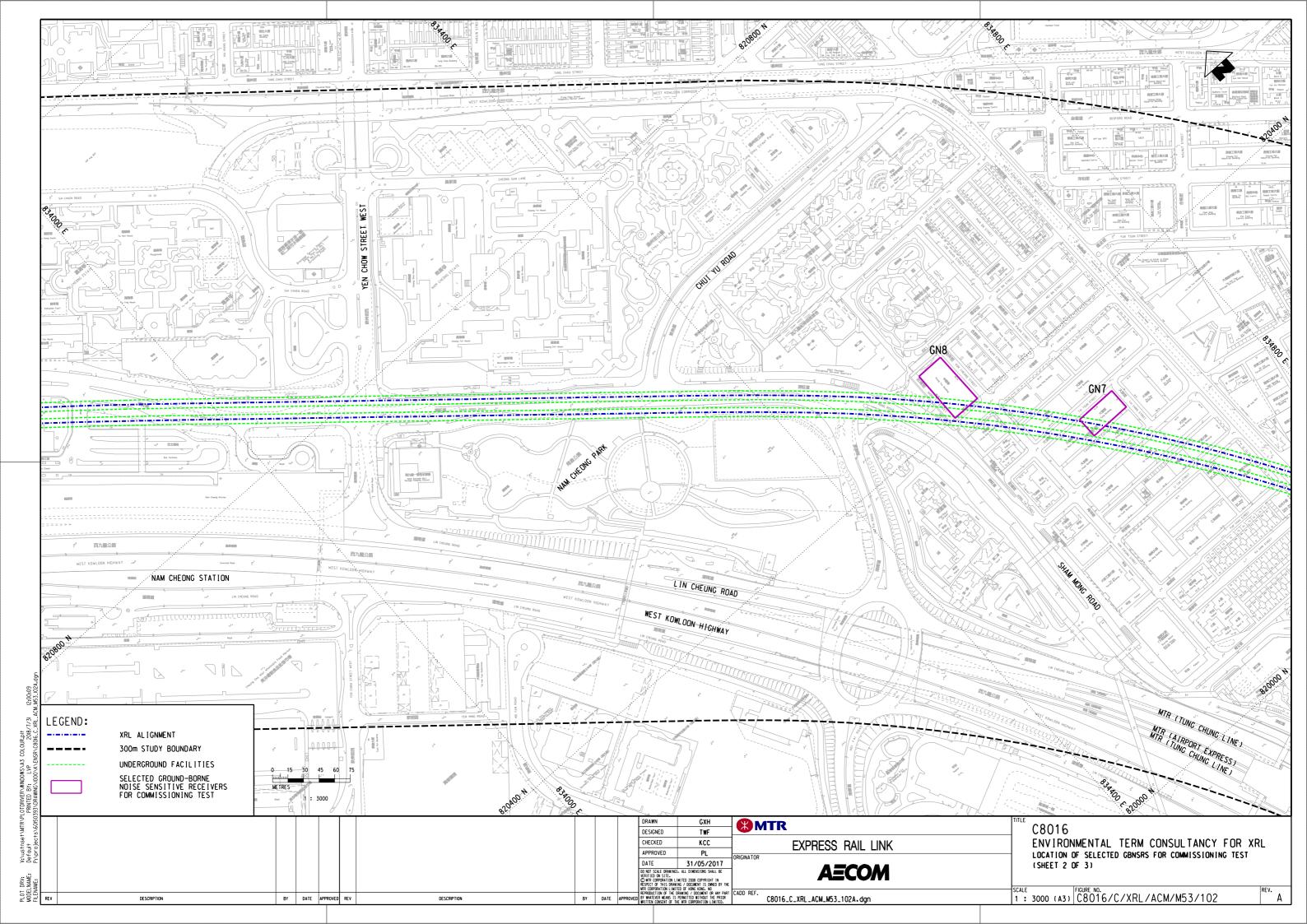
AECOM Asia Co. Ltd. 13 September 2018

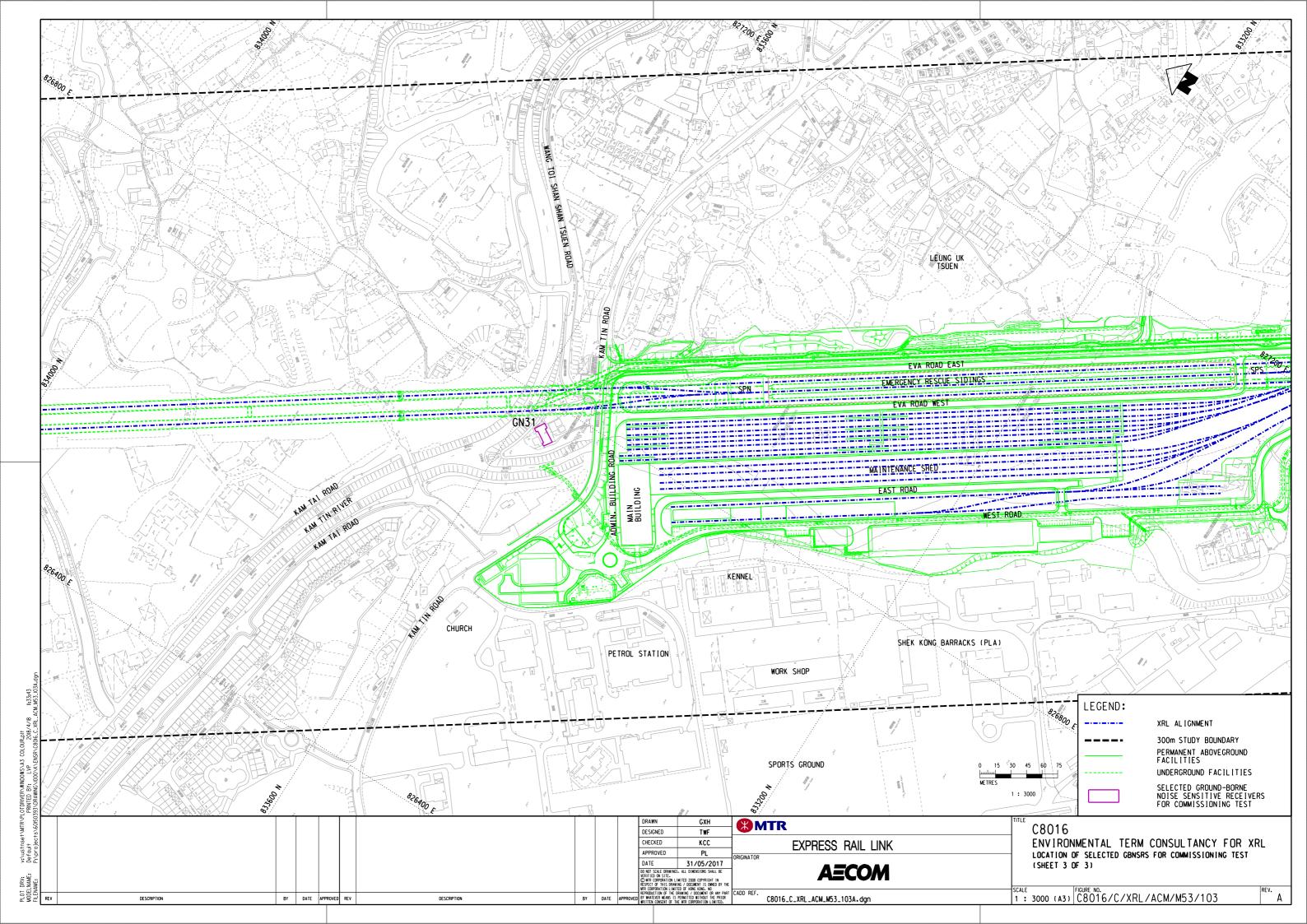
⁽¹⁾ Since some measured noise levels during train passby were less than 3 dB(A) above the background noise levels, as a conservative approach, all the measured noise level during train passby were not corrected for background noise in evaluating the airborne railway noise level (i.e. with inclusion of background noise) for noise criteria compliance check. It is anticipated that the actual operational airborne railway noise levels at the ABNSRs would still be lower than the evaluation results.

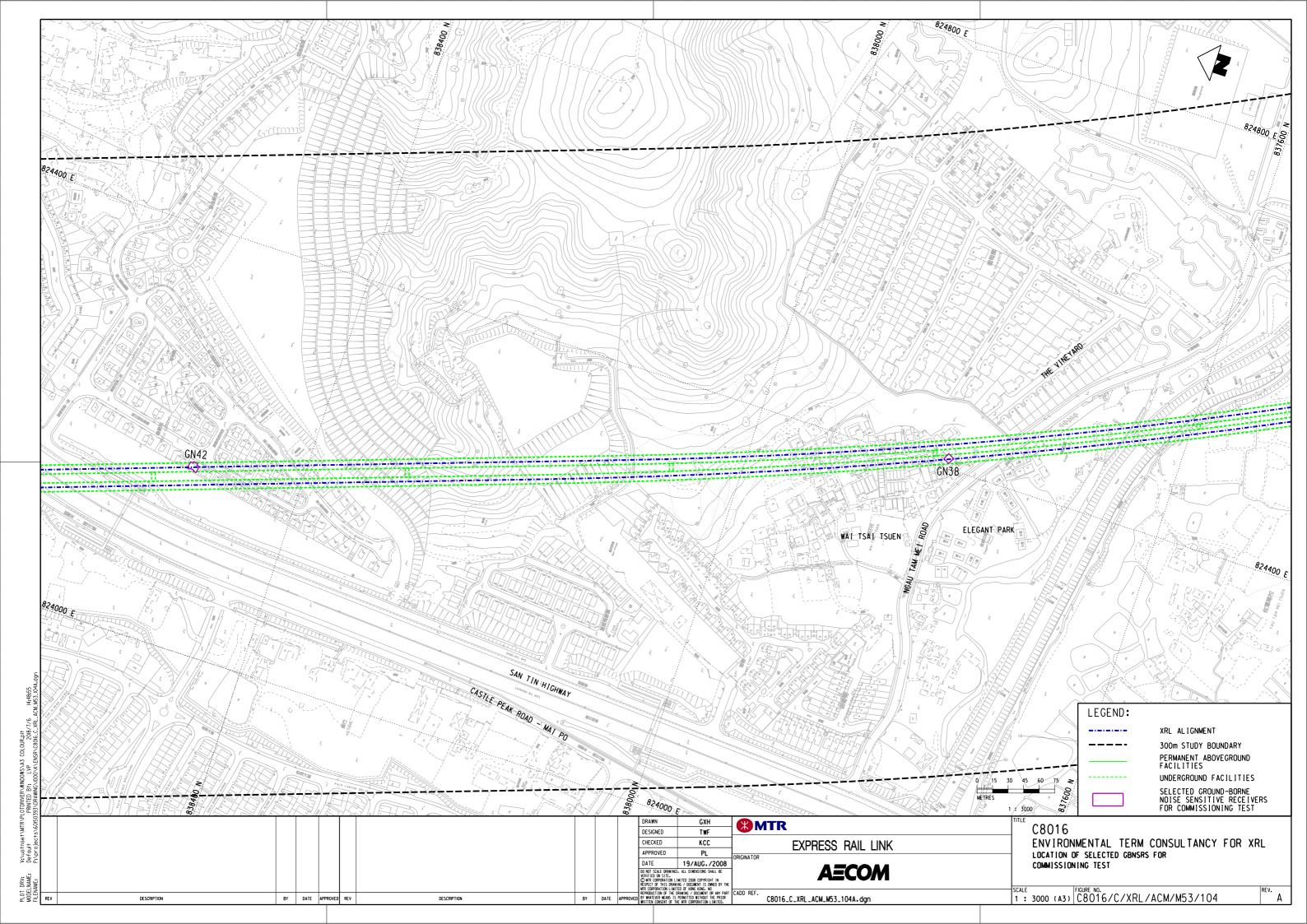
⁽¹⁾ Since some measured noise levels during train passby were less than 3 dB(A) above the background noise levels, as a conservative approach, all the measured noise level during train passby were not corrected for background noise in evaluating the airborne railway noise level (i.e. with inclusion of background noise) for noise criteria compliance check. It is anticipated that the actual operational airborne railway noise levels at the ABNSRs would still be lower than the evaluation results.

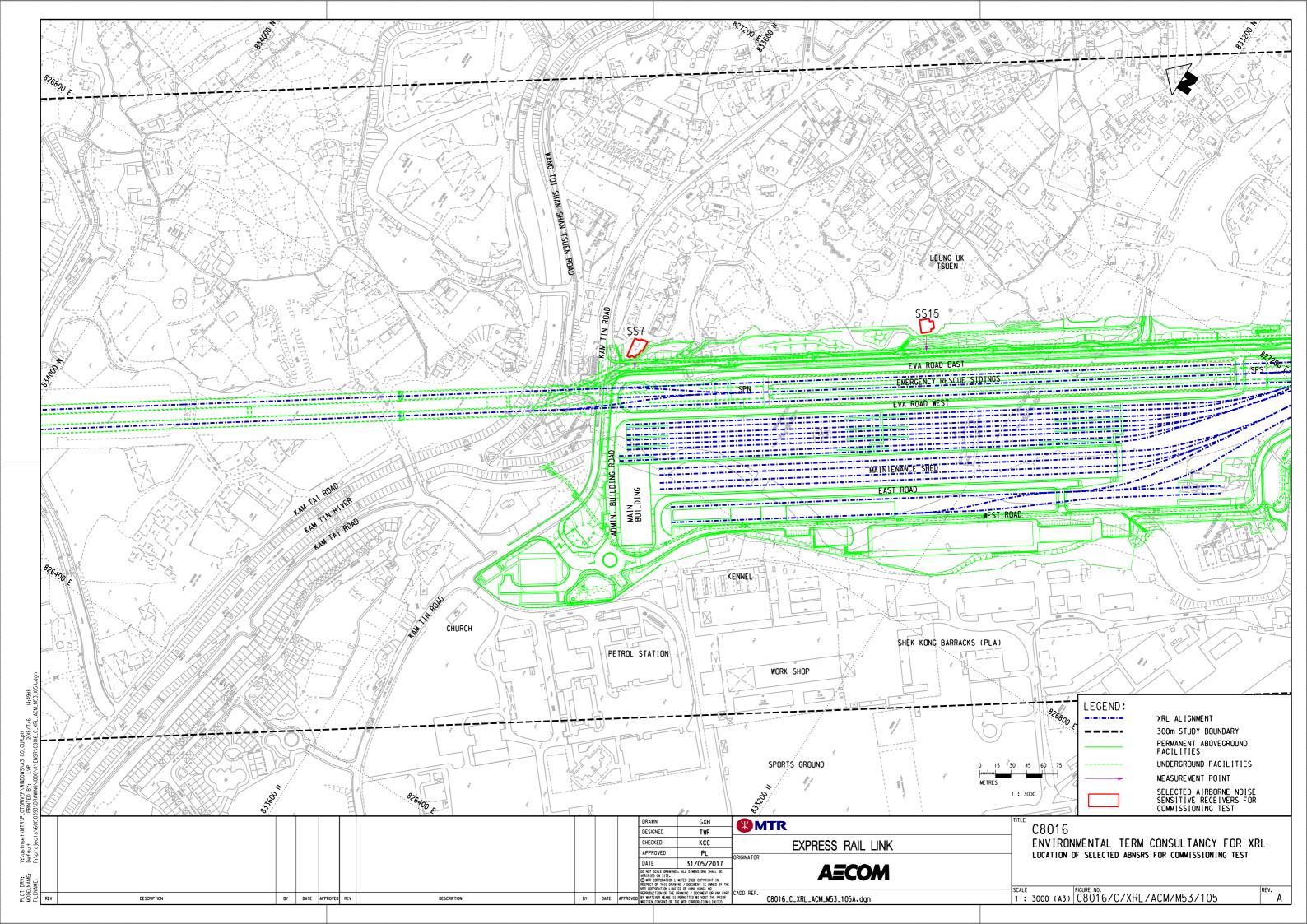
4.5.2 During the study of airborne railway noise assessment in SSS ERR, additional and substantial mitigation measures have been recommended and implemented to protect the nearby ABNSRs. Based on the findings of commissioning test, the actual operational airborne railway noise levels even at the ABNSRs would still be lower than the evaluation results. Even with the inclusion of background noise, the evaluation results are well within the noise criteria and it is concluded that no adverse impact is anticipated at the ABNSRs in both daytime/evening and night-time periods. Therefore no further mitigation measures will be required. While additional noise mitigation measures are not required based on the commissioning test results, flexibility has been allowed in the design for the implementation of further noise mitigation measures including installation of additional noise absorptive panels at the ERS and extension of noise barriers at the ERS and the SSS to deal with any unforeseeable impact to any noise sensitive receiver pursuant to EP Condition 2.34.


AECOM Asia Co. Ltd. 14 September 2018


5 CONCLUSION


- 5.1.1 Operational ground-borne noise commissioning test were conducted at 7 representative GBNSRs on 29 and 30 December 2017, 12, 22 and 27 June, and 23 July 2018, while airborne noise commissioning test was conducted at 2 representative ABNSRs on 29 and 30 December 2017.
- 5.1.2 The results show that both ground-borne and airborne railway noise levels at all selected GBNSRs and ABNSRs comply with the stipulated noise criteria. Based on the findings of the railway noise commissioning tests, there would be no adverse railway noise impact arising from the operation of the Project to both GBNSRs and ABNSRs.


AECOM Asia Co. Ltd. 15 September 2018



Appendix A1

Excerpt of Updated Operational Ground-borne Noise Prediction Report (August 2013)

For Leg(24hour): V = N(24hour) / 24 (N = number of movements)

Vshort Number of short haul train movements in the relevant 30 minute or 24 hour period, expressed as

the average number of movements per hour:

For Leq(30min): $V = N(30min) \times 2$ (N = number of movements) For Leq(24hour): V = N(24hour) - 24 (N = number of movements)

2.5 Operational Ground-borne Noise Impact Assessment

2.5.1 Operational vibration and ground-borne noise levels were calculated by incorporating the algorithms discussed in a 3-D model, MoleRat, which is developed by Wilkinson Murray Limited. Leq_(30min) for day and night, Leq(24hr) and Lmax levels were calculated at most affected floor levels and the noise impact has been quantified by indicating the total number of dwellings or other sensitive elements exposed to levels exceeding the criteria.

Operational Information

- 2.5.2 Two train types are expected to operate for the Project; a long haul train of length 427m and a short haul train of length 214m.
- 2.5.3 The maximum train movements during daytime and evening (0700 2300 hours) and night-time (2300 2400 and 0600 0700 hours) have been updated according to latest time table of XRL and are presented in **Table 2.4**. In addition to this, there will be launching movements between SSS and WKT during the operational hours, and these need to be added to allow calculation of total ground-borne noise levels. However, since no speed profiles are available for launching trains, a conservative approach has been adopted whereby the shunting trains are assumed to travel the full length of the project.

Table 2.4 Train Movements

	•	Movements per Hour								
Track	Train Type	Mainline O	peration ⁽¹⁾	Train Laund SS	Total					
	туре	Daytime and evening	Night-time	Daytime and evening	Night-time	24 Hour ⁽²⁾				
	Short	13	6	1	3	6				
Northbound	Long	4	0	2	1	2				
	Total	17	6	3	4	8				
	Short	12	6	1	0	6				
Southbound	Long	3	0	3	1	2				
	Total	15	6	4	1	8				

Notes:

- (1) Long haul and short haul trains will be operated during the period of 0600 2400 hours only.
- (2) Train frequency for 24 hours was calculated based on the average hour of total 24-hour train movements.
- 2.5.4 The worst hours for mainline operation and launching trains at night are not the same. Nevertheless, the worst hours were added in a conservative approach. Where 30 minute train movements are required, these are derived by dividing the hourly movements by two.
- 2.5.5 The latest speed profiles of XRL are presented in **Appendix 2.7**. As a worst case scenario, speed profiles for train not stopping at Futian, i.e. higher speed passing through Hong Kong Boundary, have been adopted in the present assessment.
- 2.5.6 Based on latest detailed design, the turnouts of the inclined type have been proposed at the locations as shown in **Table 2.5**.

to further minimise the ground-borne noise levels. With considerations given to suitability, environmental performance, constructability, maintenance constraints of different types of low noise trackform, the low noise trackform suitable for XRL includes alternative 1 fastening system (Alt 1) (or similar such as Vossloh 300-1U and low vibration trackform (LVT)), isolated slab trackform (IST), Vanguard and floating slab track (FST), with their insertion loss values shown in **Appendix 2.2**.

Table 2.7 Approximate Chainages where GBNSRs subject to Relative High Groundborne Noise Levels

Location	From	То		
Nam Cheong				
Southbound	137+835	137+935		
Northbound	137+860	137+960		
West Kowloon Ter	minus			
Long Haul Platform	141+150	141+600		
Short Haul Platform	141+385	141+600		

Table 2.8 Chainages with Low Noise Trackform as Stipulated in EIA Report/EP Condition 2.28

From	То						
Southbound							
123+040	123+640						
133+160	133+660						
137+600	138+350						
139+100	139+600						
140+900	141+600						
North	bound						
123+050	123+650						
133+170	133+670						
137+620	138+370						
139+120	139+620						
140+900	141+600						

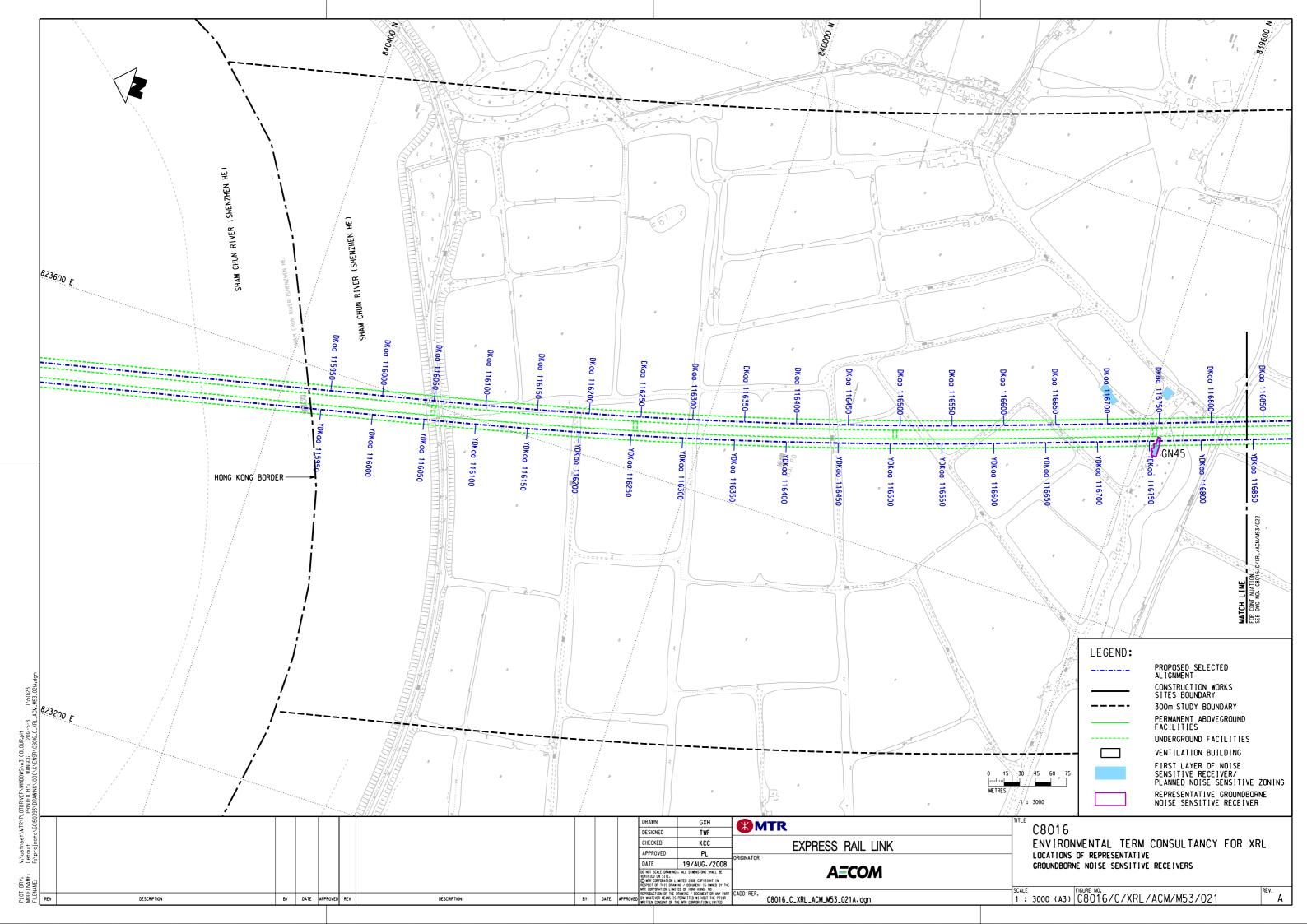
2.5.10 The noise levels at the representative GBNSRs would be reduced to those shown in **Table 2.8** with the provision of low noise trackform. With the provision of low noise trackform at WKT, the Lmax levels at areas within the WKCD site and outside the WKT boundary were predicted to be in general lower than 25dB(A). **Appendix 2.9** shows the sample calculation of selected GBNSRs with the provision of low noise trackform.

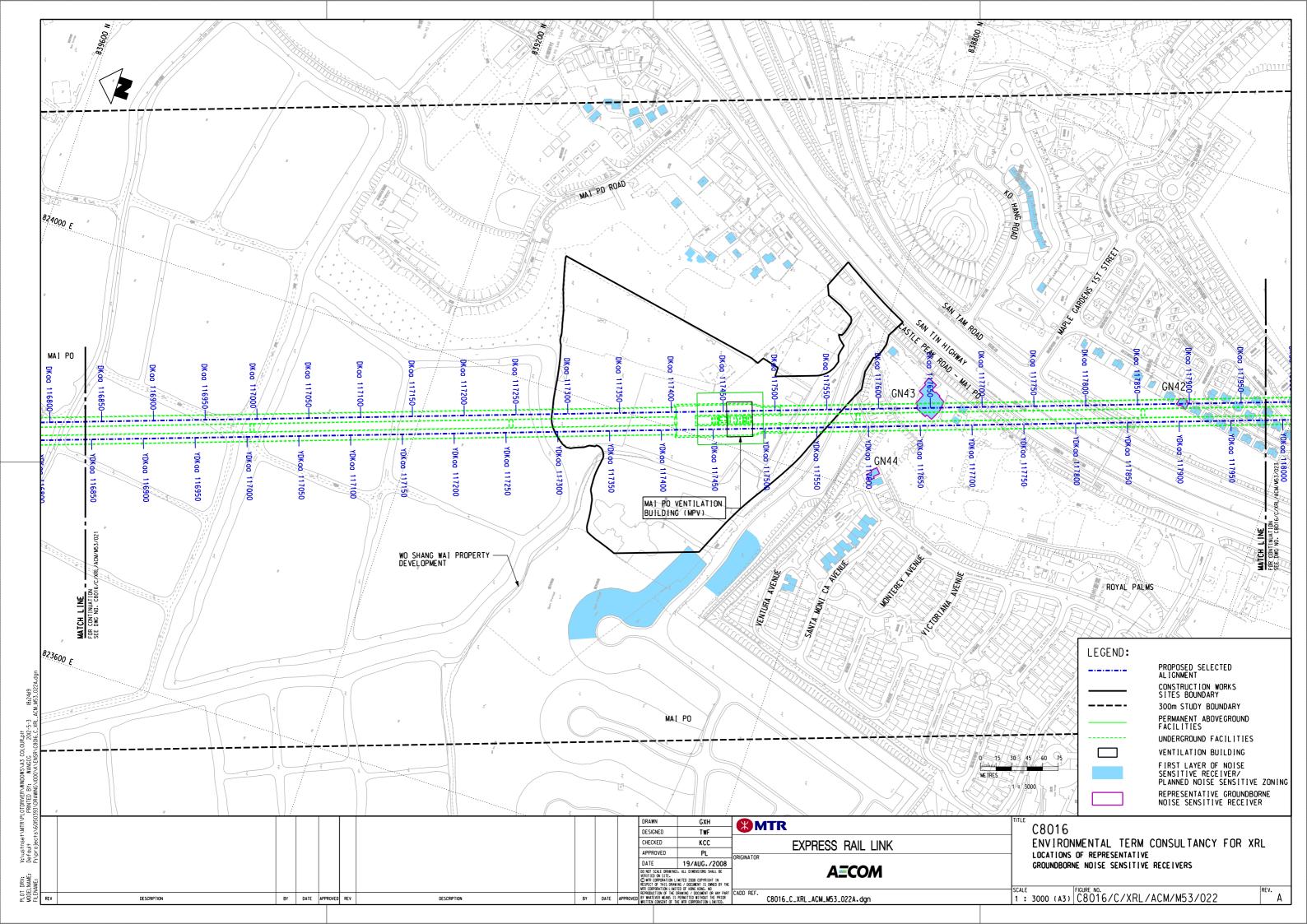
Table 2.9 Predicted Ground-borne Railway Noise Levels (Mitigated)

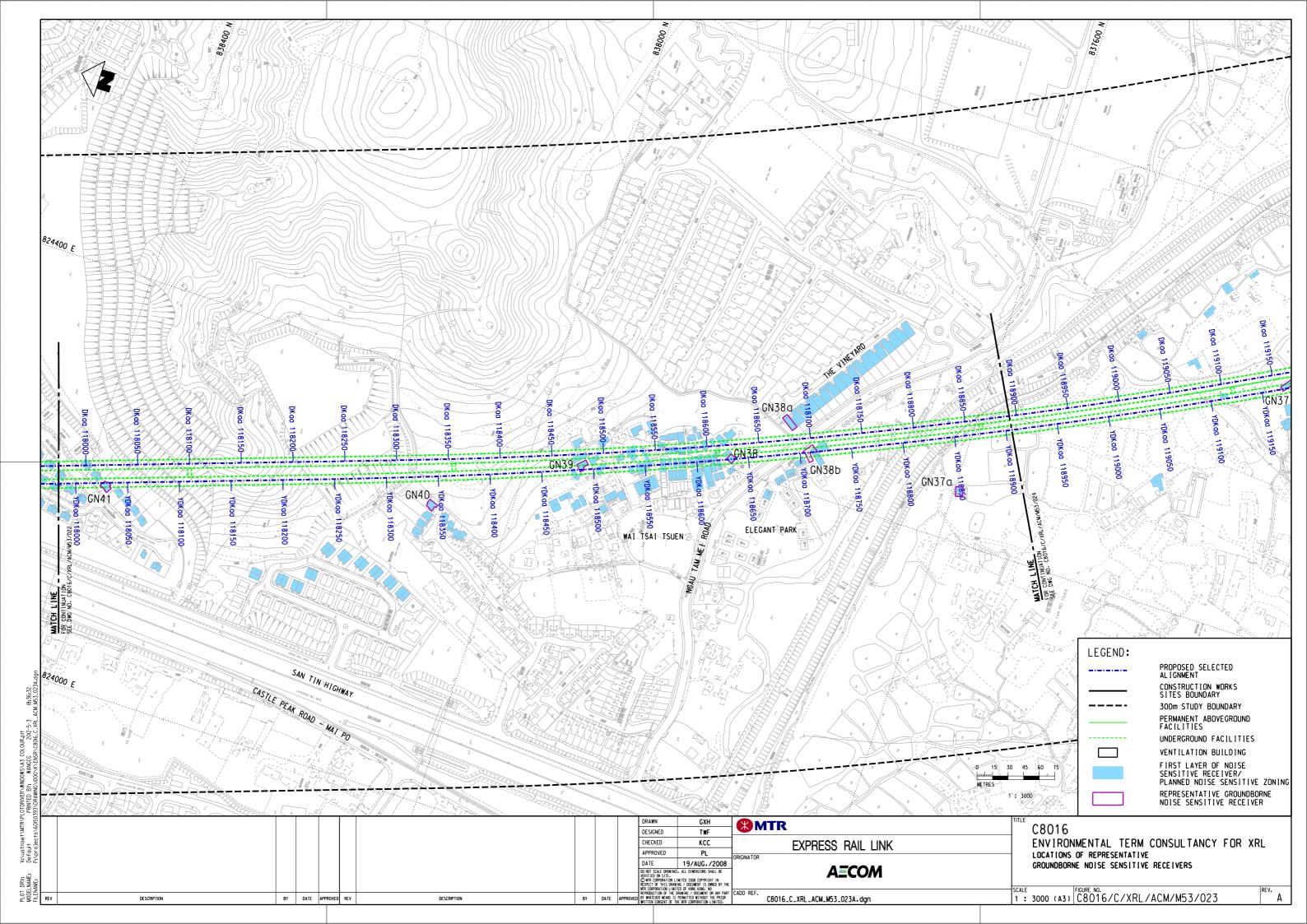
GBNSR No.		Predicted Ground-borne Noise Level, dB(A)				Criterio	n, dB(A)	Down Track Calculated	Up Track
	Location	Leq _, ^{30min} (day)	Leq, 30min (night)	Leq (24hr)	Lmax	Leq, 30min (day)	Leq, 30min (night)	Distance ⁽¹⁾ (m)	Calculated Distance ⁽¹⁾ (m)
GN1	Future Development at West Kowloon Cultural District	15	<15	<15	21	N.A.	N.A.	20	20

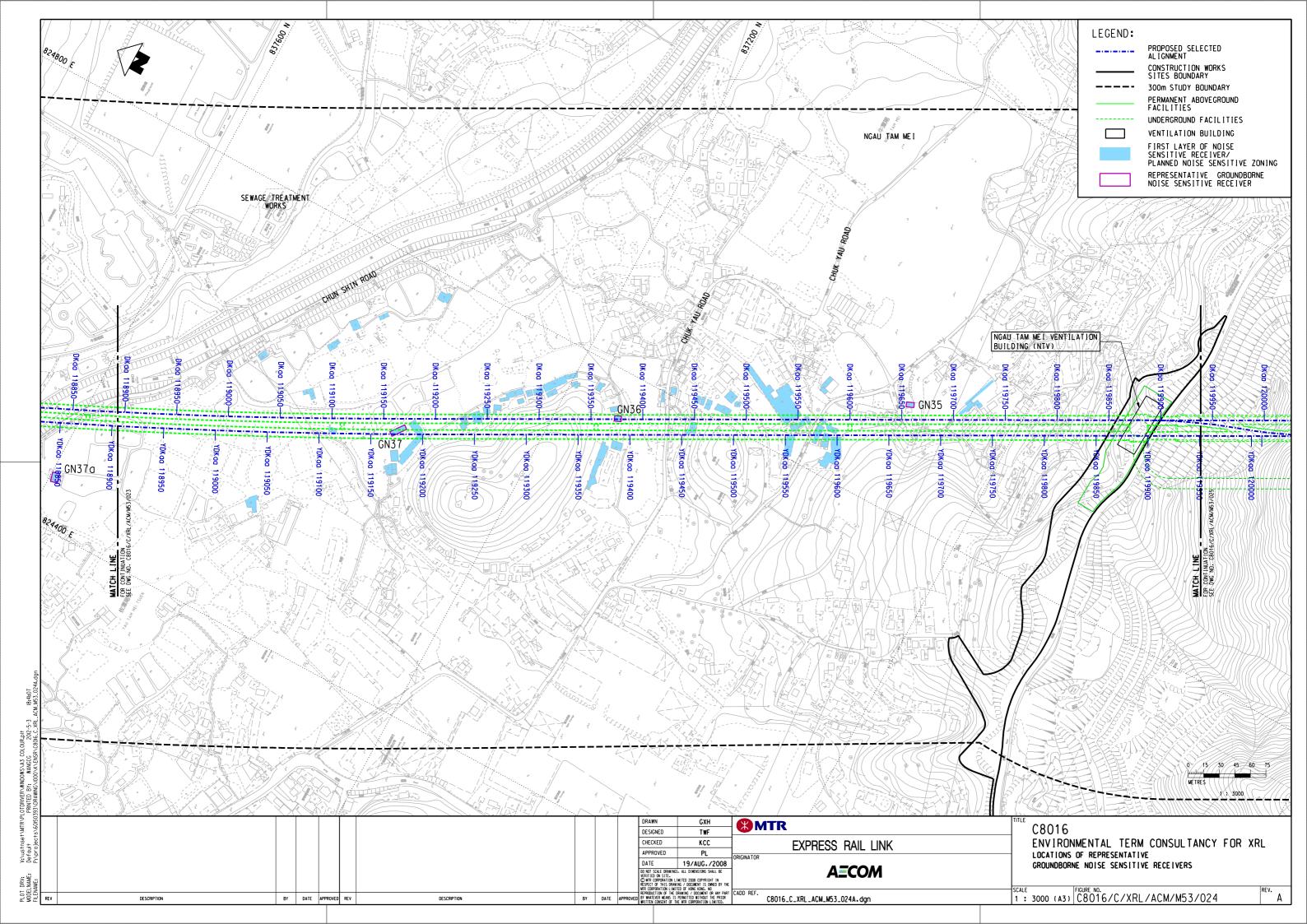
ODNOD	Location	Predict	ed Ground- dB	borne Nois (A)	se Level,	Criterio	n, dB(A)	Down Track	Up Track Calculated Distance ⁽¹⁾ (m)
GBNSR No.		Leq, 30min (day)	Leq, 30min (night)	Leq (24hr)	Lmax	Leq, 30min (day)	Leq, 30min (night)	Calculated Distance ⁽¹⁾ (m)	
GN1a	Future Development at West Kowloon Cultural District	<15	<15	<15	22	N.A.	N.A.	86 ⁽²⁾	86 ⁽²⁾
GN1b	Future Development at West Kowloon Cultural District	<15	<15	<15	20	N.A.	N.A.	16	16
GN2	Future Development at West Kowloon Cultural District	<15	<15	<15	15	N.A.	N.A.	40	40
GN2d	Block 6 Phase 1 Sorrento	<15	<15	<15	<15	55	45	52	42
GN2e	Man King Building	<15	<15	<15	<15	55	45	59	67
GN3	Yaumati Catholic Primary School (Hoi Wang Road)	27	22	24	40	55	45	16	5
GN4	Block 9, Charming Garden	26	21	23	37	55	45	5	17
GN5	Tower 5 Phase 1 Park Avenue	25	20	22	37	55	45	21	6
GN6	Hing Wong Mansion	<15	<15	<15	25	55	45	37	37
GN7	Tai Fung Building (Block F) Cosmopolitan Estates	<15	<15	<15	27	55	45	36	36
GN8	Chung Yew Building	24	18	21	37	55	45	18	21
GN9	West Kowloon Disciplined Services Quarters Block 1	19	<15	16	31	55	45	22	39
GN10	Fu Yun House, Fu Cheong Estate	23	18	20	39	55	45	15	31
GN11	Planned Nam Cheong Station Property Development	20	15	17	34	55	45	7	7
GN11a	Planned Residential Development in Site 6	29	24	26	42	55	45	28	15
GN11b	Planned Residential Development in Site 6	26	21	23	38	55	45	28	15
GN11c	Planned Residential Development in Site 6	24	18	21	36	55	45	41	28
GN11d	Planned Residential Development in Site 6	20	15	17	32	55	45	55	42
GN11e ⁽³⁾	Planned Residential Development in Site 6	16	<15	<15	31	55	45	27	30
GN12	SKH St. Mary's Church Mok Hing Yiu College	19	<15	16	33	55	45	36	23
GN12a	Tack Ching Girls' Secondary School	<15	<15	<15	22	55	45	40	53
GN13	Tower 6 Aqua Marine	<15	<15	<15	19	55	45	22	36
GN14	HKIVE Haking Wong Waterfront Annex	<15	<15	<15	28	55	45	35	41
GN14a	Lai Chi Kok Reception Centre	26	21	24	39	55	45	25	23

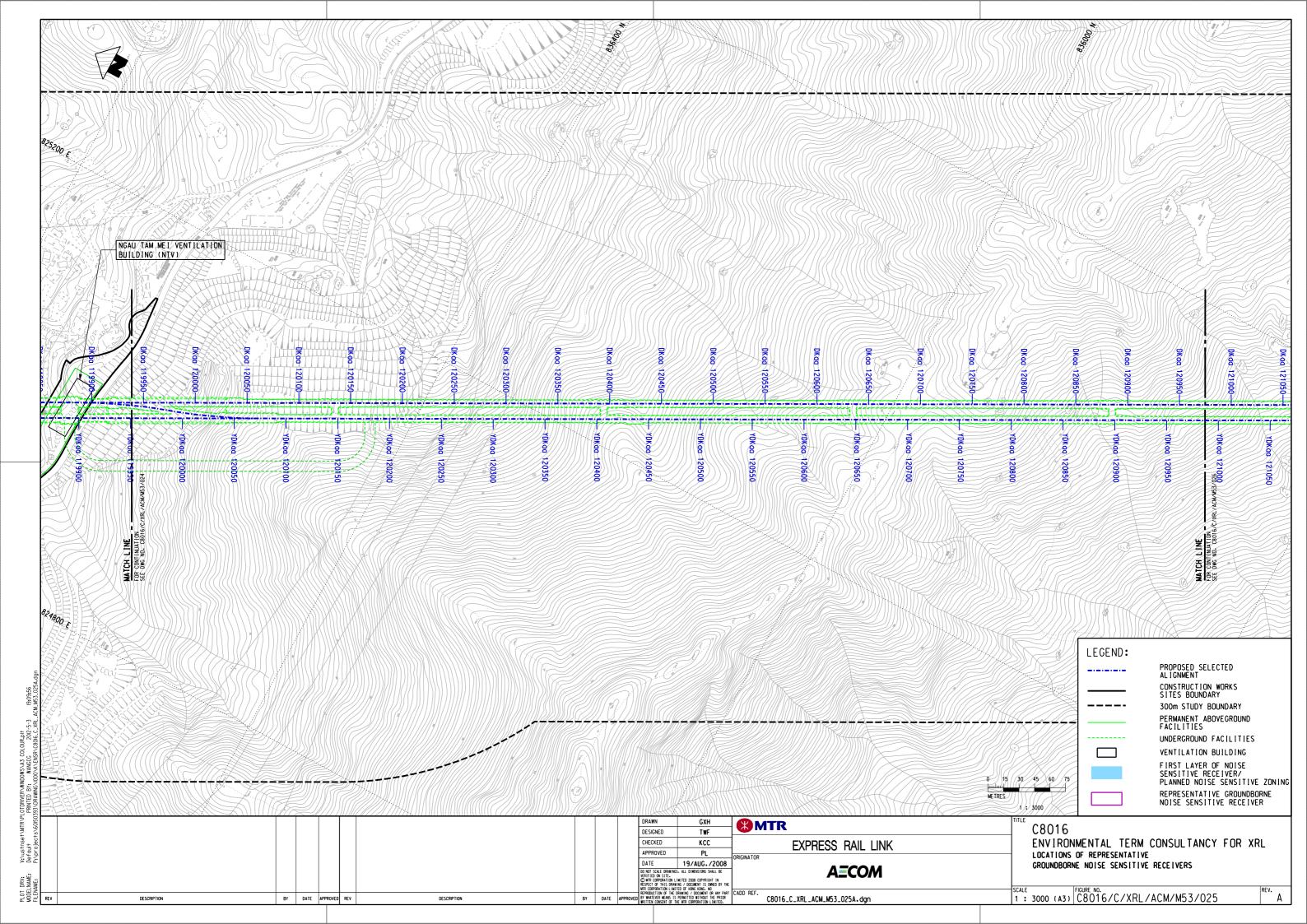
opuop		Predicte	ed Ground- dB	borne Nois (A)	se Level,	Criterio	n, dB(A)	Down Track Calculated	Up Track Calculated Distance ⁽¹⁾ (m)
GBNSR No.	Location	Leq, 30min (day)	Leq, 30min (night)	Leq (24hr)	Lmax	Leq, 30min (day)	Leq, 30min (night)	Distance ⁽¹⁾ (m)	
GN14b	Ward A, Lai Chi Kok Hospital	<15	<15	<15	27	55	45	90	74
GN15	40A Cheung Hang Village	<15	<15	<15	<15	50	40	235	235
GN16	Tower 6 Regency Park	<15	<15	<15	<15	55	45	249	248
GN17	Block 21 Wonderland Villas	<15	<15	<15	<15	55	45	275	275
GN18	Block 2 Greenknoll Court	<15	<15	<15	24	55	45	90	90
GN18b	Kwai Ying Building	22	17	19	34	55	45	60	63
GN19	Tower B Kwai Sing Centre	21	16	18	32	55	45	44	46
GN19a	Ming Tak Building	20	15	17	29	55	45	48	51
GN20	Block B Hutchison Estate	25	20	22	38	55	45	36	38
GN21	184 Yau Ma Hom Resite Village	15	<15	<15	28	55	45	73	73
GN22	18 Da Chuen Ping Village	15	<15	<15	28	50	40	87	87
GN23	35 Sheung Kwai Chung Village	<15	<15	<15	<15	50	40	98	98
GN24	Sau Shan House, Cheung Shan Estate	<15	<15	<15	<15	55	45	125	125
GN25	Tsuen Wan Lutheran School	<15	<15	<15	<15	55	45	124	124
GN26	426A Tsang Uk Tsuen	16	<15	<15	29	50	40	26	23
GN27	431A Tsang Uk Tsuen	<15	<15	<15	25	50	40	27	26
GN28	510B Nam Hing Lei	<15	<15	<15	25	50	40	26	29
GN29	630 Shueng Tsuen	17	<15	<15	32	50	40	28	42
GN30	51A Leung Uk Tsuen	<15	<15	<15	<15	55	45	113	132
GN30a	Village Zone West Boundary, Leung Uk Tsuen	<15	<15	<15	<15	55	45	61	79
GN30b	Village house in Leung Uk Tsuen	<15	<15	<15	20	55	45	46	64
GN31	DD110 LOT 482, Wang Toi Shan Choi Yuen Tsuen	24	18	21	36	55	45	35	19
GN33	348 Tsat Sing Kong	21	15	18	33	50	40	29	27
GN34	349 Tsat Sing Kong	20	15	17	33	50	40	27	34
GN35	374 Chuk Yau Road	19	<15	16	32	50	40	46	52

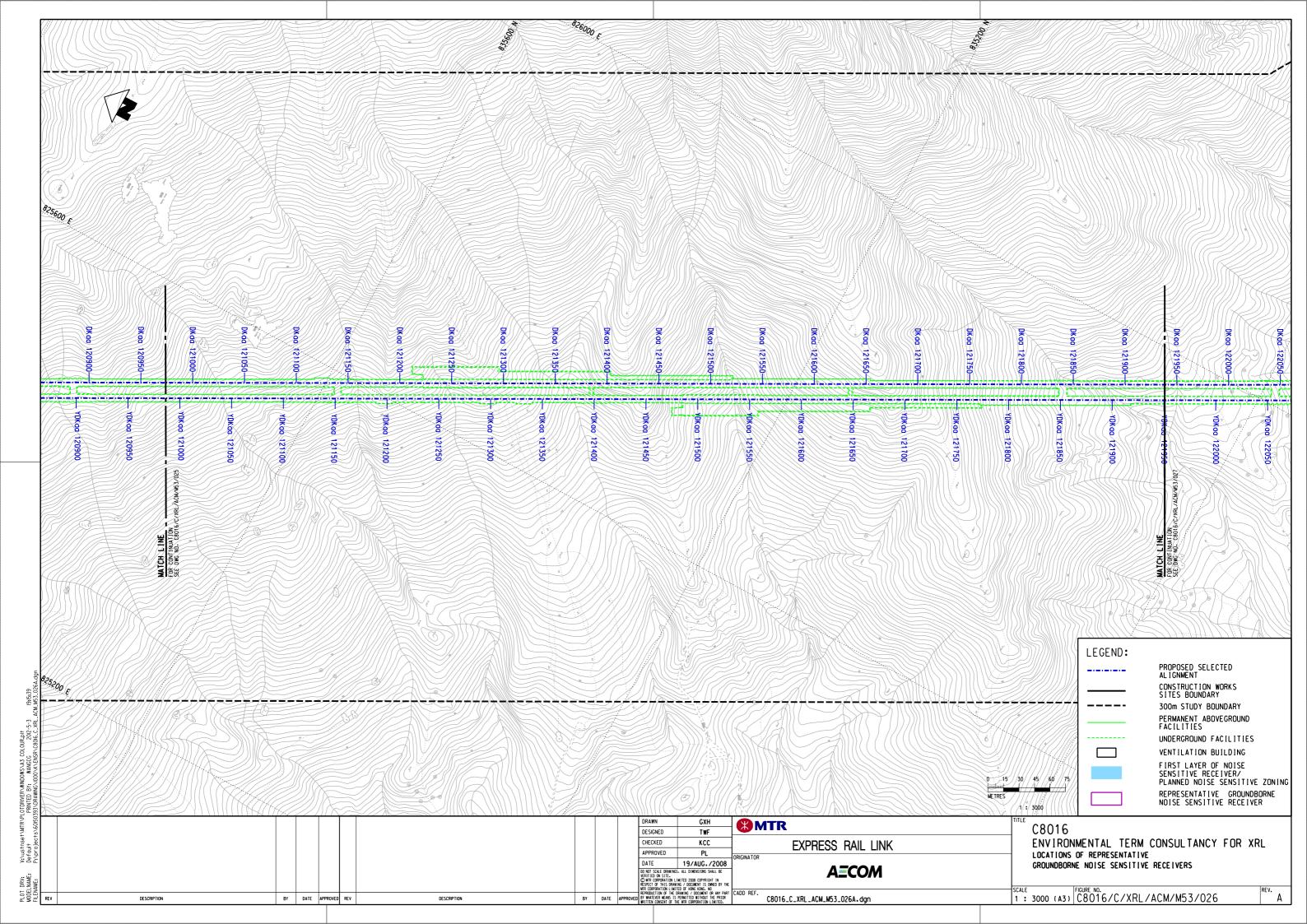

GBNSR		Predicted Ground-borne Noise Level, dB(A)				Criterio	n, dB(A)	Down Track Calculated	Up Track
No.	Location	Leq, ^{30min} (day)	Leq, 30min (night)	Leq (24hr)	Lmax	Leq, 30min (day)	Leq, 30min (night)	Distance ⁽¹⁾ (m)	Calculated Distance ⁽¹⁾ (m)
GN36	DD104 LOT 1786, Chuk Yau Road	21	16	18	34	50	40	31	33
GN37	DD104 LOT 1396, Yau Tam Mei Tsuen, Chuk Yau Road	21	16	19	35	50	40	30	29
GN37a	Chun Shin Road, Yau Tam Mei Tsuen	<15	<15	<15	18	50	40	67	55
GN38	45 Wai Tsai Tsuen	21	16	18	34	50	40	33	32
GN38a	Petrus Avenue House 21 Phase 1 The Vineyard	<15	<15	<15	30	50	40	33	39
GN38b	China Bible Seminary	17	<15	<15	31	50	40	33	29
GN39	62D Wai Tsai Tsuen	19	<15	16	33	50	40	34	34
GN40	House 1, Green Crest	<15	<15	<15	19	50	40	53	43
GN41	House A73 Maple Gardens	17	<15	<15	32	50	40	42	39
GN42	House A78 Maple Gardens	<15	<15	<15	26	50	40	38	40
GN43	Area Zoned as R(A)	20	15	17	34	50	40	31	32
GN44	House 5 Phase A Royal Palms	<15	<15	<15	15	50	40	65	51
GN45	Village house in Mai Po	20	15	17	34	50	40	36	32

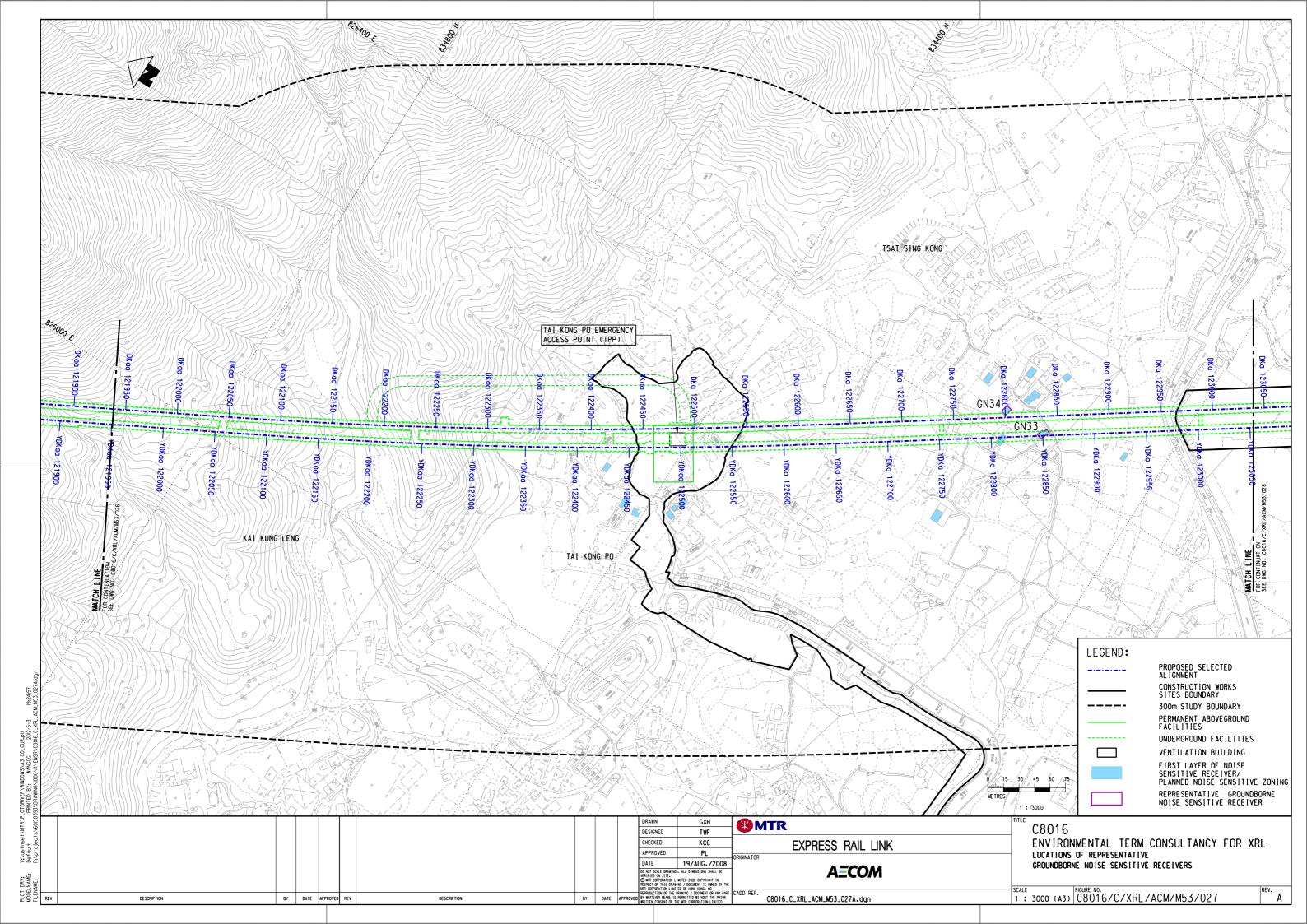

Note:

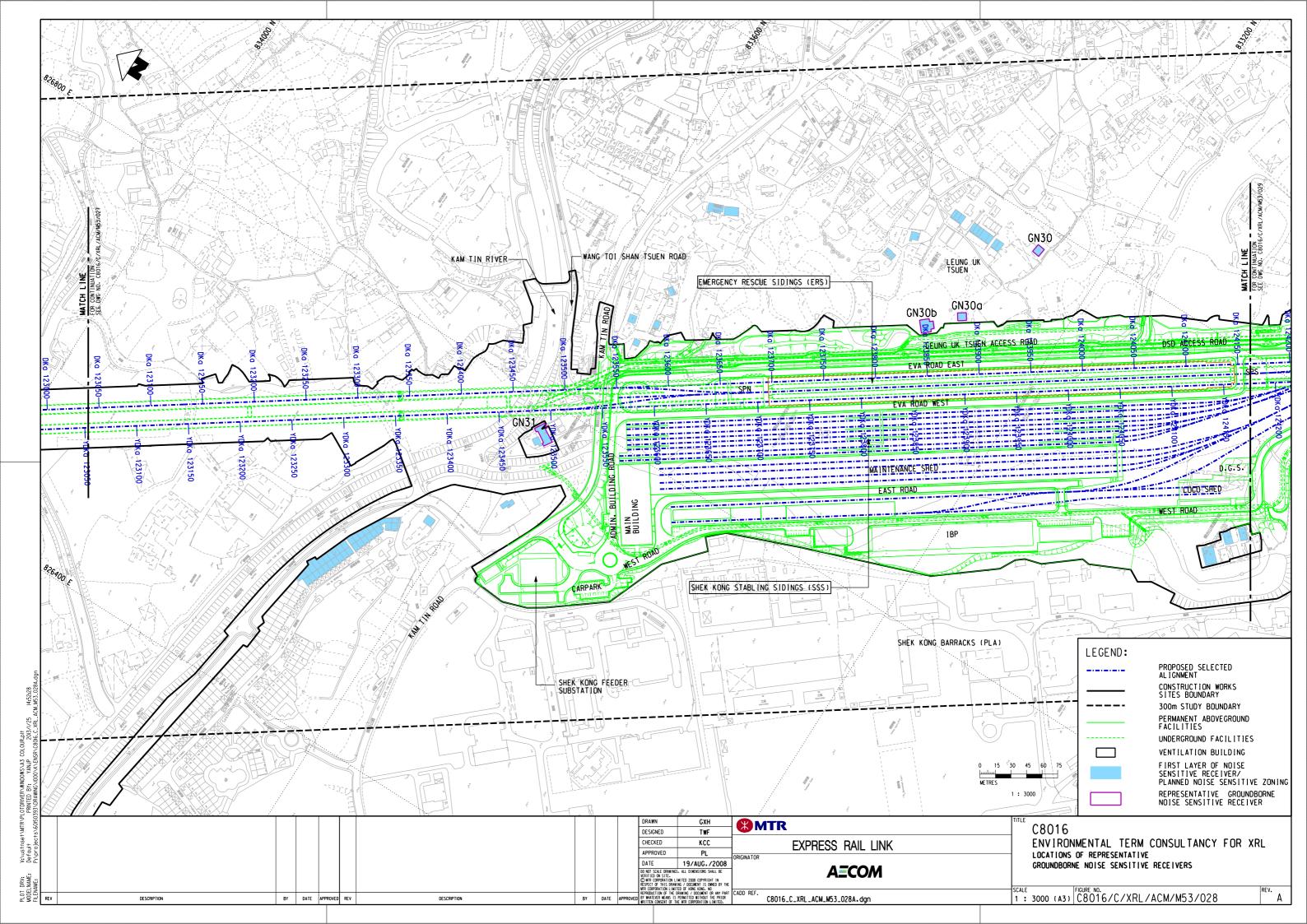

- (1) Distances were measured from latest survey plan.
- (2) Distance was measured from the southern end of platform at WKT where the front end of trains stop.
- (3) Based on latest available information at Site 6, the proposed usage at GN11e would be carpark / market block. As a worst case scenario, GN11e is considered as a NSR in this assessment.

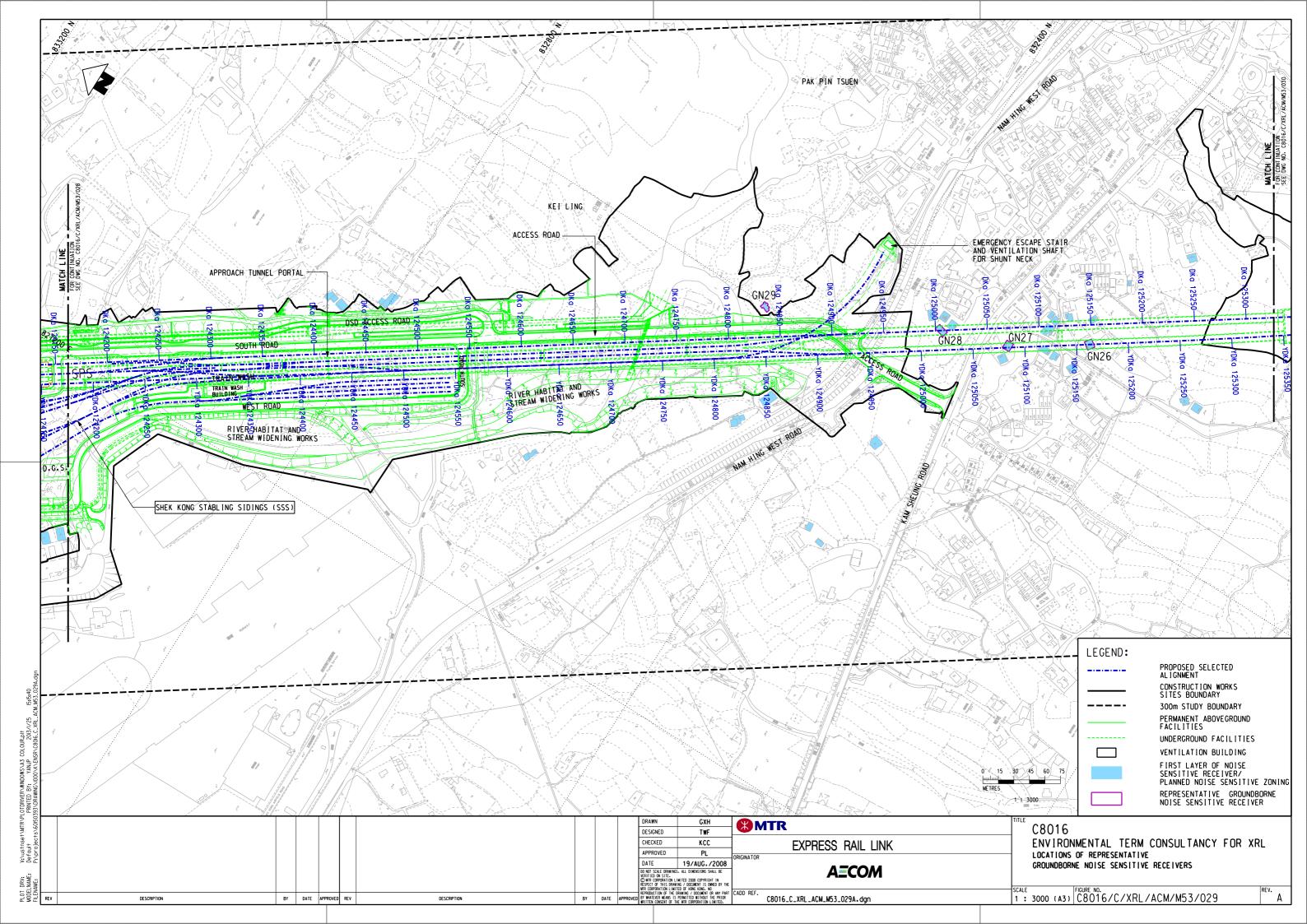

Cumulative Effect from Other Rail Lines

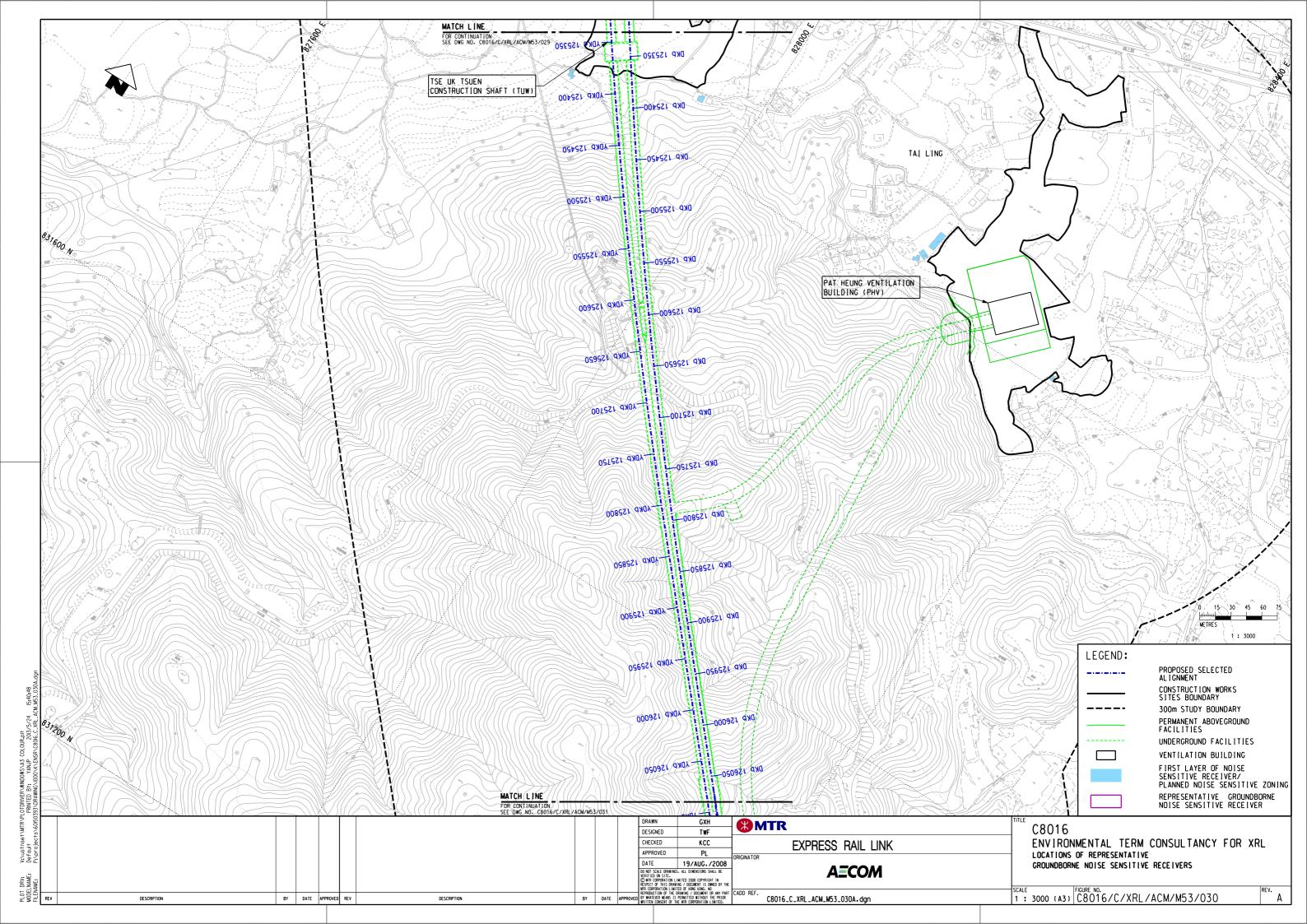

- 2.5.11 The Project will run close to other existing rail lines and the cumulative effect from other rail lines has been reviewed. Locations where other rail lines are relatively close are as follows:
 - The WKT will be located in the vicinity of the KSL Austin Station
 - The XRL will be parallel to KSL and reasonably close just north of WKT, and also parallel to, but further away, Tung Chung Line (TCL) and Airport Express Link (AEL)
 - The XRL will pass close to the Tung Chung Line (TCL) Nam Cheong station
 - The XRL will pass under the Tsuen Wan Line (TWL) at Lai Chi Kok
- 2.5.12 Any cumulative effect from KSL would relate to West Kowloon Cultural District. Whilst predicted noise levels Lmax at GN1b, the nearest GBNSRs to WKT and KSL, which is located at approx. 16m from the tracks at WKT, is 20dB(A), KSL would be at least 100m from GN1b. At this distance low ground-borne noise levels are expected. As such cumulative impact from the Project and KSL is not anticipated at GN1b. According to the WKCD EIA Report (Application No. EIA-215/2013), appropriate noise and vibration control measures such as building isolation and/or box-in-box installation would be adopted by future developers to

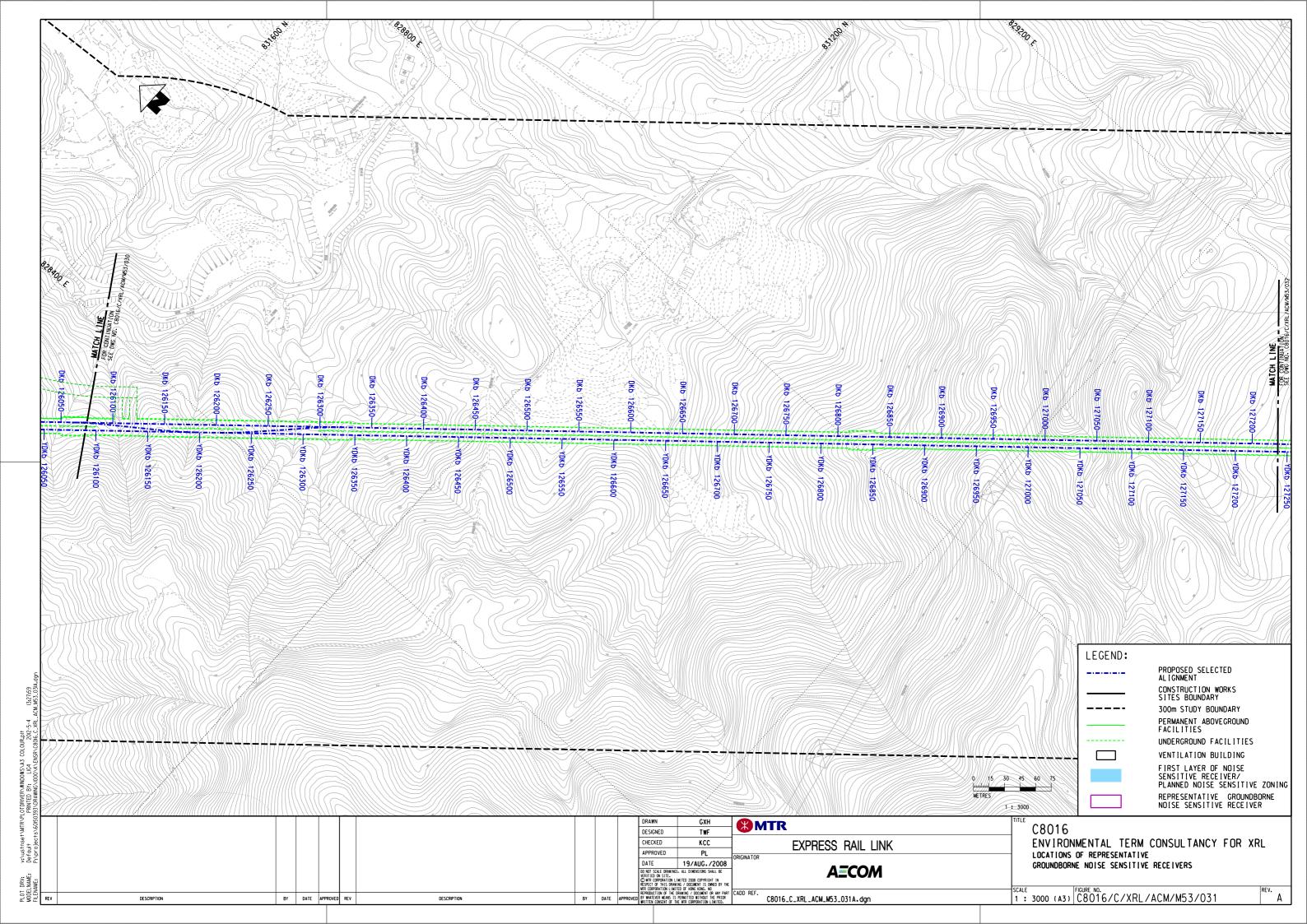


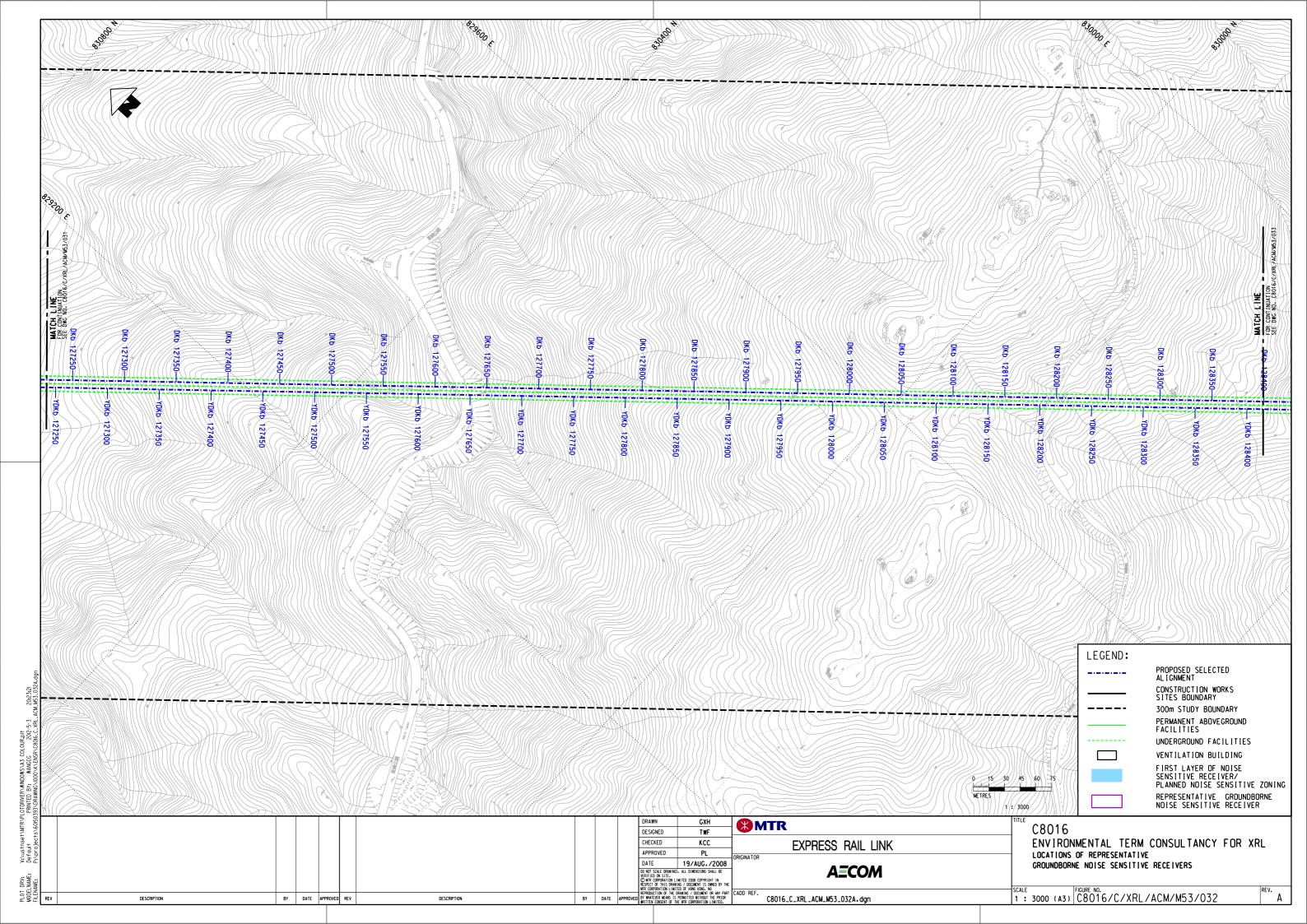


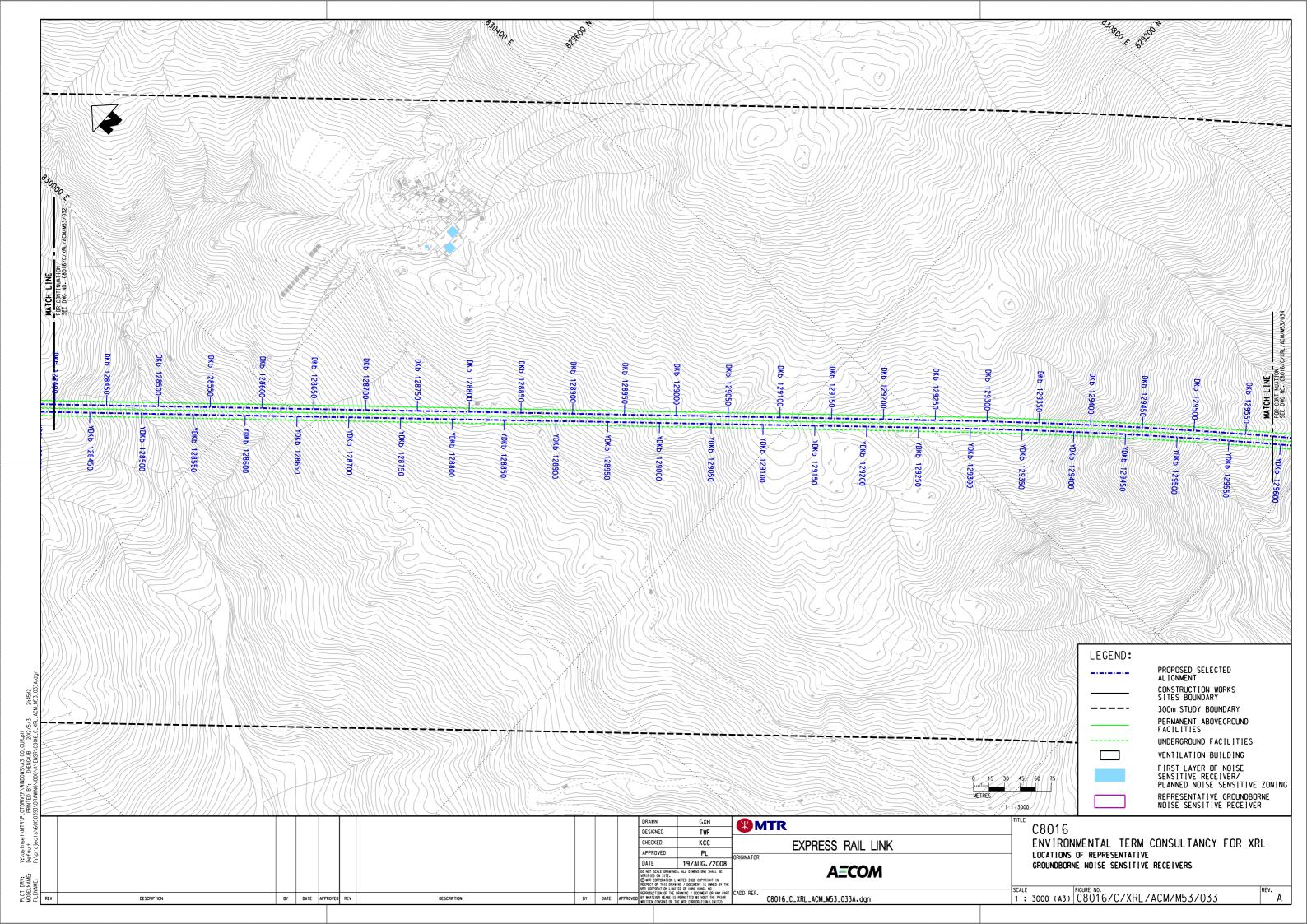


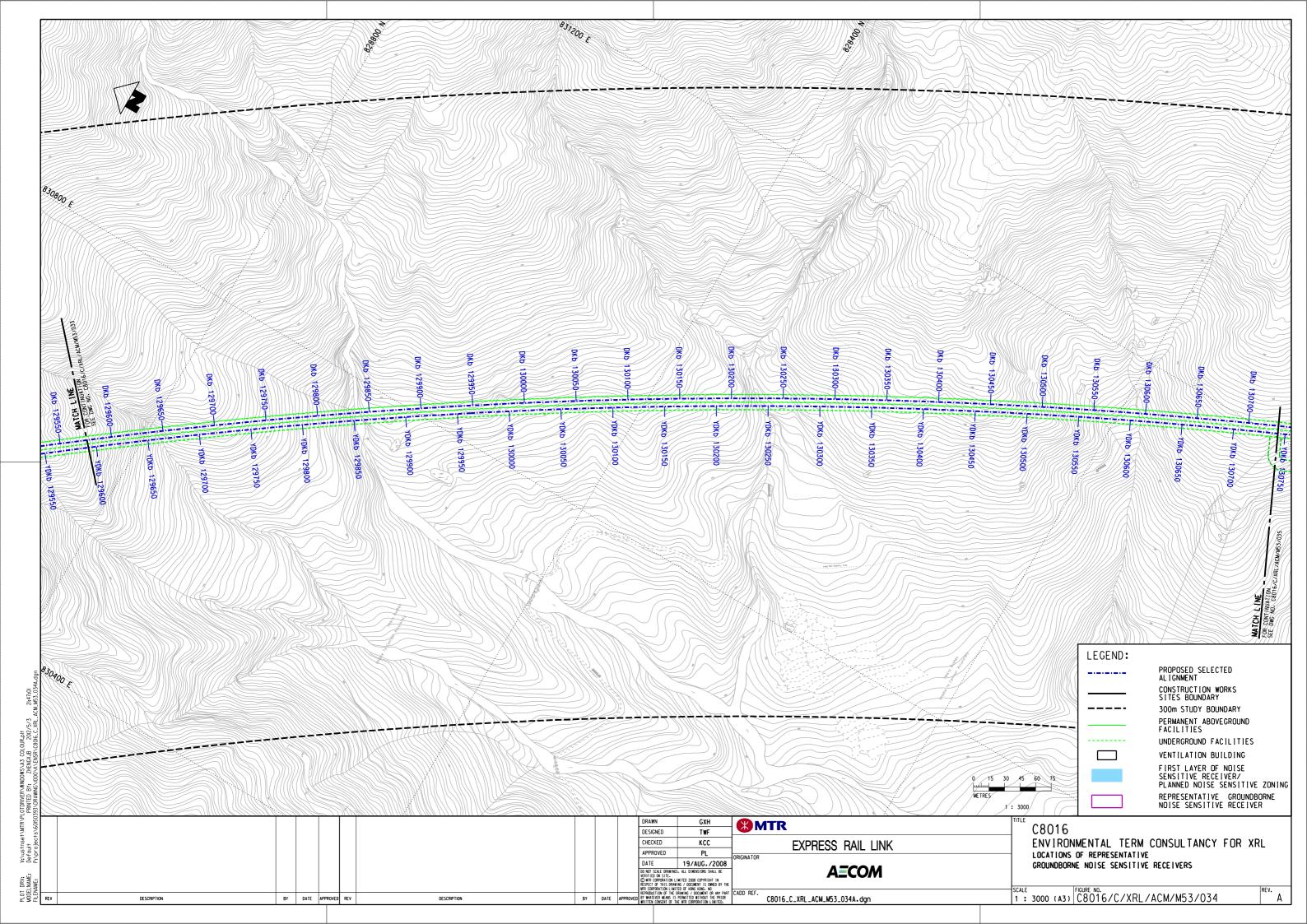


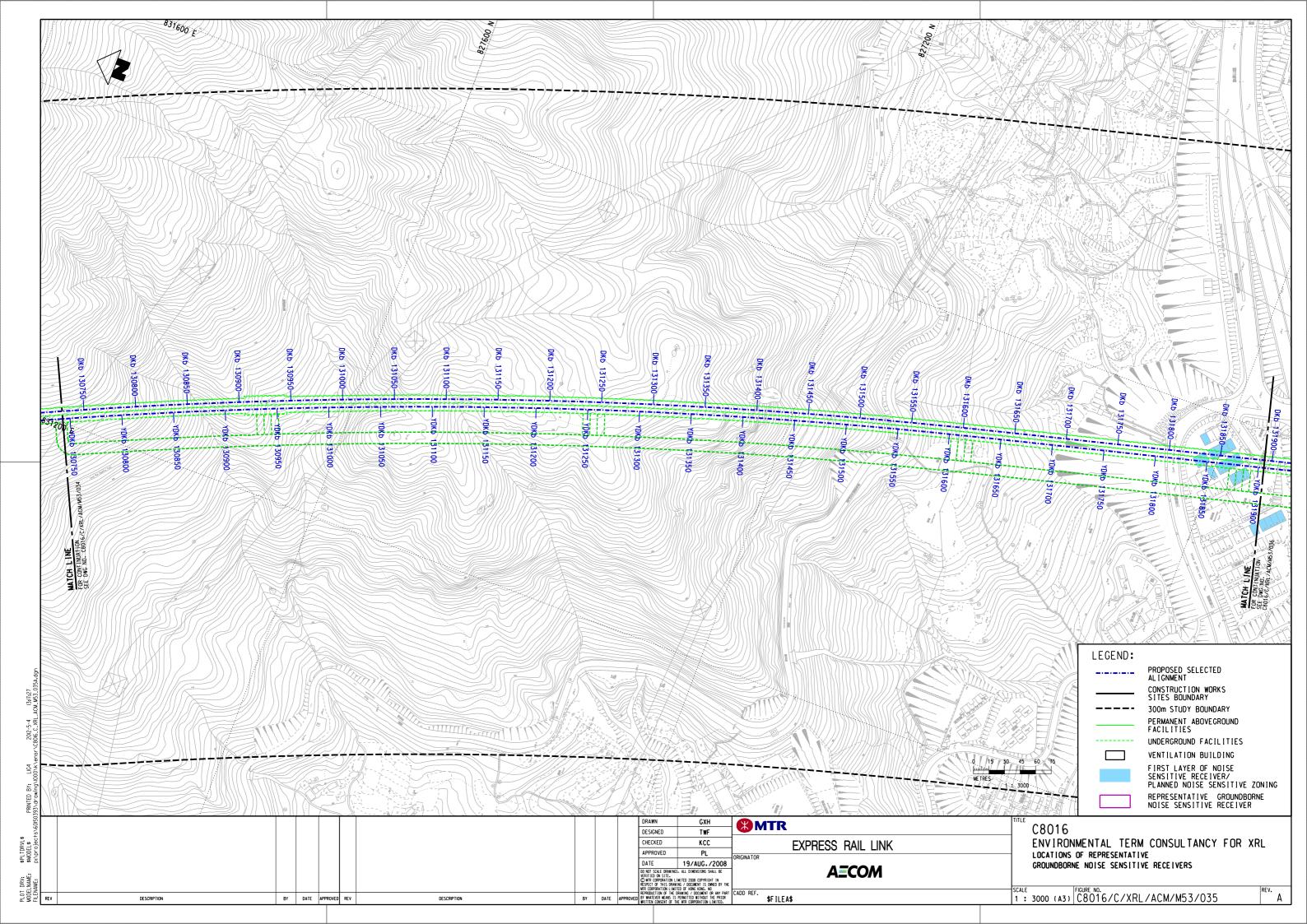


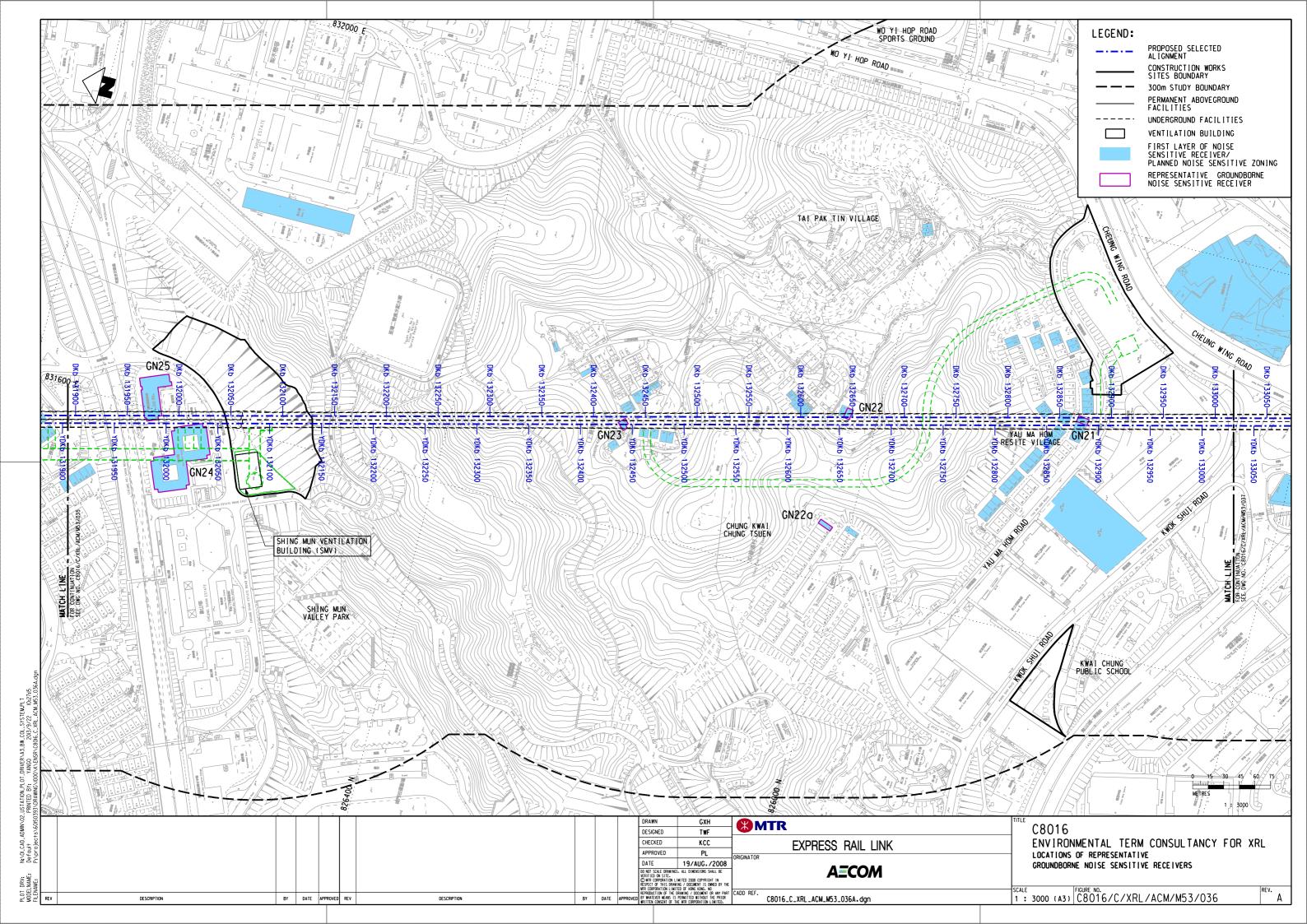


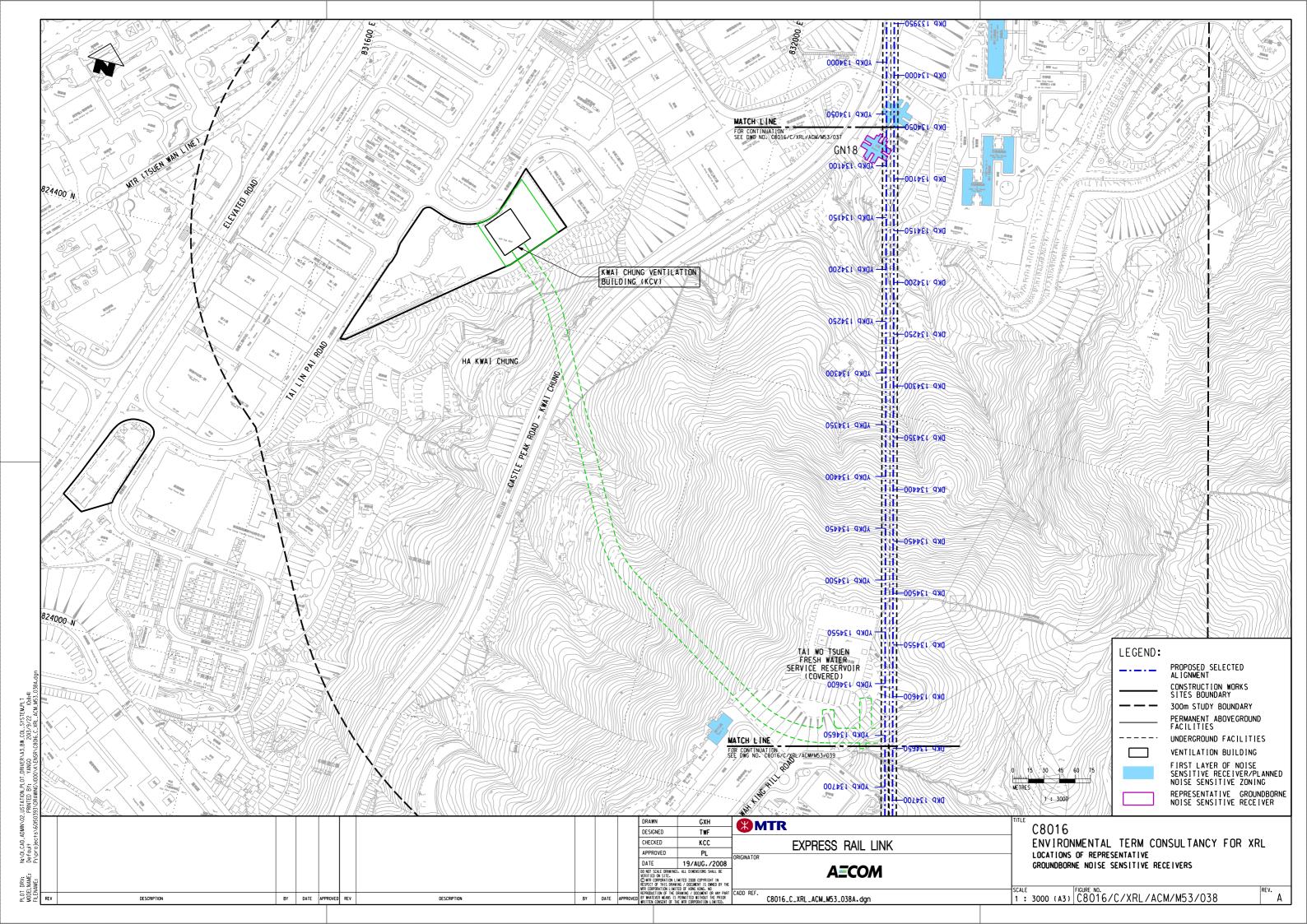


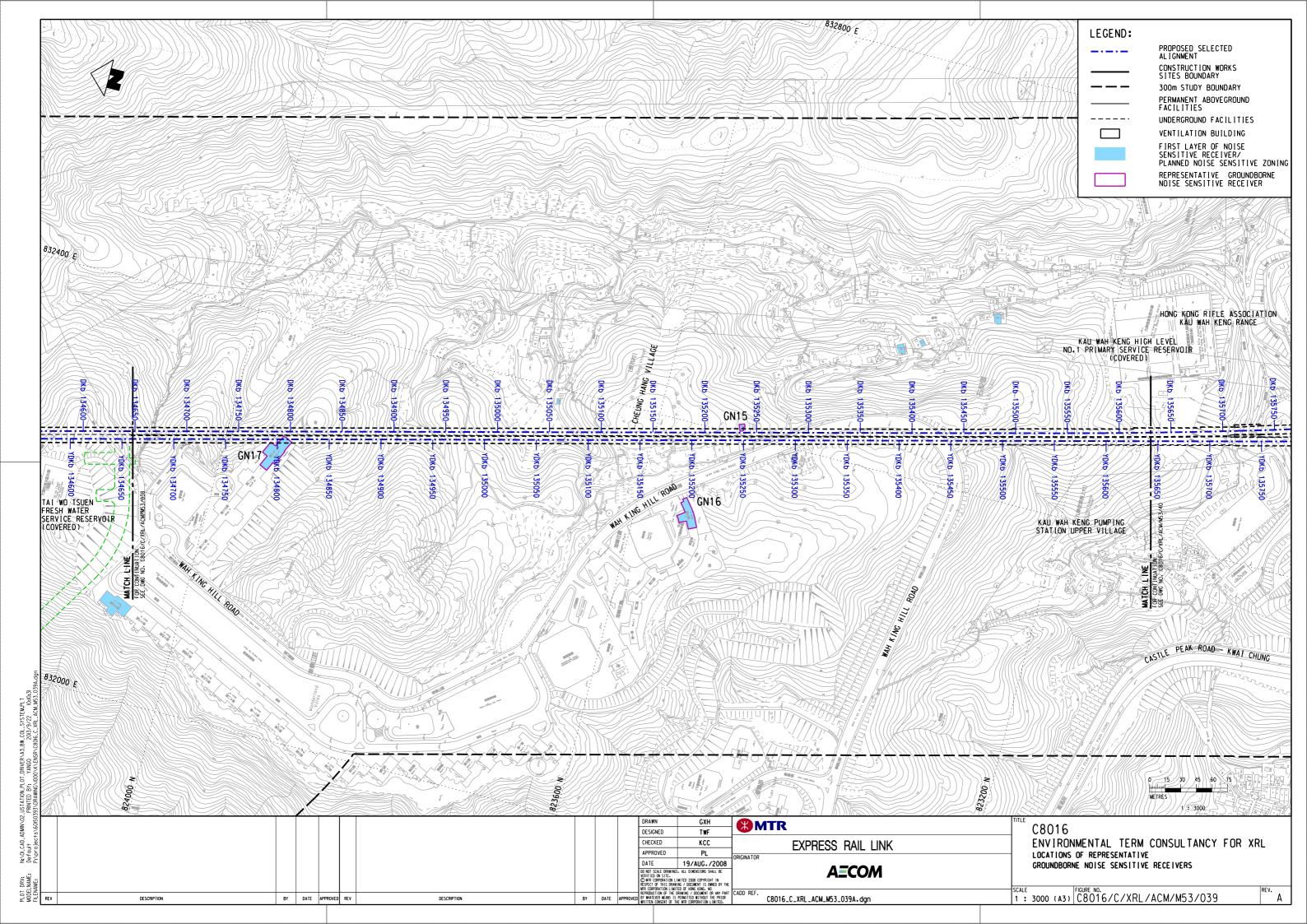


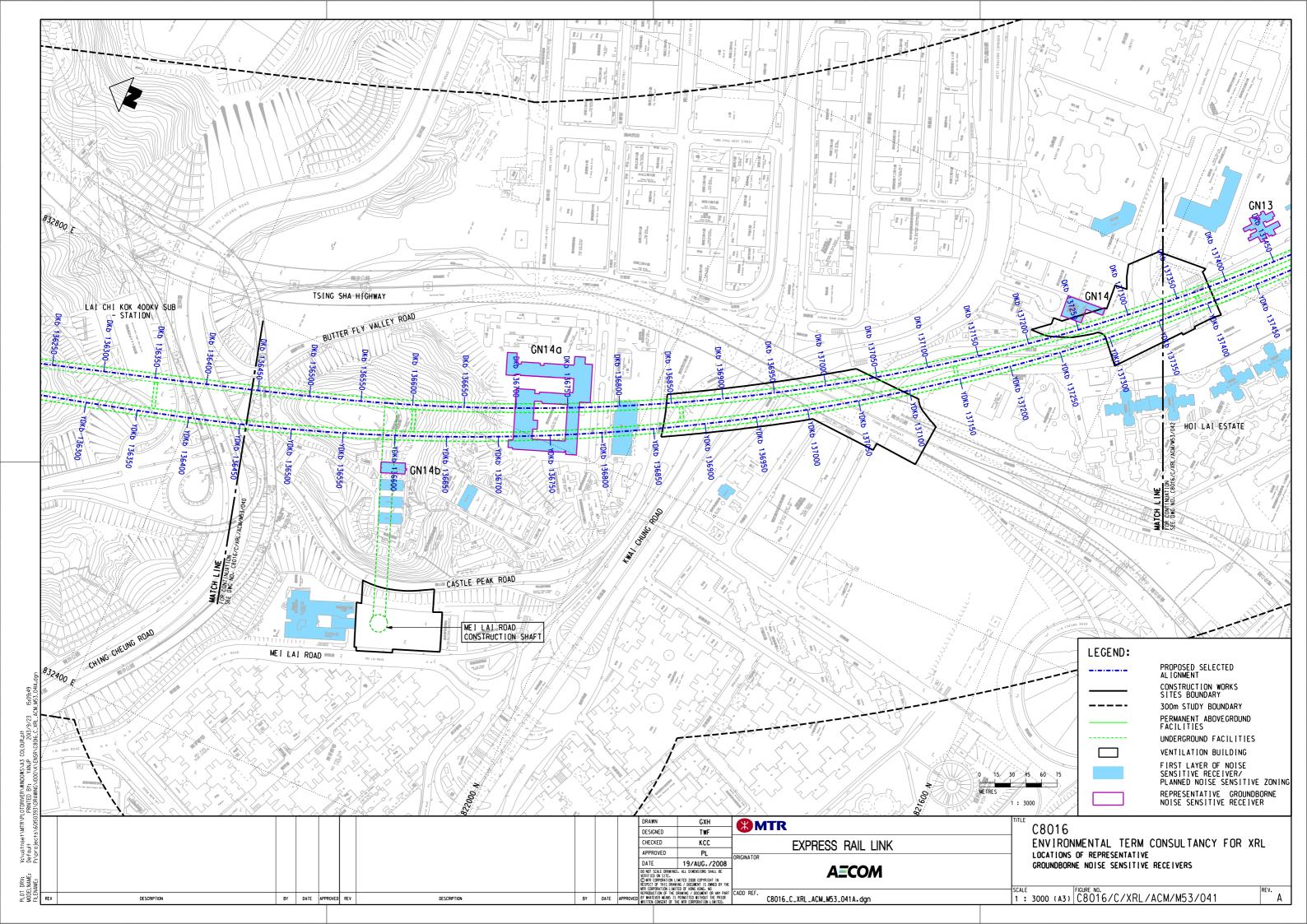


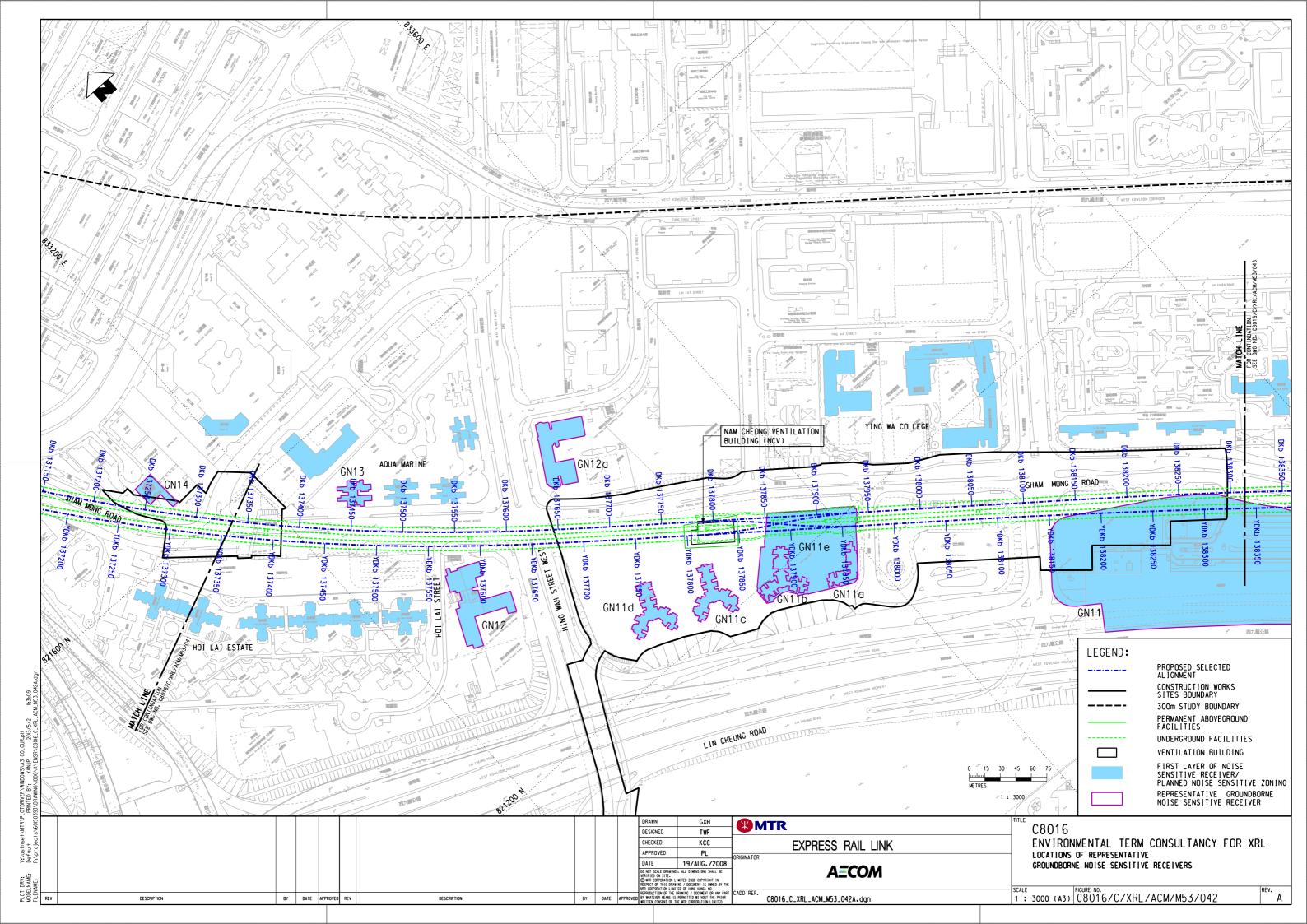


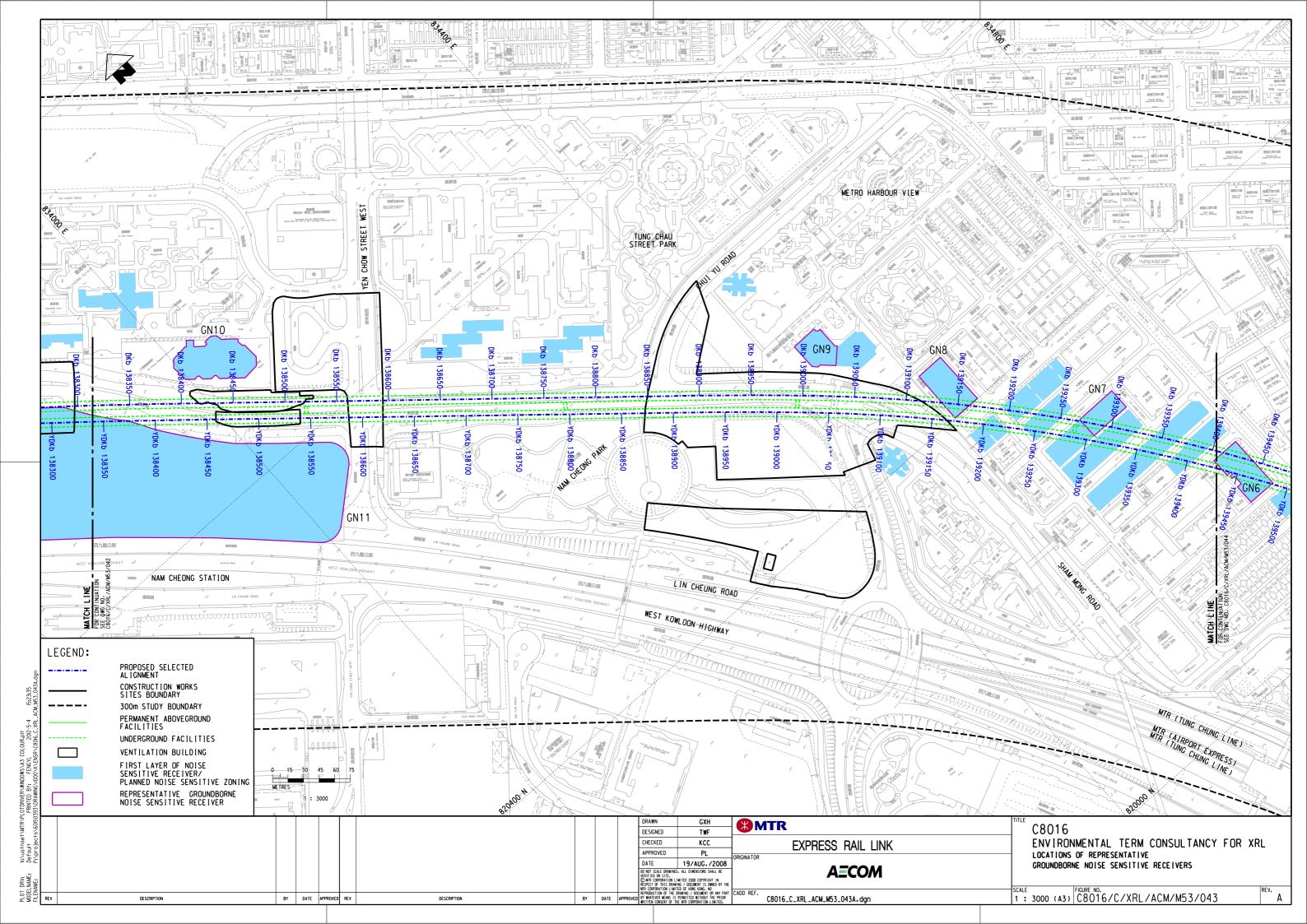


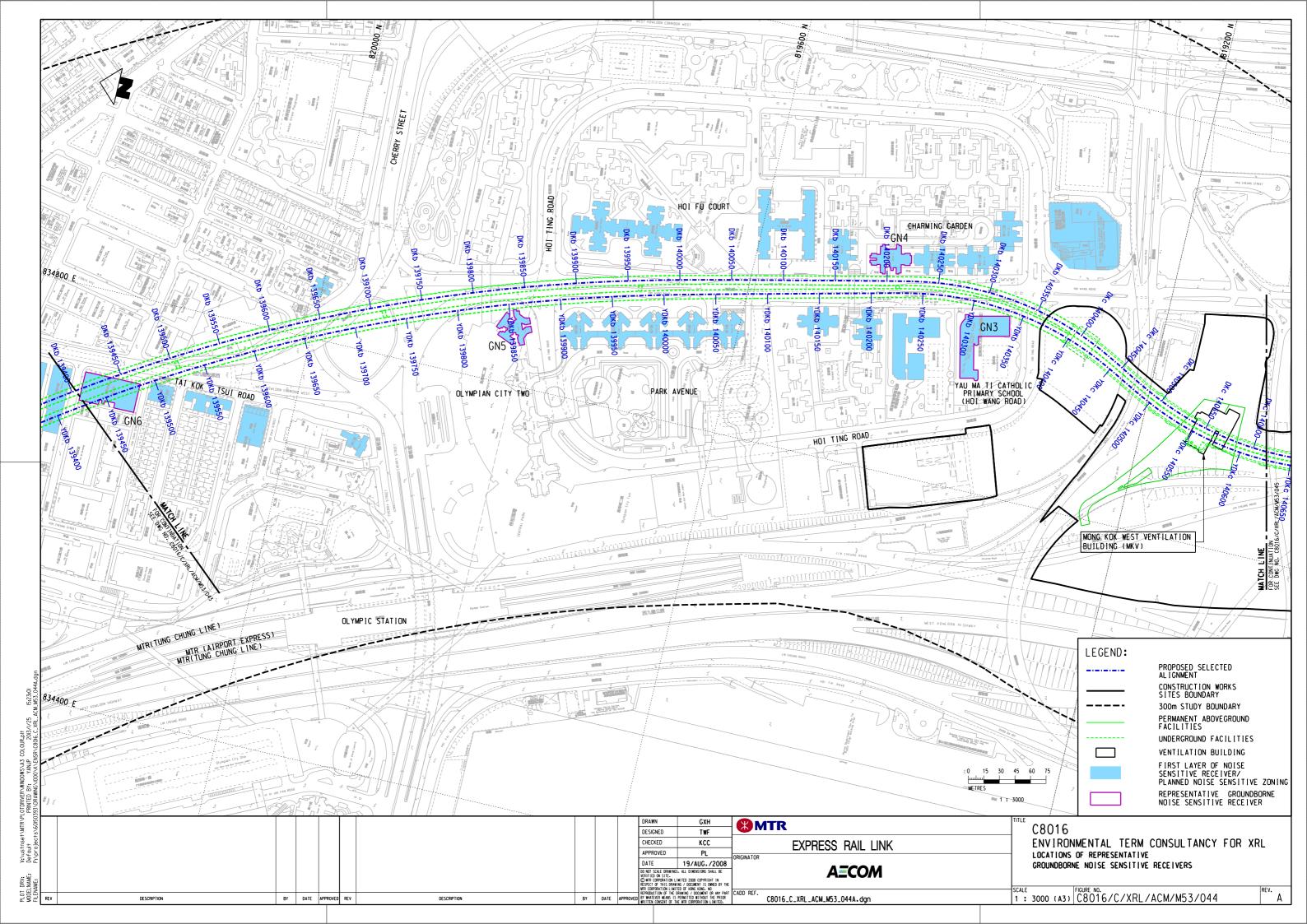


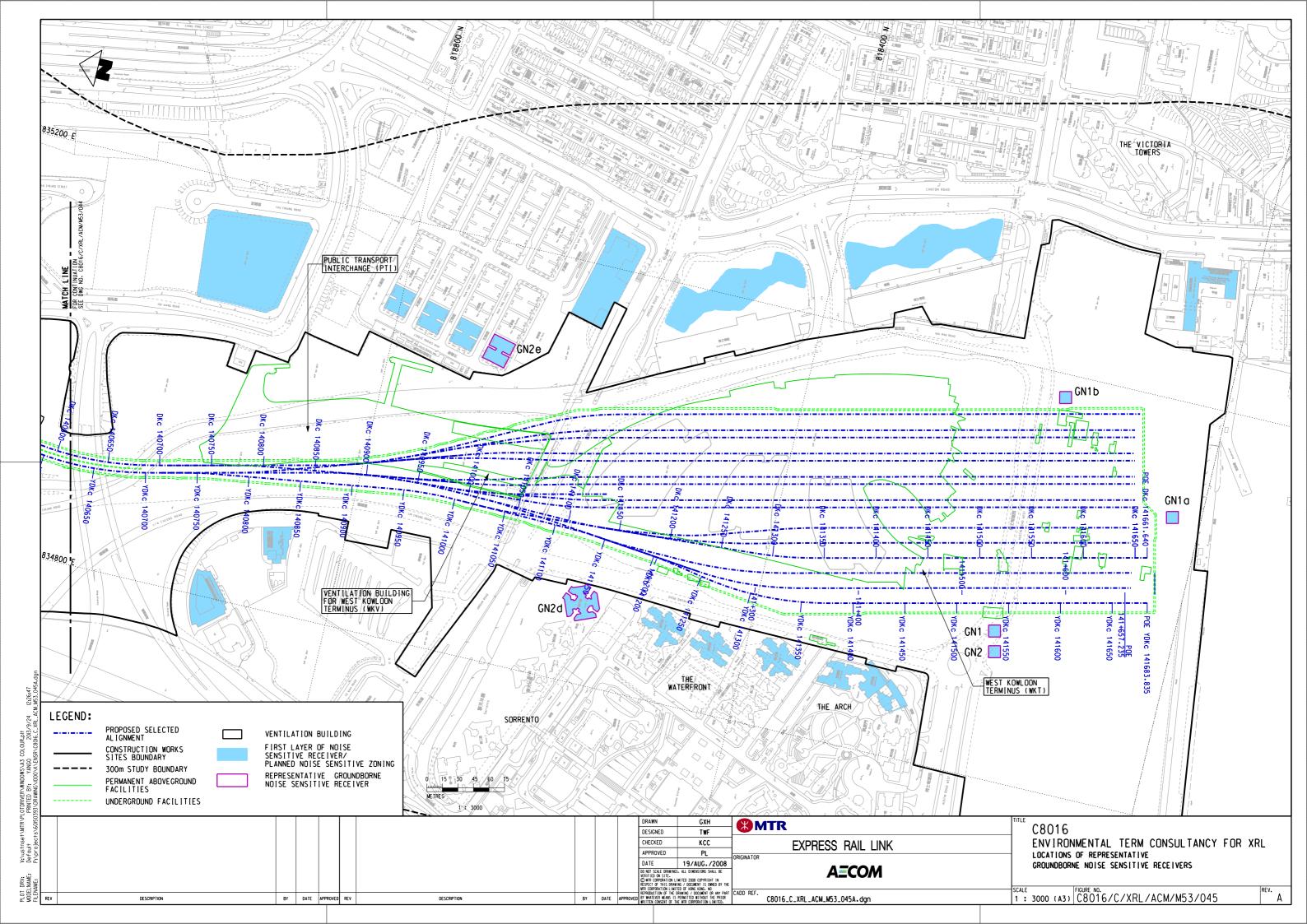












APPENDIX 2.1A

FORCE DENSITY LEVEL MEASUREMENT AND PREDICTION REPORT (CRH 380B)

2 TRAIN VIBRATION AND TRANSFER MOBILITY MEASUREMENT

2.1 Background

- 2.1.1 A FDL Test Plan was prepared to specify the requirements and methodology of the vibration and transfer mobility measurement in order to obtain the data for the prediction of FDL. The Test Plan has been provided to CARS before commencement of the measurement.
- 2.1.2 The vibration and transfer mobility measurement commenced on 7 July and was completed on 9 July 2011. The FDL Test Measurement Report was prepared by CARS in Chinese and a summary of the measurement information is presented in the following sections.

2.2 Train Vibration and Transfer Mobility Measurement

Measurement Section

- 2.2.1 The vibration and transfer mobility measurement has been conducted at suitable testing location which is an at-grade section with trackforms similar to that proposed for the Project (i.e. Rheda) to obtain representative information for FDL determination.
- 2.2.2 The measurement section was selected in the Guangzhou-Shenzhen section of Guangzhou-Shenzhen-Hong Kong Express Rail Link. This section is a two-way passenger line with spacing of 5m between up and down tracks and maximum slope of 20%. Maximum design speed at this section is 350km/h.
- 2.2.3 Measurement section was selected at the at-grade and tangent up track section which adjoins Shiziyang Tunnel. There were no turnouts in the vicinity of the measurement locations in order to obtain data under normal operational situations. Given that there was a speed restriction for the rail section at Shiziyang Tunnel, the maximum design speed at the measurement location was 270kph.

Trackform at Measurement Section

2.2.4 Trackform at measurement section is CRTS-I non-ballast track, baseplate WJ-7B, with prestressed frame plate (PF). This type of baseplate is similar to, but not as stiff as, the baseplate proposed for Rheda, and thus a correction for stiffness has been made in the analysis (details refer to **Section 3.3.1**). Major component of frame type slab track includes rail, elastic splitting fastener, filling plate, rail plate, cement asphalt (CA) mortar adjustment layer, convex shift-resisting poles and concrete block base. Thickness of each component of frame type slab track is given in **Table 2.1**. Stiffness of base plate under elastic splitting fastener is 25kN/mm (± 5kN/mm). Measurement was conducted a few days after rail grinding and transverse marks from the grinding process were observed during inspection. Otherwise, the rails were smooth with no sign of corrugation.

Table 2.1 Thickness of Frame Type Slab Track Structure

Туре	Rail (mm)	Fastener (mm)	Slab (mm)	CA Mortar (mm)	Concrete Base (mm)	Overall Track Structure (mm)
At-grade Non-ballast track	176	41	190	50	299	756

Information of High-speed Train Passby During Measurement

2.2.5 The China Railway High-Speed (CRH) trains running on the measurement section were CRH380B-002 high-speed electric multiple unit (EMU), comprising 8 subgroups (6M2T) with a total train length of 200m. This type of train had been running for the commissioning tests for about 6 months and the wheels had not been ground or replaced. During the measurement,

the train was unloaded, nonetheless, the loading/unloading condition would only have an insignificant effect on the dynamic load and on FDL.

Instrumentation

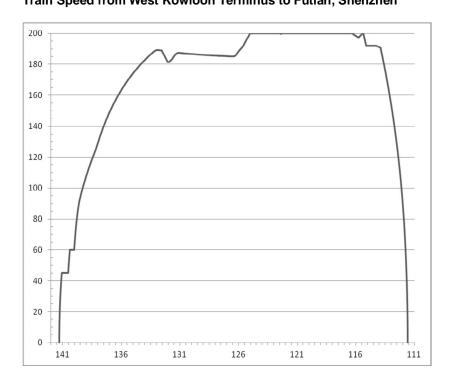
2.2.6 The vibration and transfer mobility measurement was conducted using the instruments as listed in **Table 2.2.**

Table 2.2 Instruments Used in the Measurement

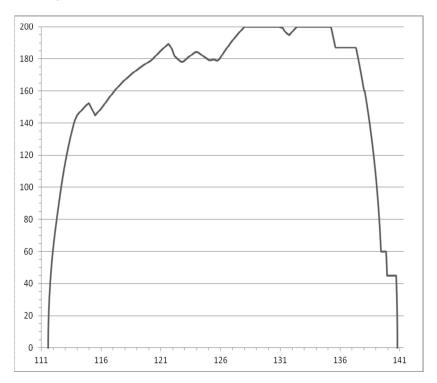
Instrument	Manufacturer / Model No.	Purpose
Multi Channel Vibration Analyser	Bruel & Kjaer Model LANXI	Spectrum analyser for data acquisition
Accelerometer with compatible charge amplifier	Bruel & Kjaer Type 4370V	Vibration transducer to measure vibration levels
Large modal Hammer (peak force at least 60kN) or larger impact rig (peak force at least 200kN) with Force Transducer	Bruel & Kjaer Model 2304	For applying a known impact force at the test location
Charge to DeltaTron® Converters	Bruel & Kjaer Model 2647A	Pre-amplifier for LANXI
Accelerometer calibrator	Bruel & Kjaer Type 4294	For checking the calibration of the instrument
Train passage sensor	Motion detector	Magnetic sensor on rails to detect wheels and to trigger LANXI recording, and also to measure train speed

Measurement Procedures

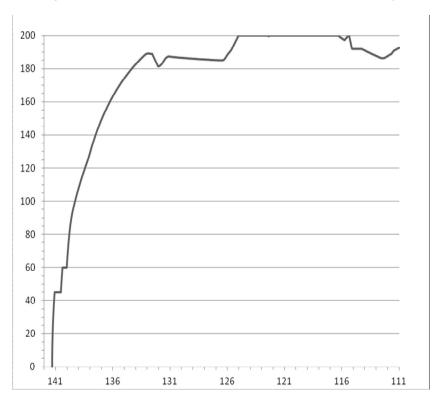
2.2.7 The measurement was conducted according to the FDL Test Plan with the procedures summarised as below.

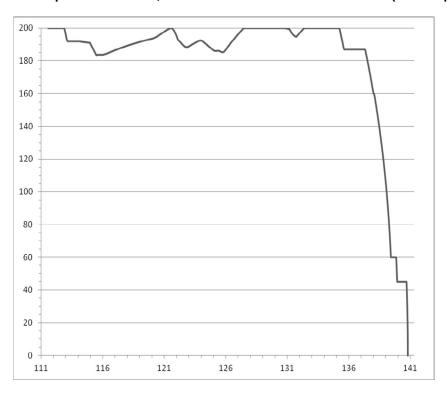

Measurement of Train Vibration Levels

- 2.2.8 Train vibration levels have been measured according to procedures provided below:
 - The accelerometers were fixed into position with bees wax in preparation for measurement ensuring good coupling to the ground.
 - The vibration analyser was set to fast weighting and one-third octave bands from 6.3Hz to 500Hz. The sampling rate was set to 10 samples per second. The calibrator was applied to set the system levels.
 - The one third octave band vibration levels were recorded during the train movements (see Table 2.3) on the nearest track. During the vibration measurement, the train speed was also measured. Details of train type, train length, train speed and track form were recorded for each measurement.
 - The recordings were later analysed by passing a window of length 2s along the signal to obtain the 5s sample with the highest energy average vibration level (Leq in dB re 10⁻⁹ m/s) for each train movement.
 - The 90th percentile vibration levels (normally vibration levels from the train movement generating the highest vibration when fewer than ten movements) were determined in one third octave bands for the train at each speed.


APPENDIX 2.7 SPEED PROFILE OF THE PROJECT

Appendix 2.7 Speed Profile of the Project


Train Speed from West Kowloon Terminus to Futian, Shenzhen


Train Speed from Futian, Shenzhen to West Kowloon Terminus

Train Speed from West Kowloon Terminus to Futian, Shenzhen (Non-Stop at Futian)

Train Speed from Futian, Shenzhen to West Kowloon Terminus (Non-Stop at Futian)

Appendix A2

Excerpt of Environmental Review Report for Proposed Design Changes at Shek Kong Stabling Sidings (September 2013)

Train Operation	Latest Assumptions	EIA Assumptions ⁽³⁾			
	 No Long Haul movements will occur during night-time operation Operation only for two night-time periods (0600 – 0700 hours and 2300 – 2400 hours) 	No Long Haul movements will occur during night-time operation Operation only for two night-time periods (0600 – 0700 hours and 2300 – 2400 hours)			
24 hour Operation	A total of 140 pairs of short haul train and 33 long haul trains	A total of 140 pairs of short haul train and 33 long haul trains			

Notes:

- (1) Only hourly frequency is available. In view of the consistency of movements, the 30 minute train movements were assumed to be 50% of the hourly movements provided.
- (2) The length of Long haul train (427m long) and Short haul train (214m long) remains unchanged.
- (3) Train frequencies are taken from Table 5.12 of the EIA Report.

Train Source Term at 200km/h

3.6 A summary of train source term running at 200km/h adopted in this assessment and the EIA Report is presented in **Table 3.2**.

Table 3.2 Subsources of High Speed Train Adopted in this Assessment and EIA Report

Subsource	Subsource	Parameters		SEL (dB(A)) at 15m setback (at 200km/h)				
component	Length	Height above	Latest Ass	umptions ⁽¹⁾	EIA Assumptions ⁽²⁾			
	Definition	Rails (m)	Long Haul	Short Haul	Long Haul	Short Haul		
Propulsion	Ien _{power}	3	96.2	93.2	97.6	94.6		
Wheel-rail	len _{train}	0.3	95.9	92.9	97.2	94.2		

Notes:

(1) According to the specification of China Railway High-Speed (CRH) trains, the transit exposure level (TEL) measured at 25m from track centre and 3.5m from top of rail shall not exceed 88dB(A), when operating at 200km/h in open section. For calculation purposes, this total noise level has been split into wheel/rail noise at a height of 0.3m and propulsion noise at a height of 3m, with reference to the FRA High speed Guidance Manual. Details of converting TEL to SEL are given in Appendix 3.1.

(2) Corrected train Source Terms are taken from Appendix 5.3 of the EIA Report.

Speed Profile

3.7 Based on the latest speed profile provided by relevant operation entities, the speed of southbound and northbound trains passing through ERS have been updated accordingly. A summary of train speed adopted in this assessment and the EIA Report is presented in **Table 3.3**.

Table 3.3 Speed of Train Adopted in this Assessment and EIA Report

Direction	Speed of Train Passing Through ERS (km/h)						
Direction	Latest Assumptions	EIA Assumptions					
Northbound	200	200					
Southbound	182	200					

Conversion of SEL to Leg

The source levels as discussed in **Table 3.2** apply to a train of a defined length, rather than to one car. The Leq level for both propulsion and wheel-rail noise at the reference distance was determined by accounting for the train length, the speed of the train and the number of movements in the relevant 30 minutes or 24 hours:

noise issue will be minimised. No rail squeal correction is therefore required to be applied to the noise emitted from this area.

Airborne Railway Noise from Train Operations at Shek Kong Stabling Sidings

3.23 This type of noise will be generated by passenger trains being launching from and arriving at the SSS. The methodology for this type of noise follows the same methodology as adopted in the EIA Report.

Nos. of Train Launching from and Arriving at SSS

3.24 For the prediction of cumulative railway noise from trains passing through the ERS and passenger trains launching from and arriving at the SSS, the train launching from and arriving at SSS within the same period of the maximum mainline train frequency as provided in **Table 3.1** has been investigated. A summary of train movements within SSS adopted in this assessment and the EIA Report is presented in **Table 3.4**.

Table 3.4 Train Launching from and Arriving at SSS within the Same Period of Maximum Mainline Train Frequency (Latest and EIA Assumptions)

	Train	Launching from (30-minute	Average Hourly Train Movements			
Train Type	Daytime and Evening Night-time (0700 – 2300 hours) (2300 – 0700 hours)			24 Hours		
	Latest Assumption	EIA Assumption*	Latest Assumption	EIA Assumption*	Latest Assumption	EIA Assumption*
Short haul	0	1	1	2	1	1
Long haul	1	3	0 1		1	2

Note:

Train Source Term at 25km/h

3.25 A summary of train source term running at 25km/h adopted in this assessment and the EIA Report is presented in **Table 3.5**.

Table 3.5 Noise Levels of High Speed Train Running at 25km/h Adopted in this Assessment and EIA Report

Train Type	SEL (dB(A)) at 15m setback (at 25km/h)					
	Latest Assumptions ⁽¹⁾	EIA Assumptions ⁽²⁾				
Short Haul	92.1 (source height: 1.2m)	76.5 (source height: 3m)				
Long Haul	95.1 (source height: 1.2m)	79.5 (source height: 3m)				

Notes

(1) According to the specification of China Railway High-Speed (CRH) trains, the exterior noise (Lmax) measured at 25m from track centre and 3.5m from rail top shall not exceed 75dB(A) when starting from standstill in open section (it is equivalent to the case of train moving at 25km/h). Dominant noise source was identified as the blowers located under the floor instead of air conditioning or wheel/rail noise. Details of converting Lmax to SEL are given in Appendix 3.1.

(2) Due to information of CRH trains not being available during the preparation of EIA Report, the noise induced from trains launching/arriving/moving at SSS was considered to be similar to that at Pat Heung Maintenance Centre (PHMC). Noise measurements carried out at the northern end of Pat Heung of four train launchings similar to those proposed at SSS, at typical speeds of 25km/h. The corrected maximum SEL of short haul and long haul train is 76.5 dB(A) and 79.5 dB(A) respectively at 15m for a train movement at 25km/h.

Calculation of Leq

3.26 Airborne railway noise from train launching from and arriving at SSS was predicted in accordance with Table 5-2 of The Transit Noise and Vibration Impact Assessment^[1] published by U.S. Department of Transportation Federal Transit Administration (FTA Guidance Manual). The Leq level for train noise at the reference distance was determined by accounting for the number of movements in the relevant 30 minutes or 24 hours:

AECOM Environment XRL VEP_SSS_v13

^{*} Worst case launchings from and arrivals at SSS is presented in Table 5.14 of the approved EIA Report.

¹ Transit Noise and Vibration Impact Assessment. Report No. FTA-VA-90-1003-06

<u>Cumulative Noise Impact from Airborne Railway Noise and Fixed Plant Noise During Night-time</u> Period

In order to evaluate the cumulative noise levels from airborne railway noise and fixed plant noise within the same worst case period as discussed in **Section 3.30**, the number of train movements (launching from and arriving at the SSS, and train passing through ERS) was investigated and are shown in **Table 3.8** and **Table 3.9**.

Table 3.8 Train Launching from and Arriving at SSS within the Same Worst Case Period of Fixed Plant Noise

Train Type	Train Launching fro within 30-mi	Average Hourly Movements	Train	
	Daytime and Evening (0700 – 2300 hours)	Night-time (2300 – 0700 hours)	24 Hours	
Short haul	3	0	1	
Long haul	1	0	1	

Note:

Table 3.9 Train Passing Through ERS within the Same Worst Case Period of Fixed Plant Noise

Train Type	Train Passing within 30-mir	Average Hourly Train Movements					
	Daytime and Evening (0700 – 2300 hours)	Night-time (2300 – 0700 hours)	24 Hours				
Short haul	3 (northbound) 4 (southbound)	0	3 (northbound) 3 (southbound)				
Long haul	1 (northbound) 1 (southbound)	0	1 (northbound) 1 (southbound)				

Note:

Construction Noise from Maintenance Train Movement During Night-time Period

- 3.46 The methodology for this type of noise follows the same methodology as adopted in the EIA Report. Maintenance trains involving maintenance wagons powered by two locos will depart from the SSS around midnight and will return before the commencement of passenger services the next morning.
- 3.47 A summary of source term of maintenance train adopted in this assessment and the EIA Report is presented in **Table 3.10**.

Table 3.10 Source Term of Maintenance Train Adopted in this Assessment and EIA Report

Operation Scenario	Source Term					
operation occitatio	Latest Assumptions ⁽¹⁾	EIA Assumptions ⁽²⁾				
Idling within the shed	84 dB(A) SPL, Leq	78 dB(A) SPL, Leq				
Running at 25km/h	83dB(A) SEL at 15m setback	85dB(A) SEL at 15m setback				

Notes:

3.48 The loco train movements adopted in this assessment and the EIA Report are presented in **Table 3.11**.

⁽¹⁾ During the EIA stage, cumulative noise levels from airborne railway noise and fixed plant noise were predicted based on different operation periods with maximum train nos. launching from and arrival at SSS which would not occur within the same worst case period of fixed plant noise assessment.

⁽¹⁾ During the EIA stage, cumulative noise levels from airborne railway noise and fixed plant noise were predicted based on different operation periods with maximum train nos. passing through ERS which would not occur within the same worst case period of fixed plant noise assessment.

⁽¹⁾ The specification of all engineering trains measured at 25 metres from the track centre line and with all auxiliary equipment in operation shall not exceed: i) 65 dB(A) at standstill; and ii) the transit exposure level (TEL) of 75 dB(A) up to 25 km/h travelling speed. Details of converting TEL to SEL and calculation of noise from the shed are given in Appendix 3.5.
(2) Based on measurements in PHMC, the noise level of the loco idling with exhaust fans operating was taken as 78dB(A) and the SEL of the movement of one loco was taken as 85dB(A) at a distance of 15m.

TOP FLOO	DR .	Overall Result (dBA)			Noise Criteria ANL (dBA)			
NSR	Description	ASR	Leq, day	Leq, night	Lmax	Leq, day	Leq, night	Lmax
SS7	Leung Uk Tsuen	В	50	41	72	65	55	85
SS10	DD110 LOT 482, Wang Toi Shan	В	48	38	75	65	55	85
SS11a	Leung Uk Tsuen Squats	В	52	44	67	65	55	85
SS12	No. 265 Kam Tai Road	В	49	40	69	65	55	85
SS14	Planned village house at Village Zone	В	55	42	70	65	55	85
SS15	Abandoned village house in Shek Kong	В	56	42	71	65	55	85
SS20	Village house in Shek Kong	В	49	40	77	65	55	85

Airborne Railway Noise from SSS and ERS Due to Maximum Train Movements on Mainline

3.71 With the provision of sound absorption treatment and noise barriers recommended in the EIA Report, in addition to the additional mitigation measures as stated in **Section 3.64**, the predicted noise levels due to maximum train movements passing through ERS and train launching from and arriving at SSS, as presented in **Table 3.17**, would comply with the noise criteria. Details of the calculation are given in **Appendix 3.4**.

Table 3.17 Predicted Maximum Airborne Railway Noise Levels

		Predicted Max. Noise Levels (dBA)			Noise Criteria (dBA)			Exceedence (dBA)			
NSR	Description	Leq, day	Leq, night	Leq, 24h	Lmax	Leq, day	Leq, night	Lmax	Leq, day	Leq, night	Lmax
SS2	Nan Hing Lane, Wang Toi Shan, Pat Heung, N.T.	41	37	39	69	65	55	85	-	-	-
SS4	Leung Uk Tsuen Village House	45	41	44	73	65	55	85	-	-	-
SS5	51A Leung Uk Tsuen, Wang Toi Shan, Pat Heung, N.T.	52	48	50	68	65	55	85	-	-	-
SS6	32 Leung Uk Tsuen, Wang Toi Shan, Kam Tin Road, N.T.	52	47	50	68	65	55	85	-	-	-
SS7	Leung Uk Tsuen, Wang Toi Shan, Kam Tin Road, N.T.	48	44	46	72	65	55	85	-	-	-
SS10	DD110 LOT 482, Wang Toi Shan Choi Yuen Tsuen, Wang Toi Shan, Pat Heung, N.T.	46	42	44	75	65	55	85	-	-	-
SS11a	Leung Uk Tsuen Squats	50	46	49	67	65	55	85	-	-	-
SS12	265 Kam Tai Road, Wang Toi Shan, Pat Heung, N.T.	45	41	43	69	65	55	85	-	-	-
SS14	Village Zone West Boundary, Leung Uk Tsuen, Wang Toi Shan, Pat Heung, N.T.	55	51	53	70	65	55	85	-	-	-

		Predicted Max. Noise Levels (dBA)			No	Noise Criteria (dBA)			Exceedence (dBA)		
NSR	Description	Leq, day	Leq, night	Leq, 24h	Lmax	Leq, day	Leq, night	Lmax	Leq, day	Leq, night	Lmax
SS15	Abandoned Shek Kong village house	57	52	54	71	65	55	85	-	-	-
SS20	Shek Kong village house	48	44	47	77	65	55	85	-	-	-

Construction Noise from Maintenance Train Movement During Night-time Period

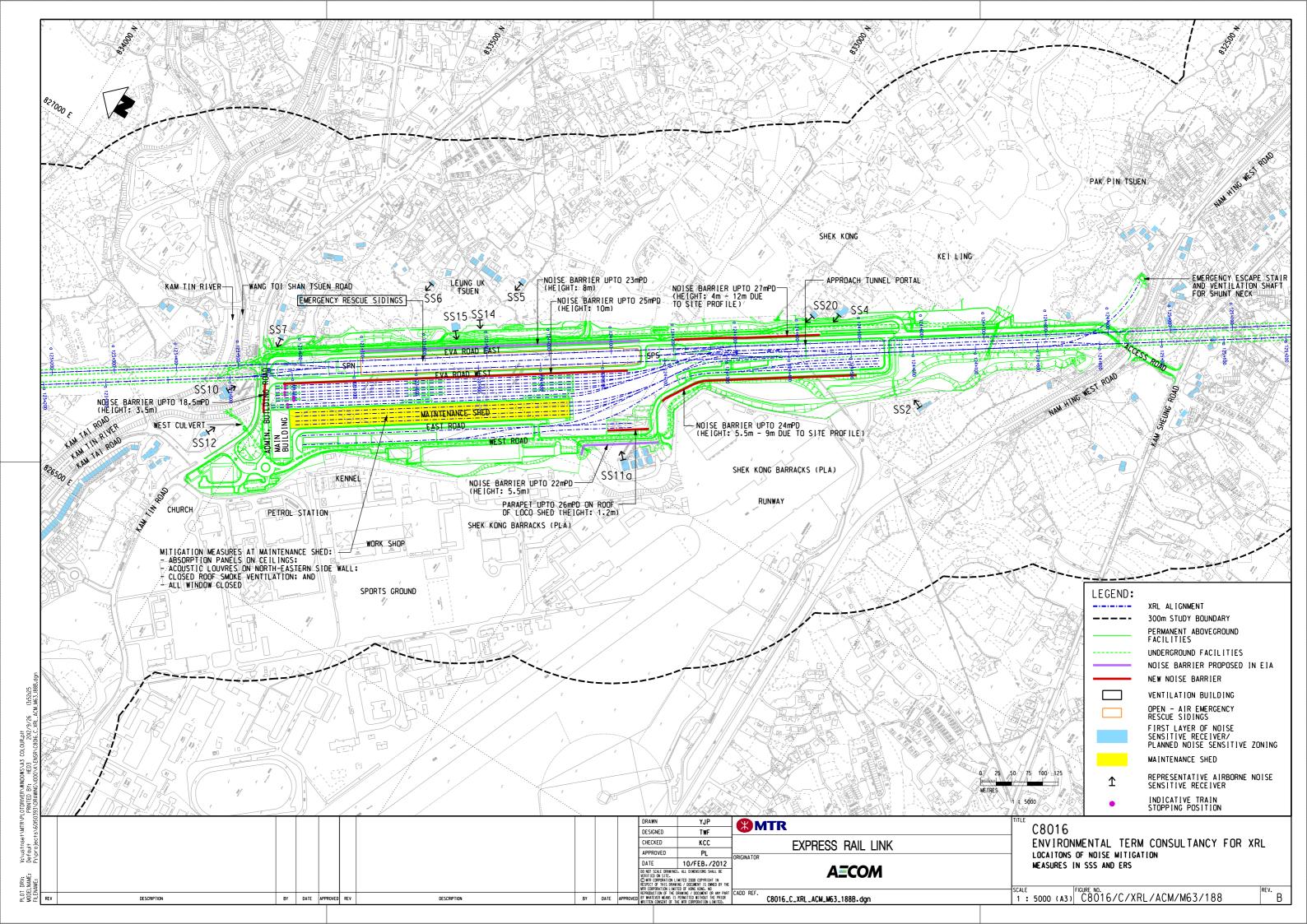

3.72 With the provision of mitigation measures, the predicted construction noise levels at NSRs, as shown in **Table 3.18**, would comply with the noise criteria. Sample of detailed calculation is given in **Appendix 3.5**.

Table 3.18 Mitigated Noise Levels from Maintenance Train Movement During Night-time Period

			Loco Launch / Arrive	CNP Criteria	Level of Exceedence
			Leq, night ⁽¹⁾	Leq, night	Leq, night
NSR	Description	ASR	dB(A)	dB(A)	dB(A)
SS2	Nam Hing Lei	В	37	50	-
SS4	Leung Uk Tsuen Village House	В	39	50	-
SS5	51A Leung Uk Tsuen	В	38	50	-
SS6	32 Leung Uk Tsuen	В	32	50	-
SS7	Leung Uk Tsuen	В	26	50	-
SS10	DD110 LOT 482, Wang Toi Shan	В	26	50	-
SS11a	Leung Uk Tsuen Squats	В	38	50	-
SS12	No. 265 Kam Tai Road	В	25	50	-
SS14	Planned village house at Village Zone	В	34	50	-
SS15	Abandoned village house in Shek Kong	В	35	50	-
SS20	Village house in Shek Kong	В	41	50	-

Fixed Plant Sources - Ventilation Building/Shaft

3.73 The maximum sound power levels (SWLs) of the fixed noise sources at ERS north and south plant buildings have been calculated and presented in **Table 3.14**. Details of the calculation are given in **Appendix 3.6**.

Appendix A3

Excerpt of Noise Review Report for Additional Train Operation Scenario (August 2018)

2 ADDITIONAL TRAIN OPERATION SCENARIOS

2.1 Train Operation in EP Condition 2.27

2.1.1 Pursuant to EP Condition 2.27, the train operation shall be confined within 0000 to 0015 hours and 0415 to 2400 hours with details presented in **Table 2.1** below.

Table 2.1 Train Operation Details in EP Condition 2.27

Train Operation Details	EP Condition 2.27
Train Length	Long haul train: not more than 427m long
	Short haul train: not more than 241m long
Daily Operation	Not more than a total of 280 short haul trains and 66 long haul trains
Operation Period from 0700 to 2300 hours	Hourly frequency: not more than 13 short haul and 4 long haul trains at northbound and not more than 12 short haul and 3 long haul trains at southbound
Operation Periods of 0000 to 0015 hours, 0415 to 0700 hours and 2300 to 2400 hours	Hourly frequency of 0600 to 0700 hours and 2300 to 2400 hours: not more than 6 short haul trains at northbound and 6 short haul trains at southbound; no long haul train movements in these periods.
	Frequency of 0000 to 0015 hours: not more than 1 short haul train at northbound.
	Frequency of 0415 to 0500 hours: not more than 1 short haul train at northbound and 1 short haul train at southbound.
	Frequency of 0500 to 0600 hours: not more than 1 short haul train at northbound and 2 short haul trains at southbound.
Train Speed	Not faster than 200 km/hr

2.1.2 Based on the train operation details in EP Condition 2.27, the maximum train frequency per 30 minutes is presented in **Table 2.2**. Based on the assessment findings in **SSS ERR** and **OGBNPR**, the railway noise induced by the train operation as detailed in **Table 2.1** above comply with the stipulated noise limits.

Table 2.2 Maximum Train Frequency per 30 Minutes in EP Condition 2.27

Time Period	Direction	Train Type		
		Short Haul Train	Long Haul Train	
Day & Evening	Northbound	7	2	
time	Southbound	6	2	
Night-time	Northbound	3	0	
	Southbound	3	0	

2.2 Additional Operation Scenarios

2.2.1 As discussed in **Section 1.1.5**, there would be additional operation scenarios available for the Project. There is also an insignificant change to the length of long trains from not more than 427m to not more than 430m.

AECOM Asia Co. Ltd. 2 August 2018

2.2.2 The maximum train movements during daytime and evening (0700 – 2300 hours) and night-time (2300 – 0100 and 0400 – 0700 hours) in the additional operation scenarios have been identified according to latest timetable of XRL and are presented in **Table 2.3**.

Table 2.3 Train Operation Details in Additional Operation Scenarios

Train Operation Details	Additional Operation Scenarios				
Train Length	Long train: not more than 430m long				
	 Short train: not more than 241m long 				
Daily Operation	Not more than a total of 190 short trains and 156 long trains				
Operation Period from	Hourly frequency: not more than 9 short and 6 long trains at				
0700 to 2300 hours	northbound and not more than 6 short and 6 long trains at southbound				
Operation Periods of	Hourly frequency: not more than 2 short and 2 long trains at				
0400 to 0700 hours	northbound and not more than 2 short and 2 long trains at				
and 2300 to 0100	southbound				
hours ⁽¹⁾					
Train Speed	Not faster than 200 km/hr				

Note:

- (1) Since the XRL Hong Kong Section is connected to the Mainland High Speed Rail Network, the XRL train operation in Hong Kong will be subject to the train operation in the Mainland. In the event of special incident or urgent train services arrangement in the Mainland, the XRL train services in Hong Kong would be advanced, delayed or changed beyond the schedule. Therefore the train services may be operated beyond the operation hours mentioned in Table 2.3, but the train frequency will not exceed the maximum 30min frequency and the hourly frequency mentioned in Table 2.4.
- 2.2.3 Based on the proposed train operation details in **Table 2.3** and the latest timetable of XRL, the maximum train frequency per 30 minutes has been developed and is presented in **Table 2.4**.

Table 2.4 Train Frequency – Hourly and Per 30 Minutes

				No. of Train Frequency ⁽¹⁾			
					Hourly \	Window	
Time Period	Direction	Hourly Frequency		Maximum mi		Other 30 mins	
Time Period	Direction	Short Train	Long Train	Short Train	Long Train	Short Train	Long Train
Day &	Northbound	9	6	5	3	4	3
Evening time	Southbound	6	6	3	3	3	3
Scenario 1A							
Night time	Northbound	2	2	2	1	0	1
Night-time	Southbound	2	2	2	1	0	1
Scenario 1B							
Night time	Northbound	2	1	1	0	1	1
Night-time	Southbound	2	2	1	2	1	0

Note:

(1) Since the XRL Hong Kong Section is connected to the Mainland High Speed Rail Network, the XRL train operation in Hong Kong will be subject to the train operation in the Mainland. In the event of special incident or urgent train services arrangement in the Mainland, the XRL train services in Hong Kong would be advanced, delayed or changed beyond the schedule. Therefore the train services may be operated beyond the operation hours mentioned in Table 2.3, but the train frequency will not exceed the maximum 30min frequency and the hourly frequency mentioned in Table 2.4.

2.3 Review of Representative Noise Sensitive Receivers

2.3.1 Representative noise sensitive receivers were identified in **OGBNPR** and **SSS ERR**. A review of representative GBNSRs and ABNSRs has been conducted and it is revealed that there are

AECOM Asia Co. Ltd. 3 August 2018

Appendix B

Excerpt of Annex E of MTR South Island Line (East) - Operational Air-borne Noise Performance Test Report

MTR SIL(E) Air-borne Noise Performance Test Measurement Methodology

Table 5.3 Tentative Rundown

Time	Activity
2200 hr - 2300 hr	Measurement setup
2300 hr - 0100 hr	Noise performance test
0100 hr - 0200 hr	Collecting Measurement Equipment

5.3. Test Train Arrangement

S-Stock train (3-car) will be deployed for the operation of SIL(E) instead of K-stock train stipulated in EP condition 2.24. According to the *Noise Performance Report for S-Stock Train (3-Car)* as prepared by ET leader and verified by IEC in January 2015, both the air-borne and ground-borne noise performance of S-Stock train are equivalent or better than the relevant EIA requirement of K-Stock train. Therefore, S-Stock train meets the requirement of EP condition 2.24, and would be arranged for the air-borne noise performance test.

Test trains would be arranged to run at design operational speed according to the target speed profile as shown in **Figure E.1** to **Figure E.6** in Appendix E. The air-conditioning units would be manually set at full load during the test. No less than 5 passbys would be measured for up track and down track respectively.

Various literatures suggested that train loading has no significant effect on air-borne noise of EMU (ref: "Calculation of Railway Noise 1995", "Additional railway noise source terms For 'Calculation of Railway Noise 1995", and "Acoustics – Railway applications – Measurement of noise emitted by railbound vehicles (ISO 3095:2013)"). Previous measurement data for trains running along existing railway line also indicates that train load has no significant effect on the air-borne noise. The average train passby noise spectra at a viaduct section near Tai Shui Hang station among the SP1950 fleet of Ma On Shan Line are shown in **Figure 5.1**. Green and blue solid line represent the spectra averaged from at least 10 passbys during non-peak hours (0600hr - 0700hr) and peak hours (0800hr - 0900hr) respectively. Green dash lines and blue dash lines are the spectra +/- 1 standard deviation respectively. Taken into account the variations, there is no significant difference for the air-borne noise level during non-peak and peak hours, despite the difference in train loading. Test trains arranged for the noise performance test would be without loading.

Appendix C

Calibration Certificates of Monitoring Equipment

Acoustic Calibrator

CALIBRATION CERTIFICATE

Date of Issue	5-Mar-2018		Certificate Nu	mber MLCN180297S
Customer Informatio	n			(1) (1) (1) (1) (1) (1) (1) (1)
Company Name	Wilson Accoust	ics Limited		
Address	Unit 601, Block	A, Shatin Industrial Co	entre,	
	Yuen Shun Circ			
	Shatin, N. T.,	,		
	Hong Kong			
Equipment-under-Te	est (EUT)		计图像图像图像图像	No. of the second
Description	Acoustic Calibra	ator		
Manufacturer	Svantek			
Model Number	SV 30A			
Serial Number	29088			
Equipment Number				
Calibration Particula	ır	a de la compa	12.439/23/23/24/24	10 (Marin Lan 1942)
Date of Calibration	5-Mar-2018			
Calibration Equipment	4231(MLTE008	3) / PA160059 / 20-May	/-18	
Campianion admipment				
	11351(MLTE049	9) / MLEC17/06/02 / 6-	Jun-18	
	1351(MLTE049	9) / MLEC17/06/02 / 6-	Jun-18	
	1351(MLTE049	9) / MLEC17/06/02 / 6-	Jun-18	
Calibration Procedure			Jun-18	
Calibration Procedure	MLCG00, MLC	CG15		r F
Calibration Procedure Calibration Conditions		CG15 Temperature	23 °C ± 5 °C	
	MLCG00, MLC	Temperature Relative Humidity	23 °C ± 5 °C 55% ± 25%	
	MLCG00, MLC	Temperature Relative Humidity Stabilizing Time	23 °C ± 5 °C 55% ± 25% Over 3 hours	
	MLCG00, MLC	Temperature Relative Humidity Stabilizing Time Warm-up Time	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable	
Calibration Conditions	MLCG00, MLC Laboratory	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery	
	MLCG00, MLC Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions	MLCG00, MLC Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions	MLCG00, MLC Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions	MLCG00, MLC Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions	MLCG00, MLC Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions	MLCG00, MLC Laboratory EUT Calibration data All calibration r	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions Calibration Results	MLCG00, MLC Laboratory EUT Calibration data All calibration r	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	
Calibration Conditions Calibration Results	MLCG00, MLC Laboratory EUT Calibration data All calibration r	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages.	5-Mar-201
Calibration Conditions Calibration Results	MLCG00, MLC Laboratory EUT Calibration data All calibration r	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours Not applicable Internal battery ntinuation pages. 'specification.	5-Mar-201

Page 1 of 2

mishandling, misuse, and the capacity of any other laboratory to repeat the measurement.

MaxLab Calibration Centre Limited shall not be liable for any loss or damage resulting from the use of the EUT.

The copy of this Certificate is owned by MaxLab Calibration Centre Limited. No part of this Certificate may be reproduced without the prior

written approval of MaxLab Calibration Centre Limited.

Certificate No.

MLCN180297S

Calibration Da	Calibration Data									
EUT Settii	ng	Standard R	eading	EUT E	ror	Calibrati Uncertain			EUT cificat	ion
94	dB	93.7	dB	0.3	dB	0.15	dB	±	0.3	dB
114	dB	113.7	dB	0.3	dB	0.15	dB	±	0.3	dB

- END -

Calibrated By:

Patrick

Checked By:

K.O. Lo

5-Mar-18 Date:

Date:

5-Mar-18

Page 2 of 2

Acoustic Calibrator Larson Davis

CALIBRATION CERTIFICATE

Certificate Information	on		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Date of Issue	8-Sep-2017		Certificate Number	MLCN171891S
Customer Informatio	n	No. of the Late	A ARTHUR DE LA COMP	对于
Company Name	Wilson Acoustic			
Address	The second secon	A, Shatin Industrial C	entre,	
	Yuen Shun Circu	uit,		
	Shatin, N. T.			
Equipment-under-To	est (EUT)	1100 1100	HARACTER STORY	105(8%) 310
Description	Precision Acous	tic Calibrator		
Manufacturer	Larson Davis			
Model Number	CAL200			
Serial Number	10478			
Equipment Number				
Calibration Particul	ar		The state of the state of	
Date of Calibration	8-Sep-2017			
Calibration Equipment		3) / PA160059 / 20-Ma		
	1357(MLTE190)) / MLEC17/05/02 / 2	5-May-18	
Calibration Procedure	MLCG00, MLC	CG15		
Calibration Conditions	Laboratory	Temperature	23 °C ± 5 °C	
		Relative Humidity	55% ± 25%	
	EUT	Stabilizing Time	Over 3 hours	
		Warm-up Time	Not applicable	-
		Power Supply	Internal battery	
Calibration Results		were detailed in the		
	All calibration	results were within EU	T specification.	
				No. 10 Sept. Visit Ave. 10 Sept. 10 Sep
Approved By & Date	e			
		1/2	K.O. Lo	8-Sep-2017
			K.O. LO	0 Bep 2017
not include allowance for overloading, mishandling,	the EUT long term dr misuse, and the capa	relate to the values measurift, variation with environ acity of any other laborator	red at the time of the calibration and the mental changes, vibration and shock dury to repeat the measurement.	iring transportation,
* MaxLab Calibration Centi * The copy of this Certificat prior written approval of N	e is owned by MaxLa	ab Calibration Centre Lim	ited. No part of this Certificate may be	reproduced without the

Page 1 of 2

Certificate No. MLCN171891S

Calibration Data		建筑建筑		
EUT Setting	Standard Reading	EUT Error from Setting	Calibration Uncertainty	EUT Specification
94 dB	93.9 dB	-0.1 dB	0.15 dB	± 0.2 dB
114 dB	113.9 dB	-0.1 dB	0.15 dB	± 0.2 dB

- END -

Calibrated By:

Date:

Patrick 8-Sep-17 Checked By:

K.O. Lo 8-Sep-17

Date:

Page 2 of 2

Sound & Vibration Analyzer SVAN958 (Serial No. 20890)

CALIBRATION CERTIFICATE

Certificate Informati	on	STATE OF THE PARTY			
Date of Issue	23-Jun-2017	Certificate Number MLCN1711378			
Customer Informatio	on.				
Company Name Address	Wilson Accoustics Limited Unit 601, Block A, Shatin Industrial C Yuen Shun Circuit, Shatin, N. T., Hong Kong	Centre,			
Equipment-under-To	est (EUT)				
Description Manufacturer Model Number Serial Number Equipment Number	Sound & Vibration Analyser Svantek SVAN 958 20890				
Calibration Particula	ar - Carlotte - Carlot	2 10 10 10 10 10 10 10 10 10 10 10 10 10			
Date of Calibration Calibration Equipment	23-Jun-2017 4231(MLTE008) / PA160059 / 20-May-2018				
Calibration Procedure	MLCG00, MLCG15				
Calibration Conditions	Laboratory Temperature Relative Humidity EUT Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours 10 minutes Internal battery			
Calibration Results	Calibration data were detailed in the	continuation pages.			
Approved By & Date	1	K.O. Lo 23-Jun-201			
The results on this Calibrat not include allowance for to overloading, mishandling, MaxLab Calibration Centre The copy of this Certificate	he EUT long term drift, variation with environ misuse, and the capacity of any other laborator c Limited shall not be liable for any loss or dar	international standards. ed at the time of the calibration and the uncertainties quoted wi mental changes, vibration and shock during transportation, y to repeat the measurement.			

Page 1 of 2

Certificate NoMLCN171137S

Channel / Mode	Filter / Detector	Rang	ge	EU7 Readi	1	Stand		EUT Err	or	Calibrat Uncertai	
CH4 / Sound	A / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	dI
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1	dB	0.2	dl
				114.1	dB	114.0	dB	0.1	dB	0.2	d
	C / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1	dB	0.2	d
				114.1	dB	114.0	dB	0.1	dB	0.2	d
	LIN / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	94.1	dB	94.0	dB	0.1	dB	0.2	d
				114.1	dB	114.0	dB	0.1	dB	0.2	d
	A / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	Ċ
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB	0.2	Ċ
	C / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	C
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB	0.2	C
	LIN / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	C
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB	0.2	(
	A / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	Ċ
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB	0.2	(
	C / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	(
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB		(
	LIN / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB		d
	(1 kHz Input)	130	dB	114.1	dB	114.0	dB	0.1	dB	0.2	C

- END -

Calibrated By:

Patrick

Checked By:

K.O. Lo 23-Jun-2017

Date:

23-Jun-2017

Date:

Page 2 of 2

Sound & Vibration Analyzer SVAN958 (Serial No. 23412)

CALIBRATION CERTIFICATE

Certificate Informati				
Date of Issue	13-Mar-2017		Certificate Number	MLCN170405S
Customer Informatio	on			
Company Name Address	Wilson Accoust Unit 601, Block Yuen Shun Circ Shatin, N. T., Hong Kong	A, Shatin Industrial C	Centre,	a .
Equipment-under-To	est (EUT)			
Description Manufacturer Model Number Serial Number Equipment Number	Sound & Vibrat Svantek SVAN 958 23412	ion Analyser	:	
Calibration Particul	ar		的对象型形态等等	eithe de la comme
Date of Calibration Calibration Equipment	13-Mar-2017 4231(MLTE008	s) / PA160059 / 20-M	ay-2018	
Calibration Procedure	MLCG00, MLC	G15		
Calibration Conditions	Laboratory	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours 10 minutes Internal battery	
Calibration Results	Calibration data	were detailed in the o		
	,	- 2		3
Approved By & Date	,		STATE STATE OF THE	
			K.O. Lo	13-Mar-201
not include allowance for the overloading, mishandling, was MaxLab Calibration Centre	ion Certificate only response EUT long term drimisuse, and the capa to Limited shall not be to so owned by MaxLa	elate to the values measur ft, variation with environ city of any other laborator liable for any loss or dan b Calibration Centre Limi	international standards. red at the time of the calibration and the mental changes, vibration and shock du y to repeat the measurement. age resulting from the use of the EUT. ted. No part of this Certificate may be	ring transportation,

Page 1 of 2

Certificate NoMLCN170405S

Channel / Mode	Filter / Detector	Rang	ge	EUT Readi	37	Stand Read		EUT Err	or	Calibrat Uncertai	
CH4 / Sound	A / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	dE
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	dI
				114.0	dB	114.0	dB	0.0	dB	0.2	dI
	C / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	dl
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d)
				114.0	dB	114.0	dB	0.0	dB	0.2	d
	LIN / FAST	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
				114.0	dB	114.0	dB	0.0	dB	0.2	d
	A / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d
	C / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d
	LIN / SLOW	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d
	A / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d
	C / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d
	LIN / IMPULSE	105	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	d

- END -

Calibrated By: Date:

Patrick 13-Mar-2017 Checked By:

K.O. Lo 13-Mar-2017

Date:

Page 2 of 2

Sound & Vibration Analyzer SVAN958 (Serial No. 28422)

CALIBRATION CERTIFICATE

Certificate Informati	on			
Date of Issue	7-May-2018		Certificate Number	MLCN180788S
Customer Informatio	n		在一个人的人的人们	No. 10 Table
Company Name Address	Wilson Accousti Unit 601, Block Yuen Shun Circo Shatin, N. T., Hong Kong	A, Shatin Industrial Ce	ntre,	
Equipment-under-Te	est (EUT)	A STATE OF THE STATE OF	THE BUSINESS OF THE	Vitare all
Description Manufacturer Model Number Serial Number Equipment Number	Sound & Vibrati Svantek SVAN 958 28422	ion Analyser	w.	
Calibration Particula	ır 🗼 🗼		《	PROPERTY AND
Date of Calibration Calibration Equipment	7-May-2018 4231(MLTE008) / PA160059 / 20-May	7-2018	
Calibration Procedure	MLCG00, MLC	G15		
Calibration Conditions	Laboratory EUT	Temperature Relative Humidity Stabilizing Time Warm-up Time Power Supply	23 °C ± 5 °C 55% ± 25% Over 3 hours 10 minutes Internal battery	
Calibration Results	Calibration data	were detailed in the co	ntinuation pages.	
Approved By & Date	2.25	v	lo K.O. Lo	7-May-2018
include allowance for the E mishandling, misuse, and the MaxLab Calibration Centre	ion Certificate only rel UT long term drift, van the capacity of any othe c Limited shall not be le is owned by MaxLab	ate to the values measured a riation with environmental or r laboratory to repeat the m liable for any loss or damage Calibration Centre Limited.	at the time of the calibration and the uncerta changes, vibration and shock during transpo	rtation, overloading,

Page 1 of 2

Certificate No. MLCN180788S

Channel / Mode	Filter / Detector	Rang	e	EUT Readi		Stand Read		EUT Err	or	Calibrat Uncertai	
CH4 / Sound	A / FAST	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	dI
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
				114.0	dB	114.0	dB	0.0	dB	0.2	d
	C / FAST	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	d
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	d
				114.0	dB	114.0	dB	0.0	dB	0.2	d
	LIN / FAST	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	C
	(1 kHz Input)	130	dB	94.0	dB	94.0	dB	0.0	dB	0.2	(
				114.0	dB	114.0	dB	0.0	dB	0.2	(
	A / SLOW	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(
	C / SLOW	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(
	LIN / SLOW	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(
	A / IMPULSE	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(
	C / IMPULSE	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(
	LIN / IMPULSE	105	dB	93.9	dB	94.0	dB	-0.1	dB	0.2	(
	(1 kHz Input)	130	dB	114.0	dB	114.0	dB	0.0	dB	0.2	(

- END -

Calibrated By:

Dan

Checked By:

K.O. Lo 7-May-2018

Date:

7-May-2018

Date:

Page 2 of 2

萬 儀 校 正 中 心 有 限 公 司 MaxLab Calibration Centre Limited 香港新界葵涌華星街 16-18 號保盈工業大廈 9 樓 B2 室 Unit B2, 9/F., Boldwin Industrial Bldg., 16-18 Wah Sing Street, Kwai Chung, N.T., Hong Kong Tel: (852) 2116 1380 Fax: (852) 2264 6480 Email: info@maxlab.com.hk

Sound & Vibration Analyzer SVAN958A (Serial No. 59120)

ISO9001 certified

FACTORY CALIBRATION DATA OF THE SVAN 958 No. 59120

SOUND LEVEL METER

1. CALIBRATION

(electrical)

LEVEL METER; Filter: LIN; Input signal =114.0dB, fsin=1kHz

	Range 1	05dB	Range 130dB		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel I	113.99	-0.01	114.02	0.02	
Channel 2	113.98	-0.02	114.03	0.03	
Channel 3	113.98	-0.02	114.03	0.03	
Channel 4	113.98	-0.02	114.02	0.02	

2. CALIBRATION*

(acoustical)

LEVEL METER; Range: 130 dB; Reference frequency: 1000Hz;

Filter	LIN		A		C		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel I	114.0	0.0	114.0	0.0	114.0		
Channel 2	114.0	0.0	114.0	0.0		0.0	
Channel 3	114.0	0.0	114.0		114.0	0.0	
Channel 4	114.0			0.0	114.0	0.0	
Chamici 4	114.0	0.0	114.0	0.0	114.0	0.0	

Calibration measured with the microphone SVANTEK type SV22 No. 4013604. Calibration factor: -0.4dB

3. LINEARITY TEST* (electrical)

LEVEL METER; Range: 105 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	24.0	30.0	40.0	60.0	80.0	100.0	114.0
Channel I	Error [dB]	0.24	0.11	0.04	-0.0i	0.00	0.01	0.01
Channel 2	Error [dB]	0.28	0.10	0.04	-0.01	0.00	0.01	0.01
Channel 3	Error [dB]	0.20	0.10	0.04	-0.01	0.00	0.01	0.01
Channel 4	Error [dB]	0.21	0.09	0.04	-0.01	0.00	0.01	0.01

LEVEL METER; Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	45.0	50.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.09	0.07	0.03	0.00	0.01	0.00	0.01
Channel 2	Error [dB]	0.10	0.06	0.03	0.00	0.01	0.00	0.01
Channel 3	Error [dB]	0.03	0.05	0.02	0.01	0.01	0.00	0.02
Channel 4	Error [dB]	0.00	0.04	0.02	0.00	0.01	0.00	0.02

1/3 OCTAVE (1kHz); Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	35.0	40.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.39	0.15	0.03	0.01	0.01	0.00	0.01
Channel 2	Error [dB]	0.37	0.14	0.03	0.01	0.01	-0.00	0.02
Channel 3	Error [dB]	0.23	0.05	0.03	0.00	0.01	0.00	0.01
Channel 4	Error [dB]	0.23	0.03	0.02	0.01	0.01	0.00	0.01

*** SVAN958 No. 59120 page 1 ***

4. TONEBURST RESPONSE* (electrical)

LEVEL METER; Characteristic: A, $f_{\text{sin}} \!\!=\! 4000$ Hz; Burst duration: 2s;

Range: 105dB; Equivalent input steady level = 112dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
			Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.9	97.9	94.0	91.0	87.9	84.9
		1	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.8	97.9	94.0	90.9	87.9	84.9
		2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
	Fast	3	Indication [dB]	112.0	111.9	111.0	109.4	107.1	103.7	100.8	97.9	93.9	90.9	87.9	84.8
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
		4	Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.9	97.9	94.0	91.0	87.9	84.9
		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
MAX		1	Indication [dB]	109.9	108.0	104.6	101.8	98.9	95.0	92.0	89.0	85.0	-		
		1	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	-
		2	Indication [dB]	109.9	107.9	104.6	101.8	98.9	95.0	92.0	89.0	85.0	-	-	-
	01	2	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
	Slow	3	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9	-	-	-
		3	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	
			Indication [dB]	109.9	108.0	104.6	101.8	98.9	95.0	92.0	89.0	85.0	-	-	
		4	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	-
		T.	Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	82.0	78.9	75.9
		1	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	81.9	78.9	75.9
		2	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
SEL	-		Indication [dB]	111.8	108.9	105.0	102.0	98.9	95.0	92.0	88.9	84.9	81.9	78.9	75.8
		3	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
			Indication [dB]	111.8	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	82.0	78.9	75.9
		4	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0,1

Range: 105dB; Equivalent input steady level = 52dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	
			Indication [dB]	52.0	51.9	51.0	49.4	47.2	43.7	40.8	37.9	
		1	Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0	
		2	Indication [dB]	52.0	51.9	51.0	49.4	47.1	43.7	40.8	37.9	
		2	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	
	Fast	3	Indication [dB]	51.9	51.9	51.0	49.3	47.1	43.6	40.8	37.9	
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	
		4	Indication [dB]	52.0	51.9	51.0	49.4	47.2	43.7	40.8	37.9	
		4	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	0.0	-0.1	-0.0	
MAX			Indication [dB]	49.9	47.9	44.6	41.8	38.9	35.0	32.0	29.0	
		1	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	
	2	Indication [dB]	49.9	47.9	44.6	41.8	38.9	34.9	31.9	29.1		
	01		Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.1	
	Slow	Slow 3	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	29.0	
			3	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	0.0	0.1
			Indication [dB]	49.9	47.9	44.6	41.8	38.9	35.0	32.1	29.0	
		4	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	0.0	0.1	0.0	
			Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.1	32.1	29.2	
		1	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	0.2	
			Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.0	32.0	29.2	
		2	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	0.2	
SEL -	_	Indication [dB]	51.8	48.9	45.0	41.9	38.9	35.0	32.0	29.1		
		3	Error [dB]	-0.2	-0.0	0.0	0.0	0.0	0.1	0.1	1.0	
			Indication [dB]	51.8	49.0	45.0	42.0	39.0	35.1	32.1	29.1	
		4	Error [dB]	-0.2	0.0	0.0	-0.0	0.0	0.1	0.1	0.1	

Range: 105dB; Equivalent input steady level = 34dB

Result	Detector	Ch.	Duration [ms]	1000	500
		1	Indication [dB]	34.1	34.0
		1	Error [dB]	0.0	0.0
		2	Indication [dB]	34.1	33.9
	Fast	2	Error [dB]	0.0	-0.0
	rast	3	Indication [dB]	34.0	33.9
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	34.0	33.9
MAX		,	Error [dB]	-0.0	-0.1
MAA		1	Indication [dB]	32.0	30.1
		1	Error [dB]	-0.1	0.1
		2	Indication [dB]	32.0	30.0
	Slow	2	Error [dB]	-0.1	0.1
	Slow	3	Indication [dB]	31.9	29.9
		3	Error [dB]	-0.1	0.1
		4	Indication [dB]	31.9	30.0
		4	Error [dB]	-0.1	0.0
		1	Indication [dB]	33.9	31.2
		1	Error [dB]	-0.1	0.1
		2	Indication [dB]	33.9	31.1
SEL		2	Error [dB]	-0.1	0.1
SEL		3	Indication [dB]	33.8	31.1
		3	Error [dB]	-0.2	0.1
		4	Indication [dB]	33.8	31.1
		4	Error [dB]	-0.2	0.0

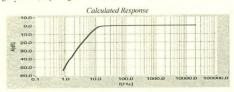
Range: 130dB; Equivalent input steady level = 134dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
			Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.9
		1	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
	rast	3	Indication [dB]	134.0	133.9	133.0	131.4	129.1	125.7	122.8	119.9	115.9	112.9	109.9	106.
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.9	119.9	116.0	113.0	109.9	106.
MAX		4	Error [dB]	-0.0	0.0	0.0	0.0	129.2	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.
MAA		,	Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	-
		1	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		-
		2	Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	-
	Slow	2	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		-
	Slow	3	Indication [dB]	131.9	129.9	126.5	123.8	120.8	116.9	113.9	110.9	106.9			-
		3	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	
		4	Indication [dB]	131.9	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	
		4	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0		-	
			Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	104.0	100.9	97.
		,	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.1	-0.1
		2	Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	103.9	100.9	97.9
SEL		2	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
SEL	-	2	Indication [dB]	133.8	130.9	127.0	124.0	121.0	117.0	114.0	110.9	107.0	103.9	100.9	97.8
		3	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.8	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	104.0	100.9	97.9
		4	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1

*** \$1 AN958 No. 59120 page 3 ***

Range: 130dB; Equivalent input steady level = 74dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5
		1	Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
		1	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.0
		2	Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
	г	2	Error [dB]	0.0	0.0	73.0	0.0	-0.0	-0.0	-0.0	0.0
	Fast	3	Indication [dB]	73.9	73.9	73.0	71.3	69.1	65.6	62.8	59.9
		3	Error [dB]	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0
		4	Indication [dB]	74.0	73.9	73.0	71.4	69.2	65.7	62.8	59.9
MAN		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
MAX		1	Indication [dB]	71.9	69.9	66.6	63.8	60.9	57.0	54.0	51.0
		1	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
		2	Indication [dB]	71.9	69.9	66.5	63.8	60.9	56.9	54.0	51.0
	C1	2	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	0.0	0.0
	Slow	3	Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	54.0	51.0
		3	Error [dB]	-0.1	0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.1
		4	Indication [dB]	71.9	69.9	66.6	63.8	60.9	57.0	54.0	51.0
		4	Error [dB]	-0.1	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	0.1
		1	Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.1	51.1
		1	Error [dB]	-0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.1
			Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.0	51.1
CEI		2	Error [dB]	-0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.1
SEL	-	3	Indication [dB]	73.8	70.9	67.0	63.9	61.0	57.0	54.0	51.0
		3	Error [dB]	-0.2	-0.0	0.0	-0.0	0.0	0.0	0.0	0.0
			Indication [dB]	73.8	71.0	67.0	64.0	61.0	57.0	54.0	51.1
		4	Error [dB]	-0.2	-0.0	0.0	0.0	-0.0	0.0	0.0	0.1


Range: 130dB; Equivalent input steady level = 54dB

Result	Detector	Ch.	Duration [ms]	1000	500
		1	Indication [dB]	54.1	53.9
		,	Error [dB]	0.0	-0.0
		2	Indication [dB]	54.0	53.9
	Fast	2	Error [dB]	-0.0	-0.0
	rast	3	Indication [dB]	54.0	53.9
		3	Error [dB]	0.1	0.1
		4	Indication [dB]	54.0	54.0
MAX		-	Error [dB]	0.0	0.1
MAA		1	Indication [dB]	52.0	50.0
		2 In	Error [dB]	-0.1	0.1
			Indication [dB]	51.9	50.0
	Class		Error [dB]	-0.1	0.1
	Slow	3	Indication [dB]	51.9	49.9
		3	Error [dB]	-0.0	0.1
		4	Indication [dB]	51.9	50.0
		4	Error [dB]	-0.1	0.1
		1	Indication [dB]	53.9	51.1
		'	Error [dB]	-0.1	0.1
		2	Indication [dB]	53.9	51.1
SEL		2	Error [dB]	-0.2	0.1
SEL	-	3	Indication [dB]	53.8	51.0
		3	Error [dB]	-0.1	0.1
		4	Indication [dB]	53.9	51.1
		4	Error [dB]	-0.1	0.1

*** \$1.4 \$958 No. 39120 page 4 ***

6. FREQUENCY RESPONSE (electrical)

LEVEL METER; Filter: Z; Range: 130 dB; Input signal =135 dB;

Measured Response with Preamplifier SV12 (f-frequency, An-attenuation in channel n)

f [Hz]	AlldBl	A2[dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
10	3.2	3.2	3.2	3.2	250	0.0	0.0	-0.0	0.0
12.5	1.4	1.4	1.4	1.4	500	0.0	0.0	-0.0	0.0
16	0.5	0.5	0.5	0.5	1000	0.0	0.0	-0.0	0.0
20	0.1	0.1	0.1	0.1	2000	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	4000	0.0	0.0	0.0	0.0
31.5	-0.0	-0.0	-0.0	-0.0	8000	0.0	0.0	0.0	0.0
63	-0.0	-0.0	-0.0	-0.0	16000	0.0	0.0	0.0	-0.0
125	0.0	0.0	-0.0	0.0	20000	-0.0	0.0	0.0	-0.1

All frequencies are nominal center values for the 1/3 octave bands

7. INTERNAL NOISE LEVEL' (electrical

LEVEL METER; Range: 105 dB, Back-light - off; Calibration factor: 0dB

	Filter	Z	A	C
Channel 1	Level [dB]	14.7	13.3	12.6
Channel 2	Level [dB]	17.4	13.0	12.3
Channel 3	Level [dB]	17.8	11.7	11.1
Channel 4	Level [dB]	14.9	11.8	12.4

^{*} measured with preamplifier SVANTEK type SV12 No. 1771.

VIBRATION LEVEL METER

1. CALIBRATION

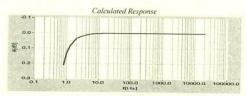
(electrical)

LEVEL METER; Filter: HP10; Input signal =140.0dB (10.0 m/s²), f_{ssn}=79,6Hz

	Range 1	45dB	Range 1	170dB
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]
Channel I	139.98	-0.02	140.03	0.03
Channel 2	139.99	-0.01	140.04	0.04
Channel 3	139.98	-0.02	140.04	0.04
Channel 4	139.98	-0.02	140.03	0.03

2. CALIBRATION

(vibrational)


LEVEL METER; Range: 145dB; Input signal: 120dB;

Filter	HPI		HPI	0	Wd		Wm		Wh	
	Indication [dB]	Error [dB]								
Channel 1	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1
Channel 2	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1
Channel 3	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.7	0.1
Channel 4	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.2	0.1	110.7	0.1

Calibration measured with the accelerometer DYTRAN type 3185D No. 2975. Calibration factor: -0.3dB

3. FREQUENCY RESPONSE (electrical)

1/3 OCTAVE; Filter: HP; Range: 170 dB; input=175 dB;

CILLA	AI[dB]	A 21 H21	1 4 27 1121									-		
		A2[dB]	A3[dB]	A4[dB]	f[Hz]	AI[dB]	A2 [dB]	A3[dB]	A4[dB]	f[Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
0.8	0.21	0.21	0.20	0.21	5	0.01	0.01	0.01	0.02	500	0.00	0.00	0.00	0.00
1	0.12	0.12	0.12	0.12	6.3	0.01	0.01	0.01	0.01	1000	0.00	0.00	0.00	0.00
1.25	0.09	0.09	0.09	0.09	8	0.01	0.01	0.01	0.01	2000	0.00	0.00	0.00	0.00
1.6	0.04	0.04	0.04	0.05	16	0.00	0.00	0.00	0.00	4000	0.01	0.02	0.02	0.01
2	0.04	0.04	0.03	0.04	31.5	-0.01	0.00	-0.01	0.00	8000	0.04	0.04	0.05	0.02
2.5	0.02	0.02	0.02	0.03	63	0.00	0.00	0.00	0.00	16000	0.02	0.02	0.04	-0.04
3.15	0.03	0.03	0.03	0.03	125	0.00	0.00	0.00	0.00	20000	-0.01	0.00	0.02	-0.07
4	0.03	0.03	0.03	0.03	250	0.00	0.00	-0.01	0.00				0.00	-0.07

All frequencies are nominal center values for the 1/3 octave bands

4. INTERNAL NOISE LEVEL

(electrical)

LEVEL METER func.; Range: 145 dB; Back-light - off

	Filter	HPI	HP10	Wd	Wm	Wh
Channel I	Indication [dB]	54.4	52.1	42.2	39.0	36.5
Channel 2	Indication [dB]	55.0	52.5	42.5	39.0	36.5
Channel 3	Indication [dB]	53.2	50.2	42.7	38.8	36.8
Channel 4	Indication [dB]	54.9	52.7	42.9	39.4	37.1

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
22 °C	31 %	1004 hPa

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
1.	SVANTEK	SVAN 401	100	Signal generator
2.	SVANTEK	SVAN 912A	15900	Sound & Vibration Analyser
3.	KEITHLEY	2000	0910165	Digital multimeter
4.	SVANTEK	SV30A	24563	Acoustic calibrator
5.	SVANTEK	ST02	-	Microphone equivalent electrical impedance (18pF)
6.	DYTRAN	3233A	747	Reference accelerometer

CONFORMITY & TEST DECLARATION

- 1. Herewith Svantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.
- 2. Tracebility of the calibration is guarantied by the above mentioned ISO9001 procedures
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.
- 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Pawel Bednarczyk

Test date: 2016-09-20

Sound & Vibration Analyzer SVAN958A (Serial No. 59121)

ISO9001 certified

FACTORY CALIBRATION DATA OF THE SVAN 958 No. 59121

SOUND LEVEL METER

1. CALIBRATION

(electrical)

LEVEL METER; Filter: LIN; Input signal =114.0dB, f_{sin} =1kHz

	Range 1	05dB	Range 130dB			
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]		
Channel 1	113.98	-0.02	114.02	0.02		
Channel 2	113.97	-0.03	114.02	0.02		
Channel 3	113.97	-0.03	114.02	0.02		
Channel 4	113.97	-0.03	114.02	0.02		

2. CALIBRATION

(acoustical)

LEVEL METER; Range: 130 dB; Reference frequency: 1000Hz;

Filter	LIN		A		C		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel 1	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 2	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 3	114.0	0.0	114.0	0.0	114.0	0.0	
Channel 4	114.0	0.0	114.0	0.0	114.0	0.0	

Calibration measured with the microphone SVANTEK type SV22 No. 4013604. Calibration factor: -0.4dB

3. LINEARITY TEST* (electrical)

LEVEL METER; Range: 105 dB; Filter: A; f_{sin} = 1000 Hz

	Input [dB]	24.0	30.0	40.0	60.0	80.0	100.0	114.0
Channel 1	Error [dB]	0.32	0.13	0.04	-0.01	0.00	0.01	0.01
Channel 2	Error [dB]	0.29	0.11	0.04	-0.01	0.00	0.01	0.01
Channel 3	Error [dB]	0.25	0.09	0.04	-0.01	0.00	0.01	0.01
Channel 4	Error [dB]	0.35	0.11	0.03	-0.01	-0.00	0.01	0.01

LEVEL METER; Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	45.0	50.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.07	0.09	0.04	0.01	0.01	0.00	0.01
Channel 2	Error [dB]	0.09	0.10	0.04	0.01	0.01	0.00	0.01
Channel 3	Error [dB]	0.00	0.01	0.00	0.01	0.01	0.00	0.01
Channel 4	Error [dB]	-0.02	0.00	0.01	0.01	0.01	0,00	0.01

1/3 OCTAVE (1kHz); Range: 130 dB; Filter: A; f sin= 1000 Hz

	Input [dB]	35.0	40.0	60.0	80.0	100.0	120.0	135.0
Channel 1	Error [dB]	0.32	0.11	0.03	0.00	0.00	-0.01	0.00
Channel 2	Error [dB]	0.34	0.11	0.03	0.00	0.01	0.00	0.01
Channel 3	Error [dB]	0.30	0.07	0.03	0.00	0.01	0.00	0.01
Channel 4	Error [dB]	0.28	0.08	0.04	0.00	0.01	-0.01	-0.00

*** SVAN958 No. 59121 page 1 ***

4. TONEBURST RESPONSE* (electrical)

LEVEL METER; Characteristic: A; f $_{\rm sin}$ = 4000 Hz; Burst duration: 2s;

Range: 105dB; Equivalent input steady level = 112dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
			Indication [dB]	111.9	111.9	111.0	109.3	107.1	103.6	100.8	97.9	93.9	90.9	87.8	84.8
		ı	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	111.9	111.8	110.9	109.3	107.1	103.6	100.8	97.8	93.9	90.9	87.8	84.8
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
	rast	3	Indication [dB]	112.0	111.9	111.0	109.4	107.2	103.7	100.8	97.9	94.0	90.9	87.9	84.9
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
		4	Indication [dB]	111.9	111.9	111.0	109.3	107.1	103.6	100.8	97.9	93.9	90.9	87.8	84.8
MAX		4	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1	-0.1
MAA		1	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9	-	-	
		ं	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	-
		2	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9	-		-
	Slow	2	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	-
	Slow	Slow 3	Indication [dB]	110.0	107.9	104.6	101.8	98.9	95.0	92.0	89.0	85.0	-		
		3	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		-
		4	Indication [dB]	109.9	107.9	104.5	101.7	98.8	94.9	91.9	88.9	84.9	-	-	-
		*	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-		-
		1	Indication [dB]	111.9	108.9	104.9	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
		,	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	111.9	108.9	104.9	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
SEL		2	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
SEL		3	Indication [dB]	112.0	109.0	105.0	102.0	99.0	95.0	92.0	89.0	85.0	81.9	78.9	75.9
		3	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1
		4	Indication [dB]	111.9	108.9	105.0	101.9	98.9	94.9	91.9	88.9	84.9	81.9	78.8	75.8
		4	Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1

Range 105dB; Equivalent input steady level = 52dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	
		1	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.8	37.9	
		1	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0	
		2	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.7	37.8	
	Fast		Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	
	rast	3	Indication [dB]	52.0	51.9	51.0	49.4	47.1	43.7	40.8	37.9	
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	0.0	-0.1	0.0	
		4	Indication [dB]	51.9	51.8	50.9	49.3	47.1	43.6	40.8	37.9	
MAX		-4	Error [dB]	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.1	0.0	
MAA		1	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	28.9	
		1	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	0.0	-0.0	0.0	
		2	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	28.9	
Slow	2	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	0.0	-0.0	-0.0		
	Slow	3	3	Indication [dB]	50.0	47.9	44.6	41.8	38.8	35.0	31.9	29.0
		3	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	0.0	-0.0	0.0	
		4	Indication [dB]	49.9	47.9	44.5	41.7	38.8	34.9	31.9	29.2	
		4	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	0.3	
		1	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.1	
		1	Error [dB]	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	
		2	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.0	
SEL		2	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.1	0.1	0.1	
SEL	-	3	Indication [dB]	52.0	49.0	45.0	42.0	39.0	35.0	32.0	29.1	
		3	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.1	0.1	0.2	
		4	Indication [dB]	51.9	48.9	44.9	41.9	38.9	35.0	32.0	29.1	
		4	Error [dB]	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	

*** \$1.4N958 No. 59121 page 2 ***

Range: 105dB; Equivalent input steady level = 34dB

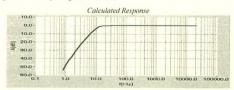
Result	Detector	Ch.	Duration [ms]	1000	500
		1	Indication [dB]	34.0	33.9
			Error [dB]	0.0	-0.0
		2	Indication [dB]	34.0	33.9
	Fast	2	Error [dB]	-0.0	0.0
	1 434	3	Indication [dB]	34.0	33.9
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	34.0	33.9
MAX		-	Error [dB]	0.0	0.0
141767		1	Indication [dB]	32.0	30.0
			Error [dB]	0.0	0.1
		2	Indication [dB]	32.0	30.0
	Slow	2	Error [dB]	0.0	0.1
	Siow	3	Indication [dB]	32.0	29.9
		3	Error [dB]	0.0	0.1
		4	Indication [dB]	31.9	30.1
		4	Error [dB]	0.0	0.3
		1	Indication [dB]	34.0	31.1
		1	Error [dB]	0.0	0.1
		2	Indication [dB]	34.0	31.1
SEL		2	Error [dB]	0.0	0.1
SEL		3	Indication [dB]	34.0	31.1
		3	Error [dB]	0.0	0.1
		4	Indication [dB]	34.0	31.0
		4	Error [dB]	0.0	0.1

Range: 130dB; Equivalent input steady level = 134dB

Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5	2	l ı	0.5	0.25
		,	Indication [dB]	133.9	133.8	132.9	131.3	129.1	125.6	122.8	119.8	115.9	112.9	109.8	106.8
		'	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	133.9	133.8	132.9	131.3	129.1	125.6	122.8	119.8	115.9	112.9	109.8	106.8
	Fast	2	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
	1 dst	3	Indication [dB]	134.0	133.9	133.0	131.4	129.2	125.7	122.8	119.9	116.0	112.9	109.9	106.9
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.9	133.9	133.0	131.3	129.1	125.6	122.8	119.9	115.9	112.9	109.8	106.8
MAX		,	Error [dB]	0.0	0.0	0.0	0.0	129.1	-0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
1417424		1	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9	-	-	
		-1.	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
		2	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9		-	-
	Slow	-	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
	Slow	3	Indication [dB]	132.0	129.9	126.6	123.8	120.9	117.0	114.0	111.0	107.0	-	-	3.0
		-	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	(*)
		4	Indication [dB]	131.9	129.9	126.5	123.7	120.8	116.9	113.9	110.9	106.9	-	-	
		,	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-	-	
		7	Indication [dB]	133.9	130.9	126.9	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
		,	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		2	Indication [dB]	133.9	130.9	126.9	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
SEL		-	Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
500		3	Indication [dB]	134.0	131.0	127.0	124.0	121.0	117.0	114.0	111.0	107.0	103.9	100.9	97.9
		3	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1
		4	Indication [dB]	133.9	130.9	127.0	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
		7	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.1	-0.1

*** \$1.4N958 No. 59121 page 3 ***

Range: 130dB; Equivalent input steady level = 74dB


Result	Detector	Ch.	Duration [ms]	1000	500	200	100	50	20	10	5
			Indication [dB]	73.9	73.8	72.9	71.3	69.1	65.6	62.8	59.8
		1	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
		_	Indication [dB]	73.9	73.8	72.9	71.3	69.1	65.6	62.8	59.8
		2	Error [dB]	-0.0	0.0	72.9	0.0	-0.0	-0.0	-0.0	0.0
	Fast	3	Indication [dB]	74.0	73.9	73.0	71.4	69.1	65.7	62.8	59.9
		3	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0
		4	Indication [dB]	73.9	73.9	72.9	71.3	69.1	65.6	62.8	59.8
		4	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0
MAX		i	Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	54.0	50.9
		1	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	-0.0
		_	Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	53.9	51.0
	2	Error [dB]	0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.1	
	Slow	3	Indication [dB]	72.0	69.9	66.5	63.8	60.9	56.9	54.0	50.9
			Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
			Indication [dB]	71.9	69.9	66.5	63.7	60.8	56.9	53.9	50.9
		4	Error [dB]	0.0	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0
			Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		1	Error [dB]	-0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	0.1
			Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		2	Error [dB]	0.0	-0.0	0.0	-0.0	-0.0	0.0	0.0	0.1
SEL			Indication [dB]	74.0	71.0	67.0	64.0	61.0	57.0	54.0	51.0
		3	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.0	0.0	0.1
			Indication [dB]	73.9	70.9	66.9	63.9	60.9	56.9	54.0	51.0
		4	Error [dB]	0.0	-0.0	0.0	0.0	0.0	0.0	0.0	0.1

Range: 130dB; Equivalent input steady level = 54dB

Result	Detector	Ch.	Duration [ms]	1000	500
		1	Indication [dB]	54.0	53.9
		1	Error [dB]	0.0	0.1
		2	Indication [dB]	54.0	53.8
	Fast	2	Error [dB]	0.1	-0.0
	rast	3	Indication [dB]	54.0	53.9
		3	Error [dB]	0.0	-0.0
		4	Indication [dB]	53.9	53.9
MAX		4	Error [dB]	-0.0	0.0
MAX		1	Indication [dB]	52.0	49.9
		1	Error [dB]	0.0	0.1
		2	Indication [dB]	52.0	49.9
	Slow	2	Error [dB]	0.0	0.1
	Slow	3	Indication [dB]	52.0	50.0
		3	Error [dB]	0.0	0.1
		4	Indication [dB]	51.9	50.0
		4	Error [dB]	-0.0	0.1
		1	Indication [dB]	54.0	51.0
		1	Error [dB]	0.0	0.1
		2	Indication [dB]	54.0	51.0
SEL		2	Error [dB]	0.0	0.0
SEL	-	3	Indication [dB]	54.0	51.0
		3	Error [dB]	0.0	0.0
		4	Indication [dB]	54.0	51.0
		4	Error [dB]	-0.0	0.0

6. FREQUENCY RESPONSE (electrical)

LEVEL METER; Filter: Z; Range: 130 dB; Input signal =135 dB;

Measured Response with Preamplifier SV12 (f-frequency, An-attenuation in channel n)

f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
10	3.2	3.2	3.2	3.2	250	0.0	-0.0	-0.0	0.0
12.5	1.4	1.4	1.4	1.4	500	0.0	-0.0	0.0	0.0
16	0.5	0.5	0.5	0.5	1000	0.0	0.0	0.0	0.0
20	0.1	0.1	0.1	0.1	2000	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.0	4000	0.0	0.0	0.0	0.0
31.5	-0.0	-0.0	-0.0	-0.0	8000	0.0	0.0	0.0	0.0
63	-0.0	-0.0	-0.0	-0.0	16000	0.0	0.0	0.0	0.0
125	0.0	-0.0	-0.0	-0.0	20000	0.0	0.0	0.1	0.0

All frequencies are nominal center values for the 1/3 octave bands

7. INTERNAL NOISE LEVEL' (electrical)

LEVEL METER; Range: 105 dB; Back-light - off; Calibration factor: 0dB

	Filter	Z	A	C
Channel I	Level [dB]	14.2	11.6	11.8
Channel 2	Level [dB]	13.2	10.7	10.8
Channel 3	Level [dB]	13.9	11.2	11.8
Channel 4	Level [dB]	14.0	11.4	11.3

^{*} measured with preamplifier SVANTEK type SV12 No. 1771.

VIBRATION LEVEL METER

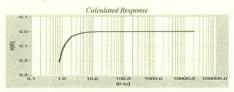
1. CALIBRATION (electrical)

LEVEL METER; Filter: HP10; Input signal =140.0dB (10.0 m/s²), f_{sin}=79,6Hz

	Range 1	45dB	Range 170dB		
	Indication [dB]	Error [dB]	Indication [dB]	Error [dB]	
Channel 1	139.99	-0.01	140.03	0.03	
Channel 2	139.98	-0.02	140.02	0.02	
Channel 3	139.98	-0.02	140.03	0.03	
Channel 4	139.98	-0.02	140.02	0.02	

2. CALIBRATION (vibrational)

LEVEL METER; Range: 145dB; Input signal: 120dB;


Filter	er HPI HPI0		0	Wd		Wm		Wh		
	Indication [dB]	Error [dB]								
Channel 1	119.8	-0.2	119.8	-0.2	106.0	-0.2	102.2	0.1	110.7	0.1
Channel 2	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.7	0.1
Channel 3	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.6	0.1
Channel 4	119.8	-0.2	119.8	-0.2	105.9	-0.2	102.1	0.1	110.7	0.1

Appendix C-21

Calibration measured with the accelerometer DYTRAN type 3185D No. 2975. Calibration factor: -0.3dB

3. FREQUENCY RESPONSE (electrical)

1/3 OCTAVE; Filter: HP; Range: 170 dB; input=175 dB;

Measured Response (f-frequency, An-attenuation in channel n)

						0.0	1							
f[Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]	f[Hz]	A1[dB]	A2 [dB]	A3[dB]	A4[dB]	f [Hz]	A1[dB]	A2[dB]	A3[dB]	A4[dB]
0.8	0.18	0.19	0.18	0.18	5	0.01	0.01	0.01	0.01	500	-0.01	-0.01	-0.01	-0.01
1	0.13	0.13	0.13	0.13	6.3	-0.00	-0.00	-0.00	-0.00	1000	-0.01	-0.00	-0.01	-0.00
1.25	0.08	0.08	0.07	0.08	8	-0.00	-0.00	-0.00	-0.00	2000	-0.01	-0.00	-0.01	-0.00
1.6	0.06	0.07	0.06	0.06	16	-0.01	-0.00	-0.01	-0.00	4000	-0.00	0.01	-0.00	0.01
2	0.04	0.05	0.04	0.05	31.5	-0.01	-0.01	-0.01	-0.01	8000	0.03	0.04	0.03	0.03
2.5	0.01	0.02	0.01	0.02	63	-0.01	-0.00	-0.01	-0.00	16000	0.01	0.02	0.03	0.02
3.15	-0.00	-0.00	-0.00	-0.00	125	-0.01	-0.01	-0.01	-0.01	20000	0.01	0.02	0.04	0.03
4	-0.00	0.01	-0.00	0.01	250	-0.01	-0.01	-0.01	-0.01					

All frequencies are nominal center values for the 1/3 octave bands

4. INTERNAL NOISE LEVEL

(electrical)

LEVEL METER func.; Range: 145 dB; Back-light - off

	Filter	HP1	HP10	Wd	Wm	Wh
Channel 1	Indication [dB]	53.7	51.0	42.4	39.4	36.2
Channel 2	Indication [dB]	54.8	52.5	42.5	38.5	36.3
Channel 3	Indication [dB]	53.0	50.3	42.7	39.4	36.9
Channel 4	Indication [dB]	54.8	52.6	42.7	39.1	36.7

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
22 °C	31 %	1004 hPa

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description	
1.	SVANTEK	SVAN 401	100	Signal generator	
2.	SVANTEK	SVAN 912A	15900	Sound & Vibration Analyser	
3.	KEITHLEY	2000	0910165	Digital multimeter	
4.	SVANTEK	SV30A	24563	Acoustic calibrator	
5.	SVANTEK	ST02		Microphone equivalent electrical impedance (18pF)	
6.	DYTRAN	3233A	747	Reference accelerometer	

CONFORMITY & TEST DECLARATION

- 1. Herewith Svantck company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.
- 2. Tracebility of the calibration is guarantied by the above mentioned ISO9001 procedures.
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.
- 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Pawel Bednarczyk

D.m

Test date: 2016-09-20

Vibration Calibrator

准报

CALIBRATION REPORT

报告编号: 173604733

第 1 页, 共 5 页 Page 1 of 5 Pages

校准员: 2p tr N/ (BY) 校准日期: 2017/10/ (DATE) 复校日期: 2018/10/ (DUE)

客户名称

Name of Customer

: 威信声学顾问有限公司

客户地址 :

香港新界沙田工业中心A座601

Address of Customer

计量器具名称:

振动校准器

Name of Instrument

器具用途

699A02

型号/规格 :

Type/Specification 出厂编号

Serial Nº

资产编号

989

Asset №

: IMI

制造单位

Manufacturer

校准依据

JJG 1062-2010 便携式振动校准器

Calibrated in Accordance to

(校准专用章) Stamp

批准人: Authorized by

张国庆(副所长)

校准日期

: 2017 年 10 月 27 日

Year Operation Date

Month Day

建议复校日期: 2018 年 10 月 26 日 Suggested Recal.Date

Month Day Year

签名:

Signature

核验员:

Checked by

校准员: Calibrated by

校准机构各案号: [2012]粤量校F002号 地址: 深圳市南山区龙珠大道中段计量质检大楼 电话: 0086-755-26941696 0086-755-26941546 传真: 0086-755-26941615 0086-755-26941547 邮编: 518055 阿址: www.suq.com.cn 电子邮件: kfzx@smq.com.cn

Register No.: [2012] 粤量校F002号

Add: Metrology and Quality Inspection Building, Central Section of Longzhu Road, Nanshan District, Shenzhen

Tel:0086-755-26941696 0086-755-26941546 Fax:0086-755-26941615 0086-755-26941547 Post Code:518055 http://www.smq.com.cn E-mail:kfzx@smq.com.cn

校准报告 CALIBRATION REPORT

报告编号: 173604733

Report №

第 2 页,共 5 页 Page 2 of 5 Pages

校准用主要计量标准装置信息

Main Standard Devices Used

名称	测量范围	不确定度/准确度等级/ 最大允许误差	计量标准考核证书号	有效期至
Equipment Name	Measuring Range	Uncertainty/Accuracy Class/ Maximum Permissible Error	Certificate №	Due Date

校准用主要标准器信息

Main Standards of Measurement Used

名称	测量范围	不确定度/准确度等级/ 最大允许误差	设备编号	证书号	有效期至
Equipment Name	Measuring Range	Uncertainty/Accuracy Class/ Maximum Permissible Error	Equipment №	Certificate №	Due Date
振动仪标准传感器	0.2 Hz ~ 4000 Hz (±1%)	Urel = 0.5 %, k = 2	SB0424/02	LSzd2017-0638	2018-05-14
			· ·		

附加说明 Appended Directions

委托日期:

2017 年 10 月 23 日

Application Date 校准地点:

本院声学振动实验室

Operation Location 环境条件:

温度 25 ℃ 相对湿度 50 %

Operation Environment 符合性及限制使用说明:

所校准项目(或量值)合格

Statement of Compliance and Limitation

咬准报告

报告编号: 173604733 Report № 第 3 页,共 5 页 Page 3 of 5 Pages

校准结果

Results of Calibration

1 外观检查:

正常

Appearance Check:

Pass

2 振动幅值:

Amplitude

2.1 加速度: 见表1

Acceleration: See Table 1

表1 Table 1

加速度标称值	加速度实测值	误差	最大允许误差
Nominal SPL	Measured SPL	Error	M. P. E.
(m/s²)	(m/s²)	(%)	(%)
9.8	9. 75	+0.5	±3.0

2.2 等效速度: 见表2

Equivalent Velocity: See Table 2

表2 Table 2

(mm/s)	(mm/s)	(%)	(%)
Nominal SPL	Measured SPL	Error	M. P. E.
速度标称值	速度实测值	误差	最大允许误差

校准报告

报告编号: 173604733 Report № 第 4 页, 共 5 页 Page 4 of 5 Pages

校准结果

Results of Calibration

9.8 9.75 +0.5 ±3.0

2.3 等效位移: 见表3

Equivalent Displacement: See Table 3

表3 Table 3

 位移标称值		误差	最大允许误差
Nominal SPL	Measured SPL	Error	M. P. E.
(u m)	(u m)	(%)	(%)
9.8	9. 75	+0.5	±3.0

3 频率: 见表4

Frequency: see Table 4

表4 Table 4

频率标称值	频率实测值	误差	最大允许误差
Nominal Freq.	Measured Freq.	Error	M. P. E.
(Hz)	(Hz)	(%)	(%)
159. 2	159. 2	0.0	±1.0

4 加速度波形失真度: 见表5

父准执古

报告编号: 173604733 Report № 第 5 页,共 5 页 Page 5 of 5 Pages

校准结果

Results of Calibration

ACC. Distortion: See Table 5

表5 Table 5

标称频率	标称幅值	失真度	允许范围
Nominal Freq.	Nominal Amplitude	Distortion	Limit
(Hz)	(m/s²)	(%)	(%)
159. 2	9.8	0.62	≤5.0

附注(Note):

- 1)等效速度和等效位移由参考频率加速度换算得出。
- 2) 加速度测量结果相对扩展不确定度: $U_{\rm rel}=1.4$ %, k=2

(依据JJF1059.1-2012测量不确定度评定及表示)

Related Expanded Uncertainty of Acceleration: $U_{\rm rel}$ = 1.4 %, k = 2

(By JJF1059.1-2012 Evaluation and Expression of Uncertainty in Measurement)

以 下 空 白

Blank Below

合試驗有限公司

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA1006 01

Page

of

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) **B&K**

Microphone **B&K** 4189

Preamp B & K

Type/Model No.: Serial/Equipment No.: 2250 3001291

3005374

ZC0032 23853

Adaptors used:

Item submitted by

Customer Name:

AECOM ASIA CO LIMITED

Address of Customer:

Request No. Date of receipt:

06-Oct-2017

Date of test:

06-Oct-2017

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226

Serial No. 2288444 33873

Expiry Date: 08-Sep-2018

Traceable to: CIGISMEC CEPREI

Signal generator Signal generator DS 360 DS 360

61227

25-Apr-2018 01-Apr-2018

CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 50 ± 10 %

Relative humidity: Air pressure:

1010 ± 5 hPa

Test specifications

The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 1. and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3, between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Fenà Jun Qالمنا

Actual Measurement data are documented on worksheets.

Huano

Approved Signatory:

Date:

06-Oct-2017

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

深合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA1006 01

Page

of

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated

Calibrated by:

Date: 06-Oct-2017 End

Checked by:

Date:

Fung Chi Yip

06-Oct-201

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0303 01-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1)

Microphone

Pream

Manufacturer: Type/Model No.: B & K 2270 В & К 4189 B & K ZC0032

Serial/Equipment No.: Adaptors used:

2644597

N.012.01 : 2846461

17965

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer: Request No.:

_

Date of receipt:

03-Mar-2017

Date of test:

07-Mar-2017

Reference equipment used in the calibration

Description:

Model:

DS 360

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator Signal generator B&K 4226 DS 360 2288444 33873

61227

18-Jun-2017 18-Apr-2017 18-Apr-2017 CIGISMEC CEPREI CEPREI

Ambient conditions

Temperature:

21 ± 1 °C

Relative humidity: Air pressure:

60 ± 10 % 1010 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

08-Mar-2017

Company Chop:

Huang Jian Min/Feng Jun Qi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0303 01-02

Page

2

nf

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor		
Self-generated noise	Α	Pass	0.3		
_	С	Pass	1.0	2.1	
	Lin	Pass	2.0	2.2	
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
	Reference SPL on all other ranges	Pass	0.3		
	2 dB below upper limit of each range	Pass	0.3		
	2 dB above lower limit of each range	Pass	0.3		
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3		
Frequency weightings	Α	Pass	0.3		
	С	Pass	0.3		
	Lin	Pass	0.3		
Time weightings	Single Burst Fast	Pass	0.3		
	Single Burst Slow	Pass	0.3		
Peak response	Single 100µs rectangular pulse	Pass	0.3		
R.M.S. accuracy	Crest factor of 3	Pass	0.3		
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3		
	Repeated at frequency of 100 Hz	Pass	0.3		
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3		
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3		
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4		
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4		
Overload indication	SPL	Pass	0.3		
	Leq	Pass	0.4		

2. Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Facto		
Acoustic response	Weighting A at 125 Hz	Pass	0.3		
	Weighting A at 8000 Hz	Pass	0.5		

Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

fung Chi Yip 07-Mar-2017 End -

Checked by:

Date:

Lám Tze Wai 08-Mar-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:

17CA0922 03-01

Page:

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

R & K

Type/Model No.:

4231

Serial/Equipment No.: Adaptors used:

3014024 / N004.04

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

Request No.:

Date of receipt:

22-Sep-2017

Date of test:

28-Sep-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	61227	01-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature:

23 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference 3. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate

in/Feng Jun Qi

Approved Signatory:

Date:

28-Sep-2017

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心19樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0922 03-01

Page:

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	(Output level in dB re 20 μPa) Estimated Expanded Uncertainty
Shown	Level Setting	Sound Pressure Level	
Hz	dB	dB	
1000	94.00	94.16	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.007 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, Total Noise and Distortion

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.4 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Checked by:

Date:

28-Sep-2017

Date:

Fung Chi Yıp 28-Sep-2017

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Appendix C-33

合試驗有限公司

港 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.;

17CA0309 01

Page:

Ωf

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: **B&K** 4231

Serial/Equipment No.:

3006428 / N004.03

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer: Request No.:

Date of receipt:

09-Mar-2017

Date of test:

13-Mar-2017

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2412857 2743150 2346941 61227 US36087050 GB41300350	Expiry Date: 14-Apr-2017 28-Apr-2017 26-Apr-2017 18-Apr-2017 18-Apr-2017 19-Apr-2017	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
0	8903B 53132A	GB41300350 MY40003662	· ·	CEPREI CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

50 ± 10 % 1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156.
- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Mim/f∮eng Jun Qi

Approved Signatory:

Date:

15-Mar-2017 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

@ Soils & Materials Engineering Co. Ltd.

Form No CARP156-1/Issue 1/Rev D/01/03/2007

禄合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

17CA0309 01

Page:

2

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

<u> </u>			(Output level in dB re 20 μPa)
Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.27	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2,

> The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

> The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

> For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by

Checked by:

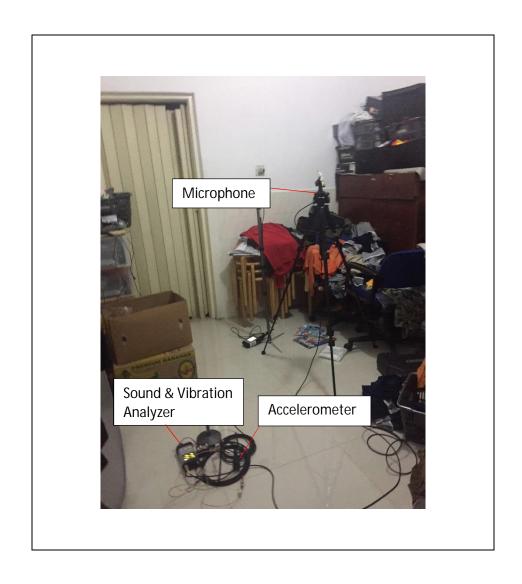
Fung Chi Yip

Date:

13-Mar-2017

Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.


© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

Appendix D1

Ground-borne Noise Measurement – Photograph of Typical Measurement Setup

Appendix D1 Ground-borne Noise Measurement - Photograph of Typical Measurement Setup

Appendix D2 Photographs of Selected ABNSRs

Appendix D2 Photographs of Selected ABNSRs

Plate 1 – Leung Uk Tsuen, Wang Toi Shan (SS7)

Plate 2A - DD110 LOT 482, Wang Toi Shan (SS10)

Plate 2B - DD110 LOT 482, Wang Toi Shan (SS10)

Plate 3 - Abandoned village house in Shek Kong (SS15)

Appendix D3

Airborne Noise Measurement – Photographs of Measurement Setup

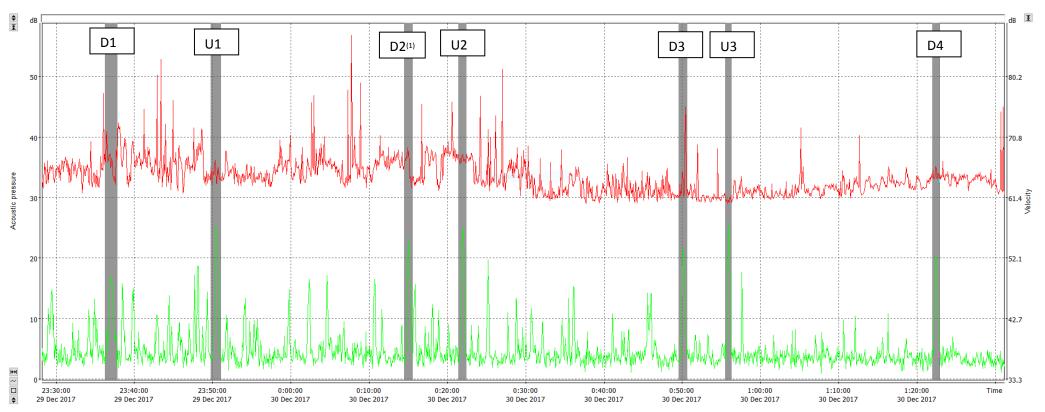
Appendix D3 Airborne Noise Measurement - Photographs of Measurement Setup

SS7 – Leung Uk Tsuen Village House

SS7 – Leung Uk Tsuen Village House - Surrounding environment

SS15 – Leung Uk Tsuen Squats

SS15 – Leung Uk Tsuen Squats - Surrounding environment



Appendix E

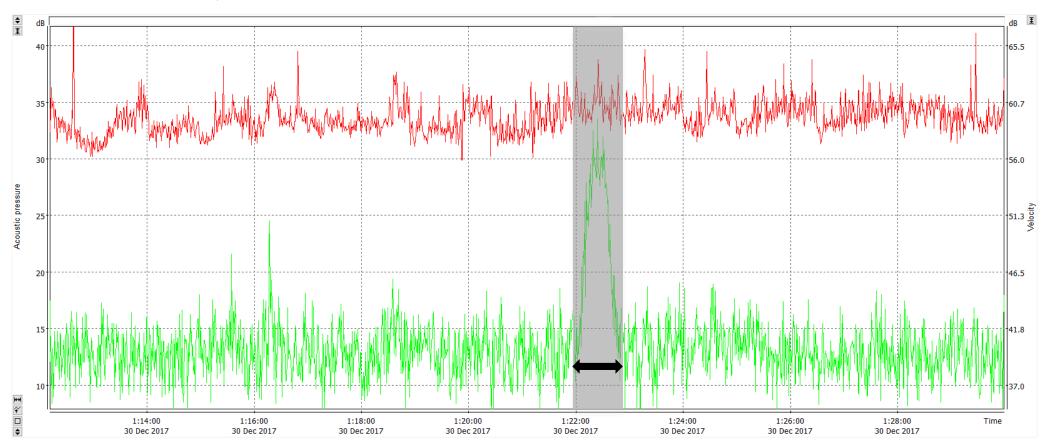
Ground-borne Noise Measurement Results and Detailed Calculation

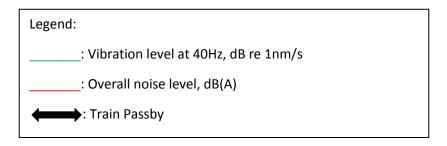
Noise and Vibration Time History of Train Passby

Measurement Location: GN3, 1/F

Note:

(1) Event passby D2 was affected by extraneous noise including traffic noise and thus the result was discarded.


Legend:


_: Vibration level at 40Hz, dB re 1nm/s

: Overall noise level, dB(A)

Typical Train Passby

Measurement Location: GN3, 1/F

Appendix E1 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Train Operation Scenario in EP Condition 2.27)

Measurement Location: GN3, 1/F

Measurement Date and Time: 29/12/2017 23:30 to 30/12/2017 01:30

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN3	Short Train (Northbound)	214	U1	33.9	34.9	-1.0	-	22	13.4	47.3	
		214	U2	36.5	35.8	0.7	-	22	13.4	49.9	47.6
		214	U3	29.4	31.7	-2.3	-	22	13.4	42.8	
	Short Train (Southbound)	214	D1	36.1	33.5	2.6	-	22	13.4	49.5	
		214	D3	33.4	30.9	2.5	-	22	13.4	46.8	48.1
		214	D4	34.0	33.7	0.3	-	22	13.4	47.4	

Notes:

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN3 ⁽⁴⁾	Short Train (Northbound)	214	47.6		7	8.5	-32.6	0.0	0.0	23.5
	Short Train (Southbound)	214	48.1	Daytime & Evening	6	7.8	-32.6	0.0	0.0	23.3
	Long Train (Northbound)	427	50.6	(0700-2300)	2	3.0	-32.6	0.0	0.0	21.0
	Long Train (Southbound)	427	51.1	,	2	3.0	-32.6	0.0	0.0	21.5
	Predicted Noise Level, LAeq 30mins, dB(A)									
	GBN Criteria, dB(A)									55
	Compliance								Yes	

Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of GN3 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.
- (4) As there is no sensitive use at school during night-time period, only daytime predicted noise level is presented.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

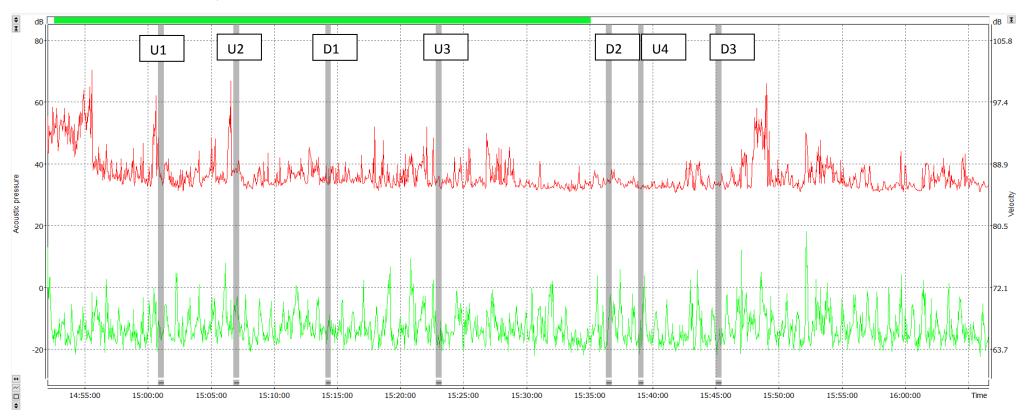
Measurement Location: GN3, 1/F

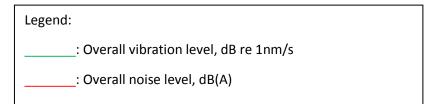
Measurement Date and Time: 29/12/2017 23:30 to 30/12/2017 01:30

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN3	Short Train (Northbound)	214	U1	33.9	34.9	-1.0	-	22	13.4	47.3	
		214	U2	36.5	35.8	0.7	-	22	13.4	49.9	47.6
		214	U3	29.4	31.7	-2.3	-	22	13.4	42.8	
	Short Train (Southbound)	214	D1	36.1	33.5	2.6	-	22	13.4	49.5	
		214	D3	33.4	30.9	2.5	-	22	13.4	46.8	48.1
		214	D4	34.0	33.7	0.3	-	22	13.4	47.4	

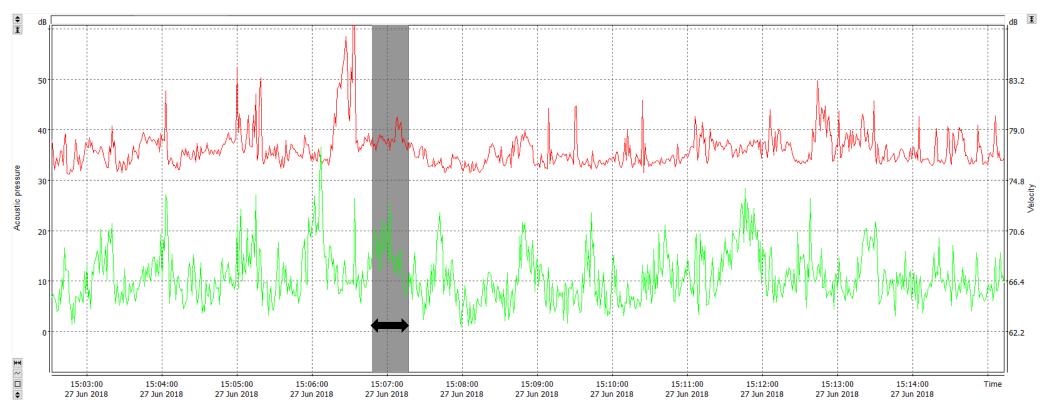
Notes:

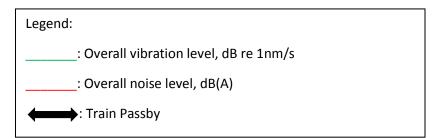
- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.


Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period


GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN3 ⁽⁴⁾	Short Train (Northbound)	214	47.6	Daytime & Evening (0700-2300)	5	7.0	-32.6	0.0	0.0	22.0
	Short Train (Southbound)	214	48.1		3	4.8	-32.6	0.0	0.0	20.3
	Long Train (Northbound)	430	50.6		3	4.8	-32.6	0.0	0.0	22.8
	Long Train (Southbound)	430	51.1		3	4.8	-32.6	0.0	0.0	23.3
Predicted Noise Level, LAeq 30mins, dB(A)										
GBN Criteria, dB(A) Compliance										55
										Yes

Notes


- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of GN3 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.
- (4) As there is no sensitive use at school during night-time period, only daytime predicted noise level is presented.


Measurement Location: GN5, 2/F

Measurement Location: GN5, 2/F

Measurement Location: GN5, 2/F

Measurement Date and Time: 27/6/2018 15:00 to 27/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN5	Short Train (Northbound)	214	U1	35.8	37.5	-1.7	-	22	13.4	49.2	
		214	U2	38.8	38.5	0.3	-	22	13.4	52.2	49.4
		214	U3	34.4	41.2	-6.8	-	22	13.4	47.8	73.7
		214	U4	32.5	33.8	-1.3	-	22	13.4	45.9	
	Short Train (Southbound)	214	D1	35.1	37.6	-2.5	-	22	13.4	48.5	
		214	D2	35.1	40.0	-4.9	-	22	13.4	48.5	48.1
		214	D3	33.6	34.3		-	22	13.4	47.0	

Note:

- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN5	Short Train (Northbound)	214	49.4		7	8.5	-32.6	0.0	0.0	25.3
	Short Train (Southbound)	214	48.1	Daytime & Evening	6	7.8	-32.6	0.0	0.0	23.3
	Long Train (Northbound)	427	52.4	(0700-2300)	2	3.0	-32.6	0.0	0.0	22.9
	Long Train (Southbound)	427	51.1		2	3.0	-32.6	0.0	0.0	21.5
						Prec	licted Noise I	Level, LAeq 3	Omins, dB(A)	<30
								GBN C	riteria, dB(A)	55
									Compliance	Yes

Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 2/F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽¹⁾	Att _{floor} Correction ⁽²⁾	LAeq 30mins, dB(A)
GN5	Short Train (Northbound)	214	49.4	Night-time	3	4.8	-32.6	0.0	0.0	21.6
	Short Train (Southbound)	214	48.1	(2300-0700)	3	4.8	-32.6	0.0	0.0	20.3
						Pred	licted Noise	Level, LAeq 3	0mins, dB(A)	<24
								GBN C	riteria, dB(A)	45
									Compliance	Yes

- (1) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (2) 2/F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

⁽¹⁾ Event duration includes the head-tail time period.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location: GN5, 2/F

Measurement Date and Time: 27/6/2018 15:00 to 27/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN5	Short Train (Northbound)	214	U1	35.8	37.5	-1.7	-	22	13.4	49.2	
		214	U2	38.8	38.5	0.3	-	22	13.4	52.2	49.4
		214	U3	34.4	41.2	-6.8	-	22	13.4	47.8	49.4
		214	U4	32.5	33.8	-1.3	-	22	13.4	45.9	
	Short Train (Southbound)	214	D1	35.1	37.6	-2.5	-	22	13.4	48.5	
		214	D2	35.1	40.0	-4.9	-	22	13.4	48.5	48.1
		214	D3	33.6	34.3		-	22	13.4	47.0	

Note:

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

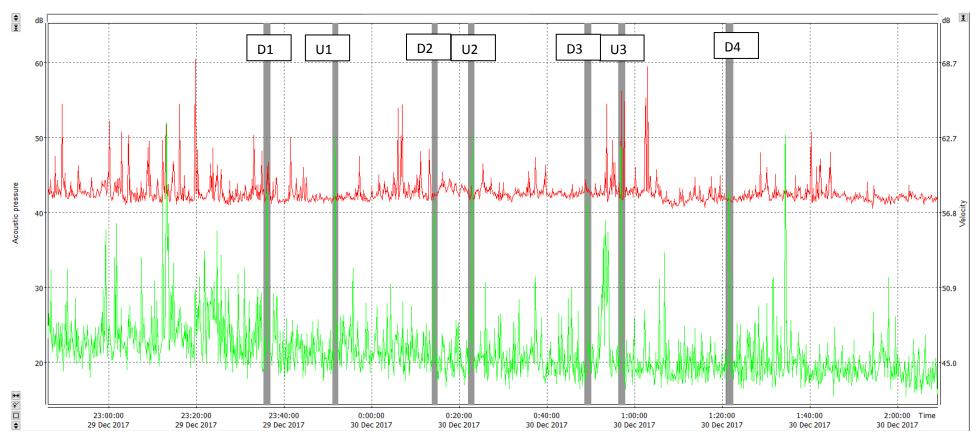
GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN5	Short Train (Northbound)	214	49.4		5	7.0	-32.6	0.0	0.0	23.9
	Short Train (Southbound)	214	48.1	Daytime & Evening	3	4.8	-32.6	0.0	0.0	20.3
	Long Train (Northbound)	430	52.5	(0700-2300)	3	4.8	-32.6	0.0	0.0	24.7
	Long Train (Southbound)	430	51.1		3	4.8	-32.6	0.0	0.0	23.3
						Pred	licted Noise	Level, LAeq 30	0mins, dB(A)	<29
								GBN C	riteria, dB(A)	55
									Compliance	Yes

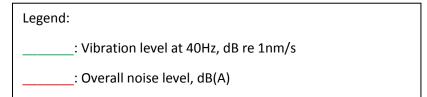
Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 2/F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

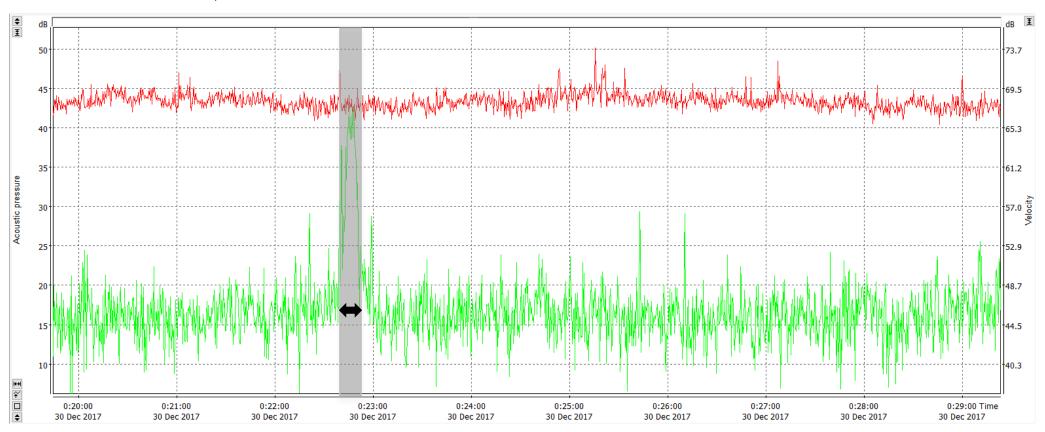
Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

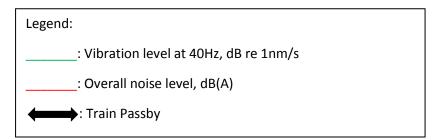
GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN5	Short Train (Northbound)	214	49.4		2	3.0	-32.6	0.0	0.0	19.9
	Short Train (Southbound)	214	48.1	Night-time	2	3.0	-32.6	0.0	0.0	18.5
	Long Train (Northbound)	430	52.5	(2300-0700)	1	0.0	-32.6	0.0	0.0	19.9
	Long Train (Southbound)	430	51.1		1	0.0	-32.6	0.0	0.0	18.6
						Pred	licted Noise	Level, LAeq 30	Omins, dB(A)	<25
					•	•		GBN C	riteria, dB(A)	45
									Compliance	Yes


Notes


- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
 (3) 2/F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.
- Prodiction of Groundhorns Bailway Noise Level During Night time Baried (Scenario 18)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN5	Short Train (Northbound)	214	49.4		1	0.0	-32.6	0.0	0.0	16.9
	Short Train (Southbound)	214	48.1	Night-time	1	0.0	-32.6	0.0	0.0	15.5
	Long Train (Northbound)	430	52.5	(2300-0700)	0	-	-32.6	0.0	0.0	-
	Long Train (Southbound)	430	51.1		2	3.0	-32.6	0.0	0.0	21.6
						Pred	licted Noise	Level, LAeq 30	Omins, dB(A)	<24
								GBN C	riteria, dB(A)	45
									Compliance	Yes


- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 2/F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.


Measurement Location: GN7, 1/F

Measurement Location: GN7, 1/F

Measurement Location: GN7, 1/F

Measurement Date and Time: 29/12/2017 23:30 to 30/12/2017 01:30

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration ⁽³⁾ , s	Correction for Event Duration, dB(A)	SEL ⁽⁴⁾ , dB(A)	Averaged SEL, dB(A)
GN7	Short Train (Northbound)	214	U1	41.1	41.5	-0.4	-	22	13.4	54.5	
		214	U2	41.7	42.2	-0.5	-	22	13.4	55.1	55.0
		214	U3	41.9	43.1	-1.2	-	22	13.4	55.3	
	Short Train (Southbound)	214	D1	41.7	41.3	0.4	-	22	13.4	55.1	
		214	D2	42.1	42.5	-0.4	-	22	13.4	55.5	55.3
		214	D3	42.4	41.9	0.5	-	22	13.4	55.8	55.5
		214	D4	41.1	41.3		-	22	13.4	54.5	

Notes:

(4) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN7	Short Train (Northbound)	214	55.0		7	8.5	-32.6	0.0	0.0	30.9
	Short Train (Southbound)	214	55.3	Daytime & Evening	6	7.8	-32.6	0.0	0.0	30.5
	Long Train (Northbound)	427	58.0	(0700-2300)	2	3.0	-32.6	0.0	0.0	28.5
	Long Train (Southbound)	427	58.3		2	3.0	-32.6	0.0	0.0	28.7
						Predic	ted Noise Le	vel, LAeq 30	mins, dB(A)	<36
		•	•	•		•	•	GBN Cr	iteria, dB(A)	55
									Compliance	Yes

Notes:

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train	Averaged	Time Period	Train	Correction	Conversion	-	Att _{floor}	LAeq 30mins, dB(A)
		Length, m	SEL, dB(A)		Frequency	for Train		Correction ⁽¹⁾	Correction ⁽²⁾	
					per 30mins	Frequency, dB(A)	LAeq 30mins, dB(A)			
GN7	Short Train (Northbound)	214	55.0	Night-time	3	4.8	-32.6	0.0	0.0	27.2
	Short Train (Southbound)	214	55.3	(2300-0700)	3	4.8	-32.6	0.0	0.0	27.5
						Predic	ted Noise Le	vel, LAeq 30	mins, dB(A)	<30
								GBN Cr	iteria, dB(A)	45
									Compliance	Yes

⁽¹⁾ Event duration includes the head-tail time period.

⁽²⁾ In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.

⁽³⁾ Based on the vibration levels recorded at GN7, the period of increased vibration levels during train passby is about 10 second, while the period of increased vibration levels recorded at nearby measurement location (e.g. GN5) is 22 sec. The different in time duration is expected to be related to site specific geological profile and building structure/foundation. As a conservative approach, event duration of 22s has been adopted for determination of the SEI

⁽¹⁾ SEL for long train is calculated based on the short train Train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

⁽²⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

^{(3) 1/}F of Tai Shing Shopping Centre is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.

⁽¹⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

^{(2) 2/}F of GN5 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

^{(3) 1/}F of Tai Shing Shopping Centre is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

GN7, 1/F Measurement Location:

Measurement Date and Time: 29/12/2017 23:30 to 30/12/2017 01:30

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration ⁽³⁾ , s	Correction for Event Duration, dB(A)	SEL ⁽⁴⁾ , dB(A)	Averaged SEL, dB(A)
GN7	Short Train (Northbound)	214	U1	41.1	41.5	-0.4	-	22	13.4	54.5	
		214	U2	41.7	42.2	-0.5	-	22	13.4	55.1	55.0
		214	U3	41.9	43.1	-1.2	-	22	13.4	55.3	
	Short Train (Southbound)	214	D1	41.7	41.3	0.4	-	22	13.4	55.1	
		214	D2	42.1	42.5	-0.4	-	22	13.4	55.5	55.3
		214	D3	42.4	41.9	0.5	-	22	13.4	55.8	00.0
		214	D4	41.1	41.3		-	22	13.4	54.5	

Notes

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) Based on the vibration levels recorded at GN7, the period of increased vibration levels during train passby is about 10 second, while the period of increased vibration levels recorded at nearby measurement location (e.g. GN5) is 22 sec. The different in time duration is expected to be related to site specific geological profile and building structure/foundation. As a conservative approach, event duration of 22s has been adopted for determination of the SEL.
- (4) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

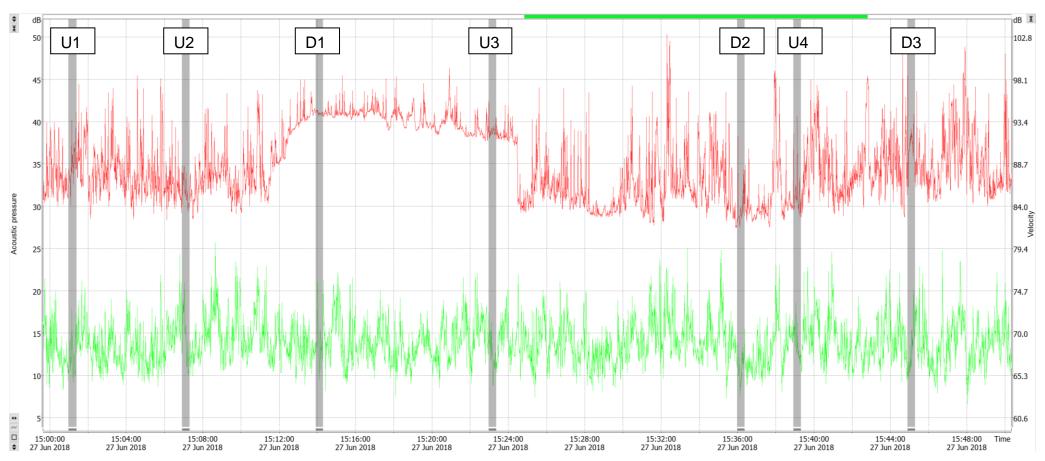
Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN7	Short Train (Northbound)	214	55.0		5	7.0	-32.6	0.0	0.0	29.4
	Short Train (Southbound)	214	55.3	Daytime & Evening	3	4.8	-32.6	0.0	0.0	27.5
	Long Train (Northbound)	430	58.0	(0700-2300)	3	4.8	-32.6	0.0	0.0	30.3
	Long Train (Southbound)	430	58.3		3	4.8	-32.6	0.0	0.0	30.5
						Predic	ted Noise Le	vel, LAeq 30	mins, dB(A)	<36
								GBN Cr	iteria, dB(A)	55
									Compliance	Yes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of Tai Shing Shopping Centre is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN7	Short Train (Northbound)	214	55.0		2	3.0	-32.6	0.0	0.0	25.5
	Short Train (Southbound)	214	55.3	Night-time	2	3.0	-32.6	0.0	0.0	25.7
	Long Train (Northbound)	430	58.0	(2300-0700)	1	0.0	-32.6	0.0	0.0	25.5
	Long Train (Southbound)	430	58.3		1	0.0	-32.6	0.0	0.0	25.8
						Predic	ted Noise Le	vel, LAeq 30ı	mins, dB(A)	<32
								GBN Cr	iteria, dB(A)	45
									Compliance	Yes

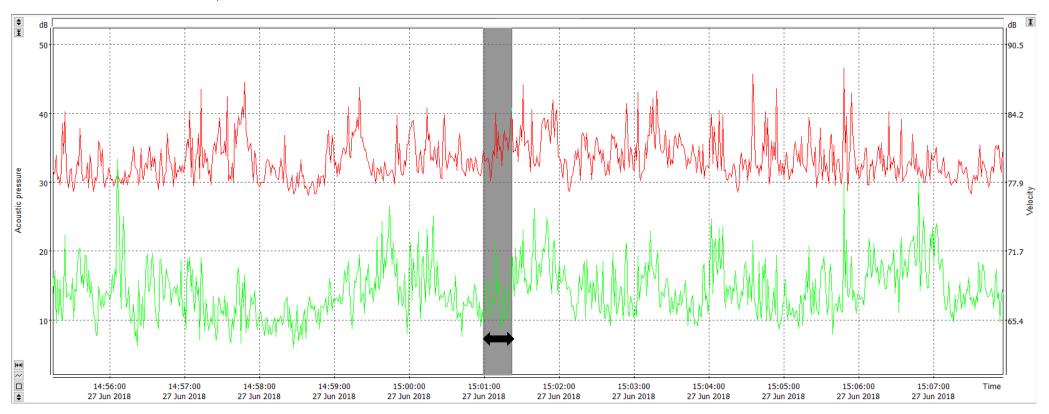

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of Tai Shing Shopping Centre is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.

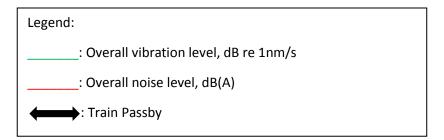
Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1B)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN7	Short Train (Northbound)	214	55.0		1	0.0	-32.6	0.0	0.0	22.5
	Short Train (Southbound)	214	55.3	Night-time	1	0.0	-32.6	0.0	0.0	22.7
	Long Train (Northbound)	430	58.0	(2300-0700)	0	-	-32.6	0.0	0.0	-
	Long Train (Southbound)	430	58.3		2	3.0	-32.6	0.0	0.0	28.8
			•			Predic	ted Noise Le	vel, LAeq 30ı	mins, dB(A)	<30
								GBN Cr	iteria, dB(A)	45
									Compliance	Yes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of Tai Shing Shopping Centre is equivalent to the lowest sensitive floor of Tai Fung Building. Therefore, no floor-to-floor attenuation was applied to the measurement result.

Measurement Location: GN8, G/F





__: Overall vibration level, dB re 1nm/s

_: Overall noise level, dB(A)

Measurement Location: GN8, G/F

Measurement Location: GN8, G/F

Measurement Date and Time: 27/6/2018 15:00 to 27/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN8	Short Train (Northbound)	214	U1	35.7	34.5	1.2	-	22	13.4	49.1	
		214	U2	31.9	35.2	-3.3	-	22	13.4	45.3	49.0
		214	U3	38.8	38.9	-0.1	-	22	13.4	52.2	49.0
		214	U4	32.2	36.9	-4.7	-	22	13.4	45.6	
	Short Train (Southbound)	214	D1	40.9	40.3	0.6	-	22	13.4	54.3	
		214	D2	31.1	35.9	-4.8	-	22	13.4	44.5	51.4
		214	D3	37.3	36.8		-	22	13.4	50.7	

Notes

- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN8	Short Train (Northbound)	214	49.0		7	8.5	-32.6	0.0	-2.0	22.9
	Short Train (Southbound)	214	51.4	Daytime & Evening	6	7.8	-32.6	0.0	-2.0	24.7
	Long Train (Northbound)	427	52.0	(0700-2300)	2	3.0	-32.6	0.0	-2.0	20.5
	Long Train (Southbound)	427	54.4	,	2	3.0	-32.6	0.0	-2.0	22.9
						Predi	cted Noise L	evel, LAeq 30	Omins, dB(A)	<29
								GBN C	riteria, dB(A)	55
									Compliance	Yes

Notes:

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽¹⁾	Att _{floor} Correction ⁽²⁾	LAeq 30mins, dB(A)
GN8	Short Train (Northbound)	214	49.0	Night-time	3	4.8	-32.6	0.0	-2.0	19.2
	Short Train (Southbound)	214	51.4	(2300-0700)	3	4.8	-32.6	0.0	-2.0	21.7
						Predi	icted Noise L	evel, LAeq 30	Omins, dB(A)	<24
								GBN C	riteria, dB(A)	45
									Compliance	Yes

⁽¹⁾ Event duration includes the head-tail time period.

⁽¹⁾ SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

⁽²⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

^{(3) 1/}F of GN8 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. -2dB(A)) was applied to the measurement result.

⁽¹⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

^{(2) 1/}F of GN8 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. -2dB(A)) was applied to the measurement result.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location: GN8, G/F

Measurement Date and Time: 27/6/2018 15:00 to 27/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN8	Short Train (Northbound)	214	U1	35.7	34.5	1.2	-	22	13.4	49.1	
		214	U2	31.9	35.2	-3.3	-	22	13.4	45.3	49.0
		214	U3	38.8	38.9	-0.1	-	22	13.4	52.2	49.0
		214	U4	32.2	36.9	-4.7	-	22	13.4	45.6	
	Short Train (Southbound)	214	D1	40.9	40.3	0.6	-	22	13.4	54.3	
		214	D2	31.1	35.9	-4.8	-	22	13.4	44.5	51.4
		214	D3	37.3	36.8		-	22	13.4	50.7	

Notes:

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN8	Short Train (Northbound)	214	49.0		5	7.0	-32.6	0.0	-2.0	21.5
	Short Train (Southbound)	214	51.4	Daytime & Evening	3	4.8	-32.6	0.0	-2.0	21.7
	Long Train (Northbound)	430	52.1	(0700-2300)	3	4.8	-32.6	0.0	-2.0	22.3
	Long Train (Southbound)	430	54.5	,	3	4.8	-32.6	0.0	-2.0	24.7
						Pre	dicted Noise	Level, LAeq 3	0mins, dB(A)	<29
								GBN C	riteria, dB(A)	55
	•					•	•		Compliance	Yes

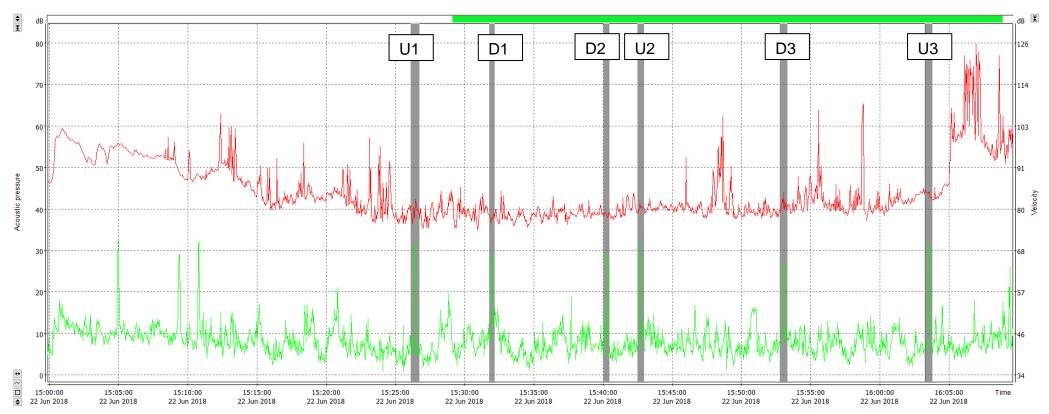
Notes:

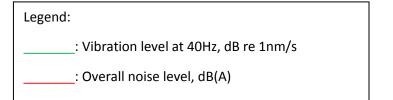
- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of GN8 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. -2dB(A)) was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

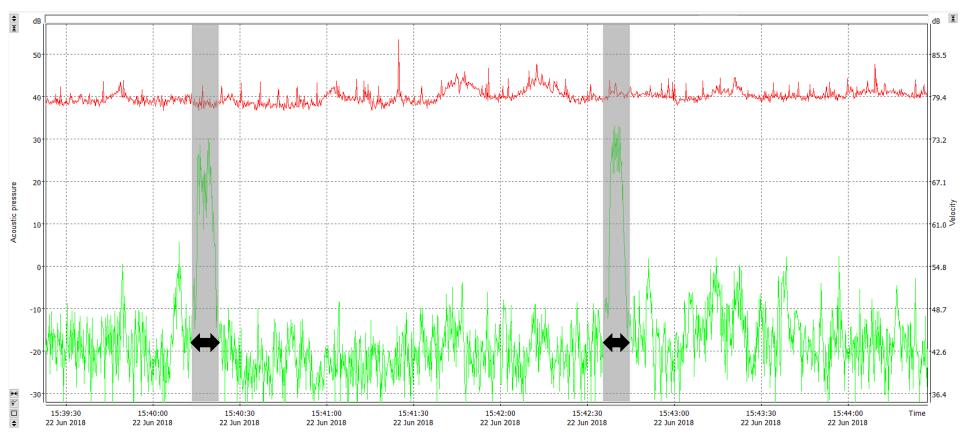
GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN8	Short Train (Northbound)	214	49.0		2	3.0	-32.6	0.0	-2.0	17.5
	Short Train (Southbound)	214	51.4	Night-time	2	3.0	-32.6	0.0	-2.0	19.9
	Long Train (Northbound)	430	52.1	(2300-0700)	1	0.0	-32.6	0.0	-2.0	17.5
	Long Train (Southbound)	430	54.5		1	0.0	-32.6	0.0	-2.0	19.9
						Pre	dicted Noise	Level, LAeq 3	0mins, dB(A)	<25
								GBN (Criteria, dB(A)	45
									Compliance	Yes

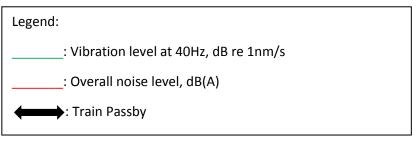
Notes:


- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- $(3) \ 1/F \ of \ GN8 \ is \ the \ lowest \ noise \ sensitive \ floor, \ and \ thus \ floor-to-floor \ attenuation \ (i.e. \ -2dB(A)) \ was \ applied \ to \ the \ measurement \ result.$


Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1B)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN8	Short Train (Northbound)	214	49.0		1	0.0	-32.6	0.0	-2.0	14.5
	Short Train (Southbound)	214	51.4	Night-time	1	0.0	-32.6	0.0	-2.0	16.9
	Long Train (Northbound)	430	52.1	(2300-0700)	0	-	-32.6	0.0	-2.0	-
	Long Train (Southbound)	430	54.5		2	3.0	-32.6	0.0	-2.0	22.9
						Pre	dicted Noise	Level, LAeq 3	0mins, dB(A)	<24
								GBN C	Criteria, dB(A)	45
									Compliance	Yes


- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) 1/F of GN8 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. -2dB(A)) was applied to the measurement result.


Measurement Location: GN31, G/F

Measurement Location: GN31, G/F

Measurement Location: GN31, G/F

Measurement Date and Time: 22/6/2018 15:20 to 22/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN31	Short Train (Northbound)	214	U1	40.7	37.9	2.8	-	12	10.8	51.5	
		214	U2	40.4	41.5	-1.1	-	12	10.8	51.2	52.6
		214	U3	43.5	42.9	0.6	-	12	10.8	54.3	
	Short Train (Southbound)	214	D1	37.6	39.9	-2.3	-	12	10.8	48.4	
		214	D2	38.6	38.7	-0.1	-	12	10.8	49.4	50.4
		214	D3	41.6	39.8	1.8	-	12	10.8	52.4	

Notes:

(1) Event duration includes the head-tail time period.

(2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.

(3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN31	Short Train (Northbound)	214	52.6		7	8.5	-32.6	0.0	0.0	28.5
	Short Train (Southbound)	214	50.4	Daytime & Evening	6	7.8	-32.6	0.0	0.0	25.6
	Long Train (Northbound)	427	55.6	(0700-2300)	2	3.0	-32.6	0.0	0.0	26.0
	Long Train (Southbound)	427	53.4	,	2	3.0	-32.6	0.0	0.0	23.9
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<32
		•					•	GBN Cri	terion, dB(A)	55
									Compliance	Yes

Notes

(1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

(3) G/F of GN31 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)		Att _{floor} Correction ⁽²⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	52.6	Night-time	3	4.8	-32.6	0.0	0.0	24.8
	Short Train (Southbound)	214	50.4	(2300-0700)	3	4.8	-32.6	0.0	0.0	22.6
									GN38	<27
								GBN Cri	terion, dB(A)	45
									Compliance	Yes

Notes

(1) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

(2) G/F of GN31 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location: GN31, G/F

Measurement Date and Time: 22/6/2018 15:20 to 22/6/2018 16:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN31	Short Train (Northbound)	214	U1	40.7	37.9	2.8	-	12	10.8	51.5	
		214	U2	40.4	41.5	-1.1	-	12	10.8	51.2	52.6
		214	U3	43.5	42.9	0.6	-	12	10.8	54.3	
	Short Train (Southbound)	214	D1	37.6	39.9	-2.3	-	12	10.8	48.4	
		214	D2	38.6	38.7	-0.1	-	12	10.8	49.4	50.4
		214	D3	41.6	39.8	1.8	-	12	10.8	52.4	

Notes:

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN31	Short Train (Northbound)	214	52.6		5	7.0	-32.6	0.0	0.0	27.0
	Short Train (Southbound)	214	50.4	Daytime & Evening	3	4.8	-32.6	0.0	0.0	22.6
	Long Train (Northbound)	430	55.6	(0700-2300)	3	4.8	-32.6	0.0	0.0	27.8
	Long Train (Southbound)	430	53.4	,	3	4.8	-32.6	0.0	0.0	25.7
						Predi	icted Noise L	evel, LAeq 30	mins, dB(A)	<32
								GBN Cri	terion, dB(A)	55
									Compliance	Yes

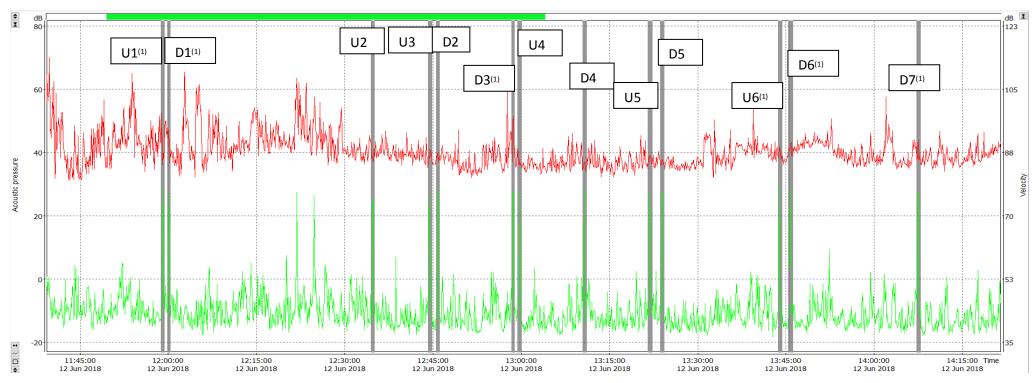
Notes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN31 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN31	Short Train (Northbound)	214	52.6		2	3.0	-32.6	0.0	0.0	23.0
	Short Train (Southbound)	214	50.4	Night-time	2	3.0	-32.6	0.0	0.0	20.9
	Long Train (Northbound)	430	55.6	(2300-0700)	1	0.0	-32.6	0.0	0.0	23.0
	Long Train (Southbound)	430	53.4		1	0.0	-32.6	0.0	0.0	20.9
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<28
		•				•		GBN C	riteria, dB(A)	45
									Compliance	Yes

Notes:

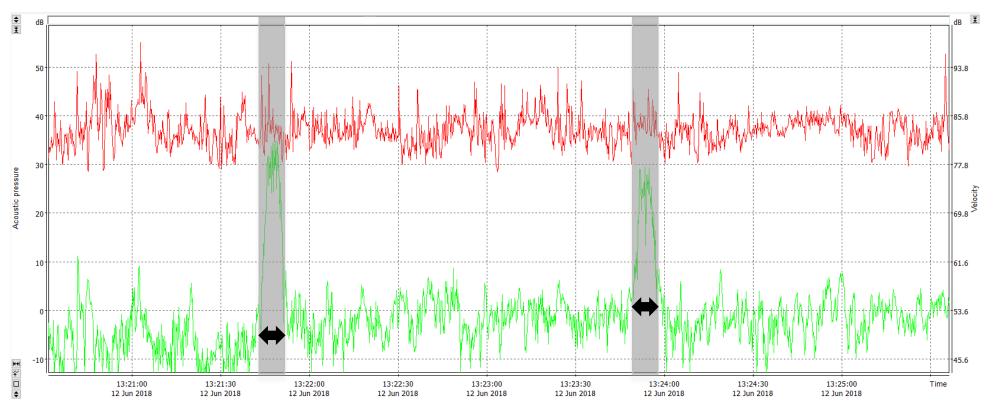

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN31 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

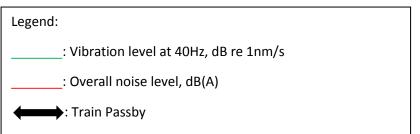
Prediction of Groundhorne Railway Noise I	evel During Night-time Period (Scenario 1B)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN31	Short Train (Northbound)	214	52.6		1	0.0	-32.6	0.0	0.0	20.0
	Short Train (Southbound)	214	50.4	Night-time	1	0.0	-32.6	0.0	0.0	17.9
	Long Train (Northbound)	430	55.6	(2300-0700)	0	-	-32.6	0.0	0.0	-
	Long Train (Southbound)	430	53.4		2	3.0	-32.6	0.0	0.0	23.9
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<26
								GBN C	riteria, dB(A)	45
									Compliance	Yes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN31 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Measurement Location: GN38, G/F




Note:

(1) Event passbys U1, D1, D3, D6, U6 and D7 were affected by extraneous noise related to human activities and thus the results were discarded.

Legend:
______: Vibration level at 40Hz, dB re 1nm/s
_____: Overall noise level, dB(A)

Measurement Location: GN38, G/F

Measurement Location: GN38, G/F

Measurement Date and Time: 12/6/2018 12:00 to 12/6/2018 14:15

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN38	Short Train (Northbound)	214	U2	39.2	38.6	0.6	-	11	10.4	49.6	
		214	U3	40.0	39.9	0.1	-	11	10.4	50.4	49.2
		214	U4	36.6	37.8	-1.2	-	11	10.4	47.0	43.2
		214	U5	38.6	38.4	0.2	-	11	10.4	49.0	
	Short Train (Southbound)	214	D2	39.3	36.4	2.9	-	11	10.4	49.7	
		214	D4	36.8	40.6	-3.8	-	11	10.4	47.2	48.4
		214	D5	37.6	37.0	0.6	-	11	10.4	48.0	

Notes

- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	49.2		7	8.5	-32.6	0.0	0.0	25.1
	Short Train (Southbound)	214	48.4	Daytime & Evening	6	7.8	-32.6	0.0	0.0	23.7
	Long Train (Northbound)	427	52.2	(0700-2300)	2	3.0	-32.6	0.0	0.0	22.6
	Long Train (Southbound)	427	51.4]	2	3.0	-32.6	0.0	0.0	21.9
						Predic	ted Noise Le	vel, LAeq 30	mins, dB(A)	<30
							•	GBN Crit	erion, dB(A)	50
							•	•	Compliance	Yes

Notes:

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)		Att _{floor} Correction ⁽²⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	49.2	Night-time	3	4.8	-32.6	0.0	0.0	21.4
	Short Train (Southbound)	214	48.4	(2300-0700)	3	4.8	-32.6	0.0	0.0	20.7
						Predic	ted Noise Le	vel, LAeq 30	mins, dB(A)	<24
								GBN Crit	erion, dB(A)	40
									Compliance	Yes

⁽¹⁾ Event duration includes the head-tail time period.

⁽¹⁾ SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

⁽²⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

⁽³⁾ G/F of GN38 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

⁽¹⁾ Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).

⁽²⁾ G/F of GN38 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location: GN38, G/F

Measurement Date and Time: 12/6/2018 12:00 to 12/6/2018 14:15

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN38	Short Train (Northbound)	214	U2	39.2	38.6	0.6	-	11	10.4	49.6	
		214	U3	40.0	39.9	0.1	-	11	10.4	50.4	49.2
		214	U4	36.6	37.8	-1.2	-	11	10.4	47.0	43.2
		214	U5	38.6	38.4	0.2	-	11	10.4	49.0	
	Short Train (Southbound)	214	D2	39.3	36.4	2.9	-	11	10.4	49.7	
		214	D4	36.8	40.6	-3.8	-	11	10.4	47.2	48.4
		214	D5	37.6	37.0	0.6	-	11	10.4	48.0	

Notes.

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundhorne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)		Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	49.2		5	7.0	-32.6	0.0	0.0	23.6
	Short Train (Southbound)	214	48.4	Daytime & Evening	3	4.8	-32.6	0.0	0.0	20.7
	Long Train (Northbound)	430	52.2	(0700-2300)	3	4.8	-32.6	0.0	0.0	24.4
	Long Train (Southbound)	430	51.5	,	3	4.8	-32.6	0.0	0.0	23.7
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<29
								GBN Cri	terion, dB(A)	50
									Compliance	Yes

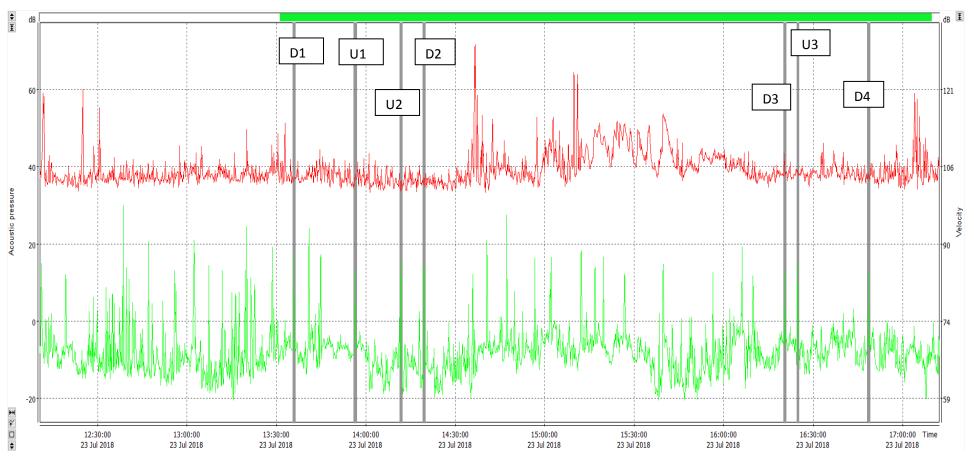
Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN38 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	49.2		2	3.0	-32.6	0.0	0.0	19.6
	Short Train (Southbound)	214	48.4	Night-time	2	3.0	-32.6	0.0	0.0	18.9
	Long Train (Northbound)	430	52.2	(2300-0700)	1	0.0	-32.6	0.0	0.0	19.7
	Long Train (Southbound)	430	51.5		1	0.0	-32.6	0.0	0.0	18.9
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<25
		•	•				•	GBN C	riteria, dB(A)	40
									Compliance	Yes

Notes:

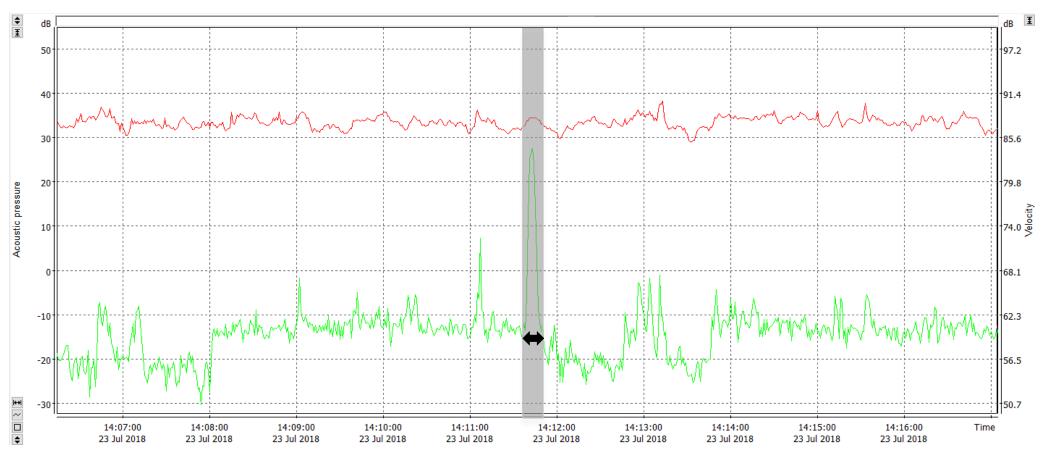

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN38 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

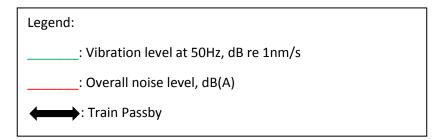
Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1B)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN38	Short Train (Northbound)	214	49.2		1	0.0	-32.6	0.0	0.0	16.6
	Short Train (Southbound)	214	48.4	Night-time	1	0.0	-32.6	0.0	0.0	15.9
	Long Train (Northbound)	430	52.2	(2300-0700)	0	-	-32.6	0.0	0.0	-
	Long Train (Southbound)	430	51.5		2	3.0	-32.6	0.0	0.0	21.9
						Predi	cted Noise L	evel, LAeq 30	mins, dB(A)	<24
								GBN C	riteria, dB(A)	40
									Compliance	Yes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN38 is the lowest noise sensitive floor, and thus no floor-to-floor attenuation was applied to the measurement result.

Measurement Location: GN42, 1/F




Legend:

_: Vibration level at 50Hz, dB re 1nm/s

: Overall noise level, dB(A)

Measurement Location: GN42, 1/F

Measurement Location: GN42, 1/F

Measurement Date and Time: 23/7/2018 13:30 to 23/7/2018 17:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN42	Short Train (Northbound)	214	U1	35.1	32.8	2.3	-	11	10.4	45.5	
		214	U2	33.9	33.4	0.5	-	11	10.4	44.3	46.1
		214	U3	37.4	36.1	1.3	-	11	10.4	47.8	
	Short Train (Southbound)	214	D1	34.7	34.9	-0.2	-	11	10.4	45.1	
		214	D2	34.6	34.1	0.5	-	11	10.4	45.0	46.1
		214	D3	37.4	36.8	0.6	-	11	10.4	47.8	40.1
		214	D4	35.4	35.1	0.3	-	11	10.4	45.8	

Notes

- (2) In general, the measured event noise levels during train passby were similar to the background niose levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)		
GN42	Short Train (Northbound)	214	46.1		7	8.5	-32.6	0.0	2.0	24.0		
	Short Train (Southbound)	214	46.1	Daytime & Evening	6	7.8	-32.6	0.0	2.0	23.3		
	Long Train (Northbound)	427	49.1	(0700-2300)	2	3.0	-32.6	0.0	2.0	21.6		
	Long Train (Southbound)	427	49.1		2	3.0	-32.6	0.0	2.0	21.6		
						Predicted Noise Level, LAeq 30mins, dB(A)						
								GBN Cr	iterion, dB(A)	50		
							Compliand					

Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN42 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽¹⁾	Att _{floor} Correction ⁽²⁾	LAeq 30mins, dB(A)
GN42	Short Train (Northbound)	214	46.1	Night-time	3	4.8	-32.6	0.0	2.0	20.3
	Short Train (Southbound)	214	46.1	(2300-0700)	3	4.8	-32.6	0.0	2.0	20.3
						Pre	dicted Noise	Level, LAeq 3	0mins, dB(A)	<23
GBN Criterion, dB(A)										40
									Compliance	Yes

- (1) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (2) G/F of GN42 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

⁽¹⁾ Event duration includes the head-tail time period.

Appendix E2 Ground-borne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location: GN42, 1/F

Measurement Date and Time: 23/7/2018 13:30 to 23/7/2018 17:00

GBNSR	Train&Direction	Train Length, m	Passby No.	Measured Event ⁽¹⁾ Leq, dB(A) [A]	Background Noise Level, dB(A) [B]	[A] - [B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Event Duration, s	Correction for Event Duration, dB(A)	SEL ⁽³⁾ , dB(A)	Averaged SEL, dB(A)
GN42	Short Train (Northbound)	214	U1	35.1	32.8	2.3	-	11	10.4	45.5	
		214	U2	33.9	33.4	0.5	-	11	10.4	44.3	46.1
		214	U3	37.4	36.1	1.3	-	11	10.4	47.8	
	Short Train (Southbound)	214	D1	34.7	34.9	-0.2	-	11	10.4	45.1	
		214	D2	34.6	34.1	0.5	-	11	10.4	45.0	46.1
		214	D3	37.4	36.8	0.6	-	11	10.4	47.8	40.1
		214	D4	35.4	35.1	0.3	-	11	10.4	45.8	

Notes:

- (1) Event duration includes the head-tail time period.
- (2) In general, the measured event noise levels during train passby were similar to the background noise levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Groundborne Railway Noise Level During Daytime/Evening Time Period

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN42	Short Train (Northbound)	214	46.1		5	7.0	-32.6	0.0	2.0	22.6
	Short Train (Southbound)	214	46.1	Daytime &	3	4.8	-32.6	0.0	2.0	20.3
	Long Train (Northbound) 430 49.2 (0700-2300) 3 4.8 -32.6 0.0 2.0									23.4
	Long Train (Southbound)	430	49.1	,	3	4.8	-32.6	0.0	2.0	23.3
Predicted Noise Level, LAeq 30mins, dB(A)									<29	
								GBN Cr	riterion, dB(A)	50
									Compliance	Yes

Notes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN42 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1A)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN42	Short Train (Northbound)	214	46.1		2	3.0	-32.6	0.0	2.0	18.6
	Short Train (Southbound)	214	46.1	Night-time	2	3.0	-32.6	0.0	2.0	18.6
	Long Train (Northbound)	430	49.2	(2300-0700)	1	0.0	-32.6	0.0	2.0	18.6
	Long Train (Southbound)	430	49.1		1	0.0	-32.6	0.0	2.0	18.6
Predicted Noise Level, LAeq 30mins, dB(A)									<25	
			•					GBN (Criteria, dB(A)	40
									Compliance	Yes

Notes:

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN42 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

Prediction of Groundborne Railway Noise Level During Night-time Period (Scenario 1B)

GBNSR	Train & Direction	Train Length, m	Averaged SEL ⁽¹⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to LAeq 30mins, dB(A)	BCF Correction ⁽²⁾	Att _{floor} Correction ⁽³⁾	LAeq 30mins, dB(A)
GN42	Short Train (Northbound)	214	46.1		1	0.0	-32.6	0.0	2.0	15.6
	Short Train (Southbound)	214	46.1	Night-time	1	0.0	-32.6	0.0	2.0	15.5
	Long Train (Northbound) 430 49.2 (2300-0700) 032.6 0.0 2.0								-	
	Long Train (Southbound)	430	49.1		2	3.0	-32.6	0.0	2.0	21.6
Predicted Noise Level, LAeq 30mins, dB(A)										<23
								GBN (Criteria, dB(A)	40
·									Compliance	Yes

- (1) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (2) Measurement was conducted inside the building and thus there is no correction of building coupling factor (BCF).
- (3) G/F of GN42 is the lowest noise sensitive floor, and thus floor-to-floor attenuation (i.e. +2dB(A)) was applied to the measurement result.

Appendix F

Airborne Noise Measurement Results and Detailed Calculation

Measurement Location: SS

Measurement Date and Time 29/12/2017 23:30 to 30/12/2017 01:17

Weather Condition Fine

Calculation of Sound Exposure Level

ABNSR	Direction	Train Length, m	Speed, kph ⁽¹⁾		Measured E	Event , dB(A)		Background Noise Level, dB(A)	[A]-[B], dB(A)	Correctced Event Noise Level,	,	Correction for Event Duration,		Averaged SEL, dB(A)
				LAeq [A]	Lmax	L10	L90	[B]		dB(A) ⁽²⁾		dB(A)		
SS7	Short Train (Northbound)	214	200	48.1	52.8	50.5	47.0	43.4	4.7	46.4	9	9.5	57.7	
		214		48.4	50.6	49.4	46.1	49.4	-1.0	-	10	10.0	58.4	
		214		46.6	48.9	48.2	46.5	44.2	2.4	-	10	10.0	56.6	57.6
	Short Train (Southbound)	214	200	48.9	50.4	49.6	46.4	47.2	1.7	-	10	10.0	58.9	
		214		47.4	50.9	49.5	47.8	45.3	2.1	-	9	9.5	56.9	
		214		48.5	49.8	48.6	44.3	47.0	1.5	-	9	9.5	58.1	
		214		47.4	50.9	49.2	45.1	44.2	3.2	44.5	9	9.5	56.9	57.8
Notes:			Ma	ximum Lmax	52.8			<u> </u>	-	-				

(1) Train speed passing through ERS.

(2) In general, the measured event noise levels during train passby were similar to the background noise levels and any background correction, if made, should only be regarded as approximate.

(3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Airborne Railway Noise Level During Daytime/Evening Period

ABNSR	Train & Direction	Train Length, m		Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	L _{Aeq 30mins} ⁽³⁾ , dB(A)
SS7	Short Train (Northbound)	214	200	57.6	Daytime &	7	8.5	-32.6	33.5
	Short Train (Southbound)	214	200	57.8	Evening	6	7.8	-32.6	33.0
	Long Train (Northbound)	427	200	60.6	(0700-2300)	2	3.0	-32.6	31.1
	Long Train (Southbound)	427	200	60.8		2	3.0	-32.6	31.2
						Predicted Noi	<38.4		
			•				riterion, dB(A)	65	
			•				•	Compliance	Yes

Notes:

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Facade noise measurement was conducted at SS7 and thus no facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period

ABNSR	Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	L _{Aeq 30mins} ⁽²⁾ , dB(A)
SS7	Short Train (Northbound)	214	200	57.6	Night-time	3	4.8	-32.6	29.8
	Short Train (Southbound)	214	200	57.8	(2300-0700)	3	4.8	-32.6	30.0
Predicted Noise Level, LAeq 30mins, dB(A)									<32.9
						Nig	ht-time Noise Cı	riterion, dB(A)	55
								Compliance	Yes

Notes:

(1) Train speed passing through ERS.

(2) Facade noise measurement was conducted at SS7 and thus no facade correction is included in the calculation.

Measurement Location: SS15

Measurement Date and Time 29/12/2017 23:30 to 30/12/2017 01:17

Weather Condition

Calculation of Sound Exposure Level

ABNSR	Train&Direction	Train Length, m	Speed, kph ⁽¹⁾		Measured I	Event , dB(A)		Background Noise Level, dB(A) [B]	[A]-[B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Passby Duration, sec	Correction for Event Duration, dB(A)	SEL, dB(A)	Averaged SEL, dB(A)
				LAeq [A]	Lmax	L10	L90							
SS15	Short Train (Northbound)	214	200	56.8	56.9	56.2	53.5	52.6	4.2	54.8	12	10.8	67.6	
		214		57.3	59.2	58.4	54.2	52.9	4.4	55.4	12	10.8	68.1	
		214		56.8	56.2	55.4	53.8	52.9	3.9	54.5	12	10.8	67.6	67.8
	Short Train (Southbound)	214	200	55.0	59.8	58.9	54.3	52.4	2.6	-	11	10.4	65.4	
		214		54.5	56.5	55.7	54.1	54.7	-0.2	-	12	10.8	65.3	
		214		54.9	59.4	58.7	53.7	52.7	2.2	-	12	10.8	65.7	
		214		55.0	56.2	55.7	54.2	52.2	2.8	-	13	11.1	66.1	65.6
Notes:			Ma	aximum Lmax	59.8									

(1) Train speed passing through ERS.

- (2) In general, the measured event noise levels during train passby were similar to the background noise levels and any background correction, if made, should only be regarded as approximate.
- (3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Airborne Railway Noise Level During Daytime/Evening Period

Train & Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	Facade Correction, dB(A)	L _{Aeq 30mins} ⁽³⁾ , dB(A)
Short Train (Northbound)	214	200	67.8	Daytime &	7	8.5	-32.6	3.0	46.7
Short Train (Southbound)	214	200	65.6	Evening	6	7.8	-32.6	3.0	43.9
Long Train (Northbound)	427	200	70.8	(0700-2300)	2	3.0	-32.6	3.0	44.2
Long Train (Southbound)	427	200	68.6		2	3.0	-32.6	3.0	42.1
						Predicted Nois	e Level, LAeq	30mins, dB(A)	<50.6
								ANL, dB(A)	65
·								Compliance	Yes
	Short Train (Northbound) Short Train (Southbound) Long Train (Northbound)	Short Train (Northbound) 214 Short Train (Southbound) 214 Long Train (Northbound) 427	m kph (1) Short Train (Northbound) 214 200 Short Train (Southbound) 214 200 Long Train (Northbound) 427 200	m kph (1) SEL(2), dB(A) Short Train (Northbound) 214 200 67.8 Short Train (Southbound) 214 200 65.6 Long Train (Northbound) 427 200 70.8	m kph (1) SEL(2), dB(A) Short Train (Northbound) 214 200 67.8 Daytime & Evening (0700-2300) Short Train (Southbound) 214 200 65.6 Evening (0700-2300)	m kph (1) SEL (2) dB(A) Frequency per 30mins Short Train (Northbound) 214 200 67.8 Daytime & 7 Short Train (Southbound) 214 200 65.6 Evening 6 Long Train (Northbound) 427 200 70.8 (0700-2300) 2	m kph (1) SEL(2), dB(A) Frequency per 30mins Train Frequency, dB(A) Short Train (Northbound) 214 200 67.8 Daytime & 7 8.5 Short Train (Southbound) 214 200 65.6 Evening 6 7.8 Long Train (Northbound) 427 200 70.8 (0700-2300) 2 3.0 Long Train (Southbound) 427 200 68.6 2 3.0	m kph (1) SEL(2), dB(A) Frequency per 30mins Train Frequency, dB(A) Factor to L _{Aeq 30mins} , dB(A) Short Train (Northbound) 214 200 67.8 Daytime & Train (Southbound) 7 8.5 -32.6 Short Train (Southbound) 214 200 65.6 Evening 6 7.8 -32.6 Long Train (Northbound) 427 200 70.8 (0700-2300) 2 3.0 -32.6 Long Train (Southbound) 427 200 68.6 2 3.0 -32.6	March Marc

- (1) Train speed passing through ERS.
- (2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).
- (3) Free field noise measurement was conducted at SS15 and thus facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period

ABNSR	Train & Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL, dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	Facade Correction, dB(A)	L _{Aeq 30mins} ⁽²⁾ , dB(A)
SS15	Short Train (Northbound)	214	200	67.8	Night-time	3	4.8	-32.6	3.0	43.0
	Short Train (Southbound)	214	200	65.6	(2300-0700)	3	4.8	-32.6	3.0	40.9
							Predicted Nois	e Level, LAeq	30mins, dB(A)	<45.1
									ANL, dB(A)	55
									Compliance	Yes

- (1) Train speed passing through ERS.
- (2) Free field noise measurement was conducted at SS15 and thus facade correction is included in the calculation.

Appendix F2 Airborne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location:

Measurement Date and Time

29/12/2017 23:30 to 30/12/2017 01:17 Fine

Weather Condition

Calculation of Sound Exposure Level

ABNSR	Direction	Train Length, m	Speed, kph ⁽¹⁾		Measured E	event , dB(A)		Background Noise Level, dB(A)	[A]-[B], dB(A)	Correctced Event Noise Level,		Correction for Event Duration,		Averaged SEL, dB(A)
				LAeq [A]	Lmax	L10	L90	[B]		dB(A) ⁽²⁾		dB(A)		
SS7	Short Train (Northbound)	214	200	48.1	52.8	50.5	47.0	43.4	4.7	46.4	9	9.5	57.7	
		214		48.4	50.6	49.4	46.1	49.4	-1.0	-	10	10.0	58.4	
		214		46.6	48.9	48.2	46.5	44.2	2.4	-	10	10.0	56.6	57.6
	Short Train (Southbound)	214	200	48.9	50.4	49.6	46.4	47.2	1.7	-	10	10.0	58.9	
		214		47.4	50.9	49.5	47.8	45.3	2.1	-	9	9.5	56.9	
		214		48.5	49.8	48.6	44.3	47.0	1.5	-	9	9.5	58.1	
		214		47.4	50.9	49.2	45.1	44.2	3.2	44.5	9	9.5	56.9	57.8
Notes:	<u> </u>		Ma	ximum Lmax	52.8									

(2) In general, the measured event noise levels during train passby were similar to the background noise levels and any background correction, if made, should only be regarded as approximate.

(3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Airborne Railway Noise Level During Daytime/Evening Period

ABNSR	Train & Direction	Train Length, m		Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	L _{Aeq 30mins} (3), dB(A)		
SS7	Short Train (Northbound)	214	200	57.6	Daytime &	5	7.0	-32.6	32.1		
	Short Train (Southbound)	214	200	57.8	Evening	3	4.8	-32.6	30.0		
	Long Train (Northbound)	430	200	60.6	(0700-2300)	3	4.8	-32.6	32.9		
	Long Train (Southbound)	430	200	60.8		3	4.8	-32.6	33.0		
						Predicted Noi	se Level, LAeq 3	0mins, dB(A)	<38.2		
Daytime Noise Criterion, dB(A)											
								Compliance	Yes		

Notes:

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Facade noise measurement was conducted at SS7 and thus no facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period (Scenario 1A)

ABNSR	Train & Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	L _{Aeq 30mins} (3), dB(A)
SS7	Short Train (Northbound)	214	200	57.6	Night-time	2	3.0	-32.6	28.1
	Short Train (Southbound)	214	200	57.8	(2300-0700)	2	3.0	-32.6	28.2
	Long Train (Northbound)	430	200	60.6		1	0.0	-32.6	28.1
	Long Train (Southbound)	430	200	60.8		1	0.0	-32.6	28.3
						Predicted Noi	se Level, LAeq 3	0mins, dB(A)	<34.2
						Nig	ht-time Noise Cr	iterion, dB(A)	55
								Compliance	Yes

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Facade noise measurement was conducted at SS7 and thus no facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period (Scenario 1B)

ABNSR	Train & Direction	Train Length, m		Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	L _{Aeq 30mins} (3) dB(A)		
SS7	Short Train (Northbound)	214	200	57.6	Night-time	1	0.0	-32.6	25.1		
	Short Train (Southbound)	214	200	57.8	(2300-0700)	1	0.0	-32.6	25.2		
	Long Train (Northbound)	430	200	60.6		0	-	-32.6	-		
	Long Train (Southbound)	430	200	60.8		2	3.0	-32.6	31.3		
						Predicted Noi	se Level, LAeq 3	0mins, dB(A)	<33		
Night-time Noise Criterion, dB(A)											
Compliance											

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Facade noise measurement was conducted at SS7 and thus no facade correction is included in the calculation.

Appendix F2 Airborne Noise Measurement Results and Detailed Calculation (Without Background Correction) (Additional Train Operation Scenarios)

Measurement Location:

Measurement Date and Time Weather Condition

29/12/2017 23:30 to 30/12/2017 01:17 Fine

Calculation of Sound Exposure Level

ABNSR	Train&Direction	Train Length, m	Speed, kph ⁽¹⁾		Measured E	Event , dB(A)		Background Noise Level, dB(A) [B]	[A]-[B], dB(A)	Correctced Event Noise Level, dB(A) ⁽²⁾	Passby Duration, sec	Correction for Event Duration, dB(A)	SEL, dB(A)	Averaged SEL, dB(A)
				LAeq [A]	Lmax	L10	L90							
SS15	Short Train (Northbound)	214	200	56.8	56.9	56.2	53.5	52.6	4.2	54.8	12	10.8	67.6	
		214		57.3	59.2	58.4	54.2	52.9	4.4	55.4	12	10.8	68.1	
		214		56.8	56.2	55.4	53.8	52.9	3.9	54.5	12	10.8	67.6	67.8
	Short Train (Southbound)	214	200	55.0	59.8	58.9	54.3	52.4	2.6		11	10.4	65.4	
		214		54.5	56.5	55.7	54.1	54.7	-0.2	-	12	10.8	65.3	
		214		54.9	59.4	58.7	53.7	52.7	2.2	-	12	10.8	65.7	
Notes:		214		55.0	56.2	55.7	54.2	52.2	2.8	-	13	11.1	66.1	65.6

(1) Train speed passing through ERS.

(2) In general, the measured event noise levels during train passby were similar to the background noise levels and any background correction, if made, should only be regarded as approximate.

(3) As a conservative approach, the measured event noise levels without background correction were adopted to determine the SEL.

Prediction of Airborne Railway Noise Level During Daytime/Evening Period

ABNSR	Train & Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	Facade Correction, dB(A)	L _{Aeq 30mins} (3), dB(A)
SS15	Short Train (Northbound)	214	200	67.8	Daytime &	5	7.0	-32.6	3.0	45.2
	Short Train (Southbound)	214	200	65.6	Evening	3	4.8	-32.6	3.0	40.9
	Long Train (Northbound)	430	200	70.8	(0700-2300)	3	4.8	-32.6	3.0	46.0
	Long Train (Southbound)	430	200	68.7		3	4.8	-32.6	3.0	43.9
							Predicted Noise	e Level, LAeq	30mins, dB(A)	<50.4
									ANL, dB(A)	65
	•			•	•	•			Compliance	Yes

Notes:

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Free field noise measurement was conducted at SS15 and thus facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period (Scenario 1A)

ABNSR	Train & Direction	Train Length, m	Speed, kph ⁽¹⁾	Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	Facade Correction, dB(A)	L _{Aeq 30mins} (3), dB(A)
SS15	Short Train (Northbound)	214	200	67.8	Night-time	2	3.0	-32.6	3.0	41.2
	Short Train (Southbound)	214	200	65.6	(2300-0700)	2	3.0	-32.6	3.0	39.1
	Long Train (Northbound)	430	200	70.8		1	0.0	-32.6	3.0	41.3
	Long Train (Southbound)	430	200	68.7		1	0.0	-32.6	3.0	39.1
							Predicted Nois	e Level, LAeq	30mins, dB(A)	<46.3
ANL, dB(A)										
	•						•		Compliance	Yes

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Free field noise measurement was conducted at SS15 and thus facade correction is included in the calculation.

Prediction of Airborne Railway Noise Level During Night-time Period (Scenario 1B)

ABNSR	Train & Direction	Train Length, m		Averaged SEL ⁽²⁾ , dB(A)	Time Period	Train Frequency per 30mins	Correction for Train Frequency, dB(A)	Conversion Factor to L _{Aeq 30mins} , dB(A)	Facade Correction, dB(A)	L _{Aeq 30mins} (3), dB(A)
SS15	Short Train (Northbound)	214	200	67.8	Night-time	1	0.0	-32.6	3.0	38.2
	Short Train (Southbound)	214	200	65.6	(2300-0700)	1	0.0	-32.6	3.0	36.1
	Long Train (Northbound)	430	200	70.8		0	-	-	-	
	Long Train (Southbound)	430	200	68.7		2	3.0	-32.6	3.0	42.1
							Predicted Nois	e Level, LAeq	30mins, dB(A)	<44.3
									ANL, dB(A)	55
									Compliance	Yes

(1) Train speed passing through ERS.

(2) SEL for long train is calculated based on the short train train SEL with correction of train length (i.e. SEL of short train train + 3dB(A)).

(3) Free field noise measurement was conducted at SS15 and thus facade correction is included in the calculation.