8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com ## TEST REPORT ## China Harbour Engineering Co Ltd Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) TSEUNG KWAN O AREA 137 FILL BANK **MONTHLY EM&A REPORT NO.58** (FEBRUARY 2022) Prepared by: LAU, Wing Sum Assistant Environmental Officer Checked by: LAU, Chi Leung Environmental Team Leader Issue Date: 25 March 2022 Report No.: ENA21055 This report shall not be reproduced unless with prior written approval from this laboratory. Our Ref: PL-202204004 ETS-Testconsult Limited 8/F, Block B, Veristrong Industrial Centre 34-36 Au Pui Wan Street Fo Tan, Hong Kong Attention: Mr. C L Lau 1 April 2022 Dear Mr. Lau, RE: Contract No. CV/2021/09 Handling of Surplus Public Fill (2022-2023) Monthly EM&A Report (No. 58) for February 2022 for the Tseung Kwan O Area 137 Fill Bank Website: www.acuityhk.com Unit E, 12/F., Ford Glory Plaza, Nos. 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, HK Tel.: (852) 2698 6833 Fax.: (852) 2698 9383 Reference is made to your submission of the Monthly EM&A Report for February 2022 for the TKO Area 137 Fill Bank. We are pleased to inform you that we have no adverse comment on the captioned report. Thank you for your attention. Please do not hesitate to contact the undersigned should you have any queries. Yours faithfully, Tour Fauldeng F. C. Tsang Independent Environmental Checker cc. CEDD – Mr. P C LEUNG ENA21055 Monthly EM&A Report No.58 | TABLE O | F CONTENTS | Page | |---------|---|------------| | EXECUTI | VE SUMMARY | | | 1.0 | INTRODUCTION | 1 | | 2.0 | PROJECT INFORMATION | | | 2.0 | 2.1 Scope of the Project | 1 | | | 2.2 Site Description | 1 | | | 2.3 Work Programme | 2 | | | 2.4 Project Organization and Management Structure | 2 | | | 2.5 Contact Details of Key Personnel | 2 | | 3.0 | WORK PROGRESS IN THIS REPORTING PERIOD | 2 | | 4.0 | AIR QUALITY MONITORING | | | | 4.1 Monitoring Requirement | 2 | | | 4.2 Monitoring Equipment | 2 | | | 4.3 Monitoring Parameters, Frequency and Duration | 2 | | | 4.4 Monitoring Locations and Schedule | 3 | | | 4.5 Monitoring Methodology | 3 | | | 4.6 Action and Limit levels | 3-4 | | | 4.7 Event-Action Plans | 4 | | | 4.8 Results and Observation | 4 | | 5.0 | NOISE MONITORING | | | | 5.1 Monitoring Requirements | 4 | | | 5.2 Monitoring Equipment | 4 | | | 5.3 Monitoring Parameters, Duration and Frequency | 4-5 | | | 5.4 Monitoring Locations | 5 | | | 5.5 Monitoring Procedures and Calibration Details | 5 | | | 5.6 Action and Limit levels | 5 | | | 5.7 Event-Action Plans | 5 | | 6.0 | 5.8 Results and Observation | 5-6 | | 6.0 | MARINE WATER QUALITY MONITORING 6.1 Manitoring Requirements | 6 | | | 6.1 Monitoring Requirements | 6
6 | | | 6.2 Monitoring Locations 6.3 Monitoring Parameters | 6
6-7 | | | 6.4 Monitoring Frequency | 7 | | | 6.5 Monitoring Methodology and Equipment Used | 7
7 - 8 | | | 6.6 Action and Limit Level | 9 | | | 6.7 Event and Action Plan | 9 | | | 6.8 Monitoring Duration in this reporting period | 9 | | | 6.9 Marine Water Monitoring Results | 10 | | 7.0 | ENVIRONMENTAL AUDIT | | | | 7.1 Weekly ET Site Inspections and EPD's Site Inspection | 10-11 | | | 7.2 Review of Environmental Monitoring Procedures | 11 | | | 7.3 Assessment of Environmental Monitoring Results | 11 | | | 7.4 Advice on the Solid and Liquid Waste Management Status | 11 -12 | | 8.0 | STATUS OF ENVIRONMENTAL LICENSING AND PERMITTING | 12-13 | | 9.0 | ENVIRONMENATL NON-CONFORMANCE | | | | 9.1 Summary of air quality, noise and marine water quality | 13 | | | 9.2 Summary of Environmental Complaints | 13 | | | 9.3 Summary of Notification of Summons and Prosecution | 13 | | 10.0 | IMPLEMENTATION STATUS | | | | 10.1 Implementation Status of Environmental Mitigation Measures | 13 | | | 10.2 Implementation Status of Event and Action Plan | 13 | | | 10.3 Implementation Status of Environmental Complaint, Notifications of Summons and | 13 | | | Successful Prosecutions Handling | | | 11.0 | CONCLUSION AND RECOMMENTATIONS | 13-14 | | 12.0 | FUTURE KEY ISSUE | | | | 12.1 Work Programme for the Coming Month | 15 | | | 12.2 Key Issues for the Coming Month | 15-16 | | | 12.3 Monitoring Schedule for the Coming Month | 16 | | | | | ENA21055 Monthly EM&A Report No.58 ## **APPENDIX** | , _ | | |------------|---| | Α | Organization Chart and Lines of Communication | | B1 | Calibration Certificates for Impact Air Quality Monitoring Equipment | | B2 | Impact Air Quality Monitoring Results | | B3 | Graphical Plots of Impact Air Quality Monitoring Data | | C1 | Calibration Certificates for Impact Noise Monitoring Equipment | | C2 | Impact Noise Monitoring Results | | C3 | Graphical Plots of Impact Noise Monitoring Data | | D1 | Calibration Certificates for Impact Marine Water Quality Monitoring Equipment | | D2 | Impact Marine Water Quality Monitoring Results | | D3 | Graphical Plots of Impact Marine Water Quality Monitoring Data | | D4 | Impact Marine Water Quality Monitoring Results (3RS project) | | D5 | Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS project) | | E | Weather Condition | | F | Event-Action Plans | | G | Work Programme | | Н | Weekly ET's Site Inspection Record | | 1 | Implementation Schedule of Mitigation Measures | | J | Site General Layout Plan | | K | Monthly Summary Waste Flow Table | | L | Monitoring Schedule for the Coming Month | | M | Reporting Month Monitoring Schedule | | N | Complaint Log | | | • | ## **FIGURES** | Figure 1 | Locations of Water Quality Monitoring Stations – Tseung Kwan O Area 137 Fill Bank | |----------|--| | Figure 2 | Location of Noise Monitoring Station – Tseung Kwan O Area 137 Fill Bank | | Figure 3 | Locations of Air Quality Monitoring Stations – Tseung Kwan O Area 137 Fill Bank | | Figure 4 | Locations of Water Quality Monitoring Stations (3RS project) – Tseung Kwan O Area 137 Fill | ## **TABLES** 2.1 | 4.1 | Air Quality Monitoring Equipment | |------|--| | 4.2 | Monitoring parameters, duration and frequency of air quality monitoring | | 4.3 | Air Quality Monitoring Locations | | 4.4 | Action and Limit levels for 24-hr TSP and 1-hr TSP | | 5.1 | Noise Monitoring Equipment | | 5.2 | Duration, Frequency and Parameters of noise monitoring | | 5.3 | Noise Monitoring Location | | 5.4 | Action and Limit levels for noise monitoring | | 6.1 | Locations of Marine Water Monitoring Stations | | 6.2 | Locations of Additional Marine Water Monitoring Stations (3RS project) | | 6.3 | Marine Water Quality Monitoring Parameters | | 6.4 | Monitoring frequency of the marine water | | 6.5 | Summary of testing procedures | | 6.6 | Details of Marine Water Quality Monitoring Equipment (In-site measurement) | | 6.7 | Water Quality Action and Limit Levels | | 6.8 | Water Quality Action and Limit Levels (3RS project) | | 6.9 | Time Schedule of Impact Marine Water Quality Monitoring | | 6.10 | Summary of Impact Marine Water Quality Exceedances | | 6.11 | Summary of Impact Marine Water Quality Exceedances (3RS project) | | 7.1 | Key Findings of Weekly ET Site Audits in this reporting period | | 7.2 | Actual amounts of Waste generated in this reporting period | | 8.1 | Summary of environmental licensing and permit status | | 10.1 | Summary of Environmental Complaints and Prosecutions | | | | Contact Details of Key Personnel ENA21055 Monthly EM&A Report No.58 ## **EXECUTIVE SUMMARY** This monthly Environmental Monitoring and Audit (EM&A) report No.58 was prepared by ETS-Testconsult Ltd (ET) for "Contract No: CV/2021/09 – Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project). This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at TKO Area 137 in February 2022. ## Site Activities As informed by the Contractor, the site activities in this reporting period were as below: - 1. Operation of the Public Fill Reception Facilities at Tseung Kwan O Fill Bank (TKOFB); - 2. Operation of dewatering plant and expanded dewatering plant at TKOFB; - 3. Enhancement of Mobile Data Network at TKOFB - Operation and Maintenance of Artificial Intelligent System for Crushing Plant Nos.2,3 and 4 (Model QJ241) at TKOFB; - 5. Operation of the Integrated Public Fill Reception (Fixed Rigid Platform) at TKOFB; - 6. Operation and Maintenance of Wash House at TKOFB; - 7. Personnel Position Tracking and Proximity Detection System of Moving Plant at TKOFB; - 8. Modification and Operation a Digital Works Supervision System (DWSS) for TKOFB; - 9. Operation and maintenance of Wheel Washing Facility at TKOFB; ## **Environmental Monitoring Progress** The summary of the monitoring activities in this monitoring period is listed below: - Noise Monitoring (Day-time): 1 Occasion at 1 designated location - 24-hour TSP Monitoring: 4 Occasions at 2 designated locations - 1-hour TSP Monitoring: 15 Occasions at 2 designated locations - Marine Water Quality Monitoring: 11 Occasions at 2 designated locations - Weekly-site inspection: 3 Occasions ## **Noise Monitoring** No exceedance of Action and Limit levels for noise monitoring was recorded in the reporting period. ## Air Monitoring No exceedance of Action and Limit levels was recorded for 1-hr and 24-hr TSP monitoring in the reporting period. ## Marine Water Quality Monitoring According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded in this reporting period. ## Weekly Site Inspections In general, performance on environmental mitigation measures implemented was found to be
satisfactory in this reporting period. The major findings observed during site inspections are presented in the Section 7.0. ## Environmental Complaints, Notification of summons and successful prosecutions No complaint, notification of summons or successful prosecutions with respect to environmental issues was received in this reporting period. ## **Future Key Issues** Based on site inspections and forecast of engineering works in coming month, key issues to be considered are as follows: - Noise and air quality impact due to site works; - Maintain wheel washing facilities properly; - Maintain all drainage and desilting facilities properly; - Use and maintain silt curtain properly; - Clean up the fill material on concrete pavement along the BHA frequently; - Sufficient drip trays for all oil drums / chemical containers; - Implement all necessary preventive measures to avoid oil leakage. In the event an oil leakage happens, the Contractor should properly remove the leaked oil and handle the contaminated soil and all materials using for this cleaning works as chemical waste; - Maintain good site practice and waste management to minimize environmental impacts at the site; and - Follow-up improvements on waste management issues. Monthly EM&A Report No.58 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) - Tseung Kwan O Area 137 Fill Bank #### 1.0 INTRODUCTION China Harbour Engineering Co Ltd (CHEC) appointed Environmental Team (ET) of ETS-Testconsult Limited (ETL) to undertake the Environmental Monitoring and Audit (EM&A) for the "Contract No: CV/2021/09 -Handling of Surplus Public Fill (2022-2023) - Tseung Kwan O (TKO) Area 137 Fill Bank" (The Project). In accordance with the Environmental Permit (No.: EP-134/2002/O) (the EP), an EM&A programme should be implemented in accordance with the procedures and requirements in the EM&A Manual of the approved EIA report (Registration No. AEIAR-060/2002). The EM&A programme for this study as stated in Section 2.3.1 of the EM&A Manual covers the following environmental aspects during the establishment, operation and removal phases of the Fill Bank at Tseung Kwan O Area 137: - Fuaitive Dust: - Noise generation from onsite activities: - Water Quality; and - Landscape and Visual. The EM&A programme requires environmental monitoring for air quality, noise and water quality and environmental site inspections for air quality, noise, water quality, landscape and visual, and waste management. The EM&A requirements for each parameter described in the following sections include: - All monitoring parameters: - Monitoring schedules for the reporting period and forthcoming months: - Action and Limit levels for all environmental parameters; - Event/Action Plans: - Environmental mitigation measures, as recommended in the Project EIA study final report; and - Environmental requirements in contract documents. Baseline monitoring was completed in August and October 2002 by MateriaLab. Action and Limit Levels were established for air and water quality parameters based on the baseline monitoring results. This report documented the findings of EM&A Works conducted during the operation phase of Fill Bank at Tseung Kwan O Area 137 in February 2022. #### 2.0 PROJECT INFORMATION #### 2.1 Scope of the Project The scale and scope of the Project as stated in the EP include: - Site clearance: - Construction of a temporary storm water system; - Stockpiling of 6 million m³ of public fill; - Setting up two barging points: one at the TKO Basin and one at the Construction and Demolition Material Sorting Facility (C&DMSF) for transporting the stockpiled public fill by barges; - Setting up a temporary barging point at the existing Explosive Off-loading Barging Point located in the south-eastern part of Area 137 for the month of May 2004 to December 2004 for transporting the stockpiled public fill by barge; - Construction and operation of a Construction and Demolition Material Sorting Facility (C&DMSF); - Setting up a Construction and Demolition Material Crushing Facility at the TKO Basin; and - Remove the temporary fill bank. #### 2.2 **Site Description** TKO Area 137 Fill Bank is located at the southern end of Wan Po Road. In the vicinity of the site are other industrial uses such as SENT landfill, TKO Industrial Estate, etc. Both Island Resort and Fullview Garden are also situated at more than 1.8km from the site. Other existing Air Sensitive Receivers (ASRs) and Noise Sensitive Receivers (NSRs), including resident developments and schools, are located at a further distance away from TKO Area 137. February 2022 Page 1 of 16 Monthly EM&A Report No.58 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) - Tseung Kwan O Area 137 Fill Bank #### 2.3 **Work Programme** Details of work programme are shown in Appendix G. #### 2.4 **Project Organization and Management Structure** The project organization chart is shown in Appendix A. #### 2.5 **Contact Details of Key Personnel** The key personnel contact names and telephone numbers are shown in Table 2.1. Contact Details of Key Personnel Table 2.1 | Table 2:1 Contact Details of Noy 1 Greening | | | | | | |---|--------------------------------|------------------------------|-----------|-----------|--| | Organization | Name of Key Staff | Project Role | Tel. No. | Fax No. | | | CEDD | Leo Lam, T M Yeung,
May Lau | Engineer's
Representative | 2762 5555 | 2714 0113 | | | IEC (Acuity) | Mr. F C Tsang | IEC | 2698 9097 | 2333 1316 | | | Contractor (CHZH-JV) | Zhou Chang Ying | Senior Project
Manager | 9626 6299 | 2247 4108 | | | ET (ETL) | C. L. Lau | ET Leader | 2946 7791 | 2695 3944 | | #### 3.0 WORK PROGRESS IN THIS REPORTING PERIOD As informed by the Contractor, the activities in the reporting period include: - Operation of the Public Fill Reception Facilities at Tseung Kwan O Fill Bank (TKOFB): - Operation of dewatering plant and expanded dewatering plant at TKOFB; 2. - 3. Enhancement of Mobile Data Network at TKOFB - 4. Operation and Maintenance of Artificial Intelligent System for Crushing Plant Nos.2,3 and 4 (Model QJ241) at TKOFB; - 5. Operation of the Integrated Public Fill Reception (Fixed Rigid Platform) at TKOFB; - Operation and Maintenance of Wash House at TKOFB: 6. - Operation and maintenance of Wheel Washing Facility at TKOFB; 7. - 8. Personnel Position Tracking and Proximity Detection System of Moving Plant at TKOFB; - Modification and Operation a Digital Works Supervision System (DWSS) for TKOFB; #### 4.0 **AIR QUALITY MONITORING** #### 4.1 **Monitoring Requirement** TSP levels were monitored in the reporting period in accordance with the EM&A Manual. Table 4.4 shows the Action and Limit Levels for the environmental monitoring works. #### 4.2 **Monitoring Equipment** Both 1-hour and 24-hour TSP air quality monitoring was performed using a GMWS2310 High Volume Air Sampler (HVS) located at each of the designated monitoring station. Table 4.1 summarizes the equipment used in the air quality monitoring programme. A copy of the calibration certificates for the HVS and calibrator are attached in Appendix B1. Air Quality Monitoring Equipment Table 4.1 | ransis in a same in g = quipment | | | |----------------------------------|------------------|--| | Equipment | Model and Make | | | HVS | Greasby GMWS2310 | | | Calibrator | Tisch TE-5025A | | #### 4.3 Monitoring Parameters, Frequency and Duration Table 4.2 summarizes the monitoring parameters, monitoring duration and frequencies of air quality monitorina. February 2022 Page 2 of 16 Contract No.: CV/2021/09 FNA21055 Handling of Surplus Public Fill (2022-2023) - Tseung Kwan O Area 137 Fill Bank Monthly EM&A Report No.58 Monitoring parameters, duration, frequency of air quality monitoring Table 4.2 | Parameter | Duration | Frequency | | |-----------------|----------|--------------------------------|--| | 24-hr TSP 24 hr | | Once every six days | | | 1-hr TSP | 1 hr | Three times per every six days | | #### 4.4 **Monitoring Locations** Table 4.3 tabulates the air quality monitoring locations of this project. Table 4.3 Air quality monitoring locations | Monitoring station | Location | |--------------------|-------------| | TKO-A1 | Site Egress | | TKO-A2a | CREO | #### 4.5 **Monitoring Methodology** ## Both 1-hr and 24-hr air quality monitoring (High Volume Sampler) ### Instrumentation High volume sampler, as HVS, (Greasby GMWS2310) complete with appropriate sampling inlets were employed for both 1-hour and 24-hour TSP monitoring. The sampler is composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). ### Installation The installation of HVS refers to the requirement stated in EM&A Manual. ## Operation/Analytical Procedures Operating/analytical procedures for the operation of HVS are as below: - Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 0.6m3/min and 1.7m3/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50. The flow rate was indicated on the flow rate chart. - For TSP sampling, fiberglass filters (Whatman G653) were used. - The power supply was checked to ensure the sampler worked properly. - On sampling, the sampler was operated 5 minutes to establish thermal equilibrium before placing any filter media at designated air monitoring station. - The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen. - The filter was aligned on the screen so that the gasket formed an air-tight seal on the outer edges of the filter. Then the filter holder frame was tightened to the filter holder
with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges. - The programmable timer will be set for a sampling month of 1 hour or 24 hours. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number.). - After sampling, the filter was transferred from the filter holder of the HVS to a sealed plastic bag and sent to the laboratory for weighting. The elapsed time was also recoded. - Before weighting, all filters were equilibrated in a desiccator for 24 hour with the temperature of 25°C ± 3°C and the relative humidity (RH) <50% ±5%. - All measurement procedures in Section 2.3 of the EM&A Manual were followed during the reporting period. ## Maintenance & Calibration - HVS and their accessories should be maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply. - HVS should be calibrated at bi-monthly intervals. February 2022 Page 3 of 16 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Monthly EM&A Report No.58 ## Wind Data Monitoring Wind data (wind speed and wind direction) were directly extracted from Tseung Kwan O Station of Hong Kong Observatory. All wind data during this reporting period are shown in Appendix E. ## 4.6 Action and Limit Levels Table 4.4 shows the Action and Limit levels for 24-hr TSP and 1-hr TSP monitoring. Table 4.4 Action and Limit Levels for 24-hr TSP and 1-hr TSP | Ī | | 24 by TCD / g/m²) | | 1 br TCD (a/m3) | | | |---|---------------------|-------------------|-------------|------------------|-------------|--| | | Monitoring Location | 24-hr TSP (μg/m³) | | 1-hr TSP (μg/m³) | | | | | | Action Level | Limit Level | Action Level | Limit Level | | | | TKO-A1 | 210 | 260 | 376 | 500 | | | | TKO-A2a * | 210 | 260 | 376 | 500 | | Remark (*): Since dust monitoring stations TKO-A2 and TKO-A2a are located close to the major dust emission sources and also close to the same sensitive receptor and no significant difference between them on the prevailing meteorological conditions, the baseline data from TKO-A2 (August and September 2002 by MateriaLab) can also be valid in the case of TKO-A2a. ## 4.7 Event-Action Plans Please refer to Appendix F for details. ## 4.8 Results and Observation ### 4.8.1 1-hour and 24-hour TSP Monitoring results Monitoring data of both 1-hour and 24-hour TSP monitoring carried out in this reporting period are summarized in Appendix B2. Graphical presentation of 1-hour and 24-hour TSP monitoring results for the reporting period is shown in Appendix B3. Wind data included wind speed and wind direction was extracted from Tseung Kwan O Station of Hong Kong Observatory during this reporting period and is presented in Appendix E. No exceedance of Action and Limit Level of 1-hr TSP and 24-hour TSP monitoring results was recorded during the reporting period. ### 4.8.2 Observation Generally, the Contractor implemented sufficient dust mitigation measures, including operation of the mist spraying systems at the CEDD Combined Reception Office and crushing plants. And the site egress area provided wheel washing facilities; Road dampening, water bowsers and automatic water sprinklers on the main haul roads. Other dust sources near TKO Area 137 also included operation of the temporary Construction Waste Sorting Facilities (CWSF) and dumping activities at the SENT Landfill. ### 5.0 Noise Monitoring ## 5.1 Monitoring Requirements Noise monitoring was conducted at 1 monitoring station as specified in the approved EM&A Monitoring Proposal for good site practice. The equipment, parameter, frequency, duration, methodology, calibration details, results and observations of the noise monitoring for the reporting period are presented in this section. ## 5.2 Monitoring Equipment An Integrating Sound Level Meter was used for noise monitoring. It was a Type 1 sound level meter capable of giving a continuous readout of the noise level reading including equivalent continuous sound pressure level (Leq) and percentile sound pressure level (Lx). It complies with International Electro Technical Commission Publications IEC 61672 Type 1 specification, and speed in m/s was used to monitor the wind speed. Table 5.1 summarizes noise monitoring equipment model being used. A copy of the calibration certificate for noise meter and calibrator are attached in Appendix C1 February 2022 Page 4 of 16 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) - Tseung Kwan O Area 137 Fill Bank Monthly EM&A Report No.58 | Table 5.1 Noise Monitoring Equipment | | | |--------------------------------------|---------------------------|--| | Equipment | Model | | | Sound Level Meter | Rion NL-31 / Rion NL-52 | | | Sound Level Calibrator | Rion NC-73 / Castle GA607 | | #### 5.3 Monitoring Parameters, Duration and Frequency Duration, frequencies and parameters of noise measurement are presented in Table 5.2. Table 5.2 Duration, Frequencies and Parameters of Noise Monitoring | Time | Duration/min | Parameters | Frequency | |---|--------------|---|----------------| | Day-time: 0700-1900 hrs on normal weekday | 30 | L _{eq} , L ₁₀ , L ₉₀ | Once per month | #### 5.4 **Monitoring Locations** One Noise monitoring was conducted at the noise monitoring location, TKO-N1 as shown in Figure 2 during the reporting period. Table 5.3 describes the location of the monitoring station. Table 5.3 Noise Monitoring Location | Monitoring station | Location | Type of Measurement | |--------------------|---------------------------------------|---------------------| | TKO-N1 | Outside site Egress along Wan Po Road | Free Field | #### 5.5 **Monitoring Procedures and Calibration Details** ## Operation/Analysis Procedures - The Sound Level Meter was set on a tripod at a height of 1.2m above the ground. - For free field measurement, the meter was positioned away from any nearby reflective surfaces. - The battery condition was checked to ensure the correct functioning of the meter. - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows: Frequency weighting: A Time weighting : Fast Time measurement: 30 mins - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000HZ. If the difference in the calibration level before and after measurement was more than 1dB, the measurement would be considered invalid and repeat measurement would be required after re-calibration or repair of the equipment. - The wind speed was frequently checked with a portable wind meter. - During the monitoring period, the Leg. L10 and L90 were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet. - Correction factor of +3dB(A) should be made to the free Field measurements. - Noise monitoring would be cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind gusts exceeding 10m/s. ## Maintenance and Calibration - The microphone head of the sound level meter and calibrator are cleaned with soft cloth in quarterly intervals. - The meter is sent to the supplier or HOKLAS laboratory to check and calibrated in yearly intervals. #### 5.6 **Action and Limit Levels** The Action and Limit levels for noise levels derived as illustrated in Table 5.4. Table 5.4 Action and Limit Levels for noise monitoring | Time Period | Action | Limit | |-------------------------------------|---|----------| | 0700-1900 hrs
on normal weekdays | When one documented complaint is received | 75 dB(A) | February 2022 Page 5 of 16 Monthly EM&A Report No.58 FNA21055 ## 5.7 Event-Action Plans Please refer to the Appendix F for details. ## 5.8 Results and Observation ### 5.8.1 Results Only Day-time noise monitoring was carried out at monitoring station TKO-N1 in this reporting period. The detail of the noise monitoring is provided in Appendix C2. Graphical presentation of the monitoring result for the reporting period is shown in Appendix C3. Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring. ## 5.8.2 Observation The major noise source during the monitoring event was the dump truck traffic and crushing plant. ## 6.0 MARINE WATER QUALITY MONITORING ## 6.1 Monitoring Requirements In accordance with the EM&A Manual, impact marine water quality monitoring was conducted three days per week. Measurements were taken at both mid-flood and mid-ebb tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed) at Control Station, C1 and Monitoring Station, M4. ## 6.2 Monitoring Locations For the Reclamation Project, there were 4 Designated Monitoring Stations and 2 Designated Control Stations specified in the EM&A Manual. Upon the completion of the monitoring programme under Stage 2 reclamation works, the ET started monitoring events at the impact station M4 and the control station C1 from 18 May 2004 onwards. Figure 1 shows the location of the marine water quality monitoring stations. Table 6.1 describes the locations of the monitoring stations in the reporting period. Table 6.1 Locations of Marine Water Monitoring Stations | Station Description | Code | HK Metric Grid E | HK Metric Grid N | |---|--------|------------------|------------------| | Control Station (Ebb tide) | TKO-C1 | 844 740.208 | 815 371.502 | | Monitoring Station, Tung Lung Chau
Fish Culture
Zone | TKO-M4 | 847 741.029 | 812 977.878 | According to Environmental Permit (Permit no.:EP-134/2002/N) Condition 3.2, water quality survey/monitoring shall be conducted at control station C1a, monitoring stations M4a and M5 for the period from two weeks before commencement of operation of the additional 5 barging points to 4 weeks after cessation of their operation. The water quality survey/monitoring frequency and parameters at stations C1a, M4a and M5 shall be same as the requirements set out in the EM&A Manual and the monitoring results shall be incorporated in the monthly EM&A reports. Due to "Hong Kong International Airport, Three Runway System Project Contract 3206 – Main Reclamation Works "(3RS project) operation of the additional barging point at TKO Area 137, the ET started monitoring events at the impact station M4a, M5 and the control station C1a from 14 May 2018 onwards. Figure 4 shows the location of water control station C1a and water monitoring station M4a and M5. Table 6.2 describes the locations of the additional marine water monitoring stations February 2022 Page 6 of 16 Contract No.: CV/2021/09 ENA21055 Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Monthly EM&A Report No.58 Table 6.2 Locations of Additional Marine Water Monitoring Stations (3RS project) | Table 6.2 Education of Additional Marine Water Membering Stations (Gree project) | | | | | | | | |--|------|------------------|------------------|--|--|--|--| | Station Description | Code | HK Metric Grid E | HK Metric Grid N | | | | | | Control Station (Ebb tide) | C1a | 845647 | 814146 | | | | | | lana and Maraitania a Otaliana | M4a | 845922 | 813973 | | | | | | Impact Monitoring Station | M5 | 847005 | 813678 | | | | | ## 6.3 Monitoring Parameters Monitoring of the marine water quality parameters are listed in Table 6.3. Table 6.3 Marine Water Quality Monitoring Parameters | Table 6.6 Wallie Water &daily Werntering Faran | 101010 | |--|-------------------------| | In-situ measurement | Laboratory analysis | | Depth (m) | Suspended solids (mg/L) | | Temperature (°C) | | | Dissolved Oxygen (mg/L and % saturation) | | | Turbidity (NTU) | | | Salinity (ppt) | | ## 6.4 Monitoring Frequency The monitoring frequency of the marine water monitoring is summarized in Table 6.4. Table 6.4 Monitoring frequency of the marine water | Parameter | Frequency | No. of Location | No. of Depths | |-----------------------|--------------|-------------------|---------------------| | Temperature | | 2 | | | Salinity | | (TKO-C1 and TKO- | 3 | | Dissolved Oxygen (DO) | 3 days/week, | M4) | (Surface, mid-depth | | Turbidity | 2 tides/day | and
3 | & bottom) | | Suspended solids (SS) | | (C1a, M4a and M5) | | ## 6.5 Monitoring Methodology and Equipment Used ## For Location of the monitoring stations ## **Global Positing System (GPS)** A hand-held digital GPS was used to identify the designated monitoring stations prior to water sampling. ## For Water Depth measurement Echo Sounder A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station. ## For In-situ Water Quality Measurement All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently recalibrated at 3 monthly intervals or sometimes longer throughout all stages of the water quality monitoring. ## Dissolved Oxygen, Salinity, Turbidity and Temperature Measuring Equipment A portable, weatherproof multiparameter water quality meter (YSI Pro DSS) which complete with cable, sensor and DC power source were used for measuring DO, turbidity, salinity, pH and temperature: - a dissolved oxygen level in the range of 0 to 50 mg/L and 0-500 % saturation; - a turbidity in range 0-4000 NTU; February 2022 Page 7 of 16 ENA21055 Monthly EM&A Report No.58 - a salinity in range 0-70 ppt; - a temperature of -5-70 degree Celsius A membrane electrode with automatic temperature compensation complete with a cable was installed. ## For Water Sampling and Sample Analysis In-situ monitoring was carried out at three depths: 1 meter below water surface, at mid-depth and 1 meter above the seabed. At each sampling depth, duplicate readings of dissolved oxygen content and turbidity were taken. The probes were drop into water, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. The difference between the two readings of each set was more than 25% of the value of the first reading while a third measurement would be conducted to ensure data precision. ## **Water Sampler** A water sampler comprising a transparent PVC cylinder, with a capacity of not less than 2 liters, was lowered into the water body at the predetermined depth. The both opening ends of the sampler were then closed accordingly by dead weight and water samples were collected. ### **Water Container** The sample container, made by high-density polythene, was rinsed with a portion of the water sample. The water sample was then transferred to the container, labelled with a unique sample ID and sealed with a screw cap. The water samples were stored in a cool box maintained at 4°C. The water samples were then delivered to a local HOKLAS-accredited laboratory (Environmental Laboratory, ETS-Testconsult Ltd, HOKLAS Registration No. 022) on the same day for analysis. The summary of testing method of testing parameter as recommended by EIA or required by EPD, with the QA/QC results in accordance with the requirement of HOKLAS or international accredited scheme is shown in Table 6.5. Table 6.5 Summary of testing procedures | Laboratory Analysis Testing Procedure | | Detection Limit | |---------------------------------------|---|-----------------| | Total suspended solids | In house method based on APHA 19th ed 2540D | 1.0 mg/L | ## In-situ measurement All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use. Responses of sensors and electrodes were checked with certified standard solutions before each use. The DO sensor was calibrated by wet bulb method and a zero check in distilled water was performed with the turbidity and salinity sensor before the strat of measurement. At each measurement/sampling depth, two consecutive measurements of dissolved oxygen (DO), dissolved oxygen saturation (DOS), turbidity and salinity were taken. For DO, DOS, Turbidity and Salinity, measurements were conducted three days per week at both mid-ebb and mid-flood tides at three depths (i.e. 1m below surface, mid depth and 1m from seabed). The duplicate measurements were averaged if the difference was not greater than 25%. If the difference is greater than 25%, repeat measurement will be required to be carried out. Table 6.6 shows the equipment used for in-situ monitoring of water quality. The calibration certificates are attached in Appendix D1. February 2022 Page 8 of 16 ENA21055 Monthly EM&A Report No.58 Table 6.6 Details of Marine Water Quality Monitoring Equipment (In-site measurement) | Table 6.6 Betails of Marine Water Quality Monitoring Equipment (in site measurement) | | | | | | | |--|--|------------------------|----------|----------------|--|--| | Parameter | Model | Date of
Calibration | Due Date | Equipment No. | | | | Coordinate of
Monitoring
stations | Garmin eTrex 10 | | | ET/EW/005/09 | | | | Dissolved Oxygen (Saturation), Temperature, Salinity, Turbidity | YSI Pro DSS
Multiparameter
Water Quality Meter | 29/01/22 | 28/04/22 | ET/EW/008/011* | | | | Water Depth | Speedtech SM-5 | | | ET/EW/002/08 | | | Remark:(*) indicates the instrument should be calibrated on use. ## 6.6 Action and Limit Level The water quality criteria, namely Action and Limit (A/L) levels are presented in the table below. Table 6.7 Water Quality Action and Limit Levels | Table 0.7 | Water Quality Action and Limit Levels | | |---|--|--| | Parameter | Action Level | Limit Level | | DO (mg/L) | Surface & Middle <5.45 mg/L (5%-ile of baseline data) Bottom <4.72 mg/L (5%-ile of baseline data) | Surface & Middle
<5.10 mg/L (1%-ile of baseline data)
Bottom
<2.00 mg/L | | SS (mg/L)
(Depth-
averaged) | >6.74 mg/L (95%-ile of baseline data) or
>120% of the upstream control station's
SS at the same tide on the same day | >7.67 mg/L (99%-ile of baseline data) or
>130% of the upstream control station's
SS at the same tide on the same day | | Turbidity
(NTU) (Depth-
averaged) | >4.28 NTU (95%-ile of baseline data) or
>120% of the upstream control station's
turbidity at the same tide on the same day | >4.58 NTU (99%-ile of baseline data) or
>130% of the upstream control station's
turbidity at the same tide on the same day | The water quality Action and Limit Levels (3RS project) are presented in the table below. Table 6.8 Water Quality Action and Limit Levels (3RS project) | | Trater adamy retien and Emilie Eerele (er | 10 [1.0]00.9 | |---|---|--| | Parameter
 Action Level | Limit Level | | DO (mg/L) | Surface & Middle
<5.5 mg/L
Bottom
<5.2 mg/L | Surface & Middle
<4.00 mg/L (1%-ile of baseline data)
Bottom
<2.00 mg/L | | SS (mg/L)
(Depth-
averaged) | >4.9 mg/L or >120% of the upstream control station's SS at the same tide on the same day | >5.2 mg/L or >130% of the upstream control station's SS at the same tide on the same day | | Turbidity
(NTU) (Depth-
averaged) | >3.9NTU or >120% of the upstream control station's turbidity at the same tide on the same day | >4.2 NTU or >130% of the upstream control station's turbidity at the same tide on the same day | ## 6.7 Event and Action Plan Please refer to the Appendix F for details. ## 6.8 Monitoring Duration in this reporting period Below is the time schedule for the marine water quality monitoring events that were conducted in this reporting period: February 2022 Page 9 of 16 FNA21055 Monthly EM&A Report No.58 | Table 6.9 | Time Schedule of Impact Marine Water Quality Monitoring | |-----------|---| | | F | | | February 2022 | | | | | | | | |--------|---------------|---------|--------------------|---------|--------|----------|--|--| | Sunday | Monday | Tuesday | Wednesday Thursday | | Friday | Saturday | | | | | | 1 | 2 | 3 | 4 | 5 | | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | | 13 | 14 | 15
▼ | 16 | 17
▼ | 18 | 19 ▼ | | | | 20 | 21 | 22 | 23 | 24 | 25 ▼ | 26 | | | | 27 | 28 ▼ | | | | | | | | | | | | | | | | | | Remark: (▼) = Marine water quality monitoring carried out by ET. As the tidal period is not within the working hour, water monitoring (Mid-ebb) on 11 February 2022 was cancelled. Two days of water quality monitoring were conducted in the week of 30 January to 5 February 2022 due to the closing of TKO 137 Fill Bank on General Holidays and Lunar New Year Eve. The daily marine water quality monitoring duration are detailed in Appendix D2. #### 6.9 **Marine Water Quality Monitoring Results** The impact water quality measurement results are detailed in Appendix D2. Appendix D3 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances is shown in Table 6.10. Table 6.10 Summary of Impact Marine Water Quality Exceedances | Station Exceedance | | D | DO | | Turbidity | | SS | | Total | | |--------------------|--------|-------|-----|-------|-----------|-------|-----|-------|-------|--| | Le | Level | Flood | Ebb | Flood | Ebb | Flood | Ebb | Flood | Ebb | | | TKO-M4 | Action | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | I KO-IVI4 | Limit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | The impact water quality measurement results (3RS project) are detailed in Appendix D4. Appendix D5 presents the water quality monitoring data and graphical presentations of monitoring results. The summary of marine water quality exceedances (3RS project) is shown in Table 6.11. Table 6.11 Summary of Impact Marine Water Quality Exceedances (3RS project) | | G.G.G. G. I. I. | Talling of impact mains it also a author a control of the project, | | | | | | | | | |--|-----------------|--|-------|-----|-----------|-----|-------|-----|-------|-----| | | Ctation | Exceedance | DO | | Turbidity | | SS | | Total | | | | Station | Level | Flood | Ebb | Flood | Ebb | Flood | Ebb | Flood | Ebb | | | Mac | Action | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | M4a | Limit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | M5 | Action | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CIVI | Limit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | According to the summary of marine water monitoring results, no exceedance of Action and limit levels was recorded for this reporting period. #### 7.0 **ENVIRONMENTAL AUDIT** #### 7.1 Weekly ET Site Inspections and EPD's Site Inspection #### 7.1.1 **Weekly ET Site Inspections** Weekly ET site inspections were carried out by ET to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In this reporting period, three weekly site inspections were conducted (09, 16 and 23 February 2022). Table 7.1 presents the key findings of weekly ET site inspection in this reporting period. February 2022 Page 10 of 16 ENA21055 Monthly EM&A Report No.58 | Table 7.1 Key Findings of Weekly ET Site Audits in this reportir | g pe | eriod | | |--|------|-------|--| |--|------|-------|--| | | , , | , | F | | | | | |------------------------|---|--|---|-------------------------------|--|--|--| | Date | Key Findings | Action(s) Taken
recommended by ET | Action(s) Taken by the
Contractor during the
ET weekly site audit | Rectification
Status by ET | | | | | 09
February
2022 | No defective work or ol | No defective work or observation was recorded during the weekly ET site inspection No defective work or observation was recorded during the weekly ET site inspection | | | | | | | 16
February
2022 | No defective work or ol | | | | | | | | 23
February
2022 | No defective work or observation was recorded during the weekly ET site ins | | | | | | | ## 7.1.2 EPD's Site Inspection No EPD's site inspection was carried out at TKO137 Fill Blank in this reporting period. ## 7.2 Review of Environmental Monitoring Procedures The monitoring works conducted by the Environmental Team were inspected regularly. The observations for the monitoring works were recorded and summarized as follows: ## Air Quality Monitoring - The monitoring team recorded the observations around the monitoring stations within and outside of the site. - The monitoring team recorded the temperature, air pressure and general weather condition on the monitoring day. ## Noise Monitoring - The monitoring team recorded the observations around the monitoring station, which might affect the results. - Major noise sources were identified and recorded. ## Water Quality Monitoring The monitoring team recorded the observations around the monitoring stations, which might affect the results. ## 7.3 Assessment of Environmental Monitoring Results All monitoring results were audited against the Action and Limit levels and any exceedance would be validated. No exceedance was recorded in water quality, air quality and noise monitoring in this reporting period. The monitoring results in this reporting period were comparable with those of baseline month. Detailed discussions were given in Section 4, 5 and 6 of this Report. ## 7.4 Advice on the Solid and Liquid Waste Management Status The Contractor usually disposed of non-inert waste, including general refuse and materials segregated from the existing stockpiles, to SENT landfill. Table 7.2 summarizes data on offsite waste disposal in this reporting period and the Monthly Summary Waste Flow Table is shown in Appendix K. Table 7.2 Actual amounts of Waste generated in this reporting period | Waste Type | Actual Amount | Disposal Locations | | | |----------------------|---------------|---|--|--| | Public Fill ('000m³) | 0 | TKO 137 Fill Bank | | | | C&D Waste ('000kg) | 73.27 | SENT Landfill / Refuse Collection Point | | | February 2022 Page 11 of 16 ENA21055 Monthly EM&A Report No.58 | Chemical Waste (kg/L) 0 (L) | Collected by licensed collector | |-----------------------------|---------------------------------| |-----------------------------|---------------------------------| The Contractor should provide sufficient preventive measures during equipment maintenance works so as to avoid oil leakage on the ground. In the event of any oil leakage, the Contractor should clean up the polluted soil and handle all the materials used for this cleaning works as chemical waste. Concrete bunding has erected outside the CEDD combined reception office and near the automatic wheel washing facilities for storing generator sets and oil drums. The drain outlet of all the bunded areas should be plugged properly. Besides, pre-cast drip trays were provided for oil drums at several areas, such as workshop and chemical storage area. The Contractor should collect and dispose of any stagnant water accumulated in the concrete bunding and drip trays and handle them as chemical waste. The Contractor should use suitable containers with proper labels to store chemical wastes in accordance with Code of Practice on the Packaging, Labeling and Storage of Chemical Waste. The Contractor should also advise their workers of the proper procedures in handling the chemical waste. All the trip tickets for chemical waste disposal were properly kept in the site office. The Contractor was reminded to increase the frequency of inspection and cleaning of the site drainage system, including permanent desilting chambers, desilting facilities, oil interceptor bypass tank, DP3 and DP4 and all the trapezoidal channels. Moreover, the Contractor should apply approved pesticides in the stagnant water ponds. All the runoff from the parking area should be pumped to the desilting facilities and oil interceptors to remove suspended solids and oil & grease prior to discharge. ## 8.0 Status of Environmental Licensing and Permitting All permits/licenses valid in this reporting period are summarized in Table 8.1. Table 8.1 Summary of environmental licensing and permit status | Description | Permit No. | Valid | Period | Section | |---|-----------------------|----------|----------------
--| | | | From | То | | | Environmental
Permit | EP-
134/2002/
O | 20/08/19 | 01/01/20
27 | Site clearance Construction of a temporary storm water system Stockpiling of 6 million m3 of public fill Setting up two barging points for transporting the stockpiled public fill by barges Setting up a temporary barging point at the existing Explosive Off-loading Barging Point for the month of May 2004 to December 2004 for transporting the stockpiled public fill by barge Construction of operation of a construction and Demolition Material Sorting Facility (C&DMSF) Setting up a Construction and Demolition Material Crushing Facility at the TKO Basin Remove the temporary fill bank | | Chemical
Waste
Registration | 5213-839-
C3750-04 | 19/04/17 | | Spent battery cell containing heavy metals and
spent lubricating oil | | Effluent
Discharge
License | TBC | TBC | TBC | Effluent, Surface Run-off, and all other
wastewater discharges from screen and
sedimentation tank | | Marine
Dumping
Permit | EP/MD/22-
034 | 08/09/21 | TBC | Approval for dumping 499,999 tons (approximately equal to 277,777 cu.m. bulked quantity) of Public Fill (Reclamation Materials) from Tseung Kwan O Area 137 Fill Bank and Tuen Mun Area 38 Fill Bank to designated dumping area at Guanghaiwan of Taishan | | Billing
Account for
Waste
Disposal | 70426011
5 | 22/05/17 | | | February 2022 Page 12 of 16 ENA21055 Monthly EM&A Report No.58 | No | otification | 475209 | 12/04/17 |
 | |----|--------------|--------|----------|------| | Pι | ırsuant to | | | | | Se | ection 3(3) | | | | | of | the Air | | | | | Po | ollution | | | | | Co | ontrol | | | | | (C | Construction | | | | | Ďι | ust) | | | | ### 9.0 ENVIRONMENTAL NON-CONFORMANCE ## 9.1 Summary of air quality, noise and marine water quality No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period. Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring. According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period. ## 9.2 Summary of Environmental Complaints No complaint was received in this reporting period. ## 9.3 Summary of Notification of Summons and successful Prosecution There was no notification of summons and successful prosecution respect to environmental issues registered in this reporting period. ### 10.0 IMPLEMENTATION STATUS ## 10.1 Implementation Status of Environmental Mitigation Measures An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix I. Most of the necessary mitigation measures were implemented properly. Any deficiencies were noted in the remarks of the schedule. ## 10.2 Implementation Status of Event and Action Plan Since no exceedance of Action and Limit level of air quality, noise and marine water monitoring results was recorded for this reporting period, no further action was required. ## 10.3 Implementation Status of Environmental Complaint, Notifications of Summons and Successful Prosecutions Handling No complaint, notification of summons and prosecutions were received in this reporting period. A summary of environmental complaints, notifications of summons and successful prosecutions was given in Table 10.1 and further details of the complaint could be found in the Complaint Log (Appendix N). Table 10.1 Summary of Environmental Complaints and Prosecutions | Complaints logged | | Summons | served | Successful prosecution received | | | |-------------------|------------|---------------|------------|---------------------------------|------------|--| | February 2022 | Cumulative | February 2022 | Cumulative | February 2022 | Cumulative | | | 0 | 13 | 0 | 0 | 0 | 0 | | February 2022 Page 13 of 16 Monthly EM&A Report No.58 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank ## 11.0 CONCLUSIONS AND RECOMMENDATIONS ## **Conclusions** Impact monitoring of air quality, noise and water quality were carried out at designated locations in accordance with the EM&A Manual in this reporting period. No Action and Limit level exceedance of 1-hour and 24-hr TSP monitoring was recorded in this reporting period. Since no documented complaints on noise issue were received in this reporting period, no Action Level exceedance was recorded. Besides, no exceedance in Limit Level was recorded according to the result from Day-time monitoring. According to the summary of marine water monitoring results, no exceedance of Action and Limit levels was recorded for this reporting period. No complaint, prosecutions and notifications of summons were received in this reporting period. According to the ET weekly site inspections carried out in this reporting period, the Contractor generally implemented sufficient dust mitigation measures, including operation of the mist spraying systems, provision of automatic water sprinklers at the crushing plants and automatic wheel washing facilities, dampening of haul roads and stockpiling areas. ## Recommendations According to the environmental site inspections performed in the reporting period, the following recommendations were provided: ### Air Quality - Ensure the frequency of water spraying on haul roads, crushing plant, unloading areas and stockpiles to be sufficient to suppress the dust sources; - Provide proper maintenance for the powered mechanical equipment and barges to avoid emission of dark smoke; - Provide water spraying onto the truckloads during inspection of fill material; - Provide continuously water spraying system for crushing plant including receiving point and unloading point; - Provide enclosed conveyor belt for transporting the crushed material directly to the unloading point - Provide dust screen fenced for crushing plant, and the receiving point of crushing facility would be situated inside an enclosure with one side opening for vehicular access; - Conduct road sweeping on all paved haul roads and public roads especially outside and near the site egress by the road sweeper. Undertake water spraying on stockpiling area by water bowser; - Erect adequate speed limit signs to advise the truck drivers of the speed limit; - Operate mist spraying systems and automatic water sprinklers in the Fill Bank; - Implement the dust mitigation measures for the site activities; - Designate proper haul roads to ensure effective water spraying; and - Ensure all vehicles to be washed before leaving the site egress by provision, operation and maintenance of automatic wheel washing facilities. ### Noise - Conduct noisy activities at a farther location from the NSRs. - Proper schedule of noisy operation and use of guiet machineries on site. ## Water Quality - Maintain the drainage system, including the trapezoidal channels, permanent desilting chambers, regularly; - Operate and maintain the silt curtains regularly; - Operate the cleaning vessel within the TKO Basin regularly; - Clean up the fill material on the concrete pavement at BHA frequently; and - Remove the stagnant water or provide approved pesticides for the stagnant water in the permanent desilting chambers, if any. February 2022 Page 14 of 16 Contract No.: CV/2021/09 ENA21055 Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Monthly EM&A Report No.58 ## Landscape and Visual - Provide hydroseeding on the exposed slopes, on which the final profile has been formed; - Erect all the site hoarding/chaining fences in accordance with agreed design at proper location; - Maintain the hydroseeded slopes in accordance with the Landscape Plan. ## Chemical and Waste Management - Remove waste materials from the site to avoid accumulation regularly; - Handle and store chemical wastes properly; - Remove unwanted material in the existing stockpiles and avoid further dumping of such material; - Provide and maintain sufficient drip trays for diesel drums, chemical containers, chemical waste storage drums and diesel operated generator set; - Maintain mesh screen on top of the additional drainage to avoid improper dumping of rubbish; - Maintain good housekeeping at the workshop area; - Ensure sufficient tarpaulin sheets are provided to cover drip trays; and - Avoid soil being polluted during oil filling and equipment maintenance; hence, properly remove and store the contaminated soil, if any ## 12.0 FUTURE KEY ISSUES ## 12.1 Work Programme for the Coming Month - 1. Operation of the public fill reception facilities at TKOFB; - Delivery of public fill to Taishan at TKOFB; - 3. Operation of dewatering plant and expanded dewatering plant at TKOFB; - 4. Operation of Crushing Plant at TKOFB; - 5. Operation of Additional Filter Press at expanded dewatering plant at TKOFB; - Operation of Integrated Public Fill Reception Platform (Fixed Rigid Platform) at TKOFB; - 7. Maintenance of the Drainage Systems along the Concrete Paved
Road at TKOFB to Temporary Construction Waste Sorting Facility - 8. Modification and Operation a Digital Works Supervision System (DWSS) for TKOFB: - 9. Operation and Maintenance of Artificial Intelligence System for Crushing Plant Nos. 2,3 and 4 (Model QJ241) at TKOFB: - 10. Operation and maintenance of the Wash House at TKOFB: - 11. Operation a new soil platform for preliminary sorting of Public Fill at TKOFB; ## 12.2 Key Issues for the Coming Month ## Key issues to be considered in the coming month include: - Chemical and waste management; - Treatment of runoff and wastewater prior to discharge; - Dust generated from loading and unloading activities: - Dust generated from dump trucks traffic; - Regular checking of the drainage system; - Flood prevention; and - Noise from operation of the crushing plant. ## Mitigation measures to be required in the coming month: ## Air Quality Impact - To provide adequate water spraying on haul roads and working platform; - To operate and maintain automatic wheel washing facilities properly; - To dampen the fill material prior to unloading or movement; - To provide road sweeping on haul road near site egress and public roads outside site egress; - To ensure implementation of the dust mitigation measures for the site activities; - To maintain proper operation of the mist spraying system; - To provide proper maintenance for vehicles and machines on site; and - To investigate any other dust sources around the air sensitive receivers February 2022 Page 15 of 16 Monthly EM&A Report No.58 FNA21055 Contract No.: CV/2021/09 Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank ### Noise - To switch off equipment if not in use; - To operate silent equipment; - To identify the noise sources inside and outside of the site; - To follow up any exceedance caused by the Fill Bank operation: and - To re-schedule the work activities in the event of valid noise exceedance. ## Water Quality Impact - To maintain the drainage system in the Fill Bank; - To ensure the cleanliness of oil interceptor bypass tanks and all the drainage channels; - To maintain the existing silt trap to ensure good efficiency of wheel wash facilities; - To repair, inspect and maintain the silt curtains regularly; - To provide covers for the drip trays to avoid stagnant water pond due to rainfall; - To deploy a cleaning vessel to remove floating rubbish in the TKO Basin; - To clean up the concrete paved area at Portion I every night to avoid fill materials from being washed into the sea; - To avoid any stagnant water or provide insecticide to avoid mosquito breeding in the Fill Bank. - To prevent untreated wastewater directly discharge into nullahs; and - To provide desilting facilities such as granular rock filter and geotextile filter at nullah. ## Chemical and Waste Management - To remove waste from the site regularly; - To properly store and handle chemical wastes on site: - To implement trip ticket system for all the imported public fill and general refuse disposal; - To provide and manage sufficiently sized drip trays for diesel drums or chemical containers; - To remove existing unwanted material in the stockpiles and avoid improper disposal at the Fill Bank through inspection of imported truckloads; - To maintain proper housekeeping at the workshop area; - To remove the oil stains in the event of leakage and handle all materials using for this cleaning works as chemical waste; - To maintain mesh screen on top of the additional drainage, DP3 opening to avoid improper dumping of rubbish into this channel; and - To identify C&D material by packaging, labeling, storage, transportation and disposal in accordance with statutory regulations. ## 12.3 Monitoring Schedule for the Coming Month The proposed EM&A program of the coming month and predicted tide schedule from the Hong Kong Observatory are attached in Appendix L. - END OF REPORT - February 2022 Page 16 of 16 ## Appendix A **Project Organization Chart** ## Appendix B1 Calibration Certificates for Impact Air Quality Monitoring Equipment # 東業德勤測試顧問有限公司 ## **ETS-TESTCONSULT LTD** 8/F Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com ## TEST REPORT ## **Calibration Report** of **High Volume Air Sampler** Manufacturer Graseby 105 **Date of Calibration** 10 January 2022 Serial No. 9795 (ET/EA/003/18) Calibration Due Date 09 March 2022 Method Five-point calibration by using standard calibration kit Tisch TE-5025A refer to the **Operations Manual** Results | Flow recorder read | 50 | 47 | 36 | 31 | 25 | | |---------------------|--------------|------|--------|------|------|--| | Qstd (Actual flow r | 1.70 | 1.54 | 1.28 | 1.04 | 0.82 | | | Pressure : | 763.56 mm Hg | | Temp.: | 291 | K | | ## Sampler 9795 Calibration Curve Site: Tseung Kwan O 137 (TKO-A1) Acceptance Criteria: Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable*/ unacceptable* for use. Calibrated by: LIAO, Yun Chao (Technician) Checked by: LAU, Chi Leung (Environmental Team Leader) # 東業德勤測試顧問有限公司 ## **ETS-TESTCONSULT LTD**. Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fo Tan, Hong Kong T: +852 2695 8318 F: +852 2695 3944 E: etl@ets-testconsult.com W: www.ets-testconsult.com ## TEST REPORT ## **Calibration Report High Volume Air Sampler** Manufacturer Andersen G1051 Date of Calibration 10 January 2022 Serial No. 1176 (ET/EA/003/05) Calibration Due Date 09 March 2022 Method Based on Operations Manual for the 5-point calibration using standard calibration kit manufactured by Tisch TE-5025 A Results | Flow recorder rea | 50 | 47 | 42 | 36 | 28 | | |-------------------|--------------|------|--------|------|------|--| | Qstd (Actual flow | 1.73 | 1.55 | 1.42 | 1.06 | 0.82 | | | Pressure : | 763.56 mm Hg | | Temp.: | 291 | K | | ## Sampler 1176 Calibration Curve Site: Tseung Kwan O 137 (TKO-A2a) Acceptance Criteria: Correlation coefficient (r) of the calibration curve greater than 0.990 after a 5-point calibration The high volume sampler complies* / does not comply* with the specified requirements and is deemed acceptable* / unacceptable * for use. Calibrated by: LIAO, Yun Chao (Technician) Checked by LAU, Chi Leung (Environmental Team Leader) - END OF REPORT - ## RECALIBRATION DUE DATE: January 21, 2023 # Certificate of Calibration **Calibration Certification Information** Cal. Date: January 21, 2022 Rootsmeter S/N: 438320 Ta: 295 Pa: 754.1 °K Operator: Jim Tisch . mm Hg Calibration Model #: TE-5025A Calibrator S/N: 3999 | Run | Vol. Init
(m3) | Vol. Final
(m3) | ΔVol.
(m3) | ΔTime
(min) | ΔP
(mm Hg) | ΔH
(in H2O) | |-----|-------------------|--------------------|---------------|----------------|---------------|----------------| | 1 | 1 | 2 | 1 | 1.4540 | 3.2 | 2.00 | | 2 | 3 | 4 | 1 | 1.0230 | 6.4 | 4.00 | | 3 | 5 | 6 | 1 | 0.9170 | 8.0 | 5.00 | | 4 | 7 | 8 | 1 | 0.8750 | 8.9 | 5.50 | | 5 | 9 | 10 | 1 | 0.7200 | 12.9 | 8.00 | | | Data Tabulation | | | | | | | | | |--------|-----------------|---|--------|----------|---|--|--|--|--| | Vstd | Qstd | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ | | Qa | $\sqrt{\Delta H \left(\text{Ta/Pa} \right)}$ | | | | | | (m3) | (x-axis) | (y-axis) | Va | (x-axis) | (y-axis) | | | | | | 0.9981 | 0.6865 | 1.4159 | 0.9958 | 0.6848 | 0.8845 | | | | | | 0.9939 | 0.9715 | 2.0024 | 0.9915 | 0.9692 | 1.2509 | | | | | | 0.9917 | 1.0815 | 2.2387 | 0.9894 | 1.0789 | 1.3985 | | | | | | 0.9905 | 1.1320 | 2.3480 | 0.9882 | 1.1294 | 1.4668 | | | | | | 0.9852 | 1.3684 | 2.8318 | 0.9829 | 1.3651 | 1.7690 | | | | | | | m= | 2.08075 | | m= | 1.30293 | | | | | | QSTD | b= | -0.01322 | QA [| b= | -0.00826 | | | | | | | r= | 0.99996 | , | r= | 0.99996 | | | | | | | Calculation | ıs | | | | | |-------|--|---------------------|--|--|--|--| | Vstd= | ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta) | Va= | ΔVol((Pa-ΔP)/Pa) | | | | | Qstd= | Vstd/ΔTime | Qa= Va/ΔTime | | | | | | | For subsequent flow rat | e calculatio | ns: | | | | | Qstd= | $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ | Qa= | $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$ | | | | | Standard Conditions | | | | | | | | | |---|-------------------------------|--|--|--|--|--|--|--| | Tstd: | 298.15 °K | | | | | | | | | Pstd: | 760 mm Hg | | | | | | | | | | Key | | | | | | | | | ΔH: calibrator manometer reading (in H2O) | | | | | | | | | | | ter manometer reading (mm Hg) | | | | | | | | | Ta: actual absolute temperature (°K) | | | | | | | | | | Pa: actual barometric pressure (mm Hg) | | | | | | | | | | b: intercept | | | | | | | | | | m: slope | | | | | | | | | ## RECALIBRATION US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30 ## Appendix B2 **Impact Air Quality Monitoring Results** ## **Summary of 24-hr TSP Monitoring Results** Monitoring Station: TKO-A1 Location : Site Egress | Sta | art | Fin | ish | Elapse | e Time | Sampling | Flow Rate | e (m³/min.) | Average | Filter W | eight (g) | 0 (/ 3) | |-----------|-------|-----------|-------|----------|----------|------------|-----------|-------------|-----------|----------|-----------|----------------------------| | Date | Time | Date | Time | Initial | Final | Time (hrs) |
Initial | Final | (m³/min.) | Initial | Final | Conc. (μg/m ³) | | 6/2/2022 | 13:00 | 7/2/2022 | 13:00 | 24773.74 | 24797.74 | 24.00 | 1.1106 | 1.1106 | 1.1106 | 2.7420 | 2.8987 | 98 | | 12/2/2022 | 08:00 | 13/2/2022 | 8:00 | 24800.74 | 24824.74 | 24.00 | 1.1106 | 1.1106 | 1.1106 | 2.7204 | 2.8915 | 107 | | 18/2/2022 | 13:50 | 19/2/2022 | 13:50 | 24827.74 | 24851.74 | 24.00 | 1.1106 | 1.1106 | 1.1106 | 2.7293 | 2.9148 | 116 | | 24/2/2022 | 08:00 | 25/2/2022 | 8:00 | 24854.74 | 24878.74 | 24.00 | 1.0765 | 1.0765 | 1.0765 | 2.7442 | 2.9147 | 110 | Monitoring Station : TKO-A2a Location : CREO | Sta | art | Finish | | Elapse Time | | Sampling | Flow Rate (m³/min.) | | Average | Filter Weight (g) | | 2 | |-----------|-------|-----------|-------|-------------|----------|------------|---------------------|--------|------------------------|-------------------|--------|---------------| | Date | Time | Date | Time | Initial | Final | Time (hrs) | Initial | Final | (m ³ /min.) | Initial | Final | Conc. (μg/m³) | | 6/2/2022 | 13:00 | 7/2/2022 | 13:00 | 26867.61 | 26891.61 | 24.00 | 1.0363 | 1.0363 | 1.0363 | 2.7389 | 2.8732 | 90 | | 12/2/2022 | 08:00 | 13/2/2022 | 8:00 | 26894.61 | 26918.61 | 24.00 | 0.9521 | 0.9521 | 0.9521 | 2.7353 | 2.8710 | 99 | | 18/2/2022 | 14:05 | 19/2/2022 | 14:05 | 26921.61 | 26945.61 | 24.00 | 0.9942 | 0.9942 | 0.9942 | 2.7359 | 2.8862 | 105 | | 24/2/2022 | 08:00 | 25/2/2022 | 8:00 | 26948.61 | 26972.61 | 24.00 | 1.0363 | 1.0363 | 1.0363 | 2.7357 | 2.8864 | 101 | ## **Summary of 1-hr TSP Monitoring Results** 東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED Monitoring Station: TKO-A1 Location : Site Egress Site Egress | Start | | Finish | | Elapse Time | | Sampling | Flow Rate (m ³ /min.) | | Average | Filter Weight (g) | | Conc. (μg/m³) | |-----------|-------|-----------|-------|-------------|----------|------------|----------------------------------|--------|------------------------|-------------------|--------|----------------| | Date | Time | Date | Time | Initial | Final | Time (hrs) | Initial | Final | (m ³ /min.) | Initial | Final | Loone: (μg/m/) | | 4/2/2022 | 09:05 | 4/2/2022 | 10:05 | 24770.74 | 24771.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7414 | 2.7543 | 194 | | 4/2/2022 | 10:08 | 4/2/2022 | 11:08 | 24771.74 | 24772.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7399 | 2.7537 | 207 | | 4/2/2022 | 13:00 | 4/2/2022 | 14:00 | 24772.74 | 24773.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7223 | 2.7376 | 230 | | 7/2/2022 | 13:20 | 7/2/2022 | 14:20 | 24797.74 | 24798.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7355 | 2.7498 | 215 | | 9/2/2022 | 13:00 | 9/2/2022 | 14:00 | 24798.74 | 24799.74 | 1.00 | 1.0765 | 1.0765 | 1.0765 | 2.7492 | 2.7626 | 207 | | 11/2/2022 | 10:20 | 11/2/2022 | 11:20 | 24799.74 | 24800.74 | 1.00 | 1.0765 | 1.0765 | 1.0765 | 2.7272 | 2.7414 | 220 | | 14/2/2022 | 09:30 | 14/2/2022 | 10:30 | 24824.74 | 24825.74 | 1.00 | 1.0765 | 1.0765 | 1.0765 | 2.7443 | 2.7572 | 200 | | 14/2/2022 | 13:00 | 14/2/2022 | 14:00 | 24825.74 | 24826.74 | 1.00 | 1.0765 | 1.0765 | 1.0765 | 2.7452 | 2.7589 | 212 | | 16/2/2022 | 10:30 | 16/2/2022 | 11:30 | 24826.74 | 24827.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7219 | 2.7359 | 210 | | 21/2/2022 | 14:30 | 21/2/2022 | 15:30 | 24851.74 | 24852.74 | 1.00 | 1.1447 | 1.1447 | 1.1447 | 2.7272 | 2.7421 | 217 | | 21/2/2022 | 15:40 | 21/2/2022 | 16:40 | 24852.74 | 24853.74 | 1.00 | 1.1447 | 1.1447 | 1.1447 | 2.7439 | 2.7602 | 237 | | 23/2/2022 | 13:00 | 23/2/2022 | 14:00 | 24853.74 | 24854.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7306 | 2.7456 | 225 | | 25/2/2022 | 13:45 | 25/2/2022 | 14:45 | 24878.74 | 24879.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7277 | 2.7416 | 209 | | 25/2/2022 | 14:48 | 25/2/2022 | 15:48 | 24879.74 | 24880.74 | 1.00 | 1.1106 | 1.1106 | 1.1106 | 2.7466 | 2.7614 | 222 | | 28/2/2022 | 09:55 | 28/2/2022 | 10:55 | 24880.74 | 24881.74 | 1.00 | 1.0765 | 1.0765 | 1.0765 | 2.7359 | 2.7483 | 192 | Monitoring Station: TKO-A2a Location : CREO | Sta | art | Fin | ish | Elapse | e Time | Sampling | Flow Rate | v Rate (m³/min.) Av | | Flow Rate (m ³ /min.) | | Filter W | eight (g) | 0 (3) | |-----------|-------|-----------|-------|----------|----------|------------|-----------|---------------------|-----------|----------------------------------|--------|---------------|-----------|-------| | Date | Time | Date | Time | Initial | Final | Time (hrs) | Initial | Final | (m³/min.) | Initial | Final | Conc. (µg/m³) | | | | 4/2/2022 | 09:10 | 4/2/2022 | 10:10 | 26864.61 | 26865.61 | 1.00 | 0.9521 | 0.9521 | 0.9521 | 2.7291 | 2.7394 | 180 | | | | 4/2/2022 | 10:14 | 4/2/2022 | 11:14 | 26865.61 | 26866.61 | 1.00 | 0.9521 | 0.9521 | 0.9521 | 2.7403 | 2.7515 | 196 | | | | 4/2/2022 | 13:00 | 4/2/2022 | 14:00 | 26866.61 | 26867.61 | 1.00 | 0.9521 | 0.9521 | 0.9521 | 2.7462 | 2.7584 | 214 | | | | 7/2/2022 | 13:25 | 7/2/2022 | 14:25 | 26891.61 | 26892.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7412 | 2.7532 | 201 | | | | 9/2/2022 | 13:00 | 9/2/2022 | 14:00 | 26892.61 | 26893.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7387 | 2.7502 | 193 | | | | 11/2/2022 | 10:34 | 11/2/2022 | 11:34 | 26893.61 | 26894.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7410 | 2.7533 | 206 | | | | 14/2/2022 | 09:35 | 14/2/2022 | 10:35 | 26918.61 | 26919.61 | 1.00 | 1.0363 | 1.0363 | 1.0363 | 2.7227 | 2.7343 | 187 | | | | 14/2/2022 | 13:00 | 14/2/2022 | 14:00 | 26919.61 | 26920.61 | 1.00 | 1.0363 | 1.0363 | 1.0363 | 2.7390 | 2.7513 | 198 | | | | 16/2/2022 | 10:35 | 16/2/2022 | 11:35 | 26920.61 | 26921.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7372 | 2.7487 | 193 | | | | 21/2/2022 | 14:35 | 21/2/2022 | 15:35 | 26945.61 | 26946.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7309 | 2.7430 | 203 | | | | 21/2/2022 | 15:50 | 21/2/2022 | 16:50 | 26946.61 | 26947.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7322 | 2.7454 | 221 | | | | 23/2/2022 | 13:00 | 23/2/2022 | 14:00 | 26947.61 | 26948.61 | 1.00 | 0.9521 | 0.9521 | 0.9521 | 2.7318 | 2.7439 | 212 | | | | 25/2/2022 | 13:50 | 25/2/2022 | 14:50 | 26972.61 | 26973.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7226 | 2.7343 | 196 | | | | 25/2/2022 | 14:55 | 25/2/2022 | 15:55 | 26973.61 | 26974.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7441 | 2.7563 | 205 | | | | 28/2/2022 | 10:00 | 28/2/2022 | 11:00 | 26974.61 | 26975.61 | 1.00 | 0.9942 | 0.9942 | 0.9942 | 2.7443 | 2.7551 | 181 | | | ## **Appendix B3** **Graphical Plots of Impact Air Quality Monitoring Data** ## 1-hour TSP level at TKO-A1 Date ## 1-hour TSP level at TKO-A2a Date ## 24-hour TSP level at TKO-A1 Date ## 24-hour TSP level at TKO-A2a Date ## **Appendix C1** Calibration Certificates for Impact Noise Monitoring Equipment ## **Calibration Certificate** Certificate No. 101202 Page 1 2 Pages Customer: ETS-Testconsult Limited Address: 8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan St., Fotan, Hong Kong. Order No.: 010544 Date of receipt 9-Feb-21 Item Tested **Description**: Acoustic Calibrator Manufacturer: Castle LD. : ET/EN/002/07 Model : GA607 Serial No. : 038641 **Test Conditions** Date of Test: 3-Mar-21 Supply Voltage **Ambient Temperature:** $(23 \pm 3)^{\circ}C$ Relative Humidity: (50 ± 25) % **Test Specifications** Calibration check. Ref. Document/Procedure: IEC 60942, F06, F20, Z02. ## **Test Results** All results were within the IEC 60942 Class 1 specification. The results are shown in the attached page(s). Main Test equipment used: | Equipment No. | <u>Description</u> | Cert. No. | <u>Traceable to</u> | |---------------|------------------------|-----------|---------------------| | S014 | Spectrum Analyzer | 005018 | NIM-PRC & SCL-HKSAR | | S240 | Sound Level Calibrator | 003053 | NIM-PRC & SCL-HKSAR | | S041 | Universal Counter | 001622 | SCL-HKSAR | | S206 | Sound Level Meter | 007031 | SCL-HKSAR | The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment. The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only Calibrated by Approved by: Kin Wong This Certificate is issued by: Hong Kong Calibration Ltd. Date: 3-Mar-21 Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong Tel: 2425 8801 Fax: 2425 8646 Certificate No. 101202 Page 2 of 2 Pages ### Results: ### 1. Generated Sound Pressure Level | UUT Nominal Value (dB) | Measured Value (dB) | IEC 60942 Class 1 Spec. | |------------------------|---------------------|-------------------------| | 94.0 | 94.1 | ± 0.4 dB | Uncertainty: $\pm 0.2 \text{ dB}$ 2. Short-term Level Fluctuation: 0.0 dB IEC 60942 Class 1 Spec. : ± 0.1 dB Uncertainty: ± 0.01 dB ### 3. Frequency | UUT Nom | inal Value (kHz) | Measured Value (kHz) | IEC 60942 Class 1 Spec. | |---------|------------------|----------------------|-------------------------| | | 1 | 1.000 | ± 1 % | Uncertainty: $\pm 3.6 \times 10^{-6}$ 4. Total Distortion : < 3.0% IEC 60942 Class 1 Spec. : < 4 % Uncertainty : \pm 2.3 % of reading Remark: 1. UUT: Unit-Under-Test 2. The uncertainty claimed is for a confidence probability of not less than 95%. 3. Atmospheric Pressure: 1 012hPa. ----- END ----- Certificate No. 102657 3 Pages Customer: FTS-Testconsult Limited Address: 8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan St., Fotan, Hong Kong. Order No.: Q11106 Date of receipt 25-Mar-21 **Item Tested** **Description**: Sound Level Meter Manufacturer: Rion I.D. : ET/EN/003/17 Model : NL-52 Serial No. : 00264519 **Test Conditions** Date of Test: 7-Apr-21 Supply Voltage **Ambient Temperature:** $(23 \pm
3)^{\circ}C$ Relative Humidity: $(50 \pm 25) \%$ **Test Specifications** Calibration check. Ref. Document/Procedure: Z01, IEC 61672. #### **Test Results** All results were within the IEC 61672 Type 1 or manufacturer's specification. The results are shown in the attached page(s). Main Test equipment used: Equipment No. Description Cert. No. Traceable to S017 Multi-Function Generator C211339 SCL-HKSAR S240 Sound Level Calibrator 003053 NIM-PRC & SCL-HKSAR The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment. The test equipment used for calibration are traceable to International System of Units (SI), or by reference to a natural constant. The test results apply to the above Unit-Under-Test only Calibrated by: Approved by: This Certificate is issued by: Date: 7-Apr-21 Certificate No. 102657 Page 2 of 3 Pages Results: ### Acoustical signal test 1. Self-generated noise: 15.8dBA (Mfr's Spec ≤ 17 dBA) ### 2. Reference Sound Pressure Level | | UUT S | Setting | | | | |----------------|-----------|-----------|--------|------------|--------------| | | Frequency | Time | Octave | Applied | UUT | | Range (dB) | Weighting | Weighting | Filter | Value (dB) | Reading (dB) | | 20 ~ 130 | A | F | OFF | 94.0 | 94.0 | | | | S | OFF | | 94.0 | | | С | F | OFF | | 94.0 | | | Z | F | OFF | | 94.0 | | | A | F | OFF | 114.0 | 114.0 | | | | S | OFF | | 114.0 | | Tagonia-access | С | F | OFF | | 114.0 | | | Z | F | OFF | | 114.0 | IEC 61672 Type 1 Spec. : ± 1.1 dB Uncertainty: ± 0.1 dB ### Electrical signal tests ### 3. Electrical signal tests of frequency weightings (A weighting) | Frequency | Attenuation (dB) | IEC 61672 Type 1 Spec. | |-----------|------------------|--| | 31.5 Hz | -39.9 | - 39.4 dB, ± 2 dB | | 63 Hz | -26.5 | $-26.2 \text{ dB}, \pm 1.5 \text{ dB}$ | | 125 Hz | -16.4 | - 16.1 dB, ± 1.5 dB | | 250 Hz | -8.8 | - $8.6 dB, \pm 1 dB$ | | 500 Hz | -3.3 | - $3.2 \text{ dB}, \pm 1.4 \text{ dB}$ | | 1 kHz | 0.0 (Ref) | $0 \text{ dB}, \pm 1.1 \text{ dB}$ | | 2 kHz | +1.3 | + 1.2 dB, ± 1.6 dB | | 4 kHz | +1.2 | $+ 1.0 \text{ dB}, \pm 1.6 \text{ dB}$ | | 8 kHz | -0.9 | $-1.1 \text{ dB}, +2.1 \text{ dB} \sim -3.1 \text{ dB}$ | | 16 kHz | ~7.8 | $-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$ | Uncertainty: ± 0.1 dB Certificate No. 102657 Page 3 of 3 Pages ### 4. Frequency & Time weightings at 1 kHz 4.1 Frequency Weighting (Fast) | | UUT | Applied | UUT | Difference | IEC 61672 | |---|---------|------------|--------------|------------|--------------| | | Setting | Value (dB) | Reading (dB) | (dB) | Type 1 Spec. | | | A | 94.0 | 94.0 (Ref.) | *** *** | ± 0.4 dB | | ĺ | С | 94.0 | 94.0 | 0.0 | | | Ī | Z | 94.0 | 94.0 | 0.0 | | 4.2 Time Weighting (A-weighted) | | 112 111110 11 0151111115 | (11 1101811000) | | | | |---|--------------------------|-----------------|--------------|------------|--------------| | | UUT | Applied | UUT | Difference | IEC 61672 | | | Setting | Value (dB) | Reading (dB) | (dB) | Type 1 Spec. | | | Fast | 94.0 | 94.0 (Ref.) | 100 Tab | ± 0.3 dB | | | Slow | 94.0 | 94.0 | 0.0 | | | ĺ | Time-averaging | 94.0 | 94.0 | 0.0 | | Uncertainty: $\pm 0.1 \text{ dB}$ Remarks: 1. UUT: Unit-Under-Test - 2. The uncertainty claimed is for a confidence probability of not less than 95%. - 3. Atmospheric Pressure: 1 002hPa. - 4. Microphone model: UC-59, S/N: 03558 - 5. Preamplifier model: NH-25, S/N: 64644 - 6. Firmware Version: 1.7 - 7. Power Supply Check: OK - 8. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration. ----- END ----- # Appendix C2 **Impact Noise Monitoring Results** # **Day-time Noise Monitoring** **Monitoring Location: TKO-N1 (Site Egress)** | Data | Start Sampling Time | Nois | e Level di | 3 (A) | Wind | Weather | Major Noise | |------------|---------------------|------------|-----------------|-----------------|----------------|-----------|--------------------| | Date | (hh:mm) | Leq(30min) | L ₁₀ | L ₉₀ | Speed
(m/s) | Condition | Śource | | 07/02/2022 | 09:00 | 62.8 | 64.0 | 59.9 | 0.3 | cloudy | Vehicle passing by | Remark: 3dB(A) correction was added to the results during the free-field noise measurements # **Appendix C3** **Graphical Plots of Impact Noise Monitoring Data** # **Noise Monitoring (Day-time)** ### Noise level at TKO-N1 Date # **Appendix D1** Calibration Certificates for Impact Marine Water Quality Monitoring Equipments ## Performance Check / Calibration of Multiparameter Water Quality Meter Equipment Ref. No.: ET/EW/008/011 Manufacturer YSI Model No. Pro DSS Serial No. 18M101760 Date of Calibration : 29/1/2022 Calibration Due Date 28/4/2022 #### Results #### 1. Temperature (Method Reference: Section 6 of internation Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure) | Reading of Reference Thermometer (°C) | Displayed Reading (°C) | Tolerance (°C) | |---------------------------------------|------------------------|----------------| | 19.3 | 19.5 | +0.2 | | 25.0 | 25.2 | +0.2 | | 27.2 | 27.1 | +0.1 | Tolerance Limit (°C): ± 2.0 #### 2. pH (Method Reference: APHA 19ed 4500-H⁺ B) | Expected Reading (pH unit) | Displayed Reading (pH unit) | Tolerance (pH unit) | |----------------------------|-----------------------------|---------------------| | | | | | | | | | | | | Tolerance Limit (pH unit): ± 0.10 #### 3. Conductivity (Method Reference: APHA 19ed 2510 B) | , , , , , , , , , , , , , , , , , , , | | | |---------------------------------------|---------------------------|---------------| | Expected Reading (µS/cm) | Displayed Reading (μS/cm) | Tolerance (%) | | 146.9 | 149.9 | +2.0 | | 1412 | 1461 | +3.5 | | 12890 | 13355 | +3.6 | | 58760 | 60081 | +2.2 | Tolerance Limit (μ S/cm): \pm 10.0% #### 4. Salinity (Method Reference: APHA 19ed 2520 B) | Expected Reading (g/L) | Displayed Reading (g/L) | Tolerance (%) | |------------------------|-------------------------|---------------| | 10.0 | 9.48 | -5.2 | | 20.0 | 18.69 | -6.6 | | 30.0 | 28.13 | -6.2 | Tolerance Limit (g/L): ± 10.0% | | Manufacturer | : YSI | | |---|-------------------------------|--|------| | Iodel No. : Pro DSS | Serial No. | : 18M101760 | | | pate of Calibration : 29/1/2022 | Calibration Due D | | | | | | | _ | | | | | | | Dissolved Oxygen | | | | | 1ethod Reference: APHA 19ed 4500-O G) | | | | | | Reading (mg/L) | Tolerance (mg/L) | | | | 2.26 | +0.05 | _ | | 3.88 | 3.90 | +0.02 | | | 6.06 | 6.09 | +0.03 | | | lerance Limit (mg/L): ± 0.20 | | | | | | | | | | | | | | | Turbidity | | | | | 1ethod Reference: APHA 19ed 2130 B) | | | | | | Reading (NTU) | Tolerance (%) | | | 10 | 9.8 | -2.0 | | | 40 | 40.6 | +1.5 | | | 100 | 98.9 | -1.1 | | | | 397.2 | -0.7 | | | plerance Limit (NTU): ± 10.0% | | | | | · · · · · · · · · · · · · · · · · · · | ÷ | | | | | | | | | | | 1 | | ne equipment complies # / does not comply # with the specifi | ed requirements and is deemed | acceptable # / unacceptable # for u | ıse | | ne equipment complies # / does not comply # with the specifi | ed requirements and is deemed | acceptable # / unacceptable " for u | ıse. | | | ed requirements and is deemed | acceptable # / unacceptable # for u | | | | ed requirements and is deemed | acceptable # / unacceptable " for u | | | | ed requirements and is deemed | acceptable # / unacceptable # for u | | | | ed requirements and is deemed | acceptable # / unacceptable # for u | | | | ed requirements and is deemed | acceptable # / unacceptable # for u | use | | | ed requirements and is deemed | acceptable # / unacceptable " for u | use | | | ed requirements and is deemed | acceptable # / unacceptable " for u | ise. | | | ed requirements and is deemed | acceptable # / unacceptable # for u | use | | | ed requirements and is deemed | acceptable # / unacceptable # for u | use. | | | ed requirements and is deemed | acceptable # / unacceptable # for u | use | | | ed requirements and is deemed | acceptable # / unacceptable # for u | use. | | | ed requirements and is deemed | acceptable # / unacceptable # for u | ise. | | | ed requirements and is deemed | acceptable # / unacceptable # for u | ıse | | Delete as appropriate | ed requirements and is deemed | acceptable # / unacceptable # for u | ıse. | | he equipment complies # / does not comply # with the specific Delete as appropriate alibrated by : | ed requirements and is deemed | | | # **Appendix D2** **Impact Marine Water Quality Monitoring Results** Monitoring Station: TKO-C1 | Date | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salinit | y (ppt) | Dissolv | red Oxygen | (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|-----------|----------|------|--------------|---------|--------------|------------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value
 Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.2 | 30.4
30.4 | 30.4 | 7.14
7.17 | 7.16 | 6.95 | 89.1
89.5 | 89.3 | 1.91
1.94 | 1.93 | | 3.0
2.9 | 3.0 | | | 4/2/2022 | 9:01:42 | 18/Fine | Middle | 9.7 | 17.0 | 30.6
30.6 | 30.6 | 6.76
6.74 | 6.75 | 6.95 | 84.2
83.8 | 84.0 | 2.16
2.14 | 2.15 | 2.14 | 2.1
1.6 | 1.9 | 2.2 | | | | | Bottom | 19.3 | 16.6 | 31.0
31.0 | 31.0 | 6.36
6.32 | 6.34 | 6.34 | 78.7
78.2 | 78.5 | 2.32 | 2.34 | | 1.9 | 1.9 | | | | | | Surface | 1.0 | 17.7 | 31.1
31.1 | 31.1 | 7.57
7.53 | 7.55 | | 95.8
95.5 | 95.7 | 0.56
0.54 | 0.55 | | 4.6
4.1 | 4.4 | | | 7/2/2022 | 10:18:21 | 18/Fine | Middle | 9.7 | 17.5 | 31.5
31.5 | 31.5 | 6.99
6.97 | 6.98 | 7.27 | 88.3
88.1 | 88.2 | 0.79
0.82 | 0.81 | 0.81 | 4.3 | 4.4 | 3.8 | | | | | Bottom | 19.5 | 17.2 | 31.8 | 31.8 | 6.48 | 6.46 | 6.46 | 81.6 | 81.4 | 1.05 | 1.07 | | 3.0 | 2.8 | | | | | | Surface | 1.0 | 17.4 | 31.8
32.2 | 32.2 | 6.44
7.75 | 7.73 | | 81.1
98.1 | 98.0 | 1.09
0.41 | 0.42 | | 2.5
2.9 | 3.2 | | | 9/2/2022 | 11:14:52 | 18/Fine | Middle | 9.8 | 17.2 | 32.2
32.6 | 32.6 | 7.71
7.29 | 7.31 | 7.52 | 97.8
92.2 | 92.4 | 0.43
0.64 | 0.62 | 0.61 | 3.4 | 3.0 | 2.8 | | 0/2/2022 | | 16/11/16 | Bottom | 19.5 | 16.9 | 32.6
32.9 | 32.9 | 7.32
6.78 | 6.77 | 6.77 | 92.6
85.4 | 85.3 | 0.60
0.77 | 0.79 | | 3.0
1.6 | 2.1 | | | | | | | | | 32.9
30.3 | | 6.76
7.41 | | 0.77 | 85.1
94.5 | | 0.80
0.59 | | | 2.6
2.1 | | | | | | | Surface | 1.0 | 18.4 | 30.2
30.6 | 30.2 | 7.45
6.96 | 7.43 | 7.19 | 94.9
88.5 | 94.7 | 0.57
0.84 | 0.58 | | 1.7
4.4 | 1.9 | | | 11/2/2022 | 10:30:53 | 18/Fine | Middle | 9.5 | 18.1 | 30.6
31.0 | 30.6 | 6.93
6.64 | 6.95 | | 88.1
84.1 | 88.3 | 0.88 | 0.86 | 0.83 | 1.9 | 3.2 | 2.4 | | | | | Bottom | 19.0 | 17.8 | 31.0 | 31.0 | 6.62 | 6.63 | 6.63 | 83.9 | 84.0 | 1.02 | 1.04 | | 2.3 | 2.2 | | | | | | Surface | 1.0 | 17.1 | 30.2
30.2 | 30.2 | 7.78
7.76 | 7.77 | 7.52 | 96.8
96.7 | 96.8 | 1.93
1.96 | 1.95 | | 3.6
4.0 | 3.8 | | | 15/2/2022 | 16:06:09 | 18/Fine | Middle | 9.7 | 16.8 | 30.5
30.5 | 30.5 | 7.29
7.25 | 7.27 | | 90.4
89.9 | 90.2 | 2.14
2.18 | 2.16 | 2.14 | 5.1
5.2 | 5.2 | 3.8 | | | | | Bottom | 19.5 | 16.6 | 30.9
30.9 | 30.9 | 6.70
6.73 | 6.72 | 6.72 | 82.9
83.1 | 83.0 | 2.32 | 2.31 | | 2.6
2.5 | 2.6 | | | | | | Surface | 1.0 | 16.7 | 30.1
30.1 | 30.1 | 7.46
7.42 | 7.44 | 7.00 | 92.0
91.7 | 91.9 | 1.22
1.20 | 1.21 | | 1.5
1.9 | 1.7 | | | 17/2/2022 | 8:48:06 | 18/Fine | Middle | 9.6 | 16.5 | 30.4
30.4 | 30.4 | 7.03
7.01 | 7.02 | 7.23 | 86.6
86.3 | 86.5 | 1.36
1.32 | 1.34 | 1.35 | 1.9 | 1.9 | 1.7 | | | | | Bottom | 19.2 | 16.2 | 30.7 | 30.7 | 6.77
6.75 | 6.76 | 6.76 | 83.0
82.8 | 82.9 | 1.48 | 1.50 | | 1.6 | 1.5 | | **Monitoring Station**: TKO-C1 | Date | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | ırbidity (NT | ·U) | Suspe | nded Solids | s (mg/L) | |-----------|----------|--------------|----------------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|-------|--------------|-------------------|-------|-----------------|-------------------| | Date | Duration | Condition | (m | 1) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.4 | 29.9 | 29.9 | 7.36 | 7.35 | | 90.2 | 89.9 | 1.32 | 1.31 | | 2.6 | 2.4 | | | | | | Odridoc | 1.0 | 10.4 | 29.9 | 20.0 | 7.33 | 7.00 | 7.11 | 89.6 | 00.0 | 1.29 | 1.01 | | 2.1 | 2.7 | | | 19/2/2022 | 9:03:36 | 18/Fine | Middle | 9.6 | 16.1 | 30.3 | 30.3 | 6.88 | 6.87 | | 84.0 | 83.8 | 1.50 | 1.51 | 1.49 | 1.2 | 1.6 | 2.0 | | | | | | | | 30.3 | | 6.86 | | | 83.6 | | 1.52 | | | 2.0 | | | | | | | Bottom | 19.3 | 15.8 | 30.6 | 30.6 | 6.49 | 6.47 | 6.47 | 78.9 | 78.7 | 1.64 | 1.66 | | 1.8 | 2.1 | | | | | | | | | 30.6 | | 6.45 | | | 78.4 | | 1.67 | | | 2.4 | | | | | | | Surface | 1.0 | 15.7 | 29.5 | 29.5 | 7.67 | 7.66 | | 92.5 | 92.4 | 1.57 | 1.56 | | 1.9 | 2.0 | | | | | | | | | 29.5 | | 7.64 | | 7.43 | 92.3 | | 1.55 | | | 2.1 | | | | 21/2/2022 | 9:48:18 | 18/Fine | Middle | 9.7 | 15.5 | 29.9 | 29.9 | 7.20 | 7.21 | | 86.7 | 86.8 | 1.70 | 1.72 | 1.71 | 2.0 | 1.9 | 1.8 | | | | | | | | 29.9 | | 7.22 | | | 86.9 | | 1.73 | | | 1.8 | | | | | | | Bottom | 19.4 | 15.2 | 30.3 | 30.3 | 6.66 | 6.64 | 6.64 | 79.9 | 79.7 | 1.84 | 1.86 | | 1.2 | 1.5 | | | | | | | | | 30.3 | | 6.62 | | | 79.4 | | 1.88 | | | 1.7 | | | | | | | Surface | 1.0 | 15.6 | 29.0 | 29.0 | 7.55 | 7.54 | | 90.6 | 90.4 | 2.05 | 2.04 | | 2.2 | 2.1 | | | | | | | | | 29.1 | | 7.53 | | 7.36 | 90.1 | | 2.03 | | | 2.0 | | | | 23/2/2022 | 9:22:04 | 18/Fine | Middle | 9.7 | 15.3 | 29.5
29.5 | 29.5 | 7.15
7.19 | 7.17 | | 85.5
86.0 | 85.8 | 2.31 | 2.33 | 2.33 | 2.4 | 2.4 | 2.0 | | | | | | | | 29.9 | | 6.68 | | | 79.7 | | 2.64 | | | 1.8 | | | | | | | Bottom | 19.3 | 15.1 | 29.9 | 29.9 | 6.66 | 6.67 | 6.67 | 79.7 | 79.5 | 2.61 | 2.63 | | 1.1 | 1.5 | | | | | | | | | 32.5 | | 7.73 | | | 95.1 | | 0.89 | | | 2.7 | | | | | | | Surface | 1.0 | 15.8 | 32.5 | 32.5 | 7.76 | 7.75 | | 95.3 | 95.2 | 0.86 | 0.88 | | 2.5 | 2.6 | | | | | | | | | 32.9 | | 7.24 | | 7.48 | 88.5 | | 1.18 | | | 1.8 | | | | 25/2/2022 | 11:31:07 | 18/Fine | Middle | 9.8 | 15.4 | 32.9 | 32.9 | 7.20 | 7.22 | | 88.1 | 88.3 | 1.16 | 1.17 | 1.12 | 2.3 | 2.1 | 2.1 | | | | | _ | | | 33.2 | | 6.72 | | | 81.9 | | 1.34 | | | 1.6 | | | | | | | Bottom | 19.6 | 15.1 | 33.2 | 33.2 | 6.70 | 6.71 | 6.71 | 81.6 | 81.8 | 1.30 | 1.32 | | 1.4 | 1.5 | | | | | | | | | 30.7 | | 7.66 | | | 95.9 | | 1.40 | | | 1.3 | 1 | | | | | | Surface | 1.0 | 17.3 | 30.7 | 30.7 | 7.63 | 7.65 | 7.40 | 95.6 | 95.8 | 1.44 | 1.42 | | 1.2 | 1.3 | | | 00/0/000 | 45.00.00 | 40/Ein- | N A : al all c | 0.7 | 171 | 31.0 | 01.0 | 7.24 | 7.00 | 7.43 | 90.5 | 00.0 | 1.69 | 1.00 | 4.00 | 0.9 | 0.0 | 0.0 | | 28/2/2022 | 15:30:22 | 18/Fine | Middle | 9.7 | 17.1 | 31.0 | 31.0 | 7.20 | 7.22 | | 89.8 | 90.2 | 1.66 | 1.68 | 1.63 | 0.6 | 0.8 | 0.8 | | | | | Bottom | 19.3 | 16.7 | 31.3 | 31.3 | 6.79 | 6.78 | 6.78 | 84.4 | 84.3 | 1.78 | 1.79 | | 0.5 | 0.4 | | | | | | ווטווטם | 18.3 | 10.7 | 31.3 | 31.3 | 6.77 | 0.70 | 0.70 | 84.1 | 04.3 | 1.80 | 1.78 | | 0.3 | U. 4 | | Monitoring Station: TKO-M4 | Data | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|-------------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (m | 1) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.3 | 30.2
30.2 | 30.2 | 7.22
7.25 | 7.24 | | 90.2
90.7 | 90.5 | 1.41
1.45 | 1.43 | | 1.4 | 1.6 | | | 4/2/2022 | 10:40:14 | 18/Fine | Middle | 4.4 | 17.1 | 30.6 | 30.6 | 6.70 | 6.68 | 6.96 | 83.6 | 83.3 | 1.60 | 1.61 | 1.61 | 1.6 | 1.6 | 1.9 | | 4/2/2022 | 10.40.14 | 10/11/10 | Wildaio | | 17.1 | 30.6
31.0 | 00.0 | 6.66
6.35 | 0.00 | | 82.9
78.7 | 00.0 | 1.62
1.77 | 1.01 | 1.01 | 1.5 | 1.0 | 1.0 | | | | | Bottom | 8.8 | 16.7 | 31.0 | 31.0 | 6.37 | 6.36 | 6.36 | 79.0 | 78.9 | 1.80 | 1.79 | | 2.2 | 2.5 | | | | | | Surface | 1.0 | 17.6 | 31.0 | 31.0 | 7.39 | 7.41 | | 93.3 | 93.4 | 0.35 | 0.34 | | 2.1 | 2.7 | | | | | | | | | 31.0
31.3 | | 7.42
6.88 | | 7.13 | 93.5
86.3 | | 0.32
0.57 | | | 3.3
4.0 | | | | 7/2/2022 | 11:48:20 | 18/Fine | Middle | 4.4 | 17.2 | 31.3 | 31.3 | 6.84 | 6.86 | | 85.8 | 86.1 | 0.59 | 0.58 | 0.60 | 3.6 | 3.8 | 3.3 | | | | | Bottom | 8.8 | 17.0 | 31.6 | 31.6 | 6.57 | 6.56 | 6.56 | 82.3 | 82.1 | 0.86 | 0.88 | | 3.0 | 3.4 | | | | | | | | | 31.6
31.8 | | 6.55
7.64 | | | 81.8
96.7 | | 0.90
0.23 | | | 3.7
5.9 | | | | | | | Surface | 1.0 | 17.5 | 31.8 | 31.8 | 7.60 | 7.62 | 7.37 | 96.2 | 96.5 | 0.27 | 0.25 | | 5.3 | 5.6 | | | 9/2/2022 | 12:47:00 | 18/Fine | Middle | 4.4 | 17.2 | 32.1 | 32.1 | 7.12 | 7.11 | 7.57 | 89.8 | 89.7 | 0.53 | 0.52 | 0.48 | 1.6 | 2.1 | 3.6 | | | | | _ | | | 32.1
32.5 | | 7.10
6.67 | | | 89.5
84.0 | | 0.51
0.66 | | | 2.6
3.0 | | | | | | | Bottom | 8.8 | 17.0 | 32.5 | 32.5 | 6.69 | 6.68 | 6.68 | 84.1 | 84.1 | 0.69 | 0.68 | | 2.9 | 3.0 | | | | | | Surface | 1.0 | 18.5 | 29.9
29.9 | 29.9 | 7.17
7.19 | 7.18 | | 91.5
91.7 | 91.6 | 0.42 | 0.41 | | 4.0
3.7 | 3.9 | | | | | | | | 10.0 | 30.4 | 22.4 | 6.62 | 0.04 | 6.89 | 84.2 | 24.4 | 0.40 | | | 8.0 | | | | 11/2/2022 | 11:57:20 | 18/Fine | Middle | 4.4 | 18.2 | 30.4 | 30.4 | 6.59 | 6.61 | | 84.0 | 84.1 | 0.66 | 0.64 | 0.64 | 3.2 | 5.6 | 4.2 | | | | | Bottom | 8.8 | 18.0 | 30.7
30.7 | 30.7 | 6.30 | 6.32 | 6.32 | 80.0
80.3 | 80.2 | 0.85
0.88 | 0.87 | | 2.3
4.0 | 3.2 | | | | | | o , | | | 30.7 | 22.2 | 7.39 | | | 91.6 | 21.1 | 1.60 | | | 1.6 | | | | | | | Surface | 1.0 | 17.0 | 30.0 | 30.0 | 7.35 | 7.37 | 7.18 | 91.1 | 91.4 | 1.62 | 1.61 | | 1.2 | 1.4 | | | 15/2/2022 | 17:36:58 | 18/Fine | Middle | 4.4 | 16.8 | 30.3
30.3 | 30.3 | 6.97
6.99 | 6.98 | | 86.2
86.3 | 86.3 | 1.79
1.76 | 1.78 | 1.78 | 4.0
3.3 | 3.7 | 3.5 | | | | | Bottom | 8.7 | 16.5 | 30.7 | 30.6 | 6.56 | 6.55 | 6.55 | 80.9 | 80.7 | 1.94 | 1.96 | | 5.9 | 5.4 | | | | | | Bottom | 0.7 | 10.5 | 30.6 | 30.0 | 6.53 | 0.55 | 0.55 | 80.5 | 60.7 | 1.98 | 1.90 | | 4.8 | 3.4 | | | | | | Surface | 1.0 | 16.5 | 30.3
30.3 | 30.3 |
7.21
7.23 | 7.22 | | 88.7
89.2 | 89.0 | 1.12
1.15 | 1.14 | | 1.6
1.9 | 1.8 | | | 17/2/2022 | 10:21:59 | 18/Fine | Middle | 4.4 | 16.3 | 30.6 | 30.6 | 6.78 | 6.77 | 6.99 | 83.3 | 83.0 | 1.30 | 1.28 | 1.29 | 1.1 | 1.1 | 1.5 | | TITLICOLL | 10.21.00 | 10/11110 | ··········· | | 10.0 | 30.6
30.9 | 00.0 | 6.75
6.49 | 0.77 | | 82.7
79.3 | 00.0 | 1.26
1.45 | 1.20 | 1.20 | 1.1
1.5 | | 1.0 | | | | | Bottom | 8.9 | 16.0 | 30.9 | 30.8 | 6.49 | 6.47 | 6.47 | 79.3 | 79.1 | 1.45 | 1.46 | | 1.5 | 1.7 | | Monitoring Station: TKO-M4 | Data | Sampling | Ambient Temp | Monitorir | ng Depth | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | ·U) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|-----------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|-------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.4 | 30.0 | 30.0 | 7.48 | 7.50 | | 91.7 | 91.9 | 1.08 | 1.09 | | 1.0 | 1.0 | | | | | | Ouriacc | 1.0 | 10.4 | 30.0 | 50.0 | 7.51 | 7.50 | 7.24 | 92.1 | 31.3 | 1.10 | 1.00 | | 1.0 | 1.0 | | | 19/2/2022 | 10:34:58 | 18/Fine | Middle | 4.4 | 16.1 | 30.5 | 30.5 | 6.99 | 6.98 | 7.27 | 85.4 | 85.4 | 1.27 | 1.26 | 1.23 | 1.3 | 1.3 | 1.7 | | 10/2/2022 | 10.01.00 | 10/1 1110 | | | | 30.5 | 00.0 | 6.97 | 0.00 | | 85.3 | 00 | 1.24 | 0 | 1.20 | 1.3 | | | | | | | Bottom | 8.9 | 16.0 | 30.8 | 30.8 | 6.54 | 6.56 | 6.56 | 79.9 | 80.1 | 1.32 | 1.34 | | 2.2 | 2.9 | | | | | | | | | 30.9 | 00.0 | 6.58 | | | 80.3 | | 1.36 | | | 3.5 | | | | | | | Surface | 1.0 | 15.6 | 29.6 | 29.6 | 7.34 | 7.33 | | 88.3 | 88.3 | 1.16 | 1.14 | | 1.2 | 1.2 | | | | | | | | | 29.6 | | 7.31 | | 7.03 | 88.2 | | 1.12 | | | 1.2 | | | | 21/2/2022 | 11:14:02 | 18/Fine | Middle | 4.4 | 15.3 | 30.0 | 30.0 | 6.73 | 6.74 | | 80.7 | 80.8 | 1.35 | 1.37 | 1.36 | 1.7 | 1.8 | 1.4 | | | | | | | | 30.0 | | 6.75 | | | 80.9 | | 1.38 | | | 1.9 | | | | | | | Bottom | 8.7 | 15.0 | 30.5 | 30.4 | 6.32 | 6.34 | 6.34 | 75.6 | 75.8 | 1.59 | 1.58 | | 1.3 | 1.2 | | | | | | | | | 30.4 | | 6.36 | | | 76.0 | | 1.57 | | | 1.0 | | | | | | | Surface | 1.0 | 15.4 | 29.7 | 29.7 | 7.50 | 7.49 | | 90.0 | 90.0 | 1.83 | 1.84 | | 0.8 | 1.0 | | | | | | | | | 29.7 | | 7.48 | | 7.28 | 89.9 | | 1.85 | | | 1.2 | | | | 23/2/2022 | 10:49:59 | 18/Fine | Middle | 4.4 | 15.3 | 30.2
30.2 | 30.2 | 7.09
7.06 | 7.08 | | 85.1
84.6 | 84.9 | 2.06 | 2.05 | 2.07 | 0.8
1.5 | 1.2 | 1.1 | | | | | | | | 30.2 | | 6.49 | | | 77.6 | | 2.03 | | | 1.2 | | | | | | | Bottom | 8.8 | 15.0 | 30.5 | 30.5 | 6.49 | 6.47 | 6.47 | 77.1 | 77.4 | 2.33 | 2.33 | | 1.1 | 1.2 | | | | | | | | | 31.8 | | 7.40 | | | 90.2 | | 0.66 | | | 2.3 | | | | | | | Surface | 1.0 | 15.6 | 31.8 | 31.8 | 7.40 | 7.42 | | 90.2 | 90.5 | 0.63 | 0.65 | | 1.5 | 1.9 | | | | | | | | | 32.2 | | 6.82 | | 7.13 | 82.9 | | 0.89 | | | 2.0 | | | | 25/2/2022 | 12:37:59 | 18/Fine | Middle | 4.4 | 15.3 | 32.2 | 32.2 | 6.85 | 6.84 | | 83.5 | 83.2 | 0.85 | 0.87 | 0.89 | 1.5 | 1.8 | 2.0 | | | | | | | | 32.8 | | 6.42 | | | 77.9 | | 1.14 | | | 2.2 | | | | | | | Bottom | 8.7 | 15.0 | 32.8 | 32.8 | 6.40 | 6.41 | 6.41 | 77.5 | 77.7 | 1.16 | 1.15 | | 2.2 | 2.2 | | | | | | | | | 29.8 | | 7.08 | | | 87.9 | | 1.29 | | | 0.4 | | | | | | | Surface | 1.0 | 17.1 | 29.8 | 29.8 | 7.05 | 7.07 | | 87.5 | 87.7 | 1.27 | 1.28 | | 0.3 | 0.4 | | | | | 10/5 | | 4.4 | 10.0 | 30.4 | 20.4 | 6.44 | 0.40 | 6.75 | 79.7 | 70.0 | 1.36 | 4.00 | | 0.7 | 0.5 | | | 28/2/2022 | 16:56:41 | 18/Fine | Middle | 4.4 | 16.8 | 30.4 | 30.4 | 6.41 | 6.43 | | 79.4 | 79.6 | 1.39 | 1.38 | 1.39 | 0.3 | 0.5 | 0.4 | | | | | Dattage | 0.0 | 10.0 | 30.6 | 00.0 | 6.16 | 0.15 | 0.45 | 76.1 | 75.0 | 1.50 | 1.50 | | 0.4 | 0.0 | | | | | | Bottom | 8.8 | 16.6 | 30.6 | 30.6 | 6.14 | 6.15 | 6.15 | 75.6 | 75.9 | 1.54 | 1.52 | | 0.2 | 0.3 | | Monitoring Station: TKO-C1 | Date | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salini | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | Ū) | Susper | nded Solids | (mg/L) | |-----------|----------|-----------------------------|-----------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (m | ו) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.3 | 30.5
30.5 | 30.5 | 6.96
6.92 | 6.94 | | 87.1
86.6 | 86.9 | 2.20
2.17 | 2.19 | | 1.2
2.3 | 1.8 | | | | | | | | | 30.9 | | 6.63 | | 6.78 | 82.7 | | 2.35 | | | 1.4 | | | | 4/2/2022 | 14:31:21 | 18/Fine | Middle | 9.6 | 17.0 | 30.9 | 30.9 | 6.60 | 6.62 | | 82.3 | 82.5 | 2.31 | 2.33 | 2.40 | 1.7 | 1.6 | 1.6 | | | | | Bottom | 19.2 | 16.8 | 31.1 | 31.1 | 6.15 | 6.16 | 6.16 | 76.5 | 76.6 | 2.69 | 2.68 | 1 | 1.9 | 1.6 | | | | | | Bottom | 10.2 | 10.0 | 31.1 | 01.1 | 6.17 | 0.10 | 0.10 | 76.6 | 7 0.0 | 2.67 | 2.00 | | 1.3 | 1.0 | | | | | | Surface | 1.0 | 17.6 | 31.3
31.3 | 31.3 | 7.41
7.43 | 7.42 | | 93.7
94.1 | 93.9 | 0.76
0.72 | 0.74 | | 1.4
1.7 | 1.6 | | | | | | | | | 31.5 | | 6.78 | | 7.09 | 85.5 | | 0.72 | | | 2.6 | | | | 7/2/2022 | 16:33:04 | 18/Fine | Middle | 9.6 | 17.4 | 31.5 | 31.5 | 6.74 | 6.76 | | 85.0 | 85.3 | 0.97 | 0.98 | 0.96 | 2.6 | 2.6 | 2.3 | | | | | Dettem | 10.1 | 17.1 | 31.9 | 01.0 | 6.32 | 0.04 | 6.34 | 79.4 | 70.0 | 1.14 | 1.10 | 1 | 2.8 | 2.7 | | | | | | Bottom | 19.1 | 17.1 | 31.9 | 31.9 | 6.35 | 6.34 | 6.34 | 79.8 | 79.6 | 1.17 | 1.16 | | 2.5 | 2.7 | | | | | | Surface | 1.0 | 17.4 | 32.3
32.3 | 32.3 | 7.56
7.59 | 7.58 | | 95.8
96.2 | 96.0 | 0.50
0.52 | 0.51 | | 2.5 | 2.4 | | | | | | | | | 32.6 | | 7.59 | | 7.36 | 90.0 | | 0.52 | | | 2.2 | | | | 9/2/2022 | 17:40:18 | 18/Fine | Middle | 9.7 | 17.1 | 32.6 | 32.6 | 7.13 | 7.15 | | 90.7 | 90.4 | 0.76 | 0.80 | 0.75 | 2.4 | 2.2 | 2.1 | | | | | Bottom | 19.3 | 16.8 | 32.9
32.9 | 32.9 | 6.53
6.51 | 6.52 | 6.52 | 82.1
81.9 | 82.0 | 0.96
0.92 | 0.94 | | 1.4
2.3 | 1.9 | | | | | | | | | V | 1 | | | | | | | | | | | | i l | | 1 | | | 1 | | 1 | | | Ī | | | | | | Surface | 1.0 | 17.3 | 30.4 | 30.4 | 7.59 | 7.61 | | 94.9 | 95.1 | 2.18 | 2.17 | | 2.3 | 2.1 | | | | | | | | | 30.4 | | 7.62 | | 7.38 | 95.3 | | 2.16 | | | 1.8 | | | | 15/2/2022 | 10:38:01 | 18/Fine | Middle | 9.6 | 17.0 | 30.7 | 30.7 | 7.17
7.15 | 7.16 | | 89.3
88.9 | 89.1 | 2.44 | 2.42 | 2.40 | 2.8
1.9 | 2.4 | 2.3 | | | | | Dattaur | 10.0 | 40.7 | 30.9 | 00.0 | 6.51 | 0.50 | 0.50 | 80.7 | 04.0 | 2.58 | 0.00 | 1 | 2.8 | 0.0 | | | | | | Bottom | 19.2 | 16.7 | 30.9 | 30.9 | 6.55 | 6.53 | 6.53 | 81.2 | 81.0 | 2.61 | 2.60 | | 2.4 | 2.6 | | | | | | Surface | 1.0 | 16.8 | 30.2 | 30.2 | 7.33 | 7.32 | | 90.7 | 90.6 | 1.34 | 1.33 | | 1.3 | 1.6 | | | | | | | | | 30.2 | | 7.30
6.88 | | 7.09 | 90.5 | | 1.31 | | l | 1.8 | | | | 17/2/2022 | 13:19:01 | 18/Fine | Middle | 9.5 | 16.6 | 30.5
30.5 | 30.5 | 6.88 | 6.86 | | 84.9
84.4 | 84.7 | 1.55
1.57 | 1.56 | 1.53 | 2.3 | 2.3 | 1.9 | | | | | Pottom | 19.1 | 16.3 | 30.7 | 30.7 | 6.57 | 6.56 | 6.56 | 80.7 | 80.6 | 1.68 | 1.69 | 1 | 1.8 | 2.0 | | | | | | Bottom | 19.1 | 10.3 | 30.7 | 30.7 | 6.55 | 0.30 | 0.00 | 80.5 | 00.0 | 1.70 | 1.09 | | 2.2 | 2.0 | | Monitoring Station: TKO-C1 | Date | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salini | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|-------------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (m | า) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.5 | 30.0 | 30.0 | 7.17 | 7.16 | | 88.1 | 87.8 | 1.41 | 1.43 | | 1.1 | 1.0 | | | | | | Ouriacc | 1.0 | 10.5 | 30.0 | 50.0 | 7.14 | 7.10 | 6.87 | 87.5 | 07.0 | 1.45 | 1.40 | | 0.9 | 1.0 | | | 19/2/2022 | 13:50:01 | 18/Fine | Middle | 9.5 | 16.2 | 30.5 | 30.5 | 6.59 | 6.58 | 0.07 | 80.7 | 80.5 | 1.66 | 1.65 | 1.66 | 2.7 | 2.7 | 2.9 | | 10/2/2022 | | . 6, 6 | | | | 30.5 | | 6.56 | | | 80.3 | | 1.63 | | | 2.6 | | | | | | | Bottom | 19.0 | 16.0 | 30.8 | 30.8 | 6.19 | 6.21 | 6.21 | 75.7 | 75.9 | 1.89 | 1.90 | | 5.5 | 4.9 | | | | | | | | | 30.8 | | 6.23 | | | 76.0 | | 1.91 | | | 4.3 | | | | | | | Surface | 1.0 | 15.7 | 29.6 | 29.6 | 7.46 | 7.45 | | 90.0 | 89.8 | 1.65 | 1.66 | | 1.2 | 1.1 | | | | | | | | | 29.6 | | 7.43 | | 7.22 | 89.6 | | 1.67 | | | 1.0 | | | | 21/2/2022 | 15:40:03 | 18/Fine | Middle | 9.5 | 15.4 | 30.1 | 30.1 | 7.01 | 7.00 | | 84.3 | 84.2 | 1.81 | 1.83 | 1.87 | 1.4 | 1.6 | 1.6 | | | | | | | | 30.1 | | 6.98 | | | 84.1 | | 1.85 | | | 1.8 | | | | | | | Bottom | 19.1 | 15.1 | 30.6 | 30.6 | 6.35 | 6.36 | 6.36 | 76.1 | 76.3 | 2.10 | 2.12 | | 1.9 | 2.1 | | | | | | | | | 30.6 | | 6.37 | | | 76.5 | | 2.13 | | | 2.2 | | | | | | | Surface | 1.0 | 15.6 | 29.2 | 29.2 | 7.38 | 7.37 | | 88.6 | 88.6 | 2.19 | 2.18 | | 0.8 | 1.0 | | | | | | | | | 29.2 | | 7.36 | | 7.08 | 88.6 | | 2.16 | | | 1.1 | | - | | 23/2/2022 |
16:06:03 | 18/Fine | Middle | 9.5 | 15.4 | 29.6 | 29.6 | 6.77
6.81 | 6.79 | | 81.2
81.5 | 81.4 | 2.46
2.48 | 2.47 | 2.48 | 1.7
4.8 | 3.3 | 1.9 | | | | | | | | 29.6
30.1 | | 6.35 | 1 | | 75.9 | | 2.46 | | | 1.7 | | - | | | | | Bottom | 19.0 | 15.1 | 30.1 | 30.1 | 6.32 | 6.34 | 6.34 | 75.9 | 75.8 | 2.81 | 2.79 | | 1.2 | 1.5 | | | | | | | | | 32.4 | | 7.64 | | | 93.5 | | 1.07 | | | 2.7 | | | | | | | Surface | 1.0 | 15.6 | 32.4 | 32.4 | 7.61 | 7.63 | 7.04 | 93.3 | 93.4 | 1.05 | 1.06 | | 2.2 | 2.5 | | | 05/0/0000 | 47:04:00 | 40/51 | Mi al all a | 0.0 | 15.4 | 32.8 | 32.8 | 6.98 | 7.00 | 7.31 | 85.3 | 85.5 | 1.25 | 1.07 | 4.00 | 3.0 | 2.7 | | | 25/2/2022 | 17:31:00 | 18/Fine | Middle | 9.6 | 15.4 | 32.8 | 32.8 | 7.02 | 7.00 | | 85.6 | 85.5 | 1.29 | 1.27 | 1.30 | 2.4 | 2.7 | 3.1 | | | | | Dettem | 19.3 | 15.1 | 33.1 | 33.1 | 6.47 | 6.46 | 6.46 | 78.8 | 78.6 | 1.59 | 1.58 | | 4.2 | 4.0 | | | | | | Bottom | 19.3 | 15.1 | 33.1 | 33.1 | 6.45 | 0.40 | 0.40 | 78.4 | 76.6 | 1.56 | 1.36 | | 3.8 | 4.0 | | | | | | Surface | 1.0 | 17.3 | 30.7 | 30.7 | 7.51 | 7.52 | | 94.1 | 94.3 | 1.53 | 1.55 | | 0.3 | 0.3 | | | | | | Surface | 1.0 | 17.3 | 30.8 | 30.7 | 7.53 | 7.52 | 7.32 | 94.5 | 94.3 | 1.56 | 1.55 | | 0.2 | 0.3 | | | 28/2/2022 | 10:00:15 | 18/Fine | Middle | 9.5 | 17.2 | 31.1 | 31.1 | 7.11 | 7.13 | 1.02 | 89.1 | 89.2 | 1.81 | 1.83 | 1.76 | 0.3 | 0.2 | 0.2 | | 20/2/2022 | 10.00.13 | TO/FILLE | ivildule | 9.0 | 11.4 | 31.1 | 31.1 | 7.14 | 7.13 | | 89.3 | 03.2 | 1.85 | 1.00 | 1./0 | 0.1 | 0.2 | 0.2 | | | | | Bottom | 19.0 | 16.9 | 31.5 | 31.5 | 6.57 | 6.55 | 6.55 | 82.1 | 81.8 | 1.92 | 1.91 | | 0.2 | 0.3 | | | | | | Dottom | 10.0 | 10.0 | 31.5 | 01.5 | 6.53 | 0.00 | 0.00 | 81.4 | 01.0 | 1.90 | 1.51 | | 0.3 | 0.0 | | **Monitoring Station**: TKO-M4 | Dete | Sampling | Ambient Temp | Manitania a F | 2 +l- () | Temp | Salini | ty (ppt) | Dissolv | ed Oxyger | ı (mg/L) | | d Oxygen
tion (%) | Τι | ırbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|---------------|-----------|-------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | Monitoring [| Jeptn (m) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.4 | 30.4
30.4 | 30.4 | 7.13
7.11 | 7.12 | | 89.3
89.1 | 89.2 | 1.53
1.56 | 1.55 | | 3.6
3.9 | 3.8 | | | | | | | | | 30.4 | | 6.54 | | 6.82 | 81.7 | | 1.81 | | | 3.5 | | | | 4/2/2022 | 16:02:54 | 18/Fine | Middle | 4.3 | 17.1 | 30.9 | 30.9 | 6.50 | 6.52 | | 81.2 | 81.5 | 1.85 | 1.83 | 1.80 | 4.0 | 3.8 | 3.1 | | | | | Bottom | 8.7 | 16.8 | 31.3 | 31.3 | 6.16 | 6.18 | 6.18 | 76.7 | 76.8 | 2.03 | 2.02 | | 1.5 | 1.7 | | | | | | 20110111 | · · · | . 0.0 | 31.3 | 00 | 6.19 | 00 | 00 | 76.9 | 7 0.0 | 2.01 | | | 1.8 | | | | | | | Surface | 1.0 | 17.4 | 30.8 | 30.8 | 7.14 | 7.13 | | 89.7 | 89.7 | 0.54 | 0.56 | | 2.1 | 2.0 | | | | | | | | | 30.8 | | 7.12 | | 6.93 | 89.6 | | 0.58 | | | 1.8 | | | | 7/2/2022 | 17:59:05 | 18/Fine | Middle | 4.3 | 17.2 | 31.1
31.1 | 31.1 | 6.71
6.75 | 6.73 | | 84.1
84.4 | 84.3 | 0.85
0.83 | 0.84 | 0.79 | 3.2
3.1 | 3.2 | 2.6 | | | | | | | | 31.4 | | 6.38 | | | 79.6 | | 0.99 | | | 2.6 | | | | | | | Bottom | 8.5 | 16.9 | 31.4 | 31.4 | 6.35 | 6.37 | 6.37 | 79.1 | 79.4 | 0.96 | 0.98 | | 2.8 | 2.7 | | | | | | Surface | 1.0 | 17.3 | 31.7 | 31.7 | 7.49 | 7.50 | | 94.4 | 94.7 | 0.45 | 0.43 | | 2.2 | 2.5 | | | | | | Juliace | 1.0 | 17.5 | 31.7 | 31.7 | 7.51 | 7.50 | 7.23 | 94.9 | 34.7 | 0.41 | 0.43 | | 2.7 | 2.5 | | | 9/2/2022 | 19:15:07 | 18/Fine | Middle | 4.3 | 17.1 | 32.1 | 32.1 | 6.97 | 6.96 | 7.20 | 87.7 | 87.5 | 0.66 | 0.67 | 0.65 | 2.1 | 2.0 | 2.2 | | | | | | | | 32.1 | | 6.94 | | | 87.2 | | 0.68 | | | 1.8 | | | | | | | Bottom | 8.6 | 16.9 | 32.4
32.4 | 32.4 | 6.48
6.44 | 6.46 | 6.46 | 81.4
80.7 | 81.1 | 0.82
0.85 | 0.84 | | 1.9
2.3 | 2.1 | 1 | | 1 | | | 1 | | | | | 1 | Surface | 1.0 | 17.1 | 30.3 | 30.3 | 7.23 | 7.22 | | 90.0 | 89.9 | 1.74 | 1.76 | | 3.8 | 3.4 | | | | | | | | | 30.3 | | 7.21 | | 6.98 | 89.7 | | 1.78 | | | 2.9 | | | | 15/2/2022 | 12:12:58 | 18/Fine | Middle | 4.3 | 16.9 | 30.5
30.5 | 30.5 | 6.71
6.75 | 6.73 | | 83.3
83.7 | 83.5 | 1.88 | 1.89 | 1.90 | 2.4 | 2.2 | 2.7 | | | | | | | | 30.8 | | 6.25 | | | 77.3 | | 2.07 | | | 2.4 | | | | | | | Bottom | 8.6 | 16.6 | 30.8 | 30.8 | 6.23 | 6.24 | 6.24 | 77.0 | 77.2 | 2.04 | 2.06 | | 2.7 | 2.6 | | | | | | Surface | 1.0 | 16.6 | 30.5 | 30.5 | 7.01 | 7.03 | | 86.5 | 86.7 | 1.35 | 1.34 | | 1.6 | 1.7 | | | | | | Suriace | 1.0 | 10.0 | 30.5 | 30.5 | 7.04 | 7.03 | 6.83 | 86.9 | 00.7 | 1.33 | 1.34 | | 1.8 | 1.7 | | | 17/2/2022 | 14:50:58 | 18/Fine | Middle | 4.3 | 16.4 | 30.8
30.8 | 30.8 | 6.65
6.61 | 6.63 | 0.00 | 81.9
81.4 | 81.7 | 1.41 | 1.43 | 1.47 | 2.1
1.5 | 1.8 | 1.7 | | | | | | | | 31.1 | 1 | 6.29 | |]
 | 77.2 | | 1.44 | | | 1.8 | | | | | | | Bottom | 8.6 | 16.1 | 31.1 | 31.1 | 6.27 | 6.28 | 6.28 | 76.9 | 77.1 | 1.63 | 1.65 | | 1.4 | 1.6 | | | | | <u> </u> | I. | | | | | - | | | | | | | | | | | **Monitoring Station**: TKO-M4 | 5. | Sampling | Ambient Temp | | 2 11 () | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | U) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|--------------|-----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | Monitoring I | Jepth (m) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.3 | 30.0 | 30.0 | 7.33 | 7.32 | | 89.7 | 89.6 | 1.23 | 1.24 | | 2.1 | 2.3 | | | | | | Ouridoo | 1.0 | 10.0 | 30.0 | 00.0 | 7.30 | 7.02 | 7.03 | 89.5 | 00.0 | 1.25 | 1.27 | | 2.5 | 2.0 | | | 19/2/2022 | 15:15:58 | 18/Fine | Middle | 4.3 | 16.1 | 30.2 | 30.2 | 6.73 | 6.75 | 7.00 | 82.1 | 82.4 | 1.53 | 1.52 | 1.47 | 4.1 | 4.2 | 3.1 | | | | | | | | 30.2 | | 6.77 | | | 82.6 | | 1.50 | | | 4.3 | | | | | | | Bottom | 8.5 | 15.9 | 30.7 | 30.7 | 6.34 | 6.33 | 6.33 | 77.3 | 77.1 | 1.64 | 1.66 | | 3.0 | 2.8 | | | | | | | | | 30.7 | | 6.32 | | | 76.9 | | 1.68 | | | 2.5 | | | | | | | Surface | 1.0 | 15.5 | 29.9 | 29.9 | 7.05 | 7.06 | | 84.8 | 85.0 | 1.30 | 1.32 | | 1.1 | 1.2 | | | | | | | | | 29.9 | | 7.07 | | 6.79 | 85.2 | | 1.33 | | | 1.3 | | | | 21/2/2022 | 17:08:13 | 18/Fine | Middle | 4.3 | 15.2 | 30.2
30.2 | 30.2 | 6.54 | 6.53 | | 78.4
78.0 | 78.2 | 1.48 | 1.47 | 1.48 | 1.2 | 1.2 | 1.3 | | | | | | | | 30.2 | | 6.51
6.16 | | | 78.0 | | 1.46 | | | 1.1
1.9 | | | | | | | Bottom | 8.6 | 14.9 | 30.7 | 30.7 | 6.13 | 6.15 | 6.15 | 73.6 | 73.4 | 1.62 | 1.64 | | 1.4 | 1.7 | | | | | | | | | 29.9 | | 7.33 | | | 88.0 | | 1.92 | | | 1.0 | | | | | | | Surface | 1.0 | 15.4 | 29.9 | 29.9 | 7.35 | 7.34 | | 88.2 | 88.1 | 1.90 | 1.91 | | 1.6 | 1.3 | | | | | | | | | 30.4 | | 6.87 | | 7.10 | 82.3 | | 2.13 | | | 1.5 | | | | 23/2/2022 | 17:27:58 | 18/Fine | Middle | 4.3 | 15.1 | 30.4 | 30.4 | 6.84 | 6.86 | | 82.1 | 82.2 | 2.17 | 2.15 | 2.16 | 2.0 | 1.8 | 1.7 | | | | | D - # | 0.0 | 14.9 | 30.8 | 30.8 | 6.30 | 6.32 | 0.00 | 75.3 | 75.6 | 2.43 | 2.42 | | 2.4 | 0.4 | | | | | | Bottom | 8.6 | 14.9 | 30.8 | 30.8 | 6.34 | 6.32 | 6.32 | 75.8 | /5.6 | 2.40 | 2.42 | | 1.7 | 2.1 | | | | | | Surface | 1.0 | 15.4 | 31.4 | 31.4 | 7.23 | 7.25 | | 87.6 | 87.9 | 0.75 | 0.74 | | 2.4 | 2.0 | | | | | | Surface | 1.0 | 15.4 | 31.4 | 31.4 | 7.26 | 7.20 | 6.89 | 88.1 | 67.9 | 0.73 | 0.74 | | 1.6 | 2.0 | | | 25/2/2022 | 18:27:06 | 18/Fine | Middle | 4.2 | 15.2 | 31.9 | 31.9 | 6.54 | 6.53 | 0.03 | 79.2 | 79.1 | 1.07 | 1.09 | 1.03 | 3.5 | 3.9 | 2.8 | | 23/2/2022 | 10.27.00 | 10/1 lile | Wildaic | 7.2 | 10.2 | 31.9 | 01.0 | 6.52 | 0.50 | | 78.9 | 75.1 | 1.10 | 1.00 | 1.05 | 4.2 | 0.0 | 2.0 | | | | | Bottom | 8.5 | 14.9 | 32.6 | 32.6 | 6.12 | 6.14 | 6.14 | 74.0 | 74.2 | 1.24 | 1.26 | | 2.8 | 2.4 | | | | | | 20110111 | 0.0 | | 32.6 | 02.0 | 6.16 | 0 | | 74.3 | = | 1.28 | 0 | | 2.0 | | | | | | | Surface | 1.0 | 17.2 | 29.8 | 29.8 | 6.91 | 6.90 | | 85.9 | 85.7 | 1.35 | 1.37 | | 0.1 | 0.3 | | | | | | | | | 29.8 | | 6.88 | | 6.60 | 85.4 | | 1.38 | | | 0.4 | | | | 28/2/2022 | 11:31:14 | 18/Fine | Middle | 4.2 | 16.9 | 30.4 | 30.4 | 6.32 | 6.31 | | 78.4 | 78.2 | 1.52 | 1.54 | 1.54 | 1.2 | 1.3 | 0.6 | | | | | | | | 30.4 | | 6.30 | | | 78.0 | | 1.56 | | | 1.3 | | | | | | | Bottom | 8.5 | 16.6 | 30.8 | 30.8 | 5.94
5.90 | 5.92 | 5.92 | 73.4
72.9 | 73.2 | 1.72
1.70 | 1.71 | | 0.3
0.5 | 0.4 | | # Appendix D3 **Graphical Plots of Impact Marine Water Quality Monitoring Data** ### Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide ### Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide #### Dissolved Oxygen (Bottom) at Mid-Flood Tide ### **Dissolved Oxygen (Bottom) at Mid-Ebb Tide** ### **Turbidity (Depth-average) at Mid-Flood Tide** ### Turbidity(Depth-average) at Mid-Ebb Tide ### Suspended solids (Depth-average) at Mid-Flood Tide #### Suspended Solids (Depth-average) at Mid-Ebb Tide # **Appendix D4** Impact Marine Water Quality Monitoring Results (3RS Project) Monitoring Station: TKO-C1a | Date | Sampling | Ambient Temp | Monitorin | ng Depth | Temp | Salinit | y (ppt) | Dissolv | ed Oxygen | ı (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | Ū) | Susper | nded
Solids | s (mg/L) | |-----------|----------|-----------------------------|-----------|----------|------|--------------|---------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.3 | 30.1
30.1 | 30.1 | 7.43
7.41 | 7.42 | 7.18 | 92.8
92.3 | 92.6 | 1.82
1.84 | 1.83 | | 1.1
2.4 | 1.8 | | | 4/2/2022 | 9:27:54 | 18/Fine | Middle | 9.8 | 17.0 | 30.5
30.5 | 30.5 | 6.96
6.92 | 6.94 | 7.10 | 86.6
86.1 | 86.4 | 2.09
2.06 | 2.08 | 2.06 | 1.0 | 1.4 | 1.6 | | | | | Bottom | 19.6 | 16.8 | 30.7
30.7 | 30.7 | 6.57
6.54 | 6.56 | 6.56 | 81.5
81.0 | 81.3 | 2.26
2.30 | 2.28 | | 1.5
1.6 | 1.6 | | | | | | Surface | 1.0 | 17.7 | 31.3
31.3 | 31.3 | 7.36
7.33 | 7.35 | | 93.2 | 93.1 | 0.65 | 0.63 | | 1.1 | 1.2 | | | 7/2/2022 | 10:43:03 | 18/Fine | Middle | 9.9 | 17.5 | 31.6
31.6 | 31.6 | 6.73 | 6.72 | 7.03 | 85.1
84.7 | 84.9 | 0.95 | 0.96 | 0.92 | 2.9 | 2.7 | 2.2 | | | | | Bottom | 19.8 | 17.2 | 31.7
31.7 | 31.7 | 6.38 | 6.39 | 6.39 | 80.3
80.4 | 80.4 | 1.16 | 1.18 | | 2.8 | 2.7 | | | | | | Surface | 1.0 | 17.6 | 32.0 | 31.9 | 7.49 | 7.48 | | 95.1
94.5 | 94.8 | 0.63 | 0.65 | | 1.8 | 1.8 | | | 9/2/2022 | 11:39:02 | 18/Fine | Middle | 9.9 | 17.2 | 31.9 | 32.2 | 7.46
6.98 | 6.97 | 7.22 | 88.1 | 88.1 | 0.66 | 0.76 | 0.78 | 1.8 | 2.1 | 1.8 | | | | | Bottom | 19.8 | 17.0 | 32.2
32.7 | 32.7 | 6.96
6.55 | 6.53 | 6.53 | 88.0
82.6 | 82.3 | 0.77
0.94 | 0.93 | <u> </u> | 2.5
1.7 | 1.7 | | | | | | Surface | 1.0 | 18.4 | 32.7
30.6 | 30.6 | 6.51
7.25 | 7.24 | | 82.0
92.7 | 92.7 | 0.92
0.45 | 0.47 | | 1.6
5.0 | 4.8 | | | 11/2/2022 | 10:54:25 | 18/Fine | Middle | 9.7 | 18.2 | 30.6
30.8 | 30.8 | 7.23
6.64 | 6.66 | 6.95 | 92.6
84.7 | 85.0 | 0.48
0.66 | 0.65 | 0.68 | 4.5
4.0 | 3.2 | 3.4 | | 11/2/2022 | 10.54.25 | 10/1 lile | | 19.3 | 18.0 | 30.8
31.2 | 31.2 | 6.68
6.39 | 6.38 | 6.38 | 85.2
81.4 | 81.2 | 0.63
0.94 | 0.92 | 0.00 | 2.3
2.6 | 2.3 | 3.4 | | | | | Bottom | | | 31.2
30.1 | | 6.37
7.56 | | 6.38 | 81.0
94.0 | | 0.90
2.05 | | | 2.0
1.8 | | | | | | | Surface | 1.0 | 17.1 | 30.1
30.4 | 30.1 | 7.54
7.08 | 7.55 | 7.31 | 93.6
87.7 | 93.8 | 2.08 | 2.07 | | 1.4 | 1.6 | | | 15/2/2022 | 16:31:58 | 18/Fine | Middle | 9.9 | 16.8 | 30.4 | 30.4 | 7.05
6.69 | 7.07 | | 87.1
82.5 | 87.4 | 2.29 | 2.28 | 2.29 | 2.0 | 2.1 | 2.3 | | | | | Bottom | 19.8 | 16.5 | 30.6 | 30.6 | 6.65 | 6.67 | 6.67 | 82.0 | 82.3 | 2.55 | 2.53 | | 3.5 | 3.2 | | | | | | Surface | 1.0 | 16.7 | 30.3 | 30.3 | 7.55
7.51 | 7.53 | 7.35 | 93.3
92.8 | 93.1 | 1.11 | 1.13 | | 1.1 | 1.2 | | | 17/2/2022 | 9:13:02 | 18/Fine | Middle | 9.7 | 16.5 | 30.5
30.5 | 30.5 | 7.18
7.15 | 7.17 | | 88.5
87.9 | 88.2 | 1.26
1.23 | 1.25 | 1.32 | 1.8
2.2 | 2.0 | 1.7 | | | | | Bottom | 19.5 | 16.2 | 30.8
30.8 | 30.8 | 6.67
6.69 | 6.68 | 6.68 | 81.8
82.1 | 82.0 | 1.56
1.58 | 1.57 | | 2.4
1.4 | 1.9 | | Monitoring Station: TKO-C1a | Date | Sampling | Ambient Temp | Monitorir | ng Depth | Temp | Salinit | y (ppt) | Dissolv | ed Oxygen | (mg/L) | | d Oxygen
tion (%) | Tu | ırbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------|-----------|----------|------|--------------|---------|--------------|-----------|-------------------|--------------|----------------------|-------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.3 | 29.8 | 29.8 | 7.42 | 7.44 | | 90.7 | 91.0 | 1.42 | 1.43 | | 3.5 | 3.4 | | | | | | | | | 29.8 | | 7.45 | | 7.18 | 91.2 | | 1.44 | | | 3.2 | | | | 19/2/2022 | 9:29:00 | 18/Fine | Middle | 9.8 | 16.1 | 30.1 | 30.1 | 6.90 | 6.92 | | 84.1 | 84.3 | 1.65 | 1.67 | 1.63 | 2.5 | 2.7 | 2.6 | | | | | | | | 30.1 | | 6.93
6.69 | | | 84.5
81.4 | | 1.68 | | | 2.9
1.7 | | | | | | | Bottom | 19.5 | 15.9 | 30.4 | 30.4 | 6.65 | 6.67 | 6.67 | 80.8 | 81.1 | 1.76 | 1.78 | | 1.7 | 1.6 | | | | | | | | | 29.7 | | 7.45 | | | 90.1 | | 1.49 | | | 1.2 | | | | | | | Surface | 1.0 | 15.8 | 29.8 | 29.7 | 7.49 | 7.47 | | 90.6 | 90.4 | 1.46 | 1.48 | | 1.5 | 1.4 | | | | | | | | | 30.2 | | 6.81 | 2.22 | 7.15 | 82.1 | 22.2 | 1.65 | | | 1.4 | | | | 21/2/2022 | 10:12:00 | 18/Fine | Middle | 9.8 | 15.5 | 30.2 | 30.2 | 6.83 | 6.82 | | 82.5 | 82.3 | 1.69 | 1.67 | 1.65 | 1.5 | 1.5 | 1.4 | | | | | Bottom | 19.6 | 15.3 | 30.6 | 30.6 | 6.47 | 6.46 | 6.46 | 77.9 | 77.7 | 1.78 | 1.79 | | 1.1 | 1.3 | | | | | | DOLLOITI | 19.6 | 15.3 | 30.6 | 30.6 | 6.44 | 0.46 | 0.40 | 77.4 | //./ | 1.80 | 1.79 | | 1.4 | 1.3 | | | | | | Surface | 1.0 | 15.6 | 29.3 | 29.3 | 7.71 | 7.70 | | 92.6 | 92.5 | 2.24 | 2.22 | | 1.7 | 1.8 | | | | | | Ouriacc | 1.0 | 13.0 | 29.3 | 20.0 | 7.68 | 7.70 | 7.46 | 92.3 | 32.3 | 2.20 | 2.22 | | 1.9 | 1.0 | | | 23/2/2022 | 9:46:04 | 18/Fine | Middle | 9.8 | 15.3 | 29.8 | 29.8 | 7.24 | 7.23 | 7.10 | 86.7 | 86.7 | 2.50 | 2.52 | 2.47 | 1.7 | 2.0 | 1.9 | | | | | | | | 29.8 | | 7.22 | | | 86.6 | | 2.53 | | | 2.2 | | | | | | | Bottom | 19.6 | 15.1 | 30.1 | 30.1 | 6.72 | 6.74 | 6.74 | 80.3 | 80.6 | 2.67 | 2.68 | | 1.6 | 1.9 | | | | | | | | | 30.1 | | 6.76 | | | 80.8 | | 2.69 | | | 2.1 | | | | | | | Surface | 1.0 | 15.7 | 32.2
32.2 | 32.2 | 7.57
7.55 | 7.56 | | 92.7
92.5 | 92.6 | 0.94 | 0.93 | | 2.7
2.9 | 2.8 | | | | | | | | | 32.7 | | 7.05 | | 7.31 | 86.3 | | 1.25 | | | 1.3 | | | | 25/2/2022 | 11:47:04 | 18/Fine | Middle | 9.9 | 15.5 | 32.7 | 32.7 | 7.08 | 7.07 | | 86.5 | 86.4 | 1.21 | 1.23 | 1.20 | 1.7 | 1.5 | 2.4 | | | | | | | | 33.1 | | 6.65 | | | 80.9 | | 1.43 | | | 2.8 | | | | | | | Bottom | 19.7 | 15.1 | 33.1 | 33.1 | 6.61 | 6.63 | 6.63 | 80.3 | 80.6 | 1.46 | 1.45 | | 2.9 | 2.9 | | | | | | Surface | 1.0 | 17.2 | 30.5 | 30.4 | 7.49 | 7.47 | | 93.5 | 93.4 | 1.63 | 1.62 | | 0.6 | 0.6 | | | | | | Surface | 1.0 | 17.2 | 30.4 | 30.4 | 7.45 | 7.47 | 7.22 | 93.2 | 93.4 | 1.60 | 1.02 | | 0.6 | 0.6 | | | 28/2/2022 | 15:52:30 | 18/Fine | Middle | 9.8 | 17.0 | 30.7 | 30.7 | 6.95 | 6.96 | 1.22 | 86.6 | 86.7 | 1.77 | 1.76 | 1.75 | 0.3 | 0.4 | 0.5 | | 20,2,2022 | 10.02.00 | 10/1 1110 | wiiddio | 0.0 | 17.0 | 30.7 | 00.7 | 6.97 | 0.00 | | 86.8 | 00.7 | 1.74 | 1.70 | 1.75 | 0.4 | 0.4 | 0.5 | | | | | Bottom | 19.6 | 16.8 | 31.1 | 31.1 | 6.52 | 6.54 | 6.54 | 81.1 | 81.2 | 1.86 | 1.88 | | 0.4 | 0.4 | | | | | | | | | 31.1 | - | 6.55 | | | 81.3 | - | 1.90 | | | 0.4 | | | Monitoring Station: TKO-M4a | Date | Sampling | Ambient Temp | Monitorir | ng Depth | Temp | Salinit | y (ppt) | Dissolv | ed Oxygen | ı (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | ·U) | Susper | nded Solids | (mg/L) | |-----------|----------|--------------|-----------|----------|------|--------------|---------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.3 | 30.4
30.4 | 30.4 | 7.33
7.30 | 7.32 | | 91.7
91.3 | 91.5 | 1.68
1.64 | 1.66 | | 0.9
1.2 | 1.1 | | | 4/2/2022 | 9:50:53 | 18/Fine | Middle | 9.2 | 17.1 | 30.7
30.7 | 30.7 | 6.83
6.81 | 6.82 | 7.07 | 85.2
85.0 | 85.1 | 1.99
1.97 | 1.98 | 1.93 | 1.2 | 1.5 | 1.4 | | | | | Bottom | 18.4 | 16.8 | 30.8 | 30.8 | 6.46 | 6.48 | 6.48 | 80.2 | 80.5 | 2.13 | 2.15 | | 1.7 | 1.8 | | | | | | Surface | 1.0 | 17.8 | 30.8
31.4 | 31.4 | 6.50
7.29 | 7.27 | | 80.7
92.6 | 92.4 | 2.16
0.71 | 0.70 | | 1.8
2.2 | 2.5 | | | | | | Surface | 1.0 | 17.0 | 31.4
31.8 | 31.4 | 7.25
6.65 | 1.21 | 6.97 | 92.1
84.2 | 92.4 | 0.69
0.85 | 0.70 | | 2.8 | 2.5 | | | 7/2/2022 | 11:05:03 | 18/Fine | Middle | 9.2 | 17.5 | 31.8 | 31.8 | 6.67 | 6.66 | | 84.4 | 84.3 | 0.88 | 0.87 | 0.87 | 2.4 | 2.6 | 2.5 | | | | | Bottom | 18.4 | 17.3 | 32.0
32.0 | 32.0 | 6.23
6.20 | 6.22 | 6.22 | 78.6
78.1 | 78.4 | 1.07 | 1.05 | | 1.9
2.7 | 2.3 | | | | | | Surface | 1.0 | 17.6 | 32.1
32.1 | 32.1 | 7.57
7.54 | 7.56 | | 96.2
95.8 | 96.0 | 0.60
0.58 | 0.59 | | 3.0
3.2 | 3.1 | | | 9/2/2022 | 12:01:11 | 18/Fine | Middle | 9.2 | 17.3 | 32.4 | 32.4 | 6.97 | 6.99 | 7.27 | 88.2 | 88.5 | 0.84 | 0.83 | 0.81 | 1.6 | 1.6 | 2.2 | | | | | Bottom | 18.4 | 17.1 | 32.4
32.7 | 32.7 | 7.01
6.46 | 6.45 | 6.45 | 88.7
81.6 | 81.5 | 0.81
1.04 | 1.02 | | 1.5
2.2 | 1.9 | | | | | | | | | 32.7
30.3 | | 6.44
7.53 | | 0.10 | 81.3
96.1 | | 1.00
0.71 | | | 1.5
3.5 | | | | | | | Surface | 1.0 | 18.4 | 30.3 | 30.3 | 7.50 | 7.52 | 7.26 | 95.7 | 95.9 | 0.74 | 0.73 | | 4.1 | 3.8 | | | 11/2/2022 | 11:16:22 | 18/Fine | Middle | 9.1 | 18.2 | 30.8
30.8 | 30.8 | 6.98
7.02 | 7.00 | | 89.0
89.5 | 89.3 | 0.96
0.98 | 0.97 | 0.95 | 5.8
6.0 | 5.9 | 4.2 | | | | | Bottom | 18.2 | 17.9 | 31.0
31.0 | 31.0 | 6.55
6.53 | 6.54 | 6.54 | 83.2
82.8 | 83.0 | 1.13
1.15 | 1.14 | | 3.1
2.7 | 2.9 | | | | | | Surface | 1.0 | 17.2 | 30.4
30.3 | 30.3 | 7.45
7.48 | 7.47 | | 93.0
93.3 | 93.2 | 1.81
1.85 | 1.83 | | 1.8
2.7 | 2.3 | | | 15/2/2022 | 16:54:58 | 18/Fine | Middle | 9.2 | 16.9 | 30.8 | 30.8 | 6.81 | 6.83 | 7.15 | 84.7 | 85.1 | 2.04 | 2.03 | 2.08 | 2.1 | 2.3 | 2.3 | | | | | Dettern | 10.4 | 10.7 | 30.8
31.1 | 01.1 | 6.85
6.42 |
0.40 | 6.43 | 85.4
79.7 | 70.0 | 2.01
2.36 | 0.00 | | 2.5
2.7 | 2.4 | | | | | | Bottom | 18.4 | 16.7 | 31.1
30.4 | 31.1 | 6.44
7.61 | 6.43 | 6.43 | 79.9
94.3 | 79.8 | 2.39
1.29 | 2.38 | | 2.0 | 2.4 | | | | | | Surface | 1.0 | 16.8 | 30.5 | 30.4 | 7.64 | 7.63 | 7.40 | 94.6 | 94.5 | 1.33 | 1.31 | | 1.4 | 1.7 | | | 17/2/2022 | 9:36:04 | 18/Fine | Middle | 9.1 | 16.6 | 30.7
30.7 | 30.7 | 7.20
7.16 | 7.18 | | 89.0
88.3 | 88.7 | 1.52
1.50 | 1.51 | 1.48 | 1.1
1.6 | 1.4 | 1.5 | | | | | Bottom | 18.1 | 16.3 | 30.9
30.9 | 30.9 | 6.89
6.86 | 6.88 | 6.88 | 84.8
84.4 | 84.6 | 1.64
1.61 | 1.63 | | 1.5
1.4 | 1.5 | | Monitoring Station: TKO-M4a | Date | Sampling | Ambient Temp | Monitorir | U 1 | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | ırbidity (NT | ·U) | Susper | nded Solids | s (mg/L) | |-----------|----------|--------------|-----------|------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | Condition | (n | n) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.4 | 30.1
30.1 | 30.1 | 7.22
7.18 | 7.20 | | 88.6
88.2 | 88.4 | 1.25
1.27 | 1.26 | | 1.3
1.2 | 1.3 | | | 19/2/2022 | 9:50:58 | 18/Fine | Middle | 9.2 | 16.2 | 30.5 | 30.5 | 6.62 | 6.63 | 6.92 | 81.1 | 81.1 | 1.43 | 1.42 | 1.42 | 2.7 | 2.5 | 2.2 | | 10/2/2022 | 0.00.00 | . 5,16 | | | | 30.5 | | 6.64 | | | 81.1 | | 1.40 | | | 2.3 | | | | | | | Bottom | 18.3 | 15.9 | 30.8 | 30.8 | 6.23 | 6.25 | 6.25 | 76.0 | 76.2 | 1.59 | 1.57 | | 2.3 | 2.8 | | | | | | | | | 30.8
29.8 | | 6.26
7.53 | | | 76.3
90.9 | | 1.55
1.37 | | | 3.3 | | | | | | | Surface | 1.0 | 15.7 | 29.8 | 29.8 | 7.55 | 7.54 | | 90.9 | 91.0 | 1.40 | 1.39 | | 0.9
1.5 | 1.2 | | | | | | | | | 30.1 | | 7.01 | | 7.29 | 84.3 | | 1.55 | | | 1.4 | | | | 21/2/2022 | 10:33:01 | 18/Fine | Middle | 9.2 | 15.4 | 30.1 | 30.1 | 7.05 | 7.03 | | 84.8 | 84.6 | 1.57 | 1.56 | 1.55 | 1.0 | 1.2 | 1.3 | | | | | Dattana | 40.0 | 454 | 30.4 | 00.4 | 6.59 | 0.50 | 0.50 | 78.9 | 70.7 | 1.73 | 4 74 | | 1.3 | 4.0 | | | | | | Bottom | 18.3 | 15.1 | 30.4 | 30.4 | 6.56 | 6.58 | 6.58 | 78.5 | 78.7 | 1.69 | 1.71 | | 1.8 | 1.6 | | | | | | Surface | 1.0 | 15.5 | 29.2 | 29.2 | 7.62 | 7.60 | | 91.3 | 91.2 | 2.29 | 2.28 | | 1.6 | 1.8 | | | | | | Ouriacc | 1.0 | 10.0 | 29.2 | 20.2 | 7.58 | 7.00 | 7.29 | 91.0 | 31.2 | 2.26 | 2.20 | | 1.9 | 1.0 | | | 23/2/2022 | 10:05:00 | 18/Fine | Middle | 9.2 | 15.3 | 29.5 | 29.5 | 6.99 | 6.98 | 7.20 | 83.6 | 83.5 | 2.45 | 2.44 | 2.43 | 1.2 | 1.3 | 1.9 | | | | | | | | 29.5 | | 6.97 | | | 83.4 | | 2.43 | | | 1.3 | | | | | | | Bottom | 18.4 | 15.0 | 29.9
29.9 | 29.9 | 6.56 | 6.55 | 6.55 | 78.2
77.8 | 78.0 | 2.60 | 2.58 | | 2.5
2.6 | 2.6 | | | | | | | | | 31.9 | | 7.59 | | | 93.0 | | 0.75 | | | 2.8 | | | | | | | Surface | 1.0 | 15.8 | 31.9 | 31.9 | 7.63 | 7.61 | 7.39 | 93.5 | 93.3 | 0.78 | 0.77 | | 2.8 | 2.8 | | | 25/2/2022 | 12:03:00 | 18/Fine | Middle | 9.2 | 15.5 | 32.5 | 32.5 | 7.17 | 7.16 | 7.39 | 87.7 | 87.6 | 1.06 | 1.08 | 1.03 | 1.3 | 1.5 | 2.0 | | 25/2/2022 | 12.03.00 | 10/Fille | Middle | 9.2 | 13.3 | 32.5 | 32.3 | 7.15 | 7.10 | | 87.4 | 87.0 | 1.10 | 1.00 | 1.03 | 1.7 | 1.5 | 2.0 | | | | | Bottom | 18.3 | 15.2 | 32.8 | 32.8 | 6.51 | 6.53 | 6.53 | 79.3 | 79.4 | 1.24 | 1.23 | | 1.5 | 1.8 | | | | | | 20110111 | | | 32.8 | 02.0 | 6.54 | 0.00 | 0.00 | 79.5 | 7 61 1 | 1.22 | 0 | | 2.1 | | | | | | | Surface | 1.0 | 17.2 | 30.4 | 30.4 | 7.51 | 7.53 | | 93.7 | 93.9 | 1.72 | 1.70 | | 0.5 | 0.5 | | | | | | | | | 30.4 | | 7.54 | | 7.18 | 94.1 | | 1.68 | | | 0.5 | | | | 28/2/2022 | 16:14:01 | 18/Fine | Middle | 9.2 | 17.0 | 30.7
30.6 | 30.6 | 6.84
6.82 | 6.83 | | 85.2
84.7 | 85.0 | 1.95 | 1.97 | 1.91 | 1.0
0.9 | 1.0 | 0.5 | | | | | D .: | 10.4 | 10.0 | 30.9 | 00.0 | 6.43 | 0.45 | 0.45 | 79.6 | 70.0 | 2.06 | 0.05 | | 0.2 | | | | | | | Bottom | 18.4 | 16.6 | 30.9 | 30.9 | 6.47 | 6.45 | 6.45 | 80.0 | 79.8 | 2.03 | 2.05 | | 0.1 | 0.2 | | Monitoring Station: TKO-M5 | | Sampling | Ambient Temp | Monitorir | na Denth | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | ΓU) | Susper | nded Solids | s (mg/L) | |-------------------|----------|-----------------------------|-----------|----------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | | (m) | | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.4 | 30.0 | 30.0 | 7.05 | 7.07 | | 88.1 | 88.4 | 2.14 | 2.13 | | 2.9 | 2.8 | | | | | | Gundoc | 1.0 | 17.4 | 30.0 | 00.0 | 7.08 | 7.07 | 6.85 | 88.7 | 00.4 | 2.11 | 2.10 | | 2.6 | 2.0 | | | 4/2/2022 | 10:14:53 | 18/Fine | Middle | 6.4 | 17.2 | 30.3 | 30.3 | 6.63 | 6.64 | | 82.7 | 82.9 | 2.59 | 2.60 | 2.51 | 1.5 | 1.5 | 1.8 | | | | | | | | 30.4
30.6 | | 6.65 | | | 83.0
77.3 | | 2.61 | | | 1.5 | | | | | | | Bottom | 12.7 | 17.0 | 30.6 | 30.6 | 6.21
6.25 | 6.23 | 6.23 | 77.6 | 77.5 | 2.82 | 2.80 | | 1.1
1.4 | 1.3 | | | | | | | | | 31.0 | | 7.66 | | | 96.7 | | 0.85 | | | 1.4 | | | | 7/2/2022 11:28:04 | | | Surface | 1.0 | 17.6 | 31.0 | 31.0 | 7.64 | 7.65 | 7.00 | 96.6 | 96.7 | 0.89 | 0.87 | | 1.3 | 1.4 | | | | 11.00.04 | 10/Fine | Middle | 6.3 | 17.4 | 31.4 | 31.4 | 7.11 | 7.13 | 7.39 | 89.6 | 89.8 | 1.16 | 1.15 | 1.09 | 1.4 | 1.7 | 1.7 | | | 11:28:04 | 18/Fine | Middle | 0.3 | 17.4 | 31.4 | 31.4 | 7.15 | 7.13 | | 90.0 | 09.0 | 1.13 | 1.15 | 1.09 | 1.9 | | 1.7 | | | | | Bottom | 12.7 | 17.1 | 31.6 | 31.6 | 6.77 | 6.76 | 6.76 | 85.0 | 84.7 | 1.25 | 1.26 | | 2.0 | 2.0 | | | | | 20110111 | | ., | 31.6 | 0.10 | 6.74 | 00 | 00 | 84.4 | · · · · | 1.27 | 0 | | 2.0 | | | | | | | | Surface | 1.0 | 17.6 | 31.7 | 31.7 | 7.23 | 7.22 | 7.22 | 91.7 | 91.6 | 0.90 | 0.91 | | 2.0 | 2.0 | | | | | | | | | 31.7
32.0 | | 7.20
6.75 | | 6.97 | 91.5
85.1 | | 0.92 | | - | 1.9 | | | | 9/2/2022 | 12:25:00 | 18/Fine | Middle | 6.3 | 17.2 | 32.0 | 32.0 | 6.75 | 6.73 | | 84.7 | 84.9 | 1.15 | 1.17 | 1.13 | 1.8 | 1.6 | 2.0 | | | | | Dattam | | | 32.3 | | 6.49 | | 6.47 | 81.6 | | 1.33 | | | 2.9 | | | | | | | Bottom | 12.6 | 17.0 | 32.3 | 32.3 | 6.45 | 6.47 6.47 | 6.47 | 81.1 | 81.4 | 1.29 | 1.31 | | 1.8 | 2.4 | | | | | | Surface | 1.0 | 10.5 | 30.1 | 30.0 | 7.08 | 7 10 | 7.10 | 90.4 | 90.7 | 0.67 | 0.66 | | 3.0 | 3.1 | | | | | 18/Fine | Middle | 1.0 | 18.5 | 30.0 | 30.0 | 7.11 | 7.10 | 6.81 | 90.9 | 30.7 | 0.64 | 0.00 |] | 3.1 | 3.1 | _ | | 11/2/2022 | 11:37:29 | | | 6.3 | 18.3 | 30.4 | 30.4 | 6.54 | 6.53 | 0.01 | 83.4 | 83.2 | 0.83 | 0.85 | 0.85 | 3.6 | 3.3 | 2.8 | | | | | | | | 30.4 | | 6.52 | | | 83.0 | | 0.87 | | | 3.0 | | 2.0 | | | | | Bottom | 12.6 | 18.0 | 30.8 | 30.8 | 6.24 | 6.22 | 6.22 | 79.3 | 79.0 | 1.04 | 1.05 | | 2.5 | 2.2 | | | | | | | | | 30.8
29.8 | | 6.20
7.17 | | | 78.7
89.2 | | 1.06
2.23 | | | 1.8
1.6 | _ | | | | | | Surface | 1.0 | 17.2 | 29.8 | 29.8 | 7.17 | 7.16 | | 89.0 | 89.1 | 2.20 | 2.22 | | 2.3 | 2.0 | | | | | | | | | 30.2 | | 6.55 | | 6.86 | 81.3 | | 2.50 | | | 1.4 | | | | 15/2/2022 | 17:15:00 | 18/Fine | Middle | 6.3 | 17.0 | 30.2 | 30.2 | 6.57 | 6.56 | | 81.6 | 81.5 | 2.54 | 2.52 | 2.47 | 2.4 | 1.9 | 1.9 | | | | | Bottom | 12.7 | 16.8 | 30.5 | 30.5 | 6.24 | 6.22 | 6.22 | 77.3 | 77.0 | 2.69 | 2.68 | 1 | 1.4 | 1.8 | 1 | | | | | Bottom | 12.7 | 10.0 | 30.5 | 30.5 | 6.20 | 0.22 | 0.22 | 76.7 | 77.0 | 2.67 | 2.00 | | 2.1 | 1.0 | | | | | | Surface | 1.0 | 16.6 | 30.0 | 30.0 | 7.18 | 7.17 | | 88.4 | 88.3 | 1.42 | 1.44 | | 1.6 | 1.7 | | | | | | | | 16.6 | 30.0 | - 5.0 | 7.15 | 7.17 | 6.92 | 88.2 | - 5.0 | 1.45 | | 4 | 1.7 | | | | 17/2/2022 | 09:59:07 | 18/Fine | Middle | 6.3 | 16.4 | 30.3 | 30.3 | 6.66 | 6.68 | 0.92 | 81.8 | 82.0 | 1.74 | 1.72 | 1.69 | 1.6 | 1.5 | 1.7 | | | | | Bottom | | 30 | 30.3
30.6 | | 6.69
6.27 | 9 | | 82.2
76.8 | | 1.70
1.92 | <u> </u> | - | 1.4
2.2 | | 1 | | | | | | | 16.2 | 30.6 | 30.6 | 6.23 | 6.25 | 6.25 | 76.6 | 76.5 | 1.92 | 1.91 | | 1.9 | 2.1 | | | | | | | | | 50.0 | | 0.20 | | | 70.2 | | 1.50 | | | 1.5 | | | Monitoring Station: TKO-M5 | I Sampling I | | Ambient Temp | Monitoring Denth | | Temp | Salinit | y (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | ırbidity (NT | Ū) | Susper | nded Solids | s (mg/L) | |--------------------|----------|-----------------------------|------------------|------|------|--------------|---------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | (n | | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.6 | 29.6 | 29.6 | 7.59 | 7.58 | | 93.2 | 93.0 | 1.63 | 1.64 | | 1.9 | 1.7 | | | | | | | | | 29.6 | | 7.57 | 7.00 | 7.36 | 92.8 | 00.0 | 1.65 | | | 1.5 | | | | 19/2/2022 | 10:14:02 | 18/Fine | Middle | 6.3 | 16.3 | 30.0 | 30.0 | 7.16 | 7.15 | | 87.6 | 87.4 | 1.80 | 1.82 | 1.86 | 3.5 | 3.3 | 2.9 | | | | | | | | 30.0
30.4 | | 7.13
6.57 | | | 87.2
80.1 | | 1.84
2.09 | | | 3.1 | | | | | | | Bottom | 12.6 | 16.0 | 30.4 | 30.4 | 6.53 | 6.55 | 6.55 | 79.6 | 79.9 | 2.09 | 2.11 | | 3.4
4.1 | 3.8 | | | | | | | | | 29.3 | | 7.11 | | | 85.6 | | 1.71 | | | 1.6 | | | | | | | Surface | 1.0 | 15.7 | 29.3 | 29.3 | 7.11 | 7.13 | | 85.9 | 85.8 | 1.74 |
1.73 | | 1.0 | 1.3 | | | | | 18/Fine | Middle | | | 29.7 | | 6.49 | | 6.80 | 77.7 | | 1.98 | | | 1.1 | | | | 21/2/2022 10:55:03 | 10:55:03 | | Middle | 6.3 | 15.3 | 29.7 | 29.7 | 6.47 | 6.48 | | 77.6 | 77.7 | 1.96 | 1.97 | 1.98 | 1.0 | 1.1 | 1.2 | | | | | - · · | 10.7 | 45.4 | 29.9 | 20.0 | 6.14 | 0.40 | 0.40 | 73.3 | 70.5 | 2.26 | 0.04 | | 1.3 | | | | | | | Bottom | 12.7 | 15.1 | 29.9 | 29.9 | 6.18 | 6.16 | 6.16 | 73.6 | 73.5 | 2.22 | 2.24 | | 0.9 | 1.1 | | | | | | Surface | 1.0 | 15.7 | 30.1 | 30.1 | 7.41 | 7.42 | | 89.6 | 89.8 | 2.54 | 2.56 | | 2.3 | 2.5 | | | | | | Juliace | 1.0 | 13.7 | 30.1 | 30.1 | 7.43 | 7.42 | 7.03 | 89.9 | 09.0 | 2.57 | 2.50 | | 2.7 | 2.5 | | | 23/2/2022 | 10:27:57 | 18/Fine | Middle
Bottom | 6.3 | 15.4 | 30.5 | 30.5 | 6.65 | 6.63 | 7.00 | 80.1 | 80.0 | 2.84 | 2.82 | 2.81 | 1.9 | 2.1 | 1.9 | | 20/2/2022 | | 10/1 1110 | | 0.0 | 10.1 | 30.5 | 00.0 | 6.61 | 0.00 | | 79.8 | 00.0 | 2.80 | | 2.01 | 2.3 | | | | | | | | 12.7 | 15.1 | 30.7 | 30.7 | 6.29 | 6.28 | 6.28 | 75.5 | 75.3 | 3.04 | 3.05 | | 1.6 | 1.2 | | | | | | | | | 30.7 | | 6.26 | | | 75.0 | | 3.06 | | | 8.0 | | | | | | | Surface | 1.0 | 15.6 | 32.3 | 32.3 | 7.37 | 7.36 | | 90.2 | 90.1 | 1.05 | 1.07 | | 1.5 | 1.5 | | | | | | | | | 32.3 | | 7.34 | | 7.03 | 90.0 | | 1.09 | | | 1.5 | | | | 25/2/2022 | 12:20:00 | 18/Fine | Middle | 6.3 | 15.4 | 32.7
32.7 | 32.7 | 6.72 | 6.71 | | 82.1
81.7 | 81.9 | 1.38 | 1.37 | 1.34 | 2.8 | 2.5 | 1.9 | | | | | | | | 33.1 | | 6.25 | | | 76.0 | | 1.58 | | | 1.7 | | | | | | | Bottom | 12.6 | 15.0 | 33.1 | 33.1 | 6.29 | 6.27 | 6.27 | 76.4 | 76.2 | 1.55 | 1.57 | | 1.9 | 1.8 | | | | | | | | | 30.0 | | 7.23 | | | 90.0 | | 1.98 | | | 0.4 | | | | | | | Surface | 1.0 | 17.2 | 30.0 | 30.0 | 7.20 | 7.22 | | 89.5 | 89.8 | 2.02 | 2.00 | | 0.4 | 0.4 | | | 00/0/000 | 10.00.17 | 10/5 | NAC-1-II | 0.0 | 40.0 | 30.4 | 00.4 | 6.77 | 0.70 | 6.99 | 84.0 | 00.0 | 2.26 | 0.05 | 0.00 | 0.6 | 0.0 | | | 28/2/2022 | 16:36:17 | 18/Fine | Middle | 6.2 | 16.9 | 30.4 | 30.4 | 6.74 | 6.76 | | 83.6 | 83.8 | 2.23 | 2.25 | 2.26 | 0.5 | 0.6 | 0.5 | | | | | Bottom | 12.5 | 16.5 | 30.8 | 30.8 | 6.24 | 0.00 | 6 22 | 77.0 | 77.0 | 2.54 | 2.53 | | 0.3 | 0.5 | 1 | | | | | | | 16.5 | 30.8 | 30.6 | 6.22 | 6.23 | 6.23 | 76.9 | 77.0 | 2.52 | 2.53 | | 0.6 | 0.5 | | Monitoring Station: TKO-C1a | Date | Sampling | Ambient Temp | ' Monitoring Denth | | Temp | Salini | ty (ppt) | Dissolv | ed Oxygen | ı (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | ·U) | Susper | (mg/L) | | |-----------------|----------|-----------------------------|--------------------|------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|---------|-------------------| | Date | Duration | (°C) / Weather
Condition | | | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.3 | 30.2 | 30.2 | 7.28
7.25 | 7.27 | | 90.9
90.4 | 90.7 | 1.98
2.00 | 1.99 | | 1.3
1.6 | 1.5 | | | 4/2/2022 | 14:57:01 | 18/Fine | Middle | 9.7 | 17.0 | 30.6
30.6 | 30.6 | 6.69
6.71 | 6.70 | 6.98 | 83.2
83.3 | 83.3 | 2.29 | 2.28 | 2.23 | 1.3 | 1.5 | 1.4 | | | | | Bottom | 19.4 | 16.7 | 30.8 | 30.8 | 6.36 | 6.34 | 6.34 | 78.8 | 78.6 | 2.45 | 2.43 | | 1.6 | 1.2 | | | | | | Surface | 1.0 | 17.6 | 30.8
31.1 | 31.1 | 6.32
7.17 | 7.16 | | 78.3
90.6 | 90.5 | 2.41
0.73 | 0.72 | | 0.8
3.8 | 3.5 | | | | | | Surface | 1.0 | | 31.1
31.4 | 31.1 | 7.15
6.49 | 7.16 | 6.82 | 90.3
81.7 | 90.5 | 0.70
1.05 | 0.72 | | 3.1
4.1 | 3.5 | | | 7/2/2022 | 16:56:00 | 18/Fine | Middle | 9.7 | 17.3 | 31.5 | 31.4 | 6.46 | 6.48 | | 81.4 | 81.6 | 1.09 | 1.07 | 1.02 | 3.5 | 3.8 | 3.6 | | | | | Bottom | 19.4 | 17.1 | 31.8 | 31.8 | 6.16
6.20 | 6.18 | 6.18 | 77.4
77.9 | 77.7 | 1.27
1.25 | 1.26 | | 3.0 | 3.4 | | | | | | Surface | 1.0 | 17.5 | 31.9
31.8 | 31.8 | 7.24
7.26 | 7.25 | | 91.7
91.8 | 91.8 | 0.84
0.81 | 0.83 | | 1.9
2.1 | 2.0 | | | 9/2/2022 | 18:05:00 | 18/Fine | Middle | 9.8 | 17.2 | 32.2
32.2 | 32.2 | 6.67
6.64 | 6.66 | 6.95 | 84.1
83.8 | 84.0 | 1.00 | 0.99 | 0.99 | 3.4
4.2 | 3.8 | 2.8 | | | | | Bottom | 19.6 | 16.9 | 32.5
32.5 | 32.5 | 6.36
6.40 | 6.38 | 6.38 | 79.9
80.4 | 80.2 | 1.16 | 1.15 | | 2.8 | 2.7 | | | | | | | | | 32.3 | | 0.40 | | | 80.4 | | 1.14 | | | 2.5 | | | | | | | | - | | | | - | | | | | - | Surface | 1.0 | 17.2 | 30.2
30.1 | 30.1 | 7.26
7.28 | 7.27 | 7.03 | 90.5
90.7 | 90.6 | 2.19
2.17 | 2.18 | | 2.5
2.1 | 2.3 | | | 15/2/2022 | 11:02:58 | 18/Fine | Middle | 9.8 | 17.0 | 30.5
30.5 | 30.5 | 6.79
6.77 | 6.78 | 7.03 | 84.5
84.0 | 84.3 | 2.49
2.46 | 2.48 | 2.44 | 2.8 | 2.5 | 2.4 | | | | | Bottom | 19.5 | 16.6 | 30.8 | 30.8 | 6.45
6.41 | 6.43 | 6.43 | 79.8
79.3 | 79.6 | 2.68
2.64 | 2.66 | | 2.2 | 2.5 | | | | | | Surface | 1.0 | 16.8 | 30.4 | 30.4 | 7.43 | 7.44 | | 92.0 | 92.2 | 1.29 | 1.28 | | 2.6 | 2.5 | | | 17/2/2022 | 13:44:58 | 18/Fine | Middle | 9.6 | 16.5 | 30.4
30.7 | 30.7 | 7.45
6.99 | 6.98 | 7.21 | 92.3
86.2 | 86.1 | 1.27 | 1.53 | 1.53 | 2.4
0.6 | 1.0 | 1.6 | | 17/2/2022 13:44 | 13.44.30 | 10/1 1110 | | | | 30.7
31.1 | | 6.96
6.43 | | | 85.9
79.2 | | 1.54
1.76 | | 1.55 | 1.3
1.0 | | 1.0 | | | | | Bottom | 19.2 | 16.3 | 31.1 | 31.1 | 6.46 | 6.45 | 6.45 | 79.4 | 79.3 | 1.79 | 1.78 | | 1.8 | 1.4 | | Monitoring Station: TKO-C1a | Data | Date Sampling Ambien | | Monitoring Depth | | Temp | Salini | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | Dissolved Oxygen
Saturation (%) | | Turbialty (NTO) | | | Susper | s (mg/L) | | |-----------|----------------------|-----------------------------|------------------|---|------|--------------|----------|---------|-----------|-------------------|------------------------------------|---------|-----------------|---------|-------------------|--------|----------|-------------------| | Date | Duration | (°C) / Weather
Condition | (m | า) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.4 | 30.2 | 30.2 | 7.29 | 7.31 | | 89.5 | 89.7 | 1.58 | 1.57 | | 1.5 | 1.7 | | | | | | Ouriacc | 1.0 | 10.4 | 30.2 | 50.2 | 7.32 | 7.01 | 7.00 | 89.8 | 00.7 | 1.56 | 1.57 | | 1.8 | 1.7 | | | 19/2/2022 | 14:13:58 | 18/Fine | Middle | 9.6 | 16.2 | 30.4 | 30.4 | 6.68 | 6.69 | 7.00 | 81.8 | 81.8 | 1.82 | 1.84 | 1.82 | 3.3 | 2.9 | 2.4 | | 10/2/2022 | | . 6, 6 | | | | 30.4 | | 6.70 | | | 81.8 | | 1.86 | | | 2.4 | | | | | | | Bottom | 19.3 | 15.9 | 30.7 | 30.7 | 6.44 | 6.42 | 6.42 | 78.5 | 78.3 | 2.03 | 2.04 | | 2.7 | 2.7 | | | | | | | | 30.7 | | 6.40 | | | 78.0 | | 2.05 | | | 2.6 | | | | | | | | Surface | pe 1.0 15.7 29.6 29.6 7.24 7.26 87.3 87.6 | 1.58 | 1.60 | | 1.3 | 1.2 | | | | | | | | | | | | | | | | | 29.6 | | 7.27 | | 6.94 | 87.9 | | 1.61 | | | 1.1 | | | | 21/2/2022 | 16:02:58 | 18/Fine | Middle | 9.6 | 15.5 | 29.9 | 29.9 | 6.60 | 6.62 | | 79.4 | 79.6 | 1.79 | 1.78 | 1.80 | 1.3 | 1.1 | 1.2 | | | | 16/16 | | | | 29.9 | | 6.63 | | | 79.8 | | 1.76 | | | 0.9 | | | | | | | Bottom | 19.3 | 15.2 | 30.3 | 30.3 | 6.25 | 6.24 | 6.24 | 75.0 | 74.9 | 2.02 | 2.03 | | 1.2 | 1.3 | | | | | | | | 30.3 | | 6.23 | | | 74.7 | | 2.04 | | | 1.3 | | | | | | | | Surface | 1.0 | 15.6 | 29.3 | 29.3 | 7.52 | 7.54 | | 90.3 | 90.6 | 2.42 | 2.40 | | 1.4 | 1.6 | | | | | | | | | 29.3 | | 7.56 | | 7.31 | 90.8 | | 2.38 | | | 1.7 | | | | 23/2/2022 | 16:26:06 | 18/Fine | Middle | 9.7 | 15.3 | 29.7 | 29.7 | 7.08 | 7.07 | | 84.7 | 84.6 | 2.75
2.73 | 2.74 | 2.69 | 1.2 | 1.1 | 1.2 | | | | | Bottom | | | 29.7 | | 6.44 | | | 84.5
76.9 | | 2.73 | | | 0.9 | | <u> </u> | | | | | | 19.4 | 15.1 | 29.9
29.9 | 29.9 | 6.41 | 6.43 6.43 | 76.9 | 76.7 | 2.93 | 2.94 | | 1.0 | 1.0 | | | | | | | | | | 32.1 | | 7.41 | | | 90.5 | | 1.20 | | | 1.2 | | ++ | | | | | Surface | 1.0 | 15.6 | 32.1 | 32.1 | 7.39 | 7.40 | 7.00 | 90.3 | 90.4 | 1.23 | 1.22 | | 1.5 | 1.4 | | | 05/0/000 | 17 44 04 | 10/F' | NAC-L-II- | 0.0 | 45.0 | 32.5 | 00.5 | 6.79 | 0.70 | 7.09 | 82.7 | 00.0 | 1.45 | 4 40 | 4 47 | 2.4 | 0.4 | 1 | | 25/2/2022 | 17:44:01 | 18/Fine | Middle | 9.8 | 15.3 | 32.5 | 32.5 | 6.76 | 6.78 | | 82.5 | 82.6 | 1.41 | 1.43 | 1.47 | 1.8 | 2.1 | 1.7 | | | | | Datter | 19.5 | 15.0 | 33.0 | 33.0 | 6.36 | 6.34 | 6.34 | 77.2 | 76.9 | 1.78 | 1.77 | | 1.1 | 1.6 | | | | | | Bottom | 19.5 | 15.0 | 33.0 | 33.0 | 6.32 | 6.34 | 6.34 | 76.6 | 76.9 | 1.76 | 1.77 | | 2.1 | 1.6 | | | | | | Surface | 1.0 | 17.3 | 30.6 | 30.6 | 7.26 | 7.25 | | 90.9 | 90.8 | 1.73 | 1.74 | | 0.3 | 0.3 | | | | | | Surface | 1.0 | 17.3 | 30.6 | 30.6 | 7.24 | 7.23 | 6.94 | 90.6 | 90.0 | 1.75 | 1.74 | | 0.3 | 0.3 | | | 28/2/2022 | 10:25:31 | 18/Fine | Middle | 9.6 | 17 1 | 30.9 | 30.9 | 6.61 | 6.63 | 0.94 | 82.6 | 82.7 | 1.91 | 1.93 | 1.95 | 0.4 | 0.4 | 0.3 | | 20/2/2022 | 10.23.31 | 10/FIII U | iviluule | 9.6 | 17.1 | 30.9 | 30.9 | 6.64 | 6.63 | | 82.8 | 82.7 | 1.94 | 1.55 | 1.95 | 0.3 | 0.4 | 0.3 | | | | F | Bottom | 19.3 | 16.8 | 31.2 | 31.2 | 6.27 | 6.26 | 6.26 | 78.0 | | 2.19 | 2.17 | | 0.3 | 0.2 | | | | | | וווסווסם | | 16.8 | 31.2 | 01.2 | 6.24 | 0.20 | 0.20 | 77.7 | 11.5 | 2.15 | 2.17 | | 0.1 | 0.2 | | Monitoring Station: TKO-M4a | Date | Sampling | Ambient Temp | ' | | Temp | Salinity (ppt) | | Dissolv | ed Oxygen | (mg/L) | | d Oxygen
tion (%) | Turbidity (NTO) | | | Suspended Solids (| | (mg/L) | |-----------|----------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|-----------|-------------------|--------------|----------------------|-----------------|---------|-------------------|--------------------|---------
-------------------| | Date | Duration | Condition | Worldoning L | Deptii (iii) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.4 | 30.6
30.6 | 30.6 | 7.06
7.08 | 7.07 | 0.00 | 88.5
88.8 | 88.7 | 1.75
1.77 | 1.76 | | 2.6
1.9 | 2.3 | | | 4/2/2022 | 15:20:53 | 18/Fine | Middle | 9.0 | 17.1 | 30.9
30.9 | 30.9 | 6.66
6.62 | 6.64 | 6.86 | 83.2
82.9 | 83.1 | 2.04 | 2.02 | 2.05 | 1.4
1.0 | 1.2 | 1.7 | | | | Bottom | 18.0 | 16.9 | 31.1
31.1 | 31.1 | 6.37
6.34 | 6.36 | 6.36 | 79.4
79.0 | 79.2 | 2.34 | 2.36 | | 1.7 | 1.5 | | | | | | | Surface | 1.0 | 17.7 | 31.3
31.3 | 31.3 | 7.09
7.06 | 7.08 | | 89.8
89.5 | 89.7 | 0.95
0.97 | 0.96 | | 4.8 | 4.6 | | | 7/2/2022 | 17:16:09 | 18/Fine | Middle | 9.1 | 17.4 | 31.6 | 31.6 | 6.51 | 6.52 | 6.80 | 82.2 | 82.3 | 1.12 | 1.13 | 1.14 | 5.8 | 5.5 | 4.0 | | | | | Bottom | 18.1 | 17.1 | 31.6
31.9 | 31.9 | 6.53
6.04 | 6.06 | 6.06 | 82.4
75.9 | 76.2 | 1.14
1.35 | 1.33 | | 5.2
1.7 | 1.9 | | | | | | Surface | 1.0 | 17.5 | 31.9
31.9 | 31.9 | 6.07
7.38 | 7.39 | | 76.5
93.5 | 93.7 | 1.31
0.75 | 0.74 | | 2.1
3.9 | 3.2 | | | 9/2/2022 | 18:26:29 | 18/Fine | Middle | 9.1 | 17.2 | 31.9
32.4 | 32.4 | 7.40
6.70 | 6.72 | 7.06 | 93.8
84.6 | 85.0 | 0.73
0.96 | 0.98 | 0.94 | 2.5
4.0 | 4.2 | 3.4 | | 9/2/2022 | 10.20.23 | 10/1 1116 | | | | 32.4
32.6 | 32.4 | 6.74
6.39 | | 6.38 | 85.3
80.7 | | 0.99
1.12 | | 0.94 | 4.4
2.5 | | 5.4 | | | | | Bottom | 18.1 | 17.1 | 32.6 | 32.6 | 6.36 | 6.38 | 6.38 | 80.1 | 80.4 | 1.10 | 1.11 | | 2.8 | 2.7 | Surface | 1.0 | 17.3 | 30.5
30.5 | 30.5 | 7.31
7.34 | 7.33 | 6.98 | 91.5
91.7 | 91.6 | 1.97
1.99 | 1.98 | | 4.7
3.6 | 4.2 | | | 15/2/2022 | 11:27:11 | 18/Fine | Middle | 9.1 | 17.0 | 30.8
30.8 | 30.8 | 6.66
6.62 | 6.64 | 0.98 | 83.0
82.7 | 82.9 | 2.24
2.28 | 2.26 | 2.26 | 2.3
1.5 | 1.9 | 2.6 | | | | | Bottom | 18.1 | 16.8 | 31.2
31.2 | 31.2 | 6.27
6.29 | 6.28 | 6.28 | 78.0
78.3 | 78.2 | 2.56
2.53 | 2.55 | | 1.7
2.0 | 1.9 | | | | | | Surface | 1.0 | 16.8 | 30.3 | 30.3 | 7.47
7.49 | 7.48 | | 92.5
92.7 | 92.6 | 1.55
1.57 | 1.56 | | 1.0 | 1.2 | | | 17/2/2022 | 14:09:58 | 18/Fine | Middle | 9.0 | 16.6 | 30.6
30.6 | 30.6 | 7.08 | 7.27 | 87.4
86.9 | 87.2 | 1.82 | 1.81 | 1.78 | 2.4 | 2.5 | 2.0 | | | | | Bottom | 17.9 | 16.3 | 30.8
30.8 | 30.8 | 6.59
6.55 | 6.57 | 6.57 | 81.0
80.5 | 80.8 | 1.95
1.99 | 1.97 | | 2.1 | 2.4 | | | | | | | | | | 30.0 | | 0.55 | | | 60.5 | | 1.55 | | | ۷.1 | J | | Monitoring Station: TKO-M4a | Date | Sampling Ambient Temporate Sampling (°C) / Weathe | | ' | | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | U) | Susper | nded Solids | s (mg/L) | |-----------|---|-----------|--------------|--------------|-------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|-------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | Condition | Worldoning L | Deptii (iii) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.5 | 30.3 | 30.3 | 7.00 | 7.02 | | 86.1 | 86.4 | 1.42 | 1.41 | | 2.4 | 2.2 | | | | | | | | . 0.0 | 30.3 | 00.0 | 7.03 | | 6.73 | 86.7 | 00 | 1.40 | | | 1.9 | | | | 19/2/2022 | 14:34:58 | 18/Fine | Middle | 9.0 | 16.3 | 30.8 | 30.8 | 6.42 | 6.44 | | 78.9 | 79.0 | 1.75 | 1.77 | 1.72 | 2.1 | 2.3 | 2.1 | | | | | | | | 30.8 | | 6.45 | | | 79.1 | | 1.79 | | | 2.4 | | | | | | | Bottom | 18.0 | 16.0 | 31.1 | 31.1 | 6.01 | 6.00 | 6.00 | 73.6 | 73.5 | 1.95 | 1.97 | | 1.4 | 2.0 | | | | | | | | 31.1 | | 5.99 | | | 73.3 | | 1.98 | | | 2.6 | | | | | | | | Surface | 1.0 | 15.6 | 29.9 | 29.9 | 7.44 | 7.42 | | 89.7 | 89.5 | 1.49 | 1.47 | | 0.7 | 1.1 | | | | | | | | | 29.9 | | 7.40 | | 7.15 | 89.2 | | 1.45 | | | 1.4 | | | | 21/2/2022 | 16:21:01 | 18/Fine | Middle | 9.0 | 15.3 | 30.3 | 30.2 | 6.89 | 6.88 | | 82.8 | 82.8 | 1.71 | 1.72 | 1.69 | 1.2 | 1.1 | 1.3 | | | | | Bottom | | | 30.2 | | 6.87 | | | 82.7 | | 1.73 | | | 1.0 | | | | | | | | 18.0 | 15.1 | 30.6 | 30.6 | 6.36 | 6.35 | 6.35 | 76.3 | 76.0 | 1.88 | 1.87 | | 1.3
2.1 | 1.7 | | | | | | | | | 30.6 | | 6.33 | | | 75.7 | | 1.86 | | | | | | | | | | Surface | 1.0 | 15.5 | 29.4
29.4 | 29.4 | 7.42
7.44 | 7.43 | | 89.0
89.3 | 89.2 | 2.40 | 2.42 | | 3.5
2.7 | 3.1 | | | | | | | | | 29.4 | | 6.78 | 1 | 7.10 | 81.0 | | 2.43 | | | 2.0 | | | | 23/2/2022 | 16:45:59 | 18/Fine | Middle | 9.1 | 15.2 | 29.8 | 29.8 | 6.76 | 6.77 | | 81.0 | 81.0 | 2.63 | 2.63 | 2.64 | 1.1 | 1.6 | 2.4 | | | | | Bottom | | 15.0 | 30.2 | 30.2 | 6.25 | | 6.23 | 74.6 | 74.3 | 2.88 | | | 2.0 | | 1 | | | | | | 18.3 | | 30.2 | | 6.21 | 6.23 | | 74.0 | | 2.86 | 2.87 | | 3.0 | 2.5 | | | | | | | | | 32.1 | | 7.45 | | | 91.2 | | 0.85 | | | 1.7 | | | | | | | Surface | 1.0 | 15.7 | 32.1 | 32.1 | 7.47 | 7.46 | | 91.5 | 91.4 | 0.89 | 0.87 | | 1.8 | 1.8 | | | | | | | | | 32.6 | | 7.01 | | 7.24 | 85.8 | | 1.27 | | | 2.4 | | | | 25/2/2022 | 17:56:55 | 18/Fine | Middle | 9.0 | 15.5 | 32.6 | 32.6 | 7.04 | 7.03 | | 86.1 | 86.0 | 1.24 | 1.26 | 1.19 | 2.3 | 2.4 | 2.3 | | | | | Dattana | 40.0 | 45.0 | 33.0 | 00.0 | 6.39 | 0.07 | 0.07 | 78.0 | 77.7 | 1.46 | 4.45 | | 2.8 | 0.7 | | | | | | Bottom | 18.0 | 15.3 | 32.9 | 32.9 | 6.35 | 6.37 | 6.37 | 77.4 | //./ | 1.44 | 1.45 | | 2.5 | 2.7 | | | | | | Curtosa | 1.0 | 17.2 | 30.2 | 30.2 | 7.38 | 7.37 | | 92.0 | 92.0 | 1.80 | 1.79 | | 0.1 | 0.2 | | | | | | Surface | 1.0 | 17.2 | 30.2 | 30.2 | 7.36 | 7.37 | 7.04 | 91.9 | 92.0 | 1.78 | 1.79 | | 0.3 | 0.2 | | | 28/2/2022 | 10:47:41 | 18/Fine | Middle | 9.0 | 17.0 | 30.5 | 20.5 | 6.72 | 6.71 | 7.04 | 83.6 | 83.5 | 2.04 | 2.06 | 2.04 | 0.3 | 0.3 | 0.3 | | 20/2/2022 | 10.47.41 | 10/Fille | Middle | 9.0 | 17.0 | 30.5 | 30.5 | 6.70 | 0.71 | | 83.4 | 03.3 | 2.08 | 2.00 | 2.04 | 0.3 | 0.3 | 0.3 | | | | | Bottom | 18 1 | 16.7 | 30.9 | | 6.26 | 6.24 | 4 6.24 | 77.6 | 77.4 | 2.27 | 2.26 | | 0.3 | 0.4 | | | | | | DOLLOTT | 18.1 | 10.7 | 30.9 | 50.5 | 6.22 | 0.24 | 0.24 | 77.1 | 77.4 | 2.24 | 2.20 | | 0.5 | 0.4 | | ### Mid-Ebb Tide **Monitoring Station**: TKO-M5 | D . | Sampling | Ambient Temp | | 2 11 () | Temp | Salinit | ty (ppt) | Dissolv | red Oxyger | (mg/L) | | d Oxygen
tion (%) | Τι | ırbidity (NT | TU) | Susper | nded Solids | (mg/L) | |-----------|----------|-----------------------------|--------------|-----------|------|--------------|----------|--------------|------------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | Monitoring [| Jeptn (m) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 17.5 | 29.9
29.9 | 29.9 | 6.88
6.84 | 6.86 | 0.00 | 86.1
85.8 | 86.0 | 2.24
2.20 | 2.22 | | 1.4
1.9 | 1.7 | | | 4/2/2022 | 15:42:54 | 18/Fine | Middle | 6.2 | 17.2 | 30.2
30.2 | 30.2 | 6.50
6.53 | 6.52 | 6.69 | 81.0
81.6 | 81.3 | 2.78
2.75 | 2.77 | 2.67 | 2.0 | 2.0 | 2.2 | | | | | Bottom | 12.5 | 17.0 | 30.5
30.5 | 30.5 | 6.07
6.05 | 6.06 | 6.06 | 75.5
75.3 | 75.4 | 3.02
3.05 | 3.04 | | 3.0 | 2.9 | | | | | | Surface | 1.0 | 17.5 | 30.9
30.9 | 30.9 | 7.35
7.38 | 7.37 | | 92.6
92.9 | 92.8 | 1.11 | 1.13 | | 3.1 | 3.1 | | | 7/2/2022 | 17:38:14 | 18/Fine | Middle | 6.2 | 17.2 | 31.2
31.2 | 31.2 | 6.82
6.80 | 6.81 | 7.09 | 85.5
85.5 | 85.5 | 1.36 | 1.37 | 1.35 | 2.3 | 1.9 | 2.2 | | | | | Bottom | 12.4 | 17.0 | 31.6
31.6 | 31.6 | 6.44
6.40 | 6.42 | 6.42 | 80.6
80.0 | 80.3 | 1.57
1.54 | 1.56 | | 1.6
1.9 | 1.8 | | | | | | Surface | 1.0 | 17.6 | 31.6
31.6 | 31.6 | 7.03
7.01 | 7.02 | | 89.1
88.6 | 88.9 | 1.24 | 1.23 | | 2.1 | 2.2 | | | 9/2/2022 | 18:49:05 | 18/Fine | Middle | 6.2 | 17.3 | 31.9
31.9 | 31.9 | 6.49
6.46 | 6.48 | 6.75 | 81.9
81.5 | 81.7 | 1.35 | 1.37 | 1.37 | 3.0 | 2.7 | 2.6 | | | | | Bottom | 12.3 | 17.0 | 32.3
32.3 | 32.3 | 6.18
6.15 | 6.17 | 6.17 | 77.7
77.2 | 77.5 | 1.54
1.50 | 1.52 | | 2.8 | 3.0 | | | | | | | | | | | | | | | | | | | U | Surface | 1.0 | 17.3 | 30.0
30.0 | 30.0 | 6.87
6.90 | 6.89 | | 85.7
86.2 | 86.0 | 2.50
2.53 | 2.52 | | 4.0
3.2 | 3.6 | | | 15/2/2022 | 11:49:00 | 18/Fine | Middle | 6.2 | 17.1 | 30.3
30.3 | 30.3 | 6.41
6.43 | 6.42 | 6.65 | 79.8
79.9 | 79.9 | 2.88
2.86 | 2.87 | 2.81 | 1.9 | 2.2 | 2.5 | | | | | Bottom | 12.4 | 16.8 | 30.6
30.6 | 30.6 | 6.09
6.05 | 6.07 | 6.07 | 75.5
75.0 | 75.3 | 3.02
3.04 | 3.03 | | 1.6
1.6 | 1.6 | | | | | | Surface | 1.0 | 16.7 | 30.3 | 30.3 | 6.92
6.95 | 6.94 | | 85.5
86.0 | 85.8 | 1.68 | 1.67 | | 2.8 | 2.2 | | | 17/2/2022 | 14:31:10 | 18/Fine | Middle | 6.2 | 16.5 | 30.6
30.6 | 30.6 | 6.58
6.60 | 6.59 | 6.76 | 81.1
81.2 | 81.2 | 1.91 | 1.93 | 1.93 | 2.3 | 2.3 | 1.9 | | | | | Bottom | 12.5 | 16.2 | 30.8 | 30.8 | 6.17
6.14 | 6.16 | 6.16 | 75.7
75.3 | 75.5 | 2.19 | 2.18 | | 1.4 | 1.3 | | ### Mid-Ebb Tide **Monitoring Station**: TKO-M5 | Date | Sampling | Ambient Temp | Monitoring I | Donth (m) | Temp | Salinit | ty (ppt) | Dissolv | ed Oxyger | n (mg/L) | | d Oxygen
tion (%) | Τι | urbidity (NT | U) | Susper | nded Solids | s (mg/L) | |-----------|----------|-----------------------------
---------------|--------------|------|--------------|----------|--------------|-----------|-------------------|--------------|----------------------|--------------|--------------|-------------------|------------|-------------|-------------------| | Date | Duration | (°C) / Weather
Condition | Mornitoring t | Deptii (iii) | (°C) | Value | Average | Value | Average | Depth-
average | Value | Average | Value | Average | Depth-
average | Value | Average | Depth-
average | | | | | Surface | 1.0 | 16.6 | 29.8
29.8 | 29.8 | 7.44
7.47 | 7.46 | | 91.4
91.8 | 91.6 | 1.75
1.77 | 1.76 | | 2.5
3.2 | 2.9 | | | | | | | | | 30.2 | | 6.97 | | 7.20 | 85.4 | | 2.15 | | | 4.3 | 1 | | | 19/2/2022 | 14:56:00 | 18/Fine | Middle | 6.2 | 16.3 | 30.2 | 30.2 | 6.93 | 6.95 | | 85.0 | 85.2 | 2.11 | 2.13 | 2.07 | 3.6 | 4.0 | 3.5 | | | | | Dattam | 10.0 | 10.1 | 30.7 | 00.7 | 6.46 | C 45 | C 45 | 79.0 | 70.0 | 2.34 | 0.00 | | 4.2 | 0.7 | | | | | | Bottom | 12.3 | 16.1 | 30.7 | 30.7 | 6.44 | 6.45 | 6.45 | 78.6 | 78.8 | 2.31 | 2.33 | | 3.1 | 3.7 | | | | | | Surface | 1.0 | 15.6 | 29.1 | 29.1 | 6.95 | 6.94 | | 83.4 | 83.2 | 1.94 | 1.93 | | 1.0 | 1.1 | | | | | | Surface | 1.0 | 15.6 | 29.1 | 29.1 | 6.92 | 0.94 | 6.60 | 82.9 | 03.2 | 1.92 | 1.93 | | 1.1 | 1.1 | | | 21/2/2022 | 16:43:58 | 18/Fine | Middle | 6.2 | 15.3 | 29.4 | 29.4 | 6.26 | 6.27 | 0.00 | 74.8 | 75.0 | 2.13 | 2.15 | 2.17 | 1.9 | 1.5 | 1.1 | | 21/2/2022 | 10.43.36 | 10/1 lile | ivildale | 0.2 | 13.5 | 29.4 | 23.4 | 6.28 | 0.27 | | 75.1 | 75.0 | 2.17 | 2.10 | 2.17 | 1.0 | 1.5 | 1.1 | | | | | Bottom | 12.5 | 15.1 | 29.7 | 29.7 | 5.83 | 5.85 | 5.85 | 69.5 | 69.8 | 2.42 | 2.44 | | 1.0 | 0.9 | | | | | | Dottom | 12.5 | 13.1 | 29.7 | 20.7 | 5.87 | 3.03 | 3.03 | 70.0 | 00.0 | 2.45 | 2.77 | | 0.7 | 0.5 | | | | | | Surface | 1.0 | 15.6 | 29.9 | 29.9 | 7.21 | 7.20 | | 86.9 | 86.7 | 2.60 | 2.62 | | 1.3 | 1.0 | | | | | | | | | 29.9 | | 7.19 | 7.20 | 6.83 | 86.5 | 00.7 | 2.64 | | | 0.7 | | | | 23/2/2022 | 17:07:05 | 18/Fine | Middle | 6.2 | 15.3 | 30.2 | 30.2 | 6.48 | 6.46 | | 77.8 | 77.6 | 3.04 | 3.03 | 3.01 | 2.0 | 2.3 | 1.3 | | | | | | | | 30.2 | | 6.44 | | | 77.3 | | 3.02 | | | 2.6 | | | | | | | Bottom | 12.4 | 15.0 | 30.6 | 30.6 | 6.06 | 6.07 | 6.07 | 72.5 | 72.6 | 3.38 | 3.37 | | 0.4 | 0.5 | | | | | | | | | 30.6 | | 6.08 | | | 72.7 | | 3.35 | | | 0.5 | | | | | | | Surface | 1.0 | 15.5 | 32.0
32.0 | 32.0 | 7.19
7.16 | 7.18 | | 87.6
87.3 | 87.5 | 1.27
1.24 | 1.26 | | 2.1
1.5 | 1.8 | | | | | | | | | 32.4 | | 6.58 | | 6.87 | 79.9 | | 1.50 | | | 1.2 | 1 | | | 25/2/2022 | 18:12:00 | 18/Fine | Middle | 6.2 | 15.2 | 32.4 | 32.4 | 6.54 | 6.56 | | 79.6 | 79.8 | 1.52 | 1.51 | 1.53 | 1.6 | 1.4 | 1.8 | | | | | _ | | | 32.8 | | 5.96 | | | 72.1 | | 1.84 | | | 2.0 | | | | | | | Bottom | 12.5 | 14.9 | 32.8 | 32.8 | 5.98 | 5.97 | 5.97 | 72.4 | 72.3 | 1.80 | 1.82 | | 2.2 | 2.1 | | | | | | Surface | 1.0 | 17.2 | 30.2 | 30.2 | 7.04 | 7.03 | | 87.8 | 87.7 | 2.21 | 2.22 | | 0.2 | 0.2 | | | | | | Surface | 1.0 | 17.2 | 30.2 | 30.2 | 7.01 | 7.03 | 6.79 | 87.5 | 67.7 | 2.23 | 2.22 | | 0.2 | 0.2 | | | 28/2/2022 | 11:09:36 | 18/Fine | Middle | 6.1 | 17.0 | 30.6 | 30.6 | 6.57 | 6.56 | 0.73 | 81.8 | 81.6 | 2.50 | 2.52 | 2.50 | 0.5 | 0.6 | 0.4 | | 20,2,2022 | 11.00.00 | 10/1 1110 | Wildaio | 0.1 | 17.0 | 30.6 | 00.0 | 6.55 | 0.00 | | 81.3 | 01.0 | 2.54 | 2.02 | 2.00 | 0.6 | 0.0 | 0.4 | | | | | Bottom | 12.3 | 16.7 | 30.8
30.8 | 30.8 | 6.03
5.99 | 6.01 | 6.01 | 74.7
74.2 | 74.5 | 2.77 | 2.76 | | 0.4 | 0.4 | | | | | | | | | 30.8 | | 5.99 | | | 74.2 | | 2.74 | | | 0.4 | J | | ### **Appendix D5** Graphical Plots of Impact Marine Water Quality Monitoring Data (3RS Project) #### Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide (3RS project) #### Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide (3RS project) #### **Dissolved Oxygen (Bottom) at Mid-Flood Tide (3RS project)** #### Dissolved Oxygen (Bottom) at Mid-Ebb Tide (3RS project) #### Turbidity (Depth-average) at Mid-Flood Tide (3RS project) #### Turbidity(Depth-average) at Mid-Ebb Tide (3RS project) #### Suspended solids (Depth-average) at Mid-Flood Tide (3RS project) #### Suspended Solids (Depth-average) at Mid-Ebb Tide (3RS project) # Appendix E **Weather Condition** Daily Extract of Meteorological Observations , February 2022 - Tseung Kwan O | Day | | y Extract | or mete | Ologica | | 10110) 1 | cordary | | | | |---|-----|-----------|----------|-------------|----------|-----------|----------|----------|------------|--------| | Day | | Mean | | | | Mean | Mean | Total | Prevailing | Mean | | Day | | Pressure | Ai | r Temperatu | ıre | Dew | Relative | Rainfall | Wind | Wind | | Name | | (hPa) | | | | Point | Humidity | (mm) | Direction | Speed | | Daily Max (deg. C) | Day | | Absolute | Mean | Absolute | (deg. C) | (%) | | (degrees) | (km/h) | | Max (deg. C) | | | Daily | (deg.C) | Daily | | | | | | | | | | | (23,0) | | | | | | | | 1 1018.7 15.7 14.3 12.9 11.6 84 1.2 20 27.4 2 1018.7 17 15.6 14.5 13.7 88 1 40 28.5 3 1018.7 14.5 13.4 11.7 10.9 85 1 360 25.2 4 1021.4 18.5 14.4 11.9 8.6 69 - 360 25.2 5 1023.4 17.7 15.2 13.2 9.5 69 - 30 26.5 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 17.7 16.4 15.1 13.9 85 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 4 | | | | | | | | | | | | 3 1018.7 14.5 13.4 11.7 10.9 85 1 360 19.1 4 1021.4 18.5 14.4 11.9 8.6 69 - 360 25.2 5 1023.4 17.7 15.2 13.2 9.5 69 - 30 26.5 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 18.1 17.1 15.8 13.1 78 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 <td>1</td> <td>1018.7</td> <td></td> <td>14.3</td> <td></td> <td>11.6</td> <td>84</td> <td>1.2</td> <td>20</td> <td>27.4</td> | 1 | 1018.7 | | 14.3 | | 11.6 | 84 | 1.2 | 20 | 27.4 | | 4 1021.4 18.5 14.4 11.9 8.6 69 - 360 25.2 5 1023.4 17.7 15.2 13.2 9.5 69 - 30 26.5 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 17.7 16.4 15.1 13.9 85 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 50 22.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17.2 15.1 14.8 86 1. | 2 | 1018.7 | 17 | 15.6 | 14.5 | 13.7 | 88 | 1 | 40 | 28.5 | | 5 1023.4 17.7 15.2 13.2 9.5 69 - 30 26.5 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 17.7 16.4 15.1 13.9 85 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 </td <td>3</td> <td>1018.7</td> <td>14.5</td> <td>13.4</td> <td>11.7</td> <td>10.9</td> <td>85</td> <td>1</td> <td>360</td> <td>19.1</td> | 3 | 1018.7 | 14.5 | 13.4 | 11.7 | 10.9 | 85 | 1 | 360 | 19.1 | | 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 17.7 16.4 15.1 13.9 85 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 | 4 | 1021.4 | 18.5 | 14.4 | 11.9 | 8.6 | 69 | - | 360 | 25.2 | | 6 1022 18.2 16 14.6 11.5 75 - 70 38.8 7 1016.8 17.7 16.4 15.1 13.9 85 Trace 70 33.5 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 | 5 | | | | | | | - | | | | 8 1018.6 18.1 17.1 15.8 13.1 78 Trace 50 24.7 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 | 6 | 1022 | 18.2 | 16 | 14.6 | 11.5 | 75 | - | 70 | 38.8 | | 9 1019.1 17.4 16.1 15.3 12.1 77 - 40 25.1 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 | 7 | 1016.8 | 17.7 | 16.4 | 15.1 | 13.9 | 85 | Trace | 70 | 33.5 | | 10 1017.7 18.1 17 15.4 13.8 81 - 30 24.8 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1
14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 <td>8</td> <td>1018.6</td> <td>18.1</td> <td>17.1</td> <td>15.8</td> <td>13.1</td> <td>78</td> <td>Trace</td> <td>50</td> <td>24.7</td> | 8 | 1018.6 | 18.1 | 17.1 | 15.8 | 13.1 | 78 | Trace | 50 | 24.7 | | 11 1017.1 22 18.6 16.3 15.3 81 - 50 27.3 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360< | 9 | 1019.1 | 17.4 | 16.1 | 15.3 | 12.1 | 77 | - | 40 | 25.1 | | 12 1016 21.3 18.7 17 15.8 83 - 40 16.4 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 </td <td>10</td> <td>1017.7</td> <td>18.1</td> <td>17</td> <td>15.4</td> <td>13.8</td> <td>81</td> <td>-</td> <td>30</td> <td>24.8</td> | 10 | 1017.7 | 18.1 | 17 | 15.4 | 13.8 | 81 | - | 30 | 24.8 | | 13 1014.9 18.7 17.2 15.1 14.8 86 1.2 50 22.8 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1020.1 10.1 8.8 7.5 8.1 95 43.3 | 11 | 1017.1 | 22 | 18.6 | 16.3 | 15.3 | 81 | - | 50 | 27.3 | | 14 1017.3 21.3 17 14.1 12.2 75 1.2 10 19.2 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1020.8 9.8 8.5 8 7.7 94 43.4 10 31.5 22 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 <td>12</td> <td>1016</td> <td>21.3</td> <td>18.7</td> <td>17</td> <td>15.8</td> <td>83</td> <td>-</td> <td>40</td> <td>16.4</td> | 12 | 1016 | 21.3 | 18.7 | 17 | 15.8 | 83 | - | 40 | 16.4 | | 15 1017.8 21.8 17.6 15.8 13.5 77 - 60 23.4 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1020.8 9.8 8.5 8 7.7 94 43.3 10 | 13 | 1014.9 | 18.7 | 17.2 | 15.1 | 14.8 | 86 | 1.2 | 50 | 22.8 | | 16 1016 18.5 16.9 15.6 12.8 77 - 80 38 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 </td <td>14</td> <td>1017.3</td> <td>21.3</td> <td>17</td> <td>14.1</td> <td>12.2</td> <td>75</td> <td>1.2</td> <td>10</td> <td>19.2</td> | 14 | 1017.3 | 21.3 | 17 | 14.1 | 12.2 | 75 | 1.2 | 10 | 19.2 | | 17 1014.9 16.9 15.6 15 13.3 86 4 60 47 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 | 15 | 1017.8 | 21.8 | 17.6 | 15.8 | 13.5 | 77 | - | 60 | 23.4 | | 18 1015.4 16.7 15.9 15.2 13.3 84 Trace 70 42.9 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - < | 16 | 1016 | 18.5 | 16.9 | 15.6 | 12.8 | 77 | - | 80 | 38 | | 19 1017 15.9 12.4 9.7 11.2 92 21.3 360 38.7 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 | 17 | 1014.9 | 16.9 | 15.6 | 15 | 13.3 | 86 | 4 | 60 | 47 | | 20 1020.8 9.8 8.5 8 7.7 94 43.4 10 42.1 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - 28 <td< td=""><td>18</td><td>1015.4</td><td>16.7</td><td>15.9</td><td>15.2</td><td>13.3</td><td>84</td><td>Trace</td><td>70</td><td>42.9</td></td<> | 18 | 1015.4 | 16.7 | 15.9 | 15.2 | 13.3 | 84 | Trace | 70 | 42.9 | | 21 1022.1 10.1 8.8 7.5 8.1 95 43.3 10 31.5 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - - - - - - - - - - - - - - - - - - <td< td=""><td>19</td><td>1017</td><td>15.9</td><td>12.4</td><td>9.7</td><td>11.2</td><td>92</td><td>21.3</td><td>360</td><td>38.7</td></td<> | 19 | 1017 | 15.9 | 12.4 | 9.7 | 11.2 | 92 | 21.3 | 360 | 38.7 | | 22 1022 12.2 10.7 9.2 10.1 96 39.9 360 25 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - | 20 | 1020.8 | 9.8 | 8.5 | 8 | 7.7 | 94 | 43.4 | 10 | 42.1 | | 23 1024.3 16.2 12.1 9.4 8.1 77 11 360 29.3 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - - - - - - - - - - - - - - - - - - | 21 | 1022.1 | 10.1 | 8.8 | 7.5 | 8.1 | 95 | 43.3 | 10 | 31.5 | | 24 1026.2 14.9 12.6 10.7 7.6 72 - 10 17.3 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - - - - - - - - - - - - - - - - - - - | 22 | 1022 | 12.2 | 10.7 | 9.2 | 10.1 | 96 | 39.9 | 360 | 25 | | 25 1024.5 20.1 15.3 12.2 9.8 70 - 10 14.7 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - | 23 | 1024.3 | 16.2 | 12.1 | 9.4 | 8.1 | 77 | 11 | 360 | 29.3 | | 26 1021.9 21.4 16.8 13.6 12.4 76 - 40 10.1 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - - - - - - - - - - - - - - - - - - | 24 | 1026.2 | 14.9 | 12.6 | 10.7 | 7.6 | 72 | - | 10 | 17.3 | | 27 1019.6 21.7 17.6 14.8 13.8 79 - 40 15.6 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - | 25 | 1024.5 | 20.1 | 15.3 | 12.2 | 9.8 | 70 | - | 10 | 14.7 | | 28 1018.6 22.5 18.9 16.4 13.3 70 - 40 23 - | 26 | 1021.9 | 21.4 | 16.8 | 13.6 | 12.4 | 76 | - | 40 | 10.1 | | 1 | 27 | 1019.6 | 21.7 | 17.6 | 14.8 | 13.8 | 79 | - | 40 | 15.6 | | | 28 | 1018.6 | 22.5 | 18.9 | 16.4 | 13.3 | 70 | - | 40 | 23 | | | - | - | - | - | - | - | - | - | - | - | | | - | - | - | - | - | - | - | - | - | - | | | - | - | - | - | - | - | - | - | - | - | Rainfall measured in increment of 0.5 mm. Amount of < 0.5 mm cannot be detected # Appendix F **Event-Action Plans** | - | | | | dia C | | dial | |--|------------|-----------|---|--|------------------------------|--| | | Contractor | | Rectify any unacceptable
practise
Amend working methods if
appropriate | Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate | of moiton of cipoment of the | avoid further
exceedance action to avoid further exceedance Submit proposals for remedial actions to IC(E) within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate. | | | | | . 2 | -, -, -, -, -, -, -, -, -, -, -, -, -, -, | ļ | ÷ 2, €, 4, | | ITY EXCEEDANCE | 0 | | 1. Notify Contractor | Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures property implemented | | Confirm receipt of notification of failure in writing Notify the Contractor Ensure remedial measures properly implemented | | UAL | - | | | e e ible | | e sible | | EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE | ACTION | IC(E) | Check monitoring data submitted by the ET | Check monitoring data submitted by the ET Leader Check the Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures | LIMIT LEVEL | Check monitoring data submitted by the ET Leader Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures Supervise implementation of remedial measures | | EVE | | | - ' α' | ÷ 5.6. 4. 7. | | ∸. ડાધ, 4. rž | | | | ET Leader | Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, IC(E) and Contractor. Repeat measurement to confirm finding. Increase monitoring frequency to daily | Identify source, investigate the causes of exceedance and propose remedial measures Inform IC(E) and Contractor Repeat measurements to confirm finding Increase monitoring frequency to daily biscuss with IC(E) and Contractor on remedial actions If exceedance continues, arrange meeting with IC(E) and ER. If exceedance stops, cease additional monitoring | | Identify source, investigate the causes of exceedance and propose remedial measures Inform ER, Contractor and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily horses the effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results | | - | | | - 4. 4. | | - | | | EVENT | | | for one sample | 2. Exceedance for two or more consecutive samples | | 1, Exceedance
for one
sample | | ш. | | | | 1 | | 1 | | EVENT | | EVENT/ACTION PLAN FOR AIR QUALITY EXCEEDANCE | LITY EXCEEDANCE | | | |---------------|--|--|---|---|----------| | '93 | | ACTION | | | | | | ET Leader | IC(E) | ER | Contractor | | | 2. Exceedance | 1. Identify source, investigate the causes | 1. Discuss amongst ER, ET and Contractor on | 1. Confirm receipt of notification | 1. Take immediate action to | <u>۔</u> | | for two or | of exceedance and propose remedial | the potential remedial actions | of failure in writing | | ces | | more | measures | 2. Review Contractor's remedial actions | 2. Notify Contractor | 2. Submit proposals for remedial | medial | | consecutive | 2. Notify IC(E), ER, EPD and Contractor | whenever necessary to assure their | In consultation with the IC(E), | actions to IC(E) within 3 | ~ | | sambles | 3. Repeat measurement to confirm | effectiveness and advise the ER accordingly | agree with the Contractor on | working days of notification | tion | | • | finding | 3. Supervise the implementation of remedial | the remedial measures to be | Implement the agreed | | | | 4. Increase monitoring frequency to daily | measures | implemented | proposals | | | | 5. Carry out analysis of contractor's | | Ensure remedial measures | Resubmit proposals if | | | | working procedures to determine | | are properly implemented | problem still not under control | control | | | possible mitigation to be implemented | | 5. If exceedances continues, | Stop the relevant activity of | ty of | | | 6. Arrange meeting with IC(E) and ER to | | consider what portion of the | works as determined by the | y the | | | _ | | work is responsible and | ER until the exceedance is | s is | | | taken | | instruct the Contractor to stop | abated | | | - | 7. Assess effectiveness of Contractor's | | that portion of work until the | • | | | - | remedial actions and keep IC(E), EPD | | exceedance is abated | | | | <u>™</u> | and ER informed of the results | | | | | | | 8. If exceedance stops, cease additional | | | | - | | | monitoring | | | | | | | | | | EVENT/ACTION PLAN FOR NOISE EXCEEDANCE | N | OISE EXCEEDANCE | | | | |-----------------|------------|---|--------------------|--|--------------|--|-------------|--|----| | EVENT | | | | ACTION | × | - | | | — | | | | ET Leader | | IC(E) | | ER | | Contractor | -, | | Action
Level | 는 ci ti ti | Notify the IC(E) and the Contractor. Carry out investigation. Report the results of investigation to the IC(E) and the Contractor. Discuss with the Contractor and formulate remedial measures. Increase monitoring frequency to check mitigation effectiveness | . 2, 6, | Review the analysed results submitted by the ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly. Supervise the implementation of remedial measures. | f. 52.62 4. | Confirm receipt of notification of failure in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problem. Ensure remedial measures are properly implemented. | - 3 | Submit noise mitigation
proposals to IC(E).
Implement noise mitigation
proposals. | | | Limit | <u>-</u> | . Notify the IC(E), the ER, the EPD | ~ - | Discuss amongst the ER, the ET | - | Confirm receipt of notification of | | Take immediate action to avoid | | | Level | | and the Contractor. | | Leader and the Contractor on the | | failure in writing. | • | further exceedance | | | 20070 | ٧i | . Identify source. | | potential remedial actions. | vi. | Notify the Contractor. | <u>ان</u> | Submit proposals for remedial | - | | | ઌ૽ | . Repeat measurement to confirm | ۲i | Review the Contractor's remedial | က် | Require the Contractor to propose | | actions to IC(E) within 3 | | | 1 south | | findings. | | actions whenever necessary to | | remedial measures for the | | working days of notification. | | | -0.0.0 | 4. | | | assure their effectiveness and | | analysed noise problem. | က် | Implement the agreed | | | | က် | | | advise the ER accordingly. | 4. | Ensure remedial measures are | • | proposals. | | | | | working procedures to determine | က် | | ι | properly implemented. | 4. | Resubmit proposals if problem | | | الكنوبية الم | | possible mitigation to be | | remedial measures. | ဂ် | If exceedances continue, consider what activity of the work is | Ľ | Still flot dirider cornigi.
Stop the relevant activity of | | | | Ċ | | | | | what activity of the work is responsible and instruct the | ; | works as determined by the ER | | | | ó | EPD the causes & actions taken for | | | | Contractor to stop that activity of | | until the exceedances is | | | | | the exceedances. | | | | work until the exceedances is | | abated. | | | | ۲. | - | | | | abated. | | | | | | | Contractor's remedial actions and | | | | | | | | | ., | | keep the IC(E), the EPD and the | | | | | | | | | | | ER informed of the results | | | | | | | | | | ω, | | | | | | | | | | | | construction works stops, cease | | | | | | | _ | | | | additional monitoring | | | | | | | _ | | Event | | EVEN. | IT A | EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE | ATE | ER QUALITY EXCEEDANC | Ж | | |----------------|-------|------------------------------------|-----------|--|------------|------------------------------------|--------------|------------------------------| | uçı sılı | | | | ACTION | z | | | | | | | ET Leader | | Contractor | | ER | | IEC | | Action level | - | Identify source(s) of impact: | <u> -</u> | Notify the ER and IEC in writing | <u>-</u> : | Notify EPD and other relevant | - | Check monitoring data | | heing exceeded | د د | Reneat in-situ measurement to | | within 24 hours of identification of | , | governmental agencies in writing | | submitted by ET | | hy one | i | confirm findings: | | exceedance | | within 24 hours of the | 2 | Confirm ET assessment if | | sampling day | • | | 7 | | | identification of the exceedance | | exceedance is due / not due | | Con Standards | ;
 | | က် | | 2. | Discuss with IEC, ET and | | to the works | | | | exceedance | 4 | | | Contractor on the proposed | က် | Discuss with ET, ER and | | | 4 | | | and ER within 3 working days of | | mitigation measures; | | Contractor on the mitigation | | | | | | the identification of an | က | Require contractor to propose | | measures | | | | working methods: | | exceedance | | remedial measures for the | 4. | Review contractor's | | | ď | | က် | | | analysed
problem if related to the | | mitigation measures | | | (c) | | | method if exceedance is due to | | construction works | | whenever necessary to | | | ;
 | _ | | the construction works | 4. | Ensure remedial measures are | | ensure their effectiveness | | · | | days of identification of | 9 | | | properly implemented | | and advise the ER | | | | exceedance and advise | | propose mitigation measures to | ů. | Assess the effectiveness of the | | accordingly | | | | contractor if exceedance is due to | | IEC and ER if exceedance is due | | mitigation measure | ri, | Supervise the | | | | contractor's construction works | | to the construction works within 4 | | | | implementation of mitigation | | | 7. | | | working days of identification of | _ | | | measures | | | | Contractor if exceedance is due | | an exceedance | | | | | | | | to the construction works within 4 | 7. | Implement the agreed mitigation | | | | | | | | working days | | measures within reasonable time | | | | | | | ω. | Repeat measurement on next day | | scale | | | | | | | | of exceedance if exceedance is | | | | | | | | | | due to the construction works | _ | | | | _ | | . . ._ | Event | <u> </u> | | 1" | EVENT AND ACTION PLAN FOR WATER QUALITY | FO | R WATER QUALITY | 1 | | |---------------------------------------|--------------|---------------------------------|----|---|----------|--------------------------------|----|--------------------------| | | | | | ACTION | × | | | | | | Ŀ | ET Leader | | Contractor | | ER | | IEC | | Action level | 7 | Identify source(s) of impact; | Ŀ | Notify IEC and ER in writing | ~ | Notify EPD and other relevant | + | Check monitoring data | | being | 2 | Repeat in-situ measurement | | within 24 hours of | | governmental agencies in | | | | exceeded by | | to confirm findings | | identification of exceedance | | writing within 24 hours of the | તં | _ | | more than one | က် | Notify Contractor in writing | 2 | ٠ | | identification of the | | if exceedance is due / | | consecutive | | within 24 hours of | က | Check all plant and | | exceedance | | _ | | sampling days | | identification | | equipment; | 7 | Discuss with IEC, ET and | က | _ | | | 4. | Check monitoring data, all | 4. | U | | Contractor on the proposed | | Contractor on the | | | | plant, equipment and | | methods; | · · · | mitigation measures; | | mitigation measures. | | | | Contractor's working methods; | က် | UJ | က | Require contractor to propose | 4. | | | | ry. | Carry out investigation | | investigation to IEC and ER | | remedial measures for the | | mitigation measures | | | 9 | | | within 3 working days of the | | analysed problem if related to | | whenever necessary to | | | | investigation to the Contractor | | identification of an | | the construction works | · | ensure their | | horio | | within 3 working days of | | exceedance | 4. | Ensure remedial measures | | effectiveness and advise | | | | identification of exceedance | ဖ် | Discuss with ET, IEC and ER | | are properly implemented | | _ | | | | and advise contractor if | | and propose mitigation | r. | Assess the effectiveness of | က် | • | | | | exceedance is due to | | measures to IEC and ER | | the mitigation measure | | of the implemented | | | | contractor's construction | | within 4 working days of | | | | mitigation measures. | | | | | | identification of an | | | | | | | 7. | | | exceedance | | | | | | | | with IEC and Contractor within | 7. | Implement the agreed | | | | | | | | 4 working of identification of | | mitigation measures within | | | | | | • | | an exceedance | | reasonable time scale | | | | | | - of the last | ထ | Ensure mitigation measures | | | | | | | | | | are implemented; | | | | | | | | | <u>o</u> | . Prepare to increase the | | | | | | | | · · · · · · · · · · · · · · · · · · · | | monitoring frequency to daily; | | | | | | | | | ~ | 10. Repeat measurement on next | | | | | | | | | | day of exceedance. | | | | | | | . | Event | | EVENT AND | Ϋ́ | | ATE | ACTION PLAN FOR WATER QUALITY EXCEEDANCE | Щ | | | |--------------------------|-----------|--|----|--------------------------------|-------------|--|----------------|--------------------------|---------| | الانتخا م و ر | | | | ACTION | Z | | | | | | | | ET Leader | | Contractor | | ER | | IEC | Υ | | Limit level | Υ- | Repeat in-situ measurement | 1. | Notify IEC and ER in writing; | | Notify EPD and other relevant | . : | Check monitoring data | | | being | | to confirm findings; | | within 24 hours of the | | governmental agencies in | | submitted by E.I. | | | exceeded by | 7 | _ | | identification of the | | writing within 24 hours of | 7 | Confirm ET assessment | | | one sampling | " | | | exceedance | | identification of exceedance | | if exceedance is due / | | | 8 | | _ | 2 | Rectify unacceptable practice; | 2 | Discuss with IEC, ET and | | not due to the works | | | <u> </u> | | identification of the | က | Check all plant and | | Contractor on the proposed | က် | Discuss with ET, ER and | | | | | exceedance | | equipment; | | mitigation measures; | • | Contractor on the | | | | 4 | _ | 4 | Consider changes of working | က | Request Contractor to critically | | mitigation measures. | | | | | _ | | methods: | | review the working methods; | 4. | Review proposals on | | | | | Contractor's working methods: | ιĊ | Submit the results of the | 4 | Ensure remedial measures | | mitigation measures | | | • | rc. | _ | : | investigation to IEC and ER | | are properly implemented | | submitted by Contractor | | | | | | | within 3 working days of the | <u>ب</u> | Assess the effectiveness of | | and advise the ER | | | - | | - | | identification of an | | the implemented mitigation | | accordingly. | | | | | within 3 working days of | | exceedance | | measures. | က် | Assess the effectiveness | | | | | identification of exceedance | 6 | Discuss with ET, IEC and ER | | | ···· | of the implemented | | | | | and advise contractor if | i | and propose mitigation | | | | mitigation measures | <u></u> | | | • | exceedance is due to | | measures to IEC and ER | | | | | | | 4 | | contractor's construction | | within 4 working days of the | | | | | | | | | works | | identification of an | | | | | | | 1 2 | 7 | | | exceedance | | | | | | | | | with IEC, ER and Contractor | ۲. | | | | | | | | نىچەسى <u>ت</u> | | within 4 working of | | mitigation measures within | | | | | | | | | identification of an | | reasonable time scale | | | | | | | | | exceedance | | | | | | | | | | <u></u> ∞ | Ensure mitigation measures | | | | | | | | | | | are implemented; | | | | | | | | | | 0 | Increase the monitoring | | | | | | | | | | | frequency to daily until no | | | | | | | | | | - | exceedance of Limit Level. | | | | | | | | | Event | | EVEN | | EVENT AND ACTION PLAN FOR WATER QUALITY EXCEEDANCE | 'ATE | R QUALITY EXCEEDANC | ш | | |---------------|--------------|-------------------------------|----------|--|----------------|----------------------------------|----------------|--------------------------| | * | | | | ACTION | Ž | | | | | - | | ET Leader | | Contractor | | ER | | IEC | | Limit Level | - | Repeat in-situ measurement | - | Notify ER and IEC in writing | - - | | - - | Check monitoring data | | being | | to confirm findings; | | within 24 hours of the | | governmental agencies in | _ | submitted by E.I | | exceeded by | 2 | | | identification of the | | writing within 24 hours of | ۲, | Confirm ET assessment | | more than one | i m | | | exceedance and | | identification of exceedance | | if exceedance is due / | | consecutive | ; | • | 2 | Rectify unacceptable practice; | 7 | Discuss with IEC, ET and | | not due to the works | | sampling days | | identification of the | က် | Check all plant and | | Contractor on the proposed | က | Discuss with ER, ET and | | | | exceedance | | equipment; | | mitigation measures; | | Contractor on the | | | 4 | | 4. | Consider changes of working | က | Request Contractor to critically | | mitigation measures. | | ~~~ | : | | | methods; | | review the working methods; | 4. | Review proposals on | | | _ | Contractor's working methods: | <u></u> | Submit the results of the | ô, | Ensure remedial measures | | mitigation measures | | نث ج | ιC | | | investigation to IEC and ER | | are properly implemented | | submitted by Contractor | | | ф | | | within 3 working days of the | 4. | Assess the effectiveness of | | and advise the ER | | | ; | · - | | identification of an | | the implemented mitigation | | accordingly. | | | | within 3 working days of | | exceedance | | measures; | က် | Assess the effectiveness | | | | identification of exceedance | က် | Discuss with ET, IEC and ER | က် | Consider and instruct, if | | of the implemented | | ****** | | and advise contractor if | | and propose mitigation | | necessary, the Contractor to | | mitigation measures. | | | | exceedance is due to | | measures to IEC and ER | | slow down or to stop all or part | | | | •••• | | contractor's construction | | within 4 working days; | | of the marine work until no | | | | | | works | 6 | Implement the agreed | | exceedance of Limit Level. | | | | | ۲. | Discuss mitigation measures | | mitigation measures within | | | | | | | | with IEC, ER and Contractor; | | reasonable time scale | | | | | | | ω. | | 7. | As directed by the Engineer, | | | | | | 34.14.50 | | are implemented; | | to slow down or to stop all or | | | | | | | <u>ග</u> | | | part of the marine work or | | | | | | | | frequency to daily until no | | construction actives. | | | | | | | | exceedance of Limit Level for | | | | | | | | | | two consecutive days. | | | | | | | # Appendix G **Works
Programme** | ID 🔒 | Task Name | | | | Duration | Start | Finish F | Predece | Jan 1 | | Feb '22 | Mar '22
 28 7 14 2 | 21 28 4 | |-----------------------------------|---|------------------------------|-----------------------------|-------------------|------------|--------------|----------------------------------|----------|--|--|---------|------------------------------|----------------------| | 1 | Contract duration of Contract CV/2021/9 | | | | 730 days | Sat 1/1/22 | Sun 31/12/23 | | 1/1/22 | 17 24 31 | 7 14 21 | 20 7 14 2 | 31/3/22 | | 2 | Contract date, Date of the Letter of Acc | eptance (assumed) | | | | Mon 20/12/21 | | 12, | /2021 | | | | | | 3 📆 | Starting Date of the Works | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | | Starting Date of Section 1 of the Works | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | → 1/1/2022 | | | | | | 5 | Starting Date of Section 2 of the Works | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | 6 | Starting Date of Section 3 of the Works | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | 7 1112 | Date for Completion of the Works | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 8 🛅 | Completion Date of Section 1 of the Works | | | | 0 days | Sun 31/12/23 | | | | | | | | | 9 | Completion Date of Section 2 of the Works | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 10 🚃 | Completion Date of Section 3 of the Works | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 11 | Planned completion dates | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | Top de la constante cons | | | | | | 12 | Planned competion date of Section 1 | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 13 | Planned competion date of Section 2 | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 14 | Planned competion date of Section 3 | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 15 🗰 | Access Date of the Site | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | | Portion A2, A3a, A3b, A3c, A4, A5a, A5b, A7c2, | , A10 and A11 (within 60 da | ys after starting date) | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | | Portion B1, B3, B6a, B6b and B7 (within 60 days | | · - | | 0 days | Sat 1/1/22 | Sat 1/1/22 | 1 11 | 1/1/2022 | | | | | | | Portion A1. A7a, A7b, A7c1, A9, A9a and B6c (7 | | r starting date) | | 0 days | Sat 1/1/22 | Sat 1/1/22 | 3 11 | 1/1/2022 | | | | | | 19 | Portion B6c (7 day's advance notice after startin | | | | 0 days | Sat 1/1/22 | Sat 1/1/22 | | 1/1/2022 | | | | | | 20 🕮 | Hand back of the Site | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | | Portion A2, A3a, A3b, A3c, A4, A5a, A7c2, A10 30 days' advance notice) | | | | 0 days | | Sun 31/12/23 | | | | | | | | | Portion A1, A7b, A7c1, A9 and A9a (or at an ear notice) | | | | 0 days | Sun 31/12/23 | | | | | | | | | | Portion B1, B3, B6a, B6b and B7 (or at an earlie notice) | | | ys' advance | 0 days | | Sun 31/12/23 | | | | | | | | | Portion B6c (or at an earlier date as notified by t | | days' advance notice) | | 0 days | | Sun 31/12/23 | | | | | | | | 25 | Section 1 of the Works - Tseung Kwan O | | | | 730 days | | Sun 31/12/23 4 | | 1/1/2022 | | | | | | 26 | Taking over the existing facilities at the Tseur | | | Site | 0 days | Sat 1/1/22 | Sat 1/1/22 4 | | 1/1/2022 | | | | | | 27 | Operation of the the Tseung Kwan O Area 13 | | | | 730 days | Sat 1/1/22 | | | | | | | | | 28 | | | | W . B . C | 730 days | Sat 1/1/22 | | - 11 | | | | | | | 29 E | Operation and maintenance of the existing tip
A of the Site
Provision, operation and maintenance of the | | | | 730 days | Sat 1/1/22 | Sun 31/12/23 2
Sun 31/12/23 2 | | | | | | | | 30 | Portion A of the Site | | , | | | | | | | | | | Participated Company | | 31 | Operation and maintenance of the dewatering the SIte. | | | | 730 days | Sat 1/1/22 | Sun 31/12/23 2 | 26SS | | | | | | | 32 🚟 🔄 | Collection and delivery of Public Fill by barges
137 Fill Bank within Portion A of the Site | s from the Chai Wan and N | lui Wo Barging Points to | the TKO Area | 730 days | Sat 1/1/22 | Sun 31/12/23 2 | 26SS | | | | | | | 33 | Handing over the facilities at the Tseung Kwa | n O Area 137 Fill Bank with | in Portion A of the Site to | the Employer | 0 days | Sun 31/12/23 | Sun 31/12/23 8 | ss | | | | | | | 34 | Planned Completion Date (Section 1) | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 35 | Section 2 of the Works - Tuen Mun Area | 38 Fill Bank | | | 730 days | Sat 1/1/22 | Sun 31/12/23 | | | | | | | | 36 | Taking over the existing facilities at the Tuen | Mun Area 38 Fill Bank with | in Portion B of the Site | | 0 days | Sat 1/1/22 | Sat 1/1/22 5 | ss | 1/1/2022 | | | | | | 37 | Operation of the Tuen Mun Area 38 Fill Bank | within Portion B of the Site | | | 730 days | Sat 1/1/22 | Sun 31/12/23 5 | ss | — | | | | | | 38 📺 | Operation and maintenance of the surveillance | ce system within Portion B | of the Site | | 730 days | Sat 1/1/22 | Sun 31/12/23 5 | iss | \ | The state of s | | | | | 39 🛅 | Operation and maintenance of the existing tip Site | pping halls at the Tuen Mun | Area 38 Fill Bank within | Portion B of the | 730 days | Sat 1/1/22 | Sun 31/12/23 5 | iss | | | | | | | 40 🚟 | Operation and Maintenance of the Crushing F | Plant at the Tuen Mun Area | 38 Fill Bank within Portio | n B of the Site | 730 days | Sat 1/1/22 | Sun 31/12/23 5 | ss | | | | 409 E. SOSSES (678). | | | 41 🛅 | Operation and maintemnance of glass cullet s
Portion B of the Site | storage compartment at the | Tuen Mun Area 38 Fill B | ank within | 730 days | Sat 1/1/22 | Sun 31/12/23 5 | sss | | | | |
 | | | Task | E | xternal Tasks | | Du | ration-only | 111 | | External Tasks | ♦ | | | | | | Split | E | xternal Milestone | \Diamond | Ma | nual Summary R | Rollup 🔷 | | External Milestor | ne 📉 | | | | Project: 3 mont
Date: Wed 26/1 | n rolling Programme Jan22- Mar22 CV/2021/09 | '
 Milestone | | nactive Milestone | | | nual Summary | • | | Progress | | | | | Date. 9900 20/1 | , | Summary | | nactive Summary | | | rt-only | | | Deadline | Ŷ | | | | | | Project Summary | | fanual Task | · | | ish-only | | | Deadillie | × | | | | | | 1 Toject Summary | V 1V | iailuai Task | | ΓIII | isi1-Oilly | | | | | | | | | | | | | Page 1 | | | | | | | | | | ID | <u>A</u> | Task Name | | | | Duration | Start | Finish P | redece | | Jan '22 | | Feb '22 | Mar '22 | |------------------------|----------|---|------------------------------------|----------------------|---------------------|------------|------------------------------|-----------------|---------|--|--|--|--------------------|----------------| | 42 | | Handing over the facilities at the Tuen Mun A | rea 38 Fill Bank within Portion | B of the Site to the | Employer | 0 days | Sun 31/12/23 | Sun 31/12/23 9 | | 7 3 | 10 17 | 24 31 / | / 14 21 | 28 7 14 21 28 | | | HE | Planned Completion Date (Section 2) | | | | 0 days | Sun 31/12/23 | Sun 31/12/23 | | | | | | | | 44 | | Section 3 of the Works - Designated Rec | lamation Sites in the Mair | nland | | | Mon 20/12/21 | | | | | | | | | 45 | | Collection and delivery of 2 million tonnes Bank and the Tuen Mun Area 38 Fill Bank | of Public Fill by vessels fro | m Tseung Kwan C | | 742 days | Mon 20/12/21 | Sun 31/12/23 | | Name of the state | | | | | | 46 | HE | 1st quarter of first year | | | | 102 days | Mon 20/12/21 | Thu 31/3/22 | | 4 | | | | | | 47 | | Installing Front End Mobile Unit (FEMU) |) onto the proposed vessels | | | 7 days | Mon 20/12/21 | Sun 26/12/21 | | | | | | | | 48 | HB | Submitting application documents to EF | | permits | | 1 day | Mon 20/12/21 | Mon 20/12/21 | | | | | | | | 49 | | Obtaining the dumping permit from EPD | , | | | 11 days | Tue 21/12/21 | Fri 31/12/21 4 | 8 | | | | | | | 50 | | Submitting Application documents to the sea | | | | 1 day | Mon 20/12/21 | Mon 20/12/21 | | The state of s | | | | | | | | Obtaining the dumping permits from M
China through the Employer (assumed | on 31/12/21) | ment of the People | s Republic of | 11 days | Tue 21/12/21 | Fri 31/12/21 50 | 0 | ŀ | | | | | | | HB | Obtaining all necessary permits, license | 5 6 15 | | | 12 days | Mon 20/12/21 | Fri 31/12/21 | 100 | 1 | | | | | | | H | Collection and delivery of 250000 tonne | es of Public Fill | | | 90 days | Sat 1/1/22 | Thu 31/3/22 5 | 1,49,5 | | | CONTROL VALUE | | | | 54 | | 2nd quarter of first year | | | | 134 days | Thu 17/2/22 | Thu 30/6/22 | | Tight and the control of | | | | | | | | Submitting application documents to EF | | permits | | 1 day | Fri 18/3/22 | Fri 18/3/22 | | | | | | l ₂ | | | H | Obtaining the dumping permit from EPD | | | | 13 days | Sat 19/3/22 | Thu 31/3/22 5! | 5 | | | | | | | | H B | Submitting Application documents to the sea | | | | 1 day | Thu 17/2/22 | Thu 17/2/22 | | The state of s | | | | | | | | Obtaining the dumping permits from M
China through the Employer | | ment of the People' | s Republic of | 41 days | Fri 18/2/22 | Wed 30/3/22 57 | 7 | | | Special control of the th | | | | | HE | Obtaining all necessary permits, license | | | | 14 days | Fri 18/3/22 | Thu 31/3/22 | | | | | | | | | | Collection and delivery of 250000 tonne | es of Public Fill | | | 91 days | Fri 1/4/22 | Thu 30/6/22 53 | 3,59,58 | | | | | | | 61 | | 3rd quarter of first year | | | | 134 days | Fri 20/5/22 | Fri 30/9/22 | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | | | | | HB |
Submitting application documents to EF | | permits | | 1 day | Fri 17/6/22 | Fri 17/6/22 | | | | | | | | 63 | | Obtaining the dumping permit from EPD | | | | 13 days | Sat 18/6/22 | Thu 30/6/22 62 | 2 | | | | | | | | | Submitting Application documents to the sea | | | | 1 day | Fri 20/5/22 | Fri 20/5/22 | | | | | | | | | | Obtaining the dumping permits from M
China through the Employer | - | ment of the People' | s Republic of | 41 days | Sat 21/5/22 | Thu 30/6/22 64 | 4 | | | | | | | | HB | Obtaining all necessary permits, license | | | | 14 days | Fri 17/6/22 | Thu 30/6/22 | | | | | | - | | | п | Collection and delivery of 250000 tonne | s of Public Fill | | | 92 days | Fri 1/7/22 | Fri 30/9/22 60 | 0,66,6: | | | | | | | 68 | | 4th quarter of first year | OD for any limiting of discontinuo | 14 | | 134 days | Sat 20/8/22 | Sat 31/12/22 | | | 1
1
1
2
2
3
4
4
4 | | | | | | | Submitting application documents to EP
Obtaining the dumping permit from EPD | | permits | | 1 day | Sat 17/9/22 | Sat 17/9/22 | | | | | | | | | | Submitting Application documents to the | , | of the dumning norm | nit of woods at the | 13 days | Sun 18/9/22 | Fri 30/9/22 69 | 9 | | | | | | | | | sea | | | | 1 day | Sat 20/8/22 | Sat 20/8/22 | | | | | | | | | | Obtaining the dumping permits from M China through the Employer (assumed of | on 30/9/22) | ment of the People | s Mehaniic Oi | 41 days | Sun 21/8/22 | Fri 30/9/22 71 | L | | | | | | | | | Obtaining all necessary permits, license | | | | 14 days | Sat 17/9/22 | Fri 30/9/22 | 7 72 7 | | | | | | | 74 | | Collection and delivery of 250000 tonne | S OI FUDIIC FIII | | | 92 days | Sat 1/10/22 | Sat 31/12/22 67 | 1,13,1. | | | | | | | 75 | | 1st quarter of second year | D for application of dumning | armite | | 132 days | Sun 20/11/22 | Fri 31/3/23 | | | | | | | | 76
77 | | Submitting application documents to EP
Obtaining the dumping permit from EPD | | Jenning. | | 1 day | Sun 18/12/22
Mon 19/12/22 | Sun 18/12/22 | _ | | No. of Contract | | | | | | | Submiting Application documents to the | | of the dumning norm | nit of waste at the | 13 days | Sun 20/11/22 | Sat 31/12/22 76 | | | | | | | | | | sea | | | | 1 days | | Sun 20/11/22 | | | | | | | | 79 | | Obtaining the dumping permits from Mi
China through the Employer | inistry of Ecology and environr | ment of the People's | s Republic of | 41 days | Mon 21/11/22 | Sat 31/12/22 78 | 5 | | | | | | | | | | Task | | External Tasks | | Dur | ration-only | 1111 | | Extern | nal Tasks | \langle | | | | | | Split | | External Milestone | \Diamond | Ma | nual Summary Ro | ollup 🔷 | | Exterr | nal Milestone | | | | Project: 3
Date: We | | h rolling Programme Jan22- Mar22 CV/2021/09
/22 | Milestone | • | Inactive Milestone | | Mai | nual Summary | • | | Progr | ess | | | | | | | Summary | | Inactive Summary | 11000 | | rt-only | | | Deadl | | $\hat{\mathbf{v}}$ | | | | | | Project Summary | \triangleright | Manual Task | \Diamond | Fini | sh-only | - | | | | | | | | | | , | | | | - 20 | | | | | | | | | | | | | | | Page 2 | | | | | | | | | | ID 🔒 | Task Name | | | | Duration | Start | Finish Predec | | Jan '22 | 24 31 7 | eb '22 | Mar | | |-------------------------------------|---|------------------------------|--------------------------|---------------------|------------|--------------|-----------------------|--|---------|---------------|--------------------|----------------|---------| | 80 🛅 | Obtaining all necessary permits, licens | es,approvals and concents | S | | 14 days | Sun 18/12/22 | Sat 31/12/22 | 1/1/22 | 10 17 | 24 31 7 | 14 21 | 20 / / . | 31/3/22 | | 81 | Collection and delivery of 250000 tonr | nes of Public Fill | | | 90 days | Sun 1/1/23 | Fri 31/3/23 74,80,7 | | | | | | | | 82 | 2nd quarter of second year | | | | 133 days | Sat 18/2/23 | Fri 30/6/23 | | | | | | | | 83 | Submitting application documents to E | PD for application of dump | ing permits | | 1 day | Sat 18/3/23 | Sat 18/3/23 | 1 | | | | | | | 84 | Obtaining the dumping permit from EP | D (assumed on 31/3/23) | | | 13 days | Sun 19/3/23 | Fri 31/3/23 83 | | | | | | | | 85 🍱 | Submiting Application documents to th sea | e Employer for the applica | tion of the dumping per | mit of waste at the | 1 day | Sat 18/2/23 | Sat 18/2/23 | | | | | | | | 86 | Obtaining the dumping permits from No. China through the Employer (assumed | | vironment of the People | 's Republic of | 41 days | Sun 19/2/23 | Fri 31/3/23 85 | | | | | | | | 87 | Obtaining all necessary permits, licens | es,approvals and concents | 3 | | 14 days | Sat 18/3/23 | Fri 31/3/23 | | | | | | | | 88 | Collection and delivery of 250000 tonr | nes of Public Fill | | | 91 days | Sat 1/4/23 | Fri 30/6/23 81,84,8 | 1 | | | | | | | 89 | 3rd quarter of second year | | | | 134 days | Sat 20/5/23 | Sat 30/9/23 | | | | | | | | 90 | Submitting application documents to E | PD for application of dump | ing permits | | 1 day | Sat 17/6/23 | Sat 17/6/23 | | | | | 1 | | | 91 | Obtaining the dumping permit from EP | D (assumed on 30/6/23) | | | 13 days | Sun 18/6/23 | Fri 30/6/23 90 | | | | | | | | 92 | Submiting Application documents to the sea | e Employer for the applicat | tion of the dumping per | mit of waste at the | 1 day | Sat 20/5/23 | Sat 20/5/23 | 10.5 | | | | | | | 93 | Obtaining the dumping permits from No. China through the Employer (assumed | | vironment of the People | 's Republic of | 41 days | Sun 21/5/23 | Fri 30/6/23 92 | 000000000000000000000000000000000000000 | | | | | | | 94 | Obtaining all necessary permits, licens | es,approvals and concents | 3 | | 14 days | Sat 17/6/23 | Fri 30/6/23 | 1000 | | | | | | | 95 🛅 | Collection and delivery of 250000 tonn | es of Public Fill | | | 92 days | Sat 1/7/23 | Sat 30/9/23 88,94,9 | | | | | | | | 96 | 4th quarter of second year | | | | 134 days | Sun 20/8/23 | Sun 31/12/23 | | | | | | | | 97 | Submitting application documents to E | PD for application of dump | ing permits | | 1 day | Sun 17/9/23 | Sun 17/9/23 | | | | | | | | 98 | Obtaining the dumping permit from EPI | D (assumed on 30/9/23) | | | 13 days | Mon 18/9/23 | Sat 30/9/23 97 | 2.
5.
0.
0.
0.
0.
0.
0. | | | | | | | 99 🙃 | Submiting Application documents to the sea | e Employer for the applicat | tion of the dumping peri | nit of waste at the | 1 day | Sun 20/8/23 | Sun 20/8/23 | The state of s | | | | | | | 100 | Obtaining the dumping permits from N
China through the Employer(assumed | | rironment of the People | s Republic of | 41 days | Mon 21/8/23 | Sat 30/9/23 99 | | | | | , | | | 101 | Obtaining all necessary permits, license | es,approvals and concents | 3 | | 14 days | Sun 17/9/23 | Sat 30/9/23 | | | | | | | | 102 | Collection and delivery of 250000 tonn | es of Public Fill | | | 92 days | Sun 1/10/23 | Sun 31/12/23 95,101,9 | | | | | | | | 103 | Collection and delivery of 8 million tonnes
Bank and the Tuen Mun Area 38 Fill Bank
to Project's Manager's instruction) | | | | 742 days | Mon 20/12/21 | Sun 31/12/23 | - | | | | | | | 104 | 1st quarter of first year | | | | 102 days | Mon 20/12/21 | Thu 31/3/22 | | | | | | | | 105 | Installing Front End Mobile Unit (FEMU |) onto the proposed vesse | ls | | 7 days | Mon 20/12/21 | Sun 26/12/21 | | | | | | | | 106 🗰 | Submitting application documents to El | PD for application of dumpi | ing permits | | 1 day | Mon 20/12/21 | Mon 20/12/21 | | | | | | | | 107 | Obtaining the dumping permit from EPI | O (assumed on 31/12/21) | | | 11 days | Tue 21/12/21 | Fri 31/12/21 106 | | | | | | | | 108 | Submiting Application documents to the sea | e Employer for the applicat | ion of the dumping perr | nit of waste at the | 1 day | Mon 20/12/21 | Mon 20/12/21 | | | | | | | | 109 | Obtaining the dumping permits from N
China through the Employer
(assumed | | ironment of the People' | s Republic of | 11 days | Tue 21/12/21 | Fri 31/12/21 108 | | | | | | | | 110 | Obtaining all necessary permits, license | es,approvals and concents | | | 12 days | Mon 20/12/21 | Fri 31/12/21 | | | | | | | | 111 | Collection and delivery of 1 million tonn | es of Public Fill | | | 90 days | Sat 1/1/22 | Thu 31/3/22 110,109 | | | | | SOUTH CONTRACT | | | 112 | 2nd quarter of first year | | | | 134 days | Thu 17/2/22 | Thu 30/6/22 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | 113 | Submitting application documents to EF | D for application of dumpi | ing permits | | 1 day | Fri 18/3/22 | Fri 18/3/22 | TO THE PERSON NAMED IN COLUMN 1 | | | | | | | 114 | Obtaining the dumping permit from EPI | 0 (assumed on 31/3/22) | | | 13 days | Sat 19/3/22 | Thu 31/3/22 113 | 1000 | | | | | | | 115 | Submiting Application documents to the sea | e Employer for the applicati | ion of the dumping perr | nit of waste at the | 1 day | Thu 17/2/22 | Thu 17/2/22 | | | | | | | | 116 | Obtaining the dumping permits from N
China through the Employer | finistry of Ecology and envi | ironment of the People' | s Republic of | 41 days | Fri 18/2/22 | Wed 30/3/22 115 | | | | | | | | | | Task | | External Tasks | | Dur | ation-only | | Exter | nal Tasks | \rightarrow | | | | | | Split | | External Milestone | \Diamond | Mai | nual Summary Rollup | | Exter | nal Milestone | | 574505 | | | Project: 3 month
Date: Wed 26/1/ | rolling Programme Jan22- Mar22 CV/2021/09
22 | Milestone | • | Inactive Milestone | | Mai | nual Summary | | Prog | ress | | | | | 3 5.5. TTGG 20/ I/ | | Summary | | Inactive Summary | 177717 | | rt-only | | Dead | | T. | | | | | | Project Summary | | Manual Task | Ó | | sh-only | | Deac | | ~ | | | | | | 1 Toject Summary | V | iviaiiuai Task | ¥. | | on Offiny | | * | | | | | | | | | | | Page 3 | | | | | | | | | | ID 🔒 | Task Name | | | | Duration | Start | Finish Pred | | | 1 '22 | | Feb '22 | 28 | Mar '22
7 14 21 | 28 1 | |-----------------|--|---|-------------------------|-----------------------|----------|--------------|--------------------|-----------|--|--|--------------|----------------|----|------------------------|---------| | 117 | Obtaining all necessary permits, licens | ses,approvals and concen | nts | | 14 days | Fri 18/3/22 | Thu 31/3/22 | 1/1/ | | 11 2 | - JI | , 14 21 | 20 | , 14 ZI | 31/3/22 | | 118 | Collection and delivery of 1million toni | nes of Public Fill | | | 91 days | Fri 1/4/22 | Thu 30/6/22 117, | 116 | | | | | | | 10.00 | | 119 | 3rd quarter of first year | | | | 134 days | Fri 20/5/22 | Fri 30/9/22 | | | | | | | | | | 120 🎹 | Submitting application documents to E | EPD for application of dum | ping permits | | 1 day | Fri 17/6/22 | Fri 17/6/22 | | | | | | | | | | 121 | Obtaining the dumping permit from EF | PD (assumed on 30/6/22) | | | 13 days | Sat 18/6/22 | Thu 30/6/22 120 | | | | | | | | | | 122 | Submiting Application documents to the sea | ne Employer for the applic | ation of the dumping pe | ermit of waste at the | 1 day | Fri 20/5/22 | Fri 20/5/22 | | | | | | | | | | 123 | Obtaining the dumping permits from
China through the Employer | Ministry of Ecology and er | nvironment of the Peopl | e's Republic of | 41 days | Sat 21/5/22 | Thu 30/6/22 122 | | | | | | | | | | 124 | Obtaining all necessary permits, licens | ses,approvals and concen | its | | 14 days | Fri 17/6/22 | Thu 30/6/22 | | | | | | | | | | 125 111 | Collection and delivery of 1 million tonr | nes of Public Fill | | | 92 days | Fri 1/7/22 | Fri 30/9/22 121, | 124 | | | | | | | | | 126 | 4th quarter of first year | | | | 134 days | Sat 20/8/22 | Sat 31/12/22 | | | | | | | | | | 127 | Submitting application documents to E | EPD for application of dum | ping permits | | 1 day | Sat 17/9/22 | Sat 17/9/22 | | | | | | | | | | 128 🎹 | Obtaining the dumping permit from EP | D (assumed on 30/9/22) | | | 13 days | Sun 18/9/22 | Fri 30/9/22 127 | | | | | | | | | | 129 🔤 | Submiting Application documents to the sea | ne Employer for the applica | ation of the dumping pe | ermit of waste at the | 1 day | Sat 20/8/22 | Sat 20/8/22 | | | | | | | | | | 130 | Obtaining the dumping permits from China through the Employer (assumed | Ministry of Ecology and er
d on 30/9/22) | nvironment of the Peopl | e's Republic of | 41 days | Sun 21/8/22 | Fri 30/9/22 129 | | | | | | | | | | 131 | Obtaining all necessary permits, licens | ses,approvals and concen | ts | | 14 days | Sat 17/9/22 | Fri 30/9/22 | | | | | | | | | | 132 | Collection and delivery of 1 million ton | nes of Public Fill | | | 92 days | Sat 1/10/22 | Sat 31/12/22 131,1 | L25 | | | | | | | | | 133 | 1st quarter of second year | | | | 132 days | Sun 20/11/22 | Fri 31/3/23 | | | | | | | | | | 134 | Submitting application documents to E | PD for application of dum | ping permits | | 1 day | Sun 18/12/22 | Sun 18/12/22 | | | | | | | | | | 135 | Obtaining the dumping permit from EP | D (assumed on 31/12/22 |) | | 13 days | Mon 19/12/22 | Sat 31/12/22 134 | | | | | | | | | | 136 | Submiting Application documents to the sea | ne Employer for the applica | ation of the dumping pe | rmit of waste at the | 1 day | Sun 20/11/22 | Sun 20/11/22 | | | | | | | | | | 137 | Obtaining the dumping permits from l
China through the Employer | Ministry of Ecology and en | nvironment of the Peopl | e's Republic of | 41 days | Mon 21/11/22 | Sat 31/12/22 136 | | | | | | | | | | 138 🗰 | Obtaining all necessary permits, licens | ses,approvals and concen | ts | | 14 days | Sun 18/12/22 | Sat 31/12/22 | | | | | | | | | | 139 | Collection and delivery of 1 million ton | nnes of Public Fill | | | 90 days | Sun 1/1/23 | Fri 31/3/23 132,1 | 138 | | | | | | | | | 140 | 2nd quarter of second year | | | | 133 days
 Sat 18/2/23 | Fri 30/6/23 | | | The second secon | | | | | | | 141 | Submitting application documents to E | | | | 1 day | Sat 18/3/23 | Sat 18/3/23 | | | | | | | | | | 142 | Obtaining the dumping permit from EP | | | | 13 days | Sun 19/3/23 | Fri 31/3/23 | | | | | | | | | | 143 | Submiting Application documents to the sea | | | | 1 day | Sat 18/2/23 | Sat 18/2/23 | | | | | | | | | | 144 | Obtaining the dumping permits from I China through the Employer | | | e's Republic of | 41 days | Sun 19/2/23 | Fri 31/3/23 | | | | | | | | | | 145 | Obtaining all necessary permits, licens | A | ts | | 14 days | Sat 18/3/23 | Fri 31/3/23 | | | | | | | | | | 146 | Collection and delivery of 1 million toni | nes of Public Fill | | | 91 days | Sat 1/4/23 | Fri 30/6/23 139,1 | 45 | | NAME OF TAXABLE PARTY. | | | | | | | 147 | 3rd quarter of second year | | | | 134 days | Sat 20/5/23 | Sat 30/9/23 | | | | | | | | | | 148 | Submitting application documents to E | | ping permits | | 1 day | Sat 17/6/23 | Sat 17/6/23 | | | | | | | | | | 149 | Obtaining the dumping permit from EP | | | | 13 days | Sun 18/6/23 | Fri 30/6/23 | | | | | | | | | | 150 | Submiting Application documents to th
sea | | | | 1 day | Sat 20/5/23 | Sat 20/5/23 | | | | | | | | | | 151 🛅 | Obtaining the dumping permits from N
China through the Employer | | | e's Republic of | 41 days | Sun 21/5/23 | Fri 30/6/23 | | | | | | | | | | 152 | Obtaining all necessary permits, licens | | ts | | 14 days | Sat 17/6/23 | Fri 30/6/23 | | | | | | | | | | 153 | Collection and delivery of 1million tonr | nes of Public Fill | | | 92 days | Sat 1/7/23 | Sat 30/9/23 152,1 | .46 | | 20
4
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | | | 154 | 4th quarter of second year | | | | 134 days | Sun 20/8/23 | Sun 31/12/23 | | | | | | | | | | | | Task | | I External Tasks | | D | ation only | | | Evtore | d Tasks | | | | | | | | | | | | | ation-only | | | | al Tasks | \langle | | | | | roject: 3 month | n rolling Programme Jan22- Mar22 CV/2021/09 | Split | | External Milestone | ♦ | Mai | nual Summary Rollu | p 🔷 | | Externa | al Milestone | | | | | | ate: Wed 26/1 | | Milestone | • | Inactive Milestone | | Mai | nual Summary | • | | Progre | SS | | | _ | | | | | Summary | | Inactive Summary | 11111111 | Star | t-only | | | Deadli | ne | Ŷ | | | | | | | 1 | - | | | - Cui | , | | | 2 534111 | | * | | | | | | | Project Summary | | Manual Task | ♦ | Fi∽: | sh-only | 69 | The state of s | j . | | | | | | ### Appendix H **Weekly ET's Site Inspection Record** CEDD Contract No.: CV/2011/09 # Handling of Surplus Public Fill (2022-2023) - Trenny Kran O Aren 137 Fill Bank Inspection Date 9/2 Time 14:30 Weather : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy Wind : Calm / Light / Breeze / Strong Temperature 170 Humidity High / Moderate / Low | Inspected by | CEDD | Contractor / Sub-Contactor | ET | |--------------|---------------------|----------------------------|-------------| | Signature: | Fronk | AL | L. | | Name: | 7 grono you let uil | Vinces As | Carbon Chui | | Title | Ara- /Pt | 5.5 | E7 L | | | Environmental Checklist | | | | Remark | |-------|--|-----|----|--|-----------| | | | Yes | No | N/A | | | Fugit | Fugitive Dust Emission | | | | | | | Dust control / mitigation measures shall be provided to prevent dust nuisance. | V | | | | | | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | √ | | | | | • | Water sprays shall be provided and used to dampen materials. | 4 | | | | | | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. | 1 | | | | | | All vehicles shall be restrict to a maximum speed of 10 km per hour. | √ | | | | | | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. | 7 | | | | | • | The designated site main haul road shall be paved or regular watering. | √ | | | | | - | Frequent watering of work site shall be at least three times per day. | √ | | | | | • | Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. | √ | | | | | - | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | √ | ļ | | | | • | All plant and equipment should be well maintained e.g. without black smoke emission. | √ | | | | | = | Open burning should be prohibited. | √ | | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | √ | | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | √ | | | | | ¥ | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | √ | | | | | | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | √ | | | | | | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. | 1 | | | | | • | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). | 1 | | | | | Nois | e Impact | | | | Section 1 | | | The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. | ٧ | | | | | | Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. | V | | | | | | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | 1 | | | | | • | Air compressors and hand held breakers should have noise labels. | V | | | | | | Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. | 1 | | | | | | Noisy equipment and mobile plant shall always be site away from NSRs. | 1 | 1 | | | | Environmental Checklist | | emen | | Remark | |---|-----------|------|-----|--------| | | | | N/A | | | Water Quality | | | | | | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. | V | | | | | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. | V | | | | | • Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. | 1 | | | | | Manholes should be covered and sealed. | 1 | | | | | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. | 1 | | | | | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. | 1 | | · | | | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. | 1 | | | | | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. | V | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with
water or protected by other method approved by CEDD. | V | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, viryl, bitumen, or other suitable surface stabilizer approved by CEDD. | V | | | | | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited
silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainsform to ensure that these facilities
are functioning properly at all times. | 1 | | | | | A wheel washing
bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being
discharged into storm drains. | 1 | | | | | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. | 1 | | | | | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. | V | | | | | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. | 1 | | | | | Oil interceptor shall be provided at work shop. | _√ | | | | | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. | V | | | | | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. | 1 | | | | | All vessels used for transportation of fill mater al shall have tight fitting seals to their bottom openings to prevent leakage of material during
transport. | 1 | | | | | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. | V | | | | | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be
properly collected and treated before disposal. | 1 | | | | | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. | 1 | | | | | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. | √ | | | | | A waste collection vessel shall be deployed to remove floating debris. | $\sqrt{}$ | | | | | Environmental Checklist | Implementation
Stages* | | | Remark | |---|---------------------------|----|-----|---| | | Yes | No | N/A | | | Landscape and Visual | | | | 200 - 100 - | | The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight
edged slopes should be avoided. | √ | | | | | The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. | V | | | | | Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. | V | | | | | The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from
glare. | √ | | | | | Other Environmental Factors | | | | | | C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill
for disposal. | √ | | | | | Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. | 1 | : | | | | Any unused materials or those with remaining functional capacity should be recycled and stored properly. | √ | | | | | All generators, fuel and oil storage are within bundle areas. | 1 | | | | | Oil leakage from machinery, vehicle and plant is prevented. | √ | | | | | ■ The Environmental Permit should be displaced conspicuously on site. | 1 | | | | | Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. | 1 | | | | | To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other
general refuse generated by the workforce. | V | | | | ### **Summary of the Weekly Site Inspection:** | Item | Details of defective works or cbservations | Proposed Follow Up Action | Photo Ref. | Further Action
Required
(Yes/No) | Follow up
Date | |------|--|---------------------------|------------|--|-------------------| | | | | | | | | Remark | | | | |--------|--|--|--| | | | | | | | | | | | | | | | | | Name | Title | Signature | Date | |------------|----------|-------------------|-----------|------------------| | Checked by | June Lau | ET Representative | 1 | 09 February 2022 | Inspection Date 2 16/2/22 Time 14=30 Weather : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy Wind Calm /(Light)/ Breeze / Strong Temperature 18°(Humidity : High / Moderate / www. | Inspected by | CEDD |
Contractor / Sub-Contactor | ET | |--------------|---------|----------------------------|-------------| | Signature: | An | .0 | | | | | | Hak | | Name: | | | | | | XLDong. | Simon Pan | Mak Xei Wai | | Title | Asow. | Sile Agent | E/T | | Environmental Checklist | | | | Remark | |---|------------|--------|--|--| | | | Stage: | | | | Fugitive Dust Emission | | | | Appendix 2012 - 2012 the English Property of the Control Co | | Dust control / mitigation measures shall be provided to prevent dust nuisance. | _ √ | | | | | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industr
Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | ial √ | | | | | Water sprays shall be provided and used to dampen materials. | √ | | | | | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. | 1 | | | | | All vehicles shall be restrict to a maximum speed of 10 km per hour. | √ | | | | | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting si and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall covered by a clean tarpaulin. | de √
pe | | | | | The designated site main haul road shall be paved or regular watering. | \ √ | | | | | Frequent watering of work site shall be at least three times per day. | √ | | | | | Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. | √ | | | | | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | √ | | | | | All plant and equipment should be well maintained e.g. without black smoke emission. | - √ | | | | | Open burning should be prohibited. | 1 | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed w
water or protected by other method approved by CEDD. | | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetating planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | | | | | | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | √ | | | | | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | √ √ | | | | | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landipoint is maintained at no more than 1m. | ng √ | | | | | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and no
road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APC
Cap.311). | 0 | | | | | Noise Impact | | | | | | The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall adapted. | be √ | | | | | Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. | 1 | | | | | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | √ | | | | | Air compressors and hand held breakers should have noise labels. | 1 | | | | | Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimu | m. √ | | | | | Noisy equipment and mobile plant shall always be site away from NSRs. | 1 | | | | | Environmental Checklist | | emen
Stages | | Remark | |---|-----|----------------|-----|--------| | | | | N/A | | | Water Quality | | | | | | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. | 1 | | | 19 (2) | | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. | 1 | - | | | | • Temporary intercepting drains should be used at the stockpilling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. | 1 | | | | | Manholes should be covered and sealed. | V | | | | | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. | 1 | | | | | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. | V | | | | | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. | 1 1 | | | | | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. | 1 | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with
water or protected by other method approved by CEDD. | √ | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | √ | | | | | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited
silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities
are functioning properly at all times. | 1 | | | | | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being
discharged into storm drains. | 1 | | | | | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or
hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. | 1 | | | | | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and
maintenance of these facilities. | V | | | | | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. | 1 | | | | | Oil interceptor shall be provided at work shop. | V | | | | | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. | 1 | | | | | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. | 1 | | | | | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during
transport. | 1 | | | | | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. | V | | | | | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be
properly collected and treated before disposal. | √ | | | | | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the
vicinity of the barging facilities. | 1 | | | | | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. | 1 | | | | | A waste collection vessel shall be deployed to remove floating debris. | \ \ | | | | | Environmental Checklist | | Implementation
Stages* | | Remark | |---|----------|---------------------------|-----|---| | | Yes | No | N/A | | | Landscape and Visual | | | | | | The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. | 1 | | | | | The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. | V | | | | | Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. | 1 | | | | | The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from
glare. | √ | | | | | Other Environmental Factors | | | | the second se | | C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill
for disposal. | V | | | · | | Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. | √ | | | | | Any unused materials or those with remaining functional capacity should be recycled and stored properly. | 1 | | | | | All generators, fuel and oil storage are within bundle areas. | 1 | | | | | Oil leakage from machinery, vehicle and plant is prevented. | 1 | | | | | The Environmental Permit should be displaced conspicuously on site. | | | | | | Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the
nearby environment. | √ | | | | | To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other
general refuse generated by the workforce. | 1 | | | | ### **Summary of the Weekly Site Inspection:** | Item | Details of defective works or observations | Proposed Follow Up Action | Photo Ref. | Further Action
Required
(Yes/No) | Follow up
Date | |------|--|---------------------------|------------|--|-------------------| | | | | | | | | Remark | | | |--------|--|--| | | | | | | | | | | Name | Title | Signature / | Date | |------------|----------|-------------------|-------------|------------------| | Checked by | June Lau | ET Representative | 1 / re | 16 February 2022 | Inspection Date 23/2/22 Time 14=30 Weather : Sunny / Fine / Cloudy / Overcast / Drizzle / Rain / Storm / Hazy Wind : Calm / Light / Breeze / Strong Temperature 130 Humidity High / Moderate / Lov | Inspected by | CEDD | Contractor / Sub-Contactor | ET. | |--------------|-----------|----------------------------|-------------| | Signature: | | | | | | | | Mak | | Name: | | | | | | 413 Too 9 | Simon Pan | Mak Kei Wai | | Title | 5 20 W | S.A | | | | 5 10 W | | E, | | | Environmental Checklist | | Implementation
Stages* | | Remark | |----------|--|-----|---------------------------|-----|--------| | | | Yes | No | N/A | | | Fug | itive Dust Emission | | | | | | • | Dust control / mitigation measures shall be provided to prevent dust nuisance. | √ | | | | | | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | √ | | | | | = | Water sprays shall be provided and used to dampen materials. | √ | | | | | • | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. | √ | | | | | • | All vehicles shall be restrict to a maximum speed of 10 km per hour. | √ | | | | | | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. | ٧ | | | | | • | The designated site main haul road shall be paved or regular watering. | √ | | | | | • | Frequent watering of work site shall be at least three times per day. | √ | | | | | * | Wheel washing facilities including high-pressure water jet shall be provided at the entrance of work site. | √ | | | | | • | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | √ | | | | | • | All plant and equipment should be well maintained e.g. without black smoke emission. | 1 | <u> </u> | | | | • | Open burning should be prohibited. | V | | | | | - | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | 1 | | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shot concrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | √ | | | | | - | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | √ | | | | | | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | | | | | | • | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. | 7 | | | | | = | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). | 1 | | | | | Noi | se Impact | | | | | | • | The approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. | ٧ | | | | | - | Only well maintained plant should be operated on-site and plant should be serviced regularly during the construction works. | √ | | | | | • | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | 1 | | | | | • | Air compressors and hand held breakers should have noise labels. | 1 | | | | | | Machines and plants that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. | 1 | | | | | - | Noisy equipment and mobile plant shall always be site away from NSRs. | 1 | | | | | <u> </u> | rion) odalpriori and mosto priori onal arrays as the error | | | | L | | Environmental Checklist | `\$ | Stages | s* | Remark |
---|----------|---------|-----|--------| | | Yes | No | N/A | | | Water Quality | | | | | | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. | V | | | | | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. | 11 | | | | | Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth
bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. | 1 | | | | | Manholes should be covered and sealed. | 1 | | | | | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. | 1 | | | | | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. | V | | | | | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. | 1 | | | | | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. | 1 | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with
water or protected by other method approved by CEDD. | 1 | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | √ | | | | | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited
silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities
are functioning properly at all times. | 1 | | | | | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being
discharged into storm drains. | 1 | | | | | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. | | | | | | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. | 1 | | | | | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas. | √ | | | | | Oil interceptor shall be provided at work shop. | 1 1 | | | | | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. | √ | | | | | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. | | | | | | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material during
transport. | 1 | | | | | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the transfer. | 1 | | | | | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be
properly collected and treated before disposal. | | | | | | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the
vicinity of the barging facilities. | 1 | | | | | Existing silt curtain at the outward side of the basin near the Barging Handling Area (BHA) throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. | l | | | | | A waste collection vessel shall be deployed to remove floating debris. | √ | | | | | Environmental Checklist | | emen
Stages | | Remark | |--|-----|----------------|-----|---------------------------------| | | Yes | No | N/A | | | Landscape and Visual | | | | | | The design of the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight
edged slopes should be avoided. | 1 | | | | | The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. | V | | | | | Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. | 1 | | - | | | The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. | 1 | | | | | Other Environmental Factors | | | | aded Samulate Automotive to the | | C&D waste sorted from mixed C&D material shall be removed from the temporary buffer storage area on a daily basis and transfer to SENT landfill
for disposal. | √ | | | | | Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. | 1 | | | | | Any unused materials or those with remaining functional capacity should be recycled and stored properly. | √ | | | | | All generators, fuel and oil storage are within bundle areas. | √ | | | | | Oil leakage from machinery, vehicle and plant is prevented. | 1 | | | | | The Environmental Permit should be displaced conspicuously on site. | 1 | | | | | Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the
nearby environment. | √ | | | | | To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. | √ | | | | #### **Summary of the Weekly Site Inspection:** | Item | Details of defective works or observations | Proposed Follow Up Action | Photo Ref. | Further Action
Required
(Yes/No) | Follow up
Date | |------|--|---------------------------|------------|--|-------------------| | | | | | | | | Remark | | | | |--------|--|--|--| Name | Title | Signature | Date | |------------|----------|-------------------|-----------|------------------| | Checked by | June Lau | ET Representative | 1 | 23 February 2022 | # Appendix I **Implementation Schedule of Mitigation Measures** Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2021/09 **Environmental Mitigation Implementation Schedule** | | ivii oninientai viittigation impiementation ochedule | | | Implementati | on Status | | |---|--|---------------------------|--------------|-----------------------|-----------------|-------------------| | | Environmental Protection Measures | Location | Implemented | Partially implemented | Not implemented | Not
Applicable | | Α | ir Quality | | | | | | | • | Dust control / mitigation measures shall be provided to prevent dust nuisance. | All areas | | V | | | | • | A buffer zone of at least 100m shall be maintained between the edge of the stockpiling area and the nearest ASRs at the TKO Industrial Estate. Within the buffer zone, no dusty material shall be stockpiled and no loading / unloading and similar activities should be allowed. | Northern Site
Boundary | V | | | | | • | Water sprays shall be provided and used to dampen materials. | All areas | $\sqrt{}$ | | | | | ٠ | Regular cleaning and watering the site shall be provided to minimize the fugitive dust emissions. | All areas | $\sqrt{}$ | | | | | • | All vehicles shall be restrict to a maximum speed of 10 km per hour. | All areas |
$\sqrt{}$ | | | | | • | Any vehicle with open load carrying area used for moving materials which has the potential to create dust shall have properly fitting side and tail boards. Material having the potential to create dust shall not be loaded to a level higher than the side and tail boards, and shall be covered by a clean tarpaulin. | Site Egress | V | | | | | • | The designated site main haul rout shall be paved or regular watering. | All haul roads | V | | | | | • | Frequent watering of work site shall be at least three times per day. | All areas | \checkmark | | | | | • | Wheel washing facilities including high pressure water jet shall be provided at the entrance of work site. | Site Egress | V | | | | | • | Every vehicle shall be washed to remove any dusty materials from its body and wheels before leaving the fill bank. | Site Egress | | | | | | • | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | All areas | √ | | | | | • | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | All areas | $\sqrt{}$ | | | | | • | When fill material is transfer by belt conveyor systems, the conveyors shall be enclosed on top and 2 sides. | C&DMSF | $\sqrt{}$ | | | | | • | The belt scraper shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt. | C&DMFS | | | | | | • | The level of stockpiling belt conveyor shall be adjustable such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m. | C&DMFS | √ | | | | | • | All plant and equipment should be well maintained e.g. without black smoke emission. | All areas | $\sqrt{}$ | | | | | • | Approval or exemption Non-road Mobile Machinery (NRMM) labels should be painted or securely fixed on regulated machines and non-road vehicles at a conspicuous position according to the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation (APCO Cap.311). | All areas | | √ | | | | N | oise Impact | | | | | | | • | Approved method of working, equipment and sound-reducing measures (e.g. use of silenced type of equipment, etc.) shall be adapted. | All areas | √ | | | | | • | Only well maintained plant should be operated on-site and plant should be serviced regularly during the site works. | All areas | $\sqrt{}$ | | | | | • | Powered mechanical equipment (PME) should be covered or shielded by appropriate acoustic materials. | All areas | √ | | | | | • | Air compressors and hand held breakers should have noise labels. | All areas | √ | | | | | • | Machines and plants that may be in intermittent use should be shut down between work months or should be throttled down to a minimum. | All areas | √ | | | | | • | Noisy equipment and mobile plant shall always be site away from NSRs. | All areas | | | | | | | | | | | | | Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2021/09 | | | Implementation Status | | | | | | |---|------------------------------|-----------------------|-----------------------|-----------------|-------------------|--|--| | Environmental Protection Measures | Location | Implemented | Partially implemented | Not implemented | Not
Applicable | | | | Water Quality | | | | | | | | | Drainage system should be adequate and well maintained to prevent flooding and overflow, especially after rain storms. | All areas | $\sqrt{}$ | | | | | | | The permanent drainage channels should have sediment basin, traps and baffles and maintain properly. | All areas | $\sqrt{}$ | | | | | | | Temporary intercepting drains should be used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth
bunds and sand bay barriers shall be used to assist the diversion of polluted stormwater to the intercepting channels. | All areas | V | | | | | | | Manholes should be covered and sealed. | All areas | √ | | | | | | | Unnecessary water retained in receptacles and standing water should be avoided to prevent mosquito breeding. | All areas | | $\sqrt{}$ | | | | | | A buffer distance of at least 100m shall be maintained between the boundary of the public fill stockpiling area and the sea front. | Public fill stockpiling area | V | | | | | | | A buffer distance of at least 20m shall be maintained between the boundary of the C&DMSF and the seafront. | C&DMFS | $\sqrt{}$ | | | | | | | The stormwater intercepting system shall be effective to collect of runoff and remove suspended solids before discharge. | All areas | $\sqrt{}$ | | | | | | | The temporary slope surfaces, especially those facing to the north of the site shall be covered with impermeable sheet or sprayed with water or protected by other method approved by CEDD. | Temporary Slopes | V | | | | | | | Final slope surfaces, especially those facing to the north of the site shall be treated by compaction, followed by hydroseeding, vegetation planting or sealing with shotconcrete, latex, vinyl, bitumen, or other suitable surface stabilizer approved by CEDD. | Temporary Slopes | √ | | | | | | | Existing and newly constructed Catchpits, sand and silt removal facilities and intercepting channels shall be maintained, and the deposited silt and grit shall be removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. | All areas | √ | | | | | | | A wheel washing bay shall be provided at the site exit and wash-water shall have sand and silt settled out or removed before being
discharged into storm drains. | Wheel Washing facility | √ | | | | | | | The section of construction road between wheel washing bay and the public road shall be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. | Wheel Washing facility | V | | | | | | | Sewage from toilets shall be discharged in to a foul sewer, or chemical toilets shall be provided. The chemical toilets (if use) shall be provided by a licensed contractor, who will be responsible for disposal and maintenance of these facilities. | All areas | V | | | | | | | Oil intercept in addition of sand / silt removal facilities shall be provided at the car parking areas and work shop. | All areas | $\sqrt{}$ | | | | | | | Tipping halls enclosed with top and 3-side to prevent spillage of material into marine water. | Barge Handling
Area (BHA) | √ | | | | | | | The barges shall be in right size such that adequate clearance in maintained between the vessels and the seabed at all states of the tide to ensure the undue turbidity is not generated by turbulence from vessel movement or propeller wash. | Barge Handling
Area (BHA) | V | | | | | | | All vessels used for transportation of fill material shall have tight fitting seals to their bottom openings to prevent leakage of material
during transport. | Barge Handling
Area (BHA) | V | | | | | | | Adequate environmental control measures shall be provided to prevent / avoid dropping of fill material into the sea during the
transfer. | Along the seafront | V | | | | | | | Barges shall not be filled to a level which may cause the overflow of material during loading or transportation. Barge effluents shall be
properly collected and treated before disposal. | Barge Handling
Area (BHA) | V | | | | | | | The work activities shall not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging facilities. | Along the seafront | V | | | | | | | Existing silt curtain at the outward side of the basin near the Barging Handling Area throughout the period shall be repair, maintain and service when there is public fill intake by barges to the Fill Bank in accordance with PS Clause 1.68. The total length of the silt curtains shall not be less than 160m, and a gap of about 80m shall be left open for access of barges. The silt curtain shall be properly maintained such that it can also serve the function of refuse containment boom to confine floating refuse. | Along the seafront | V | | | | | | | A waste collection vessel shall be deployed to remove floating debris. | Along the seafront | $\sqrt{}$ | | | | | | Handling of Surplus Public Fill (2022-2023) – Tseung Kwan O Area 137 Fill Bank Contract No.: CV/2021/09 | | | | Implementation Status | | | | | | |---|---|------------------|-----------------------|-----------------------|-----------------|-------------------|--|--| | | Environmental Protection Measures | Location | Implemented | Partially implemented | Not implemented | Not
Applicable | | | | L | andscape and Visual | | | | | | | | | • | The design of
the fill bank and platform heights adopted should allow the fill bank to fit into the general topography of the surrounding land. Straight edged slopes should be avoided. | All areas | $\sqrt{}$ | | | | | | | • | The maximum stockpiling height at the fill bank shall be limited to a maximum of +35.2mPD. | Completed slopes | $\sqrt{}$ | | | | | | | • | Surface of outer slopes of the fill bank shall preferably be hydroseeded or covered with geo-textile matting of appropriate colour (e.g. dark green / brown) once completed. | Site boundary | \checkmark | | | | | | | • | The barging point and the C&DMSF at the fill bank shall not be in operation from 07:00 pm to 08:00 am daily to avoid potential visual impact from glare. | All areas | V | | | | | | | 0 | ther Environmental Factors | | | | | | | | | • | C&D waste sorted from mixed C&D material shall be transfer to SENT landfill for disposal. | All areas | $\sqrt{}$ | | | | | | | • | Plan and stock construction materials carefully to minimise generation of waste. | All areas | $\sqrt{}$ | | | | | | | • | Any unused materials or those with remaining functional capacity should be recycled. | All areas | $\sqrt{}$ | | | | | | | • | All generators, fuel and oil storage are within bunded areas. | All areas | $\sqrt{}$ | | | | | | | • | Oil leakage from machinery, vehicle and plant is prevented. | All areas | | √ | | | | | | • | The Environmental Permit should be displaced conspicuously on site. | All areas | √ | | | | | | | • | Good site practices should be adopted to clean the rubbish and litter on a regular basis so as to prevent the rubbish and litter from dropping into the nearby environment. | All areas | √ | | | | | | | • | To encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the workforce. | All areas | $\sqrt{}$ | | | | | | # Appendix J Site General Layout plan # Appendix K **Monthly Summary Waste Flow Table** ### **Monthly Summary Waste Flow Table for 2022** | | | Actual Quantitie | es of Inert C&I | Materials Gene | erated Monthly | | | Actual Quantitie | es of C&D Wa | stes Generated Mo | nthly | |-----------|--------------------------------|---|---------------------------|--------------------------|----------------------------|--------------------------|--------------|----------------------------|--------------------------------------|-------------------|-----------------------------| | Month | Total
Quantity
Generated | Hard Rock and
Large Broken
Concrete | Reused in the
Contract | Reused in other Projects | Disposed as
Public Fill | Imported
Fill | Metals | Paper/ cardboard packaging | Plastics (see Note 3) Chemical Waste | | Others, e.g. general refuse | | | (in '000m ³) | (in '000 kg) | (in '000kg) | (in '000kg) | (in '000kg) | (in '000kg) | | Jan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 66.1 | | Feb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109.18 | | Mar | | | | | | | | | | | | | Apr | | | | | | | | | | | | | May | | | | | | | | | | | | | Jun | | | | | | | | | | | | | Sub-total | | | | | | | | | | | | | Jul | | | | | | | | | | | | | Aug | | | | | | | | | | | | | Sep | | | | | | | | | | | | | Oct | | | | | | | | | | | | | Nov | | | | | | | | | | | | | Dec | | | | | | | | | | | | | Total | | | | | | | | | | | | Notes: - (1) The performance targets are given in **PS Clause 1.108(14)**. - (2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site. - (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material - (4) The *Contractor* shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the *works*, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the *works* is equal to or exceeding 50,000 m³. # Appendix L **Monitoring Schedule for the Coming Month** Time Schedule for Impact Water Quality Monitoring (WQM), Impact Air Monitoring (1-hrTSP, 24-hr TSP and 24-hr RSP), Weekly Site Inspection (Weekly SI) and Impact Noise Monitoring #### March 2022 | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | |----------|-----------------------------|-------------|----------------------------|----------|-------------------------|-----------| | 27-Feb | 28- | eb 1-Mar | 2-Mar | 3-Mar | 4-Ma | 5-Mar | | | 1-hr TSP x 1 | | 041 TOD | | 1-hr TSP x 2 | | | | 1-111 13P X 1 | | 24 hr TSP
24-hr RSP | | 1-111 1 3P X Z | | | | | | Weekly SI (pm) | | | | | | WQM | | WQM | | WQM | | | | Mid-ebb | | Mid-flood | | Mid-flood | | | | (10:00-12:00) | | (08:00-10:00) | | (08:30-10:30) | | | | Mid-flood | | Mid-ebb | | Mid-ebb | | | | (15:30-17:30) | | (12:00-14:00) | | (13:00-15:00) | | | 6-Mar | 7- | Mar 8-Mar | 9-Mar | 10-Mar | 11-Ma | 12-Mai | | | 1-hr TSP x 1 | 24 hr TSP | 1-hr TSP x 2 | | 1-hr TSP x 1 | | | | NM | 24-hr RSP | Weekly SI (pm) | | 1 III 101 X I | | | | | 24 111 1101 | ricein, er (piii) | | | | | | WQM | | WQM | | WQM | | | | Mid-flood | | Mid-flood | | Mid-flood | | | | (09:00-11:00) | | (09:30-11:30) | | (10:00-12:00) | | | | Mid-ebb | | Mid-ebb | | Mid-ebb | | | | (14:30-16:30) | | (15:30-17:30) | | (16:30-18:30) | | | 13-Mar | 14- | Mar 15-Mar | 16-Mar | 17-Mar | 18-Mai | 19-Mar | | | 24 hr TSP | | 1-hr TSP x 2 | | 1-hr TSP x 1 | | | | 24-hr RSP | | Weekly SI (pm) | | | | | | | | , , , | | | | | | | | WQM | | WQM | | | | | | Mid-ebb | | Mid-ebb | | | | WQM | | (11:00-13:00) | | (11:30-13:30) | | | | Mid-flood | | Mid-flood
(16:00-18:00) | | Mid-flood | | | 20-Mar | (14:00-16:00) | Mar 22-Mar | | 24-Mar | (17:00-19:00)
25-Mai | 26-Mar | | | | | | 21110 | | | | | 1-hr TSP x 1 | | 1-hr TSP x 1 | | 1-hr TSP x 1 | 24 hr TSP | | 4-hr RSP | | | Weekly SI (pm) | | | 24-hr RSP | | | WOM | | MOM | | MOM | | | | WQM
Mid-flood | | WQM
Mid-flood | | WQM
Mid-flood | | | | (08:30-10:30) | | (08:00-10:00) | | (10:00-12:00) | | | | Mid-ebb | | Mid-ebb | | Mid-ebb | | | | (14:00-16:00) | | (14:30-16:30) | | (15:30-17:30) | | | 27-Mar | 28- | Mar 29-Mar | 30-Mar | 31-Mar | 1-Ap | 2-Apr | | | 1-hr TSP x 2 | | 1-hr TSP x 1 | | 24 hr TSP | | | | · · · · · · · · · · · · · · | | Weekly SI (pm) | | 24-hr RSP | | | | WQM | | WQM | | | | | | Mid-ebb | | Mid-ebb | | | | | | (09:00-11:00) | | (10:30-12:30) | | | | | | Mid-flood | | Mid-flood | | | | | | (15:00-17:00) | | (16:00-18:00) | | I | 1 | Remark: 1. Due to the tidal period is not within the working hour, water monitoring (Mid-ebb) in 14/03/2022 have been cancelled. #### Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM) #### March 2022 #### Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM) #### March 2022 #### Predicted tide schedule from the Hong Kong Observatory for Impact Water Quality Monitoring (WQM) #### March 2022 # Appendix M **Reporting Month Monitoring Schedule** Time Schedule for Impact Water Quality Monitoring (WQM), Impact Air Monitoring (1-hrTSP, 24-hr TSP and 24-hr RSP), Weekly Site Inspection (Weekly SI) and Impact Noise Monitoring #### February 2022 | Sunday | Monday | | Tuesday | | Wednesday | | Thursday | | Friday | | Saturday | | |------------------------|---|--------|---|------|---|-------|---|------------------|---|--------|---|--------| | 30-Jan | | 31-Jan | 1- | -Feb | | 2-Feb | 3-1 | -eb | | 4-Feb | | 5-Feb | | | 24 hr TSP
24-hr RSP
Weekly SI (am)
WQM
Mid-ebb
(10:30-12:30)
Mid-flood
(16:00-18:00) | | | | | | | \
N
(| NQM
Mid-flood
(09:00-11:00)
Mid-ebb
14:30-16:30) | | | | | 6-Feb | | 7-Feb | 8- | -Feb | | 9-Feb | 10- | eb | | 11-Feb | | 12-Feb | | 24 hr TSP
24-hr RSP | 1-hr TSP x 1
NM | | | | 1-hr TSP x 1
Weekly SI (pm) | | | 1 | 1-hr TSP x 1 | | 24 hr TSP
24-hr RSP | | | | WQM
Mid-flood
(10:00-12:00)
Mid-ebb
(16:30-18:30) | | | | WQM
Mid-flood
(11:00-13:00)
Mid-ebb
(17:30-19:30) | | | N | WQM
Mid-flood
(10:30-12:30) | | | | | 13-Feb | | 14-Feb | 15- | -Feb | 1 | 6-Feb | 17- | -eb | | 18-Feb | | 19-Feb | | | 1-hr TSP x 2 | | | | 1-hr TSP x 1
Weekly SI (pm) | | | | 24 hr TSP
24-hr RSP | | | | | | | | WQM
Mid-ebb
(10:30-12:30)
Mid-flood
(16:00-18:00) | | | | WQM
Mid-flood
(08:30-10:30)
Mid-ebb
(13:00-15:00) | | | | WQM
Mid-flood
(08:45-10:45)
Mid-ebb
(13:30-15:30) | | | 20-Feb | | 21-Feb | | -Feb | 2 | 3-Feb | 24-1 | -eb | | 25-Feb | | 26-Feb | | | 1-hr TSP x 2 | | | | 1-hr TSP x 1
Weekly SI (pm) | | 24 hr TSP
24-hr RSP | 1 | 1-hr TSP x 2 | | | | | | WQM
Mid-flood
(09:30-11:30)
Mid-ebb
(15:30-17:30) | | | | WQM
Mid-flood
(09:00-11:00)
Mid-ebb
(16:00-18:00) | | | N
(
N
(| WQM
Mid-flood
(11:30-13:30)
Mid-ebb
(17:30-19:30) | | | | | 27-Feb | | 28-Feb | 1- | -Mar | | 2-Mar | 3-1 | Mar | | 4-Mar | | 5-Mar | | | 1-hr TSP x 1 WQM Mid-ebb (10:00-12:00) Mid-flood | | | | 24 hr TSP
24-hr RSP
Weekly SI (pm) | | | | | | | | | Pomork: 1 Due to the | (15:30-17:30) | | arkina haur watar manita | | | | | | | | | | Remark: ^{1.} Due to the tidal period is not within the working hour, water monitoring (Mid-ebb) in 11/02/2022 have been cancelled. ^{2.} TKO 137 Fill Bank is closed on General Holidays and Lunar New Year Eve. Two days of water quality monitoring is conducted in the week of 30 January to 5 February 2022. Appendix N **Complaint
Log** ### **Complaint Logs** | Log Ref. | Location | Received
Date | Details of Complaint | Investigation / Mitigation Action | Status | |----------|---|------------------|--|---|--------| | 001 | Barge
handling
area (BHA)
at Tseung
Kwan O
137 | 15 May
2017 | One complaint received on 15 May 2017, which was forwarded to ET on 11 August 2017, from CEDD (Complaint NCF-N08/RE/00014875-17 Sent By CSO[RN]3 [CASE#2-3943858817 Int.Comm. – WS170513A57354] against illegal dumping at sea without permit in TKO137 fill bank. | Refer to the ET site investigation on 14 August 2017, the contractor clarified that the contractor conducted vessel loading test at Tseung Kwan O 137 Fill bank on 13 May 2017 and the material was then unloaded from the vessels. Follow up action to complaint by ET and contractor: Contractor under the valid dumping permit to dump fill materials and the site works shall be complied with the relevant environmental protection and pollution control ordinances. ET reminded contractor that the dump fill material under the valid dumping permit should be checked and confirmed. In addition, record should be kept for ET reference. Details of Action(s) Taken by the Contactor: The contractor started to dump fill materials from 19 May 2017 after receiving the valid dumping permit. The contractor dump fill materials were followed by the valid dumping permit and the permit was kept apply every three month The contractor kept the permit for ET reference. | Closed | | 002 | Tseung
Kwan O
137 Fill
Bank | 12 Oct
2017 | One complaint received on 12 October 2017, which was forwarded to ET on 18 October 2017, from public against dust emission at the fill bank and discharge of muddy water to the seafront. | Refer to the ET weekly site inspection on 18 October 2017, no defective observation related to dust emission and discharge of water was recorded during the investigation. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Site vehicle for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; Silt curtains are provided at the outward side of the basin near the Fill Bank; Drainage systems are adequate and maintained to prevent flooding and overflow; Catchpits, sand and silt removal facilities and intercepting channels are maintained and functioning properly. | Closed | | 003 | Tseung
Kwan O
137 Fill
Bank | 09 April
2018 | One complaint received on 09 April 2018, which was forwarded to ET on 18 April 2018, from public against the rocks and debris deposited on the road surface along Wan Po Road near TKO137 Fill Bank. The complainant complained that waste generated caused an environmental nuisance. | Refer to the ET site investigation on 20 April 2018, the condition of Wan Po Road near TKO137 Fill Bank was found satisfactory. (Photos on ET follow-up investigation at TKO137 Fill Bank on 20 April 2018). Details of Action(s) Taken by the Contactor: Regular cleaning on Wan Po Road and the access road at the site exit by haul road cleaning team to remove mud and gravel is arranged eight times per month; Regular water spraying by water lorries is provided for road cleaning at Wan Po Road; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; Site vehicles for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided. | Closed | |-----|--------------------------------------|--------------------|--|---|--------| | 004 | Tseung
Kwan O
137 Fill
Bank | 13 January
2019 | One complaint received on 13 January 2019, which was forwarded to ET on 16 January 2019, from EPD (NCF-N08/RE/00001348-19) against 將軍澳 137 堆填區內,紅車池污水,不經處理,直接排到河道,河道係直接流出大海,極度嚴重影響周遭環境生態,污染程度極為嚴重,促請政府有關部門嚴正跟進! | After received the details of the complaint from the Contractor on 16 January 2019, ET have performed a site investigation on 21 January 2019 to investigate this event. During the site inspection, no muddy water was observed discharged from the Fill Bank to nearby environment. Besides, refer to the marine water monitoring results during that period, no exceedance was recorded on Turbidity and Suspended Solids. This reflects that this occurrence did not affect the condition of marine water near the TKO137Filll Bank. Details of Action(s) Taken by the Contactor: Drainage system were adequate and well maintained to prevent flooding and overflow; Sand and silt removal facilities, e.g. silting screen, were provided before the discharge point; Temporary intercepting drains were used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers were used to assist the diversion of polluted stormwater to the intercepting channels; Catchpits and intercepting channels were maintained, and the deposited silt and grit were removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times; | Closed | | | | | | 1 | | |-----|--------------------------------------|-----------------|---
--|--------| | 005 | Tseung
Kwan O
137 Fill
Bank | 14 May
2019 | One complaint received on 14 May 2019, which was forwarded to ET on 14 May 2019, from public against 投訴將軍澳第 137 區填料庫, 有車出入沒有灑水傳出大量沙塵,破壞環境,帶出大量沙泥到馬路,造成污染及嚴重滋擾,要求跟進。 要求改善,停止滋擾 | Refer to the ET site investigation on 15 May 2019, the condition of Wan Po Road near TKO137 Fill Bank was found satisfactory. (Photos on ET follow-up investigation at TKO137 Fill Bank on 15 May 2019). Details of Action(s) Taken by the Contactor: Regular cleaning on Wan Po Road and the access road at the site exit by haul road cleaning team to remove mud and gravel is arranged eight times per month; Regular water spraying by water lorries is provided for road cleaning at Wan Po Road; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; Site vehicles for transporting materials are covered properly by using clean tarpaulin sheets; Regular cleaning at the site haul road is provided. | Closed | | 006 | Tseung
Kwan O
137 Fill
Bank | 11 June
2019 | One complaint received on 04 June 2019, which was forwarded to ET on 11 June 2019, from public regarding the muddy water problem at 137 fill bank. | After received the details of the complaint from the Contractor on 11 June 2019, ET have performed a site investigation on 14 June 2019 to investigate this event. During the site inspection, no muddy water was observed discharged from the Fill Bank to nearby environment. Besides, refer to the marine water monitoring results during that period, no exceedance was recorded on Turbidity and Suspended Solids during the concerning period. This reflects that this occurrence did not affect the condition of marine water near the TKO137Filll Bank. Details of Action(s) Taken by the Contactor: Drainage system were adequate and well maintained to prevent flooding and overflow; Sand and silt removal facilities, e.g. silting screen, were provided before the discharge point; Temporary intercepting drains were used at the stockpiling area to divert polluted stormwater to the intercepting channels. Earth bunds and sand bay barriers were used to assist the diversion of polluted stormwater to the intercepting channels; Catchpits and intercepting channels were maintained, and the deposited silt and grit were removed weekly and on a need basis especially at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times; | Closed | | | | | | (| | |-----|--------------------------------------|-----------------|---|--|--------| | 007 | Tseung
Kwan O
137 Fill
Bank | 27 June
2019 | One complaint received on 27 June 2019, which was forwarded to ET on 28 June 2019, from public against dust emission at the fill bank. The complainant complained that the dust caused an environmental nuisance. | Refer to the ET site investigation on 02 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 24 to 28 June 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | 008 | Tseung
Kwan O
137 Fill
Bank | 17 July
2019 | One complaint received on 17 July 2019, which was forwarded to ET on 17 July 2019, from public against 投訴將軍澳堆填 137 區及收泥頭區,於運作時產生大量沙塵,嚴重污染周圍環境及影響行人,情況已持續發生了幾日 | Refer to the ET site investigation on 19 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 2 to 17 July 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | | | | | 1 | | |-----|--------------------------------------|-------------------------|---|---|--------| | 009 | Tseung
Kwan O
137 Fill
Bank | 26 July
2019 | One complaint received on 26 July 2019, which was forwarded to ET on 26 July 2019, from public against 投訴將軍澳第 137 區填料庫,大風吹起引致塵埃飛揚,更吹到 TVB,造成嚴重滋擾,要求跟進及回覆。 | Refer to the ET site investigation on 29 July 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 23 to 29 July 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | 010 | Tseung
Kwan O
137 Fill
Bank |
09
September
2019 | One complaint received on 09 September 2019, which was forwarded to ET on 09 September 2019, from public against 投訴將軍澳第 137 區填料庫,大風吹起引致塵埃飛揚,更吹到日出康城,造成嚴重滋擾,要求跟進及回覆。 | Refer to the ET site investigation on 11 September 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 1 to 13 September 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | | | • | | 1 | | |-----|--------------------------------------|-------------------------|--|--|--------| | 011 | Tseung
Kwan O
137 Fill
Bank | 10
September
2019 | One complaint received on 10 September 2019, which was forwarded to ET on 10 September 2019, from public against 投訴將軍澳 137 區經常於處理建築廢料時沒有灑水,導致沙塵滾滾,嚴重污染環境,要求環保署跟進及回覆。 | Refer to the ET site investigation on 11 September 2019, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 1 to 13 September 2019. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | 012 | Tseung
Kwan O
137 Fill
Bank | 24
August
2021 | One complaint received on 24 August 2021, which was forwarded to ET on 30 August 2021, from public against 投訴將軍澳第 137 區公眾填料庫,灑水不足,泥頭車引起大量塵埃。 | Refer to the ET site investigation on 30 August 2021, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 20 August 2021 to 30 August 2021. Details of Action(s) Taken by the Contactor: Repairing work on water truck was conducted. Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site entrance are operated properly; Site vehicles are washed to remove any dusty materials from their bodies and wheels by using high pressure water jet manually at the entrance of work site before leaving; All dusty material is sprayed with water prior to loading, unloading or transfer so as to maintain the material wet; Truck speed within the site is limited within 10 km/h; Regular cleaning at the site haul road is provided to minimize the fugitive dust emission; | Closed | | 013 | Tseung
Kwan O
137 Fill
Bank | 25
November
2021 | A complaint was received on 25 November 2021, which was forwarded to ET by email on 26 November 2021, from public against 投訴將軍 澳 137 公眾填料庫地盤灑水不足,大量塵埃,吹到 TVB 電視城一帶,問題一直無改善,要求環保署跟進及電郵回覆 | Refer to the ET site investigation on 29 November 2021, no defective observation related to dust emission was recorded during the investigation. No impact air quality monitoring result of 1-hr TSP and 24-hr TSP was exceeded Action and Limit Level at all monitoring stations from 24 November 2021 to 29 November 2021. Details of Action(s) Taken by the Contactor: Regular water spraying by water lorries is provided for dust suppression inside the Fill Bank; Mist spraying systems at the site area are operated properly; Regular cleaning at the site haul road is provided to minimize the dust emission | Closed | |-----|--------------------------------------|------------------------|---|--|--------| | | | | | | | **Figures** Contract No. CV/2015/07 Handling of Surplus Public Fill (2016-2018) Figure 1 Locations of Water Quality Monitoring Stations -Tseung Kwan O Area 137 Fill Bank Contract No. CV/2015/07 Handling of Surplus Public Fill(2016-2018) #### Figure 4 Locations of Additional Water Quality Monitoring Stations (3RS project) Tseung Kwan O Area 137 Fill Bank