Agreement No. CE45/2008 (CE)
Liantang/ Heung Yuen Wai Boundary Crossing Point
and Associated Works

- Investigation

NSR ID	Description	Land Use	Existing/ Planned NSR	No. of Floor	Assessment Floor	Assessment Level (mPD)	Ground-borne Noise Criteria, dB(A) Daytime	Tunnel Elevation (mPD)	Tunnel Diameter (m)	Distance between Tunnel and Receiver (m)		No. of Hand-held Breakers used on site	No of Drilling Rig	Impact from Hyraulic	Ground-borne Noise Impact from Hand- held Breakers, dB(A)	Impact from Drilling	
LPT	Village House, Leng Pei Tsuen	Residential	Existing	1	G/F	28.3	65	-7.5	11.0	24.8	0	0	4	0	0	34	34
STS	Village House, Sze Tei Shan	Residential	Existing	1	G/F	26.3	65	-13.4	11.0	28.7	0	0	4	0	0	34	34

Building Coupling Loss (BCF)

	Building Type	Limit	Building Coupling Loss (dB)								
	Building Type	LIIIII	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz			
1	Large Masonry Building on Pile	Lower	-6	-7	-11	-13	-14	-12			
2	Large Masonry Building on Spread Footings	Lower	-12	-14	-14	-13	-11	-10			
3	1 to 2 Storey Residential	Lower	-4	-5	-5	-4	-3	-1			
4	Building Foundation on Rock Layer		0	0	0	0	0	0			

Note(s):

- 1) Reference: Saurenman, H., Nelson, J., Wilson, G. 1982, Handbook of Urban Rail Noise and Vibration Control, US Department of Transportation Urban Mass Transportation Administration (Figure 8.12)
- 2) For conservative assessment, the lower limit adjustment factors (BOLD) will be used in the study

Building Vibration Response (BVR)

Building Structure Attenuation (BSA) (1)

Banang Chactare 7 ttonaation (E											
		Frequency									
	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz					
Floor Attenuation Factor, dB	0	0	0	0	0	0					

Building Structure Resonance (BSR) (2)

		Frequency									
	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz					
Floor and Wall Resonance, dB	6	6	6	6	6	6					

Building Vibration Response (BVR) at Ground Floor

		Frequency									
	16 Hz	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz					
Building Vibration Response, dB	6	6	6	6	6	6					

Note(s):

¹⁾ Reference: Saurenman, H., Nelson, J., Wilson, G. 1982, Handbook of Urban Rail Noise and Vibration Control, US Department of Transportation Urban Mass Transportation Administration (Figure 8.12)

²⁾ Reference: Hanson, C., Towers, D., Meister, L. 2006, Transit Noise and Vibration Impact Assessment Final Report, US Department of Transportation Urban Mass Transportation Administration.

Conversion from Vibration to Noise (CTN)

		Octave Band Centre Frequency (Hz)							
	16	31.5	63	125	250	500			
K _{rad} (dB)	0.0	0.0	0.0	0.0	0.0	0.0			
A weighting correction	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2			
CTN (for vibration), dB	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2			

For L_v vibration level reference to 1 μ in/s

Reverberant Sound Pressure Level, L_A (dBA) = L_v (VdB ref 1μ in/s) + CTN

CTN = K rad + A-weighting Correction

Conversion Factors for Multiple Vibration Sources

No. of Equipments	
Used Concurrently	Multiple Source Correction, dB(A)
1	0
2	3
3	5
4	6
5	7
>=6	*

Note(*): Multiple Source Correction, dB(A), for no. of equipments used concurrently more than or equal to 6 should be determined by standard acoustic principle.

Conversion Factors for Construction Equipments

Construction		Vibration (RMS) at Reference Distance of 5.5m from
Equipments	Construction Site	source (mm/s)
Drilling Rig	Salisbury Road Overrun Tunnel	0.536
Hydraulic Breaker	TST site	0.298
Handheld Breaker	New World Centre site	0.279

Ref: Appendix 7-1 of Kowloon Southern Link EIA Report

Conversion from Hydraulic Breaker to Handheld Breaker, dB(A)

- = 20 x Log (Virbation (RMS) of Handheld Breaker/ Vibration (RMS) of Hydraulic Breaker)
- = 20 x Log (0.279/0.298)
- = -0.6 dB(A)

Conversion from Hydraulic Breaker to Drilling Rig, dB(A)

- = 20 x Log (Vibration (RMS) of Drilling Rig/ Vibration (RMS) of Hydraulic Breaker)
- = 20 x Log (0.536/0.298)
- = +5.1 dB(A)

and Ass - Investi	ociated Works								
NSR ID.:	LPT Village House, Leng Pei T NSR distance: Assessment Floor:	suen 24.8 m G/F				Ві	uilding Type:	3	
Items	Description				Oct	tave Band Fr	equency, Hz		
a)	Source Vibratory Velocity (Based on site measurement with an	mm/s excavator-mounted bi	= reaker oper	16 0.05886 rating at distanc	31.5 0.06816	63 0.06195	125 0.05033	250 0.06225	500 0.12091
b)	Source Vibratory Velocity	in/s	=	2.32E-03	2.68E-03	2.44E-03	1.98E-03	2.45E-03	4.76E-03
c)	Vibration Velocity (ref. 10^-6 in/s)	20 log (V/Vref) dB	=	67	69	68	66	68	74
d)	Distance Attenuation r= 24.8 m	-20 log (r/ro) dB	=	-13	-13	-13	-13	-13	-13
e)	Soil Damping Loss (Soil) (Dampling loss limited to no greater the	dB nan 40dB in any frequ	= enct band)	-4.2	-8.3	-16.6	-33	-40	-40
f)	Building Coupling Loss	dB	=	-4	-5	-5	-4	-3	-1
g)	Building Vibration Response	dB	=	6	6	6	6	6	6
h)	Conversion from Vibration to Noise	dB	=	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2
i)	Multiple Vibration Soures (C _{multi})	dB	=	0	0	0	0	0	0
j)	Predicted Noise Level for Hydraulic B (c+d+e+f+g+h+i)	reaker dB(A)	=	-5	9	13	6	9	22
	(CTUTETITYTITI)			Predic	ted Noise Le	vel for Hydra	ıulic Breaker	23.2	dB(A)
					Corrected	l Noise Leve	l for Drill Rig	28.3	dB(A)
NSR ID.:	STS Village House, Sze Tei Sh NSR distance: Assessment Floor:	an 28.7 m G/F				Ві	uilding Type:	3	
Items	Description				Oct	tave Band Fr	equency, Hz		
a)	Source Vibratory Velocity (Based on site measurement with an	mm/s excavator-mounted bi	= reaker opei	16 0.05886 rating at distance	31.5 0.06816	63 0.06195	125 0.05033	250 0.06225	500 0.12091

NSR ID.:	STS		28.7 m G/F				Ві	uilding Type:	3	
Items	Description	on								
						Oct	ave Band Fr	equency, Hz		
					16	31.5	63	125	250	500
a)		bratory Velocity	mm/s	=	0.05886	0.06816	0.06195	0.05033	0.06225	0.12091
	(Based or	n site measurement with an exc	avator-mounted b	reaker ope	rating at distanc	e Ro=5.5m)				
b)	Source Vi	bratory Velocity	in/s	=	2.32E-03	2.68E-03	2.44E-03	1.98E-03	2.45E-03	4.76E-03
c)	Vibration	Velocity (ref. 10^-6 in/s)	20 log (V/Vref)							
-,		, (dB	=	67	69	68	66	68	74
d)	Distance A	Attenuation	-20 log (r/ro)							
	r=	28.7 m	dB	=	-14	-14	-14	-14	-14	-14
e)		oing Loss (Soil) g loss limited to no greater than	dB 40dB in any frequ	= uenct band)	-3.5	-6.8	-13.6	-27.1	-40	-40
f)	Building C	Coupling Loss	dB	=	-4	-5	-5	-4	-3	-1
g)	Building V	/ibration Response	dB	=	6	6	6	6	6	6
h)	Conversion	on from Vibration to Noise	dB	=	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2
i)	Multiple V	fibration Soures (C _{multi})	dB	=	0	0	0	0	0	0
j)	Predicted (c+d+e+f+	Noise Level for Hydraulic Brea	ker dB(A)	=	-5	9	15	10	8	21
	(31410111	· v · · · · · _/			Predic	ted Noise Le	vel for Hydra	ulic Breaker	22.5	dB(A)
						Corrected	Noise Leve	I for Drill Rig	27.6	dB(A)