

8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

# China Harbour – Zhen Hua Joint Venture

Contract No.: CV/2015/07 Handling of Surplus Public Fill (2016-2018)

TSEUNG KWAN O AREA 137 FILL BANK

MONTHLY EM&A REPORT NO.19

(NOVEMBER 2018)

Prepared by:

Checked by:

TANG, Chung Hang

LAU, Chi Leung Environmental Team Leader

Issue Date: 06 December 2018

Report No.: ENA88729

This report shall not be reproduced unless with prior written approval from this laboratory.



#### Ref.: CEDPFRSFEM02\_0\_0491L.18

14 December 2018

By Email and Fax No.: 2695 3944

ETS-Testconsult Limited 8/F, Block B, Veristrong Industrial Centre 34-36 Au Pui Wan Street Fo Tan, Hong Kong

Attention: Mr. C.L. Lau

Dear Mr. Lau,

### Re: Contract No. CV/2015/07 Handling of Surplus Public Fill (2016 – 2018)

### Monthly EM&A Report (No. 19) for November 2018 for the Tseung Kwan O Area 137 Fill Bank

Reference is made to your submission of the draft Monthly EM&A Report for November 2018 for the TKO Area 137 Fill Bank received by email on 10 December 2018 and the final revision on 14 December 2018.

We are pleased to inform you that we have no further comment on the captioned report.

Thank you for your attention. Please do not hesitate to contact our Jason Lai or the undersigned should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

Hay Handlesong

F. C. Tsang Independent Environmental Checker

c.c. CEDD Attn: Ms. Lisa Yung CHZHJV Attn: Mr. S W Sung Fax No.: 2714 0113 By Email

Q:\Projects\CEDPFRSFEM02\02 Project Management\02 Corr\CEDPFRSFEM02\_0\_0491L.18.doc



| TABLE OF   | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                     | Page                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| EXECUTIVE  | ESUMMARY                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| 1.0        | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                 | 1                                   |
| 2.0        | PROJECT INFORMATION                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 3.0        | <ul> <li>2.1 Scope of the Project</li> <li>2.2 Site Description</li> <li>2.3 Work Programme</li> <li>2.4 Project Organization and Management Structure</li> <li>2.5 Contact Details of Key Personnel</li> <li>WORK PROGRESS IN THIS REPORTING PERIOD</li> </ul>                                                                                                                              | 1<br>1<br>2<br>2<br>2<br>2          |
| 4.0        | AIR QUALITY MONITORING                                                                                                                                                                                                                                                                                                                                                                       |                                     |
|            | <ul> <li>4.1 Monitorina Requirement</li> <li>4.2 Monitorina Equipment</li> <li>4.3 Monitorina Parameters. Frequency and Duration</li> <li>4.4 Monitorina Locations and Schedule</li> <li>4.5 Monitorina Methodoloav</li> <li>4.6 Action and Limit levels</li> <li>4.7 Event-Action Plans</li> <li>4.8 Results and Observation</li> </ul>                                                     | 2<br>2<br>3<br>3-4<br>4             |
| 5.0        | NOISE MONITORING                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| 6.0        | <ul> <li>5.1 Monitoring Requirements</li> <li>5.2 Monitoring Equipment</li> <li>5.3 Monitoring Parameters. Duration and Frequency</li> <li>5.4 Monitoring Locations</li> <li>5.5 Monitoring Procedures and Calibration Details</li> <li>5.6 Action and Limit levels</li> <li>5.7 Event-Action Plans</li> <li>5.8 Results and Observation</li> <li>MARINE WATER QUALITY MONITORING</li> </ul> | 4<br>4-5<br>5<br>5<br>5<br>5<br>5-6 |
|            | <ul> <li>6.1 Monitoring Requirements</li> <li>6.2 Monitoring Locations</li> <li>6.3 Monitoring Parameters</li> <li>6.4 Monitoring Frequency</li> <li>6.5 Monitoring Methodology and Equipment Used</li> <li>6.6 Action and Limit Level</li> <li>6.7 Event and Action Plan</li> <li>6.8 Monitoring Duration in this reporting period</li> <li>6.9 Marine Water Monitoring Results</li> </ul>  | 6<br>6-7<br>7 - 8<br>9<br>9<br>9    |
| 7.0        | <b>ENVIRONMENTAL AUDIT</b><br>7.1 Weekly ET Site Inspections and EPD's Site Inspection<br>7.2 Review of Environmental Monitoring Procedures<br>7.3 Assessment of Environmental Monitoring Results<br>7.4 Advice on the Solid and Liquid Waste Management Status                                                                                                                              | 10-11<br>11<br>11<br>11 -12         |
| 8.0<br>9.0 | STATUS OF ENVIRONMENTAL LICENSING AND PERMITTING<br>ENVIRONMENATL NON-CONFORMANCE                                                                                                                                                                                                                                                                                                            | 12-13                               |
|            | <ul> <li>9.1 Summary of air quality, noise and marine water quality</li> <li>9.2 Summary of Environmental Complaints</li> <li>9.3 Summary of Notification of Summons and Prosecution</li> </ul>                                                                                                                                                                                              | 13<br>13<br>13                      |
| 10.0       | IMPLEMENTATION STATUS<br>10.1 Implementation Status of Environmental Mitigation Measures<br>10.2 Implementation Status of Event and Action Plan<br>10.3 Implementation Status of Environmental Complaint, Notifications of Summons and<br>Successful Prosecutions Handling                                                                                                                   | 13<br>13<br>13                      |
| 11.0       | CONCLUSION AND RECOMMENTATIONS                                                                                                                                                                                                                                                                                                                                                               | 13-14                               |
| 12.0       | FUTURE KEY ISSUE<br>12.1 Work Programme for the Coming Month<br>12.2 Kev Issues for the Comina Month<br>12.3 Monitorina Schedule for the Comina Month                                                                                                                                                                                                                                        | 15<br>15-16<br>16                   |



#### APPENDIX

- A Organization Chart and Lines of Communication
- B1 Calibration Certificates for Impact Air Quality Monitoring Equipment
- B2 Impact Air Quality Monitoring Results
- B3 Graphical Plots of Impact Air Quality Monitoring Data
- C1 Calibration Certificates for Impact Noise Monitoring Equipment
- C2 Impact Noise Monitoring Results
- C3 Graphical Plots of Impact Noise Monitoring Data
- D1 Calibration Certificates for Impact Marine Water Quality Monitoring Equipment
- D2 Impact Marine Water Quality Monitoring Results
- D3 Graphical Plots of Impact Marine Water Quality Monitoring Data
- D4 Impact Marine Water Quality Monitoring Results (3RS project)
- D5 Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS project)
- E Weather Condition
- F Event-Action Plans
- G Work Programme
- H Weekly ET's Site Inspection Record
- I Implementation Schedule of Mitigation Measures
- J Site General Layout Plan
- K Monitoring Schedule for the Coming Month
- L Complaint Log

#### FIGURES

- Figure 1 Locations of Water Quality Monitoring Stations Tseung Kwan O Area 137 Fill Bank
- Figure 2 Location of Noise Monitoring Station Tseung Kwan O Area 137 Fill Bank
- Figure 3 Locations of Air Quality Monitoring Stations Tseung Kwan O Area 137 Fill Bank
- Figure 4 Locations of Water Quality Monitoring Stations (3RS project) Tseung Kwan O Area 137 Fill

#### TABLES

- 2.1 Contact Details of Key Personnel
- 4.1 Air Quality Monitoring Equipment
- 4.2 Monitoring parameters, duration and frequency of air quality monitoring
- 4.3 Air Quality Monitoring Locations
- 4.4 Action and Limit levels for 24-hr TSP and 1-hr TSP
- 5.1 Noise Monitoring Equipment
- 5.2 Duration, Frequency and Parameters of noise monitoring
- 5.3 Noise Monitoring Location
- 5.4 Action and Limit levels for noise monitoring
- 6.1 Locations of Marine Water Monitoring Stations
- 6.2 Locations of Additional Marine Water Monitoring Stations (3RS project)
- 6.3 Marine Water Quality Monitoring Parameters
- 6.4 Monitoring frequency of the marine water
- 6.5 Summary of testing procedures
- 6.6 Details of Marine Water Quality Monitoring Equipment (In-site measurement)
- 6.7 Water Quality Action and Limit Levels
- 6.8 Water Quality Action and Limit Levels (3RS project)
- 6.9 Time Schedule of Impact Marine Water Quality Monitoring
- 6.10 Summary of Impact Marine Water Quality Exceedances
- 6.11 Summary of Impact Marine Water Quality Exceedances (3RS project)
- 7.1 Key Findings of Weekly ET Site Audits in this reporting period
- 7.2 Actual amounts of Waste generated in this reporting period
- 8.1 Summary of environmental licensing and permit status
- 10.1 Summary of Environmental Complaints and Prosecutions

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

#### EXECUTIVE SUMMARY

This monthly Environmental Monitoring and Audit (EM&A) report No.19 was prepared by ETS-Testconsult Ltd (ET) for "Contract No: CV/2015/07 – Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project).

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at TKO Area 137 in November 2018.

#### Site Activities

As informed by the Contractor, the site activities in this reporting period were as below:

- 1. Operation of the TKO137 Fill Bank.
- 2. Delivery of public fill to Taishan;
- 3. Operation of dewatering plant and expanded dewatering plant
- 4. Operation of bentonite pool.
- 5. Concrete block breaking work.
- 6. Crushing plant operation.
- 7. Carrying out defects of Removal of public fill at Portion A6
- 8. Provision of photoelectric height limits warning system at the existing height restriction gantries;
- 9. Re-construction of sampling platforms at TKOFB;
- 10. Break up of concrete pavement at Portion A5c at TKOFB;
- 11. Replacement of Y40 rebar with Y50 rebar at the existing wheel washing bay at TKOFB;
- 12. Enhancement Rainwater Collection and Recycling Facility at TKOFB
- 13. Construction of concrete pavement at expanded dewatering plant
- 14. Repair works for damaged at TKOFB caused by Super Typhoon
- 15. Installation of LED Display Board;
- 16. Installation of Temporary Accommodation to CEDD Site Staff at TKOFB;
- 17. Carry out preliminary sorting on Public Fill for 3RS project

#### Environmental Monitoring Progress

The summary of the monitoring activities in this monitoring period is listed below:

- Noise Monitoring (Day-time): 1 Occasion at 1 designated location
- 24-hour TSP Monitoring: 5 Occasions at 2 designated locations
- 1-hour TSP Monitoring: 15 Occasions at 2 designated locations
- Marine Water Quality Monitoring:13 Occasions at 2 designated locations
- Weekly-site inspection: 4 Occasions

#### Noise Monitoring

No exceedance of Action and Limit levels for noise monitoring was recorded in the reporting period.

#### Air Monitoring

No exceedance of Action and Limit levels was recorded for 1-hr and 24-hr TSP monitoring in the reporting period.

#### Marine Water Quality Monitoring

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded in this reporting period.

#### Weekly Site Inspections

In general, performance on environmental mitigation measures implemented was found to be satisfactory in this reporting period. The major findings observed during site inspections are presented in the Section 7.0.

#### Environmental Complaints, Notification of summons and successful prosecutions

No complaint, notification of summons or successful prosecutions with respect to environmental issues was received in this reporting period.

#### Future Key Issues

Based on site inspections and forecast of engineering works in coming month, key issues to be considered are as follows:

- Noise and air quality impact due to site works;
- Maintain wheel washing facilities properly;

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD. ENA88729 Monthly EM&A Report No.19

- Maintain all drainage and desilting facilities properly;
- Use and maintain silt curtain properly;
- Clean up the fill material on concrete pavement along the BHA frequently;
- Sufficient drip trays for all oil drums / chemical containers;
- Implement all necessary preventive measures to avoid oil leakage. In the event an oil leakage happens, the Contractor should properly remove the leaked oil and handle the contaminated soil and all materials using for this cleaning works as chemical waste;
- Maintain good site practice and waste management to minimize environmental impacts at the site; and
- Follow-up improvements on waste management issues.

#### 1.0 INTRODUCTION

*China Harbour – Zhen Hua Joint Ve*nture (CHZH-JV) appointed Environmental Team (ET) of ETS-Testconsult Limited (ETL) to undertake the Environmental Monitoring and Audit (EM&A) for the "Contract No: CV/2015/07 –Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project).

In accordance with the Environmental Permit (No.: EP-134/2002/L) (the EP), an EM&A programme should be implemented in accordance with the procedures and requirements in the EM&A Manual of the approved EIA report (Registration No. AEIAR-060/2002). The EM&A programme for this study as stated in Section 2.3.1 of the EM&A Manual covers the following environmental aspects during the establishment, operation and removal phases of the Fill Bank at Tseung Kwan O Area 137:

- Fugitive Dust;
- Noise generation from onsite activities;
- Water Quality; and
- Landscape and Visual.

The EM&A programme requires environmental monitoring for air quality, noise and water quality and environmental site inspections for air quality, noise, water quality, landscape and visual, and waste management. The EM&A requirements for each parameter described in the following sections include:

- All monitoring parameters;
- Monitoring schedules for the reporting period and forthcoming months;
- Action and Limit levels for all environmental parameters;
- Event/Action Plans;
- Environmental mitigation measures, as recommended in the Project EIA study final report; and
- Environmental requirements in contract documents.

Baseline monitoring was completed in August and October 2002 by MateriaLab. Action and Limit Levels were established for air and water quality parameters based on the baseline monitoring results.

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at Tseung Kwan O Area 137 in November 2018.

#### 2.0 PROJECT INFORMATION

#### 2.1 Scope of the Project

The scale and scope of the Project as stated in the EP include:

- Site clearance;
- Construction of a temporary storm water system;
- Stockpiling of 6 million m<sup>3</sup> of public fill;
- Setting up two barging points: one at the TKO Basin and one at the Construction and Demolition Material Sorting Facility (C&DMSF) for transporting the stockpiled public fill by barges;
- Setting up a temporary barging point at the existing Explosive Off-loading Barging Point located in the south-eastern part of Area 137 for the month of May 2004 to December 2004 for transporting the stockpiled public fill by barge;
- Construction and operation of a Construction and Demolition Material Sorting Facility (C&DMSF);
- Setting up a Construction and Demolition Material Crushing Facility at the TKO Basin; and
- Remove the temporary fill bank.

#### 2.2 Site Description

TKO Area 137 Fill Bank is located at the southern end of Wan Po Road. In the vicinity of the site are other industrial uses such as SENT landfill, TKO Industrial Estate, etc. Both Island Resort and Fullview Garden are also situated at more than 1.8km from the site. Other existing ASRs and NSRs, including resident developments and schools, are located at a further distance away from TKO Area 137.



#### 2.3 Work Programme

Details of work programme are shown in Appendix G.

#### 2.4 **Project Organization and Management Structure**

The project organization chart is shown in Appendix A.

#### 2.5 Contact Details of Key Personnel

The key personnel contact names and telephone numbers are shown in Table 2.1. Table 2.1 Contact Details of Key Personnel

| Organization          | Name of Key Staff                                           | Project Role                 | Tel. No.  | Fax No.   |
|-----------------------|-------------------------------------------------------------|------------------------------|-----------|-----------|
| CEDD                  | Lisa Yung, Norelle Li<br>May Lau, James Sze,<br>Phoebe Tang | Engineer's<br>Representative | 2762 5555 | 2714 0113 |
| IEC (Ramboll)         | F C Tsang                                                   | IEC                          | 3465 2888 | 3465 2899 |
| Contractor (CHZH-JV)) | Zhou Chang Ying                                             | Project Director             | 96266299  | 22474108  |
| ET (ETL)              | C. L. Lau                                                   | ET Leader                    | 2946 7791 | 2695 3944 |

#### 3.0 WORK PROGRESS IN THIS REPORTING PERIOD

As informed by the Contractor, the activities in the reporting period include:

- 1. Operation of the TKO137 Fill Bank.
- 2. Delivery of public fill to Taishan;
- 3. Operation of dewatering plant and expanded dewatering plant
- 4. Operation of bentonite pool.
- 5. Concrete block breaking work.
- 6. Crushing plant operation.
- 7. Carrying out defects of Removal of public fill at Portion A6
- 8. Provision of photoelectric height limits warning system at the existing height restriction gantries;
- 9. Re-construction of sampling platforms at TKOFB;
- 10. Break up of concrete pavement at Portion A5c at TKOFB;
- 11. Replacement of Y40 rebar with Y50 rebar at the existing wheel washing bay at TKOFB;
- 12. Enhancement Rainwater Collection and Recycling Facility at TKOFB
- 13. Construction of concrete pavement at expanded dewatering plant
- 14. Repair works for damaged at TKOFB caused by Super Typhoon
- 15.Installation of LED Display Board;
- 16. Installation of Temporary Accommodation to CEDD Site Staff at TKOFB;
- 17. Carry out preliminary sorting on Public Fill for 3RS project

#### 4.0 AIR QUALITY MONITORING

#### 4.1 Monitoring Requirement

TSP levels were monitored in the reporting period in accordance with the EM&A Manual. Table 4.4 shows the Action and Limit Levels for the environmental monitoring works.

#### 4.2 Monitoring Equipment

Both 1-hour and 24-hour TSP air quality monitoring was performed using a GMWS2310 High Volume Air Sampler (HVS) located at each of the designated monitoring station. Table 4.1 summarizes the equipment used in the air quality monitoring programme. A copy of the calibration certificates for the HVS and calibrator are attached in Appendix B1.

#### Table 4.1 Air Quality Monitoring Equipment

| Equipment  | Model and Make   |
|------------|------------------|
| HVS        | Greasby GMWS2310 |
| Calibrator | Tisch TE-5025A   |



#### 4.3 Monitoring Parameters, Frequency and Duration

Table 4.2 summarizes the monitoring parameters, monitoring duration and frequencies of air quality monitoring.

| Table 4.2 | Monitoring parameters, | duration, | frequency | of air o | quality monitoring | 3 |
|-----------|------------------------|-----------|-----------|----------|--------------------|---|
|-----------|------------------------|-----------|-----------|----------|--------------------|---|

| Parameter | Duration                                 | Frequency           |
|-----------|------------------------------------------|---------------------|
| 24-hr TSP | 24 hr                                    | Once every six days |
| 1-hr TSP  | 2 1 hr Three times per day every six day |                     |

#### 4.4 Monitoring Locations

Table 4.3 tabulates the air quality monitoring locations of this project.

| Table 4.5 All quality monitoring locations | Table 4.3 | Air quality monitoring locations |
|--------------------------------------------|-----------|----------------------------------|
|--------------------------------------------|-----------|----------------------------------|

| Monitoring station | Location    |
|--------------------|-------------|
| TKO-A1             | Site Egress |
| TKO-A2a            | CREO        |

#### 4.5 Monitoring Methodology

#### Both 1-hr and 24-hr air quality monitoring (High Volume Sampler)

#### Instrumentation

High volume sampler, as HVS, (Greasby GMWS2310) complete with appropriate sampling inlets were employed for both 1-hour and 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

#### Installation

The installation of HVS refers to the requirement stated in EM&A Manual.

#### Operation/Analytical Procedures

Operating/analytical procedures for the operation of HVS are as below:

- Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 0.6m<sup>3</sup>/min and 1.7m<sup>3</sup>/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. The flow rate was indicated on the flow rate chart.
- For TSP sampling, fiberglass filters (Whatman G653) were used.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated 5 minutes to establish thermal equilibrium before placing any filter media at designated air monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an air-tight seal on the outer edges of the filter. Then the filter holder frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The programmable timer will be set for a sampling month of 1 hour or 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number.).
- After sampling, the filter was transferred from the filter holder of the HVS to a sealed plastic bag and sent to the laboratory for weighting. The elapsed time was also recoded.
- Before weighting, all filters were equilibrated in a desiccator for 24 hour with the temperature of 25°C <u>+</u> 3°C and the relative humidity (RH) <50% <u>+</u>5%.
- All measurement procedures in Section 2.3 of the EM&A Manual were followed during the reporting period.



#### Maintenance & Calibration

- HVS and their accessories should be maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVS should be calibrated at bi-monthly intervals.

#### Wind Data Monitoring

Wind data (wind speed and wind direction) were directly extracted from Tseung Kwan O Station of Hong Kong Observatory. All wind data during this reporting period are shown in Appendix E.

4.6

#### Action and Limit Levels

Table 4.4 shows the Action and Limit levels for 24-hr TSP and 1-hr TSP monitoring.

Table 4.4 Action and Limit Levels for 24-hr TSP and 1-hr TSP

| Monitoring Location | 24-hr TSP (μg/m³) |             | 1-hr TSP ( $\mu$ g/m <sup>3</sup> ) |             |
|---------------------|-------------------|-------------|-------------------------------------|-------------|
| Monitoning Location | Action Level      | Limit Level | Action Level                        | Limit Level |
| TKO-A1              | 210               | 260         | 376                                 | 500         |
| TKO-A2a *           | 210               | 260         | 376                                 | 500         |

Remark (\*): Since dust monitoring stations TKO-A2 and TKO-A2 are located close to the major dust emission sources and also close to the same sensitive receptor and no significant difference between them on the prevailing meteorological conditions, the baseline data from TKO-A2 (August and September 2002 by MateriaLab) can also be valid in the case of TKO-A2a.

#### 4.7 Event-Action Plans

Please refer to Appendix F for details.

#### 4.8 Results and Observation

#### 4.8.1 1-hour and 24-hour TSP Monitoring results

Monitoring data of both 1-hour and 24-hour TSP monitoring carried out in this reporting period are summarized in Appendix B2. Graphical presentation of 1-hour and 24-hour TSP monitoring results for the reporting period is shown in Appendix B3. Wind data included wind speed and wind direction was extracted from Tseung Kwan O Station of Hong Kong Observatory during this reporting period and is presented in Appendix E.

No exceedance of Action and Limit Level of 1-hr TSP and 24-hour TSP monitoring results was recorded during the reporting period.

#### 4.8.2 Observation

Generally, the Contractor implemented sufficient dust mitigation measures, including operation of the mist spraying systems at the CEDD Combined Reception Office and the site egress area, wheel washing facilities, road dampening by water bowsers and automatic water sprinklers on the main haul roads. Other dust sources near TKO Area 137 also included operation of the temporary CWSF and dumping activities at the SENT Landfill.

#### 5.0 Noise Monitoring

#### 5.1 Monitoring Requirements

Noise monitoring was conducted at 1 monitoring station as specified in the approved EM&A Monitoring Proposal for good site practice. The equipment, parameter, frequency, duration, methodology, calibration details, results and observations of the noise monitoring for the reporting period are presented in this section.

#### 5.2 Monitoring Equipment

An Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level reading including equivalent continuous sound pressure level ( $L_{eq}$ ) and percentile sound pressure level (Lx). It complies with International Electro



Technical Commission Publications IEC 61672 Type 1 specification, and speed in m/s was used to monitor the wind speed.

Table 5.1 summarizes noise monitoring equipment model being used. A copy of the calibration certificate for noise meter and calibrator are attached in Appendix C1

| Table 5.1 Noise | e Monitoring | Equipment |
|-----------------|--------------|-----------|
|-----------------|--------------|-----------|

| Equipment              | Model                     |  |
|------------------------|---------------------------|--|
| Sound Level Meter      | Rion NL-31 / Rion NL-52   |  |
| Sound Level Calibrator | Rion NC-73 / Castle GA607 |  |

#### 5.3 Monitoring Parameters, Duration and Frequency

Duration, frequencies and parameters of noise measurement are presented in Table 5.2.

| Table 5.2 | Duration  | Frequencies | and Parameters | of Noise Monitoring |
|-----------|-----------|-------------|----------------|---------------------|
|           | Duration, | FIEquencies | and Farameters |                     |

| Time                                       | Duration/min | Parameters                                          | Frequency      |
|--------------------------------------------|--------------|-----------------------------------------------------|----------------|
| Day-time: 0700-1900 hrs on normal week day | 30           | L <sub>eq</sub> , L <sub>10</sub> , L <sub>90</sub> | Once per month |

#### 5.4 Monitoring Locations

One Noise monitoring was conducted at the noise monitoring location, TKO-N1 as shown in Figure 2 during the reporting period. Table 5.3 describes the location of the monitoring station.

#### Table 5.3Noise Monitoring Location

| Monitoring station | Location                              | Type of Measurement |
|--------------------|---------------------------------------|---------------------|
| TKO-N1             | Outside site Egress along Wan Po Road | Free Field          |

#### 5.5 Monitoring Procedures and Calibration Details

**Operation/Analysis Procedures** 

- The Sound Level Meter was set on a tripod at a height of 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
  - Frequency weighting: A
  - Time weighting : Fast
  - Time measurement : 30 mins
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000HZ. If the difference in the calibration level before and after measurement was more than 1dB(A), the measurement would be considered invalid and repeat measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with a portable wind meter.
- During the monitoring period, the Leq, L10 and L90 were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Correction factor of +3dB(A) should be made to the free Field measurements.
- Noise monitoring would be cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind gusts exceeding 10m/s.

#### Maintenance and Calibration

- The microphone head of the sound level meter and calibrator are cleaned with soft cloth in quarterly intervals.
- The meter is sent to the supplier or HOKLAS laboratory to check and calibrated in yearly intervals.

#### 5.6 Action and Limit Levels

The Action and Limit levels for noise levels derived as illustrated in Table 5.4.

|  | Table 5.4 | Action and | Limit Levels | for noise | monitoring |
|--|-----------|------------|--------------|-----------|------------|
|--|-----------|------------|--------------|-----------|------------|

| Time Period                          | Action                                       | Limit    |
|--------------------------------------|----------------------------------------------|----------|
| 0700-1900 hrs<br>on normal week days | When one documented<br>complaint is received | 75 dB(A) |

#### 5.7 Event-Action Plans

Please refer to the Appendix F for details.

#### 5.8 Results and Observation

#### 5.8.1 Results

Only Day-time noise monitoring was carried out at monitoring station TKO-N1 in this reporting period. The detail of the noise monitoring is provided in Appendix C2. Graphical presentation of the monitoring result for the reporting period is shown in Appendix C3.

Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

#### 5.8.2 Observation

The major noise source during the monitoring event was the dump truck traffic.

#### 6.0 MARINE WATER QUALITY MONITORING

#### 6.1 Monitoring Requirements

In accordance with the EM&A Manual, impact marine water quality monitoring was conducted three days per week. Measurements were taken at both mid-flood and mid-ebb tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed) at Control Station, C1 and Monitoring Station, M4.

#### 6.2 Monitoring Locations

For the Reclamation Project, there were 4 Designated Monitoring Stations and 2 Designated Control Stations specified in the EM&A Manual. Upon the completion of the monitoring programme under Stage 2 reclamation works, the ET started monitoring events at the impact station M4 and the control station C1 from 18 May 2004 onwards.

Figure 1 shows the location of the marine water quality monitoring stations. Table 6.1 describes the locations of the monitoring stations in the reporting period.

| Station Description                                     | Code   | HK Metric Grid E | HK Metric Grid N |
|---------------------------------------------------------|--------|------------------|------------------|
| Control Station (Ebb tide)                              | TKO-C1 | 844 740.208      | 815 371.502      |
| Monitoring Station, Tung Lung Chau<br>Fish Culture Zone | TKO-M4 | 847 741.029      | 812 977.878      |

Table 6.1Locations of Marine Water Monitoring Stations

According to Environmental Permit (Permit no.:EP-134/2002/L) Condition 3.2, water quality survey/monitoring shall be conducted at control station C1a, monitoring stations M4a and M5 for the period from two weeks before commencement of operation of the additional 5 barging points to 4 weeks after cessation of their operation. The water quality survey/monitoring frequency and parameters at stations C1a, M4a and M5 shall be same as the requirements set out in the EM&A Manual and the monitoring results shall be incorporated in the monthly EM&A reports.



Due to "Hong Kong International Airport, Three Runway System Project Contract 3206 - Main Reclamation Works "(3RS project) operation of the additional barging point at TKO Area 137, the ET started monitoring events at the impact station M4a, M5 and the control station C1a from 14 May 2018 onwards.

Figure 4 shows the location of water control station C1a and water monitoring station M4a and M5.

Table 6.2 describes the locations of the additional marine water monitoring stations

| Lable 6.2. Locations of Additional Marine Water Menitoring Stations (2 | 2DS project) |
|------------------------------------------------------------------------|--------------|
| Table 6.2 Locations of Additional Marine Water Monitoring Stations (3  |              |

| Station Description        | Code | HK Metric Grid E | HK Metric Grid N |
|----------------------------|------|------------------|------------------|
| Control Station (Ebb tide) | C1a  | 845647           | 814146           |
|                            | M4a  | 845922           | 813973           |
| Impact Monitoring Station  | M5   | 847005           | 813678           |

#### 6.3 **Monitoring Parameters**

Monitoring of the marine water quality parameters are listed in Table 6.3.

| Table 6.3 | Marine Water Quality Monitoring Parame | ters                    |
|-----------|----------------------------------------|-------------------------|
|           | In-situ measurement                    | Laboratory analysis     |
|           | Depth (m)                              | Suspended solids (mg/L) |
|           | Temperature (℃)                        |                         |
| Disso     | olved Oxygen (mg/L and % saturation)   |                         |
|           | Turbidity (NTU)                        |                         |
|           | Salinity (ppt)                         |                         |

#### 6.4 **Monitoring Frequency**

The monitoring frequency of the marine water monitoring is summarized in Table 6.4.

Table 6.4 Monitoring frequency of the marine water

| ······································ |              |                        |                     |  |
|----------------------------------------|--------------|------------------------|---------------------|--|
| Parameter                              | Frequency    | No. of Location        | No. of Depths       |  |
| Temperature                            |              | 2                      |                     |  |
| Salinity                               |              | (TKO-C1 and TKO-       | 3                   |  |
| DO                                     | 3 days/week, | M4)                    | (Surface, mid-depth |  |
| Turbidity                              | 2 tides/day  | and                    | & bottom)           |  |
| Suspended solids                       |              | 3<br>(C1a, M4a and M5) |                     |  |

#### 6.5 Monitoring Methodology and Equipment Used

#### For Location of the monitoring stations

#### Global Positing System (GPS)

A hand-held digital GPS was used to identify the designated monitoring stations prior to water sampling.

#### For Water Depth measurement

#### Echo Sounder

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

#### For In-situ Water Quality Measurement



All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently recalibrated at 3 monthly intervals or sometimes longer throughout all stages of the water quality monitoring.

#### Dissolved Oxygen, Salinity and Temperature Measuring Equipment

A portable, weatherproof dissolved oxygen & salinity measuring instrument, which complete with cable, sensor and DC power source (e.g. YSI 85 or equivalent) was used for measuring:

a dissolved oxygen level in the range of 0-20 mg/L and 0-200 % saturation;

- a salinity in range 0-40 ppt; and
- a temperature of 0-45 degree Celsius

A membrane electrode with automatic temperature compensation complete with a cable was installed. **Turbidity Measurement Instrument** 

A portable and weatherproof turbidity meter (HACH model 2100Q) was used during impact monitoring. It has a photoelectric sensor capable of measuring turbidity between 0-1000 NTU. Response of the sensor was checked with certified standard Turbidity solutions before the start of measurement.

#### For Water Sampling and Sample Analysis

In-situ monitoring was carried out at three depths: 1 meter below water surface, at mid-depth and 1 meter above the seabed. If the water depth is less than 6 m, the mid-depth station shall be omitted and if the water depth is below 3 m, only the mid depth station shall be monitored.

#### Water Sampler

A water sampler comprising a transparent PVC cylinder, with a capacity of not less than 2 liters, was lowered into the water body at the predetermined depth. The both opening ends of the sampler were then closed accordingly by dead weight and water samples were collected.

#### Water Container

The sample container, made by high-density polythene, was rinsed with a portion of the water sample. The water sample was then transferred to the container, labelled with a unique sample ID and sealed with a screw cap. The water samples were stored in a cool box maintained at 4°C. The water samples were then delivered to a local HOKLAS-accredited laboratory (Environmental Laboratory, ETS-Testconsult Ltd, HOKLAS Registration No. 022) on the same day for analysis.

The summary of testing method of testing parameter as recommended by EIA or required by EPD, with the QA/QC results in accordance with the requirement of HOKLAS or international accredited scheme is shown in Table 6.5.

| Table 6.5 | Summary of testing procedures |
|-----------|-------------------------------|
|-----------|-------------------------------|

| Laboratory Analysis    | Testing Procedure                                       | Detection Limit |
|------------------------|---------------------------------------------------------|-----------------|
| Total suspended solids | In house method based on APHA 19 <sup>th</sup> ed 2540D | 1.0 mg/L        |

#### In-situ measurement

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before the start of measurement.

At each measurement/sampling depth, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. For turbidity measurement, the sample was collected by using sampler and then transferred to the cell. The reading of turbidity of the sample was directly recorded from the Turbidimeter (HACH 2100Q) after inserting the cell to the Turbidimeter. For DO, DOS and Salinity, duplicate measurements were performed by dropping the calibrated probes of the corresponding monitoring equipments to the designated depths of the water column and taking readings after stabilized. The duplicate measurements were averaged if the difference was not greater than 25%. If the difference is greater than 25%, repeat measurement will be required.



Table 6.6 shows the equipment used for in-situ monitoring of water quality. The calibration certificates are attached in Appendix D1.

| Table 6.6                                                        | Table 6.6         Details of Marine Water Quality Monitoring Equipment (In-site measurement) |                        |          |                |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------|----------|----------------|
| Parameter                                                        | Model                                                                                        | Date of<br>Calibration | Due Date | Equipment No.  |
| Coordinate of<br>Monitoring<br>stations                          | Garmin eTrex 10                                                                              |                        |          | ET/EW/005/09   |
| Dissolved<br>Oxygen<br>(Saturation),<br>Temperature,<br>Salinity | YSI Dissolved Oxygen,<br>Salinity & Temperature<br>Meter, YSI 2030                           | 02/09/18               | 01/12/18 | ET/EW/008/006* |
| Turbidity                                                        | HACH Model 2100Q Turbid<br>Meter                                                             | 25/10/18               | 24/01/19 | ET/0505/021*   |
| Water Depth                                                      | Speedtech SM-5                                                                               |                        |          | ET/EW/002/08   |

Remark:(\*) indicates the instrument should be calibrated on use.

#### 6.6 Action and Limit Level

The water quality criteria, namely Action and Limit (A/L) levels are presented in the table below.

|               | Water Quality Action and Limit Levels    |                                          |
|---------------|------------------------------------------|------------------------------------------|
| Parameter     | Action Level                             | Limit Level                              |
| DO (mg/L)     | Surface & Middle                         | Surface & Middle                         |
|               | <5.45 mg/L (5%-ile of baseline data)     | <5.10 mg/L (1%-ile of baseline data)     |
|               | <u>Bottom</u>                            | <u>Bottom</u>                            |
|               | <4.72 mg/L (5%-ile of baseline data)     | <2.00 mg/L                               |
| SS (mg/L)     | >6.74 mg/L (95%-ile of baseline data) or | >7.67 mg/L (99%-ile of baseline data) or |
| (Depth-       | >120% of the upstream control station's  | >130% of the upstream control station's  |
| averaged)     | SS at the same tide on the same day      | SS at the same tide on the same day      |
| Turbidity     | >4.28 NTU (95%-ile of baseline data) or  | >4.58 NTU (99%-ile of baseline data) or  |
| (NTU) (Depth- | >120% of the upstream control station's  | >130% of the upstream control station's  |
| averaged)     | turbidity at the same tide on the same   | turbidity at the same tide on the same   |
|               | day                                      | day                                      |
| <u> </u>      | ·····/                                   |                                          |

#### Table 6.7Water Quality Action and Limit Levels

The water quality Action and Limit Levels (3RS project) are presented in the table below.

#### Table 6.8Water Quality Action and Limit Levels (3RS project)

| Parameter     | Action Level                             | Limit Level                                  |
|---------------|------------------------------------------|----------------------------------------------|
| DO (mg/L)     | Surface & Middle                         | Surface & Middle                             |
|               | <5.5 mg/L                                | <4.00 mg/L (1%-ile of baseline data)         |
|               | <u>Bottom</u>                            | <u>Bottom</u>                                |
|               | <5.2 mg/L                                | <2.00 mg/L                                   |
| SS (mg/L)     | >4.9 mg/L or >120% of the upstream       | >5.2 mg/L or >130% of the upstream           |
| (Depth-       | control station's SS at the same tide on | control station's SS at the same tide on     |
| averaged)     | the same day                             | the same day                                 |
| Turbidity     | >3.9NTU or >120% of the upstream         | >4.2 NTU or >130% of the upstream            |
| (NTU) (Depth- | control station's turbidity at the same  | control station's turbidity at the same tide |
| averaged)     | tide on the same day                     | on the same day                              |

#### 6.7 Event and Action Plan

Please refer to the Appendix F for details.



#### 6.8 Monitoring Duration in this reporting period

Below is the time schedule for the marine water quality monitoring events that were conducted in this reporting period:

| November 2018 |         |         |           |          |         |          |  |  |  |  |
|---------------|---------|---------|-----------|----------|---------|----------|--|--|--|--|
| Sunday        | Monday  | Tuesday | Wednesday | Thursday | Friday  | Saturday |  |  |  |  |
|               |         |         |           | 1/11     | 2       | 3        |  |  |  |  |
| 4             | 5       | 6       | 7         | 8        | 9       | 10       |  |  |  |  |
| 11            | 12      | 13      | 14 ⊚▼     | 15       | 16      | 17       |  |  |  |  |
| 18            | 19<br>▼ | 20      | 21        | 22       | 23      | 24       |  |  |  |  |
| 25            | 26      | 27      | 28        | 29       | 30<br>▼ |          |  |  |  |  |

 Table 6.9
 Time Schedule of Impact Marine Water Quality Monitoring

Remark: (▼) = Marine water quality monitoring carried out by ET. (ⓒ) = Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

The daily marine water quality monitoring duration are detailed in Appendix D2.

#### 6.9 Marine Water Quality Monitoring Results

The impact water quality measurement results are detailed in Appendix D2. Appendix D3 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances is shown in Table 6.10.

|  | Station | Exceedance | DO    |     | Turbidity |     | S     | S   | Total |     |
|--|---------|------------|-------|-----|-----------|-----|-------|-----|-------|-----|
|  | Station | Level      | Flood | Ebb | Flood     | Ebb | Flood | Ebb | Flood | Ebb |
|  | TKO-C1  | Action     | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
|  |         | Limit      | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
|  |         | Action     | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
|  | TKO-M4  | Limit      | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |

Table 6.10 Summary of Impact Marine Water Quality Exceedances

The impact water quality measurement results (3RS project) are detailed in Appendix D4. Appendix D5 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances (3RS project) is shown in Table 6.11.

 Table 6.11
 Summary of Impact Marine Water Quality Exceedances (3RS project)

| Station | Exceedance | DO    |     | Turbidity |     | S     | S   | Total |     |
|---------|------------|-------|-----|-----------|-----|-------|-----|-------|-----|
| Station | Level      | Flood | Ebb | Flood     | Ebb | Flood | Ebb | Flood | Ebb |
| C10     | Action     | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
| C1a     | Limit      | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
| M4a     | Action     | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
| IVH4    | Limit      | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
| М5      | Action     | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |
|         | Limit      | 0     | 0   | 0         | 0   | 0     | 0   | 0     | 0   |

According to the summary of marine water monitoring results, no exceedance of Action and limit levels was recorded for this reporting period.

#### 7.0 ENVIRONMENTAL AUDIT

b

#### 7.1 Weekly ET Site Inspections and EPD's Site Inspection

#### 7.1.1 Weekly ET Site Inspections

Weekly ET site inspections were carried out by ET to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In this reporting period, four weekly site inspections were conducted (07, 14, 20 and 30 November 2018). Table 7.1 presents the key findings of weekly ET site inspection in this reporting period.

| Table 7.1 | Key Findings of Weekly ET Site Audits in this reporting period |
|-----------|----------------------------------------------------------------|
|           |                                                                |

| Date                   | Key Findings             | Action(s) Taken<br>recommended by ET                                                | Action(s) Taken by the<br>Contractor during the ET<br>weekly site audit | Rectification<br>Status by ET |  |  |  |  |  |
|------------------------|--------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|
| 07<br>November<br>2018 | No defective work or ob  | No defective work or observation was recorded during the weekly ET site inspection  |                                                                         |                               |  |  |  |  |  |
| 14<br>November<br>2018 | No defective work or obs | No defective work or observation was recorded during the weekly ET site inspection. |                                                                         |                               |  |  |  |  |  |
| 20<br>November<br>2018 | No defective work or obs | No defective work or observation was recorded during the weekly ET site inspection. |                                                                         |                               |  |  |  |  |  |
| 30<br>November<br>2018 | No defective work or obs | ervation was recorded du                                                            | uring the weekly ET site in                                             | nspection.                    |  |  |  |  |  |

#### 7.1.2 EPD's Site Inspection

No EPD's site inspection was carried out at TKO137 Fill Blank in November 2018.

#### 7.2 Review of Environmental Monitoring Procedures

The monitoring works conducted by the Environmental Team were inspected regularly. The observations for the monitoring works were recorded and summarized as follows:

#### Air Quality Monitoring

- The monitoring team recorded the observations around the monitoring stations within and outside of the site.
- The monitoring team recorded the temperature, air pressure and general weather condition on the monitoring day.

#### Noise Monitoring

- The monitoring team recorded the observations around the monitoring station, which might affect the results.
- Major noise sources were identified and recorded.

#### Water Quality Monitoring

• The monitoring team recorded the observations around the monitoring stations, which might affect the results.

#### 7.3 Assessment of Environmental Monitoring Results

All monitoring results were audited against the Action and Limit levels and any exceedance would be validated.

No exceedance was recorded in water quality, air quality and noise monitoring in this reporting period.



The monitoring results in this reporting period were comparable with those of baseline month. Detailed discussions were given in Section 4, 5 and 6 of this Report.

#### 7.4 Advice on the Solid and Liquid Waste Management Status

The Contractor usually disposed of non-inert waste, including general refuse and materials segregated from the existing stockpiles, to SENT landfill. Table 7.2 summarizes data on offsite waste disposal in this reporting period.

|                                   | ě             |                                         |
|-----------------------------------|---------------|-----------------------------------------|
| Waste Type                        | Actual Amount | Disposal Locations                      |
| Public Fill ('000m <sup>3</sup> ) | 54.82         | TKO 137 Fill Bank                       |
| C&D Waste ('000kg)                | 420.77        | SENT Landfill / Refuse Collection Point |
| Chemical Waste (kg/L)             | 0             | Collected by licensed collector         |

 Table 7.2
 Actual amounts of Waste generated in this reporting period

The Contractor should provide sufficient preventive measures during equipment maintenance works so as to avoid oil leakage on the ground. In the event of any oil leakage, the Contractor should clean up the polluted soil and handle all the materials used for this cleaning works as chemical waste.

Concrete bunding has erected outside the CEDD combined reception office and near the automatic wheel washing facilities for storing generator sets and oil drums. The drain outlet of all the bunded areas should be plugged properly. Besides, pre-cast drip trays were provided for oil drums at several areas, such as workshop and chemical storage area. The Contractor should collect and dispose of any stagnant water accumulated in the concrete bunding and drip trays and handle them as chemical waste.

The Contractor should use suitable containers with proper labels to store chemical wastes in accordance with Code of Practice on the Packaging, Labeling and Storage of Chemical Waste. The Contractor should also advise their workers of the proper procedures in handling the chemical waste. All the trip tickets for chemical waste disposal were properly kept in the site office.

The Contractor was reminded to increase the frequency of inspection and cleaning of the site drainage system, including permanent desilting chambers, desilting facilities, oil interceptor bypass tank, DP3 and DP4 and all the trapezoidal channels. Moreover, the Contractor should apply approved pesticides in the stagnant water ponds.

All the runoff from the parking area should be pumped to the desilting facilities and oil interceptors to remove suspended solids and oil & grease prior to discharge.

#### 8.0 Status of Environmental Licensing and Permitting

All permits/licenses valid in this reporting period are summarized in Table 8.1.

| Description                       | Permit No.        | Valid I  | Period | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                   | From     | То     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mended<br>Environmental<br>Permit | EP-<br>134/2002/L | 19/11/18 |        | <ul> <li>Site clearance</li> <li>Construction of a temporary storm water system</li> <li>Stockpiling of 6 million m3 of public fill</li> <li>Setting up two barging points for transporting<br/>the stockpiled public fill by barges</li> <li>Setting up a temporary barging point at the<br/>existing Explosive Off-loading Barging Point for<br/>the month of May 2004 to December 2004 for<br/>transporting the stockpiled public fill by barge</li> <li>Construction of operation of a construction and<br/>Demolition Material Sorting Facility (C&amp;DMSF)</li> <li>Setting up a Construction and Demolition<br/>Material Crushing Facility at the TKO Basin</li> <li>Remove the temporary fill bank</li> </ul> |

 Table 8.1
 Summary of environmental licensing and permit status



| Contract No.: CV/2015/07                                                       |
|--------------------------------------------------------------------------------|
| Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank |

| n                           |                  |          |          |   | Π                                                                                                                                         |
|-----------------------------|------------------|----------|----------|---|-------------------------------------------------------------------------------------------------------------------------------------------|
| Marine<br>Dumping<br>Permit | EP/MD/19-<br>029 | 01/10/18 | 31/12/18 |   | Approval for dumping 2,000,000 tons<br>(approximately equal to 1,111,111 cu.m. bulked<br>quantity) of Public Fill (Reclamation Materials) |
|                             |                  |          |          |   | from Tseung Kwan O Area 137 Fill Bank and<br>Tuen Mun Area 38 Fill Bank to designated                                                     |
|                             |                  |          |          |   | dumping area at Guanghaiwan of Taishan                                                                                                    |
| Chemical                    | 5919-839-        | 19/04/17 |          |   | Spent battery cell containing heavy metals and                                                                                            |
| Waste                       | C4181-01         |          |          |   | spent lubricating oil                                                                                                                     |
| Producer                    |                  |          |          |   |                                                                                                                                           |
| Effluent                    | WT000291         | 27/09/17 | 30/09/22 | • | Effluent, Surface Run-off, and all other                                                                                                  |
| Discharge                   | 78-2017          |          |          |   | wastewater discharges from screen and                                                                                                     |
| License                     |                  |          |          |   | sedimentation tank                                                                                                                        |
| Billing                     | 7027643          | 22/05/17 |          |   |                                                                                                                                           |
| Account for                 |                  |          |          |   |                                                                                                                                           |
| Waste                       |                  |          |          |   |                                                                                                                                           |
| Disposal                    |                  |          |          |   |                                                                                                                                           |
| Notification                | 415682           | 12/04/17 |          |   |                                                                                                                                           |
| Pursuant to                 |                  |          |          |   |                                                                                                                                           |
| Section 3(1)                |                  |          |          |   |                                                                                                                                           |
| of the Air                  |                  |          |          |   |                                                                                                                                           |
| Pollution                   |                  |          |          |   |                                                                                                                                           |
| Control                     |                  |          |          |   |                                                                                                                                           |
| (Construction               |                  |          |          |   |                                                                                                                                           |
| ,<br>Dust)                  |                  |          |          |   |                                                                                                                                           |

#### 9.0 ENVIRONMENTAL NON-CONFORMANCE

#### 9.1 Summary of air quality, noise and marine water quality

No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period.

Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period.

#### 9.2 Summary of Environmental Complaints

No complaint was received in this reporting period.

#### 9.3 Summary of Notification of Summons and successful Prosecution

There was no notification of summons and successful prosecution respect to environmental issues registered in this reporting period.

#### 10.0 IMPLEMENTATION STATUS

#### **10.1** Implementation Status of Environmental Mitigation Measures

An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix I. Most of the necessary mitigation measures were implemented properly. Any deficiencies were noted in the remarks of the schedule.

#### 10.2 Implementation Status of Event and Action Plan

Since no exceedance of Action and Limit level of air quality, noise and marine water monitoring results was recorded for this reporting period, no further action was required.



#### 10.3 Implementation Status of Environmental Complaint, Notifications of Summons and Successful Prosecutions Handling

No complaint, notification of summon and successful prosecution was received in this reporting period.

A summary of environmental complaints, notifications of summons and successful prosecutions was given in Table 10.1 and further details of the complaint could be found in the Complaint Log (Appendix L).

#### Table 10.1 Summary of Environmental Complaints and Prosecutions

| Complaints lo | Summons s  | served        | Successful prosecution<br>received |               |            |  |
|---------------|------------|---------------|------------------------------------|---------------|------------|--|
| November 2018 | Cumulative | November 2018 | Cumulative                         | November 2018 | Cumulative |  |
| 0             | 3          | 0             | 0                                  | 0             | 0          |  |

#### 11.0 CONCLUSIONS AND RECOMMENDATIONS

#### **Conclusions**

Impact monitoring of air quality, noise and water quality were carried out at designated locations in accordance with the EM&A Manual in this reporting period.

No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period.

Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period.

No complaint, prosecutions and notifications of summons were received in this reporting period.

According to the ET weekly site inspections carried out in this reporting period, the Contractor generally implemented sufficient dust mitigation measures, including operation of the mist spraying systems and automatic wheel washing facilities, dampening of haul roads and stockpiling areas.

#### **Recommendations**

According to the environmental site inspections performed in the reporting period, the following recommendations were provided:

#### Air Quality

- Ensure the frequency of water spraying on haul roads, unloading areas and stockpiles to be sufficient to suppress the dust sources;
- Provide proper maintenance for the powered mechanical equipment and barges to avoid emission of dark smoke;
- Provide water spraying onto the truckloads during inspection of fill material;
- Conduct road sweeping on all paved haul roads and public roads especially outside and near the site egress by the road sweeper. Undertake water spraying on stockpiling area by water bowser;
- Erect adequate speed limit signs to advise the truck drivers of the speed limit;
- Operate mist spraying systems and automatic water sprinklers in the Fill Bank;
- Implement the dust mitigation measures for the site activities;
- Designate proper haul roads to ensure effective water spraying; and
- Ensure all vehicles to be washed before leaving the site egress by provision, operation and maintenance of automatic wheel washing facilities.

#### Noise

Conduct noisy activities at a farther location from the NSRs.

#### Water Quality



- Maintain the drainage system, including the trapezoidal channels, permanent desilting chambers, regularly;
- Operate and maintain the silt curtains regularly;
- Operate the cleaning vessel within the TKO Basin regularly;
- · Clean up the fill material on the concrete pavement at BHA frequently; and
- Remove the stagnant water or provide approved pesticides for the stagnant water in the permanent desilting chambers, if any.

#### Landscape and Visual

- Provide hydroseeding on the exposed slopes, on which the final profile has been formed;
- Erect all the site hoarding/chaining fences in accordance with agreed design at proper location;
- Maintain the hydroseeded slopes in accordance with the Landscape Plan.

#### Chemical and Waste Management

- Remove waste materials from the site to avoid accumulation regularly;
- Handle and store chemical wastes properly;
- Remove unwanted material in the existing stockpiles and avoid further dumping of such material;
- Provide and maintain sufficient drip trays for diesel drums, chemical containers, chemical waste storage drums and diesel operated generator set;
- Maintain mesh screen on top of the additional drainage to avoid improper dumping of rubbish;
- Maintain good housekeeping at the workshop area;
- Ensure sufficient tarpaulin sheets are provided to cover drip trays; and
- Avoid soil being polluted during oil filling and equipment maintenance; hence, properly remove and store the contaminated soil, if any

#### 12.0 FUTURE KEY ISSUES

#### 12.1 Work Programme for the Coming Month

As informed by the Contractor, the activities to be conducted by them in the next month included:

- 1. Operation of the TKO137 Fill Bank.
- 2. Delivery of public fill to Taishan;
- 3. Operation of dewatering plant and expanded dewatering plant
- 4. Operation of bentonite pool.
- 5. Concrete block breaking work.
- 6. Crushing plant operation.
- 7. Removal of public fill at Portion A6
- 8. Construction of concrete pavement for Expanded Dewatering Plant
- 9. Provision of photoelectric height limits warning system at the existing height restriction gantries;
- 10. Re-construction of sampling platforms
- 11. Replacement of Y40 rebar with Y50 rebar at the existing wheel washing bay
- 12. Construction of concrete pavement at expanded dewatering plant
- 13. Repair works for damaged at TKOFB caused by Super Typhoon
- 14. Upgrading Works for Optical Fibre Cable System for CCTV at Tipping Halls of TKOFB;
- 15. Installation of Temporary Accommodation to CEDD Site Staff at TKOFB;
- 16. Carry out preliminary sorting on Public Fill for 3RS project.

#### 12.2 Key Issues for the Coming Month

#### Key issues to be considered in the coming month include:

- Chemical and waste management;
- Treatment of runoff and wastewater prior to discharge;
- Dust generated from loading and unloading activities; and
- Dust generated from dump trucks traffic.

#### Mitigation measures to be required in the coming month:

#### Air Quality Impact

- To provide adequate water spraying on haul roads and working platform;
- To operate and maintain automatic wheel washing facilities properly;



- To dampen the fill material prior to unloading or movement;
- To provide road sweeping on haul road near site egress and public roads outside site egress;
- To ensure implementation of the dust mitigation measures for the site activities;
- To maintain proper operation of the mist spraying system;
- To provide proper maintenance for vehicles and machines on site; and
- To investigate any other dust sources around the air sensitive receivers

#### <u>Noise</u>

- To switch off equipment if not in use;
- To operate silent equipment;
- To identify the noise sources inside and outside of the site;
- To follow up any exceedance caused by the Fill Bank operation; and
- To re-schedule the work activities in the event of valid noise exceedance.

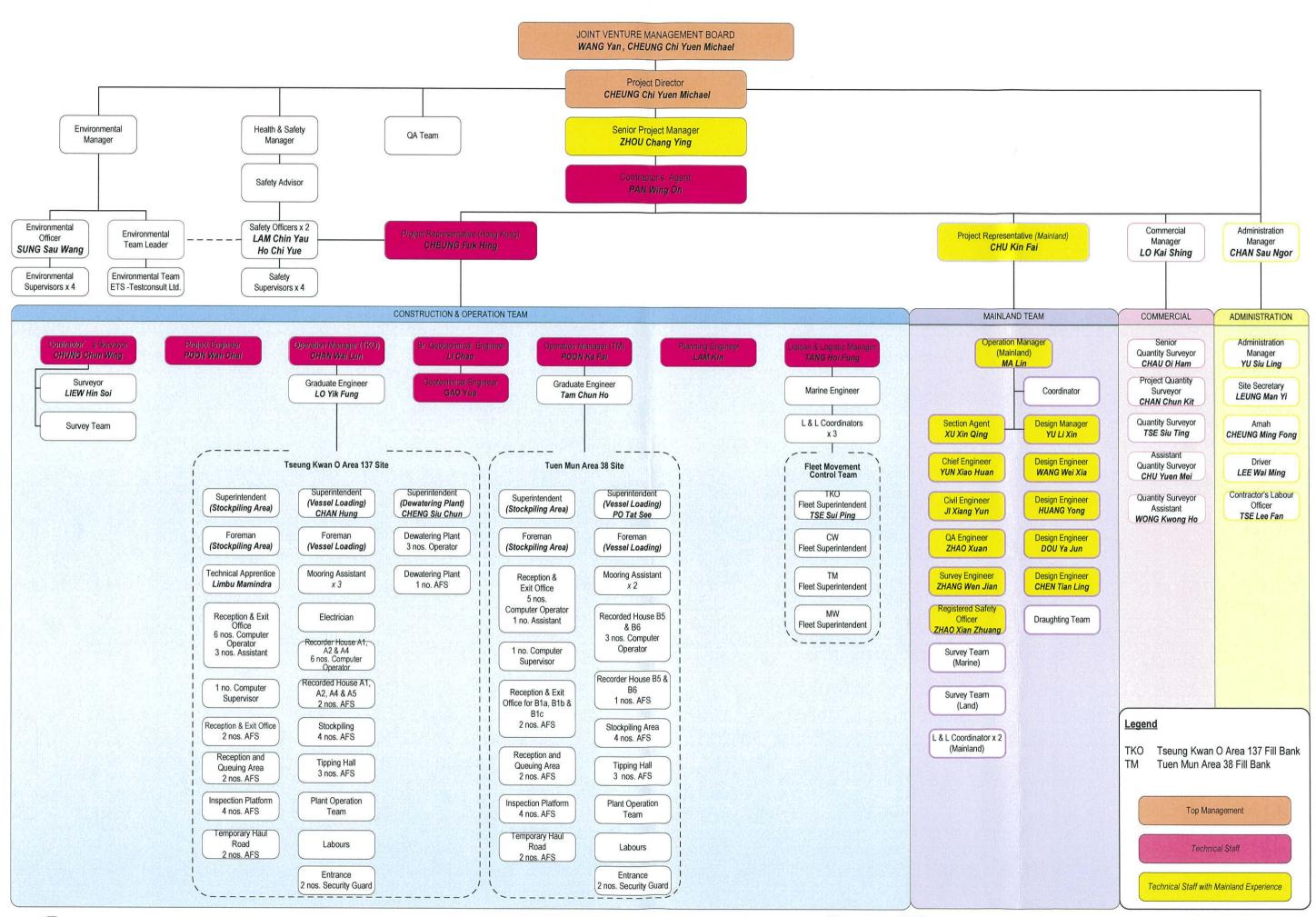
#### Water Quality Impact

- To maintain the drainage system in the Fill Bank;
- To ensure the cleanliness of oil interceptor bypass tanks and all the drainage channels;
- To maintain the existing silt trap to ensure good efficiency of wheel wash facilities;
- To repair, inspect and maintain the silt curtains regularly;
- To provide covers for the drip trays to avoid stagnant water pond due to rainfall;
- To deploy a cleaning vessel to remove floating rubbish in the TKO Basin;
- To clean up the concrete paved area at Portion I every night to avoid fill materials from being washed into the sea; and
- To avoid any stagnant water or provide insecticide to avoid mosquito breeding in the Fill Bank.

#### Chemical and Waste Management

- To remove waste from the site regularly;
- To properly store and handle chemical wastes on site;
- To implement trip ticket system for all the imported public fill and general refuse disposal;
- To provide and manage sufficiently sized drip trays for diesel drums or chemical containers;
- To remove existing unwanted material in the stockpiles and avoid improper disposal at the Fill Bank through inspection of imported truckloads;
- To maintain proper housekeeping at the workshop area;
- To remove the oil stains in the event of leakage and handle all materials using for this cleaning works as chemical waste;
- To maintain mesh screen on top of the additional drainage, DP3 opening to avoid improper dumping of rubbish into this channel; and
- To identify C&D material by packaging, labeling, storage, transportation and disposal in accordance with statutory regulations.

#### 12.3 Monitoring Schedule for the Coming Month


The proposed EM&A program of the coming month is attached in Appendix K.

- END OF REPORT -



Appendix A

**Project Organization Chart** 



Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018)



Organization Chart Rev.7

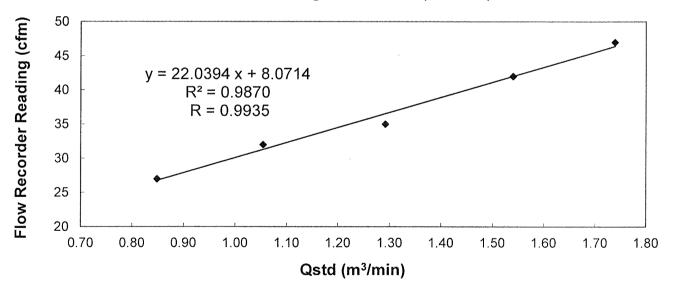


Appendix B1

Calibration Certificates for Impact Air Quality Monitoring Equipment



# 東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.


8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

### Calibration Report of

| High Volume Air Sampler |   |                                                                    |                     |             |            |      |                 |               |      |  |  |
|-------------------------|---|--------------------------------------------------------------------|---------------------|-------------|------------|------|-----------------|---------------|------|--|--|
| Manufacturer            | : | Graseby 105                                                        | Date of Calibration |             |            | :    | 22 October 2018 |               |      |  |  |
| Serial No.              | ÷ | <u>9795 (ET / EA / 003 / 18 )</u> Calibration Due Date : <u>21</u> |                     |             |            |      |                 | December 2018 |      |  |  |
| Method                  |   | Five-point calibration by using standard<br>Operations Manual      | d calik             | oration kit | Tisch TE-5 | 5025 | ōA refe         | er to the     |      |  |  |
| Results                 |   | Flow recorder reading (cfm)                                        |                     | 47          | 42         |      | 35              | 32            | 27   |  |  |
|                         |   | Qstd (Actual flow rate, m <sup>3</sup> /min)                       |                     | 1.74        | 1.54       |      | 1.29            | 1.05          | 0.85 |  |  |
|                         |   | Pressure : 763.56 mm H                                             | lg                  |             | Temp. :    |      | 300             | К             |      |  |  |

### Sampler 9795 Calibration Curve Site: Tseung Kwan O 137 (TKO-A1)



Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

The high volume sampler complies\* / does not comply\* with the specified requirements and is deemed acceptable\*/ unacceptable\* for use.

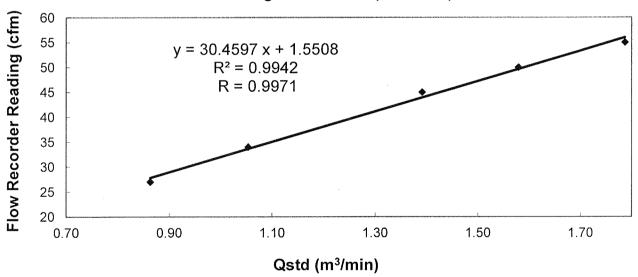
Calibrated by : <u>Make Yei</u> Way MAK, Kei Wai (Assistant Supervisor) Checked by

LAU, Chi Leung

(Environmental Team Leader)

- END OF REPORT -




# 東業德勤測試顧問有限公司 **ETS-TESTCONSULT LTD**.

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

#### **Calibration Report** - **c**

|              | of<br><u>High Volume Air Sampler</u> |                                                  |         |           |            |          |                  |               |      |  |  |  |  |
|--------------|--------------------------------------|--------------------------------------------------|---------|-----------|------------|----------|------------------|---------------|------|--|--|--|--|
| Manufacturer | : Andersen                           | G1051                                            | Date o  | of Calib  | tober 2018 | per 2018 |                  |               |      |  |  |  |  |
| Serial No.   | : <u>1176 (E</u> T                   | / EA / 003 / 05 )                                | Calibra | ation D   | ue Date    | :        | 21 December 2018 |               |      |  |  |  |  |
| Method       |                                      | Operations Manual for<br>ired by Tisch TE-5025 / |         | alibratic | on using s | tand     | ard ca           | libration kit |      |  |  |  |  |
| Results      | : Flow reco                          | der reading (cfm)                                |         | 55        | 50         |          | 45               | 34            | 27   |  |  |  |  |
|              | Qstd (Actu                           | ual flow rate, m <sup>3</sup> /min)              |         | 1.79      | 1.58       |          | 1.39             | 1.05          | 0.86 |  |  |  |  |
|              | Pressure                             | 763.56                                           | mm Hg   |           | Temp. :    |          | 300              | К             |      |  |  |  |  |

Sampler 1176 Calibration Curve Site: Tseung Kwan O 137 (TKO-A2a)



Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

The high volume sampler complies\* / does not comply\* with the specified requirements and is deemed acceptable\* / unacceptable \* for use.

Calibrated by : MAK, Kei Wai Checked by

LAU, Chi Leung (Environmental Team Leader)

(Assistant Supervisor)

|                                 |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | REC                                        | ALIBRATION                             |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------------------------------------|----------------------------------------|
|                                 |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                         | D                                          | UE DATE:                               |
|                                 |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | Mar                                        | ch 21, 2019                            |
| Enviro                          | n m                                                                                                              | e n t                      | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1                       | and an | 1999.9999.9999.9999.9999.9999.9999.999 |
|                                 | and the second |                            | Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | ition                                      | 1                                      |
| Cal. Date: N                    | /arch 21, 2                                                                                                      | 2018                       | Rootsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neter S/N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 438320   | Ta:                     | 293                                        | °K                                     |
| 1                               | m Tisch                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100010   |                         | 756.9                                      | mm Hg                                  |
|                                 |                                                                                                                  |                            | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2400     | rd.                     | 750.5                                      |                                        |
| Calibration M                   | odel #:                                                                                                          | TE-5025A                   | Calik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orator S/N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3480     |                         |                                            |                                        |
| Γ                               |                                                                                                                  | Vol. Init                  | Vol. Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ΔVol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΔTime    | ΔΡ                      | ΔΗ                                         |                                        |
|                                 | Run                                                                                                              | (m3)                       | (m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (min)    | (mm Hg)                 | (in H2O)                                   |                                        |
|                                 | 1                                                                                                                | 1                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4200   | 3.2                     | 2.00                                       |                                        |
|                                 | 2                                                                                                                | 3                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000   | 6.4                     | 4.00                                       |                                        |
|                                 | 3                                                                                                                | 5                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8950   | 7.9                     | 5.00                                       |                                        |
|                                 | 4                                                                                                                | 7                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8570   | 8.8                     | 5.50                                       |                                        |
|                                 | 5                                                                                                                | 9                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7070   | 12.7                    | 8.00                                       |                                        |
|                                 |                                                                                                                  |                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ata Tabula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion     |                         |                                            |                                        |
|                                 | Vstd                                                                                                             | Qstd                       | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )( <u>Tstd</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | Qa                      | $\sqrt{\Delta H(Ta/Pa)}$                   |                                        |
|                                 | (m3)                                                                                                             | (x-axis)                   | ,<br>(y-axi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Va       | (x-axis)                | (y-axis)                                   |                                        |
| -                               | 1.0087                                                                                                           | 0.7103                     | 1.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9958   | 0.7012                  | 0.8799                                     |                                        |
|                                 | 1.0044                                                                                                           | 1.0044                     | 2.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9915   | 0.9915                  | 1.2443                                     |                                        |
|                                 | 1.0024                                                                                                           | 1.1200                     | 2.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9896   | 1.1057                  | 1.3912                                     |                                        |
| Ļ                               | 1.0012                                                                                                           | 1.1682                     | 2.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9884   | 1.1533                  | 1.4591                                     |                                        |
|                                 | 0.9959                                                                                                           | 1.4087                     | 2.846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9832   | 1.3907                  | 1.7598                                     |                                        |
|                                 | acral                                                                                                            |                            | 2.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>^</b> |                         | 1.27812<br>-0.01879                        |                                        |
|                                 | QSTD                                                                                                             | v<br>r=                    | 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second se | QA       | v                       | 0.99994                                    |                                        |
| L                               | l                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 8<br>                   | 0100007                                    |                                        |
|                                 | <u></u>                                                                                                          | A1/01/(D. AC)              | /Detal)/T-+-1/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | A) (a) (/D - AP         |                                            |                                        |
|                                 |                                                                                                                  | ΔVol((Pa-ΔP)<br>Vstd/ΔTime | /Pstd)(Tstd/Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>ו</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | ΔVol((Pa-ΔF<br>Va/ΔTime | ()/Pa)                                     |                                        |
|                                 | usiu-                                                                                                            | vsturganne                 | For subsequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent flow rot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                         |                                            |                                        |
|                                 | Qstd=                                                                                                            | 1/m (( √ΔH(·               | Pa <u>Tstd</u><br>Pstd Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ))-b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *****    | 11                      | (Та/Ра))-b)                                |                                        |
|                                 | Standard                                                                                                         | Conditions                 | NIN PROCESSION PROVINSION OF A STATE OF A STAT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         |                                            |                                        |
| Tstd:                           | 298.15                                                                                                           | °К                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | RECAI                   | IBRATION                                   |                                        |
| Pstd:                           |                                                                                                                  | mm Hg                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | mmonde                  | nual recalibratic                          | n nor 1009                             |
| A Lie and the set of the        |                                                                                                                  | ey<br>or roading (ij       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | legulations Part 5                         |                                        |
| ΔH: calibrator<br>ΔP: rootsmete |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | Reference Meth                             |                                        |
| Ta: actual abso                 |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | ended Particulate                          |                                        |
| Pa: actual bard                 |                                                                                                                  |                            | Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | -                       | re, 9.2.17, page 3                         |                                        |
| b: intercept                    |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         | , -, -, -, -, -, -, -, -, -, -, -, -,      |                                        |
| m: slope                        |                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                         |                                            |                                        |

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009



Appendix B2

Impact Air Quality Monitoring Results

## Summary of 24-hr TSP Monitoring Results



Monitoring Station : TKO-A1

Location : Site Egress

| St         | art   | Fini       | sh    | Elapse   | e Time   | Sampling   | Flow Rate | (m <sup>3</sup> /min.) | Average                | Filter Weight (g) |        |               |
|------------|-------|------------|-------|----------|----------|------------|-----------|------------------------|------------------------|-------------------|--------|---------------|
| Date       | Time  | Date       | Time  | Initial  | Final    | Time (hrs) | Initial   | Final                  | (m <sup>3</sup> /min.) | Initial           | Final  | Conc. (µg/m³) |
| 05/11/2018 | 11:45 | 06/11/2018 | 11:45 | 19400.74 | 19424.74 | 24.00      | 1.2672    | 1.2672                 | 1.2672                 | 2.6670            | 2.7965 | 71            |
| 11/11/2018 | 09:10 | 12/11/2018 | 09:10 | 19427.74 | 19451.74 | 24.00      | 1.2218    | 1.2218                 | 1.2218                 | 2.4947            | 2.7275 | 132           |
| 17/11/2018 | 08:00 | 18/11/2018 | 08:00 | 19454.74 | 19478.74 | 24.00      | 1.2672    | 1.2672                 | 1.2672                 | 2.5803            | 2.7608 | 99            |
| 23/11/2018 | 09:00 | 24/11/2018 | 09:00 | 19481.74 | 19505.74 | 24.00      | 1.2218    | 1.2218                 | 1.2218                 | 2.6558            | 2.8700 | 122           |
| 29/11/2018 | 08:00 | 30/11/2018 | 08:00 | 19508.74 | 19532.74 | 24.00      | 1.2218    | 1.2218                 | 1.2218                 | 2.6509            | 2.8461 | 111           |

Monitoring Station : TKO-A2a

Location : CREO

| St         | art   | Fini       | sh    | Elaps    | e Time   | Sampling   | Flow Rate | e (m <sup>3</sup> /min.) | Average                | Filter W | /eight (g) | 2                          |
|------------|-------|------------|-------|----------|----------|------------|-----------|--------------------------|------------------------|----------|------------|----------------------------|
| Date       | Time  | Date       | Time  | Initial  | Final    | Time (hrs) | 1 0       | Final                    | (m <sup>3</sup> /min.) | Initial  | Final      | Conc. (µg/m <sup>3</sup> ) |
| 05/11/2018 | 12:00 | 06/11/2018 | 12:00 | 21494.61 | 21518.61 | 24.00      | 1.1966    | 1.1966                   | 1.1966                 | 2.6586   | 2.7971     | 80                         |
| 11/11/2018 | 09:20 | 12/11/2018 | 09:20 | 21521.61 | 21545.61 | 24.00      | 1.0653    | 1.0653                   | 1.0653                 | 2.4842   | 2.7139     | 150                        |
| 17/11/2018 | 08:00 | 18/11/2018 | 08:00 | 21548.61 | 21572.61 | 24.00      | 1.1638    | 1.1638                   | 1.1638                 | 2.5911   | 2.7827     | 114                        |
| 23/11/2018 | 09:15 | 24/11/2018 | 09:15 | 21575.61 | 21599.61 | 24.00      | 1.0981    | 1.0981                   | 1.0981                 | 2.6486   | 2.8555     | 131                        |
| 29/11/2018 | 08:00 | 30/11/2018 | 08:00 | 21602.61 | 21626.61 | 24.00      | 1.0653    | 1.0653                   | 1.0653                 | 2.6436   | 2.8000     | 102                        |

## Summary of 1-hr TSP Monitoring Results



Monitoring Station : TKO-A1

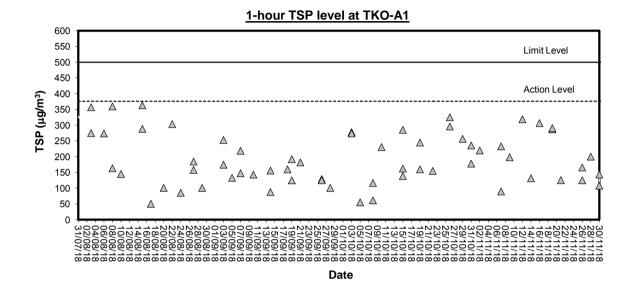
Location : Site Egres Site Egress

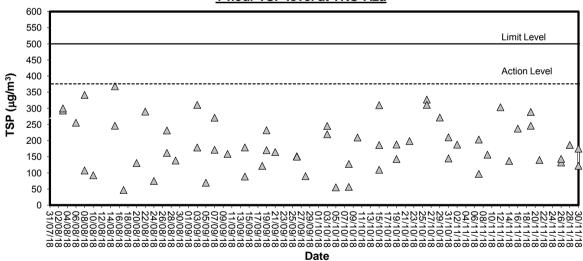
| St         | art   | Fini       | sh    | Elapse   | e Time   | Sampling   | Flow Rate     | e (m <sup>3</sup> /min.) | Average | Filter Weight (g) |        | Conc. (μg/m <sup>3</sup> ) |
|------------|-------|------------|-------|----------|----------|------------|---------------|--------------------------|---------|-------------------|--------|----------------------------|
| Date       | Time  | Date       | Time  | Initial  | Final    | Time (hrs) | Initial Final | (m³/min.)                | Initial | Final             |        |                            |
| 02/11/2018 | 10:40 | 02/11/2018 | 11:40 | 19399.74 | 19400.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6729            | 2.6896 | 220                        |
| 07/11/2018 | 13:00 | 07/11/2018 | 14:00 | 19424.74 | 19425.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6882            | 2.6950 | 89                         |
| 07/11/2018 | 14:10 | 07/11/2018 | 15:10 | 19425.74 | 19426.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6740            | 2.6917 | 233                        |
| 09/11/2018 | 13:00 | 09/11/2018 | 14:00 | 19426.74 | 19427.74 | 1.00       | 1.1765        | 1.1765                   | 1.1765  | 2.6992            | 2.7132 | 198                        |
| 12/11/2018 | 10:00 | 12/11/2018 | 11:00 | 19451.74 | 19452.74 | 1.00       | 1.1765        | 1.1765                   | 1.1765  | 2.7029            | 2.7254 | 319                        |
| 14/11/2018 | 08:35 | 14/11/2018 | 09:35 | 19452.74 | 19453.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6611            | 2.6711 | 132                        |
| 16/11/2018 | 09:46 | 16/11/2018 | 10:46 | 19453.74 | 19454.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.7030            | 2.7263 | 306                        |
| 19/11/2018 | 08:00 | 19/11/2018 | 09:00 | 19478.74 | 19479.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.7015            | 2.7233 | 287                        |
| 19/11/2018 | 10:35 | 19/11/2018 | 11:35 | 19479.74 | 19480.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.7056            | 2.7277 | 291                        |
| 21/11/2018 | 13:00 | 21/11/2018 | 14:00 | 19480.74 | 19481.74 | 1.00       | 1.2218        | 1.2218                   | 1.2218  | 2.7000            | 2.7092 | 125                        |
| 26/11/2018 | 10:10 | 26/11/2018 | 11:10 | 19505.74 | 19506.74 | 1.00       | 1.3580        | 1.3580                   | 1.3580  | 2.6621            | 2.6723 | 125                        |
| 26/11/2018 | 13:00 | 26/11/2018 | 14:00 | 19506.74 | 19507.74 | 1.00       | 1.3580        | 1.3580                   | 1.3580  | 2.6339            | 2.6474 | 166                        |
| 28/11/2018 | 13:00 | 28/11/2018 | 14:00 | 19507.74 | 19508.74 | 1.00       | 1.3580        | 1.3580                   | 1.3580  | 2.6660            | 2.6823 | 200                        |
| 30/11/2018 | 15:00 | 30/11/2018 | 16:00 | 19532.74 | 19533.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6745            | 2.6854 | 143                        |
| 30/11/2018 | 16:50 | 30/11/2018 | 17:50 | 19533.74 | 19534.74 | 1.00       | 1.2672        | 1.2672                   | 1.2672  | 2.6614            | 2.6696 | 108                        |



Monitoring Station : TKO-A2a

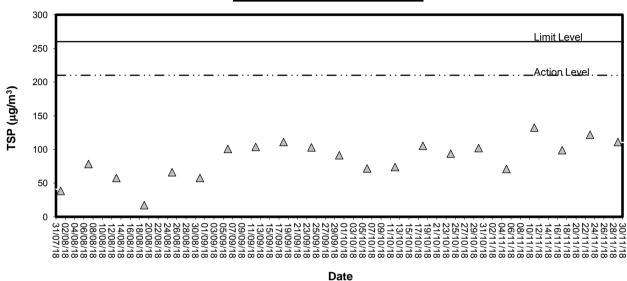
| Location : | CREO |
|------------|------|
|------------|------|


| St         | Start |            | sh    | Elapse Time |          | Sampling   | Flow Rate | Flow Rate (m <sup>3</sup> /min.) |                        | Filter Weight (g) |        | Conc. (μg/m <sup>3</sup> ) |
|------------|-------|------------|-------|-------------|----------|------------|-----------|----------------------------------|------------------------|-------------------|--------|----------------------------|
| Date       | Time  | Date       | Time  | Initial     | Final    | Time (hrs) | Initial   | Final                            | (m <sup>3</sup> /min.) | Initial           | Final  |                            |
| 02/11/2018 | 10:45 | 02/11/2018 | 11:45 | 21493.61    | 21494.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6583            | 2.6703 | 188                        |
| 07/11/2018 | 13:10 | 07/11/2018 | 14:10 | 21518.61    | 21519.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6819            | 2.6881 | 97                         |
| 07/11/2018 | 14:15 | 07/11/2018 | 15:15 | 21519.61    | 21520.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6872            | 2.7002 | 203                        |
| 09/11/2018 | 13:00 | 09/11/2018 | 14:00 | 21520.61    | 21521.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6983            | 2.7083 | 156                        |
| 12/11/2018 | 10:05 | 12/11/2018 | 11:05 | 21545.61    | 21546.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.7217            | 2.7411 | 304                        |
| 14/11/2018 | 08:45 | 14/11/2018 | 09:45 | 21546.61    | 21547.61 | 1.00       | 1.1310    | 1.1310                           | 1.1310                 | 2.6690            | 2.6783 | 137                        |
| 16/11/2018 | 09:55 | 16/11/2018 | 10:55 | 21547.61    | 21548.61 | 1.00       | 1.1310    | 1.1310                           | 1.1310                 | 2.6975            | 2.7136 | 237                        |
| 19/11/2018 | 08:05 | 19/11/2018 | 09:05 | 21572.61    | 21573.61 | 1.00       | 1.1310    | 1.1310                           | 1.1310                 | 2.6886            | 2.7082 | 289                        |
| 19/11/2018 | 10:30 | 19/11/2018 | 11:30 | 21573.61    | 21574.61 | 1.00       | 1.1310    | 1.1310                           | 1.1310                 | 2.6792            | 2.6959 | 246                        |
| 21/11/2018 | 13:00 | 21/11/2018 | 14:00 | 21574.61    | 21575.61 | 1.00       | 1.1310    | 1.1310                           | 1.1310                 | 2.6810            | 2.6905 | 140                        |
| 26/11/2018 | 10:00 | 26/11/2018 | 11:00 | 21599.61    | 21600.61 | 1.00       | 1.1966    | 1.1966                           | 1.1966                 | 2.6541            | 2.6636 | 132                        |
| 26/11/2018 | 13:00 | 26/11/2018 | 14:00 | 21600.61    | 21601.61 | 1.00       | 1.1966    | 1.1966                           | 1.1966                 | 2.6617            | 2.6720 | 143                        |
| 28/11/2018 | 13:00 | 28/11/2018 | 14:00 | 21601.61    | 21602.61 | 1.00       | 1.1966    | 1.1966                           | 1.1966                 | 2.6770            | 2.6904 | 187                        |
| 30/11/2018 | 15:05 | 30/11/2018 | 16:05 | 21626.61    | 21627.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6450            | 2.6562 | 175                        |
| 30/11/2018 | 16:40 | 30/11/2018 | 17:40 | 21627.61    | 21628.61 | 1.00       | 1.0653    | 1.0653                           | 1.0653                 | 2.6745            | 2.6823 | 122                        |

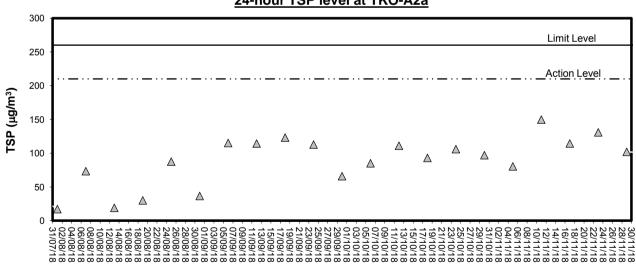



Appendix B3

## **Graphical Plots of Impact Air Quality Monitoring Data**






1-hour TSP level at TKO-A2a





#### 24-hour TSP level at TKO-A1



Date

24-hour TSP level at TKO-A2a



Appendix C1

Calibration Certificates for Impact Noise Monitoring Equipment



Hong Kong Calibration Ltd. 香港校正有限公司

# **Calibration Certificate**

| Certificate No.  | 801919                                   |                      | Page            | 1 of 3       | B Pages   |  |  |
|------------------|------------------------------------------|----------------------|-----------------|--------------|-----------|--|--|
| Customer :       | ETS-Testconsult Limited                  |                      |                 |              |           |  |  |
| Address :        | 8/F., Block B, Veristrong Industr        | ial Centre, 34-36 Au | Pui Wan St., Fo | tan, Hong K  | ong.      |  |  |
| Order No. :      | Q80767                                   |                      | Date of receipt | :            | 27-Feb-18 |  |  |
| Item Tested      |                                          | <u></u>              |                 |              |           |  |  |
| Description      | Sound Level Meter                        |                      |                 |              |           |  |  |
| Manufacturer     | : Rion                                   |                      | I.D.            | : ET/EN      | /003/19   |  |  |
| Model :          | NL-52                                    |                      | Serial No.      | : 00264      | 521       |  |  |
| Test Condit      | ions                                     |                      |                 |              |           |  |  |
| Date of Test :   | Date of Test : 7-Mar-18 Supply Voltage : |                      |                 |              |           |  |  |
| Ambient Temp     | erature : (23 ± 3)°C                     |                      | Relative Humid  | lity:(50 ± 2 | 25) %     |  |  |
| Test Specifi     | cations                                  |                      |                 |              |           |  |  |
| Calibration che  | ck.                                      |                      |                 |              |           |  |  |
| Ref. Document    | Procedure: Z01, IEC 61672.               |                      |                 |              |           |  |  |
| Test Results     | 3                                        |                      |                 |              |           |  |  |
| All results were | within the IEC 61672 Type 1 or m         | nanufacturer's speci | fication.       |              |           |  |  |
|                  | shown in the attached page(s).           | ·                    |                 |              |           |  |  |
| Main Test equip  | oment used:                              |                      |                 |              |           |  |  |
| Equipment No.    | <u>Description</u>                       | <u>Cert. No.</u>     |                 | Traceable t  | <u>o</u>  |  |  |
| S017             | Multi-Function Generator                 | C170120              |                 | SCL-HKSA     | R         |  |  |
| S240             | Sound Level Calibrator                   | 703741               |                 | NIM-PRC 8    | SCL-HKSAR |  |  |
|                  |                                          |                      |                 |              |           |  |  |

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

| Calibrated by :                                                                                                                    | Approv | /ed by : |          |
|------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|
| Elva Chong                                                                                                                         |        |          | Kin Wong |
| This Certificate is issued by:<br>Hong Kong Calibration Ltd.                                                                       | Date:  | 7-Mar-18 | Ŭ        |
| Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kor Tel: 2425 8801 Fax: 2425 8646 | ng.    |          |          |



Certificate No. 801919

Page 2 of 3 Pages

Results :

# 1. Self-generated noise: 15.7 dBA (Mfr's Spec $\leq$ 17 dBA)

# 2. Acoustical signal test

|            | UUT S     |           |        |            |              |
|------------|-----------|-----------|--------|------------|--------------|
|            | Frequency | Time      | Octave | Applied    | UUT          |
| Range (dB) | Weighting | Weighting | Filter | Value (dB) | Reading (dB) |
| 30-130     | A         | F         | OFF    | 94.0       | 94.0         |
|            |           | S         | OFF    |            | 94.0         |
|            | С         | F         | OFF    |            | 94.0         |
|            | Z         | F         | OFF    |            | 94.0         |
|            | A         | F         | OFF    | 114.0      | 114.1 .      |
|            |           | S         | OFF    |            | 114.1        |
|            | С         | F         | OFF    |            | 114.1        |
|            | Z         | F         | OFF    |            | 114.1        |

IEC 61672 Type 1 Spec. :  $\pm$  1.1 dB Uncertainty :  $\pm$  0.1 dB

# 3 Electrical signal tests of frequency weightings (A weighting)

| Frequency | Attenuation (dB) | IEC 61672 Type 1 Spec.                                       |
|-----------|------------------|--------------------------------------------------------------|
| 31.5 Hz   | -39.6            | - 39.4 dB, ± 2 dB                                            |
| 63 Hz     | -26.3            | - 26.2 dB, ± 1.5 dB                                          |
| 125 Hz    | -16.2            | - 16.1 dB, ± 1.5 dB                                          |
| 250 Hz    | -8.7             | - 8.6 dB, ± 1 dB                                             |
| 500 Hz    | -3.3             | - $3.2 \text{ dB}, \pm 1.4 \text{ dB}$                       |
| 1 kHz     | 0.0 (Ref)        | $0 \text{ dB}, \pm 1.1 \text{ dB}$                           |
| 2 kHz     | +1.2             | $+ 1.2 \text{ dB}, \pm 1.6 \text{ dB}$                       |
| 4 kHz     | +1.0             | $+ 1.0 \text{ dB}, \pm 1.6 \text{ dB}$                       |
| 8 kHz     | -1.1             | - $1.1 \text{ dB}$ , + $2.1 \text{ dB} \sim -3.1 \text{ dB}$ |
| 16 kHz    | -8.0             | - $6.6 \text{ dB}, + 3.5 \text{ dB} \sim -17.0 \text{ dB}$   |

Uncertainty :  $\pm 0.1 \text{ dB}$ 



# Certificate No. 801919

Page 3 of 3 Pages

# 4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

| UUT     | Applied    | UUT          | Difference | IEC 61672    |
|---------|------------|--------------|------------|--------------|
| Setting | Value (dB) | Reading (dB) | (dB)       | Type 1 Spec. |
| Α       | 94.0       | 94.0 (Ref.)  |            | ± 0.4 dB     |
| С       | 94.0       | 94.0         | 0.0        |              |
| Z       | 94.0       | 94.0         | 0.0        | ]            |

# 4.2 Time Weighting (A-weighted)

| 112 11110 11 018 | ( · · · · · · · · · · · · · · · · · · |              |            |              |
|------------------|---------------------------------------|--------------|------------|--------------|
| UUT              | Applied                               | UUT          | Difference | IEC 61672    |
| Setting          | Value (dB)                            | Reading (dB) | (dB)       | Type 1 Spec. |
| Fast             | 94.0                                  | 94.0 (Ref.)  |            | ± 0.3 dB     |
| Slow             | 94.0                                  | 94.0         | 0.0        |              |
| Time-averaging   | 94.0                                  | 94.0         | 0.0        | •            |

Uncertainty :  $\pm 0.1 \text{ dB}$ 

# Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 022 hPa.
- 4. Preamplifier model : NH-25, S/N : 64646
- 5. Firmware Version: 1.7
- 6. Power Supply Check: OK
- 7. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.



| Certificate No.                                        | 810241                                                                                                                                                                 |                                                              | Page                        | 1 of 2 Pages                                                                                                      |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------|
| Customer :                                             | ETS-Testconsult Limited                                                                                                                                                |                                                              |                             |                                                                                                                   |
| Address :                                              | 8/F., Block B, Veristrong Ind                                                                                                                                          | ustrial Centre, 34-36                                        | Au Pui Wan St., Fe          | otan, Hong Kong.                                                                                                  |
| Order No. :                                            | Q84111                                                                                                                                                                 |                                                              | Date of receip              | t: 15-Oct-18                                                                                                      |
| Item Tested                                            |                                                                                                                                                                        |                                                              |                             |                                                                                                                   |
| Description :                                          | : Sound Level Calibrator                                                                                                                                               |                                                              |                             |                                                                                                                   |
| Manufacturer :                                         | : Rion                                                                                                                                                                 |                                                              | I.D.                        | : ET/EN/002/01                                                                                                    |
| Model :                                                | NC-73                                                                                                                                                                  |                                                              | Serial No.                  | : 10196943                                                                                                        |
| Test Conditi                                           | ions                                                                                                                                                                   |                                                              |                             |                                                                                                                   |
| Date of Test :                                         | 23-Oct-18                                                                                                                                                              |                                                              | Supply Voltag               | je :                                                                                                              |
| Ambient Temp                                           | perature : (23 ± 3)°C                                                                                                                                                  |                                                              | <b>Relative Hum</b>         | idity:(50 ± 25) %                                                                                                 |
| Test Specifi                                           | cations                                                                                                                                                                |                                                              |                             |                                                                                                                   |
| Calibration chee                                       | ck.                                                                                                                                                                    |                                                              |                             |                                                                                                                   |
| Ref. Document                                          | /Procedure : F21, Z02.                                                                                                                                                 |                                                              |                             |                                                                                                                   |
|                                                        |                                                                                                                                                                        |                                                              |                             |                                                                                                                   |
| Test Results                                           | 6                                                                                                                                                                      |                                                              |                             |                                                                                                                   |
| All results were                                       | within the manufacturer's spe                                                                                                                                          | ecification.                                                 |                             |                                                                                                                   |
| The results are                                        | shown in the attached page(s                                                                                                                                           | 5).                                                          |                             |                                                                                                                   |
| Main Test equi                                         | oment used:                                                                                                                                                            |                                                              |                             |                                                                                                                   |
| Equipment No.                                          |                                                                                                                                                                        | <u>Cert. No.</u>                                             |                             | Traceable to                                                                                                      |
| S014                                                   | Spectrum Analyzer                                                                                                                                                      | 805025                                                       |                             | NIM-PRC & SCL-HKSAR                                                                                               |
| S240                                                   | Sound Level Calibrator                                                                                                                                                 | 803357                                                       |                             | NIM-PRC & SCL-HKSAR                                                                                               |
| S041                                                   | Universal Counter                                                                                                                                                      | 802061                                                       |                             | SCL-HKSAR                                                                                                         |
| S206                                                   | Sound Level Meter                                                                                                                                                      | 805027                                                       |                             | SCL-HKSAR                                                                                                         |
|                                                        |                                                                                                                                                                        |                                                              |                             |                                                                                                                   |
|                                                        |                                                                                                                                                                        |                                                              |                             |                                                                                                                   |
| will not include allo overloading, mis-ha              | n this Calibration Certificate only relat<br>wance for the equipment long term of<br>andling, or the capability of any other<br>hage resulting from the use of the equ | Irift, variations with enviror<br>laboratory to repeat the r | nmental changes, vibra      | and any uncertainties quoted<br>tion and shock during transportation,<br>ong Calibration Ltd. shall not be liable |
| The test equipmen<br>The test results ap               | t used for calibration are traceable to<br>ply to the above Unit-Under-Test onl                                                                                        | ) International System of L<br>y                             | Jnits (SI), or by reference | ce to a natural constant.                                                                                         |
|                                                        | AN                                                                                                                                                                     |                                                              |                             |                                                                                                                   |
| Calibrated by                                          | . At                                                                                                                                                                   | ٨                                                            | pproved by :                | (JAA)                                                                                                             |
| Calibrated by                                          | Elva Chong                                                                                                                                                             | A                                                            | whiched ph                  | Kin Wong                                                                                                          |
| This Certificate is issued<br>Hong Kong Calibration Li | by:                                                                                                                                                                    | D                                                            | ate: 23-Oct-18              | -                                                                                                                 |

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646



Certificate No. 810241

Page 2 of 2 Pages

Results :

# 1. Level Accuracy (at 1 kHz)

| UUT Nominal Value | Measured Value | Mfr's Spec.        |
|-------------------|----------------|--------------------|
| 94 dB             | 94.2 dB        | $\pm 1 \text{ dB}$ |

Uncertainty :  $\pm 0.2 \text{ dB}$ 

# 2. Frequency Accuracy

| UUT Nominal Value | Measured Value | Mfr's Spec. |
|-------------------|----------------|-------------|
| 1 kHz             | 1.017 kHz      | ± 2 %       |

Uncertainty : ± 0.1 %

- **3.** Level Stability : 0.0 dB Uncertainty : ± 0.01 dB
- Total Harmonic Distortion : < 0.3 % Mfr's Spec. : < 3 % Uncertainty : ± 2.3 % of reading

### Remarks: 1. UUT : Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure : 1 018 hPa

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.



Appendix C2

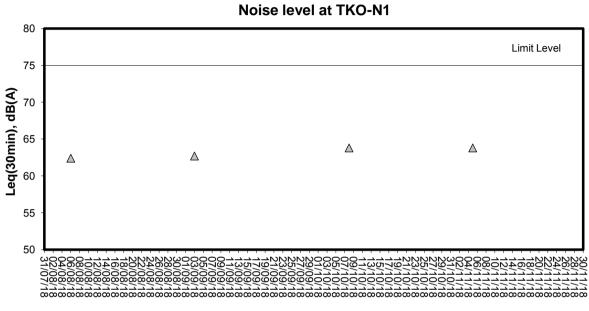
Impact Noise Monitoring Results



# Day-time Noise Monitoring

# Monitoring Location: TKO-N1 (Site Egress)

| Data     | Start Sampling Time | No                     | ise Level dB    | (A)             | Wind           | Weather   |
|----------|---------------------|------------------------|-----------------|-----------------|----------------|-----------|
| Date     | (hh:mm)             | L <sub>eq(30min)</sub> | L <sub>10</sub> | L <sub>90</sub> | Speed<br>(m/s) | Condition |
| 05/11/18 | 11:00               | 63.8                   | 65.9            | 59.8            | 0.2            | Fine      |




Appendix C3

**Graphical Plots of Impact Noise Monitoring Data** 



# Noise Monitoring (Day-time)



Date



Appendix D1

Calibration Certificates for Impact Marine Water Quality Monitoring Equipments



Form E/CE/R/24 Issue 1 (1/1) [01/18]

| Calibration Report of Dissolved Oxygen Meter (In situ Measurement)                                                                                                                                                                        |                                   |               |                         |                   |                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------|-------------------------|-------------------|-----------------------|--|
| Equipment Ref. No. :                                                                                                                                                                                                                      | ET/EW/008/006                     |               | Manufacturer            | :                 | YSI                   |  |
| Model No. :                                                                                                                                                                                                                               | Pro 2030                          |               | Serial No.              | : -               | 12A100554             |  |
| Calibration Date :                                                                                                                                                                                                                        | 2/9/2018                          |               | Calibration Due         | e Date :          | 1/12/2018             |  |
| Temperature Verific                                                                                                                                                                                                                       | ation by Reference Thermometer    | (ET/0521/02   | 8)                      |                   |                       |  |
|                                                                                                                                                                                                                                           | Temperature Reading (°C)          | Correction    |                         | perature (°C)     | Difference (°C)       |  |
| Reference Thermome                                                                                                                                                                                                                        |                                   | 0.0           | 20.3                    | 3                 | 0.2                   |  |
| DO Meter                                                                                                                                                                                                                                  | 20.5                              | 0.0           | 20.5                    |                   |                       |  |
|                                                                                                                                                                                                                                           | between corrected temperature fro | m DO meter    | and reference thermo    | $meter: < \pm 0.$ | 5 °C                  |  |
| Zero Point Checking                                                                                                                                                                                                                       | ,                                 |               |                         |                   |                       |  |
|                                                                                                                                                                                                                                           | DO meter reading (mg/L)           |               |                         | 0.03              |                       |  |
| Criteria: Zero checki                                                                                                                                                                                                                     |                                   |               |                         |                   | - ·· -                |  |
| Linearity Checking of Dissolved Oxygen Content by APHA 19ed 4500-O G                                                                                                                                                                      |                                   |               |                         |                   |                       |  |
|                                                                                                                                                                                                                                           | Expected DO value (mg/L)          |               | Dif                     |                   | ference of DO Content |  |
| Purging time, min                                                                                                                                                                                                                         | (ET/0510/012)                     | D             | DO meter reading (mg/L) |                   | (mg/L)                |  |
| 2                                                                                                                                                                                                                                         | 6.85                              |               | 7.05                    |                   | 0.20                  |  |
| 5                                                                                                                                                                                                                                         | 4.37                              |               | 4.25                    |                   | 0.12                  |  |
| 10                                                                                                                                                                                                                                        | 1.80                              |               | 1.71                    |                   | 0.09                  |  |
| Criteria: Difference                                                                                                                                                                                                                      | between DO meter reading and ex   | pected DO vi  | alue: $< \pm 0.30$ mg/L |                   |                       |  |
| Salinity Chashing L                                                                                                                                                                                                                       | v APHA 19ed 2520 B                |               |                         |                   |                       |  |
| Suunuy Unecking Dj                                                                                                                                                                                                                        | y 111 11/1 1/64 4540 D            |               | Expected Salinity (ppt) |                   | O meter reading (ppt) |  |
| Reagent No. of NaCl                                                                                                                                                                                                                       | l (10 ppt): CPE/012/4.7/27        |               | 10                      |                   | 9.2                   |  |
|                                                                                                                                                                                                                                           | (30 ppt): CPE/012/4.8/27          |               | 30                      |                   | 28.3                  |  |
|                                                                                                                                                                                                                                           | between DO meter reading and ex   | pected Salini | <i>ty</i> : ±10.0 %     |                   |                       |  |
| The equipment complies <sup>#</sup> / <del>does not comply</del> <sup>#</sup> with the specified requirements and is deemed acceptable <sup>#</sup> / <del>unacceptable</del> <sup>#</sup> for use.<br><sup>#</sup> Delete as appropriate |                                   |               |                         |                   |                       |  |
| Calibrated by : Approved by :                                                                                                                                                                                                             |                                   |               |                         |                   |                       |  |



| Performance Check of Turbidity Meter                                                                                                                                                      |                                                  |                              |                       |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|-----------------------|--|--|--|
| Ec                                                                                                                                                                                        | uipment Ref. No. :ET/0505                        | /021 Manufacturer            | : HACH                |  |  |  |
|                                                                                                                                                                                           | Model No. : 21000                                | Q Serial No.                 | : <u>17020C056013</u> |  |  |  |
| D                                                                                                                                                                                         | ate of Calibration : 25/10/                      | 18 Due Date                  | : 24/1/19             |  |  |  |
|                                                                                                                                                                                           | Theoretical Value of Turbidity<br>Standard (NTU) | Measured Value (NTU)         | Difference % *        |  |  |  |
|                                                                                                                                                                                           | 20                                               | 20.3                         | +1.5%                 |  |  |  |
|                                                                                                                                                                                           | 100                                              | 100                          | 0.0%                  |  |  |  |
|                                                                                                                                                                                           | 800                                              | 797                          | -0.4%                 |  |  |  |
|                                                                                                                                                                                           | (*) Difference = (Measured Value                 | e – Theoretical Value) / The | oretical Value x 100  |  |  |  |
| Ac                                                                                                                                                                                        | Acceptance Criteria<br>Difference : -5 % to 5 %  |                              |                       |  |  |  |
| The turbidity meter complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use. Measurements are traceable to national standards. |                                                  |                              |                       |  |  |  |
| Pre                                                                                                                                                                                       | pared by :                                       | Checked by :                 |                       |  |  |  |



Appendix D2

# Impact Marine Water Quality Monitoring Results

# Mid-Ebb Tide



#### Monitoring Station : TKO-C1

| Date     | Sampling  | Ambient Temp                | Monitorin | ig Depth | Temp | Salini               | ty (ppt) | Dissolv      | ved Oxyger | n (mg/L)          |                         | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper            | nded Solids | (mg/L)            |
|----------|-----------|-----------------------------|-----------|----------|------|----------------------|----------|--------------|------------|-------------------|-------------------------|----------------------|--------------|--------------|-------------------|-------------------|-------------|-------------------|
| Dale     | Duration  | (°C) / Weather<br>Condition | (n        | ו)       | (°C) | Value                | Average  | Value        | Average    | Depth-<br>average | Value                   | Average              | Value        | Average      | Depth-<br>average | Value             | Average     | Depth-<br>average |
|          |           |                             | Surface   | 1.0      | 25.2 | 30.8<br>30.8         | 30.8     | 7.21<br>7.18 | 7.20       |                   | 104.3<br>103.9          | 104.1                | 3.32<br>3.35 | 3.34         |                   | 3.5<br>4.0        | 3.8         | Ĭ                 |
| 02/11/18 | 815-832   | 23/Cloudy                   | Middle    | 9.7      | 25.1 | 30.9<br>31.0         | 31.0     | 7.16<br>7.12 | 7.14       | 7.17              | 103.5<br>102.9          | 103.2                | 3.37<br>3.33 | 3.35         | 3.39              | 3.2<br>3.6        | 3.4         | 3.3               |
|          |           |                             | Bottom    | 18.4     | 24.8 | 31.2<br>31.2         | 31.2     | 7.01         | 7.03       | 7.03              | 101.0<br>101.6          | 101.3                | 3.46<br>3.48 | 3.47         |                   | 2.1<br>3.5        | 2.8         |                   |
|          |           |                             | Surface   | 1.0      | 24.8 | 31.3<br>31.2         | 31.3     | 7.15         | 7.18       |                   | 103.0<br>103.9          | 103.5                | 3.27         | 3.26         |                   | 4.7<br>3.6        | 4.2         |                   |
| 05/11/18 | 930-951   | 24/Cloudy                   | Middle    | 9.7      | 24.6 | 31.4<br>31.3         | 31.4     | 7.08         | 7.10       | 7.14              | 100.0<br>101.7<br>102.3 | 102.0                | 3.28         | 3.30         | 3.30              | 3.1<br>3.9        | 3.5         | 4.0               |
|          |           |                             | Bottom    | 18.3     | 24.5 | 31.5<br>31.6         | 31.6     | 7.04         | 7.03       | 7.03              | 102.0<br>101.0<br>100.9 | 101.0                | 3.37<br>3.34 | 3.36         |                   | 4.5<br>3.9        | 4.2         |                   |
|          |           |                             | Surface   | 1.0      | 25.7 | 31.0<br>31.2<br>31.2 | 31.2     | 6.37<br>6.44 | 6.41       |                   | 93.1<br>94.2            | 93.7                 | 3.90<br>3.94 | 3.92         |                   | 3.9<br>3.8<br>3.7 | 3.8         |                   |
| 07/11/18 | 1103-1118 | 28/Fine                     | Middle    | 10.6     | 25.4 | 31.4<br>31.5         | 31.5     | 6.16<br>6.28 | 6.22       | 6.31              | 89.8<br>91.6            | 90.7                 | 3.75<br>3.77 | 3.76         | 3.76              | 2.8<br>1.3        | 2.1         | 3.0               |
|          |           |                             | Bottom    | 20.2     | 25.1 | 31.7<br>31.7         | 31.7     | 6.05<br>6.17 | 6.11       | 6.11              | 87.8<br>89.6            | 88.7                 | 3.58<br>3.61 | 3.60         |                   | 2.8               | 3.1         |                   |
|          |           |                             | Surface   | 1.0      | 25.6 | 31.9<br>32.0         | 32.0     | 6.84<br>6.89 | 6.87       |                   | 100.1<br>100.9          | 100.5                | 2.69         | 2.71         |                   | 4.7<br>4.5        | 4.6         |                   |
| 09/11/18 | 1230-1244 | 26/Cloudy                   | Middle    | 10.7     | 25.3 | 32.3<br>32.2         | 32.3     | 6.61<br>6.54 | 6.58       | 6.72              | 96.2<br>95.2            | 95.7                 | 2.45         | 2.43         | 2.70              | 5.0<br>8.0        | 6.5         | 5.5               |
|          |           |                             | Bottom    | 20.3     | 25.1 | 32.5<br>32.4         | 32.5     | 6.29<br>6.33 | 6.31       | 6.31              | 95.2<br>91.2<br>91.8    | 91.5                 | 2.95         | 2.98         |                   | 4.6<br>6.1        | 5.4         |                   |
|          |           |                             | Surface   | 1.0      | 25.6 | 31.3<br>31.3         | 31.3     | 6.74<br>6.60 | 6.67       |                   | 98.4<br>96.4            | 97.4                 | 3.76<br>3.79 | 3.78         |                   | 4.2               | 3.6         |                   |
| 12/11/18 | 1407-1421 | 25/Cloudy                   | Middle    | 10.6     | 25.3 | 31.5<br>31.6         | 31.6     | 6.45<br>6.52 | 6.49       | 6.58              | 93.9<br>94.9            | 94.4                 | 3.54<br>3.55 | 3.55         | 3.68              | 4.8               | 4.6         | 3.8               |
|          |           |                             | Bottom    | 20.1     | 25.0 | 31.8<br>31.9         | 31.9     | 6.28<br>6.17 | 6.23       | 6.23              | 91.2<br>89.6            | 90.4                 | 3.68         | 3.71         |                   | 3.9<br>2.5        | 3.2         |                   |
|          |           |                             | Surface   | 1.0      | 25.3 | 31.9<br>32.0         | 32.0     | 6.79<br>6.85 | 6.82       |                   | 98.9<br>99.8            | 99.4                 | 3.32<br>3.28 | 3.30         |                   | 2.4<br>2.6        | 2.5         |                   |
| 16/11/18 | 1800-1813 | 21/Cloudy                   | Middle    | 10.7     | 25.2 | 32.2<br>32.2         | 32.2     | 6.63<br>6.58 | 6.61       | 6.71              | 96.5<br>95.9            | 96.2                 | 3.14<br>3.17 | 3.16         | 3.30              | 2.6<br>2.6        | 2.6         | 2.6               |
|          |           |                             | Bottom    | 20.3     | 25.1 | 32.3<br>32.3         | 32.3     | 6.41<br>6.38 | 6.40       | 6.40              | 93.1<br>92.6            | 92.9                 | 3.47<br>3.40 | 3.44         |                   | 2.8<br>2.3        | 2.6         |                   |
|          |           |                             | Surface   | 1.0      | 25.4 | 31.8<br>31.9         | 31.9     | 7.34<br>7.30 | 7.32       |                   | 107.1<br>107.6          | 107.4                | 4.07         | 4.04         |                   | 4.3               | 3.6         |                   |
| 19/11/18 | 820-834   | 24/Fine                     | Middle    | 10.8     | 25.3 | 32.1<br>32.2         | 32.2     | 7.12         | 7.14       | 7.23              | 107.8<br>103.9<br>104.3 | 104.1                | 4.14         | 4.16         | 4.11              | 3.1<br>3.9        | 3.5         | 3.7               |
|          |           |                             | Bottom    | 20.6     | 25.3 | 32.2<br>32.3         | 32.3     | 6.90<br>6.87 | 6.89       | 6.89              | 100.7<br>100.3          | 100.5                | 4.11         | 4.13         |                   | 4.6               | 3.9         |                   |

# Mid-Ebb Tide



#### Monitoring Station : TKO-C1

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorir | ng Depth | Temp | Salini       | ty (ppt) | Dissolv      | ed Oxygen | n (mg/L)          |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper     | nded Solids | (mg/L)            |
|----------|-----------|--------------------------------|-----------|----------|------|--------------|----------|--------------|-----------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | (C) / Weather<br>Condition     | (n        | n)       | (°C) | Value        | Average  | Value        | Average   | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0      | 25.2 | 32.2         | 32.2     | 6.85         | 6.88      |                   | 99.9           | 100.3                | 2.96         | 2.98         |                   | 3.3        | 2.9         |                   |
|          |           |                                | Garrade   | 1.0      | 20.2 | 32.1         | 02.2     | 6.90         | 0.00      | 6.73              | 100.6          | 100.0                | 3.00         | 2.00         |                   | 2.5        | 2.0         |                   |
| 21/11/18 | 941-955   | 23/Cloudy                      | Middle    | 10.7     | 25.1 | 32.4         | 32.4     | 6.61         | 6.59      |                   | 96.2           | 96.0                 | 2.78         | 2.77         | 2.86              | 2.6        | 2.7         | 3.0               |
|          |           | ,                              |           |          |      | 32.4         |          | 6.57         |           |                   | 95.7           |                      | 2.75         |              |                   | 2.7        |             |                   |
|          |           |                                | Bottom    | 20.3     | 24.9 | 32.6         | 32.7     | 6.39         | 6.37      | 6.37              | 92.8           | 92.5                 | 2.86         | 2.84         |                   | 3.5        | 3.3         |                   |
|          |           |                                |           |          |      | 32.7         |          | 6.34         |           |                   | 92.1           |                      | 2.82         |              |                   | 3.1        |             |                   |
|          |           |                                | Surface   | 1.0      | 24.3 | 31.7         | 31.8     | 7.07         | 7.06      |                   | 101.2          | 101.0                | 4.17         | 4.18         |                   | 4.0        | 3.8         |                   |
|          |           |                                |           |          |      | 31.8         |          | 7.04         |           | 7.01              | 100.8          |                      | 4.19         |              |                   | 3.5        |             |                   |
| 23/11/18 | 1106-1120 | 24/Fine                        | Middle    | 10.8     | 24.2 | 32.2<br>32.1 | 32.2     | 6.94<br>6.98 | 6.96      |                   | 99.4<br>99.9   | 99.7                 | 4.06         | 4.04         | 4.12              | 6.6<br>4.4 | 5.5         | 4.6               |
|          |           |                                |           |          |      | 32.1         |          | 6.98         |           |                   | 99.9<br>98.8   |                      | 4.02         |              |                   | 4.4        |             |                   |
|          |           |                                | Bottom    | 20.6     | 24.2 | 32.2         | 32.2     | 6.90         | 6.93      | 6.93              | 98.8<br>99.6   | 99.2                 | 4.11         | 4.13         |                   | 4.4        | 4.6         |                   |
|          |           |                                |           |          |      | 30.7         |          | 7.02         |           |                   | 99.0           |                      | 4.15         |              |                   | 3.9        |             |                   |
|          |           |                                | Surface   | 1.0      | 23.4 | 30.8         | 30.8     | 6.98         | 7.00      |                   | 97.7           | 98.0                 | 4.11         | 4.13         |                   | 2.4        | 3.2         |                   |
|          |           |                                |           |          |      | 31.1         |          | 6.87         |           | 6.93              | 96.9           |                      | 4.20         |              |                   | 3.3        |             |                   |
| 26/11/18 | 1311-1325 | 19/Rainy                       | Middle    | 10.8     | 23.6 | 31.2         | 31.2     | 6.84         | 6.86      |                   | 96.5           | 96.7                 | 4.22         | 4.21         | 4.19              | 2.6        | 3.0         | 2.9               |
|          |           |                                |           |          |      | 31.2         |          | 6.82         |           |                   | 96.1           |                      | 4.23         | 1.00         |                   | 2.5        |             |                   |
|          |           |                                | Bottom    | 20.6     | 23.6 | 31.3         | 31.3     | 6.79         | 6.81      | 6.81              | 95.7           | 95.9                 | 4.20         | 4.22         |                   | 2.5        | 2.5         |                   |
|          |           |                                | Surface   | 1.0      | 25.6 | 31.1         | 31.2     | 7.36         | 7.39      |                   | 107.5          | 107.9                | 3.85         | 3.87         |                   | 4.6        | 4.3         |                   |
|          |           |                                | Surrace   | 1.0      | 25.6 | 31.2         | 31.2     | 7.41         | 7.39      | 7.32              | 108.2          | 107.9                | 3.88         | 3.87         |                   | 4.0        | 4.3         |                   |
| 28/11/18 | 1457-1511 | 25/Cloudy                      | Middle    | 10.7     | 25.4 | 31.5         | 31.6     | 7.22         | 7.25      | 1.32              | 105.3          | 105.7                | 3.76         | 3.78         | 3.76              | 4.1        | 3.8         | 4.4               |
| 20/11/10 | 1407-1011 | 25/010003                      | Midule    | 10.7     | 25.4 | 31.6         | 51.0     | 7.28         | 1.25      |                   | 106.1          | 105.7                | 3.80         | 3.70         | 3.70              | 3.4        | 5.0         | 4.4               |
|          |           |                                | Bottom    | 20.4     | 25.1 | 31.7         | 31.7     | 7.07         | 7.11      | 7.11              | 102.6          | 103.1                | 3.61         | 3.63         |                   | 3.9        | 5.0         |                   |
|          |           |                                | Dottom    | 20.4     | 23.1 | 31.7         | 51.7     | 7.14         | 7.11      | 7.11              | 103.6          | 103.1                | 3.64         | 3.05         |                   | 6.1        | 5.0         |                   |
|          |           |                                | Surface   | 1.0      | 25.5 | 31.2         | 31.3     | 7.36         | 7.40      |                   | 107.3          | 107.8                | 3.71         | 3.74         |                   | 4.3        | 3.6         |                   |
|          |           |                                | oundoo    |          | 20.0 | 31.3         | 0.1.0    | 7.43         |           | 7.30              | 108.3          |                      | 3.77         | 0            |                   | 2.9        | 0.0         |                   |
| 30/11/18 | 1734-1746 | 25/Fine                        | Middle    | 10.8     | 25.3 | 31.6         | 31.6     | 7.27         | 7.21      |                   | 105.8          | 105.0                | 3.65         | 3.67         | 3.66              | 4.2        | 4.3         | 3.6               |
|          |           |                                |           |          |      | 31.6         |          | 7.15         |           |                   | 104.1          |                      | 3.68         |              |                   | 4.3        |             |                   |
|          |           |                                | Bottom    | 20.5     | 25.1 | 31.7<br>31.8 | 31.8     | 7.04<br>7.13 | 7.09      | 7.09              | 102.3<br>103.6 | 103.0                | 3.54<br>3.58 | 3.56         |                   | 2.6<br>3.3 | 3.0         |                   |

Remark: Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

# Mid-Ebb Tide

#### Monitoring Station : TKO-M4

| Date     | Sampling  | Ambient Temp                | Monitoring D  | )enth (m)   | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxygen | (mg/L)            |                         | d Oxygen<br>tion (%) | Т            | urbidity (NT | U)                | Susper     | nded Solids | (mg/L)            |
|----------|-----------|-----------------------------|---------------|-------------|------|--------------|----------|--------------|------------|-------------------|-------------------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | (°C) / Weather<br>Condition | Mornitoring L | eptin (iii) | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value                   | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                             | Surface       | 1.0         | 25.3 | 30.7<br>30.8 | 30.8     | 7.15<br>7.13 | 7.14       |                   | 103.6<br>103.3          | 103.5                | 3.38<br>3.41 | 3.40         |                   | 4.1<br>3.6 | 3.9         |                   |
| 02/11/18 | 940-958   | 23/Cloudy                   | Middle        | 4.6         | 25.3 | 30.7<br>30.8 | 30.8     | 7.11         | 7.12       | 7.13              | 103.0<br>103.3          | 103.2                | 3.43<br>3.41 | 3.42         | 3.42              | 2.4        | 2.6         | 3.3               |
|          |           |                             | Bottom        | 8.2         | 25.1 | 30.8<br>30.9 | 30.9     | 7.13         | 7.10       | 7.10              | 103.3<br>102.2<br>102.9 | 102.6                | 3.43<br>3.46 | 3.45         |                   | 3.8<br>2.9 | 3.4         |                   |
|          |           |                             | Surface       | 1.0         | 24.8 | 31.2<br>31.1 | 31.2     | 7.23         | 7.25       |                   | 102.9<br>104.2<br>104.5 | 104.4                | 3.23<br>3.25 | 3.24         |                   | 3.1<br>2.7 | 2.9         |                   |
| 05/11/18 | 1107-1124 | 24/Cloudy                   | Middle        | 4.7         | 24.7 | 31.2         | 31.2     | 7.22         | 7.20       | 7.22              | 103.7                   | 103.5                | 3.28         | 3.27         | 3.27              | 2.7        | 3.3         | 3.0               |
|          |           |                             | Bottom        | 8.3         | 24.5 | 31.2<br>31.2 | 31.3     | 7.18<br>7.13 | 7.15       | 7.15              | 103.2<br>102.2          | 102.4                | 3.26<br>3.32 | 3.31         |                   | 3.8<br>3.0 | 2.9         |                   |
|          |           |                             | Surface       | 1.0         | 25.7 | 31.3<br>31.2 | 31.2     | 7.16<br>6.41 | 6.47       |                   | 102.6<br>93.7           | 94.6                 | 3.29<br>3.75 | 3.76         |                   | 2.8<br>2.2 | 2.9         |                   |
| 07/11/18 | 1225-1239 | 28/Fine                     | Middle        | 4.6         | 25.6 | 31.2<br>31.5 | 31.5     | 6.53<br>6.36 | 6.30       | 6.39              | 95.5<br>92.9            | 92.1                 | 3.76<br>3.48 | 3.50         | 3.54              | 3.6<br>2.6 | 2.6         | 2.7               |
|          |           |                             | Bottom        | 8.1         | 25.5 | 31.5<br>31.6 | 31.7     | 6.24<br>6.14 | 6.18       | 6.18              | 91.2<br>89.8            | 90.4                 | 3.51<br>3.33 | 3.36         |                   | 2.5<br>2.5 | 2.5         |                   |
|          |           |                             | Surface       | 1.0         | 25.6 | 31.7<br>32.0 | 32.0     | 6.22<br>6.94 | 6.92       |                   | 90.9<br>101.6           | 101.4                | 3.38<br>2.65 | 2.63         |                   | 2.5<br>5.7 | 4.9         |                   |
| 09/11/18 | 1340-1358 | 26/Cloudy                   | Middle        | 4.6         | 25.4 | 32.0<br>32.2 | 32.2     | 6.90<br>6.76 | 6.74       | 6.83              | 101.1<br>98.7           | 98.4                 | 2.61<br>2.34 | 2.36         | 2.61              | 4.0<br>3.4 | 4.2         | 4.6               |
| 00,11,10 |           | 20/010003                   | Bottom        | 8.2         | 25.3 | 32.1<br>32.3 | 32.3     | 6.71<br>6.53 | 6.50       | 6.50              | 98.0<br>94.8            | 94.4                 | 2.37<br>2.83 | 2.86         | 2.01              | 4.9<br>6.2 | 4.9         |                   |
|          |           |                             | Surface       | 1.0         | 25.6 | 32.2<br>31.2 | 31.3     | 6.46<br>6.32 | 6.40       | 0.50              | 93.9<br>92.3            | 93.4                 | 2.88<br>3.66 | 3.68         |                   | 3.5<br>3.2 | 4.9         |                   |
| 10/11/10 | 4500 4540 |                             |               |             |      | 31.3<br>31.7 |          | 6.47<br>6.15 |            | 6.29              | 94.5<br>89.9            |                      | 3.69<br>3.41 |              | 0.40              | 6.4<br>3.1 |             |                   |
| 12/11/18 | 1532-1548 | 25/Cloudy                   | Middle        | 4.7         | 25.5 | 31.7<br>31.8 | 31.7     | 6.22<br>6.04 | 6.19       |                   | 90.9<br>88.1            | 90.4                 | 3.44<br>3.25 | 3.43         | 3.46              | 3.1<br>2.7 | 3.1         | 3.6               |
|          |           |                             | Bottom        | 8.3         | 25.3 | 31.9<br>32.0 | 31.9     | 6.11<br>6.96 | 6.08       | 6.08              | 89.1<br>101.4           | 88.6                 | 3.29<br>3.17 | 3.27         |                   | 3.1<br>3.7 | 2.9         |                   |
|          |           |                             | Surface       | 1.0         | 25.3 | 32.0<br>32.1 | 32.0     | 6.92<br>6.75 | 6.94       | 6.83              | 100.8<br>98.3           | 101.1                | 3.20<br>3.06 | 3.19         |                   | 1.8<br>2.1 | 2.8         |                   |
| 16/11/18 | 1902-1915 | 21/Cloudy                   | Middle        | 4.7         | 25.3 | 32.1<br>32.2 | 32.1     | 6.70<br>6.53 | 6.73       |                   | 97.6<br>95.1            | 98.0                 | 3.02         | 3.04         | 3.19              | 3.3        | 2.7         | 2.8               |
|          |           |                             | Bottom        | 8.4         | 25.2 | 32.1         | 32.2     | 6.58         | 6.56       | 6.56              | 95.9                    | 95.5                 | 3.31<br>3.35 | 3.33         |                   | 3.1        | 2.9         |                   |
|          |           |                             | Surface       | 1.0         | 25.5 | 31.9<br>32.0 | 32.0     | 7.27         | 7.28       | 7.17              | 106.4<br>106.7          | 106.6                | 3.92<br>3.96 | 3.94         |                   | 5.8<br>3.9 | 4.9         |                   |
| 19/11/18 | 930-943   | 24/Fine                     | Middle        | 4.4         | 25.4 | 32.2<br>32.1 | 32.2     | 7.08<br>7.05 | 7.07       |                   | 103.6<br>103.2          | 103.4                | 3.74<br>3.70 | 3.72         | 3.88              | 2.8<br>3.3 | 3.1         | 3.6               |
|          |           |                             | Bottom        | 7.8         | 25.4 | 32.2<br>32.2 | 32.2     | 7.02<br>6.99 | 7.01       | 7.01              | 102.7<br>102.3          | 102.5                | 3.98<br>3.95 | 3.97         |                   | 2.2<br>3.6 | 2.9         |                   |

# Mid-Ebb Tide

#### Monitoring Station : TKO-M4

| Date     | Sampling  | Ambient Temp                | Monitoring [ | Conth (m)    | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxyger | n (mg/L)          |                | d Oxygen<br>tion (%) | Tu           | urbidity (NT | U)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|-----------------------------|--------------|--------------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Dale     | Duration  | (°C) / Weather<br>Condition | wontoning L  | Septri (III) | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                             | Surface      | 1.0          | 25.2 | 32.2         | 32.2     | 6.95         | 6.93       |                   | 101.3          | 101.0                | 2.84         | 2.83         |                   | 3.1        | 2.9         |                   |
|          |           |                             |              |              |      | 32.2         |          | 6.91         |            | 6.87              | 100.7          |                      | 2.81         |              |                   | 2.7        |             | -                 |
| 21/11/18 | 1048-1112 | 23/Cloudy                   | Middle       | 4.8          | 25.1 | 32.3<br>32.2 | 32.3     | 6.78<br>6.85 | 6.82       |                   | 98.7<br>99.7   | 99.2                 | 2.98         | 2.99         | 2.85              | 2.7        | 2.8         | 2.7               |
|          |           |                             |              |              |      | 32.2         |          | 6.63         | -          |                   | 99.7           |                      | 2.76         |              |                   | 2.6        |             |                   |
|          |           |                             | Bottom       | 8.5          | 25.0 | 32.4         | 32.4     | 6.67         | 6.65       | 6.65              | 90.5           | 96.8                 | 2.70         | 2.74         |                   | 2.0        | 2.5         |                   |
|          |           |                             | . <i>(</i>   |              |      | 31.9         |          | 7.19         |            |                   | 103.3          | 100.0                | 4.03         |              |                   | 3.7        |             |                   |
|          |           |                             | Surface      | 1.0          | 24.4 | 32.0         | 32.0     | 7.15         | 7.17       | 7.01              | 102.7          | 103.0                | 4.01         | 4.02         |                   | 5.0        | 4.4         |                   |
| 23/11/18 | 1218-1231 | 24/Fine                     | Middle       | 4.4          | 24.3 | 32.0         | 32.1     | 6.87         | 6.86       | 7.01              | 98.5           | 98.3                 | 3.98         | 3.96         | 4.03              | 2.3        | 2.9         | 3.8               |
| 23/11/10 | 1210-1231 | 24/Fille                    | wildule      | 4.4          | 24.5 | 32.1         | 32.1     | 6.84         | 0.80       |                   | 98.1           | 90.5                 | 3.94         | 3.90         | 4.03              | 3.5        | 2.9         | 3.0               |
|          |           |                             | Bottom       | 7.8          | 24.2 | 32.1         | 32.1     | 6.91         | 6.93       | 6.93              | 99.0           | 99.2                 | 4.14         | 4.12         |                   | 4.9        | 4.2         |                   |
|          |           |                             | Bottom       | 7.0          | 24.2 | 32.1         | 02.1     | 6.94         | 0.00       | 0.00              | 99.4           | 00.2                 | 4.10         | 1.12         |                   | 3.5        | 1.2         |                   |
|          |           |                             | Surface      | 1.0          | 23.3 | 30.8         | 30.9     | 7.12         | 7.10       |                   | 99.7           | 99.5                 | 3.98         | 3.97         |                   | 2.8        | 3.5         |                   |
|          |           |                             |              |              |      | 30.9         |          | 7.08         |            | 7.01              | 99.2           |                      | 3.95         |              |                   | 4.1        |             | -                 |
| 26/11/18 | 1430-1445 | 19/Rainy                    | Middle       | 4.5          | 23.5 | 31.3         | 31.3     | 6.94<br>6.90 | 6.92       |                   | 97.7<br>97.2   | 97.5                 | 4.07         | 4.06         | 4.06              | 2.5<br>2.8 | 2.7         | 2.9               |
|          |           |                             |              |              |      | 31.3<br>31.3 |          | 6.90         |            |                   | 97.2<br>97.3   |                      | 4.04         |              |                   | 2.8        |             | -                 |
|          |           |                             | Bottom       | 8.0          | 23.6 | 31.3         | 31.3     | 6.93         | 6.92       | 6.92              | 97.3           | 97.5                 | 4.15         | 4.17         |                   | 2.4        | 2.5         |                   |
|          |           |                             |              |              |      | 31.1         |          | 7.29         |            |                   | 106.4          |                      | 3.56         |              |                   | 3.3        |             |                   |
|          |           |                             | Surface      | 1.0          | 25.6 | 31.2         | 31.2     | 7.37         | 7.33       | 7.00              | 107.6          | 107.0                | 3.59         | 3.58         |                   | 5.8        | 4.6         |                   |
| 28/11/18 | 1457-1511 | 25/Cloudy                   | Middle       | 4.7          | 25.5 | 31.5         | 31.6     | 7.14         | 7.11       | 7.22              | 104.2          | 103.8                | 3.37         | 3.34         | 3.40              | 1.8        | 2.4         | 3.7               |
| 20/11/10 | 1407-1011 | 25/Cloudy                   | wildule      | 4.7          | 20.0 | 31.6         | 51.0     | 7.08         | 7.11       |                   | 103.4          | 103.0                | 3.31         | 5.54         | 3.40              | 2.9        | 2.4         | 3.7               |
|          |           |                             | Bottom       | 8.3          | 25.4 | 31.7         | 31.8     | 7.02         | 7.06       | 7.06              | 102.5          | 103.1                | 3.26         | 3.28         |                   | 2.9        | 4.3         |                   |
|          |           |                             | Dottom       | 0.0          | 20.4 | 31.8         | 51.0     | 7.10         | 7.00       | 7.00              | 103.6          | 100.1                | 3.29         | 0.20         |                   | 5.6        | 4.0         |                   |
|          |           |                             | Surface      | 1.0          | 25.5 | 31.2         | 31.3     | 7.46         | 7.52       |                   | 108.8          | 109.7                | 3.63         | 3.64         |                   | 2.4        | 3.0         |                   |
|          |           |                             |              |              |      | 31.3         |          | 7.58         |            | 7.46              | 110.5          |                      | 3.64         |              |                   | 3.5        |             |                   |
| 30/11/18 | 1858-1913 | 25/Fine                     | Middle       | 4.6          | 25.4 | 31.6         | 31.7     | 7.36         | 7.39       |                   | 107.3          | 107.8                | 3.60         | 3.59         | 3.53              | 3.0        | 3.0         | 3.3               |
|          |           |                             |              |              |      | 31.7         |          | 7.42         |            |                   | 108.2          |                      | 3.57         |              |                   | 3.0        |             | 4                 |
| l        |           |                             | Bottom       | 8.2          | 25.3 | 31.8<br>31.8 | 31.8     | 7.22         | 7.19       | 7.19              | 105.3<br>104.4 | 104.9                | 3.34<br>3.40 | 3.37         |                   | 2.3<br>5.4 | 3.9         |                   |
|          | 1         |                             |              |              |      | 31.8         |          | 7.16         |            |                   | 104.4          |                      | 3.40         |              |                   | 5.4        |             |                   |

Remark: Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

# Mid-Flood Tide

#### Monitoring Station : TKO-C1

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorin            | ng Depth | Temp | Salini       | ty (ppt) | Dissol       | ved Oxygen | (mg/L)            |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | Ū)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|----------------------|----------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Dale     | Duration  | Condition                      | (n                   | n)       | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface              | 1.0      | 25.3 | 30.8<br>30.7 | 30.8     | 7.26<br>7.23 | 7.25       |                   | 105.2          | 105.0                | 3.36         | 3.34         |                   | 2.4<br>3.5 | 3.0         |                   |
|          |           |                                |                      |          |      | 30.7         |          | 7.23         |            | 7.23              | 104.8<br>103.9 |                      | 3.32<br>3.39 |              |                   | 3.5<br>2.6 |             |                   |
| 02/11/18 | 1352-1411 | 23/Cloudy                      | Middle               | 9.9      | 25.1 | 30.9         | 30.9     | 7.22         | 7.21       |                   | 104.3          | 104.1                | 3.37         | 3.38         | 3.38              | 2.4        | 2.5         | 3.3               |
|          |           |                                | Bottom               | 18.8     | 24.8 | 31.2         | 31.2     | 7.12         | 7.10       | 7.10              | 102.6          | 102.3                | 3.42         | 3.43         |                   | 3.2        | 4.6         |                   |
|          |           |                                |                      |          |      | 31.1<br>31.2 |          | 7.08<br>7.20 |            |                   | 101.9<br>103.9 |                      | 3.43<br>3.23 |              |                   | 5.9<br>3.5 |             |                   |
|          |           |                                | Surface              | 1.0      | 24.9 | 31.1         | 31.2     | 7.25         | 7.23       | 7.19              | 100.0          | 104.2                | 3.19         | 3.21         |                   | 3.7        | 3.6         |                   |
| 05/11/18 | 1548-1608 | 24/Cloudy                      | Middle               | 9.9      | 24.6 | 31.3         | 31.3     | 7.17         | 7.16       | 7.19              | 103.0          | 102.8                | 3.26         | 3.25         | 3.26              | 2.5        | 3.6         | 3.4               |
|          |           |                                |                      |          |      | 31.3         |          | 7.14         | _          |                   | 102.6          |                      | 3.24         |              |                   | 4.7        |             | -                 |
|          |           |                                | Bottom               | 18.7     | 24.4 | 31.5<br>31.4 | 31.5     | 7.06         | 7.07       | 7.07              | 101.4<br>101.2 | 101.3                | 3.32         | 3.31         |                   | 3.5        | 3.1         |                   |
|          |           |                                | Surface              | 1.0      | 25.6 | 31.1         | 31.1     | 6.68         | 6.71       |                   | 97.5           | 98.0                 | 3.68         | 3.70         |                   | 5.6        | 4.7         |                   |
|          |           |                                | Gundoo               | 1.0      | 20.0 | 31.1         | 01.1     | 6.74         | 0.71       | 6.66              | 98.4           | 00.0                 | 3.71         | 0.70         |                   | 3.7        |             |                   |
| 07/11/18 | 1651-1703 | 27/Fine                        | Middle               | 10.8     | 25.3 | 31.3<br>31.4 | 31.4     | 6.53<br>6.69 | 6.61       |                   | 94.9<br>97.2   | 96.1                 | 3.54<br>3.58 | 3.56         | 3.53              | 2.0        | 2.1         | 3.4               |
|          |           |                                | Bottom               | 20.5     | 25.0 | 31.7         | 31.8     | 6.42         | 6.45       | 6.45              | 93.0           | 93.5                 | 3.31         | 3.32         |                   | 3.8        | 3.5         |                   |
|          |           |                                | Bollom               | 20.5     | 25.0 | 31.8         | 51.0     | 6.48         | 0.45       | 0.45              | 93.9           | 93.5                 | 3.33         | 3.32         |                   | 3.1        | 3.5         |                   |
|          |           |                                | Surface              | 1.0      | 25.4 | 31.8<br>31.8 | 31.8     | 7.05<br>6.98 | 7.02       |                   | 103.0<br>102.2 | 102.6                | 2.45<br>2.41 | 2.43         |                   | 4.8<br>4.5 | 4.7         |                   |
| 00/14/10 | 4750 4007 |                                | M <sup>2</sup> dalla | 40.0     | 05.0 | 31.9         |          | 6.83         | 0.04       | 6.91              | 99.4           | 00.4                 | 2.19         | 0.00         | 0.40              | 4.2        | 5.0         |                   |
| 09/11/18 | 1750-1807 | 24/Cloudy                      | Middle               | 10.9     | 25.2 | 32.0         | 32.0     | 6.79         | 6.81       |                   | 98.8           | 99.1                 | 2.25         | 2.22         | 2.46              | 6.3        | 5.3         | 5.0               |
|          |           |                                | Bottom               | 20.7     | 25.0 | 32.2<br>32.2 | 32.2     | 6.62<br>6.55 | 6.59       | 6.59              | 96.0<br>95.1   | 95.6                 | 2.71         | 2.74         |                   | 4.6<br>5.3 | 5.0         |                   |
|          |           |                                |                      |          |      | 31.2         |          | 6.83         |            |                   | 95.1<br>99.6   |                      | 3.41         |              |                   | 2.9        |             |                   |
|          |           |                                | Surface              | 1.0      | 25.5 | 31.3         | 31.3     | 6.94         | 6.89       | 6.80              | 101.2          | 100.4                | 3.44         | 3.43         |                   | 3.5        | 3.2         |                   |
| 12/11/18 | 858-912   | 25/Cloudy                      | Middle               | 10.8     | 25.2 | 31.6         | 31.6     | 6.76         | 6.72       | 0.00              | 98.3           | 97.7                 | 3.27         | 3.26         | 3.27              | 3.3        | 3.4         | 3.3               |
|          |           |                                |                      |          |      | 31.6<br>31.7 |          | 6.68<br>6.54 |            |                   | 97.1<br>94.7   |                      | 3.24<br>3.11 |              |                   | 3.5<br>4.9 |             | -                 |
|          |           |                                | Bottom               | 20.5     | 24.9 | 31.8         | 31.8     | 6.67         | 6.61       | 6.61              | 96.5           | 95.6                 | 3.14         | 3.13         |                   | 1.7        | 3.3         |                   |
|          |           |                                | Surface              | 1.0      | 25.7 | 31.9         | 31.9     | 7.19         | 7.17       |                   | 105.5          | 105.3                | 4.08         | 4.06         |                   | 4.7        | 5.2         |                   |
|          |           |                                |                      |          |      | 31.9<br>32.2 |          | 7.15<br>6.92 |            | 7.04              | 105.0<br>101.6 |                      | 4.04         |              | r                 | 5.7<br>4.0 |             | -                 |
| 14/11/18 | 1000-1015 | 25/Cloudy                      | Middle               | 11.1     | 25.6 | 32.2         | 32.2     | 6.89         | 6.91       |                   | 101.2          | 101.4                | 4.17         | 4.14         | 4.11              | 2.7        | 3.4         | 4.2               |
|          |           |                                | Bottom               | 21.2     | 25.5 | 32.3         | 32.3     | 6.87         | 6.86       | 6.86              | 100.7          | 100.5                | 4.10         | 4.13         |                   | 3.5        | 4.2         | 1                 |
|          |           |                                | 20110111             |          | 20.0 | 32.2         | 02.0     | 6.84<br>7.08 | 0.00       | 0.00              | 100.3          |                      | 4.16         |              |                   | 4.8        |             |                   |
|          |           |                                | Surface              | 1.0      | 25.5 | 31.8<br>31.8 | 31.8     | 7.08         | 7.06       |                   | 103.5<br>102.9 | 103.2                | 3.15<br>3.18 | 3.17         |                   | 2.8        | 2.6         |                   |
| 16/11/18 | 1243-1257 | 24/Cloudy                      | Middle               | 10.9     | 25.3 | 32.0         | 32.0     | 6.85         | 6.83       | 6.94              | 99.8           | 99.5                 | 3.03         | 3.05         | 3.16              | 1.7        | 2.5         | 2.2               |
| 10/11/10 | 1270-1207 |                                | wildule              | 10.9     | 20.0 | 32.0         | 52.0     | 6.80         | 0.05       |                   | 99.1           | 33.5                 | 3.07         | 5.05         | 5.10              | 3.3        | 2.0         | <u> </u>          |
|          |           |                                | Bottom               | 20.7     | 25.1 | 32.2<br>32.3 | 32.3     | 6.54<br>6.58 | 6.56       | 6.56              | 94.9<br>95.5   | 95.2                 | 3.24         | 3.26         |                   | 1.6<br>1.4 | 1.5         |                   |
|          |           |                                |                      |          |      | JZ.J         | I        | 0.00         |            |                   | 90.0           |                      | 3.21         |              |                   | 1.4        |             | I                 |

# Mid-Flood Tide

#### Monitoring Station : TKO-C1

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorin | ng Depth | Temp | Salinit      | ty (ppt) | Dissolv      | ed Oxygen | (mg/L)            |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper     | nded Solids | (mg/L)            |
|----------|-----------|--------------------------------|-----------|----------|------|--------------|----------|--------------|-----------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | Condition                      | (n        | ו)       | (°C) | Value        | Average  | Value        | Average   | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0      | 25.8 | 32.0<br>32.1 | 32.1     | 7.49<br>7.45 | 7.47      | 7 00              | 110.1<br>109.5 | 109.8                | 3.92<br>3.96 | 3.94         |                   | 2.7<br>2.9 | 2.8         |                   |
| 19/11/18 | 1501-1529 | 24/Fine                        | Middle    | 11.3     | 25.6 | 32.2<br>32.3 | 32.3     | 7.33<br>7.30 | 7.32      | 7.39              | 107.6<br>107.2 | 107.4                | 4.04<br>4.08 | 4.06         | 4.02              | 3.0<br>4.4 | 3.7         | 3.3               |
|          |           |                                | Bottom    | 21.6     | 25.5 | 32.3<br>32.4 | 32.4     | 7.21         | 7.20      | 7.20              | 105.7          | 105.5                | 4.09         | 4.07         |                   | 4.6        | 3.5         |                   |
|          |           |                                | Surface   | 1.0      | 25.3 | 32.0<br>32.1 | 32.1     | 7.08         | 7.10      |                   | 103.4          | 103.6                | 2.82         | 2.81         |                   | 2.7        | 2.9         |                   |
| 21/11/18 | 1549-1603 | 25/Cloudy                      | Middle    | 10.8     | 25.1 | 32.3         | 32.3     | 6.85         | 6.83      | 6.96              | 103.8<br>99.8  | 99.5                 | 2.80<br>2.69 | 2.67         | 2.83              | 3.0<br>3.8 | 3.4         | 3.4               |
|          |           |                                | Bottom    | 20.6     | 24.9 | 32.2<br>32.5 | 32.5     | 6.80<br>6.57 | 6.54      | 6.54              | 99.1<br>95.5   | 95.1                 | 2.64<br>2.98 | 3.00         |                   | 3.0<br>3.9 | 3.9         |                   |
|          |           |                                | Surface   | 1.0      | 24.8 | 32.4<br>31.8 | 31.9     | 6.51<br>7.37 | 7.38      |                   | 94.6<br>106.5  | 106.7                | 3.02<br>4.02 | 4.04         |                   | 3.9<br>5.4 | 6.2         |                   |
| 00/44/40 | 4040 4700 | 25/Fine                        |           | -        | 24.6 | 31.9<br>32.1 | 32.2     | 7.39<br>7.12 |           | 7.26              | 106.8<br>102.7 | 100.7                | 4.05<br>4.14 | 4.04         |                   | 6.9<br>4.3 |             | 5.0               |
| 23/11/18 | 1648-1702 | 25/Fine                        | Middle    | 11.4     |      | 32.2<br>32.2 |          | 7.15<br>7.04 | 7.14      |                   | 102.3<br>101.4 |                      | 4.10<br>4.18 |              | 4.10              | 4.7<br>5.6 | 4.5         | 5.3               |
|          |           |                                | Bottom    | 21.8     | 24.5 | 32.3<br>30.9 | 32.3     | 7.07         | 7.06      | 7.06              | 101.8<br>101.9 | 101.6                | 4.12<br>3.92 | 4.15         |                   | 5.1<br>2.9 | 5.4         |                   |
|          |           |                                | Surface   | 1.0      | 23.6 | 30.8         | 30.9     | 7.20         | 7.22      | 7.08              | 101.4          | 101.7                | 3.96         | 3.94         |                   | 2.9        | 2.9         |                   |
| 26/11/18 | 810-824   | 18/Rainy                       | Middle    | 11.3     | 23.7 | 31.2<br>31.3 | 31.3     | 6.95<br>6.91 | 6.93      |                   | 98.1<br>97.6   | 97.9                 | 4.03<br>4.05 | 4.04         | 4.04              | 2.3<br>3.0 | 2.7         | 3.1               |
|          |           |                                | Bottom    | 21.6     | 23.8 | 31.3<br>31.4 | 31.4     | 6.90<br>6.94 | 6.92      | 6.92              | 97.7<br>98.3   | 98.0                 | 4.15<br>4.11 | 4.13         |                   | 4.4<br>2.8 | 3.6         |                   |
|          |           |                                | Surface   | 1.0      | 25.5 | 31.0<br>31.1 | 31.1     | 7.48<br>7.59 | 7.54      | 7.42              | 108.9<br>110.5 | 109.7                | 3.56<br>3.60 | 3.58         |                   | 6.0<br>4.0 | 5.0         |                   |
| 28/11/18 | 0956-1010 | 24/Cloudy                      | Middle    | 10.9     | 25.3 | 31.4<br>31.3 | 31.4     | 7.26<br>7.33 | 7.30      | 7.42              | 105.5<br>106.5 | 106.0                | 3.43<br>3.47 | 3.45         | 3.38              | 4.0<br>5.0 | 4.5         | 4.5               |
|          |           |                                | Bottom    | 20.6     | 25.1 | 31.6<br>31.6 | 31.6     | 7.18<br>7.22 | 7.20      | 7.20              | 104.2<br>104.8 | 104.5                | 3.10<br>3.13 | 3.12         |                   | 3.8<br>4.2 | 4.0         |                   |
|          |           |                                | Surface   | 1.0      | 25.6 | 31.2<br>31.3 | 31.3     | 7.76         | 7.81      |                   | 113.3<br>114.6 | 114.0                | 3.55         | 3.57         |                   | 2.7        | 3.0         |                   |
| 30/11/18 | 1212-1227 | 25/Fine                        | Middle    | 10.9     | 25.4 | 31.6         | 31.6     | 7.53         | 7.58      | 7.69              | 109.8          | 110.5                | 3.26         | 3.28         | 3.34              | 3.4        | 3.3         | 2.9               |
|          |           |                                | Bottom    | 20.1     | 25.2 | 31.6<br>31.7 | 31.8     | 7.62         | 7.44      | 7.44              | 111.1<br>108.7 | 108.3                | 3.30<br>3.14 | 3.16         |                   | 3.2<br>2.7 | 2.5         |                   |
|          |           |                                |           |          |      | 31.8         |          | 7.41         |           |                   | 107.9          |                      | 3.17         |              |                   | 2.2        |             |                   |

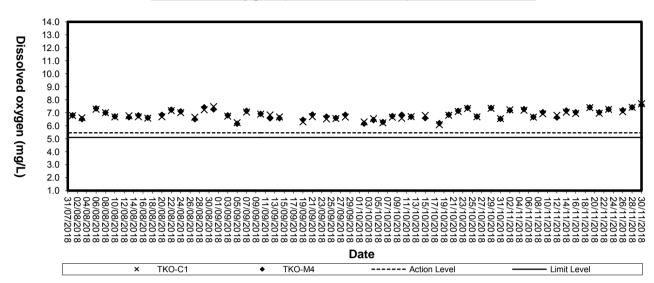
# Mid-Flood Tide

#### Monitoring Station : TKO-M4

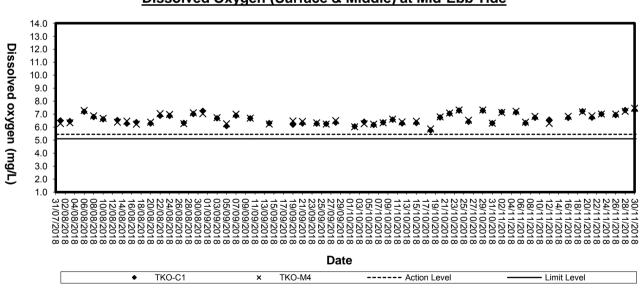
| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorir | ng Depth | Temp | Salini               | ty (ppt) | Dissolv      | ved Oxyger | (mg/L)            |                         | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper            | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|-----------|----------|------|----------------------|----------|--------------|------------|-------------------|-------------------------|----------------------|--------------|--------------|-------------------|-------------------|-------------|-------------------|
| Date     | Duration  | Condition                      | (n        | n)       | (°C) | Value                | Average  | Value        | Average    | Depth-<br>average | Value                   | Average              | Value        | Average      | Depth-<br>average | Value             | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0      | 25.4 | 30.7<br>30.8         | 30.8     | 7.21<br>7.18 | 7.20       |                   | 104.6<br>104.2          | 104.4                | 3.34<br>3.37 | 3.36         |                   | 5.2<br>3.0        | 4.1         |                   |
| 02/11/18 | 1528-1544 | 23/Cloudy                      | Middle    | 4.9      | 25.3 | 30.8<br>30.7         | 30.8     | 7.16         | 7.17       | 7.18              | 103.8<br>104.1          | 104.0                | 3.38         | 3.38         | 3.38              | 3.0<br>3.2        | 3.1         | 3.5               |
|          |           |                                | Bottom    | 8.7      | 25.2 | 30.9                 | 30.9     | 7.12         | 7.14       | 7.14              | 104.1<br>103.0<br>103.5 | 103.3                | 3.41         | 3.40         |                   | 3.3<br>3.3        | 3.3         | +                 |
|          |           |                                | Surface   | 1.0      | 24.8 | 30.8<br>31.1         | 31.2     | 7.15         | 7.30       |                   | 104.8                   | 105.1                | 3.38<br>3.19 | 3.18         |                   | 2.3               | 3.0         |                   |
| 05/11/18 | 1723-1739 | 24/Cloudy                      | Middle    | 4.8      | 24.7 | 31.2<br>31.2         | 31.2     | 7.31<br>7.25 | 7.27       | 7.28              | 105.3<br>104.2          | 104.5                | 3.16<br>3.24 | 3.23         | 3.22              | 3.6<br>1.9        | 2.3         | 3.3               |
|          |           | ,                              | Bottom    | 8.6      | 24.7 | 31.1<br>31.2         | 31.2     | 7.29<br>7.18 | 7.20       | 7.20              | 104.7<br>103.2          | 103.4                | 3.21<br>3.23 | 3.26         |                   | 2.7<br>3.1        | 4.7         |                   |
|          |           |                                |           |          |      | 31.2<br>31.1         | -        | 7.21<br>6.75 |            | 1.20              | 103.6<br>98.5           |                      | 3.28<br>3.50 |              |                   | 6.3<br>2.3        |             |                   |
|          |           |                                | Surface   | 1.0      | 25.6 | 31.2<br>31.3         | 31.2     | 6.83<br>6.60 | 6.79       | 6.67              | 99.7<br>96.4            | 99.1                 | 3.55<br>3.27 | 3.53         |                   | 3.9<br>3.2        | 3.1         | - I               |
| 07/11/18 | 1801-1817 | 27/Fine                        | Middle    | 4.7      | 25.5 | 31.4<br>31.8         | 31.4     | 6.51<br>6.38 | 6.56       |                   | 95.0<br>93.1            | 95.7                 | 3.21<br>3.11 | 3.24         | 3.30              | 2.3<br>2.0        | 2.8         | 2.8               |
|          |           |                                | Bottom    | 8.3      | 25.4 | 31.8                 | 31.8     | 6.47         | 6.43       | 6.43              | 94.5                    | 93.8                 | 3.16         | 3.14         |                   | 2.8               | 2.4         |                   |
|          |           |                                | Surface   | 1.0      | 25.3 | 31.9<br>31.8         | 31.9     | 7.13<br>7.19 | 7.16       | 7.05              | 104.1<br>104.9          | 104.5                | 2.39<br>2.44 | 2.42         |                   | 3.5<br>3.6        | 3.6         |                   |
| 09/11/18 | 1859-1913 | 24/Cloudy                      | Middle    | 4.8      | 25.1 | 32.1<br>32.0         | 32.1     | 6.95<br>6.91 | 6.93       |                   | 101.1<br>100.5          | 100.8                | 2.23<br>2.26 | 2.25         | 2.44              | 4.2<br>7.7        | 6.0         | 4.4               |
|          |           |                                | Bottom    | 8.5      | 25.0 | 32.2<br>32.1         | 32.2     | 6.82<br>6.75 | 6.79       | 6.79              | 98.9<br>97.4            | 98.2                 | 2.64<br>2.68 | 2.66         |                   | 3.2<br>3.9        | 3.6         |                   |
|          |           |                                | Surface   | 1.0      | 25.5 | 31.2<br>31.3         | 31.3     | 6.79<br>6.63 | 6.71       | 0.00              | 99.0<br>96.7            | 97.9                 | 3.54<br>3.58 | 3.56         |                   | 3.0<br>3.3        | 3.2         |                   |
| 12/11/18 | 1018-1034 | 25/Cloudy                      | Middle    | 4.9      | 25.4 | 31.6<br>31.7         | 31.7     | 6.52<br>6.58 | 6.55       | 6.63              | 95.0<br>95.9            | 95.5                 | 3.10<br>3.14 | 3.12         | 3.25              | 5.0<br>5.6        | 5.3         | 3.8               |
|          |           |                                | Bottom    | 8.7      | 25.3 | 31.8<br>31.8         | 31.8     | 6.48<br>6.36 | 6.42       | 6.42              | 94.5<br>92.7            | 93.6                 | 3.04<br>3.08 | 3.06         |                   | 2.0<br>3.7        | 2.9         |                   |
|          |           |                                | Surface   | 1.0      | 25.7 | 31.9<br>32.0         | 32.0     | 7.28<br>7.25 | 7.27       |                   | 106.9<br>106.5          | 106.7                | 3.82<br>3.78 | 3.80         |                   | 2.2<br>3.2        | 2.7         |                   |
| 14/11/18 | 1115-1128 | 25/Cloudy                      | Middle    | 4.8      | 25.5 | 32.0<br>32.1         | 32.1     | 7.09         | 7.08       | 7.17              | 100.3<br>103.8<br>103.4 | 103.6                | 3.90<br>3.94 | 3.92         | 3.83              | 5.0<br>4.8        | 4.9         | 3.8               |
|          |           |                                | Bottom    | 8.6      | 25.5 | 32.1<br>32.1<br>32.1 | 32.1     | 7.04         | 7.06       | 7.06              | 103.4<br>103.0<br>103.4 | 103.2                | 3.79<br>3.75 | 3.77         |                   | 4.8<br>2.5<br>4.8 | 3.7         | †                 |
|          |           |                                | Surface   | 1.0      | 25.5 | 31.8                 | 31.9     | 7.13<br>7.18 | 7.16       |                   | 104.2                   | 104.6                | 3.05         | 3.03         |                   | 4.0<br>2.0<br>3.2 | 2.6         |                   |
| 16/11/18 | 1352-1408 | 24/Cloudy                      | Middle    | 4.9      | 25.4 | 31.9<br>32.0         | 32.0     | 6.96         | 6.93       | 7.04              | 105.0<br>101.5          | 101.2                | 3.01<br>2.94 | 2.93         | 3.04              | 1.9               | 2.7         | 2.5               |
|          |           |                                | Bottom    | 8.8      | 25.3 | 32.0<br>32.1         | 32.2     | 6.90<br>6.74 | 6.72       | 6.72              | 100.8<br>98.2           | 97.9                 | 2.91<br>3.15 | 3.17         |                   | 3.4<br>2.1        | 2.2         |                   |
|          |           |                                |           |          |      | 32.2                 |          | 6.70         |            | -                 | 97.6                    |                      | 3.19         | -            |                   | 2.3               |             |                   |

# Mid-Flood Tide

#### Monitoring Station : TKO-M4

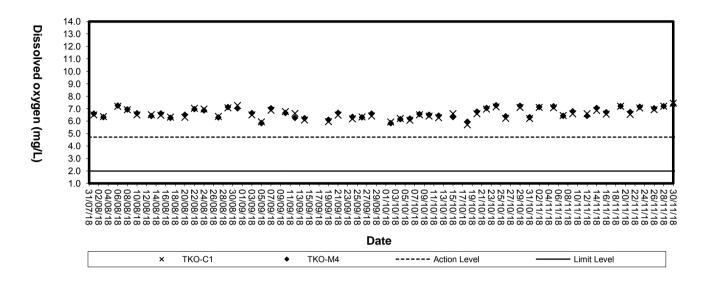

|          | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorin |      | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxyger | ı (mg/L)          |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|-----------|------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | Condition                      | (n        | 1)   | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0  | 25.7 | 32.1<br>32.1 | 32.1     | 7.56<br>7.53 | 7.55       |                   | 111.1<br>110.7 | 110.9                | 3.73<br>3.70 | 3.72         |                   | 3.5<br>3.3 | 3.4         |                   |
| 19/11/18 | 1625-1637 | 24/Fine                        | Middle    | 4.9  | 25.4 | 32.3         | 32.3     | 7.27         | 7.28       | 7.41              | 106.4          | 106.6                | 3.78         | 3.77         | 3.78              | 3.3        | 3.4         | 3.2               |
|          |           |                                | Datta     |      | 25.4 | 32.2<br>32.3 | 32.3     | 7.29<br>7.18 | 7.20       | 7.20              | 106.7<br>105.1 | 105.4                | 3.75<br>3.88 | 3.86         |                   | 3.5<br>2.4 | 2.8         |                   |
|          |           |                                | Bottom    | 8.8  | 25.4 | 32.3         | 32.3     | 7.22         | 7.20       | 7.20              | 105.6          | 105.4                | 3.84         | 3.80         |                   | 3.2        | 2.8         |                   |
|          |           |                                | Surface   | 1.0  | 25.3 | 32.1<br>32.0 | 32.1     | 7.12<br>7.15 | 7.14       | 7.04              | 104.0<br>104.4 | 104.2                | 2.74<br>2.70 | 2.72         |                   | 3.4<br>3.1 | 3.3         |                   |
| 21/11/18 | 1700-1716 | 25/Cloudy                      | Middle    | 4.9  | 25.2 | 32.2<br>32.2 | 32.2     | 6.96<br>6.92 | 6.94       | 7.04              | 101.5<br>100.9 | 101.2                | 2.58<br>2.63 | 2.61         | 2.73              | 3.0<br>3.7 | 3.4         | 3.2               |
|          |           |                                |           |      |      | 32.2         |          | 6.77         |            |                   | 98.6           |                      | 2.85         |              |                   | 2.8        |             | •                 |
|          |           |                                | Bottom    | 8.8  | 25.0 | 32.3         | 32.3     | 6.70         | 6.74       | 6.74              | 97.6           | 98.1                 | 2.89         | 2.87         |                   | 3.1        | 3.0         |                   |
|          |           |                                | Surface   | 1.0  | 24.7 | 31.9<br>32.0 | 32.0     | 7.29<br>7.33 | 7.31       |                   | 105.1<br>105.6 | 105.4                | 3.82         | 3.84         |                   | 6.1<br>5.3 | 5.7         |                   |
| 23/11/18 | 1800-1813 | 25/Fine                        | Middle    | 4.7  | 24.5 | 32.2         | 32.2     | 7.20         | 7.22       | 7.26              | 103.7          | 104.0                | 3.97         | 3.95         | 3.95              | 4.5        | 5.1         | 4.7               |
| 20/11/10 | 1000 1010 | 20/1 1110                      | inidalo   |      | 20   | 32.1         | 02.2     | 7.23         |            |                   | 104.2          |                      | 3.92         | 0.00         | 0.00              | 5.6        | 0.1         |                   |
|          |           |                                | Bottom    | 8.4  | 24.5 | 32.2<br>32.2 | 32.2     | 7.17<br>7.14 | 7.16       | 7.16              | 103.3<br>102.9 | 103.1                | 4.03         | 4.05         |                   | 2.6<br>4.2 | 3.4         |                   |
|          |           |                                | Surface   | 1.0  | 23.6 | 30.9         | 31.0     | 7.33         | 7.32       |                   | 103.2          | 103.0                | 3.76         | 3.74         |                   | 2.8        | 3.0         |                   |
|          |           |                                |           |      |      | 31.0<br>31.3 |          | 7.30<br>7.07 |            | 7.20              | 102.8<br>100.0 |                      | 3.72<br>3.93 |              |                   | 3.2<br>4.6 |             |                   |
| 26/11/18 | 924-937   | 18/Rainy                       | Middle    | 4.9  | 23.7 | 31.4         | 31.4     | 7.07         | 7.08       |                   | 100.0          | 100.2                | 3.93         | 3.92         | 3.87              | 3.8        | 4.2         | 3.3               |
|          |           |                                | Bottom    | 8.8  | 23.8 | 31.4         | 31.4     | 7.02         | 7.04       | 7.04              | 99.4           | 99.6                 | 3.98         | 3.97         |                   | 2.3        | 2.6         |                   |
|          |           |                                |           |      |      | 31.4<br>31.0 |          | 7.05<br>7.48 |            |                   | 99.8<br>108.9  |                      | 3.95<br>3.56 |              |                   | 2.8<br>3.7 |             |                   |
|          |           |                                | Surface   | 1.0  | 25.5 | 31.1         | 31.1     | 7.59         | 7.54       | 7.42              | 110.5          | 109.7                | 3.60         | 3.58         |                   | 4.7        | 4.2         |                   |
| 28/11/18 | 1116-1131 | 24/Cloudy                      | Middle    | 10.8 | 25.3 | 31.4         | 31.4     | 7.26         | 7.30       | 7.42              | 105.5          | 106.0                | 3.43         | 3.45         | 3.38              | 5.2        | 5.5         | 4.3               |
|          |           |                                |           |      |      | 31.3<br>31.6 |          | 7.33<br>7.18 |            |                   | 106.5<br>104.2 |                      | 3.47<br>3.10 |              |                   | 5.8<br>2.6 |             |                   |
|          |           |                                | Bottom    | 20.6 | 25.1 | 31.6         | 31.6     | 7.22         | 7.20       | 7.20              | 104.8          | 104.5                | 3.13         | 3.12         |                   | 3.8        | 3.2         |                   |
|          |           |                                | Surface   | 1.0  | 25.6 | 31.2         | 31.3     | 7.68         | 7.71       |                   | 112.1          | 112.6                | 3.39         | 3.41         |                   | 4.1        | 3.5         |                   |
|          |           |                                |           |      |      | 31.3         |          | 7.74         |            | 7.60              | 113.0          |                      | 3.42         |              |                   | 2.8        |             |                   |
| 30/11/18 | 1338-1355 | 25/Fine                        | Middle    | 4.8  | 25.5 | 31.6<br>31.7 | 31.7     | 7.51<br>7.46 | 7.49       |                   | 109.6<br>108.9 | 109.3                | 3.16<br>3.17 | 3.17         | 3.21              | 5.2<br>4.0 | 4.6         | 3.7               |
|          |           |                                | Bottom    | 8.5  | 25.4 | 31.7<br>31.8 | 31.8     | 7.34<br>7.28 | 7.31       | 7.31              | 107.2<br>106.3 | 106.8                | 3.03<br>3.08 | 3.06         |                   | 3.1<br>3.0 | 3.1         |                   |




Appendix D3

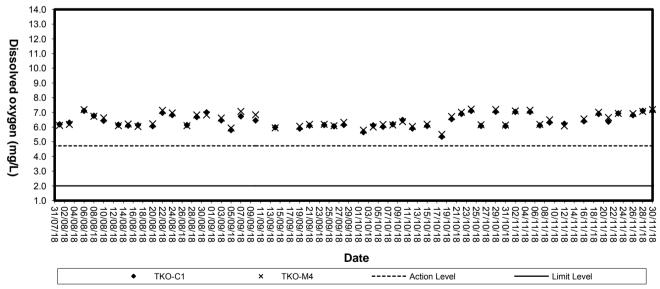
**Graphical Plots of Impact Marine Water Quality Monitoring Data** 



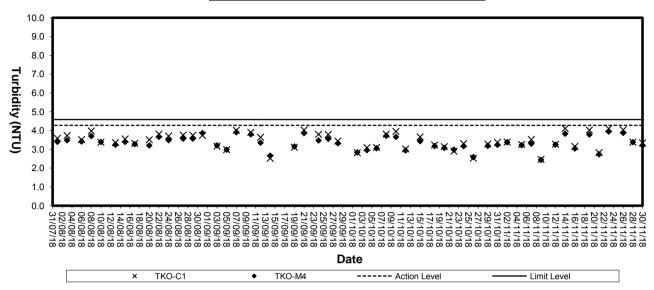



Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide



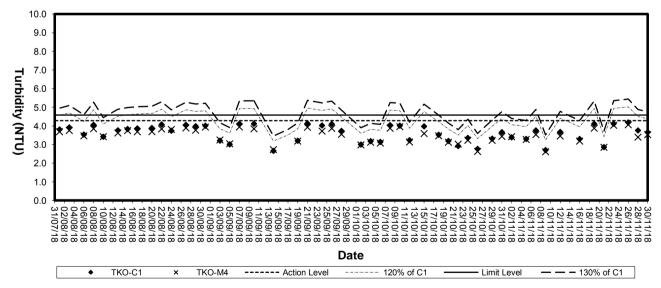

Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide



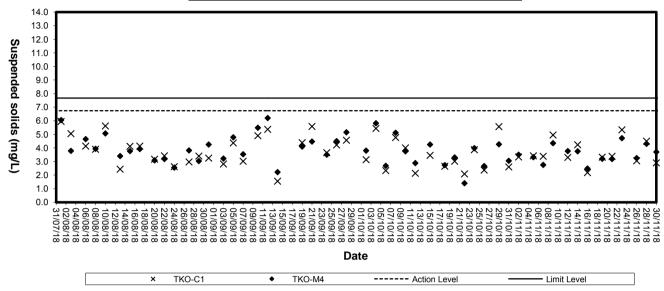



# Dissolved Oxygen (Bottom) at Mid-Flood Tide



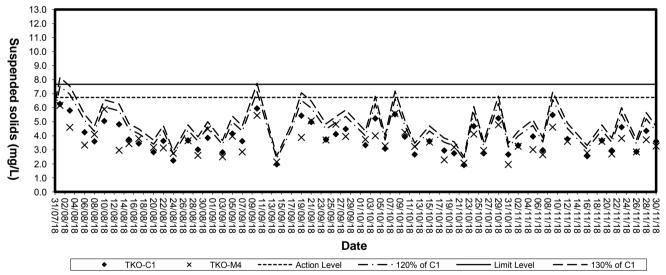





Turbidity (Depth-average) at Mid-Flood Tide


Turbidity(Depth-average) at Mid-Ebb Tide








Suspended solids (Depth-average) at Mid-Flood Tide







Appendix D4

Impact Marine Water Quality Monitoring Results (3RS Project)

# Mid-Ebb Tide



#### Monitoring Station : TKO-C1a

| Date     | Sampling  | Ambient Temp                | Monitorin | g Depth | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxygen | (mg/L)            |                         | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper     | nded Solids | (mg/L)            |
|----------|-----------|-----------------------------|-----------|---------|------|--------------|----------|--------------|------------|-------------------|-------------------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Dale     | Duration  | (°C) / Weather<br>Condition | (m        | 1)      | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value                   | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                             | Surface   | 1.0     | 25.2 | 30.8<br>30.7 | 30.8     | 7.22<br>7.18 | 7.20       |                   | 104.5<br>103.8          | 104.2                | 3.32<br>3.35 | 3.34         |                   | 2.5<br>2.0 | 2.3         |                   |
| 02/11/18 | 837-856   | 23/Cloudy                   | Middle    | 10.4    | 25.1 | 30.8<br>30.9 | 30.9     | 7.15<br>7.11 | 7.13       | 7.17              | 103.3<br>102.8          | 103.1                | 3.36<br>3.39 | 3.38         | 3.39              | 3.4<br>2.8 | 3.1         | 3.0               |
|          |           |                             | Bottom    | 19.8    | 24.9 | 31.2<br>31.2 | 31.2     | 7.02         | 7.04       | 7.04              | 101.3<br>101.9          | 101.6                | 3.45<br>3.47 | 3.46         |                   | 3.9<br>3.5 | 3.7         |                   |
|          |           |                             | Surface   | 1.0     | 24.7 | 31.2<br>31.2 | 31.2     | 7.17         | 7.20       |                   | 101.0<br>103.0<br>103.7 | 103.4                | 3.21<br>3.25 | 3.23         |                   | 2.7<br>2.7 | 2.7         |                   |
| 05/11/18 | 957-1016  | 24/Cloudy                   | Middle    | 10.3    | 24.5 | 31.4         | 31.4     | 7.11         | 7.12       | 7.16              | 102.0                   | 102.1                | 3.27         | 3.26         | 3.26              | 5.3        | 4.2         | 3.5               |
|          |           |                             | Bottom    | 19.6    | 24.4 | 31.3<br>31.5 | 31.6     | 7.13<br>7.03 | 7.05       | 7.05              | 102.2<br>100.7          | 101.0                | 3.24<br>3.31 | 3.30         |                   | 3.1<br>4.7 | 3.7         |                   |
|          |           |                             | Surface   | 1.0     | 25.7 | 31.6<br>31.2 | 31.2     | 7.06<br>6.44 | 6.46       |                   | 101.2<br>94.2           | 94.5                 | 3.29<br>3.65 | 3.67         |                   | 2.7<br>2.7 | 2.7         |                   |
| 07/11/18 | 1123-1137 | 28/Fine                     | Middle    | 10.7    | 25.4 | 31.2<br>31.3 | 31.4     | 6.48<br>6.23 | 6.20       | 6.33              | 94.7<br>90.7            | 90.3                 | 3.69<br>3.42 | 3.45         | 3.54              | 2.6<br>3.0 | 3.0         | 3.0               |
|          |           |                             | Bottom    | 20.4    | 25.1 | 31.5<br>31.6 | 31.7     | 6.17<br>6.07 | 6.11       | 6.11              | 89.8<br>88.1            | 88.7                 | 3.48<br>3.47 | 3.49         |                   | 3.0<br>3.6 | 3.3         |                   |
|          |           |                             | Surface   | 1.0     | 25.6 | 31.7<br>31.8 | 31.9     | 6.15<br>6.71 | 6.73       | 0.11              | 89.3<br>98.2            | 98.5                 | 3.51<br>2.63 | 2.62         |                   | 3.0<br>2.8 | 3.2         |                   |
| 09/11/18 | 1246-1302 | 26/Cloudy                   | Middle    | 10.6    | 25.4 | 31.9<br>32.1 | 32.2     | 6.75<br>6.48 | 6.45       | 6.59              | 98.8<br>94.6            | 94.2                 | 2.60<br>2.48 | 2.50         | 2.66              | 3.5<br>5.0 | 5.1         | 4.7               |
| 09/11/10 | 1240-1302 | 26/Cloudy                   |           |         | -    | 32.2<br>32.4 |          | 6.42<br>6.19 |            |                   | 93.7<br>90.1            |                      | 2.52<br>2.89 |              | 2.00              | 5.2<br>6.3 |             | 4.7               |
|          |           |                             | Bottom    | 20.2    | 25.2 | 32.4<br>31.3 | 32.4     | 6.24<br>6.32 | 6.22       | 6.22              | 90.8<br>92.3            | 90.5                 | 2.84<br>3.58 | 2.87         |                   | 5.3<br>2.7 | 5.8         |                   |
|          |           |                             | Surface   | 1.0     | 25.6 | 31.3<br>31.5 | 31.3     | 6.47<br>6.15 | 6.40       | 6.28              | 94.5<br>89.5            | 93.4                 | 3.64<br>3.36 | 3.61         |                   | 2.1<br>3.3 | 2.4         |                   |
| 12/11/18 | 1426-1440 | 26/Cloudy                   | Middle    | 10.7    | 25.3 | 31.6<br>31.7 | 31.6     | 6.19<br>6.02 | 6.17       |                   | 90.1<br>87.4            | 89.8                 | 3.40<br>3.27 | 3.38         | 3.43              | 2.2<br>3.8 | 2.8         | 2.9               |
|          |           |                             | Bottom    | 20.3    | 25.1 | 31.8         | 31.8     | 6.10         | 6.06       | 6.06              | 88.5                    | 88.0                 | 3.30         | 3.29         |                   | 3.5        | 3.7         |                   |
|          |           |                             | Surface   | 1.0     | 25.3 | 31.9<br>31.9 | 31.9     | 6.72<br>6.76 | 6.74       | 6.63              | 97.9<br>98.5            | 98.2                 | 3.40<br>3.43 | 3.42         |                   | 2.8<br>2.7 | 2.8         |                   |
| 16/11/18 | 1815-1828 | 21/Cloudy                   | Middle    | 10.6    | 25.1 | 32.1<br>32.1 | 32.1     | 6.55<br>6.50 | 6.53       |                   | 95.1<br>94.4            | 94.8                 | 3.25<br>3.29 | 3.27         | 3.41              | 3.6<br>2.2 | 2.9         | 3.1               |
|          |           |                             | Bottom    | 20.2    | 25.0 | 32.3<br>32.2 | 32.3     | 6.24<br>6.28 | 6.26       | 6.26              | 90.5<br>91.1            | 90.8                 | 3.56<br>3.51 | 3.54         |                   | 3.4<br>3.8 | 3.6         |                   |
|          |           |                             | Surface   | 1.0     | 25.5 | 32.0<br>32.1 | 32.1     | 7.17<br>7.14 | 7.16       | 7.10              | 104.9<br>104.5          | 104.7                | 3.92<br>3.89 | 3.91         |                   | 2.8<br>2.6 | 2.7         |                   |
| 19/11/18 | 838-852   | 24/Fine                     | Middle    | 10.4    | 25.3 | 32.2<br>32.3 | 32.3     | 7.04<br>7.06 | 7.05       | 7.10              | 102.7<br>103.0          | 102.9                | 3.70<br>3.76 | 3.73         | 3.82              | 3.7<br>2.3 | 3.0         | 3.0               |
|          |           |                             | Bottom    | 19.8    | 25.2 | 32.3<br>32.4 | 32.4     | 6.87<br>6.89 | 6.88       | 6.88              | 100.2<br>100.5          | 100.4                | 3.84<br>3.80 | 3.82         |                   | 2.8<br>3.7 | 3.3         |                   |

# Mid-Ebb Tide



#### Monitoring Station : TKO-C1a

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorir | ng Depth | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxygen | n (mg/L)          |                | d Oxygen<br>tion (%) | Т            | urbidity (NT | U)                | Susper     | nded Solids | (mg/L)            |
|----------|-----------|--------------------------------|-----------|----------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Dale     | Duration  | Condition                      | (n        | n)       | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0      | 25.2 | 32.2         | 32.2     | 6.74         | 6.77       |                   | 98.3           | 98.7                 | 2.88         | 2.90         |                   | 3.2        | 2.9         |                   |
|          |           |                                | Ganade    | 1.0      | 20.2 | 32.1         | 02.2     | 6.79         | 0.77       | 6.63              | 99.0           | 00.7                 | 2.91         | 2.00         |                   | 2.6        | 2.0         |                   |
| 21/11/18 | 957-1012  | 23/Cloudy                      | Middle    | 10.6     | 25.0 | 32.3         | 32.4     | 6.52         | 6.50       | 0.00              | 94.9           | 94.6                 | 2.76         | 2.78         | 2.91              | 2.6        | 2.7         | 3.1               |
|          | 001 1012  | 20,010000                      |           |          |      | 32.4         |          | 6.48         |            |                   | 94.3           |                      | 2.80         |              |                   | 2.7        |             |                   |
|          |           |                                | Bottom    | 20.5     | 24.9 | 32.6         | 32.6     | 6.29         | 6.32       | 6.32              | 91.4           | 91.9                 | 3.04         | 3.07         |                   | 3.8        | 3.8         |                   |
|          |           |                                |           |          |      | 32.5         |          | 6.35         |            |                   | 92.3           |                      | 3.09         |              |                   | 3.8        |             |                   |
|          |           |                                | Surface   | 1.0      | 24.3 | 31.9         | 31.9     | 7.15         | 7.13       |                   | 102.4          | 102.2                | 3.62         | 3.61         |                   | 4.2        | 4.1         |                   |
|          |           |                                |           |          | _    | 31.9         |          | 7.11         | -          | 6.97              | 101.9          |                      | 3.59         |              |                   | 4.0        |             |                   |
| 23/11/18 | 1124-1138 | 24/Fine                        | Middle    | 10.6     | 24.3 | 32.2         | 32.2     | 6.82         | 6.81       |                   | 97.9           | 97.7                 | 3.93         | 3.92         | 3.81              | 3.5        | 4.7         | 4.4               |
|          |           |                                |           |          | _    | 32.1         |          | 6.79         |            |                   | 97.5           |                      | 3.90         |              |                   | 5.9        |             |                   |
|          |           |                                | Bottom    | 20.2     | 24.2 | 32.3         | 32.3     | 6.79         | 6.77       | 6.77              | 97.4           | 97.1                 | 3.90         | 3.92         |                   | 4.7        | 4.5         |                   |
|          |           |                                |           |          |      | 32.2         |          | 6.75         | -          | -                 | 96.8           |                      | 3.94         |              |                   | 4.3        |             |                   |
|          |           |                                | Surface   | 1.0      | 23.4 | 30.8         | 30.9     | 7.08         | 7.07       |                   | 99.3           | 99.1                 | 3.54         | 3.52         |                   | 3.4        | 3.2         |                   |
|          |           |                                |           |          |      | 30.9         |          | 7.05         |            | 6.96              | 98.9           |                      | 3.50         |              |                   | 2.9        |             |                   |
| 26/11/18 | 1330-1345 | 19/Rainy                       | Middle    | 10.6     | 23.7 | 31.3         | 31.4     | 6.87         | 6.86       |                   | 97.1           | 96.9                 | 3.92         | 3.94         | 3.80              | 3.1        | 2.9         | 3.1               |
|          |           |                                |           |          |      | 31.4         |          | 6.84         |            |                   | 96.7           |                      | 3.96         |              |                   | 2.6        |             |                   |
|          |           |                                | Bottom    | 20.2     | 23.8 | 31.3         | 31.4     | 6.89         | 6.87       | 6.87              | 97.5           | 97.3                 | 3.95         | 3.93         |                   | 3.5        | 3.3         |                   |
|          |           |                                |           |          |      | 31.4         |          | 6.85         |            |                   | 97.0           |                      | 3.91         |              |                   | 3.1        |             |                   |
|          |           |                                | Surface   | 1.0      | 25.6 | 31.1         | 31.2     | 7.46         | 7.52       |                   | 108.9          | 109.8                | 3.60         | 3.63         |                   | 3.3        | 3.6         |                   |
|          |           |                                |           |          |      | 31.2         |          | 7.58         |            | 7.41              | 110.7          |                      | 3.65         |              |                   | 3.8        |             |                   |
| 28/11/18 | 1515-1531 | 25/Cloudy                      | Middle    | 10.6     | 25.4 | 31.4         | 31.5     | 7.25         | 7.29       |                   | 105.7          | 106.3                | 3.43         | 3.46         | 3.44              | 4.5        | 4.2         | 4.0               |
|          |           |                                |           |          |      | 31.5         |          | 7.33         |            |                   | 106.9          |                      | 3.48         |              |                   | 3.9        |             |                   |
|          |           |                                | Bottom    | 20.1     | 25.1 | 31.6<br>31.7 | 31.7     | 7.11         | 7.15       | 7.15              | 103.2<br>104.2 | 103.7                | 3.21<br>3.26 | 3.24         |                   | 4.1<br>4.1 | 4.1         |                   |
| -        |           |                                | -         |          |      | -            | -        | 7.18         |            |                   | -              |                      |              |              |                   |            |             |                   |
|          |           |                                | Surface   | 1.0      | 25.5 | 31.2         | 31.3     | 7.54         | 7.48       |                   | 109.9          | 109.0                | 3.56         | 3.59         |                   | 2.3        | 2.3         |                   |
|          |           |                                |           |          |      | 31.3         | -        | 7.41         |            | 7.44              | 108.0          |                      | 3.61         |              |                   | 2.3        |             |                   |
| 30/11/18 | 1751-1805 | 25/Fine                        | Middle    | 10.6     | 25.3 | 31.6         | 31.6     | 7.37         | 7.41       |                   | 107.3          | 107.8                | 3.39<br>3.42 | 3.41         | 3.45              | 2.6        | 2.5         | 2.6               |
|          |           |                                |           |          |      | 31.6         |          |              |            |                   | 108.3          |                      | -            |              |                   | 2.3        |             |                   |
|          |           |                                | Bottom    | 20.2     | 25.1 | 31.7<br>31.8 | 31.8     | 7.15<br>7.28 | 7.22       | 7.22              | 103.8<br>105.7 | 104.8                | 3.36<br>3.38 | 3.37         |                   | 1.8<br>4.0 | 2.9         |                   |

Remark: Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

# Mid-Ebb Tide

#### Monitoring Station: TKO-M4a

| Date     | Sampling  | Ambient Temp                | Monitoring E | )ooth (m)  | Temp | Salini       | ty (ppt) | Dissol       | ved Oxygen | (mg/L)            |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | Ū)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|-----------------------------|--------------|------------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | (°C) / Weather<br>Condition | wontoning L  | Jeptin (m) | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                             | Surface      | 1.0        | 25.3 | 30.6<br>30.6 | 30.6     | 7.19<br>7.21 | 7.20       |                   | 104.1<br>104.3 | 104.2                | 3.32<br>3.36 | 3.34         |                   | 3.4<br>4.2 | 3.8         |                   |
| 02/11/18 | 900-916   | 23/Cloudy                   | Middle       | 9.2        | 25.1 | 30.8         | 30.8     | 7.14         | 7.13       | 7.16              | 104.3          | 102.9                | 3.35         | 3.37         | 3.38              | 4.2<br>2.9 | 2.7         | 3.4               |
| 02/11/10 | 300-310   | 20/010003                   | Wilduic      | 5.2        | 20.1 | 30.8         | 00.0     | 7.11         | 7.10       |                   | 102.8          | 102.0                | 3.39         | 0.07         | 0.00              | 2.5        | 2.7         | 0.4               |
|          |           |                             | Bottom       | 17.3       | 24.9 | 31.0<br>30.9 | 31.0     | 7.05         | 7.04       | 7.04              | 101.6<br>101.3 | 101.5                | 3.41<br>3.44 | 3.43         |                   | 2.8<br>4.8 | 3.8         |                   |
|          |           |                             | Surface      | 1.0        | 24.8 | 31.2         | 31.2     | 7.21         | 7.23       |                   | 103.9          | 104.1                | 3.23         | 3.21         |                   | 3.2        | 3.1         |                   |
| 05/44/40 | 1004 1044 | 04/Olaudu                   | Middle       | 0.0        | 04.0 | 31.1<br>31.3 | 24.2     | 7.24<br>7.16 | 7.15       | 7.19              | 104.2<br>102.9 | 402.0                | 3.18<br>3.24 | 2.02         | 3.24              | 2.9<br>3.4 | 2.0         | 25                |
| 05/11/18 | 1024-1041 | 24/Cloudy                   | Middle       | 9.2        | 24.6 | 31.2         | 31.3     | 7.13         | 7.15       |                   | 102.3          | 102.6                | 3.22         | 3.23         | 3.24              | 2.5        | 3.0         | 3.5               |
|          |           |                             | Bottom       | 17.4       | 24.4 | 31.4<br>31.3 | 31.4     | 7.07         | 7.06       | 7.06              | 101.3<br>100.9 | 101.1                | 3.26<br>3.29 | 3.28         |                   | 3.4<br>5.3 | 4.4         |                   |
|          |           |                             | Surface      | 1.0        | 25.7 | 31.1         | 31.2     | 6.62         | 6.70       |                   | 96.8           | 97.9                 | 3.78         | 3.80         |                   | 3.6        | 3.6         |                   |
|          |           |                             |              |            |      | 31.2<br>31.4 |          | 6.77<br>6.59 |            | 6.67              | 98.9<br>95.9   |                      | 3.81<br>3.65 |              |                   | 3.5<br>3.6 |             |                   |
| 07/11/18 | 1140-1156 | 28/Fine                     | Middle       | 9.8        | 25.4 | 31.5         | 31.5     | 6.68         | 6.64       |                   | 97.2           | 96.6                 | 3.68         | 3.67         | 3.69              | 3.0        | 3.3         | 3.5               |
|          |           |                             | Bottom       | 18.5       | 25.2 | 31.6<br>31.7 | 31.7     | 6.30<br>6.19 | 6.25       | 6.25              | 91.6<br>90.0   | 90.8                 | 3.60<br>3.64 | 3.62         |                   | 2.7<br>4.3 | 3.5         |                   |
|          |           |                             | Surface      | 1.0        | 25.7 | 31.7         | 31.9     | 6.82         | 6.78       |                   | 90.0           | 99.2                 | 2.75         | 2.77         |                   | 4.3<br>5.0 | 5.1         |                   |
|          |           |                             | Sunace       | 1.0        | 20.7 | 31.9<br>32.2 | 51.5     | 6.74         | 0.70       | 6.68              | 98.6           | 33.2                 | 2.79         | 2.11         |                   | 5.2        | 5.1         |                   |
| 09/11/18 | 1303-1318 | 26/Cloudy                   | Middle       | 9.7        | 25.5 | 32.2         | 32.2     | 6.61<br>6.54 | 6.58       |                   | 96.5<br>95.5   | 96.0                 | 2.63<br>2.58 | 2.61         | 2.77              | 4.9<br>4.4 | 4.7         | 4.9               |
|          |           |                             | Bottom       | 18.3       | 25.2 | 32.4<br>32.3 | 32.4     | 6.33<br>6.36 | 6.35       | 6.35              | 92.1<br>92.5   | 92.3                 | 2.96<br>2.93 | 2.95         |                   | 4.8<br>5.1 | 5.0         |                   |
|          |           |                             | Surface      | 1.0        | 25.6 | 31.2         | 31.3     | 6.44         | 6.50       |                   | 94.0           | 94.9                 | 3.81         | 3.79         |                   | 2.7        | 2.3         |                   |
|          |           |                             | Sunace       | 1.0        | 23.0 | 31.3         | 51.5     | 6.56         | 0.50       | 6.44              | 95.8           | 34.5                 | 3.76         | 5.75         |                   | 1.9        | 2.5         | -                 |
| 12/11/18 | 1443-1458 | 26/Cloudy                   | Middle       | 9.8        | 25.3 | 31.5<br>31.6 | 31.6     | 6.35<br>6.42 | 6.39       |                   | 92.4<br>93.5   | 93.0                 | 3.72<br>3.77 | 3.75         | 3.71              | 3.9<br>3.9 | 3.9         | 2.7               |
|          |           |                             | Bottom       | 18.5       | 25.1 | 31.7<br>31.8 | 31.8     | 6.14<br>6.28 | 6.21       | 6.21              | 89.1<br>91.2   | 90.2                 | 3.58<br>3.63 | 3.61         |                   | 1.6<br>2.4 | 2.0         |                   |
|          |           |                             | Surface      | 1.0        | 25.3 | 32.0         | 32.0     | 6.84         | 6.82       |                   | 99.7           | 99.4                 | 3.35         | 3.33         |                   | 3.1        | 2.8         |                   |
|          |           |                             |              | -          |      | 31.9<br>32.1 |          | 6.79<br>6.63 |            | 6.74              | 99.0<br>96.6   |                      | 3.31<br>3.18 |              |                   | 2.4<br>2.9 |             |                   |
| 16/11/18 | 1830-1844 | 21/Cloudy                   | Middle       | 9.8        | 25.2 | 32.2         | 32.2     | 6.69         | 6.66       |                   | 97.5           | 97.1                 | 3.21         | 3.20         | 3.32              | 2.2        | 2.6         | 2.7               |
|          |           |                             | Bottom       | 18.5       | 25.1 | 32.3<br>32.3 | 32.3     | 6.35<br>6.30 | 6.33       | 6.33              | 92.2<br>91.5   | 91.9                 | 3.47<br>3.42 | 3.45         |                   | 1.7<br>3.9 | 2.8         |                   |
|          |           |                             | Surface      | 1.0        | 25.5 | 32.0         | 32.0     | 7.25         | 7.23       |                   | 106.1          | 105.9                | 3.64         | 3.62         |                   | 3.0        | 2.6         |                   |
| 10/14/40 | 955 000   | 24/5:                       | Michaella    | 0.0        | 25.4 | 31.9<br>32.3 | 20.0     | 7.21<br>6.97 | 6.00       | 7.09              | 105.6<br>102.0 | 101.0                | 3.60<br>3.83 | 2.05         | 2 70              | 2.2<br>2.4 | 2.0         | 2.0               |
| 19/11/18 | 855-908   | 24/Fine                     | Middle       | 9.8        | 25.4 | 32.2         | 32.3     | 6.94         | 6.96       |                   | 101.5          | 101.8                | 3.86         | 3.85         | 3.78              | 4.1        | 3.3         | 3.2               |
|          |           |                             | Bottom       | 18.6       | 25.3 | 32.3<br>32.4 | 32.4     | 6.90<br>6.94 | 6.92       | 6.92              | 100.8<br>101.4 | 101.1                | 3.87<br>3.89 | 3.88         |                   | 3.4<br>3.8 | 3.6         |                   |

# Mid-Ebb Tide

#### Monitoring Station : TKO-M4a

| Date     | Sampling  | Ambient Temp                | Monitoring [ | Dopth (m)  | Temp | Salinit      | y (ppt) | Dissolv      | ved Oxyger | (mg/L)            |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | U)                | Susper     | nded Solids | ; (mg/L)          |
|----------|-----------|-----------------------------|--------------|------------|------|--------------|---------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Date     | Duration  | (°C) / Weather<br>Condition | wonitoring L | Septin (m) | (°C) | Value        | Average | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                             | Surface      | 1.0        | 25.2 | 32.2<br>32.2 | 32.2    | 6.75<br>6.69 | 6.72       | 6.61              | 98.4<br>97.5   | 98.0                 | 2.94<br>2.98 | 2.96         |                   | 3.1<br>3.6 | 3.4         | Í                 |
| 21/11/18 | 1014-1028 | 23/Cloudy                   | Middle       | 9.7        | 25.0 | 32.4<br>32.4 | 32.4    | 6.48<br>6.51 | 6.50       | 0.01              | 94.3<br>94.8   | 94.6                 | 3.09<br>3.11 | 3.10         | 2.97              | 3.1<br>4.1 | 3.6         | 3.2               |
|          |           |                             | Bottom       | 18.4       | 24.8 | 32.6<br>32.5 | 32.6    | 6.23<br>6.18 | 6.21       | 6.21              | 90.5<br>89.8   | 90.2                 | 2.86<br>2.82 | 2.84         |                   | 2.2<br>2.8 | 2.5         |                   |
|          |           |                             | Surface      | 1.0        | 24.4 | 31.9<br>32.0 | 32.0    | 7.08<br>7.04 | 7.06       |                   | 104.0<br>103.5 | 103.8                | 3.74<br>3.70 | 3.72         |                   | 4.9<br>4.8 | 4.9         |                   |
| 23/11/18 | 1141-1155 | 24/Fine                     | Middle       | 9.7        | 24.2 | 32.3<br>32.2 | 32.3    | 6.90<br>6.94 | 6.92       | 6.99              | 99.0<br>99.5   | 99.3                 | 3.82<br>3.85 | 3.84         | 3.80              | 3.9<br>4.6 | 4.3         | 4.5               |
|          |           |                             | Bottom       | 18.4       | 24.2 | 32.3<br>32.3 | 32.3    | 6.83<br>6.78 | 6.81       | 6.81              | 97.9<br>97.2   | 97.6                 | 3.88<br>3.82 | 3.85         |                   | 4.1<br>4.7 | 4.4         |                   |
|          |           |                             | Surface      | 1.0        | 23.4 | 30.8<br>30.9 | 30.9    | 7.14<br>7.11 | 7.13       |                   | 100.1<br>99.7  | 99.9                 | 3.72<br>3.76 | 3.74         |                   | 3.1<br>3.9 | 3.5         |                   |
| 26/11/18 | 1348-1402 | 19/Rainy                    | Middle       | 9.6        | 23.7 | 31.2<br>31.3 | 31.3    | 6.93<br>6.90 | 6.92       | 7.02              | 97.8<br>97.4   | 97.6                 | 3.82<br>3.85 | 3.84         | 3.81              | 3.8<br>3.4 | 3.6         | 3.5               |
|          |           |                             | Bottom       | 18.2       | 23.7 | 31.4<br>31.4 | 31.4    | 6.88<br>6.85 | 6.87       | 6.87              | 97.3<br>96.9   | 97.1                 | 3.84<br>3.87 | 3.86         |                   | 3.7<br>3.3 | 3.5         |                   |
|          |           |                             | Surface      | 1.0        | 25.6 | 31.1<br>31.2 | 31.2    | 7.28<br>7.36 | 7.32       |                   | 106.3<br>107.5 | 106.9                | 3.57<br>3.61 | 3.59         |                   | 4.1<br>4.4 | 4.3         |                   |
| 28/11/18 | 1533-1547 | 25/Cloudy                   | Middle       | 9.8        | 25.4 | 31.5<br>31.5 | 31.5    | 7.14<br>7.22 | 7.18       | 7.25              | 104.1<br>105.3 | 104.7                | 3.48<br>3.53 | 3.51         | 3.45              | 2.6<br>3.4 | 3.0         | 3.7               |
|          |           |                             | Bottom       | 18.5       | 25.1 | 31.7<br>31.7 | 31.7    | 7.03<br>7.13 | 7.08       | 7.08              | 102.0<br>103.4 | 102.7                | 3.24<br>3.29 | 3.27         |                   | 4.7<br>3.2 | 4.0         |                   |
|          |           |                             | Surface      | 1.0        | 25.5 | 31.2<br>31.3 | 31.3    | 7.27<br>7.39 | 7.33       |                   | 105.9<br>107.7 | 106.8                | 3.74<br>3.77 | 3.76         |                   | 3.2<br>2.6 | 2.9         |                   |
| 30/11/18 | 1809-1824 | 25/Fine                     | Middle       | 9.6        | 25.3 | 31.6<br>31.5 | 31.6    | 7.20<br>7.25 | 7.23       | 7.28              | 104.8<br>105.5 | 105.2                | 3.64<br>3.60 | 3.62         | 3.62              | 3.4<br>2.8 | 3.1         | 3.0               |
|          |           |                             | Bottom       | 18.2       | 25.1 | 31.7<br>31.7 | 31.7    | 7.16<br>7.07 | 7.12       | 7.12              | 103.9<br>102.6 | 103.3                | 3.45<br>3.49 | 3.47         |                   | 2.9<br>3.3 | 3.1         |                   |

Remark: Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

# Mid-Ebb Tide

#### Monitoring Station : TKO-M5

| Date               | Sampling  | Ambient Temp<br>(°C) / Weather | Monitoring [ | )enth (m) | Temp<br>(°C) | Salinit              | y (ppt) | Dissolv      | ved Oxygen           | (mg/L)                  |                         | d Oxygen<br>tion (%) | Тι                   | urbidity (NT      | Ū)         | Suspended Solids (mg/L |                   |     |
|--------------------|-----------|--------------------------------|--------------|-----------|--------------|----------------------|---------|--------------|----------------------|-------------------------|-------------------------|----------------------|----------------------|-------------------|------------|------------------------|-------------------|-----|
| Duration           | Condition |                                |              |           | Value        | Average              | Value   | Average      | Depth-<br>average    | Value                   | Average                 | Value                | Average              | Depth-<br>average | Value      | Average                | Depth-<br>average |     |
|                    |           | 23/Cloudy                      | Surface      | 1.0       | 25.3         | 30.7<br>30.6         | 30.7    | 7.21<br>7.23 | 7.22                 |                         | 104.5<br>104.6          | 104.6<br>103.4       | 3.34<br>3.35         | 3.35              |            | 3.8<br>2.5             | 3.2               |     |
| 02/11/18           | 921-936   |                                | Middle       | 7.7       | 25.2         | 30.8<br>30.7         | 30.8    | 7.16         | 7.15                 | 7.19                    | 103.6<br>103.2          |                      | 3.36<br>3.38         | 3.37              | 3.38       | 4.7                    | 3.7               | 3.3 |
|                    |           |                                | Bottom       | 14.3      | 25.1         | 30.9<br>30.8         | 30.9    | 7.08         | 7.10                 | 7.10                    | 102.3<br>102.8          | 102.6                | 3.43<br>3.39         | 3.41              |            | 1.3<br>4.8             | 3.1               |     |
|                    |           |                                | Surface      | 1.0       | 24.9         | 31.1<br>31.1         | 31.1    | 7.27         | 7.25                 |                         | 102.0<br>104.8<br>104.0 | 104.4                | 3.16<br>3.19         | 3.18              |            | 4.3                    | 4.0               |     |
| 05/11/18 1048-1104 | 24/Cloudy | Middle                         | 7.6          | 24.7      | 31.2<br>31.1 | 31.2                 | 7.23    | 7.21         | 7.23                 | 104.0<br>103.9<br>103.3 | 103.6                   | 3.17<br>3.19         | 3.18                 | 3.20              | 5.8<br>2.7 | 4.3                    | 4.0               |     |
|                    |           | Bottom                         | 14.2         | 24.5      | 31.2<br>31.3 | 31.3                 | 7.13    | 7.14         | 7.14                 | 103.3<br>102.0<br>102.6 | 102.3                   | 3.26                 | 3.25                 |                   | 5.0<br>2.5 | 3.8                    |                   |     |
|                    |           |                                | Surface      | 1.0       | 25.7         | 31.3<br>31.2<br>31.2 | 31.2    | 6.37<br>6.45 | 6.41                 |                         | 93.1<br>94.3            | 93.7                 | 3.23<br>3.71<br>3.74 | 3.73              |            | 2.5<br>2.4<br>2.4      | 2.4               |     |
| 07/11/18           | 1201-1214 | 28/Fine                        | Middle       | 7.7       | 25.5         | 31.4                 | 31.5    | 6.16<br>6.28 | 6.22                 | 6.32                    | 89.9<br>91.7            | 90.8                 | 3.62<br>3.63         | 3.63              | 3.57       | 4.0<br>2.9             | - 3.5             | 3.0 |
|                    |           |                                | Bottom       | 14.4      | 25.3         | 31.7<br>31.7         | 31.7    | 6.03<br>6.17 | 6.10                 | 6.10                    | 87.7<br>89.8            | 88.8                 | 3.38                 | 3.35              |            | 2.3<br>2.3<br>4.0      | 3.2               |     |
|                    |           |                                | Surface      | 1.0       | 25.6         | 32.0<br>31.9         | 32.0    | 6.90<br>6.95 | 6.93                 | 6.83                    | 101.0<br>101.7          | 101.4                | 2.66                 | 2.64              |            | 6.4<br>3.8             | 5.1               |     |
| 09/11/18           | 1321-1336 | 26/Cloudy                      | Middle       | 8.7       | 25.4         | 32.2<br>32.1         | 32.2    | 6.71<br>6.76 | 6.74                 |                         | 98.0<br>98.6            | 98.3                 | 2.44                 | 2.46              | 2.64       | 5.1<br>2.5             | 3.8               | 3.8 |
|                    |           |                                | Bottom       | 16.3      | 25.2         | 32.4<br>32.3         | 32.4    | 6.47<br>6.41 | 6.44                 | 6.44                    | 94.1<br>93.3            | 93.7                 | 2.85                 | 2.83              |            | 3.0<br>2.2             | 2.6               |     |
|                    |           | 26/Cloudy                      | Surface      | 1.0       | 25.6         | 31.2<br>31.3         | 31.3    | 6.26<br>6.38 | 6.32<br>6.25<br>6.18 |                         | 91.4<br>93.1            | 92.3                 | 3.78                 | 3.81              |            | 2.2                    | 2.7               | 3.0 |
| 12/11/18           | 1505-1521 |                                | Middle       | 7.6       | 25.4 31.6    |                      | 31.6    | 6.11<br>6.24 |                      | 6.25                    | 89.1<br>91.0            | 90.1                 | 3.61<br>3.66         | 3.64              | 3.63       | 3.9<br>2.9             | 3.4               |     |
|                    |           |                                | Bottom       | 14.2      | 25.2         | 31.7<br>31.8         | 31.8    | 6.02<br>6.15 | 6.09                 | 6.09                    | 87.5<br>89.4            | 88.5                 | 3.40<br>3.47         | 3.44              |            | 2.7                    | 2.8               |     |
|                    |           |                                | Surface      | 1.0       | 25.3         | 32.0<br>32.0         | 32.0    | 6.93<br>6.85 | 6.89                 |                         | 100.9<br>100.0          | 100.5                | 3.25<br>3.20         | 3.23              |            | 2.5<br>2.4             | 2.5               |     |
| 16/11/18           | 1846-1900 | 21/Cloudy                      | Middle       | 8.5       | 25.2         | 32.2<br>32.1         | 32.2    | 6.72<br>6.77 | 6.75                 | 6.82                    | 97.9<br>98.6            | 98.3                 | 3.05<br>3.08         | 3.07              | 3.21       | 3.2<br>1.8             | 2.5               | 2.4 |
|                    |           |                                | Bottom       | 15.9      | 25.1         | 32.3<br>32.2         | 32.3    | 6.43<br>6.37 | 6.40                 | 6.40                    | 93.4<br>92.5            | 93.0                 | 3.36<br>3.32         | 3.34              |            | 2.0<br>2.4             | 2.2               |     |
|                    |           |                                | Surface      | 1.0       | 25.4         | 32.0<br>32.0         | 32.0    | 7.30<br>7.34 | 7.32                 | 7.00                    | 106.7<br>107.2          | 107.0                | 3.75<br>3.77         | 3.76              |            | 4.8<br>2.2             | 3.5               |     |
| 19/11/18           | 913-926   | 24/Fine                        | Middle       | 8.9       | 25.3         | 32.2<br>32.2         | 32.2    | 7.12         | 7.14                 | 7.23                    | 104.0<br>104.4          | 104.2                | 3.79<br>3.76         | 3.78              | 3.80       | 3.2<br>4.0             | 3.6               | 3.4 |
|                    |           |                                | Bottom       | 16.8      | 25.2         | 32.2<br>32.3         | 32.3    | 6.98<br>6.95 | 6.97                 | 6.97                    | 101.7                   | 101.5                | 3.90<br>3.85         | 3.88              |            | 3.2<br>3.1             | 3.2               |     |

# Mid-Ebb Tide

#### Monitoring Station : TKO-M5

| Date               | Sampling               | Ambient Temp<br>(°C) / Weather | Monitoring Depth (m) |       | Temp    | Salinit      | ty (ppt) | Dissolv           | ved Oxyger | ı (mg/L) |                | d Oxygen<br>tion (%) | Tu                | ırbidity (NT | U)      | Susper            | (mg/L) |     |
|--------------------|------------------------|--------------------------------|----------------------|-------|---------|--------------|----------|-------------------|------------|----------|----------------|----------------------|-------------------|--------------|---------|-------------------|--------|-----|
| Duration Condition | Monitoring Depth (iii) |                                | (°C)                 | Value | Average | Value        | Average  | Depth-<br>average | Value      | Average  | Value          | Average              | Depth-<br>average | Value        | Average | Depth-<br>average |        |     |
|                    |                        |                                | Surface              | 1.0   | 25.2    | 32.2         | 32.2     | 6.87              | 6.84       |          | 100.2          | 99.7                 | 2.74              | 2.76         |         | 2.9               | 2.6    |     |
|                    |                        |                                | Cundoo               |       | 20.2    | 32.1         |          | 6.80              | 0.01       | 6.74     | 99.1           | 00.1                 | 2.77              | 20           |         | 2.3               | 2.0    |     |
| 21/11/18           | 1031-1045              | 23/Cloudy                      | Middle               | 8.3   | 24.9    | 32.3         | 32.4     | 6.66              | 6.64       | -        | 97.0           | 96.7                 | 2.65              | 2.63         | 2.78    | 2.4               | 2.1    | 2.3 |
|                    |                        | ,                              |                      |       |         | 32.4         |          | 6.62              |            |          | 96.4           |                      | 2.60              |              |         | 1.8               |        |     |
|                    |                        |                                | Bottom               | 15.6  | 24.8    | 32.6         | 32.6     | 6.38              | 6.40       | 6.40     | 92.7           | 93.0                 | 2.97              | 2.95         |         | 1.6               | 2.2    |     |
|                    |                        |                                | -                    |       |         | 32.5         | 02.0     | 6.42              |            | 0.10     | 93.3           |                      | 2.92              |              |         | 2.7               |        |     |
|                    |                        |                                | Surface              | 1.0   | 24.4    | 32.0         | 32.0     | 7.24              | 7.22       |          | 104.0          | 103.7                | 3.60              | 3.62         |         | 5.3               | 5.0    |     |
|                    |                        |                                |                      |       |         | 32.0         |          | 7.20              |            | 7.13     | 103.4          |                      | 3.64              |              |         | 4.6               |        |     |
| 23/11/18 1200-1213 | 1200-1213              | 24/Fine                        | Middle               | 7.6   | 24.3    | 32.3<br>32.3 | 32.3     | 7.03              | 7.05       | -        | 101.0<br>101.4 | 101.2                | 3.74<br>3.77      | 3.76         | 3.71    | 4.9<br>3.7        | 4.3    | 4.1 |
|                    |                        |                                |                      |       | 24.3    | 32.3         |          | 6.92              |            | 6.94     | 99.4           |                      | 3.79              |              |         | 3.7               |        | , İ |
|                    |                        |                                | Bottom               | 14.3  |         | 32.3         | 32.3     | 6.92              | 6.94       |          | 99.4<br>99.8   | 99.6                 | 3.79              | 3.76         |         | 2.5               | 3.1    |     |
|                    |                        |                                |                      |       |         | 30.9         |          | 7.20              |            |          | 101.2          |                      | 3.88              |              |         | 2.5               |        |     |
|                    |                        |                                | Surface              | 1.0   | 23.5    | 30.9         | 30.9     | 7.16              | 7.18       |          | 101.2          | 101.0                | 3.85              | 3.87         |         | 2.3               | 2.5    |     |
|                    |                        |                                | Middle               |       |         | 31.3         |          | 7.09              |            | - 7.13   | 100.0          |                      | 3.86              |              |         | 3.1               |        |     |
| 26/11/18           | 1408-1422              | 19/Rainy                       |                      | 7.8   | 23.6    | 31.3         | 31.3     | 7.05              | 7.07       |          | 99.5           | 99.8                 | 3.82              | 3.84         | 3.84    | 3.2               | 3.2    | 2.8 |
|                    |                        |                                | Bottom               |       | ~~ -    | 31.3         |          | 6.96              |            | 6.94     | 98.4           |                      | 3.83              |              |         | 2.4               |        |     |
|                    |                        |                                |                      | 14.6  | 23.7    | 31.4         | 31.4     | 6.92              | 6.94       |          | 97.9           | 98.2                 | 3.79              | 3.81         |         | 3.0               | 2.7    |     |
|                    |                        |                                | Surface              | 1.0   | 25.6    | 31.1         | 31.2     | 7.20              | 7.25       |          | 105.1          | 105.8                | 3.78              | 3.79         |         | 4.1               | 3.5    |     |
|                    |                        |                                | Sunace               | 1.0   | 25.0    | 31.2         | 31.2     | 7.29              | 1.25       | 7.18     | 106.4          | 105.8                | 3.80              | 3.79         |         | 2.9               | 3.5    |     |
| 28/11/18           | 1551-1606              | 25/Cloudy                      | Middle               | 8.5   | 25.4    | 31.5         | 31.5     | 7.09              | 7.12       | 7.10     | 103.4          | 103.8                | 3.63              | 3.66         | 3.66    | 3.8               | 3.1    | 3.7 |
| 20/11/10           | 1551-1000              | 25/01000                       | Wildule              | 0.5   | 23.4    | 31.4         | 51.5     | 7.14              | 1.12       |          | 104.1          | 103.8                | 3.69              | 5.00         | 5.00    | 2.3               | 5.1    | 5.7 |
|                    |                        |                                | Bottom               | 16.0  | 25.2    | 31.6         | 31.7     | 7.00              | 7.06       | 7.06     | 101.7          | 102.6                | 3.52              | 3.54         |         | 3.9               | 4.4    |     |
|                    |                        |                                | Dottom               | 10.0  | 20.2    | 31.7         | 01.7     | 7.12              | 7.00       | 1.00     | 103.5          | 102.0                | 3.55              | 0.04         |         | 4.9               |        |     |
|                    |                        |                                | Surface              | 1.0   | 25.5    | 31.2         | 31.3     | 7.47              | 7.43       |          | 108.9          | 108.3                | 3.51              | 3.53         |         | 2.3               | 2.6    |     |
|                    |                        |                                | Currate              | 1.0   | 20.0    | 31.3         |          | 7.38              |            | 7.37     | 107.6          | 100.0                | 3.54              |              |         | 2.9               |        |     |
| 30/11/18           | 1830-1847              | 25/Fine                        | Middle               | 8.6   | 25.3    | 31.5         | 31.6     | 7.26              | 7.31       | 1.51     | 105.7          | 106.4                | 3.58              | 3.60         | 3.50    | 2.6               | 2.5    | 2.6 |
|                    |                        |                                |                      |       | 25.3    | 31.6         |          | 7.36              |            |          | 107.1          |                      | 3.61              |              |         | 2.3               |        |     |
|                    |                        |                                | Bottom               | 16.1  |         | 31.7         | 31.8     | 7.05              | 7.08       | 7.08     | 102.3          | 102.8                | 3.37              | 3.38         |         | 2.3               | 2.7    |     |
|                    |                        |                                |                      | 20.1  | 31.8    |              | 7.11     |                   |            | 103.2    |                | 3.38                 |                   |              | 3.1     |                   |        |     |

Remark: Due to the tidal period is not in working hour, 14 November 2018 water monitoring (Mid-Ebb) was cancelled.

# Mid-Flood Tide

#### Monitoring Station : TKO-C1a

| Date       | Sampling                    | Ambient Temp | Monitorir         | ng Depth | Temp         | Salini       | ty (ppt) | Dissol       | ved Oxygen        | (mg/L)         |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT      | U)         | Suspended Solids (mg/L |                   |     |     |     |  |
|------------|-----------------------------|--------------|-------------------|----------|--------------|--------------|----------|--------------|-------------------|----------------|----------------|----------------------|--------------|-------------------|------------|------------------------|-------------------|-----|-----|-----|--|
| Duration   | (°C) / Weather<br>Condition | (n           | (m)               |          | Value        | Average      | Value    | Average      | Depth-<br>average | Value          | Average        | Value                | Average      | Depth-<br>average | Value      | Average                | Depth-<br>average |     |     |     |  |
|            |                             |              | Surface           | 1.0      | 25.4         | 30.7<br>30.8 | 30.8     | 7.28<br>7.24 | 7.26              |                | 105.7<br>105.1 | 105.4                | 3.31<br>3.28 | 3.30              |            | 2.3<br>3.3             | 2.8               |     |     |     |  |
| 00// / //0 |                             |              |                   | 10 -     |              | 30.8         |          | 7.24         | = 10              | 7.23           | 105.1          |                      | 3.20         | 0.00              |            | 3.3<br>4.7             |                   |     |     |     |  |
| 02/11/18   | 1418-1437                   | 23/Cloudy    | Middle            | 10.7     | 25.2         | 30.8         | 30.9     | 7.17         | 7.19              |                | 103.8          | 104.1                | 3.32         | 3.33              | 3.35       | 3.8                    | 4.3               | 3.4 |     |     |  |
|            |                             |              | Bottom            | 20.3     | 24.8         | 31.2<br>31.3 | 31.3     | 7.07         | 7.10              | 7.10           | 101.9<br>102.6 | 102.3                | 3.44<br>3.41 | 3.43              |            | 3.1<br>3.1             | 3.1               |     |     |     |  |
|            |                             |              | Quitana           | 1.0      | 04.0         | 31.1         | 31.2     | 7.23         | 7.05              |                | 102.0          | 104.0                | 3.22         | 2.00              |            | 2.1                    |                   |     |     |     |  |
|            |                             |              | Surface           | 1.0      | 24.8         | 31.2         | 31.2     | 7.26         | 7.25              | 7.21           | 104.6          | 104.3                | 3.18         | 3.20              |            | 3.0                    | 2.6               |     |     |     |  |
| 05/11/18   | 1614-1632                   | 24/Cloudy    | Middle            | 10.5     | 24.6         | 31.3<br>31.3 | 31.3     | 7.15         | 7.17              |                | 102.7<br>103.2 |                      | 3.21<br>3.23 | 3.22              | 3.23       | 3.5<br>4.9             | 4.2               | 3.1 |     |     |  |
|            |                             |              |                   |          |              | 31.3         |          | 7.18         |                   |                | 103.2          |                      | 3.23         |                   |            | 4.9<br>3.0             |                   | 1   |     |     |  |
|            |                             |              | Bottom            | 19.9     | 24.4         | 31.5         | 31.5     | 7.12         | 7.10              | 7.10           | 102.0          | 101.7                | 3.25         | 3.27              |            | 2.3                    | 2.7               |     |     |     |  |
|            |                             |              |                   |          |              | Surface      | 1.0      | 25.6         | 31.1              | 31.1           | 6.59           | 6.63                 |              | 96.2              | 96.8       | 3.42                   | 3.44              |     | 3.8 | 3.5 |  |
|            |                             |              |                   | 10.8     | 25.3         | 31.1<br>31.4 |          | 6.67<br>6.38 |                   | 6.52<br>6.30   | 97.4<br>92.7   |                      | 3.45<br>3.36 |                   |            | 3.1<br>2.8             |                   |     |     |     |  |
| 07/11/18   | 1707-1720                   | 27/Fine      | Middle            |          |              | 31.4         | 31.4     | 6.45         | 6.42              |                | 93.8           | 93.3                 | 3.39         | 3.38              | 3.33       | 3.1                    | 3.0               | 3.2 |     |     |  |
|            |                             |              | Bottom            |          |              | 31.8         | 31.8     | 6.26         | 6.30              |                | 90.7           | 91.2                 | 3.21         | 3.19              |            | 3.7                    | 3.1               | 1   |     |     |  |
|            |                             |              | Dottom            | 20.0     | 20.0         | 31.8         | 01.0     | 6.33         | 0.00              | 0.00           | 91.7           | 01.2                 | 3.17         | 0.10              |            | 2.5                    | 0.1               |     |     |     |  |
|            |                             | Surface      | 1.0               | 25.4     | 31.8<br>31.7 | 31.8         | 7.02     | 7.04         |                   | 102.5<br>103.1 | 102.8          | 2.53<br>2.50         | 2.52         |                   | 4.9<br>5.1 | 5.0                    |                   |     |     |     |  |
| 09/11/18   | 1809-1823                   | 24/Cloudy    | Middle            | 10.8     | 25.2         | 32.0         | 32.0     | 6.87         | 6.84              | 6.94           | 100.0          | 99.6                 | 2.65         | 2.67              | 2.67       | 5.1                    | 5.1               | 4.9 |     |     |  |
| 09/11/10   | 1009-1023                   |              | Wilduic           | 10.8     | 20.2         | 32.0         | 32.0     | 6.81         | 0.04              |                | 99.2           | 99.0                 | 2.69         | 2.07              | 2.07       | 5.0                    | 5.1               | 4.9 |     |     |  |
|            |                             |              | Bottom            | 20.6     | 24.9         | 32.2<br>32.1 | 32.2     | 6.58<br>6.54 | 6.56              | 6.56           | 95.4<br>94.8   | 95.1                 | 2.84         | 2.82              |            | 4.5<br>4.7             | 4.6               |     |     |     |  |
|            |                             | 25/Cloudy    | Surface<br>Middle |          | 25 F         | 31.2         | 31.2     | 6.52         | 6 59              |                | 95.0           | 95.9                 | 3.32         | 3.35              |            | 3.8                    | 3.6               |     |     |     |  |
|            |                             |              |                   |          | 25.5         | 31.2         | 31.2     | 6.63         | 6.58              | 6.44           | 96.7           | 95.9                 | 3.37         | 3.35              |            | 3.4                    | 3.0               |     |     |     |  |
| 12/11/18   | 915-929                     |              |                   |          | 25.2         | 31.5<br>31.6 | 31.6     | 6.26<br>6.35 | 6.31              |                | 90.9<br>92.3   | 91.6                 | 3.16<br>3.19 | 3.18              | 3.19       | 2.1<br>3.4             | 2.8               | 3.3 |     |     |  |
|            |                             |              |                   |          |              | 31.0         |          | 6.39         |                   |                | 92.5           |                      | 3.19         |                   |            | 3.4                    |                   | 1   |     |     |  |
|            |                             |              | Bottom            | 20.7     | 24.9         | 31.8         | 31.8     | 6.46         | 6.43              | 6.43           | 93.5           | 93.0                 | 3.08         | 3.06              |            | 3.3                    | 3.5               |     |     |     |  |
|            |                             |              | Surface           | 1.0      | 25.6         | 31.8         | 31.9     | 7.24         | 7.22              |                | 106.0          | 105.8                | 3.43         | 3.46              |            | 2.3                    | 3.3               |     |     |     |  |
|            |                             |              |                   |          |              | 31.9<br>32.2 |          | 7.20         |                   | 7.13           | 105.5<br>103.0 |                      | 3.48<br>3.82 |                   |            | 4.2<br>2.6             |                   | 1   |     |     |  |
| 14/11/18   | 1020-1034                   | 25/Cloudy    | Middle            | 10.8     | 25.5         | 32.1         | 32.2     | 7.06         | 7.05              |                | 103.4          | 103.2                | 3.86         | 3.84              | 3.68       | 4.0                    | 3.3               | 3.3 |     |     |  |
|            |                             |              | Bottom            | 20.6     | 25.5         | 32.2         | 32.3     | 6.98         | 6.97              | 6.97           | 102.3          | 102.1                | 3.77         | 3.74              |            | 3.3                    | 3.3               |     |     |     |  |
|            |                             |              | Bottom            | 20.0     | 20.0         | 32.3         | 02.0     | 6.95         | 0.01              | 0.01           | 101.9          |                      | 3.71         | 0                 |            | 3.3                    | 0.0               |     |     |     |  |
|            |                             |              | Surface           | 1.0      | 25.5         | 31.9<br>31.9 | 31.9     | 7.02         | 7.00              |                | 102.6<br>101.9 | 102.3                | 3.08         | 3.07              |            | 2.8<br>3.2             | 3.0               |     |     |     |  |
| 16/11/10   | 1200 1215                   | 24/5:00      | Middle            | 40.0     | 05.4         | 32.1         | 32.1     | 6.82         | 6 70              | 6.89           | 99.5           | 99.1                 | 2.94         | 2.06              | 3.07       | 4.8                    | 4.0               | 25  |     |     |  |
| 16/11/18   | 1300-1315                   | 24/Fine      | Middle            | 10.8     | 25.4         | 32.1         | 32.1     | 6.76         | 6.79              |                | 98.6           | 99.1                 | 2.98         | 2.96              | 3.07       | 3.1                    | 4.0               | 3.5 |     |     |  |
|            |                             |              | Bottom            | 20.6     | 25.2         | 32.3         | 32.3     | 6.47         | 6.45              | 6.45           | 94.3           | 94.0                 | 3.15         | 3.18              |            | 4.5                    | 3.6               |     |     |     |  |
|            |                             |              |                   |          | 32.3         |              | 6.43     |              |                   | 93.7           |                | 3.20                 |              |                   | 2.7        |                        |                   |     |     |     |  |

# Mid-Flood Tide

#### Monitoring Station : TKO-C1a

| Date               | Date Sampling (°C) / Weather |                            | Monitoring Depth |      | Temp | Salinit      | y (ppt) | Dissolv      | ed Oxygen | (mg/L)            |                | d Oxygen<br>tion (%) | Tu           | urbidity (NT | Ū)                | Susper     | s (mg/L) |                   |
|--------------------|------------------------------|----------------------------|------------------|------|------|--------------|---------|--------------|-----------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|----------|-------------------|
| Dale               | Duration                     | (C) / Weather<br>Condition | (n               | ו)   | (°C) | Value        | Average | Value        | Average   | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average  | Depth-<br>average |
|                    |                              |                            | Surface          | 1.0  | 25.8 | 32.0<br>32.1 | 32.1    | 7.38<br>7.35 | 7.37      |                   | 108.5<br>108.1 | 108.3                | 3.54<br>3.50 | 3.52         |                   | 3.0<br>1.7 | 2.4      |                   |
|                    |                              |                            |                  |      |      | 32.1         |         | 7.35         |           | 7.24              | 108.1          |                      | 3.50         |              | ł                 | 1.7        |          |                   |
| 19/11/18 1533-1547 | 1533-1547                    | 24/Fine                    | Middle           | 10.8 | 25.6 | 32.3         | 32.3    | 7.14         | 7.12      |                   | 104.3          | 104.6                | 3.89         | 3.88         | 3.77              | 2.8        | 2.3      | 2.4               |
|                    |                              | Dettern                    | 20.6             | 05.4 | 32.4 | 22.4         | 7.08    | 7.07         | 7.07      | 103.6             | 103.4          | 3.89                 | 3.90         |              | 1.8               | 2.5        |          |                   |
|                    |                              |                            | Bottom           | 20.0 | 25.4 | 32.4         | 32.4    | 7.05         | 7.07      | 7.07              | 103.2          | 103.4                | 3.90         | 3.90         |                   | 3.1        | 2.5      |                   |
|                    |                              |                            | Surface          | 1.0  | 25.3 | 32.1         | 32.1    | 6.86         | 6.88      |                   | 100.2          | 100.5                | 2.73         | 2.75         |                   | 4.3        | 4.2      |                   |
|                    |                              |                            | oundoo           |      | 20.0 | 32.0         | 02.1    | 6.90         | 0.00      | 6.78              | 100.7          |                      | 2.77         | 2.70         |                   | 4.1        |          | -                 |
| 21/11/18           | 1605-1620                    | 25/Cloudy                  | Middle           | 10.9 | 25.1 | 32.2         | 32.3    | 6.71         | 6.68      | 0.70              | 97.8           | 97.4                 | 2.65         | 2.63         | 2.76              | 4.3        | 3.7      | 3.6               |
|                    |                              | -                          |                  |      |      | 32.3         |         | 6.65         |           |                   | 97.0           |                      | 2.60         |              |                   | 3.1        |          | -                 |
|                    |                              |                            | Bottom           | 20.8 | 24.9 | 32.5<br>32.5 | 32.5    | 6.43<br>6.47 | 6.45      | 6.45              | 93.4<br>94.0   | 93.7                 | 2.93<br>2.89 | 2.91         |                   | 2.9<br>3.1 | 3.0      |                   |
|                    |                              |                            |                  |      | 31.9 |              | 7.18    |              |           | 103.7             |                | 3.52                 |              |              | 4.9               | 4.0        |          |                   |
|                    |                              | 20 25/Fine                 | Surface          | 1.0  | 24.8 | 32.0         | 32.0    | 7.14         | 7.16      |                   | 103.2          | 103.5                | 3.56         | 3.54         | 3.72              | 4.6        | 4.8      |                   |
| 00/14/140          | 1700 1700                    |                            | Middle           | 44.0 | 24.6 | 32.2         | 32.3    | 7.11         | 7.40      | 7.13              | 102.6          | 102.4                | 3.79         | 0.77         |                   | 4.7        | 4.0      |                   |
| 23/11/18           | 1706-1720                    |                            |                  | 11.2 | 24.6 | 32.3         | 32.3    | 7.08         | 7.10      |                   | 102.2          | 102.4                | 3.75         | 3.77         |                   | 4.4        | 4.6      | 4.6               |
|                    |                              |                            | Bottom           | 21.4 | 24.5 | 32.3         | 32.4    | 6.97         | 6.96      | 6.96              | 100.4          | 100.2                | 3.82         | 3.84         |                   | 3.7        | 4.4      |                   |
|                    |                              |                            | Bottom           | 21.1 | 24.0 | 32.4         | 02.1    | 6.94         | 0.00      |                   | 100.0          | 100.2                | 3.86         | 0.01         |                   | 5.1        |          |                   |
|                    |                              | 18/Rainy                   | Surface          | 1.0  | 23.6 | 30.9         | 30.9    | 7.17         | 7.16      |                   | 100.9          | 100.7                | 3.80         | 3.82         |                   | 3.2        | 4.1      |                   |
|                    |                              |                            | Middle           |      |      | 30.9         |         | 7.14         |           | 7.10              | 100.5<br>99.4  |                      | 3.83         |              |                   | 4.9        |          | -                 |
| 26/11/18           | 829-843                      |                            |                  | 11.2 | 23.8 | 31.3<br>31.2 | 31.3    | 7.02         | 7.04      |                   | 99.4<br>99.9   | 99.7                 | 3.87         | 3.86         | 3.86              | 3.1<br>2.2 | 2.7      | 3.4               |
|                    |                              |                            |                  |      |      | 31.2         |         | 6.94         |           |                   | 99.9<br>98.5   |                      | 3.85<br>3.90 |              |                   | 3.5        |          | {                 |
|                    |                              |                            | Bottom           | 21.4 | 23.9 | 31.4         | 31.4    | 6.90         | 6.92      | 6.92              | 98.0           | 98.3                 | 3.88         | 3.89         |                   | 3.5        | 3.5      |                   |
|                    |                              |                            | . <i>(</i>       |      |      | 31.1         |         | 7.66         |           |                   | 111.5          |                      | 3.33         |              |                   | 3.7        |          |                   |
|                    |                              |                            | Surface          | 1.0  | 25.5 | 31.1         | 31.1    | 7.75         | 7.71      | 7.61              | 112.8          | 112.2                | 3.35         | 3.34         |                   | 3.0        | 3.4      |                   |
| 28/11/18           | 1014-1029                    | 24/Cloudy                  | Middle           | 10.7 | 25.3 | 31.3         | 31.4    | 7.48         | 7.52      | 7.01              | 108.7          | 109.3                | 3.14         | 3.16         | 3.20              | 4.2        | 4.1      | 3.5               |
| 20/11/10           | 1014-1029                    | 24/Cloudy                  | wildule          | 10.7 | 25.5 | 31.4         | 51.4    | 7.56         | 1.52      |                   | 109.9          | 103.5                | 3.17         | 3.10         | 5.20              | 3.9        | 4.1      | 5.5               |
|                    |                              |                            | Bottom           | 20.3 | 25.1 | 31.6         | 31.7    | 7.23         | 7.27      | 7.27              | 104.9          | 105.5                | 3.10         | 3.11         |                   | 2.9        | 3.2      |                   |
|                    |                              |                            |                  |      |      | 31.7         |         | 7.31         |           |                   | 106.1          |                      | 3.11         |              |                   | 3.5        |          |                   |
|                    |                              |                            | Surface          | 1.0  | 25.6 | 31.3<br>31.2 | 31.3    | 7.60<br>7.72 | 7.66      |                   | 110.9<br>112.7 | 111.8                | 3.25<br>3.29 | 3.27         |                   | 2.7<br>3.5 | 3.1      |                   |
|                    |                              |                            |                  |      |      | 31.2         |         | 7.49         |           | 7.55              | 109.2          |                      | 3.29         |              | ł                 | 3.5<br>2.6 |          |                   |
| 30/11/18           | 1231-1247                    | 25/Fine                    | Middle           | 10.8 | 25.4 | 31.6         | 31.6    | 7.37         | 7.43      |                   | 103.2          | 108.3                | 3.15         | 3.13         | 3.16              | 3.4        | 3.0      | 3.3               |
|                    |                              |                            |                  |      |      | 31.8         |         | 7.33         |           |                   | 107.4          |                      | 3.07         |              |                   | 3.1        |          |                   |
|                    |                              |                            | Bottom           | 20.6 | 25.2 | 31.8         | 31.8    | 7.48         | 7.41      | 7.41              | 108.9          | 107.8                | 3.10         | 3.09         |                   | 4.6        | 3.9      |                   |

# Mid-Flood Tide

#### Monitoring Station : TKO-M4a

| Date Sampling |           | Ambient Temp<br>(°C) / Weather | Monitorir | 0 1  | Temp         | Salinit              | ty (ppt) | Dissolv      | ved Oxygen | ı (mg/L)                |                         | d Oxygen<br>tion (%) | Τι                   | urbidity (NT | Ū)                | Suspended Solids (mg/L) |         |                   |  |
|---------------|-----------|--------------------------------|-----------|------|--------------|----------------------|----------|--------------|------------|-------------------------|-------------------------|----------------------|----------------------|--------------|-------------------|-------------------------|---------|-------------------|--|
| Date          | Duration  | Condition                      | (n        | n)   | (°C)         | Value                | Average  | Value        | Average    | Depth-<br>average       | Value                   | Average              | Value                | Average      | Depth-<br>average | Value                   | Average | Depth-<br>average |  |
|               |           |                                | Surface   | 1.0  | 25.4         | 30.6<br>30.7         | 30.7     | 7.25<br>7.26 | 7.26       |                         | 105.1<br>105.4          | 105.3                | 3.32<br>3.29         | 3.31         |                   | 3.7<br>3.1              | 3.4     |                   |  |
| 02/11/18      | 1442-1501 | 23/Cloudy                      | Middle    | 9.4  | 25.3         | 30.8<br>30.7         | 30.8     | 7.19         | 7.17       | 7.21                    | 104.2<br>103.6          | 103.9                | 3.31<br>3.34         | 3.33         | 3.34              | 3.1<br>3.0              | 3.1     | 3.3               |  |
|               |           |                                | Bottom    | 17.7 | 25.1         | 30.9<br>31.0         | 31.0     | 7.11         | 7.10       | 7.10                    | 102.8<br>102.5          | 102.7                | 3.39                 | 3.38         |                   | 3.3<br>3.3              | 3.3     | ł                 |  |
|               |           | Surface                        | 1.0       | 24.7 | 31.1<br>31.2 | 31.2                 | 7.25     | 7.27         |            | 102.0<br>104.2<br>104.6 | 104.4                   | 3.14                 | 3.16                 |              | 4.6<br>3.1        | 3.9                     |         |                   |  |
| 05/11/18      | 1638-1655 | 24/Cloudy                      | Middle    | 9.4  | 24.5         | 31.2<br>31.3         | 31.3     | 7.19         | 7.21       | 7.24                    | 104.0<br>103.0<br>103.4 | 103.2                | 3.21<br>3.18         | 3.20         | 3.20              | 3.8<br>3.5              | 3.7     | 3.7               |  |
|               |           |                                | Bottom    | 17.8 | 24.4         | 31.3<br>31.4<br>31.4 | 31.4     | 7.09         | 7.11       | 7.11                    | 103.4<br>101.6<br>102.2 | 101.9                | 3.25                 | 3.24         |                   | 3.5<br>3.5<br>3.8       | 3.7     |                   |  |
|               |           |                                | Surface   | 1.0  | 25.6         | 31.4<br>31.1<br>31.2 | 31.2     | 6.85<br>6.97 | 6.91       |                         | 102.2<br>100.0<br>101.8 | 100.9                | 3.22<br>3.60<br>3.64 | 3.62         |                   | 3.8<br>3.3<br>1.5       | 2.4     |                   |  |
| 07/11/18      | 1722-1734 | 27/Fine                        | Middle    | 9.9  | 25.3         | 31.3<br>31.3         | 31.3     | 6.77<br>6.81 | 6.79       | 6.85                    | 98.4<br>98.9            | 98.7                 | 3.45<br>3.49         | 3.47         | 3.51              | 3.2<br>2.6              | 2.9     | 2.8               |  |
|               |           |                                | Bottom    | 18.8 | 25.1         | 31.7<br>31.8         | 31.8     | 6.62<br>6.54 | 6.58       | 6.58                    | 96.2<br>95.1            | 95.7                 | 3.40<br>3.48         | 3.44         |                   | 2.0<br>2.9<br>3.3       | 3.1     | ł                 |  |
|               |           | 24/Cloudy                      | Surface   | 1.0  | 25.4         | 31.8<br>31.8         | 31.8     | 6.95<br>6.90 | 6.93       |                         | 101.5<br>100.7          | 101.1                | 2.61<br>2.66         | 2.64         |                   | 4.7<br>4.5              | 4.6     |                   |  |
| 09/11/18      | 1825-1838 |                                | Middle    | 9.9  | 25.2         | 32.0<br>32.1         | 32.1     | 6.77<br>6.71 | 6.74       | 6.83                    | 98.5<br>97.6            | 98.1                 | 2.53<br>2.49         | 2.51         | 2.65              | 4.6                     | 4.3     | 4.5               |  |
|               |           |                                | Bottom    | 18.7 | 25.0         | 32.1<br>32.2<br>32.2 | 32.2     | 6.48<br>6.56 | 6.52       | 6.52                    | 94.0<br>94.9            | 94.5                 | 2.78                 | 2.82         |                   | 3.3<br>5.7              | 4.5     | ÷                 |  |
|               |           | 25/Cloudy                      | Surface   | 1.0  | 25.5         | 31.3                 | 31.3     | 6.70<br>6.78 | 6.74       | 6.67                    | 97.7<br>98.8            | 98.3<br>95.8         | 3.65<br>3.68         | 3.67         |                   | 2.8<br>4.3              | 3.6     | 2.7               |  |
| 12/11/18      | 932-945   |                                | Middle    | 9.9  | 25.2         | 31.5<br>31.6         | 31.6     | 6.55<br>6.63 | 6.59       |                         | 95.2<br>96.4            |                      | 3.30                 | 3.32         | 3.40              | 2.3                     | 2.2     |                   |  |
|               |           |                                | Bottom    | 18.7 | 25.0         | 31.7<br>31.7         | 31.7     | 6.31<br>6.48 | 6.40       | 6.40                    | 91.5<br>93.9            | 92.7                 | 3.19<br>3.24         | 3.22         |                   | 2.1<br>2.8              | 2.5     |                   |  |
|               |           |                                | Surface   | 1.0  | 25.7         | 31.9<br>32.0         | 32.0     | 7.18         | 7.16       |                         | 105.4<br>104.9          | 105.2                | 3.63<br>3.67         | 3.65         |                   | 3.8<br>2.8              | 3.3     |                   |  |
| 14/11/18      | 1037-1051 | 25/Cloudy                      | Middle    | 9.9  | 25.6         | 32.1<br>32.2         | 32.2     | 7.12<br>7.14 | 7.13       | 7.15                    | 104.5<br>104.8          | 104.7                | 3.54<br>3.50         | 3.52         | 3.67              | 3.1<br>3.6              | 3.4     | 3.4               |  |
|               |           |                                | Bottom    | 18.8 | 25.5         | 32.2<br>32.3         | 32.3     | 7.01<br>7.05 | 7.03       | 7.03                    | 102.7<br>103.2          | 103.0                | 3.82<br>3.86         | 3.84         |                   | 3.9<br>3.3              | 3.6     | 1                 |  |
|               |           |                                | Surface   | 1.0  | 25.5         | 31.8<br>31.9         | 31.9     | 6.94<br>6.90 | 6.92       | 0.00                    | 101.5<br>100.9          | 101.2                | 3.01<br>2.96         | 2.99         |                   | 4.6<br>2.8              | 3.7     |                   |  |
| 16/11/18      | 1317-1332 | 24/Fine                        | Middle    | 9.9  | 25.4         | 32.1<br>32.1         | 32.1     | 6.75<br>6.70 | 6.73       | 6.82                    | 98.5<br>97.8            | 98.2                 | 2.85<br>2.88         | 2.87         | 3.00              | 2.5<br>2.9              | 2.7     | 3.2               |  |
| 1             |           |                                | Bottom    | 18.8 | 25.3         | 32.3<br>32.2         | 32.3     | 6.58<br>6.52 | 6.55       | 6.55                    | 95.9<br>95.0            | 95.5                 | 3.13<br>3.17         | 3.15         |                   | 1.8<br>4.6              | 3.2     | 1                 |  |

### 東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

### Mid-Flood Tide

### Monitoring Station : TKO-M4a

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorin |      | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxyger | ı (mg/L)          |                | d Oxygen<br>tion (%) | Τι           | urbidity (NT | Ū)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|-----------|------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Dute     | Duration  | Condition                      | (n        | ו)   | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0  | 25.9 | 32.1<br>32.0 | 32.1     | 7.29<br>7.26 | 7.28       |                   | 107.5<br>107.1 | 107.3                | 3.43<br>3.46 | 3.45         |                   | 1.8<br>3.5 | 2.7         |                   |
| 19/11/18 | 1550-1603 | 24/Fine                        | Middle    | 10.1 | 25.5 | 32.3<br>32.2 | 32.3     | 7.15<br>7.18 | 7.17       | 7.22              | 104.8<br>105.2 | 105.0                | 3.69<br>3.65 | 3.67         | 3.65              | 2.8<br>3.9 | 3.4         | 3.1               |
|          |           |                                | Bottom    | 19.2 | 25.4 | 32.3         | 32.4     | 6.97         | 6.95       | 6.95              | 102.0          | 101.8                | 3.82         | 3.83         |                   | 3.2        | 3.2         |                   |
|          |           |                                | Surface   | 1.0  | 25.3 | 32.4<br>32.1 | 32.1     | 6.93<br>6.92 | 6.94       |                   | 101.5<br>101.0 | 101.3                | 3.84<br>2.80 | 2.78         |                   | 3.1<br>3.7 | 3.5         |                   |
|          |           |                                |           | -    |      | 32.1<br>32.3 |          | 6.96<br>6.83 |            | 6.87              | 101.6<br>99.6  |                      | 2.75<br>2.92 |              |                   | 3.3<br>2.5 |             |                   |
| 21/11/18 | 1622-1636 | 25/Cloudy                      | Middle    | 9.9  | 25.2 | 32.2         | 32.3     | 6.75         | 6.79       |                   | 98.4           | 99.0                 | 2.95         | 2.94         | 2.80              | 4.9        | 3.7         | 3.5               |
|          |           |                                | Bottom    | 18.7 | 25.0 | 32.4<br>32.5 | 32.5     | 6.55<br>6.50 | 6.53       | 6.53              | 95.4<br>94.6   | 95.0                 | 2.70<br>2.66 | 2.68         |                   | 2.4<br>3.9 | 3.2         |                   |
|          |           |                                | Surface   | 1.0  | 24.7 | 32.0<br>32.0 | 32.0     | 7.26<br>7.28 | 7.27       |                   | 104.9<br>105.2 | 105.1                | 3.47<br>3.41 | 3.44         |                   | 4.8<br>4.5 | 4.7         |                   |
| 23/11/18 | 1723-1737 | 25/Fine                        | Middle    | 9.9  | 24.6 | 32.2<br>32.3 | 32.3     | 7.04<br>7.08 | 7.06       | 7.17              | 101.5<br>102.0 | 101.8                | 3.64<br>3.60 | 3.62         | 3.58              | 2.9<br>3.5 | 3.2         | 4.1               |
|          |           |                                | Bottom    | 18.8 | 24.5 | 32.3         | 32.3     | 6.92         | 6.94       | 6.94              | 99.7           | 99.9                 | 3.68         | 3.67         |                   | 3.6        | 4.4         |                   |
|          |           |                                | Surface   | 1.0  | 23.7 | 32.2<br>30.9 | 31.0     | 6.95<br>7.22 | 7.20       |                   | 100.1<br>101.8 | 101.6                | 3.65<br>3.75 | 3.73         |                   | 5.2<br>3.2 | 3.0         |                   |
|          |           |                                |           | -    |      | 31.0<br>31.2 |          | 7.18<br>6.98 |            | 7.08              | 101.3<br>99.0  |                      | 3.71<br>3.78 |              |                   | 2.8<br>2.7 |             |                   |
| 26/11/18 | 847-900   | 18/Rainy                       | Middle    | 9.9  | 23.9 | 31.3         | 31.3     | 6.95         | 6.97       |                   | 98.5           | 98.8                 | 3.72         | 3.75         | 3.77              | 3.7        | 3.2         | 3.3               |
|          |           |                                | Bottom    | 18.8 | 23.9 | 31.4<br>31.3 | 31.4     | 6.88<br>6.84 | 6.86       | 6.86              | 97.7<br>97.2   | 97.5                 | 3.85<br>3.81 | 3.83         |                   | 4.7<br>2.9 | 3.8         |                   |
|          |           |                                | Surface   | 1.0  | 25.5 | 31.1<br>31.1 | 31.1     | 7.58<br>7.67 | 7.63       | =                 | 11.0<br>111.6  | 61.3                 | 3.49<br>3.56 | 3.53         |                   | 4.6<br>3.2 | 3.9         |                   |
| 28/11/18 | 1032-1044 | 24/Cloudy                      | Middle    | 9.9  | 25.3 | 31.3<br>31.4 | 31.4     | 7.51<br>7.63 | 7.57       | 7.60              | 109.2<br>110.9 | 110.1                | 3.21<br>3.27 | 3.24         | 3.30              | 4.9<br>5.0 | 5.0         | 4.6               |
|          |           |                                | Bottom    | 18.7 | 25.1 | 31.6         | 31.6     | 7.34         | 7.41       | 7.41              | 106.5          | 107.6                | 3.12         | 3.14         |                   | 4.7        | 5.0         |                   |
|          |           |                                | Surface   | 1.0  | 25.6 | 31.6<br>31.3 | 31.3     | 7.48<br>7.59 | 7.62       |                   | 108.6<br>110.8 | 111.2                | 3.16<br>3.50 | 3.53         |                   | 5.3<br>3.3 | 3.5         |                   |
|          |           |                                |           |      |      | 31.3<br>31.6 |          | 7.64<br>7.41 |            | 7.55              | 111.5<br>108.0 |                      | 3.56<br>3.36 |              |                   | 3.7<br>4.7 |             |                   |
| 30/11/18 | 1250-1305 | 25/Fine                        | Middle    | 9.7  | 25.4 | 31.6         | 31.6     | 7.57         | 7.49       |                   | 110.4          | 109.2                | 3.31         | 3.34         | 3.35              | 3.3        | 4.0         | 3.4               |
|          |           |                                | Bottom    | 18.4 | 25.2 | 31.7<br>31.8 | 31.8     | 7.28<br>7.14 | 7.21       | 7.21              | 106.0<br>103.9 | 105.0                | 3.16<br>3.19 | 3.18         |                   | 2.7<br>2.8 | 2.8         |                   |

### 東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

### Mid-Flood Tide

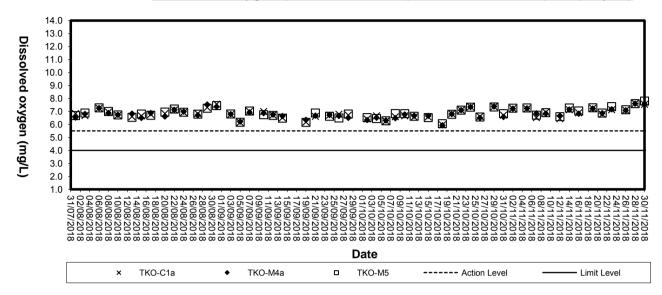
### Monitoring Station : TKO-M5

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorir | 0 1  | Temp | Salinit      | ty (ppt) | Dissolv      | ved Oxyger | ı (mg/L)          |                | d Oxygen<br>tion (%) | Τι           | ırbidity (NT | U)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|-----------|------|------|--------------|----------|--------------|------------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| Duit     | Duration  | Condition                      | (n        | n)   | (°C) | Value        | Average  | Value        | Average    | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0  | 25.5 | 30.7         | 30.7     | 7.29         | 7.28       |                   | 106.0          | 105.8                | 3.28         | 3.30         | aronado           | 2.8        | 2.5         | aroidae           |
|          |           |                                |           |      |      | 30.7<br>30.8 |          | 7.26<br>7.23 |            | 7.25              | 105.5<br>104.9 |                      | 3.31<br>3.33 |              |                   | 2.2<br>4.7 |             |                   |
| 02/11/18 | 1505-1522 | 23/Cloudy                      | Middle    | 7.8  | 25.4 | 30.8         | 30.8     | 7.23         | 7.22       |                   | 104.9          | 104.8                | 3.33         | 3.32         | 3.33              | 2.8        | 3.8         | 3.1               |
|          |           |                                | Dettern   | 11.0 | 25.2 | 30.9         | 30.9     | 7.17         | 7.40       | 7.16              | 103.8          | 103.6                | 3.38         | 3.37         |                   | 3.4        | 3.1         | ł                 |
|          |           |                                | Bottom    | 14.6 | 25.2 | 30.8         | 30.9     | 7.14         | 7.16       | 7.10              | 103.3          | 103.6                | 3.36         | 3.37         |                   | 2.8        | 3.1         |                   |
|          |           |                                | Surface   | 1.0  | 24.8 | 31.1         | 31.2     | 7.26         | 7.29       |                   | 104.5          | 104.9                | 3.16         | 3.14         |                   | 4.5        | 4.8         |                   |
|          |           |                                |           |      |      | 31.2         |          | 7.31         |            | 7.27              | 105.3          |                      | 3.12         |              |                   | 5.1        |             |                   |
| 05/11/18 | 1659-1717 | 24/Cloudy                      | Middle    | 7.8  | 24.7 | 31.2<br>31.1 | 31.2     | 7.24<br>7.26 | 7.25       |                   | 104.0<br>104.3 | 104.2                | 3.15<br>3.16 | 3.16         | 3.16              | 1.8<br>3.1 | 2.5         | 3.6               |
|          |           |                                | _         |      |      | 31.3         |          | 7.16         |            |                   | 104.5          |                      | 3.22         |              |                   | 4.0        |             | ł                 |
|          |           |                                | Bottom    | 14.5 | 24.5 | 31.2         | 31.3     | 7.19         | 7.18       | 7.18              | 103.0          | 102.8                | 3.17         | 3.20         |                   | 3.1        | 3.6         |                   |
|          |           |                                | Surface   | 1.0  | 25.6 | 31.1         | 31.2     | 6.74         | 6.81       |                   | 98.4           | 99.4                 | 3.54         | 3.56         |                   | 5.2        | 4.2         |                   |
|          |           |                                | Ounacc    | 1.0  | 20.0 | 31.2         | 01.2     | 6.88         | 0.01       | 6.71              | 100.4          | 55.4                 | 3.58         | 0.00         |                   | 3.2        | 7.2         |                   |
| 07/11/18 | 1739-1753 | 27/Fine                        | Middle    | 7.8  | 25.4 | 31.3         | 31.4     | 6.65         | 6.61       |                   | 96.8           | 96.2                 | 3.27         | 3.24         | 3.30              | 2.0        | 3.3         | 3.2               |
|          |           |                                |           |      |      | 31.4<br>31.7 |          | 6.57<br>6.43 |            |                   | 95.6<br>93.5   |                      | 3.20<br>3.10 |              |                   | 4.5<br>2.5 |             |                   |
|          |           |                                | Bottom    | 14.6 | 25.1 | 31.8         | 31.8     | 6.52         | 6.48       | 6.48              | 94.8           | 94.2                 | 3.08         | 3.09         |                   | 2.0        | 2.3         |                   |
|          |           |                                | Curfooo   | 1.0  | 25.2 | 31.8         | 21.0     | 6.97         | 7.01       |                   | 101.8          | 102.4                | 2.50         | 2.48         |                   | 4.4        | 4.6         |                   |
|          |           |                                | Surface   | 1.0  | 25.3 | 31.7         | 31.8     | 7.05         | 7.01       | 6.90              | 102.9          | 102.4                | 2.45         | 2.48         |                   | 4.7        | 4.0         |                   |
| 09/11/18 | 1841-1855 | 24/Cloudy                      | Middle    | 8.9  | 25.1 | 32.0         | 32.1     | 6.84         | 6.80       | 0.00              | 99.5           | 98.9                 | 2.34         | 2.37         | 2.51              | 4.2        | 4.5         | 4.7               |
|          |           | ,                              |           |      |      | 32.1         |          | 6.75         |            |                   | 98.2           |                      | 2.39         |              | -                 | 4.8        |             |                   |
|          |           |                                | Bottom    | 16.7 | 24.9 | 32.1<br>32.2 | 32.2     | 6.51<br>6.45 | 6.48       | 6.48              | 94.4<br>93.5   | 94.0                 | 2.73<br>2.67 | 2.70         |                   | 5.0<br>5.2 | 5.1         |                   |
|          |           |                                |           |      |      | 32.2         |          | 6.63         |            |                   | 95.5<br>96.7   |                      | 3.61         |              |                   | 2.4        |             |                   |
|          |           |                                | Surface   | 1.0  | 25.5 | 31.3         | 31.3     | 6.69         | 6.66       | 0.50              | 97.5           | 97.1                 | 3.55         | 3.58         |                   | 2.3        | 2.4         |                   |
| 12/11/18 | 951-1006  | 25/Cloudy                      | Middle    | 7.7  | 25.3 | 31.6         | 31.7     | 6.46         | 6.53       | 6.59              | 94.0           | 95.0                 | 3.42         | 3.45         | 3.41              | 3.5        | 3.3         | 2.4               |
| 12/11/10 | 951-1000  | 25/Cloudy                      | Midule    | 1.1  | 20.0 | 31.7         | 51.7     | 6.59         | 0.00       |                   | 95.9           | 33.0                 | 3.48         | 3.45         | 5.41              | 3.1        | 5.5         | 2.4               |
|          |           |                                | Bottom    | 14.4 | 25.1 | 31.8         | 31.8     | 6.27         | 6.31       | 6.31              | 91.1           | 91.7                 | 3.21         | 3.19         |                   | 1.9        | 1.6         |                   |
|          |           |                                |           |      |      | 31.8<br>32.0 |          | 6.35<br>7.39 |            |                   | 92.3<br>108.5  |                      | 3.17<br>3.88 |              |                   | 1.3<br>3.9 |             |                   |
|          |           |                                | Surface   | 1.0  | 25.7 | 32.0         | 32.0     | 7.39         | 7.38       |                   | 108.1          | 108.3                | 3.84         | 3.86         |                   | 3.9        | 3.9         |                   |
|          |           |                                |           |      |      | 32.1         |          | 7.17         |            | 7.27              | 105.2          |                      | 3.90         |              |                   | 3.7        |             |                   |
| 14/11/18 | 1056-1109 | 25/Cloudy                      | Middle    | 8.8  | 25.6 | 32.1         | 32.1     | 7.14         | 7.16       |                   | 104.8          | 105.0                | 3.87         | 3.89         | 3.84              | 3.7        | 3.7         | 3.7               |
|          |           |                                | Bottom    | 16.6 | 25.5 | 32.1         | 32.2     | 7.04         | 7.06       | 7.06              | 103.0          | 103.2                | 3.79         | 3.77         |                   | 3.6        | 3.5         | l                 |
|          |           |                                | Dottoin   | 10.0 | 20.0 | 32.2         | 02.2     | 7.07         | 1.00       | 7.00              | 103.4          | 100.2                | 3.75         | 0.77         |                   | 3.3        | 0.0         |                   |
|          |           |                                | Surface   | 1.0  | 25.5 | 31.9         | 31.9     | 7.16         | 7.19       |                   | 104.7          | 105.1                | 2.88         | 2.90         |                   | 3.3        | 3.1         |                   |
|          |           |                                |           |      |      | 31.8<br>32.1 |          | 7.21<br>6.92 |            | 7.04              | 105.4<br>101.0 |                      | 2.92<br>2.75 |              | ļ                 | 2.9<br>2.6 |             | ł                 |
| 16/11/18 | 1335-1349 | 24/Fine                        | Middle    | 8.6  | 25.4 | 32.1         | 32.1     | 6.85         | 6.89       |                   | 101.0          | 100.5                | 2.75         | 2.73         | 2.89              | 2.0        | 2.6         | 3.1               |
|          |           |                                | Defici    | 10.0 | 05.0 | 32.3         | 20.0     | 6.68         | 0.00       | 0.00              | 97.3           | 07.0                 | 3.08         | 0.05         |                   | 5.0        | 2.0         | t                 |
|          |           |                                | Bottom    | 16.2 | 25.3 | 32.2         | 32.3     | 6.63         | 6.66       | 6.66              | 96.6           | 97.0                 | 3.02         | 3.05         |                   | 2.5        | 3.8         |                   |

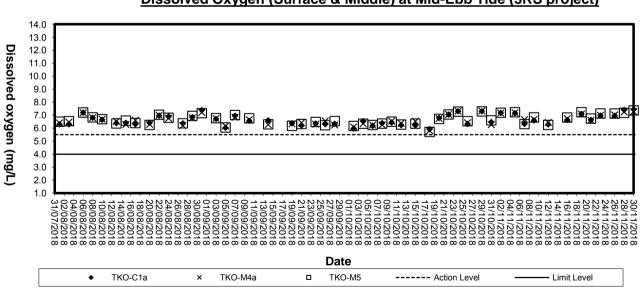
### 東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

### Mid-Flood Tide

### Monitoring Station : TKO-M5

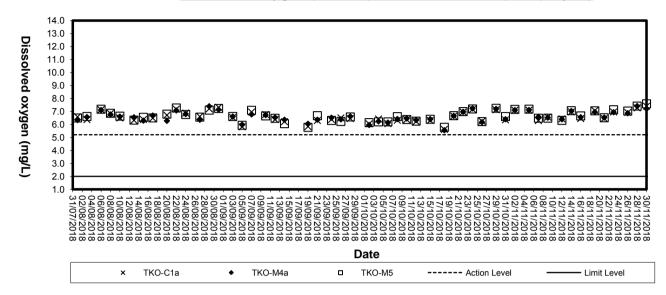

| Date     | Sampling  | Ambient Temp<br>(°C) / Weather | Monitorir |      | Temp | Salinit      | ty (ppt) | Dissolv      | ed Oxyger | (mg/L)            |                | d Oxygen<br>tion (%) | Tu           | urbidity (NT | Ū)                | Susper     | nded Solids | s (mg/L)          |
|----------|-----------|--------------------------------|-----------|------|------|--------------|----------|--------------|-----------|-------------------|----------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------|
| 2010     | Duration  | Condition                      | (n        | n)   | (°C) | Value        | Average  | Value        | Average   | Depth-<br>average | Value          | Average              | Value        | Average      | Depth-<br>average | Value      | Average     | Depth-<br>average |
|          |           |                                | Surface   | 1.0  | 25.8 | 32.1<br>32.0 | 32.1     | 7.42<br>7.39 | 7.41      |                   | 109.2<br>108.8 | 109.0                | 3.62<br>3.57 | 3.60         |                   | 2.5<br>2.0 | 2.3         |                   |
| 19/11/18 | 1607-1620 | 24/Fine                        | Middle    | 9.1  | 25.5 | 32.3<br>32.3 | 32.3     | 7.17         | 7.16      | 7.28              | 105.1<br>104.7 | 104.9                | 3.77<br>3.71 | 3.74         | 3.69              | 4.9<br>2.9 | 3.9         | 2.8               |
|          |           |                                | Bottom    | 17.2 | 25.5 | 32.3         | 32.4     | 7.03         | 7.05      | 7.05              | 103.0          | 103.2                | 3.74         | 3.72         |                   | 2.4        | 2.3         |                   |
|          |           |                                |           | 1.0  | 25.3 | 32.4<br>32.1 | 32.1     | 7.06<br>6.98 | 7.02      |                   | 103.4<br>101.9 | 102.4                | 3.70<br>2.63 | 2.65         |                   | 2.1<br>4.1 | 3.8         |                   |
|          |           |                                | Surface   | 1.0  | 25.3 | 32.0         | 32.1     | 7.05         | 7.02      | 6.88              | 102.9          | 102.4                | 2.66         | 2.05         |                   | 3.4        | 3.8         |                   |
| 21/11/18 | 1639-1655 | 25/Cloudy                      | Middle    | 8.5  | 25.1 | 32.3<br>32.3 | 32.3     | 6.76<br>6.71 | 6.74      |                   | 98.6<br>97.8   | 98.2                 | 2.48<br>2.52 | 2.50         | 2.65              | 2.8<br>2.4 | 2.6         | 3.2               |
|          |           |                                | Bottom    | 15.9 | 25.0 | 32.4<br>32.5 | 32.5     | 6.53<br>6.49 | 6.51      | 6.51              | 95.1<br>94.5   | 94.8                 | 2.78<br>2.83 | 2.81         |                   | 3.3<br>3.3 | 3.3         |                   |
|          |           |                                | Surface   | 1.0  | 24.7 | 32.1<br>32.0 | 32.1     | 7.44         | 7.46      |                   | 107.5          | 107.7                | 3.58         | 3.61         |                   | 5.2        | 5.6         |                   |
| 23/11/18 | 1742-1755 | 25/Fine                        | Middle    | 9.1  | 24.5 | 32.3         | 32.3     | 7.47<br>7.27 | 7.28      | 7.37              | 107.9<br>104.7 | 104.9                | 3.63<br>3.71 | 3.69         | 3.67              | 5.9<br>2.1 | 2.6         | 3.8               |
| 20,11,10 |           | 20,1 110                       | inidalo   | -    |      | 32.3<br>32.3 |          | 7.29<br>7.15 |           |                   | 105.0<br>103.0 |                      | 3.67<br>3.73 |              | 0.01              | 3.0<br>3.5 |             | 0.0               |
|          |           |                                | Bottom    | 17.2 | 24.5 | 32.4         | 32.4     | 7.11         | 7.13      | 7.13              | 102.4          | 102.7                | 3.69         | 3.71         |                   | 3.0        | 3.3         |                   |
|          |           |                                | Surface   | 1.0  | 23.7 | 31.0<br>31.0 | 31.0     | 7.23<br>7.19 | 7.21      |                   | 101.9<br>101.4 | 101.7                | 3.69<br>3.73 | 3.71         |                   | 2.6<br>2.2 | 2.4         |                   |
| 26/11/18 | 905-918   | 18/Rainy                       | Middle    | 9.1  | 23.9 | 31.3         | 31.4     | 7.07         | 7.05      | 7.13              | 100.2<br>99.6  | 99.9                 | 3.82<br>3.86 | 3.84         | 3.82              | 5.8<br>2.1 | 4.0         | 3.0               |
|          |           |                                | Bottom    | 17.2 | 23.9 | 31.4<br>31.4 | 31.4     | 7.02<br>7.02 | 7.03      | 7.03              | 99.6<br>99.7   | 99.9                 | 3.86         | 3.92         |                   | 2.1        | 2.8         |                   |
|          |           |                                | BOLLOIN   | 17.2 | 23.9 | 31.4<br>31.1 | 51.4     | 7.04<br>7.58 | 7.03      | 7.03              | 100.0<br>110.3 | 99.9                 | 3.90<br>3.49 | 5.92         |                   | 3.2<br>4.1 | 2.0         |                   |
|          |           |                                | Surface   | 1.0  | 25.5 | 31.1         | 31.1     | 7.67         | 7.63      | 7.60              | 111.3          | 110.8                | 3.56         | 3.53         |                   | 5.3        | 4.7         |                   |
| 28/11/18 | 1032-1044 | 24/Cloudy                      | Middle    | 9.9  | 25.3 | 31.3<br>31.4 | 31.4     | 7.51<br>7.63 | 7.57      | 1.00              | 109.2<br>110.9 | 110.1                | 3.21<br>3.27 | 3.24         | 3.30              | 3.2<br>3.3 | 3.3         | 4.3               |
|          |           |                                | Bottom    | 18.7 | 25.1 | 31.6         | 31.6     | 7.34         | 7.41      | 7.41              | 106.5          | 107.6                | 3.12         | 3.14         |                   | 5.8        | 4.8         |                   |
|          |           |                                | Surface   | 1.0  | 25.6 | 31.6<br>31.2 | 31.3     | 7.48<br>7.82 | 7.90      |                   | 108.6<br>114.2 | 115.3                | 3.16<br>3.27 | 3.24         |                   | 3.8<br>3.2 | 2.8         |                   |
|          |           |                                | Sunace    | 1.0  | 20.0 | 31.3<br>31.5 | 51.5     | 7.97<br>7.77 | 1.30      | 7.80              | 116.4<br>113.3 | 115.5                | 3.21<br>3.16 | 5.24         |                   | 2.4<br>4.1 | 2.0         |                   |
| 30/11/18 | 1310-1326 | 25/Fine                        | Middle    | 8.7  | 25.4 | 31.5<br>31.6 | 31.6     | 7.63         | 7.70      |                   | 113.3<br>111.2 | 112.3                | 3.16<br>3.18 | 3.17         | 3.15              | 4.1<br>3.5 | 3.8         | 3.1               |
|          |           |                                | Bottom    | 16.3 | 25.2 | 31.7<br>31.8 | 31.8     | 7.52<br>7.65 | 7.59      | 7.59              | 109.5<br>111.4 | 110.5                | 3.02<br>3.06 | 3.04         |                   | 2.2<br>3.1 | 2.7         |                   |




Appendix D5

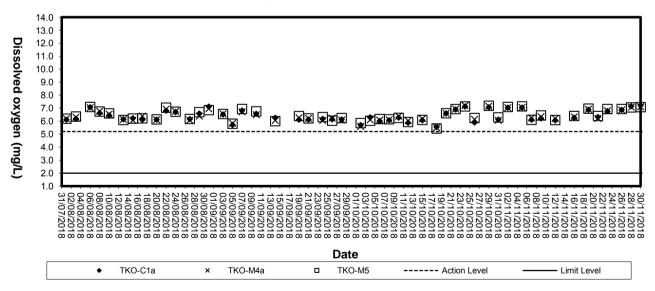
Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS Project)



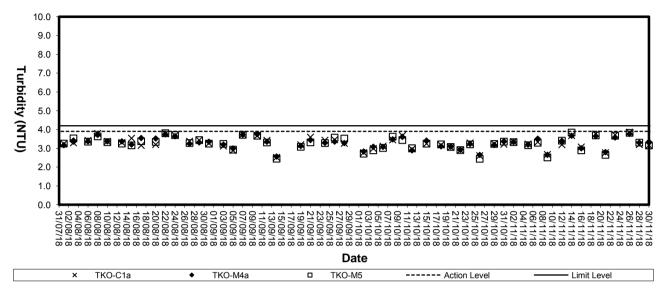



### Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide (3RS project)

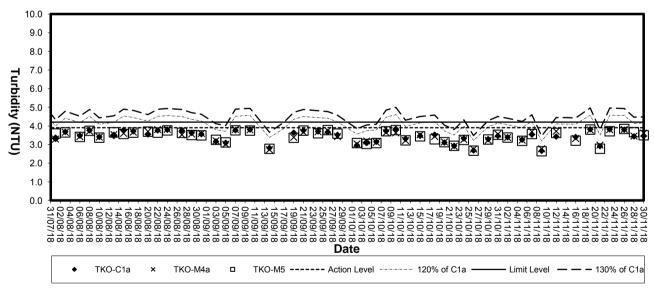



Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide (3RS project)



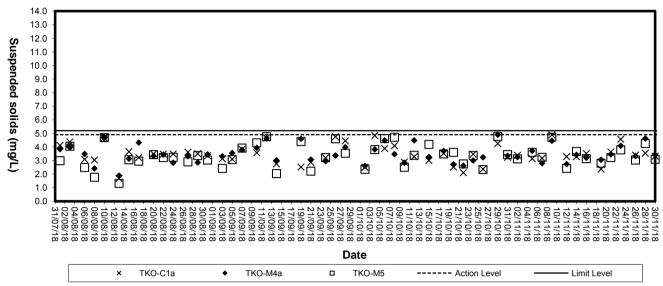



### Dissolved Oxygen (Bottom) at Mid-Flood Tide (3RS project)


Dissolved Oxygen (Bottom) at Mid-Ebb Tide (3RS project)








### Turbidity (Depth-average) at Mid-Flood Tide (3RS project)




### Turbidity(Depth-average) at Mid-Ebb Tide (3RS project)





Suspended solids (Depth-average) at Mid-Flood Tide (3RS project)



Suspended Solids (Depth-average) at Mid-Ebb Tide (3RS project)



Appendix E

Weather Condition

|     | Dai                       | IY EXITACT OF                     | Wieteoroid      | ogical Observa                    |                      |                              | 0                         |                                 |                       |
|-----|---------------------------|-----------------------------------|-----------------|-----------------------------------|----------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| Day | Mean<br>Pressure<br>(hPa) |                                   | Air Temperat    |                                   | Mean<br>Dew<br>Point | Mean<br>Relative<br>Humidity | Total<br>Rainfall<br>(mm) | Prevailing<br>Wind<br>Direction | Mean<br>Wind<br>Speed |
| Duy |                           | Absolute<br>Daily Max<br>(deg. C) | Mean<br>(deg.C) | Absolute<br>Daily Min<br>(deg. C) | (deg. C)             | (%)                          |                           | (degrees)                       | (km/h)                |
| 1   | * * *                     | 28.4                              | 24.1            | 21.8                              | 10.3                 | 43                           | 0                         | 40                              | 13.1                  |
| 2   | * * *                     | 26.4                              | 21.9            | 18.9                              | 16.4                 | 71                           | 3.5                       | 60                              | 8.5                   |
| 3   | * * *                     | 23.5                              | 21.2            | 18.9                              | 19.4                 | 90                           | 3.5                       | 70                              | 4.2                   |
| 4   | * * *                     | 25.1                              | 22.8            | 21                                | 20.6                 | 88                           | 0                         | 40                              | 4.8                   |
| 5   | * * *                     | 27.3                              | 24              | 22.8                              | 20.4                 | 81                           | 0                         | 20                              | 8                     |
| 6   | * * *                     | 27                                | 24.1            | 22.6                              | 20.3                 | 80                           | 0                         | 20                              | 9                     |
| 7   | * * *                     | 27.5                              | 24.3            | 22.2                              | 20.7                 | 81                           | 0                         | 60                              | 6.5                   |
| 8   | * * *                     | 29.4                              | 24.4            | 20.9                              | 20.3                 | 79                           | 0                         | 60                              | 4.5                   |
| 9   | * * *                     | 28.1                              | 23.4            | 20                                | 19.3                 | 79                           | 0                         | 70                              | 6.6                   |
| 10  | * * *                     | 25.8                              | 23.4            | 22.7                              | 19.8                 | 80                           | 0                         | 50                              | 9                     |
| 11  | * * *                     | 26.1                              | 22.6            | 20.7                              | 19.9                 | 85                           | 0                         | 10                              | 6.5                   |
| 12  | * * *                     | 29.8                              | 23.6            | 20.8                              | 20.8                 | 86                           | 0                         | 60                              | 3.4                   |
| 13  | * * *                     | 26.7                              | 23.4            | 21                                | 19.5                 | 79                           | 0                         | 60                              | 6.4                   |
| 14  | * * *                     | 25.4                              | 23              | 22                                | 18.7                 | 77                           | 0                         | 60                              | 8.4                   |
| 15  | * * *                     | 23.3#                             | 22.7            | 22.2#                             | 19.7                 | 83                           | 0                         | 60                              | 9.5                   |
| 16  | * * *                     | 24.6                              | 23.4            | 22.2                              | 20.9                 | 86                           | 0                         | 30                              | 6.9                   |
| 17  | * * *                     | 23.5                              | 22.9            | 22.4                              | 21.2                 | 90                           | 0.5                       | 60                              | 6.5                   |
| 18  | * * *                     | 25.6                              | 22.8            | 21.9                              | 20.7                 | 88                           | 0                         | 70                              | 6.3                   |
| 19  | * * *                     | 27.7                              | 23.4            | 19.7                              | 18.6                 | 76                           | 0                         | 60                              | 6.5                   |
| 20  | * * *                     | 23.6                              | 22.3            | 21.2                              | 19.1                 | 82                           | 0                         | 60                              | 7.4                   |
| 21  | * * *                     | 28.9                              | 23.1            | 19                                | 19.9                 | 83                           | 4.5                       | 20                              | 6.8                   |
| 22  | * * *                     | 21.3                              | 19.3            | 17.6                              | 13.2                 | 68                           | 0                         | 330                             | 7.8                   |
| 23  | * * *                     | 25.3                              | 19.9            | 15.2                              | 13.9                 | 70                           | 0                         | 60                              | 4.8                   |
| 24  | * * *                     | 23.4                              | 20.8            | 19.2                              | 16.3                 | 76                           | 0                         | 50                              | 6.5                   |
| 25  | * * *                     | 20.6                              | 18.6            | 16.7                              | 16.6                 | 89                           | 20.5                      | 20                              | 4.5                   |
| 26  | * * *                     | 20.9                              | 18.5            | 16.7                              | 16.9                 | 91                           | 14                        | 40                              | 4.8                   |
| 27  | * * *                     | 22.6                              | 19.7            | 18.2                              | 17.5                 | 88                           | 21.5                      | 40                              | 4.1                   |
| 28  | * * *                     | 21.2                              | 19.6            | 18.7                              | 18.4                 | 93                           | 8                         | 20                              | 4.7                   |
| 29  | * * *                     | 24                                | 20.1            | 17.9                              | 16.7                 | 82                           | 0                         | 360                             | 4.6                   |
| 30  | * * *                     | 23.7                              | 20.9            | 18.9                              | 16.2                 | 75                           | 0                         | 20                              | 6.6                   |

### Daily Extract of Meteorological Observations, November 2018 - Tseung Kwan O

# data incomplete

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected



Appendix F

**Event-Action Plans** 

| 5. Assess the effectiveness of 5. Supervise implementation of remedial |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

| ACTION         ET Leader         ACTION         ER         Contractor           2. Exceedance         1. Identify source, Investigata the causes<br>of exceedance and propose namedial<br>extreme         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>of exceedance and propose namedial<br>of exceedance and propose namedial<br>of exceedance and propose namedial<br>of exceedance and propose namedial<br>exercise         1. Confirm receipt of notification<br>of fabre in writing<br>avoid furthe exceedences<br>working procedance and propose namedial<br>exercise         2. Reve Contractor on<br>frations         1. Take immediate action to<br>evoid furthe exceedences<br>and the Exceedence<br>inding         3. Notify Contractor<br>working grooted<br>in properation<br>inding         3. Notify Contractor<br>or exceedence<br>and the Exceedence<br>inding         3. Notify Contractor<br>inding         3. Notify Contractor<br>inding         3. Notify Contractor<br>inding         3. Notify Contractor<br>inding           6. Arrange meeting with ICE] and ER to<br>for target and<br>inding         3. Report in the Exam remedial measures<br>in properation<br>intermedial measures         3. Notify Contractor<br>intermedial<br>intermedial measures         3. Notify Contractor<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermedial<br>intermed | EVENT       |    |    |                                        | EVENTIACTION PLAN FOR AIR QUALITY EXCEEDANCE           | Ę   | Y EXCEEDANCE                    |              |                                 |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|----|----------------------------------------|--------------------------------------------------------|-----|---------------------------------|--------------|---------------------------------|----|
| ET Leader         IC(E)         ER           1. Identify source, inwestigate the causes<br>of exceedance and propose namedial<br>de exceedance and propose namedial<br>de exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of exceedance and propose namedial<br>measures         1. Discuss amongst ER, ET and Contractor on<br>of failure in writing         2. Notity Contractor         2.           3. Respect measurement to confirm<br>finding         3. In consultation with the IC(E),<br>and failure in writing         3.         4.         4.           4. Increase monitoring frequency to daity<br>finding         5. Cerry out aneities of<br>monitors frequency to daity<br>fremedia actions to be<br>file         3.         6.         4.           6. Arrange meeting with IC(E) and ER to<br>focuss the remedial actions to be<br>file         6.         6.         6.         6.         6.         6.         6.           7. Assess effectiveness of Contractor's<br>file         1.         6.         6.         6.         6.         6.         6.           6.         Arrange meeting with IC(E), EPD<br>and ER informed of the resuits<br>monithoring         6.         6.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _           |    |    |                                        | ACTION                                                 |     |                                 |              |                                 | -  |
| 1.       Identify source, Investigate the causes of accordance and propose nemediat the causes of accordance and propose nemediat the contractor on the accordance and propose nemediations of accordance and propose nemediations.       1.       Discuss amongst ER, ET and Contractor on the mediations of accordance and propose nemediations the potential nemediations of accordance and propose nemediations.       1.       Confirm receipt of notification to accordance and propose nemediations of resume their the potentiation with Intercent to confident to confractor on the potentiation and propose nemediations of contractor and the potentiation of remediations of contractor on the remediation actions to be to accordance actions and leader actions actions to active actions actinclustinteres actions actincleader actions actions ac                                                                                      |             |    |    | ET Leader                              | 1C(E)                                                  |     | ER                              |              | Contractor                      | -  |
| o or     of exceedance and propose numedial<br>measures     the potential remedial actions<br>measures     2.     Nolify C(E), ER, EPD and Contractor<br>measures     2.     Nolify C(E), ER     2.     Nolify C(E), ER     2.       6.     Inding     3.     Supervise the implemented<br>measures     3.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. Exceedan | 8  | ÷. | dentify source, investigate the causes | 1. Discuss amongst ER, ET and Contractor on            | ÷   | Confirm receipt of notification | ÷            | Take immediate action to        | -  |
| measures         2.         Nolify IC(E), ER, EPD and Contractor         2.         Review Contractor         2.         Nolify C(E), ER, EPD and Contractor         2.         Nolify IC(E), EPD and Contractor         2.         Nolify IC(E), EPD and Contractor         2.         Nolify IC(E), EPD and ER         2.         Nolify IC(E), EPD and Contractor         2.         Nolify IC(E), EPD and ER         3.         3.         Nonsultation with the IC(E), and ER         3.         3.         3.         3.         Nonsultation with the IC(E), and ER         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.         3.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for two or  |    | 0  | if exceedance and propose remedial     | the potential nemedial actions                         |     | of failure in writing           |              | avoid further exceedances       |    |
| Bits         2. Notify IC(E), ER, EPD and Contractor<br>finding         Whenever necessary to assure<br>finding         3. In consultation with the IC(E),<br>finding         1. In consultation with the IC(E),<br>finding         3. Supervise the implemented<br>findicemented         3. In consultation with the IC(E),<br>finding         3. Supervise the implemented<br>finding         4. Ensure remedial measures<br>finding         4. Ensure remedial measures<br>finding         4. Ensure remedial measures<br>finding         4. Ensure remedial measures<br>findiom of the<br>work is responsible and<br>finding         5. If exceedance is abled         5. If exceedance is abled         5. If exceedance is abled           8. If exceedance stops, cease additional<br>monitoring         8. If exceedance is abled         9. If exceedance is abled         9. If exceedance is abled <td>more</td> <td></td> <td>E</td> <td>nedsurbs</td> <td><ol><li>Review Contractor's remedial actions</li></ol></td> <td>esi</td> <td>Notify Contractor</td> <td>e i</td> <td>Submit proposals for remedial</td> <td>75</td>                                                                                              | more        |    | E  | nedsurbs                               | <ol><li>Review Contractor's remedial actions</li></ol> | esi | Notify Contractor               | e i          | Submit proposals for remedial   | 75 |
| <ol> <li>Repet mesurement to confirm<br/>finding</li> <li>Repet mesurement to confirm</li> <li>Repet mesurement to confirm</li> <li>Increase monitoring frequency to daily<br/>for transfer monitoring frequency to daily</li> <li>Carry out analysis of contractor's<br/>working procedures to determine<br/>possible mitigation to be implemented</li> <li>Arrange meeting with IC(E) and ER to<br/>discuss the remedial actions to be<br/>discuss the remedial actions to be<br/>discuss the remedial actions to be<br/>taken</li> <li>Research of the<br/>messures</li> <li>Arrange meeting with IC(E) and ER to<br/>discuss the remedial actions to be<br/>discuss the remedial actions to be<br/>taken</li> <li>Research of the<br/>remedial actions and keep IC(E), EPD<br/>and ER informed of the results</li> <li>Research of the results</li> <li>Research of the results</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | consecutiv  |    | ~  | totily IC(E), ER, EPD and Contractor   | Whenever necessary to assure their                     | eż  | In consultation with the IC(E), |              | actions to IC(E) within 3       |    |
| finding finding frequency to daily carry out smallysis of contractor's working procedures to determine possible mitigation to be implemented Arrange meeting with IC(E) and ER to discuss the remedial actions to be discuss the remedial actions to be discuss the remedial actions and keep IC(E), EPD and ER informed of the vertice to stope, cease additional fracting that portion of work is responsible and instruct the Contractor to stope, cease additional fracting monuloring arrangement is abated fracting that portion of work is abated fracting that portion of work is responsible and instruct the Contractor to stope, cease additional fracting arrangement is abated fracting that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible and instruct the contractor to stope that portion of work is responsible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | samples     | ~  |    | tepeat messurement to confirm          | effectiveness and advise the ER accordingly            |     | agree with the Contractor on    |              | working days of notlication     |    |
| Increase moniforing frequency to daily contraster moniforing frequency to daily carry out snalysis of contractor's working procedures to detormine possible mitigation to be implemented Arrange meeting with IC(E) and ER to discuss the remedial actions to be discuss the remedial actions to be discuss the remedial actions and keep IC(E), EPD and ER informed of the exceedance stops, cease additional monitoring monitoring arrange are properly implemented Arrange meeting with IC(E) and ER to discuss the remedial actions to be discuss the remedial actions and keep IC(E), EPD and ER informed of the exceedance stops, cease additional monitoring arrange ar          |             |    | æ  | inding                                 |                                                        |     | the remedial measures to be     | eș           | Implement the agreed            | -  |
| Cerry out analysis of contractor's working procedures to detormine working procedures to detormine possible mitigation to be implemented Arrange meeting with IC(E) and ER to discuss the remedial actions to be discuss the remedial actions to be discuss the remedial actions and keep IC(E), EPD and ER informed of the work is responsible and taken           |             | 4  | -  | a monitoring                           | measures                                               |     | implemented                     |              | proposals                       | -  |
| working procedures to determine<br>possible mitigation to be implemented<br>Arrange meeting with IC(E) and ER to<br>discuss the remedial actions to be<br>taken<br>Assess effectiveness of Contractor's<br>Assess effectiveness of Contractor's<br>Assess effectiveness of Contractor's<br>and ER informed of the results<br>if exceedance stops, cease additional<br>monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | ŝ  | -  | Sarry out analysis of contractor's     |                                                        | ٩ŕ  | Ensure remedial measures        | <del>4</del> | Resubmit proposals if           | -  |
| possible mitigation to be implemented<br>Arrange meeting with IC(E) and ER to<br>discuss the remedial actions to be<br>taken<br>Assess effectiveness of Contractor's<br>Assess effectiveness of Contractor's<br>remedial actions and keep IC(E), EPD<br>and ER informed of the results<br>if exceedance stops, cease additional<br>monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |    | *  | vorking procedures to determine        |                                                        |     | are property implemented        |              | problem still not under control | -  |
| Arrange meeting with IC(E) and ER to<br>discuss the remedial actions to be<br>taken<br>Assess effectiveness of Contractor's<br>Assess effectiveness of Contractor's<br>remedial actions and keep IC(E), EPD<br>and ER informed of the results<br>if exceedance stops, cease additional<br>monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |    | 6  | ossible mitigation to be implemented   |                                                        | ς'n | If exceedances confinues,       | цź           | Stop the relevant activity of   | -  |
| discuss the remedial actions to be taken work is responsible and taken taken and taken and taken and taken and keep IC(E), EPD and ER informed of the results and taken actions and keep IC(E), EPD and ER informed of the results and taken actions actions and taken actions actions and taken actions actio          |             | 0  |    | vrange meeting with IC(E) and ER to    |                                                        |     | consider what portion of the    | _            | works as determined by the      | -  |
| taken instruct the Contractor to step transformedial actions and keep (C(E), EPD ended actions and keep (C(E), EPD end ER informed of the results if exceedance stops, cease additional monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |    | 9  | liscuss the remedial actions to be     |                                                        |     | work is responsible and         |              | ER until the exceedance is      | -  |
| Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results if exceedance stops, cease additional monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |    | 3  | ektern                                 |                                                        |     | instruct the Contractor to stop |              | abated                          | -  |
| remedial actions and keep IC(E), EPD -<br>and ER informed of the results<br>if exceedance stops, cease additional<br>monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | -  |    | kases effectiveness of Contractor's    |                                                        |     | that portion of work until the  |              |                                 | -  |
| and ER informed of the stops, the monitoring of the stops, the stops of the stops of the stops of the stop of the           |             |    | 2  | emedial actions and keep IC(E), EPD    |                                                        |     | exceedance is abaled            |              |                                 |    |
| lif exceedance stops,<br>monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |    | 40 | and ER informed of the results         |                                                        |     |                                 |              |                                 | -  |
| monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 10 |    |                                        |                                                        |     |                                 |              |                                 | _  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |    | E  | nonttoring                             |                                                        |     |                                 |              |                                 | 7  |

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Y

| EVENT  |       |                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                     |                |                                                                                            | _   |
|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------|-----|
|        |       |                                                                                                                                                                                                                                                                                         |          | ACTION                                                                                                                                                                                                       | NO        |                                                                                                                                                                                                                                                     |                |                                                                                            |     |
|        |       | ET Leader                                                                                                                                                                                                                                                                               |          | IC(E)                                                                                                                                                                                                        | L         | ER                                                                                                                                                                                                                                                  |                | Contractor                                                                                 | - 7 |
| Level  | ಗಳ ಸ್ | Notify the IC(E) and the Contractor.<br>Carry out investigation.<br>Report the results of investigation to<br>the IC(E) and the Contractor and<br>Discuss with the Contractor and<br>formulate remedial measures.<br>Increase monitoring frequency to<br>check miligation effectiveness | r' 61 61 | Review the amalysed results<br>submitted by the ET.<br>Review the proposed remedial<br>measures by the Contractor and<br>advise the ER accordingly.<br>Supervise the implementation of<br>remedial measures. | ને લોલે 4 | Confirm receipt of notification of<br>failure in writing.<br>Notify the Contractor to propose<br>Require the Contractor to propose<br>remedial measures for the<br>snetysed noise problem.<br>Ensure remedial measures are<br>property implemented. | <del>,</del> v | Submit noise miligation<br>proposals to IC(E).<br>Implement noise miligation<br>proposals. |     |
| , Lmit | ÷     |                                                                                                                                                                                                                                                                                         | ÷        | Discuss amongst the ER, the ET                                                                                                                                                                               | ÷         | Confirm receipt of notification of<br>follows to write or                                                                                                                                                                                           | ÷.             | Take immediate action to avoid<br>futbar avcandance                                        |     |
| n and  | ~     | and the Contractor.                                                                                                                                                                                                                                                                     |          | Leader and the Contractor on the<br>rotantial tempetial sections.                                                                                                                                            | e         | Notify the Contractor.                                                                                                                                                                                                                              | 2              |                                                                                            | _   |
|        | ici   |                                                                                                                                                                                                                                                                                         | N        | Review the Contractor's remedial                                                                                                                                                                             | ાં ભ      | Require the Contractor to propose                                                                                                                                                                                                                   | i              |                                                                                            |     |
|        |       | -                                                                                                                                                                                                                                                                                       |          | actions whenever necessary to                                                                                                                                                                                |           | remedial measures for the                                                                                                                                                                                                                           |                | working days of notification.                                                              |     |
|        | ÷.    |                                                                                                                                                                                                                                                                                         |          | assure their effectiveness and                                                                                                                                                                               |           | analysed noise problem.                                                                                                                                                                                                                             | ri.            | Implement the agreed                                                                       |     |
|        | ń     | working procedures to determine                                                                                                                                                                                                                                                         | e        | summente the inclementation of                                                                                                                                                                               | ŕ         | property implemented.                                                                                                                                                                                                                               | 4              | Resubmit proposals if problem                                                              |     |
|        |       | possible miligation to be                                                                                                                                                                                                                                                               | ;        | remedial measures.                                                                                                                                                                                           | ьć        | If ecceedances continue, consider                                                                                                                                                                                                                   |                | still not under control.                                                                   |     |
|        |       |                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                              |           | what activity of the work is                                                                                                                                                                                                                        | က်             | Stop the relevant activity of                                                              | -   |
|        | ó     | EDD eta restatas & actions taken for                                                                                                                                                                                                                                                    |          |                                                                                                                                                                                                              |           | Destructure allo rearrow une<br>Contractor to store that activity of                                                                                                                                                                                |                | worke as determined by all Cry                                                             |     |
|        |       | the exceedances.                                                                                                                                                                                                                                                                        |          |                                                                                                                                                                                                              |           | work until the exceedances is                                                                                                                                                                                                                       |                | abated.                                                                                    | _   |
|        | r,    |                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                              |           | abshed.                                                                                                                                                                                                                                             |                |                                                                                            |     |
|        |       | Contractor's remedial actions and                                                                                                                                                                                                                                                       |          |                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                     |                |                                                                                            |     |
|        |       | keep the IC(E), the EPD and the                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                     |                |                                                                                            | -   |
|        | œ     | EK informed of the results<br>If avoandance due to the                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                     |                |                                                                                            |     |
|        | ś     |                                                                                                                                                                                                                                                                                         |          |                                                                                                                                                                                                              | _         |                                                                                                                                                                                                                                                     |                |                                                                                            | _   |
|        |       | additional monitoring                                                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                              |           |                                                                                                                                                                                                                                                     |                |                                                                                            |     |

| EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE | ER         |   | <ol> <li>Nolify EPD and other relevant</li> <li>1. 0</li> </ol> | of governmental agencies in writing  |                   |              | 2. Discuss with IEC, ET and | 8          | days of mitigation measures; Contractor on the mitigation | <ol><li>Require contractor to propose</li></ol> | Ń                | king analysed problem if related to the mitigation measures | construction works             | <ol> <li>Ensure remodial measures are ensure their effectiveness</li> </ol> |                                 | 5. Assess the effectiveness of the | mitigation measure 5. 8            |                                    | aton of measures .                                   |                                 | tigation                                            | ble time                        |                                                    |                                |                               |
|----------------------------------------------------|------------|---|-----------------------------------------------------------------|--------------------------------------|-------------------|--------------|-----------------------------|------------|-----------------------------------------------------------|-------------------------------------------------|------------------|-------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------|--------------------------------|-------------------------------|
| AND ACTION PLAN                                    | Contractor | 1 |                                                                 | within 24 hours of identification of | exceedance        |              |                             |            | and ER within 3 working days of                           | the identification of an                        | encedance        | Consider changes of working                                 | method if exceedance is due to | the construction works                                                      | Discuss with ET, IEC and ER and | propose mitigation measures to     | IEC and ER if exceedance           | to the construction works within 4 | working days of identification of                    | an exceedance                   | <ul> <li>Implement the sgreed mitigation</li> </ul> | measures within reasonable time | scale                                              |                                |                               |
| ENT                                                |            |   | γ <sup>2</sup>                                                  |                                      |                   | -            | ei                          |            | تريد                                                      |                                                 |                  | ó                                                           | 8                              | 8                                                                           | ¢                               |                                    | 2                                  |                                    | ş                                                    |                                 | <u>کر</u><br>14                                     |                                 | 1ay                                                |                                |                               |
| EV                                                 | RT Laster  |   | Identify source(s) of impact;                                   | Repeat in-situ measurement to        | confirm findings: |              |                             | exceedance |                                                           |                                                 | working methods: |                                                             |                                | to the Contractor within 3 working                                          | days of identification of       | exceedance and advise              | contractor if exceedance is due to | contractor's construction works    | <ul> <li>Discuss miligation measures with</li> </ul> | Contractor if exceedance is due | to the construction works within 4                  | working days                    | <ul> <li>Repeat measurement on next day</li> </ul> | of exceedance if ecceedance is | due to the construction works |
|                                                    |            | 4 |                                                                 | e i                                  |                   | ei           |                             |            | 4                                                         |                                                 |                  | uş                                                          | യ                              |                                                                             | _                               |                                    |                                    |                                    | 1-                                                   |                                 |                                                     |                                 | ග්                                                 |                                |                               |
| Event                                              |            |   | Action level                                                    | being exceeded                       | by one            | sampling day |                             |            |                                                           |                                                 |                  |                                                             |                                |                                                                             |                                 |                                    |                                    |                                    |                                                      |                                 |                                                     |                                 |                                                    |                                |                               |

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

P

| ActToN         ActToN           fimpact,<br>surrement         1. Notify IEC and ER in writing<br>surrement         1. Notify IEC and ER in writing<br>writing writing at hours of<br>dentification of exceedance         1. Notify IEC and Other relevant         1.           surrement         aurement         1. Notify IEC and ER in writing<br>dentification of exceedance         1. Notify IEC and CR         2.           writing         3. Check all plant and<br>dentification of exceedance         1. Notify IEC and ER         3.           an dentification of exceedance         2. Discuss with IEC, ET and<br>methods;         3.         3.           an methods;         5. Submit the results of the<br>equine contractor on the proposed<br>miligation measures;         3.         4.           for         Contractor         8.         3.         3.           op openion         16.         0.         1.         4.           find         4.         Contractor on the proposed<br>miligation measures;         4.           find         4.         Consider dange of the<br>investigation of an<br>ection         4.         Ensure remedial measures;         4.           find         6.         Discuss with ET, IEC and ER         5.         5.         5.         5.           find         6.         Discuss with err, the construction for<br>investigation of an<br>ection         6.         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Event         |          |                                 |     | EVENT AND ACTION PLAN FOR WATER QUALITY | 5  | DR WATER QUALITY               |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------------------------------|-----|-----------------------------------------|----|--------------------------------|-------------------------------------------|
| ET Leader         Contractor         ER           Ieweil         1. Identify seurice(s) of impact.         Notify ED and other relevant         1.           ded by         2. Repeat in-glu measurement         within 24 hours of the identification of exceedance         Notify ED and other relevant         1.           ded by         3. Notify Contractor In writing         2. Rectify unacceptable practice, identification of the confinant and identification of the investigation is the Confidence in milgation measures; identification of the investigation of an identification of the investigation of an identification of an identidi and advise contractor i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |                                 |     | ACTIC                                   | Ň  |                                |                                           |
| <ol> <li>Identify source(s) of impact, indext indext in the second merine indext in the source of the second merine indext in the second merine indext in the second merine indext in the second merine indext indext in the second merine indext i</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | ET Leader                       |     | Contractor                              | _  | ж                              | IEC                                       |
| 2. Repeat In-sllur measurement       within 24 hours of the two of exceedance       2. Repeat In-sllur measurement       2. Repeat In-sllur measurement       2. Submit Table 24 hours of the two of exceedance       2. Submit Table 24 hours of the two of exceedance       2. Consider the measurement       3. Consider the two of exceedance       3. Consider the two of two of the two of two of the two of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Action level  | ÷        | Identify source(s) of impact;   | ÷   | Notify IEC and ER in writing            | ų. |                                | <ol> <li>Check monitoring data</li> </ol> |
| <ol> <li>Notity Contractor in writing within 24 hours of the viting within 24 hours of identification</li> <li>Notity Contractor in writing</li> <li>Check monitoring data, all</li> <li>Check monitoring data, all</li> <li>Check monitoring data, all</li> <li>Consider changes of working</li> <li>Contractor swriting methods;</li> <li>Consider changes of working days of the infigation measures;</li> <li>Carry out investigation to the Contractor</li> <li>Report the results of investigation to the Contractor on the proposed mediating advise construction of exceedance and advise construction of exceedance indentification of an exceedance indentification of an exceedance within 1 4 working days of the miligation measures of miligation measures of miligation measures for the construction works with IEC and Contractor within 1 4 working days of the miligation measures of miligation measures of miligation measures of molecular construction of an exceedance indentification of an exceedance indentification of an exceedance indentification of an exceedance indentification of an exceedance are implemented.</li> <li>Discuss miligation measures within EC and Contractor works with IEC and Contractor works in exceedance indentification of an exceedance indentification of an exceedance indentification of an exceedance in exceedance indentification of an exceedance indent</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | being         | ei       | Repeat in-situ measurement      |     | within 24 hours of                      |    | governmental agencies in       | submitted by ET                           |
| 3. Notify Contractor in writing writin 24 hours of montoring data, all montoring montoring data, all montoring mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | exceeded by   |          | to confirm findings             |     | identification of exceedance            |    | writing within 24 hours of the |                                           |
| within 24 hours of<br>identification       3. Check all plant and<br>identification       3. Check all plant and<br>identification       3. Check all plant and<br>plant equipment;       4. Consider changes of working<br>methods;       3. Check all plant and<br>methods;       3. Check all plant and<br>proposed<br>methods;       3. Check all plant and<br>methods;       4. Consider changes of working<br>methods;       4. Consider changes of working<br>methods;       4. Constactor on the proposed<br>methods;       3. Check all plant and<br>methods;       4. Consider changes of working<br>methods;       3. Check all plant and<br>methods;       4. Consider changes of working<br>methods;       4. Constactor to proposed<br>methods;       4. Constactor to proposed<br>methods;       4. Constactor to proposed<br>methods;       4. Constactor to proposed<br>methods;       5. Clasure changes;       4. Constactor to proposed<br>methods;       5. Clasure changes;       5. Clasure c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | more than one | eś       | Notify Contractor In writing    | 2   | Rectify unacceptable practice;          |    | identification of the          | if exceedance is due /                    |
| <ol> <li>Cherkification</li> <li>Cherkification</li> <li>Check monitoring data, all<br/>plant, exuptiment and<br/>contractor's working methods;</li> <li>Consider changes of working<br/>plant, exuption and<br/>contractor's working methods;</li> <li>Consider changes of working<br/>methods;</li> <li>Consider changes of working<br/>methods;</li> <li>Submit the results of<br/>investigation to the Contractor<br/>within 3 working days of the<br/>investigation to the Contractor<br/>within 3 working days of<br/>investigation to the Contractor<br/>within 3 working days of<br/>investigation to the Contractor<br/>within 3 working days of<br/>investigation to the Contractor<br/>within 3 working days of<br/>identification of an<br/>exceedance</li> <li>Discuss mitigation measures<br/>identification of an<br/>exceedance</li> <li>Discuss mitigation measures<br/>and propose mitigation<br/>works</li> <li>Discuss mitigation measures<br/>in exceedance</li> <li>Discuss mitigation measures<br/>and secontractor within<br/>an exceedance</li> <li>Discuss mitigation measures<br/>and works</li> <li>Discuss mitigation measures<br/>and propose<br/>mitigation measures<br/>and propose<br/>mitigation measures<br/>and propose<br/>mitigation measures<br/>and propose<br/>and avoid or exceedance</li> <li>Discuss mitigation measures<br/>and propertion of an<br/>exceedance</li> <li>Discuss mitigation measures<br/>are implemented;</li> <li>Discuss mitigation measures<br/>are implemented;</li> <li>Prepare to increase the<br/>monitoring frequency to daily<br/>david exceedance</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | consecutive   |          | within 24 hours of              | က်  | Check all plant and                     |    | exceedance                     | not due to the works                      |
| Check monitoring data, all       4. Consider changes of working       Contractor on the proposed         plant, equipment and       5. Submit the results of       7. Require contractor to proposed         Contractor's working methods;       5. Submit the results of       7. Require contractor to proposed         Carry out investigation       6. Consider changes of working       3. Require contractor to propose         Report the results of       5. Submit the results of       3. Require contractor to propose         Report the results of       6. Discuss within 3 working days of the       3. Require contractor works         within 3 working days of       6. Discuss with ET, IEC and ER       4. Ensure remedial measures         and advise contractor if       6. Discuss with ET, IEC and ER       4. Ensure remedial measures         and advise contractor if       6. Discuss with ET, IEC and ER       4. Ensure remedial measures         and advise contractor if       6. Discuss with ET, IEC and ER       5. Assess the effectiveness of         works       exceedance       6. Assess the effectiveness of       5.         Discuss mitigation measures       intentification of an       6. Assess the effectiveness of       5.         Montactor's construction       measures       7. Implemented       5.         Montactor if contractor with       7. Implemented       6.       5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sempling days |          | identification                  | _   | equipment;                              | N  | in the                         | _                                         |
| plant, equipment and<br>contractor's working methods;     5. Submit the results of the<br>remedial measures;     3. Require contractor to propose<br>investigation to the Contractor to<br>remedial measures for the<br>investigation to the Contractor if<br>investigation to the Contractor if<br>within 3 working days of<br>identification of an<br>within 3 working days of<br>identification of an<br>works     3. Require contractor to propose<br>investigation works     4.       Contractor if<br>investigation to the Contractor<br>investigation<br>within 3 working days of<br>identification of an<br>works     6.     Discuss with ET, IEC and ER<br>and propose<br>identification of an<br>works     4.     4.       Contractor if<br>investigation measures<br>identification of an<br>works     6.     Discuss with ET, IEC and ER<br>are properly implemented<br>identification of an<br>works     7.     4.       Discuss miligation<br>works     1.     Passess the effectiveness of<br>identification of an<br>works     5.     Assess the effectiveness of<br>the miligation measures<br>with IEC and Contractor with<br>an exceedance     5.       Assess the effectiveness of<br>identification of<br>an exceedance     7.     Implement an<br>the miligation measures<br>with IEC and Contractor with<br>an exceedance     5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | ÷        | Check monitoring data, all      | Ť   | Consider changes of working             |    | Contractor on the proposed     | Contractor on the                         |
| Contractor's working methods:       5. Submit the results of the carry out investigation       3. Require contractor to propose investigation to the Contractor to propose investigation to the Contractor if within 3 working days of the interestingation of encellation of encellatindevelatindevellation of encellation of encellation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          | plant, equipment and            |     | methods;                                |    | miligation measures;           | mitigation measures.                      |
| Carry out investigation<br>Report the results of<br>investigation to the Contractor<br>within 3 working days of<br>identification of en<br>analysed problem if related to<br>identification of en<br>analysed problem if related to<br>identification of en<br>exceedance<br>and advise contractor if<br>exceedance<br>and advise contractor if<br>exceedance<br>and advise contractor if<br>exceedance<br>identification of en<br>exceedance<br>identification of en<br>exceedance<br>identification of an<br>works<br>Discuss mitigation measures<br>with IEC and ER<br>working days of<br>exceedance<br>identification of an<br>works<br>Discuss mitigation measures<br>with IEC and Contractor within<br>te construction<br>works<br>Discuss mitigation measures<br>with IEC and Contractor within<br>the construction works<br>exceedance<br>identification of an<br>exceedance<br>Ensure mitigation measures<br>identification of an<br>exceedance<br>Ensure mitigation measures<br>identification of an<br>exceedance<br>identification of an<br>exceedance<br>inth IEC and Contractor within<br>the construction works<br>with IEC and Contractor within<br>the mitigation measures<br>with IEC and Contractor within<br>the mitigation measures<br>identification of an<br>exceedance<br>Ensure mitigation of an<br>exceedance<br>intervented<br>the mitigation measures<br>with IEC and Contractor within<br>the mitigation measures<br>with IEC and Contractor within<br>the construction works<br>identification of an<br>exceedance<br>intervented<br>the construction works<br>identification of an<br>exceedance<br>intervented<br>the construction works<br>identification of an<br>exceedance<br>intervented<br>the construction<br>identification of an<br>identification o                                                                                                                                                       |               |          | Contractor's working methods;   | uń. | Submit the results of the               | es | Require contractor to propose  |                                           |
| Report the results of<br>investigation to the Contractor<br>within 3 working days of<br>identification of the<br>and advise contractor if<br>and advise contractor if<br>and advise contractor if<br>and advise contractor if<br>and propose miligation<br>exceedance         within 3 working days of the<br>identification of an<br>exceedance         analysed problem if related to<br>the construction works           within 3 working days of<br>dentification of exceedance         6. Discuss with ET, IEC and ER<br>and propose miligation<br>exceedance         4. Ensure remedial measures<br>are properly implemented<br>are properly implemented<br>are properly implemented<br>are properly implemented<br>within EC and CR<br>with IEC and Contractor within<br>tecsoures the<br>monitoring of identification of<br>an exceedance         5. Assess the affectiveness of<br>the miligation measures<br>are properly implemented<br>are                                                                                                                                                                                                                                                                                                               |               | ທ່       | Carry out investigation         |     | investigation to IEC and ER             |    | remedial measures for the      | mitigation measures                       |
| Investigation to the Contractor<br>within 3 working days of<br>and advise contractor if<br>and advise contractor<br>and advise contractor<br>and advise contractor<br>and advise contractor<br>and advise contractor<br>and advise contractor<br>and propose mitigation<br>exceedance<br>contractor's construction<br>works <ul> <li>Ensure remedial measures<br/>and advise contractor<br/>within 3 working days of<br/>contractor's construction<br/>works</li> <li>Discuss mitigation<br/>works</li> <li>Ensure mitigation<br/>works</li> <li>Fasess the effectiveness of<br/>the mitigation measures<br/>with EC and Contractor within<br/>exceedance</li> <li>Fasess the effectiveness of<br/>the mitigation measures<br/>with EC and Contractor within<br/>exceedance</li> <li>Fasess the effectiveness of<br/>the mitigation measures<br/>with EC and Contractor vithin<br/>an exceedance</li> <li>Fasess the effectiveness of<br/>the mitigation measures<br/>with EC and Contractor<br/>with EC and Contractor<br/>with EC and Contractor vithin<br/>an exceedance</li> <li>Fasess the effectiveness of<br/>the mitigation measures<br/>with EC and Contractor<br/>with EC an</li></ul>                                                                                                                                                                                                                                                                                                       |               | ω        | Report the results of           |     | within 3 working days of the            |    | analysed problem If related to | whenever necessary to                     |
| within 3 working days of<br>identification of exceedance     6. Discuss with ET, IEC and ER<br>and advise contractor if<br>and propose mitigation<br>exceedance is due to<br>contractor's construction<br>works     6. Discuss with ET, IEC and ER<br>and propose mitigation<br>messures to IEC and ER<br>within 4 working days of<br>identification of an<br>works     4. Ensure remedial measures<br>are properly implemented<br>are properly implemented<br>are properly implemented<br>and propose mitigation<br>messures to IEC and ER<br>within 4 working days of<br>identification of an<br>exceedance<br>Ensure mitigation measures<br>with IEC and Contractor within<br>a exceedance<br>Ensure mitigation measures<br>with IEC and Contractor within<br>a exceedance<br>Ensure mitigation measures<br>with IEC and Contractor within<br>a exceedance<br>Ensure mitigation measures<br>with IEC and Contractor vithin<br>a exceedance<br>Ensure mitigation measures<br>are implemented.     4. Ensure remedial measures<br>identification of an<br>exceedance<br>are interesting<br>are implemented.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          | investigation to the Contractor |     | identification of an                    |    | the construction works         | ensure their                              |
| Identification of exceedance and advise contractor if and propose mitigation and advise contractor if exceedance is due to contractor's construction works works mitigation measures to EC and ER and propose mitigation measures within the spread arcs is the mitigation measure endence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |          | within 3 working days of        |     | exceedance                              | ÷  | Ensure remedial measures       | effectiveness and advise                  |
| and advise contractor if and propose mitigation escondance is due to contractor's construction works contractor's construction works with IEC and Contractor within 4 working days of contractor within EC and Contractor within 4 working of identification of an exceedance within ET and properent of an exceedance and exceedance are implemented; Prepare to increase the mollocing frequency to daily; Repeat measurement on next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |          | identification of exceedance    | ø   | Discuss with ET, IEC and ER             |    | are properly implemented       | the ER accordingly                        |
| exceedance is due to<br>contractor's construction<br>works<br>works<br>the mitigation measures<br>with IEC and Contractor within<br>the EC and Contractor within<br>the EC and Contractor within<br>the EC and Contractor within<br>the mitigation measures<br>with IEC and Contractor within<br>the mitigation measures<br>with IEC and Contractor within<br>the mitigation measures<br>with IEC and Contractor within<br>the mitigation measures<br>the scale<br>the scale<br>the mitigation measures<br>the scale<br>the mitigation measures<br>the scale<br>the mitigation measures<br>the scale<br>the scale<br>the scale<br>the mitigation measures<br>the scale<br>the mitigation measures<br>the scale<br>the scale<br>the scale<br>the scale<br>the scale<br>the scale<br>the scale<br>the scale<br>the mitigation measures<br>the scale<br>the scale the scale<br>the scale the sc |               |          | and advise contractor if        |     | and propose mitigation                  | uś | Assess the effectiveness of    | 5. Assess the effectiveness               |
| contractor's construction within 4 working days of identification of an works.<br>with IEC and Contractor within a agreed with IEC and Contractor within the agreed ance exceedance and exceedance and exceedance are implemented;<br>Prepare to increase the monitoring frequency to daily;<br>Repeat measurement on next in a greed and the agreed                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          | exceedance is due to            |     | measures to IEC and ER                  |    | the mitigation measure         | of the implemented                        |
| works<br>Discuss mitigation measures<br>with IEC and Contractor within<br>4 working of Identification of<br>an exceedance<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily;<br>Repeat measurement on next<br>day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |          | contractor's construction       |     | within 4 working days of                |    |                                | mitigation measures.                      |
| Discuss mitigation measures<br>with IEC and Contractor within 7. I<br>4 working of Identification of<br>an exceedance<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily;<br>Repeat measurement on next<br>day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          | works                           |     | identification of an                    |    |                                | I                                         |
| with IEC and Contractor within 7. 1<br>4 working of Identification of<br>an exceedance<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily;<br>Repeat measurement on next<br>day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | <u>к</u> | Discuss mitigation measures     |     | exceedance                              |    |                                |                                           |
| 4 working of Identification of<br>an exceedance<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily;<br>Repeat measurement on next<br>day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |          | with IEC and Contractor within  | Þ.  |                                         |    |                                |                                           |
| an exceedance<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily,<br>Repeat measurement on next<br>day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |          | 4 working of Identification of  |     | mitigation measures within              |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          | an exceedance                   |     | reasonable time scale                   |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | œ        | Ensure mitigation measures      |     |                                         |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          | are implemented;                |     |                                         |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | σ        | Prepare to increase the         |     |                                         |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          |                                 |     |                                         |    |                                |                                           |
| day of exceedance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 6        |                                 |     |                                         |    |                                |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          | day of exceedance.              |     |                                         |    |                                |                                           |



| Event        |     | EVEN                          | E  | EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE | ATI | ER QUALITY EXCEEDANCI            | ш  |                         |
|--------------|-----|-------------------------------|----|----------------------------------------------------|-----|----------------------------------|----|-------------------------|
|              | _   |                               |    | ACTION                                             | z   |                                  |    |                         |
|              |     | ET Leader                     | Ц  | Contractor                                         |     | ER                               |    | IEC                     |
| Limit level  |     | Repeat in-situ measurement    |    | . Notify IEC and ER in writing:                    | ÷   | _                                | ÷  | Check monitoring data   |
| being        | _   | to confirm findings;          |    | within 24 hours of the                             |     | governmental agencies in         |    | submitted by E1         |
| exceeded by  | Ň   |                               |    | identification of the                              | _   | writing within 24 hours of       | N  | Confirm ET assessment   |
| one sampling | e   |                               | _  | exceedance                                         | _   | identification of exceedance     |    | if exceedance is due /  |
| dav          | 5   |                               | r, |                                                    | ŝ   | Discuss with IEC, ET and         |    | not due to the works    |
| 600          |     | identification of the         | eó | -                                                  | _   | Contractor on the proposed       | ei | Discuss with ET, ER and |
|              |     | exceedance                    |    | equipment;                                         |     | mitigation measures;             |    | Contractor on the       |
|              | 4   |                               | ÷  | Ξ.                                                 | က်  | Request Contractor to critically |    | -                       |
|              |     | plant, equipment and          | _  | methods;                                           |     | review the working methods;      | ٩ŕ |                         |
|              |     | Contractor's working methods: | ю  | Submit the results of the                          | Ý   | Ensure remedial measures         |    | milligation measures    |
|              | ú   |                               | _  |                                                    |     | are properly implemented         | _  | submitted by Contractor |
|              | ί¢  |                               | _  | within 3 working days of the                       | цó  | Assess the effectiveness of      | _  | and advise the ER       |
|              | i . |                               |    | identification of an                               |     | the implemented miligation       |    |                         |
|              | _   | within 3 working days of      |    | exceedance                                         | _   | measures.                        | ω  |                         |
|              |     | identification of exceedance  | φ  | <ul> <li>Discuss with ET, IEC and ER</li> </ul>    |     |                                  |    | of the implemented      |
|              |     | and advise contractor if      |    |                                                    |     |                                  |    | mitigation measures     |
|              |     | exceedance is due to          |    | measures to IEC and ER                             |     |                                  | _  |                         |
|              |     | contractor's construction     |    | within 4 working days of the                       | _   |                                  |    |                         |
|              |     | works                         |    | identification of an                               | _   |                                  |    |                         |
|              | ř   | Discuss mitigation measures   | _  | _                                                  |     |                                  |    |                         |
|              | _   | with IEC, ER and Contractor   | ~  | <ol><li>Implement the agreed</li></ol>             |     |                                  |    |                         |
|              |     | within 4 working of           |    | miligation measures within                         |     |                                  |    |                         |
|              |     | identification of an          | _  | reasonable time scale                              | -   |                                  |    |                         |
|              | _   | exceedance                    |    |                                                    | _   |                                  |    | 8                       |
|              | œ   | Ensure mitigation measures    |    |                                                    |     |                                  |    |                         |
|              | _   | are implemented;              |    |                                                    | _   |                                  |    |                         |
|              | á   |                               |    |                                                    |     |                                  |    |                         |
|              |     | frequency to daily until no   |    |                                                    |     |                                  |    |                         |
|              |     | exceedance of LIMIT Level.    | -  |                                                    | 1   |                                  | ł  |                         |



|                              |     |                                 |         | ACTION                         | N  |                                  |   |                          |
|------------------------------|-----|---------------------------------|---------|--------------------------------|----|----------------------------------|---|--------------------------|
|                              |     | ET Leader                       | L       | Contractor                     | L  | ER                               |   | IEC                      |
| Limit Level                  | -   | Recest in-situ measurement      | ÷       | Notify ER and IEC in writing   | ÷  | Notify EPD and other relevant    | ÷ | Check monitoring data    |
| being                        |     | to confirm findings:            |         | within 24 hours of the         |    | governmental agencies in         |   | submitted by ET          |
| avranded hv                  | \$  | Identify source(s) of impact:   | _       | identification of the          |    | writing within 24 hours of       | N | Confirm ET assessment    |
| more than one                | i e |                                 | _       | exceedance and                 |    | Identification of exceedance     |   | if exceedance is due /   |
| and the user one             | 5   |                                 | 5       | Rectify unacceptable practice: | ŝ  | Discuss with IEC, ET and         |   | not due to the works     |
| consecutive<br>compline date |     | Muttin 24 Floure Of             | i e     | Check all plant and            |    | Contractor on the proposed       | ę | Discuss with ER, ET and  |
| edan fuurfuise               |     |                                 | i       | equipment:                     |    | mitigation messures;             |   | Contractor on the        |
|                              | 4   | Check monitoring data, all      | ٩       | Consider changes of working    | ભં | Request Contractor to critically |   | miligation measures.     |
|                              | -   | plant accibment and             |         | methods:                       |    | review the working methods;      | ŧ | Review proposals on      |
|                              |     | Contractor's working methods:   | -00     | Submit the results of the      | ശ് | Ensure remedial measures         |   | mitigation measures      |
|                              | u2  | Cerv out investingion           |         | investigation to IEC and ER    |    | are properly implemented         |   | submitted by Contractor  |
|                              | śœ  | Report the results of           | _       | within 3 working days of the   | Ť  | Assess the effectiveness of      |   | and advise the ER        |
|                              | i   | investination to the Contractor |         | identification of an           |    | the implemented mitigation       |   | accordingly.             |
|                              |     | within 3 working days of        |         | exceedance                     | _  | measures;                        | ю | Assess the effectiveness |
|                              | _   | identification of exceedance    | чó      | Discuss with ET, IEC and ER    | ъ  | Consider and instruct, if        |   | of the implemented       |
|                              | _   | and advise contractor if        |         | and propose mitigation         |    | necessary, the Contractor to     |   | mitigation measures.     |
|                              |     | exceedance is due to            |         | messures to IEC and ER         |    | slow down or to stop all or part |   |                          |
|                              |     | contractor's construction       |         | within 4 working days;         |    | of the marine work until no      |   |                          |
|                              |     | works                           | ώ       | Implement the agreed           |    | exceedance of Limit Level.       |   |                          |
|                              | ۲.  | Discuss mitigation measures     | worther | mitigetion measures within     |    |                                  | _ |                          |
|                              |     | with IEC, ER and Contractor,    |         | reasonable time scale          |    |                                  |   |                          |
|                              | න්  | Ensure mitigation measures      | ř       | As directed by the Engineer,   |    |                                  |   |                          |
|                              |     | are implemented;                |         | to slow down or to stop all or |    |                                  |   |                          |
|                              | ல்  | Increase the monitoring         |         | part of the marine work or     |    |                                  |   |                          |
|                              |     | frequency to daily until no     |         | construction actives.          |    |                                  | _ |                          |
|                              |     | exceedance of Limit Level for   |         |                                |    |                                  | _ |                          |
|                              | _   | two consecutive days.           | _       |                                | _  |                                  |   |                          |



Appendix G

Works Programme

Three Months Rolling Programme (1-September-2018 to 30-November-2018)

| Item | Description                                                                                                                           | From      | То        | Sep-18 | Oct-18         1       2       3       4       5       6       7       8       9       10       11       12       13       14       15       16       17       18       19       20       21       22       23       24       25       26       27       28       29       30       31 | 1 2 3 4 5 6 7 |
|------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1    | Section 1                                                                                                                             | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.1  | Take over existing site faiclities                                                                                                    | 11-May-17 | 11-May-17 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.2  | Operation of Fill Bank, surveillance system and tipping halls                                                                         | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.3  | Design, provision and operation of crushing plant                                                                                     | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.4  | Operation of the existing and expanded dewatering plant                                                                               | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.5  | Collection and delivery of Public Fill from CWPFBP and MWPFRF to TKOFB                                                                | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.6  | Breaking up the incoming precast concrete units                                                                                       | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.7  | Construction of concrete pavement to Temporary Construction<br>Waste Sorting Facility                                                 | 1-Sep-18  | 15-Sep-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 1.8  | Construction of concrete pavement for the Expanded Dewatering<br>Plant                                                                | 1-Sep-18  | 15-Oct-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 2    | Section 2                                                                                                                             | 1-Sep-18  | 30-Nov-18 |        | 물건을 가장하는 것은 것이 같은 것은 가장하지?                                                                                                                                                                                                                                                             |               |
| 2.1  | Take over existing site faiclities                                                                                                    | 11-May-17 | 11-May-17 |        |                                                                                                                                                                                                                                                                                        |               |
| 2.2  | Operation of Fill Bank, surveillance system and tipping halls                                                                         | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 2.3  | Design and construction of 750mm U-channel and catchpits                                                                              | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 2.4  | Breaking up the incoming precast concrete units                                                                                       | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 2.5  | Operation of glass cullet storage compartment at Portion B7                                                                           | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 3    | Section 3                                                                                                                             | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 3.1  | Design and construction of of seawalls at Zone B (approx. 900m)                                                                       | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 3.2  | Design and construction of of seawalls at at Zone C (approx. 2000m)                                                                   | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 4    | Section 3A                                                                                                                            | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 4.1  | Design, construction and operation of new berthing facilities at Zone<br>B                                                            | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 4.2  | Design, construction and operation of new navigation chaneel and<br>turning basin inassociated with the berthing facilities at Zone B | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 4.3  | Design and construction of seawalls at Zone B (approx. 1500m)                                                                         | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 5    | Section 4                                                                                                                             | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 5.1  | Collection and delivery of Public Fill to the Designated Reclamation<br>Sites in the Mainland                                         | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 6    | Section 5                                                                                                                             | 1-Sep-18  | 10-Sep-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 6.1  | Removal of existing stockpiled Public Fill at Portion A6 down to<br>+6.0mPD                                                           | 1-Sep-18  | 10-Sep-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 7    | Section 7                                                                                                                             | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
| 7.1  | Removal of existing stockpiled Public Fill at Portion A6 down to<br>+5.2mPD and +6.0mPD                                               | 1-Sep-18  | 30-Nov-18 |        |                                                                                                                                                                                                                                                                                        |               |
|      | and a second                        |           | I         |        |                                                                                                                                                                                                                                                                                        | S             |

| <br>Nov-18<br>14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|------------------------------------------------------------------|
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |



Appendix H

Weekly ET's Site Inspection Record

| I.T                                  | J                           | ALGM/PS                                                                                                                | little                                                               |
|--------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Mak tei War                          | Simster                     |                                                                                                                        |                                                                      |
| Am A                                 |                             | AT M. LIDN'S                                                                                                           | Name:                                                                |
|                                      |                             |                                                                                                                        |                                                                      |
|                                      |                             | M                                                                                                                      | Signature;                                                           |
| ET                                   | Contractor / Sub-Contactor  | CEDD                                                                                                                   | Inspected by                                                         |
|                                      |                             |                                                                                                                        |                                                                      |
|                                      |                             | : High / Moderate / Low                                                                                                | Humidity                                                             |
|                                      |                             | : 26°C                                                                                                                 | Temperature                                                          |
|                                      |                             | : Calm / Light)/ Breeze / Strong                                                                                       | Wind                                                                 |
|                                      | izzle / Rain / Storm / Hazy | : Sunny / Fine / Coudy / Overcast / Drizzle / Rain / Storm / Hazy                                                      | Weather                                                              |
|                                      |                             | 15200                                                                                                                  | Time                                                                 |
|                                      |                             | 5/11/13                                                                                                                | Inspection Date                                                      |
| 東業德勤測試顧問有限公司<br>ETS-TESTCONSULT LTD. |                             | CEDD Contract No.: CV/2015/07<br>Handling of Surplus Public Fill (2016-2018) - <b>TSeung Kwan O Area 137 Fill Bank</b> | CEDD Contract No.: CV/2015/07<br>Handling of Surplus Public Fill (2) |

Page 1 of 6



| Environmental Checklist                                                                                                                                                                                                                                                                                                                              | Implementation<br>Stages* |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Fugitive Dust Emission                                                                                                                                                                                                                                                                                                                               |                           |
| <ul> <li>Dust control / mitigation measures shall be provided to prevent dust nuisance.</li> </ul>                                                                                                                                                                                                                                                   | ~                         |
| <ul> <li>A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.</li> </ul>                                                | ~                         |
| <ul> <li>Water sprays shall be provided and used to dampen materials.</li> </ul>                                                                                                                                                                                                                                                                     | ν                         |
| <ul> <li>Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.</li> </ul>                                                                                                                                                                                                                                | ~                         |
| <ul> <li>All vehicles shall be restrict to a maximum speed of 10 km per hour.</li> </ul>                                                                                                                                                                                                                                                             | <                         |
| <ul> <li>Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side<br/>and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be<br/>covered by a clean tarpaulin.</li> </ul> | <                         |
| <ul> <li>The designated site main haul road shall be paved or regular watering.</li> </ul>                                                                                                                                                                                                                                                           | ~                         |
| <ul> <li>Frequent watering of work site shall be at least three times per day.</li> </ul>                                                                                                                                                                                                                                                            | <                         |
| <ul> <li>Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.</li> </ul>                                                                                                                                                                                                                       |                           |
| <ul> <li>Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.</li> </ul>                                                                                                                                                                                                               | V                         |
| <ul> <li>All plant and equipment should be well maintained e.g. without black smoke emission.</li> </ul>                                                                                                                                                                                                                                             | ~                         |
| Open burning should be prohibited.                                                                                                                                                                                                                                                                                                                   | 7                         |
| <ul> <li>The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.</li> </ul>                                                                                                                                      | ~                         |
| <ul> <li>Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.</li> </ul>                                                                | <                         |
| <ul> <li>When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.</li> </ul>                                                                                                                                                                                                                     | ~                         |
| The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.                                                                                                                                                                                                                    | ~                         |
| <ul> <li>The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.</li> </ul>                                                                                                                                            | ~                         |
| <ul> <li>Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-<br/>road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO<br/>Cap.311).</li> </ul>                                        | حر                        |
| Noise Impact                                                                                                                                                                                                                                                                                                                                         |                           |
| <ul> <li>The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be<br/>adapted.</li> </ul>                                                                                                                                                                                       | ~                         |
| <ul> <li>Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.</li> </ul>                                                                                                                                                                                                      | $\checkmark$              |
| <ul> <li>Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.</li> </ul>                                                                                                                                                                                                                              | ~                         |
| <ul> <li>Air compressors and hand held breakers should have noise labels.</li> </ul>                                                                                                                                                                                                                                                                 | <                         |
| • Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.                                                                                                                                                                                                             | ~                         |
| <ul> <li>Noisy equipment and mobile plant shall always be site away from NSRs.</li> </ul>                                                                                                                                                                                                                                                            | <                         |





|     |     | Environmental Checklist                                                                                                                                                                     | Imple<br>S | lementa<br>Stages* | ation | Implementation Remark<br>Stages* |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-------|----------------------------------|
|     |     |                                                                                                                                                                                             | Yes        | 8<br>N             | NIA   |                                  |
|     | Lan | Landscape and Visual                                                                                                                                                                        |            |                    |       |                                  |
|     | E   | The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.    | <          |                    |       |                                  |
|     | •   | The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.                                                                                                  | ~          |                    |       |                                  |
| _ 1 |     | Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed.                | <          |                    |       |                                  |
| -   | 8   | The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare.                                    | ~          |                    |       |                                  |
|     | Oth | Other Environmental Factors                                                                                                                                                                 |            |                    |       |                                  |
| _   | -   | C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill for disposal.                               | ~          |                    |       |                                  |
|     |     | Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnece ssary generation of waste.                                                           | <          |                    |       |                                  |
| -   | 82  | Any unused materials or those with remaining functional capacity should be recycled and stored properly.                                                                                    | ~          |                    |       |                                  |
|     | e   | All generators, fuel and oil storage are within bundle areas.                                                                                                                               | <          |                    |       |                                  |
|     | ٩   | Oil leakage from machinery, vehicle and plant is prevented.                                                                                                                                 | ۷          |                    |       |                                  |
|     |     | The Environmental Permit should be displaced conspicuously on site.                                                                                                                         | ~          |                    |       |                                  |
|     | •   | Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.                 | ~          |                    |       |                                  |
| -   | 8   | To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. | <          |                    |       |                                  |

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

### Summary of the Weekly Site Inspection:

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

|   | ltem                                                  |
|---|-------------------------------------------------------|
|   | Details of defective works or observations            |
|   | Proposed Follow Up Action                             |
| 1 | Photo Ref.                                            |
| 1 | Further Action Follow up<br>Required Date<br>(Yes/No) |
|   | Follow up<br>Date                                     |

Remark ł

|            | Name         | Title             | Signature | Date             |
|------------|--------------|-------------------|-----------|------------------|
| Checked by | Frankie Tang | ET Representative | Alton -   | 07 November 2018 |

Page 5 of 5

| Inspection Date       I (h / h) (h)         Time       I (5:10)         Weather       Sumy / Fine / Quig) / Overcast / Drizzle / Rain / Storm / Hazy         Wind       Calm / Quib) Breaze / Strong         Temperature $2$ (f')         Humidity       High / Moderate / Quib)         Signature:       Will (Quib)       Contractor / Sub-Contactor       ET         Signature:       Will (M / h) (M / h) (M / h)       All (M / h) (M / h)       All (M / h)         Name:       Work (h) (M / h)       All (M / h)       All (M / h)       All (M / h)         The       M ON (h) (M / h)       All (M / h)       All (M / h)       All (M / h)         The       M ON (h) (M / h)       All (M / h)       All (M / h)       All (M / h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CEDD Contract No.: CV/2015/07<br>Handling of Surplus Public Fill (2) | CEDD Contract No.: CV/2015/07<br>Handling of Surplus Public Fill (2016-2018) - <b>TSeung Kwan O Area 137 Fill Bank</b> |                            | 東業德勤測試顧問有限公司<br>ETS-TESTCONSULT LTD. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| $: 15:10$ her : Sumy / Fine / Quigy / Overcast / Drizzle / Rain / Storm / Hazy erature : $26^{\circ}$ erature : $26^{\circ}$ High / Moderate / Quige they CEDD Contractor / Sub-Contactor ture: Work 6 WTA6 WTA6 ArtA6 Ar | Inspection Date                                                      | BI/ 11/ 41 :                                                                                                           |                            |                                      |
| her       : Sunny / Fine / Couldy / Overcast / Drizzle / Rain / Storm / Hazy         ::       Calm / (@h)/ Breeze / Strong         erature       ::         erature       ::         CEDD       Contractor / Sub-Contactor         eted by       CEDD         CEDD       Contractor / Sub-Contactor         tture:       WMMA         Wow G       MTMA         Mow G       MTMA         ATA M / NS       Sch SUU()         Stime       MOM / NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time                                                                 | : 15:10                                                                                                                |                            |                                      |
| : Calm / (gh) / Breeze / Strong<br>erature : 16 °C<br>dity : High / Moderate / (Gw)<br>ceted by CEDD Contractor / Sub-Contactor<br>ture: WMM //////////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weather                                                              | : Sunny / Fine / Coudy / Overcast / Driz                                                                               | .zle / Rain / Storm / Hazy |                                      |
| Derature       : $26^{\circ}$ C         Idity       :       High / Moderate / $\bigcirc$ w         etted by       CEDD       Contractor / Sub-Contactor         ature:       MMM       MMM         work http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wind                                                                 | : Calm / Light) / Breeze / Strong                                                                                      |                            |                                      |
| idity     High / Moderate / (w)       ected by     CEDD     Contractor / Sub-Contactor       ature:     MMMA     MMMA       WONG     WWG     MTMG       e:     WONG     WWG       MONG     WWG     Sthr       Attack     Sthr       Attack     Sthr       Attack     Sthr       Attack     Sthr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temperature                                                          | : 26%                                                                                                                  |                            |                                      |
| ected by CEDD Contractor / Sub-Contactor<br>ature:<br>e:<br>Work ww. W. M. W. S. S. S. M. S. M. M. M. W. M. W. M. M. M. S. S. M. J. S. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Humidity                                                             | : High / Moderate / Low                                                                                                |                            |                                      |
| eted by CEDD Contractor / Sub-Contactor<br>ature: WWW WWW WWW WWW WWW WWW WWW WWW WWW W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                        |                            |                                      |
| e:<br>WowG WWG WWG MWG<br>ADDW/PS<br>ADDW/PS<br>ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inspected by                                                         | CEDD                                                                                                                   | Contractor / Sub-Contactor | ET                                   |
| e:<br>Nong wing ming<br>Mon/ps<br>ED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Signature:                                                           | Sall                                                                                                                   | A                          | May                                  |
| MON/PS EO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name:                                                                | MONG WING MING                                                                                                         | Sch Stull                  | May the thin                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Title                                                                | ANOW/PS                                                                                                                | EO.                        | ロン                                   |

Page 1 of 6



|                                                                       | 9                                                                                                                                      | E                                                                | =                                                                                                   | •                                                                                                                           | a                                                                                                                                      | No           |                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                     | a                                                                                                                                 |                                                                                                              | •                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             | •                                  | •                                                                                    | •                                                                                                                  | •                                                                                                          |                                                                       | •                                                                      | 9                                                                                                                                                                                                                                                                                                                              |                                                                      | •                                                                                                 | • | a                                                                                                                                                                                                                                                                                 | •                                                                              | Fu                     |          |                           |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|----------|---------------------------|
| Noisy equipment and mobile plant shall always be site away from NSRs. | Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. | Air compressors and hand held breakers should have noise labels. | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. | The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. | Noise Impact | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-<br>road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO<br>Cap.311). | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | Open burning should be prohibited. | All plant and equipment should be well maintained e.g. without black smoke emission. | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. | Frequent watering of work site shall be at least three times per day. | The designated site main haul road shall be paved or regular watering. | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side<br>and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be<br>covered by a clean tarpaulin. | All vehicles shall be restrict to a maximum speed of 10 km per hour. | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. |   | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | Dust control / mitigation measures shall be provided to prevent dust nuisance. | Fugitive Dust Emission |          | Environmental Checklist   |
| ~                                                                     | V                                                                                                                                      | ~                                                                | ~                                                                                                   | ~                                                                                                                           | ~                                                                                                                                      |              | ~                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                     | ~                                                                                                                                 | γ                                                                                                            | ~                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                           | $\checkmark$                       | ~                                                                                    | ~                                                                                                                  | ~                                                                                                          | ~                                                                     | 2                                                                      | حـ                                                                                                                                                                                                                                                                                                                             | ~                                                                    | ~                                                                                                 | 7 | ~                                                                                                                                                                                                                                                                                 | ~                                                                              |                        | Yes      | Imple                     |
|                                                                       |                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                        |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                    |                                                                                      |                                                                                                                    |                                                                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                   |   |                                                                                                                                                                                                                                                                                   |                                                                                |                        | No<br>Vo | Implementation<br>Stages* |
|                                                                       |                                                                                                                                        |                                                                  | <br>                                                                                                |                                                                                                                             |                                                                                                                                        |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                    |                                                                                      |                                                                                                                    |                                                                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                   |   |                                                                                                                                                                                                                                                                                   |                                                                                |                        | N/A      | tion                      |
|                                                                       |                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                        |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                    |                                                                                      |                                                                                                                    |                                                                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                   |   |                                                                                                                                                                                                                                                                                   |                                                                                |                        |          | Remark                    |



|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B.                                                                                                                                                                                   | a                                                                                                                                                                                         | -                                                                                                                                        |                                                                                                                                                               |                                                                                                                                                                                                                                                | 8                                                                                             | •                                               | 2                                                                                                       | a                                                                                                                                                                                                                                                      | e                                                                                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             | •                                                                                                                        | •                                                                                                          | e                                                                                                                                  | a                                                                                                            | 8                                      |                                                                                                                                                                                                                                                               | •                                                                                                    |                                                                                                                        | Wat           |     |                                  |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------------------------------|
| A waste collection vessel shall be deployed to remove floating debris. | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain<br>and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains<br>shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained<br>such that it can also serve the function of refuse containment boom to confine floating refuse. | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. | Oil interceptor shall be provided at work shop. | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and sitt settled out or removed before being discharged into storm drains. | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. | Manholes should be covered and sealed. | Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. | Water Quality |     | Environmental Checklist          |
| ۸                                                                      | حر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <                                                                                                                                                                                    | <                                                                                                                                                                                         | ~                                                                                                                                        | <                                                                                                                                                             | <                                                                                                                                                                                                                                              | 2                                                                                             | 7                                               | 7                                                                                                       | γ                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                               | V                                                                                                                                                                | ~                                                                                                                                                                                                                                                                                                                                | ٨                                                                                                                                                                                                                                                                | Ą                                                                                                                                                                                           | ~                                                                                                                        | <                                                                                                          | 2                                                                                                                                  | ~                                                                                                            | ~                                      | γ                                                                                                                                                                                                                                                             | γ                                                                                                    | ~                                                                                                                      |               | Yes | lmpl                             |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                               |                                                 |                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                          |                                                                                                            |                                                                                                                                    |                                                                                                              |                                        |                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                        |               | No  | lementa<br>Stages*               |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                               |                                                 |                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                          |                                                                                                            |                                                                                                                                    |                                                                                                              |                                        |                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                        |               | NIA | ation                            |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                                                                                |                                                                                               |                                                 |                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                          |                                                                                                            |                                                                                                                                    |                                                                                                              |                                        |                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                        |               |     | Implementation Remark<br>Stages* |



| ·····    | Environmental Checklist                                                                                                                                                                                             | Implementation Remark<br>Stages*<br>Yes No N/A | Remark |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|
|          | Landscape and Visual                                                                                                                                                                                                |                                                |        |
|          | <ul> <li>The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.</li> </ul>        | ~                                              |        |
|          | <ul> <li>The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.</li> </ul>                                                                                                      | ~                                              |        |
|          | <ul> <li>Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green /<br/>brown) once completed.</li> </ul>                | ~                                              |        |
|          | <ul> <li>The barging point and the C&amp;DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from<br/>glare.</li> </ul>                                | ~                                              |        |
|          | Other Environmental Factors                                                                                                                                                                                         |                                                |        |
|          | <ul> <li>C&amp;D waste sorted from mixed C&amp;D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill<br/>for disposal.</li> </ul>                       | ~                                              |        |
|          | <ul> <li>Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnece ssary generation of waste.</li> </ul>                                                               | ~                                              |        |
|          | <ul> <li>Any unused materials or those with remaining functional capacity should be recycled and stored properly.</li> </ul>                                                                                        | ~                                              |        |
|          | <ul> <li>All generators, fuel and oil storage are within bundle areas.</li> </ul>                                                                                                                                   | ~                                              |        |
|          | <ul> <li>Oil leakage from machinery, vehicle and plant is prevented.</li> </ul>                                                                                                                                     | ~                                              |        |
| -        | <ul> <li>The Environmental Permit should be displaced conspicuously on site.</li> </ul>                                                                                                                             | ~                                              |        |
| <u> </u> | <ul> <li>Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the<br/>nearby environment.</li> </ul>                 | ~                                              |        |
|          | <ul> <li>To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other<br/>general refuse generated by the workforce.</li> </ul> | ~                                              |        |

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

### Summary of the Weekly Site Inspection:

|   | Item                                                    |
|---|---------------------------------------------------------|
|   | Details of defective works or observations              |
|   | Proposed Follow Up Action                               |
| 1 | Photo Ref.                                              |
| ł | . Further Action Follow up<br>Required Date<br>(Yes/No) |
| 1 | Follow up<br>Date                                       |

|  | Remark |
|--|--------|
|  |        |

|     | Checked by        |           |
|-----|-------------------|-----------|
|     | Frankie Tang      | Name      |
|     | ET Representative | Title     |
| 1 1 |                   | Signature |
|     | 14 November 2018  | Date      |

| Title Azo | Name:        | Signature: Wow G | Inspected by               | Humidity : High / Mode | Temperature : 25°( | Wind : Calm (Light            | Weather : Sunny / Fine                                           | Time : 10:00 | Inspection Date : $20/11/18$ | CEDD Contract No.: CV/2015/07<br>Handling of Surplus Public Fill (2016-2018) - <b>Tseung Kwan O Area 137 Fill Bank</b> |
|-----------|--------------|------------------|----------------------------|------------------------|--------------------|-------------------------------|------------------------------------------------------------------|--------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Arow/ps   |              | WONG WING WING   | CEDD                       | High / Moderate / tow  |                    | Calm /Ligh) / Breeze / Strong | Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy | 0            | 8                            | Tseung Kwan O Area                                                                                                     |
| Z.        | Sustan       |                  | Contractor / Sub-Contactor |                        |                    |                               | Rain / Storm / Hazy                                              |              |                              | 137 Fill Bank                                                                                                          |
| Ē         | Make tei Wai | Hak              | ET                         |                        |                    |                               |                                                                  |              |                              | 来来感到認识意同有限公司<br>ETS-TESTCONSULT LTD.                                                                                   |

Page 1 of 6



| The app<br>adapted.     Only wel     Powered     Air comp     Machine |                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                        | Noise Impact | <ul> <li>Approval<br/>road vehi<br/>Cap.311)</li> </ul>                                                                                                                                                                                                                                 | <ul> <li>The leve point is</li> </ul>                                                                                                                                                 | The belt                                                                                                                          | <ul> <li>When fill</li> </ul>                                                                                | <ul> <li>Final slo<br/>planting</li> </ul>                                                                                                                                                                                                                        | <ul> <li>The ten<br/>water or</li> </ul>                                                                                                                                                    | <ul> <li>Open but</li> </ul>       | <ul> <li>All plant</li> </ul>                                                        | <ul> <li>Every vertice</li> </ul>                                                                                  | Wheel v                                                                                                    | <ul> <li>Frequer</li> </ul>                                           | <ul> <li>The des</li> </ul>                                            | <ul> <li>Any veh<br/>and tail<br/>covered</li> </ul>                                                                                                                                                                                                                                                                           | <ul> <li>All vehic</li> </ul>                                        | <ul> <li>Regular</li> </ul>                                                                       | <ul> <li>Water s</li> </ul>                                  | <ul> <li>A buffer</li> <li>Estate. \</li> </ul>                                                                                                                                                                                                                                   | <ul> <li>Dust cor</li> </ul>                                                   | Fugitive Dust Emission |                         |                |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|-------------------------|----------------|
|                                                                       | Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. | Air compressors and hand held breakers should have noise labels. | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | Unly well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. | The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. | Xt           | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-<br>road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO<br>Cap.311). | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | Open burning should be prohibited. | All plant and equipment should be well maintained e.g. without black smoke emission. | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. | Frequent watering of work site shall be at least three times per day. | The designated site main haul road shall be paved or regular watering. | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side<br>and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be<br>covered by a clean tarpaulin. | All vehicles shall be restrict to a maximum speed of 10 km per hour. | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. | Water sprays shall be provided and used to dampen materials. | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | Dust control / mitigation measures shall be provided to prevent dust nuisance. | st Emission            | Environmental Checklist |                |
| ~                                                                     | -                                                                                                                                      | <                                                                | ~                                                                                                   | ~                                                                                                                           | _ <                                                                                                                                    |              | ح                                                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                     | 7                                                                                                                                 | 7                                                                                                            | ۷                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                           | V                                  | 7                                                                                    | $\sim$                                                                                                             |                                                                                                            | ~                                                                     | $\checkmark$                                                           | V                                                                                                                                                                                                                                                                                                                              | ✓                                                                    | _ ∧                                                                                               | $\checkmark$                                                 | 7                                                                                                                                                                                                                                                                                 | ~                                                                              |                        | Yes                     | Impler         |
|                                                                       |                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                        |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                    |                                                                                      |                                                                                                                    |                                                                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                   |                                                              |                                                                                                                                                                                                                                                                                   |                                                                                |                        | Stages"<br>No N/A       | Implementation |
|                                                                       |                                                                                                                                        |                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                        |              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                    |                                                                                      |                                                                                                                    |                                                                                                            |                                                                       |                                                                        |                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                                                                   |                                                              |                                                                                                                                                                                                                                                                                   |                                                                                |                        |                         | Remark         |



|               | Environmental Checklist                                                                                                                                                                                                                                                                                                                                                                                                                       | Imple<br>S<br>Yes | Yes No N/A |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
| Water         | Water Quality                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |
|               | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms.                                                                                                                                                                                                                                                                                                                        | ~                 |            |
| •             | The permanent drainage channels should have sediment basin, traps and baffles and maintain property.                                                                                                                                                                                                                                                                                                                                          | ~                 |            |
| •<br>•        | Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels.                                                                                                                                                                                 | Z                 |            |
| •             | Manholes should be covered and sealed.                                                                                                                                                                                                                                                                                                                                                                                                        | حـ                |            |
| •             | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding.                                                                                                                                                                                                                                                                                                                                  | <                 |            |
| •             | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front.                                                                                                                                                                                                                                                                                                            | ~                 |            |
| ر =           | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront.                                                                                                                                                                                                                                                                                                                                    | <                 |            |
| 8             | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.                                                                                                                                                                                                                                                                                                                      | ~                 |            |
| •             | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.                                                                                                                                                                                                                                                   | ح                 |            |
| 8<br>77 70    | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.                                                                                                                                                                              | حـ                |            |
| я<br>О. 60 ГП | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.                                                                                                              | V                 |            |
| •             | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains.                                                                                                                                                                                                                                                                              | ~                 |            |
| •             | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.                                                                                                                                                                                               | ~                 |            |
| •             | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities.                                                                                                                                                                                        | ~                 |            |
| a<br>0        | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas.                                                                                                                                                                                                                                                                                                                                       | ~                 |            |
|               | Oil interceptor shall be provided at work shop.                                                                                                                                                                                                                                                                                                                                                                                               | ~                 |            |
| •             | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.                                                                                                                                                                                                                                                                                                                                                 | ~                 |            |
| •             | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.                                                                                                                                                                                                | Υ                 |            |
| ء<br>۲        | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport.                                                                                                                                                                                                                                                                                 | <                 |            |
| / e           | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.                                                                                                                                                                                                                                                                                                      | ~                 |            |
| •             | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal.                                                                                                                                                                                                                                                     | ~                 |            |
| •             | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.                                                                                                                                                                                                                                                          | γ                 |            |
| <b>۵</b>      | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain<br>and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains<br>shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained | ~                 |            |
|               | A waste collection vessel shall be deployed to remove floating debris                                                                                                                                                                                                                                                                                                                                                                         | <                 |            |



|    | Environmental Checklist                                                                                                                                                                                             | Implementation Remark | itation<br>s* | Remark |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------|
| T  |                                                                                                                                                                                                                     | Yes No                | N/A           |        |
|    | Landscape and Visual                                                                                                                                                                                                |                       |               |        |
| 11 | <ul> <li>The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.</li> </ul>        | ~                     |               |        |
|    | <ul> <li>The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.</li> </ul>                                                                                                      | <                     |               |        |
|    | <ul> <li>Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green /<br/>brown) once completed.</li> </ul>                | ~                     |               |        |
| 1  | <ul> <li>The barging point and the C&amp;DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from<br/>glare.</li> </ul>                                | ~                     |               |        |
|    | Other Environmental Factors                                                                                                                                                                                         |                       |               |        |
|    | <ul> <li>C&amp;D waste sorted from mixed C&amp;D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill<br/>for disposal.</li> </ul>                       | ~                     |               |        |
|    | <ul> <li>Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnece ssary generation of waste.</li> </ul>                                                               | ~                     |               |        |
|    | <ul> <li>Any unused materials or those with remaining functional capacity should be recycled and stored properly.</li> </ul>                                                                                        | ۷                     |               |        |
|    | <ul> <li>All generators, fuel and oil storage are within bundle areas.</li> </ul>                                                                                                                                   | <                     |               |        |
|    | <ul> <li>Oil leakage from machinery, vehicle and plant is prevented.</li> </ul>                                                                                                                                     | ~                     |               |        |
|    | <ul> <li>The Environmental Permit should be displaced conspicuously on site.</li> </ul>                                                                                                                             | ~                     |               |        |
| 1  | <ul> <li>Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the<br/>nearby environment.</li> </ul>                 | ~                     |               |        |
| r  | <ul> <li>To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other<br/>general refuse generated by the workforce.</li> </ul> | ~                     |               |        |

Page 5 of 5

|            | Name         | Title             | Signature | Date             |
|------------|--------------|-------------------|-----------|------------------|
| Checked by | Frankie Tang | ET Representative |           | 20 November 2018 |
|            |              |                   |           |                  |

| marv         |  |
|--------------|--|
| of the \     |  |
| <br>Neekly 2 |  |
| Site Insr    |  |
| Pection:     |  |

東莱德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

CEDD Contract No.: CV/2015/07

|   | Item                                                  |
|---|-------------------------------------------------------|
|   | Details of defective works or observations            |
|   | Proposed Follow Up Action                             |
|   | Photo Ref.                                            |
| ł | Further Action Follow up<br>Required Date<br>(Yes/No) |
| 1 | Follow up<br>Date                                     |

Remark

| Handling of Surplus Pub | Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank | rea 137 Fill Bank          |           |
|-------------------------|--------------------------------------------------------------------------------|----------------------------|-----------|
| Inspection Date         | : Zo /11 / Zol &                                                               |                            |           |
| Time                    | : 16:00                                                                        |                            |           |
| Weather                 | : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy             | zle / Rain / Storm / Hazy  |           |
| Wind                    | : Calm / Light / Breeze / Strong                                               |                            |           |
| Temperature             | : 27                                                                           |                            |           |
| Humidity                | : High / Moderate / Low                                                        |                            |           |
| Inspected by            | CEDD                                                                           | Contractor / Sub-Contactor | ET        |
| Signature:              |                                                                                |                            |           |
|                         | $\langle$                                                                      |                            | Mal       |
| Name:                   | KUNG MAN 1-7%                                                                  | SW-JU/2                    | Clash due |
| Title                   | Azan 123                                                                       | N.                         | C, I      |

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.



## Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

|           | ~                     | <ul> <li>Noisy equipment and mobile plant shall always be site away from NSRs.</li> </ul>                                                                                                                                                                                                                                                            | e |
|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|           | ~                     | <ul> <li>Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.</li> </ul>                                                                                                                                                                                           | • |
|           | ~                     | <ul> <li>Air compressors and hand held breakers should have noise labels.</li> </ul>                                                                                                                                                                                                                                                                 |   |
|           | ~                     | <ul> <li>Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.</li> </ul>                                                                                                                                                                                                                              | • |
|           | ~                     | <ul> <li>Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.</li> </ul>                                                                                                                                                                                                      | • |
|           | ~                     | <ul> <li>The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be<br/>adapted.</li> </ul>                                                                                                                                                                                       |   |
|           |                       | Noise Impact                                                                                                                                                                                                                                                                                                                                         | Z |
|           | ~                     | <ul> <li>Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-<br/>road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO<br/>Cap.311).</li> </ul>                                        |   |
|           | ~                     | <ul> <li>The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.</li> </ul>                                                                                                                                            | 8 |
|           | <                     | <ul> <li>The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.</li> </ul>                                                                                                                                                                                                | 8 |
|           | ~                     | <ul> <li>When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.</li> </ul>                                                                                                                                                                                                                     | e |
|           | ~                     | <ul> <li>Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.</li> </ul>                                                                | - |
|           | ~                     | <ul> <li>The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.</li> </ul>                                                                                                                                      | • |
|           | V                     | <ul> <li>Open burning should be prohibited.</li> </ul>                                                                                                                                                                                                                                                                                               | • |
|           | √                     | <ul> <li>All plant and equipment should be well maintained e.g. without black smoke emission.</li> </ul>                                                                                                                                                                                                                                             | e |
|           | <                     | <ul> <li>Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.</li> </ul>                                                                                                                                                                                                               | 9 |
|           | V                     | <ul> <li>Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.</li> </ul>                                                                                                                                                                                                                       |   |
|           | V                     | <ul> <li>Frequent watering of work site shall be at least three times per day.</li> </ul>                                                                                                                                                                                                                                                            |   |
|           | ~                     | <ul> <li>The designated site main haul road shall be paved or regular watering.</li> </ul>                                                                                                                                                                                                                                                           |   |
|           | ~                     | <ul> <li>Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side<br/>and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be<br/>covered by a clean tarpaulin.</li> </ul> |   |
|           | V                     | <ul> <li>All vehicles shall be restrict to a maximum speed of 10 km per hour.</li> </ul>                                                                                                                                                                                                                                                             |   |
|           | V                     | <ul> <li>Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.</li> </ul>                                                                                                                                                                                                                                | e |
|           | ~                     | <ul> <li>Water sprays shall be provided and used to dampen materials.</li> </ul>                                                                                                                                                                                                                                                                     | - |
|           | V                     | <ul> <li>A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial<br/>Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.</li> </ul>                                            | • |
|           | V                     | <ul> <li>Dust control / mitigation measures shall be provided to prevent dust nuisance.</li> </ul>                                                                                                                                                                                                                                                   |   |
|           |                       | Fugitive Dust Emission                                                                                                                                                                                                                                                                                                                               | ц |
| Ā         | Stages*<br>Yes No N/A | Environmental Checklist                                                                                                                                                                                                                                                                                                                              |   |
| on Remark | Implementation        |                                                                                                                                                                                                                                                                                                                                                      |   |

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

## Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

|           | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. | <ul> <li>Existing silt<br/>and service<br/>shall not be<br/>such that it c</li> </ul> |                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------|
|           | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The work ac<br/>vicinity of the</li> </ul>                                   |                                       |
| ~         | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be vortex properly collected and treated before disposal.                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Barges shal</li> <li>properly coll</li> </ul>                                |                                       |
|           | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Adequate er</li> </ul>                                                       | <b>,</b>                              |
|           | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during $\sqrt{transport}$ .                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>All vessels u<br/>transport.</li> </ul>                                      | ······                                |
| 2         | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to vensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.                                                                                                                                                                                                                                                                                         | <ul> <li>The barges :<br/>ensure the u</li> </ul>                                     | · · · · · · · · · · · · · · · · · · · |
|           | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Tipping halls</li> </ul>                                                     |                                       |
|           | Oil interceptor shall be provided at work shop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Oil intercepte</li> </ul>                                                    |                                       |
|           | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. $\sqrt{1-1}$                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Oil intercept</li> </ul>                                                     | ,                                     |
| ~         | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities.                                                                                                                                                                                                                                                                                  | <ul> <li>Sewage from<br/>provided by </li> </ul>                                      |                                       |
| ~         | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.                                                                                                                                                                                                                                                                                         | <ul> <li>The section<br/>hardcores to</li> </ul>                                      | 1                                     |
|           | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and sit settled out or removed before being discharged into storm drains.                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>A wheel was<br/>discharged in</li> </ul>                                     | 1                                     |
|           | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.                                                                                                                                                                                                        | <ul> <li>Existing and<br/>silt and grit s<br/>are functionii</li> </ul>               |                                       |
|           | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.                                                                                                                                                                                                                                                             | <ul> <li>Final slope s</li> <li>planting or s</li> </ul>                              |                                       |
|           | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with vater or protected by other method approved by CEDD.                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The tempora<br/>water or prot</li> </ul>                                     | · · · · · · · · · · · · · · · · · · · |
| ~         | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. $$                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The stormwa</li> </ul>                                                       | 1                                     |
| ~         | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. $$                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>A buffer distant</li> </ul>                                                  |                                       |
| ~         | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. $\sqrt{1-1}$                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>A buffer distant</li> </ul>                                                  |                                       |
| ~         | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. $$                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Unnecessary</li> </ul>                                                       |                                       |
|           | Manholes should be covered and sealed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Manholes sh</li> </ul>                                                       | 1                                     |
|           | Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth $$ bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels.                                                                                                                                                                                                                                                                        | <ul> <li>Temporary i<br/>bunds and s:</li> </ul>                                      | 1                                     |
| ~         | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. $\sqrt{1-1}$                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The permanent</li> </ul>                                                     | 1                                     |
| ~         | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms.                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Drainage sys</li> </ul>                                                      | · · · · ·                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water Quality                                                                         |                                       |
| es No N/A | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                       |
| Stages*   | Environmental Checklist S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       |                                       |



## Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

| Environmental Checklist                                                                                                                                                                                             | Implementation Remark |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Landscape and Visual                                                                                                                                                                                                |                       |
| <ul> <li>The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.</li> </ul>        |                       |
| <ul> <li>The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.</li> </ul>                                                                                                      | ~                     |
| <ul> <li>Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green /<br/>brown) once completed.</li> </ul>                | 2                     |
| <ul> <li>The barging point and the C&amp;DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from<br/>glare.</li> </ul>                                | ~                     |
| Other Environmental Factors                                                                                                                                                                                         |                       |
| <ul> <li>C&amp;D waste sorted from mixed C&amp;D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill<br/>for disposal.</li> </ul>                       | ~                     |
| <ul> <li>Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnece ssary generation of waste.</li> </ul>                                                               |                       |
| <ul> <li>Any unused materials or those with remaining functional capacity should be recycled and stored properly.</li> </ul>                                                                                        | ~                     |
| <ul> <li>All generators, fuel and oil storage are within bundle areas.</li> </ul>                                                                                                                                   | ~                     |
| <ul> <li>Oil leakage from machinery, vehicle and plant is prevented.</li> </ul>                                                                                                                                     | ~                     |
| The Environmental Permit should be displaced conspicuously on site.                                                                                                                                                 | ~                     |
| <ul> <li>Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the<br/>nearby environment.</li> </ul>                 | ~                     |
| <ul> <li>To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other<br/>general refuse generated by the workforce.</li> </ul> | V                     |



# Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

### Summary of the Weekly Site Inspection:

|   | ltem                                                  |
|---|-------------------------------------------------------|
|   | Details of defective works or observations            |
|   | Proposed Follow Up Action                             |
| 1 | Photo Ref.                                            |
| I | Further Action Follow up<br>Required Date<br>(Yes/No) |
| F | Follow up<br>Date                                     |

Remark

ł

|             | Checked by        |           |
|-------------|-------------------|-----------|
|             | Frankie Tang      | Name      |
|             | ET Representative | Title     |
|             | S for the         | Signature |
| Page 5 of 5 | 30 November 2018  | Date      |



Appendix I

Implementation Schedule of Mitigation Measures



Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2015/07

### Environmental Mitigation Implementation Schedule

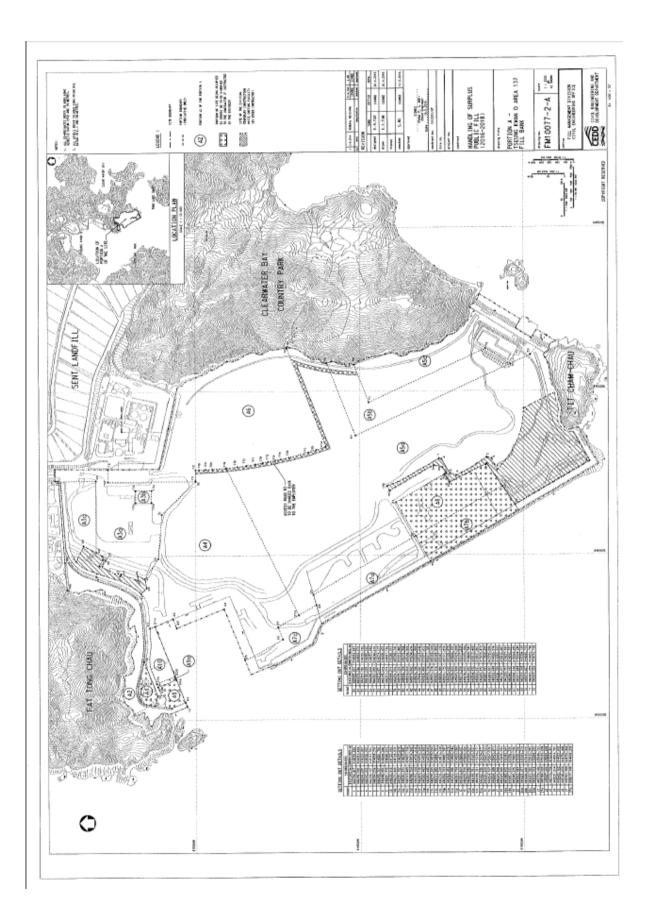
|    |                                                                                                                                                                                                                                                                                                                          | Location                  |              | Implementation Status    |                    |                   |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|--------------------------|--------------------|-------------------|--|--|
|    | Environmental Protection Measures                                                                                                                                                                                                                                                                                        |                           | Implemented  | Partially<br>implemented | Not<br>implemented | Not<br>Applicable |  |  |
| Ai | r Quality                                                                                                                                                                                                                                                                                                                |                           |              |                          |                    |                   |  |  |
| •  | Dust control / mitigation measures shall be provided to prevent dust nuisance.                                                                                                                                                                                                                                           | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | A buffer zone of at least 100m shall be maintained betw een the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allow ed.                                      | Northern Site<br>Boundary | $\checkmark$ |                          |                    |                   |  |  |
| •  | Water sprays shall be provided and used to dampen materials.                                                                                                                                                                                                                                                             | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.                                                                                                                                                                                                                        | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | All vehicles shall be restrict to a maximum speed of 10 km per hour.                                                                                                                                                                                                                                                     | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. | Site Egress               | $\checkmark$ |                          |                    |                   |  |  |
| •  | The designated site main haul rout shall be paved or regular watering.                                                                                                                                                                                                                                                   | All haul roads            | $\checkmark$ |                          |                    |                   |  |  |
| •  | Frequent watering of work site shall be at least three times per day.                                                                                                                                                                                                                                                    | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Wheel washing facilities including high pressure water jet shall be provided at the entrance of work site.                                                                                                                                                                                                               | Site Egress               | $\checkmark$ |                          |                    |                   |  |  |
| •  | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.                                                                                                                                                                                                       | Site Egress               | $\checkmark$ |                          |                    |                   |  |  |
| •  | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.                                                                                                                              | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, follow ed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.                                                        | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.                                                                                                                                                                                                             | C&DMSF                    | $\checkmark$ |                          |                    |                   |  |  |
| •  | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.                                                                                                                                                                                        | C&DMFS                    | $\checkmark$ |                          |                    |                   |  |  |
| •  | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.                                                                                                                                    | C&DMFS                    | $\checkmark$ |                          |                    |                   |  |  |
| •  | All plant and equipment should be w ell maintained e.g. w ithout black smoke emission.                                                                                                                                                                                                                                   | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311).                                         | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| No | ise Impact                                                                                                                                                                                                                                                                                                               |                           |              |                          |                    |                   |  |  |
| •  | Approved method of w orking, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.                                                                                                                                                                                      | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
|    | Only well maintained plant should be operated on-site and plant should be serviced regularly during the site works.                                                                                                                                                                                                      | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Pow ered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.                                                                                                                                                                                                                     | All areas                 |              |                          |                    |                   |  |  |
|    | Air compressors and hand held breakers should have noise labels.                                                                                                                                                                                                                                                         | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Machines and plants that may be in intermittent use should be shut dow n between work months or should be throttled dow n to a minimum.                                                                                                                                                                                  | All areas                 | $\checkmark$ |                          |                    |                   |  |  |
| •  | Noisy equipment and mobile plant shall alw ays be site aw ay from NSRs.                                                                                                                                                                                                                                                  | All areas                 | $\checkmark$ |                          |                    |                   |  |  |



| Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank<br>Contract No.: CV/2015/07 Environmental Protection Measures                                                                                                                                                                                                                                                                                                                                                                                                          |                              | Implementation Status |                          |                    |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|--------------------------|--------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Implemented           | Partially<br>implemented | Not<br>implemented | Not<br>Applicable |
| Water Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                       |                          |                    |                   |
| Drainage system should be adequate and w ell maintained to prevent flooding and overflow, especially after rain storms.                                                                                                                                                                                                                                                                                                                                                                                                                               | All areas                    |                       |                          |                    |                   |
| <ul> <li>The permanent drainage channels should have sediment basin, traps and baffles and maintain properly.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                              | All areas                    |                       |                          |                    |                   |
| <ul> <li>Temporary intercepting drains should be used at the stockpiling area to divert polluted stormw ater to the intercepting channels.</li> <li>Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormw ater to the intercepting channels.</li> </ul>                                                                                                                                                                                                                                                          | All areas                    | $\checkmark$          |                          |                    |                   |
| <ul> <li>Manholes should be covered and sealed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All areas                    |                       |                          |                    |                   |
| <ul> <li>Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      | All areas                    |                       |                          |                    |                   |
| • A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front.                                                                                                                                                                                                                                                                                                                                                                                                                  | Public fill stockpiling area | V                     |                          |                    |                   |
| <ul> <li>A buffer distance of at least 20m shall be maintained betw een the boundary of the C&amp;DMSF and the seafront.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   | C&DMFS                       |                       |                          |                    |                   |
| <ul> <li>The stormw ater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         | All areas                    |                       |                          |                    |                   |
| <ul> <li>The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed<br/>with water or protected by other method approved by CEDD.</li> </ul>                                                                                                                                                                                                                                                                                                                                   | Temporary Slopes             | $\checkmark$          |                          |                    |                   |
| <ul> <li>Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, follow ed by hydroseeding,<br/>vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.</li> </ul>                                                                                                                                                                                                                                                             | Temporary Slopes             | $\checkmark$          |                          |                    |                   |
| <ul> <li>Existing and new ly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.</li> </ul>                                                                                                                                                                                                 | All areas                    | $\checkmark$          |                          |                    |                   |
| <ul> <li>A w heel w ashing bay shall be provided at the site exit and w ash-w ater shall have sand and silt settled out or removed before<br/>being discharged into storm drains.</li> </ul>                                                                                                                                                                                                                                                                                                                                                          | Wheel Washing<br>facility    | $\checkmark$          |                          |                    |                   |
| <ul> <li>The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.</li> </ul>                                                                                                                                                                                                                                                                                   | Wheel Washing<br>facility    | $\checkmark$          |                          |                    |                   |
| <ul> <li>Sew age from toilets shall be discharged in to a foul sew er, or chemical toilets shall be provided. The chemical toilets (if use) shall<br/>be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities.</li> </ul>                                                                                                                                                                                                                                                                      | All areas                    | $\checkmark$          |                          |                    |                   |
| <ul> <li>Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas and work shop.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | All areas                    |                       |                          |                    |                   |
| <ul> <li>Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barge Handling<br>Area (BHA) | $\checkmark$          |                          |                    |                   |
| <ul> <li>The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of<br/>the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.</li> </ul>                                                                                                                                                                                                                                                                                | Barge Handling<br>Area (BHA) | $\checkmark$          |                          |                    |                   |
| <ul> <li>All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material<br/>during transport.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 | Barge Handling<br>Area (BHA) | $\checkmark$          |                          |                    |                   |
| <ul> <li>Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the<br/>transfer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      | Along the<br>seafront        | $\checkmark$          |                          |                    |                   |
| <ul> <li>Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall<br/>be properly collected and treated before disposal.</li> </ul>                                                                                                                                                                                                                                                                                                                                     | Barge Handling<br>Area (BHA) | $\checkmark$          |                          |                    |                   |
| <ul> <li>The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the<br/>water in the vicinity of the barging facilities.</li> </ul>                                                                                                                                                                                                                                                                                                                                          | Along the<br>seafront        | $\checkmark$          |                          |                    |                   |
| <ul> <li>Existing silt curtain at the outward side of the basin near the Barging Handling Area throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse.</li> </ul> | Along the                    | $\checkmark$          |                          |                    |                   |
| <ul> <li>A waste collection vessel shall be deployed to remove floating debris.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Along the<br>seafront        | $\checkmark$          |                          |                    |                   |



Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2015/07


|                                                                                                                                                                                               | Location         | Implementation Status |                          |                    |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|--------------------------|--------------------|-------------------|
| Environmental Protection Measures                                                                                                                                                             |                  | Implemented           | Partially<br>implemented | Not<br>implemented | Not<br>Applicable |
| Landscape and Visual                                                                                                                                                                          |                  |                       |                          |                    |                   |
| • The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.    | All areas        | $\checkmark$          |                          |                    |                   |
| • The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.                                                                                                  | Completed slopes | $\checkmark$          |                          |                    |                   |
| • Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brow n) once completed.               | Site boundary    | $\checkmark$          |                          |                    |                   |
| • The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare.                                    | All areas        | $\checkmark$          |                          |                    |                   |
| Other Environmental Factors                                                                                                                                                                   |                  |                       |                          |                    |                   |
| C&D w aste sorted from mixed C&D material shall be transfer to SENT landfill for disposal.                                                                                                    | All areas        | $\checkmark$          |                          |                    |                   |
| Plan and stock construction materials carefully to minimise generation of w aste.                                                                                                             | All areas        | $\checkmark$          |                          |                    |                   |
| Any unused materials or those with remaining functional capacity should be recycled.                                                                                                          | All areas        | $\checkmark$          |                          |                    |                   |
| All generators, fuel and oil storage are within bunded areas.                                                                                                                                 | All areas        |                       |                          |                    |                   |
| Oil leakage from machinery, vehicle and plant is prevented.                                                                                                                                   | All areas        |                       |                          |                    |                   |
| The Environmental Permit should be displaced conspicuously on site.                                                                                                                           | All areas        |                       |                          |                    |                   |
| • Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.                 | All areas        | $\checkmark$          |                          |                    |                   |
| • To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. | All areas        |                       |                          |                    |                   |



Appendix J

Site General Layout plan







Appendix K

Monitoring Schedule for the Coming Month



### Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018)

### Tseung Kwan O Area 137

Time Schedule for Impact Water Quality Monitoring (WQM), Impact Air Monitoring (1-hr TSP, 24-hr TSP and 24-hr RSP), Weekly Site Inspection (Weekly SI) and Impact Noise Monitoring (NM)

| Sun                          | Mon                                                                                                         | Tue                                        | Wed                                                                                                                                        | Thu                                                                        | Fri                                                                                             | Sat                                                                                           |
|------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 25                           | 26<br><u>1-hr TSPX2</u><br><u>WQM</u><br>Mid-flood<br>(08:00-10:00)<br>Mid-ebb<br>(13:11-15:11)             | 27                                         | 28<br><u>1-hr TSPX1</u><br><u>Weekly SI (pm)</u><br><u>WQM</u><br>Mid-flood<br>(09:56-11:56)<br>Mid-ebb<br>(14:57-16:57)                   | 29<br><u>24 hr TSP</u><br><u>24-hr RSP</u>                                 | 30<br><u>1-hr TSPX2</u><br><u>WQM</u><br>Mid-flood<br>(12:11-14:11)<br>Mid-ebb<br>(17:34-19:34) | 1/12                                                                                          |
| 2                            | 3<br><u>1-hr TSPX1</u><br><u>MM</u><br><u>WQM</u><br>Mid-ebb<br>(08:09-10:09)<br>Mid-flood<br>(14:33-16:33) | 4                                          | 5<br><u>24 hr TSP</u><br><u>24-hr RSP</u><br><u>Weekly SI (pm)</u><br><u>WQM</u><br>Mid-ebb<br>(09:55-11:55)<br>Mid-flood<br>(15:42-17:42) | 6                                                                          | 7<br><u>1-hr TSPX2</u><br><u>WQM</u><br>Mid-ebb<br>(11:21-13:21)<br>Mid-flood<br>(16:43-18:43)  | 8                                                                                             |
| 9                            | 10<br><u>1-hr TSPX1</u><br><u>WQM</u><br>Mid-flood<br>(08:00-10:00)<br>Mid-ebb<br>(13:06-15:06)             | 11<br><u>24 hr TSP</u><br><u>24-hr RSP</u> | 12<br><u>1-hr TSPX2</u><br><u>Weekly SI (pm)</u><br><u>WQM</u><br>Mid-flood<br>(09:31-11:31)<br>Mid-ebb<br>(14:23-16:23)                   | 13                                                                         | 14<br><u>1-hr TSPX1</u><br><u>WQM</u><br>Mid-flood<br>(10:00-12:00)                             | 15                                                                                            |
| 16                           | 17<br>24 hr TSP<br>24-hr RSP<br>WQM<br>Mid-ebb<br>(08:00-10:00)<br>Mid-flood<br>(13:25-15:25)               | 18                                         | 19<br><u>1-hr TSPX2</u><br><u>Weekly SI (pm)</u><br><u>WQM</u><br>Mid-ebb<br>(08:09-10:09)<br>Mid-flood<br>(14:26-16:26)                   | 20                                                                         | 21<br><u>1-hr TSPX1</u><br><u>WQM</u><br>Mid-ebb<br>(09:56-11:56)<br>Mid-flood<br>(15:34-17:34) | 22                                                                                            |
| 23<br>24 hr TSP<br>24-hr RSP | 24<br><u>1-hr TSPX2</u><br><u>WQM</u><br>Mid-ebb<br>(12:15-14:15)<br>Mid-flood<br>(17:39-19:39)             | 25                                         | 26                                                                                                                                         | 27<br><u>WQM</u><br>Mid-flood<br>(09:33-11:33)<br>Mid-ebb<br>(14:52-16:52) | 28<br><u>1-hr TSPX1</u>                                                                         | 29<br>24 hr TSP<br>24-hr RSP<br>WQM<br>Mid-flood<br>(11:22-13:22)<br>Mid-ebb<br>(17:05-19:05) |
| 30                           | 31<br><u>1-hr TSPX2</u><br><u>WQM</u><br>Mid-ebb<br>(08:00-10:00)<br>Mid-flood<br>(13:04-15:04)             | 1/1                                        | 2<br><u>1-hr TSPX1</u><br>Weekly SI (pm)                                                                                                   | 3                                                                          | 4<br><u>24 hr TSP</u><br>24-hr RSP                                                              | 5                                                                                             |

### December 2018

Remark: Due to the tidal period is not in working hour, 14 December 2018 water monitoring (Mid-Ebb) was cancelled

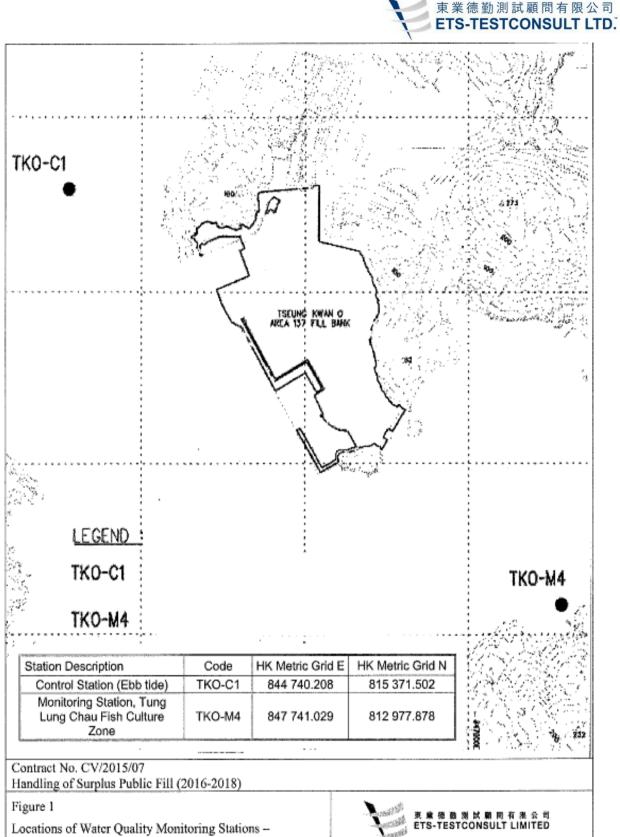


Appendix L

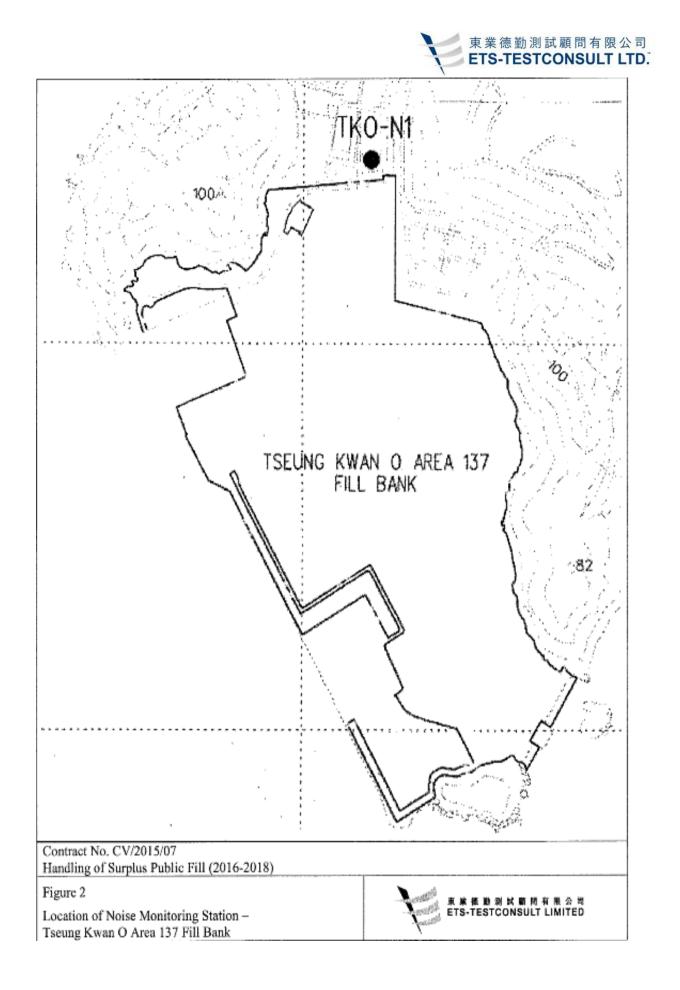
**Complaint Log** 



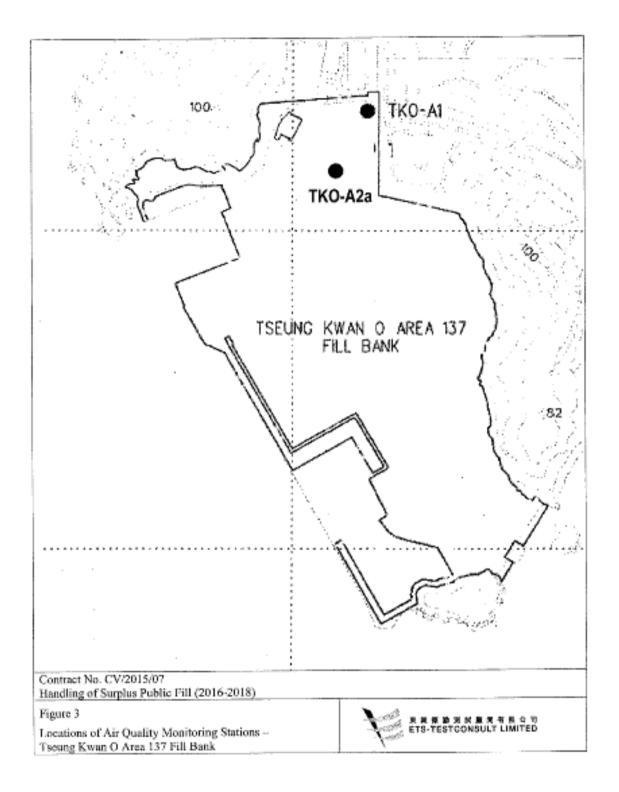
### **Complaint Logs**

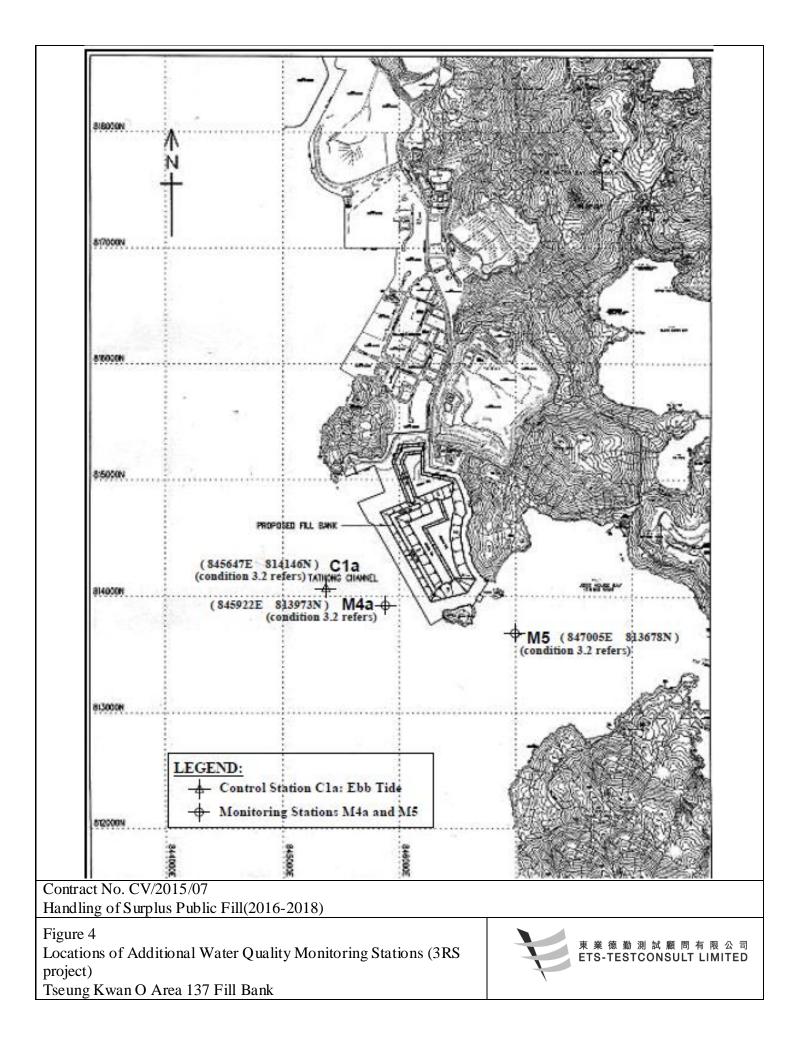

| Log Ref. | Location                                                   | Received Date  | Details of Complaint                                                                                                                                                                                                                                                                        | Investigation / Mitigation Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Status |
|----------|------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 001      | Barge<br>handling<br>area (BHA)<br>at Tseung<br>Kwan O 137 | 15 May<br>2017 | One complaint received on 15<br>May 2017, which was<br>forwarded to ET on 11 August<br>2017, from CEDD (Complaint<br>NCF-N08/RE/00014875-17<br>Sent By CSO[RN]3 [CASE#2-<br>3943858817 Int.Comm<br>WS170513A57354] against<br>illegal dumping at sea without<br>permit in TKO137 fill bank. | <ul> <li>Refer to the ET site investigation on 14 August 2017, the contractor clarified that the contractor conducted vessel loading test at Tseung Kwan O 137 Fill bank on 13 May 2017 and the material was then unloaded from the vessels.</li> <li>Follow up action to complaint by ET and contractor: Contractor under the valid dumping permit to dump fill materials and the site works shall be complied with the relevant environmental protection and pollution control ordinances.</li> <li>ET reminded contractor that the dump fill material under the valid dumping permit should be checked and confirmed. In addition, record should be kept for ET reference.</li> <li>Details of Action(s) Taken by the Contactor:</li> <li>The contractor started to dump fill materials from 19 May 2017 after receiving the valid dumping permit.</li> <li>The contractor dump fill materials were followed by the valid dumping permit and the permit was kept apply every three month</li> <li>The contractor kept the permit for ET reference.</li> </ul>                                                                                                                                                                                                                          | Closed |
| 002      | Tseung<br>Kwan O 137<br>Fill Bank                          | 12 Oct 2017    | One complaint received on 12<br>October 2017, which was<br>forwarded to ET on 18<br>October 2017, from public<br>against dust emission at the<br>fill bank and discharge of<br>muddy water to the seafront.                                                                                 | <ul> <li>Refer to the ET weekly site inspection on 18 October 2017, no defective observation related to dust emission and discharge of water was recorded during the investigation.</li> <li>Details of Action(s) Taken by the Contactor: <ul> <li>Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank;</li> <li>Mist spraying systems at the site entrance are operated properly;</li> <li>Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving;</li> <li>All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet;</li> <li>Site vehicle for transporting materials are covered properly by using clean tarpaulin sheets;</li> <li>Regular cleaning at the site haul road is provided to minimize the fugitive dust emission;</li> <li>Silt curtains are provided at the outward side of the basin near the Fill Bank;</li> <li>Drainage systems are adequate and maintained to prevent flooding and overflow;</li> <li>Catchpits, sand and silt removal facilities and intercepting channels are maintained and functioning properly.</li> </ul> </li> </ul> | Closed |




|                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Kwan O 1372018April 2018, which wasFill Bankforwarded to ET on 18 April2018, from public against the | <ul> <li>Refer to the ET site investigation on 20 April 2018, the condition of Wan Po Road near TKO137 Fill Bank was found satisfactory. (Photos on ET follow-up investigation at TKO137 Fill Bank on 20 April 2018).</li> <li>Details of Action(s) Taken by the Contactor: <ul> <li>Regular cleaning on Wan Po Road and the access road at the site exit by haul road cleaning team to remove mud and gravel is arranged eight times per month;</li> <li>Regular water spraying by water lorries is provided for road cleaning at Wan Po Road;</li> <li>Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving;</li> <li>Site vehicles for transporting materials are covered properly by using clean tarpaulin sheets;</li> <li>Regular cleaning at the site haul road is provided.</li> </ul> </li> </ul> | Closed |




Figures




Tseung Kwan O Area 137 Fill Bank







