

8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

China Harbour – Zhen Hua Joint Venture

TEST REPORT

Contract No.: CV/2015/07 Handling of Surplus Public Fill (2016-2018)

TSEUNG KWAN O AREA 137 FILL BANK

MONTHLY EM&A REPORT NO.55

(NOVEMBER 2021)

Prepared by: LAU, Wing Sum Assistant Environmental Officer

Checked by:

LAU, Chi Leung

Environmental Team Leader

Issue Date: 09 September 2022

Report No.: ENA16024

This report shall not be reproduced unless with prior written approval from this laboratory.

Our Ref: PL-202209017

ETS-Testconsult Limited 8/F, Block B, Veristrong Industrial Centre 34-36 Au Pui Wan Street Fo Tan, Hong Kong

Attention: Mr. C. L. Lau

10 September 2022

Dear Mr. Lau,

RE: Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) <u>Revised Appendices of Monthly EM&A Report (No. 55) for November 2021 for the Tseung</u> <u>Kwan O Area 137 Fill Bank</u>

Reference is made to your submission of revised Appendices D2 to D5 of the Monthly EM&A Report for November 2021 for the TKO Area 137 Fill Bank we received by email on 10 September 2022. We are pleased to inform you that we have no adverse comment on the revised appendices.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours faithfully,

Toang Fandbearg

F. C. Tsang Independent Environmental Checker

cc. CEDD – Mr. P. C. LEUNG

Contract No.: CV/2015/07 Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank

ENA16024 Monthly EM&A Report No.55

TABLE OF	CONTENTS	Page
EXECUTIVE	SUMMARY	
1.0	INTRODUCTION	1
2.0	PROJECT INFORMATION	
	2.1 Scope of the Project	1
	2.2 Site Description	1
	2.3 Work Programme	2
	2.4 Project Organization and Management Structure	2
	2.5 Contact Details of Key Personnel	2
3.0	WORK PROGRESS IN THIS REPORTING PERIOD	2
3.0 4.0		2
4.0	AIR QUALITY MONITORING	0
	4.1 Monitoring Requirement	2
	4.2 Monitoring Equipment	2
	4.3 Monitoring Parameters, Frequency and Duration	2
	4.4 Monitoring Locations and Schedule	3
	4.5 Monitoring Methodology	3
	4.6 Action and Limit levels	3-4
	4.7 Event-Action Plans	4
	4.8 Results and Observation	4
5.0	NOISE MONITORING	
	5.1 Monitoring Requirements	4
	5.2 Monitoring Equipment	4
	5.3 Monitoring Parameters, Duration and Frequency	4-5
	5.4 Monitoring Locations	5
	5.5 Monitoring Procedures and Calibration Details	5
	5.6 Action and Limit levels	5
	5.7 Event-Action Plans	5
	5.8 Results and Observation	5-6
6.0	MARINE WATER QUALITY MONITORING	
	6.1 Monitoring Requirements	6
	6.2 Monitoring Locations	6
	6.3 Monitoring Parameters	6-7
	6.4 Monitoring Frequency	7
	6.5 Monitoring Methodology and Equipment Used	7 - 8
	6.6 Action and Limit Level	9
	6.7 Event and Action Plan	9
	6.8 Monitoring Duration in this reporting period	9
	6.9 Marine Water Monitoring Results	10
7.0	ENVIRONMENTAL AUDIT	
	7.1 Weekly ET Site Inspections and EPD's Site Inspection	10-11
	7.2 Review of Environmental Monitoring Procedures	11
	7.3 Assessment of Environmental Monitoring Results	11
	7.4 Advice on the Solid and Liquid Waste Management Status	11 -12
8.0	STATUS OF ENVIRONMENTAL LICENSING AND PERMITTING	12-13
9.0	ENVIRONMENATL NON-CONFORMANCE	
	9.1 Summary of air quality, noise and marine water quality	13
	9.2 Summary of Environmental Complaints	13
	9.3 Summary of Notification of Summons and Prosecution	13
10.0	IMPLEMENTATION STATUS	10
10.0	10.1 Implementation Status of Environmental Mitigation Measures	13
	10.2 Implementation Status of Event and Action Plan	13
	•	
	10.3 Implementation Status of Environmental Complaint, Notifications of Summons	and 13
	Successful Prosecutions Handling	
11.0	CONCLUSION AND RECOMMENTATIONS	13-14
12.0	FUTURE KEY ISSUE	
	12.1 Work Programme for the Coming Month	15
	12.2 Key Issues for the Coming Month	15-16
	12.3 Monitoring Schedule for the Coming Month	16

ENA16024 Monthly EM&A Report No.55

APPENDIX

APPENDIX	
А	Organization Chart and Lines of Communication
B1	Calibration Certificates for Impact Air Quality Monitoring Equipment
B2	Impact Air Quality Monitoring Results
B3	Graphical Plots of Impact Air Quality Monitoring Data
C1	Calibration Certificates for Impact Noise Monitoring Equipment
C2	Impact Noise Monitoring Results
C3	Graphical Plots of Impact Noise Monitoring Data
D1	Calibration Certificates for Impact Marine Water Quality Monitoring Equipment
D2	Impact Marine Water Quality Monitoring Results
D3	Graphical Plots of Impact Marine Water Quality Monitoring Data
D4	Impact Marine Water Quality Monitoring Results (3RS project)
D5	Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS project)
E	Weather Condition
F	Event-Action Plans
G	Work Programme
Н	Weekly ET's Site Inspection Record
I	Implementation Schedule of Mitigation Measures
J	Site General Layout Plan
К	Monthly Summary Waste Flow Table
L	Monitoring Schedule for the Coming Month
Μ	Reporting Month Monitoring Schedule
Ν	Complaint Log

FIGURES

- Figure 1 Locations of Water Quality Monitoring Stations Tseung Kwan O Area 137 Fill Bank
- Figure 2 Location of Noise Monitoring Station Tseung Kwan O Area 137 Fill Bank
- Figure 3 Locations of Air Quality Monitoring Stations Tseung Kwan O Area 137 Fill Bank
- Figure 4 Locations of Water Quality Monitoring Stations (3RS project) Tseung Kwan O Area 137 Fill

TABLES

- 2.1 Contact Details of Key Personnel
- 4.1 Air Quality Monitoring Equipment
- 4.2 Monitoring parameters, duration and frequency of air quality monitoring
- 4.3 Air Quality Monitoring Locations
- 4.4 Action and Limit levels for 24-hr TSP and 1-hr TSP
- 5.1 Noise Monitoring Equipment
- 5.2 Duration, Frequency and Parameters of noise monitoring
- 5.3 Noise Monitoring Location
- 5.4 Action and Limit levels for noise monitoring
- 6.1 Locations of Marine Water Monitoring Stations
- 6.2 Locations of Additional Marine Water Monitoring Stations (3RS project)
- 6.3 Marine Water Quality Monitoring Parameters
- 6.4 Monitoring frequency of the marine water
- 6.5 Summary of testing procedures
- 6.6 Details of Marine Water Quality Monitoring Equipment (In-site measurement)
- 6.7 Water Quality Action and Limit Levels
- 6.8 Water Quality Action and Limit Levels (3RS project)
- 6.9 Time Schedule of Impact Marine Water Quality Monitoring
- 6.10 Summary of Impact Marine Water Quality Exceedances
- 6.11 Summary of Impact Marine Water Quality Exceedances (3RS project)
- 7.1 Key Findings of Weekly ET Site Audits in this reporting period
- 7.2 Actual amounts of Waste generated in this reporting period
- 8.1 Summary of environmental licensing and permit status
- 10.1 Summary of Environmental Complaints and Prosecutions

Monthly EM&A Report No.55

東業德勤測試顧問有限公司

EXECUTIVE SUMMARY

This monthly Environmental Monitoring and Audit (EM&A) report No.55 was prepared by ETS-Testconsult Ltd (ET) for "Contract No: CV/2015/07 – Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project).

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at TKO Area 137 in November 2021.

Site Activities

As informed by the Contractor, the site activities in this reporting period were as below:

- 1. Operation of the Public Fill Reception Facilities at Tseung Kwan O Fill Bank (TKOFB);
- 2. Delivery of public fill to Taishan at TKOFB;
- 3. Operation of dewatering plant and expanded dewatering plant at TKOFB;
- 4. Operation of Crushing plant at TKOFB;
- 5. Enhancement of Mobile Data Network at TKOFB (Installation, Operation and Maintenance);
- 6. Installation, Operation and Maintenance of Artificial Intelligent System for Crushing Plant Nos. 2, 3 and 4 (Model QJ241) at TKOFB;
- 7. Operation of the Integrated Public Fill Reception at TKOFB;
- 8. Operation and Maintenance of Wash House at TKOFB;
- 9. Enhancement and maintenance of Wheel Washing Facility at TKOFB;
- 10. Personnel Position Tracking and Proximity Detection System of Moving Plant at TKOFB;
- 11. Setting up a Digital Works Supervision System (DWSS) for TKOFB;
- 12. Carrying out of preliminary sorting of public fill for 3RS project at TKOFB;
- 13. Installation of New RFID System for the pre-sorting works at TKOFB; and
- 14. Construction and installation of 2 nos. Wash Houses at TKOFB

Environmental Monitoring Progress

The summary of the monitoring activities in this monitoring period is listed below:

- Noise Monitoring (Day-time): 1 Occasion at 1 designated location
- 24-hour TSP Monitoring: 5 Occasions at 2 designated locations
- 1-hour TSP Monitoring: 15 Occasions at 2 designated locations
- Marine Water Quality Monitoring: 8 Occasions at 2 designated locations
- Weekly-site inspection: 5 Occasions

Noise Monitoring

No exceedance of Action and Limit levels for noise monitoring was recorded in the reporting period.

Air Monitoring

No exceedance of Action and Limit levels was recorded for 1-hr and 24-hr TSP monitoring in the reporting period.

Marine Water Quality Monitoring

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded in this reporting period.

Weekly Site Inspections

In general, performance on environmental mitigation measures implemented was found to be satisfactory in this reporting period. The major findings observed during site inspections are presented in the Section 7.0.

Environmental Complaints, Notification of summons and successful prosecutions

One complaint was received on 25 November 2021; no notification of summons or successful prosecutions with respect to environmental issues was received in this reporting period.

Future Key Issues

Based on site inspections and forecast of engineering works in coming month, key issues to be considered are as follows:

- Noise and air quality impact due to site works;
- Maintain wheel washing facilities properly;
- Maintain all drainage and desilting facilities properly;
- Use and maintain silt curtain properly;
- Clean up the fill material on concrete pavement along the BHA frequently;
- Sufficient drip trays for all oil drums / chemical containers;
- Implement all necessary preventive measures to avoid oil leakage. In the event an oil leakage happens, the Contractor should properly remove the leaked oil and handle the contaminated soil and all materials using for this cleaning works as chemical waste;
- Maintain good site practice and waste management to minimize environmental impacts at the site; and
- Follow-up improvements on waste management issues.

1.0 INTRODUCTION

*China Harbour – Zhen Hua Joint Ve*nture (CHZH-JV) appointed Environmental Team (ET) of ETS-Testconsult Limited (ETL) to undertake the Environmental Monitoring and Audit (EM&A) for the "Contract No: CV/2015/07 –Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project).

In accordance with the Environmental Permit (No.: EP-134/2002/N) (the EP), an EM&A programme should be implemented in accordance with the procedures and requirements in the EM&A Manual of the approved EIA report (Registration No. AEIAR-060/2002). The EM&A programme for this study as stated in Section 2.3.1 of the EM&A Manual covers the following environmental aspects during the establishment, operation and removal phases of the Fill Bank at Tseung Kwan O Area 137:

- Fugitive Dust;
- Noise generation from onsite activities;
- Water Quality; and
- Landscape and Visual.

The EM&A programme requires environmental monitoring for air quality, noise and water quality and environmental site inspections for air quality, noise, water quality, landscape and visual, and waste management. The EM&A requirements for each parameter described in the following sections include:

- All monitoring parameters;
- Monitoring schedules for the reporting period and forthcoming months;
- Action and Limit levels for all environmental parameters;
- Event/Action Plans;
- Environmental mitigation measures, as recommended in the Project EIA study final report; and
- Environmental requirements in contract documents.

Baseline monitoring was completed in August and October 2002 by MateriaLab. Action and Limit Levels were established for air and water quality parameters based on the baseline monitoring results.

This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at Tseung Kwan O Area 137 in November 2021.

2.0 **PROJECT INFORMATION**

2.1 Scope of the Project

The scale and scope of the Project as stated in the EP include:

- Site clearance;
- Construction of a temporary storm water system;
- Stockpiling of 6 million m³ of public fill;
- Setting up two barging points: one at the TKO Basin and one at the Construction and Demolition Material Sorting Facility (C&DMSF) for transporting the stockpiled public fill by barges;
- Setting up a temporary barging point at the existing Explosive Off-loading Barging Point located in the south-eastern part of Area 137 for the month of May 2004 to December 2004 for transporting the stockpiled public fill by barge;
- Construction and operation of a Construction and Demolition Material Sorting Facility (C&DMSF);
- Setting up a Construction and Demolition Material Crushing Facility at the TKO Basin; and
- Remove the temporary fill bank.

2.2 Site Description

TKO Area 137 Fill Bank is located at the southern end of Wan Po Road. In the vicinity of the site are other industrial uses such as SENT landfill, TKO Industrial Estate, etc. Both Island Resort and Fullview Garden are also situated at more than 1.8km from the site. Other existing Air Sensitive Receivers (ASRs) and Noise Sensitive Receivers (NSRs), including resident developments and schools, are located at a further distance away from TKO Area 137.

2.3 Work Programme

Details of work programme are shown in Appendix G.

2.4 **Project Organization and Management Structure**

The project organization chart is shown in Appendix A.

2.5 Contact Details of Key Personnel

The key personnel contact names and telephone numbers are shown in Table 2.1.

Table 2.1	Contact Details	of Key	v Personnel

Organization	Name of Key Staff	Project Role	Tel. No.	Fax No.
CEDD	Leo Lam, T M Yeung, May Lau	Engineer's Representative	2762 5555	2714 0113
IEC (Acuity)	Mr. F C Tsang	IEC	2698 9097	2333 1316
Contractor (CHZH-JV)	Zhou Chang Ying	Senior Project Manager	9626 6299	2247 4108
ET (ETL)	C. L. Lau	ET Leader	2946 7791	2695 3944

3.0 WORK PROGRESS IN THIS REPORTING PERIOD

As informed by the Contractor, the activities in the reporting period include:

- 1. Operation of the Public Fill Reception Facilities at TKOFB;
- 2. Delivery of public fill to Taishan at TKOFB;
- 3. Operation of dewatering plant and expanded dewatering plant at TKOFB;
- 4. Operation of Crushing plant at TKOFB;
- 5. Enhancement of Mobile Data Network at TKOFB (Installation, Operation and Maintenance);
- 6. Installation, Operation and Maintenance of Artificial Intelligent System for Crushing Plant Nos. 2, 3 and 4 (Model QJ241) at TKOFB;
- 7. Operation of the Integrated Public Fill Reception at TKOFB;
- 8. Operation and Maintenance of Wash House at TKOFB;
- 9. Enhancement and maintenance of Wheel Washing Facility at TKOFB;
- 10. Personnel Position Tracking and Proximity Detection System of Moving Plant at TKOFB;
- 11. Setting up a Digital Works Supervision System (DWSS) for TKOFB;
- 12. Carrying out of preliminary sorting of public fill for 3RS project at TKOFB;
- 13. Installation of New RFID System for the pre-sorting works at TKOFB; and
- 14. Construction and installation of 2 nos. Wash Houses at TKOFB

4.0 AIR QUALITY MONITORING

4.1 Monitoring Requirement

TSP levels were monitored in the reporting period in accordance with the EM&A Manual. Table 4.4 shows the Action and Limit Levels for the environmental monitoring works.

4.2 Monitoring Equipment

Both 1-hour and 24-hour TSP air quality monitoring was performed using a GMWS2310 High Volume Air Sampler (HVS) located at each of the designated monitoring station. Table 4.1 summarizes the equipment used in the air quality monitoring programme. A copy of the calibration certificates for the HVS and calibrator are attached in Appendix B1.

Table 4.1	Air Quality Monitoring	Equipment
-----------	------------------------	-----------

Equipment	Model and Make		
HVS	Greasby GMWS2310		
Calibrator	Tisch TE-5025A		

4.3 Monitoring Parameters, Frequency and Duration

Table 4.2 summarizes the monitoring parameters, monitoring duration and frequencies of air quality monitoring.

	Table 4.2 Monitoring pa	arameters, duration, frequ	uency of air quality monitoring
Parameter		Duration	Frequency
	24-hr TSP	24 hr	Once every six days
1-hr TSP		1 hr	Three times per every six days

4.4 Monitoring Locations

Table 4.3 tabulates the air quality monitoring locations of this project.

Table 4.3	Air quality monitoring locations
-----------	----------------------------------

Monitoring station	Location
TKO-A1	Site Egress
TKO-A2a	CREO

4.5 Monitoring Methodology

Both 1-hr and 24-hr air quality monitoring (High Volume Sampler)

Instrumentation

High volume sampler, as HVS, (Greasby GMWS2310) complete with appropriate sampling inlets were employed for both 1-hour and 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

Installation

The installation of HVS refers to the requirement stated in EM&A Manual.

Operation/Analytical Procedures

Operating/analytical procedures for the operation of HVS are as below:

- Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 0.6m³/min and 1.7m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. The flow rate was indicated on the flow rate chart.
- For TSP sampling, fiberglass filters (Whatman G653) were used.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated 5 minutes to establish thermal equilibrium before placing any filter media at designated air monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an air-tight seal on the outer edges of the filter. Then the filter holder frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The programmable timer will be set for a sampling month of 1 hour or 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number.).
- After sampling, the filter was transferred from the filter holder of the HVS to a sealed plastic bag and sent to the laboratory for weighting. The elapsed time was also recoded.
- Before weighting, all filters were equilibrated in a desiccator for 24 hour with the temperature of 25°C <u>+</u> 3°C and the relative humidity (RH) <50% <u>+</u>5%.
- All measurement procedures in Section 2.3 of the EM&A Manual were followed during the reporting period.

Maintenance & Calibration

- HVS and their accessories should be maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- HVS should be calibrated at bi-monthly intervals.

Wind Data Monitoring

Wind data (wind speed and wind direction) were directly extracted from Tseung Kwan O Station of Hong Kong Observatory. All wind data during this reporting period are shown in Appendix E.

4.6 Action and Limit Levels

Table 4.4 shows the Action and Limit levels for 24-hr TSP and 1-hr TSP monitoring.

Table 4.4Action and Limit Levels for 24-hr TSP and 1-hr TSP

Monitoring Location	24-hr TSP (μg/m³)		1-hr TSP (μg/m³)	
Monitoring Location	Action Level	Limit Level	Action Level	Limit Level
TKO-A1	210	260	376	500
TKO-A2a *	210	260	376	500

Remark (*): Since dust monitoring stations TKO-A2 and TKO-A2a are located close to the major dust emission sources and also close to the same sensitive receptor and no significant difference between them on the prevailing meteorological conditions, the baseline data from TKO-A2 (August and September 2002 by MateriaLab) can also be valid in the case of TKO-A2a.

4.7 Event-Action Plans

Please refer to Appendix F for details.

4.8 Results and Observation

4.8.1 1-hour and 24-hour TSP Monitoring results

Monitoring data of both 1-hour and 24-hour TSP monitoring carried out in this reporting period are summarized in Appendix B2. Graphical presentation of 1-hour and 24-hour TSP monitoring results for the reporting period is shown in Appendix B3. Wind data included wind speed and wind direction was extracted from Tseung Kwan O Station of Hong Kong Observatory during this reporting period and is presented in Appendix E.

No exceedance of Action and Limit Level of 1-hr TSP and 24-hour TSP monitoring results was recorded during the reporting period.

4.8.2 Observation

Generally, the Contractor implemented sufficient dust mitigation measures, including operation of the mist spraying systems at the CEDD Combined Reception Office and crushing plants. And the site egress area provided wheel washing facilities; Road dampening, water bowsers and automatic water sprinklers on the main haul roads. Other dust sources near TKO Area 137 also included operation of the temporary Construction Waste Sorting Facilities (CWSF) and dumping activities at the SENT Landfill.

5.0 Noise Monitoring

5.1 Monitoring Requirements

Noise monitoring was conducted at 1 monitoring station as specified in the approved EM&A Monitoring Proposal for good site practice. The equipment, parameter, frequency, duration, methodology, calibration details, results and observations of the noise monitoring for the reporting period are presented in this section.

5.2 Monitoring Equipment

An Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level reading including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (Lx). It complies with International Electro Technical Commission Publications IEC 61672 Type 1 specification, and speed in m/s was used to monitor the wind speed.

Table 5.1 summarizes noise monitoring equipment model being used. A copy of the calibration certificate for noise meter and calibrator are attached in Appendix C1

Table 5.1Noise Monitoring Equipment

Equipment	Model		
Sound Level Meter	Rion NL-31 / Rion NL-52		
Sound Level Calibrator	Rion NC-73 / Castle GA607		

5.3 Monitoring Parameters, Duration and Frequency

Duration, frequencies and parameters of noise measurement are presented in Table 5.2.

	Table 5.2 Duration, Frequencies and Parameters of Noise Monitoring			
Time		Duration/min	Parameters	Frequency
	Day-time: 0700-1900 hrs on normal weekday	30	L _{eq} , L ₁₀ , L ₉₀	Once per month

5.4 Monitoring Locations

One Noise monitoring was conducted at the noise monitoring location, TKO-N1 as shown in Figure 2 during the reporting period. Table 5.3 describes the location of the monitoring station.

Table 5.3Noise Monitoring Location

Monitoring station Location		Type of Measurement	
TKO-N1	Outside site Egress along Wan Po Road	Free Field	

5.5 Monitoring Procedures and Calibration Details

Operation/Analysis Procedures

- The Sound Level Meter was set on a tripod at a height of 1.2m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weighting: A
 - Time weighting : Fast
 - Time measurement : 30 mins
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000HZ. If the difference in the calibration level before and after measurement was more than 1dB, the measurement would be considered invalid and repeat measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with a portable wind meter.
- During the monitoring period, the Leq, L10 and L90 were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Correction factor of +3dB(A) should be made to the free Field measurements.
- Noise monitoring would be cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind gusts exceeding 10m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator are cleaned with soft cloth in quarterly intervals.
- The meter is sent to the supplier or HOKLAS laboratory to check and calibrated in yearly intervals.

5.6 Action and Limit Levels

The Action and Limit levels for noise levels derived as illustrated in Table 5.4.

Table 5.4 Action and Limit Levels for noise monitoring

Time Period	Action	Limit			
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A)			

5.7 Event-Action Plans

Please refer to the Appendix F for details.

5.8 Results and Observation

5.8.1 Results

Only Day-time noise monitoring was carried out at monitoring station TKO-N1 in this reporting period. The detail of the noise monitoring is provided in Appendix C2. Graphical presentation of the monitoring result for the reporting period is shown in Appendix C3. Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

5.8.2 Observation

The major noise source during the monitoring event was the dump truck traffic and crushing plant.

6.0 MARINE WATER QUALITY MONITORING

6.1 Monitoring Requirements

In accordance with the EM&A Manual, impact marine water quality monitoring was conducted three days per week. Measurements were taken at both mid-flood and mid-ebb tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed) at Control Station, C1 and Monitoring Station, M4.

6.2 Monitoring Locations

For the Reclamation Project, there were 4 Designated Monitoring Stations and 2 Designated Control Stations specified in the EM&A Manual. Upon the completion of the monitoring programme under Stage 2 reclamation works, the ET started monitoring events at the impact station M4 and the control station C1 from 18 May 2004 onwards.

Figure 1 shows the location of the marine water quality monitoring stations. Table 6.1 describes the locations of the monitoring stations in the reporting period.

Station Description	Code	HK Metric Grid E	HK Metric Grid N	
Control Station (Ebb tide)	TKO-C1	844 740.208	815 371.502	
Monitoring Station, Tung Lung Chau Fish Culture Zone	TKO-M4	847 741.029	812 977.878	

 Table 6.1
 Locations of Marine Water Monitoring Stations

According to Environmental Permit (Permit no.:EP-134/2002/N) Condition 3.2, water quality survey/monitoring shall be conducted at control station C1a, monitoring stations M4a and M5 for the period from two weeks before commencement of operation of the additional 5 barging points to 4 weeks after cessation of their operation. The water quality survey/monitoring frequency and parameters at stations C1a, M4a and M5 shall be same as the requirements set out in the EM&A Manual and the monitoring results shall be incorporated in the monthly EM&A reports.

Due to "Hong Kong International Airport, Three Runway System Project Contract 3206 – Main Reclamation Works "(3RS project) operation of the additional barging point at TKO Area 137, the ET started monitoring events at the impact station M4a, M5 and the control station C1a from 14 May 2018 onwards.

Figure 4 shows the location of water control station C1a and water monitoring station M4a and M5.

Table 6.2 describes the locations of the additional marine water monitoring stations

Table 6.2	Locations of Additional Marine Water Monitoring Stations (3RS project)

Station Description	Code	HK Metric Grid E	HK Metric Grid N
Control Station (Ebb tide)	C1a	845647	814146
lean and Manifering Ofation	M4a	845922	813973
Impact Monitoring Station	M5	847005	813678

6.3 Monitoring Parameters

Monitoring of the marine water quality parameters are listed in Table 6.3. Table 6.3 Marine Water Quality Monitoring Parameters

In-situ measurement	Laboratory analysis
Depth (m)	Suspended solids (mg/L)
Temperature ($^{\circ}$ C)	
Dissolved Oxygen (mg/L and % saturation)	
Turbidity (NTU)	
Salinity (ppt)	

6.4 Monitoring Frequency

The monitoring frequency of the marine water monitoring is summarized in Table 6.4.

Table 6.4Monitoring frequency of the marine water

Parameter	Frequency	No. of Location	No. of Depths
Temperature		2	
Salinity		(TKO-C1 and TKO-	3
Dissolved Oxygen (DO)	3 days/week,	M4)	(Surface, mid-depth
Turbidity	2 tides/day	and 3	& bottom)
Suspended solids (SS)		(C1a, M4a and M5)	

6.5 Monitoring Methodology and Equipment Used

For Location of the monitoring stations

Global Positing System (GPS)

A hand-held digital GPS was used to identify the designated monitoring stations prior to water sampling.

For Water Depth measurement

Echo Sounder

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

For In-situ Water Quality Measurement

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently recalibrated at 3 monthly intervals or sometimes longer throughout all stages of the water quality monitoring.

Dissolved Oxygen, Salinity, Turbidity and Temperature Measuring Equipment

A portable, weatherproof multiparameter water quality meter (YSI Pro DSS) which complete with cable, sensor and DC power source were used for measuring DO, turbidity, salinity, pH and temperature:

ENA16024 Monthly EM&A Report No.55

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

- a dissolved oxygen level in the range of 0 to 50 mg/L and 0-500 % saturation;
- a turbidity in range 0-4000 NTU;
- a salinity in range 0-70 ppt;
- a temperature of -5-70 degree Celsius

A membrane electrode with automatic temperature compensation complete with a cable was installed.

For Water Sampling and Sample Analysis

In-situ monitoring was carried out at three depths: 1 meter below water surface, at mid-depth and 1 meter above the seabed. At each sampling depth, duplicate readings of dissolved oxygen content and turbidity were taken. The probes were drop into water, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. The difference between the two readings of each set was more than 25% of the value of the first reading while a third measurement would be conducted to ensure data precision.

Water Sampler

A water sampler comprising a transparent PVC cylinder, with a capacity of not less than 2 liters, was lowered into the water body at the predetermined depth. The both opening ends of the sampler were then closed accordingly by dead weight and water samples were collected.

Water Container

The sample container, made by high-density polythene, was rinsed with a portion of the water sample. The water sample was then transferred to the container, labelled with a unique sample ID and sealed with a screw cap. The water samples were stored in a cool box maintained at 4°C. The water samples were then delivered to a local HOKLAS-accredited laboratory (Environmental Laboratory, ETS-Testconsult Ltd, HOKLAS Registration No. 022) on the same day for analysis.

The summary of testing method of testing parameter as recommended by EIA or required by EPD, with the QA/QC results in accordance with the requirement of HOKLAS or international accredited scheme is shown in Table 6.5.

Table 6.5 Summary of		
Laboratory Analysis	Testing Procedure	Detection Limit
Total suspended solids	In house method based on APHA 19 th ed 2540D	1.0 mg/L

Table 6.5Summary of testing procedures

In-situ measurement

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use. Responses of sensors and electrodes were checked with certified standard solutions before each use. The DO sensor was calibrated by wet bulb method and a zero check in distilled water was performed with the turbidity and salinity sensor before the strat of measurement.

At each measurement/sampling depth, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. For DO, DOS, Turbidity and Salinity, measurements were conducted three days per week at both mid-ebb and mid-flood tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed). The duplicate measurements were averaged if the difference was not greater than 25%. If the difference is greater than 25%, repeat measurement will be required to be carried out.

Table 6.6 shows the equipment used for in-situ monitoring of water quality. The calibration certificates are attached in Appendix D1.

ENA16024 Monthly EM&A Report No.55

Table 6.6 Details of Marine Water Quality Monitoring Equipment (In-site measurement)					
Parameter	Model	Date of Due Date		Equipment No.	
Coordinate of Monitoring stations	Garmin eTrex 10			ET/EW/005/09	
Dissolved Oxygen (Saturation), Temperature, Salinity, Turbidity	YSI Pro DSS Multiparameter Water Quality Meter	03/11/21	02/02/22	ET/EW/008/011*	
Water Depth	Speedtech SM-5			ET/EW/002/08	

Remark:(*) indicates the instrument should be calibrated on use.

6.6 **Action and Limit Level**

Table 6 7

The water quality criteria, namely Action and Limit (A/L) levels are presented in the table below.

Parameter	Action Level	Limit Level		
DO (mg/L)	<u>Surface & Middle</u> <5.45 mg/L (5%-ile of baseline data) <u>Bottom</u> <4.72 mg/L (5%-ile of baseline data)	<u>Surface & Middle</u> <5.10 mg/L (1%-ile of baseline data) <u>Bottom</u> <2.00 mg/L		
SS (mg/L) (Depth- averaged)	>6.74 mg/L (95%-ile of baseline data) or >120% of the upstream control station's SS at the same tide on the same day	>7.67 mg/L (99%-ile of baseline data) or >130% of the upstream control station's SS at the same tide on the same day		
Turbidity (NTU) (Depth- averaged)	>4.28 NTU (95%-ile of baseline data) or >120% of the upstream control station's turbidity at the same tide on the same day	>4.58 NTU (99%-ile of baseline data) or >130% of the upstream control station's turbidity at the same tide on the same day		

The water quality Action and Limit Levels (3RS project) are presented in the table below.

Table 6.8 Water Quality Action and Limit Levels (3RS project)

Water Quality Action and Limit Levels

Parameter	Action Level	Limit Level
DO (mg/L)	Surface & Middle	Surface & Middle
	<5.5 mg/L	<4.00 mg/L (1%-ile of baseline data)
	Bottom	Bottom
	<5.2 mg/L	<2.00 mg/L
SS (mg/L) (Depth- averaged)	>4.9 mg/L or >120% of the upstream control station's SS at the same tide on the same day	>5.2 mg/L or >130% of the upstream control station's SS at the same tide on the same day
Turbidity (NTU) (Depth- averaged)	>3.9NTU or >120% of the upstream control station's turbidity at the same tide on the same day	>4.2 NTU or >130% of the upstream control station's turbidity at the same tide on the same day

6.7 **Event and Action Plan**

Please refer to the Appendix F for details.

6.8 Monitoring Duration in this reporting period

Below is the time schedule for the marine water quality monitoring events that were conducted in this reporting period:

. .

ENA16024 Monthly EM&A Report No.55

Table 6.9	Time Schedu	le of Impact M	larine Water Qua	-	g	
			November 202	21		
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	, 30				

Remark: $(\mathbf{\nabla}) =$ Marine water quality monitoring carried out by ET.

As the tidal period is not within working hour, water monitoring (Mid-ebb & flood) in 10, 19, 22, 24, & 26 November 2021 have been cancelled. The daily marine water quality monitoring duration are detailed in Appendix D2.

6.9 Marine Water Quality Monitoring Results

The impact water quality measurement results are detailed in Appendix D2. Appendix D3 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances is shown in Table 6.10.

	Station	Exceedance DO Turbidity SS		Total							
	Station	Level	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	
	TKO-M4	Action	0	0	0	0	0	0	0	0	
	1KU-1V14	Limit	0	0	0	0	0	0	0	0	

 Table 6.10
 Summary of Impact Marine Water Quality Exceedances

The impact water quality measurement results (3RS project) are detailed in Appendix D4. Appendix D5 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances (3RS project) is shown in Table 6.11.

10010-0.11	Carminary									
Station	Exceedance	DO		Turbidity		S	S	Total		
Station	Level	Flood	Ebb	Flood	Ebb	Flood	Ebb	Flood	Ebb	
M4a	Action	0	0	0	0	0	0	0	0	
IVI4d	Limit	0	0	0	0	0	0	0	0	
ME	Action	0	0	0	0	0	0	0	0	
M5	Limit	0	0	0	0	0	0	0	0	

 Table 6.11
 Summary of Impact Marine Water Quality Exceedances (3RS project)

According to the summary of marine water monitoring results, no exceedance of Action and limit levels was recorded for this reporting period.

7.0 ENVIRONMENTAL AUDIT

7.1 Weekly ET Site Inspections and EPD's Site Inspection

7.1.1 Weekly ET Site Inspections

Weekly ET site inspections were carried out by ET to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In this reporting period, five weekly site inspections were conducted (02, 10, 17, 24 and 29 November 2021). Table 7.1 presents the key findings of weekly ET site inspection in this reporting period.

Table 7.1	Key Findings of Weekl	y ET Site Audits in this re	porting period					
Date	Key Findings	Action(s) Taken recommended by ET	Action(s) Taken by the Contractor during the ET weekly site audit	Rectification Status by ET				
02 November 2021	Dust emission were observed near workshop	Provide water spray to control dust emission properly.	Water sprays were provided.	Closed				
10 November 2021	Oil stain were observed near Workshop	To clean the oil stain properly		Follow-up				
17 November 2021	Oil stain were observed near Workshop	To clean the oil stain properly	Oil stain were cleaned	Closed				
24 November 2021	No defective work or observation was recorded during the weekly ET site inspection No defective work or observation was recorded during the weekly ET site inspection							
29 November 2021								

7.1.2 EPD's Site Inspection

No EPD's site inspection was carried out at TKO137 Fill Blank in this reporting period.

7.2 Review of Environmental Monitoring Procedures

The monitoring works conducted by the Environmental Team were inspected regularly. The observations for the monitoring works were recorded and summarized as follows:

Air Quality Monitoring

- The monitoring team recorded the observations around the monitoring stations within and outside of the site.
- The monitoring team recorded the temperature, air pressure and general weather condition on the monitoring day.

Noise Monitoring

- The monitoring team recorded the observations around the monitoring station, which might affect the results.
- Major noise sources were identified and recorded.

Water Quality Monitoring

• The monitoring team recorded the observations around the monitoring stations, which might affect the results.

7.3 Assessment of Environmental Monitoring Results

All monitoring results were audited against the Action and Limit levels and any exceedance would be validated.

No exceedance was recorded in water quality, air quality and noise monitoring in this reporting period.

The monitoring results in this reporting period were comparable with those of baseline month. Detailed discussions were given in Section 4, 5 and 6 of this Report.

7.4 Advice on the Solid and Liquid Waste Management Status

The Contractor usually disposed of non-inert waste, including general refuse and materials segregated from the existing stockpiles, to SENT landfill. Table 7.2 summarizes data on offsite waste disposal in this reporting period and the Monthly Summary Waste Flow Table is shown in Appendix K.

Table 7.2 Actual amounts of Waste generated in this reporting period									
	Waste Type	Actual Amount	Disposal Locations						
	Public Fill ('000m ³)	0	TKO 137 Fill Bank						
	C&D Waste ('000kg)	56.01	SENT Landfill / Refuse Collection Point						
	Chemical Waste (kg/L)	0 (L)	Collected by licensed collector						

Table 7.2	Actual amounts of Waste generated in this reporting period
	Actual amounts of Waste generated in this reporting period

The Contractor should provide sufficient preventive measures during equipment maintenance works so as to avoid oil leakage on the ground. In the event of any oil leakage, the Contractor should clean up the polluted soil and handle all the materials used for this cleaning works as chemical waste.

Concrete bunding has erected outside the CEDD combined reception office and near the automatic wheel washing facilities for storing generator sets and oil drums. The drain outlet of all the bunded areas should be plugged properly. Besides, pre-cast drip trays were provided for oil drums at several areas, such as workshop and chemical storage area. The Contractor should collect and dispose of any stagnant water accumulated in the concrete bunding and drip trays and handle them as chemical waste.

The Contractor should use suitable containers with proper labels to store chemical wastes in accordance with Code of Practice on the Packaging, Labeling and Storage of Chemical Waste. The Contractor should also advise their workers of the proper procedures in handling the chemical waste. All the trip tickets for chemical waste disposal were properly kept in the site office.

The Contractor was reminded to increase the frequency of inspection and cleaning of the site drainage system, including permanent desilting chambers, desilting facilities, oil interceptor bypass tank, DP3 and DP4 and all the trapezoidal channels. Moreover, the Contractor should apply approved pesticides in the stagnant water ponds.

All the runoff from the parking area should be pumped to the desilting facilities and oil interceptors to remove suspended solids and oil & grease prior to discharge.

8.0 Status of Environmental Licensing and Permitting

All permits/licenses valid in this reporting period are summarized in Table 8.1.

Table 8.1	Summar	of environmental licensing and permit status
	Ourman	of environmental licensing and permit status

Description	Permit No.	mit No. Valid Period		Section				
		From	То					
Environmental Permit	EP- 134/2002/ N	20/08/19	01/01/20 22	 Site clearance Construction of a temporary storm water system Stockpiling of 6 million m3 of public fill Setting up two barging points for transporting the stockpiled public fill by barges Setting up a temporary barging point at the existing Explosive Off-loading Barging Point for the month of May 2004 to December 2004 for transporting the stockpiled public fill by barge Construction of operation of a construction and Demolition Material Sorting Facility (C&DMSF) Setting up a Construction and Demolition Material Crushing Facility at the TKO Basin Remove the temporary fill bank 				
Chemical Waste Producer	5919-839- C4181-01	19/04/17		 Spent battery cell containing heavy metals and spent lubricating oil 				
Effluent Discharge License	WT000291 78-2017	27/09/17	30/09/22	 Effluent, Surface Run-off, and all other wastewater discharges from screen and sedimentation tank 				

Contract No.: CV/2015/07	
Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank	

ENA16024 Monthly EM&A Report No.55

Marine Dumping Permit	EP/MD/22- 034	08/09/21	31/12/21	 Approval for dumping 499,999 tons (approximately equal to 277,777 cu.m. bulked quantity) of Public Fill (Reclamation Materials) from Tseung Kwan O Area 137 Fill Bank and Tuen Mun Area 38 Fill Bank to designated dumping area at Guanghaiwan of Taishan
Billing Account for Waste Disposal	7027643	22/05/17		
Notification Pursuant to Section 3(3) of the Air Pollution Control (Construction Dust)	415682	12/04/17		

9.0 ENVIRONMENTAL NON-CONFORMANCE

9.1 Summary of air quality, noise and marine water quality

No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period.

Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period.

9.2 Summary of Environmental Complaints

One complaint was received in this reporting period.

9.3 Summary of Notification of Summons and successful Prosecution

There was no notification of summons and successful prosecution respect to environmental issues registered in this reporting period.

10.0 IMPLEMENTATION STATUS

10.1 Implementation Status of Environmental Mitigation Measures

An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix I. Most of the necessary mitigation measures were implemented properly. Any deficiencies were noted in the remarks of the schedule.

10.2 Implementation Status of Event and Action Plan

Since no exceedance of Action and Limit level of air quality, noise and marine water monitoring results was recorded for this reporting period, no further action was required.

10.3 Implementation Status of Environmental Complaint, Notifications of Summons and Successful Prosecutions Handling

One complaint was received on 25 November 2021, which was forwarded to ET by email on 26 November 2021, from public against 投訴將軍澳 137 公眾填料庫地盤灑水不足, 大量塵埃, 吹到 TVB 電視城一帶, 問題一直無改善, 要求環保署跟進及電郵回覆。As a result of the complaint, the Contractor implemented mitigation measures including providing regular water spraying by water lorries, operating mist spraying systems at the site area properly and providing regular cleaning at the site haul road to reduce dust emission.

No notification of summons and prosecutions were received in this reporting period.

A summary of environmental complaints, notifications of summons and successful prosecutions was given in Table 10.1 and further details of the complaint could be found in the Complaint Log (Appendix N).

	Complaints	logged	Summons	served	Successful prosecution received							
	November 2021 Cumulative 1 13		November 2021	Cumulative	November 2021 Cumulative							
			1 13 0 0		0	0						

 Table 10.1
 Summary of Environmental Complaints and Prosecutions

11.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Impact monitoring of air quality, noise and water quality were carried out at designated locations in accordance with the EM&A Manual in this reporting period.

No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period.

Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring.

According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period.

One complaint was received on 25 November 2021; no prosecutions and notifications of summons were received in this reporting period.

According to the ET weekly site inspections carried out in this reporting period, the Contractor generally implemented sufficient dust mitigation measures, including operation of the mist spraying systems, provision of automatic water sprinklers at the crushing plants and automatic wheel washing facilities, dampening of haul roads and stockpiling areas.

Recommendations

According to the environmental site inspections performed in the reporting period, the following recommendations were provided:

Air Quality

- Ensure the frequency of water spraying on haul roads, crushing plant, unloading areas and stockpiles to be sufficient to suppress the dust sources;
- Provide proper maintenance for the powered mechanical equipment and barges to avoid emission of dark smoke;
- Provide water spraying onto the truckloads during inspection of fill material;
- Provide continuously water spraying system for crushing plant including receiving point and unloading point;
- Provide enclosed conveyor belt for transporting the crushed material directly to the unloading point
- Provide dust screen fenced for crushing plant, and the receiving point of crushing facility would be situated inside an enclosure with one side opening for vehicular access;
- Conduct road sweeping on all paved haul roads and public roads especially outside and near the site egress by the road sweeper. Undertake water spraying on stockpiling area by water bowser;
- Erect adequate speed limit signs to advise the truck drivers of the speed limit;
- Operate mist spraying systems and automatic water sprinklers in the Fill Bank;
- Implement the dust mitigation measures for the site activities;
- Designate proper haul roads to ensure effective water spraying; and
- Ensure all vehicles to be washed before leaving the site egress by provision, operation and maintenance of automatic wheel washing facilities.

Noise

- Conduct noisy activities at a farther location from the NSRs.
- Proper schedule of noisy operation and use of quiet machineries on site.

Water Quality

- Maintain the drainage system, including the trapezoidal channels, permanent desilting chambers, regularly;
- Operate and maintain the silt curtains regularly;
- Operate the cleaning vessel within the TKO Basin regularly;
- Clean up the fill material on the concrete pavement at BHA frequently; and
- Remove the stagnant water or provide approved pesticides for the stagnant water in the permanent desilting chambers, if any.

Landscape and Visual

- Provide hydroseeding on the exposed slopes, on which the final profile has been formed;
- Erect all the site hoarding/chaining fences in accordance with agreed design at proper location;
- Maintain the hydroseeded slopes in accordance with the Landscape Plan.

Chemical and Waste Management

- Remove waste materials from the site to avoid accumulation regularly;
- Handle and store chemical wastes properly;
- Remove unwanted material in the existing stockpiles and avoid further dumping of such material;
- Provide and maintain sufficient drip trays for diesel drums, chemical containers, chemical waste storage drums and diesel operated generator set;
- Maintain mesh screen on top of the additional drainage to avoid improper dumping of rubbish;
- Maintain good housekeeping at the workshop area;
- Ensure sufficient tarpaulin sheets are provided to cover drip trays; and
- Avoid soil being polluted during oil filling and equipment maintenance; hence, properly remove and store the contaminated soil, if any

12.0 FUTURE KEY ISSUES

12.1 Work Programme for the Coming Month

- 1. Operation of the public fill reception facilities at TKOFB;
- 2. Delivery of public fill to Taishan at TKOFB;
- 3. Operation of dewatering plant and expanded dewatering plant at TKOFB;
- 4. Operation of Crushing Plant at TKOFB;
- 5. Operation of Additional Filter Press at expanded dewatering plant at TKOFB;
- 6. Operation of Integrated Public Fill Reception Platform at TKOFB;
- Construction and Maintenance of the Drainage Systems along the Concrete Paved Road at TKOFB to Temporary Construction Waste Sorting Facility;
- 8. Enhancement of Mobile Data Network at TKOFB (Installation, Operation and Maintenance);
- 9. Setting up a Digital Works Supervision System (DWSS) for TKOFB;
- 10. Installation, Operation and Maintenance of Artificial Intelligence System for Crushing Plant Nos. 2,3 and 4 (Model QJ241) at TKOFB;
- 11. Upgrading the CCTV surveillance system at TKOFB;
- 12. Modification and Operation of the Wash House at TKOFB;
- 13. Carrying out preliminary sorting of Public Fill for 3RS project at TKOFB;
- 14. Providing input for piezometer measurement of the GI works at TKOFB;
- 15. Construction and installation of 2 nos. Wash House at TKOFB

12.2 Key Issues for the Coming Month

Key issues to be considered in the coming month include:

- Chemical and waste management;
- Treatment of runoff and wastewater prior to discharge;
- Dust generated from loading and unloading activities;
- Dust generated from dump trucks traffic;
- Regular checking of the drainage system;
- Flood prevention; and
- Noise from operation of the crushing plant.

Mitigation measures to be required in the coming month:

Air Quality Impact

- To provide adequate water spraying on haul roads and working platform;
- To operate and maintain automatic wheel washing facilities properly;
- To dampen the fill material prior to unloading or movement;
- To provide road sweeping on haul road near site egress and public roads outside site egress;
- To ensure implementation of the dust mitigation measures for the site activities;
- To maintain proper operation of the mist spraying system;
- To provide proper maintenance for vehicles and machines on site; and
- To investigate any other dust sources around the air sensitive receivers

<u>Noise</u>

- To switch off equipment if not in use;
- To operate silent equipment;
- To identify the noise sources inside and outside of the site;
- To follow up any exceedance caused by the Fill Bank operation; and
- To re-schedule the work activities in the event of valid noise exceedance.

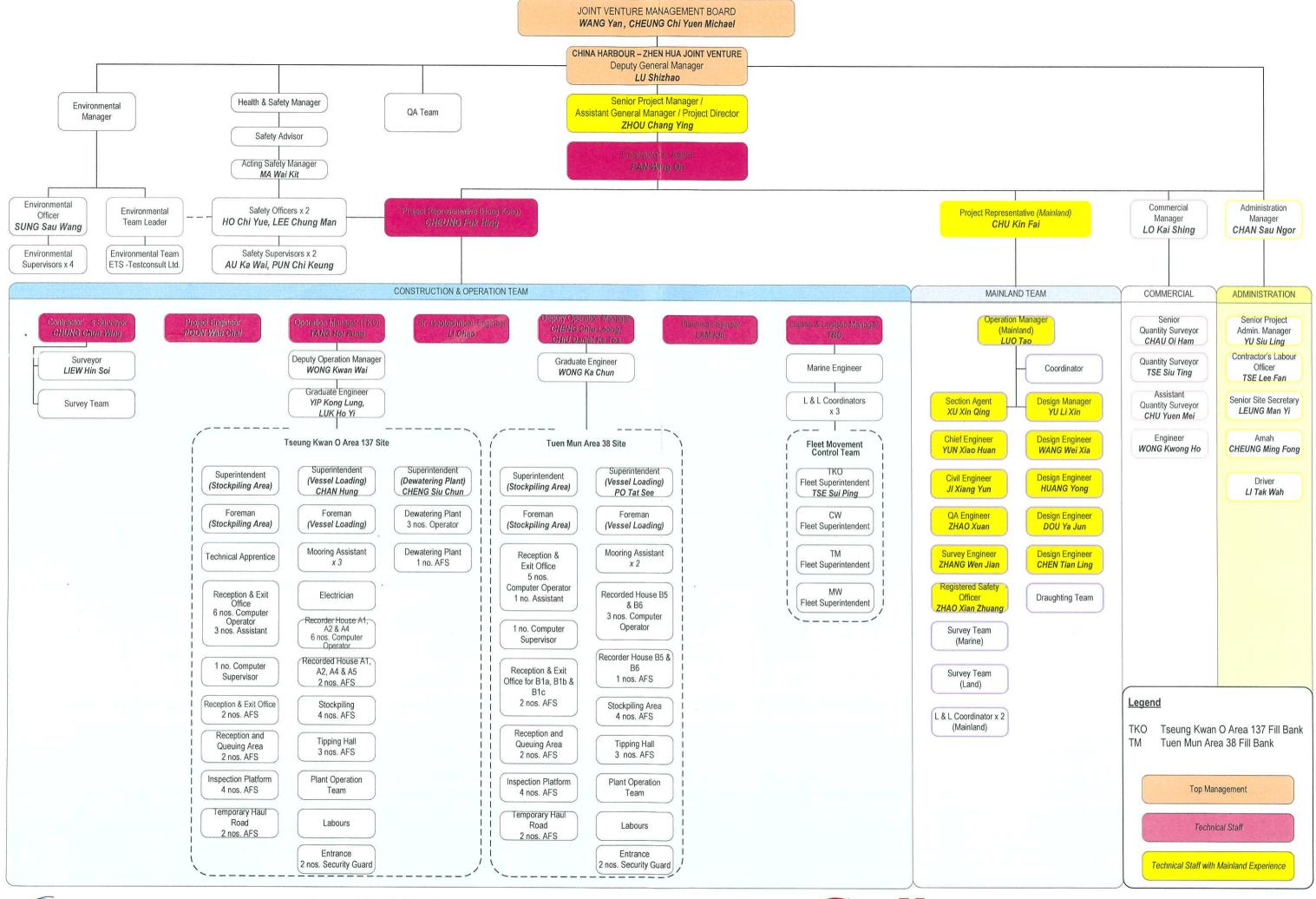
Water Quality Impact

- To maintain the drainage system in the Fill Bank;
- To ensure the cleanliness of oil interceptor bypass tanks and all the drainage channels;
- To maintain the existing silt trap to ensure good efficiency of wheel wash facilities;
- To repair, inspect and maintain the silt curtains regularly;
- To provide covers for the drip trays to avoid stagnant water pond due to rainfall;
- To deploy a cleaning vessel to remove floating rubbish in the TKO Basin;
- To clean up the concrete paved area at Portion I every night to avoid fill materials from being washed into the sea;
- To avoid any stagnant water or provide insecticide to avoid mosquito breeding in the Fill Bank.
- To prevent untreated wastewater directly discharge into nullahs; and
- To provide desilting facilities such as granular rock filter and geotextile filter at nullah.

Chemical and Waste Management

- To remove waste from the site regularly;
- To properly store and handle chemical wastes on site;
- To implement trip ticket system for all the imported public fill and general refuse disposal;
- To provide and manage sufficiently sized drip trays for diesel drums or chemical containers;
- To remove existing unwanted material in the stockpiles and avoid improper disposal at the Fill Bank through inspection of imported truckloads;
- To maintain proper housekeeping at the workshop area;
- To remove the oil stains in the event of leakage and handle all materials using for this cleaning works as chemical waste;
- To maintain mesh screen on top of the additional drainage, DP3 opening to avoid improper dumping of rubbish into this channel; and
- To identify C&D material by packaging, labeling, storage, transportation and disposal in accordance with statutory regulations.

12.3 Monitoring Schedule for the Coming Month


The proposed EM&A program of the coming month and predicted tide schedule from the Hong Kong Observatory are attached in Appendix L.

– END OF REPORT –

Appendix A

Project Organization Chart

CEDD

Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018)

Organization Chart Rev.26

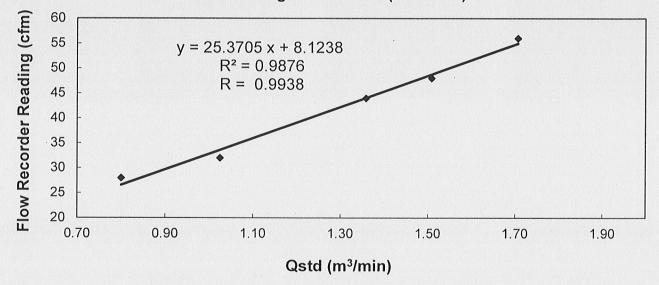
Appendix B1

Calibration Certificates for Impact Air Quality Monitoring Equipment

8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

TEST REPORT


Calibration Report

of

High Volume Air Sampler

Manufacturer	:	Andersen G1051 Da	Date of Calibration :			20 September 2021					
Serial No.	:	<u>1176 (ET / EA / 003 / 05)</u> Ca	libration D	ue Date	:	<u>19 No</u>	vember 20	21			
Method	:	Based on Operations Manual for the 5-point calibration using standard calibration kit manufactured by Tisch TE-5025 A									
Results	:	Flow recorder reading (cfm)	50	48		43	34	28			
		Qstd (Actual flow rate, m ³ /min)	1.70	1.51		1.37	1.02	0.80			
		Pressure : 757.56 mm Hg		Temp. :		302	к				

Sampler 1176 Calibration Curve Site: Tseung Kwan O 137 (TKO-A2a)

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

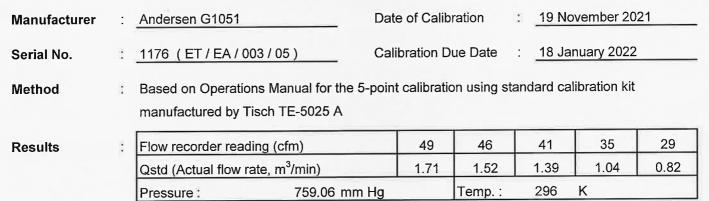
The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable* / unacceptable * for use.

Calibrated by :

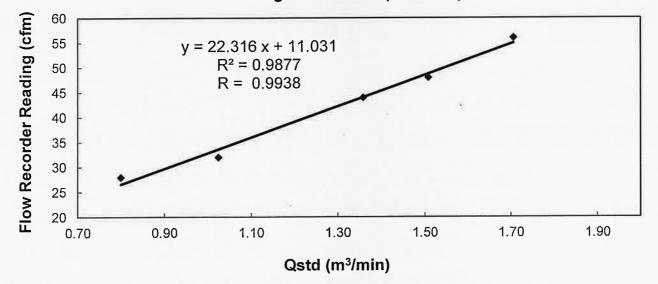
LIAO, Yun Chao (Technician)

Checked by

LAU, Chi Leung (Environmental Team Leader)



8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong


T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

TEST REPORT

<u>Calibration Report</u> of <u>High Volume Air Sampler</u>

Sampler 1176 Calibration Curve Site: Tseung Kwan O 137 (TKO-A2a)

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

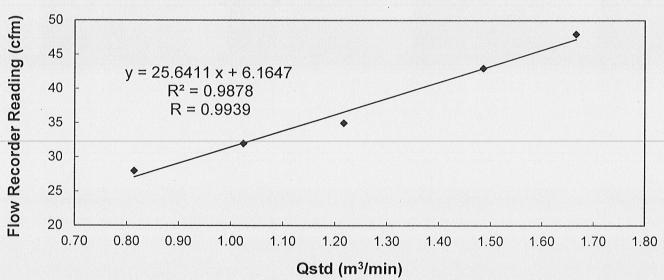
The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable* / unacceptable * for use.

Calibrated by : <u>Make The</u> <u>Make</u> MAK, Kei Wai (Assistant Supervisor)

Checked by

LAU, Chi Leung (Environmental Team Leader)

TEST REPORT


8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com

<u>Calibration Report</u> of <u>High Volume Air Sampler</u>

Manufacturer	:	Graseby 105	Date of Calibration			20 Se	ptember 20	21
Serial No.	:	<u>9795 (ET / EA / 003 / 18)</u>	Calibration Due Date			19 No	vember 202	21
Method	d : Five-point calibration by using standard calibration kit Tisch TE-5025A refer to the Operations Manual							
Results	:	Flow recorder reading (cfm)	49	45		36	33	28
		Qstd (Actual flow rate, m ³ /min)	1.66	1.49		1.23	1.04	0.83
		Pressure : 757.56 mm Hg	g	Temp. :		302	K	

Sampler 9795 Calibration Curve Site: Tseung Kwan O 137 (TKO-A1)

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

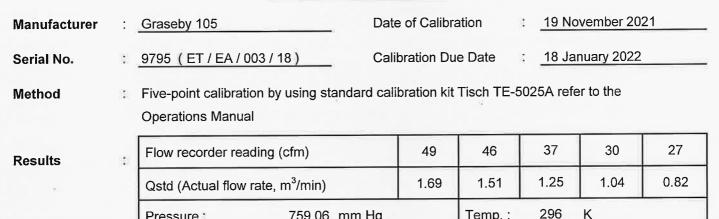
The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable*/ unacceptable* for use.

Calibrated by :

LIAO, Yun Chao

LIAO, Yun Chac (Technician) Checked by

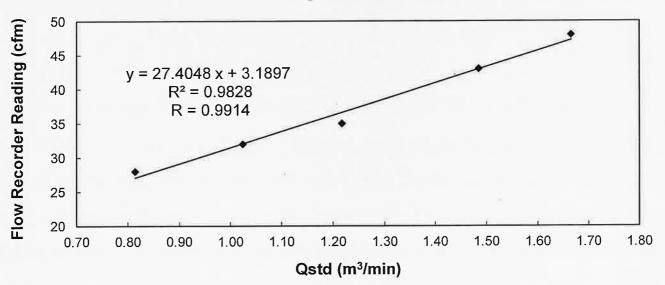
LAU, Chi Leung (Environmental Team Leader)



REPORT

8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong

+852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com


Calibration Report of **High Volume Air Sampler**

759.06 mm Hg

Sampler 9795 Calibration Curve Site: Tseung Kwan O 137 (TKO-A1)

Temp.:

Acceptance Criteria : Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration

The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable*/ unacceptable* for use.

1. Min Calibrated by Mal MAK, Kei Wai

(Assistant Supervisor)

Pressure :

Checked by

LAU, Chi Leung (Environmental Team Leader)

Enviro	60)	a I		Cal	l. for	D	ALIBRATION UE DATE: ary 11, 2022			
r	~~~			<u> </u>							
Cal Datas		2021	Calibration				297	°К			
and the second sec	anuary 11,	2021	ROOTSI	neter S/N:	430320						
• • • • • • • • • • • • • • • • • • • •	im Tisch	TE 5005 -			2062	Pa:	750.1	mm Hg			
Calibration N	Calibration Model #: TE-5025A Calibrator S/N: 3863										
Γ	ſ	Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ]			
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)				
Ľ	1	1	2	1	1.4540	3.2	2.00]			
	2	3	4	1	1.0210	6.4	4.00				
Ļ	3	5	6	1	0.9090	8.0	5.00	4			
Ļ	4	7	8	1	0.8700	8.8	5.50				
L	5	9	10	1	0.7190	12.8	8.00]			
			C)ata Tabula	tion						
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		Qa	√ΔH(Ta/Pa)				
	(m3)	(x-axis)	y (y-ax	is)	Va	(x-axis)	(y-axis)				
F	0.9860	0.6781	1.407	A REAL PROPERTY OF A DESCRIPTION OF A DE	0.9957	0.6848	0.8899				
	0.9818	0.9616	1.990)2	0.9915	0.9711	1.2585				
	0.9797	1.0778	2.225	and the second s	0.9893	1.0884	1.4071				
	0.9786	1.1249	2.333	Contract Order Contract Strength Contract Strength Contract	0.9883	1.1359	1.4757				
Ļ	0.9733	1.3538	2.814		0.9829	1.3671	1.7798				
	OCTO		2.081	and the second se	04		1.30351 -0.00577				
	QSTD	r=	0.999		QA		0.99993				
		аналан алан алан алан алан алан алан ал				5		1			
Ļ		A1/-1//D AD	(Data))/7.1.1/-	Calculation	Construction of the second	A)/					
F	and the second se	ΔVol((Pa-ΔP) Vstd/ΔTime	/Pstd)(Tstd/Ta	i)	and the second se	ΔVol((Pa-Δl Va/ΔTime	//Pa)				
ŀ	usia=	vstu/Arme	For subsection	opt flow and		Construction of the local diversion of the local diversion of the local diversion of the local diversion of the					
ŀ		//	For subsequ		le calculation	11					
	Qstd=	1/m((√∆H(Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆⊦	l(Та/Ра))-b)				
		Conditions									
Tstd:	298.15		anna ainin an ina ainin an ina ai	[RECA	LIBRATION				
Pstd:		mm Hg			US FPA reco	mmends a	nnual recalibratio	on per 1998			
ΔH: calibrato		er reading (i	n H2O)				Regulations Part !				
ΔP: rootsmet							Reference Meth				
Ta: actual abs	olute temp	perature (°K)	2-999-11-201-201-201-201-201-201-201-201-201-				ended Particulat				
Pa: actual bar	ometric pr	essure (mm	Hg)				re, 9.2.17, page	and the second se			
b: intercept			1415-00 in 1914 in 1914 in 1914 in 1914	L							
m: slope											

sch Environmental, Inc.

15 South Miami Avenue

llage of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

R.

Appendix B2

Impact Air Quality Monitoring Results

Summary of 24-hr TSP Monitoring Results

Monitoring Station : TKO-A1

Location : Site Egress

Start		Finish		Elapse Time		Sampling	Flow Rate (m ³ /min.)		Average	Filter Weight (g)		a () 3)
Date	Time	Date	Time	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	Conc. (μg/m³)
2/11/2021	13:00	3/11/2021	13:00	24341.74	24365.74	24.00	1.0076	1.0076	1.0076	2.7312	2.8894	109
8/11/2021	08:30	9/11/2021	8:30	24368.74	24392.74	24.00	1.0856	1.0856	1.0856	2.7220	2.8689	94
14/11/2021	13:00	15/11/2021	13:00	24395.74	24419.74	24.00	1.0076	1.0076	1.0076	2.7227	2.8707	102
20/11/2021	08:00	21/11/2021	8:00	24422.74	24446.74	24.00	1.0878	1.0878	1.0878	2.7311	2.8862	99
26/11/2021	10:55	27/11/2021	10:55	24449.74	24473.74	24.00	1.0513	1.0513	1.0513	2.7409	2.9105	112

Monitoring Station : TKO-A2a

Location : CREO

Start		Fin	Finish		Elapse Time		Flow Rate (m ³ /min.)		Average	Filter Weight (g)		
Date	Time	Date	Time	Initial	Final	Sampling Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	'Conc. (μg/m ³)
2/11/2021	13:00	3/11/2021	13:00	26435.61	26459.61	24.00	1.0199	1.0199	1.0199	2.7426	2.8851	97
8/11/2021	08:35	9/11/2021	8:35	26462.61	26486.61	24.00	0.9805	0.9805	0.9805	2.7238	2.8452	86
14/11/2021	13:00	15/11/2021	13:00	26489.61	26513.61	24.00	0.9805	0.9805	0.9805	2.7336	2.8607	90
20/11/2021	08:00	21/11/2021	8:00	26516.61	26540.61	24.00	0.9396	0.9396	0.9396	2.7488	2.8692	89
26/11/2021	11:05	27/11/2021	11:05	26543.61	26567.61	24.00	0.9845	0.9845	0.9845	2.7442	2.8916	104

Summary of 1-hr TSP Monitoring Results

Monitoring Station : TKO-A1

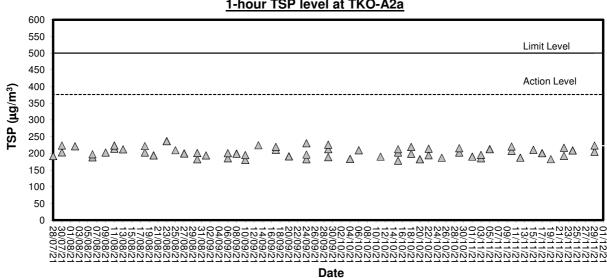
Location : Site Egress Site Egress

Start		Finish		Elapse Time		Sampling	Flow Rate (m ³ /min.)		Average	Filter Weight (g)		Conc. (µg/m ³)
Date	Time	Date	Time	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	ουπο. (μg/π)
1/11/2021	09:21	1/11/2021	10:21	24340.74	24341.74	1.00	1.0466	1.0466	1.0466	2.7221	2.7350	205
3/11/2021	09:17	3/11/2021	10:17	24365.74	24366.74	1.00	1.0076	1.0076	1.0076	2.7335	2.7455	198
3/11/2021	10:53	3/11/2021	11:53	24366.74	24367.74	1.00	1.0076	1.0076	1.0076	2.7263	2.7392	213
5/11/2021	10:50	5/11/2021	11:50	24367.74	24368.74	1.00	1.0466	1.0466	1.0466	2.7294	2.7436	226
10/11/2021	10:30	10/11/2021	11:30	24392.74	24393.74	1.00	1.0076	1.0076	1.0076	2.7452	2.7584	218
10/11/2021	13:00	10/11/2021	14:00	24393.74	24394.74	1.00	1.0076	1.0076	1.0076	2.7268	2.7410	235
12/11/2021	09:37	12/11/2021	10:37	24394.74	24395.74	1.00	1.0466	1.0466	1.0466	2.7353	2.7480	202
15/11/2021	13:30	15/11/2021	14:30	24419.74	24420.74	1.00	1.0466	1.0466	1.0466	2.7251	2.7395	229
17/11/2021	13:25	17/11/2021	14:25	24420.74	24421.74	1.00	1.0856	1.0856	1.0856	2.7403	2.7542	213
19/11/2021	10:10	19/11/2021	11:10	24421.74	24422.74	1.00	1.0878	1.0878	1.0878	2.7217	2.7344	195
22/11/2021	09:00	22/11/2021	10:00	24446.74	24447.74	1.00	1.0513	1.0513	1.0513	2.7281	2.7412	208
22/11/2021	10:45	22/11/2021	11:45	24447.74	24448.74	1.00	1.0513	1.0513	1.0513	2.7247	2.7393	231
24/11/2021	10:35	24/11/2021	11:35	24448.74	24449.74	1.00	1.0878	1.0878	1.0878	2.7432	2.7576	221
29/11/2021	13:22	29/11/2021	14:22	24473.74	24474.74	1.00	1.0878	1.0878	1.0878	2.7259	2.7408	228
29/11/2021	14:24	29/11/2021	15:24	24474.74	24475.74	1.00	1.0878	1.0878	1.0878	2.7358	2.7517	244

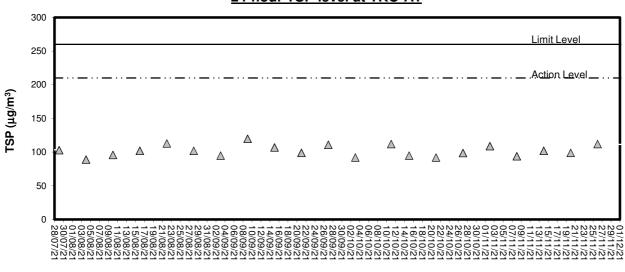
Monitoring Station : TKO-A2a

Location : CREO

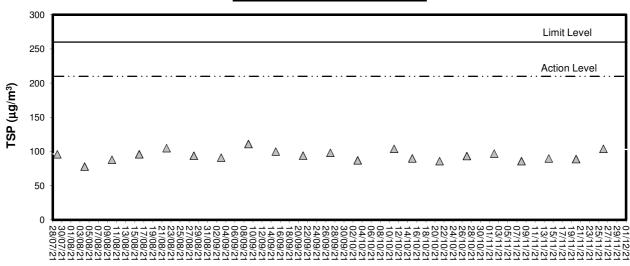
Start		Fin	Finish		Elapse Time		Flow Rate (m ³ /min.)		Average	Filter Weight (g)		Q = = = (
Date	Time	Date	Time	Initial	Final	Time (hrs)	Initial	Final	(m ³ /min.)	Initial	Final	Conc. (µg/m ³)
1/11/2021	09:26	1/11/2021	10:26	26434.61	26435.61	1.00	0.9805	0.9805	0.9805	2.7376	2.7488	190
3/11/2021	09:21	3/11/2021	10:21	26459.61	26460.61	1.00	0.9805	0.9805	0.9805	2.7255	2.7364	185
3/11/2021	13:00	3/11/2021	14:00	26460.61	26461.61	1.00	0.9805	0.9805	0.9805	2.7254	2.7369	195
5/11/2021	10:57	5/11/2021	11:57	26461.61	26462.61	1.00	0.9411	0.9411	0.9411	2.7387	2.7507	213
10/11/2021	10:38	10/11/2021	11:38	26486.61	26487.61	1.00	1.0199	1.0199	1.0199	2.7407	2.7534	208
10/11/2021	13:00	10/11/2021	14:00	26487.61	26488.61	1.00	1.0199	1.0199	1.0199	2.7229	2.7364	221
12/11/2021	09:43	12/11/2021	10:43	26488.61	26489.61	1.00	0.9805	0.9805	0.9805	2.7422	2.7532	187
15/11/2021	13:34	15/11/2021	14:34	26513.61	26514.61	1.00	1.0199	1.0199	1.0199	2.7398	2.7527	211
17/11/2021	14:09	17/11/2021	15:09	26514.61	26515.61	1.00	0.9805	0.9805	0.9805	2.7285	2.7403	201
19/11/2021	10:15	19/11/2021	11:15	26515.61	26516.61	1.00	0.9396	0.9396	0.9396	2.7231	2.7334	183
22/11/2021	09:05	22/11/2021	10:05	26540.61	26541.61	1.00	1.0293	1.0293	1.0293	2.7359	2.7478	193
22/11/2021	10:50	22/11/2021	11:50	26541.61	26542.61	1.00	1.0293	1.0293	1.0293	2.7365	2.7499	217
24/11/2021	10:40	24/11/2021	11:40	26542.61	26543.61	1.00	1.0293	1.0293	1.0293	2.7248	2.7377	209
29/11/2021	13:30	29/11/2021	14:30	26567.61	26568.61	1.00	0.9845	0.9845	0.9845	2.7231	2.7352	205
29/11/2021	14:35	29/11/2021	15:35	26568.61	26569.61	1.00	0.9845	0.9845	0.9845	2.7210	2.7342	223


Appendix B3

Graphical Plots of Impact Air Quality Monitoring Data


1-hour TSP level at TKO-A1 600 550 Limit Level 500 450 Action Level 400 TSP (µg/m³) 350 300 250 $\mathbf{A}^{\mathbf{A}\mathbf{A}}$ \mathbb{A} \triangle 200 150 100 50 0 NN

Date


1-hour TSP level at TKO-A2a

24-hour TSP level at TKO-A1

Date

24-hour TSP level at TKO-A2a

Appendix C1

Calibration Certificates for Impact Noise Monitoring Equipment

Hong Kong Calibration Ltd. 香港校正有限公司

Calibration Certificate

Certificate No.	. 101202		Page	1 of 2 Pages
Customer :	ETS-Testconsult Limited			
Address :	8/F., Block B, Veristrong Indu	strial Centre, 34-36 Au	u Pui Wan St., Fo	tan, Hong Kong.
Order No. :	Q10544		Date of receipt	: 9-Feb-21
Item Tested	nan an			
Description	: Acoustic Calibrator			
Manufacturer	: Castle		I.D.	: ET/EN/002/07
Model :	GA607		Serial No.	: 038641
Test Condit	ions			
Date of Test :	3-Mar-21		Supply Voltage	
Ambient Temp	erature : (23 ± 3)°C		Relative Humid	lity:(50 ± 25) %
Test Specifi	cations			
Calibration chee	ck.			
	/Procedure : IEC 60942, F06, F	20, Z02.		
		,		
Test Results	3			
All results were	within the IEC 60942 Class 1 s	pecification.		
The results are	shown in the attached page(s).			
Main Test equip	oment used:			
Equipment No.		Cert. No.		Traceable to
S014	Spectrum Analyzer	005018		NIM-PRC & SCL-HKSAR
S240	Sound Level Calibrator	003053		NIM-PRC & SCL-HKSAR
S041	Universal Counter	001622		SCL-HKSAR
S206	Sound Level Meter	007031		SCL-HKSAR
will not include allov overloading, mis-ha	this Calibration Certificate only relate t vance for the equipment long term drift ndling, or the capability of any other lal age resulting from the use of the equip	, variations with environme poratory to repeat the meas	ntal changes, vibratio	n and shock during transportation,
	used for calibration are traceable to In ly to the above Unit-Under-Test only	ternational System of Units	(SI), or by reference	to a natural constant.
	AL.	na minina katala kat	2009 Media second dalar dalam seconda ana mani bida seconda dala da seconda da seconda da seconda seconda secon	$\left(\right)$
Calibrated by	XI-	Аррі	roved by :(MA

Elva Chong

Date:	3-Mar-21
2010.	

Kin Wong

This Certificate is issued by: Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Calibration Certificate

Certificate No. 101202

Page 2 of 2 Pages

Results :

1. Generated Sound Pressure Level

UUT Nominal Value (dB)	Measured Value (dB)	IEC 60942 Class 1 Spec.	
94.0	94.1	± 0.4 dB	

Uncertainty : $\pm 0.2 \text{ dB}$

 Short-term Level Fluctuation : 0.0 dB IEC 60942 Class 1 Spec. : ± 0.1 dB Uncertainty : ± 0.01 dB

3. Frequency

UUT Nominal Value (kHz)	Measured Value (kHz)	IEC 60942 Class 1 Spec.
1	1.000	± 1 %

Uncertainty : \pm 3.6 x 10 ⁻⁶

- 4. Total Distortion : < 3.0% IEC 60942 Class 1 Spec. : < 4 % Uncertainty : ± 2.3 % of reading
- Remark : 1. UUT : Unit-Under-Test
 - 2. The uncertainty claimed is for a confidence probability of not less than 95%.
 - 3. Atmospheric Pressure : 1 012hPa.

Hong Kong Calibration Ltd. 香港校正有限公司

Calibration Certificate

Certificate No. 012475	Page 1 of 3 Pages
Customer: ETS-Testconsult Limited	
Address : 8/F., Block B, Veristrong In	dustrial Centre, 34-36 Au Pui Wan St., Fotan, Hong Kong.
Order No.: Q04976	Date of receipt : 8-Dec-20
Item Tested	
Description : Sound Level Meter	
Manufacturer : Rion	I.D. : ET/EN/003/20
Model : NL-52	Serial No. : 00998504
Test Conditions	
Date of Test: 11-Dec-20	Supply Voltage :
Ambient Temperature : (23 ± 3)°C	Relative Humidity : (50 ± 25) %
Test Specifications	
Calibration check. Ref. Document/Procedure: Z01, IEC 61672	<u>.</u>
Test Results	
All results were within the IEC 61672 class 1	1 specification. (where applicable)
The results are shown in the attached page(
Main Test equipment used:	
Equipment No. Description	Cert. No. Traceable to
S017 Multi-Function Generator	C190926 SCL-HKSAR
S240 Sound Level Calibrator	003053 NIM-PRC & SCL-HKSAR
The values given in this Calibration Certificate only rela will not include allowance for the equipment long term of	ate to the values measured at the time of the test and any uncertainties quoted drift, variations with environmental changes, vibration and shock during transportation,

will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only

Calibrated by :	Appro	ved by :	ARI
Elva Chong			Kin Wong
This Certificate is issued by: Hong Kong Calibration Ltd. Unit 88, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street,Kwai Chung, NT,Hong Kor Tel: 2425 8801 Fax: 2425 8646	Date:	11-Dec-20	

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Calibration Certificate

Certificate No. 012475

Page 2 of 3 Pages

Results :

Acoustical signal test

1. Self-generated noise: 18.6dBA

2. Reference Sound Pressure Level

	UUT S	etting			
	Frequency	Time	Octave	Applied	UUT
Range (dB)	Weighting	Weighting	Filter	Value (dB)	Reading (dB)
20~130	A	F	OFF	94.0	94.0
		S	OFF		94.0
	C	F	OFF]	94.0
	Z	F	OFF		94.0
	A	F	OFF	114.0	114.0
		S	OFF		114.0
	С	F	OFF		114.0
	Z	F	OFF		114.0

IEC 61672 Type 1 Spec. : \pm 1.1 dB Uncertainty : \pm 0.1 dB

Electrical signal tests

3. Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.6	- 39.4 dB, ± 2 dB
63 Hz	-26.3	- 26.2 dB, ± 1.5 dB
125 Hz	-16.3	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- $8.6 \text{ dB}, \pm 1 \text{ dB}$
500 Hz	-3.3	- 3.2 dB, ± 1.4 dB
1 kHz	0.0 (Ref)	$0 dB, \pm 1.1 dB$
2 kHz	+1.2	$+$ 1.2 dB, \pm 1.6 dB
4 kHz	+0.9	$+$ 1.0 dB, \pm 1.6 dB
8 kHz	-1.1	- 1.1 dB, +2.1 dB ~ -3.1 dB
16 kHz	-8.0	- 6.6 dB, + 3.5 dB ~ - 17.0 dB

Uncertainty : $\pm 0.1 \text{ dB}$

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Hong Kong Calibration Ltd.

香港校正有限公司

Calibration Certificate

Certificate No. 012475

Page 3 of 3 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	94.0 (Ref.)		± 0.4 dB
С	94.0	94.0	0.0	
Z	94.0	94.0	0.0	

4.2 Time Weighting (A-weighted)

	(
UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	94.0 (Ref.)		± 0.3 dB
Slow	94.0	94.0	0.0	
Time-averaging	94.0	94.0	0.0	

Uncertainty : $\pm 0.1 \text{ dB}$

Remarks : 1. UUT : Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure : 1 007hPa.
- 4. Microphone model: UC-59, S/N : 16103.
- 5. Preamplifier model : NH-25, S/N : 98718.
- 6. Firmware Version: 2.0
- 7. Power Supply Check: OK
- 8. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Appendix C2

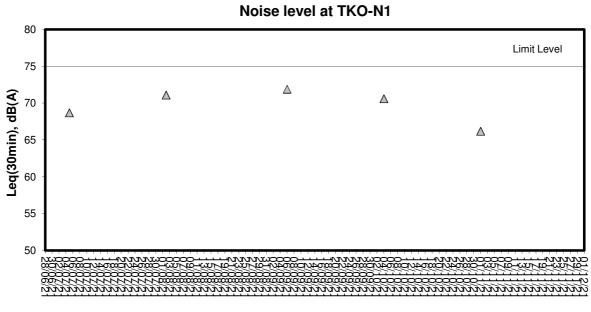
Impact Noise Monitoring Results

Day-time Noise Monitoring

Monitoring Location: TKO-N1 (Site Egress)

Data	Start Sampling Time	Noise Level dB (A)		Wind	Weather	Major Noise	
Date	(hh:mm)	L _{eq(30min)}	L ₁₀	L ₉₀	Speed (m/s)	Speed Condition	Source
01/11/2021	13:04	66.2	68.0	63.8	0.3	Cloudy	Vehicle passing by

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I



Appendix C3

Graphical Plots of Impact Noise Monitoring Data

Noise Monitoring (Day-time)

Date

Appendix D1

Calibration Certificates for Impact Marine Water Quality Monitoring Equipments

Performance Check / Calibration of Multiparameter Water Quality Meter YSI Equipment Ref. No. : ET/EW/008/011 Manufacturer : Pro DSS Serial No. 18M101760 Model No. • 2/11/2021 Calibration Due Date Date of Calibration : 3/8/2021 :

<u>Results</u>

1. Temperature

(Method Reference: Section 6 of internation Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reading of Reference Thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
21.4	21.6	+0.2
25.0	25.1	+0.1
28.6	28.7	+0.1

Tolerance Limit (°C): ± 2.0

2. pH

(Method Reference: APHA 19ed 4500-H⁺ B)

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.00	4.02	+0.02
6.86	6.89	+0.03
9.18	9.17	-0.01

Tolerance Limit (pH unit): ± 0.10

3. Conductivity

(Method Reference: APHA 19ed 2510 B)

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)
146.9	148.0	+0.7
1412	1452	+2.8
12890	13116	+1.8
58760	61388	+4.5

Tolerance Limit (μ S/cm): \pm 10.0%

4. Salinity

(Method Reference: APHA 19ed 2520 B)

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
10.0	9.55	-4.5
20.0	18.63	-6.8
30.0	28.75	-4.2

Tolerance Limit (g/L): $\pm 10.0\%$

5. Dissolved Oxygen Method Reference: APHA 19ed 4500-O G) Expected Reading (mg/L) Displayed Reading (mg/L) Tolerance (mg/L) 1.52 1.58 $+0.06$ 4.33 4.40 $+0.07$ 6.26 6.29 $+0.03$ Folerance Limit (mg/L): ± 0.20 Tolerance (%) 5. Turbidity Method Reference: APHA 19ed 2130 B) Expected Reading (NTU) Displayed Reading (NTU) 10 10.2 40 42.1 40 40.2 400 407.6 400 407.6 Folerance Limit (NTU): $\pm 10.0\%$		ET/EW/008/011	Manufacturer	: YSI
Date of Calibration : $3/8/2021$ Calibration Due Date $2/11/2021$ 5. Dissolved Oxygen (Method Reference: APHA 19ed 4500-O G)Expected Reading (mg/L)Displayed Reading (mg/L)Tolerance (mg/L)1.521.58 $+0.06$ 4.334.40 $+0.07$ 6.266.29 $+0.03$ Tolerance Limit (mg/L): ± 0.20 Displayed Reading (NTU)Tolerance (%)6. Turbidity (Method Reference: APHA 19ed 2130 B)Displayed Reading (NTU)Tolerance (%)1010.2 $+2.0$ 4042.1 $+5.2$ 100104.2 $+4.2$	lodel No. :	Pro DSS	Serial No.	: 18M101760
Method Reference: APHA 19ed 4500-O G) Expected Reading (mg/L) Displayed Reading (mg/L) Tolerance (mg/L) 1.52 1.58 $+0.06$ 4.33 4.40 $+0.07$ 6.26 6.29 $+0.03$ Folerance Limit (mg/L): ± 0.20 5. Turbidity Method Reference: APHA 19ed 2130 B) Expected Reading (NTU) Tolerance (%) 10 10.2 $+2.0$ 40 42.1 $+5.2$ 100 104.2 $+4.2$ 400 407.6 $+1.9$ Folerance Limit (NTU): $\pm 10.0\%$				
Method Reference: APHA 19ed 4500-O G) Expected Reading (mg/L) Displayed Reading (mg/L) Tolerance (mg/L) 1.52 1.58 $+0.06$ 4.33 4.40 $+0.07$ 6.26 6.29 $+0.03$ Folerance Limit (mg/L): ± 0.20 $+0.03$ -0.03 5. Turbidity Method Reference: APHA 19ed 2130 B) -0.02 $+2.0$ Expected Reading (NTU) Displayed Reading (NTU) Tolerance (%) 10 10.2 $+2.0$ 40 42.1 $+5.2$ 100 104.2 $+4.2$ 400 407.6 $+1.9$ Folerance Limit (NTU): $\pm 10.0\%$ Tolerance requirements and is deemed acceptable "/ unacceptable"				
1.521.58 ± 0.06 4.334.40 ± 0.07 6.266.29 ± 0.03 Folerance Limit (mg/L): ± 0.20 5. Turbidity (Method Reference: APHA 19ed 2130 B)Expected Reading (NTU)Tolerance (%)1010.21010.24042.14042.140407.6+1.9Folerance Limit (NTU): $\pm 10.0\%$		2HA 19ed 4500-O G)		
4.334.40 $+0.07$ 6.266.29 $+0.03$ Tolerance Limit (mg/L): ± 0.20 5. Turbidity (Method Reference: APHA 19ed 2130 B)Expected Reading (NTU)Tolerance (%)1010.24042.14042.1400407.6+1.9Tolerance Limit (NTU): $\pm 10.0\%$	Expected Reading	ng (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
6.26 6.29 ± 0.03 Folerance Limit (mg/L): ± 0.20 5. Turbidity Method Reference: APHA 19ed 2130 B) Tolerance (%) 10 10.2 ± 2.0 40 42.1 ± 5.2 100 104.2 ± 4.2 400 407.6 ± 1.9 Tolerance Limit (NTU): $\pm 10.0\%$			· · · · · · · · · · · · · · · · · · ·	
Folerance Limit (mg/L): ± 0.20 5. Turbidity Method Reference: APHA 19ed 2130 B) Expected Reading (NTU) Tolerance (%) 10 10.2 +2.0 40 42.1 +5.2 100 104.2 +4.2 400 407.6 +1.9 Folerance Limit (NTU): ± 10.0% Folerance requirements and is deemed acceptable # / unacceptable	4.33		4.40	+0.07
S. Turbidity Method Reference: APHA 19ed 2130 B) Expected Reading (NTU) Tolerance (%) 10 10.2 +2.0 40 42.1 +5.2 100 104.2 +4.2 400 407.6 +1.9 Folerance Limit (NTU): ± 10.0%	6.26		6.29	+0.03
4042.1 $+5.2$ 100104.2 $+4.2$ 400407.6 $+1.9$ olerance Limit (NTU): $\pm 10.0\%$	Expected Reading			
1010.2 $+2.0$ 4042.1 $+5.2$ 100104.2 $+4.2$ 400407.6 $+1.9$ Folerance Limit (NTU): $\pm 10.0\%$		'HA 19ed 2130 B)		
4042.1 $+5.2$ 100104.2 $+4.2$ 400407.6 $+1.9$ Folerance Limit (NTU): $\pm 10.0\%$ The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable		ng (NTU)		
100 104.2 $+4.2$ 400 407.6 $+1.9$ Folerance Limit (NTU): \pm 10.0% $+1.9$ $+1.9$ The equipment complies # / does not comply # with the specified requirements and is deemed acceptable # / unacceptable $+1.9$				
400 407.6 +1.9 Folerance Limit (NTU): ± 10.0% ************************************				
Folerance Limit (NTU): ± 10.0%				
Delete as appropriate		s [#] / does not comply [#] v	with the specified requirements and is de-	emed acceptable [#] / unacceptable. [#] fo
	he equipment complie			

Calibrated by

:

22

Approved by :

Page 2 of 2

an

Performance Check / Calibration of Multiparameter Water Quality Meter Ν ET/EW/008/011 Equipment Ref. No. : S Model No. :

Date of Calibration :

Pro DSS 3/11/2021

Manufacturer	:	YSI
Serial No.	:	18M101760
Calibration Due Date	:	2/2/2022

Results

1. Temperature

(Method Reference: Section 6 of internation Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure)

Reading of Reference Thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
20.5	20.6	+0.1
25.0	25.1	+0.1
28.7	28.9	+0.2

Tolerance Limit (°C): ± 2.0

2. pH

(Method Reference: APHA 19ed 4500-H⁺ B)

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
-		

Tolerance Limit (pH unit): ± 0.10

3. Conductivity

(Method Reference: APHA 19ed 2510 B)

Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)
146.9	147.6	+0.5
1412	1455	+3.0
12890	13212	+2.5
58760	59678	+1.6

Tolerance Limit (μ S/cm): ± 10.0%

4. Salinity

(Method Reference: APHA 19ed 2520 B)

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
10.0	9.66	-3.4
20.0	18.58	-7.1
30.0	28.19	-6.0

Tolerance Limit (g/L): ± 10.0%

Equipment Ref. No. : ET/EW/008/011 Model No. : Pro DSS	Serial No.	: <u>18M101760</u>
Date of Calibration : $3/11/2021$	Calibration D	ue Date : <u>2/2/2022</u>
5. Dissolved Oxygen		
(Method Reference: APHA 19ed 4500-O	G)	
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
1.38	1.41	+0.03
4.26	4.29	+0.03
6.61	6.66	+0.05
Folerance Limit (mg/L): ± 0.20		
5. Turbidity		
Method Reference: APHA 19ed 2130 B)		
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
10	10.4	+4.0 +3.0
40	41.2	+3.5
100	103.5 421.2	+3.5 +5.3
400 Tolerance Limit (NTU): ± 10.0%	721.2	. 0,0
The equipment complies [#] / does not comp	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
The equipment complies [#] / does not comp [#] Delete as appropriate	Hy [#] with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	भेy [#] with the specified requirements and is de	emed acceptable [#] / unacceptable [#] for use.
	$\frac{1}{2}$ with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	Hy $^{\#}$ with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	Hy [#] with the specified requirements and is de	emed acceptable [#] / unacceptable. [#] for use.
	Hy [#] with the specified requirements and is de	emed acceptable [#] / unacceptable [#] for use.
Delete as appropriate		emed acceptable [#] / unacceptable [#] for use.
		emed acceptable # / unacceptable.# for use.

Appendix D2

Impact Marine Water Quality Monitoring Results

Monitoring Station : TKO-C1

Dutu	T	Ambient Temp	Monitorir	ng Depth	Temp	Salinit	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	(n		(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.7	30.4 30.4	30.4	6.98 6.94	6.96		101.6 100.9	101.3	0.77 0.79	0.78		5.0 4.8	4.9	
1/11/2021	15:31:00		Middle	9.7	24.8	32.1	32.1	6.51	6.52	6.74	94.2	94.4	0.97	0.95	1.01	5.0	4.9	4.7
		/ Fine	Bottom	19.4	24.1	32.1 33.1	33.1	6.53 6.13	6.12	6.12	94.5 88.2	87.9	0.93 1.29	1.31		4.7 4.5	4.5	
			Surface	1.0	25.4	33.1 30.1	30.1	6.10 7.29	7.27		87.6 105.4	105.2	1.32 1.84	1.82		4.4 2.7	2.5	
3/11/2021	16:30:22	26	Middle	9.7	24.8	30.1 32.6	32.6	7.25 6.66	6.65	6.96	104.9 96.7	96.5	1.80 1.97	1.98	2.04	2.3 5.1	- 5.3	4.5
5/11/2021	10.30.22	/ Fine				32.6 33.5		6.63 6.37		0.00	96.2 91.8		1.99 2.31		2.04	5.5 5.4		4.5
			Bottom	19.5	24.1	33.5 29.2	33.5	6.34 7.15	6.36	6.36	91.4 102.9	91.6	2.35 2.05	2.33		5.9 5.4	5.7	
		26	Surface	1.0	25.4	29.2 30.5	29.2	7.11	7.13	6.88	102.1 94.7	102.5	2.08	2.07		5.1 5.3	5.3	
5/11/2021	8:07:07		Middle	9.6	24.5	30.4	30.4	6.62	6.63		94.4	94.6	2.34	2.35	2.39	5.8	5.6	5.4
		/ Fine	Bottom	19.3	23.8	31.3 31.3	31.3	6.29 6.26	6.28	6.28	89.1 88.6	88.9	2.73 2.77	2.75		5.0 5.7	5.4	
		25	Surface	1.0	25.2	29.6 29.6	29.6	6.95 6.97	6.96	6.69	99.9 100.4	100.2	1.74 1.77	1.76		5.6 5.1	5.4	
8/11/2021 8:45:15	8:45:15		Middle	9.7	24.4	30.8 30.8	30.8	6.44 6.41	6.43	0.03	91.9 91.5	91.7	2.13 2.16	2.15	2.10	4.6 4.7	4.7	4.9
		/ Fine	Bottom	19.4	23.7	31.2 31.2	31.2	6.12 6.16	6.14	6.14	86.5 86.9	86.7	2.40 2.42	2.41		4.9 4.6	4.8	
		25 / Fine	Surface	1.0	24.7	30.6 30.6	30.6	7.17 7.14	7.16		102.7 102.1	102.4	1.41 1.43	1.42		4.2 4.6	4.4	
12/11/2021	14:31:47		Middle	9.7	23.9	31.8 31.9	31.8	6.57 6.55	6.56	6.86	93.5 93.2	93.4	1.72	1.70	1.76	7.2	7.2	6.3
			Bottom	19.4	23.1	32.8 32.8	32.8	6.29	6.27	6.27	88.7	88.5	2.18	2.17		7.4	7.3	
			Surface	1.0	24.5	30.6	30.6	6.25 7.25	7.27		88.2 103.5	103.7	2.15 2.01	2.02		8.5	8.3	
15/11/2021	15:00:58	25	Middle	9.7	23.8	30.6 31.2	31.2	7.29 6.64	6.63	6.95	103.9 94.0	93.7	2.03 2.34	2.33	2.36	8.0 3.8	3.4	5.6
		/ Fine	Bottom	19.3	23.0	31.2 32.8	32.8	6.61 6.39	6.38	6.38	93.4 90.0	89.8	2.32 2.75	2.73		2.9 4.8	5.1	5.0
						32.8 29.6		6.37 7.02		0.50	89.6 99.3		2.71 1.68			5.4 2.9		
		25	Surface	1.0	24.3	29.5 31.4	29.5	7.06 6.59	7.04	6.81	99.7 92.9	99.5	1.66 2.01	1.67		3.3 6.7	3.1	
17/11/2021	17:01:04	/ Fine	Middle	9.6	23.5	31.4 32.8	31.4	6.57 6.24	6.58		92.5 87.6	92.7	2.04	2.03	1.99	7.6	7.2	5.8
		71116	Bottom	19.3	22.8	32.8	32.8	6.22	6.23	6.23	87.1	87.4	2.30	2.28		6.6	7.0	
		24	Surface	1.0	23.7	31.3 31.3	31.3	6.95 6.93	6.94	6.68	98.2 97.8	98.0	1.06 1.08	1.07		5.3 5.4	5.4	ļ
29/11/2021	14:00:31		Middle	9.6	22.8	32.3 32.3	32.3	6.40 6.42	6.41		89.6 89.9	89.8	1.47 1.44	1.46	1.40	3.6 3.0	3.3	4.4
		/ Fine	Bottom	19.1	22.1	33.6 33.6	33.6	6.18 6.14	6.16	6.16	86.1 85.5	85.8	1.65 1.69	1.67		4.1 4.8	4.5	

Monitoring Station : TKO-M4

		Ambient Temp	Monitorir	ng Denth	Temp	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	irbidity (NT	⁻ U)	Susper	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	(n		(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.5	29.4 29.4	29.4	7.25 7.22	7.24	6.96	104.6 104.2	104.4	0.58 0.61	0.60		5.4 4.9	5.2	
1/11/2021	16:45:00		Middle	4.4	24.6	30.1 30.1	30.1	6.69 6.66	6.68	6.96	95.4 94.8	95.1	0.90 0.87	0.89	0.86	5.2 5.5	5.4	4.8
		/ Fine	Bottom	8.8	23.9	31.9 31.9	31.9	6.37 6.35	6.36	6.36	90.7 90.4	90.6	1.07 1.10	1.09		3.9 3.9	3.9	
		26	Surface	1.0	25.3	29.2 29.2	29.2	7.36 7.39	7.38		105.7 106.3	106.0	1.44 1.40	1.42		4.3 3.7	4.0	
3/11/2021	17:35:01		Middle	4.4	24.6	30.5 30.4	30.4	6.78 6.76	6.77	7.07	96.9 96.8	96.9	1.75	1.74	1.71	3.0 3.1	3.1	3.6
		/ Fine	Bottom	8.9	23.8	32.8 32.8	32.8	6.41 6.45	6.43	6.43	91.6 92.1	91.9	1.94 1.97	1.96		3.6	3.7	
		26	Surface	1.0	25.4	30.7 30.7	30.7	7.04	7.06		102.2	102.5	2.07	2.06		5.1 4.6	4.9	
5/11/2021	9:31:14		Middle	4.3	24.4	31.4 31.4	31.4	6.55 6.53	6.54	6.80	93.8 93.5	93.7	2.24	2.23	2.21	6.0 6.2	6.1	5.0
		/ Fine	Bottom	8.7	23.7	32.8 32.8	32.8	6.33 6.30	6.32	6.32	90.3 89.8	90.1	2.33	2.35		3.9 4.3	4.1	
		25	Surface	1.0	25.4	30.7 30.7	30.7	7.34 7.31	7.33		106.5 105.9	106.2	1.52	1.54		4.6	4.3	
8/11/2021	10:14:14		Middle	4.4	24.3	31.7 31.7	31.7	6.70 6.68	6.69	7.01	96.0 95.5	95.8	1.84	1.82	1.86	4.4 5.4	4.9	4.5
		/ Fine	Bottom	8.7	23.5	32.8 32.8	32.8	6.45 6.41	6.43	6.43	95.5 91.7 91.1	91.4	2.24	2.23	-	5.4 4.6 3.8	4.2	
			Surface	1.0	24.5	29.6	29.6	6.99	6.97		99.2	99.0	1.84	1.83		4.3	4.3	
12/11/2021	16:01:13	25	Middle	4.4	23.6	29.6 31.4 31.4	31.4	6.95 6.41 6.44	6.43	6.70	98.7 90.5	90.8	1.82 2.14 2.10	2.12	2.11	4.2 6.0 6.4	6.2	5.3
		/ Fine	Bottom	8.7	23.0	32.8	32.8	6.16	6.15	6.15	91.0 86.8	86.5	2.37	2.38		5.8 4.8	5.3	
		25	Surface	1.0	24.3	32.8 29.6 29.6	29.6	6.13 7.39 7.37	7.38		86.2 104.6	104.6	2.39	1.85		6.2	6.4	
15/11/2021	16:25:53	25	Middle	4.4	23.6	31.8	31.8	6.69	6.68	7.03	104.5 94.7	94.4	1.83	2.02	2.08	6.6 7.9	7.8	5.9
		/ Fine	Bottom	8.9	22.8	31.8 32.6	32.6	6.66 6.27	6.25	6.25	94.1 87.9	87.6	2.00	2.37		7.7	3.5	
			Surface	1.0	24.2	32.6 29.2	29.2	6.23 7.13	7.14		87.2 100.5	100.6	2.38 1.38	1.36		3.7 3.0	3.4	
17/11/2021	18:23:10	24	Middle	4.4	23.4	29.2 30.5	30.5	7.15 6.62	6.60	6.87	100.6 92.7	92.4	1.34 1.66	1.68	1.62	3.8 4.2	4.1	5.5
		/ Fine	Bottom	8.8	22.8	30.5 32.9	32.9	6.58 6.24	6.23	6.23	92.1 87.6	87.4	1.69 1.81	1.82		4.0 8.2	8.9	
			Surface	1.0	23.7	32.9 30.7	30.7	6.21 6.88	6.86	-	87.2 97.1	96.8	1.83 0.95	0.94		9.6 4.9	4.8	
29/11/2021	15:44:49	24	Middle	4.4	22.6	30.7 31.5	31.5	6.84 6.34	6.35	6.61	96.4 88.0	88.1	0.93 1.25	1.26	1.22	4.7 5.5	5.3	5.2
20/11/2021	10.77.70	/ Fine	Bottom	8.7	21.8	31.5 32.8	32.8	6.36 6.05	6.07	6.07	88.1 83.4	83.6	1.27 1.47	1.45		5.0 6.1	5.7	0.2
			DOLIOIN	0.7	21.0	32.8	32.0	6.08	0.07	0.07	83.8	03.0	1.43	1.40		5.2	3.7	<u> </u>

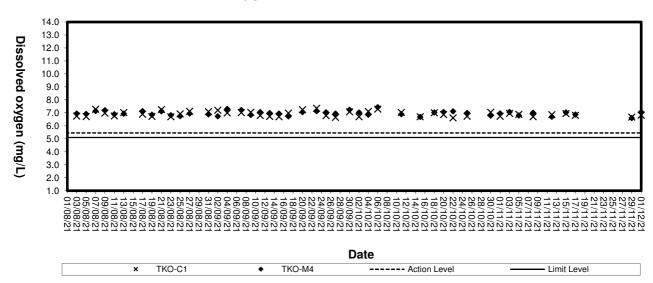
Monitoring Station : TKO-C1

D	T	Ambient Temp	Monitorir	ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	irbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	(n	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.8	29.6 29.6	29.6	6.85 6.81	6.83	Ŭ	99.4 98.7	99.1	0.87 0.90	0.89	Ŭ	2.9 3.8	3.4	
1/11/2021	9:16:05	20	Middle	9.6	24.7	30.2	30.2	6.35	6.34	6.58	90.8	90.6	1.08	1.10	1.15	5.7	5.7	5.3
1/11/2021	3.10.03	/ Fine	Widdle	5.0	24.7	30.2 32.3	50.2	6.32 6.02	0.04		90.3 86.2	30.0	1.11 1.45	1.10	1.15	5.6 7.1	5.7	5.5
		/ T IIIe	Bottom	19.1	24.1	32.3	32.3	5.99	6.01	6.01	85.7	86.0	1.49	1.47		6.9	7.0	
		26	Surface	1.0	25.6	30.5 30.5	30.5	7.14 7.16	7.15		103.8 104.1	104.0	2.06	2.08		2.6	2.5	
3/11/2021	10:30:25		Middle	9.6	24.7	31.6 31.6	31.6	6.50 6.46	6.48	6.82	93.7 93.2	93.5	2.34 2.38	2.36	2.35	5.0 4.8	4.9	4.6
		/ Fine	Bottom	19.2	24.2	32.7	32.7	6.15	6.16	6.16	88.4	88.5	2.59	2.60		5.9	6.5	
						32.7 30.4		6.17 6.97			88.6 101.3		2.61 2.14			7.1 3.4		
		26	Surface	1.0	25.6	30.4	30.4	6.93	6.95	6.74	100.6	101.0	2.16	2.15		3.4	3.4	
5/11/2021	13:01:08		Middle	9.5	24.7	31.6 31.6	31.6	6.51 6.53	6.52		93.8 94.1	94.0	2.48 2.52	2.50	2.57	3.6 3.9	3.8	3.6
		/ Fine	Bottom	19.0	24.0	32.4 32.4	32.4	6.11 6.14	6.13	6.13	87.4 87.7	87.6	3.03 3.06	3.05		3.3 3.7	3.5	
			Surface	1.0	25.4	30.2	30.2	6.84	6.83		99.0	98.7	1.88	1.87		6.1	6.0	
		26		-	-	30.2 31.5		6.81 6.23		6.53	98.4 89.4		1.85 2.20	_		5.8 3.4		
8/11/2021	13:30:15	(F)	Middle	9.6	24.5	31.5	31.5	6.25	6.24		89.7	89.6	2.22	2.21	2.22	3.0	3.2	3.9
		/ Fine	Bottom	19.1	23.7	32.3 32.3	32.3	6.00 6.03	6.02	6.02	85.3 85.9	85.6	2.57 2.61	2.59		2.6 2.7	2.7	
		25	Surface	1.0	24.5	29.2 29.2	29.2	7.04	7.03		99.7 99.3	99.5	1.61 1.65	1.63		3.8 3.5	3.7	
12/11/2021	8:16:55		Middle	9.6	23.8	30.5	30.5	6.39	6.37	6.70	90.1	89.8	1.92	1.93	1.96	4.9	5.3	5.4
		/ Fine	Dettern	10.0	00.1	30.5 31.5	01.5	6.35 6.08	C 07	6.07	89.4 85.2	05.0	1.94 2.33	0.00		5.6 7.0	7.3	
			Bottom	19.2	23.1	31.5 29.7	31.5	6.06 7.10	6.07	6.07	84.7 100.7	85.0	2.30 2.21	2.32		7.5 3.4	7.3	
		25	Surface	1.0	24.4	29.7 29.7	29.7	7.13	7.12	6.79	100.7	100.9	2.21	2.23		3.4	3.7	
15/11/2021	9:30:56		Middle	9.5	23.7	30.2 30.2	30.2	6.45 6.47	6.46	0.70	90.6 90.9	90.8	2.52 2.56	2.54	2.58	6.2 5.6	5.9	5.1
		/ Fine	Bottom	19.1	23.0	32.5	32.5	6.22	6.20	6.20	87.5	87.2	2.98	2.97		5.3	5.7	
			Quiters	1.0	04.5	32.5 30.2	30.2	6.18 6.83	6.04		86.9 97.3	97.5	2.96 1.86	1.05		6.0 7.1	7.5	
		25	Surface	1.0	24.5	30.2 32.4	30.2	6.85 6.42	6.84	6.63	97.6 91.3	97.5	1.83 2.19	1.85		7.8 6.7	7.5	
17/11/2021	10:00:55		Middle	9.5	23.7	32.4	32.4	6.40	6.41		91.1	91.2	2.17	2.18	2.18	6.8	6.8	6.6
		/ Fine	Bottom	19.1	22.9	33.5 33.5	33.5	6.03 5.99	6.01	6.01	85.1 84.7	84.9	2.49 2.52	2.51		5.2 5.8	5.5	
		24	Surface	1.0	23.5	30.1	30.1	6.77	6.76		94.7	94.5	1.35	1.37		6.1 7.4	6.8	
29/11/2021	8:47:13	24	Middle	9.5	22.6	30.1 31.6	31.6	6.75 6.23	6.22	6.49	94.3 86.6	86.5	1.39 1.56	1.54	1.58	7.4 6.7	6.8	5.8
23/11/2021	0.47.13	/ Fine				31.6 32.5		6.20 5.93			86.3 81.9		1.52 1.81		1.00	6.9 3.3		5.0
		,	Bottom	18.9	22.0	32.5	32.5	5.97	5.95	5.95	82.3	82.1	1.83	1.82		4.2	3.8	

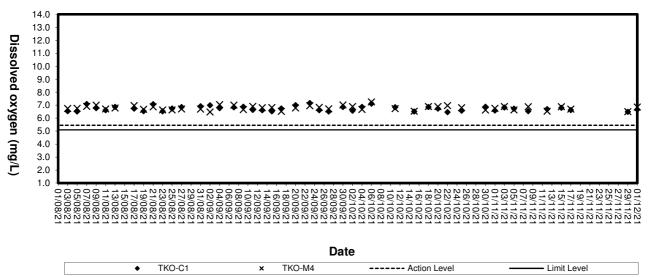
Monitoring Station : TKO-M4

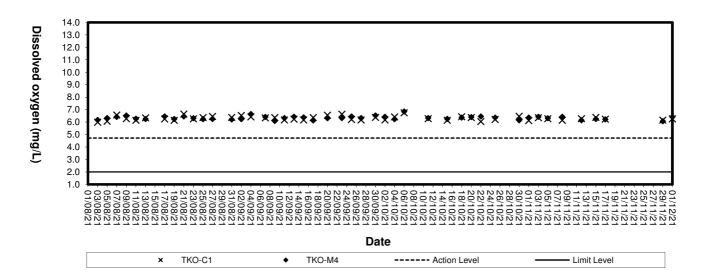
		Ambient Temp			Temp	Salinit	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)		d Oxygen tion (%)	Τι	rbidity (NT	'U)	Susper	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	Monitoring [Depth (m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	25.6	30.2	30.2	7.10	7.09		103.1	102.9	0.79	0.78		4.6	4.5	
		26				30.2		7.07		6.75	102.7		0.76			4.4		
1/11/2021	10:22:58		Middle	4.3	24.7	31.8 31.8	31.8	6.40 6.44	6.42		92.3 92.9	92.6	0.95 0.99	0.97	1.00	4.4	4.2	4.6
		/ Fine				32.5		6.19			92.9 88.6		1.25			4.0 5.4		•
		, 1 110	Bottom	8.6	24.0	32.5	32.5	6.17	6.18	6.18	88.1	88.4	1.27	1.26		4.9	5.2	
			Surface	1.0	25.5	30.4	30.4	7.22	7.21		104.8	104.6	1.49	1.50		3.9	4.1	
		26	Sunace	1.0	23.5	30.4	30.4	7.20	7.21	6.89	104.3	104.0	1.51	1.50		4.3	4.1	
3/11/2021	11:42:56		Middle	4.3	24.7	31.6 31.6	31.6	6.55 6.59	6.57		94.4 95.0	94.7	1.84 1.88	1.86	1.80	6.0	6.1	4.8
		/ Fine				31.6		6.30			95.0 90.1		2.06			6.1 4.5		•
		, T IIIC	Bottom	8.7	23.9	32.8	32.8	6.27	6.29	6.29	89.9	90.0	2.03	2.05		4.0	4.3	
			Quintana	1.0	25.5	30.3	30.3	6.91	6.89		100.2	99.9	1.95	1.97		2.4	3.1	
		26	Surface	1.0	25.5	30.3	30.3	6.87	0.09	6.63	99.6	99.9	1.99	1.97		3.7	3.1	
5/11/2021	14:28:20		Middle	4.2	24.6	32.4	32.4	6.38	6.37	0.00	92.2	92.0	2.30	2.31	2.26	4.3	4.3	3.7
		/ Fine				32.4 33.6		6.36 6.16			91.8 88.4		2.32 2.48		-	4.3		
		/ Fille	Bottom	8.5	23.8	33.6	33.6	6.19	6.18	6.18	89.0	88.7	2.40	2.50		4.1 3.6	3.9	
			0.4	1.0	05.5	30.0		7.21	7.00		104.3	101.0	1.78	1 70		4.8	5.0	
		25	Surface	1.0	25.5	29.9	29.9	7.19	7.20	6.89	104.1	104.2	1.74	1.76		5.1	5.0	
8/11/2021	/11/2021 15:02:12		Middle	4.3	24.3	31.4	31.4	6.55	6.57	0.05	93.7	94.0	2.03	2.05	2.07	3.7	3.4	4.4
				-		31.4		6.59			94.2		2.06		-	3.1		
		/ Fine	Bottom	8.6	23.4	32.7 32.7	32.7	6.26 6.23	6.25	6.25	88.8 88.2	88.5	2.40 2.42	2.41		4.6 5.3	5.0	
						29.8		6.86			97.7		1.94			4.5		
		25	Surface	1.0	24.6	29.8	29.8	6.84	6.85	0.54	97.2	97.5	1.97	1.96		4.8	4.7	
12/11/2021	9:40:11		Middle	4.3	23.7	30.8	30.8	6.25	6.23	6.54	88.1	87.8	2.28	2.27	2.27	3.6	3.5	5.4
12/11/2021	3.40.11		Wilddie	4.0	20.7	30.8	00.0	6.21	0.20		87.5	07.0	2.26	2.27	2.21	3.4	0.0	5.4
		/ Fine	Bottom	8.6	23.1	31.5 31.5	31.5	5.96	5.98	5.98	83.5 83.7	83.6	2.56 2.59	2.58		8.3 7.9	8.1	
						31.5		5.99 7.22			102.6		2.59			4.3		
		25	Surface	1.0	24.4	30.2	30.1	7.24	7.23		102.0	102.8	2.02	2.04		4.1	4.2	
15/11/2021	10:52:04		Middle	4.3	23.6	31.8	31.8	6.51	6.52	6.88	92.1	92.4	2.20	2.19	2.22	4.4	4.4	5.5
13/11/2021	10.32.04		wilddie	4.5	23.0	31.8	01.0	6.53	0.52		92.6	52.4	2.18	2.15	2.22	4.4	4.4	5.5
		/ Fine	Bottom	8.5	22.7	33.0	33.0	6.07	6.09	6.09	85.1	85.4	2.44 2.41	2.43		7.9 7.9	7.9	
						33.0 30.6		6.11 6.96			85.7 99.0		2.41			7.9 6.1		
		25	Surface	1.0	24.3	30.6	30.6	6.94	6.95		98.6	98.8	1.94	1.93		6.3	6.2	
17/11/0001	11.00.11	-	Malalla	5.0	00.5	31.7	01.7	6.42	6.40	6.69	90.7	00.0	1.90	1.00	1 00	6.8	7.0	
17/11/2021	11:26:44		Middle	5.0	23.5	31.7	31.7	6.44	6.43		90.9	90.8	1.90	1.90	1.99	7.2	7.0	5.5
		/ Fine	Bottom	9.9	22.7	32.1	32.1	6.02	6.04	6.04	84.0	84.3	2.16	2.13		3.5	3.2	
						32.1		6.06			84.6		2.10			2.9		
		24	Surface	1.0	23.6	30.9 30.9	30.9	6.74 6.76	6.75		94.9 95.4	95.2	1.18	1.17		3.8 4.4	4.1	
		27			ar -	32.2		6.22		6.49	86.6		1.40			4.4		1
29/11/2021	10:16:11		Middle	4.3	22.5	32.2	32.2	6.25	6.24		87.0	86.8	1.57	1.49	1.48	5.2	4.9	4.5
		/ Fine	Bottom	8.6	21.7	33.4	33.4	5.91	5.89	5.89	81.6	81.3	1.70	1.78		4.1	4.6	
		/ Fille	Bottom	0.0		33.4		5.87	0.00	0.00	80.9	01.0	1.85			5.0		

東業德勤测試顧問有限公司 ETS-TESTCONSULT LIMITED

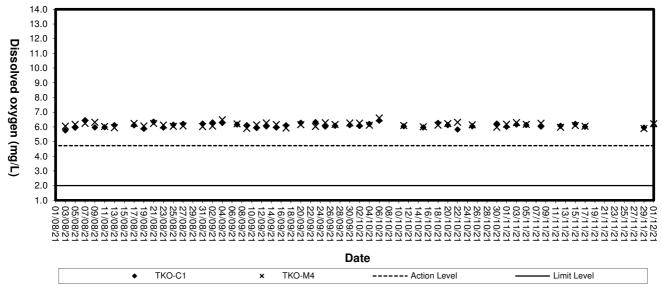

Mid-Ebb Tide

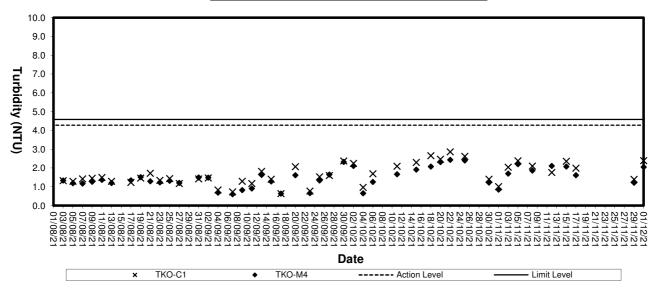
Appendix D3


Graphical Plots of Impact Marine Water Quality Monitoring Data

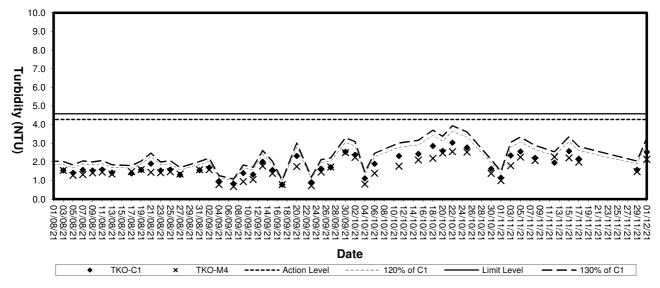


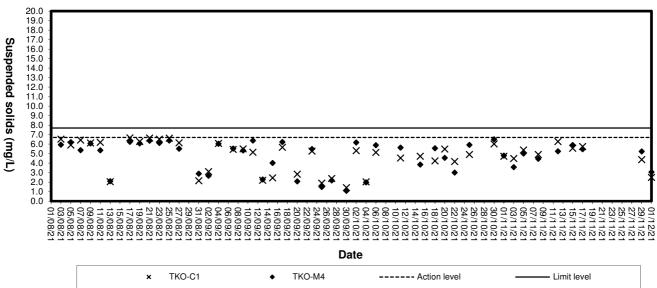
Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide



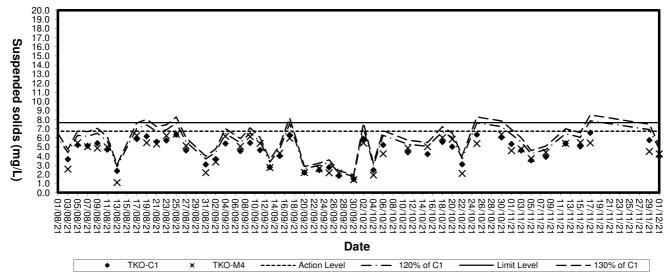


Dissolved Oxygen (Bottom) at Mid-Flood Tide





Turbidity (Depth-average) at Mid-Flood Tide



Suspended solids (Depth-average) at Mid-Flood Tide

Suspended Solids (Depth-average) at Mid-Ebb Tide

Appendix D4

Impact Marine Water Quality Monitoring Results (3RS Project)

Monitoring Station : TKO-C1a

Data	Time	Ambient Temp	Monitorir	ng Depth	Temp	Salinit	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	irbidity (NT	Ū)	Suspe	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	(n	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.6	30.2 30.2	30.2	7.06 7.08	7.07	-	102.5 102.8	102.7	0.67 0.71	0.69		3.5 3.7	3.6	
1/11/2021	15:50:59	-	Middle	9.8	24.7	31.2 31.1	31.1	6.45 6.41	6.43	6.75	92.7 92.1	92.4	0.86	0.87	0.93	4.0	4.3	3.4
		/ Fine	Bottom	19.6	24.0	32.6	32.6	6.19	6.18	6.18	88.6	88.5	1.20	1.22		2.2	2.4	
			Surface	1.0	25.3	32.6 29.9	29.9	6.17 6.91	6.92		88.3 99.6	99.9	1.23 1.73	1.75		2.5 2.8	3.0	
3/11/2021	16:46:31	26	Middle	9.9	24.7	29.9 30.5	30.5	6.93 6.49	6.48	6.70	100.1 92.9	92.9	1.76 2.15	2.16	2.12	3.2 4.6	4.8	4.4
5/11/2021	10.40.51	/ Fine		19.7		30.5 32.9		6.47 6.11	6.10	6.10	92.8 88.0	87.7	2.17 2.48		2.12	5.0 5.1	5.4	7.7
			Bottom		24.2	32.9 29.3	32.9	6.08 6.91		6.10	87.4 99.5		2.44 2.35	2.46		5.7 3.0		
		26	Surface	1.0	25.4	29.3 31.6	29.3	6.88 6.43	6.90	6.66	99.0 92.5	99.3	2.31 2.67	2.33		2.8	2.9	l
5/11/2021	8:25:37	/ Fine	Middle	9.9	24.6	31.6 32.7	31.6	6.41	6.42		92.2	92.4	2.63	2.65	2.64	3.0	3.1	4.0
		/ Fine	Bottom	19.8	23.9	32.7	32.7	6.17 6.13	6.15	6.15	88.3 87.8	88.1	2.95	2.94		5.6 6.4	6.0	
		26	Surface	1.0	25.3	29.7 29.7	29.7	7.28 7.25	7.27	6.95	104.9 104.4	104.7	1.97 1.94	1.96		5.5 5.8	5.7	
8/11/2021	9:06:13		Middle	9.7	24.5	30.6 30.6	30.6	6.65 6.61	6.63	0.00	94.9 94.2	94.6	2.28 2.26	2.27	2.27	4.8 5.0	4.9	4.7
		/ Fine	Bottom	19.4	23.7	31.4 31.4	31.4	6.30 6.32	6.31	6.31	89.1 89.4	89.3	2.59 2.57	2.58		3.4 3.5	3.5	
		25	Surface	1.0	24.7	29.9 29.9	29.9	6.94 6.97	6.96		99.1 99.5	99.3	1.93 1.90	1.92		4.2 4.4	4.3	
12/11/2021	14:52:21		Middle	9.8	23.8	30.5 30.5	30.5	6.50 6.48	6.49	6.72	91.6 91.5	91.6	2.24 2.20	2.22	2.19	5.3 5.7	5.5	4.7
		/ Fine	Bottom	19.7	23.1	31.6 31.6	31.6	6.24 6.26	6.25	6.25	87.5 87.6	87.6	2.41 2.44	2.43		4.6	4.3	
		25	Surface	1.0	24.4	30.4 30.4	30.4	7.05	7.07		100.4 100.8	100.6	2.27	2.26		4.6	4.5	
15/11/2021	15:22:35	25	Middle	9.7	23.7	31.8	31.8	6.42	6.44	6.75	91.0	91.3	2.52	2.54	2.55	2.1	2.4	4.2
		/ Fine	Bottom	19.5	23.1	31.8 32.5	32.5	6.46 6.16	6.15	6.15	91.6 86.8	86.6	2.56 2.83	2.85		2.6 5.7	5.9	
			Surface	1.0	24.3	32.5 29.8	29.8	6.14 7.21	7.23		86.3 102.1	102.4	2.86 1.73	1.71		6.1 4.6	4.7	
17/11/0001	17:21:06	25		9.7	-	29.8 30.6		7.24 6.47	_	6.84	102.6 91.0		1.69 1.91	1.93	2.00	4.8 3.2	2.9	3.8
17/11/2021	17:21:06	/ Fine	Middle		23.6	30.6 31.4	30.6	6.45 6.20	6.46		90.5 86.5	90.8	1.94 2.37		2.00	2.5 3.7		3.8
			Bottom	19.5	22.9	31.4 30.8	31.4	6.16 7.09	6.18	6.18	85.8 99.8	86.2	2.35 1.22	2.36		3.7 2.3	3.7	
		24	Surface	1.0	23.6	30.8	30.8	7.06	7.08	6.70	99.4	99.6	1.20	1.21		2.2	2.3	
29/11/2021	14:23:12		Middle	9.7	22.7	31.4 31.4	31.4	6.35 6.31	6.33		88.3 87.9	88.1	1.56 1.59	1.58	1.54	2.2 2.4	2.3	2.4
		/ Fine	Bottom	19.3	22.0	32.5 32.5	32.5	6.04 6.02	6.03	6.03	83.4 83.2	83.3	1.82 1.86	1.84		3.0 2.0	2.5	

Monitoring Station : TKO-M4a

Date	Time	Ambient Temp	Monitorin	ng Depth	Temp	Salinit	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	rbidity (NT	·U)	Susper	nded Solids	s (mg/L)
Dale	Time	(°C) / Weather Condition	(m	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	25.7	30.2	30.2	6.86	6.87		99.7	99.9	0.65	0.67		3.2	3.2	
		26	oundoo		20.7	30.2	00.2	6.88	0.07	6.61	100.0	00.0	0.68	0.07		3.1	0.2	
1/11/2021	16:07:59		Middle	9.2	24.6	32.6	32.6	6.37	6.36		92.1	91.9	0.95	0.93	0.91	4.5	4.7	4.2
						32.6		6.34			91.7		0.91			4.8		
		/ Fine	Bottom	18.3	24.0	33.7	33.7	6.06	6.04	6.04	87.3	87.0	1.11	1.12		4.8	4.9	
						33.7		6.02			86.6		1.13			5.0		
		26	Surface	1.0	25.5	30.4 30.4	30.4	6.98 6.96	6.97		101.3 101.0	101.2	2.07	2.06		5.0 5.2	5.1	
		20				30.4		6.50		6.74	93.7		2.04			5.2 3.4		
3/11/2021	17:01:14		Middle	9.2	24.7	31.6	31.6	6.53	6.52		93.7	93.9	2.32	2.34	2.37	3.4	3.3	4.2
		/ Fine				32.8		6.23			89.2		2.69			4.5		
		/1116	Bottom	18.4	23.9	32.9	32.8	6.21	6.22	6.22	89.0	89.1	2.03	2.71		4.0	4.3	
						28.6		6.99			100.0		2.12			4.8		
		26	Surface	1.0	25.3	28.6	28.6	6.97	6.98		99.9	100.0	2.12	2.13		5.1	5.0	
		20				30.5		6.48		6.74	92.5	-	2.43			2.9		
5/11/2021	8:43:26		Middle	9.2	24.5	30.5	30.5	6.52	6.50		92.9	92.7	2.40	2.42	2.43	2.6	2.8	4.0
		/ Fine				31.7		6.23			88.6		2.75			4.2		
			Bottom	18.3	23.9	31.7	31.7	6.26	6.25	6.25	88.8	88.7	2.71	2.73		4.2	4.2	
			. <i>(</i>			30.5		7.08			102.6		2.26			4.5		
		26	Surface	1.0	25.4	30.5	30.5	7.05	7.07		102.0	102.3	2.28	2.27		4.8	4.7	
			A CLUB	9.2	04.0	32.2		6.54	0.50	6.79	94.4		2.70	2.72		4.4		
8/11/2021	9:28:13		Middle	9.2	24.6	32.2	32.2	6.50	6.52		93.6	94.0	2.74	2.72	2.67	4.4	4.4	4.8
		/ Fine	Bottom	18.4	23.8	33.7	33.7	6.21	6.22	6.22	89.2	89.3	3.01	3.03		5.6	5.5	
			DOLLOITI	10.4	23.0	33.7	33.7	6.23	0.22	0.22	89.3	09.3	3.04	3.03		5.3	5.5	
			Surface	1.0	24.6	29.8	29.8	7.25	7.27		103.2	103.4	1.73	1.75		2.9	2.7	
		25	Sunace	1.0	24.0	29.8	23.0	7.28	1.21	6.99	103.5	103.4	1.76	1.75		2.5	2.7	
12/11/2021	15:14:23		Middle	9.2	23.8	30.4	30.4	6.73	6.72	0.00	94.8	94.7	2.07	2.08	2.04	3.2	3.2	4.0
	10111120		inidalo	0.2	20.0	30.4	00.1	6.71	0.72		94.6	•	2.09	2.00	2.01	3.2	0.2	
		/ Fine	Bottom	18.3	23.0	32.6	32.6	6.49	6.47	6.47	91.3	91.0	2.33	2.31		6.2	6.1	
						32.6		6.45	-	_	90.7		2.28			5.9	-	
			Surface	1.0	24.5	29.6	29.6	7.14	7.13		101.4	101.2	2.16	2.14		3.3	3.5	
		25				29.6		7.12		6.84	100.9		2.12			3.6		
15/11/2021	15:41:07		Middle	9.2	23.6	30.4 30.4	30.4	6.54 6.57	6.56		91.8 92.4	92.1	2.46	2.45	2.46	5.2 4.5	4.9	3.9
		/ Fine				30.4		6.21			92.4 87.5		2.44			4.5 3.8		
		/ Fille	Bottom	18.3	23.0	32.9	32.9	6.25	6.23	6.23	88.1	87.8	2.78	2.78		2.8	3.3	
						30.3		6.95			98.5		1.55			5.3		
		25	Surface	1.0	24.2	30.3	30.3	6.95	6.93		98.0 98.0	98.3	1.55	1.56		5.9	5.6	
		25				31.3		6.38		6.65	90.2		1.84			4.9		
17/11/2021	17:40:06		Middle	9.2	23.7	31.3	31.3	6.36	6.37		89.8	90.0	1.87	1.86	1.88	5.0	5.0	4.3
		/ Fine				32.6		6.07			85.1		2.25			2.2		
			Bottom	18.4	22.8	32.6	32.6	6.09	6.08	6.08	85.3	85.2	2.21	2.23		2.4	2.3	
						31.8		6.83			96.5		1.18			4.8		
		24	Surface	1.0	23.5	31.8	31.8	6.86	6.85		96.9	96.7	1.14	1.16		4.3	4.6	
					ar -	32.2		6.45		6.64	89.9		1.68			2.7		
29/11/2021	14:49:41		Middle	9.2	22.6	32.2	32.2	6.42	6.44		89.6	89.8	1.66	1.67	1.60	3.1	2.9	3.9
	14.49:41	/ Fine				33.9		6.11			85.3		1.97		1	3.8		1
		/ 1 1110	Bottom	18.5	22.1	00.0	33.9		6.10	6.10		85.0		1.96			4.2	

Monitoring Station : TKO-M5

	Date Time	Ambient Temp	Monitorir	a Dooth	Temp	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	urbidity (NT	U)	Susper	nded Solids	s (mg/L)
Date	Time	(°C) / Weather Condition	(n		(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.8	29.3 29.3	29.3	7.11 7.13	7.12	6.85	103.0 103.2	103.1	0.52 0.50	0.51		3.5 3.1	3.3	
1/11/2021	16:26:59		Middle	6.4	24.5	31.5 31.5	31.5	6.60 6.57	6.59	6.85	94.7 94.3	94.5	0.71 0.74	0.73	0.73	4.8 5.0	4.9	4.4
		/ Fine	Bottom	12.8	23.8	32.8 32.8	32.8	6.23 6.20	6.22	6.22	89.0 88.7	88.9	0.94 0.98	0.96		5.2 4.8	5.0	
		26	Surface	1.0	25.6	29.7 29.7	29.7	7.18 7.15	7.17		104.0 103.3	103.7	1.95 1.99	1.97		1.2 1.6	1.4	
3/11/2021	17:18:45		Middle	6.3	24.8	31.7 31.7	31.7	6.54 6.57	6.56	6.86	94.4 95.0	94.7	2.26	2.25	2.25	4.9	4.6	3.9
		/ Fine	Bottom	12.7	23.9	32.4 32.4	32.4	6.29 6.31	6.30	6.30	89.8 90.1	90.0	2.53	2.52		5.9 5.4	5.7	
		26	Surface	1.0	25.5	30.5 30.5	30.5	7.22	7.21		104.8 104.5	104.7	1.90	1.92		3.0 3.2	3.1	
5/11/2021	09:06:14	20	Middle	6.3	24.3	31.9 31.9	31.9	6.59 6.57	6.58	6.90	94.5 94.4	94.5	2.28	2.30	2.27	4.4	4.6	3.5
		/ Fine	Bottom	12.7	23.8	32.5 32.5	32.5	6.25 6.21	6.23	6.23	94.4 89.1 88.4	88.8	2.59	2.58	-	4.8 2.7 2.9	2.8	
			Surface	1.0	25.5	29.6	29.6	6.97	6.99		100.7	101.0	2.49	2.47		4.2	4.2	
8/11/2021	09:50:23	26	Middle	6.2	24.4	29.6 31.4	31.4	7.01 6.39	6.38	6.68	101.2 91.5	91.3	2.45	2.84	2.85	4.1 6.0	6.1	4.5
		/ Fine	Bottom	12.3	23.7	31.4 32.8	32.8	6.36 6.05	6.04	6.04	91.1 86.3	86.1	2.85 3.23	3.25	-	6.2 3.2	3.3	
			Surface	1.0	24.7	32.8 30.3	30.3	6.03 7.06	7.05		85.8 101.0	100.8	3.26 2.18	2.16		3.4 3.8	3.4	
12/11/2021	15:36:17	25	Middle	6.4	24.1	30.3 31.4	31.4	7.03 6.50	6.51	6.78	100.5 92.6	92.7	2.14 2.56	2.55	2.54	3.0 2.6	3.0	3.9
		/ Fine	Bottom	12.7	23.2	31.4 32.6	32.5	6.52 6.23	6.25	6.25	92.7 87.9	88.2	2.53 2.89	2.90		3.4 5.0	5.2	
			Surface	1.0	24.6	32.5 30.1	30.1	6.27 7.22	7.20		88.5 103.0	102.7	2.91 2.67	2.66		5.3 3.6	3.6	
15/11/2021	16:03:01	25	Middle	6.4	23.8	30.1 32.6	32.6	7.18 6.43	6.42	6.81	102.4 91.7	91.5	2.65 2.91	2.93	2.98	3.6 3.0	3.1	4.1
TOFTIEDET	10.00.01	/ Fine	Bottom	12.7	23.1	32.6 33.4	33.4	6.40 6.19	6.18	6.18	91.3 87.7	87.6	2.94 3.36	3.35	2.00	3.1 5.6	5.8	
			Surface	1.0	24.4	33.4 30.4	30.4	6.17 7.10	7.09	0.10	87.4 101.1	101.0	3.34 1.92	1.91		5.9 3.1	3.2	
17/11/0001	10:01:05	25				30.4 32.6		7.08 6.40		6.75	100.8 91.1		1.89 2.33		0.07	3.3 4.5	1	4.0
17/11/2021	18:01:35	/ Fine	Middle	6.4	23.7	32.5 33.9	32.5	6.43 6.29	6.42	0.07	91.7 88.7	91.4	2.31 2.59	2.32	2.27	4.0 4.7	4.3	4.2
			Bottom	12.7	22.7	33.9 30.3	33.9	6.25 7.19	6.27	6.27	88.0 100.9	88.4	2.56 1.50	2.58		5.3 2.5	5.0	
		24	Surface	1.0	23.6	30.3 32.5	30.3	7.17	7.18	6.90	100.4 92.6	100.7	1.48	1.49	-	2.2	2.4	
29/11/2021	29/11/2021 15:25:20	/ Fine	Middle	6.3	22.6	32.5 33.4	32.5	6.60 6.26	6.62		92.1 86.8	92.4	1.79	1.77	1.73	2.2	2.2	2.6
		, , , , , , , , , , , , , , , , , , , ,	Bottom	12.7	21.9	33.4	33.4	6.22	6.24	6.24	86.2	86.5	1.92	1.92		3.0	3.2	

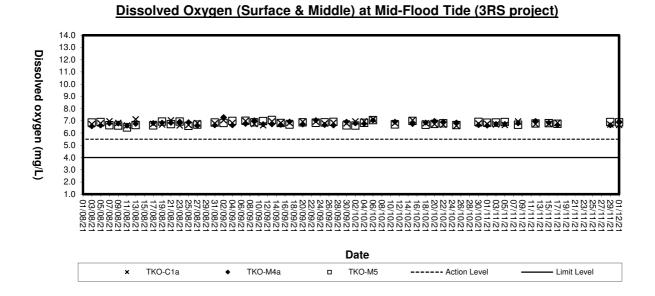
Monitoring Station : TKO-C1a

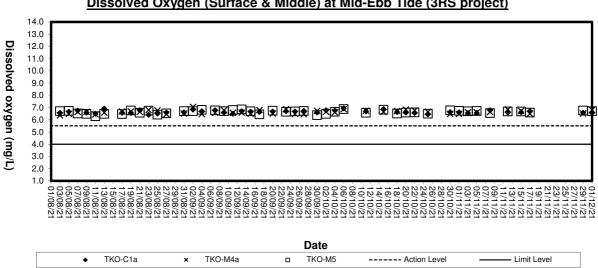
Dete	Time	Ambient Temp	Monitorir	ng Depth	Temp	Salini	ty (ppt)	Dissolv	ved Oxyger	n (mg/L)		d Oxygen tion (%)	Τι	rbidity (NT	U)	Susper	nded Solids	፥ (mg/L)
Date	Time	(°C) / Weather Condition	(n	n)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
			Surface	1.0	25.6	30.1	30.1	6.93	6.92		100.5	100.4	0.79	0.81		4.7	4.7	
		26	Ganado		20.0	30.1	00.1	6.90	0.02	6.62	100.3		0.82	0.01		4.6		
1/11/2021	9:32:09		Middle	9.7	24.6	31.4	31.4	6.31	6.32		90.7	90.8	0.94	0.95	1.03	1.6	1.5	3.6
		/ Fine				31.4		6.33 5.91			90.8		0.96			1.4 4.8		
		/ Fine	Bottom	19.4	24.1	33.3 33.3	33.3	5.91	5.93	5.93	85.1 85.5	85.3	1.35	1.33		4.8	4.7	
						30.2		6.78			98.3		1.92			3.8		
		26	Surface	1.0	25.5	30.2	30.2	6.80	6.79		98.4	98.4	1.95	1.94		3.7	3.8	
0/11/0001	10.40.17		Middle	9.8	24.8	32.5	32.5	6.31	6.33	6.56	91.5	91.8	2.29	2.31	2.31	3.7	3.6	
3/11/2021	10:49:17		widdie	9.0	24.0	32.5	32.5	6.35	0.33		92.1	91.0	2.33	2.31	2.31	3.5	3.0	4.4
		/ Fine	Bottom	19.5	24.1	33.8	33.8	5.94	5.93	5.93	85.8	85.5	2.68	2.67		5.4	5.7	
			Bottom	10.0		33.8	00.0	5.91	0.00	0.00	85.2	00.0	2.66	2.07		6.0	0.7	L
			Surface	1.0	25.5	30.7	30.7	6.79	6.78		98.7	98.6	2.50	2.48		2.1	2.2	
		26				30.7		6.77		6.55	98.4		2.46			2.3		4
5/11/2021	13:23:14		Middle	9.2	24.7	31.8 31.8	31.8	6.31 6.34	6.33		91.0 91.5	91.3	2.53 2.56	2.55	2.57	3.3 2.8	3.1	2.9
		/ Fine				32.6		6.01			86.0		2.72			3.5		
		, 1 110	Bottom	18.4	24.0	32.6	32.6	5.98	6.00	6.00	85.6	85.8	2.64	2.68		3.2	3.4	
			Quarteres	1.0	05.5	30.3	00.0	7.09	7 4 4		102.8	100.0	2.16	0.15		3.1		
		26	Surface	1.0	25.5	30.3	30.3	7.12	7.11	6.78	103.1	103.0	2.14	2.15		3.3	3.2	
8/11/2021	13:53:31		Middle	9.6	24.5	31.5	31.5	6.47	6.45	0.78	92.9	92.6	2.36	2.38	2.42	4.0	4.0	4.1
0/11/2021	10.00.01		maano	0.0	21.0	31.5	01.0	6.43	0.10		92.3	02.0	2.39	2.00	2.42	4.0		
		/ Fine	Bottom	19.2	23.8	32.7	32.7	6.15	6.14	6.14	87.8	87.7	2.74	2.72		5.0	5.0	
						32.7		6.13			87.5		2.70			5.0		
		25	Surface	1.0	24.6	29.8 29.8	29.8	6.84 6.87	6.86		97.4 97.6	97.5	1.99 1.95	1.97		2.5	2.4	
		25				30.2		6.36		6.60	89.5		2.37			5.4		
12/11/2021	8:33:46		Middle	9.7	23.8	30.2	30.2	6.34	6.35		89.1	89.3	2.35	2.36	2.32	5.6	5.5	3.8
		/ Fine	Dettern	10.4	22.9	31.4	31.4	6.11	C 00	C 00	85.2	85.0	2.64	0.00		3.2	3.6	
			Bottom	19.4	22.9	31.4	31.4	6.07	6.09	6.09	84.7	85.0	2.61	2.63		3.9	3.6	
			Surface	1.0	24.5	30.2	30.2	6.88	6.90		98.0	98.2	2.49	2.48		3.1	3.1	
		25				30.2		6.92		6.62	98.4		2.47			3.1	••••	
15/11/2021	9:51:36		Middle	9.6	23.7	31.6	31.6	6.35	6.34		89.9	89.7	2.75	2.77	2.79	6.0	6.5	4.0
		/ Fine				31.6 32.1		6.33 5.96		-	89.5 83.8		2.78 3.14		·	7.0		1
		71116	Bottom	19.3	23.1	32.1	32.1	6.00	5.98	5.98	84.3	84.1	3.14	3.12		2.5	2.4	
						30.3		7.11			101.2		1.91			4.4		
		25	Surface	1.0	24.4	30.3	30.3	7.09	7.10	6.71	101.1	101.2	1.93	1.92		4.1	4.3	
17/11/2021	10:22:08		Middle	9.6	23.6	31.4	31.4	6.29	6.31	6.71	88.8	89.1	2.29	2.28	2.28	4.0	3.5	4.2
	10.22.00		widule	3.0	20.0	31.4	51.4	6.33	0.31		89.4	03.1	2.26	2.20	2.20	3.0	5.5	+.2
		/ Fine	Bottom	19.2	22.9	32.2	32.2	6.01	6.03	6.03	84.2	84.4	2.65	2.63		5.0	5.0	
						32.2		6.04			84.6		2.61			4.9		
		24	Surface	1.0	23.5	30.0 30.0	30.0	6.96 6.92	6.94		97.3	97.1	1.38	1.37		1.8	1.7	ĺ
		24				30.0		6.92		6.58	96.8 86.2		1.36		ł	1.5 2.2		ĺ
29/11/2021	9:10:36		Middle	9.5	22.6	31.8	31.8	6.22	6.21		86.6	86.4	1.75	1.78	1.77	2.2	2.4	2.7
		/ Fine	Dutt	10.0		32.6	00.0	5.88			81.1	00.0	2.18	0.10		3.8	4.5	İ
			Bottom	19.0	21.9	32.6	32.6	5.85	5.87	5.87	80.7	80.9	2.14	2.16		4.1	4.0	

Monitoring Station : TKO-M4a

Date	Time	Ambient Temp	Monitoring	Dopth (m)	Temp	Salini	ty (ppt)	Dissolv	ed Oxyger	n (mg/L)		d Oxygen tion (%)	Tu	rbidity (NT	Ū)	Susper	nded Solids	s (mg/L)
Date	nme	(°C) / Weather Condition	Monitoring [Deptn (m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.8	29.7 29.7	29.7	6.76 6.74	6.75	-	98.2 97.9	98.1	0.81 0.84	0.83	-	2.2 2.1	2.2	
1/11/2021	9:47:59		Middle	9.1	24.5	30.2 30.2	30.2	6.20 6.24	6.22	6.49	88.3	88.7	1.02	1.04	1.04	4.0	4.6	3.9
		/ Fine	Bottom	18.1	23.9	32.8	32.8	5.90	5.92	5.92	89.1 84.4	84.6	1.25	1.26		5.1 5.0	5.0	
			Surface	1.0	25.6	32.8 29.6	29.6	5.93 6.83	6.84		84.8 98.8	98.9	1.27 2.24	2.26		4.9 4.1	4.3	
0/11/0001	11.00.00	26	Middle	9.1	24.7	29.6 30.8		6.85 6.41	6.40	6.62	98.9 92.0	91.9	2.27 2.67	2.66	0.00	4.5 3.5	3.2	0.5
3/11/2021	11:06:30	/ Fine				30.8 31.9	30.8	6.38 6.05			91.7 86.4		2.65 2.96		2.63	2.9 2.8		3.5
			Bottom	18.2	24.1	31.9 29.8	31.9	6.01 6.83	6.03	6.03	85.7 98.6	86.1	2.99 2.37	2.98		2.9	2.9	
		26	Surface	1.0	25.4	29.8	29.8	6.86	6.85	6.62	99.2	98.9	2.33	2.35		2.6	2.4	
5/11/2021	13:45:35		Middle	8.9	24.6	30.3 30.3	30.3	6.40 6.38	6.39		91.4 91.1	91.3	2.48 2.42	2.45	2.39	2.0 1.6	1.8	2.5
		/ Fine	Bottom	17.8	24.0	31.7 31.7	31.7	6.05 6.01	6.03	6.03	86.2 85.5	85.9	2.39 2.33	2.36		3.3 3.4	3.4	
		26	Surface	1.0	25.4	29.1 29.1	29.1	6.91 6.93	6.92	0.04	99.4 99.7	99.6	2.40 2.43	2.42		3.2 3.9	3.6	
8/11/2021	/11/2021 14:15:31		Middle	9.0	24.7	31.4 31.4	31.4	6.35 6.38	6.37	6.64	91.4 91.7	91.6	2.85 2.81	2.83	2.81	4.3 4.2	4.3	4.1
		/ Fine	Bottom	18.0	23.7	32.8 32.8	32.8	6.01 6.05	6.03	6.03	85.7 86.3	86.0	3.18 3.16	3.17		4.5 4.2	4.4	
		25	Surface	1.0	24.4	29.6 29.5	29.5	7.11	7.12		100.7 101.2	101.0	2.02	2.01		3.7	3.8	
12/11/2021	8:55:34	25	Middle	9.0	23.7	31.7	31.7	6.56	6.57	6.85	92.9	93.1	2.37	2.36	2.35	3.8	3.9	4.3
		/ Fine	Bottom	18.1	22.9	31.7 32.0	32.0	6.58 6.26	6.24	6.24	93.2 87.6	87.3	2.34 2.69	2.67		4.0 4.9	5.2	
			Surface	1.0	24.5	32.0 30.7	30.7	6.22 6.98	6.99		86.9 99.7	99.9	2.65 2.36	2.37		5.5 5.9	5.5	
15/11/2021	10:11:16	25	Middle	9.1	23.8	30.7 31.9	31.9	7.00 6.49	6.48	6.73	100.0 92.3	92.1	2.38 2.78	2.76	2.76	5.1 2.7	3.0	3.7
15/11/2021	10.11.16	/ Fine				31.9 32.8		6.46 6.10			91.8 86.1		2.74 3.13		2.70	3.2 2.6		3.7
			Bottom	18.1	23.1	32.8 30.4	32.8	6.14 6.75	6.12	6.12	86.8 96.1	86.5	3.16 1.70	3.15		2.7 5.2	2.7	
		25	Surface	1.0	24.4	30.4 31.8	30.4	6.78 6.24	6.77	6.49	96.5 88.4	96.3	1.72	1.71		5.6	5.4	
17/11/2021	10:43:35		Middle	9.1	23.7	31.8	31.8	6.20	6.22		88.0	88.2	2.06	2.08	2.08	4.6	4.5	4.6
		/ Fine	Bottom	18.2	22.7	33.6 33.6	33.6	5.93 5.91	5.92	5.92	83.5 83.0	83.3	2.46 2.42	2.44		3.8 3.8	3.8	
		24	Surface	1.0	23.4	30.3 30.3	30.3	6.73 6.70	6.72	6.52	94.1 93.7	93.9	1.30 1.27	1.29		1.7 1.1	1.4	
29/11/2021	9:29:51		Middle	9.1	22.7	31.7 31.7	31.7	6.30 6.34	6.32	0.52	87.7 88.4	88.1	1.77 1.81	1.79	1.72	1.2 1.3	1.3	2.0
		/ Fine	Bottom	18.3	22.1	32.4 32.4	32.4	5.92 5.90	5.91	5.91	81.9 81.6	81.8	2.09	2.08		3.4 3.1	3.3	

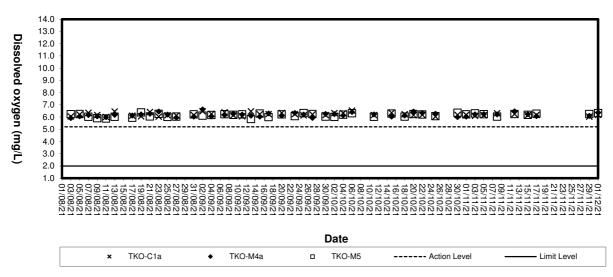
Monitoring Station : TKO-M5

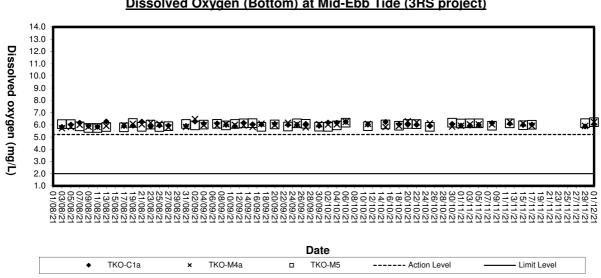

Date	Time	Ambient Temp	Monitoring [Conth (m)	Temp	Salinit	y (ppt)	Dissolv	ed Oxyger	n (mg/L)		d Oxygen tion (%)	Τι	irbidity (NT	U)	Susper	nded Solids	s (mg/L)
Dale	Time	(°C) / Weather Condition	wontoning t	Deptin (m)	(°C)	Value	Average	Value	Average	Depth- average	Value	Average	Value	Average	Depth- average	Value	Average	Depth- average
		26	Surface	1.0	25.8	30.3 30.3	30.3	7.02 7.04	7.03		102.1 102.6	102.4	0.68 0.71	0.70		3.9 4.2	4.1	
1/11/2021	10:06:13		Middle	6.3	24.4	31.3 31.3	31.3	6.45 6.43	6.44	6.74	92.3 91.9	92.1	0.87 0.84	0.86	0.90	3.0 3.5	3.3	4.1
		/ Fine	Bottom	12.5	23.8	32.7 32.7	32.7	6.12 6.09	6.11	6.11	87.4 86.8	87.1	1.17	1.16		5.0 5.2	5.1	
		26	Surface	1.0	25.7	30.4 30.4	30.4	7.03 6.99	7.01		102.3 101.8	102.1	2.19	2.17		3.1 3.4	3.3	
3/11/2021	11:25:09		Middle	6.2	24.8	32.5 32.5	32.5	6.37 6.35	6.36	6.69	92.4 92.1	92.3	2.44	2.46	2.46	5.9 5.1	5.5	4.6
		/ Fine	Bottom	12.4	24.1	33.9 33.9	33.9	6.10 6.13	6.12	6.12	88.2 88.6	88.4	2.75	2.76		5.5 4.6	5.1	
		26	Surface	1.0	25.6	29.9	29.9	7.05 7.09	7.07		102.2	102.4	1.33	1.36		2.8	2.9	
5/11/2021	14:07:19	20	Middle	6.2	24.4	29.9 30.6	30.6	6.37	6.36	6.72	102.6 90.8	90.7	1.39	1.85	1.83	3.0 3.6	3.5	3.0
		/ Fine	Bottom	12.4	23.7	30.6 31.5 31.5	31.5	6.35 6.10	6.12	6.12	90.5 86.3 86.8	86.6	1.89 2.29 2.28	2.29		3.4 2.4 2.6	2.5	
			Surface	1.0	25.6	29.9	29.9	6.13 6.88	6.86		99.7	99.4	2.35	2.36		6.8	6.6	
8/11/2021	14:38:26	26	Middle	6.1	24.5	29.9 30.6	30.6	6.84 6.21	6.22	6.54	99.1 88.7	88.9	2.37 2.84	2.86	2.81	6.3 2.4	2.6	4.3
		/ Fine	Bottom	12.1	23.8	30.6 31.5	31.5	6.23 5.90	5.92	5.92	89.1 83.7	83.9	2.87 3.24	3.23		2.7 3.5	3.7	
			Surface	1.0	24.6	31.5 29.6	29.6	5.93 6.91	6.93		84.1 98.3	98.5	3.21 2.27	2.26		3.8 4.2	4.3	
12/11/2021	9:17:22	25	Middle	6.2	24.0	29.6 30.4	30.4	6.95 6.44	6.43	6.68	98.7 91.1	90.9	2.25 2.58	2.59	2.64	4.3 3.6	3.7	4.3
	-	/ Fine	Bottom	12.5	23.1	30.4 31.2	31.2	6.42 6.10	6.12	6.12	90.6 85.3	85.5	2.60 3.04	3.06		3.7 4.7	5.0	
			Surface	1.0	24.5	31.2 29.7	29.7	6.13 7.03	7.04		85.6 99.8	100.1	3.08 2.93	2.95		5.2 2.5	2.4	
15/11/2021	10:29:16	25	Middle	6.2	23.7	29.7 31.6	31.6	7.05 6.30	6.32	6.68	100.3 89.2	89.5	2.97 3.37	3.36	3.31	2.3 3.6	3.4	3.3
		/ Fine	Bottom	12.5	23.2	31.6 32.8	32.8	6.33 5.97	5.95	5.95	89.7 84.4	84.1	3.35 3.59	3.61		3.1 3.8	4.1	
			Surface	1.0	24.6	32.8 29.9	29.9	5.93 6.90	6.89		83.8 98.3	98.0	3.62 1.98	2.00		4.3 4.2	4.3	
17/11/2021	11:04:25	25	Middle	6.2	23.6	30.0 31.8	31.8	6.87 6.27	6.28	6.58	97.7 88.7	88.9	2.01 2.49	2.48	2.40	4.4 4.6	4.6	3.8
		/ Fine	Bottom	12.4	22.5	31.8 32.6	32.6	6.29 5.98	6.00	6.00	89.0 83.4	83.6	2.47 2.69	2.71	-	4.6 2.1	2.4	
			Surface	1.0	23.5	32.6 29.8	29.8	6.01 7.04	7.06		83.8 98.3	98.6	2.73 1.60	1.62		2.6 2.6	2.7	
29/11/2021	9:52:18	24	Middle	6.2	22.7	29.8 31.8	31.8	7.08 6.47	6.46	6.76	98.9 90.1	89.9	1.63 1.92	1.90	1.94	2.8 5.1	5.1	3.0
	29/11/2021 9:52:18 -	/ Fine	Bottom	12.3	21.8	31.8 32.4	32.4	6.44 6.12	6.13	6.13	89.6 84.2	84.3	1.88 2.32	2.32	1.04	5.1 1.0	1.3	0.0
			Dottom	12.0	21.0	32.4	52.7	6.14	0.15	0.15	84.3	04.0	2.31	2.02		1.6	1.5	<u> </u>



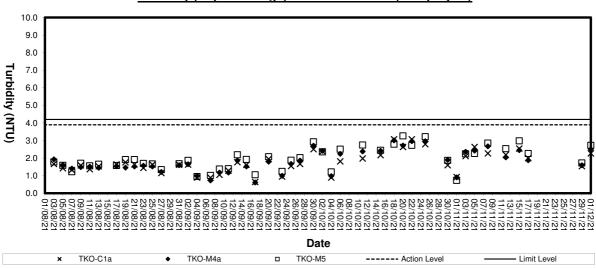
Appendix D5

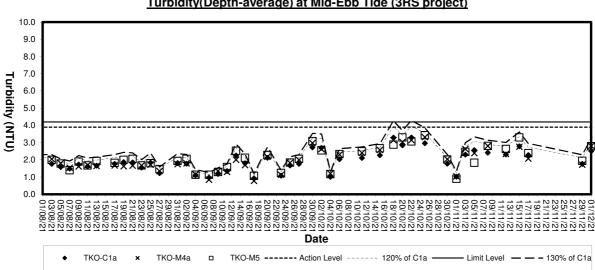
Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS Project)



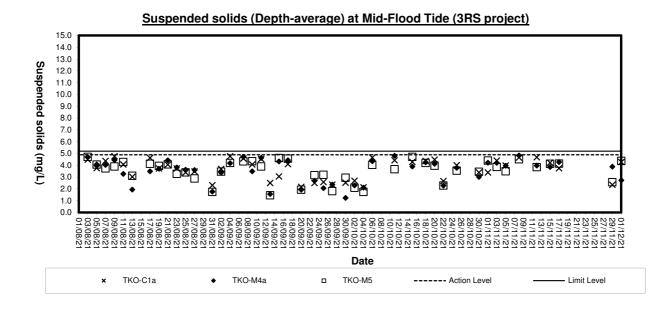


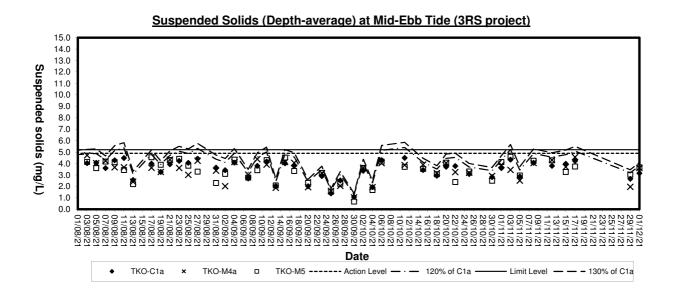
Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide (3RS project)




Dissolved Oxygen (Bottom) at Mid-Flood Tide (3RS project)

Dissolved Oxygen (Bottom) at Mid-Ebb Tide (3RS project)





Turbidity(Depth-average) at Mid-Ebb Tide (3RS project)

Turbidity (Depth-average) at Mid-Flood Tide (3RS project)

Appendix E

Weather Condition

2011				3.000.70				i seulig Ki	- • •
	Mean				Mean	Mean	Total	Prevailing	Mean
	Pressure	Ai	r Temperatı	ıre	Dew	Relative	Rainfall	Wind	Wind
	(hPa)				Point	Humidity	(mm)	Direction	Speed
Day		Absolute	Mean	Absolute	(deg. C)	(%)		(degrees)	(km/h)
		Daily	(deg.C)	Daily					
		Max	(deg.c)	Min					
		(deg. C)		(deg. C)					
1	1018.5	27.6	25.2	23.7	20.5	76	Trace	70	35.8
2	1018	27.9	25.1	24.1	20.6	76	Trace	80	37.1
3	1016.7	27.4	25.2	24.1	20.4	75	Trace	80	30.2
4	1014.9	27.9	25.5	24.1	21.3	78	-	80	25.3
5	1012.5	27.8	25.6	24.6	22.6	84	-	80	17
6	1010.1	29.2	26.4	24	22.3	79	-	20	6.7
7	1012.2	29	26.1	24.8	23	83	-	80	15.6
8	1017.2	25.3	20.1	18.1	12.1	61	2	360	45.3
9	1019.3	23	19.5	16.9	8.8	50	-	360	28.3
10	1018.7	24.7	20.5	17.8	6.6	41	-	360	25
11	1017.7	25	21.5	18.9	9.5	47	-	70	20.1
12	1018.8	25.7	22.6	20	11.7	51	-	10	21.4
13	1018.1	25.4	22.3	20.1	10.9	49	Trace	10	22.3
14	1018.2	24.7	21.6	19.3	13.2	59	-	80	24.1
15	1017.2	25.5	22.1	20.4	15.1	65	-	70	31.3
16	1017	26.3	23.2	21	17.7	71	-	60	25.3
17	1017.1	26.5	23.5	22	18.5	74	-	60	24.7
18	1014.3	25.8	22.4	20.2	16.3	69	-	10	13.3
19	1012.2	25.7	23	21.3	18.9	77	Trace	80	15.8
20	1012.9	26.1	23.7	22.4	19.5	77	0.3	80	33
21	1014.1	25.6	23.5	22.7	20.4	82	-	70	22.8
22	1017	23.3	19.6	16.8	15.2	76	3.5	360	31.3
23	1021.1	17.4	16.1	14.3	10.3	69	Trace	360	28.9
24	1020.3	22.1	19	16.9	12.3	65	-	20	20.6
25	1018.2	23.7	20.6	18.4	13.4	64	-	10	15.3
26	1018.4	24.8	21.6	18.6	14.2	64	-	80	25.3
27	1020.1	24.3	21.2	18.7	13.8	63	-	80	25.7
28	1019.5	24.5	21.6	19.2	15.6	69	-	70	26.5
29	1017.3	26.1	22.4	19.4	15.7	67	-	10	13.9
30	1018.4	24.6	21.3	17.1	13	59	-	10	39.1

Daily Extract of Meteorological Observations , November 2021 - Tseung Kwan O

Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected

Appendix F

Event-Action Plans

	Contractor			 Submit proposals for remediat actions to IC(E) within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate 	 Take Infinedate action to avoid further exceedance Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Amend proposal If appropriate.
ITY EXCEEDANCE	ER		1. Notify Contractor	 Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures property implemented 	 Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures properly implemented
EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE ACTION			 Check monitoring data submitted by the ET Check contractor's working method 	 Check monitoring data submitted by the ET Leader Check the Contractor's working method Check the Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures 	 Check monitoring data submitted by the ET Leader Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures
Ē		EI Leader	 Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, IC(E) and Contractor Repeat measurement to confirm finding 4. Increase monitoring frequency to daily 	 Identify source, investigate the causes of exceedance and propose remedial measures Inform IC(E) and Contractor Repeat measurements to confirm finding Increase monitoring frequency to daily for remedial actions Discuss with IC(E) and Contractor on remedial actions If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring 	 Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, Contractor and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily Assess the effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results
EVENT			1. Exceedance for one sample	2. Exceedance for two or more consecutive samples	1. Exceedance for one sample

	- 1	Ţ	
		Contractor	 Take immediate action to avoid further exceedances Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works as determined by the ER until the exceedance is abated
TY EXCEEDANCE		ER	 Confirm receipt of notification of failure in writing Notify Contractor In consultation with the IC(E), agree with the Contractor on the remedial measures to be implemented Ensure remedial measures to the exceedances continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated
ALI			·····
EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE	ACTION	IC(E)	 Discuss amongst ER, ET and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly Supervise the implementation of remedial measures
		ET Leader	 Identify source, investigate the causes of exceedance and propose remedial measures Notify IC(E), ER, EPD and Contractor Repeat measurement to confirm finding Increase monitoring frequency to daily Carry out analysis of contractor's working procedures to determine possible mitigation to be implemented possible meting with IC(E) and ER to discuss the remedial actions to be taken Assess effectiveness of Contractor's remediai actions and keep IC(E), EPD and ER informed of the results If exceedance stops, cease additional monitoring
		<u> </u>	
EVENT			2. Exceedance for two or more consecutive samples

.

.

r

. 1.

•

Contractor		 Submit noise mitigation proposals to fC(E). Implement noise mitigation proposals. 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IC(E) within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant activity of works as determined by the ER until the exceedances is abated.
EVENT/ACTION PLAN FOR NOISE EXCEEDANCE ACTION		 Confirm receipt of notification of failure in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. 	 Confirm receipt of notification of failure in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. If exceedances continue, consider what activity of the work is responsible and instruct the Contractor to stop that activity of work until the exceedances is abated.
EVENT/ACTION PLAN FOR ACTION	IC(E)	 Review the analysed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Discuss amongst the ER, the ET Leader and the Contractor on the potential remedial actions. Review the Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures.
	ET Leader	 Notify the IC(E) and the Contractor. Carry out investigation. Report the results of investigation to the IC(E) and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness 	 Notify the IC(E), the ER, the EPD and the Contractor. Identify source. Repeat measurement to confirm findings. Reneat measurement to confirm findings. Increase monitoring frequency. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. Inform the IC(E), the ER and the EPD the causes & actions taken for the exceedances. Assess effectiveness of Contractor's remedial actions and keep the IC(E), the EPD and the ER informed of the results If exceedance due to the construction works stops, cease additional monitoring
EVENT		Level	Eevel it

				ACTION	z			
<u>+</u>		ET Leader		Contractor		ER		IEC
Action level	-	Identify source(s) of impact:	<u>-</u>	Notify the ER and IEC in writing	<u>_</u> :	Notify EPD and other relevant	:	Check monitoring data
heinn evreened	5	Reneat in-situ measurement to		within 24 hours of identification of		governmental agencies in writing		submitted by ET
by one	i	confirm findings:		exceedance		within 24 hours of the	<u>.</u>	Confirm ET assessment if
n dav	<u>ر</u>	Notify Contractor in writing within	2	Rectify unacceptable practice;		Identification of the exceedance		exceedance is due / not due
	5	24 hours of identification of the	റ	Check all plant and equipment;	2.	Discuss with IEC, ET and		to the works
		exceedance	4	Submit investigation report to IEC		Contractor on the proposed	က်	Discuss with ET, ER and
	4	Check monitoring data, all plant.		and ER within 3 working days of		mitigation measures;		Contractor on the mitigation
	:	equipment and Contractor's		the identification of an	ю.	Require contractor to propose		measures
	_	working methods.		exceedance		remedial measures for the	4	Review contractor's
	Ľ	Carw out investigation	ហ	Consider changes of working		analysed problem if related to the		mitigation measures
	i a	Benort the results of investination	;	method if exceedance is due to		construction works		whenever necessary to
	5	to the Contractor within 3 working		the construction works	4.	Ensure remedial measures are		ensure their effectiveness
		dave of identification of	Ľ	Discuss with FT IFC and FR and		nrooertv implemented		and advise the ER
			;		u	Access the officiation of the		accordingty
		exceedance and advise		propose mitigation measures to	ດ່		L	
		contractor if exceedance is due to		IEC and ER if exceedance is due		mitigation measure	ი -	
		contractor's construction works		to the construction works within 4				implementation of mitigation
	7.	Discuss mitigation measures with		working days of identification of				measures
		Contractor if exceedance is due		an exceedance				
		to the construction works within 4	~	Implement the agreed mitigation				
		working days		measures within reasonable time				
	ω.	Repeat measurement on next day		scale				
		of exceedance if exceedance is					-	
		due to the construction works						

;

L

e` ,

ŗ

. i_

...

•---

:

۲. ۲

•

:

--

.

•

Action level ET Leader Action ET Leader ET Leader Contractor Noity ETD and other relevant 1. Noity ETD and other relevant 1. Check monitoring data periodes in writing 24 hours of the summerial agencies in writing 24 hours of the same sampling days 2. Repeat In-situ measurement 2. Confin Tassessment Processourie 3. Noity Contractor in writing periodes in writing 24 hours of the same same sampling days 3. Confin Tassessment 3. Confin Tassessment Consecutive Within 24 hours of sampling days 3. Consecutive writing processedance 3. Consecutive writing processedance 3. Confin Tassessment Consecutive S. Check all plant and secretance Writing 24 hours of the proposed memores are sampling days 3. Consecutive processedance 3. Consecutive writing processedance S. Consecutive S. Consecutive 3. Consecutive processed memores and adverted processed memores and adverted processed memores and adverted processed memores are sampling days of the miligation measures. 3. Consecutive processed memores and adverted proconsector in writing avoring days of the miligation	Event	<u> </u>		Ľ	EVENT AND ACTION PLAN FOR WATER QUALITY	E E	IR WATER QUALITY		
ET Leader Contractor ER Ieveil 1. Identify source(s) of impact; Notify ED and other relevant 1. ded by 2. Repart in writing 1. Notify ED and other relevant 1. ded by 2. Repart in writing 2. Notify Contractor in writing athon of exceedance writing writin A hours of the identification of the relevant 2. active 3. Notify Contractor in writing 2. Rectify unacceptable practice; 3. Writing writin A hours of the identification of the identification of the exceedance 3. active 3. Notify Contractor in writing 2. Check monitoring data, all 4. Check monitoring data, all 3. Check all plant and writing writin A hours of the identification of exceedance 3. Require contractor to proposed 4. 5. Carry out investigation to the Contractor if methods; 5. Submit the results of the investigation to the Contractor of an investigation to the contractor if an indigation measures identification of exceedance 4. Constactor sonstruction works 4. 6. Investigation of the contractor if an adverse struction works 5. Assess the effectivenees of the investigati					ACTIO	N			
Tievel1.Identify source(s) of impact; than one1.Notify EPD and other relevant acvertanted in measurement itentification of exceedance 		Ŀ	ET Leader		Contractor		ER		IEC
2. Repeat m-sutrement within 24 hours of the than one cutive 3. worting within 24 hours of the than one cutive 3. within 24 hours of the than one cutive 3. within 24 hours of the than one cutive 3. within 24 hours of the than one cutive 3. Notify Contractor in writing within 24 hours of the than one cutive identification of the than one cutive identification of the than one cutive identification of the than one identification of the than one identification of the than one than one identification of the than one identification of the than one identification of the the contractor on the proposed methods; 3. Check and part and than a than one cutive identification of the than one identification of the thours of the investigation to the Contractor out investigation to the Contractor out investigation to the Contractor of the investigation to the Contractor within 3 working days of the investigation to the Contractor within 3 working days of the investigation to the Contractor within 4 working days of the investigation to the construction within 4 working days of the miligation measures of the investigation of an exceedance is due to within 10. Norking days of the miligation measures of the miligation of an exceedance is due to works a measures of the m	Action level	·		<u>-</u>	Notify IEC and ER in writing		Notify EPD and other relevant	~`	Check monitoring data
a 3. Notify Contractor in writing within 24 hours of the anothin 24 hours of the writing within 24 hours of the writing within 24 hours of the writing within 24 hours of the identification of the writin 24 hours of the identification of the writin 24 hours of the identification of the exceedance actions identification of the exceedance actions identification of the exceedance actions investigation the results of the investigation the contractor if and advise contractor if the mitigation measures for the exceedance is due to contractor if and advise contractor if and propose mitigation measures to the mitigation measures are inplemented. 3. 6. Report the results of the mitigation measures interactor if and advise contractor if and advise contractor if and advise contractor if and propose mitigation areasures within 4 working advise the effectiveness of the mitigation measures are implemented. 4. 5. 7. Discuss mitigation measures are interaction of an advise contractor if and propose mitigation measures are indigation measures	being	~	_		within 24 hours of		governmental agencies in		submitted by EI
3. Notify Contractor in writing within 24 hours of writing atto. 3. Notify Contractor in writing atto	exceeded by		to confirm findings		identification of exceedance		writing within 24 hours of the	તં	Confirm ET assessment
yswithin 24 hours of adentification3. Check all plant and equipment;3. Contractor on the proposed mitigation measures;3. Contractor on the proposed measures for the prant dentification of an and advise contractor if and advise contractor if and advise contractor within 3 working days of and advise contractor if and advise contractor if and advise contractor if and advise contractor within 4 working days of within 4 working days of and bropose mitigation measures the mitigation measures of day of exceedance and propose mitigation an exceedance with EC and CER and bropose mitigation an exceedance b. Ensure mitigation measures3. Check all plant measures within 4 working days of the mitigation measures b. Assess the effectiveness of the mitigation measure b. Contractor within b. Contractor within 4 working days of the mitigation measures3. Check and ER the mitigation measures b. Contractor within 4 working days of the mitigation measures4. Ensure remedial measures the mitigation measures b. Contractor within 4 working days of the mit	more than one	က် —		2 N	Rectify unacceptable practice;		identification of the		if exceedance is due /
ys identification 4. Check monitoring data, all pand, equipment; and contractor's working methods; contractor's working methods; contractor's working methods; contractor's working methods; contractor's working methods; contractor's working methods; contractor within 3 working days of the investigation to the Contractor within 3 working days of the investigation to the Contractor within 3 working days of the and advise contractor if and advise contractor if works 2. Discuss with IEC, ET and contractors on the proposed investigation measures of investigation to the Contractor within 3 working days of and advise contractor if and advise contractor if an exceedance are implemented; 2. Discuss with IEC, ET and and advise contractor if and advise contractor if and advise contractor if and advise contractor if and advise contractor if an exceedance are implemented; 3. 2. Discuss with iEC, ET and and advise contractor if and advise contract	consecutive		within 24 hours of	က်	Check all plant and		exceedance		not due to the works
4. Check monitoring data, all plant, equipment and contractor's working methods; Contractor's working methods;4. Consider changes of working methods;Contractor on the proposed mitigation measures;5. Carry out investigation (a contractor's working days of investigation to the contractor investigation to the contractor investigation to the contractor investigation of exceedance and advise contractor if and advise contractor if exceedance is such in 3 working days of identification of exceedance and advise contractor if exceedance is such in 3 working days of identification of exceedance investigation4. Constactor on the proposed miligation measures for the analysed problem if related to the construction works exceedance4. Constactor on the proposed measures for the analysed problem if related to the miligation measures of the miligation measures5.6. Discuss miltigation and advise contractor within 3 working days of works6. Discuss with FT, IEC and ER and propose miligation the miligation measures of the miligation measures of the miligation measures6.7. Discuss miltigation an exceedance with IEC and Contractor within an exceedance are implemented7. Discuss miltigation the miligation measures6.8. Ensure miligation an exceedance are implemented day of exceedance.7. Discuss miltigation measures the miligation measures7.9. Prepare to increase the monitoring frequency to daily; day of exceedance.9. Prepare to increase the monitoring frequency to daily;	sampling days		identification		equipment;	~i	Discuss with IEC, ET and	က်	Discuss with ET, ER and
plant, equipment and Contractor's working methods;methods;methods;methods;Carry out investigation Carry out investigation investigation to the contractor investigation to the contractor identification of an and advise contractor if entification of exceedance and advise contractor if entification of and advise contractor within works3. Require contractor to propose the contractor to propose and advise contractor and advise contractor and advise contractor4.Ensure and advise contractor and advise contractor6.Discuss within the mitigation measures and advise of the mitigation measures the mitigation measure4.Discuss mitigation an exceedance tare implemented; Prepare to increase the monitoring frequency to daily; day of exceedance.5.	- -	4	-	4.	Consider changes of working		Contractor on the proposed		Contractor on the
Contractor's working methods;5. Submit the results of the investigation to the Card ER within 3 working days of investigation to the Contractor 			plant, equipment and		methods;		mitigation measures;		mitigation measures.
Carry out investigation Report the results of investigation to the Contractor within 3 working days of investigation to the Contractor within 3 working days of identification of exceedance and advise contractor if exceedance is due to contractor's construction worksinvestigation to IEC and ER analysed problem if related to the construction worksReport the results of investigation to the Contractor identification of exceedance and advise contractor if exceedance is due to contractor's construction worksinvestigation to IEC and ER and avise contractor if enalysed problem if related to the construction works6. Discuss with IEC and advise contractor if exceedance identification of an exceedance4.7. Implement the agreed monitoring frequency to daily, day of exceedance.5.			Contractor's working methods;	പ	Submit the results of the	က်	Require contractor to propose	4	Review contractor's
Report the results of investigation to the Contractor within 3 working days of investigation to the Contractor within 3 working days of and advise contractor if and advise contractor if exceedance and advise contractor if exceedance is due to contractor's construction workswithin 3 working days of identification of an exceedance and advise contractor if measures to IEC and ER within 16 contractor within and propose mitigation measures to IEC and ER within 16 contractor within and propose mitigation morkswithin 3 working days of the construction works are properly implemented and propose mitigation fector and ER within 16 contractor within an exceedance mitigation measures the mitigation measures the mitigation measures the mitigation measures the mitigation measures the mitigation measures the mitigation measure the mitigation measure		ы. С	-		investigation to IEC and ER		remedial measures for the		mitigation measures
investigation to the Contractoridentification of an within 3 working days of identification of exceedanceidentification of an exceedancethe construction workswithin 3 working days of 		ö			within 3 working days of the		analysed problem if related to		whenever necessary to
within 3 working days of identification of exceedance and advise contractor if exceedance is due to contractor's construction worksexceedance and propose mitigation and propose mitigation b. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 4 working days of the mitigation measures the mitigation measures of the mitigation measures the mitigation measure the mitigation measure4. Ensure remedial measures are properly implemented 5. Assess the effectiveness of the mitigation measures the mitigation measure the mitigation measure5.Thus and solve an exceedance are implemented; Prepare to increase the monitoring frequency to daily;1. Ensure remedial measures are properly implemented the mitigation measures within 4 working days of the mitigation measures the mitigation measures <b< td=""><td></td><td></td><td>investigation to the Contractor</td><td></td><td>identification of an</td><td></td><td>the construction works</td><td></td><td>ensure their</td></b<>			investigation to the Contractor		identification of an		the construction works		ensure their
identification of exceedance and advise contractor if exceedance is due to contractor's construction works contractor's construction works with IEC and ER and propose mitigation exceedance is due to contractor's construction works with IEC and ER within 4 working days of identification of an exceedance Ensure mitigation measures within a exceedance Ensure mitigation measures within are properly implemented 5. Assess the effectiveness of the mitigation measures with IEC and Contractor within 4 working of identification of an exceedance Ensure mitigation measures within reasonable time scale Prepare to increase the monitoring frequency to daily; . Repeat measurement on next			within 3 working days of		exceedance	4	Ensure remedial measures		effectiveness and advise
and advise contractor if exceedance is due to contractor's construction worksand propose mitigation measures to IEC and ER within 4 working days of tidentification of an exceedance with IEC and Contractor within 4 working of identification of an exceedance an exceedance Ensure mitigation measures an exceedance Ensure mitigation measures tidentification of an exceedance Ensure mitigation measures tidentification of an exceedance Ensure mitigation measures of identification of an exceedance Ensure mitigation measures tidentification of an exceedance Ensure mitigation measures tidentification of an exceedance Ensure mitigation measures an exceedance Ensure mitigation measures an exceedance e monitoring frequency to daily; Discuss mitigation measures ensure monitoring frequency to daily; Discuss mitigation measures ensure mitigation measure mitigation measures ensure m			identification of exceedance	Ö	Discuss with ET, IEC and ER		are properly implemented		the ER accordingly
exceedance is due to contractor's construction worksmeasures to IEC and ER within 4 working days of identification of an with IEC and Contractor within 4 working of identification of an exceedance Ensure mitigation measures the mitigation measurethe mitigation measure the mitigation measure7.measures within tidentification of an exceedance Ensure mitigation measures the mitigation measurethe mitigation measure tidentification of an exceedance mitigation measures within reasonable time scale monitoring frequency to daily;the mitigation measure tidentification of an exceedance measures tidentification of an exceedancean exceedance an exceedance fingetion measures are implemented; Prepare to increase the monitoring frequency to daily;The mitigation measure exceedance measurement on next0.Repeat measurement on nextA working of exceedance monitoring frequency to daily;			and advise contractor if		and propose mitigation	Ω.	Assess the effectiveness of	ഗ്	Assess the effectiveness
contractor's construction workswithin 4 working days of identification of an biscuss mitigation measures with IEC and Contractor within 4 working of identification of an exceedance Ensure mitigation measures e identification of an exceedance Ensure mitigation measures within reasonable time scale monitoring frequency to daily;within 4 working days of identification of an exceedance mitigation measures within reasonable time scale monitoring frequency to daily;. Repeat measurement on next day of exceedance.within 4 working days of identification of an exceedance mitigation measures within reasonable time scale			exceedance is due to		measures to IEC and ER		the mitigation measure		of the implemented
works Discuss mitigation measures with IEC and Contractor within 4 working of identification of an exceedance Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; . Repeat measurement on next day of exceedance.			contractor's construction		within 4 working days of				mitigation measures.
Discuss mitigation measures with IEC and Contractor within 7. 4 working of identification of an exceedance Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; . Repeat measurement on next day of exceedance.			works		identification of an				
with IEC and Contractor within 7. 4 working of identification of an exceedance Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; . Repeat measurement on next day of exceedance.		۲.	_		exceedance				
4 working of identification of an exceedance Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; . Repeat measurement on next day of exceedance.			with IEC and Contractor within	~	Implement the agreed				
an exceedance Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; . Repeat measurement on next day of exceedance.			4 working of identification of		mitigation measures within				
			an exceedance		reasonable time scale				
		ω̈́							
			are implemented;						
		റ്	_						
_									
		~							
			uay or excedualize.	1		-			

.

Щ
NIC
EXC
Σ
UAL
RQ
ATE
N N
ΡŪ
LAN
N P
CTIO
D A(
AN
ENT
EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE
EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE

										-04									,			الكفتي									1
		IEC	. Check monitoring data			It exceedance is due /						mitigation measures	submitted by Contractor	and advise the ER		5. Assess the effectiveness	of the implemented	mitigation measures													
Ц С	}	-	~~	- C	¥ 			ന് 			4				_				<u>.</u>												
ER QUALITY EXCEEDAN		ER	Notify EPD and other relevant	governmental agencies in	Writing Within 24 hours of	identification of exceedance	Discuss with IEC, ET and	Contractor on the proposed	mitigation measures;	Request Contractor to critically	review the working methods;	Ensure remedial measures	are properly implemented	Assess the effectiveness of	the implemented mitigation	measures.															
ATE	z						2			က် —		4		ഹ																	
EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE	ACTION	Contractor	1. Notify IEC and ER in writing;	within 24 hours of the	identification of the	•	Rectify unacceptable practice;	Check all plant and	equipment;	Consider changes of working	_	Submit the results of the	investigation to IEC and ER	within 3 working days of the	identification of an	exceedance	Discuss with ET, IEC and ER	and propose mitigation	measures to IEC and ER	within 4 working days of the	identification of an		7. Implement the agreed	mitigation measures within	reasonable time scale						
LN NT		_								-	-																				
EVE		ET Leader	1. Repeat in-situ measurement	-	Identify source(s) of impact;	Notify Contractor in writing	within 24 hours of	identification of the	exceedance	Check monitoring data, all	plant, equipment and	Contractor's working methods;	5. Carry out investigation	-	investigation to the Contractor	within 3 working days of	identification of exceedance	and advise contractor if	exceedance is due to	contractor's construction	works	7. Discuss mitigation measures	with IEC, ER and Contractor	within 4 working of	identification of an	exceedance	8. Ensure mitigation measures	are implemented;	Increase the monitoring	frequency to daily until no	exceedance of Limit Level.
			F			ر ی				4																					
Event			Limit level	being	exceeded by	one sampling	dav .	`		. .					·		-														

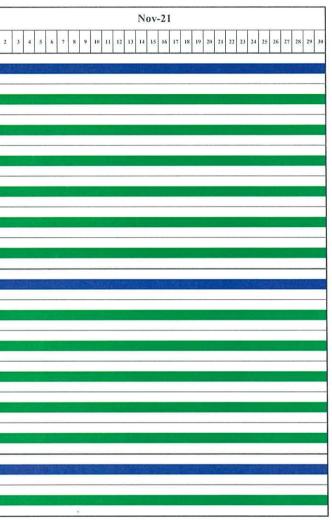
. • **/--**:-·. ... ŕ : • · · · · · Ŀ :

.

.

Event		EVEN	ITA	ND ACTION PLAN FOR W	ATI	EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE	Щ	
				ACTION	ž			
		ET Leader		Contractor		ER		IEC
imit I aval	-	Dongaf in-citu maasurament	-	Notify FR and IFC in writing	ļ	Notify EPD and other relevant		Check monitoring data
Lunu Levei boing	-	to confirm finding:	-	within 24 hours of the	:	dovernmental agencies in		submitted by ET
uaniy evreeded hv	0	Identify source(s) of imnact:		identification of the		writing within 24 hours of	сі	Confirm ET assessment
exceeded by more than one	i e	Notify Contractor in writing		exceedance and		identification of exceedance		if exceedance is due /
concect tive	<u>;</u>	within 24 hours of	2.	Rectify unacceptable practice:	ы М	Discuss with IEC, ET and		not due to the works
sampling days		identification of the	က် 	Check all plant and		Contractor on the proposed		Discuss with ER, ET and
		exceedance		equipment;		mitigation measures;		Contractor on the
	V	Check monitoring data, all	4	Consider changes of working	ભં	Request Contractor to critically		mitigation measures.
	÷	nant equipment and		methods:		review the working methods;	4.	Review proposals on
		Contractor's working methods	œ	Submit the results of the	0	Ensure remedial measures		mitigation measures
	Ľ		;	investigation to IEC and ER		are properly implemented		submitted by Contractor
	i c			within 3 working days of the	4	Assess the effectiveness of		and advise the ER
	5			identification of an		the implemented mitigation		accordingly.
		within 3 working days of		exceedance		measures;	പ്	Assess the effectiveness
		identification of exceedance	ີ່ດ	Discuss with ET. IEC and ER	ശ്	Consider and instruct, if		of the implemented
		and advise contractor if		and propose mitigation		necessary, the Contractor to		mitigation measures.
		exceedance is due to		measures to IEC and ER		slow down or to stop all or part		
		contractor's construction		within 4 working days;		of the marine work until no		
		works	<u>.</u>	Implement the agreed		exceedance of Limit Level.		
	~	Discuss mitigation measures		mitigation measures within				
		with IEC, ER and Contractor;		reasonable time scale				
•	ω̈́		7.	As directed by the Engineer,				
	•	are implemented;		to slow down or to stop all or				
	റ്			part of the marine work or				
		frequency to daily until no		construction actives.				
		exceedance of Limit Level for						
		two consecutive days.						

•


Appendix G

Works Programme

China Harbour - Zhen Hua Joint Venture Contract No. CV/2015/07 Handling of Surplus Public Fill (2016 -2018)

Three Months Rolling Programme for the Period from 1-September-2021 to 30-November-2021 (Supplementary Agreement No.4)

				Sep-21	Oct-21	
Item	Description	From	Тө	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		1 1 2
1	Section 1C	1-Sep-21	30-Nov-21			and the second
1.1	Operation of Fill Bank, surveillance system, tipping halls and recorder houses	1-Sep-21	30-Nov-21			
1.2	Operation of crushing plants	1-Sep-21	30-Nov-21			
1.3	Operation of the existing and expanded dewatering plants	1-Sep-21	30-Nov-21			
1.4	Collection and delivery of Public Fill from CWPFBP and MWPFRF to TKOFB	1-Sep-21	30-Nov-21			
1.5	Breaking up the incoming precast concrete units	1-Sep-21	30-Nov-21			
1.6	Carry out preliminary sorting on Public Fill and Delivery the pre- sorted Public to Staorage Area for 3RS Project	1-Sep-21	30-Nov-21			
2	Section 2C	1-Jun-21	31-Aug-21			
2.1	Operation of Fill Bank, surveillance system, tipping halls and recorder houses	1-Sep-21	30-Nov-21			
2.2	Breaking up the incoming precast concrete units	1-Sep-21	30-Nov-21			
2.3	Operation of crushing plants	1-Sep-21	30-Nov-21			
2.4	Operation of glass cullet storage compartment at Portion B7	1-Sep-21	30-Nov-21			
2.5	Carry out preliminary sorting on Public Fill and Delivery the pre- sorted Public to Staorage Area for 3RS Project	1-Sep-21	30-Nov-21			
3	Section 4B	1-Sep-21	30-Nov-21			
3.1	Collection and delivery of Public Fill to the Designated Reclamation Sites in the Mainland	1-Sep-21	30-Nov-21			

Appendix H

Weekly ET's Site Inspection Record

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

02/11/2021 10:00 am Inspection Date . Time Weather Sunny / Fine (Cloudy / Overcast / Drizzle / Rain / Storm / Hazy : Wind Calm (Light/ Breeze / Strong 26 Temperature High / Moderate / Low Humidity

inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:	(Jerry)	Alle	A
Name:	TERNE YOU LINT	Sarsung	Chan Wa: Man
Title	Aron / P5	Env. Alm	E.1.

問有限公司 SULT LTD.

東業德

ETS

Environmental Checklist		ment	tation s*	Remark
			N/A	
Fugitive Dust Emission				
 Dust control / mitigation measures shall be provided to prevent dust nuisance. 				
 A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. 	V			
Water sprays shall be provided and used to dampen materials.	\checkmark			
 Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. 				
All vehicles shall be restrict to a maximum speed of 10 km per hour.	\checkmark			
 Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. 	1			
The designated site main haul road shall be paved or regular watering.				
Frequent watering of work site shall be at least three times per day.	\checkmark			
 Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. 				
 Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. 	\checkmark			
All plant and equipment should be well maintained e.g. without black smoke emission.	1			
Open burning should be prohibited.				-
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	√			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	√			
 When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. 	$$			
The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	\checkmark			
 The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. 	√			
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	1			
Noise Impact				<u></u>
 The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. 	V			
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	\checkmark			
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	\checkmark			
Air compressors and hand held breakers should have noise labels.				
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 			1	
 Noisy equipment and mobile plant shall always be site away from NSRs. 	1			

Environmental Checklist		ement Stages	Remark
		No	
Water Quality			
 Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	√		
The permanent drainage channels should have sediment basin, traps and baffles and maintain properly.	\checkmark		
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	V		
 Manholes should be covered and sealed. 			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 			
 A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. 			
 A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. 			
 The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. 			
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	V		
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V		
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	V		
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	√		
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	√		
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 			
 Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. 			
Oil interceptor shall be provided at work shop.	\checkmark		
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 			
 The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. 	√		
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	√		
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 			
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	V		
 The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. 			
 Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. 			
 A waste collection vessel shall be deployed to remove floating debris. 	\checkmark		

Environmental Checklist		emen Stages		Remark
	Yes	No	N/A	
Landscape and Visual				
 The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. 	V			
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. 	√			
 Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. 	\checkmark			
 The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. 	\checkmark			
Other Environmental Factors				
 C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill for disposal. 	V			
Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.	\checkmark			
 Any unused materials or those with remaining functional capacity should be recycled and stored properly. 	V			
 All generators, fuel and oil storage are within bundle areas. 	\checkmark			
 Oil leakage from machinery, vehicle and plant is prevented. 	\checkmark			
The Environmental Permit should be displaced conspicuously on site.				
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	V			
 To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	1			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Follow up Date
1	Follow up action to item no.2 on 29/10/21, water sprays were provided.		211102_001	No	

Remark

	Name	Title	Signature	Date
Checked by	June Lau	ET Representative	In	02 November 2021

<u>Photo</u> Photo 211102_001 (Near Workshop) (Improved)

CEDD Contract No.: CV/2015/07

: 10/11/2021 Inspection Date 14:20 Time : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy Weather : Calm / Light / Breeze / Strong Wind 2300 Temperature High / Moderate / Low Humidity inspected by CEDD Contractor / Sub-Contactor ĒΤ Signature: Name: L. Wor Crookuc-18UN E.T Title ASOW

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

CEDD Contract No.: CV/2015/07

Environmental Checklist		ement Stages	tation s*	Remark	
		No		:	
Fugitive Dust Emission					
 Dust control / mitigation measures shall be provided to prevent dust nuisance. 					
 A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. 	\checkmark			-	
 Water sprays shall be provided and used to dampen materials. 	\checkmark				
 Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. 	. √		1		
All vehicles shall be restrict to a maximum speed of 10 km per hour.					
Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	V				
The designated site main haul road shall be paved or regular watering.					
Frequent watering of work site shall be at least three times per day.					
Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.					
Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	$ $ \checkmark				
 All plant and equipment should be well maintained e.g. without black smoke emission. 				· · · · ·	
Open burning should be prohibited.					
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	√			-	
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	√				
When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.	√				
The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.					
The level of stockpilling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	1				
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	V				
Noise Impact					
 The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. 	V				
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	\checkmark				
Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.					
Air compressors and hand held breakers should have noise labels.		1		······································	
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 					
 Noisy equipment and mobile plant shall always be site away from NSRs. 	, V		++		

Environmental Checklist			tation s*	Remark
	Yes	No	N/A	1
Water Quality				
 Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 				
 The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. 				
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	V			
 Manholes should be covered and sealed. 	\checkmark			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	\checkmark			
 A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. 	\checkmark			
A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront.				
The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.	\checkmark			
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	V			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	√			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	V			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	V			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	1			
 Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. 				
Oil interceptor shall be provided at work shop.				
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 				
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	V			
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	\			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 				
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	√			
 The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. 	\checkmark			
 Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. 	√			
 A waste collection vessel shall be deployed to remove floating debris. 				

Yes √ √ √	Stage No				
√ √					
√ √					
1					
<u>,</u>					
V					
	100 100				
V					
\checkmark					
\checkmark					
	\checkmark		Item 1		
\checkmark					
\checkmark				-	
√					
	1	1	V		V

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Follow up Date
1	Oil stain were observed near Workshop	To clean the oil stain properly	211110_001	Yes	17/11/2021
. <u> </u>				_II	
			- -		
Remark 			. · · ·		
			· · · · · · · · · · · · · · · · · · ·		
	Name Title	Signature	Da	te	

	Name	Title	Signature	Date
Checked by	June Lau	ET Representative	Ind	10 November 2021
			V *	

Handling of Surplus Public Pill (2016-2016) - I Scung I (Wan	Photo	
Photo 211110_001 (Near Workshop)		
	: :	

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

17/11/2021 14:20 : Inspection Date ÷ Time : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy Weather : Calm / Light / Breeze / Strong Wind 25-6 Temperature : High / Møderate / Low Humidity

 Inspected by
 CEDD
 Contractor / Sub-Contactor
 ET

 Signature:
 Man
 Man

 Name:
 ML_MOR
 SUMM

 NL_MOR
 SUMM
 Line Mach

 Title
 Mrow/MS
 G.T

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

	Environmental Checklist		ement Stages	ation *	Remark
		Yes	No	N/A	
Fugi	tive Dust Emission				
	Dust control / mitigation measures shall be provided to prevent dust nuisance.				
-	A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.	√			
•	Water sprays shall be provided and used to dampen materials.	\checkmark			
	Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.	\checkmark			
*	All vehicles shall be restrict to a maximum speed of 10 km per hour.	\checkmark			
•	Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	√			
	The designated site main haul road shall be paved or regular watering.	V			
•	Frequent watering of work site shall be at least three times per day.				
	Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.				
	Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	V			
	All plant and equipment should be well maintained e.g. without black smoke emission.				
	Open burning should be prohibited.	V			
	The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.	↓			
•	Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.	√			
	When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.				
•	The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.				
	The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	\checkmark			
•	Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311).	V			
Nois	se Impact				
•	The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	√			
	Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works.				
	Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.	\checkmark			
	Air compressors and hand held breakers should have noise labels.	\checkmark			
	Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.				
	Noisy equipment and mobile plant shall always be site away from NSRs.				

Environmental Checklist		Implementation Stages*		Remark
			N/A	
Water Quality				
 Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 				
 The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. 				
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	1			
 Manholes should be covered and sealed. 	\checkmark			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 				
 A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. 				
 A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. 				
The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.				
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	V			· · · · · · · · · · · · · · · · · · ·
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	\checkmark			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	1			
A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains.	V			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	V			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	\checkmark			
 Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. 				
 Oil interceptor shall be provided at work shop. 				
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 				
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.				
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	V			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 	\checkmark			
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	\checkmark			
 The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. 	\checkmark			
Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse.	1			
 A waste collection vessel shall be deployed to remove floating debris. 				

Environmental Checklist				Remark
Landscape and Visual				
 The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. 	\checkmark			
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. 				
 Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. 	V			
 The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. 	√			
Other Environmental Factors				
 C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill for disposal. 	√			
 Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 	\checkmark			
 Any unused materials or those with remaining functional capacity should be recycled and stored properly. 	\checkmark			
All generators, fuel and oil storage are within bundle areas.	\checkmark	1		
Oil leakage from machinery, vehicle and plant is prevented.	\checkmark			
The Environmental Permit should be displaced conspicuously on site.				
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	\checkmark			
 To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	\checkmark			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Follow up Date
1	Follow up action to item no.1 on 10/11/21, Oil stain were cleaned.		211117_001	No	

Remark				

	Name	Title	Signature	Date
Checked by	June Lau	ET Representative	Ine	17 November 2021

<u>Photo</u> Photo 211117_001 (Near Workshop) (Improved)

CEDD Contract No.: CV/2015/07

		- 10 Jas
Inspection Date	:	24/11/21
Time		14=45
Weather	:	Sunny / Fine) Cloudy / Overcast / Drizzle / Rain / Storm / Hazy
Wind	:	Calm / Light / Breeze / Strong
Temperature	:	19°C
Humidity	÷	High / Moderate (Low)

CEDD	Contractor / Sub-Contactor	ET
AFrond		
	Alter	Mak
Tool you way	SWAU	Mark Xei War
BION/VF	To other	ЕЛ
	AFrond Toone You wing	Arme you wing Swowy

Environmental Checklist				Remark
		tages No	N/A	
Fugitive Dust Emission				
Dust control / mitigation measures shall be provided to prevent dust nuisance.	\checkmark			
A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.	1			
Water sprays shall be provided and used to dampen materials.	\checkmark			
Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.	\checkmark			
All vehicles shall be restrict to a maximum speed of 10 km per hour.	\checkmark			
Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	1			
The designated site main haul road shall be paved or regular watering.				
Frequent watering of work site shall be at least three times per day.				
Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.				
Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.				
All plant and equipment should be well maintained e.g. without black smoke emission.	√			
Open burning should be prohibited.				
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	√			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	√			
When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.		<u> </u>		
The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	\checkmark			
The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	_ √			
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	√			
Noise Impact				
The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	√			
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	\checkmark			
Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.	\checkmark			
Air compressors and hand held breakers should have noise labels.	\checkmark			
Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.				
 Noisy equipment and mobile plant shall always be site away from NSRs. 		+		

Environmental Checklist				Remark
		Stages No	N/A	
Water Quality				
 Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	V			
The permanent drainage channels should have sediment basin, traps and baffles and maintain properly.	V			
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	\checkmark			
 Manholes should be covered and sealed. 	\checkmark			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	\checkmark			
A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front.				
 A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. 				
The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.				
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	1			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	V			· · · · · · · · · · · · · · · · · · ·
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	V			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	V			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	\checkmark			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	V			
 Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. 				
 Oil interceptor shall be provided at work shop. 				
 Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. 	\checkmark			·····
 The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. 	V			
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	V			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 				
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	V			
 The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. 	\checkmark			
 Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. 	V			
 A waste collection vessel shall be deployed to remove floating debris. 				

Environmental Checklist		Implementation Stages*		Remark
Y		No	N/A	
Landscape and Visual				
 The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. 	√		1	
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. 	\checkmark			
 Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. 	1			
 The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. 	√			
Other Environmental Factors				
 C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill for disposal. 	V			
 Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 	\checkmark			
 Any unused materials or those with remaining functional capacity should be recycled and stored properly. 	\checkmark			
 All generators, fuel and oil storage are within bundle areas. 	\checkmark			
Oil leakage from machinery, vehicle and plant is prevented.	\checkmark			
The Environmental Permit should be displaced conspicuously on site.	\checkmark			
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	√			
 To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	√			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Follow up Date

Domark

Remark	•			

	Name	Title	Signature	Date
Checked by	June Lau	ET Representative	me	24 November 2021

CEDD Contract No.: CV/2015/07

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

Inspection Date	:	29/11/2021
Time	:	14230
Weather	: Si	nny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy
Wind	: Ca	alm Light / Breeze / Strong
Temperature	:	25°C
Humidity	: Н	igh / Moderate / Low

inspected by	CEDD	Contractor / Sub-Contactor	ET
Signature:	Ason	Alt	
Name:	75252 you lef ist	Solvjlenhe	chan Wai May
Title	Dur Fis	Emille	E.T

東業德勤測試顧問有限公司 ETS-TESTCONSULT LTD.

Environmental Checklist				Remark
Fugitive Dust Emission				
Dust control / mitigation measures shall be provided to prevent dust nuisance.	\checkmark			
A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.	√			·
Water sprays shall be provided and used to dampen materials.	\checkmark			
Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.	\checkmark			
All vehicles shall be restrict to a maximum speed of 10 km per hour.	\checkmark			
Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	V			
The designated site main haul road shall be paved or regular watering.				
Frequent watering of work site shall be at least three times per day.	\checkmark			
Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site.				
Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.				
All plant and equipment should be well maintained e.g. without black smoke emission.				
Open burning should be prohibited.		ļ.,		
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	V			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	√			
When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.				
The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	√	1		
The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	V			
 Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non- road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). 	V			
Noise Impact				
 The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. 	\checkmark			
 Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. 	\checkmark			
 Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. 	\checkmark			
 Air compressors and hand held breakers should have noise labels. 				
 Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. 				
 Noisy equipment and mobile plant shall always be site away from NSRs. 		1	+ +-	

Handling of Surplus Public Fill (2016-2018) - Tseung Kwan O Area 137 Fill Bank

Environmental Checklist		ement Stages		Remark
Nater Quality				
 Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. 	V			
 The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. 	v			
 Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. 	V			
 Manholes should be covered and sealed. 				
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 				· · · · · · · · · · · · · · · · · · ·
A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front.				
A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront.				
The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge.				
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	1			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	\checkmark			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	1			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	V			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	V			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	V			
Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas.				
Oil interceptor shall be provided at work shop.	\checkmark			
Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.	\checkmark			-
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	V			
All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport.	V			
Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer.				
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	V			
The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	V			and the second
Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse.	1			v
 A waste collection vessel shall be deployed to remove floating debris. 				

Environmental Checklist			tation s*	Remark
		No	N/A	
andscape and Visual				
 The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. 	\checkmark			
 The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. 	\checkmark			
 Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. 	1			
 The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. 	V			
Other Environmental Factors				
 C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill for disposal. 	√			
 Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 	$ $ \checkmark			
 Any unused materials or those with remaining functional capacity should be recycled and stored properly. 	\checkmark			
 All generators, fuel and oil storage are within bundle areas. 	\checkmark			
Oil leakage from machinery, vehicle and plant is prevented.	\checkmark			
The Environmental Permit should be displaced conspicuously on site.	\checkmark			
 Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. 	V			
 To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	√			

Summary of the Weekly Site Inspection:

Item	Details of defective works or observations	Proposed Follow Up Action	Photo Ref.	Further Action Required (Yes/No)	Follow up Date

Remark

	Name	Title	Signature	Date
Checked by	June Lau	ET Representative		29 November 2021
			- Fla	

Appendix I

Implementation Schedule of Mitigation Measures

Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2015/07

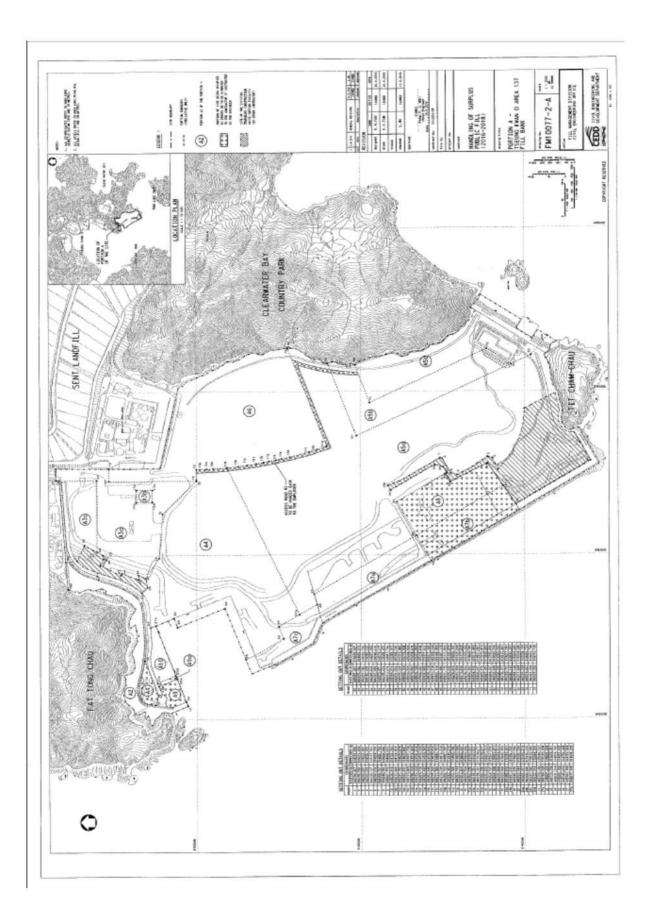
Environmental Mitigation Implementation Schedule

	· · ·			Implementat	ion Status	
	Environmental Protection Measures	Location	Implemented	Partially implemented	Not implemented	Not Applicable
A	ir Quality					
	Dust control / mitigation measures shall be provided to prevent dust nuisance.	All areas				
•	A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed.	Northern Site Boundary				
-	Water sprays shall be provided and used to dampen materials.	All areas	\checkmark			
•	Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions.	All areas	\checkmark			
•	All vehicles shall be restrict to a maximum speed of 10 km per hour.	All areas	\checkmark			
•	Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin.	Site Egress				
	The designated site main haul rout shall be paved or regular watering.	All haul roads				
-	Frequent watering of work site shall be at least three times per day.	All areas	\checkmark			
-	Wheel washing facilities including high pressure water jet shall be provided at the entrance of work site.	Site Egress	\checkmark			
-	Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank.	Site Egress	\checkmark			
•	The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD.	All areas	\checkmark			
•	Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD.	All areas	\checkmark			
•	When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides.	C&DMSF	\checkmark			
•	The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	C&DMFS	\checkmark			
•	The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	C&DMFS	\checkmark			
-	All plant and equipment should be well maintained e.g. without black smoke emission.	All areas	\checkmark			
•	Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311).	All areas		\checkmark		
N	oise Impact					
•	Approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted.	All areas	\checkmark			
•	Only well maintained plant should be operated on-site and plant should be serviced regularly during the site works.	All areas				
•	Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials.	All areas				
•	Air compressors and hand held breakers should have noise labels.	All areas				
•	Machines and plants that may be in intermittent use should be shut down between work months or should be throttled down to a minimum.	All areas	\checkmark			
-	Noisy equipment and mobile plant shall always be site away from NSRs.	All areas				

Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2015/07

			Implementat	ion Status	
Environmental Protection Measures	Location	Implemented	Partially implemented	Not implemented	Not Applicable
Water Quality					
Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms.	All areas	\checkmark			
The permanent drainage channels should have sediment basin, traps and baffles and maintain properly.	All areas	\checkmark			
Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels.	All areas	\checkmark			
 Manholes should be covered and sealed. 	All areas	\checkmark			
 Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. 	All areas		\checkmark		
• A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front.	Public fill stockpiling area	\checkmark			
 A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. 	C&DMFS	\checkmark			
 The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. 	All areas	\checkmark			
 The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. 	Temporary Slopes	\checkmark			
 Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. 	Temporary Slopes	\checkmark			
 Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. 	All areas	\checkmark			
 A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being discharged into storm drains. 	Wheel Washing facility	\checkmark			
 The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	Wheel Washing facility	\checkmark			
 Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. 	All areas	\checkmark			
 Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas and work shop. 	All areas	\checkmark			
Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water.	Barge Handling Area (BHA)	\checkmark			
The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash.	Barge Handling Area (BHA)	\checkmark			
 All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during transport. 	Barge Handling Area (BHA)	\checkmark			
 Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. 	Along the seafront	\checkmark			
 Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be properly collected and treated before disposal. 	Barge Handling Area (BHA)	\checkmark			
The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities.	Along the seafront	\checkmark			
 Existing silt curtain at the outward side of the basin near the Barging Handling Area throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. 	Along the seafront	V			
 A waste collection vessel shall be deployed to remove floating debris. 	Along the seafront	\checkmark			

Handling of Surplus Public Fill (2016-2018) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2015/07


			Implementati	on Status	
Environmental Protection Measures	Location	Implemented	Partially implemented	Not implemented	Not Applicable
Landscape and Visual					
• The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided.	All areas	\checkmark			
• The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD.	Completed slopes	\checkmark			
• Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed.	Site boundary	\checkmark			
• The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare.	All areas	\checkmark			
Other Environmental Factors					
C&D waste sorted from mixed C&D material shall be transfer to SENT landfill for disposal.	All areas	\checkmark			
Plan and stock construction materials carefully to minimise generation of waste.	All areas	\checkmark			
Any unused materials or those with remaining functional capacity should be recycled.	All areas	\checkmark			
All generators, fuel and oil storage are within bunded areas.	All areas	\checkmark			
Oil leakage from machinery, vehicle and plant is prevented.	All areas		\checkmark		
The Environmental Permit should be displaced conspicuously on site.	All areas	\checkmark			
Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment.	All areas	√			
 To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. 	All areas				

Appendix J

Site General Layout plan

Appendix K

Monthly Summary Waste Flow Table

		Actual Quantitie	es of Inert C&I	D Materials Gene	erated Monthly			Actual Quantitie	s of C&D Was	stes Generated Mo	nthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan	0	0	0	0	0	0	0	0	0	0	78.83
Feb	0	0	0	0	0	0	0	0	0	0	45.73
Mar	0	0	0	0	0	0	0	0	0	0	96.48
Apr	0	0	0	0	0	0	0	0	0	0	152.63
May	0	0	0	0	0	0	0	0	0	0	127.55
Jun	0	0	0	0	0	0	0	0	0	3.4	116.35
Sub-total	0	0	0	0	0	0	0	0	0	3.4	617.57
Jul	0	0	0	0	0	0	0	0	0	0	72.7
Aug	0	0	0	0	0	0	0	0	0	0	158.67
Sep	0	0	0	0	0	0	0	0	0	0	81.68
Oct	0	0	0	0	0	0	0	0	0	0	94.66
Nov	0	0	0	0	0	0	0	0	0	0	71.39
Dec											
Total											

Monthly Summary Waste Flow Table for 2021

Notes: (1) The performance targets are given in PS Clause 1.110(14)

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the site.

(3)Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.

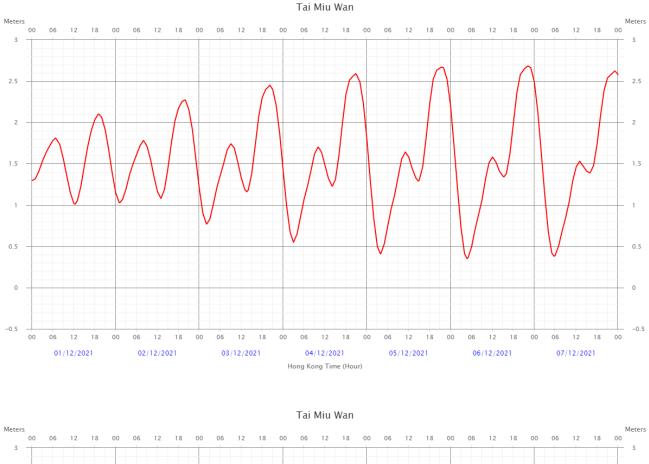
Appendix L

Monitoring Schedule for the Coming Month

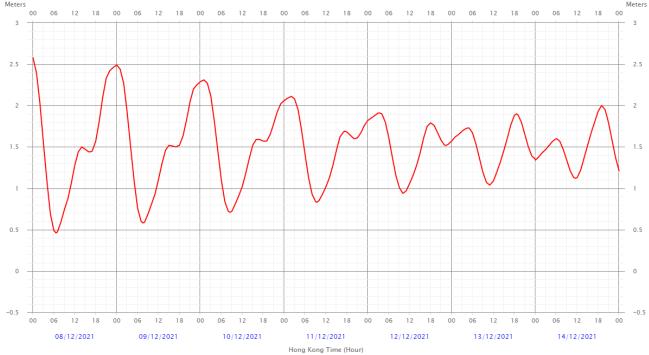
Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Tseung Kwan O Area 137

Time Schedule for Impact Water Quality Monitoring (WQM), Impact Air Monitoring (1-hrTSP, 24-hr TSP and 24-hr RSP), Weekly Site Inspection (Weekly SI) and Impact Noise Monitoring

December 2021


Sunday	Monday		Tuesday	Wednesday		Thursday	Friday	Saturday
28-Nov		29-Nov	30-Nov		1-Dec	2-Dec	3-De	c 4-Dec
TKO137 Fill Bank Closed	1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1		24 hr TSP 24-hr RSP	1-hr TSP x 2	
	WQM Mid-ebb (08:30-10:30) Mid-flood (14:00-16:00)			WQM Mid-ebb (09:00-11:00) Mid-flood (15:00-17:00)			WQM Mid-ebb (10:30-12:30) Mid-flood (17:00-19:00)	
5-Dec		6-Dec	7-Dec		8-Dec	9-Dec	10-De	c 11-Dec
TKO137 Fill Bank Closed	1-hr TSP x 1 NM WQM Mid-flood (08:00-10:00) Mid-ebb (13:00-15:00)			24 hr TSP 24-hr RSP Weekly SI (pm)			1-hr TSP x 2	
12-Dec		13-Dec	14-Dec	1	15-Dec	16-Dec	17-De	c 18-Dec
TKO137 Fill Bank Closed	1-hr TSP x 1		24 hr TSP 24-hr RSP	1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1	
	WQM Mid-ebb (08:00-10:00) Mid-flood (14:00-16:00)			WQM Mid-ebb (09:00-11:00) Mid-flood (14:30-16:30)			WQM Mid-ebb (10:30-12:30) Mid-flood (16:30-18:30)	
19-Dec		20-Dec	21-Dec	2	22-Dec	23-Dec	24-De	c 25-De
TKO137 Fill Bank Closed	24 hr TSP 24-hr RSP			1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1	TKO137 Fill Bank Closed
	WQM Mid-flood (08:00-10:00) Mid-ebb (12:00-14:00)			WQM Mid-flood (08:30-10:30) Mid-ebb (12:30-14:30)			WQM Mid-flood (10:30-12:30)	
26-Dec		27-Dec	28-Dec	2	29-Dec	30-Dec	31-De	c 1-Jar
TKO137 Fill Bank Closed	TKO137 Fill Ban Closed	k		1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1	TKO137 Fill Bank Closed
24 hr TSP 24-hr RSP Remark: 1. Due to the	idal pariad is pat within	n tho wa	rking hour,water monitoring (I	WQM Mid-ebb (08:00-10:00) Mid-flood (14:00-16:00)	12000		WQM Mid-ebb (08:30-10:30) Mid-flood (15:30-17:30)	24 hr TSP 24-hr RSP

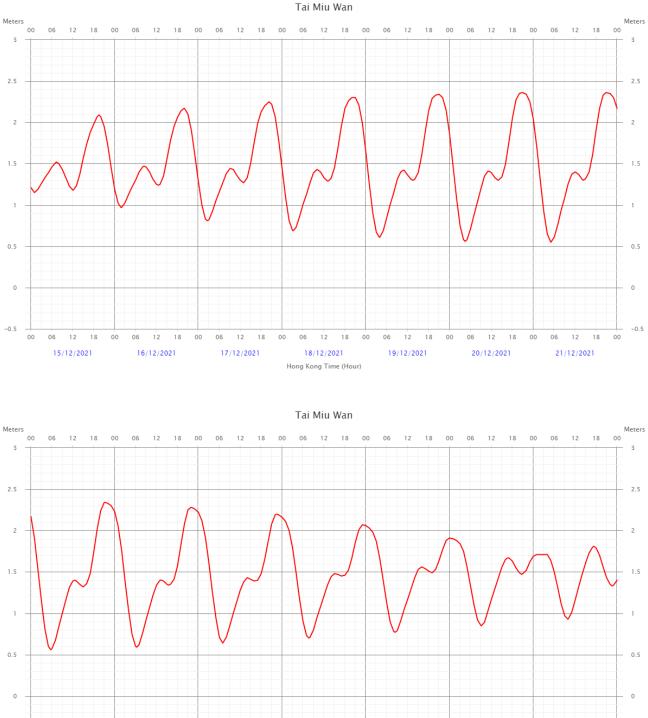
Due to the tidal period is not within the working hour,water monitoring (Mid-ebb) in 24/12/2021 have been cancelled.
 TKO 137 Fill Bank is closed on General Holidays and Lunar New Year Eve. Only two days of water quality monitoring are conducted in the fifth week of December.

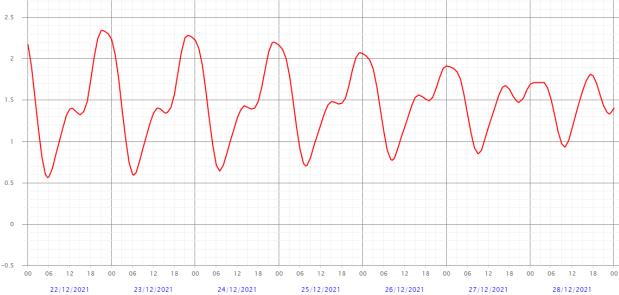


Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Tseung Kwan O Area 137

Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM)

December 2021

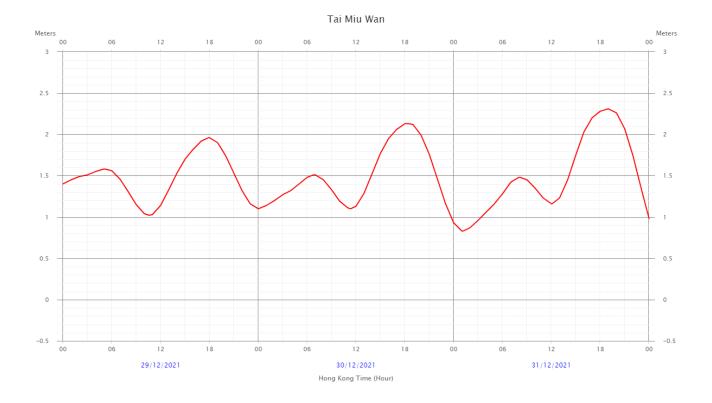



-0.5

Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Tseung Kwan O Area 137

Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM)

December 2021



Hong Kong Time (Hour)

Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Tseung Kwan O Area 137

Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM)

December 2021

Appendix M

Reporting Month Monitoring Schedule

Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Tseung Kwan O Area 137

Time Schedule for Impact Water Quality Monitoring (WQM), Impact Air Monitoring (1-hrTSP, 24-hr TSP and 24-hr RSP), Weekly Site Inspection (Weekly SI) and Impact Noise Monitoring

November 2021

Sunday	Monday		Tuesday	Wednesday		Thursday	Friday		Saturday
31-Oct		1-Nov	2-Nov		3-Nov	4-Nov		5-Nov	6-No
	1-hr TSP x 1 NM		24 hr TSP 24-hr RSP	1-hr TSP x 2			1-hr TSP x 1		
	WQM Mid-ebb (09:00-11:00)		Weekly SI (am)	WQM Mid-ebb (10:30-12:30)			WQM Mid-flood (08:00-10:00)		
	Mid-flood (15:30-17:30)			Mid-flood (16:30-18:30)			(08.00-10.00) Mid-ebb (13:00-15:00)		
7-Nov		8-Nov	9-Nov		10-Nov	11-Nov		12-Nov	13-No
	24 hr TSP 24-hr RSP			1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1		
	WQM Mid-flood (08:30-10:30) Mid-ebb (13:30-15:30)						WQM Mid-ebb (08:00-10:00) Mid-flood (14:30-16:30)		
14-Nov		15-Nov	16-Nov		17-Nov	18-Nov	(14.30-10.30)	19-Nov	20-No
24 hr TSP 24-hr RSP	1-hr TSP x 1			1-hr TSP x 1 Weekly SI (pm)			1-hr TSP x 1		24 hr TSP 24-hr RSP
	WQM Mid-ebb (09:30-11:30)			WQM Mid-ebb (10:00-12:00)					
	Mid-flood			Mid-flood					
21-Nov	(15:00-17:00)	22-Nov	23-Nov	(17:00-19:00)	24-Nov	25-Nov		26-Nov	27-No
	1-hr TSP x 2			1-hr TSP x 1 Weekly SI (pm)	211101		24 hr TSP 24-hr RSP		
28-Nov		29-Nov	30-Nov		1-Dec	2-Dec		3-Dec	4-De
	1-hr TSP x 2 Weekly SI (pm)			1-hr TSP x 1		24 hr TSP 24-hr RSP	1-hr TSP x 2		
	WQM Mid-ebb (08:30-10:30) Mid-flood			WQM Mid-ebb (09:00-11:00) Mid-flood			WQM Mid-ebb (10:30-12:30) Mid-flood		
Remark: 1 Due to the	(14:00-16:00)			(15:00-17:00)			(17:00-19:00)		

Remark: 1. Due to the tidal period is not within the working hour, water monitoring (Mid-ebb&flood) in 10, 19, 22, 24 & 26 November 2021 have been cancelled.

Appendix N

Complaint Log

Complaint Logs

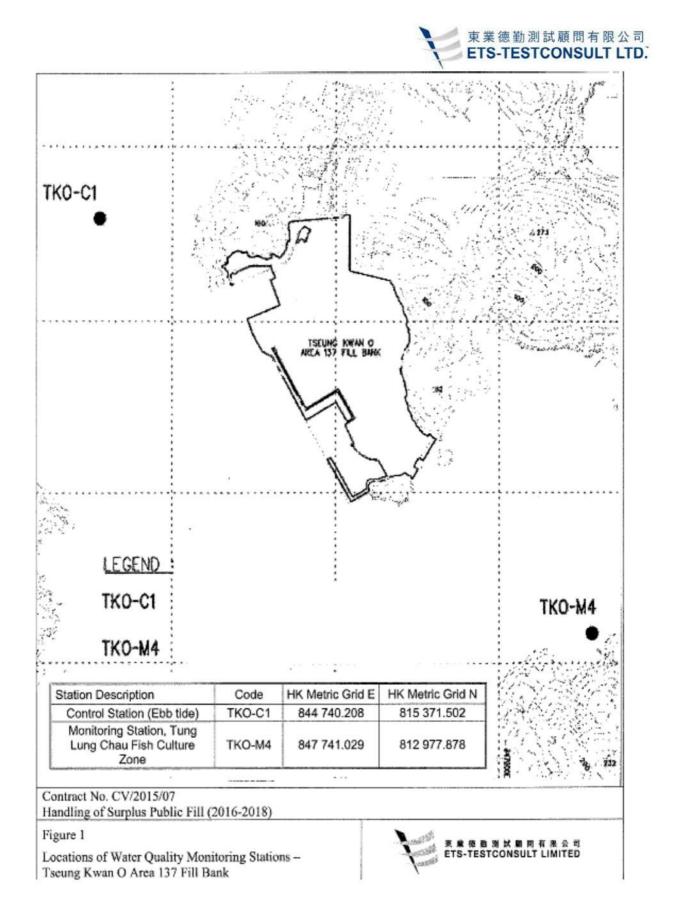
Log Ref.	Location	Received Date	Details of Complaint	Investigation / Mitigation Action	Status
001	Barge handling area (BHA) at Tseung Kwan O 137	15 May 2017	One complaint received on 15 May 2017, which was forwarded to ET on 11 August 2017, from CEDD (Complaint NCF- N08/RE/00014875-17 Sent By CSO[RN]3 [CASE#2- 3943858817 Int.Comm. – WS170513A57354] against illegal dumping at sea without permit in TKO137 fill bank.	 Refer to the ET site investigation on 14 August 2017, the contractor clarified that the contractor conducted vessel loading test at Tseung Kwan O 137 Fill bank on 13 May 2017 and the material was then unloaded from the vessels. Follow up action to complaint by ET and contractor: Contractor under the valid dumping permit to dump fill materials and the site works shall be complied with the relevant environmental protection and pollution control ordinances. ET reminded contractor that the dump fill material under the valid dumping permit should be checked and confirmed. In addition, record should be kept for ET reference. Details of Action(s) Taken by the Contactor: The contractor started to dump fill materials from 19 May 2017 after receiving the valid dumping permit. The contractor dump fill materials were followed by the valid dumping permit and the permit was kept apply every three month The contractor kept the permit for ET reference. 	Closed
002	Tseung Kwan O 137 Fill Bank	12 Oct 2017	One complaint received on 12 October 2017, which was forwarded to ET on 18 October 2017, from public against dust emission at the fill bank and discharge of muddy water to the seafront.	 Refer to the ET weekly site inspection on 18 October 2017, no defective observation related to dust emission and discharge of water was recorded during the investigation. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Site vehicle for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; Silt curtains are provided at the outward side of the basin near the Fill Bank; Drainage systems are adequate and maintained to prevent flooding and overflow; Catchpits, sand and silt removal facilities and intercepting channels are maintained and functioning properly. 	Closed

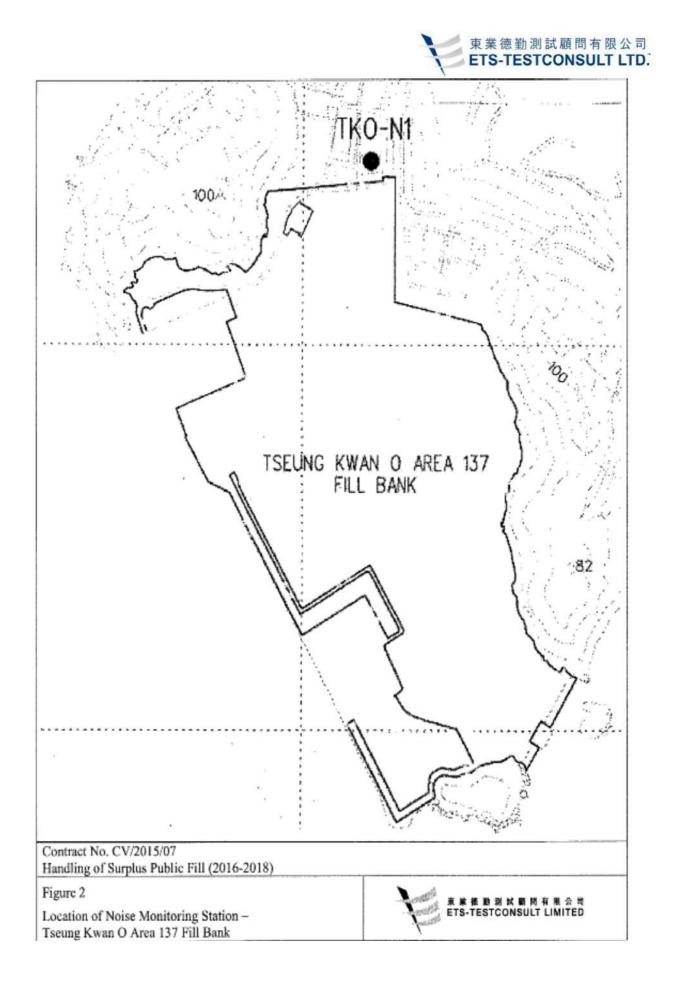
003	Tseung Kwan O 137 Fill Bank	09 April 2018	One complaint received on 09 April 2018, which was forwarded to ET on 18 April 2018, from public against the rocks and debris deposited on the road surface along Wan Po Road near TKO137 Fill Bank. The complainant complained that waste generated caused an environmental nuisance.	 Refer to the ET site investigation on 20 April 2018, the condition of Wan Po Road near TKO137 Fill Bank was found satisfactory. (Photos on ET follow-up investigation at TKO137 Fill Bank on 20 April 2018). Details of Action(s) Taken by the Contactor: Regular cleaning on Wan Po Road and the access road at the site exit by haul road cleaning team to remove mud and gravel is arranged eight times per month; Regular water spraying by water lorries is provided for road cleaning at Wan Po Road; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; Site vehicles for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided. 	Closed
004	Tseung Kwan O 137 Fill Bank	13 January 2019	One complaint received on 13 January 2019, which was forwarded to ET on 16 January 2019, from EPD (NCF-N08/RE/00001348-19) against 將軍澳 137 堆填區 內,缸車池污水,不經處理, 直接排到河道,河道係直接流 出大海,極度嚴重影響周遭環 境生態,污染程度極為嚴重, 促請政府有關部門嚴正跟進!	 After received the details of the complaint from the Contractor on 16 January 2019, ET have performed a site investigation on 21 January 2019 to investigate this event. During the site inspection, no muddy water was observed discharged from the Fill Bank to nearby environment. Besides, refer to the marine water monitoring results during that period, no exceedance was recorded on Turbidity and Suspended Solids. This reflects that this occurrence did not affect the condition of marine water near the TKO137Fill Bank. Details of Action(s) Taken by the Contactor: Drainage system were adequate and well maintained to prevent flooding and overflow; Sand and silt removal facilities, e.g. silting screen, were provided before the discharge point; Temporary intercepting drains were used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers were used to assist the diversion of polluted stormwater to the intercepting channels were maintained, and the deposited silt and grit were removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times; 	Closed

005	Tseung Kwan O 137 Fill Bank	14 May 2019	One complaint received on 14 May 2019, which was forwarded to ET on 14 May 2019, from public against 投 訴將軍澳第 137 區填料庫, 有車出入沒有灑水傳出大量沙 塵,破壞環境,帶出大量沙泥 到馬路,造成污染及嚴重滋 擾,要求跟進。要求改善, 停止滋擾	 Refer to the ET site investigation on 15 May 2019, the condition of Wan Po Road near TKO137 Fill Bank was found satisfactory. (Photos on ET follow-up investigation at TKO137 Fill Bank on 15 May 2019). Details of Action(s) Taken by the Contactor: Regular cleaning on Wan Po Road and the access road at the site exit by haul road cleaning team to remove mud and gravel is arranged eight times per month; Regular water spraying by water lorries is provided for road cleaning at Wan Po Road; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; Site vehicles for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided. 	Closed
006	Tseung Kwan O 137 Fill Bank	11 June 2019	One complaint received on 04 June 2019, which was forwarded to ET on 11 June 2019, from public regarding the muddy water problem at 137 fill bank.	 After received the details of the complaint from the Contractor on 11 June 2019, ET have performed a site investigation on 14 June 2019 to investigate this event. During the site inspection, no muddy water was observed discharged from the Fill Bank to nearby environment. Besides, refer to the marine water monitoring results during that period, no exceedance was recorded on Turbidity and Suspended Solids during the concerning period. This reflects that this occurrence did not affect the condition of marine water near the TKO137Fill Bank. Details of Action(s) Taken by the Contactor: Drainage system were adequate and well maintained to prevent flooding and overflow; Sand and silt removal facilities, e.g. silting screen, were provided before the discharge point; Temporary intercepting drains were used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers were used to assist the diversion of polluted stormwater to the intercepting channels were maintained, and the deposited silt and grit were removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times; 	Closed

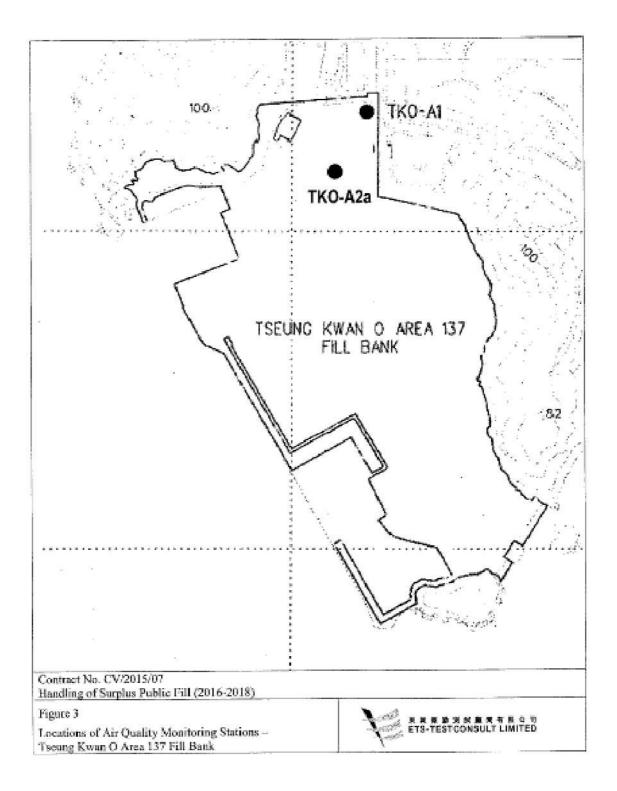
007	Tseung Kwan O 137 Fill Bank	27 June 2019	One complaint received on 27 June 2019, which was forwarded to ET on 28 June 2019, from public against dust emission at the fill bank. The complainant complained that the dust caused an environmental nuisance.	 Refer to the ET site investigation on 02 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 24 to 28 June 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed
008	Tseung Kwan O 137 Fill Bank	17 July 2019	One complaint received on 17 July 2019, which was forwarded to ET on 17 July 2019, from public against 投 訴將軍澳堆填 137 區及收泥 頭區,於運作時產生大量沙 塵,嚴重污染周圍環境及影響 行人,情況已持續發生了幾日	 Refer to the ET site investigation on 19 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 2 to 17 July 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed

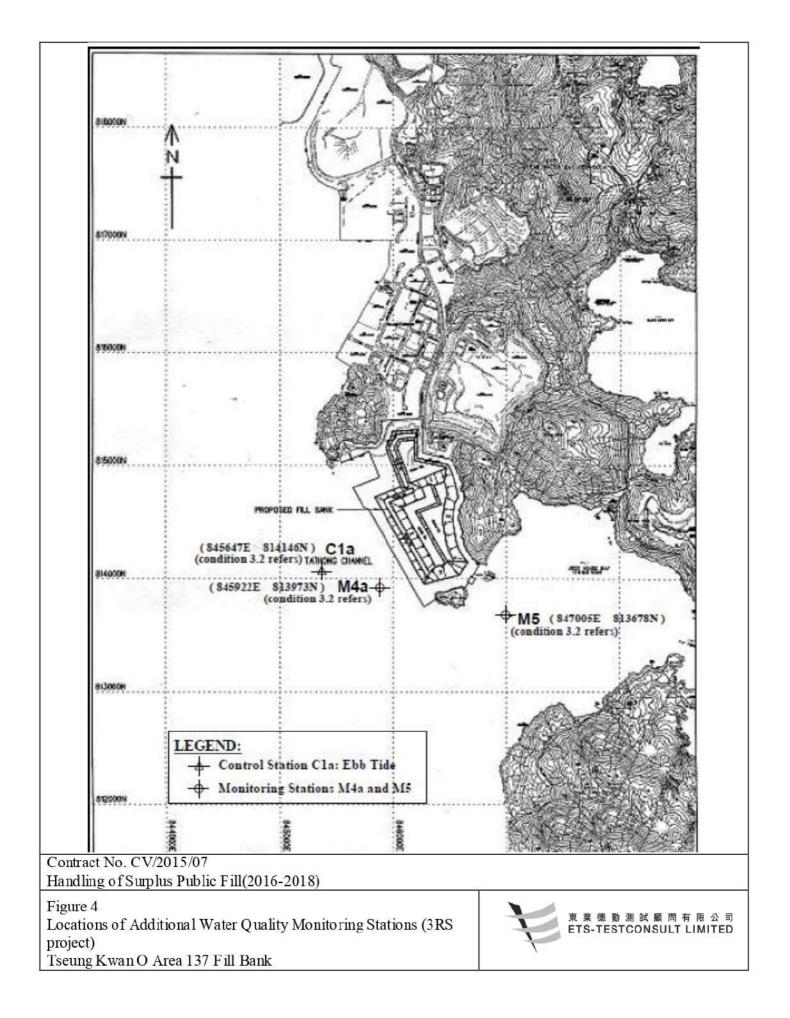
009	Tseung Kwan O 137 Fill Bank	26 July 2019	One complaint received on 26 July 2019, which was forwarded to ET on 26 July 2019, from public against 投 訴將軍澳第 137 區填料庫, 大風吹起引致塵埃飛揚,更吹 到 TVB,造成嚴重滋擾,要 求跟進及回覆。	 Refer to the ET site investigation on 29 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 23 to 29 July 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed
010	Tseung Kwan O 137 Fill Bank	09 September 2019	One complaint received on 09 September 2019, which was forwarded to ET on 09 September 2019, from public against 投訴將軍澳第 137 區 填料庫,大風吹起引致塵埃飛 揚,更吹到日出康城,造成嚴 重滋擾,要求跟進及回覆。	 Refer to the ET site investigation on 11 September 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 1 to 13 September 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed


011	Tseung Kwan O 137 Fill Bank	10 September 2019	One complaint received on 10 September 2019, which was forwarded to ET on 10 September 2019, from public against 投訴將軍澳 137 區經常 於處理建築廢料時沒有灑水,導 致沙塵滾滾,嚴重污染環境,要 求環保署跟進及回覆。	 Refer to the ET site investigation on 11 September 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 1 to 13 September 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed
012	Tseung Kwan O 137 Fill Bank	24 August 2021	One complaint received on 24 August 2021, which was forwarded to ET on 30 August 2021, from public against 投訴將軍澳第 137 區 公眾填料庫,灑水不足,泥頭 車引起大量塵埃。	 Refer to the ET site investigation on 30 August 2021, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 20 August 2021 to 30 August 2021. Details of Action(s) Taken by the Contactor: Repairing work on water truck was conducted. Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; 	Closed



·				\\	
013	Tseung Kwan O 137 Fill Bank	25 November 2021	A complaint was received on 25 November 2021, which was forwarded to ET by email on 26 November 2021, from public against 投訴將軍 澳 137 公眾填料庫地盤灑水 不足,大量塵埃,吹到 TVB 電 視城一帶,問題一直無改善, 要求環保署跟進及電郵回覆	 Refer to the ET site investigation on 29 November 2021, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 24 November 2021 to 29 November 2021. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site area are operated properly; Regular cleaning at the site haul road is provided to minimize the dust emission 	Closed




Figures

